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Abstract

Numerous empirical models are employed and seem effective to investigate the transport

properties and the mechanical behaviors of unsaturated porous media. However, these

empirical models are phenomenological in nature because of the lack of physical foundation.

Micromechanics approach seems an alternative methodology for these problems by taking

account of the microstructure morphology of porous medium as well as the local physical

phenomena at stake and by using homogenization procedure. This thesis deals with the

transport properties and then the freezing behaviors of unsaturated porous media by means

of micromechanics approach.

We first start with investigating the transport properties such as solute diffusion and

liquid flow in unsaturated glass beads, sand, and sandstone. The main feature of such kind

of materials lies on a mono-disperse pore size distribution, which can be taken into account

by micromechanics model for one-scale microstructure. This will be the basis of all the

models developed in this work, except a short development for materials with bi-disperse

pore size distribution (two-scale microstructure model). Further elements of modelling are

related to the physical properties of the local water distribution (e.g. the pore body water

and liquid layer, the latter is defined as the intergranular layer, the wetting layer and the

water film).

When the local diffusion occurs in the liquid layer treated as an interface (2-D), with

no volume fraction, the homogenized solute diffusion coefficient can be derived analytically.

However, the real liquid layer is an interphase (3-D), the volume fraction of which can be

accounted for in an enriched micromechanics model. The latter is thus able to characterize
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and take into account of the evolution of the thickness of the liquid layer during the desat-

uration process. The simulation results of 3-D enriched micromechanics model for solute

diffusion are then compared with the experimental results in unsaturated glass beads and

sand: the modelling results turn out to be good for these materials.

Taking advantage of the morphological and physical characterization of sandstone, a

micromechanics model for liquid permeability in unsaturated Fontainebleau sandstone is

built accounting for the intergranular layer flow, wetting layer flow, and water film flow.

This micromechanics model seems effective in explaining the modified Kozeny-Carman

model for saturated permeability of Fontainebleau sandstone. This micromechanics model

is also applied to model the evolution of the permeability of the unsaturated Fontainebleau

sandstone: the modelling results turn out to be comparable with the experimental results.

We then turn to the freezing of unsaturated porous media. Based on the local physical

characterization of unsaturated freezing porous media, the disjoining pressure in unfrozen

water film and surface tension effect are fully accounted for in a first micromechanics model.

Then an alternative model is built by taking account of the effect of the disjoining pressure

on the local elastic properties of the unfrozen water film and thus on the homogenized ones.

However due to lack of data on the dependence of the disjoining pressure on temperature,

use is made of the first micromechanics model to study the free swelling of a freezing cement

paste. The modelling results exhibit some discrepancies with the experimental results, the

reasons for this may lie in the overestimation of the ice content, which here is estimated by

the pore size distribution by MIP and Gibbs-Thomson equation.

Keywords:

Porous media, Unsaturated, Diffusion, Permeability, Freezing, Micromechanics, Water film,

Disjoining pressure



III

.



IV



Résumé

De nombreux modèles empiriques sont utilisés et semblent efficaces pour étudier les pro-

priétés de transport et les comportements mécaniques de milieux poreux non saturés. Toute-

fois, ces modèles empiriques, en l’absence de bases physiques, sont de nature phénoménologique.

À l’inverse, l’approche micromécanique est une méthode alternative qui permet de formuler

des problèmes prenant en compte la morphologie microstructurale des milieux poreux ainsi

que les phénomènes physiques en jeu à l’échelle locale et en les intégrant par homogénéisa-

tion. Ces travaux de thèse portent sur les propriétés de transport puis le comportement au

gel de milieux poreux non saturés au moyen de l’approche micromécanique.

Nous examinons d’abord les propriétés de transport telles que la diffusion de soluté

et l’écoulement de liquide au sein de billes de verre, de sable, et d’un grès, en condition

non-saturée. La principale caractéristique de ces matériaux réside dans la mono-dispersité

de la distribution des tailles de pores, ce qui peut être pris en compte par un modèle

micromécanique à une seule échelle locale de description. Ceci est la base commune à tous

les modèles développés dans cette thèse, excepté une brève incursion pour des matériaux

à double porosité (modèle à deux échelles locales de description). La modélisation inclue

aussi des éléments supplémentaires liés aux propriétés physiques de la distribution locale

de l’eau (eau libre porale et couche liquide, celle-ci désignant l’ensemble constitué par la

couche inergranulaire, la couche mouillante, et le film d’eau).

Lorsque la diffusion a lieu localement dans une couche liquide assimilée à une interface

(2-D), sans notion de fraction volumique, le coefficient de diffusion homogénéisé peut être
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déduit analytiquement. Cependant, une couche liquide réelle est une interphase (3-D) dont

la fraction volumique peut être prise en compte dans un modèle micromécanique enrichi. Ce

dernier permet alors de prédire et d’intégrer l’évolution de l’épaisseur de la couche liquide

durant le drainage. Les résultats numériques du modèle enrichi 3-D sont ensuite confrontés

à des données expérimentales pour des billes de verre et du sable, en condition insaturée:

la modélisation donne de bons résultats sur ces matériaux.

Sur la base d’une caractérisation morphologique et physique des grès, un modèle mi-

cromécanique pour la perméabilité non saturée est construit en incluant notamment l’écoulement

dans une couche d’eau intergranulaire, une couche d’eau mouillante, et un film d’eau liq-

uide. Ce modèle apparaît efficace pour expliquer le modèle modifié de Kozeny-Carman de

la perméabilité saturée du grès de Fontainebleau. Ce modèle est aussi utilisé pour prédire

l’évolution de la perméabilité d’un grès de Fontainebleau non saturé: les résultats obtenus

sont concordants avec les résultats expérimentaux.

Nous nous intéréssons ensuite au gel de milieux poreux non saturés. Sur la base d’une

caractérisation des phénomènes physiques en jeu à l’échelle locale, un premier modèle mi-

cromécanique est construit en tenant compte de la pression de disjonction et des effets

de tension de surface. Un second modèle est ensuite construit pour étudier le rôle de la

pression de disjonction sur les propriétés élastiques locales du film d’eau non-gelée, et donc

aussi sur leurs homologues macroscopiques. Cependant, en raison d’un manque de données

sur la variation de la pression de disjonction avec la température, nous utilisons le premier

modèle pour analyser le gonflement libre d’une pâte de ciment. Le calcul montre un certain

écart avec les résultats expérimentaux. L’une des raisons peut provenir de la surestimation

de la teneur en glace dans les pores, laquelle est estimée à partir d’une distribution de tailles

de pores obtenue par porosimétrie à mercure et de la relation de Gibbs-Thomson.

Mots-clés:

Milieux poreux, Non saturés, Diffusion, Perméabilité, Gel, Micromécanique, Film d’eau,

Pression de disjonction



Acknowledgements

I am deeply indebted to my two advisors: Dr. Eric Lemarchand and Dr. Teddy Fen-

Chong for their constant support, guidance, patience and encouragement during the study.

Without their assistance, the work would never have been done. The years of study with

them have been a profound experience of mine because of their effective mentoring and

full support. The more I delve into the professional field, the more I appreciate their

contributions and insights.

I appreciate the constructive suggestions from Prof. Bernard Perrin and Prof. Albert

Giraud who are my thesis reviewers. Further thanks are due to other thesis defense com-

mittee members: Dr. George Wardeh and Prof. Aza Azouni. Special thanks are given to

Prof. Aza Azouni for her warmly help and persistent encouragement during my thesis.

I have had the good fortune to benefit from the working opportunity provided by Ecole

nationale des ponts et chaussées. I would like to thank every member in the Navier lab at

Kepler for their constant support and excellent academic environment provided.

My gratitude is also expressed to my fellow colleagues and friends in the past four years,

they are: Jiyun Shen, Haifeng Yuan, Qiang Zeng, Louisa LOULOU, Pengyun Hong, Yan

Liu, Yiguo Wang, Zheng He and LinLin Wang.

Last but not least, I would like to thank my parents and my brothers. Thanks for your

unconditional love and immense support!



Contents

Contents I

List of Figures V

List of Tables XI

I General introduction 1

1 Problems position 3
1.1 Research background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Micromechanics methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Phase interfaces within unsaturated porous media . . . . . . . . . . . . . . . 7
1.4 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Microstructural morphological characterization of porous media 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Microstructure morphology of granular materials . . . . . . . . . . . . . . . . 14
2.3 Microstructure morphology of non-granular materials . . . . . . . . . . . . . 18
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

II Micromechanical modelling of transport within unsaturated
porous media 29

3 Introduction to transport in unsaturated porous media 31
3.1 Evolution of water distribution within unsaturated granular materials . . . . 33
3.2 Water distribution within unsaturated sandstone . . . . . . . . . . . . . . . . 37
3.3 Liquid-gas interface in unsaturated porous media . . . . . . . . . . . . . . . 39
3.4 Disjoining pressure within water film . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Liquid water volume fractions at low saturation degree . . . . . . . . . . . . 54
3.6 Local solute diffusion in water film . . . . . . . . . . . . . . . . . . . . . . . 61
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



II CONTENTS

4 Micromechanical modelling of solute diffusion within unsaturated porous
media 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Empirical models for solute diffusion in unsaturated porous media . . . . . . 70
4.3 Micromechanical modelling of solute diffusion in saturated porous media . . 74
4.4 A first approach for solute diffusion in unsaturated porous media . . . . . . . 78
4.5 Enriched models for solute diffusion in unsaturated porous media . . . . . . 91
4.6 Experimental results analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Application: micromechanical modelling of solute diffusion in unsatu-
rated sand 121
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.2 Input information and assumptions . . . . . . . . . . . . . . . . . . . . . . . 122
5.3 Phase volume fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 Micromechanical modelling of fluid flow in unsaturated sandstone 135
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2 A review of advective transport in unsaturated porous media . . . . . . . . . 137
6.3 Micromechanics model for liquid flow in saturated porous media . . . . . . . 141
6.4 Micromechanics model for liquid flow in unsaturated Fontainebleau sandstone145
6.5 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

III Micromechanical modelling of freezing behaviors within
unsaturated porous media 163

7 Thermodynamics and poromechanics for freezing in porous media 165
7.1 Homogeneous nucleation and heterogeneous nucleation . . . . . . . . . . . . 166
7.2 Thermodynamic equilibrium within unsaturated porous media under freezing 168
7.3 Unfrozen water film in freezing porous media . . . . . . . . . . . . . . . . . . 178
7.4 Mechanisms and models for freezing porous media . . . . . . . . . . . . . . . 181
7.5 Poromechanics methodology for freezing in porous media . . . . . . . . . . . 187
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8 Micromechanical modelling of unsaturated freezing porous media 193
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.2 A thermoporoelastic model for saturated porous media . . . . . . . . . . . . 196
8.3 A micromechanics model for unsaturated freezing porous media . . . . . . . 200
8.4 An alternative micromechanics model for unsaturated freezing porous media 218
8.5 Some discussion and applications . . . . . . . . . . . . . . . . . . . . . . . . 221
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232



CONTENTS III

9 Application: Micromechanical modelling free swelling of cement paste
under freezing 235
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
9.2 Assumptions and boundary conditions . . . . . . . . . . . . . . . . . . . . . 236
9.3 Poroelastic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
9.4 Volume fractions of each phase within the cement paste sample . . . . . . . 239
9.5 Disjoining pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9.6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

10 Conclusions 249

Bibliography 253

Appendix 270

A Physical properties of water film 271
A.1 Viscosity of the water film . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
A.2 Structure and Density of water film on hydrophilic surface . . . . . . . . . . 273
A.3 Thermodynamic definition of disjoining pressure . . . . . . . . . . . . . . . . 274
A.4 Parameters for the disjoining pressure within the unfrozen water film . . . . 274

B Determining average concentration tensors of each phase 277
B.1 Eshelby’s problem in Linear Diffusion within unsaturated porous media . . . 277
B.2 Solutions of auxiliary Eshelby-type problems: diffusion case . . . . . . . . . . 278
B.3 Solutions of auxiliary Eshelby-type problems: flow permeability case . . . . . 282
B.4 Solutions of auxiliary Eshelby-type problems: multi scale . . . . . . . . . . . 285

C Eshelby-type problems in poroelastic porous media under freezing 287
C.1 Eshelby’s problem coupled with prestress and inhomogeneity under freezing . 287
C.2 Solution of Eshelby’s problem with Mori-Tanaka scheme . . . . . . . . . . . 288

D Levin’s theorem in unsaturated microporoelastic freezing porous media 291



IV CONTENTS



List of Figures

1.1 Schematic of the geometrical arrangement of each phases (a) at macroscopic,
(b) at microscopic scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Schematic illustration of the interface between non-wetting phase and wet-
ting phase, α denotes non wetting phase, β denotes wetting phase. . . . . . . 8

2.1 Two dimensional (2D) slice of morphology of the unsaturated glass bead
pictured by synchrotron based X-ray microtomography [62]. . . . . . . . . . 15

2.2 The micro-topography of the grain of Hanford gravel with scanning electron
microscope (SEM)[240]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Schematic illustration of several morphologies of the gravel grains [240]. . . . 18

2.4 Schematic representation of morphology of the sandstone, modified from [235]. 20

2.5 Schematic image of microstructue of clay, modified from [259]. . . . . . . . . 21

2.6 Schematic representation of microscopic arrangement of clay particles and
the corresponding micropores within a ped [150]. . . . . . . . . . . . . . . . . 22

2.7 Schematic representation of particles which are composed of lamellas and
interlayer space[150]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Schematic illustration of several elementary clay mineral units [172]. . . . . . 23

2.9 Scanning image of the polished section and the nano-indentation grid for a
cement paste at w/c = 0.5 [217]. . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Schematic representation of LD C-S-H and HD C-S-H, after [217]. . . . . . . 25

3.1 Schematic illustration of the evolution of water distribution within smooth
glass beads at different saturation degree, after [238]. . . . . . . . . . . . . . 34

3.2 Capillary water resided in grooves, pits on the rough surface [181, 243]. . . . 35

3.3 Schematic illustration of influence of surface characteristic on water distri-
bution at saturation degree 0.3, the domains surrounded by the red curves
are the capillary water, the grey domains are gas and the black domains are
sandstone grains [121]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Schematic representation of the overlapping of the two diffuse double layers
when approaching the charged surface [3]: left: thick film; right: thin film. . 45

3.5 Comparison of the electrostatic, Van der Waals and structural components
of the disjoining pressure of the quartz-NaCl aqueous film-air system, the
parameters are given in Table(3.1), M=1mol.L−1. . . . . . . . . . . . . . . . 51



VI LIST OF FIGURES

3.6 Relationship of the thickness of water film with relative humidity, tempera-
ture is 293K, experimental results are for pure water film-fused quartz sys-
tem, after Sumner et al. [229], the thickness of mono water molecular layer
is 2.8 Å [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Schematic illustration of the water distribution within cubic packing granular
material at low saturation degree, the surface of the grains is considered as
smooth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 Plot of evolution of the contributions of water film and pendular rings to
saturation degree Sr with variation of matrix potential ψ and Rs (10 mm, 1
mm, 0.1 mm, 10 µm, 1 µm), according to Eq.(3.37). . . . . . . . . . . . . . . 60

4.1 Evolutions of the normalized diffusion with saturation degree for several
porous materials, Dhom

Sr=1 is the effective diffusion coefficient in saturated
porous media, while Dhom is the diffusion coefficient in unsaturated case,
Sr is the saturation degree, a and b are the exponent cofficients, experimen-
tal results are after [6, 33, 159]. . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 The dependence of the tortuosity τ on the porosity ϕ. . . . . . . . . . . . . . 78

4.3 The influence of saturation degree on normalized homogenized diffusion coef-
ficient in one scale microstructure, notation DF denotes differential scheme,
MT denotes Mori-Tanaka scheme, SC denotes self-consistent scheme. . . . . 80

4.4 Schematic illustration of morphological models for porous media with two-
scale microstructure, SC denotes self-consistent scheme, MT denotes Mori-
Tanaka scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Influence of α on the evolution of Dhom with Sr in porous media with two-
scale microstructures; MT-MT, SC-SC and MT(level II)-SC (level I) cor-
respond to morphological models in Fig.(4.4)(a), (b) and (c), respectively;
Src

1 = 0.9, Src
2 = 0.7, Src

3 = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Influence of ϕ on the evolution of Dhom with Sr in porous media with two-
scale microstructures, Src

1 = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Evolution of ϕm with α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Schematic representation of different components of water phase and their
effects on solute diffusion in unsaturated porous media; the surface rough-
ness of solid grains is disregarded in the figure; the intergranular water is
decomposed into intergranular layer and pore body water; the intergranular
layer, the wetting layer and the water film are represented by "liquid layer"
in the following discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.9 2D idealization of diffusion flux in interface. . . . . . . . . . . . . . . . . . . 96

4.10 Morphological representation of 2D idealization of solute diffusion in unsat-
urated porous media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.11 Eshelby problem of spherical composite made up of a solid grain and a dif-
fusive interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.12 Dependence of
Dhom

pw

Dhom
ll

on ε, ϕ = 0.4, the constrictive factor δ = 0.5. . . . . . . 104



LIST OF FIGURES VII

4.13 Schematic representation of unsaturated porous media with a specific ma-
trix+inclusion morphology, this morphology corresponds to Mori-Tanaka
scheme, the matrix is liquid water, the fictitious macroscopic concentration
gradient H0 and the real macroscopic concentration gradient Hare linked by:
H0=H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.14 Effects on the evolution of homogenized diffusion coefficient with the satu-
ration degree, the homogenized diffusion coefficient is determined by Mori-
Tanaka scheme, Srll is related to ϕ and ε by Eq.(4.22). . . . . . . . . . . . . 108

4.15 Schematic representation of unsaturated porous media with a specific poly-
crystalline microstructure, this kind of morphology corresponds to self-consistent
scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.16 Influence of three parameters on the evolution of homogenized diffusion coef-
ficient Dhom with the saturation degree, the homogenized diffusion coefficient
is determined by self-consistent scheme; the curves terminate at Srll which
can be calculated by Eq.(4.22); when Sr < Srll, the liquid layer governs the
solute diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.17 Morphological representation of water distribution in unsaturated granular
material, Dhom and ργ are the homogenized solute diffusion coefficient and
solute concentration; the intergranular layer, the wetting layer and the water
film surrounded on the solid grains are specified to characterize the evolution
of the liquid layer during the desaturation process. . . . . . . . . . . . . . . . 116

4.18 Dependence of the normalized diffusion coefficient of nitrate on the various

saturation degrees. It should be noted that Sr1 =
φf + φwl

ϕ
, the green and

blue points are experimental results after [211]. . . . . . . . . . . . . . . . . 118

5.1 Morphological representation of unsaturated sand. . . . . . . . . . . . . . . . 123
5.2 Water retention curves for Beaver Creek sand (red curve) and Romkens’

sand (blue curve), the curves are fitted by Eq.(5.2). The capillary pressures
associated with residual saturation degrees are 20 KPa and 30 KPa for Beaver
Creek sand and Romkens’ sand, respectively. Experimental results are after
[159, 211]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Particle size distribution of Beaver Creek sand, the fitting curve are after
Fredlund et al.[106], the experimental results are after Bruch et al.[31]. . . . 128

5.4 Evolution of normalized homogenized diffusion coefficient with saturation
degree for Beaver Creek sand, experimental results are after [159]. . . . . . . 130

5.5 Evolution of normalized homogenized diffusion coefficient with saturation
degree in Romkens’ sand, experimental results are after [211]. . . . . . . . . 132

6.1 Schematic illustration of the intergranular water in Fontainebleau sandstone:
the intergranular water is idealized as interconnected intergranular layer sur-
rounding the solid grains, e is the thickness of the intergranular layer. . . . . 146

6.2 Schematic illustration of morphology of the unsaturated sandstone; to char-
acterize the evolution of the intergranular layer → the wetting layer → the
water film during desaturation process, all these three kinds of water are
superposed on the solid grain. . . . . . . . . . . . . . . . . . . . . . . . . . . 147



VIII LIST OF FIGURES

6.3 Schematic representation of the filtration velocity profile of the water film
flow on the plat plane, h is the thickness of water film. . . . . . . . . . . . . 149

6.4 The evolution of ζ with porosity ϕ at Sr = 1, the other parameters are given
in the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5 The evolution of the saturated intrinsic permeability coefficient Khom(Sr =
1) with porosity ϕ for Fontainebleau sandstone; the blue curve is Mavko’s
modified Kozeny-Carman model with fitting percolation porosity ϕp = 2%,
tortuosity τ = 2.5 and D=250 µm (Eq.(6.30)) [168]; the black circle points
are experimental results from 240 samples with different porosities [25], the
red diamond points are after [84], the green diagonal cross points are after
[115]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.6 The evolution of the ζ with saturation degree Sr, ϕ = 0.095, the other
parameters are given in the figure. . . . . . . . . . . . . . . . . . . . . . . . . 159

6.7 The evolution of the relative permeability coefficient Khom/Khom
Sr=1 with sat-

uration degree Sr for Fontainebleau sandstone (red curves); the fitting pa-
rameters of Brooks-Corey’s model and Van Genuchten’s model are given in
[65]; the black circle points are from experiments in [65]. . . . . . . . . . . . 160

7.1 Schematic illustration of unsaturated porous media under freezing. . . . . . 170
7.2 Phase diagram of water, modified from [4] . . . . . . . . . . . . . . . . . . . 174
7.3 Sketch of progressive penetration of ice in interconnected pores. . . . . . . . 177
7.4 The disjoining pressure of the unfrozen water film between ice and fused

quartz surface. The solid line is the disjoining pressure calculated by the
DLVO theory (Eq.(7.19)), the dotted line is the structural component given
by Eq.(3.22), the colored points are experimental results of the ice-unfrozen
water film-quartz system after Churaev et al. [45]. . . . . . . . . . . . . . . . 181

7.5 Schematic representation of crystallization pressure exerted on the cylindrical
pore wall, modified from [220]. . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.6 Schematic illustration of disjoining pressure of water film within crystallized
pores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.1 Morphological illustration of the freezing in unsaturated porous media . . . . 201
8.2 Components of the equivalent pressure peq

ω (r) during freezing, ω∈ {f,l,g}. . . 211
8.3 Schematic representation of the crystallization in pore . . . . . . . . . . . . . 230

9.1 Pore size distribution and cumulative curve of cement paste [262]. . . . . . . 240
9.2 Dependence of the thickness of unfrozen water film on temperature, deter-

mined by Eq.(9.11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
9.3 Dependence of the disjoining pressure and liquid pressure on temperature,

the disjoining pressure is determined by Eq.(9.13) while the liquid pressure
for the undrained case is determined by Eq.(9.2). . . . . . . . . . . . . . . . 244

9.4 Evolution of the percentages of each phases with the temperature, the per-
centages of each phase are defined as their volume fractions divided by porosity.245

9.5 Evolution of the strains of the cement paste with the temperature during
freezing process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

9.6 Comparison of pore size distributions of mortar derived by MIP, TPM and
NAD, after Sun et al. [232]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 248



LIST OF FIGURES IX

A.1 The variation of viscosity within confined water film, calculated with Eq.(A.1)
at temperature T= 298 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

B.1 Schematic illustration of the spherical composite inclusion with three shells;
Ci denotes i − th domain, the quantity in the bracket is solute diffusion
coefficient within i-th domain, i ∈ { 0, 1, 2, 3,4 }; in this case Ds → 0, H0 is
the fictitious uniform concentration gradient; e, t and h are the thicknesses
of the intergranular layer, the wetting layer and the water film, respectively. 279

B.2 Schematic illustration of the spherical composite inclusion with one shell, Ci

denotes i-th domain, the quantity in the bracket is solute diffusion coefficient
within i-th domain, i ∈ {0, 1, 2}, in this case Ds → 0. . . . . . . . . . . . . . 281

B.3 Schematic illustration of the pore water spherical inclusion. . . . . . . . . . . 281
B.4 Schematic illustration of the spherical composite inclusion with two shells

in flow permeability problem; Ci denotes i− th domain, the quantity in the
bracket is permeability coefficient of i-th domain, i ∈ { 0, 1, 2, 3, 4 }; in this
case Ks → 0; ∇P0 is the fictitious uniform pressure gradient. . . . . . . . . . 283



X LIST OF FIGURES



List of Tables

2.1 Characteristics of several common elementary clay mineral units [259] . . . . 26

3.1 Parameters for the quartz-NaCl aqueous film-air system . . . . . . . . . . . . 50

4.1 Summary of material characteristics and used solutes [33, 159]. . . . . . . . 71
4.2 Several empirical unsaturated diffusion models . . . . . . . . . . . . . . . . . 73
4.3 Homogenized solute diffusion coefficient within saturated porous media with

different schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 Volume fractions of each phase within multi scale porous media. . . . . . . . 85
4.5 Characteristics of two kinds of granular material [211]. . . . . . . . . . . . . 115
4.6 Volumetric fraction of each phase within unsaturated granular material. . . 117

5.1 Characteristics parameters for sand and solution[159, 211] . . . . . . . . . . 124
5.2 Fitting parameters for two kinds of sand . . . . . . . . . . . . . . . . . . . . 126

6.1 Several commonly used models for unsaturated permeability coefficient . . . 140
6.2 Volume fractions of each phase within unsaturated Fontainebleau sandstone 155
6.3 Characteristics of Fontainebleau sandstone [64] . . . . . . . . . . . . . . . . 158

9.1 Fitting parameters for pore size distribution function of cement paste, adopted
from [262]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

9.2 Some parameters used in the simulation . . . . . . . . . . . . . . . . . . . . 243
9.3 The evaluated poroelastic properties by Mori-Tanaka scheme . . . . . . . . . 243

A.1 Calculated parameters of disjoining pressure at different temperature ranges,
after Churaev et al. [46]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275



XII LIST OF TABLES



Part I

General introduction





Chapter 1

Problems position

Contents

1.1 Research background . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Micromechanics methodology . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Difference between macroscopic poromechanics and micromechanics 5

1.2.2 REV and average procedure in micromechanics . . . . . . . . . . 6

1.3 Phase interfaces within unsaturated porous media . . . . . . . 7

1.4 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Research background

Porous media are heterogeneous materials composed of solid phases as well as pore

space. They can be categorized as two types: -natural materials such as rock, soil, bones

and wood; -man made materials such as ceramics, plaster, cement, etc [2]. The concept

of porous medium is used in many areas of applied science and engineering, such as en-

vironmental engineering, petroleum geophysics, civil engineering, geotechnical engineering,

biomechanics, food industry, etc [2].

As pointed out by Coussy [58], despite the diversity of materials and fields, all porous
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media have one thing in common for all applications: they may be subjected to the same

chemo-physical coupled processes such as swelling induced by freezing, shrinkage induced

by drying, expansion induced by osmosis, etc. Due to these phenomena, studying the

behavior of porous media is interdisciplinary in nature.

Generally, the macroscopic behaviors and transport properties are the functions of sat-

uration degree (or water content), which is determined by the pore size distribution and

relative humidity.

Compared with saturated situation, the unsaturated cases are more common in engi-

neering domains. Indeed, the mechanical behaviors and transport behaviors of unsaturated

porous media have been more and more studied for decades [36, 58, 64]. Numerous inves-

tigations are devoted to understand the properties and thus the behaviors of unsaturated

porous media [22, 58, 60, 82, 104]. In our work, two special cases for unsaturated porous me-

dia are specified: transport in unsaturated porous media and then freezing in unsaturated

porous media.

As a special case, the hydro-mechanical behaviors of saturated porous media were exten-

sively investigated for decades. Originally put forward by Karl von Terzaghi in 1936 [236],

the effective stress Σ + 1P was introduced to study the consolidation of water saturated

soil layer. According to Biot [19], a generalized effective stress can be expressed as a linear

superposition of total stress Σ and the effect of pore pressure BP that is, Σ + BP . B is

the Biot tensor, which accounts for the effect of the pore pressure. Indeed, Terzaghi model

is a special case of Biot’s model on the premise of incompressible solid skeleton, B = 1.

After the outstanding work of Biot [19], macroscopic poromechanics has been recognized

as an effective tool to study the behaviors of porous media. Since then, it has been widely

employed in the fields of geotechnical engineering, geological engineering and petroleum

engineering [58].
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1.2 Micromechanics methodology

As an alternative, micromechanics approach has be used widely in the transport and

mechanics problems [79, 113, 114]. It starts at local scale where microstructure morphol-

ogy and local phase behavior are explicitly characterized from a physically-based analysis.

Average operations are then introduced to derive the upscaled properties which control the

behaviors of porous media.

1.2.1 Difference between macroscopic poromechanics and

micromechanics

The porous medium consists of different constituents such as solid and in-pore phases

(the latter can here be liquid, gas or ice crystal). Within the porous medium, these phases

exhibit a heterogeneous microstructure. In the context of macroscopic poromechanics, all

these phases are macroscopic particles and are regarded as geometrically coincident. From

the macroscopic point of view, as shown in Fig(1.1)(a), the REV is regarded as superposition

of these particles in space and time [82].

On the contrary, micromechanics considers the heterogeneous structure of REV explic-

itly, in which the solid and fluid phases are geometrically distinct (as shown in Fig.(1.1)(b)).

In other words, within the framework of the micromechanics, the refinement of the geomet-

ric description of the microstructure is required.

The difference between the Poromechanics and Micromechanics lies in treating the

heterogeneous material with distinct geometric definition of representative elementary

volume (REV).
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Figure 1.1: Schematic of the geometrical arrangement of each phases (a) at macroscopic,
(b) at microscopic scale.

1.2.2 REV and average procedure in micromechanics

The REV is a continuous domain of a three dimensional material which should be

defined as [82]:

— Small enough at the macro scale, and can be treated as a point of macro heteroge-

neous material.

— Large enough at the local scale, so as to contain a large number of inhomogeneities

and to be representative for the microstructure of the material.

More rigorously, if the characteristic sizes of the structure, the REV and local hetero-

geneities can be denoted as L, l and d, respectively, the concept of REV requires [82]:

— l ≪ L, which makes sure the relevance of the use of the tools of differential calculus

offered by a continuum description.

— d ≪ l so that the REV can capture all the informations in a statistical sense. The

informations concern the geometrical and physical properties of porous media.
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In summary, for the concept of REV to be valid, a condition for scale separation can be

expressed as [82]:

d ≪ l ≪ L (1.1)

Let Ω be the standard notation for the REV, the average of a physical quantity at local

scale denoted by a(z) over Ω can be expressed as [82]:

< a >=
1

|Ω|
∫

Ω
a(z)dΩ (1.2)

1.3 Phase interfaces within unsaturated porous

media

For unsaturated porous media, the pore space is not occupied by one single fluid phase.

As shown in Fig.(1.2), during phase transition in porous media, a meniscus immediately

forms at the interface between non wetting phase (denoted as α phase) and wetting phase

(denoted as β phase). The surface tension along the interface induces a stress vector discon-

tinuity ([σ].n) between two different phases. At local scale, the stress vector discontinuity

may be derived from the momentum balance equation as [82]:

[σ].n+ divσm = 0 (1.3)

where n is the unit vector normal to the interface Iαβ; [σ] is the stress difference between

α phase and β phase, if we assume n orientates towards α phase, then [σ] = σα − σβ, σα

and σβ is the stress tensor within α phase and β phase, respectively; σm is the membrane

stress tensor at the interface Iαβ between the α phase and β phase, it can be expressed as

[82]:
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σm = γαβ
1T with: 1T = 1 − n⊗ n (1.4)

With introduction of the tensor of curvature of interface, defined by b = −gradn,

inserting Eq.(1.4) into Eq.(1.3), we have [82]:

[σ].n+ γαβ(1T : b)n = 0 (1.5)

Figure 1.2: Schematic illustration of the interface between non-wetting phase and wetting
phase, α denotes non wetting phase, β denotes wetting phase.

The surface tensions that are generated along the fluid-fluid and solid-fluid interfaces

induces deformation, which affects the macroscopic behavior of unsaturated porous media.

Two different interfaces: water-vapor interface and water-ice interface will be addressed

hereafter, water being the wetting phase in both cases. In association with pore size distri-

bution, they will play a significant role in determining the liquid saturation degree during

desaturation (Chapter (3) to Chapter (6)) and the ice saturation degree during freezing
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processes (Chapter (7) to Chapter (9)), respectively. This stress continuity in unsaturated

transport problem (liquid-gas interface) and freezing problem (liquid-ice interface) is com-

bined with thermodynamic equilibrium expression by Kelvin equation and Gibbs-Thomson

equation, which will be introduced respectively in Section(3.3) and Section(7.2).

1.4 Research motivation

Currently, numerous empirical models are employed to analyse the transport properties

and behaviors of unsaturated porous media. The drawbacks of these models lie in the

fact that the basic phenomena remain poorly understood, since all of these models are

phenomenological in nature. On the contrary, as stated in previous section, micromechanics

approach starts at local scale where microstructural morphology and local phase behavior

are explicitly characterized. Micromechanics approach is developed throughout this work

to investigate the transport properties as well as freezing behaviors of unsaturated porous

media.

In addition, physical characterization at local scale is greatly emphasized in this work.

In order to study the transport properties and freezing behaviors of unsaturated porous

media, the local physics is related to the existence of a water film (resp. unfrozen water

film), which is a special phase in vicinity of the solid/pore interface within unsaturated

porous media. Moreover, disjoining pressure within unfrozen water film is also incorporated

in the micromechanics model to investigate the freezing behaviors of porous media.

The aim of the present research work is twofold:

— 1 Establishing a micromechanics model for transport properties (solute diffusion,

flow permeability) within unsaturated porous media.

— 2 Building a thermoporoelastic model as well as a micromechanics model for freezing

within unsaturated porous media.
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1.5 Outline of the thesis

The present work is organized in four parts:

PartI: General introduction: After the presentation in this chapter, a review of

several microstructural morphologies of granular material and non-granular material is pre-

sented and discussed in chapter 2.

PartII: Micromechanical modelling of transport within unsaturated porous

media: In chapter 3, physical characterization of the transport in unsaturated porous me-

dia at local scale has been summarized and presented. In this chapter, we focus on the

characterization of the evolution of water distribution with the saturation degree. The

disjoining pressure in water film and local diffusion will be introduced also in this chapter.

In chapter 4, we start from a review of empirical models for solute diffusion in unsaturated

porous media. Then, micromechanics models for solute diffusion in unsaturated porous me-

dia are introduced and discussed. Furthermore, micromechanics models for solute diffusion

are employed to analyse the experimental results. In chapter 5, micromechanics model is

employed to simulate the solute diffusion in two kinds of unsaturated sand. Similarly to

chapter 4, chapter 6 starts with a review of the existing empirical models for flow perme-

ability in unsaturated porous media. Based on the introduction of water phase distribution

within unsaturated porous media in chapter 4, a micromechanics model for fluid perme-

ability in unsaturated sandstone is introduced and discussed. The micromechanics model

for flow permeability is used to explain the Kozeny-Carman equation theoretically.

PartIII: Micromechanical modelling of freezing behaviors within unsaturated

porous media: In chapter 7, a comprehensive knowledge of freezing is introduced and

discussed. In this chapter, thermodynamic equilibrium as well as mechanisms and models

for freezing porous media are presented and discussed. The poromechanics approach for

freezing derived by Coussy is first reviewed; this model will be used to compare with our

following micromechanics model for freezing porous media. After comprehensive knowledge

of freezing porous media, chapter 8 starts with a thermoporoelastic model which accounts
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for the thermal effect. Based on this thermoporoelstic model, micromechanics models for

freezing porous media are introduced and discussed. In chapter 9, a micromechanics model

for freezing porous media is employed to simulate the free swelling cement paste with

undrained boundary condition.

A general conclusion is eventually summarized and presented.
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Chapter 2

Microstructural morphological

characterization of porous media

Contents
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2.1 Introduction

Random porous materials such as geomaterials exhibit a multiphase composite nature,

characterized by water-filled pores of nm- to m-scale diameter [54]. The physical charac-

terization as well as microstructural morphology of the unsaturated porous media at local
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scale are of paramount importance for investigating the macroscopic behavior of porous

media by using micromechanics methodology. Microstructural studies are more and more

used to improve the understanding of the macroscopic behaviors and physical properties of

porous media in practical engineering. Microstructural studies involve the use of technique

device to investigate the arrangement and distribution of particles, the corresponding pores

as well as their contacts and connectivity at particle scale. In reality, owing to the hierar-

chical nature of the geomaterial, multi scale microstructure should be specified at different

length scales.

In this chapter, we present morphological characterizations of several geomaterials. In

the Section(2.2), the microstructural morphology of granular material is introduced. Then,

a review of the more complicated morphologies of non-granular materials such as clay and

cement paste will be presented and discussed in Section(2.3).

2.2 Microstructure morphology of granular materials

Compared with other sophisticated microstructure of porous media such as cement

paste, microstructural morphologies of the granular materials are better characterized and

less controversial. Herein, the morphologies of several granular materials such as glass beads

and gravel are introduced.

The water distribution within these materials is crucial to their transport properties

and behavior in the unsaturated case. This is the purpose of the Chapter 3, in which water

distribution within different porous media will be presented.

2.2.1 Glass beads

Glass bead assemblages exhibit a relatively simple morphology characterized by a one-

scale microstructure. This structure is classically determined by the geometric packing

of the glass beads. Nowadays, thanks to the scanning device and image reconstruction

techniques, a better understanding of the structure is possible [11, 184]. A slice of the cross
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section of an unsaturated glass bead column, pictured by means of the synchrotron based

X-ray microtomography, is presented in Fig.(2.1) [62]:

Figure 2.1: Two dimensional (2D) slice of morphology of the unsaturated glass bead pictured
by synchrotron based X-ray microtomography [62].

As seen from Fig.(2.1), a morphological observation of the unsaturated glass bead may

be presented according to the grayscales:

— The gray phases are glass beads, which defines the skeleton of the granular material.

The grain size distribution: 1-1.4mm 30%(in weight), 0.85mm 35%, 0.6mm 35%.

— The white (lightest) phases are the KI doped solution phase which is the main mass

transport pathway of porous media.

— The darkest phases (black) denote the pore spaces occupied by the gas [62].

Within the pores filled by gas, the contact areas of the grains are surrounded by menisci

(pendular rings) which arise from the capillary effects.

It should be noted that, because of the limitation of the image resolution, the water

film adsorbed on the surface of glass beads surrounded by the gaseous phase can not be
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observed in Fig.(2.1).

Another morphological information concerning the glass beads is related to their surface

roughness. Indeed, at very low water content, a certain amount of capillary water may be

trapped in local menisci due to capillary effects. Hence, it may become an active pathway for

mass transport at low water content. The glass beads of Fig.(2.1) were artificially polished

to be smooth. However, the real geomaterials such as sand, gravel and sandstone clearly

exhibit local roughness properties. Hence, the capillary water trapped in local roughness

should be accounted for at low water content.

2.2.2 Gravel

Gravel is composed of unconsolidated rock fragments that generally have grain sizes

ranging from 2mm to 64mm. Gravel deposits are common geological products, being formed

as a result of the weathering and erosion of rocks [1]. Gravel is a substantial material that

is widely used in agriculture, industry, and construction [240]. Though its substantial

role in human activities, there is still little knowledge about its hydraulic and diffusive

transport properties in unsaturated conditions [126, 240]. Therefore, the information about

the morphology of the gravel at local scale is essential to get some new insight of its

macroscopic properties.

As a kind of granular material, the distinct characteristic morphology of gravel may lie

in its special external surface morphology and intra-granular porosity. Some topographic

pictures of the external surface and intragranular morphologies for Hanford gravel are de-

picted in Fig.(2.2). Tokunaga et al. [240] used several experimental devices such as scanning

electron microscope (SEM), laser profilometry and atomic force microscope (AFM) to in-

vestigate the special morphologies of the external surfaces and intragranular domain of the

Hanford gravel grains. Their results can be summarized as [240]:

— Macroscopic scale:

The gravel is granular material at macroscopic scale. The characteristic sizes of

the Hanford gravel grains in two samples are 2 mm and 6 mm, respectively [240].
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(a) The morphology of the external surface of
grain.

(b) The microstructure of the polished cross
section of the gravel grain, where the white do-
main is the void, meanwhile the other parts are
matrix of the grains.

Figure 2.2: The micro-topography of the grain of Hanford gravel with scanning electron
microscope (SEM)[240].

Besides, the magnitude of intergranular pore size is of the same order as that of solid

grains.

— Mesoscopic scale:

On the external surface of Hanford gravel, there exists a root mean-squared rough-

nesses (rmsr) in the micron range, with sparsely distributed deep (hundreds of mi-

crometers) pits (as shown in periphery of the grain in Fig.(2.2)(b)).

The intraporosity of Hanford gravel is about 10% of the total porosity. As shown in

Fig.(2.2)(b), the intragranular pores are composed of the sparsely distributed voids

(hundreds of micron) connected by rather small pore groups. The specific surface

of Hanford gravel is estimated to be about 11m2.g−1, which is higher than that of

same material without intraporosity.

Due to the intragranular and intergranular porosity, gravel can be regarded as a dual

porosity porous media.

The aforementioned morphological observation is dedicated for Hanford gravel. For
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different types of gravel, by determining the intraporosity as well as characterizing the to-

pography of the external surface, all of the morphologies of gravel grains can be categorized

as the following six types in Fig.(2.3) [240].

Figure 2.3: Schematic illustration of several morphologies of the gravel grains [240].

As seen from Fig.(2.3), gravel can be categorized according to the external surface

roughness and intragranular pore network. Several sophisticated devices such as SEM and

AFM as well as the image process technique should be employed to qualitatively characterize

the morphology of gravel.

2.3 Microstructure morphology of non-granular

materials

Non-granular materials commonly encountered in the practical engineering domain, ex-

hibit more complicated morphology: multi scale microstructures and spatial configurations

of the phases.
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2.3.1 Sandstone

Sandstone is universally encountered in petroleum engineering and geological engineer-

ing. Sandstone may be identified as the final product of a series of complicated geological

and hydrodynamical processes [11]. The processes start with erosion of the quartz-bearing

rocks [11]. Then sand grains in the sandstone are transported via air, water flow and ice

[11]. Finally the sand grains are deposited in sedimentary basins [11].

Sandstone is mainly composed of sand, cementing matrix, pore filling clay, interface

and macro pore space. The morphology of sandstones strongly depends on its mineralogy.

Based on the content of pore filling clay, sandstone can be classified as two main categories:

Arenites which are ”clean” sandstones that are free of or have very little clay (≤ 15%);

Wackes are "dirty" sandstones that have a significant amount of clay (≥ 15%) [199].

The arrangement and distribution of the sand and clay should be investigated clearly

before establishing any microstructure model. A schematic model based on the picture

of the backscattering electron microscope is presented for capturing the morphology of

sandstone, as shown by the Fig.(2.4). The morphological characterization of sandstone can

be summarized as:

— Sand grains range from 2mm to 1/16mm in diameter. The behavior of the sand

grains depends on its mineral compositions which can be categorized as: quartz,

feldspar and lithic fragments and other accessory minerals [23].

— Cementing matrix is mainly the quartz which is formed surrounding the sand grains

owing to the geological process. Cementing matrix greatly influences the porosity of

the sandstone [23].

— Pore filling clay is formed between the grains. This information (clay content) is

expected to play a significant role on the transport properties of sandstone.

— Interface (cement): it is the domain where adjacent grains are bound together.

Interface is a secondary mineral that forms after deposition and during the burial

of sandstone [23]. There are four common types of interface: silica, limonite, calcite
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Figure 2.4: Schematic representation of morphology of the sandstone, modified from [235].
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and clay minerals [23]. The mechanical behavior of sandstone is determined by the

types of the interfaces.

— Pores are usually under the form of intergranular pores (macro pores) and micro-

pores within the pore filling clay or interfaces. As shown in the lower part of Fig.(2.4),

the pore size distribution of the sandstone presents a dual porosity property.

2.3.2 Clay

Clay is a general term covering clay minerals, metal oxides and other organic chemicals

[172]. The characteristic size of solid components (particles) is finer than 2 µm in diam-

eter as categorized by geologists [18]. Clay is a natural material which is used widely in

geotechnical engineering, geological engineering and agriculture field. Clay is a complicated

hierarchical porous medium the morphology of which can be analysed at the macro scale,

micro scale and nano scale:

Figure 2.5: Schematic image of microstructue of clay, modified from [259].

— Macroscopic arrangement of clay [259]:

At this scale, as shown in Fig.(2.5), clay matrix is composed of the packing arrange-

ment of the clay peds. The macro pores are the voids between these clay peds. The
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size of the peds are at the order of 0.1 mm [150].

— Micro scale observation [259]:

As shown in Fig.(2.6), each clay aggregate consists of several clay particles in ran-

domly distributed and the corresponding meso pores formed by these clay particles.

As observed by Krohn et al. [150], the characteristic size of the particle is several

µm.

— Nano scale observation [259]:

At this scale, each lamella is composed of interlayer with a characteristic thickness of

several nanometer. In this scale, each lamella can also be specified as stacked elemen-

tary clay mineral units in parallel array (red dotted curve as shown in Fig.(2.7)).

The elementary clay mineral units based on these different arrangements can be

classified as four main types in the Table(2.1).

— Owing to the hierarchical nature of the clay structure, the pores in clay can be

separated as macro pores formed by the packing of peds in clay matrix, micro pores

formed by the packing of the particles within peds and the nano meter pores of the

interlayer formed by the arranging of lamellas within particles [150]. Thus, it can

be inferred that the pores size distribution of the clay appears triple porosity lying

on the different scale of the pores.

Figure 2.6: Schematic representation of microscopic arrangement of clay particles and the
corresponding micropores within a ped [150].
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Figure 2.7: Schematic representation of particles which are composed of lamellas and in-
terlayer space[150].

(a) Kaolinite (b) Illite

(c) Montmorillomite (d) Vermiculite

Figure 2.8: Schematic illustration of several elementary clay mineral units [172].
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2.3.3 Cement paste

Extensive studies have increasingly focused on the microstructure of the Portland ce-

ment paste by means of non-destructive techniques such as electron optical microscope[41],

X-ray diffraction techniques [41], scanning electron microscopy [48, 51], X-ray transmission

microscopy [138, 209, 210], atomic force microscopy (AFM) [110]. In addition, instrumented

indentation [54] is a promising technique to quantify the elastic properties of each phases

of the microstructure. Based on all these experimental techniques, micromechanics should

become a more and more efficient methodology.

The microstructure of the hardened cement paste is rather complex owing to its close

connections with time, cement components and the curing conditions [136]. Generally,

hardened Portland cement paste is the final hydration product between the cement clinkers

and water [136]. Depending on the hydration degree, the microstructure of the hardened

portland cement paste mainly consists of calcium silicate hydrates (C-S-H) which bind other

components such as remainning anhydrous cement clinkers, Portlandite (CH), Aluminates

(Al) together [136]. Taplin [234] has initially proposed a C-S-H model which specifies

the hydration products (C-S-H) as outer and inner products. Outer products form in

the original water filled pore space while inner products are accumulated surrounding the

original cement clinkers. With the further understanding of the structure of the C-S-H,

Jennings [136, 137] has proposed a more sophisticated model in which C-S-H is arranged in

elements with size of 4nm. Jennings’ model distinguishes the HD C-S-H (high density C-S-

H) and LD C-S-H (low density C-S-H) [136, 137]. HD C-S-H is composed of the adjacent

elements and small gel pores between the former [136, 137]. LD C-S-H is composed of the

groups of elements and the corresponding large pores between the former [136, 137].

