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Introdu
tion and obje
tivesIndustrial obje
tivesHigh speed trains are 
urrently meant to run faster and to 
arry heavier loads, while beingless energy 
onsuming and still ensuring the safety and 
omfort 
erti�
ation 
riteria. In orderto optimize the 
on
eption of su
h high te
hnology trains, we need a pre
ise knowledge of therealm of possibilities of tra
k 
onditions that the train is likely to be 
onfronted to during itslife 
y
le.In parallel, sin
e 2012, European high speed railway networks are meant to have goneto market. Several high speed trains, su
h as ICE, TGV, ETR 500..., for whi
h me
hani
alproperties and stru
tures are di�erent, are likely to run on the same tra
ks, whereas they mayhave been originally designed for spe
i�
 and di�erent railway networks. European high speedrailway networks are therefore bound to be subje
ted to an in
reasing variability of me
hani
alloads. To optimize the tra
k maintenan
e and to adjust the tolls a

ording to the aggressivenessof a parti
ular train toward the tra
k, a better understanding of the intera
tion between thetrain dynami
 behavior and the tra
k geometry is ne
essary.Simulation is a very useful tool to fa
e these 
hallenges. However, it has to be very repre-sentative of the physi
al behavior of the system. The models of the train, of the railway tra
k,and of the wheel/rail 
onta
ts have thus to be fully validated and the simulations have to beraised on realisti
 and representative sets of ex
itations.Hen
e, based on experimental measurements, a 
omplete parametrization of the tra
k ge-ometry and of its variability would be of great 
on
ern to analyze the 
omplex link between thetrain dynami
s and the physi
al and statisti
al properties of the tra
k geometry.S
ienti�
 obje
tivesFrom a s
ienti�
 point of view, a railway simulation 
an be seen as the dynami
 response of a
omplex me
hani
al system ex
ited by a multivariate random �eld, for whi
h statisti
al proper-ties are only known through a set of independent realizations. Due to the spe
i�
 intera
tionsbetween the train and the tra
k, this random �eld is neither stationary nor Gaussian.In order to propagate the tra
k geometry variability to the train response, methods toidentify in inverse, from a �nite set of experimental data, the statisti
al properties of non-stationary and non-Gaussian random �elds will be analyzed in this manus
ript.The train behavior being very nonlinear and very sensitive to the tra
k geometry, the random�eld has to be des
ribed very pre
isely from frequen
y and statisti
al points of view. As a result,the statisti
al dimension of this random �eld is very high. Hen
e, a parti
ular attention willbe paid in this thesis to statisti
al redu
tion methods and to statisti
al identi�
ation methodsthat 
an be numeri
ally applied to the high dimensional 
ase.8



State of the artThe general s
heme for probabilisti
 analysis is usually divided in three steps (see [1, 2, 3℄ forfurther details). First, the me
hani
al model and the asso
iated input parameters and output
riteria (safety 
riteria for instan
e) have to be de�ned pre
isely. Then, the di�erent sour
es ofun
ertainty have to be identi�ed and modeled 
arefully. At last, the input un
ertainty has to bepropagated through the deterministi
 model, in order to 
hara
terize the statisti
al propertiesof the output quantities of interest.These three steps are rapidly des
ribed hereunder for the studied railway system.Me
hani
al model. In this work, the rea
tions of trains ex
ited by the tra
k geometrythrough the spe
i�
 wheel/rail 
onta
ts are studied. Three kinds of inputs are therefore neededin su
h simulations:
• the vehi
le model. Multibody simulations are usually employed to model the train dy-nami
s (see [4℄). Carbodies, bogies and wheelsets are modeled by rigid bodies linkedwith 
onne
tions represented by rheologi
 models (damper, springs, ...). This leads us toseveral hundreds of degrees of freedom.
• the tra
k model. A double s
ale parametrization is usually introdu
ed to des
ribe thetra
k geometry (see [5℄): ea
h rail position is 
hara
terized by a mean-line position, whi
honly depends on the verti
al and horizontal 
urvatures, on the tra
k super-elevation andthe tra
k gauge of the tra
k, and by a deviation towards this mean-line position, whi
h
an be des
ribed by four 
urvilinear irregularity �elds. While the mean position is de
idedon
e for all at the building of a new line, the tra
k irregularities 
an evolve with respe
tto the tra
k substru
ture, to the weather 
onditions and to the train dynami
s. Seven
urvilinear �elds are needed to 
ompletely 
hara
terize the positions of the two rigid rails.
• the wheel/rail 
onta
t model. The wheel/rail 
onta
t for
es are 
omputed for any positionof the train from the wheel and the rail pro�les thanks to the Hertz and Kalker theories([6, 7℄). The 
onta
t properties are moreover generally re
orded in a 
onta
t table.Given these three inputs, the train response 
an be 
omputed as the solution of a system of
oupled equations that are strongly nonlinear. This system is usually solved with an expli
its
heme. On
e these equations have been solved, the spatial a

elerations of ea
h mass body,as well as the internal and external loads are available. These railway outputs 
an then bepost-pro
essed to de�ne safety, 
omfort and maintenan
e 
riteria.In this work, the 
ommer
ial 
ode Vampire is used to solve these equations. The movementequations of the railway dynami
s are thus not available. Moreover, the duration of a wholerailway simulation over a length of 5km is approximately 120 se
onds on a standard 
omputer.Un
ertainty quanti�
ation. Several sour
es of un
ertainty 
an be 
ategorized:
• Model un
ertainty. In ea
h model, simplifying hypotheses are introdu
ed. In the studiedsystem, the rigid body modeling of the train and the Hertz formulation for the wheel/rail
onta
t are two examples of su
h model simpli�
ations.
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• Parameter un
ertainty. The 
hosen model to des
ribe the 
onsidered system is generallybased on parameters, for whi
h exa
t values are unknown and 
annot exa
tly be exper-imentally measured. For instan
e, the total mass of a train is, in pra
ti
e, impossible topre
isely evaluate.
• Parameter variability, whi
h 
omes from the physi
al variability of the input parameters ofthe model. Example is the train suspensions, for whi
h the pro
ess of manufa
turing leadsus to me
hani
al 
hara
teristi
s that are not exa
tly as designed su
h that the performan
e
an vary from one suspension to another one.
• Algorithmi
 un
ertainty, whi
h 
omes from numeri
al approximations. In the railway�eld, this un
ertainty 
omes mostly from the time dis
retization in the expli
it solver ofthe movement equations. A 
onvergen
e analysis has thus to be performed to 
hoose arelevant time step.
• Measurements un
ertainty. Experimental data are images of the reality, for whi
h biaseshave to be minimized as mu
h as possible.Due to these un
ertainties, dis
repan
ies will always be observed when 
omparing the mod-eled and measured deterministi
 responses of a train. On the 
ontrary, sto
hasti
 models, whi
hwould be able to take into a

ount these un
ertainties, should lead to a better representationof the behavior of the system. This explains the very high interest for these methods that havespread for the last de
ades to most of the s
ienti�
 �elds.Some spe
i�
 �elds of the probability theory have therefore fo
used on parti
ular sour
esof un
ertainty. First, the methods based on Information Theory and on the Maximal Entropyprin
iple (see [8℄ and [9℄) have been 
ontinuously improved to always better 
hara
terize theparameter un
ertainty and variability from the only available and usable information. In thesame manner, the use of methods based on the Bayesian method (see [10, 11, 12℄) has keptin
reasing to update the input sto
hasti
 modeling in the light of new and relevant data. Then,when the movement equations of the system are available, non-parametri
 probability models(see [13, 14℄) have been introdu
ed to take into a

ount not only the input un
ertainty but alsothe model and algorithmi
 un
ertainties.In this work, it is supposed that a nominal model of a train is available, for whi
h me-
hani
al parameters are �xed and have been a

urately identi�ed. In the same manner, the
onta
t properties are 
omputed on
e for all from a new rail pro�le and a new wheel pro�le.Given a parti
ular des
ription of the tra
k geometry and these 
onta
t and vehi
le models, itis assumed that both the railway model and the numeri
al solving are su�
iently relevant toa

urately 
ompute the response of the system: the approximations introdu
ed in the 
ompu-tational s
heme are supposed to be 
ontrolled and the movement equations are assumed to bepre
ise enough to represent the physi
al phenomena.Hen
e, only the un
ertainty in the tra
k geometry is addressed in this thesis. In this prospe
t,this tra
k geometry will be seen as a multivariate random �eld. To identify this �eld, a set ofexperimental measurements of the tra
k geometry is used. It is assumed that the experimen-tal un
ertainties for these measurements are negligible, su
h that no distin
tion will be madebetween the tra
k measurements and the real tra
k geometry in the following. These measure-ments de�ne the maximal available information about the tra
k-geometry random �eld.Un
ertainty propagation and risk assessment. On
e the parameter un
ertainty andvariability have been 
hara
terized, the variability has to be propagated through the me
hani
al10



model. The 
hoi
e of the propagation method depends on the 
hosen variables of interest andon the 
omputational 
ost of the simulation. In this work, we will fo
us on the a

elerations ofthe train mass bodies and the loads between the train and the tra
k. We are moreover interestedin probabilities for these outputs to ex
eed normalized thresholds.Re
all that the railway me
hani
al is based on a very high number of variable input param-eters, that the train response is very sensitive, very non linear, and very fuzzy with respe
t tothese input parameters, that the movement equations are not available, and that the durationof one simulation is rather 
heap. The best method to 
ompute su
h probabilities of ex
eedingthresholds for these railway outputs is therefore the Monte Carlo (MC) method ([15℄). Indeed,the statisti
al 
onvergen
e of su
h a method depends neither on the dimension of the input, noron the 
omplexity and the nonlinearity of the me
hani
al model, and is parti
ularly adaptedto systems that are 
ontrolled by bla
k-box 
odes, that is to say, 
odes for whi
h movementequations are not available, as it is the 
ase here.In order to get a

urate results, mu
h attention has to be paid to the modeling of the inputvariability, as any error on the input will be propagated to the output. In addition, the MCmethod asks for the generation of sets of independent realizations of the input parameters. Asthis work fo
us on the tra
k geometry variability, methods to generate independent realisti
and representative tra
k 
onditions will be needed in this work.At last, based on this MC method, ea
h railway simulation gives a

ess to a parti
ularrealization of the time rea
tions of the tra
k. The risk assessment has therefore to be performedusing statisti
al methods based on sto
hasti
 pro
esses (see [16℄ for further details).Main s
ienti�
 and industrial 
ontributionsThe developments of this work were a
hieved to answer the four following questions.
• Virtual 
erti�
ation. How to develop a tra
k generator, whi
h would be able to generatetra
k 
onditions, whi
h are on the one hand realisti
 from a statisti
al, frequen
y anddynami
al point of view, and from the other hand representative of a measured set ofexperimental data? The numeri
al 
erti�
ation indeed requires a large set of representativetra
k 
onditions to 
apture rare events [3℄.
• Optimization of the system. How to propagate the tra
k geometry variability to thetrain dynami
al quantities of interest, whi
h are mostly lateral and verti
al a

elerationsand loads? The knowledge of the link between the tra
k variability and the response ofthe train 
ould indeed help us to propose optimized maintenan
e poli
ies.
• Railway �eld going to market. How to develop a method to evaluate and 
omparethe aggressiveness of several trains that would be likely to run on the same network?Four s
ienti�
 main s
ienti�
 
ontributions are summarized hereunder.1. The statisti
al dimension of the tra
k-geometry random �eld is very high, su
h that ad-van
ed redu
tion te
hniques will be needed to optimally 
ondense the statisti
al propertiesof the random �eld to be identi�ed. In parti
ular, the importan
e of the Karhunen-Loève(KL) expansion will be analyzed in detail in this work.11



2. The available information about the tra
k-geometry random �eld is very redu
ed 
omparedto its statisti
al dimension. The statisti
al moments of this random �eld, su
h as theempiri
al estimators of the mean fun
tion or the 
ovarian
e operator, on whi
h the KLexpansion is based, are not 
onverged. A method to adapt the KL formulation to thiskind of problems will thus be proposed in this thesis.3. The tra
k-geometry random �eld is multivariate, and its di�erent 
omponents are verystatisti
ally dependent. A ve
torial approa
h has therefore to be 
onsidered in orderto a

urately take into a

ount the dependen
ies between these di�erent 
omponents ofthe tra
k-geometry random �eld. Moreover, the amplitudes of these 
omponents aredi�erent and their importan
es on the dynami
al quantities are a priori unknown. Another adaptation of the 
lassi
al KL expansion has thus to be introdu
ed in order toidentify a redu
ed basis that allows the des
ription of ea
h 
omponent of the random �eldof interest with the same pre
ision.4. Due to the spe
i�
 intera
tion between the train and the tra
k, the tra
k-geometry random�eld is neither stationary nor Gaussian, su
h that a parti
ular attention has to be paidto the identi�
ation of the multidimensional distribution of the 
oe�
ients of the random�eld on the redu
ed proje
tion basis. Due to the 
omplexity of the random �eld to bemodeled, these 
oe�
ients de�ne a very high dimension random ve
tor. To this end, anadaptation to the very high dimension of the identi�
ation in inverse methods based on apolynomial 
haos expansion will be presented in this work.Outline of the thesisFrom these obje
tives, the do
ument is organized in six 
hapters that are now presented.Chapter 1 
ontains a review of well-known methods for random �eld identi�
ation and gen-eration. In parti
ular, the Karhunen-Loève (KL) expansion and the polynomial 
haos expansion(PCE) identi�
ation in inverse will be presented in detail.The next 
hapters are devoted to the author 
ontributions in the �eld of un
ertainty propa-gation. Chapter 2 deals with the adaptation of the KL method to 
ases for whi
h the maximalavailable information about the random �eld to identify is limited to a �nite set of independentrealizations.Chapter 3 addresses the adaptation of the polynomial 
haos expansion identi�
ation methodsto the very high dimensional 
ase.Chapter 4 presents an original s
aled KL expansion for the analysis of ve
tor-valued random�elds.Chapter 5 
onsiders the appli
ation of the theoreti
al developments of Chapters 2, 3 and 4to identify, in inverse, from experimental data, the statisti
al properties of the tra
k-geometryrandom �eld.At last, Chapter 6 shows in what extent su
h a sto
hasti
 modeling of the tra
k geometryopens new opportunities for the railway �eld in 
erti�
ation, maintenan
e, and safety prospe
ts.General theoreti
al frame and 
orresponding notationsThis se
tion aims at summarizing the main notations that will be used in this manus
ript.
• R denotes the set of real numbers.
• N is the set of positive integers. 12



• Ω ⊂ R refers to a subset of R.
• (Θ,T ,P) is a probability spa
e.
• E [·] is the mathemati
al expe
tation.
• H = L2

P
(
Θ,RM

) is the spa
e of all the se
ond-order random ve
tors de�ned on (Θ,T ,P)with values in RM , equipped with the inner produ
t 〈., .〉:
〈A,B〉 =

∫

Θ
AT (θ)B(θ)dP (θ) = E

[
ATB

]
, ∀ A,B ∈ L2

P
(
Θ,RM

)
. (1)

• P(Q)([0, S]), where S < +∞, is the spa
e of all the se
ond-order RQ-valued random �elds,indexed by the 
ompa
t interval [0, S].
• For Q ≥ 1, X = (X1, . . . ,XQ) = {(X1(s), . . . ,XQ(s)) , s ∈ [0, S]} is in P(Q)([0, S]).
• Let H = L2([0, S],RQ) be the spa
e of square integrable fun
tions on [0, S], with valuesin RQ, equipped with the inner produ
t (·, ·), su
h that, for all u and v in H,

(u,v) =

∫

[0,S]
u(s)Tv(s)ds. (2)

• ‖·‖P(Q)([0,S]) denotes the L2 norm in P(Q)([0, S]), su
h that:
‖X‖2P(Q)([0,S]) = E

[∫

Ω
X(s)TX(s)ds

]
, X ∈ P(Q)([0, S]). (3)

• δmp is the krone
ker symbol that is equal to 1 if m = p and 0 otherwise.
• Tr [·] is the tra
e operator for square matri
es.
• a, b 
orrespond to 
onstants in R.
• a, b refer to ve
tors with values in RQ, Q ≥ 1.
• × is the ve
torial produ
t between ve
tors.
• aT is the transpose of a.
• ⊗ is the tensorial produ
t su
h that a⊗ b = abT .
• A, B 
orrespond to random variables with values in R.
• A, B denote random ve
tors with values in RQ, Q ≥ 1.
• [A], [B] refer to real matri
es.
• ‖·‖F is the Frobenius norm of matri
es.
• PA and pA denote respe
tively the multidimensional probability distribution and themultidimensional Probability Density Fun
tion (PDF) of random ve
tor A.
• If random ve
tor A is of se
ond order, we denote by µA and [RAA] the mean and the
ovarian
e matrix of A respe
tively. 13



• (s, s′) 7→ [RXX(s, s′)] 
orresponds to the matrix-valued 
ovarian
e fun
tion of X, su
hthat for all s, s′ in Ω, [RXX(s, s′)] = E [(X(s)− E [X(s)])⊗ (X(s′)− E [X(s′)])].
• When Q = 1, P(1)(Ω), X and [RXX ] are written P(Ω), X and RXX respe
tively for thesake of simpli
ity.
• F (M) denotes a subset of H that gathers M fun
tions with values in RQ that are de�nedon Ω.
• X̂

F(M) refers to the proje
tion of X on the subspa
e spanned by F (M).

14



Chapter 1Short review of the methods formodeling random �elds1.1 Introdu
tionAs presented in Introdu
tion, the goal of this work is to quantify the in�uen
e of the tra
kgeometry variability on the train dynami
al responses. A good approa
h to take into a

ountthis input variability is to 
onsider the tra
k geometry as a multivariate random �eld. It hasmoreover been shown that the most appropriate method to propagate the tra
k variabilitythrough the me
hani
al model is the Monte Carlo (MC) method. For su
h a method to beimplemented, one has therefore to be able to generate independent realizations of this tra
k-geometry random �eld. Due to the spe
i�
 intera
tions between the train and the tra
k, thisrandom �eld is neither Gaussian nor stationary. In this prospe
t, several existing methods toidentify and generate non-Gaussian random �elds are addressed in this 
hapter. More pre
isely,this 
hapter des
ribes in detail the method on whi
h the sto
hasti
 modeling of the tra
kgeometry will be based in the next 
hapters, whi
h is based on the 
oupling of a Karhunen-Loève expansion and a polynomial 
haos expansion.1.2 Classi
al methods to generate random �eldsFor the last de
ades, the random �elds analysis has been used in an in
reasing number ofs
ienti�
 �elds, su
h as un
ertainties quanti�
ation, material s
ien
es, seismology, geophysi
s,quantitative �nan
e, signal pro
essing, 
ontrol engineering et
. It is indeed a very interestingtool for sto
hasti
 modeling, fore
asting, 
lassi�
ation, signal dete
tion and estimation. Let
X = {X(s), s ∈ Ω ⊂ R} , (1.1)be a random �eld for whi
h we want to generate sample paths. For the sake of simpli
ity, andwithout any loss of generality, only 
entered random �elds X are 
onsidered in this work:
E [X(s)] = 0, ∀ s ∈ Ω, (1.2)where E [·] is the mathemati
al expe
tation.The Gaussian 
ase is a well-posed problem, as the Gaussian random �elds are 
ompletely
hara
terized only by their mean fun
tion and their auto
orrelation fun
tion. It exists there-fore many e�e
tive methods to simulate Gaussian random �elds. In parti
ular, when Ω = R,AutoRegressive-Moving-Average (ARMA) models, that were �rst introdu
ed by Whittle for15



time series [17, 18℄ and popularized by Box and Jenkins [19℄, allow the des
ription of Gaussianstationary random �elds as a parameterized integral of a Gaussian white noise random �eld.Based on limited knowledge of random �eld X, these models 
an therefore be used to emphasizeparti
ular properties of X and to extrapolate its value.On the 
ontrary, the random �eld simulation problem is an ill-posed problem. To 
har-a
terize a non-Gaussian random �eld, we need to know the entire family of joint probabilitydistributions {(X(s1), . . . ,X(sn)) , n ≥ 1, (s1, . . . , sn) ∈ Ωn}. As this information is most ofthe time not a

essible, only partial des
ription of non-Gaussian random �eld 
an be given.Two 
lasses of methods are generally used to 
hara
terize su
h non-Gaussian random �elds.On the �rst hand, translation methods allow the identi�
ation and the generation of a non-Gaussian random �eld from a memoryless nonlinear transformation of a known Gaussian random�eld (see for instan
e [20℄).On the other hand, in the general 
ase, spe
tral methods ([21, 22℄) based on a two-stepapproa
h have given very promising results to identify the distribution of a priori non-Gaussianand non-stationary random �elds. The �rst step of these methods is generally the approximationof the random �eld, X, by its proje
tion X̂B(M) on aM -dimension set of deterministi
 fun
tions,
B(M) = {bm(s), s ∈ Ω}1≤m≤M , that are supposed to be square integrable on Ω and orthonormalsu
h that:

X̂B(M)
=

M∑

m=1

Cmbm,

∫

Ω
bm(s)bp(s)ds = δmp, Cm =

∫

Ω
X(s)bm(s)ds, (1.3)where δmp is the krone
ker symbol. The ve
tor C = (C1, . . . , CM ) is thus a M -dimensionrandom ve
tor, for whi
h 
omponents are a priori dependent. The se
ond step is then theidenti�
ation of the multidimensional distribution of C.When the knowledge of the random �eld is limited to a set of independent realizations,as it is the 
ase for the modeling of the tra
k geometry, su
h spe
tral methods present manyadvantages. First, no hypothesis on the random �eld is required to implement these methods.Then, by proposing a dis
retized des
ription of the random �eld, they take advantage of all thedevelopments that have been done in the 
hara
terization of the multidimensional distributionof non-Gaussian random ve
tors.1.3 The optimality of the Karhunen-Loève expansion to gener-ate approximated realizations of random �elds1.3.1 De�nition of the Karhunen-Loève expansionMathemati
ally, the Karhunen-Loève (KL) expansion 
orresponds to the orthogonal proje
tiontheorem in separable Hilbert spa
es. In this 
ase, the Hilbertian basis, {km, m ≥ 1}, is
onstru
ted as the eigenfun
tions of the 
ovarian
e operator of X, de�ned by the 
ovarian
efun
tion, RXX , whi
h is assumed, for instan
e, to be square integrable on Ω × Ω. Therefore,for all (s, s′) in Ω× Ω and m ≥ 1 and p ≥ 1, we get:

RXX(s, s′)
def
= E

[
X(s)X(s′)

]
=
∑

m≥1

λmkm(s)km(s′), (1.4)
∫

Ω
RXX(s, s′)km(s′)ds′ = λmkm(s), (1.5)16



(km, kp) = δmp, λ1 ≥ λ2 ≥ . . . → 0,
∑

m≥1

λ2m < +∞. (1.6)1.3.2 Optimality of the KL expansionIn order to represent the �eld X with a small number of ve
tors M , it is important to 
hoosea relevant basis regarding X. Indeed, the more relevant the proje
tion basis B(M) is, the lowerthe dimension M has to be, to guarantee that the amplitude of the residue,
N 2(X − X̂B(M)

), (1.7)is lower than a given threshold, and so the easier and the more pre
ise the identi�
ation of thedistribution of C will be. N 2 is a norm that has to be adapted to the studied problem. If
N 2(·) = E

[∫

Ω
(·)2
]
, (1.8)due to the orthogonal proje
tion theorem in Hilbert spa
es, for any integerM , theM -dimensionfamily K(M) = {km, 1 ≤ k ≤M}, whi
h gathers theM �rst elements of the KL basis asso
iatedwith X, minimizes the amplitude N 2(X − X̂F(M)

) among all the M -dimension families F (M),where X̂F(M) is the proje
tion of X on F (M). In other words, for any M ≥ 1, it 
an be shownthat:
N 2(X − X̂K(M)

) ≤ N 2(X − X̂F(M)
), (1.9)where X̂K(M) is the proje
tion of X on K(M).Due to this optimality property, the Karhunen-Loève (KL) basis has played, for the lastde
ades, a major role and has been applied in many works (see for instan
e [23, 24, 25, 26, 27,28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43℄).1.3.3 Pra
ti
al solving of the Fredholm equationEquation (1.5) is 
ommonly referred to as Fredholm equation, and issues 
on
erning the solvingof this integral eigenvalue problem 
an be found in [21, 44, 45℄. The idea of this se
tion is todes
ribe the di�erent steps to solve the Fredholm problem thanks to a �nite element approa
hwhen Ω = [0, S]. To this end, the fun
tions km, 1 ≤ m ≤M , are sear
hed as their �nite elementestimator kFEm , su
h that, for all s in Ω:

km(s) ≈ kFEm (s) =

NS∑

j=1

dmj hj(s), (1.10)
dm =

(
dm1 , . . . , d

m
NS

)
, h(s) = (h1(s), . . . , hNS

(s)) , (1.11)where dm is the unknown ve
tor to be identi�ed, and {s 7→ hj(s), 1 ≤ j ≤ NS} are shapefun
tions su
h that:




s1 = 0, sNS
= S, sj+q − sj = qh,

hj(sk) = δjk, 1 ≤ j, k ≤ NS ,∑NS
j=1 hj(s) = 1, s ∈ Ω = [0, S],

(1.12)
17



with h = S/ (NS − 1) the �nite element dis
retization length. The �nite element dis
retizationof Eq. (1.5) yields:
([K]− λm[M ])dm = 0, (1.13)in whi
h the positive-de�nite symmetri
 (NS ×NS) real matri
es [K] and [M ] are de�ned by

[K] =

∫

Ω

∫

Ω
h(s)T [RXX(s, s′)]h(s′)ds′ds, (1.14)

[M ] =

∫

Ω
h(s)Th(s)ds. (1.15)This approa
h is parti
ularly well adapted to the modeling of random �elds, for whi
hexperimental values are re
orded every h̃ meters. Spatial dis
retization step h is thus 
hosenequal to h̃ to limit the error introdu
ed by the �nite element approa
h. Moreover, it has to benoti
ed that the regularity of the shape fun
tions has to be adapted to the regularity of random�eld X. In parti
ular, if the �rst and se
ond order spatial derivatives of the random �eld pathsare a priori non zero, at least 
ubi
 shape fun
tions will be needed.1.3.4 Approximated KL expansionAs presented in Se
tion 1.3.1, the KL expansion of a 
entered random �eld X is based on theknowledge of its auto
ovarian
e fun
tion, RXX . When the maximal available information about

X is a set of ν independent realizations, {X(θ1), . . . ,X(θν)}, this fun
tion is not exa
tly known,but 
an be approximated by its empiri
al estimation, R̂XX(ν), su
h that:
RXX(s, s′) ≈ R̂XX(ν, s, s′) =

1

ν

ν∑

n=1

X(θn, s)X(θn, s
′), (s, s′) ∈ Ω× Ω. (1.16)By solving the Fredholm problem asso
iated with R̂XX(ν) instead of RXX , it is thereforepossible to identify a rather good approximation of the KL basis of X, whi
h is denoted by{

k̂m(ν), 1 ≤ m
}, espe
ially when ν is high, as:

lim
ν→+∞

R̂XX(ν) = RXX ,

lim
ν→+∞

k̂m(ν) = km.
(1.17)1.4 Dire
t and indire
t methods for the identi�
ation of thedistribution of random ve
tors and their generationOn
e random �eldX has been proje
ted on a 
hosen deterministi
M -dimension family, B(M) =

{bm(s), s ∈ Ω}1≤m≤M , su
h that
X ≈ X̂B(M)

=

M∑

m=1

Cmbm, (1.18)identifying its statisti
al distribution amounts to identifying the multidimensional distributionof random ve
tor C = (C1, . . . , CM ), denoted by PC . The mean value and the 
ovarian
e matrixof C are moreover denoted by µC and [RCC ] respe
tively, su
h that:18



µC = E [C] , [RCC ] = E [(C − µC)⊗ (C − µC)] . (1.19)In this work, it is assumed that PC(dx) = pC(x)dx, in whi
h the probability density fun
tion(PDF) pC is a fun
tion in the set F(D,R∗) of all the positive-valued fun
tions de�ned on anypart D of RM and for whi
h integral over D is 1.Two kinds of methods 
an be used to build su
h a PDF: the dire
t and the indire
t methods.Among the dire
t methods, the Prior Algebrai
 Sto
hasti
 Modeling (PASM) methods postulatean algebrai
 representation C ≈ talg(Ξ,w), with talg a prior transformation, Ξ a random ve
torand w a ve
tor of parameters to be identi�ed. For instan
e, we 
an suppose that C 
an bewritten under the form:
C ≈ talg(Ξ,w) = w1 + [w2]Ξ, w = {w1, [w2]} , (1.20)with Ξ a M -dimension random ve
tor for whi
h 
omponents are independent, normally dis-tributed with zero mean and unit varian
e. It 
an dire
tly be seen that:

E [talg(Ξ,w)] = w1, E [(talg(Ξ,w)−w1)⊗ (talg(Ξ,w)−w1)] = [w2][w2]
T . (1.21)Hen
e, supposing that C ≈ talg(Ξ,w) amounts to supposing that C is a Gaussian randomve
tor, su
h that the most a

urate values for w1 and [w2] 
orrespond to the mean value of Cand to the Cholesky de
omposition matrix of matrix [RCC ]. If C is a
tually not Gaussian, thistransformation is not relevant, and another one has to be introdu
ed to better represent thebehavior of C, su
h as for instan
e:

C ≈ t
(2)
alg(Ξ,w) = w1 + [w2]Ξ+ (Ξ⊗Ξ)w3, (1.22)where w = {w1, [w2],w3} has on
e again to be identi�ed to represent as well as possible thebehavior of C.In the same 
ategory, the methods based on the Information Theory and the MaximumEntropy Prin
iple (MEP) have been developed (see [8℄ and [9℄) to 
ompute pC from the onlyavailable statisti
al information of the random ve
tor C. This information 
an be seen as theadmissible set Cad for pC :

Cad =

{
pC ∈ F(D,R∗) |

∫

D
pC(x)dx = 1,

∀ 1 ≤ n ≤ N,

∫

D
gn(x)pC(x)dx = fn

}, (1.23)where {fn, 1 ≤ n ≤ N} gathers N ve
tors whi
h are respe
tively asso
iated with the ve
tor-valued fun
tions {gn, 1 ≤ n ≤ N}. Hen
e, the MPE allows building pC as the solution of theoptimization problem:
pC = arg max

pC∈Cad

{
−
∫

D
pC(x) log (pC(x)) dx

}
. (1.24)As an example, if the maximum available information aboutC is the fa
t that its realizationsare in the hyper
ube [−1, 1]M , the admissible set Cad for pC be
omes:19



Cad =

{
pC ∈ F([−1, 1]M ,R∗), |

∫

[−1,1]M
pC(x)dx = 1

}
, (1.25)and it 
an be shown that the PDF pC that maximizes the optimization problem de�ned by Eq.(1.24) is the uniform PDF over [−1, 1]M :

pC(x) =
1

2M
. (1.26)On the other hand, the indire
t methods allow the 
onstru
tion of the PDF pC of the
onsidered random ve
tor C thanks to a transformation T of a known PDF pξ of a randomve
tor ξ =

(
ξ1, ..., ξNg

) of given dimension Ng ≤M :
C = t (ξ) , (1.27)
pC = T (pξ) . (1.28)The 
onstru
tion of the transformation t is thus the key point of these indire
t methods. Inthis 
ontext, the isoprobabilisti
 transformations su
h as the Nataf transformation (see [46℄) orthe Rosenblatt transformation (see [47℄) have allowed the development of interesting results inthe se
ond part of the twentieth 
entury but are still limited to very small dimension 
ases andnot to the high dimension 
ase 
onsidered in this work. Nowadays, the most popular indire
tmethods are the polynomial 
haos expansion (PCE) methods, whi
h have been �rst introdu
edby Wiener [48℄ for sto
hasti
 pro
esses, and pioneered by Ghanem and Spanos [49, 22℄ for theuse of it in 
omputational s
ien
es. In the last de
ade, this very promising method has thusbeen applied in many works (see, for instan
e [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 21, 60, 32,61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72℄). The PCE is based on a dire
t proje
tion of therandom ve
tor C on a 
hosen Hilbertian basis Borth = {ψj(ξ), 0 ≤ j} of all the se
ond-orderrandom ve
tors with values in RM :

C =

+∞∑

j=0

y(j)ψj(ξ), (1.29)
E [ψj(ξ)ψk(ξ)] = δjk. (1.30)In pra
ti
al terms, the PCE of C has to be trun
ated to its N + 1 most in�uential terms:
C ≈

N∑

j=0

y(j)ψj(ξ). (1.31)In parti
ular, in the following, it will be assumed that ψ0(ξ) = 1, su
h that:
y(0) = E [C] = µC . (1.32)A method to 
hoose theseN parti
ular terms and to quantity the amplitude of the trun
ationresidue, ∑+∞

j=N+1 y
(j)ψj(ξ), has therefore to be de�ned. Building the transformation t requiresat last the 
onstru
tion of N deterministi
 
oe�
ients, {y(j), 1 ≤ j ≤ N

}, from the availableinformation about C.It has to be noti
ed that in su
h an approa
h, any distribution for ξ 
an be 
hosen. Forinstan
e, if the 
omponents of ξ are independent and uniformly distributed between -1 and20



1, the 
orresponding Hilbertian basis, {ψj(ξ), 1 ≤ j}, is the set of the normalized Legendrepolynomials.When trying to identify in inverse the multidimensional distribution of an a priori non-Gaussian random ve
tor, the PCE method appears to be very e�
ient, even when the statisti
aldimension of C is high. Indeed, this method 
an be applied to any random ve
tor, is not basedon a priori formulations, and allows a very easy generation of independent realizations of C,on
e the proje
tion 
oe�
ients are identi�ed. Indeed ea
h independent realization of germ ξleads to an independent realization of C.1.5 PCE identi�
ation of random ve
torsIn this se
tion, a des
ription of the PCE identi�
ation with respe
t to an arbitrary measure isgiven. The obje
tive is to summarize the di�erent key steps of the PCE identi�
ation methodand the way they 
an be pra
ti
ally implemented.After having de�ned the theoreti
al frame of the PCE identi�
ation, the 
ost-fun
tions thatlead us to the 
omputation of the PCE 
oe�
ients {y(1), . . . ,y(N)
} are presented, for a giventrun
ation parameter N . Two 
ases are distinguished: the dire
t 
ase, for whi
h the PCE germ

ξ is known, and the indire
t 
ase, for whi
h the PCE germ is unknown. At last, to justify the
hoi
e of this trun
ation parameter, a method to perform the 
onvergen
e analysis is introdu
ed.1.5.1 Theoreti
al frameLet C = (C1, . . . , CM ) be an element of the spa
e L2
P
(
Θ,RM

) of all the se
ond-order M -dimension random ve
tors de�ned on the probability spa
e (Θ,T ,P) with values inRM , equippedwith the inner produ
t 〈·, ·〉. It is assumed that ν independent realizations, {C(θ1), . . . ,C(θν)},of C are known and gathered in the (M × ν) real matrix [Cexp(ν)]:
[Cexp(ν)] = [C(θ1) · · · C(θν)] . (1.33)Equation (1.31) 
an be rewritten as:
C − µC ≈ Cchaos(N) = [y]Ψ(ξ), (1.34)

[y] =
[
y(1) · · · y(N)

]
, Ψ(ξ) = (ψ1(ξ), . . . , ψN (ξ)) . (1.35)The orthonormality property of the proje
tion basis {ψj(ξ), 1 ≤ j ≤ N} yields the 
ondi-tion:

E [Ψ(ξ, p)⊗Ψ(ξ, p)] = [IN ], (1.36)where [IN ] is the (N ×N) identity matrix. Let [Rchaos
CC (N)] be the 
ovarian
e matrix of 
enteredrandom ve
tor Cchaos(N):

[
Rchaos

CC (N)
]
= E

[
Cchaos(N)⊗Cchaos(N)

]
= [y]E [Ψ(ξ, p)⊗Ψ(ξ, p)] [y]T = [y][y]T . (1.37)To simplify the notations, it is supposed in the following that C is a 
entered random ve
tor,su
h that:

y(0) = µC = 0. (1.38)21



No distin
tion is therefore made between the 
ovarian
e and the auto
orrelation matri
es of
C in the next se
tions.1.5.2 Identi�
ation of the polynomial 
haos expansion 
oe�
ientsIn this se
tion, a parti
ular 
hoi
e for the Ng-dimension PCE germ, ξ =

(
ξ1, . . . , ξNg

), and a par-ti
ular value of the trun
ation parameter N are 
onsidered. Let [Ψ(νchaos)] be the (N × νchaos
)real matrix of independent realizations of the trun
ated PCE basis Ψ(ξ):

[Ψ(νchaos)] = [Ψ(ξ(Θ1)) · · · Ψ(ξ(Θνchaos))] , (1.39)where the set {ξ (Θ1) , · · · , ξ (Θνchaos)} gathers νchaos independent realizations of random ve
tor
ξ. As a dire
t 
onsequen
e of the orthonormality of the PCE ve
tor Ψ(ξ), matrix [Ψ(νchaos)]veri�es the asymptoti
 property:

lim
νchaos→+∞

1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T = E [Ψ(ξ)⊗Ψ(ξ)] = [IN ]. (1.40)Dire
t identi�
ationIf the realizations of C are solutions of a me
hani
al system, and if ξ 
orresponds to the variableinputs of this system, then ν = νchaos and both realizations of C, {C(Θ1), . . . ,C(Θνchaos)}, and

Ψ(ξ), {Ψ(ξ(Θ1)), . . . ,Ψ(ξ(Θνchaos))}, are known at the same time. They verify:
[Cνchaos ] = [C(Θ1) · · · C(Θνchaos)] ≈ [Cchaos(N)] = [y][Ψ(νchaos)]. (1.41)In this 
ase, two 
lassi
al methods are generally used to identify su
h 
oe�
ient matrix [y]:

• Methods based on the empiri
al estimation of the mean fun
tion. From Eq.(1.31), as family {ψj(ξ), 1 ≤ j} is orthonormal, it 
an be seen that for all 1 ≤ j ≤ N :
[y] = E [C ⊗Ψ(ξ)]

≈ [yopt1 (νchaos)] =
1

νchaos

νchaos∑

p=1

C(Θp)⊗Ψ(ξ(Θp)) =
1

νchaos
[Cchaos(N)][Ψ(νchaos)]T .(1.42)

• Regression-based methods. Let C([y], νchaos) be the 
ost fun
tion that quanti�es themean-square distan
e between C and its PCE approximation, Cchaos(N), de�ned by:
C([y], νchaos) =

∥∥∥[Cchaos(N)]− [y][Ψ(νchaos)]
∥∥∥
2

def
= Tr

[(
[Cchaos(N)]− [y][Ψ(νchaos)]

)(
[Cchaos(N)]− [y][Ψ(νchaos)]

)T]
,(1.43)with Tr [·] the tra
e operator. PCE matrix [y] 
an therefore be sear
hed as the argumentthat minimizes C([y], νchaos). The 
ost fun
tion C([y], νchaos) being 
onvex, it admits aminimum, [yopt2 (νchaos)], whi
h veri�es: 22



[y] ≈ [yopt2 (νchaos)] = argmin
[y]

{
C([y], νchaos)

}
, (1.44)

