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Title: Discrete Topology and Geometry Algorithms for Quantitative Human Airway Trees

Analysis Based on Computed Tomography Images.

Abstract: Computed tomography is a very useful technique which allow non-invasive

diagnosis in many applications for example is used with success in industry and medicine.

However, manual analysis of the interesting structures can be tedious and extremely time-

consuming, or even impossible due its complexity. Therefore in this thesis we study and

develop discrete geometry and topology algorithms suitable for use in many practical

applications, especially, in the problem of automatic quantitative analysis of the human

airway trees based on computed tomography images.

In the first part, we define basic notions used in discrete topology and geometry then we

showed that several class of discrete methods like skeletonisation algorithms, medial axes,

tunnels closing algorithms and tangent estimators, are widely used in several different

practical application.

The second part consist of a proposition and theory of a new methods for solving particu-

lar problems. We introduced two new medial axis filtering method. The hierarchical scale

medial axis which is based on previously proposed scale axis transform, however, is free

of drawbacks introduced in the previously proposed method and the discrete adaptive

medial axis where the filtering parameter is dynamically adapted to the local size of the

object. In this part we also introduced an efficient and parameterless new tangent esti-

mators along three-dimensional discrete curves, called 3D λ maximal segment tangent

direction.

Finally, we showed that discrete geometry and topology algorithms can be useful in the

problem of quantitative analysis of the human airway trees based on computed tomog-

raphy images. According to proposed in the literature design of such system we applied

discrete topology and geometry algorithms to solve particular problems at each step of

the quantitative analysis process. First, we propose a robust method for segmenting air-

way tree from CT datasets. The method is based on the tunnel closing algorithm and is

used as a tool to repair, damaged by acquisition errors, CT images. We also proposed

an algorithm for creation of an artificial model of the bronchial tree and we used such

model to validate algorithms presented in this work. Then, we compare the quality of

different algorithms using set of experiments conducted on computer phantoms and real

CT dataset. We show that recently proposed methods which works in cubical complex

framework, together with methods introduced in this work can overcome problems re-

ported in the literature and can be a good basis for the further implementation of the

system for automatic quantification of bronchial tree properties.

Keywords: digital topology; medial axis; skeleton; thinning; cubical complexes; tunnel

closing; digital geometry; tangent estimators; airway tree; quantitative analysis;



Titre: Topologie discrète et algorithmes géométriques pour l’analyse quantitative de l’arbre

bronchique humain, basée sur des images de tomodensitométrie.

Résumé: La tomodensitométrie est une technique très utile qui permet de mener avec

succès des analyses non-invasives dans plusieurs types d’applications, par exemple médi-

cales ou industrielles. L’analyse manuelle des structures d’intérêt présentes dans une

image peut prendre beaucoup de temps, être laborieuse et parfois même impossible à

faire en raison de sa complexité. C’est pour cela que dans cette thèse, nous proposons

et développons des algorithmes nécessaires à cette analyse, basés sur la géométrie dis-

crète et la topologie. Ces algorithmes peuvent servir dans de nombreuses applications,

et en particulier au niveau de l’analyse quantitative automatique de l’arbre bronchique

humain, sur la base d’images de tomodensitométrie.

La première partie introduit les notions fondamentales de la topologie et de la géométrie

discrètes utiles dans cette thèse. Ensuite, nous présentons le principe de méthodes util-

isées dans de nombreuses applications : les algorithmes de squelettisation, de calcul de

l’axe médian, les algorithmes de fermeture de tunnels et les estimateurs de tangentes.

La deuxième partie présente les nouvelles méthodes que nous proposons et qui permettent

de résoudre des problèmes particuliers. Nous avons introduit deux méthodes nouvelles de

filtrage d’axe médian. La première, que nous appelons "hierarchical scale medial axis", est

inspirée du "scale axis transform", sans les inconvénients qui sont propres à la méthode

originale. La deuxième est une méthode nommée "discrete adaptive medial axis", où

le paramètre de filtrage est adapté dynamiquement aux dimensions locales de l’objet.

Dans cette partie, nous introduisons également des estimateurs de tangente nouveaux et

efficaces, agissant sur des courbes discrètes tridimensionnelles, et que nous appelons "3D

lambda maximal segment tangent direction".

Enfin, nous avons montré que la géométrie discrète et les algorithmes topologiques pou-

vaient être utiles dans le problème de l’analyse quantitative de l’arbre bronchique humain

à partir d’images tomodensitométriques. Dans une chaîne de traitements de structure

classique par rapport à l’état de l’art, nous avons appliqué des méthodes de topologie et

de géométrie discrète afin de résoudre des problèmes particuliers dans chaque étape du

processus de l’analyse quantitative. Nous proposons une méthode robuste pour segmenter

l’arbre bronchique à partir d’un ensemble de données tomographiques (CT). La méthode

est basée sur un algorithme de fermeture de tunnels qui est utilisé comme outil pour ré-

parer des images CT abîmées par les erreurs d’acquisition. Nous avons aussi proposé un

algorithme qui sert à créer un modèle artificiel d’arbre bronchique. Ce modèle est utilisé

pour la validation des algorithmes présentés dans cette thèse. Ensuite nous comparons la

qualité des différents algorithmes en utilisant un ensemble de test consitué de fantômes
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(informatiques) et d’un ensemble de données CT réelles. Nous montrons que les méth-

odes récemment présentées dans le cadre des complexes cubiques, combinées avec les

méthodes présentées dans cette thèse, permettent de surmonter des problèmes indiqués

par la littérature et peuvent être un bon fondement pour l’implémentation future des

systèmes de quantification automatique des particularités de l’arbre bronchique.

Mots Clés: topologie discrète; axe médian; squelette; amincissement; complexes cu-

biques; fermeture de tunnels; géométrie discrète; estimateurs de tangente; arbre bronchique;

analyse quantitative;



Tytuł: Algorytmy Topologii i Geometrii Dyskretnej do Ilościowej Analizy Drzew Os-

krzelowych Człowieka na Podstawie Obrazów Tomografii Komputerowej

Streszczenie: Tomografia Komputerowa jest bardzo użyteczną metodą diagnostyczną,

która pozwala na nieinwazyjne postawienie diagnozy w wielu różnych zastosowaniach, na

przykład jest z powodzeniem stosowana w przemyśle i medycynie. Niestety, manualna

analiza interesujących struktur widocznych w obrazach tomograficznych może być trudna

i ekstremalnie czasochłonna, a czasem nawet niemożliwa ze względu na ich złożoność.

Dlatego w tej pracy studiowane są obecne, a także proponowane są nowe, algorytmy

topologii i geometrii dyskretnej, które mogą zostać zastosowane do rozwiązania pojawia-

jących się problemów w wielu zastosowaniach praktycznych. W szczególności, problemów

związanych z automatyczną ilościową analizą drzew oskrzelowych człowieka na podstawie

obrazów Tomografii Komputerowej.

W pierwszej części pracy, zdefiniowane zostały podstawowe pojęcia używane w topologii

i geometrii dyskretnej. Następnie pokazane zostały różne możliwości praktycznego za-

stosowania podstawowych algorytmów dyskretnych takich jak np. algorytmów szkiele-

tyzacji, osi centralnych, zamykania tuneli oraz estymatorów stycznych.

Druga część pracy zawiera szczegółowe propozycje nowych metod przeznaczonych do

rozwiązywania konkretnych problemów. Najpierw zaproponowane zostały dwie nowe

metody filtracji punktów osi centralnej. Pierwsza metoda "Hierarchical Scale Medial

Axis" rozwiązuje problemy pojawiające się we wcześniej zaproponowanej metodzie "Scale

Axis Transform", na której bazuje. Metoda druga "Discrete Adaptive Medial Axis"

pozwala na dynamiczne dostosowanie parametru filtracji bazując na lokalnej wielkości

obiektu. W tej części pracy zaproponowana została również nowa metoda estymacji sty-

cznej wzdłuż trójwymiarowej krzywej dyskretnej nazwana "3D λ Maximal Segment Tan-

gent Direction". Nowa metoda jest efektywna i bezparametrowa.

Na koniec, pokazana została możliwość zastosowania algorytmów topologii i geometrii

dyskretnej w problemie ilościowej analizy drzew oskrzelowych człowieka na bazie obrazów

tomografii komputerowej. Bazując na zaproponowanym w literaturze przedmiotu pro-

jekcie systemu analizy ilościowej, zastosowane zostały metody dyskretne do rozwiąza-

nia pojawiających się problemów. Najpierw, zaproponowano nową niezawodną metodę

segmentacji drzewa oskrzelowego z obrazów tomografii komputerowej. Zaproponowana

metoda wykorzystuje algorytm zamykania tuneli jako narzędzia do poprawy obrazów

zniekształconych błędami akwizycji. W pracy zaproponowano również algorytm gener-

acji komputerowego modelu drzewa oskrzelowego, który następnie zastosowano do wali-

dacji zaproponowanych metod. Wyniki działania różnych metod dyskretnych porównano

w eksperymentach przeprowadzonych zarówno na wygenerowanych modelach jak i na

prawdziwych obrazach tomografii komputerowej. Uzyskane wyniki dowiodły, że nowe
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metody bazujące na teorii kompleksów sześciennych oraz metody zaproponowane w tej

pracy pozwalają rozwiązać problemy pojawiające się w literaturze przedmiotu. Ich za-

stosowanie może stanowić solidną podstawę późniejszej implementacji systemu do au-

tomatycznej ilościowej analizy właściwości drzew oskrzelowych.

Słowa kluczowe: topologia dyskretna; oś centralna; szkielet; pocienianie; zamykanie

tuneli; geometria dyskretna; estymatory stycznej; drzewo oskrzelowe; analiza ilościowa;
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Chapter 1

Introduction

1.1 Background

Computed tomography is a very useful technique which allow non-invasive diagnosis in

many applications for example is used with success in industry and medicine. The rapid

development of the x-ray computed tomography started in the 70s of XX century and

continues today.

Computed Tomography technique produce stack of two-dimensional slices which com-

bined together can represent three-dimensional structures. Such images needs to be an-

alyzed by specialists. With recent advances in CT technology, slice thickness can now

be much less than 1mm which make a data sets to process very large. Manual analysis

of the interesting three-dimensional anatomical structures can be tedious and extremely

time-consuming, or even impossible due its complexity. Therefore, manual analysis for

routine clinical use is impractical and cause strong demand from the medical community

to develop new methods which allows to effectively process CT data.

In the 60s, it became realistic that computers could be used in order to automatically

process, visualize and analyze data from digital images. Therefore, using this technique as

a tool to analyze CT data sets was natural. As addition developing of three-dimensional

computer graphics opened a whole set of new possibilities and makes this task much more

efficient. It allowed to consider anatomical structures not only as a set of two-dimensional

images but more naturally as a three-dimensional structures. Which will not only speed

up the diagnostic process but also allow to propose many new methods to non-invasive

diagnosis purposes like for example virtual endoscopy techniques.

However, to process such amount of data we need use non-trivial algorithms which needs

to be efficient and robust enough to deal with images which can be corrupted for example

by presence of noise. Algorithms should allow to extract interesting objects, analyze

its properties, make some quantitative measurements or makes its visualization. These

1



Chapter 1 Introduction 2

steps consist of problems like object simplification, detection, decompositions, evaluation

of its properties, and many more. Based on the discrete nature of the CT data a lot

of these problems can be solved based on discrete topology and geometry theories and

concepts. They provide tools and algorithms which can be effectively used to digital image

processing. This is active research field used with success in many practical application.

1.2 Aims and Objectives

This thesis is initially aimed at studying and developing discrete geometry and topology

algorithms suitable for use in the problem of quantitative analysis of the human airway

trees based on computed tomography images. We look for methods which are reliable,

robust and fast enough to effectively process large amount of data. Moreover, meth-

ods should gives results with high accuracy and which can be further used in clinical

applications to help doctors in diagnostic process of many pulmonary disorders.

Therefore, the final objective of this thesis is a thorough review of the discrete and

geometry algorithms and theirs desirable properties and proposition of a set of methods

which used together can allow doctors to obtain precise quantitative information about

particulars parts of the bronchial tree especially its wall thickness and diameter of the

airway lumen.

To achieve this objective, all along the chapters of this work, we study well known

discrete methods as well as a new methods which can be useful at different stages of

the quantitative analysis process. To test algorithms we use computer phantoms of the

airway trees and many CT scans of the real patients both healthy and affected by different

pulmonary disease. As addition, examples and results will be also presented on other

types of discrete datasets, in order to prove that the methods exposed here are not

aimed at only one domain.

All computed tomography datasets are provided thanks to interdisciplinary cooperation

with Department of Radiology and Diagnostic Imaging, Medical University of Lodz.

Medical doctors are also responsible for further validate usefulness of developed methods

in clinical applications.

1.3 Contributions and Contents

In this thesis, we propose digital topology and geometry algorithms suitable for use in

many practical applications, especially, in the problem of quantitative analysis of the

human airway trees based on computed tomography images.

In order to reach this goal, we have done some contributions in different fields of research:
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Digital Topology - As the skeleton of the airway tree is a basis for many different

task in bronchial trees analysis, like for instance, tree decomposition and branch labeling

or cross section computation, we have worked on comparison skeletonisation algorithms

based on desirable set of properties. We use quantitative comparison based on properties

of medial axes of the tree. However, using the discrete medial axis directly is hard due

several problems. Therefore, we have worked on filtering methods which are able to

effectively prune medial axes points in object with features at different scales. We have

also proposed a new methodology for fair comparison between different filtering methods.

Digital Geometry - As the accuracy of the quantitative measurements relay on the

reliable perpendicular cross sections evaluation in each point of the bronchial tree, we

proposed a new tangent estimators along three-dimensional discrete curves. Tangent

vector is used as normal vector to the plane which used to define perpendicular cross

sections.

Medical Image Processing - We also study the tunnel closing algorithm as a tool to

repair, damaged by acquisition errors, CT datasets and we propose a new strategy for

segmenting airway tree from CT datasets. We also proposed an artificial model of the

bronchial tree which can be used to validate developed algorithms.

The structure of this manuscript is in three main parts: the first one introduces the

state of the art of the digital topology and geometry algorithms which are essential in

quantitative analysis process like tunnel closing, skeletonization, medial axes and tan-

gent estimators. The second part consist of a proposition and theory of a new methods

for solving particular problems like discrete medial axis filtering and three-dimensional

tangent estimation. In this part we also verify proposed methods on the set of artificial

objects. The last part of the work consist of state of the art about quantitative analysis

of the human airway trees based on computed tomography. This part also consist of a

proposition of a new airway tree segmentation algorithm and method for building three-

dimensional model of the tree. Finally in this part we shows experiments and results

performed on real tomographic data and computer phantoms to validate and compare

all implemented methods in application to quantitative analysis of the human airway

tress.

1.4 Main Thesis of This Work

In this work we set following thesis:

Main These:

Algorithms build on top of discrete topology and geometry like skeletons, medial axes,

tunnel closing algorithms and tangent estimators can be used in many practical applica-

tion which are based on image processing and analysing techniques. They still have many
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limitations, however, the recently proposed methods overcome many of them which al-

low to use such tools effectively and fully automatically. Therefore, the discrete topology

and geometry algorithms can be used in each step of quantitative human airway trees

analysis based on computed tomography.

Supplementary These 1:

New medial axis filtering algorithms proposed in this manuscript allow to filter effectively

medial axes of objects which consist features at different scales. Therefore, they can be

used to make filtered medial axes of the human airway trees where the branches are with

different diameter.

Supplementary These 2:

Skeletonisation algorithms based on thinning are sensitive to presence of noise in the

input object which can cause skeletons to have some spurious branches or to be not well

centered. Recently proposed methods based on cubical complexes are more robust to

such kind of distortions. Therefore, they can be used effectively to generate the skeletons

of the human airway trees with sufficient accuracy.

Supplementary These 3:

The new efficient tangent estimation algorithm along three-dimensional discrete curves

proposed in this manuscript gives accuracy comparable to the continuous methods, with-

out needs to set any parameter. Its accuracy will be improved with increasing resolution.

Therefore, it can be used to define local direction of the airway tree and to generate

perpendicular cross sections in each point of interest.
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Chapter 2

Basic Notions

2.1 The Digital Topology Framework

In this section we give some basic notions of the main concepts used in the digital

topology framework, necessary to understand the following parts of this work. We based

on definitions presented in Kong and Rosenfeld (1989); Bertrand (1994); Chassery and

Montanvert (1991).

2.1.1 Discrete objects

We denote by Z the set of integers, by N the set of positive integers, by R the set of reals.

The set Zn, where n ∈ N, is called the discrete grid or space of dimension n. In this work

we focus, mostly, on two-and three-dimensional cases, thus n = 2 or 3. In case of n = 2

an element is called pixel, in case of n = 3 it is called voxel, and more generally, a point.

Each point of Zn is defined by an n-tuple (x1, ..., xn), where xi ∈ Z, which represents

its coordinates in discrete space. A subset X of Zn is called a discrete object of Zn, for

simplicity we also called it shortly an object or a shape. The number of points in X (i.e.

the cardinality) of X is denoted by |X|. For a given object X ⊂ Zn, we denote by X

the complementary of X and we define it by, X = {y ∈ Zn | y /∈ X}, we also call it the

background. Each point x ∈ X is also called a black point or an object point and each

point y ∈ X is also called a white point or a background point.

2.1.2 Euclidean distance and distance transform

In the discrete space, one can find several definitions of distance (Borgefors, 1984; Chas-

sery and Montanvert, 1991). In this work we based on the exact Euclidean distance which

is defined as follows.

6
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Let x = (x1, ..., xn) and y = (y1, ..., yn), where x, y ∈ Zn, we denote by d the function

d : Zn × Zn → R which associates to x and y the (Euclidean) distance between x and y,

where d is defined by:

d(x, y) =

√√√√
n∑

i=1

(xi − yi)2 (2.1)

Let x ∈ Zn and Y ⊆ Zn, we denote by d(x, Y ) the (Euclidean) distance between x and

the set Y , that is, d(x, Y ) = miny∈Y {d(x, y)}. Given X,Y ⊂ Zn, we denote by d(X,Y )

the Euclidean distance between X and the set Y , that is, d(X,Y ) = minx∈X{d(x, Y )}.

Let X ⊆ Zn, we denote by DX the map from Zn to R which associates, to each point

x of Zn, the value DX(x) = d(x,X). The map DX is called the (Euclidean) distance

map of X or the (Euclidean) distance transform of X (see an example in Fig.2.1). In

the same way we can define the square of the (Euclidean distance) denoted by d2 and

corresponding squared (Euclidean) distance transform denoted by D2
X .

In the literature different methods have been proposed to compute the exact squared

Euclidean distance transform of an object X in linear time with respect to the size of

the input, for example methods proposed by Saito and Toriwaki (1994); Hirata (1996);

Meijster et al. (2000).
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Figure 2.1: An example of a 2D binary image in (a) and its squared Euclidean distance
map in (b).

2.1.3 Adjacency relations and neighborhood of a point

Now, we can define different adjacency relations between points in Zn. Let x ∈ Zn, the

direct neighborhood of x, denoted by N (x) is the set of points of the discrete grid that

are closest to x, defined by N (x) = {y ∈ Zn | d(x, y) ≤ 1}. The direct neighborhood

comprises 2n+ 1 points.
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We denote by Γk an adjacency relation, with k = 4, 8 in case of Z2 and k = 6, 18, 26 in

case of Z3. The adjacency relation defines which points are considered as neighbors of a

given point x.

In the 2D case,

Γ4(x) = {y ∈ Z2 | d(x, y) ≤ 1} (2.2)

Γ8(x) = {y ∈ Z2 | d(x, y) ≤
√
2} (2.3)

In the 3D case,

Γ6(x) = {y ∈ Z3 | d(x, y) ≤ 1} (2.4)

Γ18(x) = {y ∈ Z3 | d(x, y) ≤
√
2} (2.5)

Γ26(x) = {y ∈ Z3 | d(x, y) ≤
√
3} (2.6)

A point y is k-neighbor of a point x, if y ∈ Γk(x). It is k-neighbor of a subset X of Zn if it

is a k-neighbor of at least one point of X. We denote by Γ∗
k(x) the strict k-neighborhood of

a point x, defined by, Γ∗
k(x) = Γk(x)\{x}. The same way we define N ∗(x) = N (x)\{x},

called the strict direct neighborhood. Notice that N (x) = Γ4(x) in 2D, and N (x) = Γ6(x)

in 3D.

In order to have coherent topological properties in object X and in its complementary

X, at the same time, we need to use different adjacency relations for both sets (Kong

and Rosenfeld, 1989). That is, in case of Z2 when considering an object with the 8-

adjacency relation its complementary should be considered with the 4-adjacency relation

(and vice-versa). In Z3 when considering an object with the 26-adjacency relation its

complementary should be considered with the 6-adjacency relation (and vice-versa). In

the sequel of this work we assume that the adjacency relation pair (k, k) has been chosen

in case of Z2 equal to (8, 4) and equal to (26, 6) in case of Z3. We do not write the

subscript k, k, unless necessary.

Let X ⊂ Zn. If a black point x ∈ X has no white point as a neighbor, that is Γk(x)∩X =

∅, it is called an inside point. Otherwise, that is, Γk(x)∩X 6= ∅, it is called a border point.

A background point y ∈ X is called an outside point if all its neighbors are background

voxels, that is, Γk(y) ∩X = ∅.

2.1.4 Discrete binary image

Taking all above into consideration a binary image (or discrete binary image), is denoted

by P and is defined as a quadruple P = (Zn, k, k,X) where X ⊂ Zn, and where k and k

specify the adjacency relations used for the object X and its complementary, respectively,

according to rules described above.
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2.1.5 Connected components, cavities, holes and tunnels

Given x, y ∈ Zn, we define a k-path between x and y as a sequence of points S =

(p1, ..., pj) such that x = p1, y = pj and, for each i ∈ [1, j − 1], pi and pi+1 are k-

neighbors. If p1 = pj then a k-path is a closed k-path. We say that a set X ⊂ Zn is

k-connected if, for each x, y ∈ X, there exist a k-path between x and y which entirely

lying inside X. A non-empty subset Ck ⊆ X is called a k-connected component of X if it

is k-connected and if it is not strictly included in any other k-connected subset of X. The

set composed of all k-connected components of X (respectively X) is denoted by Ck[X]

(respectively Ck[X]). The set composed of all k-connected components of X which are

k-neighbors of a point x is denoted by Ck[x,X].

In case of Z2 and Z3 any finite k-connected component of the background is called a hole

(see Fig.2.2(a)) and a cavity (see Fig.2.2(b)), respectively.

Hole

(a)

Cavity

Tunnel

(b)

Figure 2.2: An example of a 2D shape in (a) and 3D shape in (b).

A tunnel, sometimes called a 3D hole, in an object X ⊂ Z3 is detected whenever there is

a loop in X which cannot be transformed into a single point by a sequence of elementary

homotopic local deformations inside X (Kong and Rosenfeld, 1989). Figure 2.3 shows

a hollow torus with two different loops which cannot be iteratively transformed into a

single point.

Formal definition of the homotopic deformation introduced by Kong and Rosenfeld (1989)

is as follows: Let X ⊆ Z3 and let p ∈ X be a point, called the base point. Let γ and γ′ be

two closed k-paths composed of points of X and which have p as origin. We say that γ′

is an elementary k-deformation of γ, or γ ∼ γ′, if there are two k-paths π1, π2, and two

non-empty k-paths π, π′, such that γ and γ′ are of the form γ = π1ππ2, γ′ = π1π
′π2,

and such that all points of π and π′ are included in a little portion P of Z3:

• for k = 6, P is a unit square (a 2× 2 square);

• for k = 26, P is a unit cube (a 2× 2× 2 cube).
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We say that γ′ is an k-deformation of γ or γ ≃ γ′ if there is a sequence of closed k-paths

γ0 . . . γn such that γ = γ0, γ′ = γn and γi−1 ∼ γi for i = 1 . . . n.

Let γ = px0 . . . xip and γ′ = px′0 . . . x′jp be two closed k-paths composed of points

from X and which have p as origin. The product of γ and γ′ is the closed k-path

px0 . . . xipx
′
0 . . . x′jp obtained by concatenating γ and γ′.

Let us consider the classes of equivalence of the closed k-paths with origin p under the

relation ≃. We define the product of two such classes as the equivalence class of the

product of two closed k-paths corresponding to the classes.

Under the product operation, these classes constitute a group Πk(p,X) which is the fun-

damental group (or Poincaré group) with base point p. As in the continuous spaces, the

fundamental group reflects the structure of the tunnels in X. For example, the funda-

mental group of a hollow torus is a free abelian group on two generators (see Fig. 2.3).

Note that, if p and q belong to the same k-connected component of X, then Πk(p,X) is

isomorphic to Πk(q,X).

Figure 2.3: Hollow torus and two loops which determine two tunnels.The loops γ1
and γ2 are generators of the torus fundamental group.

2.1.6 Euclidean balls

Let x ∈ Zn and r ∈ R, we denote by B(x, r) the (Euclidean) ball of radius r centered on

x, defined by B(x, r) = {y ∈ Zn | d(x, y) ≤ r}. We also define the strict (Euclidean) ball

of radius r centered on x as the set B<(x, r) = {y ∈ Zn | d(x, y) < r}.

Notice that, for any point x in X, the value DX(x) is precisely the radius of a strict ball

centered on x and included in X, which is not included in any other ball centered on x

and included in X.

Let x ∈ X and r ∈ R, we denote by BX(x, r) the intersection of ball B(x, r) with X,

defined by BX(x, r) = {y ∈ X | d(x, y) ≤ r}.
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2.1.7 Simple points in 2D

Now we can introduce notions which are fundamental to the definition of topology pre-

serving transformations in discrete spaces.

Given p ∈ X, intuitively, a point p is a simple point of the object X, if it is "inessential" to

the topology of X (Rosenfeld, 1970), that is, we can remove p from X without changing

the topology of X. Notice that, topology of the object depends on the chosen adjacency,

therefore if we consider k-connected object we need to use k-simple points.

As reported in Lam et al. (1992) studies of two dimensional deletable points started in

the 60s in A.E. Brain and Munson (1965); Golay (1969) where, in order to decide if a

point p is simple, the number of connected components of whole object X (respectively

X), need to be evaluated. Then, a point p is simple if we have the same number of

connected components of X (respectively X), before and after removing a point p from

X, that is, |Ck[X]| = |Ck[X \ {p}]| and |Ck[X]| = |Ck[X ∪ {p}]| (see Fig.2.4).

x

y z

p

(a) (b) (c) (d)

Figure 2.4: (a): The object X with |C8[X]| = 2 and |C4[X]| = 2. The point p can be
removed without changing the number of connected components of X and X. Therefore,
point p is simple; (b): The point x is not simple |C4[X ∪ {p}]| = 1; (c): The point y is

not simple |C8[X \ {y}]| = 3; (d): The point z is not simple |C8[X \ {z}]| = 1.

In three dimensional objects such strategy is not sufficient to decide if a point p is

simple or not. The reason is in 3D removing a point from the object may also change

the structure of tunnels in X. Therefore, it is possible to find an example where after

point removal we does not change number of connected component of the object nor its

complementary, however topology of the object is changed (see Fig.2.5).

2.2 The Cubical Complex Framework

In the following section we introduce the basis notions of the cubical complex framework.

Abstract (cubical) complexes have been studied in particular by Kovalevsky (1989) in

order to provide a sound topological basis for image analysis. We based on definition

presented in Bertrand and Couprie (2008).
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x

(a) (b)

Figure 2.5: An example where removing point x from object X on (a) does not change
number of connected component of X and X, however a tunnel appear in X on (b).

(Chaussard, 2010)

2.2.1 Elements in cubical complex framework

In the cubical complex framework we use a set of basic elements having various dimen-

sions (e.g. vertices, edges, squares or cubes). Each such element is called a face and is

defined as follows.

Definition 2.1 (Bertrand and Couprie (2008)). Let Z be the set of integers, we consider

the family of sets F1
0 and F1

1, such that F1
0 = {{a} | a ∈ Z} and F1

1 = {{a, a+1} | a ∈ Z}.
Any subset f of Zn such that f is the cartesian product of m elements of F1

1 and (n−m)

elements of F1
0 is called a face or a m-face of Zn, m is the dimension of f , we write

dim(f) = m.

We denote by Fn the set composed of all faces in Zn. Given m ∈ {0, ..., n}, we denote by

Fn
m the set composed of all m-faces in Zn. When we consider a 3D cubical complex, that

is, F3, then a A 0-face is called a vertex, a 1-face is an edge, a 2-face is a square, and a

3-face is a cube (see Fig.2.6, where graphical representation of these four kinds of faces

are depicted).

