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Introdution and objetivesIndustrial objetivesHigh speed trains are urrently meant to run faster and to arry heavier loads, while beingless energy onsuming and still ensuring the safety and omfort erti�ation riteria. In orderto optimize the oneption of suh high tehnology trains, we need a preise knowledge of therealm of possibilities of trak onditions that the train is likely to be onfronted to during itslife yle.In parallel, sine 2012, European high speed railway networks are meant to have goneto market. Several high speed trains, suh as ICE, TGV, ETR 500..., for whih mehanialproperties and strutures are di�erent, are likely to run on the same traks, whereas they mayhave been originally designed for spei� and di�erent railway networks. European high speedrailway networks are therefore bound to be subjeted to an inreasing variability of mehanialloads. To optimize the trak maintenane and to adjust the tolls aording to the aggressivenessof a partiular train toward the trak, a better understanding of the interation between thetrain dynami behavior and the trak geometry is neessary.Simulation is a very useful tool to fae these hallenges. However, it has to be very repre-sentative of the physial behavior of the system. The models of the train, of the railway trak,and of the wheel/rail ontats have thus to be fully validated and the simulations have to beraised on realisti and representative sets of exitations.Hene, based on experimental measurements, a omplete parametrization of the trak ge-ometry and of its variability would be of great onern to analyze the omplex link between thetrain dynamis and the physial and statistial properties of the trak geometry.Sienti� objetivesFrom a sienti� point of view, a railway simulation an be seen as the dynami response of aomplex mehanial system exited by a multivariate random �eld, for whih statistial proper-ties are only known through a set of independent realizations. Due to the spei� interationsbetween the train and the trak, this random �eld is neither stationary nor Gaussian.In order to propagate the trak geometry variability to the train response, methods toidentify in inverse, from a �nite set of experimental data, the statistial properties of non-stationary and non-Gaussian random �elds will be analyzed in this manusript.The train behavior being very nonlinear and very sensitive to the trak geometry, the random�eld has to be desribed very preisely from frequeny and statistial points of view. As a result,the statistial dimension of this random �eld is very high. Hene, a partiular attention willbe paid in this thesis to statistial redution methods and to statistial identi�ation methodsthat an be numerially applied to the high dimensional ase.8



State of the artThe general sheme for probabilisti analysis is usually divided in three steps (see [1, 2, 3℄ forfurther details). First, the mehanial model and the assoiated input parameters and outputriteria (safety riteria for instane) have to be de�ned preisely. Then, the di�erent soures ofunertainty have to be identi�ed and modeled arefully. At last, the input unertainty has to bepropagated through the deterministi model, in order to haraterize the statistial propertiesof the output quantities of interest.These three steps are rapidly desribed hereunder for the studied railway system.Mehanial model. In this work, the reations of trains exited by the trak geometrythrough the spei� wheel/rail ontats are studied. Three kinds of inputs are therefore neededin suh simulations:
• the vehile model. Multibody simulations are usually employed to model the train dy-namis (see [4℄). Carbodies, bogies and wheelsets are modeled by rigid bodies linkedwith onnetions represented by rheologi models (damper, springs, ...). This leads us toseveral hundreds of degrees of freedom.
• the trak model. A double sale parametrization is usually introdued to desribe thetrak geometry (see [5℄): eah rail position is haraterized by a mean-line position, whihonly depends on the vertial and horizontal urvatures, on the trak super-elevation andthe trak gauge of the trak, and by a deviation towards this mean-line position, whihan be desribed by four urvilinear irregularity �elds. While the mean position is deidedone for all at the building of a new line, the trak irregularities an evolve with respetto the trak substruture, to the weather onditions and to the train dynamis. Sevenurvilinear �elds are needed to ompletely haraterize the positions of the two rigid rails.
• the wheel/rail ontat model. The wheel/rail ontat fores are omputed for any positionof the train from the wheel and the rail pro�les thanks to the Hertz and Kalker theories([6, 7℄). The ontat properties are moreover generally reorded in a ontat table.Given these three inputs, the train response an be omputed as the solution of a system ofoupled equations that are strongly nonlinear. This system is usually solved with an expliitsheme. One these equations have been solved, the spatial aelerations of eah mass body,as well as the internal and external loads are available. These railway outputs an then bepost-proessed to de�ne safety, omfort and maintenane riteria.In this work, the ommerial ode Vampire is used to solve these equations. The movementequations of the railway dynamis are thus not available. Moreover, the duration of a wholerailway simulation over a length of 5km is approximately 120 seonds on a standard omputer.Unertainty quanti�ation. Several soures of unertainty an be ategorized:
• Model unertainty. In eah model, simplifying hypotheses are introdued. In the studiedsystem, the rigid body modeling of the train and the Hertz formulation for the wheel/railontat are two examples of suh model simpli�ations.
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• Parameter unertainty. The hosen model to desribe the onsidered system is generallybased on parameters, for whih exat values are unknown and annot exatly be exper-imentally measured. For instane, the total mass of a train is, in pratie, impossible topreisely evaluate.
• Parameter variability, whih omes from the physial variability of the input parameters ofthe model. Example is the train suspensions, for whih the proess of manufaturing leadsus to mehanial harateristis that are not exatly as designed suh that the performanean vary from one suspension to another one.
• Algorithmi unertainty, whih omes from numerial approximations. In the railway�eld, this unertainty omes mostly from the time disretization in the expliit solver ofthe movement equations. A onvergene analysis has thus to be performed to hoose arelevant time step.
• Measurements unertainty. Experimental data are images of the reality, for whih biaseshave to be minimized as muh as possible.Due to these unertainties, disrepanies will always be observed when omparing the mod-eled and measured deterministi responses of a train. On the ontrary, stohasti models, whihwould be able to take into aount these unertainties, should lead to a better representationof the behavior of the system. This explains the very high interest for these methods that havespread for the last deades to most of the sienti� �elds.Some spei� �elds of the probability theory have therefore foused on partiular souresof unertainty. First, the methods based on Information Theory and on the Maximal Entropypriniple (see [8℄ and [9℄) have been ontinuously improved to always better haraterize theparameter unertainty and variability from the only available and usable information. In thesame manner, the use of methods based on the Bayesian method (see [10, 11, 12℄) has keptinreasing to update the input stohasti modeling in the light of new and relevant data. Then,when the movement equations of the system are available, non-parametri probability models(see [13, 14℄) have been introdued to take into aount not only the input unertainty but alsothe model and algorithmi unertainties.In this work, it is supposed that a nominal model of a train is available, for whih me-hanial parameters are �xed and have been aurately identi�ed. In the same manner, theontat properties are omputed one for all from a new rail pro�le and a new wheel pro�le.Given a partiular desription of the trak geometry and these ontat and vehile models, itis assumed that both the railway model and the numerial solving are su�iently relevant toaurately ompute the response of the system: the approximations introdued in the ompu-tational sheme are supposed to be ontrolled and the movement equations are assumed to bepreise enough to represent the physial phenomena.Hene, only the unertainty in the trak geometry is addressed in this thesis. In this prospet,this trak geometry will be seen as a multivariate random �eld. To identify this �eld, a set ofexperimental measurements of the trak geometry is used. It is assumed that the experimen-tal unertainties for these measurements are negligible, suh that no distintion will be madebetween the trak measurements and the real trak geometry in the following. These measure-ments de�ne the maximal available information about the trak-geometry random �eld.Unertainty propagation and risk assessment. One the parameter unertainty andvariability have been haraterized, the variability has to be propagated through the mehanial10



model. The hoie of the propagation method depends on the hosen variables of interest andon the omputational ost of the simulation. In this work, we will fous on the aelerations ofthe train mass bodies and the loads between the train and the trak. We are moreover interestedin probabilities for these outputs to exeed normalized thresholds.Reall that the railway mehanial is based on a very high number of variable input param-eters, that the train response is very sensitive, very non linear, and very fuzzy with respet tothese input parameters, that the movement equations are not available, and that the durationof one simulation is rather heap. The best method to ompute suh probabilities of exeedingthresholds for these railway outputs is therefore the Monte Carlo (MC) method ([15℄). Indeed,the statistial onvergene of suh a method depends neither on the dimension of the input, noron the omplexity and the nonlinearity of the mehanial model, and is partiularly adaptedto systems that are ontrolled by blak-box odes, that is to say, odes for whih movementequations are not available, as it is the ase here.In order to get aurate results, muh attention has to be paid to the modeling of the inputvariability, as any error on the input will be propagated to the output. In addition, the MCmethod asks for the generation of sets of independent realizations of the input parameters. Asthis work fous on the trak geometry variability, methods to generate independent realistiand representative trak onditions will be needed in this work.At last, based on this MC method, eah railway simulation gives aess to a partiularrealization of the time reations of the trak. The risk assessment has therefore to be performedusing statistial methods based on stohasti proesses (see [16℄ for further details).Main sienti� and industrial ontributionsThe developments of this work were ahieved to answer the four following questions.
• Virtual erti�ation. How to develop a trak generator, whih would be able to generatetrak onditions, whih are on the one hand realisti from a statistial, frequeny anddynamial point of view, and from the other hand representative of a measured set ofexperimental data? The numerial erti�ation indeed requires a large set of representativetrak onditions to apture rare events [3℄.
• Optimization of the system. How to propagate the trak geometry variability to thetrain dynamial quantities of interest, whih are mostly lateral and vertial aelerationsand loads? The knowledge of the link between the trak variability and the response ofthe train ould indeed help us to propose optimized maintenane poliies.
• Railway �eld going to market. How to develop a method to evaluate and omparethe aggressiveness of several trains that would be likely to run on the same network?Four sienti� main sienti� ontributions are summarized hereunder.1. The statistial dimension of the trak-geometry random �eld is very high, suh that ad-vaned redution tehniques will be needed to optimally ondense the statistial propertiesof the random �eld to be identi�ed. In partiular, the importane of the Karhunen-Loève(KL) expansion will be analyzed in detail in this work.11



2. The available information about the trak-geometry random �eld is very redued omparedto its statistial dimension. The statistial moments of this random �eld, suh as theempirial estimators of the mean funtion or the ovariane operator, on whih the KLexpansion is based, are not onverged. A method to adapt the KL formulation to thiskind of problems will thus be proposed in this thesis.3. The trak-geometry random �eld is multivariate, and its di�erent omponents are verystatistially dependent. A vetorial approah has therefore to be onsidered in orderto aurately take into aount the dependenies between these di�erent omponents ofthe trak-geometry random �eld. Moreover, the amplitudes of these omponents aredi�erent and their importanes on the dynamial quantities are a priori unknown. Another adaptation of the lassial KL expansion has thus to be introdued in order toidentify a redued basis that allows the desription of eah omponent of the random �eldof interest with the same preision.4. Due to the spei� interation between the train and the trak, the trak-geometry random�eld is neither stationary nor Gaussian, suh that a partiular attention has to be paidto the identi�ation of the multidimensional distribution of the oe�ients of the random�eld on the redued projetion basis. Due to the omplexity of the random �eld to bemodeled, these oe�ients de�ne a very high dimension random vetor. To this end, anadaptation to the very high dimension of the identi�ation in inverse methods based on apolynomial haos expansion will be presented in this work.Outline of the thesisFrom these objetives, the doument is organized in six hapters that are now presented.Chapter 1 ontains a review of well-known methods for random �eld identi�ation and gen-eration. In partiular, the Karhunen-Loève (KL) expansion and the polynomial haos expansion(PCE) identi�ation in inverse will be presented in detail.The next hapters are devoted to the author ontributions in the �eld of unertainty propa-gation. Chapter 2 deals with the adaptation of the KL method to ases for whih the maximalavailable information about the random �eld to identify is limited to a �nite set of independentrealizations.Chapter 3 addresses the adaptation of the polynomial haos expansion identi�ation methodsto the very high dimensional ase.Chapter 4 presents an original saled KL expansion for the analysis of vetor-valued random�elds.Chapter 5 onsiders the appliation of the theoretial developments of Chapters 2, 3 and 4to identify, in inverse, from experimental data, the statistial properties of the trak-geometryrandom �eld.At last, Chapter 6 shows in what extent suh a stohasti modeling of the trak geometryopens new opportunities for the railway �eld in erti�ation, maintenane, and safety prospets.General theoretial frame and orresponding notationsThis setion aims at summarizing the main notations that will be used in this manusript.
• R denotes the set of real numbers.
• N is the set of positive integers. 12



• Ω ⊂ R refers to a subset of R.
• (Θ,T ,P) is a probability spae.
• E [·] is the mathematial expetation.
• H = L2

P
(
Θ,RM

) is the spae of all the seond-order random vetors de�ned on (Θ,T ,P)with values in RM , equipped with the inner produt 〈., .〉:
〈A,B〉 =

∫

Θ
AT (θ)B(θ)dP (θ) = E

[
ATB

]
, ∀ A,B ∈ L2

P
(
Θ,RM

)
. (1)

• P(Q)([0, S]), where S < +∞, is the spae of all the seond-order RQ-valued random �elds,indexed by the ompat interval [0, S].
• For Q ≥ 1, X = (X1, . . . ,XQ) = {(X1(s), . . . ,XQ(s)) , s ∈ [0, S]} is in P(Q)([0, S]).
• Let H = L2([0, S],RQ) be the spae of square integrable funtions on [0, S], with valuesin RQ, equipped with the inner produt (·, ·), suh that, for all u and v in H,

(u,v) =

∫

[0,S]
u(s)Tv(s)ds. (2)

• ‖·‖P(Q)([0,S]) denotes the L2 norm in P(Q)([0, S]), suh that:
‖X‖2P(Q)([0,S]) = E

[∫

Ω
X(s)TX(s)ds

]
, X ∈ P(Q)([0, S]). (3)

• δmp is the kroneker symbol that is equal to 1 if m = p and 0 otherwise.
• Tr [·] is the trae operator for square matries.
• a, b orrespond to onstants in R.
• a, b refer to vetors with values in RQ, Q ≥ 1.
• × is the vetorial produt between vetors.
• aT is the transpose of a.
• ⊗ is the tensorial produt suh that a⊗ b = abT .
• A, B orrespond to random variables with values in R.
• A, B denote random vetors with values in RQ, Q ≥ 1.
• [A], [B] refer to real matries.
• ‖·‖F is the Frobenius norm of matries.
• PA and pA denote respetively the multidimensional probability distribution and themultidimensional Probability Density Funtion (PDF) of random vetor A.
• If random vetor A is of seond order, we denote by µA and [RAA] the mean and theovariane matrix of A respetively. 13



• (s, s′) 7→ [RXX(s, s′)] orresponds to the matrix-valued ovariane funtion of X, suhthat for all s, s′ in Ω, [RXX(s, s′)] = E [(X(s)− E [X(s)])⊗ (X(s′)− E [X(s′)])].
• When Q = 1, P(1)(Ω), X and [RXX ] are written P(Ω), X and RXX respetively for thesake of simpliity.
• F (M) denotes a subset of H that gathers M funtions with values in RQ that are de�nedon Ω.
• X̂

F(M) refers to the projetion of X on the subspae spanned by F (M).

14



Chapter 1Short review of the methods formodeling random �elds1.1 IntrodutionAs presented in Introdution, the goal of this work is to quantify the in�uene of the trakgeometry variability on the train dynamial responses. A good approah to take into aountthis input variability is to onsider the trak geometry as a multivariate random �eld. It hasmoreover been shown that the most appropriate method to propagate the trak variabilitythrough the mehanial model is the Monte Carlo (MC) method. For suh a method to beimplemented, one has therefore to be able to generate independent realizations of this trak-geometry random �eld. Due to the spei� interations between the train and the trak, thisrandom �eld is neither Gaussian nor stationary. In this prospet, several existing methods toidentify and generate non-Gaussian random �elds are addressed in this hapter. More preisely,this hapter desribes in detail the method on whih the stohasti modeling of the trakgeometry will be based in the next hapters, whih is based on the oupling of a Karhunen-Loève expansion and a polynomial haos expansion.1.2 Classial methods to generate random �eldsFor the last deades, the random �elds analysis has been used in an inreasing number ofsienti� �elds, suh as unertainties quanti�ation, material sienes, seismology, geophysis,quantitative �nane, signal proessing, ontrol engineering et. It is indeed a very interestingtool for stohasti modeling, foreasting, lassi�ation, signal detetion and estimation. Let
X = {X(s), s ∈ Ω ⊂ R} , (1.1)be a random �eld for whih we want to generate sample paths. For the sake of simpliity, andwithout any loss of generality, only entered random �elds X are onsidered in this work:
E [X(s)] = 0, ∀ s ∈ Ω, (1.2)where E [·] is the mathematial expetation.The Gaussian ase is a well-posed problem, as the Gaussian random �elds are ompletelyharaterized only by their mean funtion and their autoorrelation funtion. It exists there-fore many e�etive methods to simulate Gaussian random �elds. In partiular, when Ω = R,AutoRegressive-Moving-Average (ARMA) models, that were �rst introdued by Whittle for15



time series [17, 18℄ and popularized by Box and Jenkins [19℄, allow the desription of Gaussianstationary random �elds as a parameterized integral of a Gaussian white noise random �eld.Based on limited knowledge of random �eld X, these models an therefore be used to emphasizepartiular properties of X and to extrapolate its value.On the ontrary, the random �eld simulation problem is an ill-posed problem. To har-aterize a non-Gaussian random �eld, we need to know the entire family of joint probabilitydistributions {(X(s1), . . . ,X(sn)) , n ≥ 1, (s1, . . . , sn) ∈ Ωn}. As this information is most ofthe time not aessible, only partial desription of non-Gaussian random �eld an be given.Two lasses of methods are generally used to haraterize suh non-Gaussian random �elds.On the �rst hand, translation methods allow the identi�ation and the generation of a non-Gaussian random �eld from a memoryless nonlinear transformation of a known Gaussian random�eld (see for instane [20℄).On the other hand, in the general ase, spetral methods ([21, 22℄) based on a two-stepapproah have given very promising results to identify the distribution of a priori non-Gaussianand non-stationary random �elds. The �rst step of these methods is generally the approximationof the random �eld, X, by its projetion X̂B(M) on aM -dimension set of deterministi funtions,
B(M) = {bm(s), s ∈ Ω}1≤m≤M , that are supposed to be square integrable on Ω and orthonormalsuh that:

X̂B(M)
=

M∑

m=1

Cmbm,

∫

Ω
bm(s)bp(s)ds = δmp, Cm =

∫

Ω
X(s)bm(s)ds, (1.3)where δmp is the kroneker symbol. The vetor C = (C1, . . . , CM ) is thus a M -dimensionrandom vetor, for whih omponents are a priori dependent. The seond step is then theidenti�ation of the multidimensional distribution of C.When the knowledge of the random �eld is limited to a set of independent realizations,as it is the ase for the modeling of the trak geometry, suh spetral methods present manyadvantages. First, no hypothesis on the random �eld is required to implement these methods.Then, by proposing a disretized desription of the random �eld, they take advantage of all thedevelopments that have been done in the haraterization of the multidimensional distributionof non-Gaussian random vetors.1.3 The optimality of the Karhunen-Loève expansion to gener-ate approximated realizations of random �elds1.3.1 De�nition of the Karhunen-Loève expansionMathematially, the Karhunen-Loève (KL) expansion orresponds to the orthogonal projetiontheorem in separable Hilbert spaes. In this ase, the Hilbertian basis, {km, m ≥ 1}, isonstruted as the eigenfuntions of the ovariane operator of X, de�ned by the ovarianefuntion, RXX , whih is assumed, for instane, to be square integrable on Ω × Ω. Therefore,for all (s, s′) in Ω× Ω and m ≥ 1 and p ≥ 1, we get:

RXX(s, s′)
def
= E

[
X(s)X(s′)

]
=
∑

m≥1

λmkm(s)km(s′), (1.4)
∫

Ω
RXX(s, s′)km(s′)ds′ = λmkm(s), (1.5)16



(km, kp) = δmp, λ1 ≥ λ2 ≥ . . . → 0,
∑

m≥1

λ2m < +∞. (1.6)1.3.2 Optimality of the KL expansionIn order to represent the �eld X with a small number of vetors M , it is important to hoosea relevant basis regarding X. Indeed, the more relevant the projetion basis B(M) is, the lowerthe dimension M has to be, to guarantee that the amplitude of the residue,
N 2(X − X̂B(M)

), (1.7)is lower than a given threshold, and so the easier and the more preise the identi�ation of thedistribution of C will be. N 2 is a norm that has to be adapted to the studied problem. If
N 2(·) = E

[∫

Ω
(·)2
]
, (1.8)due to the orthogonal projetion theorem in Hilbert spaes, for any integerM , theM -dimensionfamily K(M) = {km, 1 ≤ k ≤M}, whih gathers theM �rst elements of the KL basis assoiatedwith X, minimizes the amplitude N 2(X − X̂F(M)

) among all the M -dimension families F (M),where X̂F(M) is the projetion of X on F (M). In other words, for any M ≥ 1, it an be shownthat:
N 2(X − X̂K(M)

) ≤ N 2(X − X̂F(M)
), (1.9)where X̂K(M) is the projetion of X on K(M).Due to this optimality property, the Karhunen-Loève (KL) basis has played, for the lastdeades, a major role and has been applied in many works (see for instane [23, 24, 25, 26, 27,28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43℄).1.3.3 Pratial solving of the Fredholm equationEquation (1.5) is ommonly referred to as Fredholm equation, and issues onerning the solvingof this integral eigenvalue problem an be found in [21, 44, 45℄. The idea of this setion is todesribe the di�erent steps to solve the Fredholm problem thanks to a �nite element approahwhen Ω = [0, S]. To this end, the funtions km, 1 ≤ m ≤M , are searhed as their �nite elementestimator kFEm , suh that, for all s in Ω:

km(s) ≈ kFEm (s) =

NS∑

j=1

dmj hj(s), (1.10)
dm =

(
dm1 , . . . , d

m
NS

)
, h(s) = (h1(s), . . . , hNS

(s)) , (1.11)where dm is the unknown vetor to be identi�ed, and {s 7→ hj(s), 1 ≤ j ≤ NS} are shapefuntions suh that:




s1 = 0, sNS
= S, sj+q − sj = qh,

hj(sk) = δjk, 1 ≤ j, k ≤ NS ,∑NS
j=1 hj(s) = 1, s ∈ Ω = [0, S],

(1.12)
17



with h = S/ (NS − 1) the �nite element disretization length. The �nite element disretizationof Eq. (1.5) yields:
([K]− λm[M ])dm = 0, (1.13)in whih the positive-de�nite symmetri (NS ×NS) real matries [K] and [M ] are de�ned by

[K] =

∫

Ω

∫

Ω
h(s)T [RXX(s, s′)]h(s′)ds′ds, (1.14)

[M ] =

∫

Ω
h(s)Th(s)ds. (1.15)This approah is partiularly well adapted to the modeling of random �elds, for whihexperimental values are reorded every h̃ meters. Spatial disretization step h is thus hosenequal to h̃ to limit the error introdued by the �nite element approah. Moreover, it has to benotied that the regularity of the shape funtions has to be adapted to the regularity of random�eld X. In partiular, if the �rst and seond order spatial derivatives of the random �eld pathsare a priori non zero, at least ubi shape funtions will be needed.1.3.4 Approximated KL expansionAs presented in Setion 1.3.1, the KL expansion of a entered random �eld X is based on theknowledge of its autoovariane funtion, RXX . When the maximal available information about

X is a set of ν independent realizations, {X(θ1), . . . ,X(θν)}, this funtion is not exatly known,but an be approximated by its empirial estimation, R̂XX(ν), suh that:
RXX(s, s′) ≈ R̂XX(ν, s, s′) =

1

ν

ν∑

n=1

X(θn, s)X(θn, s
′), (s, s′) ∈ Ω× Ω. (1.16)By solving the Fredholm problem assoiated with R̂XX(ν) instead of RXX , it is thereforepossible to identify a rather good approximation of the KL basis of X, whih is denoted by{

k̂m(ν), 1 ≤ m
}, espeially when ν is high, as:

lim
ν→+∞

R̂XX(ν) = RXX ,

lim
ν→+∞

k̂m(ν) = km.
(1.17)1.4 Diret and indiret methods for the identi�ation of thedistribution of random vetors and their generationOne random �eldX has been projeted on a hosen deterministiM -dimension family, B(M) =

{bm(s), s ∈ Ω}1≤m≤M , suh that
X ≈ X̂B(M)

=

M∑

m=1

Cmbm, (1.18)identifying its statistial distribution amounts to identifying the multidimensional distributionof random vetor C = (C1, . . . , CM ), denoted by PC . The mean value and the ovariane matrixof C are moreover denoted by µC and [RCC ] respetively, suh that:18



µC = E [C] , [RCC ] = E [(C − µC)⊗ (C − µC)] . (1.19)In this work, it is assumed that PC(dx) = pC(x)dx, in whih the probability density funtion(PDF) pC is a funtion in the set F(D,R∗) of all the positive-valued funtions de�ned on anypart D of RM and for whih integral over D is 1.Two kinds of methods an be used to build suh a PDF: the diret and the indiret methods.Among the diret methods, the Prior Algebrai Stohasti Modeling (PASM) methods postulatean algebrai representation C ≈ talg(Ξ,w), with talg a prior transformation, Ξ a random vetorand w a vetor of parameters to be identi�ed. For instane, we an suppose that C an bewritten under the form:
C ≈ talg(Ξ,w) = w1 + [w2]Ξ, w = {w1, [w2]} , (1.20)with Ξ a M -dimension random vetor for whih omponents are independent, normally dis-tributed with zero mean and unit variane. It an diretly be seen that:

E [talg(Ξ,w)] = w1, E [(talg(Ξ,w)−w1)⊗ (talg(Ξ,w)−w1)] = [w2][w2]
T . (1.21)Hene, supposing that C ≈ talg(Ξ,w) amounts to supposing that C is a Gaussian randomvetor, suh that the most aurate values for w1 and [w2] orrespond to the mean value of Cand to the Cholesky deomposition matrix of matrix [RCC ]. If C is atually not Gaussian, thistransformation is not relevant, and another one has to be introdued to better represent thebehavior of C, suh as for instane:

C ≈ t
(2)
alg(Ξ,w) = w1 + [w2]Ξ+ (Ξ⊗Ξ)w3, (1.22)where w = {w1, [w2],w3} has one again to be identi�ed to represent as well as possible thebehavior of C.In the same ategory, the methods based on the Information Theory and the MaximumEntropy Priniple (MEP) have been developed (see [8℄ and [9℄) to ompute pC from the onlyavailable statistial information of the random vetor C. This information an be seen as theadmissible set Cad for pC :

Cad =

{
pC ∈ F(D,R∗) |

∫

D
pC(x)dx = 1,

∀ 1 ≤ n ≤ N,

∫

D
gn(x)pC(x)dx = fn

}, (1.23)where {fn, 1 ≤ n ≤ N} gathers N vetors whih are respetively assoiated with the vetor-valued funtions {gn, 1 ≤ n ≤ N}. Hene, the MPE allows building pC as the solution of theoptimization problem:
pC = arg max

pC∈Cad

{
−
∫

D
pC(x) log (pC(x)) dx

}
. (1.24)As an example, if the maximum available information aboutC is the fat that its realizationsare in the hyperube [−1, 1]M , the admissible set Cad for pC beomes:19



Cad =

{
pC ∈ F([−1, 1]M ,R∗), |

∫

[−1,1]M
pC(x)dx = 1

}
, (1.25)and it an be shown that the PDF pC that maximizes the optimization problem de�ned by Eq.(1.24) is the uniform PDF over [−1, 1]M :

pC(x) =
1

2M
. (1.26)On the other hand, the indiret methods allow the onstrution of the PDF pC of theonsidered random vetor C thanks to a transformation T of a known PDF pξ of a randomvetor ξ =

(
ξ1, ..., ξNg

) of given dimension Ng ≤M :
C = t (ξ) , (1.27)
pC = T (pξ) . (1.28)The onstrution of the transformation t is thus the key point of these indiret methods. Inthis ontext, the isoprobabilisti transformations suh as the Nataf transformation (see [46℄) orthe Rosenblatt transformation (see [47℄) have allowed the development of interesting results inthe seond part of the twentieth entury but are still limited to very small dimension ases andnot to the high dimension ase onsidered in this work. Nowadays, the most popular indiretmethods are the polynomial haos expansion (PCE) methods, whih have been �rst introduedby Wiener [48℄ for stohasti proesses, and pioneered by Ghanem and Spanos [49, 22℄ for theuse of it in omputational sienes. In the last deade, this very promising method has thusbeen applied in many works (see, for instane [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 21, 60, 32,61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72℄). The PCE is based on a diret projetion of therandom vetor C on a hosen Hilbertian basis Borth = {ψj(ξ), 0 ≤ j} of all the seond-orderrandom vetors with values in RM :

C =

+∞∑

j=0

y(j)ψj(ξ), (1.29)
E [ψj(ξ)ψk(ξ)] = δjk. (1.30)In pratial terms, the PCE of C has to be trunated to its N + 1 most in�uential terms:
C ≈

N∑

j=0

y(j)ψj(ξ). (1.31)In partiular, in the following, it will be assumed that ψ0(ξ) = 1, suh that:
y(0) = E [C] = µC . (1.32)A method to hoose theseN partiular terms and to quantity the amplitude of the trunationresidue, ∑+∞

j=N+1 y
(j)ψj(ξ), has therefore to be de�ned. Building the transformation t requiresat last the onstrution of N deterministi oe�ients, {y(j), 1 ≤ j ≤ N

}, from the availableinformation about C.It has to be notied that in suh an approah, any distribution for ξ an be hosen. Forinstane, if the omponents of ξ are independent and uniformly distributed between -1 and20



1, the orresponding Hilbertian basis, {ψj(ξ), 1 ≤ j}, is the set of the normalized Legendrepolynomials.When trying to identify in inverse the multidimensional distribution of an a priori non-Gaussian random vetor, the PCE method appears to be very e�ient, even when the statistialdimension of C is high. Indeed, this method an be applied to any random vetor, is not basedon a priori formulations, and allows a very easy generation of independent realizations of C,one the projetion oe�ients are identi�ed. Indeed eah independent realization of germ ξleads to an independent realization of C.1.5 PCE identi�ation of random vetorsIn this setion, a desription of the PCE identi�ation with respet to an arbitrary measure isgiven. The objetive is to summarize the di�erent key steps of the PCE identi�ation methodand the way they an be pratially implemented.After having de�ned the theoretial frame of the PCE identi�ation, the ost-funtions thatlead us to the omputation of the PCE oe�ients {y(1), . . . ,y(N)
} are presented, for a giventrunation parameter N . Two ases are distinguished: the diret ase, for whih the PCE germ

ξ is known, and the indiret ase, for whih the PCE germ is unknown. At last, to justify thehoie of this trunation parameter, a method to perform the onvergene analysis is introdued.1.5.1 Theoretial frameLet C = (C1, . . . , CM ) be an element of the spae L2
P
(
Θ,RM

) of all the seond-order M -dimension random vetors de�ned on the probability spae (Θ,T ,P) with values inRM , equippedwith the inner produt 〈·, ·〉. It is assumed that ν independent realizations, {C(θ1), . . . ,C(θν)},of C are known and gathered in the (M × ν) real matrix [Cexp(ν)]:
[Cexp(ν)] = [C(θ1) · · · C(θν)] . (1.33)Equation (1.31) an be rewritten as:
C − µC ≈ Cchaos(N) = [y]Ψ(ξ), (1.34)

[y] =
[
y(1) · · · y(N)

]
, Ψ(ξ) = (ψ1(ξ), . . . , ψN (ξ)) . (1.35)The orthonormality property of the projetion basis {ψj(ξ), 1 ≤ j ≤ N} yields the ondi-tion:

E [Ψ(ξ, p)⊗Ψ(ξ, p)] = [IN ], (1.36)where [IN ] is the (N ×N) identity matrix. Let [Rchaos
CC (N)] be the ovariane matrix of enteredrandom vetor Cchaos(N):

[
Rchaos

CC (N)
]
= E

[
Cchaos(N)⊗Cchaos(N)

]
= [y]E [Ψ(ξ, p)⊗Ψ(ξ, p)] [y]T = [y][y]T . (1.37)To simplify the notations, it is supposed in the following that C is a entered random vetor,suh that:

y(0) = µC = 0. (1.38)21



No distintion is therefore made between the ovariane and the autoorrelation matries of
C in the next setions.1.5.2 Identi�ation of the polynomial haos expansion oe�ientsIn this setion, a partiular hoie for the Ng-dimension PCE germ, ξ =

(
ξ1, . . . , ξNg

), and a par-tiular value of the trunation parameter N are onsidered. Let [Ψ(νchaos)] be the (N × νchaos
)real matrix of independent realizations of the trunated PCE basis Ψ(ξ):

[Ψ(νchaos)] = [Ψ(ξ(Θ1)) · · · Ψ(ξ(Θνchaos))] , (1.39)where the set {ξ (Θ1) , · · · , ξ (Θνchaos)} gathers νchaos independent realizations of random vetor
ξ. As a diret onsequene of the orthonormality of the PCE vetor Ψ(ξ), matrix [Ψ(νchaos)]veri�es the asymptoti property:

lim
νchaos→+∞

1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T = E [Ψ(ξ)⊗Ψ(ξ)] = [IN ]. (1.40)Diret identi�ationIf the realizations of C are solutions of a mehanial system, and if ξ orresponds to the variableinputs of this system, then ν = νchaos and both realizations of C, {C(Θ1), . . . ,C(Θνchaos)}, and

Ψ(ξ), {Ψ(ξ(Θ1)), . . . ,Ψ(ξ(Θνchaos))}, are known at the same time. They verify:
[Cνchaos ] = [C(Θ1) · · · C(Θνchaos)] ≈ [Cchaos(N)] = [y][Ψ(νchaos)]. (1.41)In this ase, two lassial methods are generally used to identify suh oe�ient matrix [y]:

• Methods based on the empirial estimation of the mean funtion. From Eq.(1.31), as family {ψj(ξ), 1 ≤ j} is orthonormal, it an be seen that for all 1 ≤ j ≤ N :
[y] = E [C ⊗Ψ(ξ)]

≈ [yopt1 (νchaos)] =
1

νchaos

νchaos∑

p=1

C(Θp)⊗Ψ(ξ(Θp)) =
1

νchaos
[Cchaos(N)][Ψ(νchaos)]T .(1.42)

• Regression-based methods. Let C([y], νchaos) be the ost funtion that quanti�es themean-square distane between C and its PCE approximation, Cchaos(N), de�ned by:
C([y], νchaos) =

∥∥∥[Cchaos(N)]− [y][Ψ(νchaos)]
∥∥∥
2

def
= Tr

[(
[Cchaos(N)]− [y][Ψ(νchaos)]

)(
[Cchaos(N)]− [y][Ψ(νchaos)]