[yopt2 (νchaos)] = [Cchaos(N)][Ψ(νchaos)]T
(
[Ψ(νchaos)][Ψ(νchaos)]T

)−1
. (1.45)From Eqs (1.40), (1.42) and (1.45), it 
an be dire
tly veri�ed that the two former methodsgive asymptoti
ally the same results:

lim
νchaos→+∞

[yopt1 (νchaos)] = lim
νchaos→+∞

[yopt2 (νchaos)]. (1.46)Indire
t identi�
ationIf C is a random ve
tor that gathers the proje
tion 
oe�
ients of a random �eld X on aparti
ular basis, as it is the 
ase in this thesis, the realizations of C are dedu
ed from theavailable realizations of X, su
h that there is a priori no dire
t link between the two sets ofrealizations of ξ and C. Alternative methods have thus to be used to identify [y].To this end, let MM,N be the spa
e of all the (M ×N) real matri
es. For a given valueof [y∗] in MM,N , the random ve
tor U ([y∗]) = [y∗]Ψ (ξ) is a 
entered M -dimension randomve
tor, for whi
h the auto
orrelation is equal to [y∗][y∗]T . Let pU([y∗]) be its multidimensionalPDF.When the only available information aboutC is limited to a set of ν independent realizations,the most general and relevant method to identify in inverse the optimal 
oe�
ients matrix [y],is to sear
h it as the argument that maximizes the log-likelihood LU([y∗]) ([C
exp(ν)]) of U([y∗])at the experimental points gathered in [Cexp(ν)]:

[y] = arg max
[y∗]∈MM,N

LU([y∗]) ([C
exp(ν)]) , (1.47)

LU([y∗]) ([C
exp(ν)]) =

ν∑

n=1

log pU([y∗]) (C(θn)) . (1.48)1.5.3 Pra
ti
al solving of the log-likelihood maximizationSolving the optimization problem de�ned by Eq. (1.47) has required the development of spe
i�
algorithms, whi
h are des
ribed in this se
tion.The need for statisti
al algorithms to maximize the log-likelihoodThe log-likelihood LU([y∗]) ([C
exp(ν)]) being non
onvex, deterministi
 algorithms su
h as gradi-ent algorithms 
annot be applied to solve Eq. (1.47), and random sear
h algorithms have tobe used. Hen
e, the pre
ision of the PCE has to be 
orrelated to a numeri
al 
ost Z, whi
h
orresponds to a number of independent trials of [y∗] in MM,N . The higher the value of Z is,the better the PCE identi�
ation should be. Therefore, this value has to be 
hosen as high aspossible while respe
ting the 
omputational resour
e limitation. Let Y =

{
[y∗](z), 1 ≤ z ≤ Z

}be a set of Z elements, whi
h have been 
hosen randomly in MM,N . For a given numeri
al 
ost
Z, the most a

urate PCE 
oe�
ients matrix [y] is approximated by:

[y] ≈ [yY ] = arg max
[y∗]∈Y

LU([y∗]) ([C
exp(ν)]) . (1.49)23



Restri
tion of the maximization domainFrom the ν independent realizations {C(θ1), . . . ,C(θν)}, the 
ovarian
e matrix [RCC ] of C 
anbe estimated by:
[RCC ] ≈ [R̂CC(ν)] =

1

ν

ν∑

n=1

C(θn)⊗C(θn) =
1

ν
[Cexp(ν)][Cexp(ν)]T . (1.50)A good way to improve the e�
ien
y of the numeri
al identi�
ation of [y] is then to restri
tthe resear
h set to OC ⊂ MM,N , with:

OC =
{
[y∗] =

[
y∗,(1), · · · ,y∗,(N)

]
∈ MM,N | [y∗][y∗]T = [R̂CC(ν)]

}
, (1.51)whi
h, taking into a

ount Eq. (1.37), guarantees by 
onstru
tion that:

[Rchaos
CC (N)] = [R̂CC(ν)]. (1.52)Hen
e, the PCE 
oe�
ients matrix [y] 
an be approximated as the argument in OC thatmaximizes the log-likelihoodLU([y∗]) ([C

exp(ν)]). By de�ningW the set that gathers Z randomlyraised elements of OC , [y] 
an then be assessed as the solution of the new optimization problem:
[y] ≈ [yW ] = arg max

[y∗]∈W
LU([y∗]) ([C

exp(ν)]) . (1.53)Approximation of the log-likelihood fun
tionFrom a parti
ular matrix of realizations [Ψ(νchaos)] (whi
h is de�ned in Eq. (1.39)), if [y∗] is anelement of OC , νchaos independent realizations {U ([y∗],Θp) = [y∗]Ψ (ξ(Θp)) , 1 ≤ p ≤ νchaos
}of random ve
tor U([y∗]) 
an be 
omputed and gathered in the matrix [U ]:

[U ] = [U ([y∗],Θ1) · · · U ([y∗],Θνchaos )] = [y∗][Ψ(νchaos)]. (1.54)Hen
e, using Gaussian Kernels, the PDF pU([y∗]) of U ([y∗]) 
an be dire
tly estimated by itsnon parametri
 estimator p̂U :
∀ x ∈ R

M , pU([y∗])(x) ≈

p̂U (x) =
1

(2π)M/2 νchaos
∏M

m=1 hm

νchaos∑

p=1

exp

(
−1

2

M∑

m=1

(
xm − Um([y∗],Θp)

hm

)2
)
, (1.55)where h = (h1, · · · , hM ) is the multidimensional optimal Silverman bandwidth ve
tor (see [2℄)of the Kernel smoothing estimation of pU([y∗]):

∀ 1 ≤ m ≤M, hm = σ̂Um

(
4

(2 +M)νchaos

)1/(M+4)

, (1.56)where σ̂Um is the empiri
al estimation of the standard deviation of ea
h 
omponent Um of U . Ithas to be noti
ed that p̂U only depends on the bandwidth ve
tor h, and the two matri
es [y∗] and
[Ψ(νchaos)]. Hen
e, a

ording to the Eqs. (1.48), (1.54) and (1.55), for a given value of νchaos,the maximization of the log-likelihood fun
tion LU([y∗]) 
an be repla
ed by the maximization ofthe 
ost-fun
tion C([Cexp(ν)], [y∗], [Ψ(νchaos)]) su
h that:

[y] ≈ [yOC
] = arg max

[y∗]∈OC

C([Cexp(ν)], [y∗], [Ψ(νchaos)]), (1.57)24



where:
C([Cexp(ν)], [y∗], [Ψ(νchaos)]) = CC + CV ([Cexp(ν)], [y∗], [Ψ(νchaos)]), (1.58)

CC = −ν ln
(
(2π)M/2 νchaos

M∏

m=1

hm

)
, (1.59)

CV ([Cexp(ν)], [y∗], [Ψ(νchaos)]) =

ν∑

n=1

ln




νchaos∑

p=1

exp

(
−1

2

M∑

m=1

(
Cm(θn)− Um([y∗],Θp)

hm

)2
)
 .(1.60)Hen
e, the optimization problem de�ned by Eq. (1.53) 
an �nally be estimated by:

[y] ≈ [yZOC
] = arg max

[y∗]∈W
C
(
[Cexp(ν)], [y∗], [Ψ(νchaos)]

)
. (1.61)A

ura
y of the PCE identi�
ationFor a given 
omputation 
ost Z and a given value for the trun
ation parameter N , let [yZOC

] bean optimal solution of Eq. (1.61). [yZOC
] is a numeri
al estimation of the PCE 
oe�
ients matrix

[y]. For a new (N × νchaos,∗
) real matrix [Ψ∗(νchaos,∗)] of independent realizations (νchaos,∗ 
anbe higher than νchaos), the robustness of [yZOC

] regarding the 
hoi
e of [Ψ(νchaos)] 
an then be es-timated by 
omparing C ([Cexp(ν)], [yZOC
], [Ψ(νchaos)]

) and C
(
[Cexp(ν)], [yZOC

], [Ψ∗(νchaos,∗)]
). If

ν new independent realizations of C were available and gathered in the matrix [Cexp,new(ν)], theover-learning of the method 
ould be measured by 
omparing C
(
[Cexp(ν)], [yZOC

], [Ψ(νchaos)]
)and C

(
[Cexp,new(ν)], [yZOC

], [Ψ(νchaos)]
). At last, for the same value for Z, if [yZ,newOC

] is a new op-timal solution of Eq. (1.61), the global a

ura
y of the identi�
ation stems from the 
omparisonbetween C
(
[Cexp,new(ν)], [yZOC

], [Ψ∗(νchaos,∗)]
) and C

(
[Cexp,new(ν)], [yZ,newOC

], [Ψ∗(νchaos,∗)]
).1.5.4 Identi�
ation of the PCE trun
ation parametersAs shown in Se
tion 1.4, two trun
ation parameters, Ng and N , appear in the trun
ated PCE,

Cchaos(N), of C. A method to 
hoose the size Ng and these N elements from basis Borth as wellas a method to quantify the relevan
e of su
h a N -dimension basis have thus to be de�ned.Restri
tion of the admissible proje
tion basisIn this work, only polynomial basis are addressed, su
h that for 1 ≤ j, a parti
ular element
ψj(ξ) in Borth 
an be written under the form:

ψj(ξ) =

+∞∑

q=1

c(j)q ξ
α
(q)
1

1 × · · · × ξ
α
(q)
Ng

Ng
,
(
α
(q)
1 , . . . , α

(q)
Ng

)
∈ N

Ng . (1.62)In addition, the 
lassi
al assumption that the most in�uential elements of Borth 
orrespondto the elements of lowest total polynomial order is introdu
ed in this work. Let p be the maximalpolynomial order of the proje
tion basis, su
h that for 1 ≤ j ≤ N , we 
hoose:25



ψj(ξ) =

N∑

q=1

c(j)q ξ
α
(q)
1

1 × · · · × ξ
α
(q)
Ng

Ng
,

Ng∑

ℓ=1

α
(q)
ℓ ≤ p. (1.63)Given this 
hoi
e for the extra
tion of N elements in Borth, it 
an be seen that N in
reasesvery qui
kly with Ng and p, as:

N = (Ng + p)!/(Ng ! p!). (1.64)De�nition of a log error fun
tionFor ea
h 
omponent Cchaos
m (N) of the trun
ated PCE, Cchaos(N) = [y]Ψ(ξ), of C, the L1-logerror fun
tion errm is introdu
ed as des
ribed in [38℄:

∀ 1 ≤ m ≤M, errm(Ng, p) =

∫

BIm

|log10 (pCm(xm))− log10

(
pCchaos

m
(xm)

)
|dxm, (1.65)where:

• BIm is the support of the kernel estimator of pCm . This bounding domain has thus to beadapted to the available realizations of C, whi
h are gathered in {C(θ1), · · · ,C(θν)};
• pCm and pCchaos

m
are the PDF of Cm and Cchaos

m respe
tively.The multidimensional error fun
tion err(Ng, p) is then dedu
ed from the unidimensional
L1-log error fun
tion as:

err(Ng, p) =

M∑

m=1

errm(Ng, p). (1.66)The parameters Ng and p have thus to be determined to minimize the multidimensional
L1-log error fun
tion err(Ng, p).For given values of trun
ation parameters Ng and p, it is reminded that PCE 
oe�
ientsmatrix [y] is sear
hed in order to maximize the multidimensional log-likelihood fun
tion, whi
hallows us to 
onsider a priori strongly 
orrelated problems. On
e this matrix [y] is identi�ed, it ispossible to generate as many independent realizations of trun
ated PCE Cchaos(N) as needed toestimate as pre
isely as possible the non parametri
 estimator p̂U of its multidimensional PDF.The number ν of available experimental realizations of C is however limited. This number isgenerally too small for the non parametri
 estimator of multidimensional PDF pC of C to berelevant, whereas it is most of the time large enough to de�ne the estimators of the marginalsof pC . Therefore, the log-error fun
tions de�ned by Eqs. (1.65) and (1.66) only 
onsider themarginals of the PDF of pC and pchaosC . In addition, the logarithm fun
tion has been introdu
edin order to measure the errors on the tails of the probability density fun
tion.De�nition of an admissible set for the trun
ation parametersAs it exists an isoprobabilisti
 transformation between C and (Ξ1, · · · ,ΞM ), where the set
{Ξm, 1 ≤ m ≤M} gathers M independent 
entered normalized Gaussian random variables,the 
onvergen
e analysis 
an be restri
ted to the values of Ng whi
h verify:26



Ng ≤M. (1.67)Moreover, imposing the (M ×N) real matrix [y] to be in OC amounts to imposing M(M+1)
2
onstraints on [y], whi
h implies:

MN ≥ M (M + 1)

2
⇔ N ≥ M + 1

2
. (1.68)The set Q(M) of the admissible values for p and Ng is thus:

Q(M) =
{
(p,Ng) ∈ N

2, | Ng ≤M, N = (Ng + p)!/(Ng ! p!) ≥ (M + 1)/2
}
. (1.69)Theoreti
ally, in
reasing p and Ng adds terms in the PCE of the 
onsidered random ve
tor,and therefore should indu
e the de
rease of the error fun
tion:

∀ p∗ ≥ p, N∗
g ≥ Ng, err(Ng, p) ≥ max

{
err(N∗

g , p), err(Ng, p
∗)
}
≥

min
{
err(N∗

g , p), err(Ng, p
∗)
}
≥ err(N∗

g , p
∗).

(1.70)However, the higher the values of p and Ng are, the bigger the PCE 
oe�
ients matrix is,the harder the numeri
al identi�
ation is. Hen
e, introdu
ing ε as an error threshold, whi
hhas to be adapted to the problem, let P(ε,M) be the set:
P(ε,M) = {(p,Ng) ∈ Q(M) | err(Ng, p) ≤ ε} . (1.71)Finally, given the error threshold ε, rather than dire
tly minimizing the L1-log error fun
tion

err(Ng, p), it appears to be more a

urate to look for the optimal values of p and Ng thatminimize the size of the proje
tion basis N = (Ng + p)!/ (Ng! p!):
(p,Ng) = arg min

(p∗,N∗
g )∈P(ε,M)

(
N∗

g + p∗
)
!/
(
N∗

g ! p
∗!
)
. (1.72)If the polynomial order (whi
h is a priori unknown) of the non trun
ated PCE of C isin�nite, it may not exist values of p and Ng in P(ε,M) for error fun
tion err(Ng, p) to beinferior to small values of ε. In this 
ase, the former algorithms 
an nevertheless be used to �ndthe most a

urate values of p and Ng with respe
t to an available 
omputational 
ost.1.6 Con
lusionsIn this 
hapter, it has been shown that nowadays most promising methods to identify in in-verse the statisti
al properties of a non-Gaussian and non-stationary random �eld X, whenthe available information about X is a set of ν independent realizations, are based on a dou-ble de
omposition. First, thanks to a KL expansion, the statisti
al properties of X 
an be
ondensed through its proje
tion on a parti
ularly well-adapted orthonormal redu
ed basis,

{km, 1 ≤ m ≤M}, su
h that
X ≈

M∑

m=1

Cmkm. (1.73)Se
ondly, from the ν independent realizations of X, it has been shown that ν independentrealizations of random ve
tor C = (C1, . . . , CM ) 
an be dedu
ed. Based on this available27



information, it has been emphasized that a PCE-based approa
h allows the identi�
ation of C,su
h that:
X ≈

M∑

m=1

N∑

j=1

kmy
(j)
m ψj(ξ), (1.74)where ξ = (ξ1, . . . , ξNg ) is a random ve
tor for whi
h distribution is known and 
hosen. In su
htwo-step approa
h, three trun
ation parameters, M , N and Ng, have been introdu
ed, whi
hhave to be identi�ed from 
onvergen
e analysis. Advan
ed methods and algorithms to identifythe proje
tion basis km and 
oe�
ients y(j)m for 1 ≤ m ≤ M and 1 ≤ j ≤ N from a set of νindependent realizations of X have been presented in detail.At last, from ea
h realization of ξ, su
h a method gives a

ess to a realisti
 realization of Xthat is representative of the set of its available realizations.
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Chapter 2Optimal redu
ed basis for random�elds de�ned by a set of realizations2.1 Introdu
tionThe use of redu
ed basis has spread to many s
ienti�
 �elds for the last de
ades to 
ondensethe statisti
al properties of the random �elds, whi
h are written X = {X(s), s ∈ Ω ⊂ R} inthis work, and for whi
h mean value is assumed to be zero. Among these basis, the 
lassi
alKarhunen-Loève basis asso
iated with X, {km, 1 ≤ m}, whi
h has been introdu
ed in Chapter1, 
orresponds to the Hilbertian basis that is 
onstru
ted as the eigenfun
tions of the 
ovarian
eoperator of X, RXX . The importan
e of this basis stems from its optimality in the sense thatit minimizes the total mean square error. In most of the appli
ations based on random �elds,the knowledge of these random �elds is however limited. Indeed, their statisti
al properties aregenerally known through a set of ν independent realizations, {X(θ1), . . . ,X(θν)}, whi
h stemfrom experimental measurements. In these 
ases, the 
ovarian
e operator is not perfe
tly knownbut 
an only be estimated. If we de�ne R̂XX as the empiri
al estimator of RXX , there is howeverno reason for the eigenfun
tions of R̂XX to be still optimal. In reply to this 
on
ern, this 
hapterpresents an adaptation of the Karhunen-Loève expansion to identify, in inverse, proje
tionfamilies that are as relevant as possible for X, even if the number of available realizations, ν, isrelatively small. This method is �rst based on an innovative te
hnique to a posteriori evaluatethe proje
tion errors for X, and se
ondly, on an original optimization problem that 
an be seenas an extension of the 
lassi
al Fredholm equation.In Se
tion 2.2, the theoreti
al frame of this 
hapter is des
ribed. Se
tion 2.3 introdu
esthen the method we propose to identify optimized proje
tion basis from a set of independentrealizations. At last, Se
tion 2.4 illustrates the possibilities of su
h a method on an appli
ationbased on simulated data.2.2 Theoreti
al frame2.2.1 Quanti�
ation of the relevan
e of a proje
tion basisLet (Θ, C, P ) be a probability spa
e and P(Ω) be the spa
e of all the se
ond-order R-valuedrandom �elds, indexed by the 
ompa
t interval Ω = [0, S], where S < +∞. The spa
e H =
L2(Ω,R) denotes moreover the spa
e of square integrable fun
tions on Ω, with values in R,equipped with the inner produ
t (·, ·), su
h that for all u and v in H,29



(u, v) =

∫

Ω
u(s)v(s)ds. (2.1)Let X = {X(s), s ∈ Ω} be an element of P(Ω), for whi
h ν independent realizations,

{X(θ1), . . . ,X(θν)}, are supposed to be known. Without loss of generality, it is on
e againsupposed that the mean value of X is equal to zero:
E [X(s)] = 0, ∀ s ∈ Ω. (2.2)It is assumed that the 
ovarian
e fun
tion, RXX , of 
entered random �eld X is squareintegrable on Ω× Ω,

∫

Ω

∫

Ω
RXX(s, s′)2dsds′ < +∞. (2.3)Let B = {bm(s), s ∈ Ω}m≥1, be a Hilbertian basis of H, su
h that:
X =

∑

m≥1

Cmbm, (2.4)
(bm, bp) = δmp, Cm = (X, bm) , (2.5)where the proje
tion 
oe�
ients, {Cm, m ≥ 1}, are 
entered random variables that are sta-tisti
ally dependent and a priori 
orrelated. For pra
ti
al purposes, this basis has to betrun
ated. For all M ≥ 1, X̂B(M) is thus introdu
ed as the proje
tion of X on the subset

B(M) = {bm, 1 ≤ m ≤M} ⊂ B:
X̂B(M)

=
M∑

m=1

Cmbm = bTC, (2.6)
b = (b1, . . . , bM ), C = (C1, . . . , CM ) . (2.7)The relevan
e of B(M) to 
hara
terize X is analyzed with respe
t to the normalized L2-error,that is denoted by ε2, su
h that:
ε2(B(M)) =

∥∥∥X − X̂B(M)
∥∥∥
2

P(Ω)
/ ‖X‖2P(Ω)

= 1− 1

‖X‖2P(Ω)

∑

m≤M

E
[
C2
m

]
,

(2.8)where ‖·‖P(Ω) is the L2 norm in P(Ω), su
h that:
‖Y ‖2P(Ω) = E

[∫

Ω
Y 2(s)ds

]
, Y ∈ P(Ω). (2.9)Therefore, if B1 = {b(1)m , m ≥ 1} and B2 = {b(2)m , m ≥ 1} are two distin
t Hilbertian basisof H, the family B(M1)

1 = {b(1)m , 1 ≤ m ≤ M1} is said to be more relevant than the family
B(M2)
2 = {b(2)m , 1 ≤ m ≤ M2} (M1 
an be greater or smaller than M2) to 
hara
terize X if andonly if:

ε2(B(M1)
1 ) ≤ ε2(B(M2)

2 ). (2.10)30



2.2.2 Optimality of the Karhunen-Loève expansionAs presented in Se
tion 1.3.2, due to the orthogonal proje
tion theorem in Hilbert spa
e, theKarhunen-Loève basis asso
iated with X, that was denoted by K = {km, m ≥ 1}, is optimalin the sense that, for all M ≥ 1, K(M) = {km, 1 ≤ m ≤ M} minimizes error ε2 among the
M -dimension families of H:

K(M) = arg min
B(M)∈HM

{
ε2(B(M))

}
. (2.11)Hen
e, when dealing with 
orrelated random �elds, for whi
h the 
ovarian
e fun
tion RXX isknown, minimizing error ε2 amounts to identifying the KL basis asso
iated with X. On
e thesefun
tions {km, m ≥ 1} have been identi�ed, the proje
tion of X on K 
an be written as:

X =
∑

m≥1

Amkm, (2.12)where, by 
onstru
tion of the KL basis, it 
an be noti
ed that, for all m ≥ 1 and p ≥ 1:
E [AmAp] = δmpλm. (2.13)The KL basis asso
iated with X allows therefore the un
orrelation of the proje
tion 
oe�
ients,

{Am, m ≥ 1}. Re
ipro
ally, it 
an dire
tly be shown that if B∗ = {b∗m, m ≥ 1} is a basis, forwhi
h the proje
tion 
oe�
ients, {C∗
m, m ≥ 1}, of X on B∗ are un
orrelated, then fun
tions b∗mhave to be solution of the Fredholm eigenvalue problem de�ned by Eq. (1.5), su
h that B∗ = K.Hen
e, even if RXX is unknown, the un
orrelation of the proje
tion 
oe�
ients is a su�
ient
ondition for the identi�
ation of the Karhunen-Loève basis.2.2.3 Di�
ulties 
on
erning the identi�
ation of the Karhunen-Loève expan-sion from independent realizationsRandom �eld X is now supposed to be only known through a set of ν independent realizations,

{X(θ1), . . . ,X(θν)}.Let B = {bm, m ≥ 1} be a Hilbertian basis of H, su
h that the proje
tion of X on B isgiven by:
X =

∑

m≥1

Cmbm. (2.14)From a theoreti
al point of view, a

ording to Se
tion 2.2.2, it 
an be a posteriori said thatit 
an be extra
ted from B the proje
tion families that minimize error ε2, de�ned by Eq. (2.8),if and only if, for all m ≥ 1, it exists λm ≥ 0, su
h that one of the two following equivalent
onditions is veri�ed: 1. E [CmCp] = δmpλm, ∀ p ≥ 1,2. ∫
Ω
RXX(s, s′)bm(s′)ds′ = λmbm(s), ∀ s ∈ Ω.

(2.15)From a numeri
al point of view, when only ν independent realizations, {X(θ1), . . . ,X(θν)},of X are available, the a priori best evaluations of the 
ovarian
e fun
tion of X and of the meanvalues E [CmCp] are given by the following empiri
al estimators:31



RXX(s, s′) ≈ R̂XX(s, s′)
def
=

1

ν

ν∑

n=1

X(θn, s)X(θn, s
′),

E [CmCp] ≈
1

ν

ν∑

n=1

Cm(θn)Cp(θn),

(2.16)where, for all m ≥ 1, the ν independent realizations, {Cm(θ1), . . . , Cm(θν)}, of Cm 
an bededu
ed from the ν available independent realizations of X as:
Cm(θn) = (X(θn), bm) , 1 ≤ n ≤ ν. (2.17)Given these two estimators, a dire
t translation of the two 
onditions given by Eq. (2.15)would therefore be based on the existen
e of λ̂m, su
h that for all m ≥ 1:

1

ν

ν∑

n=1

Cm(θn)Cp(θn) = δmpλ̂m, (2.18)
∫

Ω
R̂XX(s, s′)bm(s′)ds′ = λ̂mbm(s). (2.19)Equations (2.18) and (2.19) are however no more equivalent, and there is no reason anymorefor a basis that respe
ts one of these 
onditions to be still optimal with respe
t to error ε2.

• On the �rst hand, for any subset B(M) = {bm, 1 ≤ m ≤M} ⊂ B, su
h that M ≤ ν, if wede�ne [C] as the following matrix of independent realizations:
[C] =




C1(θ1) · · · C1(θν)... . . . ...
CM (θ1) · · · CM(θν)


 , (2.20)in whi
h for all 1 ≤ m ≤ M and 1 ≤ n ≤ ν, Cm(θn) = (X(θn), bm), matrix [RCC ] =

1
ν [C][C]T is real and symmetri
al, and 
an be rewritten as:

[RCC ] = [D][ℓ][D]T , (2.21)with:
[ℓ] =




ℓ1 0 · · · 0

0 ℓ2
. . . ...... . . . . . . 0

0 · · · 0 ℓM



, (2.22)a diagonal matrix and [D] an orthogonal matrix, su
h that [D]T [D] is equal to the

(M × M) real unit matrix. From Eq. (2.21), it 
an be seen that the family G(M) ={
gk =

∑M
m=1[D]mkbm, 1 ≤ k ≤M

} veri�es the 
onditions given by Eq. (2.18). Indeed,for all 1 ≤ k,m ≤M , we have: 32



1

ν

ν∑

n=1

(X(θn), gk) (X(θn), gm) =
1

ν

ν∑

n=1

{
M∑

i=1

[D]ik (X(θn), bi)

}


M∑

j=1

[D]jm (X(θn), bj)





=

M∑

i=1

M∑

j=1

[D]ik[D]jm

{
1

ν

ν∑

n=1

Ci(θn)Cj(θn)

}

=
(
[D]T [RCC ][D]

)
km

= δkmℓk. (2.23)By 
onstru
tion, families G(M) and B(M) span the same spa
e, su
h that for all M ≥ 1:
ε2(B(M)) = ε2(G(M)). (2.24)Hen
e, whereas the un
orrelation of the proje
tion 
oe�
ients of X on K(M) implies theoptimality of K(M) regarding error ε2, there is no reason for a basis that veri�es Eq. (2.18)to be optimal.

• On the other hand, let {k̂m, m ≥ 1} be the eigenfun
tions of R̂XX , de�ned by Eq. (2.16),su
h that for all (s, s′) in Ω× Ω:
∫

Ω
R̂XX(s, s′)k̂m(s′)ds′ = λ̂mk̂m(s), (s,m) ∈ Ω× N

∗. (2.25)As the rank of the linear operator de�ned by the kernel R̂XX is by 
onstru
tion lower orequal to ν, the number of elements of the basis {k̂m, m ≥ 1}, for whi
h the eigenvalues
λ̂m are non zero, is also lower or equal to ν. Hen
e, if eigenvalues {λ̂m, m ≥ 1} are sortedin a de
reasing order, su
h that for all m ≥ 1, λ̂m ≥ λ̂m+1, the set, {X(θ1), . . . ,X(θν)},of available realizations of X is orthogonal to the subset {k̂m, m > ν}:

∫

Ω
X(θn, s)k̂m(s)ds = 0, 1 ≤ n ≤ ν, m > ν. (2.26)Therefore, the eigenfun
tions of R̂XX , {k̂m, m ≥ 1}, 
annot be seen as an optimal basis.Only a subset of this set will be adapted to X.Finally, whereas theM -dimension trun
ated KL basis, K(M), is well 
hara
terized in theory,its numeri
al identi�
ation 
an be di�
ult when 
ovarian
e fun
tionRXX is not perfe
tly known.The idea of the following se
tions is therefore to present an innovative method to optimize theapproximation of K(M) when X is only known through a �nite set of independent realizations.
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2.3 Identi�
ation of optimal basis from a �nite set of indepen-dent realizationsFrom Se
tion 2.2, the solving of the Fredholm problem asso
iated with any square integrablekernel fun
tion (s, s′) 7→ A(s, s′) on Ω× Ω,
∫

Ω
A(s, s′)bAm(s′)ds′ = λAmb

A
m(s), s ∈ Ω, (2.27)
an be seen as a generator of a parti
ular family {bAm, m ≥ 1

}. If A is equal to the 
ovarian
efun
tion of X, the solving of this problem allows us to identify the optimal proje
tion basisfor X, that minimizes L2-error ε2. When X is only known through a �nite set of independentrealizations, it will �rst be shown in this se
tion that, for all M ≥ 1, the minimization of ε2over the M -dimension sets of fun
tions in H 
an be repla
ed by an optimization problem overthe kernel fun
tion on whi
h the Fredholm problem is based. It will then be pointed out thatsu
h an optimization problem asks for a method to a posteriori evaluate the representativenesserror asso
iated with proje
tion families that depends on the available realizations, that is tosay when no assessment set is available. This motivates the introdu
tion of the Leave-One-Outerror, that will be presented in the se
ond part of this se
tion.2.3.1 Reformulation of the proje
tion error minimizationIn Se
tion 1.3.1, for all M ≥ 1, the KL basis K = {km, m ≥ 1}, has been introdu
ed as the setgathering the solutions of the Fredholm problem, de�ned by Eq. (1.5), asso
iated with RXX .For any fun
tion A in S(R), su
h that:
S(R) =

{
A ∈ L2(Ω× Ω,R), | A(s, s′) = A(s′, s) ∈ R, (s, s′) ∈ Ω× Ω

}
, (2.28)and for any M ≥ 1, let B(A) = {bAm, m ≥ 1

} be the set that gathers the solutions in H of theFredholm problem asso
iated with A, that is to say su
h that for all s in Ω and for all m ≥ 1and p ≥ 1:
∫

Ω
A(s, s′)bAm(s′)ds′ = λAmb

A
m(s), λA1 ≥ λA2 ≥ . . . → 0,

(
bAm, b

A
p

)
= δmp. (2.29)For any M ≥ 1 and for any fun
tion A in S(R), the set B(M)

A =
{
bAm, 1 ≤ m ≤M

} is thenintrodu
ed as the family gathering the eigenfun
tions of highest eigenvalues of the Fredholmproblem asso
iated with A. The Karhunen-Loève expansion being optimal for X with respe
tto error ε2, it 
an be dedu
ed that for all M ≥ 1:
RXX = arg min

A∈S(R)

{
ε2(B(M)

A )
}
. (2.30)Hen
e, for all M ≥ 1, the M -dimension optimal family, K(M), whi
h was �rst introdu
edas the solution of the optimization problem that is de�ned by Eq. (2.11), 
an equivalently besear
hed as the solution of the following optimization problem,

K(M) = arg min
B(M)
A , A∈S(R)

{
ε2(B(M)

A )
}
. (2.31)
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2.3.2 Restri
tion of the sear
h spa
eFrom Eqs. (2.30) and (2.31), it 
an dire
tly be seen that A = RXX is the optimal 
hoi
e for Ain S(R), su
h that K(M) = B(M)
RXX

. Hen
e, when random �eld X is only 
hara
terized by a �niteset of ν independent realizations, the best approximation for RXX from these realizations, themost relevant for X the 
orresponding M -dimension family.In this prospe
t, adopting the same notations than in Se
tion 2.2.3, two 
lassi
al estimators for
RXX , that are denoted by R̂XX and R̃XX , are introdu
ed, su
h that for all (s, s′) in Ω× Ω:

R̂XX(s, s′) =
1

ν

ν∑

n=1

X(θn, s)X(θn, s
′), (2.32)

R̃XX(s, s′) =





1
S−(s′−s)

∫ S−(s′−s)
0 R̂XX(x, x+ (s′ − s))dx if S > s′ − s ≥ 0,

1
S−(s−s′)

∫ S−(s−s′)
0 R̂XX(x+ (s− s′), x)dx if S > s− s′ > 0,

R̂(s, s′) otherwise. (2.33)Re
all that fun
tion R̂XX is the empiri
al estimator of RXX , whi
h 
onverges towards RXX atthe 
onvergen
e rate of 1/√ν. Moreover, if random �eld X is the restri
tion to Ω of a mean-square stationary random �eld indexed by R, that is to say if RXX(s, s′) only depends on thedi�eren
e |s− s′|, fun
tion R̃XX is the 
lassi
al stationary estimator of RXX .From the realizations of X, statisti
al tests 
an be a
hieved to evaluate the relevan
e of astationary hypothesis for X, in order to help us to 
hoose the best estimator. Nevertheless,in many 
ases, these tests do not give a 
lear-
ut answer. From the point of view of theminimization of Eq. (2.31), even if X is a
tually mean-square stationary, R̂XX is however
onsidered as a better fun
tion than R̃XX if:
ε2(B(M)

R̂XX
) ≤ ε2(B(M)

R̃XX
). (2.34)From a more general point of view, for α in [0, 1], let A(α) be the following fun
tion:

A(α) = αR̂XX + (1− α)R̃XX . (2.35)By 
onstru
tion, for any α in [0, 1], fun
tions A(α) are symmetri
al and have the same L2-norm:
∫

Ω×Ω
A(α, s, s′)2dsds′ =

∫

Ω×Ω
R̂XX(s, s′)2dsds′ =

∫

Ω×Ω
R̃XX(s, s′)2dsds′. (2.36)In this work, when random �eldX is only 
hara
terized by a set of ν independent realizations, itis proposed to sear
h the optimal proje
tion basis as the solution, K(M)(α∗), of an optimizationproblem with respe
t to α in [0, 1]:





K(M)(α∗) = B(M)
A(α∗)

α∗ = arg min
α∈[0,1]

{
ε2(B(M)

A(α))
}
.

(2.37)Su
h an approa
h appears to be very e�
ient when the number of available realizations, ν,is small. Indeed, it has been shown in Se
tion 2.2.3 that for ν < M , family B(M)

R̂XX

an bede
omposed as:

B(M)

R̂XX
= BIm(R̂XX) ∪ BKer(R̂XX), (2.38)35







BIm(R̂XX)
def
=
{
bm, |

∫
Ω R̂XX(·, s′)bm(s′)ds′ = λ̂mbm, λ̂m > 0

}
1≤m≤ν

,

BKer(R̂XX)
def
=
{
bm, |

∫
Ω R̂XX(·, s′)bm(s′)ds′ = 0

}
ν<m≤M

.
(2.39)Therefore, whereas family BIm(R̂XX) is likely to be parti
ularly well adapted to X, family

BKer(R̂XX) has no reason to be adapted to X as it is orthogonal to the set of available realiza-tions. On the 
ontrary, by 
onstru
tion, for α > 0, the rank of B(M)
A(α) is higher than ν. Usingthe same notations than in Eq. (2.39), the number of elements of BKer(A(α)), whi
h are byde�nition orthogonal to ea
h available realization of X, will be smaller than M − ν, su
h thatthe L2-error asso
iated with B(M)

A(α) is likely to be smaller than the one asso
iated with B(M)

R̂XX
.All these 
onsiderations 
an dire
tly be extended to the 
ase when X is a RQ-valued ran-dom �eld, Q ≥ 1. Indeed, let [RY Y ] be the (Q × Q) matrix-valued 
ovarian
e fun
tion ofthe RQ-valued sto
hasti
 pro
ess, Y = (Y1, . . . , YQ), for whi
h ν independent realizations,

{Y (θ1), . . . ,Y (θν)}, are available. We 
an thus de�ne [A(α)], su
h that for all (s, s′) in Ω× Ωand 1 ≤ p, q ≤ P :
[A(α)] = [α][R̂] + ([IQ]− [α]) [R̃], (2.40)

[α]pq = αpδpq, (α1, . . . , αQ) ∈ [0, 1]Q, (2.41)
[R̂(s, s′)]pq = R̂pq(s, s

′), (2.42)
[R̃(s, s′)]pq = R̃pq(s, s

′), (2.43)
R̂pq(s, s

′) =
1

ν

ν∑

n=1

Yp(θn, s)Yq(θn, s
′), (2.44)

R̃pq(s, s
′) =





1

S − (s′ − s)

∫ S−(s′−s)

0
R̂pq(x, x+ (s′ − s))dx if S > s′ − s ≥ 0,

1

S − (s− s′)

∫ S−(s−s′)

0
R̂pq(x+ (s′ − s), x)dx if S > s− s′ > 0,

R̂pq(s, s
′) otherwise. (2.45)The optimal value for the matrix-valued fun
tion used in the Fredholm problem, [A(α∗)],
an �nally be sear
hed as the solution of the following minimization problem:




[A(α∗)] = [α∗][R̂] + ([IQ]− [α∗]) [R̃],

[α∗] = argmin
[α]

{
ε2(B(M)

[A(α)])
}
.

