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To see a world in a grain of sand

And a heaven in a wild flower

Hold infinity in the palm of your hand
And eternity in an hour

——William Blake
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RESUME

Résumé

Cette these se consacre aux études des comportements de longtemps des solu-
tions pour les EDPs nonlinéaires qui sont proches d'une EDP linéaire ou intégrable
hamiltonienne. Une théorie de la moyenne pour les EDPs nonlinéaires est presenté.
Les modeles d’équations sont les équations Korteweg-de Vries (KdV) perturbées et
quelques équations aux dérivées partielles nonlinéaires faiblement.

Considere une équation KdV perturbée sur le cercle :

Ut + Uy — Buu, = €ef(u)(z), ze€T=R/Z, /Tu(a:, t)dz =0, (%)

ou la perturbation nonlinéaire définit les opérateurs analytiques u(-) — f(u(-)) dans
les espaces de Sobolev suffisamment lisses. Soit I(u) = (f1(u), Io(u),---) € RY le
vecteur formé par les intégrales de KdV, calculé pour le potentiel u(z). Supposons
que I’équation (k) satisfait des hypotheses modérées supplémentaires et possede une
mesure p qui est e-quasi-invariante. Soit u€(¢) est une solution. Il est ici obtenue que
sur des intervalles de temps de l'ordre e 7!, ses actions I(uf(t, -)) peuvent étre estimés
par des solutions d'une certaine équation en moyenne bien posée, a condition que la
donnée initiale u¢(0) est p-typique et que le € est assez petit.
Considere une EDP nonlinéaire faiblement sur le tore :

(jtu +i(=Au+ V(z)u) = eP(Au, Vu,u,x), x € T (xx)
Soient {(i(x), (2(x), ...} les Lo-bases formées par les fonctions propres de I'opérateur
—A+V (x). Pour une fonction complexe u(z), on I'écrit comme u(x) = Y= vli(2)
et définit I(u) = (Ix(u),k > 1), ot Iy(u) = 1|vg|*. Alors, pour toutes les solutions
u(t, ) de I'équation linéaire (x%).—g, on a I(u(t,-)) = const. Dans cette these, il est
prouvé que si (xx) est bien posée sur des intervalles de temps t < €71 et satisfait-il
des hypothéses a-priori bénins, alors pour tout ses solutions u(¢,x), le comporte-
ment limité de la courbe I(uf(t, -)) sur des intervalles de temps de 'ordre ¢!, comme
e — 0, peut étre caractérisée uniquement par des solutions d’une certaine équation
efficace bien posée.

Mots-clefs

KdV, NLS, EDPs nonlinéaires faiblement, L’équation en moyenne, L’équation
efficace.



An averaging theory for nonlinear PDEs

Abstract

This Ph.D thesis focuses on studying the long-time behavior of solutions for
non-linear PDEs that are close to a linear or an integrable Hamiltonian PDE. An
averaging theory for nonlinear PDEs is presented. The model equations are the
perturbed Korteweg-de Vries (KdV) equations and some weakly nonlinear partial
differential equations.

Consider a perturbed KdV equation on the circle:

s+ Upey — Bty = ef (w)(z), z€T=R/Z, /Tu(x, t)de = 0, (%)

where the nonlinear perturbation defines analytic operators u(-) — f(u)(-) in suf-
ficiently smooth Sobolev spaces. Let I(u) = (I1(u), I>(u),---) € RS be the vector,
formed by the KdV integrals of motion, calculated for the potential u(x). Assume
that the equation () has an e-quasi-invariant measure p and satisfies some addi-
tional mild assumptions. Let u¢(t) be a solution. Then it is obtained here that on
time intervals of order €1, its actions I(uf(t, -)) can be approximated by solutions of
a certain well-posed averaged equation, provided that the initial datum is p-typical
and that the € is small enough.
Consider a weakly nonlinear PDE on the torus:

(jtu +i(—=Au+ V(2)u) = eP(Au, Vu,u,2), =€ T (x%)
Let {(i(z),((x),...} be the Lo-basis formed by eigenfunctions of the operator
—A + V(z). For any complex function w(x), write it as u(x) = Y5>, viCe(x) and
set I(u) = %|vg|?. Then for any solution u(t,z) of the linear equation (x%).o we
have I(u(t,-)) = const. In this thesis it is proved that if (sx) is well posed on time-
intervals t < ¢! and satisfies there some mild a-priori assumptions, then for any its
solution u(t, x), the limiting behavior of the curve I(u(t,-)) on time intervals of or-
der €71, as € — 0, can be uniquely characterized by solutions of a certain well-posed
effective equation.

Keywords
KdV, NLS, Weakly nonlinear PDEs, Averaged equation, Effective equation.
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Introduction

In mathematics and physics, the linear or integrable partial differential equa-
tions are usually deduced from idealization of certain physical processes. Normally,
their solutions possess very clear and nice structures. However it is a fact of life
that most of the processes that we encounter in physical realities are neither linear
nor integrable but nonlinear and non-integrable. Fortunately, many important pro-
cesses are described by suitable (nonlinear) perturbations of an integrable or linear
equation. To study up to what extends the nice structures of the unperturbed equa-
tion can help us understand the behaviours of the perturbed systems has been an
important and popular topic in the mathematics community. In this thesis, I will
present several averaging-type theorems that describe the long-time behaviours of
solutions for some perturbed Korteweg-de Vries (KdV) equations (which are per-
turbations of an integrable PDE) and nonlinear Schrodinger equations (NLS) with
small nonlinearities (which are perturbations of a linear system).

On perturbed KdV. Consider a perturbed KdV equation with zero mean-value
periodic boundary condition :

Ut + Uy — Ouu, = ef (u)(z), v € T =R/Z, / u(z, t)dz = 0, (0.0.1)
T

where €f is a nonlinear perturbation to be specified below. For any p > 0, denote
by HP the Sobolev space of real valued functions on T with zero mean-value and
by || - ||, the Sobolev norm or some related norms. It is well known that KdV is
integrable. It means that the space H? admits analytic coordinates

v=(vi,Va,...) = Ugelu()),

where v; = (vj,v_;)" € R?, such that the quantities I; = 1|v;|? and ¢; = Arg v;,
j = 1, are action-angle variables for KdV. In the (I, y)-varibles, KdV takes the
integrable form

[=0, ¢=W(),

where W (I) € R is the KdV frequency vector (see [38]).

One of the fundamental problems related to the solutions u(t) of the perturbed
equation (0.0.1) is the behaviours of the action variables I(u(t)) for ¢ > 1. The
KAM theory for PDEs (see [47, 38]) affirms that if (0.0.1) is a Hamiltonian system,
then for typical finite dimensional initial data uy such that #{j : I;(uo) # 0} < +o0,
we have sup,ep [1(u(t)) — I(ug)| < €” for some o € (0,1). However these initial data
form a null-set with respect to any reasonable measure in the Sobolev space HP.
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What happens if the initial datum is outside this null-set or if the perturbation is
not hamiltonian ? The work here mainly concerns the dynamics of I(u(t)) in the
time interval of order e~! for general initial data and general perturbations. Let us
fix some (, = 0, p > 3, T > 0, and assume :

Assumption A : (i) For any uop € H? and the equation (0.0.1), there exists a
unique solution u(-) € C([0, e 'T], HP) with u(0) = ug. It satisfies

Jull, < C(T,p, ||uol|,), 0<t<Te

(ii) There exists a p' = p'(p) < p such that for q € [p',p|, the perturbation term
defines an analytic mapping

H — H™ u(-) = f(u)(:).
Passing to slow time 7 = et, write the equation in action-angle variables (I, ¢),

i

= F(I, ), do _ W)+ G(I, ). (0.0.2)

dr

Here I € R>® and ¢ € T, where T := {0 = (6,);>1,0; € T} is the infinite-
dimensional torus, endowed with the Tikhonov topology. The two functions F'(1, )
and G(1, ) represent the perturbation term f, written in the action-angle variables.

Inspired by finite dimensional averaging theory, we consider an averaged equation
for the actions I(-) :

Yo ip), (B = [P, 003

where dp is the Haar measure on T*. It turns out that under the Assumption A, the
equation (0.0.3) is well-posed, at least locally. The main task is to study the relation
between the actions I(7) of the solutions for equation (0.0.2) and solutions J(7) of
equation (0.0.3), for 7 € [0, T]. One of the main obstacles here is that the frequency
vector W (1) of KdV is resonant in a dense subset of the space H?. How to insure that
the solutions of the perturbed KdV do not stay "too long" in this dense subset 7 Our
strategy to handle this is introducing a "new" tool : the e-quasi-invariant measures?
(see Definition 2.1.1).

The following theorem is proved in Chapter 2. Let u(t) stand for solutions of
equation (0.0.1) and v*(7) = W (u(e~'t)). By Assumption A, for 7 € [0, 7] we have
(e ()llp < (T, 111(0(0)]l, ) Demote

T(Ip) := min{r € R, : J(0) = Ip & ||J(7)|], = Ci(T, || Lo]|p) + 1}

Theorem 0.0.1. Let p, be an e-quasi-invariant measure for equation (0.0.1) on
H?. Suppose that Assumption A holds and B C H? is a bounded Borel set. Then

1. Let S! be the flow map of the perturbed KdV (0.0.1) on H?. Then the e-quasi-invariant u for
equation (0.0.1) on H? satisfies e *“ p(A) < u(StA) < et“u(A), for every bounded Borel subset
A C HP and t € [0,e 1T], where the constant C' depends only on the bound of A and T
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(i) For any p > 0 and ¢ < p+ min{1,(y/2}, there exists €,, > 0 and a Borel
subset I',  C B such that

lim 1 (B\ T,) = 0.

and for € < €,, we have that if u*(0) € I'S

b then

(v () = ()l < p, for 0<7 <min{T,T(I5)}.

Here I§ = I(v°(0)) and J(-) is a unique solution of the averaged equation (0.0.3)
with initial data I§.
(i) (ii) Let Y be the probability measure on T defined by the relation

[ s@axetag) = 5 [ e, vi e o)

where vy = vo(ug) := Vi (u(0)). Then the averaged measure

1
A= g [ A di(uo)
(B) /s
converges weakly, as e — 0, to the Haar measure dp on T

On the existence of the e-quasi-invariant measures. We will provide two suf-
ficient (not necessary) conditions for the existence of the e-quasi-invariant measures
for the perturbed KdV (0.0.1) in Section 2.5 of Chapter 2. Let

Prc(v) = dUr(u)(f(u)), v=Tx(u)

Theorem 0.0.2. If Assumption A holds and the map v — Pg(v) is (}-smoothing
with ¢, > 1, then there exist e-quasi-invariant measures for the perturbed KdV (0.0.1).

However, due to the complexity of the nonlinear Fourier transform Wg, the
additional smoothing condition in this theorem is not easy to verify. So it would
be convient to have sufficient conditions directly on the map f(u) in the Sobolev
space HP.

As is known, for solutions of KdV, there are countably many conservation laws
Tn(u), n >0, where Jo(u) = 3||ul[3 and

Tuw) = [ {;(8£u)2+cnu(8glu)2+ Q,(u, .., ), (0.0.4)

for n > 1, where ¢, are real constants, and Q,, are polynomial in their arguments
(see e.g. [38]). Let p, be the Gibbs measures on the space H", generated by the
conservation law 7, (u), which formally may be written as

1 2
d,un = 6_‘7"+1+5HUHP+1 dnrm

where 7, is the Gaussian measure on the space H" with correlation operator 9, 2.
They are invariant for KdV ([75]). We have the following :
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Theorem 0.0.3. Let p € N. Then if Assumption A holds with {y > 2, then the
Gibbs measure i, is e-quasi-invariant for the perturbed KdV (0.0.1).

Particularly, this theorem and Theorem 0.0.1 apply to the equation :
Up + Uz — Buu, = €f (),

where f(x) is a smooth function on the circle with zero mean value.

On weakly nonlinear equations. Consider a weakly nonlinear equation

d
ST i(—Au+ V(z)u) = eP(Au, Vu,u,z), x €T (0.0.5)
where P : C¥? x T¢ — C is a smooth function, 1 < V(z) € C*(T?) is a potential
(we will assume that n is sufficiently large). We fiz some p > d/2 + 4 and suppose
that the item (i) of the Assumption A holds for equation (0.0.5).

Denote by Ay the Schrodinger operator

Avu = —Au+ V(z)u.

Let {(k}r>1 and {A}x>1 be its real eigenfunctions and eigenvalues, ordered in such
a way that
I< A <A<

The potential V() is called non-resonant if Y32, Agsi # 0, for every finite non-zero
integer vector (si, Sq,---). For any complex-valued function u(x) € HP, we denote
by

Ue(u) :=v=(v,v9,---), v; €C,

the vector of its Fourier coefficients with respect to the basis {(x}, i.e. u(z) = >3 | vk (k.
Denote I, = %|vk|2, k > 1. We are mainly concerned of the behaviour of the quantity
I(t) = (I,(t),...) in the time interval of order e¢~'. Using the mapping g, we can
rewrite equation (0.0.5) in the v-variables and in slow time 7 = €t as,

d

% — e 1qWg(u)(—idy (u)) + P(v). (0.0.6)
Here P(v) is the perturbation term P, written in v-variables. This equation is sin-
gular when e — 0. Following the work of S. Kuksin in [49], we introduce the effective

equation for (0.0.6) as
ZZ)_ = oo (I)_QP((I)N))dG, (007)

where @y is the linear operator in the space of complex sequences (vy, v, - - - ), which
multiplies each component v; with e, We assume that the effective equation (0.0.7)
is locally well posed in the space HP.

The following result is presented in Chapter 3. Let v(7) be the Fourier transform
of a solution u(t, z) for the problem (0.0.5) with initial data in H?, written in the
slow time 7 = et :

ve(T) = WS(uE(E’IT)), T €[0,7T].

Assume also that the potential V' (x) is non-resonant.
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Theorem 0.0.4. The curves I(vS(1)), 7 € [0,T], converge to a curve I°(t), T € [0,T],
as € — 0, uniformly in 7 € [0, T]. Moreover I°(1) = I(v(7)), where v(-) is the unique
solution of the effective equation (0.0.7), equal to Vg(ug) at 7 = 0.

Particularly, the theorem applies to a complex Ginzburg-Landau equation :

du . ,

M Dt Vi) = Au - yefyulu - i f (el €T
where the constants g, 77 > 0, the functions f,(r) and f,(r) are the monomials
|r|P and |r|?, smoothed out near zero, and

d

0<pg<oc if d=1,2 and ()<]9,q<1rlir1{2 if d>3.

“d — 2}
In the completely resonant case where in the equation (0.0.5) the potential V(x) = 0,
the assertion of Theorem 0.0.4 also holds true if the nonlinearity P is a polynomial
of the unknown functions v and u. In this situation, the corresponding effective
equation is constructed through a certain resonant averaging process. See Chapter 4.

Organization of the thesis. In Chapter 1, we would cover some background know-
ledge on the finite dimensional integrable systems, classic averaging principle in finite
dimensional space, Gaussian measures in Hilbert space and the integrability of the
KdV equation. The averaging theory for perturbed KdV equations (Theorems 0.0.1-
0.0.3) would be showed in Chapter 2. The Chapters 3 and 4 would discuss averaging
theorems for weakly nonlinear equations. Except Chapter 1, each chapter here is self
contained. Every chapter can be read independently.






Chapitre 1

Background

This chapter contains some background knowledge on finite dimensional inte-
grable systems, classic averaging theory in finite dimensional space, Gaussian mea-
sure in Hilbert space and the integrality of the KdV equation. The Sections 1.1 and
1.4 are directly taken from the review [33].

1.1 Finite dimensional integrable systems

Classically, integrable systems are particular hamiltonian systems that can be in-
tegrated in quadratures. It was observed by Liouville that for a hamiltonian system
with n degrees of freedom to be integrable, it has to possess n independent integrals
in involution. This assertion can be understood globally (in the vicinity of an inva-
riant torus or an invariant cylinder) and locally (in the vicinity of an equilibrium).
Now we recall corresponding finite-dimensional definitions and results.

1.1.1 Liouville-integrable systems

Let Q C R%;f g be a 2n-dimensional domain. We provide it with the standard

symplectic form wy = dp A dg and the corresponding Poisson bracket

{fa g} = vpf : ng - vqf : Vpg,

where ¢, f € C*(Q) and “-” stands for the Euclidean scalar product in R™ (see [1]).
If {f,g} =0, the functions f and g are called commuting, or in involution. If h(p, q)
is a C'-function on (), then the hamiltonian system with the Hamiltonian 7 is

p=-Vyh, ¢=V,h (1.1.1)

Definition 1.1.1. (Liouville-integrability). The hamiltonian system (1.1.1) is cal-
led integrable in the sense of Liouville if its Hamiltonian h admits n independent
integrals in involution hy, ..., h,. That is, {h,h;} =0 for 1 <i<n; {hi,h;} =0
for1 <14, 7 <n, and dhy A--- Ndh, # 0.

A nice structure of an Liouville-integrable system is assured by the celebrated
Liouville-Arnold-Jost theorem (see [1, 63]) It claims that if an integrable systems
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is such that the level sets T. = {(p,q) € @ : hi(p,q) = c1,-..,ha(p,q) = cn}y
¢ =(e1,...,¢,) € R™ are compact, then each non-empty set T, is an embedded n-
dimensional torus. Moreover for a suitable neighborhood Or, of T, in () there exists
a symplectomorphism

©: Or, -0xT"={(I,¢)}, OCR",

where the symplectic structure in O x T" is given by the 2-form dI A dp. Finally,
there exists a function A(I) such that h(p,q) = h(6(p,q)). This result is true both
in the smooth and analytic categories.

The coordinates (I, ) are called the action-angle variables for (1.1.1). Using
them the hamiltonian system may be written as

I=0, ¢=Vh(). (1.1.2)
Accordingly, in the original coordinates (p, ¢) solutions of the system are

(p, @)(t) = O (Lo, w0 + Vih(lo)t).
On O x T, consider the 1-form Idp = 3%, I;dyp;, then d(Idyp) = dI A dp. For
any vector I € O, and for j =1,...,n, denote by C;(I) the cycle
{(I,p) € O xT" : p; € ]0,27] and ¢; = const, if i # j}.
Then

1 1
= [ 1a :7/ Ldg, = 1.
o o, 140 = 5 [, s =1

Consider a disc D; C O x T" such that 0D; = C;. For any 1-form w,, satisfying
dwy = dI N\ dp, we have

1 1
27T/Cj(l'clgo—wl):27T/D d(Idp —wy) = 0.

J

So
1

j:%

This is the Arnold formula for actions.

/ Wi, if dw = dI A dep. (1.1.3)
C;(I)

1.1.2 Birkhoff Integrable systems

We denote by J the standard symplectic matrix J = diag{ ( (1) _01 ) }, opera-

ting in any R*" (e.g. in R?). Assume that the origin is an elliptic critical point of a
smooth Hamiltonian h, i.e. VA(0) = 0 and that the matrix JV?h(0) has only pure
imaginary eigenvalues. Then there exists a linear symplectic change of coordinates
which puts A to the form

h=> N} +¢)+hot, XN ER Vi
i=1
If the frequencies (A, ..., \,) satisfy some non-resonance conditions, then this nor-
malization process can be carried out to higher order terms. The result of this
normalization is known as the Birkhoff normal form for the Hamiltonian h.
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Definition 1.1.2. The frequencies A1, ..., \, are non-resonant up to order m > 1
if Y kihi # 0 for each k € Z™ such that 1 < Y0, |ki| < m. They are called
non-resonant if ki i + - + kA, = 0 with integers ki,..., k, only when all k;’s
vanish.

Theorem 1.1.3. (Birkhoff normal form, see [62, 63]) Let H = Ny + --- be a
real analytic Hamiltonian in the vicinity of the origin in (R%;L’q),dp A dq) with the
quadratic part Ny = Y0 1 Ni(¢2 + p?). If the (real) frequencies My, ..., \, are non-
resonant up to order m > 3, then there exists a real analytic symplectic trasformation
V,, =Id+---, such that

Here N; are homogeneous polynomials of order i, which are actually smooth functions
of variables pt+q3, ..., p2+q>. If the frequencies are non-resonant, then there exists
a formal symplectic transformation W = Id + ---, represented by a formal power
series, such that H oW = Ny + Ny + --- (this equality holds in the sense of formal
series).

If the transformation, converting H to the Birkhoff normal form, was convergent,
then the resulting Hamiltonian would be integrable in a neighborhood of the origin
with the integrals p? + ¢?,...,p? + ¢. These functions are not independent when
p; = q; = 0 for some i. So the system is not integrable in the sense of Liouville. But
it is integrable in a weaker sense :

Definition 1.1.4. Functions fi,..., fr are functionally independent if their diffe-
rentials dfy, ..., df, are linearly independent on a dense open set. A 2n-dimensional
Hamiltonian is called Birkhoff integrable near an equilibrium m € R*®, if it admits
n functionally independent integrals in involution in the vicinity of m.

Birkhoff normal form provides a powerful tool to study the dynamics of hamil-
tonian PDEs, e.g. see [54, 8] and references in [§] .

1.1.3 Vey theorem

The results of this subsection hold both in the C"*°-smooth and analytic catego-
ries.

Definition 1.1.5. Consider a Birkhoff integrable system, defined near an equili-
brium m € R?", with independent commuting integrals F = (Fy, ..., F,). Its Poisson

algebra is the linear space A(F) = {G A{G,F;}=0,i=1,... ,n}.

Note that although the integrals of an integrable system are not defined in a
unique way, the corresponding algebra A(F) is.

Definition 1.1.6. A Poisson algebra A(F) is said to be non-resonant at a point
m € R?", if it contains a Hamiltonian with a non-resonant elliptic critical point
at m (i.e., around m one can introduce symplectic coordinates (p,q) such that the
quadratic part of that Hamiltonian at m is Y \; (p? + q?), where the real numbers \;
are non-resonant).
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It is easy to verify that if some F} € A(F) is elliptic and non-resonant at the
equilibrium m, then all other functions in A(F) are elliptic at m as well.

Theorem 1.1.7. (Vey’s theorem). Let F' = (Fy,...,F,) be n functionally inde-
pendent functions in involution in a neighbourhood of a point m € R?". If the Pois-
son algebra A(F) is non-resonant at m, then one can introduce around m symplectic
coordinates (p, q) so that A(F') consists of all functions, which are actually functions

of PP+ qt,... P2+ g

Example. Let F' = (f1,..., f,) be a system of smooth commuting Hamiltonians,
defined in the vicinity of their joint equilibrium m € R?", such that the hessians
V2fi(m), 1 <i < n, are linear independent. Then the theorem above applies to the
Poisson algebra A(F).

In [72] Vey proved the theorem in the analytic case with an additional non-
degeneracy condition, which was later removed by Ito in [34]. The results in [72, 34]
also apply to non-elliptic cases. The smooth version of Theorem 1.1.7 is due to
Eliasson [23]. There exists an infinite dimensional extension of the theorem, see [52].

1.2 The averaging principle

If a small perturbation is imposed upon an integrable conservative system, then
the quantities that were integrals in the unperturbed system begins to slowly evolve.
We assume the perturbed system can be written as

I =ef(I,p€), ¢o=W(I)+eG,p,e), (1.2.1)

where I € D C R", p € T™, f(I,p,€), W(I), G(I,¢,€) are smooth functions of
their parameters and € is small. In the system (1.2.1) the variables I are called the
slow variables and the phase ¢ are called the fast variables. Over times of order 1,
the slow variables change only a bit, but over times of order e, their evolution may
be considerable (of order 1). In many applications one is usually mainly interested
in the behaviours of the slow variables. The averaging principle consists in using the
averaged system :

J=ef)), (HU)= [ Fe0dp, (12.2)

for the approximate description of the evolution of the slow variables on the time
interval of order e !. This method has a very long history which dates back to the
epoch of Lagrange and Laplace, who applied it to the problems of celestial mechanics,
without proper justifications. Only in the last fifty years rigorous mathematical
justification of the principle has been obtained, see in [66, 2, 57].

