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Grégoire ALLAIRE

defended publicly on 11 June 2014 in front of the jury composed of
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Conscient d’avoir pu préparer cette thèse dans un environnement de travail exceptionnel, mes
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m’intégrer à leur équipe et partager avec moi des moments mémorables, soit dans le cadre des
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Optimization of composite structures

A shape and topology sensitivity analysis

Abstract

This thesis is devoted to the study of two main problems, namely the optimal design of multi-
layered composite laminates and the topological sensitivity analysis in anisotropic elastostatics.
Concerning the composite design, we consider minimal weight structures subjected to stiffness
and buckling constraints, where the design variables are the shape/topology of each ply and
the stacking sequence. Indeed, the composite laminate is made up of a collection of fiber rein-
forced orthotropic plies whose main axes can take four different orientations: 0o, 90o, 45o,−45o.
The way these orientations are arranged within the composite defines the stacking sequence.
The physical behavior of the multi-layered laminate is governed by the system of linearized von
Kármán equations for plates. In order to optimize both design variables, we rely on a decom-
position technique which aggregates the constraints into one unique constraint called margin
function. Thanks to this approach, a rigorous equivalent bi-level optimization problem is es-
tablished. The latter problem is made up of a lower level represented by the combinatorial
optimization of the stacking sequence and a higher level represented by the shape/topology
optimization of each ply. We propose for the stacking sequence optimization an outer approx-
imation method which iteratively solves a set of mixed integer linear problems associated to
the evaluation of the constraint margin function. For the shape/topology optimization of each
ply, we lean on the level set method for the description of the interfaces and the Hadamard
method for boundary variations by means of the computation of the shape gradient. An aero-
nautic test case is exhibited for different constraints, namely compliance, reserve factor and first
buckling load. The second main problem of this thesis deals with the topological derivative
of cost functionals that depend on the stress and the displacement (assuming a linearly elastic
material behavior) in a general 2D and 3D anisotropic setting, where both the background and
the inhomogeneity may have arbitrary anisotropic elastic properties. A small-inhomogeneity
expansion of the cost function is mathematically justified for a wide class of displacement and
stress-based cost functionals having smooth densities and computational procedures are then
discussed. Several 2D and 3D numerical examples are presented, in particular demonstrating
the proposed formulation of the topological derivative on practical cases involving anisotropic
elasticity and non-quadratic cost functionals. Independently of the foregoing subjects, we treat
additionally two optimal design problems. First we consider the optimal distribution of several
elastic materials in a fixed working domain with either a sharp or a smooth interface. In order
to optimize both the geometry and topology of the mixture, we rely on the level set method and
the signed distance function for the description of the interfaces between the different phases.
Secondly, in the framework of efficient power complements to aircraft engines, we seek to come
up with the optimal micro-structure of micro-tubular fuel cells via an inverse homogenization
technique which maximizes the contact surface subjected to a pressure drop and a permeability
constraint. The optimal periodic design (fluid/solid) emerges from the application of a shape
gradient algorithm coupled to a level-set method for the geometrical description of the corre-
sponding cell problem.

Keywords

Shape and topology optimization, level-set method, composite materials, buckling constraint,
stacking sequence, topological derivative, multi-phase optimization, fuel cells, homogenization.
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Optimisation des structures composites

Une analyse de sensibilité géométrique et topologique

Résumé

Cette thèse est consacrée principalement à l’étude de deux problèmes, à savoir la concep-
tion optimale des drapages composites et l’analyse de sensibilité topologique élastostatique
anisotrope. En ce qui concerne la conception des composites, nous considérons des struc-
tures de masse minimale soumises à des contraintes de raideur et flambage, où les variables
de conception sont la forme de chaque pli et la séquence d’empilement. En effet, le drapage
composite est constitué d’une collection de plis orthotropes dont les axes principaux peuvent
prendre quatre orientations différentes: 0o, 90o, 45o,−45o. La manière dont ces orientations
sont disposées dans le composite définit la séquence d’empilement. Le comportement physique
du composite est modélisé par le système d’équations des plaques linéarisées de von Kármán.
Afin d’optimiser les deux variables de conception, nous nous appuyons sur une technique de
décomposition qui regroupe les contraintes dans une seule fonction qui dépend des formes de
chaque pli uniquement. Grâce à cette approche, un problème équivalent d’optimisation à deux
niveaux est établi de manière rigoureuse. Le premier niveau, aussi appelé inférieur, représente
l’optimisation combinatoire de la séquence d’empilement tandis que le deuxième niveau, ou
niveau supérieur, représente l’optimisation de la forme de chaque pli. Nous proposons ainsi pour
le niveau inférieur une méthode combinatoire convexe, alors que pour le niveau supérieur une
méthode des lignes de niveaux couplé à la notion de gradient de forme. Un cas test aéronautique
est détaillé pour diverses contraintes, à savoir la compliance, le facteur de réserve et la première
charge de flambement. Ensuite, nous étudions la dérivée topologique des fonctions coût qui
dépendent de la déformation et du déplacement (en supposant un comportement du matériau
élastique linéaire) dans un cadre 2D et 3D anisotrope général, c’est à dire où à la fois le milieu et
l’inclusion peuvent avoir des propriétés élastiques arbitraires. Le développement asymptotique
de la fonction coût par rapport à l’inclusion est mathématiquement justifié pour une large classe
des critères et des procédures de calcul sont plus tard discutées à la vue de plusieurs exem-
ples numériques 2D et 3D. Finalement, en dehors des sujets mentionnés précédemment, nous
traitons en outre deux problèmes de conception optimale. Premièrement, nous considérons la
meilleure répartition de plusieurs matériaux élastiques dans un domaine fixe, où l’interface peut
être nette ou lisse. Afin d’optimiser à la fois la géométrie et la topologie du mélange, nous nous
appuyons sur la méthode des lignes de niveau et la fonction distance signée pour la description
des interfaces entre les différentes phases. Deuxièmement, dans le cadre de l’étude des dispositifs
énergétiques complémentaires aux moteurs d’avions, nous cherchons à trouver la micro-structure
optimale d’une pile à combustible micro-tubulaire par une technique d’homogénéisation inverse.
Le motif périodique trouvé vise à maximiser la surface d’échange électrochimique soumis à une
contrainte de perte de charge et une contrainte de perméabilité. L’agencement optimal liq-
uide/solide découle de l’application de la méthode de lignes de niveau au problème de cellule
correspondant.

Mots-clés

Optimisation de forme, méthode des lignes de niveau, matériaux composites, contrainte de
flambage, séquence d’empilement, dérivée topologique, optimisation à plusieurs phases, pile à
combustible, homogénisation.
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Introduction

Structural optimization stands as a very active area in the industry of aeronautics and aerospace.
Thanks to the exponential increase of computing resources over the last 40 years, the develop-
ment of numerical tools oriented to structural optimization has been outstanding, reaching
nowadays a practical use widespread in industry. Even more, structural optimization has ac-
quired a paramount importance in the quest of faster and more efficient devices; the development
of lightweight structures responding to the overwhelming need of reducing fuel consumption for
economical and environmental reasons; and the design of innovative components made of “new
materials”, such as metal alloys and composites.

Throughout these years, the composite material technology has been continuously and pro-
gressively introduced in commercial aircraft, attaining more than 50% of the total weight in
today most popular models, such as the A350-XWB of Airbus Group and the 787 Dreamliner
of Boeing. Composite materials have become thus, an asset of major importance in the devel-
opment of the current and future aircrafts.

Despite the efforts accomplished so far to adapt classical structural optimization tools to
composites, currently aeronautical industry lacks of robust methods capable to master the op-
timal design of detailed composite coatings, such as the fuselage or the central wing box of an
airplane.

(a) (b)

Figure 1: Classical optimization of the design of a metallic aircraft nose fuselage. (a): Traditional
configuration with horizontal and vertical stiffeners. (b): Weight optimized structure with
angled stiffeners (in red). Figure extracted from Sogeti Lab.

Indeed, a delicate point when dealing with composites stems from the necessity to guarantee
the compatibility between a “continuous medium” vision, necessary for the overall understanding
of the phenomena related to the stiffness level, and the discrete nature of laminated compos-
ites. Thereby, composite optimization techniques usually propose a two-level strategy where
a continuous representation of the composite is applied at the system level (fuselage or wing),
meanwhile the subsystem level (ply lay-up or stacking sequence of the panel) is treated with
discrete algorithms (see Figure 2).

The aforementioned approach has proved effective, however, it does not address all the
degrees of freedom and constraints within composite structures. In fact, the design of the in-

17
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Figure 2: Two-level optimization of a composite wing. On the right side the stiffness properties of the
wing (system level) meanwhile on the left side the local ply lay-up (subsystem level). Figure
extracted from Altair Engineering Ltd.

plane shape of each layer has scarcely been considered so far, despite of its importance in terms
of structural strength and manufacturability. The in-plane shape as a design variable can only
be treated satisfactorily through a continuous approach, which leads to reconsider the former
continuous/discrete framework.

In order to define the shape of each ply within a composite laminate, only a few works on
topology optimization have been carried out hitherto. Furthermore, most of these works rely
on the Solid Isotropic Material with Penalization (SIMP) method (see Figure 3). Within this
context, the shape design problem is replaced by the quest of finding the best density distribution
of material inside a reference domain. Typically the optimal distribution takes intermediate
values between 0 (void) and 1 (material), spawning fictitious microscopic composites. In order
to get rid of these intermediate values, which can be neither interpreted nor manufactured by
means of classical procedures, a penalization scheme is performed, favoring the generation of
binary 0− 1 shapes.

In a complex mechanical framework however, where e.g. buckling or tensile failure constraints
are fundamental, the impact of such penalization schemes is not always evident and in some
cases the optimal solutions remain with large areas of intermediate density values. When those
situations occur, engineers extract a 0 − 1 shape by means of their mechanical experience and
intuition. Unfortunately most of the time this “interpretation” is not trivial and leads to non-
optimal structures.

Over the last years, the boundary variation approach of the level set method has become an
interesting alternative to the SIMP method in topology optimization of massive structures. In
a nutshell, the level set method for topology optimization implicitly describes the boundary of
a shape Ω enclosed in a “hold-all” computational domain D, via an auxiliary function ψ such
that (see Figure 4)







ψ(x) = 0 if x ∈ ∂Ω ∩D,
ψ(x) < 0 if x ∈ Ω,

ψ(x) > 0 if x ∈
(

D \ Ω
)

.

The complement of Ω inD can either represent a weak “ersatz” material, whose elastic properties
are adjusted to have a negligible mechanical contribution, or rather another arbitrary material,
thus constituting a multi-phase configuration. While keeping a “clear” 0− 1 description of the
shape, the level-set method easily manages topological changes within a fixed grid, avoiding the
need of re-meshing.

Financed by Airbus Group, the ensuing thesis work is mainly devoted to introduce the level
set setting to the current design process of laminated composites, enabling a natural control
of the contour of each ply. In this way, both design variables, namely the shape of each ply
and the lay-up sequence, are optimally determined by means of a rigorous mixed or bi-level
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(a) Fiber orientation 0o (b) Fiber orientation 90o

(c) Fiber orientation +45o (d) Fiber orientation −45o

Figure 3: Topology optimization of a composite laminate made of 4 layers obtained from the industrial
software Optistruct (Altair). The density color red represents a density equal to 1 (material)
meanwhile the blue represents a density equal to 10−2 (void). Each ply depicts the shape
of an unidirectionally reinforced orthotropic material with a particular fiber orientation. We
remark that the plies reinforced in 45o and −450 display important areas with intermediate
density values (green/yellow). For more details see Section 3.9 in Chapter 3.

strategy. Although the subject is rather exploratory, it is expected that the mathematical and
algorithmic contributions of this work will allow the development in the near future of an aid
decision tool for the design of large composite surfaces subjected to manufacturing and bending
stiffness constraints. This tool should help Airbus Group to increase the performances while
reducing the cost by cycle during the design of composite structures.

Ω

D

ψ < 0

ψ > 0

(a) (b)

Figure 4: (a): Optimized shape Ω (in black), enclosed in a square working domain D; (b): level-set
representation of the shape and color scale of the values of ψ.

Along with the foregoing subject on composite materials, three other topics are developed
within this thesis, thanks to the fruitful interaction with other researchers and Airbus Group
engineers.
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The first one deals with the concept of topological derivative which measures the sensitivity
of a given shape functional with respect to an infinitesimal singular domain perturbation, such
as the insertion of holes, inclusions, source-terms or even cracks. Nowadays, the topological
derivative stands as a sprightly domain of research on topology optimization, inverse problems
and image processing. However, its treatment has been mostly limited so far to an isotropic
setting where the cost functional does not depend upon the elastic stresses. Due to the impor-
tance of some potential applications on problems involving inherent anisotropy, such as bone
tissue imaging, flaw identification in composites and topology optimization subject to the Hill-
Tsai failure criterion, the developed work is intended to mend this lack of material by giving an
extensive and general treatment of the subject.

The second topic regards the optimal distribution of several elastic materials (phases) in
a fixed working domain. This corresponds to a generalization of the multi-layered composite
case described above, without taking into account the stacking sequence of course. Considering
either a sharp or a smooth interface between phases, a shape differentiable parameterization via
a level-set function is presented. The proposed algorithm represents a robust and rigorous tool
for the optimal design of the so-called graded materials.

In view of further applications of the level-set method for topology optimization other than
elasticity, the third subject addresses the optimal design of a solide oxide fuel cell as a comple-
ment of an aircraft engine. In general fuel cells are extremely efficient energy devices that con-
verts chemical energy into electricity. Although they are very efficient compared to conventional
power machines, their large weight and volume represent a major drawback for aeronautical
applications. In view of the recent development of additive manufacturing techniques capable of
miniaturizing the fuel cell lay-out, the design of an optimized micro-tubular fuel cell is presented.
This design is obtained via an inverse homogenization procedure coupled to a level-set method
for topology optimization.

The thesis is divided in five chapters. We present a brief outline of each one separately.

Chapter 1: Background and review of the state of the art

This chapter provides the necessary background material and state of the art for the ensuing
analysis. In particular we give all necessary references to the previous literature on the topics
covered by this thesis (in contrast with the present introduction which does not contain any
reference). We start by recalling the main features of shape optimization, explaining the basic
differences between its three main categories, namely the parametric, geometric and topology
optimization. Then we focus our attention on the latter type. A general topology optimization
problem can be stated as follows

inf
Ω∈Uad

J(Ω), (1)

where Ω ⊂ Rd is the domain occupied by the structure, J is the objective function to be
minimized and Uad is a set of admissible shapes. The criterion J(Ω) is supposed to depend upon
the solution of a PDE, e.g. the elastic displacement of the linearized elastic system







−div (Ae(u)) = f in Ω,
u = 0 on ΓD,

(

Ae(u)
)

· n = g on ΓN ,

where A is the elastic tensor of the medium, e(u) = (∇u + ∇uT )/2 is the symmetrized strain
tensor, f is the applied body force, g is the surface load applied on ΓN ⊂ ∂Ω and ΓD ⊂ ∂Ω is
the clamping zone.

We furnish a brief description of the main techniques in topology optimization (homoge-
nization, SIMP, level-set, etc.) and some theoretical existence results for (1). Also, a short
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description of the main tools in shape sensitivity analysis, namely the shape derivative and the
topological derivative, is delivered.

Then we describe the level-set method for topology optimization. This method combines the
aforementioned shape sensitivity analysis to obtain a descent direction and a level-set method to
parameterize the shape. Thanks to this particular description, topology changes can naturally
occur during the optimization process. We consider for that purpose all shapes Ω to be included
in a hold-all computational domain D, and represented implicitly via the zero level-set of a
scalar function ψ, defined as:







ψ(x) = 0 if x ∈ ∂Ω ∩D,
ψ(x) < 0 if x ∈ Ω,

ψ(x) > 0 if x ∈
(

D \ Ω
)

.
(2)

If the domain Ω evolves in pseudo-time t (hence we rather denote the level-set function as ψ(t, x)),
its deformation under the action of a velocity field θ(t, x) is governed by a Hamilton-Jacobi type
equation on ψ:

∂ψ

∂t
(t, x) + V (t, x)|∇ψ(t, x)| = 0, ∀t, ∀x ∈ D, (3)

where V (t, x) = θ · n corresponds to the normal component of the advection field θ,

n =
∇ψ(t, x)
|∇ψ(t, x)|

the natural extension of the normal on ∂Ω throughout D and θ is chosen such that θ · n = 0
on ∂D. The level set method for topology optimization thus, consists in finding the solution
of (1) by iteratively deforming an initial shape Ω0, using each time as advection field V in (3)
the descent direction furnished by the shape derivative −J ′(Ω). The detailed ingredients of the
optimization algorithm are explained and a couple of numerical examples are shown.

Finally we recall the definition and the main properties of composite materials, giving a par-
ticular emphasis to the laminated ones. Denoting as 2h the thickness of a laminated composite
plate with in-plane shape Ω, the horizontal displacements u and the deflection w of the plate
obey the von Kármán equations































−div(AE(u,w)) = 0 in Ω,
∇2 : (D∇2w)−AE(u,w) : ∇2w = P in Ω,

w = 0, u = 0,∇w · n = 0 on ΓD,
AE(u,w) · n = 2hg on ΓN ,
(D∇2w)nn = 0 on ΓN ,

∇ · (D∇2w) · n+ ∂
∂τ (D∇2w)nτ = 2hg · ∇w on ΓN ,

(4)

where the tensors A,D represent respectively the extensional and bending stiffness of the plate,
E(u,w) = e(u) + 1

2∇wT∇w, P is a pressure load, g is a surface load applied on ΓN ⊂ ∂Ω
and ΓD ⊂ ∂Ω represents the clamped zone. The associated linearized buckling problem is also
presented, in view of the later need to invoke its first positive eigenvalue as a buckling constraint.
The chapter is closed with a short explanation of the main mathematical properties of the von
Kármán model, notably those related to bifurcation theory.

Chapter 2: Multi-phase structural optimization

This chapter sets forth the problem of optimal distribution of two materials with elastic
tensor A0 and A1, occupying two domains Ω0 and Ω1 = D\Ω0, respectively.

First, the classical “sharp-interface” model is studied. The global elastic tensor A is assumed
discontinuous on the interface between the materials and given by

A = χΩ0A0 + (1− χΩ0)A1,
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where χΩ0 is the characteristic function of the domain Ω0. The shape derivative for a general
criterion is computed within this framework and the inherent difficulties estimating the involved
jumps are evoked. A discretized model is introduced as an alternative to the continuous set-
ting. Thus, we propose instead to differentiate the discretized problem, providing a consistent
approximation. The shape differentiability and the directional differentiability are established
according to the lay-out of the contours of each phase. This study contributes to clarify and
enrich the existent literature on the topic, rendering the right numerical usage of the shape
derivative for multi-phase problems.

Then we consider a “smoothed-interface” model, where the material properties are interpo-
lated between the two phases in an area of width 2ε. The “intermediate interface” is defined
through a level-set function ψ. The smooth elastic interpolation arises from the use of a regular
function hε(dΩ0) which depends on the signed distance function to the domain Ω0

dΩ0(x) =







−d(x, ∂Ω0) if x ∈ Ω0,
0 if x ∈ ∂Ω0,
d(x, ∂Ω0) if x ∈ D\Ω̄0,

where d(·, ∂Ω) is the usual Euclidean distance. In the case of the compliance

J(Ω0) =

∫

D
Ae(u) : e(u)dx,

where u is the unique solution of (2), the shape derivative of J reads

J ′(Ω0)(θ) = −
∫

Γ
θ(x) · n(x)

(

f0(x) + f1(x)
)

dx,

where Γ is the optimizable boundary, n is the outer unit normal to Ω0 and f0, f1 are scalar
functions defined by

f0(x) =

∫

rayΓ(x)∩Ω
0

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(u)(z)
d−1
∏

i=1

(1 + dΩ0(z)κi(x))dz,

f1(x) =

∫

rayΓ(x)∩Ω
1

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(u)(z)

d−1
∏

i=1

(1 + dΩ0(z)κi(x))dz,

κi(x), 1 ≤ i ≤ d−1, are the principal curvatures and z denotes a point in the ray emerging from
x ∈ Γ, i.e. the line connecting x ∈ Γ with its corresponding point on the skeleton of the shape.

We emphasize the differences with respect to previous publications on the topic, and we
propose consistent simplified formulae. We show how the method is extended for more than
two phases, exhibiting some test cases of compliance minimization (see Fig. 5). The above
results settle this smooth-interface approach as a promising technique in the optimal design of
the so-called “graded materials”.

Chapter 3: Optimization of laminated composite plates

This chapter treats the main object of this thesis work, namely laminated composite opti-
mization. According to Figure 6, let O be a symmetric laminated composite structure composed
of the superposition of 2N anisotropic layers, each one of constant thickness ε > 0 and variable
shape Ωi ⊂ Ω, where Ω is a regular sub-domain of R2. By abuse of notation we denote O as

O = {Ωi}i∈Z\{0},i=−N..N .

Since we suppose O symmetric (Ω−i = Ωi), we consider only N layers. The collection of
complementary shapes of each ply within the laminate (Ω\Ωi) can be understood either: (a)
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•

2

3.2

(a) (b)

Figure 5: Medium cantilever optimization using three isotropic materials with different stiffness ratios
(1:black, 0.5: dark gray and 0.25: light gray).

filled with a different material from the one occupying Ωi, rendering each ply biphasic, (b)
constituting a true “hole” so when gluing together the plies towards the plane of symmetry
Π = 0, the distal layers bend and fill the holes to keep contact with the proximal layers (See Fig.
6). The elastic material inside each ply Ωi is denoted as Ai, and we assume it corresponds to
an unidirectionally fiber-reinforced orthotropic material with 4 possible orientations w.r.t. the
canonical axis: 0o, 90o, +45o and −45o.

Ω2
Ω3

Ω4

Ω5

ε
Ω

Ω1
Π = 0

(a)

A1

A2

A3

A5

A0

A2

A5

A4

A0

(b)

A1

A2

A3

A3

A2

A4

A5

A5

Π = 0

(c)

Figure 6: Multi-layered setting. (a): Half-part of a multi-shape composite design with plane of symme-
try Π = 0. Each ply has its own shape Ωi ⊂ Ω. (b),(c): The “holes” are either filled with
another material or rather inwardly flatten within the laminate.

Likewise Chapter 1, we suppose the same partition of ∂Ω (∂Ω = ΓD ∪ ΓN ) and loading
configuration (g, P ). Then the in-plane displacement u and the vertical displacement w within
O satisfy the limit two-dimensional von Kármán plate model (4). The total extensional and
bending stiffness tensors, respectively denoted as A and D, stem from the superposition of plies
according to the classical theory of plates.
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Apart from the shape of each ply, the tensors A and D depend on the sequence of fiber
orientations constituting the laminate and the way they are distributed along the thickness.
This variable is called stacking sequence and we define it by means of the binary matrix ξ ∈ Y
with

ξmn =

{

1, if the layer in position m has fiber orientation n,
0, 1 if not,

and

Y =

{

ξ = (ξmn) ∈ {0, 1}N×4|
4
∑

n=1

ξmn = 1, ∀m; r(ξ) ≤ 0

}

.

The function r inside the foregoing definition represents the set of manufacturing constraints.

Henceforth, the mixed problem we contemplate to solve reads











min
O∈Uad,ξ∈Y

J(O)
s.t
G(O, ξ) ≤ 0,

(5)

where the objective function J(O) does not depend on the stacking sequence ξ and it represents
the mass of the structure meanwhile the vectorial constraint G = {Gj(Ω, ξ)}j=1...m represents
a sequence of regular measures of the stiffness of the plate, e.g. the compliance, the Hill-Tsai
failure criterion or the first eigenvalue of the linearized buckling problem associated to (4). The
admissible set Uad is defined as

Uad =
{

{Ωi}i=1...N |Ωi ⊂ Ω and P (Ωi) ≤ ς, ∀i = 1...N
}

,

where the constraint on the perimeter of each ply P (Ωi) ≤ ς, with ς > 0, ensures the existence
of an optimal solution to (5).

In order to write the continuous optimality conditions of problem (5) in view of the later
implementation of a descent gradient method, the following equivalent problem to (5) is intro-
duced

min
O∈Uad

{J(O)|M(O) ≤ 0} , (6)

whereM stands as the constraint margin function

M(O) := min
ξ∈Y

max
1≤j≤m

{Gj(O, ξ)} . (7)

Thereby, the optimality conditions of (5) can be casted atO∗ ∈ Uad as the existence of multipliers
λ, µ ∈ R (not both zero) such that















0 ∈ λJ ′(O∗) + µ∂M(O∗),
µM(O∗) = 0,
M(O∗) ≤ 0,
λ, µ ≥ 0,

where J ′ is the sequence of partial shape derivatives with respect to the shape of each ply and
∂M is the sub-gradient (or equivalently generalized gradient) ofM, which arises from the non-
differentiability of the constraint margin function due to non-uniqueness of the solution ξ ∈ Y
in the definition (7).

Finally we implement a multi level set method to solve (6), meanwhile the evaluation of the
constraint margin functionM in (7) is achieved thanks to an outer approximation scheme, which
stands as an exact method for convex non-linear integer programming problems. A numerical
example for a fuselage section subjected to different constraints is detailed.
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Chapter 4: The topological derivative in anisotropic elasticity

This chapter investigates the topological derivative DJ of a general cost functional J de-
pending on the stress and the displacement in a full anisotropic elastic framework. The topolog-
ical derivative DJ(z) quantifies the perturbation induced to a cost functional J by the virtual
creation of an object Ba(z) (cavity, inhomogeneity, source term, etc) of vanishingly small char-
acteristic radius a at a prescribed location z inside a solid Ω ⊂ R3.

Consider an inhomogeneity of elastic tensor C⋆, which is embedded in Ω. The elastic prop-
erties within Ω without the inclusion are given by the elastic tensor C. Then we define the
topological derivative through the following asymptotic development

J(Ca) = J(C) + δ(a)DJ(z) + o(δ(a)),

where the elastic tensor Ca describes the whole solid elastic properties

Ca = χBaC⋆ + (1− χBa)C,
δ(a) vanishes as a→ 0, and the inclusion Ba occupies the domain

Ba = z + aB, B ⊂ R3 bounded and regular.

We assume that the cost functional J has the form

J(Ca) = Ja(ua,∇ua) with Ja(u, d) =

∫

Ω
ψa
(

x, u(x), d(x)
)

dx+

∫

∂Ω
ψS(x, u(x))ds. (8)

The densities ψS : Ω×R3 → R and ψ, ψ⋆ : Ω×R3×R3×3 → R, with

ψa = (1− χBa)ψ + χBaψ
⋆,

are supposed to be twice differentiable in all their arguments and to satisfy adequate growth
conditions. The function ua stands for the elastic displacement field in the solid containing the
small inhomogeneity Ba.

We split the boundary ∂Ω as ∂Ω = ΓD ∪ ΓN (where ΓD ∩ ΓN = ∅ and |ΓD| 6= 0) and define
the kinematically admissible spaces

W (ū) :=
{

v ∈H1(Ω;R3), v= ū on ΓD

}

, W0 :=W (0),

where ū corresponds to an arbitrary prescribed Dirichlet data. Then the displacement field
ua ∈W (ū) solves the transmission problem

div(Cae(ua)) + f = 0 in Ω, (Ce(ua))·n = g on ΓN, ua = ū on ΓD,

where f and g hold as the applied volume and surface loads, respectively.
We also introduce the free-space transmission problem

div
(

CB :e(uB[E])
)

= 0 in R3, uB(ξ)− E · ξ = O(|ξ|−2) (|ξ| → ∞),

with CB = χBC⋆ + (1 − χB)C and E an arbitrary constant second-order tensor, and the elastic
moment tensor A:

A :E =

∫

B
(C⋆ − C) :∇uBdx ∀E ∈R3×3.

Then we prove, by virtue of an asymptotic development of ua, that the topological derivative
DJ at z of the cost functional (8) has the following structure

DJ(z) = |B|∆ψ(z, u(z),∇u(z))−∇p(z) :A :∇u(z)

+ ∂d(∆ψ)(z, u(z),∇u(z)) :
∫

B
∇vB(x)dx

+

∫

R3\B
G(z,∇vB(x))dx+

∫

B
G⋆(z,∇vB(x))dx, (9)
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where ∆ψ = ψ−ψ⋆ and vB(x) = uB[∇u(z)](x)−∇u(z)·x. The functions G and G⋆: R3×R3×3 → R

are defined, for a given background solution u, by

G(z, d) := ψ(z, u(z),∇u(z)+d)− ψ(z, u(z),∇u(z))− ∂dψ(z, u(z),∇u(z)) :d
G⋆(z, d) := ψ⋆(z, u(z),∇u(z)+d)− ψ⋆(z, u(z),∇u(z))− ∂dψ⋆(z, u(z),∇u(z)) :d,

meanwhile the adjoint state p∈W0 solves

−div(Ce(p)) = ∂uJ0(u,∇u)−div(∂dJ0(u,∇u)) in Ω, (Ce(p))·n = ∂dJ0(u,∇u) on ΓN, p = 0 on ΓD.

The computation of (9) is largely discussed and a few 2D and 3D numerical examples are
exhibited.

Chapter 5: Optimal design of a micro-tubular fuel cell

In this chapter we study the problem of finding the optimal configuration for a micro-tubular
solide oxide fuel cell (see Fig. 7 (a)). Fuel cells are energy devices which can efficiently convert
chemical energy into electrical energy. Unfortunately, due to their high weight and volume, their
application to aeronautics has been limited so far. However, thanks to recent developments in
additive manufacturing techniques, capable of reducing the size of complex structures by allowing
the design of extremely small features from a CAD model, the aforementioned limitation is
becoming obsolete.

A generic fuel cell is mainly composed of two porous electrodes (anode and cathode) and a
dense electrolyte. Thus, let Ωǫ ⊂ Rd be the porous volume of the fuel cell where the air flows
freely, delimited by the boundaries ΓD, ΓN and Γǫ (see Fig. 7 (b)). The air is injected through
ΓD, meanwhile ΓN is impermeable. A periodic arrangement of anode/electrolyte/cathode tubes
constitutes the interface Γǫ. The air transports several species but we concentrate on the oxygen
O2, which is consumed in the electrochemical reaction on the surface Γǫ. The adimensional pa-
rameter ǫ corresponds to the ratio between the characteristic size of each tube and a macroscopic
characteristic length.

(a)

Γǫ
ΓD

ΓN

ΓN

Ωǫ

(b)

Figure 7: (a): Proposed micro-tubular design with arbitrary shaped tubes. (b): Transversal section
of the porous fuel cell and boundary conditions. The air flows from the left to the right.
The fuel penetrates orthogonally through the figure inside the red tubes. Γǫ represents the
anode/electrolyte/cathode lumped structure.

Under some classical simplifications of the internal structure and the fluid within the fuel
cell (laminar and incompressible flow, isothermal state, etc.), the upscaled (homogenized) state
equations read
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













div(u∗) = 0 x ∈ Ω

u∗ = −K
µ∇p∗ x ∈ Ω

∂X∗

∂t + u∗ · ∇X∗ = λdiv(D∇X∗) + |∂ω|R(X∗) x ∈ Ω
X∗ = Xinit t = 0, x ∈ Ω,

(11)

subjected to the following boundary conditions

{

u∗ = uD X∗ = XD t > 0, x ∈ ΓD,
u∗ · n = 0 ∇X∗ · n = 0 t > 0, x ∈ ΓN .

The preceding homogenized equations (11) can be identified to the classical Darcy law for the
fluid flow (air) in a porous media and a convection-diffusion-reaction equation for the transport of
the solute (O2). The functions u

∗, p∗ correspond to the homogenized velocity and pressure of the
air, X∗ the homogenized O2 concentration, µ the viscosity of the air, λ the diffusion coefficient,
|∂ω| the perimeter of the micro-fuel-tube ω scaled to the unit cell Y = [0, 1]× [0, 1], R(X∗) the
Butler-Volmer reaction term and (uD, XD) the velocity of the air and the concentration of O2

at the inflow boundary ΓD. The effective porous media diffusion tensor D and the permeability
tensor K are defined by means of the solutions of two cell problems.

In order to optimize the performances of a periodic micro-tubular fuel cell with variable
shaped fuel tubes, we propose the shape optimization problem



















max
ω⊂Y
|∂ω|

s.t.
|ω| ≥ Cf |∂ω|
tr(K)
d ≥ kmin,

(12)

where ω stands for the shape of each tube inside the unit-cell Y , K is the aforementioned
permeability tensor in (11), and tr() is the trace operator. The idea is thus to find the shape
ω with the largest perimeter (so as to maximize the electro-chemical reaction within the fuel
cell) subjected to a pressure drop and a permeability constraint, parameterized through the
coefficients Cf and kmin, respectively.

Problem (12) is efficiently solved via the level-set method for topology optimization described
in Chapter 1, where each shape ω ⊂ Y is described by means of a level-set function ψ.

(a) (b)

Figure 8: Example of an optimal fuel cell design. (a): stands for the base cell optimized result, mean-
while (b): corresponds to the respective periodic structure.
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1.1 Structural optimization

Shape optimization attempts to find the optimal shape of a domain which minimizes or maxi-
mizes a given criterion subject to a set of constraints. This quest has inspired humanity since a
quite long time, going back at least to the Antiquity. We can cite e.g. the so-called “Problem of
Queen Dido”: Tells the Roman poet Vergil in his famous epic Aeneid, that after the Phoenician
princess Dido escaped from Tyre (now part of Lebanon), she disembarked in Africa, at the place
that later became Carthage. The local ruler (King Jarbas of Numidia), accepted the settlement
of Dido and her people under the condition that the queen would obtain only as much land as
she could enclose with the skin of an ox. Cutting the skin in very thin strips and tying them
together, Dido chose to draw her territory as a semi-circle enclosing the coast, solution that
yields the largest possible area. The mathematical translation of the latter property reads by
means of the isoperimetric inequality: If Ω is a plane domain with a finite area |Ω| and perimeter
P (Ω), then

|Ω| ≤ 1

4π
P (Ω)2,

with equality only if Ω is a circle. We conclude thus that the circle maximizes the area for a
fixed perimeter.

Nowadays, shape optimization is a key tool in modern industrial design. Notably the industry
of aeronautics has enjoyed enormous advances e.g. on optimization of the profile of a wing

29
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Figure 1.1: Dido’s people cut the hide of an ox into thin strips and try to enclose a maximal domain
[148].

to improve the penetration into the air or the lift; construction of quieter aircraft, especially
supersonic aircraft; and research on stealth aircraft.

In general the preceding problems are highly non-trivial, since the criterion to optimize is
computed through the solution of a partial differential equation (the so-called state equation).
Let us e.g. explain more in detail the optimization problem of designing the profile of an airplane
wing [255]. Consider a wing whose shape is given by A ⊂ R3. We search to minimize the drag
coefficient cd defined as

cd(A) =

∫

∂A

[

µ(∇u+∇uT )− 2µ

3
divu

]

· n · u∞ds−
∫

∂A
pn · u∞ds

where u is the velocity of the fluid, µ is the viscosity, p the pressure and u∞ is the speed of
the wing in the fluid. The foregoing quantities (except from u∞) are computed by solving the
compressible Navier-Stokes equations in the complement of the volume A occupied by the wing.
The fact of solving the 3D Navier-Stokes equations in an unbounded domain in the presence
of a high Reynolds number makes this problem very difficult, both numerically and theoretically.

During the last decades, thanks to the exponential development in computing power, the
process of optimizing structures has rapidly evolved from experience and knowledge of engineers
to automatic tools based on more or less classical mathematical algorithms and techniques.
These advancements have enable the possibility of efficiently treat complicated problems where
e.g. the mechanical intuition is very limited (dynamics, non-linear problems, etc...) and reduce
the cost of long periods of design through trial and error.

Due to the increasing interest in the subject, many methods have been studied and developed
in structural optimization during the last years. Among the vast literature available on the field,
we refer the reader e.g. to [4, 45, 144, 285, 255] and references therein.

Depending on the choice of geometric representation of the shape, a subdivision of shape op-
timization problems can be established. Thus, three main categories are recognized: parametric
(or size), geometric (or shape) and topology optimization. We give a short description of each
one of them, emphasizing the last one though.

1) Parametric (or Size) optimization. The shape is described a priori using a limited
number of parameters. Such control variables can be for example the thickness distribution of
the structure, the size of structural members or the size of bars in a truss. Many approaches have
also been presented, in which the boundary of the structure is parametrized using polynomials,
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such as Bézier curves, splines or NURBS. This type of optimization is widely used in industrial
applications, but offers a limited possibility of shape variations [41, 5, 86, 44].

2) Geometric (or Shape) optimization. The optimization variable is the boundary of the
structure itself. This boundary is not a priori limited to a certain family of curves (splines,
NURBS, etc...), but rather completely free [14, 5, 255, 224]. It can be numerically represented
using e.g. a non-structured mesh which is deformed. Even though the domain has the freedom
to vary according to the boundary, no topology changes can take place.

3) Topology optimization. We search to find the best shape without imposing any previous
restriction. Unless it exists some reason to use a parametrization of the shape or to keep
a specific topology, this category of shape optimization is the most interesting and allows to
explore a larger set of shapes, increasing the possibility to obtain “better optimal” solutions.
Currently several methods for topology optimization exist in literature. The mainly differ in the
way topological changes occur. We give a rapid glance to each one of them.

The first efforts to create optimal topologies in structural optimization employed the homog-
enization method introduced by Murat and Tartar [232, 301, 302]. Also important contributions
are due to Cherkaev, Gibianski and Lurie [85, 126, 206], together with Kohn and Strang [182].
The article of Bendsoe and Kikuchi [43] popularized this method and had an enormous impact
among engineers applying shape optimization. We also refer the reader to [4]. Within this
method, the shapes are described by a distribution of intermediates densities going from zero
to one. In the case of linear elasticity, the relaxed physical properties of the medium belong to
the space of homogenized elasticity tensors Gθ, representing the set of “composite” materials
made from the mixture of one material and void in a certain proportion θ. A typical solution
of an homogenized problem results in an optimal shape like the one on the left of Figure 1.2.
In general the notion of “shape” with clear boundaries is lost, giving way to a “composite”, in
the sense of graded structure. Unfortunately for engineering applications, this is a cumbersome
drawback which does not allow to construct structures by classical manufacturing procedures
such as machining or molding. However, the recent outstanding development in additive manu-
facturing techniques such as 3D printing, enables to consider the fabrication of graded materials
in a near future (see Figure 1.3).

Figure 1.2: Left: density distribution of a composite optimal shape; right: penalized optimal shape
(figure extracted from [4]).

In order to obtain a classical shape from the homogenized optimum, usually one penalizes
intermediate densities through fictitious interpolation schemes for the material properties, which
has the tendency to produce 0− 1 shapes (see Figure 1.2 on the right).

A part from problems involving the compliance and eigenfrequency optimization in elasticity,
the homogenization method is not fully operative due to the lack of knowledge of the set of
homogenized elasticity tensors Gθ [4]. One must thus conform with approximations of the
foregoing set where the global optimality cannot be necessarily guaranteed. The most well-
known approximation is the one that entails the SIMP method (Solid Isotropic Material with
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Penalization) [45, 44].Indeed, Gθ is approximated by the set of elasticity tensors of the form
Aijkl(θ) = θpAijkl, where Aijkl represents the elasticity tensor of the full material (θ = 1) and p is
the penalization power, used to enforce shapes with approximative 0−1 designs (usually p = 3).
We can also cite e.g. other schemes, such as RAMP [291] and combinations of penalization
techniques with Heaviside projection functions [131].

Due to its robustness and simplicity, the SIMP method has been applied to several engineer-
ing problems with excellent results [44]. Furthermore, most of commercial softwares dedicated
to topology optimization, such as GENESIS (Vanderplaats), NASTRAN (MSC Software), OP-
TISTRUCT (Altair) and TOPOL (Samtech), are based on the SIMP method. Nevertheless,
despite of all these good features, in many cases where the position of the interface is a critical
matter, such as those involving manufacturing [220] or pointwise constraints, the use of the
SIMP method seems not to be the most suitable due to the remaining intermediate density
zones. For the interested reader, we recommend [262].

(a) Homogenized structure and mapping of
density to micro-structure

(b) Combined solid and lattice structure

(c) Concrete samples made by hand to illustrate the con-
cept of density gradient in concrete. MIT Media Lab

Figure 1.3: Applications of additive manufacturing to graded materials for topology optimization [58].

Another way of doing topology optimization without invoking intermediate densities is
through the boundary variations methods. These methods combine classical shape sensitiv-
ity analysis tools with geometric representation methods that allow topological changes to occur
in a natural way. Therefore the position of the interface is known at every iteration. We can cite
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e.g. the level-set method for topology optimization [11, 319], explicit mesh representations of
the domain [87, 97], the phase-field method [320, 329, 322, 300] and topological derivative-based
methods [245, 283, 123, 25]. The level-set method will be presented in detail in Section 1.2.