(2.46)
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2.3.3 A posteriori evaluation of the representativeness errorIn order to solve the problem de�ned by Eq. (2.37), a method to a posteriori evaluate ε2(B(M)
A(α))from the only ν available independent realizations, {X(θn), 1 ≤ n ≤ ν}, for all α in [0, 1], isthen required. Indeed, from the limited set {X(θn), 1 ≤ n ≤ ν}, the L2-error, ε2(B(M)), 
orre-sponding to any M -dimension family B(M) of HM , 
annot be exa
tly 
al
ulated, but has to beevaluated as pre
isely as possible. Two 
ases 
an be distinguished:

• 
ase 1: B(M) is de�ned without any referen
e to {X(θ1), . . . ,X(θν)}.
• 
ase 2: the knowledge of {X(θ1), . . . ,X(θν)} is used to optimize the representativeness of

B(M). In this 
ase, B(M) depends on the available realizations of X.Case 1: realizations and proje
tion basis are independentIf B(M) has been 
omputed without any referen
e to the set {X(θ1), . . . ,X(θν)}, error ε2(B(M))
an be evaluated from its empiri
al estimation, ε̂2ν(B(M)), su
h that:
ε̂2ν(B(M)) =

1

ν

ν∑

n=1

(
X(θn)− X̂B(M)

(θn),X(θn)− X̂B(M)
(θn)

)
. (2.47)Indeed, a

ording to the 
entral limit theorem (see [15℄ for further details),

lim
ν→+∞

P


|ε2(B(M))− ε̂2ν(B(M))| ≤ z(p)

√√√√Var
{(
X − X̂B(M)

,X − X̂B(M)
)}

ν


 = 1− p, (2.48)

1− 1√
2π

∫ z(p)

−∞
exp

(
−x

2

2

)
dx =

p

2
, (2.49)su
h that for su�
iently high values of ν:

ε2(B(M)) ≈ ε̂2ν(B(M)). (2.50)Case 2: the proje
tion basis depends on the available realizationsIn order to make proje
tion family B(M) be parti
ularly adapted to random �eld X, it 
an beinteresting to exploit as mu
h as possible the information about X that is gathered in indepen-dent realizations {X(θ1), . . . ,X(θν)}. In this 
ase, B(M) is dependent on {X(θ1), . . . ,X(θν)},and error ε̂2ν strongly underestimates ε2. This phenomenon is generally 
alled overlearning. Forinstan
e, if we de�ne B(M) = {bm, 1 ≤ m ≤M} as the Gram-S
hmidt orthogonalization of thedeterministi
 family of available independent realizations {X(θ1), . . . ,X(θν)}:



b1 = X(θ1)/ (X(θ1),X(θ1)) , K = 1,for 2 ≤ m ≤M :

b∗m = X(θi)−
∑m−1

k=1 (X(θm), bk) bkif (b∗m, b∗m) > 0 :

K = K + 1, bK = b∗m/
√

(b∗m, b∗m)end ifend for
M = K,

(2.51)
37



then, the M -dimension proje
tion,
X̂B(M)

=

M∑

m=1

Cmbm, Cm = (X, bm) , (2.52)of random �eld X on B(M) veri�es:
X̂B(M)

(θn) = X(θn), 1 ≤ n ≤ ν. (2.53)By 
onstru
tion, error ε̂2ν(B(M)) is always equal to zero, whereas ε2(B(M)) should be in generalstri
tly greater than 0, as the number of available realization, ν, and the dimension of theproje
tion basis, M, are limited.In order to 
orre
tly evaluate error ε2, a separation in two sets of the available realizationsis generally performed:
• the �rst set, {X(θ1), . . . ,X(θν∗)}, is a learning set, on whi
h the de�nition of B(M) isbased,
• the se
ond set, {X(θν∗+1), . . . ,X(θν)}, is an assessment set, on whi
h the 
omputation of
ε̂2ν−ν∗ is a
hieved to evaluate ε2.With su
h a method, it 
an be noti
ed that the higher ν∗, the less pre
ise the evaluation of

ε2. This limits strongly the s
ope of su
h approa
hes when number of available realizations νis small, 
ompared to the number of fun
tions that are needed to 
hara
terize X. Indeed, insu
h 
ases, we would be interested in taking into a

ount most of the available realizations of
X, that is to say in making ν∗ tends to ν, whi
h leads us nevertheless to a very bad evaluationof ε2.To this end, for all set of ν∗ indi
es, J(ν∗), su
h that:

J(ν∗) = {j1 6= . . . 6= jν∗} ∈ {1, . . . , ν}ν∗ , (2.54)let B(M)(J(ν∗)) be the M -dimension family that has been 
omputed from the ν∗-dimensionset {X(θj1), . . . ,X(θjν∗ )
} (ν∗ 
an vary) of independent realizations of X (the family that stemsfrom the Gram-S
hmidt orthogonalization de�ned by Eq. (2.51) is an example of su
h a family).The two following hypotheses are then assumed.1. First, it is supposed that error ε2 (B(M)(J(ν∗))

) de
reases when ν∗ in
reases.2. Then, given two sets J(1)(ν∗) and J(2)(ν∗) that have been randomly 
hosen in {1, . . . , ν}ν∗ ,it is assumed that:
P
X̂(1) ≈ P

X̂(2) , (2.55)where PX̂(1) and PX̂(2) are the distributions of the proje
ted random �elds, X̂(1) and X̂(2),on B(M)(J(1)(ν∗)) and B(M)(J(2)(ν∗)) respe
tively.In other words, the �rst hypothesis means that the modeling errors are expe
ted to de
reasewhen the information is in
reasing, whereas the se
ond hypothesis asks, for the appli
ation,that 
omputing the proje
tion basis from a limited set of realizations yields robust results.38



Let J (ν−1) be the random variable, whose distribution is dis
rete, su
h that for all 1 ≤ n ≤ ν,
J (ν − 1) takes set value J (ν − 1, θn) = {1, . . . , n − 1, n + 1, . . . , ν} with probability 1/ν. Forall 1 ≤ n ≤ ν, J (ν − 1, θn) 
orresponds thus to a parti
ular set of ν − 1 indi
es. With su
h aformalism, the proje
tion basis that is only based on the knowledge of the ν − 1 realizations,
{X(θ1), . . . ,X(θn−1),X(θn+1), . . . ,X(θν)}, of X, whi
h is denoted by B(M)(J (ν − 1, θn)), isindependent of X(θn). Therefore, under the two former hypotheses, if X̂(J (ν − 1, θn), θn) isthe proje
tion of X(θn) on B(M)(J (ν − 1, θn)), the set {e2(θn), 1 ≤ n ≤ ν

}, where:
e2(θn) =

(
X(θn)− X̂(J (ν − 1, θn), θn),X(θn)− X̂(J (ν − 1, θn), θn)

)
, (2.56)
an be seen as a set of ν independent realizations of the random variable:

e2 =
(
X − X̂(J (ν − 1)),X − X̂(J (ν − 1))

)
, (2.57)su
h that:

ε2
(
B(M)(J(ν − 1))

)
≈ ε2LOO(B(M))

def
=

1

ν

ν∑

i=1

e2(θi). (2.58)A

ording to the 
entral limit theorem, this error 
onverges to ε2 (B(M)(J(ν − 1))
) at the
onvergen
e rate of 1/√ν. For all proje
tion family B(M), the estimation ε2LOO(B(M)) is 
alledLeave-One-Out (LOO) error, and it 
an be seen as a good approximation of ε2(B(M)) for νsu�
iently high. This LOO error 
an be 
onsidered as the appli
ation of the ja
kknife theory(see [73, 74, 75℄ for further details) to the evaluation of proje
tion errors. Hen
e, 
ontrary tothe two-sets approa
h, the Leave-One-Out method allows us to 
ompute proje
tion basis B(M)from all the available realizations of X, while still giving a

ess to an a

urate estimation of its
orresponding representativeness error, ε2(B(M)), when ν is su�
iently high.Finally, the L2-error, ε2, in the optimization problem, de�ned by Eq. (2.37), 
an be re-pla
ed by the LOO error, su
h that the M -dimension optimal proje
tion family, K(M), 
an beapproximated by the following optimization problem:





K(M) ≈ B(M)
A(α∗),

α∗ = arg min
α∈[0,1]

{
ε2LOO(B(M)

A(α))
}
.

(2.59)2.4 Appli
ationsIn order to illustrate the bene�ts that stem from the optimization problem de�ned by Eq. (2.59),an appli
ation based on simulated data is presented in this se
tion. This appli
ation aims atjustifying the relevan
e of the Leave-One-Out error, and at emphasizing the di�
ulties of the
lassi
al Karhunen-Loève expansion-based methods to identify optimal basis when the numberof available realizations is low, while the generalized Karhunen-Loève expansion, 
hara
terizedby Eq. (2.59) gives very promising results.2.4.1 Generation of independent realizations of the random �eldLet Ω = [0, 1], and X be a random �eld of P(Ω), for whi
h the 
ovarian
e fun
tion RXX isrepresented in Figure 2.1 and the mean value is zero. This random �eld has been 
hosen onpurpose non stationary. 39



From this 
hoi
e for RXX , we 
an numeri
ally identify the Karhunen-Loève basis, K =
{km, m ≥ 1}, asso
iated withX by solving the Fredholm problem asso
iated with RXX , de�nedby Eq. (1.5). For any value ofM ≥ 1, it is reminded that K(M) = {km, 1 ≤ m ≤M} is optimalin the sense that it minimizes ε2:

ε2(K(M)) = min
B(M)∈HM

ε2(B(M)). (2.60)From a numeri
al point of view, the Fredholm equation is solved using a Galerkin-typeapproximation, as presented in Se
tion 1.3.3. Interval Ω is dis
retized with the spatial step
h = 0.005, and random �eld X is approximated by its N -dimension proje
tion, X(N), with
N = 1/h + 1 = 201, su
h that:

X(s) ≈ X(N)(s) =

N∑

i=1

hi(s)X((i − 1)h), s ∈ Ω, (2.61)
hi(s) =





(ih− s)/h, if (i− 1)h ≤ s ≤ ih,
(s− (i− 2)h)/h, if (i− 2)h ≤ s ≤ (i− 1)h,
0 otherwise. (2.62)The 
ovarian
e fun
tion RXX , of 
entered random �eld X, is also approximated by its Galerkinproje
tion, Rh

XX , su
h that, for all (s, s′) in Ω× Ω:
RXX(s, s′) ≈ Rh

XX(s, s′) =
N∑

i=1

N∑

j=1

hi(s)hj(s
′)E [X((i− 1)h)X((j − 1)h)] . (2.63)The eigenvalue problem, de�ned by Eq. (1.5), asso
iated with kernel Rh

XX , leads us to thede�nition of N fun
tions, that are denoted by {khm, 1 ≤ m ≤ N
}. Let {λhm, 1 ≤ m ≤ N

} bethe 
orresponding eigenvalues, su
h that:
Rh

XX(s, s′) =
N∑

m=1

λhmk
h
m(s)khm(s′), (s, s′) ∈ Ω× Ω, (2.64)

X(N)(s) =

N∑

m=1

√
λhmk

h
m(s)ξm, s ∈ Ω, (2.65)with ξ = (ξ1, . . . , ξN ) a N -dimension random ve
tor of un
orrelated random variables. Inthis appli
ation, X is supposed to be a Gaussian random �eld (the Gaussian hypothesis is justintrodu
ed in order to simplify the generation of independent realizations of X but the following
on
lusions would be exa
tly the same for a non-Gaussian 
ase). Consequently, the 
omponentsof ξ are independent normalized Gaussian random variables.Two sets, X exp = {X(θ1), . . . ,X(θν)} and X valid = {XΘ1), . . . ,X(Θνvalid)}, of independentrealizations of X are then generated from the KL de
omposition de�ned by Eq. (2.65). Fourparti
ular independent realizations of X are represented in Figure 2.2. Set X exp representsthe available information about X, whereas X valid is the assessment set, whi
h will only beused a

ording to Se
tion 2.3.3 to evaluate the proje
tion error, ε2(B(M)), 
orresponding to anyproje
tion family B(M) in HM .In the following, νvalid is 
hosen equal to 4, 000 for the 
onvergen
e of ε̂2

νvalid
(B(M)), de�ned byEq. (2.47), towards ε2(B(M)) to be a
hieved. 40
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2.4.2 Improvement of the proje
tion basis with respe
t to the available in-formationThe number of available realizations, ν, is now supposed to be in the set {0, 10, 20, 50, 200}.The 
ase ν = 0 
orresponds to a limit 
ase when no realization of X is available. For the other
ases, the empiri
al estimator of 
ovarian
e fun
tion RXX , whi
h is denoted by R̂(ν), su
h that:
R̂(ν, s, s′) =

1

ν

ν∑

n=1

X(θn, s)X(θn, s
′), (s, s′) ∈ Ω× Ω, (2.66)is 
ompared in Figure 2.3 for di�erent values of ν. In these �gures, it 
an be veri�ed thatthe higher ν, the more relevant R̂(ν). Using the same notations than in Se
tion 2.3.2, for all

1 ≤M ≤ N , B(M)

R̂(ν)
= {bν1 , . . . , bνM} is introdu
ed as the M -dimension family su
h that:

∫

Ω
R̂(ν)(·, s′)bνm(s′)ds′ = λνmb

ν
m, 1 ≤ m ≤M, (2.67)

λν1 ≥ λν2 ≥ . . . ≥ λνM ≥ 0. (2.68)By 
onstru
tion, for ν < M , the rank of R̂(ν) is equal to ν, and then,
λνν+1 = λνν+2 = . . . = λνM = 0. (2.69)Therefore, as des
ribed in Se
tion 2.3.1, the elements of {bνν+1, . . . , b

ν
M} are orthogonal to theavailable realizations of X: their 
hara
terization does not take into a

ount any informationabout X. In parti
ular, in the 
ase ν = 0, B(M)

R̂(ν=0)

orresponds to any M -dimension setof orthonormal fun
tions of H. In Figure 2.3 are thus 
ompared the evolutions of the errorfun
tions, ε2(B(M)

R̂(ν)
), with respe
t to M , for four 
onsidered values of ν. First, in this �gure,it 
an be noti
ed that ε2(B(M)

R̂(ν=0)
) de
reases linearly with respe
t to M , whi
h means that therelevan
e of ea
h element of B(M)

R̂(ν=0)
to des
ribe X is approximatively the same. This is adire
t and natural 
onsequen
e of the fa
t that all these elements have been de�ned withoutinformation about X. Then, two phases 
an 
learly be identi�ed in the evolution of ε2(B(M)

R̂(ν)
)with respe
t to M , for ν = 10, 20, 50, 200: the de
rease of ε2(B(M)

R̂(ν)
) is indeed mu
h faster for

M ≤ ν than for M > ν, where a quasi-linear de
rease is found again. This behavior 
an bejusti�ed by the fa
t that the ν �rst elements of B(M)

R̂(ν)
are based on the available realizations of

X, whereas the M − ν last elements are not.2.4.3 Optimized basis when few realizations are availableIn the former se
tion, it has been shown that the basis that stems from the solving of Eq. (2.67)appears to be relevant to 
hara
terize X, espe
ially when the number of available realizations,
ν, is high. This se
tion aims at illustrating the bene�ts of the approa
h introdu
ed in Se
tion2.3.1, in 
ases when ν ≪ N . For ν in {10, 20, 50, 200} and 1 ≤ M ≤ N , let α∗(ν) be thesolution of the optimization problem, de�ned by Eq. (2.37) (in this appli
ation, Eq. (2.37) hasbeen solved using an algorithm based on a di
hotomy), and let A(α∗(ν)) be the 
orrespondingfun
tion in S(R). The relevan
e of B(M)

R̂(ν)
and B(M)

A(α∗(ν)) is then 
ompared in Figure 2.5. Theoptimal value of the proje
tion error, ε2(K(M)), has been added in these �gures as a limit state.In ea
h 
ase, it 
an thus be seen that ε2(B(M)
A(α∗(ν))) ≤ ε2(B(M)

R̂(ν)
). For these four 
hoi
es for ν,42
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Figure 2.5: Improvement of the proje
tion basis.this �gure underlines the great bene�ts of the formulation de�ned by Eq. (2.37), espe
iallywhen ν ≪ N . For instan
e, for ν = 10 ≪ N = 201 and M = 50, whereas ε2(B(50)

R̂(ν)
) = 29.2%,

ε2(B(50)
A(α∗(ν))) = 2.27%. Indeed, whereas the rank of R̂(ν = 10) is 10, the rank of A(α∗(ν = 10))is by 
onstru
tion mu
h higher than ν. Therefore, more elements of B(50)

A(α∗(ν)) are based onthe knowledge of X than the elements of B(50)

R̂(ν)
, whi
h explains su
h an improvement of theproje
tion basis, even if X is non stationary.2.4.4 Relevan
e of the LOO errorAs presented in Se
tion 2.3.3, when the assessment set, X valid, is not available, whi
h is thegeneral 
ase, the LOO error allows us to evaluate the proje
tion error from the only set X exp.For M = 50, the relevan
e of the LOO error is illustrated in Figure 2.6. It 
an be seen inthis �gure that for even low values of ν, LOO error ε2LOO(B

(M)

R̂(ν)
), whi
h is only based on the

ν available realizations of X, is very 
lose to the validation error ε̂2
νvalid

(B(M)

R̂(ν)
), de�ned by Eq.(2.47), whi
h is based on the νvalid realizations gathered in X valid. Error bars have been added inthese two graphs for several values of ν. These bars 
orrespond to the 95% 
on�den
e intervalsand emphasize the 
onvergen
e in 1/

√
ν of the LOO error towards ε̂2

νvalid
(B(M)

R̂(ν)
).
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Figure 2.6: Relevan
e of the LOO estimator.2.5 Con
lusionsFor the last de
ades, the in
reasing 
omputational power has en
ouraged many s
ienti�
 �elds totake into a

ount random �eld in their modeling. The development of redu
ed basis that 
ould
ondense at best the statisti
al properties of these random �elds is therefore of great interest. Inmost of these appli
ations, the knowledge of these random �elds is however limited to a �nite setof independent realizations. In this 
ontext, this 
hapter emphasized the e�
ien
y of a methodbased on an adaptation of the Karhunen-Loève expansion, in order to 
onstru
t optimized basisfrom a relatively small set of independent realizations. First, this method de�ned an originaloptimization problem, and se
ondly, required a way to a posteriori evaluate proje
tion errors.Finally, when interested in studying 
omplex systems that are ex
ited by random �elds that areonly known through a set of limited independent realizations, the method proposed opens newopportunities to optimize the proje
tion basis with respe
t to the available information.
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Chapter 3PCE identi�
ation in high dimensionfrom a set of realizations3.1 Introdu
tionIn Se
tion 1.4, it has been shown to what extent the Polynomial Chaos Expansion (PCE)method allows us to identify in inverse the multidimensional distribution of the M -dimensionrandom ve
tor C = (C1, · · · , CM ) when the available information about this random ve
tor isa �nite set of ν independent realizations, whi
h are written {C(θ1), . . . ,C(θν)}. Without lossof generality, C is supposed to be a 
entered random ve
tor in this 
hapter.As presented in Se
tion 1.5, this method is based on a dire
t proje
tion of C on a knownand 
hosen N -dimension orthonormal basis {ψ1(ξ), . . . , ψN (ξ)}, su
h that:
C ≈ Cchaos(N) = [y]Ψ(ξ), Ψ(ξ) = (ψ1(ξ), . . . , ψN (ξ)) , (3.1)with ξ a Ng-dimension random ve
tor (Ng ≤M) whose distribution is known.To identify the multidimensional distribution of C, the (M ×N) proje
tion matrix [y] hasthen to be 
al
ulated from the available information about C, and the values of the trun
ationparameters Ng and N have to be justi�ed a

ording to 
onvergen
e analysis. To this end, anerror fun
tion has been de�ned in Se
tion 1.5.4 to quantify the amplitude of the PCE residue,

C − Cchaos(N), whereas a random sear
h algorithm has been introdu
ed in Se
tion 1.5.3 toallow the 
omputation of [y] from the realizations {C(θ1), . . . ,C(θν)} of C.Dealing with high dimensional problems, that is to say whenM and N are very high, raiseshowever at least two major di�
ulties.
• First, when M and N are high, the dimension of the admissible set OC be
omes huge,su
h that the 
onvergen
e of the random sear
h algorithms that are based on independentand uniformly distributed generations of [y∗] in OC to solve the optimization problemde�ned by Eq. (1.61), is very low. A method to optimize the generation of elements in

OC is therefore needed for su
h PCE inverse identi�
ation to give relevant results.
• Se
ondly, the optimization problem de�ned by Eq. (1.61) is based on the generation ofthe matrix [Ψ(νchaos)] of independent realizations of proje
tion ve
tor Ψ(ξ). Re
urren
eformula or algebrai
 expli
it representations are generally used to 
ompute su
h matrix

[Ψ(νchaos)], whi
h are supposed to verify the asymptoti
 property:46



lim
νchaos→+∞

1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T = [IN ], (3.2)as a dire
t 
onsequen
e of the orthonormality of the PCE basis. However, for numeri
allyadmissible values of νchaos (between 1000 and 10000), it has been shown in [76℄ thatthe di�eren
e 1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T − [IN ] 
an be very signi�
ant when N is high.This di�eren
e indu
es a detrimental bias in the PCE identi�
ation, whi
h makes the
onvergen
e of the 
lassi
al PCE in high dimension very di�
ult. Innovative methods togenerate matri
es [Ψ(νchaos)] that numeri
ally verify 1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T = [IN ]are thus expe
ted to allow this 
onvergen
e in high dimension.Solutions to these two di�
ulties are therefore proposed in this 
hapter. First, Se
tion 3.2presents an original method to optimize the trials in the admissible set

OC =
{
[y] =

[
y(1), · · · ,y(N)

]
∈ MM,N | [y][y]T = [R̂CC(ν)]

}
, (3.3)

[R̂CC(ν)] =
1

ν

ν∑

n=1

C(θn)⊗C(θn), (3.4)even if ν is very small 
ompared to M and N , su
h that relevant values for [y] 
an be 
omputedat a reasonable 
omputational 
ost.Then, Se
tion 3.3 addresses the stabilization of the matrix of realizations [Ψ(νchaos)] in highdimension. At last, two appli
ations are presented in Se
tion 3.4 to emphasize the bene�ts ofsu
h improvements in the PCE identi�
ation pro
ess.3.2 Optimized trials of independent realizations of random ma-tri
es under 
orrelation 
onstraintsIn this 
hapter, we use the same notations than in Se
tion 1.5.To solve Eq. (1.61) with a random sear
h algorithm, as an extension of the work des
ribedin [38℄, this se
tion aims at proposing two methods to optimize the trials in OC . Adaptationsof these methods are then presented when ν < M , that is to say when the available informationis very limited 
ompared to the size of C.3.2.1 Reformulation of the 
orrelation 
onstraintsFrom Eqs. (1.33) and (1.50), for a given value of ν, it is re
all that the matri
es [Cexp(ν)] and
[R̂CC(ν)] are de�ned su
h that:

[Cexp(ν)] = [C(θ1) . . . C(θν)] , [R̂CC(ν)] =
1

ν
[Cexp(ν)][Cexp(ν)]T . (3.5)For any (M ×M) invertible real matrix [G], the random ve
tor C̃ is introdu
ed as:

C̃ = [G]C . (3.6)As [G] is invertible, C̃ and C belong to the same statisti
al spa
e. Therefore, sear
hing thePCE [y]Ψ(ξ) des
ribing C under the 
onstraint [y][y]T = [R̂CC(ν)] is equivalent to sear
hingthe PCE [u]Ψ(ξ) des
ribing C̃, where matrix [u] = [G][y] has to verify:47



[u][u]T = [G][R̂CC (ν)][G]
T . (3.7)Matrix [R̂CC(ν)] being a symmetri
al and real matrix, it exists an orthogonal matrix [V̂ (ν)]and a diagonal matrix [λ̂(ν)] in MM,M su
h that:

[R̂CC(ν)] =
(
[V̂ (ν)][λ̂(ν)]1/2

)(
[V̂ (ν)][λ̂(ν)]1/2

)T
, [V̂ (ν)]T [V̂ (ν)] = [IM ]. (3.8)

[λ̂(ν)]1/2 =




√
λ̂1(ν) 0 · · · 0

0

√
λ̂2(ν)

. . . ...... . . . . . . 0

0 · · · 0

√
λ̂M (ν)



, λ̂1(ν) ≥ . . . ≥ λ̂M (ν) ≥ 0. (3.9)The idea is thus to �nd a parti
ular matrix [G] that 
ould simplify the orthogonality 
on-straints for [y]. If λ̂M (ν) > 0, [V̂ (ν)][λ̂(ν)]1/2 is invertible. The parti
ular 
hoi
e [G] =

[λ̂(ν)]−1/2[V̂ (ν)]T imposes therefore on [u] to belong to the Stiefel manifold VN,M (see [77℄for further details about the Stiefel manifold), su
h that:
VN,M =

{
[u] ∈ MM,N | [u][u]T = [IM ]

}
. (3.10)3.2.2 Notations and de�nitionsIn this se
tion, a series of notations are introdu
ed, on whi
h the next se
tions will be based.For 1 ≤ z ≤ Z:

• Jz is a random permutation from {1, 2, . . . ,M} to {1, 2, . . . ,M}, su
h that:
Jz =

(
j
(z)
1 , . . . , j

(z)
M

)
∈ {1, 2, . . . ,M}M , j

(z)
1 6= . . . 6= j

(z)
M ; (3.11)

• the set {vT
(z),m, 1 ≤ m ≤M

} gathers the M rows of matrix [y(z)], su
h that:
[y(z)] =




vT
(z),1...

vT
(z),M


 ; (3.12)

• For 1 ≤ m ≤M , PDF p̂(
U

(z)
j1

,...,U
(z)
jm

) refer to the kernel estimators of the multidimensionalPDF p(
U

(z)
j1

,...,U
(z)
jm

) of the random ve
tor
(
U

(z)
j1
, . . . , U

(z)
jm

)
=




vT
(z),j1...

vT
(z),jm


Ψ(ξ). (3.13)

• In the same manner, the set {ṽT
(z),m, 1 ≤ m ≤M

} gathers the M rows of matrix [u(z)],su
h that: 48



[u(z)] =




ṽT
(z),1...

ṽT
(z),M


 ; (3.14)

• For 1 ≤ m ≤M , PDF p̂(
Ũ

(z)
j1

,...,Ũ
(z)
jm

) refer to the kernel estimators of the multidimensionalPDF p(
Ũ

(z)
j1

,...,Ũ
(z)
jm

) of the random ve
tor
(
Ũ

(z)
j1
, . . . , Ũ

(z)
jm

)
=




ṽT
(z),j1...

ṽT
(z),jm


Ψ(ξ). (3.15)

• For 1 ≤ m ≤M , L̂(
Ũ

(z)
j1

,...,Ũ
(z)
jm

)
({(

C̃j1(θn), . . . , C̃jm(θn)
)
, 1 ≤ n ≤ ν

}) is the estimationof the multidimensional log-likelihood of random ve
tor (Ũ (z)
j1
, . . . , Ũ

(z)
jm

) that is evaluatedat the experimental points {(C̃j1(θn), . . . , C̃jm(θn)
)
, 1 ≤ n ≤ ν

}, su
h that:
L̂(

Ũ
(z)
j1

,...,Ũ
(z)
jm

)
({(

C̃j1(θn), . . . , C̃jm(θn)
)
, 1 ≤ n ≤ ν

})

=

ν∑

n=1

ln p̂(
Ũ

(z)
j1

,...,Ũ
(z)
jm

)
((
C̃j1(θn), . . . , C̃jm(θn)

))
.

(3.16)
• for 1 ≤ P ≤ M , if the set B = {b1, . . . , bP} gathers P ve
tors that are in RM , Ker(B) ={

kerB1 , . . . ,ker
B
Q

} is an orthonormal basis of the null spa
e of B, su
h that:
〈
kerBq ,ker

B
q′
〉
= δqq′ ,

〈
kerBq , bp

〉
= 0, 1 ≤ p ≤ P, 1 ≤ q, q′ ≤ Q. (3.17)

• for 1 ≤ m ≤M , S(m)(1) 
orrespond to the m-dimension unit hypersphere, su
h that:
S(m)(1) = {s ∈ R

m, ‖s‖ = 1} . (3.18)In addition, we denote by S(m) the m-dimension random ve
tor that is uniformly dis-tributed on S(m)(1). If Ξ is a m-dimension random ve
tor whose 
omponents are 
en-tered, independent, normally distributed of varian
e equal to 1, as the distribution of Ξis invariant by rotation, it 
an be seen that if {Ξ(Θ1), . . . ,Ξ(ΘQ)} are Q independentrealizations of Ξ, the set
{
S(m)(Θ1) = Ξ(Θ1)/ ‖Ξ(Θ1)‖ , . . . ,S(m)(ΘQ) = Ξ(ΘQ)/ ‖Ξ(ΘQ)‖

} (3.19)gathers Q independent realizations of random ve
tor S(m).
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3.2.3 Theoreti
al frameFor m ≥ 1, let
• [R] be a (m+ 1×m+ 1) real matrix su
h that

[R] =

[
[Rm,m] R∗
RT

∗ R∗∗

]
, (3.20)where [Rm,m] is a (m×m) real and symmetri
al matrix, R∗ is a m-dimension real ve
torand R∗∗ ≥ 0.

• [z] be a (m×N) real matrix su
h that [z][z]T = [Rm,m].
• v be a N -dimension real ve
tor.Proposition 1 The matrix

[Z] =

[
[z]
vT

] (3.21)ful�lls the orthogonality 
onstraint [Z][Z]T = [R] if and only if ve
tor v veri�es:
v = [V ]

(
α

β

)
, α = [ℓ]−1[U ]TR∗, (3.22)where β is any (N −m)-dimension ve
tor, for whi
h norm is given by

‖β‖ =

√
R∗∗ − ‖α‖2, (3.23)

[U ] is a (m ×m) real orthogonal matrix, [V ] is a (N ×N) real orthogonal matrix, and [ℓ] is a
(m×m) real and stri
tly positive-de�nite diagonal matrix, su
h that:

[z] = [U ]


[ℓ]




0 · · · 0... . . . ...
0 · · · 0





 [V ]T , [V ]T [V ] = [IN ], [U ]T [U ] = [Im]. (3.24)

� Proof: We have the following equivalen
es:
[Z][Z]T = [R]

⇔ [z]v = R∗, ‖v‖2 = R∗∗, by de�nition of [R]
⇔ [U ]


[ℓ]




0 · · · 0... . . . ...
0 · · · 0





 [V ]Tv = R∗, ‖v‖2 = R∗∗

⇔ v = [V ]

(
α

β

)
, α = [ℓ]−1[U ]TR∗, ‖β‖ =

√
R∗∗ − ‖α‖2.

(3.25)
�

50



Corrolary 1 If [R] = [Im+1], the matrix
[Z] =

[
[z]
vT

] (3.26)ful�lls the orthogonality 
onstraint [Z][Z]T = [Im+1] if and only if ve
tor v veri�es:
v =

N−m∑

q=1

kerB
(m)

q βq, ‖β‖ = 1, (3.27)where B(m) = {z1, . . . ,zm}, [z] =  zT
1...

zT
m


.

� Proof: If [R] = [Im+1], then R∗∗ = 1 and R∗ = 0, whi
h leads dire
tly to the result.
�3.2.4 Iterative algorithmsFrom Se
tion 1.5, it has been shown that a good approa
h to numeri
ally identify the PCEproje
tion matrix [y] of C, su
h that

C ≈ [y]Ψ(ξ), (3.28)is to sear
h [y] as the dire
t solution of the following optimization problem:
[y] ≈ [yZOC

] = arg max
[y∗]∈W

C
(
[Cexp(ν)], [y∗], [Ψ(νchaos)]

)
, (3.29)where the 
ost fun
tion, C, is de�ned by Eqs. (1.58), (1.59) and (1.59) and:

W =
{
[y(1)], . . . , [y(Z)]

}
,
{
[y(1)], . . . , [y(Z)]

}
⊂ OC . (3.30)Alternatively, it has been underlined in Se
tion 3.2.1 that matrix [y] 
an be equivalentlysear
hed as the indire
t solution of the following problem:

[y] ≈ [V̂ (ν)][λ̂(ν)]1/2[uZOC
], (3.31)

[uZOC
] = arg max

[u∗]∈W̃
C
(
[C̃exp(ν)], [u∗], [Ψ(νchaos)]

)
, (3.32)where

[C̃exp(ν)] = [λ̂(ν)]−1/2[V̂ (ν)]T [Cexp(ν)], (3.33)
W̃ =

{
[u(1)], . . . , [u(Z)]

}
,
{
[u(1)], . . . , [u(Z)]

}
⊂ VN,M . (3.34)Hen
e, for the solving of these two optimization problems, the more adapted to the realiza-tions of C and C̃ these sets W and W̃ are, the more relevant the identi�
ation of [y] is likely tobe. As an extension of the work a
hieved in [38℄, this se
tion presents two iterative algorithmsthat stem from the theoreti
al developments of Se
tion 3.2.3 to 
ompute line by line matri
es

[y(z)] or [u(z)], 1 ≤ z ≤ Z, that are parti
ularly well adapted to the available information about
C and C̃ respe
tively. 51



Dire
t methodIn the following, z and Q verify 1 ≤ z ≤ Z and Q ≥ 1.Initialization. The j(z)1
th line of [y(z)], vT

(z),j1
, is �rst sear
hed in order to maximize theunidimensional likelihood:

vT
(z),j1

= arg min
vT
(z),j1

∈T (1)(Q)
L̂
U

(z)
j1

({Cj1(θn), 1 ≤ n ≤ ν}) , (3.35)where {S(N)(Θ1), . . . ,S
(N)(ΘQ)

} gathers Q independent realizations of S(N) and T (1)(Q) =
{√

[R̂CC ]j1j1S
(N)(Θ1), . . . ,

√
[R̂CC ]j1j1S

(N)(ΘQ)

}, su
h that if vT
(z),j1

is in T (1)(Q), ∥∥∥vT
(z),j1

∥∥∥
2
=

[R̂CC ]j1j1 .Iteration. For 2 ≤ i ≤M , the j(z)i
th line of [y(z)], vT

(z),ji
, is then sear
hed su
h that:

ṽT
(z),ji

= arg min
ṽT
(z),ji

∈T (i)(Q)
L̂(

U
(z)
j1

,...,U
(z)
ji

) ({(Cj1(θn), . . . , Cji(θn)) , 1 ≤ n ≤ ν}) , (3.36)where T (i)(Q) =
{
t1, . . . , tQ

} gathers Q real ve
tors with values in RM su
h that:
tq = [V ji ]

(
αji√

Rj1
∗∗ − ‖αji‖2S(N−i+1)(Θq)

)
, 1 ≤ q ≤ Q, (3.37)

αji = [ℓji ]−1[U ji ]TRji
∗ , (3.38)




vT
(z),j1...

vT
(z),ji−1


 = [U ji ]







ℓji1 0 · · · 0

0 ℓji2
. . . ...... . . . . . . 0

0 · · · 0 ℓjii−1







0 · · · 0... . . . ...
0 · · · 0






[V ji ]T , (3.39)

[V ji ]T [V ji ] = [IN ], [U ji ]T [U ji ] = [Ii−1]. (3.40)and {S(N−i+1)(Θq), 1 ≤ q ≤ Q
} gathersQ independent realizations of random ve
tor S(N−i+1).Indire
t methodFor 1 ≤ z ≤ Z, and Q ≥ 1, [u(z)] is de�ned a

ording to the following iterative algorithm.Initialization. The j(z)1

th line of [u(z)], ṽT
(z),j1 , is �rst sear
hed in order to maximize theunidimensional likelihood:

ṽT
(z),j1 = arg min

ṽT
(z),j1

∈T̃ (1)(Q)
L̂
Ũ

(z)
j1

({
C̃j1(θn), 1 ≤ n ≤ ν

})
, (3.41)where T̃ (1)(Q) gathers Q independent realizations of random ve
tor S(N).52



Iteration. For 2 ≤ i ≤M , the j(z)i
th line of [u(z)], ṽT

(z),ji , is then sear
hed su
h that:
ṽT
(z),ji = arg min

ṽT
(z),ji

∈T̃ (i)(Q)
L̂(

Ũ
(z)
j1

,...,Ũ
(z)
ji

)
({(

C̃j1(θn), . . . , C̃ji(θn)
)
, 1 ≤ n ≤ ν

})
, (3.42)where T̃ (i)(Q) =

{
t̃
1
, . . . , t̃

Q
} gathers Q real ve
tors with values in RM su
h that:

t̃
q
=

M−i+1∑

k=1

kerB
(i)

k S
(N−i+1)
k (Θq), 1 ≤ q ≤ Q, (3.43)and {S(M−i+1)(Θq), 1 ≤ q ≤ Q

} gathersQ independent realizations of random ve
tor S(M−i+1),and B(i) =
{
ṽ(z),j1 , . . . , ṽ(z),ji−1

}.Comments on the iterative algorithms
• First, from Se
tion 3.2.3, su
h algorithms allows us to generate matri
es [y(z)] and [u(z)]that verify the orthogonality 
onstraints [y(z)][y(z)]T = [R̂CC(ν)] and [u(z)][u(z)]T = [IM ].
• Thanks to the iterative 
onstru
tion, ea
h line of these matri
es are moreover de�ned tobe adapted at most to the available realizations of C and C̃.
• By imposing on the ve
tors tq (for the dire
t method) and t̃

q (for the indire
t method) tobe uniformly distributed on their de�nition domains, we try to explore as obje
tively aspossible the sets OC and VN,M .
• These algorithms are indexed by integer Q. To solve Eqs. (3.29) or (3.32), the total 
ostis therefore globally proportional to Q × Z. From a numeri
al point of view, it appearsthat the a

ura
y of the results is however mu
h more dependent on Q than Z. For alimited 
omputational 
ost, it is thus advised to 
hoose Q as high as possible, even if thatfor
es Z to be inferior to 10.3.2.5 Adaptations to the 
ase ν < MMotivationsWhen the information about C is limited, and more pre
isely, when ν is lower than M , thedire
t and indire
t iterative algorithms formerly introdu
ed are no more a

urate. Indeed, therank r of matrix [R̂CC(ν)] is by 
onstru
tion lower than ν, su
h that

λ̂M−ν+1(ν) = λ̂M−ν+2(ν) = . . . = λ̂M (ν) = 0. (3.44)Matrix [V̂ (ν)][λ̂(ν)]1/2 is no more invertible, and imposing [y] to verify the 
onstraint [y][y]T =
[R̂CC(ν)] is therefore equivalent to proje
t C in the (r)-dimension image spa
e of [R̂CC(ν)]. Ifwe want C to remain in its M -dimension spa
e, the former 
onstraint on [y] has to be looseneda little, su
h that [y][y]T ≈ [R̂CC(ν)]. Keeping in mind that the rank of ea
h (r× r) sub-matrixof [R̂CC(ν)] is also r, the possibility we propose to loosen this 
onstraint is based on a blo
k byblo
k adaptation of the dire
t iterative algorithm de�ned in Se
tion 3.2.4 to generate matri
es
[y(z)], 1 ≤ z ≤ Z, su
h that [y(z)][y(z)]T ≈ [R̂CC(ν)].Adapted PCE identi�
ation iterative algorithmFor 1 ≤ z ≤ Z, and Q ≥ 1. 53



Initialization. The j(z)1
th line of [y(z)], vT

(z),j1
, is sear
hed in order to maximize the unidimen-sional likelihood:

vT
(z),j1

= arg min
vT
(z),j1

∈T (1)(Q)
L̂
U

(z)
j1

({Cj1(θn), 1 ≤ n ≤ ν}) , (3.45)where T (1)(Q) =

{√
[R̂CC ]j1j1S

(N)(Θ1), . . . ,
√

[R̂CC ]j1j1S
(N)(ΘQ)

} is the spa
e that has al-ready been introdu
ed in Se
tion 3.2.4.Iteration - �rst part. For 2 ≤ i ≤ r, the j(z)i
th line of [y(z)], vT

(z),ji
, is sear
hed su
h that:

ṽT
(z),ji

= arg min
ṽT
(z),ji

∈T (i)(Q)
L̂(

U
(z)
j1

,...,U
(z)
ji

) ({(Cj1(θn), . . . , Cji(θn)) , 1 ≤ n ≤ ν}) , (3.46)where T (i)(Q) has also been de�ned in Se
tion 3.2.4.Iteration - se
ond part. For r + 1 ≤ i ≤M , we de�ne
R∗ =

(
[R̂CC ]j1ji , [R̂CC ]j2ji , . . . , [R̂CC ]ji−1ji

)
, (3.47)





I(r) = {i1, . . . , ir} ⊂ {j1, . . . , ji−1} ,
|[R̂CC ]i1ji | ≥ . . . ≥ |[R̂CC ]irji | ≥ max

j /∈I(r)
|[R̂CC ]jji |.