)T]
,(1.43)with Tr [·] the trae operator. PCE matrix [y] an therefore be searhed as the argumentthat minimizes C([y], νchaos). The ost funtion C([y], νchaos) being onvex, it admits aminimum, [yopt2 (νchaos)], whih veri�es: 22



[y] ≈ [yopt2 (νchaos)] = argmin
[y]

{
C([y], νchaos)

}
, (1.44)

[yopt2 (νchaos)] = [Cchaos(N)][Ψ(νchaos)]T
(
[Ψ(νchaos)][Ψ(νchaos)]T

)−1
. (1.45)From Eqs (1.40), (1.42) and (1.45), it an be diretly veri�ed that the two former methodsgive asymptotially the same results:

lim
νchaos→+∞

[yopt1 (νchaos)] = lim
νchaos→+∞

[yopt2 (νchaos)]. (1.46)Indiret identi�ationIf C is a random vetor that gathers the projetion oe�ients of a random �eld X on apartiular basis, as it is the ase in this thesis, the realizations of C are dedued from theavailable realizations of X, suh that there is a priori no diret link between the two sets ofrealizations of ξ and C. Alternative methods have thus to be used to identify [y].To this end, let MM,N be the spae of all the (M ×N) real matries. For a given valueof [y∗] in MM,N , the random vetor U ([y∗]) = [y∗]Ψ (ξ) is a entered M -dimension randomvetor, for whih the autoorrelation is equal to [y∗][y∗]T . Let pU([y∗]) be its multidimensionalPDF.When the only available information aboutC is limited to a set of ν independent realizations,the most general and relevant method to identify in inverse the optimal oe�ients matrix [y],is to searh it as the argument that maximizes the log-likelihood LU([y∗]) ([C
exp(ν)]) of U([y∗])at the experimental points gathered in [Cexp(ν)]:

[y] = arg max
[y∗]∈MM,N

LU([y∗]) ([C
exp(ν)]) , (1.47)

LU([y∗]) ([C
exp(ν)]) =

ν∑

n=1

log pU([y∗]) (C(θn)) . (1.48)1.5.3 Pratial solving of the log-likelihood maximizationSolving the optimization problem de�ned by Eq. (1.47) has required the development of spei�algorithms, whih are desribed in this setion.The need for statistial algorithms to maximize the log-likelihoodThe log-likelihood LU([y∗]) ([C
exp(ν)]) being nononvex, deterministi algorithms suh as gradi-ent algorithms annot be applied to solve Eq. (1.47), and random searh algorithms have tobe used. Hene, the preision of the PCE has to be orrelated to a numerial ost Z, whihorresponds to a number of independent trials of [y∗] in MM,N . The higher the value of Z is,the better the PCE identi�ation should be. Therefore, this value has to be hosen as high aspossible while respeting the omputational resoure limitation. Let Y =

{
[y∗](z), 1 ≤ z ≤ Z

}be a set of Z elements, whih have been hosen randomly in MM,N . For a given numerial ost
Z, the most aurate PCE oe�ients matrix [y] is approximated by:

[y] ≈ [yY ] = arg max
[y∗]∈Y

LU([y∗]) ([C
exp(ν)]) . (1.49)23



Restrition of the maximization domainFrom the ν independent realizations {C(θ1), . . . ,C(θν)}, the ovariane matrix [RCC ] of C anbe estimated by:
[RCC ] ≈ [R̂CC(ν)] =

1

ν

ν∑

n=1

C(θn)⊗C(θn) =
1

ν
[Cexp(ν)][Cexp(ν)]T . (1.50)A good way to improve the e�ieny of the numerial identi�ation of [y] is then to restritthe researh set to OC ⊂ MM,N , with:

OC =
{
[y∗] =

[
y∗,(1), · · · ,y∗,(N)

]
∈ MM,N | [y∗][y∗]T = [R̂CC(ν)]

}
, (1.51)whih, taking into aount Eq. (1.37), guarantees by onstrution that:

[Rchaos
CC (N)] = [R̂CC(ν)]. (1.52)Hene, the PCE oe�ients matrix [y] an be approximated as the argument in OC thatmaximizes the log-likelihoodLU([y∗]) ([C

exp(ν)]). By de�ningW the set that gathers Z randomlyraised elements of OC , [y] an then be assessed as the solution of the new optimization problem:
[y] ≈ [yW ] = arg max

[y∗]∈W
LU([y∗]) ([C

exp(ν)]) . (1.53)Approximation of the log-likelihood funtionFrom a partiular matrix of realizations [Ψ(νchaos)] (whih is de�ned in Eq. (1.39)), if [y∗] is anelement of OC , νchaos independent realizations {U ([y∗],Θp) = [y∗]Ψ (ξ(Θp)) , 1 ≤ p ≤ νchaos
}of random vetor U([y∗]) an be omputed and gathered in the matrix [U ]:

[U ] = [U ([y∗],Θ1) · · · U ([y∗],Θνchaos )] = [y∗][Ψ(νchaos)]. (1.54)Hene, using Gaussian Kernels, the PDF pU([y∗]) of U ([y∗]) an be diretly estimated by itsnon parametri estimator p̂U :
∀ x ∈ R

M , pU([y∗])(x) ≈

p̂U (x) =
1

(2π)M/2 νchaos
∏M

m=1 hm

νchaos∑

p=1

exp

(
−1

2

M∑

m=1

(
xm − Um([y∗],Θp)

hm

)2
)
, (1.55)where h = (h1, · · · , hM ) is the multidimensional optimal Silverman bandwidth vetor (see [2℄)of the Kernel smoothing estimation of pU([y∗]):

∀ 1 ≤ m ≤M, hm = σ̂Um

(
4

(2 +M)νchaos

)1/(M+4)

, (1.56)where σ̂Um is the empirial estimation of the standard deviation of eah omponent Um of U . Ithas to be notied that p̂U only depends on the bandwidth vetor h, and the two matries [y∗] and
[Ψ(νchaos)]. Hene, aording to the Eqs. (1.48), (1.54) and (1.55), for a given value of νchaos,the maximization of the log-likelihood funtion LU([y∗]) an be replaed by the maximization ofthe ost-funtion C([Cexp(ν)], [y∗], [Ψ(νchaos)]) suh that:

[y] ≈ [yOC
] = arg max

[y∗]∈OC

C([Cexp(ν)], [y∗], [Ψ(νchaos)]), (1.57)24



where:
C([Cexp(ν)], [y∗], [Ψ(νchaos)]) = CC + CV ([Cexp(ν)], [y∗], [Ψ(νchaos)]), (1.58)

CC = −ν ln
(
(2π)M/2 νchaos

M∏

m=1

hm

)
, (1.59)

CV ([Cexp(ν)], [y∗], [Ψ(νchaos)]) =

ν∑

n=1

ln




νchaos∑

p=1

exp

(
−1

2

M∑

m=1

(
Cm(θn)− Um([y∗],Θp)

hm

)2
)
 .(1.60)Hene, the optimization problem de�ned by Eq. (1.53) an �nally be estimated by:

[y] ≈ [yZOC
] = arg max

[y∗]∈W
C
(
[Cexp(ν)], [y∗], [Ψ(νchaos)]

)
. (1.61)Auray of the PCE identi�ationFor a given omputation ost Z and a given value for the trunation parameter N , let [yZOC

] bean optimal solution of Eq. (1.61). [yZOC
] is a numerial estimation of the PCE oe�ients matrix

[y]. For a new (N × νchaos,∗
) real matrix [Ψ∗(νchaos,∗)] of independent realizations (νchaos,∗ anbe higher than νchaos), the robustness of [yZOC

] regarding the hoie of [Ψ(νchaos)] an then be es-timated by omparing C ([Cexp(ν)], [yZOC
], [Ψ(νchaos)]

) and C
(
[Cexp(ν)], [yZOC

], [Ψ∗(νchaos,∗)]
). If

ν new independent realizations of C were available and gathered in the matrix [Cexp,new(ν)], theover-learning of the method ould be measured by omparing C
(
[Cexp(ν)], [yZOC

], [Ψ(νchaos)]
)and C

(
[Cexp,new(ν)], [yZOC

], [Ψ(νchaos)]
). At last, for the same value for Z, if [yZ,newOC

] is a new op-timal solution of Eq. (1.61), the global auray of the identi�ation stems from the omparisonbetween C
(
[Cexp,new(ν)], [yZOC

], [Ψ∗(νchaos,∗)]
) and C

(
[Cexp,new(ν)], [yZ,newOC

], [Ψ∗(νchaos,∗)]
).1.5.4 Identi�ation of the PCE trunation parametersAs shown in Setion 1.4, two trunation parameters, Ng and N , appear in the trunated PCE,

Cchaos(N), of C. A method to hoose the size Ng and these N elements from basis Borth as wellas a method to quantify the relevane of suh a N -dimension basis have thus to be de�ned.Restrition of the admissible projetion basisIn this work, only polynomial basis are addressed, suh that for 1 ≤ j, a partiular element
ψj(ξ) in Borth an be written under the form:

ψj(ξ) =

+∞∑

q=1

c(j)q ξ
α
(q)
1

1 × · · · × ξ
α
(q)
Ng

Ng
,
(
α
(q)
1 , . . . , α

(q)
Ng

)
∈ N

Ng . (1.62)In addition, the lassial assumption that the most in�uential elements of Borth orrespondto the elements of lowest total polynomial order is introdued in this work. Let p be the maximalpolynomial order of the projetion basis, suh that for 1 ≤ j ≤ N , we hoose:25



ψj(ξ) =

N∑

q=1

c(j)q ξ
α
(q)
1

1 × · · · × ξ
α
(q)
Ng

Ng
,

Ng∑

ℓ=1

α
(q)
ℓ ≤ p. (1.63)Given this hoie for the extration of N elements in Borth, it an be seen that N inreasesvery quikly with Ng and p, as:

N = (Ng + p)!/(Ng ! p!). (1.64)De�nition of a log error funtionFor eah omponent Cchaos
m (N) of the trunated PCE, Cchaos(N) = [y]Ψ(ξ), of C, the L1-logerror funtion errm is introdued as desribed in [38℄:

∀ 1 ≤ m ≤M, errm(Ng, p) =

∫

BIm

|log10 (pCm(xm))− log10

(
pCchaos

m
(xm)

)
|dxm, (1.65)where:

• BIm is the support of the kernel estimator of pCm . This bounding domain has thus to beadapted to the available realizations of C, whih are gathered in {C(θ1), · · · ,C(θν)};
• pCm and pCchaos

m
are the PDF of Cm and Cchaos

m respetively.The multidimensional error funtion err(Ng, p) is then dedued from the unidimensional
L1-log error funtion as:

err(Ng, p) =

M∑

m=1

errm(Ng, p). (1.66)The parameters Ng and p have thus to be determined to minimize the multidimensional
L1-log error funtion err(Ng, p).For given values of trunation parameters Ng and p, it is reminded that PCE oe�ientsmatrix [y] is searhed in order to maximize the multidimensional log-likelihood funtion, whihallows us to onsider a priori strongly orrelated problems. One this matrix [y] is identi�ed, it ispossible to generate as many independent realizations of trunated PCE Cchaos(N) as needed toestimate as preisely as possible the non parametri estimator p̂U of its multidimensional PDF.The number ν of available experimental realizations of C is however limited. This number isgenerally too small for the non parametri estimator of multidimensional PDF pC of C to berelevant, whereas it is most of the time large enough to de�ne the estimators of the marginalsof pC . Therefore, the log-error funtions de�ned by Eqs. (1.65) and (1.66) only onsider themarginals of the PDF of pC and pchaosC . In addition, the logarithm funtion has been introduedin order to measure the errors on the tails of the probability density funtion.De�nition of an admissible set for the trunation parametersAs it exists an isoprobabilisti transformation between C and (Ξ1, · · · ,ΞM ), where the set
{Ξm, 1 ≤ m ≤M} gathers M independent entered normalized Gaussian random variables,the onvergene analysis an be restrited to the values of Ng whih verify:26



Ng ≤M. (1.67)Moreover, imposing the (M ×N) real matrix [y] to be in OC amounts to imposing M(M+1)
2onstraints on [y], whih implies:

MN ≥ M (M + 1)

2
⇔ N ≥ M + 1

2
. (1.68)The set Q(M) of the admissible values for p and Ng is thus:

Q(M) =
{
(p,Ng) ∈ N

2, | Ng ≤M, N = (Ng + p)!/(Ng ! p!) ≥ (M + 1)/2
}
. (1.69)Theoretially, inreasing p and Ng adds terms in the PCE of the onsidered random vetor,and therefore should indue the derease of the error funtion:

∀ p∗ ≥ p, N∗
g ≥ Ng, err(Ng, p) ≥ max

{
err(N∗

g , p), err(Ng, p
∗)
}
≥

min
{
err(N∗

g , p), err(Ng, p
∗)
}
≥ err(N∗

g , p
∗).

(1.70)However, the higher the values of p and Ng are, the bigger the PCE oe�ients matrix is,the harder the numerial identi�ation is. Hene, introduing ε as an error threshold, whihhas to be adapted to the problem, let P(ε,M) be the set:
P(ε,M) = {(p,Ng) ∈ Q(M) | err(Ng, p) ≤ ε} . (1.71)Finally, given the error threshold ε, rather than diretly minimizing the L1-log error funtion

err(Ng, p), it appears to be more aurate to look for the optimal values of p and Ng thatminimize the size of the projetion basis N = (Ng + p)!/ (Ng! p!):
(p,Ng) = arg min

(p∗,N∗
g )∈P(ε,M)

(
N∗

g + p∗
)
!/
(
N∗

g ! p
∗!
)
. (1.72)If the polynomial order (whih is a priori unknown) of the non trunated PCE of C isin�nite, it may not exist values of p and Ng in P(ε,M) for error funtion err(Ng, p) to beinferior to small values of ε. In this ase, the former algorithms an nevertheless be used to �ndthe most aurate values of p and Ng with respet to an available omputational ost.1.6 ConlusionsIn this hapter, it has been shown that nowadays most promising methods to identify in in-verse the statistial properties of a non-Gaussian and non-stationary random �eld X, whenthe available information about X is a set of ν independent realizations, are based on a dou-ble deomposition. First, thanks to a KL expansion, the statistial properties of X an beondensed through its projetion on a partiularly well-adapted orthonormal redued basis,

{km, 1 ≤ m ≤M}, suh that
X ≈

M∑

m=1

Cmkm. (1.73)Seondly, from the ν independent realizations of X, it has been shown that ν independentrealizations of random vetor C = (C1, . . . , CM ) an be dedued. Based on this available27



information, it has been emphasized that a PCE-based approah allows the identi�ation of C,suh that:
X ≈

M∑

m=1

N∑

j=1

kmy
(j)
m ψj(ξ), (1.74)where ξ = (ξ1, . . . , ξNg ) is a random vetor for whih distribution is known and hosen. In suhtwo-step approah, three trunation parameters, M , N and Ng, have been introdued, whihhave to be identi�ed from onvergene analysis. Advaned methods and algorithms to identifythe projetion basis km and oe�ients y(j)m for 1 ≤ m ≤ M and 1 ≤ j ≤ N from a set of νindependent realizations of X have been presented in detail.At last, from eah realization of ξ, suh a method gives aess to a realisti realization of Xthat is representative of the set of its available realizations.
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Chapter 2Optimal redued basis for random�elds de�ned by a set of realizations2.1 IntrodutionThe use of redued basis has spread to many sienti� �elds for the last deades to ondensethe statistial properties of the random �elds, whih are written X = {X(s), s ∈ Ω ⊂ R} inthis work, and for whih mean value is assumed to be zero. Among these basis, the lassialKarhunen-Loève basis assoiated with X, {km, 1 ≤ m}, whih has been introdued in Chapter1, orresponds to the Hilbertian basis that is onstruted as the eigenfuntions of the ovarianeoperator of X, RXX . The importane of this basis stems from its optimality in the sense thatit minimizes the total mean square error. In most of the appliations based on random �elds,the knowledge of these random �elds is however limited. Indeed, their statistial properties aregenerally known through a set of ν independent realizations, {X(θ1), . . . ,X(θν)}, whih stemfrom experimental measurements. In these ases, the ovariane operator is not perfetly knownbut an only be estimated. If we de�ne R̂XX as the empirial estimator of RXX , there is howeverno reason for the eigenfuntions of R̂XX to be still optimal. In reply to this onern, this hapterpresents an adaptation of the Karhunen-Loève expansion to identify, in inverse, projetionfamilies that are as relevant as possible for X, even if the number of available realizations, ν, isrelatively small. This method is �rst based on an innovative tehnique to a posteriori evaluatethe projetion errors for X, and seondly, on an original optimization problem that an be seenas an extension of the lassial Fredholm equation.In Setion 2.2, the theoretial frame of this hapter is desribed. Setion 2.3 introduesthen the method we propose to identify optimized projetion basis from a set of independentrealizations. At last, Setion 2.4 illustrates the possibilities of suh a method on an appliationbased on simulated data.2.2 Theoretial frame2.2.1 Quanti�ation of the relevane of a projetion basisLet (Θ, C, P ) be a probability spae and P(Ω) be the spae of all the seond-order R-valuedrandom �elds, indexed by the ompat interval Ω = [0, S], where S < +∞. The spae H =
L2(Ω,R) denotes moreover the spae of square integrable funtions on Ω, with values in R,equipped with the inner produt (·, ·), suh that for all u and v in H,29



(u, v) =

∫

Ω
u(s)v(s)ds. (2.1)Let X = {X(s), s ∈ Ω} be an element of P(Ω), for whih ν independent realizations,

{X(θ1), . . . ,X(θν)}, are supposed to be known. Without loss of generality, it is one againsupposed that the mean value of X is equal to zero:
E [X(s)] = 0, ∀ s ∈ Ω. (2.2)It is assumed that the ovariane funtion, RXX , of entered random �eld X is squareintegrable on Ω× Ω,

∫

Ω

∫

Ω
RXX(s, s′)2dsds′ < +∞. (2.3)Let B = {bm(s), s ∈ Ω}m≥1, be a Hilbertian basis of H, suh that:
X =

∑

m≥1

Cmbm, (2.4)
(bm, bp) = δmp, Cm = (X, bm) , (2.5)where the projetion oe�ients, {Cm, m ≥ 1}, are entered random variables that are sta-tistially dependent and a priori orrelated. For pratial purposes, this basis has to betrunated. For all M ≥ 1, X̂B(M) is thus introdued as the projetion of X on the subset

B(M) = {bm, 1 ≤ m ≤M} ⊂ B:
X̂B(M)

=
M∑

m=1

Cmbm = bTC, (2.6)
b = (b1, . . . , bM ), C = (C1, . . . , CM ) . (2.7)The relevane of B(M) to haraterize X is analyzed with respet to the normalized L2-error,that is denoted by ε2, suh that:
ε2(B(M)) =

∥∥∥X − X̂B(M)
∥∥∥
2

P(Ω)
/ ‖X‖2P(Ω)

= 1− 1

‖X‖2P(Ω)

∑

m≤M

E
[
C2
m

]
,

(2.8)where ‖·‖P(Ω) is the L2 norm in P(Ω), suh that:
‖Y ‖2P(Ω) = E

[∫

Ω
Y 2(s)ds

]
, Y ∈ P(Ω). (2.9)Therefore, if B1 = {b(1)m , m ≥ 1} and B2 = {b(2)m , m ≥ 1} are two distint Hilbertian basisof H, the family B(M1)

1 = {b(1)m , 1 ≤ m ≤ M1} is said to be more relevant than the family
B(M2)
2 = {b(2)m , 1 ≤ m ≤ M2} (M1 an be greater or smaller than M2) to haraterize X if andonly if:

ε2(B(M1)
1 ) ≤ ε2(B(M2)

2 ). (2.10)30



2.2.2 Optimality of the Karhunen-Loève expansionAs presented in Setion 1.3.2, due to the orthogonal projetion theorem in Hilbert spae, theKarhunen-Loève basis assoiated with X, that was denoted by K = {km, m ≥ 1}, is optimalin the sense that, for all M ≥ 1, K(M) = {km, 1 ≤ m ≤ M} minimizes error ε2 among the
M -dimension families of H:

K(M) = arg min
B(M)∈HM

{
ε2(B(M))

}
. (2.11)Hene, when dealing with orrelated random �elds, for whih the ovariane funtion RXX isknown, minimizing error ε2 amounts to identifying the KL basis assoiated with X. One thesefuntions {km, m ≥ 1} have been identi�ed, the projetion of X on K an be written as:

X =
∑

m≥1

Amkm, (2.12)where, by onstrution of the KL basis, it an be notied that, for all m ≥ 1 and p ≥ 1:
E [AmAp] = δmpλm. (2.13)The KL basis assoiated with X allows therefore the unorrelation of the projetion oe�ients,

{Am, m ≥ 1}. Reiproally, it an diretly be shown that if B∗ = {b∗m, m ≥ 1} is a basis, forwhih the projetion oe�ients, {C∗
m, m ≥ 1}, of X on B∗ are unorrelated, then funtions b∗mhave to be solution of the Fredholm eigenvalue problem de�ned by Eq. (1.5), suh that B∗ = K.Hene, even if RXX is unknown, the unorrelation of the projetion oe�ients is a su�ientondition for the identi�ation of the Karhunen-Loève basis.2.2.3 Di�ulties onerning the identi�ation of the Karhunen-Loève expan-sion from independent realizationsRandom �eld X is now supposed to be only known through a set of ν independent realizations,

{X(θ1), . . . ,X(θν)}.Let B = {bm, m ≥ 1} be a Hilbertian basis of H, suh that the projetion of X on B isgiven by:
X =

∑

m≥1

Cmbm. (2.14)From a theoretial point of view, aording to Setion 2.2.2, it an be a posteriori said thatit an be extrated from B the projetion families that minimize error ε2, de�ned by Eq. (2.8),if and only if, for all m ≥ 1, it exists λm ≥ 0, suh that one of the two following equivalentonditions is veri�ed: 1. E [CmCp] = δmpλm, ∀ p ≥ 1,2. ∫
Ω
RXX(s, s′)bm(s′)ds′ = λmbm(s), ∀ s ∈ Ω.

(2.15)From a numerial point of view, when only ν independent realizations, {X(θ1), . . . ,X(θν)},of X are available, the a priori best evaluations of the ovariane funtion of X and of the meanvalues E [CmCp] are given by the following empirial estimators:31



RXX(s, s′) ≈ R̂XX(s, s′)
def
=

1

ν

ν∑

n=1

X(θn, s)X(θn, s
′),

E [CmCp] ≈
1

ν

ν∑

n=1

Cm(θn)Cp(θn),

(2.16)where, for all m ≥ 1, the ν independent realizations, {Cm(θ1), . . . , Cm(θν)}, of Cm an bededued from the ν available independent realizations of X as:
Cm(θn) = (X(θn), bm) , 1 ≤ n ≤ ν. (2.17)Given these two estimators, a diret translation of the two onditions given by Eq. (2.15)would therefore be based on the existene of λ̂m, suh that for all m ≥ 1:

1

ν

ν∑

n=1

Cm(θn)Cp(θn) = δmpλ̂m, (2.18)
∫

Ω
R̂XX(s, s′)bm(s′)ds′ = λ̂mbm(s). (2.19)Equations (2.18) and (2.19) are however no more equivalent, and there is no reason anymorefor a basis that respets one of these onditions to be still optimal with respet to error ε2.

• On the �rst hand, for any subset B(M) = {bm, 1 ≤ m ≤M} ⊂ B, suh that M ≤ ν, if wede�ne [C] as the following matrix of independent realizations:
[C] =




C1(θ1) · · · C1(θν)... . . . ...
CM (θ1) · · · CM(θν)


 , (2.20)in whih for all 1 ≤ m ≤ M and 1 ≤ n ≤ ν, Cm(θn) = (X(θn), bm), matrix [RCC ] =

1
ν [C][C]T is real and symmetrial, and an be rewritten as:

[RCC ] = [D][ℓ][D]T , (2.21)with:
[ℓ] =




ℓ1 0 · · · 0

0 ℓ2
. . . ...... . . . . . . 0

0 · · · 0 ℓM



, (2.22)a diagonal matrix and [D] an orthogonal matrix, suh that [D]T [D] is equal to the

(M × M) real unit matrix. From Eq. (2.21), it an be seen that the family G(M) ={
gk =

∑M
m=1[D]mkbm, 1 ≤ k ≤M

} veri�es the onditions given by Eq. (2.18). Indeed,for all 1 ≤ k,m ≤M , we have: 32



1

ν

ν∑

n=1

(X(θn), gk) (X(θn), gm) =
1

ν

ν∑

n=1

{
M∑

i=1

[D]ik (X(θn), bi)

}


M∑

j=1

[D]jm (X(θn), bj)





=

M∑

i=1

M∑

j=1

[D]ik[D]jm

{
1

ν

ν∑

n=1

Ci(θn)Cj(θn)

}

=
(
[D]T [RCC ][D]

)
km

= δkmℓk. (2.23)By onstrution, families G(M) and B(M) span the same spae, suh that for all M ≥ 1:
ε2(B(M)) = ε2(G(M)). (2.24)Hene, whereas the unorrelation of the projetion oe�ients of X on K(M) implies theoptimality of K(M) regarding error ε2, there is no reason for a basis that veri�es Eq. (2.18)to be optimal.

• On the other hand, let {k̂m, m ≥ 1} be the eigenfuntions of R̂XX , de�ned by Eq. (2.16),suh that for all (s, s′) in Ω× Ω:
∫

Ω
R̂XX(s, s′)k̂m(s′)ds′ = λ̂mk̂m(s), (s,m) ∈ Ω× N

∗. (2.25)As the rank of the linear operator de�ned by the kernel R̂XX is by onstrution lower orequal to ν, the number of elements of the basis {k̂m, m ≥ 1}, for whih the eigenvalues
λ̂m are non zero, is also lower or equal to ν. Hene, if eigenvalues {λ̂m, m ≥ 1} are sortedin a dereasing order, suh that for all m ≥ 1, λ̂m ≥ λ̂m+1, the set, {X(θ1), . . . ,X(θν)},of available realizations of X is orthogonal to the subset {k̂m, m > ν}:

∫

Ω
X(θn, s)k̂m(s)ds = 0, 1 ≤ n ≤ ν, m > ν. (2.26)Therefore, the eigenfuntions of R̂XX , {k̂m, m ≥ 1}, annot be seen as an optimal basis.Only a subset of this set will be adapted to X.Finally, whereas theM -dimension trunated KL basis, K(M), is well haraterized in theory,its numerial identi�ation an be di�ult when ovariane funtionRXX is not perfetly known.The idea of the following setions is therefore to present an innovative method to optimize theapproximation of K(M) when X is only known through a �nite set of independent realizations.

33



2.3 Identi�ation of optimal basis from a �nite set of indepen-dent realizationsFrom Setion 2.2, the solving of the Fredholm problem assoiated with any square integrablekernel funtion (s, s′) 7→ A(s, s′) on Ω× Ω,
∫

Ω
A(s, s′)bAm(s′)ds′ = λAmb

A
m(s), s ∈ Ω, (2.27)an be seen as a generator of a partiular family {bAm, m ≥ 1

}. If A is equal to the ovarianefuntion of X, the solving of this problem allows us to identify the optimal projetion basisfor X, that minimizes L2-error ε2. When X is only known through a �nite set of independentrealizations, it will �rst be shown in this setion that, for all M ≥ 1, the minimization of ε2over the M -dimension sets of funtions in H an be replaed by an optimization problem overthe kernel funtion on whih the Fredholm problem is based. It will then be pointed out thatsuh an optimization problem asks for a method to a posteriori evaluate the representativenesserror assoiated with projetion families that depends on the available realizations, that is tosay when no assessment set is available. This motivates the introdution of the Leave-One-Outerror, that will be presented in the seond part of this setion.2.3.1 Reformulation of the projetion error minimizationIn Setion 1.3.1, for all M ≥ 1, the KL basis K = {km, m ≥ 1}, has been introdued as the setgathering the solutions of the Fredholm problem, de�ned by Eq. (1.5), assoiated with RXX .For any funtion A in S(R), suh that:
S(R) =

{
A ∈ L2(Ω× Ω,R), | A(s, s′) = A(s′, s) ∈ R, (s, s′) ∈ Ω× Ω

}
, (2.28)and for any M ≥ 1, let B(A) = {bAm, m ≥ 1

} be the set that gathers the solutions in H of theFredholm problem assoiated with A, that is to say suh that for all s in Ω and for all m ≥ 1and p ≥ 1:
∫

Ω
A(s, s′)bAm(s′)ds′ = λAmb

A
m(s), λA1 ≥ λA2 ≥ . . . → 0,

(
bAm, b

A
p

)
= δmp. (2.29)For any M ≥ 1 and for any funtion A in S(R), the set B(M)

A =
{
bAm, 1 ≤ m ≤M

} is thenintrodued as the family gathering the eigenfuntions of highest eigenvalues of the Fredholmproblem assoiated with A. The Karhunen-Loève expansion being optimal for X with respetto error ε2, it an be dedued that for all M ≥ 1:
RXX = arg min

A∈S(R)

{
ε2(B(M)

A )
}
. (2.30)Hene, for all M ≥ 1, the M -dimension optimal family, K(M), whih was �rst introduedas the solution of the optimization problem that is de�ned by Eq. (2.11), an equivalently besearhed as the solution of the following optimization problem,

K(M) = arg min
B(M)
A , A∈S(R)

{
ε2(B(M)

A )
}
. (2.31)
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2.3.2 Restrition of the searh spaeFrom Eqs. (2.30) and (2.31), it an diretly be seen that A = RXX is the optimal hoie for Ain S(R), suh that K(M) = B(M)
RXX

. Hene, when random �eld X is only haraterized by a �niteset of ν independent realizations, the best approximation for RXX from these realizations, themost relevant for X the orresponding M -dimension family.In this prospet, adopting the same notations than in Setion 2.2.3, two lassial estimators for
RXX , that are denoted by R̂XX and R̃XX , are introdued, suh that for all (s, s′) in Ω× Ω:

R̂XX(s, s′) =
1

ν

ν∑

n=1

X(θn, s)X(θn, s
′), (2.32)

R̃XX(s, s′) =





1
S−(s′−s)

∫ S−(s′−s)
0 R̂XX(x, x+ (s′ − s))dx if S > s′ − s ≥ 0,

1
S−(s−s′)

∫ S−(s−s′)
0 R̂XX(x+ (s− s′), x)dx if S > s− s′ > 0,

R̂(s, s′) otherwise. (2.33)Reall that funtion R̂XX is the empirial estimator of RXX , whih onverges towards RXX atthe onvergene rate of 1/√ν. Moreover, if random �eld X is the restrition to Ω of a mean-square stationary random �eld indexed by R, that is to say if RXX(s, s′) only depends on thedi�erene |s− s′|, funtion R̃XX is the lassial stationary estimator of RXX .From the realizations of X, statistial tests an be ahieved to evaluate the relevane of astationary hypothesis for X, in order to help us to hoose the best estimator. Nevertheless,in many ases, these tests do not give a lear-ut answer. From the point of view of theminimization of Eq. (2.31), even if X is atually mean-square stationary, R̂XX is howeveronsidered as a better funtion than R̃XX if:
ε2(B(M)

R̂XX
) ≤ ε2(B(M)

R̃XX
). (2.34)From a more general point of view, for α in [0, 1], let A(α) be the following funtion:

A(α) = αR̂XX + (1− α)R̃XX . (2.35)By onstrution, for any α in [0, 1], funtions A(α) are symmetrial and have the same L2-norm:
∫

Ω×Ω
A(α, s, s′)2dsds′ =

∫

Ω×Ω
R̂XX(s, s′)2dsds′ =

∫

Ω×Ω
R̃XX(s, s′)2dsds′. (2.36)In this work, when random �eldX is only haraterized by a set of ν independent realizations, itis proposed to searh the optimal projetion basis as the solution, K(M)(α∗), of an optimizationproblem with respet to α in [0, 1]:





K(M)(α∗) = B(M)
A(α∗)

α∗ = arg min
α∈[0,1]

{
ε2(B(M)

A(α))
}
.

(2.37)Suh an approah appears to be very e�ient when the number of available realizations, ν,is small. Indeed, it has been shown in Setion 2.2.3 that for ν < M , family B(M)

R̂XX
an bedeomposed as:

B(M)

R̂XX
= BIm(R̂XX) ∪ BKer(R̂XX), (2.38)35







BIm(R̂XX)
def
=
{
bm, |

∫
Ω R̂XX(·, s′)bm(s′)ds′ = λ̂mbm, λ̂m > 0

}
1≤m≤ν

,

BKer(R̂XX)
def
=
{
bm, |

∫
Ω R̂XX(·, s′)bm(s′)ds′ = 0

}
ν<m≤M

.
(2.39)Therefore, whereas family BIm(R̂XX) is likely to be partiularly well adapted to X, family

BKer(R̂XX) has no reason to be adapted to X as it is orthogonal to the set of available realiza-tions. On the ontrary, by onstrution, for α > 0, the rank of B(M)
A(α) is higher than ν. Usingthe same notations than in Eq. (2.39), the number of elements of BKer(A(α)), whih are byde�nition orthogonal to eah available realization of X, will be smaller than M − ν, suh thatthe L2-error assoiated with B(M)

A(α) is likely to be smaller than the one assoiated with B(M)

R̂XX
.All these onsiderations an diretly be extended to the ase when X is a RQ-valued ran-dom �eld, Q ≥ 1. Indeed, let [RY Y ] be the (Q × Q) matrix-valued ovariane funtion ofthe RQ-valued stohasti proess, Y = (Y1, . . . , YQ), for whih ν independent realizations,

{Y (θ1), . . . ,Y (θν)}, are available. We an thus de�ne [A(α)], suh that for all (s, s′) in Ω× Ωand 1 ≤ p, q ≤ P :
[A(α)] = [α][R̂] + ([IQ]− [α]) [R̃], (2.40)

[α]pq = αpδpq, (α1, . . . , αQ) ∈ [0, 1]Q, (2.41)
[R̂(s, s′)]pq = R̂pq(s, s

′), (2.42)
[R̃(s, s′)]pq = R̃pq(s, s

′), (2.43)
R̂pq(s, s

′) =
1

ν

ν∑

n=1

Yp(θn, s)Yq(θn, s
′), (2.44)

R̃pq(s, s
′) =





1

S − (s′ − s)

∫ S−(s′−s)

0
R̂pq(x, x+ (s′ − s))dx if S > s′ − s ≥ 0,

1

S − (s− s′)

∫ S−(s−s′)

0
R̂pq(x+ (s′ − s), x)dx if S > s− s′ > 0,

R̂pq(s, s
′) otherwise. (2.45)The optimal value for the matrix-valued funtion used in the Fredholm problem, [A(α∗)],an �nally be searhed as the solution of the following minimization problem:




[A(α∗)] = [α∗][R̂] + ([IQ]− [α∗]) [R̃],

[α∗] = argmin
[α]

{
ε2(B(M)

[A(α)])
}
.