Therefore, owing to the multi structure of the cement paste, the morphology of the

cement paste may be subdivided into the following two scales [112, 217]:

— Scale 1 (1 µm-100 µm) cement paste: as shown in Fig.(2.9), a clear phase distribution

can be seen in the polished section of cement paste. At this scale, the cement paste is
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Figure 2.9: Scanning image of the polished section and the nano-indentation grid for a
cement paste at w/c = 0.5 [217].

composed of the anhydrous cement clinkers (white domain), HD C-S-H surrounding

anhydrous cement clinkers (gray areas surrounding white domain),LD C-S-H (gray

and black mixed areas), portlandite crystals (light gray areas) and the macro pores

(black areas in LD C-S-H) [217]. The distinct morphology of the HD C-S-H and

LD C-S-H shown in the left figure of the Fig.(2.9) is verified by more sophisticated

nano-indentation results shown in the right figure [217].

Scale 2 cement matrix: microstructure of CSH.

Either HD C-S-H or LD C-S-H is made up of ”elementary bricks”, the size of which

is measured to be 60 × 30nm by 5nm thick [110]. As illustrated in Fig.(2.10), the

HD and LD C-S-H come from the different spatial arrangement of the elementary

bricks. The gel pores within the HD C-S-H is approximated to be ranged from 5 to

60 nm [217]. The pores within the LD C-S-H include gel pores and capillary pores,

whose sizes range from 50 nm to 20 µm [217].

Figure 2.10: Schematic representation of LD C-S-H and HD C-S-H, after [217].
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Table 2.1: Characteristics of several common elementary clay mineral units [259]

Classification Kaolinite Illite Montmorillomite Vermiculite

Composition of Layer 1:1 2:1 2:1 2:1
(Silica:Alumina sheet)

Shape 1 6-sided flakes Flakes
Equi-dimensional
Flakes

Flakes

Schematic Illustration Fig.(2.8) a Fig.(2.8) b Fig.(2.8) c Fig.(2.8) d

Interlayer Bond
Strong hydrogen
bonding

Strong K+ bonding Weak bonding Weak bonding

Size of particle 2 0.1 − 4µm×
0.05 − 2µm

0.003 − 0.1µm× up to 10µm
≥ 1 nm × up to
10µm

Not specified

1 After [172].
2 Size of lamella arranged as Fig.(2.7), After [172].
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2.4 Summary

Several microstructure morphologies of geomaterials are presented in this chapter. They

are based on the observation by means of sophisticated technique devices. The morphology

of the solid microstructure is not specially accounted for by the multi scale microstructure

in this work. On the contrary, owing to the significant role of the water distribution in the

transport and freezing problems, the water distribution morphology will be paid special

attention to in this work and will be discussed in the next chapter. Therefore, as a first

approximation, the microstructure information is interpreted by pore size distribution or

grain size distribution in this work.
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The morphological distribution of the liquid water within a porous medium is essential

to well understand and analyse the solute diffusion and advective transports within porous

media. As pointed out by Tokunaga et al. [238], the distribution of water relative to other

immiscible fluids is of interest in hydrogeology, subsurface water isolation using capillary

barriers, petroleum engineering, and geologic carbon sequestration.

At varied saturation degree, water in porous media exhibits not only different configura-

tions but also distinct transport mechanisms [238]. Therefore, studying the evolution of the

water distribution during imbibition and drainage processes is of prior importance in trans-

port problems. Section(3.1) and Section(3.2) are devoted to the physical characterization

of the evolution of water distribution within unsaturated granular materials and sandstone

at local scale. These sections show the necessity to quantify the equilibrium between liq-

uid water and its vapor, which is described in Section(3.3). These sections also underline

the influence of the water film localized on the solid/pores interface, the properties and

behaviors of which are specified in the following three sections. The physical background

associated with the local disjoining pressure which is likely to govern the internal state

of stress within the water film is summarized and discussed in Section(3.4). In addition,

a disjoining pressure model is proposed to estimate the thickness of water film. On the

premise of the information about water film and pendular rings presented in the previous
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sections, to quantitatively compare the volume fractions of pendular rings and water film

at low saturation degree, a simple cubic packing model is proposed in Section(3.5). At last,

as an introduction to the forthcoming analysis in Section(4.5), the question of the local

solute diffusion in water film is addressed in Section(3.6).

3.1 Evolution of water distribution within

unsaturated granular materials

This section is devoted to the physical characterization of the water distribution evolu-

tion in unsaturated granular materials. First, we consider unsaturated granular materials

with smooth grain surface. The effect of pendular rings within granular materials is em-

phasized during desaturation process 1. Next, the surface morphology (roughness) of the

granular material is accounted for during desaturation process.

3.1.1 In the case of smooth surface

A schematic illustration of the evolution of water distribution in granular materials with

smooth surface at varied saturation degree is presented in Fig.(3.1). According to the latter,

Tokunaga [238] distinguished three types of water configuration and transport mechanisms

in unsaturated granular materials. They are listed as follows [238]:

— Fig.(3.1)(a) illustrates the fully saturated pore network. In this case, the intergran-

ular water is interconnected and governs the transport phenomena. Generally, the

intergranular pore space may be categorized as pore body and pore throat. The latter

governs the connectivity of intergranular water and the fluid transport in saturated

case. To ensure the connectivity of intergranular water at high saturation degree,

the intergranular water may be decomposed into intergranular layer 2 surrounded

1. In this work, to avoid discussing the hysteresis phenomena induced by progressive desaturation
(drainage) and saturation (imbibition) processes, the evolution of water distribution is only characterized
under drainage process.

2. Owing the polycrystalline morphology of granular material, the homogenized transport properties
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Figure 3.1: Schematic illustration of the evolution of water distribution within smooth glass
beads at different saturation degree, after [238].

the solid grains and pore body water.

— Fig.(3.1)(b) depicts the water distribution at intermediate saturation degree 3. In

this case, liquid water in macro intergranular pores has been drained, while there are

still pendular rings trapped in the vicinity of the grain contacts. The pendular rings

are interconnected and they will play a central role in the definition of transport

laws.

— Fig.(3.1)(c) illustrates water distribution at low saturation degree 4. In this case,

the pendular rings are discontinuous and connected by adsorbed water film. In this

case, the adsorbed water film is expected to dominate the transport phenomena.

(e.g., homogenized diffusion coefficient and homogenized permeability coefficient) are estimated by self-
consistent scheme. To ensure the connectivity of the intergranular water, part of the intergranular water
is attached on the solid grain which is denoted as intergranular layer.

3. Intermediate saturation degree is a qualitative concept. It defines a range of saturation degree where
the interconnected pendular rings (instead of pore water) govern the transport. Though it is not illustrated
in Fig.(3.1)(b), there may be also some capillary water in smaller pores.

4. Low saturation degree characterizes a range of saturation degree in which the water film governs the
transport.
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3.1.2 The effect of surface characteristics

As shown in Fig.(3.1)(c), the pendular rings become discontinuous at a critical sat-

uration degree. In the monodisperse close packing spherical grains system, the critical

saturation degree is estimated as 24.3% by Fisher et al.[103].

However, in the real granular materials such as sand and sandstone, the grains surface

characteristics (as shown in Fig.(3.2)) clearly influence the water retention and consequently

the unsaturated transport at intermediate saturation degree. Indeed, owing to surface

roughness of solid grains, in addition to the water film, capillary water trapped at grooves

and concaves (depicted in Fig.(3.2)) on the solid surface will also connect the isolated

pendular rings at intermediate saturation degree [181].

Figure 3.2: Capillary water resided in grooves, pits on the rough surface [181, 243].

The capillary water trapped at pore corner (pendular rings) and grooves on solid surface

have been observed by Lenormand et al. [156]. From the thermodynamics point of view,

the wetting layers trapped in pendular rings and grooves on grain surface are stabilized

by capillary pressure and have a typical thickness of the micron, which is far smaller

than the characteristic size of the grains [22]. This capillary water is considered to be



36 Introduction to transport in unsaturated porous media

interconnected at intermediate saturation degree and can support very high flow rates

[22, 152, 181, 238, 240–243, 243].

The adsorbed water film is stabilized by the surface force (or disjoining pressure which

will be introduced in the sequel) and are typically nanometers thick [22]. When the

relative humidity is low enough, the trapped capillary water on the surface grooves, pits

and pendular rings will become discontinuous. In this case, the water film will interconnect

the isolated trapped capillary water and play a significant role in transport.

Definition of wetting layer surrounding the solid grain

To emphasize the important role of the interconnected capillary water at inter-

mediate saturation degree, the interconnected capillary water which consists of

pendular rings, trapped capillary water in the grooves and pits on the grains

surface is denoted as wetting layer.

Due to the size dependence of the flow permeability, at intermediate saturation

degree, compared to the interconnected wetting layers (order of micron in thickness),

the flux of water film (typical thickness of nanometer) seems to be negligible. However,

at low saturation degree, the wetting layers become discontinuous and connected by

water film, the latter thus governs the transport phenomena.

In view of clarifying our purpose in the sequel, we consider from now on that the water

distribution and the corresponding flow regimes in unsaturated granular material can be

summarized as:

— Intergranular water: The intergranular water comprises the pore body water and the

intergranular layer surrounding the solid grain. The connectivity of the intergranular

water is ensured by the intergranular layer surround the solid grains, interconnected

water plays an important role in transport at high saturation degree.

— Wetting layers:

capillary water in pendular rings, grooves and pits on the grains surface are idealized
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as wetting layers on the grains surface; the stability and volume quantity of wetting

layers is governed by capillary pressure, they are interconnected and will play an

important role in the transport at intermediate degree [181, 243].

— Water film adsorbed on grains surface:

water film will bridge the discontinuous wetting layer at low saturation degree, it

will dominate the flow transport at low saturation degree.

3.2 Water distribution within unsaturated sandstone

By contrast to the granular materials introduced previously, sandstone exhibits a dual

porosity microstructure (as shown in Fig.(2.4)). In this context, for simplification, clay

filling in sandstone is disregarded (clean sandstone). The pore space of this clean sandstone

is thus mainly composed of intergranular pore (channel pore) which can even be categorized

as pore body and pore throat [161, 184]. The characteristic radius of the intergranular pore

ranges from several microns to tens of microns [63, 184].

Based on this microstructure characterization, the evolution of water distribution can

be characterized as:

At fully saturated case, the theoretical and experimental findings demonstrate that

the transport in the fully saturated sandstone is mostly realized via intergranular water

[22, 121].

At intermediate saturation degree 5, as shown in Fig.(3.3), the surface characteristic

of sandstone is likely to influence the water distribution of unsaturated sandstone. The

figure illustrates the capillary water localized in pendular rings, grooves and pits on grains

surface. At intermediate saturation degree, the wetting layer is capillary water trapped

on the solid/pore space interface and can be assumed to be continuous [22, 243]. At this

regime, the water phase is thus mainly localized in pendular rings and pits on solid surface.

5. In this case, intermediate saturation degree defines a range of saturation degrees where the wet-
ting layers (interconnected pendular rings and capillary water trapped in surface roughness) govern the
transport.
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Figure 3.3: Schematic illustration of influence of surface characteristic on water distribution
at saturation degree 0.3, the domains surrounded by the red curves are the capillary water,
the grey domains are gas and the black domains are sandstone grains [121].

The characteristic sizes of intergranular pore, surface roughness and pendular rings are

of the order of the micron.

At low saturation degree, the intergranular water as well as wetting layer (trapped

capillary water ) on rough surfaces and pendular rings become progressively discontinuous,

so that the water film adsorbed on the solid surface is the unique water phase that is able

to interconnect the isolated trapped capillary water. At this stage, the water film plays a

dominant role in the transport.

In summary, the distribution of water phase in unsaturated sandstone can be divided

into three regimes:

— Intergranular water. It exists at high saturation degree and at intermediate degree.

— Wetting layers:

Wetting layers (capillary water trapped in pendular rings, grooves and pits on the

grains surface) are assumed to be interconnected and will dominate the flow transport

at intermediate saturation degree [121, 243].

— Water film adsorbed on grains surface:

Water film will bridge the discontinuous wetting layers at low saturation degree, it

will dominate transport at low saturation degree.
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Whatever the microstructure, the definition of the transport properties of porous media

is essentially a question of water distribution morphology and local physical properties for

saturation regimes ranging from low to fully saturation state. This desaturation process is

accompanied by the equilibrium of liquid-gas interfaces within unsaturated porous media.

Indeed, the saturation degree of the porous media is closely related to the microstructure

of the porous media and the equilibrium radius of the liquid-gas interface, the latter can

be characterized by the Kelvin equation which is introduced in the following section.

3.3 Liquid-gas interface in unsaturated porous media

Along drainage or imbibition mechanisms within porous media, a curved interface be-

tween vapor and liquid is formed: non wetting phase is gas and wetting phase is liquid

water; in Fig.(1.2), thus, α = g, β = l. As introduced in Section(1.3), at mechanical

equilibrium state, there is a pressure difference across the interface due to the surface ten-

sion. Combined with the thermodynamic equilibrium, the relation between the interface

curvature radius and the relative humidity can be derived as follows.

3.3.1 Kelvin equation

As a special case, Eq.(1.5) 6 can be reorganized as classic Young-Laplace equation, that

is:

Pcap = P g − P l =
2γlgcosθ

r2

(3.1)

where the curved meniscus is assumed to be hemispherical, r2 and θ are respectively the

radius of meniscus and the contact angle, as shown in the inset of Fig.(1.2); γlg is the surface

tension between liquid water and vapor; Pcap, P g and P l are the capillary pressure, vapor

pressure and liquid pressure, respectively.

6. In this case, [σ].n = P gn− P ln. When the meniscus is hemispherical in shape (1T : b)n =
2cosθ

r
n.
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Besides mechanical equilibrium, thermodynamic equilibrium is also satisfied across the

vapor-liquid interface. At equilibrium, the chemical potentials of liquid water and vapor

do satisfy:

µl(P
l, T ) = µg(P g, T ) (3.2)

where µl(P
l, T ) and µg(P g, T ) are the chemical potentials of liquid water and vapor at

corresponding pressure (P l or P g) and temperature T , respectively.

Assuming sufficiently slow change, the chemical equilibrium is maintained at any time.

Eq.(3.2) can then be differentiated as [58]:

dµl = dµg (3.3)

According to Gibbs-Duhem equations [58]:







dµl = V ldP l − SldT

dµg = V gdP g − SgdT
(3.4)

where Sl and Sg are the molar entropies of liquid water and vapor phase; V l and V g are

the molar volumes of liquid water and vapor phase; T is the temperature (in K).

At isothermal conditions (T is held constant), Eq.(3.3) together with Eq.(3.4) yield:

V ldP l − V gdP g = 0 (3.5)

Consequently, when the molar volume of the vapor is assumed to be much larger than

the molar volume of liquid water (V g ≫ V l), Eq.(3.5) can be approximated as [125]:

d(P g − P l) +
V g − V l

V l

dP g ≈ d(P g − P l) +
V g

V l

dP g = 0 (3.6)

As the vapor is assumed to be an ideal gas, we have:
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P g =
RT

V g

(3.7)

where R is the ideal gas constant, R=8.314 J.mol−1.K−1.

Substituting Eq.(3.1) and Eq.(3.7) into Eq.(3.6), followed by an integration at constant

temperature constant V l, yields the so-called Kelvin equation as [58]:

ln
P g

Pgsat

= −2γlgcosθV l

r2RT
(3.8)

where Pgsat is the saturation vapor pressure for a flat interface related to temperature T,

P g is the equilibrium vapor pressure over the curved interface with curvature radius r2.

Defining the relative humidity hr as [58]:

hr =
P g

Pgsat

hr ∈ [0, 1] (3.9)

Kelvin equation (Eq.(3.8)) can be rewritten in a more familiar form:

lnhr = −2γlgcosθV l

r2RT
(3.10)

3.3.2 Limitations of applying Kelvin Equation

In order to use the Kelvin Equation (Eq.(3.8)), it is essential to know some of its

limitations.

— Surface tension is assumed to be constant, which is only valid when the curvature

radius of interface is far larger than the thickness of interfacial region across interface.

The magnitude of the thickness of the interfacial region is not known but it is often

estimated in the range of 0.2 nm to 0.7 nm [125]. When the curvature radius of

interface is small enough, a modified surface tension should be introduced, which is

based on the Tolman-Koeing equation, more detailed information is given in [146].

— At curved interface typically with radius higher than 100 nm, the Kelvin equation
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is valid. However, this was questioned for radius below 100 nm [91, 101]. Fisher

et al. [101, 102] performed a direct measurement of the mean curvature radius of

the cyclohexane condensed between crossed mica cylinders. Experimental results

were compared with the curvature radius determined by Kelvin equation. It was

concluded that the Kelvin equation is valid for the meniscus with radius as low as

4 nm. The Kelvin equation should be corrected when the curvature radius is lower

than 4 nm.

In the following work by Fisher et al. [100], the same experimental method was

employed to measure the curvature radius of liquid water trapped in wedge of fused

silica surfaces. It was found that the Kelvin equation incorporating the presence of

a water film (Eq.(3.11)) is valid for the meniscus with radius as low as 9 nm.

— Eventually, the assumptions that molar volume of vapor is far larger than that of

liquid and the vapor is considered as an ideal gas will be out of validity when the

temperature ranges between 100◦C and 200◦C [125].

As proposed by numerous researchers [140, 179, 225, 237], owing to the presence of the

water film on the pore wall, the Kelvin equation should be modified as:

lnhr = − 2γlgcosθV l

(r2 − h)RT
(3.11)

where h is the thickness of water film adsorbed on the pore wall.

Eventually, the expression for capillary pressure Pcap =
2γlgcosθ
r2 − h

, Eq.(3.11) can be

rewritten as:

− RT

Vl

lnhr = Pcap (3.12)

Thus, the effect of the water film can be accounted for in the Kelvin equation. More

significantly, as introduced in Section(3.1), the low saturation regime is mainly governed by

the existence of the water film adsorbed on the solid/pore space interface, the characteristic

size of which is of the order of nanometer. At that scale, water phase (pore water and
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wetting layer) is hardly continuous in nature. Consequently, understanding the behaviors

and the transport properties at this nano-scale requires a better physical characterization.

Indeed, the specific physics of the water film lies in the so-called disjoining pressure, which

ensure the stability of the water film. This is the object of the following section.

3.4 Disjoining pressure within water film

Water film has been proved to be dominant in the transport at low saturation degree

[121]. At nano-scale, the stability and thickness of the water film are determined by the

so-called disjoining pressure [71, 75, 249]. The physics of the disjoining pressure was first

proposed and verified by Derjaguin and Obuchov [75]. Later, a more formal definition from

thermodynamics and mechanical equilibrium was established by Derjaguin and Churaev

[71, 74]. The present section is devoted to the physical background associated with the

local disjoining pressure.

3.4.1 Definition of the disjoining pressure

There are two kinds of definition of disjoining pressure: a thermodynamic related def-

inition and a mechanical definition. Generally, the thermodynamic related definition of

the disjoining pressure exhibits the essential meaning from the free energy point of view of

formation of a thin layer, while a more common and intuitive alternative one is from its

mechanical equilibrium. Therefore, in this section, only mechanical definition of disjoining

pressure will be presented, the thermodynamic related definition of disjoining pressure is

given in Appendix (A.3). Derjaguin et al. [74] argued that the internal state of stress

within the water film is anisotropic and can be expressed in a tensorial form. The latter

can be decomposed as a normal component P f (to the surface) and a tangential compo-

nent 7. The normal component is interpreted as a pressure remaining constant through the

7. The tangential component will not be introduced in this section, the detailed information is given in
[74, 116].
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normal direction of the water film, whereas, the tangential one varies with the distance

from the solid surface. In mechanical equilibrium state, the disjoining pressure is defined

as the difference between the normal component (the pressure) within the water film P f

and the bulk liquid pressure P l [71, 74, 116]:

Π(h) = P f − P l (3.13)

The mechanical definition of disjoining pressure will be used widely in the following

sections.

3.4.2 Components of the disjoining pressure

There are mainly three different components in the definition of the disjoining pressure.

The first one is the relative long range repulsive electrostatic force which originates from

the overlapping of the diffuse double layer, say Πe(h); the second one is the Van der Waals

force between the molecules of two interfaces, say Πv(h); the third component is denoted

as the structural force or hydration force (solvation force), say Πs(h).

In the following subsections, each component of the disjoining pressure will be intro-

duced separately in order to interpret their origins and evaluate their quantity.

3.4.2.1 Electrostatic component

The electrostatic component of the disjoining pressure is investigated extensively in the

colloid and interface science [74, 132, 169].

According to Churaev et al. [44], the characteristic length of the diffuse double layer,

the Debye length 1/κ, is used to characterize how far the electrostatic effect persists in

diffuse double layer. It can be estimated by [44]:

1

κ
= (ϵϵ0kT )1/2(2z2e2n)−1/2 (3.14)

where ϵ is the dielectric permittivity of water film, ϵ0 is the permittivity of the free space,
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k is the Boltzmann constant, T is the temperature (in K), n is the number density of the

ions, n = Na × c, c is the concentration of the bulk electrolyte solution (in mol.ml−1), Na is

Avogadro’s constant (Na = 6.022 × 1023), e is the elementary charge (e = 1.602 × 10−19 C),

z is the electron charge. It can be found from Eq.(3.14) that the magnitude of the Debye

length depends on the properties of the liquid instead of the properties of other media such

as solid substrate or gas phase. At a given temperature, the Debye length depends solely

on the ionic concentration of the solution.

As shown in the Fig.(3.4), when two negatively charged surfaces are close enough (e.g.

h ≤ 2/κ), the two diffuse double layers will overlap and an external pressure PN should

be exerted to maintain equilibrium. In this process, a kind of electrostatic force Πe will

arise within the water film. The pressure of the water film P f is equal to the equilibrium

bulk pressure P l when the distance of the two solid surface h is far larger than twice of the

Debye length (1/κ) [3].

Figure 3.4: Schematic representation of the overlapping of the two diffuse double layers
when approaching the charged surface [3]: left: thick film; right: thin film.

To evaluate the electrostatic pressure Πe, the Poisson-Boltzmann equation along with

certain boundary conditions such as constant surface potential or constant surface charge

are widely employed [3, 74, 128, 132]. The electrostatic disjoining pressure for water film

between two similarly charged surfaces, with the assumption of the monovalent electrolyte

solution can be evaluated by [74]:
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Πe(h) =
ϵϵ0ψ

2
0

8π
(sech2(κh)) with constant surface potential ψ0 (3.15)

Πe(h) =
2πσ2

0

ϵ
[
1 + sech(κh/2)

tanh(κh/2)
]2 with constant surface charge σ0 (3.16)

where ψ0 and σ0 are the potential and charge density of the interface.

The above electrostatic models are valid for interlayer systems which are confined be-

tween two similar charged surfaces. However, water film in unsaturated porous media has

two different interfaces: water film-gas interface and water film-solid matrix interface. These

two interfaces have different surface potentials 8. In this case, the electrostatic disjoining

pressure can be determined [44]:

Πe(h) =
RTc

sh2(κh)
(2Ψ1Ψ2ch(κh) − (Ψ1)

2 − (Ψ2)
2) (3.17)

where c is the concentration of the solution (in mol.ml−1), Ψi = zeψi/(kT ) is the dimen-

sionless potential of the interface i.

For low surface potential, Eq.(3.17) can be simplified as more commonly used formula[132]:

Πe(h) = 64nkTγ1γ2exp(−κh) (3.18)

in which parameters γi =
exp(zeψi/(2kT )) − 1

exp(zeψi/(2kT )) + 1
(i ∈ {1, 2}); n is the concentration of the

solution (in mol.L−1), ψi denotes surface potential of water film-solid substrate interface

(i=1) and surface potential of water film-gas interface (i=2).

3.4.2.2 Van der Waals component

In nanoscale confined system, besides the electrostatic interaction there is the Van der

Waals interaction between the molecules of the adjacent surfaces. From the intermolecular

8. The water film-gas interface is negatively charged.
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point of view, the Van der Waals force is induced by the three distinct forces: induction

force, the orientation force and the dispersion force [132], each of which has a different

interaction potential varying with inverse sixth power of distance. In case of plane interface,

the expression obtained for the Van der Waals disjoining pressure has the following form

[74, 132]:

Πv(h) = − A

6πh3
(3.19)

where A is the Hamaker constant that can be determined by experiment. Moreover, the

non-retarded Hamaker constant can also be approximately determined from the theoretical

physics arguments. For instance, the Lifshitz theory [132] yields the following theoretical

definition:

A = Aν=0 + Aν>0

≈ 3

4
kT (

ϵ1 − ϵ3

ϵ1 + ϵ3

)(
ϵ2 − ϵ3

ϵ2 + ϵ3

) +
3hpνe

8
√

2

(n2
1 − n2

3)(n
2
2 − n2

3)

(n2
1 + n2

3)
1/2(n2

2 + n2
3)

1/2((n2
1 + n2

3)
1/2 + (n2

2 + n2
3)

1/2)

(3.20)

where subscripts 1,2 and 3 represent pore wall substrate, non wetting phase and water film

respectively; ϵ is the dielectric constant of the water film medium; hp is Planck’s constant

(hp = 6.626×10−34 J.s); ni is the refractive index of the medium i; νe is the main electronic

absorption frequency in the UV around 3 × 1015s−1; T is the temperature (in K).

3.4.2.3 Structural component

In many practical situations, it has been observed that the DLVO theory (the combina-

tion of electrostatic and Van der Waals component of disjoining pressure) can’t explain all

experimental results [47, 74, 132, 133, 135]. The deviation of the experimental results from

the DLVO theory is even more noticeable when the water film is thin enough [47]. Besides

the electrostatic and Van der Waals components, an additional component of disjoining
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pressure named as structural component (or solvation component, hydration component)

Πs has been introduced in order to account for this deviation [47, 132].

Though there are still some controversies about the origin of the structural component

of the disjoining pressure, the argument that the structural component of the disjoining

pressure is attributed to the overlapping of boundary layers whose structure is modified,

has been widely accepted [47, 74, 132, 134]. Several theoretical works are dedicated to the

study of the relationship between the structural component and the thickness of the water

film [147, 165, 173]. All of these theoretical models are semi-empirical: the parameters

of these models have to be determined by fitting the experimental results. Because of

the exponential increase of Πs(h) with decreasing value of h, it has been generally agreed

that the structural component of the disjoining pressure can be described by the following

exponential expression [47, 74, 132, 134]:

Πs(h) = Kexp(−h/λ) (3.21)

in which parameters K and λ characterize the magnitude and the acting range of the

structural component. They may be determined by experiments. Generally, λ is in the

range of 0.6 nm to 1.1 nm, while K ranges from 3 × 106 Pa to 5 × 107 Pa [132]. It should

be noted that when the solid surface is hydrophilic, the value of K is positive: hence

the structural component is repulsive; when K is negative, the structural component of

disjoining pressure on the hydrophobic surface is attractive [134].

Eq.(3.21) is an approximate expression for the structural component of disjoining pres-

sure. It is possible to take account of the different behaviors of the inner and outer parts

of the water film [190]. The first several layers of water molecules (inner part) are highly

bounded on the hydrophilic surface and less sensitive to the variation of the ionic concentra-

tion [190]. The outer layers of the water film are more readily affected by the change of the

ionic concentration [190]. Pashley et al. [190] proposed a corrected equation to characterize

the short range and long range effect for structural component of disjoining pressure:
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Πs(h) = Ksrexp(−h/λsr) +Klrexp(−h/λlr) (3.22)

The first term of the right hand side relates to the short range effect of the structural

component. The second term of the right hand side corresponds to the long range effect

of the structural component. Ksr, Klr, λsr and λlr are the four corresponding fitting

parameters.

Due to the lack of a fully predictive theoretical model, the structural component of

the disjoining pressure is empirically determined by the difference between experimentally

determined total disjoining pressure and that estimated by DLVO theory [74]. The reader

should essentially keep in mind the fact that the structural component of disjoining pressure

is proved to be a significant component when the thickness of water film ranges between

1.5 nm and 5 nm [135, 170].

3.4.2.4 Effect of each component on disjoining pressure

To determine the total disjoining pressure as a function of h only, Π(h), all three com-

ponents are assumed to be linearly additive [3, 47, 116, 117, 164]. Therefore, the total

disjoining pressure can be expressed as:

Π(h) = Πe(h) + Πv(h) + Πs(h) (3.23)

To compare the contribution of the different components of the water film, a quartz-

water film-air (wet air) system is adopted. The following expressions for the three compo-

nents of the disjoining pressure are employed:







Πe(h) = 64nkTγ1γ2exp(−κh)

Πv(h) = − A

6πh3

Πs(h) = Ksrexp(−h/λsr) +Klrexp(−h/λlr)

(3.24)
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Let us consider that the solution is an NaCl electrolyte. The parameters used are given

in Table(3.1):

Table 3.1: Parameters for the quartz-NaCl aqueous film-air system

Parameters Value (unit) Reference

k 1.381 ×10−23J · K−1 [132]
T 293K -
Na 6.022 ×1023 [132]
z 1 -
e 1.6 ×10−19 C [132]
ψ1 -100 mV [239]
ψ2 -25 mV [239]
ϵ0 8.854 ×10−12C2J−1m−1 [132]
ϵ 80 [132]
A -0.87 ×10−20J [132]
Ksr 3×108 Pa [47]
λsr 0.3 nm [47]
Klr 2×106 Pa [47]
λlr 2 nm [47]

Using the parameters listed in Table(3.1) and treating the case as Majumdar et al. [164],

the contributions of each component of the disjoining pressure are plotted in Fig.(3.5).

From Fig.(3.5), it is observed that the electrostatic component near the wall decreases with

increasing concentration of NaCl in the bulk solution (blue curves). Then, comparing the

different components at the concentration c = 10−2M, the structural component becomes

to play a significant role for thickness h < 12nm. At larger range (i.e. h > 20nm),

the effect of the structural component is rather negligible in the total disjoining pressure

(black curve). The Van der Waals component of disjoining pressure (green curve) greatly

influences the disjoining pressure at long range (i.e h > 30nm). We can conclude that when

the concentration of the solution (bulk solution) is c = 10−2M, the electrostatic component

as well as Van der Waals component of disjoining pressure will be significant for thick water

film, while the structural component of disjoining pressure will play a dominant effect in

thin water film.
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Figure 3.5: Comparison of the electrostatic, Van der Waals and structural components
of the disjoining pressure of the quartz-NaCl aqueous film-air system, the parameters are
given in Table(3.1), M=1mol.L−1.
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3.4.3 Physical determination of the water film thickness

We are interested in the physical identification of the water film thickness. Answering

to this question may be done by taking advantage of the relation Π(h). Indeed, in a

micromechanics reasoning, such a new information should be identified from a physical

reasoning and interpreted as a local physical quantity introduced at the scale of concern.

The mechanical equilibrium for a water film separating a smooth spherical solid grain and

a gas saturated pore space can be expressed as:

P g − P f = −2γlg

Rs

(3.25)

where P g and P f are respectively the pressure of gas and of the water film, Rs is the

radius of the spherical solid grain, γlg is the surface tension along water film-gas interface 9.

Combining Eq.(3.25) and Eq.(3.13) yields:

Π(h) = Pcap +
2γlg

Rs

(3.26)

where Pcap = P g −P l is the capillary pressure in porous media. The capillary pressure can

be related to the relative humidity by Eq.(3.12). Therefore, we obtain [132]:

Π(h) = Πe(h) + Πv(h) + Πs(h) = −RT

Vl

ln(hr) +
2γlg

Rs

(3.27)

where Vl is the molar volume of the liquid water, R is the perfect gas constant. Uniform

thickness of water film on the perfectly wetted solid surface is assumed (contact angle θ=0).

Here we investigate the evolution of the thickness of water film on flat solid surface

(Rs → ∞). Adopting the parameters listed in Table(3.1), the evolution of the thickness of

water film with the relative humidity hr is depicted in Fig.(3.6).

As can be seen from Fig.(3.6), the results of the disjoining pressure model agree quite

well with the experimental results at relative humidity hr lower than 99%. For hr < 99%,

9. Here, the surface tension of water film-air interface is assumed to be equal to that of capillary water-air
interface γlg.
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Figure 3.6: Relationship of the thickness of water film with relative humidity, temperature
is 293K, experimental results are for pure water film-fused quartz system, after Sumner et
al. [229], the thickness of mono water molecular layer is 2.8 Å [28].
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the effect of the concentration of the solution is negligible for thin water film. This means

that the electrostatic component is negligible for thin water film: the thickness of thin

water film is mostly determined by the structural component. However, the influence of

the concentration is notable at large thickness (as shown in the inset): the higher the

concentration (green curve) the higher the thickness of the water film. This means that

the electrostatic component as well as the Van der Waals component dominate the total

disjoining pressure at high thickness.

3.5 Liquid water volume fractions at low saturation

degree

The matrix potential is commonly used in soil mechanic and it is defined as the energy

per unit volume required to extract water from a porous medium to overcome the capillary

pressure and adsorptive forces (disjoining pressure) [254]. Therefore, it yields:

ψ = −P ′

cap − Π(h) with P
′

cap = P g − P f = −2γlg

Rs

(3.28)

where ψ is the matrix potential, Π(h) is the disjoining pressure of water film, P
′

cap is the

capillary pressure of the water film-gas interface, P g is the air pressure, P f is the pressure

of water film, Rs is the radius of the solid grain, γlg is the surface tension of gas-water film

interface.

The water retention curve (ψ(Sr)) (saturation degree Sr dependence on the matrix

potential ψ) 10 is the most common information used in the analysis of the transport prop-

erties and behaviors of unsaturated porous media [14]. Usually, due to the complex pore

network, this relationship for a given porous medium can only be obtained experimentally

[14]. Furthermore, owing to the extremely low fluxes and long equilibrium times associated

with water film flow, the water retention curve (ψ(Sr)) at low saturation degree is difficult

10. It is also denoted as moisture characteristics.
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to be obtained [238].

Therefore, to investigate the evolution of saturation degree Sr with matrix potential

(ψ) at low saturation degree, explicit and simplified geometric models are established [14,

206, 238]. In these models, Bear’s and Reinson’s models just take account of the pendular

rings while the effect of the water film is disregarded [14, 206]. Tokunaga [238] improved

the model by taking the water film into account in the case of close packed mono disperse

spheres. Our contribution focuses on the definition of the volume contribution of the

pendular rings and water film with respect to matrix potential (ψ(Sr)) at low saturation

degree in the case of cubic packing of mono disperse spheres with smooth surfaces.

At low saturation degree, the water phase within porous media is composed of water

film adsorbed on the grains surface, as well as pendular rings (meniscus) trapped at the

contacts of the grains (as depicted in Fig.(3.7) and discussed in Section(3.1.1)). For the sake

of the simplicity, a simple geometric model in the work of Reinson et al. [206] is adopted

here to calculate the volume of a pendular ring (as shown in inset of Fig.(3.7)), while the

disjoining pressure model (expressed as Eq.(3.27)) is applied to estimate the thickness of

the water film.

Four assumptions are adopted: (a) the solid surface is perfectly wetted by water, which

means that the contact angle is θls = 0, (b) the meniscus of the pendular is hemispherical

(c) the spherical grains are in contact while there is no overlap, (d) surface tension of liquid

water is regarded as a constant parameter. The latter therefore disregards the modified

nature of the water phase at the local level [125]. This may be a crude approximation at

nanometer scale [14].

3.5.1 Volume contribution of pendular rings

To estimate the volume fraction of the pendular rings, a detailed geometric illustration

of a pendular ring is depicted in inset of Fig.(3.7). The two curvature radii of the pendular

rings are r1 and r2 respectively, β (in the unit of radian) is the angle between two straight

lines, one is through the centres of the two spheres, the other is through one centre of sphere
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Figure 3.7: Schematic illustration of the water distribution within cubic packing granular
material at low saturation degree, the surface of the grains is considered as smooth.
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and the tangent point of pendular with the sphere. Rs is the radius of the spherical grain.

This geometric configuration gives [206]:







r1 = Rs(
1 − cosβ

cosβ
)

r2 = Rs(
sinβ + cosβ − 1

cosβ
)

(3.29)

The interface of the pendular ring can be characterized by the Young-Laplace equation

[206]:

Pcap = γlg(
1

r1

− 1

r2

) (3.30)

where γlg is the surface tension of the liquid water. Combing Eq.(3.29) and Eq.(3.30), we

know that the matrix potential is related to the radius of the spherical grain and to the

angle β.

Combining Eq.(3.13), Eq.(3.28) and Eq.(3.30) yields the relationship between matrix

potential ψ and capillary pressure Pcap:

ψ = −Pcap = −γlg(
1

r1

− 1

r2

) (3.31)

where Pcap = P g − P l is the capillary pressure of liquid water-air interface (cf. P
′

cap in

Eq.(3.28)).

The volume of a pendular ring (Vp) may also be expressed as a function of Rs and β

[120, 206, 213]:

Vp = 2πR3
s[2 − 2cosβ − tanβ[2sinβ − tanβ + (

π

2
− β)(

cosβ − 1

cosβ
)2]] (3.32)

As can be readily observed in the cubic packing unit (shown in Fig.(3.7)), there are 3

pendular rings per cubic unit (Vu) 11, the volume of each cubic unit is (2Rs)
3. Therefore,

the saturation degree contributed by pendular rings Spr
r

12 can be determined by:

11. A sphere with radius Rs is circumscribed by the cubic unit, therefore, the cubic unit has length 2Rs.
12. The saturation degree contributed by pendular rings Spr

r is defined as the volume of total pendular
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Spr
r =

3Vp

Vuφc

=
3π

4φc

[2 − 2cosβ − tanβ[2sinβ − tanβ + (
π

2
− β)(

cosβ − 1

cosβ
)2]] (3.33)

where φc is the porosity of the cubic packing which is calculated to be 0.476.

As shown in inset of Fig.(3.7), in the case of cubic packing, according to the geometric

calculation, the neighbouring pendular rings will coalesce when β =
π

4
. At angle β =

π

4

(during drainage), Src = Spr
r (β =

π

4
) = 0.182.

3.5.2 Volume contribution of the water film

The volume fraction of the water film within the monodisperse granular media in cubic

packing can be estimated as:

φwf =
Vwf

Vs

× (1 − φc) =
(Rs + h)3 −R3

s

R3
s

(1 − φc) = [(1 +
h

Rs

)3 − 1](1 − φc) (3.34)

where Vs is the volume of the single spherical solid grain.

As long as the thickness of the water film, which can be estimated by Eq.(3.26) and

Eq.(3.27), satisfies the condition h ≪ Rs, Eq.(3.34) may be approximated as :

φwf ≈ 3h

Rs

(1 − φc) (3.35)

3.5.3 Liquid water retention

At low saturation degree, the saturation degree which accounts for the contribution of

water film and pendular rings can be expressed as:

Sr = Spr
r +

φwf

φc

(3.36)

rings within porous media over volume of pore space in porous media.
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Combining Eq.(3.29)-Eq.(3.33) as well as Eq.(3.26)-Eq.(3.27), Eq.(3.35) and Eq.(3.36),

the saturation degree can be related with matrix potential ψ.







Sr =
3π

4ϕc

[2 − 2cosβ − tanβ[2sinβ − tanβ + (
π

2
− β)(

cosβ − 1

cosβ
)2]] +

3h(1 − ϕc)

Rsϕc

ψ = −Pcap = −γlg

Rs

(
cosβ

1 − cosβ
− cosβ

cosβ + sinβ − 1
)

−ψ +
2γlg

Rs

= 64nkTγ1γ2exp(−κh) − A

6πh3
+Ksrexp(− h

λsr

) +Klrexp(− h

λlr

)

(3.37)

Thus, during drainage of monodisperse granular material in cubic packing, the con-

tributions of pendular rings and water film to the saturation degree can be plotted as in

Fig.(3.8).

According to the Fig.(3.8), the low saturation degree starts at Src = 0.182. The solid

lines refer to the contribution of the pendular rings at different grain radii, while the dotted

lines denote the contribution of the pendular rings and the water film. These results

suggest two propositions: (1) the volumetric contribution of the water film shows notable

size dependence on the grain size, that is, the volume fraction of water film becomes more

and more dominant (as compared to the pendular rings) with decreasing grain radius; (2) In

addition to size effect of grain, the volumetric contribution of the water film increases with

the decrease of matrix potential (more negative). This is consistent with the difference

between the characteristic sizes associated with the water film and the pendular rings,

respectively.
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Figure 3.8: Plot of evolution of the contributions of water film and pendular rings to
saturation degree Sr with variation of matrix potential ψ and Rs (10 mm, 1 mm, 0.1 mm,
10 µm, 1 µm), according to Eq.(3.37).
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3.6 Local solute diffusion in water film

According to the very local confinement of the water film, it seems appropriate to

derive a more specific analysis of the definition of the local solute diffusion in the water film

adjacent to the solid surface. This will help us to better introduce this local transport law

that is increasingly important during desaturation process.

3.6.1 Pore size dependence of the diffusion coefficient

Depending upon the characteristic size of the pore, denoted by rp, the diffusion coeffi-

cient may be defined as [212]:

— For mesopores (i.e., pores of diameter rp ≥50 nm):

The collisions between the molecules (ions) occur much more frequently than colli-

sions with pore wall [212]. The molecule (ionic) diffusion is the dominant mechanism

in mesopores. Consequently, the diffusion coefficient may be taken as that of the bulk

liquid water. Theoretically, the corresponding diffusion coefficient of the molecules

(ions) Dmo may be determined by the classic Stokes-Einstein equation [9, 153]:

Dmo = bγkBT =
kBT

6πµRpa
(3.38)

where bγ =
1

6πµRpa
is the mobility of solute γ in the solvent 13 [9], kB is Boltzmann

constant, T is temperature, µ is the viscosity of the bulk liquid phase, Rpa is the

radius of the solute particle. It should be noted that Stokes-Einstein equation is

only valid with this assumption: the radius of solute should be larger than that of

solvent in bulk system [9].

— For micropores (i.e., pores of diameter 2 nm≤ rp <50 nm):

With the decrease of pore size, the collisions with the pore wall increase in microp-

13. As ions move through the solvent at a drift speed ui, they experience a fractional retarding force
Ffric. The mobility of solute bγ is defined as the ratio of its drift speed ui to its corresponding fractional

retarding force Ffric, that is bγ =
ui

Ffric

[9].
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ores, therefore, Knudsen diffusion is the dominant diffusion in micropores [212]. The

mobility bγ in Eq.(3.38) starts to depend on the dimensions of pore.

— For nanopores (i.e., pores of diameter rp <2 nm):

The characteristic size of the molecule (ion) turns out to be similar to that of micro-

pore. Therefore, the molecule (ion) will experience interaction with the pore surface

[207].

As can be seen from the diffusion in mesopores and micropores described above, the

diffusion in mesopores and micropores is influenced by the viscosity of solvent, pore size

and ionic adsorption and interaction with the charged pore surface.

In our purpose, the Stokes-Einstein equation is assumed to be valid whatever the scale

of concern. The pore size effect is accounted for through the increase of the liquid water

viscosity with decreasing pore size.

3.6.2 The effect of viscosity of water film

It has been widely stated that the viscosity of water film is greater than that of bulk

water owing to its modified structure [76]. As proposed by Or et al. [181], the influence

of viscosity on the fluid flow become indistinguishable for water film greater than about 10

nm. For thinner water film (<10 nm), the experimental results are summarized as follows

(the detailed discussion of viscosity is given in Appendix(A.1)).

Li et al. [108] measured the viscosity of the interlayer between the hydrophilic surfaces

(such as mica and glass) by means of high-resolution atomic force microscope (AFM). These

authors found an increase of the viscosity of several orders of magnitude compared to the

viscosity of the bulk liquid (e.g. 4 orders of magnitude higher than that of bulk water

when the thickness of water film is about 0.5 nm) [108]; this result was later confirmed by

Antognozzi et al. [5].

Using surface force apparatus (SFA), numerous investigators [124, 131, 143, 204, 205]

have measured the viscosity of interlayers of liquid water confined between mica or silica.

These authors found that the viscosity of interlayers are close to (within a factor of 3 in the
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thickness range 3.5 ± 1.0 to 0.0 ± 0.4 nm) that of the bulk water [124, 131, 143, 204, 205].

The authors attributed this phenomenon (negligible increase of viscosity of interlayer water)

to the abnormal solidification mechanism of water 14. In addition, they concluded that the

influence of the solute concentration on the viscosity of the confined water film is negligible

[143, 205].

Considering these two rather distinct conclusions about the viscosity of the interlay-

ers, owing to their similar experimental principle 15, the disparity may lie in the different

experimental device and experimental samples (e.g., mica solid surfaces) [142]. Here, the

viscosity of interlayer is taken equal to that of bulk water. In this case, the decrease of

solute diffusion in water film may arise from the ionic interaction with pore wall [118].

It should be noted that the categorization of diffusivities and most of the experiments

on viscosity of interlayers are carried out on interlayers confined between two negatively

charged pore surface [131, 143, 204, 205]. However, pore surface-water film-gas system

is asymmetrical with two distinct interfaces: pore surface-water film and gas-water film

interfaces. For the pore surface-water film-gas system, not only the pore surface-water film

interface but also water film-gas interface are negatively charged [132]. Moreover, similar

to the interlayer, the structure of water film is modified also. Therefore, the viscosity

and diffusivity of the interlayer confined between two negatively charged surface can be

reasonably assumed to be similar to those of water film.

3.6.3 Local solute diffusion coefficient in the water film

As proposed by Grathwohl et al. [118], a significant solute hindrance effect in water

film is expected when the thickness of water film is lower than 10 nm. This conclusion is

confirmed by many experimental studies [26, 107, 127]. As introduced in Section(3.6.1),

14. In [205]. For confined interlayer water, the confinement seems primarily to suppress the formation
of the highly directional hydrogen-bonded networks associated with freezing, which inhibits solidification
[205].

15. F = η(h) ∂vx

∂y
A (where F is the shear force applied on the interlayer, η(h) is the dynamic viscosity,

vx is the velocity along the direction of shear force, y is distance normal to the along the thickness of
interlayer.
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the reason for the reduced diffusivity within micropore may lie in the increased viscosity of

water film, the ionic adsorption and interaction with the charged solid surface. Generally,

a scaling constrictive factor δ for solute γ is introduced to characterize the reduced solute

diffusivity within water film with respect to Dγ [26]:

Dγ
f = δDγ with δ ≤ 1 (3.39)

where Dγ
f , Dγ are the diffusion coefficients of solute γ in water film and bulk water, re-

spectively. To determine the constrictive factor δ, detailed knowledge about the thickness

of water film (the dependence of the viscosity on thickness of water film), ionic interaction,

mineralogy and surface properties of the material is required. In a special case carried out

by Van Schaik et al. [248], it has been found that, for the first three layers of water film ad-

jacent to the solid surface, the average constrictive factor of Na+-water film-montmorillonite

system δNa = 0.32 ± 0.06 16.

3.7 Summary

In this section, the evolution of water distribution within granular material and sand-

stone are summarized and discussed.

— In unsaturated granular materials, the liquid water phase can be categorized as:

intergranular layer, pore body water, wetting layer (trapped at interconnected pen-

dular rings and surface roughness) and water film. Intergranular layer, wetting layer

and water film are considered as surrounding the solid grain.

— In unsaturated sandstone, the liquid water phase can be categorized as: intergranular

layer, wetting layer and water film. Intergranular layer, wetting layer and water film

are consider as surrounding the solid grain.

The liquid-gas interface is specified in the unsaturated transport problems, the Kelvin

equation is employed to characterized the equilibrium radius of the liquid-gas interface,

16. In this case, the concentrations of the NaCl solution varies from 0.0038 to 0.15 mol.L−3.
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that is:

lnhr = − 2γlgcosθV l

(r2 − h)RT
(3.11)

More over, the validity of the Kelvin equation at local scale is also discussed.

A disjoining pressure model is proposed to estimate the thickness of water film according

to [132]:

Π(h) = Πe(h) + Πv(h) + Πs(h) = −RT

Vl

ln(hr) +
2γlg

Rs

(3.27)

where each component of disjoining pressure Πe(h), Πv(h) and Πs(h) may be determined

from physical arguments by Eq.(3.24).