(a) Vertex (b) Edge (c) Square (d) Cube

Figure 2.6: Graphical representations of faces in the cubical complex framework.
(Chaussard, 2010)

Let f ∈ Fn. We set f̂ = {g ∈ Fn | g ⊆ f}, and f̂∗ = f̂ \ {f}. Any element of f̂

is a face of f , and any element of f̂∗ is a proper face of f . We call star of f the set
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f̌ = {g ∈ Fn | f ⊆ g}, and we write f̌∗ = f̌ \ {f}: any element of f̌ is a coface of f . It is

plain that g ∈ f̂ iff f ∈ ǧ.

2.2.2 Cells and cubical complex sets

A set X of faces in Fn is a cell, or m-cell, if there exists an m-face f ∈ X such that

X = f̂ . The closure of a set of faces X is the set X− = ∪{f̂ | f ∈ X}. The set X is

Fn \ X .

Definition 2.2 (Bertrand and Couprie (2008)). A finite set X of faces in Fn is a cubical

complex if X = X−, and we write X � Fn. Any subset Y of X which is also a complex

is a subcomplex of X , and we write Y � X .

2.2.3 Facets in complexes

A face f ∈ X is a facet of X if f is not a proper face of any face of X (see Fig. 2.7). We

denote by X+ the set composed of all facets of X . A complex X is pure if all its facets

have the same dimension (see Fig. 2.8). The dimension of X is dim(X ) = max{dim(f) |
f ∈ X}. If dim(X ) = d, then we say that X is a d-complex.

Figure 2.7: The square "a" is a facet, as well as the edge "b". The edge "c" is not
a facet, as it is included in a square. The vertex "d" is not a facet, as it is included in

two edges. (Chaussard, 2010)

2.3 From Binary Images to Cubical Complex

In this work we focus on images which are defined in discrete topology framework which is

the most common representation of an image in the field of image processing. Therefore,

to use operators which are designed to work with cubical complexes, we need to define a

way to transpose a binary image to cubical complex framework, that is, two dimensional

binary images are seen as pure 2-complexes (see Fig.2.9(b)) and three dimensional binary

images as pure 3-complexes. To make such transposition we use the same strategy as

presented in Chaussard (2010).
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(a) (b) (c) (d)

Figure 2.8: Some examples of sets of faces. Let A (resp. B, C, D) be the set of faces
represented on a (resp. b, c, d). The set B is not a complex, as two squares miss an
edge, and four edges miss a vertex. The set D is neither a complex, but A and C are
complexes. Moreover, A = B−. The complex A is pure as all its facets are squares, and
the complex C is not pure as some of its facets are squares while some others are edges.
We have D = C+. The complexes A and C have a dimension equal to 2. (Chaussard,

2010)

Given a subset X of Zn and x = (x1, ..., xn) ∈ X, to obtain a complex from the set X,

first, we define the map Φ which associates to each element of X an n-face of Fn, that is,

Φ(x) = {x1, x1 +1}× . . .×{xn, xn +1}. We can extend the map Φ straightforwardly to

sets: Φ(X) = {Φ(x) | x ∈ X}. Then, the complex that we associate to a set X is Φ(X)−

(a) (b)

Figure 2.9: An example of a 2D binary image in (a) and its cubical complex repre-
sentation in (b).



Chapter 3

Simplification of Binary Shapes

Three-dimensional volumetric objects are usually complicated and consist of large amounts

of points to process. This fact, among others, make a difficulties to work effectively with

such objects in several applications. For instance in object recognition and matching,

object registration or animation is almost impossible to use directly volumetric data. As

stated in Cornea et al. (2007) while the 3D volumetric representation is invaluable in

such application, many of them require alternate simplified representation of 3D objects.

The solution can be a skeleton of 3D object, which is a simple representation of the

object geometry which preserves its topology (see Fig. 3.1).

(a) (b)

Figure 3.1: An example of two 3D objects and corresponding skeletons (in yellow).

The notion of the skeleton was originally defined by Blum (1962) through an analogy

with a grassfire. If we imagine an object as a field of grass and we set on fire on the

border of the field, the fire will start propagating inside the field and when fire fronts

meet, they vanish. The meeting points of the flame fronts would constitute the skeleton

of the object.

In the continuous framework, formally the skeleton of an object X is composed by the

centers of the balls which are included in X but which are not fully included in any other

15
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ball included in X (Blum, 1967; Calabi, 1965). This set of points is, by nature, centered

in the object with respect to the distance which is used to define the notion of ball (see

Fig. 3.2). However, the skeleton extraction and evaluation based on Blum’s definition is

very difficult in discrete framework. For instance, it is not possible in general to preserve

topology.

(a)

Figure 3.2: An example of object (ellipse) with set of centers of medial balls (in black).
In red, medial ball centered at point x.

Since skeleton was first introduced it has found uses in many areas. For example, ac-

cording to Cornea et al. (2007) it can be used in virtual navigation (D. Perchet, 2004;

Wan et al., 2001) where skeleton define collision free paths through a scene or through

an object. Producing skeleton of the background we can find collision free paths through

the scene composed by many 3D objects. Virtual navigation guided by skeleton is also

widely used in surgical planning or virtual endoscopy used in medical imaging to ex-

amine the interior structures of human organs (Janaszewski et al., 2009b; Nain et al.,

2001; He et al., 2001). The technique is superior to the traditional fiberoptic endoscopy

because of its non-invasivity, cost effectiveness and sufficient accuracy. Moreover it is free

of risk and side effects like perforation or infection and can be applied for some special

organs which are impossible to inspect using traditional endoscopy (e.g. blood vessels).

Therefore, many prototype systems have been developed for a variety of clinical applica-

tions, including virtual colonoscopy (Janaszewski et al., 2009b; Wan et al., 2002; Jiang

and Gu, 2005), virtual bronchoscopy (D. Perchet, 2004; Wegenkittl et al., 2000), virtual

angioscopy (Bartz et al., 1999; Do Yeon and Jong Won, 2003) and others. After skeleton

generation, the system is ready to perform real time navigation based on volume ren-

dering on a personal computer. The inspection can be realized in an automatic manner,

following the skeleton or by interactive navigation for more accurate study of suspicious

areas (see Fig. 3.3).

Another common application of the skeleton is the registration of two images by aligning

some objects that are visible in both images. For example, images from the same pa-

tient taken with different modality (CT, MRI). In this case a skeleton is used to reduce

dimensionality of the problem since registration can be achieved by aligning skeletons

(Aylward et al., 2003; Fritsch et al., 1994; Pizer et al., 1999).
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Figure 3.3: An example of Virtual Colonoscopy. 3D rendering of the human colon
reconstructed from CT data set with its skeleton superimposed.

Skeleton is also used for matching of 3D objects where the problem is to find in a

database an object which are similar to a query object (Brennecke and Isenberg, 2004;

Cornea et al., 2005a; Hilaga et al., 2001; Sundar et al., 2003). Matching can be done by

comparing only skeletons. As addition such strategy can be also valid when only part of

the skeleton of the query object is provided (see Fig. 3.4).

Figure 3.4: An example of matching. Comparing skeleton of two objects, some corre-
spondence can be found which allow to match similar objects (Sundar et al., 2003).

There exists many more application of the skeleton (Cornea et al., 2007), for example

analysis of scientific data, surface reconstruction (Amenta et al., 2000), hydrothermal

plume visualisation (Santilli et al., 2004), vortex core extraction (Banks and Singer,

1994), feature tracking (Vrolijk et al., 2003), morphing (Blanding et al., 2000; Lazarus and

Verroust, 1997) to cite only few, where skeletons allow to make complex topologies more

easily tractable. Very interesting example of recent skeleton application is decomposing

3D objects into components (Chaussard, 2010), if a 3D object is to be treated as a sum

of components it can be decomposed by analyzing its skeleton (see Fig. 3.5).
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Figure 3.5: An example of 3D object decomposed into components. Each component
has different color (Chaussard, 2010).

3.1 Skeleton Characteristics

Informally, a 3D skeleton can be a set of curves or surfaces or both, which passes through

the center of an object. Some objects like for instance human colon (see Fig. 3.3) have

only one curve sometimes called centerline. However, there are complicated objects with

many branches, tunnels and cavities where a skeleton can be a very complicated structure.

Therefore, in the literature different researchers propose a set of properties which are used

to define a skeleton. Hilditch in 1969 gave first four properties that a skeleton in two-

dimensional space should possess (Hilditch, 1969), that is, skeleton should be homotopic

to the original object, it should be thin, it should be centered in the original object and

making skeletonization of the skeleton should not change anything. Later, such set of

properties was generalized to n-dimensional case and extended by adding more properties

for instance smoothness, robustness, reliability, cost effectiveness (Cornea et al., 2007;

Palágyi, 2002; Zhou and Toga, 1999). Some of these properties, for example, the property

which states that skeleton should be smooth and reliable, are specially designed and

used in particular applications (He et al., 2001; Kang and Ra, 2005). However, we can

distinguish a subset of properties which is important in general case:

Singularity (Thinness) - a skeleton should be thin (Hilditch, 1969), that is, in n-dimensional

space, the skeleton of an object should be at most (n− 1)-dimensional. For example the

skeleton of a three-dimensional object should be a set of curves or surfaces (see Fig.

3.6) and in two-dimensional case it should be only a set of curves. In some applications

this requirement is even stronger, that is, a skeleton of an n-dimensional object should

be always one-dimensional. Such skeleton is called a curve skeleton and it is generated

during curvilinear skeletonization (Svensson et al., 2002; Dey and Sun, 2006).

Topology preserving (Homotopic) - a skeleton should have exactly the same topology

as the original object (Kong and Rosenfeld, 1989; Lieutier, 2003; Saha and Chaudhuri,

1996). Intuitively, if the original object consist of one connected component without

tunnels and cavities then a skeleton should have also one connected component without
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(a) (b)

Figure 3.6: An example of (a) surface and (b) curve-skeleton of the same object.

loops. Moreover, as pointed in Kong and Rosenfeld (1989), a skeleton should be a subset of

the original object, that is, during skeletonization process no points are added, only points

removal are allowed. Another important problem related to the topology preservation

property of the curve skeleton is a way of dealing with objects which have cavities. A

curve skeleton is a one-dimensional representation of the object, therefore, it cannot

preserve cavities. In di Baja and Svensson (2002) this problem is addressed and solution

is proposed by using a modified definition of topology preservation during curvilinear

skeletonization, that is, a curve-skeleton should have at least one loop around each cavity

in the original object. In Cornea et al. (2007) this definition is extended to deal with

tunnels and cavities in the original object.

Centricity (Centeredness) - a skeleton should cross the centre of an object interior

(Hilditch, 1969). This postulate is essential in many applications, because it guarantees

that a skeleton is a well-defined descriptor of an object. There also exist many applica-

tions where a perfect centeredness is not very important. However, the skeletonization

algorithm should always produce skeletons which are centered as much as possible. More

formally, to achieve perfect centeredness the skeleton should be the medial axis (or sur-

face) of the object (Dey and Sun, 2006; di Baja and Svensson, 2002).

Robustness - one of the biggest problem during skeletonization is sensitivity of skele-

tonization algorithms to noise on the object border which can significantly change gen-

erated skeleton (see Fig. 3.7). Therefore, the algorithm should not be sensitive to little

changes in an object structure or geometric transformations such as translation or rota-

tion. Robustness property is also related to property proposed by Hilditch (1969), that is,

property which state that making skeletonization of the skeleton should not change any-

thing. Furthermore, extracted skeleton should not depend on arbitrary decisions made

by the skeletonization algorithm.
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(a) (b)

Figure 3.7: An example of skeleton of: (a) smooth and (b) noisy object.

Automation - the algorithm should extract a skeleton fully automatically without user

interaction. This is also related to setting parameters of skeletonization algorithm if any.

Algorithms which are parameter free are considered as algorithms which hold automation

property. However, in some applications, algorithms which allow the user to tune some

parameters are more interesting. As stated in Cornea et al. (2007) because the skeleton

is an approximation of the complex components of an object, the skeletonization process

and the skeleton itself should reflect the natural hierarchy of these complexities (Cornea

et al., 2005b; Katz and Tal, 2003). For example, during skeletonization, we can decide

which level of hierarchy we would like to achieve (see Fig. 3.8). This property can also

cover a problem of curve-skeleton automatic decomposition into different components

like end-points, branches, loops or junction points. In other words, the curvilinear skele-

tonization process should allow to simply transform skeleton into graph-like structure

(Giblin and Kimia, 2004).

Cost effectiveness (Efficiency) - for large and complicated data computational time and

memory utilization are critical. Therefore algorithms should be fast enough to extract

a skeleton for complicated data in seconds on standard PC computer. More formally

speaking, algorithms should have linear complexity, in respect to the size of the input,

which guarantees its efficiency.
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(a) (b)

(c)

Figure 3.8: An example of the object with its skeletons on different level of hierarchy
(Cornea et al., 2005b).

3.2 Skeletonization Methodologies

In the literature many skeletonization algorithms have been proposed. Skeletons pro-

duced using different skeletonization techniques, hold different sets of properties pre-

sented above. Some of them are specially designed to fit into particular application,

others try to be as much general as possible. Some authors, for example Palágyi (2008);

chun Ma et al. (2003); Telea and Vilanova (2003), categorize skeletonization algorithms

into general groups based on a main concept used to compute skeletons. Following Cornea

et al. (2007) the main skeletonization concepts can be presented as follows:

Manual extraction - these methods require significant manual work of a user who is

responsible for marking a set of points in the centre of an object. Then the skeleton is

linearly interpolated between consecutive marked points. Unfortunately the method is

time consuming, sometimes difficult to perform and does not guarantee the centricity of

marked points, not the homotopy equivalence, because of possible human mistakes. The

quality of resulting skeleton also depends on the amount of points which were marked.
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Topological thinning - these algorithms delete, at each iteration, some points satisfying

both topological (simple points) and geometrical criterions, from the border of an object.

The process stops when no more such points can be removed. See chapter 3.3 for more

detailed review of this group of skeletonization algorithms.

Distance-based (Voxel coding based) transformation - a voxel coding scheme is a voxel by

voxel recursive propagation and assignment of integer codes to object voxels starting from

a set of voxels which are called seeds. Most of these algorithms use a special voxel coding

to approximate distance transform were the seed set consists of object border voxels.

Result image is called a distance field which has very useful property from skeleton

generation point of view. Its ridges correspond to the voxels that are local centers in

the object. Based on the ridges various algorithms use various approaches to build the

skeleton. Usually the set of ridges is pruned and then remaining voxels are connected

in order to form connected skeleton (di Baja and Thiel, 1996; Borgefors et al., 1999;

Toriwaki and Mori, 2001b; Zhou and Toga, 1999).

General-field methods - methods based on potential field are similar to distance-based

methods. However they use different kinds of vector field than those based on distance

transform. For example electrostatic field function, radial basis functions, or generalized

potential function where a generalization of the Newtonian (gravitational) potential field

is used (see Fig. 3.9 for example) (Ahuja and Chuang, 1997; Rumpf and Telea, 2002;

Chuang et al., 2000; Cornea et al., 2005a; Abdel-Hamid and Yang, 1994; Grigorishin et al.,

1998; che Wu et al., 2003). In these methods, first, the potential in every interior point of

the object is determined. For instance, a sum of potentials is generated by charges placed

on the border of the object. Then, skeleton paths are determined using a force-following

algorithm. Each path started at a seed point ends at a potential minimum detected by a

major change in the vector direction. Final skeleton is computed by connecting extracted

skeleton paths.

Figure 3.9: An example of potential field function, visible as vectors, of the zoomed
region marked by red box. (Cornea et al., 2005a)

Geometric (Voronoi-based) transformations - there are several geometric approaches to

compute skeletons in the continuous space or plane, however the most popular are meth-

ods which based on Voronoi diagrams (Brandt and Algazi, 1992; Näf et al., 1997; Attali
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and Montanvert, 1997; Attali and Lachaud, 1999, 2001; Ogniewicz and Ilg, 1992; Og-

niewicz and Kübler, 1995; Ogniewicz, 1994). The Voronoi diagram represents a subdivi-

sion of the space into regions that are closer to a generator element (a surface sample

in the case of a 3D model) than to any other such element. These methods based on

fact that the interior faces of the Voronoi diagram approach the medial axis as the den-

sity of surface samples increases. Therefore, the skeleton can be extracted directly from

Voronoi-based transformation (see Fig. 3.10).

Figure 3.10: An example of Voronoi diagram (in light gray) of the object (in yel-
low) in respect to selected set of surface point (red dots). Corresponding skeleton is

superimposed (in black).

Hybrid methods - these methods consist of different algorithms which cannot be simply

categorized into previous groups. They work in different frameworks than voxel frame-

work for example in cubical complex framework (see chapter 2.2), but use similar thinning

scheme. It is also possible, in one algorithm, to use both thinning and distance transform

technique. For instance, thinning guided by distance transform or constrained by medial

axis to achieve better centeredness property.

3.3 Thinning in The Digital Topology Framework

Thinning is the most popular concept in skeletonization. Therefore, in this thesis we

focus on and present more deeply this approach to compute skeleton.

As was mentioned in previous section thinning is a process of removing some simple

points from the input object until stability, that is, until no more simple points exist or

additional special conditions occur. Example of such additional condition is for example

a set of points which are called an inhibitor set. Inhibitor set is a set of point which should

not be removed from the object. A common example of an inhibitor set is a filtered medial

axis of the input object (see chapter 4.2). Another example of constraints during thinning

is preservation of points which are special kind, for instance, curve end points or surface

points. Thanks to the notion of connectivity numbers such points and simple points as

well, can be effectively detected in the input object only by analyzing the neighborhood

of the point. These characterization yields efficient skeletonization strategies.
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Proposition 3.1. Rosenfeld (1979) Let X ⊂ Z2, p ∈ X, and k be the adjacency relation

chosen for X. If X ∩ Γ∗
8(p) has the same number of k-connected components as X ∩

(Γ∗
8(p) ∪ {p}), and that X ∩ Γ∗

4(p) 6= 0, then p is simple for X.

Proposition 3.2. Bertrand and Malandain (1994) Let X ⊆ Z3 and x ∈ X, let T26(x,X)

be the number of 26-connected components of (X∩Γ∗
26(x)), and let T6(x,X) be the number

of 6-connected components of (X ∩ Γ∗
6(x)).

In 26-connectivity, x is simple for X iff T26(x,X) = 1 and T6(x,X) = 1.

In 6-connectivity, x is simple for X iff T6(x,X) = 1 and T26(x,X) = 1

The possibility to decide which simple points will be removed during thinning gives us

a tool to produce the different kinds of skeletons. The decision of what kind of skeleton

should be used strongly depends on its application. We can distinguish different types of

skeletons in respect to the dimension of the result:

• Ultimate skeleton - it is a type of skeleton which gives us information about topol-

ogy of the object without care about its geometry. For example ultimate skeleton

of a each solid connected component without holes and tunnels, consists of one

point.

• Curvilinear skeleton - it is an one-dimensional representation of the object which

preserves both topology and geometry of the object.

• Surface skeleton - In three-dimensional case we can also compute a two-dimensional

skeleton. It will provide more geometrical information than curvilinear skeleton

which can be useful in some applications.

The thinning process, that is, simple points removal can be done in two different way.

Simple points can be remove sequentially or in parallel. By removing simple points se-

quentially, we can simply produce thin and topologically correct skeletons. However at-

tention need to be payed to set proper order of points removal if we want to achieve

well centered and smooth skeleton. From the other side, we can remove several simple

points simultaneously and produce skeletons which should be well centered but not nec-

essary thin. However, parallel removal of simple points can change topology therefore

more attention need to be payed to produce topologically correct results.

A more comprehensive review about different thinning strategies is presented in the

following sections.

3.3.1 Sequential thinning algorithms

The most obvious thinning strategy is based on a sequential removal of simple points from

an object until no more simple point can be found. The most important problem during
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sequential removal of points is a problem of points removal order. In the simplest case,

simple points can be removed totally randomly which leads to produce ultimate skeleton

which is not necessary centered in an object (see Fig. 3.11). To achieve well centered

skeleton simple points should be removed following a precisely defined order. Intuitively

they should be removed "layer by layer", from outside to inside of an object. For example

Arcelli (1981); Pavlidis (1980), in the 80s, proposed sequential thinning algorithms which

remove simple points from the contour of an object. This simple process can be described

as presented in algorithm 1. First the set of border points S of an object is computed,

and then simple points are removed one after the other from S. When no more simple

points exist in S the new set of border points is generated.

Algorithm 1 Basic Sequential Thinning(Input X Output Y )
01. Y = X
02. S = {p ∈ Y | p is simple and belongs to the border of Y }
03. while S 6= ∅ do

04. foreach p ∈ S do

05. S = S \ {p}
06. if p is still simple for Y then

07. Y = Y \ {p}
08. end

09. end

10. S = {p ∈ Y | p is simple and belongs to the border of Y }
11. end

12. return Y

(a) (b)

Figure 3.11: Various removal orders of simple points lead to different skeletons.

Another possibility to define an order of simple points removal is to use a priority function

which is computed on the object. Then, simple points are removed according to their

values (Davies and Plummer, 1981). In this case a "layer" of the object is considered as

a set of points which have the same priority value. The most common choice for priority

map is the Euclidean distance transform of an object (Couprie et al., 2007; Malandain and

Fernández-Vidal, 1998; Talbot and Vincent, 1992) or other discrete distances (Pudney,
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1998). In (Chaussard et al., 2010) is shown that using values of lambda function as a

priority gives skeletons with very good properties.

Algorithm 2 implements a basic sequential thinning strategy which utilizes a priority

function D. In each iteration only simple points which have the smallest priority are

deleted. In addition to the priority function, the algorithm 2 uses inhibitor set W which

permits to preserve points of W during thinning. In the literature, some authors report

that using thinning guided by priority function and with defined inhibitor set can lead in

some cases to poor quality skeletons. Solutions to this problem can be found in (Couprie

et al., 2007; Talbot and Vincent, 1992) where the inhibitor set is dynamically modified

during thinning or priority function is recalculated to avoid some effects of discretization.

Algorithm 2 Basic Thinning with Priority(Input X,W ,D Output Y )
01. Y = X
02. while there exists a simple point in Y \W do

03. A = {y ∈ Y \W | y is simple for Y }
04. B = {x ∈ A | for all y ∈ A,D(x) ≤ D(y)}
05. Let z ∈ B
06. Y = Y \ {z}
07. end

08. return Y

Many thinning algorithms which sequentially remove simple points were proposed. A

very exhaustive survey of thinning methods in 2D before 1992 can be found in (Lam

et al., 1992).

3.3.2 Fully parallel thinning algorithms

In the previous section we discussed the thinning strategy where at each iteration only one

simple point can be removed. Based on the priority function the order of points removal

was strictly defined. However, even so, the sequential algorithms are order-dependent,

that is, some arbitrary choices have to be made during thinning since several simple

points can have the same priority.

The order-independent algorithms should remove the set of all points in a layer at once

in one iteration. Moreover, the decision about which points can be removed should not

depend on other decisions made in the same iteration. The thinning strategy which

follows such rules is called fully parallel thinning.

In the fully parallel thinning scheme, a set of simple points is removed simultaneously.

This process is more similar to the layer-by-layer points removal model. Therefore, the

priority function is generally not needed. The set of simple points which can be removed

simultaneously is computed based on a criterion C which is constant during thinning,

and which must ensure topology preservation.
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The generic fully parallel thinning algorithm can be presented as in algorithm 3. Where,

in each iteration all simple points which satisfy a criterion C are removed. The process

ends when there is no more simple points exist or none of them satisfy C.

Algorithm 3 Generic Fully Parallel Thinning(Input X Output Y )
01. Y = X
02. repeat

03. A = {x ∈ Y | x is simple for Y and C(x) is true}
04. Y = Y \A
05. until A = ∅
06. return Y

However, removing several simple points simultaneously may not guarantee that topology

will be preserved. This fact makes the problem of designing a topology-preserving parallel

thinning algorithm very complex. The first fully parallel thinning algorithm was proposed

by Rutovitz (1966). It has been proved that Rutovitz’s algorithm does not always preserve

topology. Some modifications exist, for example proposed in (Couprie, 2006; Eckhardt,

1988). In 3D the first fully parallel algorithm was proposed by Manzanera et al. (1999).

During the last decades some theories have been proposed in order to characterize sets

of simple points which can be removed at the same time without changing the topology.

For example, in the discrete topology framework Ronse (1988) define the notion of set

D which consist only of simple points and that there exist a discrete process of removing

simple points which allow to transform X into X \ D, such set we called a simple set

of X or we say that D is simple for X. For example in two dimensional space, given an

object X ⊂ Z2, |Ck[X]| = 1 and a set D ⊂ X, that, if D consist only of simple points of

X and |Ck[X]| = |Ck[X \D]| and |Ck[X]| = |Ck[X ∪D]|, then D is simple for X.

Another notion presented by Ronse (1988) which can help to construct an topology

preserving algorithm is a notion of minimal sets of points which can not be removed.

Otherwise, topology of an object will change. Such sets are called minimal non-deletable

sets. Minimal non-deletable sets were used to topologically validate some parallel thinning

algorithms in 2D (Hall, 1992), 3D (Kong, 1993, 1995; Ma, 1994) and 4D cases (Gau and

Kong, 2003; Kong and Gau, 2004).

Proposition 3.3. Ronse (1988) Let X ⊂ Z2, and let k be equal to 4 or 8. A set U ⊆ X

is a minimal non-k-deletable set from X iff one of the following holds:

• U consists of a single pixel that is not k-simple for X (in the sense of the k-

connectivity).

• U consists of a pair of 8-adjacent pixels which are k-simple for X, but U is not

k-simple for X.

• If k = 8, U consists of a triple or quadruple of pairwise 8-adjacent pixels, and U is

an 8-connected component of X.
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In three-dimensional space, Bertrand (1995) introduces the notion of P -simple points in

order to characterize which simple points could be removed simultaneously. Based on

P -simple points another set of computer test of 3D parallel thinning algorithms or new

algorithms where proposed (Bertrand, 1995; Lohou and Bertrand, 2004a, 2005a).

Most fully parallel thinning algorithms are based on similar strategies to define which

points can be removed simultaneously. They utilize a set of masks which define how the

neighborhood of a point should look to allow such point to be removed. Only points

which match at least one mask can be removed. The number of masks, their size, and

points configurations strictly depends on the algorithm and has direct impact to the

quality of the resulting skeleton. Using proper set of masks it is possible to propose an

algorithm which produces skeletons with particular properties like for example curvilinear

or surface skeletons. The 2D fully parallel algorithm proposed by Pavlidis (1981) uses

four masks of size 3x3 points and produces a symmetric skeleton. Several other parallel

thinning algorithms which produce symmetric skeletons have been proposed based on

a set of masks (Hall, 1989; Eckhardt and Maderlechner, 1993; Bernard and Manzanera,

1999; Ma, 1994). Guo and Hall (1992) proposed an algorithm which produces asymmetric

results and is based on masks which contain at least 11 points.

3.3.3 Directional thinning algorithms

The second possibility to remove a set of simple points simultaneously is to use a strategy

where each iteration is divided into several sub-iterations. It permits to use a different

set of deleting criterions in each sub-iteration. In the directional thinning scheme points

are divided in respect to their orientation. The orientation of a point is defined by a set

of complementary points in its neighborhood (see Fig. 3.12).

(a) (b) (c)

Figure 3.12: Basic partition of the space into directions. (a): 6-directions; (b): 8-
directions; (c): 12-directions. Each number i represents a voxel which has to be a back-

ground voxel to allow the deletion of p in the i-th sub-iteration.

Algorithm 4 shows the generic directional thinning scheme. It performs n sub-iterations

and removes only simple points which satisfy i-th condition Ci during i-th sub-iteration.

It is important to notice that the condition of orientation alone is not sufficient to guar-

antee topology preservation, some additional conditions are necessary.
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The first proposed directional thinning algorithm (Stefanelli and Rosenfeld, 1971) was

designed for 2D and use 4 sub-iterations.

In the 3D case, most proposed algorithms use 6 sub-iterations (Bertrand, 1995; Gong

and Bertrand, 1990; Lee et al., 1994; Lohou and Bertrand, 2005b; Ma and Wan, 2000;

Mukherjee et al., 2000; Palagyi and Kuba, 1998; Xie et al., 2003) or 3 sub-iterations

(Palagyi, 2002, 2007a,b). There exist also algorithms based on 8 (Palagyi and Kuba,

1999a) or 12 sub-iterations (Lohou and Bertrand, 2004b; Palagyi and Kuba, 1999b).

Algorithm 4 Generic n-Subiteration Thinning(Input X Output Y )
01. Y = X
02. remove = TRUE
03. while remove do

04. remove = FALSE
05. for i : 1→ n do

06. A = {x ∈ Y | x is a simple point and Ci(x) is true}
07. if A 6= ∅ then

08. remove = TRUE
09. end

10. Y = Y \A
11. end

12. end

13. return Y

3.3.4 Subfield thinning algorithms

The third parallel strategy is based on grouping all points of Zn into m disjoint sets

S0, ..., Sm−1, for m ≥ 2 and
⋃m−1

i=0 Si = Zn. Such sets are called subfields and can be

processed separately, one after another. Only simple points which belongs to the actually

processed subfield can be removed. The main idea of dividing space into subfield allow

to delete points with controlled impact on its neighborhood and in consequence preserve

topology.