(2.46)
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2.3.3 A posteriori evaluation of the representativeness errorIn order to solve the problem de�ned by Eq. (2.37), a method to a posteriori evaluate ε2(B(M)
A(α))from the only ν available independent realizations, {X(θn), 1 ≤ n ≤ ν}, for all α in [0, 1], isthen required. Indeed, from the limited set {X(θn), 1 ≤ n ≤ ν}, the L2-error, ε2(B(M)), orre-sponding to any M -dimension family B(M) of HM , annot be exatly alulated, but has to beevaluated as preisely as possible. Two ases an be distinguished:

• ase 1: B(M) is de�ned without any referene to {X(θ1), . . . ,X(θν)}.
• ase 2: the knowledge of {X(θ1), . . . ,X(θν)} is used to optimize the representativeness of

B(M). In this ase, B(M) depends on the available realizations of X.Case 1: realizations and projetion basis are independentIf B(M) has been omputed without any referene to the set {X(θ1), . . . ,X(θν)}, error ε2(B(M))an be evaluated from its empirial estimation, ε̂2ν(B(M)), suh that:
ε̂2ν(B(M)) =

1

ν

ν∑

n=1

(
X(θn)− X̂B(M)

(θn),X(θn)− X̂B(M)
(θn)

)
. (2.47)Indeed, aording to the entral limit theorem (see [15℄ for further details),

lim
ν→+∞

P


|ε2(B(M))− ε̂2ν(B(M))| ≤ z(p)

√√√√Var
{(
X − X̂B(M)

,X − X̂B(M)
)}

ν


 = 1− p, (2.48)

1− 1√
2π

∫ z(p)

−∞
exp

(
−x

2

2

)
dx =

p

2
, (2.49)suh that for su�iently high values of ν:

ε2(B(M)) ≈ ε̂2ν(B(M)). (2.50)Case 2: the projetion basis depends on the available realizationsIn order to make projetion family B(M) be partiularly adapted to random �eld X, it an beinteresting to exploit as muh as possible the information about X that is gathered in indepen-dent realizations {X(θ1), . . . ,X(θν)}. In this ase, B(M) is dependent on {X(θ1), . . . ,X(θν)},and error ε̂2ν strongly underestimates ε2. This phenomenon is generally alled overlearning. Forinstane, if we de�ne B(M) = {bm, 1 ≤ m ≤M} as the Gram-Shmidt orthogonalization of thedeterministi family of available independent realizations {X(θ1), . . . ,X(θν)}:



b1 = X(θ1)/ (X(θ1),X(θ1)) , K = 1,for 2 ≤ m ≤M :

b∗m = X(θi)−
∑m−1

k=1 (X(θm), bk) bkif (b∗m, b∗m) > 0 :

K = K + 1, bK = b∗m/
√

(b∗m, b∗m)end ifend for
M = K,

(2.51)
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then, the M -dimension projetion,
X̂B(M)

=

M∑

m=1

Cmbm, Cm = (X, bm) , (2.52)of random �eld X on B(M) veri�es:
X̂B(M)

(θn) = X(θn), 1 ≤ n ≤ ν. (2.53)By onstrution, error ε̂2ν(B(M)) is always equal to zero, whereas ε2(B(M)) should be in generalstritly greater than 0, as the number of available realization, ν, and the dimension of theprojetion basis, M, are limited.In order to orretly evaluate error ε2, a separation in two sets of the available realizationsis generally performed:
• the �rst set, {X(θ1), . . . ,X(θν∗)}, is a learning set, on whih the de�nition of B(M) isbased,
• the seond set, {X(θν∗+1), . . . ,X(θν)}, is an assessment set, on whih the omputation of
ε̂2ν−ν∗ is ahieved to evaluate ε2.With suh a method, it an be notied that the higher ν∗, the less preise the evaluation of

ε2. This limits strongly the sope of suh approahes when number of available realizations νis small, ompared to the number of funtions that are needed to haraterize X. Indeed, insuh ases, we would be interested in taking into aount most of the available realizations of
X, that is to say in making ν∗ tends to ν, whih leads us nevertheless to a very bad evaluationof ε2.To this end, for all set of ν∗ indies, J(ν∗), suh that:

J(ν∗) = {j1 6= . . . 6= jν∗} ∈ {1, . . . , ν}ν∗ , (2.54)let B(M)(J(ν∗)) be the M -dimension family that has been omputed from the ν∗-dimensionset {X(θj1), . . . ,X(θjν∗ )
} (ν∗ an vary) of independent realizations of X (the family that stemsfrom the Gram-Shmidt orthogonalization de�ned by Eq. (2.51) is an example of suh a family).The two following hypotheses are then assumed.1. First, it is supposed that error ε2 (B(M)(J(ν∗))

) dereases when ν∗ inreases.2. Then, given two sets J(1)(ν∗) and J(2)(ν∗) that have been randomly hosen in {1, . . . , ν}ν∗ ,it is assumed that:
P
X̂(1) ≈ P

X̂(2) , (2.55)where PX̂(1) and PX̂(2) are the distributions of the projeted random �elds, X̂(1) and X̂(2),on B(M)(J(1)(ν∗)) and B(M)(J(2)(ν∗)) respetively.In other words, the �rst hypothesis means that the modeling errors are expeted to dereasewhen the information is inreasing, whereas the seond hypothesis asks, for the appliation,that omputing the projetion basis from a limited set of realizations yields robust results.38



Let J (ν−1) be the random variable, whose distribution is disrete, suh that for all 1 ≤ n ≤ ν,
J (ν − 1) takes set value J (ν − 1, θn) = {1, . . . , n − 1, n + 1, . . . , ν} with probability 1/ν. Forall 1 ≤ n ≤ ν, J (ν − 1, θn) orresponds thus to a partiular set of ν − 1 indies. With suh aformalism, the projetion basis that is only based on the knowledge of the ν − 1 realizations,
{X(θ1), . . . ,X(θn−1),X(θn+1), . . . ,X(θν)}, of X, whih is denoted by B(M)(J (ν − 1, θn)), isindependent of X(θn). Therefore, under the two former hypotheses, if X̂(J (ν − 1, θn), θn) isthe projetion of X(θn) on B(M)(J (ν − 1, θn)), the set {e2(θn), 1 ≤ n ≤ ν

}, where:
e2(θn) =

(
X(θn)− X̂(J (ν − 1, θn), θn),X(θn)− X̂(J (ν − 1, θn), θn)

)
, (2.56)an be seen as a set of ν independent realizations of the random variable:

e2 =
(
X − X̂(J (ν − 1)),X − X̂(J (ν − 1))

)
, (2.57)suh that:

ε2
(
B(M)(J(ν − 1))

)
≈ ε2LOO(B(M))

def
=

1

ν

ν∑

i=1

e2(θi). (2.58)Aording to the entral limit theorem, this error onverges to ε2 (B(M)(J(ν − 1))
) at theonvergene rate of 1/√ν. For all projetion family B(M), the estimation ε2LOO(B(M)) is alledLeave-One-Out (LOO) error, and it an be seen as a good approximation of ε2(B(M)) for νsu�iently high. This LOO error an be onsidered as the appliation of the jakknife theory(see [73, 74, 75℄ for further details) to the evaluation of projetion errors. Hene, ontrary tothe two-sets approah, the Leave-One-Out method allows us to ompute projetion basis B(M)from all the available realizations of X, while still giving aess to an aurate estimation of itsorresponding representativeness error, ε2(B(M)), when ν is su�iently high.Finally, the L2-error, ε2, in the optimization problem, de�ned by Eq. (2.37), an be re-plaed by the LOO error, suh that the M -dimension optimal projetion family, K(M), an beapproximated by the following optimization problem:





K(M) ≈ B(M)
A(α∗),

α∗ = arg min
α∈[0,1]

{
ε2LOO(B(M)

A(α))
}
.

(2.59)2.4 AppliationsIn order to illustrate the bene�ts that stem from the optimization problem de�ned by Eq. (2.59),an appliation based on simulated data is presented in this setion. This appliation aims atjustifying the relevane of the Leave-One-Out error, and at emphasizing the di�ulties of thelassial Karhunen-Loève expansion-based methods to identify optimal basis when the numberof available realizations is low, while the generalized Karhunen-Loève expansion, haraterizedby Eq. (2.59) gives very promising results.2.4.1 Generation of independent realizations of the random �eldLet Ω = [0, 1], and X be a random �eld of P(Ω), for whih the ovariane funtion RXX isrepresented in Figure 2.1 and the mean value is zero. This random �eld has been hosen onpurpose non stationary. 39



From this hoie for RXX , we an numerially identify the Karhunen-Loève basis, K =
{km, m ≥ 1}, assoiated withX by solving the Fredholm problem assoiated with RXX , de�nedby Eq. (1.5). For any value ofM ≥ 1, it is reminded that K(M) = {km, 1 ≤ m ≤M} is optimalin the sense that it minimizes ε2:

ε2(K(M)) = min
B(M)∈HM

ε2(B(M)). (2.60)From a numerial point of view, the Fredholm equation is solved using a Galerkin-typeapproximation, as presented in Setion 1.3.3. Interval Ω is disretized with the spatial step
h = 0.005, and random �eld X is approximated by its N -dimension projetion, X(N), with
N = 1/h + 1 = 201, suh that:

X(s) ≈ X(N)(s) =

N∑

i=1

hi(s)X((i − 1)h), s ∈ Ω, (2.61)
hi(s) =





(ih− s)/h, if (i− 1)h ≤ s ≤ ih,
(s− (i− 2)h)/h, if (i− 2)h ≤ s ≤ (i− 1)h,
0 otherwise. (2.62)The ovariane funtion RXX , of entered random �eld X, is also approximated by its Galerkinprojetion, Rh

XX , suh that, for all (s, s′) in Ω× Ω:
RXX(s, s′) ≈ Rh

XX(s, s′) =
N∑

i=1

N∑

j=1

hi(s)hj(s
′)E [X((i− 1)h)X((j − 1)h)] . (2.63)The eigenvalue problem, de�ned by Eq. (1.5), assoiated with kernel Rh

XX , leads us to thede�nition of N funtions, that are denoted by {khm, 1 ≤ m ≤ N
}. Let {λhm, 1 ≤ m ≤ N

} bethe orresponding eigenvalues, suh that:
Rh

XX(s, s′) =
N∑

m=1

λhmk
h
m(s)khm(s′), (s, s′) ∈ Ω× Ω, (2.64)

X(N)(s) =

N∑

m=1

√
λhmk

h
m(s)ξm, s ∈ Ω, (2.65)with ξ = (ξ1, . . . , ξN ) a N -dimension random vetor of unorrelated random variables. Inthis appliation, X is supposed to be a Gaussian random �eld (the Gaussian hypothesis is justintrodued in order to simplify the generation of independent realizations of X but the followingonlusions would be exatly the same for a non-Gaussian ase). Consequently, the omponentsof ξ are independent normalized Gaussian random variables.Two sets, X exp = {X(θ1), . . . ,X(θν)} and X valid = {XΘ1), . . . ,X(Θνvalid)}, of independentrealizations of X are then generated from the KL deomposition de�ned by Eq. (2.65). Fourpartiular independent realizations of X are represented in Figure 2.2. Set X exp representsthe available information about X, whereas X valid is the assessment set, whih will only beused aording to Setion 2.3.3 to evaluate the projetion error, ε2(B(M)), orresponding to anyprojetion family B(M) in HM .In the following, νvalid is hosen equal to 4, 000 for the onvergene of ε̂2

νvalid
(B(M)), de�ned byEq. (2.47), towards ε2(B(M)) to be ahieved. 40
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Figure 2.1: Representation of the ovariane funtion (s, s′) 7→ RXX(s, s′).

0 1
−3

−2

−1

0

1

2

3

4

 

 

PSfrag replaements
X(θ1) X(θ2) X(θ3) X(θ4)

Absissa s
ValuesofX

Figure 2.2: Representation of four independent realizations of X.
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2.4.2 Improvement of the projetion basis with respet to the available in-formationThe number of available realizations, ν, is now supposed to be in the set {0, 10, 20, 50, 200}.The ase ν = 0 orresponds to a limit ase when no realization of X is available. For the otherases, the empirial estimator of ovariane funtion RXX , whih is denoted by R̂(ν), suh that:
R̂(ν, s, s′) =

1

ν

ν∑

n=1

X(θn, s)X(θn, s
′), (s, s′) ∈ Ω× Ω, (2.66)is ompared in Figure 2.3 for di�erent values of ν. In these �gures, it an be veri�ed thatthe higher ν, the more relevant R̂(ν). Using the same notations than in Setion 2.3.2, for all

1 ≤M ≤ N , B(M)

R̂(ν)
= {bν1 , . . . , bνM} is introdued as the M -dimension family suh that:

∫

Ω
R̂(ν)(·, s′)bνm(s′)ds′ = λνmb

ν
m, 1 ≤ m ≤M, (2.67)

λν1 ≥ λν2 ≥ . . . ≥ λνM ≥ 0. (2.68)By onstrution, for ν < M , the rank of R̂(ν) is equal to ν, and then,
λνν+1 = λνν+2 = . . . = λνM = 0. (2.69)Therefore, as desribed in Setion 2.3.1, the elements of {bνν+1, . . . , b

ν
M} are orthogonal to theavailable realizations of X: their haraterization does not take into aount any informationabout X. In partiular, in the ase ν = 0, B(M)

R̂(ν=0)
orresponds to any M -dimension setof orthonormal funtions of H. In Figure 2.3 are thus ompared the evolutions of the errorfuntions, ε2(B(M)

R̂(ν)
), with respet to M , for four onsidered values of ν. First, in this �gure,it an be notied that ε2(B(M)

R̂(ν=0)
) dereases linearly with respet to M , whih means that therelevane of eah element of B(M)

R̂(ν=0)
to desribe X is approximatively the same. This is adiret and natural onsequene of the fat that all these elements have been de�ned withoutinformation about X. Then, two phases an learly be identi�ed in the evolution of ε2(B(M)

R̂(ν)
)with respet to M , for ν = 10, 20, 50, 200: the derease of ε2(B(M)

R̂(ν)
) is indeed muh faster for

M ≤ ν than for M > ν, where a quasi-linear derease is found again. This behavior an bejusti�ed by the fat that the ν �rst elements of B(M)

R̂(ν)
are based on the available realizations of

X, whereas the M − ν last elements are not.2.4.3 Optimized basis when few realizations are availableIn the former setion, it has been shown that the basis that stems from the solving of Eq. (2.67)appears to be relevant to haraterize X, espeially when the number of available realizations,
ν, is high. This setion aims at illustrating the bene�ts of the approah introdued in Setion2.3.1, in ases when ν ≪ N . For ν in {10, 20, 50, 200} and 1 ≤ M ≤ N , let α∗(ν) be thesolution of the optimization problem, de�ned by Eq. (2.37) (in this appliation, Eq. (2.37) hasbeen solved using an algorithm based on a dihotomy), and let A(α∗(ν)) be the orrespondingfuntion in S(R). The relevane of B(M)

R̂(ν)
and B(M)

A(α∗(ν)) is then ompared in Figure 2.5. Theoptimal value of the projetion error, ε2(K(M)), has been added in these �gures as a limit state.In eah ase, it an thus be seen that ε2(B(M)
A(α∗(ν))) ≤ ε2(B(M)

R̂(ν)
). For these four hoies for ν,42
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R̂(ν)
) = 29.2%,

ε2(B(50)
A(α∗(ν))) = 2.27%. Indeed, whereas the rank of R̂(ν = 10) is 10, the rank of A(α∗(ν = 10))is by onstrution muh higher than ν. Therefore, more elements of B(50)

A(α∗(ν)) are based onthe knowledge of X than the elements of B(50)

R̂(ν)
, whih explains suh an improvement of theprojetion basis, even if X is non stationary.2.4.4 Relevane of the LOO errorAs presented in Setion 2.3.3, when the assessment set, X valid, is not available, whih is thegeneral ase, the LOO error allows us to evaluate the projetion error from the only set X exp.For M = 50, the relevane of the LOO error is illustrated in Figure 2.6. It an be seen inthis �gure that for even low values of ν, LOO error ε2LOO(B

(M)

R̂(ν)
), whih is only based on the

ν available realizations of X, is very lose to the validation error ε̂2
νvalid

(B(M)

R̂(ν)
), de�ned by Eq.(2.47), whih is based on the νvalid realizations gathered in X valid. Error bars have been added inthese two graphs for several values of ν. These bars orrespond to the 95% on�dene intervalsand emphasize the onvergene in 1/

√
ν of the LOO error towards ε̂2

νvalid
(B(M)

R̂(ν)
).
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Chapter 3PCE identi�ation in high dimensionfrom a set of realizations3.1 IntrodutionIn Setion 1.4, it has been shown to what extent the Polynomial Chaos Expansion (PCE)method allows us to identify in inverse the multidimensional distribution of the M -dimensionrandom vetor C = (C1, · · · , CM ) when the available information about this random vetor isa �nite set of ν independent realizations, whih are written {C(θ1), . . . ,C(θν)}. Without lossof generality, C is supposed to be a entered random vetor in this hapter.As presented in Setion 1.5, this method is based on a diret projetion of C on a knownand hosen N -dimension orthonormal basis {ψ1(ξ), . . . , ψN (ξ)}, suh that:
C ≈ Cchaos(N) = [y]Ψ(ξ), Ψ(ξ) = (ψ1(ξ), . . . , ψN (ξ)) , (3.1)with ξ a Ng-dimension random vetor (Ng ≤M) whose distribution is known.To identify the multidimensional distribution of C, the (M ×N) projetion matrix [y] hasthen to be alulated from the available information about C, and the values of the trunationparameters Ng and N have to be justi�ed aording to onvergene analysis. To this end, anerror funtion has been de�ned in Setion 1.5.4 to quantify the amplitude of the PCE residue,

C − Cchaos(N), whereas a random searh algorithm has been introdued in Setion 1.5.3 toallow the omputation of [y] from the realizations {C(θ1), . . . ,C(θν)} of C.Dealing with high dimensional problems, that is to say whenM and N are very high, raiseshowever at least two major di�ulties.
• First, when M and N are high, the dimension of the admissible set OC beomes huge,suh that the onvergene of the random searh algorithms that are based on independentand uniformly distributed generations of [y∗] in OC to solve the optimization problemde�ned by Eq. (1.61), is very low. A method to optimize the generation of elements in

OC is therefore needed for suh PCE inverse identi�ation to give relevant results.
• Seondly, the optimization problem de�ned by Eq. (1.61) is based on the generation ofthe matrix [Ψ(νchaos)] of independent realizations of projetion vetor Ψ(ξ). Reurreneformula or algebrai expliit representations are generally used to ompute suh matrix

[Ψ(νchaos)], whih are supposed to verify the asymptoti property:46



lim
νchaos→+∞

1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T = [IN ], (3.2)as a diret onsequene of the orthonormality of the PCE basis. However, for numeriallyadmissible values of νchaos (between 1000 and 10000), it has been shown in [76℄ thatthe di�erene 1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T − [IN ] an be very signi�ant when N is high.This di�erene indues a detrimental bias in the PCE identi�ation, whih makes theonvergene of the lassial PCE in high dimension very di�ult. Innovative methods togenerate matries [Ψ(νchaos)] that numerially verify 1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T = [IN ]are thus expeted to allow this onvergene in high dimension.Solutions to these two di�ulties are therefore proposed in this hapter. First, Setion 3.2presents an original method to optimize the trials in the admissible set

OC =
{
[y] =

[
y(1), · · · ,y(N)

]
∈ MM,N | [y][y]T = [R̂CC(ν)]

}
, (3.3)

[R̂CC(ν)] =
1

ν

ν∑

n=1

C(θn)⊗C(θn), (3.4)even if ν is very small ompared to M and N , suh that relevant values for [y] an be omputedat a reasonable omputational ost.Then, Setion 3.3 addresses the stabilization of the matrix of realizations [Ψ(νchaos)] in highdimension. At last, two appliations are presented in Setion 3.4 to emphasize the bene�ts ofsuh improvements in the PCE identi�ation proess.3.2 Optimized trials of independent realizations of random ma-tries under orrelation onstraintsIn this hapter, we use the same notations than in Setion 1.5.To solve Eq. (1.61) with a random searh algorithm, as an extension of the work desribedin [38℄, this setion aims at proposing two methods to optimize the trials in OC . Adaptationsof these methods are then presented when ν < M , that is to say when the available informationis very limited ompared to the size of C.3.2.1 Reformulation of the orrelation onstraintsFrom Eqs. (1.33) and (1.50), for a given value of ν, it is reall that the matries [Cexp(ν)] and
[R̂CC(ν)] are de�ned suh that:

[Cexp(ν)] = [C(θ1) . . . C(θν)] , [R̂CC(ν)] =
1

ν
[Cexp(ν)][Cexp(ν)]T . (3.5)For any (M ×M) invertible real matrix [G], the random vetor C̃ is introdued as:

C̃ = [G]C . (3.6)As [G] is invertible, C̃ and C belong to the same statistial spae. Therefore, searhing thePCE [y]Ψ(ξ) desribing C under the onstraint [y][y]T = [R̂CC(ν)] is equivalent to searhingthe PCE [u]Ψ(ξ) desribing C̃, where matrix [u] = [G][y] has to verify:47



[u][u]T = [G][R̂CC (ν)][G]
T . (3.7)Matrix [R̂CC(ν)] being a symmetrial and real matrix, it exists an orthogonal matrix [V̂ (ν)]and a diagonal matrix [λ̂(ν)] in MM,M suh that:

[R̂CC(ν)] =
(
[V̂ (ν)][λ̂(ν)]1/2

)(
[V̂ (ν)][λ̂(ν)]1/2

)T
, [V̂ (ν)]T [V̂ (ν)] = [IM ]. (3.8)

[λ̂(ν)]1/2 =




√
λ̂1(ν) 0 · · · 0

0

√
λ̂2(ν)

. . . ...... . . . . . . 0

0 · · · 0

√
λ̂M (ν)



, λ̂1(ν) ≥ . . . ≥ λ̂M (ν) ≥ 0. (3.9)The idea is thus to �nd a partiular matrix [G] that ould simplify the orthogonality on-straints for [y]. If λ̂M (ν) > 0, [V̂ (ν)][λ̂(ν)]1/2 is invertible. The partiular hoie [G] =

[λ̂(ν)]−1/2[V̂ (ν)]T imposes therefore on [u] to belong to the Stiefel manifold VN,M (see [77℄for further details about the Stiefel manifold), suh that:
VN,M =

{
[u] ∈ MM,N | [u][u]T = [IM ]

}
. (3.10)3.2.2 Notations and de�nitionsIn this setion, a series of notations are introdued, on whih the next setions will be based.For 1 ≤ z ≤ Z:

• Jz is a random permutation from {1, 2, . . . ,M} to {1, 2, . . . ,M}, suh that:
Jz =

(
j
(z)
1 , . . . , j

(z)
M

)
∈ {1, 2, . . . ,M}M , j

(z)
1 6= . . . 6= j

(z)
M ; (3.11)

• the set {vT
(z),m, 1 ≤ m ≤M

} gathers the M rows of matrix [y(z)], suh that:
[y(z)] =




vT
(z),1...

vT
(z),M


 ; (3.12)

• For 1 ≤ m ≤M , PDF p̂(
U

(z)
j1

,...,U
(z)
jm

) refer to the kernel estimators of the multidimensionalPDF p(
U

(z)
j1

,...,U
(z)
jm

) of the random vetor
(
U

(z)
j1
, . . . , U

(z)
jm

)
=




vT
(z),j1...

vT
(z),jm


Ψ(ξ). (3.13)

• In the same manner, the set {ṽT
(z),m, 1 ≤ m ≤M

} gathers the M rows of matrix [u(z)],suh that: 48



[u(z)] =




ṽT
(z),1...

ṽT
(z),M


 ; (3.14)

• For 1 ≤ m ≤M , PDF p̂(
Ũ

(z)
j1

,...,Ũ
(z)
jm

) refer to the kernel estimators of the multidimensionalPDF p(
Ũ

(z)
j1

,...,Ũ
(z)
jm

) of the random vetor
(
Ũ

(z)
j1
, . . . , Ũ

(z)
jm

)
=




ṽT
(z),j1...

ṽT
(z),jm


Ψ(ξ). (3.15)

• For 1 ≤ m ≤M , L̂(
Ũ

(z)
j1

,...,Ũ
(z)
jm

)
({(

C̃j1(θn), . . . , C̃jm(θn)
)
, 1 ≤ n ≤ ν

}) is the estimationof the multidimensional log-likelihood of random vetor (Ũ (z)
j1
, . . . , Ũ

(z)
jm

) that is evaluatedat the experimental points {(C̃j1(θn), . . . , C̃jm(θn)
)
, 1 ≤ n ≤ ν

}, suh that:
L̂(

Ũ
(z)
j1

,...,Ũ
(z)
jm

)
({(

C̃j1(θn), . . . , C̃jm(θn)
)
, 1 ≤ n ≤ ν

})

=

ν∑

n=1

ln p̂(
Ũ

(z)
j1

,...,Ũ
(z)
jm

)
((
C̃j1(θn), . . . , C̃jm(θn)

))
.

(3.16)
• for 1 ≤ P ≤ M , if the set B = {b1, . . . , bP} gathers P vetors that are in RM , Ker(B) ={

kerB1 , . . . ,ker
B
Q

} is an orthonormal basis of the null spae of B, suh that:
〈
kerBq ,ker

B
q′
〉
= δqq′ ,

〈
kerBq , bp

〉
= 0, 1 ≤ p ≤ P, 1 ≤ q, q′ ≤ Q. (3.17)

• for 1 ≤ m ≤M , S(m)(1) orrespond to the m-dimension unit hypersphere, suh that:
S(m)(1) = {s ∈ R

m, ‖s‖ = 1} . (3.18)In addition, we denote by S(m) the m-dimension random vetor that is uniformly dis-tributed on S(m)(1). If Ξ is a m-dimension random vetor whose omponents are en-tered, independent, normally distributed of variane equal to 1, as the distribution of Ξis invariant by rotation, it an be seen that if {Ξ(Θ1), . . . ,Ξ(ΘQ)} are Q independentrealizations of Ξ, the set
{
S(m)(Θ1) = Ξ(Θ1)/ ‖Ξ(Θ1)‖ , . . . ,S(m)(ΘQ) = Ξ(ΘQ)/ ‖Ξ(ΘQ)‖

} (3.19)gathers Q independent realizations of random vetor S(m).
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3.2.3 Theoretial frameFor m ≥ 1, let
• [R] be a (m+ 1×m+ 1) real matrix suh that

[R] =

[
[Rm,m] R∗
RT

∗ R∗∗

]
, (3.20)where [Rm,m] is a (m×m) real and symmetrial matrix, R∗ is a m-dimension real vetorand R∗∗ ≥ 0.

• [z] be a (m×N) real matrix suh that [z][z]T = [Rm,m].
• v be a N -dimension real vetor.Proposition 1 The matrix

[Z] =

[
[z]
vT

] (3.21)ful�lls the orthogonality onstraint [Z][Z]T = [R] if and only if vetor v veri�es:
v = [V ]

(
α

β

)
, α = [ℓ]−1[U ]TR∗, (3.22)where β is any (N −m)-dimension vetor, for whih norm is given by

‖β‖ =

√
R∗∗ − ‖α‖2, (3.23)

[U ] is a (m ×m) real orthogonal matrix, [V ] is a (N ×N) real orthogonal matrix, and [ℓ] is a
(m×m) real and stritly positive-de�nite diagonal matrix, suh that:

[z] = [U ]


[ℓ]




0 · · · 0... . . . ...
0 · · · 0





 [V ]T , [V ]T [V ] = [IN ], [U ]T [U ] = [Im]. (3.24)

� Proof: We have the following equivalenes:
[Z][Z]T = [R]

⇔ [z]v = R∗, ‖v‖2 = R∗∗, by de�nition of [R]
⇔ [U ]


[ℓ]




0 · · · 0... . . . ...
0 · · · 0





 [V ]Tv = R∗, ‖v‖2 = R∗∗

⇔ v = [V ]

(
α

β

)
, α = [ℓ]−1[U ]TR∗, ‖β‖ =

√
R∗∗ − ‖α‖2.

(3.25)
�
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Corrolary 1 If [R] = [Im+1], the matrix
[Z] =

[
[z]
vT

] (3.26)ful�lls the orthogonality onstraint [Z][Z]T = [Im+1] if and only if vetor v veri�es:
v =

N−m∑

q=1

kerB
(m)

q βq, ‖β‖ = 1, (3.27)where B(m) = {z1, . . . ,zm}, [z] =  zT
1...

zT
m


.

� Proof: If [R] = [Im+1], then R∗∗ = 1 and R∗ = 0, whih leads diretly to the result.
�3.2.4 Iterative algorithmsFrom Setion 1.5, it has been shown that a good approah to numerially identify the PCEprojetion matrix [y] of C, suh that

C ≈ [y]Ψ(ξ), (3.28)is to searh [y] as the diret solution of the following optimization problem:
[y] ≈ [yZOC

] = arg max
[y∗]∈W

C
(
[Cexp(ν)], [y∗], [Ψ(νchaos)]

)
, (3.29)where the ost funtion, C, is de�ned by Eqs. (1.58), (1.59) and (1.59) and:

W =
{
[y(1)], . . . , [y(Z)]

}
,
{
[y(1)], . . . , [y(Z)]

}
⊂ OC . (3.30)Alternatively, it has been underlined in Setion 3.2.1 that matrix [y] an be equivalentlysearhed as the indiret solution of the following problem:

[y] ≈ [V̂ (ν)][λ̂(ν)]1/2[uZOC
], (3.31)

[uZOC
] = arg max

[u∗]∈W̃
C
(
[C̃exp(ν)], [u∗], [Ψ(νchaos)]

)
, (3.32)where

[C̃exp(ν)] = [λ̂(ν)]−1/2[V̂ (ν)]T [Cexp(ν)], (3.33)
W̃ =

{
[u(1)], . . . , [u(Z)]

}
,
{
[u(1)], . . . , [u(Z)]

}
⊂ VN,M . (3.34)Hene, for the solving of these two optimization problems, the more adapted to the realiza-tions of C and C̃ these sets W and W̃ are, the more relevant the identi�ation of [y] is likely tobe. As an extension of the work ahieved in [38℄, this setion presents two iterative algorithmsthat stem from the theoretial developments of Setion 3.2.3 to ompute line by line matries

[y(z)] or [u(z)], 1 ≤ z ≤ Z, that are partiularly well adapted to the available information about
C and C̃ respetively. 51



Diret methodIn the following, z and Q verify 1 ≤ z ≤ Z and Q ≥ 1.Initialization. The j(z)1
th line of [y(z)], vT

(z),j1
, is �rst searhed in order to maximize theunidimensional likelihood:

vT
(z),j1

= arg min
vT
(z),j1

∈T (1)(Q)
L̂
U

(z)
j1

({Cj1(θn), 1 ≤ n ≤ ν}) , (3.35)where {S(N)(Θ1), . . . ,S
(N)(ΘQ)

} gathers Q independent realizations of S(N) and T (1)(Q) =
{√

[R̂CC ]j1j1S
(N)(Θ1), . . . ,

√
[R̂CC ]j1j1S

(N)(ΘQ)

}, suh that if vT
(z),j1

is in T (1)(Q), ∥∥∥vT
(z),j1

∥∥∥
2
=

[R̂CC ]j1j1 .Iteration. For 2 ≤ i ≤M , the j(z)i
th line of [y(z)], vT

(z),ji
, is then searhed suh that:

ṽT
(z),ji

= arg min
ṽT
(z),ji

∈T (i)(Q)
L̂(

U
(z)
j1

,...,U
(z)
ji

) ({(Cj1(θn), . . . , Cji(θn)) , 1 ≤ n ≤ ν}) , (3.36)where T (i)(Q) =
{
t1, . . . , tQ

} gathers Q real vetors with values in RM suh that:
tq = [V ji ]

(
αji√

Rj1
∗∗ − ‖αji‖2S(N−i+1)(Θq)

)
, 1 ≤ q ≤ Q, (3.37)

αji = [ℓji ]−1[U ji ]TRji
∗ , (3.38)




vT
(z),j1...

vT
(z),ji−1


 = [U ji ]







ℓji1 0 · · · 0

0 ℓji2
. . . ...... . . . . . . 0

0 · · · 0 ℓjii−1







0 · · · 0... . . . ...
0 · · · 0






[V ji ]T , (3.39)

[V ji ]T [V ji ] = [IN ], [U ji ]T [U ji ] = [Ii−1]. (3.40)and {S(N−i+1)(Θq), 1 ≤ q ≤ Q
} gathersQ independent realizations of random vetor S(N−i+1).Indiret methodFor 1 ≤ z ≤ Z, and Q ≥ 1, [u(z)] is de�ned aording to the following iterative algorithm.Initialization. The j(z)1

th line of [u(z)], ṽT
(z),j1 , is �rst searhed in order to maximize theunidimensional likelihood:

ṽT
(z),j1 = arg min

ṽT
(z),j1

∈T̃ (1)(Q)
L̂
Ũ

(z)
j1

({
C̃j1(θn), 1 ≤ n ≤ ν

})
, (3.41)where T̃ (1)(Q) gathers Q independent realizations of random vetor S(N).52



Iteration. For 2 ≤ i ≤M , the j(z)i
th line of [u(z)], ṽT

(z),ji , is then searhed suh that:
ṽT
(z),ji = arg min

ṽT
(z),ji

∈T̃ (i)(Q)
L̂(

Ũ
(z)
j1

,...,Ũ
(z)
ji

)
({(

C̃j1(θn), . . . , C̃ji(θn)
)
, 1 ≤ n ≤ ν

})
, (3.42)where T̃ (i)(Q) =

{
t̃
1
, . . . , t̃

Q
} gathers Q real vetors with values in RM suh that:

t̃
q
=

M−i+1∑

k=1

kerB
(i)

k S
(N−i+1)
k (Θq), 1 ≤ q ≤ Q, (3.43)and {S(M−i+1)(Θq), 1 ≤ q ≤ Q

} gathersQ independent realizations of random vetor S(M−i+1),and B(i) =
{
ṽ(z),j1 , . . . , ṽ(z),ji−1

}.Comments on the iterative algorithms
• First, from Setion 3.2.3, suh algorithms allows us to generate matries [y(z)] and [u(z)]that verify the orthogonality onstraints [y(z)][y(z)]T = [R̂CC(ν)] and [u(z)][u(z)]T = [IM ].
• Thanks to the iterative onstrution, eah line of these matries are moreover de�ned tobe adapted at most to the available realizations of C and C̃.
• By imposing on the vetors tq (for the diret method) and t̃

q (for the indiret method) tobe uniformly distributed on their de�nition domains, we try to explore as objetively aspossible the sets OC and VN,M .
• These algorithms are indexed by integer Q. To solve Eqs. (3.29) or (3.32), the total ostis therefore globally proportional to Q × Z. From a numerial point of view, it appearsthat the auray of the results is however muh more dependent on Q than Z. For alimited omputational ost, it is thus advised to hoose Q as high as possible, even if thatfores Z to be inferior to 10.3.2.5 Adaptations to the ase ν < MMotivationsWhen the information about C is limited, and more preisely, when ν is lower than M , thediret and indiret iterative algorithms formerly introdued are no more aurate. Indeed, therank r of matrix [R̂CC(ν)] is by onstrution lower than ν, suh that

λ̂M−ν+1(ν) = λ̂M−ν+2(ν) = . . . = λ̂M (ν) = 0. (3.44)Matrix [V̂ (ν)][λ̂(ν)]1/2 is no more invertible, and imposing [y] to verify the onstraint [y][y]T =
[R̂CC(ν)] is therefore equivalent to projet C in the (r)-dimension image spae of [R̂CC(ν)]. Ifwe want C to remain in its M -dimension spae, the former onstraint on [y] has to be looseneda little, suh that [y][y]T ≈ [R̂CC(ν)]. Keeping in mind that the rank of eah (r× r) sub-matrixof [R̂CC(ν)] is also r, the possibility we propose to loosen this onstraint is based on a blok byblok adaptation of the diret iterative algorithm de�ned in Setion 3.2.4 to generate matries
[y(z)], 1 ≤ z ≤ Z, suh that [y(z)][y(z)]T ≈ [R̂CC(ν)].Adapted PCE identi�ation iterative algorithmFor 1 ≤ z ≤ Z, and Q ≥ 1. 53



Initialization. The j(z)1
th line of [y(z)], vT

(z),j1
, is searhed in order to maximize the unidimen-sional likelihood:

vT
(z),j1

= arg min
vT
(z),j1

∈T (1)(Q)
L̂
U

(z)
j1

({Cj1(θn), 1 ≤ n ≤ ν}) , (3.45)where T (1)(Q) =

{√
[R̂CC ]j1j1S

(N)(Θ1), . . . ,
√

[R̂CC ]j1j1S
(N)(ΘQ)

} is the spae that has al-ready been introdued in Setion 3.2.4.Iteration - �rst part. For 2 ≤ i ≤ r, the j(z)i
th line of [y(z)], vT

(z),ji
, is searhed suh that:

ṽT
(z),ji

= arg min
ṽT
(z),ji

∈T (i)(Q)
L̂(

U
(z)
j1

,...,U
(z)
ji

) ({(Cj1(θn), . . . , Cji(θn)) , 1 ≤ n ≤ ν}) , (3.46)where T (i)(Q) has also been de�ned in Setion 3.2.4.Iteration - seond part. For r + 1 ≤ i ≤M , we de�ne
R∗ =

(
[R̂CC ]j1ji , [R̂CC ]j2ji , . . . , [R̂CC ]ji−1ji

)
, (3.47)





I(r) = {i1, . . . , ir} ⊂ {j1, . . . , ji−1} ,
|[R̂CC ]i1ji | ≥ . . . ≥ |[R̂CC ]irji | ≥ max

j /∈I(r)
|[R̂CC ]jji |.

