N

N

Champs aléatoires et problemes statistiques inverses
associés pour la quantification des incertitudes:
application a la modélisation de la géométrie des voies
ferrées pour I’évaluation de la réponse dynamique des
trains a grande vitesse et ’analyse

Guillaume Perrin

» To cite this version:

Guillaume Perrin. Champs aléatoires et problemes statistiques inverses associés pour la quantification
des incertitudes: application & la modélisation de la géométrie des voies ferrées pour ’évaluation de
la réponse dynamique des trains a grande vitesse et 'analyse. Other. Université Paris-Est, 2013.
English. NNT: 2013PEST1137 . pastel-01001045

HAL Id: pastel-01001045
https://pastel.hal.science/pastel-01001045

Submitted on 4 Jun 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://pastel.hal.science/pastel-01001045
https://hal.archives-ouvertes.fr

UNIVERSITE
— PARIS- 25T

Ecole doctorale Sciences, Ingénierie et Environnement

Doctoral Thesis
Speciality: Mechanics

presented by
Guillaume PERRIN

Random fields and associated statistical inverse problems for
uncertainty quantification - Application to railway track
geometries for high-speed trains dynamical responses and risk

assessment,
Didier CLOUTEAU ECP - MSSMAT Examiner
Denis DUHAMEL ENPC - Navier Supervisor
Christine FUNFSCHILLING SNCF - I&R Examiner
Jean GIORLA CEA - DCSA Examiner
Olivier LE MAITRE CNRS - LIMSI Reporter
Anthony NOUY ECN - GeM Reporter

Christian SOIZE UPEM - MSME Supervisor






Acknowledgments

This doctoral thesis arised within the framework of a contract between the laboratories Navier
and Modélisation Simulation Multi-Echelle at Université Paris Est and the research department
of SNCF, and was funded by SNCF and the French ministry of ecology, sustainment development
and energy.

I feel very grateful to everybody who contributed to this work. In particular, I would like
to thank my supervisors at SNCF and at Université Paris Est. With their strong involvement
in this work, their high interest for the subject and their wise advice, they created a very
constructive and stimulating environment for this thesis to keep bringing forward. I would like
to thank them for all their ideas and proposals, for their required level and precision, which
have been endless sources of motivation and innovation during this work. T also would like to
thank them for the cordial relations we had and for the taste for research they gave to me.

I would like to express my gratitude to all the members of the jury. It was a pleasure to
exchange ideas with such distinguished researchers.

Finally, I would like to address my thanks to all my colleagues at SNCF and at the Université
Paris Est for their support, but also for all the good time we had.

Paris, September 2013.






Contents

LAgkn.oMLLedgmf_ntﬁ 2

. T I 8
iIndustrial obie('tive.j ..................................... 8

Scientific objectived . . . . . ... ... 8

State of the artl . . . . . . . L e e e e 9

[L5_PCE identification of random vectord . . . . . . . . ... 21




BA ApDLCAtion . . . v v v oo 63

[3.4.1  Application in low dimension . . . . .« v v 63

w ......... 74

5.2.1 _ Collection of the experimental inputs for the modeling . . . . ... . ... 102
’—%&@%mﬂ ............................. 102
5.3 Opti 1 [ O 106

[5.3.1  Direct KL expansion and projection biased . . . . . . . ..o 106

5.3.2 Optimization of the projection basis . . . . . . . ... .. ... .. .... 107

5.3.3 Choice of the dimension of the spatial projection parameter . . . . . . . . 109

i ion i i i 1100 [P 109

5.4.1 _Sorting with respect to the horizontal curvaturd. . . . . . . . ... .. .. 109




5.6 Statistical and frequency validationd . . . . . . ... oo 116
5.7 _Conclusiond . . . . . . . e e e e e e e 121

|6 _Stochastic dynamics of high;s_p_eed_tnahas_an_d_ﬁsk_ass_essm_e_nﬂ 122
1010 . . . e e e e e 122

6.2 Description of the railway dvnamic problem . . . . « « v o oot 122
[6.2.1 _Deterministic railway probleml . . . . . . .. ... 122

[6.2.2 Domain of validity for the deterministic problemd . . . . . . . . ... ... 125

[6.5.2  KI based sensitivity analysid . . . . . oo oo 138
6.6 Conclusions . . . . . o o oo 141

M’TL-M%% 144
Summary of the industrial contexti . . . . . . . . . . e 144

Sgﬂnm_ﬁs;a.nd_m_dusmahzolmmm ........................... 145
Prosne('ta ........................................... 146

[Appendid 153

A Proof of Lemma B ................................... 153
IB___Generation of the matrix-valued autocorrelation matrig . . . . . . . ... .. .. 155
[C__ Definition of the local-global error functiond . . . . .« o ottt 156







Introduction and objectives

Industrial objectives

High speed trains are currently meant to run faster and to carry heavier loads, while being
less energy consuming and still ensuring the safety and comfort certification criteria. In order
to optimize the conception of such high technology trains, we need a precise knowledge of the
realm of possibilities of track conditions that the train is likely to be confronted to during its
life cycle.

In parallel, since 2012, European high speed railway networks are meant to have gone
to market. Several high speed trains, such as ICE, TGV, ETR 500..., for which mechanical
properties and structures are different, are likely to run on the same tracks, whereas they may
have been originally designed for specific and different railway networks. European high speed
railway networks are therefore bound to be subjected to an increasing variability of mechanical
loads. To optimize the track maintenance and to adjust the tolls according to the aggressiveness
of a particular train toward the track, a better understanding of the interaction between the
train dynamic behavior and the track geometry is necessary.

Simulation is a very useful tool to face these challenges. However, it has to be very repre-
sentative of the physical behavior of the system. The models of the train, of the railway track,
and of the wheel/rail contacts have thus to be fully validated and the simulations have to be
raised on realistic and representative sets of excitations.

Hence, based on experimental measurements, a complete parametrization of the track ge-
ometry and of its variability would be of great concern to analyze the complex link between the
train dynamics and the physical and statistical properties of the track geometry.

Scientific objectives

From a scientific point of view, a railway simulation can be seen as the dynamic response of a
complex mechanical system excited by a multivariate random field, for which statistical proper-
ties are only known through a set of independent realizations. Due to the specific interactions
between the train and the track, this random field is neither stationary nor Gaussian.

In order to propagate the track geometry variability to the train response, methods to
identify in inverse, from a finite set of experimental data, the statistical properties of non-
stationary and non-Gaussian random fields will be analyzed in this manuscript.

The train behavior being very nonlinear and very sensitive to the track geometry, the random
field has to be described very precisely from frequency and statistical points of view. As a result,
the statistical dimension of this random field is very high. Hence, a particular attention will
be paid in this thesis to statistical reduction methods and to statistical identification methods
that can be numerically applied to the high dimensional case.



State of the art

The general scheme for probabilistic analysis is usually divided in three steps (see [1} 2} [3] for
further details). First, the mechanical model and the associated input parameters and output
criteria (safety criteria for instance) have to be defined precisely. Then, the different sources of
uncertainty have to be identified and modeled carefully. At last, the input uncertainty has to be
propagated through the deterministic model, in order to characterize the statistical properties
of the output quantities of interest.

These three steps are rapidly described hereunder for the studied railway system.

Mechanical model. In this work, the reactions of trains excited by the track geometry
through the specific wheel/rail contacts are studied. Three kinds of inputs are therefore needed
in such simulations:

e the vehicle model. Multibody simulations are usually employed to model the train dy-
namics (see [4]). Carbodies, bogies and wheelsets are modeled by rigid bodies linked
with connections represented by rheologic models (damper, springs, ...). This leads us to
several hundreds of degrees of freedom.

e the track model. A double scale parametrization is usually introduced to describe the
track geometry (see [5]): each rail position is characterized by a mean-line position, which
only depends on the vertical and horizontal curvatures, on the track super-elevation and
the track gauge of the track, and by a deviation towards this mean-line position, which
can be described by four curvilinear irregularity fields. While the mean position is decided
once for all at the building of a new line, the track irregularities can evolve with respect
to the track substructure, to the weather conditions and to the train dynamics. Seven
curvilinear fields are needed to completely characterize the positions of the two rigid rails.

e the wheel/rail contact model. The wheel/rail contact forces are computed for any position
of the train from the wheel and the rail profiles thanks to the Hertz and Kalker theories
(J6l [7]). The contact properties are moreover generally recorded in a contact table.

Given these three inputs, the train response can be computed as the solution of a system of
coupled equations that are strongly nonlinear. This system is usually solved with an explicit
scheme. Once these equations have been solved, the spatial accelerations of each mass body,
as well as the internal and external loads are available. These railway outputs can then be
post-processed to define safety, comfort and maintenance criteria.

In this work, the commercial code Vampire is used to solve these equations. The movement
equations of the railway dynamics are thus not available. Moreover, the duration of a whole
railway simulation over a length of 5km is approximately 120 seconds on a standard computer.

Uncertainty quantification. Several sources of uncertainty can be categorized:

e Model uncertainty. In each model, simplifying hypotheses are introduced. In the studied
system, the rigid body modeling of the train and the Hertz formulation for the wheel/rail
contact are two examples of such model simplifications.



e Parameter uncertainty. The chosen model to describe the considered system is generally
based on parameters, for which exact values are unknown and cannot exactly be exper-
imentally measured. For instance, the total mass of a train is, in practice, impossible to
precisely evaluate.

e Parameter variability, which comes from the physical variability of the input parameters of
the model. Example is the train suspensions, for which the process of manufacturing leads
us to mechanical characteristics that are not exactly as designed such that the performance
can vary from one suspension to another one.

e Algorithmic uncertainty, which comes from numerical approximations. In the railway
field, this uncertainty comes mostly from the time discretization in the explicit solver of
the movement equations. A convergence analysis has thus to be performed to choose a
relevant time step.

e Measurements uncertainty. Experimental data are images of the reality, for which biases
have to be minimized as much as possible.

Due to these uncertainties, discrepancies will always be observed when comparing the mod-
eled and measured deterministic responses of a train. On the contrary, stochastic models, which
would be able to take into account these uncertainties, should lead to a better representation
of the behavior of the system. This explains the very high interest for these methods that have
spread for the last decades to most of the scientific fields.

Some specific fields of the probability theory have therefore focused on particular sources
of uncertainty. First, the methods based on Information Theory and on the Maximal Entropy
principle (see [§] and [9]) have been continuously improved to always better characterize the
parameter uncertainty and variability from the only available and usable information. In the
same manner, the use of methods based on the Bayesian method (see [I0} 11l [12]) has kept
increasing to update the input stochastic modeling in the light of new and relevant data. Then,
when the movement equations of the system are available, non-parametric probability models
(see [13], 14]) have been introduced to take into account not only the input uncertainty but also
the model and algorithmic uncertainties.

In this work, it is supposed that a nominal model of a train is available, for which me-
chanical parameters are fixed and have been accurately identified. In the same manner, the
contact properties are computed once for all from a new rail profile and a new wheel profile.
Given a particular description of the track geometry and these contact and vehicle models, it
is assumed that both the railway model and the numerical solving are sufficiently relevant to
accurately compute the response of the system: the approximations introduced in the compu-
tational scheme are supposed to be controlled and the movement equations are assumed to be
precise enough to represent the physical phenomena.

Hence, only the uncertainty in the track geometry is addressed in this thesis. In this prospect,
this track geometry will be seen as a multivariate random field. To identify this field, a set of
experimental measurements of the track geometry is used. It is assumed that the experimen-
tal uncertainties for these measurements are negligible, such that no distinction will be made
between the track measurements and the real track geometry in the following. These measure-
ments define the maximal available information about the track-geometry random field.

Uncertainty propagation and risk assessment. Once the parameter uncertainty and
variability have been characterized, the variability has to be propagated through the mechanical
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model. The choice of the propagation method depends on the chosen variables of interest and
on the computational cost of the simulation. In this work, we will focus on the accelerations of
the train mass bodies and the loads between the train and the track. We are moreover interested
in probabilities for these outputs to exceed normalized thresholds.

Recall that the railway mechanical is based on a very high number of variable input param-
eters, that the train response is very sensitive, very non linear, and very fuzzy with respect to
these input parameters, that the movement equations are not available, and that the duration
of one simulation is rather cheap. The best method to compute such probabilities of exceeding
thresholds for these railway outputs is therefore the Monte Carlo (MC) method (|I5]). Indeed,
the statistical convergence of such a method depends neither on the dimension of the input, nor
on the complexity and the nonlinearity of the mechanical model, and is particularly adapted
to systems that are controlled by black-box codes, that is to say, codes for which movement
equations are not available, as it is the case here.

In order to get accurate results, much attention has to be paid to the modeling of the input
variability, as any error on the input will be propagated to the output. In addition, the MC
method asks for the generation of sets of independent realizations of the input parameters. As
this work focus on the track geometry variability, methods to generate independent realistic
and representative track conditions will be needed in this work.

At last, based on this MC method, each railway simulation gives access to a particular
realization of the time reactions of the track. The risk assessment has therefore to be performed
using statistical methods based on stochastic processes (see [16] for further details).

Main scientific and industrial contributions
The developments of this work were achieved to answer the four following questions.

e Virtual certification. How to develop a track generator, which would be able to generate
track conditions, which are on the one hand realistic from a statistical, frequency and
dynamical point of view, and from the other hand representative of a measured set of
experimental data? The numerical certification indeed requires a large set of representative
track conditions to capture rare events [3].

e Optimization of the system. How to propagate the track geometry variability to the
train dynamical quantities of interest, which are mostly lateral and vertical accelerations
and loads? The knowledge of the link between the track variability and the response of
the train could indeed help us to propose optimized maintenance policies.

e Railway field going to market. How to develop a method to evaluate and compare
the aggressiveness of several trains that would be likely to run on the same network?

Four scientific main scientific contributions are summarized hereunder.
1. The statistical dimension of the track-geometry random field is very high, such that ad-
vanced reduction techniques will be needed to optimally condense the statistical properties

of the random field to be identified. In particular, the importance of the Karhunen-Loéve
(KL) expansion will be analyzed in detail in this work.
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2. The available information about the track-geometry random field is very reduced compared
to its statistical dimension. The statistical moments of this random field, such as the
empirical estimators of the mean function or the covariance operator, on which the KL
expansion is based, are not converged. A method to adapt the KL formulation to this
kind of problems will thus be proposed in this thesis.

3. The track-geometry random field is multivariate, and its different components are very
statistically dependent. A vectorial approach has therefore to be considered in order
to accurately take into account the dependencies between these different components of
the track-geometry random field. Moreover, the amplitudes of these components are
different and their importances on the dynamical quantities are a priori unknown. An
other adaptation of the classical KL expansion has thus to be introduced in order to
identify a reduced basis that allows the description of each component of the random field
of interest with the same precision.

4. Due to the specific interaction between the train and the track, the track-geometry random
field is neither stationary nor Gaussian, such that a particular attention has to be paid
to the identification of the multidimensional distribution of the coefficients of the random
field on the reduced projection basis. Due to the complexity of the random field to be
modeled, these coefficients define a very high dimension random vector. To this end, an
adaptation to the very high dimension of the identification in inverse methods based on a
polynomial chaos expansion will be presented in this work.

Outline of the thesis

From these objectives, the document is organized in six chapters that are now presented.

Chapter [[] contains a review of well-known methods for random field identification and gen-
eration. In particular, the Karhunen-Loéve (KL) expansion and the polynomial chaos expansion
(PCE) identification in inverse will be presented in detail.

The next chapters are devoted to the author contributions in the field of uncertainty propa-
gation. Chapter 2] deals with the adaptation of the KL, method to cases for which the maximal
available information about the random field to identify is limited to a finite set of independent
realizations.

ChapterBladdresses the adaptation of the polynomial chaos expansion identification methods
to the very high dimensional case.

Chapter [ presents an original scaled KL expansion for the analysis of vector-valued random
fields.

Chapter [l considers the application of the theoretical developments of Chapters 2 Bl and [4]
to identify, in inverse, from experimental data, the statistical properties of the track-geometry
random field.

At last, Chapter [6] shows in what extent such a stochastic modeling of the track geometry
opens new opportunities for the railway field in certification, maintenance, and safety prospects.

General theoretical frame and corresponding notations
This section aims at summarizing the main notations that will be used in this manuscript.
e R denotes the set of real numbers.

e N is the set of positive integers.
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) C R refers to a subset of R.
(©,T,P) is a probability space.
E[] is the mathematical expectation.

H = L% (©,RM) is the space of all the second-order random vectors defined on (0,7, P)
with values in RM | equipped with the inner product (.,.):

(A,B) = / AT(0)B(9)dP(#) = E[ATB], V A,B € L} (6,RY). (1)
(S
24 ([0, S]), where S < +00, is the space of all the second-order R€@-valued random fields,
indexed by the compact interval [0, S].

For Q> 1, X = (X1,...,Xg) = {(X1(s),...,Xq(s)), s € [0,5]} is in P(@)([0,5]).

Let H = L2([0,5],R¥) be the space of square integrable functions on [0, 5], with values
in R¥, equipped with the inner product (-,-), such that, for all « and v in H,

= UST’US S.
(“’”)‘/[O,S] (5)T(s)d 2)

[l (jo,57) denotes the Ly norm in P@ ([0, S]), such that:

1X Poros)) = [ / X<s>TX<s>ds] . X eP@(0,5)). 3)

Omp is the kronecker symbol that is equal to 1 if m = p and 0 otherwise.
Tr[-] is the trace operator for square matrices.

a, b correspond to constants in R.

a, b refer to vectors with values in R?, Q > 1.

x 18 the vectorial product between vectors.

a’ is the transpose of a.

® is the tensorial product such that a @ b = ab”.

A, B correspond to random variables with values in R.
A, B denote random vectors with values in R¥, Q@ > 1.
[A], [B] refer to real matrices.

|I]| = is the Frobenius norm of matrices.

Py and py denote respectively the multidimensional probability distribution and the
multidimensional Probability Density Function (PDF) of random vector A.

If random vector A is of second order, we denote by p4 and [Rg4] the mean and the
covariance matrix of A respectively.
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(s,s") — [Rxx(s,s")] corresponds to the matrix-valued covariance function of X, such
that for all s, s in Q, [Rxx(s,s')] = E[(X(s) — E[X(s)]) ® (X(¢') — E[X(5)])]-

When Q =1, PM(Q), X and [Rx x| are written P(Q), X and Ryx respectively for the
sake of simplicity.

FM) denotes a subset of H that gathers M functions with values in R? that are defined

~F (M)
refers to the projection of X on the subspace spanned by FM),
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Chapter 1

Short review of the methods for
modeling random fields

1.1 Introduction

As presented in Introduction, the goal of this work is to quantify the influence of the track
geometry variability on the train dynamical responses. A good approach to take into account
this input variability is to consider the track geometry as a multivariate random field. It has
moreover been shown that the most appropriate method to propagate the track variability
through the mechanical model is the Monte Carlo (MC) method. For such a method to be
implemented, one has therefore to be able to generate independent realizations of this track-
geometry random field. Due to the specific interactions between the train and the track, this
random field is neither Gaussian nor stationary. In this prospect, several existing methods to
identify and generate non-Gaussian random fields are addressed in this chapter. More precisely,
this chapter describes in detail the method on which the stochastic modeling of the track
geometry will be based in the next chapters, which is based on the coupling of a Karhunen-
Loéve expansion and a polynomial chaos expansion.

1.2 Classical methods to generate random fields

For the last decades, the random fields analysis has been used in an increasing number of
scientific fields, such as uncertainties quantification, material sciences, seismology, geophysics,
quantitative finance, signal processing, control engineering etc. It is indeed a very interesting
tool for stochastic modeling, forecasting, classification, signal detection and estimation. Let

X ={X(s), s€ QCR}, (1.1)
be a random field for which we want to generate sample paths. For the sake of simplicity, and
without any loss of generality, only centered random fields X are considered in this work:

E[X(s)]=0, VseQ, (1.2)

where E [] is the mathematical expectation.

The Gaussian case is a well-posed problem, as the Gaussian random fields are completely
characterized only by their mean function and their autocorrelation function. It exists there-
fore many effective methods to simulate Gaussian random fields. In particular, when 2 = R,
AutoRegressive-Moving-Average (ARMA) models, that were first introduced by Whittle for
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time series [I7, [I8] and popularized by Box and Jenkins [19], allow the description of Gaussian
stationary random fields as a parameterized integral of a Gaussian white noise random field.
Based on limited knowledge of random field X, these models can therefore be used to emphasize
particular properties of X and to extrapolate its value.

On the contrary, the random field simulation problem is an ill-posed problem. To char-
acterize a non-Gaussian random field, we need to know the entire family of joint probability
distributions {(X(s1),...,X(sn)), n>1, (s1,...,8,) € Q"}. As this information is most of
the time not accessible, only partial description of non-Gaussian random field can be given.

Two classes of methods are generally used to characterize such non-Gaussian random fields.
On the first hand, translation methods allow the identification and the generation of a non-
Gaussian random field from a memoryless nonlinear transformation of a known Gaussian random
field (see for instance [20]).

On the other hand, in the general case, spectral methods (J2I, 22]) based on a two-step
approach have given very promising results to identify the distribution of a priori non-Gaussian
and non-stationary random fields. The first step of these methods is generally the approximation
of the random field, X, by its projection XB™ on a M-dimension set of deterministic functions,
BM) = {b,,(s), s € Q},<,,<a that are supposed to be square integrable on Q and orthonormal
such that:

M
X5 =57 Cibin, / b ($)bp(3)ds = Gmp,  Crn = / X ()b (s)ds, (1.3)
m—1 Q Q
where 0,,, is the kronecker symbol. The vector C = (Cy,...,C)y) is thus a M-dimension

random vector, for which components are a priori dependent. The second step is then the
identification of the multidimensional distribution of C.

When the knowledge of the random field is limited to a set of independent realizations,
as it is the case for the modeling of the track geometry, such spectral methods present many
advantages. First, no hypothesis on the random field is required to implement these methods.
Then, by proposing a discretized description of the random field, they take advantage of all the
developments that have been done in the characterization of the multidimensional distribution
of non-Gaussian random vectors.

1.3 The optimality of the Karhunen-Loéve expansion to gener-
ate approximated realizations of random fields

1.3.1 Definition of the Karhunen-Loéve expansion

Mathematically, the Karhunen-Loéve (KL) expansion corresponds to the orthogonal projection
theorem in separable Hilbert spaces. In this case, the Hilbertian basis, {k,,, m > 1}, is
constructed as the eigenfunctions of the covariance operator of X, defined by the covariance
function, Rxx, which is assumed, for instance, to be square integrable on € x €. Therefore,
for all (s,8") in 2 x Q and m > 1 and p > 1, we get:

Rxx(s,s") € E[X(5)X()] = O Ak (8)km (s), (1.4)
m>1
/QRX)((S, Nk (8)ds" = Mk (), (1.5)
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(Brms kip) = Omp, M = X2 >0 =0, Y A2 < foo. (1.6)

m>1

1.3.2 Optimality of the KL expansion

In order to represent the field X with a small number of vectors M, it is important to choose
a relevant basis regarding X. Indeed, the more relevant the projection basis BM) is, the lower
the dimension M has to be, to guarantee that the amplitude of the residue,

N2(X — XBY), (1.7)

is lower than a given threshold, and so the easier and the more precise the identification of the
distribution of C will be. A2 is a norm that has to be adapted to the studied problem. If

v =g [ e, (18)

due to the orthogonal projection theorem in Hilbert spaces, for any integer M, the M-dimension
family K(M) = {k,,, 1 <k < M}, which gathers the M first elements of the KL basis associated
with X, minimizes the amplitude N?(X — X7 (M)) among all the M-dimension families F(M),
where X7 is the projection of X on FM), In other words, for any M > 1, it can be shown
that:

N2(X = XE") < N2 (x = XF), (1.9)

where X" ig the projection of X on K(M),

Due to this optimality property, the Karhunen-Loéve (KL) basis has played, for the last
decades, a major role and has been applied in many works (see for instance [23] 24] 25, 26, 27,

28, 29, 30, 31}, 132} 33}, 34}, 135, 136} (37, (38, 139} 40, (41}, 42, 43]).

1.3.3 Practical solving of the Fredholm equation

Equation (3] is commonly referred to as Fredholm equation, and issues concerning the solving
of this integral eigenvalue problem can be found in |21} [44] [45]. The idea of this section is to
describe the different steps to solve the Fredholm problem thanks to a finite element approach
when Q = [0, S]. To this end, the functions k,,, 1 < m < M, are searched as their finite element
estimator kEF, such that, for all s in Q:

Ns

ki (s) & kP (s) = > d'hy(s), (1.10)
j=1
d™ = (dF,....d%.), h(s)=(hi(s),..., hng(s)), (1.11)

where d™ is the unknown vector to be identified, and {s — h;(s), 1 < j < Ng} are shape
functions such that:

51=0, sng =95, 8j4q— 8; = qh,

hj(sk) = djk, 1 < j,k < Ng, (1.12)
SN hy(s) =1, s € Q=10,8],
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with h = S/ (Ng — 1) the finite element discretization length. The finite element discretization
of Eq. (1) yields:

(K] = An[M])d™ =0, (1.13)
in which the positive-definite symmetric (Ng x Ng) real matrices [K] and [M] are defined by

/ / T Ryx (s, s)h(s)ds'ds, (1.14)

[M] = /Qh(s)Th(s)ds. (1.15)

This approach is particularly well adapted to the modeling of random fields, for which
experimental values are recorded every h meters. Spatial discretization step h is thus chosen
equal to h to limit the error introduced by the finite element approach. Moreover, it has to be
noticed that the regularity of the shape functions has to be adapted to the regularity of random
field X. In particular, if the first and second order spatial derivatives of the random field paths
are a priori non zero, at least cubic shape functions will be needed.

1.3.4 Approximated KL expansion

As presented in Section [L3.1] the KL expansion of a centered random field X is based on the
knowledge of its autocovariance function, Rxx. When the maximal available information about
X is a set of v independent realizations, {X (6;),..., X (0,)}, this function is not exactly known,
but can be approximated by its empirical estimation, Rx x(v), such that:

Rxx(s,s") ~ Rxx(v,s,s) ZX (O, 8) X (0,5, (s,8") € QxQ. (1.16)

By solving the Fredholm problem associated with RX x(v) instead of Rxx, it is therefore
possible to identify a rather good approximation of the KL basis of X, which is denoted by

{Em(u), 1< m}, especially when v is high, as:

lim EX)((V) = RX)(,
e (1.17)
lim kp,(v) = k-

vV—r—+00

1.4 Direct and indirect methods for the identification of the
distribution of random vectors and their generation

Once random field X has been projected on a chosen deterministic M-dimension family, BM) =

{bm(s), s € Q}<y<ns» such that

M
X~ X5 =3 Cubum, (1.18)

identifying its statistical distribution amounts to identifying the multidimensional distribution
of random vector C' = (C4,...,C)r), denoted by Pc. The mean value and the covariance matrix
of C are moreover denoted by pe and [Reoc] respectively, such that:
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pe=EI[C], [Recl=E[(C - pc) @ (C—po)l- (1.19)

In this work, it is assumed that Po(dx) = po(x)dex, in which the probability density function
(PDF) pc is a function in the set F(D,R*) of all the positive-valued functions defined on any
part D of RM and for which integral over D is 1.

Two kinds of methods can be used to build such a PDF: the direct and the indirect methods.
Among the direct methods, the Prior Algebraic Stochastic Modeling (PASM) methods postulate
an algebraic representation C =~ t8(E, w), with talg a prior transformation, E a random vector
and w a vector of parameters to be identified. For instance, we can suppose that C' can be
written under the form:

C =~ talg(E,w) = w1 + [U)Q]E, w = {'wl, [wg]}, (120)

with 2 a M-dimension random vector for which components are independent, normally dis-
tributed with zero mean and unit variance. It can directly be seen that:

Eltag(B,w)] = wi, E[(tag(E,w)—wi)® (tag(E,w) —wi)] = [wg][wg]T. (1.21)

Hence, supposing that C = t,,(E,w) amounts to supposing that C' is a Gaussian random
vector, such that the most accurate values for w; and [ws] correspond to the mean value of C
and to the Cholesky decomposition matrix of matrix [Rcc]. If C is actually not Gaussian, this
transformation is not relevant, and another one has to be introduced to better represent the
behavior of C, such as for instance:

C ~ t?

) (2, w) = w; + [wo]E + (B © =) ws, (1.22)

where w = {w1, [ws], w3} has once again to be identified to represent as well as possible the
behavior of C.

In the same category, the methods based on the Information Theory and the Maximum
Entropy Principle (MEP) have been developed (see [8] and [9]) to compute pc from the only
available statistical information of the random vector C. This information can be seen as the
admissible set C* for pc:

' =<pc e F(D,RY) | | po(x)de =1,
{ /D (1.23)

V1<n<N, /Dgn(w)pc(w)dw = fn}’

where {f,,, 1 <n < N} gathers N vectors which are respectively associated with the vector-
valued functions {g,,, 1 <n < N}. Hence, the MPE allows building pc as the solution of the
optimization problem:

po =g max = [ pe(e)1og (polw)) da . (1.24)

pceCad

As an example, if the maximum available information about C'is the fact that its realizations
are in the hypercube [—1,1]™, the admissible set C?! for pc becomes:
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cd = {pc e F([-1,1M R"), | / pe(z)de = 1} , (1.25)
1,1

and it can be shown that the PDF pc that maximizes the optimization problem defined by Eq.
(C24) is the uniform PDF over [—1,1]M:

1
pe(@) = 537 (1.26)
On the other hand, the indirect methods allow the construction of the PDF pc of the
considered random vector C' thanks to a transformation T of a known PDF p¢ of a random
vector £ = (51, ...,§Ng) of given dimension N, < M:

C=t(¢), (1.27)

pc =T (pe). (1.28)

The construction of the transformation ¢ is thus the key point of these indirect methods. In
this context, the isoprobabilistic transformations such as the Nataf transformation (see [46]) or
the Rosenblatt transformation (see [47]) have allowed the development of interesting results in
the second part of the twentieth century but are still limited to very small dimension cases and
not to the high dimension case considered in this work. Nowadays, the most popular indirect
methods are the polynomial chaos expansion (PCE) methods, which have been first introduced
by Wiener [48] for stochastic processes, and pioneered by Ghanem and Spanos [49} 22] for the
use of it in computational sciences. In the last decade, this very promising method has thus

been applied in many works (see, for instance [50} 511 [52] 53] 54, (5] H6L 57, B8], B9, 211 60) B2
61, 62] 63, 64, 65 661 67, 68], [69] 70, [71L [72]). The PCE is based on a direct projection of the
random vector C' on a chosen Hilbertian basis Boyn = {1;(€),0 < j} of all the second-order
random vectors with values in RM:

“+oo
C=> yYy;(8), (1.29)
j=0
E[Y;j(&)vr(&)] = djn. (1.30)
In practical terms, the PCE of C has to be truncated to its N + 1 most influential terms:
N .
C~> yUy;(e). (1.31)
§=0

In particular, in the following, it will be assumed that ¢y(&) = 1, such that:

y O = E[C] = pe. (1.32)

A method to choose these N particular terms and to quantity the amplitude of the truncation
residue, ;Z?V 1 yl )T/fj (&), has therefore to be defined. Building the transformation ¢ requires

at last the construction of N deterministic coefficients, {y(j), 1<j; <N }, from the available
information about C.

It has to be noticed that in such an approach, any distribution for £ can be chosen. For
instance, if the components of £ are independent and uniformly distributed between -1 and
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1, the corresponding Hilbertian basis, {1;(§),1 < j}, is the set of the normalized Legendre
polynomials.