The number of subfields depends on used algorithm. The common choices are 2, 4 and 8

subfields respectively (see Fig. 3.13). The same generic algorithm (see Algorithm 4) can

be used. In the case of 8 subfields, the condition Ci(x) = {x ∈ Si} is sufficient to ensure

topology preservation. However for 2 and 4 subfields, additional conditions are necessary.

In the literature several subfield thinning algorithms have been proposed using 2 subfields

(Kardos et al., 2010; Ma and Wan, 2001; Ma et al., 2002a), 4 subfields (Ma et al., 2002b;

Nemeth et al., 2010) and 8 subfields (Nemeth et al., 2010).
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(a) (b) (c)

Figure 3.13: Partition of the space into subfields. (a): 2 subfields; (b): 4 subfields; (c):
8 subfields. In i-th sub-iteration only points marked i will be considered.

3.4 Thinning in The Cubical Complex Framework

3.4.1 Critical kernels based thinning

Recently, Bertrand (2007) introduced the notion of critical kernels in the framework of

cubical complexes. The critical kernels theory led to a new definition and new charac-

terizations of simple points in 2D, 3D and 4D (see (Couprie and Bertrand, 2009)). The

links between this framework, P-simple points and minimal non-deletable sets were es-

tablished in (Couprie and Bertrand, 2008). Critical kernel is a powerful tool to study

parallel homotopic thinning and can be used to check the topological validity of existing

algorithms (Couprie, 2006; Bertrand and Couprie, 2008, 2006). Moreover, critical kernels

may also be used to design new algorithms.

Thinning algorithms based on critical kernels consist of iteratively computing the critical

kernel of the result of the previous step (see Fig. 3.14), and removing any subset of the

object, under the condition that the critical kernel is preserved.

(a) (b)

Figure 3.14: (a) An object (a complex) and (b) its Critical Kernel (in red) (Bertrand,
2007)
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3.4.2 Collapse based thinning

Another thinning scheme defined in the cubical complex framework relies on the collapse

operation which is an elementary topology-preserving transformation that has been intro-

duced by Whitehead (1939). Collapse can be seen as a discrete analogue of a retraction,

that is, a continuous deformation of an object onto itself and plays an important role in

combinatorial topology.

Let X � Fn, and let f, g be two faces of X . The face g is free for X , and the pair (f, g)

is a free pair for X if f is the only face of X such that g is a proper face of f .

Let X � Fn, and let (f, g) be a free pair for X . The complex X \ {f, g} is an elementary

collapse of X .

Let X � Fn, the complex X collapses onto Y if there exists a sequence of complexes

(X0, ...,Xl) of Fn such that X = X0, Y = Xl and for all i ∈ {1, ..., l}, Xi is an elementary

collapse of Xi−1. We also say, in this case, that Y is a collapse of X .

In other words, the collapse operation consists of removing two distinct elements (f, g)

from a complex X under the condition that g is contained in f and is not contained in

any other element of X . This operation may be repeated several times and is the basic

operation for performing homotopic thinning of a complex (see Fig. 3.15 for example).

(a) (b) (c) (d)

Figure 3.15: Collapse of complexes - Let A (resp. B, C, D) be the set of faces repre-
sented on a (resp. b, c, d). In the complex A, the edge b is only included in the square
a: the pair (a, b) is free for A. The edge c is included in two squares of A, the pair
(a,c) is therefore not free for A. The complex B = A \ {a, b}, is an elementary collapse
of A. In B, the vertex e is included in only one edge: the pair (d, e) is free for B, and
C = B \ {e, g} is an elementary collapse of B. The complex D is an elementary collapse

of C, and therefore, D is a collapse of A. (Chaussard, 2010)

Based on collapse several thinning algorithms, which can produce curvilinear or surface

skeletons, were proposed (Chaussard and Couprie, 2009). A recent review is presented

in (Chaussard, 2010).



Chapter 4

Preserving Visual Aspects of a

Binary Shape

Skeletonization algorithms presented in the previous chapter permit to simplify objects

and preserve their topology. Some of them try also to preserve some visually important

features of the object. However, preserving geometry of the object is not always guaran-

teed. For example, based on certain kinds of skeletons it is not possible, in general, to

reconstruct original object. We say that these skeletons do not hold reconstruction prop-

erty, which can be defined as ability to fully recover the input object from its skeleton.

In this chapter we introduce the notion of medial axis of the object. It is an object

representation which holds reconstruction property and is suitable to preserving all visual

aspects of an input shape.

4.1 Medial Axis

The notion of medial axis has been introduced by Blum in the 60s (Blum, 1961, 1967).

In the continuous space it can be formalized by two following definitions:

• Interpretation (a) - Let X ⊂ Rn . The medial axis of an object X is composed by

the centers of the balls which are included in X but which are not fully included

in any other ball included in X.

• Interpretation (b) - Let X ⊂ Rn . The medial axis of an object X is composed by

the points x ∈ X that have at least two nearest points on the border of X.

These interpretations gives medial axes which consist of different set of points, however,

difference concerns only a negligible set of points (see Matheron (1988)) and in general

32
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case, the set produced based on interpretation (b) is a strict subset of the set produced

based on interpretation (a).

Notice that in some works, the medial axis is also called "skeleton", especially in con-

tinuous framework. In deed, in the continuous space, the medial axis has all the desired

properties of a skeleton: it is thin, centered and homotopy-equivalent to the shape. How-

ever, that is no longer true in the discrete space. In this thesis, we shall restrict the use of

term "skeleton" to the case where the skeleton is topologically equivalent to the original

shape, and we will not require the strict reconstruction property.

In this thesis we focus on the discrete medial axis based on the Euclidean metric. There-

fore we need to recall the formal definition of notion of the medial axis in discrete frame-

work (see also (Rosenfeld, 1982; Talbot and Vincent, 1992)). The following definition is

based on Euclidean balls and interpretation (a).

Definition 4.1. Let X ⊆ Zn and DX its Euclidean distance transform. A ball B(x, r) ⊆ X,

with x ∈ X and r ∈ R, is maximal for X if it is not strictly included in any other ball

included in X. The medial axis of X, denoted by MA(X), is the set of the all couples

(x, r) such that B(x, r) is a maximal ball for X, that is,

MA(X) = {(x,DX(x)) | ∀y ∈ X \ {x}, B<(x,DX(x)) * B<(y,DX(y))}

In the literature different methods have been proposed to compute the medial axis ap-

proximately or exactly, for instance methods relying on discrete geometry (Borgefors

et al., 1991; Ge and Fitzpatrick, 1996; Malandain and Fernández-Vidal, 1998; Remy and

Thiel, 2003, 2005; Hesselink and Roerdink, 2008; Chaussard et al., 2010), digital topology

(Davies and Plummer, 1981; Vincent, 1991; Talbot and Vincent, 1992; Pudney, 1998),

mathematical morphology (Serra, 1982; Soille, 1999), computational geometry (Attali

and Lachaud, 2001; Ogniewicz and Kübler, 1995; Attali and Montanvert, 1996), partial

differential equations (Siddiqi et al., 1999), or level-sets (Kimmel et al., 1995).

The medial axis is a very useful representation of the object and similarly to skeleton

plays a major role in shape analysis in numerous applications, for example object recog-

nition, registration or compression. A study of the various properties of medial axes in

the discrete framework is done in (Hulin, 2009). We can also characterize medial axes

following the same set of properties as skeleton (see section 3.1).

The main property of the medial axis is reconstruction property. From the medial axis

points and associated ball radii, one can exactly reconstruct the original shape. Another

interesting property is centerdness. Medial axes are centered in the object in respect to

the used distance. However, in consequence in the discrete framework, the Euclidean

medial axis may not be thin: in some parts, it can be two pixel thick. To cope with this,

Saúde et al. (2006); Saúde (2011), propose an Euclidean medial axis on higher resolution

and give some thinness properties of this axis.
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However it can be hard or even impossible to use this tool effectively without first dealing

with some problems, especially in discrete spaces and with noisy objects.

Firstly, the medial axis in discrete spaces has not, in general, the same topology as the

original object. Solutions to this problem have been proposed by several authors, for

instance (Davies and Plummer, 1981; Talbot and Vincent, 1992; Couprie and Bertrand,

2012). They use discrete homotopic transformations guided and constrained by the me-

dial axis, to obtain homotopic skeleton which contains the medial axis.

The second problem is sensitivity of the medial axis to small contour perturbations

(robustness property) (see, for example, Fig. 4.1). In other words, the medial axis is not

stable under small perturbations of a shape: modifying a shape slightly (for example

in terms of Hausdorff distance) can result in substantially different medial axes. This

is a major difficulty when the medial axis is used in practical applications (e.g. shape

recognition). A recent survey which summarizes selected relevant studies dealing with

this topic is presented in (Attali et al., 2009). This fact, among others, explains why it

is usually necessary to add a filtering step (or pruning step) to any method that aims at

computing the medial axis, and why a nonreversible but simplified description of binary

objects is of interest.

(a) (b)

Figure 4.1: (a): a shape (in gray) and its Euclidean medial axis (in black); (b): the
same shape, but with small amount of noise added on the contour. The medial axis of

the shape (b) is much more complicated than the medial axis of the shape (a).

4.2 Medial Axis Filtering

Different criteria can be used to locally detect and discard spurious medial axis points

or branches.
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Usually methods proposed in the literature are based on a single parameter, and they

have the property that any filtered medial axis of a shape X for a parameter value λ is a

subset of any filtered medial axis of X for parameter value µ, whenever λ > µ. In other

words, the set of all filtered medial axes of a shape forms a hierarchy.

In the following sections we review the most popular concepts to filter medial axes.

4.2.1 Filtering based on medial ball size

The simplest strategy to filter the medial axis is to keep only couples which are centers

of maximal balls of at least a given diameter (Coeurjolly and Montanvert, 2007).

Definition 4.2. Let X ⊆ Zn and MA(X) its Euclidean medial axis. Let t be a filtering

parameter. The filtered medial axis, denoted by RFMA(X, t), is the set of the all couples

(x, r) such that the radius r of the ball B(x, r) is not smaller than filtering parameter t,

that is,

RFMA(X, t) = {(x, r) ∈MA(X) : r ≥ t}

This simple strategy alone gives poor results in general (see Fig. 4.2(b) for example) and

is not suitable to deal with object with features at different scales. However, it can be

used as a supplementary filtering criterium in addition to a more robust one. For example

it can be used with bisector angle (see section 4.2.4), since, the noisy objects have usually

many medial balls which are very small (e.g single points) and can be simply removed

using this strategy (see Fig. 4.2(d)) .

4.2.2 Filtering based on ball covering

A more complex criterion was proposed by Coeurjolly and Montanvert (2007), they

utilize information about ball importance in the shape with respect to all other balls by

counting the number of object points inside a ball which are not covered by other balls.

The medial axis point will be removed if the uncovered area of corresponding ball is too

small (see Fig. 4.3).

Definition 4.3 (Coeurjolly and Montanvert (2007)). Let X ⊆ Zn and MA(X) its

Euclidean medial axis. Let t be a filtering parameter. We denoted by CFMA(X, t), the

filtered medial axis defined by

CFMA(X, t) = {(x, r) ∈MA(X) : |B(x, r) \
⋃

(y,r2)∈MA(X)

B(y, r2)| ≥ t}

Such filtering strategy gives much better results than previous one since it permits to

remove not only small medial balls but also very large ones which are not important to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: (a): Example of object (in gray) and its medial axis (in black); (b): Filtered
medial axis with RFMA gives poor results; (c): Filtering based on bisector angle, pre-
serve some points close to the border; (d): Filtering based on bisector angle and RFMA
as a complementary gives much better results; (e,f,g,h): an ultimate homotopic skeleton
of (a,b,c,d resp.) with the constraint of retaining the points of its filtered medial axis.

Figure 4.3: Medial axis filtering based on ball covering. The medial ball which uncov-
ered area a (in red) is smaller than threshold parameter t will be removed.

the object understanding or reconstruction. However, when the object consists of features

at low scale, this method can fail to generate suitable results (see Fig. 4.4).

4.2.3 λ-medial axis

This filtering method proposed by Chazal and Lieutier (2005) in the continuous frame-

work, later transposed to discrete framework, utilizes information about circumradius of

the closest points on the shape border, to the given medial axis point.
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(a) (b) (c)

Figure 4.4: An example, of medial axis filtering based on ball covering (in black)
in which the method failed due to features at different scale in the input object (in
gray). On (a) insufficient filtering, spurious branches exist. On (b) spurious branches
still exist but right ear is missing. On (c) one spurious branch still exist but ears were

fully removed.

Let S be a non-empty subset of Rn, and let x ∈ Rn. The projection of x on S, denoted

by ΠS(x), is the set of points y of S which are at minimal distance from x, defined by,

ΠS(x) = {y ∈ S | ∀z∈S , d(y, x) ≤ d(z, x)}

If X is a subset of Rn, the projection of X on S is defined by ΠS(X) =
⋃

x∈X ΠS(x).

Let S ⊂ Rn, we denote by R(S) the radius of the smallest ball enclosing S, that is,

R(S) = min{r ∈ R | ∃y ∈ Rn, B(y, r) ⊇ S}.

The λ-medial axis may now be defined based on these notions.

Definition 4.4 (Chazal and Lieutier (2005)). Let X be an open bounded subset of

Rn, and let λ ∈ R+. The λ-medial axis of X is the set of points x in X such that

R(ΠX(x)) ≥ λ.

Figure 4.5: Illustration of the λ-medial axis. Left: Points x, x′ and x′′ and their re-
spective closest border points. Top right: The λ-medial axis with λ = ǫ, a very small

positive real number. Bottom right: The λ-medial axis with λ = d(a′, b′)/2 + ǫ.

Transposing the original definition of the λ-medial axis directly to Zn would lead to

an unsatisfactory result as reported in (Chaussard et al., 2010) (see Fig. 4.6). In order

to avoid such unwanted behavior, projection need to be replaced by so-called extended

projection (Couprie et al., 2007).
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(a) (b)

Figure 4.6: (a): The projection of the point x is the point y: by symmetry, all points
of the ribbon would have a singleton as projection, producing an empty λ-medial axis
for any λ > 0; (b): The extended projection of the point x is the set {y, a, b, c}: by
symmetry, the points located near the center of the ribbon would all have a extended
projection consisting of four points, leading to a non empty λ-medial axis. (Chaussard,

2010)

For each point x ∈ Zn, we define the direct neigborhood of x as N(x) = {y ∈ Zn |
d(x, y) ≤ 1}. The direct neighborhood comprises 2n+ 1 points.

Let X ⊆ Zn, and let x ∈ X. The extended projection of x on X, denoted by Πe
X
(x), is

the union of the sets ΠX(y), for all y in N(x) such that d(y,X) ≤ d(x,X).

We are now ready to introduce the definition of discrete λ-medial axis.

Definition 4.5 (Chaussard et al. (2010)). Let X be a finite subset of Zn, and let λ ∈ R+.

We define the function FX which associates, to each point x of X, the value FX(x) =

R(Πe
X
(x)). The discrete λ-medial axis (or DLMA) of X is the set of points x in X such

that FX(x) ≥ λ.

This filtering strategy is very robust and gives very good results in general. However, it

can be impossible to set proper value of the parameter λ if object consist of features at

different scales (see an example on Fig. 4.7 ).

(a) (b) (c)

Figure 4.7: Example of the discrete λ-medial axis of the object consists features at
different scale. (a): a shape X (in gray); (b): DLMA of X (in white). The medial axis
is not sufficiently filtered in the middle of the shape. However, we already start to loose
the tail; (c) A more filtered medial axis of X. Now, the middle of the shape is well

filtered. However, we lost all information about the tail.
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4.2.4 Filtering based on the bisector angle

Talbot and Vincent (1992) proposed a medial axis filtering based on a discrete version

of the bisector function.

The bisector function of X is the function which associates to each point x of X, its

bisector angle in X. The bisector angle of a point x in X can be defined, in the contin-

uous framework, as the maximal unsigned angle formed by x and any two points in the

projection of x on X (Meyer, 1979; Talbot and Vincent, 1992) (see Fig. 4.8).

Definition 4.6. Let X ⊆ Zn. We denote by ΘX the bisector function of X, defined by:

ΘX(x) = max{ŷxz : ∀y, z ∈ ΠX(x)}

Figure 4.8: Illustration of the bisector angle. The bisector angle of x is α and the
bisector angle of y is β. (Talbot and Vincent, 1992)

The point with higher bisector angle is considered as more important. Therefore to filter

spurious medial axis point one should remove points with bisector angle below given

filtering parameter (see Fig. 4.9).

Definition 4.7. Let X ⊆ Zn and MA(X) its Euclidean medial axis. Let α be a filtering

parameter. We denoted by BFMA(X,α), the filtered medial axis defined by

BFMA(X,α) = {(x, r) ∈MA(X) : ΘX(x) ≥ α}

Methods which are based on the bisector function (Attali et al., 1995; Attali and Mon-

tanvert, 1996; Couprie et al., 2007) are effective in general. They can work with objects

with features at different scales, since the bisector angle depends on ball position in the

object and the size of the medial ball is not important.
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(a) (b) (c) (d)

Figure 4.9: (a): a set X and its medial axis (in black); (b): the bisector function ΘX

(dark colors correspond to wide angles); (c): filtered medial axis, based on the values of
ΘX ; (d): detail of the non-filtered and filtered medial axis. (Talbot and Vincent, 1992)

4.2.5 Scale axis

In previous presented methods, except for ball covering, a local information (that is, geo-

metric information extracted from a single medial ball) is compared to a global parameter

value to determine the importance of the corresponding medial axis point. However, it

is well known that this local filtering can lead to remove small branches which might be

important for the shape understanding, especially for shapes with features at different

scales (Attali et al., 2009).

In (Miklos et al., 2010), the authors address this issue and propose an approach that

put in relation local information and regional information, that is, the status a ball is

only influenced by the one of neighboring balls. Their method is based on the theory

of the scale axis transform (Giesen et al., 2009), and defines a whole family of medial

representations at different levels of abstraction, called scale axis representations. The

original algorithm to compute scale axis, given by Miklos et al. (2010) was defined in the

framework of union of balls in the continuous space. However it can be straightforwardly

adapted to the case of Zn as presented in chapter 7.2.

For objects or scenes that include parts showing different scales, this method gives very

good results in general (see Fig. 4.10). However, the scale axis representation is not free

of drawbacks. The most important one is that the scale axis is not necessarily a subset

of the Euclidean medial axis, it is even not necessarily a subset of the original shape.

More generally, the family of all scale axes of a shape is not, in general, a hierarchy. This

can strongly limit its practical application, since in most applications the medial axis or

corresponding skeleton cannot be defined outside the original object. In chapter 7.3.1 we

propose a solution to this problem and a new medial axis filtering strategy which holds

hierarchy property.
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(a) (b)

(c) (d)

(e)

Figure 4.10: Example of the scale axis transform. (a): The input shape X (in green)
and its Euclidean medial axis; (b): The multiplicatively scaled medial balls; (c): The
object Xs reconstructed from the scaled medial axis. Note, that reconstructed object is
much simpler than original shape; (d): The Euclidean medial axis of Xs; (e): The scale

axis of X. Note that the features at low scale ware well preserved.

4.3 Euclidean Opening Function

Medial axis is not only used as a simplification of the object, since, it carries information

about radius of the maximal balls which can be included in the object. For example

Hildebrand and RÃ1
4egsegger (1997) propose a method to compute local thickness of the

object based on its medial axis. Such method is called the Euclidean opening function

or thickness distribution. In chapter 7.1 we will use this information to propose a new

adaptive medial axis filtering strategy.
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The Euclidean opening function associates to each point x of a shape X the radius of the

biggest maximal ball B(y, r) contained in X, such that, x is in B(y, r) (see Fig. 4.11).

Definition 4.8 (Hildebrand and RÃ1
4egsegger (1997)). Let X be a finite subset of Zn,

and let (y, r) ∈ MA(X). The Euclidean opening function, denoted by, GX
E is a function

which associates, to each point x of X, the value

GX
E (x) = max{r | ∃(y, r) ∈MA(X), B(y, r) ⊂ X,x ∈ B(y, r)}

Algorithm 5 shows a naive method to compute the Euclidean opening function.

Algorithm 5 Naive Euclidean Opening Function(Input X Output Y )
01. foreach p ∈ X do Y (p) = 0 end

02. MA(X)← EuclideanMedialAxis(X)
03. foreach (xi, ri) ∈MA(X) do

04. foreach p ∈ B(xi, ri) do

05. If ri > Y (p) then

06. Y (p) = ri
07. end

08. end

09. end

10. return Y

The Euclidean opening function GX
E can be effectively calculated in arbitrary dimensions

thanks to notion of the power diagram as proposed in Coeurjolly (2010).

(a) (b)

Figure 4.11: Illustration of the opening function. (a): an input set of maximal balls;
(b): its Euclidean opening function. Bigger balls are on top of smaller ones (Coeurjolly,

2010).



Chapter 5

Visual and Topological Correction

of Binary Shapes

The problem of mesh repairing and tunnel closing is considered in literature as part of

a more general topic dealing with reparation of an object 3D model, which has many

applications in laser scanning and bio-medical imaging. Therefore, the topic has led

to many researches in the last decade and there are many articles presenting different

approaches for 3D model reparation as presented in recent surveys (Ju, 2009; Breckon

and Fisher, 2005).

The related works can be divided into three groups. The first group represents methods of

geometric hole (void) closing in a polygonal mesh defined as a set of vertices and a set of

oriented polygons that join these vertices. Geometric holes (voids) in meshes are generally

easily detected by searching for loops of boundary edges, that is, edges contained in only

one polygon (Bøhn and Wozny, 1992; Mäkelä and Dolenc, 1993). However, in some

cases, especially when noisy objects are in interest, additional step, that is, manual or

automated cleaning is necessary before loops can be properly detected (Patel et al., 2005;

Pernot et al., 2006; Lévy, 2003). Once a closed boundary loop is identified the heuristic

searches can be applied to incrementally triangulate the loop. For example, see methods

proposed in (Wagner et al., 2003; Varnuska et al., 2005; Barequet and Sharir, 1995; Bøhn

and Wozny, 1992; Mäkelä and Dolenc, 1993; Liepa, 2003; Attene and Falcidieno, 2006).

More sophisticated methods use post-processing to obtain smooth continuation of the

object surface in missing areas, see for example methods proposed in (Zhao et al., 2001;

Pernot et al., 2006; Liepa, 2003; Zhao et al., 2007; Bac et al., 2008; Clarenz et al., 2004)

or methods based on adopting scattered data fitting techniques (Wang and Oliveira,

2007; L.S. Tekumalla, 2004; Branch et al., 2006; Chen and Cheng, 2008; Kumar et al.,

2007; Jia and Tang, 2004). There are also methods which restore surface relief in closing

patches by finding and extending similar geometry in nearby regions for example (Sharf

et al., 2004; Xiao et al., 2007; Breckon and Fisher, 2005; Bendels et al., 2005; Park

43
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et al., 2006; Xu et al., 2006; Pauly et al., 2008). Sometimes the needed geometry is not

represented in the input object itself, then the missing geometry is restored based on

matching templates from a given library for example (Anguelov et al., 2005; Blanz and

Vetter, 1999; Kähler et al., 2002; Allen et al., 2003; Blanz et al., 2004; Pauly et al.,

2005; Savchenko and Kojekine, 2002; Yunbao et al., 2006). All cited methods represents

geometric approaches to void closing and they do not work for closing tunnels which are

considered as topological errors in 3D models (Jun, 2005). For example, a solid torus

does not have any geometric holes in it as the triangulation of its outer surface does not

have any boundary edges. On the other hand a tunnel closing algorithm does not close

geometric holes in the outer surface of a 3D objects. Consider a (thin) sphere with a

small disc removed. From the topological point of view there is no tunnel in such object.

The second group consists of methods which convert open polygonal surface into volu-

metric grid, where each point of the grid has positive or negative value denoting whether

it is is inside or outside the input object. then the signed grid can be easily converted

into a waterproof triangulated outer surface which separates points of different signs,

with the use of methods such as Marching Cubes algorithm (Lorensen and Cline, 1987;

Nielson and Hamann, 1991; Montani et al., 1994; van Gelder and Wilhelms, 1994). The

key issue in the procedure is to make proper generation of signed grid in areas nearby

geometric holes in the input polygonal surface. Recent works in this domain have used

the orientation of polygons in the input surface to obtain smooth void closing geometry.

There are methods which classify each point of the grid based on the signed distance

from oriented polygons for example (Curless and Levoy, 1996; Furukawa et al., 2007;

Sagawa and Ikeuchi, 2008, 2003). Other methods perform propagation of the signed field

from geometrically correct regions into void areas, where zero level set is the intended

surface (Davis et al., 2001; Guo et al., 2006; Verdera et al., 2003). Signed distances can

be also generated from line-of-sight direction of a scanner (Davis et al., 2001; Curless

and Levoy, 1996). The methods from the second group do not close tunnels in objects

which do not partition the space into inside and outside and, as stated by Ju (2009)(last

paragraph), the task of tunnel closing for such type of objects is a challenge.

The last type of approach and the most interesting from our point of view is a method

proposed by Aktouf et al. (1996, 2002). They constructed fast algorithm which closes

tunnels directly in discrete topology framework taking advantages of local topological

characteristic of points. This method could be applied with success for objects which

do not partition the space into inside and outside for example 3D objects representing

cracks in material (Janaszewski et al., 2011)(see Fig.5.1). Moreover, this approach can be

applied directly to 3D objects obtained through a segmentation process from biomedical

images, for example CT or MRI datasets.

During segmentation some unwanted holes can occur. These holes can be considered

as noise, and may not be avoided by segmentation (see Fig.5.2(a)). On the other hand

some tunnels are important to object understanding, for example anatomical features of
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Figure 5.1: A rendering of a crack portion inside a material (material is represented
by the background). The crack do not partition the space into inside and outside
(Janaszewski et al., 2011). Note: The raw images from where this portion of a crack
was segmented were acquired at the ESRF (ID19beamline). Details of the experiment

can be found in Babout et al. (2006).

the human organs (see Fig.5.2(b)). Such kind of tunnels should be preserved. Therefore,

tunnel closing algorithm should allow to automatically decide which tunnels should and

which should not be closed. In algorithm proposed by Aktouf et al. (2002) such decision is

made by analyzing size of the tunnel based on assumption that small tunnels are usually

results of noise where large tunnels are important features of the object. However, the

original algorithm can be applied to correctly close tunnels in bronchial trees as a part

of segmentation procedure (see chapter 11.1). This approach is presented in more details

in the next subsection.

(a) (b)

Figure 5.2: An example of tunnel closing algorithm to the object representing a part
of trachea. Red patches correspond to closed tunnels. Notice that on (a) all tunnels

where closed. However, on (b) a tunnel which is an anatomical feature is left open.

5.1 The Tunnel Closing Algorithm

In this section we present the procedure and properties of the original algorithm of tunnel

(3D hole) closing presented in (Aktouf et al., 1996, 2002).
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5.1.1 Topological hull

Let X be a subset of Z3. We denote by S(X) the class composed of all the subsets of Z3

containing X. Following Aktouf et al. (1996), first, we introduce the notion of topological

hull of X and a binary relation on the set S(X) which are used to define a tunnel closing

algorithm.

Definition 5.1 (Aktouf et al. (1996)). Let X ⊂ Z3 and Y ∈ S(X). We say that Y is a

topological hull of X, if Y has no tunnels and no cavities and if, ∀y ∈ Y \X, Y \ {y} has

a tunnel or a cavity.

The following theorem, proposed and proved in Aktouf et al. (1996), gives a local char-

acterization of the class of sets which are topological hulls relatively to the class of sets

which have no holes and no cavities:

Theorem 5.2 (Aktouf et al. (1996)). Let X ⊂ Z3 and Y ∈ S(X). Suppose that Y has

no cavities and no holes. Then Y is a topological hull of X if and only if for each y of

Y \X, y is an interior point or a 2D isthmus for Y , that is, if and only if Tk(y, Y ) 6= 1.

Direct consequence of the proof of Theorem 5.2 is a corollary which leads to the following

definition and method for extracting a topological hull of a set X.

Definition 5.3 (Aktouf et al. (2002)). Let X ⊂ Z3. We define the binary relation h on

S(X): ∀U, V ∈ S(X), V ∈ h(U) if ∃u ∈ U \X such that V = U \ {u} and Tk(u, U) = 1.