(3.48)The j(z)i
th line of [y(z)], vT

(z),ji
, is then sear
hed su
h that:

ṽT
(z),ji = arg min

ṽT
(z),ji

∈T(i)(Q)
L̂(

U
(z)
j1

,...,U
(z)
ji

) ({(Cj1(θn), . . . , Cji(θn)) , 1 ≤ n ≤ ν}) , (3.49)where T(i)(Q) =
{
t1, . . . , tQ

} gathers Q real ve
tors with values in RM su
h that:



vT
(z),i1...

vT
(z),ir

tq







vT
(z),i1...

vT
(z),ir

tq




T

=




[
R̂CC

]
i1i1

· · ·
[
R̂CC

]
i1ir

[
R̂CC

]
i1ji... . . . ... ...[

R̂CC

]
iri1

· · ·
[
R̂CC

]
irir

[
R̂CC

]
irji[

R̂CC

]
jii1

· · ·
[
R̂CC

]
jiir

[
R̂CC

]
jiji



, 1 ≤ q ≤ Q, (3.50)whi
h have been randomly generated using the same developments than in Se
tion 3.2.4.Therefore, su
h an algorithm allows us to build matri
es [y(z)] su
h that the highest termsin absolute value of [R̂CC

] are exa
tly reprodu
ed in [y(z)][y(z)]T .
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3.3 Numeri
al stabilization of the polynomial basis in high di-mensionAs it has been presented in the former se
tions, the (N × νchaos
) real matrix [Ψ(νchaos)] gath-ers νchaos independent realizations of the N -dimension random ve
tor Ψ(ξ). Moreover, thenumeri
al identi�
ation of the PCE 
oe�
ients [y] 
an be seen as the minimization of a 
ostfun
tion involving the elements of the (M × νchaos

) real matrix of independent realizations
[U ] = [y][Ψ(νchaos)] of random ve
tor U = [y]Ψ(ξ) and the elements of the (M × ν) real matrixof independent realizations [Cexp(ν)] = [C(θ1) · · · C(θν)] of C. In theoreti
al terms, this 
ostfun
tion should be minimum when the multidimensional PDF pU of U is as near as possible tothe multidimensional PDF pC of C. In pra
ti
al terms, this 
ost fun
tion is however minimumwhen p̂U is as near as possible to p̂C , where p̂U and p̂C are the multidimensional non parametri
estimators of pU and pC de�ned by Eq. (1.55). With respe
t to ν and νchaos, three bias arethen introdu
ed in the PCE identi�
ation:

• a bias due to a la
k of information about C:
b(1)(ν) =

∫

RM

|p̂C(x)− pC(x)|dx, (3.51)
• a bias due to a la
k of information about U :

b(2)(νchaos) =

∫

RM

|p̂U (x)− pU (x)|dx, (3.52)
• a bias due to the trun
ation and to the fa
t that the global maximum is not ne
essaryrea
hed:

b(3)(ν, νchaos) =

∫

RM

|p̂C(x)− p̂U (x)|dx. (3.53)These three bias 
ould also be expressed with respe
t to the statisti
al moments of C and
U . For instan
e, when fo
using on the auto
orrelation matrix, let err1, err2 and err3 be theauto
orrelation errors 
orresponding respe
tively to the bias b(1), b(2) and b(3):

err1(ν) =
∥∥∥[RCC ]− [R̂CC(ν)]

∥∥∥
F
/ ‖[RCC ]‖F , (3.54)

err2(νchaos) =
∥∥∥[Rchaos

CC (N)]− [R̂UU (ν
chaos)]

∥∥∥
F
/
∥∥∥[Rchaos

CC (N)]
∥∥∥
F
, (3.55)

err3(ν, νchaos) =
∥∥∥[R̂UU (ν

chaos)]− [R̂CC(ν)]
∥∥∥
F
/
∥∥∥[R̂CC(ν)]

∥∥∥
F
, (3.56)where ‖.‖F is the Frobenius norm of matri
es, and where it is reminded from Eqs. (1.37) and(1.50) that:





[
R̂CC(ν)

]
= 1

ν [C
exp(ν)][Cexp(ν)]T ,[

R̂UU (ν
chaos)

]
= 1

νchaos
[U ][U ]T = [y]

(
1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T

)
[y]T ,[

Rchaos
CC (N)

]
= [y][y]T .

(3.57)
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Hen
e, the smaller these three errors are, the more pre
ise the PCE identi�
ation is. The νindependent realizations {C(θ1), · · · ,C(θν)} being the maximum available information about
C, the bias b(1) and the auto
orrelation error err1 
annot be de
reased, whereas the set OC ,whi
h was introdu
ed to guarantee that [Rchaos

CC (N)] = [R̂CC(ν)], aims at redu
ing b(2), b(3),
err2 and err3. Therefore, imposing [y] to be in OC leads us to:

err2
(
νchaos

)
= err3

(
ν, νchaos

)

=

∥∥∥∥[y]
(

1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T − [IN ]

)
[y]T

∥∥∥∥
F

/
∥∥[y][IN ][y]T

∥∥
F
.

(3.58)The following asymptoti
 property 
an thus be dedu
ed from Eq. (1.40):
lim

νchaos→+∞
err2

(
νchaos

)
= lim

νchaos→+∞
err3

(
ν, νchaos

)
= 0, (3.59)whi
h is equivalent to say that the larger νchaos is, the more a

urate the PCE identi�
ationshould be. However, from a pra
ti
al point of view, the value of νchaos is �xed by the available
omputation resour
es. As an extension of the work presented in [76℄, this se
tion aims atquantifying the divergen
e of the ratio:

r =

∥∥∥∥
1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T − [IN ]

∥∥∥∥
F

/ ‖[IN ]‖F , (3.60)when the trun
ation parameters Ng and p, whi
h have been introdu
ed in Se
tion 1.5.4, in
reasefor several statisti
al measures. From Eq. (3.58), r, de�ned by Eq. (3.60), 
an be seen as ageneral 
hara
terization of the auto
orrelation errors err2 and err3. This divergen
e beingvery detrimental to the PCE identi�
ation in high dimension, a new de
omposition of the PCE
oe�
ient matrix [y] will be then presented in this se
tion to make err2 and err3 be zero forany value of Ng and p.3.3.1 De
omposition of the matrix of independent realizationsTo better emphasize the in�uen
e of the trun
ation parameters on the ratio r, a rewriting ofthe matrix [Ψ(νchaos)] is �rst presented.Theoreti
al basis of the de
ompositionFrom Eq. (1.39), matrix [Ψ(νchaos)] gathers νchaos 
olumns {Ψ (ξ(θn)) , 1 ≤ n ≤ νchaos
}, whi
hare independent realizations of theN -dimension PCE random ve
torΨ(ξ) = (ψ1(ξ), . . . , ψN (ξ)).This basis being orthonormal leads us to the asymptoti
 
ondition on [Ψ(νchaos)], de�ned byEq. (1.40). Moreover, Eq. (1.62) implies that [Ψ(νchaos)] 
an be expressed as:

[Ψ(νchaos)] = [A][M ], (3.61)where [A] is the (N ×N) real matrix that gathers the 
oe�
ients of the orthonormal polynomialswith respe
t to the probability measure of the Ng-dimension PCE germ, ξ =
(
ξ1, · · · , ξNg

), and
[M ] is a (N × νchaos

) real matrix, whi
h gathers νchaos independent realizations of the randomve
tor E (ξ, p), su
h that:
[M ] = [E (ξ (θ1) , p) · · · E (ξ (θνchaos) , p)] , (3.62)56



E (ξ, p) = (Mα(1) (ξ) , . . . ,Mα(N) (ξ)) , (3.63)
Mα(q) (ξ) = ξ

α
(q)
1

1 × · · · × ξ
α
(q)
Ng

Ng
, 1 ≤ q ≤ N, (3.64)where Ap =

{
α(1), · · · ,α(N)

} is the set that gathers the N elements of NNg that verify thefollowing 
onstraint:
Ng∑

ℓ=1

α
(q)
ℓ ≤ p, 1 ≤ q ≤ N. (3.65)If [A] is independent of [M ], Eq. (3.61) 
erti�es that, if the 
olumns of [M ] are independent,then the 
olumns of [Ψ(νchaos)] stay independent. Let [RE ] be the auto
orrelation matrix of therandom ve
tor E (ξ, p):

[RE ] = E
[
E (ξ, p)E (ξ, p)T

]
. (3.66)It 
an be dedu
ed from Eqs. (1.40), (3.61), (3.62) and (3.66) that:

[RE ] = lim
νchaos→+∞

1

νchaos
[M ][M ]T = [A]−1[A]−T . (3.67)A

ording to this de
omposition, 
omputing the 
lassi
al Gram-S
hmidt orthogonalizationto identify the polynomial basis 
oe�
ients only requires the 
al
ulation of [A]−T , whi
h 
or-responds to the Cholesky de
omposition matrix of the positive de�nite matrix [RE ]. Hen
e, by
onstru
tion, the matrix [Ψ(νchaos)] 
an be written as the produ
t of a lower triangular matrix

[A] and a matrix [M ] of independent realizations of a multi-index random ve
tor E(ξ, p).Pra
ti
al 
omputation of matrix [Ψ(νchaos)]Thanks to Eq. (3.61), matrix [Ψ(νchaos)] 
an be numeri
ally 
omputed without requiring 
ompu-tational re
urren
e formula nor algebrai
 expli
it representation. An illustration of the methodis presented hereinafter for a PCE based on a Gaussian measure. This development 
an bedire
tly extended to any value of p and Ng, as well as to other statisti
al measures. Let ξ1and ξ2 be two independent normalized Gaussian random variables, su
h that ξ = (ξ1, ξ2), and
α = (α1, α2). Choosing p = 2 and Ng = 2, whi
h 
orresponds to N = 6, leads us to thefollowing de�nition of E (ξ, p):

E (ξ, 2) =
(
1, ξ1, ξ2, ξ1ξ2, ξ

2
1 , ξ

2
2

)
. (3.68)A

ording to this equation, matrix [M ] 
an thus be easily dedu
ed from νchaos independentrealizations of ξ. Moreover, let [α] be the (Ng ×N) real matrix whi
h gathers the admissiblevalues for α in Ap:

[α] =

[
0 1 0 1 2 0
0 0 1 1 0 2

]
↔ Ap = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)} . (3.69)The random variables ξ1 and ξ2 being independent, normalized and Gaussian, the auto
ore-lation matrix [RE ] 
an thus be written as: 57



∀i, j ∈ {1, · · · , N} , [RE ]ij = E
[
ξ
[α]1i+[α]1j
1 × ...× ξ

[α]Ngi+[α]Ngj

Ng

]

= E
[
ξ
[α]1i+[α]1j
1

]
× ...× E

[
ξ
[α]Ngi+[α]Ngj

Ng

]
,

(3.70)where, for 1 ≤ ℓ ≤ Ng:
{
E
[
ξqℓ
]
= 0 if q is not even,

E
[
ξqℓ
]
= q!

(q/2)!2q/2
if q is even. (3.71)Therefore, Eq. (3.67) allows us to numeri
ally �nd ba
k in [A] the multidimensional Hermitepolynomials Hα1 × · · · ×HαNg

:
∀x ∈ R,





H0(x1)×H0(x2) = 1
H1(x1)×H0(x2) = x1
H0(x1)×H1(x2) = x2
H1(x1)×H1(x2) = x1x2

H2(x1)×H0(x2) =
x2
1−1√
2

H0(x1)×H2(x2) =
x2
2−1√
2

↔ [A] =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
−1√
2

0 0 0 1√
2

0
−1√
2

0 0 0 0 1√
2



. (3.72)

Noti
ing that:
• if ξ is a random variable uniformly distributed on [−1, 1]:

{
E [ξq] = 0 if q is not even,
E [ξq] = 1

q+1 if q is even, (3.73)
• if the random variable ξ is a random variable that is 
hara
terized by a normalized expo-nential distribution on [0,+∞ [ :

E [ξq] = q!, (3.74)this method 
an dire
tly be generalized to the uniform and exponential 
ases to 
ompute themultidimensional Legendre and Laguerre polynomial 
oe�
ients, but also to an arbitrary prob-ability measure for the germ ξ.3.3.2 In�uen
e of the trun
ation parameters and of the 
hoi
e for the PCEprobability measureThe 
onvergen
e properties of ratio r when νchaos tends to in�nity are strongly related to thestatisti
al properties of germ ξ. This se
tion aims therefore at emphasizing the dominant trendsof this spe
i�
 link, and to highlight the di�
ulties brought about by the divergen
e of ratio r,when trying to perform analysis of 
onvergen
e in high dimension.The de�nition of the Frobenius norm allows us to write that:
r =

∥∥∥∥
1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T − [IN ]

∥∥∥∥
F

/ ‖[IN ]‖F =
√
NΣ(νchaos), (3.75)where Σ(νchaos) is su
h that: 58



{
Σ(νchaos)

}2
=

1

N2

∑

1≤i,j≤N

((
1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T − [IN ]

)

ij

)2

. (3.76)By 
onstru
tion, {Σ(νchaos)}2 is an assessment of the mean value of the squared di�eren
ebetween the elements of 1
νchaos

[Ψ(νchaos)][Ψ(νchaos)]T and the elements of the unit matrix [IN ].Hen
e, if {Σ(νchaos)}2 remains 
onstant when the size N of the polynomial basis in
reases, theratio r should in
rease as √N . Moreover, Eqs. (3.61) and (3.67) yield,
1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T − [IN ] = [A]

(
1

νchaos
[M ][M ]T − [RE ]

)
[A]T . (3.77)For all (i, j) in {1, · · · , N}2, [RE ]ij is su
h that:

[RE ]ij = E

[
ξ
α
(i)
1 +α

(j)
1

1 × · · · × ξ
α
(i)
Ng

+α
(j)
Ng

Ng

]
. (3.78)Let [R̂E ] be the following estimator of [RE ]:

[R̂E ]ij =
1

νchaos

νchaos∑

n=1

(
Ξ
(n)
1

)α(i)
1 +α

(j)
1 × · · · ×

(
Ξ
(n)
Ng

)α(i)
Ng

+α
(j)
Ng
, (3.79)where {Ξ(n) =

(
Ξ
(n)
1 , · · · ,Ξ(n)

Ng

)
, 1 ≤ n ≤ νchaos

} is a set of νchaos independent Ng-dimensionrandom ve
tors, whi
h have the same PDF than ξ. The 
entral limit theorem yields that, forall (i, j) in {1, · · · , N}2, we have:
√√√√√√

νchaos

Var

(
ξ
α
(i)
1 +α

(j)
1

1 × · · · × ξ
α
(i)
Ng

+α
(j)
Ng

Ng

)
(
[R̂E ]ij − [RE ]ij

) in law−→ Ξ, (3.80)where Ξ is a random variable that has a standard normal distribution, and Var(.) is the varian
e.Under this formalism, it 
an be noti
ed that 1
νchaos

[M ][M ]T is one parti
ular realization of [R̂E ].Hen
e, from Eqs. (3.76), (3.77) and (3.80), we dedu
e that:
• ifVar(ξα(i)

1 +α
(j)
1

1 × · · · × ξ
α
(i)
Ng

+α
(j)
Ng

Ng

)
≤ Var

(
ξ
α
(i)
1 +α

(j)
1

1 × · · · × ξ
α
(i)
Ng+1+α

(j)
Ng+1

Ng+1

), then Σ(νchaos)potentially in
reases with respe
t to Ng.
• if Var(ξα(i)

ℓ
ℓ

)
≤ Var

(
ξ
α
(j)
ℓ

ℓ

) for α(i)
ℓ ≤ α

(j)
ℓ , then Σ(νchaos) potentially in
reases withrespe
t to p.As an illustration, for ea
h 
ouple (Ng, p) su
h that 1 ≤ p ≤ 10 and 1 ≤ Ng ≤ 6, three sets,

{[Ψ(m)
U (p,Ng)], 1 ≤ m ≤ 1000}, {[Ψ(m)

G (p,Ng)], 1 ≤ m ≤ 1000} and {[Ψ(m)
E (p,Ng)], 1 ≤ m ≤

1000}, are 
omputed, su
h that [Ψ(m)
U (p,Ng)], [Ψ(m)

G (p,Ng)] and [Ψ
(m)
G (p,Ng)] refer to parti
ular(

N × νchaos
) real matri
es of independent realizations of the basis {ψ1(ξ), . . . , ψN (ξ)}, in theuniform, the Gaussian and the exponential 
ases, respe
tively. Hen
e, de�ning:59







rmU (νchaos) =
∥∥∥ 1
νchaos

[Ψ
(m)
U (p,Ng)][Ψ

(m)
U (p,Ng)]

T − [IN ]
∥∥∥
F
/ ‖[IN ]‖F ,

rmG (νchaos) =
∥∥∥ 1
νchaos

[Ψ
(m)
G (p,Ng)][Ψ

(m)
G (p,Ng)]

T − [IN ]
∥∥∥
F
/ ‖[IN ]‖F ,

rmE (νchaos) =
∥∥∥ 1
νchaos

[Ψ
(m)
E (p,Ng)][Ψ

(m)
E (p,Ng)]

T − [IN ]
∥∥∥
F
/ ‖[IN ]‖F ,

(3.81)allows us to 
ompute, in ea
h 
ase, three approximations errorthoU (p,Ng), errorthoG (p,Ng) and
errorthoE (p,Ng) of the mean value of the ratio r, de�ned in Eq. (3.75), su
h that:





errorthoU (p,Ng) =
1

1000

∑1000
m=1 r

m
U (νchaos),

errorthoG (p,Ng) =
1

1000

∑1000
m=1 r

m
G (νchaos),

errorthoE (p,Ng) =
1

1000

∑1000
m=1 r

m
E (νchaos).

(3.82)For νchaos = 1000, in Figure 3.1, the two fa
tors whi
h make the ratio r diverge with respe
t to
p and Ng 
an therefore be emphasized. On the �rst hand, if in
reasing p or Ng does not in
reasethe varian
e of the elements of E(ξ, p), whi
h is the 
ase if the PCE germ ξ is 
hara
terizedby an uniform distribution (see Eq. (3.73)), the ratio r in
reases approximately as √

N . Onthe other hand, if in
reasing p or Ng in
reases the varian
e of the element of E(ξ, p), as it isthe 
ase if the PCE germ ξ is 
hara
terized by a Gaussian or exponential distribution (see Eqs.(3.71) and (3.74)), the ratio r diverges very qui
kly with respe
t to the trun
ation parameters,and bias the PCE identi�
ation results.As a 
on
lusion, for a �xed value of νchaos, the di�eren
e 1
νchaos

[Ψ(νchaos)][Ψ(νchaos)]T − [IN ]in
reases when p and Ng in
rease. Therefore, imposing [y] to be in OC introdu
es a numeri
albias in the PCE identi�
ation, whi
h be
omes very important when high values of p and Ng areneeded. Su
h a phenomenon prevents thus to perform the analysis of 
onvergen
e of the PCEin high dimension, espe
ially when dealing with Gaussian and exponential PCE germs.3.3.3 Adaptation of the optimization problemIn this se
tion, �xed values for νchaos, p and Ng are 
onsidered. A

ording to the notations ofSe
tion 3.3.1, a (N × νchaos
) real matrix of independent realizations [Ψ(νchaos)] = [A][M ] 
anthen be 
onstru
ted. Under the 
ondition νchaos ≥ N , 1

νchaos
[M ][M ]T is positive de�nite by
onstru
tion, whi
h allows writing:

1

νchaos
[M ][M ]T = [L][L]T , (3.83)where [L] is the Cholesky de
omposition of 1

νchaos
[M ][M ]T , whi
h yields:

1

νchaos
[Ψ(νchaos)][Ψ(νchaos)]T = [A][L][L]T [A]T = [B][B]T , (3.84)

[B] = [A][L]. (3.85)The matrix:
[Ψ̃] = [B]−1[Ψ(νchaos)], (3.86)is then introdu
ed, su
h that, by 
onstru
tion:

1

νchaos
[Ψ̃][Ψ̃]T = [IN ]. (3.87)60
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Using the notations of Se
tion 1.5, let [y∗] be a (M ×N) real matrix su
h that the randomve
tor U is de�ned as:
U = [y∗]Ψ(ξ). (3.88)Hen
e, νchaos independent realizations of U 
an be dire
tly dedu
ed from the matrix [Ψ(νchaos)]and gathered in the matrix [U ] = [y∗][Ψ(νchaos)]. De�ning [z] su
h that:
[z] = [y∗][B], (3.89)therefore yields the equality:

[U ] = [y∗][Ψ(νchaos)] =
(
[z][B]−1

) (
[B][Ψ̃]

)
= [z][Ψ̃]. (3.90)If [z] is in OC , [z][z]T = [R̂CC(ν)], whi
h implies that:

{ [
R̂UU (ν

chaos)
]
= 1

νchaos
[U ][U ]T = [z]

(
1

νchaos
[Ψ̃][Ψ̃]T

)
[z]T = [z][z]T = [R̂CC(ν)],

[RUU ] = E
[
UUT

]
= limνchaos→∞[R̂UU (ν

chaos)] = [R̂CC(ν)].
(3.91)From Eqs. (3.55) and (3.56), it 
an thus be dedu
ed that imposing [z] to be an element of OCguarantees that, for any νchaos ≥ N , we have err2(νchaos) = err3(ν, νchaos) = 0.Hen
e, whereas the optimization problem de�ned by Eq. (1.61) is perturbed by auto
orre-lation errors, the new optimization problem:





[
yMOC

]
=
[
zMOC

]
[B−1],[

zMOC

]
= argmax[z∗]∈W C

(
[Cexp(ν)], [z∗], [Ψ̃]

)
,

(3.92)is no more a�e
ted, whi
h allows us to 
onsider high values of the trun
ation parameters Ngand p. Equation (3.90) underlines that the two former optimization problems are equivalent,as the independent realizations of U have just been rewritten. Only the resear
h set, for thePCE 
oe�
ient matrix, has been modi�ed, whi
h allows the numeri
al bias due to the �nitedimension of [Ψ(νchaos)] to be redu
ed.Finally, if [y] is the 
oe�
ients matrix of the trun
ated PCE, Cchaos(N), of random ve
tor
C, su
h that Cchaos(N) = [y]Ψ(ξ), a good estimation of [y] in high dimension 
an be 
omputedby solving the optimization problem de�ned by Eq. (3.92).3.3.4 Remarks on the new optimization problemIt has to be noti
ed that [Ψ̃] is unique, and exa
tly keeps the same stru
ture than [Ψ(νchaos)].Indeed, let [Lasym] = [A]−1 be the Cholesky de
omposition matrix of the auto
orrelation matrix
[RE ], whi
h is de�ned by Eq. (3.66). Hen
e, from Eq. (3.61), [Ψ(νchaos)] = [Lasym]−1[M ], whi
hhas to be 
ompared to [Ψ̃] = [B]−1[Ψ(νchaos)] =

(
[L]−1[A]−1

)
([A][M ]) = [L]−1[M ], where

[L] and [Lasym] are two lower triangular matri
es. Whereas [Lasym] implies the asymptoti
orthonormality, [L] guarantees the numeri
al orthonormality. Moreover, from Eq. (3.92), theoptimal PCE 
oe�
ients matrix [y] is approximated as a produ
t of two matri
es:
[y] ≈

[
zMOC

]
[B]−1. (3.93)For a �xed value of N , [B] is strongly dependent on νchaos and [Ψ(νchaos)]. From Eq. (1.40), italso veri�es the asymptoti
 property: 62



lim
νchaos→∞

[B] = [IN ], (3.94)whi
h implies that [zMOC
] 
onverges towards [y] if su�
iently high values of νchaos are 
onsidered.Hen
e, the less dependent on [Ψ(νchaos)] the matrix [zMOC

] is, the more a

urate the 
hoi
e of
νchaos is, and the better the PCE identi�
ation is.If another (N × νchaos,∗

) real matrix [Ψ∗(νchaos,∗)] of independent realizations is 
onsidered,the matri
es [B∗] and [Ψ̃∗] = [B∗]−1[Ψ∗(νchaos,∗)] 
an be 
omputed a

ording to Eqs. (3.85)and (3.86). As it has previously been seen, [Ψ∗(νchaos,∗)], [Ψ̃] and [Ψ̃∗] keep the same stru
ture.The a

ura
y of [zMOC
] 
an thus be estimated by 
omparing C([Cexp(ν)], [zMOC

], [Ψ(νchaos)][B]−1)and C([Cexp(ν)], [zMOC
], [Ψ∗(νchaos,∗)][B∗]−1).In parti
ular, νchaos,∗ and νchaos 
an be di�erent. Finally, on
e the 
oe�
ient matrix [zMOC

]has been 
omputed, the higher νchaos,∗ is, the more a

urate and general the validation is.3.4 Appli
ationIn this se
tion, we illustrate the e�
ien
y of the methods proposed in the two former se
tionsto identify in inverse the multidimensional distribution of a M -dimension random ve
tor C
hara
terized by a set of ν independent realizations. A

ording to the notations of the formerse
tions, these independent realizations are gathered in the (M×ν) real matrix [Cexp(ν)]. Three
ases are therefore presented with respe
t to the values of M and ν:
• Case 1: ν = 1000 ≫M = 3: �rst, a low dimension 
ase with many available realizations is�rst introdu
ed to underline the ability of the PCE method to identify in inverse 
omplexand multidimensional distributions.
• Case 2: ν = 1000 ≫ M = 50: se
ondly, a high dimension 
ase with many availablerealizations is addressed to illustrate the numeri
al 
onvergen
e di�
ulties that arise whenthe size of the proje
tion basis in
reases, and in what extent the proposed method allowsus to over
ome them.
• Case 3: ν = 100 < M = 150: at last, we present a very high dimensional 
ase with fewavailable realizations. It will be shown that even it this 
ase, the PCE method give verypromising results.In these three examples, another set of νref independent realizations (νref ≫ ν) is usedas a referen
e to validate the di�erent modelings. Moreover, a distin
tion has to be madebetween the PDF modeling, a
hieved thanks to a PCE, and its estimation from PCE samples,
omputed thanks to nonparametri
 methods. In this 
ontext, let νchaos be the number ofindependent realizations used to 
arry out the PCE identi�
ation, and νchaos,∗ the numberof independent realizations of the identi�ed PCE random ve
tor, whi
h will be used to drawgraphi
al representations.3.4.1 Appli
ation in low dimensionThe obje
tive of this se
tion is to apply the whole PCE method to a M = 3-dimension 
ase.First, the statisti
al properties of the unknown random ve
tor C are presented. Se
ondly, a
onvergen
e analysis is 
arried out in order to 
al
ulate the optimal trun
ation parameters63



Ng and p of the PCE, Cchaos(N), of C. Then, the PCE 
oe�
ients are identi�ed from the
ν independent realizations, [Cexp(ν)], of C. At last, the relevan
e of the PCE modeling isanalyzed.Generation of the random ve
tor to identify. Let [X] be a (3× 6) real-valued randommatrix whose 
oe�
ients are uniformly and independently 
hosen between -1 and 1, su
h that
C is de�ned a

ording to the notations of Se
tion 3.3.1 as:

C = [X]E (ξexp, 2) , (3.95)where ξexp = (ξexp1 , ξexp2 ) is a normalized Gaussian random ve
tor whi
h 
omponents are in-dependent. The 
omponents of C are however strongly dependent, and the PCE trun
ationparameters to be found ba
k by the 
onvergen
e analysis are pexp = 2 and N exp
g = 2.Let {ξexp (θ1) , · · · , ξexp (θν)} and {ξexp (θ1) , · · · , ξexp (θνref )} be ν and νref independent re-alizations of the random ve
tor ξexp, su
h that the matri
es of independent realizations [Cexp(ν)]and [Cref(νref)

] are given by:
[Cexp(ν)] = [X] [E (ξexp (θ1) , 2) · · · E (ξexp (θν) , 2)] , (3.96)

[
Cref(νref)

]
= [X] [E (ξexp (θ1) , 2) · · · E (ξexp (θνref ) , 2)] . (3.97)Let {p̂ref,kC , 1 ≤ k ≤ 3

} be the Kernel smoothing estimations of the marginal PDFs of ea
h
omponent of C, whi
h are 
omputed thanks to the νref independent realizations of C gatheredin [Cref(νref)]. In this example, νref = 2× 106 ≫ ν = 1000. It is reminded that the PCE identi-�
ation of C is only a
hieved thanks to the matrix of independent realizations [Cexp(ν)], whi
his 
onsidered as the only available information. The PDFs {p̂ref,kC , 1 ≤ k ≤ 3
} are moreoversupposed to build the marginal PDFs of the referen
e C.Identi�
ation of the PCE trun
ation parameters. Using the notations of Se
tion 1.5.4,the boundary intervals BI1, BI2 and BI3 for whi
h the 
onvergen
e analysis is a
hieved, are
hosen su
h that:

∀ 1 ≤ k ≤ 3, BIk =

{
x ∈ R | p̂ref,kC (x) ≥ 1

ν

}
. (3.98)Figure 3.2 displays the referen
e marginal PDFs ofC, as well as the marginal PDFs estimatedfrom the ν independent realizations only, {p̂exp,kC , 1 ≤ k ≤ 3

}. The 1/ν toleran
e is also plottedso that the boundary intervals 
an therefore be dedu
ed from these graphs.Figure 3.3 shows the values of err (Ng, p), for nine pairs (Ng, p) in Q(3). On these graphs,the gradient break of N 7→ err (N) is observed at N = 6, whi
h allows us to �nd ba
k theinitial solution pexp = 2 and N exp
g = 2. For this small dimension 
ase, the optimal trun
ationparameters p and Ng given by the 
onvergen
e analysis are equal to the parameters of theanalyti
al referen
e PCE.PCE Identi�
ation. The former 
onvergen
e analysis leads us to the following PCE of C:

C ≈ Cchaos(6) =
6∑

j=1

yjΨj (ξ1, ξ2) = [y]Ψ (ξ1, ξ2) , (3.99)64
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Figure 3.3: Convergen
e analysis of the PCE of C.where ξ1 and ξ2 are two independent normalized Gaussian random variables. We are now goingto 
ompare [yclass] and [ynew], where [yclass] stems from the 
lassi
al problem de�ned by Eq.(1.61), whereas [ynew] 
omes from the maximization of the new formulation de�ned by Eq.(3.92). In this appli
ation, νchaos = 1000, and the two PCE identi�
ations have been 
omputedthanks to the same indire
t methods that are des
ribed in Se
tion 3.2.4 to optimize the trials inthe Stiefel manifold, with the same numeri
al 
ost (Z = 10, Q = 104). These values of Z andMhave been 
hosen for the PCE error fun
tion err(Ng, p) to be independent of them. Hen
e, fora new matrix of independent realizations, [Ψ∗], of size (6× νchaos,∗
), independent realizations

[Cclass(6)] and [Cnew(6)] of Cchaos(6) are dedu
ed, with respe
t to the two optimization options:
[Cclass(6)] = [yclass][Ψ∗], (3.100)
[Cnew(6)] = [ynew][Ψ∗]. (3.101)Let

[Rexp
CC ] =

1

ν
[Cexp(ν)][Cexp(ν)]T , (3.102)

[Rref
CC ] =

1

νref
[Cref(νref)][Cref(νref)]T , (3.103)

[Rclass
CC ] =

1

νchaos,∗
[Cclass(6)][Cclass(6)]T , (3.104)

[Rnew
CC ] =

1

νchaos,∗
[Cnew(6)][Cnew(6)]T (3.105)be four estimations of the auto
orrelation matrix [RCC ] of C. It is supposed that [Rref

CC ] is thebest approximation of [RCC ] and will be 
onsidered as the referen
e. A

ording to the Eqs.(3.54), (3.55) and (3.56), the auto
orrelation errors err1,class, err2,class, err3,class and err1,new,
err2,new, err3,new are then 
omputed in ea
h 
ase. In �gure 3.4, it 
an thus be veri�ed that:

∀ νchaos,∗ ≥ 6, err2,new(νchaos,∗) = err3,new(νchaos,∗, ν) = 0, (3.106)
lim

νchaos,∗→+∞
err2,class(νchaos,∗) = err3,class(νchaos,∗, ν) = 0. (3.107)66
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Figure 3.4: Convergen
e of the auto
orrelation error fun
tions with respe
t to νchaos,∗.In parti
ular, for the value νchaos,∗ = νchaos = 1000, it 
an be noti
ed that the values of
err2,class(νchaos,∗) and err3,class(νchaos,∗, ν) are signi�
ant when 
ompared to err1,class(ν), whi
hintrodu
es an additive bias in the identi�
ation.Figure 3.5 shows a 
omparison between the marginal PDFs p̂ref,kC , p̂exp,kC , p̂class,kC and p̂new,k

C ,for 1 ≤ k ≤ 3. These PDFs are estimated using Kernel smoothing on the independent real-izations gathered in the matri
es [Cref(νref)], [Cexp(ν)], [Cclass(6)] and [Cnew(6)], respe
tively,with νchaos,∗ = 106 ≫ νchaos = 1000. First, from only ν = 1000 independent realizations of C,it 
an be seen that the marginal PDFs are well des
ribed by the PCE random ve
tors Cnew(6)and Cclass(6). In parti
ular, the PDFs tails are very well 
hara
terized. The PCE method istherefore an extremely e�
ient tool to build arbitrary multidimensional PDFs. Se
ondly, it 
anbe noti
ed that, for a same 
omputational 
ost (Z,Q), the new PCE identi�
ation formulationleads us to better results than the 
lassi
al one. Finally, to still improve these PCE, more trialsin OC would be ne
essary to better 
hara
terize [yclass] and [ynew]. In order to obtain a PCEthat 
orresponds still more pre
isely to the referen
e random ve
tor C, an in
rease of ν, thatis to say, more information about C, would have been required.Relevan
e of the PCE 
ompared to Kernel Mixture and PASM. From adequa
y tests,likelihood estimations and graphi
al representations, the idea of this se
tion is to show the assetsof the new PCE formulation when dealing with the identi�
ation of multidimensional distribu-tions from a limited knowledge on the random ve
tor of interest C 
ompared to Kernel Mixture(KM) and Prior Algebrai
 Sto
hasti
 Modeling (PASM). In this prospe
t, two PDFs p̂C(x) and
p̂PASM
C (x,w) are built using a KM approa
h and a PASM method. The input data of these mod-elings are still the matrix of independent realizations [Cexp(ν)] = [C(θ1) · · · C(θν)]. On
ethe KM, the PASM and the two PCE proje
tion matri
es, [yclass] and [ynew], are 
onstru
ted,67
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P independent realizations are 
omputed from the four distributions, from whi
h 
omparisonsto the referen
e solution are a
hieved. For this appli
ation, P = 106.Constru
tion of independent realizations
• Kernel Mixture.Considering an independent Gaussian multidimensional Kernel, a nonparametri
 PDF p̂C(x)is postulated as a sum of ν Gaussian PDFs {pi, 1 ≤ i ≤ ν} to model pC(x):

p̂C(x) =

ν∑

i=1

1

ν
pi(x), (3.108)

pi(x) =
M∏

m=1

1√
2πhm

exp

(
−1

2

(
xm − Ci

m

hm

)2
)
, (3.109)

h = σ̂

(
4

(2 +M) ν

)1/(M+4)

, (3.110)where x 7→ pi (x) is the M -dimension multivariate Gaussian PDF, with mean value C(i) and
ovarian
e matrix  h1 0 · · · 0

0 h2
. . . ...... . . . . . . 0

0 · · · 0 hM



, h is the multidimensional optimal Silverman band-width, and σ̂k is the empiri
al estimation of the standard deviation of ea
h 
omponent Ck of

C. Let Cker be the Kernel Mixture 
hara
terized by the PDF x 7→ p̂C(x). The Q independentrealizations {Cker,1, · · · ,Cker,Q
} of Cker are then 
omputed and gathered in the matrix [Cker].

• Prior Algebrai
 Sto
hasti
 Modeling.From the ν independent realizations of C, the M marginal 
umulative distributions FCm of
Cm, with 1 ≤ m ≤ M , are estimated using a non parametri
 statisti
al method. In addition, aGaussian 
opula Cgauss

rank (see [2℄ for more details about the 
opula) based on the rank 
orrelationis 
hosen (this type of 
opula has been 
hosen as it is the most 
ommonly used in the PASMapproa
hes):
Cgauss
rank (x1, · · · , xM ) = φMrank

(
φ−1(x1), · · · , φ−1(xM )

)
, (3.111)

φMrank(u) =

∫ u1

−∞
· · ·
∫ uM

−∞

1

(2π)M/2
√
det ([Rrank])

exp

(
−1

2
uT [Rrank]u

)
du1 · · · duM , (3.112)

φ(v) =
1√
2π

∫ v

−∞
exp

(
−v

2

2

)
dv, (3.113)

[Rrank]ij = 2 sin
(π
6
ρSij

)
, (3.114)where ρSij is the Spearman 
orrelation 
oe�
ient between Ci and Cj . Let Ccop be the randomve
tor 
hara
terized by the 
opula Cgauss

rank and the marginal 
umulative distributions {FCm , 1 ≤
m ≤M}. Q independent realizations of Ccop are thus gathered in the matrix [Ccop].69



• Polynomial 
haos expansion.Finally, using the matri
es [yclass] and [ynew] that have been previously de�ned, and a new
(6× P ) real matrix [Ψ(P )] of realizations, P independent realizations of Cclass(6) and Cnew(6)are gathered in the matrix [Cclass] = [yclass][Ψ(P )] and [Cnew] = [ynew][Ψ(P )].Relevan
e of the PCE modeling when identifying multidimensional PDFs from alimited amount of independent realizations. Using the results of Parametri
 Statisti
s,this se
tion assesses the relevan
e of the four methods to 
onstru
t multidimensional PDFs.Three kinds of analysis are a
hieved: adequa
y tests, 2D graphi
al representations, and multi-dimensional likelihood 
omputations.

• Adequa
y tests.From the matri
es of independent realizations [Cker], [Ccop], [Cclass] and [Cnew], the estima-tions {F̂ ker
k , 1 ≤ m ≤M}, {F̂ cop

m , 1 ≤ m ≤M}, {F̂ class
m , 1 ≤ m ≤M} and {F̂ new

m , 1 ≤ m ≤M}of the 
umulative distribution fun
tions (CDF) of ea
h 
omponents of Cker, Ccop, Cclass(6) and
Cnew(6) are respe
tively assessed. Let C̃

(1)
, · · · , C̃(M) be the (1 × ν)-dimension linear forms
orresponding to the rows of [Cexp(ν)]. For 1 ≤ m ≤M , C̃(m) gathers therefore the ν indepen-dent realizations of the 
omponent Cm of C, whi
h have been used to 
ompute the statisti
almodelings. For 1 ≤ m ≤ M , the Kolmogorov-Smirnov adequa
y tests are then performed. Forea
h 
omponent Cm of C, the null distribution of the Kolmogorov-Smirnov statisti
s is 
om-puted under the null hypothesis that the ν independent realizations of C̃(m) are drawn fromthe distribution of the 
hosen sto
hasti
 model. Table 3.1 gives the β-value for ea
h sto
hasti
model, whi
h is de�ned as the probability of obtaining a test statisti
 at least as extreme as theone that was a
tually observed, assuming that the null hypothesis is true. Without surprise,this table allows us to verify that the modeling based on the Gaussian 
opula and the empiri
alPDFs of ea
h 
omponents of C gives the best results. Moreover, with an error level of 5%,only the tests for the 
opula model and the PCE identi�
ation based on the new formulationare positive. The 
lassi
al PCE and the Kernel mixture modelings are indeed less relevant to
hara
terize the marginal PDFs of C.CDF F̂ class

1 F̂ new
1 F̂ ker

1 F̂ cop
1

β-value 0.3779 0.6331 0.2142 0.9996CDF F̂ class
2 F̂ new

2 F̂ ker
2 F̂ cop

2

β-value 0.0000 0.0967 0.0000 0.4573CDF F̂ class
3 F̂ new

3 F̂ ker
3 F̂ cop

3

β-value 0.0000 0.8692 0.0411 0.9849Table 3.1: Computation of the β-values 
orresponding to the di�erent sto
hasti
 models.
• Two-dimensions graphi
al analysis.From [Cref(νref)], [Cker], [Ccop], [Cclass] and [Cnew], the estimations x 7→ p̂refC (x), x 7→

p̂kerC (x), x 7→ p̂copC (x), x 7→ p̂classC (x) and x 7→ p̂newC (x) of the multidimensional PDF of C,
Cker, Ccop, Cclass(6), Cnew(6) are respe
tively 
omputed using the non parametri
 statisti
al70
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(d) (x1, x2) 7→ p̂newC (x1, x2, E (C3))Figure 3.6: Comparison of 2D 
ontours plots in the plane [x3 = E(C3)].estimation de�ned by Eq. (1.55). Proje
tions of these fun
tions are presented in Figures3.6, 3.7 and 3.8. In ea
h �gure, the surfa
e plot 
hara
terizes the referen
e PDF (based on the
νref = 2×106 independent realizations), and the 
ontour plot refers to isovalues of the proje
tedPDF of interest. It 
an therefore be seen that the new formulation of the PCE gives very goodresults in identifying multidimensional PDFs. In addition, in this example, the Kernel mixturemodel is more adapted than the 
opula based model to 
hara
terize the multidimensional PDFs.