Finally among the so-called non-gradient based methods, we can cite genetic algorithms
[5, 172, 142], integer programming [297], cellular automata [179] and evolutionary algorithms
[159]. One of the most well-known method in the last category is the Soft Kill Option (SKO)
[211, 34]. This heuristic, inspired by nature, removes the less efficient elements of the structure
in order to obtain an iso-stressed configuration.

Generally speaking, the aforementioned methods are very easy to implement since they do
not require any gradient and the shape description is simpler. However, they have been largely
criticized, e.g. in [276], due to their restricted application to academic test cases and their
excessive numerical cost.

1.1.1 Do optimal shapes exist?

We give a brief review of some fundamental ideas on the existence of optimal shapes, which is
of course not exhaustive. In general a shape optimization problem can formally be written as

inf
Ω∈Uad

J(Ω), (1.1)

where Ω is the domain occupied by the structure, J is the objective function to be minimized
and Uad is a set of admissible shapes. Suppose additionally that J depends on the set Uad via a
second order elliptic PDE.

The main method for proving the existence of a solution to (1.1) is to endow Uad with a certain
topology T which ensures that Uad is compact and J is a lower semi-continuous function. This
method is called Direct method in the calculus of variations [94] and can be stated as follows

Proposition 1.1.1. Suppose Uad compact and J bounded from below and sequentially lower
semi-continuous w.r.t. the topology T . Then there exists a certain Ω∗ ⊂ Uad such that the min-
imizing sequence (Ωn)n ⊂ Uad admits a sub-sequence (Ωnk

)nk
→ Ω∗ and Ω∗ is solution of (1.1).

One of the most typical difficulties in shape optimization is the generic non-existence of
well-defined solutions (i.e. domains in the admissible space). In the light of Proposition 1.1.1,
this fact is generally justified by either the lack of compactness of Uad, or the absence of lower
semi-continuity of J . This seems to be just a theoretical problem for mathematicians, but it has
a dramatic consequence for practical and numerical applications. Indeed, most algorithms are
not convergent under mesh refinement or highly sensitive to initial guesses, which implies that
the result of a computation is never guaranteed to be optimal, even approximately.

Counter-examples to the existence of optimal designs have been quite detailed in literature
[228, 30, 84]. In order to fix the ideas, let us cite an example from [5]

An example of non-existence

Consider a membrane occupying the domain D = [0, 1]× [0, 1], on which two horizontal uniform
loads (denoted as e1) are respectively applied on its left and right sides (see Figure 1.4). The
membrane is filled with two isotropic elastic materials, respectively characterized by the coeffi-
cients α and β. The coefficient β is set to a very small value representing void (thus α >> β).
Assuming that the strong phase α occupies the domain Ω ⊂ D, the elastic coefficient αχ for the
whole domain D is written as

αχ = αχ+ β(1− χ),
where characteristic function χ reads

χ(x) =

{

1 ifx ∈ Ω,
0 ifx /∈ Ω.

(1.2)
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Then the displacement uχ solves the state equation

{

−div(αχ∇uχ) = 0 in D,
αχ∇uχ · n = e1 · n on ∂D.

(1.3)

Problem (1.1) can be written in this case as

inf
χ∈Uad

J(χ), (1.4)

where we look for the shape of the membrane that maximizes its rigidity (or rather minimizes

Figure 1.4: Membrane having the same volume, but different number of holes. The shape on the right
is more rigid than that on the left (figure extracted from [5]).

the potential elastic energy/compliance) for a certain specific volume Vα of the rigid material.
Mathematically the optimization problem reads

inf
χ∈Uad

J(χ) =

∫

∂D
(e1 · n)uχds, (1.5)

where the admissible set Uad is defined as

Uad =
{

χ ∈ L∞(D; {0, 1}) such that
1

|D|

∫

D
χdx = Vα

}

.

Then one can prove

Proposition 1.1.2. There exists no optimal solution for problem (1.5) in the set Uad.

An intuitive explanation of the above result is that the rigidity of the structure could be al-
ways further improved by creating smaller and smaller inclusions of weak phase aligned with the
direction of the force. Since the admissible set Uad imposes no constraint on the size or smooth-
ness of the holes, this process could be continued without any limit. In fact, the sequence of
such shapes does not converge to a classical shape described by a characteristic function, but
instead to a composite material, a mixture of materials α and β with densities θ = Vα

|D| and 1−θ.

In order to palliate the inconvenient of non-existence of an optimal solution, two method-
ologies arise to ensure the compactness of Uad (while assuming the lower semi-continuity of J).
The first one is to restrict the class of admissible designs by adding further constraints which
ensure the existence of an optimum. On the contrary, the second one searches to enlarge the
class of admissible designs by allowing for generalized designs for which there are optimal solu-
tions. We proceed to give a rapid glance to each one of the above solutions for different classical
PDE’s (not exactly the aforementioned membrane model even though the results can usually
be generalized). For the interested reader we recommend [4, 5, 144, 9, 64] and the references
within.
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Restriction of the admissible set

In general these constraints are intended to prevent shapes to oscillate too much or to change of
topology. Some of them have a geometrical interpretation meanwhile others are a consequence
of purely technical arguments introduced in the optimization model.

1) Uniform regularity constraint of the boundary.

A first natural idea to prevent oscillations of the minimizing sequences consists in working
with domains which have some uniform regularity. This regularity can be expressed either in
terms of uniform Lipschitz regularity of the boundary or in term of uniform cone condition. Let
us choose the latter one which is more geometric.

Definition 1.1.3. Let y be a point in Rd, ξ a unit vector and ǫ > 0. We denote by C(y, ξ, ǫ)
the cone defined by:

C(y, ξ, ǫ) =
{

z ∈ Rd|(z − y, ξ) ≥ cos(ǫ)|z − y| and 0 < |x− z| < ǫ
}

.

Furthermore we say that an open set Ω has the ǫ−cone property if:

∀x ∈ ∂Ω, ∃ξx unit vector such that ∀y ∈ Ω̄ ∩B(x, ǫ), C(y, ξx, ǫ) ⊂ Ω,

where B(x, ǫ) is the ball centered at x with radius ǫ.

It can be proved [83], that the previous property is equivalent to uniform Lipschitz property
of the boundary of Ω.

For a fixed ǫ > 0, we now introduce the following class of admissible domains:

Uad = {Ω ⊂ B open set and Ω has the ǫ− cone property} , (1.6)

where B is a fixed ball. Then the following statement enables us to prove the existence of an
optimal shape in Uad
Theorem 1.1.4 (Chenais [83]). Let f ∈ L2(B) and for all ω ⊂ B, let uω and vω be the solutions
of the following Dirichlet and Neumann problems:

{

−∆uω = f in ω,
uω = 0 on ∂ω.

and

{ −∆vω + vω = f in ω,
∂vω
∂n = 0 on ∂ω.

Define the cost functions

J1 =

∫

ω
j(x, uω,∇uω)dx and J2 =

∫

ω
j(x, vω, 0)dx+ α

∫

ω
|∇vω|2dx, (1.7)

with α ≥ 0 and ∀x ∈ B, r ∈ R, p ∈ Rd |j(x, r, p)| ≤ C(1 + r2 + |p|2). We assume moreover that
J1, J2 can be estimated from below. Then for a fixed ǫ, there exists at least one solution of (1.1)
with J = J1 or J = J2 and Uad given by (1.6).

The proof relies on the use of the Hausdorff convergence for open sets (see Remark 1.1.10).

2) Limited number of connected components

In two dimensions, we can state a constraint of topological nature that assumes that the
number of connected components of the complementary must stay bounded. Indeed, let B an
arbitrary bounded set and l ≥ 1 integer. For every open set ω ⊂ B we denote by ♯ωc the number
of connected components of the complementary of ω. Then the following existence result due
to Šverak follows
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Theorem 1.1.5 (Šverak [298]). Consider the same framework than Theorem 1.1.4 but this time
with the definition of Uad as

Uad = {ω ⊂ B|♯ωc ≤ l} .
Then there exists at least one solution of (1.1) with J = J1.

From a mechanical point of view, the aforementioned result can be interpreted as the exis-
tence of an optimal shape for an isotropic and homogeneous membrane, where u corresponds to
the vertical displacement [5]. The generalization to linearized 2D elasticity (where the displace-
ment u is now a vector) is due to Chambolle in [81].

3) Perimeter constraint.

There are several cases where imposing constraints on the perimeter of the admissible do-
mains appear very natural. This is the case, in particular, when the perimeter appears directly
in the functional we want to minimize as a surface tension term. It can also be a good measure
of the cost of the design we want to construct.

For a shape Ω ⊂ D, with D an open subset of Rd, we recall the definition generalized
perimeter P introduced by De Georgi as

P (Ω) = sup

{∫

D
χΩdiv(φ)dx; φ ∈ C∞

c (D;Rd), ‖φ‖L∞ (D) ≤ 1

}

In other words, P (Ω) represents the total variation of the gradient of the characteristic function
considered as a Radon measure. We will denote byMb(D) the set of Radon measures in D with
finite total mass. Then the compact embedding

BV (D) = {f ∈ L1(D)|∇f ∈Mb(D;Rd)} →֒ L1(D)

yields the following result due to Ambrosio and Buttazzo [16, 144]

Theorem 1.1.6. Let (Ωn)n be a sequence of measurable sets in an open set D ⊂ Rd. We assume
that there exists an uniform constant C such that

|Ωn|+ P (Ωn) ≤ C, ∀n.

Then there exists Ω∗ ⊂ D measurable and a subsequence (Ωnk
)nk

satisfying:

χΩnk
→ χΩ∗ strongly in L1

loc(R
d) and ∇χΩnk

→ ∇χΩ∗ weakly-* inMb(D;Rd),

|Ω∗| ≤ lim inf
k→∞

|Ωnk
| and P (Ω∗) ≤ lim inf

k→∞
P (Ωnk

).

Moreover, if D has finite measure, the convergence of χΩnk
towards χΩ∗ takes place in L1(D)

and |Ω∗| = lim |Ωnk
|.

Theorem 1.1.7. Consider two materials with constant conductivities α, β, respectively (0 <
α < β). Let f ∈ L2(D) be a charge density source and uΩ the electrostatic potential, solution of
the problem

{

−div((αχΩ + β(1− χΩ))∇uω) = f in D,
uΩ = 0 on ∂D.

For C > 0, introduce also the set of admissible shapes

Uad = {Ω ⊂ D, |Ω|+ P (Ω) ≤ C}.

Then there exists an unique solution to problem (1.1) with J =
∫

D j(x, χΩ, uΩ,∇uΩ)dx, where j
is lower semi-continuous and satisfies adequate growth conditions.
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The aforementioned elements will play a key role in the existence results of Section 3.3 for
composite optimization.

4) Regularity of the level-set functions.

Consider the weak formulation of the conductivity problem

∫

D

(

(a1χΩ + a2(1− χΩ))∇uΩ · ∇v + (b1χΩ + b2(1− χΩ))uΩv
)

dx =

∫

D
fvdx, ∀v ∈ V ⊂ H1(D),

where ai, bi > 0, i = 1, 2 represent two materials, D ⊂ Rd is a fixed domain and f ∈ L2(D). We
search thus to optimize the position of the interface between both materials. The idea in [240]
is to take χΩ = H(pΩ), with H the maximal monotone extension of the heaviside function

H(p) =







1, p > 0
[0, 1], p = 0
0, p < 0

and the level set function pΩ ∈W (D) representing Ω, with

W (D) = { p ∈ H1(D)|∃rK ,MK , ν > 0 such that |p|+ |∇p| ≥ ν > 0 and ‖p‖H1+rK (K) ≤MK

, ∀K ⊂ D compact},

where the constants rK and MK depend of the compact K at issue. Then

Proposition 1.1.8. Define the admissible set

Uad = {Ω ⊂ D|∃pΩ ∈W (D) such that χΩ = H(pΩ)}.

Then any sequence (Ωn)n ⊂ Uad admits a subsequence (Ωnk
)nk

such that there exists Ω∗ ∈ Uad
and χΩnk

→ χΩ∗ a.e. in D. Moreover there exists an unique solution to problem (1.1) with

J =
∫

D j(x, χΩ, uΩ,∇uΩ)dx, where j is lower semi-continuous and satisfies adequate growth
conditions.

5) Regular perturbations of the identity

The following condition is due mainly to Murat and Simon [231, 230], but the approach
is quite similar to the one of Micheletti [221, 104] through the Courant metric. Let Ω0 ⊂ Rd

be a smooth reference domain and the space of diffeomorphism (differentiable bijections with
differentiable inverses)

D = {T such that (T − Id) ∈W 1,∞(Rd;Rd), (T−1 − Id) ∈W 1,∞(Rd;Rd)}. (1.8)

We introduce the space of admissible shapes obtained by deformation of Ω0 as

C(Ω0) = {Ω | ∃ T ∈ D,Ω = T (Ω0)} . (1.9)

We remark that since T ∈ D is a homeomorphism (continuous bijection with a continuous
inverse), all Ω = T (Ω0) preserve the same topology than Ω. We also define the pseudo-distance

dD(Ω1,Ω2) = inf
T∈D|T (Ω1)=Ω2

(

‖T − Id‖W 1,∞ +
∥

∥T−1 − Id
∥

∥

W 1,∞

)

.

Then the following existence result follows
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Theorem 1.1.9 (Murat and Simon [230]). Let V0, R > 0 be two constants. Define the admissible
set

Uad = {Ω ∈ C|dD(Ω,Ω0) ≤ R,
∫

Ω
dx = V0}. (1.10)

Then any sequence (Ωn)n ⊂ Uad admits a subsequence (Ωnk
)nk

such that there exists Ω∗ ∈ Uad
and

sup
(

dH(Ωnk
,Ω∗), dH(∂Ωnk

, ∂Ω∗), dH(R
d\Ωnk

,Rd\Ω∗)
)

→ 0,

where dH is the Hausdorff metric (see Remark 1.1.10).

Thanks to the definition of Uad, any admissible element Ω can be obtained by applying a
regular diffeomorphism to the reference domain Ω0, restricting in this way the possible topology
changes of the shapes. This vector space representation of every admissible shape will allow us
to introduce the right framework to perform some calculus of variations through the notion of
the shape derivative (Subsection 1.1.2).

Several of the preceding conditions rely on the compactness induced by the Hausdorff metric
to the set of subdomains of a compact.

Definition 1.1.10. Let K1,K2 ⊂ B and B a fixed compact set of Rd. Define the Hausdorff
metric dH as

dH(K1,K2) = max
(

sup
x∈K1

inf
y∈K2

‖x− y‖ , sup
y∈K2

inf
x∈K1

‖x− y‖
)

,

We say that a sequence (Ωn)n converges to Ω in the Hausdorff sense if

dH(B\Ωn, B\Ω)→ 0 when n→∞.

Theorem 1.1.11 ([144]). The set {Ω ⊂ B} is compact for the Hausdorff metric dH .

In the context of this thesis, the constraints 3) and 5) will be used to prove the existence of
optimal shapes.

Relaxation or homogenization of the admissible set

As it was seen in the counter-example of Proposition 1.1.2, when the existence of a classic solution
fails, frequently a relaxation process occurs. This is the situation in which a minimizing sequence
of shapes leads to a “mixture” between material and void. Thus, the non-existence problem is
avoided by enlarging the set of admissible shapes by including “homogenized” structures in Uad
[4, 302, 232]. In this way the characteristic function χ is replaced by a density field θ which
varies continuously in the interval [0, 1]. The elastic properties of each phase are replaced by the
homogenized properties of the composite material created by their mixture. Once the properties
of the homogenized elasticity tensor A∗ have been optimized, problem (1.4) is replaced by the
relaxed or homogenized problem

inf
θ∈U∗

ad

J(θ), (1.11)

where

U∗
ad =

{

θ ∈ L∞(D; [0, 1]) such that

∫

D
θdx = Vα

}

.

This problem admits a solution that can be proved to correspond to the limit of a sequence of
shapes of problem (1.4).

Despite the foregoing methodologies to guarantee the existence of an optimal solution, the
fact of just being aware of the existence of an optimal solution does not necessarily imply the
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knowledge to construct it. Thereby, optimality conditions expressed through the shape or topo-
logical derivatives will play an important role to numerically compute “optimal” (or rather local
optimal) solutions. We remark however that the family of open subsets or shapes of Rd has not
a normed vector space structure, hence the classical optimization theory (differential calculus)
does not apply [144].

In the sequel we give a short review on the shape and the topological derivatives.

1.1.2 Shape sensitivity analysis

The boundary variations of a shape Ω are studied through the notion of a “shape” gradient,
which leans on a particular parameterization of the admissible set of shapes, allowing to endow
the problem with a normed vectorial space structure. Shape differentiation is a classical topic
that goes back at least to Hadamard in 1908 [138]. We present here the approach of Murat and
Simon [279]. For more details see e.g. [285, 144].

Introduction

Consider Ω0 ⊂ Rd a smooth open reference domain, we will suppose that all admissible shapes
Ω are obtained by applying a smooth vector (or advection) field θ such that

Ω = {x+ θ(x) , x ∈ Ω0} .

In other words, every admissible shape Ω will be represented by a vector field θ : Rd → Rd and

(Id + θ)Ω0

x

θ(x)

Ω0

Figure 1.5: Variations of a shape using Hadamard’s method.

we will write Ω = ( Id + θ)(Ω0) (see Figure 1.5). The space of admissible shapes obtained by
such a deformation coincides with C in (1.9) by taking T = Id+ θ, at least for θ small. Indeed,
one can prove that if ‖θ‖W 1,∞(Rd) < 1, then T = Id+ θ is a bijection of Rd that belongs to D in
(1.8).

Remark 1.1.12. We could have also defined θ belonging to C1
b (R

d;Rd), the space of continuously
differentiable functions and uniformly bounded so as their gradients. We recall that the functions
belonging to W 1,∞(Rd;Rd) are continuous.

We are now ready to define a notion of differentiability with respect to the domain.

Definition 1.1.13. The functional J : Ω → R is said to be shape differentiable at Ω0 if the
application

θ → J (( Id + θ) (Ω0))
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is Fréchet differentiable at 0 in the Banach space W 1,∞(Rd;Rd). Then, the following asymptotic
expansion holds in the vicinity of 0:

J
(

(Id+ θ)(Ω0)
)

= J(Ω0) + J ′(Ω0)(θ) + o(θ) with lim
θ→0

|o(θ)|
‖θ‖ = 0 , (1.12)

where J ′(Ω0) is a continuous linear form on W 1,∞(Rd;Rd).

It is also convenient for our purposes, to define a weaker notion of differentiability, namely
a directional derivative J ′(Ω0)(θ), which is defined as the limit in R (if it exists)

J ′(Ω0)(θ) = lim
t→0+

J((Id+ tθ)(Ω0))− J(Ω0)

t
.

Definition 1.1.14. Let Uad a set of admissible shapes and suppose the functional J : Uad → R

directionally shape differentiable at Ω0 ∈ Uad. We say that Ω0 satisfies the necessary optimality
condition w.r.t. the shape derivative if

J ′(Ω0)(θ) ≥ 0, ∀θ ∈W 1,∞(Rd;Rd). (1.13)

Remark 1.1.15. In order for the above definition to have a full meaning, (Id + tθ)Ω0 ∈ Uad
for small t. I.e. the set Uad must be stable for vector fields deformations.

The classical Hadamard’s structure theorem states that under certain regularity hypothesis,
the shape derivative depends only on the normal component of θ on the boundary ∂Ω, i.e. the
tangential component can be omitted.

Proposition 1.1.16. Let Ω0 be a smooth bounded open set of Rd and J a differentiable function
at Ω0. If θ1, θ2 ∈W 1,∞(Rd;Rd) are such that θ2 − θ1 ∈ C1(RN ;RN ) and θ1 · n = θ2 · n on ∂Ω0,
then the derivative J ′(Ω0) verifies

J ′(Ω0)(θ1) = J ′(Ω0)(θ2).

In order to fix the ideas, we expose some classical examples of shape derivatives of integrals,
whose integrand does not depend on the domain Ω.

Proposition 1.1.17. Let Ω0 be a smooth bounded open set of Rd. If f ∈ W 1,1(Rd) and J :
C(Ω0)→ R is defined by

J(Ω) =

∫

Ω
f(x) dx,

then J is shape differentiable at Ω0 and

J ′(Ω0)(θ) =

∫

Ω0

div (θ(x)f(x)) dx =

∫

∂Ω0

θ(x) · n(x)f(x)ds,

for all θ ∈W 1,∞(RN ;RN ).

Proof. We apply a change of variables in order to bring back the integral defining J to the
reference domain Ω0, namely

J (Ω) = J (( Id + θ) (Ω0)) =

∫

( Id+θ)(Ω0)
f(x)dx =

∫

Ω0

f ◦ ( Id + θ) |det (I +∇θ)| dx,

where I = ∇ Id is the constant identity matrix. Substituting to the above expression the
identities

det (I +∇θ) = 1 + divθ + o(θ) with lim
θ→0

‖o(θ)‖L∞(Rd)

‖θ‖W 1,∞(Rd;Rd)

= 0
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and

f ◦ ( Id + θ) (x) = f(x) +∇f(x) · θ(x) + o(θ) with lim
θ→0

‖o(θ)‖L∞(RN )

‖θ‖W 1,∞(RN ;RN )

= 0,

yields the desired result. The last identity stems from the regularity W 1,1(Rd) of f .

Proposition 1.1.18. Let Ω0 be a smooth bounded open set of Rd. If f ∈ W 2,1(Rd) and J :
C(Ω0)→ R is defined by

J(Ω) =

∫

∂Ω
f(x) ds,

then J is differentiable at Ω0 and ∀θ ∈ C1(Rd;Rd) we have

J ′(Ω0)(θ) =

∫

∂Ω0

(∇f · θ + f (divθ −∇θn · n)) ds =
∫

∂Ω0

θ · n
(

∂f

∂n
+ κf

)

ds,

where κ = divn is the mean curvature of ∂Ω0.

Proof. Using a change of variables as previously, we get

J (Ω) = J (( Id + θ) (Ω0)) =

∫

∂Ω0

f ◦ ( Id + θ) |det (I +∇θ)|
∣

∣

∣

∣

(

(I +∇θ)−1
)T

n

∣

∣

∣

∣

Rd

ds.

Substituting the expansions around θ = 0

(

(I +∇θ)−1
)T

n = n− (∇θ)T n+ o(θ) with lim
θ→0

‖o(θ)‖L∞(∂Ω0;Rd)

‖θ‖C1(Rd;Rd)

= 0

and
∥

∥

∥

∥

(

(I +∇θ)−1
)T

n

∥

∥

∥

∥

Rd

= 1− (∇θ)T n · n+ o(θ) with lim
θ→0

‖o(θ)‖L∞(∂Ω0;Rd)

‖θ‖C1(Rd;Rd)

= 0,

it follows

J ′(Ω0)(θ) =

∫

∂Ω0

(∇f · θ + f (divθ −∇θ · n · n)) ds.

Finally an integration by parts at the boundary ∂Ω (see Lemma 6.25 in [5]) entails the result

J ′(Ω0)(θ) =

∫

∂Ω0

θ · n
(

∂f

∂n
+ κf

)

ds.

Shape derivative of the solution of an equation depending of the domain

We are interested in the shape derivative of the general cost functional J(Ω, u(Ω)), where
u(Ω) ∈ H1(Ω) is the solution of a partial differential equation that depends on Ω. A rigor-
ous computation of the shape derivative of J(Ω, u(Ω)) hence implies estimating the derivatives
of u((Id+θ)Ω) w.r.t. θ. For that purpose, two kinds of derivatives of u(Ω) stand: the Lagrangian
derivative Y (Ω)(θ) and the Eulerian derivative u′(Ω)(θ).

Definition 1.1.19. The function u : Ω → u(Ω) admits a Lagrangian (or material) derivative
Y (Ω0)(θ) at a given domain Ω0, provided that the application

θ ∈W 1,∞(Rd;Rd)→ ũθ(Ω0) := u((Id+ θ)Ω0) ◦ (Id+ θ) ∈ H1(Ω0).

is Fréchet differentiable at θ = 0. Then Y (Ω0)(θ) = ũ′θ(Ω0).
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On the other side, applying the chain rule, the derivative of u((Id + θ)Ω0)(x) at a fixed
x ∈ (Id+ θ)Ω0 would formally read

d

dθ
u((Id+ θ)Ω0)(x+ θ(x))|θ=0 =

d

dθ
u((Id+ θ)Ω0)(x)|θ=0 +

d

dθ
u(Ω0)(x)|θ=0

Y (Ω0)(θ)(x) = u′(Ω0)(θ)(x) +∇u(Ω0)(x) · θ(x).

Definition 1.1.20. The function u : Ω → u(Ω) admits a Eulerian derivative u′(Ω0)(θ) at a
given domain Ω0, if u admits a Lagrangian derivative Y (Ω0)(θ) at Ω0 in the direction θ and
∇u(Ω0) · θ ∈ H1(Ω0). In that case

u′(Ω0)(θ) = Y (Ω0)(θ)−∇u(Ω0) · θ.

As it will be seen through this thesis, notably for transmission problems, the function u(Ω)
is not always regular enough to ensure the existence of an Eulerian derivative. Thereby when
needed, we will rather prefer to use the Lagrangian derivative of u(Ω).

Unfortunately in most of the cases, calculating either Y (Ω)(θ) or u′(Ω)(θ) is not an easy task
and often implies long and tedious calculations [5]. Happily there exists a much simpler alter-
native which does not involve the explicit calculation of the derivatives of u(Ω): the Lagrangian
derivation method of Céa [74]. Thanks to this method, the shape gradient of J(Ω, u(Ω)) can
easily be calculated by establishing the stationarity conditions of a Lagrangian function. Within
this function, the partial differential equation that solves u(Ω) is introduced by means of a La-
grange multiplier. However, this method remains formal, since the smoothness of the shape
and the shape differentiability of all the concerned functions must be assumed a priori. Let us
explain the method with the following example

Application of Céa’s method to linear elasticity

Consider a regular elastic body Ω ⊂ Rd, whose boundary is decomposed into two parts as
∂Ω = ΓD ∪ ΓN . The structure is fixed on ΓD and a surface load g ∈ H1(Ω;Rd) is applied
on ΓN . Additionally Ω is subjected to a volume force f ∈ L2(Ω;Rd) and characterized by
the elastic tensor A = {Aijkl}, with i, j, k, l = 1, ..., d. Then the displacement of the structure
u ∈ H1(Ω;Rd) is the unique solution of the linearized elasticity system







−div (Ae(u)) = f in Ω,
u = 0 on ΓD,

(

Ae(u)
)

· n = g on ΓN ,
(1.14)

where e(u) = (∇uT +∇u)/2 denotes the symmetrized gradient of u and

Ae(u) = A : e(u) =
∑

ijkl

Aijkle(u)kl (1.15)

denotes the twice contracted product between the tensors A and e(u). Now, suppose that we
want to compute the shape gradient for a functional of the type

J(Ω, u(Ω)) =

∫

Ω
j(x, u(Ω, x))dx+

∫

ΓN

l(x, u(Ω, x))ds, (1.16)

where j, l are regular densities such that (1.16) is well defined [10]. Then
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Proposition 1.1.21. Assuming the functions u, p smooth, the shape derivative of (1.16) in the
direction θ reads

J ′(Ω, u(Ω))(θ) =

∫

ΓN

θ · n
(

j(x, u) +Ae(u) · e(p)− f · p
)

ds+

∫

ΓN

θ · n
(

∂l(u)

∂n
+ κl(u)

)

ds

−
∫

ΓN

θ · n
(

∂(g · p)
∂n

+ κ(g · p)
)

+

∫

ΓD

θ · n (j(x, u)−Ae(u) : e(p)) ds,

where κ is the mean curvature, u is the solution of (1.14) and p is the adjoint state, solution
of







−div (Ae(p)) = −j′(u) in Ω,
p = 0 on ΓD,

(

Ae(p)
)

· n = −l′(u) on ΓN .
(1.17)

Proof. Instead of deriving directly the functional J(Ω, u(Ω)) and compute either the Eulerian or
Lagrangian derivative of u(Ω) (which is most of the time a long and tedious task), we introduce
the Lagrangian function

L(Ω, v, q, µ) =
∫

Ω
j(x, v)dx+

∫

ΓN

l(x, v)ds+

∫

Ω
(−div (Ae(v))− f) · qdx

+

∫

ΓN

(Ae(v) · n− g) · qds+
∫

ΓD

v · µds,
(1.18)

where the test functions v, q, µ ∈ H1(Rd;Rd) do not depend on the domain Ω. As we will see in
the sequel, the shape derivative of the objective functional J at Ω will be derived by fixing the
domain Ω and taking the optimality conditions for the Lagrangian function L.

Setting the partial derivative of L with respect to q in the direction of a test function
φ ∈ H1(Rd;Rd) at the optimal point (Ω, u, p, µ∗) equal to zero, we get

∂L
∂q

(Ω, u, p, µ∗)(φ) =

∫

Ω
(−div (Ae(u))− f) · φdx+

∫

ΓN

(Ae(u) · n− g) · φds = 0.

Taking φ with compact support in Ω (φ = 0 on ∂Ω) gives

− div (Ae(u)) = f in Ω. (1.19)

Varying the trace of φ on ΓN gives

Ae(u) · n = g on ΓN (1.20)

In the same way, setting the partial derivative of L with respect to µ in the direction φ equal to
zero

∂L
∂µ

(Ω, u, p, µ∗)(φ) =

∫

ΓD

u · φds = 0

results in
u = 0 on ΓD. (1.21)

Equations (1.19),(1.20) and (1.21) show that the function u is in fact the unique solution of the
state equation (1.14).
We write again the function L, after an integration by parts, in the form

L(Ω, v, q, µ) =
∫

Ω
j(x, v)dx+

∫

ΓN

l(x, v)ds+

∫

Ω
(Ae(v) · e(q)− f · q) dx

−
∫

ΓN

g · qds−
∫

ΓD

Ae(v) · n · qds+
∫

ΓD

v · µds.



44 CHAPTER 1. BACKGROUND AND REVIEW OF THE STATE OF THE ART

The partial derivative of L with respect to v, at the optimal point, in the direction φ ∈
H1(Rd;Rd) gives

∂L
∂v

(Ω, u, p, µ∗)(φ) =

∫

Ω
j′(x, u) · φdx+

∫

ΓN

l′(x, u) · φds+
∫

Ω
Ae(p) · e(φ)dx

−
∫

ΓD

Ae(φ) · n · pds+
∫

ΓD

φ · µ∗ds,

where j′(x, u) and l′(x, u) represent the partial derivatives of j and l w.r.t. their second argument.
Setting this derivative equal to zero and taking φ with compact support in Ω yields

− div (Ae(p)) = −j′(x, u) in Ω. (1.22)

Varying the trace of φ on ΓN yields

Ae(p) · n = −l′(x, u) on ΓN . (1.23)

Varying the trace of φ on ΓD with Ae(φ) · n = 0 yields

µ∗ = −Ae(p) · n on ΓD. (1.24)

Varying the normal stress Ae(φ) · n on ΓD with φ = 0 on ΓD yields

p = 0 on ΓD. (1.25)

Therefore, p is the unique solution in Ω of the adjoint equation (1.17).
Finally, the shape derivative of the functional J at Ω will be equal to the shape derivative of
the Lagrangian function L at the optimal point (Ω, u, p, µ∗), i.e.

∂L
∂Ω

(Ω, u, p, µ∗)(θ) = J ′(Ω)(θ). (1.26)

To prove this, take first any q ∈ H1(Rd) and remark that

L(Ω, u(Ω), q) = J(Ω),

where u is the solution of the state equation. Then, taking the shape derivative of both members
and using the chain rule yields

J ′(Ω)(θ) =
∂L
∂Ω

(Ω, u(Ω), q, µ)(θ) +

〈

∂L
∂v

(Ω, u(Ω), q, µ), u′(Ω)(θ)

〉

. (1.27)

Supposing the existence of the Eulerian derivative u′(Ω)(θ), taking q = p(Ω) (the solution of the
adjoint state), µ = µ∗ and u′(Ω)(θ) ∈ H1(Rd), the last term in (1.27) disappears and relation
(1.26) is revealed.

Applying the results of Propositions 1.1.17 and 1.1.18, we obtain the desired result

∂L
∂Ω

(Ω, u, p, µ∗)(θ) =

∫

ΓN

θ · n
(

j(x, u) +Ae(u) · e(p)− f · p
)

ds+

∫

ΓN

θ · n
(

∂l(u)

∂n
+ κl(u)

)

ds

−
∫

ΓN

θ · n
(

∂(g · p)
∂n

+ κ(g · p)
)

+

∫

ΓD

θ · n (j(x, u)−Ae(u) : e(p)) ds,

where we have used the relation

Ae(u) : e(p) =
∂u

∂n
· (Ae(p) · n) = ∂p

∂n
· (Ae(u) · n), on ΓD.
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A classical application of the above result is the minimization of the compliance, where
j(u) = f · u and l(u) = g · u. In such a case, we can easily check that p = −u, so the problem
is self-adjoint. Denote as Γ0 ⊂ ΓN the traction-free part of the Neumann boundary condition
(g = 0). Then if we assume θ = 0 on ΓD ∪ ΓN\Γ0, then the shape derivative of J reads

J ′(Ω)(θ) =

∫

Γ0

(

2f · u−Ae(u) : e(u)
)

(θ · n)ds.

1.1.3 Topology sensitivity analysis

The topological derivative measures the sensitivity of a given shape functional with respect to
an infinitesimal singular domain perturbation, such as the insertion of holes, inclusions, source-
terms or even cracks. The topological derivative was rigorously introduced by Sokolowski and
Zochowski in [284] and Masmoudi in [208]. In particular, it can be seen as a mathematical
justification for the topological optimization algorithm proposed by Céa et al. [76, 77], based
on the combination of the shape gradient and a fixed point method, and the bubble method of
Schumacher et al. [113, 268]. Since then, this concept has proved to be extremely useful in the
treatment of a wide range of problems, namely topology optimization [75, 8, 12, 27, 28, 52, 67,
127, 245, 180, 246, 243, 244, 310], inverse analysis [26, 71, 116, 135, 39, 150, 152, 169, 170, 209,
18, 21, 78, 23] and image processing [32, 168, 149, 151, 188]. For a general presentation see e.g.
the book [245].

The topological derivative is obtained by the combined asymptotic analysis of shape function-
als and classical solutions to elliptic boundary value problems in singularly perturbed domains
with respect to the small parameter which measures the size of the perturbation.

In the present work we will focus on the topological derivative for linear elastostatics. So
as to fix the ideas, consider Ω ⊂ Rd (d = 2 or 3) with characteristic elastic properties C and a
point z ∈ Ω. Furthermore let

Ba(z) = z + aB, B ⊂ Rd, B regular and bounded,

be an inclusion in Ω with a vanishingly small characteristic radius a at a prescribed location
z inside the solid. We denote by C⋆ the elastic tensor inside Ba. The topological derivative
DJ(z) quantifies the perturbation induced to a cost functional J(Ω) by the virtual creation of
the inhomogeneity or cavity Ba such that the new elastic law Ca in Ω reads

Ca = χBaC⋆ + (1− χBa)C. (1.28)

More precisely,

Definition 1.1.22 (Topological derivative). Define Ωa := Ω\Ba and assume that J(Ωa) can be
expanded in the form

J(Ωa) = J(Ω) + δ(a)DJ(z) + o(δ(a)) (1.29)

where δ(a) is assumed to vanish as a→ 0 and characterizes the small-inhomogeneity asymptotic
behavior of J(Ωa). Then, the coefficient DJ(z) is called the topological derivative of J at z ∈Ω.
Remark 1.1.23. Terminology for the concept of topological derivative varies, with “gradient”
or “sensitivity” sometimes used instead of “derivative”.

Remark 1.1.24. Typically the notation Ωa := Ω\Ba is used to define the topological derivative
for cavities. Nevertheless, the foregoing notation also stands for inclusions, as it is illustrated
in Proposition 1.1.27. Within Chapter 4, however, a notation rather oriented to inclusions
(inhomogeneities) will be used.

Remark 1.1.25. One can show that the expression for the topological derivative induced by a
cavity coincides with the one induced by an inhomogeneity with vanishing elastic tensor C⋆. See
e.g. [237, 245]
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The topological derivative in an anisotropic framework will be extensively developed in Chap-
ter 4. We close this section with two examples to illustrate the computation of the topological
derivative in an isotropic setting (see the proofs in [12]).

Lemma 1.1.26. The topological derivative of J(Ωa) =
∫

Ωa

dx simply reads

DJ(z) = −|B|.
Proposition 1.1.27. Consider the linear elastic problem (1.14) in dimension 2, and denote
its solution as ua when A = Ca in (1.28) and u when A = C. Moreover take B to be the
unit disk in R2 and set the constants (λ, µ), (λ⋆, µ⋆) to be the Lamé coefficients of C and C⋆,
respectively. Suppose the loads f, g are regular. Then for any z ∈ Ω the topological derivative of
the compliance

J(Ωa) =

∫

Ωa

Ce(ua) : e(ua)dx+

∫

Ω\Ωa

C⋆e(ua) : e(ua)dx

reads

DJ(z) = 4π
µ∆µ(λ+ 2µ)

λ(µ+ µ⋆) + µ(µ+ 3µ∗)
e(u)(z) : e(u)(z)

− π

(

−(λ+ 2µ)∆(λ+ µ)

λ⋆ + µ⋆ + µ
+ 2

µ∆µ(λ+ 2µ)

λ(µ⋆ + µ) + µ(µ+ 3µ⋆)

)

tr(e(u))(z)tr(e(u))(z),

where ∆λ = λ− λ⋆ and ∆µ = µ− µ⋆.

1.2 The level set-method for topology optimization

1.2.1 The level-set method

Introduced in the seminal work of S. Osher and J. Sethian [252] in the framework of a flame prop-
agation model, the level-set method is a technique for capturing interfaces which are implicitly
defined via the zero level-set of an auxiliary function. Since its appearance, it has been applied in
a great variety of fields such as two-phase flow, solid-fluid coupling, liquid-gas interactions, image
processing, computer graphics, meshing, topology optimization, etc [271, 250, 251, 296, 313, 108].
Beyond the simplicity of the geometric description of an interface, the level-set method allow us
to easily manage topology changes on a fixed Cartesian grid. Let us give an example to better
explain this point.

Suppose we are given two circles that evolve in time and finally merge at some point. If we
choose to track this movement by parameterizing their boundaries (Lagrangian approach), we
need to update this parameterization at each time step, identify the exact moment at which the
topological change occurs. The precedent procedure is easy to understand but both theoretically
and numerically difficult.

Instead of this, we can choose to use an one-dimension higher function, a so-called level-set
function, and reveal the boundaries of the shapes as its zero level-set (Eulerian approach).

At the upper part of Figure 1.6, we see a three-dimensional function, and several level-sets
depicted in black color. The zero level-set corresponds to the lines separating the blue from the
red region and represents two circles. At the lower part of the figure, we see that the function has
changed and the zero level-set has evolved so now represents a domain with a different topology,
i.e. the circles have merged. This topological change has occurred in a very natural way, by
simply modifying the level-set function.

Define as working domain D ⊂ Rd bounded and as admissible shape Ω ⊂ D (see Figure 1.7).
Then, the boundary of Ω is defined by means of a level set function ψ such that







ψ(x) = 0 if x ∈ ∂Ω ∩D,
ψ(x) < 0 if x ∈ Ω,

ψ(x) > 0 if x ∈
(

D \ Ω
)

.
(1.30)
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Figure 1.6: Level-set representation of two circles that finally merge.

D
ψ = 0

ψ < 0

Ω

ψ > 0

∂Ω

n

Figure 1.7: Level-set representation of a structure (in grey).

If the domain Ω is regular enough, for any point x ∈ ∂Ω at which ∇ψ(x) 6= 0, the unit
normal vector to ∂Ω, pointing outward of Ω, and the mean curvature κ(x) can be expressed as

n(x) =
∇ψ(x)
|∇ψ(x)| , κ(x) = div

( ∇ψ(x)
|∇ψ(x)|

)

. (1.31)

Since the level-set function ψ is defined everywhere in D, (1.31) yields natural extensions of n(x)
and κ(x) throughout D.

For a domain Ω(t) that evolves in the time interval t = [0, T ], according to an externally
generated velocity field θ (t, x), we define a time-depended level-set function ψ (t, x(t)), such that
the boundary of the domain, ∂Ω(t), is given by the set of points x(t) satisfying

ψ (t, x(t)) = 0, ∀t ∈ [0, T ] .