When trying to identify in inverse the multidimensional distribution of an a priori non-
Gaussian random vector, the PCE method appears to be very efficient, even when the statistical
dimension of C' is high. Indeed, this method can be applied to any random vector, is not based
on a priori formulations, and allows a very easy generation of independent realizations of C,
once the projection coefficients are identified. Indeed each independent realization of germ &
leads to an independent realization of C.

1.5 PCE identification of random vectors

In this section, a description of the PCE identification with respect to an arbitrary measure is
given. The objective is to summarize the different key steps of the PCE identification method
and the way they can be practically implemented.

After having defined the theoretical frame of the PCE identification, the cost-functions that
lead us to the computation of the PCE coefficients {y(l), . ,y(N)} are presented, for a given
truncation parameter N. Two cases are distinguished: the direct case, for which the PCE germ
£ is known, and the indirect case, for which the PCE germ is unknown. At last, to justify the
choice of this truncation parameter, a method to perform the convergence analysis is introduced.

1.5.1 Theoretical frame

Let C = (C1,...,Cy) be an element of the space L% (@,RM) of all the second-order M-
dimension random vectors defined on the probability space (©, T, P) with values in RM | equipped
with the inner product (-,-). It is assumed that v independent realizations, {C(0,),...,C(6,)},
of C are known and gathered in the (M x v) real matrix [C*P(v)]:

[CPW)] =[C(6h) - C(6,)]. (1.33)
Equation (L3T) can be rewritten as:

C — pc = CM*(N) = [y ¥ (€), (1.34)

)= [y - ™| @) = @€, un(©) (1.35)

The orthonormality property of the projection basis {1;(§), 1 < j < N} yields the condi-
tion:

E[¥ (€ p) @ ¥ (¢, p)] = [In], (1.36)

where [Iy] is the (N x N) identity matrix. Let [R&2%5(N)] be the covariance matrix of centered
random vector CM%(N):

(R (V)| = B |2 (N) @ €2 (N) | = [y B [®(€,p) & ®(€,p)] [y]" = lly]”- (1.37)

To simplify the notations, it is supposed in the following that C' is a centered random vector,
such that:

vy = po=o0. (1.38)
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No distinction is therefore made between the covariance and the autocorrelation matrices of
C in the next sections.

1.5.2 Identification of the polynomial chaos expansion coefficients

In this section, a particular choice for the Ny-dimension PCE germ, £ = (51, e ng), and a par-
ticular value of the truncation parameter N are considered. Let [¥(r12°%)] be the (N X VChaOS)
real matrix of independent realizations of the truncated PCE basis ¥(€):

(U (1)) = [ (£(O1)) - W(E(Oenaee))] (1.39)

where the set {£€ (01), -+ , & (O, chaos) } gathers P45 independent realizations of random vector
€. As a direct consequence of the orthonormality of the PCE vector W(£), matrix [¥(v°haos)]
verifies the asymptotic property:

1

Vchaos

[ ()] [P ()T = E[®(€) @ U (€)] = [In]. (1.40)

lim
pchaos —+o0

Direct identification

If the realizations of C' are solutions of a mechanical system, and if £ corresponds to the variable
inputs of this system, then v = v12% and both realizations of C, {C(01),...,C(O caos)}, and
(), {¥(&(O1)),..., ¥(&(O chaos))}, are known at the same time. They verify:

pchaos

[C" ] =[C(01) -+ C(80mee)] = [CM(N)] = [y][¥ (). (1.41)

In this case, two classical methods are generally used to identify such coefficient matrix [y]:

e Methods based on the empirical estimation of the mean function. From Eq.
(L31), as family {¢;(£),1 < j} is orthonormal, it can be seen that for all 1 <j < N:

Yl = E[C 2 ¥(§)]

S )] = s S O(6,) 8 W(EB,)) = i [CHS (N[t
p=1

pchaos

(1.42)

e Regression-based methods. Let C([y], v"*%) be the cost function that quantifies the
mean-square distance between C and its PCE approximation, C°2s (N), defined by:

C([y], vhaos) = H[CCha"S(N)] o [\I,(Vchaos)]‘r

def [([CchaOS(N)] ] [\I,(Vcham)]) <[CchaOS(N)] 4] [\If(uChaOS)DT] ,
(1.43)

with Tr[-] the trace operator. PCE matrix [y] can therefore be searched as the argument
that minimizes C([y], v"*°%). The cost function C([y], v"*%) being convex, it admits a
minimum, [y (v°P2%)], which verifies:

22



o]~ 5 ()] = argmin {C((5].07)} (1.44)

[ygpt(ychaos)] _ [CChaOS(N)H\I/(VChaOS)]T <[\I,(Vchaos)][\I/(Vchaos)]T) -t ) (1_45)

From Eqs (L40), (I42) and (L43), it can be directly verified that the two former methods
give asymptotically the same results:

) =l [ ) (1.46)

Uchaos*>+oo l,chaos*>+oo

Indirect identification

If C is a random vector that gathers the projection coefficients of a random field X on a
particular basis, as it is the case in this thesis, the realizations of C' are deduced from the
available realizations of X, such that there is a priori no direct link between the two sets of
realizations of & and C. Alternative methods have thus to be used to identify [y].

To this end, let My n be the space of all the (M x N) real matrices. For a given value
of [y*] in My n, the random vector U ([y*]) = [y*]¥ (&) is a centered M-dimension random
vector, for which the autocorrelation is equal to [y*][y*]”. Let py(,+)) be its multidimensional
PDF.

When the only available information about C' is limited to a set of v independent realizations,
the most general and relevant method to identify in inverse the optimal coefficients matrix [y],
is to search it as the argument that maximizes the log-likelihood Ly ((,+)) ([C*P(v)]) of U([y*])
at the experimental points gathered in [C*P(v)]:

[y] = arg ol Ly () ([C*P W), (1.47)
Ly (C™PW)]) = log py(gy+)) (C(6n)) - (1.48)
n=1

1.5.3 Practical solving of the log-likelihood maximization

Solving the optimization problem defined by Eq. (L47)) has required the development of specific
algorithms, which are described in this section.

The need for statistical algorithms to maximize the log-likelihood

The log-likelihood L () ([C*P(v)]) being nonconvex, deterministic algorithms such as gradi-
ent algorithms cannot be applied to solve Eq. (L47), and random search algorithms have to
be used. Hence, the precision of the PCE has to be correlated to a numerical cost Z, which
corresponds to a number of independent trials of [y*] in M s n. The higher the value of Z is,
the better the PCE identification should be. Therefore, this value has to be chosen as high as
possible while respecting the computational resource limitation. Let ) = {[y*](z), 1<z<Z }
be a set of Z elements, which have been chosen randomly in M, n. For a given numerical cost
Z, the most accurate PCE coefficients matrix [y] is approximated by:

]~ [y = arg max Ly ([C@))).- (1.49)
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Restriction of the maximization domain

From the v independent realizations {C(6:),...,C(6,)}, the covariance matrix [Rcc] of C can
be estimated by:

[Rec] ~ [Reo(v Z C0) © C0n) = L [C™@NC™ W) (150)

A good way to improve the efﬁ(nency of the numerical identification of [y] is then to restrict
the research set to Oc C My n, with:

Oc ={ly]= [y, .y ™| e Muw | WI]" = [Roc))},  (151)

which, taking into account Eq. (L37), guarantees by construction that:

[RES (V)] = [Rec()): (1.52)

Hence, the PCE coefficients matrix [y] can be approximated as the argument in O¢ that
maximizes the log-likelihood Lys(y+)) ([C*P(v)]). By defining WV the set that gathers Z randomly
raised elements of O¢, [y] can then be assessed as the solution of the new optimization problem:

[yl ~ [yw] = arg[m}gﬁjﬁv([y ) ([CFPW)]) - (1.53)

Approximation of the log-likelihood function

From a particular matrix of realizations [¥(v°"2°%)] (which is defined in Eq. (IL39)), if [y*] is an
element of O¢, v independent realizations {U ([y*], 0,) = [y*]¥ (£(0,)), 1 < p < pehaos}y
of random vector U ([y*]) can be computed and gathered in the matrix [U]:

U] =[U([y".01) - U ([y'], Openaos)] = [y*] [T ()], (1.54)

Hence, using Gaussian Kernels, the PDF py;((,+)) of U ([y*]) can be directly estimated by its
non parametric estimator py:

VaeRM PU(ly))(T) ~

- - 1 pchaos 1 M xm_Um([y*]’@p) 2 , (1_55)
by (CC) a (QW)M/Q Vchaos H%_ I’Z; P <_§ Z < hm ) )

=1""m m=1

where h = (hy,--- , hyr) is the multidimensional optimal Silverman bandwidth vector (see [2])
of the Kernel smoothing estimation of pg([,+)):

4 1/(M+4)
V1i<m<M, hmzaUm<( > : (1.56)

2+ M)Vchaos

where oy, is the empirical estimation of the standard deviation of each component U,,, of U. It
has to be noticed that pyy only depends on the bandwidth vector h, and the two matrices [y*] and
[U(v°haos)]. Hence, according to the Eqs. (L4R)), (L54) and (L5H), for a given value of p°haos,
the maximization of the log-likelihood function Ly ([,+)) can be replaced by the maximization of
the cost-function C([C™P ()], [y*], [¥(r12°%)]) such that:

W] = [yoc] = arg, max C([CP )], [y, [@ (™)), (1.57)
y*]€0¢
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where:

CC™P )], [y*], [T (v™)]) = Cc + Cv (0P ()], [y*], [T (v ")), (1.58)
M

Cc=-vin ((271')M/2 pchaos H hm> , (1.59)
m=1

chaos

Cv([Cexp(V)], [y*]’[ chaos Zln Z exp (_% Z <C ((9 )—Z:z([y*L@p)) )

(1.60)

Hence, the optimization problem defined by Eq. (53] can finally be estimated by:
_ C (1oep 7 * (v chaos ) 1.61
4] = 8] = arg max € (1070w, 7], [0 )] (1.61)

Accuracy of the PCE identification

For a given computation cost Z and a given value for the truncation parameter N, let [y(%c] be
an optimal solution of Eq. (L6I). [ygc] is a numerical estimation of the PCE coefficients matrix

[y]. For a new (N x v1a0s*) real matrix [¥*(v"40*)] of independent realizations (v*"2* can
be higher than v"2°%), the robustness of [ygc] regarding the choice of [¥'(r12°%)] can then be es-

timated by comparing C ([C® (v)],[y4, ], [0 ()]} and € ([C*P ()], [y8 ), 10" (ves)] ). Tf
v new independent realizations of C were available and gathered in the matrix [C**P"Y (v)], the

over-learning of the method could be measured by comparing C ([CeXp(u)], [ygc], [U(vehaos)]

and C <[CeXp’neW(u)], w4, [\I/(VChaOS)]) . At last, for the same value for Z, if [ygélew] is a new op-

timal solution of Eq. (L6I]), the global accuracy of the identification stems from the comparison
exp,new * (; ,chaos,* exp,new Z,new * (o, chaos,*

between C ([CoP2e ()], [y, ], [ (vo)]) and € ([CoPme ()], [yG2], [0 (vhaos)] ).

1.5.4 Identification of the PCE truncation parameters

As shown in Section [[.4} two truncation parameters, /N, and N, appear in the truncated PCE,
C2%5(N), of C. A method to choose the size N4 and these N elements from basis B, as well
as a method to quantify the relevance of such a N-dimension basis have thus to be defined.

Restriction of the admissible projection basis

In this work, only polynomial basis are addressed, such that for 1 < j, a particular element
(&) in Boygn can be written under the form:

(Q)

Zc o X €y, <a§q),.. (q))eNNg (1.62)

In addition, the classical assumption that the most influential elements of B}, correspond
to the elements of lowest total polynomial order is introduced in this work. Let p be the maximal
polynomial order of the projection basis, such that for 1 < j5 < N, we choose:
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N Ny
V(&) =D D xx g S al? <p. (1.63)
/=1

Given this choice for the extraction of N elements in By, it can be seen that N increases
very quickly with N, and p, as:

N = (Ny +p)!/(N,! p)). (1.64)

Definition of a log error function

For each component C25(N) of the truncated PCE, C"%5(N) = [y|®(£), of C, the L'-log
error function err,, is introduced as described in [38]:

V1<m< M, erry(Ng,p)= / llogio (e, (xm)) — logio <pqc£.aos (xm)) |dy,, (1.65)
Bl

where:

e BI,, is the support of the kernel estimator of pc,,. This bounding domain has thus to be
adapted to the available realizations of C, which are gathered in {C(6;),--- ,C(6,)};

® pc,, and pochaos are the PDF of C,,, and Ch2°s respectively.

The multidimensional error function err(Ng,p) is then deduced from the unidimensional
L'-log error function as:

M
err(Ng,p) = > errm(Ng, p). (1.66)
m=1

The parameters N, and p have thus to be determined to minimize the multidimensional
L'-log error function err(Ny, p).

For given values of truncation parameters N, and p, it is reminded that PCE coefficients
matrix [y] is searched in order to maximize the multidimensional log-likelihood function, which
allows us to consider a priori strongly correlated problems. Once this matrix [y] is identified, it is
possible to generate as many independent realizations of truncated PCE C"%°%(N) as needed to
estimate as precisely as possible the non parametric estimator py of its multidimensional PDF.
The number v of available experimental realizations of C' is however limited. This number is
generally too small for the non parametric estimator of multidimensional PDF pc of C to be
relevant, whereas it is most of the time large enough to define the estimators of the marginals
of pc. Therefore, the log-error functions defined by Eqs. (L65) and (L66]) only consider the
marginals of the PDF of pc and p%laos. In addition, the logarithm function has been introduced
in order to measure the errors on the tails of the probability density function.

Definition of an admissible set for the truncation parameters

As it exists an isoprobabilistic transformation between C and (Zi,---,Z)7), where the set
{Em, 1 <m < M} gathers M independent centered normalized Gaussian random variables,
the convergence analysis can be restricted to the values of N, which verify:

26



N, < M. (1.67)

Moreover, imposing the (M x N) real matrix [y] to be in O¢ amounts to imposing w
constraints on [y], which implies:
M(M+1 M+1
mn s MMHD s ; . (1.68)
The set Q(M) of the admissible values for p and Ny is thus:
Q(M) = {(p,Ny) eN?, | Ny < M, N = (N, +p)!/(Ng! pl) > (M +1)/2}. (1.69)

Theoretically, increasing p and N, adds terms in the PCE of the considered random vector,
and therefore should induce the decrease of the error function:

vp* 2p7 N; 2 N97 err(Ngap) 2 max{eTT(N;,p),err(Ng,p*)} Z

. (1.70)
min {err(N;,p), err(Ng, p*)} > err(Ny,p*).

However, the higher the values of p and N, are, the bigger the PCE coefficients matrix is,
the harder the numerical identification is. Hence, introducing £ as an error threshold, which
has to be adapted to the problem, let P(e, M) be the set:

Pe, M) = {(p, Ng) € QM) | err(Ny,p) < e} (1.71)

Finally, given the error threshold ¢, rather than directly minimizing the L'-log error function
err(Ng,p), it appears to be more accurate to look for the optimal values of p and N, that
minimize the size of the projection basis N = (Ng + p)!/ (N,y! p!):

,N,) = ar min NI +p")!/ (NI p™l). 1.72
(p, Ng) g(p*7Ng)€P(€7M)( s+ (N, p™) (1.72)

If the polynomial order (which is a priori unknown) of the non truncated PCE of C is
infinite, it may not exist values of p and Ny in P(e, M) for error function err(Ng,p) to be
inferior to small values of . In this case, the former algorithms can nevertheless be used to find
the most accurate values of p and N, with respect to an available computational cost.

1.6 Conclusions

In this chapter, it has been shown that nowadays most promising methods to identify in in-
verse the statistical properties of a non-Gaussian and non-stationary random field X, when
the available information about X is a set of v independent realizations, are based on a dou-
ble decomposition. First, thanks to a KL expansion, the statistical properties of X can be
condensed through its projection on a particularly well-adapted orthonormal reduced basis,
{km, 1 <m < M}, such that

M
X =Y Cokm. (1.73)
m=1

Secondly, from the v independent realizations of X, it has been shown that v independent
realizations of random vector C = (Cy,...,Cys) can be deduced. Based on this available
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information, it has been emphasized that a PCE-based approach allows the identification of C,
such that:

M N
X =~ Z Z el % (1.74)

m=1 j=1
where £ = (£1,...,&n,) is a random vector for which distribution is known and chosen. In such
two-step approach, three truncation parameters, M, N and Ny, have been introduced, which
have to be identified from convergence analysis. Advanced methods and algorithms to identify

the projection basis k,, and coefficients y(J) forl1<m< Mand1<j <N from a set of v
independent realizations of X have been presented in detail.

At last, from each realization of &, such a method gives access to a realistic realization of X
that is representative of the set of its available realizations.
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Chapter 2

Optimal reduced basis for random
fields defined by a set of realizations

2.1 Introduction

The use of reduced basis has spread to many scientific fields for the last decades to condense
the statistical properties of the random fields, which are written X = {X(s), s € @ C R} in
this work, and for which mean value is assumed to be zero. Among these basis, the classical
Karhunen-Loéve basis associated with X, {k,,, 1 < m}, which has been introduced in Chapter
[[, corresponds to the Hilbertian basis that is constructed as the eigenfunctions of the covariance
operator of X, Rxx. The importance of this basis stems from its optimality in the sense that
it minimizes the total mean square error. In most of the applications based on random fields,
the knowledge of these random fields is however limited. Indeed, their statistical properties are
generally known through a set of v independent realizations, {X(6,),...,X(0,)}, which stem
from experimental measurements. In these cases, the covariance operator is not perfectly known
but can only be estimated. If we define R xx as the empirical estimator of Rx x, there is however
no reason for the eigenfunctions of R xx to be still optimal. In reply to this concern, this chapter
presents an adaptation of the Karhunen-Loéve expansion to identify, in inverse, projection
families that are as relevant as possible for X, even if the number of available realizations, v, is
relatively small. This method is first based on an innovative technique to a posteriori evaluate
the projection errors for X, and secondly, on an original optimization problem that can be seen
as an extension of the classical Fredholm equation.

In Section 221 the theoretical frame of this chapter is described. Section 23] introduces
then the method we propose to identify optimized projection basis from a set of independent
realizations. At last, Section 24 illustrates the possibilities of such a method on an application
based on simulated data.

2.2 Theoretical frame

2.2.1 Quantification of the relevance of a projection basis

Let (©,C, P) be a probability space and P(2) be the space of all the second-order R-valued
random fields, indexed by the compact interval = [0, S], where S < +oo. The space H =
L?(2,R) denotes moreover the space of square integrable functions on 2, with values in R,
equipped with the inner product (-, ), such that for all v and v in H,
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(u,v) :/Qu(s)v(s)ds. (2.1)

Let X = {X(s), s € Q} be an element of P(2), for which v independent realizations,
{X(61),...,X(0,)}, are supposed to be known. Without loss of generality, it is once again
supposed that the mean value of X is equal to zero:

E[X(s)] =0, Vse. (2.2)

It is assumed that the covariance function, Ryxx, of centered random field X is square
integrable on 2 x €,

//RXX(S,SI)2d8d8I<+OO. (2.3)
QJQ

Let B = {b(s), s € Q},,51, be a Hilbertian basis of H, such that:

X = Cubm, (2.4)

m>1

(bma bp) = 5mpa Cm = (X7 bm) ) (25)

where the projection coefficients, {C,,, m > 1}, are centered random variables that are sta-
tistically dependent and a priori correlated. For practical purposes, this basis has to be
truncated. For all M > 1, XB™ is thus introduced as the projection of X on the subset
BM) = (b, 1<m< M} CB:

M
XBY = N b = b7 C, (2.6)

m=1
b=(bs,....by), C=(Cy,....,Cu). (2.7)

The relevance of BM) to characterize X is analyzed with respect to the normalized L2-error,
that is denoted by €2, such that:

SR(M) 2

2(B0D) =[x - X miey ! 1X 00

1 (2.8)
=1-——>— Y E[Ch],
X s
where [|[[p(q) is the Ly norm in P(€2), such that:

IYlpo =E UQ Yz(s)ds} . YePO). (2.9)
Therefore, if B; = {b%), m > 1} and By = {bg), m > 1} are two distinct Hilbertian basis
of H, the family B§M1) = {b,(%), 1 < m < M} is said to be more relevant than the family

BéMQ) = {b,(fL), 1 <m < Ms} (M, can be greater or smaller than M) to characterize X if and
only if:

e2(BM)y < 2(BM)). (2.10)
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2.2.2 Optimality of the Karhunen-Loéve expansion

As presented in Section [L3.2] due to the orthogonal projection theorem in Hilbert space, the
Karhunen-Loéve basis associated with X, that was denoted by K = {k,,, m > 1}, is optimal
in the sense that, for all M > 1, KM) = {kym, 1 < m < M} minimizes error €2 among the
M-dimension families of H:

(M) _ - 2(g(M)
K argB(%le%M{e (B )}. (2.11)

Hence, when dealing with correlated random fields, for which the covariance function Rxx is
known, minimizing error €2 amounts to identifying the KL basis associated with X. Once these
functions {k,,, m > 1} have been identified, the projection of X on K can be written as:

X =" Apkm, (2.12)

m>1

where, by construction of the KL basis, it can be noticed that, for all m > 1 and p > 1:

B [AnAy] = SppAm. (2.13)

The KL basis associated with X allows therefore the uncorrelation of the projection coefficients,
{A;,, m > 1}. Reciprocally, it can directly be shown that if B* = {b%,, m > 1} is a basis, for
which the projection coefficients, {C};,, m > 1}, of X on B* are uncorrelated, then functions b,
have to be solution of the Fredholm eigenvalue problem defined by Eq. (IL3]), such that B* = K.
Hence, even if Rxx is unknown, the uncorrelation of the projection coefficients is a sufficient

condition for the identification of the Karhunen-Loéve basis.

2.2.3 Difficulties concerning the identification of the Karhunen-Loéve expan-
sion from independent realizations

Random field X is now supposed to be only known through a set of v independent realizations,

{X(01),...,X(0,)}.

Let B = {b,,, m > 1} be a Hilbertian basis of H, such that the projection of X on B is
given by:

X = Cubn. (2.14)
m>1
From a theoretical point of view, according to Section 22221 it can be a posteriori said that
it can be extracted from B the projection families that minimize error 2, defined by Eq. (2.8),
if and only if, for all m > 1, it exists A\, > 0, such that one of the two following equivalent
conditions is verified:

1. E[CrnCy) = SmpAm, ¥ p > 1,

2.15
2. / Rxx(8,8)by(s")ds" = Apbm(s), ¥V s € Q. (2.15)
Q

From a numerical point of view, when only v independent realizations, {X (0:),...,X(0,)},
of X are available, the a priori best evaluations of the covariance function of X and of the mean
values E [C,,,C,] are given by the following empirical estimators:
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Rxx(s,s') ~ Rxx(s,s') def 1 ZX(Hn,s)X(Hn,s/),

n=1

) (2.16)
E[CCp) ~ % > Conl0)Cp(01),
n=1

where, for all m > 1, the v independent realizations, {Cy,(01),...,Cn(0,)}, of Cp, can be
deduced from the v available independent realizations of X as:

Con(0n) = (X (00),bm), 1<n<w. (2.17)

Given these two estimators, a direct translation of the two conditions given by Eq. (23]
would therefore be based on the existence of A\, such that for all m > 1:

1 & -
- > Conl00)Cp(0) = Srmp A, (2.18)
n=1
/ Rxx(s,8)bm(s)ds" = Ambpm(s). (2.19)
Q

Equations (ZI8]) and (2I9]) are however no more equivalent, and there is no reason anymore

for a basis that respects one of these conditions to be still optimal with respect to error 2.

e On the first hand, for any subset BM) = {b,,,, 1 <m < M} C B, such that M < v, if we
define [C] as the following matrix of independent realizations:

Ci(6y) - Ci(6,)
[C] = : g : , (2.20)

Cp(6h) -+ Cm(6y)

in which for all 1 < m < M and 1 < n < v, Cy(0,) = (X(0,),bn), matrix [Rec] =
1

1[C][C]" is real and symmetrical, and can be rewritten as:

[Rec) = [D][A[D]T, (2.21)
with:
60 0
= (_) R , (2.22)
0 0 ly

a diagonal matrix and [D] an orthogonal matrix, such that [D]7[D] is equal to the
(M x M) real unit matrix. From Eq. (ZZI), it can be seen that the family G =

{ = Z%:1[D]mkbm7 1<k<M } verifies the conditions given by Eq. (2I8]). Indeed,
for all 1 < k,m < M, we have:
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v v M M
=S (X(60). 98) (X(6n). ) = - {Z[DMX(en),bz)} > _[Dljm (X (6). ;)
n=1 n=1 (i=1 j=1

(2.23)
By construction, families GM) and BM) span the same space, such that for all M > 1:

e2(BM)y = 2(gM), (2.24)

Hence, whereas the uncorrelation of the projection coefficients of X on ) implies the
optimality of (M) regarding error €2, there is no reason for a basis that verifies Eq. (ZIR)
to be optimal.

e On the other hand, let {Em, m > 1} be the eigenfunctions of Rx x, defined by Eq. (2.16]),
such that for all (s, s’) in Q x Q:

/ Rxx (5,8 )km(s)ds' = Amkm(s), (s,m) € Q x N*. (2.25)
Q

As the rank of the linear operator defined by the kernel }AEX x is by construction lower or
equal to v, the number of elements of the basis {Em, m > 1}, for which the eigenvalues
Xm are non zero, is also lower or equal to v. Hence, if eigenvalues {Xm, m > 1} are sorted
in a decreasing order, such that for all m > 1, A > Xm“, the set, {X(01),...,X(6,)},
of available realizations of X is orthogonal to the subset {Em, m > v}

/ X (0, S)Em(s)ds =0, 1<n<vy, m>w (2.26)
Q

Therefore, the eigenfunctions of }AEX X {Em, m > 1}, cannot be seen as an optimal basis.
Only a subset of this set will be adapted to X.

Finally, whereas the M-dimension truncated KL basis, M) is well characterized in theory,
its numerical identification can be difficult when covariance function Rx x is not perfectly known.
The idea of the following sections is therefore to present an innovative method to optimize the
approximation of K) when X is only known through a finite set of independent realizations.
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2.3 Identification of optimal basis from a finite set of indepen-
dent realizations

From Section 2.2] the solving of the Fredholm problem associated with any square integrable
kernel function (s, s’) — A(s,s’) on Q x Q,

/ A(s, s (s))ds' = MAbA(s), seQ, (2.27)
Q

can be seen as a generator of a particular family { bk, m > 1}. If A is equal to the covariance
function of X, the solving of this problem allows us to identify the optimal projection basis
for X, that minimizes L?-error 2. When X is only known through a finite set of independent
realizations, it will first be shown in this section that, for all M > 1, the minimization of 2
over the M-dimension sets of functions in H can be replaced by an optimization problem over
the kernel function on which the Fredholm problem is based. It will then be pointed out that
such an optimization problem asks for a method to a posteriori evaluate the representativeness
error associated with projection families that depends on the available realizations, that is to
say when no assessment set is available. This motivates the introduction of the Leave-One-Out
error, that will be presented in the second part of this section.

2.3.1 Reformulation of the projection error minimization

In Section [L3] for all M > 1, the KL basis K = {k;,, m > 1}, has been introduced as the set
gathering the solutions of the Fredholm problem, defined by Eq. (LX), associated with Rxx.
For any function A in S(R), such that:

SR)={Ae L*(Qx QR), | A(s,s') =A(s,s) €R, (s,5)€QxQ}, (2.28)

and for any M > 1, let B(A) = {bi}, m > 1} be the set that gathers the solutions in H of the

Fredholm problem associated with A, that is to say such that for all s in €2 and for all m > 1
and p > 1:

/ A(s, i (s)ds' = Xpbin(s), M=M= .. —=0, (b, b0) = mp. (2.29)
Q

For any M > 1 and for any function A in S(R), the set BE‘M) = {b;i, 1<m< M} is then
introduced as the family gathering the eigenfunctions of highest eigenvalues of the Fredholm
problem associated with A. The Karhunen-Loéve expansion being optimal for X with respect
to error €2, it can be deduced that for all M > 1:

Ryx = arg min {52(85‘4))} . (2.30)

Hence, for all M > 1, the M-dimension optimal family, X, which was first introduced
as the solution of the optimization problem that is defined by Eq. (2II]), can equivalently be
searched as the solution of the following optimization problem,

KM = arg  min 82(B(M)) . (2.31)
B, Aes(R) { 4 }
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2.3.2 Restriction of the search space

From Egs. (Z30) and ([231]), it can directly be seen that A = Rxx is the optimal choice for A

in S(R), such that KM — Bgi)x. Hence, when random field X is only characterized by a finite
set of v independent realizations, the best approximation for Rxx from these realizations, the
most relevant for X the corresponding M-dimension family.

In this prospect, adopting the same notations than in Section 2231 two classical estimators for
Rxx, that are denoted by RXX and RXX, are introduced, such that for all (s,s’) in Q x Q:

Rxx(s,s) ZX 0, 8) X (0,5, (2.32)

mfos (S_S)RXX(x x4 (s —s))de if S>s —s>0,

Rxx(s,s) = ﬁ OS (o= S)RXX(gc—i—(s—s), x)dr if S >s—5 >0, (2.33)

R(s, s') otherwise.

Recall that function }AEX x 1s the empirical estimator of Rxx, which converges towards Rxx at
the convergence rate of 1/4/v. Moreover, if random field X is the restriction to  of a mean-
square stationary random field indexed by R, that is to say if Rxx(s,s’) only depends on the
difference |s — §'|, function Rxx is the classical stationary estimator of Ry x.

From the realizations of X, statistical tests can be achieved to evaluate the relevance of a
stationary hypothesis for X, in order to help us to choose the best estimator. Nevertheless,
in many cases, these tests do not give a clear-cut answer. From the point of view of the
minimization of Eq. (23I)), even if X is actually mean-square stationary, Rxx is however
considered as a better function than EX x ift

2(BM ) < 2B, (2.34)
Rxx Rxx

From a more general point of view, for v in [0,1], let A(v) be the following function:

A(a) = OzﬁXX + (1 — Oz)ﬁxx. (235)

By construction, for any « in [0, 1], functions A(a) are symmetrical and have the same L?-norm:

/ Ala, s, s')?dsds’ = Rxx(s,s)2dsds’ = Rxx(s,s)?dsds’. (2.36)
QxQ QxQ QxQ

In this work, when random field X is only characterized by a set of v independent realizations, it
is proposed to search the optimal projection basis as the solution, K() (a*), of an optimization
problem with respect to « in [0, 1]:

KM (a*) = By

2.37

a® = arg min {52(B(M) )} (2:37)
a€l0,1]

Such an approach appears to be very efficient when the number of available realizations, v,

is small. Indeed, it has been shown in Section 2.2.3] that for v < M, family B%M) can be

XX
decomposed as:

B — B (Ryx) UBS (Rxx), (2.38)

Rxx
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BIm(ﬁxx) déf {bm, ‘ fﬂ ﬁXX(-,s/)bm(s/)ds' - /)\\mbma /)\\m > O}

5 def ~ 1smsy’ (2.39)
B (Rcx) E b, | fo B (-8 (s)ds’ = 0}

v<m<M '

Therefore, whereas family BIm(}A%XX) is likely to be particularly well adapted to X, family
BXe*(Rx x) has no reason to be adapted to X as it is orthogonal to the set of available realiza-

tions. On the contrary, by construction, for @ > 0, the rank of Bg‘(@) is higher than v. Using

the same notations than in Eq. (239), the number of elements of BX'(A(«)), which are by
definition orthogonal to each available realization of X, will be smaller than M — v, such that

the L2-error associated with B is likely to be smaller than the one associated with B

A(a) Rxx
All these considerations can directly be extended to the case when X is a R@-valued ran-
dom field, @ > 1. Indeed, let [Ryy] be the (Q x @) matrix-valued covariance function of
the R%-valued stochastic process, Y = (Y1,...,Yq), for which v independent realizations,
{Y(61),...,Y(0,)}, are available. We can thus define [A(«)], such that for all (s,s’) in Q x Q2
and 1 <p,g < P:

[A()] =[][R] + ([To] — [a]) [R], (2.40)

[alpg = Apdpgs  (a1,...,0a0) €[0,1]9, (2.41)

[R(s,5")]pg = Rpq(s, "), (2.42)

[R(5,5")]pg = Rpg(5,5"), (2.43)

Rogls,s) = S Y, (B )Y (O ). (2.44)
=1

1 S—(s'=s) _
m/ Rpg(z,x+ (s — 8))dz if S >s —s>0,
-\ - 0
Byg(s.s') = 1 Sl 2.45
pals:5) m/ qu(w—l—(s'—s),w)dw ifS>s—5 >0, ( )
— 5= 0
\ ﬁpq(s, s") otherwise.