A simple cubic packing (mono disperse) sphere assemblage is adopted to quantitatively

compare the volume fractions of water film and pendular rings. It is found that the volu-

metric contribution of water film increases with decreasing matrix potential (more negative)

as well as with decreasing grain size.

The solute diffusion coefficient in water film is lower than that in bulk water, an phe-

nomenological expression for the solute diffusion coefficient (Eq.(3.39)) in water film is

adopted in the sequel as [26]:

Dγ
f = δDγ with δ ≤ 1 (3.39)
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4.1 Introduction

Transport phenomena in porous media are very important in agriculture production,

contaminant transport, remediation, risk assessment and waste disposal [52, 53, 61, 127,

211, 215, 253]. Within this context, diffusion and advection are the most common and

critical transport components. Both of them have been widely studied in fully saturated

conditions.

Generally, the Fick’s law is employed to characterize the solute diffusion in free water

(bulk water). It has also been proposed by many studies that Fick’s law is also operative

in porous media [159, 171, 200], it may be expressed as:

Jγ = −Dhom ·H (4.1)

where Jγ is the solute diffusive flux in porous media, Dhom is the macroscopic solute diffusion

coefficient in porous media, H the macroscopic solute concentration gradient.

The solute diffusive flux Jγ in porous media is smaller that that in free water. The

reason lies in the fact that, the open area available for diffusion is reduced and the diffusion

pathway is more tortuous in porous media [159].
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Eq.(4.1) is a phenomenological expression for the Fick’s law in porous media at the

macro scale. Following this law, empirical expressions for Dhom have been proposed based

on experiment. In Section (4.3), the validity of this Fick’s law at macro scale will be

demonstrated with micromechanics methodology.

Indeed, micromechanics models have also been proposed in these conditions, but little

has been done concerning the unsaturated case. This is the purpose of this chapter, to

develop a micromechanics analysis of solute diffusion in unsaturated porous media 1. To

begin with, after a short review of the experimental results and classic empirical models

in Section(4.2), micromechanics arguments are then recalled in the context of fully satu-

rated porous media in Section(4.3). More general unsaturated models characterizing the

microstructure effects on the solute diffusion are developed in Section(4.4). Based on the

local physical characterization of the water distribution within unsaturated porous media,

enriched models accounting for the liquid layer are developed in Section(4.5). Some exper-

imental analysis of solute diffusion in unsaturated sand and glass beads are carried out and

presented in Section(4.6) .

Herein, for clarification, the subscripts or superscripts for each phase are listed as: g is

referred to as gaseous phase; s denotes the solid grains; f denotes the water film phase;

wl denotes the wetting layer; ig denotes the intergranular layer; pw denotes the pore

body water; γ denotes the solute (chemical species); hom is referred to as the macroscopic

homogenized properties or behaviors of porous media.

1. Micromechanics analysis of flow permeability will be presented in chapter 6.



70
Micromechanical modelling of solute diffusion within unsaturated porous

media

4.2 Empirical models for solute diffusion in

unsaturated porous media

4.2.1 Experimental results for several unsaturated porous media

Let us first present several experimental results for diffusion coefficients of solute in

unsaturated porous media. Material characteristics and the solute tracers are presented in

Table.(4.1).

As expected, it is observed in Fig.(4.1) that the effective diffusion coefficient Dhom

decreases with decreasing value of the water saturation degree Sr. This quantifies the

reducing pathways for diffusion along the desaturation process. For materials such as sand-

stones, effective diffusion coefficients at high water saturation degree decrease gently with

saturation degree. However, their effective diffusion coefficients at lower water saturation

degree decrease rapidly with saturation degree (black curve in Fig.(4.1)). On the contrary,

for cohesive materials such as lime mortar and brick, the effective diffusion coefficients at

high water saturation degree decrease rapidly with saturation degree, while the effective

diffusion coefficients at low saturation degree decreases gently (cyan curve in Fig.(4.1)).

As suggested by Archie [6], the effective diffusion coefficient within unsaturated porous

media can be described by an empirical power law function of the saturation degree and

the porosity. The evolution of the effective diffusion coefficients is displayed in Fig.(4.1) for

two types of materials [33].

— For sandstones, the exponents of the power laws (denoted as "b" in Fig.(4.1)) are

lower than one, that is 0 < b < 1.

— For lime mortar and brick, the exponents (denoted as "a" in Fig.(4.1)) are higher

than one, that is a > 1.

The distinct tendencies of the unsaturated diffusion coefficient are attributed to the

different morphologies of the materials of concern, which will be discussed in the following

section.
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Table 4.1: Summary of material characteristics and used solutes [33, 159].

Material Porosity(%) Medium pore diameter
(µm)

Saturated effective dif-
fusivity (10−10m2.s−1)

Tracer

Sand 38.2 - 5.35 KCl
Sandstone1 18 0.5 3.1 Na2SO4

Sandstone2 23 50 2.3 Na2SO4

Brick 36 2 2.1 Na2SO4

Lime mortar 32 2&200 1 4.8 Na2SO4

1 The lime mortar presents dual-porosity: capillary pores and big air voids.

Figure 4.1: Evolutions of the normalized diffusion with saturation degree for several porous
materials, Dhom

Sr=1 is the effective diffusion coefficient in saturated porous media, while Dhom

is the diffusion coefficient in unsaturated case, Sr is the saturation degree, a and b are the
exponent cofficients, experimental results are after [6, 33, 159].
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4.2.2 Empirical models

Owing to the time-consuming and high cost of the experiments, empirical models are

often used to predict the solute diffusion coefficients of unsaturated porous media. Similar

to Archie’s law [6], these models relate the unsaturated diffusion coefficient to the water

content and total porosity [127]. There are numerous models for diffusion in various unsat-

urated porous media such as glass beads [144, 211], soil [13, 200, 214, 253], sand [159, 211],

sandstone [33], gravel [52, 53, 126], brick [33], and cementitious materials [70, 119, 216].

Some of these models are listed in Table.(4.2).

Different theoretical perspectives have been proposed to explain Archie’s law, but no

universal definition of the Archie’s law’s exponents has been proposed so far [127].

In spite of their simplicity, all of the empirical models presented above introduce the

fitting parameters that are lack of physical definition. In order to overcome this limitation

inherent to the phenomenological approach, the present work builds up a micromechanics

methodology incorporating local physics and microstructure morphology in view of a better

understanding of the evolution of the solute diffusion in unsaturated porous media.

By using the micromechanics methodology, we expect to derive physical-based estimates,

which are intrinsically able to reproduce different evolution according tot the local physical

definition of diffusion laws and the specific morphology of the microstructure.
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Table 4.2: Several empirical unsaturated diffusion models

Models Materials (& species) Reference

1
Dhom

Dγ
=
θ

10/3
l

ϕ2
Soils [139]

Dhom

Dγ
= kθ3

l Soil (nutrient) [189]

2
De

Dγ
= 0.73(

θl

ϕ
)1.98 7 soils with 10-51% clay (urea) [215]

3
Dhom

Dγ
= ϕmSn

r Sand and sandstone (NaCl) [6]
De

Dγ
= θ1.849

l tuff cores, basalt, mudstone, 86
soil samples and gravel (KCl)

[61]

4
De

Dγ
= αθn

l Sand and loam soil (Salt) [171]

Dhom

Dγ
=

0.45θl(θl − 0.022b)

ϕ− 0.022b
, θl ≥ 0.022b -

5
Dhom

Dγ
= 0, θl < 0.022b. 6 soils with 11-46% clay (Cl−,

NH+
4 )

[180]

Dhom

Dγ
= 0.45θl(

θl

ϕ
)0.3b 6 soils with 11-46% clay (Cl−,

NH+
4 )

[180]

1 Dhom = τδθlD
γ is effective diffusion coefficient, Dγ is the diffusion coefficient of solute

in bulk water, ϕ is porosity, τ is tortuosity factor, δ is constrictive factor, this model is
modified from Millington-Quirk’s model [127].

2 De = Dhom/θl = τδlD
γ, Sr is the water saturation degree. Constants are obtained from

nonlinear regression [127].
3 This is Archie’s model, where m is cementation factor, n is saturation exponent; for

unconsolidated sand m=1.3, n=2; for consolidated sandstone m ranges from 1.8 to 2.0
[6].

4 The values of α and n are different for two stages: high and residual saturation degree.
5 b is the slope of Campbell’s soil-water characteristic curve in log-log plot [37].
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4.3 Micromechanical modelling of solute diffusion in

saturated porous media

Micromechanical modelling of solute diffusion in saturated porous media has already

been addressed in detail and discussed in Dormieux et al. [82] and Lemarchand [153]. It

should be noted that, in the following sections, we are only interested in the properties of

solute diffusion in the liquid water phase, the vapor diffusion is always not considered in

unsaturated porous media. Herein, the governing equations for solute diffusion in saturated

cases are presented. A similar treatment will be developed in the unsaturated case.

The mass balance equation for the solute flux at micro scale is [153]:

∂ργ

∂t
+ div(ργV γ) = 0 ⇔ ∂ργ

∂t
+ div[ργ(V γ − V )] + div(ργV ) = 0 (4.2)

where ργ is the concentration of γ solute, V γ is the solute velocity, V is the velocity of the

fluid phase, t is time.

To characterize the diffusion of chemical species at local scale (in the liquid water phase),

linear Fick’s law is assumed. The latter linearly relates the mass flux of chemical species

jγ to its concentration gradient grad
z
ργ by [153]:

jγ = ργ(V γ − V ) = −Dγgrad
z
ργ (4.3)

The following assumptions are also introduced [82]:

(1) the solute diffusion is analyzed in steady state condition (
∂ργ

∂t
= 0).

(2) no mass exchange (precipitation and dissolution) of the chemical species γ at the

solid-fluid interface (grad
z
ργ · n = 0), where n is the unit vector normal to solid-liquid

interface.

Diffusion takes place in the fluid domain. But in order to manage a local heterogeneous

definition of the diffusion laws, the diffusion problem is extended from the fluid domain

to the whole domain of porous media (including solid domains) by introducing a diffusion
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coefficient in the solid phase satisfying Ds → 0 [82]:

D(z) =







Ds → 0 ∀z ∈ Ωs

Dγ ∀z ∈ Ωl

(4.4)

where Ωs and Ωl are the solid and fluid domains within REV, Ω = Ωs ∪ Ωl.

An uniform concentration gradient H boundary condition are considered on the REV

(domain Ω), which means: ργ(z) = H.z when z ∈ ∂Ω. Consequently, the local heteroge-

neous diffusion problem to be solved is defined by the following equations 2 [82]:







divzj
γ = 0 ∀z ∈ Ω

jγ(z) = −D(z)grad
z
ργ ∀z ∈ Ω

ργ(z) = H · z ∀z ∈ ∂Ω

(4.5)

Eq.(4.5) can be treated as Eshelby based problem for diffusion, which is introduced in

Appendix (B). Its solution is a linear function of the macroscopic concentration gradient

H. The concept of second order concentration tensor A(z) is introduced in order to express

the heterogeneous solution of Eq.(4.5) as:

grad
z
ργ = A(z) ·H (4.6)

where the concentration tensor is a function of the geometrical microstructure. From the

uniform boundary condition (that is third formula in Eq.(4.5)), by means of the definition

of the average quantity in Eq.(1.2), we have [82]:

grad
z
ργ = H ⇔ A = 1 (4.7)

With the upscaling rule defined in Eq.(1.2), the macroscopic mass flux can be determined

as Jγ = jγ(z) [82]. The mass flux at local scale (Eq.(4.3)) combined with Eq.(4.6) yields a

2. In the following context, the velocity of the fluid phase V is not considered (see Eq.(4.3)).
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macroscopic Fick’s law [82]:

Jγ = jγ(z) = −Dhom.H with: Dhom = DA (4.8)

As mentioned in Section(4.1), the validity of the Fick’s law for macroscopic porous media

(Eq.(4.1)) is thus demonstrated by means of micromechanics methodology. For a two-phase

porous medium made up of solid (Ds → 0) and liquid, Eq.(4.8) yields the following result

[82]:

Dhom = DA = ϕDγAl = Dγ(1 − (1 − ϕ)As) (4.9)

where Eq.(4.7) has been used, ϕ is the pore volume fraction.

If the average concentration tensors of each phase Ai (i ∈ {s, l}) are known, Dhom may

be exactly characterized. Since the exact determination of the microstructure (Ai) is a

complicated task, we rather resort to estimates. Several schemes may be used to estimate

the concentration tensors. With the assumptions of isotropic microstructure as well as the

spherical shape for the inclusion phases, the homogenized solute diffusion coefficient within

saturated porous media can be estimated by these schemes, they are listed in Table(4.3):

Table 4.3: Homogenized solute diffusion coefficient within saturated porous media
with different schemes

- Dhom Reference

Dilute Scheme (1 − 3

2
(1 − ϕ))Dγ 1 (1 − ϕ ≪ 1) Lemarchand [153]

Differential Scheme ϕ3/2Dγ Lemarchand [153]

Mori-Tanaka Scheme
2ϕ

3 − ϕ
Dγ Dormieux et al. [82]

Self-Consistent Scheme
3ϕ− 1

2
Dγ (ϕ ≥ 1/3) Dormieux et al. [82]

1 ϕ is the pore volume fraction, Dγ is the diffusion coefficient of solute γ in liquid
water phase.

Some important remarks on the different schemes (saturated case)

Whatever the solid volume fraction, liquid interconnectivity is ensured in the Differential
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Scheme, the Dilute Scheme and the Mori-Tanaka Scheme:

— The dilute scheme assumes weak interaction between the solid grains. It is only

valid for infinitesimal volume fraction of solid phase [82], which does not correspond

to usual porous media definiton. In this case, the local concentration (ργ) and the

corresponding As can be approximated by their values in the problem of a single

spherical solid grain embedded in infinite homogeneous matrix made up of the liquid

water phase (Eshelby’s problem).

— The Mori-Tanaka scheme accounts for an improved interaction between the solid

inclusions. Mori-Tanaka scheme is expected to be a good candidate for estimates of

the homogenized diffusion coefficient when pore volume fraction is higher than 0.7.

— Differential scheme has also been developed to overcome the limitation of the dilute

scheme. The idea consists of starting to a homogeneous medium identical to the

fluid matrix, and introducing the solid phase by infinitesimal volume fraction in the

framework of an interactive process. Detailed information is given in Dormieux et al.

[82]. As presented in Fig.(4.2), differential scheme accounts for a stronger tortuosity

effects for decreasing value of the porosity than Mori-Tanaka scheme. Tortuosity

τ is defined as τ = Al =
Dhom

ϕDγ
(in isotropic case). By contrast to Mori-Tanaka

scheme, the differential scheme is able to correlate the decrease of the porosity and

the decrease of the tortuosity coefficient. This seems consistent with the physical

intuition that tortuosity effect is stronger (τ → 0) for porous material with low

porosity.

By contrast, the self-consistent scheme is the sole micromechanics model able to discuss

percolation effects likely to occur during the desaturation/resaturation processes of porous

media. Self-consistent scheme consists in assuming that each particle of a given phase

(pore or solid) reacts as if it were embedded in the equivalent homogeneous medium which

is looked for [82]. For an heterogeneous medium with disordered phase arrangement, a self-

consistent estimate is considered to be well adapted to represent the effective properties of

the overall medium.
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Figure 4.2: The dependence of the tortuosity τ on the porosity ϕ.

4.4 A first approach for solute diffusion in

unsaturated porous media

In the previous section, the whole connected pore space of a porous medium was assumed

to be fully saturated by liquid water. In this case, it has been proved that at the macroscopic

scale the diffusion coefficient is affected by both the porosity and the tortuosity 3. These

two may be interpreted as pore space morphological effects at the macro scale (porosity)

and at the micro scale (tortuosity τ = Al).

The liquid phase distribution within the pore space of porous media is of great im-

portance when dealing with the unsaturated case, and this question will be addressed in

detail in next section. However, to begin with, let us consider a simplified micromechanics

treatment of diffusion in unsaturated porous media based only on volume fraction of liquid

information.

3. Some estimates of the tortuosity have been proposed as functions of the porosity.
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4.4.1 A one-scale microstructure

When volume fraction of liquid is the only available information in a one scale homog-

enization procedure, the solute diffusion within unsaturated porous media is analogical to

the saturated case processed by Dormieux et al. [82]. The difference lies in the existence

of another phase: the gaseous phase. In solute diffusive transport problems, the gaseous

phase may be interpreted as a non-diffusive phase, the diffusion coefficients of which being

0. As a consequence, this gaseous phase behaves like the solid phase when diffusion is of

concern.

Hence, in an unsaturated porous medium REV, there exist three phases: the gaseous

phase, the solid phase and the liquid water phase where diffusion processes occur.

To deal with this situation, one may recourse to the saturated results (Table(4.3)) by

replacing the volume fraction of pores ϕ (in saturated case) by the volume fraction of liquid

ϕl = ϕSr (in the unsaturated case).

From Table(4.3), the isotropic homogenized diffusion coefficient can then be expressed

as:

Dhom =







(1 − 3

2
(1 − ϕSr))Dγ; (1 − ϕ ≪ 1) For Dilute scheme

(ϕSr)3/2Dγ For Differential scheme

2ϕSr

3 − ϕSr
Dγ For Mori-Tanaka scheme

3ϕSr − 1

2
Dγ; ϕSr ≥ 1

3
For self-consistent scheme

(4.10)

The normalized homogenized diffusion coefficient is displayed as a function of the sat-

uration degree in Fig.(4.3) for these four micromechanics-based models.

As expected, the interconnectivity of the transport pathway is ensured at the whole

saturation degree (Sr ranges from 1 to 0) within differential scheme (DF blue curves) and

Mori-Tanaka scheme (MT cyan curves) procedures. The reason lies in the fact that the

liquid water phase is treated as a continuous phase whatever the saturation degree when
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Figure 4.3: The influence of saturation degree on normalized homogenized diffusion coef-
ficient in one scale microstructure, notation DF denotes differential scheme, MT denotes
Mori-Tanaka scheme, SC denotes self-consistent scheme.

using these two schemes. It is interesting to note that the differential scheme (DF blue

curves) provides a Archie-like power law defined by the exponent
3

2
for both ϕ and Sr. It is

important to note that the normalized homogenized diffusion coefficient coefficient derived

by differential scheme (DF ) is independent of the porosity ϕ. This remark is also valid for

Mori-Tanaka scheme (cyan curves in Fig.(4.3)): the normalized solute diffusion coefficient

weakly depends upon the porosity (ϕ ∈ [0.1, 0.45]).

As expected, self-consistent estimate (SC black curves) is able to exhibit percolation

effects in unsaturated case. A critical saturation degree Srp (solute diffusion vanishes at

Srp: Dhom = 0 according to Eq.(4.10)) can be determined as:

Srp =
1

3ϕ
(4.11)

According to Eq.(4.11), it indicates that the percolation effects are enhanced by the

value of the pore volume fraction (porosity). The higher the porosity the smaller the critical
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saturation degree (see Fig.(4.3)). Therefore, the solute diffusion exists at the saturation

degree ranges [Srp, 1] in self-consistent scheme.

4.4.2 A two-scale microstructure

As discussed in Chapter 2, in practice engineering, most of porous media exhibit hi-

erarchical structures (see Fig.(2.4)), which is defined by pore space characteristic sizes at

different scales. To determine the homogenized diffusion coefficient for such microstruc-

tures, a multi-scale separation should be employed. Herein, in order to use this scale

separation condition and derive the estimation by the previous schemes, a dual-porosity

porous medium is considered. The idea consists in separating the pore space into two fami-

lies of pores, the macro pores (domain Ωmp) and the small pores (domain Ωsp). According

to Ωp = Ωmp ∪ Ωsp, let us define α the ratio of the macro pores Ωmp in the whole pore

space Ωp:

α =
Ωmp

Ωp
(4.12)

The upscaling procedure for dual porosity microstructure is two fold (depending upon

the saturation degree):

— At level I, the REV is made up of solid, liquid and gaseous phases.

— At level II, macro pores, either gas or liquid saturated, coexist with the homogenized

medium of level I.

Detailed handling procedure of Mori-Tanaka scheme and self-consistent scheme in un-

saturated cases is presented in Appendix(B). Isotropic diffusion coefficient tensors for each

phase and spherical shape are assumed so that isotropic homogenized diffusion coefficients

are expected. When level I (the matrix as shown in Fig.(4.4): it is denoted as domain

Ωm) and level II are dealt with different schemes, it represent different microstructures at

microscopic (local) and macroscopic scales.

The morphological models are depicted in Fig.(4.4). Fig.(4.4)(a) characterizes a two-
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scale matrix+inclusion microstructure: at micro scale (level I), the matrix is the liquid

water (with diffusion coefficient Dγ) in which solid and gaseous phases are embedded; at

level II, macro pores either filled with gas or liquid water are embedded in homogenized

medium of level I (with homogenized diffusion coefficient Dhom
m ).

Fig.(4.4)(b) characterizes the polycristalline microstructures at local (level I) and macro

scales (level II): at micro scale, the liquid water and gas in micro pores along with solid

grains are embedded in the matrix with sought homogenized diffusion coefficient Dhom
m ; at

macro scale, the homogenized medium as well as macro pores either filled with gas or liquid

water are embedded in the medium with sought homogenized diffusion coefficient Dhom.

Fig.(4.4)(c) characterizes the polycristalline microstructure: at local scale (level I) and

matrix+inclusion microstructure at macro scale (level II); at local scale, solid grain and

pores filled with gas or liquid water are embedded in the matrix with sough homogenized

diffusion coefficient Dhom
m ; at macro scale, macro pores either filled with gas or liquid water

are embedded in the homogenized matrix of level I.

The matrix pore space volume fraction is denoted by ϕm and the saturation degree Srm

at that (local) scale are defined as:







ϕm =
Ωsp

Ωm

=
Ωp − Ωmp

Ω − Ωmp
=

(1 − α)ϕ

1 − αϕ

Srm =
Ωsp

l

Ωsp
=

Ωsp
l /Ωm

Ωsp/Ωm

=
φl

ϕm

(4.13)

where Ωsp and Ωsp
l are the domains of small (micro) pores and the liquid water in micro

pores, Ωm is the domain of the matrix (level I), φl is the volume fraction of the liquid water

in small pores at local scale.

Thus, at level I (the matrix as shown in Fig.(4.4)), the homogenized diffusion coefficient

of the matrix in the isotropic case 4 can be estimated as:

4. In isotropic case, we have Dhom
m = Dhom

m 1, Dγ = Dγ
1, Ai =

1

3
1 : Ai, i ∈ {l, s, g,m}



4.4 A first approach for solute diffusion in unsaturated porous media 83

(a) Level II: MT-Level I: MT (b) Level II: SC-level I: SC

(c) Level II: MT-level I: SC

Figure 4.4: Schematic illustration of morphological models for porous media with two-scale
microstructure, SC denotes self-consistent scheme, MT denotes Mori-Tanaka scheme.
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Dhom
m =

2ϕmSrm

3 − ϕmSrm

Dγ with Mori-Tanaka Scheme

Dhom
m =

3ϕmSrm − 1

2
Dγ with Self-Consistent Scheme

(4.14)

Similarly, at level II, in isotropic case 5, the macroscopic homogenized diffusion coeffi-

cient Dhom can be estimated by:

Dhom =
φmD

hom
m Am + φmlD

γAml

φmAm + φmlAml + φmgAmg

(4.15)

where Ai are the average concentrations of i-th phase at macro scale (i ∈ {m,mg,ml}).

Their values are estimated by the considered schemes (e.g., Mori-Tanaka and Self-Consistent

Schemes); the detailed information is given in Appendix(B.2). Correspondingly, φi are the

volume fractions of i-th phase at macro scale (i ∈ {m,mg,ml}). Here, it should be clear

that, φm is the volume fraction of the matrix at macro scale (level II) while ϕm is the

porosity of the matrix at local scale (level I).

It has to be mentioned that α may be advantageously interpreted through the concept

of a critical macro saturation degree Src defined as:

Src =
Ωsp

Ωp
= 1 − α (4.16)

This critical macro saturation degree allows to account for the saturation degree at the

local scale along the progressive desaturation process.

Some remarks on α and ϕ when level I is estimated with self-consistent

scheme

Let us consider porous materials defined by 1/3 ≤ ϕm ≤ 1/2 when they are estimated

by self-consistent scheme. Herein, level I is estimated with self-consistent scheme (see

Fig.(4.4) (b) and (c)), the pore volume fraction of the matrix ϕm (see Eq.(4.13)) should

5. Dhom = Dhom
1, Dγ = Dγ

1, Ai =
1

3
1 : Ai, i ∈ {m,mg,ml}, subscripts m, ml and mg denote

matrix, liquid water in macro pore and gas in macro pore, respectively.
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obey:

ϕm ≥ 1

3
⇒ ϕ ≥ 1

3 − 2α
≥ 1

3
(4.17)

When level I is estimated with self-consistent scheme, in order to discuss the percolation

effect, the percolation threshold saturation degree Srp is employed, at which the macro-

scopic solute diffusion disappears (Dhom = 0). The quantitative expression of Srp is derived

as:

Srp =
Ωlc

m

Ωp
=

Ωlc
m

Ωsp

Ωsp

Ωp
=

1

3ϕm

(1 − α) =
1 − αϕ

3ϕ
(4.18)

where Ωlc
m is the critical liquid domain in matrix (solute diffusion disappears at this critical

liquid domain), ϕm is determined by Eq.(4.13).

Taking advantage of Eq.(4.12) and Eq.(4.13), the volume fractions of each phase are

listed in Table(4.4).

Table 4.4: Volume fractions of each phase within multi scale porous media.

- Sr ≥ Src Sr ≤ Src

1 Solid φs
1 − ϕ

1 − ϕ(1 − Src)

1 − ϕ

1 − ϕ(1 − Src)

Gas in micro pores φg 0
ϕ(Src − Sr)

1 − ϕ(1 − Src)

The capillary water in micro pores φl
ϕSrc

1 − ϕ(1 − Src)

ϕSr

1 − ϕ(1 − Src)
The capillary water in macro pores φml ϕ(Sr − Src) 0
Gas in macro pores φmg ϕ(1 − Sr) ϕ(1 − Src)

1 The volume fractions φs, φl and φg are defined on level I (at local scale), they can be
determined by as Eq.(4.13); φmg and φml are defined on level II (at macro scale).

Three micromechanics models are proposed in order to estimate the homogenized dif-

fusion coefficient of two-scale porosity geomaterials (see Fig.(4.4)). They have been chosen

in order to discuss the specific microstructures. The evolution of macroscopic homogenized

diffusion coefficient with saturation degree is determined from Eq.(4.14) and Eq.(4.15).
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The influence of α on the evolution of the macroscopic homogenized diffusion coefficient

Dhom is depicted in Fig.(4.5) 6.

Figure 4.5: Influence of α on the evolution of Dhom with Sr in porous media with two-scale
microstructures; MT-MT, SC-SC and MT(level II)-SC (level I) correspond to morphological
models in Fig.(4.4)(a), (b) and (c), respectively; Src

1 = 0.9, Src
2 = 0.7, Src

3 = 0.5.

The influence of ϕ on the evolution of the macroscopic homogenized diffusion coefficient

Dhom is depicted in Fig.(4.6) 7.

According to Fig.(4.5) and Fig.(4.6), these results are derived based on three morpho-

logical models (SC-SC, MT-MT and MT-SC). They deserve the following comments:

— Effect of morphological models

Mori-Tanaka scheme is associated to matrix+inclusion microstructure morphology.

6. Here, ϕ = 0.45, from Eq.(4.17), α ≤ 0.39, thus, α is taken as 0, 0.1 and 0.3, respectively in this case.
7. In this case, α = 0.1, from Eq.(4.17), ϕ ≥ 0.357, therefore, ϕ is taken as 0.36, 0.4 and 0.45, respectively.
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Figure 4.6: Influence of ϕ on the evolution of Dhom with Sr in porous media with two-scale
microstructures, Src

1 = 0.9.

Nevertheless, self-consistent scheme, associated to a polycristalline microstructure,

is typically used for granular materials. In addition, the crucial question of the

liquid water connectedness at the different scales is addressed through the use of

self-consistent scheme.

The simulation results of SC-SC and MT-SC models show great similarity (overlap-

ping of red curves and green curves). Both of these simulation results exhibit strong

percolation effects. These results emphasize the fact that macroscopic percolation

effects may be attributed to percolation phenomena occurring at local scale only (in

this case it is estimated with self-consistent scheme at level I).

The results of MT-MT model show that the one-scale MT model (α = 0) is already

able to account for the multi-scale (here the double scale and α > 0) definition of

the pore space. In other words, the introduction of a second pore size family does

not strongly modify the result obtained by the previous MT model (see Fig.(??)).

— Effect of α
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The influence of parameter α is discussed at porosity ϕ = 0.45. Let us remind that

α =
Ωmp

Ωp
defines the fraction of macro pores in the whole pore space (at macro

scale). Thus, as presented in Eq.(4.13), the porosity of matrix ϕm (at level I) is a

function of α, the evolution of the ϕm with α is plotted in Fig.(4.7).

Figure 4.7: Evolution of ϕm with α.

1) the influence of the α on the saturated macroscopic homogenized diffusion coef-

ficient Dhom(Sr = 1)

In self-consistent scheme (e.g., SC-SC, MT-SC models in Fig.(4.4) (b) and (c)), the

porosity of the matrix ϕm should be higher than 1/3 to ensure the connectivity of

the liquid phase in matrix (level I in Fig.(4.4)). Therefore, the maximum value of α

is 0.389 (see Fig.(4.7)). As shown in Fig.(4.7), when α ranges between 0 to 0.389,

ϕm decreases with increase of α. Therefore, from Eq.(4.14), it can be inferred that

the homogenized diffusion coefficient in matrix Dhom
m decreases with α.

When the homogenized diffusion coefficients at level II are estimated with self-

consistent or Mori-Tanaka schemes (see Fig.(4.4)(b) and (c)), the macro pore water

is isolated distributed in matrix and connected by the latter. The macroscopic ho-

mogenized diffusion coefficient Dhom (at level II) are thus controlled by the diffusion
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coefficient of the matrix Dhom
m . As we discussed previously, Dhom

m decreases with

α. Therefore, in MT-SC or SC-SC models, the saturated macroscopic homogenized

diffusion coefficient Dhom(Sr = 1) also decreases with α. The simulation results are

depicted in green curves and red curves in Fig.(4.5).

Similarly, in MT-MT models, the macroscopic homogenized diffusion coefficient

Dhom is governed by the homogenized diffusion coefficient in the matrixDhom
m . There-

fore, Dhom
m also decreases with α (as shown in the blue curves in Fig.(4.5)).

2) the influence of α on the percolation effect

However, when the homogenized diffusion coefficient of matrix is estimated with

self-consistent scheme, there exists strong percolation effect. The percolation effect

is quantify by the value of Srp, the greater the Srp, the greater the percolation

effect. Seen from Eq.(4.18), it is readily to find that Srp decrease with increase of

α. Therefore, in MT-SC or SC-SC models, with the increase of α, percolation effect

decreases, the evolution of Srp with α are depicted in Fig.(4.5).

As stated previously, when the homogenized diffusion coefficient of matrix (level I)

is estimated with MT, the matrix is liquid water which ensures the connectivity of

the diffusion pathway. Therefore, when the matrix (level I) is estimated with MT,

there is no percolation effect (Srp = 0) in MT-MT (as shown in the blue curves in

Fig.(4.5)).

— Effect of porosity ϕ

1) the influence of ϕ on the saturated macroscopic homogenized diffusion coefficient

Dhom(Sr = 1)

The influence of porosity ϕ (total porosity at macro scale) on the simulation results

by three morphological models is discussed at α = 0.1. As discussed previously, the

saturated macroscopic homogenized diffusion coefficient Dhom(Sr = 1) is governed

by the homogenized diffusion coefficient of the matrix Dhom
m . It is readily to see from

Eq.(4.14), Dhom
m decrease with porosity of matrix ϕm. Moreover, from Eq.(4.13), it

can be found that, the porosity of matrix ϕm decreases with ϕ at a given α (here
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α = 0.1). Therefore, it can be concluded that, when estimated with MT-MT, SC-SC

and MT-SC, Dhom(Sr = 1) decrease with ϕ. The simulation results are illustrated

in Fig.(4.6).

2) the influence of ϕ on the percolation effect

As shown in the blue curves in Fig.(4.6) and explained previously, there is no per-

colation effect when MT-MT models.

For the SC-SC or MT-SC models, there exists strong percolation effect. Seen from

Eq.(4.18), it is readily to find that Srp increases with decreasing ϕ, which means

percolation effect increases with ϕ. The simulation results are depicted in the green

curves in Fig.(4.6).

Therefore a general conclusion can be made: in SC-SC or MT-SC models, the saturated

macroscopic homogenized diffusion coefficient Dhom(Sr = 1) increases with decreasing α

while the percolation effect decreases increases with α; in MT-MT model, the saturated

macroscopic homogenized diffusion coefficient Dhom(Sr = 1) increases with decreasing α,

however there is no percolation effect in this model.

As we have discussed previously, Mori-Tanaka scheme is adopted for the matrix+inclusion

microstructure morphology, the connectivity of the liquid phase is ensured in this scheme.

However, the percolation effect occurred during the desaturation will not presented by this

scheme. That is the reason why self-consistent scheme are introduced. Generally, the self-

consistent scheme is appropriate for polycrystalline microstructures (e.g., sand, sandstone,

clay particles arrangement, C-S-H particle arrangement). But this simple morphology fails

since solute diffusion disappears at high saturation degree (as shown by the black curves in

Fig.(4.3)), which is contradictory to the experimental results [33, 127, 159]. Therefore, in

order to overcome the drawback of the self-consistent scheme, enriched models are devel-

oped accounting for the liquid layer phase, which are introduced in the following section.
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4.5 Enriched models for solute diffusion in

unsaturated porous media

In the previous section, different morphological representations (one-scale and two-scale

microstructure) of unsaturated porous media are discussed. However, in the previous mor-

phological representations, specific liquid water distribution within the pore space has not

been considered.

The present section aims at deriving a micromechanics model for solute diffusion ac-

counting for a more detailed morphology of the liquid water distribution within the pore

space of porous media with one-scale microstructure. The evolution of water distribution

within unsaturated granular material (one-scale microstructure) is introduced in Section

(3.1). Based on this physical characterization, a schematic illustration of the different wa-

ter components (the pore body water, the intergranular layer, the wetting layer and the

water film) are depicted in Fig.(4.8).

According to Fig.(4.8), part of the "liquid water" is always attached to the pore/solid

interface during the desaturation process. This "liquid water" varies from intergranular

layer at high saturation degree, wetting layer at intermediate saturation degree to water

film at low saturation degree. In the following context, this kind of "liquid water" with

special morphology is referred to as liquid layer (denoted as subscript ll). Hence, liquid

layer+solid grain composite morphology is sufficient to represent the morphologies of water

film+solid grain, the wetting layer+solid grain and intergranular layer+solid grain within

unsaturated porous medium. It will now be incorporated in the micromechanics model and

discussed in the sequel.

In unsaturated porous medium, there exist the pore body water phase, the liquid layer

phase, solid phase and gaseous phase. Analogical to the saturated case in Section(4.3), the

local diffusion problem in this unsaturated porous medium can also be defined over a REV

(domain Ω) by the following set of equations:
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Figure 4.8: Schematic representation of different components of water phase and their
effects on solute diffusion in unsaturated porous media; the surface roughness of solid
grains is disregarded in the figure; the intergranular water is decomposed into intergranular
layer and pore body water; the intergranular layer, the wetting layer and the water film are
represented by "liquid layer" in the following discussion.
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div jγ = 0 (a)

jγ = −Dγ(z) gradργ (b)

ργ = H · z when z ∈ ∂Ω (c)

(4.19)

where H is the macroscopic concentration gradient applied on the boundary of the REV

(∂Ω) in the sense of Hashin [122].

Here, isotropic solute diffusion coefficient tensors and spherical shape of each phase are

assumed so that isotropic homogenized solute diffusion coefficients are expected. The solute

diffusion coefficients of each phase can thus be expressed as:

D(z) =







Ds → 0 ∀z ∈ Ωs

Dg → 0 ∀z ∈ Ωg

Dγ ∀z ∈ Ωpw

Dγ
ll = δDγ ∀z ∈ Ωll

(4.20)

where Ωs, Ωpw, Ωg and Ωll are the solid, the pore body water, the gas and the liquid layer

domains within REV, respectively; Dγ
ll is the diffusion coefficient of species γ within the

liquid layer, δ is the constrictive factor for the solute diffusion coefficient in the liquid layer,

δ ≤ 1 (see Section(3.6.3)).

Similar to Eq.(4.6), in order to solve Eq.(4.19), gradργ is linearly related to H by intro-

ducing the concentration tensors of each phase Ai(z) (i ∈ {s, g, pw, ll}). The latter depend

on their microstructure morphologies at local scale. Generally, it is difficult to estimate the

Ai(z). An alternative and convenient way is estimating the average concentration tensors

Ai by means of Eshelby’s based solution, the detailed information is given in Appendix(B).

The evolutions of the volume fractions of pore body water and the liquid layer with

relative humidity are different during drainage. The volume fraction of the liquid layer

(with subscript ll) can be determined by Eq.(4.21):
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φll =
N

4π[(Rs + h)3 −R3
s]

3

N
4πR3

s

3

= [(1 + ε)3 − 1](1 − ϕ) with, ε =
h

Rs

(4.21)

where N is the grain density (number of grains per unit volume), 1 − ϕ =
4NπR3

s

3
, ϕ is

the pore volume fraction, Rs is the radius of the solid grain, h is the thickness of the liquid

layer.

Therefore, the liquid layer saturation degree Srll may be determined as:

Srll =
(1 − ϕ)

ϕ
[(1 + ε)3 − 1] (4.22)

The saturation degree Sr may thus be defined as:

Sr = Srpw + Srll (4.23)

where Srpw is pore body water saturation degree.

Hence, in this unsaturated porous media, when ε = h/Rs ≪ 1, the volume fractions of

each phase can be expressed as a function of saturation degree Sr as:







φs = (1 − ϕ)

φg = ϕ(1 − Sr)

φll = [(1 + ε)3 − 1](1 − ϕ) ≈ 3ε(1 − ϕ)

φpw = ϕSr − φll = ϕSr − [(1 + ε)3 − 1](1 − ϕ) ≈ ϕSr − 3ε(1 − ϕ)

(4.24)

In isotropic case, when the average concentration coefficient Ai and volume fractions

of each phase φi (i ∈ {ll, pw, g, s}) are determined, the homogenized diffusion coefficient

Dhom can be determined by revising Eq.(4.9) as:
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Dhom =
∑

i

φiD
iAi (4.25)

Depending on the volume fraction of the liquid layer, the latter can be mathematically

treated as 2-D (2 dimensional) case (in Section(4.5.1)) or 3-D case (in Section(4.5.2)).

1) 2-D case: asymptotically, when h ≪ Rs, the liquid layer may be idealized as the

diffusive interface whose volume fraction may be neglected. The saturation degree can thus

be determined as:

Sr = Srpw +
3(1 − ϕ)

ϕ
(
h

Rs

) ≈ Srpw with: h ≪ Rs (4.26)

The local solute diffusion in this asymptotic liquid layer may be idealized as a 2-D solute

diffusion phenomena occurring at the solid-pore space interface.

2) 3-D case: 2-D idealization of asymptotic liquid layer is incapable of characterizing

the evolution of the liquid layer during the desaturation process. To overcome this, the

liquid layer which exhibits volumetric evolution is treated as a specific phase in 3-D case.

4.5.1 2-D idealization of local diffusion

4.5.1.1 Local diffusion at solid-pore space interface

Considering the local diffusion at solid-pore space interface, let us denote Si the surface

of the grain Gi. More over, Si is the 2-D idealization of a asymptotic liquid layer of width

h, the latter is infinitesimal as compared the grain size. Let N be the local unit vector

normal to the tangent plane of Si, let Z (0 < Z < h) denote the coordinate along an axis

normal at point z of the Si (see Fig.(4.9)).

According to Fig.(4.9) and based on the 2-D idealization of the asymptotic liquid layer,

a surface flux vector of solute species Qγ is defined as [79]:

Qγ(z) =
∫ h

0
jγ(z + ZN)dZ (4.27)
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Figure 4.9: 2D idealization of diffusion flux in interface.

When the solvent velocity is negligible, the equation jγ = ργvγ = −Dγ
llgrad

z
ργ is also

valid for the solute diffusion in diffusive interface (recalling Eq.(4.3)).

Thus, combining with Eq.(4.27), we have:

Qγ(z) = −
∫ h

0
Dγ

llgrad
z
ργdZ (4.28)

where Dγ
ll is the diffusion coefficient of species γ within the liquid layer.

Similar to the classic 3-D Fick’s law, the surface flux is assumed to be proportional to

the species concentration gradient in the diffusive interface of the considered grain:

z ∈ Si : Qγ(z) = −Dγ
sf grad

s
ργ (4.29)

where Qγ lies within the tangent plane of Si, D
γ
sf is the diffusion coefficient of the solute

species on the solid surface and can be calculated from the diffusion coefficient Dγ
ll in the

liquid layer:



4.5 Enriched models for solute diffusion in unsaturated porous media 97

Dγ
sf =

∫ h

0
Dγ

ll(z + ZN)dZ (4.30)

As proposed in Eq.(3.39), the constrictive factor for the diffusivity in the liquid layer δ

can be introduced to relate the diffusion coefficient in liquid layer Dγ
ll with the bulk diffusion

coefficient Dγ. When δ is assumed to be constant, Dγ
sf can be defined as:

Dγ
sf = hδDγ (4.31)

Therefore, the average solute flux across the overall diffusive interfaces within the REV

of porous medium Jγ
sf can be expressed as:

Jγ
sf =

1

Ω

∑

i

∫

Si

Qγ(z)dSi (4.32)

Ω is the total volume of REV.

4.5.1.2 Derivation of unsaturated solute diffusion coefficient

The macroscopic average flux of solute species in the REV of the unsaturated porous

media(Jγ
tot) involves the contribution of the solute diffusion in pore body water (Jγ

pw) and

that in the diffusive interface (Jγ
sf ) which exists in the asymptotic liquid layer (diffusive

interface). That is,

Jγ
tot = Jγ

sf + Jγ
pw (4.33)

In unsaturated porous media, the solute flux in pore body water (Jγ
pw) can be expressed

as:

Jγ
pw = jγ

pw
= −ϕSrpwDγgrad

pw
ργ (4.34)

where ϕ is the porosity of porous media, Srpw is the saturation degree of pore body water,

grad
pw
ργ is the average concentration gradient of the solute species in the pore body water.
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Combining Eq.(4.32), Eq.(4.33) and Eq.(4.34), it yields:

Jγ
tot = −ϕSrpwDγgrad

pw
ργ +

1

Ω

∑

i

∫

Si

QγdSi (4.35)

grad
pw
ργ and Qγ have to be determined. Here, we will rather perform estimates for

the latters. Unsaturated porous media seem to exhibit percolation effect during the liquid

water drainage, which may be accounted for by the sole self-consistent scheme.

Figure 4.10: Morphological representation of 2D idealization of solute diffusion in unsatu-
rated porous media

Following the self-consistent scheme methodology applied to the unsaturated situation,

three auxiliary Eshelby problems are considered (see Fig.(4.10)). Uniform boundary condi-

tions ργ −→ H0 ·z are considered on the boundary of REV, where H0 is a fictitious uniform

concentration gradient, H is a real uniform concentration gradient. According to Eq.(4.7),

H0 is related to H by the following equation:

H0 = H (4.36)



4.5 Enriched models for solute diffusion in unsaturated porous media 99

Estimates for the liquid water phase and the gaseous phase are easily derived as a specific

application of Eshelby’s solution for diffusion problems. The derivation of the average

concentration gradients in the pore body water (grad
pw
ργ) and gaseous phase (grad

g
ργ) is

given in Appendix(B.2). Here, the concentration tensors of pore body water and gaseous

phase are listed as:

grad
pw
ργ =

3Dhom

2Dhom +Dγ
H0 (4.37)

grad
g
ργ =

3

2
H0 (4.38)

Therefore, inserting Eq.(4.37) into Eq.(4.34) yields:

Jγ
pw = −ϕSrpwDγ 3Dhom

2Dhom +Dγ
H0 (4.39)

Figure 4.11: Eshelby problem of spherical composite made up of a solid grain and a diffusive
interface.

The spherical composite made up of a solid grain+a diffusive interface requires an ana-

lytical resolution and it can be treated as Eshelby-based problem (see Fig.(4.11)). Taking

advantage of the assumed spherical shape of the solid grains, the solute concentration (ex-
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tended to the solid phase) 8 satisfies:







r < Rs : ργ = Ar cos θ (a)

r > Rs ργ = (αr +
β

r2
) cos θ (b)

(4.40)

where H0 = H0e3 and e3 is corresponding to the axis co-linear to θ = 0. Accordingly, the

concentration gradient field can be shown as:







r < Rs : gradργ = Ae3 (a)

r > Rs : gradργ = (α− 2β

r3
) cos θer − (α+

β

r3
) sin θeθ (b)

(4.41)

The continuity of the concentration at r = Rs reads:

ARs = αRs +
β

R2
s

(4.42)

Considering the solute flux balance in the diffusive interface (r = Rs), it requires that:

divsQ
γ = −jγ

r|r=R+
s

(4.43)

Combining Eq.(4.29) and Eq.(4.43), the solute flux in the diffusive interface can be obtained

by:

divsQ
γ = Dγ

sf A sin θeθ (4.44)

Meanwhile, Fick’s law is applied to the interlayer (r > Rs) together with the use of

Eq.(4.41)(b) it yields:

jγ

r|r=R+
s

= −Dhom((α− 2β

r3
) cos θer − (α+

β

r3
) sin θeθ) (4.45)

Thus, according to the Eq.(4.43), Eq.(4.44) and Eq.(4.45), it gives:

8. The concentration gradient of the solid grain is non zero. However, owing to Ds → 0, according to
Fick’s law, the solute flux in solid grain is 0.
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Dhom(α− 2β

R3
s

) = 2A
Dγ

sf

Rs

(4.46)

Finally, the boundary condition ργ −→ H0·z at infinity (r → ∞) together with Eq.(4.40)

yields:

α = H0 (4.47)

Eventually, the other two unknowns can be obtained by means of Eq.(4.42) and Eq.(4.46),

A =
3DhomRs

2(DhomRs +Dγ
sf )
H0; β =

R3
s

2

Dγ
homRs − 2Dγ

sf

Dγ
sf +Dγ

homRs

H0 (4.48)

From Eq.(4.41), it can be found that the concentration gradient in the solid grain is

Ae3, thus, the average concentration gradient of the solid grain grad
s
ργ is estimated by:

grad
s
ργ =

3DhomRs

2(DhomRs +Dγ
sf )
H0 (4.49)

Similarly, combining Eq.(4.32) and Eq.(4.45), the contribution of diffusive interface can

be estimated by [79]:

1

Ω

∑

i

∫

Si

QγdSi ≈ N
∫

S
Dγ

sf A sinθ eθ dS = −8

3
πR2

sND
γ
sf Ae3 (4.50)

where N is the grain density which is the number of grains per unit volume, the latter may

be related to the volume fraction of solid grain c according to [79]:

c = 1 − ϕ = 4πR3
sN/3 (4.51)

Combining Eq.(4.50) and Eq.(4.51) yields:

1

Ω

∑

i

∫

Si

QγdSi ≈ −Dγ
sf

Rs

3(1 − ϕ)DhomRs

DhomRs +Dγ
sf

H0 (4.52)

Recalling Eq.(4.6), the following relationship between H and H0 is established:
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H = [
3DhomRs(1 − ϕ)

2(DhomRs +Dγ
sf )

+
3ϕSrDhom

2Dhom +Dγ
+

3ϕ(1 − Sr)

2
]H0 (4.53)

Eventually, by means of combining Eq.(4.35), Eq.(4.39), Eq.(4.52) and Eq.(4.53), it

yields an analytical solution of the homogenized diffusion coefficient Dhom:

Dhom =
(3ϕSr − 1)Dγ

4
+
Dγ

sf (2 − 3ϕ)

2Rs

+
1

4

√
√
√
√(1 − 3ϕSr)2(Dγ)2 + 4(2 − 3ϕ)2(

Dγ
sf

Rs

)2 + 4
Dγ

sfD
γ

Rs

[3ϕSr(4 − 3ϕ) + (2 − 3ϕ)]

≈ (3ϕSr − 1)Dγ

2
+
Dγ

sf (2 − 3ϕ)

Rs

(4.54)

where [3ϕSr(4 − 3ϕ) + (2 − 3ϕ)] ≈ (1 − 3ϕSr)(2 − 3ϕ) is applied in Eq.(4.54).