A simple derivation in time yields

∂ψ

∂t
(t, x) + ẋ(t) · ∇ψ(t, x) = 0, ∀t ∈ [0, T ], ∀x ∈ ∂Ω(t), (1.32)

which is a PDE that describes the advection of the boundary under a velocity field ẋ(t). Since
the shape moves accordingly to the advection field θ(t, x), each point x(t) ∈ ∂Ω(t) satisfies a
Lagrangian type ODE

ẋ(t) = θ(t, x(t)). (1.33)
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Substituting (1.33) in (1.32), we get

∂ψ

∂t
(t, x) + θ(t, x(t)) · ∇ψ(t, x) = 0, ∀t, ∀x(t) ∈ ∂Ω(t). (1.34)

The above equation can be extended to every x(t) in the whole computational domain D, since
the same reasoning is valid for any value c of the level-set ψ(t, x(t)) = c. Now, decompose the
vectorial velocity field θ in orthogonal components as

θ(t, x) = V (t, x)n(t, x) + θc(t, x),

with V (t, x) = θ · n a scalar field, n(t, x) the extension of the unit normal as (1.31) and θc(t, x)
defined as:

θc = θ − (θ · n)n.
Then, equation (1.34) takes the form of the Hamilton-Jacobi equation

∂ψ

∂t
(t, x) + V (t, x)|∇ψ(t, x)| = 0, ∀t, ∀x ∈ D, (1.35)

since by definition the vector ∇ψ is collinear w.r.t. n (and thus orthogonal w.r.t. θc).
Regarding the boundary conditions, we are free the values of ψ on ∂D. For geometrical

reasons, we will select one among the ensuing Neumann type boundary conditions

∂ψ

∂n
= 0 or

∂2ψ

∂n2
= 0.

In fact, the first condition implies that the iso-contours of the zero level-set function are orthog-
onal to ∂D, meanwhile the second one enforces the smoothness of the interface by letting it cut
∂D in an arbitrary angle.

As it is classically known, equation (1.35) have to be understood in a weaker sense, which
involves additional information about the physics of the evolution process. Indeed, among the
multiple solutions of (1.35), one has to select the “good solutions” having a physical meaning.
This is done thanks to the theory of viscosity solutions initiated by P.-L. Lions and M.G. Crandall
in the 80’s.

From a numerical point of view, equation (1.35) can be solved in a structured mesh via
adapted upwind finite differences schemes. These methods consist in choosing an approximation
of the spacial derivatives according to the sign of the velocity V . In our case we employ the
explicit second-order upwind scheme developed by S. Osher and J. Sethian in [252] to solve
(1.35). In one space dimension, the scheme reads

ψn+1
i − ψni

∆t
+min(V n

i , 0)g
−(D+

x ψ
n
i , D

−
x ψ

n
i ) + max(V n

i , 0)g
+(D+

x ψ
n
i , D

−
x ψ

n
i ) = 0

with D+
x ψ

n
i =

ψn
i+1−ψ

n
i

∆x , D−
x ψ

n
i =

ψn
i −ψ

n
i−1

∆x , and

g+(d+, d−) =
√

min(d+, 0)2 +max(d−, 0)2,

g−(d+, d−) =
√

max(d+, 0)2 +min(d−, 0)2.

Since the scheme is explicit, the stability of the scheme is enforced using a CFL (Courant-
Friedrichs-Lewy) condition

∆t = α
∆x

max |V | , 0 < α < 1 (a typical conservative choice is α = 0.5 [250])

When the underlying mesh is unstructured, the numerical implementation is much more complex
and, for example, rely on the method of characteristics [292, 97]. We address the interested reader
to [98] and to the references therein for more information.
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Signed-distance function

For each shape Ω, there is an infinity of level-set functions that can be used to describe it. The
only criterion that they must fulfill is to be enough regular so as (1.31) make sense.

It is well-known [251, 271] that, during evolution, the level-set function can become too steep
or flat, even if it starts from a smooth initialization. A way to guarantee its smoothness is to
reinitialize it periodically as the signed distance function to the domain Ω.

Definition 1.2.1. The signed distance function to Ω is the function dΩ(x) : x ∈ Rd → R defined
by :

dΩ(x) =







−d(x, ∂Ω) if x ∈ Ω,
0 if x ∈ ∂Ω,
d(x, ∂Ω) if x ∈ D\Ω̄,

where d(·, ∂Ω) is the usual Euclidean distance.

Several methods have been proposed for the numerical construction of the signed distance
function [251, 271, 98], such as Fast-Marching method, Fast-Sweeping method, etc. In the
present work we perform the reinitialization by solving a PDE in a structured mesh, as proposed
in [251]. As a matter of fact, since dΩ satisfies the Eikonal equation

|∇dΩ| = 1 a.e. in D, (1.36)

starting from an initial level-set function ψ0(x) parameterizing Ω, dΩ can be obtained as the
stationary solution of the following initial value problem

{

∂ψ

∂t
+ sgn(ψ0)(|∇ψ| − 1) = 0 ∀t > 0, x ∈ Rd,

ψ(t = 0, x) = ψ0(x) ∀x ∈ Rd,
(1.37)

where sgn(x) is the sign function. In other words ψ −→
t→∞

dΩ. The equation (1.37) is solved using

the same numerical scheme as for the advection equation (1.35).

1.2.2 Coupling the level-set method and the shape derivative

In the subsection 1.1.2 we have calculated a shape derivative of a cost functional J(Ω), which
in general reads

J ′(Ω)(θ) =

∫

∂Ω
(θ(x) · n(x)) j(x)ds, (1.38)

for some density function j(x) ∈ H1(D). In the case of linear elasticity, the function j depends
upon the functions u and p, solutions of the state equation (1.14) and the adjoint problem
(1.17), respectively. Thereby, if one intends to minimize J(Ω), a descent direction is revealed by
selecting

θ⋆(x) = −j(x)n(x). (1.39)

Indeed, substituting θ⋆(x) in the definition of the shape derivative in (1.12), we can formally
write for J(Ωt) = J (( Id + tθ⋆)(Ω)):

J(Ωt) = J(Ω)− t
∫

∂Ω
j(x)2ds+ o(t) ≤ J(Ω), t > 0, (1.40)

which guarantees a descent direction for t small enough.

The level set method for topology optimization [10, 319], links together the above descent
direction furnished by the shape derivative and the level-set method for the shape description.
Indeed, although formula (1.39) makes sense only on the boundary ∂Ω, it can be extended to
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the entire domain D by means of the level-set representation (1.31), so one can chose as scalar
advection field in (1.35) the descent direction

V (x) = −j(x). (1.41)

Within a shape optimization setting, the aforementioned procedure enjoys the capabilities of
the level-set method to easily track the interface of Ω when topology changes take place and,
at the same time, modify Ω according to the steepest descent direction provided by the shape
derivative. Thereby, the shape and the topology of the structure are simultaneously optimized.

The careful reader might have identified a conflict between coupling the shape sensitivity
analysis and the level-set method. In fact, Hadamard’s method for shape variations supposes
that the topology of the shape remains the same, while the level-set method let such changes
to occur in a natural way. This apparent incompatibility does not however cause any numerical
problems in numerical practice.

Numerical experience shows that if a feature of a structure tends to disappear or merge
following the descent direction provided by the shape derivative, then in general this adjustment
improves the final structure. Of course, this sort of temporary violation in the definition of
descent direction by virtue of the shape derivative might provoke a local increase of the value
of the objective function. Nevertheless, the method seems to be always capable of finding
afterwards a better shape. Otherwise we could have also chosen to move at a step t so small
such no topology changes happen and the objective function is always decreased. However, we
are not interested to do so, since we want to find the best possible topology!

Thus, from a numerical point of view, when a topological change occurs and the method
cannot further decrease the objective function, we allow a small increase of the cost function at
the iteration n under the condition

J(Ωn+1) < (1 + ηtol)J(Ωn),

where Ωn+1 = (Id+ tnθ
⋆)Ωn and ηtol is a small tolerance value (≈ 0.05).

Calculus toolbox and ersatz material

According to (1.30), the level-set method represents a powerful implicit representation of Ω ⊂ D,
allowing us to easily determine geometric properties as (1.31), but also perform volume and
surface integrals, as it will be needed for the evaluation of the associated FE method and shapes
derivatives as (1.38). We first remark that by virtue of (1.30), one can establish the characteristic
function χΩ by means of the Heaviside function as

χΩ = H(ψ) =

{

0 if ψ ≤ 0,
1 if ψ > 0.

Thus, a volume integral defined on Ω can be expressed as

∫

Ω
f(x)dx =

∫

D
H(ψ)fdx.

Similarly, a surface integral can be stated in the sense of distributions as [250]

∫

∂Ω
f(x)ds =

∫

D
δ(ψ)|∇ψ|fdx, (1.42)

where δ is Dirac delta function δ = H′.
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For numerical purposes however, since δ(ψ) is zero everywhere except on ∂Ω, one must
introduce an approximation of the aforementioned quantities. Thus, we define the smeared-out
Heaviside function

χΩ ≈ H(ψ) =







0 if ψ < −ǫH ,
1
2(1 +

ψ
ǫH

+ 1
π sin(

πψ
ǫH

)) if −ǫH ≤ ψ ≤ ǫH ,
1 if ψ > ǫH ,

(1.43)

where ǫH is a tunable parameter that determines the size of the bandwidth of numerical smearing.
Typically we will take ǫH = 1.5max(∆x,∆y). In the meantime, the Dirac delta function is
approximated by [12]

δ ≈ 1

2
|∇sǫδ(ψ)|, (1.44)

where the function sǫδ corresponds to the following approximation of the sign function

sǫδ(ψ) =
ψ

√

ψ2 + ǫ2δ

,

and ǫδ > 0 is a small parameter chosen in order to spread the integration over a few cells around
the interface. Typically ǫδ = max(∆x,∆y).

In elasticity, in order to give a sense to the material properties in D\Ω when this is void,
we use the so-called “ersatz material” approach. For this purpose, the complement of Ω in D
is filled up with a weak phase that mimics the void. In this way the associated stiffness matrix
remains positive definite (hence invertible).

More precisely, we define an elasticity tensor A∗(x), which is a mixture of A in Ω and of the
weak material mimicking holes in D \ Ω, as

A∗(x) = H(ψ)A+ ε(1−H(ψ))A, (1.45)

where ε ≈ 10−3 and H according to (1.43). Thus, consider problem (1.14) and decompose the
boundary ∂D of the working domain in three parts

∂D = ∂DD ∪ ∂DN ∪ ∂D0,

where ∂DD corresponds to the Dirichlet boundary condition, ∂DN the non-homogeneous Neu-
mann boundary condition and ∂D0 the homogeneous Neumann boundary condition (traction
free). Admissible shapes Ω are further constrained to satisfy

ΓD ⊂ ∂DD and ΓN = ∂DN ∪ Γ0,

where Γ0 supports an homogeneous Neumann boundary condition (traction-free). Consequently,
the only optimized part of the shape boundary with the level set method is Γ0. Then the solution
of (1.14) is fairly approximated by the solution of















−div (A∗ e(u)) = f in D,
u = 0 on ∂DD,

(

A∗ e(u)
)

n = g on ∂DN ,
(

A∗ e(u)
)

n = 0 on ∂D0.

(1.46)

For more details see [4, 95].
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Optimization algorithm

The information given from the shape gradient is local, i.e. it refers to a neighborhood around
the current shape Ω. Therefore, an iterative algorithm needs to be constructed so as to minimize
progressively the cost functional. Using a simple steepest descent algorithm, which guarantees
the decrease of the objective function at each time step, the optimization algorithm proposed in
[10] has the following structure:

• Start with an initial guess shape Ω0, described by a level-set function ψ0.

• Iterate until convergence, for k ≥ 0:

1. Solve the state and adjoint equations for the domain Ωk to obtain uk and pk (see
(1.17)).

2. Compute the shape gradient for the current domain Ωk, which has the form

J ′(Ωk)(θk) =

∫

∂Ωk

(θk · n)jk ds,

where jk depends upon uk and pk (see Proposition 1.1.21).

3. Choose θk = −jkn as an advection velocity and solve the Hamilton-Jacobi equation

∂ψk
∂t

(t, x)− jk(x)|∇ψk(t, x)| = 0, ∀t ∈ [0, Tk] , ∀x ∈ D,

in order to get a new level-set function ψk+1 = ψ(Tk, x), representing the domain
Ωk+1. The total advection time Tk is chosen so that J(Ωk+1) < J(Ωk). In order to
chose this advection time, one could apply a linear search method. However, due
to the cost of evaluating the finite element model, we prefer to keep dividing the
advection time by two (starting from a reference value T), until J(Ωk+1) < J(Ωk) is
fulfilled.

• From time to time, for stability reasons, reinitialize the level-set function by solving (1.37).

Several convergence criteria can be adopted. They usually test the decrease in the objective
function and the total advection time, i.e. the algorithm terminates when |J(Ωk+1)−J(Ωk)| < εk
and Tk < Tlim, where εk and Tlim are scalar parameters defined by the user. The aforemen-
tioned criterion stands as an approximation of the optimality condition (1.13), since at each
iteration the shape is deformed according to the steepest descent direction given by the shape
derivative. Nevertheless, the choice of εk and Tlim is not a priori obvious, so it is a common
practice to rather set the computational stop criterion in terms of the total number of iterations.

Two examples of the presented algorithm for the minimization of the compliance are detailed
in Figures 1.8 and 1.9. Both applications were performed in Freefem++ [118].

Extension and regularization of the velocity field

In some cases, notably when there are jumps of the elastic properties through ∂Ω, the function
j(x) in (1.38) is not properly defined outside of ∂Ω. Hence the trivial extension (1.41) within
D makes no sense. One way to settle this issue is to consider V = 0 ∀x ∈ D \ ∂Ω. Such a
choice would slow down the proposed algorithm. Indeed, for each finite element computation
(which is the most costly part of the algorithm), we want to perform several transport steps for
the advection equation (1.35). If the velocity is extended by 0 at a small distance away from
the boundary, the shape will stop there and the total movement will be too small, probably
resulting in a huge number of iterations before convergence.
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So as to avoid this difficulty, we rather compute V by means of the dual identification of J ′(Ω)
and the scalar product in H1(D) (also called Hilbertian method [100, 66]). Indeed, supposing
the density j in (1.38) regular, the evaluation of J(Ω)(V n) (according to (1.38) and (1.39)) is
well defined for any V ∈ H1(D). Hence the functional J ′(Ω), when applied to a vector field
collinear to the extension n, belongs to the dual of H1(Ω). We can thus define the normal
descent direction V ∈ H1(D) as the unique solution of

〈V, ν〉H1 = −J ′(Ω)(νn), ∀ν ∈ H1(D). (1.47)

From a numerical point of view, for the sake of limiting the regularization and the spreading of
the velocity around the interface, we rather use as scalar product in (1.47)

〈V, ν〉H1 =

∫

D

(

V ν + α∇V · ∇ν
)

dx, (1.48)

where α > 0 is proportional to squared size of the mesh.
The evaluation of J ′(Ω) in (1.47) is performed following the approximation of the surface

integral (1.38) as

J ′(Ω)(V n) =

∫

∂Ω
V (x)j(x)ds =

∫

D
δ(x)V (x)j(x)dx,

where δ is the Dirac mass function (1.44) and the term |∇ψ(x)| in (1.42) is equal to 1 since we
assume ψ to be the signed distance function (1.36).

Remark 1.2.2. Relation (1.47) yields

J ′(Ω)(V n) = −〈V, V 〉H1 ≤ 0,

and V stands as a descent direction by virtue of the development (1.40).

Remark 1.2.3. Even if the regularity V ∈ H1(Ω) is enough from a numerical point of view,
strictly speaking the vector θ = V n does not necessarily belong to W 1,∞(D;Rd). To achieve the
required regularity, one needs to assume Ω regular enough (through its normal n) and employ
the space Hs(D), with s ≥ 2, instead of H1(D) in (1.47).

1.3 Multi-layered composite plates

1.3.1 Composite materials

The term composite material (or just composite) refers to those materials formed by combining
two or more constituent materials in a macroscopic scale such that the outcome has better
engineering properties than each one of the constituent materials. The idea of manufacturing
this kind of materials is not new in human history. We can cite for example the traditional
Japanese swords or sabers that have their blades made of stratified steel into which the soft iron
is placed. The sword has in this way a good resistance for flexure and impact.

In general composite are made of two materials: a reinforcement material and a base and
weaker material, also called matrix material. The latter one serves to distribute and transmit
the loads to the reinforcement. According to this dual configuration, composite materials are
commonly classified in three different types: (1) fibrous composites, which consists of fibers of
one material embedded in the matrix of another; (2) particulate composites, which are composed
of macro size particles of one material in the matrix of another; and (3) laminated composites,
which are made of layers of different materials.

The principal fiber materials in industrial applications are Glass, Aramid or Kevlar (very
light), Carbon (high modulus or high strength), Boron (high modulus or high strength) and
Silicon carbide (high temperature resistant). On the other side, the matrix materials are typically
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•1

2

(a)

(b) (c)

(d) (e)

Figure 1.8: Application of the level-set method on a structured mesh. (a) Classical stiffness maximiza-
tion of a long-cantilever whose left boundary is clamped and on its right boundary a vertical
load is applied. The cantilever is meshed with 51 × 110 elements. (b) initialization of the
structure, (c) iteration 5, (d) iteration 15 and (e) iteration 30.

polymers, either thermoplastic resins or thermoset resins (silicones, epoxy, etc.), but it can also
be mineral (silicon carbide, carbon) or metal (aluminium or titanium alloys).

The bonding between fibers and matrix is created during the manufacturing phase of the
composite material. Thus, the mixture of reinforcement/resin does not really become a com-
posite material until the last phase of the fabrication, i.e. when the matrix is hardened. After
this step, it would be impossible to modify the material, as in the way one would like to modify
the structure of a metal alloy using heat treatment, for example. In the case of polymer matrix
composites, the hardening process takes place by polymerization of the resin through the action
of a chemical accelerator or heat. Among the main procedures to manufacture composite mate-
rials, we can cite e.g. different types of molding (autoclave, resin injection, pultrusion), filament
winding, centrifugal casting, etc. In general the chosen manufacturing procedure will have a
fundamental influence on the mechanical properties of the resultant composite material.

The modern range of applications of composite materials is extremely large, encompassing
day-to-day electronic devices, sport items, furniture, orthopedic implants, car wheels, transmis-
sion shafts and aeronautical/aerospace components, such as wing leading edges, ailerons, heli-
copter blades, propellers, rocket boosters, reservoirs, nozzles, shields for atmosphere re-entry,
etc.
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(a)

(b)

(c) (d)

(e) (f)

Figure 1.9: Application of the level-set method on an unstructured mesh (5000 elements). The stiffness
of the airfoil is maximized subjected to a constraint on the volume occupied by the fuel
(white). (a,b) Outer mesh and pressure distribution generated from a potential flow around
the airfoil (low values in red/orange and higher values in blue/violet). The airfoil is clamped
to circular interior point so as to remain static. (c) initialization of the structure, (d)
iteration 5, (e) iteration 30 and (f) iteration 45.

The characteristics that make composite materials appealing for various industries include
outstanding strength to weight ratio, lightweight, good fatigue resistance and good corrosion/fire
resistance. Moreover when one compares the cost of the composite solution against the conven-
tional one, composites remain competitive. Nevertheless, composite materials own also some
drawbacks, such as medium to low level impact resistance compared to metallic materials and
aging when subject to humidity and heat. Additionally from a mechanical point of view, com-
posite materials behave as brittle materials which do not yield, i.e. their elastic limits correspond
to the rupture limit. This feature eventually generates incompatibilities with metal alloys or the
inability to dissipate stress concentrations.

The main failure modes leading to damage in laminated composites are fiber rupture, matrix
rupture and delamination. The last phenomenon is due to weak resistance to shear stresses pro-
duced between the layers. Due to the anisotropic nature of each ply, it is important to remark
that one cannot rely on classical failure criteria for isotropic materials. An adapted criterion
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(a) Mirage, Dassault Aviation (b) F/A-18 Hornet, McDonnell Douglas. The
shadowed areas are made with carbon/epoxy

(c) Rafale, Dassault Aviation

Figure 1.10: Composite elements in current fighter aircraft. Figures extracted from [125].

must take into account the evolution of the rupture resistance w.r.t. the loading direction. A
standard criterion for this purpose is the so-called Hill-Tsai failure criterion. This criterion as-
sociates to each direction a critical tensile strength. For the study for compression loads, one
must rather rely on the buckling study of the structure.

For a more detailed explanation of composite materials, see e.g. [157, 171, 125].

1.3.2 Laminated composite plates

Composite laminates are formed by stacking multiple reinforced laminae or plies, in order to
achieve the desired stiffness and thickness. Each of these plies consists in a sheet where many
fibers are embedded in a matrix material, which can be a metal or a polymer. The layers are
usually bonded together with the same matrix material as that in a lamina. We will consider
unidirectional fiber-reinforced laminae, so the composite laminate corresponds to a collection
of laminae which are orientated in different directions. This sequence of various orientations is
termed the lamination scheme or stacking sequence. The stacking sequence and material prop-
erties of individual lamina provide an added flexibility to designers to tailor the stiffness and
strength of the laminate.

In order to describe the mechanical behavior of a typical composite laminate, we lean on the
classical laminated plate theory [257], which assumes the so-called Kirchhoff hypothesis :
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1. Straight lines perpendicular to the mid-surface (i.e. transverse normals) before deformation
remain straight after deformation.

2. The transverse normals do not experience elongation.

3. The transverse normals rotate such that they remain perpendicular to the mid-surface
after deformation.

These hypothesis imply that the elastic displacement field U inside the laminate has the form

U1(x1, x2, x3) = u1(x1, x2)− x3
∂w

∂x1
(x1, x2),

U2(x1, x2, x3) = u2(x1, x2)− x3
∂w

∂x2
(x1, x2),

U3(x1, x2, x3) = w(x1, x2), (1.49)

where (u1, u2, w) are the in-plane and vertical displacements along the mid-plane, respectively.
The strains associated to this displacement can be computed by means of the Green-Lagrange
strain tensor

ǫ(U) =
1

2
(∇U +∇UT +∇U · ∇UT ). (1.50)

Figure 1.11: A laminate made up of plies with different fiber orientations. Figure extracted from [257].

Assuming small strains and moderate rotations [257], introducing (1.49) into (1.50), the
strain-displacement relation within the laminate can be approximated as

ǫ11 =
∂u1
∂x1

+
1

2

(

∂w

∂x1

)2

− x3
∂2w

∂x21
, ǫ22 =

∂u2
∂x2

+
1

2

(

∂w

∂x2

)2

− x3
∂2w

∂x22
, (1.51)

ǫ12 =
1

2

(

∂u1
∂x2

+
∂u2
∂x1

+
∂w

∂x1

∂w

∂x2

)

− x3
∂2w

∂x1∂x2
, (1.52)

ǫ13 =
1

2

(

− ∂w
∂x1

+
∂w

∂x1

)

= 0, ǫ23 =
1

2

(

− ∂w
∂x2

+
∂w

∂x2

)

= 0, ǫ33 = 0. (1.53)

The above strains are called the von Kármán strains, and the associated plate theory is termed
the von Kármán plate theory.
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The von Kármán plate model

Let O be a symmetric laminated composite structure composed of the superposition of 2N
anisotropic layers, each one of constant thickness ε > 0 and shape Ω, where Ω a regular sub-
domain of R2. We denote as h = Nε << 1 half of the total thickness of the laminate. Each ply is
considered as an orthotropic material, i.e. an anisotropic material where there are two mutually
perpendicular planes of symmetry in material properties. So as to ease the exposition, we do
not explicit the material properties in the vertical direction (which are most of the time equal
to one of the in-plain main direction). In the case of an unidirectional reinforced composite,
the material properties can be thus described by the angle of rotation of the fibers with respect
to the canonical axis. Indeed, let Ai = (Ai)klmn with k, l,m, n = 1, 2, be the elastic tensor
associated to the ply i and denote as C = (Ai)i the underlying piecewise constant elastic tensor
through the whole laminate. Furthermore introduce the elastic tensor A0 of a fixed orthotropic
material whose principal directions coincide with the canonical axis. The 2D components of A0

can thus be expressed via a matrix notation as

A0 =
1

1− νxyνyx





Ex νyxEx 0
νxyEy Ey 0

0 0 2Gxy



 (1.54)

where Ex, Ey are the Young modulus in the orthotropy directions, νxy is the Poisson’s ratio,
Gxy is the shear modulus and νyxEx = νxyEy. Then from now on, we will admit that for each
layer i, the tensor Ai can be characterized through a rotation of the tensor A0 according to an
angle αi as follows

Ai = QT (αi) A0 Q(αi) where Q(α) =





c2(α) s2(α)
√
2s(α)c(α)

s2(α) c2(α) −
√
2s(α)c(α)

−
√
2s(α)c(α)

√
2s(α)c(α) c2(α)− s2(α)





(1.55)
is the rotation tensor with c = cos(α), s = sin(α) [261].

Ω
ε

O P

ΓN

g

ΓD

x1x2
x3

0

−h

+h

Figure 1.12: Applied forces and boundary conditions of the composite laminate O.

Assume that the boundary of Ω can be split into two different disjoints subsets ∂Ω = ΓN ∪
ΓD, ΓN ∩ΓD = ∅, such that on ΓN × [−h, h] a surface load (g, 0), with g ∈ L2(ΓN ;R

2) is applied
and on ΓD × [−h, h] the structure is clamped. A vertical load (pressure) P ∈ L2(Ω) is applied
over Ω× {h}. See Figure 1.12. Define the kinematically admissible spaces

H1
D(Ω;R

2) =
{

v ∈ H1(Ω;R2)|v = 0 on ΓD
}

, (1.56)

H2
D(Ω) =

{

η ∈ H2(Ω)|η = ∇η · n = 0 on ΓD
}

. (1.57)
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Then the averaged force and momentum equilibrium equations inside Ω according to the von
Kármán strains (1.51), (1.53), (1.52) read

∂N11

∂x1
+
∂N12

∂x2
= 0

∂N12

∂x1
+
∂N22

∂x2
= 0

∂2M11

∂x21
+ 2

∂2M12

∂x1x2
+
∂2M22

∂x22
+N (w) = P,

where the in-plane force resultants Nmn and the moment resultants Mmn according to Einstein’s
summation convention are defined as

Nmn =

∫ h

−h
Cmnklǫkl dx3 = 2ε

(

N
∑

i=1

(Ai)mnkl
)

E(u,w)kl, with: E(u,w) = e(u) +
1

2
∇wT∇w,

(1.58)

Mmn =

∫ h

−h
Cmnklǫkl x3 dx3 = 2

ε3

3

(

N
∑

i=1

(i3 − (i− 1)3)(Ai)mnkl
)

(∇2w)kl, (1.59)

N (w) =
∂

∂x1

(

N11
∂w

∂x1
+N12

∂w

∂x2

)

+
∂

∂x2

(

N12
∂w

∂x1
+N22

∂w

∂x2

)

.

The differential operators ∇2(·) and e(u) = ∇u+T∇u
2 are the Hessian matrix and the classical

linearized strain tensor, respectively.

Definition 1.3.1. We say that in-plane and vertical displacements u ∈ H1
D(Ω;R

2) and w ∈
H2
D(Ω) satisfy the limit two-dimensional von Kármán plate model [88, 257] if































−div(AE(u,w)) = 0 in Ω,
∇2 : (D∇2w)−AE(u,w) : ∇2w = P in Ω,

w = 0, u = 0,∇w · n = 0 on ΓD,
AE(u,w) · n = 2hg on ΓN ,
(D∇2w)nn = 0 on ΓN ,

∇ · (D∇2w) · n+ ∂
∂τ (D∇2w)nτ = 2hg · ∇w on ΓN ,

(1.60)

where A is the extensional stiffness tensor

Aklmn = 2ε
N
∑

i=1

(Ai)klmn, k, l,m, n = 1, 2 (1.61)

and D the bending stiffness tensor

Dklmn =
2ε3

3

N
∑

i=1

(

i3 − (i− 1)3
)

(Ai)klmn, k, l,m, n = 1, 2 (1.62)

We remark that the factor “2” in the definition of (1.61) and (1.62) is due to the symmetry
of the laminate. The last boundary condition in (1.60), also called Kirchhoff free-edge condition
[257], stands for the free vertical displacement on ΓN and represents the equilibrium between
the bending moments and the shear forces [285, 51]. The orthonormal couple (n, τ) corresponds
to the local basis of normal and tangent vectors on ∂Ω. We recall that the twice contracted
products in (1.60) read

AE(u,w) = A : E(u,w) = AijklE(u,w)kl, ∇2 : (D∇2w) = ∇2 : (D : ∇2w) = ∂2ijDijkl∂2klw,

according to Einstein’s summation convention.
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Remark 1.3.2. Typically in classical laminated plate theory, the constitutive relation between
the strain and the averaged stresses within the plate presents an additional stiffness tensor apart
from A and D. This tensor yields the influence of the coupling curvature/in-plane tractions and
extensional strain/bending moments. In real applications this effect is usually undesirable, so by
making the laminate symmetric about the mid-plane (as we did), this tensor cancels. In some
cases however, this extension-curvature coupling can be used as an interesting design feature.
For instance, it is possible to design a composite propeller blade whose angle of attack changes
automatically with its rotational speed: increased speed increases the in-plane centripetal loading,
which induces a twist into the blade [261].

The linearized buckling problem

Definition 1.3.3. We introduce the linearized buckling problem of (1.60) as the following eigen-
value problem: Find λ ∈ R and w 6= 0 such that















∇2 : (D∇2w) = λ(Ae(u)) : ∇2w in Ω,
w = 0,∇w · n = 0 on ΓD,
(D∇2w)nn = 0 on ΓN ,

∇ · (D∇2w) · n+ ∂
∂τ (D∇2w)nτ = λ2hg · ∇w on ΓN ,

(1.63)

where u solves






−div(Ae(u)) = 0 in Ω,
u = 0 on ΓD,

Ae(u) · n = 2hg, on ΓN .
(1.64)

Equivalently, the variational formulation of the linearized buckling problem (1.63),(1.64)
reads

∫

Ω
Dijkl ∂klw ∂ijη dx = −λ

∫

Ω
Aijkl e(u)kl ∂iw ∂jη dx, ∀η ∈ H2

D(Ω),

∫

Ω
Aijkl e(u)kl e(v)ij dx = 2h

∫

ΓN

g · vds, ∀v ∈ H1
D(Ω;R

2), (1.65)

where we have used Einstein’s tensorial summation convention. We denote by λ1 the smallest
positive eigenvalue of (1.63). This value is usually called “buckling load factor” or “buckling
critical reserve factor” and it is an indicator of the degree of safety against buckling [139, 49].
The computed vertical displacement eigenvector ŵ is referred here as the “buckling mode”. The
existence of λ1 is guaranteed by the compactness of the buckling operator (Lemma 2.2-7 [90]).
Furthermore this operator is self-adjoint so λ1 can be express through the Rayleigh quotient

1

λ1
= max

w∈H2
D(Ω)\{0}

−
∫

ΩAe(u) · ∇w · ∇wdx
∫

ΩD∇2w : ∇2wdx
. (1.66)

The foregoing properties will be rigorously recalled in the next subsection.

1.3.3 A few mathematical properties of the von Kármán plate model

Better known as the father of supersonic flight, Théodore von Kármán proposed in [315] an
equivalent form of the precedent set of equations describing a two-dimensional non-linear elastic
plate. This plate theory plays an almost mythical role in applied mathematics and has been
extensively studied from a mathematical point of view, notably treating various questions of exis-
tence, regularity and bifurcation of their solutions. We briefly recall some of these mathematical
properties, especially those concerning bifurcation theory.
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A rigorous justification in a nutshell

The full physical justification of the von Kármán equations has been longtime criticized [309]
(notably the pertinence of (1.51),(1.53), (1.52)), but “recently” achieved from the exact three
dimensional equations of non-linear elasticity. This justification can be found e.g. in [88], by
means of the leading term of a formal asymptotic expansion regarding the thickness of the plate,
or in [120] through Γ−convergence. Here we present a rapid glance of the main result in [120].

Let ε > 0 and consider a 3D non-linear hyperelastic model [89] (for ease of exposition a St
Venant-Kirchhoff material) written in the reference configuration Ωε







−div(T ε(I +∇U ε)) = F ε in Ωε,
U ε = 0 on ΓεD,
T ε(I +∇U ε) · n = Gε on ΓεN ∪ Γ+ε ∪ Γ−ε,

(1.67)

where Ωǫ = Ω× [−ε/2, ε/2], ΓεD = ΓD × [−ε/2, ε/2], ΓεN = ΓN × [−ε/2, ε/2], Γ±ε = Ω×{±ǫ/2},
T ε is the first Piola-Kirchhoff stress tensor and U ε := Ωε → R3 is the elastic displacement. The
volume forces F ε and the surface loads Gε are suppose to be dead loads, i.e. independent of
the displacement U ε. Since the material is supposed to be hyperelastic, the first Piola-Kirchhoff
stress tensor T ε derives from the elastic energy function

T εij =
∂W ε(Fε)
∂Fij

, i, j ∈ {1, 2, 3}

where Fε = I +∇U ε denotes the deformation gradient and the (constant) elasticity tensor C is
defined by

Cijkl =
∂2Wε(Fε)
∂Fij∂Fkl

. (1.68)

The variational formulation of (1.67) is

∫

Ωε

T ε(I+∇U ε) ·∇V dx−
∫

Ωε

F ε ·V dx−
∫

Γε
N∪Γ+ε∪Γ−ε

Gε ·V ds, ∀V ∈ H1(Ωε)3, V = 0 on ΓεD.

(1.69)
Now, it is convenient to introduce the fixed domain ω = Ω × [−1/2, 1/2] and the change of
variables

V(x) = V (xε), Uε(x) = U ε(xε),

where xε = (x1, x2, εx3), x = (x1, x2, x3) ∈ ω. Then (1.69) is formally equivalent (under some
regularity and convexity conditions on W ε [33]) to the energy minimization problem

inf
V∈H1(ω;R3)

V=0 on ΓD×[−1/2,1/2]

Iε(V) =
∫

Ωε

W ε(I +∇V )dx−
∫

Ωε

F ε ·V dx−
∫

Γε
N∪Γ+ε∪Γ−ε

Gε ·V ds. (1.70)

Assuming and setting different scalings for the applied forces F ε, Gε, the elastic energy W ε

and the displacements U ε w.r.t. the thickness of the plate ε, one can prove that a hierarchy
of plate models arises from (1.70) via Γ-convergence [120, 191]. In particular the von Kármán
model, as it was also remarked in [88], stems from the choice

F ε(xε) = (0, 0, f ε3 (x
ε)) = ε3(0, 0, f3(x)),

Gε(xε) = (gε1(x
ε), gε2(x

ε), 0) = ε2(g1(x), g2(x), 0) on ΓεN ,
Gε(xε) = (0, 0, g±ε3 (x)) = ε4(0, 0, g±3 (x)) on Γ±ε,

where the functions f3, g = (g1, g2), g
±
3 are independent of ε.
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Proposition 1.3.4. Let U ǫ be a minimizing sequence for (1.70) when ε→ 0 in the sense

1

ε4

(

Iε(Uε)− inf
V∈H1(ω;R3)

V=0 on ΓD×[−1/2,1/2]

Iε(V)
)

→ 0.

Then there exists constants Rε ∈ SO(3) (the group of 3D rotations) and cε ∈ R3 such that the
function

Ũε := RεUε − cε

and the averaged in-plane and out-of-plane displacements

uε :=
1

ε2

∫ 1/2

−1/2
(Ũε1 , Ũε2)dx3, wε :=

1

ε

∫ 1/2

−1/2
Ũε3dx3,

satisfy (for a subsequence)

∇Ũε → Id in L2(ω;R3×3)

and uε → u in H1(Ω;R2) and wε → v in H1(Ω). Moreover (u, v) minimizes the limit scaled von
Kármán elastic energy

J (u,w) = 1

6

∫

Ω
Cijkl∂klw∂ijwdx+

1

2

∫

Ω
CijklE(u,w)ijE(u,w)kldx−

∫

Ω
Pwdx−

∫

ΓN

guds, (1.71)

where

P =

∫ 1/2

−1/2
f3dx+ g+3 + g−3 .

Remark 1.3.5. The commonly used ansatz (Kirchhoff-love displacement) (1.49)

U ǫ = (uε + x3∇wε, wε)

is consistent with the above result [120].

Remark 1.3.6. The variational formulation of the von Kármán model (1.60) for one ply with
elastic properties C, can be deduced from the stationarity conditions (euler-lagrange equations)
of the de-scaled version of J (u,w) (1.71). Indeed, setting ûε = ε2u and ŵε = εw,

0 =

〈

∂J ε
∂u

(ûε, ŵε), v

〉

=

∫

Ω
εCijklE(ûε, ŵε)kle(v)kldx− ε

∫

ΓN

gvds, ∀v ∈ H1
D(Ω;R

2),(1.72)

0 =

〈

∂J ε
∂w

(ûε, ŵε), η

〉

=

∫

Ω

ε3

3
Cijkl∂klŵε∂ijηdx+

∫

Ω
εCijklE(ûε, ŵε)kl∂iŵ

ε∂jηdx

−
∫

Ω
P εηdx, ∀η ∈ H2

D(Ω).

Where

P ε =

∫ ε/2

−ε/2
f ε3dx+ g+ε3 + g−ε3 .
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Bifurcation theory and linearized buckling load

Bifurcation theory attempts to explain various phenomena that have been discovered and de-
scribed in the natural sciences over the centuries. The buckling of the Euler rod, the appearance
of Taylor vortices, and the onset of oscillations in an electric circuit, for instance, all have a
common cause: A specific physical parameter crosses a threshold, and that event forces the
system to the organization of a new state that differs considerably from that observed before
[178]. In our case we are interested in the phenomenon of buckling, which can be characterized
by a sudden failure of a structural member subjected to high compressive or torsional stress. It
is particularly useful in engineering to describe the ultimate load g (with P = 0) such that a
plate is capable of withstand before bending (i.e. w 6= 0).

But first, in order to facilitate the ensuing analysis, we give the canonical or reduced form
of the von Kármán equations [90]

Let us introduce the Airy stress function φ : Ω→ R such that

∂xxφ = Nyy, ∂yyφ = Nxx, ∂xyφ = −Nxy = −Nyx,

with the force resultant tensor N defined in (1.58). The existence of such functions stems from
the equation div(N) = 0 in (1.60). Let P̂ ∈ H2

D(Ω) be solution of







∇2(D∇2P̂ ) = P in Ω,

(D∇2P̂ ) = 0 on ΓN ,

∇ · (D∇2P̂ ) · n+ ∂
∂τ (D∇2P̂ )nτ = 2hg · ∇P̂ on ΓN ,

with P introduced in (1.60) and define the tensor Ã

Ã =





a22 a12 −a32
a21 a11 −a31
−a23 −a13 a33



 , where A−1 = (aij).

Let θ0 ∈ H2
D(Ω) be the solution of

{

∇2(Ã∇2θ0) = 0 , in Ω,
θ0 = φ, ∂nθ0 = ∂nφ on ΓN .

Furthermore, define the following operators [88]:

(a) B, B̃ := (η1, η2) ∈ H2
D(Ω)×H2

D(Ω)→ B(η1, η2), B̃(η1, η2) ∈ H2
D(Ω), solutions of







∇2(D∇2B) = [η1, η2] in Ω,
(D∇2B) = 0 on ΓN ,

∇ · (D∇2B) · n+ ∂
∂τ (D∇2B)nτ = 2hg · ∇B on ΓN .







∇2(Ã∇2B̃) = [η1, η2] in Ω,

B̃ = 0 on ΓN ,

∂nB̃ = 0 on ΓN .

where [·, ·] is the Monge-Ampère form defined as

[η1, η2] = ∂11η1∂22η2 + ∂22η1∂11η2 − 2∂12η1∂12η2.

(b) G := η ∈ H2
D(Ω)→ G(η) = B(12 B̃(η, η), η) ∈ H2

D(Ω).

(c) L := η ∈ H2
D(Ω)→ L(η) = B(θ0, η) ∈ H2

D(Ω) (linear).
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Proposition 1.3.7. Let γ : [0, 1] → R2 be a regular parametrization of ΓN . Then functions
(u,w) ∈ (H1

D(Ω;R
2), H2

D(Ω)) are solution of (1.60) if and only if w ∈ H2
D(Ω) satisfies the

equation

(Id− L)w + G(w) = P̂ , (1.73)

where φ ∈ H2(Ω) is given by

φ = θ0 −
1

2
B̃(w,w). (1.74)

Moreover the values of φ and ∂nφ on ΓN read

φ(x(t)) = −x1
∫

γ(s),s∈[0,t]
g2ds+ x2

∫

γ(s),s∈[0,t]
g1ds+

∫

γ(s),s∈[0,t]
(x1g2 − x2g1)ds

∂nφ(x(t)) = −n1
∫

γ(s),s∈[0,t]
g2ds+ n2

∫

γ(s),s∈[0,t]
g1ds.

Proof. We give a sketch of the proof based on similar arguments for the isotropic and orthotropic
case [90, 51]. Typically in literature the von Kármán equations (1.60) are expressed through the
simpler equivalent system

{ ∇2(D∇2w) = [φ,w] + P

∇2(Ã∇2φ) = −1
2 [w,w].