The optimal value for the matrix-valued function used in the Fredholm problem, [A(a*)],
can finally be searched as the solution of the following minimization problem:

)} ‘ (2.46)
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2.3.3 A posteriori evaluation of the representativeness error

In order to solve the problem defined by Eq. (237)), a method to a posteriori evaluate 62(81(4]\(/2))
from the only v available independent realizations, {X(6,,), 1 <n <wv}, for all « in [0,1], is
then required. Indeed, from the limited set {X(6,), 1 <n < v}, the L?-error, £2(BM)), corre-
sponding to any M-dimension family B) of HM, cannot be exactly calculated, but has to be

evaluated as precisely as possible. Two cases can be distinguished:

o case 1: BM) is defined without any reference to {X(61),...,X(6,)}.

e case 2: the knowledge of {X (61),...,X(0,)} is used to optimize the representativeness of
BM) In this case, BM) depends on the available realizations of X.

Case 1: realizations and projection basis are independent

If BM) has been computed without any reference to the set {X(61),..., X (6,)}, error £2(BM))
can be evaluated from its empirical estimation, £2(B™)), such that:

A BN SBO) B

E(BA) = =3 (X(0) = X5 (00), X(0) = X5 (01)) (2.47)

n=1

Indeed, according to the central limit theorem (see [15] for further details),

Var { (X - X800, x - X500 }
lim P | [2(BO) — 2(BOD)] < »(p)

v—+00 v

=1—p, (2.48)

1 z(p) 22 p

such that for sufficiently high values of v:
e2(BM)y ~ 22(BM)). (2.50)

Case 2: the projection basis depends on the available realizations

In order to make projection family BM) be particularly adapted to random field X, it can be
interesting to exploit as much as possible the information about X that is gathered in indepen-
dent realizations {X(61),...,X(6,)}. In this case, BM) is dependent on {X(6y),...,X(6,)},
and error 2 strongly underestimates €2. This phenomenon is generally called overlearning. For
instance, if we define BM) = {b,,,, 1 <m < M} as the Gram-Schmidt orthogonalization of the
deterministic family of available independent realizations {X (0;),...,X(6,)}:

by = X(61)/ (X(01),X(01)), K =1,
for2<m<M:
b = X(6:) = 05 (X (Om), bi) by
if (b5, b5) > 0 :
K=K+1, bg =0/
end if
end for

M =K,

(2.51)

mym
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then, the M-dimension projection,

M
XEY = N7 Cbmy G = (X, b) (2.52)
m=1

of random field X on BM) verifies:

X8"0,) = X(6,), 1<n<w. (2.53)

By construction, error £2(BM)) is always equal to zero, whereas £2(B™)) should be in general

strictly greater than 0, as the number of available realization, v, and the dimension of the
projection basis, M, are limited.

In order to correctly evaluate error
is generally performed:

2. a separation in two sets of the available realizations

e the first set, {X(0;),...,X(6,+)}, is a learning set, on which the definition of BM) is

based,
e the second set, {X (0,+41),...,X(0,)}, is an assessment set, on which the computation of
g2_,. is achieved to evaluate 2.

With such a method, it can be noticed that the higher v*, the less precise the evaluation of
2. This limits strongly the scope of such approaches when number of available realizations v
is small, compared to the number of functions that are needed to characterize X. Indeed, in
such cases, we would be interested in taking into account most of the available realizations of
X, that is to say in making v* tends to v, which leads us nevertheless to a very bad evaluation
of £2.

To this end, for all set of v* indices, J(v*), such that:

I ={h#... £t ef{l,...,v}, (2.54)

let BM)(J(v*)) be the M-dimension family that has been computed from the v*-dimension
set {X(6;,),...,X(0;,.)} (v* can vary) of independent realizations of X (the family that stems
from the Gram-Schmidt orthogonalization defined by Eq. (2X5I]) is an example of such a family).
The two following hypotheses are then assumed.

1. First, it is supposed that error &2 (BM)(J (v*))) decreases when v* increases.

*

2. Then, given two sets J() (v*) and J®) (v*) that have been randomly chosen in {1,...,v}"",
it is assumed that:

PA(I) ~

where Pg ) and Pg () are the distributions of the projected random fields, XMW and X@,
on BM)(JM () and BM)(J2) (v*)) respectively.

In other words, the first hypothesis means that the modeling errors are expected to decrease

when the information is increasing, whereas the second hypothesis asks, for the application,
that computing the projection basis from a limited set of realizations yields robust results.
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Let J(v —1) be the random variable, whose distribution is discrete, such that for all 1 < n < v,
J(v — 1) takes set value J(v —1,0,) = {1,...,n—1,n+1,...,v} with probability 1/v. For
all 1 <n <v, J(v—1,6,) corresponds thus to a particular set of v — 1 indices. With such a
formalism, the projection basis that is only based on the knowledge of the v — 1 realizations,
{X(01),...,X(0n-1), X(Ops1),-..,X(60,)}, of X, which is denoted by BM) (T (v — 1,6,)), is
independent of X(6,,). Therefore, under the two former hypotheses, if X (7 (v — 1,6,),6,) is
the projection of X (6,,) on BM(J (v —1,0,)), the set {€2(6,), 1 <n < v}, where:

(0n) = (X(0n) = X(T (v = 1,0,),00), X(02) = K (T (v = 1,62).0,)),  (256)
can be seen as a set of v independent realizations of the random variable:
e? = <X ~X(JTWw-1)),X - X(T(v— 1))) , (2.57)
such that:
2 (BOD (10— 1) 22 (g0 def LR~ 20
2 (BY I - 1)) & ehoo(BM) < - ; €2(6;). (2.58)

According to the central limit theorem, this error converges to & (B(M )(I(v — 1))) at the
convergence rate of 1//v. For all projection family BM) the estimation €2 ,,(B™)) is called
Leave-One-Out (LOO) error, and it can be seen as a good approximation of £2(BM)) for v
sufficiently high. This LOO error can be considered as the application of the jackknife theory
(see [73] [74], [75] for further details) to the evaluation of projection errors. Hence, contrary to
the two-sets approach, the Leave-One-Out method allows us to compute projection basis BM)
from all the available realizations of X, while still giving access to an accurate estimation of its
corresponding representativeness error, ¢2(B(M)), when v is sufficiently high.

Finally, the L2-error, €2, in the optimization problem, defined by Eq. (237), can be re-
placed by the LOO error, such that the M-dimension optimal projection family, £™), can be
approximated by the following optimization problem:

(M) o, (M)
IC ~ BA(Q*)7

N ‘ ) o (2.59)
o = arg aren[g,ll] {ELOO(BA(a))} )

2.4 Applications

In order to illustrate the benefits that stem from the optimization problem defined by Eq. (2:59)),
an application based on simulated data is presented in this section. This application aims at
justifying the relevance of the Leave-One-Out error, and at emphasizing the difficulties of the
classical Karhunen-Loéve expansion-based methods to identify optimal basis when the number
of available realizations is low, while the generalized Karhunen-Loéve expansion, characterized
by Eq. (259) gives very promising results.

2.4.1 Generation of independent realizations of the random field

Let 2 = [0,1], and X be a random field of P(£2), for which the covariance function Rxx is
represented in Figure 2.I] and the mean value is zero. This random field has been chosen on
purpose non stationary.
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From this choice for Rxx, we can numerically identify the Karhunen-Loéve basis, K =
{km, m > 1}, associated with X by solving the Fredholm problem associated with Rx x, defined
by Eq. (L5). For any value of M > 1, it is reminded that (™) = {k,,, 1 <m < M} is optimal
in the sense that it minimizes £2:

KMy = min  2(BWM), (2.60)

From a numerical point of view, the Fredholm equation is solved using a Galerkin-type
approximation, as presented in Section [[L3.3l Interval Q is discretized with the spatial step
h = 0.005, and random field X is approximated by its N-dimension projection, X) with
N =1/h +1 =201, such that:

N
X(s) m XN (s) =Y " hi(s)X((i — h), s€Q, (2.61)
=1
(th —s)/h, if (i—1)h <s<ih,

hi(s) =4 (s—(i—2)h)/h, if (i—2)h<s<(i—1)h, (2.62)

(
0 otherwise.

The covariance function Ry x, of centered random field X, is also approximated by its Galerkin
projection, R% ., such that, for all (s,s’) in Q x Q:

N N

Rxx(s,s') = Rix(s,8) = > Y hi(s)hy(s)E[X((i = DA)X(( — 1)h)] . (2.63)
i=1 j=1

The eigenvalue problem, defined by Eq. (L)), associated with kernel Ré‘( y» leads us to the
definition of N functions, that are denoted by {k:fn, 1<m< N}. Let {)\f;b, 1<m< N} be
the corresponding eigenvalues, such that:

N
Rix(s,8) = D> Ak (s)km(s)), (s,8) € @x Q, (2.64)
m=1
N
XM () ="\ Ak (5)em, s €, (2.65)
m=1
with & = (&1,...,&n) a N-dimension random vector of uncorrelated random variables. In

this application, X is supposed to be a Gaussian random field (the Gaussian hypothesis is just
introduced in order to simplify the generation of independent realizations of X but the following
conclusions would be exactly the same for a non-Gaussian case). Consequently, the components
of £ are independent normalized Gaussian random variables.

Two sets, X = {X(0y),...,X(0,)} and A" = {XO),..., X(O,vaia)}, of independent
realizations of X are then generated from the KL decomposition defined by Eq. (Z65). Four
particular independent realizations of X are represented in Figure Set X°*P represents
the available information about X, whereas XV2id ig the assessment set, which will only be
used according to Section 2.3.3]to evaluate the projection error, £2 (B(M )), corresponding to any
projection family BM) in HM

In the following, »** is chosen equal to 4,000 for the convergence of 512/\,ahd (BM)), defined by
Eq. ZZ7), towards £2(B™)) to be achieved.
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Abscissa s

Figure 2.1: Representation of the covariance function (s, s’) — Rxx(s,s’).

Values of X

Abscissa s

Figure 2.2: Representation of four independent realizations of X.
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2.4.2 Improvement of the projection basis with respect to the available in-
formation

The number of available realizations, v, is now supposed to be in the set {0, 10,20, 50,200}.
The case v = 0 corresponds to a limit case when no realization of X is available. For the other
cases, the empirical estimator of covariance function Rx x, which is denoted by R(v), such that:

(v,s,5") ZX On,8) X (0,,5"), (s,8) € QxQ, (2.66)

is compared in Figure 23] for different values of v. In these figures, it can be verified that
the higher v, the more relevant R(v). Using the same notations than in Section 23.2] for all

1<M<N, B = {by,...,b%,} is introduced as the M-dimension family such that:
/E(y)(-,s/ v (s)ds' = AU 1 <m < M, (2.67)
Q
A >AN5 > >\ >0. (2.68)

By construction, for v < M, the rank of }AE(V) is equal to v, and then,

v+l =Appp =... = Ay =0. (2.69)

Therefore, as described in Section ZZ3.T] the elements of {b;_ |,...,b},} are orthogonal to the
available realizations of X: their characterization does not take into account any information

about X. In particular, in the case v = 0, B(]\(/[) 0 corresponds to any M-dimension set

of orthonormal functions of H. In Figure 23] are thus compared the evolutions of the error

functions, £2(B g‘(d))

it can be noticed that ¢ (B(M) )
R(v=0)

relevance of each element of B(AM )
R(v=0)

direct and natural consequence of the fact that all these elements have been defined without

), with respect to M, for four considered values of v. First, in this figure,
decreases linearly with respect to M, which means that the

to describe X is approximatively the same. This is a

information about X. Then, two phases can clearly be identified in the evolution of ¢ (B;ﬂ(/[y)))

with respect to M, for v = 10,20, 50, 200: the decrease of ¢ (Bg\(/[y))) is indeed much faster for
M < v than for M > v, where a quasi-linear decrease is found again. This behavior can be
justified by the fact that the v first elements of B(EA(/IV)) are based on the available realizations of

X, whereas the M — v last elements are not.

2.4.3 Optimized basis when few realizations are available

In the former section, it has been shown that the basis that stems from the solving of Eq. (Z.67)
appears to be relevant to characterize X, especially when the number of available realizations,
v, is high. This section aims at illustrating the benefits of the approach introduced in Section
237 in cases when v < N. For v in {10,20,50,200} and 1 < M < N, let a*(v) be the
solution of the optimization problem, defined by Eq. (237) (in this application, Eq. (Z37) has
been solved using an algorithm based on a dichotomy), and let A(a*(v)) be the corresponding

function in S(R). The relevance of Bg(?) and B;A(/[Oz* () 18 then compared in Figure The

optimal value of the projection error, 2 (IC(M )), has been added in these figures as a limit state.

In each case, it can thus be seen that 52(5’%@* (V))) < 52(8%]‘(/[”))). For these four choices for v,
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Case v = 10

~Caserv =20

Abscissa s’
Abscissa s’

Abscissa s

Case v = 200

Abscissa s’
~ Abscissa s’

%

Abscissa s

Abscissa s

Figure 2.3: Empirical estimators R(v) for four values of v.

Error

Dimension M of the projection basis

Figure 2.4: ITmprovement of the projection basis with respect to the number of available real-
izations, v.
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Case v =10 Case v = 20
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Dimension M Dimension M

Figure 2.5: Improvement of the projection basis.

this figure underlines the great benefits of the formulation defined by Eq. (Z37), especially
when v < N. For instance, for v = 10 < N = 201 and M = 50, whereas 62(3%)(0”))) = 29.2%,

52(81(5(002*(11))) = 2.27%. Indeed, whereas the rank of R(v = 10) is 10, the rank of A(a* (v = 10))
50

is by construction much higher than v. Therefore, more elements of B;() (v)) are based on

the knowledge of X than the elements of BS(O)

projection basis, even if X is non stationary.

)’ which explains such an improvement of the

2.4.4 Relevance of the LOO error

As presented in Section Z3.3] when the assessment set, X¥id is not available, which is the
general case, the LOO error allows us to evaluate the projection error from the only set X'“*P.
For M = 50, the relevance of the LOO error is illustrated in Figure It can be seen in

Bg(dy))), which is only based on the

v available realizations of X, is very close to the validation error §3valid (B%A(/IV))), defined by Eq.
(247), which is based on the v¥2lid realizations gathered in X¥*id, Error bars have been added in
these two graphs for several values of v. These bars correspond to the 95% confidence intervals

and emphasize the convergence in 1//v of the LOO error towards £ (B(AM) ).

pvalid R(V)

this figure that for even low values of v, LOO error 5%00(
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Figure 2.6: Relevance of the LOO estimator.

2.5 Conclusions

For the last decades, the increasing computational power has encouraged many scientific fields to
take into account random field in their modeling. The development of reduced basis that could
condense at best the statistical properties of these random fields is therefore of great interest. In
most of these applications, the knowledge of these random fields is however limited to a finite set
of independent realizations. In this context, this chapter emphasized the efficiency of a method
based on an adaptation of the Karhunen-Loéve expansion, in order to construct optimized basis
from a relatively small set of independent realizations. First, this method defined an original
optimization problem, and secondly, required a way to a posteriori evaluate projection errors.
Finally, when interested in studying complex systems that are excited by random fields that are
only known through a set of limited independent realizations, the method proposed opens new
opportunities to optimize the projection basis with respect to the available information.
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Chapter 3

PCE identification in high dimension
from a set of realizations

3.1 Introduction

In Section [[4] it has been shown to what extent the Polynomial Chaos Expansion (PCE)
method allows us to identify in inverse the multidimensional distribution of the M-dimension
random vector C = (C,- -+ ,C)s) when the available information about this random vector is
a finite set of v independent realizations, which are written {C(6;),...,C(60,)}. Without loss
of generality, C' is supposed to be a centered random vector in this chapter.

As presented in Section [[L3] this method is based on a direct projection of C' on a known
and chosen N-dimension orthonormal basis {1 (§),...,¥n (&)}, such that:

C ~ CM*(N) = [y]®(§), ¥(E) = (¥1(),...,vn(€)), (3.1)

with § a Ny -dimension random vector (N, < M) whose distribution is known.

To identify the multidimensional distribution of C, the (M x N) projection matrix [y] has
then to be calculated from the available information about C, and the values of the truncation
parameters N, and N have to be justified according to convergence analysis. To this end, an
error function has been defined in Section [[5.4] to quantify the amplitude of the PCE residue,
C — C%5(N), whereas a random search algorithm has been introduced in Section [[5.3) to
allow the computation of [y] from the realizations {C(6,),...,C(0,)} of C.

Dealing with high dimensional problems, that is to say when M and N are very high, raises
however at least two major difficulties.

e First, when M and N are high, the dimension of the admissible set Oc becomes huge,
such that the convergence of the random search algorithms that are based on independent
and uniformly distributed generations of [y*] in O¢ to solve the optimization problem
defined by Eq. (L&), is very low. A method to optimize the generation of elements in
Oc is therefore needed for such PCE inverse identification to give relevant results.

e Secondly, the optimization problem defined by Eq. (I.6I) is based on the generation of
the matrix [W(v2°%)] of independent realizations of projection vector ¥ (&). Recurrence
formula or algebraic explicit representations are generally used to compute such matrix
[\I/(VChaOS)], which are supposed to verify the asymptotic property:
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1

pchaos

lim [ (o) [ ()T = [Iy], (3:2)

pchaos — 400

as a direct consequence of the orthonormality of the PCE basis. However, for numerically
admissible values of v"%° (between 1000 and 10000), it has been shown in [76] that
the difference — o [W(vh29%)|[W (vh29%)]T — [Iy] can be very significant when N is high.

pchaos

This difference induces a detrimental bias in the PCE identification, which makes the
convergence of the classical PCE in high dimension very difficult. Innovative methods to
generate matrices [¥(v°"2%%)] that numerically verify Uchlaos [T (vohaos)] [@ (pehaos)|T = [Iy]

are thus expected to allow this convergence in high dimension.

Solutions to these two difficulties are therefore proposed in this chapter. First, Section
presents an original method to optimize the trials in the admissible set

Oc ={ly) = [y, .y™] € Mux | )" = [Ree)]}, (3.3)
Rocw)] = 1 3" C6) @ C0,), (3.4
n=1

even if v is very small compared to M and N, such that relevant values for [y] can be computed
at a reasonable computational cost.

Then, Section B3] addresses the stabilization of the matrix of realizations [¥(v"%°%)] in high
dimension. At last, two applications are presented in Section 3.4] to emphasize the benefits of
such improvements in the PCE identification process.

3.2 Optimized trials of independent realizations of random ma-
trices under correlation constraints

In this chapter, we use the same notations than in Section [[.5l

To solve Eq. (L&) with a random search algorithm, as an extension of the work described
in [38], this section aims at proposing two methods to optimize the trials in O¢. Adaptations
of these methods are then presented when v < M, that is to say when the available information
is very limited compared to the size of C.

3.2.1 Reformulation of the correlation constraints

From Eqgs. (L33) and (L50), for a given value of v, it is recall that the matrices [C**P(v)] and
[Rcc(v)] are defined such that:

ex D L ex ex
C=PW) =[C(01) ... C,)], [ReoW)] =~ [C™*@)[C™*W)]". (3:5)
For any (M x M) invertible real matrix [G], the random vector C is introduced as:

C =GlC. (3.6)

As [G] is invertible, C and C belong to the same statistical space. Therefore, searching the
PCE [y]® (&) describing C under the constraint [y][y]” = [Rec(v)] is equivalent to searching
the PCE [u]®¥ (&) describing C, where matrix [u] = [G][y] has to verify:
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[ull]” = [G)[RecWG]" (3.7)

Matrix [Roe(v)] being a symmetrical and real matrix, it exists an orthogonal matrix [V (v)]
and a diagonal matrix [A(v)] in My s such that:

Beow) = (PR (PEIROIY) . PO PO =l 68
) 0 0o
)2 = (_) Ao(v) E S M) > =) >o0. (3.9)
. “. “. 0
0 0\ Au) |

The idea is thus to find a particular matrix [G] that could simplify the orthogonality con-
straints for [y]. TIf Ay (v) > 0, [V (¥)][A(¥)]"/? is invertible. The particular choice [G] =

~

A@)]72[V(v)]T imposes therefore on [u] to belong to the Stiefel manifold Vi s (see [77]
for further details about the Stiefel manifold), such that:

VN7M = {[u] S MM,N ‘ [u][u]T = [IM]} . (3.10)

3.2.2 Notations and definitions

In this section, a series of notations are introduced, on which the next sections will be based.
For1<z<Z:

e 7. is a random permutation from {1,2,..., M} to {1,2,..., M}, such that:

To= (3, d7) e 2 M £ 8, (3.11)
e the set {'vr{z) m 1 <m < M} gathers the M rows of matrix [y(*)], such that:

T
V()1
= (3.12)
T
V()M

e For1 <m < M, PDF ﬁ(U(Z) U@) refer to the kernel estimators of the multidimensional

J1 7 im

PDF p(UJ(f)UJ(,;)) of the random vector
’U%;)vjl
(2) (2)\ _ .
<Uj1 ,...,Ujm> = T(€). (3.13)
Y(2),5m

e In the same manner, the set {@Tz)m, 1<m< M} gathers the M rows of matrix [u(*)],
such that:
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~T

Y(2),1
ORI B (3.14)
~T
Y(z),M
For1<m < M,PDF p (U(Z) ) ) refer to the kernel estimators of the multidimensional
a1 im
PDF p(U(z) ~(Z)) of the random vector
J1 7t Im
~T
e e
<U]1 ,...,Ujm> = T(€). (3.15)
U(Z) Jm
For1<m< M, EA<[~](2) [7(2)> <{ (@1(0 > ,1<n< u}) is the estimation
UL
of the multidimensional log-likelihood of random vector (U, j(lz yoor Uj %) ) that is evaluated

at the experimental points {(le (0n), . éjm(H )) ,1<n< 1/} such that:

E@(Z) 7% ({(Cis0n).- . Csn(0)) s 1 < m <0 })

T ~ (3.16)
= Zlnp (0%),..) ((C (0n), - .,ij(an))).

for 1 < P < M, if the set B = {by,...,bp} gathers P vectors that are in RM, Ker(B) =

{kerlf", . ,kerg} is an orthonormal basis of the null space of B, such that:
<kerf,ke7‘q8,> = gy <kerq8,bp> =0,1<p<P 1<¢q,qd<Q. (3.17)

for 1 <m < M, St™) (1) correspond to the m-dimension unit hypersphere, such that:

StM(1) = {s eR™, ||s]| = 1}. (3.18)
In addition, we denote by S(™) the m-dimension random vector that is uniformly dis-
tributed on S (1). If E is a m-dimension random vector whose components are cen-
tered, independent, normally distributed of variance equal to 1, as the distribution of &

is invariant by rotation, it can be seen that if {2(0;),...,E(0¢g)} are @) independent
realizations of =, the set

{s©1) =8O/ 2@, ... 5™ (00) = B(O4)/ |E(©0)| } (3.19)

gathers () independent realizations of random vector Sim),
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3.2.3 Theoretical frame

For m > 1, let
e [R] bea (m+1x m+ 1) real matrix such that

o) B 520

m = | Ml

where [Ry, ] is a (m x m) real and symmetrical matrix, R, is a m-dimension real vector
and R, > 0.

e [2] be a (m x N) real matrix such that [2][z]T = [Ry.m)-

e v be a N-dimension real vector.

Proposition 1 The matriz

2= 5] (3.21)

fulfills the orthogonality constraint [Z][Z]T = [R] if and only if vector v verifies:

v=[V] ( g > . a=["'U"R., (3.22)

where B is any (N — m)-dimension vector, for which norm is given by

181 = \/ Res — ll]?, (3.23)

[U] is a (m x m) real orthogonal matriz, [V] is a (N x N) real orthogonal matriz, and [{] is a
(m x m) real and strictly positive-definite diagonal matriz, such that:

=001 | oo | VI VITIVI=[N],  [01T[U] = ). (3.24)

[0 Proof: We have the following equivalences:

221" = R

& [2Jv = Ry, ||v||* = Ry, by definition of [R]
0 --- 0

S0 | || V=R ol = R (3:25)
0 0

co=W(§ ) a=l W R 18] = VR - Jal?
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Corrolary 1 If [R] = [Iy+1], the matriz

_ | [&]
[Z] = [ o (3.26)
fulfills the orthogonality constraint [Z][Z]T = [Lni1] if and only if vector v verifies:
N—m (m)
v="> ker’ "B, |Bl=1, (3.27)
q=1
2]
where BT = {z1, ... zn}, [2] = :
Zh

O Proof: If [R] = [[,+1], then R,, =1 and R, = 0, which leads directly to the result.
U
3.2.4 Iterative algorithms

From Section [LH it has been shown that a good approach to numerically identify the PCE
projection matrix [y| of C, such that

C ~ [y|¥(8), (3.28)
is to search [y]| as the direct solution of the following optimization problem:
Z X * h.
~ - ¢ ([C=P )], [y*], [T (vh2os)]) 3.29
4] = [vB,) = arg max € (1070, 7], [0 )] (3.29)

where the cost function, C, is defined by Eqgs. (LES), (L59) and (L59) and:

w= {0 ) B} o (3.30)

Alternatively, it has been underlined in Section B:2.1] that matrix [y] can be equivalently
searched as the indirect solution of the following problem:

= VIR ?ud,). (331)
[uf.] = arg max € ([C™ )], [u], [W(H)]), (3.32)
[u*]lew
where
C=2 ()] = R@)| 2V ) [0 (v), (3.33)
W={w®, . w1}, {0 AT Vi (3.34)

Hence, for the solving of these two optimization problems, the more adapted to the realiza-
tions of C and C these sets W and W are, the more relevant the identification of [y] is likely to
be. As an extension of the work achieved in [38], this section presents two iterative algorithms
that stem from the theoretical developments of Section B.2.3] to compute line by line matrices
[y()] oriu(z)], 1 <z < Z, that are particularly well adapted to the available information about
C' and C respectively.
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Direct method

In the following, z and @ verify 1 <z < Z and @ > 1.

Initialization. The j%z)th line of [y*], v(T is first searched in order to maximize the

z),51°
unidimensional likelihood: "

T . ~
v/, . = ar min L o ({C:(0,), 1<n<v}), 3.35
(2).1 gv(TZ) @ U ({Cj,(0n) 3] (3.35)

5]

where { SN (©),...,8M (6 gathers () independent realizations of SN and TO(Q) =
Q

= = 2
{ [Rcc]ﬁﬁs(N)(@l),...,\/[Rcc]jljlsm(@@)},such that if vl . isin TW(Q), |[vf, ;|| =
[Reclj -
Iteration. For 2 <i < M, the ji(z)th line of [y¥], v%;) ;+ is then searched such that:
~T . -~
Vi, ;. = arg min L/ . . Cj,(0n),....C,(0,)), 1 <n<v}), 3.36
I L CACRNSCACR) D, (336)
where 70 (Q) = {tl, e ,tQ} gathers () real vectors with values in R such that:
t9 = [V : ) A , 1<¢<Q, 3.37
- ( R~ e P50 (@, ) e 0
adi = [0 Ui T R, (3.38)
G0 0
T 1
Vi | 0 g - : 0 --- 0 ‘
A e B DotV (3:39)
o7 - 0 0 - 0
(2)7.7171 0 . 0 E‘Zh_l
VIV = [In], [UHT U] = (i), (3.40)

and {S’(Nfi“) (0g), 1<qg< Q} gathers  independent realizations of random vector V=1,

Indirect method

For1 <z<Z,and Q > 1, [u(z)] is defined according to the following iterative algorithm.

Initialization. The j%z)th line of [u(*)], ﬁ(TZ)JI, is first searched in order to maximize the
unidimensional likelihood:

~T . ~ ~
v/, . = ar min L~ Ci(0,), 1<n<v:], 3.41
o gﬁm&ﬁ”(@) b ({ 7 (8r) }) (3.41)

where ’7’(1)(62) gathers () independent realizations of random vector SN,
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Iteration. For 2 <i < M, the ji(z)th line of [u(*)], 5%;) is then searched such that:

2Ji?

ﬁa),ji = arg min E<[~](2) a(z)) ({(5’] (On), ... ,C~’ji(0n)) ,1<n< y}) , (3.42)

30, €TOWQ Wi i
T () _{# 79 . oM ‘
where T\W(Q) =<t ,...,t7 ¢ gathers @) real vectors with values in R such that:
M—it+1 . '
=3 kerf"5(0,). 1<q<@ (3.43)
k=1

and {S(M_Hl) (Og), 1 <g< Q} gathers () independent realizations of random vector S(M—itl)

and B(Z) = {i(z),jl, . ,ﬁ(zmq }

Comments on the iterative algorithms

e First, from Section B.2.3] such algorithms allows us to generate matrices [y*)] and [u(*)]
that verify the orthogonality constraints [y*)][y*)]T = [Rcc(v)] and [u®][u]T = [Iy].

e Thanks to the iterative construction, each line of these matrices are moreover defined to
be adapted at most to the available realizations of C and C.

e By imposing on the vectors ¢ (for the direct method) and ¢* (for the indirect method) to
be uniformly distributed on their definition domains, we try to explore as objectively as
possible the sets Oc and Vi .

e These algorithms are indexed by integer Q). To solve Eqs. ([3:29) or (8:32]), the total cost
is therefore globally proportional to @ x Z. From a numerical point of view, it appears
that the accuracy of the results is however much more dependent on ) than Z. For a
limited computational cost, it is thus advised to choose @) as high as possible, even if that
forces Z to be inferior to 10.

3.2.5 Adaptations to the case v < M
Motivations

When the information about C' is limited, and more precisely, when v is lower than M, the
direct and indirect iterative algorithms formerly introduced are no more accurate. Indeed, the
rank r of matrix [Rcc(v)] is by construction lower than v, such that

Mt (V) = Api—pra(V) = ... = Ay (v) = 0. (3.44)

Matrix [V ()] [A(1)]¥/? is no more invertible, and imposing [y] to verify the constraint [y YT =

[Rcc(v)] is therefore equivalent to project C' in the (r)-dimension image space of [Roc(v)]. If
we want C' to remain in its M-dimension space, the former constraint on [y] has to be loosened
a little, such that [y][y]7 ~ [Rcc(v)]. Keeping in mind that the rank of each (r x r) sub-matrix
of [ﬁcc(u)] is also 7, the possibility we propose to loosen this constraint is based on a block by
block adaptation of the direct iterative algorithm defined in Section B:2.4] to generate matrices
[y)], 1 <z < Z, such that [y?][y®)T ~ [Rec(v)].