Let p be the Lebesgue measure on D x T™ C R™™™. Assume that I(t) € D
for ¢ € [0, e7!]. Suppose the function W (I) satisfies some non-degenerate conditions,
mainly, the vector W (I) is non-resonant for a.a I € D. Then the following averaging
principle is well established.

Averaging principle : Let (I1(t), p(t)) and J(t) satisfy equations (1.2.1) and (1.2.2)
respectively. If 1(0) = J(0) = Iy, then for each p > 0, there exists €, > 0 and a subset
D, C D xT™ such that
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1) lime_o u(D x T™\ D.) = 0.
2) For e < ¢, (lo, po) € De, we have sup,eg 1 |1(t) — J (1) < p.

1.3 The Gaussian measure on Hilbert space

In this subsection we will recall the definition and some basis properties of the
Gaussian measure on Hilbert space. Proofs and details may be found in [11].

Let H be a separable real Hilbert space with an orthonormal basis {e, },en. We
denote the inner product on H by (-, )y and the corresponding norm by |- |g. Let Y
be a linear bounded self-adjoint operator acting on H and its eigen elements coincide
with the basis {e, }nen. Assume

Ye, =\nen, n=12,...,

where \,, > 0 for all n. We recall that Y is an operator of trace classif 3 77 A\, < 0o.
We also introduce the operator Y*/? defined by

Y2, = )\i/zen, n=12....

Definition 1.3.1. We call a set M C H cylindrical if there exists an integer n > 0
and a Borel set F C R"™ such that

M={xe H: [(z,e1)y,...,(x,e,)u] € F}. (1.3.1)

We denote by A the collection of all cylindrical subsets of H. Clearly, it is an
algebra.

Proposition 1.3.2. The minimal c-algebra containing the algebra A is the Borel
o-algebra of the Hilbert space H.

Definition 1.3.3. We call the additive (may not countably additive) measure p
defined on the algebra A by the rule : for M € A be as in (1.3.1),

p(M) = (2m) " [] A;”/ e 2 XN e da,.

=1 7

the (centered) Gaussian measure in H with correlation operator Y.

Proposition 1.3.4. The Gaussian measure defined in Definition 1.5.5 is countably
additive if and only if the correlation operator Y is of trace class.

Therefore a Gaussian measure in the Hilbert space is a well defined probability
measure if and only if its correlation operator is of trace class.

Theorem 1.3.5. Let i be a well defined Gaussian measure in the Hilbert space H,
then for any x € H and r > 0, we have u({xy € H : |x; —x|g <71)}) > 0.
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For any xy € H, consider the map T': H — H, T'x = x + xy. Let ur be the push
forward of the well defined Gaussian measure p with correlation operator Y :

pr(M) = u(TH(M)), for every Borel set M C H.

We have the following famous result describing the relation between the measures
wand pp

Theorem 1.3.6. (Cameron-Martin formula) 1) The Gaussian measures j1 and pr
are equivalent if and only if vy € Yl/Q(H) and the Radon-Nikodym derivative is
given by

dpr

i (x) = exp[—| Y_1/2:L‘0|%1 + (Y_l/zxo, Y_1/2x)H].

2) The measure 1 and pr are singular if and only if zo & YY?(H).

1.4 Preliminary of KdV

The famous Korteweg-de Vries (KdV) equation
Up = —Uggy + 6uU,, x € R,

was first proposed by Joseph Boussinesq [16] as a model for shallow water wave pro-
pagation. It became famous later when two Dutch mathematicians, Diederik Korteweg
and Gustav De Vries [43], used it to explain the existence of a soliton water wave,
previously observed by John Russel in physical experiments. Their work was so suc-
cessful that this equation is now named after them. Since the mid-sixties of 20th
century the KdV equation received a lot of attention from mathematical and phy-
sical communities after the numerical results of Kruskal and Zabusky [45] led to
the discovery that its solitary wave solutions interact in an integrable way. It turns
out that in some suitable setting, the KdV equation can be viewed as an integrable
infinite dimensional hamiltonian system.

1.4.1 KdV under periodic boundary conditions as a hamil-
tonian system

Consider the KdV equation under zero mean value periodic boundary condition :
Up + Ugzy — 6uu, =0, €T =R/Z, /ud:);:(). (1.4.1)
T

(Note that the mean-value [; udx of a space-periodic solution u is a time-independent
quantity, to simplify presentation we choose it to be zero.) To fix the setup, for any
integer p > 0, we introduce the Sobolev space of real valued functions on T with
zero mean-value :

H — {u e IAT,R) ¢ lully < +o0, [u= o}, ull2 = 37 120k |2 (i ? + i),

keN
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Here iy, iy, k € N, are the Fourier coefficients of u with respect to the trigonometric
base

er = V2cos2rkx, k>0 and e, =+V2sin2rkz, k<0, (1.4.2)
ie.
u = Z ﬁkek + @_ke_k. (143)
keN

In particular, H° is the space of L?-functions on T with zero mean-value. By (-, )
we denote the scalar product in H? (i.e. the L%-scalar product).
For a C'-smooth functional ' on some space H?, we denote by VI its gradient
with respect to (-, ), i.e.
dF(u)(v) = (VF(u),v),
SF

if u and v are sufficiently smooth. So VF(u) = % + const, where - is the
variational derivative, and the constant is chosen in such a way that the mean-value
of the r.h.s vanishes. See [47, 38] for details. The initial value problem for KdV on
the circle T is well posed on every Sobolev space H? with p > 1, see [70, 13]. The
regularity of KdV in function spaces of lower smoothness was studied intensively,
see [19, 41] and references in these works; also see [19] for some qualitative results
concerning the KdV flow in these spaces. We avoid this topic.

It was observed by Gardner [26] that if we introduce the Poisson bracket which

assigns to any two functionals F'(u) and G(u) the new functional {F, G},

{F, G}<u) _ /T ijF(u(x))VG(u(x))dx (1.4.4)

(we assume that the r.h.s is well defined, see [47, 48, 38] for details), then KdV
becomes a hamiltonian PDE. Indeed, this bracket corresponds to a differentiable
hamiltonian function F' a vector filed Vp, such that

(Ve (u), VG(u)) = {F, G}(u)

for any differentiable functional G'. From this relation we see that Vi(u) = 2V F(u).

oz
So the KdV equation takes the hamiltonian form

0
up = %V/H(u), (1.4.5)
with the KdV Hamiltonian
U2
H(u) = /(?f” +u?)dx. (1.4.6)
T

The Gardner bracket (1.4.4) corresponds to the symplectic structure, defined in H°
(as well as in any space H?, p > 0) by the 2-form

wlem) = (o)) for &ne H (14.7)

Indeed, since wS(Vp(u),&) = —(VF(u),£), then the 2-form w§ also assigns to a
Hamiltonian F' the vector field Vp (see [1, 38, 47, 48]).
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We note that the bracket (1.4.4) is well defined on the whole Sobolev spaces
HP(T) = H? @ R, while the symplectic form w§ is not, and the affine subspaces
{u e HP(T) : [pudx = const} ~ HP are symplectic leaves for this Poisson system.
We study the equation only on the leaf [, udx = 0, but on other leaves it may be
studied similarly.

Writing a function u(z) € H® as in (1.4.3) we see that wS = 3°0° , k~1day, Adi_y,
and that H(u) = H(4) := A(a) + G(a) with

= 1 1
A(@) = Z(%k)?(;li + 5@3), G(a) = ST i,
k=1 k,l,m##0,k+14+m=0

Accordingly, the KdV equation may be written as the infinite chain of hamiltonian
equations

d OH(G)
Sy = —2mj et =1, 2.
dtu] U 811,] ) J ) )

1.4.2 Lax pair

The KdV equation (1.4.1) admits infinitely many integrals in involution, and
there are different ways to obtain them, see [26, 61, 64, 55, 74]. Below we present
an elegant way to construct a set of Poisson commuting integrals by considering the
spectrum of an associated Schrodinger operator, due to Peter Lax [55] (see [56] for
a nice presentation of the theory).

Let u(z) be a L*-function on T. Consider the differential operators L, and B,
acting on 2-periodic functions?

d? d? d d
where we view u(x) as a multiplication operator f + u(x)f. The operators B, and
L, are called the Laz pair for KdV. Calculating the commutator [B,, L,| = By, L, —
L, B,, we see that most of the terms cancel and the only term left is —u,., + 6uwu,.
Therefore if u(t,z) is a solution of (1.4.1), then the operators L(t) = Ly and
B(t) = By, satisfy the operator equation
d

%L(t) = [B(t), L(t)]. (1.4.8)
Note that the operator B(t) are skew-symmetric, B(t)* = —B(t). Let U(t) be the
one-parameter family of unitary operators, defined by the differential equation

d
—U = B(t)U, U(0)=1Id.
dt
Then L(t) = U (t)L(0)U(t). Therefore, the operator L(t) is unitary conjugated to
L(0). Consequently, its spectrum is independent of t. That is, the spectral data of
the operator L, provide a set of conserved quantities for the KdV equation (1.4.1).

1. note the doubling of the period.
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Since L, is the strurm-Liouville operator with a potential u(x), then in the context
of this theory functions u(x) are called potentials.

It is well known that for any L?-potential u the spectrum of the Sturm-Liouville
operator L,, regarded as an unbounded operator in L*(R/2Z), is a sequence of
simple or double eigenvalues {)\; : j > 0}, tending to infinity :

spec(u) = {Ao <A\ < Ay < -+ S oo}

Equality or inequality may occur in every place with a "<" sign (see [58, 38]). The
segment [Ag;_1, Agj| is called the n-th spectral gap. The asymptotic behaviour of the
periodic eigenvalues is

Aan—1(1), Ao (u) = 0% + [u] + %(n),

where [u] is the mean value of u, and [?(n) is the n-th number of an [* sequence.
Let gn(u) = Aon(u) — Agp—1(u) = 0, n > 1. These quantities are conserved under
the flow of KdV. We call g, the n-th gap-length of the spectrum. The n-th gap
is called open if g, > 0, otherwise it is closed. However, from the analytic point
of view the periodic eigenvalues and the gap-lengths are not satisfactory integrals,
since A, is not a smooth function of the potential v when g, = 0. Fortunately, the
squared gap lengths g2(u), n > 1, are real analytic functions on L?  which Poisson
commute with each other (see [59, 56, 38]). Moreover, together with the mean value,
the gap lengths determine uniquely the periodic spectrum of a potential, and their
asymptotic behavior characterizes the regularity of a potential in exactly the same
way as its Fourier coefficients [58, 27].

This method applies to integrate other hamiltonian systems in finite or infinite
dimension. It is remarkably general and is referred to as the method of Lax pair.

1.4.3 Action-angle coordinates

We denote by Iso(ug) the isospectral set of a potential ug € H? :
Iso(ug) = {u € H°: spec(u) = spec(uo)}.
It is invariant under the flow of KdV and may be characterized by the gap lengths
Iso(ug) = {u cH: g,(u) = gn(ug), n = 1}.

Moreover, for any n > 1, ug € H" if and only if Iso(uy) C H™.

In [59], McKean and Trobwitz showed that the Iso(ug) is homemorphic to a
compact torus, whose dimension equals the number of open gaps. So the phase
space HY is foliated by a collection of KdV-invariant tori of different dimensions,
finite or infinite. A potential u € H? is called finite-gap if only a finite number of its
spectral gaps are open. The finite-dimensional KdV-invariant torus Iso(ug) is called
a finite-gap torus. For any n € N let us set

j":{ueHO: gj(u) =0 if j>n}. (1.4.9)

We call the sets J", n € N, the finite-gap manifolds.
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Theorem 1.4.1. For any n € N, the finite gap manifold (J",w§) is a smooth
symplectic 2n-manifold, invariant under the flow of KAV (1.4.1), and

TOJ”:{uEHO: =0 if |k|>n—|—1},

(see (1.4.3)). Moreover, the square gap lengths gi(u), k =1,...,n, form n commu-
ting analytic integrals of motions, non-degenerated everywhere on the dense domain

Jr={uveJ": g(u),...,gn(u) > 0}.

Therefore, the Liouville-Arnold-Jost theorem applies everywhere on J;', n € N.
Furthermore, the union of the finite gap manifolds U, cnJ" is dense in each space H®
(see [58]). This hints that on the spaces H*, s > 0, it may be possible to construct
global action-angle coordinates for KdV. In [25], Flaschka and McLaughlin used
the Arnold formula (1.1.3) to get an explicit formula for action variables of KdV
in terms of the 2-period spectral data of L,. To explain their construction, denote
by yi(x, A\, u) and yo(x, \,u) the standard fundamental solutions of the equation
—y” 4+ uy = My, defined by the initial conditions

yl(oa )\,U) = 17 ?JQ(O,/\JL) = 07
Y10, M u) =0, 55(0,A,u) = 1.

The quantity AN u) = yi (1, A\, w) +y5(1, A\, w) is called the discriminant, associated
with this pair of solutions. The periodic spectrum of w is precisely the zero set of
the entire function A%(\, u) — 4, for which we have the explicit representation (see
e.g. [74, 59])

>\2n - )\)(A2n—1 - )\)

nimd

AN*Mu)—4=40—N ] (

n=1

This function is a spectral invariant. We also need the spectrum of the differential
2

operator L, = —-5; + v under Dirichlet boundary conditions on the interval [0, 1].

It consists of an unbounded sequence of single Dirichlet eigenvalues

i(u) < pa(u) < - 7 oo,

which satisfy Ao, 1(u) < pn(u) < Agp(u), for all n € N. Thus, the n-th Dirichlet
eigenvalue p,, is always contained in the n-th spectral gap. The Dirichlet spectrum
provides coordinates on the isospectral sets (see [59, 58, 38]). For any z € T, denote
by {1;(u,2), j > 1} the spectrum of the operator L, under the shifted Dirichlet
boundary conditions y(z) = y(z + 1) = 0 (so p;(u,0) = pj(u)); still Agy <
pn (U, 2) < Agp(uw). Jointly with the spectrum {\;}, it defines the potential u(z) via
the remarkable trace formula (see [74, 21, 38, 59]) :

[ee]

u(z) = Ao(u) + Z:(/\2j—1(u) + Aoj(u) — 2p5(u, 2)).
Define
fn(u) = 210g(—1)ny’2(1, Mn(u)>u)7 Vn € N.
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Flashka and McLaughlin [25] observed that the quantities {t,, fy }nen form canoni-
cal coordinates of H?, i.e.

{:um#m} = {fnv fm} =0, {,un,fm} = (Sn,m, Vn,m € N.

Accordlngly, the symplectic form w§ (see (1.4.7)) equals dw;, where w is the 1-form

S onen fndit,. Now the KAV action variables are given by the Arnold formula (1.1.3),
where (), is a circle on the invariant torus Iso(u), corresponding to g, (u). It is shown
in [25] that

)\Qn
/ Vn € N.
A

2n—1 1/AQ

The analytic properties of the functions u — I, and of the mapping v — I =
(I1, I, . ..) were studied later by Kappeler and Korotyaev (see references in [38, 42]
and below). In particular, it was shown that I,,(u), n € N, are real analytic functions
on H° of the form I, = g+ h.o.t, and I,, = 0 if and only if g, = 0, see in [38]. For
any vector [ = (I, I, ...) with non-negative components we will denote

Ty ={u(z) € H": I,(u) = I, Vn}. (1.4.10)

The angle-variables ¢™ on the finite-gap manifolds J" were found in 1970’s by
Soviet mathematicians, who constructed them from the Dirichlet spectrum {p;(u)}
by means of the Abel transform, associated with the Riemann surface of the function
VA? — 4, see [21, 58, T4], and see [35, 20, 44, 9] for the celebrated explicit formulas
for angle-variables ™ and for finite-gap solutions of KdV in terms of the theta-
functions.

In [46] and [47], Section 7, the action-angle variables (1™, ™) on a finite-gap
manifold 7™ and the explicit formulas for solutions of KdV on manifolds 7V, N > n,
from the works [20, 44, 9] were used to obtain an analytic symplectic coordinate
system (1™, " y) in the vicinity of J™ in HP. The variable y belongs to a ball
in a subspace Y C H? of co-dimention 2n, and in the new coordinates the KdV
Hamiltonian (1.4.6) reads

H = const + A" (I") + (A(I")y, y) + O(y?). (1.4.11)

The selfadjoint operator A(I™) is diagonal in some fixed symplectic basis of Y.
The nonlinearity O(y?) defines a hamiltonian operator of order one. That is, the
KdV’s linear operator, which is an operator of order three, mostly transforms to
the linear part of the new hamiltonian operator and "does not spread much" to its
nonlinear part. This is the crucial property of (1.4.11). The normal form (1.4.11) is
instrumental for the purposes of the KAM-theory, see [47]

McKean and Trubowitz in [59, 60] extended the construction of angles on finite-
gap manifolds to the set of all potentials, thus obtaining angle variables ¢ =
(p1, 2, ...) on the whole space H?, p > 0. The angles (¢x(u),k > 1) are well
defined Gateaux-analytic functions of u outside the locus

O = {u(z) : gj(u) = 0 for some j}, (1.4.12)
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which is dense in each space HP. The action-map u — I was not considered in
[59, 60], but it may be shown that outside O, in a certain weak sense, the variables
(I,¢) are KdV’s action-angles (see the next section for a stronger statement). This
result is nice and elegant, but it is insufficient to study perturbations of KdV since
the transformation to the variables (I, ¢) is singular at the dense locus o.

1.4.4 Birkhoff coordinates and nonlinear Fourier transform

In a number of publications (see in [38]), Kappeler with collaborators proved
that the Birkhoff coordinates v = {v,, n = +1,£2,...}, associated with the action-
angles variables (1, p),

Uy =\/21, cos(py), v_p, =1/2[,sin(p,), VneN, (1.4.13)

are analytic on the whole of H? and define there a global coordinate system, in which
the KdV Hamiltonian (1.4.6) is a function of the actions only. This remarkable result
significantly specifies the normal form (1.4.11). To state it exactly, for any p € R,
we introduce the Hilbert space hP,
+o0
h? = {U = (V17V27 o ) : |U|12) = Z(Qﬂ-j)2p+l|vj|2 <00, V; = (Ujﬂv—j)t € R27 .] € N}a
j=1

and the weighted ['-space hY,
+00
hb {1 — (L) €R® |17 =23 (2m))2 1| < +oo}.
=1

Define the mappings

1
mr: WP —hY, ve—I=(I,,...), where Ik:§’Vk|2 vk,

ot AP =T, v = (p1,p2,...), where @, = arctan(vv:)

if vip #0, and ¢ =0 if vy =0.

Since |m;(v)|y = [v[2, then 7/ is continuous. Its image kY, = m;(hP) is the positive
octant in AY. When there is no ambiguity, we write I(v) = 77 (v).
Consider the mapping

Uu(z) = v=(v,va,...), Vo= (vp,v )" €R?

where vy, are defined by (1.4.13) and {I,,(u)}, {on(u)} are the actions and angles
as in Subsection 1.3.2. Clearly 7; o ¥(u) = I(u) and 7, o ¥(u) = ¢(u). Below we
refer to W as to the nonlinear Fourier transform.

Theorem 1.4.2. (see [38, 37]) The mapping V defines an analytical symplectomor-
phism W : (H°, w§) — (R0, 302, dug A dv_y) with the following properties :

1) For any p € |[—1,+00), it defines an analytic diffeomorphism V¥ : HP +— hP.
(i) yp € [-1,+o0), y 2
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(1i) (Percival’s identity) If v = W (u), then |v]o = ||ullo-

(1i1) (Normalisation) The differential d¥(0) is the operator y_ uses — v, where
vy = |2ms| 7V ?u, for each s.

(iv) The function H(v) = H(T(v)) has the form H(v) = Hi(I(v)), where
the function Hg(I) is analytic in a suitable neighborhood of the octant hj,
in hY, such that a curve u € C1(0,T; H®) is a solution of KAV if and only if
v(t) = W(u(t)) satisfies the equations

oH
Vi = I (1)vy, vy = (v,0-5)  €R? jEN. (1.4.14)

oI,

The assertion (iii) normalizes ¥ in the following sense. For any 6 = (61,0,,...) €
T denote by ®4 the operator

dpv =1, V= v;, VjEN, (1.4.15)

where @, is the rotation of the plane R? by the angle a. Then ®y o U satisfies all
assertions of the theorem except (iii). But the properties (i)-(iv) jointly determine
¥ in a unique way.

The theorem above can be viewed as a global infinite dimensional version of the
Vey Theorem 1.1.7 for KdV, and eq. (1.4.14) — as a global Birkhoff normal form for
KdV. Note that in finite dimension a global Birkhoff normal form exists only for
very exceptional integrable equations, which were found during the boom of activity
in integrable systems, provoked by the discovery of the method of Lax pair.

Remark 1.4.3. The map ¥ simultaneously transforms all Hamiltonians of the KdV
hierarchy to the Birkhoff normal form. The KdV hierarchy is a collection of hamil-
tonian functions J;, | = 0, commuting with the KdV Hamiltonian, and having the

form
Ji(u) = / (;(u(l))2 + Jll(u)>d:€.

Here J_1 = 0 and Ji_1(u), 1 > 1, is a polynomial of u, . .., u""Y. The functions from
the KdV hierarchy form another complete set of KdV integrals. E.g. see [21, 38, 56].

One of the important properties of the nonlinear Fourier transform ¥ that we
will use in Chapter 2 is that It is quasi-linear. Precisely,

Theorem 1.4.4. If m > 0, then the map ¥ — d¥(0) : H™ — h™*! is analytic.

That is, the non-linear part of ¥ is 1-smoother than its linearisation at the origin.
See [52] for a local version of this theorem, applicable as well to other integrable
infinite-dimensional systems, and see [39, 40] for the global result. The fact that the
global transformation to the normal form (1.4.11) also is quasi-linear, is established
in see [46, 47].
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1.4.5 Properties of frequency map

Let us denote

WD) = (WD), WalD),....), Will) = 5, i€, (1.4.16)

This is the frequency map for KdV. By Theorem 1.4.2 each its component is an
analytic function, defined in the vicinity of hj, in hj.

Lemma 1.4.5. a) Fori,j > 1 we have 8*W(0)/01,01; = —64; ;.
b) Foranyn € N, if I,y1 = L,,0=---=0, then

det ( ( 5 ) 1cisen) 70

For a) see [10, 38, 47]. For a proof of b) and references to the original works of
Krichever and Bikbaev-Kuksin see Section 3.3 of [47].
Let [$°, 1 € Z, be the Banach spaces of all real sequences | = (l1,ls,...) with
norms
13° = supn'|l,| < oo.
n>1
Denote k& = (K )nen, Where k, = (27n)%. For the following result see [38], Theo-

rem 15.4.

Lemma 1.4.6. The normalized frequency map [ +— W(I)— Kk is real analytic as a
mapping from h' to 1.

From these two lemmata we known that the Hamiltonian Hg(I) of KdV is non-
degenerated in the sense of Kolmogorov and its nonlinear part is more regular than
its linear part. These properties are very important to study perturbations of KdV.