(3.48)The j(z)i
th line of [y(z)], vT

(z),ji
, is then searhed suh that:

ṽT
(z),ji = arg min

ṽT
(z),ji

∈T(i)(Q)
L̂(

U
(z)
j1

,...,U
(z)
ji

) ({(Cj1(θn), . . . , Cji(θn)) , 1 ≤ n ≤ ν}) , (3.49)where T(i)(Q) =
{
t1, . . . , tQ

} gathers Q real vetors with values in RM suh that:



vT
(z),i1...

vT
(z),ir

tq







vT
(z),i1...

vT
(z),ir

tq




T

=




[
R̂CC

]
i1i1

· · ·
[
R̂CC

]
i1ir

[
R̂CC

]
i1ji... . . . ... ...[

R̂CC

]
iri1

· · ·
[
R̂CC

]
irir

[
R̂CC

]
irji[

R̂CC

]
jii1

· · ·
[
R̂CC

]
jiir

[
R̂CC

]
jiji



, 1 ≤ q ≤ Q, (3.50)whih have been randomly generated using the same developments than in Setion 3.2.4.Therefore, suh an algorithm allows us to build matries [y(z)] suh that the highest termsin absolute value of [R̂CC

] are exatly reprodued in [y(z)][y(z)]T .
54



3.3 Numerial stabilization of the polynomial basis in high di-mensionAs it has been presented in the former setions, the (N × νchaos
) real matrix [Ψ(νchaos)] gath-ers νchaos independent realizations of the N -dimension random vetor Ψ(ξ). Moreover, thenumerial identi�ation of the PCE oe�ients [y] an be seen as the minimization of a ostfuntion involving the elements of the (M × νchaos

) real matrix of independent realizations
[U ] = [y][Ψ(νchaos)] of random vetor U = [y]Ψ(ξ) and the elements of the (M × ν) real matrixof independent realizations [Cexp(ν)] = [C(θ1) · · · C(θν)] of C. In theoretial terms, this ostfuntion should be minimum when the multidimensional PDF pU of U is as near as possible tothe multidimensional PDF pC of C. In pratial terms, this ost funtion is however minimumwhen p̂U is as near as possible to p̂C , where p̂U and p̂C are the multidimensional non parametriestimators of pU and pC de�ned by Eq. (1.55). With respet to ν and νchaos, three bias arethen introdued in the PCE identi�ation:

• a bias due to a lak of information about C:
b(1)(ν) =

∫

RM

|p̂C(x)− pC(x)|dx, (3.51)
• a bias due to a lak of information about U :

b(2)(νchaos) =

∫

RM

|p̂U (x)− pU (x)|dx, (3.52)
• a bias due to the trunation and to the fat that the global maximum is not neessaryreahed:

b(3)(ν, νchaos) =

∫

RM

|p̂C(x)− p̂U (x)|dx. (3.53)These three bias ould also be expressed with respet to the statistial moments of C and
U . For instane, when fousing on the autoorrelation matrix, let err1, err2 and err3 be theautoorrelation errors orresponding respetively to the bias b(1), b(2) and b(3):

err1(ν) =
∥∥∥[RCC ]− [R̂CC(ν)]

∥∥∥
F
/ ‖[RCC ]‖F , (3.54)

err2(νchaos) =
∥∥∥[Rchaos

CC (N)]− [R̂UU (ν
chaos)]

∥∥∥
F
/
∥∥∥[Rchaos

CC (N)]
∥∥∥
F
, (3.55)

err3(ν, νchaos) =
∥∥∥[R̂UU (ν

chaos)]− [R̂CC(ν)]
∥∥∥
F
/
∥∥∥[R̂CC(ν)]

∥∥∥
F
, (3.56)where ‖.‖F is the Frobenius norm of matries, and where it is reminded from Eqs. (1.37) and(1.50) that:





[
R̂CC(ν)

]
= 1

ν [C
exp(ν)][Cexp(ν)]T ,[

R̂UU (ν
chaos)

]
= 1

νchaos
[U ][U ]T = [y]

(
1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T

)
[y]T ,[

Rchaos
CC (N)

]
= [y][y]T .

(3.57)
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Hene, the smaller these three errors are, the more preise the PCE identi�ation is. The νindependent realizations {C(θ1), · · · ,C(θν)} being the maximum available information about
C, the bias b(1) and the autoorrelation error err1 annot be dereased, whereas the set OC ,whih was introdued to guarantee that [Rchaos

CC (N)] = [R̂CC(ν)], aims at reduing b(2), b(3),
err2 and err3. Therefore, imposing [y] to be in OC leads us to:

err2
(
νchaos

)
= err3

(
ν, νchaos

)

=

∥∥∥∥[y]
(

1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T − [IN ]

)
[y]T

∥∥∥∥
F

/
∥∥[y][IN ][y]T

∥∥
F
.

(3.58)The following asymptoti property an thus be dedued from Eq. (1.40):
lim

νchaos→+∞
err2

(
νchaos

)
= lim

νchaos→+∞
err3

(
ν, νchaos

)
= 0, (3.59)whih is equivalent to say that the larger νchaos is, the more aurate the PCE identi�ationshould be. However, from a pratial point of view, the value of νchaos is �xed by the availableomputation resoures. As an extension of the work presented in [76℄, this setion aims atquantifying the divergene of the ratio:

r =

∥∥∥∥
1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T − [IN ]

∥∥∥∥
F

/ ‖[IN ]‖F , (3.60)when the trunation parameters Ng and p, whih have been introdued in Setion 1.5.4, inreasefor several statistial measures. From Eq. (3.58), r, de�ned by Eq. (3.60), an be seen as ageneral haraterization of the autoorrelation errors err2 and err3. This divergene beingvery detrimental to the PCE identi�ation in high dimension, a new deomposition of the PCEoe�ient matrix [y] will be then presented in this setion to make err2 and err3 be zero forany value of Ng and p.3.3.1 Deomposition of the matrix of independent realizationsTo better emphasize the in�uene of the trunation parameters on the ratio r, a rewriting ofthe matrix [Ψ(νchaos)] is �rst presented.Theoretial basis of the deompositionFrom Eq. (1.39), matrix [Ψ(νchaos)] gathers νchaos olumns {Ψ (ξ(θn)) , 1 ≤ n ≤ νchaos
}, whihare independent realizations of theN -dimension PCE random vetorΨ(ξ) = (ψ1(ξ), . . . , ψN (ξ)).This basis being orthonormal leads us to the asymptoti ondition on [Ψ(νchaos)], de�ned byEq. (1.40). Moreover, Eq. (1.62) implies that [Ψ(νchaos)] an be expressed as:

[Ψ(νchaos)] = [A][M ], (3.61)where [A] is the (N ×N) real matrix that gathers the oe�ients of the orthonormal polynomialswith respet to the probability measure of the Ng-dimension PCE germ, ξ =
(
ξ1, · · · , ξNg

), and
[M ] is a (N × νchaos

) real matrix, whih gathers νchaos independent realizations of the randomvetor E (ξ, p), suh that:
[M ] = [E (ξ (θ1) , p) · · · E (ξ (θνchaos) , p)] , (3.62)56



E (ξ, p) = (Mα(1) (ξ) , . . . ,Mα(N) (ξ)) , (3.63)
Mα(q) (ξ) = ξ

α
(q)
1

1 × · · · × ξ
α
(q)
Ng

Ng
, 1 ≤ q ≤ N, (3.64)where Ap =

{
α(1), · · · ,α(N)

} is the set that gathers the N elements of NNg that verify thefollowing onstraint:
Ng∑

ℓ=1

α
(q)
ℓ ≤ p, 1 ≤ q ≤ N. (3.65)If [A] is independent of [M ], Eq. (3.61) erti�es that, if the olumns of [M ] are independent,then the olumns of [Ψ(νchaos)] stay independent. Let [RE ] be the autoorrelation matrix of therandom vetor E (ξ, p):

[RE ] = E
[
E (ξ, p)E (ξ, p)T

]
. (3.66)It an be dedued from Eqs. (1.40), (3.61), (3.62) and (3.66) that:

[RE ] = lim
νchaos→+∞

1

νchaos
[M ][M ]T = [A]−1[A]−T . (3.67)Aording to this deomposition, omputing the lassial Gram-Shmidt orthogonalizationto identify the polynomial basis oe�ients only requires the alulation of [A]−T , whih or-responds to the Cholesky deomposition matrix of the positive de�nite matrix [RE ]. Hene, byonstrution, the matrix [Ψ(νchaos)] an be written as the produt of a lower triangular matrix

[A] and a matrix [M ] of independent realizations of a multi-index random vetor E(ξ, p).Pratial omputation of matrix [Ψ(νchaos)]Thanks to Eq. (3.61), matrix [Ψ(νchaos)] an be numerially omputed without requiring ompu-tational reurrene formula nor algebrai expliit representation. An illustration of the methodis presented hereinafter for a PCE based on a Gaussian measure. This development an bediretly extended to any value of p and Ng, as well as to other statistial measures. Let ξ1and ξ2 be two independent normalized Gaussian random variables, suh that ξ = (ξ1, ξ2), and
α = (α1, α2). Choosing p = 2 and Ng = 2, whih orresponds to N = 6, leads us to thefollowing de�nition of E (ξ, p):

E (ξ, 2) =
(
1, ξ1, ξ2, ξ1ξ2, ξ

2
1 , ξ

2
2

)
. (3.68)Aording to this equation, matrix [M ] an thus be easily dedued from νchaos independentrealizations of ξ. Moreover, let [α] be the (Ng ×N) real matrix whih gathers the admissiblevalues for α in Ap:

[α] =

[
0 1 0 1 2 0
0 0 1 1 0 2

]
↔ Ap = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)} . (3.69)The random variables ξ1 and ξ2 being independent, normalized and Gaussian, the autoore-lation matrix [RE ] an thus be written as: 57



∀i, j ∈ {1, · · · , N} , [RE ]ij = E
[
ξ
[α]1i+[α]1j
1 × ...× ξ

[α]Ngi+[α]Ngj

Ng

]

= E
[
ξ
[α]1i+[α]1j
1

]
× ...× E

[
ξ
[α]Ngi+[α]Ngj

Ng

]
,

(3.70)where, for 1 ≤ ℓ ≤ Ng:
{
E
[
ξqℓ
]
= 0 if q is not even,

E
[
ξqℓ
]
= q!

(q/2)!2q/2
if q is even. (3.71)Therefore, Eq. (3.67) allows us to numerially �nd bak in [A] the multidimensional Hermitepolynomials Hα1 × · · · ×HαNg

:
∀x ∈ R,





H0(x1)×H0(x2) = 1
H1(x1)×H0(x2) = x1
H0(x1)×H1(x2) = x2
H1(x1)×H1(x2) = x1x2

H2(x1)×H0(x2) =
x2
1−1√
2

H0(x1)×H2(x2) =
x2
2−1√
2

↔ [A] =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
−1√
2

0 0 0 1√
2

0
−1√
2

0 0 0 0 1√
2



. (3.72)

Notiing that:
• if ξ is a random variable uniformly distributed on [−1, 1]:

{
E [ξq] = 0 if q is not even,
E [ξq] = 1

q+1 if q is even, (3.73)
• if the random variable ξ is a random variable that is haraterized by a normalized expo-nential distribution on [0,+∞ [ :

E [ξq] = q!, (3.74)this method an diretly be generalized to the uniform and exponential ases to ompute themultidimensional Legendre and Laguerre polynomial oe�ients, but also to an arbitrary prob-ability measure for the germ ξ.3.3.2 In�uene of the trunation parameters and of the hoie for the PCEprobability measureThe onvergene properties of ratio r when νchaos tends to in�nity are strongly related to thestatistial properties of germ ξ. This setion aims therefore at emphasizing the dominant trendsof this spei� link, and to highlight the di�ulties brought about by the divergene of ratio r,when trying to perform analysis of onvergene in high dimension.The de�nition of the Frobenius norm allows us to write that:
r =

∥∥∥∥
1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T − [IN ]

∥∥∥∥
F

/ ‖[IN ]‖F =
√
NΣ(νchaos), (3.75)where Σ(νchaos) is suh that: 58



{
Σ(νchaos)

}2
=

1

N2

∑

1≤i,j≤N

((
1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T − [IN ]

)

ij

)2

. (3.76)By onstrution, {Σ(νchaos)}2 is an assessment of the mean value of the squared di�erenebetween the elements of 1
νchaos

[Ψ(νchaos)][Ψ(νchaos)]T and the elements of the unit matrix [IN ].Hene, if {Σ(νchaos)}2 remains onstant when the size N of the polynomial basis inreases, theratio r should inrease as √N . Moreover, Eqs. (3.61) and (3.67) yield,
1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T − [IN ] = [A]

(
1

νchaos
[M ][M ]T − [RE ]

)
[A]T . (3.77)For all (i, j) in {1, · · · , N}2, [RE ]ij is suh that:

[RE ]ij = E

[
ξ
α
(i)
1 +α

(j)
1

1 × · · · × ξ
α
(i)
Ng

+α
(j)
Ng

Ng

]
. (3.78)Let [R̂E ] be the following estimator of [RE ]:

[R̂E ]ij =
1

νchaos

νchaos∑

n=1

(
Ξ
(n)
1

)α(i)
1 +α

(j)
1 × · · · ×

(
Ξ
(n)
Ng

)α(i)
Ng

+α
(j)
Ng
, (3.79)where {Ξ(n) =

(
Ξ
(n)
1 , · · · ,Ξ(n)

Ng

)
, 1 ≤ n ≤ νchaos

} is a set of νchaos independent Ng-dimensionrandom vetors, whih have the same PDF than ξ. The entral limit theorem yields that, forall (i, j) in {1, · · · , N}2, we have:
√√√√√√

νchaos

Var

(
ξ
α
(i)
1 +α

(j)
1

1 × · · · × ξ
α
(i)
Ng

+α
(j)
Ng

Ng

)
(
[R̂E ]ij − [RE ]ij

) in law−→ Ξ, (3.80)where Ξ is a random variable that has a standard normal distribution, and Var(.) is the variane.Under this formalism, it an be notied that 1
νchaos

[M ][M ]T is one partiular realization of [R̂E ].Hene, from Eqs. (3.76), (3.77) and (3.80), we dedue that:
• ifVar(ξα(i)

1 +α
(j)
1

1 × · · · × ξ
α
(i)
Ng

+α
(j)
Ng

Ng

)
≤ Var

(
ξ
α
(i)
1 +α

(j)
1

1 × · · · × ξ
α
(i)
Ng+1+α

(j)
Ng+1

Ng+1

), then Σ(νchaos)potentially inreases with respet to Ng.
• if Var(ξα(i)

ℓ
ℓ

)
≤ Var

(
ξ
α
(j)
ℓ

ℓ

) for α(i)
ℓ ≤ α

(j)
ℓ , then Σ(νchaos) potentially inreases withrespet to p.As an illustration, for eah ouple (Ng, p) suh that 1 ≤ p ≤ 10 and 1 ≤ Ng ≤ 6, three sets,

{[Ψ(m)
U (p,Ng)], 1 ≤ m ≤ 1000}, {[Ψ(m)

G (p,Ng)], 1 ≤ m ≤ 1000} and {[Ψ(m)
E (p,Ng)], 1 ≤ m ≤

1000}, are omputed, suh that [Ψ(m)
U (p,Ng)], [Ψ(m)

G (p,Ng)] and [Ψ
(m)
G (p,Ng)] refer to partiular(

N × νchaos
) real matries of independent realizations of the basis {ψ1(ξ), . . . , ψN (ξ)}, in theuniform, the Gaussian and the exponential ases, respetively. Hene, de�ning:59







rmU (νchaos) =
∥∥∥ 1
νchaos

[Ψ
(m)
U (p,Ng)][Ψ

(m)
U (p,Ng)]

T − [IN ]
∥∥∥
F
/ ‖[IN ]‖F ,

rmG (νchaos) =
∥∥∥ 1
νchaos

[Ψ
(m)
G (p,Ng)][Ψ

(m)
G (p,Ng)]

T − [IN ]
∥∥∥
F
/ ‖[IN ]‖F ,

rmE (νchaos) =
∥∥∥ 1
νchaos

[Ψ
(m)
E (p,Ng)][Ψ

(m)
E (p,Ng)]

T − [IN ]
∥∥∥
F
/ ‖[IN ]‖F ,

(3.81)allows us to ompute, in eah ase, three approximations errorthoU (p,Ng), errorthoG (p,Ng) and
errorthoE (p,Ng) of the mean value of the ratio r, de�ned in Eq. (3.75), suh that:





errorthoU (p,Ng) =
1

1000

∑1000
m=1 r

m
U (νchaos),

errorthoG (p,Ng) =
1

1000

∑1000
m=1 r

m
G (νchaos),

errorthoE (p,Ng) =
1

1000

∑1000
m=1 r

m
E (νchaos).

(3.82)For νchaos = 1000, in Figure 3.1, the two fators whih make the ratio r diverge with respet to
p and Ng an therefore be emphasized. On the �rst hand, if inreasing p or Ng does not inreasethe variane of the elements of E(ξ, p), whih is the ase if the PCE germ ξ is haraterizedby an uniform distribution (see Eq. (3.73)), the ratio r inreases approximately as √

N . Onthe other hand, if inreasing p or Ng inreases the variane of the element of E(ξ, p), as it isthe ase if the PCE germ ξ is haraterized by a Gaussian or exponential distribution (see Eqs.(3.71) and (3.74)), the ratio r diverges very quikly with respet to the trunation parameters,and bias the PCE identi�ation results.As a onlusion, for a �xed value of νchaos, the di�erene 1
νchaos

[Ψ(νchaos)][Ψ(νchaos)]T − [IN ]inreases when p and Ng inrease. Therefore, imposing [y] to be in OC introdues a numerialbias in the PCE identi�ation, whih beomes very important when high values of p and Ng areneeded. Suh a phenomenon prevents thus to perform the analysis of onvergene of the PCEin high dimension, espeially when dealing with Gaussian and exponential PCE germs.3.3.3 Adaptation of the optimization problemIn this setion, �xed values for νchaos, p and Ng are onsidered. Aording to the notations ofSetion 3.3.1, a (N × νchaos
) real matrix of independent realizations [Ψ(νchaos)] = [A][M ] anthen be onstruted. Under the ondition νchaos ≥ N , 1

νchaos
[M ][M ]T is positive de�nite byonstrution, whih allows writing:

1

νchaos
[M ][M ]T = [L][L]T , (3.83)where [L] is the Cholesky deomposition of 1

νchaos
[M ][M ]T , whih yields:

1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T = [A][L][L]T [A]T = [B][B]T , (3.84)

[B] = [A][L]. (3.85)The matrix:
[Ψ̃] = [B]−1[Ψ(νchaos)], (3.86)is then introdued, suh that, by onstrution:

1

νchaos
[Ψ̃][Ψ̃]T = [IN ]. (3.87)60
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Using the notations of Setion 1.5, let [y∗] be a (M ×N) real matrix suh that the randomvetor U is de�ned as:
U = [y∗]Ψ(ξ). (3.88)Hene, νchaos independent realizations of U an be diretly dedued from the matrix [Ψ(νchaos)]and gathered in the matrix [U ] = [y∗][Ψ(νchaos)]. De�ning [z] suh that:
[z] = [y∗][B], (3.89)therefore yields the equality:

[U ] = [y∗][Ψ(νchaos)] =
(
[z][B]−1

) (
[B][Ψ̃]

)
= [z][Ψ̃]. (3.90)If [z] is in OC , [z][z]T = [R̂CC(ν)], whih implies that:

{ [
R̂UU (ν

chaos)
]
= 1

νchaos
[U ][U ]T = [z]

(
1

νchaos
[Ψ̃][Ψ̃]T

)
[z]T = [z][z]T = [R̂CC(ν)],

[RUU ] = E
[
UUT

]
= limνchaos→∞[R̂UU (ν

chaos)] = [R̂CC(ν)].
(3.91)From Eqs. (3.55) and (3.56), it an thus be dedued that imposing [z] to be an element of OCguarantees that, for any νchaos ≥ N , we have err2(νchaos) = err3(ν, νchaos) = 0.Hene, whereas the optimization problem de�ned by Eq. (1.61) is perturbed by autoorre-lation errors, the new optimization problem:





[
yMOC

]
=
[
zMOC

]
[B−1],[

zMOC

]
= argmax[z∗]∈W C

(
[Cexp(ν)], [z∗], [Ψ̃]

)
,

(3.92)is no more a�eted, whih allows us to onsider high values of the trunation parameters Ngand p. Equation (3.90) underlines that the two former optimization problems are equivalent,as the independent realizations of U have just been rewritten. Only the researh set, for thePCE oe�ient matrix, has been modi�ed, whih allows the numerial bias due to the �nitedimension of [Ψ(νchaos)] to be redued.Finally, if [y] is the oe�ients matrix of the trunated PCE, Cchaos(N), of random vetor
C, suh that Cchaos(N) = [y]Ψ(ξ), a good estimation of [y] in high dimension an be omputedby solving the optimization problem de�ned by Eq. (3.92).3.3.4 Remarks on the new optimization problemIt has to be notied that [Ψ̃] is unique, and exatly keeps the same struture than [Ψ(νchaos)].Indeed, let [Lasym] = [A]−1 be the Cholesky deomposition matrix of the autoorrelation matrix
[RE ], whih is de�ned by Eq. (3.66). Hene, from Eq. (3.61), [Ψ(νchaos)] = [Lasym]−1[M ], whihhas to be ompared to [Ψ̃] = [B]−1[Ψ(νchaos)] =

(
[L]−1[A]−1

)
([A][M ]) = [L]−1[M ], where

[L] and [Lasym] are two lower triangular matries. Whereas [Lasym] implies the asymptotiorthonormality, [L] guarantees the numerial orthonormality. Moreover, from Eq. (3.92), theoptimal PCE oe�ients matrix [y] is approximated as a produt of two matries:
[y] ≈

[
zMOC

]
[B]−1. (3.93)For a �xed value of N , [B] is strongly dependent on νchaos and [Ψ(νchaos)]. From Eq. (1.40), italso veri�es the asymptoti property: 62



lim
νchaos→∞

[B] = [IN ], (3.94)whih implies that [zMOC
] onverges towards [y] if su�iently high values of νchaos are onsidered.Hene, the less dependent on [Ψ(νchaos)] the matrix [zMOC

] is, the more aurate the hoie of
νchaos is, and the better the PCE identi�ation is.If another (N × νchaos,∗

) real matrix [Ψ∗(νchaos,∗)] of independent realizations is onsidered,the matries [B∗] and [Ψ̃∗] = [B∗]−1[Ψ∗(νchaos,∗)] an be omputed aording to Eqs. (3.85)and (3.86). As it has previously been seen, [Ψ∗(νchaos,∗)], [Ψ̃] and [Ψ̃∗] keep the same struture.The auray of [zMOC
] an thus be estimated by omparing C([Cexp(ν)], [zMOC

], [Ψ(νchaos)][B]−1)and C([Cexp(ν)], [zMOC
], [Ψ∗(νchaos,∗)][B∗]−1).In partiular, νchaos,∗ and νchaos an be di�erent. Finally, one the oe�ient matrix [zMOC

]has been omputed, the higher νchaos,∗ is, the more aurate and general the validation is.3.4 AppliationIn this setion, we illustrate the e�ieny of the methods proposed in the two former setionsto identify in inverse the multidimensional distribution of a M -dimension random vetor Charaterized by a set of ν independent realizations. Aording to the notations of the formersetions, these independent realizations are gathered in the (M×ν) real matrix [Cexp(ν)]. Threeases are therefore presented with respet to the values of M and ν:
• Case 1: ν = 1000 ≫M = 3: �rst, a low dimension ase with many available realizations is�rst introdued to underline the ability of the PCE method to identify in inverse omplexand multidimensional distributions.
• Case 2: ν = 1000 ≫ M = 50: seondly, a high dimension ase with many availablerealizations is addressed to illustrate the numerial onvergene di�ulties that arise whenthe size of the projetion basis inreases, and in what extent the proposed method allowsus to overome them.
• Case 3: ν = 100 < M = 150: at last, we present a very high dimensional ase with fewavailable realizations. It will be shown that even it this ase, the PCE method give verypromising results.In these three examples, another set of νref independent realizations (νref ≫ ν) is usedas a referene to validate the di�erent modelings. Moreover, a distintion has to be madebetween the PDF modeling, ahieved thanks to a PCE, and its estimation from PCE samples,omputed thanks to nonparametri methods. In this ontext, let νchaos be the number ofindependent realizations used to arry out the PCE identi�ation, and νchaos,∗ the numberof independent realizations of the identi�ed PCE random vetor, whih will be used to drawgraphial representations.3.4.1 Appliation in low dimensionThe objetive of this setion is to apply the whole PCE method to a M = 3-dimension ase.First, the statistial properties of the unknown random vetor C are presented. Seondly, aonvergene analysis is arried out in order to alulate the optimal trunation parameters63



Ng and p of the PCE, Cchaos(N), of C. Then, the PCE oe�ients are identi�ed from the
ν independent realizations, [Cexp(ν)], of C. At last, the relevane of the PCE modeling isanalyzed.Generation of the random vetor to identify. Let [X] be a (3× 6) real-valued randommatrix whose oe�ients are uniformly and independently hosen between -1 and 1, suh that
C is de�ned aording to the notations of Setion 3.3.1 as:

C = [X]E (ξexp, 2) , (3.95)where ξexp = (ξexp1 , ξexp2 ) is a normalized Gaussian random vetor whih omponents are in-dependent. The omponents of C are however strongly dependent, and the PCE trunationparameters to be found bak by the onvergene analysis are pexp = 2 and N exp
g = 2.Let {ξexp (θ1) , · · · , ξexp (θν)} and {ξexp (θ1) , · · · , ξexp (θνref )} be ν and νref independent re-alizations of the random vetor ξexp, suh that the matries of independent realizations [Cexp(ν)]and [Cref(νref)

] are given by:
[Cexp(ν)] = [X] [E (ξexp (θ1) , 2) · · · E (ξexp (θν) , 2)] , (3.96)

[
Cref(νref)

]
= [X] [E (ξexp (θ1) , 2) · · · E (ξexp (θνref ) , 2)] . (3.97)Let {p̂ref,kC , 1 ≤ k ≤ 3

} be the Kernel smoothing estimations of the marginal PDFs of eahomponent of C, whih are omputed thanks to the νref independent realizations of C gatheredin [Cref(νref)]. In this example, νref = 2× 106 ≫ ν = 1000. It is reminded that the PCE identi-�ation of C is only ahieved thanks to the matrix of independent realizations [Cexp(ν)], whihis onsidered as the only available information. The PDFs {p̂ref,kC , 1 ≤ k ≤ 3
} are moreoversupposed to build the marginal PDFs of the referene C.Identi�ation of the PCE trunation parameters. Using the notations of Setion 1.5.4,the boundary intervals BI1, BI2 and BI3 for whih the onvergene analysis is ahieved, arehosen suh that:

∀ 1 ≤ k ≤ 3, BIk =

{
x ∈ R | p̂ref,kC (x) ≥ 1

ν

}
. (3.98)Figure 3.2 displays the referene marginal PDFs ofC, as well as the marginal PDFs estimatedfrom the ν independent realizations only, {p̂exp,kC , 1 ≤ k ≤ 3

}. The 1/ν tolerane is also plottedso that the boundary intervals an therefore be dedued from these graphs.Figure 3.3 shows the values of err (Ng, p), for nine pairs (Ng, p) in Q(3). On these graphs,the gradient break of N 7→ err (N) is observed at N = 6, whih allows us to �nd bak theinitial solution pexp = 2 and N exp
g = 2. For this small dimension ase, the optimal trunationparameters p and Ng given by the onvergene analysis are equal to the parameters of theanalytial referene PCE.PCE Identi�ation. The former onvergene analysis leads us to the following PCE of C:

C ≈ Cchaos(6) =
6∑

j=1

yjΨj (ξ1, ξ2) = [y]Ψ (ξ1, ξ2) , (3.99)64
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Figure 3.2: Graphs of the marginal PDFs of C.
65



1 2 3 4
0.04

0.06

0.08

0.1

0.12

0.14

 

 

PSfrag replaements
p

er
r
(N

g
,p
)

Ng = 1

Ng = 2

Ng = 3

10 20 30

0.06

0.08

0.1

0.12

0.14

 

 

PSfrag replaements
N = (Ng + p)!/(Ng! p!)

er
r
(N

g
,p
) Ng = 1

Ng = 2

Ng = 3

Figure 3.3: Convergene analysis of the PCE of C.where ξ1 and ξ2 are two independent normalized Gaussian random variables. We are now goingto ompare [yclass] and [ynew], where [yclass] stems from the lassial problem de�ned by Eq.(1.61), whereas [ynew] omes from the maximization of the new formulation de�ned by Eq.(3.92). In this appliation, νchaos = 1000, and the two PCE identi�ations have been omputedthanks to the same indiret methods that are desribed in Setion 3.2.4 to optimize the trials inthe Stiefel manifold, with the same numerial ost (Z = 10, Q = 104). These values of Z andMhave been hosen for the PCE error funtion err(Ng, p) to be independent of them. Hene, fora new matrix of independent realizations, [Ψ∗], of size (6× νchaos,∗
), independent realizations

[Cclass(6)] and [Cnew(6)] of Cchaos(6) are dedued, with respet to the two optimization options:
[Cclass(6)] = [yclass][Ψ∗], (3.100)
[Cnew(6)] = [ynew][Ψ∗]. (3.101)Let

[Rexp
CC ] =

1

ν
[Cexp(ν)][Cexp(ν)]T , (3.102)

[Rref
CC ] =

1

νref
[Cref(νref)][Cref(νref)]T , (3.103)

[Rclass
CC ] =

1

νchaos,∗
[Cclass(6)][Cclass(6)]T , (3.104)

[Rnew
CC ] =

1

νchaos,∗
[Cnew(6)][Cnew(6)]T (3.105)be four estimations of the autoorrelation matrix [RCC ] of C. It is supposed that [Rref

CC ] is thebest approximation of [RCC ] and will be onsidered as the referene. Aording to the Eqs.(3.54), (3.55) and (3.56), the autoorrelation errors err1,class, err2,class, err3,class and err1,new,
err2,new, err3,new are then omputed in eah ase. In �gure 3.4, it an thus be veri�ed that:

∀ νchaos,∗ ≥ 6, err2,new(νchaos,∗) = err3,new(νchaos,∗, ν) = 0, (3.106)
lim

νchaos,∗→+∞
err2,class(νchaos,∗) = err3,class(νchaos,∗, ν) = 0. (3.107)66
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p̂PASM
C (x,w) are built using a KM approah and a PASM method. The input data of these mod-elings are still the matrix of independent realizations [Cexp(ν)] = [C(θ1) · · · C(θν)]. Onethe KM, the PASM and the two PCE projetion matries, [yclass] and [ynew], are onstruted,67
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P independent realizations are omputed from the four distributions, from whih omparisonsto the referene solution are ahieved. For this appliation, P = 106.Constrution of independent realizations
• Kernel Mixture.Considering an independent Gaussian multidimensional Kernel, a nonparametri PDF p̂C(x)is postulated as a sum of ν Gaussian PDFs {pi, 1 ≤ i ≤ ν} to model pC(x):

p̂C(x) =

ν∑

i=1

1

ν
pi(x), (3.108)

pi(x) =
M∏

m=1

1√
2πhm

exp

(
−1

2

(
xm − Ci

m

hm

)2
)
, (3.109)

h = σ̂

(
4

(2 +M) ν

)1/(M+4)

, (3.110)where x 7→ pi (x) is the M -dimension multivariate Gaussian PDF, with mean value C(i) andovariane matrix  h1 0 · · · 0

0 h2
. . . ...... . . . . . . 0

0 · · · 0 hM



, h is the multidimensional optimal Silverman band-width, and σ̂k is the empirial estimation of the standard deviation of eah omponent Ck of

C. Let Cker be the Kernel Mixture haraterized by the PDF x 7→ p̂C(x). The Q independentrealizations {Cker,1, · · · ,Cker,Q
} of Cker are then omputed and gathered in the matrix [Cker].