Adapted PCE identification iterative algorithm
For1<z< Z,and @ > 1.
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Initialization. The j%z)th line of [y*)], v? is searched in order to maximize the unidimen-

. . . Z) 7j1 ’
sional likelihood:

T . ~
v/, = ar min L o {C:0,), 1<n<v}), 3.45
(2):d1 gv(TZ)JlET(l)(Q) Uj(l) ({5, (0n) ) (3.45)
where 7T (Q) = { [}Afcc]jleS(N)(Ql), ce [}AECC]]-MS(N)(@Q)} is the space that has al-

ready been introduced in Section 3241

Iteration - first part. For 2 <i < r, the ji(z)th line of [y*)], ’UF{Z) ;;» is searched such that:

~T . i~
V) ;. = arg min L/ - Cj(0n),....C5(0,)), 1 <n<v}), 3.46
(2).di 5, eTO@) (U;1)7___’Uj(i)) ({(C5,(0n) 5 (0n)) ) (3.46)
where 7()(Q) has also been defined in Section BZ4l
Iteration - second part. For r +1 <i < M, we define
R, = <[Rcc]j1jia [Recljnji - [Rcc]ji_lji> ; (3.47)
I(r) — {ila cee aiT’} - {jl, e ’jifl} )
= - A (3.48)
[Recliil = - = [[Recligi] 2 max [[Recljj,-
J¢Tr)
The j &th Jine of [y*)], vT, ., is then searched such that:
4 (Z)vjz
~T . i~
U/, . = ar min L/ . Cj(0n),....C5(0n)), 1 <n<v}), 3.49
b=y min, Ly o) (Cals Col0n) RNNCET)
where T (Q) = {tl, .. ,tQ} gathers ) real vectors with values in R™ such that:
T T ECCA, ﬁCCA, ﬁCCA}
’U(Z)J1 U(z),h L di121 L 1217 19174
: : U S L 1<¢<Q, (3.50
oF || ol Rec Rec Ree <a<Q (350
(2).ir (2).ir L i L divir Lingi
t t (5 (5] 5]
Ree| Ree| = |Rec|
L - Jit - - Jitr - - 7iJi

which have been randomly generated using the same developments than in Section B.2.4]

Therefore, such an algorithm allows us to build matrices [3(*)] such that the highest terms

in absolute value of {ECC] are exactly reproduced in [y*)][y*)]T.
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3.3 Numerical stabilization of the polynomial basis in high di-
mension

As it has been presented in the former sections, the (N x v'°%) real matrix [¥(»'%°%)] gath-
ers P25 independent realizations of the N-dimension random vector ¥ (£). Moreover, the
numerical identification of the PCE coefficients [y] can be seen as the minimization of a cost
function involving the elements of the (M X VChaOS) real matrix of independent realizations
[U] = [y][¥(vh2°%)] of random vector U = [y]® (&) and the elements of the (M x v) real matrix
of independent realizations [C*P(v)] = [C(0;) --- C(6,)] of C. In theoretical terms, this cost
function should be minimum when the multidimensional PDF pg; of U is as near as possible to
the multidimensional PDF pe of C. In practical terms, this cost function is however minimum
when py is as near as possible to pc, where py and pe are the multidimensional non parametric
estimators of pyy and pc defined by Eq. (I55). With respect to v and vM2°5, three bias are
then introduced in the PCE identification:

e a bias due to a lack of information about C':

bO(w) = /R (@) — po(a) iz, (3.51)

e 2 bias due to a lack of information about U:

W) = [ (a) - pue)lde, (3.52)

e a bias due to the truncation and to the fact that the global maximum is not necessary
reached:

b(3) (V, VChaOS) _ /

- [pc(z) — pu(x)|de. (3.53)

These three bias could also be expressed with respect to the statistical moments of C' and
U. For instance, when focusing on the autocorrelation matrix, let err!, err? and err® be the
autocorrelation errors corresponding respectively to the bias b)), b2 and b®):

err! (v) = |[Rec] — RocW)l|, / iReclllr (3.5)
err(v) = ||[R&&* (V)] - [Rov ()| /| RV (3.55)
err® (v, ™) = || Row ()] ~ [Rec )|, /| Bee®]|, . (3.56)

where ||| is the Frobenius norm of matrices, and where it is reminded from Eqs. (L37) and

(CE0) that:

[Fecw)] = Fle=rmllc2 ()",
[ﬁUU(yChaOS)] — ﬁ[U] U = [y] (Vchlaos [\I}(VChaOS)][\II(VChaOS)]T) w7, (3.57)
[REE™(N)] = [yl
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Hence, the smaller these three errors are, the more precise the PCE identification is. The v
independent realizations {C(6;),---,C(6,)} being the maximum available information about
C, the bias b(!) and the autocorrelation error err! cannot be decreased, whereas the set Oc,
which was introduced to guarantee that [RE&S(N)] = [Ree(v)], aims at reducing b®), b3),
err? and err3. Therefore, imposing [y] to be in O¢ leads us to:

1 (3.58)
= | (Gamtw e 1) || /i,
The following asymptotic property can thus be deduced from Eq. (LZ0):
lim  err? <yCha°S> =  lim errd <1/, VChaOS) =0, (3.59)
Vchaos*)+oo l,cl\aos*)+oo

which is equivalent to say that the larger vPa°s is, the more accurate the PCE identification

should be. However, from a practical point of view, the value of 125 ig fixed by the available
computation resources. As an extension of the work presented in [76], this section aims at
quantifying the divergence of the ratio:

1

pchaos

r= [ ()] [ W ()] " — [Iy]

SN (3.60)
F

when the truncation parameters N, and p, which have been introduced in Section [[.5.4] increase
for several statistical measures. From Eq. ([B358]), r, defined by Eq. (B.60), can be seen as a
general characterization of the autocorrelation errors err? and err3. This divergence being
very detrimental to the PCE identification in high dimension, a new decomposition of the PCE
coefficient matrix [y] will be then presented in this section to make err? and err® be zero for

any value of V; and p.

3.3.1 Decomposition of the matrix of independent realizations

To better emphasize the influence of the truncation parameters on the ratio r, a rewriting of
the matrix [¥(vh29%)] is first presented.

Theoretical basis of the decomposition

From Eq. ([L39), matrix [¥(v"%°%)] gathers "% columns {® (£(6,,)), 1 < n < v} which
are independent realizations of the N-dimension PCE random vector ¥ (§) = (¢1(&),...,¥n(£)).

This basis being orthonormal leads us to the asymptotic condition on [¥(v°"2°%)], defined by
Eq. (ITZ0). Moreover, Eq. (L62) implies that [¥(vP3°%)] can be expressed as:

[ (vehee)] = [A][M], (3.61)

where [A] is the (N x N) real matrix that gathers the coefficients of the orthonormal polynomials
with respect to the probability measure of the N ,-dimension PCE germ, § = (51, e ,§Ng), and
[M] is a (N x v12°%) real matrix, which gathers " independent realizations of the random
vector € (€, p), such that:

[M] = [8 (E (01) 7p) e € (5 (HVChaOS) 7p)] > (362)
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E(&p) = My (&), My (£)), (3.63)

a(‘]) ag\?)
MQ(Q)(E): 11 X"'Xé-Ngga 1SQSN, (364)

where A, = {a(l),--- ,a(N)} is the set that gathers the N elements of N™s¢ that verify the
following constraint:

Ng
doa <p, 1<q<N (3.65)
=1

If [A] is independent of [M], Eq. (B.6I) certifies that, if the columns of [M] are independent,
then the columns of [¥(vP2°%)] stay independent. Let [Rg] be the autocorrelation matrix of the
random vector € (&, p):

[Rel = E [£(&,0) € (€p)] (3.66)
It can be deduced from Eqs. ([L40), (B:61), (B:62) and (B66) that:
[Rel= lim  —[M][M] = [A]'[A]. (3.67)

ypehaos _y 4 o0 pchaos

According to this decomposition, computing the classical Gram-Schmidt orthogonalization
to identify the polynomial basis coefficients only requires the calculation of [A]~7, which cor-
responds to the Cholesky decomposition matrix of the positive definite matrix [Rg|. Hence, by
construction, the matrix [¥(v"2%)] can be written as the product of a lower triangular matrix
[A] and a matrix [M] of independent realizations of a multi-index random vector £(&, p).

Practical computation of matrix [\I'(yChaOS)]

Thanks to Eq. ([B61), matrix [¥(r"2%)] can be numerically computed without requiring compu-
tational recurrence formula nor algebraic explicit representation. An illustration of the method
is presented hereinafter for a PCE based on a Gaussian measure. This development can be
directly extended to any value of p and Ny, as well as to other statistical measures. Let &;
and &, be two independent normalized Gaussian random variables, such that & = (£;,&2), and
a = (ai,a2). Choosing p = 2 and N, = 2, which corresponds to N = 6, leads us to the
following definition of £ (&, p):

8(572) - (17517527515275%753) . (368)

According to this equation, matrix [M] can thus be easily deduced from v"2°% independent
realizations of £. Moreover, let [a] be the (IN; x N) real matrix which gathers the admissible
values for o in A,

0

o= 0 4

; o A, = {(0,0), (1,00, (0,1), (1,1),(2,0), (0,2)} . (3.69)

1 20
1 0 2

The random variables £ and & being independent, normalized and Gaussian, the autocore-
lation matrix [Rg] can thus be written as:
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Vi,je{l,---,N}, [Relij = E [da]m[ahj < x gﬁjNgiﬂL[a]Ngj]

» » (3.70)
— E [gga]li'f‘[a}lj] % E [éj[VqulJr[ ]Ngj} ’
where, for 1 </ < N:
=0 ifqi t
[@] i 'q is n‘o e‘ven7 (3.71)
[55] W if q is even.

Therefore, Eq. ([B.67) allows us to numerically find back in [A] the multidimensional Hermite
polynomials H,, X --- X Hy,,

Ho(x1) x Ho(z2) =1 1 000 0 0
Hy(z1) x Ho(w2) = 71 0100 0 0
Ho(z1) x Hyi(z2) = 22 0010 0 0
Ha(21) x Ho(xz) = 92! 2000 % 0
x%/—_l =2 9000 0o L
Ho(x1) x Ha(xg) = =75 V2 V2
Noticing that:
e if £ is a random variable uniformly distributed on [—1, 1]:
E [ =0 if q is not even,
{ E[¢1] = qj%l if q is even, (3.73)

e if the random variable £ is a random variable that is characterized by a normalized expo-
nential distribution on [0, +oo [:

B = q!, (3.74)

this method can directly be generalized to the uniform and exponential cases to compute the
multidimensional Legendre and Laguerre polynomial coefficients, but also to an arbitrary prob-
ability measure for the germ &.

3.3.2 Influence of the truncation parameters and of the choice for the PCE
probability measure

The convergence properties of ratio  when "% tends to infinity are strongly related to the
statistical properties of germ &. This section aims therefore at emphasizing the dominant trends
of this specific link, and to highlight the difficulties brought about by the divergence of ratio r,
when trying to perform analysis of convergence in high dimension.

The definition of the Frobenius norm allows us to write that:

1

Vchaos

[\I,(Vchaos)] [\I,(Vchaos)]T _ [IN]

r =

F/H[INHIF = VNS), (3.75)

where X (v129%) is such that:
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2
{E(VChaOS)}Z _ % Z ((Vd}aos [\I](Vchaos)][\l,(VChaOS)]T _ [IN]> > . (376)
ij

1<i,j<N

By construction, {¥(v Chaos)}2 is an assessment of the mean value of the squared difference
between the elements of m[l’(yChaos)][\lf(u"haos)]T and the elements of the unit matrix [Iy].

Hence, if {E (pchaos) } remains constant when the size NV of the polynomial basis increases, the
ratio r should increase as v N. Moreover, Eqs. ([B:61]) and (8.67) yield,

1 chaos chaos 1
e BT (1] = (4] (S DM~ [Re]) (AT, 370
For all (i,7) in {1,---, N}?, [Rgli; is such that:
Oé(%’) Oé(') oz(l) +a(j)
[Relij = B |67 77 x - x 6300 Ng] . (3.78)
Let [Re] be the following estimator of [Rg]:
chaos . .
N 17 ) agz)JragJ) —(n) agv +a5\],)
[Relij = — o > (:1 ) X (‘—‘Ng) o (3.79)
n=1
where {E(") = <E§n), e ,ESG;) , 1< n<vhaost is a set of vM2°s independent Ny-dimension

random vectors, which have the same PDF than £&. The central limit theorem yields that, for
all (4,7) in {1,--- , N}?, we have:

~

in law
Rel;j — [Relyy) ™ =, (3.80)

pchaos

(4) ) oz( i) +a(]) <[
Var <§f1 Tt o x {NN" Ne

g

where = is a random variable that has a standard normal distribution, and Var(.) is the variance.
Under this formalism, it can be noticed that m[M J[M]T is one particular realization of [Rg].

Hence, from Egs. (BIGI), B and (B.80), we deduce that:

(), ) a® 1o a? (J) o +al®
oy 't Ng TEN, +ay Nog+1 TN, 11 h
o if Var [ &1 T x - ><£Ng" 9] < Var ><§qu_1 g , then X ("a0s)

potentially increases with respect to N,.

o (4) .
o if Var( e ) < Var <§?‘3 > for %z) < aéj), then X (vh2°%) potentially increases with

respect to p.

As an illustration, for each couple ( 4,p) such that 1 <p <10 and 1 < N < 6, three sets,
(1w (p, N)], 1< m < 1000}, {[%% (p, N,)], 1 < m < 1000} and {[T¥" (p, N,)], 1 <m <

1000}, are computed, such that [\Ifgjm) (p, Ng)l, [\II(G )( p, Ng)] and [\II(G )( ,Ng)] refer to particular
(N x vhaos) real matrices of independent realizations of the basis {11 (£),...,¢¥n(€)}, in the
uniform, the Gaussian and the exponential cases, respectively. Hence, defining:
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i (1) = || S (95" (0, N (0, NI = ()| I
B ) = || e (06 (0, N)IWE (0, No)IT = )|/ 1] (3.81)
i

(Vchaos) _ Vchlaos [q/gn) (p’ Ng)”\I/(Er,n) (p, Ng)]T - [IN] /H[IN]”F’

<

r

allowsLl us to compute, in each case, three approximations erref™°(p, Ny), err&the(p, N,) and
ortho

erry™°(p, Ngy) of the mean value of the ratio r, defined in Eq. (3.Z5)), such that:
er ortho(p’ N ) 1000 27178001 ,rm( chaos)’
er ortho(p’ N ) 1000 21000 m( chaos)’ (382)

er ortho(p’N) 1000 Zm 1 rEn( chaos).

For v = 1000, in Figure Bl the two factors which make the ratio r diverge with respect to
p and N, can therefore be emphasized. On the first hand, if increasing p or N, does not increase
the variance of the elements of £(&,p), which is the case if the PCE germ £ is characterized
by an uniform distribution (see Eq. (B73)), the ratio r increases approximately as v/ N. On
the other hand, if increasing p or N, increases the variance of the element of £(§,p), as it is
the case if the PCE germ £ is characterized by a Gaussian or exponential distribution (see Egs.
(1) and ([B.74)), the ratio r diverges very quickly with respect to the truncation parameters,
and bias the PCE identification results.

chaos

chaos

increases when p and N, increase. Therefore, imposing [y] to be in O¢ introduces a numerical
bias in the PCE identification, which becomes very important when high values of p and N, are
needed. Such a phenomenon prevents thus to perform the analysis of convergence of the PCE
in high dimension, especially when dealing with Gaussian and exponential PCE germs.

As a conclusion, for a fixed value of "5 the difference V; [U (vhaos)] [ (vehaos) 1T — [T y]

3.3.3 Adaptation of the optimization problem

In this section, fixed values for "5 p and N, are considered. According to the notations of

Section B3] a (N x v18°%) real matrix of independent realizations [T (vha0s)] = [A][M] can
then be constructed. Under the condition v > N [M][M]" is positive definite by
construction, which allows writing:

9 VCl‘ aos

1

Vchaos

[M[M]T = [LI[L]T, (3.83)
where [L] is the Cholesky decomposition of Chaos [M][M]T, which yields:
1

Vchaos [\I,(VchaOS)][\I,(VchaOS)]T — [A] [L] [L]T[A]T — [B] [B]T, (384)
[B] = [4][L]. (3.85)

The matrix:
(0] = [B] [ (v*)), (3.86)

is then introduced, such that, by construction:

ﬁ[fi’] @] = [In]. (3.87)
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Using the notations of Section [LHl let [y*] be a (M x N) real matrix such that the random
vector U is defined as:

U= [y (). (3.88)

Hence, 12 independent realizations of U can be directly deduced from the matrix [¥(rhaos)]

and gathered in the matrix [U] = [y*][¥(v"2°%)]. Defining [z] such that:

2] = [y"][B], (3.89)
therefore yields the equality:

(U] = [y (™) = (12817 ([BI]) = [2][9]. (3.90)

If [2] is in O¢, [2][z]T = [Ree ()], which implies that:

{ | Ruo(vh=)] = S U0 = [2] (et [WI0]T) ()7 = [2][2]7 = [Reo ) (3.91)
[

RUU] = E [UUT] = hml,chaos*)oo[EUU(VChaOS)] = [ECC(V)]

From Egs. (B.55) and ([B.56)), it can thus be deduced that imposing [z] to be an element of O¢
guarantees that, for any v > N, we have err?(vha%s) = err3 (v, yhaos) = (.

Hence, whereas the optimization problem defined by Eq. (L&])) is perturbed by autocorre-
lation errors, the new optimization problem:

ub.] =[]
2| = argmaxzja € ((0°°()), ("], [¥])

is no more affected, which allows us to consider high values of the truncation parameters N,
and p. Equation (3:90) underlines that the two former optimization problems are equivalent,
as the independent realizations of U have just been rewritten. Only the research set, for the
PCE coefficient matrix, has been modified, which allows the numerical bias due to the finite
dimension of [¥(v"2%)] to be reduced.

Finally, if [y] is the coefficients matrix of the truncated PCE, C®"%(N), of random vector
C, such that CM%(N) = [y]®(£), a good estimation of [y] in high dimension can be computed
by solving the optimization problem defined by Eq. (3.92]).

(3.92)

3.3.4 Remarks on the new optimization problem

It has to be noticed that [¥] is unique, and exactly keeps the same structure than [¥(vhaos)].
Indeed, let [L2™] = [A]~! be the Cholesky decomposition matrix of the autocorrelation matrix
[Re], which is defined by Eq. (B:66). Hence, from Eq. (81), [ (rhe0s)] = [L2Ym]~1[M], which
has to be compared to [¥] = [B]~![¥(vhaos)] = ([L]71A]7Y) ([A)[M]) = [L)'[M], where
[L] and [L*Y™] are two lower triangular matrices. Whereas [L*Y™] implies the asymptotic
orthonormality, [L] guarantees the numerical orthonormality. Moreover, from Eq. (3.92]), the
optimal PCE coefficients matrix [y] is approximated as a product of two matrices:

ly] ~ [25,] (B (3.93)

For a fixed value of N, [B] is strongly dependent on v12%5 and [W(vh2°%)]. From Eq. (I40), it
also verifies the asymptotic property:
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lim [B] = [In], (3.94)

pchaos _y~o

chaos

which implies that [z(]‘g/fc] converges towards [y] if sufficiently high values of v are considered.

Hence, the less dependent on [¥(»2°%)] the matrix [z(]‘g/fc] is, the more accurate the choice of
vhaos is - and the better the PCE identification is.

If another (N x vM°5*) real matrix [U*(v*2°5*)] of independent realizations is considered,
the matrices [B*] and [¥*] = [B*]~1[¥*(vh205%)] can be computed according to Egs. (3.85)
and (386). As it has previously been seen, [U*(v12°5)] [W] and [U*] keep the same structure.
The accuracy of [zé\)/fc] can thus be estimated by comparing C([C**P(v)], [ch]’ [T (vhaos)][B]~1)
and C([CP(v)], 28], [T (v=)][B*] 7).

chaos,* chaos

In particular, v and v can be different. Finally, once the coefficient matrix [zgc]

chaos,*

has been computed, the higher v is, the more accurate and general the validation is.

3.4 Application

In this section, we illustrate the efficiency of the methods proposed in the two former sections
to identify in inverse the multidimensional distribution of a M-dimension random vector C
characterized by a set of v independent realizations. According to the notations of the former
sections, these independent realizations are gathered in the (M x v) real matrix [C**P(v)]. Three
cases are therefore presented with respect to the values of M and v:

e Case 1: v = 1000 > M = 3: first, a low dimension case with many available realizations is
first introduced to underline the ability of the PCE method to identify in inverse complex
and multidimensional distributions.

e Case 2: v = 1000 > M = 50: secondly, a high dimension case with many available
realizations is addressed to illustrate the numerical convergence difficulties that arise when
the size of the projection basis increases, and in what extent the proposed method allows
us to overcome them.

e Case 3: v =100 < M = 150: at last, we present a very high dimensional case with few
available realizations. It will be shown that even it this case, the PCE method give very
promising results.

In these three examples, another set of ' independent realizations (v**f > v) is used
as a reference to validate the different modelings. Moreover, a distinction has to be made
between the PDF modeling, achieved thanks to a PCE, and its estimation from PCE samples,
computed thanks to nonparametric methods. In this context, let v°"°5 be the number of
independent realizations used to carry out the PCE identification, and vP#°5* the number
of independent realizations of the identified PCE random vector, which will be used to draw
graphical representations.

3.4.1 Application in low dimension

The objective of this section is to apply the whole PCE method to a M = 3-dimension case.
First, the statistical properties of the unknown random vector C are presented. Secondly, a
convergence analysis is carried out in order to calculate the optimal truncation parameters
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Ny and p of the PCE, Cas(N), of C. Then, the PCE coefficients are identified from the
v independent realizations, [C®*P(v)], of C. At last, the relevance of the PCE modeling is
analyzed.

Generation of the random vector to identify. Let [X] be a (3 x 6) real-valued random
matrix whose coefficients are uniformly and independently chosen between -1 and 1, such that
C is defined according to the notations of Section B.3.1] as:

C = [X]E (£,2), (3.95)

where £€7P = (&P,£5°P) is a normalized Gaussian random vector which components are in-
dependent. The components of C are however strongly dependent, and the PCE truncation
parameters to be found back by the convergence analysis are p™P = 2 and Ng'P = 2.

Let {€P (01),--- ,€%P (0,)} and {€%P (01),--- ,€™P (0,wt)} be v and ! independent re-
alizations of the random vector £€*P, such that the matrices of independent realizations [CP(v)]
and [Cf(v°")] are given by:

[CoPW)] = [X][E (€77 (01),2) --- E(§7(0,),2)], (3.96)

(Ct ()] = [X][E (€™ (61),2) -+ E(E™7 (B,r) ,2)]. (3.97)

Let {ﬁcef’k, 1<k< 3} be the Kernel smoothing estimations of the marginal PDFs of each

component of C, which are computed thanks to the v"f independent realizations of C gathered
in [CTf(v™eh)]. In this example, 1l = 2 x 105 > v = 1000. Tt is reminded that the PCE identi-
fication of C' is only achieved thanks to the matrix of independent realizations [C*P(v)], which

is considered as the only available information. The PDFs {]’fcef’k, 1<k< 3} are moreover
supposed to build the marginal PDFs of the reference C.

Identification of the PCE truncation parameters. Using the notations of Section [[5.4]
the boundary intervals Bl;, Bly and Bl3 for which the convergence analysis is achieved, are
chosen such that:

1
V1§k§3, BIk:{$€R|]/)\rCef’k($)Z—} (398)

v

Figure3.2ldisplays the reference marginal PDFs of C, as well as the marginal PDFs estimated
from the v independent realizations only, {ﬁecx PR 1<k< 3}. The 1/v tolerance is also plotted
so that the boundary intervals can therefore be deduced from these graphs.

Figure 3] shows the values of err (Ny,p), for nine pairs (Ng,p) in Q(3). On these graphs,
the gradient break of N + err (N) is observed at N = 6, which allows us to find back the
initial solution p™P = 2 and N, = 2. For this small dimension case, the optimal truncation
parameters p and N, given by the convergence analysis are equal to the parameters of the
analytical reference PCE.

PCE Identification. The former convergence analysis leads us to the following PCE of C"

6
C ~ C2%(6) = Zyj‘l’j (1,62) = [Y|¥ (&1, &2) (3.99)

j=1
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Figure 3.3: Convergence analysis of the PCE of C.

where £ and &, are two independent normalized Gaussian random variables. We are now going
to compare [y°®%] and [y"°V], where [y°**] stems from the classical problem defined by Eq.
(L&), whereas [y"*V] comes from the maximization of the new formulation defined by Eq.
(B32). In this application, " = 1000, and the two PCE identifications have been computed
thanks to the same indirect methods that are described in Section B.22.4] to optimize the trials in
the Stiefel manifold, with the same numerical cost (Z = 10,Q = 10%). These values of Z and M
have been chosen for the PCE error function err(Ngy, p) to be independent of them. Hence, for
a new matrix of independent realizations, [U*], of size (6 X VChaOS’*), independent realizations
[C1255(6)] and [C™Y(6)] of CP%%(6) are deduced, with respect to the two optimization options:

(0% (6)] = [y, (3.100)
0™ (0)] = [y (3.101)
Let
(RER) = TP )] [C™* ()], (3102)
[REE] = —g (O[O () (3.103)
R = s [0 [ (6)]" (3.104)
R =~ O™ ][0 (6] (3.105)

be four estimations of the autocorrelation matrix [Rcc] of C. It is supposed that [RiSL] is the
best approximation of [Rcc] and will be considered as the reference. According to the Egs.
B54), B55) and @F56), the autocorrelation errors errlc1ass, epp2class gppdclass ang epplnew

err?heV erp30eW are then computed in each case. In figure 3.4} it can thus be verified that:
chaos,* 2 new (. chaos,*\ __ 3,new /. chaos,* .
Vv > 6, err (v ) =err (v ,v) =0, (3.106)
lim eer,class(Vchaos,*) _ 67,,7,,37C1aSS(VChaOS7*7 I/) —0. (3107)

Vchaos,*_)_;’_oo
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Figure 3.4: Convergence of the autocorrelation error functions with respect to »/haos*,

In particular, for the value ph20s* — pchaos — 1000, it can be noticed that the values of
erpelass(ychaos, ) and eppdiclass(pchaos 1)) are significant when compared to err!855(v), which
introduces an additive bias in the identification.

Figure [3.5] shows a comparison between the marginal PDFs f)rgf’k, Do Pk ﬁéass’k and f)gew’k,
for 1 < k < 3. These PDFs are estimated using Kernel smoothing on the independent real-
izations gathered in the matrices [C™(v*ef)], [C®P(v)], [C°'2(6)] and [C"€V(6)], respectively,
with pehaos* — 106 > pchaos — 1000. First, from only v = 1000 independent realizations of C,
it can be seen that the marginal PDFs are well described by the PCE random vectors C"V(6)
and C%%(6). In particular, the PDFs tails are very well characterized. The PCE method is
therefore an extremely efficient tool to build arbitrary multidimensional PDFs. Secondly, it can
be noticed that, for a same computational cost (Z,Q), the new PCE identification formulation
leads us to better results than the classical one. Finally, to still improve these PCE, more trials
in O¢ would be necessary to better characterize [y***] and [y"*¥]. In order to obtain a PCE
that corresponds still more precisely to the reference random vector C, an increase of v, that
is to say, more information about C, would have been required.

Relevance of the PCE compared to Kernel Mixture and PASM. From adequacy tests,
likelihood estimations and graphical representations, the idea of this section is to show the assets
of the new PCE formulation when dealing with the identification of multidimensional distribu-
tions from a limited knowledge on the random vector of interest C' compared to Kernel Mixture
(KM) and Prior Algebraic Stochastic Modeling (PASM). In this prospect, two PDFs pe(x) and

ﬁgASM(ac, w) are built using a KM approach and a PASM method. The input data of these mod-
elings are still the matrix of independent realizations [C**P(v)] = [C(6;) --- C(6,)]. Once

the KM, the PASM and the two PCE projection matrices, [y°*%] and [y"°¥], are constructed,
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Figure 3.5: Comparison of the marginal PDFs of C' and C®"%(6).
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P independent realizations are computed from the four distributions, from which comparisons
to the reference solution are achieved. For this application, P = 106.

Construction of independent realizations

o Kernel Mixture.

Considering an independent Gaussian multidimensional Kernel, a nonparametric PDF pe ()
is postulated as a sum of v Gaussian PDFs {p;, 1 <1i <wv} to model pc(x):

v

Pole) = 3 Tpi(a) (3.108)

i=1
M N
1 1 (xm— C’ﬁn>
(z) = exp [ —= (Tm—"m ) |, 3.109
) = 11 oy p<2( . (3.109)
4 1/(M+4)
h=c|—— 3.110
7 ((2 + M) v) | G110
where  — p; () is the M-dimension multivariate Gaussian PDF, with mean value C) and
hy 0 - 0
covariance matrix ha , h is the multidimensional optimal Silverman band-
: . -0
0 -~ 0 hy

width, and o}, is the empirical estimation of the standard deviation of each component C). of
C. Let C* be the Kernel Mixture characterized by the PDF & — pe (). The Q independent
realizations {Cker’l, e ,C’ker’Q} of C** are then computed and gathered in the matrix [C*®'].

e Prior Algebraic Stochastic Modeling.

From the v independent realizations of C, the M marginal cumulative distributions F,, of
Chn, with 1 < m < M, are estimated using a non parametric statistical method. In addition, a
Gaussian copula CE7 (see [2] for more details about the copula) based on the rank correlation
is chosen (this type of copula has been chosen as it is the most commonly used in the PASM

approaches):

Crme @15+, 2ar) = by (071 (1), -+, 67 (2ar)) (3.111)
M [ 1 wp (= Lo T Rrank >d od 3.112
¢rank(u) /oo /oo (27T)M/2 Tt ([Rrank]) exp ( 2’“1 [ ]U U1 UnNr, ( . )

v 2
o(v) = \/% /_OO exp (—%) dv, (3.113)
[RTnK, = 25in (%pf].) , (3.114)

where p;?- is the Spearman correlation coefficient between C; and C;. Let C“°" be the random
vector characterized by the copula C&7* and the marginal cumulative distributions {F¢,,, 1 <

m < M}. @ independent realizations of C°P are thus gathered in the matrix [C°P].
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e Polynomial chaos expansion.

class] new]

Finally, using the matrices [y and [y that have been previously defined, and a new
(6 x P) real matrix [¥(P)] of realizations, P independent realizations of C'35(6) and C™*¥(6)
are gathered in the matrix [C°12%] = [y°18ss][W(P)] and [CPeV] = [y"*V][¥(P)].

Relevance of the PCE modeling when identifying multidimensional PDFs from a
limited amount of independent realizations. Using the results of Parametric Statistics,
this section assesses the relevance of the four methods to construct multidimensional PDFs.
Three kinds of analysis are achieved: adequacy tests, 2D graphical representations, and multi-
dimensional likelihood computations.

e Adequacy tests.