• Likelihood estimations.From Eq. (1.48), the multidimensional log-likelihood fun
tions LCker ([Cexp(ν)]),
LCcop ([Cexp(ν)]), LCclass ([Cexp(ν)]) and LCnew ([Cexp(ν)]) are estimated from the realizationsmatri
es [Cexp(ν)], [Cker], [Ccop], [Cclass] and [Cnew], in order to evaluate the multidimensionalrelevan
e of the di�erent sto
hasti
 models. In the same manner, [Cref(νref)]1000 is de�nedas the 1000 �rst 
olumns of [Cref(νref)], and the log-likelihood fun
tions LCker

(
[Cref(νref)]1000

),
LCcop

(
[Cref(νref)]1000

), LCclass

(
[Cref(νref)]1000

) and LCnew

(
[Cref(νref)]1000

) are 
omputed. Thesevalues are gathered in Table 3.2. It 
an thus be veri�ed that the new formulation of the PCEidenti�
ation gives the best results when 
onsidering the maximization of the log-likelihood.As a 
on
lusion for this example, in low dimension, it 
an be seen that the new formulationof the PCE identi�
ation is very relevant when trying to identify multidimensional distributions71
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LCker ([Cexp(ν)]) LCcop ([Cexp(ν)]) LCclass ([Cexp(ν)]) LCnew ([Cexp(ν)])

−8.0712.103 −8.7530.103 −8.1844.103 −7.8624.103

LCker

(
[Cref(νref)]1000

)
LCcop

(
[Cref(νref)]1000

)
LCclass

(
[Cref(νref)]1000

)
LCnew

(
[Cref(νref)]1000

)

−8.1933.103 −8.5535.103 −8.1797.103 −7.8457.103Table 3.2: Computation of the multidimensional log-likelihood 
orresponding to the di�erentsto
hasti
 models.from a limited number of measurements. Indeed, it allows us to build multidimensional distri-butions that are still relevant for experimental data that have not been used in the identi�
ationpro
ess.3.4.2 Appli
ation in high dimensionThe idea of this se
ond appli
ation is to underline the 
apability of the new PCE formulation to
arry out 
onvergen
e analysis in high dimension. Indeed, as it has been shown in Se
tion 3.3.1,for a given value of νchaos, when the size N of the polynomial basis in
reases, and more spe
iallywhen the maximum degree p of the polynomial basis be
omes high, the di�eren
e 1
νchaos

[Ψ][Ψ]T−
[IN ] introdu
es a signi�
ant numeri
al bias whi
h perturbs the 
lassi
al PCE identi�
ation. Inopposite, the new PCE formulation, whi
h avoids 
omputational auto
orrelation errors, allowsthe numeri
al algorithms to be mu
h more stable and to give more relevant results.Generation of a high dimension random ve
tor Using the same notations than in Se
tion3.4.1, let [XHD] be a (M ×N) real matrix whose entries are randomly generated, su
h thatrandom ve
tor C is given by:

C = [XHD]Ψ (ξexp) , (3.115)
ξexp =

(
ξexp1 , ξexp2 , · · · , ξexpNg

)
, (3.116)where {ξexpℓ , 1 ≤ ℓ ≤ Ng

} is a set of Ng independent normalized Gaussian random variables.As in Se
tion 3.4.1, we de�ne a (M × ν) real matrix [Cexp(ν)], whi
h gathers ν independentrealizations of C:
[Cexp(ν)] = [XHD][Ψexp], (3.117)

[Ψexp] = [Ψ (ξexp(θ1)) · · · Ψ (ξexp(θν))] . (3.118)The 
omponents of the random ve
tor C are again strongly dependent. As a numeri
al illus-tration, it is supposed that ν = 1000, pexp = 9, N exp
g = 3, N = (9 + 3)!/(9! 3!) = 220, M = 50.A high value of pexp is deliberately 
hosen, in order to emphasize the di�
ulties of the 
lassi
alPCE formulation to 
arry out 
onvergen
e analysis in high dimension. Nevertheless, this highvalue for the maximal polynomial order implies an ill-
onditioning of [Ψexp], su
h that C 
anhave very high values.
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Figure 3.9: Comparison of the results for the 
onvergen
e analysis of the two PCE identi�
ationformulations.Identi�
ation of the PCE trun
ation parameters A

ording to Eq. (1.34), the trun
atedPCE, Cchaos(N), of C is given by:
Cchaos(N) = [y]Ψ(ξ). (3.119)Eq. (1.69) implies that the numberNy of elements of [y] has to be higher thanM (M + 1) /2.When M is large, this leads us to the identi�
ation of thousands of 
oe�
ients. However, as ithas been said in Se
tion 1.5.4, the higher Ny is, the less pre
ise is the PCE identi�
ation, fora given 
omputational 
ost (Z,Q). This motivates the de�nition of a new set Q̃(pmax, Nmax),su
h that the optimal values popt and Nopt

g are given by:
Q̃(pmax, Nmax) = {(p,Ng) , Ng ≤M, p ≤ pmax, (Ng + p)!/ (Ng! p!) ≤ Nmax} , (3.120)

(popt, Nopt
g ) = arg min

(p,Ng)∈Q̃(pmax,Nmax)
err(Ng, p), (3.121)where error err(Ng, p) is de�ned by Eq. (1.66), and is 
omputed with respe
t to a �xed 
hoi
efor the 
omputational 
ost (Z,Q). For a �xed value νchaos = 1000, the detrimental in�uen
eof the auto
orrelation errors err2 and err3 of Eqs. (3.55) and (3.56) 
an then be noti
edin Figure 3.9, when high values of N (and more spe
ially high values of p) are 
onsidered.The error fun
tions errclass(Ng, p) and errnew(Ng, p) 
orrespond, respe
tively, to the 
lassi
alformulation and the new formulation of the PCE identi�
ation. It 
an be seen that for p ≥ 8,the ratio errclass(Ng, p)/err

new(Ng, p) be
omes greater than �ve, whereas the two methodologiesare globally similar for low values of p. Hen
e, the a

ura
y of the 
lassi
al method seems to belimited to low values of p and is therefore less relevant for 
onvergen
e analysis whi
h handle highpolynomial orders. At last, the �ve lowest values of the numeri
al assessments of errnew(Ng, p)are gathered in Table 3.3. It 
an be seen that the new formulation allows �nding ba
k the
ouple (pexp, N exp
g ) as the minimum of the error fun
tion. Nevertheless, keeping in mind thatthe lowest N is, the easiest the identi�
ation is, this result also shows that using the 
ouple

(p,Ng) = (11, 2) 
ould be interesting.PCE Identi�
ation From the ν independent realizations of C, a PCE identi�
ation usingthe new formulation 
an be 
omputed for the trun
ation parameters p = 9 and Ng = 3, whi
h75




ouples (p,Ng) (11,2) (9,3) (7,4) (6,5) (2,27)values of N 78 220 330 462 406
errnew(Ng, p) 0.06104 0.06005 0.06228 0.06301 0.06521Table 3.3: Lowest values of errnew(Ng, p) with respe
t to (p,Ng).
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orrespond to N = 220. The results of the numeri
al identi�
ation with a 
omputational 
ostof (Z = 10, Q = 1000) are given in Figure 3.10. The values of (Z = 10, Q = 1000) haveon
e again been 
hosen for the PCE error fun
tion err(Ng, p) to be independent on them. Inthis �gure, the marginal PDFs p̂chaosC41

and p̂chaosC39
of Cnew

41 (220) and Cnew
39 (220) are 
ompared tothe experimental estimations p̂expC41

and p̂expC39
of the 
omponents C41 and C39, respe
tively. Thevalues Cnew

41 (220) and Cnew
39 (220) 
orrespond to the minimum and to the maximum values of theunidimensional error fun
tion errk(3, 11), for 1 ≤ k ≤ 50, whi
h is de�ned by Eq. (1.65). Inorder to evaluate the distan
e between these estimations and the true marginal PDFs of C, themarginal PDFs estimated by the non parametri
 statisti
al Kernel method, with νref = 2× 105independent realizations of C41 and C39, are added to the �gures. These PDFs are 
onsideredas the referen
e. These �gures therefore emphasize that the new PCE identi�
ation methodallows building a sto
hasti
 model of the distribution of C that suits the experimental marginalPDFs.
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ation in very high dimension when the available information isvery limitedGeneration of the random ve
tor to identify As in the previous appli
ations, we de�nea 
entered M -dimension random ve
tor C from its PCE formulation, su
h that:
C = [D][XHD]Ψ(ξexp), (3.122)where [XHD] is a (M×N) real matrix whose entries are randomly generated under the 
onstraint

[XHD][XHD]T = [IM ], {ξexp1 , . . . , ξexpNg

} is a set of Ng independent normalized Gaussian randomvariables, {Ψ1(ξ
exp), . . . ,ΨN (ξexp)} gathers N polynomial fun
tion of ξexp that are statisti
allyorthonormal and for whi
h maximal order is p, and [D] is a (M ×M) real orthogonal matrix,su
h that:

E [C ⊗C] = [D][D]T . (3.123)A representation of the 
hosen matrix E [C ⊗C] 
an be found in Figure 3.11. The 
ompo-nents of C are thus 
hosen on purpose very 
orrelated.Two sets of independent realizations of C are then introdu
ed:
• Sexp = {C(θ1), . . . ,C(θν)} 
orresponds to the available information about the identi�
a-tion in inverse of the multidimensional distribution of C,
• Sref = {C(Θ1), . . . ,C(Θνref )} is a referen
e set, whi
h will only be used to evaluate therelevan
e of the identi�
ation pro
ess.In this se
tion, we 
hoose M = 150 > ν = 100, su
h that the information about C is verylimited 
ompared to its dimension, and the rank of the empiri
al estimator of the 
ovarian
e of

C, [R̂CC(ν)] = 1/ν[Cexp(ν)][Cexp(ν)]T is inferior to ν. In addition, in the following, Ng = 5,
p = 5, su
h that N = 252, and νref = 4, 000.
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ovarian
e of Cchaos(N) and the empiri
al estimator ofthe 
ovarian
e of C.PCE identi�
ation For ξ a Ng-dimension random ve
tor whose 
omponent are independentand normally distributed, it has been shown in Se
tion 1.5 that the PCE proje
tion matrix, [y],of C, su
h that C ≈ Cchaos(N) = [y]Ψ(ξ), has to be sear
hed to maximize the likelihood of
Cchaos(N) at the experimental points gathered in Sexp, under the orthogonality 
onstraints:

[y][y]T = E [C ⊗C] . (3.124)As only a limited set of ν < M realizations of C are available, this 
onstraint 
annot beexa
tly veri�ed. From the iterative algorithm based on the development a
hieved in Se
tion3.2.5, matri
es [y∗] that verify [y∗][y∗]T ≈ [R̂CC(ν)] 
an however be generated, su
h that thePCE matrix [y] 
an be identi�ed from the limited available information about C. Let [yOC
] bethe approximation of [y] 
orresponding to a 
omputational 
ost given by (Z = 10, Q = 103),su
h that Cchaos(N) = [yOC

]Ψ(ξ). A 
omparison between [R̂CC(ν)] and the 
ovarian
e matrixof Cchaos(N), [yOC
][yOC

]T , 
an thus be seen in Figure 3.12. It 
an be veri�ed that the algorithmproposed in Se
tion 3.2.5 allows us to make [yOC
][yOC

]T be equal to [R̂CC(ν)] almost everywherebut in restri
ted zones where the 
omponents of [R̂CC(ν)] are very low.From νref = 4, 000 new realizations of ξ, νref independent realizations of Cchaos(N) 
an bededu
ed, and are gathered in the set Schaos =
{
Cchaos(N, θ1), . . . ,C

chaos(N, θνref )
}. Hen
e, let

p̂expCm
, p̂refCm

and p̂chaosCm
be the empiri
al estimations of the PDFs of Cm and Cchaos

m (N) that havebeen 
omputed from the sets Sexp, Sref and Schaos respe
tively. Three parti
ular 
omponents of
Cm and Cchaos

m (N) are then 
ompared in �gure 3.13. It 
an be seen that the PDFs p̂chaosCm
are very
lose to the referen
e PDFs p̂refCm

, and even 
loser than p̂expCm
, su
h that even when dealing withvery high dimensional problems with very limited available information (M = 150 > ν = 100),the proposed PCE method appears to give very promising results.In order to emphasize that not only the marginal PDFs of C are well 
hara
terized but itswhole distribution, let {bm, 1 ≤ m ≤M} be a set of M orthonormal fun
tions that are de�nedon Ω = [0, 1], and let J1, J2 and J3 be three random indi
es permutations su
h that:

Jp =
{
j
(p)
1 , . . . , j

(p)
M

}
⊂ {1, . . . ,M} , j(p)1 6= · · · 6= j

(p)
M , 1 ≤ p ≤ 3. (3.125)This allows us to de�ne three triplets of random �elds,78
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(X1,X
chaos
1 ,XGauss

1 ), (X2,X
chaos
2 ,XGauss

2 ), (X3,X
chaos
3 ,XGauss

3 ),su
h that for 1 ≤ p ≤ 3:
Xp =

M∑

m=1

Cmbj(p)m

Xchaos
p =

M∑

m=1

Cchaos
m (N)b

j
(p)
m

XGauss
p =

M∑

m=1

CGauss
m b

j
(p)
m
,

(3.126)
where CGauss =

(
CGauss
1 , . . . , CGauss

M

) is a Gaussian ve
tor for whi
h mean and 
orrelationare equal to the ones of C. Therefore, the statisti
al properties of these random �elds stronglydepend on the dependen
ies between the 
omponents of their proje
tion 
oe�
ients. Comparingthe statisti
al properties of these random �elds is thus a method to 
ompare the global relevan
eof the 
hara
terization of the multidimensional distribution of C.Thanks to νref = 4, 000 realizations of C, Cchaos(N) and CGauss, we then have a

ess to νrefindependent realizations of Xp, Xchaos
p and XGauss

p . In order to 
ompare the statisti
al infor-mation that is in
luded in these realizations, we denote by Nup(Xp(θq), u), Nup(X
chaos
p (θq), u),

Nup(X
Gauss
p (θq), u) the numbers of up
rossings (see [16℄ for more details about the up
rossings)of the level u by the qth realization, Xi(θq), Xchaos

i (θq), XGauss
i (θq), of Xp, Xchaos

p and XGauss
prespe
tively over the length [0, 1]. At last, we de�ne Di, 1 ≤ i ≤ 10 the domains su
h thatfor ea
h level u, Di gathers i/10 of the values of {Nup(Xp(θ1), u), . . . , Nup(Xp(θνref ), u)}. Thesedomains for the three 
onsidered permutations are thus 
ompared to 
ontour plots that 
orre-sponds to the equivalent domains for random �elds Xchaos

p and XGauss
p in Figure 3.14. The verygood agreement between the domains of Xp and Xchaos

p , whereas the domains of Xp and XGauss
pdo not mat
h 
orre
tly, is an other illustration of the relevan
e of the PCE method to identifyin inverse from a �nite set of independent realizations the multidimensional distributions of anunknown random ve
tor, even when the 
omponents of this ve
tor are strongly 
orrelated andvery dependent.3.5 Con
lusionsIn this 
hapter, it has been shown in what extent the PCE method gives very promising resultswhen trying to identify in inverse the multidimensional distribution of high dimensional randomve
tors. For this method to numeri
ally give relevant results, two adaptations of the 
lassi
alformulation presented in Chapter 1 have been emphasized. First, iterative algorithms have beendes
ribed to optimize the trials of random matri
es under orthogonality 
onstraints. Se
ondly,a method to numeri
ally stabilize the matrix of realizations of the statisti
al polynomial basishas been introdu
ed. The interest of these two adaptations has then been underlined on threeappli
ations based on simulated data. Finally, the method proposed allows making the PCErange rea
hable for many engineering appli
ations with many degrees of freedom.
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Chapter 4Karhunen-Loève expansion revisitedfor ve
tor-valued random �elds4.1 Introdu
tionAs presented in Chapters 1 and 2, the Karhunen-Loève (KL) expansion has been used in manys
ienti�
 �elds to e�
iently redu
e the statisti
al dimension of random �elds. This expansion
an then be 
oupled to a polynomial 
haos expansion (PCE), for whi
h formulation has beenpresented in detail in Chapters 1 and 3, to 
ompletely 
hara
terize the distribution of random�elds [50, 51, 22, 62, 78, 79, 34, 66, 80, 69, 68, 81℄. In parti
ular, it has been shown in Chapter 1that the importan
e of the KL expansion stems from its optimality in the sense that, due to theorthogonal proje
tion theorem in Hilbert spa
es, it minimizes the total mean-squared error. Inother words, for any integer M and any multivariate random �eld X, it 
an be extra
ted fromthe KL basis asso
iated with X theM -dimension family that minimizes the total mean-squarederror among all theM -dimension families that have been extra
ted from a 
ountable Hilbertianbasis.When 
onsidering ve
tor-valued random �elds, as it will be the 
ase when 
onsidering thetra
k-geometry random �eld, this error 
an be written as a sum of weighted lo
al errors, wherethe lo
al errors and the weights are respe
tively the normalized mean-squared errors and thesignal energies asso
iated with ea
h 
omponent of X . Therefore, when minimizing the totalmean-squared error, we minimize in priority the lo
al errors asso
iated with the 
omponentsof X that have the highest signal energies. If the KL proje
tion of the random �eld X isthen used to propagate variability in me
hani
al systems, it has therefore to be kept in mindthat the parti
ular 
omponents of lowest signal energy will not ne
essary be realisti
 nor well
hara
terized. If the quantities of interest of the studied system are however very dependent ona pre
ise des
ription of these 
omponents, su
h an optimal KL family may not be relevant andgive biased results.In this prospe
t, in addition to the 
lassi
al mean-squared error, two lo
al-global proje
tionerrors are introdu
ed in this work:
• ε2β 
orresponds to another weighted sum of lo
al errors, for whi
h weights are a priori ora posteriori 
hosen from sensitivity analysis;
• ε2∞ refers to the maximal value of the lo
al errors asso
iated with ea
h 
omponent ofrandom �eld X. 82



Indeed, these errors illustrate two 
lassi
al expe
tations. On the �rst hand, error ε2β leadsto proje
tion families that are parti
ularly adapted to the 
omponents of X of highest 
hosenweight. If, for a given quantity of interest, the importan
e of ea
h 
omponent of X 
an beevaluated from a sensibility analysis, these weights 
an thus be 
hosen in order to maximizethe relevan
e of the proje
tion basis to analyze this 
hosen quantity of interest. On the otherhand, if no information is available about the importan
e of ea
h 
omponent of X, makingthese weights be equal 
orresponds to the 
ase where no 
omponent of X is favored in the errorto be minimized. In su
h a 
ase, there is however no reason for the minimization of this equallyweighted error to lead to a proje
tion family for whi
h ea
h lo
al error would be the same. Thisthus motivates the introdu
tion of error ε2∞, whi
h for
es us to sear
h proje
tion families, forwhi
h the des
ription pre
ision would be 
lose for ea
h 
omponent.Based on an original s
aled expansion of X , the idea of this work is therefore to propose amethod to identify the optimal families that respe
tively minimize errors ε2β and ε2∞.In Se
tion 4.2, the s
aled expansion is des
ribed. In parti
ular, it will be shown how su
h aformalism allows the identi�
ation of the two former optimal basis to be 
onstru
ted. Se
tion4.3 illustrates the possibilities of su
h an expansion on an appli
ation based on simulated data.4.2 S
aled expansion and optimal basis for ve
tor-valued ran-dom �eldsIn this se
tion, the de�nition of the two lo
al-global errors ε2β and ε2∞ is �rst presented. Theproposed s
aled expansion is then introdu
ed for ve
tor-valued random �elds. It is �nally shownin what extent su
h a de
omposition 
an lead to the minimization of these two errors.4.2.1 Lo
al-global errors and optimal basisTheoreti
al frameworkAdapting the notations of Chapter 2 to the ve
torial 
ase, for Q ≥ 1, let P(Q)(Ω) be the spa
e ofall the se
ond-order RQ-valued random �elds, indexed by the 
ompa
t interval Ω = [0, S], whereit is reminded that S < +∞. Let H(Q) = L2(Ω,RQ) be the spa
e of all the square integrablefun
tions on Ω, with values in RQ, equipped with the inner produ
t (·, ·), su
h that for all uand v in H(Q),
(u,v) =

∫

Ω
u(s)Tv(s)ds. (4.1)Let X = {(X1(s), . . . ,XQ(s)) , s ∈ Ω} be an element of P(Q)(Ω). Without loss of generality,it is on
e again supposed that the mean value of X is equal to zero:

E [X(s)] = 0, ∀ s ∈ Ω. (4.2)It is re
alled that the signal energy of X, ‖X‖P(Q)(Ω), is written:
‖X‖P(Q)(Ω)

def
=
√
E [(X,X)]. (4.3)In the following, F (M) = {fm, 1 ≤ m ≤M} refers to a set ofM deterministi
 fun
tions thathas been extra
ted from any 
ountable Hilbertian basis of H(Q). The proje
tion of random �eld

X on F (M) is then written X̂
F(M) . The total normalized mean-squared error asso
iated with83



F (M) is denoted as ε2(F (M)) and 
an thus be written as a sum of weighted lo
al normalizedmean-squared errors,
ε2q(F (M)) =

∥∥∥Xq − X̂
(M)
q

∥∥∥
2

P(Ω)

‖Xq‖2P(Ω)

, 1 ≤ q ≤ Q, (4.4)asso
iated with ea
h 
omponent Xq of random �eld X :
ε2(F (M)) =

Q∑

q=1

{
‖Xq‖2P(Ω)

‖X‖2P(Q)(Ω)

}
ε2q(F (M)). (4.5)Optimality of the KL expansionThe matrix-valued 
ovarian
e fun
tion, [RXX ], of 
entered random �eld X is introdu
ed as:

[RXX(s, s′)] = E
[
X(s)⊗X(s′)

]
, ∀ (s, s′) ∈ Ω2. (4.6)It is assumed that [RXX ] is square integrable on Ω× Ω, that is to say

‖[RXX ]‖2
M

def
=

∫

Ω

∫

Ω

∥∥[RXX(s, s′)]
∥∥2
F
dsds′ < +∞, (4.7)with ‖·‖F the Frobenius norm of matri
es. It is reminded that the KL basis, K = {km, 1 ≤ m},asso
iated with X , 
an be 
onstru
ted as a 
ountable Hilbertian basis of H(Q), whi
h is 
onsti-tuted of the eigenfun
tions of 
ovarian
e matrix-valued fun
tion [RXX ], su
h that:

∫

Ω
[RXX(s, s′)]km(s′)ds′ = λmkm(s), s ∈ Ω, 1 ≤ m, (4.8)

(
km,kj

)
= δmj , λ1 ≥ λ2 ≥ · · · → 0,

∑

m≥1

λ2m < +∞, (4.9)Issues 
on
erning the solving of the integral eigenvalue problem, de�ned by Eq. (4.8), whi
his usually 
alled Fredholm problem, 
an be found in [21, 44, 45℄. Due to the orthogonal proje
tiontheorem in Hilbert spa
e, for all M ≥ 1, proje
tion family K(M) = {km, 1 ≤ m ≤M} is thusoptimal in the sense that, for all family F (M):
ε2(K(M)) ≤ ε2(F (M)). (4.10)Let X̃K(M) be the proje
tion of X on K(M). Family K(M) being orthonormal, it 
omes:
X̃(M) =

M∑

m=1

√
λmkmξm, (4.11)where ξ = (ξ1, · · · , ξM ) is a 
entered random ve
tor, for whi
h 
omponents are un
orrelatedand with varian
e equal to 1. In parti
ular, if X is a Gaussian random �eld, the 
omponentsof ξ are normally distributed and statisti
ally independent.
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Lo
al-global errorsFrom Eq. (4.5), minimizing ε2 amounts therefore to minimizing in priority the lo
al errors
orresponding to the 
omponents of X that have the highest weights ‖Xq‖2P(Ω)

‖X‖2
P(Q)(Ω)

. In otherwords, for given values of p, q and M , if ‖Xp‖P(Ω) ≫ ‖Xq‖P(Ω), the minimization of ε2 
anlead to the identi�
ation of a M -dimension trun
ated Karhunen-Loève family asso
iated with
X, K(M), su
h that ε2p(K(M)) ≪ ε2q(K(M)). Consequently, if Xp and Xq are independent, a twosteps approa
h, based on the de�nition of two di�erent families (one for Xp and the 
omponentsof X that depend on Xp, one for the other 
omponents of X that do not depend on Xp) wouldbe more relevant. On the 
ontrary, if Xp and Xq are indeed dependent, more elements have tobe added in K(M) to make ε2q de
rease, or another 
hoi
e for the error fun
tion to be minimizedhas to be 
onsidered.In this prospe
t, two lo
al-global proje
tion errors are introdu
ed in this work, ε2β and ε2∞,su
h that for any β in ]0,+∞[Q:

ε2β =

Q∑

q=1

β2q ε
2
q , (4.12)

ε2∞ = max
1≤q≤Q

{
ε2q
}
. (4.13)As presented in Se
tion 4.1, if the redu
tion of the statisti
al 
omplexity of random �eld Xis 
arried out as a �rst step in a propagation of variability in me
hani
al systems, minimizingthese two errors instead of error ε2 should allow us to improve the relevan
e of the proje
tionbasis, whether the importan
e of ea
h 
omponent of X for a given quantity of interest 
an beevaluated from a sensibility analysis or not.4.2.2 S
aled expansionLet O be an element of S(Q)(1) =

{
O ∈ ]0, 1[Q,

∑Q
q=1O

2
q = 1

}. This allows us to de�ne thes
aled random �eld, Y (O), su
h that:
Y (O) = [Diag(O)]X, (4.14)

[Diag(O)] =




O1 0 · · · 0

0 O2
. . . ...... . . . . . . 0

0 · · · 0 OQ



. (4.15)The auto
orrelation fun
tion, [RY Y (O)], of Y (O) is thus equal to:

[RY Y (O)] = [Diag(O)] [RXX ] [Diag(O)] . (4.16)The family K(M)(O) = {km(O), 1 ≤ m} is thus denoted as the Karhunen-Loève familyasso
iated with random �eld Y (O), su
h that:
Y (O) =

+∞∑

m=1

km(O)
√
λm(O)ξm(O), (4.17)85



λm(O) = 〈(Y (O),km(O)) , (Y (O),km(O))〉 , ξm(O) =
(Y (O),km(O))√

λm(O)
. (4.18)where it is reminded that, by 
onstru
tion, family K(M)(O) is orthonormal in H(Q), and pro-je
tion 
oe�
ients {ξm(O), m ≥ 1} are un
orrelated:

(
km(O),kj(O)

)
= E [ξm(O)ξj(O)] = δmj , 1 ≤ m, j. (4.19)Sin
e Oq 6= 0 for all 1 ≤ q ≤ Q, matrix [Diag(O)] is invertible. Therefore, the proje
tion ofrandom �eld X on family K(M)(O), that is denoted as X̂(M)

(O), is given by:
X̂

(M)
(O) =

M∑

m=1

[Diag(O)]−1
km(O)

√
λm(O)ξm(O), 1 ≤M (4.20)The elements of K(M)(O) are on
e again ordered su
h that the varian
e of the proje
tionrandom variables are sorted in a de
reasing order:

λ1(O) ≥ λ2(O) ≥ · · · → 0. (4.21)A

ording to Eqs. (4.4) and (4.5), for all 1 ≤M , we �nally have:
ε2q(K(M)(O)) = 1− O−2

q

‖Xq‖2P(Ω)

M∑

m=1

λm(O)

∫

Ω

{
kmq (O, s)

}2
ds, 1 ≤ q ≤ Q, (4.22)

ε2(K(M)(O)) = 1− 1

‖X‖2P(Q)(Ω)

Q∑

q=1

O−2
q

M∑

m=1

λm(O)

∫

Ω

{
kmq (O, s)

}2
ds. (4.23)It 
an be veri�ed that if O = 1√

Q
(1, · · · , 1), the s
aled expansion 
oin
ides with the 
lassi
aland dire
t KL expansion asso
iated with X, de�ned in Se
tion 4.2.1.4.2.3 Properties of the s
aled expansionThis se
tion aims at emphasizing the main properties of the s
aled expansion, on whi
h theminimization of lo
al-global errors ε2β and ε2∞ will be based. First, the 
ontinuity of the ap-pli
ations O 7→ ε2β(K(M)(O)) and O 7→ ε2∞(K(M)(O)) on S(Q)(1) will be shown. Then, theme
hanisms indu
ed by the s
aled expansion and its optimality are presented.Lemma 1 Random �eld Y (O) and its realizations are 
ontinuous in O with respe
t to the L2norm on S(Q)(1).

� Proof: Let O and O∗ be two elements of S(Q)(1).1. We have:
‖Y (O)− Y (O∗)‖2P(Q)(Ω) =

Q∑

q=1

(
Oq −O∗

q

)2 ‖Xq‖2P(Ω) ,

≤ CY ‖O −O∗‖2
RQ ,

(4.24)86



where ‖·‖
RQ is the Eu
lidian norm on RQ and CY = max1≤q≤Q ‖Xq‖2P(Ω) is a positive
onstant that is independent of O and O∗. The appli
ation O 7→ Y (O) is therefore
ontinuous on S(Q)(1) with respe
t to the L2 norm.2. In the same manner, let X(θ) be a realization of X, su
h that, by 
onstru
tion, Y (O, θ) =

[Diag(O)]X(θ) and Y (O∗, θ) = [Diag(O∗)]X(θ) are the 
orresponding realizations of
Y (O) and Y (O∗) respe
tively. Therefore:

‖Y (O, θ)− Y (O∗, θ)‖2L2

def
= (Y (O, θ)− Y (O∗, θ),Y (O, θ)− Y (O∗, θ))

≤ ‖O −O∗‖2
RQ

[
max
1≤q≤Q

{(Xq(θ),Xq(θ))}
]
.

(4.25)As max1≤q≤Q {(Xq(θ),Xq(θ))} is a positive 
onstant that is independent of O and O∗,the appli
ation O 7→ Y (O, θ) is 
ontinuous on S(Q)(1) with respe
t to the norm ‖·‖L2
.

� Equation (4.17) and Lemma 1 yield that for any values of the set of random variables
{ξm(O), 1 ≤ m}, whose mean values are equal to zero and varian
es are equal to one, theappli
ation O 7→∑

1≤m

√
λm(O)km(O)ξm(O) is 
ontinuous on S(Q)(1) with respe
t to the L2norm. This motivates the introdu
tion of the following hypothesis, that will be required for thenext propositions to be valid.Hypothesis 1 For all 1 ≤ m, the appli
ations O 7→

√
λm(O)km(O) are supposed to be 
on-tinuous on S(Q)(1) with respe
t to the norm ‖·‖L2

.Proposition 2 Under Hypothesis 1, the appli
ations O 7→ ε2q(K(M)(O)) are 
ontinuous withrespe
t to the Eu
lidian norm on S(Q)(1), for all 1 ≤ q ≤ Q.
� Proof: If Hypothesis 1 is veri�ed, due to the 
ontinuity properties of the produ
t, of thesum, and of the integral over a 
losed interval, it 
an be dedu
ed that for all 1 ≤M ,

O 7→
M∑

m=1

λm(O)

∫

Ω

{
kmq (O, s)

}2
ds, 1 ≤ q ≤ Q, (4.26)are 
ontinuous with respe
t to the Eu
lidian norm on S(Q)(1). A

ording to Eq. (4.22), thisleads us to the 
ontinuity on S(Q)(1) of the appli
ations O 7→ ε2q(K(M)(O)), for all 1 ≤ q ≤ Q.

�Corrolary 2 Under Hypothesis 1, the appli
ations O 7→ ε2β(K(M)(O)) and O 7→ ε2∞(K(M)(O))are 
ontinuous with respe
t to the Eu
lidian norm on S(Q)(1).
� Proof: By 
onstru
tion of errors ε2β and ε2∞, de�ned by Eqs. (4.12) and (4.13), this 
orrolaryis a dire
t 
onsequen
e of Proposition 2. �Proposition 3 Under Hypothesis 1, for all 1 ≤ M , appli
ation O 7→ ε2∞

(
K(M)(O)

) admits aminimal value, O(M)
∞ , in S(Q)(1).
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� Proof: Under Hypothesis 1, Corrolary 2 yields that appli
ation O 7→ ε2∞
(
K(M)(O)

) is
ontinuous with respe
t to the Eu
lidian norm on S(Q)(1) for all 1 ≤M . It admits therefore aminimal value in any 
losed subset Ŝ(ǫ) = {O ∈ [ǫ, 1− ǫ]Q,
∑Q

q=1O
2
q = 1}, for all 0 < ǫ < 1.Then, for 1 ≤ q ≤ Q, if Oq tends to zero, it 
an be noti
ed that ε2q (K(M)(O)

) tends to itsmaximal value as the weight of Xq in the global minimization is almost zero. This leads us tothe fa
t that it exists 0 < ǫ∗ < 1 su�
iently small, su
h that for all O and O∗ in Ŝ(ǫ∗) and
S(Q)(1)\Ŝ(ǫ∗) respe
tively, ε2∞ (O) ≤ ε2∞ (O∗). In other words, it exists ǫ∗ in ] 0, 1 [ and O

(M)
∞in S(Q)(1) su
h that:

O(M)
∞ = arg min

O∈Ŝ(ǫ∗)

{
ε2∞ (O)

}
= arg min

O∈S(Q)(1)

{
ε2∞ (O)

}
. (4.27)

� The importan
e of su
h a ve
tor O
(M)
∞ for the minimization of error ε2∞ will be dis
ussedin Se
tion 4.2.5. Although the perturbation of [RXX ], de�ned by Eq. (4.16), is quadrati
with respe
t to ve
tor O, there is no theoreti
al result in the perturbation theory �eld that
ould guarantee the validity of Hypothesis 1 in the general 
ase. From a dis
rete point of view,appli
ations O 7→

√
λm(O)km(O) 
an however always be 
onsidered as 
ontinuous, as for anydis
ontinuous appli
ation A, it exists a 
ontinuous appli
ation A∗, su
h that the proje
tions of

A and A∗ on the same dis
retized spa
e are the same. Hen
e, in the following, it is supposedthat we are within the framework of Hypothesis 1.The next Lemma and Proposition aim now at emphasizing how the s
aled expansion 
ould beused to favor or put at a disadvantage on purpose the 
hara
terization of a parti
ular 
omponentof X.Lemma 2 For all O in S(Q)(1) and for all F (M) in (H(Q)
)M , we have:

Q∑

q=1

O2
q ‖Xq‖2P(Ω) ε

2
q

(
K(M)(O)

)
≤

Q∑

q=1

O2
q ‖Xq‖2P(Ω) ε

2
q(F (M)). (4.28)

� Proof: The proof of this lemma is detailed in Appendix A. �In other words, Lemma 2 underlines that for all O in S(Q)(1), family K(M)(O) isM -optimalfor X regarding error ∑Q
q=1O

2
q ‖Xq‖2P(Ω) ε

2
q . For 1 ≤ p 6= q ≤ Q, imposing O2

p ‖Xp‖2P(Ω) >

O2
q ‖Xq‖2P(Ω) tends therefore to favor the 
hara
terization of Xp rather than the one of Xq. This
an be seen from the following proposition:Proposition 4 For any O = (O1, · · · , Oq) in S(Q)(1) and for all κ su
h that 0 < κ <{∑Q−1

q=1 O
2
q

}−1/2, the ve
tor O∗ =

(
κO1, · · · , κOQ−1,

√
1− κ2

∑Q−1
q=1 O

2
q

) is in S(Q)(1). For
κ = 1, we have O = O∗ and κ 
an be smaller or larger than 1. We then have:

{
ε2Q

(
K(M)(O∗)

)
− ε2Q

(
K(M)(O)

)}{
κ2 − 1

}
≥ 0. (4.29)

� Proof:1. If O = (O1, · · · , OQ) is in S(Q)(1), then∑Q
q=1O

2
q = 1. Hen
e, if 0 < κ <

{∑Q−1
q=1 O

2
q

}−1/2,
∑Q

q=1

(
O∗

q

)2
= 1, whi
h shows that O∗ is in S(Q)(1).88



2. Moreover, Lemma 2 yields:
{ ∑Q

q=1O
2
q ‖Xq‖2P(Ω) ε

2
q

(
K(M)(O)

)
≤∑Q

q=1O
2
q ‖Xq‖2P(Ω) ε

2
q

(
K(M)(O∗)

)
,

∑Q
q=1

(
O∗

q

)2 ‖Xq‖2P(Ω) ε
2
q

(
K(M)(O∗)

)
≤∑Q

q=1

(
O∗

q

)2 ‖Xq‖2P(Ω) ε
2
q

(
K(M)(O)

)
,(4.30)whi
h 
an, for all ca and cb in R+, be written in a more 
ompa
t form as:

Q∑

q=1

‖Xq‖2P(Ω)

{
ε2q

(
K(M)(O∗)

)
− ε2q

(
K(M)(O)

)}{
caO

2
q − cb

(
O∗

q

)2} ≥ 0. (4.31)Choosing cb = 1 and ca = κ2 yields:
{
ε2Q

(
K(M)(O∗)

)
− ε2Q

(
K(M)(O)

)}{
κ2 − 1

}
≥ 0. (4.32)

� Hen
e, if κ ≥ 1, that is to say if the weights of all 
omponents of X, but the one of XQ, havebeen in
reased in the 
hoi
e of O∗, the proje
tion of XQ on K(M)(O∗) will be less pre
ise thanits proje
tion on K(M)(O) be
ause ε2Q (K(M)(O∗)
)
≥ ε2Q

(
K(M)(O)

). On the 
ontrary, if κ ≤ 1,the weight of XQ in the s
aled expansion de�ned in Se
tion 4.2.2 is in
reased by 
omparison tothe other 
omponents of X, su
h that the proje
tion of XQ on K(M)(O∗) will be better thanits proje
tion on K(M)(O) be
ause ε2Q (K(M)(O∗)
)
≤ ε2Q

(
K(M)(O)

).By playing on the values of the 
omponents of O, the s
aled expansion thus appears tobe able to favor or put at a disadvantage on purpose the 
hara
terization of a parti
ular
omponent of X. The goal of the next se
tions is therefore to de�ne a method to minimizeerrors ε2β and ε2∞, based on this s
aled expansion.4.2.4 Minimization of a weighted sum of lo
al errorsThe minimization of error ε2β, de�ned by Eq. (4.12), is a dire
t 
onsequen
e of Lemma 2.Indeed, for all β in S(Q)(1), it 
an dire
tly be seen that the 
hoi
e
Oβ

q =
βq

‖Xq‖P(Ω)

, 1 ≤ q ≤ Q, (4.33)leads us to the minimization of error ε2β, su
h that:
K(M)(Oβ) = arg min

F(M)∈(H(Q))
M

{
ε2β(F (M))

}
, 1 ≤M. (4.34)Hen
e, just by 
onsidering the KL expansion of Y (O) = [Diag(O)]X rather than X, it ispossible to 
onstru
t proje
tion families that 
ould favor parti
ular 
omponents of X, from apriori or a posteriori 
hoi
es for β.
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4.2.5 Minimization of the maximal value of the lo
al errorsThe optimal families F (M)
∞ , whi
h minimize error ε2∞, that is to say su
h that:

F (M)
∞ = arg min

F(M)∈(H(Q))
M

{
ε2∞(F (M))

}
= arg min

F(M)∈(H(Q))
M

{
max
1≤q≤Q

ε2q(F (M))

}
, (4.35)have been introdu
ed to minimize the lo
al errors asso
iated with ea
h 
omponent of X . Theseproje
tion families stem however from a Min-Max optimization on the very large spa
e (H(Q)

)M ,su
h that their dire
t numeri
al identi�
ation 
an be very di�
ult. As the dimension of S(Q)(1)is 
omparatively very small, the idea presented in this se
tion is thus to use the former s
aledexpansion, de�ned in Se
tion 4.2.2, to approximate F (M)
∞ as the solution of an optimizationproblem with respe
t to O in S(Q)(1), rather than an optimization problem with respe
t to

F (M) in (H(Q)
)M . For all 1 ≤ M , we thus de�ne K(M)(O

(M)
∞ ) as the s
aled basis asso
iatedwith the ve
tor O(M)

∞ , su
h that:
O(M)

∞ = arg min
O∈S(Q)(1)

{
ε2∞ (O)

}
, (4.36)for whi
h existen
e stems from Proposition 3.Whereas ve
tor Oβ, de�ned by Eq. (4.33), is independent of M , it has to be reminded thatve
tor O(M)

∞ depends on M in the general 
ase.This se
tion aims �rst at quantifying the distan
e between K(M)(O
(M)
∞ ) and F (M)

∞ . In thetwo dimensional 
ase (Q = 2), it will be shown in parti
ular that K(M)(O
(M)
∞ ) = F (M)

∞ . At last,based on Proposition 4, an algorithm to numeri
ally solve Eq. (4.36) is presented.Quanti�
ation of the error introdu
ed by the approximated identi�
ation problemLemma 3 For all M ≥ 1 and for all O in S(Q)(1), the relevan
e of K(M)(O) to minimize error
ε2∞ 
an be assessed as:

0 ≤ ε2∞(K(M)(O))− ε2∞(F (M)
∞ ) ≤ UB(O), (4.37)where:

UB(O)
def
=

∑Q
q=1O

2
q ‖Xq‖2P(Ω) δ

2
q (K(M)(O))

∑Q
q=1O

2
q ‖Xq‖2P(Ω)

, (4.38)
0 ≤ δ2q (K(M)(O))

def
= ε2∞(K(M)(O))− ε2q

(
K(M)(O)

)
, 1 ≤ q ≤ Q. (4.39)

� Proof: The �rst inequality ε2∞(K(M)(O)) ≥ ε2∞(F (M)
∞ ) is a dire
t 
onsequen
e of the opti-mality of F (M)

∞ . Let O be an element in S(Q)(1). From Lemma 2, it 
an therefore be dedu
edthat:
Q∑

q=1

O2
q ‖Xq‖2P(Ω) ε

2
q

(
K(M)(O)

)
≤

Q∑

q=1

O2
q ‖Xq‖2P(Ω) ε

2
q(F (M)

∞ )

≤ ε2∞(F (M)
∞ )





Q∑

q=1

O2
q ‖Xq‖2P(Ω)



 ,

(4.40)
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su
h that, by de�nition of {δ21(K(M)(O)), · · · , δ2Q(K(M)(O))
}:

{
ε2∞(K(M)(O))− ε2∞(F (M)

∞ )
}




Q∑

q=1

O2
q ‖Xq‖2P(Ω)



 ≤

Q∑

q=1

O2
q ‖Xq‖2P(Ω) δ

2
q (K(M)(O)), (4.41)whi
h proves the se
ond part of the inequality. �This Lemma emphasizes that the 
loser the lo
al errors are, the more relevant proje
tionfamily K(M)(O) is. In parti
ular, quantity UB(O(M)

∞ ) de�nes an upper bound for the errorintrodu
ed by the 
onsideration of the approximated problem de�ned by Eq. (4.36). Lemma 3leads us moreover to the following proposition:Proposition 5 If the following equalities are veri�ed:
ε21(K(M)(O(M)

∞ )) = · · · = ε2Q(K(M)(O(M)
∞ )), (4.42)then the family K(M)(O

(M)
∞ ) minimizes ε2∞.