(1.75)

Indeed, the first equation of (1.75) follows immediately from the definition of the Airy function
φ, meanwhile the second relation is less clear. Remarking that E(u,w) = A−1N and invoking
the definition of the Airy function plus the identity

∂2x1x1(∂x2u2) + ∂2x2x2(∂x1u1)− ∂2x1x2(∂x2u1 + ∂x1u2) = 0,

the following cascade of equations (after some tedious computations) stem the desired equation

−1

2
[w,w] =

∂2

∂x21

(

E(u,w)
)

22
+

∂2

∂x22

(

E(u,w)
)

11
− 2

∂2

∂x1∂x2

(

E(u,w)
)

12

=
∂2

∂x21

(

A−1N
)

22
+

∂2

∂x22

(

A−1N
)

11
− 2

∂2

∂x1∂x2

(

A−1N
)

12

= ∇2(Ã∇2φ)

Once established the equivalence between (1.75) and (1.60), one can easily prove that (w, φ)
is the solution of the system (1.75) if and only if w satisfies (1.73) and φ is given by relation
(1.74). In fact, if (w, φ) satisfy the latter conditions, the formal application of the operators
∇2(D∇2) and ∇2(Ã∇2) to (1.73) and (1.74) respectively, entails the system (1.75) as well as
the boundary conditions. On the contrary, if (w, φ) solves (1.75), then (1.73) and (1.74) stem
from the uniqueness of the solutions of the problems defining the operators B, B̃. Finally the
boundary values of φ and ∂nφ on ΓN are obtained by integration by parts from

(g1, g1) = (∂2xxφ,−∂2xyφ).

For more details see Lemma 1.5-1 in [90].

Thanks to the canonical form of the von Kármán equation, taking P̂ = 0 we can comfortably
formulate the buckling problem in terms of a bifurcation point of (1.73)

Definition 1.3.8. Consider the eigenvalue problem

S(λ,w) = (Id− λL)w + G(w) = 0. (1.76)
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We say that the point (λ(ǫ0), w(ǫ0)) is a bifurcation point of equation (1.76) with respect to the
solution curve (λ(ǫ), w(ǫ)) if for every neighborhood around this point there exist another solu-
tion of (1.76)(i.e. a solution which does not belong to (λ(ǫ), w(ǫ))).

In a buckling problem we are concerned by the bifurcation points from the trivial branch
w = 0. With the purpose of calculating the smallest λ such that the plate buckles (i.e. it deviate
from the trivial branch), we recast the following result [90]

Proposition 1.3.9. (λ0, 0) is a bifurcation point of the trivial branch {(λ, 0), λ ∈ R} for S in
(1.76) only if λ0 is a characteristic value of L:

∃w ∈ H2
D(Ω)\{0} : (Id− λ0L)w = 0. (1.77)

Reciprocally, if the eigenvalue λ0 has odd-numbered algebraic multiplicity, then it is effectively a
bifurcation point.

Problem (1.77) corresponds to the linearized buckling problem introduced in (1.63),(1.64),
where λ1 stands for the first positive eigenvalue. Indeed, applying the operator ∇2(D∇2) on
both sides of (1.77), one obtains

∇2(D∇2w) = λ0∇2(D∇2Lw) = λ0[θ0, w].

Furthermore, for every λ ∈ R which is not a characteristic value of L, the Airy function φ0
corresponding to the plane strain stress with deflection w = 0 (i.e. Ae(u) = AE(u,w)) satisfies
according to the relation (1.74)

λφ0 = λθ0,

hence φ0 = θ0 and
λ0[θ0, w] = λ0Ae(u) : ∇2w.

For more details see [51].

Remark 1.3.10. It can be proven [90, 47] that if g is a purely compressive load, then the oper-
ator L is positive definite and all eigenvalues are positive. Furthermore if P = 0 then for λ ≤ λ1
the plate does not buckle (according to Definition 1.3.8) meanwhile for λ > λ1 the plate buckles
and has at least three solutions (0, w,−w). Otherwise if P 6= 0, there exist λ∗(|P |) < λ1 such
that for every λ < λ∗ the plate does not buckle (i.e. has an unique solution).

Once established the equivalence between the linearized eigenvalue problem (1.77) and (1.63),
(1.64), we proceed to expose some spectral properties

Proposition 1.3.11. Let the tensor D in (1.62) be elliptic with constant δ. Then:

1) The set of eigenvalues λ of Problem (1.77) is discrete, infinite, with only limit point at
zero and

1

λ
∈
[

−
‖Ae(u)‖L2(Ω)

δ
,
‖Ae(u)‖L2(Ω)

δ

]

2) λ1 can be expressed through the Rayleigh quotient

λ−1
1 = max

η

−
∫

ΩAe(u)∇η∇ηdx
∫

ΩD∇2η : ∇2ηdx
. (1.78)

Remark 1.3.12. The definition of λ−1
1 makes only sense if this biggest eigenvalue is positive

(thus we avoid non-physical negative eigenvalues from the definition as a min). If not, the plate
does not buckle and λ1 is set to infinity.
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Proof. Define the linear operator

T(z) := z ∈ H2
D(Ω)→ w ∈ H2

D(Ω),

where w is the unique solution of the variational formulation of the linearized buckling problem
∫

Ω
(D∇2w) : ∇2ηdx =

∫

Ω
(Ae(u) : ∇2z)ηdx = −

∫

Ω
Ae(u)∇z∇ηdx, ∀η ∈ H2

D(Ω). (1.79)

The last equality stems from the fact that div(Ae(u)) = 0. We are going to prove that T is
continuous, compact and self-adjoint.

1) First, the existence and uniqueness of w follows from the Lax-Milgram theorem. Indeed,
thanks to the Sobolev embedding of H2(Ω) →֒W 1,4(Ω), the integral on the right side of (1.79)
is continuous w.r.t. η
∣

∣

∣

∣

∫

Ω
Ae(u)∇z∇ηdx

∣

∣

∣

∣

≤ ‖Ae(u)‖L2(Ω) |z|W 1,4(Ω)|η|W 1,4(Ω) ≤ ‖Ae(u)‖L2(Ω) |z|W 1,4(Ω) ‖η‖H2(Ω) .

Additionally, the continuity and coercitivity of the left term in (1.79) arises from the ellipticity
of D and the Poincaré’s inequality (since |ΓD| 6= 0). Thus, the Lax-Milgram theorem yields the
classical estimate

‖T(z)‖H2(Ω) ≤
1

δ
‖Ae(u)‖L2(Ω) |z|W 1,4(Ω), (1.80)

so ‖T‖H2(Ω) ≤
‖Ae(u)‖L2(Ω)

δ and the operator T is continuous. Now we show that this operator

is compact. Since H2(Ω) is a reflexive space, the unit ball is weakly sequentially compact,
so we just need to prove that if (zn) is a weakly convergent sequence to z∗, then wn → w∗

strongly. Indeed, let be (zn) a weakly convergent sequence to z∗ in H2(Ω). Since the injection
H2(Ω) →֒W 1,4(Ω) is compact, (1.80) yields:

zn → z∗ strongly in W 1,4(Ω)⇒ T(zn)→ T(z∗) strongly in H2(Ω),

hence T is compact. Thanks to this feature, the set of eigenvalues of the problem

µw = T(w),

which is equivalent to (1.77) with µ = 1/λ, belongs to the interval [−‖Ae(u)‖L2(Ω)

δ ,
‖Ae(u)‖L2(Ω)

δ ], is
discrete, has only a limit point at zero and the algebraic multiplicity of each eigenvalue is finite
[60].

The only element that remains to prove is that T is self-adjoint. Let w,w′ ∈ H2
D(Ω), where

thanks to the Poincaré inequality and the ellipticity of D we endow H2
D(Ω) with the inner

product
〈

w,w′
〉

H2
D(Ω)

=

∫

Ω
D∇2w : ∇2w′dx. (1.81)

Then

〈

T(w), w′
〉

H2
D(Ω)

=

∫

Ω
D∇2T(w) : ∇2w′dx =

∫

Ω
(Ae(u) : ∇2w)w′dx = −

∫

Ω
(Ae(u)∇w) · ∇w′dx

=

∫

Ω
(Ae(u) : ∇2w′)wdx =

∫

Ω
D∇2T(w′) : ∇2wdx =

〈

w,T(w′)
〉

H2
D(Ω)

.

Henceforth the set of eigenvalues must be infinite since H2(Ω) is a separable space and T is a
compact and self-adjoint operator (so H2(Ω) admits a Hilbert basis composed of the eigenvectors
of T).

2) Finally the fact that λ1 can be written by means of the Rayleigh quotient stems from the
min-max theorem for compact and self-adjoint operators.
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Remark 1.3.13. When g is not a compressive force (i.e g = −ĝn, ĝ ≥ 0 and n the normal
to ∂Ω), T is not necessarily positive-definite since the stress tensor σ = Ae(u) is not a priori
positive-definite. Thus all eigenvalues may not be positive and typical eigenvalue solvers as the
package ARPACK [192], which uses the Implicitly Restarted Arnoldi Method, can not be applied
straightforward. Hence a prior modification must be done first by introducing the following
auxiliary problem

Corollary 1.3.14. Let β be a positive constant and let w ∈ H2
D(Ω) be the solution of the

following modified version of the eigenvalue problem (1.77)
∫

Ω
D∇2w : ∇2ηdx = µ

(

−
∫

Ω
Ae(u)∇w∇ηdx+ β

∫

Ω
D∇2w : ∇2ηdx

)

, ∀η ∈ H2
D(Ω). (1.82)

Then for β large enough the set of eigenvalues µ is strictly positive and

λ1 =
µ1

1− µ1β
,

where µ1 the smallest eigenvalue of (1.82).

Proof. Let S(z) := z ∈ H2
D(Ω)→ w ∈ H2

D(Ω), where w is the solution of
∫

Ω
(D∇2w) : ∇2ηdx = −

∫

Ω
Ae(u)∇z∇ηdx+ β

∫

Ω
(D∇2z) : ∇2ηdx, ∀η ∈ H2

D(Ω).

We remark that the operator S is not compact since S(z) = T(z)+βId(z) (the identity operator
is not compact). However S is positive definite. Indeed, thanks to the Poincaré inequality
and the Sobolev embedding H2(Ω) →֒ W 1,4(Ω), there exist C > 0 such that for ∀β ≥ β∗ =
C
δ ‖Ae(u)‖L2(Ω)
∫

Ω
Ae(u)∇η∇ηdx ≤ ‖Ae(u)‖L2(Ω) ‖η‖2W 1,4(Ω) ≤ C ‖Ae(u)‖L2(Ω) ‖η‖2H2(Ω) ≤ β

∫

Ω
(D∇2η) : ∇2ηdx,

and S is elliptic (so in particular positive definite)

〈S(w), w〉H2
D(Ω) =

∫

Ω
D∇2S(w) : ∇2wdx = −

∫

Ω
Ae(u)∇w∇wdx+ β

∫

Ω
(D∇2η) : ∇2ηdx

≥ (β − β∗) ‖w‖2H2
D(Ω) .

Hence all eigenvalues µ are be positive. Now let λ̂ be defined as

λ̂ =
µ1

1− µ1β
.

We easily remark that 1/λ̂ is an eigenvalue of the resolvent T, introduced in the proof of Propo-
sition 1.3.11. In order to prove λ̂ = λ1, we proceed by contradiction. Supposing that the plate
buckles, i.e. ∞ > λ1 > 0, let us say first that λ̂ > λ1. Since λ1 is positive, then 1−µ1β > 0 and

µ1
1− µ1β

> λ1 is equivalent to µ1 >
λ1

1 + βλ1
,

which contradicts the fact that µ1 is the smallest positive eigenvalue of (1.82). Otherwise if
λ̂ < λ1, since λ1 is the smallest positive eigenvalue of (1.77), then λ̂ ≤ 0. Nevertheless, in that
case

µ1
1− µ1β

< λ1 is equivalent to µ1 >
λ1

1 + βλ1
,

resulting to be the same precedent contradiction. Hence

λ1 =
µ1

1− µ1β
.
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Chapter 2

Multi-phase structural optimization
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We consider the optimal distribution of several elastic materials in a fixed working domain.
In order to optimize both the geometry and topology of the mixture we rely on the level set
method for the description of the interfaces between the different phases. We discuss various ap-
proaches, based on Hadamard method of boundary variations, for computing shape derivatives
which are the key ingredients for a steepest descent algorithm. The shape gradient obtained for
a sharp interface involves jump of discontinuous quantities at the interface which are difficult to
numerically evaluate. Therefore we suggest an alternative smoothed interface approach which
yields more convenient shape derivatives. We rely on the signed distance function and we enforce
a fixed width of the transition layer around the interface (a crucial property in order to avoid
increasing “grey” regions of fictitious materials). It turns out that the optimization of a diffuse
interface has its own interest in material science, for example to optimize functionally graded
materials. Several 2-d examples of compliance minimization are numerically tested which allow
us to compare the shape derivatives obtained in the sharp or smoothed interface cases.

This chapter is based on a joint work with G. Allaire, C. Dapogny and G. Michailidis which
has been accepted for publication as

69
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• G. Allaire, C. Dapogny, G. Delgado and G. Michailidis, Multi-phase structural
optimization via a level-set method, in ESAIM: Control, Optimisation and Calculus of
Variations (2013)

2.1 Introduction

Many industrial applications and problems in material science are concerned with finding the
optimal distribution of several materials in a fixed working domain, in order to minimize a
criterion related to the overall mechanical behavior or cost of the phases mixture. Intuition is
usually very limited in such problems and shape and topology optimization can provide valuable
help to the designers and researchers.

A crucial issue in the modeling of this problem is the parametrization of the phases mixture.
While the exact formulation requires the material properties, or the global Hooke’s tensor, to
be discontinuous at the interfaces between two materials, it is often convenient, for numerical
purposes, to devise an appropriate interpolation scheme to smoothen the coefficients or equiv-
alently to replace sharp interfaces by diffuse ones using some monotonic interpolation scheme.
This diffuse or smeared interface approach has its own interest when one is interested in the
optimization of functionally graded materials, where more general interpolation functions can
be used [68], [199], [295], [306], [312].

There is already a vast literature about multiphase optimization with constant material
properties and various methods have been proposed to address this problem. The Hadamard
method of geometric shape optimization, as described in [104], [144], [279], [285] was used, for
example, in [143] for optimal composite design. The homogenization method [4], [85], [302]
was the main tool in the multiphase problem studied in [7] for the optimal reloading of nuclear
reactors (sequential laminates were shown to be optimal composite materials). In the framework
of the SIMP (Solid Isotropic Material with Penalization) method, several interpolation schemes
have been proposed for the mathematical formulation of the Hooke’s tensor of the mixture [44],
[299], [324]. In general, material interpolation schemes can be quite involved [324] and one may
design such a model in order to favor certain phases [299]. Applications range from the design of
materials with extreme or unusual thermal expansion behavior [277] to multi-material actuators
[275], through conductivity optimization for multi-phase microstructural materials [329]. In the
framework of the phase-field method, a generalized Cahn-Hilliard model of multiphase transition
was implemented in [328] to perform multimaterial structural optimization.

The first publications on multiphase optimization, using the level set method, are these
of Mei et al. [217] and Wang et al. [317] (see also [216], [316], [318]). Following an idea of
Vese and Chan [313], the authors in [217], [317] used m level set functions to represent up to
n = 2m materials: we shall adhere to this setting (see section 2.5). The level set functions are
advected through eikonal Hamilton-Jacobi equations in which the normal velocity is given by the
shape derivative of the objective function. Unfortunately, the shape derivatives, derived in [217]
and [317], are not correct in full mathematical rigor as we explain in section 2.4. Fortunately,
these shape derivatives are approximations of the correct formula upon various assumptions. A
first goal of the present chapter is to clarify the issue of shape differentiability of a multiphase
optimization problem. In section 2.2 we give the correct shape derivative in the setting of a sharp
interface between phases (see Proposition 2.2.1). It was first obtained in [12] for a problem of
damage and fracture propagation but, in a scalar setting, previous contributions can be found
in [147], [48], [254]. Because the phase properties are discontinuous through the interfaces,
the transmission conditions imply that only the elastic displacement and the normal stress are
continuous at the interfaces, leaving the tangential stress and the normal strain discontinuous.
These discontinuities yield obvious difficulties which must be handled carefully. The exact or
continuous shape derivative turns out to be somehow inadequate for numerical purposes since
it involves jumps of strains and stresses through the interfaces, quantities which are notably
hard to evaluate with continuous finite elements. Therefore, Proposition 2.2.5 gives a discrete
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variant of this shape derivative which does not involve any jumps and is similar to the result of
[217] and [317]. The idea is to consider a finite element approximation of the elasticity system,
the solution of which has no derivative jumps through the interface, implying that the shape
derivative is much easier to compute.

Another delicate issue in multiphase optimization using the level set method is that the
interface is inevitably diffuse and its thickness may increase, thus deteriorating the performance
of the analysis and eventually of the optimization. Note that, for most objective functions,
it is always advantageous to introduce intermediate values of the material properties, so that
the interface spreading is produced by the optimization process itself and not merely by the
numerical diffusion. In [217] the authors introduced a penalization term to control the width of
the interpolation zone between the materials. In [317] the level set functions are re-initialized
to become signed distance functions, which permits a more explicit control of the interpolation
width. A second goal of the present chapter is to propose a smoothed interface setting which
guarantees a fixed thickness of the interface without any increase in its width (as it is already
the case in the standard single material level set method for shape and topology optimization).
In section 2.3 we describe a regularization of the interface which relies on the signed distance
function to the interface. Note that the signed distance function has nothing to do with the
level set function which is used in numerical simulations. Indeed, the solution of the advection
Hamilton-Jacobi equation (with a velocity given by the shape derivative) is usually not the
signed distance function (which explains why reinitialization is often used in practice). In such
a smoothed interface setting our main result is Theorem 2.3.13 which gives the shape derivative
of the objective function. It requires several intermediate technical results, notably finding the
shape derivative of the distance function (first obtained in [103]) and using a coarea formula to
reduce a volume integral to a product integral on the interface and along normal rays. Once
again, we show in section 2.3.5 that, when a regularized Heaviside function is used as interpo-
lation function for the material properties and the regularization parameter (or the thickness of
the diffuse interface) is vanishingly small, the exact shape derivative can be approximated by
the formula already obtained in Proposition 2.2.5 which corresponds to the result of [217] and
[317] too.

Section 2.3.6 explains how the smoothed interface model converges to the sharp interface
problem as the regularization parameter goes to zero. Next, Section 2.4 is devoted to a compar-
ison with [217] and [317]. Since, for simplicity, all the previous theoretical results were stated
in the case of a single interface between two phases, we explain how to generalize our smoothed
interface setting to more materials in section 2.5. In section 2.6 we show several 2-d results and
make comparisons between the different settings and formulae for the shape derivatives. Some
optimal designs obtained by our approach are compared to those previously computed in [317]
and [318]: ours are more symmetric and sometimes slightly different. We believe it is due to our
use of a correct shape derivative instead of an approximate one.

2.2 Sharp-interface formulation in a fixed mesh framework

To simplify the exposition in the first sections we limit ourselves to the case of two materials. Of
course, the proposed approach extends to more phases and the corresponding details are given
in section 2.5.

2.2.1 Description of the problem

The general purpose in multi-phase optimization is to find the best position of the interface Γ
between two linear elastic materials, hereafter labeled as 0 and 1, with respective Hooke’s laws
A0, A1. These materials fill two respective subdomains Ω0,Ω1 of a (bounded) working domain
D of Rd, (d = 2 or 3) which accounts for the resulting structure of the optimal distribution of
materials, i.e. D = Ω0 ∪ Γ ∪ Ω1. To avoid mathematical technicalities, we assume that Γ is a
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smooth surface without boundary and strictly included in D, that is, Γ ∩ ∂D = ∅. We refer to
Ω1 as the exterior subdomain, so that ∂Ω0 = Γ (see Figure 2.1). Thus, the shape of the interface
Γ is altogether conditioned by that of Ω0, and conversely. In the sequel, the variable of shape
optimization is denoted either by Γ or Ω0, without distinction.

D

Ω0

Ω1

Γ

Figure 2.1: Fixed working domain D occupied by two distinct materials Ω0 and Ω1 separated by a
smooth interface Γ.

The structure D is clamped on a part ΓD ⊂ ∂D of its boundary, and is submitted to body
forces and surface loads (the latter one applied on a part ΓN ⊂ ∂D), which are given as two
vector-valued functions defined on D, respectively denoted as f ∈ L2(D)d and g ∈ H1(D)d.

Perhaps the most natural and physical way to model such a distribution of two materials
among a fixed working domain is the so-called sharp-interface formulation. More specifically, the
total Hooke’s law on D is defined as Aχ := A0χ0 +A1χ1, where χi stands for the characteristic
function of the phase Ωi. In this context, the displacement field u is the unique solution in
H1(D)d to the linearized elasticity system







−div (Aχ e(u)) = f in D
u = 0 on ΓD

(A1 e(u)) · n = g on ΓN ,
(2.1)

where e(u) = ∇uT+∇u
2 is the strain tensor, and n stands for the outer unit normal vector to ∂D.

Our purpose is to minimize an objective function of the interface Γ, which is rather expressed
as a function J(Ω0) of the interior subdomain,

J(Ω0) =

∫

D
j(x, u) dx+

∫

ΓN

k(x, u) ds, (2.2)

where j(x, u) and k(x, u) are smooth functions satisfying adequate growth conditions. A typical
example is the compliance of the structure D, which reads

J(Ω0) =

∫

D
f · u dx+

∫

ΓN

g · u ds. (2.3)

2.2.2 Shape-sensitivity analysis of the sharp-interface problem

There exists a vast literature on the Hadamard method for computing derivatives with respect
to the exterior boundary (see e.g. [5], [103], [144], [279] and references therein) but relatively few
works on the derivation with respect to an interface between two regions. In the conductivity
context (i.e. replacing (2.1) by a scalar equation), derivatives with respect to an interface have
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been obtained in [147], [48], [254]. These results were extended to the elasticity setting in [12].
Let us also mention the works [173], [248] where similar results are obtained for a stratified
media (where the interfaces are flat and parametrized by a single scalar parameter).

As noticed in [12] and [254], the essential ingredients that must be considered in the calcu-
lation of the shape derivative of a problem such as (2.1) are the transmission conditions and the
differentiability of the solution u with respect to the interface Γ. Furthermore, when a numerical
implementation is sought, an additional element must be taken into account: the way in which
the transmission conditions (continuity of the displacement and continuity of the normal stress
across the interface) are interpreted by finite element methods in a fixed mesh framework. In
general these methods either partially preserve the transmission conditions (e.g. classical La-
grange finite elements method) or exactly preserve the transmission conditions (e.g. extended
finite elements XFEM [293], adapted interface meshing [97], etc.).

It is known [12], [254] that the solution u ∈ H1(D) of (2.1) is not shape differentiable with
respect to the interface Γ. The reason is that some spatial derivatives of u are discontinuous
across the interface because of the jump of the material elastic properties. Note however that
the transported (or pull-back) function uθ := u ◦ (Id + θ) is indeed differentiable with respect
to θ (this is the difference introduced in Definitions 1.1.19 and 1.1.20 between the material
derivative, in the latter case, and the shape derivative in the former case). As it was remarked
in Section 1.1, it is not necessary to use the concept of material derivative for computing the
shape derivative of the objective function. One can stay in a Eulerian framework and use Céa’s
formal Lagrangian method [74] to find the correct formula for the shape derivative J ′(Ω0)(θ).
In order to circumvent the non-differentiability of u, the idea is to introduce the restrictions of
u on Ω0 and Ω1, denoted by u0 := u|Ω0 and u1 := u|Ω1 .

We recall the result of [12] for the shape derivation of the objective function (2.2). We need
to introduce some notations about jumps through the interface Γ. For any quantity s which is
discontinuous across Γ, taking values s0 (resp. s1) on Ω0 (resp. Ω1), denote as [[s]] = s1− s0 the
jump of s. We also introduce at each point of Γ the local basis obtained by gathering the unit
normal vector n (pointing outward Ω0) and a collection of of unit tangential vectors, denoted
by τ , such that (τ, n) is an orthonormal frame. For a symmetric d × d matrix M, written in
this basis, we introduce the notation

M =

(

Mττ Mτn

Mnτ Mnn

)

where Mττ stands for the (d− 1)× (d− 1) minor of M, Mτn is the vector of the (d− 1) first
components of the d-th column of M, Mnτ is the row vector of the (d− 1) first components of
the d-th row of M, and Mnn the (d, d) entry of M. Finally, we define the adjoint problem







−div (Aχ e(p)) = −j′(x, u) in D,
p = 0 on ΓD,

(A1 e(p)) · n = −k′(x, u) on ΓN ,
(2.4)

where the symbol ′ denotes differentiation with respect to u.

Proposition 2.2.1. The shape derivative of the cost function J , defined in (2.2), reads

J ′(Ω0)(θ) = −
∫

Γ
D(u, p) θ · nds,

D(u, p) = −σ(p)nn : [[e(u)nn]]− 2σ(p)nτ : [[e(u)nτ ]] + [[σ(u)ττ ]] : e(p)ττ . (2.5)

where [[·]] = ·1 − ·0 denotes the jump through Γ, n = n0 = −n1, p is the adjoint state solution of
(2.4) and σ(v) = Aχ e(v).
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Remark 2.2.2. To better appreciate the expression (2.5) where some terms have jumps and
others not, we recall that the tangential strain tensors e(u)ττ and e(p)ττ are continuous through
the interface Γ while the normal components e(u)nn, e(u)nτ , e(p)nn and e(p)nτ are discontinuous.
On the contrary, the normal components of the stress tensors σ(u)nn, σ(u)nτ , σ(p)nn and σ(p)nτ
are continuous through Γ while their tangential parts σ(u)ττ and σ(p)ττ are discontinuous.

Proof. We merely sketch the proof that can be found in [12]. In order to apply Céa’s Lagrangian
method [74], we first introduce the restrictions of u on Ω0 and Ω1, denoted by u0 := u|Ω0 and
u1 := u|Ω1 , which satisfy the transmission problem:























−div
(

A1 e(u
1)
)

= f in Ω1

u1 = 0 on ΓD ∩ ∂Ω1
(

A1 e(u
1)
)

· n = g on ΓN ∩ ∂Ω1

u1 = u0 on Γ
(A0e(u

0)) · n0 + (A1e(u
1)) · n1 = 0 on Γ,

(2.6)

and






−div
(

A0 e(u
0)
)

= f in Ω0

u1 = u0 on Γ
(A0e(u

0)) · n0 + (A1e(u
1)) · n1 = 0 on Γ.

(2.7)

Of course, (2.1) and (2.6)-(2.7) are equivalent. Note that, by standard regularity theory [213],
u is smooth on each subdomain, namely u0 ∈ H2(Ω0) and u1 ∈ H2(Ω1). Then, we define the
Lagrangian

L(θ, v1, v0, q1, q0) =
∑

i=0,1

(

∫

(Id+θ)Ωi

j(x, vi)dx+

∫

ΓN

k(x, vi)ds

)

(2.8)

+
∑

i=0,1

(

∫

(Id+θ)Ωi

Aie(v
i) : e(qi)dx−

∫

(Id+θ)Ωi

f · qidx−
∫

ΓN

g · qids
)

+
1

2

∫

(Id+θ)Γ
(σ1(v1) + σ0(v0))n · (q1 − q0)ds

+
1

2

∫

(Id+θ)Γ
(σ1(q1) + σ0(q0))n · (v1 − v0)ds,

where the last two surface integrals account for the transmission conditions. Differentiating L
with respect to q1, q0 yields the state equations (2.6)-(2.7), while differentiating with respect to
v1, v0 leads to the adjoint equation (2.4). Then a standard, albeit nasty, computation (see [12]
for full details) shows that

J ′(Ω0)(θ) =
∂L
∂θ

(0, u1, u0, p1, p0)(θ),

which yields the result.

Remark 2.2.3. Proposition 2.2.1 can be extended in several ways. For example, if the integrand
j depends on χ, namely if the objective function is

J(Ω0) =

∫

D
jχ(x, u)dx+

∫

ΓN

k(x, u)ds :=
∑

i=0,1

∫

Ωi

ji(x, u)dx+

∫

ΓN

k(x, u)dx,

we obtain a shape derivative which is

J ′(Ω0)(θ) = −
∫

Γ

(

[[jχ(x, u)]] +D(u, p)
)

θ · nds,

with the same expression (2.5) for D(u, p).
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Although formula (2.5) for the shape derivative makes perfect sense in a continuous setting,
its numerical discretization is not obvious. Indeed, (2.5) involves jumps through the interface
which are difficult to evaluate from a numerical point of view if the interface is not exactly
meshed. Let us explain the difficulty by making some specific discretization choices, keeping in
mind that any other numerical method will feature similar drawbacks. Suppose D is equipped
with a conformal simplicial mesh Dh =

⋃N
i=1Ki with N elements Ki of maximal size h. Let

Π1(Dh) and Π0(Dh) be the finite-dimensional spaces of Lagrange P1, respectively P0, finite
element functions. Define uh, ph ∈ Π1(Dh) the internal approximations of u and p (we recall
weak solutions of (2.1) and (2.4) respectively), i.e.,

∫

D
Aχe(uh) : e(vh) dx =

∫

D
f · vh dx+

∫

ΓN

g · vh ds, ∀vh ∈ Π1(Dh), (2.9)

and
∫

D
Aχe(ph) : e(vh) dx = −

∫

D
j′(x, uh) · vh dx−

∫

ΓN

k′(x, uh) · vh ds, ∀vh ∈ Π1(Dh). (2.10)

Since the discrete strain tensors e(vh) are constant in each cell Ki, we can replace Aχ in the
above internal approximate variational formulation by its P0 interpolate A∗ defined by

A∗|K = ρA0 + (1− ρ)A1, with ρ =

∫

K
χdx.

Within this discretized framework the naive evaluation of the jumps in (2.5) has no meaning.
Indeed, consider the generic case of an element K cut in its interior by the interface Γ (see Figure
2.2). For P1 Lagrange finite elements the strain tensors e(vh), for vh = uh, ph, are constant in
K, thus yielding a zero jump. Similarly, if the stress tensors are evaluated as σh = A∗e(vh), they
are constant in K and their jump is again zero, leading to a vanishing shape derivative ! There
is an alternative formula for the stress tensor which is σh = Aχe(vh): it yields a non-vanishing
jump [[A]]e(vh) and the discretization of (2.5) would be

(D(u, p))h = ([[A]]e(u))ττ : e(p)ττ , (2.11)

which is different from the discrete formula (3.23) by lack of any normal components. On the
same token, note that the “exact” continuity of the normal stress through Γ does not hold for
σh = Aχe(vh) with vh = uh, ph since

[[σh · n]] = ([[A]]e(vh)) · n 6= 0.

Therefore some special care is required for the numerical approximation of (2.5). A com-
plicated process was proposed in [12] for computing the jump of a discontinuous quantity sh,
based on the diffuse interface approximation

[[sh]] ≈
(

(1− χ)sh − χsh
)

. (2.12)

Although this approximation seems to work well when the contrast between the two elastic
phases is very large (as is the case in damage or fracture models, see [12]), more general numer-
ical experiences for comparable elastic moduli indicate a much worse behavior of this approx-
imation, up to the point that (2.5) does not any longer provide a proper descent direction to
minimize (2.2) (see section 2.6.2).

One way to overcome the difficulty of computing the jumps involved in the shape derivative,
consists in expressing J ′(Ω0) not as a surface integral but rather as a volume integral. Indeed,
applying a sort of “divergence theorem”, one can formulate (2.5) as a volume integral on Ω,
where no jumps are actually needed.
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Γ

A∗ = ρA0 + (1− ρ)A1

u0h = u1h

(σ0(u0h))n 6= (σ1(u1h))n

(σ∗(u0h))n = (σ∗(u1h))n
A1

A0

Figure 2.2: Transmission condition in a fixed mesh framework.

Proposition 2.2.4. Suppose f = 0 and θ = 0 on ΓN . Then the shape derivative of the cost
function J defined in (2.2) reads

J ′(Ω0)(θ) = −
∫

D

(

Aχe(p) : E(θ, u) +Aχe(u) : E(θ, p)
)

dx+

∫

D
Aχe(u) : e(p)div(θ)dx, (2.13)

where p is the same adjoint state of (2.4) and the tensor E is given by

Eij(θ, q) =
1

2

∑

k

(

∂kqj∂iθk + ∂kqi∂jθk

)

. (2.14)

Equations (2.5) and (2.13) are thus equivalent.

Proof. Denote as u(Id+θ) the solution of (2.1) for the deformed configuration χθ = χ◦(Id+θ)−1

(we recall that the domain D does not change since θ · n = 0 on ∂D). As it was quoted in
[254], even though the function u(Id + θ)is not shape differentiable (i.e. we can not take an
Eulerian derivative), we can introduce however the notion of Lagrangian derivative through the
transported of u(Id+ θ) [5]

uθ = u(Id+ θ) ◦ (Id+ θ). (2.15)

Setting as test function v = v ◦ (Id+ θ)−1, then ∀v ∈ H1(D)d such that vΓD
= 0 the variational

formulation of (2.1) in the deformed configuration yields

∫

D
Aχθ

e
(

u(Id+ θ)
)

: e(v)dx =

∫

D
f · vdx+

∫

ΓN

g · vds.

So applying the change of coordinates x = (Id+ θ)x

∫

D

(

Aχe(u(Id+ θ)) ◦ (Id+ θ) : e(v̄) ◦ (Id+ θ)
)

|det(∇(Id+ θ))|dx

=

∫

D
f ◦ (Id+ θ) · v|det(∇(Id+ θ))|dx

+

∫

ΓN

g ◦ (Id+ θ) · v|det(∇(Id+ θ))|
∣

∣

∣

(

(

∇(Id+ θ)
)−1
)T
n
∣

∣

∣
ds. (2.16)

Furthermore by the very definition of the strain of u(Id+ θ)

e(u(Id+ θ))ij =
1

2
(∂iu

j(Id+ θ) + ∂ju
i(Id+ θ)),
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so invoking (2.15) entails

∂j
(

ui(Id+ θ)
)

=
∑

k

∂ku
i
θ∂j(Id+ θ)−1

k .

Hence

e(u(Id+ θ)) ◦ (Id+ θ) =
1

2

∑

k

(

∂ku
i
θ∂j(Id+ θ)−1

k + ∂ku
j
θ∂i(Id+ θ)−1

k

)

◦ (Id+ θ).

Deriving thus with respect to θ around 0

∂

∂θ
e(u(Id+θ))◦(Id+θ) =

1

2

(

∂j(u
′
θ)
i+∂i(u

′
θ)
j
)

− 1

2

∑

k

(

∂ku
i
θ∂jθk+∂ku

j
θ∂iθk

)

= e(u′θ)−E(θ, uθ),

where u′θ ∈ H1(D), with u′θ = 0 on ΓD, denotes the Lagrangian derivative of u. Moreover
introducing

|det(∇(Id+ θ))| = 1 + divθ + o(θ),
∣

∣

∣

(

(

∇(Id+ θ)
)−1
)T
n
∣

∣

∣ = 1− (∇θ)Tn · n+ o(θ),

in (2.16), one finds the variational problem that satisfies the Lagrangian derivative of uθ at 0
following the direction θ (Theorem 3.10 [285]),
∫

D

(

Aχe(u
′
θ) : e(v)

)

dx =

∫

D

(

Aχe(u) : E(θ, v) +Aχe(v) : E(θ, u)
)

dx−
∫

D
Aχe(u) : e(v)div(θ)dx

+

∫

D

(

∇f · θ + div(θ)f
)

· vdx

+

∫

ΓN

(

((divθ − (∇θ)Tn · n)g · v +∇g · θ · v
)

ds

Similarly, if we apply the same development to the cost function J((Id + θ)Ω0) using the hy-
pothesis f = 0 and θ = 0 on ΓN

∫

D
j(x, uθ ◦ (Id+ θ)−1)dx+

∫

ΓN

k(x, uθ ◦ (Id+ θ)−1)ds

=

∫

D
j((Id+ θ)x, uθ)|det(∇(Id+ θ))|dx+

∫

ΓN

k(x, uθ)|det(∇(Id+ θ))|
∣

∣

∣

(

(

∇(Id+ θ)
)−1
)T
n
∣

∣

∣ds

= J(Ω0) +

∫

∂D
jθ · nds+

∫

D
j′ · u′θdx+

∫

ΓN

k′ · u′θds+ o(θ)

= J(Ω0)−
∫

D

(

Aχe(p) : e(u′θ)
)

dx+ o(θ), (2.17)

where the functions j(, ·), k(, ·) are C1(D). Finally inserting the weak formulation of u′θ into
(2.17) the desired result follows.

From a pragmatic point of view, the volume form of the shape derivative of J (2.13) allows
us to easily find a descent direction θ⋆ without the need of estimating the jumps involving the
stresses and strains of u and p. The vector θ⋆ can be e.g. estimated by a dual identification
method with a Hilbert subspace W ⊂W 1,∞(Ω)d by solving

〈θ⋆, θ〉W = −J ′(Ω0)(θ), ∀θ ∈W.

Unfortunately, (2.13) is not quite suited for numerical purposes. Indeed, in a typical dis-
crete framework, the values of θ⋆ for both formulae (2.5) and (2.13) are not exactly equal.
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This fact is illustrated in Figure 2.3 for the compliance (2.3) of a cantilever composed of two
anisotropic materials (in black and red), where the values of θ⋆ are plotted for both formulae
taking W = Π1(Dh)2 and the scalar product of L2(Dh). This choice of FE (classically used in
linear elasticity) is not a subspace of W 1,∞(D)2 and moreover does not fulfill the normal stress
continuity conditions, hence not allowing an “integration by parts” between (2.13) and (2.5) to
reach the equivalence. This feature restricts the use of (2.13) to some particular families of FE,
see e.g. [281].

Ω0 Ω0

Ω1 Ω1

0.0

0.02

0.08

0.11

Figure 2.3: Zoom around the circular domain Ω0 (in black) surrounded by Ω1 (in red). The interface
Γ is perfectly meshed. The descent direction fields θ⋆ for the “surface” (2.5) and “volume”
(2.13) formulae of J ′(Ω0)(θ) are plotted at the left and the right sides, respectively. We
remark that the values of both formulae do not match perfectly due to the choice of finite
elements.

All these difficulties in the numerical evaluation of the shape derivatives (2.5) and (2.13) are
summarized just as another example of the well-known paradigm “should we differentiate first
and then discretize or vice versa ?” as already studied in [249]. In order to get around this
issue it is tempting, and we do so now, to investigate the case when we first discretize and then
differentiate. In other words we consider the objective function

Jh(Ω0) =

∫

D
j(x, uh) dx+

∫

ΓN

k(x, uh) ds,

where uh ∈ Π1(Dh) is the discrete solution of (3.21).

Proposition 2.2.5. Assume that the interface Γ generically cuts the mesh Dh, namely that it
is never aligned with part of a face of any cell Ki. Then, the solution uh of (3.21) is shape
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differentiable and the shape derivative of the cost function Jh is given by

J ′
h(Ω0)(θ) = −

∫

Γ
[[Aχ]]e(uh) : e(ph) θ · nds, (2.18)

where [[·]] denotes the jump through Γ and ph is the solution of (3.22).

Remark 2.2.6. Note that Proposition 2.2.5 holds true for most finite elements discretization
and not merely P1 Lagrange finite elements. The assumption on the interface Γ is necessary in
the sense that, if a face of an element K of the mesh is embedded in Γ, then neither uh nor Jh
are shape differentiable. However, if instead of Lagrange finite elements, we use Hermite finite
elements which ensure that e(uh) is continuous on D, then the results of Proposition 2.2.5 hold
true without any assumption on Γ.

Proof. Let us denote by φi(x) the basis functions of the finite element space Π1(Dh). The
solution uh ∈ Π1(Dh) is decomposed as

uh(x) =
∑

i

Uhi φi(x),

and the vector Uh of components Uhi is the solution of the linear system

KhUh = F h,

where the stiffness matrix Kh and the right hand side F h are defined as

Kh
i,j =

∫

Dh

Aχe(φi) : e(φj) dx, and F hi =

∫

Dh

f · φi dx+

∫

ΓN

g · φi ds.

