
HAL Id: pastel-00998731
https://pastel.hal.science/pastel-00998731

Submitted on 2 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust design of deep-submicron digital circuits
Gutemberg Goncalves dos Santos Junior Gonçalves dos Santos Junior

To cite this version:
Gutemberg Goncalves dos Santos Junior Gonçalves dos Santos Junior. Robust design of deep-
submicron digital circuits. Other. Télécom ParisTech, 2012. English. �NNT : 2012ENST0039�.
�pastel-00998731�

https://pastel.hal.science/pastel-00998731
https://hal.archives-ouvertes.fr

T
H
È
S
E

2012-ENST-039

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Communications et Electronique »

présentée et soutenue publiquement par

Gutemberg GONÇALVES DOS SANTOS JÚNIOR
le 6 septembre 2012

Conception Robuste de Circuits Numériques
à Technologie Nanométrique

Directeurs de thèse : Mme. Lirida NAVINER
M. Jean-François NAVINER

Jury
M. Raoul Velazco, Directeur de recherche, CNRS-TIMA Rapporteur
M. Luis Entrena, Professeur, Université Carlos III Madrid Rapporteur
M. Habib Mehrez, Professeur, UPMC, LIP6 Examinateur
M. Gilles Deleuze, Chercheur senior, EDF R&D Examinateur
Mme. Lirida Naviner, Professeur, Télécom Paristech Directrice de Thèse
M. Jean-François Naviner, Maître de conférences, HDR, Télécom Paristech Directeur de Thèse

TELECOM ParisTech
École de l’Institut Télécom - membre de ParisTech

École Doctorale

d’Informatique,

Télécommunications

et Électronique de Paris

Thèse

Robust Design of Deep-Submicron Digital Circuits

Gutemberg GONÇALVES DOS SANTOS JÚNIOR

Directeurs de thèse Pr. Dr. Lirida NAVINER

Dr. Jean-François NAVINER

3

“Education is the most powerful weapon which you can

use to change the world.”

Nelson Mandela

“Il n’y a aucune connaissance de la terre qui ne commence

par l’imagination. Lorsqu’elle disparaît, lorsque se brise la

création par l’imaginaire, la curiosité s’évanouit avec elle et

le savoir s’épuise.”

Francesco Alberoni

4

5

Acknowledgement

Working on a Ph.D has been an extraordinary experience. It would not have been

possible to succeed without the support of many people who gave of their time tirelessly

and patiently in order to make the difficult moments less unbearable.

First and foremost I offer my sincerest gratitude to my supervisors, Dr Lirida Naviner

and Dr Jean-François Naviner, without whose sincerity, knowledge, encouragement and

assistance this study would not have been successful. I’m deeply thankful for the excellent

atmosphere you created for doing research, where everybody could contribute and learn

from each other. Besides, you acted not only as a supervisor, but more importantly as a

real friend, and I appreciate that from my heart.

I would like to express my deepest gratitude to EDF R&D for the financial support

and the opportunity to carry out my research studies. I would like to extend my greet-

ings to Bastien Cousin, Laurent Cretinon, Gilles Deleuze, Anne-Lise Didierjean, Laurent

Doireau, Sandrine Legruel, and Philippe Mathevon, whose advice, support and patience

were fundamental during my studies.

I would like to thank Dr Luis Entrena and Dr Raoul Velazco for agreeing to be the

reviewers of this dissertation. Your knowledge and remarks were vital for the improvement

of the current work.

Many thanks to all my friends for sharing their enthusiasm for and comments on my

work. I would like to thank Alban Gruget, Arthur Liraneto, Arwa Ben Dhia, Bruno Lyra,

Chadi Jabbour, Cibele Trinca, Daniel Caon, Davi Bibiano, Dimitri Edouard, Eduardo Fer-

raz, Elaine Crespo, Eric Bouton, Fabrice Linot, Farhan Mirani, Florent Lozac’h, Hasham

Khushk, Joana Silveira, Julie Gaudin, Maí Correia, Márcia Costa e Silva, Mariem Slimani,

Pietro Maris, Sami Mekki, Samuel Pagliarini, Sereuja Zier, Shivam Bhasin, Tian Ban,

Yang Liu, and all the other students in Télécom Paristech and friends I made in Paris for

the great moments we spent together. Just remembering the happy hours in the “butte-

aux-cailles”, the picnics in the parks and on the banks of the Seine, the travels, the dinners

in Maisel, and all the parties we went make me laugh and feel good. I’m truly grateful to

all of you guys, you are fantastic people, and I hope to see you all again very soon.

I would like to thank as well Chantal Cadiat, Florence Besnard, Zouina Sahnoune and

6

all the employees of Télécom Paristech who welcomed me and made my stay so memorable.

You helped me so much with my problems, bureaucracy and so many other things that I

can’t really imagine finishing this thesis without your help.

I’m especially thankful to my family for their unflagging love, and for always supporting

me during difficult times, listening to my worries and complaints.

7

Abstract

The design of circuits to operate at critical environments, such as those used in control-

command systems at nuclear power plants, is becoming a great challenge with the technol-

ogy scaling. These circuits have to pass through a number of tests and analysis procedures

in order to be qualified to operate. In case of nuclear power plants, safety is considered as

a very high priority constraint, and circuits designed to operate under such critical envi-

ronment must be in accordance with several technical standards such as the IEC 62566,

the IEC 60987, and the IEC 61513. In such standards, reliability is treated as a main con-

sideration, and methods to analyze and improve the circuit reliability are highly required.

The present dissertation introduces some methods to analyze and to improve the reli-

ability of circuits in order to facilitate their qualification according to the aforementioned

technical standards. Concerning reliability analysis, we first present a fault-injection based

tool used to assess the reliability of digital circuits. Next, we introduce a method to evalu-

ate the reliability of circuits taking into account the ability of a given application to tolerate

errors. Concerning reliability improvement techniques, first two different strategies to se-

lectively harden a circuit are proposed. The first one is based on the assumption that some

output bits of a circuit may be more important for a given application than the others.

Then, the proposed technique drives the reliability improvement effort to those bits. The

other technique uses a cost function in order to automatically select the best candidates

to be hardened. Finally, a method to automatically partition a TMR design based on a

given reliability requirement is introduced.

8

9

French Summary

Introduction

Depuis l’avènement de la micro-électronique, ce domaine n’a pas cessé de prendre de

l’ampleur. Les technologies de fabrication ont vécu une évolution exponentielle comme

prévu par la Loi de Moore [1, 2]. Comme résultat, les dispositifs électroniques deviennent

de plus en plus petits, plus performants et moins chers.

Afin de continuer l’évolution de la micro-électronique même après l’arrivée des dimen-

sions submicroniques, les chercheurs doivent surpasser des défis comme la considération des

phénomènes physiques qui auparavant étaient négligeables et maintenant sont prépondé-

rants, comme les forces de Casimir et de Van Der Waals [3]. De plus, les systèmes d’inter-

connections sont devenus très complexes avec l’arrivée du schéma de connexion 3-D [4]. En

fait, l’augmentation de la quantité de composants dans la même puce et l’augmentation de

la complexité des interconnections font croître la probabilité de défaillance des composants.

En même temps, l’augmentation des fréquences d’opération augmente la probabilité des

erreurs de synchronisation [5]. En conséquence, une réduction du rendement de fabrication

aussi bien que de la fiabilité des circuits intégrés est attendue [6–10].

Avec l’augmentation de la probabilité de fautes dans les circuits numériques, les sys-

tèmes développés pour les environnements critiques comme les centrales nucléaires, les

avions et les applications spatiales doivent être certifiés selon des normes industrielles.

Cette thèse est un résultat d’une coopération CIFRE entre l’entreprise Électricité de France

(EDF) R&D et Télécom Paristech. EDF est l’un des plus gros producteurs d’énergie au

monde et possède de nombreuses centrales nucléaires. Les systèmes de contrôle-commande

utilisé dans les centrales sont basés sur des dispositifs électroniques, qui doivent être cer-

tifiés selon des normes industrielles comme la CEI 62566 [11], la CEI 60987 [12] et la CEI

61513 [13] à cause de la criticité de l’environnement nucléaire. En particulier, l’utilisation

des dispositifs programmables comme les FPGAs peut être considérée comme un défi du

fait que la fonctionnalité du dispositif est définie par le concepteur seulement après sa

conception physique. Le travail présenté dans ce mémoire porte sur la conception de nou-

velles méthodes d’analyse de la fiabilité aussi bien que des méthodes d’amélioration de la

10

fiabilité d’un circuit numérique.

La fiabilité dans les circuits numériques

Un circuit électronique peut être vu comme l’assemblage d’un certain nombre de com-

posants électroniques de telle façon qu’il produit une fonctionnalité souhaité. Cette fonc-

tionnalité peut être garantie si on considère que les composants sont exempts de fautes.

Malheureusement les dispositifs électroniques sont susceptibles de défaillances occasion-

nées par des mécanismes naturels comme les impuretés dans les matériaux et les variations

de paramètres, entre autres. Pour être précis, il y a une certaine probabilité qu’un cir-

cuit numérique va fournir la fonctionnalité souhaitée pendant un période de temps. Cette

probabilité est connue comme fiabilité et peut être définie comme suit : la fiabilité est l’ap-

titude d’un dispositif à accomplir une fonction requise dans des conditions données pour

une période de temps donnée [14].

La fiabilité d’un circuit électronique peut être calculée selon (1). Son comportement

par rapport au temps peut être divisé en 3 phases (voir Figure 1) :

1. Taux de défaillance décroissant → Cette phase de vie est aussi appelée période de

jeunesse.

2. Taux de défaillance sensiblement constant → C’est aussi appelé période de vie utile

du dispositif.

3. Taux de défaillance croissant → Correspond à la période de vieillissement du circuit

R(t) = e−
∫ t

0
λ(x)dx (1)

//

λ(t)

t

//

Decreasing Failure
Rate Region

Constant Failure
Rate Region

Increasing Failure
Rate Region

Figure 1 – Courbe en baignoire

Parmi les types de fautes qui peuvent occasionner une défaillance du système électro-

nique, les fautes transitoires sont particulièrement une menace à cause de leur comporte-

11

ment aléatoire et leur grande probabilité d’occurrence. Les fautes transitoires peuvent être

occasionnées par différents phénomènes physiques comme par exemple les particules alpha,

les rayons cosmiques et les interférences électromagnétiques. De plus, la susceptibilité des

circuits électroniques à ces types de phénomènes augmente avec la réduction de la taille

des composants. Pour faire face à ces erreurs, les concepteurs peuvent utiliser des méthodes

de durcissement d’un circuit intégré. Cela représente toujours un surcoût en surface, en

consommation ou en vitesse. Ainsi, les méthodes d’analyse de la fiabilité d’un circuit intégré

deviennent de plus en plus importantes avec l’évolution de la technologie. C’est grâce à ce

type d’analyse que les concepteurs peuvent identifier les zones de défaillance potentielles,

la nécessité d’ajout de redondance, la nécessité d’un système de sauvegarde, etc. De plus,

les méthodes d’analyse de la fiabilité peuvent être utilisées comme un outil pour mesurer

la performance de différentes stratégies de durcissement d’un circuit intégré.

Plusieurs méthodes d’analyse de la fiabilité d’un circuit ont été reportées dans la lit-

térature. C’est bien connu qu’une analyse optimale doit prendre en considération autant

d’information que possible du circuit lui-même aussi bien que de l’application cible. En dé-

pit de cela, la plupart de méthodes d’analyse de fiabilité considère quelques simplifications

dans les modèles mathématiques comme la considération de fautes simples, de signaux non

corrélés, etc. En outre, peu de travaux sur l’analyse de la fiabilité ont été effectués tenant

en compte l’importance des résultats du circuit pour l’application cible. En fait, beaucoup

d’applications présentent la capacité de tolérer un certain nombre et certains types d’er-

reurs. En considérant cette information, un concepteur peut mieux contrôler l’ajout de

redondance afin d’éviter un surcoût trop élevé. La première contribution de ce travail est

une technique nommée « effective reliability » qui prend en considération la tolérance aux

erreurs d’une application pour évaluer la fiabilité du circuit.

Effective Reliability

L’augmentation considérable du nombre d’erreurs attendue dans les circuits avec l’évo-

lution de la technologie a inspiré les discussions sur la tolérance aux erreurs depuis la sortie

du « 2001 International Technology Roadmap for Semiconductors (ITRS) ». Le concept

de tolérance aux erreurs a été introduit comme un paradigme orienté à l’application pour

faire face aux variations du processus, aux défauts et au bruit [7]. L’idée principale est de

que certaines applications présentent la capacité de tolérer un certain nombre et certains

types d’erreurs à condition qu’ils soient limités à un certain niveau de sévérité défini par

l’application. En effet, plusieurs applications multimédia présentent cette caractéristique

grâce au fonctionnement des sens humains comme la vue, l’audition et l’odorat, qui ne

peuvent pas s’apercevoir de la présence de certains types d’erreurs. Ce mémoire se réfère

à ce type de phénomène comme les masquages des erreurs par l’application et introduit la

12

classification d’erreurs suivante :

– Erreurs critiques → Ce sont les erreurs qui peuvent occasionner un grand impact

dans les résultats produits par un circuit ;

– Erreurs non-critiques → Ce sont les erreurs qui sont masquées par l’application.

Cette classification des erreurs prend en considération l’usage des résultats produits

par un circuit. Par conséquence, un facteur très important qui affecte ce type de classifica-

tion est l’approche de codification utilisée pour représenter l’information dans la sortie du

circuit. En fait, l’impact d’une inversion d’un bit de sortie du circuit dépend directement

de son poids, c’est-à-dire de sa signifiance relative par rapport au mot de sortie. En dépit

de cela, le concept traditionnel de fiabilité d’un circuit (appelé fiabilité nominale dans ce

mémoire) est basée sur le paradigme de passer ou échouer, c’est-à-dire il ne prend pas en

considération l’importance d’un bit de sortie comme décrit en (2).

Rnom =
M−1
∏

i=0

qi (2)

Pour faire face à ces problèmes, nous proposons le concept de « effective reliability »

comme décrit par (3) et (4). Dans ce cas, le terme Rack représente la probabilité qu’une

erreur soit masquée par l’application cible. Cela veut dire que le terme Rack prend en

considération les erreurs qui sont classées comme non-critiques alors que le terme Rack

considère les erreurs critiques. La classification d’une erreur en critique ou non-critique

prend en compte des métriques de qualité qui sont considérées pertinentes par rapport à

l’application cible. Ce mémoire introduit aussi deux métriques de qualité différentes basées

d’importance d’un bit (voir (5) et (6)) et d’erreur relative (voir (7) et (8)).

Reff = Rnom +Rack (3)

Reff = 1−Rack (4)

Reff =

M−1
∏

i=0

qi +

T+1
∑

k=1

CT+1

k
∑

r=1

γk,r (5)

Reff = 1−

T+1
∑

k=1

CM
k

∑

r=CT+1

k
+1

γk,r −

M
∑

k=T+2

CM
k

∑

r=1

γk,r (6)

13

Table 1 – Valeurs de la fiabilité de chaque bit de sortie de l’APPR8

Sortie Fiabilité (qi)
b0 99.80%
b1 99.48%
b2 99.31%
b3 99.24%
b4 99.20%
b5 99.18%
b6 99.17%
b7 99.16%

b8(retenue) 99.36%

Reff =
M−1
∏

i=0

qi +
2H−1
∑

a=0

p(a)

kmax
∑

k=1

CM
k

∑

r=1

γk,r.u (δmax − δ(k, r, a)) (7)

Reff = 1−
2H−1
∑

a=0

p(a)

kmax
∑

k=1

CM
k

∑

r=1

γk,r.u (δ(k, r, a)− δmax) (8)

Résultats

Prenons comme exemple un additionneur parallèle à propagation retenue de 8 bit

(APPR8), construit à partir de 8 additionneurs de 1 bit en chaîne, dans lequel la probabi-

lité de défaillance de chaque porte logique est égale à 99.9%. Supposons que la contrainte

de fiabilité minimale de l’APPR8 soit Rmin = 95% et que l’application cible présente la

capacité de tolérer des erreurs aussi grandes que 2% du résultat correct (δmax = 2%).

La fiabilité de chaque bit de sortie du APPR8 a été évaluée en utilisant la méthode SPR-

MP [15], et les résultats sont illustrés dans le Tableau 1. La concept de fiabilité nominale

peut donc être calculée selon (9). En analysant le résultat pour la fiabilité nominale un

concepteur ira conclure que l’APPR8 ne respecte pas la contrainte de fiabilité minimale

et que le circuit a besoin d’être durci. En considérant la méthode TMR (Triple Modular

Redundancy) pour réaliser cette procédure, l’architecture durcie avec moins de surface mais

qui encore respecte la contrainte de fiabilité minimale cause un surcoût en surface de 75%.

R =
8
∏

i=0

qi = 94.06% (9)

Rappelons que l’application cible présente la capacité de tolérer des erreurs s’ils ne

dépassent pas la contrainte d’erreur relative δmax = 2%. Prenons donc le concept de «

effective reliability » pour analyser la fiabilité du circuit. Dans ce cas, la fiabilité du circuit

14

Table 2 – Valeurs de Reff pour différentes tolérances aux erreurs (APPR8)

Erreur Relative (δmax) Fiabilité
0.5% 94.23%
1.0% 94.64%
1.5% 94.96%
2.0% 95.22%
2.5% 95.44%
3.0% 95.62%
3.5% 95.77%
4.0% 95.92%
4.5% 96.05%
5.0% 96.16%

dépend de la capacité de l’application cible de tolérer des erreurs (voir Tableau 2). C’est

bien noté qu’en considérant une capacité de tolérance d’erreurs δmax = 2% la fiabilité

du circuit pour cette application est égale à 95.22%, c’est-à-dire la contrainte de fiabilité

minimale est déjà respectée et en fait il n’y a pas besoin d’ajout de redondance.

Le concept de « effective reliability » est très intéressant pour les applications dans

lesquelles un certain nombre d’erreurs peut être toléré. Par contre, dans les applications

appelées critiques comme les centrales nucléaires, les avions et les satellites, l’occurrence

d’une seule erreur peut causer des conséquences sévères. En fait, les circuits développés

pour ces environnements ont besoin d’une couverture de test qui s’approche de 100%.

Pour faire face à ces problèmes, la deuxième contribution de ce travail est un outil basée

sur Verilog appelé FIFA (Fault-Injection-Fault-Analysis) développé pour accélérer les tests

exhaustifs dans les circuits intégrés.

L’outil FIFA

C’est déjà bien connu que l’injection de fautes est une approche intéressant pour ana-

lyser le fonctionnement des circuits intégrés en présence de fautes. L’idée principale est

d’injecter des fautes dans le circuit de forme aléatoire ou contrôlée et analyser si la faute

est propagée jusqu’à la sortie. Comme les circuits intégrés deviennent de plus en plus com-

plexes avec l’évolution de la technologie, le temps nécessaire pour atteindre un niveau élevé

de couverture de test est très important, voire prohibitif. Cela devient un problème pour

les applications qui ont besoin de tel niveau de couverture, et de ce fait le développement

des nouvelles méthodes que puissent accélérer la procédure d’injection de fautes devient

nécessaire. La deuxième contribution de ce travail est un outil appelé FIFA (Fault-Injection-

Faut-Analysis) qui a été développé comme un « hardware IP » pour accélérer l’analyse de

fiabilité basée sur l’injection de fautes. Cet outil est adapté à différents modèles de fautes

15

et à des fautes multiples.

L’architecture de mise en œuvre de l’outil FIFA est illustrée dans la Figure 2. Nous

pouvons noter qu’il y a deux versions du dispositif sous test (dut). Le module «dut ref»

correspond à une version idéale du dispositif sous test, tandis que le module appelé «dut

faulty» est une copie du «dut ref» dans laquelle des saboteurs ont été ajoutés . Un

saboteur est un dispositif électronique capable de changer la valeur logique d’un nœud

du circuit. Le saboteur qui a été développé pour l’outil FIFA supporte quatre types de

fautes différentes : les inversions de bit, les collages à zéro, les collages à un, et les hautes

impédances. Son schéma est illustré dans la Figure 3.

Figure 2 – Schéma général de l’outil proposé

Node j

ej

m1

m0

Node je

00

01

10

11

Saboteur “j”

0

1

Z sel[s1:s0]

Figure 3 – Schéma général d’un saboteur

L’évaluation de la fiabilité d’un circuit à partir des résultats fournis par l’outil FIFA

est basée sur la méthode PBR [16]. Le module «fault generator» a été développé pour

générer des erreurs en ordre croissante de multiplicité, de sorte que le concepteur peut

limiter le nombre de tests à effectuer s’il connaît le nombre maximal de fautes simultanées.

Afin d’analyser la performance et la quantité de ressources utilisées par l’outil FIFA,

nous l’avons comparé avec une plateforme reportée dans la littérature nommée FuSE [17].

16

Table 3 – Plate-forme Fuse vs. outil FIFA

Fuse [17] FIFA
ALUTs 2157 817

Registres 694 467
Fréquence maximale 75.1MHz 109.87MHz

L’implémentation a été faite dans un stratix ii ep2s180f1508c3 et il a été considéré

un circuit avec N = 10 saboteurs et P = Z = 32 entrées et sorties. Les résultats de

comparaison peuvent être analysés dans le Tableau 3. Les résultats de synthèse de l’outil

FIFA sont présentés dans la Figure 4.

10 15 20 25 30 35 400

500

1000

1500

2000

2500

3000

3500

4000

N

L
og

ic
E

le
m

en
ts

(N
L
E

)

(a)

10 15 20 25 30 35 4080

100

120

140

160

180

200

220

N

M
ax

im
um

F
re

qu
en

cy
(M

H
z)

(f
m

a
x

)

(b)

Figure 4 – Résultats de la synthèse de l’outil (jusqu’à N erreurs simultanées) : (a) nombre
d’éléments logiques nécessaires dans le FPGA (b) fréquence maximale d’injection de fautes

Magré la bonne performance de l’outil FIFA, l’analyse de la fiabilité de circuits com-

plexes reste très coûteuse en temps. Pour surmonter ce problème, nous proposons d’utiliser

la technique de parallélisme. La Figure 5 illustre une architecture parallèle très simple

pour l’outil FIFA. Le problème avec cette approche est la grande surface additionnelle qui

17

STIMULI

GENERATOR 1
MASKING

ANALYSIS

SUPERVISOR

DUT

REF 1

FAULT

GENERATOR

STIMULI

GENERATOR 2

DUT

FAULTY 1

DUT

REF 2 DUT

FAULTY 2

DUT

REF N DUT

FAULTY N
STIMULI

GENERATOR N

Figure 5 – Une simple architecture parallèle pour la FIFA

FAULT

GENERATOR 1
MASKING

ANALYSIS

SUPERVISOR

DUT

REF

STIMULI

GENERATOR

FAULT

GENERATOR 2

DUT

FAULTY 1

DUT

FAULTY 2

DUT

FAULTY N
FAULT

GENERATOR N

Figure 6 – L’architecture en parallèle proposée pour la FIFA

devient nécessaire à cause de la réplication des modules «stimuli generator», «dut

faulty» et «dut ref». En fait, les modules «dut ref» et «dut faulty» répliqués re-

quièrent une surface qui peut être significative par rapport à celles des autres modules.

Une architecture qui évite la réplication de «dut ref» est illustrée dans la Figure 6.

Dans ce cas il est nécessaire de répliquer seulement les modules «dut faulty» et «fault

generator».

Afin d’implémenter correctement l’architecture illustrée dans la Figure 6, il faut bien

distribuer la génération de vecteurs de fautes entre les N modules «fault generator».

C’est important de remarquer que la génération de fautes est faite en ordre croissante

concernant le nombre de fautes simultanées. En conséquence, il faut développer un al-

gorithme pour calculer les vecteurs de fautes qui iront initialiser chaque module «fault

generator». Cet algorithme a été developpé en utilisant quelques régularités numériques

comme décrit dans le Chapitre 2. Les résultats, présentés dans la Figure 7, prouvent la

bonne distribution de la génération de vecteurs de fautes.

Jusqu’à ce point il a été introduit deux méthodes pour analyser la fiabilité d’un circuit

numérique. Cette analyse est généralement utilisée pour certifier le fonctionnement correct

du circuit pendant sa période de vie utile. Si sa fiabilité ne respecte pas la contrainte de

fiabilité minimale, les concepteurs peuvent réaliser le durcissement du circuit. Générale-

18

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Parallel Modules (N)

T
ot

al
 L

og
ic

 E
le

m
en

ts

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

8

Number of Parallel Modules (N)

N
um

be
r

of
 C

lo
ck

 C
yc

le
s

Figure 7 – Performance de l’architecture en parallèle proposée pour la FIFA

ment, la protection partiale d’un circuit contre défaillances est suffisante pour la plupart

des applications. Ainsi, le développement des nouvelles méthodes basée sur une procédure

de durcissement sélectif devient nécessaire. La troisième contribution de ce travail concerne

le développement de deux techniques pour identifier les portes logiques les plus critiques

et ainsi permettre de réaliser le durcissement sélectif d’un circuit.

Durcissement Sélectif

Les techniques de durcissement sélectif d’un circuit offrent un bon compromis entre

l’augmentation de sa fiabilité et le surcoût correspondant. Ces techniques consistent fonda-

mentalement de deux étapes : les portes ou blocs logiques sont analysés et ordonnés selon

leur susceptibilité aux fautes et la probabilité que ces fautes produisent une défaillance

du système ; ensuite, les portes ou blocs logiques les plus critiques sont protégés en uti-

lisant une technique de durcissement choisie par le concepteur. La difficulté de mise en

œuvre du durcissement sélectif réside dans l’identification des portes ou blocs logiques les

plus critiques pour une application. La première technique proposée dans ce travail consi-

dère l’utilisation des résultats produits par un circuit comme le facteur déterminant de la

criticité d’un bloc logique.

Évitement des erreurs critiques dans les circuits intégrés

Un problème présent dans la plupart des méthodes de durcissement sélectif est négliger

le profil d’utilisation des résultats d’un circuit par l’application cible. En fait, le concept

de fiabilité nominale ne prend pas en compte la quantité d’information que chaque bit de

sortie contient pour évaluer la fiabilité d’un circuit. Ce fait peut être illustré en considérant

3 architectures d’un circuit additionneur de 4 bits. La fiabilité de chaque bit de sortie

(y = b3b2b1b0) de ces 3 architectures est donnée dans le Tableau 4. La fiabilité nominale

19

Table 4 – Fiabilité pour les bits de sortie de 3 architectures différentes d’un additionneur
de 4-bit

Architecture b3 b2 b1 b0 Rnominal Rpractical

1 99% 99% 99% 95% 92.18% 97.63%

2 95% 99% 99% 99% 92.18% 94.17%

3 98% 99% 99% 95% 91.25% 96.64%

peut être calculée selon (10), et les résultats correspondants sont aussi disponibles dans

le Tableau 4. Concernant les valeurs pour la fiabilité nominale de ces architectures, un

concepteur conclura que les architectures 1 et 2 sont également fiables. Cependant, en

analysant la fiabilité de chaque bit de sortie pour ces architectures, il est évident que

l’architecture 1 fournit des résultats plus en conformité avec l’application que l’architecture

2.

Rnominal =
M−1
∏

i=0

Ri (10)

Pour faire face à ce problème, ce travail propose le concept de fiabilité pratique. Ba-

sée sur le fait que chaque bit de sortie d’un circuit peut avoir une importance différente

pour une certaine application, la fiabilité pratique utilise un facteur ki pour déterminer la

sévérité d’une erreur dans un bit de sortie spécifique (voir (11)). Par exemple, dans le cas

d’utilisation d’une codification binaire, la valeur de ki est calculée selon (12). Ce concept

corrige le problème décrit par l’exemple du additionneur 4 bits comme illustré dans le

Tableau 4

Rpractical =

M−1
∏

i=0

Rki
i (11)

ki =
1

2(M−1)−i
(12)

L’utilisation de la fiabilité pratique dans le processus de durcissement sélectif d’un

circuit est illustrée avec l’additionneur de 4-bit de la Figure 8. Dans ce cas, la première

étape consiste à identifier les portes logiques les plus critiques selon le modèle de fiabilité

pratique. Les résultats sont présentés dans le Tableau 5. La méthode [18] a été aussi

implémentée et les résultats ont été comparés avec la méthode proposée en considérant la

même contrainte de surface (voir Tableau 6).

Les résultats présents dans le Tableau 6 prouvent l’efficacité de la méthode proposée.

En fait, il peut être noté que le gain en fiabilité est plus marqué pour les bits les plus

20

significatifs du circuit (les plus critiques). En conséquence, le circuit durcit par la méthode

proposée exhibe la plus grande fiabilité pratique.

1
0

1
1

 9

1
21

3

1
4

1
6

1
7

1
8

1
9

2
0

 2
22

32
4

2
5

 2
72

8

2
9

 3
1

3
2

3
6

3
7

3
4

3
5

3
8

3
9

01

 8

3
3

1
5

 2
6

 2
1 3

0

•

•

23

•

•

45

•

•

67

•

•
•

•

• •

• • •

• • •
• • • • ••• • • • •

•

••••

•

••

•

••

S
4

C
0

B
3

A
3

A
2

B
2

A
1

B
1

A
0

B
0

S
3

S
2

S
1

S
0

•

Figure 8 – Schéma en portes logiques du circuit 74283

L’utilisation d’une fonction de coût pour déterminer les portes critiques

La méthode décrite dans les paragraphes précédents ne s’applique pas à toutes les

applications. En fait, plusieurs applications ne présentent pas une différence d’importance

entre les bits de sortie du circuit. Pour ces applications, ce travail propose aussi une méthode

basée sur des fonctions de coût pour automatiser le processus d’identification des portes

logiques critiques. Cette méthode utilise le modèle SPR pour évaluer la fiabilité d’un circuit

et déterminer les blocs logiques offrant la meilleure relation entre gain en fiabilité et coût.

Prenons un circuit composé de K portes logiques [gi · · · gk] pour lesquelles les fiabilités

sont représentées par [qi · · · qk] et la fiabilité total du circuit par R. Donc, en considérant

un gain en fiabilité dans la porte logique gi, la fiabilité total du circuit devient R∗
i . Dans ce

cas, deux portes logiques gi et gj peuvent contribuer différemment pour la fiabilité totale

du circuit (R∗
i et R∗

j). Il faut définir donc un paramètre pour qu’une fonction de coût puisse

être utilisée. Dans ce travail, nous proposons un paramètre appelé « hardware affinity »

(Chai) qui peut être lié à n’importe quelle contrainte du circuit. Par exemple, le Tableau 7

utilise la surface des portes logiques obtenue par une synthèse basée sur la bibliothèque

de Synopsis [19]. Il faut noter que le durcissement des portes logiques avec une valeur de

Chai plus grande sera prioritaire. Une fonction de coût Ci peut donc être exprimée comme

21

Table 5 – Classification pour les portes logiques du circuit 74283

gi S0 S0w
S1 S1w

S2 S2w
S3 S3w

S4 S4w

∑

ew CritFac

0 0 0 0 0 0 0 384 3072 192 3072 6144 36
1 0 0 0 0 0 0 384 3072 320 5120 8192 38
2 0 0 0 0 384 1536 192 1536 96 1536 4608 33
3 0 0 0 0 384 1536 320 2560 160 2560 6656 37
4 0 0 384 768 192 768 96 768 48 768 3072 25
5 0 0 384 768 320 1280 160 1280 80 1280 4608 32
6 384 384 192 384 96 384 48 384 24 384 1920 14
7 384 384 320 640 160 640 80 640 40 640 2944 23
8 512 512 256 512 128 512 64 512 32 512 2560 22
9 0 0 0 0 0 0 0 0 320 5120 5120 35
10 0 0 0 0 0 0 0 0 288 4608 4608 34
11 0 0 0 0 0 0 0 0 272 4352 4352 31
12 0 0 0 0 0 0 0 0 264 4224 4224 29
13 0 0 0 0 0 0 0 0 272 4352 4352 31
14 0 0 0 0 0 0 512 4096 0 0 4096 27
15 0 0 0 0 0 0 384 3072 0 0 3072 24
16 0 0 0 0 0 0 320 2560 0 0 2560 21
17 0 0 0 0 0 0 288 2304 0 0 2304 20
18 0 0 0 0 0 0 272 2176 0 0 2176 18
19 0 0 0 0 0 0 288 2304 0 0 2304 20
20 0 0 0 0 512 2048 0 0 0 0 2048 17
21 0 0 0 0 384 1536 0 0 0 0 1536 13
22 0 0 0 0 320 1280 0 0 0 0 1280 12
23 0 0 0 0 288 1152 0 0 0 0 1152 10
24 0 0 0 0 320 1280 0 0 0 0 1280 12
25 0 0 512 1024 0 0 0 0 0 0 1024 7
26 0 0 384 768 0 0 0 0 0 0 768 6
27 0 0 320 640 0 0 0 0 0 0 640 4
28 0 0 384 768 0 0 0 0 0 0 768 6
29 512 512 0 0 0 0 0 0 0 0 512 2
30 384 384 0 0 0 0 0 0 0 0 384 0
31 512 512 0 0 0 0 0 0 0 0 512 1
32 0 0 0 0 0 0 0 0 512 8192 8192 39
33 0 0 0 0 0 0 512 4096 0 0 4096 27
34 0 0 0 0 512 2048 0 0 0 0 2048 15
35 0 0 512 1024 0 0 0 0 0 0 1024 8
36 0 0 0 0 0 0 512 4096 0 0 4096 28
37 0 0 0 0 512 2048 0 0 0 0 2048 16
38 0 0 512 1024 0 0 0 0 0 0 1024 9
39 512 512 0 0 0 0 0 0 0 0 512 3

22

Table 6 – Analyse de fiabilité du circuit 74283

Fiabilité Sans durcissement Méthode en [18] Méthode proposée

S0 94.07% 94.97% 94.07%

S1 92.39% 93.26% 92.39%

S2 91.80% 92.65% 92.43%

S3 91.33% 92.17% 93.07%

S4 94.60% 95.51% 97.15%

Rnominal 68.93% 72.24% 72.63%

Rpractical 87.29% 88.89% 90.65%

en (13).

Table 7 – Paramètre Chai pour quelques cellules logiques

Cellule Surface (µm2) Chai

INVX0 5.5296 1
NAND2X0 5.5296 1
NOR2X0 5.5296 1
AND2X1 7.3728 0.75
OR4X1 10.1376 0.55

XOR3X1 22.1184 0.25

Rgi = R∗
i −R

Ci = Rgi/Chai (13)

La méthode proposée évalue la fiabilité du circuit et identifie les portes logiques qui

seront durcies jusqu’à ce qu’un niveau minimal de fiabilité ‘T’ soit atteint. En utilisant

cette méthodologie pour les circuits du benchmark ISCAS [20], deux profils pour la fonction

de coût ont été obtenus (voir Figure 9 et 10). Le premier présente une décroissance très

marquée juste après le début de la courbe, et le deuxième présente la formation des plateaux

jusqu’à la fin de l’évaluation.

A partir de ce constat, ce travail propose aussi deux heuristiques pour trouver un point

d’arrêt pour la méthode. Le premier est appelé l’heuristique de la somme des éléments

et est calculé selon (14). Dans ce cas, C0 représente la valeur de la fonction de coût du

meilleur candidat pour le durcissement, et K est une contrainte empirique choisie par le

concepteur. Le deuxième s’appelle l’heuristique basée sur le pourcentage et utilise un point

23

Figure 9 – Profil de la fonction de coût pour le circuit c432

Figure 10 – Profil de la fonction de coût pour le circuit c499

d’arrêt pour l’algorithme égal à X% du valeur de C0. L’utilisation des deux heuristiques

peut être analysée dans la Figure 11.

j
∑

i=2

Ci ≤ K × C0 (14)

Les deux heuristiques ont été utilisées pour réaliser le durcissement de plusieurs circuits

du benchmark ISCAS. Les résultats de cette utilisation sont indiqués dans les Tableaux 8

et 9.

Le durcissement sélectif peut offrir un bon compromis entre le gain en fiabilité du

système et l’ajout de redondance nécessaire. Cela est une caractéristique fondamentale

pour la plupart des circuits. Cependant, il y a des applications qui requièrent un niveau de

fiabilité très élevé. Pour ces applications un durcissement sélectif peut ne pas être suffisant

et l’utilisation de méthodes offrant un niveau de protection plus haut est intéressante,

même au pris d’un surcoût significatif de surface. La quatrième contribution de ce travail

24

Table 8 – Résultats pour l’heuristique de la somme des éléments, K = 10

Circuit Nombre Surface Portes Surface Surcoût
de portes original (µm2) durcit durcit (µm2) en surface

c17 6 33.1776 6 99.5328 200%
74283 40 306.5096 20 547.9688 78.7%
c432 160 1134.4672 33 1541.4208 35.8%
c499 202 2155.1680 12 2414.1504 12.0%
c1355 546 3194.7328 11 3316.3840 3.8%
c1908 880 5273.7488 13 5417.5184 2.7%
c2670 1269 8018.0632 19 8233.7176 2.6%
c3540 1669 10855.1824 25 11177.7424 2.9%
c5315 2307 15293.5992 20 15518.4696 1.4%

Table 9 – Résultats pour l’heuristique basée sur la pourcentage, X = 50%

Circuit Nombre Surface Portes Suface Surcoût
de portes original (µm2) durcit durcit (µm2) en surface

c17 6 33.1776 5 88.4736 166.6%
74283 40 306.5096 9 406.0424 32.5%
c432 160 1134.4672 2 1187.5264 4.6%
c499 202 2155.1680 41 2854.6752 32.4%
c1355 546 3194.7328 201 5647.1232 76.7%
c1908 880 5273.7488 119 6611.912 25.3%
c2670 1269 8018.0632 10 8128.6552 1.4%
c3540 1669 10855.1824 8 10963.9312 1.2%
c5315 2307 15293.5992 15 15459.4872 1.1%

25

Percent wise heuristic

Sum of elements

heuristic

Figure 11 – L’utilisation des deux heuristiques dans le circuit c1355

est une méthode pour optimiser la procédure de partitionnement d’un circuit TMR de telle

façon que un niveau de fiabilité très élevé soit assuré.