Let B ⊂ Z3 with X ⊂ B and Y ⊂ Z3. We say that Y ∈ h∞(B) if there is a sequence

B = Y 0, Y 1, ..., Y n = Y , such that, Y i ∈ h(Y i−1) and such that h(Y ) = ∅. Let B ∈ S(X)

such that B has no cavities and no holes. If Y ∈ h∞(B), then Y is a topological hull of

X.

Now, to compute a topological hull of the set X, we first compute a bounding box B,

that is, solid cube which has no cavities and no tunnels and which contains X. Then,

we iteratively remove points of B which do not belong to X and which are not interior

points and not 2D isthmuses. The procedure is repeated until stability, that is, until no

more points can be removed.

5.1.2 Topological hull directed by the distance transform

As stated in Aktouf et al. (2002) in general a given object has several topological hulls

which may be not centered. In Fig. 5.3 an example of topological hulls is given and the
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problem is shown. To avoid such drawback by eliminating tendency to build a topolog-

ical hull which is not centered, a topological hull directed by the distance transform is

introduced which leads to the new definition of topological hull as presented in Aktouf

et al. (2002).

Definition 5.4 (Aktouf et al. (2002)). Let X ⊂ Z3 and let Ψ be a function from Z3 to

N. We define the binary relation h on S(X) : ∀U, V ∈ S(X), V ∈ h(U) if ∃u ∈ U \ X
with Tk(u, U) = 1 such that:

(i) V = U \ {u} and

(ii) Ψ(u) = max{Ψ(y), ∀y ∈ U \X with Tk(y, U) = 1}

Let B ∈ S(X) be a set with no holes and no cavities. if Y ∈ h∞(B), we say that Y is a

Ψ-topological hull of X.

In the sequel of this work the function Ψ is set to the squared (Euclidean) distance

transform of X. The distance transform is used as a constraint in order to restrict the

choice of the possible points to process in each iteration. The points are sorted according

to their decreasing distance from the object. Now the procedure to calculate topological

hull can be applied. The furthest points from the object are going to be processed first.

By processing the points in such way, the points which are going to survive to the

elimination process will be the closest to the object. Therefore the obtained topological

hull is centered according to the object.

(a) (b) (c) (d)

Figure 5.3: Examples of topological hulls of the object. (b) and (d) are, respectively,
topological hulls of (a) and (c). Notice that topological hull (d) is not centered. (Aktouf

et al., 1996)

5.1.3 ǫ-closing algorithm

The definition of the topological hull directed by distance transform (Definition 5.4) gives

also another possibility to control the resulting topological hull, that is, the ability to

select the tunnels which are going to be closed. By setting a parameter called distance

threshold denoted by ǫ we can simply remove all points which have distance to the object
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greater than ǫ. Such strategy is called ǫ-closing. Examples with tunnel closing according

to different threshold values are presented on Fig. 5.4.

Algorithm 6 proposed in Aktouf et al. (1996, 2002) allows one to compute topological

hulls directed by distance transform image Ψ. It also allows one to define maximal size of

tunnels which should be closed by setting the distance threshold ǫ. It takes as an input

the object X and its bounding box B and the results is a centered topological hull Y . In

the algorithm a binary image E which associates to each point a boolean flag (TRUE or

FALSE) is used to let us known if the corresponding point was already processed. Points

which are processed in each iteration are stored in hierarchical list L in decreasing order

of distance.

(a) (b) (c)

Figure 5.4: Application of the 3D tunnels closing algorithm to an 3D object with
different ǫ. (a): initial image; (b): ǫ = 5; (c): ǫ = 9. (Aktouf et al., 2002)

Algorithm 6 Tunnel Closing Algorithm(Input X,B,Ψ,ǫ Output Y )
01. Y = B
02. foreach x ∈ X ∩B such that Γ∗

k
(x) ∩B 6= ∅ do

03. L[Ψ(x)] = L[Ψ(x)] ∪ {x}
04. E(x) = TRUE
05. end

06. i = Maxx∈BΨ(x)
07. while i ≥ 0 do

08. while L[i] 6= ∅ do

09. x = FIRST(L[i])
10. E(x) = FALSE
11. if (Tk(x,X) = 1) or (Ψ(x) > ǫ) then

12. Y = Y \ {x}
13. foreach y ∈ Γ∗

26(x) ∩X ∩ Y such that E(y) = FALSE do

14. E(y) = TRUE
15. L[Ψ(y)] = L[Ψ(y)] ∪ {y}
16. if (Ψ(y) > i) then i = Ψ(y) end

17. end

18. end

19. end

20. i = i− 1
21. end

22. return Y
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5.2 Properties and Limitations of the Tunnel Closing Algo-

rithm

Algorithm 6 is linear in time and space complexity. It builds a topological hull of the

input object which closes all tunnels which are smaller than a given diameter. In some

applications, ǫ parameter can be considered as optional and can be omitted. In such case

all tunnels will be closed. However, the tunnel closing algorithm closes not only tunnels

but also cavities in an input image. In some applications this property of the tunnel

closing algorithm is very useful especially when cavities are unwanted in an output image

for instance when they are the results of acquisition errors. However, cavity filling can also

be considered as a drawback where only tunnels should be closed. To simply eliminate

this drawback, fast cavities filling algorithm can be applied before using tunnel closing.

The cavities filling algorithm gives useful information where all cavities occur in an input

image, which can be simply used to let cavities preserved if necessary (Janaszewski et al.,

2011).

Another property of the tunnel closing algorithm is ability to produce centered topologi-

cal hull in respect to used priority function, for example the Euclidean distance map may

be a good choice as priority function in general case. However, the result may not be

suitable for some applications. As example, consider a three-dimensional tubular object

X (see Fig. 5.5(a)). Such object has two tunnels which will be closed by the tunnel clos-

ing algorithm. If we use the Euclidean distance map of X as priority, the tunnel closing

patches will be situated in the middle of the tubes (see Fig. 5.5(b)) or in the most narrow

part of the object if we introduce some distortion. However, by changing the priority we

can cause the tunnel closing algorithm to close tunnels, for example in different parts of

the object (see Fig. 5.5(c)).

(a) (b) (c)

Figure 5.5: Application of the 3D tunnels closing algorithm to tabular object. (a):
Initial image with two tunnels marked in yellow; (b, c): Results of working of the
tunnel closing algorithms using different priority function. Closing patches are marked

in yellow.

The algorithm is also sensitive to other type of distortions. This drawback occurs, for

example, when in an object some branches or object parts are situated in the close

vicinity of a tunnel. In this case the shape of the tunnel closing patch may be significantly
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influenced by these branches. Such situation is presented in Fig. 5.6. This artificial object

presents one large tunnel in the middle, surrounded by three branches. After applying

the tunnel closing algorithm, the tunnel closing patch, which is represented with dark

grey color, goes up to the branch, so it does not correspond to the "geometry of the

tunnel" (that is nearly planar). It is important when we further want to analyze e.g. the

geometry of the tunnel closing patch. See for example (Janaszewski et al., 2009a, 2010,

2011), for more detailed discussion about this limitation and improvements designed to

solve this particular problem.

(a) (b) (c)

Figure 5.6: Application of the 3D tunnels closing algorithm to object with irrelevant
branches close to the tunnel. (a): initial image; (b): the tunnel closing patch is distorted
by branches; (c): corrected result using strategy described in Janaszewski et al. (2011)

The tunnel closing algorithm is designed to correct only topological errors in an input

object. Therefore, it is not suitable to correct geometrical errors unless they are caused

by presence of tunnels or cavities. For example we can consider an object representing

a three-dimensional sphere. We can alter its geometry by removing some connected set

of points (see Fig. 5.7). In such case there is no tunnel in our object. Therefore, tunnel

closing algorithm will not correct our object. In such application different algorithm

needs to be considered.

We can also notice the problem if we want to close some tunnels in a connected component

which is nested inside another one. For example any object with tunnels which is inside

empty cube. In such case, for example, some preprocessing step is necessary to extract

interesting connected component from the image before applying tunnel closing.

Figure 5.7: Example of case when the tunnel closing algorithm cannot be used.
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5.3 Application of The Tunnel Closing Algorithm

The tunnel closing algorithm has several documented potential applications in materi-

als science and medicine. An important example is stress corrosion cracking in stainless

steel (Scott, 2000). X-ray microtomographic studies have observed the initiation and

propagation of intergranular cracks along the grain boundaries of this polycrystal mate-

rial (Babout et al., 2006). These observations have revealed local ligaments of material

which span the developed crack, and create tunnels in the crack path (see Fig.5.8). These

ligaments are called bridges, and generally correspond to special grain boundaries with

higher resistance to damage. The measurements of the spatial distribution and the size

of these bridges during in situ observations of cracking is one of the important character-

izations to carry out towards the prediction and optimization of the material resistance

to stress corrosion cracking (Marrow et al., 2006). Detection and analysis of bridges has

usually been done manually by visual inspection of 3D data set. Such a strategy is time

consuming and potentially unreliable, so an automatic procedure of tunnel detection for

volumetric images seems to be a valuable alternative.

(a) (b)

Figure 5.8: An example of tunnel closing algorithm. (a): the crack. There are three
tunnels (a large one and two small ones) inside the crack to be closed; (b): the crack
with tunnels closed. Tunnel closing patches, with one voxel thickness, are represented
with dark gray color (Janaszewski et al., 2011). Note: The raw images from where this
portion of a crack was segmented were acquired at the ESRF (ID19beamline). Details

of the experiment can be found in Babout et al. (2006).

Another useful application of tunnel closing is for cellular materials. It can be used

to close defects in foam walls, but it can also be used, as shown in Fig. 5.9 to close

joints-ribs cycles in open cell foams. This typical example corresponds to an auxetic

polyurethane foam, a new generation of foam that has a tendency to expand laterally

when stretched and contact laterally when compressed. Recent studies have intended

to better understand the bulk tensile deformation response of auxetic foam in situ by

coupling X-ray tomography with digital image correlation (McDonald et al., 2009). This

has also enabled to estimate for each joint that composes cycles the rotation matrix that

needs to be applied in order to recover the standard polyurethane foam microstructure,

that is, cycle with a perfect polygonal shape. The tunnel closing algorithm is very useful

to identify the cycles and to represent 3D maps of deviation to perfect polygon. In the
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present case shown in Fig. 5.9, the tunnel closing was performed after 3D curvilinear

skeletonisation of the structure and each cycle was closed separately after identifying

each vertices and edges of the skeleton.

Figure 5.9: An example of tunnel closing algorithm. 3D rendering of an auxetic foam
(in light gray) on which the corresponding skeleton is superimposed (dark curves: edges
- dark spheres: vertices). An open cell is also closed (depicted by a dark gray circle).

An example of medical application of the tunnel closing algorithm is a aortic dissection

problem. According to Lohou and Miguel (2011) it is a medical emergency which may lead

to death. Aortic dissection is caused by aortal tissue perforation due of blood pressure.

Such perforation causes presence of tears or holes in the intimal tissue inside lumens

(see Fig. 5.10). They are usually detected by radiologists by examining successive CT

slices. Manual detection is a very difficult and error-prone task. Using the tunnel closing

algorithm these intimal tears can be detected automatically or semi-automatically and

their quantitative properties can be evaluated which can help cardiac surgeons in making

diagnosis.
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Figure 5.10: (a): 3D rendering of the aorta (in light gray); (b): Intimal flap inside
the aorta on which the intimal tears (holes) are pointed by arrows. (Lohou and Miguel,

2011)



Chapter 6

Extracting Geometrical Properties

of Binary Shapes

One classical problem in discrete geometry is to estimate geometrical properties of digi-

tized shapes without any knowledge of the underlying continuous shape. Algorithms used

to perform such estimation are called digital geometric estimators. Many vision, image

analysis and pattern recognition applications rely on the estimation of the geometry of

the discrete shape or the curve which can be either a contour of the shape or result of

skeletonization process. Therefore, the accurate estimation of geometric parameters is an

essential step in many practical applications and it is an active research field.

According to De Vieilleville and Lachaud (2008) estimating geometrical quantities on

digitalized shapes is a difficult task for at least four major reasons:

• There exist infinitely many continuous Euclidean shapes that have the same digi-

tization. This problem implies that, it is impossible to estimate proper geometrical

quantities of the underlying Euclidean shape without additional hypotheses about

reference shape (see Fig. 6.1). For example properties such as smoothness, com-

pactness, convexity, minimal perimeter or maximal area are common choices.

• Determining the required size of a computational window around a point of inter-

est to achieve a good estimation is not straightforward. Moreover, size of a com-

putational window has a strong impact on multigrid convergence property of the

estimator (see de Vieilleville et al. (2007) and section 8.4.1). The size of a computa-

tional window should be adapted to local shape geometry, for example parts of the

shape with high curvature variation need relatively small computational window.

• The digitized shape can be noisy or damaged. This is a common problem, especially

when analyzed shapes are results of image segmentation algorithms or skeletoniza-

tion strategies (see Fig. 6.2). This problem is addressed and efficient solutions are

54
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(a) (b)

Figure 6.1: Example of two objects with exactly the same digitalization. (a): Euclidean
disk and its digitalization; (b): Euclidean octagon and its digitalization.

proposed in continuous framework, but lacks proper definition in the discrete frame-

work. Presence of noise in digitalized shapes is the reason why continuous methods

are generally preferred for extraction of geometric properties.

(a) (b)

(c)

Figure 6.2: Example of presence of noise in the curve. (a): Euclidean straight line and
its digitalization; (b, c): Two possible skeletonisation results of (a). Note that (c) can

be considered as not "straight".
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• The time spent on computations may be limited. This problem occurs when estima-

tors based on optimization techniques are used, or when the computational window

is too large. On the other hand, small size of computational window (which may

speed up the computation) has a direct negative impact of the precision of the

estimator.

In the literature numerous algorithms where proposed to estimate different geometrical

properties. They can be divided into two main groups. A first group consists of algorithms

which estimate the global geometrical features for example area and perimeter (Yang

et al., 1994; Kulpa, 1977; Gray, 1971; de Vieilleville and Lachaud, 2009; Klette and

Rosenfeld, 2004), moments (Yang and Albregtsen, 1994a,b, 1996) or length (Dorst and

Smeulders, 1987; Tajine and Daurat, 2003; Coeurjolly et al., 2001a; Stojmenovic and

Tosic, 1991). The second group consists of local geometrical features estimators like

normals (Lenoir et al., 1996), tangents (presented in more details in this chapter), or

curvatures.

In the three-dimensional space important local geometric properties are curvature and

torsion. Several methods have been proposed for curvature estimation, which can be

divided in three categories according to (Worring and Smeulders, 1993; Vialard, 1996a;

Hermann and Klette, 2007). In the first group are methods based on the inverse of the os-

culating circle radius (Coeurjolly et al., 2001b; Coeurjolly and Svensson, 2003; Hermann

and Klette, 2007; fleischmann et al., 2010). The second group consists of methods which

try to reconstruct locally the curve with some polynomial of given degree (Marji, 2003;

Hermann and Klette, 2007) or try to find the curve, among all with the same digitaliza-

tion, which minimizes its squared curvature (Kerautret and Lachaud, 2009). The third

group estimates curvature based on the convolution of the curve by some derivative of

Gaussian kernel (Worring and Smeulders, 1993; Vialard, 1996a; Malgouyres et al., 2008;

Esbelin and Malgouyres, 2009; Fiorio et al., 2010). Recently proposed methods, which

belong to the first group, based on notion of maximal digital circular arcs (Roussillon

and Lachaud, 2011) which is an natural extension of the notion of the maximal digital

straight segments (presented later in this chapter in section 6.3.2).

Several methods for torsion estimation were also proposed. It can be calculated directly

from torsion formula based on Gaussian (Mokhtarian, 1997) or B-spline smoothing (Ke-

htarnavaz and de Figueiredo, 1988). Another methods are based on least-squares fitting

techniques (Lewiner et al., 2005; Medina et al., 2004).

Local geometric quantities can also be used naturally as methods for the detection of

dominant points on discrete curves (Ray and Pandyan, 2003; Marji, 2003; Kerautret et al.,

2008). However, in this thesis we focus mainly on tangent estimators along discrete curves,

since, tangent directions at each point of a discrete curve give us very useful information.

In the three-dimensional space the normal vector field can be estimated from tangent

directions (Lachaud and Vialard, 2003; Lenoir et al., 1996). We can accurately estimate
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length of the curve by simple tangent integration (Lenoir et al., 1996; Coeurjolly and

Klette, 2004). Derivating the tangent direction provides an estimation of the curvature

(Worring and Smeulders, 1993; Vialard, 1996b; Lenoir et al., 1996). We utilize tangent

to compute cross sections of the airway tree, which allow for reliable measurements (see

chapter 13).

Different tangent estimators have been already studied in the literature. In the framework

of digital geometry, there exist few studies on 3D discrete curves, while there are numer-

ous methods performing in 2D. However, all methods can be categorized into two main

groups, that is, the continuous tangent estimators (chapter 6.2) and discrete tangent

estimators (chapter 6.3).

6.1 Discrete Curves

Several authors have proposed definitions of discrete curves, for example (Kiryati and

Kubler, 1992; Jonas and Kiryati, 1997). However, not all of them are suitable for our

purposes. In this thesis we utilize curves which are result of skeletonization process,

either in two-dimensional or three-dimensional space. Therefore, we based our work on

the following definition of a discrete curve:

Definition 6.1. Given X ⊂ Zn, any set S ⊆ X such that |S| ≥ 2 is called a k-curve iff

there are exactly two points p, q ∈ S such that |Γ∗
k(p)∩S| = |Γ∗

k(q)∩S| = 1, and for any

x ∈ S \ {p, q} we have |Γ∗
k(x) ∩ S| = 2.

Let C be a k-curve, where k ∈ {4, 8} or k ∈ {6, 26} in 2D and 3D respectively. Based on

selected connectivity k we can distinguish two types of discrete curve C:

• for k = 4, 6 - C is called the standard discrete curve or standard digital curve

• for k = 8, 26 - C is called the naive discrete curve or naive digital curve

There are methods which can work only with one type of discrete curves. To simplify

writing in the following parts of this work we assume that the adjacency relation k in

case of Z2 equal to 8 and equal to 26 in case of Z3, has been chosen and we do not write

the prefix k, unless necessary. Therefore, it means that presented algorithms are capable

to work with the naive discrete curves.

All points in a discrete curve C can be totally ordered to form a sequence of points

(p1, ..., pℓ) such that p1 is the first point of C and pℓ is the last point of C, where ℓ = |C|.
We denote by Ci the i− th point of C where 1 ≤ i ≤ |C|. If C1 = Cℓ we say that curve

is closed, or open otherwise.
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6.2 Continuous Tangent Estimators

First group of tangent estimators along discrete curves consists of algorithms which are

based on approximation techniques in the continuous Euclidean space. The continuous

methods can be of various types, for example they can rely on interpolation, recon-

struction or fitting techniques. The numerical methods, required to extract the chosen

solution can be costly and use non trivial optimization and may even require to set proper

parameters themselves.

The most common continuous methods are based on least square fitting using polyno-

mials (Lewiner et al., 2005; Cazals and Pouget, 2005). The aim of these methods is to

find a polynomial of finite degree which minimizes a positional squared error from a set

of samples (de Vieilleville and Lachaud, 2009).

For example, in case of planar curve parametrized as y = f(x), we can obtain a set of

M samples, denoted by (si = (xi, yi))1≥i≥M . Then we need to minimize the functional

E(a0, ..., aN ) =

M∑

i=1

(yi −
N∑

j=0

ajx
j
i )

2

At least one solution exist and can be efficiently computed using QR factorization (Press

et al., 1992). Once the optimal polynomial for E is determined, it can be used to estimate

the tangent orientation.

In the practical applications to estimate tangent orientation in the point of interest C0

considered as the origin. We set computational window ranging from C−q to Cq and use

low order polynomials. For example, the linear regression, implicit parabola fitting and

explicit parabola fitting are common choices.

Least square fitting method can be extended by adding some variable importance wi in

the fitting process, to each sample si. A sample with heavier weight is more important

to fit.

E(a0, ..., aN ) =

M∑

i=1

wi(yi −
N∑

j=0

ajx
j
i )

2

Such method is called weighted least square fitting. However, the biggest drawback of

this method is an assumption that the weights are known exactly. In the real application

the exact weights are almost never known, so they must to be estimated which is not

easy in general.
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Another tangent estimator which is an extension to least square fitting is called inde-

pendent coordinates fitting (de Vieilleville and Lachaud, 2009). In this estimator the fit

is done on each coordinates with respect to a given parametrization of the curve.

Let C0 is a point of interest and M = 2q + 1 is the size of the computational window,

range from C−q to Cq. We also define the arc-length li from C0 to Ci computed as

li =
∑i−1

k=0 ‖Ck+1 − Ck‖1 if i > 0 or li = −∑i−1
k=0 ‖Ck+1 − Ck‖1 otherwise. Now, we

minimize the two following quantities:

M∑

i=1

(xCi
−

N∑

j=0

ajl
j
i )

2

M∑

i=1

(yCi
−

N∑

j=0

bjl
j
i )

2

However, as stated in de Vieilleville and Lachaud (2009), independent coordinates fitting

does not yield much better results than presented above.

The second commonly used continuous tangent estimators are method based on Gaussian

filtering (Mokhtarian and Mackworth, 1986; Witkin, 1983). The Gaussian filters has been

used in pattern recognition for almost 30 years for improving the quality of noisy images.

When applied to discrete curves they produce its smoothed continuous approximation.

Then its first and second order derivatives can be easily computed which yields to simple

geometric quantities estimation.

We denote by C ′
0 the estimated derivative at the discrete point C0 defined as

C ′
0 =

q∑

i=−q

G′
σq
(−i)Ci

where G′
σ(t) is the first derivative of the Gaussian function

Gσ(t) =
1

σ
√
2π

exp(
−t2
2σ2

)

The biggest problem when using this class of method is a choice of the parameter σ.

Which is often chosen globally for the whole curve. However, it is well known that

setting this parameter globally may lead to over-smoothing for some regions and under-

smoothing for others, especially for curves with large curvature variations.
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6.3 Discrete Tangent Estimators

The second group of tangent estimators consist of methods which work in the discrete

space directly. They are usually more sensitive to presence of noise in the input shape than

continuous methods. However, discrete methods are usually much faster than approxi-

mation methods, and they do not need to set any parameter. Only in some algorithms

the size of computational windows need to be defined. We can consider such methods

as local discrete tangent estimators. On the other hand, there exists a set of local tan-

gent estimators where size of computational window is determined automatically and

can adapt to local geometry of the shape. Such methods are called local adaptive discrete

tangent estimators.

In the following subsection we present basic concepts of the discrete tangent estimators.

6.3.1 Local discrete tangent estimators

The local discrete tangent estimators evaluate tangent direction along all points of the

discrete curve using a finite set of curve points around the point of interest. The size of

such a finite set of neighboring points is fixed globally by users.

For example, consider a discrete curve C. An naive method can use only one neighboring

point to the actual point Ci which can be either point Ci−1 or Ci+1 to estimate tangent

direction. In such case the tangent direction in Ci is derived from a vector pointing from

point Ci to Ci−1 or Ci+1 (see Fig. 6.3).

Such simple strategy is based on differential geometry where the tangent direction t of a

curve c(x) at the point Px0 = c(x0) is defined as:

c(x0) = c′(x0) = limh→0
c(x0 + h)− c(x0)

h
= limh→0

−−−−−−→
Px0Px0+h

h

Therefore, in discrete space, given the discrete curve C, the tangent direction at the point

Ci can be estimated as:

~t(i) =
c(i+ 1)− c(i)

1
=

−−−−→
CiCi+1

1
=
−−−−→
CiCi+1

The above naive method gives very poor results since it is extremely sensitive to noise

and it has very small finite number of possible results. Therefore it has very limited

practical applications.

To achieve better accuracy and robustness to noise, in general, methods proposed in the

literature utilize a finite set of 2n + 1 curve points around the point of interest Matas
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Figure 6.3: Example of naive tangent estimator. Each arrow correspond to the local
tangent direction.

et al. (1995); Worring and Smeulders (1993); Anderson and Bezdek (1984); Lenoir et al.

(1996). In the sequel we call such set computational window.

For example, a more robust to noise method can use 3 points, that is, both previous and

next point plus the actual one, and then tangent direction in point Ci is derived from a

vector pointing from point Ci−1 to Ci+1.

Matas et al. (1995) compute the tangent direction as the median direction of the vectors

linking the point Ci to the j next points and to the j previous points on the curve C.

Such strategy permits to avoid small noise impact in the discrete curve since it averages

tangent directions (see Fig. 6.4). Increasing number of points lead to stronger averaging

of results but it loses accuracy and has a very poor behavior at sharp corners.

(a) (b)

Figure 6.4: Example of Matas et al. (1995) local discrete tangents estimator. (a): The
curve with points (in yellow) in which the tangent direction where evaluated; (b): The
results of tangent estimation (we set parameter j = 2). Note that almost straight line

where achieved.

The local discrete tangent estimators discussed in this chapter are very fast and simple.

However, they have two important drawbacks. The first one is the need to set properly

the size of the computational window. The second one is the consequence of the first

one, that is, these methods cannot converge asymptotically (see section 8.4.1) to the
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continuous shape because the computational window is fixed globally and is not adapted

to the local shape geometry. Therefore, these methods can be used when the accuracy of

the estimator is not critical.

6.3.2 Local adaptive discrete tangent estimators

Local adaptive discrete tangent estimators are free of the drawbacks presented above.

The methods of this class can automatically adapt to the local shape geometry obtained

by recognizing digital straight line segments around the point of interest (Feschet and

Tougne, 1999; de Vieilleville and Lachaud, 2009; Lachaud et al., 2005a). According to

(Lachaud et al., 2005b) exact tangent estimation for digitizations of straight lines can

thus be achieved. Note that most of presented methods are designed for 2D discrete

curves. Therefore, some of them cannot work straightforwardly with 3D curves. Even if

the extension looks straightforward they often have unexpected behavior for some special

configurations of curve points or they do not preserve all properties.

Local adaptive tangent estimator along discrete curves relies on the following arithmetical

definitions of digital lines (Coeurjolly et al., 2000; Debled-Rennesson and Reveillès, 1995).

Definition 6.2 (Réveilles (1991)). A 2D digital line, with direction vector (b, a) ∈ Z2,

shift µ and thickness e, where a, µ ∈ Z and b, e ∈ Z+ such that nwd(a, b) = 1, is defined

as the set of points (x, y) ∈ Z2 which satisfy the diophantine inequality:

µ ≤ ax− by < µ+ e,

and is denoted by D2(a, b, µ, e).

Local adaptive methods make segmentation (see Fig. 6.5) of the discrete curve into a set

of maximal discrete straight segments which are defined as follows:

Definition 6.3. Given a discrete curve C, a set of its consecutive points Ci,j where

1 ≤ i ≤ j ≤ |C| is said to be a digital straight segment (DSS) iff there exists a digital

line D2 containing all the points of Ci,j . In this case, we say that the property S(i, j)

holds.

Definition 6.4. Any subset Ci,j of C is called a maximal segment iff S(i, j) and ¬S(i, j+
1) and ¬S(i− 1, j).

Based on local DSS recognition, several tangent estimators at a digital curve point have

been proposed. The main difference between them is a different balance between longest

and most centered DSS around the point of interest. The following DSSs and their

corresponding tangent estimators may be defined around any point Ci of the digital

curve C:
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Figure 6.5: Example of a discrete curve and its segmentation into set of maximal
segments (red rectangles).

• Symmetric tangent (ST) - the symmetric tangent at curve point Ci is the subset

Ci−l,i+l of C with S(i− l, i+ l) and ¬S(i− l− 1, i+ l+ 1) (Lachaud and Vialard,

2003)

• Feschet-Tougne tangent (FTT) - the Feschet-Tougne tangent at curve point Ci is

the maximal segment with biggest indices that includes the symmetric tangent at

Ci (Feschet and Tougne, 1999)

• Extended tangent (ET) - the extended tangent at curve point Ci is the symmetric

tangent Ci−l,i+l which can be extended in the two following cases: (i) if S(i− l, i+

l + 1) and ¬S(i− l − 1, i+ l); (ii) if S(i− l − 1, i+ l) and ¬S(i− l, i+ l + 1)

• Forward half-tangent (FHT) - the forward half-tangent at curve point Ci is the

subset Ci,i+l of C with S(i, i+ l) and ¬S(i, i+ l + 1)

• Backward half-tangent (BHT) - the backward half-tangent at curve point Ci is the

subset Ci−l,i of C with S(i− l, i) and ¬S(i− l − 1, i)

• Median half-tangent (HT) - the median half-tangent at curve point Ci is the arith-

metical line median to the two half-tangents (FHT and BHT)

Then tangent direction is directly estimated based on angle between carrying standard

line of the DSS and the x-axis, and denoted by θ.