�Proof: By 
onstru
tion, if ε21(K(M)(O
(M)
∞ )) = · · · = ε2Q(K(M)(O

(M)
∞ )), then δ21(K(M)(O

(M)
∞ )) =

· · · = δ2Q(K(M)(O
(M)
∞ )) = 0. Hen
e, from Lemma 3, we get ε2∞(K(M)(O

(M)
∞ )) = ε2∞(F (M)

∞ ), su
hthat K(M)(O
(M)
∞ ) = F (M)

∞ . �Identi�
ation of the optimal s
aling ve
torBy 
onstru
tion, it 
an dire
tly be seen that, for all α > 0, K(M)(O) = K(M)(αO). Hen
e,if the 
onditions of Proposition 5 are ful�lled, that is to say if ε21(K(M)(O
(M)
∞ )) = · · · =

ε2Q(K(M)(O
(M)
∞ )), the s
aling ve
tor O(M)

∞ is solution of the following problem:
K(M)(O) = K(M)

(
[Diag(O)]ǫ2(K(M)(O))

)
, (4.43)where the matrix [Diag(O)] is de�ned by Eq. (4.15), and where:

ǫ2(K(M)(O)) =
(
ε21(K(M)(O)), · · · , ε2Q

(
K(M)(O)

))
. (4.44)This motivates the following iterative algorithm for the identi�
ation of s
aling ve
tor O(M)

∞ .For given parameters τ and γ:



Initialize O =
(

1
‖X1‖P(Ω)

, · · · , 1
‖Xq‖P(Ω)

)

Normalize Ofor i = 1 : Nmax

Compute K(M)(O)if UB(O) > τ :

Oq = Oq ·
(
ε2q
(
K(M)(O)

))γ
, 1 ≤ q ≤ Q

Normalize Oelse
Break loop forend ifend for

O
(M)
∞ = O.

(4.45)
91



Parameter τ 
orresponds to the 
hosen pre
ision of the numeri
al 
onvergen
e, whereas γ
ontrols the speed of the 
onvergen
e and has to be adapted to avoid numeri
al instabilities. Forour appli
ations, γ will be 
hosen equal to 1/2. In su
h an algorithm, at ea
h iteration (n+1),the weight of Xq in the KL expansion, (O(n+1)
q

)2
‖Xq‖2P(Ω), is updated with respe
t to thelo
al error ε2q(K(M)(O(n))) of the former step. Hen
e, the weights of the less well 
hara
terized
omponents of X , for whi
h lo
al errors ε2q(K(M)(O(n))) are the highest at iteration n, will bein
reased the most at the new iteration (n + 1). In the general 
ase, no 
onvergen
e propertyfor this algorithm has been proved yet, but under the following 
onditions:

lim
O2

q→1
ε2q

(
K(M)(O)

)
≤ min

1≤p 6=q≤Q

{
lim

O2
q→1

ε2p(K(M)(O))

}
, 1 ≤ q ≤ Q, (4.46)it is assumed that the algorithm de�ned by Eq. (4.45) gives very promising results for theminimization of fun
tion O 7→ ε2∞(K(M)(O)) in a very few number of iterations. In otherwords, in 
ases where the weight of Xq in the s
aled expansion is mu
h higher than the weightsof the other 
omponents {Xp, 1 ≤ p 6= q ≤ Q}, if Xq still remains badly 
hara
terized, thenthere is no reason for su
h an algorithm to 
onverge to a satisfying result. In pra
ti
e, these
onditions are not very restri
tive, and are most of the time veri�ed for 
orrelated ve
tor-valuedrandom �elds.In parti
ular, under Hypothesis 1, when dealing with a two dimensional 
ase (Q = 2,

O =
(
O1,

√
1−O2

1

)), Propositions 2 and 4 yield that errors fun
tions O1 7→ ε21(O1) and
O1 7→ ε22(O1) are 
ontinuous and respe
tively de
reases and in
reases with respe
t to O1 in
]0, 1[. Therefore, if the 
onditions de�ned by Eq. (4.46) are ful�lled, it exists O(M)

∞ in S(Q)(1)su
h that ε21(O(M)
∞ ) = ε22(O

(M)
∞ ). Therefore, a

ording to Proposition 5, optimal basis F (M)

∞
ould be in these 
ases exa
tly identi�ed from the solving of the optimization problem that isde�ned by Eq. (4.36).4.3 Appli
ationMost of the results emphasized in Se
tion 4.2 are illustrated in this se
tion on a pra
ti
alexample. This se
tion is divided in three parts: �rst, a parti
ular R4-valued random �eld isgenerated from its Karhunen-Loève expansion; then the in�uen
e of s
aling ve
tor O on thelo
al errors is emphasized; at last, it is shown in what extent the s
aled expansion allows us toidentify optimal families F (M)
∞ and F (M)

β for several values of β in S(Q)(1) and any values of
M ≥ 1.4.3.1 Generation of a ve
tor-valued random �eldIn this appli
ation, the dimension of random �eld X, Q, is 
hosen equal to 4, and Ω = [0, 1].A parti
ular matrix-valued 
ovarian
e fun
tion, [RXX ], is then postulated, for whi
h someproje
tions are represented in Figures 4.1 and 4.2. Random �eld X , whi
h is still supposed tobe 
entered, 
an thus be written as:

X =

+∞∑

m=1

√
λmkmξm, (4.47)
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where, for all m ≥ 1, 
ouples (λm,k
m) are solution of the Fredholm problem asso
iated with

[RXX ]:
∫

Ω
[RXX(s, s′)]km(s′)ds′ = λmkm(s), ∀ s ∈ Ω, (4.48)and 
oe�
ients {ξm, m ≥ 1} are un
orrelated random variables. For the sake of simpli
ity, these
oe�
ients are moreover 
onsidered independent and normally distributed, whi
h amounts tosupposing that X is Gaussian. In parti
ular, [RXX ] has been 
hosen su
h that ‖X1‖P(Ω) >

‖X2‖P(Ω) > ‖X3‖P(Ω) > ‖X4‖P(Ω). Further details about the generation of [RXX ] 
an be seenin Appendix B. As an illustration, a parti
ular realization, X(θ), of X is represented in Figure4.3. From Eq. (4.22), it is reminded that for any value of O in S(Q)(1), for all 1 ≤ q ≤ Q, andfor all M ≥ 1, errors ε2q(K(M)(O)) 
an dire
tly be 
omputed by the s
aled expansion.4.3.2 In�uen
e of the s
aling ve
tor on the lo
al errorsA

ording to Se
tion 4.2, by introdu
ing ve
tor O = (O1, O2, O3, O4), we should be able tobalan
e the values of lo
al errors ε2q , for 1 ≤ q ≤ 4. In parti
ular, it has been shown in Se
tion4.2.3 that for O = 1√
3+κ2

(1, 1, 1, κ) and for all 1 ≤M , ε24(K(M)(O)) de
reases with respe
t to κon ]0,+∞[. Hen
e, if κ tends to zero, ε24(K(M)(O)) is bound to 
onverge to its maximal value,as the weight of X4 in the minimization of ∑4
q=1O

2
q ‖Xq‖2P(Ω) ε

2
q be
omes negligible. On the
ontrary, if κ tends to in�nity, ε24(K(M)(O)) will tend to its minimal value, as the minimizationof∑4

q=1O
2
q ‖Xq‖2P(Ω) ε

2
q will 
ompletely be driven by ε24. This phenomenon 
an be seen in Figure4.4, where the evolution of lo
al errors ε2q (K(M)(O)

) with respe
t to κ is represented.In the same manner, the results 
on
erning the two dimensions 
ase 
an be illustrated fromthis four dimensions 
ase, by imposing:
O =

1√
O2

1 + 2× 10−10 +O2
4

(
O1, 10

−5, 10−5, O4

)
. (4.49)Indeed, in su
h a 
ase, the weights of X2 and X3 will always be negligible. In Figure 4.5, it
an therefore be seen that when ratio O4/O1 in
reases, ε24(K(M)(O)) de
reases from its maximalvalue to its minimal value, whereas ε21(K(M)(O)) in
reases from its minimal value to its maximalvalue. As





limO2
4/O

2
1→0 ε

2
1(K(M)(O)) < min2≤q≤4

{
limO2

4/O
2
1→0 ε

2
q(K(M)(O))

}
,

limO2
4/O

2
1→+∞ ε24(K(M)(O)) < min1≤q≤3

{
limO2

4/O
2
1→0 ε

2
q(K(M)(O))

}
,

(4.50)it exists a value for O4/O1 in ]0,+∞[ su
h that ε21 and ε24 are equal. This value allows ustherefore to identify a proje
tion family whi
h is M -optimal for X with respe
t to the error
maxp∈{1,4}

{
ε2q
}.4.3.3 Identi�
ation of the optimal basisIn Se
tion 4.2, for all β in S(Q)(1), optimal proje
tion families F (M)

β and F (M)
∞ have beenintrodu
ed as the solutions of the two following optimization problems:

F (M)
β = arg min

F(M)∈(H(Q))
M

{
ε2β(F (M))

}
, (4.51)93
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F (M)
∞ = arg min

F(M)∈(H(Q))
M

{
ε2∞(F (M))

}
. (4.52)In parti
ular, for all M ≥ 1, the 
hoi
e

β =
(
‖X1‖P(Ω) , ‖X2‖P(Ω) , ‖X3‖P(Ω) , ‖X4‖P(Ω)

) (4.53)leads to the identi�
ation of the 
lassi
al Karhunen-Loève family, whi
h is 
alled F (M)
L2

, for X.The 
orresponding lo
al errors, ε2q(F (M)
L2

) 
an then be 
ompared. In Figure 4.4, for M = 50, it
an be seen that ε21(F (50)
L2

) = 3.9%, ε22(F (50)
L2

) = 6.3%, ε23(F (50)
L2

) = 14% and ε24(F (50)
L2

) = 64%.Due to the fa
t that ‖X1‖P(Ω) > ‖X2‖P(Ω) > ‖X3‖P(Ω) > ‖X4‖P(Ω), it 
an thus be veri�edthat the dire
t Karhunen-Loève expansion favorizes the des
ription of 
omponent X1, whereas
omponent X4 is not pre
isely 
hara
terized.As explained in Se
tion 4.2, other values for β have to be 
onsidered in order to improvethe 
hara
terization of X4. For instan
e, the 
hoi
e β = (0.5, 0.5, 0.5, 0.5) 
orresponds to theminimization of the mean value of the lo
al errors, ε2µ = 1
4

∑4
q=1 ε

2
q . Let F (M)

µ be the 
orre-sponding optimal family. Any other value for β 
an nevertheless be 
hosen. For instan
e, let
F (M)
β be the M -dimension optimal family 
orresponding to the 
ase β = (0.1, 2, 1, 0.5) /2.2935.At last, family K(M)(O

(M)
∞ ) is introdu
ed as the numeri
al solution of the algorithm de�ned byEq. (4.45), with τ = 10−3 and γ = 1/2.In this prospe
t, Figures 4.6 and 4.7 allow us to numeri
ally illustrate that proje
tion families

F (M)
β , F (M)

µ , F (M)
L2

and K(M)(O
(M)
∞ ) 
an be identi�ed from the s
aled expansion, su
h that forany M ≥ 1:

• ε2β(F
(M)
β ) ≤ min

{
ε2β(F

(M)
L2

), ε2β(K(M)(O
(M)
∞ )), ε2β(F

(M)
µ )

},
• ε2µ(F

(M)
µ ) ≤ min

{
ε2µ(F

(M)
L2

), ε2µ(K(M)(O
(M)
∞ )), ε2µ(F

(M)
β )

},96



• ε2∞(K(M)(O
(M)
∞ )) ≤ min

{
ε2∞(F (M)

L2
), ε2∞(F (M)

β ), ε2∞(F (M)
µ )

},
• ε2(F (M)

L2
) ≤ min

{
ε2(F (M)

β ), ε2(K(M)(O
(M)
∞ )), ε2(F (M)

µ )
}.In parti
ular, for M = 100:





ε21(F
(100)
L2

) = 1.7%

ε22(F
(100)
L2

) = 3.0%

ε23(F
(100)
L2

) = 5.8%

ε24(F
(100)
L2

) = 17%

,





ε21(K(100)(O
(M)
∞ )) = 3.0%

ε22(K(100)(O
(M)
∞ )) = 3.0%

ε23(K(100)(O
(M)
∞ )) = 3.0%

ε24(K(100)(O
(M)
∞ )) = 3.0%

, (4.54)




ε2(F (100)
L2

) = 2.3%

ε2(K(100)(O
(M)
∞ )) = 3.0%

ε2∞(F (100)
L2

) = 17%

ε2∞(K(100)(O
(M)
∞ )) = 3.0%

. (4.55)Whereas family F (100)
L2


an put at a disadvantage the des
ription of a parti
ular 
omponentof X to minimize ε2, family K(100)(O
(M)
∞ ) tries to equilibrate the pre
ision of the des
riptionof ea
h 
omponent. To do so, the lo
al error of some 
omponents 
an in
rease to make theother de
rease. Indeed, in this example, ε21(F (100)

L2
) < ε21(K(100)(O

(M)
∞ )) whereas ε24(F (100)

L2
) >

ε24(K(100)(O
(M)
∞ )). From Eq. (4.37), it 
an moreover be seen that in this 
ase:

∣∣∣ε2∞(F (100)
∞ )− ε2∞(K(100)(O(M)

∞ ))
∣∣∣ ≤ τ = 0.1%. (4.56)4.4 Con
lusionsIn spite of the in
reasing 
omputational power that has en
ouraged the development of 
ompu-tational models with always more degrees of freedom, statisti
al redu
tion methods, su
h as theKarhunen-Loève expansion, still have a big role to play to make the solving of these problemsfaster and more robust. When dealing with RQ-valued random �elds X = (X1, · · · ,XQ), it hashowever been shown in this 
hapter that the dire
t trun
ated KL expansion, whi
h minimizesthe total mean-squared error, tends to better 
hara
terize the 
omponents of X that have thehighest signal energy. In this 
ontext, a parti
ular adaptation of the KL expansion has beenproposed. Based on a s
aling transformation of X, this original de
omposition allows de�ningproje
tion basis that 
an favor or put at a disadvantage on purpose the 
hara
terization of aparti
ular 
omponent of X. This expansion appears to be also very relevant to identify proje
-tion basis that minimize the maximal value of the lo
al errors of X. Finally, when interested instudying 
omplex systems that are ex
ited by ve
tor-valued random �elds (one 
an think aboutthe intera
tions between trains and tra
k irregularities, buildings and earthquakes, harbors andswell, et
.), the method proposed opens new opportunities to adapt the proje
tion basis withrespe
t to the quantities of interest of the systems.

97



0 50 100 150 200
10

−2

10
−1

10
0

 

 

PSfrag repla
ements
ε2β(F

(M)
L2

)

ε2β(F
(M)
µ )

ε2β(F
(M)
β )

ε2β(K(M)(O
(M)
∞ ))Dimension M

globalerrors

0 50 100 150 200
10

−3

10
−2

10
−1

10
0

 

 

PSfrag repla
ements
ε2(F (M)

L2
)

ε2(F (M)
µ )

ε2(F (M)
β )

ε2(K(M)(O
(M)
∞ ))Dimension M

globalerrors
Figure 4.6: Evolution of errors ε2β and ε2 with respe
t to the dimension of the proje
tion family,
M .

98



0 50 100 150 200

10
−2

10
−1

10
0

 

 

PSfrag repla
ements
ε2µ(F (M)

L2
)

ε2µ(F
(M)
µ )

ε2µ(F (M)
β )

ε2µ(K(M)(O
(M)
∞ ))Dimension M

globalerrors

0 50 100 150 200

10
−2

10
−1

10
0

 

 PSfrag repla
ements
3.0%3.3%17%63%

ε2∞(F (M)
L2

)

ε2∞(F (M)
µ )

ε2∞(F (M)
β )

ε2∞(K(M)(O
(M)
∞ ))Dimension M

globalerrors
Figure 4.7: Evolution of errors ε2µ and ε2∞ with respe
t to the dimension of the proje
tion family,
M .

99



Chapter 5Experimental identi�
ation of therailway tra
k sto
hasti
 modeling5.1 Introdu
tionThe expe
ted bene�ts of simulation in the railway �eld are multiple: robust and optimized 
on-
eption, shorter and 
heaper 
erti�
ation pro
edure, better knowledge of the 
riti
al situationsof the tra
k-vehi
le system, optimization of the maintenan
e. However, if simulation is intro-du
ed in 
erti�
ation and 
on
eption pro
esses, it has to be very representative of the physi
albehavior of the system. The model has thus to be fully validated and the simulations have tobe raised on a realisti
 and representative set of ex
itations.A parti
ular attention has therefore to be paid to the tra
k geometry, whi
h is the mainsour
e of ex
itation of the train. Two des
ription s
ales 
an then be 
onsidered for this geometry.On the �rst hand, the tra
k design, whi
h 
orresponds to the mean line position of a perfe
ttra
k is de
ided on
e for all at the building of a new tra
k. This des
ription is 
hara
terizedby three 
urvilinear quantities: the verti
al 
urvature cV , the horizontal 
urvature cH , and thetra
k superelevation cL. On the other hand, for a �xed tra
k design, the a
tual positions of therails are in 
onstant evolution, whi
h is mostly due to the intera
tions between the train, thetra
k and the substru
ture. The irregularities appearing during the tra
k life
y
le are of fourtypes (see Figure 5.1): lateral and verti
al alignment irregularities x1 and x2 on the one hand,
ant de�
ien
ies x3 and gauge irregularities x4 on the other hand. Therefore, ea
h rail position
Rℓ/r (ℓ refers to the left rail whereas r refers to the right rail) 
an be written as the sum of amean position M ℓ/r, whi
h only depends on the 
urvilinear abs
issa of the tra
k, s, the tra
kgauge E, and the three parameters of the tra
k design, cH , cV and cL, and a deviation towardthis mean position Iℓ/r, whi
h only depends on the tra
k irregularities:

Rℓ/r(s) = M ℓ/r (s) + Iℓ/r (s) , (5.1)
M ℓ/r(s) = ONT(s)±

E

2
N (s), (5.2)

Iℓ/r(s) = {x2(s)± x3(s)}B(s) + {x1(s)± x4(s)}N (s), (5.3)where − goes with the subs
ript ℓ and + goes with r in the symbol ±, ONT(s) = (M ℓ(s) +
M/r(s))/2 is the mean position of the two rails, and (ONT(s),T(s),N(s),B(s)) is the Frenetframe. Hen
e, a tra
k geometry T of total length Stot is 
ompletely 
hara
terized by theknowledge of seven 
urvilinear fun
tions: 100
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N (s)

E+
2x4(s)Figure 5.1: Parametrization of the tra
k irregularities (for ea
h rail, the mean position is rep-resented in bla
k, whereas the real position is in grey).

T =
{
(x1(s), x2(s), x3(s), x4(s), cL(s), cH (s), cV (s)) , s ∈ [0, Stot]

}
. (5.4)However, as the mean line of the tra
k geometry is 
hosen at the building of a new line, thiswork is only devoted to the modeling of the tra
k irregularity ve
tor

x = (x1, x2, x3, x4) , (5.5)where x1, x2, x3 and x4 are the four types of tra
k irregularities previously introdu
ed.Made up of straight lines and 
urves at its 
onstru
tion, the new tra
k evolves graduallydue to the train dynami
s and is regularly subje
ted to maintenan
e operations. During theirlife
y
les, trains are therefore 
onfronted with very di�erent running 
onditions. The tra
k-vehi
le system being strongly nonlinear, the dynami
 behavior of trains has thus to be analyzednot only for a few tra
k portions but for these whole realms of possibility.In reply to these expe
tations, the measurements of the train IRIS 320 are of great interest.Indeed, this one has been running 
ontinuously sin
e 2007 over the Fren
h railway network,measuring and re
ording the tra
k geometry of the main national lines. Based on these experi-mental measurements, a 
omplete parametrization of the tra
k geometry and of its variabilitywould be of great 
on
ern in spe
i�
ation, se
urity and 
erti�
ation prospe
ts, to be able togenerate tra
k geometries that are realisti
 and representative of a whole railway network.In this 
ontext, this 
hapter develops a sto
hasti
 modeling of the tra
k geometry, whi
his based on an inverse identi�
ation of the statisti
al properties of a ve
tor-valued random�eld from measured data. These data being 
omplete, this modeling allows us to generatenumeri
ally tra
k geometries that are physi
ally realisti
 and statisti
ally representative of theset of available tra
k measurements. Moreover, these tra
ks 
an be used in any deterministi
railway dynami
 software to 
hara
terize the dynami
 behavior of the train.Hen
e, this modeling 
ould bring an innovative te
hni
al answer to introdu
e numeri
almethods and treatments in the maintenan
e and 
erti�
ation pro
esses.
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Figure 5.2: Experimental proto
ol5.2 Experimental measurements and signal pro
essing5.2.1 Colle
tion of the experimental inputs for the modelingExperimental proto
ol The measurement train IRIS 320 is running 
ontinuously sin
e 2007,and monitors the tra
k geometry thanks to two laser 
ameras, three a

elerometers and threerate gyros. Pi
tures of the tra
k geometry are taken, whereas the a

elerometers and rate gyrosregister the movements of the bogie at the sampling frequen
y of 10kHz. More pre
isely, thelaser 
ameras measure the distan
e toward four parti
ular points of the rails (see Figure 5.2):

• the left and right upper points of the rails UL and UR;
• the left and right interior points IL and IR that are pla
ed 16mm under the upper pointsof the rails.From these positions, four deviation �elds for the rails positions are dedu
ed: d1, d2, d3 and

d4.Measurements post-pro
essing As the 
ameras are �xed to one of the bogie of the train,the bogie own movements, whi
h 
an be 
hara
terized by three translations and three rotations,introdu
e a bias in the measurements, whi
h has to be removed. As an illustration, the threerotation angles of the bogie in a parti
ular 
urve are represented in Figure 5.3, whereas Figure5.2 shows the bias indu
ed in the measurements by the roll angle ρ of the bogie. Hen
e, froma �ltering and integration pro
ess, the irregularity ve
tor x(s) = (x1(s), x2(s), x3(s), x4(s))is dedu
ed from the four data (d1(s), d2(s), d3(s), d4(s)) at ea
h abs
issa s of the tra
k (seeFigure 5.4). These measurements are also post-pro
essed in order to remove the measurementanomalies, whi
h are mostly due to the absen
e of signal or to the presen
e of points and
rossings. After these post-treatments, Npor tra
k portions of di�erent lengths are available forthe modeling.5.2.2 Lo
al-global approa
hIn this work, the tra
k irregularity ve
tor of a 
omplete railway tra
k of total length Stot isassumed to be a 
entered se
ond-order random �eld,102
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Figure 5.4: Filtering of the experimental data
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Figure 5.5: In�uen
e of the horizontal 
urvature on the tra
k irregularities
X = (X1,X2,X3,X4) , (5.6)su
h that:

E [X(s)] = 0, s ∈ [0, Stot]. (5.7)Due to the spe
i�
 intera
tion between the train and the tra
k, this random �eld stronglydepends on the horizontal 
urvature (the in�uen
e of the verti
al 
urvature is negligible interms of tra
k geometry and will not be dis
ussed in the following) and thus on the dire
tionof 
ir
ulation, as it 
an be seen in Figure 5.5 (for a better visualization, the four 
enteredirregularity �elds have been translated on purpose in this �gure). This random �eld is thereforenon-stationary.Moreover, 200, 000 parti
ular values of X1, X2, X3, X4 are randomly 
hosen among theavailable measurements of these four irregularities. Four empiri
al estimations of the PDFs of
X1, X2, X3, X4, whi
h are denoted by p̂X1 , p̂X2 , p̂X3 , p̂X4 , are then 
ompared over the same
losed domain [LB,UB] to the 
orresponding Gaussian PDFs N (0, σ̂X1), N (0, σ̂X2), N (0, σ̂X3),
N (0, σ̂X4), in Figure 5.6. From these experimental observations, the tra
k irregularity random�eld is not Gaussian.This motivates the introdu
tion of a lo
al-global approa
h for the 
hara
terization of thedistribution of the tra
k irregularity random �eld. This lo
al-global approa
h is based on thehypothesis that a whole railway tra
k 
an be 
onsidered as the 
on
atenation of a series ofindependent tra
k portions of same length S, for whi
h physi
al and statisti
al properties arethe same. Length S plays therefore a key role in the modeling pro
edure, and its value has tobe 
arefully evaluated. In order to 
hoose length S su
h that its sensitivity on the sto
hasti
modeling is minimized, ν tra
k portions of same length L, {z(1), . . . ,z(ν)

}, have been 
olle
tedfrom the available measurements of the railway network of interest. For any value of S in [0, L],we denote by {y(1)(S), . . . ,y(ν)(S)
} the ν new tra
k geometries of total length L, whi
h arethen built from the 
on
atenation of tra
k subse
tions of length S that have been randomly
hosen in {z(1), . . . ,z(ν)

}. 104



0

0.05

0.1

0.15

0.2

 

 

PSfrag repla
ements Values of X1

PDF
LB UB

p̂X1

N (0, σ̂X1)

0

0.05

0.1

0.15

0.2

0.25

 

 

PSfrag repla
ements Values of X2

PDF
LB UB

p̂X2

N (0, σ̂X2)

0

0.2

0.4

0.6

0.8

1

 

 

PSfrag repla
ements Values of X3

PDF
LB UB

p̂X3

N (0, σ̂X3)

0

0.2

0.4

0.6

0.8

1

 

 

PSfrag repla
ements Values of X4

PDF
LB UB

p̂X4

N (0, σ̂X4)

Figure 5.6: Analysis of the marginal distributions of the four tra
k irregularitiesThree errors fun
tions, for whi
h de�nitions 
an be found in Appendix C, are thereforeintrodu
ed in this work to quantify the in�uen
e of S:
• a 
ovarian
e error, err2cov(S): �xing S to a parti
ular value amounts to supposing that for

|s− s′| ≥ S, E [X(s)X(s′)T
] is negligible;

• a spe
tral error, err2spect(S): generating 
omplete tra
k geometries from the 
on
atenationof several tra
k portions of length S introdu
es an arti�
ial periodi
ity and is likely todegrade the low-frequen
y 
hara
terization of X;
• an estimation error, err2est(S): the higher S is, the smaller the number of independentrealizations for X, νexp(S), 
an be extra
ted from the 
omplete measurements of therailway network of interest. This error is therefore dire
tly related to the estimationa

ura
y of the 
ovarian
e fun
tion of X, and to the identi�
ation pre
ision of the PCE
oe�
ients, on whi
h the modeling will then be based. With referen
e to the CentralLimit Theorem (see [15℄ for further details), we simply 
hoose err2est(S) = 1/

√
νexp(S) toillustrate this phenomenon.For the 
hosen railway network, based on these sets of tra
k geometries of same lengths L,errors err2cov(S), err2spect(S) and err2est(S) are represented in Figure 5.7. When S in
reases, it
an be veri�ed that err2cov(S) and err2spect(S) de
rease whereas err2est(S) in
reases. Length Shas thus to be 
hosen as the right balan
e between these three error fun
tions.105
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Figure 5.7: Graphs of errors err2cov(S), err2spect(S) and err2est(S) for the 
omputation of thelo
al-global length S.For 
on�dentiality reasons, the exa
t value of S is however not given in this work, and thespatial quantities will be normalized by length S in the following. From the available experimen-tal data, ν = 1, 889 tra
k portions of same length S, whi
h are denoted by {X(θn), 1 ≤ n ≤ ν},are extra
ted to represent the maximal available information about X. Based on these exper-imental measurements, whi
h 
an be seen as a �nite set of independent realizations, the nextse
tions aim at 
ompletely parameterizing the tra
k irregularity random �eld, based on thetheoreti
al development that have been presented in Chapters 2, 3 and 4.5.3 Optimal redu
ed basisThe �rst step of the identi�
ation of X 
orresponds to a revisited Karhunen-Loève (KL) de-
omposition. This original de
omposition, whi
h is presented in detail in Chapters 2 and 4,makes a point of maximizing the representativeness of the proje
tion basis with respe
t to thelimited available information.5.3.1 Dire
t KL expansion and proje
tion biasesLet Ω = [0, S]. Using the same notations as in Chapters 2 and 4, we de�ne [R̂XX(ν)] as theempiri
al estimator of the 
ovarian
e of X, whi
h has been 
omputed from the ν availablerealizations of X , and for all 1 ≤ M , let K̂(M) =
{
k̂
m
, 1 ≤ m ≤M

} be the set gathering the
M eigenfun
tions of highest eigenvalues in the Fredholm problem asso
iated with [R̂XX(ν)].The approximation (s, s′) 7→ [R̂XX(ν, s, s′)]11 of (s, s′) 7→ E [X1(s)⊗X1(s

′)] is shown in Figure5.8. This �gure emphasizes a quasi symmetry along the �rst bise
tor. The fun
tions s 7→
[R̂XX(ν, s, 0)]qp, 1 ≤ q, p ≤ 4, 
an thus be used to 
ondense and 
ompare the 
ovarian
einformation of di�erent tra
k irregularities. In Figure 5.8, it 
an thus be noti
ed that the
ovarian
e matri
es are very di�erent from one tra
k irregularity to another.In addition, we denote by ε2q(K̂(M)) the normalized lo
al proje
tion error su
h that for
1 ≤ q ≤ 4:

ε2q(K̂(M))
def
=
∥∥∥Xq − X̂K(M)

q

∥∥∥
2

P(Ω)
/ ‖Xq‖2P(Ω) , (5.8)106
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tions of [R̂XX(ν)].where X̂K(M)

q is the proje
tion of Xq on {K̂m
q , 1 ≤ m ≤M

} and where ‖·‖2P(Ω) is the normde�ned by Eq. (4.3). From Eq. (4.5), the total normalized mean-squared error asso
iated withthe proje
tion of X on K̂(M), ε2(K̂(M)), veri�es therefore:
ε2(K̂(M)) =

4∑

q=1

β2qε
2
q(K̂(M)),

β2q =
‖Xq‖2P(Ω)

‖X‖2P(4)(Ω)

.

(5.9)From the available realizations of X, we have:
β21 > β22 ≫ β24 > β23 . (5.10)The signal energy asso
iated with ea
h tra
k irregularity being di�erent, as shown in Chapter4, proje
tion family K̂(M) is bound to des
ribe in priority irregularitiesX1 andX2 rather thanX3and X4. The phenomenon is shown in Figure 5.9, where the evolutions of the LOO estimations,

ε2LOO(K̂(M)), ε2q,LOO(K̂(M)), of the total and lo
al mean-square errors are represented withrespe
t to the size M . In parti
ular, for M = 500 and M = 2000, although ε2LOO(K̂(500)) =

10.0% and ε2LOO(K̂(2000)) = 1.26%, we have:




ε21,LOO(K̂(500)) = 3.52%,

ε22,LOO(K̂(500)) = 7.77%,

ε23,LOO(K̂(500)) = 40.3%,

ε24,LOO(K̂(500)) = 33.0%,





ε21,LOO(K̂(2000)) = 0.816%,

ε22,LOO(K̂(2000)) = 0.615%,

ε23,LOO(K̂(2000)) = 6.10%,

ε24,LOO(K̂(2000)) = 3.09%.

(5.11)
5.3.2 Optimization of the proje
tion basisAs presented in Chapters 2 and 4, two kinds of improvement 
an be brought to enri
h the dire
tKL proje
tion family asso
iated with [R̂XX(ν)]. Indeed, in the railway 
ommunity, the 
antde�
ien
y X3 and the gauge irregularity X4 are generally 
onsidered as the most dangerousirregularities, and are therefore more 
arefully monitored and maintained. Their signal energy107
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Figure 5.9: Evolution of the proje
tion errors with respe
t to the dimensionM of the proje
tionfamily.is lower than the signal energy of the two other tra
k irregularities X1 and X2, although theirimportan
e on the train dynami
s is likely to be higher. Hen
e, a s
aled expansion 
an be
onsidered to avoid the numeri
al bias that is introdu
ed by the di�eren
es in the signal energiesof the 
omponents of X . Then, as the available information about X is limited to a set ofindependent realizations, the true 
ovarian
e fun
tion of X is unknown, and the extension tosolve the 
lassi
al Fredholm equation that is presented in Chapter 2 
ould allow us to improvethe relevan
e of K̂(M) to 
hara
terize X for a given value of M .In this prospe
t, generalizing the notations of Chapters 2 and 4, for O in S(4)(1) and αin [0, 1], K(α,O) = {km(α,O), 1 ≤ m} is introdu
ed as the orthonormal proje
tion basis thatgathers the solutions of the Fredholm problem asso
iated with the (Q × Q) matrix-valuedfun
tion [A(α,O)], su
h that:
∫

Ω
[A(α,O, s, s′)]km(α,O, s′)ds′ = λm(α,O)km(α,O, s), s ∈ Ω, (5.12)

(km(α,O, s),kp(α,O, s)) = δmp λ1(α,O) ≥ λ2(α,O) ≥ · · · → 0, (5.13)
[A(α,O)] = α[R̂Y Y (O, ν)] + (1− α)[R̃Y Y (O, ν)], (5.14)
[R̂Y Y (O, ν)] = [Diag(O)][R̂XX(ν)][Diag(O)], (5.15)
[R̃Y Y (O, ν)] = [Diag(O)][R̃XX(ν)][Diag(O)], (5.16)where matri
es [Diag(O)] and [R̃XX(ν)] are de�ned by Eqs. (4.15), (2.43) and (2.45). For

M ≥ 1, if K(M)(α,O) gathers the M �rst elements of K(α,O), this leads us to sear
h theoptimal proje
tion family for X, F (M)
opt , as the solution of the following optimization problem:

F (M)
opt = K(M)(αopt(M),Oopt(M)), (5.17)

(
αopt(M),Oopt(M)

)
= arg min

(α,O)∈[0,1]×S(4)(1)
ε2∞,LOO(K(M)(α,O)), (5.18)108



α O ε2LOO,1(K̂(500)) ε2LOO,2(K̂(500)) ε2LOO,3(K̂(500)) ε2LOO,4(K̂(500))

1 (0.5, 0.5, 0.5, 0.5) 3.52% 7.77% 40.3% 33.3%
1 Oβ 5.88% 16.3% 17.8% 23.9%
1 Oopt(500, α) 18.3% 18.3% 18.3% 18.3%

αopt(500,O) (0.5, 0.5, 0.5, 0.5) 2.95% 5.62% 30.2% 25.9%
αopt(500,O) Oβ 4.77% 13.7% 12.6% 17.8%
αopt(500) Oopt(500) 13.9% 13.9% 13.9% 13.9%Figure 5.10: In�uen
e of the 
hoi
es for α and O on the lo
al mean-square errors.