Remarks on the homogenized diffusion coefficient Dhom

For the convenience of discussion, the homogenized diffusion coefficient Dhom may be

advantageously decomposed into two terms as:

Dhom ≈ Dhom
pw +Dhom

ll (4.55)

where we define two contributions:

Dhom
pw =

(3ϕSr − 1)Dγ

2
Dhom

ll =
Dγ

sf (2 − 3ϕ)

Rs

(4.56)

The first term accounts for the solute diffusion in the pore body water; the second term

accounts for the solute diffusion in the diffusive interface.

As discussed in the Section(4.4.1), with self-consistent scheme, there is a percolation

threshold for the solute diffusion in unsaturated porous media with one-scale microstruc-

ture. The critical saturation degree is Srp =
1

3ϕ
, when ϕ >

1

3
. Therefore, it is meaningful

to analyse the diffusive transport phenomena with respect to the pore volume fraction of

porous medium ϕ and saturation degree Sr.
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— when ϕ ≤ 1

3

Owing to the percolation threshold effect of self-consistent scheme, the pore body

water becomes disconnected. Indeed, when ϕ ≤ 1

3
, even in the saturated case, the

solute diffusion within pore body water (diffusion coefficient Dhom
pw ) is null. The

morphology of the diffusive interface (the asymptotic liquid layers surrounding the

solid grains) ensures the connectivity of pathway for solute diffusion, which allows

to obtain a non-zero homogenized diffusion coefficient Dhom
ll .

— when ϕ >
1

3
and Sr ≥ 1

3ϕ

The homogenized unsaturated solute diffusion coefficient Dhom is composed of two

parts: Dhom
pw contributed by pore body water as well as Dhom

ll contributed by the

asymptotic liquid layer. When Sr = 1, the homogenized diffusion coefficient Dhom =

(3ϕ− 1)Dγ

2
+
Dγ

sf (2 − 3ϕ)

Rs

. The ratio of the contributions of the two parts may be

expressed as:

Dhom
pw

Dhom
ll

=
3ϕ− 1

2εδ(2 − 3ϕ)
(4.57)

where ε =
h

Rs

.

To quantitatively compare the dependence of the contributions of Dhom
pw and Dhom

ll

on ε, parameters ϕ = 0.4 and δ = 0.5 are adopted. The results are depicted in

Fig.(4.12). According to Fig.(4.12), it can readily be found that, when ϕ = 0.4, the

pore body water is interconnected, the contribution of pore body water is far greater

than that of the diffusive interface (
Dhom

pw

Dhom
ll

≫ 1) as the thickness of liquid layer h is

far smaller than the grain size Rs (ε = h/Rs < 10−2). When 10−2 < ε < 10−1, the

thickness of liquid layer is comparable with grain size, the contribution of liquid layer

is thus comparable with that of pore body water (the same order of magnitude). It

should be noted that, when 10−2 < ε < 10−1, the volume of the liquid layer may not

be disregarded and the liquid layer can not be treated as the diffusive layer.

—
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— when ϕ >
1

3
and Sr <

1

3ϕ

Similarly, the pore body water becomes discontinuous. Therefore, when Sr <
1

3ϕ
,

Dhom
pw = 0. In this case, the dominating contribution of solute diffusion is once again

due to the diffusive interface (asymptotic liquid layer), the homogenized diffusion

coefficient is thus Dhom = Dhom
ll .

Figure 4.12: Dependence of
Dhom

pw

Dhom
ll

on ε, ϕ = 0.4, the constrictive factor δ = 0.5.

In one scale microsturcture (as introduced in Section(4.4.1)), the percolation thresh-

old proposed by self-consistent scheme is ϕ =
1

3
. Asymptotically, from the expression of

homogenized diffusion coefficient in liquid layer Dhom
ll =

Dγ
sf (2 − 3ϕ)

Rs

, we can derive an-

other percolation threshold ϕ =
2

3
. It appears that for ϕ >

2

3
, the liquid layers are not

interconnected within porous medium.
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4.5.2 3-D models for solute diffusion within unsaturated porous

media

The 2-D idealization of the liquid layer in the previous section allows us to simplify

the mathematical treatment of the asymptotic liquid layer. The volume fraction of the

asymptotic liquid layer is neglected in the 2-D idealization. Indeed, the 2-D idealization of

liquid layer is good for the asymptotic problem but is unable to account for the different

kinds of liquid layer during desaturation process.

As depicted in Fig.(4.8), in unsaturated porous media, the liquid layer may be water

film, wetting layer and intergranular layer. The volume fraction and the thickness of liquid

layer decreases during desaturation process. Hence, the thickness and volume fraction of

the liquid layer (superposition of water film, wetting layer and intergranular layer) has to

be accounted for in the model. This the motivation of the 3-D model developed hereafter.

Depending upon the microstrcture morphologies of materials, Mori-Tanaka scheme and

self-consistent scheme are used to estimate the concentration tensors of each phase.

4.5.2.1 Mori-Tanaka estimate

In the Mori-Tanaka scheme, the pore body water is treated as matrix with the diffusion

coefficient Dγ. The morphological representation of the associated REV of an unsaturated

porous medium is depicted in Fig.(4.13).

The detailed information about the determination of average concentration tensors for

each phase is given in Appendix (B.2). When the porous medium is isotropic at local

and macro scales, the average concentration coefficient of the ith phase is estimated by

Mori-Tanaka scheme and given in Eq.(4.58).
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Figure 4.13: Schematic representation of unsaturated porous media with a specific ma-
trix+inclusion morphology, this morphology corresponds to Mori-Tanaka scheme, the ma-
trix is liquid water, the fictitious macroscopic concentration gradient H0 and the real macro-
scopic concentration gradient H are linked by: H0=H.







All =
3Dγ(φll + φs)

3Dγφs + 2Dγφll +Dγ
llφll

=
3(φll + φs)

3φs + 2φll + δφll

As =
3

2
All =

9(φll + φs)

2(3φs + 2φll + δφll)

Ag =
3

2

Apw = 1

(4.58)

The volumetric fractions of each phase are given in Eq.(4.24). Substituting Eq.(4.24)

and Eq.(4.58) into Eq.(4.25) yields the homogenized diffusion coefficient:

Dhom =
−2[6(δ − 1)(1 − ϕ)ε2 + (δ + 2)ϕSr + 3(1 − ϕ)(δ − 1)ε+ ϕSr]

6(δ − 1)(1 − ϕ)ε2 + [−9 + (3 − 3δ + δSr + 2Sr)ϕ]ε+ ϕSr − 3
Dγ (4.59)

According to Eq.(4.59), the homogenized diffusion coefficient estimated by Mori-Tanaka

scheme is a function of three parameters: ratio ε, the constrictive factor δ of the liquid layer

and the porosity ϕ. In the following, a discussion is presented in order to provide a better

understanding of the effects governed by these three parameters. The influence of these
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three parameters is depicted in Fig.(4.14) on the evolution of the homogenized diffusion

coefficient Dhom.

— The effect of ratio ε (with δ = 0.5 and ϕ = 0.4)

ε quantifies the volume fraction of liquid layer (φll = 3ε(1−ϕ)). At a given saturation

degree, the volume fraction of pore body water increases with decreasing ε. In Mori-

Tanaka scheme, the matrix is pore body water, the latter ensures the connectivity

of the pathway for solute diffusion. Therefore, the homogenized diffusion coefficient

Dhom increases with increasing volume fraction of pore body water φpw. According

to Eq.(4.24)), φpw increases with decreasing ε. Hence, as depicted in Fig.(4.14)(a),

Dhom increases with decreasing ε. Meanwhile, it can be found that, Srll increases

with ε. When Sr < Srll, all of the pore body water is drained, the liquid layer plays

a dominating role in the solute diffusion.

— The effect of constrictive factor δ (with ε = 0.01 and ϕ = 0.4)

δ quantifies the solute diffusion coefficient in liquid layer, the greater the δ the

greater the solute diffusion coefficient in the liquid layer. Indeed, the homogenized

diffusion coefficient Dhom is attributed to two contributions: solute diffusion in the

pore body water and in the liquid layer. When ϕ = 0.4 and ε = 10−2, the volume

fractions of the liquid layer and the pore body water are determined. As expected,

the homogenized diffusion coefficient Dhom increases with δ (see Fig.(4.14)(b)). It

can be also found in the figure that the variations of the red curves are minor. The

reason may lie in the fact that, in Mori-Tanaka scheme, the matrix is the pore body

water: the liquid layer is not the main pathway for solute diffusion. However, the

effect of δ will be more significant when Sr < Srll 9, since the liquid layer is the only

solute diffusion pathway.

— The effect of porosity ϕ (with ε = 0.01 and δ = 0.5)

Volume fraction of pore space ϕ is the property of porous medium. As shown in

9. Srll =
φll

ϕ
= 3

ε(1 − ϕ)

ϕ
,whenϕ and ε are determined, Srll is also determined.
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(a) The effect of ε on homogenized diffusion
coefficient.

(b) The effect of δ on the homogenized diffu-
sion coefficient.

(c) The effect of ϕ on the homogenized diffu-
sion coefficient.

Figure 4.14: Effects on the evolution of homogenized diffusion coefficient with the saturation
degree, the homogenized diffusion coefficient is determined by Mori-Tanaka scheme, Srll is
related to ϕ and ε by Eq.(4.22).
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Fig.(4.14)(c), the homogenized diffusion coefficient Dhom increases with increasing ϕ.

That is because the volume fraction of pore body water φpw increases with increasing

ϕ, and the former is the major pathway for solute diffusion in Mori-Tanaka scheme.

Liquid water is considered as matrix in the Mori-Tanaka scheme, which ensures the connec-

tivity of the pathway of solute diffusion. As shown in Fig.(4.14), when the volume fraction

of liquid layer is low enough (e.g. ε ≤ 0.01), its effect is negligible in the Mori-Tanaka

scheme.

4.5.2.2 Self-consistent estimate (accounting for percolation effect)

The previous section showed the Mori-Tanaka scheme does not exhibit percolation effect

during desaturation process. In this section, percolation effect may be accounted for by

means of the well-known self-consistent scheme. Let us now analyse the case where the

a diffusive liquid layer is introduced in the one-scale morphological (see Section(4.4.1)) by

means of self-consistent scheme.

A simple morphological representation of unsaturated porous media is depicted in

Fig.(4.15). For the sake of simplicity, the porous medium is treated as isotropic at mi-

cro and macro scales. Uniform concentration gradient boundary conditions are considered

on the REV. Three auxiliary Eshelby-type problems are introduced in order to estimate

the average concentration gradient tensors in the pore body water, the liquid layer and

the gaseous phase, respectively. As illustrated in Fig.(4.15), the boundary conditions of

auxiliary problems are defined by an uniform auxiliary concentration gradient boundary

conditions at infinity given by ργ → H0.z (with z → ∞).

In isotropic case, the average concentration coefficient of ith phase in the auxiliary matrix

is determined in Eq.(4.60). The detailed information about the determination of average

concentration tensor for each phase is given in Appendix (B.2).
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Figure 4.15: Schematic representation of unsaturated porous media with a specific poly-
crystalline microstructure, this kind of morphology corresponds to self-consistent scheme.







All =
3Dhom(φll + φs)

3Dhomφs + 2Dhomφll +Dγ
llφll

As =
3

2
All =

9Dhom(φll + φs)

2(3Dhomφs + 2Dhomφll +Dγ
llφll)

Ag =
3

2

Apw =
3Dhom

2Dhom +Dγ

(4.60)

Similarly, the volume fractions of each phase may also be estimated by Eq.(4.24). There-

fore, substituting Eq.(4.24) and Eq.(4.60) into Eq.(4.25), the homogenized diffusion coef-

ficient Dhom may be determined. Two limiting cases (when ε → 0 and δ → 0) will be

presented and discussed in the follows.

Remarks on two special cases for Dhom

The expressions of Dhom in two limiting cases are presented in Eq.(4.61).



4.5 Enriched models for solute diffusion in unsaturated porous media 111







Dhom(ε → 0) =
3ϕSr − 1 +

√

(1 − 3ϕSr)2

4
Dγ (a)

Dhom(δ → 0) =

√

[9(1 − ϕ)ε+ (1 − 3ϕSr)]2 − [9(1 − ϕ)ε+ (1 − 3ϕSr)]

4
Dγ (b)

(4.61)

As shown in Eq.(4.61)(a), when 3ϕSr > 1, Dhom(ε → 0) =
3ϕSr − 1

2
(while when

3ϕSr ≤ 1, Dhom(ε → 0) = 0). Indeed, when ε → 0, the liquid layer may be neglected,

it is thus the special case shown in Eq.(4.10) (for self-consistent scheme), the volume

fraction of the pore body water being ϕSr.

Similarly, when ϕSr >
1

3
+3(1 −ϕ)ε, Dhom(δ → 0) in Eq.(4.61)(b) can be expressed

as:

Dhom(δ → 0) =
3ϕSr − 1 − 9(1 − ϕ)ε

2
=

3[ϕSr − 3(1 − ϕ)ε] − 1

2
(4.62)

Eq.(4.62) is also a special case shown in Eq.(4.10)(for self-consistent scheme), since

liquid layer is not diffusive and may be treated like the non diffusive solid phase, the

volume fraction of pore body water being now ϕ(Sr − Srll).

Thus, we can consider that these two special cases presented in Eq.(4.61) validate

the 3-D micromechanics model (with self-consistent scheme) presented in this section.

Parameters ε, constrictive factor δ and porosity ϕ are incorporated in the homogenized

diffusion coefficient Dhom estimated by self-consistent scheme. In the follows, a discussion

is presented in order to better understand the physical effects of these three parameters on

Dhom. The effects of these three parameters on Dhom are plotted in Fig.(4.16).

— The effect of ratio ε (with δ = 0.5, ϕ = 0.4)

At given ϕ and δ, ε quantifies the volume fraction of liquid layer on the homogenized

diffusion coefficient within unsaturated porous media. In self-consistent scheme,

the introduction of liquid layer ensures the connectivity of the pathway for solute

diffusion. From Eq.(4.54), the homogenized diffusion coefficient is superposition of
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two parts: solute diffusion contributed by pore body water and solute diffusion by

liquid layer. According to Eq.(4.60), we have:







All =
3Dhom

3Dhom + (Dγ
ll −Dhom)

φll

φll + φs

Apw =
3Dhom

3Dhom + (Dγ −Dhom)

(4.63)

It is readily found that All > Apw, since Dγ > Dγ
ll, D

γ > Dhom and
φll

φll + φs

< 1.

It means that in self-consistent scheme, the liquid layer is a more efficient pathway

for solute diffusion than pore body water. Therefore, at given porosity (ϕ=0.4),

the more volume fraction of the liquid layer, the greater the homogenized diffusion

coefficient Dhom, as illustrated in Fig.(4.16)(a). In addition, owing to the total

drainage of pore body water, the curves are terminated at Srll (Srll is determined

by Eq.(4.22)). When Sr < Srll, the liquid layer dominates the solute diffusion.

— The effect of constrictive factor δ (with ε = 0.01, ϕ = 0.4)

δ quantifies the solute diffusivity in the liquid layer. The greater δ, the greater the

solute diffusion coefficient in liquid layer. As discussed previously, the liquid layer

ensures the connectivity of the pathway for solute diffusion and is a more efficient

pathway for diffusion than pore body water. Therefore, as depicted in Fig.(4.16)(b),

when the volume fraction of pore space ϕ and the volume fraction of liquid layer

3ε(1 − ϕ) are constant, the homogenized diffusion coefficient Dhom increases with

increasing δ (the solute diffusion coefficient in liquid layer). Similarly, the volume

fraction of liquid layer is treated as a constant during desaturation process, therefore,

as illustrated in the figure, the curves terminated at Srll.

— The effect of volume fraction of pore space ϕ (with ε = 0.01, δ = 0.5)

The volume fraction of the liquid layer φll is closely related to the volume fraction

of pore space ϕ by φll = 3ε(1 − ϕ); φll thus increases with decreasing ϕ. Moreover,

the volume fraction of the pore body water can be estimated by φpw = ϕSr − φll

(see Eq.(4.24)), φpw thus increases with increasing ϕ.
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(a) The effect of ε on homogenized diffusion
coefficient Dhom.

(b) The effect of δ on the homogenized diffu-
sion coefficient Dhom.

(c) The effect of ϕ on homogenized diffusion
coefficient Dhom.

Figure 4.16: Influence of three parameters on the evolution of homogenized diffusion coeffi-
cient Dhom with the saturation degree, the homogenized diffusion coefficient is determined
by self-consistent scheme; the curves terminate at Srll which can be calculated by Eq.(4.22);
when Sr < Srll, the liquid layer governs the solute diffusion.
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As discussed in Section(4.5.1.2), when Sr > 1/(3ϕ) and ϕ ≥ 1/3, the homoge-

nized diffusion coefficient is the superposition of two contributions: solute diffusion

in pore body water Dhom
pw and that in liquid layer Dhom

ll . Owing to percolation ef-

fect, the solute diffusion contributed by the pore body water Dhom
pw decreases greatly

with decreasing saturation degree Sr. Nevertheless, the solute diffusion contributed

by the liquid layers is independent on saturation degree Sr but increases with de-

creasing ϕ (φll increases with decreasing ϕ). When Sr < Sr
′′

(Sr
′′

is depicted in

Fig.(4.16)(c)) 10, the solute diffusion contributed by liquid layer prevails over that

contributed by the pore body water, the liquid layer dominates the solute diffu-

sion; the homogenized diffusion coefficient Dhom increases with decreasing ϕ since

φll increases with decreasing ϕ.

4.6 Experimental results analysis

Let us now try to compare the simulation results from micromechanics models with the

experimental results. In the previous section, the liquid layer as local phase is accounted for

in the unsaturated diffusion models. However, the characteristic thickness of the liquid layer

(the intergranular layer, the wetting layer and the water film) is not specified in the theses

models. As introduced previously, in unsaturated porous medium, liquid layer represents

the superposition of the water film, the wetting layer and the intergranular layer.

According to the evolution of water distribution in unsaturated granular material in-

troduced in Section(3.1), the water film is stabilized by disjoining pressure and its char-

acteristic size is typically nanometric [22]. It dominates the solute diffusion transport at

low saturation degree. In addition to the water film, owing to the special morphology

of the materials (surface characteristic of sand grains), wetting layers whose characteris-

tic thickness is micron are stabilized by capillary pressure and play a significant role in

intermediate saturation degree. At high saturation degree, the intergranular water are in-

10. Sr
′′

is denoted as the saturation degree where the contribution of solute diffusion in the pore body
water is equal to that in liquid layer.
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terconnected through pore throat. Therefore, to ensure the connectivity of intergranular

water in self-consistent scheme, it is thus reasonable to assume that part of intergranular

water (intergranular layer) is attached on the solid grains.

In the follows, we develop a micromechanics model accounting for the different compo-

nents of the liquid layer (c.f., micromechanics model in Section(4.5.2.2)) to estimate the

homogenized solute diffusion coefficient. We then compare the simulation results with ex-

perimental results. Owing to the polycrystalline morphology of the granular materials,

self-consistent scheme is used to estimate their homogenized diffusion coefficient.

4.6.1 Homogenized diffusion coefficient of unsaturated granular

materials

First, the main characteristics of sand and glass beads are listed in Table(4.5).

Table 4.5: Characteristics of two kinds of granular material [211].

- Unit Glass beads Sand

Porosity % 38.0 42.2
Grain diameter µ m 75 105-210
Bulk density g.cm−3 1.53 1.54
Grain density g.cm−3 2.47 2.65
Tracer - NO−1

3 NO−1
3

Saturated diffusion coefficient m2 · s−1 0.555 × 10−9 0.590 ×10−9

Dγ in bulk water [158] m2 · s−1 1.90 × 10−9 1.90 × 10−9

The overall solute diffusion consists of contributions of intergranular layer, wetting layer,

water film and pore body water. In addition to these four phases, there also exist non

diffusive gaseous phase and solid phase in unsaturated porous medium. When the granular

material is assumed to be isotropic at local scale and macro scale, the morphology of the

unsaturated solute diffusion in granular material can be depicted as in Fig.(4.17).

As presented in Section(3.1), the wetting layers (denoted as subscript wl) consist of

continuous capillary water trapped in pendular rings, grooves and pits on solid grains. In

this section, a parameter χ characterizing the ratio of the thickness of wetting layer t over
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solid grain radius Rs is defined as:

χ =
t

Rs

(4.64)

Figure 4.17: Morphological representation of water distribution in unsaturated granular
material, Dhom and ργ are the homogenized solute diffusion coefficient and solute concen-
tration; the intergranular layer, the wetting layer and the water film surrounded on the solid
grains are specified to characterize the evolution of the liquid layer during the desaturation
process.

Since the typical characteristic size of wetting layer (micron scale [22]) is far smaller than

the characteristic diameters of sand and glass beads (several hundreds microns), similar to

Eq.(4.21), the volume fraction of capillary layer may be estimated as:

φwl ≈ 3χ(1 − ϕ) when t ≪ Rs (4.65)

In the same way, the volume fraction of water film φf can also be estimated by:

φf ≈ 3ε(1 − ϕ) when h ≪ Rs (4.66)



4.6 Experimental results analysis 117

where h is here the thickness of water film (in the previous sections, h was the thickness of

the liquid layer), ε =
h

Rs

.

Intergranular water consists of intergranular layer and pore body water. The volume

fraction of intergranular water is ϕSr − φwl − φf . It is not easy to quantify the volume

fractions of the intergranular layer and the pore body water during desaturation process.

Therefore, a parameter β is introduced to quantify the volume fractions of the pore body

water and the intergranular layer:







φig = β(ϕSr − φwl − φf )

φpw = (1 − β)(ϕSr − φwl − φf )

(4.67)

The volume fractions of each phase are listed in Table(4.6).

Table 4.6: Volumetric fraction of each phase within unsaturated granular material.

- Volumetric fraction

Solid φs 1- ϕ
Gas φg ϕ (1-Sr)
Wetting layer φwl 3 χ(1 − ϕ)
Water film φf 3 ε(1 − ϕ)
Intergranular layer φig βϕSr − 3χ(1 − ϕ) − 3ε(1 − ϕ)
Pore body water φpw (1-β)ϕSr − 3χ(1 − ϕ) − 3ε(1 − ϕ)

When the volume fractions of each phase are determined, when the diffusion coefficients

and concentration tensors of each phase are isotropic, the homogenized solute diffusion

coefficient can be revised from Eq.(4.9) as:

Dhom = DA =
∑

i

φiD
iAi (4.68)

where Ai is the average concentration tensor for ith phase (i ∈ {f, g, s, wl, ig, pw}), the

average concentration coefficients of each phase Ai are given in Appendix(B.2),; φi is the

volume fraction of ith phase (i ∈ {f, g, s, wl, ig, pw}).
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4.6.2 Results and discussion

The ratio ε is taken as 10−5 to ensure the thickness of the water film being in the order

of nanometer (as the radii of solid grain of sand and glass beads are in the order of 100

µm). χ is taken as 10−3 to ensure the thickness of the wetting layer being in the order

of microns. A value of diffusive constrictive factor of Na+-water film system is estimated

to be 0.32 [248] when water film is three molecular layers (1 nm) thick. Hence, δ = 0.32

is adopted here. At various β, the evolutions of normalized homogenized solute diffusion

coefficient Dhom/Dhom(Sr = 1) with the saturation degree for glass beads and sand are

plotted in Fig.(4.18).

(a) Glass beads. (b) Sand.

Figure 4.18: Dependence of the normalized diffusion coefficient of nitrate on the various

saturation degrees. It should be noted that Sr1 =
φf + φwl

ϕ
, the green and blue points are

experimental results after [211].

According to Fig.(4.18), the evolution of the diffusion coefficients of sand and glass

beads exhibits notable percolation effect. The modelling results for glass beads and sand

agree well with experimental results when β is taken as 10−2. In this case, when Sr = 1,

the thickness of the intergranular layer e can be estimated by:
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e =
φig

3φs

Rs =
βϕSr − 3χ(1 − ϕ) − 3ε(1 − ϕ)

3(1 − ϕ)
Rs with Sr = 1 and β = 10−2 (4.69)

According to Eq.(4.69), the thickness of intergranular layers in sand and glass beads is

approximately 10−3Rs, Rs is the radius of the sand or glass beads. The thickness of the

intergranular layer is thus nearly the same as that of wetting layer (t = 10−3Rs). We may

thus infer that there may not exist intergranular layer in these two granular materials, the

intergranular layer merges with the wetting layer. Therefore, the intergranular water in

these two granular materials is mainly pore body water.

The evolution of the water distribution owing to the microstructure of the materials

and matrix potential is not accounted for in this simulation. In the following chapter,

a simulation of the evolution of homogenized diffusion coefficient with saturation degree

within unsaturated granular materials will be carried out. The water retentions of granular

materials will be accounted for to determine the saturation degree.

4.7 Summary

Self-consistent estimate is considered to be well adapted to represent the polycrystalline

microstructure while Mori-Tanaka estimate is expected to be good for matrix+inclusion

microstructure.

In order to study the microstructure effect on the solute diffusion, several microme-

chanics models for solute diffusion within porous medium with one-scale and two-scale

microstructures are developed and discussed. The liquid layer is not accounted for in these

models. In one-scale microstructure, the homogenized solute diffusion coefficient Dhom ex-

hibits strong percolation threshold when it is estimated with self-consistent scheme; which

is not the case when it is estimated with differential schemes and Mori-Tanaka scheme, as

the matrix in these two schemes is water. In two-scale microstructure, MT-SC (level I and
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level II are estimated with self-consistent and Mori-Tanaka schemes), SC-SC and MT-MT

models are developed. The influencing parameters such as volume fraction of pore space ϕ

and ratio of macro pores α on the homogenized diffusion coefficient Dhom are discussed. The

simulation results show that, in MT-SC and SC-SC models, the percolation effect decreases

with increasing ϕ and ratio of macro pores α; in SC-SC and MT-MT models, the saturated

homogenized diffusion coefficient Dhom(Sr = 1) increases with increasing porosity ϕ and

decreasing α. In MT-MT model, there is no percolation effect and Dhom(Sr = 1) increases

with increasing ϕ and decreasing α.

The pore water in unsaturated porous media is decomposed into the pore body water and

the liquid layer. The effect of liquid layer is accounted for in the enriched micromechanics

models for solute diffusion. Starting with a 2-D idealization of liquid layer (the volume

fraction of water film is neglected), the effect of solute diffusion in 2-D liquid layer is

discussed. The homogenized diffusion coefficient Dhom estimated by self-consistent scheme

consists of components contributed by liquid layer and pore body water water when Sr >

1

3ϕ
and ϕ ≥ 1/3. The liquid layer dominates solute diffusion when Sr ≤ 1

3ϕ
or ϕ < 1/3.

Liquid layer is treated as 3-D phase in the following enriched micromechanics models,

the volume fraction of liquid layer is considered in this model. By means of these models,

the effects of ϵ (ratio of the thickness of liquid layer over the radius of solid grain), volume

fraction of pore space ϕ and constrictive factor of liquid layer δ on the homogenized diffusion

coefficient Dhom are discussed in self-consistent scheme and Mori-Tanaka scheme.

Based on the physical characterization of the water distribution in unsaturated sand and

glass beads, a micromechanics model accounting for the intergranular layer, wetting layer

and water film is developed for these two granular materials. The simulation results show

that the normalized homogenized diffusion coefficient agrees well with the experimental

results. These two materials exhibit strong percolation effects and self-consistent scheme

is perfectly good for characterizing these effects. Owing to strong percolation effects, the

intergranular water in these two granular materials may mainly distribute as pore body

water, the volume fraction of intergranular layer is minor.
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5.1 Introduction

Lim et al. [159] and Romkens et al. [211] have carried out two sets of the solute

diffusion experiment within unsaturated sand. A detailed description of the procedure for

diffusion testing is given in their works [159, 211]. In this section, a micromechanics model

for solute diffusion is employed to simulate their experimental results. To avoid the ions-

surface interaction, the experimental results of nonreactive Cl− and NO−1
3 instead of K+

are adopted to compare with the simulation results.

Granular materials may exhibit pore sizes with different order depending upon their

granulometry. These materials do not exhibit clear matrix+inclusion morphologies since

any phase within these materials does not play the role of a cemented domain. Their

apparent polycrystalline nature rather suggest a perfect disordered microstructure, which

is classically accounted for by the well-known self-consistent scheme. Moreover, in order to

manage the granulometry, we introduce in the model a continuous grain size distribution

function. The latter will account, in a first approximation, for the specific microstructure

of granular material.

For other geomaterials, the same methodology may also be feasible by accounting for

the pore size distribution function, which is normally obtained by experimental apparatuses

(e.g., mercury intrusion porosimetry and nitrogen adsorption).

5.2 Input information and assumptions

It is assumed that, during the desaturation (drainage) process, the pores are emptied

from the bigger ones to the smaller ones in a well organized arrangement [85].

Morphological representation and concentration tensors of each phase

The evolution of the water distribution in unsaturated granular material is introduced

in Section(3.1). Based on this physical characterization, a morphological model for the
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unsaturated granular material is presented in Fig.(4.17).

Figure 5.1: Morphological representation of unsaturated sand.

However, it is difficult to quantify and distinguish the volume fractions of the intergran-

ular layer, the wetting layer and water film. Therefore, two assumptions are made: 1) the

wetting layer is treated as a part of the intergranular layer, in other words, the wetting layer

is a kind of intergranular layer at intermediate saturation degree; 2) the intergranular layers

are interconnected when Sr ≥ Srr, Srr is the residual saturation degree; the intergranular

layers are discontinuous when Sr < Srr. In isotropic case, based on these simplifications,

the morphology of unsaturated sand is depicted in Fig.(5.1).

The concentration tensors of each phase in isotropic case are given in Appendix(B.2).

Thickness of the water film

The thickness of the water film adsorbed on the solid grains can be estimated by

Eq.(3.24), Eq.(3.26) and Eq.(3.27) 1. The mineral of the sand is quartz, thus, the physical

parameters for determining the thickness of water film are given in Table(3.1). Meanwhile,

owing to the large magnitude of sand size (e.g., Rs is about several hundreds of µm), the

capillary effect induced by grains size (
2γlg

Rs

) is omitted in Eq.(3.27).

Characteristics of two sands

1. The concentrations of the solution are changed in these cases.
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The physical characteristics of the two sands are listed in Table(5.1).

Table 5.1: Characteristics parameters for sand and solution[159, 211]

Property Unit Beaver Creek sand Romkens’ sand 1

Porosity % 38.2 ± 0.3 42.2
Residual saturation Srr % 9 72

Dry bulk density Kg · m−3 1647 ± 7 1537 ± 19
Particle size distribution - Fig.(5.3) 105-210 µm
Tracer - Cl− NO−1

3

Initial concentration of tracer mol · L−1 0.02 0.1
Dγ in bulk water [158] m2 · s−1 2.03 × 10−9 1.90 × 10−9

3 Saturated diffusion coefficient m2 · s−1 0.535 × 10−9 0.590 × 10−9

Temperature K 298 303

1 The sand is not specified in Romkens’s work, for clarification, the sand is denoted as
Romkens’s sand.

2 The residual saturation degree is interpreted as the critical saturation degree where
water film governs the solute diffusion. The residual saturation degree is not given in
Romkens’s work, it’s a rough estimation from the water retention of Romkens’s sand.

3 The tracer is Cl−, saturated diffusion coefficient has been modified in our definition for
homogenized diffusion coefficient. The relation between ours (Dhom) and the one in
literature (De) is: Dhom = ϕDe, where ϕ is the porosity.

5.3 Phase volume fractions

The configuration of water phase is essential to the solute diffusion within unsaturated

porous media. Therefore, estimating the volume fraction of each phase precisely is sig-

nificant to determine the homogenized solute diffusion coefficient in unsaturated porous

media.

5.3.1 Volume fractions of the intergranular layer and the pore

body water

In the model, the intergranular water is divided into two parts: intergranular layer and

pore body water. The evolution of the volume fractions of intergranular layer φig and

the pore body water φpw with capillary pressure is not easy to be determined. When the
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saturation degree Sr is greater or lower that the residual saturation degree Srr, the pore

body water and intergranular layer exhibit different regimes.

Saturation degree Sr ≥ Srr

When Sr > Srr, φig is assumed to be proportional to the total volume fraction of

intergranular water (φpw + φig), that is φig = β(ϕSr − φf ), where β is the proportional

parameter, φf is the volume fraction of the water film. Correspondingly, the volume fraction

of pore body water is φpw = (1 − β)(ϕSr − φf ).

Saturation degree Sr < Srr

When Sr < Srr, the intergranular layers are discontinuous and their effect on the solute

diffusion is negligible, the water film then governs the solute diffusion. Hence, φig should be

taken to be 0 in the determination of homogenized diffusion coefficient Dhom. Nevertheless,

in determining the saturation degree Sr, φig is non-zero and Sr is determined by
φf + φig

ϕ
.

In summary, φig and φpw can be distinguished as two regimes as:

Sr ≥ Srr :







φig = β(ϕSr − φf )

φpw = (1 − β)(ϕSr − φf )

Sr < Srr :







φig ̸= 0 In determining Sr

φig = 0 In determining Dhom

φpw = 0

(5.1)

Water retention curves

In order to relate the saturation degree Sr to capillary pressure Pc (c.f. matric suction

ψ in Section(3.5)), Fredlund et al. [105] and Campbell [36] proposed two empirical relations

for high saturation degree Sr ≥ Srr and low saturation degree (Sr < Srr), respectively:







Sr = Srr + (1 − Srr)(
1

ln[exp(1) + (
Pc

a
)n]

)m when Sr ≥ Srr (a)

Sr = Srr(1 − log10(Pc/10)

5
) when Sr < Srr (b)

(5.2)

where a, m and n are the fitting parameters for given material, the fitting parameters for
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the two kinds of sand are listed in Table(5.2).

Table 5.2: Fitting parameters for two kinds of sand

Parameters a n m

Beaver Creek sand [159] 3 10 2
Romkens’ sand 5.4215 12.0617 1.9401

The water retention curves for Beaver Creek sand and Romkens’ sand are depicted in

Fig.(5.2).

Figure 5.2: Water retention curves for Beaver Creek sand (red curve) and Romkens’ sand
(blue curve), the curves are fitted by Eq.(5.2). The capillary pressures associated with
residual saturation degrees are 20 KPa and 30 KPa for Beaver Creek sand and Romkens’
sand, respectively. Experimental results are after [159, 211].

Combining Eq.(5.1) and Eq.(5.2), φpw and φig can be determined 2.

5.3.2 Volume fractions of the solid phase, gaseous phase and

the water film

Volume fractions of solid grains and gaseous phase

2. The volume fraction of the water film φf will be determined in Section(5.3.2).
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The volume fractions of solid grains and gaseous phase are given in Eq.(5.3):







φs = 1 − ϕ

φg = (1 − Sr)ϕ

(5.3)

Volume fraction of water film

As presented in previous section, the volume fraction of the water film may be estimated

by Eq.(4.21) in which ε =
h

Rs

is introduced. In the previous chapters, ε is taken as a

constant. Therefore, Eq.(4.21) is only valid in mono disperse granular material. Generally,

granular materials exhibit certain granulometry (grain size distribution). Thus, to estimate

the volume fraction of the water film, Eq.(4.21) should be modified to account for the grain

size distribution.

An empirical grain size distribution function for Beaver Creek sand is suggested by

Fredlund et al. [106] as:

Pp(D) =
1

ln[exp(1) + (
ga

D
)gm ]

[1 − [
ln(1 +

Dr

D
)

ln(1 +
Dr

Dm

)
]7] (5.4)

where Pp(D) is the percent of grains passing the diameter D; the fitting parameters for

Beaver Creek sand are determined as ga = 0.2485, gm = 4.8109, gn = 1.7015, Dm = 0.0001,

Dr = 36.6213 [106].

Correspondingly, the probability density function ν(D) can be derived by differentiating

the grain size distribution function Pp(D) with respect to grain diameter D as:

ν(D) =
dPp(D)

dD
(5.5)

The grain size distribution curve and probability density function curves are illustrated

in Fig.(5.3).

At a infinitesimal diameter range [D,D + dD] (dD ≪ D), the volume fraction of solid

grain dφs can be estimated:
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Fig 5.3: Particle size distribution of Beaver Creek sand, the fitting curve are after Fredlund
et al.[106], the experimental results are after Bruch et al.[31].

dφs = ν(D)dD (5.6)

If the solid grains are assumed to be spherical in shape, according to Eq.(4.21), the in-

finitesimal volume fraction of the water film dφf at [D,D + dD] can be estimated:

dφf =
3h

D/2
dφs =

6h

D
ν(D)dD (5.7)

The volume fraction of water film φs can then be evaluated by integrating Eq.(5.7):

φf =
∫ Dmax

Dmin

6h

D
ν(D)dD = 6h

∫ Dmax

Dmin

ν(D)

D
dD (5.8)

where Dmin and Dmax are the minimum and maximum diameter of sand. For Beaver Creek

sand, Dmin = 10−3 mm and Dmax = 10 mm.

Unfortunately, the grain size distribution curve for Romkens’ sand is not presented in

Romkens’ work. However, we know that the grain sizes of Romkens’ sand distributed in a
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narrow range of 105 µ m to 210 µ m [211]. In this case, the grain size of Romkens’ sand is

assumed to be mono disperse (ν(D) = 1 and the magnitude of the diameter of Romkens’

sand is assumed to be D = (105 + 210)/2 ≈ 150 µm. Hence, the volume fraction of the

water film in Romkens’ sand can also be determined by Eq.(5.8).

5.4 Results and discussion

In the simulation, it is assumed that the solute diffusion coefficient within water film

Dγ
f = δDγ. As shown in Fig(5.2), the capillary pressures associated with the residual

saturation degree for Beaver Creek sand and Romkens’ sand are approximately 20 KPa

and 30 KPa, respectively. At these capillary pressures (20 KPa and 30 KPa), according

to Eq.(3.26) and Eq.(3.27), the corresponding thicknesses of water film for Beaver Creek

sand and Romkens’ sand are about 10.9 nm and 10.1 nm, respectively. As discussed in

Section(3.6.3), when thickness of water film is greater than 10 nm, δ can be taken to be 1.

When the thickness of water film is less than 10 nm, the solute hindrance effect in water

film is expected and thus δ < 1. Generally, the constrictive factor δ is not a constant and it

decreases with thickness of water film. However, for the simplification, when the thickness

of water film is less than 10 nm, the constrictive factor δ is regarded as a varied parameter

(<1) during the thinning of water film at low saturation degree (Sr < Srr).

As shown in Section(4.5.2), in isotropic case, the homogenized solute diffusion coefficient

Dhom within unsaturated sand can be determined by:

Dhom =
φfAfδD

γ + φigAigD
γ + φlAlD

γ

φfAf + φigAig + φlAl + φsAs + φgAg

(5.9)

where, Ai and φi are the average concentration tensors and volume fraction for i-th phase,

i ∈ {f, il, l, s, g}.

As discussed in previous section, the self-consistent scheme is employed to estimate the

concentration tensors of each phase Ai, which is detailedly presented in Appendix(B.2).

The volume fractions of each phase are presented in Section(5.3). Therefore, the homog-
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enized diffusion coefficient Dhom in unsaturated sand can be estimated by Eq.(5.9). The

dependency of the normalized diffusion coefficient on saturation degree for the two types

of sand at varied β (Sr ≥ Srr) and δ (Sr < Srr) are depicted in Fig(5.4) and Fig(5.5).

5.4.1 Evolution of the normalized solute diffusion coefficient

with saturation degree for Beaver Creek sand

(a) Sr ≥ Srr. (b) Sr < Srr.

Figure 5.4: Evolution of normalized homogenized diffusion coefficient with saturation degree
for Beaver Creek sand, experimental results are after [159].

Sr ≥ Srr

Continuous intergranular layers are assumed to surround the sand grain when Sr ≥ Srr.

φig decreases with saturation degree (as shown in Eq.(5.1)). Here, β quantifies the percent-

age of volume fraction of intergranular layers φig over total intergranular water (intergran-

ular layer and pore body water). When the homogenized solute diffusion coefficient Dhom

is taken as 0.535 × 10−9 (the saturated diffusion coefficient listed in Table(5.1)), we have

β ≈ 0.60.

As shown in Fig(5.4)(a), the normalized homogenized diffusion increases with increasing

β. When β = 0.4, the modelling result agrees well with experimental results. In the follows,
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we will validate the feasibility of β = 0.4.

When β = 0.4, the average thickness of the intergranular layer is estimated to be 2.2

µm 3 in fully saturated Beaver Creek sand. The value sounds reasonable since it lies in the

order of magnitude of roughness of sand (microns) [258]. Furthermore, when β = 0.4, Dhom

determined by the model is 0.481×10−9 m2.s−1, which is comparable with the experimental

value 0.535 × 10−9 m2.s−1.

Sr < Srr

When Sr < Srr, the pore body water is drained, the intergranular layers become dis-

continuous and the water films govern the solute diffusion. As presented in Eq.(5.1), the

discontinuous intergranular layers contribute to the saturation degree while their contribu-

tion to the solute diffusion is neglected. Therefore, water film dominates the solute diffusion

when Sr < Srr. As discussed previously, the thickness of water film is lower than 10 nm,

hence the solute hindrance effect (constrictive factor δ) should be taken into account. The

normalized homogenized diffusion coefficients at varied δ are depicted in Fig(5.4)(b). It can

be seen from the figure that the normalized diffusion coefficients increase with increasing

constrictive factor δ. Furthermore, when the water film governs the solute diffusion, the

homogenized diffusion coefficient will decrease by 2 to 5 orders of magnitude with that

of the saturated one. The results are comparable with the conclusion of several authors

[126, 148], in which the homogenized diffusion coefficient in water film decreases by 3 orders

of magnitude.

5.4.2 Evolution of the normalized solute diffusion coefficient

with saturation degree for Romkens’ sand

Contrary to Beaver Creek sand, the experimental results of Romkens’ sand exhibit

strong percolation effect. The evolution of the normalized homogenized diffusion coefficient

with the saturation degree is discussed by the following two cases: Sr ≥ Srr and Sr < Srr.

3. The thickness of intergranular layers can be estimated by Eq.(5.8), in which φf is replaced by φig.
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(a) Sr ≥ Srr. (b) Sr < Srr.

Figure 5.5: Evolution of normalized homogenized diffusion coefficient with saturation degree
in Romkens’ sand, experimental results are after [211].

When Sr > Srr

As shown in Fig(5.5)(a), the normalized diffusion coefficient increases with β. When

the homogenized solute diffusion coefficient Dhom is taken as 0.590×10−9 (the experimental

value listed in Table(5.1)), we have β ≈ 0.73 (see Fig(5.5)(a)).

When β = 10−2, the modelling result agrees well with experimental results. When

β = 10−2, the average thickness of the intergranular layers is estimated to be 0.18 µm, which

is consistent with the magnitude of roughness of sand (order of micron) [258]. However,

when β = 10−2, the homogenized saturated diffusion coefficient determined by the model is

0.28 × 10−9 m2.s−1, which exhibits a discrepancy with the experimental value 0.590 × 10−9

m2.s−1.

when Sr < Srr

As presented previously, the constrictive factor δ should be accounted for in this case.

The evolution of normalized diffusion coefficient with saturation degree at varied δ is de-

picted in Fig(5.5)(b). As shown in the figure, the normalized homogenized diffusion co-

efficient increases with δ, owing to the increasing solute diffusion coefficient of the water

film. The magnitude of the homogenized diffusion coefficient decrease by 4 to 5 orders of
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magnitude comparing with saturated homogenized diffusion coefficient, which agrees well

with the observation of Nakashima et al. [177].

The cyan curves in Fig(5.4)(a) and Fig(5.5)(a) are the modelling results estimated by

differential scheme (shown in Eq.(4.10)). As discussed in Section(4.4.1), the porosity ϕ

has no influence on the evolution of normalized solute diffusion coefficient with saturation

degree (the porosity ϕ is cancelled in the normalization). From these two figures, it can

also be found that the differential scheme seems applicable in Fig(5.4)(a) while it is out of

validity in Fig(5.5)(a); Moreover, the cyan curves estimated by the differential scheme are

rather close to those estimated by the self-consistent scheme when β = 0.60 and β = 0.73 4.

The physical reasons for these phenomena are not clear until now.

5.5 Conclusion

Two groups of simulation on the solute diffusion in unsaturated sand are carried out to

validate the micromechanics model in this section. From the experimental results, it can be

found that the Romkens’ sand exhibits strong percolation effect while Beaver Creek sand

does not present notable percolation effect.

When Sr ≥ Srr, since it is difficult to quantify the volume fraction of the interconnected

intergranular layers, the volume fraction of intergranular layers is assumed to decrease

linearly with saturation degree (with proportional ratio β) in the simulation. The effect of

β on the evolution of normalized homogenized diffusion coefficient Dhom/Dhom(Sr = 1) in

these two kinds of sand is discussed. The simulation results agree well with the experimental

results of Beaver Creek sand and Romkens’ sand when β = 0.4 and β = 10−2. At this

saturation degree range, intergranular layers and pore body water dominate solute diffusion.

However, when Sr < Srr, the water film governs the solute diffusion, the magnitude

of the homogenized diffusion coefficient decreases by 4 to 5 orders of magnitude when

comparing with the homogenized saturated diffusion coefficient.

4. These two values for β are determined by the experimental saturated homogenized diffusion coeffi-
cient.
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Owing to the lack of experimental results and microstructure information of some geo-

materials such as cement and clay, the micromechanics model is not employed to simulate

the solute diffusion in these materials. However, in latter work, efforts will be made to

estimate the solute diffusion in these materials under unsaturated condition.
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6.1 Introduction

Advective transport of liquid water in porous media is a common phenomenon in several

engineering fields, such as civil engineering, agricultural engineering, petroleum engineering,

etc. When the pore space is fully saturated by the liquid phase, advective transport law

in porous media is classically formulated by the Darcy’s law [67] at the scale of a sample.

The latter linearly relates the macroscopic liquid phase velocity to the macroscopic pressure

gradient through the macroscopic permeability coefficient.

The advective transport of the liquid phase in unsaturated porous media is commonly

described by Richards equation [198, 208]. The latter, derived in a non-linear partial

differential formulation, does not have a closed-form analytical solution. In addition, the

numerical procedures, required to solve this equation, need the input data: - 1) the water

retention function and -2) the unsaturated permeability coefficient (evolution of unsaturated

permeability coefficient with saturation degree) [198].