Thanks to methods proposed in the literature designed to efficient recognition of the

straight line segment, or computing tangential cover of the discrete curve (Debled-

Rennesson and Reveillès, 1995; Feschet and Tougne, 1999; Coeurjolly et al., 2001a),

adaptive tangent estimators have linear in time and space complexity which make them

much faster than continuous methods and simple to use. They produce, in general, much

better results than methods which are based on fixed size of computational windows.

However, the presence of noise or corrupted curves can have negative impact on the

results, since they make a problem to robust DSS recognition.
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To deal with this problem the notion of blurred segments was introduced by Debled-

Rennesson et al. (2006). Introduced strategy permits to change thickness of the straight

lines which need to be recognized (note that an algorithm proposed by Buzer (2005) can

be used for the same purpose). By changing vertical thickness it is possible to accommo-

date local perturbations in the discrete curve. However, selecting a large thickness can

cause algorithm to loose important details of the curve. Kerautret and Lachaud (2012)

recently addressed this problem and proposes a reliable method which automatically

adapt thickness of used straight line. Such thickness can be different in each part of the

curve, which gives a methodology to effectively deal with noise when methods based on

DSS recognition are used.

6.3.3 2D λ-maximal segment tangent direction

Lachaud et al. (2007) recently proposed a tangent estimator called λ-maximal segment

tangent direction (or λ-MSTD), which is considered as the best among digital ones at

rough scale (Lachaud et al., 2005b, 2007). The accuracy of this estimator is as good as

standard continuous methods (De Vieilleville and Lachaud, 2008). It is a simple method

based on maximal straight segments recognition Feschet and Tougne (1999) along dig-

ital contour, and has very good properties such as linear computation complexity and

accurate results. Moreover, it has multigrid convergence proven in Lachaud et al. (2007).

Therefore, it is interesting to present λ-MSTD in more details.

λ-MSTD estimator was originally designed for estimating tangents on 2D digital con-

tours. Its extension to three-dimensional discrete curves is proposed in chapter 8.

The main part of the λ-MSTD estimator consists in obtaining the tangential cover M
of a given k-curve C,

Proposition 6.5. For any discrete curve C, there is a unique set M of its maximal

segments, called the tangential cover.

This property is derived by using the notion of the maximality of saturated set presented

in Feschet (2010). Figure 6.6 illustrates an example of C and its tangential cover M.

Then the estimator at a point x of a k-curve C should depend on the set of all maximal

segments going through x. Let us number all the maximal segments of the tangential

coverM of C by increasing indices such that Mi ∈ M for i = 1, 2, . . .. Then, such a set

is defined by P (x) = {Mi ∈ M, x ∈ Mi}, called the pencil of maximal segments around

x. Figure 6.7 illustrates an example of C and pencil of maximal segments P (x) around

point x ∈ C. As any point x of a k-curve C is covered by at least one maximal segment,

we have the next property Feschet (2010).

Proposition 6.6. The pencil of maximal segments P (x) of any point x of a k-curve C

is never empty.
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Figure 6.6: Example of a discrete curve and its tangential cover (red rectangles).

Figure 6.7: Example of a discrete curve and the pencil of maximal segments (red
rectangles) of selected point (in dark gray).

In addition, as noted in Feschet and Tougne (1999), several successive points may have the

same pencil. Therefore, the tangent estimator should take also into account the position

of the point x within the pencil (see Fig. 6.8). More specifically, each point x has the

eccentricity with respect to each maximal segment. Let us denote by Li = ‖ni −mi‖1 the

length of each Mi = Cmi,ni
⊂ C. Then, the eccentricity ei(x) of a point x with respect

to a maximal segment Mi is its relative position between the extremities of Mi such that

ei(x) =

{
x−mi

Li
if Mi ∈ P (x),

0 otherwise.
(6.1)

The tangent direction is thus estimated by a combination of the directions of maximal

segments weighted by a function of the corresponding eccentricity. The function λ maps

from [0, 1] to R+ with λ(0) = λ(1) = 0 and λ > 0 elsewhere. For example, a C2 function

64(−x6 + 3x5 − 3x4 + x3) can be used. Different proposition of several λ functions and

theirs impact on the results are shown in chapter 8.4.1. More detailed information about

the required properties of the λ function can be found in Lachaud et al. (2007).
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Figure 6.8: Example of a maximal segment Mi around the point x. The eccentricity
ei(x) depends on the position of x in Mi. Values mi and Li denotes the first point and

length of the segment Mi, respectively.

Definition 6.7. The λ-MST direction θ(x) at point x of a k-curve C is defined as a

weighted combination of the directions θi of the covering maximal segments Mi such

that

θ(x) =

∑
Mi∈P (x) λ(ei(x))θi∑
Mi∈P (x) λ(ei(x))

. (6.2)

From Property 6.6 and the nature of the eccentricity, this value is always defined and

computed with a linear time complexity.
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Chapter 7

Medial Axis Filtering with Features

at Different Scales

7.1 Discrete Adaptive Medial Axis

The major drawback of the discrete λ-medial axis method is a problem of filtering shapes

which have important features at different scales (Attali et al., 2009). In such case, when

we increase parameter λ to make a stronger filtration in thick parts, we loose information

in the thin parts of the shape (see Fig. 7.1).

This can be simply explained by the fact that to threshold function FX , by using the

inequality FX(x) ≥ λ, we based only on the parameter λ, which is set globally, indepen-

dently of any information derived from x like e.g. local thickness of the object (which

can be simply evaluated by the Euclidean opening function, presented in chapter 4.3).

This fact motivates us to investigate more deeply on how function FX is related to local

size of the shape defined by function GX
E . It is very interesting to see visually this relation

by plotting distribution of points of a shape X according to the values FX(x) and GX
E (x).

The resulting graphs for different families of shapes are presented on Fig. 7.2.

After analysis of how points aggregate in several cases, one can notice interesting patterns.

We can divide the graph FX vs. GX
E into three sets.

• The first set, denoted by V , consists of points x ∈ X, such that, FX(x) ≈ GX
E (x).

Points in this set are very important, since, they have value FX close to a local

maximum. Therefore, points from such set should be preserved during filtering.

• The second set, denoted by U is formed by points y ∈ X, such that, FX(y) ≪
GX

E (y). From filtering point of view, such points in general, belong to unstable part

of λ-medial axis and should be removed.

68
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(a) (b)

(c)

Figure 7.1: (a): a binary shape X (in gray); (b): The filtered λ-medial axis of X (in
black) calculated by using algorithm (Chaussard et al., 2010). The medial axis is not
sufficient filtered in the middle of the shape. However, we already start to loose the tail;
(c): The more filtered medial axis of X. Now, the middle of the shape is well filtered.

However, we lost all information about the tail.

• The last set, denoted by I, consist of points z ∈ X, such that, FX(z) < GX
E (z).

Points in set I, generally should be also preserved. However, their importance can

be different according to level of the λ-medial axis simplification we would like

to achieve. Notice that definition of function FX makes situation where FX(x) >

GX
E (x) as impossible to achieve.

On the Fig. 7.3 sets I, U and V are sketched. We can also see how thresholding of

function FX works in practice, according to different parameter λ. Now it is easy to see

that using only a globally defined parameter λ in inequality FX(x) ≥ λ, we are unable

to well separate set U from sets V and I, which is crucial for preserving thin parts of

the shape and allow effective filtering in the thick ones at the same time.

Our proposition to solve such problem is a new notion derived from the discrete λ-medial

axis, where we introduce a new parameter γ in thresholding inequality. We call this new

medial axis as the discrete adaptive medial axis, and define it as follows.

Definition 7.1. Let X be a finite subset of Zn. Let γ ∈ R. The discrete adaptive medial

axis (or DAMA) of X is the set of couples (x,DX(x)) for x in X such that FX(x) ≥ λγ(x)

where,

λγ(x) =
ln(GX

E (x) + 1)

ln(γ)
(7.1)
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Figure 7.2: (a) and (b): Two graphs representing points distribution for two different
shapes according to theirs FX(x) and GX

E (x) values.
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Figure 7.3: Graph representing points distribution according to their FX(x) and
GX

E (x) values. We can also distinguish three important sets from filtration point of
view (V, I and U respectively). By lines we mark thresholding value according to dif-

ferent λ values. Points which are below such line will be removed during filtering.

In comparison with the DLMA where FX(x) is compared to a scalar value λ, in definition

7.1 the filtering criterion depends on two values, as we included in function λ information

about opening value GX
E (x). Which allows us to adapt filtering criterion to the local size

of the shape. It is also possible to modify strength of filtration by setting a proper single

parameter γ in equation 7.1.

One can also propose different families of functions λγ(x) to make filtering with different

behaviors by changing equation 7.1. However, we experimentally tested several functions

and selected the one which gives the most interesting results from our point of view.

Using this function allows us to well separate sets V and U and gives us some flexibility

for dividing set I, thanks to parameter γ (see Fig. 7.4).

Similarly to the original λ-medial axis and some other previously proposed methods e.g.

based on bisector angle, any adaptive medial axis DAMA of a shape X for a parameter

value γ is a subset of any filtered medial axis DAMA of X for parameter value µ,

whenever λγ(x) > λµ(x). In other words, the set of all filtered medial axes of a shape

forms a hierarchy. On the Fig. 7.4 we can see the function λγ(x) for three different values

of the parameter γ. All points which are below line defined by λγ(x) will be removed

during filtering.
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Figure 7.4: Graph representing points distribution according to their FX(x) and
GX

E (x) values. By the thick lines, we mark the thresholding value according to equation
7.1 for diffrent λγ(x). Points which are below such lines will be removed during filtering.

Is very important to see that meanings of the parameter λ in DLMA and γ in DAMA

are different. Moreover, note, that condition λγ(x) > λµ(x) is satisfy if µ > γ which is

opposite to the other methods presented in this work where by increasing filtering pa-

rameter we cause stronger filtration. To remove such inconsistency and to make hierarchy

property better visible, we present the definition of the discrete adaptive medial axis in

a different form (see definition 7.2).

Definition 7.2. Let X be a finite subset of Zn. We denote by DAMA(X, γ) the discrete

adaptive medial axis of X with parameter γ, defined by

DAMA(X, γ) = {x ∈ X | F∗
X(x) ≥ γ}

where,

F∗
X(x) =





0 if FX(x) = 0

e
FX (x)

ln(GX
E

(x)+1) otherwise
(7.2)

Now, according to definition 7.2, we compare F∗
X(x) to the single scalar value γ, similarly

to other filtering criterions. Moreover, increasing this parameter cause stronger filtration.
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7.2 Discrete Scale Axis

In this section, we adapt the notion of scale axis (see chapter 4.2.5), originally introduced

in the continuous space and implemented in a framework of unions of balls, to the case

of discrete grids. Let X ⊂ Zn, x ∈ X, r ∈ R+ and s ∈ R+. The parameter s is

called the scale factor. We denote by Xs the multiplicatively s-scaled shape, defined by

Xs =
⋃

(x,r)∈MA(X)B(x, rs). For s > 1, we denote by SATs(X) the s-scale axis transform

of X, defined by

SATs(X) = {(x, r/s) | (x, r) ∈MA(Xs)}

An algorithm to compute this discrete version of scale axis can be now presented as

follows.

First, calculate the Euclidean medial axis of X and then multiply radius of each medial

ball by the chosen scaling factor s.

Next step is to reconstruct object Xs based on scaled radius values. Reconstruction can

be made efficiently by reverse Euclidean distance transform (see, for example, (Coeurjolly

and Montanvert, 2007)). Now, computing the medial axis of Xs achieves the simplifica-

tion.

The final step of the algorithm consists of rescaling the medial balls of MA(Xs) by a

factor 1/s to obtain the scale axis of X. Finally, discrete scale axis algorithm can be

presented in the following pseudocode:

Algorithm 7 DiscreteScaleAxis(Input X,s Output SATs(X))
01. SATs(X)← ∅; MA′(X)← ∅
02. MA(X)← EuclideanMedialAxis(X)
03. foreach (xi, ri) ∈MA(X) do

04. MA′(X)←MA′(X) ∪ {(xi, ris)}
05. end

06. Xs ← ReverseEuclideanDT(MA′(X))
07. MA(Xs)← EuclideanMedialAxis(Xs)
08. foreach (xi, ri) ∈MA(Xs) do

09. SATs(X)← SATs(X) ∪ {(xi, ri/s)}
10. end

11. return SATs(X)

All steps of DiscreteScaleAxis algorithm can be calculated in linear time in relation to

|X| (line 02), |MA(X)| (line 03), |Xs|(lines 06-07) and |MA(Xs)| (line 08) respectively.

Therefore, overall computational complexity of the algorithm is O(|X|).
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7.3 Hierarchical Scale Medial Axis

7.3.1 The s-scale filtered Euclidean medial axis

The crucial part of the method presented in the previous section, which is a source of

problems (MA(Xs) * MA(X)), is the reconstruction part after medial balls scaling and

need for new medial axis generation of the scaled object (see Fig. 7.5). On the other

hand, at the first look, this is the most important part of the algorithm since the medial

axis simplification occurs in this part.

(a) s=1 (b) s=1.1

(c) s=1.3

Figure 7.5: (a): a shape X (in gray) and its Euclidean medial axis MA(X) (in black);
(b): the multiplicatively 1.1-scaled shape and its 1.1-scaled axis; (c): the multiplicatively
1.3-scaled shape and its 1.3-scaled axis. In (b, c) we can see that scales axes are not
subsets of MA(X). In both cases, an additional branch even appears. (Miklos et al.,

2010)

To filter MA(X) by removing centers of unimportant medial balls and preserving a set

which is a subset of the MA(X), one must avoid reconstruction part and hold simplifica-

tion property at the same time. To solve this problem we make the assumption that to

make efficient filtration we just need to decide which of MA(X) points are not important

and should be removed. Therefore, we do not generate a new object Xs, and its MA(Xs)

set. With this assumption we are sure that filtered Euclidean medial axis of X is a subset

of MA(X).

This informal discussion motivates the following definition of the s-Scale Filtered Eu-

clidean Medial Axis (SFEMA).

Let x ∈ X, r ∈ R+. We denote by BX(x, r) the intersection of B(x, r) with X, that is,

BX(x, r) = {y ∈ X | d(x, y) ≤ r}.
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Definition 7.3. Let X ⊂ Zn, and s ∈ R, s > 1. We denote by SFEMAs(X) the Scale

Filtered Euclidean Medial Axis of X defined by

SFEMAs(X) = {(x, r) ∈MA(X) | BX(x, rs) *
⋃

(y,t)∈MA(X),t>r

BX(y, ts)}

Below, we give an algorithm to compute SFEMAs(X) of a given object X ⊂ Zn.

Algorithm 8 SFEMA(Input X,s Output H)
01. H ← ∅
02. MA(X)← EuclideanMedialAxis(X)
03. Let (x1, r1), . . . , (xn, rn) denote the elements of MA(X)
sorted in decreasing order of radii, that is, r1 > . . . > rn
04. foreach p ∈ X do

05. i← 1
06. while d(xi, p) > sri do i← i+ 1 end

07. H ← H ∪ {(xi, ri)}
08. end

09. return H

Theorem 7.4. Algorithm SFEMA computes exactly the s-Scale Filtered Euclidean Me-

dial Axis, as defined by Def. 7.3.

Proof. Consider any point p in X (after line 04). The assertion: “for all k ∈ {1, . . . , i}, d(xk, p) >
srk” holds true during the execution of the loop at line 06. After execution of this loop

(line 07) we know that for all k ∈ {1, . . . , i− 1}, d(xk, p) > srk, and d(xi, p) 6 sri. Thus,

at line 08, we know that p belongs to BX(xi, ris) and that it does not belong to any ball

BX(xk, rks), with rk > ri. From this we deduce that (xi, ri) belongs to SFEMAs(X).

This proves that all detected pairs indeed belong to SFEMAs(X). Now consider any pair

(x, r) of SFEMAs(X), there exists at least one point p in BX(x, rs) that is not included

in
⋃

(y,t)∈MA(X),t>r B
X(y, ts)}. As all points p of X are considered by the algorithm (line

04), the pair (x, r) will be detected. �

SFEMA in line 02 performs sorting of medial axis elements. It is possible to implement

sorting algorithm in linear time with the use of counting sort and integer values of radius

e.g. when the square of Euclidean distance transform is used. In the following lines the

algorithm performs two loops, the second nested in the first. The first one starts in

line 04 and does |X| iterations. The next nested loop starts in line 06 and in worst

case performs |MA(X)| iterations. Summarizing, computational complexity of SFEMA

is O(|X||MA(X)|) where |MA(X)| ≪ |X| (usually).

Examples of SFEMAs(X) with different scale factors si, calculated by using the method

described above, are shown in Fig. 7.6

Let us analyze properties and the major differences between the Miklos et al. (2010) s-

scale axis and our s-scale filtered Euclidean medial axis. The most important property is
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(a) (b)

(c) (d)

Figure 7.6: (a): a shape X (in gray) and its Euclidean medial axis (in white); (b, c, d):
the same shape and its SFEMA1.1(X), SFEMA1.4(X), SFEMA1.6(X), respectively.
In all cases the elephant’s tail, trunk, tusks and legs were considered as important and

were not removed.

SFEMAs(X) consists only of couples which are also in non-filtered MA(X), that is, for

all s ≥ 1: SFEMAs(X) ⊂MA(X). Lacking this property (inclusion property, for short)

has very strong negative impact to final results. In Fig.7.5 we have shown example of

the Miklos’s scale axis where additional branch even appear after filtering. In the Fig.7.7

opposite example is shown. The scale axis is to much simplified and looses important

features of the object. However, s-scale filtered medial axis is holding inclusion property

and permits to reconstruct almost entirely the original object.

The second interesting property relies on the notion of ball intersection with object. In

the Miklos’s scale axis, if we want to simplify the object, for example, by removing medial

ball B(x, r), x ∈ X, the scale factor should be set to big enough value which cause ball

B(x, rs) to be included in one of other medial ball, that is, B(x, rs) ⊂ B(y, rs), y ∈ X

(see Fig.7.8(c)) or in a union of such balls. In our algorithm, since we use intersection of

scaled balls with X, we only test inclusion inside X (see Fig.7.8(b)). This allow us to use
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(a) original shape (b) s=1.3 (c) s=1.3

Figure 7.7: (a): a set X (in green) and its MA(X) (in black); (b): the 1.3-scale axis
of X; (c): the 1.3-scale filtered Euclidean medial axis of X.

smaller scale factor. Therefore, we have better ability to control resulting s-scale filtered

Euclidean medial axis.

(a) original shape (b) s=1.1 (c) s=1.3

Figure 7.8: (a): a set X (in green) and its MA(X) (red dots); (b): multiplicatively
scaled medial balls. The smaller ball is not fully covered by the bigger one after scal-
ing. In scale axis representation both balls will be preserved. However, the bigger ball
includes the smaller one inside set X. Therefore, the smaller ball will not exist in
SFEMAs(X); (c): multiplicatively scaled medial balls. The smaller ball is included in

the bigger one. Therefore, it is neither in scale axis nor in SFEMAs(X).

7.3.2 Algorithm for computing the hierarchical scale medial axis

Definition 7.5. We denote by MAs(X) the filtered medial axis of X ⊂ Zn for s ∈ S ⊆
R+, where S represents the set of all possible values of parameter s of considered filtering

algorithm. The family H = {MAs(X) | s ∈ S} is a hierarchy if ∀s1, s2 ∈ S | s2 > s1 ⇒
MAs2(X) ⊆MAs1(X) ⊆MA(X).
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Unfortunately, SFEMA does not hold hierarchy property, it means that there is X ⊂
Zn such that {SFEMAs(X) | s ≥ 1} is not a hierarchy. The counter-example to the

hierarchy property is presented in the Fig. 7.9.

(a) (b) (c)

Figure 7.9: (a): a shape X (in gray) and two maximal balls B(x1, r1), B(x2, r2) ∈
X; (b): dashed circles represent scaled balls by s = 1.4. One can observe that
BX(x2, r21.4) ⊂ BX(x1, r11.4), so (x2, r2) /∈ SFEMA1.4(X); (c): dashed circles rep-
resent scaled balls by s = 1.6, now p ∈ BX(x2, r21.6) and p /∈ BX(x1, r11.6), so
(x2, r2) ∈ SFEMA1.6(X), which finally leads to the conclusion that SFEMAs(X)

does not hold hierarchy property.

This fact motivates the following definition:

Definition 7.6. Let X ⊂ Zn and (x, r) ∈MA(X). We denote by

ΨX : MA(X)→ [1,∞) ∪ {∞} the scale map of X defined by

ΨX(x, r) = min{t ≥ 1 | ∀s ≥ t, (x, r) /∈ SFEMAs(X)}

We first present an algorithm that is easier to understand and prove that our final one,

but less efficient.

Algorithm 9 ScaleMap1(Input MA(X) Output ΨX)
01. foreach (x, r) ∈MA(X) do ΨX(x, r)← 0 end

02. foreach p ∈ X do

03. foreach (xi, ri) ∈MA(X) do

04. tmin ← +∞
05. for j = 1 to n do

06. t← d(xj ,p)
rj

07. If t > 1 and t < tmin and rj > ri then tmin ← t
08. end

09. If tmin > ΨX(xi, ri) then ΨX(xi, ri)← tmin

10. end

11. end

Before proving the validity of the algorithm, let us first remark that, in the definition of

Ψ, it is not necessary to consider all possible values of t or s, but only the ones of the

form d(x,p)
r

, with p ∈ X and (x, r) ∈MA(X), and +∞. Thus, we define:
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Sp = {s =
d(xi, p)

ri
; (xi, ri) ∈MA(X) and s > 1} ∪ {+∞}

S =
⋃

p∈X

Sp

And we have:

ΨX(x, r) = min{t ∈ S | ∀s ∈ S, s ≥ t, (x, r) /∈ SFEMAs(X)} (7.3)

Now, for any p in X and any (x, r) in MA(X), let us define:

E(p, x, r) = min{t ∈ Sp | ∀s ∈ S, s > t, p /∈ BX(x, sr) or p ∈
⋃

rj>r

B(xj , srj)}

Proposition 7.7. For any (x, r) in MA(X), we have ΨX(x, r) = maxp∈X E(p, x, r).

Proof. From the definition of SFEMA and from (7.3), we have

ΨX(x, r) = min{t ∈ S | ∀s ∈ S, s > t, ∀p ∈ BX(x, sr), p ∈
⋃

rj>r

B(xj , srj)}

That is,

ΨX(x, r) = min{t ∈ S | ∀s ∈ S, s > t, ∀p ∈ BX(x, sr), C(p, x, sr)}

where C(p, x, sr) stands for “there esists j such that rj > r and p ∈ B(xj , srj)”.

Let t1 = Ψ(x, r), thus

∀s ∈ S, s > t1, ∀p ∈ BX(x, sr), C(p, x, sr) (7.4)

Now, suppose that there is a p in X such that t1 < E(p, x, r), i.e.,

t1 < min{t ∈ Sp | ∀s ∈ S, s > t, p /∈ BX(x, sr) or C(p, x, sr)}.

Take s = t1, we thus have s ∈ Sp, p ∈ BX(x, sr) and not C(p, x, sr), a contradiction

with (7.4).

This proves that for any p in X, ΨX(x, r) > E(p, x, r), hence ΨX(x, r) > maxp∈X E(p, x, r).

From the definitions of ΨX and E, we can deduce that there exists a p in X such that

ΨX(x, r) = E(p, x, r), hence ΨX(x, r) = maxp∈X E(p, x, r). �

Theorem 7.8. Algorithm ScaleMap calculates exactly scale map, as defined in the Def. 7.6
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Proof. Let us first remark that E(p, x, r) = min{t ∈ Sp | ∀s ∈ S, s > t, p /∈ BX(x, sr)}
∪ {t ∈ Sp | ∀s ∈ S, s > t, p ∈ ⋃

rj>r B(xj , srj)}, and that {t ∈ Sp | ∀s ∈ S, s > t, p /∈
BX(x, sr)} is always empty. Hence we have:

E(p, x, r) = min{t ∈ Sp | ∀s ∈ S, s > t, p ∈
⋃

rj>r

B(xj , srj)}.

Remark also that the number t, lines 6-7, is such that for any s > t, p ∈ B(xj , srj).

Thus it is easy to see that the quantity tmin represents min{t ∈ Sp | ∀s ∈ S, s > t, p ∈⋃
rj>ri

B(xj , srj)}, that is, E(p, xi, ri). By proposition 7.7, line 9 correctly computes the

value of ΨX(xi, ri). �

Now, let us present a variant of the previous algorithm, that computes the same result

but with a lower time complexity.

Algorithm 10 ScaleMap(Input MA(X) Output ΨX)
01. foreach (x, r) ∈MA(X) do ΨX(x)← 0 end

02. Let (x1, r1), ..., (xn, rn) be elements in MA(X) sorted such that ri > ri+1

03. foreach p ∈ X do

04. tmin ← +∞
05. for i = 1 to n do

06. t← d(xi,p)
ri

07. If i = 1 or ri 6= ri−1 then trmin ← tmin

08. If t > 1 and t < tmin then tmin ← t
09. If ΨX(xi, ri) < trmin then ΨX(xi, ri)← trmin

10. end

11. end

Now, let us define a new medial axis filtering strategy, which holds hierarchy property,

based on the scale map calculated by algorithm 9.

Definition 7.9. Let X ⊂ Zn, s > 1 and ΨX is a scale map of X. We define by

HSMAs(X) the hierarchical scaled medial axis of X by the following formula:

HSMAs(X) = {(x, y) ∈MA(X) | ΨX(x, r) > s}

By conclusion, we have the following property, which is straightforwardly consequence

of definition 7.5 and 7.9.

Theorem 7.10. Let X ⊂ E. The family H = {HSMAs(X) | s > 1} is a hierarchy.

The computational complexity of algorithm 10 is the same as algorithm 8, that is,

O(|X||MA(X)|). The algorithm in line 02 performs sorting of medial axis elements.

It is possible to implement sorting algorithm in linear time with the use of a counting

sort and integer radius. In the following lines the algorithm performs two loops, the sec-

ond nested in the first. The first one starts in line 03 and does |X| iterations. The next
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nested loop starts in line 05 and performs |MA(X)| iterations, where |MA(X)| ≪ |X|
(usually).

7.4 Comparison of Medial Axis Filtering Methods

In this section, we compare qualitatively and quantitatively properties of six medial axis

filtering algorithms. In the comparison we include algorithms introduced in chapter 4.2,

that is, discrete λ-medial axis (DLMA) (Chaussard et al., 2010), the Euclidean medial

axis filtered with the use of bisector function (BFMA) (Couprie et al., 2007), filtering

based on medial ball size (RFMA) (Coeurjolly and Montanvert, 2007) and filtering based

on ball covering (CFMA) (Coeurjolly and Montanvert, 2007). We also include two filter-

ing methods proposed in this work: the hierarchical scaled medial axis (HSMA) and the

discrete adaptive medial axis (DAMA).

In our experiments we use all shapes from Kimia’s database of 216 shapes (Sharvit et al.,

1998). Fig. 7.10 shows a sample of these shapes, each shape represents one of 18 classes

of objects in the database. Note that, in the sequel we limit presented examples and

illustrations only to 6 carefully selected class of objects to simplify reading (see Fig.

7.11). Four of selected objects: "Ray", "Elephant", "Camel" and "Fountain", have many

important futures at different scales in contrast to: "Classic" and "Misk" (the used names

correspond to the names in Kimia’s database).

Figure 7.10: A sample of the 18 representative classes of shapes of Kimia’s database.

In comparison of different medial axes, especially comparison between methods, for which

the filtering parameter does not have the same meaning is hard to justify why one filtering

criterion is better than another. Therefore, we need to define strategies which allow us

to ensure a fair comparison.

In the literature we can find some interesting proposition. Chaussard (2010) defined, so

called, visual quality factor which is combination of reconstruction error with information

derived from skeleton of the shape, that is, number of skeleton points. Medial axes are

then compared in respect to achieving the lowest visual quality factor. Van Eede et. al

(Eede et al., 2006) propose solution based on weighted reconstruction error, combined
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(a) Ray (b) Elephant (c) Fountain (d) Camel

(e) Misk (f) Classic

Figure 7.11: A sample of the selected 6 representative classes of shapes of Kimia’s
database used to illustrate results of our experiments.

with skeleton complexity defined as number of skeleton branches. However, quality of the

medial axis depends of the reconstruction weight which need to be set arbitrary. Setting

this parameter properly is not obvious.

Therefore, in following subsections we introduce several notions that will help us to make

comparison between methods. Then we conduct our experiments based on the proposed

methodology.