ε2∞,LOO(K(M)(α,O)) = max
1≤q≤4

ε2q,LOO(K(M)(α,O)). (5.19)This problem is solved 
oupling the iterative algorithm de�ned by Eq. (2.51) with τ = 10−4and γ = 1/2 for O, and an algorithm based on a di
hotomy for α. In order to illustratethe advantage of su
h an approa
h, Table 5.10 
ompares the LOO errors asso
iated withparti
ular values of α and O, that stem from optimizations on α and/or O, where Oβ =(
1

‖X1‖P(Ω)
, 1
‖X2‖P(Ω)

, 1
‖X3‖P(Ω)

, 1
‖X4‖P(Ω)

), αopt(500,O) is the optimal value of α in [0, 1] for agiven value of O, and Oopt(500, α) is the optimal value of O in S(4)(1) for a given value α.For a same dimensionM = 500, this double adaptation of the 
lassi
al KL expansion for thetra
k irregularity random �eld allows us to divide the maximal value of the lo
al mean squareerrors by three. Ri
her de�nitions for [A(α,O)] should lead us to even better results, but todo so in very high dimension with very limited information, as it is the 
ase here, a method tooptimize the solving of Eq. (5.18) would be required, whi
h has not been made in this thesis.5.3.3 Choi
e of the dimension of the spatial proje
tion parameterFor any value of M , the optimization problem de�ned by Eq. (5.18) allows us to identify pro-je
tion basis that are parti
ularly well adapted to ea
h 
omponent ofX . The optimal value ofM
an therefore be sear
hed with respe
t to a 
hosen threshold for ε2∞,LOO(K(M)(αopt(M),Oopt(M))).In the following, for M = 2000, we denote by F (2000)
opt = {fm, 1 ≤ m ≤ 2000} this basis, whi
hallows the maximal value of the lo
al errors, ε2∞,LOO(K(2000)(αopt(2000),Oopt(2000))), to belower than 0.5%. From Eq. (5.11), it 
an be noti
ed that thanks to the two proposed adap-tations of the KL expansion, the four lo
al errors asso
iated with F (2000)

opt are lower than theminimal value of the lo
al errors asso
iated with K̂(2000). Su
h a high value for M will bejusti�ed more in detail in Chapter 6 from the train dynami
s analysis. We 
ompare in Figure5.11 several graphs of eigenfun
tions fm = (fm1 , f
m
2 , f

m
3 , f

m
4 ). For a better visualization, themean values of the di�erent subve
tors, whi
h are zero, are deliberately translated.5.4 PCE identi�
ation in very high dimension5.4.1 Sorting with respe
t to the horizontal 
urvatureAs presented in the Se
tion 5.2.2, the tra
k geometry strongly depends on the horizontal 
ur-vature. In this prospe
t, four 
lasses of tra
k portions 
an be introdu
ed:

• the alignment, for whi
h the horizontal 
urvature cH is zero.109
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Figure 5.11: Graphs of four parti
ular eigenfun
tions f1, f10, f100 and f1000 (×10−3S).
• the established 
urve, for whi
h the horizontal 
urvature cH is 
onstant and not zero.
• the 
urve entran
e, for whi
h the absolute value of the 
urvature is linearly in
reasing.
• the 
urve exit, for whi
h the absolute value of the 
urvature is linearly de
reasing.The statisti
al properties of X are therefore di�erent in ea
h of these four 
lasses, su
hthat instead of one sto
hasti
 modeling, four sto
hasti
 modelings of the tra
k geometry over alength S are needed to a

urately 
hara
terize the tra
k geometry variabilities. We thus denoteby X(A) (in alignement), X(EC) (in 
urve entran
e), X(C) (in 
urve) and X(SC) (in 
urve exit)the four proje
tions of random �eld X in the di�erent 
urvature 
lasses. These four random�elds 
an then be proje
ted on the 2, 000-dimension deterministi
 family F (2000)

opt , whi
h wasintrodu
ed in the previous se
tion, su
h that:

110







X(A) ≈ X̂
(A)

=
2000∑

m=1

C(A)
m fm,

X(EC) ≈ X̂
(EC)

=

2000∑

m=1

C(EC)
m fm,

X(C) ≈ X̂
(C)

=

2000∑

m=1

C(C)
m fm,

X(SC) ≈ X̂
(SC)

=

2000∑

m=1

C(SC)
m fm.

(5.20)
Finally, 
hara
terizing the variability of the tra
k geometry amounts to identifying the multi-dimensional distributions of the four 2000-dimension random ve
tors, C(A) =

(
C

(A)
1 , . . . , C

(A)
2000

),
C(EC) =

(
C

(EC)
1 , . . . , C

(EC)
2000

), C(C) =
(
C

(C)
1 , . . . , C

(C)
2000

) and C(SC) =
(
C

(SC)
1 , . . . , C

(SC)
2000

), forwhi
h 
omponents are dependent.Independent realizations of these four random ve
tors have to be extra
ted from the sortingof the Npor available measurements with respe
t to the horizontal 
urvature. This sorting isbased on a four-step method, whi
h is illustrated in Figures 5.12 and 5.13:
• First, the true horizontal 
urvature, cH , whi
h is pie
ewise linear, is dedu
ed from theon-tra
k measured horizontal 
urvature, con track

H .
• Se
ondly, the positions of the beginnings and the ends of the 
urvature 
lasses are lo
alized.
• Then, for ea
h 
urvature 
lass, a series of measurements of same length S is extra
ted, andis denoted by xi

A, xj
C , xk

EC , xℓ
SC for the alignment, the 
urve, the 
urve entran
e and the
urve exit 
ases. The length of the 
urve entran
es and exits being generally lower than

S, an overlapping is tolerated, su
h that some small tra
k portions 
an be used in twomodelings. Under the lo
al-global hypothesis, νA = 414, νEC = 482, νC = 522 and νSC =
471 tra
k portions of same length S are extra
ted from the 
omplete railway network oftotal length Stot. These measurements are supposed to be independent realizations of therandom �elds X(A) , X(EC), X(C) and X(SC) respe
tively.

• Finally, these realizations are proje
ted on F (2000)
opt to 
ompute the 
orresponding realiza-tions of C(A), C(EC), C(C) and C(SC).The same approa
h will be used to identify the distributions of these four random ve
tors,but only the identi�
ation of C(A) will be presented in the following.5.4.2 PCE identi�
ationLet {C(A)(θ1), . . . ,C

(A)(θνA)
} be the νA available realizations of random ve
tor C(A). Themean value of random �eld X(A) being zero for all s in Ω, this ve
tor is also 
entered, su
hthat:

E
[
C(A)

]
= 0. (5.21)111
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Moreover, from these νA realizations, the 
ovarian
e matrix of C(A), whi
h is written
[R̂

(A)
CC(νA)], 
an be estimated as:

[R̂
(A)
CC(νA)] =

1

νA

νA∑

n=1

C(A)(θn)⊗C(A)(θn). (5.22)Given this information, the multidimensional distribution of C(A) is identi�ed from a PCEapproa
h. In this prospe
t, let ξ =
(
ξ1, . . . , ξNg

) be a random ve
tor for whi
h 
omponentsare independent and uniformly distributed between -1 and 1. A uniform germ for the PCE is
hosen, as it appears to be more stable in very high polynomial dimensions as shown in Se
tion3.3.2. The 
orresponding Hilbertian basis of all Ng-dimension random ve
tors is the set of themultidimensional Legendre polynomials, whi
h are denoted by {ψj(ξ), 1 ≤ j}. In agreementwith the theoreti
al developments of Se
tion 1.5, this basis is trun
ated to its N elements oftotal polynomial order lower than p. At last, we de�ne Cchaos,(A)(N) as the proje
tion of C(A)on this trun
ated basis, su
h that:
C(A) ≈ Cchaos,(A)(N) =

N∑

j=1

yj,(A)ψj(ξ) = [y(A)]Ψ(ξ). (5.23)For given values of Ng and N , the proje
tion matrix [y(A)] is 
omputed to maximize thelikelihood of [y(A)]Ψ(ξ) at the independent realizations of C(A) under the approximated 
on-straint [y(A)][y(A)]T ≈ [R̂
(A)
CC(νA)] with the iterative algorithm des
ribed in Se
tion 3.2.5, as thedimension of C(A) is mu
h higher than νA. A

ording to Figure 5.14, where err(N,Ng) is plot-ted as a fun
tion of N for di�erent values of Ng, trun
ation parameters Ng and N are 
hosenequal to 3 and 2, 925 respe
tively, whi
h 
orresponds to the maximal polynomial order p = 24for the redu
ed polynomial basis. Moreover, Figure 5.15 
ompares the empiri
al estimations,

p̂
C

(A)
m

and p̂
C

chaos,(A)
m (N)

, of the PDFs of three parti
ular 
omponents of C(A) and Cchaos,(A)(N)respe
tively. A normal PDF asso
iated with the varian
e of C(A)
m , p̂Gauss

C
(A)
m

, has also been addedto this �gures.Following exa
tly the same approa
hes, the three proje
tion matri
es [y(EC)], [y(C)] and
[y(SC)] are also identi�ed. The 
onvergen
e analysis for these expansions has moreover giventhe same results as for the alignment 
ase, su
h that we get:

C(EC) = [y(EC)]Ψ(ξ), C(C) = [y(C)]Ψ(ξ), C(SC) = [y(SC)]Ψ(ξ). (5.24)5.5 Generation of a whole tra
k geometryOn
e trun
ation parameters M , N , Ng have been identi�ed a

ording to 
onvergen
e analysis,spatial proje
tion family F (2000) = {fm, 1 ≤ m ≤ 2000} has been 
omputed, and PCE pro-je
tion matri
es [y(A)], [y(EC)], [y(C)] and [y(SC)] have been 
al
ulated, the tra
k irregularityrandom �eld is 
ompletely 
hara
terized:




X(A) ≈ X̃
(A)

= [F (2000)][y(A)]Ψ(ξ),

X(EC) ≈ X̃
(EC)

= [F (2000)][y(EC)]Ψ(ξ),

X(C) ≈ X̃
(C)

= [F (2000)][y(C)]Ψ(ξ),

X(SC) ≈ X̃
(SC)

= [F (2000)][y(SC)]Ψ(ξ),

(5.25)
113
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[F (2000)] = [f1 f2 · · · f2000]. (5.26)For ea
h realization of random ve
tor (ξ1, . . . , ξNg), a representative and realisti
 tra
k geom-etry of length S 
an be generated for the alignment, the established 
urve, the 
urve entran
eand the 
urve exit 
ases. Thanks to the lo
al-global approa
h, des
ribed in Se
tion 5.2.2, awhole tra
k geometry of length Stot = NT S, Xtot, 
an therefore be 
onstru
ted from the 
on-
atenation of NT independent 
opies X(1), · · · ,X(NT ) of the tra
k irregularity ve
tors X̃

(A),
X̃

(EC), X̃(C) or X̃(SC), with respe
t to the horizontal 
urvature of the 
onsidered tra
k, su
hthat Xtot = (X(1), · · · ,X(NT )).Therefore, ν independent realizations {Xtot(θ1), · · · ,Xtot(θν)
} of Xtot 
an be generatedfrom νNT realizations of the lo
al irregularity ve
tor X̃(A), X̃(EC), X̃(C) or X̃(SC). However, forea
h realization Xtot(θm) of Xtot, a parti
ular attention has to be paid to the jun
tion betweenthese di�erent realizations. Indeed, these jun
tions have to guarantee the 
ontinuity of the tra
kirregularity ve
tor and at least the 
ontinuity of its �rst and se
ond order spatial derivatives inorder to avoid an arti�
ial perturbation of the train dynami
s. Spline interpolations on a length
orresponding to the minimal wavelength of the measured irregularities are then used to ful�llthese 
ontinuity 
onditions.Hen
e, the proposed sto
hasti
 modeling allows us to generate realisti
 tra
k geometries oflength Stot = NT S that are representative of the whole network, and whi
h take into a

ount thespatial and statisti
al dependen
ies between the di�erent tra
k irregularities. As an illustration,a parti
ular extra
t of length S of 
omplete tra
k geometry Xtot (θ1) is represented in Figure5.16. This graph is 
entered at abs
issa s = 3S/2, that is to say at a jun
tion between the two�rst realizations of the tra
k irregularity random �elds. The four 
omponents of Xtot(θ1) arerepresented in the same graph, but their values are translated to allow a better visualization ofthe results. 114
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k geometry.5.6 Statisti
al and frequen
y validationsAs presented in Se
tion 5.1, a 
omplete parametrization of the physi
al and statisti
al propertiesof the tra
k geometry are needed in 
on
eption, 
erti�
ation and maintenan
e prospe
ts. Severalvalidations of the proposed sto
hasti
 modeling are thus presented in this se
tion, in order toallow a relevant investigation of the dynami
 intera
tion between the train and the tra
k.In this se
tion, 103 independent realizations of tra
k irregularity random �elds X̃(A), X̃(EC),
X̃

(C) and X̃
(SC) are generated from the tra
k sto
hasti
 modelings developed in Se
tion 5.3.The notations of Se
tion 3.4.3 are adopted again in this se
tion. If Xq 
orresponds to one ofthe 
omponents of X(A), X(EC), X(C), X(SC), X̃(A), X̃(EC), X̃(C) or X̃

(SC), for whi
h ν (νis equal to 103, νA = 414, νEC = 482, νC = 522 or νSC = 471) independent realizations areknown and denoted by {Xq(θn), 1 ≤ n ≤ ν}, we use Nup(Xq(θn), u, S), 1 ≤ q ≤ 4, to denotethe numbers of up
rossings of the level u by the nth realization Xq(θn) of Xq over the length
S, and we de�ne Di, 1 ≤ i ≤ 10 the domains su
h that for ea
h level u, Di gathers i/10 of thevalues of {Nup(Xq(θ1), u, S), . . . , Nup(Xp(θν), u, S)}.The domains for X(A), X(EC), X(C), X(SC) are thus 
ompared to 
ontour plots that 
orre-sponds to the equivalent domains for X̃(A), X̃(EC), X̃(C) and X̃

(SC) in Figures 5.17, 5.18, 5.19and 5.20. In addition, these results are 
ompared to the 
ases when the random ve
tors C(A),
C(EC), C(C) and C(SC) would have been modeled by Gaussian random ve
tors. To this end, wedenote by X

(A)
gauss, X(EC)

gauss, X(C)
gauss, X(SC)

gauss the Gaussian approximations of X(A), X(EC), X(C)and X(SC) respe
tively.In the same manner, for 1 ≤ q ≤ 4, let PSD(Xq) be the mean power spe
tral densities of
Xq that have been 
omputed from the available realizations of Xq of length S. The frequen
y
hara
teristi
s of X(A) and X̃

(A) (the same results are obtained for the other 
urvature 
ases)are therefore 
ompared in Figure 5.21.The rather good agreement between the quantities 
orresponding to the measured and tothe generated tra
k geometries, espe
ially 
ompared to the Gaussian 
ase, allows us to validatethe sto
hasti
 modeling over a length S from a statisti
al and frequen
y point of view.116
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Figure 5.18: Statisti
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Figure 5.20: Statisti
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y
ontent.5.7 Con
lusionsA 
omplete parametrization of the tra
k geometry, whi
h takes into a

ount its physi
al proper-ties and its variability are nowadays of great interest to be able to fa
e always more 
hallengingrailway issues. In this prospe
t, this 
hapter has presented a general method to model a R4-valued random �eld indexed by s ∈ [0, S] thanks to a double proje
tion, whi
h 
an be appliedto many other me
hani
al systems. First, an adapted Karhunen-Loève expansion is used tode
ompose the random �eld as a deterministi
 matrix-valued fun
tion and a high dimensionrandom ve
tor. The distribution of this high dimension random ve
tor is then 
hara
terizedthanks to a trun
ated PCE. This 
hapter moreover des
ribes in detail how to 
ontrol and jus-tify the di�erent trun
ation parameters. Then, 
omplete tra
k geometries that are realisti
 andrepresentative of a whole railway network 
an be generated from a lo
al-global approa
h. Atlast, a double validation of this sto
hasti
 model is presented, in order to make sure that the fre-quen
y and statisti
al 
ontents of generated and measured tra
k geometries are similar. Thesegeometries 
an �nally be used in any railway software to 
hara
terize the dynami
 behavior oftrains.
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Chapter 6Sto
hasti
 dynami
s of high-speedtrains and risk assessment6.1 Introdu
tionFor the tra
k quality, the attention must be fo
used on two main issues. First, the safety ofthe tra
k-vehi
le system has to guaranteed, and se
ondly, the maintenan
e 
osts have to be
ontrolled and minimized. Safety being the main priority, trains and tra
ks have been designedwith a priori high safety fa
tors, su
h that the limit states of the railway system are notwell known but railway a

idents almost never happen. In a 
ontext of optimization of themaintenan
e, simulation has thus a big role to play, as it should be able to evaluate these limitsituations when experiments 
annot or would be too expensive.In addition, these obje
tives have to be ful�lled in a 
ontext of in
reasing interoperability.Indeed, European high speed railway networks are meant to go to market. Hen
e, several highspeed trains, su
h as ICE, TGV, ETR 500,. . ., are likely to run on the same tra
ks, althoughthey have been originally designed for spe
i�
 and di�erent railway networks. Due to di�erentme
hani
al properties and stru
tures, the dynami
 behaviors, the aggressiveness of the vehi
leon the tra
k and the probabilities of ex
eeding se
urity and 
omfort thresholds are thus di�erentfrom one train to another one. From the infrastru
ture point of view, numeri
al methods aretherefore needed to be able to evaluate and to 
ompare the stability and the safety asso
iatedwith ea
h train that would apply to run on a parti
ular railway network.To this end, this 
hapter shows to what extent the sto
hasti
 modeling of the tra
k geometry,whi
h has been presented in Chapter 5, 
an be 
oupled with a multibody railway software toanalyze the 
omplex link between the tra
k variability and the train dynami
s.6.2 Des
ription of the railway dynami
 problem6.2.1 Deterministi
 railway problemA railway simulation 
an be seen as the dynami
 response of the train ex
ited by the tra
kgeometry through the wheel/rail 
onta
t for
es. Three kinds of inputs are thus used in thesesimulations.
• The vehi
le model V. Multibody simulations are usually employed to model the traindynami
s. Carbodies, bogies and wheelsets are therefore modeled by rigid bodies linkedwith 
onne
tions represented by rheologi
 models (dampers, springs, ...). For 1 ≤ i ≤
NDoF, and t in [0, T ], we denote by ui(t) the position at time t of the 
oordinate asso
iated122



Figure 6.1: Simpli�ed des
ription of a multibody model of a TGV.with ea
h degree of freedom of the rigid bodies modeling of the train, and by u̇i(t) = dui
dt (t)its time derivative. For instan
e, for a 
lassi
al one-
arriage TGV, whi
h is made of10 
oa
hes, 13 bogies and 52 wheelsets that are linked by a series of suspensions andbumpstops, NDoF is about two hundreds (see Figure 6.1 for a simpli�ed representation ofthe TGV).

• The tra
k geometry T . As presented in Chapter 5, this tra
k 
hara
terization refersto a double s
ale des
ription. On the �rst hand, the tra
k design, whi
h gathers thehorizontal 
urvature cH , the verti
al 
urvature cV and the 
ross level cL, 
orresponds tothe des
ription of a perfe
t tra
k without irregularities. On the other hand, four tra
kirregularities, X1, X2, X3 and X4 have to be added to this des
ription to de�ne the realrailway tra
ks. These are due to the train dynami
s, the weather 
onditions and the tra
ksubstru
ture evolutions.
• The 
onta
t model C allows the 
omputation of the 
onta
t for
es between the rails andthe wheels. In the railway 
ommunity, these 
onta
t for
es are almost always 
omputedfrom the wheel pro�le and the rail pro�le thanks to the Hertz and Kalker theories [7, 6℄.Introdu
ing the ve
tor of the generalized 
oordinates,

U(t) = (u1(t), u2(t), · · · , u̇1(t), u̇2(t), · · ·) , (6.1)the train dynami
s 
an therefore be determined by solving the Euler-Lagrange equation, whi
his written as:
d

dt

(
∂Ec

∂u̇i

)
− ∂Ec

∂ui
= Li(U ,T , C), 1 ≤ i ≤ NDoF, (6.2)with Ec the total kineti
 energy of the train, and Li(U ,T , C) the general load that is appliedto the degree of freedom i, whi
h depends on the tra
k geometry T , on the wheel/rail 
onta
t

C and on the generalized 
oordinated U . Eq. (6.2) 
an be rewritten in a matrix form as:
[A(U )]U̇ = F (U ,T , C), (6.3)with [A] and F two strongly nonlinear operators. This system is usually solved with anexpli
it time s
heme. In the following, the 
ommer
ial bla
k-box software, Vampire (see [82, 83℄for further details about this software), is used. The 
hosen time step of this expli
it s
hemewas identi�ed a

ording to a 
onvergen
e analysis and is generally taken equal to 10−4 se
ond.123



The generalized 
oordinates ve
tor U is then post-treated to de�ne the �nal 
omfort andsafety 
riteria asso
iated with the railway system. These outputs 
an be 
lassi�ed in two
ategories:1. First, the maximal values of the verti
al and lateral a

elerations in the train 
oa
hes,
z̈max and ÿmax, are 
ontrolled to guarantee the 
omfort of the passengers.2. Se
ondly, the safety and maintenan
e 
riteria of the tra
k-vehi
le system are based onthe analysis of the wheel/rail 
onta
t for
es. In this prospe
t, three 
lassi
al 
riteria aregenerally introdu
ed to 
hara
terize the vehi
le dynami
s on a given tra
k geometry oftotal length Stot:

• a shifting 
riterion:
(Yℓ + Yr)max = max

wheelset w

{
max

0≤s≤Stot
{Y w

ℓ (s) + Y w
r (s)}

}
, (6.4)

• a derailment 
riterion:
(Y/Q)max = max

wheel q

{
max

0≤s≤Stot
{Yq(s)/Qq(s)}

}
, (6.5)

• a wear 
riterion:
(Tγ) =

∑

wheel q

{∫ Stot

0
Tq(s)γq(s)ds

}
, (6.6)where:

• Y w
ℓ and Y w

r are the left and right lateral for
es of the same wheelset w, su
h thatthe higher (Yℓ + Yr)max is, the more 
han
e for a shifting of the tra
k there is;
• Yq and Qq are the lateral and verti
al 
omponents of the wheel/rail 
onta
t for
e atwheel q, su
h that the higher (Y/Q)max is, the more on the �ange a wheel of thetrain 
an be;
• Tq and γq are respe
tively the 
reep for
e and the slip at wheel q, su
h that the higher

(Tγ) is, the higher the 
onta
t wear is likely to be for one run of the 
omplete train.Finally, given a model of the wheel/rail 
onta
t C, the deterministi
 railway problem 
orre-sponding to the dynami
s of a vehi
le V on a tra
k geometry T 
an be expressed as:
(V,T , C) 7→ c = g (V,T , C) , c = (z̈max, ÿmax, (Yℓ + Yr)max, (Y/Q)max, (Tγ)) , (6.7)where it is reminded that g is a 
omplex and nonlinear operator. These nonlinearities are mostlydue to the train suspensions (espe
ially the airsprings between the bogies and the 
oa
hes), toa series of bumpstops in the train des
ription and to the wheel/rail 
onta
t for
es.Due to the train dynami
s, to the tra
k irregularities and to the spe
i�
 wheel and railpro�les, the 
onta
t positions between ea
h wheel of the train and the rails keep 
hanging.124
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 quantities of interest (either simulated ormeasured).As presented in the former Se
tion, the software Vampire is used to solve the railway de-terministi
 problem. The train being 
onstituted of rigid bodies, the simulated high-frequen
yresponse of the train 
annot be physi
al. As an illustration, Figure 6.4 
ompares the measuredand simulated frequen
y properties of a bogie of a TGV. As shown in Figure 6.5, althoughthe transverse and verti
al a

elerations of the bogie are low-pass �ltered at the referen
e 
ut-frequen
y f = fc, it 
an be seen that the low-frequen
y response is well reprodu
ed both in thetime and frequen
y domains by the deterministi
 model.As a 
onsequen
e, in agreement with the work a
hieved in [84℄, it is assumed that theproposed railway deterministi
 model is valid on the frequen
y band 0 ≤ f ≤ fc. In thefollowing, ea
h output of the train dynami
s (whether measured or simulated) will thus below-pass �ltered at frequen
y fc before being analyzed.
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6.3 De�nition of the sto
hasti
 problem and validation of themodeling6.3.1 Sto
hasti
 problemThe wheel and rail pro�les of high speed trains and lines being 
he
ked and maintained veryregularly, only perfe
t wheel and rail pro�les will be 
onsidered in the following, su
h that the
onta
t properties, C, are 
hosen to be 
onstant. As presented in Chapter 5, it is moreoversupposed that the tra
k irregularities 
an be separated from the tra
k design. Hen
e, in thefollowing, the tra
k design is supposed to be 
onstant, while the tra
k irregularities 
an vary.As a 
onsequen
e, ve
tor c, whi
h is de�ned by Eq. (6.7), be
omes a random ve
tor that isdenoted by C = (C1, C2, C3, C4, C5). It is reminded that by de�nition of ve
tor c, C1 and C2refer to the verti
al and lateral maximal a

elerations in the train 
oa
hes, C3 is the maximalvalue of the sum of the transverse loads of the wheelsets, C4 is the maximal value of the Y/Qratio, and C5 is the 
umulated wear along the tra
k.At last, given a �xed des
ription of the tra
k design, (cH , cV , cL), and a normalized modelof train, V, for whi
h me
hani
al parameters are also �xed and have been a

urately identi�ed,the railway sto
hasti
 problem 
an be written:
Xtot def

=
{
Xtot(s), s ∈ [0, Stot]

}
7→ C = G

(
Xtot | cH , cV , cL,V, C

)
, (6.8)where Xtot =

(
Xtot

1 ,Xtot
2 ,Xtot

3 ,Xtot
4

) is the tra
k irregularity random �eld 
omputed from thelo
al-global approa
h des
ribed in Chapter 5.6.3.2 Validation of the sto
hasti
 problemTwo validations for the tra
k generator presented in Chapter 5, based on the train dynami
s,are proposed in this se
tion. In a �rst step, it is shown that the tra
k generator 
oupled withthe Vampire software allows us to simulate train a

elerations that are similar to a

elerationsthat have been re
orded on a real high speed train on a real tra
k. In a se
ond step, we showthe relevan
e of the tra
k sto
hasti
 modeling, to generate tra
k 
onditions that are realisti
and representative of the measured tra
k geometries, for the analysis of the wheel/rail for
es.Relevan
e of the tra
k sto
hasti
 modeling for the analysis of the train a

elerationsSin
e 2007, the TGV IRIS-320 has been used to monitor the tra
k geometry of the Fren
hhigh speed lines. This train has been modeled and simulations have been performed at 
onstantspeed S on ν = 500 tra
k geometries of total length Stot. The 
hosen tra
k design fun
tions, cH ,
cV , cL, are shown in Figure 6.2. The tra
k irregularities of ea
h tra
k geometry are moreover
hara
terized by independent realizations, Xtot(Θn), 1 ≤ n ≤ ν, of Xtot. For all s in [0, Stot],at position s, we respe
tively de�ne Ĉsim

z (Θn, s) and Ĉsim
y (Θn, s) as the verti
al and lateralmaximal values of the a

elerations in all the 
oa
hes of the train that is ex
ited by the tra
kirregularity X(Θn).Given these two sets of train responses, {Ĉsim

z (Θn), 1 ≤ n ≤ ν
} and {Ĉsim

y (Θn), 1 ≤ n ≤ ν
},let {Dz

i (s), s ∈ [0, Stot], 1 ≤ i ≤ 10
} and {Dy

i (s), s ∈ [0, Stot], 1 ≤ i ≤ 10
} be the de
ile fun
-tions, su
h that at ea
h position s, i/10 of the values of Ĉsim

z (Θn, s) and Ĉsim
y (Θn, s) are in Dz

i (s)and Dy
i (s) respe
tively. These de
ile fun
tions, whose representations are shown in Figure 6.6,allow us to evaluate the in�uen
e of the tra
k irregularity variability on su
h maximal values.128
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The IRIS-320 train is moreover equipped with a

elerometers that re
ord the verti
al andtransverse a

elerations at three 
oa
hes,
{
ÿ
(1)
C , ÿ

(2)
C , ÿ

(3)
C , z̈

(1)
C , z̈

(2)
C , z̈

(3)
C

}
.In order to evaluate the relevan
e of the former results for the maximal a

elerations in thetrain 
oa
hes, we de�ne Ĉexp

z and Ĉexp
y , su
h that for any value of the 
urvilinear abs
issa ofthe tra
k, s, we get:

Ĉexp
z (s) = max

i∈{1,2,3}

∣∣∣z̈(i)C (s)
∣∣∣ , (6.9)

Ĉexp
y (s) = max

i∈{1,2,3}

∣∣∣ÿ(i)C (s)
∣∣∣ . (6.10)Five parti
ular evolutions for Ĉexp

z and Ĉexp
y over a length Stot are then extra
ted from the ex-perimental database, whi
h are denoted by {Ĉexp,(1)

z , . . . , Ĉ
exp,(5)
z

} and {Ĉexp,(1)
y , . . . , Ĉ

exp,(5)
y

}.These measurements were 
hosen as their dynami
 
hara
teristi
s were the most 
omparableto the simulated one, in terms of 
ross level, horizontal and verti
al 
urvatures, speed of thetrain and length of the 
urve. If the 
hosen simulated dynami
 
hara
teristi
s were not similarto the extra
ted dynami
 
hara
teristi
s on the 
omplete domain [0, Stot], non-valid domainswere added to these �gures. The evolutions of these measured a

elerations are 
ompared tothe simulated ones in Figure 6.7.In the light of these results, the tra
k generator 
oupled with the Vampire software seemsto be able to simulate realisti
 and representative runs of the IRIS-320 train to analyze the linkbetween the two �rst quantities of interest of the sto
hasti
 modeling, C1 and C2, and the tra
kgeometry variability.Dynami
 validation of the tra
k generator for the analysis of the wheel/rail 
onta
tfor
esNo on-tra
k measurements of the 
onta
t for
es between the train and the tra
k at high speedbeing available, an other approa
h is proposed to evaluate the relevan
e of the tra
k generatorto simulate realisti
 and representative values for C3, C4 and C5.To this end, the parti
ular 
urve of total length Stot shown in Figure 6.2, is on
e again
onsidered. From the available measurements of the tra
k geometry, νexp = 400 di�erenttra
k 
onditions of total length Stot, {Xexp(θ1), . . . ,Xexp(θνexp)}, are gathered. These tra
k
onditions stem from the random 
on
atenation of measured tra
k se
tions that are in alignment,in transition 
urve entran
e or exit, or in 
urve, in order to suit the 
hosen tra
k design.The same normalized high-speed train V, for whi
h me
hani
al parameters are supposedto be a

urately identi�ed, is thus made run �rst on the νexp measured tra
k 
onditions, andthen on ν generated tra
k 
onditions, {Xtot(Θ1), . . . ,X
tot(Θν)

}, at the same speed S. Eightquantities of interest that are representative of the train dynami
s are then 
ompared:
• the left and right transverse 
onta
t for
es at the �rst wheelset of the �rst bogie of themotor 
ar, Q1 = Y ℓ

MC and Q2 = Y r
MC ;

• the left and right transverse 
onta
t for
es at the se
ond wheelset of the se
ond bogie ofthe se
ond passenger 
ar, Q3 = Y ℓ
PC and Q4 = Y r

PC ;
• the left and right Y/Q ratio at the �rst wheelset of the �rst bogie of the motor 
ar,
Q5 = (Y/Q)ℓMC and Q6 = (Y/Q)rMC ; 130
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• the left and right Y/Q ratio at the se
ond wheelset of the se
ond bogie of the se
ondpassenger 
ar, Q7 = (Y/Q)ℓPC and Q8 = (Y/Q)rPC .In the same manner than in Se
tion 5.6, for 1 ≤ i ≤ 8, we are interested in the mean powerspe
tral densities of Qi and the mean numbers of up
rossings of the level u by Qi over the length
Stot, whi
h are respe
tively denoted by PSDmes(Qi) andNmes

up (Qi, u, S
tot) when these quantitiesare 
omputed from the measured tra
k geometries and PSDgen(Qi) and Ngen

up (Qi, u, S
tot) whenthese quantities are 
omputed from the generated tra
k geometries. The 
omparisons betweenthese quantities are represented in Figure 6.8. It 
an be seen that the �t is very good.The sto
hasti
 modeling of the tra
k geometry is thus relevant from the train responsepoint of view. In the following, it is therefore supposed that the tra
k sto
hasti
 modeling,
oupled with the software Vampire is also relevant to investigate the relation between the tra
kvariability and the three quantities of interest C3, C4 and C5.6.4 Propagation of the variabilityAs explained in Se
tion 6.1, a better understanding of the spe
i�
 link between the tra
kirregularities and the train response is needed to optimize the maintenan
e, and to betteranti
ipate the 
onsequen
es of modi�
ations of the running 
onditions.In this prospe
t, we denote by PC(dx) = pC(x)dx the multidimensional distribution ofrandom ve
tor C, where pC is the asso
iated density. This distribution is strongly related tothe distribution of the tra
k irregularity random �eld, PXtot (see Eq. (6.8)). Assuming thatthe latter distribution has been a

urately identi�ed from the lo
al-global approa
h des
ribedin Chapter 5, the tra
k variability has now to be propagated through the railway model to
hara
terize PC .As the statisti
al dimension of Xtot is very high and as the relation between PC and PXtot isvery 
omplex and strongly nonlinear, the Monte Carlo method appears to be the best approa
hto do so. Indeed the 
onvergen
e properties asso
iated with this method are independent of thestatisti
al dimension of the input.From ν independent realizations of Xtot, {Xtot(Θ1), . . . ,X

tot(Θν)
}, ν independent realiza-tions of C, {C(Θ1), . . . ,C(Θν)}, 
an be dedu
ed as:

C(Θn) = G
(
Xtot(Θn) | cH , cV , cL,V, C

)
, 1 ≤ n ≤ ν. (6.11)The statisti
al properties of C are �nally dedu
ed from the analysis of this ν-dimension setof independent realizations of C.Three appli
ations of this sto
hasti
 modeling are now presented. These are based on thetra
k design of total length Stot shown in Figure 6.2, and on ν = 4, 000 tra
k irregularityrealizations. First, the in�uen
e of the tra
k design and the tra
k irregularities is illustrated.Then, it is shown to what extent su
h a method 
an be used to quantify the in�uen
e of anin
rease of the train speed on C. At last, the method is used to 
ompare the safety and theaggressiveness of three di�erent high speed trains.6.4.1 In�uen
e of the tra
k designThe idea of this se
tion is to quantify the importan
e of the tra
k irregularities and of the tra
kdesign on ve
tor C. In this prospe
t, the response of a normalized high train V1 to the former132
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ν tra
k 
onditions of total length Stot is analyzed. In the same manner as in Se
tion 5.4.1,four 
ategories are 
onsidered: the alignment (A), the 
urve entran
e (CE), the established
urve (C) and the 
urve exit (SC). The response of the train is therefore sorted with respe
tto these four 
urve 
ategories, su
h that, for 1 ≤ i ≤ 5, four values of the railway quantitiesof interest CA
i (Θn), CEC

i (Θn), CC
i (Θn) and CSC

i (Θn) 
an be 
omputed. Based on these setsof ν independent realizations, the PDFs of the 
omponents of C are estimated from a kernelsmoothing method, and are represented in Figure 6.9. From these graphs, it 
an be seen thatthe in�uen
e of the tra
k design on the wear 
riterion, C5 is very high. The other dynami
quantities, C1, C2, C3 and C4 seem however to be mu
h more dependent on the the tra
kirregularities than on the tra
k design.6.4.2 In�uen
e of an in
rease of the speed on the quantities of interestThe se
ond appli
ation of the whole method deals with the in�uen
e of the speed on the PDFsof the �ve 
onsidered 
riteria. Only the established 
urve 
on�guration 
ase is shown.134
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arried out for a di�erent value of the tra
k superelevation, c∗L,at speeds S3 = 1.2S and S4 = 1.3S in order to quantify the importan
e of this tra
k designparameter with respe
t to the three 
riteria studied. In other words, whereas cL is 
hosen to
ompensate the train inertial a

eleration in 
urve at speed S1, c∗L allows the 
ompensation ofthe train inertial a

eleration in 
urve at speed S3.For ea
h speed, the PDFs of ea
h 
omponent of C are on
e again estimated using a kernelsmoothing method based on the ν = 4, 000 independent railway simulations. These PDFs arerepresented in Figure 6.10. In this �gure, the nonlinearity of the system 
an be noti
ed, as the
onsequen
es of an in
rease of the speed of 10% to 30% are mu
h higher than 30% for ea
h
riterion. In parti
ular, an in
rease of 30% of the speed of the train 
an yield an in
rease ofmore than 500% of the 
onta
t wear if the tra
k superelevation is not adjusted. In addition,these �gures emphasize the importan
e of the adjustment of the tra
k superelevation to thespeed, in terms of minization of wear, of shifting and of risk of derailment.135
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hara
teristi
s on the PDFs of C.6.4.3 Comparison of three high speed trainsIn this se
tion, it is supposed that three di�erent models of three 
ompetitive high speed trains,

V1, V2 and V2 are available. The me
hani
al parameters of these trains are very di�erent andwere 
arefully identi�ed from experimental measurements. These three trains are thus made runon the same ν tra
k geometries at the same speed S. The PDFs of ea
h 
riterion Ci asso
iatedwith ea
h train are then shown in Figure 6.11. Hen
e, the sto
hasti
 modeling allows us to
ompare the dynami
al response of these three trains when ex
ited by a representative set ofrealisti
 tra
k 
onditions. In parti
ular, 
riteria C3 and C5 
ould be interesting indi
ators to
ompare the aggressiveness of ea
h train.6.5 Sensitivity analysisFor years, railway engineers have been working on the identi�
ation of the most dangerous andun
omfortable tra
k irregularities for the train dynami
s. These resear
h have been mostlybased on 
orrelation analysis between the outputs of the train and the amplitudes, the wave-136



lengths or the maximal values of the tra
k irregularities.Based on the ν former simulation of the normalized vehi
le V1 at 
onstant speed S, theidea of this se
tion is to perform an analysis of sensibility of the train response with respe
tto the tra
k irregularities. At �rst, it will be shown that a dire
t analysis of the 
orrelationsbetween inputs and outputs has little 
han
e of su

ess, due to the high nonlinearities of thetrain suspensions and bumpstops and of the wheel/rail 
onta
t. Then, an original sensitivitymethod based on the s
aled expansion developed in Chapter 4 will be presented.6.5.1 Nonlinearities and importan
e of the 
onjun
tion of tra
k irregularitiesIn this se
tion, only four dynami
 outputs, Ĉ1, Ĉ2, Ĉ3 and Ĉ4, are 
onsidered:
• Ĉ1 the verti
al a

eleration at the 
enter of gravity of the 5th 
oa
h of T ,
• Ĉ2 the transverse a

eleration at the 
enter of gravity of the 5th 
oa
h of T ,
• Ĉ3 the sum of the transverse loads of the �rst wheelset of the �rst bogie of the 5th 
oa
hof T ,
• Ĉ4 the Y/Q ratio of the left wheel of the �rst wheelset of the �rst bogie of the 5th 
oa
hof T .Hen
e, we are interested in the identi�
ation of the lo
al shapes of the tra
k irregularitiesthat bring about the highest values for these four quantities Ĉ1, Ĉ2, Ĉ3 and Ĉ4. To this end,for 1 ≤ i ≤ 4 and 0 ≤ Spor ≤ Stot, we denote by

Si(Spor, Ti) =
{(

Xpor,i,q, Ĉq
i

)
, 1 ≤ q ≤ Qi

}
,the sets gathering the Qi tra
k irregularities of length Spor, that are 
entered at the values of

Ĉi that are higher than the threshold Ti. Threshold Ti is 
hosen su�
iently high, su
h thatat most one 
ouple (Xpor,i,q, Ĉq
i

) 
an be extra
ted from ea
h railway simulation. Hen
e, theelements of Si(Spor, Ti) 
an therefore be 
onsidered as statisti
ally independent.For 
on�dentiality reasons, the values of length Spor and threshold Ti, whi
h are introdu
edto 
arry out a lo
al analysis of the tra
k irregularities, are not given in this work.In addition, let Xmax,i,q
j and Ĉmax,q

i be the maximal values su
h that:
Xmax,i,q

j = max
s∈[0,Spor]

{
Xpor,i,q

j (s)
}
, 1 ≤ j ≤ 4, (6.12)

Ĉmax,q
i = max

s∈[0,Spor]

{
Ĉq
i

}
. (6.13)For 1 ≤ i ≤ 4, the evolutions of Xmax,i,q

j with respe
t to Ĉmax,q
i are then represented inFigure 6.12. From these s
atter plots, it 
an therefore be noti
ed that no linear nor monotonousrelation between Xmax,i,q

j and Ĉmax,q
i 
an be identi�ed. In the same manner, from this dire
tapproa
h, it is hard to tell if the in
rease of Ĉmax

i is mostly due to one tra
k irregularity oranother one.In other words, for 1 ≤ i ≤ 4, from the ν available simulations, it 
an easily be extra
ted tra
k
onditions with high tra
k irregularities that would less ex
ite the train than tra
k 
onditions137
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1

Irregularities T1

Xmax,1,q
1

Xmax,1,q
2

Xmax,1,q
3

Xmax,1,q
4

 

 

PSfrag repla
ements
Criterion Ĉmax
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Figure 6.12: Analysis of the 
orrelation between Ĉ1 and the four tra
k irregularities.with low tra
k irregularities, as it is shown in Figure 6.13 (the values of the tra
k irregularitieson the �rst hand and of the dynami
 quantities on the other hand were s
aled to be shown inthe same graphs). Even if the maximal amplitudes or the varian
es of the tra
k irregularitiesseem to be representative quantities for the tra
k quality, it 
an be seen from these results thatthey are not at all su�
ient. New methods that would be able to better take into a

ount the
ombination of the four tra
k irregularities, as well as their spe
i�
 shapes, are thus needed.6.5.2 KL-based sensitivity analysisThe fa
t that no dire
t relation 
an be emphasized between the maximal values of Ĉ1, Ĉ2, Ĉ3,
Ĉ4, and the maximal values of the tra
k irregularities on a restri
ted length Spor, motivates theintrodu
tion of an alternative method to identify the most un
omfortable irregularity shapes.To this end, the method we propose is based on the s
aled expansion developed in Chapter4. Using the same notations than in Chapter 2 and 4, for 1 ≤ i ≤ 4, we de�ne ZTi in P(Ωpor) asthe se
ond-order random �eld, indexed by s in Ωpor = [0, Spor] with values in R5, whi
h is 
on-ditioned by Xtot in the sense that, for ea
h independent realization {Xtot(Θ, s), s ∈ [0, Stot]

}of Xtot, if it exists s∗ in [Spor/2, Stot − Spor/2] su
h that |Ĉi(s
∗)| ≥ Ti, we get an independent138



 

 

PSfrag repla
ements

Abs
issa sAmplitudes
Xpor,1,1

1 (s)

Xpor,1,1
2 (s)

Xpor,1,1
3 (s)

Xpor,1,1
4 (s)

Ĉ1
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Ĉ2
3Bounds for Xpor,3,1Bounds for Xpor,3,2

 

 

PSfrag repla
ements

Abs
issa sAmplitudes
Xpor,4,1

1 (s)

Xpor,4,1
2 (s)

Xpor,4,1
3 (s)

Xpor,4,1
4 (s)

Ĉ1
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realization, ZTi(Θ), of ZTi :
s ∈ [0, Spor],

{
ZTi
1 (Θ, s) = Ĉi(s+ s∗ − Spor/2),

ZTi
j+1(Θ, s) = Xtot

j (Θ, s+ s∗ − Spor/2), 1 ≤ j ≤ 4.
(6.14)Given this formalism, for 1 ≤ i ≤ 4, it 
an be noti
ed that Qi independent realizations,{

ZTi(θq), 1 ≤ q ≤ Qi

}, of ZTi 
an be 
omputed from the ν railway simulations 
omputed inSe
tion 6.5.1.For any O in ]0,+∞[5, let Y Ti(O) be the s
aled random �eld asso
iated with ZTi , su
hthat:
Y Ti
j (O) = OjZ

Ti
j , 1 ≤ j ≤ 5. (6.15)For any �xed value of O in ]0,+∞[5, Y Ti

j (O) is also in P(Ωpor) and we 
an introdu
e
µY Ti (O) and [RY Ti (O)] as its mean value and its matrix-valued 
ovarian
e fun
tion. Usingthe same notations than in Chapters 2 and 4, we moreover denote by {km(Ĉi), 1 ≤ m

} and
{km(O), 1 ≤ m} the KL proje
tion basis asso
iated with Ĉi and Y Ti(O) respe
tively, su
hthat:





Y Ti(O) = µY Ti (O) +
∑

m≥1

km(O)
(
Y Ti(O),km(O)

)
,

Ĉi = E
[
Ĉi

]
+
∑

m≥1

km(Ĉi)
(
Ĉi, k

m(Ĉi)
)
.