In this chapter, several commonly used macroscopic models for (liquid phase) advective
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transport in unsaturated porous media are first introduced in Section(6.2). We then begin

with the flow permeability in saturated porous media in Section(6.3). Next, a microme-

chanics model to characterize flow permeability in unsaturated sandstone is established in

Section(6.4). The low saturation regime is analysed accounting for the existence of a liquid

layer (the intergranular layer, the wetting layer and the water film) localized on the solid

surface, whose transport definitions are different from that of the bulk liquid. This local

liquid layer transport law is introduced and then incorporated in a micromechanics method-

ology. Eventually, on the premise of several assumptions of the model in Section(6.4), a

micromechanics model for the the flow permeability in the Fontainebleau sandstone (clay

free) is presented and discussed in Section(6.5).

6.2 A review of advective transport in unsaturated

porous media

In this section, three kinds of phenomenological models for estimating the flow perme-

ability in unsaturated porous media are reviewed and discussed. Several typical models will

be used to compare with our micromechanics model results in the sequel.

The permeability coefficient of liquid water is a transport property of porous media

which allows to quantitatively characterize the advective transport (of the liquid phase).

Such permeability coefficient depends not only on the intrinsic permeability but also on the

viscosity of the flow. The concept of relative permeability Kr is introduced when extending

the single phase flow to the multiphase flow [219]. Generally, the relative permeability

for water flow in unsaturated porous media is defined as the homogenized unsaturated

permeability coefficient being divided by its saturated one, that is, Kr =
Khom

Khom(Sr = 1)
.

The relative permeability coefficient of liquid water is generally related to saturation degree

of wetting phase as well as pore size distribution of porous media.

By means of rigid wall or flexible wall permeameter, the unsaturated permeability

coefficient of liquid water in porous media can be directly measured in field or labora-
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tory [34]. However, these direct measurement techniques are found to be very expen-

sive, time consuming, error prone and sometimes impractical [218]. Therefore, based

on the observed phenomenological properties, considerable efforts have been devoted to

the indirect estimation of unsaturated permeability coefficient by mathematical models

[29, 35, 42, 104, 109, 151, 175, 218, 244, 247]. These models may be classified as following

three types [157]: empirical models [38, 109, 255], macroscopic models [175] and statistical

models [35, 42, 104, 247].

6.2.1 Empirical models

In empirical models, the unsaturated permeability coefficient is expressed as the fitting

equation of volumetric water content or matrix suction (capillary pressure). The fitting

function depends on the shape of the experimental curves, and the fitting parameters are

adjusted to match the experimental curves by means of curve fitting procedure. As con-

cluded by Leong et al. [157], the empirical equation can be expressed as the following

general form:

Kr = (
θ − θr

θs − θr

)p (6.1)

where θ, θs and θr are the water content, saturated water content and residual water content,

respectively; p is the fitting parameter.

The empirical model is intuitive and simple but its parameters lack physical meaning.

Moreover, it should be aware that, at lower saturation degree, the empirical model exhibits

a significant deviation with experimental results[149].

6.2.2 Macroscopic models

The macroscopic model is based on the assumption that there exists a similarity between

the laminar flow at microscopic level and macroscopic flow in porous media [157]. The

average macroscopic flow within unsaturated porous media is solved as the average of
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microscopic laminar flow. Similar to the empirical equation (Eq.(6.1)), it has a general

simplified form as [157]:

Kr = Srq
e (6.2)

where Sre is the effective saturation degree which can be expressed as [29, 157]:

Sre =
Sr − Srr

1 − Srr

(6.3)

where Srr is the residual saturation degree, Sr is the saturation degree, q is a constant that

depends on the assumption made for the specified porous media, q = 3.5, q = 2, q = 3 and

q = 4 are suggested by Averjanov et al.[10], Yuster [261], Irmay [129] and Corey et al. [55],

respectively. The macroscopic model is developed disregarding the pore size distribution

effect. Therefore, it leads to the controversies in assessing the value of q [29]. Hence, to

account for the pore size effect, q = (2 + 3λp)/λp is proposed by Brooks and Corey [29],

where λp is a pore size distribution index.

6.2.3 Statistical models

The statistical models are the most common models used to determine the unsaturated

permeability coefficient. They revealed to be efficient and can be used readily. In the

practical engineering, the water retention function (relation between matric suction and

water content) is easy to be determined by experiment. The statistical models are used to

determine the unsaturated permeability coefficient by means of water retention functions

(denoted as soil water characteristic curve in soil engineering). The statistical models

for unsaturated permeability coefficient are developed on the premise of assumption of

interconnected pore network. In statistical models, two major factors are specified: pore

size distribution and saturation degree [176]. Three general formulas for statistical models

have been reviewed by Mualem et al. [176]:
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Kr = Srn
e

∫ θw

0

dθw

ψ2+m

∫ θs

0

dθw

ψ2+m

(6.4)

Kr = Srn
e








∫ θw

0

dθw

ψ1+m

∫ θs

0

dθw

ψ1+m








2

(6.5)

Kr = Srn
e

∫ θw

0

θw − ν

ψ2+m
dν

∫ θs

0

θw − ν

ψ2+m
dν

(6.6)

where n and m are constant, ν is the dummy variable of integration, θw and θs are the water

content and the saturated water content, ψ is the matric suction (opposite of the capillary

pressure), Sre is the effective saturation degree which may be determined by Eq.(6.3).

Table.(6.1) presents some expressions of unsaturated permeability coefficient for these

3 kinds of model.

Table 6.1: Several commonly used models for unsaturated permeability coefficient

- unsaturated permeability coefficient reference

Empirical model 1 Khom = aθb
w Gardner (1958)[109]

Empirical model 1Khom = Khom
(Sr=1)exp[b(θw − θs)] Dane et al. (1977)[66]

Macroscopic model 2 Khom = Khom
(Sr=1)(Sre)

(2+3λp)/λp Brooks et al. (1964)[29]
Statistical model Khom = Khom

(Sr=1)Sr
1/2
e [1 − (1 − Sr1/m

e )m]2 van Genuchten (1980)[247]
3 Sre =

1

[1 + s(|ψ|)n]m

1 Khom and Khom
(Sr=1) are the homogenized unsaturated permeability coefficient and the

corresponding saturated permeability coefficient; θw and θs are the volumetric water
content and its corresponding saturated one; a and b are the fitting constants.

2 Sre is the effective saturation degree defined by Eq.(6.3); λp is the pore size distribution
index.

3 s, m and n are the fitting parameters for water retention function, with m = 1 − 1

n
and

n > 1; ψ is the matric suction (opposite of the capillary pressure) (in KPa).
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6.2.4 Comments on the existing models

The empirical models are obtained by fitting the experimental results. In empirical

models, the relation between the unsaturated permeability coefficient and saturation degree

exhibits a power law. Their applications are limited by the device capability in experiments

(i.e. experimental results at low saturation degree will be inaccurate) [157]. Furthermore,

the fitting parameters lack physical meaning.

The macroscopic models are based on the laminar flow at local scale and have con-

cise formulations [157]. However, it is a rough analogy of flow between macro and micro

scales [157]. Moreover, these model neglect the microstructure effect on the permeability

coefficient of liquid water.

Statistical models provide an indirect determination of unsaturated permeability coef-

ficient from water retention curve. They are commonly used in the practical engineering

field. However, as can be found from the statistical model, lots of parameters are needed

to fit the water retention function, which will induce errors in the calculation.

6.3 Micromechanics model for liquid flow in

saturated porous media

Most of the models for unsaturated permeability introduced above are phenomenological

in nature [7, 152, 198]. These phenomenological formulations for unsaturated permeability

coefficient can be linked to the more fundamental micro-scale governing equations based

on Stokes laws [178]. Therefore, a micromechanics model for unsaturated permeability

coefficient will be developed based on fundamental physical characterization of the water

distribution at local scale, in which not only the intergranular water flow but also the water

film flow will be accounted for. Upscaling homogenization approach will then be employed

to derive the macroscopic properties (e.g. unsaturated permeability coefficient). Here, we

start with the micromechanics model for liquid permeability in saturated porous media.
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Generally, Darcy’s law is valid for evaluating the flow velocity at macro scale. At local

scale, this law is invalid and the direct approach to such problem is the numerical solution

of the Navier-Stokes equation at local scale.

The micromechanics approach was employed first to predict the homogenized flow per-

meability by Ene et al. [88]. In their work, Darcy’s law was derived by the homogenization

of the local (micro) fluid flow which is characterized by Navier-Stokes equation. This rea-

soning approach has been implemented in granular material and consolidated material with

fractures by many researchers [27, 81, 154, 188].

To characterize the local fluid flow in porous media, several assumptions can be made

to simplify the problem [22]:

— The liquid flow is laminar (Poiseuille flow) everywhere in porous media, which means

the Reynolds number is small enough so that the inertial effect is negligible in the

momentum balance equation of the fluid.

— All the fluids are at steady state in porous media, which means the variation of

the density of liquid flow with time can be neglected in the mass balance equation

(
∂ρ

∂t
= 0).

— All of the fluids are incompressible and immiscible, moreover, the liquid fluids are

considered to be Newtonian fluid.

On the premise of these assumptions, the physical problems of the local liquid flow can

be characterized by the simplified Navier-Stokes equation as [82]:







−∇P + µ∇2v = 0 ∀z ∈ Ωl (a)

∇ · v = 0 ∀z ∈ Ωl (b)

v = 0 ∀z ∈ Isl (c)

(6.7)

where v 1 denotes the filtration velocity within porous media; P is the fluid pressure; both

of the filtration velocity and the liquid pressure are defined at local scale, µ is the viscosity

1. Underline letters in this work represent vectors, bold letters denote second order tensors, letters
without any mark stand for scalar quantity.
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of liquid, Ωl the fluid domain in REV, Isl is the interface between liquid and solid phases

in REV.

To determine the homogenized permeability coefficient Khom in the saturated porous

media, a numerical solution to this simplified Navier-Stokes equation on the whole fluid

domain is indispensable and time consuming. Therefore, to avoid this procedure, based on

the special morphology of the saturated jointed granular rock 2, almost homogeneous liquid

pressure in big pores (nearly zero pressure gradient) and only pressure drop in interface are

assumed by Dormieux et al. [79, 80]. Darcy’s law is thus assumed to be valid not only in

interface but also in macro pore at local scale 3.

When a macroscopic fluid pressure gradient ∇P is applied on the boundary of REV in

the sense of Hashin (P (z) = ∇P · z) [80], the liquid flow in the REV obeys the following

formulas:







div v(z) = 0 ∀z ∈ Ω

v(z) = −K(z) · gradP (z) ∀z ∈ Ω

P (z) = ∇P0 · z ∀z ∈ ∂Ω

(6.8)

where K(z) 4 is the permeability coefficient tensor. Owing to the size dependence of the

permeability coefficient, the permeability coefficient of liquid flow in big pore Kl can be

assumed to tend to infinity since the length scale of big pore is far larger than that of

interface (width). The fluid in the interface can be characterized by Poiseuille flow, thus,

the permeability coefficient of the liquid flow in interface is h2
i /12, where hi is the width of

interface. In Dormieux’s work, the liquid flow in the interface is treated as 2-D surface 5,

and thus the permeability coefficient of the interface η is h3
i /24. In isotropic case (K(z) =

2. The pore space of jointed granular rock is composed of interfaces and big pores, the latter are
connected by the interfaces and the length scales of interfaces are far smaller than those of big pores. The
fluid flow in the jointed granular rock is governed by the interfaces.

3. The detailed information is given in [79].
4. The intrinsic permeability depends only on the pore geometry and not on the saturating fluid phase.

This allows us to get rid of the viscosity effect in the permeability coefficient. The permeability coefficient
in this chapter is the intrinsic permeability coefficient.

5. The 2-D idealization is the same as that presented in Section(4.5.1).
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K(z)1), the permeability coefficients of each phase are presented in Eq.(6.9).

K(z) =







Kl → ∞ ∀z ∈ Ωl

η =
h3

i

24
∀z ∈ I

Ks → 0 ∀z ∈ Ωs

(6.9)

where I is the interface between grain contacts, Ks is the permeability of liquid flow in

solid phase.

From the boundary condition in Eq.(6.8), we have:

gradP (z) = ∇P (6.10)

In saturated jointed granular rock, the macroscopic liquid flow filtration velocity consists

of two contributions: the liquid water flow (in pore) and the flow in interface. In isotropic

case (K = K1), it yields [79]:

−Khom∇P = −ϕKlgradlP0 − 1

|Ω|
∑

i

∫

Si

ηgrad
s
P0dS (6.11)

where Khom is the permeability coefficient of saturated porous media, K l and η are the

permeability coefficient of pore liquid and interface; ∇P is the real macroscopic liquid

pressure gradient of the saturated porous media, gradlP0 and grad
s
P0 are the two auxiliary

pressure gradients of liquid water and interface, respectively; ϕ is the porosity; Si is the

surface of the solid grains; |Ω| is the volume of REV. The detailed deduction of Eq.(6.11)

is given in [79].

By means of appropriate mechanical schemes (e.g. self-consistent scheme or Mori-

Tanaka scheme), the quantitative relation between real macroscopic pressure ∇P and

gradlP0 as well as grad
s
P0 can be determined by Eq.(6.10). The homogenized permeability

coefficient Khom in Eq.(6.11) can thus be eventually estimated [79].
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6.4 Micromechanics model for liquid flow in

unsaturated Fontainebleau sandstone

Fontainebleau sandstone is usually used to validate the model because of their relatively

simple morphology [87, 121, 184]. The Fontainebleau sandstones are made up of well sorted

monocrystalline quartz grains ranging between 350 µm and 150 µm [115] (average grain

diameter D is about 200 µm [184]). They do not contain clay and their porosity displays

mostly intergranular porosity [87]. The latter varies from 0.03 to roughly 0.35 without

noticeable changes in grain size [25, 184].

Based on the assumptions and derivation of micromechanics model for liquid flow per-

meability in the saturated jointed granular rock introduced previously [79], a micromechan-

ics model for estimating the permeability of liquid flow within unsaturated Fontainebleau

sandstone is developed in this section. The water distribution in unsaturated sandstone is

introduced in Section(3.2). First, we will make an idealization of the intergranular water

within sandstone so as to easily determine its permeability coefficient.

6.4.1 Idealization of intergranular water in Fontainebleau

sandstone

Generally, the intergranular pore space is a geometrical characteristic of sandstone. The

intergranular pores of sandstone are interconnected and they can be categorized into pore

bodies and pore throats. The latter connect the pore bodies and thus govern the flow

transport. By means of X-ray computed micro-tomography and skeletization algorithms,

the average sizes of pore bodies and pores throats of four Fontainebleau sandstones with

varied porosities are determined by Lindquist et al. [160, 161]. For four Fontainebleau

sandstone samples with porosities 0.075, 0.13, 0.15 and 0.22, the average radii of the pore

bodies (resp. pore throats) are respectively 50.6, 45.8, 48.5 and 43.5 µm (resp. 18.4,

21.3, 24.7, 22.6 µm) [160, 161]. It can be found that, the average radii of the pore bodies
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decrease slightly with porosity while the average radii of the pore throats increase with

porosity. Moreover, from these data, the radii of the pore bodies and pore throats can be

considered as in the same order of magnitude (several tens of microns).

Based on this geometrical information, the pore network of the Fontainebleau sandstone

is always idealized as interconnected pore channels (cylindrical pores with the radius of

the pore throat) [20, 21, 123, 145, 183, 185–187, 191, 192, 195, 227]. Inspired by this

idealization and geometrical information (the radii of the pore body and pore throat are in

the same order of magnitude), in self-consistent scheme, to ensure the connectivity of

the intergranular water, the latter is idealized as the intergranular layer which

is assumed to surround the solid grains of the sandstone (as depicted in Fig.(6.1)).

Figure 6.1: Schematic illustration of the intergranular water in Fontainebleau sandstone:
the intergranular water is idealized as interconnected intergranular layer surrounding the
solid grains, e is the thickness of the intergranular layer.

6.4.2 Localization of liquid flow in unsaturated sandstone

As introduced in Section(3.2), in unsaturated sandstone, there exist solid phase (de-

noted as subscript s), gaseous phase (denoted as subscript g) and liquid water (denoted as

subscript l). The latter consists of the intergranular layer (denoted as subscript ig), the

wetting layer (denoted as subscript wl) trapped in pendular rings and surface roughness,

and the water f ilm (denoted as subscript f) adsorbed on the solid grain. The intergranular
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layers, the wetting layers, the water film and the solid grain can be regarded as a spher-

ical composite which is embedded in the sandstone matrix. Disregarding the existence of

clay filling, the morphological representation of the Fontainebleau sandstone is depicted in

Fig.(6.2).

Figure 6.2: Schematic illustration of morphology of the unsaturated sandstone; to charac-
terize the evolution of the intergranular layer → the wetting layer → the water film during
desaturation process, all these three kinds of water are superposed on the solid grain.

We make use of the same assumptions on the fluid flow in Section(6.3). As illustrated

in Fig.(6.2), the intergranular layer flow, the wetting layer flow and the water film flow

can be treated as Poiseuille flow. Therefore, the physical laws governing the liquid flow

in unsaturated sandstone can also be expressed as Eq.(6.8). The intrinsic permeability

coefficient tensors of each phase can thus be expressed as 6:

6. In this chapter, we only dedicate to studying the liquid flow. Therefore, the permeability coefficient
tensor of the gaseous phase Kg → 0.
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K(z) =







Kig ∀z ∈ Ωig

Kwl ∀z ∈ Ωwl

Kf ∀z ∈ Ωf

Kg → 0 ∀z ∈ Ωg

Ks → 0 ∀z ∈ Ωs

(6.12)

When the permeability coefficients (intrinsic) of each phase in sandstone are isotropic

at local and macro scale, they can be simplified as:

Ki = Ki1 i ∈ {ig, f, wl, g, s} (6.13)

where 1 is the second order identity tensor.

Similar to Eq.(6.11), to estimate the homogenized intrinsic permeability coefficient,

the intrinsic permeability coefficients and the average concentration tensors of each phase

should be determined first, which are presented in the sequel.

6.4.3 The filtration velocity of the water film, the wetting layer

and the intergranular layer

As shown in Section(6.3), in order to avoid solving the Navier-Stokes equation (see

Eq.(6.7)) numerically, the water film flow, the intergranular layer flow and the the wetting

layer flow, are treated as Poiseuille flow [152, 181] and assumed to obey the Darcy’s law.

The filtration velocity of the water film flow (channel pore water flow) on the flat plane is

schematically depicted in Fig.(6.3).

As illustrated in Fig.(6.3), the water film is assumed to be Newtonian fluid with constant

density and viscosity as well as to have only one none-zero velocity component v in Z axis

parallel to the surface of the plane. Therefore, in one dimensional scheme, when the viscosity

of water film µf is taken as a constant, Navier-Stokes equation (Eq.(6.7)) can be simplified
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Figure 6.3: Schematic representation of the filtration velocity profile of the water film flow
on the plat plane, h is the thickness of water film.

as [152, 181, 243]:

− 1

µf

dP f (z)

dz
=

d2vf (z)

dy2
with :

dvf (z)

dy
|y=h = 0, vf (y = 0) = 0. (6.14)

Thus, the classical Poiseuille solution to the viscous flow [181] may be derived from

Eq.(6.14):

vf =
h2

3µf

(−dP (z)

d(z)
) (6.15)

Eq.(6.15) can be extended into general three dimensional form, in which vf (z) is assumed

to be proportional to the fluid pressure gradient grad
f
P (z) in the water film as:

z ∈ Ωf : vf (z) = −Kf

µf

grad
f
P (z) (6.16)
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Comparing Eq.(6.15) and Eq.(6.16), the intrinsic permeability coefficient of water film

Kf can be obtained:

Kf =
h2

3
(6.17)

According to Eq.(1.2), the average filtration velocity of the water film flow vf may be

expressed as [79]:

vf = −φf
Kf

µf

grad
f
P (6.18)

where φf is the volume fraction of the water film, grad
f
P is the average fluid pressure

gradient in water film.

The permeability coefficients and the average filtration velocities of the wetting layer

flow and the intergranular layer flow can be derived similarly as water film flow. The

filtration velocity of the wetting layer flow vwl(z) can be expressed as:

z ∈ Ωwl : vwl(z) = −Kwl

µwl

grad
wl
P (z) (6.19)

where µwl is the viscosity of the wetting layer.

The intrinsic permeability coefficient of the the wetting layer flow Kwl can be expressed

as:

Kwl =
t2

3
(6.20)

where t is the thickness of the wetting layer.

The average filtration velocity of the wetting layer vwl is:

vwl = −φwl
Kwl

µwl

grad
wl
P (6.21)

where φwl is the volume fraction of the wetting layers.

The filtration velocity of the intergranular layer flow vig(z) can be expressed as:



6.4 Micromechanics model for liquid flow in unsaturated Fontainebleau
sandstone 151

z ∈ Ωig : vig(z) = −Kig

µig

grad
ig
P (z) (6.22)

where µig is the viscosity of the intergranular layer.

The intrinsic permeability coefficient of the intergranular layer flow Kig can be expressed

as:

Kig =
e2

3
(6.23)

where e is the thickness of the intergranular layer.

The average filtration velocity of the intergranular layer flow vig is:

vig = −φig
Kig

µig

grad
ig
P (6.24)

where φig is the volume fraction of the intergranular layer.

6.4.4 Estimating the homogenized permeability coefficient of

the unsaturated Fontainebleau sandstone

In the REV of the unsaturated sandstone, the macroscopic average filtration velocity

v consists of the contributions of the intergranular layer flow vig, the wetting layer flow

vwl and the water film flow vf . In this work, we dedicated to acquiring the homogenized

intrinsic permeability coefficients, the viscosities of the intergranular layer, the wetting layer

and the water film can thus be disregarded. Analogy to Eq.(6.11), combining Eq.(6.18),

Eq.(6.21) and Eq.(6.24) yields:

−Khom∇P = −φfKfgrad
f
P − φwlKwlgrad

wl
P − φigKiggrad

ig
P (6.25)

Similar to the diffusion problems introduced in Section(4.3), the second order concen-

tration tensors A(z) is introduced to link the pressure gradients of each phase grad
i
P

(i ∈ {s, wl, f, g, ig}) to the macroscopic fluid pressure gradient ∇P :
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grad
i
P = Ai(z) · ∇P i ∈ {s, wl, f, g, ig} (6.26)

The average pressure gradients of each phase grad
i
P are related to their corresponding

average concentration tensors Ai (i ∈ {s, wl, f, g, ig}) by:

grad
i
P = Ai · ∇P i ∈ {s, wl, f, g, ig} (6.27)

In the isotropic case Ai = Ai1 (i ∈ {s, wl, f, g, ig}), when inserting Eq.(6.27) into

Eq.(6.25), it can be found that the estimation of the homogenized intrinsic permeability

coefficient Khom amounts to evaluating the volume fractions φi and the average concentra-

tion tensors Ai (i ∈ {s, wl, f, g, ig}).

Contrary to the diffusion case 7, the intrinsic permeability coefficients of the intergranu-

lar layer, the wetting layer and the water film (e.g. Kig = e2/3, Kwl = t2/3 and Kf = h2/3)

are greatly size dependent on their thickness.

Generally, the thicknesses of the water film h, the wetting layer t and the intergranular

layer e can be associated with the radius of solid grain Rs (Rs = D/2) by: h = εRs, t = χRs

and e = ζRs. Hence, the average concentration tensors of spherical composite (including

the solid grain, the water film, the wetting layer and the intergranular layer) closely depend

on the particle size distribution and the parameters ε, χ and ζ.

When accounting for the particle size distribution function g(D) (diameter D = 2Rs),

the average concentration tensors of each phase Ai exhibit complicated expressions. In

isotropic case (Ai = Ai1, i ∈ {s, wl, f, g, ig}), the average concentration tensors and the

filtration velocities of the solid grain, the water film flow, the wetting layer flow and the

intergranular layer flow are expressed as the following two functions li and Li (with self-

consistent scheme):

7. Except the local diffusion coefficient in the water film, the solute diffusion coefficients in the capillary
water is assumed to be constant and independent of the size of capillary pore space.
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φiAi(K
hom) = li(ϕ, ε, χ, ζ, g(D), Khom, Sr,∇P0) i ∈ {s, wl, f, ig}

φiKiAi(K
hom) = Li(ϕ, ε, χ, ζ, g(D), Khom, Sr,∇P0) i ∈ {wl, f, ig}

(6.28)

where ∇P0 is the fictitious average concentration tensor in the auxiliary problems (as shown

in the inset of Fig.(6.2)), it can be related to ∇P by Eq.(6.27).

The average concentration tensor of gas is given in Appendix(B.2.4), it can be simply

expressed as:

Ag =
3

2
∇P0 (6.29)

When the self-consistent scheme is adopted to estimate the concentration tensors of

each phase, the homogenized permeability coefficient of the unsaturated sandstone Khom

can be estimated by combining Eq.(6.25), Eq.(6.27), Eq.(6.28) and Eq.(6.29).

6.5 Experimental analysis

As discussed in the previous section, owing to the size dependence of the permeability

coefficients of the intergranular layer, the wetting layer and the water film flow, estimating

the homogenized permeability coefficient of the unsaturated sandstone seems to be a difficult

task. Therefore, in this section several simplifications are made based on the physical

characteristic of Fontainebleau sandstone. They may be summarized as:

— Since the solid grains of the Fontainebleau sandstone are uniform and well sorted

[184], they are thus assumed to be spherical and monodisperse, the grain size dis-

tribution function g(D) = 1. The diameter of sandstone D (D = 2Rs) is in the size

range of 350 µm and 150 µm [115].

— Generally, the pore size distribution of the Fontainebleau sandstone is rather uniform

and the intergranular pore size ranges from 1 µm to 100 µm [63]. For simplification,
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the thickness of the intergranular layer e is assumed to be uniform during the de-

saturation process. The parameter ζ can thus be estimated as ζ =
e

D/2
=

φig

3φs

(as

Eq.(4.21)).

— The permeability coefficient here is indeed intrinsic permeability coefficient which is

solely related to the microstructure of the sandstone.

— As introduced in Eq.(4.21), the thickness of the water film h is associated with

the radius of the solid grain Rs = D/2 by a parameter ε, h = εD/2. Generally,

the thickness of water film is of nanometer scale [22], which is conformed in our

results shown in Fig.(3.6). As the diameter of the solid grains of sandstone is several

hundreds microns (order of 10−4 m), ε = 10−5 may thus be assumed reasonably.

Similarly, the thickness of the wetting layer is in the scale of microns [22], hence,

χ = 10−3 may be assumed legitimately.

6.5.1 Average concentration tensors of each phase within

unsaturated Fontainebleau sandstone

As illustrated in Fig.(6.2), self-consistent scheme is used to estimate the homogenized

intrinsic permeability coefficient of Fontainebleau sandstone. Based on the assumptions

presented previously, the physical formulas and procedures to derive the average concen-

tration tensors of each phase are given in Appendix(B.3).

6.5.2 Volume fractions of each phase within unsaturated

Fontainebleau sandstone

The volume fraction of the water film φf may be determined by Eq.(4.21) (since h ≪

Rs). Similarly, the volumetric fraction of the wetting layer φwl can also be estimated by

Eq.(4.21) by replacing the parameter ε by χ (t ≪ Rs). Hence, the volume fractions of each

phase in unsaturated Fontainebleau sandstone are listed in Table(6.2).
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Table 6.2: Volume fractions of each phase within unsaturated Fontainebleau sandstone

- Volume fraction

Solid φs 1 − ϕ
Gas in micro pores φg ϕ(1 − Sr)
Water film φf 3ε(1 − ϕ)
Wetting layer φwl 3χ(1 − ϕ)
Intergranular layer φig ϕSr − 3ε(1 − ϕ) − 3χ(1 − ϕ)

6.5.3 The homogenized intrinsic permeability coefficient of

Fontainebleau sandstone

Based on the assumptions and volume fractions presented in the previous section, we

have: volume fractions of each phase φi in Table(6.2), the parameters ε = 10−5, χ = 10−3,

particle size distribution function g(D) = 1) in Eq.(6.28). Inserting these parameters into

Eq.(6.25), the evolution of homogenized permeability coefficient Khom with porosity ϕ,

saturation degree Sr and the grain size D can be determined.

6.5.4 Micromechanics analysis of modified Kozeny-Carman

model for Fontainebleau sandstone

ζ (ζ =
e

(D/2)
≈ φig

3(1 − ϕ)
8) characterizes the size effect of the intergranular layer. When

Sr = 1 (fully saturated), the evolution of ζ is depicted in Fig.(6.4). As shown in the figure,

when the parameters ε (characterizing the size effect of water film) and χ (characterizing

the size effect of the wetting layer) are taken to be constant, ζ decreases nearly linearly with

decreasing porosity ϕ. In other words, the thickness of the intergranular pore e decreases

nearly linearly with decreasing porosity ϕ.

The saturated intrinsic permeability coefficient Khom(Sr = 1) = g(ϕ) × D2 9. It is

interesting to find that D2 dependence of saturated intrinsic permeability coefficient is

similar to that of the modified Kozeny-Carman model, in which the saturated intrinsic

8. It can be determined by Eq.(4.21).
9. The expression is so lengthy that we use g(ϕ) (the function of porosity ϕ) to represent the expression.
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Figure 6.4: The evolution of ζ with porosity ϕ at Sr = 1, the other parameters are given
in the figure.

permeability coefficient is expressed as [115]:

Khom(Sr = 1) =
(ϕ− ϕp)3

72[1 − (ϕ− ϕp)]2τ 2
D2 (6.30)

where ϕp is the percolation porosity, τ is the tortuosity factor, D is the radius of solid grain

of sandstone.

Indeed, the D2 dependence of the saturated intrinsic permeability Khom(Sr = 1) has

been experimentally verified for clean, well sorted natural sands [15, 95, 256] and sandstones

[24, 168].

For Fontainebleau sandstone, the influence of D on the evolution of the saturated intrin-

sic permeability coefficient Khom(Sr = 1) with the porosity ϕ is illustrated in Fig.(6.5)(a).

As can be seen from the figure, the modelling results agree well with experimental results

when the porosity is higher than 0.08 at D = 150 µm and 200 µm. However, the modelling

results are higher than the experimental results when porosity is lower than 0.08. The main

reason may lie in the fact that, some of pores such as dead end pores and stagnant pockets

will not contribute to the flow permeability [115, 167]. The porosity of dead end pores and
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stagnant pockets is denoted as percolation porosity ϕp in Mavko’s modified Kozeny-Carman

model (Eq.(6.30)).

Like Mavko et al. [168], when the percolation porosity ϕp = 2% is accounted for in

our model (replacing ϕ by ϕ − ϕp in the micromechanics model), it can be found that the

modelling results perfectly agree with experimental results, as shown in Fig.(6.5)(b).

(a) Original micromechanics model. (b) Modified micromechanics model: replacing
ϕ by ϕ− ϕp in the model, ϕp = 2%.

Figure 6.5: The evolution of the saturated intrinsic permeability coefficient Khom(Sr = 1)
with porosity ϕ for Fontainebleau sandstone; the blue curve is Mavko’s modified Kozeny-
Carman model with fitting percolation porosity ϕp = 2%, tortuosity τ = 2.5 and D=250
µm (Eq.(6.30)) [168]; the black circle points are experimental results from 240 samples
with different porosities [25], the red diamond points are after [84], the green diagonal cross
points are after [115].

The perfect agreement between simulation results and experiment results (see Fig.(6.5)(b))

demonstrates the feasibility of the assumptions aforementioned (e.g. ζ =
φig

3(1 − ϕ)
) and

the validity of the micromechanics model for Fontainebleau sandstone.
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6.5.5 Evolution of the unsaturated permeability coefficient with

saturation degree for Fontainebleau sandstone

Dana et al. [64, 65] has carried out an experiment to measure the unsaturated perme-

ability coefficient of Fontainebleau sandstone (for liquid water flow). The characteristics of

the Fontainebleau sandstone are listed in Table(6.3):

Table 6.3: Characteristics of Fontainebleau sandstone [64]

- ρb ρs ϕ SBET Pore size K
(g.cm−3) (g · cm−3) (%) (m2.g−1 ) (µm) (m2)

Fontainebleau 2.36 2.60 9.5 0.03 1–200 2.0 × 10−13

sandstone

1 ρb and ρs are the bulk density and skeletal density of sandstone, ϕ is the porosity,
SBET is the specific surface area measured by BET method, pore size ranges from 1
to 200 µm and mainly lies in 10 µm, K is the intrinsic permeability coefficient.

The micromechanics model based on the several assumptions (in Section(6.5.3)) is used

to simulate this experiment. Owing to the pore size distribution of the Fontainebleau

sandstone, the pores are drained from the bigger ones to the smaller ones in a well organized

arrangement during the desaturation process. To simplify the problem, we assume that

during the desaturation process, the thicknesses of the water film h and the wetting layer

t remain constant while the thickness of the intergranular layer e decreases uniformly with

saturation degree Sr according to:

e = ζRs ≈ φig

3(1 − ϕ)
Rs =

ϕSr − φf − φwl

31 − ϕ
Rs (6.31)

In this case, the evolution of ζ (ζ = e/Rs) with saturation degree Sr is illustrated in

Fig.(6.6). As shown in the figure, ζ decreases linearly with saturation degree Sr.

When ε = 10−5, χ = 10−3 and ϕ = 0.095 are taken as input in the function of Khom

introduced in Section(6.5.3), the evolution of the relative homogenized permeability coef-

ficient Khom/Khom(Sr = 1) with the saturation degree Sr and grain size D is depicted in

Fig.(6.7). The connectivity of the liquid flow is ensured by the intergranular layer surround-
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Figure 6.6: The evolution of the ζ with saturation degree Sr, ϕ = 0.095, the other param-
eters are given in the figure.

ing the solid grains. The relative homogenized permeability coefficient is thus governed by

the intergranular layer at this stage. As can be seen from Fig.(6.7), our modelling results

agree better with the experimental results than the empirical models such as Brooks-Corey’s

model and Van Genuchten’s model.

From our modelling 10, when D = 270 µm (at the range of 350 µm to 150 µm), we have

Khom(Sr = 1) = 2 × 10−13 m2 (the measured value shown in Table(6.3)). As shown in

the figure, the four curves with different grain sizes merge together. Indeed, in the simu-

lation, when χ and ε are taken as constant value, the unsaturated permeability coefficient

Khom(Sr) = f(Sr, ϕ) ×D2 (the real expression is so long that it is simplified as a function

f(Sr, ϕ) here), the term D2 will be cancelled during the normalization. Thus, there is no

influence of diameter of solid grains D on relative permeability coefficient (Khom/Khom
Sr=1).

10. The percolation porosity 2% is taken into account in the modelling.
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Figure 6.7: The evolution of the relative permeability coefficient Khom/Khom
Sr=1 with satura-

tion degree Sr for Fontainebleau sandstone (red curves); the fitting parameters of Brooks-
Corey’s model and Van Genuchten’s model are given in [65]; the black circle points are
from experiments in [65].
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6.6 Summary

Three types of empirical models are reviewed and discussed. A micromechanics model

for liquid flow in unsaturated sandstone is developed based on several simplifications of

Navier-Stokes solution for flow at local scale. It is applied to predict the saturated intrinsic

permeability and then the unsaturated relative permeability of Fontainebleau sandstone.

Fontainebleau sandstone are used in the model owing to its relative simple microstruc-

ture. All of the intergranular water within this sandstone is idealized as the intergranular

layer surrounded on the solid grains. The thickness of the intergranular layer e can be

estimated as e = ζD/2 ≈ φig

3(1 − ϕ)
=
ϕSr − φf − φwl

3(1 − ϕ)
. The thickness of the intergranular

layer e varies with ϕ and Sr. The thicknesses of the water film and the wetting layer are

assumed to be constant.

When Sr = 1, we can obtain the relation between saturated intrinsic permeability

Khom(Sr = 1) and porosity ϕ from this micromechanics model. The simulation results

perfectly agree with the experimental results. Moreover, this micromechanics model is able

to explain the D2 dependence of the saturated intrinsic permeability coefficient according

to the modified Kozeny-Carman model.

The micromechanics model is also used to predict the relationship between the relative

permeability coefficient and saturation degree for Fontainebleau sandstone. In this case,

ϕ = 0.095 − ϕp is taken to be constant, where ϕp = 2% is the percolation porosity. The

thickness of intergranular layer e within the Fontainebleau sandstone decreases linearly

with the saturation degree Sr. The relative permeability of the unsaturated sandstone is

governed by the intergranular layer at intermediate saturation degree and at high saturation

degree. The simulation results sound more comparable with the experimental results than

Brooks-Corey’s model and Van Genuchten’s model.
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Chapter 7

Thermodynamics and poromechanics

for freezing in porous media
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Superscripts or subscripts such as c, l, f , g, v, s denote ice crystal, liquid water, un-

frozen water film, gas, vapour and solid substrate, respectively. Moreover, the coupled two

alphabets represent the interface between these two phases, e.g., cl refers to the interface

between ice crystal c and pore water l.

7.1 Homogeneous nucleation and heterogeneous

nucleation

Before the ice propagation process, the water in porous media is usually in the state

of supercooling. The primary reason for the existence of the supercooling water lies in

energy barrier [262]. The nucleation occurs when the energy barrier is overcome. There

are two types of nucleation, one is homogeneous nucleation and the other is heterogeneous

nucleation.

7.1.1 Homogeneous nucleation

Homogeneous nucleation begins with hydrogen atoms bonding together and creating

clusters at nearly random positions [226]. When the temperature is low enough, the clus-

ters will become thermodynamically stable and combine together to form a nucleus [8]. The

stability of a nucleus is governed by two parts: -1) the volume free energy ∆Gv (named as

bulk free energy by Coussy [58]), which is the energy released during liquid-ice transfor-
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mation and is the driving force for ice formation; -2) the surface free energy ∆Gs, which is

the energy cost for the formation of the liquid-ice interface and inhibits nucleus formation

[40]. Therefore, the total free energy for the formation of nucleus ∆Ghom can be expressed

as [58]:

∆Ghom = ∆Gv + ∆Gs = −4

3
πr3∆gv + 4πr2γcl (7.1)

where r is the radius of nucleus, γcl is the surface tension for ice-liquid water interface, ∆gv

is the volume free energy per unit volume, which can be determined by ∆gv =
∆hm∆T

T0

[40], T0 is the reference freezing temperature (273.15 K), ∆T = T0 − T is the supercooling

temperature, ∆hm is the latent heat of fusion per volume. To derive a critical radius of

and critical total free energy for a nucleus, a derivative of ∆Ghom is taken with respect to

radius of nucleus r [40]:

d∆Ghom

dr
= 0 (7.2)

From Eq.(7.2), the critical radius of the nucleus r∗ is derived as [40]:

r∗ =
2γcl

∆gv

=
2γclT0

∆hm∆T
(7.3)

Rasmussen et al. [203] have shown that the rate of homogeneous nucleation is only

significant around −38◦C, which corresponds to a critical ice nucleus radius r∗ = 1.6nm. At

higher temperature, it is unlikely to form ice nucleus with larger radius because of thermal

fluctuations [203]. Therefore it is impossible for the ice nucleation to occur randomly in

large pores by such process.

7.1.2 Heterogeneous Nucleation

Instead of nucleating at the supercooling as low as −38◦C, heterogeneous nucleation

happens at the surfaces of impurities within solution or at the surfaces of the solid parti-
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cles, where the activation energy required to form a nucleus is greatly lowered down [203].

The relationship between the total free energy needed by homogeneous and heterogeneous

nucleation is [40]:

∆Ghet = f(θ)∆Ghom = (
2 − 3cosθ + cos3θ

4
)∆Ghom (7.4)

where ∆Ghet is the total free energy induced by heterogeneous nucleation, θ is the wetting

angle of the nucleus and substrate; for instance, when the ice wets perfectly (θ → 0),

∆Ghet → 0 [40]. Combining Eq.(7.2) and Eq.(7.4), it can be inferred that the supercooling

temperature at the same critical radius as for homogeneous nucleation, can be written as

the follows [40]:

∆Thet = f(θ)∆T = (
2 − 3cosθ + cos3θ

4
)∆T (7.5)

where ∆Thet is the supercooling temperature induced by heterogeneous nucleation.

Heterogeneous nucleation within porous media is the process in which ice nucleates

somewhere in large pores, and then penetrates into small pores until the thermodynamic

equilibrium as well as mechanical equilibrium between the ice crystal and liquid water are

reached.

In practical engineering or lab experiments, based on the theory of heterogeneous nu-

cleation, nucleation agents are often employed in the freezing porous media in order to rise

or control the magnitude of the freezing temperature [230].

7.2 Thermodynamic equilibrium within unsaturated

porous media under freezing

Generally all pores in porous media under freezing are considered to be totally filled with

water, which is obviously unrealistic in almost all practical cases [193]. Therefore, in order

to be consistent with realistic engineering situations, another vapour phase is introduced
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in freezing problems by several investigators [193, 194, 222, 264]. However, as indicated

by Brun et al. [32], the Gibbs-Duhem equation which governs the freezing in unsaturated

porous media can not be solved with closed form solutions except in the special case where

the ice-gas interface is assumed to be a plane [193]. Following Penttala et al. [193], the

thermodynamic problem of freezing in unsaturated porous media is presented in the sequel.

7.2.1 Thermodynamic condition for the coexistence of each

phase

Besides the lower freezing temperature by nucleation, freezing temperature can be de-

pressed by the ions in solution or by the capillary effect of pores. In the normal case, pore

water within porous media is aqueous solution rather than pure water. However, for sim-

plifying, the effect of the ions will not be considered here, only the phase transformations

between the pure unfrozen water (denoted as l), ice c and vapour v will be discussed.

For the pure water in an unsaturated freezing system, as shown in Fig.(7.1), there

coexist four kinds of water at different states: liquid water (l), ice crystal (c), unfrozen

water film f on the ice crystal and vapour (v). Here, the temperature is considered to be

homogeneous whereas the pressure is only homogeneous in each phase.

The thermodynamic equilibriums between the unfrozen liquid water (l), ice crystal (c),

unfrozen water film f on the ice crystal and vapour (v) are expressed by the equality of

their chemical potentials:







µl(T, P
l) = µc(T, P

c) = µf (T, P f ) = µv(T, P v)

µ0
l (T0, P0) = µ0

c(T0, P0) = µ0
f (T0, P0) = µ0

v(T0, P0)

(7.6)

From the Gibbs-Duhem equation, the chemical potential of the ith (i = {c, l, f, v}) phase

is expressed as:

dµi(T, P
i) = VidP i − SidT (7.7)
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Figure 7.1: Schematic illustration of unsaturated porous media under freezing.
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where µi(T, P
i) is the chemical potential of the ith phase at temperature T and internal

partial pressure P i (i ∈ {c, l, f, v}), Si (in J.mol−1.K−1) is the molar entropy of the ith phase

(i ∈ {c, l, f, v}) , Vi (in m3.mol−1) is molar volume of the ith (i ∈ {c, l, f, v}) phase, while

taking atmospheric pressure (P0 = 105 Pa) and the corresponding freezing point T0 = 273.15

K as the reference equilibrium state. Integrating Eq.(7.7), the chemical potential µi of each

phase can be expressed as:

µi(T, P
i) = µ0

i (T0, P0) −
∫ T

T0

SidT +
∫ P i

P0

VidP (7.8)

where µ0
i (T0, P0) is the chemical potential of the ith phase (i ∈ {c, l, f, v}) in the reference

equilibrium bulk state.

In unsaturated freezing porous media, the thermodynamic equilibriums between ice

and other three components i = {l, f, v} are specified, based on the assumption of constant

molar volume of liquid water, unfrozen water film and ice. From Eq.(7.8) and Eq.(7.6), it

yields:







Vc(P
c − P0) − Vl(P

l − P0) +
∫ T

T0
(Sl − Sc)dτ = 0

Vc(P
c − P0) − Vf (P f − P0) +

∫ T
T0

(Sf − Sc)dτ = 0

Vc(P
c − P0) −RT ln(

P v

P0

) +
∫ T

T0
(Sv − Sc)dτ = 0

Vl(P
l − P0) −RT ln(

P v

P0

) +
∫ T

T0
(Sv − Sl)dτ = 0

(7.9)

where the vapour is assumed to behave like an ideal gas and we have
∫ P v

P0
VvdP = RT ln(

P v

P0

);

R is gas constant.

The molar entropy Si in Eq.(7.9) can be calculated [193]:

Si = S0
i (T0) +

∫ T

T0

∂S(T0)

∂τ
dτ = S0

i (T0) +
∫ T

T0

CP,i

τ
dτ (7.10)

where S0
i (T0) is the molar entropy of the ith (i ∈ {c, l, f, v}) component of water in the refer-

ence equilibrium sate; CP,i is the heat capacity of the ith component of water (in J.mol−1).
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Heat capacity of the ith component of water depends upon the temperature, pressure 1

[193, 262]. However, as indicated by [93, 98, 262], the variation of the heat capacity with

temperature is negligible in drained case when the temperature ranges between −38◦C and

0◦C [98]. CP,i can thus be taken as a constant value. Therefore, from Eq.(7.10), we have:







Sl − Sc = (S0
l (T0) − S0

c (T0)) +
∫ T

T0

CP,l − CP,c

τ
dτ =

∆H0
fus

T0

+ (CP,l − CP,c)ln(
T

T0

)

Sf − Sc = (S0
f (T0) − S0

c (T0)) +
∫ T

T0

CP,f − CP,c

τ
dτ =

∆Hf0
fus

T0

+ (CP,f − CP,c)ln(
T

T0

)

Sv − Sc = (S0
v(T0) − S0

c (T0)) +
∫ T

T0

CP,v − CP,c

τ
dτ =

∆H0
sub

T0

+ (CP,v − CP,c)ln(
T

T0

)

Sv − Sl = (S0
v(T0) − S0

l (T0)) +
∫ T

T0

CP,v − CP,l

τ
dτ =

∆H0
eva

T0

+ (CP,v − CP,l)ln(
T

T0

)

(7.11)

where ∆H0
fus = (S0

l (T0) − S0
c (T0))T0 is the enthalpy change of fusion of ice (for capillary

water) at reference state; ∆Hf0
fus = (S0

f (T0) − S0
c (T0))T0 is the enthalpy change of fusion of

ice (for unfrozen water film) at reference state; ∆H0
sub = (S0

v(T0)−S0
c (T0))T0 is the enthalpy

change of sublimation of ice at reference state; ∆H0
vap = (S0

v(T0)−S0
l (T0))T0 is the enthalpy

change of vaporization of ice at reference state.

Integrating the Eq.(7.11) with temperature, it derives:







∫ T
T0

(Sl − Sc)dτ = Sfus(T − T0) + (CP,l − CP,c)(T0 − T + T ln(
T

T0

))

∫ T
T0

(Sf − Sc)dτ = Sfusf (T − T0) + (CP,f − CP,c)(T0 − T + T ln(
T

T0

))

∫ T
T0

(Sv − Sc)dτ = Ssub(T − T0) + (CP,v − CP,c)(T0 − T + T ln(
T

T0

))

∫ T
T0

(Sv − Sl)dτ = Seva(T − T0) + (CP,v − CP,l)(T0 − T + T ln(
T

T0

))

(7.12)

where Sfus = S0
l (T0) − S0

c (T0) is defined as molar fusion entropy (in J.K−1.mol−1) at refer-

ence state (for capillary water); Sfusf = S0
f (T0) − S0

c (T0) is defined as molar fusion entropy

1. The effect of salt concentration is neglected here.



7.2 Thermodynamic equilibrium within unsaturated porous media under
freezing 173

(in J.K−1.mol−1) at reference state (for unfrozen water film); Ssub = S0
v(T0) − S0

c (T0) is the

molar sublimation entropy (in J.K−1.mol−1) at reference state; Seva is the molar vaporiza-

tion entropy (in J.K−1.mol−1) at reference state.