Chapitre 2

An averaging theorem for
perturbed KdV equations

The results of this chapter is taken from my papers [31] and [32].
Abstract : Consider a perturbed KdV equation :

Ut + Ugzy — Buugy = €f(u)(z), =z €T =R/Z, / u(zx,t)dx =0, (%)
T

where the nonlinear perturbation defines analytic operators u(-) — f(u(-)) in sufficiently
smooth Sobolev spaces. For a periodic function u(x), let I(u) = (I1(u), I2(u), --) € RY
be the vector, formed by the KdV integrals of motion, calculated for the potential u(zx).
Assume that the equation (x) has an e-quasi-invariant measure p and satisfies some ad-
ditional mild assumptions. Let u¢(¢) be a solution. Then on time intervals of order e~
as € — 0, its actions I(u(t,-)) can be approximated by solutions of a certain well-posed

averaged equation, provided that the initial datum is p-typical.

2.1 Introduction

We consider a perturbed Korteweg-de Vries (KdV) equation with zero mean-
value periodic boundary condition :

U+ Uggyw — Buu, = ef(u)(z), z€T=R/Z, /Tu(x,t)dx:(). (2.1.1)

Here ef(u(-)) is a nonlinear perturbation, specified below. For any p € R we denote
by HP the Sobolev space of order p, formed by real-valued periodic functions with

zero mean-value, provided with the homogeneous norm || - ||,. Particularly, if p € N
we have
Hp:{ueLQ(T):HuH <oo,/udx:0}, ||u||2:/ %2dx.
i T P Jr|OxP

For any p, the operator a% defines a linear isomorphism : a% : H? — HP~! Denoting
by (8%)_1 its inverse, we provide the spaces H?, p > 0, with a symplectic structure
by means of the 2-form 2 :

Oy, up) = —<(§x)_1u1,u2>, (2.1.2)
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where (-, -) is the scalar product in L?(T). Then in any space H?, p > 1, the KdV
equation (2.1.1).—o may be written as a Hamiltonian system with the Hamiltonian H,

given by H(u) = [; (éui + u3) dz. That is, KdV may be written as

0

1 = —VH(u).

U= (u)
It is well-known that KdV is integrable. It means that the function space H? admits
analytic symplectic coordinates v = (vq,va, -+ ) = U(u(-)), where v; = (vj,v_;) € R?,
such that the quantities I; = 3|v;|?, j > 1, are actions (integrals of motion), while
©; = Arg v;, j > 1, are angles. In the (I, )-variables, KdV takes the integrable
form

I=0, ¢o=w({), (2.1.3)

where W (I) € R* is the frequency vector (see [38]). For any p > 0, the integra-
ting transformation W, called the nonlinear Fourier transform, defines an analytic
isomorphism W : H? — hP  where

+0o0
hP = {v = (vi,va, ) ols = > (2m))PH |v,]P < oo, v; €R?, j € N}.
=1

We introduce the weighted I'-space h%,
+o0
hh = {1 = (L1, 1y,...) e R® |17 =2 (2m))* | < oo},
j=1
and the mapping 7y :
1 .
i hP = b, (v, )= (L), I = §V§~Vj, JjeN. (2.1.4)

Obviously, 7; is continuous, |7;(v)[5 = |v|2 and its image hf, = m;(h?) is the positive
octant of hY.
We wish to study the long-time behavior of solutions for equation (2.1.1). Ac-
cordingly, fix some
=0, p=3, T>0,

and assume

Assumption A : (i) Foruy € HP, there exists a unique solution u(-) € C([0,T], H?)
of (2.1.1) with u(0) = ug. It satisfies

Jull, < C(T,p, ||uol|,), 0<t<Te

(ii) There exists a p' = p'(p) < p such that for q € [p',p|, the perturbation term
defines an analytic mapping

H* = H™ () = f(u)().
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We are mainly concerned with the behavior of the actions I(u(t)) € R on time
interval [0, Te!]. For this end, write the perturbed KdV (2.1.1), using slow time
T = et and the v-variables :

v
dr
Here V(u) = —uyyy + 6uu, is the vector field of KAV and P(v) is the perturbation

term, written in the v-variables. In the action-angle variables (I, ) this equation
reads :

= e dVU(u)V(u) + P(v). (2.1.5)

dI dy

I (1, ¢), =

Here I € R>® and ¢ € T, where T := {6 = (6,);>1,0; € T} is the infinite-
dimensional torus, endowed with the Tikhonov topology. The two functions F(I, ¢)
and G(I, ) represent the perturbation term f, written in the action-angle variables,
see below (2.2.3) and (2.2.4).

It is well established that for a perturbed integrable finite-dimensional system,

= 'W(I)+G(I,p). (2.1.6)

[=cf(l,p), o=W(I)+eg(l,p), e<<L,

where I € R", ¢ € T™, on time intervals of order ¢! the actions I(t) may be well
approximated by solutions of the averaged equation :

J=ef)). N = [ e,

provided that the initial data (1(0),¢(0)) are typical (see [57]). This assertion is
known as the aweraging principle. But in the infinite dimensional case, there is
no similar general result. Several theorems are available for different situations,
mainly in the context of perturbations of linear equations, see [5] and references
therein. When the unperturbed system is nonlinear (like KdV), results are rare. In
[53, 49], S. Kuksin and A. Piatniski proved that the averaging principle holds for
the randomly perturbed KdV equation of the form :

U — €Uy + Uggy — OUU, = Ven(t,x), z €S, /uda: = /ndz =0, (2.1.7)

where the force 1 is a white noise in ¢, is smooth in x and is non-degenerate. Our
goal in this work is to justify the averaging principle for the KdV equation with
deterministic perturbations, using the Anosov scheme (see [57]), exploited earlier in
the finite dimensional situation. The main technical difficulty to achieve this goal
comes from the fact that to perform the scheme one has to use a measure in the
function space which is ‘quasi-invariant’ under the flow of the perturbed equation.
We now give the exact definition of it.
Let ST, 0 < 7 < T, be the flow-maps of equation (2.1.5) on h* and denote

By(M) ={ven: [v], <M}

Definition 2.1.1. 1) A measure ju on h? is called reqular if for any analytic function
g on h? such that g # 0, we have p({v € h? : g(v) =0}) = 0.
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2) A measure p on h¥ is said to be e-quasi-invariant for equation (2.1.5) on the
ball By (M) if it is regular, 0 < p(By(M)) < oo and there exists a constant C(T, M)
such that for any Borel set A C By(M), we have

e (4) < p(ST(A)) < 7O A), (21.8)

Similarly, these definitions can be carried to measures on the space H? and the
flow-maps of equation (2.1.1) on HP.

The e-quasi-invariant measure is needed to guarantee that a small ’bad’ set which
we have to prohibit for a solution of the perturbed equation at a time ¢t > 0 corres-
ponds to a small set of initial data.

Inspired by finite averaging theory, we consider an averaged equation for the
actions I(-) :

L), (A= [ FUe)e 2.19)
where dyp is the Haar measure on T. It turns out that (F)(.J) defines a Lipschitz
vector filed in A} (see (2.4.18) below). So equation (2.1.9) is well-posed, at least
locally. Our task is to study the relation between the actions I(7) of solutions for
equation (2.1.6) and solutions J(7) of equation (2.1.9), for 7 € [0, T.

The main result of this chapter is the following theorem, in which u(¢) denotes
solutions for equation (2.1.1), v¢(7) = \I/(ue(eflT)) denotes solutions for (2.1.5) and
I(v%), p(v) are their action-angle variables. By Assumption A, for 7 € [0, 77,

[T ()] < CL(lI(0*(0))];)-

Theorem 2.1.2. Fiz any M > 0. Suppose that assumption A holds and equa-
tion (2.1.1) has an e-quasi-invariant measure ji on By (M). Then

(i) For any p >0 and any ¢ < p+ %min{(o, 1}, there exists 6, > 0, €,, > 0 and
a Borel subset I,  C B)(M) such that

lim w(By(M)\T,) =0, (2.1.10)
and for € < €, 4, we have that if v<(0) € I's , then

[L(v(7)) = J(T)I7 < p, for 0<7<min{T,T(I)}. (2.1.11)

Here I§ = I(ve(0)), J(-) is the unique solution of the averaged equation (2.1.9) with
any initial data Jy € hY, satisfying |Jo — I§|y < 0,, and

T (I§) = min {7’ ()Y = CL(lIgly) + 1}.
(7i) Let A\Y be the probability measure on T, defined by the relation

[ s@axetag) = 7 [ fow . vi € o)

where vy = v°(0) € B,(M). Then the averaged measure
1
A= 7/ A dpu(v
u(B,(M)) /00 (t0)

converges weakly, as e — 0, to the Haar measure de on T.
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Remark 2.1.3. 1) Assume that an e-quasi-invariant measure p depends on €, i.e.
i = . Then the same conclusion holds with p replaced by pe, if pe satisfies some
consistency conditions. See subsection 2.4.5.

2) Item (ii) of Assumption A may be removed if the perturbation is hamiltonian.
See the end of subsection 2.4.1.

Toward the existence of e-quasi-invariant measures, let us consider a class of
Gaussian measures o on the Hilbert space h? :

2%3)”2” p{_(27t7)1+2”|vg|2
20;

J

Ydv,, (2.1.12)

where dv;, j > 1, is the Lebesgue measure on R?. We recall that (2.1.12) is a well-
defined probability measure on A if and only if Y~ 0; < oo(see [11]). It is regular
in the sense of Definition 2.1.1 and is non-degenerated in the sense that its support
equals to h? (see [11, 12]). From (2.1.3), it is easy to see that this kind of measures
are invariant for KdV.

For any (j > 1, we say the measure jg is (-admissible if the o; in (2.1.12)
satisfies 0 < 7% /0; < const for all j € N.

Theorem 2.1.4. If Assumption A holds and
(13)" There exists ¢, > 1 such that the operator defined by

h? — WPt : p s P(v)

(see (2.1.5)) is analytic. Then every (j-admissible measure pg is €-quasi-invariant
for equation (2.1.1) on hP.

However, the conditions (i7)" is not easy to verify due to the complexity of the
nonlinear Fourier transform. So we give here another sufficient condition for existence
of e-quasi-invariant measure by restricting Assumption A.

As is known, for solutions of KdV, there are countably many conservation laws
Tn(u), n >0, where Jo(u) = 3||ul[3 and

Tn(u) = /11‘ {;(8@)2 + (02 u)? 4+ Qu(u, .. . ,ag_zu)}dx,

for n > 1, where ¢, are real constants, and Q,, are polynomial in their arguments
(see e.g. [38]). Let p, be the Gibbs measures on the space H", generated by the
conservation law J,(u). They are invariant for KdV ([75]). We have the following :

Theorem 2.1.5. Let p € N. Then if Assumption A holds with (y > 2, then the
Gibbs measure fi, is €-quasi-invariant for the perturbed KdV (0.0.1).

We point out straightly that this condition is not optimal (see Remark 2.5.11).
Note that o (2.1.12) also is a Gibbs measure for KdV, written in the Birkhoff
coordinates (1.4.14), since formally it may be written as g = Z ! exp{—{(Qu, v) }dv,
where (Qu,v) = 3 ¢;|v;|* is an integrals of motion for KAV (the statistical sum Z =
00, so indeed this is a formal expression). Some recent results (see, e.g. [75, 14, 18])
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show that the Gibbs measure is an efficient tool to study nonlinear partial differential
equations. There are mainly two kinds of applications : the recurrent properties
given by the Poincaré Recurrent Theorem and the almost sure (in the sense of
the Gibbs measure) global well-posedness for ‘rough’ initial data. Here we give a
new application of the Gibbs measure. We show that in the averaging theory for
perturbed KdV, the Gibbs measure plays a role which the Lebesgue measure plays
in the classic finite dimensional averaging theory. This indicates that the Gibbs
measure is important not only for the study of the original PDEs but also for the
study of its perturbations.
Concerning the validity of Assumption A, particularly, we have :

Proposition 2.1.6. The Assumption A holds for the perturbed KdV equation :
Up + Ugyy — buu, = ef(x), (2.1.13)
where f(x) is a smooth function on the circle with zero mean value.

The equation (2.1.13) can be viewed as a model for shallow water wave propa-
gation under small external force.

This chapter is organized as follows : Section 2.2 is about some important proper-

ties of the nonlinear Fourier transform and the action-angle form of the perturbed
KdV (2.1.1). We discuss the averaged equation in Section 2.3. The Theorem 2.1.2
is proved in Section 2.4. We will discuss the existence of e-quasi-invariant measures
in Section 2.5. Finally in Section 2.6, we prove Proposition 2.1.6.
Agreements. Analyticity of maps B; — Bs between Banach spaces By and B,
which are the real parts of complex spaces Bf and B, is understood in the sense
of Fréchet. All analytic maps that we consider possess the following additional pro-
perty : for any R, a map extends to a bounded analytical mapping in a complex
(0g > 0)-neighborhood of the ball {|u|p, < R} in Bf. We call such analytic maps
uniformly analytic.

2.2 The perturbed KdV in action-angle variables

First we recall some results on the integrability of the KdV equation (0.1).—o
which have been discussed in Section 1.4.

2.2.1 Nonlinear Fourier transform for KdV

Theorem 2.2.1. (see [38]) There exists an analytic diffeomorphism ¥ : H® — h°
and an analytic functional K on h' of the form K (v) = K (I(v)), where the function
f(([) is analytic in a suitable neighborhood of the octant h}+ in h}, with the following
properties :

(i) For any p € [—1,4+00), the mapping V defines an analytic diffeomorphism
U HP — hP.

(ii) The differential d¥(0) is the operator - use, +— v, v, = |2ms| ™/ u.

(iii) A curve w € CY(0,T; H®) is a solution of the KdV equation (2.1.1)—o if and
only if v(t) = V(u(t)) satisfies the equation
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. 0 —1)\ 0K .
Vi = ( 1 0 > ailj([)vj, v = (vj,v ) €R? jeN. (2.2.1)

The coordinates v = U(u) are called the Birkhoff coordinates, and the form (1.1)
of KdV is its Birkhoff normal form
Since the maps ¥ and U1 are analytic, then for m = 0,1,2..., we have

179 (@)l < Prllullm), N E (@)l < Qul[vlm), 5=0,1,2,

where P, and (@),, are continuous functions.
A remarkable property of the nonlinear Fourier transform WV is its quasi-linearity.
It means :

Theorem 2.2.2. (see [52, 39]) If p = 0, then the map ¥ — d¥(0) : H? — hPT! s
analytic.

We denote
OK
W(I> - (W17W27"')7 Wk<]) - 7(I>, k= ].,2,....
oI},
Lemma 2.2.3. (see [/7], appendiz 6) For any n € N, if I,y1 = L,40 = -+ = 0,
then o
det((aljl)lg',j@) # 0.
Let (% be the Banach space of all real sequences [ = (1,5, ...) with the norm

1]_1 = supnt|l,| < .
n=1

Denote k = (kp)n>1, Where k,, = (2n)3.
Lemma 2.2.4. (see [38], Thoerem 15.4) The normalized frequency map
[ W) -k

1s real analytic as a map from h}+ to [%9.

2.2.2 Equation (2.1.1) in the Birkhoff coordinates.

For k =1,2... we denote :
Uy H™ — R? Wp(u) = vg,

where WU(u) = v = (vq,Va,...). Let u(t) be a solution of equation (2.1.1). Passing
to the slow time 7 = €t and denoting " to be %, we get

Vi = AU () (e V () + Pi(v), k> 1, (2.2.2)
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where V(1) = —Uggzs + 6ut, and Py(v) = dU(T~1(v))(f(¥~(v))). Since the action

Ir(v) = §|¥,|* is an integral of motion for KAV equation (2.1.1)c—o, we have

jk = (Pk(v),vk) = Fk(’U). (223)

Here and below (-, -) indicates the scalar product in R2.
Uk

For k > 1 defines the angle ¢ = arctan(v;k) if vi, # 0 and ¢, = 0 if v, = 0.

Using equation (2.2.2), we get
Sbk = 671Wk(1) + ‘Vk|72<d\lfk(u)f(l‘, u),Vé‘), if Vi 75 0, (224)

where vi- = (—v_,v;). Denoting for brevity, the vector field in equation (1.4) by
e 'Wi(I) + Gi(v), we rewrite the equation for the pair (I, px)(k > 1) as
Ly = Fip(v) = F(I
.k ]ig-v) k( 7(10)7 (2.2.5)

We set
F(I, o) = (Fi(1,¢), F2(1,¢),...).
Denote
Co = min{1, (o}
For any ¢ € [p/, p|, define a map P as

P oht = hTO v (Pr(v),...).

Clearly, P(v) = d\I/(\Il_l(v)) (f(\lf_lv)). Then Theorem 2.2.2 and Assumption A
imply that the map P is analytic. Using (2.2.3), for any k& € N, we have

(k1 Fy(0)] < (2 vl 4 (2mk) 20 Py (o)
Therefore,
(L0 7hg2 < g + P51, < C(lvlg). (2.2.6)

In the following lemma P, and P} are some fixed continuous functions.

Lemma 2.2.5. For k,j € N and each q € [p/, p|, we have :
J

(i) The function Fy(v) is analytic in each space h9.

(i) For any 6 > 0, the function Gi(v)x {156 is bounded by 5_1/2Pk(|v\g).

(iii) For any 0 > 0, the function %—Ifj’?(l,gp)x{lj%} is bounded by §~/2P](|v],).

(iv) The function 3—5;(], ©) is bounded by P](|v|,), and for any n € N and
(I,...,I,) € RY, the function ¢ = Fi(I1,¢1,...,In, ¢n,0,...) is smooth on T".
Démonstration. Items (i) and (ii) follow directly from Theorem 1.1. Items (iii) and
(iv) follow from item (i) and the chain-rule :

aFk _ 6Fk aFk .
ai(pj — \/i((()v_j COS(¢]> 311] Slﬂ(@g)),

OF, L, (OF, OF,
o (v/21,) (avj cos(ip;) + av_jsm(goj))
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We denote

I : h? — Al T (v) = I(v),
I, h? — b x T, T;,(v) = (I(v),¢(v)).

Abusing notation, we will identify v with (1, ) = II; ,(v).

Definition 2.2.6. We say that a curve (I(T), 30(7)), T € [0, 71], is a regular solution
of equation (2.2.5), if there exists a solution u(-) € H? of equation (2.1.1) such that

7, (W(u(e'7)) = (I(7), ¢(r)), 7€ [0,7].

Note that if (I(7), (7)) is a regular solution, then each I;(7) is a C'-function,
while ¢;(7) may be discontinuous at points 7, where ;(7) = 0.

2.3 Averaged equation
For a function f on a Hilbert space H, we write f € Lipy,.(H) if
[f(u1) = f(u2)] < P(R)|Jux — ||, if - [Jual], [[uz]] < R, (2.3.1)

for a suitable continuous function P which depends on f. By the Cauchy inequality,
any analytic function on H belongs to Lip,,.(H) (see Agreements). In particularly,
for any k > 1,

Wi (I) € Lipioe(h%), ¢=1, and Fy(v) € Lipie(h?), q € [p'(p),p]. (2.3.2)

Let f € Lipie(h?) for some py > 0 and v € hP*, p; > py. Denoting by IV,
M > 1, the projection

M p® = h (vi,va,...) = (vi,...,Var,0,...),
we have |v — [TIMv|,, < (2rM)~P17P0)|y|,, . Accordingly,
[f () = FAM)] < P(Jo], ) (2m M)~ P00, (2.3.3)

The torus T acts on the space h° by the linear transformations ®y, 0 € T,
where @y : (I, ) — (I,+0). For a function f € Lipy,.(h?), we define the averaging
in all angles as

(1)) = [ F(@ow))dd,

where df is the Haar measure on T*. Clearly, the average (f) is independent of (.
Thus (f) can be written as (f)(I).

Extend the mapping 7; to a complex mapping h? @ C — hh ® C, using the same
formulas (2.1.4). Obviously, if O is a complex neighbourhood of h”, then 7¢(O) is a
complex neighbourhood of Rf.
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Lemma 2.3.1. (See [53], Lemma 4.2) Let f € Lipi,.(h?), then

(i) The function (f)(v) satisfy (2.53.1) with the same function P as f and take
the same value at the origin.

(ii) This function is smooth (analytic) if f is. If f(v) is analytic in a complex
neighbourhood O of h?, then (f)(I) is analytic in the complex neighbourhood w¢(O)
of hY.

For any ¢ € [p/, p|, we consider the mapping defined by

(F) s b = bR T (F) (),
where (F)(J) = ((F)(7), (F)(J), ).

Corollary 2.3.2. For every q € [p',p|, the mapping (F) is analytic as a map from

the space hY to h?JrC_O/ .

Démonstration. The mapping P(v) extends analytically to a complex neighbou-
rhood O of h? (see Agreements). Then by (2.2.3), the functions Fj;(v), j € N are
analytic in O. Hence it follows from Lemma 2.1 that for each ;7 € N, the function
(F};) is analytic in the complex neighbourhood 7§(O) of h%. By (2.2.6), the mapping
(F') is locally bounded on 7§(O). It is well known that the analyticity of each coor-
dinate function and the locally boundness of the maps imply the analyticity of the
maps (see, e.g. [3]). This finishes the proof of the corollary. O

We recall that a vector w € R™ is called non-resonant if
w-k#0, V kez"\{0}.
Denote by C%*(T") the set of all Lipschitz functions on T". The following lemma
is a version of the classical Weyl theorem.

Lemma 2.3.3. Let f € C°TY(T") for some n € N. For any § > 0 and any non-
resonant vector w € R", there exists Ty > 0 such that if T > Ty, then

2 [ s+ e (] <o

uniformly in xq € T™.

Démonstration. Let us write f(x) as the Fourier series f(x) = 3 fr.e®*®. Since the
Fourier series of a Lipschitz function converges uniformly (see [71]), for any € > 0

we may find R = R, such that ’Zk>R freih®
show that

< 5 for all z. Now it is enough to

€

1 T
= [ falootwtydt = fo| <5 VT ST (2.3.4)

for a suitable T¢, where fr(z) = X< fue™*. Observing that
1 /T . 2
- i '(IO+UJt)dt‘ <
‘T/o ‘ Tl -]’
for each nonzero k. Therefore the L.h.s of (2.3) is smaller than

;( inf \k:-w|>_1 S 1l

<
IkI<E |kI<R

The assertion of the lemma follows. O]
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2.4 Proof of the main theorem

In this section we prove Theorem 2.1.2 by developing a suitable infinite-dimensional
version of the Anosov scheme (see [57]), and by studying the behavior of the regular
solutions of equation (2.2.5) and the corresponding solutions of (2.1.1).

Assume u(0) = ug € HP. So

H[#,(\I/(UQ)) = (]0, (,0()) € h]])+ x T, (241)

We denote
BY(M)={Ie€hh :|Ily <M}

Without loss of generality, we assume that T'= 1. Fix any M, > 0. Let
(Io, o) € By (M) x T := T,

that is,
Vo = \P(U,[)) S B;)(\/Mo).

We pass to the slow time 7 = et. Let (I(-), ¢(+)) be a regular solution of the system
(2.2.5) with (1(0),»(0)) = (Io, o). We will also write it as (I°(-), ¢(-)) when we
want to stress the dependence on e. Then by assumption A, there exists M; > M,
such that

I(t) € BJ(My), 7€l0,1]. (2.4.2)

By (2.2.6), we know that
|F(L, )7 < Cuyy Y (1,9) € By(My) x T, (2.4.3)
where the constant Cy;, depends only on M.

We denote I™ = (I1,...,1,,,0,0,...), 0™ = (¥1,- -+, Pm,0,0,...),and W™(I) =
(Wh(I),...,W,(I),0,0,...), for any m € N.

2.4.1 Proof of assertion (i)

Fix any
ng € N and p>0.