7.4.1 The reconstruction error

Let X ⊂ Zn, Y ⊂ X, we denote by REDTX(Y ) the reverse Euclidean distance transform

(Coeurjolly and Montanvert, 2007), defined by

REDTX(Y ) =
⋃

y∈Y

B(y, r)

For exact and unfiltered MA(X) we have X = REDTX(MA(X)). However, this property

is no longer true if we consider filtered medial axes e.g. HSMA, DLMA, BFMA, RFMA,

CFMA or DAMA. Therefore, it is interesting to measure how much information about

the original object is lost when we perform filtering. We can define

RX(Y ) =
|(X ∪REDTX(Y ))\(REDTX(Y ) ∩X)|

|X ∪REDTX(Y )|
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We call RX(Y ) the (normalised) residuals of Y . Residuals give us a numerical evaluation

of reconstruction error. Now we can set Y to different filtered medial axes e.g. by using

different method or filtering parameter and then evaluate which one filtration is better

in respect of ability to original object reconstruction. The results RX(Y ) is a real value

between 0 (perfect reconstruction) and 1 (bad reconstruction).

Figure 7.12, 7.13 presents HSMA, DLMA, BFMA, RFMA, CFMA and DAMA of an

exemplary shape, extracted for several values of normalised residuals. Note that we com-

pare the results of methods for approximately equal values of their residuals, rather than

for equal values of their parameters.

Figure 7.12: Medial axes (in black) superimpose to input object (in grey). Consecutive
rows (from top to bottom) contain results for DLMA, BFMA, HSMA, RFMA, CFMA
and DAMA respectively. Columns contain results for different values of normalised

residuals: 0.01, 0.03, 0.05, 0.1 respectively.
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Figure 7.13: Medial axes (in black) superimpose to input object (in grey). Consecutive
rows (from top to bottom) contain results for DLMA, BFMA, HSMA, RFMA, CFMA
and DAMA respectively. Columns contain results for different values of normalised

residuals: 0.01, 0.03, 0.05, 0.1 respectively.
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Figure 7.14: Medial axes (in black) superimpose to input object (in grey). Consecutive
rows (from top to bottom) contain results for DLMA, BFMA, HSMA, RFMA, CFMA
and DAMA respectively. Columns contain results for different values of normalised

residuals: 0.01, 0.03, 0.05, 0.1 respectively.

7.4.2 The size of medial axis

We call NSX(Y ) normalised medial axis size defined as a ratio of number of the medial

axis points to number of object points:

NSX(Y ) = |Y |/|X|
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Figure 7.15: Medial axes (in black) superimpose to input object (in grey). Consecutive
rows (from top to bottom) contain results for DLMA, BFMA, HSMA, RFMA, CFMA
and DAMA respectively. Columns contain results for different values of normalised

residuals: 0.01, 0.03, 0.05, 0.1 respectively.

Now we can compare normalised residuals obtained using different methods for the same

NS. In other words, we replace the parameters of the different medial axis filtering

algorithms by only one parameter (NS), which ensures a fair comparison.

In Fig. 7.16 we show the normalised residuals R as a function of normalised medial axis

size NS for an exemplary shapes and different filtering methods. The results shows that

the CFMA obtains the smallest residual values for the very small normalised sizes of

filtered medial axis. When the size of the medial axis is large enough the CFMA behave

similarly to BFMA and HSMA. It means that CFMA, BFMA and HSMA, respectively,

at the first place remove points which not affect the reconstruction error. In contrast to

RFMA and DLMA where the important, for reconstruction, points are removed even for

very large size of medial axes. This superiority of CFMA is expected according to the

definition. Note that DAMA fares better than original DLMA for shapes with features at

low scale, where DAMA behavior is comparable to the methods yielding the best results

in this experiment.
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(b) Elephant

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

0.15

Normalised Size

N
o
rm

a
li
s
e
d
 R

e
s
id

u
a
ls

 

 

DLMA

HSMA

BFMA

RFMA

CFMA

DAMA

(c) Fountain
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(d) Camel
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Figure 7.16: Residuals as a function of normalised medial axis size for different filtering
criterions. Results generated for 6 selected shapes (see Fig 7.11).

7.4.3 The border dissimilarity

From the shape understanding point of view, preserving visually important segments and

removing unimportant ones, at the same time, is even more important than achieve very

good reconstruction property. Based on already presented comparison methodology, is

hard to observe that small visually important object features disappear due its relative

small area. Therefore, in this section, we introduce another comparison strategy which

allow us to observe how different filtering strategies preserve visually important features.
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Globally, the filtering algorithms will be tested by measuring the "difference" between

the border of an object X, and the border of the reconstructed shape after filtering. The

"difference" will be measured using the dissimilarity measure proposed by Dubuisson-

Jolly and Jain (1994) and defined as follows:

Let X,Y be two subsets of Rn. We set

D(X | Y ) =
1

|X|
∑

x∈X

miny∈Y {d(x, y)}

and dD(X | Y ) = max{D(X | Y ), D(Y | X)} is the Dubuisson and Jain’s dissimilarity

measure between X and Y (called shortly dissimilarity in the sequel).

The dissimilarity allow as to increase importance of the small features of the object in

our experiments. As example consider the case when we "shrink" the large object with

one long and thin branch, for example, by downscale it by factor 2. The results number of

residuals will be high, however the dissimilarity will be relatively low, and the object will

be still fully understandable. On the other hand when we remove only the thin branch,

the residuals will be relatively low, however the dissimilarity will be high due to large

difference in object geometry. In Fig. 7.17 we show even simpler example where after

filtering the number of residuals will be exactly the same in both cases, however the

dissimilarity will be very different.

(a) Input shape (b) Residuals=1%, Dissimilarity=0.1

(c) Residuals=1%, Dissimilarity=1

Figure 7.17: Example of the dissimilarity measure. (a): Input shape (in gray); (b, c):
Some part of the shape was removed. Note that the size of removed part is exactly the
same. In both cases the number of residuals will be the same, however, dissimilarity

will be much higher in case of (c).

In Fig. 7.18 we show the dissimilarity as a function of normalised residuals for an exem-

plary shapes and different filtering methods. The results shows that in all cases BFMA

produce lower dissimilarity than other filtering criterions for the same number of nor-

malised residuals. It means that BFMA preserve more visually important features. The

HSMA produce comparable results to BFMA. We can also observe good behavior of the

CFMA and DAMA up to some level of residuals. After reaching this level we start to
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removing features at low scale which cause dissimilarity to rapidly increase. On the other

hand, DLMA and RFMA gives only comparable results for the object without features

at different scales and very poor results for another. Which is expected behavior, since

it is well known that DLMA and RFMA do not preserve visually important features at

low scale.
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(c) Fountain
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Figure 7.18: Dissimilarity as a function of normalised residuals for different filtering
criterions. Results generated for 6 selected shapes (see Fig 7.11).
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7.4.4 The complexity of the skeleton

Using medial axis filtering strategies we can observe that some unimportant points (close

to the border) or spurious branches left unfiltered in addition to fully removes element

at low scale. Therefore, it is interesting to compare the ability of filtering methods to

filter such unimportant points and preserve features at different scale at the same time.

We propose another comparison strategy which relay on similar strategy to Eede et al.

(2006). However, instead of using weighted reconstruction error, we simply evaluate resid-

uals at different level of skeleton complexity, defined as number of skeleton end points.

More precisely, at each level of the complexity (see Fig. 7.19) we look for the lowest

possible reconstruction error.

(a) (b) (c)

Figure 7.19: (a): A skeleton with complexity c = 1; (b): Another example of a skeleton
with complexity c = 1; (c): A skeleton with complexity c = 3.

To evaluate skeleton complexity, first we need to generate ultimate homotopic skeleton

of the shape X based on information derived from its filtered medial axis Y . In order to

guarantee topology preservation, we can perform an ultimate homotopic thinning of X

with the constraint of retaining the points of its filtered medial axis Y (constraint set),

that is, we can iteratively remove simple points from X that do not belong to Y (see

Fig. 7.20). A priority function is needed in order to specify which points must be consid-

ered at each step of the thinning. In the general case, the choice of this priority function

is not obvious as reported in (Couprie et al., 2007; Talbot and Vincent, 1992). For ex-

ample, taking the exact Euclidean distance map as a priority function may cause "extra

branches" to appear which change the skeleton complexity and unable proper compar-

ison. Taking this fact into consideration we choose function FX defined in (Chaussard

et al., 2010) as priority. Now, based on skeletonisation results, we can evaluate number of

skeleton end points. It can be done simply, for example, thanks to notion of topological

numbers introduced in (Bertrand, 1994).

We denote by Y (X, p) filtered medial axis at value p. Notice that, meaning of parameter

p can be different for each medial axis extraction algorithms (for our approach, p can be

equivalent to, for example, scale factor s or the ball radius r). Let c ∈ N+, we denote by

Yc(X, p) filtered medial axis at value p with complexity c. Notice that, in some cases set



Chapter 7 Medial Axis Filtering with Features at Different Scales 91

(a) (b) (c) (d)

Figure 7.20: (a): a set X (in white); (b) ultimate homotopic skeleton of X; (c): medial
axis of X; (d): ultimate homotopic skeleton of X constrained by the medial axis of X.

In (b,c,d) the original set X appears in gray for comparison.

Yc(X, p) = ∅, it means that, parameter p which produce the medial axis with complexity

c does not exist .

We call Rc
X(Y (X, p)) the minimum residuals of Y(X,p) at complexity level c, and defined

by

Rc
X(Y (X, p)) = min{RX(Yc(X, p))}

Now we can simply compare medial axes at each complexity level independently by

changing the parameter c without cares about meaning of used filtering parameter p. We

can also make comparison by focus only on the most suitable level for whole family of

shapes which are of interest. For example if we take into consideration shape similar to the

letter "p" or "b" the most interesting complexity level is one, because both shapes have

one visually important branch. Therefore, to compare filtered medial axes of such family

of shapes we use value of R1
X(Y (X, p)). Notice that, if in results skeleton, additional

branch appear in wrong place due to wrong filtering and the important one will disappear

at the same time. We still have the complexity at level one. However, residuals should

be higher due important part of the shape is missing after reconstruction. Therefore, we

have more robust information about quality of the used filtering procedure.

Figure 7.21 show the minimum residuals at different complexity level. We can notice that

HSMA gives the lowest residual at the reasonably complexity according to the shape.

The HSMA gives only poor results for very low complexity, since, the method very long

preserve features at different scale. If they are finally removed, the resulting medial axes

are almost fully filtered. Comparable results are generated by CFMA and DAMA which

ranks second. The BFMA has the worst behavior in this experiment, since it preserve

points which are close to the border. Therefore, the BFMA is unable to generate medial

axes with low complexity which can strongly limits its practical application.
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Figure 7.21: Number of minimum residuals according to the complexity level, cal-
culated for different filtering criterions. Results generated for 6 selected shapes (see
Fig 7.11). Each marker (e.g. triangle, circle and square) represents parameters of one
filtered medial axis. Lines has been added only to emphasize the trend of measurements.

7.4.5 The multiscale representations

The last interesting property is related to the hierarchy property of the medial axes (see

definition 7.5 in chapter 7.3.2). This property is important when we are interested in

multiscale representation of an input object and strongly depends on application. For

example, in some applications one can be more interested in filtering strategy which not
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only remove large amount of points at once, but also allow to produce some intermediate

results at different level of hierarchy.

Since all method, included in the comparison, holds the hierarchy property we can simply

define the hierarchy level as follows:

Let i ∈ Z+We denote by MAs(X) the filtered medial axis of X ⊂ Zn for s ∈ S ⊆ R+,

where S represents the set of all possible values of parameter s of considered filtering

algorithm. The family H i is called i-th hierarchy level, and defined by

H i = {MAsi(X) | si, si−1 ∈ S, si > si−1,MAsi(X) ⊂MAsi−1(X) ⊂MA(X)}

Then, we can simply evaluate reconstruction error at each hierarchy level independently.

Note that we do not consider values of s which do not cause any filtering, since such s does

not change hierarchy level. Therefore, the different meaning of the filtering parameter,

in each method, does not cause the unfair comparison.

When we increase hierarchy level we cause the filtering algorithm to remove a set of

medial axis points with the same "importance". The "importance" of point depends on

used filtering criterium. The filtering method which removes smaller amount of points at

each change of hierarchy, can produce more different representation of the object.

In the Fig. 7.22 we show achieved number of normalised residuals at each hierarchy level

for all tested filtering methods and for different shapes. Based on results we can observe

how many different medial axes can be produced by manipulating the filtering parameter

and how the reconstruction error evolves.

For the first four objects which have many features at different scale the DAMA generate

the highest number of multiscale representation of the object. The HSMA ranks second.

For the last two classes of objects HSMA and DAMA yield comparable and globally

the best result. In contrast to the CFMA which yield globally the smallest number of

the hierarchies. In this case, the number of different filtered medial axes generated with

CFMA, RFMA and DLMA might be not enough in some application. The relatively

small number of medial axes are also generated by RFMA and DLMA.

7.4.6 Discussions

The usefulness of each filtering method is strongly application dependent. Therefore,

each of presented experiment gives us the information which filtering method is the best

in respect to evaluated property. However, each of presented methodology alone is not

sufficient to clearly show which one filtering criterium is the best one at the global scope.

In addition, some of evaluated properties are not compatible. For example, at the same

time we would like to minimize reconstruction error, but filter us much point as possible
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Figure 7.22: Residuals as a function of hierarchy levels for different filtering criterions.
Results generated for 6 selected shapes (see Fig 7.11).

which can be done by removing relatively small medial balls at the first place. On the

other hand, we would like to accurately reconstruct the geometry of the object, therefore

we need to preserve some of them and allow to remove bigger balls first, but without

preserving points close to the border which increase complexity. Such incompatibility is

very well visible on the results achieved by BFMA where for medial axes of small size

BFMA gives the lowest dissimilarity. Unfortunately, the complexity of BFMA is very

high.

To objectively compare different filtering criterions at global scope we need to look at

results of all experiments at the same time. Now, we can see that HSMA yields the
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best or comparable results to the best one in all experiments. Moreover, HSMA allow to

produce large set of hierarchies which makes it very flexible. We can say that HSMA give

us the best balance between the reconstruction error, size of medial axis and complexity,

and allow to preserve features at different scale. Therefore, HSMA can be considered as

the best method in our comparison.

We can also notice the good behavior of the CFMA, only the lowest number of possible

hierarchies, and high dissimilarity for larger residuals can limits its application. The

DAMA in average also produce comparable results which are much better then original

DLMA. At the same complexity level DAMA overcomes CFMA and allow to produce

the largest set of hierarchies. In addition, at some point DAMA also start to removes

features at low scale. This property of DAMA and CFMA can be considered as an asset

if such features are irrelevant according to application. However, DAMA is much more

flexible than CFMA, since it can produce more multiscale representations.

The last two methods in our comparison, that is, DLMA and RFMA, gives the worst

results in our experiments. This is expected situation for both methods, since, the filtering

relay on the ball size and the filtering parameter id defined globally. However, in contrast

to RFMA, which is the simplest method and in practice is used only as a supplementary

criterium, DLMA holds another interesting properties which are out of scope of this

comparison. For example, stability to noise or rotation, makes DLMA very useful in

practical application, interested reader can see (Chaussard, 2010; Chaussard et al., 2009)

for comprehensive evaluation of different DLMA properties.

7.5 Conclusions

In this chapter we propose two new medial axis filtering strategies. The first one HSMA,

inspired by the scale axis method preserve important features of an input object from

shape understanding point view even if they are at different scale. It also overcomes the

most important drawbacks of scale axis: scale axis is not in general a subset of filtered

medial axis. It is even not necessarily a subset of the original shape.

The second proposed method, DAMA based on DLMA utilize the information derived

from the Euclidean opening function to dynamically adapt filtering parameter and allow

to preserve important features at different scale.

The proposed methods and theirs properties where presented in 2D space, but it can

be easily extended to any dimension. Experimental verification and comparison with

previously introduced methods (RFMA, BFMA, DLMA, CFMA) shows that, at the

global scope, HSMA is the best filtering method. DAMA produce results much better

than DLMA and allow to use this medial axis in many more practical applications.
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In this chapter, we also introduce an original methodology that ensures a fair comparison

between different methods. This methodology could be of interest for comparing other

medial axis filtering criterions.



Chapter 8

Tangent Estimator Along 3D

Discrete Curve

8.1 3D Discrete Line Segment

Definition 8.1. A 3D digital line with main vector (a, b, c) ∈ Z3 such that |a| ≥ |b| ≥ c,

shifts µ, µ′, and thicknesses e, e′, where a, b, µ, µ′ ∈ Z, c, e, e′ ∈ Z+, is defined as the set

of points (x, y, z) ∈ Z3 which satisfy the diophantine inequalities:

µ ≤ cx− az < µ+ e, (8.1)

µ′ ≤ bx− ay < µ′ + e′, (8.2)

and denoted by D3(a, b, c, µ, µ
′, e, e′).

The definition for coefficients ordered in ways diffrent from |a| ≥ |b| ≥ c may be obtained

by permuting x, y, z as well as their coefficients.

It should be mentioned that the thicknesses e and e′ control the adjacency relation of

a 3D digital line (Coeurjolly et al., 2000). Hereafter we use one of the following three

settings.

A 3D digital line D3(a, b, c, µ, µ
′, e, e′) is:

• a 6-curve if we set e = |a|+ c and e′ = |a|+ |b|,

• a 18-curve if we set either e = |a|+ c and e′ = |a|, or e = |a| and e′ = |a|+ |b|,

• a 26-curve if we set e = e′ = |a|.

The points of any such k-curve C may be totally ordered by using the above property. So

we can define a set of consecutive points of C from the i-th point to the j-th point, denoted

97
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by Ci,j . With this definition of a part of a k-curve, we can define the following two notions,

3D digital straight segment and 3D maximal segment, which were originally defined for

2D (Debled-Rennesson and Reveillès, 1995; Feschet and Tougne, 1999; Lachaud et al.,

2007) (see chapter 6.3.2) and can be extended to 3D.

Definition 8.2. Given a k-curve C, a set of its consecutive points Ci,j where 1 ≤ i ≤ j ≤
|C| is said to be a 3D digital straight segment if there exists a digital line D3 containing

all the points of Ci,j . In this case, we say that the property S(i, j) holds.

The next property (Coeurjolly et al., 2000) is led by Definitions 8.1 and 8.2.

Proposition 8.3. Property S(i, j) is verified iff two of the three projections of Ci,j on

the basic planes OXY , OXZ and OY Z are 2D straight line segments.

Figure 8.1 illustrates an example of curve C which verify the property S(i, j).

Figure 8.1: An example of 3D curve projected on the basic planes OXY , OXZ and
OY Z . The curve forms the 3D straight line segment since two projection (OXY , OXZ)

are 2D straight line segments.

8.2 3D Tangential Cover Construction

The main part of the 3D λ-MSTD estimator consists in obtaining the tangential cover

M of a given k-curve C, similarly to the original 2D estimator (Lachaud et al., 2007).

Thanks to Property 8.3, we give Algorithm 10, which finds the set of maximal segments by

recognizing two 2D digital straight segments of the projections of C. Figure 8.2 illustrates

an example of C and its tangential cover M.

8.2.1 Complexity evaluation

Algorithm 10 performs two loops. The first one starts from line 04 and makes |C| it-

erations. The next loop, nested in the first one, starts from line 07 and in worst case
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Algorithm 11 Tangential Cover (Input C; OutputM)
01.M← ∅
02. N ← empty queue
03. E ← NULL
04. foreach point pi ∈ C do

05. Mi ← ∅
06. Push_element(Mi, N )
07. foreach element Mj in N do

08. s← 0
09. If isDSS_XY(Mj ∪ {pi}) then s← s+ 1 end

10. If isDSS_XZ(Mj ∪ {pi}) then s← s+ 1 end

11. If isDSS_YZ(Mj ∪ {pi}) then s← s+ 1 end

12. If s ≥ 2 then Mj ←Mj ∪ {pi} end

13. else If s < 2 then

14. If E(i) is NULL then

15. E(i)← j
16. M←M∪ Mj

17. end

18. Remove_first_element(N )
19. end

20. end

21. return M
Remark:
In Algorithm 10 we denote by E(i)
the table which stores the first point of each maximal segment
ending at the i-th point.

performs |N | iterations, where N is a set of all maximal segments covering an actual

point. The size of N is bounded by a finite integer value; in fact |N | ≤ 22 on average in

2D de Vieilleville (2007). Thus, the presented algorithm is linear in number of points of

the curve C if the incremental procedure "isDSS" in steps from 9 to 11 has a constant

time complexity. Indeed, for this procedure, we can use one of the efficient methods for

2D digital straight line recognition in constant complexity, for example used in Faure

et al. (2009), after projecting the current set of points on the planes OXY , OXZ , OY Z .

8.3 Three-dimensional λ-MSTD Estimator

Similarly to the original 2D estimator Lachaud et al. (2007), the 3D estimator at a point

x of a k-curve C should depend on the set of all maximal segments going through p.

Let us number all the maximal segments of the tangential cover M of C by increasing

indices such that Mi ∈ M for i = 1, 2, . . .. Then, such a set is defined by P (x) = {Mi ∈
M, x ∈ Mi}, and is called the pencil of maximal segments around x. As any point x

of a k-curve C is covered by at least one maximal segment, we have the next property

similarly to the 2D one (Feschet, 2010).
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Figure 8.2: A 3D digital curve and its tangential cover calculated by Algorithm 10.
Three projection on the basic planes OXY , OXZ and OY Z of the curve were also de-

picted.

Proposition 8.4. The pencil of maximal segments P (x) of any point x of a k-curve C

is never empty.

In addition, as noted in Feschet and Tougne (1999) for 2D cases, several successive points

may have the same pencil, and this is also observed for 3D cases. Therefore, the tangent

estimator should take also into account the position of the point p within the pencil.

More specifically, each point p has a certain eccentricity with respect to each maximal

segment. Let us denote by Li = ‖ni −mi‖1 the length of each Mi = Cmi,ni
⊂ C. Then,

the eccentricity ei(x) of a point x with respect to a maximal segment Mi is its relative

position between the extremities of Mi, that is,

ei(x) =

{
x−mi

Li
if Mi ∈ P (x),

0 otherwise.
(8.3)

The tangent direction is thus estimated by a combination of the directions of maximal

segments weighted by a function of the corresponding eccentricity. The function λ maps

from [0, 1] to R+ with λ(0) = λ(1) = 0 and λ > 0 elsewhere. For example, a C2 function

64(−x6 + 3x5 − 3x4 + x3) can be used. Different proposition of several λ functions and

theirs impact on the results are shown in the next section. More detailed information

about the required properties of the λ function can be found in Lachaud et al. (2007).

Definition 8.5. The 3D λ-MSTD, that is, ~t(x) at point x of a k-curve C is defined as a

weighted combination of the vectors ~ti of the covering maximal segments Mi such that

~t(x) =

∑
Mi∈P (x) λ(ei(x))

~ti
|~ti|∑

Mi∈P (x) λ(ei(x))
. (8.4)

From Property 8.4 and the nature of the eccentricity, this value is always defined and

computed with a linear time complexity.
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8.4 Experiments on Parametric Curves

8.4.1 Multigrid convergence

Since for a given shape there exists infinitely many shapes with the same digitization, it is

difficult to compare objectively accuracy of different digital geometric estimators. In this

thesis we evaluate quality of the estimator using one of the existing objective criteria, that

is, we use multigrid convergence property. The estimator which hold this property ensures

that the thinner digitization step brings a better approximation. Moreover, geometric

estimator which converge faster should give more accurate results at the same resolution.

This is very important in our application where the resolution is limited by the CT data.

In the literature many authors report about multigrid convergence property of the several

digital geometric estimators like for example: area (Huxley, 1990) , moments (Klette and

Žunić, 2000), perimeter (Asano et al., 2001; Kovalevsky and Fuchs, 1992; Sloboda et al.,

1998) and tangents (de Vieilleville and Lachaud, 2006; Coeurjolly, 2002; Lachaud et al.,

2005a, 2007). Recently Roussillon and Lachaud (2011) propose the first curvature digital

estimator which is also multigrid convergent.

Following the (Klette and Rosenfeld, 2004) the formal definition of the multigrid conver-

gence property can be presented as follows:

Let Dh, be some digitization process of step h. Let X be a family of shapes in Rn and

let G be a geometric quantity defined for all X ∈ X. A discrete estimator of G is a map

that associates to a digitization Dh(X) an estimation of G(X).

Definition 8.6. A discrete estimator EG is multigrid convergent toward G for X and

Dh if and only if, for any X ∈ X, there exists some hX > 0 for which

∀0<h<hX
, | EG(Dh(X))−G(X) |≤ r(h), (8.5)

where r : R+ → R+∗ has limit value 0 at h = 0. This function defines the speed of

convergence.

8.4.2 Results and discussion

To verify our tangent estimator and evaluate its multigrid convergence behavior, we

experiment it on several families of 3D curves (see Fig. 8.3). First, we measure different

errors between the expected theoretical tangent and the estimated one with increasing

resolutions using several λ functions (see Fig. 8.4). On Fig. 8.5 and 8.6, we can see how

the root mean square error (RMSE) and maximal absolute error evolves. We can observe

that in both cases a choice of λ function is not critical.
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Second, we measure the speed of the convergence. The evaluated average speed of the

RMSE convergence (see Fig. 8.7) is likely O(h−
2
3 ) which is an expected value similar

to the original 2D λ-MSTD estimator (see Lachaud et al. (2007)). The speed of the

maximal absolute error convergence is limited by O(h−
1
2 ) which is also expected value

and correspond to the 2D case. Therefore, experiments shows that 3D λ-MSTD estimator

has multigrid convergence property similar to the 2D case, however, this still need to be

theoretically proved.
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Figure 8.3: A set of 3D parametric curves used for the experiments.

To visualize the accuracy of the estimator, on Fig. 8.8, 8.9, 8.10 and 8.11 respectively,

expected and estimated tangents in a fixed resolution along theirs principal x, y and

z axis are shown. We can notice very good accuracy and we can expect based on the

multigrid convergence property that if we increase resolution the result can be improved.

In the chapter 13 we compare the 3D λ-MSTD estimator with other tangent estimator

(discrete and continuous) in practical application.
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Figure 8.4: A three different proposition of the λ functions which can be used in
λ-MSTD estimator.
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Figure 8.5: An evolution of RMSE between real and estimated tangent with increasing
resolution for different definition of λ function.
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Figure 8.6: An evolution of maximal absolute error between real and estimated tan-
gent with increasing resolution for different definition of λ function.
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Figure 8.7: The speed of RMSE convergence with increasing resolution.
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Figure 8.8: An expected (theoretical) and estimated tangent direction along 3D circle
at fixed resolution, for three axes x, y and z, respectively.
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Figure 8.9: An expected (theoretical) and estimated tangent direction along 3D helix
at fixed resolution, for three axes x, y and z, respectively.
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Figure 8.10: An expected (theoretical) and estimated tangent direction along 3D
Viviani’s curve at fixed resolution, for three axes x, y and z, respectively.
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Figure 8.11: An expected (theoretical) and estimated tangent direction along 3D
Trefofil’s Knot curve at fixed resolution, for three axes x, y and z, respectively.
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Chapter 9

Quantitative Analysis of The

Human Airway Trees

9.1 Introduction

Airway tree is a part of the lung and it is one of the most important organ of the human

body (see Fig. 9.1). The function of airway trees is to transport inhaled air to the alveo-

lus, where exchange between oxygen from air and carbon dioxide from blood takes place.

Many diseases can disturb functionality of the airways. Therefore is very important to

have a functional understanding of pulmonary anatomy and impact of respiratory dis-

ease like emphysema, cystic fibrosis, asthma or chronic obstructive pulmonary disease

(COPD) which is common name for pathological changes characterized by airflow limi-

tation due to different combinations of airways disease, and many more.

In the developing process of new methods for diagnosing and treatment of pulmonary

diseases an important problem is to find sensitive and reliable methods which permit to

detect abnormalities in regional lung structure and function. The previously proposed

and still used methods are not sufficient due to two main reasons. First reason is con-

nected to weak sensitivity of the existing methods such as global pulmonary function

test or Anterior-Posterior chest roentgenogram. Modern medical computed tomography

(CT) can overcome this problem. It uses multi-detector spiral scanners and can produce

three-dimensional volumetric images of very high quality, and simply allows one to non-

invasively look into inside of a human body. This is a very powerful and useful technique,

being used in a variety of medical applications. 3D volumetric scans of a human organ

provide an excellent basis for quantification of anatomical structures, for example airway

trees. The second problem is caused by human’s inability to repeatedly evaluate the same

region of the lungs time after time and perform measurements which are accurate and

reliable. Moreover, manual processing of data sets acquired using computed tomography

is very time consuming and not free of human errors.

112



Chapter 9 Quantitative Analysis of The Human Airway Trees 113

Figure 9.1: The human airway tree. (Gray, 1918)

Automatic quantitative description of an airway tree extracted from volumetric CT data

set can be a useful information supporting the non-invasive diagnosis of bronchial tree

pathologies, especially COPD which is among the leading causes of death in the world

and tending to be even more widespread in the future (Murray and Lopez, 1997; Pauwels

and Rabe, 2004) and asthma - one of the most widespread disease in the world (Bousquet

et al., 2000).