Optimisation du placement des arbitres dans un circuit TMR

La méthode TMR est souvent utilisée pour réaliser le durcissement d’un circuit intégré.

L’idée générale est très simple : trois répliques du circuit fournissent les résultats pour un

arbitre qui juge quel est la sortie exacte en utilisant normalement le critère de majorité

(voir Figure 12). Dans ce cas, même avec la présence d’une erreur dans la sortie d’un

module, l’arbitre peut fournir la sortie exacte. Donc, la fiabilité totale du circuit initial

(Rm) devient Rcir comme illustré dans (15).

Module

Module

Module

Majority
Input Output

Figure 12 – Schéma en blocs de la méthode TMR

Rcir = R3
m + 3R2

m(1−Rm)

Rcir = 3R2
m − 2R3

m (15)

En dépit de sa simplicité, la méthode TMR offre un bon niveau de protection contre

défaillances. Si une application requiert un niveau de fiabilité plus élevé que celui fourni

par le TMR, il est possible de réaliser un partitionnement du circuit de telle façon qu’il

soit composé par ‘m’ modules et sa fiabilité soit donnée par (16). En considérant que

26

chaque module est protégé par TMR (voir Figure 13), la fiabilité total du circuit peut

être déterminée selon (17).

Module 1 Module 2 · · · Module m

x Module 1

D
istrib

u
ted

M
a
jo
rity

V
o
te
r

Module 2

D
istrib

u
ted

M
a
jo
rity

V
o
te
r

· · · Module m Majority Voter y

Module 1 Module 2 · · · Module m

Partition 1 Partition 2 Partition m

(a) Schéma TMR utilisant des partitions

Module

Module

Module

Majority

Majority

Majority

Input

Output

Output

Output

(b) Distributed majority voter

Figure 13 – Circuit protégé par des partitions TMR

RC1
=

n
∏

k=1

(Rmk
) (16)

RC1TMR
=

n
∏

k=1

(3R2
mk
− 2R3

mk
) (17)

L’approche de partitionnement d’un circuit TMR peut offrir un niveau très élevé de

fiabilité qui dépend de deux facteurs principaux : la quantité ‘n’ des modules et le placement

des arbitres pour ces modules. Donc, une question qui devient intéressante est comment

déterminer ces deux facteurs d’une façon optimale pour qu’un niveau de fiabilité minimale

Rmin soit atteint.

Ce problème peut être divisé en deux parties. En considérant une quantité ‘n’ de par-

titions, il faut évaluer la valeur de la fiabilité de chaque module Rmk
pour que la fiabilité

totale RC1TMR
soit maximisée. Cela peut être obtenu avec la méthode des multiplicateurs

de Lagrange appliquée dans les équations (16) et (17) conforme décrit en (18).

27

g(Rmn , Rmn−1
, · · · , λ) =

n
∏

k=1

(3R2
mk
− 2R3

mk
)− λ(

n
∏

k=1

(Rmk
)−RC1

) (18)

La résolution de ce problème implique une série de dérivées partielles comme décrit

ci-après :



















































∂
∂Rm1

g = (6Rm1
− 6R2

m1
)
∏n

k=2
(3R2

mk
− 2R3

mk
)− λ

∏n
k=2

(Rmk
) = 0

∂
∂Rm2

g = (6Rm2
− 6R2

m2
)(3R2

m1
− 2R3

m1
)
∏n

k=3
(3R2

mk
− 2R3

mk
)− λRm1

∏n
k=3

(Rmk
) = 0

∂
∂Rm3

g = (6Rm3
− 6R2

m3
)
∏

2

k=1
(3R2

mk
− 2R3

mk
)
∏n

k=4
(3R2

mk
− 2R3

mk
)− λRm1

Rm2

∏n
k=4

(Rmk
) = 0

...
...

...
...

...

∂
∂Rmn

g = (6Rmn
− 6R2

mn
)
∏n−1

k=1
(3R2

mk
− 2R3

mk
)− λ

∏n−1

k=1
(Rmk

) = 0

Par inspection, il peut être déterminé qu’une solution qui maximise la valeur de RC1TMR

en considérant l’utilisation de ‘n’ modules est Rm1
= Rm2

= · · · = Rmn = R
1/n
C1

. C’est-à-

dire, le circuit doit être partitionné en modules de fiabilités aussi identiques que possible. En

utilisant ce résultat, l’équation (17) devient (19). De plus, ce résultat permet l’évaluation

du nombre de modules ‘n’ qui doivent être utilisés pour qu’un niveau de fiabilité minimale

Rmin soit atteint.

RC1TMR
= (3R

2/n
C1
− 2R

3/n
C1

)n (19)

La littérature ne reporte pas l’existence d’outils permettant la mise en œuvre automa-

tique de la procédure de partitionnement d’un circuit TMR. Pour faire face à ce problème,

nous proposons une méthode basée sur une idée très simple. D’abord, il faut visualiser

l’évolution de la fiabilité du signal par rapport aux niveaux logiques comme illustré dans

la Figure 14. Dans ce cas, un niveau logique est défini comme un nœud qui présente la

capacité de devenir la frontière d’un module.

Si un arbitre est inséré dans un niveau aléatoire d’un circuit, une augmentation de la

fiabilité est attendue dans ce même niveau (voir Figure 15). En fait, le gain en fiabilité

est obtenu à cause de la capacité que possède l’arbitre de corriger des erreurs simples.

C’est bien connu que le gain en fiabilité obtenu par l’utilisation de la méthode TMR

dépend de la fiabilité du module Rm comme illustré par (15). En même temps, la réduction

de la fiabilité du signal illustrée dans la Figure 14 est aussi proportionnelle à Rm. Donc,

la limitation de la réduction de la fiabilité du signal d’un circuit génère la création des

28

Reliability

Levels

Figure 14 – Comportement de la fiabilité du signal d’un circuit par rapport aux nombre
de niveaux

Reliability

Levels

Majority Voter

Figure 15 – L’insertion d’un arbitre dans un niveau aléatoire du circuit

blocs logiques de fiabilités aussi égales que possible. Cela est la première conclusion pour

obtenir une solution optimale. Si ce seuil est défini par la fiabilité minimale du circuit, le

résultat sera un nombre des modules ‘n’ très proche de la valeur optimale. Cette procédure

est illustrée dans la Figure 16.

Reliability

Levels

Reliability

Requirement
(Rmin)

Level 5 Level 9 Level 12

Figure 16 – Circuit TMR utilisant une distribution du processus de vote

Ce résultat peut être mieux analysé en considérant un circuit simple comprenant 10000

inverseurs logiques identiques (même fiabilité Rm = 99.99%) connectés dans une structure

en cascade (voir Figure 17).

La fiabilité totale du circuit Rc peut être évaluée à l’aide de l’outil SPR (Rc =

56.7654%). En admettant que la contrainte de fiabilité minimale est Rmin = 99.9%, la

29

x · · · y

c1 c2 cm−1 cm



m = 10000

Figure 17 – Inverseurs logiques en cascade

méthode proposée insère 1000 arbitres. Tous les modules ont la même quantité de compo-

sants (N=10) sauf le premier (N=11) et le dernier (N=9). Il résulte de (19) que la quantité

minimale de modules pour attendre le valeur de Rmin est égal à 961. Cependant, cela vou-

drais dire que chaque partition devrait avoir 10.4058 inverseurs ce qui est impossible. La

solution la plus proche possible sera l’utilisation de 10 inverseurs par module, ce qui cor-

respond à la quantité de 1000 arbitres insérés, la même obtenue par la méthode proposée.

La Figure 18 illustre le comportement de la méthode proposée en considérant plusieurs

valeurs de Rmin. Il peut être observé que les résultats sont proches des résultats optimaux

pour tous les valeurs de Rmin considérés.

0,99 0,991 0,992 0,993 0,994 0,995 0,996 0,997 0,998 0,999 1
0

100

200

300

400

500

600

700

800

900

1000

R
min

N
um

be
r

of
 V

ot
er

s

Optimal Result

Proposed Method

Figure 18 – Nombre d’arbitres insérés par la méthode proposée

Conclusion

Avec l’évolution technologique, la fiabilité joue un rôle de plus en plus important dans

la conception des circuits intégrés. L’analyse de fiabilité doit être utilisée dans le flot de

conception du circuit pour identifier le besoin d’utilisation des techniques de durcissement.

Dans la littérature il y a plusieurs techniques d’analyse et de durcissement d’un circuit

intégré. Cependant, ces téchinques présentent des limitations du fait de la complexité

30

d’analyse. En conséquence, le développement des nouvelles méthodes d’analyse aussi bien

que des techniques de durcissement deviennent nécessaires. Dans cette thèse, plusieurs

méthodes et outils d’analyse et durcissement ont été proposés.

Concernant l’analyse de fiabilité, la métrique mathématique «effective reliability» per-

met la prise en considération de la tolérance aux erreurs de l’application cible pour évaluer

la fiabilité du circuit, alors que l’outil FIFA a été développé pour accélérer le processus

d’analyse de fiabilité basée sur l’injection de fautes.

Dans le domaine de durcissement d’un circuit, deux techniques ont été développées pour

identifier les portes logiques les plus critiques d’un circuit. Cela est une étape fondamentale

pour l’application d’un processus de durcissement sélectif. Pour les applications qui ont

besoin d’un niveau de fiabilité très élevé, un méthode automatique de partitionnement

d’un circuit TMR a été élaborée. La performance optimale de cette méthode a été prouvée

mathématiquement aussi bien que par simulation.

31

Symbols and Abbreviations

q Gate reliability

1− q Gate unreliability

qi Reliability of bit i

λ, λ(t) Failure rate

Chai Hardening affinity parameter

R(t), R̂(t) Reliability function

Ri Reliability of bit i

u(t) Step function

Rack Probability of errors being masked according to the application

Rnom Nominal reliability

Reff Effective reliability

Rpractical Practical reliability

ALM Adaptive logic module

ASMBL Advanced silicon modular block

AUED All-unidirectional error detecting code

BUED Burst unidirectional error detecing code

CCC Clock conditioning circuit

CD Code distance

CLB Configurable logic block

CMOS Complementary metal-oxide-semiconductor

CMT Clock management tile

DCM Digital clock management

DMA Direct memory access

DRAM Dynamic random-access memory

DUT Device under test

32

ECC Error correcting code

EDC Error detecting code

EDF Électricité de France

EEPROM Electrically erasable programmable read-only memory

EMI Electromagnetic interference

EPROM Erasable programmable read only memory

FA Full Adder

FIT Failures in time

FPGA Field-programmable gate array

HALT Highly accelerated life test

HD Hamming distance

IEC, CEI International electrotechnical commission

IP Intellectual property

ITM Ideal transfer matrix

ITRS International technology roadmap for semiconductors

JEDEC Joint electron devices engineering council

JTAG Joint test action group

LAB Logic array block

LE Logic element

LET Linear energy transfer

LSB Least significant bit

LUT Look-up table

MBU Multiple-bit upset

MCU Multiple-cell upset

MOSFET Metal-oxide-semiconductor field-effect transistor

MSB Most significant bit

MTBF Mean-time-between-failures

MTTF Mean-time-to-failure

NMR N-modular redundancy

OTP One time programmable

PBR Probabilistic binomial reliability model

PIP Programmable interconnect point

PLL Phase-locked loop

PTM Probabilistic transfer matrix

RAM Random-access memory

RTL Register transfer level

SBD Soft breakdown

33

SEE Single-event effect

SEFI Single-event functional interrupt

SEL Single-event latch-up

SER Soft error rate

SET Single-event transient

SEU Single-event upset

SPICE Simulation program with integrated circuit emphasis

SPR Signal probability reliability model

SPR-MP SPR multi-path model

SRAM Static random-access memory

STMR Selective triple modular redundancy

TMR Triple modular redundancy

TSC Totally self-checking

t-UED t-unidirectional error detecting code

ULA Ultra-low alpha

VHDL Very high speed integrated circuit hardware description language

VLSI Very-large-scale integration

34

35

Contents

Introduction 44

1 Background on Reliability 51

1.1 Introduction . 51

1.2 Reliability analysis . 51

1.2.1 Faults in VLSI circuits . 55

1.2.2 Reliability issues in FPGAs . 59

1.2.3 Prior works on reliability analysis . 62

1.3 Reliability improvement of integrated circuits 68

1.3.1 Modular redundancy . 68

1.3.2 Voting strategies . 71

1.3.3 Selective Hardening . 72

2 FIFA Tool 75

2.1 Introduction . 75

2.2 FIFA Tool . 75

2.2.1 FIFA Architecture . 77

2.2.2 Reliability Assessment . 81

2.2.3 Synthesis Results . 82

2.2.4 Parallelizing the FIFA Fault Generation 84

2.2.5 Results . 88

2.2.6 Conclusion . 89

3 Effective Reliability 91

3.1 Introduction . 91

3.2 Error tolerance . 92

3.3 Effective reliability . 94

3.4 Quality metrics . 95

3.4.1 Definitions . 95

36 CONTENTS

3.4.2 Quality metric 1: bit significance . 96

3.4.3 Quality metric 2: relative error . 97

3.5 Simulation results . 98

3.5.1 Median filter . 98

3.5.2 8-bit ripple carry adder . 100

3.5.3 4-bit multiplier . 102

3.6 Conclusion . 104

4 Selective Hardening 107

4.1 Introduction . 107

4.2 Avoiding Critical Errors in Integrated Circuits 107

4.2.1 Nominal reliability . 107

4.2.2 Practical reliability . 108

4.2.3 Selectively applying TMR . 109

4.3 Using a Cost Function to Detect Critical Gates 114

4.3.1 Cost function profiling . 116

4.3.2 Experimental results . 119

4.3.3 Comparison with related works . 120

4.4 Conclusion . 121

5 Optimizing Voter Placement for TMR Systems 123

5.1 Introduction . 123

5.2 TMR approach . 123

5.3 Partitioning a TMR design . 125

5.4 Problem of automatically inserting voters 128

5.5 Proposed method . 129

5.6 Conclusion . 134

6 Concluding Remarks 135

A Other Methods for Reliability Improvement of ICs 139

A.1 Fault detection and correction . 139

A.1.1 Basic principles . 139

A.1.2 Fault detection techniques . 140

A.2 Evolvable hardware . 149

B Basics on FPGAs 153

B.1 FPGA technologies . 153

B.1.1 Fusible link technology . 153

37

B.1.2 Antifuse . 154

B.1.3 Static memory technology . 156

B.1.4 Flash technology . 157

B.1.5 Summary . 159

B.2 FPGAs architectures . 159

B.2.1 Altera . 159

B.2.2 Xilinx . 162

B.2.3 Actel . 165

B.2.4 Lattice . 167

Conclusion 169

Glossary 171

Notations 171

Bibliography 184

38 CONTENTS

39

List of Figures

1.1 Number of functioning parts of a circuit at time t 53

1.2 Bathtub curve . 54

1.3 Residue induced intermittent fault in a DRAM chip 57

1.4 Effects of a high-energy ion hitting a semiconductor device 58

1.5 Fault simulation approach proposed by Ogus 63

1.6 PTM representation for an AND gate . 64

1.7 Basic interconnection models of PTM . 64

1.8 SPR matrix for the output of a 2-input OR gate 65

1.9 Propagation of the SPR matrices through a circuit 65

1.10 TMR concept envisaged by Von Neumann 69

1.11 TMR performance regarding reliability improvement 69

1.12 TMR with three majority voters . 70

1.13 Word-Voter proposed in [21] . 71

2.1 General scheme of the proposed tool . 78

2.2 General scheme of a saboteur . 78

2.3 FIFA Timing diagram of communication signals 80

2.4 Example of a step by step execution of Algorithm 1 81

2.5 Synthesis results of the FIFA tool . 83

2.6 A simple parallel architecture for FIFA . 85

2.7 The proposed parallel architecture for FIFA 85

2.8 Example of a fault pattern generation sequence 86

2.9 Pascal’s triangle . 87

2.10 Total logic elements . 89

2.11 Number of clock cycles . 89

3.1 Example of a logical masking . 92

3.2 Bit-flip occurrence in a sine wave . 93

3.3 General schema for reliability calculation . 95

40 LIST OF FIGURES

3.4 Example of matrix E considering 3 errors 96

3.5 Comparison between the original and the noisy “Lena” pictures 100

3.6 Structure of FA (full adder) block . 101

3.7 Schema of FA block . 101

3.8 Structure of a 4-bit multiplier block . 103

4.1 4-bit fast adder circuit . 110

4.2 74283 gate-level schematic . 111

4.3 Simulation results for the 74283 circuit . 114

4.4 Cost function profile for the circuit c432 . 117

4.5 Cost function profile for the circuit c499 . 118

4.6 Both heuristics applied to the circuit c1355 118

5.1 TMR block scheme . 123

5.2 Reliability gain using TMR . 124

5.3 Partitioning a TMR design . 125

5.4 C1 comprises n modules serially interconnected 126

5.5 Plot of Rm1
=

RC1

Rm2

for different values of RC1
. 127

5.6 Reliability of a circuit versus its number of levels 129

5.7 Insertion of a majority voter . 130

5.8 Distributing the voting process of a TMR circuit 130

5.9 Cascade of inverters . 131

5.10 Number of voters inserted by the proposed technique 131

5.11 Circuit 74283 - Gate level . 132

A.1 Example of a duplex comparison scheme . 139

A.2 Computer memory using parity checking . 141

B.1 Programmable circuit concept . 154

B.2 Programmable circuit with intact fusible links 154

B.3 Programmed circuit with output Y = A+ B̄ 154

B.4 Programmable circuit with intact antifuses 155

B.5 Programmed circuit with output Y = A+ B̄ 155

B.6 Static Memory Cell . 157

B.7 Flash memory cell - ProASIC3 . 158

B.8 ALM High-Level Block Diagram . 160

B.9 LE Block Diagram . 161

B.10 Example of devices using the ASMBL architecture 163

B.11 High-level block diagram of a CLB in Spartan FPGAs 164

41

B.12 AX C-Cell and R-Cell . 166

B.13 AX SuperCluster Arrangement . 167

B.14 PFU block diagram . 168

42 LIST OF FIGURES

43

List of Tables

1.1 Programming technology properties summary 60

2.1 Fuse platform vs. FIFA tool . 84

3.1 Effective reliability evaluation for different error tolerances 99

3.2 Reliability values for the output bits of a full adder 101

3.3 Reff for different error tolerances (CRA8) . 102

3.4 Reliability values for each output bit of the 4-bit multiplier 103

3.5 Reff for different error tolerances (MUL4) 104

4.1 Reliability values of three different architectures of an adder 108

4.2 Error analysis for the gates of the circuit 74283 112

4.3 Reliability Analysis of 74283 . 113

4.4 Hardware affinity (Chai) parameters for some cells 116

4.5 Results for the sum of elements heuristic, K = 10 119

4.6 Results for the percent wise heuristic, X = 50% 120

5.1 Placement of the voters for the circuit 74283 133

5.2 Reliability of gates based on their area . 133

5.3 Placement of the voters for the 74283 circuit 134

A.1 3-bit Berger code – B0 scheme . 142

A.2 Bose code for data words comprising 4 bits 143

A.3 Syndrome Table for Hamming (7,4) code . 147

B.1 Programming technology properties summary 159

B.2 Altera Devices Comparison . 162

B.3 Xilinx Devices Comparison . 164

B.4 Actel Devices Comparison . 167

B.5 Lattice Devices Comparison . 169

44 Introduction

45

Introduction

The first electronic computer was built in Antanasoff’s Iowa State College in 1942 [22]

and used rather unreliable components. Improve the system reliability was a major concern

and techniques such as duplexing with comparison, triplication with voting, control codes,

among others, were proposed. Indeed, important researches were done by J. Von Neumann,

E. F. Moore and C. E. Shannon using redundancy as a mean to build reliable systems from

less reliable components [23,24].

Since then, the integrated circuit technology has underwent an exponential evolution

as predicted by the Moore’s law [1, 2]. Nowadays devices are shrinking into the deca-

nanometer range, allowing the fabrication of chips containing billions of transistors, and

operating at very high speeds (multiple GHz). In such scale, new physical phenomena, such

as Van Der Waals and Casimir forces, appear leading to new fabrication methodologies

and affecting the components reliability [3]. Further, interconnect systems are becoming

very complex, particularly with the introduction of the 3-D die integration scheme [4]. In

fact, the higher density of integrated circuits together with the higher complexity of the

interconnections lead to a higher probability of erroneous components in a die. Meanwhile,

the higher frequencies pose strict limits to timing, thus also increasing the probability of

timing errors [5]. In other words, a reduction in manufacturing yield is expected, as well

as in the overall circuit reliability [6–10].

Consequently, faults have become more and more likely to occur in deep-submicron

technologies. Permanent faults can be significantly reduced by performing deep investi-

gations during offline testing [25]. On contrary to that, transient faults depend on envi-

ronmental conditions, and therefore they randomly occur during circuit operation. In the

past, these faults used to be a concern only on the design of memories. However, the tech-

nology scaling has increased the susceptibility of combinational blocks to thermal bit-flips,

radiation events, among others, so that their resulting error rates are approaching those of

memories [26, 27]. This is a serious menace to circuits designed to operate under critical

environments such as nuclear power plants, avionics, among others, and therefore solutions

to construct fault-tolerant circuits are necessary.

This dissertation is a result of a CIFRE partnership between EDF R&D and Télécom

46 Introduction

Paristech. The motivations for this work can be explained as follows. EDF is one of

the world’s largest producers of electricity with main activity in nuclear power. EDF’s

control-command systems are based on electronics devices/circuits. Nuclear power plants

consider safety as a very high priority in their systems, and electronic circuits must be in

accordance to several technical standards such as the IEC 62566 [11], the IEC 60987 [12],

and the IEC 61513 [13] in order to be qualified to operate in such critical environments.

Particularly, the use of programmable devices poses a great challenge to be qualified since

the functionality of the IC is not defined by the founder of the physical component, but by

the designer of the application. Further, the technical standard IEC 62566 states that the

benefits accomplished by the use of redundancy in an electronic circuit must be balanced

with the corresponding increase in the system complexity as well as in the fault coverage.

Because of that, methods to analyze and to improve the reliability of electronic circuits to

be used in nuclear power plants are a major concern.

The main objective of the current work is to propose methods to analyze and to im-

prove the reliability of circuits in order to facilitate their qualification according to the

aforementioned technical standards. Therefore, different strategies that allows both to

achieve a very high level of reliability in a circuit and to control the amount of redundancy

adding are required. These methods must be developed in such a way that they can be

used to construct circuits using programmable devices as well as for circuits tailored for a

specific function, e.g. ASICs. Also, the proposed solutions must be able to be appended

to traditional design flows of integrated circuits.

A fault-tolerant integrated circuit is generally obtained by the properly use of redun-

dancy, whether it be temporal or spatial. The addition of redundancy, however, directly

affects some attributes of the circuit, such as performance and surface, thus increasing the

overall system cost and complexity. Because of that, the choice of which fault tolerant

approach to use for a given scenario involves a multi-criteria optimization problem, taking

into account all the specified design constraints. Therefore, whether a circuit is intended

to mission critical applications or in the case reliability can be relaxed in order to avoid the

increase in the complexity of the circuit, reliability analysis plays a crucial role in its design

flow. Methodologies to assess the reliability of circuits have been extensively researched

over the last years. As a matter of fact, an optimal reliability analysis lies on the use of

as much information as possible about the circuit itself as well as about the target appli-

cation. However, most of the existing techniques assume simplifications on mathematical

models such as single faults, uncorrelated signals, among others. Further, not much has

been done in order to consider the usage profile of the circuits’ results when calculating its

reliability. In spite of that, many applications exhibit the ability to tolerate some kinds of

errors. By considering such ability, a designer can obtain more accurate results, which can

47

avoid unnecessary over costs.

Based on that fact, the current work proposes a technique to cope with such problem.

The proposed technique, named effective reliability, can take into account the masking

effect provided by the target application in order to evaluate its reliability. This technique

works alongside quality metrics such that it is possible to differentiate critical from non-

critical errors. In this case, an error is said to be non-critical if it can be tolerated by the

target application. Two possible quality metrics are also proposed in the current work.

Effective reliability is of great use for applications in which some errors can be tolerated.

However, mission critical applications demand a high-degree of confidence, and they have

low or no interest in accepting any kind of error. Indeed, these circuits usually require

deep investigations to predict its behavior considering the occurrence of faults, so that the

reliability of its results can be asserted. Generally, such circuits demand a test coverage

approaching 100%, and therefore methods to accelerate exhaustive testing are necessary.

In order to cope with this problem, this work also proposes a Verilog-based platform

to exhaustively analyze the behavior of a logical circuit considering the occurrence of

faults. The proposed platform, named FIFA (Fault-Injection-Fault-Analysis), is based on

the Probabilistic Binomial Reliability model (PBR), which can evaluate the reliability of

a circuit based on its logical masking ability. One of the great advantages of the FIFA

platform is that it is easily customized. Further, it supports several fault models as well as

the ability to inject single and multiple simultaneous faults. It is important to highlight

that the fault pattern generation as well as the fault injection can be performed without the

need of any device reconfiguration. Also, the proposed platform allows the evaluation of

approximated reliability values by considering a maximum number of simultaneous faults

to be injected. In order to allow that, the platform generates the fault patterns in an

ascending order regarding the number of simultaneous faults. The flip side of the coin is

that such fault pattern generation sequence imposes strict difficulties to be parallelized. In

order to address this problem, the current work also proposes a solution based on number

patterns to elaborate a parallel design for the FIFA platform, which can significantly reduce

the required computing time.

Although reliability analysis plays an important role during the design phase of an

integrated circuit, methods to improve its reliability are more and more desired in deep-

submicron technologies. Partial fault tolerant designs are usually enough for some appli-

cations, and therefore methods based on selective hardening are very suitable.

Based on that fact, this work proposes two methods to identify the critical gates of a

circuit in order to apply selective hardening. The first one is based on the criticality of the

output bits regarding the usage profile of the results. In other words, it drives the reliability

improvement effort to better protect the output bits that are considered more critical to

48 Introduction

the target application. By doing that, the proposed methodology can automatically select

a set of gates, based on an area overhead constraint, such that the probability of occurrence

of critical errors is minimized. The second one uses a parameter similar to a hardening cost

in order to drive the methodology using accurate cost values for hardening each gate. In

addition, two heuristics are introduced as a means to determine when selective hardening

is no longer feasible.

Although partial fault tolerance techniques are good solutions for some applications,

this is not the case for mission critical ones. Indeed, most of the time such applications

demand the most reliable system possible. In such context, Triple Modular Redundancy

(TMR) is a fault-tolerant technique often used despite its huge area overhead. This is

because TMR has proven to be a very simple, effective solution to the correction of single

faults. Further, several tools were developed in order to automatically apply TMR to a

circuit, which simplifies the whole process of circuit hardening. However, as the dimensions

of integrated circuits continue to shrink, the probability of occurrence of MBUs increases

as well. Therefore, methods that can deal with multiple simultaneous faults are highly

desired.

One possible solution to that is the use of other modular redundancy techniques such

as 5MR, 7MR, etc., but the area overhead is generally prohibitive. On the other hand, the

heart of TMR is the majority voter block, responsible to mask the faults occurring in the

circuit. Indeed, this block can correct any single fault or detect any double faults occurring

in the circuit. Delegate the majority decision to several modules across the circuit has been

proved to be a great cost-effective solution to correct multiple simultaneous faults. This

technique, known as partitioned TMR, can increase the fault tolerance of a traditional

TMR system by slightly increasing the corresponding area overhead. However, determine

the number of majority voters to be used and their corresponding placements are not trivial

tasks. Indeed, the voter insertion process directly affects the timing performance, the area,

and the reliability of the obtained circuit. This problem is yet more complicated in case of

FPGAs because certain nets are not allowed to be cut by voters, or this is not desirable.

Finally, the current work proposes an algorithm to tackle this problem. Given a reli-

ability requirement, the proposed algorithm can automatically detect the best amount of

voters as well as their placements in order to partition a TMR design. Further, the reliabil-

ity gains achieved by the proposed method approach those obtained with an optimal TMR

partitioning. Indeed, by using this method, only the first and last partitions do not always

have optimal sizes. Last but not least, the method was developed in order to be applied

in both VLSI and FPGA circuits by analyzing gate and primitive netlists, respectively.

The current work is organized as follows. First, some basics on reliability analysis and

reliability improvement techniques are presented in Chapter 1. Next, Chapter 2 introduces

49

a fault-injection tool developed during this thesis as a means to analyze and validate a fault

tolerant design. Chapter 3 introduces the concept of effective reliability of an integrated

circuit. Chapter 4 presents two techniques to selectively harden a circuit. The first is based

on the usage results of the output, while the latter uses heuristics and a hardening cost

function in order to automatically select the best candidates to be protected. Chapter 5

presents a technique to automatically insert partitioning voters into a TMR design. Finally,

a review of other methods existent in the literature to improve the reliability of a circuit

is presented in Appendix A, and a review of some popular technologies and architectures

of FPGAs is available in Appendix B.

50 Introduction

51

Chapter 1

Background on Reliability

1.1 Introduction

Until the sixties, the consumer expectation when buying something was to receive a

product that performed well its functionality at the time it left the manufacturer. This

expectation evolved over the years, and the product bought today must perform the re-

quired function free of failures for a specified period of time [28]. This brings the concept of

reliability of a product, which can be defined as the probability of a given item to perform

its required function under stated conditions for a stated time interval [14].

Since then, reliability has become a very important attribute for most of industrial

products. In case of electronic circuits, reliability is a main consideration when designing

nanoscale devices. Indeed, factors associated to technology scaling such as manufactur-

ing precision limitations, devices parametric variations, supply voltage reduction, among

others, are increasing the likelihood of faults in electronic circuits, thus decreasing their

reliabilities. Therefore, methods that can analyze the reliability of a circuit in order to

provide feedback for the elaboration of robust designs are highly desired.

This chapter presents some basics on reliability. First, Section 1.2 introduces some

important concepts on reliability prediction. Next, techniques to improve the reliability of

a circuit based on modular redundacy are discussed in Section 1.3.

1.2 Reliability analysis

An electronic circuit is composed of a set of electronic components interconnected in

such a way that a given functionality, described by a circuit specification, is provided.

Assuming that a circuit is well specified and that it contains only fault-free elements, the

desired functionality can be always guaranteed. However, electronic devices are susceptible

to some natural and human-made mechanisms, e.g. impurities in materials, device param-

52 1. Background on Reliability

eters variations, errors in the specification of a circuit, among others, which can affect the

state of individual electronic components. These mechanisms, here called faults, are of

great importance for reliability engineering because they are responsible for the occurrence

of errors in electronic circuits. However, not every error will succeed to propagate to the

output of a circuit and then affect the final results. As a matter of fact, the propagation

of errors depends on the interaction among the electronic components of a design. If an

error succeeds to reach the final output of a circuit, it will lead to the occurrence of results

that are not in accordance with the circuit specification, also know as failures. Otherwise,

it is said that the error was masked. This abnormal behavior is becoming more and more

likely to happen with the downscaling of electronics. Because of that, reliability analysis

has become an important step on the design flow of integrated circuits.

Reliability analysis can be performed in several phases of the circuit development. How-

ever, the most effective way is to perform the analysis while still on its design phase [29,30].

This is because the correction of a design can be performed before physically fabricating

it, thus reducing the time-to-market and the cost of the circuit in case of the validation

process fails. In order to do that, it is important to deeply understand the possible causes

of failures, so that they can be anticipated and prevented. Therefore, one of the most

common forms of reliability analysis is the reliability prediction. It refers to the estimation

of the failure rate of electronic components and of the overall system. This prediction

contributes to define the initial, maintenance and total system costs, for example. By pre-

dicting the reliability of a circuit, designers can evaluate the feasibility of a given design,

revealing potential failure areas and the need for environmental control systems. They

can also determine the need of redundant systems, back-up systems, among others. Fur-

ther, reliability analysis can be used as a tool to compare the performance of different

fault-tolerant strategies, measuring the reliability improvement achieved by using a given

technique and the corresponding overhead in terms of area and/or timing [31].

In order to estimate the failure rate of a given circuit, let us first assume that it is

composed of n statistical identical and independent parts that were put into operation

at time t = 0. Then, the number of parts of this circuit that did not yet fail at time t

can be represented by a continuous decreasing step function u(t) as shown in Figure 1.1.

Based on this curve, the empirical reliability of a circuit can be obtained by (1.1). A

direct application of the law of large numbers (n → ∞) yields that R̂(t) converges to the

reliability function R(t) [28].

R̂(t) =
u(t)

n
(1.1)

Let us now define λ̂(t) as the empirical failure rate given by (1.2). Then, it can be shown

53

/
/

u(t)

t
-1

n
-n− 1
-n− 2

t1
t2

...

Figure 1.1: Number of parts of a circuit that not yet failed at time t

that this equation converges to the failure rate expressed in (1.3) for n → ∞, δt → 0 and

nδt → 0 [28].

λ̂(t) =
u(t)− u(t+ δt)

u(t)δt

λ̂(t) =
R̂(t)− R̂(t+ δt)

δtR̂(t)
(1.2)

λ(t) =
−dR(t)

dt

R(t)
(1.3)

Considering that the circuit operates perfectly at time t = 0, that is R(0) = 1, the

reliability function can be expressed as shown in (1.4).

R(t) = e−
∫ t

0
λ(x)dx (1.4)

Equation (1.4) shows that the reliability function depends on the behavior of the failure

rate λ(t), which has a typical shape as represented in Figure 1.2. Due to its shape, this

curve is denominated bathtub curve, and it can be split into three different regions:

– Decreasing Failure Rate: corresponds to the failures that occur when the circuit is

first introduced as a result of momentary weakness in materials or in the production

process. During this period, λ(t) can also oscillate [28]. In order to reduce the infant

mortality occurring during this phase, manufacturers use stress tests (often called

burn-in) to accelerate the aging of the devices in such a way that they can reach

their useful life before going to the market.

– Constant Failure Rate: during this period, λ(t) can be approximated by a constant.

54 1. Background on Reliability

//

λ(t)

t

//

Decreasing Failure
Rate Region

Constant Failure
Rate Region

Increasing Failure
Rate Region

Figure 1.2: Bathtub curve representing the typical shape of the failure rate of a circuit

This region corresponds to the useful life of the circuit.

– Increasing Failure Rate: this part represents the end of the circuit’s lifetime due to

wear out and aging.

The failure rate of an integrated circuit is often expressed in terms of failures in time

(FIT), where 1 FIT means 1 failure in 109 device hours. Considering that a circuit is

composed of k different components, the failure rate is expressed as shown in (1.5), where

Nk stands for the number of components of type k. Notice that manufacturers generally

use highly accelerated life tests (HALT) in order to estimate the failure rate of their inte-

grated circuits. More details about HALT procedures can be seen in [32], in the JEDEC

JESD74A [33], and in the MIL-STD-883H [34].

λcircuit =

k
∑

1

Nkλk (1.5)

Since the failure rate of a circuit is constant during its useful life, the reliability ex-

pression (1.4) becomes (1.6). It can be seen that the reliability of a circuit is a measure

that depends on the time of the circuit operation, which is not very practical. Because of

that, another useful metric is also available to analyze the behavior of integrated circuits

considering the occurrence of failures. This metric, called Mean-Time-Between-Failures

(MTBF), can be evaluated by expression (1.7). Notice that MTBF is used to systems that

are repaired after the occurrence of a failure. In case a circuit is replaced after a failure,

the metric Mean-Time-To-Failure (MTTF) is often used instead of MTBF. More details

about metrics to analyze the reliability of a system can be seen in the book of David J.

Smith [35].

55

R(t) = e−λt (1.6)

MTBF =

∫ ∞

0
R(t)dt =

∫ ∞

0
e−λtdt

MTBF =
1

λ
(1.7)

As a matter of fact, a number of reliability analysis methods are available in the liter-

ature. Basically, these methods are used to analyze either the functional reliability, which

is the probability that a given circuit will perform its specified function, or the signal re-

liability, which stands for the probability that the output data is correct [8]. The current

work considers the latter analysis, which generally takes into account the logical masking

ability of a design.

Reliability analysis plays an important role in the design process of a circuit. In order

to develop a product with a stated reliability requirement, appropriate investigations of

failure rate and failure mode must be done. The results produced by these investigations

lead to the evaluation of the reliability of the product. However, due to uncertainties

such as simplifications in mathematical modeling, inaccuracies in the investigations of the

failure rate, among others, these results present a limited precision [28]. Moreover, an

investigation of the required functionality, the types of faults that are likely to occur, and

the environmental conditions in which the circuit will perform its task, should be carried

out. Indeed, in order to design high-reliable systems, we should consider as many aspects

as possible during the reliability analysis phase. Then, let us start by reviewing the types

of faults that affect VLSI systems in Section 1.2.1.