Substituting Eq.(7.12) into Eq.(7.9), we have:







P c − P l = (
Vl

Vc

− 1)(P l − P0) +
Sfus(T0 − T )

Vc

+
CP,l − CP,c

Vc

(T − T0 + T ln(
T0

T
)) (a)

P c − P f = (
Vf

Vc

− 1)(P f − P0) +
Sfusf (T0 − T )

Vc

+
CP,f − CP,c

Vc

(T − T0 + T ln(
T0

T
)) (b)

P c − P0 =
RT

Vc

ln(
P v

P0

) +
Ssub(T0 − T )

Vc

+
CP,c − CP,v

Vc

(T − T0 + T ln(
T0

T
)) (c)

P l − P0 =
RT

Vl

ln(
P v

P0

) +
Seva(T0 − T )

Vl

+
CP,l − CP,v

Vl

(T − T0 + T ln(
T0

T
)) (d)

(7.13)

7.2.2 Crystallographic structure of ice within porous media

Substituting P c = P l in Eq.(7.13) (a) yields a Clapeyon-like equation:

P l − P0 =
1

Vc − Vl

[Sfus(T0 − T ) + (CP,l − CP,c)(T − T0 + T ln(
T0

T
))] (7.14)

Eq.(7.14) allows predicting the boundary of the ice-liquid water phase diagram with

temperature (shown as red lines in Fig.(7.2)).

Fig.(7.2) also presents different types of bulk ice with varied pressure and temperature.

Nevertheless, the structure of ice within porous media is still under dispute. Numerous

researches have indicated that the confined supercooled water in pores is transformed into

cubic crystal ice instead of ordinary hexagonal ice (denoted as Ih in Fig.(7.2))), the detailed

discussion is presented in [17, 86, 111, 174, 228, 233, 263]. However, it should be noted that

for cement-based material, the supercooled water freezes via hexagonal structure generally

[96, 221, 263]. The reasons lies in two factors: 1)- the temperature in normal atmospheric

environment for cold region is rarely lower than 230K; 2)-the rough surface of solid skeleton

of cement base material acts as nucleation agent [263]. Thus, the hexagonal ice is the usual
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Figure 7.2: Phase diagram of water, modified from [4]
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crystal form encountered in freezing cement based materials: in Fig.(7.2) it is shown as the

green strip region (0℃∼ -40℃, several hundreds bar [265]).

7.2.3 Depression of the freezing temperature owing to capillary

effect

As introduced in the Section(7.1), besides bulk supercooling, capillary effect can also

depress the freezing temperature. The depression of the temperature arising from the

capillary effect can be determined by the thermodynamic equilibrium and the mechanical

equilibrium of the ice crystal-liquid water interface. Therefore, by means of Young-Laplace

equation, Eq.(7.13) (a) can be rearranged as:

P c − P l = κclγcl = (
Vl

Vc

− 1)(P l − P0) + Sm∆T + Cfu(−∆T + T ln(
T0

T
)) (7.15)

where ∆T = T0 − T is the supercooling temperature, T0 and T is the reference tem-

perature (273 K) and the current freezing temperature, respectively; Sm = Sfus/Vc (in

J.K−1. m−3) is the fusion entropy when per unit volume ice transferring to liquid water,

Cfu = (CP,l −CP,c)/Vc (in J.K−1.m−3) is the fusion heat capacity when per unit volume of

water transforming to ice; κcl is the curvature of the ice-water interface, γcl is the surface

tension of ice-water interface. As presented in [32], Sm=1.2 MPa.K−1, Cfu=2.14 MPa.K−1.

Since (
Vl

Vc

− 1) ≈ −0.09 is a very low value, the term (
Vl

Vc

− 1)(P l − P0) is usually

neglected, Eq.(7.15) thus reduces to [98]:

κclγcl = P c − P l = Sm∆T − Cf
(∆T )2

2T0

(7.16)

As discussed in [98], Eq.(7.16) is usually satisfactory when the temperature is as low as

−40◦C, especially in drained condition.

In the case of spherical ice-liquid interface, κcl = 2cosθ/rc and making the first order ap-
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proximation of temperature effect, Eq.(7.16) can be simplified as the classic Gibbs-Thomson

equation:

2γclcosθ

rc

= Sm∆T (7.17)

where θ is the contact angle between ice crystal and unfrozen water film; rc is the radius of

spherical ice crystal filled with pore (with radius rp), thus, rc = rp − h, h is the thickness

of unfrozen water film.

However, it should be noted that, in undrained case, the pressure in freezing porous

media can reach hundreds of MPa [60]. Consequently, in this case, the depressed effect

induced by liquid pressure should be taken into account, the term (
Vl

Vc

− 1)(P l −P0) should

not be neglected. Consequently, Eq.(7.17) should be rewritten as:

P c − P l =
2γclcosθ

rc

= (
Vl

Vc

− 1)(P l − P0) + Sm∆T (7.18)

7.2.4 Ice propagation within the pore network

At a given temperature below freezing point, ice crystals as well as unfrozen water films

will form in the large capillary pores, while due to the freezing point depression, the water

in smaller pores remains unfrozen.

On the premise of the equilibrium of ice crystal-liquid water interface at each tem-

perature step, the classic Gibbs-Thomson equation (Eq.(7.17)) is commonly utilized to

characterize the propagation of ice crystals in pores network, a schematic representation of

the ice formation in simple pores network is illustrated in Fig.(7.3).

Let us assume that ice has formed in the channel with radius r1+h(T1) and the spherical

pore with radius R1 + h(T1) at temperature T1, h(T1) being the thickness of the unfrozen

water film at temperature T1. From Eq.(7.17), r2 will decrease from R1 with decreasing

T until r2 = r3, then allowing ice propagation into smaller channel pores. Note that the

thickness of unfrozen water film h decreases with decreasing T and that the porous network
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Figure 7.3: Sketch of progressive penetration of ice in interconnected pores.

radii are susceptible to change due to the mechanical effects.
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7.3 Unfrozen water film in freezing porous media

The existence of the unfrozen water film on the surface of the ice crystal has been

observed for more than 150 years since the pioneering work of Faraday [97]. Since then,

numerous studies have focused on investigating the properties as well as behaviors of such

peculiar unfrozen water film within freezing porous media [45, 46, 49, 50, 68, 69, 92, 130].

From all of these works on the unfrozen water film, it can be found that the disjoining

pressure plays a central role in the stability and the thickness of the unfrozen water film

[46].

7.3.1 Disjoining pressure in unfrozen water film

7.3.1.1 DLVO theory

It has been pointed out by Derjaguin and Churaev [46] that the Van der Waals dispersion

pressure and electrostatic pressure are less sensitive to the temperature than the structural

part. Hence, in unfrozen water film, the electrostatic and Van der Waals disjoining pressure

can be determined by the DLVO theory at room temperature:

ΠDLV O(h) = Πe(h) + Πv(h) (7.19)

ΠDLV O, Πe, Πv are the disjoining pressure determined by the DLVO theory, the electrostatic

pressure and the Van der Waals pressure, respectively.

For the unfrozen water film in freezing porous media, owing to the different surface

potential of interfaces (i.e., unfrozen water film-pore wall interface and unfrozen water film-

ice crystal interface), the electrostatic pressure can be calculated by the model proposed by

Churaev [46] 2. Therefore, the disjoining pressure determined from the DLVO theory can

be expressed as [46]:

2. The electrostatic component of disjoining pressure is determined based on this boundary condition:
the surface charge remains constant when the two interfaces become closer and closer (from infinity dis-
tance). With this condition, the surface potential of interface ψ can be linked to the surface potential of
interface at infinite distance ψ∞.
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ΠDLV O(h) =
ϵϵ0κ

2

8π

[2ψ1∞ψ2∞cosh(κh) + ψ2
1∞ + ψ2

2∞]

sinh2(κh)
− A/(6πh3) (7.20)

ψ1, ψ2 (in V) are the surface potentials of the two interfaces (unfrozen water film-solid

substrate interface and unfrozen water film-ice crystal interface), A is the Hamaker constant

of the unfrozen water film between the pore wall and ice crystal.

7.3.1.2 Hamaker constant for unfrozen water film

Unfortunately, the Hamaker constant for the quartz pore wall-unfrozen water film-ice

crystal system is still unknown [50]. Churaev et al. [50] has proposed that the Hamaker

constant for quartz-water film-quartz (1.0 × 10−21 J) can be used for the quartz pore wall-

unfrozen water film-ice crystal system.

There is another alternative solution: Eq.(3.20) can be used to estimate the value of

Hamaker constant for quartz pore wall-unfrozen water film-ice crystal system. All constants

of Eq.(3.20) can be determined as: k = 1.381 × 10−23 J.K−1, h = 6.626 × 10−34 J s,

νe = 3 × 1015 s−1, ϵ1 = 3.8, ϵ2 = 4.15 [132], ϵ3 = 88, n1 = 1.46, n2 = 1.309, n3 = 1.333[132],

T = 272.13 K. The Hamaker constant for quartz pore wall-unfrozen water film-ice crystal

system is found to be 1.51×10−21 J, a slightly higher value than that suggested by Churaev

et al. [50].

7.3.1.3 Structural component of disjoining pressure

Extensive investigations [45, 46, 49, 50] have found that the structural component of the

disjoining pressure may play a dominant role in unfrozen water film due to the molecular

structure modification of the unfrozen water film. Though the origin of the structural

component of disjoining pressure is still disputed [50], its magnitude obeys the exponential

form as in Eq.(3.21).

As discussed by Churaev et al. [46], the parametersK and λ are temperature-dependent:

with decreasing temperature, the value of K increases and the value of λ decreases. It is
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also found by Churaev et al. [46] that the parameters K and λ are of the same order for

hydrophilic surface of mica, quartz, silica and glass, at room temperature. To describe all

of the experimental results in the whole temperature range, a general empirical function

[50, 190] including two exponential terms was proposed, it can be expressed by Eq.(3.22).

The detailed analysis of the experimental results can be found in Appendix (A.4).

7.3.2 Dominant effect of structural component

As introduced in the previous section, due to the lack of the theoretical model for the

structural component, its value is always determined by the difference between the total

disjoining pressure and the disjoining pressure calculated by the DLVO theory.

As shown in Fig.(7.4), the combination of the electrostatic and Van der Waals com-

ponents of the disjoining pressure (calculated by DLVO) is depicted as solid line, the

experimental points stand for the measured total disjoining pressure. Here, we have,

A
′

= 1.51 × 10−21 J, ψ1 = −100 mV for quartz surface, ψ2 = −60 mV for ice interface,

κ = 108 m−1 [46].

It can be found from Fig.(7.4) that the disjoining pressure determined by DLVO theory

is far smaller than the total disjoining pressure, which means that the structural component

plays a dominant role in the disjoining pressure of the unfrozen water film. The reason for

such dominance may arise from the significantly modified structure of unfrozen water film,

as discussed by Churaev et al. [50].

Therefore, as suggested by Churaev et al. [45, 50] the electrostatic and Van der Waals

components of disjoining pressure are negligible and the disjoining pressure of the unfrozen

water film can be calculated by two-terms exponential equation shown in Eq.(3.22) (Ksr =

22.6 MPa, Klr = 4.9 MPa, λsr = 3.1 nm, λlr = 20.3 nm [50]), which is illustrated as dotted

line in Fig.(7.4).
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Figure 7.4: The disjoining pressure of the unfrozen water film between ice and fused quartz
surface. The solid line is the disjoining pressure calculated by the DLVO theory (Eq.(7.19)),
the dotted line is the structural component given by Eq.(3.22), the colored points are
experimental results of the ice-unfrozen water film-quartz system after Churaev et al. [45].

7.4 Mechanisms and models for freezing porous

media

Frost and surface scaling damage are the two main deteriorating phenomena of concrete

structure in cold region [40, 230, 246, 265]. Intensive investigations upon porous media

under freezing have been conducted for decades[40, 99, 230, 246, 265], numerous models

and mechanisms for the deterioration of freezing porous media have been proposed [40, 60,

90, 99, 201, 202, 220, 222–224, 230, 246, 265]. However, none of them can account for all of

the deterioration phenomena occurring in the field practice or laboratory experiments. To

better understand and compare the advantages and disadvantages of certain models and

mechanisms, we will briefly review several classic models and mechanisms for freezing in

porous media, and potential subsequent damage process.
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7.4.1 Hydraulic model

The hydraulic model for the freezing porous media is firstly introduced by Powers et

al. [202] in their milestone study for the effect of air void in concrete. In this work,

Powers attributed the damage of concrete under freezing to the hydraulic pressure. The

latter arises from the following arguments: during freezing, liquid water within the pore

will have a volumetric expansion of about 9% owing to the water-ice transformation; if

there is not enough empty pore space within the material to act as expansion reservoir,

hydraulic pressure will emerge [230]. Based on this argument, Powers suggested air voids

be introduced into the concrete, in order to offer additional space for the expansion of ice.

This is supported by experiment on air-entrained voids concrete which are less damaged

during freezing. Therefore, the hydraulic pressure model for freezing porous media is widely

accepted as an effective model for the internal frost damage [230]. Furthermore, by means

of this model, the effect of the air-entrained voids can be quantitatively discussed [230].

In certain boundary conditions, such as fully saturated pore space conditions, while the

external boundary is sealed well, the magnitude of the hydraulic pressure can be evaluated

using the formula by Coussy et al. [58]:

P l − Patm =
Vc − Vl

Vc

Src

Src/Kc + (1 − Src)/Kl

(7.21)

where Patm is the atmospheric pressure,Vi (i = l, c) is the molar volume of the ith phase.

Sri is the saturation degree of the ith phase (here, Src + Srl = 1), Ki is the bulk modulus

of the ith phase.

However, in following studies, Powers et al. [16, 201] found that the hydraulic model

seemed imperfect to explain some of the frost phenomena, the pressure causing the damage

of concrete under freezing being not necessary the hydraulic pressure. In the experiment,

it was found that the samples without air voids continue to expand during freezing when

the temperature kept constant [230]. This observation couldn’t be explained by hydraulic

pressure model as the hydraulic pressure here should be constant for constant value of the
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temperature [230]. Furthermore, the samples with air voids during freezing shrank instead

of simply not expanding [230].

The second experimental observation made by Beaudoin et al.[16] was more clearly

showed the contradiction with the hydraulic pressure. Beaudoin performed an experiment

by saturating concrete samples with benzene instead of with water. Benzene contracts

during freezing, therefore there should be no hydraulic pressure in the concrete samples

during freezing [230]. Correspondingly, there will be no expansion of the samples during

freezing. Nevertheless, the benzene filled concrete samples were found to expand during

freezing. From this experimental observations, the authors argued that there exists another

crystallization pressure responsible for the damage of porous media during freezing [16] (see

subsection (7.4.3)).

7.4.2 Osmotic model and cryo-suction effect

As presented in the previous subsection, due to the the obvious limitations of the hy-

draulic pressure model, Powers and and Helmuth [201] proposed a second model based on

the physics related to osmosis phenomena. This osmotic model can be presented as follows:

the pore water within porous media is electrolyte instead of pure water. During freezing,

most of the capillary water in big pores is transformed into ice, the residual unfrozen so-

lution (unfrozen water film) in the same capillary pores is concentrated simultaneously,

while the pore solution of the thin capillary pores nearby stay at low concentration. The

different concentrations of pore solution lead to different chemical potentials, which results

in osmotic pressure within porous media accompanying the water migrating from the lower

concentration (thin capillary pores) to higher concentration (big capillary pores) [262]. This

model is indeed able to give an explanation to the unexpected experimental observation

(continual expansion without air voids and continual shrinkage with air void) made by

Powers [202].

Similarly, as proposed by Coussy et al. [60], the principle of the cryo-suction is induced

by the different chemical potential of the ice and supercooling water. During freezing, if
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the air void is filled with water, the latter will freeze first, the chemical potential of which

is lower than that of supercooling water nearby, therefore, the ice in air voids tends to suck

the supercooling water nearby, which results in a negative pressure likely to support the

continual shrinkage of the entrained air void concrete samples [60].

It should be noted that, though the osmotic pressure and cryo-suction effect give rise to

significant improvements allowing to explain qualitatively several unexpected experimental

observation, they are still not easy to be taken into account quantitatively.

7.4.3 Crystallization pressure

Figure 7.5: Schematic representation of crystallization pressure exerted on the cylindrical
pore wall, modified from [220].

According to Scherer and co-workers [220, 230, 246], the crystallization pressure rather

than hydraulic pressure is proved to be the real reason for the damage of the concrete

under freezing. As depicted in Fig.(7.5), when ice crystallized in the capillary pores, at

the pore end (with radius re) the interface of ice crystal-liquid water exhibits hemispherical

configuration interface; while at the pore wall, the interface of ice crystal-unfrozen water

film exhibits cylindrical shape (with radius rs). The interfaces being in equilibrium and the
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curvatures of the two interfaces being different, to ensure the uniformity of the pressure

within the ice crystal, another pressure must be exerted on the crystal side along the

pore wall. This pressure is the crystallization pressure P a. For detailed discussion and

application of crystallization pressure, the reader may refer to [220, 230, 246]. In the simple

configuration of the cylindrical pores as shown in Fig.(7.5), with assumption of θ = 180◦

the magnitude of the crystallization pressure P a can be estimated by [230]:

P a = γcl(κ
e
cl − κs

cl) =
γcl

re

− γcl

rs

=
γcl

re

− γcl

rp − h
(7.22)

where γcl is the surface tension of ice-liquid water interface, κe
cl and κs

cl are curvatures of

the pore ends (hemispherical side) and pore sides (cylindrical side), re is the radius of ice

crystal at the pore ends, rs is the radius of the pore sides, rp is the radius of the cylindrical

pore, h is the thickness of unfrozen water film.

7.4.4 Disjoining pressure model

As developed by Derjaguin et al. [72, 73], an additional pressure within the unfrozen

water film, named as disjoining pressure, emerges owing to the overlapping of two boundary

layers: pore wall boundary layer and ice crystal boundary layer. Disjoining pressure plays

a key role not only in formation of the unfrozen water film but also in the phenomenon of

frost destruction of porous media [73]. Detailed information about the unfrozen water film

can go back to Section.(7.3.2).

A schematic of the disjoining pressure effect is shown in Fig.(7.6). As illustrated in the

inset of Fig.(7.6), ice-unfrozen water film interface and unfrozen water film-solid interface

being in equilibrium:







P f − P c = − 2γcl

R1 − h

P f = P l + Π(h)

P c − P l =
2γcl

r2

(7.23)
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where r2 is the radius of the ice-liquid water interface, R1 is the radius of the spherical

pore filled with ice and Π(h) is the disjoining pressure which depends on the thickness of

the unfrozen water film h (see Section(7.3)). In Eq.(7.23), the surface tension between ice

crystal and unfrozen water film interface is taken the same as that between ice crystal and

liquid water interface.

Figure 7.6: Schematic illustration of disjoining pressure of water film within crystallized
pores.

From Eq.(7.23), the magnitude of the disjoining pressure can be estimated by:

Π(h) =
2γcl

r2

− 2γcl

R1 − h
(7.24)

Eq.(7.24) is exactly the same expression as in Eq.(7.22) for re = r2 and rp = R1. Thus,

the disjoining pressure Π(h) is indeed equal to the crystallization pressure P a.
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7.5 Poromechanics methodology for freezing in

porous media

The differences between poromechanics and microporomechanics have been addressed

in the Chapter 1. Unsaturated poroelasticity was employed into the freezing problems by

Coussy et al. [57, 58, 60, 93, 99], Zuber et al. [267] and Wardeh and Perrin [250–252].

In poroelastic freezing model, there are two main internal pressures within freezing porous

media: liquid pressure P l and ice crystal pressure P c. Use of P c instead of Π(h) lies in the

assumption that: R1 −h ≫ r2. From Eq.(7.24), it gives Π(h) ≈ 2γcl

r2

. When this expression

for disjoining pressure is inserted into Eq.(7.23), we have:

P c ≈ Π(h) + P l = P f = P s (7.25)

The pressure of ice crystal P c is thus the pressure exerted on the solid matrix P s.

P c ≈ Π + P l = P f = P s (7.26)

Therefore, ice crystal pressure P c instead of disjoining pressure Π(h) is taken into ac-

count in the freezing poroelastic model [58, 60].

P c and P l can be linked by the thermodynamic equilibrium Eq.(7.13)(a) or its first

order expression Eq.(7.18).

Based on Coussy’s work [56, 58], in isotropic case, two state equations for freezing porous

media which take into account of initial stress and interface stress can be revised as :







σ − σ0 = Kϵ− bl[P
l − P l

0 − (T l − T l
0)] − bc[P

c − P c
0 − (T c − T c

0 )] −KαsδT

φc − φc0 = bcϵ+
Src[(P

c − T c) − (P c
0 − T c

0 )]

Ncc

+
Srl[(P

l − T l) − (P l
0 − T l

0)]

Ncl

− αφc
δT

φl − φl0 = blϵ +
Src[(P

c − T c) − (P c
0 − T c

0 )]

Ncl

+
Srl[(P

l − T l) − (P l
0 − T l

0)]

Nll

− αφl
δT

(7.27)
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where σ is the macro stress, σ0 is the initial macro stress tensor; K is the macroscopic bulk

modulus; ϵ is the strain; bi (i ∈ {l, c}) are the Biot coefficient for the pores filled with ith

phase; αs is the thermal dilation coefficient tensor of the solid phase, αϕi
are the volumetric

thermal dilation coefficients of pore space filled with ith phase; T i are the average interface

stresses for the ith phase-solid interfaces, T i
0 are their corresponding initial interface stresses;

δT = T −T0 (cf. supercooling ∆T = T0 −T in Eq.(7.15)); Sri are saturation degree for the

ith phase (Srl + Src = 1); P i are the internal pressure of the ith phase, Nij are poroelastic

modulus relating the pore pressure P i linearly to the porosity variation φi −φi0 when ϵ = 0,

i ∈ {l, c}; φi and φi0 are the current and initial porosity occupied by the ith phase.

The average interface stresses for the ith phase-solid interfaces T i within Eq.(7.27) can

be determined by [58]:

T i =
1

Sri

∫ Rcri

Rmin

2γsi

r

dSri(r)

dr
dr (7.28)

in which, γsi stands for the surface tension between the solid matrix and the ith phase

(i∈ {c, l}), Rcri is the critical radius of ice crystal, Rmin is the minimum radius of porous

media, dSri(r) represents the infinitesimal fraction of porous volume occupied by the ith

phase.

The poroelastic freezing model needs the macroscopic poroelastic properties as input

parameters. They can be measured by experiment as proposed by Sun[231, 232] and Zuber

[266, 267].

They can also be estimated as proposed by Coussy et al. [58]. In isotropic case,

the macroscopic poroelastic properties of porous media can be related to the macroscopic

poroelastic properties of the solid matrix by the following expressions [57, 58]:
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αφc
= αs(bc − ϕ0Src)

αφl
= αs(bl − ϕ0Srl)

1

Nc

+
1

Ncl

=
(bc − ϕ0Src)

Ks

1

Nl

+
1

Ncl

=
(bl − ϕ0Srl)

Ks

bl + bc = b = 1 − Khom

Ks

bi = bSi

(7.29)

where b is the Biot coefficient of the porous medium, bi(i = l, c) are the Biot coefficients for

the ith phase within isotropic porous media; Khom and Ks are the bulk modulus of porous

media and the corresponding solid skeleton, respectively.

Remark:

With the undrained boundary condition, free swelling (σ = 0) and the assumption of

the absence of initial stress, from Eq.(7.27) and Eq.(7.17), we have:

ε =
bl[P

l − T l] + bc[P
l + Sm∆T − T c] +KαsδT

K
(7.30)

It can be noted that the strain arising from the undrained free swelling of freezing

porous media can be attributed to the following: -1) the hydraulic pressure P l owing to the

volumetric change of ice formation; -2) the interface stress arising from the surface tension

effect; -3) thermal dilation (i.e. αϕi
(i = l, c) and αs); -4) the pressure caused by fusion

heat (i.e. Sm∆T ).

7.6 Summary

In this chapter, some basic knowledge of the freezing is presented, which are essential

to the micromechanics model for freezing porous media in the next chapter. The main

information which will be used in sequel is summarized as follows:
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— Some thermodynamic relations for the ice, liquid water and unfrozen water film are

presented in this chapter. Besides the bulk supercooling effect, the depression of

temperature ∆T = T0 −T owing to capillary effect can be determined by Eq.(7.18).

— Several classic models and mechanisms for freezing in porous media are reviewed and

discussed. Inspired by disjoining pressure for freezing porous media, the unfrozen

water film as well as disjoining pressure within which will be introduced in the

following micromechanics model for freezing porous media. The relation shown in

Eq.(7.31) links the pressure in crystallized pore and the pore liquid pressure, it will

be employed in the following micromechanics model for freezing porous media.

P f = P s = Π(h) + P l (7.31)

where P f , P s and P l are the pressure of unfrozen water film (crystallized pore),

pressure exerted on pore wall and liquid pressure, respectively; Π(h) is the disjoining

pressure of unfrozen water film.

— According to the experimental results of Churaev et al. [45, 46, 50], the Van der

Waals component and electrostatic component of the disjoining pressure within un-

frozen water film are negligible with respect to its structural component. Therefore,

the total disjoining pressure may be fitted as a two-term exponential expression:

Π(h) = Ksrexp(−h/λsr) +Klrexp(−h/λlr) (3.22)

where Ksr, Klr, λsr and λlr are the four corresponding fitting parameters, which are

temperature dependent.

— Poromechanics methodology for freezing in porous media was discussed. The limita-

tion of poromechanics methodology lies in its incapability of estimating the poroe-

lastic properties theoretically. The difference of the poromechanics model and mi-

cromechanics model for freezing porous media lies in the dissimilar treatment of

crystallized pore. Ice crystal pressure P c is treated as internal pressure of crystal-
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lized pore in poromechanics model, while P f = P l + Π is considered as internal

pressure of ice crystallized pore in micrmechanical model. A more detailed compar-

ison between poromechanics model and micromechanics model for freezing porous

media will be presented in Section(8.5.1.1).
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8.1 Introduction

Freezing within porous media is a thermoelastic problem coupled with phase transfor-

mation. It is likely to develop damage within the microstructure. The coalescence of these

local damage may then yield to the macroscopic fracture of the material. To begin with,

based on local phases characterization, a thermoporoelastic model for saturated porous

media is proposed in Section(8.2).

A micromechanics model for unsaturated freezing porous media is developed in Sec-

tion(8.3). When phase transformation (water to ice) is accounted for in the thermoporoe-

lastic model. In crystallized pores, the unfrozen water film instead of ice crystal directly

exerts pressure on the pore wall. Based on this local physical characterization, the internal

pressure of unfrozen water film is taken as internal pressure of crystallized pores in this

micromechanics model. As a comparison, ice crystal pressure is always taken as internal

pressure of crystallized pores in poromechanics models [60, 99, 231, 267]. As introduced

in Section(7.3), in addition to the liquid pressure, due to the overlapping of the boundary

layers (here, boundary layers attached on the solid-unfrozen water film interface and ice-

unfrozen water film interface), an additional disjoining pressure Π(h) originates from the

repulsive or attractive surface force emerges. In essence, the disjoining pressure is a local

physical term which is related to thermodynamic equilibrium between the bulk liquid water

and the unfrozen water film.

A more detailed micromechanics model for unsaturated freezing porous media will be

introduced in Section(8.4), from the very definition of the disjoining pressure as a function

of the thickness of the unfrozen water film, a stiffness of the unfrozen water film is accounted

for in the micromechanics model.

In the last part, the poroelastic properties derived from the micromechanics model are

discussed. Several applications will be also presented.
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8.2 A thermoporoelastic model for saturated porous

media

By means of micromechanics methodology, a poroelastic model for the saturated porous

media has been developed by Dormieux et al. [82]. When the local thermal stress 1 is

accounted for in this poroelastic model, a thermoporoelastic model has to be derived.

8.2.1 Thermoporoelastic local behaviors

In the REV of a saturated thermoporoelastic porous medium, the microscopic stress σ 2

, strain ε(z) and displacement ξ which characterize the response of the REV to the three

loading parameters: the macroscopic strain tensor E, the variation of the temperature δT

(δT = T − T0) and the uniform pore liquid pressure P should obey the following physical

formulas:







divσ = 0 z ∈ Ω

σ = Cs : ε(z) − κsδT z ∈ Ωs

σ = −P1 z ∈ Ωp

ξ = E · z z ∈ ∂Ω

(8.1)

where Cs and κs 3 are the elastic tensor and the thermal stress coefficient tensor of the

solid phase, Ωs and Ωp are respectively the solid domain and pore space domain in the

REV (domain Ω), Ω = Ωs ∪ Ωp.

Owing to the heterogeneity of porous media, solid phase (domain Ωs) and pore space

(domain Ωp) exhibit distinct internal state of stress (see Eq.(8.1)). To make the physical

1. In this context, we assume the variation of temperature δT to be uniform throughout the overall
REV.

2. In this text, for convenience, σ is concise expression of σ(z). In the following context, we always use
σ instead of σ(z).

3. In this text, curlicue letters represent fourth order tensor, bold letters denote second order tensor
while letters with underlines denote the vectors (first order tensor).
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formulas be valid in the whole REV, Eq.(8.1) may be reorganized into the following general

formulas:







divσ = 0 z ∈ Ω

σ = C : ε + σp − κδT z ∈ Ω

ξ = E · z z ∈ ∂Ω

(8.2)

with:

(C,κ,σp)(z) =







(Cs,κs, 0) z ∈ Ωs

(0, 0,−P1) z ∈ Ωp

(8.3)

The problem in Eq.(8.2) may be processed as Levin’s theorem. Given the linearity

with respect to the three loadings E, σp and δT , it is possible to take advantage of the

decomposition of the linear problem into three loading subproblems as follows:







(P
′

: E ̸= 0, δT = 0, P = 0) → (σ
′

, ε
′

) : σ
′

= Cs : ε
′

(Ωs),

σ
′

= 0 (Ωp), ξ′ → E · z (∂Ω)

(P
′′

: P ̸= 0,E = 0, δT = 0) → (σ
′′

, ε
′′

) : σ
′′

= Cs : ε
′′

(Ωs),

σ
′′

= −P1 (Ωp), ξ
′′ → 0 (∂Ω)

(P
′′′

: δT ̸= 0,E = 0, P = 0) → (σ
′′′

, ε
′′′

) : σ
′′′

= Cs : ε
′′′ − κδT (Ωs),

σ
′′′

= 0 (Ωp), ξ
′′′ → 0 (∂Ω)

(8.4)

8.2.2 Macroscopic state equations

The two poroelastic state equations are now derived from Eq.(8.4). They relate the

macroscopic stress tensor and Lagrangian porosity variation (ϕ−ϕ0) to the loading param-

eters E, δT and P . They correspond to the two poroelastic state equations which will be
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presented in the follows.

8.2.2.1 First state equation for thermoporoelasticity

As introduced in Eq.(1.2), the macroscopic stress tensor Σ is defined as the average of

the local stress tensor σ(z) over Ω:

Σ = ⟨σ(z)⟩Ω (8.5)

With the introduction of strain concentration tensor A
i

(i ∈ {s, p}) 4 [82] , the first

thermoporoelastic state equation could be derived:

Σ = C
hom : E − BP − κhomδT (8.6)

with:







Chom = (1 − ϕ0)C
s : A

s
= Cs : (I − ϕ0A

p
)

κhom =< κ : A >= κs : (I − ϕ0A
p
) = κs : Ss : Chom = αs : Chom

B = ϕ01 : A
p

= 1 : (I − Ss : Chom)

(8.7)

in which Chom, κhom and B are respectively the homogenized elastic tensor, the homoge-

nized thermal stress coefficient tensor and the Biot tensor, Ss is the compliance tensor of

solid phase (Ss = (Cs)−1); αs is the volumetric thermal dilation coefficient tensor of the

solid phase, A
p

and A
s

are the average strain concentration tensors over the pore space and

the solid phase, respectively.

The homogenized volumetric thermal dilation coefficient tensor can be defined as

4. In this context, superscripts s and p represent as follows: s: solid phase, p: pore space.
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αhom = Shom : κhom and it may be deduced as follows:

αhom = S
hom : κhom = κhom : Shom = κs : (I − ϕ0A

p
) : ((1 − ϕ0)C

s : A
s
)−1

= ((1 − ϕ0)κ
s : A

s
) : ((1 − ϕ0)C

s : A
s
)−1 = κs : Ss = αs

(8.8)

In may be concluded that the homogenized volumetric thermal dilation coefficient

of porous media is only related to the volumetric thermal dilation coefficient of solid

phase.

A remark for a special case:

According to Eq.(8.6), when a porous medium with drained boundary condition (P = 0)

is under free swelling (Σ = 0), the macroscopic strain is determined by:

E = S
hom : κhomδT = αhomδT = αsδT (8.9)

In this case, the macroscopic strain tensor E is strictly controlled by the thermal prop-

erties of the solid phase αs, Shom is the homogenized compliance tensor of porous media.

8.2.2.2 Second thermoporoelastic state equation

Concerning the second state equation, the applied loadings may also be decomposed

into three subproblems as Levin’s theorem, (as shown in Eq.(8.4)). Hence, the variation of

porosity ϕ− ϕ0 may be decomposed into the following three components:

ϕ− ϕ0 = ϕ01 : εp = ϕ01 : (ε′
p

+ ε
′′

p
+ ε

′′′
p
) (8.10)

— Subproblem 1 (P
′

), E ̸= 0, δT = 0,P = 0: with ε
′
p

= A
p

: E, we have ϕ01 : ε′
p

=

ϕ01 : A
p

: E ⇒ ϕ01 : ε′
p

= B : E

— Subproblem 2 (P
′′

), P ̸= 0, E = 0, δT = 0 : with ϕ0ε
′′

p
+ (1 − ϕ0)ε

′′
s

= 0 and

Σ
′′

= (1 − ϕ0)C
s : ε′′

s − ϕ0P1 = −BP , we have −ϕ0C
s : ε′′

p − ϕ0P1 = −BP ⇒
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ϕ01 : ε′′
p

= 1 : Ss : (B − ϕ01)P =
1

N
P

— Subproblem 3 (P
′′′

), δT ̸= 0, E = 0, P = 0 : with ϕ0ε
′′′

p
+ (1 − ϕ0)ε

′′′
s

= 0 and

Σ
′′′

= (1 − ϕ0)C
s : ε′′′

s − (1 − ϕ0)κ
sδT = −κhomδT , we have −ϕ0C

s : ε′′′
p − (1 −

ϕ0)κ
sδT = −κhomδT ⇒ ϕ01 : ε′′′

p
= 1 : Ss : [κhom − (1 − ϕ0)κ

s]δT = (ϕ01 − B) :

αsδT = −αϕδT

Inserting the results of the three subproblems into Eq.(8.10) yields the second thermo-

poroelastic state equation as:

ϕ− ϕ0 = B : E +
1

N
P − αϕδT (8.11)

with: 





B = 1 : (I − Ss : Chom)

1

N
= 1 : Ss : (B − ϕ01)

αϕ = (B − ϕ01) : αs

(8.12)

It is interesting to note that, the homogenized volumetric thermal dilation coefficient

tensor αϕ is closely related to the volumetric thermal dilation coefficient tensor of solid

phase αs, Biot coefficient tensor B and initial porosity ϕ0. Nevertheless, it is irrelevant to

the thermal properties of fluid within porous media 5.

8.3 A micromechanics model for unsaturated

freezing porous media

Generally, the traditional models for freezing porous media often neglect the effect of the

unfroze water film [57, 201, 220]. As introduced in chapter 7, the disjoining pressure within

unfrozen water film plays a significant role in the internal pressure of crystallize pores (the

internal pressure of unfrozen water film). Herein, the special physics of the unfrozen water

5. However, the liquid pressure within the porous media is closely related to the thermal properties of
the fluid [58].
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film 6 is accounted for in the micromechanics model.

8.3.1 Physical characterization of local phases within

unsaturated freezing porous media

As presented in Fig.(8.1), a REV of unsaturated freezing porous media is made up of a

solid matrix (domain Ωs) and a pore space (domain Ωp). The latter may be filled with three

kinds of immiscible phase depending on its size (see the pore size distribution in Fig.(8.1)):

unfrozen pores liquid (domain Ωl), ice crystal spherical composite inclusion (domain Ωsc) 7

and the gas phase (domain Ωg). The initial configuration of these domains are denoted as

Ωl
0, Ωsc

0 , and Ωg
0, respectively. The ice crystal spherical composite inclusion may be divided

into two components: ice crystal (domain Ωc) and unfrozen water film (domain Ωf ).

Figure 8.1: Morphological illustration of the freezing in unsaturated porous media

Physically, unsaturated freezing porous media may be treated as an unsaturated ther-

6. The internal pressure of the water film P f is the combination of liquid pressure P l and the disjoining
presure Π(h), P f = P l + Π(h).

7. In ice crystallized pore, ice crystal coupled with the unfrozen water film may be treated as spherical
composite inclusion (as presented in Fig.(8.1)).
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moporoelastic problem. Therefore, as introduced in the previous section, the thermal stress

induced by the variation of temperature δT as well as internal pore pressures should be

taken into account during progressive freezing process. Depending on the pore sizes (see the

pore size distribution in Fig.(8.1)), the internal pore pressures may be specified as follows:

— Liquid pressure P l:

In freezing porous media, the liquid pressure P l is closely related to the boundary

condition. In drained freezing porous media, the liquid pressure remains to be atmo-

spheric pressure. However, in undrained freezing porous media, the liquid pressure

is induced by the phase transformation of liquid water to ice crystal and plays a

significant role in freezing problem.

— Gas pressure P g:

As introduced in Section(7.2), when the pore space coexists three immisible phases

such as gas (vapor), unfrozen liquid and ice-unfrozen water film composite inclusion,

the pressures of each phase will not have closed form solution. Hence, several as-

sumptions should be made to determine the internal pressures of gas, liquid and ice

crystal composite in this unsaturated freezing problem.

For example, in the air-entrained voids cement paste, the gas pressure is always

assumed to be equal to the internal pressure of ice crystal (the interface between gas

and ice crystal is assumed to be a flat plane). Both of them are assumed to equal

to the atmospheric pressure in air void cement paste [231].

— Membrane stress:

Membrane stress in unsaturated freezing porous media is ascribed by surface tension

of different interfaces, it leads to the stress vector discontinuity between different

phases. The detailed information of membrane stress is given in Section(1.3).

— Internal pressure within unfrozen water film P f :

The internal pressure of unfrozen water film can be determined in the form of:

P f
1 = P l

1 + Π(h)n⊗ n (8.13)



8.3 A micromechanics model for unsaturated freezing porous media 203

where P f is the internal pressure of unfrozen water film, P l are the internal pressure

of the liquid water, Π(h) is the disjoining pressure within unfrozen water film, h is

the thickness of unfrozen water film.

As introduced in Section(3.3), P g and P l may be linked by Kelvin equation (Eq.(3.11)).

P c and P l may be linked by Gibbs-Thomson equation (Eq.(7.18)), P c and P f (P f =

P l +Π(h)) may also be linked by Eq.(7.23). In these three equations, an additive disjoining

pressure Π(h) is introduced needs to be explicitly determined.

Currently, there is no theoretical model to explicitly determine the disjoining pressure.

Nevertheless, as introduced and discussed in Section(7.3), the structural component of the

disjoining pressure sufficiently represents the total disjoining pressure in the unfrozen water

film. The disjoining pressure of unfrozen water film may thus be estimated as a function

of the thickness of the unfrozen water film by the following two-term exponential formula

[190]:

Π(h) = Ksrexp(− h

λsr

) +Klrexp(− h

λlr

) (8.14)

where Ksr, Klr, λsr and λlr are fitting parameters which characterize the acting range of

surface force in unfrozen water film.

The current volume fraction of the ith phase (i ∈ {s, l, g, c, sc, f}) is denoted by φi. The

saturation degrees of ice crystal composite inclusion Srsc, liquid water Srl and gas Srg may

be defined as:







Srl =
|Ωl|
|Ωp| =

φl

ϕ
; Srsc =

|Ωsc|
|Ωp| =

φsc

ϕ
; Srg =

|Ωg|
|Ωp| =

φg

ϕ
;

φsc = φf + φc; ϕ = φl + φsc + φg

(8.15)

where ϕ is the porosity.

Several assumptions are made for unsaturated freezing porous media: 1)-in the overall

REV, the pore network is assumed to be hydraulically interconnected to ensure the uni-

formity of the pore pressures in each phase. P l, P f and P g are assumed to be uniform in
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each phase at equilibrium state; 2)-thermodynamic equilibrium and mechanical equilibrium

between each phase are assumed; 3)-the displacement and transformation of the freezing

porous media is infinitesimal at micro and macro scale so that the mechanical behaviors of

the freezing porous media lie in the poroelastic regime; 4)-the variation of the temperature

δT is assumed to be uniform throughout the overall REV.

8.3.2 Localized behaviors in unsaturated freezing porous media

The present section is an extension of the previous saturated case to the behavior of

the unsaturated freezing porous media. The initial and current states of the unsaturated

freezing porous media will also be specified in this section.

8.3.2.1 The initial state of the freezing in unsaturated porous media

As encountered in many engineering applications, an initial prestress σ0 prevails within

porous media. The initial configuration of porous medium is here the reference state and

the initial macroscopic strain of porous media is considered to be 0. By analogy to Eq.(8.2),

the physical formulas for this initial state problem can be expressed as:







divσ0 = 0 z ∈ Ω0

σ0(z) = C(z) : ε0 − κδT0 + σ
p
0 z ∈ Ω0

ξ
0

= 0 z ∈ ∂Ω0

(8.16)

where Ω0 and ∂Ω0 are the initial REV domain and its corresponding boundary surface;

ε0, δT0, σ
p
0 and ξ

0
are initial local strain, initial temperature variation, initial internal

pore pressure and initial boundary displacement, respectively. Correspondingly, the initial

poroelastic properties can be summarized as:
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(C,κ,σp)(z) =







(Cs,κs,σ0) ∀z ∈ Ωs
0

(0, 0,−P f
0 1) ∀z ∈ Ωsc

0

(0, 0,−P g
0 1) ∀z ∈ Ωg

0

(0, 0,−P l
01) ∀z ∈ Ωl

0

(0, 0, γac
1T δac) ∀z ∈ Iac

0

(8.17)

In which, the physical quantities with subscript "0" correspond to its initial value; γac

is the surface tension within the initial interface Iac
0 , δac is dirac distribution function

((a, c) ∈ {f, l, c, g, s, sc}).

8.3.2.2 The current state of freezing in unsaturated porous media

The microscopic stress, strain and displacement and boundary condition in the REV at

uniform boundary condition obeys the following physical formulas:







divσ = 0 z ∈ Ω

σ = C : ε + σp − κδT z ∈ Ω

ξ = E · z z ∈ ∂Ω

(8.18)

with:

(C,κ,σp)(z) =







(Cs,κs, 0) ∀z ∈ Ωs

(0, 0,−P f
1) ∀z ∈ Ωsc

(0, 0,−P g
1) ∀z ∈ Ωg

(0, 0,−P l
1) ∀z ∈ Ωl

(0, 0, γab
1T δab) ∀z ∈ Iab

(8.19)

where γab is the surface tension within the current interface Iab, δab is dirac distribution

function ((a, b) ∈ {f, l, c, g, s, sc}).
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8.3.3 First poroelastic state equation for unsaturated freezing

porous media

The macroscopic stress tensor Σ may be derived by average of the local stress over REV

domain Ω (see Eq.(8.5)). Treating the homogenization by means of Levin’s theorem [82], the

macroscopic stress tensor may be decomposed into four loading cases: 1)-the initial stress

σ0 (corresponding to macroscopic stress Σ
′

), 2)-the macroscopic strain E (corresponding

to macroscopic stress Σ
′′

), 3)-the thermal stress tensor κδT (corresponding to macroscopic

stress Σ
′′′

) and 4)-the prestress tensor σp (corresponding to macroscopic stress Σ
′′′′

). The

macroscopic stress Σ is thus derived by linearly superposing the four loading cases in the

form of 8:

Σ = Σ
′

+ Σ
′′

+ Σ
′′′

+ Σ
′′′′

= Σ0 + C
hom : E − κhomδT − (φlP

l
1 : A

l
+ φscP

f
1 : A

sc
+ φgP

g
1 : A

g
)

+[(γab

∫

Iab
1T : A

dS

Ω
) − (γac

∫

Iac
0

1T : A
dS

Ω
)]

(8.20)

where Σ0 and Σ are the initial and current macroscopic stresses; Chom and κhom are the

homogenized elastic tensor (stiffness tensor) and homogenized thermal stress coefficient

tensor, respectively; A
l
, A

sc
and A

g
are average strain concentration tensors of liquid water

phase, ice crystal spherical composite inclusion and gas phase, respectively; (γac

∫

Iac
0
1T :

A
dS

Ω
) and (γab

∫

Iab 1T : A
dS

Ω
) are the initial and current membrane stresses, respectively,

where Iac
0 Iab are the initial and current interface.

Indeed, Eq.(8.20) may be rewritten as concise incremental form 9 as:

8. The detailed derivation is suggested to refer to Appendix(D)
9. It should bear in mind that the initial macroscopic strain E0 is taken as the reference strain and

equal to 0.
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δΣ = C
hom : E − κhomδT − (φlδP

l
1 : A

l
+ φscδP

f
1 : A

sc
+ φgδP

g
1 : A

g
)

+δ(γab

∫

Iab
1T : A

dS

Ω
)

(8.21)

where δΣ = Σ − Σ0, δT = T − T0 (cf. supercooling temperature T0 − T ), δP i = P i − P i
0

(i ∈ {l, sc, g}), δ(γab

∫

Iab 1T : A
dS

Ω
) = γab

∫

Iab 1T : A
dS

Ω
− γac

∫

Iac
0
1T : A

dS

Ω
denotes the

variation of the membrane stress induced by the transformation of the phase c to phase b

((a, b, c) ∈ {f, l, c, g, s, sc}).

Here, it is reasonable to assume that there are no morphological differences between

Ωl, Ωsc and Ωg [39, 82]. Hence, the average strain concentrations of the liquid, gas and ice

crystal composite inclusion are expected to be equal to that of pore space [39, 82]:

A
l ≈ A

sc ≈ A
g ≈ A

p
(8.22)

Substituting Eq.(8.22) into the third term of the right hand side of Eq.(8.21) yields:

φlδP
l
1 : A

l
+ φscδP

f
1 : A

sc
+ φgδP

g
1 : A

g ≈ (SrlδP
l + SrscδP

f + SrgδP
g)ϕ1 : A

p

= B(SrlδP
l + SrscδP

f + SrgδP
g) = BδP eq

(8.23)

where Eq.(8.23) suggest to introduce the macroscopic equivalent pressure δP eq can be

defined as:

δP eq = SrlδP
l + SrscδP

f + SrgδP
g (8.24)

8.3.3.1 Dependence of the membrane stresses on the pore size distribution

As shown in Fig.(8.1), the pore space morphology within unsaturated freezing porous

media may be categorized as three types: 1)-pores saturated with liquid water, 2)-pores
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filled with ice crystal composite inclusion and 3)-pores occupied by gas. At equilibrium

state, the critical pore radii between 3 different pores may be determined by Young-Laplace

equation and Gibbs-Thomson equation (go back to Section(1.3)). Similar to the unsatu-

rated case processed by Cariou [39], the surface tension effects of the interfaces between

pore wall and ith (i ∈ {l, g, sc, f}) are accounted for while the surface tension effect of in-

terfaces Ilg = Icl = Icg are assumed to be negligible. All of the pores and interfaces within

unsaturated freezing porous media are classified and listed according to:







r ≤ rc2 pores filled with liquid water

rc2 ≤ r ≤ rc1 pores filled with ice-unfrozen water film composite

rc1 ≤ r pores filled with gas

rc1 =
2γlg

Pg − Pl

; rc2 =
2γcl

Pc − Pl

=
2γcl

−SmδT

Ilg = Icl = Icg = O
(8.25)

It can be found that, the last term of the right hand side of Eq.(8.21) (membrane

stress) is closely depended on the pore size. Hence, in order to determine the membrane

stresses within unsaturated freezing porous media, a pore size size distribution function

α(r) is introduced first. Where α(r)dr represents the volume fraction of the pores within

the radius range [r, r+ dr]. Outside the range of the [rmin, rmax], α(r) = 0, where rmax and

rmin are the maximum and minimum pore radii of porous media.