The basis functions φi are independent of Γ so the shape differentiability of the function uh
reduces to that of the vector Uh and thus of the rigidity matrix Kh. Fix an arbitrary element
K ∈ Dh. We first prove the shape differentiability of

LKi,j :=

∫

K
Aχe(φi) : e(φj)dx. (2.19)

An important difference when calculating the shape derivative of (2.19) w.r.t. classical boundary
variations of domain integrals, is that the interface Γ intersects the boundary of ∂K, which is
fixed, constraining the possible movements of Γ on its extremal points to those given by θ such
that θ ·n = 0 on ∂K (see Fig. 2.4). Thus, in order to get rid of this constraint on the boundary
variations of Γ, we take any θ ∈W 1,∞(D)d and we rely on a product rule formula which reads

d

dθ

(

∫

K
Aχθ

e(φi) : e(φj)dx
)

= − d

dθ

(

∫

Kθ

Aχe(φi) : e(φj)dx
)

+
d

dθ

(

∫

Kθ

Aχθ
e(φi) : e(φj)dx

)

,

(2.20)
where the expression at the left represents the derivative we are looking for (χθ = χ◦(Id+θ)−1),
the first term at the right the boundary variation of the domain K when Aχ is fixed (Kθ =
(Id+ θ)K) and the second expression and the right the derivative when the interface Γ and the
boundary ∂K move simultaneously. Thus assuming that e(φi) is regular inside K (in our case
it is actually constant) and that Γ does not overlap any face of K,

d

dθ

(

∫

Kθ

Aχe(φi) : e(φj)dx
)

=

∫

∂K
Aχe(φi) : e(φj)(θ · n)ds

and

d

dθ

(

∫

Kθ

Aχθ
e(φi) : e(φj)dx

)

=
d

dθ

(

∫

K0
θ

A0e(φi) : e(φj)dx
)

+
d

dθ

(

∫

K1
θ

A1e(φi) : e(φj)dx
)

=

∫

∂K0

A0e(φi) : e(φj)(θ · n)ds+

∫

∂K1

A1e(φi) : e(φj)(θ · n)ds
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K

Γ

n

K0

K1

Figure 2.4: Boundary variation of the interface Γ in the fixed element K. The extremal points of Γ are
constrained to move following the tangential directions (in blue) of ∂K.

where K0
θ = Kθ ∩ Ω0, K1

θ = Kθ\K0 (see Fig. 2.4). Adding the foregoing equations, the desired
term in (2.20) reads (as expected)

∫

Γ∩K
[[Aχ]]e(φi) : e(φj) θ · nds. (2.21)

The shape derivative of (Kh)i,j =
∑

K∈Dh

LKi,j , steams from (2.21) by linearity

(

Kh
ij

)′
(Ω0)(θ) =

∫

Γ
[[Aχ]]e(φi) : e(φj) θ · nds,

since e(φi) : e(φj) is integrable on Γ. Hence

u′h(Ω0)(θ) =
∑

i

(

Uhi

)′
(Ω0)(θ)φi, where

(

Uh
)′

(Ω0)(θ) = −(Kh)−1
(

Kh
)′

(Ω0)(θ)Uh.

Once uh is shape differentiable, it is not necessary anymore to consider a complicated Lagrangian
like (2.8), taking into account the transmission conditions through Γ (which, by the way, do not
hold true for uh). Therefore we define a discrete Lagrangian as

Lh(θ, vh, qh) =

∫

D
j(x, vh) dx+

∫

ΓN

k(x, vh) ds+

∫

D
Aχ◦(Id+θ)−1e(vh) : e(qh) dx

−
∫

D
f · qh dx−

∫

ΓN

g · qh ds,

to which it is easy to apply Céa’s method. Note that the adjoint problem obtained by differ-
entiating Lh with respect to vh is exactly (3.22) which was a discretization of the continuous
adjoint. Therefore we deduce

J ′
h(Ω0)(θ) =

∂Lh
∂θ

(0, uh, ph)(θ),

which yields the desired result.

There is a clear difference between the discrete derivative (3.23) and the continuous one
(2.5). Even if the continuous derivative is further discretized as suggested in (2.11), there is still
a difference between (3.23) and (2.11) which is that the latter one is restricted to the tangential
components of the stress and strain tensors.
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There is however one case where both formulae coincide which is when one of the phases is
void. Indeed, assume that A0 = 0 (and similarly that f = 0 and j = 0 in Ω0 so that no loads
are applied to the void region). Then, in the domain Ω0 we have

σ(p)nn = 0, σ(p)nτ = 0, σ(u)nn = 0 and σ(u)nτ = 0.

Thus, we deduce that the continuous derivative (2.5) becomes

J ′(Ω0)(θ) = −
∫

Γ
σ(u1)ττ : e(p1)ττ θ · nds,

which, upon discretization, coincides with the discrete derivative (3.23)

J ′
h(Ω0)(θ) = −

∫

Γ
A1e(uh) : e(ph) θ · nds,

since σ(u1)nn = σ(u1)nτ = 0 on Γ.

The above study shows that the numerical discretization of the sharp-interface problem
should be handled carefully when a standard finite element method is used for solving the state
and adjoint systems (2.1) and (2.4) in a fixed mesh setting. The main reason of this difficulty
lies in the difference of regularity of the exact and approximated solutions through the interface.

We finish this section with a complement of Proposition 2.2.5 when a face of an element K
is aligned with the interface Γ. In this case Jh is directionally shape differentiable.

Proposition 2.2.7. Let O ⊂ D be a regular open subset. Define the piece-wise functions

h = χh0 + (1− χ)h1 and c = ξα+ (1− ξ)β

where h0, h1, α, β ∈ C1(D)d and ξ, χ are the characteristic functions of Ω0 and O, respectively.
Suppose that Γ and ∂O are piece-wise aligned.

Then the shape functional

J(Ω0) =

∫

D
hc dx

is directionally shape differentiable and J ′(Ω0)(θ) reads

J ′(Ω0)(θ) =

∫

Γ
[[h]]
(

c0(θ · n)+ + c1(θ · n)−
)

ds, (2.22)

where c0 = c(x)|Ω0 and c1 = c(x)|Ω1 and (·)+, (·)− are the positive and negative part opera-
tors.

Remark 2.2.8. Since an integral on Γ has no sense if the integrated quantities are discontinuous
(otherwise from which side would we take the trace), formula (2.22) must be conceived in the
following way: If c(x) is discontinuous through Γ, (2.22) takes the value of one side (α) or the
other (β) according to the sign of (θ · n). On the contrary, if c(x) is continuous, then there is
no issue and (2.22) simply reads

J ′(Ω0)(θ) =

∫

Γ
[[h]]
(

c(θ · n)
)

ds, (2.23)

given that (θ · n)+ + (θ · n)− = (θ · n).
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Proof. Notice that in the context of Proposition 2.2.5 (formally speaking h = Aχ and c =
e(φi)e(φj)), if c(x) is continuous across the interface Γ (or the set of points where it is discon-
tinuous is negligible), then we recover (3.23).

Now we concentrate in the case where the surfaces Γ and ∂O are piece-wise aligned. The
Gateaux derivative (directional derivative) of J(Ω0) is defined as

J ′(Ω0)(θ) = lim
t→0

J((Id+ tθ)(Ω0))− J(Ω0)

t
. (2.24)

Denote for t > 0 small, Ω0
tθ = (Id+ tθ)Ω0. Then

J(Ω0
tθ)− J(Ω0) = ∆J,

where

∆J =

∫

∆Ω+

(h0 − h1)c0 + dx−
∫

∆Ω−

(h0 − h1)c1dx,

and ∆Ω+ = Ω0
tθ\Ω0 and ∆Ω− = Ω0\Ω0

tθ.

D

Γ
Ω0Ω1

O

Γ

(Id + tθ)Γ

∆Ω+

∆Ω+

∆Ω−

O

D

Figure 2.5: Variation of Γ in a discontinuous framework.

Now introduce the change of coordinates

x(µ, ν) = (Id+ µθ) ◦ γ(ν), µ ∈ [0, t], ν ∈ [0, 1]d−1,

where γ(ν) is a regular parametrization of Γ. We remark that the jacobian of this transformation
reads

∣

∣

∣det
(∂x(µ, ν)

∂(µ, ν)

)∣

∣

∣ = |n(ν) · θ|
∣

∣

∣det
(∂γ(ν)

∂ν

)∣

∣

∣+O(µ),

where n is the unit normal vector on Γ. Thus

∆J =

∫

γ−1(v)∈Γ,θ(γ)·n(γ)>0

∫ t

0
(h0 − h1)(x(µ, ν))c0(x(µ, ν))

∣

∣

∣det(
∂x(µ, ν)

∂(µ, ν)
)
∣

∣

∣dµdν

−
∫

γ−1(ν)∈Γ,θ(γ)·n(γ)<0

∫ t

0
(h0 − h1)(x(µ, ν))c1(x(u, v))

∣

∣

∣
det(

∂x(µ, ν)

∂(µ, ν)
)
∣

∣

∣
dµdν. (2.25)

Since t << 1, the functions h0, h1, c0, c1 are C1 in (2.25), so the Taylor expansion of each function
around µ = 0 reads

hi(x)(µ, ν) = hi(x)(0, ν) + µ∇hi(x)(0, ν) · θ(x)(0, v) + o(µ), i = 0, 1

c0(x)(µ, ν) = c0(x)(0, ν) + µ∇c0(x)(0, ν) · θ(x)(0, v) + o(µ)

c1(x)(µ, ν) = c1(x)(0, ν) + µ∇c1(x)(0, ν) · θ(x)(0, v) + o(µ).
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So integrating between 0 and t in (2.25)

∆J =

∫

γ−1(ν)∈Γ,θ(γ)·n(γ)>0
t(h0 − h1)(x)(0, ν)c0(x)(0, ν)|n(ν) · θ|

∣

∣

∣
det
(∂γ(ν)

∂ν

)∣

∣

∣
dν

−
∫

γ−1(ν)∈Γ,θ(γ)·n(γ)<0
t(h0 − h1)(x)(0, ν)c1(x)(0, ν)|n(ν) · θ|

∣

∣

∣det
(∂γ(ν)

∂ν

)∣

∣

∣dν + o(t).

The application of the following identities

|(θ · n)| = (θ · n)+ − (θ · n)−,

∫

Γ
F (x)ds =

∫

γ−1(ν)∈Γ
F (γ(ν))

∣

∣

∣det
(∂γ(ν)

∂ν

)∣

∣

∣dν,

yields

∆J = t

∫

Γ
[[h]]
(

c0(θ · n)+ + c1(θ · n)−
)

ds+ o(t).

Finally the desired result stems from definition (2.24).

2.3 Shape derivative in the smoothed-interface context

2.3.1 Description of the problem

We now present an alternative approach to that of section 2.2 which can be coined as smoothed
or diffuse interface approach. It can be seen as a mathematically convenient approximation of
the sharp-interface problem but, as explained in the introduction, it has its own merits for some
problems in material science which feature physically thick transition zones [68], [295], [306],
[312]. More precisely, either for a mathematical approximation or for physical reasons, it may
be desirable to model the interface Γ between Ω0 and Ω1 as a thin layer of (small) width 2ε > 0
rather than as a sharp interface. In this context, we rely on the notion of the signed distance
function (see Definition 1.2.1)

The material properties in D are defined as a smooth interpolation between A0 and A1 in
the layer of width 2ε around Γ, so that the resulting Hooke’s tensor AΩ0,ε reads

AΩ0,ε(x) = A0 + hε(dΩ0(x))(A1 −A0), ∀x ∈ D, (2.26)

where hε : R → R is a smooth approximation of the Heaviside function, that is, a smooth
monotone function enjoying the properties : hε(t) = 0 for t < −ε, hε(t) = 1 for t > ε. In the
sequel, we chose the C2 function

∀ t ∈ R, hε(t) =







0 if t < −ε
1
2

(

1 + t
ε + 1

π sin(πtε )
)

if − ε ≤ t ≤ ε
1 if t > ε.

(2.27)

Remark 2.3.1. Formula (2.27) expresses a simple choice for the interpolation of the material
properties between the two materials, and of course, one could think of different interpolation
rules. Moreover, the interpolation function could also contain parameters that are themselves
subject to optimization (e.g. the layer width ε) and both a geometric and parametric optimiza-
tion could be combined using a method of alternating directions. Therefore, this method could be
generalized to the shape and topology optimization of functionally graded materials in a straight-
forward way (see [312] for the use of non-monotone interpolation functions).

We modify (2.1) so that the elastic displacement now solves






−div
(

AΩ0,ε e(u)
)

= f in D
u = 0 on ΓD

(A1 e(u)) · n = g on ΓN .
(2.28)

The objective function does not change and we still minimize (2.2) which depends on dΩ0 through
(2.26).
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2.3.2 Shape differentiability of the signed distance function

The purpose of this section is to recall some results on the signed distance function and to
explore its shape differentiability which holds in a non-classical and subtle sense (see below for
details). For simplicity we drop the index 0 of Ω0 in the sequel.

Let us start by collecting some definitions (see Figure 2.6 for a geometric illustration).

Definition 2.3.2. Let Ω ⊂ Rd be a Lipschitz bounded open set.

• For any x ∈ Rd, Π∂Ω(x) := {y0 ∈ ∂Ω such that |x− y0| = infy∈∂Ω |x− y|} is the set of
projections of x on ∂Ω. It is a closed subset of ∂Ω. When Π∂Ω(x) reduces to a single
point, it is called the projection p∂Ω(x) of x onto ∂Ω.

• Σ :=
{

x ∈ Rd such that (dΩ)2 is not differentiable at x
}

is the skeleton of ∂Ω (or Ω by a
small abuse in terminology).

• For any x ∈ ∂Ω, ray∂Ω(x) := {y ∈ Rd such that dΩ is differentiable at y and p∂Ω(y) = x}
is the ray emerging from x. Equivalently, ray∂Ω(x) = p−1

∂Ω(x).

We now recall some classical results (see [104], chapter 7, theorems 3.1, 3.3 and [15]).

Lemma 2.3.3. Let Ω ⊂ Rd be a Lipschitz bounded open set.

• A point x /∈ ∂Ω has a unique projection p∂Ω(x) on ∂Ω if and only if x /∈ Σ. In such a
case, it satisfies d (x, ∂Ω) = |x− p∂Ω(x)| and the gradient of dΩ at x reads

∇dΩ (x) =
x− p∂Ω(x)

dΩ (x)
.

• As a consequence of Rademacher’s theorem ([115], section 3.1.2), Σ has zero Lebesgue
measure in Rd. Furthermore, when Ω is C2, Σ has zero Lebesgue measure too [207].

• For any x ∈ Rd, p ∈ Π∂Ω(x), α ∈ [0, 1], denoting xα := p+ α(x− p) the points of the ray
of x lying between p and x, we have dΩ(xα) = αdΩ(x) and Π∂Ω(xα) ⊂ Π∂Ω(x).

• If Ω is of class Ck, for k ≥ 2, then dΩ is Ck too in a tubular neighborhood of ∂Ω. In that
case, dΩ is differentiable at every point x ∈ ∂Ω, and ∇dΩ(x) = n(x), the unit normal
vector to Ω.

Unfortunately, the signed distance function is not, strictly speaking, shape differentiable in
the sense of Definition 1.1.13. One reason is the lack of smoothness of the gradient of dΩ at the
skeleton Σ. However, its pointwise values dΩ(x) are shape differentiable for x ∈ D \ Σ. This is
the purpose of the next result which can be found in [103] (without much details however ; see
[97] for a detailed and pedagogical proof).

Proposition 2.3.4. Assume Ω ⊂ D is an open set of class C1, and fix a point x /∈ Σ. Then
θ 7→ d(Id+θ)Ω(x) is Gâteaux-differentiable at θ = 0, as an application from W 1,∞(D,Rd) into R,
and its derivative is

d′Ω(θ)(x) = −θ(p∂Ω(x)) · n(p∂Ω(x)).

Remark 2.3.5. Actually, a more general result than that of Proposition 2.3.4 holds. Indeed,
retaining the hypothesis that Ω is of class C1, for any point x ∈ Rd, and denoting, for a real
parameter t > 0,

Ωtθ = (I + tθ)Ω,

the application t 7→ dΩtθ
(x) is right-differentiable at t = 0+, and
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• if x ∈ Ω, d
dt (dΩtθ

(x)) |t=0+ = − inf
y∈Π∂Ω(x)

θ(y) · n(y).

• if x ∈ cΩ, d
dt (dΩtθ

(x)) |t=0+ = − sup
y∈Π∂Ω(x)

θ(y) · n(y).

Of course, these formulae agree with the previous result since Π∂Ω(x) = {p∂Ω(x)} if x /∈ Σ.
Note also that a similar analysis could be performed when Ω is only assumed to be Lipschitz.

However, the results are then more tedious to write, since the normal vector field n is not defined
everywhere on ∂Ω (which is an indicator of specific geometric phenomena, see [97]).

Remark 2.3.6. The signed distance function can also be seen as a solution of the following
Hamilton-Jacobi equation

{

|∇dΩ (x) | = 1 in D,
dΩ (x) = 0 on ∂Ω.

The behavior of the variations of dΩ with respect to the domain can be retrieved by a formal
computation. Indeed, assuming that dΩ is shape differentiable, a formal computation yields that
the directional shape derivative d′Ω(θ) satisfies

{

∇dΩ(x) · ∇d′Ω(θ)(x) = 0 in D,
d′Ω(θ)(x) = −θ(x) · n(x) on ∂Ω.

Ω

Σ

x
•

• p∂Ω(x)

n(p∂Ω(x))

ray∂Ω(x) |dΩ(x)|

• •• y
z1 ∈ Π∂Ω(y)Π∂Ω(y) � z2

Figure 2.6: For a point x lying outside the skeleton Σ of Ω, unique projection point p∂Ω(x) and line
segment ray∂Ω(x). For a point y ∈ Σ, at least two points z1, z2 belong to the set of
projections Π∂Ω(y).

Corollary 2.3.7. Let Ω be a bounded domain of class C1 and m(x, s) : Rdx×Rs → R a function
of class C1. Define the functional J(Ω) as

J(Ω) =

∫

D
m(x, dΩ(x)) dx. (2.29)

The application θ 7→ J((Id+ θ)Ω), from W 1,∞(D,Rd) into R, is Gâteaux-differentiable at θ = 0
and its derivative reads

J ′(Ω)(θ) = −
∫

D

∂m

∂s
(x, dΩ(x)) θ(p∂Ω(x)) · n(p∂Ω(x)) dx. (2.30)

The shape derivative (2.30) satisfies the Hadamard structure theorem since it depends only
on the values of θ · n on the boundary of ∂Ω. However (2.30) is not a surface integral on ∂Ω as
usual. Therefore the task of the next subsection is to transform (2.30) into a surface integral by
using the notion of rays (see Definition 2.3.2), along which dΩ and p∂Ω take very simple forms,
altogether with the coarea formula.
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2.3.3 An application of the coarea formula to integral functions of the signed
distance function

The purpose of this section is to derive a Fubini-like formula for integrals of the form (2.30) and
transform them in surface integrals. To this end, we use the following coarea formula [82].

Proposition 2.3.8. Let X,Y be two smooth Riemannian manifolds of respective dimension
m ≥ n, and f : X → Y a surjective map of class C1, whose differential ∇f(x) : TxX → Tf(x)Y
is surjective for almost every x ∈ X. Let ϕ an integrable function over X. Then:

∫

X
ϕ(x)dx =

∫

Y

(

∫

z∈f−1(y)
ϕ(z)

1

Jac(f)(z)
dz

)

dy

where Jac(f)(z) is the the Jacobian of the function f .

Remark 2.3.9. If m ≥ n, and f : Rm → Rn is a differentiable function at a point x ∈ Rm, the
Jacobian Jac(f)(x) of f at x is defined as

Jac(f)(x) :=
√

det(∇f(x)∇f(x)T ).

The definition of the Jacobian is similar when f is a map between two Riemannian manifolds X
and Y , once the tangent planes TxX,Tf(x)Y have been identified to Rm and Rn respectively (see
[82], exercise III.11). In any case, the Jacobian is positive Jac(f)(x) > 0 if and only if ∇f(x)
is of maximum rank, or equivalently ∇f(x) is surjective from Rm to Rn.

We apply this formula in our context to X = Ω, Y = ∂Ω and f = p∂Ω. To apply Proposition
2.3.8 we need the differentiability of p∂Ω which will be deduced from the following classical result
on the second-order differentiability of the signed distance function [72].

Lemma 2.3.10. Assume Ω is of class C2. For i = 1, ..., d − 1, denote by κi the principal
curvatures of ∂Ω and ei its associated directions (see Figure 2.7). For every x ∈ D, and every
y ∈ Π∂Ω(x), we have

− κi(y)dΩ(x) ≤ 1, 1 ≤ i ≤ d− 1. (2.31)

Define Γ the singular set of Ω, namely the set of points x /∈ Σ such that, for some i, one of the
inequality (2.31) is actually an equality. Then, Σ = Σ ∪ Γ and Σ has zero Lebesgue measure.
If x /∈ Σ, then all inequalities (2.31) are strict and dΩ is twice differentiable at x. Its Hessian
reads

HdΩ(x) =

d−1
∑

i=1

κi(p∂Ω(x))

1 + κi(p∂Ω(x))dΩ(x)
ei(p∂Ω(x))⊗ ei(p∂Ω(x)).

Lemma 2.3.11. Let x ∈ D \ Σ. The projection map p∂Ω is differentiable at x and, in the
orthonormal basis {e1, ..., ed−1, n} (p∂Ω(x)) of Rd (see Figure 2.7), its gradient is a d×d diagonal
matrix

∇p∂Ω(x) =















1− dΩ(x)κ1
1+dΩ(x)κ1

0 ... 0

0
. . .

. . .
...

...
. . . 1− dΩ(x)κd−1

1+dΩ(x)κd−1
0

0 ... 0 0















, (2.32)

where the the principal curvatures κi are evaluated at p∂Ω(x).

Proof. The proof starts from the characterization of the projection map when x ∈ D \ Σ (see
Lemma 2.3.3)

p∂Ω(x) = x− dΩ(x)∇dΩ(x).
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This last equality can then be differentiated once more for x ∈ D \ Σ

∇p∂Ω(x) = Id−∇dΩ(x)∇dΩ(x)T − dΩ(x)HdΩ(x). (2.33)

Since ∇dΩ(x) = n(p∂Ω(x)), a simple calculation ends the proof.

Figure 2.7: Principal directions, normal vector at the projection point of x ∈ Rd.

Corollary 2.3.12. Let Ω ⊂ D be a C2 bounded domain, and let ϕ an integrable function over
D. Then,

∫

D
ϕ(x)dx =

∫

∂Ω

(

∫

ray∂Ω(y)∩D
ϕ(z)

d−1
∏

i=1

(1 + dΩ(z)κi(y))dz

)

dy, (2.34)

where z denotes a point in the ray emerging from y ∈ ∂Ω and dz is the line integration along
that ray.

Proof. Since Σ is of zero Lebesgue measure, we have

∫

D
ϕ(x)dx =

∫

D\Σ
ϕ(x)dx.

Applying Lemmas 2.3.10 and 2.3.11, p∂Ω is a surjective and differentiable map from D \ Σ into
∂Ω, with a positive finite Jacobian for any x ∈ D \ Σ

Jac (p∂Ω) (x) =
1

d−1
∏

i=1

(

1 + dΩ(x)κi(p∂Ω(x))
)

.

Proposition 2.3.8 then yields the desired result.

2.3.4 Shape derivative in the multi-materials setting

We now differentiate the cost function (2.2) with respect to the domain. We keep the geometrical
assumptions of section 2.2, namely for a given bounded open set D ⊂ Rd which is partitioned
in two subdomains Ω0,Ω1 ⊂ D, Ω0 is a strict subset of D in the sense that its boundary Γ, as
well as its thick approximation, does not touch ∂D (see Figure 2.1) and Γ is smooth.

We define the adjoint problem







−div
(

AΩ0,ε e(p)
)

= −j′(x, u) in D,
p = 0 on ΓD,

(A1 e(p)) · n = −k′(x, u) on ΓN ,
(2.35)

where the symbol ′ denotes differentiation with respect to u.
We now come to the main result of this section.
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Theorem 2.3.13. The objective function (2.2) is shape differentiable in the sense of Gâteaux,
namely θ 7→ J((Id+ θ)Ω0) admits a Gâteaux derivative at θ = 0, which is

J ′(Ω0)(θ) = −
∫

Γ
θ(x) · n(x)

(

f0(x) + f1(x)
)

dx, ∀ θ ∈W 1,∞(D,Rd), (2.36)

where n is the outer unit normal to Ω0 and f0, f1 are scalar functions defined by

f0(x) =

∫

rayΓ(x)∩Ω
0

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)
d−1
∏

i=1

(1 + dΩ0(z)κi(x))dz,

f1(x) =

∫

rayΓ(x)∩Ω
1

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)

d−1
∏

i=1

(1 + dΩ0(z)κi(x))dz,

where z denotes a point in the ray emerging from x ∈ Γ.

Proof. The rigorous proof of existence of the shape derivative stems from classical arguments
(typically the implicit function theorem) similar to those invoked in [279] or chapter 5 in [144].
We rather focus on the actual computation of the shape derivative and use once again the formal
Lagrangian method of Céa [74]. As the computation unfolds very similarly to that in the proof
of Theorem 3.6 in [12], we limit ourselves to the main arguments.

Define first the functional space V := {v ∈ H1(D)d such that v = 0 on ΓD}, in which are
sought the solution of the state equation (2.28) and of the adjoint equation (2.35). We introduce
the Lagrangian L : W 1,∞

(

D,Rd
)

× V × V → R, defined by

L(θ, v, q) =

∫

D
j(x, v) dx+

∫

ΓN

k(x, v) ds+

∫

D
A(Id+θ)Ω0,εe(v) : e(q) dx−

∫

D
f ·q dx−

∫

ΓN

g ·q ds.
(2.37)

Here, q is intended as the Lagrange multiplier associated to the enforcement of the state equation.
As usual, stationarity of the Lagrangian provides the optimality conditions for the minimization
problem. At θ = 0, canceling the partial derivative of L with respect to q yields the variational
formulation of the state u. In the same way, the nullity of the partial derivative of L with respect
to v leads to the variational formulation of the adjoint p.

Eventually, the shape derivative of the objective function is the partial derivative of L with
respect to θ, evaluated at u and p

J ′(Ω0)(θ) =
∂L
∂θ

(0, u, p)(θ).

Some elementary algebra, using the shape differentiability of dΩ0(x) for almost every x ∈ D,
yields

J ′(Ω0)(θ) =

∫

D

(

A(Id+θ)Ω0,ε

)′
(θ) e(u) : e(p) dx

= −
∫

D
h′ε(dΩ0(x)) (θ(pΓ(x)) · n(pΓ(x))) (A1 −A0)e(u) : e(p) dx,

(2.38)

where
(

A(Id+θ)Ω0,ε

)′
(θ) is the directional shape derivative of A(Id+θ)Ω0,ε while h′ε is the standard

derivative of the real function hε. It remains to transform this expression by the coarea formula
in order to deduce a boundary integral. Using formula (2.34) for (2.38), we get

J ′(Ω0)(θ)

= −
∫

Γ
θ(x) · n(x)

(

∫

rayΓ(x)∩D
h′ε(dΩ0(z))(A1 −A0)e(u)(z) : e(p)(z)

d−1
∏

i=1

(1 + dΩ0(z)κi(x))dz

)

dx.

Now decomposing the above integral over Ω0 and Ω1 readily yields the desired result.
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Remark 2.3.14. Theorem 2.3.13 provides a simple way of choosing a descent direction for a
shape gradient based algorithm. Indeed it is enough to perturb the interface Γ by choosing the
vector field

θ(x) =
(

f0(x) + f1(x)
)

n(x),

which ensures that the directional derivative (2.36) is negative and thus yields a decrease of the
objective function (2.3). This is in sharp contrast with Corollary 2.3.7 which provided formula
(2.30) for the shape derivative. However it was impossible to extract directly from (2.30) an
explicit value of θ which was a guaranteed descent direction.

Remark 2.3.15. In the case of compliance minimization, namely for the objective function
(2.3), we have j′ = f , k′ = g and thus p = −u. If we assume that material 1 is stronger than
material 0, in the sense that A1 ≥ A0 as positive definite tensors, we deduce from the formulae
of Theorem 2.3.13 that both f0 and f1 are non-positive because 1 + κi(x)dΩ0(z) ≥ 0 by virtue of
Lemma 2.3.10. Thus, a descent direction is obtained by choosing θ such that θ(x) · n(x) < 0 on
Γ, namely we expand Ω1. This is in accordance with the mechanical intuition that a more robust
mixture of the two materials is achieved when A1 prevails over A0. Of course, for the problem
to be reasonable, a volume constraint is imposed on the phases.

2.3.5 Approximate formulae for the shape derivative

Although formula (2.36) is satisfying from a mathematical point of view, its numerical evaluation
is not completely straightforward. There are two delicate issues. First, one has to compute the
principal curvatures κi(x) for any point x ∈ Γ on the interface. Second, one has to perform a 1-d
integration along the rays of the energy-like quantity [[A]]e(u) : e(p). This is a classical task in
the level-set framework [271] but, still, it is of interest to devise a simpler approximate formula
for the shape derivative.

A first approximate formula is to assume that the interface is roughly plane, namely to
assume that the principal curvatures κi vanish. In such a case we obtain a “Jacobian-free”
approximate shape derivative

J ′(Ω0)(θ) = −
∫

Γ
θ(x) · n(x)

(

f0(x) + f1(x)
)

dx

fi(x) =

∫

rayΓ(x)∩Ω
i

h′ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)dz.
(2.39)

A second approximate formula is obtained when the smoothing parameter ε is small. Note that,
since the support of the function h′ε is of size 2ε, the integral in formula (2.36) is confined to
a tubular neighborhood of Γ of width 2ε. Therefore, if ε is small, one may assume that the
functions depending on z are constant along each ray, equal to their value at x ∈ Γ. In other
words, for small ε we assume

e(u)(z) ≈ e(u)(x), e(p)(z) ≈ e(p)(x) and dΩ0(z) ≈ dΩ0(x) = 0,

which yields the approximate formulae, for x ∈ Γ,

f0(x) ≈ (A1 −A0)e(u)(x) : e(p)(x)

∫

rayΓ(x)∩Ω0

h′ε (dΩ0(z)) dz,

f1(x) ≈ (A1 −A0)e(u)(x) : e(p)(x)

∫

rayΓ(x)∩Ω1

h′ε (dΩ0(z)) dz.

Furthermore, most rays have a length larger than 2ε so that
∫

rayΓ(x)∩Ω0

h′ε (dΩ0(z)) dz +

∫

rayΓ(x)∩Ω1

h′ε (dΩ0(z)) dz = hε(ε)− hε(−ε) = 1.
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In turn we obtain the following approximate formula for (2.36)

J ′(Ω0)(θ) ≈ −
∫

Γ
(A1 −A0)e(u) : e(p) θ · ndx, (2.40)

which is nothing but the discrete shape derivative (3.23) that we obtained in the sharp-interface
case. This computation seems a bit miraculous but makes sense as a kind of commutation
property between interface regularization and optimization.

Our numerical results show that the latter simplification (2.40), which we shall refer to
as the approximate shape derivative, works very well in practice for problems of compliance
minimization. Formula (2.40) is also used by other authors in their numerical simulations [317].

2.3.6 Convergence of the smoothed-interface to the sharp-interface

When the smoothed-interface setting is used as an approximation of the sharp-interface case, it
is a natural task to prove that this approximation is mathematically consistent. In this section,
we present a result in this direction. More specifically, for a given regular interface Γ, we prove
that the shape gradient obtained in Theorem 2.3.13 for a smoothed transition layer of width 2ε
converges, as ε goes to 0, to the corresponding shape gradient in the sharp-interface context,
recalled in Proposition 2.2.1.

To set ideas, let us limit ourselves to the case of compliance minimization, the case of a
general objective function such as (2.2) being no different in principle. In order to make explicit
the dependence on the half-thickness ε of the smoothed transmission area, the solution of the
state system (2.28) is denoted uε in this section. Similarly the stress tensor is σ(uε) = AΩ0,ε e(uε)
and the compliance is

Jε(Ω
0) =

∫

D
σ(uε) : e(uε) dx.

The solution of the state system (2.1) in the sharp-interface case is still denoted as u, and the
associated compliance as J(Ω0).

To find the limit of J ′
ε(Ω0), as ε → 0, requires some knowledge of the asymptotic behavior

of e(uε) and σ(uε) in the vicinity of the interface Γ. Unfortunately, one cannot expect all the
components of e(uε) and σ(uε) to converge toward their counterpart in e(u) and σ(u) in any
space of smooth enough functions. Indeed, for fixed ε, e(uε) is smooth over D (because so is
the associated Hooke’s tensor), whereas we recalled in Remark 2.2.2 that e(u)τn and e(u)nn
are discontinuous across Γ, as imposed by the transmission conditions. However, some of the
components of e(uε) and σ(uε) do behave well as ε → 0. This is the purpose of the following
lemma, which is a consequence of rather classical results in elliptic regularity theory (see [97]
for a proof).

Lemma 2.3.16. Assuming Γ is a C2 interface, there exists a tubular neighborhood V ⊂⊂ D of
Γ such that one can define a smooth extension in V of the normal n and of a set of tangentials
and orthonormal vectors τ . Then, the following strong convergences hold true

e(uε)ττ
ε→0−→ e(u)ττ in H1(V )(d−1)2 strong,

σ(uε)τn
ε→0−→ σ(u)τn in H1(V )d−1 strong,

σ(uε)nn
ε→0−→ σ(u)nn in H1(V ) strong.

.

Remark 2.3.17. The components of the strain and stress tensors which converge in Lemma
2.3.16 correspond exactly to those which are continuous through the interface Γ as explained in
Remark 2.2.2.

We are now in a position to state the main result of the present section which implies that
the shape derivative of the smoothed-interface objective function is a consistent approximation
of the corresponding shape derivative in the sharp-interface case.
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Theorem 2.3.18. Under the above assumptions, we have

lim
ε→0

J ′
ε(Ω

0)(θ) = J ′(Ω0)(θ) ∀ θ ∈W 1,∞(D,Rd).

Sketch of the proof. As the proof involves rather classical arguments, but tedious computations,
we limit ourselves with an outline of the main steps, referring to [97] for details. The goal is
to pass to the limit ε → 0 in formula (2.36), for a fixed θ ∈ W 1,∞(D,Rd). To achieve this, the
rays rayΓ(x)∩Ω0 and rayΓ(x)∩Ω1 are expressed as integrals over the segment (0, 1). Therefore,
(2.36) becomes

J ′
ε(Ω

0)(θ) = −
∫

Γ
θ(x) · n(x)

(

f ε0 (x) + f ε1 (x)
)

dx,

where f ε0 , f
ε
1 ∈ L1(Γ) are defined as

f ε0 (x) =

∫ 0

−1
h′ε(sε)(A1 −A0)e(uε)(x+ sεn(x)) : e(uε)(x+ sεn(x)) kε(x, s) ds, (2.41)

f ε1 (x) =

∫ 1

0
h′ε(sε)(A1 −A0)e(uε)(x+ sεn(x)) : e(uε)(x+ sεn(x)) kε(x, s) ds, (2.42)

with

kε(x, s) =
d−1
∏

i=1

(1 + sεκi(x)) .

Since h′ε(sε) does not depend on ε, to pass to the limit in (2.41) and (2.42) requires merely the
following simple technical convergence result (see [97] for a proof)

∫ 1

0
v(s) fε(x+ sεn(x))gε(x+ sεn(x)) ds

ε→0−→
(∫ 1

0
v(s) ds

)

f(x)g(x) in L1(Γ) (2.43)

for a smooth function v(s) and any sequences fε, gε ∈ H1(D), which converge strongly in H1(D)
to f, g respectively. In order to apply (2.43) we rewrite expressions (2.41) and (2.42) in terms
of the components e(uε)ττ and σ(uε)τn, σ(uε)nn of the strain and stress tensors, which have a
fine behavior at the limit ε→ 0 as guaranteed by Lemma 2.3.16. After some algebra, we obtain
the following rearrangement for the integrand in f ε0 and f ε1 :

h′ε(sε)(A1 −A0)e(uε) : e(uε)(x+ sεn(x))

= µ′(s) (e(uε)ττ : e(uε)ττ ) (x+ sεn(x)) +
µ′(s)

µ(s)2
(σε(uε)τn · σε(uε)τn) (x+ sεn(x))

+
4µ2(s)λ′(s) + 2µ′(s)λ2(s)

(2µ(s) + λ(s))2
tr(e(uε)ττ )2(x+ sεn(x))

+
2µ′(s) + λ′(s)

(2µ(s) + λ(s))2
σε(uε)

2
nn(x+ sεn(x))

+
4µ(s)λ′(s)− 4µ′(s)λ(s)

(2µ(s) + λ(s))2
(σε(uε)nn tr(e(uε)ττ )) (x+ sεn(x))

with

λ(s) = λ0 + hε(sε)(λ1 − λ0), µ(s) = µ0 + hε(sε)(µ1 − µ0),
where λ0, µ0 and λ1, µ1 are the Lamé coefficients of materials 0, 1 respectively. Note that all the
functions of s involving λ(s) and µ(s) appearing in the above expression arise as exact derivatives
of functions of λ(s) and µ(s). Passing to the limit in the above expression using (2.43) leads to

(f ε0 + f ε1 )→ D(u, u) in L1(Γ),
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where D(u, u) is defined as

D(u, u)(x) = 2[[µ]]e(u)ττ (x) : e(u)ττ (x)− [[ 1µ ]]σ(u)τn(x) · σ(u)τn(x)

+[[ 2λµ
(2µ+λ) ]]tr(e(u)ττ (x))2 − [[ 1

2µ+λ ]]σ(u)(x)2nn
+[[ 2λ

2µ+λ ]]σ(u)nn(x) tr(e(u)ττ (x))

,

which after some algebra rewrites as (2.5). This completes the proof.

2.4 Some comments about previous results in literature

To our knowledge, the first works on multi-phase optimization using a level-set method are [217]
and [317]. Further references include [216], [316], [318]. In all these works the computation of
the shape derivative is not mathematically rigorous and the obtained formulae are not strictly
correct. Indeed, either the shape differentiation is performed in the sharp-interface case and then
the non-differentiable character of the solution of (2.1) is ignored (as explained in section 2.2.2),
or the shape derivative is evaluated in the smoothed-interface case and then the derivative of the
signed distance function is not taken into account. Fortunately, the shape derivative formulae
in [217] and [317] coincide with what we called our approximate shape derivatives obtained
in Proposition 2.2.5 for a discretization of the sharp-interface case and in (2.40) for a very
thin smoothed interface. A third possibility for interpreting these works is to consider that the
regularization of the interface is made with the help of the level set function ψ (used in numerical
practice for representing and advecting the shape, see section 2.6 below) rather than with the
signed distance function dΩ. Then the differentiation is performed with respect to ψ rather than
with respect to the shape Ω. It alleviates all the technical details of section 2.3 but it has one
major flaw that we now describe.

Figure 2.8: Intermediate zone for regularization with the signed distance function (left) or with a level
set function (right).

Indeed, in the context of section 2.3 on the smoothed interface approach, one may replace
the regularization formula (2.26) by a similar one

AΩ0,ε(x) = A0 + hε(ψ(x))(A1 −A0), ∀x ∈ D, (2.44)

where the signed distance function dΩ has simply been replaced by the level set function ψ.
Then, as is done in [217] and [216], one may differentiate the objective function with respect
to ψ. A serious problem that rises directly from this choice, is that the interpolation zone,
where AΩ0,ε takes intermediate values between A0 and A1, can thicken during the optimization
process, especially if the level set function ψ is not frequently reinitialized towards the signed
distance function to the boundary (see Figure 2.8). The reason is that the interpolation zone
corresponds to some kind of homogenized material made of A0 and A1, which is known to be
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more advantageous than pure phases in most problems [5]. The optimization process therefore
does not only move the interface location but also flatten the level set function ψ so that the
interpolation zone gets thicker. Even when the level set function is reinitialized, there remains
a difficulty in the sense that the value of the objective function may change before and after
reinitialization. A partial remedy to this inconvenient, as suggested in [217], is to add to the
objective function a penalization term to control the enlargement.

The computation of the shape derivative is slightly different in [317]: the authors carry out
the derivation with the level set function ψ but in the resulting formula they assume that ψ
coincides with the signed distance function to the interface dΩ. More precisely, following the
notations of Corollary 2.3.7, they consider a functional

J(Ω) =

∫

D
m(x, ψ(x)) dx, (2.45)

where ψ is a solution of the Hamilton-Jacobi equation

∂ψ

∂t
+ θ · n |∇ψ| = 0.

Then, the authors claim that the shape derivative is

J ′(Ω)(θ) = −
∫

D

∂m

∂ψ
(x, ψ(x)) θ(x) · n(x) dx. (2.46)

Note the difference with our formula (2.30), which involves the projection pΓ(x) of x on the
boundary Γ = ∂Ω, and that we recall as

J ′(Ω)(θ) = −
∫

D

∂m

∂ψ
(x, dΩ(x)) θ(pΓ(x)) · n(pΓ(x)) dx.

Unfortunately, there is no a priori guarantee that the transported signed distance function to
the boundary ∂Ω remains the signed distance function to the transported boundary (Id+ θ)∂Ω.
Therefore, the shape derivative d′Ω(θ)(x) cannot be replaced by the expression ∂ψ

∂t = −θ ·n |∇ψ|
coming from the Hamilton-Jacobi equation, as it is done in [217] and [317], without making any
further assumptions. For example, in [128] it is shown that the transported level set function
remains the signed distance function (at least for a small time) if the advection velocity remains
constant along the normal, namely (θ · n)(x) = (θ · n)(pΓ(x)).

A difficulty with (2.46) is that it does not satisfy the Hadamard structure theorem (see e.g.
[5], [104], [144], [279] and references therein) since it does not depend solely on the normal trace
θ · n on the interface Γ = ∂Ω. In fact, assuming that the support of ∂m

∂ψ is concentrated around
Γ, formula (2.46) would be similar to what we called earlier approximate shape derivative,
obtained in Proposition 2.2.5 for a discretization of the sharp-interface case and in (2.40) for the
smoothed-interface case when the regularization parameter ε is small. In any case, (2.46) does
not guarantee a descent direction in general, unless ∂m

∂ψ keeps a constant sign along the normal,
at least for the width of the intermediate zone.