1.2.1 Faults in VLSI circuits

The reliability of a VLSI circuit is related to its capacity to correctly operate considering

the occurrence of faults [8]. Regarding their persistence, these faults can be classified into

three categories:

– Permanent Faults : represent irreversible physical changes in the device, which per-

manently affect the specified logic function. They generally occur due to imperfec-

tions on the design process, and therefore they can be significantly reduced during

offline testing [25]. However, permanent faults may also appear during the useful life

of a circuit due to different reasons such as aging and wear out, for example. In this

case, they are generally preceded by the occurrence of intermittent faults [36].

56 1. Background on Reliability

– Intermittent Faults: manifest themselves as random physical changes, caused gen-

erally by unstable or marginal hardware [37]. For example, due to minor changes

in temperature, vibrations, among others, a borderline electrical connection may

become an intermittent connection.

– Transient Faults: generally caused by environmental conditions such as electromag-

netic interference (EMI) and ionizing radiation. Because of that, they randomly

occur during circuit operation.

It is important to notice that intermittent and transient faults manifest themselves very

similarly. However, as stated above, intermittent faults reflect the existence of unstable or

marginal hardware, and therefore they tend to occur in bursts and at the same location.

Besides that, intermittent faults can be mitigated by the repair of the faulty circuit [37].

The effects of intermittent faults on the reliability of integrated circuits was deeply

analyzed by Constatinescu in [37–40]. In such works, he stated that several phenomena

are capable to produce intermittent faults in deep-submicron technologies. For instance,

due to the reduction in dimensions of integrated circuits, electromigration may increase the

resistance of narrower sections in the devices, thus leading to the occurrence of delay faults.

Besides, if in the past larger transistors could handle small amounts of manufacturing

residues, this is not anymore true in deep-submicron technologies. Indeed, these small

quantities of residues may now lead to the occurrence of intermittent contacts. For example,

by performing a series of experiments in data servers in [40], Constatinescu have noticed

a memory exhibiting such problem (see Figure 1.3). Also, due to soft breakdown (SBD)

effects present in ultrathin gate oxides, fluctuating current leakages are expected to increase

and may exhibit the same characteristics of intermittent faults [37]. In other words, the

work of Constatinescu have shown that the rate of intermittent faults in electronics circuits

tend to increase with the downscaling of electronics. However, he has also shown that

techniques developed to mitigate transient faults can also reduce the number of intermittent

faults [40].

Transient faults, also known as soft errors, are a major concern for the design of elec-

tronic circuits because of their random nature. They are responsible for one of the highest

error rates in electronic circuits. Because of that, the current work is focused on the relia-

bility of VLSI circuits to soft errors, with a special attention to the susceptibility of FPGAs

to this kind of errors.

Transient faults are caused by several different physical phenomena such as alpha par-

ticles, cosmic rays, interconnect noise, electromagnetic interference, among others. For

instance, the reduction of the supply voltage coupled with a higher VLSI integration have

led to a great increase on the susceptibility of integrated circuits to energetic particles. In

past technologies, these errors used to be a concern only in dense radiation environments

57

Figure 1.3: Residue induced intermittent fault in a DRAM chip [40]

such as space. However, newer technologies are making the devices susceptible to such

particles even at ground level. Indeed, radiation-induced soft errors have the potential to

become the most severe cause of failures in electronic devices if not mitigated [41]. In order

to deal with such threat, it’s important to understand how electronic circuits behave in

the presence of such particles.

1.2.1.1 Sources of ionizing radiation

Radiation particles that can cause soft errors in electronic devices are mainly generated

by two different mechanisms at the terrestrial environment: alpha particles and cosmic

rays. When one of such energetic particles hits a semiconductor device, specially if near

the reverse-biased junction (the most sensitive part of a circuit to radiation particles), it

interacts with the electrons in the material during its passage until it loses all of its kinetic

energy. The result is the appearance of a cylindrical track of electron holes, with a very

high carrier concentration. The higher the energy of the particle, the longer is the distance

it travels. Such phenomenon is illustrated in Figure 1.4(a). When this ionization track

is close to the depletion region, the carriers are fast collected by the electric field, thus

generating a high current/voltage transient at the corresponding node, which can persist

approximately one nanosecond (see Figure 1.4(b)) [41]. Next, a phase where the charges

are collected by diffusion begins, generating a low-current pulse as shown in Figure 1.4(c).

If the collected charge exceeds the critical charge, it can cause the well known single-event

effect (SEE).

Single-event effects can take many forms depending on the magnitude of the disturbance

generated by the hitting particle, which relies on its linear energy transfer (LET), and

on which component of the circuit it occurred. If the SEE generates enough of charge

disturbance that the state of a bit in a register, flip-flop, latch, or memory cell, is flipped,

it causes a single-event upset (SEU). Since nodes of circuits are close to each other, an

58 1. Background on Reliability

Figure 1.4: Effects of a high-energy ion hitting a semiconductor device [41]. (a) particle
hitting the device - (b) charges being rapidly collected by the electric field - (c) charge
collection by diffusion

SEE may propagate through several paths, thus sharing the charge effect of the particle

among different nodes. If the corresponding particle is of very-high energy, the state of

several bits in a circuit may be reversed, thus causing a multiple-cell upset (MCU). If

these faulty bits are located in the same word, it is called a multiple-bit upset (MBU).

SEEs occurring in combinational logic generates a single-event transient (SET), which can

propagate through the logic and, if latched by a memory element, will become an SEU.

Other kinds of soft errors may still occur due to single-event effects. If critical bits of a

system, such as those of the configuration memory of an FPGA device are affected by

an SEE, it may directly lead the device to malfunction. In this case, the error is called

a single-event functional interrupt (SEFI). Last but not least, an SEE may turn on the

CMOS parasitic bipolar transistors between well and substrate, thus generating a single-

event latch-up (SEL). With so many threats generated by a radiation event, let us analyze

how the main mechanisms responsible for generating ionizing particles behave at ground

level.

Alpha particles used to be the main cause of radiation-induced soft errors in silicon

devices in late 1970s. In fact, impurities presented in the package materials have the

potential to emit a high rate of alpha particles, which can produce a high number of soft

errors. However, with the improvement of the fabrication process of electronic circuits,

materials can be highly purified and the rate of alpha particles emissions can be well

controlled. This does not mean that the problem of alpha particles is completely solved.

This problem was significantly reduced in current technologies, but it still plays a special

role in VLSI and FPGA reliability [42]. For the sake of comparison, the rate of alpha

particles emission went from a level of 100α/cm2/h in older technologies to levels below

0.001α/cm2/h in current technologies [41]. Indeed, devices that have a rate of alpha

particles emissions below 0.002α/cm2/h are said to be ultra low alpha (ULA). Normally

59

direct alpha counting techniques must be employed in order to guarantee that an electronic

device is ULA. In this context, one of the main challenges in future technologies regarding

alpha particles is to verify if all materials reaches or exceeds the ULA grade [41].

Cosmic rays are particles generated by interactions of galactic cosmic rays with the

Earth’s atmosphere. As a matter of fact, the Earth’s atmosphere is constantly hit by

high-energy particles originated from galactic cosmic rays. The flux of such particles is

modulated by some mechanisms such as solar wind and the earth’s magnetic field. This

generates a flux that depends on the latitude, longitude, altitude and solar activity of a

location. Neutrons are one of the main resulting particles of such interactions, and since

they can have a high amount of energy, they are the most likely cause of radiation-induced

soft errors due to cosmic rays. In order to be aware of the intensity of the neutron flux in

a given city/location, the Joint Electron Device Engineering Council (JEDEC) developed

some models based on the actual flux occurring at sea level in New York City (JEDEC

Standard 89A). It is important to notice that neutrons cannot directly generate ionization

in silicon, but they can react with chip materials so that such phenomenon is generated.

In fact, neutrons hits produce a series of elastic and inelastic reactions so that a burst

of smaller particles are created. The higher the energy of the neutron, the higher is the

probability of occurrence of high-energy bursts. And since the energy (LET) of such bursts

are significantly higher than that of alpha particles, neutrons exhibit a higher probability

to cause an SEU. Indeed, the occurrence of MCU and SEL are mainly due to high-energy

neutron effects [41,43]. Another interesting, not to say challenging, characteristic of cosmic

neutron flux is that they cannot be significantly reduced at the chip level by the use of

shielding, keep-out zones, or high purity materials [41]. For instance, concrete has proved

to reduce the high-energy portion (E>10 MeV) of the cosmic-ray neutron spectrum at a

rate of 2.3× per foot of concrete thickness, while the total neutron flux is reduced at a

rate of 1.6× [44]. Therefore, although the Soft Error Rate (SER) generated by cosmic rays

can, for example, be reduced in a nuclear plant surrounded by many feet of concrete, for

domestic use very little can be done. Because of that, the use of design hardening is an

attractive solution against soft errors caused by cosmic rays.

Soft errors are yet more challenging in FPGAs devices because of their memory cells.

Section 1.2.2 deals with radiation-induced soft errors in FPGAs devices.

1.2.2 Reliability issues in FPGAs

Field Programmable Gate Arrays (FPGAs) are integrated circuits very flexible in the

context that they can be customized after manufacturing. They are composed of pro-

grammable logic blocks and interconnects that can be configured to implement basically

any kind of digital logic, and programmable input/output blocks which allow the configu-

60 1. Background on Reliability

ration of most of industrial communication standards. Further, circuits can be described

by using general hardware languages such as Verilog and VHDL. By doing that, a given

circuit can be easily used in different projects and FPGAs, thus increasing the flexibility

of such devices.

Several technologies are available to construct the programmable blocks of FPGAs.

Basically, they can be classified into two types: One Time Programmable (OTP) and Re-

programmable. The programmable interconnections available in OTP devices operate in

such a way that, once programmed, they are physically wired and therefore cannot be

changed anymore. However, in case of reprogrammable devices, the configurable inter-

connections are made of memory elements which enables the reprogrammable capability.

Then, reprogrammable devices contains two types of memory:

– User memory : responsible to keep the data required for the application.

– Configuration memory : responsible for defining the configuration logic (interconnec-

tions and logic functions) of the implemented circuit.

The most important technologies used in FPGAs are: SRAM, Antifuse, and Flash.

Table 1.1 summarizes the major characteristics of such technologies. It is important to note

that an ideal technology would be a nonvolatile, reprogrammable, providing low resistance

and parasitic capacitances, and using a standard CMOS process. None of the existent

technologies can satisfy such requirements.

Table 1.1: Programming technology properties summary [45]

SRAM Flash Antifuse
Volatile Yes No No
Reprogrammable Yes Yes No
Storage Element Size High Moderate Low
Manufacturing Process Standard CMOS Flash Process Special Antifuse Process
In-System Programmable Yes Yes No
Switch Resistance ∼500 – 1000Ω ∼500 – 1000Ω ∼20 – 100Ω
Switch Capacitance ∼1 – 2 fF ∼1 – 2 fF < 1 fF
Programmable Yield 100% 100% > 90%

1.2.2.1 Susceptibility of FPGA technologies to radiation

FPGAs’ technologies play an important role regarding the susceptibility of such devices

to radiation events. For instance, antifuse-based devices are relatively immune to soft errors

due to radiation. The main reason is that once an antifuse is programmable, a particle

can not change its state [46, 47]. However, antifuse devices still have user memory which

is susceptible to soft errors. Therefore, techniques to mitigate transient errors in antifuse

devices may yet be required for critical applications.

61

SRAM-based FPGAs are of special concern because they are one of the most used

FPGAs on the market, and yet one of the most susceptible devices to radiation. The

foremost reason is that SRAM-FPGAs, as the name implies, are mainly composed of

SRAM cells, one of the most vulnerable elements to soft errors [48]. The sensitivity of a

memory device to radiation particles depends on several factors such as the capacitance of

the node, the operating voltage, the volume of the depletion region, and the strength of the

feedback transistors. In the past, SRAM devices were very robust to soft errors due to the

use of higher operating voltages and stronger transistors, therefore requiring a very high-

energy charge in order to reach the switching threshold and produce a soft error. Further,

in case of SRAM cells, the speed in which the circuit can react also plays a major role.

Indeed, the speed of an SRAM cell directly affects the time in which the feedback circuit

can restore the corrupted node. Generally, considering the same technology, the slower is

the speed of the cell, the more robust that cell is to radiation. However, the technology

scaling has reduced the dimensions of transistors, the node capacitance and the operating

voltage, which increased the sensitivity of SRAM cells to radiation particles. Further,

the operation frequency of SRAM devices is rapidly increasing with technology scaling.

In spite of that, these factors have been counterbalanced by the evolution of the process

technology in deep-submicron devices (< 0.25µm), which lowered the junction collection

efficiency and maintained the sensitivity of a single-bit SRAM cell almost constant [41,49].

It is important to notice that, despite this fact, the exponential growth in the amount of

SRAM required in current electronic devices has led to a higher probability of occurrence

of SEUs in current SRAM-based FPGAs.

Flash-based FPGAs are alternatives to SRAM-based devices that can provide the same

reconfiguration capability while still presenting a nonvolatile storage capability. In order

to do that, a flash memory cell contains a floating gate, located between the control gate

and the MOSFET structure, encased in a very good dielectric [49]. The floating gate is

used to store the bit value, and writing and erasing operations are performed by applying

a relatively high voltage for a few milliseconds. Because of that, flash-based devices are

more robust to radiation than SRAM-based ones. Further, unlike mainstream flash-based

devices that are conceived focusing on speed and size, flash cells built to provide the

reconfiguration mechanism to FPGAs feature a far more robust construction. Indeed, they

can be considered very robust to particles originating from cosmic rays [50].

1.2.2.2 Faults in FPGA devices

The most common faults occurring in FPGA devices due to radiation particles are SETs

and SEUs. As explained in Section 1.2.1.1, single-event transients are transient voltage

pulses that can be propagated through the circuit and then generate errors. Notice that

62 1. Background on Reliability

SETs can occur in several elements such as combinatorial logic, PLLs, and charge pumps,

among others. On the other hand, a single-event upset represents a change/flip in the state

of a memory element (a bit-flip). SEUs in FPGAs can occur either in the block memory

or in the configuration memory. In the former case, the SEU will affect data bits required

by the application, and they are generally mitigated by the use of error correcting codes

and/or scrubbing. The last case is generally restricted to SRAM-based devices, and it can

generate a Single-Event Functional Interrupt (SEFI).

SEFIs are of great concern for the reliability of electronic circuits due to their severity.

In fact, an SEFI changes the state of a programmable interconnect, and therefore it can

affect the functionality of the device. Because of that, some manufacturers, e.g. Xilinx,

use larger and more robust transistors for the configuration memory in order to reduce the

occurrence of SEFIs [51]. Generally, an SEFI can cause one of the following symptoms:

– Changing the functionality of a logic module or embedded block;

– Shorting of a signal to power or ground;

– Bridging of two signals;

– Changing the direction or standard of an I/O;

– Breaking of a routing connection.

In spite of that, FPGAs contain millions of configurations’ bits as a means to cover with

all the interconnection/logical function possibilities that a design may require. Therefore,

only a small fraction (generally 10% to 30% [49]) of the configuration memory is actually

used in most of FPGA’s designs.

Now that the susceptibility of integrated circuits to the different types of faults was

explained, let us analyze in Section 1.2.3 some methods stated in the literature to evaluate

the reliability of a circuit.

1.2.3 Prior works on reliability analysis

Over the years, many works have been proposed to study the behavior of logic circuits

in the presence of different types of faults [15,16,52–55]. The first model used to represent

faults in logic circuits was the “stuck-at” model [52]. This model considers that most of

the failures in a circuit are due to permanent faults, and that they manifest themselves by

driving a logical signal level in a circuit node/line to stuck at a constant value, i.e., 0 or 1.

Although it has been proved that most of short-circuit type faults or bridging faults can be

covered by this model [53], efficient algorithms for this purpose were not easily conceived.

In order to tackle this problem, Ogus proposed a probabilistic model of logic circuits in

which he introduced the concept of signal reliability [54].

The signal reliability of the output of a circuit is defined as the probability that this

output is correct. As stated in [54], the proposed model allows to evaluate the reliability

63

of a circuit by performing straightforward operations so that it can be easily automated.

The idea is to inject into the circuit one fault pattern each time, whether it be a single

fault or a multiple fault, and analyze the presence of errors at the output. The procedure

of fault injection is shown in Figure 1.5. Notice that two versions of the Device Under Test

(DUT) are available, one fault-free and one fault-prone. In this case, stuck-at faults are

injected in the fault-prone copy B and its output is compared with the fault-free version

A.

A

B
Xnor

x

errors

Figure 1.5: Fault simulation approach proposed in [54]

The probabilistic model presented in [54] deals only with stuck-at faults, and therefore

it can not be used to model bit-flips, which is of major concern for the analysis of Single

Event Effects (SEEs). Further, it does not take into account the individual contribution of

the circuit gates for the final reliability value, which could provide additional information

in order to harden the desired circuit [8].

A method that can deal with soft errors produced by SEEs was proposed in [55]. The

proposed method, named Probabilistic Transfer Matrix (PTM), is based on probabilistic

matrices that correlates the inputs and outputs of logic circuits. In order to do that, the

topology of the logic circuit as well as the individual reliability of its logic gates must be

taken into consideration.

The PTM model is based on a very simple idea: the operation of an error-free logic

circuit can be defined by its truth table, that is its behavior is deterministic. However, if a

circuit is composed of fault-prone components, its output can present different results for

the same input sequence due to the occurrence of errors. Taking this fact into consideration,

the PTM model modifies the truth table of a logic circuit in order to behave as a non-

deterministic function. This means that a probability of occurrence of an error, denoted

by p, is now considered. By doing that, the truth table of an AND gate, for example,

becomes the one shown in Figure 1.6.

Using the probabilistic matrices, the authors have then defined a set of basic operations

that must be performed to interconnect different logic elements. This is shown in Figure 1.7.

The PTM model can be directly applied to analyze soft and permanent errors induced

by bit-flips or stuck-at faults, for example. However, the size of the probabilistic matrices

grows exponentially with the bit width associated with the input and the output of a

64 1. Background on Reliability

ur

ar,

es

ry

ch

ur-

of

o-

s,

 10

 01

 00

 11

0

 p

1−p

1−p

1−p

O
u

tp
u

t

In
p

u
ts

1

1−p

 p

 p

 p

Output

(a)Figure 1.6: PTM representation for an AND gate [55]

(a) (b) (c)

B A

A B A B
A

B

A B AB’

Figure 2: Basic ways to interconnect circuit compo-

B

Figure 1.7: Basic interconnection models: (a) serial - (b) parallel - (c) fanout

circuit. This leads to intractable computation times and huge memory storage needs in

order to analyze the reliability of large circuits. In order to deal with such drawbacks,

the Signal Probability Reliability (SPR) model was proposed in [15]. The SPR model is

based on the signal reliability concept, and therefore it assumes that the cumulative effects

of multiple faults in a circuit can be used to evaluate the probability that the output is

correct [8].

The SPR model relies on the consideration that a logic signal can take four different

values: correct 0 (0c), incorrect 0 (0i), correct 1 (1c), and incorrect 1 (1i). The probabilities

of a signal x to take one of these four values are organized in a 2 × 2 matrix as shown in

(1.8). The reliability of a signal can then be obtained by adding the values corresponding

to the correct operation of the circuit (0c and 1c). By convenience, the SPR model uses

probabilistic transfer matrices (PTMs) and ideal transfer matrices (ITMs) to represent the

fault-prone and the fault-free behavior of the logic components [8].

Signal =

[

P (x = 0c) P (x = 1i)

P (x = 0i) P (x = 1c)

]

(1.8)

The SPR matrix representing the output of a logic element gi can be evaluated by

performing matrices operations as shown in (1.9). In this case, the INPUTgi matrix can

be obtained by calculating the Kronecker product of the SPR matrices of the inputs of gi.

For the sake of illustration, Figure 1.8 illustrates this operation for a 2-input OR gate for

which the inputs are uniformly distributed.

65

Figure 1.8: SPR matrix for the output of a 2-input OR gate

SPRouti = ITM′
gi × (INPUTgi × PTMgi) (1.9)

The evaluation of the signal reliability for the output of a circuit can be performed

by the propagation of the signal matrices as shown in Figure 1.9. In this example, the

inputs are assumed as being equiprobable, that is, a uniform probability distribution is

considered.

0.475

0.025

0.025

0.475

0.225

0.075

0.025

0.675

ea

b

c

d

h 0.5843 0.0407

0.0597 0.3153
f

g1

g2

g3

E4 =

F4 =

H4 =

qg3 = 0.98
qg1 = 0.95

qg2 = 0.9

Rcircuit = R(h) = 0.8996

Figure 1.9: Propagation of the SPR matrices through a circuit [8]

It can be noted that the complexity of the SPR algorithm is linear regarding the number

of logic elements in the circuit. However, the SPR method cannot deal with reconvergent

fanouts due to the presence of signal correlations. In order to tackle this problem, a multi-

path version of the signal probability reliability model named SPR-MP was also proposed

in [15]. In this case, the method evaluates the contribution of each element of the SPR

matrix representing the reconvergent fanout node. Because of that, the complexity of the

algorithm grows from a linear complexity to 4N , where N is the number of reconvergent

fanouts in the circuit.

Based on the idea of signal reliability, the PBR (Probabilistic Binomial Reliability)

66 1. Background on Reliability

model was proposed. This is a probabilistic model that analyzes the reliability of combina-

tional circuits using a probabilistic binomial distribution [16]. Although both the proba-

bilistic model proposed in [54] and the PBR model use fault injection simulation/emulation

in order to evaluate the signal reliability of the output, the last one uses the binomial model

as a means to represent SEEs in combinational circuits. Indeed, the PBR model considers

that an error in a given gate results in an inversion of the output signal (a bit-flip).

In order to understand the PBR approach, let us consider a generic logic circuit C1 with

input and output vectors x and y, respectively. Let us also consider that C1 is composed

of w fault-prone elementary gates and m inputs, and that the probability of failure of a

gate is represented by 1− q. Then, the probability of occurrence of k simultaneous errors

in C1 can be evaluated as shown in (1.10).

f(q) = (1− q)kqw−k (1.10)

In the PBR model, an error pattern is represented as a vector e of w bits where the

bit ei = 1 indicates a bit-flip in the gate gi. By using that, the number of 1’s in the vector

e represents the number of injected errors in a given moment. Let us now denote the

set of vectors e containing k simultaneous errors as ew:k. Then, the error-free situation

is represented by ew:0, and the number of errors patterns associated with the occurrence

of k simultaneous errors is given by Cw
k = w!

(w−k)!k! . Therefore, for a given error pattern

ew:k(l) and a given input xj , the boolean expression (1.11) represents the occurrence of

error masking in the output y.

y(xj , ew:0)⊕ y(xj , ew:k(l)) = 1 (1.11)

Considering a uniform probability distribution for the input vectors, the signal reliabil-

ity for the output y can be evaluated by (1.12), where ck is a masking coefficient obtained

by (1.13)

R =
1

2m

w
∑

k=0

f(q)ck (1.12)

ck =

Cw
k

∑

l=1

2m−1
∑

j=0

y(xj , ew:0)⊕ y(xj , ew:k(l)) (1.13)

Notice that (1.12) evaluates an accurate value for the signal reliability of the output

based on the aforementioned assumptions. It can be noted that in order to do that, an

exhaustive calculation must be performed since all the possible Cw
k error configurations

must be considered, which is very time consuming. Nevertheless, a high number of si-

67

multaneous errors are not always likely to happen. Therefore, an approximate value for

the signal reliability of the output can be obtained by limiting the number k of injected

errors. This can speed up the evaluation process in the detriment of accuracy. Further,

the PBR approach separates the logical masking calculation from the statical analysis of

the circuit. By doing that, once a given circuit architecture has its logical masking ability

characterized by fault injection, the reliability can be evaluated for different technologies

without the need of re-performing the fault injection analysis. Indeed, what need to be

done is to re-evaluate Equation (1.12) by considering a different value of ‘q’.

As a matter of fact, fault injection has been considered very useful to analyze the

behavior of digital circuits in the presence of faults. Many fault-injection platforms have

been proposed over the years. For instance, FuSE is a platform proposed in [17] that

supports both emulation and simulation-based fault injection campaigns, and therefore it

provides a good flexibility. On the flip side of the coin, the collection of data is performed

by reading text files that tends to be big and difficult to interpret. THESIC+ is another

fault-injection platform conceived as a means to characterize radiation-induced faults in

digital architectures [56]. Although this platform has been used to different purposes such

as reproduce the results of radiation ground testing for microprocessors [57], and analyze

the robustness of TMR systems implemented in FPGAs [58], it focuses on the effects of

single-event upsets occurring in the memory elements of a design. One interesting and

recently proposed approach to deal with SET effects is the AMUSE platform [59]. This

platform emulates the effects of transient faults by considering a multilevel approach for

fault injection. Indeed, the fault injection is performed at gate level in order to provide

delay accuracy, and the fault propagation is performed at RTL level in order to speed up

the process.

As can be seen, many methods to analyze the reliability of digital circuits are available

in the literature, each with its pros and cons. The choice of which technique to use depends

on some factors such as the purpose of the reliability analysis, the type of faults are

expected to occur, among others. In the current work, the reliability analysis is performed

focusing on a fabless manufacturing, for which a designer will elaborate a reliable circuit

by modifying its architecture. Moreover, the design of reliable circuits is performed in such

a way that its robustness will be as technology independent as possible. Therefore, the

target is to improve the reliability of a circuit by maximizing its logical masking ability.

Because of that, techniques to characterize the reliability of a circuit based on its logical

masking ability are highly required. In this thesis two methods were develop in order to

cope with that. The first one is a fault injection tool based on the PBR approach, while

the second one is an implementation of the SPR algorithm. Both methods are explained

in Appendix 2.

68 1. Background on Reliability

1.3 Reliability improvement of integrated circuits

As the expected number of errors and defects increases with the technology scaling,

fault-tolerance techniques are more and more required. It is well known that the reliability

of a circuit can be improved through the properly use of redundant components [23,60–62].

Basically, redundancy techniques can be classified as follows [63]:

– Modular Redundancy or Fault Masking → redundant components are used to mask

the effect of a fault so that it will not reach the primary output of a system. The most

used modular redundancy technique is the TMR (Triple Modular Redundancy), in

which a system is triplicated and the output is obtained through a voting process.

This technique was applied in important scientific programs over the years. As an

example, the TMR technique was applied in the Saturn V [64], a rocket used by

NASA’s Apollo and Skylab programs from 1967 until 1973.

– Fault Detection and Correction → this mechanism is based on two steps: fault de-

tection and corrective action. Fault detection can be classified as concurrent and

periodic [63]. In the first one, the fault detection procedure must be executed con-

currently with the system operation. A traditional technique that uses this principle

is to duplicate a system and check if any output mismatch exists. In the other one,

a diagnosis routine is carried out to search for errors. If any error is encountered in

the circuit, a corrective action is executed. As an example, a routine to reconfigure

the fault area of the circuit can be performed in order to correct it.

– Hybrid Redundancy → this method benefits from both mechanisms presented above.

It can use a modular redundancy technique to detect and mask errors and a fault

detection redundancy technique to provide additional corrective actions.

Although many techniques to improve the reliability of an integrated circuit are avail-

able in the literature, this thesis focus on the modular redundancy approach. This is

because, despite its simplicity, this technique can provide a great performance as will be

shown in Section 1.3.1. A review of other methods to improve the reliability of a circuit

can be found in Appendix A.

1.3.1 Modular redundancy

The concept of triple modular redundancy (TMR) was originally envisaged by Von

Neumann in his work "Probabilistic Logics and the Synthesis of Reliable Organisms from

Unreliable Components" [23]. This concept is based on three identical modules and a

majority voter that will compute the output of the circuit, as shown in Figure 1.10.

Considering the majority voter does not fail, i.e., it is a perfect voter, the output of the

circuit will be correct if at most one of the three redundant modules fails. Therefore, the

69

Module

Module

Module

Majority
Input Output

Figure 1.10: TMR concept envisaged by Von Neumann

reliability of the circuit presented in Figure 1.10 can be evaluated by (5.1), where RM is

the reliability of one module.

RTMR = R3
M + 3R2

M (1−RM)

RTMR = 3R2
M − 2R3

M (1.14)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
m

R
el

ia
bi

lit
y

Im
pr

ov
em

en
t

 (
 R

T
M

R
 /

R
m

)

Figure 1.11: TMR performance regarding reliability improvement

Analyzing (1.14), it can be noted that the TMR technique does not improve the relia-

bility of a circuit if the reliability of each module is less than 0.5. Moreover, the behavior

of this function, illustrated in Figure 1.11, shows us that the gain obtained with TMR has

second-order effect when the reliability of each module is very near unity. Thus, the size

of each module is a crucial role for TMR performance regarding reliability improvement

since when we increase the size of a circuit, generally the reliability decreases. Further

mathematical details regarding TMR performance can be found in [60,65].

The system architecture shown in Figure 1.10 takes into account that the majority

70 1. Background on Reliability

voter does not fail. However, considering the majority voter as an imperfect voting circuit,

the TMR performance is compromised. A single error presented in the majority voter will

result in an erroneous output. In order to minimize this problem, a different architecture,

proposed by Cohn [66] and shown in Figure 1.12, may be utilized . In this case, if a single

majority voter fails, the output is still considered correct.

Module

Module

Module

Majority

Majority

Majority

Input

Output

Output

Output

Figure 1.12: TMR with three majority voters

Despite the widely use of TMR regarding reliability improvement, we must deal with

some constraints. The area penalty required by this technique is higher than three times

the area of a circuit. Therefore, before applying TMR architecture to a circuit, we must

investigate its pros and cons. The work presented in [67] analyzes area and performance

penalty whether to use TMR or Hamming Code in different digital modules. The re-

sults have shown that TMR is more appropriated for modules using single registers and

Hamming Codes for groups of registers.

Regarding the robustness of TMR in SRAM-Based FPGAs, the work in [68] have

shown that TMR is not able to effectively protect the circuit against SEUs affecting the

configuration memory. According to their results, the percentage of faults that escape

TMR could reach 13% for the analyzed architectures. However, the adoption of a smart

floorplan that isolates the three modules can significantly reduce the number of faults that

escapes TMR. The work in [58] analyzed the weakness of the TMR strategy implemented

in SRAM-based FPGAs . They performed a series of radiation tests in a Xilinx Virtex-

II device in which a cryptocore application was used as a device under test (DUT). The

results have shown that the voter may not be able to detect some single faults occurred on

the configuration bits. In 2010, a method to protect different modules against short-effects

of SEUs by separating two routed nodes from each other by at least two programmable

interconnect points (PIPs) was proposed in [69]. Using the proposed approach, a TMR

system is isolated in such a way that an SEU cannot affect two modules. At the same year,

an algorithm to improve the reliability of TMR designs in SRAM-based FPGAs against

multiple cell upsets was introduced in [70]. The algorithm, called PHAM (Placement

Hardening Algorithm for Multiple cell upsets), takes into account the FPGA physical

layout to determine the best locations for each block of a TMR system. The results have

shown that circuits using the proposed algorithm can achieve 34 times better robustness

71

than the ones using the standard TMR approach.

The intrinsic capability to mask erroneous results is an attractive characteristic to use

TMR in fault-tolerant systems. This capability is provided by the voting process, making

it an essential part of a TMR system. Therefore, let us review some important voting

strategies proposed over the years in Section 1.3.2.

1.3.2 Voting strategies

The most used voting process is the Majority Voter, proposed by John von Neumann

in 1965 [23]. This approach evaluates the system output based on a majority rule. Thus,

considering a TMR system, a 2-out-of-3 rule is used.

Despite its frequently use, the majority process presents some limitations such as the

fact that it does not consider common-mode failures, i.e., failures that affect more than

one module of the system. In order to take these failures into consideration, an alternative

voter process named Word-Voter was proposed in [21]. The word-voter is applicable to

TMR systems with a multiple-bit output. A diagram of a 2-bit word-voter is shown in

Figure 1.13. It compares the output word from each module and if at least two of them

are equal, the system will produce a correct output. If all the output words are different,

it is a signal that multiple errors have occurred and the system output is compromised.

Thus, an error signal is activated and corrective procedures are carried out.

Module 1

Module 2

Module 3

Word-Voter
Input

(b1b0)
Output

Error

(b1b0)1

(b1b0)2

(b1b0)3

Figure 1.13: Word-Voter proposed in [21]

The concept of TMR can be generalized by using the term N-Modular Redundancy

(NMR). For instance, a 5MR technique based on a majority process would use a 3-out-of-5

rule. However, when using a higher numbers of modules than TMR, it may be acceptable

to use a more relaxed rule to evaluate the system output. As an example, it may be

acceptable to use a 2-out-of-5 rule for a 5MR system. This voting process is named Plurality

Voter [71]. Obviously, this strategy cannot be used in case of a bit-based voter, but it is

perfectly usable if a word voter is available.

Several other voting techniques are available in the literature. For instance, the Weighted

Voter [72] uses the outputs of the modules to evaluate the mean value considering that

each module output has a weight. Notice that the system output can be distinct from all

72 1. Background on Reliability

the module results. The Generalized Median Voter [73] supposes that the output space

is a metric space. Then, it analyzes the outputs of the modules and discards the pairs

with maximum reciprocal distance. Finally, the median result is used as the system out-

put. A theoretical investigation of the aforementioned voter strategies regarding redundant

systems is available in [73].

The voting techniques discussed above do not take into account the historical behavior

of each module to judge what is the correct output. As a matter of fact, the presence of

a permanent error in one of the three modules will increase the likelihood that a transient

fault in one of the other two will affect the final result. In order to tackle this problem,

several history-based voters were proposed over the years [74–76]. In 1999 an approach

based on the inexact majority voting was proposed in [74]. It uses the history of correct

computations to select the most reliable module in case of agreement. Later in 2001,

a voter based on weighted voting was introduced in [75]. This voter uses the history

information to modify the weights of each module in order to use the most reliable results

when evaluating the system output. An alternative approach regarding the exact majority

organ was proposed in [76]. The main idea is to identify the reliability of each module

based on its temporal behavior. In order to do that, Dotan proposed the use of indices to

represent the historical behavior of the modules. Indeed, each module has an index that

is incremented each time the corresponding module computes a correct output. Then, the

most reliable module is the one selected to transmit its computation as the output of the

system.

With so many voting procedures existent in literature, we need to compare and evaluate

theirs pros and cons. The work in [77] analyzed seven different voting strategies in their

work entitled “Experimental Comparison of Voting Algorithms in Cases of Disagreement”.

They used several simulated scenarios and a software error-injection tool to analyze the

robustness of the following voters: majority, plurality, median, weighted average, linear

prediction, first order prediction and three domain. Among them, the majority and plural-

ity voters produced the lowest number of catastrophic errors. The median voter produced

the largest number of correct results. However, it produced the largest number of catas-

trophic errors as well. The three domain voter showed a compromise providing relatively

low number of catastrophic errors while keeping the number of correct results large.

1.3.3 Selective Hardening

As discussed earlier, soft errors have become a serious concern in deep-submicron tech-

nologies. These faults used to be a concern only in the design of memories, but with the

downscaling of electronics, it is expected that the number of soft errors in combinational

circuits will exceed those occurring in unprotected memories [78]. A number of hardening

73

techniques have been proposed over the years in order to reduce the probability of transient

errors in logical circuits. These techniques are based on adding redundancy, whether it

be spatial or temporal, which increases some attributes of the design such as cost, power

consumption, and performance, among others. With the decrease in the feature size, the

number of logic gates is usually very large, and protecting every gate in a circuit may not

be a good solution to mainstream devices. Therefore, cost-effective solutions based on pro-

tecting only the most critical gates of a design, also known as selective hardening, have been

considered a promising solution to limit the protection cost of such techniques [18,78–84].

Therefore, selective hardening is based on two steps: first, gates are analyzed and

ranked according to their susceptibility to soft errors and to cause a circuit malfunction;

next, the most critical gates of a circuit are protected. The difficultness to implement a

selective hardening technique is to define which is the best subset of gates/blocks that must

be protected in order to meet a given reliability requirement, and because of that, many

methods have been proposed to perform such selection procedure [18, 78–84]. In [18], a

method to selectively apply triple modular redundancy (STMR) into FPGAs was proposed.

The idea is to calculate the sensitivity of the gates of a circuit based on their input proba-

bilities, and then select subcircuits to be protected by analyzing the longest cascade chain

of sensitive gates starting from the primary outputs and backtracking through the circuit.

Although the method does not guarantee 100% protection against single-faults, the sav-

ings in area overhead reached 65% for some circuits when compared to a traditional TMR

technique. In [80], a strategy based on the gate-level information was proposed in order

to deal with this problem. The proposed method does not take into account any low-level

electrical or timing information as a means to select the critical gates of a design while still

on its early design phase. The basic idea is to define a factor c such that the probability of

an erroneous system output perr is reduced to c × perr, considering perrmin
< c < 1. This

calculation is performed based on a static logical masking estimation of a circuit, which is

independent of the circuit technology. Although the selection procedure does not take into

account other masking phenomena such as electrical and latching window, simulations of

the hardened circuit considering these phenomena were performed and the results suggest

that these masking mechanisms have little influence when selecting critical nodes in a cir-

cuit. Later in [83], the authors have evaluated the validity of choosing critical nodes of a

circuit based only on its logical masking ability and have come to the same conclusion.

Thus, considering logical masking, the main idea is to classify the composing blocks

(i.e., standard cells) of a circuit according to their relative significance with respect to the

reliability of the circuit. With the classified list of blocks it is possible to apply selective

hardening either by using hardening by design techniques or by more generic fault tolerance

techniques like Triple Modular Redundancy (TMR). By using an additional hardening

74 1. Background on Reliability

affinity parameter, a trade-off between the hardening cost of a block and the reliability

gain is then clearly established. Chapter 4 will introduce a method that can take that into

consideration and uses some heuristics in order to automatically select the best candidates

to be protected.