• Prior Algebrai Stohasti Modeling.From the ν independent realizations of C, the M marginal umulative distributions FCm of
Cm, with 1 ≤ m ≤ M , are estimated using a non parametri statistial method. In addition, aGaussian opula Cgauss

rank (see [2℄ for more details about the opula) based on the rank orrelationis hosen (this type of opula has been hosen as it is the most ommonly used in the PASMapproahes):
Cgauss
rank (x1, · · · , xM ) = φMrank

(
φ−1(x1), · · · , φ−1(xM )

)
, (3.111)

φMrank(u) =

∫ u1

−∞
· · ·
∫ uM

−∞

1

(2π)M/2
√
det ([Rrank])

exp

(
−1

2
uT [Rrank]u

)
du1 · · · duM , (3.112)

φ(v) =
1√
2π

∫ v

−∞
exp

(
−v

2

2

)
dv, (3.113)

[Rrank]ij = 2 sin
(π
6
ρSij

)
, (3.114)where ρSij is the Spearman orrelation oe�ient between Ci and Cj . Let Ccop be the randomvetor haraterized by the opula Cgauss

rank and the marginal umulative distributions {FCm , 1 ≤
m ≤M}. Q independent realizations of Ccop are thus gathered in the matrix [Ccop].69



• Polynomial haos expansion.Finally, using the matries [yclass] and [ynew] that have been previously de�ned, and a new
(6× P ) real matrix [Ψ(P )] of realizations, P independent realizations of Cclass(6) and Cnew(6)are gathered in the matrix [Cclass] = [yclass][Ψ(P )] and [Cnew] = [ynew][Ψ(P )].Relevane of the PCE modeling when identifying multidimensional PDFs from alimited amount of independent realizations. Using the results of Parametri Statistis,this setion assesses the relevane of the four methods to onstrut multidimensional PDFs.Three kinds of analysis are ahieved: adequay tests, 2D graphial representations, and multi-dimensional likelihood omputations.

• Adequay tests.From the matries of independent realizations [Cker], [Ccop], [Cclass] and [Cnew], the estima-tions {F̂ ker
k , 1 ≤ m ≤M}, {F̂ cop

m , 1 ≤ m ≤M}, {F̂ class
m , 1 ≤ m ≤M} and {F̂ new

m , 1 ≤ m ≤M}of the umulative distribution funtions (CDF) of eah omponents of Cker, Ccop, Cclass(6) and
Cnew(6) are respetively assessed. Let C̃

(1)
, · · · , C̃(M) be the (1 × ν)-dimension linear formsorresponding to the rows of [Cexp(ν)]. For 1 ≤ m ≤M , C̃(m) gathers therefore the ν indepen-dent realizations of the omponent Cm of C, whih have been used to ompute the statistialmodelings. For 1 ≤ m ≤ M , the Kolmogorov-Smirnov adequay tests are then performed. Foreah omponent Cm of C, the null distribution of the Kolmogorov-Smirnov statistis is om-puted under the null hypothesis that the ν independent realizations of C̃(m) are drawn fromthe distribution of the hosen stohasti model. Table 3.1 gives the β-value for eah stohastimodel, whih is de�ned as the probability of obtaining a test statisti at least as extreme as theone that was atually observed, assuming that the null hypothesis is true. Without surprise,this table allows us to verify that the modeling based on the Gaussian opula and the empirialPDFs of eah omponents of C gives the best results. Moreover, with an error level of 5%,only the tests for the opula model and the PCE identi�ation based on the new formulationare positive. The lassial PCE and the Kernel mixture modelings are indeed less relevant toharaterize the marginal PDFs of C.CDF F̂ class

1 F̂ new
1 F̂ ker

1 F̂ cop
1

β-value 0.3779 0.6331 0.2142 0.9996CDF F̂ class
2 F̂ new

2 F̂ ker
2 F̂ cop

2

β-value 0.0000 0.0967 0.0000 0.4573CDF F̂ class
3 F̂ new

3 F̂ ker
3 F̂ cop

3

β-value 0.0000 0.8692 0.0411 0.9849Table 3.1: Computation of the β-values orresponding to the di�erent stohasti models.
• Two-dimensions graphial analysis.From [Cref(νref)], [Cker], [Ccop], [Cclass] and [Cnew], the estimations x 7→ p̂refC (x), x 7→

p̂kerC (x), x 7→ p̂copC (x), x 7→ p̂classC (x) and x 7→ p̂newC (x) of the multidimensional PDF of C,
Cker, Ccop, Cclass(6), Cnew(6) are respetively omputed using the non parametri statistial70
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(d) (x1, x2) 7→ p̂newC (x1, x2, E (C3))Figure 3.6: Comparison of 2D ontours plots in the plane [x3 = E(C3)].estimation de�ned by Eq. (1.55). Projetions of these funtions are presented in Figures3.6, 3.7 and 3.8. In eah �gure, the surfae plot haraterizes the referene PDF (based on the
νref = 2×106 independent realizations), and the ontour plot refers to isovalues of the projetedPDF of interest. It an therefore be seen that the new formulation of the PCE gives very goodresults in identifying multidimensional PDFs. In addition, in this example, the Kernel mixturemodel is more adapted than the opula based model to haraterize the multidimensional PDFs.

• Likelihood estimations.From Eq. (1.48), the multidimensional log-likelihood funtions LCker ([Cexp(ν)]),
LCcop ([Cexp(ν)]), LCclass ([Cexp(ν)]) and LCnew ([Cexp(ν)]) are estimated from the realizationsmatries [Cexp(ν)], [Cker], [Ccop], [Cclass] and [Cnew], in order to evaluate the multidimensionalrelevane of the di�erent stohasti models. In the same manner, [Cref(νref)]1000 is de�nedas the 1000 �rst olumns of [Cref(νref)], and the log-likelihood funtions LCker

(
[Cref(νref)]1000

),
LCcop

(
[Cref(νref)]1000

), LCclass

(
[Cref(νref)]1000

) and LCnew

(
[Cref(νref)]1000

) are omputed. Thesevalues are gathered in Table 3.2. It an thus be veri�ed that the new formulation of the PCEidenti�ation gives the best results when onsidering the maximization of the log-likelihood.As a onlusion for this example, in low dimension, it an be seen that the new formulationof the PCE identi�ation is very relevant when trying to identify multidimensional distributions71
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LCker ([Cexp(ν)]) LCcop ([Cexp(ν)]) LCclass ([Cexp(ν)]) LCnew ([Cexp(ν)])

−8.0712.103 −8.7530.103 −8.1844.103 −7.8624.103

LCker

(
[Cref(νref)]1000

)
LCcop

(
[Cref(νref)]1000

)
LCclass

(
[Cref(νref)]1000

)
LCnew

(
[Cref(νref)]1000

)

−8.1933.103 −8.5535.103 −8.1797.103 −7.8457.103Table 3.2: Computation of the multidimensional log-likelihood orresponding to the di�erentstohasti models.from a limited number of measurements. Indeed, it allows us to build multidimensional distri-butions that are still relevant for experimental data that have not been used in the identi�ationproess.3.4.2 Appliation in high dimensionThe idea of this seond appliation is to underline the apability of the new PCE formulation toarry out onvergene analysis in high dimension. Indeed, as it has been shown in Setion 3.3.1,for a given value of νchaos, when the size N of the polynomial basis inreases, and more speiallywhen the maximum degree p of the polynomial basis beomes high, the di�erene 1
νchaos

[Ψ][Ψ]T−
[IN ] introdues a signi�ant numerial bias whih perturbs the lassial PCE identi�ation. Inopposite, the new PCE formulation, whih avoids omputational autoorrelation errors, allowsthe numerial algorithms to be muh more stable and to give more relevant results.Generation of a high dimension random vetor Using the same notations than in Setion3.4.1, let [XHD] be a (M ×N) real matrix whose entries are randomly generated, suh thatrandom vetor C is given by:

C = [XHD]Ψ (ξexp) , (3.115)
ξexp =

(
ξexp1 , ξexp2 , · · · , ξexpNg

)
, (3.116)where {ξexpℓ , 1 ≤ ℓ ≤ Ng

} is a set of Ng independent normalized Gaussian random variables.As in Setion 3.4.1, we de�ne a (M × ν) real matrix [Cexp(ν)], whih gathers ν independentrealizations of C:
[Cexp(ν)] = [XHD][Ψexp], (3.117)

[Ψexp] = [Ψ (ξexp(θ1)) · · · Ψ (ξexp(θν))] . (3.118)The omponents of the random vetor C are again strongly dependent. As a numerial illus-tration, it is supposed that ν = 1000, pexp = 9, N exp
g = 3, N = (9 + 3)!/(9! 3!) = 220, M = 50.A high value of pexp is deliberately hosen, in order to emphasize the di�ulties of the lassialPCE formulation to arry out onvergene analysis in high dimension. Nevertheless, this highvalue for the maximal polynomial order implies an ill-onditioning of [Ψexp], suh that C anhave very high values.
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Figure 3.9: Comparison of the results for the onvergene analysis of the two PCE identi�ationformulations.Identi�ation of the PCE trunation parameters Aording to Eq. (1.34), the trunatedPCE, Cchaos(N), of C is given by:
Cchaos(N) = [y]Ψ(ξ). (3.119)Eq. (1.69) implies that the numberNy of elements of [y] has to be higher thanM (M + 1) /2.When M is large, this leads us to the identi�ation of thousands of oe�ients. However, as ithas been said in Setion 1.5.4, the higher Ny is, the less preise is the PCE identi�ation, fora given omputational ost (Z,Q). This motivates the de�nition of a new set Q̃(pmax, Nmax),suh that the optimal values popt and Nopt

g are given by:
Q̃(pmax, Nmax) = {(p,Ng) , Ng ≤M, p ≤ pmax, (Ng + p)!/ (Ng! p!) ≤ Nmax} , (3.120)

(popt, Nopt
g ) = arg min

(p,Ng)∈Q̃(pmax,Nmax)
err(Ng, p), (3.121)where error err(Ng, p) is de�ned by Eq. (1.66), and is omputed with respet to a �xed hoiefor the omputational ost (Z,Q). For a �xed value νchaos = 1000, the detrimental in�ueneof the autoorrelation errors err2 and err3 of Eqs. (3.55) and (3.56) an then be notiedin Figure 3.9, when high values of N (and more speially high values of p) are onsidered.The error funtions errclass(Ng, p) and errnew(Ng, p) orrespond, respetively, to the lassialformulation and the new formulation of the PCE identi�ation. It an be seen that for p ≥ 8,the ratio errclass(Ng, p)/err

new(Ng, p) beomes greater than �ve, whereas the two methodologiesare globally similar for low values of p. Hene, the auray of the lassial method seems to belimited to low values of p and is therefore less relevant for onvergene analysis whih handle highpolynomial orders. At last, the �ve lowest values of the numerial assessments of errnew(Ng, p)are gathered in Table 3.3. It an be seen that the new formulation allows �nding bak theouple (pexp, N exp
g ) as the minimum of the error funtion. Nevertheless, keeping in mind thatthe lowest N is, the easiest the identi�ation is, this result also shows that using the ouple

(p,Ng) = (11, 2) ould be interesting.PCE Identi�ation From the ν independent realizations of C, a PCE identi�ation usingthe new formulation an be omputed for the trunation parameters p = 9 and Ng = 3, whih75



ouples (p,Ng) (11,2) (9,3) (7,4) (6,5) (2,27)values of N 78 220 330 462 406
errnew(Ng, p) 0.06104 0.06005 0.06228 0.06301 0.06521Table 3.3: Lowest values of errnew(Ng, p) with respet to (p,Ng).
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41 (220) and Cnew
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C = [D][XHD]Ψ(ξexp), (3.122)where [XHD] is a (M×N) real matrix whose entries are randomly generated under the onstraint

[XHD][XHD]T = [IM ], {ξexp1 , . . . , ξexpNg

} is a set of Ng independent normalized Gaussian randomvariables, {Ψ1(ξ
exp), . . . ,ΨN (ξexp)} gathers N polynomial funtion of ξexp that are statistiallyorthonormal and for whih maximal order is p, and [D] is a (M ×M) real orthogonal matrix,suh that:

E [C ⊗C] = [D][D]T . (3.123)A representation of the hosen matrix E [C ⊗C] an be found in Figure 3.11. The ompo-nents of C are thus hosen on purpose very orrelated.Two sets of independent realizations of C are then introdued:
• Sexp = {C(θ1), . . . ,C(θν)} orresponds to the available information about the identi�a-tion in inverse of the multidimensional distribution of C,
• Sref = {C(Θ1), . . . ,C(Θνref )} is a referene set, whih will only be used to evaluate therelevane of the identi�ation proess.In this setion, we hoose M = 150 > ν = 100, suh that the information about C is verylimited ompared to its dimension, and the rank of the empirial estimator of the ovariane of

C, [R̂CC(ν)] = 1/ν[Cexp(ν)][Cexp(ν)]T is inferior to ν. In addition, in the following, Ng = 5,
p = 5, suh that N = 252, and νref = 4, 000.
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[y][y]T = E [C ⊗C] . (3.124)As only a limited set of ν < M realizations of C are available, this onstraint annot beexatly veri�ed. From the iterative algorithm based on the development ahieved in Setion3.2.5, matries [y∗] that verify [y∗][y∗]T ≈ [R̂CC(ν)] an however be generated, suh that thePCE matrix [y] an be identi�ed from the limited available information about C. Let [yOC
] bethe approximation of [y] orresponding to a omputational ost given by (Z = 10, Q = 103),suh that Cchaos(N) = [yOC

]Ψ(ξ). A omparison between [R̂CC(ν)] and the ovariane matrixof Cchaos(N), [yOC
][yOC

]T , an thus be seen in Figure 3.12. It an be veri�ed that the algorithmproposed in Setion 3.2.5 allows us to make [yOC
][yOC

]T be equal to [R̂CC(ν)] almost everywherebut in restrited zones where the omponents of [R̂CC(ν)] are very low.From νref = 4, 000 new realizations of ξ, νref independent realizations of Cchaos(N) an bededued, and are gathered in the set Schaos =
{
Cchaos(N, θ1), . . . ,C

chaos(N, θνref )
}. Hene, let

p̂expCm
, p̂refCm

and p̂chaosCm
be the empirial estimations of the PDFs of Cm and Cchaos

m (N) that havebeen omputed from the sets Sexp, Sref and Schaos respetively. Three partiular omponents of
Cm and Cchaos

m (N) are then ompared in �gure 3.13. It an be seen that the PDFs p̂chaosCm
are verylose to the referene PDFs p̂refCm

, and even loser than p̂expCm
, suh that even when dealing withvery high dimensional problems with very limited available information (M = 150 > ν = 100),the proposed PCE method appears to give very promising results.In order to emphasize that not only the marginal PDFs of C are well haraterized but itswhole distribution, let {bm, 1 ≤ m ≤M} be a set of M orthonormal funtions that are de�nedon Ω = [0, 1], and let J1, J2 and J3 be three random indies permutations suh that:

Jp =
{
j
(p)
1 , . . . , j

(p)
M

}
⊂ {1, . . . ,M} , j(p)1 6= · · · 6= j

(p)
M , 1 ≤ p ≤ 3. (3.125)This allows us to de�ne three triplets of random �elds,78
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(X1,X
chaos
1 ,XGauss

1 ), (X2,X
chaos
2 ,XGauss

2 ), (X3,X
chaos
3 ,XGauss

3 ),suh that for 1 ≤ p ≤ 3:
Xp =

M∑

m=1

Cmbj(p)m

Xchaos
p =

M∑

m=1

Cchaos
m (N)b

j
(p)
m

XGauss
p =

M∑

m=1

CGauss
m b

j
(p)
m
,

(3.126)
where CGauss =

(
CGauss
1 , . . . , CGauss

M

) is a Gaussian vetor for whih mean and orrelationare equal to the ones of C. Therefore, the statistial properties of these random �elds stronglydepend on the dependenies between the omponents of their projetion oe�ients. Comparingthe statistial properties of these random �elds is thus a method to ompare the global relevaneof the haraterization of the multidimensional distribution of C.Thanks to νref = 4, 000 realizations of C, Cchaos(N) and CGauss, we then have aess to νrefindependent realizations of Xp, Xchaos
p and XGauss

p . In order to ompare the statistial infor-mation that is inluded in these realizations, we denote by Nup(Xp(θq), u), Nup(X
chaos
p (θq), u),

Nup(X
Gauss
p (θq), u) the numbers of uprossings (see [16℄ for more details about the uprossings)of the level u by the qth realization, Xi(θq), Xchaos

i (θq), XGauss
i (θq), of Xp, Xchaos

p and XGauss
prespetively over the length [0, 1]. At last, we de�ne Di, 1 ≤ i ≤ 10 the domains suh thatfor eah level u, Di gathers i/10 of the values of {Nup(Xp(θ1), u), . . . , Nup(Xp(θνref ), u)}. Thesedomains for the three onsidered permutations are thus ompared to ontour plots that orre-sponds to the equivalent domains for random �elds Xchaos

p and XGauss
p in Figure 3.14. The verygood agreement between the domains of Xp and Xchaos

p , whereas the domains of Xp and XGauss
pdo not math orretly, is an other illustration of the relevane of the PCE method to identifyin inverse from a �nite set of independent realizations the multidimensional distributions of anunknown random vetor, even when the omponents of this vetor are strongly orrelated andvery dependent.3.5 ConlusionsIn this hapter, it has been shown in what extent the PCE method gives very promising resultswhen trying to identify in inverse the multidimensional distribution of high dimensional randomvetors. For this method to numerially give relevant results, two adaptations of the lassialformulation presented in Chapter 1 have been emphasized. First, iterative algorithms have beendesribed to optimize the trials of random matries under orthogonality onstraints. Seondly,a method to numerially stabilize the matrix of realizations of the statistial polynomial basishas been introdued. The interest of these two adaptations has then been underlined on threeappliations based on simulated data. Finally, the method proposed allows making the PCErange reahable for many engineering appliations with many degrees of freedom.
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Chapter 4Karhunen-Loève expansion revisitedfor vetor-valued random �elds4.1 IntrodutionAs presented in Chapters 1 and 2, the Karhunen-Loève (KL) expansion has been used in manysienti� �elds to e�iently redue the statistial dimension of random �elds. This expansionan then be oupled to a polynomial haos expansion (PCE), for whih formulation has beenpresented in detail in Chapters 1 and 3, to ompletely haraterize the distribution of random�elds [50, 51, 22, 62, 78, 79, 34, 66, 80, 69, 68, 81℄. In partiular, it has been shown in Chapter 1that the importane of the KL expansion stems from its optimality in the sense that, due to theorthogonal projetion theorem in Hilbert spaes, it minimizes the total mean-squared error. Inother words, for any integer M and any multivariate random �eld X, it an be extrated fromthe KL basis assoiated with X theM -dimension family that minimizes the total mean-squarederror among all theM -dimension families that have been extrated from a ountable Hilbertianbasis.When onsidering vetor-valued random �elds, as it will be the ase when onsidering thetrak-geometry random �eld, this error an be written as a sum of weighted loal errors, wherethe loal errors and the weights are respetively the normalized mean-squared errors and thesignal energies assoiated with eah omponent of X . Therefore, when minimizing the totalmean-squared error, we minimize in priority the loal errors assoiated with the omponentsof X that have the highest signal energies. If the KL projetion of the random �eld X isthen used to propagate variability in mehanial systems, it has therefore to be kept in mindthat the partiular omponents of lowest signal energy will not neessary be realisti nor wellharaterized. If the quantities of interest of the studied system are however very dependent ona preise desription of these omponents, suh an optimal KL family may not be relevant andgive biased results.In this prospet, in addition to the lassial mean-squared error, two loal-global projetionerrors are introdued in this work:
• ε2β orresponds to another weighted sum of loal errors, for whih weights are a priori ora posteriori hosen from sensitivity analysis;
• ε2∞ refers to the maximal value of the loal errors assoiated with eah omponent ofrandom �eld X. 82



Indeed, these errors illustrate two lassial expetations. On the �rst hand, error ε2β leadsto projetion families that are partiularly adapted to the omponents of X of highest hosenweight. If, for a given quantity of interest, the importane of eah omponent of X an beevaluated from a sensibility analysis, these weights an thus be hosen in order to maximizethe relevane of the projetion basis to analyze this hosen quantity of interest. On the otherhand, if no information is available about the importane of eah omponent of X, makingthese weights be equal orresponds to the ase where no omponent of X is favored in the errorto be minimized. In suh a ase, there is however no reason for the minimization of this equallyweighted error to lead to a projetion family for whih eah loal error would be the same. Thisthus motivates the introdution of error ε2∞, whih fores us to searh projetion families, forwhih the desription preision would be lose for eah omponent.Based on an original saled expansion of X , the idea of this work is therefore to propose amethod to identify the optimal families that respetively minimize errors ε2β and ε2∞.In Setion 4.2, the saled expansion is desribed. In partiular, it will be shown how suh aformalism allows the identi�ation of the two former optimal basis to be onstruted. Setion4.3 illustrates the possibilities of suh an expansion on an appliation based on simulated data.4.2 Saled expansion and optimal basis for vetor-valued ran-dom �eldsIn this setion, the de�nition of the two loal-global errors ε2β and ε2∞ is �rst presented. Theproposed saled expansion is then introdued for vetor-valued random �elds. It is �nally shownin what extent suh a deomposition an lead to the minimization of these two errors.4.2.1 Loal-global errors and optimal basisTheoretial frameworkAdapting the notations of Chapter 2 to the vetorial ase, for Q ≥ 1, let P(Q)(Ω) be the spae ofall the seond-order RQ-valued random �elds, indexed by the ompat interval Ω = [0, S], whereit is reminded that S < +∞. Let H(Q) = L2(Ω,RQ) be the spae of all the square integrablefuntions on Ω, with values in RQ, equipped with the inner produt (·, ·), suh that for all uand v in H(Q),
(u,v) =

∫

Ω
u(s)Tv(s)ds. (4.1)Let X = {(X1(s), . . . ,XQ(s)) , s ∈ Ω} be an element of P(Q)(Ω). Without loss of generality,it is one again supposed that the mean value of X is equal to zero:

E [X(s)] = 0, ∀ s ∈ Ω. (4.2)It is realled that the signal energy of X, ‖X‖P(Q)(Ω), is written:
‖X‖P(Q)(Ω)

def
=
√
E [(X,X)]. (4.3)In the following, F (M) = {fm, 1 ≤ m ≤M} refers to a set ofM deterministi funtions thathas been extrated from any ountable Hilbertian basis of H(Q). The projetion of random �eld

X on F (M) is then written X̂
F(M) . The total normalized mean-squared error assoiated with83



F (M) is denoted as ε2(F (M)) and an thus be written as a sum of weighted loal normalizedmean-squared errors,
ε2q(F (M)) =

∥∥∥Xq − X̂
(M)
q

∥∥∥
2

P(Ω)

‖Xq‖2P(Ω)

, 1 ≤ q ≤ Q, (4.4)assoiated with eah omponent Xq of random �eld X :
ε2(F (M)) =

Q∑

q=1

{
‖Xq‖2P(Ω)

‖X‖2P(Q)(Ω)

}
ε2q(F (M)). (4.5)Optimality of the KL expansionThe matrix-valued ovariane funtion, [RXX ], of entered random �eld X is introdued as:

[RXX(s, s′)] = E
[
X(s)⊗X(s′)

]
, ∀ (s, s′) ∈ Ω2. (4.6)It is assumed that [RXX ] is square integrable on Ω× Ω, that is to say

‖[RXX ]‖2
M

def
=

∫

Ω

∫

Ω

∥∥[RXX(s, s′)]
∥∥2
F
dsds′ < +∞, (4.7)with ‖·‖F the Frobenius norm of matries. It is reminded that the KL basis, K = {km, 1 ≤ m},assoiated with X , an be onstruted as a ountable Hilbertian basis of H(Q), whih is onsti-tuted of the eigenfuntions of ovariane matrix-valued funtion [RXX ], suh that:

∫

Ω
[RXX(s, s′)]km(s′)ds′ = λmkm(s), s ∈ Ω, 1 ≤ m, (4.8)

(
km,kj

)
= δmj , λ1 ≥ λ2 ≥ · · · → 0,

∑

m≥1

λ2m < +∞, (4.9)Issues onerning the solving of the integral eigenvalue problem, de�ned by Eq. (4.8), whihis usually alled Fredholm problem, an be found in [21, 44, 45℄. Due to the orthogonal projetiontheorem in Hilbert spae, for all M ≥ 1, projetion family K(M) = {km, 1 ≤ m ≤M} is thusoptimal in the sense that, for all family F (M):
ε2(K(M)) ≤ ε2(F (M)). (4.10)Let X̃K(M) be the projetion of X on K(M). Family K(M) being orthonormal, it omes:
X̃(M) =

M∑

m=1

√
λmkmξm, (4.11)where ξ = (ξ1, · · · , ξM ) is a entered random vetor, for whih omponents are unorrelatedand with variane equal to 1. In partiular, if X is a Gaussian random �eld, the omponentsof ξ are normally distributed and statistially independent.
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Loal-global errorsFrom Eq. (4.5), minimizing ε2 amounts therefore to minimizing in priority the loal errorsorresponding to the omponents of X that have the highest weights ‖Xq‖2P(Ω)

‖X‖2
P(Q)(Ω)

. In otherwords, for given values of p, q and M , if ‖Xp‖P(Ω) ≫ ‖Xq‖P(Ω), the minimization of ε2 anlead to the identi�ation of a M -dimension trunated Karhunen-Loève family assoiated with
X, K(M), suh that ε2p(K(M)) ≪ ε2q(K(M)). Consequently, if Xp and Xq are independent, a twosteps approah, based on the de�nition of two di�erent families (one for Xp and the omponentsof X that depend on Xp, one for the other omponents of X that do not depend on Xp) wouldbe more relevant. On the ontrary, if Xp and Xq are indeed dependent, more elements have tobe added in K(M) to make ε2q derease, or another hoie for the error funtion to be minimizedhas to be onsidered.In this prospet, two loal-global projetion errors are introdued in this work, ε2β and ε2∞,suh that for any β in ]0,+∞[Q:

ε2β =

Q∑

q=1

β2q ε
2
q , (4.12)

ε2∞ = max
1≤q≤Q

{
ε2q
}
. (4.13)As presented in Setion 4.1, if the redution of the statistial omplexity of random �eld Xis arried out as a �rst step in a propagation of variability in mehanial systems, minimizingthese two errors instead of error ε2 should allow us to improve the relevane of the projetionbasis, whether the importane of eah omponent of X for a given quantity of interest an beevaluated from a sensibility analysis or not.4.2.2 Saled expansionLet O be an element of S(Q)(1) =

{
O ∈ ]0, 1[Q,

∑Q
q=1O

2
q = 1

}. This allows us to de�ne thesaled random �eld, Y (O), suh that:
Y (O) = [Diag(O)]X, (4.14)

[Diag(O)] =




O1 0 · · · 0

0 O2
. . . ...... . . . . . . 0

0 · · · 0 OQ



. (4.15)The autoorrelation funtion, [RY Y (O)], of Y (O) is thus equal to:

[RY Y (O)] = [Diag(O)] [RXX ] [Diag(O)] . (4.16)The family K(M)(O) = {km(O), 1 ≤ m} is thus denoted as the Karhunen-Loève familyassoiated with random �eld Y (O), suh that:
Y (O) =

+∞∑

m=1

km(O)
√
λm(O)ξm(O), (4.17)85



λm(O) = 〈(Y (O),km(O)) , (Y (O),km(O))〉 , ξm(O) =
(Y (O),km(O))√

λm(O)
. (4.18)where it is reminded that, by onstrution, family K(M)(O) is orthonormal in H(Q), and pro-jetion oe�ients {ξm(O), m ≥ 1} are unorrelated:

(
km(O),kj(O)

)
= E [ξm(O)ξj(O)] = δmj , 1 ≤ m, j. (4.19)Sine Oq 6= 0 for all 1 ≤ q ≤ Q, matrix [Diag(O)] is invertible. Therefore, the projetion ofrandom �eld X on family K(M)(O), that is denoted as X̂(M)

(O), is given by:
X̂

(M)
(O) =

M∑

m=1

[Diag(O)]−1
km(O)

√
λm(O)ξm(O), 1 ≤M (4.20)The elements of K(M)(O) are one again ordered suh that the variane of the projetionrandom variables are sorted in a dereasing order:

λ1(O) ≥ λ2(O) ≥ · · · → 0. (4.21)Aording to Eqs. (4.4) and (4.5), for all 1 ≤M , we �nally have:
ε2q(K(M)(O)) = 1− O−2

q

‖Xq‖2P(Ω)

M∑

m=1

λm(O)

∫

Ω

{
kmq (O, s)

}2
ds, 1 ≤ q ≤ Q, (4.22)

ε2(K(M)(O)) = 1− 1

‖X‖2P(Q)(Ω)

Q∑

q=1

O−2
q

M∑

m=1

λm(O)

∫

Ω

{
kmq (O, s)

}2
ds. (4.23)It an be veri�ed that if O = 1√

Q
(1, · · · , 1), the saled expansion oinides with the lassialand diret KL expansion assoiated with X, de�ned in Setion 4.2.1.4.2.3 Properties of the saled expansionThis setion aims at emphasizing the main properties of the saled expansion, on whih theminimization of loal-global errors ε2β and ε2∞ will be based. First, the ontinuity of the ap-pliations O 7→ ε2β(K(M)(O)) and O 7→ ε2∞(K(M)(O)) on S(Q)(1) will be shown. Then, themehanisms indued by the saled expansion and its optimality are presented.Lemma 1 Random �eld Y (O) and its realizations are ontinuous in O with respet to the L2norm on S(Q)(1).

� Proof: Let O and O∗ be two elements of S(Q)(1).1. We have:
‖Y (O)− Y (O∗)‖2P(Q)(Ω) =

Q∑

q=1

(
Oq −O∗

q

)2 ‖Xq‖2P(Ω) ,

≤ CY ‖O −O∗‖2
RQ ,

(4.24)86



where ‖·‖
RQ is the Eulidian norm on RQ and CY = max1≤q≤Q ‖Xq‖2P(Ω) is a positiveonstant that is independent of O and O∗. The appliation O 7→ Y (O) is thereforeontinuous on S(Q)(1) with respet to the L2 norm.2. In the same manner, let X(θ) be a realization of X, suh that, by onstrution, Y (O, θ) =

[Diag(O)]X(θ) and Y (O∗, θ) = [Diag(O∗)]X(θ) are the orresponding realizations of
Y (O) and Y (O∗) respetively. Therefore:

‖Y (O, θ)− Y (O∗, θ)‖2L2

def
= (Y (O, θ)− Y (O∗, θ),Y (O, θ)− Y (O∗, θ))

≤ ‖O −O∗‖2
RQ

[
max
1≤q≤Q

{(Xq(θ),Xq(θ))}
]
.

(4.25)As max1≤q≤Q {(Xq(θ),Xq(θ))} is a positive onstant that is independent of O and O∗,the appliation O 7→ Y (O, θ) is ontinuous on S(Q)(1) with respet to the norm ‖·‖L2
.

� Equation (4.17) and Lemma 1 yield that for any values of the set of random variables
{ξm(O), 1 ≤ m}, whose mean values are equal to zero and varianes are equal to one, theappliation O 7→∑

1≤m

√
λm(O)km(O)ξm(O) is ontinuous on S(Q)(1) with respet to the L2norm. This motivates the introdution of the following hypothesis, that will be required for thenext propositions to be valid.Hypothesis 1 For all 1 ≤ m, the appliations O 7→

√
λm(O)km(O) are supposed to be on-tinuous on S(Q)(1) with respet to the norm ‖·‖L2

.Proposition 2 Under Hypothesis 1, the appliations O 7→ ε2q(K(M)(O)) are ontinuous withrespet to the Eulidian norm on S(Q)(1), for all 1 ≤ q ≤ Q.
� Proof: If Hypothesis 1 is veri�ed, due to the ontinuity properties of the produt, of thesum, and of the integral over a losed interval, it an be dedued that for all 1 ≤M ,

O 7→
M∑

m=1

λm(O)

∫

Ω

{
kmq (O, s)

}2
ds, 1 ≤ q ≤ Q, (4.26)are ontinuous with respet to the Eulidian norm on S(Q)(1). Aording to Eq. (4.22), thisleads us to the ontinuity on S(Q)(1) of the appliations O 7→ ε2q(K(M)(O)), for all 1 ≤ q ≤ Q.