By (2.2), there exists m € N such that
|Fk([7 ()0) _Fk<[m0790m0)| <P V([, (,0) € B;(Ml) x T, (244)

where k =1,--- ,ng.
From now on, we always assume that

(I,p) €Ty := BI(My) x T, ie. ve By(\/M),

and identify v € h? with (7, ) = II; ,(v).
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By Lemma 2.2.5, we have

Co(g, M
6,1 < 20
VI
OF) Co(k, 7, M-
90 1, ) < Collnh M), (2.45)
0I; \/Z
OF
—(I < Co(k, g, My).
a(pj( ;)| < Colk, j, My)
From Lemma 2.2.4 and Lemma 2.3.1, we know that
W, (1) — Wi (I)| < Cy(j, M| — 14,
WD) = Wi(D] < CuG, M)l = T 216

(F) (1) — (B ()| < Cu(k, g, My)|I — 1.
By (2.3.2) we get
| Fi (™) = Fi(0™°)] < Cy(k, My) ™ — 0™ |, < Colk,mo, Mi)[o™ — 0™, (2.4.7)

where || is the [*°-norm (here we have used the fact that norms in finite dimensional
space are equivalent).
We denote

Ci™ = mg - max{Cy,Cy,Cy: 1 < j <mp, 1 <k < gl

Below we define a number of sets, depending on various parameters. All of them
also depend on p and ng, but this dependence is not indicated. For any § > 0 and
Ty > 0, we define a subset

E(6,Ty) Cc Iy

as the collection of all (I, ¢) € 'y such that for every T > Tj, we have,
1 T
‘T/ (Fu(I™, 5™ + W™ (I)s) — (F)(I™)|ds| <6, for k=1,...,np. (2.4.8)
0

Let 87 be the flow generated by regular solutions of the system (1.5). We define
two more groups of sets.

A(T) = A(1, 6,0, Ty, I,0) :={m € [0,7] : SI'(I,¢0) ¢ E(5, Tp)}.
N(B) = N(B,€,6,T) :={(L,p) € I'y : Mes[A(L,¢,0,T0, 1, )] < B}

Here and below Mes|-| stands for the Lebesgue measure in R. We will indicate the
dependence of the set N () on ng and p as N, ,(f), when necessary.

By continuity, F(d,Tp) is a closed subset of I'y and A(7) is an open subset of
[0,7].

Lemma 2.4.1. For k = 1,...,ng, the Iy-component of any reqular solution of
(2.2.5) with initial data in N(B,€,9d,Ty) can be written as :

L(7) = 1,(0) + /0 “(F)(I(s))ds + (1),
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where for any vy € (0,1) the function |=(7)| is bounded on [0, 1] by

aczpo{ |26+ 2150 V2| (T + B+ 1)

n ToCh € Toe  eCpp T
71/2 2,}/1/2 3

+ 20y, B+ 2p 426 + 2C, (Toe + ).

+ ToChre + ( )}(Toﬁ‘Fﬁ‘f‘l)}

Démonstration. For any (I,¢) € N(f3), we consider the corresponding set S(7). It
is composed of open intervals of total length less than min{3,7}. Thus at most
[8/(Tve)] of them have length greater than or equal to Tpe. We denote these long
intervals by (a;,b;), 1 <i < d, d < 8/(Tpe) and denote by C(7) the complement of
Ulgigd(ai, bz) in [O, T].

By (3.5.6), we have

) B Gs) pl)ds = [ B (), 7 ()ds + & (),

where [&(7)| < Ca, f+ pr.

The set C'(7) is composed of segments [b;—1, a;] (if necessary, we set by = 0, and
agi1 = 7). We proceed by dividing each segment [b; 1, a;] into shorter segments by
points 77, where b; = 7{ < 73 < --- < 7, = a;. The points 7] lie outside the set
S(7) and Tye < th,, —t% < 2Tge except for the terminal segment containing the end
points a;, which may be shorter than Tje.

This partition is constructed as follows :

— If a; — b;_1 < 2Tje, then we keep the whole segment with no subdivisions.
(T{ = bi,1 ,7'5 = ai).
— If a; — b1 > 2Tje, we divide the segment in the following way :
a) If b;_; + 2Tpe does not belong to S(7), we chose th = b;_1 + 2Tye, and
continue by subdividing [73, a;] ;
b) if b;—1 + 2Tpe belongs to S(7), then there are points in [b;—; + Tp€, bi—1 +
2The] which do not, by definition of b;_;. We set 74 equal to one of these
points and continue by subdividing [73, a;].

We will adopt the notation : b = 7, — 77 and (i, j) = [7},7},,]. So

d
C(r)=U U s(i.j), To <h =1s(i,5)| < 2Toe, j < ny— 2.

By its definition, C(7) contains at most [3/(To€]+1 segments [b;_1, a;], thus C(7)
contains at most [3/(Tpe)] + 1 terminal subsegments of length less than Tye. Since
all other segments have length no less than Toe and 7 < 1, the number of these
segments is not greater than [¢Tp]™!. So the total number of subsegments s(7,7) is

bounded by 1+ [(eTp) "] + [8/(Tve)].
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For each segment s(i, j) we define a subset A(4,j) of {1,2,--- mg} in the follo-
wing way :
leAi,j) <= 3FIresi,jg), L(T)<ny.

If I € A, then by (3.5.4) we have
|L(T)] < 2ToCre+y, T € s(i, 7). (2.4.9)
For I = (I1,I5,...) and ¢ = (1, @2, ...) we set
Aig(D) =1, Xij(e) =@,
where ¢ = (41, Pa,...) and I = (I1, I, ...) are defined by the following relation :
If leA(,j), then I,=0, ¢, =0, else L =1, ¢ =

We also denote \; (1, ¢) = (A ;(I), \ij(¢)) and when the segment s(i, j) is clearly

indicated, we write for short \; ;(Z, cp) = (I,9).
Then on s(i, ), using (3.5.9) and (2.4.9) we obtain

[y [P @) = B (s (0 7060 s
<[ cmmirm(s) — Ay (Wo@)) P 0s (2.4.10)

s(1,7)
< 20”0 o (’7 + 2T0CM1€)1/2T0€.

In Proposition 1-5 below, £k =1,..., ng.
Proposition 1.

I B (170,07 (5) ) s = 3 / Fu(1m(5)), ™ () )ds + &o(7),
where
6] < ACTg™ {(7 + 2Ty Cur )2 + 7—1/2T00Mle} (Toe+B+1).  (24.11)
Démonstration. We may write &(7) as
=3 [ (B ) = (1 o)) s
=2 10, j).
irj
For each s(i, j), we have
[ |B(Im .20 ) - BRI 6m09)
< /(' ') Y129 mo ds (2.4.12)
s(i.j

< 27_1/20]74‘)1’m°C'M1T0262.

ds

[mo(s) — I™o(r))
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We replace the integrand Fj,(I"°, ™) by Fj,(I"™0,¢™0). Using (3.5.11) and (3.5.14)
we obtain that

I(i, ) < ACY™ | (7 + 2ToCar )2 + 7~ V2TyCosy €| Toe.
The inequality (3.5.13) follows. O

On each subsegment s(i,7), we now consider the unperturbed linear dynamics
@%(7) of the angles ™ € T™ :

QO;(T) = o (T;) + e_IWmO(I(t;))(T — T ) eTm™, 71¢€s(i,j).

Proposition 2.
Z/ . Fk<Im0(T;)’@mO(3)>d5 = Z/ N Fk([mo(T;),gp;'(S))dS+£3(T>,
iy 7 80:d) i 7 s(isd)

where

[€5(T)] < ACH™ (v + 2T00M1 ) (Toe+ B +1)
(2.4.13)

2T, 4eC
+crmz( g )(Toe+5+1)
Démonstration. For each s(i,j) we have
/S )\u(@mo( ) — 90]( )) ds
/ i) / w(Gm (s), () + e W (I(s) —e—lwmou(T;))) ds'ds

/SZ] / Cmo mo{ _1/2—|—€_1|](8/) —](T;))|1]ds’ds

< /(, ' C;\L/?fmo{ 1/2( )+ CM1 (S . T;)Q]ds
s(,J
2T02€2 + 4OM1T(‘;362)
Vel 3/

Here the first inequality comes from equation (2.2.4), and using (3.5.7) and (3.5.8)
we can get the second inequality. The third one follows from (3.5.4).
Using again (3.5.7), we get

Lo, (Bl )) = P (@) ei) ) |as
Aig (90"“’(8) - wi-(S))
2T € n 4CM1T(:)362>
Nai 3
Therefore (3.5.15) holds for the same reason as (3.5.13). O

O'I‘LO ,mo (

< CTLO ,mo
X
s(4,5)

<y (

ds
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We will now compare the integral [,y Fix(I"™(7}), ¢%(s))ds with the average
value (Fy(I™(7})))h.
Proposition 3.

2 /s(m.) Fk<f’”°<Tf> )ds—Zhl (I’"O )) +&(7),
where

|§4(T)] < 20 + 20, (Toe + B). (2.4.14)

Démonstration. We divide the set of segments s(i, j) into two subsets A; and A,.
Namely, s(i,7) € Ay if bl > Tye and s(i,j) € Ay otherwise.
(i) s(i,7) € Ay. In this case, by (2.4.8), we have

[ )~ ) <o

So
> Fk(ImO(T;),gpj-(s)>ds—<Fk><lm°(T;))h§ <6 Y m<2
s(i,j e s(4.5) s(i,5)€AL

(ii) s(i,7) € Ay. Now, using (3.5.4) we get
o B e Jas = (B (1) g
s(i,7

Since Card(As) < (1 + 5/(The)), then

2CM1 2CM1 TOG

>

S(ZJ)EAQ

This implies the inequality (3.5.16). O

< 200, (B + Toe).

F(fmo (7, ¢;<s))ds — (Fk) (Imo (T}'))hi

5(4,5)

Proposition 4.
SaE (1)) = [ F (170 )ds + (),

where
&5(7)| < 4eCry, O™ Ty (Toe 4+ S+ 1). (2.4.15)

Démonstration.  Indeed, as

0] = |3 [, [F () = () (170(e) ]
using (3.5.4) and (3.5.8) we get
G <X [, Gl () = 1™ (s

<e Z Cap, i (h2)? < 4eChay, Cp ™ Ty (Toe + 6+ 1).

2
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Finally,
Proposition 5.

/C(T)<Fk> (1m0(3)>ds = ["m (1(3))ds + &(7),

and [&6(7)| is bounded by Cy, B+ pt. O

Gathering the estimates in Propositions 1-5, we obtain

1) = 1(0) + ["F(105).5) ) ds

= 14(0) + ¢ [ (R (165) ) ds + 201,
where
=)l < X l&()]
i=1
ToC
<ACH™ {2(7 + 2T3C)y, €)% + 071%16 + ToChr €
Toe eCu, T
Q%ﬂ 3 >kﬂﬁ+5+n+ﬂ€%ﬁ
+2p+ 20 + 2Cy, (Toe + ), 7€ 10,1].
Lemma 2.4.1 is proved. [

Corollary 2.4.2. For any p > 0, with a suitable choice of p, v, d, Ty, 3, the function
|=(7)| in Lemma 2.4.1 can be made smaller than p, if € is small enough.

Démonstration. We choose

’y:Eaa T0:67U7 6: 9C)?M
1

,0=p=

Nel oY

with |
(8]

1——— >0, 0< < —.

g 77 HUSIS,

Then for e sufficiently small we have

=) <p.
[l

Now let p be a regular e-quasi-invariant measure and {S7, 7 > 0} be the flow of
equation (2.1.5) on h?. Below we follow the arguments, invented by Anosov for the
finite dimensional averaging (e.g. see in [57]).

Consider the measure p; = dudt on h? x R. Define the following subset of hi? xR :

B¢ :={(v,7):veTly, 7€][0,1] and STv e\ E(,To)}.
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Then by (2.1.8), there exists C'(M;) such that

1 (BS) = /01 u(ro NS (M \ B, TO))>dT < M) (T \ E(6,Ty).

For any v € Ty, denote A(v) = A(1,¢,9,To, 1, ), where (I,¢) = II; ,(v). Then by
the Fubini theorem, we have

m(B) = | Mes(A(v))dp(v).

To

Using Chebyshev’s inequality, we obtain

ec(Ml)
By the definition of F (4§, Tp), we know that
E(,Ty) C B, T)), if T,>Tp (2.4.17)

We set E>(0) := Ug,>1E(6, Tp). Define
RES(my) = {(I,gp) el : JkeZ™ such that k\Wi(I) 4+ - + kWi (1) = O}.

Since the measure p is regular, then by Lemma 2.2.3, we have that u(RES(my)) = 0.
If (I',¢") € I'y \ RES(my), then the vector W™ (I") € R™0 is non-resonant. Due to
Lemma 2.3.3, we know that there exists Tj) > 0 such that for 7' > T{, the inequalities
(2.4.8) hold. Therefore (I',¢') € E(0,T]) C E*(6). Hence

I) \ E¥(5) C RES.

So we have u(E*(6)) = p(T'y). Since pu(E>(9)) = limyp, 00 F (5, To) due to (2.4.17),
then for any v > 0, there exists T, > 0 such that for each Ty > T{, we have

p(EX\ E(6,Tp)) < v.

So the r.h.s of the inequality (2.4.16) can be made arbitrary small if Ty is large
enough.
Fix some 0 < 0 < 1/2, we have proved the following lemma.

Lemma 2.4.3. Fiz any 6 > 0, p > 0. Then for every v > 0 we can find e(v) > 0
such that, if € < €(v), then

p(TVNGE)) <

where N(:2—) = N(

901”1

€,0,€77).

_p
9CHr,
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We now are in a position to prove assertion (i) of Theorem 2.1.2.
By Corollary 2.3.2, for each ¢ € [p/, p], there exists Cs(g, M7) such that for any
Ji, Jy € BY(My + 1) (see Agreements),
[(F) () = (EN) |7 < KEY) = (F)(2)l5ig, o < Cs(@ Mi)[ Ty = ol (2.4.18)

Since the mapping (F') : h} — h¥ is locally Lipschitz by (2.4.18), then using Picard’s
theorem, for any Jy € BJ(M;) there exists a unique solution J(-) of the averaged
equation (2.1.9) with J(0) = J;. We denote

T(Jo) :=1inf{r > 0: |J(7)|, > M7 + 1} < o0.

For any p > 0 and ¢ < p + (y, there exist n; such that

IF(I,0) — F' (I, 0)|y < LemO30M) () € BL(My + 1) x T,

/38 (2.4.19)
[(F) () = (E)Y™ (J)]g < ge’CS(M”, J € By(M; +1).
Here
Cs(p, My) if q > p,
Co(My) = 5(p, M) ta>p
Cs(q, My) if q<p.

Find py from the relation

] iler?qpo — p€*CS(M1)_
=1

By Lemma 2.4.1 and Corollary 2.4.2, there exists €5, such that if € < €54, then
for initial data in the subset I'; = an,po(#ﬂiea €, %,e7) we havefor k=1,--- ,ny,
1

1) = 10+ [[(FII@)ds + &ln), |G < TE0.1, (2420

Therefore, by (2.4.19) and (2.4.20), for (1¢(0),¢(0)) € I'5, J(0) € B,(M; + 1) and
7| < min{1, 7(J(0))},

[1(m) = J ()l = [1°(0) = J(0)I7

< /OT |F'(I°(s))ds — /OT<F>(J(S))‘quS
< /OT |[F"(1(s)) — <F>n1(J(S))|qus + gefcg(Ml)'
< /OT [(EF)Y(I9(s)) — (F)(J(s))]7ds + ge’CS(Ml),

Using (2.4.18), we obtain
1) = Tl < 11(0) = ) + [ CoOMI(s) — T(s)lyds + Eolr),

where [&(7)] < 2e~“(). By Gronwall’s lemma, if

;<6 =e B0y

[1(0) = J(0)]
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then

[1(7) = J(7)|q < 2p, |7| <min{1,T(J(0))}.
This establishes inequality (2.1.11). Assuming that p << 1, we get from the defini-
tion of T (J(0)) that 7 (J(0)) is bigger than 1, if {; > 0 and ¢ > p. From Lemma 3.3

we know that for any v > 0, if € small enough, then p(I'g \ I';) < v. This completes
the proof of the assertion (i) of Theorem 2.1.2.

Proof of statement (2) of Remark 2.1.3. If the perturbation is hamiltonian with
Hamiltonian H, then F' = —VH. Therefore the averaged vector filed (#') = 0. For
any p > 0 and any ¢ < p, there exists ny such that

I — 12| < p/4, VI € By(M).

By similar argument, we can obtain that, there exists a subset I}~ C L'y, satis-
fying (2.1.10), such that for initial data (I1°(0),(0)) € I'; .., and for 7 € [0, 1], we
have

175 () — I (0)] ;7 < p/A.

So
[1°(7) = I°(0)|; < p for 7€]0,1].

In this argument we do not require {, > 0. So item (ii) of Assumption A is not
needed if the perturbation is hamiltonian.

2.4.2 Proof of the assertion (ii)
We fix o < 1/4. For any (m,n) € N? denote

B, (€) :== {(I,gp) ely: klgfn|]k| < 60‘},

Rom(@) = | {(1,@ €T, |W(I)-L| < ea}}.
|L|<n,LeZm\ {0}
Then let
Tyn(e) = ( U Rmo,n(e)) U By(e), (2.4.21)

mo<m

and for any (Iy, po) € Iy, denote

S(e;m,n, Lo, o) = {7 € [0,1] - (I(7), (7)) € Timn(e)}-

Fix m € N, take a bounded Lipschitz function ¢ defined on the torus T™ such
that Lip(g) < 1 and |g|z., < 1. Let 3,czm g5 be its Fourier series. Then for any
p > 0, there exists n, such that if we denote g, = 3 ,<, gs€%, then

, VpeTm.

[\ et

9(0) — ()| <
As the measure p is regular and Y, ,(€1) C Ty n(€2) if € < €2, then

(Tmn(€)) =0, €—0.
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Since the measure pu is e-quasi-invariant, then following the same argument that
proves Lemma 2.4.3, we have there exists subset A, C I'g such that for initial data
(1o, o) € A, we have Mes(S(e,m, n, Iy, @0)) < p/4, and if € is small enough, then
(Lo \ AS) < u(lo)p/4. Due to Lemma 2.3.3, if (I°(-), () stays long enough
time outside the subset Y,,,(€), then the time average of g(¢“™ (7)) can be well
approximated by its space average. Following an similar argument of Lemma 2.4.1,
we could obtain that for € small enough, for initial data (Ip, o) € AS, we have

/019(906’”1(7))6” - L. §(90)d90‘ <pf2. (24.22)

[ syt [ gag| -

So if € is small enough, then

L o~ [ s@s
< M(;O){’ /uo,meA; [ steranon = [ g(e)deldp(to, vo)

+‘/ / d)\goﬂpo_/ dold [’ }<2
(Ig,gpo)ero\AZ{ 9(¢) ng(ﬂp) ©ldu(lo, o) P

That is ,
‘/9(@))\6 - /g(go)dgp‘ — 0 as e€—0, (2.4.23)

for any Lipschitz function as above. Hence, the probability measure A\, converges
weakly to Haar measure dp (see [22]). This proves the assertion (ii).

2.4.3 Consistency conditions

Assume the e-quasi-invariant measure p is dependent on e, i.e. u = p.. Using
again the Anosov arguments, we have for the measure pu. that

eCE(Ml)

:ue(N(57€a 57 TO)) < ,ue(rl \ E(éa TO))

It is easy to see that assertion (i) of Theorem 2.1.2 holds, with u replace by g, if
following consistency conditions are satisfied :

1) For any § > 0, p.(I'y \ E(d,€77)) go to zero with e.

2) C¢(M,) is uniformly bounded with respect to e

In subsection 2.4.2, we can see that for assertion (ii) of Theorem 2.1.2 to hold,
one more condition should be added to the family {te}ee(o,1). That is,

3) For any m, n € N, p, (Tmn(e)) (see (2.4.21)) goes to zero with e.

2.5 On existence of e-quasi-invariant measures

In this section we will provide two sufficient conditions to the existence of
e-quasi-invariant measures for perturbed KdV equation (2.1.1).
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2.5.1 Quasi-invariant measures on the space H”

We will first prove that if Assumption A holds with (5 > 2, then there exist
e-quasi-invariant measures for the perturbed KdV (2.1.1) on the space H?, where
p is an integer not less than 3. Through out this section, we suppose that (, = 2,
3 <pe€Nandp = 0. Our presentation closely follows Chapter 4 of the book [75].

Let 7, be the centered Gaussian measure on H? with correlation operator 9, 2.
Since 8,2 is an operator of trace type, then 7, is a well-defined probability measure
on H?.

As is known, for solutions of KdV, there are countably many conservation laws
Tn(u), n >0, where Jo(u) = 3||ul[§ and

Tuw) = [ {;(8gu)2+cnu(3z_lu)2+ Q,(u, .., 00 ) b, (2.5.1)

for n > 1, where ¢, are real constants, and Q,, are polynomial in their arguments
(see, p.209 in [38] for exact form of the conservation laws). By induction we get from
these relations that

lull2 < 200 + C(Tnr, - To), n> 1, (2.5.2)

where C' vanishes with wu(-).
Now set J, = Jps1(u) — 3l[ull2,;. From the form (2.5.1), we know that the
functional J, is bounded on bounded sets in H?. We consider the measure p, defined

by
() = [ e (), (2.5.3)

for every Borel set {2 C HP. This measure is regular in the sense of Definition 2.1.1
and non-degenerated in the sense that its support contains the whole space H? (see,
e.g. Chapter 9 in [11]). Moreover, it is invariant for KdV [75].

The main result of this section is the following theorem :

Theorem 2.5.1. The measure p, is e-quasi-invariant for perturbed KdV equa-
tion (2.1.1) on the space HP.

To prove this theorem, we follow a classical procedure based on finite dimensional
approximation (see, e.g. [75]).

Let us firstly write equation (2.1.1) using the slow time 7 = et,

U= € N (—Upgs + O6un,) + f(u), (2.5.4)

where @ = 2. By Assumption A, for each ug € BY(M), the equation (2.5.4) has a
unique solution u(-) € C([0,T], H?) and ||u(7)||, < C(||uo||p, T) for all 7 € [0,T].

Denote L,, the subspace of H?, spanned by the basis vectors {e1,e_1,...,em, e_n}.
Let P,, be the orthogonal projection of H? onto L,, and Pt = Id — P,,. For any

u € HP denote u™ = P,u € L,,. We will identify P, with Id and u* with wu.
Consider the problem

" =€t [ —up .+ 6Pm(umu;n)} + P (f(u™)), u™(z,0) =Ppup(x). (2.5.5)

Clearly, for each uy € HP this problem has a unique solution v™(-) € C([0,7"],L,,)
for some T" > 0.
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Proposition 2.5.2. Let uy € H? and uy' € L,, such that uj* strongly converge to ug
in HP? as m — +o00. Then as m — 400,

u™(-) = u(-) in C([0,T], H?),

where u(-) is the solution of equation (2.1.1) with initial datum u(0) = uy and u™(-)
is the solution of problem (2.5.5) with initial condition u™(0) = ug".

In this result, as well as in the Lemmas 2.5.5-2.5.7 below, the rate of convergence
depends on the small parameter e.

We shall prepare several lemmas to prove this proposition. For any n,m € N, we
have for the solution «™(7) of problem(2.5.5)

L Juwn(7)) = (Vudula™), (7))

dr
= (V™) € [t + P (u™uf)] + Pl f (™))

Here V, stands for the Lo-gradient with respect to u. Since 7, is a conservation law
of KdV, then (V,J7,(u™), —ul, + u™u") = 0. So

rxrxr

jTjn(um) = = (VT (™), Po (™)) + (VuTn (™), P [f (™). (2.5.6)

We denote the first term in the right hand side by ¢ '&,(u™) and the second term
by &I (u™).