Selective hardening can also be applied based on the error tolerance concept. As shown

in [83, 85, 86], some applications have the ability to tolerate some kind of errors, and

therefore just a subset of them should be mitigated. Chapter 3 introduces a method

to evaluate the reliability of a circuit taking into account the error tolerance of a given

application, and chapter 4 proposes two techniques to selectively harden a circuit. The

first one selects the most critical gates of a circuit based on the impact of an error in the

output of a system, while the next one uses a cost function parameter and two different

heuristics to automatically select the best candidates to be protected.

75

Chapter 2

FIFA Tool

2.1 Introduction

It is well-known that the increased density of circuitry associated with a reduction

in the supply voltage have decreased the effects of electrical and temporal masking, thus

increasing the likelihood of transient and multiple faults in integrated circuits [87]. For

this reason, the prediction of circuit behavior when exposed to faults is becoming more

and more important in deep submicron technologies [4].

This chapter introduces a fault-injection based tool developed during this thesis to

analyze the robustness of integrated circuits against faults. The proposed tool, named

FIFA, is used as a means to validate the construction of fault-tolerant designs along the

current work.

2.2 FIFA Tool

Fault injection has been considered very useful to evaluate the behavior of computing

systems in the presence of faults [17]. The basic idea of such approach is to produce or

simulate faults during system operation, and then observe whether they produce a device

failure. Several methodologies can be used in order to inject faults in a circuit. Basically,

they can be classified into two types: software or hardware.

Software-based approaches are normally performed as a device simulation by using

a netlist description such as SPICE and VHDL/Verilog. If the number of fault-prone

components or test vectors considered for fault injection is too high, the required time to

perform the simulation procedure can become prohibitive [59]. Hardware-based approaches

are a good solution to accelerate the testing procedures. In this case, the testing procedure

is executed by emulating the target circuit, and therefore it requires a physical device [57].

The aim of the current work is to build reliable systems by improving their logical

76 2. FIFA Tool

masking ability. Based on that, this Section presents a new tool designed as a hardware

IP to accelerate the Fault Injection and Fault masking Analysis (FIFA) approach. The

proposed tool was implemented on FPGA, and the analysis is performed at register trans-

fer level (RTL). The FIFA tool is fully parameterizable, allowing the designer to adapt it

for analysis of practically any digital circuit. In addition, this IP can help the designer

to establish efficient trade-offs between cost (time, amount of FPGA resources) and com-

pleteness of the analysis. Unlike previous works, the FIFA tool deals with several fault

models and no FPGA reconfiguration is necessary to simulate different fault patterns for

the same circuit [88].

The FIFA tool has shown a great performance for generating different fault patterns.

However, if multiple simultaneous faults are considered, that is, if several gates may fail

at the same time t (fault multiplicity k > 1), the number of tests for exhaustive analysis

in large circuits may become prohibitive. Indeed, although the hardware implementation

provides a reasonable calculation speed, the reliability evaluation is still intractable in such

case.

In order to diminish this drawback, two possible solutions can be taken into considera-

tion: first, the occurrence of multiple simultaneous faults in an integrated circuit depends

on some of its properties as well as on certain characteristics of the environment in which

the circuit is supposed to operate. A good solution is then to limit the number of simul-

taneous faults to be injected based on such characteristics. This can significantly reduce

the required computing time and yet provide great approximated results. Based on that

fact, the FIFA tool uses the PBR model as a means to evaluate the reliability of a circuit.

This model can provide approximate values for the reliability of a circuit by considering a

maximum number of simultaneous errors to be injected. On the flip side of the coin, this

feature requires that the fault generation sequence be performed in an ascending order re-

garding the number of simultaneous faults, that is, first all single faults are generated, then

the double faults, and so on. This poses strict difficulties to perform the second solution

to reduce the computing time: efficiently parallelize the calculation. As a matter of fact,

an optimal parallel implementation relies on a balance of the circuit operations among the

parallel modules. However, for the fault pattern generation sequence explained above, this

requirement is not easily fulfilled. This is because of the difficulties to calculate which is

the zth generated fault pattern on this sequence.

Section 2.2.4 makes use of number patterns to tackle this problem. It introduces an

efficient algorithm that can calculate which is the zth generated fault pattern using simple

operations. In addition, this algorithm is used to conceive a parallel architecture for the

FIFA tool. Results have shown that the proposed architecture can optimize the parallel

computation while keeping the area overhead as low as possible. This is done as a means

77

to increase the number of parallel copies that can be synthesized in a given FPGA support.

2.2.1 FIFA Architecture

As stated above, the FIFA tool is a hardware IP developed to accelerate the fault

injection and fault masking analysis approach. In order to understand the functioning of

such tool, let us first consider a digital circuit dut for which we are interested in analyzing

its robustness against faults. The basic idea behind the proposed tool is to inject faults

in dut and observe whether this internal fault will produce a device failure. Therefore,

some kind of mechanism is required in order to allow the injection of faults during circuit

runtime. The fault injection mechanism available in the FIFA tool is based on saboteurs.

A saboteur comprises a small set of components which provides the capability to alter the

values contained in a circuit node. Thus, appending such components to the nodes of dut

allows the injection of single or multiple faults.

The FIFA tool contains, among other items, two versions of the dut: one fault-free

(dut ref) and one fault-prone (dut faulty). The analysis of the robustness against a

specific fault f1 in the dut takes two steps: first, we inject the internal fault f1 in dut

faulty by enabling the corresponding saboteur(s); next, we compare the outputs of both

circuits in order to detect any mismatch. Notice that this procedure is done considering a

given input i for both circuits, dut ref and dut faulty. If the injection of f1 doesn’t

modify the circuit’s output, we can say that the circuit is robust to such fault, that is, f1

was masked.

Let us now define a test configuration of dut as a couple comprising a given input

and a given fault. For a specific set of test configurations, the proposed tool analyses the

error masking capabilities of dut, and determines its corresponding masking coefficient.

The masking coefficient of a circuit represents the number of test configurations for which

it generates correct outputs. Thus, this coefficient is directly related to the robustness of

a circuit. In our case, we classify the error masking coefficient according to the number k

of simultaneous faults injected. Then, we define ck as the masking coefficient representing

the robustness of dut regarding the occurrence of k simultaneous faults.

2.2.1.1 Defining the components of the FIFA tool

Figure 2.1 shows the proposed tool which comprises the following modules:

– dut ref – A fault-free version of dut.

– dut faulty – A faulty version of the device under test. Programmable saboteurs

are appended to the nodes of dut for which we would like to inject faults. These pro-

grammable saboteurs support four different fault models: bit-flip (Single Event Upset

78 2. FIFA Tool

Figure 2.1: General scheme of the proposed tool

or Multiple Bits Upset), stuck-at-0, stuck-at-1, and open circuit (high impedance).

In order to emulate a fault in a node j, the corresponding saboteur must be activated

(see Figure 2.2). This is done by a control signal (bit ej in bus e). If ej = 0, the

node j is supposed to be fault-free. If ej = 1, the node j is supposed to be faulty.

The fault model to be used is selected by the signal m[m1 : m0].

– stimuli generation – Generates the data inputs for dut ref and dut faulty

(bus x).

– fault injection – Generates the control signals to activate/deactivate the saboteurs

in dut faulty (bits ej of bus e). This module was implemented according to the

work presented in [89]. We took into account the second algorithm presented in

this work, which can generate all the possible CN
k vectors e for a given number of

simultaneous faults kmin ≤ k ≤ kmax. This algorithm is explained in Section 2.2.1.3

– masking analysis – Compares the outputs provided by dut ref (bus yref) and

dut faulty (bus y) in order to evaluate the masking coefficients (ck values).

– supervisor – Manages the communication signals among modules (m, req, k, kmin

and kmax).

Node j

ej

m1

m0

Node je

00

01

10

11

Saboteur “j”

0

1

Z sel[s1:s0]

Figure 2.2: General scheme of a saboteur

79

2.2.1.2 Explaining the communication signals

The FIFA tool is a synchronous circuit operating on the rising edges of a clock signal

(clk). In order to better understand the functioning of the proposed tool, it is a prime

concern to comprehend the purpose of the communications signals used during operation

(see Figure 2.1).

First of all, signal ka represents the number of simultaneous faults to be used in the

current test configuration. Considering a dut faulty containing N saboteurs, the fault

injection module generates the set of CN
ka

=
(

N
ka

)

different e vectors corresponding to

all possible occurrences of ka errors. In other words, each vector e = [eN−1 : e0] contains

exactly ka bits at logic value 1 as a means to activate the desired ka saboteurs. Signals

kmin and kmax indicate the minimum and maximum number of simultaneous errors to be

considered, respectively. The tool considers fault multiplicity in ascending order. It means

that the test configuration starts with ka = kmin and concludes with ka = kmax.

Initialization is done with the asynchronous signal rst, which is active at logic level 0.

Indeed, when rst = 0, signals fl, ack, and all bits of buses e, x and ck are set to zero.

Signal req is used to indicate a reliability analysis request. If req = 1, both stim-

uli generation and fault injection modules are enabled. The first one generates all

the possible values of x in ascending order: 0 ≤ x ≤ (2Z − 1), where Z represents the

width of the bit-vector x. The second one generates the bit-vector e responsible to acti-

vate/deactivate the desired saboteurs. When the last x value is generated, the stimuli

generation module sends a signal ini = 1 to the fault injection module. This signal

enables the corresponding module to generate the next bit-vector e and to reinitialize the

bit-vector x (i.e. x = 0).

Signal fl enables the masking analysis to compare yref and y in order to evaluate

the masking coefficients ck.

Signal ack indicates that the analysis is finished (ack = 1), that is, all masking coef-

ficients ck are now available. Then, if we want to retrieve a specific ck value, we can use

the input k and the output ck from the masking analysis module.

Figure 2.3 shows a timing diagram with the tool signals. It considers a circuit in which

N nodes may fail. Notice that the masking analysis module requires the simultaneous

activation of both signals, rst and fl, in order to start its functioning.

2.2.1.3 Fault Injection Module

As stated above, the Fault Injection Module is responsible to control the activa-

tion/deactivation of the saboteurs presented in dut faulty. Considering the presence of

N saboteurs, each fault pattern is represented by a vector e = [eN−1eN−2 · · · e1e0], where

80 2. FIFA Tool

Figure 2.3: Timing diagram of communication signals in the tool (MAX = 2N −2N−kmax)

ei = 1 activates the saboteur i. Therefore, given a number of simultaneous errors k, the

Fault Injection Module generates the set of CN
k vectors e containing exactly k bits

equal to 1.

This fault pattern generation is done based on an algorithm proposed in [89] comprising

4 tasks:

– Task 1 - Set ei = 1 for all 0 ≤ i ≤ k − 1, and ei = 0 for all k ≤ i ≤ N − 1. This

task is performed only once for each value of k

– Task 2 - Perform a search from LSB towards MSB in order to find the position m

of the first bit 0 after a bit 1 in the previous vector

– Task 3 - Create a temporary vector t = [tN−1 · · · t0] by flipping the bits em and

em−1 of vector e

– Task 4 - Permutate bits ti and tm−2−i of vector t for all 0 ≤ i ≤ m− 2

In order to generate all the possible vectors e considering a range of simultaneous errors

kmin ≤ k ≤ kmax, Algorithm 1 is performed.

Algorithm 1 Fault Pattern Generation

1: k ← kmin

2: for k ≤ kmax do
3: ek1 ← Task1(N, k)
4: j ← 2
5: for j ≤ Ck

N do
6: m← Task2(ekj−1)

7: t← Task3(ekj−1,m)

8: ekj ← Task4(t,m)
9: j ← j + 1

10: end for
11: end for

In an effort to better understand Algorithm 1 realization, let us consider the generation

of the whole set of vectors e = [e2e1e0] for kmax = 2. In this case, the step by step execution

81

is shown in Figure 2.4.

TASK1 TASK2 TASK3 TASK4 OUTPUT

001 001

001 010 010 010

010 100 100 100

011 011

011 101 101 101

101 101 110 110

Figure 2.4: Example of a step by step execution of Algorithm 1 considering N = 3 and
kmax = 2

2.2.2 Reliability Assessment

The main purpose of the FIFA tool is to characterize the logical masking ability of a

given circuit architecture. This ability can be used in order to evaluate its reliability by

using the PBR model [16] explained in Chapter 1. According to such model, the reliability

of a circuit can be calculated by (2.1), where:

– N is the number of gates that may fail.

– q represents the reliability of a gate, that is, the probability that it doesn’t fail. We

consider all gates in a circuit as having the same reliability value.

– f(k) = (1− q)kqN−k denotes the probability that k gates fail simultaneously. Notice

that more complex models can also be used to evaluate this term as shown in [16].

– ck denotes a coefficient related to the masking of k simultaneous errors in a circuit.

Considering that the target circuit has Z input bits, it can be calculated using (2.2).

R =

N
∑

k=0

f(k)ck (2.1)

ck =
2Z−1
∑

j=0

p(xj)





CN
k

∑

l=1

y(xj , eN :0)⊕ y(xj , eN :k(l))



 (2.2)

The exact reliability value can be calculated by considering all the possible input vectors

and fault patterns as shown in (2.1). However, an approximated value of the reliability can

be obtained if a maximum number of simultaneous errors kmax < w is considered, which

significantly reduce the required computing time. Indeed, for most of real world systems,

82 2. FIFA Tool

w simultaneous faults are not likely to happen.

2.2.3 Synthesis Results

We have implemented a full parameterizable HDL description of the proposed tool.

Indeed, parameters such as the number of fault-prone gates (N), the number of stimuli

data bits (Z), and the number of output bits (P) can be selected in order to match a target

design dut.

In order to evaluate the implementation cost of the proposed tool, we have synthesized

several versions of the IP using a STRATIX II EP2S180F1508C3 FPGA from Altera R©.

Each implemented version has considered a different number of fault-prone gates (N).

Even though the implementations have considered the same number of input/output bits

(Z = 5, P = 3), the proposed IP can deal with any value of Z and P .

The synthesis results are shown in Figure 2.5. Only the main components of the

FIFA tool are taken into consideration. They are: the stimuli generation, the fault

injection, and the masking analysis modules, which are responsible for fault injection

and fault masking analysis.

When N = 6, the tool implementation requires less than 0.1% of the FPGA resources

(NLE = 144) and fmax = 215.98MHz. Even if we consider a large number of fault-

prone nodes, the proposed IP remains very compact. For example, with N = 40, the tool

implementation requires only 2% (NLE = 3555) of the available LEs in the target FPGA.

In the case of N = 40, more than 80 millions test configurations can be generated in every

second (fmax = 82.41MHz).

We compare the performance of the FIFA tool with the FuSE HDL platform proposed

in [17]. The comparison in terms of resource requirements and performance is shown in

Table 2.1. Both implementations have considered N = 10 and P = Z = 32. Notice that

the Fuse platform only deals with single faults, while the FIFA tool deals with single and

multiple faults (kmax = N). Nevertheless, the proposed IP is more efficient in terms of

time and resource requirements. If the occurrence of several simultaneous faults (large

values of ka) is not probable, we can still optimize the IP implementation by reducing the

width of the buses ck, kmin, kmax, ka and k.

Other tools, such as those presented in [90] and [91], have a temporal cost that grows

with the complexity of the fault model. Instead of this, the FIFA tool presents a fault

model which has no significant impact on its performance.

The tool presented in [92] only supports permanent stuck-at faults, and the tools [17]

and [93] only deal with single faults. Unlike those works, FIFA tool deals with single

and multiple faults, and it supports permanent and transient faults as described in Sec-

tion 2.2.1.1.

83

10 15 20 25 30 35 400

500

1000

1500

2000

2500

3000

3500

4000

N

L
og

ic
E

le
m

en
ts

(N
L
E

)

(a)

10 15 20 25 30 35 4080

100

120

140

160

180

200

220

N

M
ax

im
um

F
re

qu
en

cy
(M

H
z)

(f
m

a
x

)

(b)

Figure 2.5: Synthesis results of the tool (up to N simultaneous errors): (a) number of logic
elements required in the FPGA (b) maximum frequency for error generation

84 2. FIFA Tool

Table 2.1: Fuse platform vs. FIFA tool

Fuse [17] FIFA
ALUTs 2157 817

Registers 694 467
Maximum Frequency 75.1MHz 109.87MHz

As the fault injection approach can become very time-consuming for large circuits,

a dedicated hardware may be used as a means to accelerate calculations [94]. Despite

this solution have been used in [88], each test configuration requires reprogramming the

FPGA. This significantly reduces the efficiency, even if partial reconfiguration is used. The

proposed tool is composed in such a way that it avoids reprogramming the FPGA during

the analysis of a given circuit. Indeed, using the available control signals we can select not

only in which nodes we would like to inject faults, but also the fault model(s) to be used.

The FIFA tool was implemented from scratch without benefiting from any proprietary

libraries. Thus, all the required functions together with the memory control access (DMA

- Direct Memory Access) were implemented using standard cells, making the FIFA tool

widely flexible to be used with any FPGA. The modifications should be restricted to the

supervisor module, where we need to specify the communication interface between the tool

and the computer according to availability in the target FPGA. Furthermore, the FIFA

tool allows the designer to control the time complexity as well as the pertinence of the test

configurations. Although such tool has shown to be capable to inject faults in a circuit in a

reasonable speed, the reliability evaluation may be still intractable in case of large circuits.

In order to reduce this drawback, a parallel approach for the FIFA tool is presented in

next Section.

2.2.4 Parallelizing the FIFA Fault Generation

As a matter of fact, the performance of the FIFA tool can be improved by using parallel

computation. A very simple parallel architecture for this tool is shown in Figure 2.6.

In this case, each stimuli generator is responsible for generating a different set of

inputs. Theoretically, this approach can reduce the computing time by a factor of Tcomp/N .

Nevertheless, the area overhead is extremely high, thus limiting the number N of parallel

copies that can be synthesized in an FPGA device. Indeed, since N input vectors are

being generated each time, N fault-free DUTs are needed in order to enable the output

comparison performed by the masking analysis block. One solution to that would be

to save all the fault-free output values in a memory, but the required amount of resources

may become prohibitive.

85

STIMULI

GENERATOR 1
MASKING

ANALYSIS

SUPERVISOR

DUT

REF 1

FAULT

GENERATOR

STIMULI

GENERATOR 2

DUT

FAULTY 1

DUT

REF 2 DUT

FAULTY 2

DUT

REF N DUT

FAULTY N
STIMULI

GENERATOR N

Figure 2.6: A simple parallel architecture for FIFA

FAULT

GENERATOR 1
MASKING

ANALYSIS

SUPERVISOR

DUT

REF

STIMULI

GENERATOR

FAULT

GENERATOR 2

DUT

FAULTY 1

DUT

FAULTY 2

DUT

FAULTY N
FAULT

GENERATOR N

Figure 2.7: The proposed parallel architecture for FIFA

We propose another architecture to parallelize the FIFA tool, shown in Figure 2.7. In

this case, the tool synthesizes N fault generators, each one responsible for generating

a different set of fault patterns. This approach avoids the duplication of the fault-free

DUT, thus reducing the area overhead compared to the previous solution.

The parallel computation can be optimized if the fault generators produce the

same number of fault patterns, that is, if they are well balanced. In order to do that,

each fault generator must be initialized by two main parameters: the number of fault

patterns to be generated, and the initial vector e. As the fault pattern generation sequence

is done for k = {1, 2, · · · , w}, the calculation of the initial vector e is not a trivial task.

Indeed, the difficultness to implement the architecture shown in Figure 2.7 lies on this

calculation, for which a solution is proposed in Section 2.2.4.1.

2.2.4.1 Calculating the initial vectors

Let us consider the fault pattern generation sequence for a 6-bit vector e shown in

Figure 2.8. The aim is to find an algorithm that, based on this generation sequence, can

find which is the zth fault pattern e.

In order to do that, let us explore some number pattern in this sequence. First, let us

86 2. FIFA Tool

IDX k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

0 000001 000011 000111 001111 011111 111111

1 000010 000101 001011 010111 101111

2 000100 000110 001101 011011 110111

3 001000 001001 001110 011101 111011

4 010000 001010 010011 011110 111101

5 100000 001100 010101 100111 111110

6 010001 010110 101011

7 010010 011001 101101

8 010100 011010 101110

9 011000 011100 110011

10 100001 100011 110101

11 100010 100101 110110

12 100100 100110 111001

13 101000 101001 111010

14 110000 101010 111100

15 101100

16 110001

17 110010

18 110100

19 111000

Figure 2.8: Example of a fault pattern generation sequence

analyze the behavior of left-shifting the left-most bit ‘1’ in the first vector of each column.

This is represented by the bold vectors shown in Figure 2.8. Extrapolating the fault-

pattern generation for a w-bit vector e, we obtain the following sequences representing the

indices of the bold vectors:

– k = 1 → {1, 2, 3, 4, 5, · · · }

– k = 2 → {1, 3, 6, 10, 15, · · · }

– k = 3 → {1, 4, 10, 20, 35, · · · }

– k = 4 → {1, 5, 15, 35, 70, · · · }

– k = 5 → {1, 6, 21, 56, 126, · · · }

Notice that the number pattern shown above corresponds to the columns of the Pas-

cal’s triangle illustrated in Figure 2.9. Therefore, for a given k, the nth element of the

corresponding sequence can be evaluated by (2.3). This allows us to obtain any bold vec-

tor by performing left-shifting operations on the left-most bit ‘1’ in the first vector of a

column. For example, in order to obtain the vector in column k = 2 with index 10, we

should perform four left-shift operations (e(1) = 000011 → e(10) = 100001) because 10

is the fourth element in the corresponding sequence (elem42 = 10).

elemnk
=

n(n+ 1) · · · (n+ k − 1)

k!
(2.3)

Let us now explore some other number pattern to allow the evaluation of non-bold

vectors. First of all, let us denote Φj
k as the set of vectors in a column k for which the left-

most bit ‘1’ is located at the position j of e = (ewew−1 · · · e1). For example, in Figure 2.8 we

have Φ4
2 = {001001, 001010, 001100}. Notice that the elements of Φj

k show an interesting

87

K
=

1

K
=

2

K
=

3

K
=

4

K
=

5

K
=

6

K
=

7

K
=

8

K
=

9

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

Figure 2.9: Pascal’s triangle

behavior: they differ from each other only by the bits {ej−1 · · · e1} shown in bold. Further,

these bits are generated in the same sequence as the vectors in the column k − 1. This

pattern holds true for any two successive columns in Figure 2.8.

We can then explore this number pattern in order to elaborate a recursive algorithm to

evaluate the zth vector in a column k. First, let us consider the following case of study: the

63 fault patterns shown in Figure 2.8 have to be produced by two fault generators. In

this case, the first module is responsible for generating the first 32 vectors, and the second

one for generating the other 31. Because of that, we have to find the 33th vector e in order

to initialize the second fault generator.

The first step of the proposed algorithm is to find the column of Figure 2.8 that contains

the 33th fault pattern e. This can be easily obtained by using combinatorial functions,

which indicates that this vector belongs to the third column (C6
1+C6

2 < 33 < C6
1+C6

2+C6
3).

Further, it can be seen that it corresponds to the 12th vector e in the column k = 3 because

33− (C6
1 + C6

2) = 12.

Since the indices of the elements in Figure 2.8 start from 0, the first step is to use

(2.3) to find which is the highest value of n such that elemn3
≤ 11. In this case, this

corresponds to n = 3 → elem33 = 10. Then, repeating the same procedure for k = 2 such

that elemn2
≤ (11− 10), it can be found n = 1 → elem12 = 1. Notice that this recursive

procedure is repeated until the sum of the elements elemnk
equals the index of the target

vector. From these results, we can extract the amount of left-shift operations that must

be performed for each bit ‘1’. In this case, we have to perform n left-shift operations in

e3 (n = 3 → e = 100011) and e2 (n = 1 → e = 100101). Therefore, the 33th vector in

Figure 2.8 is 100101. Algorithm 2 illustrates the steps of calculating the zth generated

fault pattern.

88 2. FIFA Tool

Algorithm 2 Evaluating the zth generated fault pat-
tern
1: k ← 1;
2: SumCombination← Cw

k ;
3: while SumCombination ≤ z do
4: k ← k + 1;
5: SumCombination← SumCombination + Cw

k ;
6: end while
7: Index = z − SumCombination;
8: for i = 1; i ≤ k; i = i+ 1 do
9: biti = 1≪ (i− 1);

10: end for
11: for i = k; k > 0; i = i− 1 do
12: kn← 1;
13: Calculate elemikn ;
14: while elemikn ≤ Index do
15: biti = biti ≪ (1);
16: kn = kn+ 1;
17: Calculate elemikn ;
18: end while
19: Index = Index− elemikn−1

;
20: if Index == 0 then
21: break;
22: end if
23: end for
24: FinalVector = 0;
25: for i = 1; i ≤ k; i = i+ 1 do
26: FinalVector = FinalVector ∨ biti;
27: end for

2.2.5 Results

The implementation cost of the proposed architecture was analyzed with a 74283 fast

adder, using a DE2 FPGA board from Altera. For each implementation, a different number

of parallel modules was considered, from 1 up to 8 copies. This is the maximum number

of copies that could be synthesized on this device. The amount of resources used by these

implementations is shown in Figure 2.10. It can be noted that the resources grow in an

almost linear rate with respect to the number of copies of the dut. Further, the amount

of logic elements doubles only for N = 5, i.e. only about 20% of area overhead is necessary

to add a parallel module for this case.

The performance of the FIFA parallel implementation was analyzed regarding the num-

ber of clock cycles required to evaluate the reliability of the 74283 fast adder. The effect of

up to 5 simultaneous bit-flips into the circuit was considered. The simulation results are

shown in Figure 2.11. Notice that the computation time is reduced by a factor very close

89

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Parallel Modules (N)

T
ot

al
 L

og
ic

 E
le

m
en

ts

Figure 2.10: Total logic elements

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

8

Number of Parallel Modules (N)

N
um

be
r

of
 C

lo
ck

 C
yc

le
s

Figure 2.11: Number of clock cycles

to the theoretically value of 1/N , what shows the efficiency of the proposed architecture.

2.2.6 Conclusion

This chapter presented a new tool based on fault injection for fault robustness anal-

ysis of digital circuits. The proposed tool, named FIFA, allows the designer to establish

trade-offs between complexity and completeness of the analysis. The developed IP is fully

parameterizable. Synthesis results have shown that it exceeds those reported in the litera-

ture in terms of area efficiency and performance. The FIFA tool deals with single/multiple

simultaneous faults as well as permanent/transient faults. Moreover, if high fault multi-

plicity (ka > kmax) is unlikely, all fault injections and tests related to ka > kmax can be

avoided without diminishing accuracy in the analysis process.

In addition, an elaborate algorithm that calculates the zth element in the fault pattern

generation sequence was introduced. The corresponding sequence is of great interest for

fault-injection tools because it can be used to inject faults according to their multiplicity.

90 2. FIFA Tool

The proposed algorithm was used to conceive a new parallel architecture for the FIFA

tool. The algorithm is required in order to balance the amount of fault patterns among the

parallel fault generators, a must for optimal parallel implementations. This architecture

can reduce the calculation time by a factor of 1/N , where N is the number of parallel

modules. This shows that the parallel modules are well balanced, what is highly desired. At

the same time, replications of fault-free DUTs are avoided, thus keeping the area overhead

as low as possible. Indeed, extrapolating for very large circuits, the area overhead will

converge to close to 50% of the original area per additional module.

91

Chapter 3

Effective Reliability

3.1 Introduction

As stated in Section 1.2, the reliability of a logic circuit is emerging as an important

concern that may limit the benefits of technology scaling in nanometric dimensions [95–97].

The reliability of a circuit is a measure of its susceptibility to permanent, intermittent and

transient faults [15]. Faults in integrated circuits can produce errors, but an error will not

necessarily propagate to the final output of a circuit and produce a failure. Basically, three

different kinds of masking effect can avoid the propagation of an error:

– Logical masking : occurs when the propagation of a fault is blocked by a subsequent

logical gate whose output is completely determined by the other input. An example

of logical masking can be seen in Figure 3.1.

– Electrical masking : occurs when a fault is attenuated during its propagation so that

it does not have enough duration/amplitude to affect the result of the circuit.

– Temporal masking or latching-window masking : occurs when the current/voltage

transient generated by a fault reaches the input of a synchronous cell outside its

storage window (not at the clock transition).

These three mechanisms are directly related to the capacity of a circuit to tolerate

faults. However, the downscaling of electronics is reducing both its electrical and temporal

masking abilities [95, 98]. On the other hand, the technology scaling is not affecting the

logical masking ability because it depends only on the topology of the logical circuit [8].

Indeed, several fault-tolerant approaches are based on increasing the logical masking ability

of a circuit so that a fault will not reach its final output. These fault-tolerance techniques

generally bring some design penalties such as area, cost, and performance. In spite of that,

other potentially fault masking capabilities can be derived from the target application and

were not extensively explored. In fact, the error impact on a circuit output is conditioned

by the usage of its results. This can lead to the existence of errors that can be accept-

92 3. Effective Reliability

able/bearable for a specified application. In other words, certain applications can tolerate

small errors, and we can explore this fact to improve the resulting design. In the rest of

the current work, this phenomenon will be referred as application masking of errors,

which is closely related to the concept of error tolerance.

Figure 3.1: Example of a logical masking. Notice that when F assumes the value ‘0’ and
occurs a SET in E, the output H rests unchanged and is not affected by this error.

3.2 Error tolerance

The drastically increase in the number of soft and permanent faults expected with

technology scaling has inspired the discussion about error tolerance since the release of the

2001 International Technology Roadmap for Semiconductors (ITRS). This report states

that: “Relaxing the requirement of 100% correctness for devices and interconnects may

dramatically reduce costs of manufacturing, verification, and test. Such a paradigm shift is

likely forced in any case by technology scaling, which leads to more transient and permanent

failures of signals, logic values, devices, and interconnects.” [99]. This is done as a means to

reduce the cost of the final design since this has been the greatest threat to the continuation

of the semiconductor roadmap. This menace continues to be true in the ITRS 2011, and

it’s the principal message of the last ITRS Design Report [4].

The error tolerance concept was first introduced as an application-oriented paradigm

to deal with process variations, defects, and noise in [7]. The main idea is that some

applications such as audio and video, have the ability to tolerate certain types of errors as

long as they are restricted to a certain level of error severity given by the target application.

For instance, most of multimedia applications inherently have this ability because of the

functioning of human’s senses such as sight, hearing, and smell, which can mask the effect

of some errors.

Application masking of errors, also called application-level resilience by [83], has been

extensively researched over the past years [7, 83, 86, 100]. For instance, a methodology

to analyze the error tolerance of applications was proposed in [100]. In this work, the

authors have analyzed the impact of errors in the quality of the audio signal provided by a

digital telephone-answering device. Then, they have investigated the correlation between

93

the position of an erroneous output bit and the corresponding impact on speech quality.

The results have shown that the contribution of each output bit can be different, and that

errors below a specified threshold are acceptable. A study of the resilience of a JPEG

compressor to errors was carried out in [86]. In this study they proposed some models

to calculate the error severity to the JPEG compressor as well as a method to selectively

harden such circuit.

Another element that can influence the error tolerance of a given application is the

approach of coding used to represent the desired information. As a matter of fact, the

impact of an erroneous output bit also depends on its weight, i.e. its significance relative

to the output word. In order to demonstrate that, let us consider the output of an audio

signal in which an SEU occurred in a sample as shown in Figure 3.2(a) [101]. It can be noted

that the error has a pulse characteristic in time domain, and that the amplitude of such

pulse depends on the bit position. Consequently, a bit-flip presents a white noise behavior

in the frequency domain, and its power also depends on the erroneous bit position as shown

in Figure 3.2(b). This means that the amount of white noise added by the occurrence of

a bit-flip depends on the bit position, and since the addition of a small quantity of noise

can be masked by the human hearing, some errors can be acceptable/bearable for an audio

application. In fact, the most significant bits carry more information about the signal,

therefore they deserve special attention. Errors presented in the less significant bits may

be even acceptable.

Time (s)

A
m
p
li
tu
d
e
(V
)

0
0

1

1

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

(a) Bit-flip occurrence at bM−1

Frequency (Hz)

A
b
s.
M
ag
n
it
u
d
e
(d
B
)

0
0

5

10

10

15

20

20 30 40 50

(b) Frequency representation of the
signal with error

Figure 3.2: Bit-flip occurrence in a sine wave representing an output of a circuit

In spite of that, most of testing and reliability evaluation techniques analyze the output

of a circuit in a pass versus fail paradigm. By doing that, they ignore the real impact of

an error on the final result, which can lead to the conception of suboptimal designs.

This chapter introduces a new model for reliability calculation named effective reli-

ability [101, 102]. Unlike the traditional concept for reliability evaluation, effective relia-

bility takes into consideration application-specific characteristics to give us a fairly value

94 3. Effective Reliability

for the reliability of a circuit. Indeed, using pertinent quality metrics, it can evaluate the

reliability of a circuit considering that errors below a specified threshold are acceptable.

Therefore, effective reliability is not based only on fault tolerance, but also makes use of

the error tolerance concept [7]. In addition, two metrics are proposed in order to calculate

the effective reliability of a circuit based on bit significance and relative error rules.

3.3 Effective reliability

Let yi = bM−1bM−2 · · · b1b0 be defined as a vector of M bits that represents the output

of a circuit. In this case, bit b0 stands for the LSB (Least Significant Bit). Also, let us

define the reliability of bit bi as qi. Considering an application with independent outputs,

the nominal reliability can be evaluated by (3.1) [54].

Rnom =
M−1
∏

i=0

qi (3.1)

It can be noted that the nominal reliability concept does not differentiate the impact

of each output bit to the final reliability of the circuit. This means that such concept is

based on a pass versus fail paradigm, and therefore does not consider any kind of error

tolerance. In order to allow that, we propose a model for reliability calculation which takes

into account the effective impact of errors on the target application (see Figure 3.3). This

new concept, named effective reliability, can be evaluated by (3.2) or (3.3)

Reff = Rnom +Rack (3.2)

Reff = 1−Rack (3.3)

where Rack is the probability of errors being masked according to the application, that

is, errors that are acceptable for the target application are neglected, and Rack is the

probability of errors not being masked according to the application. Notice that two

different terms are presented in (3.2): Rnom and Rack. The first one is related to the

logical masking ability of the design, while the latter one is related to its application

masking ability. The general procedure to evaluate the effective reliability of a circuit is

represented in Figure 3.3.

One important characteristic of the effective reliability concept is that it is based on

the assumption that for a given application, errors can be classified into two categories:

critical and noncritical. In this context, an error is considered critical if it significantly

impacts the quality of the result, or if it directly causes a circuit malfunctioning. Because

of that, these errors cannot be accepted. On the other hand, noncritical errors have no

95

significant impact on the output such that they cannot be perceived by the final user (they

can be tolerated).

Figure 3.3: General scheme for reliability calculation of a bit-vector from a logic circuit
that supplies a target application circuit

The evaluation of Rack or Rack is performed according to quality metrics that are

considered pertinent from the application’s point of view. For example, due to physical

mechanisms presented in human ear, the frequency response of our auditory system is not

linear. As a result, we have a better perception at some frequencies than others; and we

can use this to define a set of errors that are acceptable for our application. Exploiting

this fact, we notice that Reff > Rnom. Thus, reliability constraints for the logic circuit

can be relaxed so that area over cost can be minimized.

The next Section presents two quality metrics that can be used to evaluate the effective

reliability of a circuit.

3.4 Quality metrics

3.4.1 Definitions

Let us suppose that the output of a specific circuit is used to control an application. In

this context, each circuit output result is represented by yi, defined in Section 3.3. Con-

sidering the occurrence of k simultaneous errors, there are CM
k =

(

M
k

)

different situations

concerning the locations (indices) of the faulty bits in yi. For instance, if M = 4 and

k = 3, we have 4 different situations (C4
3 = 4) for the occurrence of 3 simultaneous errors

in yi: {b2b1b0, b3b1b0, b3b2b0, b3b2b1}. Based on that, we can define the following elements:

– wk×1 as a column vector that represents the indices of the k faulty bits in yi.

– Ek×CM
k as a matrix created by the concatenation of all possible wk×1 vectors for a

specified k (see Figure 3.4 for an example). Each element of Ek×CM
k is represented

by ei,r.

96 3. Effective Reliability

– γk,r as the probability of occurrence of k errors in yi distributed according wr. This

parameter can be evaluated by (3.4).

Figure 3.4: Example of matrix E considering 3 errors in yi = b4b3b2b1b0

γk,r = Rnom.
k
∏

i=1

(

1

qei,r
− 1

)

(3.4)

In the next Section these elements will be used to define quality metrics to evaluate

the effective reliability of a system.

3.4.2 Quality metric 1: bit significance

The first quality metric proposed in the current work is based on bit significance. In

this case, we consider that any faulty bit located below a specified position is acceptable.

This threshold value, represented by T , depends on the target application. For example,

if we consider T = 2 for a specific application, it means that any faulty bit located in b2,

b1 and/or b0 can be tolerated. With this in mind, we can now evaluate Rack and Rack

by (3.5) and (3.6), respectively. Moreover, the effective reliability can be calculated using

(3.7) or (3.8).