�Corrolary 2 Under Hypothesis 1, the appliations O 7→ ε2β(K(M)(O)) and O 7→ ε2∞(K(M)(O))are ontinuous with respet to the Eulidian norm on S(Q)(1).
� Proof: By onstrution of errors ε2β and ε2∞, de�ned by Eqs. (4.12) and (4.13), this orrolaryis a diret onsequene of Proposition 2. �Proposition 3 Under Hypothesis 1, for all 1 ≤ M , appliation O 7→ ε2∞

(
K(M)(O)

) admits aminimal value, O(M)
∞ , in S(Q)(1).
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� Proof: Under Hypothesis 1, Corrolary 2 yields that appliation O 7→ ε2∞
(
K(M)(O)

) isontinuous with respet to the Eulidian norm on S(Q)(1) for all 1 ≤M . It admits therefore aminimal value in any losed subset Ŝ(ǫ) = {O ∈ [ǫ, 1− ǫ]Q,
∑Q

q=1O
2
q = 1}, for all 0 < ǫ < 1.Then, for 1 ≤ q ≤ Q, if Oq tends to zero, it an be notied that ε2q (K(M)(O)

) tends to itsmaximal value as the weight of Xq in the global minimization is almost zero. This leads us tothe fat that it exists 0 < ǫ∗ < 1 su�iently small, suh that for all O and O∗ in Ŝ(ǫ∗) and
S(Q)(1)\Ŝ(ǫ∗) respetively, ε2∞ (O) ≤ ε2∞ (O∗). In other words, it exists ǫ∗ in ] 0, 1 [ and O

(M)
∞in S(Q)(1) suh that:

O(M)
∞ = arg min

O∈Ŝ(ǫ∗)

{
ε2∞ (O)

}
= arg min

O∈S(Q)(1)

{
ε2∞ (O)

}
. (4.27)

� The importane of suh a vetor O
(M)
∞ for the minimization of error ε2∞ will be disussedin Setion 4.2.5. Although the perturbation of [RXX ], de�ned by Eq. (4.16), is quadratiwith respet to vetor O, there is no theoretial result in the perturbation theory �eld thatould guarantee the validity of Hypothesis 1 in the general ase. From a disrete point of view,appliations O 7→

√
λm(O)km(O) an however always be onsidered as ontinuous, as for anydisontinuous appliation A, it exists a ontinuous appliation A∗, suh that the projetions of

A and A∗ on the same disretized spae are the same. Hene, in the following, it is supposedthat we are within the framework of Hypothesis 1.The next Lemma and Proposition aim now at emphasizing how the saled expansion ould beused to favor or put at a disadvantage on purpose the haraterization of a partiular omponentof X.Lemma 2 For all O in S(Q)(1) and for all F (M) in (H(Q)
)M , we have:

Q∑

q=1

O2
q ‖Xq‖2P(Ω) ε

2
q

(
K(M)(O)

)
≤

Q∑

q=1

O2
q ‖Xq‖2P(Ω) ε

2
q(F (M)). (4.28)

� Proof: The proof of this lemma is detailed in Appendix A. �In other words, Lemma 2 underlines that for all O in S(Q)(1), family K(M)(O) isM -optimalfor X regarding error ∑Q
q=1O

2
q ‖Xq‖2P(Ω) ε

2
q . For 1 ≤ p 6= q ≤ Q, imposing O2

p ‖Xp‖2P(Ω) >

O2
q ‖Xq‖2P(Ω) tends therefore to favor the haraterization of Xp rather than the one of Xq. Thisan be seen from the following proposition:Proposition 4 For any O = (O1, · · · , Oq) in S(Q)(1) and for all κ suh that 0 < κ <{∑Q−1

q=1 O
2
q

}−1/2, the vetor O∗ =

(
κO1, · · · , κOQ−1,

√
1− κ2

∑Q−1
q=1 O

2
q

) is in S(Q)(1). For
κ = 1, we have O = O∗ and κ an be smaller or larger than 1. We then have:

{
ε2Q

(
K(M)(O∗)

)
− ε2Q

(
K(M)(O)

)}{
κ2 − 1

}
≥ 0. (4.29)

� Proof:1. If O = (O1, · · · , OQ) is in S(Q)(1), then∑Q
q=1O

2
q = 1. Hene, if 0 < κ <

{∑Q−1
q=1 O

2
q

}−1/2,
∑Q

q=1

(
O∗

q

)2
= 1, whih shows that O∗ is in S(Q)(1).88



2. Moreover, Lemma 2 yields:
{ ∑Q

q=1O
2
q ‖Xq‖2P(Ω) ε

2
q

(
K(M)(O)

)
≤∑Q

q=1O
2
q ‖Xq‖2P(Ω) ε

2
q

(
K(M)(O∗)

)
,

∑Q
q=1

(
O∗

q

)2 ‖Xq‖2P(Ω) ε
2
q

(
K(M)(O∗)

)
≤∑Q

q=1

(
O∗

q

)2 ‖Xq‖2P(Ω) ε
2
q

(
K(M)(O)

)
,(4.30)whih an, for all ca and cb in R+, be written in a more ompat form as:

Q∑

q=1

‖Xq‖2P(Ω)

{
ε2q

(
K(M)(O∗)

)
− ε2q

(
K(M)(O)

)}{
caO

2
q − cb

(
O∗

q

)2} ≥ 0. (4.31)Choosing cb = 1 and ca = κ2 yields:
{
ε2Q

(
K(M)(O∗)

)
− ε2Q

(
K(M)(O)

)}{
κ2 − 1

}
≥ 0. (4.32)

� Hene, if κ ≥ 1, that is to say if the weights of all omponents of X, but the one of XQ, havebeen inreased in the hoie of O∗, the projetion of XQ on K(M)(O∗) will be less preise thanits projetion on K(M)(O) beause ε2Q (K(M)(O∗)
)
≥ ε2Q

(
K(M)(O)

). On the ontrary, if κ ≤ 1,the weight of XQ in the saled expansion de�ned in Setion 4.2.2 is inreased by omparison tothe other omponents of X, suh that the projetion of XQ on K(M)(O∗) will be better thanits projetion on K(M)(O) beause ε2Q (K(M)(O∗)
)
≤ ε2Q

(
K(M)(O)

).By playing on the values of the omponents of O, the saled expansion thus appears tobe able to favor or put at a disadvantage on purpose the haraterization of a partiularomponent of X. The goal of the next setions is therefore to de�ne a method to minimizeerrors ε2β and ε2∞, based on this saled expansion.4.2.4 Minimization of a weighted sum of loal errorsThe minimization of error ε2β, de�ned by Eq. (4.12), is a diret onsequene of Lemma 2.Indeed, for all β in S(Q)(1), it an diretly be seen that the hoie
Oβ

q =
βq

‖Xq‖P(Ω)

, 1 ≤ q ≤ Q, (4.33)leads us to the minimization of error ε2β, suh that:
K(M)(Oβ) = arg min

F(M)∈(H(Q))
M

{
ε2β(F (M))

}
, 1 ≤M. (4.34)Hene, just by onsidering the KL expansion of Y (O) = [Diag(O)]X rather than X, it ispossible to onstrut projetion families that ould favor partiular omponents of X, from apriori or a posteriori hoies for β.
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4.2.5 Minimization of the maximal value of the loal errorsThe optimal families F (M)
∞ , whih minimize error ε2∞, that is to say suh that:

F (M)
∞ = arg min

F(M)∈(H(Q))
M

{
ε2∞(F (M))

}
= arg min

F(M)∈(H(Q))
M

{
max
1≤q≤Q

ε2q(F (M))

}
, (4.35)have been introdued to minimize the loal errors assoiated with eah omponent of X . Theseprojetion families stem however from a Min-Max optimization on the very large spae (H(Q)

)M ,suh that their diret numerial identi�ation an be very di�ult. As the dimension of S(Q)(1)is omparatively very small, the idea presented in this setion is thus to use the former saledexpansion, de�ned in Setion 4.2.2, to approximate F (M)
∞ as the solution of an optimizationproblem with respet to O in S(Q)(1), rather than an optimization problem with respet to

F (M) in (H(Q)
)M . For all 1 ≤ M , we thus de�ne K(M)(O

(M)
∞ ) as the saled basis assoiatedwith the vetor O(M)

∞ , suh that:
O(M)

∞ = arg min
O∈S(Q)(1)

{
ε2∞ (O)

}
, (4.36)for whih existene stems from Proposition 3.Whereas vetor Oβ, de�ned by Eq. (4.33), is independent of M , it has to be reminded thatvetor O(M)

∞ depends on M in the general ase.This setion aims �rst at quantifying the distane between K(M)(O
(M)
∞ ) and F (M)

∞ . In thetwo dimensional ase (Q = 2), it will be shown in partiular that K(M)(O
(M)
∞ ) = F (M)

∞ . At last,based on Proposition 4, an algorithm to numerially solve Eq. (4.36) is presented.Quanti�ation of the error introdued by the approximated identi�ation problemLemma 3 For all M ≥ 1 and for all O in S(Q)(1), the relevane of K(M)(O) to minimize error
ε2∞ an be assessed as:

0 ≤ ε2∞(K(M)(O))− ε2∞(F (M)
∞ ) ≤ UB(O), (4.37)where:

UB(O)
def
=

∑Q
q=1O

2
q ‖Xq‖2P(Ω) δ

2
q (K(M)(O))

∑Q
q=1O

2
q ‖Xq‖2P(Ω)

, (4.38)
0 ≤ δ2q (K(M)(O))

def
= ε2∞(K(M)(O))− ε2q

(
K(M)(O)

)
, 1 ≤ q ≤ Q. (4.39)

� Proof: The �rst inequality ε2∞(K(M)(O)) ≥ ε2∞(F (M)
∞ ) is a diret onsequene of the opti-mality of F (M)

∞ . Let O be an element in S(Q)(1). From Lemma 2, it an therefore be deduedthat:
Q∑

q=1

O2
q ‖Xq‖2P(Ω) ε

2
q

(
K(M)(O)

)
≤

Q∑

q=1

O2
q ‖Xq‖2P(Ω) ε

2
q(F (M)

∞ )

≤ ε2∞(F (M)
∞ )





Q∑

q=1

O2
q ‖Xq‖2P(Ω)



 ,

(4.40)
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suh that, by de�nition of {δ21(K(M)(O)), · · · , δ2Q(K(M)(O))
}:

{
ε2∞(K(M)(O))− ε2∞(F (M)

∞ )
}




Q∑

q=1

O2
q ‖Xq‖2P(Ω)



 ≤

Q∑

q=1

O2
q ‖Xq‖2P(Ω) δ

2
q (K(M)(O)), (4.41)whih proves the seond part of the inequality. �This Lemma emphasizes that the loser the loal errors are, the more relevant projetionfamily K(M)(O) is. In partiular, quantity UB(O(M)

∞ ) de�nes an upper bound for the errorintrodued by the onsideration of the approximated problem de�ned by Eq. (4.36). Lemma 3leads us moreover to the following proposition:Proposition 5 If the following equalities are veri�ed:
ε21(K(M)(O(M)

∞ )) = · · · = ε2Q(K(M)(O(M)
∞ )), (4.42)then the family K(M)(O

(M)
∞ ) minimizes ε2∞.

�Proof: By onstrution, if ε21(K(M)(O
(M)
∞ )) = · · · = ε2Q(K(M)(O

(M)
∞ )), then δ21(K(M)(O

(M)
∞ )) =

· · · = δ2Q(K(M)(O
(M)
∞ )) = 0. Hene, from Lemma 3, we get ε2∞(K(M)(O

(M)
∞ )) = ε2∞(F (M)

∞ ), suhthat K(M)(O
(M)
∞ ) = F (M)

∞ . �Identi�ation of the optimal saling vetorBy onstrution, it an diretly be seen that, for all α > 0, K(M)(O) = K(M)(αO). Hene,if the onditions of Proposition 5 are ful�lled, that is to say if ε21(K(M)(O
(M)
∞ )) = · · · =

ε2Q(K(M)(O
(M)
∞ )), the saling vetor O(M)

∞ is solution of the following problem:
K(M)(O) = K(M)

(
[Diag(O)]ǫ2(K(M)(O))

)
, (4.43)where the matrix [Diag(O)] is de�ned by Eq. (4.15), and where:

ǫ2(K(M)(O)) =
(
ε21(K(M)(O)), · · · , ε2Q

(
K(M)(O)

))
. (4.44)This motivates the following iterative algorithm for the identi�ation of saling vetor O(M)

∞ .For given parameters τ and γ:



Initialize O =
(

1
‖X1‖P(Ω)

, · · · , 1
‖Xq‖P(Ω)

)

Normalize Ofor i = 1 : Nmax

Compute K(M)(O)if UB(O) > τ :

Oq = Oq ·
(
ε2q
(
K(M)(O)

))γ
, 1 ≤ q ≤ Q

Normalize Oelse
Break loop forend ifend for

O
(M)
∞ = O.

(4.45)
91



Parameter τ orresponds to the hosen preision of the numerial onvergene, whereas γontrols the speed of the onvergene and has to be adapted to avoid numerial instabilities. Forour appliations, γ will be hosen equal to 1/2. In suh an algorithm, at eah iteration (n+1),the weight of Xq in the KL expansion, (O(n+1)
q

)2
‖Xq‖2P(Ω), is updated with respet to theloal error ε2q(K(M)(O(n))) of the former step. Hene, the weights of the less well haraterizedomponents of X , for whih loal errors ε2q(K(M)(O(n))) are the highest at iteration n, will beinreased the most at the new iteration (n + 1). In the general ase, no onvergene propertyfor this algorithm has been proved yet, but under the following onditions:

lim
O2

q→1
ε2q

(
K(M)(O)

)
≤ min

1≤p 6=q≤Q

{
lim

O2
q→1

ε2p(K(M)(O))

}
, 1 ≤ q ≤ Q, (4.46)it is assumed that the algorithm de�ned by Eq. (4.45) gives very promising results for theminimization of funtion O 7→ ε2∞(K(M)(O)) in a very few number of iterations. In otherwords, in ases where the weight of Xq in the saled expansion is muh higher than the weightsof the other omponents {Xp, 1 ≤ p 6= q ≤ Q}, if Xq still remains badly haraterized, thenthere is no reason for suh an algorithm to onverge to a satisfying result. In pratie, theseonditions are not very restritive, and are most of the time veri�ed for orrelated vetor-valuedrandom �elds.In partiular, under Hypothesis 1, when dealing with a two dimensional ase (Q = 2,

O =
(
O1,

√
1−O2

1

)), Propositions 2 and 4 yield that errors funtions O1 7→ ε21(O1) and
O1 7→ ε22(O1) are ontinuous and respetively dereases and inreases with respet to O1 in
]0, 1[. Therefore, if the onditions de�ned by Eq. (4.46) are ful�lled, it exists O(M)

∞ in S(Q)(1)suh that ε21(O(M)
∞ ) = ε22(O

(M)
∞ ). Therefore, aording to Proposition 5, optimal basis F (M)

∞ould be in these ases exatly identi�ed from the solving of the optimization problem that isde�ned by Eq. (4.36).4.3 AppliationMost of the results emphasized in Setion 4.2 are illustrated in this setion on a pratialexample. This setion is divided in three parts: �rst, a partiular R4-valued random �eld isgenerated from its Karhunen-Loève expansion; then the in�uene of saling vetor O on theloal errors is emphasized; at last, it is shown in what extent the saled expansion allows us toidentify optimal families F (M)
∞ and F (M)

β for several values of β in S(Q)(1) and any values of
M ≥ 1.4.3.1 Generation of a vetor-valued random �eldIn this appliation, the dimension of random �eld X, Q, is hosen equal to 4, and Ω = [0, 1].A partiular matrix-valued ovariane funtion, [RXX ], is then postulated, for whih someprojetions are represented in Figures 4.1 and 4.2. Random �eld X , whih is still supposed tobe entered, an thus be written as:

X =

+∞∑

m=1

√
λmkmξm, (4.47)
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where, for all m ≥ 1, ouples (λm,k
m) are solution of the Fredholm problem assoiated with

[RXX ]:
∫

Ω
[RXX(s, s′)]km(s′)ds′ = λmkm(s), ∀ s ∈ Ω, (4.48)and oe�ients {ξm, m ≥ 1} are unorrelated random variables. For the sake of simpliity, theseoe�ients are moreover onsidered independent and normally distributed, whih amounts tosupposing that X is Gaussian. In partiular, [RXX ] has been hosen suh that ‖X1‖P(Ω) >

‖X2‖P(Ω) > ‖X3‖P(Ω) > ‖X4‖P(Ω). Further details about the generation of [RXX ] an be seenin Appendix B. As an illustration, a partiular realization, X(θ), of X is represented in Figure4.3. From Eq. (4.22), it is reminded that for any value of O in S(Q)(1), for all 1 ≤ q ≤ Q, andfor all M ≥ 1, errors ε2q(K(M)(O)) an diretly be omputed by the saled expansion.4.3.2 In�uene of the saling vetor on the loal errorsAording to Setion 4.2, by introduing vetor O = (O1, O2, O3, O4), we should be able tobalane the values of loal errors ε2q , for 1 ≤ q ≤ 4. In partiular, it has been shown in Setion4.2.3 that for O = 1√
3+κ2

(1, 1, 1, κ) and for all 1 ≤M , ε24(K(M)(O)) dereases with respet to κon ]0,+∞[. Hene, if κ tends to zero, ε24(K(M)(O)) is bound to onverge to its maximal value,as the weight of X4 in the minimization of ∑4
q=1O

2
q ‖Xq‖2P(Ω) ε

2
q beomes negligible. On theontrary, if κ tends to in�nity, ε24(K(M)(O)) will tend to its minimal value, as the minimizationof∑4

q=1O
2
q ‖Xq‖2P(Ω) ε

2
q will ompletely be driven by ε24. This phenomenon an be seen in Figure4.4, where the evolution of loal errors ε2q (K(M)(O)

) with respet to κ is represented.In the same manner, the results onerning the two dimensions ase an be illustrated fromthis four dimensions ase, by imposing:
O =

1√
O2

1 + 2× 10−10 +O2
4

(
O1, 10

−5, 10−5, O4

)
. (4.49)Indeed, in suh a ase, the weights of X2 and X3 will always be negligible. In Figure 4.5, itan therefore be seen that when ratio O4/O1 inreases, ε24(K(M)(O)) dereases from its maximalvalue to its minimal value, whereas ε21(K(M)(O)) inreases from its minimal value to its maximalvalue. As





limO2
4/O

2
1→0 ε

2
1(K(M)(O)) < min2≤q≤4

{
limO2

4/O
2
1→0 ε

2
q(K(M)(O))

}
,

limO2
4/O

2
1→+∞ ε24(K(M)(O)) < min1≤q≤3

{
limO2

4/O
2
1→0 ε

2
q(K(M)(O))

}
,

(4.50)it exists a value for O4/O1 in ]0,+∞[ suh that ε21 and ε24 are equal. This value allows ustherefore to identify a projetion family whih is M -optimal for X with respet to the error
maxp∈{1,4}

{
ε2q
}.4.3.3 Identi�ation of the optimal basisIn Setion 4.2, for all β in S(Q)(1), optimal projetion families F (M)

β and F (M)
∞ have beenintrodued as the solutions of the two following optimization problems:

F (M)
β = arg min

F(M)∈(H(Q))
M

{
ε2β(F (M))

}
, (4.51)93
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F (M)
∞ = arg min

F(M)∈(H(Q))
M

{
ε2∞(F (M))

}
. (4.52)In partiular, for all M ≥ 1, the hoie

β =
(
‖X1‖P(Ω) , ‖X2‖P(Ω) , ‖X3‖P(Ω) , ‖X4‖P(Ω)

) (4.53)leads to the identi�ation of the lassial Karhunen-Loève family, whih is alled F (M)
L2

, for X.The orresponding loal errors, ε2q(F (M)
L2

) an then be ompared. In Figure 4.4, for M = 50, itan be seen that ε21(F (50)
L2

) = 3.9%, ε22(F (50)
L2

) = 6.3%, ε23(F (50)
L2

) = 14% and ε24(F (50)
L2

) = 64%.Due to the fat that ‖X1‖P(Ω) > ‖X2‖P(Ω) > ‖X3‖P(Ω) > ‖X4‖P(Ω), it an thus be veri�edthat the diret Karhunen-Loève expansion favorizes the desription of omponent X1, whereasomponent X4 is not preisely haraterized.As explained in Setion 4.2, other values for β have to be onsidered in order to improvethe haraterization of X4. For instane, the hoie β = (0.5, 0.5, 0.5, 0.5) orresponds to theminimization of the mean value of the loal errors, ε2µ = 1
4

∑4
q=1 ε

2
q . Let F (M)

µ be the orre-sponding optimal family. Any other value for β an nevertheless be hosen. For instane, let
F (M)
β be the M -dimension optimal family orresponding to the ase β = (0.1, 2, 1, 0.5) /2.2935.At last, family K(M)(O

(M)
∞ ) is introdued as the numerial solution of the algorithm de�ned byEq. (4.45), with τ = 10−3 and γ = 1/2.In this prospet, Figures 4.6 and 4.7 allow us to numerially illustrate that projetion families

F (M)
β , F (M)

µ , F (M)
L2

and K(M)(O
(M)
∞ ) an be identi�ed from the saled expansion, suh that forany M ≥ 1:

• ε2β(F
(M)
β ) ≤ min

{
ε2β(F

(M)
L2

), ε2β(K(M)(O
(M)
∞ )), ε2β(F

(M)
µ )

},
• ε2µ(F

(M)
µ ) ≤ min

{
ε2µ(F

(M)
L2

), ε2µ(K(M)(O
(M)
∞ )), ε2µ(F

(M)
β )

},96



• ε2∞(K(M)(O
(M)
∞ )) ≤ min

{
ε2∞(F (M)

L2
), ε2∞(F (M)

β ), ε2∞(F (M)
µ )

},
• ε2(F (M)

L2
) ≤ min

{
ε2(F (M)

β ), ε2(K(M)(O
(M)
∞ )), ε2(F (M)

µ )
}.In partiular, for M = 100:





ε21(F
(100)
L2

) = 1.7%

ε22(F
(100)
L2

) = 3.0%

ε23(F
(100)
L2

) = 5.8%

ε24(F
(100)
L2

) = 17%

,





ε21(K(100)(O
(M)
∞ )) = 3.0%

ε22(K(100)(O
(M)
∞ )) = 3.0%

ε23(K(100)(O
(M)
∞ )) = 3.0%

ε24(K(100)(O
(M)
∞ )) = 3.0%

, (4.54)




ε2(F (100)
L2

) = 2.3%

ε2(K(100)(O
(M)
∞ )) = 3.0%

ε2∞(F (100)
L2

) = 17%

ε2∞(K(100)(O
(M)
∞ )) = 3.0%

. (4.55)Whereas family F (100)
L2

an put at a disadvantage the desription of a partiular omponentof X to minimize ε2, family K(100)(O
(M)
∞ ) tries to equilibrate the preision of the desriptionof eah omponent. To do so, the loal error of some omponents an inrease to make theother derease. Indeed, in this example, ε21(F (100)

L2
) < ε21(K(100)(O

(M)
∞ )) whereas ε24(F (100)

L2
) >

ε24(K(100)(O
(M)
∞ )). From Eq. (4.37), it an moreover be seen that in this ase:

∣∣∣ε2∞(F (100)
∞ )− ε2∞(K(100)(O(M)

∞ ))
∣∣∣ ≤ τ = 0.1%. (4.56)4.4 ConlusionsIn spite of the inreasing omputational power that has enouraged the development of ompu-tational models with always more degrees of freedom, statistial redution methods, suh as theKarhunen-Loève expansion, still have a big role to play to make the solving of these problemsfaster and more robust. When dealing with RQ-valued random �elds X = (X1, · · · ,XQ), it hashowever been shown in this hapter that the diret trunated KL expansion, whih minimizesthe total mean-squared error, tends to better haraterize the omponents of X that have thehighest signal energy. In this ontext, a partiular adaptation of the KL expansion has beenproposed. Based on a saling transformation of X, this original deomposition allows de�ningprojetion basis that an favor or put at a disadvantage on purpose the haraterization of apartiular omponent of X. This expansion appears to be also very relevant to identify proje-tion basis that minimize the maximal value of the loal errors of X. Finally, when interested instudying omplex systems that are exited by vetor-valued random �elds (one an think aboutthe interations between trains and trak irregularities, buildings and earthquakes, harbors andswell, et.), the method proposed opens new opportunities to adapt the projetion basis withrespet to the quantities of interest of the systems.
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Chapter 5Experimental identi�ation of therailway trak stohasti modeling5.1 IntrodutionThe expeted bene�ts of simulation in the railway �eld are multiple: robust and optimized on-eption, shorter and heaper erti�ation proedure, better knowledge of the ritial situationsof the trak-vehile system, optimization of the maintenane. However, if simulation is intro-dued in erti�ation and oneption proesses, it has to be very representative of the physialbehavior of the system. The model has thus to be fully validated and the simulations have tobe raised on a realisti and representative set of exitations.A partiular attention has therefore to be paid to the trak geometry, whih is the mainsoure of exitation of the train. Two desription sales an then be onsidered for this geometry.On the �rst hand, the trak design, whih orresponds to the mean line position of a perfettrak is deided one for all at the building of a new trak. This desription is haraterizedby three urvilinear quantities: the vertial urvature cV , the horizontal urvature cH , and thetrak superelevation cL. On the other hand, for a �xed trak design, the atual positions of therails are in onstant evolution, whih is mostly due to the interations between the train, thetrak and the substruture. The irregularities appearing during the trak lifeyle are of fourtypes (see Figure 5.1): lateral and vertial alignment irregularities x1 and x2 on the one hand,ant de�ienies x3 and gauge irregularities x4 on the other hand. Therefore, eah rail position
Rℓ/r (ℓ refers to the left rail whereas r refers to the right rail) an be written as the sum of amean position M ℓ/r, whih only depends on the urvilinear absissa of the trak, s, the trakgauge E, and the three parameters of the trak design, cH , cV and cL, and a deviation towardthis mean position Iℓ/r, whih only depends on the trak irregularities:

Rℓ/r(s) = M ℓ/r (s) + Iℓ/r (s) , (5.1)
M ℓ/r(s) = ONT(s)±

E

2
N (s), (5.2)

Iℓ/r(s) = {x2(s)± x3(s)}B(s) + {x1(s)± x4(s)}N (s), (5.3)where − goes with the subsript ℓ and + goes with r in the symbol ±, ONT(s) = (M ℓ(s) +
M/r(s))/2 is the mean position of the two rails, and (ONT(s),T(s),N(s),B(s)) is the Frenetframe. Hene, a trak geometry T of total length Stot is ompletely haraterized by theknowledge of seven urvilinear funtions: 100
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E+
2x4(s)Figure 5.1: Parametrization of the trak irregularities (for eah rail, the mean position is rep-resented in blak, whereas the real position is in grey).

T =
{
(x1(s), x2(s), x3(s), x4(s), cL(s), cH (s), cV (s)) , s ∈ [0, Stot]

}
. (5.4)However, as the mean line of the trak geometry is hosen at the building of a new line, thiswork is only devoted to the modeling of the trak irregularity vetor

x = (x1, x2, x3, x4) , (5.5)where x1, x2, x3 and x4 are the four types of trak irregularities previously introdued.Made up of straight lines and urves at its onstrution, the new trak evolves graduallydue to the train dynamis and is regularly subjeted to maintenane operations. During theirlifeyles, trains are therefore onfronted with very di�erent running onditions. The trak-vehile system being strongly nonlinear, the dynami behavior of trains has thus to be analyzednot only for a few trak portions but for these whole realms of possibility.In reply to these expetations, the measurements of the train IRIS 320 are of great interest.Indeed, this one has been running ontinuously sine 2007 over the Frenh railway network,measuring and reording the trak geometry of the main national lines. Based on these experi-mental measurements, a omplete parametrization of the trak geometry and of its variabilitywould be of great onern in spei�ation, seurity and erti�ation prospets, to be able togenerate trak geometries that are realisti and representative of a whole railway network.In this ontext, this hapter develops a stohasti modeling of the trak geometry, whihis based on an inverse identi�ation of the statistial properties of a vetor-valued random�eld from measured data. These data being omplete, this modeling allows us to generatenumerially trak geometries that are physially realisti and statistially representative of theset of available trak measurements. Moreover, these traks an be used in any deterministirailway dynami software to haraterize the dynami behavior of the train.Hene, this modeling ould bring an innovative tehnial answer to introdue numerialmethods and treatments in the maintenane and erti�ation proesses.
101



PSfrag replaements
Rails
BogieCameras

UL

IL

UR

IR
16mm

PSfrag replaements
Rails
BogieCameras

UL

IL

UR

IR
16mm

roll ρ
Figure 5.2: Experimental protool5.2 Experimental measurements and signal proessing5.2.1 Colletion of the experimental inputs for the modelingExperimental protool The measurement train IRIS 320 is running ontinuously sine 2007,and monitors the trak geometry thanks to two laser ameras, three aelerometers and threerate gyros. Pitures of the trak geometry are taken, whereas the aelerometers and rate gyrosregister the movements of the bogie at the sampling frequeny of 10kHz. More preisely, thelaser ameras measure the distane toward four partiular points of the rails (see Figure 5.2):

• the left and right upper points of the rails UL and UR;
• the left and right interior points IL and IR that are plaed 16mm under the upper pointsof the rails.From these positions, four deviation �elds for the rails positions are dedued: d1, d2, d3 and

d4.Measurements post-proessing As the ameras are �xed to one of the bogie of the train,the bogie own movements, whih an be haraterized by three translations and three rotations,introdue a bias in the measurements, whih has to be removed. As an illustration, the threerotation angles of the bogie in a partiular urve are represented in Figure 5.3, whereas Figure5.2 shows the bias indued in the measurements by the roll angle ρ of the bogie. Hene, froma �ltering and integration proess, the irregularity vetor x(s) = (x1(s), x2(s), x3(s), x4(s))is dedued from the four data (d1(s), d2(s), d3(s), d4(s)) at eah absissa s of the trak (seeFigure 5.4). These measurements are also post-proessed in order to remove the measurementanomalies, whih are mostly due to the absene of signal or to the presene of points androssings. After these post-treatments, Npor trak portions of di�erent lengths are available forthe modeling.5.2.2 Loal-global approahIn this work, the trak irregularity vetor of a omplete railway trak of total length Stot isassumed to be a entered seond-order random �eld,102
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Figure 5.3: Rotation angles of the bogie in a horizontal urve
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Figure 5.4: Filtering of the experimental data
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Figure 5.5: In�uene of the horizontal urvature on the trak irregularities
X = (X1,X2,X3,X4) , (5.6)suh that:

E [X(s)] = 0, s ∈ [0, Stot]. (5.7)Due to the spei� interation between the train and the trak, this random �eld stronglydepends on the horizontal urvature (the in�uene of the vertial urvature is negligible interms of trak geometry and will not be disussed in the following) and thus on the diretionof irulation, as it an be seen in Figure 5.5 (for a better visualization, the four enteredirregularity �elds have been translated on purpose in this �gure). This random �eld is thereforenon-stationary.Moreover, 200, 000 partiular values of X1, X2, X3, X4 are randomly hosen among theavailable measurements of these four irregularities. Four empirial estimations of the PDFs of
X1, X2, X3, X4, whih are denoted by p̂X1 , p̂X2 , p̂X3 , p̂X4 , are then ompared over the samelosed domain [LB,UB] to the orresponding Gaussian PDFs N (0, σ̂X1), N (0, σ̂X2), N (0, σ̂X3),
N (0, σ̂X4), in Figure 5.6. From these experimental observations, the trak irregularity random�eld is not Gaussian.This motivates the introdution of a loal-global approah for the haraterization of thedistribution of the trak irregularity random �eld. This loal-global approah is based on thehypothesis that a whole railway trak an be onsidered as the onatenation of a series ofindependent trak portions of same length S, for whih physial and statistial properties arethe same. Length S plays therefore a key role in the modeling proedure, and its value has tobe arefully evaluated. In order to hoose length S suh that its sensitivity on the stohastimodeling is minimized, ν trak portions of same length L, {z(1), . . . ,z(ν)

}, have been olletedfrom the available measurements of the railway network of interest. For any value of S in [0, L],we denote by {y(1)(S), . . . ,y(ν)(S)
} the ν new trak geometries of total length L, whih arethen built from the onatenation of trak subsetions of length S that have been randomlyhosen in {z(1), . . . ,z(ν)

}. 104
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Figure 5.6: Analysis of the marginal distributions of the four trak irregularitiesThree errors funtions, for whih de�nitions an be found in Appendix C, are thereforeintrodued in this work to quantify the in�uene of S:
• a ovariane error, err2cov(S): �xing S to a partiular value amounts to supposing that for

|s− s′| ≥ S, E [X(s)X(s′)T
] is negligible;

• a spetral error, err2spect(S): generating omplete trak geometries from the onatenationof several trak portions of length S introdues an arti�ial periodiity and is likely todegrade the low-frequeny haraterization of X;
• an estimation error, err2est(S): the higher S is, the smaller the number of independentrealizations for X, νexp(S), an be extrated from the omplete measurements of therailway network of interest. This error is therefore diretly related to the estimationauray of the ovariane funtion of X, and to the identi�ation preision of the PCEoe�ients, on whih the modeling will then be based. With referene to the CentralLimit Theorem (see [15℄ for further details), we simply hoose err2est(S) = 1/

√
νexp(S) toillustrate this phenomenon.For the hosen railway network, based on these sets of trak geometries of same lengths L,errors err2cov(S), err2spect(S) and err2est(S) are represented in Figure 5.7. When S inreases, itan be veri�ed that err2cov(S) and err2spect(S) derease whereas err2est(S) inreases. Length Shas thus to be hosen as the right balane between these three error funtions.105
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Figure 5.7: Graphs of errors err2cov(S), err2spect(S) and err2est(S) for the omputation of theloal-global length S.For on�dentiality reasons, the exat value of S is however not given in this work, and thespatial quantities will be normalized by length S in the following. From the available experimen-tal data, ν = 1, 889 trak portions of same length S, whih are denoted by {X(θn), 1 ≤ n ≤ ν},are extrated to represent the maximal available information about X. Based on these exper-imental measurements, whih an be seen as a �nite set of independent realizations, the nextsetions aim at ompletely parameterizing the trak irregularity random �eld, based on thetheoretial development that have been presented in Chapters 2, 3 and 4.5.3 Optimal redued basisThe �rst step of the identi�ation of X orresponds to a revisited Karhunen-Loève (KL) de-omposition. This original deomposition, whih is presented in detail in Chapters 2 and 4,makes a point of maximizing the representativeness of the projetion basis with respet to thelimited available information.5.3.1 Diret KL expansion and projetion biasesLet Ω = [0, S]. Using the same notations as in Chapters 2 and 4, we de�ne [R̂XX(ν)] as theempirial estimator of the ovariane of X, whih has been omputed from the ν availablerealizations of X , and for all 1 ≤ M , let K̂(M) =
{
k̂
m
, 1 ≤ m ≤M

} be the set gathering the
M eigenfuntions of highest eigenvalues in the Fredholm problem assoiated with [R̂XX(ν)].The approximation (s, s′) 7→ [R̂XX(ν, s, s′)]11 of (s, s′) 7→ E [X1(s)⊗X1(s

′)] is shown in Figure5.8. This �gure emphasizes a quasi symmetry along the �rst bisetor. The funtions s 7→
[R̂XX(ν, s, 0)]qp, 1 ≤ q, p ≤ 4, an thus be used to ondense and ompare the ovarianeinformation of di�erent trak irregularities. In Figure 5.8, it an thus be notied that theovariane matries are very di�erent from one trak irregularity to another.In addition, we denote by ε2q(K̂(M)) the normalized loal projetion error suh that for
1 ≤ q ≤ 4:

ε2q(K̂(M))
def
=
∥∥∥Xq − X̂K(M)

q

∥∥∥
2

P(Ω)
/ ‖Xq‖2P(Ω) , (5.8)106
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q is the projetion of Xq on {K̂m
q , 1 ≤ m ≤M

} and where ‖·‖2P(Ω) is the normde�ned by Eq. (4.3). From Eq. (4.5), the total normalized mean-squared error assoiated withthe projetion of X on K̂(M), ε2(K̂(M)), veri�es therefore:
ε2(K̂(M)) =

4∑

q=1

β2qε
2
q(K̂(M)),

β2q =
‖Xq‖2P(Ω)

‖X‖2P(4)(Ω)

.