From the definition of the pore size distribution function, we have:

∫ rmax

rmin

α(r)dr = 1; Srl =
∫ rc2

rmin

α(r)dr; Srsc =
∫ rc1

rc2

α(r)dr Srg =
∫ rmax

rc1

α(r)dr. (8.26)

where, rc1 is the critical radius between ice crystal and gas phase, rc2 is the critical radius

between ice crystal and liquid water phase (see Fig.(8.1)).
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Membrane stress

When the pore size distribution function α(r) is clearly determined, membrane stress of

solid-ice crystal composite inclusion (unfrozen water f ilm) interface (denoted as superscript

sf), solid-gas interface (denoted as superscript sg) and solid-liquid interface (denoted as

superscript sl) can be derived. Combining with Eq.(8.22), the membrane stress within

interface Iab (the last term of the right hand side of Eq.(8.21)) can be rewritten as [39]:

γab

∫

Iab
1T : A

dS

Ω
=
γab

|Ω|
∫

Iab
1TdS : A

p
(8.27)

In order to evaluate Eq.(8.27), the tangent plane identity tensor 1T is integrated on a

single sphere with radius r first, it gives [82]:

1

V (r)

∫

S(r)
1TdS =

2

r
1 (8.28)

where V (r) is the volume of a sphere with radius r. Thus, Eq.(8.27) may be rewritten as

[39]:

∫

Iab
1TdS =

∫ r1

r2

N (r)(
2V (r)

r
)dr1 (8.29)

where N (r)dr =
ϕ|Ω|α(r)dr

V (r)
is the number of the pores within the range [r, r+dr], (r1, r2) ∈

{rc1, rc2, rmin, rmax}, r1 ≥ r2. Combining Eq.(8.27) and Eq.(8.29) yields [39]:

γab

|Ω|
∫

Iab
1T : A

p
dS = γab

∫ r1

r2

(
2α(r)

r
)ϕ1 : A

p
dr = γab

∫ r1

r2

(
2α(r)

r
)drB (8.30)

Therefore, the average membrane stresses of each interface may be derived from Eq.(8.30):







γsl

∫

Isl 1T : A
dS

Ω
= γsl

∫ rc2

rmin
(
2α(r)

r
)drB in interface Isl

γsf

∫

Isf 1T : A
dS

Ω
= γsf

∫ rc1

rc2
(
2α(r)

r
)drB in interface Isf

γsg

∫

Isg 1T : A
dS

Ω
= γsg

∫ rmax

rc1
(
2α(r)

r
)drB in interface Isg

(8.31)
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where γsl, γsf and γsg are the surface tensions of solid-liquid water interface, solid-unfrozen

water f ilm interface and solid-gas interface, respectively.

8.3.3.2 First state equation accounting for pore size effect

Combining Eq.(8.14), Eq.(8.21), Eq.(8.24) and Eq.(8.31), the first poroelastic state

equation for unsaturated freezing porous media is rewritten as:

δΣ = C
hom : E − κhomδT − δ(P eq)B (8.32)

in which,

P eq =
∫ rmax

rmin

peq(r)α(r)dr (8.33)

with:







Chom = Cs : (I − ϕ0A
p
)

κhom =< κ : A >= κs : (I − ϕ0A
p
)

B = ϕ01 : A
p

(8.34)

and:

peq(r) =







(P l − 2γsl

r
) rmin ≤ r ≤ rrc2

P f − 2γsf

r
= P l − 2γsf

r
+ Π(h) rc2 ≤ r ≤ rrc1

(P g − 2γsg

r
) rc1 ≤ r ≤ rmax

rc1 =
2γlg

Pg − Pl

rc2 =
2γcl

Pc − Pl

(8.35)

Here, P eq is the macroscopic equivalent pressure which accounts for liquid pressure,
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disjoining pressure and membrane stress induced by surface tension effect. As shown in

Eq.(8.35), the equivalent pressure peq(r) consists of fluid pressure of ω phase P ω (ω ∈

{f, l, g}) and its surface tension effect 2γsω/r (depicted in Fig.(8.2)). The critical radius rc1

between the gas and liquid may be determined by the Young-Laplace equation (Eq.(3.1));

the critical radius rc2 between ice crystal and liquid water may be determined by Gibbs-

Thomson equation Eq.(7.17).

Figure 8.2: Components of the equivalent pressure peq
ω (r) during freezing, ω∈ {f,l,g}.

8.3.3.3 Evolution of the macroscopic equivalent pressure during freezing

process

When freezing takes place in fully liquid saturated porous media from Tc to T ∗
c (Tc <

T ∗
c < 0◦C), the corresponding radius of the crystallized pore rc (resp. r∗

c ) at Tc (resp. T ∗
c )

is determined by Eq.(7.17), rc < r∗
c . The evolution of the macroscopic equivalent pressure

may be determined from Eq.(8.24) as 10:

10. In this case, if γsf and γsl are assumed to be independent on the temperature T .
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δP eq =
∫ rc

rmin

(P l −P l
0)α(r)dr+

∫ r∗

c

rc

[(P f − 2γsf

r
)−(P l

0 − 2γsl

r
)]α(r)dr+

∫ rmax

r∗

c

(P f −P f
0 )α(r)dr

(8.36)

Eq.(8.36) characterizes the variation of the equivalent pressure within pore network

during freezing (rc < r∗
c ):

— For the pores initially filled with ice crystal composite inclusion (r > r∗
c ), a variation

of the equivalent pressure P f −P f
0 (variation of the pressure in unfrozen water film)

during freezing can be found.

— For the pores range between rc and r∗
c (rc < r < r∗

c ), during freezing, the pores

initially occupied by liquid with an equivalent pressure of (P l
0 − 2γsl

r
) is replaced by

ice crystal composite inclusion with an equivalent pressure of (P f − 2γsf

r
). Therefore,

a variation of the equivalent pressure [(P f − 2γsf

r
) − (P l

0 − 2γsl

r
)] emerges in these

pores.

— For the pores initially filled with liquid (r < rc), a variation of the equivalent pressure

P l − P l
0 during freezing can be found.

Indeed, Eq.(8.36) can be reorganized as follows:

δP eq =
∫ rc

rmin

(P l − P l
0)α(r)dr +

∫ r∗

c

rc

(P l − P l
0)α(r)dr +

∫ rmax

r∗

c

(P l − P l
0)α(r)dr

+
∫ r∗

c

rc

(
2γsl

r
− 2γsf

r
)α(r)dr +

∫ r∗

c

rc

Π(h)α(r)dr +
∫ rmax

r∗

c

(Π(h) − Π0(h0))α(r)dr

= P l − P l
0

︸ ︷︷ ︸

Liquid pressure

+ 2(γsl − γsf )
∫ r∗

c

rc

1

r
α(r)dr

︸ ︷︷ ︸

Membrane stress by surface tension

+
∫ rmax

rc

Π(h)α(r)dr −
∫ rmax

r∗

c

Πf
0(h0)α(r)dr

︸ ︷︷ ︸

disjoining pressure

(8.37)

It can be found from Eq.(8.37), the variation macroscopic equivalent pressure can be

decomposed into three contributions:

— The variation of liquid pressure throughout the overall pore network during freezing.

— The variation of the membrane stress induced by the liquid water-ice crystal trans-
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formation, the latter is physico-chemical process.

— The variation of disjoining pressure which is induced by the physico-chemical process.

Effect of surface tensions

For surface tensions γab between a phase and b phase ({a, b} ∈ {f,l,s,c, g}), their

relations are not independent. They are related to Young equation in the form [9]:







γsl = γclcosθcl + γcs

γsf = γcfcosθcf + γcs

(8.38)

where θcl is the contact angle between ice-liquid interface and ice-solid interface, θcf is the

contact angle between ice-unfrozen water film interface and ice-solid interface.

From Eq.(8.38), with the assumption of θcl = θcf = 180◦, it yields:

γsl − γsf = γcf − γcl (8.39)

If γcf ≈ γcl, the membrane stress (surface tension effect) in Eq.(8.37) can be neglected.

Thus, disjoining pressure plays a significant role in the equivalent pressure.

A remark on a special case

In this special case, porous medium is fully liquid saturated and it is taken as an

initial state (Σ0 = 0). Moreover, the freezing porous medium is under free swelling (Σ =

0). Assuming that the microscopic and macroscopic elasticity tensor are isotropic, the

macroscopic strain of freezing porous medium E may be written as:

E = αs/3δT + bδ(P eq)/(3Khom) (8.40)

where αs is the dilation coefficient of the solid matrix, Khom is the bulk modulus of the

freezing porous media, b is the Biot coefficient, δT = T − T0 < 0.

— In the right hand side of Eq.(8.40), the first term is negative (αsδT < 0).

— As the the porous medium is initially liquid saturated (absent of gaseous phase),

concerning the second term in the right hand side of Eq.(8.40), the macroscopic
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equivalent pressure in Eq.(8.37) may thus be rewritten as:

δP eq = P l − P l
0 +

∫ rmax

rc

[2(γsl − γsf )
1

r
+ Π(h)]α(r)dr (8.41)

For the sake of simplification, the distribution of pore radii is assumed to be uniform

(r = R, α(r) = δR), δR is the Dirac distribution function 11. Eventually, if γsl ≈ γsf is also

assumed, the macroscopic equivalent pressure yields:

δP eq = P l − P l
0 + Π(h) (8.42)

The value of the equivalent pressure depends on the boundary condition of the freezing

porous medium (e.x. drained or undrained). Inserting Eq.(8.42) into Eq.(8.40) yields:

E =
αs

3δT
+ b(P l − P l

0 + Π(h))/(3Khom) (8.43)

The sign of the strain during the progressive freezing process depends on the weighted

values of thermal strain
αs

3δT
< 0 and strain induced by equivalent pressure b(P l − P l

0 +

Π(h))/(3Khom) > 0. If the thermal strain prevails over that induced by equivalent pressure,

the total strain will be negative; on the contrary, when the stress induced equivalent pressure

prevails over thermal stress, the total strain will be positive. The first case corresponds to

swelling, the latter to shrinkage at the macroscopic scale.

8.3.4 Second poroelastic state equation for unsaturated freezing

porous media

With the progressive freezing process in connected pore network, a variation of the pore

volume has to be accounted for. Thus, we turn to the second poroelastic state equation.

Lagrangian porosity is adopted to express the variation of the porosity, since the variation

of which is proportional to the pore volume change (or variation of the average strain field

11. δR = 1 when r = R and δR = 0 when r ̸= R.
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in the pore space) in the form of:

ϕ− ϕ0 =
Ω − Ω0

|Ω0|
= φ0trε̄p (8.44)

where ϕ is the current porosity, ϕ0 = φ0 is the initial porosity.

The REV may be considered to be subjected to four loading parameters, they are: initial

stress σ0, uniform macroscopic strain tensor E on the boundary, thermal stress loading αδT

and the microscopic prestress tensor σp. On the premise of the linear elasticity, by means

of Levin’s theorem, the overall variation of porosity can be decomposed into contributions

of four subproblems:

ϕ− ϕ0 = φ0trε̄
p
1 + φ0trε̄

p
2 + φ0trε̄

p
3 + φ0trε̄

p
4 (8.45)

— Loading case 1: E ̸= 0, σ0 = 0, δT = 0, δpeq(r) = 0.

This loading case can be treated as the micromechanics problem for drained porous

media. The REV is subjected to a uniform macroscopic E on the boundary, the

variation of the porosity induced by this loading can be determined by:

φ0trε̄
p
1 = φ01 : ε̄p

1 = φ01 : A
p

: E = B : E (8.46)

— Loading case 2: σ0 ̸= 0, E = 0, δT = 0, δpeq(r) = 0.

For mechanical compatibility, peq
0 (r) ̸= 0 is indispensable. Therefore, it is readily

found that, ∀z ∈ Ω, σ2(z) = σ0 and displacement field ξ
2

= 0. it yields:

φ0trε̄
p
2 = φ01 : ε̄p

2 = 0 (8.47)

— Loading case 3: δT ̸= 0, σ0 = 0, E = 0, δpeq(r) = 0.

Thermal dilation effect can be processed as thermoporoelastic case presented in

previous section. According to Eq.(8.11) and Eq.(8.12), we have:
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φ0trε̄
p
3 = φ01 : ε3

p = (ϕ01 − B) : αsδT = −αϕδT (8.48)

— Loading case 4: δpeq(r) ̸= 0, σ0 = 0, E = 0, δT = 0.

From the boundary condition E = 0, the homogenized macroscopic strain can be

expressed in the form of:

E = ε̄4 = (1 − φ0)ε
s
4 + φ0ε4

p = 0 (8.49)

where ε4
p(r) is the average strain tensor ascribed by equivalent pressure for pores

with radius r, εs
4 and ε4

p are the macroscopic strain of solid phase and pore space

induced by the equivalent pressure.

Equivalent pressure consists of three components: internal liquid pressure P l, dis-

joining pressure and membrane stress. Similarly, owing to the size effect of mem-

brane stress, a representation of the pore network (pore size distribution) as well

as a mechanical scheme are required for estimating the homogenized surface tension

effect.

In this section, to ensure the micromechanics model be feasible in the following

cementitious materials (in chapter 9), a Mori-Tanaka scheme with auxiliary strain

Eaux is used to estimate poroelastic parameters. Pores and solid grains are assumed

to be spherical in shape. ε4
p(r) can be determined by:

ε4
p(r) = (I−P

s
C

s)−1 : (Eaux + δP eq(r)) = (I− S)−1 : (Eaux + δP eq(r)Ps : 1) (8.50)

where Ps is the Hill tensor of spherical inclusion in an solid matrix, S is the cor-

responding Eshelby tensor. The detailed derivation of Ps and S is given in Ap-

pendix(C.1).

when pore size distribution α(r) is incorporated in Eq.(8.50), the variation of the
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porosity ascribed by equivalent pressure can be determined as:

φ0ε4
p = φ0

∫ rmax

rmin

ε4
p(r)α(r)dr = φ0(I − S)−1 : (Eaux + δ(P eq)Ps : 1) (8.51)

with:

δ(P eq) =
∫ rmax

rmin

δ(peq(r))α(r)dr (8.52)

With Mori-Tanaka scheme, the homogenized strain of solid phase can be estimated

by:

(1 − φ0)ε4
s = (1 − φ0)Eaux (8.53)

Substituting Eq.(8.53) and Eq.(8.51) into Eq.(8.49), the expression of the Eaux can

be determined.

Eaux = −φ0δ(P
eq)[I − (1 − φ0)S]−1 : Ps : 1 (8.54)

Thus, combining with Eq.(8.51), it yields:

φ01 : ε4
p = φ0δ(P

eq)(1 − B) : (I − S)−1 : Ps : 1 (8.55)

Using the identity (I − S)−1 : S = (I − S)−1 − I [82], we thus obtain:

φ01 : ε4
p = δ(P eq)(1 − B) : [φ0(I − S)−1 − φ0I] : Ss : 1 (8.56)

The homogenized stiffness tensor Chom can be readily determined with Mori-Tanaka

scheme, it can be expressed as:

C
hom = (1 − φ0)C

s : [(1 − φ0)I + φ0(I − S)−1]−1 (8.57)

From Eq.(8.57), we have the following expression:
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φ0(I − S)−1 − φ0I = (1 − φ0)S
hom : Cs − I (8.58)

Therefore, Inserting Eq.(8.58) into Eq.(8.56), it gives:

φ01 : ε4
p = δ(P eq)(1 − B) : [(1 − φ0)S

hom − S
s] : 1 (8.59)

Here, the Biot tensor estimated with Mori-Tanaka scheme can be shown as:

B = φ01 : A
p

= φ01 : (I − (1 − φ0)S)−1 (8.60)

In summary, the second poroelastic state equation (cf. Eq.(8.45)) can be rewritten as:

ϕ− ϕ0 = B : E
︸ ︷︷ ︸

Boundary strain

− (B − ϕ01) : αsδT
︸ ︷︷ ︸

Thermal dilation effect

+ δ(P eq)(1 − B) : [(1 − φ0)S
hom − S

s] : 1
︸ ︷︷ ︸

The Internal pressure and surface effect

(8.61)

It should be noted that the variation of the porosity is here determined under the

Mori-Tanaka scheme. Therefore, compliance tensor Shom and Biot tensor B can be

determined by Eq.(8.57) and Eq.(8.60), respectively.

8.4 An alternative micromechanics model for

unsaturated freezing porous media

The unfrozen water film confined within the solid pore wall and ice crystal is a kind of

quasi liquid, which exhibits certain stiffness property. In this section, unfrozen water film is

specified as a special phase with stiffness (cf. solid matrix). By means of disjoining pressure

concept, the stiffness tensor and internal prestress of unfrozen water film will be derived in

the follows. Inspired by Dormieux et al. [83], an improved micromechanics freezing model
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accounting for the stiffness of unfrozen water film will be presented.

8.4.1 Localization of unfrozen water film accounting for its

stiffness tensor

At equilibrium state, the variation of the disjoining pressure for the initial Π0(h0) and

current state Π(h) can be presented as:

− (Π(h) − Π0(h0))n⊗ n = −h0 × h− h0

h0

∂Π

∂h
|h0
n⊗ n with

h− h0

h0

≪ 1 (8.62)

The normal strain εf for unfrozen water film can be defined as [83]:

h− h0

h0

= n⊗ n : εf (8.63)

From Eq.(8.62) and Eq.(8.63), it yields:

(Π(h) − Π0(h0))n⊗ n = h0 × ∂Π0

∂h
|h0
n⊗ n⊗ n⊗ n : εf with

h− h0

h0

≪ 1 (8.64)

Therefore, the disjoining pressure Π(h) within the unfrozen water film can be expressed

as:

−Π(h)n⊗n = −Π0(h0)n⊗n−h0 × ∂Π

∂h
|h0
n⊗n⊗n⊗n : εf = C

f : εf −Π0(h)n⊗n (8.65)

where the stiffness tensor of unfrozen water film is :

C
f = −h0 × ∂Π(h)

∂h
|h0
n⊗ n⊗ n⊗ n (8.66)
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Eq.(8.65) is a generalization of the disjoining pressure in Eq.(8.14) where an elastic

"physical-based" contribution of the unfrozen water film has been identified.

At uniform boundary condition, the local stress in the REV of unsaturated freezing

porous media still obeys the following physical formulations:







divσ = 0 z ∈ Ω

σ = C : ε + σp − κδT z ∈ Ω

ξ = E · z z ∈ ∂Ω

(8.67)

with the new local behaviors:

(C,κ,σp)(z) =







(Cs,κs, 0) ∀z ∈ Ωs

(Cf , 0,−P l
1 − Π0(h0)n⊗ n) ∀z ∈ Ωsc

(0, 0,−P g
1) ∀z ∈ Ωg

(0, 0,−P l
1) ∀z ∈ Ωl

(0, 0, γab
1T δab) ∀z ∈ Iab

(8.68)

where (a, b) ∈ {f, g, l, s}.

8.4.2 Homogenization of poroelastic properties

Processing similarly as previous subsection, two state equations can be presented as 4 :







Σ − Σ0 = Chom : E − κhomδT − δP eqB

ϕ− ϕ0 = B : E − (B − ϕ01) : αsδT + δ(P eq)(1 − B) : [(1 − φ0)S
hom − Ss] : 1

(8.69)

4. It should be kept in mind that, the macroscopic equivalent pressure δ(P eq) is determined under
Mori-Tanaka scheme, therefore, the other poroelastic properties should be also estimated by Mori-Tanaka
scheme, the poroelastic tensors can refer to Appendix C.
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In which,

P eq =
∫ rmax

rmin

peq(r)α(r)dr (8.70)

peq(r) =







(P l − 2γsl

r
) rmin ≤ r ≤ rrc2

(P l + Π0(h0) − 2γsf

r
) rc2 ≤ r ≤ rrc1

(P g − 2γsg

r
) rc1 ≤ r ≤ rmax

rc1 =
2γlg

Pg − Pl

rc2 =
2γcl

Pc − Pl

(8.71)

The homogenized poroelastic properties can be derived:







Chom = (1 − φ0)C
s : A

s
+ φfC

f : A
sc

κhom =< κ : A >= (1 − ϕ)κs : A
s

B = φ01 : A
p

(8.72)

Comparing the expressions of the homogenized elastic tensor Chom within Eq.(8.57) and

Eq.(8.72), it can be found that, the homogenized stiffness as well as homogenized thermal

stress coefficient of porous media are strengthened owing to the ice crystal-unfrozen water

film composite inclusion.

8.5 Some discussion and applications

Though the alternative micromechanics model for unsaturated freezing will better char-

acterize the freezing behavior for unsaturated porous media, owing to the lack of information
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about the unfrozen water film (i.e., the precise model for disjoining pressure in terms of

thickness of unfrozen water film and lacking the initial thickness of unfrozen water film h0),

the model introduced in Section(8.3) will be discussed and used in the sequel.

8.5.1 A comparison between micromechanics model and

poromechanics model for freezing

8.5.1.1 Poromechanics model for freezing

After outstanding works of Biot, poromechanics is usually used when studying the

behaviors of porous media. Coussy and his co-workers [58] consummate this method with

thermodynamic viewpoint, which makes the poromechanics more comprehensive and mean-

ingful from energy viewpoint. Coussy et al. [57–60] derived a comprehensive theoretical

framework for freezing porous media. A more detailed information is presented in Sec-

tion(7.5).

A linear poroelatic state equation for isotropic freezing porous media [58], whose initial

state is taken to be atmosphere pressure (zero reference pressure), can be simplified from

Eq.(7.27) along with Eq.(7.29), it may be as 12:







σ = Kε− b[Src(P
c − T c) + Srl(P

l − T l)] − αsKδT

ϕ− ϕ0 = bε+
b− ϕ0

Ks

[Src(P
c − T c) + Srl(P

l − T l)] − αs(b− ϕ0)δT

(8.73)

It should be aware that, Eq.(8.73) is the special case of unsaturated freezing porous media,

in which there is no gas, that means, Srl + Src = 1.

8.5.1.2 Micromechanics model for freezing

As presented in the Section(8.3), in micromechanics model, two state equations for

unsaturated freezing porous media can be expressed as:

12. In this subsection, for simplification, all of the formulations are expressed in isotropic case.
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δΣ = Chom : E − κhomδT − δ(P eq)B

ϕ− ϕ0 = B : E − (B − ϕ01) : αsδT + δ(P eq)(1 − B) : [(1 − φ0)S
hom − Ss] : 1

(8.74)

In which,

P eq =
∫ rmax

rmin

peq(r)α(r)dr (8.75)

peq(r) =







(P l − 2γsl

r
) rmin ≤ r ≤ rrc2

(P l + Π(h) − 2γsf

r
) rc2 ≤ r ≤ rrc1

(P g − 2γsg

r
) rc1 ≤ r ≤ rmax

rc1 =
2γlg

Pg − Pl

rc2 =
2γcl

Pc − Pl

(8.76)

In the deduction of the second state equation, Mori-Tanaka scheme is employed. Here,

the poroelastic tensors estimated with Mori-Tanaka are listed as 13:







Chom = (1 − ϕ)Cs : ((1 − ϕ)I + ϕ(I − S)−1)−1

κhom =< κ : A >= (1 − ϕ)κs : ((1 − ϕ)I + ϕ(I − S)−1)−1 = αs : Chom

B = ϕ1 : (I − (1 − ϕ)S)−1

(8.77)

where Cs and Ss are the elastic tensor and compliance tensor of the solid matrix; κs is

the thermal stress coefficient tensor for solid matrix; S = P : Cs is the Eshelby tensor of

spherical inclusion within solid matrix.

When the elastic tensors are assumed to be isotropic at local (micro) and macro scale,

13. The detailed derivation of poroelastic tensors is given in Appendix(C.2).
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Eq.(8.74) can then be expressed as:







δσ = Khomε− bδP eq − αsKhomδT

ϕ− ϕ0 = bε− (b− ϕ0)κ
sδT + δP eq(1 − b)(

1 − ϕ0

Khom
− 1

Ks
)

(8.78)

Comparing the poromechanics model (Eq.(8.73)) with micromechanics model (Eq.(8.78)),

it can be found that, all of the terms in these two equations are nearly identical except the

terms associated with the internal pressure.

The different of the internal pressure lies in the absence of disjoining pressure in porome-

chanics model, which seems significant in unfrozen water film. The other difference lies in

that: the poromechanics model can not directly estimate the macroscopic poroelastic prop-

erties while micromechanics model is able to estimate these poroelastic properties with

mechanical schemes (e.g., self-consistent or Mori-Tanaka scheme).

8.5.2 Application: determining the liquid pressure with second

state equation

In Section (8.3), we derive two state equations, in which two macroscopic state quantities

Σ and ϕ− ϕ0 are expressed as functions of macroscopic strain E and P and δT . However,

for certain cases such as freezing in porous media, it involves the phase transformation of

water and the corresponding complicated volume change. Therefore, an alternative second

state equation which expresses variation of the mass, instead of volume for fluid phase

within porous media would be feasible.

In the REV of freezing porous media, when crystallization occurring in one pore, some

of the water is expelled out of the crystallized pore from the channel pores or unfrozen

water films. Thus, the mass of water as well as liquid pressure in one pore are imbalance

at local scale. However, at equilibrium state, the deviation of the local liquid pressure field

around its average in the REV is negligible [82]: P l = P l(z) ≈ P l(z). A similar assumption

can be made about the density of the each pahse in pores: ρi = ρi(z) ≈ ρi(z) (∀z ∈ Ωi),
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where i ∈ {l, c, g, f}. These are the theoretical premise of the determination of macroscopic

liquid pressure in the freezing porous media.

The mass content m is defined as the total fluid mass (different components) contained

in pore space |Ωp| divided by the initial volume |Ω0| of the REV [82]:

m =
1

|Ω0|
∫

Ωp

ρ(z)dVz (8.79)

Indeed, in freezing porous media, the fluid mass content change per initial total volume

of the REV can be expressed in terms of the Lagrangian porosity [82]:

m−m0 = φcρc + φfρf + φlρl + φgρg − ϕ0ρ
0
l (8.80)

where φi is the current volume fraction of the ith phase (i ∈ {c, f, l, g}) .

Generally, the density of vapor is far smaller than those of other liquid phase or ice

crystal. Hence, the fourth term of Eq.(8.80) can be omitted. Furthermore, for simplification,

the unfrozen water film can be treated as liquid phase. Thus, it gives:

m−m0 ≈ φcρc + φlρl − ϕ0ρ
0
l (8.81)

From Eq.(8.81), it then yields:

m−m0

ρ0
l

≈ φc + φl − ϕ0 + ϕ0
l

ρl − ρ0
l

ρ0
l

+ φ0
c(
ρc − ρ0

c

ρ0
c

ρ0
c

ρ0
l

+
ρ0

c

ρ0
l

− 1) (8.82)

In order to ensure the linearity of the macroscopic state equation in terms of E and

m − m0, it is necessary to assume that the variation of the density of fluid (including ice)

around a reference value are small:
δρi

ρ0
i

≪ 1, i ∈ {c, l} [82]. Therefore, a linear form of

fluid state equation liking the density and the pressure and temperature can be employed:

δρi

ρi

=
P i

Ki

− αiδT i ∈ {l, c} (8.83)
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where Ki is the bulk modulus of the ith phase, αi is the volumetric thermal dilation coeffi-

cient of the ith phase, i ∈ {l, c}.

Inserting Eq.(8.83) into Eq.(8.82), we obtain:

m−m0

ρ0
l

≈ ϕ− ϕ0 + φ0
l (
P l

Kl

− αlδT ) + φ0
c [(
P c

Kc

− αcδT )
ρ0

c

ρ0
l

+
ρ0

c

ρ0
l

− 1] (8.84)

Here, ϕ = φc + φl is the current porosity. The internal pressure of ice crystal P c is

related to liquid pressure P l by Eq.(7.18). Therefore, inserting Eq.(8.61) into Eq.(8.84)

yields the expression of liquid pressure:

P l ≈ M−1{(
m−m0

ρ0
l

) − B : E + (B − ϕ01) : αsδT + φ0
lα

lδT + φ0
cα

cδT
ρ0

c

ρ0
l

− φ0
c(
ρ0

c

ρ0
l

− 1)

+φ0
c

SmδT

Kc

ρ0
c

ρ0
l

− (Π
ϕ0

c

ϕ0

−
∫ rmax

rmin

δ(
2γsl

r
)α(r)dr)(1 − B) : [(1 − φ0)S

hom − S
s] : 1}

(8.85)

with:

M−1 = {ϕ
0
l

Kl

+
ϕ0

c

Kc

+ (1 − B) : [(1 − φ0)S
hom − S

s] : 1}−1 (8.86)

From Eq.(8.85), it can be found that, the liquid pressure within freezing porous media is

induced by six contributions. They are: 1)- liquid pressure induced by mass change m−m0

in porous media system; 2)- liquid pressure induced by external macroscopic B : E; 3)-

liquid pressure induced by thermal dilation of each phase, i.e., (B−ϕ01) : αsδT +φ0
lα

lδT +

φ0
cα

cδT
ρ0

c

ρ0
l

; 4)- liquid pressure induced by the density difference between ice and liquid

during freezing, i.e., φ0
c(
ρ0

c

ρ0
l

− 1); 5)- liquid pressure induced by entropy of melting, i.e.,

φ0
c

SmδT

Kc

ρ0
c

ρ0
l

, as proposed by Coussy [60], this part of contribution is the origin of micro-

cryo- suction process; 6)- liquid pressure inhibited by other internal pressure component,
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i.e., the disjoining pressure Π(h) and membrane stress induced by surface tension.

8.5.3 Application: estimating the evolution of mass quantity of

ice within the air voids during freezing

Powers et al. [202] first observed that the distributed network of the air voids in cement

paste material could enhance its frost resistance. Spacing air voids within cement pastes act

as reservoirs which relax the pressure build up, as liquid water is expelled into the air voids

whose pressure is atmospheric. The expelled liquid water is not in the confined situation

and freezes instantaneously.

Indeed, due to its negative pressure (ice crystals in air void being atmospheric pressure),

the liquid water is progressively sucked towards the air voids. Hence, the efficiency of the

air voids is two fold: the reservoirs effect for the expelling water as well as the cryosuction

effect [58].

In this section, when porous medium entrained with air voids is subjected to low tem-

perature, Eq.(8.84) is used to estimate the evolution of mass change of ice crystal in air

voids. Moreover, porous medium is assumed be free swelling during freezing. Hence, the

initial conditions and boundary conditions for porous medium entrained with air voids can

be expressed as:

— There are no water in the air voids at initial state, all of water is resided in small

capillary pores before freezing.

— Freezing porous media is assumed to be free swelling (Σ = 0 and thus δΣ = 0).

Therefore, the macroscopic strain E can be determined by first state equation in

Eq.(8.74).

— The boundary of porous media is sealed, therefore, the water will not be expelled

outside porous media during freezing. On the contrary, the water is only expelled

into the air voids during freezing.

— The length scale of air voids is far larger than that of capillary pores. Therefore, it
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is reasonable to assume that the pressure of ice crystals in air voids are atmospheric

pressure. Moreover, the atmospheric pressure is taken as zero reference pressure.

Hence, we have,

P c = P g = 0 (8.87)

— At the vicinity of air void, the liquid water is greatly depressurized owing to the

liquid-ice crystal equilibrium. Therefore, the liquid pressure can be determined by

the following expression [58]:

P c − P l =
V 0

c

V 0
l

∆Sm(Tm − T ), with P c = 0 (8.88)

— The temperature and the variation of the temperature are assumed to be uniform

throughout the overall porous media so as to avoid the temperature gradient.

As stated previously, from the boundary condition of free swelling, we have Σ = 0.

Therefore, the macroscopic strain tensor and the variation of the porosity can be estimated

by:







E = (Shom)−1(κhomδT + δ(P eq)B)

ϕ− ϕ0 = B : E − (B − ϕ01) : αsδT + δ(P eq)(1 − B) : [(1 − φ0)S
hom − Ss] : 1

(8.89)

Combining Eq.(8.84), Eq.(8.87), Eq.(8.88) and Eq.(8.89), the mass change of ice within

air voids m − m0 can be determined. The poroelastic properties in these equations are

given in Eq.(8.77) and Eq.(8.37).



8.5 Some discussion and applications 229

8.5.4 Application: a micromechanics approach to determine the

thickness of unfrozen water film

Generally, the thickness of the unfrozen water film is determined by the thermodynamic

approaches [46, 68, 130], which are considered as macroscopic methods. Based on the

localization information in the previous sections, a micromechanics approach is used to

determine the thickness of unfrozen water film at the local scale.

8.5.4.1 Strain of ice crystal

The volume of liquid water expands about 9% with respect to ice crystal under free

swelling condition. In isotropic case, the strain of the ice crystal will be εL = ϵL/31, where

ϵL = 0.09.

However, within the freezing porous media, water will transform into ice crystal under

confined condition when lowing down the temperature. Thus, a prestress equalling to the

stress of the ice crystal (the negative value of the pressure of ice crystal) will exert on the

the ice surface. In addition, the thermal dilation caused by the temperature variation δT

will induce thermal stress.

The local stress of the ice crystal (shown in cyan circle region in Fig.(8.3) (b)) which

induces from the crystallization of the liquid water (shown in red circle region in Fig.(8.3)

(a)), can be expressed as:

(∀z ∈ Ωc) σc(z) = C
c(z) : (εc(z) − εL − κcδT ) = −P c

1 (8.90)

where εc is the strain tensor of the ice crystal, κc is the dilation coefficient tensor of the

ice crystal, P c is the internal pressure of ice crystal. From Eq.(8.90), the strain of the ice

crystal can be derived:

(∀z ∈ Ωc) εc(z) = −P c
S

c(z) : 1 + εL + κcδT (8.91)
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Figure 8.3: Schematic representation of the crystallization in pore
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Young-Lapalace equation is used to characterize mechanical equilibrium betweem ice

crystal and the unfrozen water film:

P c − P f =
2γcf

rc

(8.92)

with:

P f = P l + Π(h) (8.93)

where rc is the radius of the ice crystal, γcf is the surface tension between the ice crystal

and unfrozen water film. Here, for simplification, it is taken to be identical to the surface

tension between the ice and bulk liquid water γcl .

In addition to mechanical equilibrium, Gibbs-Thomson equation is used to characterized

the thermodynamic equilibrium between the ice and bulk water [58]:

2γcl

rm

= P c − P l = −SmδT − (1 − Vl

Vc

)P l (8.94)

where δT = T − T0, T0 is the melting point of bulk water; Vl and Vc are the molar volumes

of liquid water (supercooling water) and ice crystal; rm is the radius of ice meniscus (cf. rc

in Eq.(8.92)); Sm is the melting entropy of water.

8.5.4.2 Strain of ice-unfrozen water film spherical composite inclusion

As shown in Fig.(8.3) (b), the ice-unfrozen water film spherical composite inclusion

embedded in the solid matrix can be treated as Eshelby-based problem. The total strain

in the specified crystallized pore cased by the internal pressure of the unfrozen water and

the macro strain E can be evaluated by :

εsc = {As : E + P : [(Pl − 2γsf

rc + h
)1 + Πn⊗ n)]}(8.95)

where E is the macro strain tensor applied on the boundary of the porous medium, γsf

is the surface tension between unfrozen water film and solid matrix, h is the thickness of
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the unfrozen water film, n is the unit normal vector, As is the average stain concentration

tensor of the solid matrix, P is the Hill tensor. In isotropic case, the detailed information

about As and P is given in Appendix(C.1).

8.5.4.3 Determination of thickness of unfrozen water film

The displacement continuity of unfroze water film can be expressed as:

εsc.(rc + h)er = εc.rcer + hn (8.96)

where er is the radial vector.

When the poroelastic properties are known, combining Eq.(8.91), Eq.(8.95) and Eq.(8.96),

the thickness of unfrozen water film h can be determined with the micromechanics approach.

8.6 Summary

In this chapter, based on local physical characterization, several micromechanics models

for thermoporoelastic porous media and unsaturated freezing porous media were presented.

— Thermoporoelastic model for saturated porous media is developed first in Eq.(8.6)

and Eq.(8.11). In addition to macroscopic strains E and prestress tensor σp, thermal

stress as an independent loading parameter is accounted for in the state equations.

The homogenized volumetric thermal dilation coefficient αhom is equal to that of

solid phase αs.

— Different from poromechanics model for unsaturated freezing porous media, the mi-

cromechanics model for unsaturated freezing porous media specifies the unfrozen

water film surrounding the ice crystal at local scale. From the physico-chemical

point of view, an additional disjoining pressure should be considered in the mi-

cromechanics model. Thus, a comprehensive micromechanics model for unsaturated

freezing porous media is established. The state equations are shown in Eq.(8.32)

and Eq.(8.61), in which macroscopic strain on the boundary, the thermal effect, the
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initial stress, the equivalent pressure (including liquid pressure, gas pressure, the

membrane stress and the disjoining pressure) are accounted for.

Analysing the equivalent pressure in Eq.(8.37) and Eq.(8.39), the membrane sur-

face tension seems negligible when surface tensions γcf ≈ γcl is assumed. This is

quite different from the conclusion of Coussy’s poromechanics model [60], in which

surface tension effect should be taken into account. The reason for this different

may lie in the different treatment of ice-solid interface in poromechanics model and

the micromechanics model. In the micromechanics model, the unfrozen water film

between the ice and solid matrix is specified, hence, the disjoining pressure within

the unfrozen water film is accounted for in this model. However, ice crystal interacts

directly with solid matrix in the poromechanics model, therefore, the variation of

surface tension γcs −γsl have to been taken into account in the poromechanics model.

— An alternative micromechanics model for unsaturated freezing porous media which

accounts for the stiffness property of the unfrozen water film is presented. The

homogenized elastic tensor of the unsaturated freezing porous media increases owing

to the disjoining pressure in the unfrozen water film.
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Chapter 9

Application: Micromechanical

modelling free swelling of cement

paste under freezing
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9.1 Introduction

In this chapter, the micromechanics model presented in Section(8.3) will be used to

simulate the free swelling of undrained freezing cement paste. The free swelling of cement

paste have been performed by Zeng et al. [262], all of the experimental procedures are
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suggested to his work [262].

9.2 Assumptions and boundary conditions

The assumptions and boundary conditions for the cement paste samples are listed in

the follows:

— 1 The sample is filled with liquid water before freezing. 0◦C is taken as initial

temperature and the reference internal pressure is also taken as 0.

— 2 The temperature is uniform through the overall sample, the variation of the tem-

perature is sufficient slow so that the sample is always in equilibrium state.

— 3 The sample is free swelling during freezing, it gives: Σ = 0.

— 4 The boundary of sample is sealed so that it is undrained. Therefore, the mass

balance of water (liquid water and ice crystal) within sample is always satisfied

during freezing, it yields: m − m0 = 0, where m0 and m are the initial and current

mass of the water in overall sample.

— 5 The macroscopic and local strains of sample are infinitesimal, the sample can thus

be treated as poroelastic case.

— 6 Each phase of the cement paste sample is isotropic at local and macro scales.

— 7 The physical properties of unfrozen water film are assumed to be identical to those

of supercooling water.

Based on these conditions and assumptions, we have the following expressions:

With assumption 7, the surface tension of unfrozen water film-solid matrix interface γsf

is equal to supercooling water-solid matrix γsl. Therefore, the membrane stress (induced

by surface tension) can be disregarded (go back to Eq.(8.37)). From Eq.(8.37) as well as

condition 1, we have:

δP = P l + φ0
scΠ

f (9.1)
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where φ0
sc is the volume fraction of the pore space occupied by ice crystal-unfrozen water

film spherical composite (the variation of the volume induced by the internal pressure is

not accounted for).

With the assumption 7, the density of unfrozen water film is assumed to be identical to

that of supercooling water. Moreover, we know the boundary of sample is sealed and can

be considered as undrained (condition 4). Therefore, from Subsection(8.5.2), in isotropic

case (assumption 6), the liquid pressure P l can be determined as:

P l ≈ M−1{−3bϵ+ [(b− ϕ0)α
s + φ0

lαl + φ0
cαc

ρ0
c

ρ0
l

]δT − φ0
c(
ρ0

c

ρ0
l

− 1) + φ0
c

SmδT

Kc

ρ0
c

ρ0
l

−(Πf φ
0
sc

ϕ0

)(1 − b)[
1 − φ0

Khom
− 1

Ks
]}

(9.2)

with:

M−1 = {φ
0
l

Kl

+
φ0

c

Kc

+ (1 − b)[
1 − φ0

Khom
− 1

Ks
]}−1 (9.3)

With the condition 3 and assumption 6, the total linear strain of the freezing cement

paste sample can be determined by Eq.(8.32) as:

ϵ = ϵP l + ϵΠ + ϵth =
bP l

3Khom
+
φ0

scbΠ
f

3Khom
+
κhomδT

3Khom
(9.4)

with:







ϵP l =
bP l

3Khom

ϵΠ =
φ0

scbΠ
f

3Khom

ϵth =
κhomδT

3Khom

(9.5)

Combining Eq.(9.2) and Eq.(9.5), the liquid pressure P l and total linear strain ϵ can be

determined. According to Eq.(9.2) and Eq.(9.5), P l and ϵ are the functions of poroelastic

properties ,volume fractions of each phase φ0
i (i ∈ {s, c, f, l, sc}) and disjoining pressure
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Πf . In the following sections, poroelastic properties, the volume fractions of each phase

and disjoining pressure will be respectively determined.

9.3 Poroelastic properties

Generally, cement paste exhibits complex microstructure and it is a multi-scale porous

medium. As we have discussed in Section(2.4), owing to the significant role of the water

distribution in the freezing problems, the water distribution morphology other than the

solid morphology should be paid special attention to. Therefore, the cement paste sample

may be considered to simply consist of solid matrix, liquid water and ice crystal-unfrozen

water film spherical composite inclusion. The latter two phases are embedded in the solid

matrix. Cement paste exhibits notable matrix+inclusion morphology and its macroscopic

properties can be estimated with Mori-Tanaka scheme. Hence, the simplified morphology

of cement paste can also be represented by Fig.(8.1).

The poroelastic properties of the freezing porous media are estimated with Mori-Tanaka

scheme and shown in Eq.(8.77). In isotropic case, the poroelastic properties are listed as

follows:







Khom =
(1 − ϕ)Ks

(1 − ϕ) +
ϕ

1 − α

b =
ϕ

1 − (1 − ϕ)α

κhom = Khomαs

α =
3Ks

3Ks + 4µs

(9.6)

According to Eq.(9.6), when the porosity of the cement paste ϕ, the bulk modulus and

volumetric dilation coefficient of solid matrix of cement paste (Ks and αs) are known, the

macroscopic poroelastic properties can then be estimated.
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9.4 Volume fractions of each phase within the

cement paste sample

With assumption 5 shown in Section(9.2), the current volume fractions of each phase is

assumed to be identical to their corresponding initial value. The latter can be estimated

by the pore size distribution function of cement paste. The pore size distribution of the

cement paste is determined by means of Mercury intrusion porosimetry (MIP) and the pore

size distribution function α(r) is fitted by Zeng [262]:

α(r) = f0 +
N∑

i

[

√
2Ai

wi

√
π

exp(
−2(log(r) − log(ri))

2

w2
i

)] (9.7)

where f0, Ai and wi are the fitting parameters. From Eq.(8.26), we have:

∫ rmax

rmin

α(r) = 1 (9.8)

where rmax and rmin are the maximum and minimum pore radii of cement paste, for this

cement paste sample, rmin = 3nm and rmax = 4 × 105 nm [262].

The cumulative curve of the cement paste can be expressed as logarithmic form [262]:

φ(r) =
∫ log(r)

log(rmax)
{f0 +

N∑

i

[

√
2Ai

wi

√
π

exp(
−2(log(r) − log(ri))

2

w2
i

)]}d(log(r)) (9.9)

The fitting parameters for the pore size distribution of the cement paste are listed in

Table(9.1).

At certain temperature variation δT = T − T0 (T < T0, c.f., supercooling temperature

T0−T ), ice crystal and liquid pore water are in mechanical and thermodynamic equilibrium.

The equilibrium critical pore radius r
′

c can be determined by means of Eq.(8.94):

r
′

c = h− 2γcl

SmδT + (1 − Vl

Vc

)P l

(9.10)

where T0 is the melting point of bulk water (T0 = 0◦C); Vl and Vl are the molar volume of
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Table 9.1: Fitting parameters for pore size distribution function of ce-
ment paste, adopted from [262].

Peaks f0
1 Ai wi logri(ri) (nm) Coefficients

1 0.0109 0.432 5.515 (327340)
2 0.00477 0.180 0.727 1.190 (15.488) 0.999
3 0.530 0.647 0.0145 (1.0304)

1 On the vertical axis of original pore size curve, the unit of the pore
volume is ml per gram cement paste sample in Zeng’s thesis. In our
study, to make sure the vertical axis be the volume fraction (ml pore
space per ml cement paste sample), the original value of Ai and f0

are modified by multiplying density of the sample and dividing by its
porosity.

(a) Pore size distribution (b) Cumulative curve

Figure 9.1: Pore size distribution and cumulative curve of cement paste [262].
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water and ice crystal; Sm is the melting entropy of water; γcl is the surface tension of ice

crystal-liquid pore water interface; h is the thickness of unfrozen water film.

Figure 9.2: Dependence of the thickness of unfrozen water film on temperature, determined
by Eq.(9.11).

An empirical equation proposed by Fagerlund et al. [94] is employed to determine the

thickness of unfrozen water film in cement based materials:

h = 1.97(T0 − T )−1/3 = 1.97(−δT )−1/3(nm) (9.11)

The dependence of the thickness of unfrozen water film on temperature can be plotted in

Fig.(9.2).

Therefore, during freezing, the volume fractions of each phase can be evaluated as:







φsc ≈ φ0
sc = ϕ0

∫ rmax

r
′

c
α(r)dr

φf ≈ φ0
f = ϕ0

∫ rmax

r
′

c

3h

r
α(r)dr

φc ≈ φ0
c = ϕ0

∫ rmax

r′

c
(1 − 3h

r
)α(r)dr

φl ≈ φ0
l = ϕ0

∫ r
′

c
rmin

α(r)dr

(9.12)

where r
′

c is determined by Eq.(9.10), h is determined by Eq.(9.11).
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9.5 Disjoining pressure

As introduced in Section(7.3), the disjoining pressure in the unfrozen water film can be

expressed as a two-term formula in whole temperature range. However, there are still lack of

experimental data for disjoining pressure within unfrozen water film until now. Therefore,

the structural component of water film at room temperature (isothermal condition) [47] is

adopted to characterize the disjoining pressure of the unfrozen water film, it follows [190]:

Π(h) = Ksrexp(− h

λsr

) +Klrexp(− h

λlr

) (9.13)

with [47]:

Ksr = 300 MPa λsr = 0.3 nm Klr = 2 MPa λlr = 2 nm (9.14)

It should be borne in mind that, as discussed in Section(7.3), the values of parameters

K (Ksr and Klr) and λ (λsr and λlr) are temperature dependent: K increases with the

decreasing temperature while λ decreases with temperature. Thus, it is reasonable to infer

that the value of disjoining pressure in unfrozen water film is probable to be underestimated

when the parameters in Eq.(9.14) are adopted.

9.6 Results and discussion

The parameters used in the simulation are listed in Table(9.2):

Taking advantage of the elastic properties of solid matrix and the porosity of cement

paste in Table(9.2), the homogenized poroelastic properties of cement paste can be esti-

mated by Eq.(9.6). These estimated poroelastic properties are compared with those ob-

tained by Zeng et al. [262] in Table(9.3).