Lemma 2.5.3. There exist continuous functions vy, (R, s) and~,,(R,s) onR% = {(R, s)}
such that they are non-decreasing in the second variable s, vanish if s =0, and

1€ ™) < Al s [ ), (2.5.7)
&0 ()] < (11" -1
. (2.5.8)
,max[PAG o+ [P () )
1-:]’#7 Q\n—Q '
foralln =3,4,.... For n =2 equality (2.5.7) still holds, and
(™) < Coll ™)™ {13 + Co(1 ™ ]1): (2.5.9)

Démonstration. Since f(u) is 2-smoothing, from (2.5.1) and (2.5.6) we know that
&7 (™) < (™ -, [ [a-1),

where 7/,(+,) is a continuous function satisfying the requirement in the statement
of the lemma.
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For the quantity &,(u™), by (2.5.1) and (2.5.6) we have

a(u) = [ {61 @2 B ) + BBl (a0 )
+(—1)”_112cn3”_1( mor Ly ™ P (um ™)

299 (u ...an2m) .
6 ) y Vg 9P m.m }d
=0+ {6cnP;<umu$><ag—1um>2
T
n—3
126, ("0 a0, 3 Ch 0 0
i=0
209, (u™, ..., 0" 2um) |
6 7 y Vg 9P m.m }d .
Hence we prove the assertion of the lemma. 0

Lemma 2.5.4. For every uy € HP, there exist 71(||uollo) > 0 and a continuous
non-decreasing e-depending function B5(s) on [0, +00) such that the value ||u™(7)]|,
are bounded by the quantity B5(||uol|p), uniformly in m =1,2,... and 7 € [0, 7).

Démonstration. Let M = max{||ug||o, 1}. It is easy to verify that
d m m m m
TG = 20" P (f (™)) < 2[5 + C(2M),

if [|[u™]|o < 2M. Therefore for a suitable 71 = 71(||ug||o) > 0 and all 7 € [0, 7], we
have |[u™(7)||o < 2M. For the quantity J;(uv™) and 7 € [0, 4],

jle(um) = (Vo i (u™), P f(u™)) < CL(2M).

Therefore J1(u™ (7)) < Ci7 + J1(u™(0)). So ||u™(7)|[1 < Bi(||uol|1). Similarly, by
Lemma 2.5.3 and inequality (2.5.2), we have for 7 € [0, 7],

j7~72(um(7)) < € ' Col By ([Juol )] T (W™ (7)) + C3 e, Bu(([uol|1)]-

By Gronwall’s lemma and relation (2.5.2), we obtain ||u™(7)||2 < B5(||uo||2). In the
view of Lemma 2.5.3, we have

Ta(u™(1)) < Tu(w™(0)) +7Cu[e7, By ([[uo]ln-1)],
for n = 3,...,p. Hence max,cjo ) |[u™ ()|, < B5([|uollp)- ]
Below, we will denote by 7 the quantity min{r (||uo||o), T}
Lemma 2.5.5. As m — o0,
[[u"™(7) = u(7)[[p—1 = O,

uniformly in T € [0, 7).
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Démonstration. Denote w = u™ — u. Using that (Ju™ PEu') = 0 for any j and
each v/ € H°, we get :

[
= (00w, 02 (= tane + OB () — Gty + Po(F (™) — f(u)])
=3 o w, g = ]} + 3¢ (PAO W), plw™ )

(o, o [Balf ™) - S(w)])

Using Sobolev embedding and integration by part, we have
p . . .
<a§;—1w, o[y - u2}> =30 [ o twor ol + u)ds
i=0 T

p

<= [0+ u) (@ w)de + 30 Cillwl B |u™ + ull,
=1

< Ol |l 2y

Therefore,

d - m - m
iy < O ) Pl + [Py f (@)l + Cale™ Hlullas [[u™ ) [l

Since ||P;; (u)|], and ||PL(f(u))]|, go to zero as m — oo for each T € [0, 7] and as
they are uniformly bounded on [0, 71] by Lemma 2.5.4, we have for 7 € [0, 7],

w51 (r) = [[w(0)[[5-, + /0 Ce, [luollp)[wll*ds + am(e™, 7),

where a,(e7',7) — 0 as m — oo. So the assertion of the lemma follows form

Gronwall’s lemma. O

Lemma 2.5.6. Let " € [0,71] such that 7™ — 7° € [0, 7], then

u™ (™) —u(mo)ll[, =0 as m — oo.

Démonstration. We firstly prove J,(u™(7™)) — Jp(u(19) as m — oo. Indeed, for
m < +00, by (2.5.6), we have

T (7)) = T () + [ 1w (s) + EL ()]s

Since f(u) is 2-smoothing, the second term in the integrand is continuous in H?~!.
So, in the view of Lemma 2.5.5, we only need to prove that the first term goes to zero
as m — oo. Due to Lemma 2.5.3, we only need to show that uniformly in 7 € [0, 1],

i 1B (O™ (1)gu™ (7)o + Jim ([P (r)u™ (7l = 0,
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where 0 < 4,7 < p—1and i+ j # 2p — 2. For the first term in the left hand side,
we have

1P (0 u™ (7)0%u™ (7))o

<Py (0pu™ (1)0u™ (1) = Fpu(r)0fu(T) o + [P, (Oyu(T) (7)) |o-

x

(2.5.10)

By Lemma 2.5.5, the first term in the r.h.s of (2.5.10) goes to zero as m — oo,
uniformly in 7 € [0, 7]. Since u(-) € C([0, 1], H?), then d'u(-)du(-) € C([0, ], HY).
Therefore, the quantity ||PL(0iu(7)du(7)|lo — 0 as m — oo, uniformly in 7 €
[0, 71].

In the same way lim,, .o |[PLu™u™||; = 0. Therefore, we have

i, (7)) = Fy(a0) + [ (Vuy(uls). uls))ds = Tyfutr).

m—r00
Since the quantity J,(u) — [|ul[>/2 is continuous in H?~!, we have
Jim ™ (7)) | = (7o)l

The assertion of the lemma follows from the fact that weak convergence plus norm
convergence imply strong convergence. O

Lemma 2.5.7. As m — oo, ||[u"™(7) — u(T)||, = 0 uniformly for v € [0, 1].

Démonstration. Assume the contrary holds. Then there exists 6 > 0 such that for
each m € N, there exists 7™ € [0, 71| satisfying

u™ (™) — u(t™)||, = 0. (2.5.11)

Take a subsequence {my} such that 7 — 7% € [0, 7;] as my;, — oo. By Lemma 4.6,
we have
i [ () — u(z ),
= dim ([Ju™ (7)) = u(m)]], + [Ju(r™) = u(7)]],) = 0.

This contradicts with inequality (2.5.11). So the assertion of the Lemma holds. [

If T = 7, Proposition 2.5.2 is proved. Otherwise, we just need to iterate above
procedure by letting the initial datum be u(7;). This finishes the proof of Proposi-
tion 2.5.2.

With Proposition 2.5.2, we will need two more results to prove Theorem 2.5.1.

Proposition 2.5.8. For each uy € H? and any v > 0, there exists 6 > 0 such that
™ (7) = ui"(7)l]p < v,

uniformly for allm =1,2,..., 7 € [0,T] and every solution u*(-) of problem (2.5.5)
with initial data ui*(0) satisfying

[[u™(0) = ui*(0)[lp <,

(here u™(+) is the solution of (2.5.5) with initial data P,,ug).
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Démonstration. Assume the contrary. Then there exists v > 0 such that for each
d > 0, there exists m € N, u; € L,,, and 7™ € [0, T'] satisfying

" (7)) =™ (7"l = v and  [[u7"(0) = w™(0)]], < 0. (2.5.12)

Hence there exists subsequence my such that ||u]"* — Py, uol|, — 0 as my — oo.
Therefore lim,,, o ||u™ — uo||, = 0. By Proposition 2.5.2, we known that

Juy™ (7)™ () |p < ™ (7)) = w(™ ) ||, + [u™ (7)) = w(7™)|]p, = 0,

as my — oo. This contradicts with the first inequality of (2.5.12). Proposition 2.5.8
is proved. O

Lemma 2.5.9. Let ug € HP. Then for any 6 > 0, there exist r > 0 and mg > 0
such that for each m > mg and u(0) € B}(uo,7), the quantity

€ HEpa (@™ (n))] <,
for all T €10, 7).

Démonstration. In the view of Lemma 2.5.3, we only need to show for each 4. > 0,
there exist 7 > 0 and mg > 0 such that for every iy € B}(uo,7), and m > mg, we
have for 7 € [0, 77,

max [P, [0,u™ (T)0Lu™ (7)]llo + [P, (@™ (1)@ (7)) < 6. (2.5.13)

0<i,j<p,i+j#2p

Here u™(7) is the solution of problem (2.5.5) with initial datum u™(0) = Py, uo.
For the first term, we have

15 0™ (T)0u™ (7)o
< ||0u™ (1) 0™ (1) — O, ( 0" (7)llo
+ [|0,u™ (7)™ (7) — () 0fu(T) o + || Py [Du () 0fu(T)] lo-

By Proposition 2.5.2 and the fact that diu(-)dlu(-) € C([0,T], H), the second and
the third terms on the right hand side of this inequality converge to zero as m — oo,
uniformly in 7 € [0,7]. From Proposition 2.5.8, we know that there exists r > 0
such that the first term is smaller than d./2 for all 4 € B (u) and uniformly in all
m € N and 7 € [0,T]. Estimating in this way the term ||PL (@™u™)||;, we obtain
inequality (2.5.13). Hence we prove the assertion of the lemma. O

We now begin to prove Theorem 4.1.
Consider the following Gaussian measure 7, on the subspaces L,, C H” :

m (2mi)2+2(a2 + 62,

dp - = [[(2m)*i** exp — 5 d;dti_;
=1
= ¢(m) exp milll 2||p+1d Wiy ... diy,da_,,,
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where u™ := Y1, (Ue; + G_ze_;) € Ly, and di,, i € N, is the Lebesgue measure on
R. Obviously, n;" is a Borel measure on L,,. Then we have obtained a sequence of
Borel measure {n;"} on H? (see, e.g. [75]). We set

m _ —Jp(u m
up(Q)—/Qe Wy,
for every Borel set (2 € HP. Then p;" are well defined Borel measure on H?. Clearly
A = c(m)e” TP diyda_y ... iy di_p,.

Lemma 2.5.10. ([75]) The sequence of Borel measures i in HP converges weakly
to the measure [, as m — 00.

Rewrite the system (2.5.5) in the variables
W™ = (g, Uv, .oy Uy Uy,
where u™ = Y7 (G e; + U_je_j)

d . 0T (u™) . .
iy = —2mje laTj + fi@™), j=+1,...,+m. (2.5.14)
where P, f(0™) = Y50 (f5(0™)ej + f-j(@™)e—;). Let ST, 7 € [0,T7], be the flow map
of equation (2.5.14). For any Borel set 2 C H?, let ST (Q2) = ST (P,,(2)). By the
Liouville Theorem and (2.5.6), we have

d m T _ -1 m f m S a‘fl
) = [ ) e+ Y

i=—m,i7#0

)]d,/n. (2.5.15)
Denote ST, 7 € [0,T1], to be the flow map of equation (2.5.4) on the space HP.
Fix any M > 0, by Assumption A, there exists M; such that
ST(BEOD) € BY().

Since f(u) is 2-smoothing, then by Cauchy inequality, |0f;/0t;| = O(i7%). So we
have

\Sgﬂ(um) + > ag(um)] <C(M;), YmeN and Vu™ € By(M;). (2.5.16)
i=—m,i#£0 ?

Now fix 75 € [0,T]. Take an open set Q2 C By(M). For any § > 0, there exists
compact set K C €2 such that p,(Q2\ K) < 6. Let K3 = S7°(K). Then the set K
also is compact and K; C S7°(€2) = §2;. Define

a = min{dist(K, 0Q); dist(Ky,00)},

where dist(A, B) = inf,cavep ||u — v||, and JA is the boundary of the set A C H?.
Clearly o > 0. By Proposition 4.8 and Lemma 4.9, for each ug € K, there exists
a My, > 0 and an open ball B} (ug, ry,) of radius r,, > 0 such that

[l (s) = a™(s)ll, < af3 and |e & (@™)] < C(M)/2, (2.5.17)



2.5. ON EXISTENCE OF e-QUASI-INVARIANT MEASURES 59

for all u € B} (ug, ry,), m = mg and s € [0, 7). Let By, ..., B be the finite covering
of the compact set K by such balls. Let

D=U_B; and Qu3:={ue€ Q| dist(u,00) > a/3}.
By Proposition 4.2,
SZS(D) C Qa/g,

for all large enough m € N. From inequalities (2.5.15), (2.5.16) and (2.5.17), we
know that if m is sufficiently large, then

0N/ (D) < n(S™(D)) < XN (D),
By Lemma 4.10, we have
pp(2) < pip(D) + 6 < liminf p*(D) + 0
< lim inf 63C(M1)T°/2um(ST°(D)) +6 < lirry?jolipe (Ml)TO/Qu;"(Qa/g) +9

m—o0

N

€3C(M1 T0/2 (Ql) + 5.

Here we have used the Portemanteau theorem. Since d was chosen arbitrarily, it
follows that

pp(€) < X2, (70 (Q)).
Similarly, j1,(S™(€2)) < e3¢MI™/2) (Q). As 7y € [0, 7] is fixed arbitrarily, Theorem
4.1 is proved.

Remark 2.5.11. The measure j, is also e-quasi-invariant for the following pertur-
bed KdV equations on HP :
U+ € (Upge — Bul,) = O,u, (2.5.18)
0+ € (Ugge — Bun,) = 05 'u. (2.5.19)

T

Indeed, consider the following finite dimensional system corresponding to equa-
tion (2.5.18) as in problem (2.5.5) :

0" = e =, 4 6P (W) 4 O™, w(0) = Prug. (2.5.20)

Q?QJI

Let us investigate the quantity -.7,(u™), n > 3, for equation (2.5.20) :
%jn(um) = e 1&,(u™) + (VT (u™), Opu™).
For the first term, see in Lemma 2.5.3. For the second term,
Dy = (VuTu(w™), Byu™) — /T {a;;uma;;“um T enyu™ (™2
+ 2¢,u™ 0" oM™
209, (um, ..., 00 2um)

+ B 8i+1um}da:.
i=0 3(5:%“”)
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Notice that the first term in right hand side vanishes. For the second and the third
terms,

/ cn[&Cum((()Kf_lum)2 + 2um3£_1um8£um]dx = cn/ d[um(c?;l_lumf] =0.
T T
So we have

| Dn| < C(J[u"[ln-1). (2.5.21)
Note that equation (2.5.20) can be written as a Hamiltonian system in coordinates
'l:lm == (’&1, 'le,l, e ,ﬁm, ﬁ,m> :

d L OH, (a™)

U = —2mje  ————=,
1 T oa

i j=41,... +m, (2.5.22)
where the Hamiltonian H;(u) = Ji(u) — § Jy u*dz. Therefore the divergence for the
vector field of equation (2.5.22) is zero. This property and inequality (2.5.21) also
hold for equation (2.5.19). Hence the same proof in this section applies to equation
(2.5.18) and (2.5.19), which justifies the claim in the Remark 2.5.11.

2.5.2 The e-quasi-invariant measure on the space h?

Fix ¢, > 1 and p > 3, and let p be a ((-admissible Gaussian measure on the
Hilbert space h? (see 2.1.12). In this subsection we will discuss how this measure
evolves under the flow of the perturbed KdV equation (2.1.1). We follow a classical
procedure based on finite dimensional approximations (see e.g. [75]).

We suppose the assumption A holds. Let us write the equation (2.1.1) in the
Birkhoff normal form, using the slow time 7 = €t :

d
V= e ' IW;(I)v;+ X;(v), jeEN, (2.5.23)

0 -1

where X] = (X]7 X,j)t € RQ and \.7 = < 1 0

). Let X (v) = (Xy(v),...), then

X(v) = d¥ (\Ifl(v)) ( f(\Ifl('u))>.

We assume additionally that :
The mapping defined by h? — hP*% : v — X (v) is analytic.

For any n € N, we consider the 2n-dimensional subspace 7, (h?) of h? with coordi-

nates v" = (vq,...,vp,0,...). On m,(h?), we define the following finite-dimensional
systems :

d

%(A_jj = eflej(I(w"))ch + Xj(w"), 1 < j < n, (2524)
where &; = (wj,w_;)" € R? and w™ = (&1,...,Wp,0,...) € m,(h?). We have the

following theorem :

Theorem 2.5.12. The curve w"(-) converges to v(-) as n — oo in C([=T,T]; h?),
where v(-) and w"(+) are, respectively, solutions of (2.5.23) and (2.5.24) with initial
data v(0) € h? and w™(0) = v™(0) € m,(hP).



2.5. ON EXISTENCE OF €-QUASI-INVARIANT MEASURES 61

The proof of this theorem is long and standard, using finite dimensional approxi-
mation. We move the detail of it to Appendix B and directly go to the main theorem
of this subsection.

Let S denote the flow determined by equations (2.5.23) in the space h?, and

B)(M) :={veh”:|v], <M}

Theorem 2.5.13. For any My > 0, there exists a constant C' > 0 which depends
only on My and T, such that if A is a open subset of By(My), then for 7 € [0,T],
we have

e Tu(A) < u(S7(A)) < “Tu(A).

Démonstration. From Assumption A, we know that there is constant M; which only
depends on My and T', such that if v(0) € B} (M), then

o(r) € BU(M,), |r|<T. (2.5.25)

For any n € N, consider the measure pu,, = 7, o y on the subspace 7,(h?). Since u
is a ({-admissible Gaussian measure, by (2.1.12) the measure p, has the following
density with respect to the Lebesgue measure :

n —-n = N14+2p _—1 1 = j1+2p|vj|2
b, (V") == (2m) H(Qﬂ'j) 0; exp{—527

j=1 j=1

}.

gj

Let S be the flow determined by equations (2.5.24) on subspace 7, (h?). For any
open set A, C m,(B}(Mp)), due to Theorem 2.A.1 in the Appendix 2.A, we have

L n(S7(4)

[, 5 (P A,

- /g(An) jz:fpﬂ <Uij +a;)ij * %ij + %fjj)bn(v")dv"
= [

Since j~%/0; = O(1), using the Cauchy’s inequality and the assumption that X (v)
is (;-smoothing, there exists a constant C' which depends only on M, such that

lc"(v™)| <O, " e Wn(B;;(Ml), Vn € N. (2.5.26)
We have
€ pn(An) < pn(ST(An)) < €7 pn(An), (2.5.27)

as long as S (A,) C (B, (My)).
Since p, convergences weakly to p, the theorem follows from (2.5.25), (2.5.27)
and Theorem 2.5.12. O
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2.6 Application to a special case

In this section we prove Proposition 2.1.6.
Clearly, we only need to prove the statement (i) of Assumption A.
Let F : H™ — R be a smooth functional (for some m > 0). If u(t) is a solution

of (2.1.13), then
jt]:( (1)) = (VF(u(t), =V (u) + ef(x)).

In particular, if F(u) is an integral of motion for the KdV equation, then we have

(VF(u(t),V(u)) =0, so

d
SF() = «VF(u(t), £(2).

Since ||u(0)]|3 is an integral of motion, then

H (o = 2¢(u, f(2)) < e(|lulls + [If (@)][5)-

Thus we have
(@[5 < e“([|u(0)][5 + et|| f()I]5)- (2.6.1)

The KdV equation has infinitively many integral of motion 7,,(u), m > 0. The
integral 7, can be writen as

( — HU||2 +ZZ/Crmu mi) | .. (mr)daj’

r=3 m
where the inner sum is taken over all integer r-vectors m = (my, ..., m,), such that
0<m;<m-1,7=1,...,rand my +--- +m, = 4 + 2m — 2r. Particularly,

Jo(u) = [[ulf5.

Lets consider
I = /u(m1) ... f(mi) .. -u(m”)dx, my+ - +my, = M,
Z

where 7 > 2, M > 1, and 0 < m; < o — 1. Then, by Hoélder’s inequality,

1< ey, - @)y, - Ml =~ < oo

m;
Applying next the Gagliardo-Nirenberg and the Young inequalities, we obtain that
1| < 6[|ull + Csl[ull§*, V6 >0, (2.6.2)

where Cs and C7 do not depend on u. Below we denote C' a positive constant
independent of u, not necessary the same in each inequality. Let

]1 = <vs7m(u)a f> = <u(m)’ f(m)> + Z ZC;“,mu(ml) e f(mZ) U umrdl‘y

r=3 m
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where my + -+ - +m, = 6 + 2m — 2r. Using (2.6.2) with a suitable J, we get
L <l + Cllallg < Hlullf, + €+ [[ulle™) + 111 (2.6.3)
If u(t) = u(t, z) is a solution of equation (2.1.13), then

d

I (1) = (VTm(u), ef) < ellully, + eCO+[[ullg™) + €l £

and
1 2 4m 2 4m
Sllulliy = CQA A+ [lulg™) < Fn(w) < 2fJullf + O+ Jfullg™)-

Denote C,, = C(1 + ||u(0)||g™) + C||f||?,, then from (2.6.1) and above, we deduce

&(Im(u) = Cm),

N | —

d
a(jm(u) —Cp) <

thus
(1) = Cry < €2 T(u(0)) — Ci],

SO
Ju(t)]1?, < 4][u(0)] 2,2 + Cpn.

This prove Proposition 2.1.6. [

2.A Liouville’s theorem
Consider the following system of ordinary differential equations :
t=Y(x), z(0)=uz9€R",

where Y (z) = (Yi(x),---,Y,(2)) : R® — R™ is a continuously differentiable map.
Let F(t,x) be a (local) flow determined by this equation.

Theorem 2.A.1. (Liouville). Let B(xy,- - ,x,) be a continuous differentiable func-
tion on R™. For the Borel measure dy = B(x)dz in R™ and any bounded open set
A C R"™, we have

Cu(E@ ) = |

F(t,A)

f:a(B(glz(x)) dr, te(-T,T),

7

where T > 0 is such that F(t,z) is well defined and bounded for any t € (=T,T)
and x € A.

For B = const this result is well known. For its proof for a non-constant density B
see e.g. [75].
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2.B Proof of Theorem 2.5.12

In this appendix, we give a detail proof of Theorem 2.5.12.
Fix any My > 0. From Assumption A, we know that there exists a constant M,
such that if |v(0)], < My, then

(7|, < My, 7€]0,T). (2.B.1)
The equation (2.5.24) yields that

d

o w™|2 = Z 2P X (w™) = X" (w™). (2.B.2)

We define .
Z 2ry . X(v).

By smoothing assumption of X (v), we know that there exists a constant C; > 0
such that
X"(W) < Chy W, <2My, YneN. (2.B.3)

Denote 7 = M, /Cy, then if |w"(0)|, < My, then
lw"(T)|, < 2M,, 7€|-7,7], VneN. (2.B4)
Lemma 2.B.1. In the space C([—7,7|,h?~'), we have the convergence

W) = o() as n— 0.

Démonstration. Denote gj =v; —&;, I, = I(v) and Ly = I(w"). Since Jv; = vj,

using equations (2.5.23) and (2.5.24), for 1 < j < n, we get
d - B
%lfﬂz = 2(§)![e T W(L) vy — W;(Ln)d;) + X;(v) = Xj(w")]
= 26 [W(L,) — Wy(Lon)]v; - (&) +2(§)" - (X;(v) = X;(w™)).

By Lemma 2.2.4 and Cauchy’s inequality, we know that
W;i(I(v)) = W;i(I(w"))| < Co(My)jlv — w"[p-1.