Computer analysis of bronchial tree will allow a doctor to obtain precise data on the pro-

cess called airway remodeling, which opens new possibilities such as: early identification

of pathological changes, precise treatment control, diagnosis of the airway remodeling

reason, development of new drugs, etc. Therefore, the goal of the research about au-

tomatic quantitative measurements of the pulmonary structure is to build a system for

automatic measurements of diameter of an airway lumen and thickness of an airway wall.

The system should be suitable for use in everyday clinical routine and due to application

of modern effective image processing and analysis algorithms it should provide results of

high accuracy.

In the literature there exist several work connected to this subject either in computer

science field or in medicine where the study about design and possibilities of such system

are reported. In this thesis we focus more on the subject from the computer science

point of view. Interested reader can follow for example Matsuoka et al. (2005); King

et al. (2000) to find more detailed discussion from the medical point of view.
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In the following subsections, the design of such system, goals and advance in research

of the quantitative analysis of the human airway trees analysis process are presented in

more details.

9.2 System Design

Following Palagyi et al. (2006) the system for the quantitative analysis of the bronchial

trees should consist of four main steps: tree identification, tree simplification, tree de-

composition and finally quantitative measurements (see Fig. 9.2). Such steps can be later

divided into several sub-steps according to particular application or used algorithms. For

example, after skeleton generation step (see subsection 9.2.2) may be necessary to add

automatic skeleton pruning step to correct skeletonization results. On the other hand,

pruning can be avoided if proper skeletonization algorithm was used (see results in chap-

ter 12) or we can manually select interesting part of the skeleton.

The quality and accuracy of the final measurements and in consequence usefulness of

the system strongly depends on the used algorithms to solve many different problems.

Therefore, each step in the whole process is very important and needs different sets of

algorithms. Moreover, algorithms at each step should be as much insensitive as possible

to errors in the input data, otherwise errors occurring in the previous steps can propa-

gate and can have huge negative impact of the final measurements. Another important

criterium connected to effectiveness of the system is its time and space complexity. Data

sets are relatively large. Typical tomogram consists of 5123 points which should be pro-

cessed at each step by many different algorithms. Therefore, algorithms should be fast

enough to make measurements in reasonable time.

9.2.1 Airway tree identification

The first step of the system for the quantitative airway trees analysis consist of applica-

tion of segmentation strategies to extract bronchial tree structures from the CT datasets

and produce three-dimensional representation of the tree. This task should be done auto-

matically, since complexity of the tree makes manual segmentation tedious and extremely

time-consuming (manual segmentation of the airway tree may require several hours of

analysis (Sonka et al., 1996)). Airway tree segmentation in CT images is a challenging

problem due to the complex anatomy and the limitations in image quality.

Airway tree segmentation algorithms operate on a CT chest image represented by a

large 3D array of points with associated values, which represents attenuation coefficient

of a small portion of the tested object and are measured with Hounsfield units (HU). In

well calibrated CT images, points which represent the interior of an airway tree should be

at approximately −1000HU (air) surrounded by walls which points having relatively high
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(a) (b)

(c) (d)

Figure 9.2: Consecutive steps of the system for the quantitative analysis of the human
bronchial trees. (a): A CT dataset; (b): segmented airway tree from (a); (c): Airway
tree decomposed into set of segments (branches); (d) The quantitative measurements

of the bronchial properties at the point of interest.

value at approximately −100 to 200HU (soft tissues). Unfortunately, this situation is very

rare in real applications. Noise, image reconstruction artifacts, movement artifacts (heart

beat), non-standard patient anatomy, airway obstruction or partial volume effect (PVE)

significantly decrease the difference between HU for bronchial wall points and points

which represent surrounding air. Therefore, values of airway wall points at different

bronchial parts can present different intensity values and can be similar to values of

interior points of a tree, in particular for high order branches, that is, smallest ones. In

addition, different reconstruction kernels (smooth kernels) can increase this effect. As a

result small holes in a wall structure appear and high order segments of a tree disappear
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which cause leakages of segmentation algorithms in surrounding parenchyma parts of a

lung (see Fig. 9.3).

Figure 9.3: Example of a severe segmentation leak. Result of segmentation with the
standard region growing algorithm.

Leakage is a main problem in segmentation of airway tree. A lung has a texture very sim-

ilar to the small airways, which leads to a failure of simple segmentation algorithms like

region growing (Mori and et al., 1995) or once based on global thresholding. Therefore,

the problem is actively studied and many different algorithms were developed.

Previous work on airway segmentation can be divided into five groups: region growing

based methods Chiplunkar et al. (1997)Tozaki et al. (1998)Law and Heng (2000), math-

ematical morphology based methods Pisupati et al. (1996)Preteux et al. (1998), and

combination of the two Bilgen (2000), rule based methods Park et al. (1998) and energy

function minimization Fetita and Preteux (2002).

Methods based on region growing are usually considered as the simplest and the fastest

ones. However, due to the problem of leakage, the user has to adjust the algorithm

parameters manually for each image separately, to use such method effectively. However,

manual parameters adjustment is impractical and not reliable because it is very hard or,

in some cases, even impossible to find suitable parameters.

9.2.2 Airway tree simplification

This step consist of generation of the simple representation of the tree which can be

used as descriptor of the tree geometry (see Fig. 9.4). In practice the skeletonization (see

chapter 3) or simple centerline extraction methods (Pisupati et al., 1995; Wood et al.,

1995) were used to generate such representation automatically (Palagyi et al., 2006).
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(a) (b)

Figure 9.4: Example of the skeleton on (b) of the human airway tree on (a).

Then, the skeleton of the tree can be used as a tool to solve several different problems. It

can be used for generating formal tree structure as presented in the next subsection. It is

also used as descriptor of the airway tree center and utilized in the process of generating

cross section of the tree (section 9.2.4). Based on the skeleton one can quantify some

of geometrical properties of the tree, for example length or angle of branches (Pisupati

et al., 1995; Wood et al., 1995). Another interesting application of the skeleton is a error

detection during the segmentation process, for example, it can be used to detect leakage

(Tschirren et al., 2005a), missed or spurious branches and anatomically implausible loops

(Yu et al., 2007).

The bronchial tree is a tubular structure presenting the complex branching topology. In

addition the segmented tree used as an input for the skeletonization can be corrupted by

segmentation errors. For example, geometrical deformation (irregular surface of the tree)

or topological errors like for instance presence of cavities or tunnels in the segmented

tree. Since, the skeleton correctness is of paramount importance, the skeletonization of

the bronchial tree is a very challenging task.

Several methods were already proposed to generate skeleton of the segmented tree. Most

of them use one of the topological thinning methods (Palagyi et al., 2006; Gerig et al.,

1993; Mori et al., 1996; Wan et al., 2000; Mori et al., 2000; Toriwaki and Mori, 2001a;

Chen and Molloi, 2003) or distance transform based approach (Nystrom, 2003; Maddah
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et al., 2003). However, methods based on Voronoi diagrams (Antiga et al., 2003) or

general differential geometry (Krissian et al., 2000; Aylward and Bullitt, 2002) were also

proposed. Based on our knowledge, no perfect skeletonization technique were successfully

applied to skeletonization of the bronchial tree yet (in chapter 12 we will show that

recently proposed skeletonization methods can be effectively used in this particular task).

Thus in the most cases the generated skeleton need to be pruned (Shaked and Bruckstein,

1998; Svensson and di Baja, 2003) before the skeleton can be used. For example, the

pruning methods can rely on mathematical morphology (Gonzales and Woods, 1992),

geometry of branches (i.e. length), (Wan et al., 2000) or the position inside the tree (i.e.

distance to surface function) (Palagyi et al., 2006).

To simplify the skeletonization problem the pre-processing steps, for instance, cavity

filling, tunnel closing or morphological closing can also be useful. However, such tools

have to be used with careful, since, they can change the geometry or the topology of the

tree and they can be source of error in the further steps.

9.2.3 Generation of the formal tree structure

Next step of the system consist of application of methods which generate the formal tree

structure of the segmented tree based on the generated skeleton. Note that the skeleton

can be treated as a graph, therefore it can be straightforwardly used for this purpose.

However, such formal structure can be represented in several different forms, depending

on application. For example, based on generated skeleton we can simply divide the tree

into set of segments and branch-points, that is, points where segments are dividing (see

Fig. 9.5(a)). If we go further we can partition each point of the airway tree according to

the corresponding branch (see Fig. 9.5(b)). The automated partitioning procedure were

proposed, for example, in Palagyi et al. (2006). Such simple partitioning allow to perform

another set of quantitative measurement, like for instance, branch surface area or branch

volume evaluation.

Another useful and interesting possibility is to assign anatomical names to the segments

and branch-points of the human airway tree. According to Tschirren et al. (2005b), the

first six generations, roughly, of the human airway tree exhibit a relatively similar topol-

ogy across subjects, and anatomical names exists for 31 segments and 42 sub-segments

(Boyden, 1955) (see Fig. 9.6). Labeling an airway tree simplify the navigation and allow

matching of branch-points across subjects.

In the past these task were often performed manually (Wood et al., 1995) due to the

lack of automated algorithms that can tolerate false branches and anatomical variability

typical for in vivo trees. The algorithms for automatic labeling exists, however, theirs

number are very limited. Mori et al. (2000) presented a knowledge-based labeling algo-

rithm which can be only applied to incomplete tree (about 30 branches per tree). Kitaoka
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(a) (b)

Figure 9.5: (a): The structure of airway tree represented as a graph. In the graph nodes
correspond to branch-points, and edges correspond to segments; (b): ÒCylindricalÓ
partitions in a human airway tree. The colors corresponds to labels assigned to each

point of the tree according to the segment. (Palagyi et al., 2006)

Figure 9.6: Airway tree with assigned labels. Labels refer to segments, but are assigned
to terminating branch-point of respective segment. (Boyden, 1955).

et al. (2002) developed algorithm that uses a mathematical model of the tree (see chapter

10) as reference. Both methods are sensitive to the variations in the tree, that is, missing

or spurious branches. Free of such drawbacks is method presented by Tschirren et al.

(2005b). This method has reported very good accuracy in general case.
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9.2.4 Quantitative analysis

The goal of the final step of the process is to measure the quantitative parameters of the

selected branches or whole tree in general. As reported in the literature of the subject, the

most interesting properties are local diameter of the airway lumen and the wall thickness

which can be used as a basis for other parameters evaluations, for instance lumen area

or wall area to lumen area ratio, and many more.

Based on the formal representation of the tree, from the previous step, we can simply

find the interesting part of the airway in which we will perform measurements. Then,

according to Tschirren et al. (2005a) the quantification process is, divided into the follow-

ing three steps: Re-sample 2D slices perpendicular to airway segment. For each 2D slice

separately, segment airway wall. Finally conduct measurements on segmentation results.

The resampled slices, in the first step in the process, need to be oriented perpendicular

to the skeleton of the respective airway segment. One slice can be re-sampled for ev-

ery skeleton voxel position. The perpendicular orientation is determined by computing

the tangent to the skeleton. Re-sampling can be performed using, for example trilinear

interpolation.

In the second step, the segmentation of the bronchial wall is performed independently on

each cross sections image. According to Saragaglia et al. (2006), methods for airway wall

segmentation can be roughly classified into three categories: full-width at half-maximum

(FWHM) (Matsuoka et al., 2005), pattern-based (Chabat et al., 2001; King et al., 2000;

Wiemker et al., 2004) and shape-independent approaches (Saragaglia et al., 2006). The

method based on FWHM approach use the gray-level profile of rays cast from center of

the lumen and assumption that maximum intensity along such profile is in the middle

of the wall. However, this method can produce poor results for small airways or airways

with thin walls (Hoffman et al., 2003). The second group of method assume that the

cross section of the airway should be circular or ellipsoidal and try to detect such objects

by matching predefined patterns. However, the cross sections of airways are normally

not perfectly circular, therefore this method can not guarantee accurate results. The last

group of methods try to detect wall location by using for example a contour match-

ing technique, where two antagonist forces (external vs. internal) control the contour

deformation.

The accurate segmentation of the bronchial walls allow quantitative measurements in the

last step of the process. However, the quality of the final results depends on every single

step in the whole process. Therefore, the problem of selecting the best set of algorithms

is very complex. In the following chapters we present algorithms which relay on discrete

geometry and topology and can be used with success at each step of the system for

quantitative analysis of the human airway trees. We will start from the problem of airway
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tree segmentation and we will finish at the problem of accurate cross section generation.

However, this work does not cover the problem of wall segmentation.



Chapter 10

Three dimensional model of The

Human Airway Trees

In recent years several researchers proposed some models of bronchial tree which vary in

accuracy. Weibel (1963) and Horsfield et al. (1971) proposed structural models of airway

that include airway dimensions and connectivity. However, these models do not include

information about the spatial arrangement of the airway structure, and hence they are

limited to modeling lung function in one dimension. Although there are several geometric

airway models such as those proposed by Nelson and Manchester (1988) and Martonen

et al. (1994), these models are still limited to 2D.

The rapid development of three-dimensional technology and demand from the medical

community for 3D models of bronchial tree led to the construction of a number of three-

dimensional models of the bronchial tree. The first 3D models were constructed in 80s

of the XX century (Chen et al., 1980). One of the first 3D models presented by Kitaoka

et al. (1999) is based on 9th main expert rules and 4th additional rules which deal with

exceptional cases. The later model developed by Tawhai et al. (2000) uses a Monte Carlo

method for growth of bifurcating systems in 3D space in response to host geometry.

Gillis and Lutchen (1999) based on their 3D model have predicted images of ventilation

distribution in asthmatic patients with potential clinical impacts. Other models e.g. (van

Ertbruggen et al., 2005) have been used to predict aerosol deposition in the human res-

piratory track which allows to plan inhaled aerosol therapy. The models automatically

generated by the algorithm consist of connected cylinders of different length and radius

and have been constructed to study the structure-function relationship in the lung or

to simulate flow and particle transport. Such models do not represent bronchial trees

extracted from 3D CT datasets of a chest whose branches reveal noised and geomet-

rically deformed tubes. Therefore the models are insufficient for testing algorithms for

quantitative analysis of segmented trees.
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On the other hand there is strong need for 3D models of CT trees. Algorithms for mea-

surement of local lumen of bronchial trees have to deal with deformations and noise in

CT images. However, it is difficult to test the algorithms on CT images because correct

values of local lumen are unknown. Therefore, some researchers (Palagyi et al., 2006)

have built simple phantom which consists of set of plastic tubes of constant diameter

and smooth boundary surface. Then they have made CT of them and have compared

quantitative results given by computer algorithms with known, correct values. Another

strategy, presented in this chapter, might be to automatically generate digital models

(phantoms), with the use of algorithm, which take into account noise and geometric

deformations which occur in trees segmented from CT datasets. Correct quantitative

parameters of such phantoms are known and can be compared with results of the al-

gorithms being tested. Therefore, in this thesis we propose an extension of the model

Kitaoka et al. (1999), by adding noise and geometric deformations to it. We developed the

algorithm which results in volumetric model of airway trees useful for testing algorithms

for quantitative analysis of the airways trees.

The model consists of two volumetric images: the first represents a tree map without

noise and with geometric deformations, and the second contains a tree with noise and

geometric deformations of branches. The proposed extension was developed on the fol-

lowing assumptions:

• Constant diameter of a branch: the analysis of a branch diameter allows us to obtain

useful information about the tree being examined. Therefore it is very important

to deform a branch in such a way that its diameter becomes constant. In this

way correct value of a branch diameter is known which is necessary for testing of

algorithms for quantitative analysis.

• Noise and geometric deformations: data obtained from CT images very often con-

tain different types of noise. Therefore, the presented model simulates these dis-

ruptions. The issue is extensively explained in section 10.2.3.

• Efficiency in use: The generated bronchial tree model is planned to be used to

test algorithms which measure local diameter of any branch of the generated tree.

Therefore it is important to have fast access to correct local diameter for compar-

ison. So, the value of local diameter is kept in each voxel of generated tree.

10.1 Basic Model of Bronchial Trees

This section presents short description of an algorithm proposed by Kitaoka et al. (1999)

called basic algorithm, for automatic 3D bronchial tree generation. Interested reader can

find detailed explanation in (Kitaoka et al., 1999).
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Airways have a tree structure. The root of the tree correspond to the trachea. The trachea

divides into two main bronchi: left and right. The main bronchi are further divided into

next branches. Geometry of the bronchial tree is closely related to the spatial arrangement

of the tree. Each branch is assigned to a particular part of a lung volume supplied in air by

the branch and its descendants (in the tree hierarchy). This allows to correlate volume of

air delivered through a branch with its spatial arrangement in a lung. Therefore, a branch

size and direction is determined by size and geometry of the corresponding volume. More

details on the rules of lung volume division are presented below.

The algorithm is based on three assumptions which make possible to realize regular and

effective air transportation inside whole lungs.

• The first assumption declares that each branch is a circular, rigid tube with a

constant diameter.

• The second assumption allows for correlation of the air transported through bronchi

with its spatial position based on the following statement: the whole volume of

air flowing through a branch is proportional to volume of a lung region that is

supplied by this air. Furthermore, assume that for each bifurcation, children volume

is proportional to the volume of its parent, which in turn means that the total air

flow transported by the children is proportional to air flow transported by its

parent.

• The third assumption says that the final branches, which correspond to final bron-

chioles in the human respiratory tree, are homogeneously arranged within the or-

gan.

The above assumptions allow to define expert rules, described below, which are funda-

mental for the construction of the basic algorithm. Successive execution of these rules

allows to generate model of the bronchial tree. The rules and the assumptions presented

above define branching geometry and are based on earlier morphometric studies and flow

rate analysis in tubular living organs e.g. Weibel (1963); Horsfield et al. (1971). Figure

10.1 shows the basic parameters of a single bifurcation.

The algorithm requires input data that provide a set of parameters describing the root

of the tree - trachea, and the surface (called boundary surface) that defines the space in

which the tree is generated.

Trachea: the most important parameters of trachea (root) are: diameter, length, and

position in space. Moreover the root should be placed in the proper position relative to

the above mentioned surface. Parameters of the trachea should be chosen in accordance

with the morphological studies.
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Figure 10.1: Single bifurcation. Dark grey color represents bifurcation plane, light
grey color represents volume division plane. Both planes are spread out to the borders
of the parent region. The normal of the bifurcation plane has been marked by arrow.

This normal has been anchored in the bifurcation point.

Volume: it is limited by the bounding surface, which can be defined in several ways.

However, to simplify this work and following (Kitaoka et al., 1999), we use a simple

surface described by the equation 10.1 and shown in Fig. 10.2

z = 2 ∗ 15−3(x2 + (1.5y)2)2 (10.1)

(a) (b)

Figure 10.2: The bounding surface which limits volume where the tree is generated.
(a) View from the top; (b) Side view.

The following rules define the next steps, of an algorithm which successive execution

until the end condition defined in rule 9, allows to generate the bronchial tree model.

Rule 1: bifurcation is dichotomous, that is, each parent is divided into two children.

Rule 2: longitudinal sections of a parent and his children are on the same plane, called

the plane of the bifurcation (see Fig. 10.1).
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Rule 3: sum of the children flow is equal to the total flow of the parent: dn0 = dn1 + dn2 ,

where dn0 , dn1 and dn2 denote the diameter of the parent, first and second child respectively.

The value of n is set to 2.8 based on statistical analysis of data from Raabe et al. (1976)

and dn1 < dn2 .

Rule 4: volume, which is supplied by a parent is divided into two children volumes by the

volume division plane. This plane is perpendicular to the plane of bifurcation and tends

to the borders of the parent volume. Figure 10.3 shows the volume determined under

this rule.

Figure 10.3: Outer surface of a volume supplied by the left daughter of trachea.

Rule 5: the flow-dividing ratio r ∈ (0, 0.5) is equal to the volume-dividing ratio, defined

as the ratio of the volume of the smaller child to volume of its parent. The algorithm for

r calculation is presented in Kitaoka et al. (1999).

Rule 6: diameter of two children and the bifurcation angle between them are defined as

a function of r and parent diameter (Kitaoka et al., 1999).

Rule 7: length of each branch is three times its diameter.

Rule 8: continuing to generate the new branches in a given direction causes the childrens

become new parents and their bifurcation plane is perpendicular to the bifurcation plane

of their parent.

Rule 9: The process of generating new branches in a given direction continues until the

flow rate for a new branch is less than minimal a-priori defined flow rate or when the

branch goes beyond defined region.

First two rules are based on observation of real lungs. The third rule is based on the

modeling and analysis of inspiratory flow in bronchial trees. The fourth rule corresponds

to the second assumption presented in this section. The sixth rule express the optimal
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relationships between flow rate, diameter and branching angles presented earlier (Weibel,

1963; Horsfield et al., 1971). Rule seventh is a result of examination of data presented in

Raabe et al. (1976) which leaded to the conclusion that the distribution of the length-to-

diameter ratio is Gaussian-like distribution with a mean of 2.8 and standard deviation

of 1.0. The additional four rules work in exceptional cases and are presented in details

in Kitaoka et al. (1999).

The algorithm starts by determining the bounding space which defines the volume in

which the bronchial tree is generated. Then it generates the root of the tree - trachea.

The root and all branches are represented by cylinders. The use of a cylinder allows to

obtain a uniform diameter of each branch, which was one of the crucial objectives of the

implementation. However, there is a problem with cylindrical representation of branches.

The connection of two cylinders of different radiuses generates unexpected sharp edges

which do not occur in airways trees. The problem can be solved by the use of smoothing

filter (see section 10.2.3), which smoothes the input object while preserving its topology.

According to the rule 9 the process of a tree generation in a given direction is terminated

when the generated branch exceeds the boundaries of its region.

10.2 Extended Algorithm of Bronchial Tree Modeling

This section presents algorithm for bronchial tree modeling which is an extension of the

basic algorithm. First, the extended algorithm generates basic model with the use of

basic algorithm, presented in the previous section. Then the branches generated in the

first step are bent to obtain more "realistic" model. It returns triangulation of outer

surface of the tree. Then, on the third step, the triangulated representation of the tree is

transformed to voxel space. The fourth - last step consists in adding noise and smoothing

to obtain a model which is more similar to real airways trees.

10.2.1 Geometric deformations of surface model

In the section we present branch bending procedure. The procedure makes the gener-

ated branches more similar to real segmented branches from CT images. The bending

procedure generates a bended branch in two steps. First it draws a spiral with especially

selected parameters and then the spiral is used to draw a "pipe". Drawing the spiral

is realized according to equation 10.2 were f is a randomly selected function from the

following trigonometric functions: sin, −sin, cos, −cos.

zk = rf(2π
k

n− 1
), xk = rf(2π

k

n− 1
), yk = h

k

n
(10.2)
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Where, r is a radius of rotation. In our work we experimentally set to a branch radius

divided by 3.5. The values n, h defines number of voxel forming the spiral and length of

the spiral, respectively. The value k is an index of point in the spiral.

An example of the effect of bending procedure is shown in Figure 10.4.

(a)

Figure 10.4: Part of the model with bended branches.

10.2.2 Transformations of the surface model to volumetric model

The bending procedure described in the previous section generates bronchial tree model

in the form of triangulation of its outer surface. The procedure works in continuous space

because geometrical deformations are easy to perform in the space. The procedure of noise

generation for a model of bronchial tree works in discrete framework. Therefore after

application of bending procedure the model is transformed to discrete representation.

Conversion of the surface model into the volumetric model can be implemented in several

ways. In the project only methods which fill inside of the converted object can be applied.

10.2.3 Distortions introduced to in a volumetric model of bronchial

tree

Distortions in volumetric space are generated in two steps. The first step consists in

addition and subtraction voxels from object with the use of modified EDEN algorithm

(Eden, 1961) in the sequel called TopoEDEN. The very important feature of TopoEDEN

algorithm is that it preserves topology of a modified object which can be guarantee by

modification only simple points. In the case of bronchial trees the guarantee of topology

preserving is very important because it ensures that during modifications of the tree any

two branches do not merge or no one branch can be clogged. The TopoEDEN procedure

can erode or dilate the input tree. In both cases the procedure makes a list of border

voxels of the object or background. Then it randomizes a voxel from the list and if it

is simple modifies it. There is also possible to make erosion and dilation alternately in

TopoEDEN procedure.
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Exemplary results that can be obtained with the use of TopoEDEN procedure are shown

in figure 10.5.

(a) (b)

Figure 10.5: Exemplary results of TopoEDEN when applied to a bronchial tree; a):
TopoEDEN which erodes input object; b): TopoEDEN which dilate input object.

Examples in figure 10.5 show that results of TopoEDEN are not rewarding in terms of

similarity to real segmented bronchial trees from CT images. For that reason, at the

next stage of processing the authors use iterative smoothing algorithm ASFT (Alternate

Sequential Filter controlled by Topology) (Couprie and Bertrand, 2004). In this method

smoothing is obtained by morphological open-close operation (Serra, 1982) with the use

of sphere of variable radius. ASFT applied to result of TopoEDEN gives more realistic

view of a tree surface. Exemplary effect is shown in figure 10.6.

Figure 10.6: The effect obtained by using TopoEDEN. The tree is dilated and
smoothed by ASFT.

Finally, the algorithm which generates the extended model can be presented in the fol-

lowing several steps:

1. Generating of trachea and organ restricted area.

2. Generating of a tree branches based on basic algorithm rules.

3. Realization of individual tree branches bending procedure.

4. Conversion of the tree to the discrete framework.

5. Realization of TopoEDEN.

6. Realization of ASFT smoothing.
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Figure 10.7 compares basic model with extended models. One can see that extended

model is far more similar to real tree than basic model.

(a) (b)

(c) (d)

Figure 10.7: Bronchial trees phantoms generated with different models; a): bronchial
tree obtained by segmentation of tomographic image; b): tree generated with the use
of basic model; c): extended model with bended branches; d): extended model with

bended branches and noise.



Chapter 11

Robust Segmentation of The

Human Airway Trees

Previously published methods (see chapter 9.2.1) focus on how to detect and eliminate

leakages when they occur or how to avoid them using complex rules. Some of these

algorithms must be run several times with different parameters, another ones analyze

very large sets of points using complicated nonlinear filters or semantic rules.

In this thesis we propose a new segmentation algorithm based on 3D tunnel closing in

bronchial walls. The presented method eliminates the leakage problem by closing all tun-

nels in an airway tree wall and than performs the standard region growing algorithm.

Thanks to the 3D tunnel closing algorithm (see chapter 5) our method is simple, reli-

able and is based on the basis of discrete topology. Moreover, the method is fast and

fully automated. In the following section we present the method in details and we show

experimental results of application of the method to the real CT datasets.

11.1 Airway Tree Segmentation Based on Tunnel Closing

11.1.1 Histogram analysis and preliminary wall extraction

The first, important step in our segmentation method is airway wall extraction (see Fig.

11.1). After histogram analysis of CT scans we can distinguish three intensity ranges

with are of great importance from the bronchial tree segmentation point of view (see

Fig. 11.2). The first one represents air voxels, the second one corresponds to voxels of

internal border of bronchial walls and the last one represents soft tissue and blood voxels.

Bronchial walls belongs to soft tissue range. However, differences in wall pixel intensities

and wall thickness, at low and high level of an airway tree and common occurrence of

other soft tissues, make very difficult to extract walls directly from borders of the range
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as threshold parameters. Fortunately, in our application, we do not need to segment walls

at this stage, instead the algorithm extracts only internal border of bronchial walls which

is enough to perform a 3D tunnel closing procedure. The lower threshold value for this

purpose is approximately situated on the border between air voxels range and internal

border of bronchial walls. The higher threshold value is approximately situated between

the range which represents internal border of bronchial walls and soft tissue range. Using

this values, which can be easily and automatically selected, the algorithm can extract

internal border of the walls on different levels of an airway tree. Moreover, small number

of points in this range leads to a "clear" output image (without unnecessary soft tissues).

(a) (b)

(c) (d)

Figure 11.1: Airway tree wall extraction. (a): One 2D slice obtained from a 3D CT
dataset; (b): Zoomed fragment of the trachea; (c): Extracted airway walls; (d): An input

image (b) merged with the image (c).

(a)

Figure 11.2: A typical histogram generated from a 3D chest image. Marked ranges
correspond to air, internal part of bronchial walls, soft tissue and blood.
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11.1.2 3D tunnel closing in airway walls

The main part of the presented segmentation algorithm consists of removing discontinuity

in the bronchial walls by locally increase contrast of the walls, to eliminate problem of

leakage. On the 3D binary image generated in the previous step (see Fig. 11.3(a)), one

can notice that extracted area corresponding to the walls has many "holes" (see Fig.

11.3(b)) or more formally speaking it consist tunnels (see 2.1.5 for the formal definition).