2.5 Extension to more than 2 materials

The methods presented in sections 2.2 and 2.3 for two phases can be extended to the case
of several materials to be optimally placed in the domain D, following a classical idea in the
level-set framework [313], [317].

Hitherto, we considered a single subdomain Ω0 ⊂ D, which allows to account for two sep-
arate phases within D, occupying respectively the domains Ω0 and Ω1 := cΩ0 (where c de-
notes the complementary part in D). To consider more phases, we introduce m subdomains
O0, ...,Om−1 ⊂ D which are not subject to any geometrical constraints (they can intersect, or
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D

O0

cO0

D

O1

cO1

D

Ω0

Ω1

Ω2

Ω3

Figure 2.9: Two subdomains of D (top) and the four phase domains derived by combining them together
(down).

not, and they don’t need to cover D). These m subdomains allows us to treat up to 2m distinct
phases, filling respectively the phase domains Ω0, ...,Ω2m−1 ⊂ D, defined as (see Figure 2.9)



















Ω0 = O0 ∩ O1 ∩ ... ∩ Om−1,

Ω1 = cO0 ∩ O1 ∩ ... ∩ Om−1,
...

Ω2m−1 = cO0 ∩ cO1 ∩ ... ∩ cOm−1.

(2.47)

Note that Ω0, ...,Ω2m−1 is a partition of D. To simplify the exposition, from now on we take m =
2, meaning that we consider four different materials, with respective Hooke’s law A0, A1, A2, A3.
Two subdomains O0,O1 of D are then introduced, and each material Ai fills an area Ωi ⊂ D,
defined through formula (2.47).

For the sharp-interface problem, the definition of the mixture Hooke’s tensor Aχ is standard.
Introducing χ0 and χ1 the characteristic functions of O0 and O1, respectively, we define

Aχ(x) := χ0(x)χ1(x)A0+(1− χ0(x))χ1(x)A1+χ0(x) (1− χ1(x))A2+(1− χ0(x)) (1− χ1(x))A3.
(2.48)

For the smoothed-interface problem, we propose a formula inspired from (2.48)

AO0,O1,ε(x) = (1− hε(dO0(x)))(1− hε(dO1(x)))A0 + hε(dO0(x))(1− hε(dO1(x)))A1

+ (1− hε(dO0(x)))hε(dO1(x))A2 + hε(dO0(x))hε(dO1(x))A3,
(2.49)

where hε is the smooth approximation (2.27) of the Heaviside function and dO0 , dO1 are the
signed distance functions to O0 and O1 respectively. Of course, there are other interpolation
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formulae and any alternative choice which, as (2.49), satisfies the following consistency

AO0,O1,ε(x) =























A0 if dO0(x) < −ε and dO1(x) < −ε,
A1 if dO0(x) > +ε and dO1(x) < −ε,
A2 if dO0(x) < −ε and dO1(x) > +ε,
A3 if dO0(x) > +ε and dO1(x) > +ε,
a smooth interpolation between A0, A1, A2, A3 otherwise,

(2.50)

will do. In particular, for applications in material science where the thick interface has a clear
physical interpretation, one could choose a physically relevant choice of the interpolant Hooke’s
law for the mixture of A0, A1, A2, A3 in the intermediate areas, like a sequential laminate or
another microstructure achieving Hashin and Shtrikman bounds [223]. On the other hand, if
the smoothed-interface problem is merely a mathematical approximation of the sharp-interface
case, then it is a consistent approximation since, as the regularizing parameter ε goes to 0, the
smooth tensor AO0,O1,ε converges to the discontinuous one Aχ.

In the multiphase case, the definition of the objective function (2.2) does not change

J(O0,O1) =

∫

D
j(x, u) dx+

∫

ΓN

k(x, u) ds, (2.51)

and the state or adjoint equations are the same, up to changing the previous Hooke’s tensor
by AO0,O1,ε. There are now two variable subdomains, O0,O1, as design variables for the opti-
mization problem. Accordingly, we introduce two separate vector fields θ0, θ1 ∈ W 1,∞

(

D,Rd
)

in order to vary the subdomains O0,O1.

According to Corollary 2.3.7, the partial shape derivative of the objective function (2.51)
with respect to O0 and O1, which we shall denote as ∂J

∂O0 and ∂J
∂O1 respectively, in the direction

of θ0 and θ1, respectively, are

∂J

∂O0
(O0,O1)(θ0) =

∫

D
θ0(p∂O0(x)) · n0(p∂O0(x))

∂A

∂dO0

(dO0 , dO1)e(u) : e(p) dx, (2.52)

∂J

∂O1
(O0,O1)(θ1) =

∫

D
θ1(p∂O1(x)) · n1(p∂O1(x))

∂A

∂dO1

(dO0 , dO1)e(u) : e(p) dx, (2.53)

where A(dO0 , dO1) = AO0,O1,ε, defined in (2.50). Of course, one can apply Theorem 2.3.13 to
simplify (2.52) and (2.53) and transform them in surface integrals on ∂O0 and ∂O1.

Remark 2.5.1. In the sharp interface context one could compute shape derivatives of the ob-
jective function J with respect to O0 and O1 too, thus recovering formulae similar to (2.52) and
(2.53). However, it is possible only if we assume that the boundary of O0 and O1 do not super-
pose. Indeed if, for example, ∂O0 = ∂O1, then moving O0 inside O1, or vice versa, implies that
one phase or another one appears. This means that a topology change is occurring which cannot
be handled by Hadamard’s method. At most, one can expect to compute two different directional
derivatives (inward and outward) which clearly shows that there is no differentiability in this
case. Note that there is no such difficulty in the smoothed interface setting: formulae (2.52) and
(2.53) hold true for any geometrical situation of O0 and O1 since AO0,O1,ε is a smooth function
of x in D.

2.6 Numerical results

2.6.1 Level-set representation

Following the lead of [11], [12], we represent the moving and optimizable interfaces by level set
functions [252] defined on a fixed mesh in an Eulerian framework. According to Section 2.5,
using m level-set functions we can represent up to 2m separate phases.
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When there are only two phases to optimize, it suffices to use one level-set function to
represent the interface Γ between two complementary sub-domains Ω0 and Ω1 of the working
domain D. The level set function ψ (see Figure 2.10) is defined by







ψ(x) = 0 for x ∈ Γ = ∂Ω0,
ψ(x) < 0 for x ∈ Ω0,
ψ(x) > 0 for x ∈ Ω1.

D

Ω0

Ω1

Γ
ψ < 0

ψ > 0

ψ = 0

Figure 2.10: Level-set representation of the domains Ω0 and Ω1.

In order to describe up to four distinct phases, two level-set functions ψ0 and ψ1 are defined
such that







ψ0(x) = 0 for x ∈ ∂O0,
ψ0(x) < 0 for x ∈ O0,

ψ0(x) > 0 for x ∈ cO0,

and







ψ1(x) = 0 for x ∈ ∂O1,
ψ1(x) < 0 for x ∈ O1,

ψ1(x) > 0 for x ∈ cO1,

following the notations of Figure 2.9. Then, each level-set function ψi, i = 0, 1, is transported
independently solving (1.35), where Vi, i = 0, 1 results from the formulae (2.52) and (2.53).

2.6.2 Two materials in the sharp interface context

We work in the context of Section 2.2, namely in a sharp interface framework. We compare the
two shape derivatives: the continuous formula furnished by Proposition 2.2.1 and the discrete
formula given in Proposition 2.2.5. The numerical implementation of the continuous formula of
the shape derivative in Proposition 2.2.1 is achieved according to the scheme proposed in [12] for
computing the jump approximation (2.12). We consider a long cantilever of dimensions 2 × 1,
discretized by 100 × 50 P1 elements, clamped at its left side and submitted to a unit vertical
load at the middle of its right side (see Figure 2.13). The domain is filled by two isotropic
materials 0 and 1, with different Young’s moduli, respectively E0 = 0.5 and E1 = 1 (material 1
is stiffer than material 0) but with the same Poisson ratio ν = 0.3. We minimize the compliance
(2.3) with a constraint of fixed volume for the two phases. The computations are done with the
software FreeFem++ [118].

For all the numerical examples in this paper, an augmented Lagrangian method is applied to
handle the constraints. Following the approach in [242], supposing that our problem contains m
equality constraints of the type ci(Ω

0) = 0 (i = 1, ...,m), an augmented Lagrangian function
is constructed as

L(Ω0, ℓ, µ) = J(Ω0)−
m
∑

i=1

ℓici(Ω
0) +

m
∑

i=1

µi
2
c2i (Ω

0),

where ℓ = (ℓi)i=1,...,m and µ = (µi)i=1,...,m are Lagrange multipliers and penalty parameters
for the constraints. The Lagrange multipliers are updated at each iteration n according to the
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optimality condition ℓn+1
i = ℓNi − µici(Ω

0
n). The penalty parameters are augmented every 5

iterations. With such an algorithm the constraints are enforced only at convergence (see for
example Figure 2.12). Of course, other (and possibly more efficient) optimization algorithms
could be used instead.

The results are displayed on Figure 2.11. As usual the strong phase 1 is black and the
weak phase 0 is white. The design obtained with the discrete formula is quite similar to the
one exposed in Figure 2.14 (c). However the continuous formula gives a different optimal shape
which is worse in terms of the objective function than the one obtained with the discrete formula
(see Figure 2.12). This is completely natural, since the discrete shape gradient is exactly the
gradient of the (discrete) indeed computed objective function.

Figure 2.11: Optimal shapes for the using the discrete shape gradient (left) and the continuous formula
(right).

2.6.3 Two materials in the smoothed-interface context

We now switch to the smoothed-interface setting as described in Section 2.3. All examples using
a smoothed-interface are coded in Scilab [269]. We perform the same test case, with the same
parameter values, as in Section 2.6.2. A mesh composed of 160 × 80 elements is used. A first
goal is to compare the smoothed-interface approach to the sharp-interface one. A second goal
is to compare the various formulae for the shape derivative obtained in Section 2.3.

We minimize again the compliance (2.3) with a constraint of fixed volume for the two phases
which is written

∫

D
hε(dΩ0(x))dx = VT ,

where VT is the target volume of the strong phase occupying Ω1.

We test three different formulae for the shape gradient. The first one is the “true” formula
given by (2.36) (see also (2.52) and (2.53) in the case of more than two phases). The second
one, called “Jacobian-free”, is (2.39) which is obtained from (2.36) by neglecting the part of the
integrand corresponding to the Jacobian of the projection application p∂Ω (see Remark 2.3.9).
The reason for this choice is that the curvature is not precisely calculated using a fixed mesh
and therefore we may introduce a significant approximation error. In any case, it amounts to
neglecting a positive factor (because of Lemma 2.3.10). The third one is the “approximate”
formula (2.40) obtained for a very thin smoothing zone around the interface.

First, we consider the case of a “thin” interface. The interpolation width is chosen as
ε = 2∆x, where ∆x is the uniform mesh size. The results for VT = 0.7|D| in Figure 2.14. We
plot the Young modulus distribution (black being the strong material A1 and white the weak
material A0). The convergence histories are almost identical for the “true” and “Jacobian-free”
formulae of the shape derivative. It is slightly more oscillating for the “approximate” formula
although it converges to almost the same value of the objective function. The resulting optimal
designs are very similar.

For a larger interpolation width ε = 8∆x (“thick” interface), the results are shown in Figure
2.15. We clearly see a difference for the optimal shape obtained using the “true” formula of the
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Figure 2.12: Convergence history of the compliance (left) and the volume (right) for the sharp interface
results displayed on Figure 2.11.

shape derivative: in this case, the algorithm produces a very long and oscillating interface in
such a way that the overall structure is almost like a composite structure. This is due to the fact
that the intermediate zone inside the interface is very favorable compared to the pure phases.
Nevertheless, despite the differences in the final shapes, the values of the compliance are almost
the same for the “true” and “Jacobian-free” formulae, slightly worse for the “approximate”
formula of the shape gradient.

•1

2

Figure 2.13: Boundary conditions for the 2× 1 cantilever.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.14: “Long cantilever” using two phases with VT = 0.7|D| and a small smoothing parameter
ε = 2∆x; (a): initialization; (b): optimized shape using the “true” formula; (c): optimized
shape using the “Jacobian-free” formula; (d): optimized shape using the “approximate”
formula; (e): convergence of the compliance; (f): convergence of the volume.

Mesh-dependency study

In order to examine the mesh-dependency of the smoothed-interface method, the same example
as in Section 2.6.3 is considered and two different tests are performed. First, the grid size “∆x”
varies and the interface half-width “ε” is chosen as ε = 2∆x. In the second case, ε has the
constant value 0.025 (the same as in Figure 2.14) independently of the grid size variation. For
all tests, the “Jacobian-free” formula and the initialization of Figure 2.14 (a) has been used. The
results are shown in Figure 2.16 and 2.17. Comparing qualitatively the results, we can say that
they look quite similar, as soon as the grid resolution allows for a satisfying enough description
of the geometry and an accurate enough approximation of the geometric quantities in play.

2.6.4 Four materials in the smoothed interface context

We consider now the case of using up to four phases and consequently two level-set functions. A
smoothed approximation of the characteristic function of each phase can be constructed using
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(a) (b)

(c) (d)

(e) (f)

Figure 2.15: “Long cantilever” using two phases with VT = 0.7|D| and a large smoothing parameter
ε = 8∆x; (a): initialization; (b): optimized shape using the “true” formula; (c): optimized
shape using the “Jacobian-free” formula; (d): optimized shape using the “approximate”
formula; (e): convergence of the compliance; (f): convergence of the volume.

combinations of the functions hε, defined in equation (2.27), as follows














χ0 = (1− hε(dO0))(1− hε(dO1)),
χ1 = hε(dO0)(1− hε(dO1)),
χ2 = (1− hε(dO0))hε(dO1),
χ3 = hε(dO0)hε(dO1),

(2.54)

and the global Hooke’s tensor in given by (2.49). The optimization problem now reads

min
O0,O1∈Uad

J(O0,O1) =

∫

D
AO0,O1,ε(x)e(u) : e(u) dx

s.t.

∫

D
χidx = V i

T , i = 0, ..., 3 ,
(2.55)

where V i
T is the target volume for the phase i (they sum up to the volume of D). As previously,

an augmented Lagrangian algorithm is applied to enforce the constraints. In this section we
work with a “thin” interface, namely ε = 2∆x.

We test our method with several benchmark examples presented in [317] and [318]. Since the
initial designs are different, as well as the numerical methods, it is hard to make a quantitative
comparison and we satisfy ourselves with a qualitative comparison.
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(a) (b)

(c) (d)

Figure 2.16: Long cantilever using two phases with VT = 0.7|D|, ε = 2∆x and a grid of; (a): 80× 40;
(b): 120× 60; (c): 160× 80; (d): 240× 120 elements.

(a) (b)

(c) (d)

Figure 2.17: Long cantilever using two phases with VT = 0.7|D|, ε = 0.025 and a grid of; (a): 80× 40;
(b): 120× 60; (c): 160× 80; (d): 240× 120 elements.

Short-cantilever using two materials and void

In this paragraph we consider only three phases, made of two materials and void. The first
structure to be optimized is a two-dimensional short cantilever, of dimensions 1× 2, discretized
using 80×160 Q1 elements. The left part of the structure is clamped and a unitary vertical force
is applied at the mid point of its right part (see Figure 2.18). The Young moduli of the four
phases are defined as E0 = 0.5, E1 = 10−3, E2 = 1 and E3 = 10−3, where both phases 1 and 3
represent void. The target volumes for phases 0 and 2 are set to V 0

T = 0.2|D| and V 2
T = 0.1|D|.

Remark that phases 1 and 3 are the same, corresponding to void. The fact that the void zone
is represented by two different characteristic functions has no influence on the numerical results
(at least in all our numerical experiments). The initial and the optimal shape (obtained after
200 iterations) are shown in Figure 2.19 (a) and (b). We plot the Young modulus with a grey
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scale: dark stands for the stronger phase, white for void and grey for the intermediate phase.

This test case was previously studied in [317] (see figures 7 and 8 therein for two different
initializations). Our results are roughly similar to those in [317] and even slightly better since
the designs of Figure 2.19 are symmetric (as expected), contrary to the results in [317].

•

1

2

Figure 2.18: Boundary conditions and initialization for the 2d short-cantilever.

(a) (b)

(c) (d)

Figure 2.19: Short cantilever using two or three phases and void; (a) initialization for two phases and
void, (b) optimal shape for two phases and void, (c) initialization for three phases and
void, (d) optimal shape for three phases and void.

Short-cantilever using three materials and void

The same example as in the previous paragraph is considered here with an additional phase:
half of the volume of material 0 is replaced by a weaker material 1. More precisely, the Young
moduli of the four phases are defined as E0 = 0.5, E1 = 0.25, E2 = 1 and E3 = 10−3, while the
target volumes for the three materials 0, 1 and 2 are set to V 0

T = V 1
T = V 2

T = 0.1|D|. The initial
and optimal shapes (after 200 iterations) are displayed on Figure 2.19 (c) and (d).
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This test case was also studied in [317] (see figures 11 and 12 therein for two different
initializations). Our result differs notably from these previous ones. Indeed, in [317] the strong
material 2 always forms a two-bar truss which is further reinforced by the other materials.
On the contrary, in our Figure 2.19 (d) the strong phase is disconnected and the intermediate
material 0 plays a more active role in the transfer of the load to the fixed wall.

3-force bridge using two materials and void

A bridge-type structure of dimensions 2 × 1 is discretized by 160 × 80 Q1 elements. Both
the horizontal and vertical displacement are fixed at the lower left part as well as the vertical
displacement of the lower right part. Three equally spaced forces are applied at the lower part
(see Figure 2.20). The value of F is set to 1. The Young moduli of the four phases are set to
E0 = 0.5, E1 = 10−3, E2 = 1 and E3 = 10−3 and the target volumes for phases 0 and 2 are
set to V 0

T = 0.2|D| and V 2
T = 0.1|D|. The initial and optimal designs (after 250 iterations) are

shown in Figure 2.21 (a) and (b).
Once again this test case was performed in [317] (see figure 13 therein). Our result is quite

different. First, our design in Figure 2.21 (b) is symmetric, as it should be. Second, a major
difference occurs in the use of the strong phase. In our design, the strong material is used in
the lower part of the “radial” bars whereas it was absent in figure 13 of [317] (and rather used
in the upper “arch”).

•

1

2

• •

F F2F

Figure 2.20: Boundary conditions and initialization for the 3-force bridge.

3-force bridge using three materials and void

The same example as in the previous paragraph is considered here with an additional phase:
half of the volume of material 0 is replaced by a weaker material 1. The Young moduli of the
four phases are defined as E0 = 0.5, E1 = 0.25, E2 = 1 and E3 = 10−3, while the target volumes
for phases 0, 1 and 2 are set to V 0

T = V 1
T = V 2

T = 0.1|D|. The initial and optimal designs (after
250 iterations) are displayed on Figure 2.19 (c) and (d).

This test case can be found in [317] (figure 14) too, and again our result is quite different.

Medium cantilever using three materials and void

The next structure is a medium cantilever, of dimensions 3.2× 2, discretized using 120× 75 Q1

elements. The left part of the structure is clamped and a unitary vertical force is applied at
the bottom of its right part (see Figure 2.22). The Young moduli of the four phases are defined
again as E0 = 0.5, E1 = 0.25, E2 = 1 and E3 = 10−3 and the target volumes for phases 0, 1 and
2 are set to V 0

T = V 1
T = V 2

T = 0.1|D|. The results are shown in Figure 2.23.
This test case was also performed in [318] (see Figure 7 therein). Our optimal designs have a

more complex topology and a different layout of the three materials. However, the final volumes
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(a) (b)

(c) (d)

Figure 2.21: 3-force bridge using two or three phases and void; (a) initialization for two phases and
void, (b) optimal shape for two phases and void, (c) initialization for three phases and
void, (d) optimal shape for three phases and void.

of the three materials in [318] are not the same as ours and thus a comparison is not easy to
establish.

•

2

3.2

Figure 2.22: Boundary conditions and initialization for the 2D medium-cantilever.

(a) (b)

Figure 2.23: Medium cantilever using three materials and void; (a) initialization, (b) optimal shape.
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L-shaped structure

The example of an L-shaped structure of dimensions 1× 1 is borrowed from Chapter 2.9 in [44].
The domain is discretized using 120×120 Q1 elements and a non-optimizable area of dimensions
0.6 × 0.6 is imposed on its upper-right part. The structure is clamped on its upper side and a
unitary vertical force is applied on the middle of its right side (see Figure 2.24).

Figures 2.25 (a), (b), (c) present the results of using two phases with ratio of Young moduli
equal to 0.2, 0.5 and 0.8. The two materials are represented by phases 0 and 2. The Young
modulus of phase 0 is set to E0 = 1.0. Phases 1 and 3 represent void and their Young moduli
are set to E1 = E3 = 10−4. The target volumes for phases 0 and 2 are V 0

T = V 2
T = 0.25|D|. The

results are slightly different than those in [44], but they follow the same logic in the placement
of materials.

1

1

•
0.6

0.6

(a) (b)

Figure 2.24: (a): Boundary conditions and (b): initialization for the L-shaped structure.

(a) (b) (c)

Figure 2.25: Results for the L-shaped structure.

Long cantilever using two materials and void

The goal of this last paragraph is twofold. First, we consider again the 2×1 long cantilever, as in
Figure 2.13, but with four phases, defined by their Young moduli E0 = 0.5, E1 = 10−3, E2 = 1
and E3 = 10−3. Second, we switch to an unconstrained optimization algorithm. We do not
impose equality constraints for the volume of each phase. Rather, we fix Lagrange multipliers
and we minimize an objective function J(O0,O1), which reads

J(O0,O1) =

∫

D
A(dO0 , dO1)e(u) : e(u)dx+

3
∑

i=0

ℓi
∫

D
χi(x)dx. (2.56)



106 CHAPTER 2. MULTI-PHASE STRUCTURAL OPTIMIZATION

We then carry out a standard constraint-free steepest descent algorithm in order to minimize J .

Iterations
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10 20 30 405 15 25 35
200

300

250

Figure 2.26: Initialization with two materials (top left), optimial shape (top right) and convergence
history of the objective function (bottom).

A small tolerance parameter tol > 0 (in the example below, we used tol = 0.02) over
acceptance of the produced shapes is introduced so as to ease the occurrence of topological
changes and is then turned off after some iterations. More accurately, in the course of the
optimization process, a step O0

n → O0
n+1 and O1

n → O1
n+1 is accepted provided:

J(O0
n+1,O1

n+1) < (1 + tol)J(O0
n,O1

n).

For the results shown in Figure 2.26, the Lagrange multipliers in (2.56) are set to ℓ0 = 100, ℓ1 =
0, ℓ2 = 200, ℓ3 = 0. As can be expected the strong material is distributed at the areas of high
stress, while the weak material completes the shape of the optimal cantilever.

It is interesting to see the optimal subdomains O0 and O1 (defined in Section 2.5) in Figure
2.27. Recall that it is the intersections of these two subdomains and their complementaries
which give rise to the phase domains in the optimal design of Figure 2.26.
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Figure 2.27: Final subdomains O0 (left) and O1 (right).
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We consider the optimal design of composite laminates by allowing a variable stacking se-
quence and in-plane shape of each ply. The plate is modeled according to the linearized von
Kármán equations for plates. In order to optimize both variables we rely on a decomposition
technique which aggregates the constraints into one unique constraint margin function. Thanks
to this approach, a rigorous equivalent bi-level optimization problem is established. This pro-
blem is made up of a lower level represented by the combinatorial optimization of the stacking
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sequence and a higher level represented by the topology and geometry optimization of each ply.
We propose for the stacking sequence optimization an outer approximation method which itera-
tively solves a set of mixed integer linear problems associated to the evaluation of the constraint
margin function. For the topology optimization of each ply, we lean on the level set method for
the description of the interfaces and the Hadamard method for boundary variations by means of
the computation of the shape gradient. An aeronautic test case is exhibited subject to different
constraints, namely compliance, reserve factor and first buckling load.

3.1 Introduction

Structural optimization in aeronautics usually looks for the lightest structure which sustains
the forces and environmental conditions that an aircraft will typically find during operation.
Within this framework, frequently the objective function (total mass) is easy to evaluate if a
good parametrization of the structure is available, meanwhile the constraints are in general much
more complicated. Evaluate them requires a general physical model which can be more or less
prompt to evaluate depending on the choice of variables. Classically, this optimization process
has been done by the engineer expertise. However, the increment of the size of the design space
does not allow to find the best design without automatizing the process. As a response to this
challenge, several techniques for size, shape and topology optimization have successfully been
developed and applied to aircraft design [44, 5, 224, 133, 258, 282, 183].

During the last years, a special type of material has become quite popular in automotive
and aerospace industries: multi-layered composites. These materials benefit from very attrac-
tive features such as low weight, high fatigue resistance and good endurance against corrosion
and other harsh environmental conditions. The properties of multi-layered composite structures
strongly depend on the shape, the orientation of the reinforcement and the stacking sequence of
the laminate. Indeed the directional nature of the fibers in a fiber-reinforced laminate introduces
directional dependence of the strength, thermal and electrical conductivity, environmental resis-
tance, etc.; meanwhile the stacking sequence has an important incidence on the bending behavior
of the laminate.

In view of the increasing use of composite materials within industry, their optimal design
has drawn great attention of the scientific community. We refer e.g. to Gürdal, Haftka and
co-workers [139, 133, 282, 189, 286, 2, 287] and [167, 219, 222, 196]. In fact, composite materials
possess a large number of design possibilities which enforces the complexity of the design pro-
blem. Even more, the development of new multi-materials or manufacturing techniques, as for
example, the automated fiber placement or tow-placed steered fibers [303, 235, 59], still enlarges
the size of the design space of the problem. A typical composite laminate may be characterized
by design variables which are continuous (geometric size of the structure, wing profile), discrete
(orientation of the fibers and lay-up), or even distribution of the material in each ply for topol-
ogy optimization. Additionally, when designing composite aircraft structural components, one
must take into account constraints on the structural performance (accelerations, buckling fac-
tors, displacement, material failure criteria, etc.) and equally constraints on the global and local
manufacturing rules imposed during the composite manufacturing process. This constraints are
specific to the type of technology used and industrial policies (symmetric and balanced lami-
nates, ply drops and overlaps, etc.). A particularly difficult constraint to deal with is structural
integrity or blending, i.e. the continuity of the stacking sequence across multiple panels making
up the structure [311, 270, 1].

The large number of design variables, and the complex relationship between these variables
and the output performance in an aircraft, make composite structure design extremely chal-
lenging. Decomposition procedures have risen as particularly appealing approaches to treat
the aforementioned complexity of composite optimization. A typical decomposition/bi-level
scheme aims to break up the large problem into many problems that matches the different
levels of analysis taking into account its interactions during the design process. In the case
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of composite design, this technique looks to guarantee the compatibility between a “continu-
ous medium” vision, necessary for the overall understanding of the phenomena related to the
stiffness level, and the discrete nature of laminated composites. For example a continuous rep-
resentation of the composite is applied at the system level (fuselage or wing), meanwhile the
subsystem level (lay-up of the panel) is treated with discrete algorithms. We refer the reader to
[288, 204, 29, 202, 203, 49, 200, 73].

Once the problem is decomposed, the optimal design of the composite lay-up or stacking
sequence emerges naturally as a mixed integer non linear programming problem. For this kind
of problems, many methods exist in the literature. Among the so-called deterministic methods,
we can cite e.g. the application of branch and bound method to linear formulations of minimal
mass problems with a buckling constraint [233, 133, 140] and the benders decomposition method
to the optimization of tailored fiber orientation composites [226]. These methods guarantee in
general to find a global solution provided that the problem satisfies certain conditions such as
convexity. When no such conditions are satisfied, an efficient complement and/or alternative
to deterministic methods are heuristics. We can mention e.g. the penalty function approach
[63, 290] and a rounding procedure using lamination parameters [307, 146, 145]. The latter
optimization approach has the strong advantage with respect to the others, of dwelling on lami-
nation parameters [222]. This provides a very efficient parametrization of a continuous variable
fiber orientation plate, allowing to split the optimization problem into two steps: continuous
optimization with respect the lamination parameters and a round off procedure of the founded
solution to the closest discrete neighbor. Finally among the so-called stochastic methods (whose
convergence properties rely on probability theory) most of the existent literature refers to Gürdal
and his co-workers on genetic algorithms [189, 201, 286, 287, 234, 2], with only a few exceptions
(see e.g. [112] for simulated annealing). Broadly speaking, these methods avoid the enumeration
of many of the integer assignments, effectuating a global research. Nevertheless, the high num-
ber of evaluations of the objective function and constraints through the optimization process
can eventually become too expensive.

The aforementioned approach has proved effective, however, it does not address all the de-
grees of freedom and constraints within composite structures. In fact, the design of the in-plane
shape of each layer has much less been considered so far, despite of its importance in terms of
structural strength and manufacturability. The in-plane shape as a design variable can only be
treated satisfactorily through a continuous approach, which leads to reconsider the former con-
tinuous/discrete framework. We can cite however the works on topology optimization applied
to fiber orientation tailoring of laminated composites, carried out by Lund and his co-workers
[290, 205, 241, 197, 162] and [62, 102]. Most of these works rely on a density-based method
(DMO, SIMP).

The following chapter addresses the structural optimization of a composite laminate by
adding a new design variable to the fiber orientation and lay-up sequence: the in-plane shape
and topology of each ply. Indeed we suppose that each ply is made up of two phases (where
one of them might be void) and the position of the interface is the design variable. When
the second phase is not void, the composite laminate constitutes a multi-material. To the
knowledge of the author, this approach is relatively novel and very few industrial design tools
show similar features. Moreover the problem we contemplate to solve is different to the fiber
orientation tailoring problem mentioned above, since the fiber orientation within each phase
remains constant. As a similar approach, we can cite the composite optimization routine of the
software Optistruct of Altair [121, 327]. In fact, the software generates a sequence of ply shapes
that are afterwards post-processed from the optimized thickness of each fiber orientation within
the laminate (see Figure 3.1). In our case we intend to perform the composite optimization
without making use of any thickness analysis. This should confer us a higher optimality and
design liberty.
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(a) Generation of ply shapes from the thickness dis-
tribution (color scale)

(b) Post-processing of each ply shape into several man-
ufacturable shapes

Figure 3.1: Optimization of a laminated composite wing with Optistruct. Images from [121].

For the topology design of each ply, we lean on the level-set method for multi-phase opti-
mization introduced in Chapter 2. This enables us to achieve a better description and control
of the geometrical properties of the interface without need of any intermediate density. Thanks
to this approach, the typical drawbacks of the homogenization and SIMP methods are avoided,
such as intermediate density penalization and possible spurious physical behavior during the
optimization process.

Finally due to the mixed character of the composite optimization problem (continuous shape
and discrete stacking sequence), a decomposition technique is presented. This technique splits
the problem into different levels according to the “difficulty” of each variable. Thus, the op-
timization is carried in each ply by a level-set method to find the optimal shape coupled to
an outer approximation method to find the best fiber orientation and stacking sequence. The
outer approximation method [110] is a deterministic method which is exact for convex functions
and consists in iteratively approximating the objective and constraints of the problem by linear
under-estimators. The choice of this classical method searches to highlight the pertinence of lin-
ear integer programming-based solvers to handle stacking sequence problems with a moderate
number of variables (e.g. thin composite structures), and avoid the inherent limitations of the
most popular heuristics and stochastic methods when treating a multiple-shape lay-up design
(e.g. intensive evaluation of objective function and constraints, not clear ply shape, etc.).

This chapter is organized as follows. In Section 3.2 the composite multi-layered optimization
problem is enunciated by means of a mixed optimization approach. Then in Section 3.3, we
discuss the existence of optimal solutions of the latter problem in light of Section 1.1. The shapes
derivatives in a continuous and discrete framework of the functions concerned in the composite
problem are derived in Section 3.4, meanwhile the stacking sequence problem is detailed through
the constraint margin function in Section 3.5. The foregoing elements are linked altogether in a
general decomposition framework in Section 3.6. Finally the proposed optimization algorithm
and a numerical example for three different types of constraints are respectively developed in
Section 3.8 and Section 3.9.

3.2 Setting of the problem

3.2.1 Multi-shape composite design

Similarly to Section 1.3, let O be a symmetric laminated composite structure composed of the
superposition of 2N anisotropic layers, each one of constant thickness ε > 0, but this time each
one with a variable shape Ωi ⊂ Ω, where Ω a regular sub-domain of R2. By abuse of notation
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we denote O as

O = {Ωi}i∈Z\{0},i=−N..N .

Since we suppose O symmetric, i.e. Ω−i = Ωi, we consider only N layers, so we rather write
O = {Ωi}i=1...N . The index i grows from the inside to the outside of the laminated composite
structure.

As it was explained in Section 1.3, we consider each laminate to be an orthotropic material
and unidirectionally reinforced.

Ω2
Ω3

Ω4

Ω5

ε
Ω

Ω1
Π = 0

Figure 3.2: Half-part of a multi-shape composite design with plane of symmetry Π = 0. Each ply has
its own shape Ωi ⊂ Ω. Compare with Figure 1.12

For the purpose of this study, the shape of each plate Ωi and their superposition within the
multi-layered structure can be understood in two different ways (see Figure 3.3):

• Configuration I: Each layer is a non-homogeneous two-phase material, where each “hole”
is filled with another “weak” material with different physical properties (weight, electric
or heat conductivity, etc.). We will denote this weak material as A0. We will mainly focus
on this configuration.

• Configuration II: The holes in each ply are really “void” (in this case A0 = 0) and, when
gluing together the plies towards the plane of symmetry Π = 0 (inwardly blended), the
distal layer bends and fills the holes to keep contact with the proximal layers. The mostly
outer layers will be always full in order to avoid the existence of holes throughout the
laminate.

Let χi be the characteristic function of the i-layer. According to the classical theory of
plates, the composite structure O is characterized by the superposition of the elastic properties
of each layer. Adapting formulae (1.61) and (1.62) to the multi-shape design at issue, the new
extensional stiffness tensor A reads

A(x) = 2ε

N
∑

i=1

(

χi(x)Ai + (1− χi(x))A0

)

, (3.1)
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A1
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A2

A5

A4

A0

(a) Configuration I. Multi-material.

A1

A2

A3

A3

A2

A4

A5

A5

Π = 0
(b) Configuration II. Inwardly blended.

Figure 3.3: Example of transversal cut of a multi-shape composite. For simplification the cut was di-
vided into 5 panels. Different stacking sequence are defined according to each configuration.

where Ai is the extensional stiffness of the i-layer, meanwhile the bending stiffness tensor D
reads

D(x) =
2ε3

3

N
∑

i=1

{(

i3 − (i− 1)3

)(

χiAi + (1− χi)A0

)}

, (3.2)

for configuration I and

D(x) =
2ε3

3

N
∑

i=1







(





i
∑

j=1

χj(x)





3

−





i−1
∑

j=1

χj(x)





3
)

Ai







. (3.3)

for configuration II.

Likewise Section 1.3, we assume the same partition of ∂Ω (∂Ω = ΓD ∪ ΓN ) and loading
configuration (g, P ) ∈ (L2(ΓN ;R2), L2(Ω)). Then the in-plane displacement u ∈ H1

D(Ω;R2) and
vertical displacement w ∈ H2

D(Ω) within the composite plateO, satisfy the limit two-dimensional
von Kármán plate model (1.60). The kinematically admissible spaces H1

D(Ω;R2) and H2
D(Ω)

are respectively defined in (1.56) and (1.57). In the same way, we also introduce the linearized
buckling problem (1.63), (1.64), denoting always by λ1 the smallest positive eigenvalue of (1.63)
and ŵ the associated eigenvector.

3.2.2 Stacking sequence

Even though the fiber orientation might take any possible rotation angle, in real applications
due to manufacturing constraints, it only takes discrete values [133]. We will consider four val-
ues, namely: 0o, 45o,−45o, 90o. We denote by C0o , C45o , C−45o , C−90o their respective extensional
stiffness tensors. We assume that the fiber orientation is constant in each ply.

Figure 3.4: Fiber orientation of 0o, 45o,−45o, 90o.



3.2. SETTING OF THE PROBLEM 115

Definition 3.2.1. We define the stacking sequence as the set of ply orientations and the way
they are arranged within the composite laminate. We represent it through a binary matrix
ξ = (ξmn) ∈ {0, 1}, where m = 1, ..., N , n = 1, ..., 4, and

ξmn =

{

1, if the layer in position m has fiber orientation n,
0, 1 if not.

We identify fiber orientations 1, 2, 3, 4 to the angles 00, 900, 450,−450, respectively. A com-
patibility constraint must be imposed to obtain one and only one orientation in each ply, namely

4
∑

n=1

ξmn = 1, ∀m.

Remark 3.2.2. We recall than since the laminate O is symmetric, only half of the stacking
sequence is studied and thus encoded in the matrix ξ.

Thanks to the above definition, the extensional stiffness tensor of the laminate can be
parametrized as

Ai(ξ) = ξi1C0o + ξi2C90o + ξi3C45o + ξi4C−45o , (3.4)

and thus the stiffness tensors A(O, ξ), D(O, ξ) are functions of the shapes of the laminate O
and the stacking sequence ξ. In particular A and D are are linear functions of ξ.

Lemma 3.2.3. If the proportion of plies of each fiber orientation is fixed within the laminate,
then for every compatible choice of ξ respecting these proportions, the tensor A remains con-
stant.

Proof. Let pj with j = 0o, 90o, 45o,−45o, be the proportion of plies of each fiber orientation
within the composite laminate. Then thanks to the linear structure of the extensional stiffness
tensor A in equations (3.1),(3.4)

A =
N

N

N
∑

i=1

∑

j

ξijCj = N
∑

j

Cj
1

N

N
∑

i=1

ξij = N
∑

j

Cjpj .

Hence if pj remains constant, then it also does the tensor A.

Lemma 3.2.4. Under the above hypothesis, the in-plane displacement u remains constant ac-
cording to (1.64).

3.2.3 Goal of the present study

We look for a multi-layered composite plate with optimal stacking sequence and ply shapes.
Typically the optimization problem will be set as a mass minimization problem subject to a set
of manufacturing constraints, local failure criteria, in-plane stiffness and avoidance of buckling.

General problem

From a mathematical point of view, the above problem can be cast as a mixed optimization
problem, namely











min
O∈Uad,ξ∈Y

J(O)

s.t
G(O, ξ) ≤ 0.

(3.5)
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The objective function J(O) does not depend on the stacking sequence ξ and it represents the
mass of the structure

J(O) = ρ
N
∑

i=1

∫

Ω
χidV, supposing constant density ρ.

The scalar constraint G represents a regular measure of the stiffness of the plate. Notably, we
focus our attention on three kinds of measures, namely

(a)
(

λ−1
1 (O, ξ)−1

)

(b)

∫

Ω
s(x,O, ξ, u(O, ξ),∇u(O, ξ))dV (c) ‖r(x,O, ξ, u(O, ξ),∇u(O, ξ))‖L∞(Ω) .

(3.6)
The first criterion express the buckling avoidance through the load factor or first positive

eigenvalue of (1.63), meanwhile the last two criteria represent a global failure and a local stiffness
criterion respectively, with r, s regular functions. These functionals could represent e.g. the
Compliance, the von Mises or the Tsai-Hill local failure criteria.

Remark 3.2.5. When the proportions of plies with a certain fiber orientation are fixed, then ac-
cording to Lemma 3.2.4, the constraint configurations (b),(c) in (3.6) become independent w.r.t
the stacking sequence matrix ξ.

The sets Y and Uad represent the stacking sequence and the set of admissible shapes, re-
spectively. An explicit definition of the set Y will be given in Section 3.5. We define the set
of admissible shapes Uad as the N−collection of open subsets of the working domain Ω with
bounded perimeter

Uad =
{

{Ωi}i=1...N |Ωi ⊂ Ω and P (Ωi) ≤ ς, ∀i = 1...N
}

, (3.7)

where P (A) is the perimeter of the open set A ⊂ R2 and ς > 0 constant. The existence of an
optimal solution to problem (3.5) relies essentially on the definition of Uad. A rigorous proof of
the existence of an optimal shape of (3.5) is developed in Section 3.3, and it is based on classical
ideas of [16].

Remark 3.2.6. For some applications (as it was noticed in Section 1.1), controlling the perime-
ter of each phase is important, even though we don’t posses any reference value ς. In that case the
functional J(O) can be re-defined as a linear combination of the weight and the total perimeter,
which is also independent of the stacking sequence ξ

J(O) =

N
∑

i=1

{

ρ

∫

Ω
χidV + γ

∫

∂Ωi

dS

}

, γ > 0.