(5.9)From the available realizations of X, we have:
β21 > β22 ≫ β24 > β23 . (5.10)The signal energy assoiated with eah trak irregularity being di�erent, as shown in Chapter4, projetion family K̂(M) is bound to desribe in priority irregularitiesX1 andX2 rather thanX3and X4. The phenomenon is shown in Figure 5.9, where the evolutions of the LOO estimations,

ε2LOO(K̂(M)), ε2q,LOO(K̂(M)), of the total and loal mean-square errors are represented withrespet to the size M . In partiular, for M = 500 and M = 2000, although ε2LOO(K̂(500)) =

10.0% and ε2LOO(K̂(2000)) = 1.26%, we have:




ε21,LOO(K̂(500)) = 3.52%,

ε22,LOO(K̂(500)) = 7.77%,

ε23,LOO(K̂(500)) = 40.3%,

ε24,LOO(K̂(500)) = 33.0%,





ε21,LOO(K̂(2000)) = 0.816%,

ε22,LOO(K̂(2000)) = 0.615%,

ε23,LOO(K̂(2000)) = 6.10%,

ε24,LOO(K̂(2000)) = 3.09%.

(5.11)
5.3.2 Optimization of the projetion basisAs presented in Chapters 2 and 4, two kinds of improvement an be brought to enrih the diretKL projetion family assoiated with [R̂XX(ν)]. Indeed, in the railway ommunity, the antde�ieny X3 and the gauge irregularity X4 are generally onsidered as the most dangerousirregularities, and are therefore more arefully monitored and maintained. Their signal energy107
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Figure 5.9: Evolution of the projetion errors with respet to the dimensionM of the projetionfamily.is lower than the signal energy of the two other trak irregularities X1 and X2, although theirimportane on the train dynamis is likely to be higher. Hene, a saled expansion an beonsidered to avoid the numerial bias that is introdued by the di�erenes in the signal energiesof the omponents of X . Then, as the available information about X is limited to a set ofindependent realizations, the true ovariane funtion of X is unknown, and the extension tosolve the lassial Fredholm equation that is presented in Chapter 2 ould allow us to improvethe relevane of K̂(M) to haraterize X for a given value of M .In this prospet, generalizing the notations of Chapters 2 and 4, for O in S(4)(1) and αin [0, 1], K(α,O) = {km(α,O), 1 ≤ m} is introdued as the orthonormal projetion basis thatgathers the solutions of the Fredholm problem assoiated with the (Q × Q) matrix-valuedfuntion [A(α,O)], suh that:
∫

Ω
[A(α,O, s, s′)]km(α,O, s′)ds′ = λm(α,O)km(α,O, s), s ∈ Ω, (5.12)

(km(α,O, s),kp(α,O, s)) = δmp λ1(α,O) ≥ λ2(α,O) ≥ · · · → 0, (5.13)
[A(α,O)] = α[R̂Y Y (O, ν)] + (1− α)[R̃Y Y (O, ν)], (5.14)
[R̂Y Y (O, ν)] = [Diag(O)][R̂XX(ν)][Diag(O)], (5.15)
[R̃Y Y (O, ν)] = [Diag(O)][R̃XX(ν)][Diag(O)], (5.16)where matries [Diag(O)] and [R̃XX(ν)] are de�ned by Eqs. (4.15), (2.43) and (2.45). For

M ≥ 1, if K(M)(α,O) gathers the M �rst elements of K(α,O), this leads us to searh theoptimal projetion family for X, F (M)
opt , as the solution of the following optimization problem:

F (M)
opt = K(M)(αopt(M),Oopt(M)), (5.17)

(
αopt(M),Oopt(M)

)
= arg min

(α,O)∈[0,1]×S(4)(1)
ε2∞,LOO(K(M)(α,O)), (5.18)108



α O ε2LOO,1(K̂(500)) ε2LOO,2(K̂(500)) ε2LOO,3(K̂(500)) ε2LOO,4(K̂(500))

1 (0.5, 0.5, 0.5, 0.5) 3.52% 7.77% 40.3% 33.3%
1 Oβ 5.88% 16.3% 17.8% 23.9%
1 Oopt(500, α) 18.3% 18.3% 18.3% 18.3%

αopt(500,O) (0.5, 0.5, 0.5, 0.5) 2.95% 5.62% 30.2% 25.9%
αopt(500,O) Oβ 4.77% 13.7% 12.6% 17.8%
αopt(500) Oopt(500) 13.9% 13.9% 13.9% 13.9%Figure 5.10: In�uene of the hoies for α and O on the loal mean-square errors.

ε2∞,LOO(K(M)(α,O)) = max
1≤q≤4

ε2q,LOO(K(M)(α,O)). (5.19)This problem is solved oupling the iterative algorithm de�ned by Eq. (2.51) with τ = 10−4and γ = 1/2 for O, and an algorithm based on a dihotomy for α. In order to illustratethe advantage of suh an approah, Table 5.10 ompares the LOO errors assoiated withpartiular values of α and O, that stem from optimizations on α and/or O, where Oβ =(
1

‖X1‖P(Ω)
, 1
‖X2‖P(Ω)

, 1
‖X3‖P(Ω)

, 1
‖X4‖P(Ω)

), αopt(500,O) is the optimal value of α in [0, 1] for agiven value of O, and Oopt(500, α) is the optimal value of O in S(4)(1) for a given value α.For a same dimensionM = 500, this double adaptation of the lassial KL expansion for thetrak irregularity random �eld allows us to divide the maximal value of the loal mean squareerrors by three. Riher de�nitions for [A(α,O)] should lead us to even better results, but todo so in very high dimension with very limited information, as it is the ase here, a method tooptimize the solving of Eq. (5.18) would be required, whih has not been made in this thesis.5.3.3 Choie of the dimension of the spatial projetion parameterFor any value of M , the optimization problem de�ned by Eq. (5.18) allows us to identify pro-jetion basis that are partiularly well adapted to eah omponent ofX . The optimal value ofMan therefore be searhed with respet to a hosen threshold for ε2∞,LOO(K(M)(αopt(M),Oopt(M))).In the following, for M = 2000, we denote by F (2000)
opt = {fm, 1 ≤ m ≤ 2000} this basis, whihallows the maximal value of the loal errors, ε2∞,LOO(K(2000)(αopt(2000),Oopt(2000))), to belower than 0.5%. From Eq. (5.11), it an be notied that thanks to the two proposed adap-tations of the KL expansion, the four loal errors assoiated with F (2000)

opt are lower than theminimal value of the loal errors assoiated with K̂(2000). Suh a high value for M will bejusti�ed more in detail in Chapter 6 from the train dynamis analysis. We ompare in Figure5.11 several graphs of eigenfuntions fm = (fm1 , f
m
2 , f

m
3 , f

m
4 ). For a better visualization, themean values of the di�erent subvetors, whih are zero, are deliberately translated.5.4 PCE identi�ation in very high dimension5.4.1 Sorting with respet to the horizontal urvatureAs presented in the Setion 5.2.2, the trak geometry strongly depends on the horizontal ur-vature. In this prospet, four lasses of trak portions an be introdued:

• the alignment, for whih the horizontal urvature cH is zero.109
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Figure 5.11: Graphs of four partiular eigenfuntions f1, f10, f100 and f1000 (×10−3S).
• the established urve, for whih the horizontal urvature cH is onstant and not zero.
• the urve entrane, for whih the absolute value of the urvature is linearly inreasing.
• the urve exit, for whih the absolute value of the urvature is linearly dereasing.The statistial properties of X are therefore di�erent in eah of these four lasses, suhthat instead of one stohasti modeling, four stohasti modelings of the trak geometry over alength S are needed to aurately haraterize the trak geometry variabilities. We thus denoteby X(A) (in alignement), X(EC) (in urve entrane), X(C) (in urve) and X(SC) (in urve exit)the four projetions of random �eld X in the di�erent urvature lasses. These four random�elds an then be projeted on the 2, 000-dimension deterministi family F (2000)

opt , whih wasintrodued in the previous setion, suh that:
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X(A) ≈ X̂
(A)

=
2000∑

m=1

C(A)
m fm,

X(EC) ≈ X̂
(EC)

=

2000∑

m=1

C(EC)
m fm,

X(C) ≈ X̂
(C)

=

2000∑

m=1

C(C)
m fm,

X(SC) ≈ X̂
(SC)

=

2000∑

m=1

C(SC)
m fm.

(5.20)
Finally, haraterizing the variability of the trak geometry amounts to identifying the multi-dimensional distributions of the four 2000-dimension random vetors, C(A) =

(
C

(A)
1 , . . . , C

(A)
2000

),
C(EC) =

(
C

(EC)
1 , . . . , C

(EC)
2000

), C(C) =
(
C

(C)
1 , . . . , C

(C)
2000

) and C(SC) =
(
C

(SC)
1 , . . . , C

(SC)
2000

), forwhih omponents are dependent.Independent realizations of these four random vetors have to be extrated from the sortingof the Npor available measurements with respet to the horizontal urvature. This sorting isbased on a four-step method, whih is illustrated in Figures 5.12 and 5.13:
• First, the true horizontal urvature, cH , whih is pieewise linear, is dedued from theon-trak measured horizontal urvature, con track

H .
• Seondly, the positions of the beginnings and the ends of the urvature lasses are loalized.
• Then, for eah urvature lass, a series of measurements of same length S is extrated, andis denoted by xi

A, xj
C , xk

EC , xℓ
SC for the alignment, the urve, the urve entrane and theurve exit ases. The length of the urve entranes and exits being generally lower than

S, an overlapping is tolerated, suh that some small trak portions an be used in twomodelings. Under the loal-global hypothesis, νA = 414, νEC = 482, νC = 522 and νSC =
471 trak portions of same length S are extrated from the omplete railway network oftotal length Stot. These measurements are supposed to be independent realizations of therandom �elds X(A) , X(EC), X(C) and X(SC) respetively.

• Finally, these realizations are projeted on F (2000)
opt to ompute the orresponding realiza-tions of C(A), C(EC), C(C) and C(SC).The same approah will be used to identify the distributions of these four random vetors,but only the identi�ation of C(A) will be presented in the following.5.4.2 PCE identi�ationLet {C(A)(θ1), . . . ,C

(A)(θνA)
} be the νA available realizations of random vetor C(A). Themean value of random �eld X(A) being zero for all s in Ω, this vetor is also entered, suhthat:

E
[
C(A)

]
= 0. (5.21)111
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Moreover, from these νA realizations, the ovariane matrix of C(A), whih is written
[R̂

(A)
CC(νA)], an be estimated as:

[R̂
(A)
CC(νA)] =

1

νA

νA∑

n=1

C(A)(θn)⊗C(A)(θn). (5.22)Given this information, the multidimensional distribution of C(A) is identi�ed from a PCEapproah. In this prospet, let ξ =
(
ξ1, . . . , ξNg

) be a random vetor for whih omponentsare independent and uniformly distributed between -1 and 1. A uniform germ for the PCE ishosen, as it appears to be more stable in very high polynomial dimensions as shown in Setion3.3.2. The orresponding Hilbertian basis of all Ng-dimension random vetors is the set of themultidimensional Legendre polynomials, whih are denoted by {ψj(ξ), 1 ≤ j}. In agreementwith the theoretial developments of Setion 1.5, this basis is trunated to its N elements oftotal polynomial order lower than p. At last, we de�ne Cchaos,(A)(N) as the projetion of C(A)on this trunated basis, suh that:
C(A) ≈ Cchaos,(A)(N) =

N∑

j=1

yj,(A)ψj(ξ) = [y(A)]Ψ(ξ). (5.23)For given values of Ng and N , the projetion matrix [y(A)] is omputed to maximize thelikelihood of [y(A)]Ψ(ξ) at the independent realizations of C(A) under the approximated on-straint [y(A)][y(A)]T ≈ [R̂
(A)
CC(νA)] with the iterative algorithm desribed in Setion 3.2.5, as thedimension of C(A) is muh higher than νA. Aording to Figure 5.14, where err(N,Ng) is plot-ted as a funtion of N for di�erent values of Ng, trunation parameters Ng and N are hosenequal to 3 and 2, 925 respetively, whih orresponds to the maximal polynomial order p = 24for the redued polynomial basis. Moreover, Figure 5.15 ompares the empirial estimations,

p̂
C

(A)
m

and p̂
C

chaos,(A)
m (N)

, of the PDFs of three partiular omponents of C(A) and Cchaos,(A)(N)respetively. A normal PDF assoiated with the variane of C(A)
m , p̂Gauss

C
(A)
m

, has also been addedto this �gures.Following exatly the same approahes, the three projetion matries [y(EC)], [y(C)] and
[y(SC)] are also identi�ed. The onvergene analysis for these expansions has moreover giventhe same results as for the alignment ase, suh that we get:

C(EC) = [y(EC)]Ψ(ξ), C(C) = [y(C)]Ψ(ξ), C(SC) = [y(SC)]Ψ(ξ). (5.24)5.5 Generation of a whole trak geometryOne trunation parameters M , N , Ng have been identi�ed aording to onvergene analysis,spatial projetion family F (2000) = {fm, 1 ≤ m ≤ 2000} has been omputed, and PCE pro-jetion matries [y(A)], [y(EC)], [y(C)] and [y(SC)] have been alulated, the trak irregularityrandom �eld is ompletely haraterized:




X(A) ≈ X̃
(A)

= [F (2000)][y(A)]Ψ(ξ),

X(EC) ≈ X̃
(EC)

= [F (2000)][y(EC)]Ψ(ξ),

X(C) ≈ X̃
(C)

= [F (2000)][y(C)]Ψ(ξ),

X(SC) ≈ X̃
(SC)

= [F (2000)][y(SC)]Ψ(ξ),

(5.25)
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[F (2000)] = [f1 f2 · · · f2000]. (5.26)For eah realization of random vetor (ξ1, . . . , ξNg), a representative and realisti trak geom-etry of length S an be generated for the alignment, the established urve, the urve entraneand the urve exit ases. Thanks to the loal-global approah, desribed in Setion 5.2.2, awhole trak geometry of length Stot = NT S, Xtot, an therefore be onstruted from the on-atenation of NT independent opies X(1), · · · ,X(NT ) of the trak irregularity vetors X̃

(A),
X̃

(EC), X̃(C) or X̃(SC), with respet to the horizontal urvature of the onsidered trak, suhthat Xtot = (X(1), · · · ,X(NT )).Therefore, ν independent realizations {Xtot(θ1), · · · ,Xtot(θν)
} of Xtot an be generatedfrom νNT realizations of the loal irregularity vetor X̃(A), X̃(EC), X̃(C) or X̃(SC). However, foreah realization Xtot(θm) of Xtot, a partiular attention has to be paid to the juntion betweenthese di�erent realizations. Indeed, these juntions have to guarantee the ontinuity of the trakirregularity vetor and at least the ontinuity of its �rst and seond order spatial derivatives inorder to avoid an arti�ial perturbation of the train dynamis. Spline interpolations on a lengthorresponding to the minimal wavelength of the measured irregularities are then used to ful�llthese ontinuity onditions.Hene, the proposed stohasti modeling allows us to generate realisti trak geometries oflength Stot = NT S that are representative of the whole network, and whih take into aount thespatial and statistial dependenies between the di�erent trak irregularities. As an illustration,a partiular extrat of length S of omplete trak geometry Xtot (θ1) is represented in Figure5.16. This graph is entered at absissa s = 3S/2, that is to say at a juntion between the two�rst realizations of the trak irregularity random �elds. The four omponents of Xtot(θ1) arerepresented in the same graph, but their values are translated to allow a better visualization ofthe results. 114
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Figure 5.19: Statistial validation of the stohasti modeling of the ant de�ieny irregularity
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Figure 5.20: Statistial validation of the stohasti modeling of the gauge irregularity X4120
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Chapter 6Stohasti dynamis of high-speedtrains and risk assessment6.1 IntrodutionFor the trak quality, the attention must be foused on two main issues. First, the safety ofthe trak-vehile system has to guaranteed, and seondly, the maintenane osts have to beontrolled and minimized. Safety being the main priority, trains and traks have been designedwith a priori high safety fators, suh that the limit states of the railway system are notwell known but railway aidents almost never happen. In a ontext of optimization of themaintenane, simulation has thus a big role to play, as it should be able to evaluate these limitsituations when experiments annot or would be too expensive.In addition, these objetives have to be ful�lled in a ontext of inreasing interoperability.Indeed, European high speed railway networks are meant to go to market. Hene, several highspeed trains, suh as ICE, TGV, ETR 500,. . ., are likely to run on the same traks, althoughthey have been originally designed for spei� and di�erent railway networks. Due to di�erentmehanial properties and strutures, the dynami behaviors, the aggressiveness of the vehileon the trak and the probabilities of exeeding seurity and omfort thresholds are thus di�erentfrom one train to another one. From the infrastruture point of view, numerial methods aretherefore needed to be able to evaluate and to ompare the stability and the safety assoiatedwith eah train that would apply to run on a partiular railway network.To this end, this hapter shows to what extent the stohasti modeling of the trak geometry,whih has been presented in Chapter 5, an be oupled with a multibody railway software toanalyze the omplex link between the trak variability and the train dynamis.6.2 Desription of the railway dynami problem6.2.1 Deterministi railway problemA railway simulation an be seen as the dynami response of the train exited by the trakgeometry through the wheel/rail ontat fores. Three kinds of inputs are thus used in thesesimulations.
• The vehile model V. Multibody simulations are usually employed to model the traindynamis. Carbodies, bogies and wheelsets are therefore modeled by rigid bodies linkedwith onnetions represented by rheologi models (dampers, springs, ...). For 1 ≤ i ≤
NDoF, and t in [0, T ], we denote by ui(t) the position at time t of the oordinate assoiated122



Figure 6.1: Simpli�ed desription of a multibody model of a TGV.with eah degree of freedom of the rigid bodies modeling of the train, and by u̇i(t) = dui
dt (t)its time derivative. For instane, for a lassial one-arriage TGV, whih is made of10 oahes, 13 bogies and 52 wheelsets that are linked by a series of suspensions andbumpstops, NDoF is about two hundreds (see Figure 6.1 for a simpli�ed representation ofthe TGV).

• The trak geometry T . As presented in Chapter 5, this trak haraterization refersto a double sale desription. On the �rst hand, the trak design, whih gathers thehorizontal urvature cH , the vertial urvature cV and the ross level cL, orresponds tothe desription of a perfet trak without irregularities. On the other hand, four trakirregularities, X1, X2, X3 and X4 have to be added to this desription to de�ne the realrailway traks. These are due to the train dynamis, the weather onditions and the traksubstruture evolutions.
• The ontat model C allows the omputation of the ontat fores between the rails andthe wheels. In the railway ommunity, these ontat fores are almost always omputedfrom the wheel pro�le and the rail pro�le thanks to the Hertz and Kalker theories [7, 6℄.Introduing the vetor of the generalized oordinates,

U(t) = (u1(t), u2(t), · · · , u̇1(t), u̇2(t), · · ·) , (6.1)the train dynamis an therefore be determined by solving the Euler-Lagrange equation, whihis written as:
d

dt

(
∂Ec

∂u̇i

)
− ∂Ec

∂ui
= Li(U ,T , C), 1 ≤ i ≤ NDoF, (6.2)with Ec the total kineti energy of the train, and Li(U ,T , C) the general load that is appliedto the degree of freedom i, whih depends on the trak geometry T , on the wheel/rail ontat

C and on the generalized oordinated U . Eq. (6.2) an be rewritten in a matrix form as:
[A(U )]U̇ = F (U ,T , C), (6.3)with [A] and F two strongly nonlinear operators. This system is usually solved with anexpliit time sheme. In the following, the ommerial blak-box software, Vampire (see [82, 83℄for further details about this software), is used. The hosen time step of this expliit shemewas identi�ed aording to a onvergene analysis and is generally taken equal to 10−4 seond.123



The generalized oordinates vetor U is then post-treated to de�ne the �nal omfort andsafety riteria assoiated with the railway system. These outputs an be lassi�ed in twoategories:1. First, the maximal values of the vertial and lateral aelerations in the train oahes,
z̈max and ÿmax, are ontrolled to guarantee the omfort of the passengers.2. Seondly, the safety and maintenane riteria of the trak-vehile system are based onthe analysis of the wheel/rail ontat fores. In this prospet, three lassial riteria aregenerally introdued to haraterize the vehile dynamis on a given trak geometry oftotal length Stot:

• a shifting riterion:
(Yℓ + Yr)max = max

wheelset w

{
max

0≤s≤Stot
{Y w

ℓ (s) + Y w
r (s)}

}
, (6.4)

• a derailment riterion:
(Y/Q)max = max

wheel q

{
max

0≤s≤Stot
{Yq(s)/Qq(s)}

}
, (6.5)

• a wear riterion:
(Tγ) =

∑

wheel q

{∫ Stot

0
Tq(s)γq(s)ds

}
, (6.6)where:

• Y w
ℓ and Y w

r are the left and right lateral fores of the same wheelset w, suh thatthe higher (Yℓ + Yr)max is, the more hane for a shifting of the trak there is;
• Yq and Qq are the lateral and vertial omponents of the wheel/rail ontat fore atwheel q, suh that the higher (Y/Q)max is, the more on the �ange a wheel of thetrain an be;
• Tq and γq are respetively the reep fore and the slip at wheel q, suh that the higher

(Tγ) is, the higher the ontat wear is likely to be for one run of the omplete train.Finally, given a model of the wheel/rail ontat C, the deterministi railway problem orre-sponding to the dynamis of a vehile V on a trak geometry T an be expressed as:
(V,T , C) 7→ c = g (V,T , C) , c = (z̈max, ÿmax, (Yℓ + Yr)max, (Y/Q)max, (Tγ)) , (6.7)where it is reminded that g is a omplex and nonlinear operator. These nonlinearities are mostlydue to the train suspensions (espeially the airsprings between the bogies and the oahes), toa series of bumpstops in the train desription and to the wheel/rail ontat fores.Due to the train dynamis, to the trak irregularities and to the spei� wheel and railpro�les, the ontat positions between eah wheel of the train and the rails keep hanging.124
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6.3 De�nition of the stohasti problem and validation of themodeling6.3.1 Stohasti problemThe wheel and rail pro�les of high speed trains and lines being heked and maintained veryregularly, only perfet wheel and rail pro�les will be onsidered in the following, suh that theontat properties, C, are hosen to be onstant. As presented in Chapter 5, it is moreoversupposed that the trak irregularities an be separated from the trak design. Hene, in thefollowing, the trak design is supposed to be onstant, while the trak irregularities an vary.As a onsequene, vetor c, whih is de�ned by Eq. (6.7), beomes a random vetor that isdenoted by C = (C1, C2, C3, C4, C5). It is reminded that by de�nition of vetor c, C1 and C2refer to the vertial and lateral maximal aelerations in the train oahes, C3 is the maximalvalue of the sum of the transverse loads of the wheelsets, C4 is the maximal value of the Y/Qratio, and C5 is the umulated wear along the trak.At last, given a �xed desription of the trak design, (cH , cV , cL), and a normalized modelof train, V, for whih mehanial parameters are also �xed and have been aurately identi�ed,the railway stohasti problem an be written:
Xtot def

=
{
Xtot(s), s ∈ [0, Stot]

}
7→ C = G

(
Xtot | cH , cV , cL,V, C

)
, (6.8)where Xtot =

(
Xtot

1 ,Xtot
2 ,Xtot

3 ,Xtot
4

) is the trak irregularity random �eld omputed from theloal-global approah desribed in Chapter 5.6.3.2 Validation of the stohasti problemTwo validations for the trak generator presented in Chapter 5, based on the train dynamis,are proposed in this setion. In a �rst step, it is shown that the trak generator oupled withthe Vampire software allows us to simulate train aelerations that are similar to aelerationsthat have been reorded on a real high speed train on a real trak. In a seond step, we showthe relevane of the trak stohasti modeling, to generate trak onditions that are realistiand representative of the measured trak geometries, for the analysis of the wheel/rail fores.Relevane of the trak stohasti modeling for the analysis of the train aelerationsSine 2007, the TGV IRIS-320 has been used to monitor the trak geometry of the Frenhhigh speed lines. This train has been modeled and simulations have been performed at onstantspeed S on ν = 500 trak geometries of total length Stot. The hosen trak design funtions, cH ,
cV , cL, are shown in Figure 6.2. The trak irregularities of eah trak geometry are moreoverharaterized by independent realizations, Xtot(Θn), 1 ≤ n ≤ ν, of Xtot. For all s in [0, Stot],at position s, we respetively de�ne Ĉsim

z (Θn, s) and Ĉsim
y (Θn, s) as the vertial and lateralmaximal values of the aelerations in all the oahes of the train that is exited by the trakirregularity X(Θn).Given these two sets of train responses, {Ĉsim

z (Θn), 1 ≤ n ≤ ν
} and {Ĉsim

y (Θn), 1 ≤ n ≤ ν
},let {Dz

i (s), s ∈ [0, Stot], 1 ≤ i ≤ 10
} and {Dy

i (s), s ∈ [0, Stot], 1 ≤ i ≤ 10
} be the deile fun-tions, suh that at eah position s, i/10 of the values of Ĉsim

z (Θn, s) and Ĉsim
y (Θn, s) are in Dz

i (s)and Dy
i (s) respetively. These deile funtions, whose representations are shown in Figure 6.6,allow us to evaluate the in�uene of the trak irregularity variability on suh maximal values.128
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The IRIS-320 train is moreover equipped with aelerometers that reord the vertial andtransverse aelerations at three oahes,
{
ÿ
(1)
C , ÿ

(2)
C , ÿ

(3)
C , z̈

(1)
C , z̈

(2)
C , z̈

(3)
C

}
.In order to evaluate the relevane of the former results for the maximal aelerations in thetrain oahes, we de�ne Ĉexp

z and Ĉexp
y , suh that for any value of the urvilinear absissa ofthe trak, s, we get:

Ĉexp
z (s) = max

i∈{1,2,3}

∣∣∣z̈(i)C (s)
∣∣∣ , (6.9)

Ĉexp
y (s) = max

i∈{1,2,3}

∣∣∣ÿ(i)C (s)
∣∣∣ . (6.10)Five partiular evolutions for Ĉexp

z and Ĉexp
y over a length Stot are then extrated from the ex-perimental database, whih are denoted by {Ĉexp,(1)

z , . . . , Ĉ
exp,(5)
z

} and {Ĉexp,(1)
y , . . . , Ĉ

exp,(5)
y

}.These measurements were hosen as their dynami harateristis were the most omparableto the simulated one, in terms of ross level, horizontal and vertial urvatures, speed of thetrain and length of the urve. If the hosen simulated dynami harateristis were not similarto the extrated dynami harateristis on the omplete domain [0, Stot], non-valid domainswere added to these �gures. The evolutions of these measured aelerations are ompared tothe simulated ones in Figure 6.7.In the light of these results, the trak generator oupled with the Vampire software seemsto be able to simulate realisti and representative runs of the IRIS-320 train to analyze the linkbetween the two �rst quantities of interest of the stohasti modeling, C1 and C2, and the trakgeometry variability.Dynami validation of the trak generator for the analysis of the wheel/rail ontatforesNo on-trak measurements of the ontat fores between the train and the trak at high speedbeing available, an other approah is proposed to evaluate the relevane of the trak generatorto simulate realisti and representative values for C3, C4 and C5.To this end, the partiular urve of total length Stot shown in Figure 6.2, is one againonsidered. From the available measurements of the trak geometry, νexp = 400 di�erenttrak onditions of total length Stot, {Xexp(θ1), . . . ,Xexp(θνexp)}, are gathered. These trakonditions stem from the random onatenation of measured trak setions that are in alignment,in transition urve entrane or exit, or in urve, in order to suit the hosen trak design.The same normalized high-speed train V, for whih mehanial parameters are supposedto be aurately identi�ed, is thus made run �rst on the νexp measured trak onditions, andthen on ν generated trak onditions, {Xtot(Θ1), . . . ,X
tot(Θν)

}, at the same speed S. Eightquantities of interest that are representative of the train dynamis are then ompared:
• the left and right transverse ontat fores at the �rst wheelset of the �rst bogie of themotor ar, Q1 = Y ℓ

MC and Q2 = Y r
MC ;

• the left and right transverse ontat fores at the seond wheelset of the seond bogie ofthe seond passenger ar, Q3 = Y ℓ
PC and Q4 = Y r

PC ;
• the left and right Y/Q ratio at the �rst wheelset of the �rst bogie of the motor ar,
Q5 = (Y/Q)ℓMC and Q6 = (Y/Q)rMC ; 130
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• the left and right Y/Q ratio at the seond wheelset of the seond bogie of the seondpassenger ar, Q7 = (Y/Q)ℓPC and Q8 = (Y/Q)rPC .In the same manner than in Setion 5.6, for 1 ≤ i ≤ 8, we are interested in the mean powerspetral densities of Qi and the mean numbers of uprossings of the level u by Qi over the length
Stot, whih are respetively denoted by PSDmes(Qi) andNmes

up (Qi, u, S
tot) when these quantitiesare omputed from the measured trak geometries and PSDgen(Qi) and Ngen

up (Qi, u, S
tot) whenthese quantities are omputed from the generated trak geometries. The omparisons betweenthese quantities are represented in Figure 6.8. It an be seen that the �t is very good.The stohasti modeling of the trak geometry is thus relevant from the train responsepoint of view. In the following, it is therefore supposed that the trak stohasti modeling,oupled with the software Vampire is also relevant to investigate the relation between the trakvariability and the three quantities of interest C3, C4 and C5.6.4 Propagation of the variabilityAs explained in Setion 6.1, a better understanding of the spei� link between the trakirregularities and the train response is needed to optimize the maintenane, and to betterantiipate the onsequenes of modi�ations of the running onditions.In this prospet, we denote by PC(dx) = pC(x)dx the multidimensional distribution ofrandom vetor C, where pC is the assoiated density. This distribution is strongly related tothe distribution of the trak irregularity random �eld, PXtot (see Eq. (6.8)). Assuming thatthe latter distribution has been aurately identi�ed from the loal-global approah desribedin Chapter 5, the trak variability has now to be propagated through the railway model toharaterize PC .As the statistial dimension of Xtot is very high and as the relation between PC and PXtot isvery omplex and strongly nonlinear, the Monte Carlo method appears to be the best approahto do so. Indeed the onvergene properties assoiated with this method are independent of thestatistial dimension of the input.From ν independent realizations of Xtot, {Xtot(Θ1), . . . ,X

tot(Θν)
}, ν independent realiza-tions of C, {C(Θ1), . . . ,C(Θν)}, an be dedued as:

C(Θn) = G
(
Xtot(Θn) | cH , cV , cL,V, C

)
, 1 ≤ n ≤ ν. (6.11)The statistial properties of C are �nally dedued from the analysis of this ν-dimension setof independent realizations of C.Three appliations of this stohasti modeling are now presented. These are based on thetrak design of total length Stot shown in Figure 6.2, and on ν = 4, 000 trak irregularityrealizations. First, the in�uene of the trak design and the trak irregularities is illustrated.Then, it is shown to what extent suh a method an be used to quantify the in�uene of aninrease of the train speed on C. At last, the method is used to ompare the safety and theaggressiveness of three di�erent high speed trains.6.4.1 In�uene of the trak designThe idea of this setion is to quantify the importane of the trak irregularities and of the trakdesign on vetor C. In this prospet, the response of a normalized high train V1 to the former132
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ν trak onditions of total length Stot is analyzed. In the same manner as in Setion 5.4.1,four ategories are onsidered: the alignment (A), the urve entrane (CE), the establishedurve (C) and the urve exit (SC). The response of the train is therefore sorted with respetto these four urve ategories, suh that, for 1 ≤ i ≤ 5, four values of the railway quantitiesof interest CA
i (Θn), CEC

i (Θn), CC
i (Θn) and CSC

i (Θn) an be omputed. Based on these setsof ν independent realizations, the PDFs of the omponents of C are estimated from a kernelsmoothing method, and are represented in Figure 6.9. From these graphs, it an be seen thatthe in�uene of the trak design on the wear riterion, C5 is very high. The other dynamiquantities, C1, C2, C3 and C4 seem however to be muh more dependent on the the trakirregularities than on the trak design.6.4.2 In�uene of an inrease of the speed on the quantities of interestThe seond appliation of the whole method deals with the in�uene of the speed on the PDFsof the �ve onsidered riteria. Only the established urve on�guration ase is shown.134
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V1, V2 and V2 are available. The mehanial parameters of these trains are very di�erent andwere arefully identi�ed from experimental measurements. These three trains are thus made runon the same ν trak geometries at the same speed S. The PDFs of eah riterion Ci assoiatedwith eah train are then shown in Figure 6.11. Hene, the stohasti modeling allows us toompare the dynamial response of these three trains when exited by a representative set ofrealisti trak onditions. In partiular, riteria C3 and C5 ould be interesting indiators toompare the aggressiveness of eah train.6.5 Sensitivity analysisFor years, railway engineers have been working on the identi�ation of the most dangerous andunomfortable trak irregularities for the train dynamis. These researh have been mostlybased on orrelation analysis between the outputs of the train and the amplitudes, the wave-136



lengths or the maximal values of the trak irregularities.Based on the ν former simulation of the normalized vehile V1 at onstant speed S, theidea of this setion is to perform an analysis of sensibility of the train response with respetto the trak irregularities. At �rst, it will be shown that a diret analysis of the orrelationsbetween inputs and outputs has little hane of suess, due to the high nonlinearities of thetrain suspensions and bumpstops and of the wheel/rail ontat. Then, an original sensitivitymethod based on the saled expansion developed in Chapter 4 will be presented.6.5.1 Nonlinearities and importane of the onjuntion of trak irregularitiesIn this setion, only four dynami outputs, Ĉ1, Ĉ2, Ĉ3 and Ĉ4, are onsidered:
• Ĉ1 the vertial aeleration at the enter of gravity of the 5th oah of T ,
• Ĉ2 the transverse aeleration at the enter of gravity of the 5th oah of T ,
• Ĉ3 the sum of the transverse loads of the �rst wheelset of the �rst bogie of the 5th oahof T ,
• Ĉ4 the Y/Q ratio of the left wheel of the �rst wheelset of the �rst bogie of the 5th oahof T .Hene, we are interested in the identi�ation of the loal shapes of the trak irregularitiesthat bring about the highest values for these four quantities Ĉ1, Ĉ2, Ĉ3 and Ĉ4. To this end,for 1 ≤ i ≤ 4 and 0 ≤ Spor ≤ Stot, we denote by

Si(Spor, Ti) =
{(

Xpor,i,q, Ĉq
i

)
, 1 ≤ q ≤ Qi

}
,the sets gathering the Qi trak irregularities of length Spor, that are entered at the values of

Ĉi that are higher than the threshold Ti. Threshold Ti is hosen su�iently high, suh thatat most one ouple (Xpor,i,q, Ĉq
i

) an be extrated from eah railway simulation. Hene, theelements of Si(Spor, Ti) an therefore be onsidered as statistially independent.For on�dentiality reasons, the values of length Spor and threshold Ti, whih are introduedto arry out a loal analysis of the trak irregularities, are not given in this work.In addition, let Xmax,i,q
j and Ĉmax,q

i be the maximal values suh that:
Xmax,i,q

j = max
s∈[0,Spor]

{
Xpor,i,q

j (s)
}
, 1 ≤ j ≤ 4, (6.12)

Ĉmax,q
i = max

s∈[0,Spor]

{
Ĉq
i

}
. (6.13)For 1 ≤ i ≤ 4, the evolutions of Xmax,i,q

j with respet to Ĉmax,q
i are then represented inFigure 6.12. From these satter plots, it an therefore be notied that no linear nor monotonousrelation between Xmax,i,q

j and Ĉmax,q
i an be identi�ed. In the same manner, from this diretapproah, it is hard to tell if the inrease of Ĉmax

i is mostly due to one trak irregularity oranother one.In other words, for 1 ≤ i ≤ 4, from the ν available simulations, it an easily be extrated trakonditions with high trak irregularities that would less exite the train than trak onditions137
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realization, ZTi(Θ), of ZTi :
s ∈ [0, Spor],

{
ZTi
1 (Θ, s) = Ĉi(s+ s∗ − Spor/2),

ZTi
j+1(Θ, s) = Xtot

j (Θ, s+ s∗ − Spor/2), 1 ≤ j ≤ 4.
(6.14)Given this formalism, for 1 ≤ i ≤ 4, it an be notied that Qi independent realizations,{

ZTi(θq), 1 ≤ q ≤ Qi

}, of ZTi an be omputed from the ν railway simulations omputed inSetion 6.5.1.For any O in ]0,+∞[5, let Y Ti(O) be the saled random �eld assoiated with ZTi , suhthat:
Y Ti
j (O) = OjZ

Ti
j , 1 ≤ j ≤ 5. (6.15)For any �xed value of O in ]0,+∞[5, Y Ti

j (O) is also in P(Ωpor) and we an introdue
µY Ti (O) and [RY Ti (O)] as its mean value and its matrix-valued ovariane funtion. Usingthe same notations than in Chapters 2 and 4, we moreover denote by {km(Ĉi), 1 ≤ m

} and
{km(O), 1 ≤ m} the KL projetion basis assoiated with Ĉi and Y Ti(O) respetively, suhthat:





Y Ti(O) = µY Ti (O) +
∑

m≥1

km(O)
(
Y Ti(O),km(O)

)
,

Ĉi = E
[
Ĉi

]
+
∑

m≥1

km(Ĉi)
(
Ĉi, k

m(Ĉi)
)
.