Rack =
T+1
∑

k=1

CT+1

k
∑

r=1

γk,r (3.5)

Rack =
T+1
∑

k=1

CM
k

∑

r=CT+1

k
+1

γk,r +
M
∑

k=T+2

CM
k

∑

r=1

γk,r (3.6)

Reff =
M−1
∏

i=0

qi +
T+1
∑

k=1

CT+1

k
∑

r=1

γk,r (3.7)

Reff = 1−

T+1
∑

k=1

CM
k

∑

r=CT+1

k
+1

γk,r −

M
∑

k=T+2

CM
k

∑

r=1

γk,r (3.8)

97

3.4.3 Quality metric 2: relative error

Relative error refers to an evaluation of a difference between two measures normalized

with respect to the true measure. One approach to calculate the relative error is shown in

(3.9), where yi is the correct measure and ỹi is the erroneous measure.

δ =
|ỹi − yi|

yi

(3.9)

Using this concept, we can define a maximum acceptable value for the relative error

(δmax) based on the target application. In order to do that, let us first suppose a system in

which the input word comprises a vector of H bits. Considering that p(a) represents the

probability of the input to assume a value a, Rack and Rack can be evaluated according to

(3.10) and (3.11), respectively,

Rack =

2H−1
∑

a=0

p(a)

kmax
∑

k=1

CM
k

∑

r=1

γk,r.u (δmax − δ(k, r, a)) (3.10)

Rack =

2H−1
∑

a=0

p(a)

kmax
∑

k=1

CM
k

∑

r=1

γk,r.u (δ(k, r, a)− δmax) (3.11)

where kmax represents the maximum number of simultaneous errors considered, u(t) is

a step function centered at the origin, and δ(k, r, a) is evaluated according (3.9). The

erroneous measure ỹi in such expression is obtained considering the occurrence of k simul-

taneous errors distributed according to wr.

Finally, we can evaluate the effective reliability using (3.12) or (3.13).

Reff =
M−1
∏

i=0

qi +
2H−1
∑

a=0

p(a)

kmax
∑

k=1

CM
k

∑

r=1

γk,r.u (δmax − δ(k, r, a)) (3.12)

Reff = 1−
2H−1
∑

a=0

p(a)

kmax
∑

k=1

CM
k

∑

r=1

γk,r.u (δ(k, r, a)− δmax) (3.13)

Notice that both expressions (3.12) and (3.13) only provide the same effective reliability

value when considering kmax = M simultaneous errors. This task is computationally

intensive and may be intractable for large circuits. However, this consideration may be

too pessimistic for the specified application. The analysis of both expressions considering

different values of kmax can give us a possible solution to tackle this problem. As a matter

of fact, expressions (3.12) and (3.13) provides a different pair of values for each kmax < M .

The first one gives us a pessimistic value for effective reliability and the other one an

optimistic value. The difference between these two results reduces as kmax approximates

98 3. Effective Reliability

M . Therefore, expressions (3.12) and (3.13) can be used to produce boundaries in order

to estimate the effective reliability. When both results are closer enough from each other,

we can stop the calculation and estimate the effective reliability for the target application.

3.5 Simulation results

For illustration of the proposed approach, let us consider the design of three circuits

commonly used in digital signal processing applications: a median filter, an 8-bit ripple

carry adder (CRA8), and a 4-bit multiplier (MUL4). For the median filter, the bit signifi-

cance metric will be used, while for the two latter the relative error metric is considered.

3.5.1 Median filter

In the field of image processing, a set of noise reduction algorithms is often required.

These algorithms generally present different properties so that one algorithm is more suit-

able to deal with one type of noise than another. In particular, the median filter is a

nonlinear digital filtering technique commonly used because of its great performance when

coping with “speckle” and “salt and pepper” noise.

Let us suppose for our case of study that we have to implement a median filter to

process images with the following requirements:

– Each image has 256× 256 pixels varying from 0 to 255;

– The system must have an 8-bit input and an 8-bit output;

– The filter’s reliability must be higher than 95%.

Let us now consider that the filter architecture we chose led us to an implementation

in which each output bit has a reliability of 99%. In the following, we can analyze both

the traditional and the proposed reliability evaluation methods as following:

3.5.1.1 Traditional reliability calculation

The traditional reliability calculation that considers independent outputs can be eval-

uated by (3.14).

Rnom =

M−1
∏

i=0

qi = 92.27% (3.14)

In this case, it can be seen that the reliability requirement was not fulfilled by our

median filter. Therefore, procedures must be carried out to solve this problem. In order

to respect the reliability requirement stated above, a possible solution is to make use of

99

redundancy techniques to increase the reliability of the median filter. Using that, the

system will fit the reliability requirement in exchange for area, cost, and power increase.

Nevertheless, a careful analyze of the median filter application puts in evidence that

this problem could be treated from another point of view. Using the concept of nominal

reliability we do not take into account any application-specific characteristic in order to

evaluate the reliability of the system. However, in systems such as the one used in our

case study, small errors can be tolerated without compromising the system performance.

Unlike the traditional method for reliability evaluation, effective reliability can take into

consideration such characteristics. Therefore, it may give us a fairly evaluation for the

reliability of this circuit with respect to a pertinent quality metric.

3.5.1.2 Effective reliability calculation

As a first step to evaluate the effective reliability for our case of study, we need to define

an acceptable quality metric from the application’s point of view. In this case, we chose

the bit significance approach discussed in Section 3.4.2. The next step is to evaluate the

effective reliability for different error tolerances. As shown in Table 3.1, we can then be

aware of the minimum error tolerance value necessary to meet the reliability requirement.

Notice that one important contribution of the effective reliability concept is to provide a

reliability value that depends on the application masking ability of the circuit. Indeed, the

reliability of a circuit is now characterized not only by the presence of errors in the output

of a circuit, but with the usage profile of the results provided by the circuit. By doing that,

the reliability of a given circuit ‘A’ may be higher for one application than for another.

Table 3.1: Effective reliability evaluation for different error tolerances

T (bit) Reff

b0 93.21%
b1 94.15%
b2 95.01%
b3 96.06%
b4 97.03%
b5 98.01%
b6 99.00%
b7 100.00%

According to Table 3.1, if our application can tolerate any faulty bit localized between

b0 and b2 (i.e., T = 2), the effective reliability of this system is 95.01%. Therefore, the

project requirements are already fulfilled and we do not need to add extra hardware to

100 3. Effective Reliability

improve the reliability of the median filter. In order to check if this error tolerance is

acceptable for our system, we performed a subjective analyze relative to noisy pictures.

Each picture was contaminated with gaussian noise using the required error tolerance range

(faulty bits localized between b0 and b2). An example of the well-known “Lena” used in

this comparison procedure can be seen in Figure 3.5. As can be noted, the noise is almost

unperceived by humans, and then can be tolerated by our application. As a result of that,

we can conclude that the effective reliability of our system is already greater than 95%,

fitting well the specified requirements, and that no extra hardware is required.

(a) Original “Lena” (b) Noisy “Lena”

Figure 3.5: Comparison between the original and the noisy “Lena” pictures

3.5.2 8-bit ripple carry adder

The ripple carry adder circuit (CRA8) was constructed by cascading 8 FA blocks (see

Figure 3.6), where each logic gate is supposed to have reliability 99.9%. Furthermore, let us

suppose that the CRA8’s reliability must be higher than Rmin = 95% and that the target

application can accept/tolerate errors as high as 2% of the correct result (δmax = 2%).

The reliability of the output bits of the CRA8 circuit can be evaluated by using the

SPR-MP technique proposed in [15] and explained in Section 1.2. The results are shown

in Table 3.2.

101

Figure 3.6: Structure of FA (full adder)
block

Figure 3.7: Schema of FA block

Table 3.2: Reliability values for the output bits of the 8-bit full adder (CRA8)

Output Reliability (qi)
b0 99.80%
b1 99.48%
b2 99.31%
b3 99.24%
b4 99.20%
b5 99.18%
b6 99.17%
b7 99.16%

b8(carry) 99.36%

3.5.2.1 Design based on nominal reliability

Using the traditional reliability concept defined in Eq. 3.1 and values in Table 3.2, the

reliability for CRA8 is calculated as shown in (3.15). This analysis leads the designer to

assume that the specifications are not met, and that the use of a fault tolerance technique

is necessary.

R =
8
∏

i=0

qi = 94.06% (3.15)

Let us consider TMR (Triple Modular Redundancy) as the fault-tolerance technique

to be applied in order to improve the reliability of this circuit [23]. TMR corresponds to

the triplication of a module (in this case, a FA) and the selection of one among the three

outputs according to a majority vote. Triplication of a FA implies the use of two voters

(one for sum and another for the carry bit). Considering that the relationship between the

voter’s area (SV) and the FA’s area (SFA) are such that SFA = 2× SV , applying TMR to

a FA implies in triplicating the required area for this block. If we analyze all the possible

architectures with FA modules triplicated, the configuration that can meet the reliability

102 3. Effective Reliability

Table 3.3: Reff for different error tolerances (CRA8)

Relative Error (δmax) Reliability
0.5% 94.23%
1.0% 94.64%
1.5% 94.96%
2.0% 95.22%
2.5% 95.44%
3.0% 95.62%
3.5% 95.77%
4.0% 95.92%
4.5% 96.05%
5.0% 96.16%

requirement while still minimizing the area overhead is obtained by protecting two FAs

with TMR. In this case, the area overhead is 75%. Let us now analyze the same circuit by

using the effective reliability concept.

3.5.2.2 Design based on effective reliability

Differently of nominal reliability, effective reliability takes into account the usage of the

results produced by the circuit when evaluating its reliability. The main idea is to define

a threshold based on a pertinent quality metric that can be used to classify errors into

critical and noncritical. In order to do that, let us consider the relative error metric stated

in Section 3.4.3. The equations to evaluate the effective reliability value for a given error

tolerance (δmax) are given in (3.2) and (3.10). We have evaluated the effective reliability

for different values of δmax as a mean to illustrate the relationship between this value and

the error tolerance ability of the target application. The obtained results are shown in

Table 3.3. Given that the target application tolerates errors as high as 2%, we notice that

the reliability is over than 95%. Therefore, our system has already met the specifications

and no TMR is required.

3.5.3 4-bit multiplier

The MUL4 was constructed using the architecture shown in Figure 3.8. In this case,

each full-adder FA was built according Figure 3.6 and Fig 3.7. Let us now consider that

this project has a reliability requirement of Rmin = 90%, and that the target application

can tolerate errors as high as 5% (δmax = 5%).

The reliability of the output bits of the MUL4 circuit can be evaluated by using the

103

Figure 3.8: Structure of a 4-bit multiplier block

Table 3.4: Reliability values for each output bit of the 4-bit multiplier

Output Reliability
p0 99.90%
p1 99.70%
p2 99.25%
p3 98.43%
p4 97.55%
p5 97.30%
p6 97.89%
p7 99.16%

SPR-MP technique [15]. In order to do that, we have assumed that the reliability of a logic

gate is q = 99.9%. The corresponding results are shown in Table 3.4. Let us now analyze

the results by using the nominal reliability and the effective reliability concepts.

3.5.3.1 Design based on nominal reliability

Using the values presented in Table 3.4, we can evaluate the reliability according the

traditional concept as shown in (3.16). In this case, the designer is also leaded to assume

that the specifications were not met, and that the use of a fault tolerance technique is

necessary.

Rmul =

7
∏

i=0

qi = 89.65% (3.16)

Next, we have analyzed the use of the TMR technique to improve the multiplier reli-

104 3. Effective Reliability

Table 3.5: Reff for different error tolerances (MUL4)

Relative Error (δmax) Reliability
0.5% 89.65%
1.0% 89.67%
1.5% 89.71%
2.0% 89.75%
2.5% 89.81%
3.0% 89.87%
3.5% 89.92%
4.0% 89.98%
4.5% 90.07%
5.0% 90.12%

ability such that the expected requirements are met. Every component, AND gates and

FAs shown in Figure 3.8, was considered as a possible module where we might apply TMR.

The first step was to analyze all possible architectures using TMR in one module. In this

case, there was no architecture that could fit the reliability requirement (Rmin = 90%).

However, by applying TMR into two modules, 27 different architectures can reach Rmin.

Among them, we chose the one with less area overhead. This is obtained applying TMR

into gates AND1 and AND16. Assuming that all logic gates have the same area, the total

area overhead for this architecture is 11.84%. Let us now consider the analysis by using

the effective reliability concept.

3.5.3.2 Design based on effective reliability

We evaluated the effective reliability for different error tolerances as shown in Table

3.5. Analyzing the results presented in this Table, we can conclude that the reliability of

this circuit is over 90% if it can tolerate error as high as δmax ≥ 4.5%. Therefore, assuming

the example presented in this Section, which δmax = 5%, the multiplier has already met

the required specifications without using any fault tolerance technique.

3.6 Conclusion

In this chapter we have proposed a new concept for reliability evaluation named effective

reliability. Unlike the traditional concept for reliability evaluation, effective reliability can

take into account specific characteristics of the target application to give us a fairly value

for the reliability of a circuit. Indeed, using pertinent quality metrics, it evaluates the

reliability of a circuit considering that errors below a specified threshold are acceptable.

105

Therefore, effective reliability is not based only on fault tolerance, but also make use of

the error tolerance concept.

In addition, two important quality metrics were also proposed. Both, bit significance

and relative error metrics, may be used in a range of digital signal processing applications.

Simulation results were presented in Section 3.5. Three circuits often used in digital

signal processing applications were considered as the case of studies in order to demonstrate

the importance of the proposed concept. In fact, when we do not consider the application

when evaluating the reliability of a circuit, the calculated value can be too pessimistic.

Then, unnecessary procedures may be carried out in order to fit the reliability requirement

for a specific project, increasing cost and area penalty.

106 3. Effective Reliability

107

Chapter 4

Selective Hardening

4.1 Introduction

As discussed earlier, selective hardening techniques offer a good compromise between

reliability improvement and area overhead. Based on that fact, this chapter introduces

two different approaches to apply selective hardening in integrated circuits. The first one,

introduced in Section 4.2, is based on the fact that errors may have different consequences

for different applications. For instance, in a binary output word, errors located in the most

significant bits tend to be more critical than errors located in the least significant bits.

Therefore, the proposed technique drives the effort of reliability improvement to the bits

that will most impact the output of a circuit. In addition, a metric that allows to assign

different weights to different output bits of a system, named practical reliability, is also

introduced. The second approach, introduced in Section 4.3, uses a parameter similar to

a hardening cost in order to allow designers to drive the methodology using accurate cost

values for hardening each gate [103]. Further, two heuristics are proposed as a means to

determine when selective hardening is no longer feasible.

4.2 Avoiding Critical Errors in Integrated Circuits

4.2.1 Nominal reliability

Let y = bM−1bM−2 · · · b1b0 be a vector of M bits representing the output of a circuit.

The nominal reliability [54, 101] of a circuit is defined as the probability that it produces

correct outputs, i.e., the probability that all bi ∈ y are correct 0(s) and 1(s). Considering

that the output bits are independent, this value is conventionally expressed as in (4.1),

where Ri stands for the reliability of bi.

108 4. Selective Hardening

Table 4.1: Reliability for the output bits of three different architectures of a 4-bit adder

Architecture b3 b2 b1 b0 Rnominal Rpractical

1 99% 99% 99% 95% 92.18% 97.63%

2 95% 99% 99% 99% 92.18% 94.17%

3 98% 99% 99% 95% 91.25% 96.64%

Rnominal =
M−1
∏

i=0

Ri (4.1)

Let us now suppose that the circuit’s output is coded using a binary scheme such

that bM−1 and b0 stand for the Most Significant Bit (MSB) and the Least Significant Bit

(LSB), respectively. Error(s) occurring in MSB(s) will result in more remarkable disparities

than in any other bit. By contrast, errors in LSB(s) may even be masked by the target

application [101]. In spite of that, nominal reliability assigns equal reliability costs to the

output bits as can be seen in (4.1). In fact, two different architectures of a logic function

may have the same nominal reliability value, but one may still be more likely to provide

results with greater disparities than the other. For instance, let us suppose that a designer

obtained three different architectures of a 4-bit adder and he has to select one of them by

comparing theirs reliability values. Table 4.1 illustrates the values of the reliability of the

output bits of such architectures.

Analyzing the nominal reliability values for the obtained architectures, Architecture

1 and Architecture 2 are selected as the best solutions. Indeed, no distinction can be

made between these two architectures regarding the nominal reliability value. However, if

the output of this circuit is coded using a binary scheme, it is more likely that the first

architecture will provide better results (smaller disparities) than will the second. Ideally,

the reliability analysis should take into account the amount of information each bit of an

output carries (or its importance) in order to assign progressively great costs to them. In

order to tackle this problem, a new metric to analyze the reliability of a circuit is presented

in Section 4.2.2.

4.2.2 Practical reliability

Practical reliability is a metric that can take into account the importance of each output

bit of a circuit. It can be evaluated as shown in (4.2). The weight factor ki allows a designer

to control the importance of a specific output bit bi to the output of the circuit. Notice

that if ki = 1 for all 0 ≤ i ≤ M − 1, the practical reliability expression (4.2) becomes

109

the nominal reliability expression (4.1). Also, by setting ki = 0, the metric does not take

into account errors in bi. This is very useful to circuits that can tolerate some errors

(application masking [101] or application-level resilience [83]). If a simple standard binary

representation is considered, then ki can be calculated as shown in (4.3).

Rpractical =

M−1
∏

i=0

Rki
i (4.2)

ki =
1

2(M−1)−i
(4.3)

Although the proposed metric does not evaluate the true reliability of a circuit, it

takes into account both the reliability and the importance of an output bit to the system

and merge these information in a single number to simplify the analysis. For instance,

let us analyze the architectures shown in Table 4.1. It can be noted that the practical

reliability values are different from the values obtained with nominal reliability. Actually,

even the order of the best architectures changes with the proposed metric. Architecture

2, which before was considered the best architecture together with Architecture 1, now is

considered as the worst choice. This is due to the low reliability value of its MSB. In fact,

practical reliability “punishes” architectures that present low reliability in critical bits, thus

providing a more realistic result for a given target application. This metric will be used in

Section 4.2.3 as the basis for a method to selectively apply TMR into a circuit.

4.2.3 Selectively applying TMR

Although TMR can provide a great level of protection against faults, the area overhead

required by such technique is quite high. To diminish this drawback, this chapter proposes

a method to selectively apply TMR to digital circuits. The main idea is to rank gates or

blocks to be protected based on critical factors. In the current work, a critical factor takes

into account not only the probability that an error will be introduced by a gate, but also

how critical this error will be for the target application as will be seen in Section 4.2.3.2.

4.2.3.1 Case study

In order to explain and validate the proposed method, a 4-bit fast adder (74283) is

used. This fast adder is illustrated in Figure 4.1.

4.2.3.2 Identifying critical gates

Selective TMR is realized by the classification of constituent gates of a circuit [104].

The fast adder has 9 inputs, 5 outputs, and is composed of 40 logic gates. All gates are

110 4. Selective Hardening

Figure 4.1: 4-bit fast adder circuit

considered as being fault-prone. Further, it is considered that these blocks (gi (i ∈ [0, 39]))

are independent, and that they are labeled as shown in Figure 4.2.

The procedure to detect which are the critical gates of this circuit takes two steps:

first, a fault emulation tool, named FIFA and described in [105], is used to inject bit-flip

faults due to radiation effects; next, critical gates are detected by analysis of errors that

appeared in the outputs.

In the following work it is considered only the occurrence of single faults so that the

tool injects just one per clock cycle. If the occurrence of multiple simultaneous faults is

likely, the tool can be configured to deal with that.

Finally, the results produced by the original and the faulty circuits are compared bit by

bit. If these results are different, it is concluded that the injected fault has been propagated

to the output bits. Otherwise it is concluded that the fault has been masked.

The fault injection emulation is performed in order to detect the critical factors. The

idea is to inject a single fault in a gate gi and analyze the output for all possible input

vectors. Then, for each output bit bz, the number of errors Sz related to a single fault in

gi is evaluated (see Table 4.2). The columns Szw correspond to weighted versions of Sz.

The issue is to define proper weights so that Szw reflects the relevance of each gate to each

output.

In the case of the adder circuit, as the output is given as a binary number, Szw is

obtained as shown in (4.4). Notice that there are 29 possible input logic values for each

faulty gate. All the emulation results for the adder circuit are shown in Table 4.2.

Swz = 2z · Sz (4.4)

The critical gates are detected according to the results presented in Table 4.2. Notice

that the rightmost column in Table 4.2 gives the critical factor for a gate gi. The higher

111

10

11

 9

12

13

14

16

17

18

19

20

 22

23

24

25

 27

28

29

 31

32

36

37

34

35

38

39

0

1

 8

33

15

 26

 21

 30

•

•

2

3

•

•

4

5

•

•

6

7

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

S
4

C
0

B
3

A
3

A
2

B
2

A
1

B
1

A
0

B
0

S
3

S
2

S
1

S
0

•

Figure 4.2: 74283 gate-level schematic

112 4. Selective Hardening

Table 4.2: Error analysis for the gates of the circuit 74283

gi S0 S0w
S1 S1w

S2 S2w
S3 S3w

S4 S4w

∑

ew CritFac

0 0 0 0 0 0 0 384 3072 192 3072 6144 36
1 0 0 0 0 0 0 384 3072 320 5120 8192 38
2 0 0 0 0 384 1536 192 1536 96 1536 4608 33
3 0 0 0 0 384 1536 320 2560 160 2560 6656 37
4 0 0 384 768 192 768 96 768 48 768 3072 25
5 0 0 384 768 320 1280 160 1280 80 1280 4608 32
6 384 384 192 384 96 384 48 384 24 384 1920 14
7 384 384 320 640 160 640 80 640 40 640 2944 23
8 512 512 256 512 128 512 64 512 32 512 2560 22
9 0 0 0 0 0 0 0 0 320 5120 5120 35
10 0 0 0 0 0 0 0 0 288 4608 4608 34
11 0 0 0 0 0 0 0 0 272 4352 4352 31
12 0 0 0 0 0 0 0 0 264 4224 4224 29
13 0 0 0 0 0 0 0 0 272 4352 4352 31
14 0 0 0 0 0 0 512 4096 0 0 4096 27
15 0 0 0 0 0 0 384 3072 0 0 3072 24
16 0 0 0 0 0 0 320 2560 0 0 2560 21
17 0 0 0 0 0 0 288 2304 0 0 2304 20
18 0 0 0 0 0 0 272 2176 0 0 2176 18
19 0 0 0 0 0 0 288 2304 0 0 2304 20
20 0 0 0 0 512 2048 0 0 0 0 2048 17
21 0 0 0 0 384 1536 0 0 0 0 1536 13
22 0 0 0 0 320 1280 0 0 0 0 1280 12
23 0 0 0 0 288 1152 0 0 0 0 1152 10
24 0 0 0 0 320 1280 0 0 0 0 1280 12
25 0 0 512 1024 0 0 0 0 0 0 1024 7
26 0 0 384 768 0 0 0 0 0 0 768 6
27 0 0 320 640 0 0 0 0 0 0 640 4
28 0 0 384 768 0 0 0 0 0 0 768 6
29 512 512 0 0 0 0 0 0 0 0 512 2
30 384 384 0 0 0 0 0 0 0 0 384 0
31 512 512 0 0 0 0 0 0 0 0 512 1
32 0 0 0 0 0 0 0 0 512 8192 8192 39
33 0 0 0 0 0 0 512 4096 0 0 4096 27
34 0 0 0 0 512 2048 0 0 0 0 2048 15
35 0 0 512 1024 0 0 0 0 0 0 1024 8
36 0 0 0 0 0 0 512 4096 0 0 4096 28
37 0 0 0 0 512 2048 0 0 0 0 2048 16
38 0 0 512 1024 0 0 0 0 0 0 1024 9
39 512 512 0 0 0 0 0 0 0 0 512 3

113

Table 4.3: Reliability Analysis of 74283

Reliability No hardening Method in [18] Proposed Method

S0 94.07% 94.97% 94.07%

S1 92.39% 93.26% 92.39%

S2 91.80% 92.65% 92.43%

S3 91.33% 92.17% 93.07%

S4 94.60% 95.51% 97.15%

Rnominal 68.93% 72.24% 72.63%

Rpractical 87.29% 88.89% 90.65%

the factor number is, the more critical the gate will be.

In fact, critical factors are assigned to the gates according to the number of weighted

errors in Table 4.2. If the number of weighted errors equals, gates that are nearer the

primary outputs receive higher priorities. If the number of weighted errors and the distance

to the primary outputs are both identical, gates presenting more reconvergent fanouts are

considered more critical. Gates for which these three parameters are equal receive the same

critical factor.

4.2.3.3 Reliability analysis and comparison

Subsequent to classifying the critical gates, the reliability of the circuit is evaluated

using the SPR analysis [15], which was explained in Section 1.2.3. Let us now consider

TMR as the chosen redundancy technique to harden a gate, and that the area overhead

constraint allows a designer to protect up to 5 gates. According to the critical factors

presented in Table 4.2, gates g32, g1, g3, g0 and g9 are selected by the proposed method as

the five candidates to be protected. The method named STMR presented in [18], under

the same area overhead constraint, applies TMR in gates g32, g36, g37, g38 and g39.

The reliability of the output bits for the original circuit and for the redundant config-

urations can be obtained by the SPR technique. Table 4.3 shows the reliability results for

the respective configurations considering q = 0.99 for the gates not protected by TMR and

q = 1 for the hardened gates.

Analyzing the results presented in Table 4.3, it can be seen the effectiveness of the

proposed approach. Indeed, the proposed method to selectively apply TMR into a circuit

shows a greater increase on the reliability of the most significant bits of the circuit (see

Table 4.3). For instance, the reliabilities of S0 and S1 (LSBs) do not present any increase

compared to the original circuit. Besides, the reliability of S4 (MSB) presents the highest

114 4. Selective Hardening

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ir
cu

it
R
el
ia
b
il
it
y

Gate reliability

No hardening − Nominal reliability

Method STMR − Nominal reliability

Proposed method − Nominal reliability

No hardening − Practical reliability

Method STMR − Practical reliability

Proposed method − Practical reliability

Figure 4.3: Simulation results for the 74283 circuit

improvement as expected, once it is considered the most critical bit for this application.

It can be also noted that, under the same area overhead, the nominal reliability increases

by almost the same amount with both methods (see Figure 4.3). In fact, nominal reliability

assigns equal reliability costs to the output bits. In spite of that, practical reliability results

can handle this problem, and can indeed provide a sharper distinction between this two

hardened architectures as shown in Figure 4.3.

4.3 Using a Cost Function to Detect Critical Gates

The reliability of a given circuit is the degree of confidence observed in the outputs of

this circuit, given a scenario in which faults are expected to occur with a given probability.

From the analysis point of view these faults could be either defects or transients induced

by single event effects.

In this work, the SPR algorithm [15] is applied to obtain the reliability figures of a

circuit. As stated in section 1.2.3, SPR uses both the reliability of the gates and signal

reliability computation to determine the cumulative effect of multiple faults. The effort

that is required to evaluate each gate of the circuit (in order to find the best hardening

candidate) is only possible because the complexity of the SPR algorithm is linear with the

number of gates in the circuit.

Let us consider that a given circuit comprises K gates [gi · · · gk]. Each gate has an

associated reliability, given by [qi · · · qk]. The circuit as a whole has a reliability value R.

Then, if we consider any reliability change (i.e., improvement) of a single gate gi brings in

its new reliability to q∗i , the circuit’s reliability becomes R∗
i . Two different gates, gi and

gj , may have different contributions to the reliability of the circuit, therefore producing

115

different values R∗
i and R∗

j .

It is important to note that the SPR algorithm is not 100% accurate. The sources

of inaccuracies come from incorrect evaluation of (multiple) reconvergent fanout branches.

An accurate analysis is possible using the multi-pass algorithm described in [15], referred as

SPR-MP. It is well known that both algorithms produce different values for the reliability

of a circuit. Yet, in [27] it has been shown that SPR is capable of estimating the critical

nodes (from a hardening perspective) with a small degree of error (in comparison with

SPR-MP).

In our methodology we assume that a hardening technique is applied, and such tech-

nique is able to improve the reliability of a gate such that q∗i = 1. This is a simplification,

not a restriction, other values are also possible. Then, for all gates of the circuit we perform

an evaluation run of the SPR algorithm. In each evaluation run we select a gate gi, allow

q∗i to be 1, and obtain the new reliability value R∗
i .

After all evaluation runs are performed, we obtain an ordered list of R∗
i values. At this

point one could select the gate with the highest R∗
i to be hardened. This is a common

approach applied in many works [104, 106]. Yet, this approach could be considered naive

since it does not take into account the hardening cost of each gate. Both mentioned works

define a maximum area target that cannot be surpassed.

Thus, the goal of this research is to establish a trade-off between the costs of hardening

a gate against the costs of hardening any other gate. In order to do so, a new parameter

is introduced to express the hardening affinity of a gate, given by Chai. This parameter

defines how easy/hard it is to harden a gate. The Chai value of each gate type is user-

defined and it must be constrained in the interval [0,1]. The higher the value of Chai the

better it is. This parameter is generic and can be used to express any type of hardening

trade-off: area, delay, power or combinations of the previous. The decision of which circuit

characteristic should be used to define Chai falls to the user.

In Table 4.4 we show some of the values that were used in our experiments. These

values are extracted from an actual 90nm standard cell library provided by Synopsys [19].

In our experiments we considered only the area to calculate the hardening affinity. For

each gate we have divided the area of the smallest inverter (INVX0) in the library by the

given gate actual area, in order to normalize all the Chai values. Negated cells benefit

from the CMOS natural inversion and have a higher Chai value.

It is then possible to apply the Chai values in a cost function which takes into account

both the cost and the reliability gain. The reliability gain (or reliability difference) is given

by Rgi, and it is the difference from the circuit reliability before and after a single gate gi

was hardened:

116 4. Selective Hardening

Table 4.4: Hardware affinity (Chai) parameters for some cells

Cell Area (µm2) Chai

INVX0 5.5296 1
NAND2X0 5.5296 1
NOR2X0 5.5296 1
AND2X1 7.3728 0.75
OR4X1 10.1376 0.55

XOR3X1 22.1184 0.25

Rgi = R∗
i −R (4.5)

These values are then used in a cost function that is expressed as follows:

Ci = Rgi/Chai (4.6)

Once the value of Ci has been obtained for all gates, these are sorted and the highest

value is chosen. The gate that corresponds to the highest value of Ci is then assumed to

be hardened and the new circuit reliability (R∗
i) is obtained.

In [27] this reliability value is compared against a user-given reliability target ‘T’. If the

reliability is lower than ‘T’, the algorithm starts again and all gates still not hardened are

considered as candidates. Otherwise, if the target is met, the algorithm ends and outputs

the ordered list of gates to be hardened. In the next section, an approach based on two

heuristics is presented as a mean to automatically set a reliability improvement target.

4.3.1 Cost function profiling

The methodology described in Section 4.3 was applied to several ISCAS benchmark

circuits [107]. The profile of the cost function was then obtained for circuits of different sizes

and topologies. Figures 4.4 and 4.5 illustrate the cost function profile for the circuits c432

(a channel interrupt controller) and c499 (32-bit single-error-correcting circuit). These

circuits were chosen particularly because they represent two contrastive profiles that are

of interest.

The illustrations in both figures were obtained using the parameters qi = 0.999 and

q∗i = 1. Other combination of values cause slight changes in the plots, i.e., the profile of

the function remains the same. In other words, the profile of the function is highly related

to the logic masking capabilities and the affinity of each gate. The closer a gate is to the

y axis, the better candidate for hardening it is.

The illustration in Figure 4.4 represents a profile that contains a fast drop in the

117

function, observed in the very first gates. Circuits that have some degree of regularity (e.g.,

adders and multipliers) have a profile with some similarities with the one in Figure 4.5,

where a ‘step-like’ pattern is observed. Each ‘step’ or plateau represents a set of gates that

has a similar functionality in the circuit, therefore they can be hardened in any given order.

Taking into account both profiles that were presented, we have defined two heuristics to

decide when selective hardening starts to impose an impractical cost. Those heuristics are

explained in details in the next subsections.

4.3.1.1 Sum of elements heuristic

This heuristic was defined to create a stop point when the sum of the Ci terms from

the elements that were already hardened reaches a threshold. Let C0 be the value of the

cost function for the best hardening candidate. Then the target becomes to find a value j

such that:

j
∑

i=2

Ci ≤ K × C0 (4.7)

where K is an empirically chosen constant. In other words, the threshold is defined as

K times the value of the cost function for the first hardened gate. This heuristic can be

interpreted as an integral that sums the area under a curve. For the sake of comparison,

we have set the parameter K = 10 for all the case studies used in this work.

Figure 4.4: Cost function profile for the circuit c432

118 4. Selective Hardening

Figure 4.5: Cost function profile for the circuit c499

Percent wise heuristic

Sum of elements

heuristic

Figure 4.6: Both heuristics applied to the circuit c1355

4.3.1.2 Percent wise heuristic

This heuristic was defined to create a stop point at the first Ci value that is lower than

X% of the first term (C0). This heuristic can be interpreted as an horizontal threshold

value. When the function crosses that threshold it is no longer feasible to perform selective

hardening for the remaining gates.

For the sake of comparison, in the following we have empirically set the parameter

X = 50%. In other words, any gate that improves the circuit reliability with a Ci value

that is less than half of C0 should not be hardened, i.e., we only harden cells that are at

least half as effective as the first candidate.

4.3.1.3 Comparing the heuristics

Both heuristics were applied to the circuit c1355 (which is also a 32-bit single-error-

correcting circuit). Figure 4.6 contains the plot of the cost function for all elements of the

target circuit. The dashed vertical lines represent the points where the heuristics decided

that selective hardening was no longer feasible.

Deciding which parameter value is more appropriate for each circuit is a complex task.

119

Table 4.5: Results for the sum of elements heuristic, K = 10

Circuit Number Original Hardened Hardened Area
of gates area (µm2) gates area (µm2) increase

c17 6 33.1776 6 99.5328 200%
74283 40 306.5096 20 547.9688 78.7%
c432 160 1134.4672 33 1541.4208 35.8%
c499 202 2155.1680 12 2414.1504 12.0%
c1355 546 3194.7328 11 3316.3840 3.8%
c1908 880 5273.7488 13 5417.5184 2.7%
c2670 1269 8018.0632 19 8233.7176 2.6%
c3540 1669 10855.1824 25 11177.7424 2.9%
c5315 2307 15293.5992 20 15518.4696 1.4%

For instance, for the circuit c1355, the first heuristic would select 11 gates for hardening,

while the second heuristic would select 201 gates. Hardening 201 out of 546 gates (around

36%) might be a hard assignment, since most of the times the area budget will not allow

for such hardening (the total circuit area would become 76% larger).

Nevertheless, selecting 11 out of 546 gates (around 2%) might be a better and more

suitable choice. Along the same lines, applying the percent wise heuristic to the circuit

c432 would result in only 2 gates being selected for hardening, which could left some of

the hardening budget unused.

In the next section, results for other circuits are presented. Also, the discussion regard-

ing which heuristic (and associated parameter) is more appropriate for which scenario is

extended.

4.3.2 Experimental results

The methodology described in Section 4.3 was applied to several ISCAS benchmark

circuits. Each gate from each circuit was set using qi = 0.9999. The results are presented

in tables 4.5 and 4.6. The former table contains the results for the first heuristic defined

in subsection 4.3.1.1 (with K = 10) while the latter contains the results for the second

heuristic defined in subsection 4.3.1.2 (with X = 50%).

In tables 4.5 and 4.6, the meaning of each column is as follows: the column denoted

“Original area” contains the sum of the area of each gate in each circuit (therefore placement

utilization rate and routing overhead are not considered). The column denoted “Hardened

gates” contains the number of gates that are selected for hardening. Then, the column

denoted “Hardened area” contains the circuit area of the hardened version of the circuit,

while the column denoted “Area increase” contains that same value but percent wise.

A fairly simple assumption was made: when hardening a gate its area become three

times larger than before. This metric is inspired by classical Triple Modular Redundancy

120 4. Selective Hardening

Table 4.6: Results for the percent wise heuristic, X = 50%

Circuit Number Original Hardened Hardened Area
of gates area (µm2) gates area (µm2) increase

c17 6 33.1776 5 88.4736 166.6%
74283 40 306.5096 9 406.0424 32.5%
c432 160 1134.4672 2 1187.5264 4.6%
c499 202 2155.1680 41 2854.6752 32.4%
c1355 546 3194.7328 201 5647.1232 76.7%
c1908 880 5273.7488 119 6611.912 25.3%
c2670 1269 8018.0632 10 8128.6552 1.4%
c3540 1669 10855.1824 8 10963.9312 1.2%
c5315 2307 15293.5992 15 15459.4872 1.1%

(TMR), although other techniques with different metrics might be applied (e.g., hardening

by design). The additional area that would be required for a majority voter, given TMR

is considered, is neglected. Therefore the area figures given in the tables are a minimum

value estimate for TMR.

An analysis of the area increase values in Table 4.5 reveals that the sum of elements

heuristic is not prone for small circuits, causing a large overhead for the circuits 74283

and c432. For the smallest of the circuits (c17) the heuristic decides that all gates should

be hardened, which is unacceptable when the goal is selective hardening. Nevertheless,

this can be avoided by using a smaller value for the parameter K (e.g., K = 1 elects 2

cells while K = 2 selects 4 cells for hardening). This is not the case for the area increase

values in Table 4.6. There is no value for the parameter X that will be a good fit for all

circuits or even for a group of circuits. Therefore, it is quite harder to apply the percent

wise heuristic.