From the matrices of independent realizations LCker], [CooP], [C°18ss] and [€mev], the estima-
tions {F}', 1 <m < M}, {F7, 1<m < M}, {F$5, 1 <m < M} and {F2V, 1 <m < M}
of the cumulative distribution functions (CDF) of each components of C*°*, C®°P, C'%*(6) and

C"®V(6) are respectively assessed. Let 6’(1), e ,6'(M) be the (1 x v)-dimension linear forms

corresponding to the rows of [C*P(v)]. For 1 <m < M, C ) gathers therefore the v indepen-
dent realizations of the component C), of C, which have been used to compute the statistical
modelings. For 1 < m < M, the Kolmogorov-Smirnov adequacy tests are then performed. For
each component C), of C, the null distribution of the Kolmogorov-Smirnov statistics is com-

puted under the null hypothesis that the v independent realizations of 6'(m) are drawn from
the distribution of the chosen stochastic model. Table Bl gives the -value for each stochastic
model, which is defined as the probability of obtaining a test statistic at least as extreme as the
one that was actually observed, assuming that the null hypothesis is true. Without surprise,
this table allows us to verify that the modeling based on the Gaussian copula and the empirical
PDFs of each components of C gives the best results. Moreover, with an error level of 5%,
only the tests for the copula model and the PCE identification based on the new formulation
are positive. The classical PCE and the Kernel mixture modelings are indeed less relevant to
characterize the marginal PDFs of C.

CDF Flclass Flnew Flker FlCOP
[-value 0.3779 0.6331 0.2142 0.9996
CDF Fchass anew F2ker FQCOP
[-value 0.0000 0.0967 0.0000 0.4573
CDF Fgclass F?flew F:%(er F:;OP
[-value 0.0000 0.8692 0.0411 0.9849

Table 3.1: Computation of the S-values corresponding to the different stochastic models.

e Two-dimensions graphical analysis.

~ker

new

From [C*ef(yreh)], [Cker], [C°oP], [C!%] and [C™Y], the estimations

a:»—)ﬁrcef

(x), © —

PEN(z), = peP(x), T — pE(x) and x — PEY(x) of the multidimensional PDF of C,
cker. Coop, Cdass(G), C"7(6) are respectively computed using the non parametric statistical
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Figure 3.6: Comparison of 2D contours plots in the plane [x3 = E(C3)].

estimation defined by Eq. (LEH). Projections of these functions are presented in Figures
B8 B and B8 In each figure, the surface plot characterizes the reference PDF (based on the
vt = 2100 independent realizations), and the contour plot refers to isovalues of the projected
PDF of interest. It can therefore be seen that the new formulation of the PCE gives very good
results in identifying multidimensional PDFs. In addition, in this example, the Kernel mixture
model is more adapted than the copula based model to characterize the multidimensional PDFs.

e Likelihood estimations.

From Eq. (L48), the multidimensional log-likelihood functions £ qier ([CP(v)]),
Lceor ([CFP(v)]), Laetass ([CFP(v)]) and Lomew ([C™P(v)]) are estimated from the realizations
matrices [CP(v)], [C*et], [OCP], [C'%5] and [C™Y], in order to evaluate the multidimensional
relevance of the different stochastic models. In the same manner, [C™(1**)]1000 is defined
as the 1000 first columns of [C™*(v™")], and the log-likelihood functions £xer ([C™F (17)]1000),
Leeor ([CF (17N)]1000), Lgetass ([CTH(17)]1000) and Lemew ([C7F(17F)] 1000 ) are computed. These
values are gathered in Table It can thus be verified that the new formulation of the PCE
identification gives the best results when considering the maximization of the log-likelihood.

As a conclusion for this example, in low dimension, it can be seen that the new formulation
of the PCE identification is very relevant when trying to identify multidimensional distributions
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Figure 3.8: Comparison of 2D contours plots in the plane [x; = E(C})].
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L e ([CP(v)]) Leor ([CP(v)]) L genass ([CP(v)]) Lgrew ([C*P(v)])
—8.0712.10°3 —8.7530.10°3 —8.1844.103 —7.8624.10°3

Ecker ([Cref(yref)]IOOO) ﬁCCOD ([Cref(yref)]woo) Ecclass ([Cref(yref)]woo) ﬁcnew ([Cref(yref)]woo)
—8.1933.10°3 —8.5535.103 —8.1797.103 —7.8457.103

Table 3.2: Computation of the multidimensional log-likelihood corresponding to the different
stochastic models.

from a limited number of measurements. Indeed, it allows us to build multidimensional distri-
butions that are still relevant for experimental data that have not been used in the identification
process.

3.4.2 Application in high dimension

The idea of this second application is to underline the capability of the new PCE formulation to
carry out convergence analysis in high dimension. Indeed, as it has been shown in Section B3],
for a given value of v"25 when the size N of the polynomial basis increases, and more specially
when the maximum degree p of the polynomial basis becomes high, the difference VTlm (W] [w)T —
[In] introduces a significant numerical bias which perturbs the classical PCE identification. In
opposite, the new PCE formulation, which avoids computational autocorrelation errors, allows

the numerical algorithms to be much more stable and to give more relevant results.

Generation of a high dimension random vector Using the same notations than in Section
B4 let [X"P] be a (M x N) real matrix whose entries are randomly generated, such that
random vector C' is given by:

C = [X"P)w (g=P) (3.115)

Eexp - < ‘13ij Sxp7 e 75]6\)[;13) ) (3116)

where {&, 1 << Ny} is a set of N, independent normalized Gaussian random variables.
As in Section B4l we define a (M x v) real matrix [C**P(v)], which gathers v independent
realizations of C:

(€ ()] = [XP] o], (3.117)

[WEP] = [ (£5P(01)) -~ W (E7P(00))]- (3.118)

The components of the random vector C' are again strongly dependent. As a numerical illus-
tration, it is supposed that v = 1000, p™P =9, Ng*¥ =3, N = (9 + 3)!/(9! 3!) = 220, M = 50.
A high value of p®P is deliberately chosen, in order to emphasize the difficulties of the classical
PCE formulation to carry out convergence analysis in high dimension. Nevertheless, this high
value for the maximal polynomial order implies an ill-conditioning of [W**P], such that C can
have very high values.
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Figure 3.9: Comparison of the results for the convergence analysis of the two PCE identification
formulations.

Identification of the PCE truncation parameters According to Eq. (L34]), the truncated
PCE, C%5(N), of C is given by:

C(N) = [y (€). (3.119)

Eq. (L8Y) implies that the number N, of elements of [y] has to be higher than M (M + 1) /2.
When M is large, this leads us to the identification of thousands of coefficients. However, as it
has been said in Section [[L5.4] the higher N, is, the less precise is the PCE identification, for
a given computational cost (Z, Q). This motivates the definition of a new set é(pmaX,N maxy
such that the optimal values p°* and NgP* are given by:

é(pmaX7NmaX) = {(p7 N9)7 Ng S M7 p S pmaX’ (NQ +p)'/ (NQ' p') S Nmax}’ (3120)

(p°pt,N;’pt) = arg min err(Ng,p), (3.121)
(p,Ng)€Q(p™a*,Nmax)

where error err(Ny,p) is defined by Eq. (L66]), and is computed with respect to a fixed choice
for the computational cost (Z,Q). For a fixed value v°"° = 1000, the detrimental influence
of the autocorrelation errors err? and err3 of Eqs. ([B55) and (8356) can then be noticed
in Figure B9 when high values of N (and more specially high values of p) are considered.
The error functions err®s(Ny, p) and err™V(Ny, p) correspond, respectively, to the classical
formulation and the new formulation of the PCE identification. It can be seen that for p > 8,
the ratio err'a(N,, p) /err™®V (N, p) becomes greater than five, whereas the two methodologies
are globally similar for low values of p. Hence, the accuracy of the classical method seems to be
limited to low values of p and is therefore less relevant for convergence analysis which handle high
polynomial orders. At last, the five lowest values of the numerical assessments of err™" (N, p)
are gathered in Table B3l It can be seen that the new formulation allows finding back the
couple (p™P, NgP) as the minimum of the error function. Nevertheless, keeping in mind that
the lowest N is, the easiest the identification is, this result also shows that using the couple
(p, Ng) = (11,2) could be interesting.

PCE Identification From the v independent realizations of C, a PCE identification using
the new formulation can be computed for the truncation parameters p = 9 and N, = 3, which
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couples (p,N,) | (11,2) | (93) [ (74) [ (65 | (2,27)
values of N 78 220 330 462 406
errneW(Ng, D) 0.06104 | 0.06005 | 0.06228 | 0.06301 | 0.06521

Table 3.3: Lowest values of err™¥(N,, p) with respect to (p, Ny).
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Figure 3.10: Graphs of the estimated marginal PDFs for two particular components of C.

correspond to N = 220. The results of the numerical identification with a computational cost
of (Z = 10,Q = 1000) are given in Figure The values of (Z = 10,Q = 1000) have
once again been chosen for the PCE error function err(Ny,p) to be independent on them. In
this figure, the marginal PDFs pgiaos and peiaos of Cyf™(220) and C3§¥(220) are compared to
the experimental estimations p;” and pg, of the components Cyy and Csg, respectively. The
values C7%(220) and C5§™(220) correspond to the minimum and to the maximum values of the
unidimensional error function err(3,11), for 1 < k < 50, which is defined by Eq. (L65). In
order to evaluate the distance between these estimations and the true marginal PDFs of C, the
marginal PDFs estimated by the non parametric statistical Kernel method, with v™f = 2 x 10°
independent realizations of Cy; and Csg, are added to the figures. These PDFs are considered
as the reference. These figures therefore emphasize that the new PCE identification method
allows building a stochastic model of the distribution of C' that suits the experimental marginal
PDFs.

76



1000
. 500
=
<
2
Z 0
8
3
-500
1
1 abscissa ¢ M
Figure 3.11: Representation of E'[C ® C, ;, 1 <1i,j < M.

3.4.3 Application in very high dimension when the available information is
very limited

Generation of the random vector to identify As in the previous applications, we define
a centered M-dimension random vector C' from its PCE formulation, such that:

C = [D][X"P]w (e>®), (3.122)

where [XP] is a (M x N) real matrix whose entries are randomly generated under the constraint
[XAPIXHPIT = [I)], { TP f\zp} is a set of N, independent normalized Gaussian random

variables, {U(£%P), ..., Un(£7P)} gathers N polynomial function of £*P that are statistically
orthonormal and for which maximal order is p, and [D] is a (M x M) real orthogonal matrix,
such that:

E[C®C]=[D]D]". (3.123)
A representation of the chosen matrix £ [C ® C] can be found in Figure 311l The compo-

nents of C' are thus chosen on purpose very correlated.

Two sets of independent realizations of C' are then introduced:

o S*P = {C(6y),...,C(0,)} corresponds to the available information about the identifica-
tion in inverse of the multidimensional distribution of C',

o S = [C(01),...,C(0,.)} is a reference set, which will only be used to evaluate the
relevance of the identification process.

In this section, we choose M = 150 > v = 100, such that the information about C' is very
limited compared to its dimension, and the rank of the empirical estimator of the covariance of
C, [Ecc(u)] = 1/v[C**Pv)][C*P(v)]T is inferior to v. In addition, in the following, N, = 5,
p = 5, such that N = 252, and v™f = 4,000.
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Figure 3.12: Comparison between the covariance of C"°5(N) and the empirical estimator of
the covariance of C.

PCE identification For £ a N ,-dimension random vector whose component are independent
and normally distributed, it has been shown in Section [T that the PCE projection matrix, [y],
of C, such that C ~ C®5(N) = [y]® (&), has to be searched to maximize the likelihood of
Chas(N) at the experimental points gathered in S®P, under the orthogonality constraints:

YY" = E[C®C]. (3.124)

As only a limited set of v < M realizations of C are available, this constraint cannot be
exactly verified. From the iterative algorithm based on the development achieved in Section
B25 matrices [y*] that verify [y*][y*]7 ~ [Rce(v)] can however be generated, such that the
PCE matrix [y] can be identified from the limited available information about C. Let [yo,] be
the approximation of [y] corresponding to a computational cost given by (Z = 10,Q = 103),
such that CM5(N) = [yo,.]¥(£). A comparison between [Ree(v)] and the covariance matrix
of C12%5(N), [yo.][yoe]", can thus be seen in Figure BI2l Tt can be verified that the algorithm
proposed in Section .25 allows us to make [yo.|[yo.]T be equal to [Rece(v)] almost everywhere
but in restricted zones where the components of [Roc(v)] are very low.

From 1l = 4,000 new realizations of &, v independent realizations of C"*(N) can be
deduced, and are gathered in the set ST = {CM5(N, 0;),...,C™(N,0,c)}. Hence, let
Pers ﬁce,i and ﬁg:os be the empirical estimations of the PDFs of C,,, and C'2°(N) that have
been computed from the sets S®P, S™f and Sh2°5 respectively. Three particular components of
Cyp, and Ch29(N) are then compared in figure 313l It can be seen that the PDFs ]3%}1205 are very
close to the reference PDFs ﬁc?;, and even closer than jfgfrs, such that even when dealing with
very high dimensional problems with very limited available information (M = 150 > v = 100),

the proposed PCE method appears to give very promising results.

In order to emphasize that not only the marginal PDFs of C' are well characterized but its
whole distribution, let {b,,, 1 < m < M} be a set of M orthonormal functions that are defined
on Q =[0,1], and let J1, J2 and J3 be three random indices permutations such that:

This allows us to define three triplets of random fields,

78



Cq
0.025

PDFs

200

200
0.025

Cio

PDFs

200

200
0.1

PDFs

2o

50 -50
Values of Cog

0 50
Values of Cgg
Figure 3.13: Comparison of the PDFs of three particular components of C' and CM2%5(N)

79



)

(Xl thaos XlGauss) (X2 Xé:haos X2Gauss) (Xg Xé:haos X?E}auss)
such that for 1 <p < 3:

M
X, =3 Cub oy
m=1

M
chaos __ chaos
Xghaos = N " Cot (N)b, (3.126)
m=1
M
Gauss __ Gauss
Xp - Z Cm bj,(,f;)’
m=1
where CG2Uss — (CPauss . C§®) is a Gaussian vector for which mean and correlation

are equal to the ones of C. Therefore, the statistical properties of these random fields strongly
depend on the dependencies between the components of their projection coefficients. Comparing
the statistical properties of these random fields is thus a method to compare the global relevance
of the characterization of the multidimensional distribution of C'.

Thanks to v = 4,000 realizations of C, CChaOS(N ) and CG2%5  we then have access to v
independent realizations of X, Xghaos and Xfauss. In order to compare the statistical infor-
mation that is included in these realizations, we denote by Nup(Xp(0g), 1), Nup(X5 2% (0,), u),
Nup (Xfauss(é?q), u) the numbers of upcrossings (see [16] for more details about the upcrossings)
of the level u by the ¢ realization, X;(6,), X"#05(6,), XF2us(9,), of X, X;haos and Xy(,;auss
respectively over the length [0,1]. At last, we define D;, 1 < i < 10 the domains such that
for each level u, D; gathers i/10 of the values of { Ny, (X,(01),u), ..., Nup(Xp(, et ), u)}. These
domains for the three considered permutations are thus compared to contour plots that corre-
sponds to the equivalent domains for random fields X;haos and XE‘“SS in Figure 314l The very
good agreement between the domains of X, and X;haos, whereas the domains of X, and Xfauss
do not match correctly, is an other illustration of the relevance of the PCE method to identify
in inverse from a finite set of independent realizations the multidimensional distributions of an
unknown random vector, even when the components of this vector are strongly correlated and
very dependent.

3.5 Conclusions

In this chapter, it has been shown in what extent the PCE method gives very promising results
when trying to identify in inverse the multidimensional distribution of high dimensional random
vectors. For this method to numerically give relevant results, two adaptations of the classical
formulation presented in Chapter [[lhave been emphasized. First, iterative algorithms have been
described to optimize the trials of random matrices under orthogonality constraints. Secondly,
a method to numerically stabilize the matrix of realizations of the statistical polynomial basis
has been introduced. The interest of these two adaptations has then been underlined on three
applications based on simulated data. Finally, the method proposed allows making the PCE
range reachable for many engineering applications with many degrees of freedom.
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Chapter 4

Karhunen-Loéve expansion revisited
for vector-valued random fields

4.1 Introduction

As presented in Chapters [[l and 2] the Karhunen-Loéve (KL) expansion has been used in many
scientific fields to efficiently reduce the statistical dimension of random fields. This expansion
can then be coupled to a polynomial chaos expansion (PCE), for which formulation has been
presented in detail in Chapters [[] and B to completely characterize the distribution of random
fields [50} 611 22] [62, (78, 79 34} [66 80, 69, [68], 8I]. In particular, it has been shown in Chapter[Il
that the importance of the KL expansion stems from its optimality in the sense that, due to the
orthogonal projection theorem in Hilbert spaces, it minimizes the total mean-squared error. In
other words, for any integer M and any multivariate random field X, it can be extracted from
the KL basis associated with X the M-dimension family that minimizes the total mean-squared
error among all the M-dimension families that have been extracted from a countable Hilbertian
basis.

When considering vector-valued random fields, as it will be the case when considering the
track-geometry random field, this error can be written as a sum of weighted local errors, where
the local errors and the weights are respectively the normalized mean-squared errors and the
signal energies associated with each component of X. Therefore, when minimizing the total
mean-squared error, we minimize in priority the local errors associated with the components
of X that have the highest signal energies. If the KL projection of the random field X is
then used to propagate variability in mechanical systems, it has therefore to be kept in mind
that the particular components of lowest signal energy will not necessary be realistic nor well
characterized. If the quantities of interest of the studied system are however very dependent on
a precise description of these components, such an optimal KL family may not be relevant and
give biased results.

In this prospect, in addition to the classical mean-squared error, two local-global projection
errors are introduced in this work:

° s% corresponds to another weighted sum of local errors, for which weights are a priori or
a posteriori chosen from sensitivity analysis;

e 2 refers to the maximal value of the local errors associated with each component of
random field X.
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Indeed, these errors illustrate two classical expectations. On the first hand, error s% leads
to projection families that are particularly adapted to the components of X of highest chosen
weight. If, for a given quantity of interest, the importance of each component of X can be
evaluated from a sensibility analysis, these weights can thus be chosen in order to maximize
the relevance of the projection basis to analyze this chosen quantity of interest. On the other
hand, if no information is available about the importance of each component of X, making
these weights be equal corresponds to the case where no component of X is favored in the error
to be minimized. In such a case, there is however no reason for the minimization of this equally
weighted error to lead to a projection family for which each local error would be the same. This
thus motivates the introduction of error €2, which forces us to search projection families, for
which the description precision would be close for each component.

Based on an original scaled expansion of X, the idea of this work is therefore to propose a
method to identify the optimal families that respectively minimize errors 6% and £2_.

In Section d.2] the scaled expansion is described. In particular, it will be shown how such a
formalism allows the identification of the two former optimal basis to be constructed. Section
43l illustrates the possibilities of such an expansion on an application based on simulated data.

4.2 Scaled expansion and optimal basis for vector-valued ran-
dom fields

In this section, the definition of the two local-global errors s% and €2 is first presented. The
proposed scaled expansion is then introduced for vector-valued random fields. It is finally shown
in what extent such a decomposition can lead to the minimization of these two errors.

4.2.1 Local-global errors and optimal basis
Theoretical framework

Adapting the notations of Chapter 2 to the vectorial case, for Q > 1, let P(Q)(Q) be the space of
all the second-order R9-valued random fields, indexed by the compact interval = [0, S], where
it is reminded that S < 4oco. Let H(@ = L?(Q,R?) be the space of all the square integrable
functions on €, with values in R¥, equipped with the inner product (+,+), such that for all w
and v in H@),

(u,v):/ﬂu(s)TU(s)dS. (4.1)

Let X = {(X1(s),...,X0(s)), s € Q} be an element of P(?)(Q). Without loss of generality,
it is once again supposed that the mean value of X is equal to zero:

E[X(s)]=0, Vse. (4.2)
It is recalled that the signal energy of X, || X|[p@) (), is written:

def

”X”’P(Q)(Q) = VE[(X, X)]. (4.3)

Tn the following, F(M) = {f™ 1 < m < M} refers to a set of M deterministic functions that

has been extracted from any countable Hilbertian basis of H(?). The projection of random field
M)

~F(
X on FM) is then written X . The total normalized mean-squared error associated with
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FM) is denoted as £2(FM)) and can thus be written as a sum of weighted local normalized
mean-squared errors,
(M)

2
HXq — X HP(Q)

52(.7:(M)) =

q ;o 1<¢<@Q, (4.4)

BN

associated with each component X, of random field X:

| 1Xllpe
£2(FOD) :Z{‘ip()}gg(}*(ﬂﬂ))_ (4.5)

2
= UXIp@ @)

Optimality of the KL expansion

The matrix-valued covariance function, [Rx x|, of centered random field X is introduced as:

[Rxx(s,s)] = E[X(s)® X(s)], V (s,8) € Q*. (4.6)

It is assumed that [Rx x| is square integrable on © x €, that is to say

I[Rxx]I% déf/ﬂ/ﬂH[RXX(S,S/)H@dm/<+oo, (4.7)

with ||-|| » the Frobenius norm of matrices. It is reminded that the KL basis, £ = {k™, 1 <m},
associated with X, can be constructed as a countable Hilbertian basis of H(@), which is consti-
tuted of the eigenfunctions of covariance matrix-valued function [Rx x|, such that:

/ Rxx (s, $)E™(s)ds’ = Apk™(s), s€Q, 1<m, (4.8)

Q

(™ k) =6mj, M =X > =0, > A < oo, (4.9)
m>1

Issues concerning the solving of the integral eigenvalue problem, defined by Eq. (&38]), which
is usually called Fredholm problem, can be found in [21} 44} [45]. Due to the orthogonal projection
theorem in Hilbert space, for all M > 1, projection family KX(M) = {k™ 1 <m < M} is thus
optimal in the sense that, for all family FM):

e2(KMy < 2(FM))y, (4.10)
~Jc(M)
Let X be the projection of X on KM), Family K™) being orthonormal, it comes:
N M
XD =N Ak ™m, (4.11)
m=1
where & = (£1,---,&u) is a centered random vector, for which components are uncorrelated

and with variance equal to 1. In particular, if X is a Gaussian random field, the components
of £ are normally distributed and statistically independent.
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Local-global errors

From Eq. (&3), minimizing > amounts therefore to minimizing in priority the local errors
I Xall% 0
IIXIIf,(Q)(Q)
words, for given values of p, ¢ and M, if | Xp[lpq) > | Xqlp(q), the minimization of 2 can
lead to the identification of a M-dimension truncated Karhunen-Loéve family associated with
X, KM guch that ag(IC(M)) < E?](,C(M)). Consequently, if X, and X, are independent, a two
steps approach, based on the definition of two different families (one for X, and the components
of X that depend on X, one for the other components of X that do not depend on X,,) would
be more relevant. On the contrary, if X, and X, are indeed dependent, more elements have to
be added in K™ to make ag decrease, or another choice for the error function to be minimized

has to be considered.

corresponding to the components of X that have the highest weights In other

In this prospect, two local-global projection errors are introduced in this work, s% and 2,
such that for any B in |0, +00[?:

Q
eh=> Bres, (4.12)
q=1
2 _ 2
€5, = 1glqang {e}- (4.13)

As presented in Section 1] if the reduction of the statistical complexity of random field X
is carried out as a first step in a propagation of variability in mechanical systems, minimizing
these two errors instead of error €2 should allow us to improve the relevance of the projection
basis, whether the importance of each component of X for a given quantity of interest can be
evaluated from a sensibility analysis or not.

4.2.2 Scaled expansion

Let O be an element of S(@)(1) = {O €]0,1[%, Z?Zl 02 = 1}. This allows us to define the
scaled random field, Y (O), such that:

Y (0) = Diag(0)] X, (4.14)
O, 0 0

Diag(0)] = | © @ (4.15)
o0 o

The autocorrelation function, [Ryy (O)], of Y (O) is thus equal to:

[Ryy (0)] = [Diag(0)] [Rx x] [Diag(O)] - (4.16)

The family XM (0) = {k™(0), 1 <m} is thus denoted as the Karhunen-Loéve family
associated with random field Y (O), such that:

+oo
Y (0) =) kK"(0)y/An(0)6n(0), (4.17)
m=1
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An(0) = ((Y(0),k™(0)), (Y(0),k™(0))), &n(0) = (4.18)

where it is reminded that, by construction, family (™) (0) is orthonormal in H(%), and pro-
jection coefficients {£,,(O), m > 1} are uncorrelated:

(k™(0),k(0)) = E[€m(0)§;(0)] = bpj, 1 <m,j. (4.19)
Since Oy # 0 for all 1 < ¢ < @, matrix [Diag(O)] is invertible. Therefore, the projection of
random field X on family KX(M)(0), that is denoted as /)E(M)(O), is given by:

M
X"(0) = 3 [Diag(0)] " K™(0)VAn(0)€n(0), 1< M (4.20)
m=1

The elements of KM)(0) are once again ordered such that the variance of the projection
random variables are sorted in a decreasing order:

)\1(0) > )\2(0) > .- = 0. (4.21)
According to Eqs. (44) and (1), for all 1 < M, we finally have:

2oy =1-— %75, 0) [y 1sasq. @
HXQHP(Q) m=1 Q
Q M
(KM 0) =1- |X”P(Q) Z mz /Q (K0, 5)}" ds. (4.23)

It can be verified that if O = ﬁ (1,---,1), the scaled expansion coincides with the classical
and direct KL, expansion associated with X, defined in Section B.2.11

4.2.3 Properties of the scaled expansion

This section aims at emphasizing the main properties of the scaled expansion, on which the
minimization of local-global errors 6% and €2 will be based. First, the continuity of the ap-

plications O — 3(K*)(0)) and O — €% (KM (0)) on S@)(1) will be shown. Then, the
mechanisms induced by the scaled expansion and its optimality are presented.

Lemma 1 Random field Y (O) and its realizations are continuous in O with respect to the Lo
norm on S(@(1).

O Proof: Let O and O* be two elements of S(@)(1).

1. We have:

Q

1Y (0) = Y (O[30 Z ) 1 Xl -

(4.24)

Cy |0 — O%|[za
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where ||-||po is the Euclidian norm on R and Cy = maxj<,<g ||Xq\|$3(ﬂ) is a positive
constant that is independent of O and O*. The application O — Y (O) is therefore
continuous on S(@)(1) with respect to the Ly norm.

2. In the same manner, let X (0) be a realization of X, such that, by construction, Y (O, 0) =
[Diag(0)]X (#) and Y (O*,0) = [Diag(O*)]X (#) are the corresponding realizations of
Y (O) and Y (O") respectively. Therefore:

IY(0,6) = Y(0",0)|2, % (Y(0,6) - Y (0%,6),Y(0,6) — Y(O*,6)) )
.25
<110~ 0% e | max {(X4(6), X,(6)}]

As max; <4< {(X4(0), X4(0))} is a positive constant that is independent of O and O,
the application O — Y (0, #) is continuous on S@) (1) with respect to the norm (RIF

O

Equation ([AI7) and Lemma [ yield that for any values of the set of random variables
{&m(0), 1 < m}, whose mean values are equal to zero and variances are equal to one, the
application O +— 3", /A (0)k™(0)&,(0) is continuous on S@) (1) with respect to the Lo
norm. This motivates the introduction of the following hypothesis, that will be required for the
next propositions to be valid.

Hypothesis 1 For all 1 < m, the applications O +— /A, (O)k™(O) are supposed to be con-
tinuous on S(@) (1) with respect to the norm I 1., -

Proposition 2 Under Hypothesis [, the applications O +— 63(’C(M)(O)) are continuous with
respect to the BEuclidian norm on S(@) (1), for all 1 < ¢ < Q.

00 Proof: If Hypothesis [ is verified, due to the continuity properties of the product, of the
sum, and of the integral over a closed interval, it can be deduced that for all 1 < M,

M
0y )\m(O)/ {Km(0,5)}2ds, 1<q<Q, (4.26)
m=1 Q

are continuous with respect to the Euclidian norm on S(@)(1). According to Eq. ([@EZZ), this
leads us to the continuity on S(@)(1) of the applications O — 63(’C(M)(O)), forall 1 < ¢ <Q.
(]

Corrolary 2 Under Hypothesis [, the applications O +— 6%(’C(M)(O)) and O — 2, (KM (0))

are continuous with respect to the Buclidian norm on S(@)(1).

0 Proof: By construction of errors 6% and £2_, defined by Eqs. (I12) and ([ZI3)), this corrolary
is a direct consequence of Proposition O

Proposition 3 Under Hypothesis [, for all 1 < M, application O s &2, (IC(M)(O)) admits a

minimal value, OLD, in S@(1).
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O Proof: Under Hypothesis [ Corrolary B yields that application O ~— &2, (IC(M)(O)) is
continuous with respect to the Euclidian norm on S(@)(1) for all 1 < M. Tt admits therefore a
minimal value in any closed subset S(e) = {O € [e,1 — ]9, 222:1 Og =1}, forall0 <e< 1.

Then, for 1 < ¢ < @, if O, tends to zero, it can be noticed that 63 (IC(M)(O)) tends to its
maximal value as the weight of X, in the global minimization is almost zero. This leads us to
the fact that it exists 0 < ¢* < 1 sufficiently small, such that for all O and O* in 8(¢*) and
S@(1)\S(e*) respectively, £2. (0) < &2 (O*). In other words, it exists * in ]0,1[ and o)
in S(@)(1) such that:

O(M) =arg min (&5, (0)} =arg min 15 4.27
g0e5( ){ )} OES(Q)(l { } ( )

O
The importance of such a vector 0&0 ) for the minimization of error 2, will be discussed
in Section Although the perturbation of [Rx x|, defined by Eq. (IZ:EEI), is quadratic
with respect to vector O, there is no theoretical result in the perturbation theory field that
could guarantee the validity of Hypothesis[I]in the general case. From a discrete point of view,
applications O — /A, (O)k™(O) can however always be considered as continuous, as for any
discontinuous application A, it exists a continuous application A*, such that the projections of
A and A* on the same discretized space are the same. Hence, in the following, it is supposed
that we are within the framework of Hypothesis [

The next Lemma and Proposition aim now at emphasizing how the scaled expansion could be
used to favor or put at a disadvantage on purpose the characterization of a particular component

of X.

Lemma 2 For all O in SQ (1) and for all FM) in (H(Q))M, we have:

Q Q
S02 X3 <2 (KMD(0)) < 3702 Xyl (FM). (4.28)

q=1 q=1

O Proof: The proof of this lemma is detailed in Appendix[Al [J

In other words, Lemma 2 underlines that for all O in S(@)(1), family X™)(0O) is M-optimal
for X regarding error Zqul Og HXQH%(Q) ag. For 1 < p # ¢ < @Q, imposing 012, HXPH%(Q) >
03 HX‘IH%(Q) tends therefore to favor the characterization of X, rather than the one of X,. This
can be seen from the following proposition:

Proposition 4 For any O = (Oy,---,0,) in S@(1) and for all k such that 0 < k <
1/2
{ZQ ! 02} , the vector O* = (/401, -, kKOQ-1, \/1 — K2 Z(?;ll Og) is in S@Q)(1). For

k=1, we have O = O" and k can be smaller or larger than 1. We then have:

{gg (/c<M>(o*)) — e} <IC(M)(O)>} {21} >0. (4.29)

O Proof:

1/2
1. IfO = (01, ,0q) is in S@)(1), then qu:1 07 = 1. Hence, if 0 < 1 < {ZQ ! 02} / ,

>S9, (07)* = 1, which shows that O* is in S@)(1).
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2. Moreover, Lemma, [2] yields:

{ 59, 021X, |30 <2 (KPD(0)) < 122,02 X, P <2 (KOD(0%) .
)2 * )2

quzl (Oq) ”Xq”%(g) 53 (’C(M)(O ) < Zqul (Oq) ”XqH?)(Q) 52 (’C(M)(O)) ,

(4.30)

which can, for all ¢, and ¢, in RT, be written in a more compact form as:

Q
LB A {eg (/C(M)(o*)) — 2 (;C<M>(o)>} {caog . (0;;)2} >0,  (431)
q=1

Choosing ¢, = 1 and ¢, = k? yields:

{gg (/c<M>(o*)) —ed (/c<M>(0))} (k2 -1} >0. (4.32)

Hence, if k > 1, that is to say if the weights of all components of X, but the one of X, have
been increased in the choice of O*, the projection of X on KM (0*) will be less precise than
its projection on K (0) because 52Q (KM (0*)) > 52Q (K™)(0)). On the contrary, if k < 1,
the weight of X in the scaled expansion defined in Section is increased by comparison to
the other components of X, such that the projection of X on IC(M)(O*) will be better than
its projection on K™ (0) because 62Q (IC(M)(O*)) < 6%2 (IC(M)(O)).