Simplification of the buckling problem

In order to reduce the numerical cost of calculating λ1 at each iteration, a common point-wise
approximation of the criterion (a) in (3.6) is

λ−1
RF (O, ξ)− 1 ≤ 0, with λRF (O, ξ) := min

x∈Ω

(

2π
b

√D11D22 +D12 + 2D33

|(Ae(u))−xx|

)

. (3.8)

The factor
2π

b

(

√

D11D22 +D12 + 2D33

)

, (3.9)

stands for the value of the buckling load of an homogeneous simply supported composite plate
under a compression through the x−axis [257], b is the length of the plate, meanwhile (Ae(u))−xx
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corresponds to the projection of the negative (compressed) values of the stress tensor in the
x−axis. When we switch (3.8) to (a)(3.6) in (3.5), the simplified optimization problem has the
advantage of requiring only the evaluation of problem (1.64), alleviating the numerical cost of
solving (1.63). Nevertheless, λRF remains a coarse approximation of λ1 in a more general setting,
notably when there exists coupled compression/shear loads and the plates are non-homogeneous.
Thus, the objective of this study is to also compare numerically the optimal solution of (3.5) for
both choices of G.

3.3 On the existence of an optimal shape

In the following section the existence of a solution to problem (3.5) is analyzed by means of the
induced topology of the convergence of characteristic functions quoted in Theorem 1.1.6. The
notation however changes slightly w.r.t. Chapter 1.1, labeling rather as Ω the fixed domain D
and denoting as ω an arbitrary open subset of Ω. Thereby, we can establish that the set {ω ⊂ Ω}
with bounded perimeter is compact. Moreover Theorem 1.1.6 stipulates that the volume and
the perimeter are lower semi-continuous w.r.t. to the aforementioned topology. Hence in order
to prove the existence of a solution through Proposition 1.1.1, it only remains to prove that the
constraints in (3.5) are lower semi-continuous.

The principle of the ensuing demonstrations is rather classic, however the study of some
constraints within (4.27), notably the point-wise constraint and λ1 for the von Kármán model,
seems untreated in literature so far.

So as to ease the notation, only a one layered composite structure is considered to describe
Uad. The case with (finite) multiple plies follows straightaway, since the stacking sequence re-
mains constant so the same principle can be repeated to every admissible stacking sequence until
reaching the global optimality. Denote as uω the plane stress solution of (1.64) with extensional
and bending stiffness tensors Aω = χωA1 + (1 − χω)A0 and Dω = χωD1 + (1 − χω)D0, respec-
tively. The tensors (A0,D0) and (A1,D1) correspond to two different elastic materials.

First we recall some classical results, in particular Meyer’s theorem for strongly elliptic
systems [70]

Theorem 3.3.1. Let Ω ⊂ R2 a bounded open domain of class C2 and ΓN ∪ ΓD = ∂Ω, with
ΓD∩ΓN = ∅ and |ΓD| 6= 0. Let 0 < α < β two real numbers and the fourth order tensor function
C = {Cijkl}, Cijkl ∈ L∞(Ω) i, j, k, l = 1, 2, such that

∀x ∈ Ω, ξ ∈ R2, α‖ξ‖2 ≤ C(x) ≤ β‖ξ‖2.

For f ∈ H−1(Ω;R2), g ∈ H−1/2(Ω;R2), let u be the unique solution in H1
D(Ω;R2) of:

− div(Ce(u)) = f in Ω, (Ce(u)) · n = g on ΓN (3.10)

Denote as W 1,q
D (Ω;R2) the subspace of W 1,q(Ω;R2) such that the trace of the functions is zero

on ΓD. Then there exists p > 2 and a constant C > 0 which both depend only on α, β and Ω,
such that, if f ∈W−1,p(Ω;R2), g ∈W−1/2,p(Ω;R2), u belongs to W 1,p

D (Ω;R2) and satisfies:

‖u‖W 1,p(Ω) ≤ C(‖f‖W−1,p(Ω) + ‖g‖W−1/2,p(Ω)).

Lemma 3.3.2. Let p the constant provided by the Meyer’s theorem and u solution of (3.10),
B = {Bijkl}, Bijkl ∈ L∞(Ω), i, j, k, l = 1, 2 and uB ∈ H1

D(Ω;R2) the unique solution of

−div(Be(uB)) = f in Ω, (Be(uB)) · n = g on ΓN .

Then for some r > 0 and C̃ > 0

‖u− uB‖m1

C0,γ(Ω) ≤ C̃ ‖C − B‖Lr(Ω) (‖f‖W−1,p(Ω) + ‖g‖W−1/2,p(Ω))
m2 , for every 0 < γ < 1− 2/p,

with m1(p, γ),m2(p, γ) > 0 constants.
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Proof. For any v ∈ H1
D(Ω;R2), one has

∫

Ω
Ce(u) : e(v)dV =

∫

Ω
f ·vdV+

∫

ΓN

g·vdS ;

∫

Ω
Be(uB) : e(v)dV =

∫

Ω
f ·vdV+

∫

ΓN

g·vdS.

Consequently
∫

Ω
Be(uB − u) : e(v)dV =

∫

Ω
(C − B)e(u) : e(v)dV. (3.11)

Let C and p > 1 the constants provided by Meyer’s theorem 3.3.1 associated to Ω, ᾱ = min(C,B),
β̄ = max(C,B). Putting v = u− uB in (3.11) and using Hölder and Korn inequality yields

ᾱ ‖u− uB‖2H1
0 (Ω) ≤ ‖C − B‖Lr(Ω) ‖u‖Lp(Ω) ‖u− uB‖H1

0 (Ω) ,

for some r > 0 such that 1/r + 1/p + 1/2 = 1 (which is possible since p > 2). Hence applying
Poincare’s inequality and Theorem 3.3.1,

ᾱ ‖u− uB‖H1(Ω) ≤ C ‖C − B‖Lr(Ω) (‖f‖W−1,p(Ω) + ‖g‖W−1/2,p(Ω)). (3.12)

Let 2 < q < p and t ∈ (0, 1) such that q = 2t + (1 − t)p. Then one has applying again Hölder
inequality

∫

Ω
|∇u−∇uB|qdV ≤

(

∫

Ω
|∇u−∇uB|2dV

)1/t(
∫

Ω
|∇u−∇uB|pdV

)1/(1−t)
,

thus Poincare’s inequality entails

‖u− uB‖W 1,q(Ω) ≤ C ‖u− uB‖
2/(tq)
H1(Ω)

‖u− uB‖p/(q(1−t))W 1,p(Ω)
(3.13)

According to Meyer’s theorem

‖u− uB‖W 1,p(Ω) ≤ ‖u‖W 1,p(Ω) + ‖uB‖W 1,p(Ω) ≤ C
(

‖f‖W−1,p(Ω) + ‖g‖W−1/2,p(Ω)

)

is bounded so inserting (3.13) into (3.12) yields

ᾱ ‖u− uB‖tq/2W 1,q(Ω)
≤ C ‖C − B‖Lr(Ω) (‖f‖W−1,p(Ω) + ‖g‖W−1/2,p(Ω))

1+t(p/2−1)
1−t . (3.14)

Finally the desired result stems from the Sobolev embedding in dimension 2 of W 1,q into C0,γ

for 0 < γ = 1− 2/q, taking m1 = tq, m2 = 1 + pt/(2(1− t)) and C̃ = C/ā.

Proposition 3.3.3 (Global and local stiffness). Let the function s := Ω× R2 × R2,2 → R be a
non-negative, measurable and lower semi-continuous function with respect each argument such
there exist C > 0 and

∀x ∈ Ω, d1 ∈ R2, d2 ∈ R2,2, |s(x, d1, d2)| ≤ C(1 + ‖d1‖2R2 + ‖d2‖2R2,2). (3.15)

Introduce also r1 := Ω× R× R2 → R and r2 := Ω× R× R2,2 → R lower semi-continuous with
respect to each argument. Define a fixed “non-optimizable” domain ΩNo ⊂ Ω and the functionals
G1, G2, in the same spirit that (4.27), as

G1(ω) =

∫

Ω
s(x, uω,∇uω)dV G2(ω) = ‖r1(x, χω, uω)‖L∞(Ω) + ‖r2(x, χω,∇uω)‖L∞(ΩNo)

.(3.16)

Let (ωn)n ⊂ Ω be a sequence of measurable shapes and ω ⊂ Ω measurable, such that for all
n ≥ 1, ΩNo ⊂ ωn and χωn → χω strongly in L1(Ω). As we have seen, this is the case (in virtue
of Theorem 1.1.6) when we suppose Ω and the perimeter of Ωn uniformly bounded. Then there
exists a subsequence ωnk

such that uΩnk
converges strongly in H1(Ω;R2) to uω and moreover the

functionals G1, G2 are sequentially lower semi-continuous w.r.t. that subsequence, i.e.

G1(ω) ≤ lim inf
k→∞

G1(ωnk
),

G2(ω) ≤ lim inf
k→∞

G2(ωnk
).



3.3. ON THE EXISTENCE OF AN OPTIMAL SHAPE 119

Remark 3.3.4. The need of defining a “non-optimizable” domain ΩNo stems from the lack of
regularity of ∇uωn. Indeed, the jumps or discontinuities of the elastic laws Aωn inside Ω imply
that ‖∇uωn‖L∞(O) is only bounded in the regions O ⊂ Ω where Aωn is regular [195]. Thereby, by
defining ΩNo as a non-optimizable zone, i.e. a subregion of Ω where there are no shape changes
(or rather modifications in the elastic properties), we assure that the second term in G2(ωn) is
well defined for every n.

Proof. Let ᾱ = min(A0,A1). Then for every n we have

ᾱ

∫

Ω
e(uωn) : e(uωn)dx ≤

∫

Ω
Aωne(uωn) : e(uωn)dx =

∫

Ω
f ·uωndx+

∫

ΓN

g·uωnds ≤M ‖uωn‖H1(Ω) ,

where M = max(‖f‖H−1(Ω) , ‖g‖H−1/2(Ω)). Applying Korn’s inequality

‖uωn‖H1(Ω) ≤ C ‖e(uωn)‖L2(Ω) ,

it follows that the sequence uωn is bounded in H1(Ω;R2) and a subsequence (by abuse of
notation denoted with the same index n) converges weakly in H1(Ω;R2) to some u∗ ∈ H1(Ω;R2),
due to the compactness of bounded reflexive Banach spaces with respect the weak topology [60].
Furthermore using Rellich-Kondrachov compact embedding theorem

uωn −→ u∗, strongly in L2(Ω;R2).

In fact we can still improve the foregoing convergence result. Let the fourth order square
root tensor A1/2 of A be such that

Aijkl = A1/2
ijmnA

1/2
mnkl,

and denote by A1/2
ωn and A1/2

ω those corresponding to Aωn and Aω. The existence of these tensors
stems from the positive semi-definite character of Aωn and Aω [65]. Due to the definition of

Aωn = χωnA0 + (1 − χωn)A1, we easily remark that
(

Aωn

)

ijkl
→
(

Aω
)

ijkl
and

(

A1/2
ωn

)

ijkl
→

(

A1/2
ω

)

ijkl
strongly in Lq(Ω), for every i, j, k, l = 1, 2 and q ≥ 1. Furthermore we know that

∇uωn −→ ∇u∗ weakly in L2(Ω;R2,2),

so in particular

e(uωn) −→ e(u∗) weakly in L2(Ω;R2,2), and A1/2
ωn
e(un) −→ A1/2

ω e(u∗), weakly in L2(Ω;R2,2).

Multiplying (1.64) by un and integrating by parts it follows

∫

Ω
(A1/2

ω e(u∗)) : (A1/2
ω e(u∗))dV =

∫

Ω
f · u∗dV +

∫

ΓN

g · u∗dS

= lim
n→∞

∫

Ω
f · uωndV +

∫

ΓN

g · uωndS = lim
n→∞

∫

Ω
(A1/2

ωn
e(uωn)) : (A1/2

ωn
e(uωn))dV,

so by the Radon-Riesz property of Hilbert spaces,

A1/2
ωn
e(uωn) −→ A1/2

ω e(u∗), strongly in L2(Ω;R2,2).

Hence applying Korn’s inequality and multiplying now by A−1/2
ωn the above expression

∇uωn −→ ∇u∗, strongly in L2(Ω;R2,2)
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and we obtain the strong convergence of ∇uωn to ∇u∗ in L2(Ω;R2,2).

Now we prove that u∗ = uω or equivalently

∫

Ω
Aωe(u∗) : e(v)dV =

∫

Ω
f · vdV +

∫

ΓN

g · vdS,

for every test function v ∈ H1
D(Ω;R2). Due to the uniqueness of the solution, it is enough to

show that for every fixed v the following equality stands

lim
n→∞

∫

Ω
Aωne(uωn) : e(v)dV =

∫

Ω
Aωe(u∗) : e(v)dV.

This is an immediate consequence of the properties of the weak convergence [60] for the linear
application

〈Aωn , uωn〉 =

∫

Ω
Aωne(uωn) : e(v)dV,

since Aωn converges strongly and e(un) converges weakly (we know that rather strongly).

The only thing that remains to prove is the lower semi-continuity of G1 and G2 in (3.16).
Since every element of the sequence (uωn) and uω belong to H1(Ω;R2), the growth condition
(4.29) entails the finitude of G1. Next, applying lower semi-continuity of s, Fatou’s lemma yields

G1(ω) =

∫

Ω
s(x, uω,∇uω)dV ≤ lim inf

n→∞

∫

Ω
s(x, uωn ,∇uωn)dV = lim inf

n→∞
G1(ωn),

and G1 is lower semi-continuous. On the other side, taking e.g. A = Aωn (respectively A = Aω)
and B = 1

2Aωn (respectively B = 1
2Aω) in Lemma (3.3.2), one has that uωn (respectively uω)

belongs to L∞(Ω;R2) and the term involving r1 in G2 is finite. The lower semi-continuity of
the first term of G2 stems one more time from Lemma (3.3.2) by taking B = Aω and A = Aωn ,
since the convergence in C0,α(Ω) implies convergence in L∞(Ω) and every component of Aωn

converges strongly to Aω in Lr(Ω), ∀r ≥ 1.

The analysis of the term involving k2 in G2 (3.16) is slightly more delicate, as it was noticed
in Remark 3.3.4, since the functions ∇uωn and ∇uω do not belong to L∞(Ω;R2,2). First we
remark that the convergence χωn → χω in L1(Ω) implies in particular the one in L1(ΩNo). Hence
‖χω − 1‖L1(ΩNo)

= 0 and χω(x) = 1 a.e. for x ∈ ΩNo, since ΩNo ⊂ ωn for all n by hypothesis.
Moreover, the strong formulation of (1.64) for uωn , uω yields

−div
(

Aωne(uωn − uω)
)

= div
(

(Aωn −Aω)e(uω)
)

.

So thanks to the precedent remark and according to the definition of Aωn and Aω, the difference
Aωn −Aω = 0 a.e. on ΩNo and

−div
(

Aωne(uωn − uω)
)

= 0, a.e. in ΩNo.

Finally the desired result is achieved by a classical interior regularity result for second order
elliptic systems [213]

‖uωn − uω‖C1,α(̟) ≤ C ‖uωn − uω‖H1(Ω) , ∀̟ ⋐ ΩNo (3.17)

and the continuity of r2. We remark in (3.17) that the constant C does not depend on n due to
the uniform boundedness of (Aωn)n.
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Proposition 3.3.5 (Buckling constraint). Let (ωn)n ⊂ Ω be a sequence of measurable shapes
such that χωn → χω strongly in L1(Ω). Then there is a subsequence nk such

lim
k→∞

λ1(ωnk
) = λ1(ω),

where λ1 (4.27) is the smallest positive eigenvalue of (1.63).

Proof. Let Tωn be the sequence of resolvent operators defined as

Tωn(z) := z ∈ H2
D(Ω)→ wωn(z) ∈ H2

D(Ω),

where wωn is the unique solution of the variational formulation of the linearized buckling problem
∫

Ω
(Dωn∇2wωn) : ∇2ηdx = −

∫

Ω
Aωne(u)∇z∇ηdx, ∀η ∈ H2

D(Ω). (3.18)

As it was shown in Proposition 1.3.11, for every n, the operator Tωn is compact. Furthermore,
according to Proposition 3.3.3, there exists a subsequence of (ωn) (by abuse of notation we
denote it with the same index) such that uωn → uω strongly in H1(Ω;R2), where uωn , uω are
the solution of the flexural problem (1.64) for the elastic tensors Aωn ,Aω. Now we would like
to prove that the same result holds for wωn in H2(Ω). For that purpose, we first stand that the
sequence wωn is bounded in H2(Ω). Indeed, developing each side of the bending equation (3.18)

δ

∫

Ω
|∇2wωn |2dV ≤

∫

Ω
(Dωn∇2wωn) : ∇2wωndV

= −
∫

Ω
Aωne(uωn) · ∇z · ∇wωndV

≤ α ‖e(uωn)‖L2(Ω) ‖∇z‖L4(Ω) ‖∇wωn‖L4(Ω)

≤ C∗
(

‖f‖H−1(Ω) + ‖g‖H−1/2(Ω)

)

‖z‖H2(Ω) ‖wωn‖H2(Ω) ,

where δ = min(D0,D1), α = max(A0,A1) and we have used the compact injection of H2(Ω) into
W 1,4(Ω) and the boundedness in H1(Ω;R2) of uωn according to Proposition 3.3.3. Applying the
Poincaré inequality to the above cascade of equations yields

‖wωn‖H2(Ω) ≤ C∗
(

‖f‖H−1(Ω) + ‖g‖H−1/2(Ω)

)

‖z‖H2(Ω) ,

and we conclude that wωn is bounded. Similarly to Proposition 3.3.3, the Sobolev embedding
theorem implies that the canonical injection of H2(Ω) into H1(Ω) is compact so there exist
w∗ ∈ H2(Ω) such that wn → w∗ weakly in H2(Ω) and strongly in H1(Ω). Moreover, carrying
out the same argument with the square root tensors (but this time with D and the quadratic
form

∫

ΩD∇2wωn : ∇2wωndV ), wωn → w∗ strongly in H2(Ω). Now it only remains to prove that
w∗ = wω or equivalently

∫

Ω
Dω∇2w∗ : ∇2ηdV =

∫

Ω
Aωe(uω) · ∇z · ∇ηdV, ∀η ∈ H2

D(Ω).

Then it is enough to show

lim
n→∞

∫

Ω
Dωn∇2w∇2wωn : ∇2ηdV =

∫

Ω
Dω∇2w∗ : ∇2ηdV, ∀η ∈ H2

D(Ω)

lim
n→∞

∫

Ω
Aωne(uωn) · ∇z · ∇ηdV =

∫

Ω
Aωe(uω) · ∇z · ∇ηdV, ∀η ∈ H2

D(Ω).

Both equalities are immediate consequence of the properties of the weak convergence as in
Proposition 3.3.3.
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Hence until now we have demonstrated that wωn converges strongly to wω in H2(Ω). In
other words, Tωn(z) → Tω(z), for every z ∈ H2

D(Ω) It can be proved [144] (lemma 4.7.3) that
the above type of convergence (also called γ−convergence) is equivalent to the convergence in
the uniform operator topology L(H2(Ω)), i.e.

lim
n→∞

sup
‖z‖

H2
D

(Ω)
≤1
‖Tωn(z)− Tω(z)‖ = 0,

and desired result yields from a classical result of spectral theory for compact operators [109]
(Lemma 5, page 1091) which says that if Tωn → Tω in the uniform operator topology, then

lim
n→∞

µk(ωn) = µk(ω),

where µk(ωn) is the k-th eigenvalue of the operator Tωn . Thus equivalently

lim
n→∞

λ1(ωn) = λ1(ω),

since λ1 = 1/maxk µk.

3.4 Shape sensitivity analysis

In this section we briefly recall the main results of the shape derivative in the context of com-
posite optimization for dimension d = 2, using as a basis the Section 1.1, notably Definition
1.1.13.

Suppose the stacking sequence ξ fixed and consider the linearized buckling problem (1.63),(1.64).
For simplicity we deem here only two phases on one ply. Let Ω1 ⋐ Ω be and denote as n as
the outer normal to Ω1. We define the complement of Ω1 as Ω0 = Ω\Ω1. Then the extensional
stiffness tensor A reads

A = χ1A1 + (1− χ1)A0 = A0 + χ1(A1 −A0),

where A0 and A1 are two different anisotropic elastic laws and χ1 the characteristic function of
Ω1. This situation corresponds to a one-layered composite structure as described in Section 3.2,
i.e. O = {Ω1}. The extension to the multi-layer case follows directly by analogy changing the
index ”1” by any i = 1, ..., N , since each ply is considered independent from the others.

Remark 3.4.1. When dealing with the multi-layered case, we must assume that the measure of
the common interior interface between two plies with shapes Ωi,Ωj is negligible, i.e. |∂Ωi∩∂Ωj | =
0, ∀i, j = 1, ..., N , in order to avoid non-differentiability. To make this feature clear, compare
the variation of a cost functional J w.r.t. to the application of an advection fields θ and −θ to
one interface, always keeping the other fixed. Due to the discontinuity in the elastic properties
entailed by the fixed interface, one can easily check that in general J ′(Ω)(−θ) 6= −J ′(Ω)(θ).

We divide the ensuing analysis in a continuous and a discrete framework where slightly
different formulae of the shape derivative of (4.27) arise in multi-phase problems as it was quoted
in Chapter 2. We remark that the point-wise functional (c) in (3.6) is not shape differentiable
but different techniques are capable of approximating it by (b),(3.6) type-functionals.

3.4.1 Continuous framework

Apart from λ1, the shape derivative formulae of the functions involved in (3.6) are quite classic in
a continuous framework (see Chapter 2). In general they involve adding the elastic transmission
conditions to the Lagrangian in Céa’s derivation method [74]. The following proposition for the
shape derivative of λ1 illustrates this procedure
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Proposition 3.4.2. Let λ1 be the smallest positive eigenvalue in (1.63). Suppose Ω1 ⋐ D, λ1
is simple and normalize the respective eigenvector ŵ in order to satisfy

∫

Ω
(σ(u) · ∇ŵ) · ∇ŵdV = −1. (3.19)

Then λ1 is shape differentiable and the shape derivative in the direction θ at 0 reads

λ′1(Ω1)(θ) = λ1

∫

∂Ω1

[[σ(u)tt]]∂tŵ∂tŵ (θ · n)dS

+

∫

∂Ω1

(

σ(p)nn[[e(u)nn]] + 2σ(p)nt[[e(u)nt]]− [[σ(u)tt]]e(p)tt

)

(θ · n)dS

+

∫

∂Ω1

(

(D∇2ŵ)nn[[(∇2ŵ)nn]] + 2[[(D∇2ŵ)nt]](∇2ŵ)nt − [[(D∇2ŵ)tt]](∇2ŵ)tt

)

(θ · n)dS,

where [[·]] = ·1 − ·0 denotes the jump of a discontinuous quantity through ∂Ω1, σ = Ae(u) and
the index n, t indicate the normal and tangential components.

Proof. When supposing λ1 simple, its shape differentiability follows from classical arguments
[260]. Now, so as to apply Céa’s fast derivation method, the first step is to define the Lagrangian
L on each sub-domain Ω0,Ω1

L(Σ, η0, η1, v0, v1, q0, q1,Λ, z1, z2, γ1, γ2)

= Λ−
∑

i=0,1

{

Λ

∫

Ωi

(Aie(vi) · ∇ηi) · ∇ηidV +

∫

Ωi

(Di∇2ηi) : ∇2ηidV +

∫

Ωi

σi(vi) : e(qi)dV

}

+

∫

ΓN

g · q0dS

+

∫

Σ
z1(v0 − v1)dS +

∫

Σ
z2(q0 − q1)dS +

∫

Σ
γ1(η0 − η1)dS +

∫

Σ
γ2(∇η0 · n−∇η1 · n)dS,

where the four natural interface transmission conditions where added by means of the multipliers
z1, z2, γ1, γ2. The stationarity conditions of L w.r.t. each argument yield the state equation,
adjoint equation and boundary conditions. Then the shape derivative of λ1 results from ∂L/∂Σ.
We proceed thus to take the partial derivatives w.r.t. each variable and verify each condition:

State equation and stress transmission condition:

∂

∂qi
L(∂Ω1, w0, w1, u0, u1, p0, p1, λ1, Z1, Z2, G1, G2, G3, G4) = 0, i = 0, 1.

Let the test function φ ∈ H1
D(Ω;R2)

0 =

〈

∂

∂qi
L(Σ1, w0, w1, u0, u1, p0, p1, λ1, Z1, Z2, G1, G2), φ

〉

= −
∫

Ωi

σi(ui) : e(φ)dV +

∫

ΓN

g · φdS +

∫

∂Ω1

(−1)iZ2φdS

=

∫

Ωi

div(σi(ui)) · φdV +

∫

ΓN

(g − σ0(u0) · n0) · φdS +

∫

∂Ω1

((−1)iZ2 − σi(ui) · ni)φ.

The above set of equations entails the state equation and the Neumann boundary condition
for the in-plane displacements u0, u1 ∈ H1

D(Ω;R2). Also the stress transmission condition on
∂Ω1

Z2 = σ0(u0) · n = σ1(u1) · n, with n = n0.
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Transmission conditions of the in-plane displacements and adjoint state:

∂

∂zj
L(∂Ω1, w0, w1, u0, u1, p0, p1, λ1, Z1, Z2, G1, G2) = 0, j = 1, 2.

Namely u0 = u1; p0 = p1, on ∂Ω1.

First two transmission conditions of the vertical displacement

∂

∂γj
L(∂Ω1, w0, w1, u0, u1, p0, p1, λ1, Z1, Z2, G1, G2) = 0, j = 1, 2

Namely w0 = w1; ∇w0 · n = ∇w1 · n, with n = n0, on ∂Ω1.

Adjoint state equation and second transmission condition.

∂

∂vi
L(∂Ω1, w0, w1, u0, u1, p0, p1, λ1, Z1, Z2, G1, G2) = 0, i = 0, 1.

Let the test function φ ∈ H1
D(Ω;R2)

0 =

〈

∂

∂vi
L(∂Ω1, w0, w1, u0, u1, p0, p1, λ1, Z1, Z2, G1, G2), φ

〉

= −λ1
∫

Ωi

(Aie(φ) · ∇wi) · ∇widV −
∫

Ωi

σi(φ) : e(pi)dV

+

∫

Σ1

Z1(−1)iφ.

So integrating by parts,

0 = λ1

∫

Ωi

div(bi(wi, wi))φdV +

∫

Ωi

div(σi(pi)) · φdV

−
∫

ΓN

σi(pi) · niφdS − λ1
∫

ΓN

bi(wi, wi) · niφdS

+

∫

∂Ω1

(

Z1(−1)i − σi(pi) · ni − λ1bi(wi, wi) · ni
)

φdS,

where the bilinear form bi(η1, η2) for η1, η2 ∈ H2 reads

bi(η1, η2) = Ai : (∇ηT1 ∇η2), so (σi(ui) · ∇wi) · ∇wi = bi(wi, wi) : e(ui).

By varying the values of φ inside Ωi the adjoint equation reads

−div(σi(pi)) = λ1div(bi(wi, wi)) in Ωi,

with pi = 0 on ΓD. Furthermore

σ(p) · n = −λ1b(w,w) · n on ΓN ,

and the multiplier Z1 fulfills on ∂Ω1

Z1 = σ0(p0) · n+ λ1b0(w0, w0) · n = σ1(p1) · n+ λ1b1(w1, w1) · n, n = n0

gives the second transmission condition of the adjoint state p.



3.4. SHAPE SENSITIVITY ANALYSIS 125

State equation vertical displacements:

∂

∂ηi
L(∂Ω1, w0, w1, u0, u1, p0, p1, λ1, Z1, Z2, G1, G2) = 0, i = 0, 1

Let the test function Φ ∈ H2
D(Ω)

0 =

〈

∂

∂ηi
L(∂Ω1, w0, w1, u0, u1, p0, p1, λ1, Z1, Z2, G1, G2),Φ

〉

= −2λ1

∫

Ωi

(Aie(ui) · ∇Φ) · ∇widV − 2

∫

Ωi

(Di∇2Φ) : ∇2widV

+

∫

∂Ω1

G1(−1)iΦdS +

∫

∂Ω1

G2(−1)i∇Φ · ndS

Integrating by parts, we find

0 = 2λ1

{∫

Ωi

(σi(ui)∇2wi)ΦdV −
∫

∂Ωi

(σi(ui) · ∇wi) · niΦdS
}

+ 2

∫

∂Ωi

div(Di∇2wi) · niΦdS − 2

∫

∂Ωi

(Di∇2wi) · ni · ∇ΦdS − 2

∫

Ωi

∇2(Di∇2wi)ΦdV

+

∫

∂Ω1

G1(−1)iΦdS +

∫

∂Ω1

G2(−1)i∇Φ · ndS (3.20)

Varying the values of the test function Φ in each Ωi, we deduce the state equation for the
vertical displacement

∇2(Di∇2wi) = λ1σi(ui) : ∇2wi, in Ωi.

Furthermore wi = 0, ∂nwi = 0 on ΓD. Equally using the independence of (Φ, ∂tΦ) w.r.t. the
normal derivative ∂nΦ on ∂Ωi, we obtain the free boundary conditions on ΓN

−λ1(σi(ui) · ∇wi) · ni +

(

div(Di∇2wi) · ni +
∂

∂τ
(Di∇2wi)nτ

)

= 0,

(Di∇2wi)nn = 0,

where the second term of the second row of (3.20) was developed as
∫

∂Ωi

(Di∇2wi) · ni · ∇ΦdS =

∫

∂Ωi

(Di∇2wi)nn∂nΦdS +

∫

∂Ωi

(Di∇2wi)nt∂tΦdS

=

∫

∂Ωi

(Di∇2wi)nn∂nΦdS −
∫

∂Ωi

∂t(Di∇2wi)ntΦdS.

The optimal values for the multipliers G1, G2 on ∂Ω1 reads

G1 = −2

{

−λ1(σi(ui) : ∇wi) · ni +

(

div(Di∇2wi) · ni +
∂

∂τ
(Di∇2wi)nτ

)}

, i = 0, 1,

G2 = 2(Di∇2wi)nn, i = 0, 1,

giving rise to the third and fourth transmission conditions of the vertical displacement w0, w1.

Normalization of the vertical displacement

∂

∂Λ
L(∂Ω1, w0, w1, u0, u1, p0, p1, λ1, Z1, Z2, G1, G2) = 0

We perform a classical derivation with respect to the scalar Λ to obtain (3.19), namely

0 = 1−
∑

i=0,1

∫

Ωi

(σi(ui) · ∇wi) · widV, so: − 1 =

∫

Ω
(σ(u) · ∇w) · ∇wdV.
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Shape derivative Let θ ∈W 1,∞(Ω;R2) such that θ · n = 0 on ∂Ω. Then

∂

∂Σ
L(∂Ω1, w0, w1, u0, u1, p0, p1, λ1, Z1, Z2, G1, G2, G3, G4)(θ) = λ′1(Ω1)(θ).

Thus,

λ′1(Ω1)(θ) = −
∫

∂Ω1

{

λ1[[(σ(u) · ∇w) · ∇w]] + [[(Di∇2w) : ∇2w]] + [[σ(u) : e(p)]]
}

(θ · n)dS

+

∫

∂Ω1

Z1∂n(u0 − u1)(θ · n)dS +

∫

∂Ω1

Z2∂n(p0 − p1)(θ · n)dS

+

∫

∂Ω1

G2∂n(∇w0 · n−∇w1 · n)(θ · n)dS

= −
∫

∂Ω1

{

λ1[[(σ(u) · ∇w) · ∇w]] + [[(Di∇2w) : ∇2w]] + [[σ(u) : e(p)]]
}

(θ · n)dS

+

∫

∂Ω1

(σ(p) · n+ λ1b(w,w) · n)∂n(u0 − u1)(θ · n)dS +

∫

∂Ω1

(σ(u) · n)∂n(p0 − p1)(θ · n)dS

+ 2

∫

∂Ω1

(D∇2w)nn∂n(∇w0 · n−∇w1 · n)(θ · n)dS,

where various terms where canceled according to the transmission conditions (notably those
involving the curvature in the second and third row) and the optimal values of Z1, Z2, G2 em-
ployed. Moreover since u0− u1 = 0,∇(w0−w1) ·n = 0 on ∂Ω1, the following relations stand on
∂Ω1

(bi(wi, wi) · n) · ∂n(u0 − u1) = 2(bi(wi, wi) · n) · (e(u0 − u1) · n)− bi(wi, wi)nne(u0 − u1)nn,
σi(pi) · n · ∂n(u1 − u0) = 2(σi(pi) · n) · (e(u1 − u0) · n)− σi(pi)nne(u1 − u0)nn,

and also

σ(u) · n · ∂n(p0 − p1) = 2(σ(u) · n) · (e(p1 − p0) · n)− σ(u)nne(p1 − p0)nn,
(D∇2w)nn∂n(∇(w0 − w1) · n) = 2((D∇2w) · n) · (∇2(w0 − w1) · n)− (D∇2w)nn(∇2(w0 − w1))nn.

Inserting these relations in the cascade of equations for λ′1 yields

λ′1(Σ1) = λ1

∫

∂Ω1

[[b(w,w)tt · e(u)tt]](θ · n)dS

+

∫

∂Ω1

[[σ(p)nne(u)nn + 2σ(p)nte(u)nt − σ(u)tte(p)tt]](θ · n)dS

+

∫

∂Ω1

[[(D∇2w)nn(∇2w)nn + 2(D∇2w)nt(∇2w)nt − (D∇2w)tt(∇2w)tt]](θ · n)dS.

The desired result stems from the continuity relations

[[(D∇2w)nn]] = 0, [[(∇2w)nt]] = 0, [[(∇2w)tt]] = 0,

[[(σ(p))nn]] = 0, [[(σ(p))nt]] = 0, [[(e(p))tt]] = 0,

[[(σ(u))nn]] = 0, [[(σ(u))nt]] = 0, [[(e(u))tt]] = 0.
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3.4.2 Discrete framework

Similarly to the sharp shape derivative presented in Chapter 2 for a cost functional depending
only on u, the rigorous computation of the shape derivative of λ1 involves jumps of the stress
and the strain functions through the interface ∂Ω1. Nevertheless, these quantities are difficult
to estimate numerically. From now on, we avoid any of these technical issues by calculating
the shape derivative of the discretized problem which seems to be more useful from a numerical
point of view, as it was pointed in Chapter 2.

Thus suppose Ω equipped with a conformal simplicial mesh Ωh =
⋃M
i=1 Ti with M triangles

Ti of maximal size h. Let Π1
D(Ωh;R2) be a finite-dimensional approximation of H1

D(Ω;R2) ,
for instance the space of P1 Lagrange finite elements. Define uh ∈ Π1

D(Ωh;R2) as the internal
approximations of u, solution of

∫

Ωh

Ae(uh) : e(vh) dV =

∫

ΓN

g · vh dS, ∀vh ∈ Π1
D(Ωh;R2), (3.21)

and σh = Ae(uh). Let ξ be a fixed stacking sequence. In order to facilitate the analysis,
the discretization of functional (b) (3.6) is split into two cases Gh,1, Gh,2 given by the smooth
densities s1, s2

Gh,1(Ω1, ξ) =

∫

Ωh

s1(x, uh(Ω1, ξ))dV and Gh,2(Ω1, ξ) =

∫

Ωh

s2(x, σh(Ω1, ξ))dV.

The first density function s1 depends only on the displacement meanwhile the second one s2
depends on the stress σh = Ae(uh). Both satisfy adequate growth conditions.Then the discrete
shape derivatives of the foregoing discretized criteria are given respectively by the following
propositions

Proposition 3.4.3. Assume that the interface ∂Ω1 generically cut the mesh Ωh, namely that
it is never aligned with part of an edge of any triangle Ti. Define the discrete adjoint state
ph ∈ Π1

D(Ωh;R2) as the solution of
∫

Ωh

Ae(ph) : e(vh) dV = −
∫

Ωh

s′1(x, uh) · vh dV, ∀vh ∈ Π1
D(Ωh;R2). (3.22)

where the symbol ′ denotes the differentiation w.r.t. u. Then, the solution uh of (3.21) is shape
differentiable and the shape derivative of Gh,1 for a fixed ξ is given by

G′
h,1(Ω1, ξ)(θ) =

∫

∂Ω1

[[A]]e(uh) : e(ph) θ · ndS, (3.23)

where [[·]] = ·1 − ·0 denotes the jump of a discontinuous quantity through ∂Ω1.

Proof. See Chapter 2.

Proposition 3.4.4. Assume the same hypothesis than the above proposition but this time define
the discrete adjoint state ph ∈ Π1

D(Ωh;R2) as the solution of
∫

Ωh

Ae(ph) : e(vh) dV = −
∫

Ωh

s′2(x, σh) · Ae(vh) dV, ∀vh ∈ Π1
D(Ωh;R2). (3.24)

where the symbol ′ denotes the differentiation w.r.t. σ and σh = Ae(uh). Then the shape
derivative of Gh,2 for a fixed ξ is given by

G′
h,2(Ω1, ξ)(θ) =

∫

∂Ω1

(

[[s2(x, σh)]] + [[A]]e(uh) : e(ph)

)

θ · ndS, (3.25)
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where [[·]] = ·1 − ·0 denotes the jump of a discontinuous quantity through ∂Ω1.

Proof. The demonstration is quite similar to the one of Proposition 3.4.3. The only difference
lies in the definition of the Lagrangian, which is

Lh(θ, vh, qh) =

∫

Ω
s2(x,A◦ (Id+ θ)−1e(vh))dV +

∫

Ω
A◦ (Id+ θ)−1e(vh) : e(qh)dV −

∫

ΓN

g · qhdS.

Now let Π2
D(Ωh) be a conformal finite-dimensional subspace of the space H2

D(Ω) (so the basis
elements are C1(Ωh)), e.g. Hermite cubic finite element [160]. Let wh ∈ Π2

D(Ωh) be the internal
approximation of w, solution of the discrete eigenvalue problem

∫

Ωh

E(wh, ηh)dV = −λ
∫

Ωh

B(uh;wh, ηh)dV, ∀ηh ∈ Π2
D(Ωh), (3.26)

where uh solves (3.21). We denote as λh the first positive eigenvalue. The bilinear and trilinear
forms E(η1, η2) and B(v, η1, η2) are respectively defined ∀η1, η2 ∈ Π2

D(Ωh), v ∈ Π1
D(Ωh;R2) as

E(η1, η2) := D∇2η1 : ∇2η2 = Dijkl∂klη1∂ijη2,
B(v; η1, η2) := (Ae(v) · ∇η1) · ∇η2 = Aijkle(v)kl∂iη1∂jη2. (3.27)

The first positive eigenvalue λh of the discretized problem (3.26) can be also defined through
the Rayleigh quotient

λ−1
h = max

η∈Π2
D(Ωh)

−
∫

Ωh
B(uh; η, η)dV

∫

Ωh
E(η, η)dV

. (3.28)

Proposition 3.4.5. Assume the same hypothesis than Proposition 3.4.3, let uh ∈ Π1(Ωh;R2)
be solution of (3.21) and define the discrete adjoint state p̂h ∈ Π2

D(Ωh) as the solution of

∫

Ωh

Ae(p̂h) : e(vh)dV = λh

∫

Ωh

B(vh;wh, wh)dV ∀vh ∈ Π1
D(Ωh;R2).

Moreover suppose λh is a simple eigenvalue of problem (3.26) and let the buckling mode wh ∈
Π2
D(Ωh) be normalized as

∫

ΩB(uh;wh, wh)dV = −1. Then λh is shape differentiable and its
shape derivative for a fixed ξ reads

λ′h(Ω1, ξ)(θ) =

∫

∂Ω1

(

[[D]]∇2wh : ∇2wh + λh([[A]]e(uh) · ∇wh) · ∇wh − [[A]]e(uh) : e(p̂h)

)

θ · ndS

(3.29)
where [[·]] = ·1 − ·0 denotes the jump through ∂Ω1.

Proof. Let us denote ωhi (x) and φhi (x) the basis functions of the finite element spaces Π2
D(Ωh)

and Π1
D(Ωh,R

2), respectively. The solutions wh ∈ Π2
D(Ωh) and uh ∈ Π1

D(Ωh,R
2) are decomposed

as

wh =
∑

i

W h
i ω

h
i (x), uh =

∑

i

Uhi φ
h
i (x),

and the vectors W h, Uh (with respective components W h
i , U

h
i ) are solutions of

EhW h = −λhBhW h and KhUh = Gh, respectively. (3.30)
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The matrices Eh, Bh,Kh and the vector Gh are respectively defined as

Ehi,j =

∫

Ωh

E(ωhi , ω
h
j )dV, Bh

ij =

∫

Ωh

B(uh;ωhi , ω
h
j )dV,

Kh
i,j =

∫

Ωh

Ae(φhi ) : e(φhj )dV, Ghi =

∫

ΓN

g · φhi dS. (3.31)

We remark that the basis functions ωhi and φhi are independent of ∂Ω1. Thus, under the
assumption that ∂Ω1 does not overlap any edge of Ti ∈ Ωh, the shape derivatives of Kh, Eh and
Bh according to (3.31) and (3.27) read (for more details see Chapter 2)

(Kh
i,j)

′(Ω1)(θ) =

∫

∂Ω1

[[A]]e(φhi ) : e(φhj )(θ · n)dS,

(Ehi,j)
′(Ω1)(θ) =

∫

∂Ω1

[[D]]∇2ωhi : ∇2ωhj (θ · n)dS,

(Bh
i,j)

′(Ω1)(θ) =

∫

∂Ω1

([[A]]e(uh) · ∇ωhi ) · ∇ωhj (θ · n)dS +

∫

Ωh

(Ae(u′h(Ω1)(θ)) · ∇ωhi ) · ∇ωhj dV.