4.3.3 Comparison with related works

A straightforward comparison with other methodologies is not simple since the goals

are usually different. If comparing a methodology is hard, it is even harder to compare

the heuristics proposed in this work. A simple solution adopted by related works is to

define a limit or target for hardening. In [108] a simple limit L is defined as the maximum

number of gates to be hardened. In references [106] and [104] a hardening limit in terms of

area increase is applied. In [27] the authors have defined the hardening target as a relative

improvement in the reliability of the circuit. None of the mentioned works perform an

evaluation of how hard it was to reach a hardening limit/target. This is the reason why

we have studied the profile of the cost function.

The work of [109] has a similar target as the one described in this work. The hardening

is achieved by increasing the gate size of some critical nodes in the circuit but no hardening

121

against defects is mentioned. Although this is a valid solution, it can be quite complicated

to apply it in a commercial design flow since the choices of logic gates are limited. Thus

the technique presented here is a more general solution since it is library and technology

independent. The overheads mentioned in [109] are not directly comparable.

Nevertheless, in qualitative terms it is easily observed that certain gates have a larger

impact in the reliability of the circuit than others. This observation is highlighted in

[104, 106, 108, 109]. In our experiments this was also observed. There are some particular

cases, like the one illustrated in Figure 4.4, where choosing the correct gate to harden has

a large impact in the overall circuit reliability.

4.4 Conclusion

In a context where defects and soft errors are a growing concern, two methods to

selectively apply TMR to digital circuits were proposed. The first one detects critical

gates by taking into account not only the probability of error occurrence, but also the

impact of such error to the system. Simulation results have shown the effectiveness of

the proposed approach. Although the reliability of the circuit obtained with the proposed

method is only slightly different from the one stated in [18], the reliability enhancement

is most present in the most critical bits of the system. In fact, the ability to drive the

reliability improvement effort to critical bits of a system is of great use for applications in

which some output bits are more critical than others. In addition, a new metric to analyze

the reliability of a circuit with a multiple-bit output is also presented. This metric, named

practical reliability, allows a designer to assign different weights to different output bits

in order to reflect different error costs to a system. It has been shown that the proposed

metric provides additional information to the designer so that he can better analyze the

reliability of a system. The second one is based on some heuristics that provide a better

understanding of the costs related to selective hardening applied for combinational logic

in digital circuits. Furthermore, we have also dealed with multiple faults to determine

the actual reliability of the circuits in our analysis. The results present the use of the

methodology in conjunction with a standard cell library from an actual vendor, where the

trade-off between area and reliability gain is highlighted. Thus, the methodology can be

integrated in commercial design flows in a very straightforward manner.

122 4. Selective Hardening

123

Chapter 5

Optimizing Voter Placement for

TMR Systems

5.1 Introduction

This chapter introduces a method to automatically partition a TMR design based on a

given reliability requirement. First, some basics on TMR will be introduced in section 5.2.

Next, a mathematical analysis of TMR partition will be explained in section 5.3, and some

problems regarding the insertion of majority voters will be presented in section 5.4. The

proposed method is explained in section 5.5. Concluding remarks are given in section 5.6

5.2 TMR approach

Triple modular redundancy is a well-known fault-tolerance technique based on a very

simple concept. Three identical logic modules (or black boxes) performing the same task

feed the inputs of a majority voter, which is responsible to evaluate the final output (see

Figure 5.1). Since the outputs of the modules are binary and the number of inputs of the

majority voter is odd, an unambiguous majority opinion can be provided as the output [60].

Module

Module

Module

Majority
Input Output

Figure 5.1: TMR block scheme

If it is considered that the majority voter does not fail, the reliability of a redundant

124 5. Optimizing Voter Placement for TMR Systems

circuit protected by TMR (Rcir) can be defined as a function of the reliability of one

module (Rm) as shown in (5.1). Notice that it is also assumed that the failures of the

redundant modules are independent.

Rcir = R3
m + 3R2

m(1−Rm) (5.1)

Rcir = 3R2
m − 2R3

m

Further information regarding the use of TMR to improve the reliability of a circuit

can be extracted from (5.1). First of all, it can be seen that if Rm ≤ 0.5, the use of TMR

will not increase the circuit’s reliability Rcir. Next, if Rm ≈ 1, the increase in reliability

achieved is so small that the area penalty required by this technique may not worth it.

Indeed, as shown in Figure 5.2, the gain in reliability (Rcir/Rm) acquired by the use of

TMR depends on the reliability of the block Rm.

0.5 0.6 0.7 0.8 0.9 1
1

1.05

1.1

1.15

R
m

R
el

ia
bi

lit
y

Im
pr

ov
em

en
t

 (
 R

ci
r /

R
m

)

Figure 5.2: Reliability gain using TMR

Despite its simplicity, triple modular redundancy is a fault-tolerance technique that

can yield great results. Circuits protected by TMR can provide correct outputs even if one

redundant module fails. In general, the larger the size of a logic module, the more likely is

the occurrence of multiple errors. However, if two redundant modules produce erroneous

results at the same time in a TMR circuit, the final output is incorrect. Because of that, it

would be a more efficient approach to partition a large logic module into ‘n’ logic partitions

125

as shown in Figure 5.3 [110]. In this case, the circuit will provide incorrect outputs only

if two logic modules located at the same logic partition produce erroneous results. Notice

that each logic module in Figure 5.3(a) is protected by three redundant majority voters,

as shown in Figure 5.3(b), because of two main reasons: first, this avoids a single point

of failure if the majority voter fails; and second, three different paths are available to be

connected to the next module.

Module 1 Module 2 · · · Module m

x Module 1

D
istrib

u
ted

M
a
jo
rity

V
o
te
r

Module 2

D
istrib

u
ted

M
a
jo
rity

V
o
te
r

· · · Module m Majority Voter y

Module 1 Module 2 · · · Module m

Partition 1 Partition 2 Partition m

(a) TMR scheme with logic partitions

Module

Module

Module

Majority

Majority

Majority

Input

Output

Output

Output

(b) Distributed majority voter

Figure 5.3: Partitioning a TMR design

Although the reliability tends to increase with the decrease in the module size, the

amount of resources required for the addition of the majority voters may be too costly.

Nevertheless, it has been proved that placing voters only at the final output may be not

sufficient to avoid errors [110]. Because of that, there is a major need to detect the best

amount of voters and the best locations to insert them into the circuit in order to meet a

given reliability requirement. In order to tackle this problem, let us start by performing a

mathematical analysis about partitioning a TMR design in the next section.

5.3 Partitioning a TMR design

Let be C1 a circuit whose reliability is represented by RC1
. Considering that this circuit

is composed of n modules serially interconnected as shown in Figure 5.4, the reliability of

the circuit C1 can be expressed as follows:

126 5. Optimizing Voter Placement for TMR Systems

RC1
=

n
∏

k=1

(Rmk
) (5.2)

Assuming that each module is now implemented as a TMR version of itself, that is the

TMR version of the circuit C1 comprises n partitions, and considering that the voters do

not fail, the reliability of the TMR circuit can be evaluated as shown in (5.3).

RC1TMR
=

n
∏

k=1

(3R2
mk
− 2R3

mk
) (5.3)

Considering the use of n partitions, let us evaluate what is the value of the reliability

of each block Rmk
such that (5.3) is maximized. In order to do that, we can use (5.2) and

(5.3) and the method of Lagrange Multipliers as shown below.

g(Rmn , Rmn−1
, · · · , λ) =

n
∏

k=1

(3R2
mk
− 2R3

mk
)− λ(

n
∏

k=1

(Rmk
)−RC1

) (5.4)

Then, performing a series of partial derivatives, the following system of equations can

be found.



















































∂
∂Rm1

g = (6Rm1
− 6R2

m1
)
∏n

k=2
(3R2

mk
− 2R3

mk
)− λ

∏n
k=2

(Rmk
) = 0

∂
∂Rm2

g = (6Rm2
− 6R2

m2
)(3R2

m1
− 2R3

m1
)
∏n

k=3
(3R2

mk
− 2R3

mk
)− λRm1

∏n
k=3

(Rmk
) = 0

∂
∂Rm3

g = (6Rm3
− 6R2

m3
)
∏

2

k=1
(3R2

mk
− 2R3

mk
)
∏n

k=4
(3R2

mk
− 2R3

mk
)− λRm1

Rm2

∏n
k=4

(Rmk
) = 0

...
...

...
...

...

∂
∂Rmn

g = (6Rmn
− 6R2

mn
)
∏n−1

k=1
(3R2

mk
− 2R3

mk
)− λ

∏n−1

k=1
(Rmk

) = 0

By inspection, it can be seen that Rm1
= Rm2

= · · · = Rmn = R
1/n
C1

is a solution of

such system, and it can be shown that this point is a maximum of (5.2) for 0 ≤ RC1
≤ 1.

However, the function represented by (5.3) is restricted to the region represented by (5.2)

for 0 ≤ RC1
≤ 1, and therefore it presents discontinuities. Because of that, we have to

x Module m1 Module m2 · · · Module mn y

Figure 5.4: C1 comprises n modules serially interconnected

127

Rm2

10

Rm1

1 Rm1
= Rm2

Rm1
=

RC1

Rm2

Rm1
=

RC1

Rm2

Rm1
=

RC1

Rm2

Rm1
=

RC1

Rm2

Figure 5.5: Plot of Rm1
=

RC1

Rm2

for different values of RC1

proof that there is no point in the boundary of such region that is a maximum of the

function. In order to do that, let us analyze the simple case of n = 2, for which the system

of equations is shown below:

g(Rm1
, Rm2

, λ) = (3R2
m1
− 2R3

m1
)(3R2

m2
− 2R3

m2
)− λ((Rm1

Rm2
)−RC1

) (5.5)

RC1
= Rm1

Rm2
(5.6)

The behavior of the constraint function (5.6) for different values of RC1
is shown in

Figure 5.5. It can be seen that in order to analyze the boundary of such region, we must set

Rm1
= 1, which leads to Rm2

= RC1
, or Rm2

= 1, which leads to Rm1
= RC1

. In this case,

equation (5.5) becomes (5.7), which is the same as the equation for a TMR circuit with

a unique partition. Considering perfect voters, it is known that the reliability of a circuit

increases with the number of voters. Therefore, (5.7) provides a value of reliability that is

smaller than (5.5), that is the points in the boundary do not represent a maximum of the

function. This result can be generalized for n dimensions since each time we set a Rm value

to 1, the set of equations will correspond to the analysis of a system with n− 1 partitions.

Thus, in order to achieve a maximum TMR reliability, we have to partition the design

into blocks of as nearly reliability as possible, that is Rm1
= Rm2

= · · · = Rmn = R
1/n
C1

.

The same result can be seen in [60] for the case of imperfect voters. Based on that, (5.8)

represents the reliability of a TMR circuit with n equal partitions, which maximizes the

TMR performance. Notice that (5.8) can be used to evaluate the minimum number of

partitions n required to meet a given reliability RC1TMR
.

128 5. Optimizing Voter Placement for TMR Systems

g(Rm1
, Rm2

, λ) = (3R2
C1
− 2R3

C1
) (5.7)

RC1TMR
= (3R

2/n
C1
− 2R

3/n
C1

)n (5.8)

5.4 Problem of automatically inserting voters

As stated above, TMR is a technique widely used in the construction of fault tolerant

circuits and systems. However, manually apply TMR to a circuit and insert the required

voters is an error-prone task, so the automation of such procedure is an important re-

quirement. Tools such as Xilinx XTMR [111] and BYU-LANL Partial TMR [79] can

automatically apply TMR in case of FPGAs. For instance, XTMR tool provides several

features such as triplicate the inputs, the clock, the majority voters, and yet insert synchro-

nization voters to feedback loops. The last one intends to synchronize the sequential logic

state of the TMR modules when a scrubbing process is performed to correct the effects

of SEEs. In spite of that, not much is provided in order to partition a design and insert

voters such that a minimum reliability requirement is met.

As a matter of fact, in order to design high-reliable circuits, a traditional TMR imple-

mentation may not be enough, and the use of partitioning voters, i.e. voters that intends

to partition a design in order to increase its reliability, may be required. In [112] the

authors have concluded that the number and the placement of voters in a TMR design

directly affect its fault tolerance ability, and therefore cleverly insert voters may be a good

approach to build high-reliable systems. However, the decision of the quantity as well as

the placement of such voters is very complicated since it is governed by several constraints,

such as timing, area and reliability. Further, the insertion of voters in some nodes of a

circuit may not be allowed or desired. For instance, some FPGAs contain dedicated route

connections to implement some specific functions such as a ripple-carry adder that does

not allow the insertion of a voter.

Methods to automatically insert voters generally rely on simple rules such as the in-

sertion of voters after every flip-flop. Although simple, this technique ensures that only

one voter will be inserted per timing path, which reduces the timing penalty caused by the

voter insertion process. On the flip side of the coin, this technique may insert more voters

than the necessary to meet a given reliability requirement. This insertion procedure can be

performed in different levels of a design. For instance, in case of FPGAs the voter insertion

is generally performed using FPGA primitives such as LUTs and flip-flops. In next section

129

we introduce a method that can automatically insert voters in a design, whether it be an

ASIC of FPGA, based on a given reliability requirement.

5.5 Proposed method

In order to develop our methodology, let us first analyze the behavior of the reliability

of a circuit as a function of its number of levels. In such context, a level can be defined as a

circuit node with the capability to become the edge of a partition. In practical circuits these

prospective points can be for example registered outputs. A very useful representation for

the reliability of a circuit regarding its number of levels is the signal reliability concept

explained in Section 1.2.3. This is because such concept can provide the probability of a

correct result in any circuit node. The expected behavior of the signal reliability versus

the number of levels can be seen in Figure 5.6. Notice that it usually decreases with the

number of levels.

Reliability

Levels

Figure 5.6: Reliability of a circuit versus its number of levels

When a majority voter is inserted in an arbitrary level of a TMR circuit, an increase

in the signal reliability of such level is expected as shown in Figure 5.7. This is due to

the logical masking ability provided by the voter decision, which, as it is well known, can

correct the occurrence of any single error presented in its inputs.

From these two figures shown above, a very simple idea can be elaborated as a means

to provide the edges of the modules of a TMR implementation, defining then their sizes.

Supposing that a given circuit has a minimum reliability requirement, the edges can be

identified by the levels in which the signal reliability is as close as possible to the minimum

reliability requirement as shown in Figure 5.8.

Although the method lies in a very simple idea, the provided results are very close to

the optimal ones. As shown in Section 5.3, it has been proved that to achieve a maximum

TMR reliability, a circuit must be subdivided into modules of as nearly equal reliability as

possible [60]. Using the proposed approach, only the first and the last modules may not

have the same size. As a matter of fact, two different characteristics contributes to obtain

130 5. Optimizing Voter Placement for TMR Systems

Reliability

Levels

Majority Voter

Figure 5.7: Insertion of a majority voter

good results with the proposed method. First, the reliability gain obtained with a TMR

system depends on the reliability of the module Rm as shown in (5.1). Next, the decrease

in signal reliability experienced when a signal passes through a given block is proportional

to the reliability of such block. Therefore, limiting the signal reliability decrease to the

same value leads to the creation of blocks with reliability as close as possible to each other,

thus approaching the optimal solution.

For the sake of illustration, let us consider a simple circuit comprising 10000 inverter

gates with equal reliabilities (Rm = 99.99%) and interconnected in a cascade structure as

shown in Figure 5.9. The reliability of this circuit, represented by Rc, can be evaluated

using the SPR tool, which leads to a result of Rc = 56.7654%. Assuming that the minimum

reliability requirement is Rmin = 99.9%, the proposed method evaluates that 1000 voters

must be inserted in order to meet such requirement. All the created partitions have the

same number of components (N = 10), with exception of the first (N = 11) and the last

(N = 9) ones. Follows from (5.8) that the minimum number of partitions to achieve Rmin

is 961 in this case. However, in order to split the circuit into 961 partitions with the same

Reliability

Levels

Reliability

Requirement
(Rmin)

Level 5 Level 9 Level 12

Figure 5.8: Distributing the voting process of a TMR circuit

131

x · · · y

c1 c2 cm−1 cm



m = 10000

Figure 5.9: Cascade of inverters

size, each partition should contain 10.4058 inverter gates, which is not possible. Therefore,

follows that the best amount of modules in each partition should be 10, which leads to

the result of 1000 voters as well. Figure 5.10 illustrates the results obtained with (5.8)

and with the proposed method for different values of Rmin. Notice that the optimal values

evaluated by (5.8) are not yet rounded such that the division of the circuit into partitions

with the same size can be realized.

0,99 0,991 0,992 0,993 0,994 0,995 0,996 0,997 0,998 0,999 1
0

100

200

300

400

500

600

700

800

900

1000

R
min

N
um

be
r

of
 V

ot
er

s

Optimal Result

Proposed Method

Figure 5.10: Number of voters inserted by the proposed technique

Although the results provided by the proposed method regarding the cascade circuit

shown in Figure 5.9 are very close to the optimal results, this is a special case and its per-

formance regarding more complex circuits must also be analyzed. Thus, let us now consider

a 74283 4-bit fast adder for which the gate-level architecture is shown in Figure 5.11. As

can be seen, this circuit comprises 40 logic gates, 9 inputs and 5 outputs. First of all, let

us consider that the output of any logic gate is a prospective point to insert a majority

voter, and that the reliability of any of such gates is 99%. Remember that the primary

outputs of the circuit have already majority voters. Table 5.1 shows the obtained results

for three different reliability requirements (Rmin). It can be noted that the first two points

132 5. Optimizing Voter Placement for TMR Systems

10

11

 9

12

13

14

16

17

18

19

20

 22

23

24

25

 27

28

29

 31

32

36

37

34

35

38

39

0

1

 8

33

15

 26

 21

 30

•

•

2

3

•

•

4

5

•

•

6

7

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

S
4

C
0

B
3

A
3

A
2

B
2

A
1

B
1

A
0

B
0

S
3

S
2

S
1

S
0

•

Figure 5.11: Circuit 74283 - Gate level

in which the method inserts voters are the outputs of the gates 33 and 34. As a matter of

fact, these two gates are points in which several signals converge (fanins) leading to a more

accentuated decrease in the signal reliability. Also, as the reliability of the logic gates are

assumed to be the same, paths in which more logic gates are presented tends to contain

more voters. For instance, voters are placed in points in which the signal passes through

at least 3 logic gates for Rmin = 97%.

The results obtained with the proposed method also depend on the reliability of each

logic gate. In the last example, we have considered that any logic gate has reliability

q = 99%. However, let us now remove such consideration and assume that the reliability

of a gate depends on its area. The area of the logic gates are obtained from an actual 90ηm

standard cell library provided by Synopsys [19]. We considered that the reliability of an

133

Table 5.1: Placement of the voters for the circuit 74283

Rmin Number of Voters Voter Placement (Output of Gates)

0.96 2 33, 34
0.97 7 14, 20, 25, 29, 33, 34, 35
0.98 11 13, 14, 19, 20, 24, 25, 28, 29, 33, 34, 35

Table 5.2: Reliability of gates based on their area

Gate Area (µm2) Reliability

Inverter 5.5296 0.99
Buffer 5.5296 0.99

2-input NAND 5.5296 0.99
2-input NOR 5.5296 0.99
2-input AND 7.3728 0.9867
3-input AND 8.2944 0.985
3-input NOR 8.2944 0.985
4-input NOR 9.2160 0.9833
4-input AND 10.1376 0.9817
2-input XOR 13.8240 0.975
5-input NOR a 14.7456 0.9733
5-input AND b 16.5888 0.97

a. Built with a 4-input NOR and a 2-input NOR gates
b. Built with two 3-input AND gates

inverter gate is q = 99%, and we derive the other reliabilities based on the relation between

the area of a gate and the area of the inverter. These values are shown in Table 5.2. Based

on such reliability values, we have performed another analysis of the 74283 circuit using

the proposed approach for three different values of Rmin. The obtained results are shown

in Table 5.3. Observe that the placement as well as the quantity of the voters are different

from the results presented in Table 5.1. Now, for Rmin = 96%, 4 majority voters are

inserted into the outputs of gates 13, 33, 34 and 35. For instance, gate 13 is the gate with

highest probability of failure since it has the biggest area, and therefore a majority voter

is now inserted in its output.

Obviously, the 74283 circuit is very small when compared to circuits produced nowa-

days. However, it is just a case study in order to demonstrate the performance of the

proposed method when dealing with non-cascade structures. In fact, this method is based

on the SPR tool, which has some interesting characteristics that allows a very good scal-

ing ability. For instance, the method can be applied to different levels of abstraction of

a circuit such as gate level, block level, among others. Also, the complexity of the SPR

algorithm is linear regarding the number of gates/blocks of a design, and therefore can be

134 5. Optimizing Voter Placement for TMR Systems

Table 5.3: Placement of the voters for the 74283 circuit

Rmin Number of Voters Voter Placement (Output of Gates)

0.95 2 33, 34
0.96 4 13, 33, 34, 35
0.97 9 13, 14, 19, 20, 25, 29, 33, 34, 35

applied to relative large circuits. Moreover, the consideration of the signal reliability of a

circuit to decide the points in which we should insert voters allows to deal with circuits

with complex structures and yet provide good results.

5.6 Conclusion

The current chapter presented an automatic method to partition a TMR design. This

is of great interest for systems in which safety is a major concern so that reliability must

be as high as possible. Although the proposed method is based on a simple idea, the

results are very close to optimal. Also, the algorithm is based on the SPR method, which

has a linear complexity related to the number of nodes of a circuit. Therefore, it can

be applied to relative large circuits. In addition, it is important to note that the whole

decision process can be easily automated. In fact, a tool written in C language was already

developed in order to validate the proposed idea. Such implementation can deal with gate

level descriptions of circuit as well as with primitives of FPGAs devices.

135

Chapter 6

Concluding Remarks

As electronic circuits shrinks down, methods to analyze and fabricate reliable circuits

are more and more required. The present research provides some new models and tools

that can be used to design reliable circuits such that these circuits can more easily meet

the requirements of the technical standard IEC 62566.

The main objective of this work was to propose methods to analyze and to improve

the reliability of circuits in order to facilitate their qualification according to technical

standards such those useful for EDF. The necessary steps to achieve this goal have been

presented in the chapters of the report. First, several studies already reported in the

literature were reviewed. This reading produced Chapters 1 and Annexes A and B of the

current manuscript.

Concerning reliability analysis, this work proposed the concept of effective reliability,

which provides a model to evaluate the reliability of a circuit taking into account the ability

of a given application to tolerate faults, here called application error masking. The results

have shown the importance of considering such concept when evaluating the reliability of

a circuit. As a matter of fact, effective reliability can provide a more precise result about

the reliability of a circuit so that unnecessary area overhead can be avoided.

An interesting technique that can provide a tradeoff between the amount of redundancy

adding and the reliability improvement is selective hardening, which is based on protecting

only the most critical gates/blocks of a circuit. In this work, two different methodologies

were proposed to deal with that. The first one takes into account that some output bits

are more critical than others for a given application, and that these bits should be more

protected. The other uses a hardware function and some heuristics to automatically detect

the best candidates in a design to be protected.

Concerning critical applications in which the reliability requirement is usually very

high, a method to automatically partition a TMR design based on a desired reliability

level was introduced. The method has shown to provide results very close to optimal, and

136 6. Concluding Remarks

that it can be easily integrated in design tools to be used in VLSI as well as in FPGA

circuits.

Further, a tool based on fault injection, named FIFA, was also developed in order to

analyze and validate fault tolerant designs explored in this work. Although most of the

tests performed with the tool were based on exhaustive analysis, FIFA can be easily used

to inject randomly faults as well as to use just a set of inputs, controlled by the designer,

that are considered more pertinent for the application.

The perspectives of the current work can be explained as follows. Concerning reliability

analysis, the concept of effective reliability can be expanded by the development of new

quality metrics to measure the impact of errors in the output of a circuit. By doing that,

designers can better control the set of errors that can be tolerated by a given application.

The FIFA tool can be upgraded by analyzing and then limiting the amount of nodes to

inject multiple faults. For example, multiple faults could be limited to a region in the

design. Concerning reliability improvement techniques, the idea of drive the reliability

effort to the most critical bits of an application can be extended by implementing other

weight functions that reflect the impact of an error in non-binary output words. Also, the

method to partition a TMR design can be improved if the signal dependencies resulted

from reconvergent fanouts are taken into consideration.

The research performed during this thesis originated several publications as can be seen

bellow. Also, a patent of the method to partition a TMR design is under analysis.

– Effective metrics for reliability analysis [101] - Oral presentation at the 53rd

Midwest Symposium on Circuits and Systems (MWSCAS) 2010;

– Using error tolerance of target application for efficient reliability improve-

ment of digital circuits [102] - Oral presentation at the 21st European Symposium

on the Reliability of Electron Devices, Failure Physics and Analysis (ESREF) 2010

and published as a special issue of the Microelectronics Reliability journal;

– An approach for efficient reliability improvement of digital circuits - Poster

presentation at Gdr SoC-SiP, Lyon, France, 2011;

– FIFA: A fault-injection-fault-analysis-based tool for reliability assessment

at RTL level [105] - Oral presentation at the 22nd European Symposium on the

Reliability of Electron Devices, Failure Physics and Analysis (ESREF) 2011 and

published as a special issue of the Microelectronics Reliability journal;

– Exploring the Feasibility of Selective Hardening for Combinational Logic [103]

- Accepted for poster presentation at the 23rd European Symposium on the Reliabil-

ity of Electron Devices, Failure Physics and Analysis (ESREF) 2012 and published

as a special issue of the Microelectronics Reliability journal;

– Net Hardening: an Approach for Selective Hardening Concerning Multi-

137

ple Faults - Submitted to IEEE Transactions on Nuclear Science (TNS).

138 6. Concluding Remarks

139

Appendix A

Other Methods for Reliability

Improvement of ICs

A.1 Fault detection and correction

A.1.1 Basic principles

This redundancy technique is based on the detection of errors in a circuit in order

to perform a corrective action. The fault detection is usually carried out by internal

mechanisms, as well as the corrective action. A circuit that has the ability to detect an

internal fault is called a self-checking circuit.

Self-checking circuits have received a lot of attention over the years [113,114]. The basic

idea is to encode the information in such a way that errors can be detected. Figure A.1

illustrates a self-checking circuit using fault detection redundancy. In this example, the

error detection mechanism is based on a simple comparison between two copies of the

same module, and is named duplex scheme. It is important to note that this scheme does

not provide intrinsically error correction capability. Thus, when the error flag reports the

occurrence of an error, we must carry out additional procedures in order to resolve the

problem.

Main Circuit

Spare

Comparator
Input Error flag

Output

Figure A.1: Example of a duplex comparison scheme

In order to use fault detection redundancy in a circuit, we must be careful when choosing

140 A. Other Methods for Reliability Improvement of ICs

the fault detection technique and the recovery procedure to be used. If a single fault

is presented in such mechanisms, the correct operation of the circuit is compromised.

Section A.1.2 introduces a brief state of the art of fault detection techniques existent in

the literature.

A.1.2 Fault detection techniques

In order to perform a fault detection procedure in a circuit, the addition of redundancy

is a necessary design penalty. This redundant information is generally used to implement

a code technique in which each output data is represented as a codeword. There are two

types of codes that can be used in such procedure: Error Detecting Code (EDC) and Error

Correcting Code (ECC) [115]. EDCs have the ability to identify error(s) in a data word,

but they cannot restore its(their) true value. Therefore, a post processing step is often

required when using such codes. ECCs can do both detect an error in a codeword and

restore the corresponding correct value. Thus, an ECC can be configured to do both detect

and mask the effect of errors in a circuit.

The characteristic of how many erroneous bits can be identified and/or corrected by

a given code is based on the Hamming Distance (HD) principle. The HD of a given code

can be defined as the number of bits in which two codewords differ. Derived from this

principle, the term Code Distance (CD) is often used to define the minimum HD between

any two symbols presented in a given code. In general, if we want to detect d errors in a

circuit, we must have a code with CD ≥ d+ 1. Moreover, in order to detect and correct t

errors, then CD ≥ 2t+1, and to detect d and correct t, or fewer errors, the CD ≥ t+d+1,

where t ≤ d [115]. For example, suppose a system in which the set of codewords allowed

by this circuit is given by C = {000, 111}. In this case, the Code Distance is given by

CD = 3; what means that this code can detect 2, or fewer errors, or correct 1. Indeed, the

code will interpret the received codeword as the most closer word presented in C. As an

example, if the system receives the word 001, it will be corrected to 000. Notice that this

example illustrates the behavior of a TMR system.

A.1.2.1 Error detecting codes

Error detecting codes are often used in techniques based on fault detection redundancy.

These codes provide error detecting capabilities but lack any error correcting capability.

Then, further procedures are required in order to execute a correction procedure.

A.1.2.1.1 Parity code

141

Memory

Data wordParity Bit

XXXXX

Parity Generator Parity Checking

Input Output

Error flag

Figure A.2: Computer memory using parity checking

The simplest EDC is the Parity Checking [114]. The main idea is to append an ex-

tra bit to a binary word in such a way that the number of 1’s is odd or even. When

examining the codeword, a parity checker counts the number of 1’s to verify the presence

of errors. Codes in which codewords are constructed appending check bits are named

systematic codes. They have the advantage that no decoding is required to get the final

output.

The parity code has a code distance CD = 2, i.e., this code allows the detection of

one faulty bit without correction. Figure A.2 illustrates a computer memory that uses the

parity code to detect errors presented in its data. Notice that we just added two blocks to

the basic memory structure: the parity generator and the parity checking. Both circuits

are simple, resulting in a low area overhead.

Because of the aforementioned features, scientists have been researching the use of

parity codes for many decades. The work in [116] proposed a procedure for synthesizing

multilevel circuits with concurrent error detection in which all errors caused by single stuck-

at faults were detected using a parity-check code. The proposed procedure automatically

searches for the parity-check code that will require the least amount of area to implement.

The work proposed in [114] compared the performance of twelve different combinational

circuits implemented into an Spartan-2 FPGA using four different error detecting tech-

niques: duplication with comparison, parity checking, Bose-Lin code, and Berger code.

The results have shown that for an FPGA, the best solution regarding area overhead and

performance decrease is the parity checking technique.

A.1.2.1.2 Berger code

Berger code is a systematic all-unidirectional error detecting code (AUED) proposed

by J. M. Berger in 1961 [117]. Unidirectional errors states for either a (0→ 1) or (1→ 0)

transition, but not both. This type of errors is particularly important to VLSI designs

since Pradhan [118] has shown that a large number of errors presented in such designs are

unidirectional. The main idea of Berger code is to append check bits to the data word.

These check bits are obtained according two encoding schemes: B0 or B1. In the first

142 A. Other Methods for Reliability Improvement of ICs

scheme, the check bits are obtained counting the number of 0’s and representing the value

into binary. In the other one, the encoding scheme uses the number of 1’s represented

using 1’s complement. Table A.1 illustrates a 3-bit Berger code with B0 encoding scheme.

Table A.1: 3-bit Berger code – B0 scheme

Data word Check bits Codeword
000 11 00011
001 10 00110
010 10 01010
011 01 01101
100 10 10010
101 01 10101
110 01 11001
111 00 11100

Design of totally self-checking (TSC) circuits based on Berger codes was first introduced

in [119] in 1974. The checker used 2k gates to translate the Berger codewords to 1-out-

of-2k codewords. Therefore, it was impractical and inefficient. Later, a more efficient

design procedure for Berger code was introduced in [120]. The method nevertheless failed

to deliver a 2-output TSC checker for Berger codes with I = 2r−1 information bits [121].

Intending to tackle this problem, the work in [122] proposed the generalized Berger check

partitioning method that allowed TSC Berger code checkers be constructed from TSC m-

out-of-n checkers . However, the proposed approach was not entirely self-testing as shown

by Piestrak afterwards [121]. Meanwhile, Piestrak also proposed the first correct design

approach for such circuits [123].

As stated above, Berger code can detect all unidirectional errors presented in a data

word if there is no error in the check bits. However, the Berger code is not efficient since

it requires a quite large number of check bits. A more efficient solution is the Bose Code

presented below.

A.1.2.1.3 Bose codes

The first Bose code that will be presented in this report is the Bose AUED code. These

code is also an all-unidirectional error detecting code, as the Berger code, but it is more

efficient since it requires fewer check bits. Indeed, it requires exactly d check bits to detect

any unidirectional error presented in a data word comprising 2d bits. Table A.2 shows the

Bose code for a 4-bit data word. Considering the number of zeros in a data word being

represented by No, the rules to be followed in order to encode a data word using the Bose

code are:

143

- (No = 0) or (No = 2d) → Complement the first (2d−1) bits and append Cb =

(2d−1 − 1) as check bits;

- (2d−1) ≤ No ≤ (2d − 1) → Append Cb = No to the data word in binary (same as

Berger code);

- 1 ≤ No ≤ (2d−1 − 1) → Append Cb = (No − 1) to the data word in binary.

Table A.2: Bose code for data words comprising 4 bits

Data word Check bits Codeword
0000 01 110001
0001 11 000111
0010 11 001011
0011 10 001110
0100 11 010011
0101 10 010110
0110 10 011010
0111 00 011100
1000 11 100011
1001 10 100110
1010 10 101010
1011 00 101100
1100 10 110010
1101 00 110100
1110 00 111000
1111 01 001101

Although Bose has succeeded to improve the efficient of the Berger’s code, in digital

circuits data can be represented with a large number of bits. Based on that, we can define

a threshold ‘t’ in such a way that we can neglect the probability of occurrence of more than

‘t’ unidirectional errors in an output word. For these scenarios, we can use t-unidirectional

error detecting codes (t-UED) – codes able to detect up to ‘t’ faulty bits – instead of the

codes shown above.

Based on that, Bose and Lin have proposed in 1985 various t-UED codes, known as

Bose-Lin codes, in their work entitled “Systematic unidirectional error-detecting codes”

[124]. Indeed, they developed optimal codes that require 2, 3 and 4 check bits in order

to detect 2, 3 and 6 unidirectional errors, respectively. Considering that No denotes the

number of 0’s in a data word, the check bits (Cb) for each of the optimal codes can be

evaluated as follows:

- 2-UED code → Cb = No mod 4

- 3-UED code → Cb = No mod 8

- 6-UED code → Cb = (No mod 8) + 4

144 A. Other Methods for Reliability Improvement of ICs

Subsequently, in 1986, Bose have proposed a burst unidirectional error-detecting (BUED)

code in [125].These codes can detect burst errors with length up to 2r−1 using only r check

bits. The coding format uses the following relation to evaluate the check bits:

- BUED code → Cb = No mod 2r

The codes shown above were extensively used in totally self-checking (TSC) checker

designs [126–129]. In the work presented in [126], easily-testable checker designs for three

different codes were proposed: Bose-Lin, Bose and Blaum code. These checkers were

proved to be TSC under the stuck-at fault model. Later, a modular method for designing

checkers for Bose-Lin and Bose codes was proposed in [127], which resulted in designs more

efficient regarding area and performance than previous approaches. Moreover, in the same

work, these checkers were proved to be TSC under a more realistic fault model including:

stuck-at, transistor stuck-on, transistor stuck-open, resistive bridging faults and breaks.

In 2003, the work in [128] proposed TSC checkers for 3 different codes: Borden, Bose-Lin

and Bose. The proposed checkers can perform well under very weak assumptions, what

makes them perfect for use as embedded checkers. Afterwards, the same authors have also

proposed checkers for the Bose AUED code in [129].

A.1.2.1.4 Borden code

The Borden code is an optimum t-unidirectional error detecting code proposed by Bor-

den in 1982 [130]. This code is defined as follows:

Definition: If C(m,n) is the set of codes of length ‘n’ for which exactly ‘m’ bits

are ones, then the union of all such codes with ‘m’ being the set of values congruent to

⌊n/2⌋mod(t+ 1) is known as the Borden (n, t) code [115].

In order to illustrate this concept, let us assume n = 12 and t = 2. In this case, all

values for ‘m’ that are congruent to the expression ⌊n/2⌋mod(t+1) are m = 2, 6, 10. This

means that this code is composed by any word of length 12 of which either 2, 6, or 10 bits

are 1, making these codes non-systematic in nature. The Borden code (n,t) can detect ‘t’

unidirectional errors. Then, for t = 1, the Borden code becomes the parity code.

Several works have been done over the years to benefit from the optimality of Borden

codes. A common way to efficient use such codes is designing self-checking circuits. In

1989, Jha proposed the first design for totally self-checking circuits based on Borden codes,

improving their overall applicability [131]. Later, the work in [132] proposed a method to

efficiently design self-checking circuits based on a class of Borden codes. Checkers designed

with the proposed approach reduced implementation costs up to 98.5%. However, they are

limited to a class of Borden codes. A systematic method of designing totally self-checking

145

circuits for a larger class of Borden codes (even code lengths) were proposed in [133].

They significantly reduced the implementation costs compared to Jha’s method. In 2006,

Tarnick presented a self-checking circuit based on Borden codes and AN arithmetic very

suitable for use as embedded checkers [134].

A.1.2.2 Error correcting codes

Unlike EDCs, error correcting codes are codes that provides the ability to detect and

locate n errors presented in a data word. Then, simple procedures can be carried out in

order to correct the faults.

A.1.2.2.1 Hamming codes

Hamming codes were introduced in 1950 [135], and marked the beginning of the coding

theory. The author was a pioneer computer scientist, and during his researches, he found

that computers require error correcting capabilities. In order to do that, he created a

sophisticated pattern based on parity checking that can detect up to two simultaneous bit

errors or correct one, but not both simultaneously.