(6.16)For any κ in ]0,+∞[, O is hosen suh that:



O1 = κ,

Oj = 1/
∥∥∥ZTi

j

∥∥∥
P(Ωpor)

.
(6.17)It is then assumed that, for 1 ≤ m, the funtions

κ 7→ (km1 (O))2 / ‖km1 (O)‖2L2 , (6.18)
κ 7→

(
(km2 (O))2 , (km3 (O))2 , (km4 (O))2 , (km5 (O))2

)
/ ‖(km2 (O), km3 (O), km4 (O), km5 (O))‖2L2 ,(6.19)onverge to the limit funtions km(Ĉi) and Lm(Ti) = (Lm

1 (Ti), L
m
2 (Ti), L

m
3 (Ti), L

m
4 (Ti)) respe-tively when κ tends to in�nity. In other words, by making κ tend to in�nity, we admit that itis possible to extrat the KL expansion of Ĉi. Even if no numerial example has been found toontradit them, these onvergene properties have not been proven yet in the general ase.Therefore, if ZTi

1 and ZTi
j+1 are unorrelated, the omponents of Lm(Ti) are equal to zero.On the ontrary, if ZTi

1 and ZTi
j+1 are orrelated, these limit funtions are not equal to zero, andit is assumed that the �rst elements of these limit funtions allow us to identify the shapes of thetrak irregularities that are the most orrelated to the omponent km(Ĉi) of the KL expansionof Ĉi. 140
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Figure 6.14: Correlation analysis between the shapes of the trak irregularity and Ĉ1.Based on the ν former simulations, for 1 ≤ i ≤ 4, the mean values and the three �rsteigenfuntions assoiated with ZTi when κ tends to in�nity are shown in Figures 6.14, 6.15,6.16 and 6.17. From these graphs, as expeted, it an be seen that the extreme values of thevertial and transverse aelerations of the train oahes are mostly orrelated to the vertialand horizontal alignment irregularities respetively. More interesting, these �gures show thatthe extreme values of the transverse wheel/rail fores and the Y/Q ratio are not due to ahigh value of one trak irregularity but seem to be orrelated to a ombination of the fourtrak irregularities. Indeed, from the mean value and the �rst eigenfuntions assoiated with
ZT3 and ZT4 , it appears that the high values of Ĉ3 and Ĉ4 oinides with a short-wavelengthosillation of the trak irregularities, in whih the sign of the gauge irregularity is opposite tothe sign of the three other trak irregularities. The fat that this wavelength orresponds to thefrequeny of highest energy for the transverse movement of the bogie lays stress on the strongdependenies between the trak irregularities and the train responses. In the same manner, itould be interesting to �nd out the reasons of the presene of translated replia for the highvalues of Ĉ3 and Ĉ4 in the seond and third limit funtions.6.6 ConlusionsA method to propagate the trak geometry variability through railway mehanial simulationsis nowadays of great interest. In this hapter, a stohasti model for the trak-vehile systemhas therefore been presented. Based on a given desription of the trak design, on a normalizedmodel of a high speed train, on two rail and wheel pro�les, and on the stohasti modelingof the trak geometry developed in Chapter 5, this model allows the analysis to be arriedout onerning the in�uene of the variability of the trak irregularities on the train dynamis.The apability of this stohasti modeling to generate running onditions that are realisti and141
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Figure 6.15: Correlation analysis between the shapes of the trak irregularity and Ĉ2.
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Figure 6.16: Correlation analysis between the shapes of the trak irregularity and Ĉ3.142
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Figure 6.17: Correlation analysis between the shapes of the trak irregularity and Ĉ4.representative of the quality of a measured railway network has been validated from on-trakmeasurements.Five quantities of interest have then been introdued to haraterize the train dynami re-sponse, whih orrespond to lassial railway omfort and safety riteria. The statistial prop-erties of these dynami riteria have moreover been identi�ed using a Monte-Carlo approah.Three appliations of the whole method have thus been presented. The �rst one ompares thein�uene of the trak design and the trak irregularity variability. The seond one analyzes theimpat of an inrease of the speed on the train stability, whereas the third one shows to whatextent suh an approah ould be used to ompare ompetitive high speed trains with respetto their response on a set of representative trak onditions.Finally, it has been underlined that the strong nonlinearity of the trak-vehile system andthe high dependenies between the four trak irregularities prevent us from identifying lear-ut relations between the �ve onsidered dynami riteria and the trak irregularities. In thisontext, an original method based on the saled expansion has been presented to open newways to identify the ombined shapes of the trak irregularities that ould lead high values ofthe onsidered riterion to be obtained.
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Conlusions and prospetsSummary of the industrial ontextFor years, the use of simulation in the railway ommunity has been limited to a qualitativeanalysis approah. Numerial models have therefore been developed for allowing a better un-derstanding of the physial phenomena. Due to inreasing available omputational resoures,and to a series of breakthroughs in the solving of nonlinear equations and in the modeling ofomplex mehanial systems, simulation nowadays beomes more and more preditive. Hene,simulation annot only be used to explain the experiments, but is expeted to omplete them,and sometimes to replae them.The possibilities of a preditive simulation are huge. In a erti�ation and oneptionprospet, it ould indeed be used to quantify the stability and the safety assoiated with futuretrains. In a maintenane prospet, it ould moreover allow us to evaluate the onsequenes ofmodi�ations of the running onditions, and to optimize the maintenane poliies.For a railway simulation to be preditive, the mehanial models of the train, of thewheel/rail ontat and of the trak geometry have to be fully validated from experimentalmeasurements, and the simulations have to be raised on realisti and representative sets ofexitations. For the last deades, inreasing the modeling preision has been the main priority.Many e�orts have therefore been made for the modeling and the identi�ation of the parametersof real and omplete trains. In the same manner, real rail and wheel pro�les have been usedto ompute the wheel/rail ontat properties. Hene, the omparison between simulated andon-trak measured train responses is urrently possible. Although not perfet, these determin-isti models seem to give very promising results in a large band of frequenies. These modelsof the train and of the ontat being strongly nonlinear, the dynami behavior of trains hasnevertheless to be haraterized not from a single simulation but from a set of simulations thatis representative of all the running onditions that the train is likely to be onfronted to duringits lifeyle. A partiular attention has thus to be paid to the haraterization of the trakgeometry variability, whih represents the main soure of exitation of the train dynamis.From a general point of view, the trak geometry an be seen as the sum of a mean linedesription (whih is hosen one for all at the building of a new line) and a deviation fromthis mean position, whih keeps evolving due to the train dynamis and to environmentalstresses. Four trak irregularities are generally introdued to haraterize this deviation, whihare the lateral and vertial o�set irregularities, X1 and X2, and the ross-level and the gaugeirregularities, X3 and X4. These four trak irregularities an therefore be seen as a four-dimension random �eld, X = (X1,X2,X3,X4), for whih omponents are strongly dependent.This thesis has therefore been motivated by the need for numerial methods to identify thestatistial properties of this random �eld, as well as to propagate the trak variability throughthe railway system model.
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Sienti� and industrial ontributionsSine 2007, the trak irregularities of the Frenh high speed lines are regularly measured, tode�ne a very useful database for the analysis of the trak variability. The analysis of theseexperimental data has however emphasized that, due to the spei� interation between thetrain and the trak irregularities, random �eldX is neither stationary nor Gaussian, whih raisesmany di�ulties. Under a loal-global hypothesis, whih has been justi�ed from a onvergeneanalysis, this database an however be deomposed as a �nite set of independent realizations oftrak irregularity random �eld X . Hene, this thesis deals with numerial methods to identifyin inverse the statistial properties of non-stationary and non-Gaussian random �elds from a�nite set of independent realizations. The hosen methods are based on a double expansionpresented hereinafter.The �rst step of these methods is a trunated spatial expansion, suh that random �eld Xan be approximated as a �nite sum of weighted spatial funtions, where the weights are theomponents of the random vetor η, and are a priori dependent. This work has thus proposedontributions in the �eld of the identi�ation of optimal projetion families to ondense andredue the statistial dimension of X while guaranteeing an aeptable level of auray. Basedon the lassial Karhunen-Loève (KL) expansion, these developments have been motivated bytwo main reasons. First, as the maximal available information about the trak irregularityrandom �eld is a �nite set of independent realizations, the ovariane funtion of X, on whihthe KL expansion (and more preisely the Fredholm eigenvalue problem) is based, is unknownand an only be approximated. Although the KL projetion basis is optimal in the sense thatit minimizes the total mean-square error assoiated with X, there is no reason for the KL basisassoiated with the approximation of the ovariane funtion of X to be still optimal. When thenumber of available realizations is moreover very small ompared to the stohasti dimension ofthe random �eld, as it is the ase for the trak irregularity random �eld, X, it has been shownthat the relevane of suh projetion basis an be very limited. In this prospet, an originalmethod based on an optimization problem over the operator on whih the Fredholm problem issolved has been introdued. Then, it has been underlined that minimizing the total mean-squareerror assoiated with X amounts to haraterizing in priority the omponents of X that havethe highest signal energy, even if their role on the train dynamis is low. An innovative saledexpansion has thus been proposed in this work, in order to redue this bias and to minimizethe maximal value of the errors assoiated with eah omponent of X. The interests broughtby these two adaptations of the lassial KL expansion in terms of error redution have thenbeen illustrated on simple examples as well as on the trak irregularity ase.One the optimal projetion family for X has been identi�ed, haraterizing X amounts toidentifying the multidimensional distribution of random vetor η, for whih a set of independentrealizations an be dedued from the realizations of X. To this end, this work foused onthe Polynomial Chaos Expansion (PCE) method, whih is one of the urrently most promisingmethod to identify in inverse the distribution of non-Gaussian random vetors from independentrealizations. This method is based on the projetion of η on a polynomial basis of its probabilityspae. In suh a projetion, the polynomial basis is random, but its distribution is hosen andknown, whereas the projetion oe�ients are deterministi but unknown. This sum, whih isin�nite in theory, has then to be trunated, and the trunation has to be justi�ed aording toa onvergene analysis. One a given trunated projetion family has been hosen, the �niteset of oe�ients has �nally to be identi�ed to ompletely haraterize the distribution of η. Agood approah to identify suh oe�ients is to searh them as the arguments that maximize145



the likelihood of η at its available realizations. The likelihood funtion being not onvex, it hasbeen shown in this work that the solving of this optimization problem an be arried out usinga random searh algorithm based on the generation of retangular matries under orthogonalityonstraints.In the ase of a trak, the train being very sensitive to the trak irregularities on a large fre-queny band, a large number of projetion funtions are needed for the approximated projetionof X to be aurate from the train response point of view, suh that the dimension of η is veryhigh. In suh high dimensions, two adaptations of the lassial formulation have therefore beenpresented to give relevant results. On the �rst hand, original iterative algorithms have beenproposed to optimize the trials of these projetion matries under orthogonality onstraints. Onthe seond hand, a method to numerially stabilize the matrix of realizations of the statistialpolynomial basis has been introdued, to allow more relevant onvergene analysis. The possi-bilities opened by these two adaptations have also been illustrated on aademial examples andon the trak irregularity ase.One the spatial projetion family and the statistial projetion oe�ients have been iden-ti�ed from the available trak database, the multidimensional distribution ofX is haraterized,and it is possible to generate quikly and easily independent realizations of X. Coupled to apartiular trak design, these realizations allow the de�nition of realisti running onditions,whih are representative of the quality of the measured railway network. The trak generatoran �nally be used in any railway software to investigate the in�uene of the trak variabilityon the train dynamis.In this prospet, the multibody ommerial software Vampire has been used to ompute thedynami responses of high speed trains on generated trak geometries. After having shown thatthe simulated response of high speed trains on generated traks was similar to the measuredresponse of the same trains on measured traks, this work analyzed the in�uene of the trakvariability on two omfort riteria, two safety riteria and a wear riterion. These studiesunderlined the high nonlinearity of the trak/vehile system, and quantify the in�uene ofmodi�ations of the running onditions and to evaluate and ompare the stability and theaggressiveness of several high speed trains.Disussion and perspetivesSienti� prospetsThe appliation of the Karhunen-Loève expansion ombined with the PCE approah to themodeling of the trak irregularity random �eld revealed the important potential of suh methodsto identify in inverse the distribution of multivariate, non-Gaussian and non-stationary random�elds in very high dimensions, but also emphasized some limitations that are listed hereinafter.Redution of the omputational time assoiated with the identi�ation of the op-timal projetion family. When onfronted to multivariate random �elds X that are har-aterized by a set of ν independent realizations, the method proposed to identify the optimalbasis is established on three interloked omputational loops.
• The �rst one deals with the identi�ation of the optimal value of the weight matrix [α],de�ned by Eq. (2.40). Let Nα be the number of values for [α] that are onsidered in thissolving. 146



• Seondly, for eah value of [α], the optimal value for the saling vetor O, introdued inSetion 4.2.2, is searhed to minimize the maximal value of the errors assoiated with eahomponents of X. In the same manner, let NO be the number of evaluations of O thatare required to reah a targeted error.
• Then, for eah value of [α] and O, a method to evaluate the representativeness errorassoiated with the onsidered projetion family is needed. In this work, it has thereforebeen shown that this error an be omputed from a Leave-One-Out (LOO) approah. Asshown in Setion 2.3.3, this method is nevertheless based on the solving of ν Fredholmeigenvalue problems.Finally, the entire identi�ation method requires the solving of Nα × NO × ν Fredholmproblems. In this prospet, spei� algorithms have been used in this work to redue Nαand NO, and to speed up the solving of the Fredholm eigenvalue problems assoiated withthe evaluation of the LOO error. First, a dihotomy-based algorithm has been proposed for theidenti�ation of [α], as it allowed the identi�ation of very aurate results in a very few numberof iterations for the analyzed appliations. The onvexity of this problem over [α] has howevernot been proved in the general ase, whih ould be an interesting prospet of the proposed work.If the onvexity property is veri�ed, it is expeted that more advaned algorithms ould be usedto speed up this optimization step. In the same manner, an innovative iterative algorithm hasbeen proposed to identify aurate solutions from a very limited number of iterations, whih isdenoted by NO. One again, the proof of the onvergene of suh an iterative algorithm in thegeneral ase is missing. This algorithm is moreover based on two parameters, τ and γ (see Eq.(2.51)), whih play a major role on the onvergene speed. In this manusript, two values havebeen proposed, whih stem from a quik parametri analysis. The optimization of these valuesonstitutes another diretion to minimize the total omputational ost. At last, keeping inmind that omputing the LOO error assoiated with any projetion family amounts to solvinga series of slightly modi�ed eigenvalue problems, it was notied that iterative methods, suh asthe subspae iteration methods [85℄, helped us to redue drastially the omputational time,espeially when onfronted to very high dimensional ases. Further developments in the �eld ofthese e�ient identi�ation methods would thus be of a great interest.More gains an also be expeted from the de�nition of rejetion proedures in all these loops(for instane, if the solving of the �rst Fredholm problems, assoiated with given values for [α]and O, seems to indiate non-satisfatory results, we diretly move to other values for them),but also in the de�nition of e�ient identi�ation methods for the ouple ([α],O) instead ofone for [α] and one for O.Appliation of the deomposition method to the PCE identi�ation. The identi�-ation of the PCE for very high dimensional random vetors is also very time onsuming. Asa random searh method has been proposed to identify these PCE oe�ients, the preision ofthe results is ompletely driven by the available omputational resoures, as the more elementswe try, the more hane we have to �nd aurate values. Even if suh random-searh algorithman easily be distributed on several omputers, it is important to optimize the trials. In thisontext, the advantages of a method based on a line-by-line identi�ation has been shown inSetion 3.2. The most time-onsuming step of the numerial appliation of this method is theomputation of the multidimensional likelihood at the available experimental points. Indeed,the omplexity of the evaluation of this quantity, whose expression is given by Eq. (1.60), is

M × ν × νchaos, where ν is the number of available measurements, M is the dimension of theonsidered random vetor, that we denote by η = (η1, . . . , ηM ), and νchaos is the number of147



independent realizations on whih the omputation of the multidimensional PDF of the PCEapproximation of η, ηchaos, is based. The hoie for νchaos is thus very dependent on the valueofM , as the higherM is, the more independent realizations νchaos we need to evaluate the PDFof ηchaos from a nonparametri approah. In this prospet, we believe that the appliation ofdeomposition methods for the PCE identi�ation ould lead to onsiderable improvements interms of ost-e�ieny. In other words, if η(q), 1 ≤ q ≤ Q, refer to M/Q-dimension randomvetors suh that η =
(
η(1), . . . ,η(Q)

), we think that it ould be interesting to searh the PCEof η from the aggregation of the Q PCE of η(q). Indeed, the dimension of η(q) being muhsmaller, the assoiated number νchaos of generated realizations at eah evaluation step ould bedrastially redued.In suh an approah, the de�nition of methods to perform suh an aggregation is howeveran opened subjet.Need for innovative methods to ompare the statistial properties of two sets ofindependent realizations in very high dimension. To haraterize the distribution ofthe trak irregularity random �eld, whih was the initial goal of the thesis, we �nally had toidentify the distribution Pη of a 2, 000-dimension random vetor, η, while the maximal availableinformation about this random vetor was a �nite set of almost 500 independent realizations.More preisely, the ability of generating independent realizations of η was as important as theidenti�ation of Pη.Hene, being onfronted to suh very high dimensional problems with so little information,we do not pretend to be able to identify exatly Pη, but propose a method to searh its bestreahable approximation. In the same manner, we don't laim to be able to generate newrealizations of η, but try to generate sets of independent realizations that have the loseststatistial properties to the available set of measurements.In this ontext, the PCE approah presents many advantages to fae this hallenge of the highdimension. First, it is very general, in the sense that whatever the dimension is, no subjetiveassumption is needed. It seems moreover partiularly able to take advantage of the inreasingomputational resoures, as the relevane of the results inreases with the number of testedtrials. At last, one the projetion oe�ients are identi�ed, the generation of independentrealizations of the PCE approximation, ηchaos(N), of η is quik and very easy.However, even in this favorable ase, where it is possible to generate as many realizationsof ηchaos(N) as needed, the relevane of ηchaos(N) remains di�ult to evaluate. The numberof realizations of η being still small, it is still di�ult to ompare the dependenies assoiatedwith the omponents of η and the ones assoiated with the omponents of ηchaos(N). Statistialtests and likelihood-based methods to ompare these sets are indeed ompletely useless in suhhigh dimensions.The fat that this random vetor is to be used in a very omplex and nonlinear mehanialproblem is however an interesting opportunity to ompare η and ηchaos(N). Indeed, if themehanial problem makes use of the dependenies between the omponents of η, it should bepossible to quantify the distane between the multidimensional distributions of η and ηchaos(N),by omparing the outputs of this problem that orrespond to η on the �rst hand, and to
ηchaos(N) on the seond hand. In this ontext, in Setion 3.4.3, an original method to omparethe dependenies between η and ηchaos(N) in very high dimension has been proposed. Thismethod is based on the generation of a series of random �elds, whih are written as weightedsums of randomly hosen spatial funtions, while the weights are the omponents of η and
ηchaos(N). By generating large sets of these funtions, and by omparing these random �eldson quantities that an atually be evaluated (the number of uprossings for instane), it ispossible to investigate the apability of ηchaos(N) to represent the dependenies between the148



omponents of η.At last, it is believed that the de�nition of problems that are more spei� and more adaptedto the dependeny struture of η ould help us to onstrut methods to preisely evaluate thequality of PCE approximations in very high dimension.Saled expansion and shape orrelations. In Setion 6.5.2, an innovative sensitivitymethod based on the KL expansion has been proposed to analyze the orrelation betweenan output funtion and a multivariate input funtion. Applied to a series of mehanial sys-tem, this method seems to give very promising results. In a validation prospet, analyzing thetheoretial basis of this method is however an open topi.Model updating. As the measurement train IRIS 320 ontinuously monitors the trak geom-etry, the number of experimental data for the trak geometry modeling progressively inreaseswith respet to time. As a onsequene, the number of independent realizations of the trak-geometry random �eld X is likely to inrease. From a prior stohasti modeling of X that isbased on an original set of realizations, methods to identify updated modelings of X that takesinto aount new available realizations of X would be very interesting. To this end, the reentadaptations of the Bayes theorem to the PCE seem to be very promising (see [50℄ and [86℄ forfurther details about these adaptations), and it would be worth applying them on the trakgeometry, whose dimension is very high.Industrial prospetsThe stohasti modeling of the trak geometry opens many opportunities in terms of erti�a-tion, optimization of the railway system and minimization of the maintenane osts. In orderto extend the domain of appliation of this modeling, a series of omplementary developmentsould be arried out as explained below.Evaluation of the global quality of several railway networks with respet to thetrain dynamis. The stohasti modeling of the trak geometry we propose is only basedon the measurements of the trak geometry of a given railway network. From the loal-globalapproah, these measurements an then be sorted with respet to the trak design in sets of trakportions of same length S. For eah of these sets, one the spatial and statistial expansionshave been ahieved, it is possible to generate as many trak onditions as needed to evaluatethe stability and the aggressiveness assoiated with eah train that ould run on this network.Reiproally, suh a method an diretly be used to ompare the global quality of severalhigh speed lines from the train response point of view. Indeed, one the trak generator as-soiated with a series of railway networks have been omputed, sets of trak onditions thatare representative of their qualities an be generated. Railway simulations an then be arriedout from these realisti running onditions, suh that the quality of the di�erent networks an�nally be ompared by analyzing the assoiated distributions of omfort and safety riteria.Quanti�ation of the degradation of the trak quality due to the train dynamis.In Setion 6.5.2, the strong dependenies between the train dynamis and the trak irregularitieswere pointed out. Many informations about the train mehanial properties ould indeed befound bak by analyzing the wavelengths of the trak irregularities, or by analyzing the mostfrequent positions for the damaged trak setions. Modeling the oupling between the traindynamis and the time evolution of the trak irregularities is however still an open issue that149



was not treated in this work but that would require a partiular attention. Two di�erent pointsof view an be analyzed.On the �rst hand, if the trak geometry of a whole network is measured between twomaintenane operations at di�erent time steps t1, . . . , tN , a stohasti modeling of the trakgeometry for eah of these time step an be omputed. Therefore, it should be possible toevaluate the time evolutions of the distribution of the omfort and safety riteria, and thereforeto quantify the in�uene of the train dynamis on the global quality of the onsidered network.In the same manner, by ontinuously monitoring the evolution of the trak geometries, thein�uene of the runs of trains on the trak irregularities ould be evaluated.But muh more gain ould be expeted from a preditive oupling model. Indeed, if it ispossible to predit (from physial and/or statistial models) the future evolution of the trakgeometry due to the train dynamis, the ontinuous monitoring of the trak an not only beused to identify the trak setions that would ause the highest train responses, but should alsoindiate the trak portions that are still not dangerous but whih are the most likely to beomeritial if no maintenane operation is planned.Robust optimization. Based on the trak generator that was proposed in this work, it ispossible to onstrut huge sets of realisti trak geometries, whih would orrespond to trakonditions that the train an be onfronted to during its lifeyle. This trak stohasti modelingopens therefore new possibilities for the train manufaturers and train operators to optimizethe mehanial properties of trains with respet to their stohasti dynami response on thevariable trak geometry.External ommuniationsThe work ahieved in this thesis has given rise to a series of ommuniations, whih are listedhereinafter.Referred journal publiations
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AppendixA Proof of Lemma 2Using the notations of Setion 4.2, {ki(O), i ≥ 1
} de�nes a spatially orthonormal basis of

P(Q)(Ω). Autoorrelation funtion [RY Y (O)] an therefore be projeted on this basis, suhthat, by onstrution of the Karhunen-Loève basis:
[RY Y (O)] =

∑

i≥1

λi(O)ki(O)⊗ ki(O). (6.20)Let B =
{
bi, 1 ≤ i

} be another ountable basis of Hilbertian spae P(Q)(Ω), and F (M) ={
bi, 1 ≤ i ≤M

} be a M -dimension subset of B. For all i ≥ 1, f i an then be projeted on{
kj(O), j ≥ 1

}:
f i =

∑

j≥1

Pijk
j(O), Pij =

(
f i,kj(O)

)
. (6.21)Without loss of generality, family F an be supposed to be spatially orthonormal, as it anbe orthonormalized a posteriori without modifying the orresponding projetion error. FromEqs. (4.19), this yields:

1 =
(
f i,f i

)
=
∑

j≥1

∑

ℓ≥1

PijPiℓ

(
kj(O),kℓ(O)

)
=
∑

j≥1

P 2
ij . (6.22)Let Ỹ (M) be the projetion of random �eld Y = [Diag(O)]X on F (M):

Ỹ
(M)

=

M∑

i=1

f iCi, Ci =
(
Y ,f i

)
. (6.23)Random �eld X̃

(M) is thus introdued as:
X̃

(M)
= [Diag(O)]−1Ỹ

(M)
. (6.24)From Eqs. (6.20) and (6.23), for all M ≥ i ≥ 1, we get:

E
{
C2
i

}
=

∫

Ω2

(
f i(s)

)T
[RY Y (O, s, s′)]f i(s′)dsds′ =

∑

j≥1

λj(O)P 2
ij . (6.25)Therefore, from Eqs (6.22) and (6.25):
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M∑

i=1

(λi(O)−E
{
C2
i

}
) =

M∑

i=1

λi(O)
∑

j≥1

P 2
ij −

M∑

i=1

∑

j≥1

λj(O)P 2
ij

=

M∑

i=1

∑

j≥1

P 2
ij (λi(O)− λj(O))

=
M∑

i=1

∑

j≥M+1

P 2
ij (λi(O)− λj(O))

≥ (λM (O)− λM+1(O))
M∑

i=1

∑

j≥M+1

P 2
ij ≥ 0,

(6.26)
as by onstrution, for all j ≥ i, λj(O) ≤ λi(O). Moreover, it an be notied that, by de�nitionof matrix [Diag(O)], for 1 ≤ q ≤ Q:

E
{(
Xq − X̂(M)

q ,Xq − X̂(M)
q

)}
= E

{(
O−1

q

(
Yq − Ŷ (M)

q

)
, O−1

q

(
Yq − Ŷ (M)

q

))}

= O−2
q

∑

M+1≤i

λi(O)
(
kiq(O), kiq(O)

)
,

(6.27)where it is reminded that Ŷ (M) is the projetion of Y = [Diag(O)]X on K(M)(O) and X̂
(M)

=

[Diag(O)]−1Ŷ
(M). In the same manner:

E
{(
Xq − X̃(M)

q ,Xq − X̃(M)
q

)}
= E

{(
O−1

q

(
Yq − Ỹ (M)

q

)
, O−1

q

(
Yq − Ỹ (M)

q

))}

= O−2
q

∑

M+1≤i

E
{
C2
i

} (
f iq, f

i
q

)
.

(6.28)It an �nally be dedued from Eqs. (6.26), (6.27) and (6.28) that:
Q∑

q=1

O2
qN 2(Xq)ε

2
q

(
K(M)(O)

)
−

Q∑

q=1

O2
qN 2(Xq)ε

2
q(F (M))

=

Q∑

q=1

O2
q

[
E
{(
Xq − X̂(M)

q ,Xq − X̂(M)
q

)}
− E

{(
Xq − X̃(M)

q ,Xq − X̃(M)
q

)}]

=
∑

M+1≤i


λi(O)

Q∑

q=1

(
kiq(O), kiq(O)

)
− E

{
C2
i

} Q∑

q=1

(
f iq, f

i
q

)



=
∑

M+1≤i

[
λi(O)−E

{
C2
i

}]

=
M∑

i=1

[
E
{
C2
i

}
− λi(O)

]

≤ 0.

(6.29)
This result being true for all family F (M) in HM , family K(M)(O) is thus M -optimal for Xregarding error ∑Q

q=1O
2
q N 2(Xq) ε

2
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q cq ωqS/(2π) ℓq/S TqS/(2π)1 1 20% 20% 52 0.5 30% 25% 73 0.25 20% 35% 84 0.1 30% 40% 10Figure 6.18: Numerial values used in the de�nition of autoorrelation matrix [RXX ].B Generation of the matrix-valued autoorrelation matrixFor 1 ≤ p, q ≤ 4, matrix-valued autoorrelation funtion [RXX ] is hosen suh that:
[RXX(s, s′)]pq =

cpcq (1 + δpq)

2

200∑

k=1

√
λ
(p)
k λ

(q)
k d

(p)
k (s)d

(q)
k (s′), ∀(s, s′) ∈ [0, 1]2, (6.30)where for all 1 ≤ k ≤ 200:

∫ 1

0
hp(s, s

′)d(p)k (s′)ds′ = λ
(p)
k d

(p)
k (s), (6.31)

hp(s, s
′) = exp

(
−|s− s′|/ℓp

)
cos(ωp|s− s′|) cos(Tps), (6.32)

λ
(p)
k ≥ λ

(p)
k+1 > 0, (6.33)

(
d
(p)
k , d

(q)
k

)
= δpq. (6.34)The numerial values of vetors c = (c1, · · · , c4), ω = (ω1, · · · , ω4), ℓ = (ℓ1, · · · , ℓ4), T =

(T1, · · · , T4) are gathered in Figure 6.18. Several omments an be made about this formalism.
• Appliation (s, s′) 7→ hq(s, s

′) is not neessary positive-de�nite regarding the hosen nu-merial parameters, but only its 200 highest stritly positive eigenvalues, {λ(q)k , 1 ≤ k ≤ 200
},are onsidered.

• Couples {λ(q)k , d
(q)
k

} are solutions of the Fredholm problem assoiated with hq, but arenot solutions of the Fredholm problem assoiated with [RXX ].
• Coe�ient c2q an be related to the signal energy of Xq, suh that if cp > cq , N 2(Xp) >

N 2(Xq).
• Coe�ient 2π/ωq an be onsidered as a pseudo-wavelength for the mean-squared station-nary part of [RXX ]pq.
• Coe�ient ℓq an be seen as the auto-orrelation length of Xq.
• Coe�ient Tq is introdued as a perturbation for [RXX ]pq, suh that the smaller Tq is,the less mean-squared stationnary [RXX ]pq is.

155



C De�nition of the loal-global error funtionsIt is assumed that ν trak portions of same length L, {z(1), . . . ,z(ν)
}, have been olleted fromthe available measurements of the railway network of interest. For any value for S, ν new trakgeometries, {y(1)(S), . . . ,y(ν)(S)

}, of total length L, are then built from the onatenation oftrak subsetions of length S that have randomly been hosen in {z(1), . . . ,z(ν)
}.For (s, s′) in [0, L]2 and f ≥ 1/L, let (s, s′) 7→ [Rzz(s, s

′)], (s, s′) 7→ [Ryy(s, s
′, S)], f 7→ Σz(f)and f 7→ Σy(f, S) be the following quantities:

[Rzz(s, s
′)] =

1

ν

ν∑

n=1

z(n)(s)z(n)(s′)T , (6.35)
[Ryy(s, s

′, S)] =
1

ν

ν∑

n=1

y(n)(s, S)y(n)(s′, S)T , (6.36)
Σz =

√√√√1

ν

ν∑

n=1

PSD
(
z(n)

)
, Σy(S) =

√√√√1

ν

ν∑

n=1

PSD
(
y(n)(S)

)
, (6.37)where PSD (z) = (PSD(z1), . . . , PSD(zP )) is the power spetral density estimation of any RP -valued funtion z = (z1, . . . , zP ). For any value of S in [0, L], errors err2cov(S) and err2spect(S),whih have been introdued in Setion 5.2.2 are then de�ned by:

err2cov(S) = ‖[Rzz]− [Ryy(S)]‖2M / ‖[Rzz]‖2M , (6.38)
err2spect(S) = ‖Σz −Σy(S)‖2V / ‖Σz‖2V , (6.39)where, for all (P × P ) matrix-valued funtion [R], and for all RP -valued funtion Σ,

‖[R]‖2M =

∫ L

0

∫ L

0
Tr
(
[R(s, s′)][R(s, s′)]T

)
dsds′, (6.40)

‖Σ‖2V =

∫ +∞

1/L
Σ(f)TΣ(f)df. (6.41)Hene, on the �rst hand, err2cov(S) orresponds to a ovariane error. On the other hand,

err2spect(S) an be seen as a spetral error, whih haraterizes the impat of S on the frequenyontent of the trak irregularities.
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