(6.16)For any κ in ]0,+∞[, O is 
hosen su
h that:



O1 = κ,

Oj = 1/
∥∥∥ZTi

j

∥∥∥
P(Ωpor)

.
(6.17)It is then assumed that, for 1 ≤ m, the fun
tions

κ 7→ (km1 (O))2 / ‖km1 (O)‖2L2 , (6.18)
κ 7→

(
(km2 (O))2 , (km3 (O))2 , (km4 (O))2 , (km5 (O))2

)
/ ‖(km2 (O), km3 (O), km4 (O), km5 (O))‖2L2 ,(6.19)
onverge to the limit fun
tions km(Ĉi) and Lm(Ti) = (Lm

1 (Ti), L
m
2 (Ti), L

m
3 (Ti), L

m
4 (Ti)) respe
-tively when κ tends to in�nity. In other words, by making κ tend to in�nity, we admit that itis possible to extra
t the KL expansion of Ĉi. Even if no numeri
al example has been found to
ontradi
t them, these 
onvergen
e properties have not been proven yet in the general 
ase.Therefore, if ZTi

1 and ZTi
j+1 are un
orrelated, the 
omponents of Lm(Ti) are equal to zero.On the 
ontrary, if ZTi

1 and ZTi
j+1 are 
orrelated, these limit fun
tions are not equal to zero, andit is assumed that the �rst elements of these limit fun
tions allow us to identify the shapes of thetra
k irregularities that are the most 
orrelated to the 
omponent km(Ĉi) of the KL expansionof Ĉi. 140
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Figure 6.14: Correlation analysis between the shapes of the tra
k irregularity and Ĉ1.Based on the ν former simulations, for 1 ≤ i ≤ 4, the mean values and the three �rsteigenfun
tions asso
iated with ZTi when κ tends to in�nity are shown in Figures 6.14, 6.15,6.16 and 6.17. From these graphs, as expe
ted, it 
an be seen that the extreme values of theverti
al and transverse a

elerations of the train 
oa
hes are mostly 
orrelated to the verti
aland horizontal alignment irregularities respe
tively. More interesting, these �gures show thatthe extreme values of the transverse wheel/rail for
es and the Y/Q ratio are not due to ahigh value of one tra
k irregularity but seem to be 
orrelated to a 
ombination of the fourtra
k irregularities. Indeed, from the mean value and the �rst eigenfun
tions asso
iated with
ZT3 and ZT4 , it appears that the high values of Ĉ3 and Ĉ4 
oin
ides with a short-wavelengthos
illation of the tra
k irregularities, in whi
h the sign of the gauge irregularity is opposite tothe sign of the three other tra
k irregularities. The fa
t that this wavelength 
orresponds to thefrequen
y of highest energy for the transverse movement of the bogie lays stress on the strongdependen
ies between the tra
k irregularities and the train responses. In the same manner, it
ould be interesting to �nd out the reasons of the presen
e of translated repli
a for the highvalues of Ĉ3 and Ĉ4 in the se
ond and third limit fun
tions.6.6 Con
lusionsA method to propagate the tra
k geometry variability through railway me
hani
al simulationsis nowadays of great interest. In this 
hapter, a sto
hasti
 model for the tra
k-vehi
le systemhas therefore been presented. Based on a given des
ription of the tra
k design, on a normalizedmodel of a high speed train, on two rail and wheel pro�les, and on the sto
hasti
 modelingof the tra
k geometry developed in Chapter 5, this model allows the analysis to be 
arriedout 
on
erning the in�uen
e of the variability of the tra
k irregularities on the train dynami
s.The 
apability of this sto
hasti
 modeling to generate running 
onditions that are realisti
 and141
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Figure 6.15: Correlation analysis between the shapes of the tra
k irregularity and Ĉ2.
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Figure 6.16: Correlation analysis between the shapes of the tra
k irregularity and Ĉ3.142
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Figure 6.17: Correlation analysis between the shapes of the tra
k irregularity and Ĉ4.representative of the quality of a measured railway network has been validated from on-tra
kmeasurements.Five quantities of interest have then been introdu
ed to 
hara
terize the train dynami
 re-sponse, whi
h 
orrespond to 
lassi
al railway 
omfort and safety 
riteria. The statisti
al prop-erties of these dynami
 
riteria have moreover been identi�ed using a Monte-Carlo approa
h.Three appli
ations of the whole method have thus been presented. The �rst one 
ompares thein�uen
e of the tra
k design and the tra
k irregularity variability. The se
ond one analyzes theimpa
t of an in
rease of the speed on the train stability, whereas the third one shows to whatextent su
h an approa
h 
ould be used to 
ompare 
ompetitive high speed trains with respe
tto their response on a set of representative tra
k 
onditions.Finally, it has been underlined that the strong nonlinearity of the tra
k-vehi
le system andthe high dependen
ies between the four tra
k irregularities prevent us from identifying 
lear-
ut relations between the �ve 
onsidered dynami
 
riteria and the tra
k irregularities. In this
ontext, an original method based on the s
aled expansion has been presented to open newways to identify the 
ombined shapes of the tra
k irregularities that 
ould lead high values ofthe 
onsidered 
riterion to be obtained.
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Con
lusions and prospe
tsSummary of the industrial 
ontextFor years, the use of simulation in the railway 
ommunity has been limited to a qualitativeanalysis approa
h. Numeri
al models have therefore been developed for allowing a better un-derstanding of the physi
al phenomena. Due to in
reasing available 
omputational resour
es,and to a series of breakthroughs in the solving of nonlinear equations and in the modeling of
omplex me
hani
al systems, simulation nowadays be
omes more and more predi
tive. Hen
e,simulation 
annot only be used to explain the experiments, but is expe
ted to 
omplete them,and sometimes to repla
e them.The possibilities of a predi
tive simulation are huge. In a 
erti�
ation and 
on
eptionprospe
t, it 
ould indeed be used to quantify the stability and the safety asso
iated with futuretrains. In a maintenan
e prospe
t, it 
ould moreover allow us to evaluate the 
onsequen
es ofmodi�
ations of the running 
onditions, and to optimize the maintenan
e poli
ies.For a railway simulation to be predi
tive, the me
hani
al models of the train, of thewheel/rail 
onta
t and of the tra
k geometry have to be fully validated from experimentalmeasurements, and the simulations have to be raised on realisti
 and representative sets ofex
itations. For the last de
ades, in
reasing the modeling pre
ision has been the main priority.Many e�orts have therefore been made for the modeling and the identi�
ation of the parametersof real and 
omplete trains. In the same manner, real rail and wheel pro�les have been usedto 
ompute the wheel/rail 
onta
t properties. Hen
e, the 
omparison between simulated andon-tra
k measured train responses is 
urrently possible. Although not perfe
t, these determin-isti
 models seem to give very promising results in a large band of frequen
ies. These modelsof the train and of the 
onta
t being strongly nonlinear, the dynami
 behavior of trains hasnevertheless to be 
hara
terized not from a single simulation but from a set of simulations thatis representative of all the running 
onditions that the train is likely to be 
onfronted to duringits life
y
le. A parti
ular attention has thus to be paid to the 
hara
terization of the tra
kgeometry variability, whi
h represents the main sour
e of ex
itation of the train dynami
s.From a general point of view, the tra
k geometry 
an be seen as the sum of a mean linedes
ription (whi
h is 
hosen on
e for all at the building of a new line) and a deviation fromthis mean position, whi
h keeps evolving due to the train dynami
s and to environmentalstresses. Four tra
k irregularities are generally introdu
ed to 
hara
terize this deviation, whi
hare the lateral and verti
al o�set irregularities, X1 and X2, and the 
ross-level and the gaugeirregularities, X3 and X4. These four tra
k irregularities 
an therefore be seen as a four-dimension random �eld, X = (X1,X2,X3,X4), for whi
h 
omponents are strongly dependent.This thesis has therefore been motivated by the need for numeri
al methods to identify thestatisti
al properties of this random �eld, as well as to propagate the tra
k variability throughthe railway system model.
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S
ienti�
 and industrial 
ontributionsSin
e 2007, the tra
k irregularities of the Fren
h high speed lines are regularly measured, tode�ne a very useful database for the analysis of the tra
k variability. The analysis of theseexperimental data has however emphasized that, due to the spe
i�
 intera
tion between thetrain and the tra
k irregularities, random �eldX is neither stationary nor Gaussian, whi
h raisesmany di�
ulties. Under a lo
al-global hypothesis, whi
h has been justi�ed from a 
onvergen
eanalysis, this database 
an however be de
omposed as a �nite set of independent realizations oftra
k irregularity random �eld X . Hen
e, this thesis deals with numeri
al methods to identifyin inverse the statisti
al properties of non-stationary and non-Gaussian random �elds from a�nite set of independent realizations. The 
hosen methods are based on a double expansionpresented hereinafter.The �rst step of these methods is a trun
ated spatial expansion, su
h that random �eld X
an be approximated as a �nite sum of weighted spatial fun
tions, where the weights are the
omponents of the random ve
tor η, and are a priori dependent. This work has thus proposed
ontributions in the �eld of the identi�
ation of optimal proje
tion families to 
ondense andredu
e the statisti
al dimension of X while guaranteeing an a

eptable level of a

ura
y. Basedon the 
lassi
al Karhunen-Loève (KL) expansion, these developments have been motivated bytwo main reasons. First, as the maximal available information about the tra
k irregularityrandom �eld is a �nite set of independent realizations, the 
ovarian
e fun
tion of X, on whi
hthe KL expansion (and more pre
isely the Fredholm eigenvalue problem) is based, is unknownand 
an only be approximated. Although the KL proje
tion basis is optimal in the sense thatit minimizes the total mean-square error asso
iated with X, there is no reason for the KL basisasso
iated with the approximation of the 
ovarian
e fun
tion of X to be still optimal. When thenumber of available realizations is moreover very small 
ompared to the sto
hasti
 dimension ofthe random �eld, as it is the 
ase for the tra
k irregularity random �eld, X, it has been shownthat the relevan
e of su
h proje
tion basis 
an be very limited. In this prospe
t, an originalmethod based on an optimization problem over the operator on whi
h the Fredholm problem issolved has been introdu
ed. Then, it has been underlined that minimizing the total mean-squareerror asso
iated with X amounts to 
hara
terizing in priority the 
omponents of X that havethe highest signal energy, even if their role on the train dynami
s is low. An innovative s
aledexpansion has thus been proposed in this work, in order to redu
e this bias and to minimizethe maximal value of the errors asso
iated with ea
h 
omponent of X. The interests broughtby these two adaptations of the 
lassi
al KL expansion in terms of error redu
tion have thenbeen illustrated on simple examples as well as on the tra
k irregularity 
ase.On
e the optimal proje
tion family for X has been identi�ed, 
hara
terizing X amounts toidentifying the multidimensional distribution of random ve
tor η, for whi
h a set of independentrealizations 
an be dedu
ed from the realizations of X. To this end, this work fo
used onthe Polynomial Chaos Expansion (PCE) method, whi
h is one of the 
urrently most promisingmethod to identify in inverse the distribution of non-Gaussian random ve
tors from independentrealizations. This method is based on the proje
tion of η on a polynomial basis of its probabilityspa
e. In su
h a proje
tion, the polynomial basis is random, but its distribution is 
hosen andknown, whereas the proje
tion 
oe�
ients are deterministi
 but unknown. This sum, whi
h isin�nite in theory, has then to be trun
ated, and the trun
ation has to be justi�ed a

ording toa 
onvergen
e analysis. On
e a given trun
ated proje
tion family has been 
hosen, the �niteset of 
oe�
ients has �nally to be identi�ed to 
ompletely 
hara
terize the distribution of η. Agood approa
h to identify su
h 
oe�
ients is to sear
h them as the arguments that maximize145



the likelihood of η at its available realizations. The likelihood fun
tion being not 
onvex, it hasbeen shown in this work that the solving of this optimization problem 
an be 
arried out usinga random sear
h algorithm based on the generation of re
tangular matri
es under orthogonality
onstraints.In the 
ase of a tra
k, the train being very sensitive to the tra
k irregularities on a large fre-quen
y band, a large number of proje
tion fun
tions are needed for the approximated proje
tionof X to be a

urate from the train response point of view, su
h that the dimension of η is veryhigh. In su
h high dimensions, two adaptations of the 
lassi
al formulation have therefore beenpresented to give relevant results. On the �rst hand, original iterative algorithms have beenproposed to optimize the trials of these proje
tion matri
es under orthogonality 
onstraints. Onthe se
ond hand, a method to numeri
ally stabilize the matrix of realizations of the statisti
alpolynomial basis has been introdu
ed, to allow more relevant 
onvergen
e analysis. The possi-bilities opened by these two adaptations have also been illustrated on a
ademi
al examples andon the tra
k irregularity 
ase.On
e the spatial proje
tion family and the statisti
al proje
tion 
oe�
ients have been iden-ti�ed from the available tra
k database, the multidimensional distribution ofX is 
hara
terized,and it is possible to generate qui
kly and easily independent realizations of X. Coupled to aparti
ular tra
k design, these realizations allow the de�nition of realisti
 running 
onditions,whi
h are representative of the quality of the measured railway network. The tra
k generator
an �nally be used in any railway software to investigate the in�uen
e of the tra
k variabilityon the train dynami
s.In this prospe
t, the multibody 
ommer
ial software Vampire has been used to 
ompute thedynami
 responses of high speed trains on generated tra
k geometries. After having shown thatthe simulated response of high speed trains on generated tra
ks was similar to the measuredresponse of the same trains on measured tra
ks, this work analyzed the in�uen
e of the tra
kvariability on two 
omfort 
riteria, two safety 
riteria and a wear 
riterion. These studiesunderlined the high nonlinearity of the tra
k/vehi
le system, and quantify the in�uen
e ofmodi�
ations of the running 
onditions and to evaluate and 
ompare the stability and theaggressiveness of several high speed trains.Dis
ussion and perspe
tivesS
ienti�
 prospe
tsThe appli
ation of the Karhunen-Loève expansion 
ombined with the PCE approa
h to themodeling of the tra
k irregularity random �eld revealed the important potential of su
h methodsto identify in inverse the distribution of multivariate, non-Gaussian and non-stationary random�elds in very high dimensions, but also emphasized some limitations that are listed hereinafter.Redu
tion of the 
omputational time asso
iated with the identi�
ation of the op-timal proje
tion family. When 
onfronted to multivariate random �elds X that are 
har-a
terized by a set of ν independent realizations, the method proposed to identify the optimalbasis is established on three interlo
ked 
omputational loops.
• The �rst one deals with the identi�
ation of the optimal value of the weight matrix [α],de�ned by Eq. (2.40). Let Nα be the number of values for [α] that are 
onsidered in thissolving. 146



• Se
ondly, for ea
h value of [α], the optimal value for the s
aling ve
tor O, introdu
ed inSe
tion 4.2.2, is sear
hed to minimize the maximal value of the errors asso
iated with ea
h
omponents of X. In the same manner, let NO be the number of evaluations of O thatare required to rea
h a targeted error.
• Then, for ea
h value of [α] and O, a method to evaluate the representativeness errorasso
iated with the 
onsidered proje
tion family is needed. In this work, it has thereforebeen shown that this error 
an be 
omputed from a Leave-One-Out (LOO) approa
h. Asshown in Se
tion 2.3.3, this method is nevertheless based on the solving of ν Fredholmeigenvalue problems.Finally, the entire identi�
ation method requires the solving of Nα × NO × ν Fredholmproblems. In this prospe
t, spe
i�
 algorithms have been used in this work to redu
e Nαand NO, and to speed up the solving of the Fredholm eigenvalue problems asso
iated withthe evaluation of the LOO error. First, a di
hotomy-based algorithm has been proposed for theidenti�
ation of [α], as it allowed the identi�
ation of very a

urate results in a very few numberof iterations for the analyzed appli
ations. The 
onvexity of this problem over [α] has howevernot been proved in the general 
ase, whi
h 
ould be an interesting prospe
t of the proposed work.If the 
onvexity property is veri�ed, it is expe
ted that more advan
ed algorithms 
ould be usedto speed up this optimization step. In the same manner, an innovative iterative algorithm hasbeen proposed to identify a

urate solutions from a very limited number of iterations, whi
h isdenoted by NO. On
e again, the proof of the 
onvergen
e of su
h an iterative algorithm in thegeneral 
ase is missing. This algorithm is moreover based on two parameters, τ and γ (see Eq.(2.51)), whi
h play a major role on the 
onvergen
e speed. In this manus
ript, two values havebeen proposed, whi
h stem from a qui
k parametri
 analysis. The optimization of these values
onstitutes another dire
tion to minimize the total 
omputational 
ost. At last, keeping inmind that 
omputing the LOO error asso
iated with any proje
tion family amounts to solvinga series of slightly modi�ed eigenvalue problems, it was noti
ed that iterative methods, su
h asthe subspa
e iteration methods [85℄, helped us to redu
e drasti
ally the 
omputational time,espe
ially when 
onfronted to very high dimensional 
ases. Further developments in the �eld ofthese e�
ient identi�
ation methods would thus be of a great interest.More gains 
an also be expe
ted from the de�nition of reje
tion pro
edures in all these loops(for instan
e, if the solving of the �rst Fredholm problems, asso
iated with given values for [α]and O, seems to indi
ate non-satisfa
tory results, we dire
tly move to other values for them),but also in the de�nition of e�
ient identi�
ation methods for the 
ouple ([α],O) instead ofone for [α] and one for O.Appli
ation of the de
omposition method to the PCE identi�
ation. The identi�-
ation of the PCE for very high dimensional random ve
tors is also very time 
onsuming. Asa random sear
h method has been proposed to identify these PCE 
oe�
ients, the pre
ision ofthe results is 
ompletely driven by the available 
omputational resour
es, as the more elementswe try, the more 
han
e we have to �nd a

urate values. Even if su
h random-sear
h algorithm
an easily be distributed on several 
omputers, it is important to optimize the trials. In this
ontext, the advantages of a method based on a line-by-line identi�
ation has been shown inSe
tion 3.2. The most time-
onsuming step of the numeri
al appli
ation of this method is the
omputation of the multidimensional likelihood at the available experimental points. Indeed,the 
omplexity of the evaluation of this quantity, whose expression is given by Eq. (1.60), is

M × ν × νchaos, where ν is the number of available measurements, M is the dimension of the
onsidered random ve
tor, that we denote by η = (η1, . . . , ηM ), and νchaos is the number of147



independent realizations on whi
h the 
omputation of the multidimensional PDF of the PCEapproximation of η, ηchaos, is based. The 
hoi
e for νchaos is thus very dependent on the valueofM , as the higherM is, the more independent realizations νchaos we need to evaluate the PDFof ηchaos from a nonparametri
 approa
h. In this prospe
t, we believe that the appli
ation ofde
omposition methods for the PCE identi�
ation 
ould lead to 
onsiderable improvements interms of 
ost-e�
ien
y. In other words, if η(q), 1 ≤ q ≤ Q, refer to M/Q-dimension randomve
tors su
h that η =
(
η(1), . . . ,η(Q)

), we think that it 
ould be interesting to sear
h the PCEof η from the aggregation of the Q PCE of η(q). Indeed, the dimension of η(q) being mu
hsmaller, the asso
iated number νchaos of generated realizations at ea
h evaluation step 
ould bedrasti
ally redu
ed.In su
h an approa
h, the de�nition of methods to perform su
h an aggregation is howeveran opened subje
t.Need for innovative methods to 
ompare the statisti
al properties of two sets ofindependent realizations in very high dimension. To 
hara
terize the distribution ofthe tra
k irregularity random �eld, whi
h was the initial goal of the thesis, we �nally had toidentify the distribution Pη of a 2, 000-dimension random ve
tor, η, while the maximal availableinformation about this random ve
tor was a �nite set of almost 500 independent realizations.More pre
isely, the ability of generating independent realizations of η was as important as theidenti�
ation of Pη.Hen
e, being 
onfronted to su
h very high dimensional problems with so little information,we do not pretend to be able to identify exa
tly Pη, but propose a method to sear
h its bestrea
hable approximation. In the same manner, we don't 
laim to be able to generate newrealizations of η, but try to generate sets of independent realizations that have the 
loseststatisti
al properties to the available set of measurements.In this 
ontext, the PCE approa
h presents many advantages to fa
e this 
hallenge of the highdimension. First, it is very general, in the sense that whatever the dimension is, no subje
tiveassumption is needed. It seems moreover parti
ularly able to take advantage of the in
reasing
omputational resour
es, as the relevan
e of the results in
reases with the number of testedtrials. At last, on
e the proje
tion 
oe�
ients are identi�ed, the generation of independentrealizations of the PCE approximation, ηchaos(N), of η is qui
k and very easy.However, even in this favorable 
ase, where it is possible to generate as many realizationsof ηchaos(N) as needed, the relevan
e of ηchaos(N) remains di�
ult to evaluate. The numberof realizations of η being still small, it is still di�
ult to 
ompare the dependen
ies asso
iatedwith the 
omponents of η and the ones asso
iated with the 
omponents of ηchaos(N). Statisti
altests and likelihood-based methods to 
ompare these sets are indeed 
ompletely useless in su
hhigh dimensions.The fa
t that this random ve
tor is to be used in a very 
omplex and nonlinear me
hani
alproblem is however an interesting opportunity to 
ompare η and ηchaos(N). Indeed, if theme
hani
al problem makes use of the dependen
ies between the 
omponents of η, it should bepossible to quantify the distan
e between the multidimensional distributions of η and ηchaos(N),by 
omparing the outputs of this problem that 
orrespond to η on the �rst hand, and to
ηchaos(N) on the se
ond hand. In this 
ontext, in Se
tion 3.4.3, an original method to 
omparethe dependen
ies between η and ηchaos(N) in very high dimension has been proposed. Thismethod is based on the generation of a series of random �elds, whi
h are written as weightedsums of randomly 
hosen spatial fun
tions, while the weights are the 
omponents of η and
ηchaos(N). By generating large sets of these fun
tions, and by 
omparing these random �eldson quantities that 
an a
tually be evaluated (the number of up
rossings for instan
e), it ispossible to investigate the 
apability of ηchaos(N) to represent the dependen
ies between the148




omponents of η.At last, it is believed that the de�nition of problems that are more spe
i�
 and more adaptedto the dependen
y stru
ture of η 
ould help us to 
onstru
t methods to pre
isely evaluate thequality of PCE approximations in very high dimension.S
aled expansion and shape 
orrelations. In Se
tion 6.5.2, an innovative sensitivitymethod based on the KL expansion has been proposed to analyze the 
orrelation betweenan output fun
tion and a multivariate input fun
tion. Applied to a series of me
hani
al sys-tem, this method seems to give very promising results. In a validation prospe
t, analyzing thetheoreti
al basis of this method is however an open topi
.Model updating. As the measurement train IRIS 320 
ontinuously monitors the tra
k geom-etry, the number of experimental data for the tra
k geometry modeling progressively in
reaseswith respe
t to time. As a 
onsequen
e, the number of independent realizations of the tra
k-geometry random �eld X is likely to in
rease. From a prior sto
hasti
 modeling of X that isbased on an original set of realizations, methods to identify updated modelings of X that takesinto a

ount new available realizations of X would be very interesting. To this end, the re
entadaptations of the Bayes theorem to the PCE seem to be very promising (see [50℄ and [86℄ forfurther details about these adaptations), and it would be worth applying them on the tra
kgeometry, whose dimension is very high.Industrial prospe
tsThe sto
hasti
 modeling of the tra
k geometry opens many opportunities in terms of 
erti�
a-tion, optimization of the railway system and minimization of the maintenan
e 
osts. In orderto extend the domain of appli
ation of this modeling, a series of 
omplementary developments
ould be 
arried out as explained below.Evaluation of the global quality of several railway networks with respe
t to thetrain dynami
s. The sto
hasti
 modeling of the tra
k geometry we propose is only basedon the measurements of the tra
k geometry of a given railway network. From the lo
al-globalapproa
h, these measurements 
an then be sorted with respe
t to the tra
k design in sets of tra
kportions of same length S. For ea
h of these sets, on
e the spatial and statisti
al expansionshave been a
hieved, it is possible to generate as many tra
k 
onditions as needed to evaluatethe stability and the aggressiveness asso
iated with ea
h train that 
ould run on this network.Re
ipro
ally, su
h a method 
an dire
tly be used to 
ompare the global quality of severalhigh speed lines from the train response point of view. Indeed, on
e the tra
k generator as-so
iated with a series of railway networks have been 
omputed, sets of tra
k 
onditions thatare representative of their qualities 
an be generated. Railway simulations 
an then be 
arriedout from these realisti
 running 
onditions, su
h that the quality of the di�erent networks 
an�nally be 
ompared by analyzing the asso
iated distributions of 
omfort and safety 
riteria.Quanti�
ation of the degradation of the tra
k quality due to the train dynami
s.In Se
tion 6.5.2, the strong dependen
ies between the train dynami
s and the tra
k irregularitieswere pointed out. Many informations about the train me
hani
al properties 
ould indeed befound ba
k by analyzing the wavelengths of the tra
k irregularities, or by analyzing the mostfrequent positions for the damaged tra
k se
tions. Modeling the 
oupling between the traindynami
s and the time evolution of the tra
k irregularities is however still an open issue that149



was not treated in this work but that would require a parti
ular attention. Two di�erent pointsof view 
an be analyzed.On the �rst hand, if the tra
k geometry of a whole network is measured between twomaintenan
e operations at di�erent time steps t1, . . . , tN , a sto
hasti
 modeling of the tra
kgeometry for ea
h of these time step 
an be 
omputed. Therefore, it should be possible toevaluate the time evolutions of the distribution of the 
omfort and safety 
riteria, and thereforeto quantify the in�uen
e of the train dynami
s on the global quality of the 
onsidered network.In the same manner, by 
ontinuously monitoring the evolution of the tra
k geometries, thein�uen
e of the runs of trains on the tra
k irregularities 
ould be evaluated.But mu
h more gain 
ould be expe
ted from a predi
tive 
oupling model. Indeed, if it ispossible to predi
t (from physi
al and/or statisti
al models) the future evolution of the tra
kgeometry due to the train dynami
s, the 
ontinuous monitoring of the tra
k 
an not only beused to identify the tra
k se
tions that would 
ause the highest train responses, but should alsoindi
ate the tra
k portions that are still not dangerous but whi
h are the most likely to be
ome
riti
al if no maintenan
e operation is planned.Robust optimization. Based on the tra
k generator that was proposed in this work, it ispossible to 
onstru
t huge sets of realisti
 tra
k geometries, whi
h would 
orrespond to tra
k
onditions that the train 
an be 
onfronted to during its life
y
le. This tra
k sto
hasti
 modelingopens therefore new possibilities for the train manufa
turers and train operators to optimizethe me
hani
al properties of trains with respe
t to their sto
hasti
 dynami
 response on thevariable tra
k geometry.External 
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AppendixA Proof of Lemma 2Using the notations of Se
tion 4.2, {ki(O), i ≥ 1
} de�nes a spatially orthonormal basis of

P(Q)(Ω). Auto
orrelation fun
tion [RY Y (O)] 
an therefore be proje
ted on this basis, su
hthat, by 
onstru
tion of the Karhunen-Loève basis:
[RY Y (O)] =

∑

i≥1

λi(O)ki(O)⊗ ki(O). (6.20)Let B =
{
bi, 1 ≤ i

} be another 
ountable basis of Hilbertian spa
e P(Q)(Ω), and F (M) ={
bi, 1 ≤ i ≤M

} be a M -dimension subset of B. For all i ≥ 1, f i 
an then be proje
ted on{
kj(O), j ≥ 1

}:
f i =

∑

j≥1

Pijk
j(O), Pij =

(
f i,kj(O)

)
. (6.21)Without loss of generality, family F 
an be supposed to be spatially orthonormal, as it 
anbe orthonormalized a posteriori without modifying the 
orresponding proje
tion error. FromEqs. (4.19), this yields:

1 =
(
f i,f i

)
=
∑

j≥1

∑

ℓ≥1

PijPiℓ

(
kj(O),kℓ(O)

)
=
∑

j≥1

P 2
ij . (6.22)Let Ỹ (M) be the proje
tion of random �eld Y = [Diag(O)]X on F (M):

Ỹ
(M)

=

M∑

i=1

f iCi, Ci =
(
Y ,f i

)
. (6.23)Random �eld X̃

(M) is thus introdu
ed as:
X̃

(M)
= [Diag(O)]−1Ỹ

(M)
. (6.24)From Eqs. (6.20) and (6.23), for all M ≥ i ≥ 1, we get:

E
{
C2
i

}
=

∫

Ω2

(
f i(s)

)T
[RY Y (O, s, s′)]f i(s′)dsds′ =

∑

j≥1

λj(O)P 2
ij . (6.25)Therefore, from Eqs (6.22) and (6.25):
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M∑

i=1

(λi(O)−E
{
C2
i

}
) =

M∑

i=1

λi(O)
∑

j≥1

P 2
ij −

M∑

i=1

∑

j≥1

λj(O)P 2
ij

=

M∑

i=1

∑

j≥1

P 2
ij (λi(O)− λj(O))

=
M∑

i=1

∑

j≥M+1

P 2
ij (λi(O)− λj(O))

≥ (λM (O)− λM+1(O))
M∑

i=1

∑

j≥M+1

P 2
ij ≥ 0,

(6.26)
as by 
onstru
tion, for all j ≥ i, λj(O) ≤ λi(O). Moreover, it 
an be noti
ed that, by de�nitionof matrix [Diag(O)], for 1 ≤ q ≤ Q:

E
{(
Xq − X̂(M)

q ,Xq − X̂(M)
q

)}
= E

{(
O−1

q

(
Yq − Ŷ (M)

q

)
, O−1

q

(
Yq − Ŷ (M)

q

))}

= O−2
q

∑

M+1≤i

λi(O)
(
kiq(O), kiq(O)

)
,

(6.27)where it is reminded that Ŷ (M) is the proje
tion of Y = [Diag(O)]X on K(M)(O) and X̂
(M)

=

[Diag(O)]−1Ŷ
(M). In the same manner:

E
{(
Xq − X̃(M)

q ,Xq − X̃(M)
q

)}
= E

{(
O−1

q

(
Yq − Ỹ (M)

q

)
, O−1

q

(
Yq − Ỹ (M)

q

))}

= O−2
q

∑

M+1≤i

E
{
C2
i

} (
f iq, f

i
q

)
.

(6.28)It 
an �nally be dedu
ed from Eqs. (6.26), (6.27) and (6.28) that:
Q∑

q=1

O2
qN 2(Xq)ε

2
q

(
K(M)(O)

)
−

Q∑

q=1

O2
qN 2(Xq)ε

2
q(F (M))

=

Q∑

q=1

O2
q

[
E
{(
Xq − X̂(M)

q ,Xq − X̂(M)
q

)}
− E

{(
Xq − X̃(M)

q ,Xq − X̃(M)
q

)}]

=
∑

M+1≤i


λi(O)

Q∑

q=1

(
kiq(O), kiq(O)

)
− E

{
C2
i

} Q∑

q=1

(
f iq, f

i
q

)



=
∑

M+1≤i

[
λi(O)−E

{
C2
i

}]

=
M∑

i=1

[
E
{
C2
i

}
− λi(O)

]

≤ 0.

(6.29)
This result being true for all family F (M) in HM , family K(M)(O) is thus M -optimal for Xregarding error ∑Q

q=1O
2
q N 2(Xq) ε

2
q . 154



q cq ωqS/(2π) ℓq/S TqS/(2π)1 1 20% 20% 52 0.5 30% 25% 73 0.25 20% 35% 84 0.1 30% 40% 10Figure 6.18: Numeri
al values used in the de�nition of auto
orrelation matrix [RXX ].B Generation of the matrix-valued auto
orrelation matrixFor 1 ≤ p, q ≤ 4, matrix-valued auto
orrelation fun
tion [RXX ] is 
hosen su
h that:
[RXX(s, s′)]pq =

cpcq (1 + δpq)

2

200∑

k=1

√
λ
(p)
k λ

(q)
k d

(p)
k (s)d

(q)
k (s′), ∀(s, s′) ∈ [0, 1]2, (6.30)where for all 1 ≤ k ≤ 200:

∫ 1

0
hp(s, s

′)d(p)k (s′)ds′ = λ
(p)
k d

(p)
k (s), (6.31)

hp(s, s
′) = exp

(
−|s− s′|/ℓp

)
cos(ωp|s− s′|) cos(Tps), (6.32)

λ
(p)
k ≥ λ

(p)
k+1 > 0, (6.33)

(
d
(p)
k , d

(q)
k

)
= δpq. (6.34)The numeri
al values of ve
tors c = (c1, · · · , c4), ω = (ω1, · · · , ω4), ℓ = (ℓ1, · · · , ℓ4), T =

(T1, · · · , T4) are gathered in Figure 6.18. Several 
omments 
an be made about this formalism.
• Appli
ation (s, s′) 7→ hq(s, s

′) is not ne
essary positive-de�nite regarding the 
hosen nu-meri
al parameters, but only its 200 highest stri
tly positive eigenvalues, {λ(q)k , 1 ≤ k ≤ 200
},are 
onsidered.

• Couples {λ(q)k , d
(q)
k

} are solutions of the Fredholm problem asso
iated with hq, but arenot solutions of the Fredholm problem asso
iated with [RXX ].
• Coe�
ient c2q 
an be related to the signal energy of Xq, su
h that if cp > cq , N 2(Xp) >

N 2(Xq).
• Coe�
ient 2π/ωq 
an be 
onsidered as a pseudo-wavelength for the mean-squared station-nary part of [RXX ]pq.
• Coe�
ient ℓq 
an be seen as the auto-
orrelation length of Xq.
• Coe�
ient Tq is introdu
ed as a perturbation for [RXX ]pq, su
h that the smaller Tq is,the less mean-squared stationnary [RXX ]pq is.
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C De�nition of the lo
al-global error fun
tionsIt is assumed that ν tra
k portions of same length L, {z(1), . . . ,z(ν)
}, have been 
olle
ted fromthe available measurements of the railway network of interest. For any value for S, ν new tra
kgeometries, {y(1)(S), . . . ,y(ν)(S)

}, of total length L, are then built from the 
on
atenation oftra
k subse
tions of length S that have randomly been 
hosen in {z(1), . . . ,z(ν)
}.For (s, s′) in [0, L]2 and f ≥ 1/L, let (s, s′) 7→ [Rzz(s, s

′)], (s, s′) 7→ [Ryy(s, s
′, S)], f 7→ Σz(f)and f 7→ Σy(f, S) be the following quantities:

[Rzz(s, s
′)] =

1

ν

ν∑

n=1

z(n)(s)z(n)(s′)T , (6.35)
[Ryy(s, s

′, S)] =
1

ν

ν∑

n=1

y(n)(s, S)y(n)(s′, S)T , (6.36)
Σz =

√√√√1

ν

ν∑

n=1

PSD
(
z(n)

)
, Σy(S) =

√√√√1

ν

ν∑

n=1

PSD
(
y(n)(S)

)
, (6.37)where PSD (z) = (PSD(z1), . . . , PSD(zP )) is the power spe
tral density estimation of any RP -valued fun
tion z = (z1, . . . , zP ). For any value of S in [0, L], errors err2cov(S) and err2spect(S),whi
h have been introdu
ed in Se
tion 5.2.2 are then de�ned by:

err2cov(S) = ‖[Rzz]− [Ryy(S)]‖2M / ‖[Rzz]‖2M , (6.38)
err2spect(S) = ‖Σz −Σy(S)‖2V / ‖Σz‖2V , (6.39)where, for all (P × P ) matrix-valued fun
tion [R], and for all RP -valued fun
tion Σ,

‖[R]‖2M =

∫ L

0

∫ L

0
Tr
(
[R(s, s′)][R(s, s′)]T

)
dsds′, (6.40)

‖Σ‖2V =

∫ +∞

1/L
Σ(f)TΣ(f)df. (6.41)Hen
e, on the �rst hand, err2cov(S) 
orresponds to a 
ovarian
e error. On the other hand,

err2spect(S) 
an be seen as a spe
tral error, whi
h 
hara
terizes the impa
t of S on the frequen
y
ontent of the tra
k irregularities.
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