As can be seen from Table(9.3), the homogenized poroelastic properties estimated by

Mori-Tanaka scheme are comparable to those estimated by Zeng [262]. Therefore, it is

feasible to use the homogenized poroelastic properties in the simulation.
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Table 9.2: Some parameters used in the simulation

Parameters Value (unit) Reference

Initial porosity ϕ0 0.26 Zeng et al. [262]
Skeleton Desity of cement paste 2.38 g.cm−3 Zeng et al. [262]
Ks 31.8 GPa Ulm et al. [245]
µs 19.1 GPa Ulm et al. [245]
Kc 7.81 GPa Coussy et al.[60]
K l 1.79 GPa Coussy et al.[60]
γcl 0.0409 + 3.9 × 10−4( T − T0)J · M−2 Sun et al.[232]
ρ0

c 0.917 g.cm−3 Coussy et al.[60]
ρ0

l 0.999 g.cm−3 Coussy et al.[60]
Ksr 300 MPa Churaev et al. [47]
Klr 2 MPa Churaev et al. [47]
λsr 0.3 nm Churaev et al. [47]
λlr 2 nm Churaev et al. [47]
αs 54 × 10−6 Coussy et al.[60]
αc 155 × 10−6 Coussy et al.[60]
αl [ 68.7 + 24.732(T-T0)]×10−6 Zeng et al. [262]
Sm 1.2MPa.K−1 Coussy et al.[60]

Table 9.3: The evaluated poroelastic properties by Mori-Tanaka scheme

This study Zeng’s work [262] 1

Bulk modulus Khom(GPa) 17.76 17.39
Biot coefficient b 0.44 0.49
Biot modulus Nhom(GPa) 175.3 122.2
Volumetric thermal dilation coefficient αhom 5.40 × 10−5 5.54 × 10−5

1 In Zeng’s work, the homogenized poroelastic properties are determined by multi-scale
homogenization. The cement paste are divided into three scale levels, the detailed
procedure is given in [262].
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Taking r
′

c (as shown in Eq.(9.10)) as a variable which ranges between maximum pore

radius (4 × 105 nm) and minimum pore radius (3 nm), by means of Eq.(9.12), the volume

fractions of each phase can be determined.

With a given r
′

c and the corresponding volume fractions of each phase, combining with

Eq.(9.2), Eq.(9.5) and Eq.(9.10) yields the liquid pressure P l and the corresponding super-

cooling δT (and T).

Figure 9.3: Dependence of the disjoining pressure and liquid pressure on temperature, the
disjoining pressure is determined by Eq.(9.13) while the liquid pressure for the undrained
case is determined by Eq.(9.2).

The dependence of the disjoining pressure and liquid pressure on the temperature is

plotted in Fig.(9.3). It can be seen from the figure, both of the disjoining pressure and

liquid pressure increase with the decrease of temperature (increase of supercooling). During

the freezing, liquid pressure is always larger than disjoining pressure. Moreover, the liquid

pressure can reach as much as 200 MPa when the temperature is as low as -35◦C. However,

as stated in the previous section, the disjoining pressure is likely to be underestimated.

The evolution of percentages of each phase with the temperature is illustrated in Fig.(9.4).
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Here, the percentages of each phase are defined as the volume fractions of each phase di-

vided by initial porosity, that is, φi/ϕ0, i ∈ {l, c, f}. As can be seen from the figure, the

percentage of liquid water decreases with decreasing temperature, while both of the per-

centage of ice crystal and unfrozen water film increase with decreasing temperature. It is

interesting to find that, the percentage of the unfrozen water film can reach as much as 10%

when the temperature as low as -35◦C. It can thus be inferred that, the effect of unfrozen

water film will become more and more significant with the deceasing temperature because

of its increasing volume fraction.

Figure 9.4: Evolution of the percentages of each phases with the temperature, the percent-
ages of each phase are defined as their volume fractions divided by porosity.

The linear strains induced by equivalent pressure can be decomposed into two parts:

strains induced by the liquid pressure ϵP l and strains induced by the disjoining pressure ϵΠ

(see Eq.(9.5), recalling that the surface tension effect is disregarded owing to the assumption

7). The evolution of the linear strains with the temperature is depicted in Fig.(9.5) (a). As

expected, owing to the increase of the liquid pressure and the disjoining pressure with the

decreasing temperature (see Fig.(9.3)), the linear strains induced by liquid pressure and
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disjoining pressure increase with decreasing temperature. Moreover, though the disjoining

pressure may be underestimated, the linear strains induced by liquid pressure seems far

greater than that induced by the disjoining pressure. Therefore, it can be inferred that, the

liquid pressure plays a more dominant role than the disjoining pressure in the deformation

of the undrained freezing porous medium under free swelling.

As shown in Eq.(9.5), the total linear strain (green curve) during freezing consists of

two contributions: strains induced from equivalent pressure effect ϵP l + ϵΠ and strains

induced from thermal effect ϵth. The evolution of these two contributions with temperature

is illustrated in Fig.(9.5) (b). As seen from this figure, the simulation results of the total

strain (green curve) are comparable with the experimental results (black points) though

there are still some discrepances between the two results. It should be noted that, at the

temperatures ranging from 0◦C to -9◦C, the ice crystals will not form in the pore network

of the cement paste owing to the bulk supercooling effect (lack of nucleus). Therefore, the

total strains nearly arise from the thermal effect (ϵth) at this temperature range. When

the temperature is lower than -9◦C, the ice will form in the cement paste instantaneously.

Hence, a huge liquid pressure and disjoining pressure will engender within the cement paste,

which result in great strain of the cement paste.

Since the simulating thermal strains ϵth (blue dotted line) perfectly agree with the ex-

perimental results. Thus, according to Eq.(9.5), the discrepancy between the simulation

result (green curve) and experimental results (black points) is likely to lie in the overesti-

mation of liquid pressure (disjoining pressure is far smaller that liquid pressure as shown in

Fig.(9.3)). The overestimation of the liquid pressure is probably led by the overestimation

of ice content (volume fraction of ice) (as shown in Fig.(9.4)). Therefore, estimating the

ice content from the pore size distribution derived from MIP and Gibbs-Thomson equation

will be re-assessed.

Generally, it is more feasible to measure the volume fraction of ice crystal by means

of TPM (with differential scanning calorimeter (DSC)) [32, 232] instead of MIP. That is

because the drying process before MIP (NAD) will alter the microstructure of cement
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paste [232]. On the contrary, TPM determines the pore size distribution in saturated

porous media which can avoid the microstructural variation during the drying process

[232]. Moreover, the stress induced by ice crystal is 10 times less than that exerted by

mercury, which means TPM will alter microstructure less than MIP [232].

The pore size distributions of the mortar obtained by Mercury intrusion porosimetry

(MIP), thermoporometry (TPM) and nitrogen adsorption/desorption (NAD) are compared

and depicted in Fig.(9.6) by Sun et al. [232] 1. As can be seen from this figure, the

cumulative curve determined by TPM lies below that determined by MIP, which means

that comparing to TPM, the porosity as well as pore size are enlarged by MIP [232].

Hence, estimating the ice content by means of pore size distribution derived from MIP

will overestimate the ice content and then the total strains evaluated by the pore size

distribution from MIP will be overestimated.

(a) Strains induced by each component of
equivalent pressure

(b) Total strains induced by equivalent pres-
sure and thermal effect

Figure 9.5: Evolution of the strains of the cement paste with the temperature during
freezing process.

1. The old MIP (red dash-dot curve) was measured a year earlier than other samples (other curves),
in this sample, the pore volume and the pores with radius < 12 nm are greater than those of the samples
cured with the additional hydration time (other curves) [232].
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Figure 9.6: Comparison of pore size distributions of mortar derived by MIP, TPM and
NAD, after Sun et al. [232].

9.7 Conclusion

Based on the local phase behaviors characterization, the micromechanics methodology

seems effective to simulate the free swelling of cement paste under freezing. In this case, the

total strains is composed of two parts: strains induced by thermal effect and strains induced

by equivalent pressure. As supposed by Churaev et al. [45, 46, 49], the electrostatic and

Van der Waals components of the disjoining pressure are negligible when compared with

the structural component of the disjoining pressure of unfrozen water film. However, there

is still lack of information about the structural component of the disjoining pressure of

unfrozen water film. Therefore, the structural component of the disjoining pressure of the

water film at room temperature is adopted in this model. The disjoining pressure of the

unfrozen water film is likely to be underestimated owing to the temperature-dependent of

the parameters of the structural component of the disjoining pressure (see Eq.(9.13)).

The simulating linear strains of the freezing cement paste under free swelling are com-

parable with the experimental results. The discrepancies between the two are likely to arise

from the overestimation of the ice content, the latter is overestimated since the porosity as

well as the pore sizes of the cementitious materials are enlarged during the MIP experiment.
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Conclusions

Based on the microstructure morphology (as shown in chapter 2 in part I) as well as

the physical characterization of local behaviors, the main goal of this thesis is to study the

transport properties and then freezing behavior of unsaturated porous media by means of

micromechanics approach.

Part II

Micromechanics models for diffusion in unsaturated porous media are developed. The

influences of the micromechanical scheme, the microstructure, the porosity ϕ, the volume

fraction of the liquid layer and the constrictive factor δ of the liquid layer on the normalized

homogenized diffusion coefficient are discussed in these models.

— The Self-Consistent scheme exhibits obvious percolation effect and is good for poly-

crystalline microstructure (e.g. granular material). The Mori-Tanaka scheme does

not present percolation effect owing to connectivity of the matrix (here liquid water);

it is well adapted to represent the matrix+inclusion microstructure.

— In two-scale microstructure models such as MT-SC (level I (local scale) and level II

(macro scale) are estimated with Self-Consistent and Mori-Tanaka schemes, respec-

tively) and SC-SC, the percolation effects decrease with pore volume fraction ϕ and

ratio of macro pores α; the saturated homogenized diffusion coefficient Dhom(Sr = 1)

increases with ϕ and decreasing α. In MT-MT model, there is no percolation effect
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and the saturated homogenized diffusion coefficient Dhom(Sr = 1) increases with ϕ

and decreasing α.

— The introduction of the liquid layer (the intergranular layer, the wetting layer and

the water film) ensures the connectivity of liquid layer, even at low saturation de-

gree. The liquid layer is accounted for in one-scale microstructure. When the local

diffusion occurs in the liquid layer treated as an interface (2-D), with no volume

fraction, the homogenized solute diffusion coefficient can be derived analytically.

However, the real liquid layer is an interphase (3-D), the volume fraction of which

can be accounted for in an enriched micromechanics model. The latter is thus able

to characterize and take into account of the evolution of the thickness of the liquid

layer during the desaturation process. When the homogenized diffusion coefficient

is estimated with Mori-Tanaka scheme, the homogenized diffusion coefficient Dhom

increases with the decreasing volume fraction of liquid layer. It also increases with δ

and ϕ; when the homogenized diffusion coefficient is estimated with Self-Consistent

scheme, the homogenized diffusion coefficient increases with volume fraction of liquid

layer and also with δ and ϕ.

— Micromechanics model accounting for the local solute diffusion in the pore body

water, the intergranular layer, the wetting film and the water film is developed for

unsaturated glass beads, and sand. The simulation results of this micromechanics

model agree well with the experimental results. At low saturation degree, the pore

body water, the intergranular layers and the wetting layers are discontinuous, the

solute diffusion is governed by the water film. At low saturation degree, from the

simulation results, the homogenized diffusion coefficient will decrease by 4 to 5 orders

of magnitude when comparing with the homogenized saturated diffusion coefficient.

A micromechanics model for the liquid permeability in unsaturated sandstone is devel-

oped. It is employed to predict the saturated intrinsic permeability and then the unsatu-

rated relative permeability of Fontainebleau sandstone. The simulation results of saturated

intrinsic permeability agree well with the experimental results and are comparable with
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the modified Kozeny-Carman model for Fontainebleau sandstone. This micromechanics

model is able to explain the D2 dependence of the saturated intrinsic permeability coeffi-

cient according to the modified Kozeny-Carman model. This micromechanics model is also

employed to estimate the relationship between the unsaturated permeability and saturation

degree for Fontainebleau sandstone. The simulation results sound more comparable with

the experimental results than Brooks-Corey’s model and Van Genuchten’s model.

Part III

The unfrozen water film between the ice crystal and the pore wall at local scale is speci-

fied and accounted for in the micromechanics model for unsaturated freezing porous media.

From the physico-chemical point of view, an additional disjoining pressure is accounted

for in the internal pressure. A first comprehensive micromechanics model for unsaturated

freezing porous media is developed, which accounts for the thermal effect, the initial stress,

the equivalent pressure (including liquid pressure, gas pressure, the membrane stress and

the disjoining pressure). It is even possible to investigate the role of the disjoining pres-

sure on the elastic properties of the unfrozen water film and then on the homogenized

ones. However, because of lack of data on the dependence of the disjoining pressure on

temperature, use is made of the first micromechanics model to study the free swelling of

a freezing cement paste. The modelling results sound comparable with the experimental

results though there are still some discrepancies. The discrepancies may lie in the overes-

timation of the ice content, which here is estimated by the pore size distribution by MIP

and Gibbs-Thomson equation.
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Appendix A

Physical properties of water film

A.1 Viscosity of the water film

A quantitative knowledge about the viscosity of water film is vital to transport (such as
hydraulic conductivity and diffusion) in unsaturated porous media. Nevertheless, though
there are numerous publications about the viscosity of confined water film [5, 12, 43, 76,
77, 124, 131, 141, 143, 155, 163, 197, 204, 205], the knowledge about the viscosity of water
film (or confined water layer) is still controversy and in debated.

First, it should be noted that, most of the experiments and modellings of viscosity
of interlayer are carried out on the confined water layer between two similarly charged
parallel solid surface (e.g. silica, mica) [76, 77, 141, 205]. However, water film which is
an asymmetrical system, has two distinct interfaces: solid-water film and gas-water film
interfaces. Generally, the surface charge of two interfaces are negative, therefore, we can
infer that, due to the similar charge interfaces and confined state, water film can be treated
as interlayer. Therefore, the viscosity of the interlayer confined between two negatively
charged surface can be reasonably assumed to be similar to that of the water film.

The viscosity of water is temperature-dependent, for the purpose of discussing the mod-
ification of viscosity induced by surface forces, all temperatures of the water film are con-
sidered to be room temperature. In the follows, the viscosity of the water film measured
by indirect and direct experiment will be presented and discussed.

A.1.1 Indirect measurement of viscosity

The principle of the indirect measurement is based on the classic Poiseuille flow equation.
In the early 1970’s, Derjaguin et al. [76, 77] carried out the flow experiment through the
altra-thin quartz capillaries (0.03 to 10 µm), the applied external pressures and velocities
of flow were measured simultaneously, by means of the Poiseuille equation, the viscosity of
the confined capillary water is found to be elevated to as much as 40%(with respect to that
of bulk water) at the capillaries of 0.04 µm in radius.

With the water flow experiment as well as theory of absolute reaction rates for the
viscosity, Low et al. [163] estimated the viscosity of Na-montmorillonite at various water
content, it was found that the viscosity of the confined water film is greater than that
of bulk water and increases exponentially with decreasing water content. Based on this
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conclusion, Or et al. [182] established an empirical relationship to estimate the viscosity of
the confined water film in terms of the distance from the solid surface:

η(y, T ) = η0exp(
a∗

yT
) (A.1)

where η0 is the viscosity of the bulk water, y is the normal distance from solid surface (in
nm), a∗ is a constant whose value is 162.1 nm.K as proposed by Or et al. [182], T is the
temperature (in K).

From the aforementioned indirect experiments for the viscosity of confined water film,
we can conclude that, confined in the hydrophilic surfaces, with the decrease of its thickness,
the water film shows an elevated viscosity (with respect to that of bulk water).

A.1.2 Direct measurement of viscosity

The principle of the direct measurement of viscosity of confined water film (considered
as Newtonian flow) is in accordance with its mechanical definition [108]:

F = η(h)
∂vx

∂y
A (A.2)

where y axis is the axis normal to the water film (along the thickness of water film), F is
the shear force along x direction, x orthogonal to the y axis, vx is the velocity of water film
flow, A is the the surface area applied on the water film.

For the direct measurement of the viscosity of the water film under confinement, there
are following two totally different arguments based on distinct experimental devices.

By means of the high-resolution atomic force microscope (AFM), Li et al. [108] esti-
mated the viscosities of the confined purified water films between the hydrophilic surfaces
(mica and glass). In these experiments, the normal and lateral forces encountered by a
nanosize Si tip when approaching a solid surface in purified water are measured directly
and simultaneously, the viscosities of sub-nanometre confined water films show orders of
magnitude increase with bulk viscosity of water (e.g. 4 orders of magnitude higher than that
of bulk water when the thickness of the water film is about 0.5 nm). This result was con-
firmed by viscosity measurement of the confined sub-nanometre pure water film with the
other sophisticated apparatus-transverse dynamic force microscope (TDFM), more com-
monly known as shear force microscope [5].

Nevertheless, these results could not be reproduced in the subnanometer confined water
films between hydrophilic surfaces with surface force apparatus (SFA) [124, 131, 143, 204,
205]. These experiments were performed by two crossed hydrophilic cylinders by means of
measuring the normal and lateral forces directly and simultaneously. From the measured
results, it is found that, the viscosity of the pure water film confined in mica [131, 204] or
silica [124], even when confined to 1.0 ± 0.3 nm thick, is close to (within a ratio of 3) or
the same as viscosity of the bulk water. The similar conclusions were derived when the
confined water films are in low and high concentration electrolyte solution [143, 205].

For the above two distinct conclusions about the viscosities of the confined water films,
owing to their similar experimental principle as Eq.(A.2), the disparity may lie in the
different experimental devices. In fact, Perkin and Klein [196] attributed the abnormal
higher viscosity of confined water film to the contaminated surface of the hydrophilic mica
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surface during the sample processing, which is not convinced because not only mica solid
surfaces but also silica surfaces [124] are employed in the experiments.

On the other way, Kissel [142] attributed the anomalous higher viscosity to the using
of nanosize Si tapered tip probe (which is actually the difference between SFA and AFM
- TDFM device ). To prove his proposal, Kissel carried out measurement of the viscosity
of water film with shear acoustic wave technique in which there is no probe. It was found
that, the viscosity of confined water film between hydrophilic surfaces is close to viscosity
of bulk water.

Figure A.1: The variation of viscosity within confined water film, calculated with Eq.(A.1)
at temperature T= 298 K.

A.2 Structure and Density of water film on
hydrophilic surface

As early as 1960s, using pycnometer as well as X-ray diffraction techniques, Martin
et al. [166] investigated the structure and density of adsorbed water film on the sodium
montmorillonite as a function of water content. It was found that, at lower water content,
when the thickness of water film adsorbed on the sodium montmorillonite particle is less
than three molecular layers (about 1 nm), the structure of which is significantly modified
as well as the density of which is greater than that of normal water, while beyond 1nm from
the solid surface, the structure and the density of water film is slightly different from those
of bulk water. Since then, various of studies including experiments [78, 260] and molecular
dynamics simulation (MD) [30, 162, 257], have been performed to verify the variation of
density of water film near the hydrophilic solid surface. By MD simulations [162] of water
film on the NaCl crystal system, it has been found that, due to the normal arrangement of
the water dipoles to the hydrophilic solid surface, the structure of the water film differs from
that of bulk water. Furthermore, the density of water film exhibits pronounced oscillations
in the normal direction of surface at several water film layers. The maximum density in
the first layer of water film (in vicinity of solid surface) is at 1.4 g/cm3, about 40% higher
than that of bulk liquid water. Likewise, the density maximum in the second layer is about
25% greater than bulk water. The oscillations become less pronounced when the thickness
of the water film is greater than about 1nm (three or four layers of water molecules), and
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the bulk liquid water density of 1 g/cm3 is thus recovered [162]. The MD simulation of the
water film-crystalline silica system carried out by Xu et al. & Scherer [257] has the similar
results.

In summary, by the aformentioned experimental and simulation results: we can conclude
that the structure of water film shows layer structure and discrete in nature in the first
several layers of water molecules (< 1 nm). The water dipoles arrange normally to the
hydrophilic solid surface, which is distinct from structure of the bulk water [162]. Due to
this structural modification, the density of water film in first several layers shows oscillations
[162]. More over, the water films has a higher density than that of bulk water [162].
However, when the thickness of the water film is greater than 1 nm, the structure of such
water films shows less modified, the oscillations and the variation of the density show
slightly and can be neglected [257].

A.3 Thermodynamic definition of disjoining pressure

Due to the overlapping of the boundary layers, an additional work originates from the
repulsive or attractive surface force have to be applied. In essence, the disjoining pressure
Π(h) is a local physical term. Within the thermodynamic framework, it can be defined as
the variation of the Gibbs free energy ∂G associated with the change of thickness of water
film ∂h. Where the chemical potential µi of the i-th dissolved substance, temperature T
and pressure P remaining constant [3, 44, 50, 74]:

Π(h) = −(
∂G

∂h
)T,P,µi

(A.3)

Using the Eq.(A.3), Erikson et al. [89] derived the following classic Gibbs-Duhem equa-
tion for the water film:

2dγ + SfdT + Π(h)dh+ 2
∑

i

Γf
i dµi = 0 (A.4)

where γ is the surface tension of the water film-gas interface; Sf is the excess entropy of
water film surface; Γf

i is the surface excess potential for i-th dissolve substance. At constant
chemical potential of each component and temperature, Eq.(A.4) could be reduced to as
[3]:

Π(h) = −2(
dγ

dh
)T,µi

(A.5)

Obviously, Eq.(A.5) relates the disjoining pressure of the water film with the variation
of surface tension within the confined domain of characteristic size h.

A.4 Parameters for the disjoining pressure within
the unfrozen water film

It has been found by Churaev et al. [45] that, the structural component of the disjoining
pressure obeyed the exponent form such as Eq.(3.21).
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To determine the disjoining pressure in unfrozen water film, Chureav et al. [50] per-
formed an experiment to determine the fitting parameters for the disjoining pressure, which
are shown in the following table:

Table A.1: Calculated parameters of disjoining pressure at different temperature ranges,
after Churaev et al. [46].

Temperature t, Ľ K,×10MPa λ, nm

Nonfreezing Interlayer between ice and the capillary wall
with r=1.14 µ m
-0.14 1.0 12
-0.33 to -0.42 1.4 7
-0.55 to -0.64 2.0 4.7
-0.82 to -1 2.7 3.7
Nonfreezing interlayer between ice and surface of silica particles
with r=56 nm
-0.27 1.1 7.3
-0.67 1.4 3.4

As stated by Churaev et al.[46], the parameters K and λ are temperature-dependent.
From the Table(A.1), it can be found that, the value K increases and the value λ decreases
with decreasing temperature [46]. It was also found by Churaev et al. [46] that the param-
eters K and λ are the same order for hydrophilic surface of mica, quartz, silica and glass
at room temperature.

To describe all of the experimental results in all temperature ranges (for example: -
0.14 to -1℃), a two exponential-term formula such as Eq.(3.22) is employed. As proposed
by Churaev et al.[50], the disjoing pressure in the nonfreezing interlayer between ice and
capillary wall at the temperature: -0.14 to -1 ℃can be fitted by the equation (22) as well
as the paramters can be determined as: K1 = 22.6 ± 8.2 MPa, λ1 = 3.1 nm, K2 = 4.9 ± 1.4
MPa, λ2 = 5.3 nm [50].
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Appendix B

Determining average concentration
tensors of each phase

B.1 Eshelby’s problem in Linear Diffusion within
unsaturated porous media

This section proposes a micromechanics analysis of solute diffusion process occurring in
unsaturated porous media. "Unsaturated" has to be understood in the sense that diffusion
occurs in a liquid phase that does not fully occupy the available (connected) pore space
of porous media. Two practical situation are concerned with this theoretical approach: 1-
freezing processes where the pore space is made up of a liquid water phase, a solid water
phase (ice crystals) and gaseous phase; and 2- usual desaturation process with gas and
liquid saturating the pore space.

Diffusion process is assumed to be well described by Ficks law at the microscopic scale.
Similar to that introduced in Section(4.3), the diffusion in unsaturated porous media (as
shown in the morphological schematic as Fig.(4.17)) is governed by the formulas such as
[82]:







divzj
γ = 0 ∀z ∈ Ω

jγ(z) = −D(z)grad
z
ργ ∀z ∈ Ω

ργ(z) = H · z when |z| → ∞
(B.1)

D(z) =







0 ∀z ∈ Ωs

0 ∀z ∈ Ωg

Dγ ∀z ∈ Ωpw

Dγ ∀z ∈ Ωig

Dγ ∀z ∈ Ωwl

Dγ
f ∀z ∈ Ωf

(B.2)

where Ωs ,Ωg, Ωpw, Ωig, Ωwl and Ωf are the solid, the gas, the pore body water, the
intergranular layer, the wetting layer and the water film domains within REV.

The average diffusive flux in a REV consists of four contributions: the pore body water,



278 Determining average concentration tensors of each phase

the intergranular layer, the wetting layer and the water film, it gives:

Jγ = ⟨jγ⟩Ω = −
∑

i

φiD
γ
i ⟨gradργ⟩Ωi

i ∈ {l, f, wl} (B.3)

where we introduced the volume average definitions for average concentration coefficients
of each phase:

Ai =
1

|Ωi|
∫

Ωi

gradργdV i ∈ {g, s, pw, ig, f, wl} (B.4)

B.2 Solutions of auxiliary Eshelby-type problems:
diffusion case

Let us introduce the fictitious uniform concentration gradient H0. Estimates for the
homogenized diffusion coefficient is sought in the framework of the self-consistent scheme
by considering three different morphologies: solid phase-water film-wetting layer spherical
composite inclusion, pore body water inclusion and gaseous phase inclusion. They are
assumed to sufficiently account for local phases distribution. Here, the auxiliary Eshelby-
type problems can be classified into following four subproblems.

Subproblem 1 is dedicated to the introduction of specific morphology: the intergranular
layer, the wetting layer and the water film surrounding on an impermeable solid inclusion.
Subproblem 2 is a particular case of subproblem 1: the intergranular and the wetting layer
are disregarded, water film is surrounded the impermeable solid inclusion. Subproblem 3
and 4 allow us to account for a fully diffusive pore body water phase and a non-diffusive
gaseous phase. All these problems are derived within the assumption of local and global
isotropy together with the morphological assumption that the pore space is made up of
pores in spherical shape.

B.2.1 Subproblem 1: the intergranular layer, the wetting layer
and the water film surrounded the impermeable solid
inclusion

Let us first consider the auxiliary problems of a composite spherical inclusion embedded
in a reference medium behaving as the sought macroscopic one (shown as C0 in Fig.(B.1)).
Whatever the practical problem of interest, as shown in Fig.(B.1), the impermeable core is
characterized by a diffusion coefficient equal to 0 (solid or gaseous phase, shown as C4). The
three shells are the intergranular layer C1 (solute diffusion coefficient is Dγ), the wetting
layer C2 (solute diffusion coefficient is Dγ) and the water film phase C3 (solute diffusion
coefficient is Dγ

f ).
As shown in Fig.(B.1), in the framework of spherical coordinates, whose origin is taken in

the centre of the spherical core. The solute concentration fields exhibit cylindrical symmetry
with respect to e3. Thus, the concentration field is therefore sought in the form (cosθ = er·e3

):
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Figure B.1: Schematic illustration of the spherical composite inclusion with three shells; Ci

denotes i− th domain, the quantity in the bracket is solute diffusion coefficient within i-th
domain, i ∈ { 0, 1, 2, 3,4 }; in this case Ds → 0, H0 is the fictitious uniform concentration
gradient; e, t and h are the thicknesses of the intergranular layer, the wetting layer and the
water film, respectively.







r ≤ R : ργ(r) = B1r cos θ (a)

R ≤ r ≤ R + h : ργ(r) = (F2 +
B2

r2
) cos θ (b)

R + h ≤ r ≤ R + t : ργ(r) = (F3 +
B3

r2
) cos θ (c)

R + t ≤ r ≤ R + e : ργ(r) = (F4 +
B4

r2
) cos θ (d)

R + e ≤ r : ργ(r) = (F5 +
B5

r2
) cos θ (e)

(B.5)

where H0 = H0e3, e, t and h are the thicknesses of the intergranular layer, the wetting
layer and the water film, respectively, R is the radius of the solid core. Accordingly, the
solute concentration gradient field in the 3 dimensional problem can be presented as:







r ≤ R : gradργ(r) = B1e3 (a)

R ≤ r ≤ R + h : gradργ(r) = (F2 − 2B2

r3
) cos θer − (F2 +

B2

r3
) sin θeθ (b)

R + h ≤ r ≤ R + t : gradργ(r) = (F3 − 2B3

r3
) cos θer − (F3 +

B3

r3
) sin θeθ (c)

R + t ≤ r ≤ R + e : gradργ(r) = (F4 − 2B4

r3
) cos θer − (F4 +

B4

r3
) sin θeθ (d)

R + e ≤ r : gradργ(r) = (F5 − 2B5

r3
) cos θer − (F5 +

B5

r3
) sin θeθ (e)

(B.6)
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To determine the 9 unknown constants Fi and Bi (i ∈ {1, 2, 3, 4, 5}), several boundary
conditions should be considered. Adsorption phenomena (adsorption for solid cores) or
mass exchange are prevented at the interfaces (at r = R, r = R + h, r = R + t + h and
r = R + h + t + e). In all, the solute concentration is assumed to be continuous and
diffusive flux is assumed to be in balance at these interfaces, the boundary condition can
be expressed as:







lim
r→R+

i

ργ = lim
r→R−

i

ργ (a)

(jγ · er)r=Ri
= 0 i ∈ {1, 2, 3, 4} (b)

(B.7)

where R1 = R, R2 = R + h, R3 = R + h+ t and R4 = R + h+ t+ e.
From Eq.(B.7), it can be found that there are 8 identical relations. Another identical

relation can be derived at infinite boundary, that is:

lim
r→∞

ργ = H0 · z =⇒ F5 = H0 (B.8)

Thus, the 9 unknown constants Fi and Bi (i ∈ {1, 2, 3, 4, 5}) can be determined from 9
identical relations. The following approximations can be made:

φf

φs

=
R3

2 −R3
1

R3
1

φwl

φs + φf

=
R3

3 −R3
2

R3
2

φf + φwl + φig

φs

=
R3

4 −R3
1

R3
1

(B.9)

where φs, φf , φwl and φig are the volume fractions of solid phase, water film and wetting
layers, respectively.

Consequently, combining Eq.(B.4) and Eq.(B.6) and Eq.(B.9), the average concentration
tensors of each phase Ai (i ∈ {g, s, pw, ig, f, wl}) can be estimated.

B.2.2 Subproblem 2: water film surrounded on the
impermeable inclusion

The schematic representation of the water film surrounded on the impermeable spherical
inclusion is illustrated in Fig.(B.2).

Similarly, the average concentration coefficients Ai (i ∈ {s, f}) can be derived as those
shown in Subsection(B.2.1). Here, we omit the deduction. The average concentration
tensors for solid phase and water film are listed as:

As =
9

2

Dhom(φs + φf )

3Dhomφs + 2Dhomφf +Dγ
fφf

H0 (B.10)

Af =
2

3
As (B.11)

B.2.3 Subproblem 3: pore water spherical inclusion

The schematic morphological representation of pore water can be depicted in Fig.(B.3).
For saturated pores, we consider the problem as a spherical inhomogeneity embedded in an
infinite reference medium having the diffusion properties of the sought homogenized medium
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Figure B.2: Schematic illustration of the spherical composite inclusion with one shell, Ci

denotes i-th domain, the quantity in the bracket is solute diffusion coefficient within i-th
domain, i ∈ {0, 1, 2}, in this case Ds → 0.

(as shown in Fig.(B.3)). The solute diffusion coefficient in saturated pores is denoted by
Dγ.

Figure B.3: Schematic illustration of the pore water spherical inclusion.

For the same uniform boundary conditions as in the previous subproblems, the average
concentration tensor of pore water spherical inclusion can be obtained as the limit of the
Eq.(B.11) when φf → 1 as well as diffusion coefficient Dγ

f = Dγ, that is:

Al =
3Dhom

2Dhom +Dγ
H0 (B.12)
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B.2.4 Subproblem 4: Gas spherical inclusion

The same reasoning may be used for the non-diffusive (gas or solid, depending upon the
practical problem) phase with diffusion coefficient Dγ

f → 0 and φf → 0. Hence, according to
the limit of Eq.(B.11), the concentration gradient of the solid phase (gas phase) is estimated
by:

Ag =
3

2
H0 (B.13)

The final step makes the link between the auxiliary problem with the fictitious uniform
boundary conditions in H0 and the real uniform boundary conditions in H. This is realized
owing to the average rule H = ⟨gradργ⟩ on the concentration gradient.

B.3 Solutions of auxiliary Eshelby-type problems:
flow permeability case

Different from diffusion case, the permeability coefficient of fluid phase is size dependent,
that is to say, the permeability of fluid flow is related to its magnitude of size. As presented
previously, the morphological illustration of unsaturated sandstone can be shown as Fig.
(6.2).

To estimate the homogenized pressure gradient ∇P , three auxiliary Eshelby problems
should be determined, the boundary conditions in such auxiliary problems denote as P −→
∇P0 · z, when z → ∞. Here, ∇P0 is the fictitious average pressure gradient which will be
related to the true pressure gradient ∇P with Eq.(6.10).

Similarly, all these problems are derived within the assumption of local and global
isotropy together with the morphological assumption that the pore space is made up of
pores in spherical shape.

Fig.(B.4) depicts the spherical composite inclusion with three shells (water film, wetting
layer and intergranular pore water) in flow permeability problem. It should bear in mind
that, the fluid flows in three shells are considered as poiseuille flows. Therefore, the intrinsic
permeability coefficients of each layer can be expressed as: Kig = e2/3, Kwl = t2/3, Kf =
h2/3.

In such case, the pressure field and pressure gradient field can be expressed as :







r ≤ R : P = B1r cos θ (a)

R ≤ r ≤ R + h : P = (F2 +
B2

r2
) cos θ (b)

R + h ≤ r ≤ R + t : P = (F3 +
B3

r2
) cos θ (c)

R + t ≤ r ≤ R + e : P = (F4 +
B4

r2
) cos θ (d)

R + e ≤ r : P = (F5 +
B5

r2
) cos θ (e)

(B.14)

where ∇P0 = ∇P0e3 and e3 is corresponding to the axis colinear to θ = 0 as well as
cosθ = e3 · eθ, the pressure and velocity fields exhibit a cylindrical symmetry with respect
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Figure B.4: Schematic illustration of the spherical composite inclusion with two shells
in flow permeability problem; Ci denotes i − th domain, the quantity in the bracket is
permeability coefficient of i-th domain, i ∈ { 0, 1, 2, 3, 4 }; in this case Ks → 0; ∇P0 is
the fictitious uniform pressure gradient.

to e3; R denotes the radius of pore filled with gas. Accordingly, the pressure gradient field
in the 3 dimensional problem can be presented as [79]:







r ≤ R : gradP = B1e3 (a)

R ≤ r ≤ R + h : gradP = (F2 − 2B2

r3
) cos θer − (F2 +

B2

r3
) sin θeθ (b)

R + h ≤ r ≤ R + t : gradP = (F3 − 2B3

r3
) cos θer − (F3 +

B3

r3
) sin θeθ (c)

R + t ≤ r ≤ R + e : gradP = (F4 − 2B4

r3
) cos θer − (F4 +

B4

r3
) sin θeθ (d)

R + e ≤ r : gradP = (F5 − 2B5

r3
) cos θer − (F5 +

B5

r3
) sin θeθ (e)

(B.15)

The boundary condition at infinite gives:

lim
r→∞

P = ∇P0 · z ⇒ ∇P0 = F5 (B.16)

With the pressure continuity and flow flux continuity, the other boundary condition can be
expressed as:
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lim
r→R+

i

P = lim
r→R−

i

P (a)

(vi · er)r=Ri
= 0 i ∈ {1, 2, 3, 4} (b)

(B.17)

where R1 = R, R2 = R + h, R3 = R + h + t, R4 = R + h + t + e, h , t and e are the
thickness of water film, wetting layer and intergranular water layer, R is radius of solid
grain (inclusion). From Eq.(B.16) and Eq.(B.17), we have 9 identical equations to solve 9
unknown constants: Fi and Bi (i ∈ {1, 2, 3, 4}).

Therefore, the average concentration tensors of each phase within unsaturated porous
media can be derived as Eq.(B.4):

Ai(R) =
1

|Ωi|
∫

Ωi

gradPdV i ∈ {g, s, ig, f, wl} (B.18)

Combing Eq.(B.18) and Eq.(B.15), when the radius of the monodisperse solid grain is
taken asR, we have the average concentration tensor for each phaseAi(R) (i ∈ {s, f, wl, ig}).

It can be found that the average concentration of the spherical composite are dependent
significantly on the size of the wetting layer and water film. Therefore, considering the grain
size distribution function f(R)(

∫ Rmax

Rmin
f(R) d R=1), it yield:

φsAs = (1 − ϕ)
∫ Rmax

Rmin

As(R)f(R)dR (B.19)

φfAf = (1 − ϕ)
∫ Rmax

Rmin

Af (R)
(R + h)3 −R3

R3
f(R)dR (B.20)

φwlAwl = (1 − ϕ)
∫ Rmax

Rmin

Awl(R)
(R + h+ t)3 − (R + h)3

R3
f(R)dr (B.21)

φigAig = (1 − ϕ)
∫ Rmax

Rmin

Aig(R)
(R + h+ t+ e)3 − (R + h+ t)3

R3
f(R)dr (B.22)

where Rmax and Rmin are the maximum and minimum radius of solid grains, ϕ is the
porosity.

Correspondingly, the flow flux contributions of water film and wetting layer can be
estimated by:

vf = KfφfAf (R) = (1 − ϕ)
∫ Rmax

Rmin

h2

3µf

Af (R)
(R + h)3 −R3

R3
f(R)dR (B.23)

vwl = KwlφwlAwl(R) = (1 − ϕ)
∫ Rmax

Rmin

t2

3µ0

Awl(R)
(R + h+ t)3 − (R + t)3

R3
f(R)dR (B.24)

vig = KigφigAig(R) = (1 − ϕ)
∫ Rmax

Rmin

e2

3µ0

Aig(R)
(R + h+ t+ e)3 − (R + t+ h)3

R3
f(R)dR

(B.25)
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B.4 Solutions of auxiliary Eshelby-type problems:
multi scale

Generally, most of the porous media exhibit multi scale microstructures: at local scale
matrix is composed of spherical composite inclusion phase, small pore liquid and gas phase,
the homogenized properties of matrix can be estimated with self-consistent scheme; at
macro scale, the macro pores either filled with water or gaseous phase are embedded in the
matrix, the homogenized properties can be estimated with Mori-Tanaka scheme.

B.4.1 Micro scale-with self-consistent scheme

The concentration tensors of each phase are estimated with self-consistent scheme in
previous subsections. Using Eq.(4.14) and Eq.(6.25), the homogenized properties of matrix
(Dγ

m) can be determined.

B.4.2 Macro scale-with Mori-Tanaka scheme

In the previous sections, the average concentration tensors are estimated based on the
self-consistent scheme which is perfectly used to characterized the disordered morphology.
The Mori-Tanaka scheme estimate in transport problem is based on the generalized Eshelby
problem in which solid grains are surrounded by the matrix phase (e.x., liquid phase).
Therefore, the average concentration tensors of each phase in Mori-Tanaka scheme can be
derived from their corresponding ones in self consistent scheme by replacing Dhom with Dγ

m,
it gives:

Am = H1 (B.26)

The average concentration tensors of pore water (Aml) and gas (Amg) in macro pores
can be written as:

Aml =
3Dhom

2Dhom +Dγ
m
H1 (B.27)

Amg =
3

2
H1 (B.28)

where Dγ
m is the homogenized diffusion coefficient of matrix, H1 is the fictitious uniform

concentration (pressure) gradient applied on the boundary of REV.
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Appendix C

Eshelby-type problems in poroelastic
porous media under freezing

An extension of Eshelby’s problem to microporoelasticity accounting for both hetero-
geneity of elastic properties and in-pore pressure (prestress) is given in Dormieux’s work
[82]. Here, the following derivation of Eshelby-based problem for the freezing porous media
is based on his work.

C.1 Eshelby’s problem coupled with prestress and
inhomogeneity under freezing

When the pore inclusion (denoted as superscript I) is embedded in an infinite linear
elastic solid medium applied on an uniform macroscopic strain E on the boundary, the
physical formulas governing the stress field within this infinite solid can be expressed as
[82]:







divσ = 0

σ = Cs : ε − κsδT + (δC + πI)χI(z)

ξ = E.z when z → ∞
(C.1)

where δC = CI −Cs = −Cs, κs is the volumetric dilation coefficient tensor of solid matrix,
χI is the characteristic function of the domain of inclusion I. Processing as [82], the condition
σI = δC + πI is taken to be constant, thus, both εI and prestress πI are required to be
uniform throughout I. Therefore, the following relations between E, πI and εI can be
derived [82]:







σI = δC + πI

εI = −P : σI + E
(C.2)

Eliminating σI in Eq.(C.2) yields the expression for εI [82]:

εI = (I + P : δC)−1 : (E − P : πI) (C.3)

with P tensor P [82]:
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P = S : Ss (C.4)

where Ss is the compliance tensor of solid materix; S is the Eshelby tensor. In the case
of spherical inhomogeneity embedded in an isotropic medium, the Eshelby tensor can be
simplified as [82]:

S = αJ + βK (C.5)

with:

α =
3Ks

3Ks + 4µs
; β =

6(Ks + 2µs)

5(3Ks + 4µs)
(C.6)

in which Ks and µs are the bulk modulus and shear modulus of the solid matrix.

C.2 Solution of Eshelby’s problem with Mori-Tanaka
scheme

To obtain the homogenized poroelastic properties of freezing porous media, a Mori-
Tanaka scheme using the Eshelby’s results will be introduced in this section [82]. The
derivation of the poroelastic tensors lies in determining the average strain concentration
tensor of pore space A

p
. The pores within the freezing porous media are assumed to be

spherical. The idea of Mori-Tanaka scheme is that, to capture the interaction between the
pores, a fictitious macroscopic strains E0 is assumed to exert on the boundary at infinity.
Here, E0 is set equal to the strain of the inhomogeneity continuum surrounding the inclusion
(more precisely, E0 is equal to the average strain of matrix). More over, E0 should satisfied
the micro-macro strain compatibility condition, ε = E [82].

Therefore, the uniform strain in the inclusion I is adopted as an estimated for the average
strains εp in the pore space of REV, and E0 is set equal to the average strain of matrix. In
drained condition, it gives [82]:







εp = εI = (I − S)−1 : E0

εs = E0

(C.7)

From Eq.(C.7) and micro-macro strain compatibility condition (ε = E), it yields [82]:

E0 = ((1 − ϕ0)I + ϕ0(I − S)−1)−1 : E (C.8)

where ϕ0 is the pore volume fraction (porosity).
From the relation: εp = A

p
: E, as well as combining Eq.(C.7) and Eq.(C.8), we have

an expression for average strain concentration tensor of pore space [82]:

A
p

= (I − S)−1 : ((1 − ϕ0)I + ϕ0(I − S)−1)−1 (C.9)

Therefore, from Eq.(8.34), the poroelastic tensors of freezing porous media can be ex-
pressed as [82]:
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C
hom = C

s : (I − ϕ0A
p
) = C

s : [I − ϕ0(I − S)−1 : ((1 − ϕ0)I + ϕ0(I − S)−1)−1] (C.10)

κhom = κhom : (I − ϕ0A
p
) = κs : Ss : Chom = αs : Chom (C.11)

B = ϕ01 : A
p

= ϕ01 : (I−S)−1 : ((1−ϕ0)I+ϕ0(I−S)−1)−1 = ϕ01 : (I−(1−ϕ0)S)−1 (C.12)
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Appendix D

Levin’s theorem in unsaturated
microporoelastic freezing porous
media

Levin’s theorem requires us to extend the definition of the microscopic stress σ, strain
ε and displacement ξ, respectively, from the solid domain Ωs into the pore space Ωf [82].
In addition to the linear elastic stress in the solid phase, microscopic stress within the
pore space is considered to be uniform and and equal to −P1, where P is the internal
pressure within the pore space [82]. Treated as Levin theorem, the local stress field of the
unsaturated freezing porous media can be expressed as the general affine form:

σ(z) =







Cs

0
: ε +







σ0(z)

−(peq
0 )1

+







−κsδT

0
+







0 ∀z ∈ Ωs

peq
1 ∀z ∈ Ωp

(D.1)

Obviously , there are four loading parameters in the freezing problems, they are: unifrom
macroscopic strain tensor E applied on the boundary, initial prestress σ0, thermal stress
tensor κδT and prestress tensor −peq

1 (including the surface tension effect, internal pressure
and disjoining pressure). The microscopic stress, strain and displacement which characterize
the response of the REV to the four loading parameters, the macroscopic strain tensor E,
initial stress σ0, thermal stress tensor κδT and the microscopic equivalent prestress filed
−peq

1, satisfy [82]:







divσ = 0 z ∈ Ω

σ = C : ε − peq
1 − κδT z ∈ Ω

ξ = E · z z ∈ ∂Ω

(D.2)

Given the linearity of the problem with respect to E and peq, σ0 and κδT , it is convenient
to decompose the problem into four loading cases:

Loading case 1: E ̸= 0, σ0 = 0, δT = 0, peq = 0. The physical quantities obey the
following formulas:
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divσ
′

= 0 z ∈ Ω

σ
′

= C : ε
′

z ∈ Ω

ξ
′

= E · z z ∈ ∂Ω

(D.3)

The microscopic strain field of loading case 1 problem is:

ε
′

(z) = A(z) : E (D.4)

The macroscopic stress Σ
′

is:

Σ
′

= σ
′ = C

hom : E (D.5)

where, Chom is the homogenized elasticity tensor of drained porous media.
Loading case 2: σ0 ̸= 0, E = 0, δT = 0, peq = 0. The physical quantities obey the

following formulas:







divσ
′′

= 0 z ∈ Ω

σ
′′

= C(z) : ε
′′

+ σ0 z ∈ Ω

ξ
′′

= 0 z ∈ ∂Ω

(D.6)

The solution to Eq.(D.6) is ξ
′′

= 0 and σ
′′

= σ0. Therefore, we have:

Σ
′′

= σ
′′ : A = σ0 : A = Σ0 (D.7)

Loading case 3: δT ̸= 0, σ0 = 0, E = 0, peq = 0. The physical quantities obey the
following formulas:







divσ
′′′

= 0 z ∈ Ω

σ
′′′

= C : ε
′′′ − κδT z ∈ Ω

ξ
′′′

= 0 z ∈ ∂Ω

(D.8)

The macroscopic stress Σ
′′′

is:

Σ
′′′

= σ
′′′ = C : ε′′′ − κδT = −κ : AδT = −κhomδT (D.9)

Loading case 4: peq ̸= 0, σ0 = 0, E = 0, δT = 0. The physical quantities obey the
following formulas:







divσ
′′′′

= 0 z ∈ Ω

σ
′′′′

= C : ε
′′′′ − peq

1 z ∈ Ω

ξ
′′′′

= 0 z ∈ ∂Ω

(D.10)

The macroscopic stress Σ
′′′

may be derived by:

Σ
′′′′

= peq1 : A = −peqϕ01 : A
p

= −P eqB (D.11)

The macroscopic stress of the freezing porous media can be expressed as:
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Σ = σ
′

+ σ
′′

+ σ
′′′

+ σ
′′′′

= C
hom : E + Σ0 − κhomδT − δP eqB (D.12)
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