By playing on the values of the components of O, the scaled expansion thus appears to
be able to favor or put at a disadvantage on purpose the characterization of a particular
component of X. The goal of the next sections is therefore to define a method to minimize
errors 8[23 and £2_, based on this scaled expansion.

4.2.4 Minimization of a weighted sum of local errors

The minimization of error 6%, defined by Eq. (ZI2), is a direct consequence of Lemma 2l
Indeed, for all B in S(@)(1), it can directly be seen that the choice

0= 1<4<a (433)
Kl
leads us to the minimization of error 6%, such that:
KM (0P = arg  min {52 (}"(M))} . 1< M. (4.34)
]:(M)G(H(Q))M

Hence, just by considering the KL expansion of Y (O) = [Diag(O)] X rather than X, it is
possible to construct projection families that could favor particular components of X, from a
priori or a posteriori choices for 3.
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4.2.5 Minimization of the maximal value of the local errors

The optimal families ]—'éo ) which minimize error 2., that is to say such that:

FM = arg min {ago(}"(M))} = arg min { max Eq(}"( ))} , (4.35)
FODe(H@)M FODe(m@)M 1<q<Q

have been introduced to minimize the local errors associated with each component of X. These

projection families stem however from a Min-Max optimization on the very large space (H(Q))

such that their direct numerical identification can be very difficult. As the dimension of S(@)(1)
is comparatively very small, the idea presented in this section is thus to use the former scaled
expansion, defined in Section 221 to approximate J:O(OM) as the solution of an optimization
problem with respect to O in S(Q)(l), rather than an optimization problem with respect to
FM) in (H(Q))M. For all 1 < M, we thus define K(M)(ngc\,/[)) as the scaled basis associated

with the vector Og[), such that:

(M) _ 4
(0)S arg Oerér‘l(g%(l {2 (0)}, (4.36)

for which existence stems from Proposition [Bl

Whereas vector OP, defined by Eq. ([#33)), is independent of M, it has to be reminded that
M)

vector Ogo depends on M in the general case.

This section aims first at quantifying the distance between K >(0££” )) and F27. In the

two dimensional case (Q = 2), it will be shown in particular that I >(0§<‘,” )) = 7O At last,
based on Proposition ] an algorithm to numerically solve Eq. (£38)) is presented.

Quantification of the error introduced by the approximated identification problem

Lemma 3 For all M > 1 and for all O in S(@Q) (1), the relevance of KM)(O) to minimize error

€2 can be assessed as:

0 < 2 (KM(0)) — 2 (FLD) <uB(0), (4.37)
where:
qet o1 02 | Xyl 02K (0))

UB(0) = == : (4.38)
S 02 (Xl

0 < 62K (0)) ¥ e (KD (0)) - 22 (KM(0)), 1<q<Q. (4.39)

0 q

O Proof: The first inequality 2 (K*)(0)) > Ego(féoM)) is a direct consequence of the opti-

mality of FLD | Let O be an element in S @)(1). From Lemma [ it can therefore be deduced
that:

Q Q
>0 Xyl 22 (KA(0)) <3002 Xl =2(FLD)

=1 =1
! ! (4.40)

< 2

2
Zoq ||XqH7D(Q) )
q=1
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such that, by definition of {5%(/C<M>(0)), e ,(%(IC(M)(O))}:

Q Q
[2(K00(0) = & (FUM S 02 Xyl p < D02 IX,lpo) 620K (0)), (4.41)
q=1 q=1
which proves the second part of the inequality. [

This Lemma emphasizes that the closer the local errors are, the more relevant projection
family (M) (0) is. In particular, quantity L{B(Og\,/[ )) defines an upper bound for the error
introduced by the consideration of the approximated problem defined by Eq. (£36]). Lemma [3]
leads us moreover to the following proposition:

Proposition 5 If the following equalities are verified:

[e.e]

(KM OWMY)) =... = sé(IC(M)(OgJC‘,”))), (4.42)

then the family IC(M)(OEA/I)) minimizes €2

O Proof: By construction, ife%(lC(M)(Og))) == eé(lC(M)(Og\,/[))), then 5%(IC(M)(O((>J<\,4))) =
s = 522(IC(M)(O<(>§/[))) = 0. Hence, from Lemma [3] we get 6%0(IC(M)(O<(>§4))) = 6§o(féoM)), such
that KD (0L = 730, O

Identification of the optimal scaling vector

By construction, it can directly be seen that, for all a > 0, KM (0) = KM)(a0). Hence,
if the conditions of Proposition [l are fulfilled, that is to say if 6%(IC(M)(O£]<\,/I))) = ... =
52Q (KM )(O(()JC‘,/I ))), the scaling vector 0L is solution of the following problem:

KM (0) = KM <[Diag(0)]ez(K(M)(O))) , (4.43)

where the matrix [Diag(O)] is defined by Eq. (£I5]), and where:
(KM (0)) = (s%(/dM)(O)), o ed <IC(M)(O)>) . (4.44)
(M)

This motivates the following iterative algorithm for the identification of scaling vector Osc .
For given parameters 7 and ~:

[ Tnitialize O = <
Normalize O
for i =1 : Npax

Compute £M)(0)
if UB(O) > 7

||X1||7>(Q)’ ’ ||Xq||7>(9)>

Oy =04+ (2(KM(0)))", 1<q¢<Q (4.45)
Normalize O
else
Break loop for
end if
end for
ol = o
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Parameter 7 corresponds to the chosen precision of the numerical convergence, whereas ~
controls the speed of the convergence and has to be adapted to avoid numerical instabilities. For
our applications, v will be chosen equal to 1/2. In such an algorithm, at each iteration (n + 1),

2
the weight of X, in the KL expansion, (Oc(lnﬂ)) ||Xq\|%(ﬂ), is updated with respect to the

local error sg(lC(M )(0™)) of the former step. Hence, the weights of the less well characterized
components of X, for which local errors 7 (KM (O™)) are the highest at iteration n, will be
increased the most at the new iteration (n + 1). In the general case, no convergence property
for this algorithm has been proved yet, but under the following conditions:

dm & (K(0)) < | min {o%zz 62<K<M><0>>} S 1SesQ (%)
it is assumed that the algorithm defined by Eq. (@43) gives very promising results for the
minimization of function O — &2 (K (0)) in a very few number of iterations. In other
words, in cases where the weight of X, in the scaled expansion is much higher than the weights
of the other components {X,, 1 <p# ¢ <@}, if X, still remains badly characterized, then
there is no reason for such an algorithm to converge to a satisfying result. In practice, these
conditions are not very restrictive, and are most of the time verified for correlated vector-valued
random fields.

In particular, under Hypothesis [[ when dealing with a two dimensional case (Q = 2,
O = <01, \/@)), Propositions B and [ yield that errors functions O; + £2(01) and
O1 ~ &3(0q) are continuous and respectively decreases and increases with respect to Op in
10,1[. Therefore, if the conditions defined by Eq. ([&46]) are fulfilled, it exists o ins @1)
such that 6%(0((312,/1 )) = 6%(0((312,/1 )). Therefore, according to Proposition bl optimal basis F

could be in these cases exactly identified from the solving of the optimization problem that is
defined by Eq. (&36).

4.3 Application

Most of the results emphasized in Section are illustrated in this section on a practical
example. This section is divided in three parts: first, a particular R*valued random field is
generated from its Karhunen-Loéve expansion; then the influence of scaling vector O on the
local errors is emphasized; at last, it is shown in what extent the scaled expansion allows us to
identify optimal families féoM) and ]-'éM) for several values of 3 in S(@) (1) and any values of
M > 1.

4.3.1 Generation of a vector-valued random field

In this application, the dimension of random field X, @, is chosen equal to 4, and Q = [0, 1].
A particular matrix-valued covariance function, [Rx x|, is then postulated, for which some
projections are represented in Figures 1] and Random field X', which is still supposed to
be centered, can thus be written as:

+oo
X = Zl Ak ™€, (4.47)
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where, for all m > 1, couples (A, k™) are solution of the Fredholm problem associated with
[RX)(]

/Q[Rxx(s, SHE™(s)ds" = N\ k™(s), Vs € Q, (4.48)

and coefficients {,,,, m > 1} are uncorrelated random variables. For the sake of simplicity, these
coefficients are moreover considered independent and normally distributed, which amounts to
supposing that X is Gaussian. In particular, [Rx x] has been chosen such that || X1pq) >
[Xollp) > 1 X3llp) > I Xallp(q)- Further details about the generation of [Rx x| can be seen
in Appendix[Bl As an illustration, a particular realization, X (), of X is represented in Figure
Z3l From Eq. [@Z2), it is reminded that for any value of O in S@)(1), for all 1 < ¢ < Q, and
for all M > 1, errors 63 (KM)(0)) can directly be computed by the scaled expansion.

4.3.2 Influence of the scaling vector on the local errors

According to Section [£2] by introducing vector O = (01, 02,03,0y), we should be able to
balance the values of local errors 82, for 1 < ¢ < 4. In particular, it has been shown in Section

A23 that for O = ﬁ (1,1,1,x) and for all 1 < M, 3(K™)(0)) decreases with respect to &

on |0, +oo[. Hence, if x tends to zero, 3(KM)(0)) is bound to converge to its maximal value,
as the weight of X, in the minimization of 23:1 03 HXqH%(Q) eZ becomes negligible. On the

contrary, if s tends to infinity, £3(KX*)(0)) will tend to its minimal value, as the minimization
of 23:1 03 HXQH%(Q) e2 will completely be driven by £7. This phenomenon can be seen in Figure

4.4 where the evolution of local errors 53 (IC(M )(O)) with respect to s is represented.

In the same manner, the results concerning the two dimensions case can be illustrated from
this four dimensions case, by imposing:

1
O =
VO? +2x 10710 + 02

(01,107°,107°,04) . (4.49)

Indeed, in such a case, the weights of Xs and X3 will always be negligible. In Figure L5l it
can therefore be seen that when ratio O4/O; increases, £3(KM)(0)) decreases from its maximal
value to its minimal value, whereas £7(K(*)(0)) increases from its minimal value to its maximal

value. As

limp3 /02,0 €1 (KM (0)) < minp<g<s {limog/og—m Eg(IC(M)(O))} ;

_ —_— _ _ —_— (4.50)
limoz /02 400 €3(K1(0)) < minj<q<s {hmog/ogao (K (0))}7

it exists a value for O4/O; in |0, 4oc[ such that €2 and €2 are equal. This value allows us
therefore to identify a projection family which is M-optimal for X with respect to the error

maxpeqa) {5}

4.3.3 Identification of the optimal basis
In Section B2, for all 8 in S@(1), optimal projection families ]-'éM) and J:O(OM) have been
introduced as the solutions of the two following optimization problems:

FM - arg min e2(FOMY L 4.51
? J-'(M)e(H(Q))M{ g )} (451)
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FE = arg min {Ego(]-"(M))} . (4.52)

f(M)e(H(Q))M

In particular, for all M > 1, the choice

B = <||X1||P(Q) NXellpoy s 1Xsllp) » ||X4HP(Q)) (4.53)

leads to the identification of the classical Karhunen-Loéve family, which is called F g;/[), for X.
The corresponding local errors, ag(fgy)) can then be compared. In Figure @4l for M = 50, it
can be seen that E%(./—"I(ZO)) = 3.9%, ag(fgo)) = 6.3%, E%(./—"I(ZO)) = 14% and ai(fgo)) = 64%.
Due to th(.e fact that [|X1[lpq) > ||X2|_|P(Q) > |.|X3||7;(Q) > H-X4-H7;(Q), it can thus be verified
that the direct Karhunen-Loéve expansion favorizes the description of component X7, whereas
component X, is not precisely characterized.

As explained in Section 2] other values for 3 have to be considered in order to improve
the characterization of X,. For instance, the choice 8 = (0.5,0.5,0.5,0.5) corresponds to the
minimization of the mean value of the local errors, 63 = izgzl sg. Let ]-'flM) be the corre-
sponding optimal family. Any other value for B can nevertheless be chosen. For instance, let
féM) be the M-dimension optimal family corresponding to the case 3 = (0.1,2,1,0.5) /2.2935.

At last, family KM )(Og/[ )) is introduced as the numerical solution of the algorithm defined by
Eq. (#Z5), with 7 = 1073 and v = 1/2.

In this prospect, Figures[L.6land £ allow us to numerically illustrate that projection families
]:éM), fﬁM), ]:g/l) and IC(M)(O(()JC‘,/I)) can be identified from the scaled expansion, such that for
any M > 1:

o (75"0) < min {3 (FY), B0 0L, 4(FM)

o 2(F™) < min {52 (FM), &2 (kcno81y), s,%(fg”))},
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S(Fp) = 11% S0 (0%") = 3.0%
e3(FI) = 3.0% (K1 (0%")) = 3.0% (4.54)
2(FI0) _ 580 ) 200000 (0@Y) = 3.0% |
e3(FL") = 17% 2K (08")) = 3.0%

2(F0) = 2.3%

e2(K100) (0LD)) = 3.0% (4.55)

100
e2 (FU) = 17%

(e e]

e2 (K100 o@Dy = 3.0%

Whereas family }'SQOO) can put at a disadvantage the description of a particular component

of X to minimize £2, family ICUOO)(OSC\,/[ )) tries to equilibrate the precision of the description
of each component. To do so, the local error of some components can increase to make the

other decrease. Indeed, in this example, 5%(.7:1(,1200)) < 5%(/@100)(0&4))) whereas 53(}"(100)) >

Lo
62(K(100)(0g¥))). From Eq. ([@37), it can moreover be seen that in this case:

g2 (F00)) _ 22 (100 (0D )| < 7 = 0.1%. (4.56)

oo\ o0

4.4 Conclusions

In spite of the increasing computational power that has encouraged the development of compu-
tational models with always more degrees of freedom, statistical reduction methods, such as the
Karhunen-Loéve expansion, still have a big role to play to make the solving of these problems
faster and more robust. When dealing with R?-valued random fields X = (X1, -+, Xg), it has
however been shown in this chapter that the direct truncated KL expansion, which minimizes
the total mean-squared error, tends to better characterize the components of X that have the
highest signal energy. In this context, a particular adaptation of the KL expansion has been
proposed. Based on a scaling transformation of X, this original decomposition allows defining
projection basis that can favor or put at a disadvantage on purpose the characterization of a
particular component of X. This expansion appears to be also very relevant to identify projec-
tion basis that minimize the maximal value of the local errors of X . Finally, when interested in
studying complex systems that are excited by vector-valued random fields (one can think about
the interactions between trains and track irregularities, buildings and earthquakes, harbors and
swell, etc.), the method proposed opens new opportunities to adapt the projection basis with
respect to the quantities of interest of the systems.

97



global errors
|

10 eeégf ;; el
_§§<ng>>
L e (KD 08"))
10, 50 100 150 200

Dimension M

)
=
E (FMy
e (Fy™)

(F3M)

--e2(KM (0L))
107 ‘ ‘ ‘ ‘
0 50 100 150 200

Dimension M

Figure 4.6: Evolution of errors e% and 2 with respect to the dimension of the projection family,
M.

98



~ o~ o~ —~

AN 3N 3N I3
W W W

(3}
]
!

200

150

10° ¢

SI0119 [RqO[3

|

J_ .
o
—

100
Dimension M

50

SIOILId [eqO[3

150 200

100
Dimension M

50

with respect to the dimension of the projection family,

2
)

Figure 4.7: Evolution of errors si and ¢

99



Chapter 5

Experimental identification of the
railway track stochastic modeling

5.1 Introduction

The expected benefits of simulation in the railway field are multiple: robust and optimized con-
ception, shorter and cheaper certification procedure, better knowledge of the critical situations
of the track-vehicle system, optimization of the maintenance. However, if simulation is intro-
duced in certification and conception processes, it has to be very representative of the physical
behavior of the system. The model has thus to be fully validated and the simulations have to
be raised on a realistic and representative set of excitations.

A particular attention has therefore to be paid to the track geometry, which is the main
source of excitation of the train. Two description scales can then be considered for this geometry.
On the first hand, the track design, which corresponds to the mean line position of a perfect
track is decided once for all at the building of a new track. This description is characterized
by three curvilinear quantities: the vertical curvature cy, the horizontal curvature cg, and the
track superelevation cy. On the other hand, for a fixed track design, the actual positions of the
rails are in constant evolution, which is mostly due to the interactions between the train, the
track and the substructure. The irregularities appearing during the track lifecycle are of four
types (see Figure [B.)): lateral and vertical alignment irregularities 1 and xs on the one hand,
cant deficiencies x3 and gauge irregularities x4 on the other hand. Therefore, each rail position
Ry, (¢ refers to the left rail whereas r refers to the right rail) can be written as the sum of a
mean position M., which only depends on the curvilinear abscissa of the track, s, the track
gauge F, and the three parameters of the track design, ¢y, ¢y and cp, and a deviation toward
this mean position Iy, which only depends on the track irregularities:

Rﬁ/r(s) = Mﬁ/r (S) + Iﬁ/r (8) ) (51)
E
My, (s) = Onr(s) £ EN(S), (5.2)
Ly (s) = {wa(s) + x3(s)} B(s) + {w1(s) £ z4(s)} N(s), (5-3)

where — goes with the subscript ¢ and + goes with 7 in the symbol £, OnxT(s) = (M(s) +
M /,.(s))/2 is the mean position of the two rails, and (Ont(s), T(s),N(s),B(s)) is the Frenet
frame. Hence, a track geometry 7 of total length S%' is completely characterized by the
knowledge of seven curvilinear functions:
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Figure 5.1: Parametrization of the track irregularities (for each rail, the mean position is rep-
resented in black, whereas the real position is in grey).

T = {(z1(s), 22(5), x3(s), 24(5), cL(s), cr (s), ev (s)), s €[0,5*}. (5.4)

However, as the mean line of the track geometry is chosen at the building of a new line, this
work is only devoted to the modeling of the track irregularity vector

x = (r1,22,23,%4), (5.5)

where x1, x9, x3 and x4 are the four types of track irregularities previously introduced.

Made up of straight lines and curves at its construction, the new track evolves gradually
due to the train dynamics and is regularly subjected to maintenance operations. During their
lifecycles, trains are therefore confronted with very different running conditions. The track-
vehicle system being strongly nonlinear, the dynamic behavior of trains has thus to be analyzed
not only for a few track portions but for these whole realms of possibility.

In reply to these expectations, the measurements of the train TRIS 320 are of great interest.
Indeed, this one has been running continuously since 2007 over the French railway network,
measuring and recording the track geometry of the main national lines. Based on these experi-
mental measurements, a complete parametrization of the track geometry and of its variability
would be of great concern in specification, security and certification prospects, to be able to
generate track geometries that are realistic and representative of a whole railway network.

In this context, this chapter develops a stochastic modeling of the track geometry, which
is based on an inverse identification of the statistical properties of a vector-valued random
field from measured data. These data being complete, this modeling allows us to generate
numerically track geometries that are physically realistic and statistically representative of the
set of available track measurements. Moreover, these tracks can be used in any deterministic
railway dynamic software to characterize the dynamic behavior of the train.

Hence, this modeling could bring an innovative technical answer to introduce numerical
methods and treatments in the maintenance and certification processes.
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Figure 5.2: Experimental protocol

5.2 Experimental measurements and signal processing

5.2.1 Collection of the experimental inputs for the modeling

Experimental protocol The measurement train IRIS 320 is running continuously since 2007,
and monitors the track geometry thanks to two laser cameras, three accelerometers and three
rate gyros. Pictures of the track geometry are taken, whereas the accelerometers and rate gyros
register the movements of the bogie at the sampling frequency of 10kHz. More precisely, the
laser cameras measure the distance toward four particular points of the rails (see Figure (.2]):

e the left and right upper points of the rails Uy, and Ug;

e the left and right interior points I, and Ir that are placed 16mm under the upper points
of the rails.

From these positions, four deviation fields for the rails positions are deduced: dy, ds, d3 and
dy.

Measurements post-processing As the cameras are fixed to one of the bogie of the train,
the bogie own movements, which can be characterized by three translations and three rotations,
introduce a bias in the measurements, which has to be removed. As an illustration, the three
rotation angles of the bogie in a particular curve are represented in Figure 5.3 whereas Figure
shows the bias induced in the measurements by the roll angle p of the bogie. Hence, from
a filtering and integration process, the irregularity vector x(s) = (x1(s),z2(s),z3(s),x4(s))
is deduced from the four data (di(s),da(s),ds(s),ds(s)) at each abscissa s of the track (see
Figure [5.4)). These measurements are also post-processed in order to remove the measurement
anomalies, which are mostly due to the absence of signal or to the presence of points and
crossings. After these post-treatments, V., track portions of different lengths are available for
the modeling.

5.2.2 Local-global approach

In this work, the track irregularity vector of a complete railway track of total length St is
assumed to be a centered second-order random field,
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Figure 5.4: Filtering of the experimental data
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Figure 5.5: Influence of the horizontal curvature on the track irregularities

X = (X1, X9, X3,Xy), (5.6)
such that:

E[X(s)] =0, se€][0,5%". (5.7)

Due to the specific interaction between the train and the track, this random field strongly
depends on the horizontal curvature (the influence of the vertical curvature is negligible in
terms of track geometry and will not be discussed in the following) and thus on the direction
of circulation, as it can be seen in Figure (for a better visualization, the four centered
irregularity fields have been translated on purpose in this figure). This random field is therefore
non-stationary.

Moreover, 200,000 particular values of X, Xo, X3, X, are randomly chosen among the
available measurements of these four irregularities. Four empirical estimations of the PDFs of
X1, X2, X3, X4, which are denoted by px,, Px,, Dxs, Dx4, are then compared over the same
closed domain [LB, UB] to the corresponding Gaussian PDFs A/ (0,5x,), N (0,50x,), N (0,0x,),
N(0,5x,), in Figure From these experimental observations, the track irregularity random
field is not Gaussian.

This motivates the introduction of a local-global approach for the characterization of the
distribution of the track irregularity random field. This local-global approach is based on the
hypothesis that a whole railway track can be considered as the concatenation of a series of
independent track portions of same length S, for which physical and statistical properties are
the same. Length S plays therefore a key role in the modeling procedure, and its value has to
be carefully evaluated. In order to choose length S such that its sensitivity on the stochastic
modeling is minimized, v track portions of same length L, {z(l), oo,z }, have been collected
from the available measurements of the railway network of interest. For any value of S in [0, L],
we denote by {y(l)(S), . ,y(”)(S)} the v new track geometries of total length L, which are
then built from the concatenation of track subsections of length S that have been randomly
chosen in {z(l), e ,z(”)}.
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Figure 5.6: Analysis of the marginal distributions of the four track irregularities

Three errors functions, for which definitions can be found in Appendix [C] are therefore
introduced in this work to quantify the influence of S:

e a covariance error, err2 (S): fixing S to a particular value amounts to supposing that for
|s—s'| > S, E[X(s)X(s')T] is negligible;

e a spectral error, errgpect(S ): generating complete track geometries from the concatenation
of several track portions of length S introduces an artificial periodicity and is likely to
degrade the low-frequency characterization of X;

e an estimation error, errZ,(S): the higher S is, the smaller the number of independent
realizations for X, v**P(S), can be extracted from the complete measurements of the
railway network of interest. This error is therefore directly related to the estimation
accuracy of the covariance function of X, and to the identification precision of the PCE
coefficients, on which the modeling will then be based. With reference to the Central
Limit Theorem (see [I5] for further details), we simply choose errZ (S) = 1/1/vP(S) to
illustrate this phenomenon.

For the chosen railway network, based on these sets of track geometries of same lengths L,
errors errgy, (S), errZ . (S) and errZ,(S) are represented in Figure 571 When S increases, it
(S) decrease whereas errZ,(S) increases. Length S

can be verified that err?, (S) and err? ..
has thus to be chosen as the right balance between these three error functions.
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Figure 5.7: Graphs of errors err?, (), err?,..(S) and errZ;(S) for the computation of the
local-global length S.

For confidentiality reasons, the exact value of S is however not given in this work, and the
spatial quantities will be normalized by length S in the following. From the available experimen-
tal data, v = 1, 889 track portions of same length S, which are denoted by {X (6,,), 1 <n < v},
are extracted to represent the maximal available information about X. Based on these exper-
imental measurements, which can be seen as a finite set of independent realizations, the next
sections aim at completely parameterizing the track irregularity random field, based on the
theoretical development that have been presented in Chapters 2 Bl and [l

5.3 Optimal reduced basis

The first step of the identification of X corresponds to a revisited Karhunen-Loéve (KL) de-
composition. This original decomposition, which is presented in detail in Chapters 2l and (]
makes a point of maximizing the representativeness of the projection basis with respect to the
limited available information.

5.3.1 Direct KL expansion and projection biases

Let © = [0,5]. Using the same notations as in Chapters B and B we define [Rx x (v)] as the
empirical estimator of the covariance of X, which has been computed from the v available

realizations of X, and for all 1 < M, let KO = {Em, 1<m< M} be the set gathering the

M eigenfunctions of highest eigenvalues in the Fredholm problem associated with []?ix x(v)].
The approximation (s, s') — [Rx x (v, 5,5 )11 of (s,5') — E[X(s) ® X1(s')] is shown in Figure
B8l This figure emphasizes a quasi symmetry along the first bisector. The functions s >
[}AEXX(V,S,O)]qp, 1 < ¢q¢,p < 4, can thus be used to condense and compare the covariance
information of different track irregularities. In Figure [0.8] it can thus be noticed that the
covariance matrices are very different from one track irregularity to another.

In addition, we denote by ag(le(M)) the normalized local projection error such that for
1<g<4:

(M)

(R0

X0 = 25y VKl 53)
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where X’C( " is the projection of X, on {lCm 1<m< M} and where H‘H?D(Q) is the norm

defined by Eq. (£3). From Eq. @‘,\3)’ the total normalized mean-squared error associated with
the projection of X on KM, £2(X(M)), verifies therefore:

IC(M ZIBQ 2 IC(M

(5.9)
) qunp(m
8=
1X oo
From the available realizations of X, we have:
B > B3 > 61 > 3. (5.10)

The signal energy associated with each track irregularity being different, as shown in Chapter
@ projection family KM is bound to describe in priority irregularities X; and X5 rather than X3
and X4. The phenomenon is shown in Figure 5.9] where the evolutions of the LOO estimations,
200 (KD, 562]7LOO(IC(M)), of the total and local mean-square errors are represented with

respect to the size M. In particular, for M = 500 and M = 2000, although 6%00(,6(500)) =
10.0% and €2 ;5 (K(2900)) = 1.26%, we have:

€1 LOO(K(SOO)) = 3.52%, o (K20 = 0.816%,
&3 100(KP)) = 7.77%, £3 oo (KP00) = 0.615%, (5.11)
€3 LOO(K(SOO)) = 40.3%, Eg,Loo(E(ZOOO)) = 6.10%, '

( )=3 ( )=

C(500) 2,00 ¢ (2000)

3.0%, 3.09%.

54 ,LOO

5.3.2 Optimization of the projection basis

As presented in Chapters2land @] two kinds of improvement can be brought to enrich the direct
KL projection family associated with [RX x(v)]. Indeed, in the railway community, the cant
deficiency X3 and the gauge irregularity X4 are generally considered as the most dangerous
irregularities, and are therefore more carefully monitored and maintained. Their signal energy
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Figure 5.9: Evolution of the projection errors with respect to the dimension M of the projection
family.

is lower than the signal energy of the two other track irregularities X; and Xs, although their
importance on the train dynamics is likely to be higher. Hence, a scaled expansion can be
considered to avoid the numerical bias that is introduced by the differences in the signal energies
of the components of X. Then, as the available information about X is limited to a set of
independent realizations, the true covariance function of X is unknown, and the extension to
solve the classical Fredholm equation that is presented in Chapter 2l could allow us to improve
the relevance of M) to characterize X for a given value of M.

In this prospect, generalizing the notations of Chapters @ and @, for O in S¥(1) and o
in [0,1], K(a, O) = {k™(c, O), 1 < m} is introduced as the orthonormal projection basis that
gathers the solutions of the Fredholm problem associated with the (@ x @) matrix-valued
function [A(a, O)], such that:

/Q (0, 0, 5, ) k™ (0,0, 5)ds' = Am(a, 0)E™ (0, 0, 5), s € Q, (5.12)
(K7(0,0,8), K (,0,8)) = Sy A(c, 0) = Ag(,0) > - = 0, (5.13)
[A(a,0)] = a[Ryy (0,v)] + (1 — a)[Ryy (O, v)], (5.14)
[Ryy(O,v)] = [Diag(0)][Rx x (v)][Diag(O)], (5.15)
[Ryv(0,v)] = [Diag(0)][Rxx (v)][Diag(O)], (5.16)

where matrices [Diag(O)] and [Rxx (v)] are defined by Eqs. (@I5), (Z43) and (Z4H). For
M > 1, if KM (a,O) gathers the M first elements of K(a, ), this leads us to search the

optimal projection family for X, F, (M) "5 the solution of the following optimization problem:

opt »
FOU = £OD (0o (M), 0P (1)), (5.17)
(a®P (M), O°P*(M)) = arg min e2..Loo(K™M(a,0)), (5.18)

(a,0)€[0,1]xS™) (1)
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o o 8%OO 1(K(500)) 5%00,2(16(500)) 5%0073(,@500)) 8%00 4(’C(5OO))

1 (0.5,0.5,0.5,0.5) 3.52% 7.77% 40.3% 33.3%

1 0P 5.88% 16.3% 17.8% 23.9%

1 O°P* (500, o) 18.3% 18.3% 18.3% 18.3%
a°Pt(500,0) | (0.5,0.5,0.5,0.5) 2.95% 5.62% 30.2% 25.9%
a°Pt(500,0) oP 4.77% 13.7% 12.6% 17.8%

a®Pt(500) O°P*(500) 13.9% 13.9% 13.9% 13.9%

Figure 5.10: Influence of the choices for o« and O on the local mean-square errors.

100K (0,0)) = max ) 100 (KM (@, 0)). (5.19)

This problem is solved coupling the iterative algorithm defined by Eq. (Z5I) with 7 = 1074
and v = 1/2 for O, and an algorithm based on a dichotomy for «. In order to illustrate
the advantage of such an approach, Table B0 compares the LOO errors associated with
particular values of o and O, that stem from optimizations on « and/or O, where 0° =

>, a®Pt(500,0) is the optimal value of a in [0,1] for a

<||X1 ||17>(Q)’ ”XQﬁP(Q) ’ ||X3||17>(Q)’ ||X4|T7?(Q)
given value of O, and O°P'(500, o) is the optimal value of O in S® (1) for a given value a.
For a same dimension M = 500, this double adaptation of the classical KL expansion for the
track irregularity random field allows us to divide the maximal value of the local mean square
errors by three. Richer definitions for [A(a, O)] should lead us to even better results, but to
do so in very high dimension with very limited information, as it is the case here, a method to
optimize the solving of Eq. (B.I8]) would be required, which has not been made in this thesis.