Such tunnels are results of the local lack of contrast in the CT dataset or presence of

noise.

(a) (b)

Figure 11.3: Tunnel closing in the extracted bronchial walls. (a): The 2D binary image
which represent extracted bronchial walls; (b): The 3D reconstruction of (a) with well
visible tunnels. After application of the tunnel closing algorithm all tunnels were closed

(red patches).

In this step of segmentation algorithm our goal is to remove tunnels. To achieve this goal

we use binary image generated in the previous step, which represents extracted walls,

as an input for the tree-dimensional tunnel closing procedure. We use the tunnel closing

algorithm described in the chapter 5. As result we obtain the 3D binary image where all

tunnels were closed (see Fig. 11.3(b)).

11.1.3 Merging and final segmentation

On the last step, the algorithm combines the binary image with closed tunnels B, pro-

duced in previous step, with an input CT dataset A. The algorithm sets intensity of a

voxel from image A to the maximal possible HU value Hmax, only if the corresponding

voxel from the image B has value 1. Then the standard region growing algorithm (RGA)

is applied to produce the final segmentation result. The RGA needs two parameters: the

first represents a threshold value which constrains the growth process, the second one
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corresponds to a starting point which is called the seed. The first parameter is set to

the Hmax − 1 value and the seed can be selected manually or automatically using, for

example, a simple method proposed in Tschirren et al. (2005a).

11.2 Segmentation Algorithms Comparison

The proposed method has been applied to test the segmentation of the chest CT images

acquired using GE LightSpeed VCT multidetector CT scanner. The set of stack images

is of size 512x512 and voxel dimensions are: x = y = 0.527 mm, z = 0.625 mm. All tests

were performed on standard PC platform computer (CPU: INTEL 2Ghz). Fig. 11.4 shows

the comparison between the proposed method and standard region growing approach on

the same set of images. For the experiments we use 30 different CT datasets with standard

quality (low dose scans) and the same number of datasets with improved quality (high

dose scans). The CT datasets were provided by Department of Radiology and Diagnostic

Imaging, Medical University of Lodz.

The experimental results showed that presented method works well in all tested cases.

The leakage problem is fully eliminated and results are of much better quality than for

standard region growing approach. The numbers of extracted branches by the proposed

method and region growing method with optimal parameters selected manually are pre-

sented in table 11.1. It occurs that for all tested cases our algorithm gives better results

than region growing approach. Moreover, for the cases which correspond to the CT data

with higher quality where the tree is well defined (see for instance two first rows on

Fig.11.4) almost 100% of the branches are extracted up to 5th order of a bronchi us-

ing the proposed method. The superiority of our approach is also clearly visible for the

cases (see for instance two last rows on Fig. 11.4) which correspond to standard qual-

ity scans. The presented method extracted 100% branches up to 4th level in all cases,

while region growing algorithm extracted only 37% in average or finished with a severe

leak (see Fig. 11.4(h)).

The superiority of our approach is not only related to the number of levels extracted dur-

ing segmentation process. It is also important from the practical point of view to segment

the bronchial tree without unnecessary deformation like for example cavities, tunnels, or

noise like distortions. Our approach generates bronchial trees without such deformations.

On Fig. 11.6 we can see skeletonization results using bronchial trees generated by our

method (Fig. 11.6(a)) and region growing approach (Fig. 11.6(b)). One can notice that

skeletons are much more complicated and noisy, when region growing algorithm is used

for the segmentation which will be source of errors in the further steps of the quantita-

tive analysis process. From the other hand, skeletons generated using our segmentation

results as an input are very good quality and can be used for reliable measurements.
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The computation time for these two algorithms has been also evaluated. The proposed al-

gorithm is much slower than region growing algorithm but its runtime does not exceed two

minutes per volume, and it is faster than previously presented approaches e.g. Tschirren

et al. (2005a)Graham et al. (2008). It is worth mentioning that the presented segmenta-

tion method is optimal (linear complexity) because it is only based on linear complex-

ity algorithms. Compared to other methods like the one proposed in Tschirren et al.

(2005a)Graham et al. (2008), our method can resolves less orders of the bronchi, es-

pecially for low dose scans. However, we propose algorithm which is simple, based on

well defined notions and reliable in the part of the bronchial tree which is interesting

from the medical point of view. The method is fully automatic, there is no need to tune

any parameters in general case, However, thanks to histogram analysis it can be simply

adapted to the CT data acquired by the different scanner or reconstructed using different

reconstruction kernel.

Table 11.1: Fraction (in %) of average number of extracted branches at different
levels of the airway tree. Results obtained using the proposed method (HC) and region
growing method (RGA) with manually selected optimal parameters on the 30 cases

with standard quality (low dose) and 30 cases with extended quality (high dose).
Extended quality Standard quality
HC RGA HC RGA

2nd level[%] 100 100 100 50
3rd level[%] 100 80.6 100 50
4th level[%] 100 50.3 100 37.5
5th level[%] 96.2 32.2 66.3 5.0
6th level[%] 68.7 12.5 40.3 0
7th level[%] 49.5 6.2 23.3 0

Working time[sec] 100 4.5 118 4.2
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Figure 11.4: 3D visualization of segmentation results. Left column - proposed method,
right column - the region growing procedure (Mori and et al., 1995). In each row the

same CT dataset were used.
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Figure 11.5: 3D visualization of segmentation results by proposed method.
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(a) (b)

Figure 11.6: An example of skeletonisation results (the same algorithm) on the tree
segmented from the same CT dataset. (a): The skeleton of the tree segmented based
on hole closing; (b): The skeleton of the tree segmented using simple region growing
approach. Note that in this case the skeleton is much more complicated (especially in

top of the trachea) even if the tree is segmented reasonably well.
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Robust 3D Skeletonisation of

Pulmonary Airway Tree Structures

In the chapter 3.1 we present a set of properties which are used to evaluate quality of the

skeleton in particular applications. In this thesis we are interested in producing skeletons

which hold all of such properties. That is, the skeleton of bronchial tree should be one

voxel thick (singularity), it should has the same topology as original object (homotopic),

it should be generated fully automatically (automation) and fast (cost effectiveness). The

skeleton should also be perfectly centered (centricity) and it should be robust to noise

(robustness) to allow reliable measurement.

The first four properties we can guarantee by focus only on skeletonisation algorithms

which are constructed using well defined mathematical notions and have formal profs of

these properties. Based on literature of the subject, we select skeletonisation algorithms

which belongs to the homotopic thinning group either in the voxel: PAL98 (Palagyi

and Kuba, 1998), PAL06 (Palagyi et al., 2006), RAY (Raynal, 2010) or cubical com-

plex framework: ACK3 (Bertrand and Couprie), ACK3A (Bertrand and Couprie), TCC

(Chaussard, 2010). We select older methods and recently proposed ones.

To evaluate quality of the results based on the last two properties (centricity, robustness)

we prepared a set of experiments. As an input we use special set of three-dimensional

bronchial tree phantoms. In this set we include models which can be categorized into four-

teen different classes: basic (straight) or extended (blend) models without any additional

distortions, the same models with added noise (3%, 5% and 10% of object’s volume) and

finally models with noise (3%, 5% and 10% of object’s volume) and smoothed (see Fig.

12.1). To prepare such phantoms, we use strategy presented in chapter 10.

139
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(a) Basic (b) Basic, 3% noise (c) Basic, 5% noise (d) Basic, 10% noise

(e) Basic, 3% noise, ASFT (f) Basic, 5% noise, ASFT (g) Basic, 10% noise, ASFT

(h) Extended (i) Extended, 3% noise (j) Extended, 5% noise (k) Extended, 10% noise

(l) Extended, 3% noise, ASFT (m) Extended, 5% noise, ASFT (n) Extended, 10% noise, ASFT

Figure 12.1: The set of bronchial tree phantoms used for the experiments

12.1 Skeleton Centricity

In this section, we compare the centricity property between different skeletonisation

algorithms.
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Globally, centricity property will be tested by measuring the "difference" between the

medial axis of a shape X, which hold from the definition perfect centricity property,

and the skeleton of the same shape X. The "difference" will be measured using the

dissimilarity measure proposed by Dubuisson-Jolly and Jain (1994) (see also chapter

7.4.3).

We conducted our experiments using the discrete adaptive medial axis introduced in

chapter 7.1, since, it has ability to preserve features at different scale. In addition the

discrete adaptive medial axis is based on the discrete λ-medial axis which cope reasonably

well with shape deformation like rotation or noise (Chaussard, 2010; Chaussard et al.,

2009). Therefore, it perfectly fit in our application where we need generate medial axis

of the "deformed" airway trees consists of the large and thin branches at the same time.

To make an experiment more robust, we have also performed simple pruning strategy

to remove spurious branches occurred using some skeletonisation algorithms, and to be

sure that length of the skeleton is not larger than the medial axis. In the perfect case

the skeleton should be subset of the corresponding medial axis. The drawback of the

pruning is the problem of removing the terminal segments of the tree. However, since

they are very thin they do not have important impact on the experiment results. As a

pruning strategy we perform several steps of the basic homotopic thinning algorithms

(see chapter 3.3 algorithm 3.3.1).

In table 12.1 and 12.2 we give the average dissimilarity between DAMA(X,γ) and the

skeleton S(X) generated by the all tested algorithms. The parameter γ was evaluated

experimentally and separately for each phantom to produce well filtered medial axis.

Results are given for all fourteen classes of phantoms. Values shown are averages of

results obtained for the 10 different models in each class. The last row indicates all the

results averaged together. The lower dissimilarity value is better.

Table 12.1: Average dissimilarity between DAMA of X and skeleton of X calculated
for basic phantoms (10 phantoms in each class).

Noise Noise+ASFT
Basic 3% 5% 10% 3% 5% 10% Avr

ACK3 0.081 0.149 0.191 0.242 0.137 0.143 0.148 0.155
ACK3a 0.149 0.211 0.240 0.311 0.219 0.225 0.241 0.228
PAL06 0.097 0.138 0.169 0.230 0.090 0.100 0.137 0.140
PAL98 0.129 0.244 0.329 0.406 0.173 0.177 0.210 0.240

RAY 0.117 0.199 0.271 0.413 0.207 0.210 0.227 0.230
TCC 0.097 0.142 0.166 0.264 0.124 0.168 0.178 0.160
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Table 12.2: Average dissimilarity between DAMA of X and skeleton of X calculated
for extended phantoms (10 phantoms in each class).

Noise Noise+ASFT
Extended 3% 5% 10% 3% 5% 10% Avr

ACK3 0.078 0.181 0.183 0.186 0.151 0.154 0.157 0.160
ACK3a 0.165 0.244 0.256 0.258 0.201 0.226 0.239 0.230
PAL06 0.100 0.141 0.145 0.198 0.097 0.101 0.123 0.130
PAL98 0.182 0.246 0.317 0.440 0.179 0.211 0.235 0.260

RAY 0.165 0.182 0.227 0.355 0.207 0.258 0.258 0.240
TCC 0.126 0.160 0.176 0.190 0.159 0.172 0.175 0.170

12.2 Robustness to Noise

It is well known that many skeletonisation strategies are sensitive to border noise and

geometrical deformations. Since, the segmented airway trees can be corrupted as re-

sults of the not sufficient segmentation, or they have irregular border due to anatomical

characteristic, it is useful to test how skeletonisation strategies work in practice.

The quality of the skeleton in respect to robustness to noise can be simply evaluated by

counting the number of spurious branches of the skeleton appeared due to presence of

noise. In practice, we only need to count the number of the end points of the skeleton,

which directly correspond to the number of terminal branches and then compare this

value to the expected one. The reference value is know for each phantom and it is

constant for the class.

In table 12.3 and 12.4 we give the average number of the spurious skeleton branches.

Results are given for all fourteen classes of phantoms. Values shown are averages of

results obtained for the 10 different models in each class. The lowest value is better, and

0 means that no extra branch appear.

Table 12.3: Average number of the spurious skeleton branches calculated for basic
phantoms (10 phantoms in each class).

Noise Noise+ASFT
Basic 3% 5% 10% 3% 5% 10%

ACK3 0 150 243 515 9 17 13
ACK3a 0 35 80 232 0 0 0
PAL06 0 52 112 325 0 0 0
PAL98 3 140 210 425 28 38 49

RAY 0 39 90 280 0 0 0
TCC 0 0 0 0 0 0 0

Figure 12.2, 12.3, 12.4 and 12.5 show skeletonisation results, using each of compared

method, on exemplary phantoms.
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Table 12.4: Average number of the spurious skeleton branches calculated for extended
phantoms (10 phantoms in each class).

Noise Noise+ASFT
Extended 3% 5% 10% 3% 5% 10%

ACK3 0 160 242 553 7 15 13
ACK3a 0 30 79 218 0 2 0
PAL06 0 50 122 341 0 1 0
PAL98 5 159 227 426 45 42 55

RAY 0 52 80 290 0 0 0
TCC 0 0 0 0 0 0 0

12.3 Discussion

Algorithm PAL06 yield the best results in the centricity experiment, however algorithms

TCC and ACK3 performs nearly as well as PAL06. On the other hand, the PAL06

algorithm shows that is not robust to noise which limits its practical application. This

drawback of the PAL06 algorithm was expected, since, in Palagyi et al. (2006) authors

try to use this skeletonisation strategy in the problem of generating skeleton of the

bronchial trees without success. Therefore, they propose complex pruning strategy to

remove spurious branches. The reported results shows that proposed pruning method

works well in general case, however it needs several additional steps to perform and it

not guarantee that we achieve well centered skeleton with detected all branches of the

tree.

Taking above into consideration experiments shows that, the recently proposed TCC

algorithm fares better on the average than other algorithms, with regards to both cri-

terions. As addition, we performed some tests using TCC algorithm on the real airways

segmented from the real CT datasets to see how it work in practice (see Fig. 12.6).

However, since, the reference values were missing we can only evaluate skeleton prop-

erties qualitatively. The results showed that the generated skeletons were centered and

spurious branches do not appeared. However, we notice that in some cases, very small

branches are missing in the skeleton. This, property can be considered as a drawback,

however such small branches, in general, are a segmentation errors and do not provide

useful informations. Even if they correspond to the real segments of the tree, making

further measurements on such segments can be source of errors. Note that, other tested

algorithms missed the segments very rarely, which is expected behavior, since they are

not robust to noise as much as the TCC algorithm. However, as long as it is very im-

portant to remove spurious branches appeared in the other tested algorithms, one has to

use some additional pruning step. However, common pruning strategies can cause also

missing branches to disappear.
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The results achieved by the TCC algorithm are very promising and by using it we can

solve many problems reported in the literature of the subject. TCC algorithm allow us

to use the skeleton without any additional refinement steps, like for instance pruning, in

general case. Since, the TCC algorithm perform well according to all desirable properties

we consider it as a robust tool which help us to perform experiments in the next chapter.
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(a) ACK3 (b) ACK3a

(c) PAL98 (d) PAL06

(e) RAY (f) TCC

Figure 12.2: The skeletonisation results of the basic phantom.
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(a) ACK3 (b) ACK3a

(c) PAL98 (d) PAL06

(e) RAY (f) TCC

Figure 12.3: The skeletonisation results of the extended phantom.



Chapter 12 Robust 3D Skeletonisation of Pulmonary Airway Tree Structures 147

(a) ACK3 (b) ACK3a

(c) PAL98 (d) PAL06

(e) RAY (f) TCC

Figure 12.4: The skeletonisation results of the extended phantom with 5% of noise.
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(a) ACK3 (b) ACK3a

(c) PAL98 (d) PAL06

(e) RAY (f) TCC

Figure 12.5: The skeletonisation results of the extended phantom with 10% of noise
followed by ASFT filtering.
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Figure 12.6: The TCC skeletonisation results of the four segmented airways tree from
the real CT dataset.



Chapter 13

Accurate Cross Sections Generation

of The Human Airways Trees

To generate accurately orthogonal cross section of the airway tree we need to evaluate

a local direction of the airway segment in each point of interest. This can be done by

using one of the tangent estimators along three-dimensional discrete curve (see chapter

6), defined by the skeleton of the tree. However, such curve can be corrupted, due to

presence of noise or some arbitrary choices made by used skeletonization strategy. On

the other hand, the proper tangent direction is crucial to allow reliable measurements.

Thus, the strategy used to solve such problem has to be chosen carefully. The tangent

estimator should be accurate and robust and should allow to work with 3D noisy curves

(not smoothed) at fixed resolution.

To evaluate which tangent estimator can give us the most accurately results, in our

particular application, we experiment several tangent estimators on the 3D bronchial

models with known diameter. We use, for the experiment, exactly the same set of airway

phantoms as presented in previous chapter, that is, 140 phantoms classified into 14 groups

(simple and extended phantoms with distortion introduced in chapter 10).

General idea of the experiment is presented in the next subsection. Note that we use two

separate strategy for the simple and extended phantoms respectively.

13.1 Methodology of Tangent Estimators Comparison

For the models without noise, we generate a set of the cross sections of the tree along

arbitrary selected path. Selected path is the longest one according to the model (see Fig.

13.1) and is always the same for all estimators. The path used in our experiment was

defined using the most reliable skeletonisation algorithm (TCC), according to results

introduced in chapter 12.
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(a) Extended, 10% noise

Figure 13.1: The 3D reconstruction of one of bronchial tree models with selected path
(black curve) used for experiments

To avoid errors we focus only on points where the branch and cross sections are well

defined, that is, where two branches do not have any intersection. On each cross section,

we calculate the lumen area and diameter of the tree. For this purpose we use very

simple method based on counting the number of segmented points which corresponds to

the tree. Then, we compare calculated value to the reference value extracted from the

phantom.

For the models with added noise, since, the noise locally change diameter of the tree

we lost reliable information about the reference diameter of the phantom. Therefore, in

practice we need to define two separate strategy, one for the models with and without

noise respectively. We are interested in algorithms, both skeletonization and tangent

estimation, which are noise insensitive, as much as possible or used together they have

ability to compensate error introduced by presence of noise. Therefore, we can expect that

results produced on the noisy model should be the same as on the corresponding model

without noise. Therefore, to evaluate measurement error we evaluate tangent direction

based on the path generated on noisy model. However, the lumen diameter of the each

cross section is evaluated on the corresponding model without noise. In this case if the

results will be accurate we can say that the pair of skeletonisation and tangent estimation

algorithm produce results which are not affected by the noise.
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13.2 Results and Discussion

In table 13.1 we give the average root mean square error (RMSE) between the reference

lumen diameter and estimated one, along whole selected path. For estimation we use

several different tangent estimators. The simple discrete methods NAvr1, NAvr3 and

NAvr5 based on fixed computational window set to 1, 3 and 5 respectively, and following

strategy proposed by (Matas et al., 1995) to evaluate tangent direction. We also use

three adaptive discrete methods: The CSTE which based on curve segmentation into

set of DSSs (Coeurjolly et al., 2000) and our new 3D λ-MSTD estimator. We test two

version of λ −MSTD we call it L-MSTD and L-MSTDt2 where we set thickness used

for DSS recognition to 1 and 2, respectively. The last method in comparison belong to

the continuous estimator group and use uniform cubical splines to locally approximate

the curve (de Vieilleville and Lachaud, 2009). All select, for the comparison, tangent

estimators have different properties and abilities to deal with noise and curves with low

and high curvature variations.

Table 13.1: Average RMSE between reference lumen diameter and evaluated one
calculated for basic and extended phantoms (10 phantoms in each class).

L-MSTD L-MSTDt2 NAvr1 NAvr3 NAvr5 CSTE STE
Basic 1.03 1.11 2.62 0.97 0.99 1.11 1.11

3% noise 1.27 1.12 10.53 4.14 2.02 1.07 2.16
5% noise 1.21 1.09 10.37 4.62 5.97 2.58 0.96

10% noise 1.23 1.03 12.08 3.27 1.17 2.09 1.10
3% noise, ASFT 1.23 1.06 8.83 1.70 0.98 1.16 1.01
5% noise, ASFT 1.31 1.07 11.70 1.83 1.00 1.18 1.05

10% noise, ASFT 0.99 0.85 7.99 1.73 0.94 1.19 1.52
Extended 1.09 1.02 10.47 1.70 1.05 2.42 0.97
3% noise 1.16 1.05 4.45 1.47 1.03 1.42 1.27
5% noise 1.32 1.10 14.83 2.68 1.15 1.97 1.16

10% noise 1.21 1.12 16.59 2.43 1.18 2.01 1.30
3% noise, ASFT 1.38 1.06 5.12 1.47 1.00 1.16 1.08
5% noise, ASFT 1.35 0.99 4.08 1.50 0.99 3.00 1.02

10% noise, ASFT 1.00 1.07 14.05 3.45 1.00 3.01 1.12
Average 1.202 1.057 9.557 2.360 1.460 1.860 1.196

Figure 13.2 and 13.3 shows the evolution of the lumen for the L-MSTD, L-MSTDt2,

NAvr5 and STE along whole path, extracted from the basic and extended phantoms,

respectively. To make differences better visible we removed from the plot the worst al-

gorithms (according to results in table 13.1), that is, NAvr1, NAvr3 and CSTE.

As we expect the simplest method, algorithm NAvr1 and NAvr3, with fixed compu-

tational window, gives very poor results in general. Only in simplest case (basic algo-

rithm without any distortions) the NAvr3 gives reasonably results. Better results can
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be achieved by simply increasing the size of the computational window as in NAvr5. It

means that, this size of the computational window is more adopted to the local curve

geometry than previous ones. The algorithm NAvr5 is classified in the middle of our com-

parison. However, its practical application is limited, since, the computational window

is fixed and in some part of the curve it is not well adopted anymore, which cause large

errors in results, and makes NAvr5 not reliable in general case.

One can be surprised, that the CSTE estimator, which is an adaptive method produce

result worse than NAvr5. However, the CSTE method is based on very simple curve

segmentation into set of maximal segments. The method does not use the notions of

tangential cover nor any combinations of DSSs. Thus, CSTE is very sensitive to small

distortions introduced to the curve, even more than NAvr3 in which we averaging re-

sults. Locally CSTE can produce very small segments and in consequences not accurate

estimation. However, this method is multigrid convergent, in opposite to any method

with fixed computational window. Therefore we can expect better results if we increase

resolution.

The best and comparable results were achieved by the L-MSTD, L-MSTDt2 and STE,

respectively. These estimators produce results close in average to 1 and with very small

standard deviation, which makes them very accurate and reliable. Thus, the experiments

also verify the quality of the new tangent estimator (L-MSTD), proposed in this thesis. In

practice, its behavior in average, is the same as the continuous method (STE). If we con-

sider the fact that our method is much simpler (parameterless), faster (linear complexity)

and has good multigrid convergence behavior, the results are very promising. Note that,

in the simplest case, where the segments are straight lines (see fig. 13.2(a)) the STE

estimator can give not accurate results. Moreover, according to results achieved by the

L-MSTDt2 algorithm, the biggest drawback of the proposed method, that is, its sensitiv-

ity to the small distortion introduced to the curve, can be simply overcome by changing

the vertical thickness used for the maximal segment recognition. Such modification can

cause algorithm to lose accuracy in general case. However, in our particular application,

where we work with curves with relatively low curvature variations, we achieve the best

results in the comparison. Therefore, all of these three methods can be used in the prob-

lem of quantitative analysis of the bronchial trees. However, only L-MSTD estimator (or

its modification L-MSTDt2) can guarantee speed and higher accuracy with increasing

quality of the input data and the user does not need to set any parameters.
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Figure 13.2: A comparison between reference value from the phantom and estimated
area using different tangent estimators.
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Figure 13.3: A comparison between reference value from the phantom and estimated
area using different tangent estimators.
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Conclusions

In this thesis, we studied different methods used for image processing and analysis which

are build on top of the discrete topology and geometry. First, we define basic notions

used in discrete topology and geometry then we showed that several class of discrete

methods like skeletonisation algorithms, medial axes, tunnels closing algorithms and

tangent estimators, are widely used in several different practical application. We also

make an analysis of properties and limitations of such methods.

In the next part we introduce two new methods for medial axis filtering of objects with

features at different scales. Then we compared our new filtering criterions with other

filtering methods. For the sake of fair comparison, we introduced new methodology to

conduct experiments in which we evaluate several different properties of filtering meth-

ods. The experiments shows the superiority of our approaches and makes new proposed

methods useful in many application. In this part we also propose a new discrete adaptive

tangent estimator along three-dimensional discrete curves. Then we evaluate it multigird

convergence property.

Finally, in the last part we showed that discrete geometry and topology algorithms can

be useful in the problem of quantitative analysis of the human airway trees based on com-

puted tomography images. According to proposed in the literature design of such system

we applied discrete topology and geometry algorithms to solve particular problems at

each step of the quantitative analysis process. We compare the quality of different algo-

rithms using set of experiments conducted on computer phantoms and real CT dataset.

We show that recently proposed methods which works in cubical complex framework,

together with methods introduced in this work can overcome problems reported in the

literature and can be a good basis for the further implementation of the system for

automatic quantification of bronchial tree properties.
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14.1 Contribution of this thesis

Important contributions of this work have been done in different fields of research:

Digital Topology - In the digital topology our contributions are two new medial axis

filtering methods which are able to effectively prune medial axes points in object with

features at different scales:

• The hierarchical scale medial axis which is a new method for medial axis filtering.

The method is based on previously proposed scale axis transform. Our method is

free of drawbacks introduced in the previously proposed method.

• The discrete adaptive medial axis which is based on discrete λ-medial axis where

the filtering parameter is dynamically adapted to the local size of the object.

In this field we have also propose a new methodology for fair comparison between different

filtering methods. We define some set of different experiments which allow to compere

filtering criterions with different meaning of the filtering parameter.

Finally, we compare skeletonisation algorithms based on desirable set of properties in

real practical application which verify that the recently proposed method TCC posses a

set of properties which makes this method useful in many application, including problem

of quantitative analysis of the human airway trees.

Digital Geometry - In this field we proposed a new tangent estimators along three-

dimensional discrete curves, called 3D λ-MSTD. The method is efficient and parameter-

less. An we show experimentally that this method has multigrid convergent behavior. We

also show that in practical application this method gives results as good as the continuos

methods.

Medical Image Processing - In this field we propose a robust method for segmenting

airway tree from CT datasets. The method is based on the tunnel closing algorithm and

is used as a tool to repair, damaged by acquisition errors, CT images. We also proposed

an algorithm for creation of an artificial model of the bronchial tree and we used such

model to validate algorithms presented in this work.

The following publications resulted from the work presented here:

1. Postolski, M., M. Couprie and M. Janaszewski. Scale Filtered Euclidean Medial

Axis. DGCI 2013 : 360-371. 2013

2. Pluta, K., M. Janaszewski and M. Postolski. New Algorithm for Modeling of

Bronchial Trees. Image Processing and Communications. 17(4): 179-190. 2013
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3. Postolski, M., M. Janaszewski, Y. Kenmochi, and J-O. Lachaud. Tangent Estima-

tion Along 3D Digital Curves. 21st International Conference on Pattern Recogni-

tion, Japan: 2079-2082. 2012

4. Janaszewski, M., M. Postolski, and L. Babout. Robust Algorithm for Tunnel Clos-

ing in 3D Volumetric Objects Based on Topological Characteristics of Points. Pat-

tern Recognition Letters. 32(16): 2231-2238. 2011

5. Postolski, M., M. Janaszewski, L. Jopek and L. Babout. Tangent Direction Es-

timation in Each Point of 3D Volumetric Curve in Application to Quantitative

Human Airway Trees Analysis. Journal of Academy of Science and Technology,

Automatics, 15:219-234. 2011

6. Janaszewski, L., M. Postolski, L. Babout and L. Jopek. Topological and Geomet-

rical Hole Closing in 3D Objects. Journal of Academy of Science and Technology,

Automatics, 15:131-141. 2011

7. Postolski, M., M. Janaszewski, L. Jopek and L. Babout. 3D Skeletonization of

Pulmonary Airway Tree structure.Journal of Academy of Science and Technology,

Automatics, 14:337-353. 2010

8. Fabijanska, A., M. Postolski, M. Janaszewski and L. Babout. Comparative Analysis

of Bronchial Tree Segmentation Algorithms. Journal of Academy of Science and

Technology, Automatics, 13:821-830. 2009

9. Janaszewski, L., L. Babout, M. Postolski and L. Jopek. Hole Segmentation in

Volumetric Objects. Journal of Academy of Science and Technology, Automatics,

13:855-864. 2009

10. Janaszewski, L., L. Babout, M. Postolski and L. Jopek. Hole Closing in 3D Volumet-

ric Objects. Journal of Academy of Science and Technology, Automatics, 13:865-

878. 2009

11. Postolski, M., M. Janaszewski, A. Fabijanska, L. Babout, M. Couprie, M. Jedrze-

jczyk and L. Stefanczyk. Reliable Airway Tree Segmentation Based on Hole Closing
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