Using the smoothing of the mapping X (v), we get that
d 2

—|v—w"

dr —1 < CY3(67 M1)|U - wnﬁifl + CLn(U), T E [_7:7 T]a

where .
> 07X ().
j=n+1
Obviously, a,(v) — 0 as n — oo uniformly for |v|, < M.
The lemma now follows directly from Gronwall’s Lemma. O]
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Lemma 2.B.2. Ifw"(0) — v(0) strongly in h? and 1, = T, T, € [—T7,T], asn — oo,
then

Tim Jo(r) — w"(r)], = 0.

Démonstration. From (2.B.2) we know that for any 7, € [—7, 7],

Tn

W) = O =[x @ (s))ds.

Since w™(0) — v(0) strongly in AP, then using Lemma 2.B.1 we get

‘U(T)‘i < liggicgf |u)"(7n)|227 < hinj;ip \w"(m)\i

—timsup (" (O + [ 3@ (s))ds ) = [0(0)2 + [ x(v(s)ds

n—oo
= [v(7)-
Therefore, lim,, o0 [w"(75)], = |0(7)|p- Since w"(7,) — v(7) in the space h?~! as
n — 0o, then the required convergence follows. O

Lemma 2.B.3. In the space C([—7, 7], h?), w™(-) = v(-) as n — oo.

Démonstration. Suppose this statement is invalid. Then there exists 6 > 0 and a
sequence {7"},eny C [T, 7| such that

W (") = o(T")]p = 0.

Let {7 }ren be a subsequence of the sequence {7"},en converging to some 70 €
[—7,7]. But v(r™) — v(7Y) in h? as k — oo, and using Lemma 2.B.2, we can get
W (7)) — v(7%) as k — oo in hP. So we get a contradiction, and Lemma 2.B.3 is
proved. O

If T < 7, the theorem is proved, otherwise we iterate the above procedure. This
finishes the proof of Theorem 2.5.12. [






Chapitre 3

An averaging theorem for weakly
nonlinear PDEs (non-resonant
case)

The results of this chapter are taken from my paper [30].

Abstract : Consider nonlinear partial differential equations with small nonlinearities

%u +i(=Au+ V(z)u) = eP(Au, Vu,u,z), z €T (%)

Let {¢1(z), C2(x), . ..} be the Lo-basis formed by eigenfunctions of the operator —A + V().

For any complex function u, write it as u(z) = > 45 viCe(x) and set I(u) = (Ip(u), k > 1),

where Iy (u) = 3|vg|?. Then for any solution u(t,z) of the linear equation (x)—o we have

I(u(t,-)) = const. Suppose that the spectrum of the operator —A + V' (x) is non-resonant.
In this work it is proved that if (*) is well posed on time-intervals ¢t < e~! and satisfies there
some mild a-priori assumptions, then for any its solution uf(¢, ), the limiting behavior of

1

the curve I(uf(t,-)) on time intervals of order e, as e — 0, can be uniquely characterized

by solutions of a certain well-posed effective equation.

3.1 Introduction

We consider the Schrodinger equation

d
U i(—Au+V(z)u) =0, zeT (3.1.1)
and its nonlinear perturbation :
;ltu +i(—=Au+ V(z)u) = eP(Au, Vu,u,z), x €T (3.1.2)

where P : C*2 xT¢ — C is a smooth function, 1 < V(z) € C"(T¢) is a potential (we
will assume that n is sufficiently large) and € € (0, 1] is the perturbation parameter.
For any p € R denote by H? the Sobolev space of complex-valued periodic functions,
provided with the norm || - ||,,

lull2 = (=AY, w)+ G, w), it peN,
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where (-, -) is the real scalar product in L?*(T%),
(u, vy = Re/d uvdr, u, vE L*(TY).
T

Ifp> g + 2 = pg, then the mapping H? — HP™2 u(x) — P(Au,Vu,u,x) is
smooth (see below Lemma 3.3.1). For any 7" > 0, a curve u € C([0,T], H?), p > pa,
is called a solution of (3.1.2) in H? if it is a mild solution of this equation. That is, if
the relation obtained by integrating (3.1.2) in ¢ from 0 to s holds for any 0 < s < 7.
We wish to study long-time behaviours of solutions for (3.1.2) and assume :
Assumption A (a-priori estimate). Fix some T > 0. For any p > pq + 2, there
exists ny(p) > 0 such that if n > ny(p), then for any 0 < e < 1, the perturbed
equation (3.1.2), provided with initial data

u(0) = uo € H”, (3.1.3)
has a unique solution u(t,z) € H? such that
lull, < C(T,p,||uoll), for te[0,Te].

Here and below the constant C' also depends on the potential V' (z).
Denote the operator
Ayu = —Au+ V(z)u.

Let {(x}r=1 and {Ax}g=1 be its real eigenfunctions and eigenvalues, ordered in such
a way that
I< A< A<

We say that a potential V' (x) is non-resonant if

> Aesi # 0, (3.1.4)
k=1
for every finite non-zero integer vector (si, sa, - - - ). For any complex-valued function
u(z) € HP, we denote by
U(u) :==v = (v1,v9,--+), v; €C, (3.1.5)

the vector of its Fourier coefficients with respect to the basis {(}, i.e. u(z) = >3 | vk (k.
In the space of complex sequences v, we introduce the norms

oy =D lolX, peER,
k>1
and define h? := {v : |v|, < +00}. Denote
1
Ik = §|Uk|2, P = Al"g Vg, k 2 1. (316)

Then (1,¢) € R*® x T* are the action-angles for the linear equation (3.1.1). That
is, in these variables equation (3.1.1) takes the integrable form

d d

—I0. =0 — =)\ k> 1. 3.1.7
gle=0, —or =X, ( )
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Abusing notation we will write v = (I, ¢). Define h¥ to be the weighted [*-space
W= {1 =0, ) € R 11 < oo}, 115 = 23 X1,
i=1
and consider the mapping
i hP = W, v— I, Li(v) = ;|vj|2, Jj =1

It is continuous and its image is the positive octant by, = {I € b} : I; > 0,Vj}.

We mainly concern with the long time behavior of the actions I(u(t)) € RY
of solutions for the perturbed equation (3.1.2) for ¢t < €. For this purpose, it is
convenient to pass to the slow time 7 = et and write equation (3.1.2) in the action-
angle coordinates (1, p) :

In=Ful,0), ¢r=¢"MN+G(l,0), k=1, (3.1.8)

where I € R*®, ¢ € T and T* := {(6;)ien : 0; € T} is the infinite-dimensional
torus endowed with the Tikhonov toppology. The functions Fj and G, k& > 1
represent the perturbation term P, written in the action-angle coordinates. In the
finite dimensional situation, the averaging principle is well established for perturbed
integrable systems. The principle states that for equations

d d

Cr=efu Co=w( I

gl=cfLy), —o=WI)+egl, ),

where I € R™ and ¢ € T™, on time intervals of order ¢! the action components
I(t) can be well approximated by solutions of the following averaged equation :

ST=cn)W), (N = [ F( e (319

This assertion has been justified under various non-degeneracy assumptions on the
frequency vector W and the initial data (1(0), ¢(0)) (see [57]). In this paper we want
to prove a version of the averaging principle for the perturbed Schrédinger equation
(3.1.2). We define a corresponding averaged equation for (3.1.8) as in (3.1.9) :

Je={B)(). (F)) = [

T

Fe(J,p)de, k=1, (3.1.10)

where dy is the Haar measure on T°°. But now, in difference with the finite-
dimensional case, the well-posedness of equation (3.1.10) is not obvious, since the
map (F)(I) = ((F1)(I),...) is unbounded and the functions (F;)(I), kK > 1, may be
not Lipschitz with respect to I in A7, . In [49], S. Kuksin observed that the avera-
ged equation (3.1.10) may be lifted to a regular ‘effective equation’ on the variable
v € h?, which transforms to (3.1.10) under the projection 7;. To derive an effective
equation, corresponding to our problem, we first use mapping ¥ to write (3.1.2) as
a system of equation on the vector v(7) :

O =€ dVU(u)(—iAy(u)) + P(v). (3.1.11)
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Here P(v) is the perturbation term P, written in v-variables. This equation is sin-
gular when € — 0. The effective equation for (3.1.11) is a certain regular equation

o = R(v). (3.1.12)

To define the effective vector filed R(v), for any 6 = (0y,6;,---) € T let us denote
by ®y the linear operator in the space of complex sequences (vy,vg, - ) € h? which
multiplies each component v; with e% . Rotation ®y acts on vector fields on the
v-space, and R(v) is the result of action of ®y on P(v), averaged in 6 :

R(’U) = CD_QP((I)gv)dH.
TOO

The map R(v) is smooth with respect to v in h”. Again, we understand solutions
for equation (3.1.12) in the mild sense.
We now make the second assumption :

Assumption B (local well-posedness of the effective equation). For any p > pq+ 2,
there exists na(p) > 0 such that if n > no(p), then for any initial data vy € hP, there
exists T'(|vol,) > 0 such that the effective equations (3.1.12) has a unique solution
v e C([0,T(|volp)], hP). Here T : Ry — Ryg is an upper semi-continuous function.

The main result of this paper is the following statement, where v¢(7) is the
Fourier transform of a solution uf(¢, z) for the problem (3.1.2), (3.1.3) (existing by
Assumption A), written in the slow time 7 = €t :

ve(T) = \I/<U€(€_l7')>, 7€ (0,77
We also assume Assumption B.

Theorem 3.1.1. For any p > pq+ 2, if n = max{p,ni(p),na(p)}, then there exists
I°(-) € C([0,T), 1Y) such that for every q < p,

I(v(-)) = I°() in C([0,T], h).
Moreover 1°(7), T € [0,T], solves the averaged equation (3.1.10) with initial data

1°(0) = I(Y(up)), and it may be written as I°(7) = I(v(7)), where v(-) is the unique
solution of the effective equation (3.1.12), equal to V(uy) at 7 = 0.

Proposition 3.1.2. The assumptions A and B hold if (3.1.2) is a complex Ginzburg-
Landau equation

i+ € ti(=Au+V(2)u) = Au— yrfp(uPu — iy f(Ju)u, €T (3.1.13)
where the constants ygr, yr satisfy
Yr, V1 >0, (3.1.14)

the functions f,(r) and f,(r) are the monomials |r|P and |r|?, smoothed out near
zero, and

d

0<p,g<oo if d=1,2 and 0<p,q<min{2,ﬁ

}oif d>3. (3.1.15)
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This work is a continuation of the research started in [31], where the author
proved a similar averaging principle (not for all but for typical initial data) for a
perturbed KdV equation :

Ut + Uggy — 6uu, = ef(u)(z), v €T, / u(t, z)dxr =0, (3.1.16)
T

assuming the perturbation ef(u)(-) defines a smoothing mapping u(-) — f(u)(-).
This additional assumption is necessary to guarantee the existence of an quasi-
invariant measure for the perturbed equation (3.1.16), which plays an essential role
in the proof due to the non-linear nature of the unperturbed equation. Since in the
present paper we deal with perturbations of a linear equation, this restriction is not
needed.

In [50], a result similar to Theorem 3.1.1 was proved for weakly nonlinear sto-

chastic CGL equation (3.1.13). There are many works on long-time behaviors of
solutions for nonlinear Schrodinger equations. E.g. the averaging principle was jus-
tified in [36] for solutions of Hamiltonian perturbations of (3.1.1), provided that the
potential V(x) is non-degenerated and that the initial data ug(z) is a sum of fini-
tely many Fourier modes. Several long-time stability theorems which are applicable
to small amplitude solutions of nonlinear Schréodinger equations were presented in
[4, 7, 68, 15]. The results in these works describe the dynamics over a time scale
much longer than the O(e~!) that we consider, precisely, over a time interval of order
e~™, with arbitrary m (even of order exp e ® with § > 0 in [4, 68, 15]). These results
are obtained under the assumption that the frequencies are completely resonant or
highly non-resonant (Diophantine-type), by using the normal form techniques near
an equilibrium (this is the reason for which they only apply to small amplitude so-
lutions). See [6] and references therein for general theory of normal form for PDEs.
In difference with the mentioned works, the research in this paper is based on the
classical averaging method for finite dimensional systems, characterizing by the exis-
tence of slow-fast variables. It deals with arbitrary solution of equation (3.1.2) with
sufficiently smooth initial data. Also note that the non-resonance assumption (3.1.4)
is significantly weaker than those in the mentioned works.
Plan of the Chapter. In Section 3.2 we recall some spectral properties of the
operator Ay. Section 3.3 is about the action-angle form of the perturbed linear
Schrodinger equation (3.1.2). In Section 3.4 we introduce the averaged equation and
the corresponding effective equation. Theorem 3.1.1 and Proposition 0.2 are proved
in Section 3.5 and Section 3.6.

3.2 Spectral properties of Ay

As in the introduction, Ay = —A+V (z), z € T¢, where 1 < V(x) € C*(T?) and
{Ak}r>1 are the eigenvalues of Ay. According to Weyl's law, the Ag, k > 1, satisfy
the following asympototics

e = Cak® 4 o(k¥Y), k>1,

Fix an L2-orthogonal basis of eigenfunctions {(;}x>1 corresponding to the eigenva-
lues {Ax}x>1, and define the linear mapping ¥ as (3.1.5). For any m € N, we have
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(AT, u) = |v|?,, where v = Uu. Noting that (AT'u,u) is equivalent to ||u||?, for
m=1,...,n, since V(x) is C"-smooth, we have the following :

Lemma 3.2.1. For every integer p € [0,n] the linear mapping ¥ : H? — h? is an
isomorphism.

We denote
CH(TH == {V(z) > 1:V(x) € C"(TH}.

For any finite M € N consider the mapping
AM O (T - RM, V(x) = (M, Aw),
and define the open domain Ey; C C74(T?),
Ey ={VIA <X < <Ay}

The complement of E); is a real analytic variety in C™(T¢) of codimension at least 2,
so E)y is connected. The mapping AM is analytic in Fy; (see [36]).

Let u be a Gaussian measure with a non-degenerate correlation operator, sup-
ported by the space C™(T?) (see [11]). Then u(C%,(T?)) > 0. Fix s € Z* \ {0}. The
set

Qs :={V € Ey|AM(V) -5 =0},

is closed in Ej;. Since the analytic function AM (V) - s #£ 0 on Ey; (e.g. see [36]),
then p(Qs) = 0 (see chapter 9 in [11] and the note [12]). Since this is true for any
M and s as above, then we have :

Proposition 3.2.2. The non-resonant potentials form a subset of C (T?) of full
[-measure.

Note that this subset also is dense in C7(T?) due to the fact that the Gaussian
measure £ assigns every open subset of C;(T?) with positive measure.

3.3 Equation (3.1.2) in action-angle variables
For k =1,2,..., we denote :
‘Ifk  H? — (C, \Ifk(u) = Vg,

(see (3.1.5)). Let u(t) be a solution of equation (3.1.2). Passing to slow time 7 = et,
we get for vy = W (u(7)) equations

Oy + i€ Aoy = U (P(Au, Vu,u, ), k> 1. (3.3.1)

Since Ij,(v) = 1|W,|? is an integral of motion for the Schrodinger equation (3.1.1),
we have

I = (U (P(Au, Vu, u, x)), v) = Fi(v), k>1 (3.3.2)

(Here and below (-, -) indicates the real scalar product in C, i.e. (u,v) = Re uv.)



3.3. EQUATION (3.1.2) IN ACTION-ANGLE VARIABLES 73

Denote ¢ = Arg v, if v, # 0, and ¢ = 0, if v, = 0, £ > 1. Using equation
(3.3.1), we get

O = € A+ |oe| 2(VR(P(Au, Vu,u, 1)), dvg), if v, #0, k=1 (3.3.3)

Denoting for brevity, the vector field in equation (3.3.3) by e ' Ay + Gy (v), we rewrite
the equation for the pair (I, ¢r)(k > 1) as

jk :Fk(v) :Fk(17(p)7 ()Ok :e_l)\k—'—Gk(v)' (334)
(Note that the second equation has a singularity when [, = 0.) We denote

F([>(10>:(Fl([>(10>7F2(L§0)7”')'

The following result is well known, see e.g. Section 5.5.3 in [69].

Lemma 3.3.1. If f(x) : C™ — CV is C*, then the mapping
My : HP(T?,C™) — HP(T%,CY), ww f(u),

is C*-smooth for p > d/2. Moreover, it is bounded and Lipschitz, uniformly on
bounded subsets of HP(T? C™).

In the lemma below, P, and P} are some fixed continuous functions.

Lemma 3.3.2. For any j,k € N, we have for any p > py

(i) The function Fy(v) is smooth in each space hP.

(ii) For any & > 0, the function Gy.(v)X{1,>sy is bounded by 5 '/2 Py([v],).

(iii)For any 6 > 0, the function %(I, gp)x{lj?(;} is bounded by 5~/2P](|v],).

(iv) The function g—i’;(], ©) is bounded by Pl(|v|,) and for any m € N and any
1, s dm) € , the fucntion Fi(l1, 01, , LImy ©m, 0, -+ ) 25 smooth on .

1 I R, th jon Fy.(1 I 0 J h on T™

Démonstration.  Item (i) and (ii) follow directly from (3.3.2), (3.3.3), Lemmata

3.2.1 and 3.3.1. Item (iii) and (iv) follow directly from item (i) and the chain rule. [

Denote
O, A? = Ay x T, Il;,(v) = (I(v), p(v)). (3.3.5)

Definition 3.3.3. Let assumption A holds. Then for anyp = pg+2 and T > 0, we
call a curve (I(1), (7)), 7 € [0,T], a regular solution of equation (5.5.4), if there
is a solution u(t) € HP of equation (3.1.2) such that

I, (V(u(e ') = (I(1), (1)) € Ky x T, 7 €[0,T].

Note that if (I(7), (7)) is a regular solution, then each I;(7) is a C*'-function,
while ¢;(7) may be discontinuous at points 7, where ;(7) = 0.

For any p > pg + 2, let (I(7), (7)) be a regular solution of (3.3.4) such that
|1(0)|, < My. Then by assumption A, for any € > 0 and 7' > 0, we have

105 = Sl < Clo. Mo, T), 1€ [0.7). (33.6)
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3.4 Averaged equation and Effective equation
For a function f on a Hilbert space H, we write f € Lipj,.(H) if
| (ur) = f(u2)] < P(R)[|ur —wpfl, i [lual], [Jue]| < R, (3.4.1)

for a suitable continuous function P which depends on f. Clearly, the set of functions
Lipi,c(H) is an algebra. By Lemma 3.3.1,

Fy(v) € Lipie(h*), k€N, p> py. (3.4.2)

Let f € Lip(h?) and v € hP', where p; > p. Denoting by 1", M > 1 the projection

M n s A% (v, v, ) = (v1, -+ 07,0, -+ ),
we have
o — 0], < A" 2oy,
Accordingly,
[F(0) = £ 0) < Pl A" ol (3.4.3)
We will denote v™ = (vy,...,vy) and identify v™ with (vq,...,v5,0,...) if nee-

ded. Similar notations will be used for vectors 6 = (61,60s,...) € T and vectors
I=(I,...)€hl.

The torus T™ acts on the space I1;,h" by linear transformations ®yu, 0¥ € TM
where @ @ (1M M) 1 (IM M 4+ 6M). Similarly, the tous T* acts on h° by linear
transformations ®y : (I, ) — (I, + 6) with 6 € T> .

For a function f € Lip,.(h*) and any positive integer N, we define the average
of f in the first NV angles as

(w) = [ F(@o @1d)(0))ds”,

and define the averaging in all angles as

(Fov) = [ F(@o(v))ad.

where df is the Haar measure on T*. We will denote (-),, as (-) when there is no
confusion. The estimate (3.4.3) readily implies that

[(F)n(v) = (/)| < PRS2, it Jol, < R

Let v = (I,¢), then (f)y is a function independent of py, -+ @y, and (f) is inde-
pendent of . Thus (f) can be written as (f)(I).

Lemma 3.4.1. Let f € Lip;,.(h?), then

(i) Functions (f)n(v) and (f) satisfy (3.4.1) with the same function P as f and
take the same value at the origin.

(i) They are smooth if f is. If f is C*>°-smooth, then for any M, (f)(I) is a smooth
function of the first M components I, --- , Iy of the vector I.
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Démonstration.  Ttem (i) and the first statement of item (ii) is obvious. Notice
that (f)(v) = (f)(v/T1,...) is even on each variable \/I;, j > 1, i.e.

O =L ) =Ly, G20

Now the second statement of item (ii) follows from Whitney’s theorem (see Lemma A
in the Appendix 3.A). ]

Denote C%T1(T") the set of all Lipschitz functions on T™. The following result is
a version of the classical Weyl theorem.

Lemma 3.4.2. Let f € C°TY(T™) for some n € N. For any non-resonant vector
w € R™ (see (3.1.4)) and any 6 > 0, there exists Ty > 0 such that if T > T,
g€ C(T") and |g — f| < /3, then we have

1 (T
‘/ g(zo +wt)dt — (g)| < 6,
T Jo

uniformly in xo € T™.

Démonstration. It is well known that for any § > 0 and non-resonant vector w € R",
there exists Ty > 0 such that

‘;[)Tf(xg wt)dt — <f>' <83, VT =T,

(see e.g. Lemma 2.3.3 in Chapter 2). Therefore if T' > Tj, g € C'(T") and |g — f| <
/3, then

1 /T 1 /T
[ gta e — )| < |5 [ s +wnae— ()
T Jo T Jo
1 [T
o [ 1o+ wt) = glao +whldt + (1) = (9)] <6
This finishes the proof of the lemma. ]
We denote Py(v) = Vy(P(Au, Vu, u, x))|y—p-1,, then equations (3.3.4) becomes
jk = (Uk, Pk(v)), Qbk == 671)\k + Gk<U), k 2 1. (344)
The averaged equations have the form
i = (s Po))e(), k=1, (3-4.5)

i.e.

<(Uk, Pk)><p = / (vkewk, Pk(q)gl)>>d9 = (U}€7 Rk(v)), (346)

with
Ri(v) = /T Oy, Py (D) do. (3.4.7)
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Similar to equation (3.1.2), for any T" > 0, we call a curve J € C([0,T],h}) a
solution of equation (3.4.5) if for every s € [0,7] it satisfies the relation, obtained
by integrating (3.4.5).

Consider the differential equations

Solutions of this system are defined similar to that of (3.1.2) and (3.4.5). Relation
(3.4.6) implies :

Lemma 3.4.3. If v(-) satisfies (3.4.8), then 1(v) satisfies (3.4.5).

Following [49], we call equations (3.4.8) the effective equation for the perturbed
equation (3.1.2).

Proposition 3.4.4. The effective equation is invariant under the rotation ®y. That
is, if v(7) is a solution of (3.4.8), then for each 6 € T, ®yv(T) also is a solution.

Démonstration.  Applying ®y to (3.4.8) we get that

d
%(I)gv == (I)QR(U)

Relation (3.4.7) implies that operations R and ®y commute. Therefore

d
fq)g’l) = R(@gv).
dr

The assertion follows. O]

3.5 Proof of the Averaging theorem

In this section we prove the Theorem 3.1.1 by studying the behavior of regular
solutions of equation (3.3.4). We fix p > pg + 2, assume n > max{p,ni(p),n2(p)}
and consider ug € HP. So

I (W(uo)) = (o, po) € Ay x T (3.5.1)

We denote
B,(M)={I € b, : |]|; < M} (3.5.2)

Without loss of generality, we assume T' = 1. Fix any My > 0. Let
(]0, QD()) € Bp(Mo) X T := Fo,

and let (I(7),¢(7)) be a regular solution of system (3.3.4) with (1(0),¢(0)) =
(1o, vo). Then by (3.3.6), there exists M; > M such that

I(7) € By(M,), T€]0,1]. (3.5.3)
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All constants below depend on M; (i.e. on M), and usually this dependence is not
indicated. From the definition of the perturbation and Lemma 3.3.1 we know that

|‘F([> 90) ;—2 < OMl? V(I790) S Bp(Ml) x T°. (354)

Recall that we identify I"™ = (Iy,..., I,) with (I1,...,I,,0,...), etc.
Fix any ny € N. By (3.4.2), for every p > 0, there is mg € N | depending only
on ng, M; and p, such that if m > my, then

|F(L, ) — Fx(I™, ™) < p, Y(I,0) € By(My) x T*, (3.5.5)

where k =1,--- ,ng.