5.3.3 Choice of the dimension of the spatial projection parameter

For any value of M, the optimization problem defined by Eq. (B.I8) allows us to identify pro-
jection basis that are particularly well adapted to each component of X. The optimal value of M
can therefore be searched with respect to a chosen threshold for 6%07 oo (KM (aPt (M), O°PH(M))).

In the following, for M = 2000, we denote by fﬁfoo) = {f™, 1< m <2000} this basis, which
allows the maximal value of the local errors, ngLOO(IC(ZOOO)(a°pt(2000),OOpt(2OOO))), to be

lower than 0.5%. From Eq. (GII), it can be noticed that thanks to the two proposed adap-

tations of the KL expansion, the four local errors associated with .7-"5123200) are lower than the
minimal value of the local errors associated with (2000 Such a high value for M will be

justified more in detail in Chapter [6] from the train dynamics analysis. We compare in Figure
.17l several graphs of eigenfunctions f = (f{", f3*, f&", fi*). For a better visualization, the
mean values of the different subvectors, which are zero, are deliberately translated.

5.4 PCE identification in very high dimension

5.4.1 Sorting with respect to the horizontal curvature

As presented in the Section .22 the track geometry strongly depends on the horizontal cur-
vature. In this prospect, four classes of track portions can be introduced:

e the alignment, for which the horizontal curvature ¢y is zero.
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e the established curve, for which the horizontal curvature cy is constant and not zero.
e the curve entrance, for which the absolute value of the curvature is linearly increasing.

e the curve exit, for which the absolute value of the curvature is linearly decreasing.

The statistical properties of X are therefore different in each of these four classes, such
that instead of one stochastic modeling, four stochastic modelings of the track geometry over a
length S are needed to accurately characterize the track geometry variabilities. We thus denote
by X (in alignement), X ¥ (in curve entrance), X© (in curve) and X ) (in curve exit)
the four projections of random field X in the different curvature classes. These four random

fields can then be projected on the 2,000-dimension deterministic family }-(E?)(t)oo)’ which was

introduced in the previous section, such that:
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Finally, characterizing the variability of the track geometry amounts to identifying the multi-
dimensional distributions of the four 2000-dimension random vectors, C (4) = C§A), ey C2(6480) ,

ClFO — ("9, cl)), € = (¢, cf) and € = (59, i), for
which components are dependent.

Independent realizations of these four random vectors have to be extracted from the sorting
of the Npor available measurements with respect to the horizontal curvature. This sorting is
based on a four-step method, which is illustrated in Figures and B.13t

e First, the true horizontal curvature, cy, which is piecewise linear, is deduced from the

on-track measured horizontal curvature, c3} track

e Secondly, the positions of the beginnings and the ends of the curvature classes are localized.

e Then, for each curvature class, a series of measurements of same length S is extracted, and
is denoted by a:f4, ac]C, ac’fEC, mgc for the alignment, the curve, the curve entrance and the
curve exit cases. The length of the curve entrances and exits being generally lower than
S, an overlapping is tolerated, such that some small track portions can be used in two
modelings. Under the local-global hypothesis, v4 = 414, vpc = 482, vo = 522 and vgo =
471 track portions of same length S are extracted from the complete railway network of
total length S*™!. These measurements are supposed to be independent realizations of the
random fields X (4) , X (EC), X(©) and X5 respectively.

£{2000)

e Finally, these realizations are projected on F

tions of CW, CEC) ¢(©) and €59,

to compute the corresponding realiza-

The same approach will be used to identify the distributions of these four random vectors,
but only the identification of C (4) will be presented in the following.

5.4.2 PCE identification
Let {C(A)(Hl), .., e (HVA)} be the v, available realizations of random vector C'4). The

mean value of random field X (4) being zero for all s in €, this vector is also centered, such
that:

E [C(A)] ~0. (5.21)
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Figure 5.12: Extraction of the true horizontal curvature from the in line measurements.
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Figure 5.13: Extraction of the track irregularities for each curvature class
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Moreover, from these v4 realizations, the covariance matrix of C(A), which is written

[}AE(CflC),(VA)], can be estimated as:

VA
Redal =5 3206, 5 00, (522
n=
Given this information, the multidimensional distribution of C) is identified from a PCE
approach. In this prospect, let £ = (51, o€ Ng) be a random vector for which components
are independent and uniformly distributed between -1 and 1. A uniform germ for the PCE is
chosen, as it appears to be more stable in very high polynomial dimensions as shown in Section
3.3.21 The corresponding Hilbertian basis of all N,-dimension random vectors is the set of the
multidimensional Legendre polynomials, which are denoted by {1;(§), 1 <j}. In agreement
with the theoretical developments of Section [[L5] this basis is truncated to its N elements of
total polynomial order lower than p. At last, we define C'P205(4) (N) as the projection of C (4)
on this truncated basis, such that:

N
CW ~ Chs (V) = oy Wu;(€) = [y V] w (6). (5.23)
j=1

For given values of N, and N, the projection matrix [y(A)] is computed to maximize the
likelihood of [y(“)]® (&) at the independent realizations of CY) under the approximated con-
straint [y][yW]T ~ [ﬁ(cflé(VA)] with the iterative algorithm described in Section [3.2.5] as the
dimension of C*) is much higher than v4. According to Figure .14, where err(N, Ny) is plot-
ted as a function of N for different values of IV, truncation parameters N, and N are chosen
equal to 3 and 2,925 respectively, which corresponds to the maximal polynomial order p = 24
for the reduced polynomial basis. Moreover, Figure compares the empirical estimations,
ﬁc,(,f) and ﬁcfr};aos,(A)(N), of the PDFs of three particular components of CY) and Chaos,(A)V)

respectively. A normal PDF associated with the variance of 07(7;4 ), ]32?})53, has also been added

m

to this figures.

Following exactly the same approaches, the three projection matrices [y(F)], [y(©)] and
[y(SC)] are also identified. The convergence analysis for these expansions has moreover given
the same results as for the alignment case, such that we get:

CEO) — [y FNw(g), C©) = [ O1w(g), CEO) =[5 w(¢). (5.24)

5.5 Generation of a whole track geometry

Once truncation parameters M, N, N, have been identified according to convergence analysis,
spatial projection family F(2000) — [f™ 1 <y < 2000} has been computed, and PCE pro-
jection matrices [y(V], [yF], [y(©)] and [y(*“)] have been calculated, the track irregularity
random field is completely characterized:

(4)

(XD~ X = [FROO][(]g(¢),

X0 & X5 = [pC00) O g),

X~ X = (Pe00y)w ()

(sC) _ [F7(2000)] 1, (SO) |y (¢),

(5.25)

X0 ~ X
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Figure 5.14: Identification of the PCE truncation parameters.
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For each realization of random vector (&1,...,& Ng), a representative and realistic track geom-
etry of length S can be generated for the alignment, the established curve, the curve entrance
and the curve exit cases. Thanks to the local-global approach, described in Section £.2.2] a

whole track geometry of length S** = N7, X' can therefore be constructed from the con-
~—(A

catenation of Ny independent copies X (1), e, X (NT) of the track irregularity vectors X ( ),

—~(EC) —<(C —~(SC

X ( ), X . or X ( ), with respect to the horizontal curvature of the considered track, such

that Xt = (XM ... xXWO7),
Therefore, v independent realizations {X*%(6),--- , X*%(6,)} of X*" can be generated

—~(A) —(EC) —(C —(SC
from v N7 realizations of the local irregularity vector X ( ), X ( ), X © or X ( ). However, for

each realization X'°'(0,,) of X' a particular attention has to be paid to the junction between
these different realizations. Indeed, these junctions have to guarantee the continuity of the track
irregularity vector and at least the continuity of its first and second order spatial derivatives in
order to avoid an artificial perturbation of the train dynamics. Spline interpolations on a length
corresponding to the minimal wavelength of the measured irregularities are then used to fulfill
these continuity conditions.

Hence, the proposed stochastic modeling allows us to generate realistic track geometries of
length S*°' = NS that are representative of the whole network, and which take into account the
spatial and statistical dependencies between the different track irregularities. As an illustration,
a particular extract of length S of complete track geometry X' () is represented in Figure
This graph is centered at abscissa s = 35/2, that is to say at a junction between the two
first realizations of the track irregularity random fields. The four components of X% (6,) are
represented in the same graph, but their values are translated to allow a better visualization of
the results.
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Figure 5.16: Extract of a simulated track geometry.

5.6 Statistical and frequency validations

As presented in Section 5.1l a complete parametrization of the physical and statistical properties
of the track geometry are needed in conception, certification and maintenance prospects. Several
validations of the proposed stochastic modeling are thus presented in this section, in order to

allow a relevant investigation of the dynamic interaction between the train and the track.
~—~(A) —(EC
In this section, 10® independent realizations of track irregularity random fields X ( ), X ( ),
—~(C —~(SC
X © and X () are generated from the track stochastic modelings developed in Section [5.3]

The notations of Section [B.4.3] are adopted again in this section. If X, corresponds to one of
~(A) —(EC) —(C —~(SC
the components of X, X (EC) x(©) x(5C) X( ), X( ), X( ) or X( ), for which v (v

is equal to 103, vy = 414, vpc = 482, Vo = 522 or vgc = 471) independent realizations are
known and denoted by {X,(0,), 1 <n < v}, we use Nyp(X4(0n),u,S), 1 < g < 4, to denote
the numbers of upcrossings of the level u by the n'" realization X,(6,) of X, over the length
S, and we define D;, 1 <i <10 the domains such that for each level u, D; gathers i/10 of the
values of {Nyp(X4(601),w,S), ..., Nup(Xp(6,),u, S)}.

The domains for X (A), X (EC), X (C), X5 are thus compared to contour plots that corre-

sponds to the equivalent domains for /X(A), }(EC), }(C) and }(SC) in Figures 5.17] £.18] (5.19]
and In addition, these results are compared to the cases when the random vectors C(A),
ct C), C©) and €5 would have been modeled by Gaussian random vectors. To this end, we
denote by X éél)lss, X g{fﬁg, X ég)lss, X gﬁ%’s the Gaussian approximations of X (A), X (EC), xX©
and X (59) respectively.

In the same manner, for 1 < g < 4, let PSD(X,) be the mean power spectral densities of

X, that have been computed from the available realizations of X, of length S. The frequency

.. (A
characteristics of X ) and X
are therefore compared in Figure (.21

The rather good agreement between the quantities corresponding to the measured and to
the generated track geometries, especially compared to the Gaussian case, allows us to validate
the stochastic modeling over a length S from a statistical and frequency point of view.

) (the same results are obtained for the other curvature cases)
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Figure 5.17: Statistical validation of the stochastic modeling of the horizontal alignment irreg-
ularity X4
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Figure 5.18: Statistical validation of the stochastic modeling of the vertical alignment irregu-
larity Xo
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Figure 5.19: Statistical validation of the stochastic modeling of the cant deficiency irregularity
X3
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Figure 5.20: Statistical validation of the stochastic modeling of the gauge irregularity X4
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5.7 Conclusions

A complete parametrization of the track geometry, which takes into account its physical proper-
ties and its variability are nowadays of great interest to be able to face always more challenging
railway issues. In this prospect, this chapter has presented a general method to model a R%-
valued random field indexed by s € [0, S] thanks to a double projection, which can be applied
to many other mechanical systems. First, an adapted Karhunen-Loéve expansion is used to
decompose the random field as a deterministic matrix-valued function and a high dimension
random vector. The distribution of this high dimension random vector is then characterized
thanks to a truncated PCE. This chapter moreover describes in detail how to control and jus-
tify the different truncation parameters. Then, complete track geometries that are realistic and
representative of a whole railway network can be generated from a local-global approach. At
last, a double validation of this stochastic model is presented, in order to make sure that the fre-
quency and statistical contents of generated and measured track geometries are similar. These
geometries can finally be used in any railway software to characterize the dynamic behavior of
trains.
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Chapter 6

Stochastic dynamics of high-speed
trains and risk assessment

6.1 Introduction

For the track quality, the attention must be focused on two main issues. First, the safety of
the track-vehicle system has to guaranteed, and secondly, the maintenance costs have to be
controlled and minimized. Safety being the main priority, trains and tracks have been designed
with a priori high safety factors, such that the limit states of the railway system are not
well known but railway accidents almost never happen. In a context of optimization of the
maintenance, simulation has thus a big role to play, as it should be able to evaluate these limit
situations when experiments cannot or would be too expensive.

In addition, these objectives have to be fulfilled in a context of increasing interoperability.
Indeed, European high speed railway networks are meant to go to market. Hence, several high
speed trains, such as ICE, TGV, ETR 500,.. ., are likely to run on the same tracks, although
they have been originally designed for specific and different railway networks. Due to different
mechanical properties and structures, the dynamic behaviors, the aggressiveness of the vehicle
on the track and the probabilities of exceeding security and comfort thresholds are thus different
from one train to another one. From the infrastructure point of view, numerical methods are
therefore needed to be able to evaluate and to compare the stability and the safety associated
with each train that would apply to run on a particular railway network.

To this end, this chapter shows to what extent the stochastic modeling of the track geometry,
which has been presented in Chapter Bl can be coupled with a multibody railway software to
analyze the complex link between the track variability and the train dynamics.

6.2 Description of the railway dynamic problem

6.2.1 Deterministic railway problem

A railway simulation can be seen as the dynamic response of the train excited by the track
geometry through the wheel/rail contact forces. Three kinds of inputs are thus used in these
simulations.

e The vehicle model V. Multibody simulations are usually employed to model the train
dynamics. Carbodies, bogies and wheelsets are therefore modeled by rigid bodies linked
with connections represented by rheologic models (dampers, springs, ...). For 1 < i <
Npor, and t in [0, 7], we denote by wu;(t) the position at time ¢ of the coordinate associated
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Figure 6.1: Simplified description of a multibody model of a TGV.

with each degree of freedom of the rigid bodies modeling of the train, and by «;(t) = dCZj (t)
its time derivative. For instance, for a classical one-carriage TGV, which is made of
10 coaches, 13 bogies and 52 wheelsets that are linked by a series of suspensions and
bumpstops, Npor is about two hundreds (see Figure for a simplified representation of

the TGV).

e The track geometry 7. As presented in Chapter B this track characterization refers
to a double scale description. On the first hand, the track design, which gathers the
horizontal curvature ¢y, the vertical curvature ¢y and the cross level ¢y, corresponds to
the description of a perfect track without irregularities. On the other hand, four track
irregularities, Xy, X5, X3 and X4 have to be added to this description to define the real
railway tracks. These are due to the train dynamics, the weather conditions and the track
substructure evolutions.

e The contact model C allows the computation of the contact forces between the rails and
the wheels. In the railway community, these contact forces are almost always computed
from the wheel profile and the rail profile thanks to the Hertz and Kalker theories [7 [6].

Introducing the vector of the generalized coordinates,

U(t) = (u1(t),ua(t), - ,ur(t), ia(t), ), (6.1)

the train dynamics can therefore be determined by solving the Fuler-Lagrange equation, which
is written as:

d (0F. OF. .
— — =L;(U C), 1<i<N 6.2
with E. the total kinetic energy of the train, and L;(U,T,C) the general load that is applied
to the degree of freedom 4, which depends on the track geometry 7, on the wheel/rail contact
C and on the generalized coordinated U. Eq. (€2) can be rewritten in a matrix form as:

[A(U)]U = F(U,T,C), (63)

with [A] and F two strongly nonlinear operators. This system is usually solved with an
explicit time scheme. In the following, the commercial black-box software, Vampire (see [82] [§3]
for further details about this software), is used. The chosen time step of this explicit scheme
was identified according to a convergence analysis and is generally taken equal to 10~* second.
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The generalized coordinates vector U is then post-treated to define the final comfort and
safety criteria associated with the railway system. These outputs can be classified in two
categories:

1. First, the maximal values of the vertical and lateral accelerations in the train coaches,
Zmax and max, are controlled to guarantee the comfort of the passengers.

2. Secondly, the safety and maintenance criteria of the track-vehicle system are based on
the analysis of the wheel/rail contact forces. In this prospect, three classical criteria are
generally introduced to characterize the vehicle dynamics on a given track geometry of
total length Stot:

e a shifting criterion:
Y +Y, = Y, Yy A4
Ve + ¥ohas = i { e (1209 + 729} (6.4)

e a derailment criterion:

wheel g | 0<s<Stot

Y/ Qs = max{ max {ms)/Qq(s)}}, (6.5)

e a wear criterion:

Stot
)= Y { /0 Tq<sm<s>ds}, (6.6)

wheel ¢

where:

e Y/ and Y are the left and right lateral forces of the same wheelset w, such that
the higher (Y7 + Y} )maq 18, the more chance for a shifting of the track there is;

e Y, and Q, are the lateral and vertical components of the wheel/rail contact force at
wheel ¢, such that the higher (Y/Q)mas i, the more on the flange a wheel of the
train can be;

e T; and ~, are respectively the creep force and the slip at wheel ¢, such that the higher
(T'y) is, the higher the contact wear is likely to be for one run of the complete train.

Finally, given a model of the wheel/rail contact C, the deterministic railway problem corre-
sponding to the dynamics of a vehicle V on a track geometry 7 can be expressed as:

W, T,C)=ec=gV,T,C), ¢= (Zmax; Jmax, (Yo + Yi)maz, (Y/Q)maz, (7)) , (6.7)

where it is reminded that g is a complex and nonlinear operator. These nonlinearities are mostly
due to the train suspensions (especially the airsprings between the bogies and the coaches), to
a series of bumpstops in the train description and to the wheel/rail contact forces.

Due to the train dynamics, to the track irregularities and to the specific wheel and rail
profiles, the contact positions between each wheel of the train and the rails keep changing.
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Figure 6.2: Evolution of the horizontal curvature cy (xkm~1'), the vertical curvature cy
(xkm™1) and of the cross level c;, (xm™!) with respect to the track curvilinear abscissa s.

The wornest the track geometry is, the more discontinuous these changes are likely to be. The
diversity of these contact positions and contact forces is illustrated in Figures[62land [6.3] These
figures are based on the run of a train on a measured track geometry around a curve.

For confidentiality reasons, very few numerical values are given in this work. Hence, only
qualitative analysis will be presented in the following.

6.2.2 Domain of validity for the deterministic problem

As a first comment on the validity of the railway models, it is important to point out that
all European railway reference standards and reference maintenance guides only consider the
low-frequency content, f < f., of the train dynamic quantities of interest (either simulated or
measured).

As presented in the former Section, the software Vampire is used to solve the railway de-
terministic problem. The train being constituted of rigid bodies, the simulated high-frequency
response of the train cannot be physical. As an illustration, Figure compares the measured
and simulated frequency properties of a bogie of a TGV. As shown in Figure 6.5 although
the transverse and vertical accelerations of the bogie are low-pass filtered at the reference cut-
frequency f = f., it can be seen that the low-frequency response is well reproduced both in the
time and frequency domains by the deterministic model.

As a consequence, in agreement with the work achieved in [84], it is assumed that the
proposed railway deterministic model is valid on the frequency band 0 < f < f.. In the
following, each output of the train dynamics (whether measured or simulated) will thus be
low-pass filtered at frequency f. before being analyzed.
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6.3 Definition of the stochastic problem and validation of the
modeling

6.3.1 Stochastic problem

The wheel and rail profiles of high speed trains and lines being checked and maintained very
regularly, only perfect wheel and rail profiles will be considered in the following, such that the
contact properties, C, are chosen to be constant. As presented in Chapter Bl it is moreover
supposed that the track irregularities can be separated from the track design. Hence, in the
following, the track design is supposed to be constant, while the track irregularities can vary.
As a consequence, vector ¢, which is defined by Eq. (&1, becomes a random vector that is
denoted by C = (Cy,Ca,C3,C4,Cs). It is reminded that by definition of vector ¢, C; and Cy
refer to the vertical and lateral maximal accelerations in the train coaches, C3 is the maximal
value of the sum of the transverse loads of the wheelsets, Cy4 is the maximal value of the Y/Q
ratio, and Cj is the cumulated wear along the track.

At last, given a fixed description of the track design, (cg,cy,cr), and a normalized model
of train, V), for which mechanical parameters are also fixed and have been accurately identified,
the railway stochastic problem can be written:

xtot I xtt(s) 5 € (0,5 = C =G (X' | ey,ev,er,V,C), (6.8)

where X" = (X{o!, X{ot, X1t X{°!) is the track irregularity random field computed from the
local-global approach described in Chapter [B

6.3.2 Validation of the stochastic problem

Two validations for the track generator presented in Chapter B based on the train dynamics,
are proposed in this section. In a first step, it is shown that the track generator coupled with
the Vampire software allows us to simulate train accelerations that are similar to accelerations
that have been recorded on a real high speed train on a real track. In a second step, we show
the relevance of the track stochastic modeling, to generate track conditions that are realistic
and representative of the measured track geometries, for the analysis of the wheel/rail forces.

Relevance of the track stochastic modeling for the analysis of the train accelerations

Since 2007, the TGV IRIS-320 has been used to monitor the track geometry of the French
high speed lines. This train has been modeled and simulations have been performed at constant
speed S on v = 500 track geometries of total length S*t. The chosen track design functions, cy,
cv, cr,, are shown in Figure The track irregularities of each track geometry are moreover
characterized by independent realizations, X**(0©,,), 1 < n < v, of X', For all s in [0, S%],
at position s, we respectively define égim(@n,s) and éjm(@n,s) as the vertical and lateral
maximal values of the accelerations in all the coaches of the train that is excited by the track
irregularity X (0,,).

Given these two sets of train responses, {aiim(@n), 1<n< 1/} and {G;im(@n), 1<n< 1/},
let {D7(s), s €[0,5%, 1<i<10} and {D!(s), s € [0,5%"], 1 <i <10} be the decile func-
tions, such that at each position s, i/10 of the values of C5™(0,,, s) and égim(@n, s) are in D7 (s)
and D?(s) respectively. These decile functions, whose representations are shown in Figure [6.6]
allow us to evaluate the influence of the track irregularity variability on such maximal values.
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The IRIS-320 train is moreover equipped with accelerometers that record the vertical and
transverse accelerations at three coaches,

L(1) (2) ~(3) (1) .(2) .3
(50,5059, 20 50 59}

In order to evaluate the relevance of the former results for the maximal accelerations in the
train coaches, we define CZ™P and C;*P, such that for any value of the curvilinear abscissa of
the track, s, we get:

(4)

CoP(s) = 5 6.9
22(s) = max [20(5)] (69)
Fexp( oy _ (i)

Cy™(s) ie%%}fs}‘yc (s)|- (6.10)

Five particular evolutions for C&P and Cg™® over a length 5" are then extracted from the ex-
perimental database, which are denoted by {éﬁxp’(”, e ,6§Xp’(5)} and {6’5)@’(1), cees 6;""’(5’}.
These measurements were chosen as their dynamic characteristics were the most comparable
to the simulated one, in terms of cross level, horizontal and vertical curvatures, speed of the
train and length of the curve. If the chosen simulated dynamic characteristics were not similar
to the extracted dynamic characteristics on the complete domain [0, S*'], non-valid domains
were added to these figures. The evolutions of these measured accelerations are compared to
the simulated ones in Figure

In the light of these results, the track generator coupled with the Vampire software seems
to be able to simulate realistic and representative runs of the IRIS-320 train to analyze the link
between the two first quantities of interest of the stochastic modeling, C; and C5, and the track
geometry variability.

Dynamic validation of the track generator for the analysis of the wheel/rail contact
forces

No on-track measurements of the contact forces between the train and the track at high speed
being available, an other approach is proposed to evaluate the relevance of the track generator
to simulate realistic and representative values for Cs, Cy and Cs.

To this end, the particular curve of total length S** shown in Figure 2] is once again
considered. From the available measurements of the track geometry, v = 400 different
track conditions of total length S {X e, (61),..., Xexp(uexp)}, are gathered. These track
conditions stem from the random concatenation of measured track sections that are in alignment,
in transition curve entrance or exit, or in curve, in order to suit the chosen track design.

The same normalized high-speed train V), for which mechanical parameters are supposed
to be accurately identified, is thus made run first on the v**P measured track conditions, and
then on v generated track conditions, {XtOt(Ql), e ,XtOt(@y)}, at the same speed S. Eight
quantities of interest that are representative of the train dynamics are then compared:

e the left and right transverse contact forces at the first wheelset of the first bogie of the
motor car, Q1 = Y]f;[C and Q2 = Yy,

e the left and right transverse contact forces at the second wheelset of the second bogie of
the second passenger car, Q3 = Ylﬁc and Q4 = Y5

e the left and right Y/Q ratio at the first wheelset of the first bogie of the motor car,
Qs = (Y/Q)yc and Qs = (Y/Q)jys
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e the left and right Y/@ ratio at the second wheelset of the second bogie of the second
passenger car, Q7 = (Y/Q)%q and Qs = (Y/Q)pe-

In the same manner than in Section 5.6l for 1 < ¢ < 8, we are interested in the mean power
spectral densities of ); and the mean numbers of upcrossings of the level v by @; over the length
St which are respectively denoted by P.SD™(Q;) and Nip®(Qis u, Stot) when these quantities
are computed from the measured track geometries and PSD&"(Q;) and N§"(Q;, u, S*°) when
these quantities are computed from the generated track geometries. The comparisons between
these quantities are represented in Figure It can be seen that the fit is very good.

The stochastic modeling of the track geometry is thus relevant from the train response
point of view. In the following, it is therefore supposed that the track stochastic modeling,
coupled with the software Vampire is also relevant to investigate the relation between the track
variability and the three quantities of interest Cs, Cy and Cs.

6.4 Propagation of the variability

As explained in Section 6.1l a better understanding of the specific link between the track
irregularities and the train response is needed to optimize the maintenance, and to better
anticipate the consequences of modifications of the running conditions.

In this prospect, we denote by Pc(dx) = pco(x)dx the multidimensional distribution of
random vector C, where pc is the associated density. This distribution is strongly related to
the distribution of the track irregularity random field, Pyt (see Eq. (G8])). Assuming that
the latter distribution has been accurately identified from the local-global approach described
in Chapter B the track variability has now to be propagated through the railway model to
characterize Pgo.

As the statistical dimension of X ™" is very high and as the relation between Pc and Pytor is
very complex and strongly nonlinear, the Monte Carlo method appears to be the best approach
to do so. Indeed the convergence properties associated with this method are independent of the
statistical dimension of the input.

From v independent realizations of X't {XtOt(@l), e ,XtOt(@y)}, v independent realiza-
tions of C, {C(0,),...,C(0,)}, can be deduced as:

C(0,) =G (X"(O,) | cu,cv,cr,V,C), 1<n<w. (6.11)

The statistical properties of C' are finally deduced from the analysis of this v-dimension set
of independent realizations of C.

Three applications of this stochastic modeling are now presented. These are based on the
track design of total length S** shown in Figure 621 and on v = 4,000 track irregularity
realizations. First, the influence of the track design and the track irregularities is illustrated.
Then, it is shown to what extent such a method can be used to quantify the influence of an
increase of the train speed on C. At last, the method is used to compare the safety and the
aggressiveness of three different high speed trains.

6.4.1 Influence of the track design

The idea of this section is to quantify the importance of the track irregularities and of the track
design on vector C'. In this prospect, the response of a normalized high train V; to the former
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Figure 6.9: Influence of the track design on the marginal PDFs of vector C.

v track conditions of total length St is analyzed. In the same manner as in Section [(.Z.1]
four categories are considered: the alignment (A), the curve entrance (CE), the established
curve (C) and the curve exit (SC). The response of the train is therefore sorted with respect
to these four curve categories, such that, for 1 < ¢ < 5, four values of the railway quantities
of interest C/(0,,), CFY(0,), C£(0,) and CP¢(0,) can be computed. Based on these sets
of v independent realizations, the PDFs of the components of C are estimated from a kernel
smoothing method, and are represented in Figure From these graphs, it can be seen that
the influence of the track design on the wear criterion, C5 is very high. The other dynamic
quantities, C7, Cy, C3 and C4 seem however to be much more dependent on the the track
irregularities than on the track design.

6.4.2 Influence of an increase of the speed on the quantities of interest

The second application of the whole method deals with the influence of the speed on the PDFs
of the five considered criteria. Only the established curve configuration case is shown.
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Figure 6.10: Influence of the train speed on the marginal PDFs of vector C.

Railway simulations are therefore performed on the same v realistic and representative track
geometries, at the four speeds S1 = §, S2 = 1.1S, S3 = 1.25 and S4 = 1.3S5. Two other sets
of simulations have then been carried out for a different value of the track superelevation, c7,
at speeds S3 = 1.2S and S4 = 1.3S in order to quantify the importance of this track design
parameter with respect to the three criteria studied. In other words, whereas ¢y, is chosen to
compensate the train inertial acceleration in curve at speed S1, ¢} allows the compensation of
the train inertial acceleration in curve at speed S3.

For each speed, the PDFs of each component of C' are once again estimated using a kernel
smoothing method based on the v = 4,000 independent railway simulations. These PDFs are
represented in Figure In this figure, the nonlinearity of the system can be noticed, as the
consequences of an increase of the speed of 10% to 30% are much higher than 30% for each
criterion. In particular, an increase of 30% of the speed of the train can yield an increase of
more than 500% of the contact wear if the track superelevation is not adjusted. In addition,
these figures emphasize the importance of the adjustment of the track superelevation to the
speed, in terms of minization of wear, of shifting and of risk of derailment.
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Figure 6.11: Influence of the train characteristics on the PDFs of C.

6.4.3 Comparison of three high speed trains

In this section, it is supposed that three different models of three competitive high speed trains,
V1, Vo and Vs, are available. The mechanical parameters of these trains are very different and
were carefully identified from experimental measurements. These three trains are thus made run
on the same v track geometries at the same speed S. The PDFs of each criterion C; associated
with each train are then shown in Figure Hence, the stochastic modeling allows us to
compare the dynamical response of these three trains when excited by a representative set of
realistic track conditions. In particular, criteria C'5 and C5 could be interesting indicators to
compare the aggressiveness of each train.

6.5 Sensitivity analysis

For years, railway engineers have been working on the identification of the most dangerous and
uncomfortable track irregularities for the train dynamics. These research have been mostly
based on correlation analysis between the outputs of the train and the amplitudes, the wave-
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lengths or the maximal values of the track irregularities.

Based on the v former simulation of the normalized vehicle V; at constant speed S, the
idea of this section is to perform an analysis of sensibility of the train response with respect
to the track irregularities. At first, it will be shown that a direct analysis of the correlations
between inputs and outputs has little chance of success, due to the high nonlinearities of the
train suspensions and bumpstops and of the wheel/rail contact. Then, an original sensitivity
method based on the scaled expansion developed in Chapter [ will be presented.

6.5.1 Nonlinearities and importance of the conjunction of track irregularities

In this section, only four dynamic outputs, 51, 52, 53 and 64, are considered:

e () the vertical acceleration at the center of gravity of the 5 coach of T,

e (> the transverse acceleration at the center of gravity of the 5" coach of T,

5th

° 63 the sum of the transverse loads of the first wheelset of the first bogie of the coach

of T,

o Cy the Y /Q ratio of the left wheel of the first wheelset of the first bogie of the 5! coach
of T.

Hence, we are interested in the identification of the local shapes of the track irregularities
that bring about the highest values for these four quantities C’l, C’g, C’3 and Cy. To this end,
for 1 <i <4 and 0 <SP < §% we denote by

Si(s7r, 1) = { (X749, CF) 1< g < Qi

the sets gathering the @); track irregularities of length SP", that are centered at the values of
C; that are higher than the threshold 7;. Threshold T} is chosen sufficiently high, such that

at most one couple <X por,i,q 69) can be extracted from each railway simulation. Hence, the

elements of S'(SP°T, T;) can therefore be considered as statistically independent.