First of all, Hamming developed during his studies a nomenclature to describe systems

using coding techniques. His idea was to describe this as an (n, k) code where ‘n’ stands

for the number of bits of the codeword and ‘k’ stands for the number of data bits. Based

on that, a system that is composed of words with 7 data bits and 1 parity bit is represented

as an (8,7) code.

A Hamming code is then defined as an (n, k) code that respects the following relations:

k = 2r − r − 1, n = 2r − 1, r ≥ 3, where ‘r’ represents the number of check bits.

Considering that each bit in a codeword is numbered from 1 to n, the parity check bits are

located in positions that are multiple of two. For example, if we have a codeword encoded

with Hamming (7,4), the codeword structure is P1P2D1P3D2D3D4, where P represents a

parity bit and D a data bit.

In order to encode a specific data word using a Hamming code, we must first define

H := (In−k|A) as a parity checker matrix and G := (AT|Ik) as a generator matrix. The

parity checker matrix comprises an identity matrix (In−k) and a matrix (A) that contains

all nonzero binary combinations that do not appear in the columns of the neighboring

identity matrix. For a Hamming (7,4) code, a possible parity checker matrix is shown

below.

146 A. Other Methods for Reliability Improvement of ICs

H =









1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1









The generator matrix G can be evaluated considering that HGT = 0. In this case, the

corresponding generator matrix G is shown below.

G =















1 1 0 1 0 0 0

1 0 1 0 1 0 0

0 1 1 0 0 1 0

1 1 1 0 0 0 1















In order to demonstrate the procedure required to encode a data using a Hamming

code, let us use both matrices defined above. First of all, we multiply the data word by

the generator matrix G. Considering that the data word is w = 1010 and that we use even

parity, the codeword can be obtained as follows:

c = wG = (1010)















1 1 0 1 0 0 0

1 0 1 0 1 0 0

0 1 1 0 0 1 0

1 1 1 0 0 0 1















= (1011010)

The decoding process starts checking if there is any error in the codeword. This proce-

dure is done multiplying the received codeword by H. The resulting value is called syndrome

and identifies the faulty bit. If the codeword is correct, the syndrome must be zero. In

order to demonstrate that, let us first assume that the received codeword is 1011010. In

this case, the syndrome must be zero as shown below.

147

s = cHT = (1011010)































1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

1 1 1































= (000)

Let us now suppose that the received codeword was 1011110, i.e., the received codeword

has one error located at bit 5. Then, we can evaluate the syndrome of this codeword and

next locate the faulty bit using Table A.3. Once an error has been detected, corrective

procedures such as scrubbing are usually carried out [136].

s = cHT = (1011110)































1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1

1 1 1































= (101)

Table A.3: Syndrome Table for Hamming (7,4) code [115]

Error Vector Syndrome
1000000 100
0100000 010
0010000 001
0001000 110
0000100 101
0000010 011
0000001 111

Hamming codes are widely used in computer memory (RAM) because of their simplic-

ity. The work in [67] evaluates the area efficiency of this technique, and points to a lower

area increase when compared to TMR for codes capable to correct one bit-flip. Regarding

multiple upsets, a technique based on Hamming code and Reed Solomon code that was

emulated in a Virtex FPGA was introduced in [137]. For a memory composed of 128-bit

rows, the proposed technique requires only 19 parity bits per row. In 2007, a new technique

148 A. Other Methods for Reliability Improvement of ICs

to protect memories against multiple errors named Matrix code was proposed in [138]. It

is based on Hamming and parity codes, and the idea is to organize the data bits into a

matrix in such a way that rows are protected with Hamming code, meanwhile columns are

protected with parity code. The results have shown that the relation detection/correction

coverage per cost is better when comparing to both Reed-Muller and Hamming codes.

An important research in reconfigurable computers using Hamming codes was real-

ized in Dassault Laboratories by Maison [139]. This work, called MECRA (Maquette

Expérimentale de Calculateur à Reconfiguration Automatique), consisted in realizing an

ultra-reliable and self-reconfigurable computer. It used a redundant Hamming code that

can detect up to two simultaneous errors and spare blocks to provide a reconfigurability

mechanism to correct errors. The MECRA project has shown a significant increase in the

ratio reliability/cost for the proposed computer.

A.1.2.2.2 Cyclic codes

Cyclic codes are a special type of linear error correcting codes introduced by Prange

in 1957 [140]. These codes were developed in such a way that both encoding and error

correcting procedures can be easily implemented using shift-registers [141].

The main idea behind any code is to add extra bits in order to allow error detection

and possible correction. Regarding cyclic codes, the codeword comprises k binary bits

representing the data and n − k check bits. Then, the codeword can be interpreted as a

polynomial where each bit stands for a polynomial coefficient. As an example, a binary

word such as w = 101011 can be interpreted as w = x5 + x3 + x+ 1.

A cyclic code is based on a generator polynomial P (x) of degree n− k. Any codeword

that is divisible by P (x) is considered as a valid codeword. Thus, in order to encode a data

represented by D(x) using a cyclic code, we must divide xn−kD(x) by P (x), and add the

remainder R(x) to the result as shown in (A.1).

C(x) =
xn−kD(x)

P (x)
+R(x) (A.1)

An important aspect about cyclic codes is that all algebraic operations are done using

module two arithmetic. Then, addition and subtraction provides the same result and the

division operation can be drastically simplified. Indeed, it is well known that the division

operation can be done using just shift registers and modulo two adders (a simple exclusive

or) [141].

The ability of a cyclic code to detect and correct errors depends on the generator

149

polynomial used to encode a data word. The simplest polynomial with more than one

term (P (x) = x+ 1) is capable to detect any odd number of errors as shown in [141].

Subsequently to the introduction of the cyclic codes, several works were done based on

it. In 1962, Lars-Henning Zetterberg proposed a family of binary cyclic codes based on

Galois fields, discovered by the french mathematician Evariste Galois, which are capable to

correct multiple errors [142]. Among them, Zetterberg codes with parameters (2u+1, 2u+

1 − 2u) deserve special attention due to their large code rate and their high decoding

speed [143]. Indeed, Zetterberg codes with u odd were proved to be able either to correct

all weight-2 errors with a small number of exceptions or become a truly 2-error correctable

code multiplying the generator polynomials by (x− 1) [144].

The most well-known family of cyclic-based codes is the Reed-Solomon family proposed

in 1960 [145]. They are non-binary cyclic codes, which are constructed and decoded using

finite field arithmetic. Reed-Solomon codes can detect up to t faulty bits when adding t

check bits to the data. They are widely used in digital communication and storage systems.

Another important capability of such code is the high reconfigurability. The work in [146]

used this feature to propose a fault tolerant solid state mass memory for space applications.

Using the proposed approach, the system can be reconfigured to deal either with latency

problems (using smaller symbols) or data integrity (using longer symbols).

A.2 Evolvable hardware

Evolvable hardware is a new concept introduced by Adrian Thompson in 1995 [147]

that uses evolutionary algorithms when designing a specific circuit. This technique can

be used either to build circuits with high masking capability or to design reconfigurable

circuits that can perform well in the presence of a fault. In fact, this concept brings together

reconfigurable hardware, artificial intelligence, fault tolerance and autonomous systems.

Evolutionary algorithms are based on the biological evolution process. The main idea

is that a population of different individuals competes among them to participate in the

creation (reproduction process) of the next generation. This competition forms a selec-

tion mechanism equivalent to the natural selection mechanism described by Darwin in his

evolution theory. In the case of circuits, each individual is a different electronic system

attempting to solve the same problem [148]. The selection process is done by a measur-

able number, called fitness, which evaluates the quality of each solution. Then, all the

designs that succeed the selection process are able to participate in the creation of the

next generation of individuals.

Artificial evolution in circuits is generally used regarding two cases: system design

and online adaptation of existing systems. In the first one, evolution algorithms are used

150 A. Other Methods for Reliability Improvement of ICs

in order to create a hardware design that can perform a required action, but it stops

changing after a good design is found (evolved hardware). Regarding fault tolerance,

Adrian Thompson in [149] has shown that for some circumstances, the evolution process

will automatically tend to create designs that are insensitive to some faults. The next one,

however, continues the evolution process throughout its existence, allowing the system to

adapt itself when an environmental change or an error occurs (evolvable hardware). One

important point that we must highlight here is that the evolution process improves the

system in a non-monotonic way, i.e., some solutions in generation n can be worse than

solutions in generation n − 1. Therefore, precautions are required in order to keep the

system functioning well during the evolution process.

In the last decade several researches were done regarding evolutionary-based techniques

for fault tolerant systems. In 2000, the work in [150] used GA (genetic algorithm) to derive

a population of different individuals for adaptation of electronic circuits. They compared

two methods to achieve fault-tolerant designs: one based on fitness definition, and other

based on population. In the fitness method, predefined faults are introduced during the

evolutionary process, and the best fit individual is selected as a robust design solution. In

the population-based approach, the evolutionary process is done without injecting errors a

priori. Next, faults are injected in the best fit individual, and its performance is evaluated.

If the fitness is too low for any injected fault, mutants are analyzed. If no mutant can

provide acceptable behavior, the GA is restarted. Their simulation results have shown

that the population-based design outperforms the fitness-based method in both analog

and digital circuits.

In 2001, the work in [151] investigated the properties of messy gates, a model of gate-like

components with added random noise, using evolutionary algorithms. The random designs

created by these algorithms exploited redundancy in such a way that the evolved circuits

exhibited implicit fault-tolerance to stuck-at-faults. In [152], the authors examined the

ability of evolutionary techniques to include fault tolerance into the evolutionary process,

and how it reacts in respect to real life faults. In 2003, the work presented in [153]

applied repair techniques based on evolutionary algorithms into four circuits implemented

using an FPGA: quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, and 4-to-7

decoder. The fault simulation used was “hard-wiring” the individual LUTs values in order

to simulate either stuck-at-0 or stuck-at-1 errors. The experimental results have pointed out

evolutionary repair techniques as a great replacement or a supplement to traditional fault

tolerance techniques such as TMR. Moreover, the increase in circuitry using evolutionary

algorithms remains almost constant relative to the number of electronic components, unlike

TMR that requires a linear increase in circuit area.

The work in [154] have introduced a method to take into account the correlation of

151

circuits during the fitness analysis of the evolutionary algorithm. Using this, it is possible

to design an ensemble of circuits in such a way that the correlation in the fault pattern

is reduced. They have shown that when using these uncorrelated circuits combined with

an NMR approach, the reliability of the ensemble is increased. Later, the work in [155]

reported the results of a comparison between the population-based and the correlation-

based methods. The study points out the size of the ensemble of circuits required by the

population-based method as a practical disadvantage when compared to the correlation-

based method. Indeed, the fitness function used in the population algorithm leads to a set

of circuits comprising one circuit performing well without faults and others performing well

in respect to each detectable fault. In the worst case, the number of circuits can be N +1

where N is the number of detectable faults. In the case of the correlation based-method,

every circuit will provide an acceptable level of performance whether faults are present or

not, leading to a much smaller size of the ensemble of circuits.

152 A. Other Methods for Reliability Improvement of ICs

153

Appendix B

Basics on FPGAs

An FPGA (Field Programmable Gate Array) is an integrated circuit comprising con-

figurable blocks and configurable interconnects. These configurable structures allow the

designer to program the device in order to perform a desired function after the manufac-

turing process (field-programmable). FPGAs can be classified into two types:

– OTP (One-Time Programmable) FPGA: the device is designed in such a way that

it can be programmed only one time.

– Reprogrammable FPGA: the device can be reprogrammed through software to per-

form another task.

In order to be able to program a circuit after manufacturing, certain mechanisms are

required. In this chapter, examples of these mechanisms will be reviewed, and their prime

characteristics will be revealed. First of all, technologies related to OTP devices will be

introduced. Next, mechanisms that allow the fabrication of reconfigurable devices will be

presented.

B.1 FPGA technologies

To explain the concepts related to FPGAs’ technologies, a simple circuit, shown in

Figure B.1, will be used. This figure represents a configurable circuit with potential links

that can be used to define the circuit function.

B.1.1 Fusible link technology

The fusible link technology was one of the first mechanisms that allowed a designer to

configure a circuit after manufacturing [156]. As shown in Figure B.2, the main idea is to

use fuses to establish the connections between the elements. In the beginning, all the fuses

are intact. In order to configure a device, a high voltage is applied in the desired fuses

154 B. Basics on FPGAs

A

Output

B

Potential Links

Figure B.1: Programmable circuit concept

to burn them out. An example of a programmed circuit is shown in Figure B.3. In this

example, two fuses were burned out and the output provided now is Y = A+ B̄.

It can be noted that devices using fusible link technology are OTP (One-Time Pro-

grammable) because after burning a fuse out, there is no way to return to its original

state.

A

Output

B

Fusible Links

Figure B.2: Programmable circuit with intact fusible links

A

Output

B

Fusible Links

Figure B.3: Programmed circuit with output Y = A+ B̄

B.1.2 Antifuse

The antifuse technology emerged as an alternative choice to fusible link technology. It

operates in an opposite way in respect to the fuses [45, 156]. The antifuses present a high

resistance when not programmed and they can be interpreted as an open circuit, as shown

155

in Figure B.4. After a high voltage is applied, the resistance decreases and a link is formed

in such a way that the device can be one-time programmed by the designer. An example

of a programmed device with output Y = A+ B̄ can be seen in Figure B.5.

A

Output

B

Antifuse Links

Figure B.4: Programmable circuit with intact antifuses

A

Output

B

Antifuse Links

Figure B.5: Programmed circuit with output Y = A+ B̄

B.1.2.1 Actel antifuse technology - PLICE R©

PLICE R© (Programmable Low-Impedance Circuit Element) is an antifuse-based technol-

ogy designed by Actel and available in some families of FPGAs. Each antifuse is constituted

by a dielectric between an n+ layer and a poly-Si layer [157]. The behavior of these el-

ements is to present a high resistance (normally bigger than 100 Megaohms) when not

programmed and a low resistance (200-500 ohms) when programmed [158].

The configuration of these devices is done by applying a programming voltage in the

desired antifuses in such a way that the dielectric is ruptured. Thus, a conductive link

between the n+ and poly-Si layers is created. Notice that once programmed, an antifuse

cannot be recovered to its original state. In other words, an antifuse FPGA is an one-time

programmable device.

Nowadays Actel also uses metal-metal antifuses in some FPGA families. This type

of antifuse mainly has two advantages over a poly-silicon antifuse. The first one is that

poly-silicon devices require extra space to connect wiring layers, creating additional para-

sitic capacitance. The connections in metal-metal antifuses are stablished direct to metal

156 B. Basics on FPGAs

(the wiring layers). The second virtue of metal-metal antifuses is that they have smaller

programming resistance (of approximately 25 ohms) [159].

B.1.2.2 Quicklogic antifuse technology - ViaLink R©

ViaLink R© is also an antifuse-based technology that uses an amorphous silicon layer

to provide low resistances (of approximately 30 ohms) [160]. In order to programme this

element, a voltage is applied to the top electrode and the bottom electrode is grounded.

Thus, a conductive link is created by moving electrode material into the amorphous silicon

[161]. A ViaLink R© device offers a superior level of security, concerning intellectual property,

when compared to SRAM-based FPGAs, ASICs or gate arrays [162]. Using this technology,

the vendor assures that even if the FPGA is decapped, it is not possible to determine the

location of programmed antifuses and relate this to design functionality [162]. This high

level protection is provided mainly by the following characteristics:

– There is no serial data stream on power up, avoiding unauthorized copies of the

program during boot up.

– Each antifuse contains a top similar to metal, making hard to distinguish whether

or not an antifuse was programmed;

– QuickLogic devices contain a large number of elements, and the relationship among

the programmed antifuses is proprietary information. Thus, if even just one antifuse

is identified incorrectly during the reverse engineering process, the perfect function-

ality is compromised;

– The JTAG port available on the device has a security bit to avoid unauthorized

access to the flip-flop values by thirds.

B.1.3 Static memory technology

Static Random Access Memory (SRAM) is a semiconductor memory widely used in

FPGAs devices. The term static states that this type of memory do not need to be

periodically refreshed in order to maintain its contained data, unlike dynamic memories.

SRAM technology is based on static memory cells, such as the one shown if Figure B.6,

that provide the reconfigurability mechanism. These cells are mainly used in multiplexers,

in order to interconnect signals, and in LUTs (lookup-tables), used to implement logic

functions in SRAM-based FPGAs [45].

Nowadays, the majority of FPGAs are based in static memory technology. Memory

elements in SRAM-FPGAs can be divided as follows:

– Configuration memory : used to map a circuit into an FPGA. In other words, con-

figuration bits are used to define interconnections, combinatorial functions, among

157

Vcc

Word
Line

Word
Line

Bit Line Bit Line
Q Q

Figure B.6: Static Memory Cell

others. This memory comprises more than 99% of memory bits in an FPGA and is

supposed to remain unchanged during execution [48].

– User memory : responsible for the current state of a circuit, i.e., the runtime infor-

mation. The content of this memory is supposed to change during execution.

One of the foremost advantages in using SRAM-based devices is that it can be pro-

grammed in an indefinite number of times [45,156]. Besides, these cells are compatible with

CMOS technology and no special circuit is needed. There are some drawbacks, however,

presented in this technology that must be highlighted [45]:

– Size: The actual size of SRAM cells is bigger compared to techniques such as anti-

fuses. A typical cell generally requires 6 transistors.

– Volatility : SRAM-based cells lose data information when power is down. Therefore,

external devices, such as EEPROM or flash memories, are required to store the

information when the FPGA is powered down, and then load it again when powered

up.

– Security : Devices based on SRAM cells, when powered up, require a boot up pro-

cess to perform their functionality. During this process, the information can be

intercepted and stolen by unauthorized people. Thus, techniques such as encryption

must be used to diminish this risk.

– Electrical properties : Multiplexers in SRAM-based FPGAs are implemented using

transistors. Each transistor has significant resistance and capacitance that need to

be considered when designing a circuit. Higher resistances and capacitances result

in higher delays, thus reducing the system performance.

B.1.4 Flash technology

Flash memory technology emerged as a mix of EPROM and EEPROM technologies.

The main difference is that in flash devices a large chunk of memory can be erased at one

158 B. Basics on FPGAs

time, while in EPROM/EEPROM devices only one bit is erased individually (so the term

“flash” devices) [163].

Flash memory cells are made from floating gate transistors, a special type of transistor

in which the gate is electrically isolated. This isolation creates a floating node in DC, which

allows the transistor to keep the charge contained in it for long periods of time. Indeed,

these cells do not lose their content even when the cell is powered down (nonvolatile

memory). Using phenomena such as Fowler-Nordheim tunneling and hot carrier injection,

it is possible to program the memory cell modifying the charge contained in the floating

gate.

Flash-based memory cells can be used as programming elements in FPGAs in order to

provide nonvolatility and reconfigurable programming, such as in Actel’s ProASIC3 [164].

The programming cell of these devices comprises two transistors sharing a floating gate,

which stores the programming information (see Figure B.7). The transistor located at the

left side, named sensing transistor, is smaller and is responsible for writing and verification

of the floating gate. The other transistor is named switching transistor, and it’s used in 3

situations: to connect or separate routing nets, to configure VersaTile logic, and to erase

the floating gate.

Floating
Gate

Control
Gate

Switching
Transistor

Programming
Transistor

FPGA
User Signal

Programming
Signals

Figure B.7: Flash memory cell - ProASIC3

As mentioned earlier, flash-based technology provides nonvolatility to FPGAs. There-

fore, flash-based FPGAs do not need external resources to store and load configuration

data in contrast to SRAM-based devices. Indeed, a flash-based device is ready to perform

its function upon power-up. Flash-based memory cells are also more area efficient than

an SRAM-based cell, since the last one requires up to six transistors to implement the

programmable storage.

Despite the virtues of flash-based FPGAs, some disadvantages are also presented in

such devices. Perhaps the most important drawback is that they cannot be reprogrammed

an infinite number of times. In fact, flash-based FPGAs such as the Actel’s ProASIC3 have

an endurance of 500 programming cycles and a program retention of 20 years for correct

operating conditions [165].

159

B.1.5 Summary

The most important technologies used in FPGAs are: SRAM, Antifuse, and Flash.

Table B.1 summarizes the prime characteristics of such technologies. It is important to note

that an ideal technology would be a nonvolatile, reprogrammable, providing low resistance

and parasitic capacitances, and using a standard CMOS process. None of the existent

technologies can satisfy such requirements [45].

Table B.1: Programming technology properties summary [45]

SRAM Flash Antifuse
Volatile Yes No No
Reprogrammable Yes Yes No
Storage Element Size High Moderate Low
Manufacturing Process Standard CMOS Flash Process Special Antifuse Process
In-System Programmable Yes Yes No
Switch Resistance ∼500 – 1000Ω ∼500 – 1000Ω ∼20 – 100Ω
Switch Capacitance ∼1 – 2 fF ∼1 – 2 fF < 1 fF
Programmable Yield 100% 100% > 90%

B.2 FPGAs architectures

In this Section, some FPGAs architectures from the most known vendors will be dis-

cussed.

B.2.1 Altera

B.2.1.1 Stratix R© family

The Stratix R© family is the high-end line of Altera FPGAs and is designed to achieve a

high performance with low power consumption. In order to obtain this, important features

were added over the generations of this family [166]:

– Adaptive Logic Module (ALM): Each ALM contains two 6-input LUT (Look-Up

Table) that can be configured to work as an 8-input LUT. A high level block diagram

of an ALM can be seen in Figure B.8.

– Programmable Power Technology : The new version of Stratix R© FPGAs allows the

configuration of speed paths. In other words, some blocks may run in higher speeds

than others. This allows to speed up critical paths and slow down paths that do not

need to run in high speeds, improving performance and power consumption;

– Design Security : Stratix R© FPGAs use SRAM cells to store the configuration memory.

Thus, each time the system is powered up, the data must be loaded. In order to

160 B. Basics on FPGAs

protect the intellectual property of the implemented design, it is possible to define a

128-bit or 256-bit key to encrypt the bitstream and avoid unauthorized copies.

– Configurable High-Speed I/Os : The I/O set can be configured according to a defined

application, changing, for example, the electrical characteristics.

D Q
To general or

local routing

reg0

To general or

local routing

datae0

dataf0

reg_chain_in

reg_chain_out

adder0

dataa

datab

datac

datad

datae1

dataf1

D Q
To general or

local routing

reg1

To general or

local routing

adder1

carry_in

carry_out

Combinational/Memory ALUT0

6-Input LUT

6-Input LUT

shared_arith_out

shared_arith_in

Combinational/Memory ALUT1

labclk

Figure B.8: ALM High-Level Block Diagram [166]

B.2.1.2 Arria R© family

The Arria R© Family is the midrange line of Altera FPGAs. It is designed as a cost

and power sensitive device aiming transceiver-based applications. In order to provide fast

interface connections for applications, Arria R© FPGAs offer PCI Express, Gigabit Ethernet

and Serial RapidIO interfaces. Other important features are available in this family [167]:

– Logic Array Block (LAB): Each LAB consists of 10 ALMs and other resources as

carry chains, local interconnect and shared arithmetic. These FPGAs also dispose

of MLABs that are basically LABs with SRAM-memory capability. These blocks

allows a reduction in required routing, thus improving performance;

– SEU Mitigation: A built-in circuit may be used to detect data corruption due to soft

errors in the configuration memory. Single Event Upsets (SEUs) were discussed in

Section 1.2.2.

B.2.1.3 Cyclone R© family

The Cyclone R© Family is the low-cost FPGAs series offered by Altera. It was designed

to provide power and cost savings as a result of features presented in its architecture as

shown above [168]:

161

– Logic Element (LE): Logic elements use 4-input LUT to implement the logic func-

tions. Each LE, illustrated in Figure B.9, can be configured to operate in two modes:

– Normal Mode: Used for combinatorial functions and logic applications;

– Arithmetic Mode: Used for implementing adders, counters, accumulators and com-

parators.

– I/O Features : The inputs and outputs of a Cyclone R© FPGA can be configured

according to the application. It can be chosen parameters such as bus hold, delay,

pull-up resistors and even control the slew-rate to optimize signal integrity.

Row, Column,

And Direct Link

Routing

data 1

data 2

data 3

data 4

labclr1

labclr2

Chip-Wide

Reset

(DEV_CLRn)

labclk1

labclk2

labclkena1

labclkena2

LE Carry-In

LAB-Wide

Synchronous

Load

LAB-Wide

Synchronous

Clear

Row, Column,

And Direct Link

Routing

Local

Routing

Register Chain

Output

Register Bypass

Programmable

Register

Register Chain

Routing from

previous LE

LE Carry-Out

Register Feedback

Synchronous

Load and

Clear Logic

Carry

Chain
Look-Up Table

(LUT)

Asynchronous

Clear Logic

Clock &

Clock Enable

Select

D Q

ENA
CLRN

Figure B.9: LE Block Diagram [168]

B.2.1.4 HardCopy R© family

HardCopy R© are mask-programmable devices, called structured ASICs, that emerged

as a midterm between FPGAs and ASICs. These devices use metal connections that are

substantially smaller than that used in FPGAs, thus improving performance and reducing

power consumption. Besides, unused logic blocks and clock trees are not powered up.

The HardCopy R© architecture was designed in such a way that it is totally compatible

with Stratix R© FPGAs [169]. Moreover, the design tool is the same for HardCopy R© and

Stratix R© devices, so allowing the use of reprogrammable FPGAs to design and test the

circuit before make a "hard copy". The typical design flow can be resumed as follow:

– User develops and verifies a design using a Stratix R© device;

– A netlist is created and sent to Altera;

162 B. Basics on FPGAs

– Altera sends the HardCopy R© device using almost the same architecture of the initial

design. Notice that the new device has smaller hard connections, thus improving

performance and reducing power consumption.

B.2.1.5 Devices comparison

Table B.2: Altera Devices Comparison

Family Logic Elements Embedded Memory Technology
(KLEs) (Mbits) (nm)

Stratix IV Up to 813.1 Up to 22.6 40
Stratix III Up to 338.0 Up to 15.9 65
Stratix II Up to 179.4 Up to 8.9 90

Hardcopy IV Up to 813.1 Up to 20.2 40
Hardcopy III Up to 338.0 Up to 15.9 40
Hardcopy II Up to 179.4 Up to 8.4 90
Cyclone IV Up to 149.8 Up to 6.3 60
Cyclone III Up to 198.5 Up to 7.8 65
Cyclone II Up to 68.4 Up to 1.1 90
Arria II Up to 256.5 Up to 8.3 40
Arria Up to 90.2 Up to 4.3 90

B.2.2 Xilinx

B.2.2.1 Virtex R© family

Virtex R© Family is the high-end line of FPGAs from Xilinx. It provides a high perfor-

mance while keeping the power consumption low. The architecture used in this family of

FPGAs is called ASMBL (Advanced Silicon Modular Block) [170] and it was first intro-

duced in 2003. It allowed Xilinx to fast and cost-effectively assemble multiple platforms

targeted to different application domains, providing the right choice of capabilities for a

specific design. Thus, developers can select a platform with optimal features for a target

application.

The ASMBL is a column-based architecture where each column represents a sub-system

with specific capabilities, e.g., memory, I/Os, DSP, etc. Therefore, a domain-specific chip

can be accomplished choosing the columns according to the desired functionality, as shown

in Figure B.10. For example, a chip for speech processing must have more columns de-

voted to DSP functions than a chip targeted for an application in the logic domain. This

architecture also alleviates problems such as:

– I/O and Array Dependency : The ASMBL architecture uses a flip-chip packaging

process. It allows bonding pads to be located anywhere on the chip, not just on

the periphery. Thus, a chip can accommodate more I/O pads just by devoting more

163

column to I/O functions [171];

– Power and Ground Scaling : In order to improve the power-grid distribution and to

reduce the on-chip parasitic voltage drop, a chip design requires additional power

and ground pads. The ASMBL architecture simplifies the task of uniform power

distribution allowing to place the pads anywhere in the chip.

– Hard-IP Scaling : The Intellectual Property (IP) scaling problem is reduced from two

dimensions to one dimension by the use of a column-based architecture.

Aplications
of Domain B

Aplications
of Domain A

DSP

Logic

Memory

Processing

Figure B.10: Example of devices using the ASMBL architecture

B.2.2.2 Spartan R© family

The Spartan R© series of FPGAs from Xilinx are built as a low-cost and low-power device.

The main resource for implementing combinatorial and sequential logic is the configurable

logic block (CLB). A CLB comprises two vertical slices that can transfer data using a switch

matrix as shown in Figure B.11. Each slice includes miscellaneous logic, eight flip-flops

and four 6-input LUTs. There are three types of slices in Spartan-6 devices [172]:

– SLICEM : Each SLICEM can be used as LUTs (one 6-input or two 5-input), as

memory (one 64-bit or two 32-bit RAM) or as shift registers (a single 32-bit or

two 16-bit). Besides, for arithmetic operations, there is a high-speed carry chain to

propagate the signals;

– SLICEL: Contains all the features of SLICEMs except the memory and shift register

functions;

– SLICEX : Contains all the features of SLICELs except the arithmetic carry option

and the wide multiplexers.

The clock management in Spartan-6 FPGAs is done by six Clock Management Tiles

(CMTs). Each CMT has two Digital clock management (DCM) and one Phase-Locked

Loop (PLL) that can be used individually or concatenated. Thus, digital designers can use

either digital or analog clock management in Spartan-6 devices.

164 B. Basics on FPGAs

Switch

Matrix

Slice(1)

COUT

CIN

Slice(0)

CLB

Figure B.11: High-level block diagram of a CLB in Spartan FPGAs [173]

B.2.2.3 EasyPath R© family

EasyPath R© devices are a midterm between FPGAs and ASICs that provide significant

cost reduction with low-risk. The idea is to use Virtex R© FPGAs to design and test a

circuit and use the EasyPath R© as an option to reduce its cost. This migration between

devices can be done without additional design constraints. Both architectures are totally

compatible and the cost savings are achieved by the reduction in the effective die size. In

other words, unused gates, abundant routing and programmable multiplexers available in

Virtex R© FPGAs are removed [174].

The EasyPath-6 is the high-end device in this family and there is no minimal order

quantities. After the submission of the compiled design files to Xilinx, the user will receive

the EasyPath R© devices in six weeks.

B.2.2.4 Devices comparison

Table B.3: Xilinx Devices Comparison

Family Logic Cells Embedded Memory Technology
(KCells) (Mbits) (nm)

Virtex-6 Up to 760 Up to 38 40
Virtex-5 Up to 330 Up to 18 65
Virtex-4 Up to 200 Up to 10 90
Spartan-6 Up to 150 Up to 4.8 45
Spartan-3 Up to 75 Up to 1.8 90

165

B.2.3 Actel

B.2.3.1 IGLOO R© family

The IGLOO R© family of FPGAs from Actel is well known due to its low power con-

sumption. Basically, two technologies can be highlighted that reduce the amount of power

consumption [175]:

– Flash*Freeze: This technology turns off I/Os and clocks to reduce the power con-

sumption. When this mode is activated, the device consumes as little as 5µW and

can rapid recovery to operation mode.

– Low Power Active Capability : The device remains completely functional while con-

suming just 12µW .

An IGLOO R© FPGA is a reprogrammable device that uses flash memory. Since this

technology is nonvolatile, IGLOO R© FPGAs do not need to load the information at power-

up, avoiding unauthorized copies of the bitstream. Besides, it also includes a technology

called FlashLock to hide its content until a host controller is able to authenticate itself

through a 128-bit key.

The hardware architecture used in IGLOO R© FPGAs is basically composed of Versa-

Tiles. Each VersaTile can be configured as a 3-input function (3-input LUT), a D-type

flip-flop or a latch.

In order to manage the clock signal, the IGLOO R© device provides six CCCs (Clock

Conditioning Circuit). One CCC has a PLL and the other five allow clock spine access

and clock delay operations.

B.2.3.2 Fusion R© family

Fusion R© FPGAs are devices designed to mixed-signal integrated circuits, i.e., circuits

that has both analog and digital on a single semiconductor die [176]. It also uses flash-

based technology and its architecture is similar to the IGLOO R© one. Fusion R© FPGAs

include analog components such as:

– Configurable ADC : it supports 8-, 10- and 12-bit modes;

– 32:1 Input Analog MUX : channels 0 and 31 are dedicate. They can be used to

monitor the core power supply and the device temperature, respectively.

– Analog Quad I/O Structure: Each structure can be used as one of various built-in

circuit combinations.

B.2.3.3 ProASIC R© family

The ProASIC R© family was designed to provide a reprogrammable device with a cost

per unit similar to an ASIC device. It uses nonvolatile flash technology and its architecture

166 B. Basics on FPGAs

is also similar to the IGLOO R© one [177].

B.2.3.4 Axcelerator R© family

Actel’s Axcelerator R© family was designed to provide high performance and high density.

It uses an antifuse-based technology, denominated PLICE R©, in which the programmable

interconnect elements are located between two layers of metal. An important feature

included in such devices is denominated FuseLock technology as a reference to the security

level that is provided.

The Axcelerator R© series uses the AX architecture that provides two types of logic

modules [178] shown in Figure B.12:

– Combinatorial Cell (C-Cell): Each C-cell can be configured to perform more than

4000 combinational functions up to 5-inputs.

– Register Cell (R-Cell): Each R-cell contains a flip-flop with asynchronous clear and

preset. Moreover, it features a programmable clock polarity that can be configured

in a register-by-register basis.

C-cell

A[1:0]

B[1:0]

D[3:0]

DB

CFN

FCO

FCI

Y

PSET

CLR

D

E

CLK

Q

(Positive Edge Triggered)

C-Cell R-Cell

Figure B.12: AX C-Cell and R-Cell [178]

The AX architecture is organized into Core Tiles. A Core Tile is composed by an array

of 336 SuperClusters and four SRAM blocks. Each SuperCluster comprises two Clusters.

A Cluster is a block that contains two C-cells, a single R-cell and two Transmit (TX)

and two Receive (RX) routing buffers. Superclusters are arranged in such a way that two

combinational modules are side-by-side. This pattern, shown in Figure B.13, minimizes

the delay for two-bit carry logic, thus improving arithmetic performance.

Relative to the I/O structure, every Axcelerator R© device supports a range of operation

voltages (1.5V , 1.8V , 2.5V and 3.3V). The Axcelerator R© I/Os are organized in banks and

it is possible to configure the I/O structure according to at least 14 different standards.

167

RX

TX

B

C R CC C R
RX RX RX

TX TXTX

Figure B.13: AX SuperCluster Arrangement [178]

B.2.3.5 MX family

Actel MX family offers a cost-effective design solution at 5V. It uses antifuse technology

and its capacity ranges from 3,000 to 54,000 gates. The architecture of MX devices are

composed basically by [179]:

– Logic Modules : Each MX device contains three types of logic modules:

– Combinatorial (C-module): this block can be configured to implement a combina-

torial logic function;

– Sequential (S-module): an S-module can implement a combinatorial logic function

with the addition of a sequential element;

– Decode (D-module): these modules contain wide-decode circuitry and are arranged

around the periphery of the device.

– Dual-Port SRAM Modules : the SRAM modules of MX devices contain independent

read and write ports with independent clocks. As a result, these modules may be

used to implement high-speed buffered applications. Unused modules can be used to

implement other user logic.

B.2.3.6 Devices comparison

Table B.4: Actel Devices Comparison

Family System Gates Embedded RAM Technology
(x1000) (Kbits) (nm)

IGLOO Up to 3000 Up to 504 130
ProASIC3 Up to 3000 Up to 504 130

Fusion Up to 1500 Up to 270 130
Axcelerator Up to 2000 Up to 295 150

MX Up to 54 Up to 2.5 450

B.2.4 Lattice

B.2.4.1 EC R© family

Lattice EC R© family of FPGAs was designed using SRAM technology to provide de-

vices with high performance while keeping the cost as low as possible. Its architecture is

168 B. Basics on FPGAs

composed basically by [180]:

– Logic Modules : EC R© devices contain logic blocks organized in a two-dimensional

array. There are two kinds of logic modules:

– Programmable Functional Unit (PFU): it can be configured to perform logic, arith-

metic, RAM and ROM functions. Each PFU contains 4 slices. The first three slices

are composed of two 4-input LUTs and a register. The remaining one comprises

only two 4-input LUTs. A typical PFU is depicted in Figure B.14;

– Programmable Functional Unit Without RAM (PFF): it contains building blocks

for logic, arithmetic and ROM functions.

– sysMEM EBR Blocks: A sysMEM Embedded Block Ram can implement either a

single port, a dual port, or a pseudo dual port memory. It is a dedicated memory

block that can be configured as RAM or as ROM.

– sysDSP Slice: this slice allows the implementation of typical functions for digital

signal processing applications such as Finite Impulse Response filters, Fast Fourier

Transform, among others. Each DSP slice supports different data widths to provide

highly parallel implementations for DSP functions.

– Serializer and Deserializer Channels (SERDES): each SERDES module contains

independent 8bit/10bit encoder/decoder that allows to serialize and/or deserialize

data.

Slice 0

LUT4 &

CARRY

LUT4 &

CARRY

D D

Slice 1

LUT4 &

CARRY

LUT4 &

CARRY

Slice 2

LUT4 &

CARRY

LUT4 &

CARRY

Slice 3

LUT4 LUT4

D D D D

FF FF FF FF FF FF

Figure B.14: PFU block diagram [180]

B.2.4.2 XP R© family

Lattice XP R© family provides devices with a flash-based architecture denominated flexi-

FLASH. As a result, these devices are instant-on, i.e., they do not need to load data during

the boot-up process.