From now on, we always assume that (I, ¢) € B,(M;) x T°.

Since V(z) is non-resonant, then by Lemma 3.3.2 and Lemma 3.4.2; for any
p > 0, there exists Ty = To(p, ng) > 0, such that for all ¢ € T and T > Ty,

1 /T
‘T | R g - Ayt — (F) (17) | < p, (3.5.6)
0
where £k =1,...,ng. Due to Lemma 3.3.2, we have
Coly, M .
6,0 < DA e g2,
V5
oF, Co(k, j, M
98k (1 ) < B2 M) g gy (3.5.7)
1, VI
OF}
— (I < Cy(k, g, My).
Ia%( , ) < Colk, j, My)
From Lemma 3.1, we know
[{(ER)(I™0) — (E)(I™)] < Cr(k,mo, My)|[I™ — T™|, (3.5.8)

and by (3.4.2),
|Fp (1™, ™) — Fy (1™, ™) | < Co(k, mg, My)|v™ — ™|, (3.5.9)
where II; ,(v™0) = (I"™°, ™) (see (3.3.5)) and | - | is the [*-norm. Denote
Cip™ = mg - max{Cy,Cy,Cy : 1 < j <mp, 1 <k < gl
From now on we shall use the slow time 7 = et.

Lemma 3.5.1. For k = 1,...,ng, the I -component of any reqular solution of
(3.3.4) with initial data in Ty can be written as :

1(r) = 1(0) + [ (Fo(I(9))ds + E(7),

where for any v € (0,1) the function |=(7)| is bounded on [0, 1] by
T()E T()CM16
[271/2 271/2

+4(y + TOCMle)l/Q] (eTo+ 1) +3p+3eCr, Ty 7 €0, 1],

=(r)] < Gy

+ ToCM1€
(3.5.10)

where p > 0 is arbitary and Ty = Ty(p, no) s as (3.5.6).
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Démonstration.  Let us divide the time interval [0,7], 7 < 1, into subinterval
[CLZ', ai—l—l] 0 < Z d07 such that

ag =0,aq) =T, aqy, — agy—1 < €1p,

and a;.1 — a; = €Ty, for 0 < i < dy — 2. Then dy < (Toe)™! + 1. For each interval
[a;, a;+1] we define a subset Q(i) C {1,2,--- ,mg} in the following way :

leQ(i) <= 3Ir€a,ai1], L(T)<n.
Then if | € Q(i), by (3.5.4) we have
|L(7)] < ToCre+7y, 7€ [a;,ait1].
For I = (I1,15,---) and ¢ = (¢1, 2, -+ ) We set
ki) =1, ri(p) = ¢,
where the vectors I and ¢ are defined as follows :
If 1€Q(), then [;=0,4,=0, else I, =1, ¢ =q.
We abbreviate ;(I, @) = (ki(I), ki()).

Below, k=1,...,ng
Then on [a;, a;11], noting [v™0 — k; (v™| = /2|1 — k;(I™)|'/?, and using (3.5.9)

we have
/a¢+1 d
s
a;

F, (Imo(s), @m°(8)> — F, <f<6i (Im0(5)> Spmo(s)))

[e7mn 1/2
< Cno moﬁ‘lmo(s> — Ky (ImO(S)) ds (3511)
< 6\/§T00]T\L/?1’m0 (’7 + ToCMle)l/z.
By (3.5.5), we have
/0 Fy(1(s), (s))ds :/0 F(I™(s), ™ (s))ds + & (7), (3.5.12)

where [&(7)| < pr.

Proposition 1.

[} B )as = 52 [ B (1m0, o0 Jis + )
where

1
€l < ORI [M(v + ToCrsy€) % + v—l/gToCMle} (eTp+1). (3.5.13)
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Démonstration. ~ We may write (1) as

=3 [ [R(re) - B, )i = S
For each i, by (3.5.4) and (3.5.7) we have )
L Bl (5)), 07 (5)) = Pl (1), £7(5)) s
</ * 2O ey (10 () — I7(a;))|ds (3.5.14)

1
< SO O, T3y 12

Replacing the integrand F (10, ) by Fy(k;(1™°, ©™°)), using (3.5.11) and (3.5.14),
we have

Cmo ,mo [4\/§6T0(’}/ + TOCMle)l/Z + ,}/71/2T020M162].
The inequality (3.5.13) follows. O

On each subsegment [a;, a;41], we now consider the unperturbed linear dynamics
©i(T) of the angles ™0 € T™o :

&i(T) = ™ (a;) + e_lAmO(T —a;) € T™, 7€ la;,a;41].

Proposition 2.

do—1

/0 "R, (Jmo<ai>, somo(s))ds = / * F (Jmo(ag, @(s))ds +&(7),
where
|63(7)] < [2V2C3™ (v + ToCar €)' + Z‘);(Cﬁ’lvm‘))z](l + €Ty). (3.5.15)

Démonstration.  On each [a;, a;11], notice that

[ (@ —@@)ds < [ [ (6,05

it T2 2
/ + / Cno mo 71/2d8/d8 2 1/2 Cno mo.

ds'ds

Here the first inequality comes from equation (3.3.4), and using (3.5.7) we can get
the second inequality. Therefore, using again (3.5.7), we have

[ A em9)) = F(r(m @), 0) ) |as

< [ el (ems) = @uts) ) s
< iy

Therefore (3.5.15) holds for the same reason as (3.5.13). O
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We will now compare the integrals [;** Fy(1™°(a;), $i(s))ds with the average
values (Fj (1" (a;)))€eTp.

Propositon 3.

do—1 do—1

> /+ Fu(17(@), 2i(s) ) ds = > To(F) (17 (@)) + &),
where
€4(7)| < p+ 2C w1, €T (3.5.16)

Démonstration.  For 0 < i < do — 2, by (3.5.6)

/:+1 [Fk <1m0(az‘)7@(8)> - (Fk>(1m°(ai)>}d8 epTh.
So
d:Z(:j / + Fy (Im‘)(ai),sbi(s))ds - <Fk><Im°(ai))To < (dy — 1)epTy.
Moreover,
[ A (@ a®) - Ea () ]as) < 20,
This implies the inequality (3.5.16). O
Proposition 4.
d;z_ll(aiﬂ — a;)(Fy) <Im0(ai>) = /OT<Fk> (Imo(s)>ds + &5(7),
where
1&5(T)| < €Car, O™ To(eTp + 1). (3.5.17)

Démonstration.  Indeed, as

&5 (7)] = ’/ {Fk (Imo )ds— Z; i — Fk>(1m0(ai)),

then using (3.5.4) and (3.5.8) we get

do—1

&5 (T Z /(u Cir "1™ (s) — 1™ (a;)|ds

dol

2 Z CMl no mo ) < ECMlcmo mOT (ETO + 1)
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Finally, we have obvious

Proposition 5.
/0 (R (Jmo(s))ds - /0 (R (1(5))ds +6(n),

and [£6(7)| is bounded by p7.

Gathering the estimates in Propositions 1-5, we obtain

1) = 1(0) + [ Fu(105), () )ds = 1(0) + [ (R (1(5) )ds + (),
0

where |Z(7)] < 3%, |&(7)| satisfies (3.5.10). Lemma 4.1 is proved.
Corollary 3.5.2. For any p > 0, with a suitable choice of p, v and Ty, the function

|Z(7)] in Lemma 3.5.1 can be made less than p, if € is small enough.
= & with
[

Démonstration. ~ We choose v = €¢*, Ty =€ 7, p
l-a/2—0>0,0<0<1.

Then for € small enough, we have |Z(7)| < p.
For any (Iy,pg) € T, let the curve (I¢(7), (7)) € hh x T, 7 € [0,1], be a
regular solution of the equation (3.4.4) such that (1¢(0), ¢(0)) = (1o, o).

Lemma 3.5.3. The family of curves {I(7),7 € [0,1]}o<cec1 %S pre-compact in
C([0,1], h272). Moreover every limiting (as € — 0) curve I°(t), T € [0,1] is a solu-

tion of the averaged equation (3.4.5), satisfying
< M17 T € [0, 1]

(Tl

Due to (3.3.6) and (3.5.4), we know that for any € € (0,1),
T € [0,1].

d
[(T) ;—2 < CMl?

Démonstration.
I€ ~< My, | —
’ (T)|p 1 ‘dT

Then by the Arzela-Ascoli theorem, we have that the set Z := {I°(7), 7 € [0, 1] }o<e<1
is pre-compact in C([0,1],72%). Let {pmtmen be a sequence such that p, N\, 0.

From Lemma 3.5.1 and Corollary 3.5.2, there is €,, > 0 such that if € < ¢,,, then for
(3.5.18)

k=1,...,m, we have
I5(r) = L(0) + [ (F)(I(5))ds + Eu(r),
|Ek(7_)| S Pmy, TE [O’ 1]'
Let I° = I°(7), 7 € [0,1] be a limiting curve of the set Z as ¢ — 0. Then we have

€ 00,1, and |I°(7)[y < My, 7€]0,1].

By (3.5.18), the curve I°(-) solves the averaged equation (3.4.5).
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For any 6 € T* and any vector I € hf, we set
‘/9([) = (‘/91(11)7‘/92<]2)7 s )7

where 0 = (01,0,...) and Vy,(I;) = /21 cos(0;) + iy/21;sin(0;), for every j > 1.
Then ¢;(Vy,) = 0;, and for each 6§ € T* the map I — V() is a right inverse of the
map v — I(v). For any vector I we denote

PN = (Inga, Ingay )0 VNI = (Vay o (Invga)s Vay o (Ing2), - ).
Lemma 3.5.4. (Lifting) Let I°(1) = (I)(7),k > 1) € hi,, 7 € [0,1], be a solution

of the averaged equation (5.4.5), constructed in Lemma 3.5.5. Then, for any 6 € T,
there is a solution v(-) of the effective equation (3.4.8) such that

I(w(t))=1I7), 7€]0,1], and v(0)=Va(I°(0)). (3.5.19)
Démonstration. ' For any m € N, consider the non-autonomous finite dimensional
systems

. >m
I, = (Fk><11, N (1%)) ) k=1,---,m, (3.5.20)

0 [ , 1] solves system (3.5.20). It is its unique solu-
tion with initial data (I7(0) 1°.(0)), since by Lemma 3.4.1 the function (Fj) is
smooth with respect to the Varlables (I, ... Ip).

1,

For vy = (Vg (I%(0)),..., Vs, (I2(0))), system (3.5.21) has a unique solution
v™(7), defined for 7 € [0,7"), with v™(0) s
")(
)

Rk(vl, U, >m(IO(T))), k=1,...,m. (3.5.21)

Obviously, (I2(7),...,1 ET»

= g, where 7" < 1 and v (1) —— o0
if 7" < 1. Due to equality (3.4.6), ( 7) solves system (3.5.20) in time interval

[0, 7). Since I(v™(0)) = (12(0),---,1%(0)), therefore 7" =1 and
I(Wv™(7)) = (I{(7),..., I2(7)) for 0<7<1.

Now denote
Vm(7_> = (Um(T)v ‘/c9>m(7_))7 T E [O, 1]'
For the same reason as in the proof of Lemma 3.5.3, the family {V,,,(7), 7 € [0, 1] };nen
is pre-compact in C([0, 1], A*~2) and
Vin(0) = Vo (1°(0)),  I(Vin(7)) =1(7), 7€[0,1], meN.

So any limiting (as m — oo) curve v(-) of the family{V,,(7),7 € [0,1]}nen is a
solution of the effective equation (3.4.8), satisfying equalities (3.5.19). The lemma
is proved. O]

1. This argument is a simplified version of the proof of Theorem 3.1 in [49]
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Lemma 3.5.5. (uniqueness) Under the same assumptions of Lemma 3.5.3, we have
I°() € C([0,1], %) and for every q < p,

16(-)310(-) in  C([0,1], h%). (3.5.22)

Démonstration.  Let I°(-) and J°(-) be two limiting curves of the family {7°(-) }o<c<o,
ase — 0,in C([0, 1], h2~?). Then by Lemma 3.5.4, for any 6 € T, there are solutions
vr(+), vy(+) of the effective equation (3.4.8) such that for 0 < 7 < 1,

I(vr(r)) = I"(7), I(vs(r)) = J(7), v1(0) = v;(0) = vo = Vo(Io).

Due to assumption B, for initial data vy the effective equation (3.4.8) has a unique
solution vg(+) € C’([O,T(|v0|p)>, hp). Therefore

U[(T) :’UJ<T> IUE(T). (3523)

This relation holds for 7 < 1 if T'(Jug|,) > 1 and for 7 < T'(|vgl,) if T'(|volp) < 1.
But if T(Jvgl,) < 1, then |vg(7)|, — o0 as 7 — T(Jug|,). By the construction in
Lemmata 3.5.3 and 3.5.4, we know |v/(7)]2 < M, for 7 € [0,1]. Together with
(3.5.23) we have that T'(|vg|,) > 1. Hence I° = J°, I° € C([0,1], 1Y) and

I°() = I°() i C([0, 1], k2 72). (3.5.24)

For any ¢ < p, assume that the convergence (3.5.22) do not holds. Then there
exists § > 0 and sequences €,, 7, € [0, 1] such that

en =0 as n—oo and |[I7(r,) —I°(7,)[7 = 0. (3.5.25)

Takes subsequence {nj} such that 7,,, — 7 as n; — oo. Since the sequence
{I% (7, )} is pre-compact in hf, and by (3.5.24), its limiting point as ny — oo
equals 1Y(7g), so we have I (7,, ) converges to I°(7y) in h? as ny goes to oo. This
contradicts with (3.5.25). So we completes the proof of Lemma 3.5.5 and also the
proof of Theorem 3.1.1. O

3.6 Application to complex Ginzburg-Landau equa-
tions

In this section we prove that assumptions A and B hold for equation (3.1.13),
satisfying (3.1.14) and (3.1.15).

3.6.1 Verification of Assumption A

In this subsection, we denote by | - |; the L*-norm. Let u(7) be a solution of
equation (3.1.13) such that u(0,z) = ug. Then

d

(I = 2, ) = 2o, — i A — s — i,
T

= —2f[ull} + 2|ull} — 2vzlul5Ls.
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Since [[u|§ < [ul3,,,, then relation [|u(7y)]|o > 751/2” = By implies that

d 2

— < 0.

KATHESI

So for any T' > 0 we have
[u(T)||o < min{Ba, e||uo||o}. (3.6.1)
Now we rewrite equation (3.1.13) as follows :
U+ e Ni(Au+ V(x)u + eyrul*u) = Au — yr|ul*u. (3.6.2)
For any k € N, denote
Jull = (Avu,u), Ay = —A+ V().
The L.h.s is a hamiltonian system with the hamiltonian function e *H (u),

1 € 2042
H(u) = §<AVU,U> + m\uIQZL.

We have dH (u)(v) = (Ayu,v) + eyr{|ul*?u, v), and if v is the vector field in the Lh.s
of (3.6.2), then dH (u)(v) = 0. So we have

d
H(u(r)) = —r(Avu, [u*Pu) + (Avu, Su)
— evryrlulpioass + evi(|ul*u, Au),
Denoting U,(x) = q}r—luq*l and U, = ﬁupﬂ, we get

(Juf*u, Sy < = [ [Vulluda = || VU,

and a similar relation holds for ¢ replaced by p. Therefore

d 1
TH () < =30l = 8l VU3 = enl VU3 = exaful 3253

- /T V(2)|Vaul?dz + Cy|[ul 2,
where C depends only on |V|c2. By this relation and (3.6.1), we have
H(u(T)) < H(u(0)) + C,TB;, forany T > 0. (3.6.3)

So
[[u(T)||7* < 2H (u(0)) + 2C,TB;, for any T > 0. (3.6.4)

Simple calculation shows that

A2u = (=A)u—2VAU—VV - Vu+ (V2= AV)u.
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We consider

E(A%/u, u) = 2(ALu, Au — yplu|*Pu — iyr|u*u.) (3.6.5)

By the interpolation and Young inequality, we have
(AVu, Au) < —lull5 + Cl(|v|>HuH2 + Co(|VIen)ullf + Cs(IV]e2)lull
< —lull3 + Cullull§ ull3 + Collull§ 1ul3 + Cslull (3.6.6)
3
< —llulls + C(Vlez, [lullo)-

We deduce from integration by part and Holder inequality that
— (=), [ul*Pu) < fulls] (fu* V) | < [ullslulpg, | Vel (3.6.7)

where p1, 1 < oo satisfy 1/p; +1/¢1 = 1/2. Let p; and ¢; have the form

2d d

d—2s T

We specify parameter s : For d > 3, choose s = p(d—2) < min{d/2,2}; for d =1, 2,
choose s € (0, 3). Due to condition (3.1.15), we have the Sobolev embeddings

H*(TY) — LP/(T%) and HY(T?) — L*%(T?),

implying that )
(Vuly, < lulligs, ’u‘2pq1 [ul[1".

Applying again the interpolation and Young inequality we find that for any § > 0,

—(A%u, u*u) < IIUII3IIUI|1+SI|UI|2”
+
< Cllulls ¥ fully™ IIUII (3.6.8)
< Bl 3 + CE)(fully™ [[ul )5

We can deal with other terms in (3.6.5) and (3.6.7) similarly. With suitable choice
of §, from the inequality above together with (3.6.6), we can get that for any 7" > 0

Tl + [ llBdr < W)l + OO, VIew T, B), - (369
By similar argument, for any m > 3 and 7" > 0 we can obtain
) T 2 2
[u(T)|[5 +/0 [lulladr < {|u(0)|[57 + C(m, [V]cam, T, By),

Then
u(T)||m < C(|[u(0)]|m, |V]cam, m, T, By), for any T > 0.

This finishes the verification of assumption A.
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3.6.2 Verification of Assumption B

We follow [50]. In equation (3.1.13) with u € H? we pass to the v-variable,
v="U(u) € h*:
Op +ie A\ = Pr(v), k>1. (3.6.10)
Here
P.= P!+ P} + P},

where P!, P? and P? are, correspondingly, the linear, nonlinear dissipative and
nonlinear hamiltonian parts of the perturbation :

PH(v) = U(Au),  P*v) = —ypY([u"u),  P*(v) = =iy ¥(|ul*"),

with u = U~!(v). Following the procedure in Section 3, the effective equations for
(3.1.13) has the form :

3
b= R'(v), (3.6.11)
=1
where
Ri(v) = <I>_9Pi(<1>,,))d9, i=1,2,3.
’]I‘oc

Consider the operator

L:=To(-A)oU  =To(Ay —V)oU l:=A-ToVol =47

Clearly, A is the diagonal operator A = diag{ ), ( (1) (1) > , j = 1}. By Lemma 1.1,
LY =TV oV oW! defines bounded maps

L0 A=A Ym < n,

and in the space h® the operator £° is self-adjoint. Since A commutes with the
rotation Py, then

R'=— | & jA®gud)+ | & 4L (Pgv)d0
B T (3.6.12)

— Av+ R(v), R(v)= / O_g L0(Dyv)df.
']TOO

Since for v = (vy, vq,...), we have
0 =
LOv); =Y (V(x)vipi(x), i (x)), 7>1,
i=0
then,

R0 =3 [V (@use® osa). % oulo) s = oulVion, o).

That is,
R' = diag {-\p + My, k > 1}, My = (Vo or). (3.6.13)
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The term R*(v) is defined as an integral with the integrand
& o P20y(v) = —1n® Uy ([l )u) umyrae = Falv).

Define H(u) = [ F(|u[*)dz, where F' = 1f,. Then VH(u) = f,(|u[*)u. Denoting
U—1®, = Ly, we have

Fy(v) = —vrLgVH(u)|u=r,0) = =7V (H 0 Ly(v)).

So
m@yzgmm(AJHom*x%mw>:-%vxﬂowﬂ.

Similarly, we have R® = —iy;V,(GoU™) with VG(u) = f,(Ju*)u. Since (Go W) is
a function only of the action (Iy,...), we have that V,, (G o ¥~} is proportional to
vg. Then vy, - R} (v) = 0. That is, it contributes a zero term in the averaged equation.
Hence we could set the effective equation to be

v = R'(v) + R*(v).

It is a quasi-linear heat equation, written in the Fourier coefficients, which is known
to be locally well posed. This verifies assumption B.

3.A Whitney’s theorem

Consider the ls-space of sequences x = (x1,s,...). The following lemma is a
slight modification of the well known theorem of Whitney [73].
Lemma A. For any n € N, let f € C*(l5) be even in n variables, i.e.

flz,. oz o) = flag,.o o, —xgy...), i=1,2,... n.
Then there exists g, € C*°(ly) such that
gn(@3, .. 22 2y, ) = f(21, 20, ... ).

1
Démonstration.  For n = 1, we define gy(x1,23,...) = f(x{,x9,...). Since f is
even with respect to x1, for any s € N, we have

fln @) = f(@) + @2+ + fia(@)27777 + gla)ai,

where & = (0,22,...), fi = [(20)!]7102 (&) and ¢(z) is smooth when z; # 0, even
with respect to x1, and satisfies

lim 20F ¢(x) =0, k=1,...,2s. (A1)

x1—0
Set ¢(x) = ¢($1%,$2, ...), then

g1(x) = f(2) + i@)z1 + - + oo (@)2] " + ¢(2) .



CHAPITRE 3. AN AVERAGING THEOREM FOR WEAKLY NONLINEAR PDESs
88 (NON-RESONANT CASE)

We wish to check that g;(z) is C*-smooth with respect to z;. It is sufficient to prove
that the limits limg, o 2§0F ¢(z), k = 1,..., s, exist and are finite. Differentiating
P(x?, x9,...) = ¢(x) with respect to x1, we get that there are some constants ag
such that

8§1¢(x) = Qkx’fﬁflw(x%,xg, )+ Z akixlf_%@fl_i (x%,xg, ), k=1,...s.
1<i<k/2

Solving these equation successively for x%ké?’;lw, k=1,..., s, we obtain that there
are some constant j; such that

x%kalglw(x%’ L2, - - ) = Z Bklxllviza];:l (:L‘)

0<i<k

By (A.1), we know the lim,, o f0F ¥(x), k = 1,...,s, exist and are finite. So
g1(x) is C® -smooth. Since s is arbitrary and ¢;(x) defined in a unique way, we have
g1 € C(I?) and gy(2%,29,...) = f(x1,72,...). This prove the statement of the
lemma for n = 1.