For confidentiality reasons, the values of length SP°" and threshold 7}, which are introduced
to carry out a local analysis of the track irregularities, are not given in this work.

In addition, let X;nax’i’q and 6*;“ #1 he the maximal values such that:

max,i,q — p0r7i7q < 53 < .
X; l{n%}éor] {XJ (S)} clsis4 (6.12)
aimax,q = max {62(1} . (6.13)
s€[0,SPor]

For 1 < i < 4, the evolutions of X maxhd with respect to amax’q are then represented in
Figure[6.12l From these scatter plots, it can therefore be noticed that no linear nor monotonous
relation between X;nax’l’q and C’;n 9 can be identified. In the same manner, from this direct

approach, it is hard to tell if the increase of égnax is mostly due to one track irregularity or
another one.

In other words, for 1 < i < 4, from the v available simulations, it can easily be extracted track
conditions with high track irregularities that would less excite the train than track conditions
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Figure 6.12: Analysis of the correlation between C1 and the four track irregularities.

with low track irregularities, as it is shown in Figure (the values of the track irregularities
on the first hand and of the dynamic quantities on the other hand were scaled to be shown in
the same graphs). Even if the maximal amplitudes or the variances of the track irregularities
seem to be representative quantities for the track quality, it can be seen from these results that
they are not at all sufficient. New methods that would be able to better take into account the
combination of the four track irregularities, as well as their specific shapes, are thus needed.

6.5.2 KL-based sensitivity analysis

The fact that no direct relation can be emphasized between the maximal values of 61, 62, 63,
54, and the maximal values of the track irregularities on a restricted length SP°", motivates the
introduction of an alternative method to identify the most uncomfortable irregularity shapes.
To this end, the method we propose is based on the scaled expansion developed in Chapter
@ Using the same notations than in Chapter @and M, for 1 < i < 4, we define Z%¢ in P(QP°") as
the second-order random field, indexed by s in QP°" = [0, SP°'] with values in R®, which is con-
ditioned by X' in the sense that, for each independent realization {X ot(@,s), s €0, St"t]}
of X, if it exists s* in [SPT/2, 5% — §Por /2] such that |Cy(s*)| > T}, we get an independent
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realization, Z7i(©), of ZTi:

ZT(©,5) = Ci(s + s* — 57" /2),

T; tot * por . (614)
Z;11(0,5) = X}, s + 5" — 5P /2), 1 <j <4

ens, |

Given this formalism, for 1 < ¢ < 4, it can be noticed that ); independent realizations,
{ZTi(Hq), 1<¢< Qi}, of Z™ can be computed from the v railway simulations computed in
Section [6.5.1]

For any O in ]0,400[?, let Y77(O) be the scaled random field associated with Z7?, such
that:

T; T; ,
v/i(0)=0;z 1<j<5. (6.15)
For any fixed value of O in ]0, 400, YjTi(O) is also in P(QP°") and we can introduce
HyTi (o) and [RyTi(O)] as its mean value and its matrix-valued covariance function. Using
the same notations than in Chapters 2l and @ we moreover denote by {km(@), 1< m} and

{k™(0), 1 <m} the KL projection basis associated with C; and Y7i(O) respectively, such
that:

YT(0) = pyr, o)+ Y K™(0) (YT(0),k™(0)),
m>1

C;=E [@} + Z K™(Cy) (az',k?m(@)) :

m>1

(6.16)

For any k in |0, +oc[, O is chosen such that:

01 =k,

0, =1/ HZJT' (6.17)

P(Qpor)

It is then assumed that, for 1 < m, the functions

k= (K{'(0))* / K7 (0)|[7z (6.18)

K ((k‘S”(O))z,(k‘:?”(O))z,(kT(O))z,(ks)m(O))2>/H(kzm(O),ké”(O),kT(O),ksm(O))Hiz,
(6.19)
converge to the limit functions £™(C;) and L™(T}) = (LT(T3), Ly (T;), LE(T;), LY (T5;)) respec-
tively when k tends to infinity. In other words, by making x tend to infinity, we admit that it
is possible to extract the KL expansion of @ Even if no numerical example has been found to
contradict them, these convergence properties have not been proven yet in the general case.

Therefore, if ZlT ¢ and ZJ-Tle are uncorrelated, the components of L™ (T;) are equal to zero.

On the contrary, if Zf “ and Z]Tj'H are correlated, these limit functions are not equal to zero, and
it is assumed that the first elements of these limit functions allow us to identify the shapes of the

~

track irregularities that are the most correlated to the component £™(C;) of the KL expansion
of CZ
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Figure 6.14: Correlation analysis between the shapes of the track irregularity and 61.

Based on the v former simulations, for 1 < ¢ < 4, the mean values and the three first
eigenfunctions associated with Z”i when r tends to infinity are shown in Figures 6.14] B.15]
and From these graphs, as expected, it can be seen that the extreme values of the
vertical and transverse accelerations of the train coaches are mostly correlated to the vertical
and horizontal alignment irregularities respectively. More interesting, these figures show that
the extreme values of the transverse wheel/rail forces and the Y/Q ratio are not due to a
high value of one track irregularity but seem to be correlated to a combination of the four
track irregularities. Indeed, from the mean value and the first eigenfunctions associated with
Z"5 and Z™, it appears that the high values of 63 and 54 coincides with a short-wavelength
oscillation of the track irregularities, in which the sign of the gauge irregularity is opposite to
the sign of the three other track irregularities. The fact that this wavelength corresponds to the
frequency of highest energy for the transverse movement of the bogie lays stress on the strong
dependencies between the track irregularities and the train responses. In the same manner, it
could be interesting to find out the reasons of the presence of translated replica for the high
values of 6’3 and 6’4 in the second and third limit functions.

6.6 Conclusions

A method to propagate the track geometry variability through railway mechanical simulations
is nowadays of great interest. In this chapter, a stochastic model for the track-vehicle system
has therefore been presented. Based on a given description of the track design, on a normalized
model of a high speed train, on two rail and wheel profiles, and on the stochastic modeling
of the track geometry developed in Chapter [Bl this model allows the analysis to be carried
out concerning the influence of the variability of the track irregularities on the train dynamics.
The capability of this stochastic modeling to generate running conditions that are realistic and
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Figure 6.15: Correlation analysis between the shapes of the track irregularity and 62.

— B[z
g —ElzPe)]
=) A EAO -
z E|ZD(s) £
—E|Z5(s)
Abscissa 0 < s < SPr Abscissa 0 < s < SPr
— Li(s,T3)
£ - L3(s,Ts) £
£ - L3(s.Ty) =]
- L3(s,T3) N
—AP(@)

Abscissa 0 < s < SpPer Abscissa 0 < s < SPOr

Figure 6.16: Correlation analysis between the shapes of the track irregularity and 63.
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Figure 6.17: Correlation analysis between the shapes of the track irregularity and 64.

representative of the quality of a measured railway network has been validated from on-track
measurements.

Five quantities of interest have then been introduced to characterize the train dynamic re-
sponse, which correspond to classical railway comfort and safety criteria. The statistical prop-
erties of these dynamic criteria have moreover been identified using a Monte-Carlo approach.
Three applications of the whole method have thus been presented. The first one compares the
influence of the track design and the track irregularity variability. The second one analyzes the
impact of an increase of the speed on the train stability, whereas the third one shows to what
extent such an approach could be used to compare competitive high speed trains with respect
to their response on a set of representative track conditions.

Finally, it has been underlined that the strong nonlinearity of the track-vehicle system and
the high dependencies between the four track irregularities prevent us from identifying clear-
cut relations between the five considered dynamic criteria and the track irregularities. In this
context, an original method based on the scaled expansion has been presented to open new
ways to identify the combined shapes of the track irregularities that could lead high values of
the considered criterion to be obtained.
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Conclusions and prospects

Summary of the industrial context

For years, the use of simulation in the railway community has been limited to a qualitative
analysis approach. Numerical models have therefore been developed for allowing a better un-
derstanding of the physical phenomena. Due to increasing available computational resources,
and to a series of breakthroughs in the solving of nonlinear equations and in the modeling of
complex mechanical systems, simulation nowadays becomes more and more predictive. Hence,
simulation cannot only be used to explain the experiments, but is expected to complete them,
and sometimes to replace them.

The possibilities of a predictive simulation are huge. In a certification and conception
prospect, it could indeed be used to quantify the stability and the safety associated with future
trains. In a maintenance prospect, it could moreover allow us to evaluate the consequences of
modifications of the running conditions, and to optimize the maintenance policies.

For a railway simulation to be predictive, the mechanical models of the train, of the
wheel /rail contact and of the track geometry have to be fully validated from experimental
measurements, and the simulations have to be raised on realistic and representative sets of
excitations. For the last decades, increasing the modeling precision has been the main priority.
Many efforts have therefore been made for the modeling and the identification of the parameters
of real and complete trains. In the same manner, real rail and wheel profiles have been used
to compute the wheel/rail contact properties. Hence, the comparison between simulated and
on-track measured train responses is currently possible. Although not perfect, these determin-
istic models seem to give very promising results in a large band of frequencies. These models
of the train and of the contact being strongly nonlinear, the dynamic behavior of trains has
nevertheless to be characterized not from a single simulation but from a set of simulations that
is representative of all the running conditions that the train is likely to be confronted to during
its lifecycle. A particular attention has thus to be paid to the characterization of the track
geometry variability, which represents the main source of excitation of the train dynamics.

From a general point of view, the track geometry can be seen as the sum of a mean line
description (which is chosen once for all at the building of a new line) and a deviation from
this mean position, which keeps evolving due to the train dynamics and to environmental
stresses. Four track irregularities are generally introduced to characterize this deviation, which
are the lateral and vertical offset irregularities, X; and X5, and the cross-level and the gauge
irregularities, X3 and X4. These four track irregularities can therefore be seen as a four-
dimension random field, X = (X1, X2, X3, X4), for which components are strongly dependent.
This thesis has therefore been motivated by the need for numerical methods to identify the
statistical properties of this random field, as well as to propagate the track variability through
the railway system model.
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Scientific and industrial contributions

Since 2007, the track irregularities of the French high speed lines are regularly measured, to
define a very useful database for the analysis of the track variability. The analysis of these
experimental data has however emphasized that, due to the specific interaction between the
train and the track irregularities, random field X is neither stationary nor Gaussian, which raises
many difficulties. Under a local-global hypothesis, which has been justified from a convergence
analysis, this database can however be decomposed as a finite set of independent realizations of
track irregularity random field X . Hence, this thesis deals with numerical methods to identify
in inverse the statistical properties of non-stationary and non-Gaussian random fields from a
finite set of independent realizations. The chosen methods are based on a double expansion
presented hereinafter.

The first step of these methods is a truncated spatial expansion, such that random field X
can be approximated as a finite sum of weighted spatial functions, where the weights are the
components of the random vector 7, and are a priori dependent. This work has thus proposed
contributions in the field of the identification of optimal projection families to condense and
reduce the statistical dimension of X while guaranteeing an acceptable level of accuracy. Based
on the classical Karhunen-Loéve (KL) expansion, these developments have been motivated by
two main reasons. First, as the maximal available information about the track irregularity
random field is a finite set of independent realizations, the covariance function of X, on which
the KL expansion (and more precisely the Fredholm eigenvalue problem) is based, is unknown
and can only be approximated. Although the KL projection basis is optimal in the sense that
it minimizes the total mean-square error associated with X, there is no reason for the KL basis
associated with the approximation of the covariance function of X to be still optimal. When the
number of available realizations is moreover very small compared to the stochastic dimension of
the random field, as it is the case for the track irregularity random field, X, it has been shown
that the relevance of such projection basis can be very limited. In this prospect, an original
method based on an optimization problem over the operator on which the Fredholm problem is
solved has been introduced. Then, it has been underlined that minimizing the total mean-square
error associated with X amounts to characterizing in priority the components of X that have
the highest signal energy, even if their role on the train dynamics is low. An innovative scaled
expansion has thus been proposed in this work, in order to reduce this bias and to minimize
the maximal value of the errors associated with each component of X. The interests brought
by these two adaptations of the classical KL expansion in terms of error reduction have then
been illustrated on simple examples as well as on the track irregularity case.

Once the optimal projection family for X has been identified, characterizing X amounts to
identifying the multidimensional distribution of random vector n, for which a set of independent
realizations can be deduced from the realizations of X. To this end, this work focused on
the Polynomial Chaos Expansion (PCE) method, which is one of the currently most promising
method to identify in inverse the distribution of non-Gaussian random vectors from independent
realizations. This method is based on the projection of n on a polynomial basis of its probability
space. In such a projection, the polynomial basis is random, but its distribution is chosen and
known, whereas the projection coefficients are deterministic but unknown. This sum, which is
infinite in theory, has then to be truncated, and the truncation has to be justified according to
a convergence analysis. Once a given truncated projection family has been chosen, the finite
set of coefficients has finally to be identified to completely characterize the distribution of . A
good approach to identify such coefficients is to search them as the arguments that maximize
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the likelihood of 1) at its available realizations. The likelihood function being not convex, it has
been shown in this work that the solving of this optimization problem can be carried out using
a random search algorithm based on the generation of rectangular matrices under orthogonality
constraints.

In the case of a track, the train being very sensitive to the track irregularities on a large fre-
quency band, a large number of projection functions are needed for the approximated projection
of X to be accurate from the train response point of view, such that the dimension of 1) is very
high. In such high dimensions, two adaptations of the classical formulation have therefore been
presented to give relevant results. On the first hand, original iterative algorithms have been
proposed to optimize the trials of these projection matrices under orthogonality constraints. On
the second hand, a method to numerically stabilize the matrix of realizations of the statistical
polynomial basis has been introduced, to allow more relevant convergence analysis. The possi-
bilities opened by these two adaptations have also been illustrated on academical examples and
on the track irregularity case.

Once the spatial projection family and the statistical projection coefficients have been iden-
tified from the available track database, the multidimensional distribution of X is characterized,
and it is possible to generate quickly and easily independent realizations of X. Coupled to a
particular track design, these realizations allow the definition of realistic running conditions,
which are representative of the quality of the measured railway network. The track generator
can finally be used in any railway software to investigate the influence of the track variability
on the train dynamics.

In this prospect, the multibody commercial software Vampire has been used to compute the
dynamic responses of high speed trains on generated track geometries. After having shown that
the simulated response of high speed trains on generated tracks was similar to the measured
response of the same trains on measured tracks, this work analyzed the influence of the track
variability on two comfort criteria, two safety criteria and a wear criterion. These studies
underlined the high nonlinearity of the track/vehicle system, and quantify the influence of
modifications of the running conditions and to evaluate and compare the stability and the
aggressiveness of several high speed trains.

Discussion and perspectives

Scientific prospects

The application of the Karhunen-Loéve expansion combined with the PCE approach to the
modeling of the track irregularity random field revealed the important potential of such methods
to identify in inverse the distribution of multivariate, non-Gaussian and non-stationary random
fields in very high dimensions, but also emphasized some limitations that are listed hereinafter.

Reduction of the computational time associated with the identification of the op-
timal projection family. When confronted to multivariate random fields X that are char-
acterized by a set of v independent realizations, the method proposed to identify the optimal
basis is established on three interlocked computational loops.

e The first one deals with the identification of the optimal value of the weight matrix [a],
defined by Eq. (Z40). Let N, be the number of values for [«] that are considered in this
solving.
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e Secondly, for each value of [a], the optimal value for the scaling vector O, introduced in
Section [£.2.2] is searched to minimize the maximal value of the errors associated with each
components of X. In the same manner, let No be the number of evaluations of O that
are required to reach a targeted error.

e Then, for each value of [a] and O, a method to evaluate the representativeness error
associated with the considered projection family is needed. In this work, it has therefore
been shown that this error can be computed from a Leave-One-Out (LOO) approach. As
shown in Section Z33] this method is nevertheless based on the solving of v Fredholm
eigenvalue problems.

Finally, the entire identification method requires the solving of N, x Np x v Fredholm
problems. In this prospect, specific algorithms have been used in this work to reduce N,
and Np, and to speed up the solving of the Fredholm eigenvalue problems associated with
the evaluation of the LOO error. First, a dichotomy-based algorithm has been proposed for the
identification of [, as it allowed the identification of very accurate results in a very few number
of iterations for the analyzed applications. The convexity of this problem over [a] has however
not been proved in the general case, which could be an interesting prospect of the proposed work.
If the convexity property is verified, it is expected that more advanced algorithms could be used
to speed up this optimization step. In the same manner, an innovative iterative algorithm has
been proposed to identify accurate solutions from a very limited number of iterations, which is
denoted by No. Once again, the proof of the convergence of such an iterative algorithm in the
general case is missing. This algorithm is moreover based on two parameters, 7 and v (see Eq.
(251))), which play a major role on the convergence speed. In this manuscript, two values have
been proposed, which stem from a quick parametric analysis. The optimization of these values
constitutes another direction to minimize the total computational cost. At last, keeping in
mind that computing the LOO error associated with any projection family amounts to solving
a series of slightly modified eigenvalue problems, it was noticed that iterative methods, such as
the subspace iteration methods [85], helped us to reduce drastically the computational time,
especially when confronted to very high dimensional cases. Further developments in the field of
these efficient identification methods would thus be of a great interest.

More gains can also be expected from the definition of rejection procedures in all these loops
(for instance, if the solving of the first Fredholm problems, associated with given values for [a]
and O, seems to indicate non-satisfactory results, we directly move to other values for them),
but also in the definition of efficient identification methods for the couple ([, O) instead of
one for [a] and one for O.

Application of the decomposition method to the PCE identification. The identifi-
cation of the PCE for very high dimensional random vectors is also very time consuming. As
a random search method has been proposed to identify these PCE coefficients, the precision of
the results is completely driven by the available computational resources, as the more elements
we try, the more chance we have to find accurate values. Even if such random-search algorithm
can easily be distributed on several computers, it is important to optimize the trials. In this
context, the advantages of a method based on a line-by-line identification has been shown in
Section The most time-consuming step of the numerical application of this method is the
computation of the multidimensional likelihood at the available experimental points. Indeed,
the complexity of the evaluation of this quantity, whose expression is given by Eq. (L60), is
M x v x v where v is the number of available measurements, M is the dimension of the
considered random vector, that we denote by m = (n1,...,7a7), and "% is the number of
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independent realizations on which the computation of the multidimensional PDF of the PCE
approximation of i, n°"2°, is based. The choice for "% ig thus very dependent on the value
of M, as the higher M is, the more independent realizations "% we need to evaluate the PDF
of nPa°s from a nonparametric approach. In this prospect, we believe that the application of
decomposition methods for the PCE identification could lead to considerable improvements in
terms of cost-efficiency. In other words, if n?, 1 < ¢ < Q, refer to M /Q-dimension random
vectors such that n = (n(l), e ,n(Q)), we think that it could be interesting to search the PCE
of n from the aggregation of the Q PCE of n(9. Indeed, the dimension of (9 being much
smaller, the associated number vP2°s of generated realizations at each evaluation step could be
drastically reduced.

In such an approach, the definition of methods to perform such an aggregation is however
an opened subject.

Need for innovative methods to compare the statistical properties of two sets of
independent realizations in very high dimension. To characterize the distribution of
the track irregularity random field, which was the initial goal of the thesis, we finally had to
identify the distribution P, of a 2, 000-dimension random vector, 7, while the maximal available
information about this random vector was a finite set of almost 500 independent realizations.
More precisely, the ability of generating independent realizations of 7 was as important as the
identification of .

Hence, being confronted to such very high dimensional problems with so little information,
we do not pretend to be able to identify exactly P, but propose a method to search its best
reachable approximation. In the same manner, we don’t claim to be able to generate new
realizations of 7, but try to generate sets of independent realizations that have the closest
statistical properties to the available set of measurements.

In this context, the PCE approach presents many advantages to face this challenge of the high
dimension. First, it is very general, in the sense that whatever the dimension is, no subjective
assumption is needed. It seems moreover particularly able to take advantage of the increasing
computational resources, as the relevance of the results increases with the number of tested
trials. At last, once the projection coefficients are identified, the generation of independent
realizations of the PCE approximation, n#S(N), of 7 is quick and very easy.

However, even in this favorable case, where it is possible to generate as many realizations
of n°"2°5(N) as needed, the relevance of n"°(N) remains difficult to evaluate. The number
of realizations of n being still small, it is still difficult to compare the dependencies associated
with the components of n and the ones associated with the components of nM2° (V). Statistical
tests and likelihood-based methods to compare these sets are indeed completely useless in such
high dimensions.

The fact that this random vector is to be used in a very complex and nonlinear mechanical
problem is however an interesting opportunity to compare i and n°"@°s(N). Indeed, if the
mechanical problem makes use of the dependencies between the components of 7, it should be
possible to quantify the distance between the multidimensional distributions of 17 and na°s(N),
by comparing the outputs of this problem that correspond to m on the first hand, and to
n°12°5 (V) on the second hand. In this context, in Section 3223} an original method to compare
the dependencies between 7 and 1"°(N) in very high dimension has been proposed. This
method is based on the generation of a series of random fields, which are written as weighted
sums of randomly chosen spatial functions, while the weights are the components of 1 and
n°h2°s (V). By generating large sets of these functions, and by comparing these random fields
on quantities that can actually be evaluated (the number of upcrossings for instance), it is
possible to investigate the capability of n"2°(NN) to represent the dependencies between the

148



components of 7.

At last, it is believed that the definition of problems that are more specific and more adapted
to the dependency structure of 1 could help us to construct methods to precisely evaluate the
quality of PCE approximations in very high dimension.

Scaled expansion and shape correlations. In Section [655.2] an innovative sensitivity
method based on the KL expansion has been proposed to analyze the correlation between
an output function and a multivariate input function. Applied to a series of mechanical sys-
tem, this method seems to give very promising results. In a validation prospect, analyzing the
theoretical basis of this method is however an open topic.

Model updating. As the measurement train IRIS 320 continuously monitors the track geom-
etry, the number of experimental data for the track geometry modeling progressively increases
with respect to time. As a consequence, the number of independent realizations of the track-
geometry random field X is likely to increase. From a prior stochastic modeling of X that is
based on an original set of realizations, methods to identify updated modelings of X that takes
into account new available realizations of X would be very interesting. To this end, the recent
adaptations of the Bayes theorem to the PCE seem to be very promising (see [50] and [86] for
further details about these adaptations), and it would be worth applying them on the track
geometry, whose dimension is very high.

Industrial prospects

The stochastic modeling of the track geometry opens many opportunities in terms of certifica-
tion, optimization of the railway system and minimization of the maintenance costs. In order
to extend the domain of application of this modeling, a series of complementary developments
could be carried out as explained below.

Evaluation of the global quality of several railway networks with respect to the
train dynamics. The stochastic modeling of the track geometry we propose is only based
on the measurements of the track geometry of a given railway network. From the local-global
approach, these measurements can then be sorted with respect to the track design in sets of track
portions of same length S. For each of these sets, once the spatial and statistical expansions
have been achieved, it is possible to generate as many track conditions as needed to evaluate
the stability and the aggressiveness associated with each train that could run on this network.
Reciprocally, such a method can directly be used to compare the global quality of several
high speed lines from the train response point of view. Indeed, once the track generator as-
sociated with a series of railway networks have been computed, sets of track conditions that
are representative of their qualities can be generated. Railway simulations can then be carried
out from these realistic running conditions, such that the quality of the different networks can
finally be compared by analyzing the associated distributions of comfort and safety criteria.

Quantification of the degradation of the track quality due to the train dynamics.
In Section[6.5.2] the strong dependencies between the train dynamics and the track irregularities
were pointed out. Many informations about the train mechanical properties could indeed be
found back by analyzing the wavelengths of the track irregularities, or by analyzing the most
frequent positions for the damaged track sections. Modeling the coupling between the train
dynamics and the time evolution of the track irregularities is however still an open issue that
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was not treated in this work but that would require a particular attention. Two different points
of view can be analyzed.

On the first hand, if the track geometry of a whole network is measured between two
maintenance operations at different time steps t1,...,ty, a stochastic modeling of the track
geometry for each of these time step can be computed. Therefore, it should be possible to
evaluate the time evolutions of the distribution of the comfort and safety criteria, and therefore
to quantify the influence of the train dynamics on the global quality of the considered network.
In the same manner, by continuously monitoring the evolution of the track geometries, the
influence of the runs of trains on the track irregularities could be evaluated.

But much more gain could be expected from a predictive coupling model. Indeed, if it is
possible to predict (from physical and/or statistical models) the future evolution of the track
geometry due to the train dynamics, the continuous monitoring of the track can not only be
used to identify the track sections that would cause the highest train responses, but should also
indicate the track portions that are still not dangerous but which are the most likely to become
critical if no maintenance operation is planned.

Robust optimization. Based on the track generator that was proposed in this work, it is
possible to construct huge sets of realistic track geometries, which would correspond to track
conditions that the train can be confronted to during its lifecycle. This track stochastic modeling
opens therefore new possibilities for the train manufacturers and train operators to optimize
the mechanical properties of trains with respect to their stochastic dynamic response on the
variable track geometry.
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Appendix

A  Proof of Lemma

Using the notations of Section [£2] {ki(O),i > 1} defines a spatially orthonormal basis of
P@(Q). Autocorrelation function [Ryy (O)] can therefore be projected on this basis, such
that, by construction of the Karhunen-Loéve basis:

RYY Z )\ ® kZ(O) (6.20)

i>1

Let B = {bi, 1 < i} be another countable basis of Hilbertian space P@(Q), and FM) =
{bf, 1<i< M} be a M-dimension subset of B. For all ¢ > 1, f* can then be projected on
{k(0),j > 1}:

— SO PkI(0), Py = (F,K(0)). (6.21)
i>1

Without loss of generality, family F can be supposed to be spatially orthonormal, as it can
be orthonormalized a posteriori without modifying the corresponding projection error. From

Egs. ([EI9), this yields:
1= (1) =YY Py ( ké(0)> =Y P2 (6.22)

i>16>1 i>1
Let f’(M) be the projection of random field Y = [Diag(O)]X on FAM),
M . .
=1
(M) . .
Random field X is thus introduced as:
X" ~ Diag(0) v (6.24)

From Eqgs. ([©20) and (623)), for all M >i > 1, we get:
E{C?} = / (Fi(s T Ryy (0, s,8)|fi(s')dsds' = ZA P2 (6.25)
7>1

Therefore, from Eqs (6.22) and (6.25):
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i=1 j>1
- (6.26)
=3 3 P2(0) - 2,(0)
i=1 j>M+1
M
> (A(0) =\ (0)Y . > PE>0,
i=1 j>M+1

as by construction, for all j > i, A;(O) < X\;(O). Moreover, it can be noticed that, by definition
of matrix [Diag(O)], for 1 < ¢ < @:

B{(% = XM X, = XP0) = B{(0" (i - ¥™) 07 (v, - V") )}
—02 Y M(0) (K (0),K(0)), (6.27)
M+1<i

" is the projection of Y = [Diag(0)] X on K™ (0O) and 5(\(M) =

. In the same manner:

~ (M
where it is reminded that Y(

Ding(0)] 7"

{505, 590 < (o (- 7). 07 - 50)

q q q

=07 37 B{CIH(13 1)) (629

M+1<i

It can finally be deduced from Eqgs. (6.26]), (€.27) and (6.28]) that:

Q Q
S OANE(XE (KD (0)) = 37 OANE(X,)e2(FOD)

g=1 g=1

q=1
Q Q
- Xi(0) Y (K(0),K(0)) — E{C2} > (f2, £) (6.29)
M+1<3 q=1 q=1
= (\(0) — E{C?}]
M+1<q
M
— Z [E{C?} — X\i(O)]
=1
<0.

This result being true for all family F*) in HM | family X£(™)(0) is thus M-optimal for X
regarding error 2521 02 N*(X,) 2.
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q| ¢ | wgS/(2m) | 4g/S | TyS/(2m)
1] 1 20% 20% 5
2105 30% 25% 7
31 0.25 20% 35% 8
41 0.1 30% 40% 10

Figure 6.18: Numerical values used in the definition of autocorrelation matrix [Rxx].

B Generation of the matrix-valued autocorrelation matrix

For 1 < p,q < 4, matrix-valued autocorrelation function [Rx x| is chosen such that:

200

146

[Rxx(s,8)]pq = % STVAPND AP (6)d D (s'), (s, s) € 0,17, (6.30)
k=1
where for all 1 < k£ < 200:
1

/0 hy(s,8')dP) (s)ds' = AP dP) (s), (6.31)
hp(s,s') = exp (—|s — §'|/€p) cos(wy|s — §'[) cos(T}s), (6.32)
AP > >0, (6.33)
(@ d") = b (6.34)
The numerical values of vectors ¢ = (c1,- -+ ,¢4), w = (w1, ,wyq), £ = (b1, ,ly), T =
(Th,- -+ ,Ty) are gathered in Figure Several comments can be made about this formalism.

e Application (s, s’) — hy(s,s’) is not necessary positive-definite regarding the chosen nu-
merical parameters, but only its 200 highest strictly positive eigenvalues, {A,gq), 1<k< 200},

are considered.

e Couples {)\,(f),dl(ﬁq)} are solutions of the Fredholm problem associated with h,, but are

not solutions of the Fredholm problem associated with [Rx x].

e Coefficient cg can be related to the signal energy of X,, such that if ¢, > c;, N*(X,) >
NZ(Xg)-

e Coefficient 27 /w, can be considered as a pseudo-wavelength for the mean-squared station-

nary part of [Rx x|pq-
e Coefficient ¢, can be seen as the auto-correlation length of X,,.

e Coefficient T, is introduced as a perturbation for [Rx x]pq, such that the smaller Tj, is,
the less mean-squared stationnary [Rx x]pq is.
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C Definition of the local-global error functions

Tt is assumed that v track portions of same length L, {z(l), o, zW }, have been collected from
the available measurements of the railway network of interest. For any value for S, v new track
geometries, {y(l)(S), e ,y(”)(S)}, of total length L, are then built from the concatenation of
track subsections of length S that have randomly been chosen in {z(l), . ,z(”)}.

For (s,s')in [0, L]? and f > 1/L, let (s,8') = [R.2(s,8")], (s,8") = [Ryy(s, 8", 9)], f = Z.(f)
and f — 3,(f,S5) be the following quantities:

14

(Res(s,6)] = 37 2 ()20(s))T, (6.35)
n=1
[Ryy(s,s',S)] Zy M (s, 9)T, (6.36)
3, = % ZV: PSD (™), 3,(5) = % ZV: PSD (y™(5)), (6.37)

where PSD (z) = (PSD(z1),...,PSD(zp)) is the power spectral density estimation of any Rf-
valued function z = (z1,...,zp). For any value of S in [0, L], errors err2, (S) and err ... (S),
which have been introduced in Section are then defined by:

ey (S) = [I[Rz:] = [Ryy ()]l / NTR::3s (6.38)

"opect(8) = 152 = By (S)5 / I1Z:17 (6.39)

where, for all (P x P) matrix-valued function [R], and for all R-valued function X,
L (L
R]H?\/[ = / / Tr ([R(S, s/)][R(s, s')]T) dsds’, (6.40)
o Jo

“+o00
=1t = [ s (6.41)
1/L

Hence, on the first hand, err2 (S) corresponds to a covariance error. On the other hand,
errgpect(S ) can be seen as a spectral error, which characterizes the impact of S on the frequency

content of the track irregularities.
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