The flexiFLASH architecture is arranged in a similar manner in respect to the EC R©

architecture shown above.

169

B.2.4.3 Devices comparison

Table B.5: Lattice Devices Comparison

Family LUTs Embedded RAM Technology
(x1000) (Mbits) (nm)

ECP3 Up to 149 Up to 6.8 65
ECP2 Up to 95 Up to 5.3 90
XP2 Up to 40 Up to 0.9 90

170 Conclusion

171

Bibliography

[1] J. Larus, “Spending Moore’s dividend,” Communications of the ACM, vol. 52, June

2009.

[2] G. Moore, Cramming more components onto integrated circuits, Electronics, Volume

38, Number 8, April 19, 1965. January 1965.

[3] M. Dragoman and D. Dragoman, Nanoelectronics: Principles and Devices. Artech

House Publishers, 2nd ed., October 2008.

[4] ITRS2011, “International technology roadmap for semiconductors.” available: http:

//www.itrs.net/links/2011ITRS/Home2011.htm, 2011. [Online; accessed 09-July-

2012].

[5] M. Stanisavljevic, A. Schmid, and Y. Leblebici, “Optimization of the averaging re-

liability technique using low redundancy factors for nanoscale technologies,” IEEE

Transactions on Nanotechnology, vol. 8, pp. 379–390, June 2009.

[6] M. Stan, P. Franzon, S. Goldstein, J. Lach, and M. Ziegler, “Molecular electronics:

from devices and interconnect to circuits and architecture,” Proceedings of the IEEE,

vol. 91, pp. 1940–1957, January 2003.

[7] M. Breuer, S. Gupta, and T. Mak, “Defect and error tolerance in the presence of

massive numbers of defects,” IEEE Design & Test of Computers, vol. 21, pp. 216–

227, June 2004.

[8] D. T. Franco, Signal Reliability of Combinational Logic Circuits under Multiple Si-

multaneous Faults. PhD thesis, December 2008.

[9] J. Vial, A. Virazel, A. Bosio, P. Girard, C. Landrault, and S. Pravossoudovitch,

“Is triple modular redundancy suitable for yield improvement?,” IET Computers &

Digital Techniques, vol. 3, pp. 581–592, December 2009.

[10] M. Mirza-Aghatabar, M. Breuer, S. Gupta, and S. Nazarian, “Theory of redundancy

for logic circuits to maximize yield/area,” in Proceedings of 13th International Sym-

posium on Quality Electronic Design (ISQED), pp. 663 –671, March 2012.

http://www.itrs.net/links/2011ITRS/Home2011.htm
http://www.itrs.net/links/2011ITRS/Home2011.htm

172 BIBLIOGRAPHY

[11] International Electrotechnical Commission (IEC), “IEC 62566: Nuclear power

plants – Instrumentation and control important to safety – Development of HDL-

programmed integrated circuits for systems performing category a functions,” Jan-

uary 2012.

[12] International Electrotechnical Commission (IEC), “IEC 60987: Nuclear power plants

– Instrumentation and control important to safety – Hardware design requirements

for computer-based systems,” August 2007.

[13] International Electrotechnical Commission (IEC), “IEC 61513: Nuclear power plants

– Instrumentation and control important to safety – General requirements for sys-

tems,” August 2011.

[14] J.-C. Laprie, ed., Dependability: Basic concepts and Terminology, vol. 5th of De-

pendable Computing and Fault-Tolerant Systems. Springer-Verlag Publisher, 1992.

[15] D. T. Franco, M. C. Vasconcelos, L. Naviner, and J.-F. Naviner, “Signal probability

for reliability evaluation of logic circuits,” Microelectronics Reliability, vol. 48, no. 8–

9, pp. 1586–1591, 2008.

[16] M. de Vasconcelos, D. Franco, L. Naviner, and J. Naviner, “Reliability analysis

of combinational circuits based on a probabilistic binomial model,” in Proceedings

of Joint 6th International IEEE Northeast Workshop on Circuits and Systems and

TAISA Conference (NEWCAS-TAISA), pp. 310–313, June 2008.

[17] M. Jeitler, M. Delvai, and S. Reichor, “FuSE - a hardware accelerated HDL fault

injection tool,” in Proceedings of 5th Southern Conference on Programmable Logic

(SPL), pp. 89–94, May 2009.

[18] P. Samudrala, J. Ramos, and S. Katkoori, “Selective triple modular redundancy

(STMR) based single-event upset (SEU) tolerant synthesis for FPGAs,” IEEE Trans-

actions on Nuclear Science, vol. 51, pp. 2957–2969, January 2004.

[19] Synopsys Armenia Educational Department, “SAED 90nm generic library.” available:

http://www.synopsys.com/Community/UniversityProgram. [Online; accessed 16-

July-2012].

[20] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85 benchmarks:

a case study in reverse engineering,” IEEE Design & Test of Computers, vol. 16,

pp. 72–80, January 1999.

[21] S. Mitra and E. McCluskey, “Word-voter: a new voter design for triple modular

redundant systems,” in Proceedings of 18th IEEE VLSI Test Symposium, pp. 465–

470, January 2000.

[22] A. R. Burks and A. W. Burks, The First Electronic Computer: The Atanasoff Story.

December 1989.

http://www.synopsys.com/Community/ UniversityProgram

173

[23] J. V. Neumann, “Probabilistic logics and the synthesis of reliable organisms from

unreliable components,” Automata Studies, pp. 1–56, January 1956.

[24] E. F. Moore and C. E. Shannon, “Reliable circuits using less reliable relays. I-II,”

Journal of the Franklin Institute, vol. 262, no. 43, pp. 191–208, 281–297, 1956.

[25] P. Lala, “Transient and permanent fault injection in VHDL description of digital

circuits,” Circuits and Systems, pp. 192–199, February 2012.

[26] N. Miskov-Zivanov and D. Marculescu, “Multiple transient faults in combinational

and sequential circuits: A systematic approach,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 29, pp. 1614–1627, October

2010.

[27] S. Nascimento Pagliarini, L. Alves de Barros Naviner, and J.-F. Naviner, “Selective

Hardening Methodology for Combinational Logic,” in Proceedings of IEEE Latin-

American Test Workshop (LATW), April 2012.

[28] A. Birolini, Quality and reliability of technical systems: theory, practice, manage-

ment. Springer-Verlag Publisher, 1st ed., May 1994.

[29] P. D. T. O’Connor and A. Kleyner, Practical reliability engineering. John Wiley &

Sons Ltd, 5th ed., 2012.

[30] M. Nanda and S. Rao, “A modified and effective system-engineering life cycle for

critical systems,” in Proceedings of 4th Annual IEEE Systems Conference, pp. 103

–108, april 2010.

[31] ITEM Software, “Reliability prediction basics.” available: http://www.

reliabilityeducation.com/ReliabilityPredictionBasics.pdf, 2007. [On-

line; accessed 09-July-2012].

[32] “Early Life Failure Rate Calculation Procedure for Semiconductor Components,”

Standard JESD74A, JEDEC Solid State Technology Association, USA, 2007.

[33] J. Plante, “Alternative test methods for electronic parts,” tech. rep., NASA Electronic

Parts and Packaging (NEPP) Program, 2004.

[34] “Test Method - Microcircuits - Method 1005.9,” Standard MIL-STD-883H, Depart-

ment of Defense, USA, 2010.

[35] D. J. Smith, Reliability, Maintainability and Risk: Practical Methods for Engineers.

Butterworth-Heinemann Publisher, 8th ed., 2011.

[36] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,” IEEE Micro,

vol. 23, pp. 14–19, July 2003.

[37] C. Constantinescu, “Intermittent faults in VLSI circuits,” in Proceedings of IEEE

Workshop on System Effects of Logic Soft Errors, 2006.

http://www.reliabilityeducation.com/ReliabilityPredictionBasics.pdf
http://www.reliabilityeducation.com/ReliabilityPredictionBasics.pdf

174 BIBLIOGRAPHY

[38] C. Constantinescu, “Impact of deep submicron technology on dependability of VLSI

circuits,” in Proceedings International Conference on Dependable Systems and Net-

works, pp. 205–209, February 2002.

[39] C. Constantinescu, “Dependability benchmarking using environmental test tools,”

in Proceedings of Reliability and Maintainability Symposium (RAMS), pp. 567–571,

January 2005.

[40] C. Constantinescu, “Intermittent faults and effects on reliability of integrated

circuits,” in Proceedings of Reliability and Maintainability Symposium (RAMS),

pp. 370–374, February 2008.

[41] R. Baumann, “Radiation-induced soft errors in advanced semiconductor technolo-

gies,” IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 305–316,

September 2005.

[42] S. Martinie, J. L. Autran, S. Sauze, D. Munteanu, S. Uznanski, P. Roche, and

G. Gasiot, “Underground experiment and modeling of alpha emitters induced soft-

error rate in cmos 65 nm sram,” IEEE Transactions on Nuclear Science, no. 99, p. 1,

2012.

[43] T. Merelle, F. Saigne, B. Sagnes, G. Gasiot, P. Roche, T. Carriere, and M.-C. Palau,

“Alpha induced SEU and MBU rates evaluation for advanced srams by monte-carlo

simulations,” in Proceedings of 8th European Conference on Radiation and Its Effects

on Components and Systems (RADECS), pp. E3–1 –E3–6, September 2005.

[44] “Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced

Soft Errors in Semiconductor Devices,” Standard JESD89A, JEDEC Solid State

Technology Association, USA, 2006.

[45] I. Kuon, R. Tessier, and J. Rose, “Fpga architecture: Survey and challenges,” Foun-

dations and Trends R© in Electronic Design Automation, vol. 2, pp. 135–253, January

2007.

[46] C. Maxfield, ed., FPGAs: World Class Designs. Newnes Publisher, 1st ed., April

2009.

[47] J. McCollum, “ASIC versus antifuse FPGA reliability,” pp. 1–11, March 2009.

[48] H. Asadi, M. Tahoori, B. Mullins, D. Kaeli, and K. Granlund, “Soft error suscep-

tibility analysis of SRAM-based FPGAs in high-performance information systems,”

IEEE Transactions on Nuclear Science, vol. 54, pp. 2714–2726, December 2007.

[49] “Understanding single event effects (SEEs) in FPGAs,” tech. rep., Microsemi - Actel,

September 2011.

175

[50] “FPGA reliability and the sunspot cycle,” tech. rep., Microsemi - Actel, September

2011.

[51] D. White, “Considerations surrounding single event effects in FPGAs, ASICs, and

processors,” tech. rep., Xilinx FPGAs, March 2012.

[52] E. J. McCluskey and F. W. Clegg, “Fault equivalence in combinatorial logic net-

works,” IEEE Transactions on Computers, vol. C-20, pp. 1286–1293, November 1971.

[53] K. C. Y. Mei, “Bridging and stuck-at faults,” IEEE Transactions on Computers,

vol. C-23, pp. 720–727, July 1974.

[54] R. Ogus, “The probability of a correct output from a combinational circuit,” IEEE

Transactions on Computers, vol. C-24, pp. 534–544, June 1975.

[55] K. N. Patel, J. Hayes, and I. Markov, “Evaluating circuit reliability under probabilis-

tic gate-level fault models,” in Proceedings of the International Workshop on Logic

and Synthesis, pp. 59–64, 2003.

[56] F. Faure, P. Peronnard, and R. Velazco, “THESIC+: A flexible system for SEE

testing,” Proceedings of RADECS, 2002.

[57] F. Faure, R. Velazco, and P. Peronnard, “Single-event-upset-like fault injection: a

comprehensive framework,” IEEE Transactions on Nuclear Science, vol. 52, pp. 2205–

2209, December 2005.

[58] G. Foucard, P. Peronnard, and R. Velazco, “Reliability limits of TMR implemented

in a SRAM-based FPGA: Heavy ion measures vs. fault injection predictions,” in

Proceedings of 11th Latin American Test Workshop (LATW), pp. 1–5, January 2010.

[59] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso, M. Portela, and

C. Lopez-Ongil, “Soft error sensitivity evaluation of microprocessors by multilevel

emulation-based fault injection,” IEEE Transactions on Computers, vol. 61, pp. 313

–322, March 2012.

[60] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to improve

computer reliability,” IBM Journal of Research and Development, vol. 6, pp. 200–209,

January 1962.

[61] N. Pippenger, “Developments in “the synthesis of reliable organisms from unreliable

components”,” in Proceedings of Symposia in Pure Mathematics, vol. 50, pp. 311–324,

January 1990.

[62] N. Aymerich, S. D. Cotofana, and A. Rubio, “Adaptive fault-tolerant architecture

for unreliable technologies with heterogeneous variability,” IEEE Transactions on

Nanotechnology, vol. 11, pp. 818 –829, July 2012.

176 BIBLIOGRAPHY

[63] E. J. McCluskey, J. F. Wakerly, and R. C. Ogus, “Technical report,” Stanford, pp. 1–

110, January 1975.

[64] M. M. Dickinson, J. B. Jackson, and G. C. Randa, “Saturn V launch vehicle digital

computer and data adapter,” AFIPS ’64 (Fall, part I): Proceedings of the October

27-29, 1964, fall joint computer conference, part I, November 1964.

[65] L. Edmonds, “Analysis of single-event upset rates in triple-modular redundancy

devices,” JPL Publication 09-6 – National Aeronautics and Space Administration

(NASA), February 2009.

[66] M. Cohn, “Redundancy in complex computers,” in Proceedings of the National Con-

ference on Aeronautical Electronics, May 1956.

[67] R. Hentschke, F. Marques, F. Lima, L. Carro, A. Susin, and R. Reis, “Analyzing area

and performance penalty of protecting different digital modules with hamming code

and triple modular redundancy,” in Proceedings of 15th Symposium on Integrated

Circuits and Systems Design, pp. 95–100, January 2002.

[68] L. Sterpone and M. Violante, “Analysis of the robustness of the tmr architecture in

sram-based fpgas,” IEEE Transactions on Nuclear Science, vol. 52, pp. 1545–1549,

November 2005.

[69] X. She and S. Trimberger, “Scheme to minimise short effects of single-event upsets in

triple-modular redundancy,” IET Computers & Digital Techniques, vol. 4, pp. 50–55,

January 2010.

[70] L. Sterpone and N. Battezzati, “A new placement algorithm for the mitigation of

multiple cell upsets in SRAM-based FPGAs,” in Proceedings of Design, Automation

& Test in Europe Conference & Exhibition (DATE), pp. 1231–1236, January 2010.

[71] A. Grnarov, J. Arlat, and A. Avizienis, “Modeling of software fault-tolerance strate-

gies,” in Proceedings of the 11th Annual Pittsburgh Modeling and Simulation Confer-

ence, pp. 571–578, May 1980.

[72] R. B. Broen, “New voters for redundant systems,” Transactions of ASME, Journal

of Dynamic Systems, Measurement, and Control, March 1975.

[73] P. R. Lorczak, A. K. Caglayan, and D. E. Eckhardt, “A theoretical investigation

of generalized voters for redudant systems,” in Proceedings of IEEE International

Symposium on Fault-Tolerant Computing Systems, pp. 444–451, January 1989.

[74] G. Latif-Shabgahi and S. Bennett, “Adaptive majority voter: a novel voting algorithm

for real-time fault-tolerant control systems,” in Proceedings of 25th EUROMICRO

Conference, vol. 2, pp. 113–120, 1999.

177

[75] G. Latif-Shabgahi, J. M. Bass, and S. Bennett, “History-based weighted average

voter: A novel software voting algorithm for fault-tolerant computer systems,” in Pro-

ceedings of 9th Euromicro Workshop on Parallel and Distributed Processing, pp. 1–8,

January 2001.

[76] Y. Dotan, N. Levison, R. Avidan, and D. Lilja, “History index of correct compu-

tation for fault-tolerant nano-computing,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 17, pp. 943–952, August 2009.

[77] J. Bass, G. Latif-Shabgahi, and S. Bennett, “Experimental comparison of voting

algorithms in cases of disagreement,” in Proceedings of the 23rd EUROMICRO Con-

ference, pp. 516–523, September 1997.

[78] C. Zhao, Y. Zhao, and S. Dey, “Intelligent robustness insertion for optimal transient

error tolerance improvement in VLSI circuits,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 16, pp. 714–724, June 2008.

[79] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improving FPGA

design robustness with partial TMR,” in Proceedings of 44th Annual IEEE Interna-

tional Reliability Physics Symposium, pp. 226–232, March 2006.

[80] C. Zoellin, H. Wunderlich, I. Polian, and B. Becker, “Selective hardening in early

design steps,” European Test, 2008 13th, pp. 185–190, June 2008.

[81] X. She and P. K. Samudrala, “Selective triple modular redundancy for single event up-

set (SEU) mitigation,” in Proceedings of NASA/ESA Conference on Adaptive Hard-

ware and Systems (AHS), pp. 344–350, January 2009.

[82] O. Ruano and J. Maestro, “A methodology for automatic insertion of selective TMR

in digital circuits affected by SEUs,” IEEE Transactions on Nuclear Science, vol. 56,

pp. 2091–2102, January 2009.

[83] I. Polian and J. Hayes, “Selective hardening: Toward cost-effective error tolerance,”

IEEE Design & Test of Computers, vol. 28, pp. 54 –63, May-June 2011.

[84] M. Augustin, M. Gossel, and R. Kraemer, “Selective fault tolerance for finite state

machines,” in Proceedings of IEEE 17th International On-Line Testing Symposium

(IOLTS), pp. 43–48, July 2011.

[85] I. Polian, D. Nowroth, and B. Becker, “Identification of critical errors in imaging

applications,” in Proceedings of 13th IEEE International On-Line Testing Symposium

(IOLTS), pp. 201–202, July 2007.

[86] D. Nowroth, I. Polian, and B. Becker, “A study of cognitive resilience in a JPEG

compressor,” in Proceedings of 38th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), pp. 32–41, 2008.

178 BIBLIOGRAPHY

[87] W. Zhang and T. Li, “Microarchitecture soft error vulnerability characterization and

mitigation under 3d integration technology,” in Proceedings of 41st IEEE/ACM In-

ternational Symposium on Microarchitecture (MICRO), pp. 435–446, December 2008.

[88] L. Antoni, R. Leveugle, and M. Feher, “Using run-time reconfiguration for fault injec-

tion in hardware prototypes,” in Proceedings of 17th IEEE International Symposium

on Defect and Fault Tolerance in VLSI Systems (DFT), pp. 245–253, 2002.

[89] E. C. Marques, N. M. Paiva, L. A. B. Naviner, and J. F. Naviner, “A new fault gen-

erator suitable for reliability analysis of digital circuits,” in Proceedings of Argentine

School of Micro-Nanoelectronics Technology and Applications (EAMTA), pp. 41–45,

January 2010.

[90] J. Boue, P. Petillon, and Y. Crouzet, “MEFISTO-L: a VHDL-based fault injection

tool for the experimental assessment of fault tolerance,” in Proceedings of Twenty-

Eighth Annual International Symposium on Fault-Tolerant Computing, pp. 168–173,

January 1998.

[91] J. C. Baraza, J. Gracia, D. Gil, and P. J. Gil, “Improvement of fault injection tech-

niques based on VHDL code modification,” in Proceedings of Tenth IEEE Interna-

tional High-Level Design Validation and Test Workshop, pp. 19–26, December 2005.

[92] K.-T. Cheng, S.-Y. Huang, and W.-J. Dai, “Fault emulation: A new methodology for

fault grading,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 18, pp. 1487–1495, January 1999.

[93] D. Kammler, J. Guan, G. Ascheid, R. Leupers, and H. Meyr, “A fast and flexible

platform for fault injection and evaluation in verilog-based simulations,” in Proceed-

ings of Third IEEE International Conference on Secure Software Integration and

Reliability Improvement (SSIRI), pp. 309–314, July 2009.

[94] I. Mavroidis and I. Papaefstathiou, “Accelerating hardware simulation: Testbench

code emulation,” in Proceedings of International Conference on ICECE Technology

(FPT), pp. 129–136, December 2008.

[95] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling

the effect of technology trends on the soft error rate of combinational logic,” in

Proceedings International Conference on Dependable Systems and Networks, pp. 389–

398, February 2002.

[96] V. Chandra and R. Aitken, “Impact of technology and voltage scaling on the soft error

susceptibility in nanoscale cmos,” in Proceedings of IEEE International Symposium

on Defect and Fault Tolerance of VLSI Systems (DFTVS), pp. 114–122, January

2008.

179

[97] M. K. Goparaju, A. K. Palaniswamy, and S. Tragoudas, “A fault tolerance aware

synthesis methodology for threshold logic gate networks,” in Proceedings of IEEE

International Symposium on Defect and Fault Tolerance of VLSI Systems (DFTVS),

pp. 176–183, January 2008.

[98] N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V. Zia, C. Brookreson, A. Vo,

S. Mitra, B. Gill, and J. Maiz, “Radiation-induced soft error rates of advanced CMOS

bulk devices,” in Proceedings of 44th Annual IEEE International Reliability Physics

Symposium, pp. 217–225, January 2006.

[99] ITRS2001, “International technology roadmap for semiconductors.” available: http:

//www.itrs.net/Links/2001ITRS/Design.pdf, 2001. [Online; accessed 12-July-

2012].

[100] M. Breuer, “An illustrated methodology for analysis of error tolerance,” IEEE Design

& Test of Computers, February 2008.

[101] E. C. Marques, G. G. S. Junior, L. A. B. Naviner, and J. F. Naviner, “Effective

metrics for reliability analysis,” in Proceedings of 53rd IEEE International Midwest

Symposium on Circuits and Systems (MWSCAS), pp. 237–240, August 2010.

[102] G. dos Santos, E. Marques, and L. Naviner, “Using error tolerance of target ap-

plication for efficient reliability improvement of digital circuits,” Microelectronics

Reliability, January 2010.

[103] S. Pagliarini, G. dos Santos, L. de B. Naviner, and J.-F. Naviner, “Exploring the

feasibility of selective hardening for combinational logic,” Microelectronics Reliability,

no. 0, 2012.

[104] T. Ban and L. Naviner, “Progressive module redundancy for fault-tolerant designs in

nanoelectronics,” Microelectronics Reliability, vol. 51, no. 9–11, pp. 1489–1492, 2011.

[105] L. A. B. Naviner, J. F. Naviner, G. G. dos Santos Jr., E. C. Marques, and N. M. P.

Jr., “FIFA: A fault-injection–fault-analysis-based tool for reliability assessment at

RTL level,” Microelectronics Reliability, vol. 51, pp. 1459–1463, October 2011.

[106] E. C. Marques, L. A. de Barros Naviner, and J.-F. Naviner, “An efficient tool for

reliability improvement based on tmr,” Microelectronics Reliability, vol. 50, no. 9–11,

pp. 1247–1250, 2010.

[107] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinatorial benchmark circuits

and a target translator in FORTRAN,” in Proceedings of International Symposium

on Circuits and Systems, pp. 663–698, June 1985.

[108] I. Polian, S. Reddy, and B. Becker, “Scalable calculation of logical masking effects

for selective hardening against soft errors,” in Proceedings of IEEE Computer Society

Annual Symposium on VLSI (ISVLSI), pp. 257 –262, April 2008.

http://www.itrs.net/Links/2001ITRS/Design.pdf
http://www.itrs.net/Links/2001ITRS/Design.pdf

180 BIBLIOGRAPHY

[109] Q. Zhou and K. Mohanram, “Cost-effective radiation hardening technique for combi-

national logic,” in in Proceedings of IEEE/ACM International Conference on Com-

puter Aided Design (ICCAD), pp. 100–106, November 2004.

[110] X. Wang, “Partitioning triple modular redundancy for single event upset mitigation

in FPGA,” in Proceedings of International Conference on E-Product E-Service and

E-Entertainment (ICEEE), pp. 1–4, November 2010.

[111] B. Bridgford, C. Carmichael, and C. Wei Tseng, “Single-event upset mitigation se-

lection guide,” tech. rep., Xilinx, March 2008.

[112] F. Kastensmidt, L. Sterpone, L. Carro, and M. Reorda, “On the optimal design of

triple modular redundancy logic for sram-based fpgas,” in Proceedings of Design,

Automation and Test in Europe (DATE), vol. 2, pp. 1290–1295, March 2005.

[113] N. K. Jha and S. J. Wang, “Design and synthesis of self-checking VLSI circuits,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 12, pp. 878–887, June 1993.

[114] T. Stankovic, M. Stojcev, and G. Djordjevic, “Design of self-checking combinational

circuits,” in Proceedings of 6th International Conference on Telecommunications in

Modern Satellite, Cable and Broadcasting Service (TELSIKS), vol. 2, pp. 763–768

vol.2, January 2003.

[115] M. Abd-El-barr, Design And Analysis of Reliable And Fault-tolerant Computer Sys-

tems. World Scientific Pub Co Inc, 1st ed., 2006.

[116] N. Touba and E. McCluskey, “Logic synthesis of multilevel circuits with concurrent

error detection,” IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, vol. 16, pp. 783–789, January 1997.

[117] J. Berger, “A note on error detection codes for asymmetric channels,” Information

and Control, vol. 4, no. 1, pp. 68–73, 1961.

[118] D. Pradhan, “A new class of error-correcting/detecting codes for fault-tolerant com-

puter applications,” IEEE Transactions on Computers, vol. C-29, pp. 471–481, Jan-

uary 1980.

[119] M. J. Ashjaee, “Totally-self-checking check circuits for separable codes,” Ph.D. Thesis

Iowa Univ., Iowa City., August 1976.

[120] M. A. Marouf and A. D. Friedman, “Design of self-checking checkers for Berger codes,”

in Proceedings of International Symposium on Fault-Tolerant Computing (FTCS),

pp. 179–184, June 1978.

[121] S. Piestrak, “Comments on “novel totally self-checking Berger checker designs based

on generalized Berger code partitioning”,” IEEE Transactions on Computers, vol. 51,

pp. 735–736, January 2002.

181

[122] T. Rao, G. Feng, M. Kolluru, and J. Lo, “Novel totally self-checking Berger code

checker designs based on generalized Berger code partitioning,” IEEE Transactions

on Computers, vol. 42, pp. 1020–1024, January 1993.

[123] S. Piestrak, “Design method of a class of embedded combinational self-testing check-

ers for two-rail codes,” IEEE Transactions on Computers, vol. 51, pp. 229–234, Jan-

uary 2002.

[124] B. Bose and D. J. Lin, “Systematic unidirectional error-detecting codes,” IEEE Trans-

actions on Computers, vol. C-34, pp. 1026–1032, January 1985.

[125] B. Bose, “Burst unidirectional error-detecting codes,” IEEE Transactions on Com-

puters, vol. C-35, pp. 350–353, January 1986.

[126] N. Jha, “Design of totally self-checking checkers for Bose-Lin, Bose and Blaum codes,”

in Proceedings of the 32nd Midwest Symposium on Circuits and Systems, pp. 32–35

vol.1, January 1989.

[127] X. Kavousianos and D. Nikolos, “Modular TSC checkers for Bose-Lin and Bose

codes,” in Proceedings of 17th IEEE VLSI Test Symposium, pp. 354–360, 1999.

[128] S. Tarnick, “Self-testing embedded checkers for Bose-lin, Bose, and a class of Borden

codes,” in Proceedings of Design, Automation and Test in Europe Conference and

Exhibition (DATE), pp. 1162–1163, January 2003.

[129] S. Tarnick, “Single-output embedded checkers for systematic unordered codes,”

in Proceedings of 10th IEEE International On-Line Testing Symposium (IOLTS),

pp. 45–51, January 2004.

[130] J. M. Borden, “Optimal asymmetric error detecting codes,” Information and Control,

vol. 53, no. 1–2, pp. 66–73, 1982.

[131] N. Jha, “A totally self-checking checker for Borden’s code,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 8, pp. 731–736, Jan-

uary 1989.

[132] T. Haniotakis, A. Paschalis, and D. Nikolos, “Efficient totally self-checking checkers

for a class of Borden codes,” IEEE Transactions on Computers, vol. 44, pp. 1318–

1322, January 1995.

[133] G. Biswas and I. Sengupta, “A design technique of TSC checker for Borden’s code,” in

Proceedings of Tenth International Conference on VLSI Design, pp. 529–530, January

1997.

[134] S. Tarnick, “Embedded Borden 2-UED code checkers,” in Proceedings of 12th IEEE

International Symposium on On-Line Testing (IOLTS), pp. 173–175, January 2006.

182 BIBLIOGRAPHY

[135] R. Hamming, “Error detecting and error correcting codes,” Bell System Technical

Journal, vol. 26, April 1950.

[136] A. Saleh, J. Serrano, and J. Patel, “Reliability of scrubbing recovery-techniques for

memory systems,” IEEE Transactions on Reliability, vol. 39, pp. 114–122, January

1990.

[137] G. Neuberger, F. Lima, L. Carro, and R. Reis, “A multiple bit upset tolerant SRAM

memory,” ACM Transactions on Design Automation of Electronic Systems (TO-

DAES, vol. 8, October 2003.

[138] C. Argyrides, H. Zarandi, and D. Pradhan, “Multiple upsets tolerance in SRAM

memory,” in Proceedings of IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 365–368, May 2007.

[139] F. Maison, “The MECRA: A self-reconfigurable computer for highly reliable process,”

IEEE Transactions on Computers, vol. C-20, pp. 1382–1388, January 1971.

[140] E. Prange, “Cyclic error-correcting codes in two symbols,” tech. rep., AFCRC-TN-

57-103, Air Force Cambridge Research Center, 1957.

[141] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,” Proceedings of

the IRE, pp. 228–235, January 1961.

[142] L.-H. Zetterberg, “Cyclic codes from irreducible polynomials for correction of multiple

errors,” IRE Transactions on Information Theory, vol. 8, pp. 13–20, January 1962.

[143] S. Dodunekov and J. Nilsson, “Algebraic decoding of the Zetterberg codes,” IEEE

Transactions on Information Theory, vol. 38, pp. 1570–1573, January 1992.

[144] M.-H. Jing, Y. Chang, C.-D. Lee, J.-H. Chen, and Z.-H. Chen, “A result on Zetterberg

codes,” IEEE Communications Letters, vol. 14, pp. 662–663, January 2010.

[145] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” SIAM Jour-

nal on Applied Mathematics, vol. 8, pp. 300–304, January 1960.

[146] G. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, and A. Salsano, “Fault tolerant solid

state mass memory for space applications,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 41, pp. 1353–1372, January 2005.

[147] A. Thompson, “Evolving electronic robot controller that exploit hardware resources,”

in Proceedings of the Third European Conference on Advances in Artificial Life,

pp. 640–656, 1995.

[148] G. W. Greenwood and A. M. Tyrrell, Introduction to evolvable hardware: A Practical

Guide for Designing Self-Adaptive Systems. Wiley-IEEE Press, 1 ed., November 2006.

183

[149] A. Thompson, “Evolving fault tolerant systems,” in Proceedings of First Interna-

tional Conference on Genetic Algorithms in Engineering Systems: Innovations and

Applications (GALESIA), pp. 524–529, January 1995.

[150] D. Keymeulen, R. Zebulum, Y. Jin, and A. Stoica, “Fault-tolerant evolvable hard-

ware using field-programmable transistor arrays,” IEEE Transactions on Reliability,

vol. 49, pp. 305–316, January 2000.

[151] J. Miller and M. Hartmann, “Evolving messy gates for fault tolerance: some pre-

liminary findings,” in Proceedings of The Third NASA/DoD Workshop on Evolvable

Hardware, pp. 116–123, January 2001.

[152] R. Canham and A. Tyrrell, “Evolved fault tolerance in evolvable hardware,” in Pro-

ceedings of Congress on Evolutionary Computation (CEC), vol. 2, pp. 1267–1271,

January 2002.

[153] G. V. Larchev and J. D. Lohn, “Evolutionary based techniques for fault tolerant field

programmable gate arrays,” in Proceedings of International Conference on Space

Mission Challenges for Information Technology, pp. 1–8, June 2006.

[154] T. Schnier and X. Yao, “Using negative correlation to evolve fault-tolerant circuits,”

in Proceedings of 5th International Conference on Evolvable Systems: From Biology

to Hardware, pp. 35–46, January 2003.

[155] G. Greenwood and M. Joshi, “Evolving fault tolerant digital circuitry: Comparing

population-based and correlation-based methods,” in Proceedings of IEEE Congress

on Evolutionary Computation (CEC), pp. 2796–2801, January 2009.

[156] C. Maxfield, The Design Warrior’s Guide to FPGAs: Devices, Tools and Flows.

Newnes, May 2004.

[157] E. Hamdy, J. McCollum, S. Chen, and S. Chiang, “Dielectric based antifuse for logic

and memory ICs,” IEEE International Electron Devices Meeting (IEDM), December

1988.

[158] N. G. Jacobson, The In-System Configuration Handbook: A Designer’s Guide to ISC.

Springer, 1 ed., November 2003.

[159] J. Wang, B. Cronquist, J. McCollum, F. Hawley, D. Yu, R. Chan, R. Katz, and

I. Kleyner, “Total dose and SEE of metal-to-metal antifuse FPGA,” in Proceedings

of 2nd Conference on Military and Aerospace Applications of Programmable Devices

and Technologies, January 1999.

[160] Quicklogic, “Quicklogic reliability report,” pp. 1–21, November 1998.

[161] K. Gordon and R. Wong, “Conducting filament of the programmed metal electrode

amorphous silicon antifuse,” IEEE International Electron Devices Meeting (IEDM),

pp. 27–30, 1993.

184 BIBLIOGRAPHY

[162] Quicklogic, “Security in quicklogic devices,” QuickLogic White Paper, pp. 1–10, July

2002.

[163] B. Matas and C. D. Subercasaux, Memory 1997: Complete coverage of DRAM,

SRAM, EPROM, and flash memory ICs. Integrated Circuit Engineering Corp.,

1st ed., January 1997.

[164] Microsemi, “ProASIC3 fpga fabric user’s guide,” 2011.

[165] Microsemi, “ProASIC3 flash family FPGAs datasheet,” April 2012.

[166] Altera Corporation, “Stratix V device handbook,” March 2012.

[167] Altera Corporation, “Arria V device handbook,” March 2012.

[168] Altera Corporation, “Cyclone V device handbook, volume 1: Device overview and

datasheet,” December 2011.

[169] Altera Corporation, “Hardcopy IV device handbook,” April 2012.

[170] Xilinx, “Xilinx DS150 virtex-6 family overview,” March 2009.

[171] C. Souza, “IP columns support app-specific FPGAs.” available: http://eetimes.

com/electronics-news/4046520/IP-columns-support-app-specific-FPGAs,

2003. [Online; accessed 16-July-2012].

[172] P. Alfke, “Xilinx spartan-6 FPGA user guide lite.” available:

http://www.eetimes.com/design/programmable-logic/4015237/

Xilinx-Spartan-6-FPGA-User-Guide-Lite, 2009. [Online; accessed 19-July-

2012].

[173] Xilinx, “Spartan-6 FPGA configurable logic block,” February 2010.

[174] S. Bapat, “Easypath-6 technology: Fast, simple, risk-free FPGA cost reduction,”

tech. rep., Xilinx, November 2009.

[175] Actel, “IGLOO r© handbook,” December 2008.

[176] Actel, “Fusion r© handbook,” December 2008.

[177] Actel, “ProASIC r©3 handbook,” December 2008.

[178] Actel, “Axcelerator r© family FPGAs,” October 2009.

[179] Actel, “40MX and 42MX FPGA families,” April 2009.

[180] Lattice, “LatticeECP3 family handbook,” September 2009.

http://eetimes.com/electronics-news/4046520/IP-columns-support-app-specific-FPGAs
http://eetimes.com/electronics-news/4046520/IP-columns-support-app-specific-FPGAs
http://www.eetimes.com/design/programmable-logic/4015237/Xilinx-Spartan-6-FPGA-User-Guide-Lite
http://www.eetimes.com/design/programmable-logic/4015237/Xilinx-Spartan-6-FPGA-User-Guide-Lite

	Introduction
	Background on Reliability
	Introduction
	Reliability analysis
	Faults in VLSI circuits
	Reliability issues in FPGAs
	Prior works on reliability analysis

	Reliability improvement of integrated circuits
	Modular redundancy
	Voting strategies
	Selective Hardening

	FIFA Tool
	Introduction
	FIFA Tool
	FIFA Architecture
	Reliability Assessment
	Synthesis Results
	Parallelizing the FIFA Fault Generation
	Results
	Conclusion

	Effective Reliability
	Introduction
	Error tolerance
	Effective reliability
	Quality metrics
	Definitions
	Quality metric 1: bit significance
	Quality metric 2: relative error

	Simulation results
	Median filter
	8-bit ripple carry adder
	4-bit multiplier

	Conclusion

	Selective Hardening
	Introduction
	Avoiding Critical Errors in Integrated Circuits
	Nominal reliability
	Practical reliability
	Selectively applying TMR

	Using a Cost Function to Detect Critical Gates
	Cost function profiling
	Experimental results
	Comparison with related works

	Conclusion

	Optimizing Voter Placement for TMR Systems
	Introduction
	TMR approach
	Partitioning a TMR design
	Problem of automatically inserting voters
	Proposed method
	Conclusion

	Concluding Remarks
	Other Methods for Reliability Improvement of ICs
	Fault detection and correction
	Basic principles
	Fault detection techniques

	Evolvable hardware

	Basics on FPGAs
	FPGA technologies
	Fusible link technology
	Antifuse
	Static memory technology
	Flash technology
	Summary

	FPGAs architectures
	Altera
	Xilinx
	Actel
	Lattice

	Conclusion
	Glossary
	Notations
	Bibliography