For n > 2, the assertion of the lemma can be prove by induction. Assume we
have proved the lemma for m = n — 1. Then there exists g, 1 € C*°(l3) such that

Gua (@, w) = flan, @, )

and g¢,_1 is even in variable z,,. Applying what we have proved for m =1 to g,
with respect to xz,,, we get the assertion for m = n. O



Chapitre 4

An averaging theorem for
nonlinear Schrodinger equations
(resonant case)

Abstract : Consider a weakly nonlinear Schrodinger equation on the torus T¢ :
—iug + Au = Fe|ul*u. (%)

Here v = u(t,z), x € T¢ 0 < e << 1 and ¢ € N. Define I(u) = (I, k € Z%), where
I = vt /2 and vy, k € Z%, are the Fourier coefficients of the function u we give.
Assume that the equation (x) is well posed on time intervals of order ¢~* and its
solutions have there a-priori bounds, independent of the small parameter. Let u(¢, x)
solves the equation (). If € is small enough, then for ¢t < ¢!, the quantity I(u(t, z))
can be well described by solutions of a effective equation :

—iuy = eF(u),
where the term F'(u) is constructed through a resonant averaging of the nonlinearity
+|u .
4.1 Introduction
We consider a nonlinear Schrédinger equation on d-torus T¢ = R?/27Z¢
— iy + Au = +e|ul*u, u=u(t,r), x € T (4.1.1)

where ¢ € NU {0} and € is the small parameter. For any p € R denote by H? the
Sobolev space of complex-valued periodic functions, provided with the norm || - ||,,

ol = (= APuu) + () i peN
where (-, -) is the real scalar product in L?(T%),

(u,v) = Re/d uvdr, u,v € L*(T%).
T
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The equation (4.1.1) is hamiltonian and may be written as

€

—Juf?r?)d,
2q + 2

1
—iuy = By H(u), H(U)Z/Td [5vuf +

where 9, stands for the L2-gradient with respect to u. The sign of the nonlinearity
(4 for the defocusing equation and - for the focusing equation) will not play an
important role in this work due to the fact that here we mainly study the long-time
dynamics of the equation (4.1.1) in the situation 0 < € < 1. We assume :

Assumption A : There exists somep > d/2 and T > 0 such that for every ug € H?,
the equation (4.1.1) has a unique solution u(t,x) € HP with initial datum uy and
lutt, )l < Clluollps T) for ¢ < T

Concerning this assumption the following is true :

Proposition 4.1.1. (See [17, 13, 29]) The Assumption A holds for equation (4.1.1)
if
qg€N, g<+oo, when d=1,2 and ¢q=1,2, when d=3. (4.1.2)

For this result see below Section 4.5.

We are mainly interested in the behaviours of solutions for the equation (4.1.1)
in the time intervals of order e~!. So it would be convenient to use the slow time
T = et. Passing to the slow time 7, we get the rescale equation

— it + € T Au = +|ul*, (4.1.3)

where u = u(7,z), z € T? and the dot " stands for L.
For a complex function u(z) on T¢ we define

f(UJ) = (Uk7 k e Zd)7

where the vector (vi, k € Z%) is formed by the Fourier coefficients of u :

_ ik-x _ —ik-x
u(z) = Y ve™”, v = /Td u(z)e " dx.

kezd

In the space of complex sequence v = (v, k € Z9), we introduce the norm :

|v|§ = Z (k> v 1)|w?, p€R,

kczd

and denote h? = {v : |v|, < oo}. Obviously, for p > 0, h? = F(HP?).

The equation (4.1.3) has a rather transparent form in the space h?. Let u(T, z)
be its solutions, then the Fourier coefficients vy (7) of u(7, x) solves the infinite di-
mensional ODE :

. _1- . _ _ L
Uk — € AUk = £ > Vi Uky * * * Vkng—1 VkngUkagsr = Fx(V),  (4.1.4)
(k1. kag 1) €S (k)



4.1. INTRODUCTION 91

where k € Z2, \ = |k|? and

2¢+1
S(k) = {(ku, .. kogar) € (Z97* 2 3 (<1 'k, =k},

=1

Denote A = (A, k € Z4) and we call it the frequency vector of the equation (4.1.3).

For every k € Z¢, denote I, = %vkz_)k and ¢ = Arg vy. Notice that the quan-
tities I are conservation laws of the linear equation (4.1.1).—o. We call them the
action variables (correspondingly, call the quantities ¢y the angle variables). We
introduce the weighted ['-space h} :

W ={I = (I, k€ Z) e R®: 1|7 = 2(k|* V 1)|Lx| < oo}

keZd

Using the action-angle variables (I, ), we can write equation (4.1.4) as a slow-
fast system :

jk:Uk'Pk(U), gbk:€71>\k+ |Uk‘72"' y kEZd. (415)

Here the dots stand for a term of order 1 (as ¢ — 0). Our task is to study the
evolution of quantities I. Following the averaging theory for PDEs (see, e.g. [53,
49, 31, 32]), we consider the averaged system

jk = <’Uk . Pk(l)»/\, k e Zd. (416)

Here ()5 signifies some kind of averaging (related to the frequency vector A) in
the angles ¢ € T*. The hope is that the averaged equation (4.1.6) may approxi-
mately describe the behaviour of the action variables Iy of equation (4.1.3). Ho-
wever due to the singular nature of the action-angle variables (I, ) and the reso-
nance of the frequency A, the equations (4.1.6) may have singularities at the set
{I: I =0 for some k} which is dense in the wighted [*-space hf. Moreover, the
vector field in the averaged equation (4.1.6) may not be Lipschitz in the variables I,
so its well-posedness is unclear. A way to overcome these difficulties was introduced
in [49] by S. Kuksin. Namely, there exists a regular system

i = Ri(v), keZ (4.1.7)

where Ry (v) is defined through a certain averaging of the term Py (v), such that under
the mapping vy — Iy = %vkﬁk, solutions of equation (4.1.7) transform to solutions
of the averaged equation (4.1.6). This method also was used by the author in [32] to
establish an averaging theorem for NLS under some non-resonance conditions (see
Chapter 3). The system (4.1.7) is called the effective equation.

For the equation (4.1.3), due to the polynomial form of the nonlinearity, there
exists another way to derive the effective equation. That is to use the so-called
interaction representation picture. Let us define

ar (1) = e AT (7).
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Clearly, |ax|* = |vk|*> = I/2. Therefore the limiting behaviour (as ¢ — 0) of the
quantity |ax| characterizes the limiting behaviour of the action variables I. Using
equation (4.1.4), we obtain the equation satisfied by ay(7) :

_iak(T) =4 Z Qe (T)a'kQ (T) Cr ko, g (T)akm; (T)ak2q+1 (7—)
(k1,....k2q1)€S(K)
2q+1

x explie [\ + Z Y= 1)\k

where k € Z?. The terms in the right hand side oscillate very fast if € is very small,
except the terms that the sum in the exponential equals zero. This leads to the guess
that only these terms determine the limiting behavior of ax(7) as € — 0, and that
the effective equation is the following :

- iak<7—) =+ Z ak, (T)akz (T) ©r ko (T)aqu (T)ak2q+1 (T)v (4'1'8)
(kl,...,k2q+1)€'R(k)

where R(k) := {(ky,...,kog+1) € S(k) : = + ZQQH( 1)\, =0}
Let us denote

2q+2
RES = {(k1, ..., kog2) € (Z1)*2: D" (—=1)"' ), = 0}

j=1
Then the equation (4.1.8) is hamiltonian with Hamiltonian function :

1

res ==
Hres (V) 2q + 2

Z Uk11_}k2 o ‘vk2q+11_)k2q+2’
(k17...,k2q+2)67?,58
We will see in Section 4.2 that the effective equation (4.1.7) for the equation (4.1.3)
defined through a resonant averaging process is exactly the equation (4.1.8). It is
well posed in the space h?, p > d/2. Besides its Hamiltonian H,.s, possess two extra

integrals :
=D Il Ha(v) = 3 Mol
kezd keZd
The main result of this work is the following theorem where u(¢, x) is a solution
of the equation (4.1.1), v(7) = F(u(e"'7,x)) and a/(7) is a solution of the effective
equation (4.1.8).

Theorem 4.1.2. If Assumption A holds and |v(0) —a'(0)|, < €¥/2, then the solution
a' (1) of equation (4.1.8) exists for 0 < 7 < T and for sufficiently small parameter
€, we have

[1(v(r) = I(d'(7)ly < Ce/?, 7 €[0,T],
where the constant C depend only on T and the size of the initial datum |v(0)|,.

Remark 4.1.3. 1) In the case that the HP-norm of the solution u(x,t) for equation
(4.1.1) grows as ||u(z,t)||, < etCUlwlle) the Theorem 4.1.2 can be extended to time
intervals of order e~*log et with the exponent 1/2 replaced by certain o > 0.

2) The method of this paper also applies to nonlinear Schréodinger equations with
other polynomial nonlinearities, e.q. with the nonlinearities with Hamiltonians of the

forms Hy = [(u® + @3)dx and Hz = [ |u|?(u + u)dz.
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Equations that are similar to the effective equation (4.1.8) recently appear in a
number of works. E.g. a stochastic damp-driven version of it is constructed in [51],
using the same philosophy of the present paper. In [28], similar equation is used
to determine an effective integrable equation for a 1D wave equation. In [24], a 2D
version of equation (4.1.8) is evoked as an intermediate equation for understanding
the Large box limit of the cubic NLS on T?. The effective equation (4.1.8) also is
known in the theories of wave turbulence. There, it is called the equation of discrete
turbulence, see [65], Chapter 12. In this work, the equation (4.1.8) is deduced in
the spirit of the averaging theory for PDEs. We believe that our result provides an
useful insight on the relevant topics.

The Chapter is planed as follows : In Section 4.2, we introduce the concept of
resonant averaging in the Hilbert space. We deduce the effective equation through
the resonant averaging process in Section 4.3. The Section 4.4 is devoted to the proof
of Theorem 4.1.2. Finally, in Section 4.5, we discuss the validity of Proposition 4.1.1.

4.2 Resonant averaging in the Hilbert space

We first introduce the resonant averaging of smooth functions in finite dimen-
sional space. Let W € Z™, n > 1 be a non-zero integer vector. We call the ensemble

AW):={seZ": W s=0},

the set of resonance for W. Notice that if s € Z™ \ A(W), then |W -s| > 1. For
a continuous function f on T", we define its resonant average with respect to the

integer vector W as the function
2m

(wle) =5 [ Fle+ Wt (42.1)
Lemma 4.2.1. Let f be a Coo-functz'on on T" and f =3 f.e*%?. Then

= 3 L. (4.2.2)

seA(W)

1

Now we pass to the corresponding definition in the Hilbert space hP.
For infinite integer vectors s = (sy, k € Z%) € Z> we will write the /;-norm of s

as |s|,
[s] = > lsul-

kezd
Let ZF = {s € Z* : |s| < oo}. Obviously, for each s = (s, k € Z%) € Z, only
finite many sy are not zero. Fix some m € N and define the set of resonant of
order m for an integer vector Q = (wy, k € Z%) € Z* as

A,m) ={s = (si, k € Z) € ZF : > wisi =0, |s] <m}.

kezd

For any s € Z and v = (v, k € Z%) € h?, p > 0, we denote v* = [[yeza 27;5“', where
Ui = vy if s = 0 and 0 = vy if sk < 0. Consider a series F'(v) on h?,

= Z C°.

SELGF
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We assume the series converges normally in h” in the sense that for each R > 0 we
have
sup Y |Ci|[v°] < o0 (4.2.3)

[vlp<R SELE’

To define the resonant averaging of F'(v) we introduce for each 6 = (6, k € Z4) € T,
the rotation operator ®y, which is a linear operator in h? :

Do(v) =0/, vy = e

This is a unitary isomorphism of each space h”. Note that

(L, 9)(@gv) = (I(v), (v) +6).

For any integer vector €2 we define the resonant average of the function F'(v) by
analogy to definition (4.2.1).

Definition 4.2.2. Let a function F(v) € C(hP) be given by a normally converging
series. Then its resonant average with respect to ) is the function

1

" or

(Fo(v) /0 7 P ( @)t

Defining a function F'(I, ) by the relation F(v) = F'(I(v), p(v)), we see that

1 27
(Faw) = — / F'(I, ¢+ tQ)dt.
2m Jo
So this definition agree with its finite dimensional counter part. If the series F'(v) is
of order m < oo in the sense that Cy = 0 unless |s| < m, then

(Flo= S Co" (4.2.4)
s€A(Q,m)

If the series F'(v) is normally converging, so does the series (F)q(v).

4.3 The Effective equation

In this section we will deduce the effective equation for equation (4.1.3) through
a resonant averaging process.
Consider the Fourier transform for complex functions on T¢ which we write as
the mapping
F:H? 3 u(z) = v = (v, k € Z%) € C,

defined by the relation u(z) = Yyeza vie™®. Then |Ful, = ||ul,, for every p > 0.
For each k € Z?, denote

1 _
I =1(vg) = §vkvk and ¢ = p(vk),
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where ¢(vx) = Arg v, € St if v # 0 and p(0) = 0 € S'. Let us write equation
(4.1.3) in the v-variables :

Uk — 671i>\kvk = Pk(U), k e VAS (431)
Here Py is the coordinate component of the mapping P(v) defined by
P(v) = F(£ilul%), u=F '(v).

We have Py(v) = Y ez Csv®, where Cs = 0 if [s] # 2¢ + 1. It is of order 2¢ + 1.
The mapping is analytic of polynomial growth :

Lemma 4.3.1. The mapping P(v) is an analytic transform of the space h? with
p > d/2. Moreover the norm of P(v) and its derivative dP(v) have polynomial growth
with respect to |v|,.

Now we write equation for the quantities Iy, k € Z¢ :
Iy = v - Pe(v), keZ? (4.3.2)
We consider the following resonant averaged system for equation (4.3.2) :
Ii(7) = (ve(r) - Belv(7))) . k ez, (4.3.3)

However, as have mentioned in the introduction, the vector field on the right hand
side of the equation (4.3.3) may have singularities on the dense subset

{I = (I, k € Z% € I} : I, = 0 for some k € Z%}.

One efficient way to overcome this obstacle is to introduce a regular effective equa-
tion. Notice that

1 2
<Uk . Pk(v)> = 7/ GMktUk . Pk(q)tA’U)dt
A 2 Jo (4.3.4)

1 21 .
= 7/ Vk - G_Mktpk(q%/\v)dt = Vg Rk(v),
21 Jo
where Ri(v) = 2= [¢7 e~ Be(®ya (v))dt.
Let R(v) = (Rx(v), k € Z%), then
1 21
R(v) = — O\ P(Dypv)dt. (4.3.5)
2w Jo

Lemma 4.3.2. The vector field R(v) is locally Lipschitz in the Hilbert space h?,
p>d/2.

Démonstration. Let vy, vy € h? and |vy|p, |ve|, < M. Then using Lemma 4.3.1 and
the fact that the operators ®;,, t € R define isometries in h”, we have

1 27
|R(v1) — R(v2)|, < %/O | Dy [P(Peav1) — P(Pravs)]|pdt
1 27
<o [ CODIB( — o)yt < OOy — s,
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Consider the following equation
b= R(v). (4.3.6)

By Lemma 4.3.2 we know that this equation is well posed, at least locally, in the space
h?, p > d/2. From the relation 4.3.4, we have that if v(7) solves the equation (4.3.6),
then I(v(7)) satisfies the relations (4.3.3). We call equation (4.3.6) the effective
equation for equation (4.1.3).

Proposition 4.3.3. 1) The effective equation (4.5.6) is a hamiltonian equation with
the Hamiltonian function Hyes(v) = (H(F 1 (v)))a.

2) The Hamiltonian H,.s is invariant under the operators ®yn and ®;1, where
teRand1=(1,1,1,...).

Démonstration. Since P(v) = iVH(F(v)), then using ®;, = ®_;5, we have

1 2w

Rv) =5 | O (IVH(F 7 (®40)) )t = ¢217Tv /O QWH(JE‘I(@tAv))dt
= iVHpes(v).

This prove the assertion 1). The assertion 2) follows from the assertion 1) and the
Definition 4.2.2. O

Let give an explicit formula for the quantity Ry (v), k € Z<. Since

Pk(”) =4 Z Vi Vks * " " Vkag—1Vkog Ukag i1
(k1,....k2q+1)€S(k)

then
1 2 ot
Ry (v) = 7/ "N Py (D (v))dlt
2w Jo
47 21 B )
= % / Z {Uklvk2 . vk2q71Uk2q/Uk2q+1
O (ki kag1)€S(K)
2q+1
X exp|— /\k+z jl)\k }d
— :i:Z Z Ukl ’Uk2 o o ’Uk2q71'Uk2q'Uk2q+1.

Therefore the effective equation (4.3.6) is exact by the same form as the equa-
tion (4.1.8).

4.4 The averaging theorem
In this section we will prove the Theorem 4.1.2 by using an averaging process.

We denote
BM)={veh”:|v,<M}, VM>DO0.



4.4. THE AVERAGING THEOREM 97

Fix a My > 0. Let u(7, z) be a solution of equation (4.1.3) such that
[[u(0, 2)]], < Mo,

and v(7) = F(u(r,z)). Without loss of generality, suppose the Assumption A hold
with 7" = 1. Then we have that there exists M; > M, such that

v(r) € B(My), 7e€]0,1].

Let a(7) = ®_,-1o(v(7)). Then a(7) is the interaction representation picture of

v(7). We have

a(7) = @TE_1A<P(<1>TG_1A(CL(T)))) =¥ (a(r), 7). (4.4.1)

Using Lemma 4.3.1 and the fact the the operators ®;y, ¢ € R define isometries on
h?, we have for any v, v' € B(M;) and 7 € R,

Y (v,7), <C(M), [Y(v,7)=Y (' 1), <C(M)v—1,. (4.4.2)

Denote Y(v,7) = Y (v,7) — R(v). Then by Lemma 4.3.2, the relation (4.4.2) also
holds for the map Y (v, 7).
The following lemma is the main step of our proof.

Lemma 4.4.1. For 7 € [0,1],

ja(r) = a(0) ~ [ R(a(s))dsl, < C(M)e'>

0

Démonstration. Denote by Yi(v,7), k € Z? the coordinate components of the map
Y (v, 1), similarly, Vx of V.

We first fix some T € [0,1] and divide the time interval [0, 1] into subinter-
vals [by, 1], L = 1,--+ ,m such that :

b0:0,bl—bl,1 :To, for lzl,...,m—l,bm—bm,l gTo, amzl,

where m < 1/Ty + 1. For 7 € [b;, bj41], we have
ax(7) = ax(b) + | [Ruca(s)) + Mielals), s))ds.

The first term of the integrand is the vector field of the effective equation. Our task
is to estimate the second term.

Let us denote Yi(7) = [, Jx(a(s), s)ds. Then

Yio(r) = Yi(r) — /b Velalby), s)ds + /b Ye(a(by), s)ds.
The last term equals

Ti(by, 7) = > axe, (br)aae, (by) - - - Ay, (b1) sy, (D) Oy, (B1)
(k1,..s kzq+1)€S(k)\'R(k)
2q+1

€ y-1
RS T Wi R M
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Let Z(by, T) = (Zk(bl, 7),k € Zd). Since the quantities | — A + Z?f{l(—l)j—ﬂkj |, if
do not equal to zero, are alway bigger than 1, hence we have

max |Z(b,7)|, < 2¢ max |P(v)|, < e2C(My).

Te[bl,bH_l} ’UEB(Ml)
Then choosing Ty = €'/2, using (4.4.2), we obtain
a(r) = a(0) = [ Rla(s))dsl,

m—

< {1 D000 5)  Yattn) s + 1200ty

—_

~

3|

3

[ clats) - atb)lds + 20 ()

b

~

DO |
o

T2C(M,) + 2C(M)] (= + 1) < C'(My)e 2.

< T

This proof the assertion of the Lemma. O]

Let a/(7) be a solution of the effective equation (4.1.8) with initial data a’(0) € B(M).
Denote
T =min{7 : |d'(7)|, = My + 1}.

By Lemmata 4.3.2 and 4.4.1, we have for 7 € [0, min{1, T"}],
6(7) — al)ly < 1o (0) a0}l + [ COM -+ 1)lal(s) — as) s + (ML)

By Gronwall’s lemma, we have that if |a'(0) — a(0), < €'/2, then
d' (1) — a(1)]|, < CeV?, 7€ [0, min{1,T"}].

Assuming e small enough and using the bootstrap argument we get that 7" > 1.
Since I(a(7)) = I(v(T)), we have

[I(v(T)) — I(a/(T))\; <Ce? re [0, 1].

This finishes the proof of Theorem 4.1.2.

4.5 Discussion of Proposition 4.1.1

Briefly speaking, the Proposition 4.1.1 directly follows from the global existence
theory of the nonlinear Schrodinger equation (4.1.1). The equation (4.1.1) has two
conservative quantities :

[lu(®)lo = 1|u(0)llo, (4.5.1)

and

B, (u(t)) = /T ;\Vu(x,t)IQda: + 2q€+2 /1r lu(z, £) 2 2dz = E(u(0)).
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We claim the H'-norm ||u(t)||; remains bounded if the parameter € is small enough.
Indeed, the defocusing case is clear. In the focusing case, we have

27 ¢ 2q+2
/1rd \Vu(z,t)|*dx = | /Td |u(z, t)|* T “dx + 2E(u(0)).

Using the L?-conservation law and the Sobolev embedding :

2d

HYT% = L", r<oo and r<d 5

we obtain for d and ¢ satisfying condition (4.1.2),
lu(@)I1F < [[u(0)[]F + eCq, d)lJu(®)|;**.

So
WO
1 —€C(g,d)|u(t)[]}*

If € < C(q,d)~"2% 1 |u(0)||;>?, we have

lu(®)]]; <

[lu@®lr < C((lu(0)]2)- (4.5.2)

Now we give a direct proof of the Proposition 4.1.1 in the case d = 2 and ¢ = 1,
following [17]. Similar proof works for the cases d = 1 and ¢ € N.

Lemma 4.5.1. For every u € H*(T?) with ||u||; < 1, we have

[ull e < C(1 + y/log(1 + [|ull2))-

For a proof of this lemma, see See Lemma 2 in [17].

Lemma 4.5.2. For u € H*(T?), we have

I[ul*ull> < CllullZelull..

Démonstration. For u € H?(T?) we have
[Aulu)| < C(Juf*|Aul + [u][Vul?),

and so
ulPulla < Cllul[Zw]|ull2 + CHUIILoo(/TQ |Vul|*dz)"/?. (4.5.3)

Using the Gagliardo-Nirenberg inequality (see [67]), we have
(/TQ IVl dz)2 < Clul| e[l 2. (4.5.4)

Combining (4.5.3) and (4.5.4) we obtain the statement of the lemma. O
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Let us denote by S(¢) the L? isometry S(t) = e~#*“. Then we have
t
u(t) = S(t)u(0) + ie / S(t — s)[u(s)|?u(s)ds.
0
Using Lemmata 4.5.1 and 4.5.2 and the boundness of H'-norm we have

[lu@®ll2 < [[u(0)]]2 + Ce /Ot [lu(s)]]2[1 +log(1 + [[u(s)||2)]ds.

So .
()] < [[u(0)]|e“ "

This verifies the statement of Proposition 4.1.1 in this case.

Remark 4.5.3. The same proof also applies to nonlinear Schrodinger equations
on T? with other cubic nonlinearities, e.g. the nonlinearities with Hamiltonians of
the forms Hsy = [ |u]*(u+ w)dz and Hj = [u® + wdz.

For the other cases, more sophisticated theory is needed. we refer the readers
to the theories of the Cauchy problem for NLS equations in [13, 29]. From there
we know that for a solution wu(t) of the equation (4.1.1) with u(0) € H?, there
exist Ty > 0 and C; > 0 that depend only on the bound of the H'-norm [|u(t)|];
(inequality (4.5.2)) such that for every ty € [0, 00), we have

a3 < [luto)llz + ennChllulto)ll3,  t € [to, to + T1].

Therefore
u(®)]]2 < C(||u(0)]|)ecte" IOll)

This confirms the assertion of Proposition 4.1.1.
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