The last equality stands from the shape differentiability of uh (Proposition 3.4.3), which satisfies
the equation

Kh(Uh)′ = −(Kh)′Uh. (3.32)

Applying the chain rule lemma, classical spectral theory for matrices tell us that if the matrices
Eh and Bh are Fréchet differentiable (shape differentiable) and the eigenvalue λh is simple,
then the eigenfunction (suitable normalized) wh and the eigenvalue λh are differentiable [260].
Thus, taking the shape derivative of each side of the Rayleigh quotient (3.28) and using equation
(3.30), the derivative of λh reads

λ′h(Ω1, ξ)(θ) = −
TW h

[

(Eh)′(Ω1)(θ) + λh(Bh)′(Ω1)(θ)
]

W h

TW hBhW h
.

Choosing wh such that
∫

ΩB(uh;wh, wh)dV = TW hBhW h = −1, it follows

λ′h(Ω1)(θ) =

∫

∂Ω1

[[D]]∇2wh : ∇2wh(θ · n)dS + λh

∫

∂Ω1

([[A]]e(uh) · ∇wh) · ∇wh(θ · n)dS

+ λh

∫

Ωh

(Ae(u′h(Ω1)(θ)) · ∇wh) · ∇whdV.

Finally the desired result arises from the definition of the adjoint state p̂h and equation (3.32)

λh

∫

Ωh

(Ae(u′h(Ω1)(θ)) · ∇wh) · ∇whdV =

∫

Ωh

Ae(p̂h) : e(u′h(Ω1)(θ))dV

= −
∫

∂Ω1

[[A]]e(p̂h) : e(uh)(θ · n)dS.

Remark 3.4.6. When λh is not simple, only directional differentiability can be established
[260, 99].

3.5 Stacking sequence optimization

3.5.1 Manufacturing constraints

From an engineering point of view, when a composite laminate is designed, some additional
composite design rules must be respected. Following the typical industrial approach (see e.g.
Airbus in [63, 49]) we consider the following rules
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• (R1) Continuity rule, no more than 4 successive plies with the same angle.

• (R2) Disorientation rule, maximum gap between two adjacent (superposed) plies is 45o.

• (R3) Balanced laminate w.r.t. the principal direction (0o), i.e. same number of plies at
45o and −45o.

• (R4) Minimum proportion of each fiber orientation (typically between 5% and 10 % [125]).
We note this proportion as pn.

• (R5) Symmetric laminate. This ensures to avoid the coupling between in-plane traction
and bending of the laminate, eliminating thermal residual stresses from the cooling process
after being placed within an autoclave for curing.

Thanks to the stacking sequence matrix ξ, all the above manufacturing constraints can be
easily formulated as linear inequalities or equalities

Proposition 3.5.1. Let {0, 1}N×4 be the set of binary matrices of N rows and 4 columns.
Define the applications r1 : {0, 1}N×4 → R4(N−8), r2 : {0, 1}N×4 → R2(N−1), r3 : {0, 1}N×4 → R,
r4 : {0, 1}N×4 → R4. Then if N ≥ 5 the design rules (R1), (R2), (R3), (R4) can be expressed
as linear constraints w.r.t the stacking sequence matrix ξ as follows

(R1) ⇔ r1(ξ) =















k+5
∑

m=k

ξmn − 4 ≤ 0 ∀n = 1, ..., 4, ∀k = 0, ..., N − 5,

3
∑

m=1
ξmn − 2 ≤ 0 ∀n = 1, ..., 4.(plane of symmetry)

(R2) ⇔ r2(ξ) =

{

ξm1 + ξℓ2 − 1 ≤ 0 ℓ = m+ 1, ∀m = 1, ..., N − 1.
ξm3 + ξℓ4 − 1 ≤ 0 ℓ = m+ 1, ∀m = 1, ..., N − 1.

(R3) ⇔ r3(ξ) =
N
∑

m=1

ξm3 − ξm4 = 0.

(R4) ⇔ r4(ξ) = pnN −
N
∑

m=1

ξmn ≤ 0, ∀n = 1, ..., 4.

The rule (R5) is satisfied by just studying half of the stacking sequence.

Remark 3.5.2. The above constraint functions r1(ξ), r2(ξ), r3(ξ), r4(ξ) are affine hence convex.

Once the design rules have been established, the definition of the feasible stacking sequence
set Y follows

Definition 3.5.3. We define the feasible stacking sequence set Y as

Y =

{

ξ = (ξmn) ∈ {0, 1}N×4|
4
∑

n=1

ξmn = 1, ∀m; r1(ξ) ≤ 0; r2(ξ) ≤ 0; r3(ξ) = 0; r4(ξ) ≤ 0

}

.

Remark 3.5.4. The definition of Y is independent of O. This simplification implies that the
manufacturing rules are not point-wise (hence not depending on the shape of each ply) but rather
global between the plies.
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3.5.2 The constraint margin function

In order to treat problem (3.5) with a decomposition technique (separating continuous and
discrete variables), as it will be explained in the next section, an element of paramount impor-
tance is the constraint margin function M(O). The scalar version of this function is defined as

Definition 3.5.5. Let G(O, ξ) ≤ 0 be a general scalar constraint of problem (3.5) which repre-
sents a regular measure of the stiffness of the plate, e.g. G = λ−1

1 − 1 or G = λ−1
RF − 1. Then

the constraint margin functionM(O) is defined as

M(O) = min
ξ∈Y

G(O, ξ). (3.33)

In simple words, the constraint margin function represents the value of maximum slackness of
the constraint G ≤ 0. The evaluation of M(O) implies solving a non-linear integer problem. In
general, this kind of problems are quite hard to solve due to the discrete nature of the variables.
However, when the problem is linear, quadratic or convex, there exists a collection of algorithms
which can be quite efficient [194]. In particular we now check the following property

Proposition 3.5.6. If the proportions of plies of each fiber orientation is fixed in the laminate,
then for every ξ ∈ Y respecting these proportions, the functions λ−1

1 (O, ξ) and λ−1
RF (O, ξ) are

convex w.r.t. ξ.

Proof. Define the function

l(ξ, w) = −
∫

Ωh
A(ξ)e(u(ξ)) · ∇w · ∇wdV
∫

Ωh
D(ξ)∇2w : ∇2wdV

, ξ ∈ Y,w ∈ H2
D(Ω), (3.34)

and denote as Ȳ the subset of ξ ∈ Y respecting the fiber orientation proportions. If we fix a
vertical displacement w, then for every ξ ∈ Ȳ the numerator of (3.34) is constant (in particular
it does not change sign) thanks to Lemmas 3.2.3 and 3.2.4, meanwhile the denominator is a
positive linear function of ξ. Furthermore let Λ ⊂ H2

D(Ω) be the set of functions w such that
l(ξ, w) > 0 ∀ξ ∈ Ȳ . Since we suppose the existence of λ1 > 0, then Λ 6= ∅ . Hence, applying
Lemma 3.5.8, for every fixed w ∈ Λ the function l(ξ, w) is convex w.r.t. ξ. Finally noticing that

λ−1
1 (ξ) = max

w∈Λ
l(ξ, w),

the convexity of λ−1
1 (ξ) stems from the fact that the maximum or supremum of a set of convex

functions is convex. On the other hand, by virtue of Lemma 3.5.7, the function (3.35) is concave
and positive w.r.t ξ so from definition (3.8),

λ−1
RF (ξ) = max

x∈Ω

(

|(Ae(u))−xx|(ξ)
2π
b

(√

D11(ξ)D22(ξ) +D12(ξ) + 2D33(ξ)
)

)

is equally convex for ξ ∈ Ȳ in view of Lemma 3.5.8.

Lemma 3.5.7. For a fixed O, let DRF be the function

DRF (ξ) :=
√

D11(O, ξ)D22(O, ξ) +D12(O, ξ) + 2D33(O, ξ), (3.35)

numerator of λRF in (3.8). Then DRF (ξ) is a concave function of ξ.

Proof. Let us fix O. In order to alleviate the notation, we make only explicit the dependency of
a function w.r.t. ξ. Now, since the tensor D(ξ) is a linear function of ξ, the concavity of DRF (ξ)
reduces to prove the concavity of the term D̂(ξ) :=

√

D11(ξ)D22(ξ). Define the two variable
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function d̂(x1, x2) =
√
x1x2, with (x1, x2) ∈ (R+)2\ {(0, 0)}. We will prove that d̂ is concave on

(R+)2\ {(0, 0)}. Indeed, the Hessian matrix of d̂ reads

∇2d̂(x1, x2) =

(

− 1
4(x1x2)3/2

x22
1

4(x1x2)1/2
1

4(x1x2)1/2
− 1

4(x1x2)3/2
x21

)

.

The first principal minor of ∇2d̂ satisfy

− 1

4(x1x2)3/2
x22 < 0, ∀(x1, x2) ∈ (R+)2\ {(0, 0)} ,

meanwhile the second one satisfy

1

16(x1x2)3
x21x

2
2 −

(

1

4(x1x2)1/2

)2

= 0, ∀(x1, x2) ∈ (R+)2\ {(0, 0)} .

Hence ∇2d̂ is negative semidefinite and d̂ is concave. Finally the desired property follows from
the linearity and positiveness of the functions D11(ξ),D22(ξ) plus the above properties of d̂ by
composition.

Lemma 3.5.8. Let f(ξ) := Y → R+
∗ be a twice differentiable function and define the function

g(ξ) = 1/f(ξ). Then if f(ξ) is positive and concave then g(ξ) is convex. In particular if f(ξ) is
an affine application, then g(ξ) is convex if and only if f(ξ) is positive.

Proof. For every ξ0 ∈ Y , the quadratic form involving the Hessian matrix reads

(∇2g(ξ) · ξ0) · ξ0 =
2

f3(ξ)
(∇f(ξ) · ξ0)2 −

1

f(ξ)2
(∇2f(ξ) · ξ0) · ξ0.

Analyzing each term the result follows.

The above result gives us a clue of the importance of exploring adapted method for convex
integer programming to evaluate (3.33).

3.5.3 Evaluation of the constraint margin function

Convex case

Among the algorithms for discrete convex optimization, the outer approximation method
(OA) distinguishes as one of the most relevant [247, 194]. First introduced by [110] and then
extended in [326, 117] for convex problems, the algorithm solves mixed integer programming
problems through a finite sequence of alternately non linear programming subproblems (in which
the integer variables are fixed) and mixed integer linear problems (MILP). The optimal solution
of each subproblem provides a point at which supporting hyperplanes of the functions are gen-
erated. These linearizations are collected in an MILP master program who determines the new
integer assignment for the next iteration. Even though the OA method is capable of tackle mixed
integer problems, in our case we use it in the full discrete case (integer nonlinear programming).

Now we proceed to explain the method. Let be Y = {0, 1}N×4 and consider the following
generalization of problem (3.33)

min
ξ∈Y

{

f(ξ)|g(ξ) ≤ 0
}

, (3.36)

where f and g are convex and one-continuously differentiable. Indeed, according to Definition
3.5.3, the constraints defining Y ⊂ Y (represented by “g ≤ 0” in (3.36)) are linear (thus convex)
and moreover, as it was proven in Proposition 3.5.6, when the proportions of fiber orientations
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{0, 1} designs

OA cuts

Figure 3.5: Scheme of the Outer approximation method.

are fixed, G = λ−1
1 and G = λ−1

RF (represented by “f” in (3.36)) are convex too.

Due to the convexity of the functions f and g, for each ξ̂ ∈ Y there are linear under-estimators
such that

f(ξ̂) +∇f(ξ̂) · (ξ − ξi) ≤ f(ξ), ∀ξ ∈ Y,
g(ξ̂) +∇g(ξ̂) · (ξ − ξi) ≤ g(ξ), ∀ξ ∈ Y.

Let ǫ > 0 be a decreasing parameter. Then the OA method reads

Algorithm 3.5.9. Let ξ0 be an initial feasible solution of (3.36), T ⊂ Y the set of generated
admissible solutions so far and ξ∗ the current best computed solution. Initialize T =

{

ξ0
}

and
set the upper bound constant UBD = +∞.























































































For k ≥ 0,

1) If (f(ξk) ≤ UBD − ǫ), then update ξ∗ = ξk and UBD = f(ξk).
Otherwise, do nothing.

2) Solve the current master problem:

(M) min
ξ∈Y,η∈R

{

η
∣

∣η ≤ UBD− ǫ; f(ξ̂) +∇f(ξ̂) · (ξ − ξ̂) ≤ η; g(ξ̂) +∇g(ξ̂) · (ξ − ξ̂) ≤ 0 ∀ξ̂ ∈ T
}

.

3) If the problem is infeasible: STOP. The optimal solution is ξ∗.

4) Otherwise let ξk+1 be the optimal solution of (M). Update T as T = T ∪
{

ξk+1
}

and return to 1).

It was proved in [117], that for ǫ small enough, the sequence of points (ξk)k ∈ Y generated
by the OA algorithm terminates in a finite number of steps at an optimal solution of (3.36).

Remark 3.5.10. The algorithm can tackle also problems where Y is a general finite set and in
the worst of cases, the algorithm takes |Y| steps before convergence.

Remark 3.5.11. Since all the constraints defining the set Y ⊂ Y in (3.33) are linear, there is
no need of any under-estimator.
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Extension to the non-convex case

In the situation where the proportions of plies with a fiber orientation is not fixed, problem
(3.33) is not necessarily convex, hence an extension of the OA method must be introduced.
Attempts to generalize OA to solve non-convex problems are proposed e.g. in [177].

In our case we focus our attention on the convexification of (3.36) by means of convex
under-estimators [194]. Even though a large family of under-estimators for MILP is available
in literature (see e.g. [247]), an important class when treating with binary or boolean variables
are the so-called α−under-estimators. In fact, taking advantage of the identity

α(y2 − y) ≤ 0, ∀y ∈ [0, 1], ∀α ∈ R+,

the following classical results stands

Lemma 3.5.12. Suppose f and g twice-differentiable, and introduce respectively the under-
estimators (also called α−under-estimator) of f and g on [0, 1]N×4

f̂α(ξ) = f(ξ) + α
∑

m,n

(ξ2mn − ξmn), ĝα(ξ) = g(ξ) + α
∑

m,n

(ξ2mn − ξmn).

Then ∀ξ ∈ Y, f(ξ) = f̂α(ξ), g(ξ) = ĝα(ξ) and for α large enough, f̂α, ĝα are convex.

Proof. Since Y = {0, 1}N×4, the first statement follows trivially. Now denote as ∇2f,∇2g ∈
R4N×4N the Hessian matrices of f and g, respectively. In such a case, the Hessian matrices of
f̂α, ĝα read

∇2f̂α = ∇2f + 2αId and ∇2ĝα = ∇2g + 2αId,

where Id ∈ R4N×4N is the identity matrix. Then for large enough α the functions f̂α, ĝα are
convex.

Lemma 3.5.12 thus implies, that by choosing a large enough α, we can solve exactly (3.36)
through the application of Algorithm 3.5.9 to the convex problem

min
ξ∈Y

{

f̂α(ξ)|ĝα(ξ) ≤ 0
}

.

An optimal convex α−under-estimator can be computed as the smallest coefficient α for which
∇2f̂α(ξ) and ∇2ĝα(ξ) are positive semidefinite for every ξ. In the case of quadratic binary
problems, the optimal value of α is the absolute value of the smallest eigenvalue of the matrices
∇2f and ∇2g. In general cases finding α is quite difficult, so several heuristics have been
proposed, e.g. in [247].

3.6 General decomposition framework

The optimization problem of finding the best shape and stacking sequence of a composite plate
corresponds to a mixed problem, i.e. a problem where there are two different types of optimiza-
tion variables. On one side, the shape optimization problem corresponds to a continuous infinite
dimensional problem, meanwhile on the other side, the stacking sequence optimization belongs
to the class of combinatorial programming problems due to finiteness of the set Y .

In the present section we address the interaction and articulation of continuous and discrete
techniques to solve the composite problem (3.5) in the framework of decomposition methods
[139]. Decomposition techniques are used to solve large-scale (or complex) problems, replacing
them by a sequence of reduced or easier local problems called followers linked by a leader or
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master program. This gives rise to a bi-level optimization scheme [105]. These methods prove
efficient when the structure of the problem is naturally separable. This separability comes
for instance from the structure of the objective function and constraints (e.g. data is block-
separable) or when the variables can be split into “complicated” and “simple” ones, for example.
We present notably an infinite dimensional adaptation of the scheme Maxmargin (from maximum
margin or constraint margin) [141, 49].

3.6.1 Maxmargin technique

We start studying problem (3.5) through the general formulation

min
O∈Uad,ξ∈Y

{J(O)|G(O, ξ) ≤ 0} , (3.37)

where G : (Uad × Y )→ Rm, is a regular general constraint function vector of m components.
Problem (3.37) turns out to be a quasi separable subsystem [141], so thanks to this particular

structure, we can write this mixed problem as a bi-level optimization problem whose higher level
only relies on the variable O through a Maxmargin scheme

Proposition 3.6.1. Let O∗ be in Uad. Then O∗ is a global solution of (3.37) if and only if it is
a global solution of

min
O∈Uad

{J(O)|M(O) ≤ 0} , (3.38)

where the vectorial constraint margin functionM reads

M(O) := min
ξ∈Y

max
1≤i≤m

{Gi(O, ξ)} . (3.39)

Proof. Define the set

V = {O ∈ Uad|∃ξ ∈ Y such that G(O, ξ) ≤ 0} .

It is straightforward that O∗ solves (3.37) if and only if it solves min {J(O)|O ∈ V }. Then,
Ō ∈ V if and only if

M(Ō) = min
ξ∈Y

max
1≤i≤m

{

Gi(Ō, ξ)
}

≤ 0.

Problem (3.38) has the advantage with respect (3.37) to optimize only over Uad and not
over Uad × Y . Unfortunately, from a numerical point of view, global optimality (as formulated
in Proposition 3.6.1) is difficult to reach when e.g. no convexity properties are present. We
must thus conform ourselves with a local optimum. If we define a local solution of (3.37) as
an element O ∈ Uad satisfying the local optimality conditions of (3.37) for a fixed assignment
of integer variables ξ ∈ Y , then one can demonstrate (see [141]) that the Maxmargin scheme
does not introduce any artificial local minimum. In other words, any local minimum of the
decomposition formulation (3.38) is indeed a local minimum of the original problem (3.37).

Remark 3.6.2. In the present work, local optimality in Uad will be understood in the sense of
Definition 1.1.14, i.e. Ô is a local minimizer of J if and only if there exist δ > 0 such that for
every collection of vector fields Θ = {θi}i=1,..,N (where each θi ∈ W 1,∞(Ω;R2) corresponds to
the advection field of the ply i),

J(Ô) ≤ J((Id+ tΘ)Ô), ∀t ≤ δ.

For other kinds of local optimality conditions, see [64].
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3.6.2 First order optimality conditions

As it was quoted in [141], generally the constraint margin function M is non-smooth and is
not known analytically. The reason of this is that the optimization problem posed by M may
have many solutions. As a consequence the bi-level problem (3.38) is usually non-differentiable.
There exits various strategies to tackle this kind of bi-level optimization problem [218, 105].
We can cite e.g. the construction of piece-wise continuous approximation or response surface
of M; non-smooth adaptations of classical algorithms (penalty, trust region, descent or feasible
direction methods); and non-smooth algorithms as bundle methods.

In order to write the first order optimality conditions (stationarity conditions) of problem
(3.38), we need to differentiate a non-differentiable shape function M. This problem has been
treated e.g. in [285]. The idea in our case is to invoke the notion of generalized gradient intro-
duced in [91] for Lipschitz functions (see for instance [99]).

Lemma 3.6.3. For a fixed ξ ∈ Y and O ∈ Uad, let the constraint function G((Id + Θ)O, ξ)
be continuously shape differentiable on U ⊂ W 1,∞(Ω;R2)N , a neighborhood (thus bounded) of
Θ = 0. Then the functionM((Id+ Θ)O) is locally Lipschitz on U , i.e. there exists K > 0 such
that

|M((Id+ Θ1)O)−M((Id+ Θ2)O)| ≤ K ‖Θ1 −Θ2‖W 1,∞(Ω;R2)N , ∀Θ1,Θ2 ∈ U.

Proposition 3.6.4. Denote M(O, ξ) := max
1≤i≤m

Gi(O, ξ), for a fixed choice of O ∈ Uad, ξ ∈ Y .

Then there exists a sub-gradient (generalized gradient) ∂M⊂ (W 1,∞(Ω;R2)N )′ ofM((Id+Θ)O)
at Θ = 0 and it reads

∂M(O) = co
{

∂M(O, ξ), ξ ∈ IY (O)
}

= co
{

G′
j(O, ξ), ξ ∈ IY (O), j ∈ Iλ(O, ξ)

}

,

where co {} is the convex hull and the sets IY (O) and Iλ(O, ξ) are respectively defined as

IY (O) =
{

ξ ∈ Y |M(O) =M(O, ξ)
}

Iλ(O, ξ) =
{

1 ≤ j ≤ m|M(O, ξ) = Gj(O, ξ)
}

. (3.40)

Proof. Apply Proposition 2.3.12 of [91] twice, using the fact that

min
ξ∈Y

max
1≤j≤m

{Gj} = −max
ξ∈Y
−{ max

1≤j≤m
{Gj}} and ∂(sG) = s∂G, ∀s ∈ R.

Proposition 3.6.5. The directional derivative of M((Id + Θ)O) at the point Θ = 0 in the
direction Θ0 exists and its reads

M′(O)(Θ0) = max
ξ∈IY (O),j∈Iλ(O,ξ)

G′
j(O, ξ)(Θ0),

where the sets IY (O) and Iλ(O, ξ) are given in (3.40).

Proof. Use Proposition 3.6.4 and the definition of directional derivative [91]

M′(O)(Θ0) = max
ζ∈∂M(O)

〈ζ,Θ0〉 = max
ξ∈IY (O),j∈Iλ(O,ξ)

G′
j(O, ξ)(Θ0).
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Thus, the necessary optimality condition for a Lipschitz optimization problem can be ex-
pressed by means of generalized gradients. In the case of problem (3.38), they may be cast at
O∗ ∈ Uad as the existence of multipliers λ, µ ∈ R, not both zero, such that (Th. 6.1.8 [56])















0 ∈ λJ ′(O∗) + µ∂M(O∗),
µM(O∗) = 0,
M(O∗) ≤ 0,
λ, µ ≥ 0.

(3.41)

Remark 3.6.6. If there exists Θ ∈ W 1,∞(Ω;R2)N such that M′(O)(Θ) < 0, then we can take
λ = 1. This is the so-called Mangasarian-Fromovitz constraint qualification (MFCQ) .

3.6.3 Application of a descent direction method

In this subsection we propose the application of a theoretical descent direction method to
(3.38). Generally speaking, a descent direction method searches at each iteration a descent
direction able to move from the current point to an approximation of a local solution of (3.38),
by using the local information of the gradient of the objective function and constraints. The
proximity to the local solution is measured through the fulfillment of the stationarity conditions.
From now on we suppose J and G continuously shape differentiable. Let ǫ > 0 be the stop cri-
terion tolerance. Then the descent direction algorithm reads

Algorithm 3.6.7. Let O0 ∈ Uad be an initial feasible point of problem (3.38). Define the
sequence of designs {Ok}k generated by the following algorithm
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















For k ≥ 0,
1) Fix Ok and solveM(Ok) = min

ξ∈Y
max

1≤j≤m
Gj(Ok, ξ). Define ξk ∈ IY (Ok)

2) Via a descent direction method D(Ok, ξk) solve:
Find Ok+1 such that J(Ok+1) < J(Ok) and G(Ok+1, ξk) ≤ 0.

3) If |J(Ok+1)− J(Ok)| ≤ ǫ, then STOP. Otherwise return to 1)
(3.42)

Proposition 3.6.8. Let D be the descent direction method applied in step 2) for Algorithm
3.6.7, such that for each iteration k

Ok+1 =
(

Id+ ∆tkΘk
)

Ok,

where Θk ∈ W 1,∞(Ω;R2)N ,
∥

∥Θk
∥

∥

W 1,∞(Ω;R2)N
< 1 and ∆tk ∈ (0, 1) is an adequate descent step

fulfilling J(Ok+1) < J(Ok) and G(Ok+1, ξk) ≤ 0. Suppose that for a fixed ξ ∈ Y the method
D(Ok, ξ) generates a sequence whose limit point O∗

ξ is a KKT point.
Now consider additionally that there exists a positive constant C ≤ 1 such that for every k

−C
∥

∥

∥
Θk
∥

∥

∥

2

W 1,∞(Ω;R2)N
≥ J ′(Ok)(Θk). (3.43)

Then if we set ǫ = 0 in Algorithm 3.6.7, the generated sequence {Ok}k is convergent in the
sense of the Lp norm for characteristic functions. Moreover, the limit point O∗ of this sequence
satisfies the stationary conditions (3.41).
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Remark 3.6.9. Let {ωk}k be a sequence of measurable subsets of Ω. According to Theorem
1.1.6, we say that ωk → ω∗ ⊂ Ω in the sense of the Lp norm for characteristic functions if and
only if lim

k→∞
‖χωk

− χω∗‖Lp(Ω) = 0.

Proof. First of all, the existence of a limit point O∗ of the sequence {Ok}k follows from the
compactness of Uad. Then since {J(Ok)}k monotonically decreasing, the continuity of J implies
that the sequence {J(Ok)}k is convergent. Define ρ ∈ (0, 1). One can easily show using (3.43)
that there exists tk > 0 such that

J((Id+ tΘk)Ok)− J(Ok) ≤ ρtJ ′(Ok)(Θk), ∀t ∈ (0, tk). (3.44)

Choosing t = ∆tk ≤ tk in (3.44) and passing to the limit

J((Id+ ∆tkΘk)Ok)− J(Ok) ≤ −Cρ∆tk
∥

∥

∥
Θk
∥

∥

∥

2

W 1,∞
,

it follows that lim
k→∞

∆tk
∥

∥Θk
∥

∥

2

W 1,∞ = 0, since {J(Ok)}k is convergent. Trivially lim
k→∞

∆tk
∥

∥Θk
∥

∥

W 1,∞ =

0 and then the convergence of the sequence {Ok}k in the desired sense stems from the fact that
(Th. 2.4 ii)[279])

dH

(

(Id+∆tkΘk)Ok,Ok
)

≤ 2∆tk
∥

∥

∥
Θk
∥

∥

∥

W 1,∞
and dCH

(

(Id+∆tkΘk)Ok,Ok
)

≤ 2∆tk
∥

∥

∥
Θk
∥

∥

∥

W 1,∞
,

where dh, d
C
H are respectively the Hausdorff and complementary Hausdorff metrics (see Remark

1.1.10 and [104]), plus the property that the convergence in the sense of dH and dCH implies the
convergence in Lp in the sense of characteristic functions (Proposition 2.2.21 [144]).
Finally let be O∗ the limit point of the sequence {Ok}k. Since G is continuous w.r.t. the induced
topology of Theorem 1.1.6, for k large enough, the solution ξk of the step 1) in Algorithm 3.6.7
can be chosen constant and equal to a certain ξ∗ ∈ IY (O∗). Hence by hypothesis, the method
D(Ok, ξ∗) generates a sequence whose limit point O∗ satisifes

0 = J ′(O∗) +
m
∑

i=1

µiG
′(O∗, ξ∗), G(O∗, ξ∗) ≤ 0 and µiGi(O∗, ξ∗) = 0, µi ≥ 0 ∀i = 1, ...,m.

By its very definitionM(O∗) =M(O, ξ∗) ≤ 0, so in order O∗ to fulfill the stationary conditions
(3.41), it only remains to prove that

m
∑

i=1

µiG
′(O∗, ξ∗) ∈ µ∂M(O∗), µ ≥ 0. (3.45)

If M(O∗) < 0, µ = 0 and (3.45) is trivial. Otherwise, M(O∗) = 0 and the result is enforced by
taking µ =

∑m
i=1 µi.

3.7 Shape representation by the level set method

Consider Ω ⊂ R2 a bounded domain in which all admissible shapes are included. In numerical
practice, the domain Ω will be uniformly meshed once and for all. We apply the level set method
described in Section 1.2 to implicitly represent the collection of shapes Ωi ⊂ Ω of the composite
laminate. We define thus the collection of level set functions {ψi}i such that







ψi(x) = 0 if x ∈ ∂Ωi

ψi(x) > 0 if x ∈ Ωi

ψi(x) < 0 if x ∈ Ω\Ωi
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The normal ni and the mean curvature κi of each ply are recovered thanks to equations
(1.31). In order to compute the extensional and the bending stiffness tensors in (3.1) and (3.2)
or (3.3), we rely on (1.43) to approximate χi.

During the optimization process, the set of shapes {Ωi(t)}i is going to evolve according to a
fictitious time t ∈ R+, which corresponds to the descent stepping. The evolution of each level
set function ψi is governed by a Hamilton-Jacobi equation (1.35). The velocity advection field
is provided by the “partial” shape derivative of the cost functional, as it was explained in the
second part of Section 1.2.

When computing the shape derivative w.r.t. each ply, notably at the initialization of the
algorithm where the shapes of all plies coincide, we avoid the non-differentiability problem
evoked in Remark 3.4.1 by considering a smoothed version of the discontinuous elastic properties
(see Remark 2.5.1). Similarly to the smoothed framework introduced in Chapter 2, although
adapted to the composite problem at issue, the global extensional stiffness for two plies will read
accordingly to (2.49), where

A0 = A0 +A1 +A2

A1 = A0 +A1

A2 = A0 +A2

A3 = A0.

Thus, the shapes derivatives w.r.t. each ply stem from equations (2.52) and (2.53) and

∂A

∂dΩ1

= A1δǫδ(x) and
∂A

∂dΩ2

= A2δǫδ(x),

where the notations were adapted to δǫδ and dΩi , respectively defined in (1.44) and (1.2.1).
Finally, casting the equivalence quoted in Section 2.4 between the sharp and smooth frame-
works when the bandwidth of regularization (measured by ǫδ) around the interface is small, we
approximate the jumps within formulae (3.23), (3.25) and (3.29) w.r.t. the ply i as

[[A]] = Ai.

The extension to more than two plies and to the bending stiffness tensor D follows the same
strategy.

3.8 Optimization algorithm

At each iteration of Algorithm 3.6.7, the current stacking sequence and collection of shapes of
each ply within the composite are updated. The optimization algorithm can be thus summarized
as two nested loops

→ A higher level loop that solves (3.37) for a fixed stacking sequence via a descent direction
method, which is based in a shape sensitivity analysis coupled to a level set method
described in Section 1.2.

→ A lower level loop where the constraint margin function M is evaluated by solving
the integer programming problem (3.33) via Algorithm 3.5.9.

Let Nstack be the frequency at which the lower level is solved and ǫ > 0 the stop criterion
tolerance. We propose the following iterative optimization algorithm for the composite design
problem
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Algorithm 3.8.1. Initialize O0 ∈ Uad through a collection of level set functions {ψ0
i }i repre-

senting each layer, defined as the signed distance function of a chosen initial topology. Evaluate
the constraint margin functionM(O0) in (3.39) and define the initial optimal stacking sequence
ξ0.



























































































































For k ≥ 0,
1) Computation of uk, λk1 and wk1 by solving problems (1.63), (1.64).
If the stiffness criterion is λRF , then only compute of uk.

2) Calculate in accordance to Section 3.7 the discrete shape derivatives J ′
h and G′

h

in (3.5) w.r.t. each layer.

3) Definition of a set of descent velocities Θk = {Vki nki }i and transport of ψki ,
pursuant to Section 1.2. The pseudo-time step ∆tki is chosen so as
Ok+1 = (Id+ ∆tki Θ

k)Ok, J(Ok+1, ξk) ≤ J(Ok, ξk) andM(Ok+1, ξk) ≤ 0.

4) Depending if k is a multiple of Nstack either

(a) Compute ξk+1 throughM(Ok+1) via the OA method.
(b) Set ξk+1 = ξk.

5) If |J(Ok+1)− J(Ok)| ≤ ǫ, then STOP. Otherwise return to 1)
(3.46)

Remark 3.8.2. Due to the structure of the optimization algorithm, steps 2) and 3) can be
parallelized e.g. via MPI.

3.9 Numerical results

3.9.1 Test case description

The chosen problem consist in designing a composite fuselage skin panel, subjected to a shear
load, as illustrates Figure 3.6. More specifically we try to determine the influence of the or-
thotropic plies oriented in 450 and −450 in the prevention of buckling. Due to the small curva-
ture of the cylindrical panel section, an approximative plate model is used. The hold-all domain
Ω = {x ∈ [0, 2] × [0, 1]} is modeled as a multi-layered plate, in accordance to Configuration I
detailed in Section 3.2: Each ply is composed of two phases where the “holes” are filled up with
a weaker material A0. For numerical purposes the tensor A0 is equal to the main material of
each ply multiplied by a factor 1e− 3.

The panel boundary conditions are described in Fig. 3.6, namely Ω is clamped on ΓD, the
upper and lower boundaries are free and a vertical in-plane load g is applied on the right side.

The elastic properties of the main phase of each layer are described through one of the fol-
lowing tensors: C0o , C90o , C45o , C−45o . Each of them corresponds to the rotation of an orthotropic
material C, in accordance to relations (1.54) and (1.55). The elastic parameters of the tensor C
are normalized to Young moduli Ex1 = 1., Ex2 = 0.05, shear modulus Gx1x2 = 0.03 and Poisson
ratio νx1x2 = 0.3. These values approximatively match the elastic parameter proportions of
carbon fiber/epoxy. The thickness of each ply is fixed to ε = 0.125.

The in-plane elastic and adjoint problems were solved via P1 Lagrange finite elements,
meanwhile the bending problem was solved through Morley finite elements (Piecewise P2 non-
conform). Even though the aforementioned FE is non-conform as assumed in Section 3.4, it is
enough for numerical purposes.
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Composite panel location

(a) Fuselage panel

ΓD
Ω

g

x1

x2

(b) Approximative flat model due to the small cur-
vature of the cylindrical panel section

Figure 3.6: Composite test case.

As it was evoked in Section 3.8, the composite optimization algorithm 3.46 is made of two
loops, namely a lower level loop, which consists in solving the non-linear integer problem (3.33)
so as to determine the best stacking sequence, and a higher level loop (see (3.46)) that defines
the best in-plane shape for each ply. The lower level loop is solved by means of the MILP
routine of the commercial software CPLEX (IBM-ILOG) [164] for MATLAB [210], meanwhile
the higher level loop is settled via a method of feasible direction for level-set [3] and the software
Freefem++ [118]. Freefem++ stands as a versatile non-commercial programming language and
software oriented to the resolution of PDE’s by means of the finite element method.

Remark 3.9.1. For the interested reader, we can cite as efficient alternatives to CPLEX the
solvers Gurobi [134] and SCIP [330], being the latter one non-commercial. Generally speaking,
the aforementioned solvers (also CPLEX) perform a combination of the branch-and-cut method,
cutting planes, heuristics, etc., to solve very efficiently mixed integer linear and semi-definite
positive quadratic programming problems.

3.9.2 Previous comments about the algorithm

Before describing the numerical results for the preceding test-case, three issues regarding the
proposed algorithm are discussed:

1) Perimeter penalization. Even though the level-set method leans on a sharp inter-
face description for each phase, according to the smeared-out version of the Heaviside function
(1.43), there always exists a bandwidth of intermediate elastic material between one phase and
another. It is well known in structural optimization (see e.g. [4]), that optimal structures favor
intermediate or mixed materials. Hence when dealing with a multi-phase framework, during the
optimization process, we observe that each phase attempts to increase the interface length in
order to foster intermediate zones along other interfaces. However, from an engineering point of
view, one looks for shapes as much smooth and convex as possible, in order to limit the manu-
facturing cost. Therefore, owing to the foregoing issue plus the existence condition established
in (3.7), a small perimeter penalization is added to the objective function (weight). Denoting
P (O) the total perimeter of the laminate (i.e. the addition of the perimeters of each ply), the
penalization term reads γP (O), where γ = 0.1 max(∆x,∆y). See also Remark 3.2.6.

2) Uniform distribution of fiber orientations within the laminate. During the
optimization process, one also remarks that the proposed algorithm tends to empty (or rather
to fill up with the weaker material A0) the closest laminae to the composite core. Taking as
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analogy an Euler-Bernoulli beam, the outer layers contribute more to the inertia moment of the
structure than the inner ones. Hence they are preferable to avoid buckling. Additionally, due
to the vertical direction of the surface load g for this particular test-case, the principal stress
lines promote the use of reinforced fibers in 0o and 45o, which tends to eliminate the rest of
reinforcement orientations (especially in 90o).

The foregoing features might be undesirable when e.g. we expect the total mass of the struc-
ture to be distributed “uniformly” through the laminate, or minimum proportions of each fiber
orientation are required within the composite. In order to limit the above bias, a constraint on
the minimum volume of each fiber orientation is applied.

3) Stacking sequence optimization. So as to reduce the numerical cost, the constraint
margin function is exactly evaluated only during the first 10 iterations of the algorithm, with a
frequency of 5 iterations.

Now we present the optimization problem at issue subjected to different constraints. Since
we deal with symmetric laminates, we only present half of the stacking.

3.9.3 Mass minimization with a compliance constraint

We solve the problem














min
O∈Uad

V (O)

s.t.
∫

Ω

Ae(u) : e(u)dV ≤ C0,

where O is a 4-layered composite with fiber orientations 0o, 90o,−450, 450. We remark that
according to Lemma 3.2.3 and Lemma 3.2.4 the stacking sequence does not play any role. The
constant C0 is chosen as twice the initial compliance of the structure and the load g = (0,−1)
is defined according to Fig 3.6 (b) throughout the right boundary of Ω. The “hold-all” domain
Ω is meshed with 30 × 60 elements. The optimal results between the level-set method and the
SIMP method are presented in Fig. 3.7.

3.9.4 Mass minimization with a bending constraint: λ1

We solve the problem










min
O∈Uad,ξ∈Y

V (O) + γP (O)

s.t.

λ−1
1 (O, ξ) ≤ 1,

where O is a 8-layered composite laminate whose optimal stacking sequence and in-plane shape
of each ply must be determined. The load g = (0,−1) is defined according to Fig 3.6 (b), but
this time on the segment x = 2, y = [0.75, 1.25]. Ω is meshed with 51 × 102 elements. Due to
the tendency of the algorithm to eliminate the plies with certain fiber orientations, even if we
increase the modulus of the applied load, a volume constraint is applied to the orientations −45o

and 90o . The optimal results and the convergence curve are respectively exposed in Fig. 3.8
and Fig 3.9.
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(a) Topology optimization via a SIMP method with the software Optistruct. The red and blue colors represent
the highest and lowest densities of material, respectively.

(b) Initial configuration and optimal structure. The black color stands for the material meanwhile white is “void”.

Figure 3.7: Comparison between the SIMP method and the level set method for the optimal design of a
4-layered composite according to Problem 3.9.3. The fiber orientations for each set of four
figures reads: 90o upper-left, 00 lower-left, −45o upper-right and 45o lower-right.

3.9.5 Mass minimization with a bending constraint: λRF

The last problem we intend to solve is























min
O∈Uad,ξ∈Y

V (O) + γP (O)

s.t.
X (O, ξ) ≤ 1,
∫

Ω

Ae(u) : e(u)dV ≤ C0,

(3.47)

where

X =

(

∫

Ω

|(Ae(u))−xx|p
(2πb
√D11D22 +D12 + 2D33)p

dV

)1/p

is a Lp-approximation of λ−1
RF , which according to (3.8) satisfies

λ−1
RF =

∥

∥

∥

∥

∥

|(Ae(u))−xx|
(2πb
√D11D22 +D12 + 2D33)

∥

∥

∥

∥

∥

L∞(Ω)

≤ 1.

We will take p = 2, assuring in this way the differentiability of |Ae(u))−xx| at 0 (in fact we
could have taken any even exponent p). The need of adding a compliance constraint to the
problem, is due to the nature of λRF , which penalizes only the compressed zones inside the
solid, allowing the generation of zones under critical positive tensile strains (which indicate that
the structure is close to break). Ω is meshed with 51 × 102 elements. We consider two load
cases, namely
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First load case

The surface load g = (0,−1) is applied on the segment x = 2, y = [0.75, 1.25] and C0 equal
to three times the initial compliance. The numerical results and the convergence curves are
exhibited in Fig. 3.10 and Fig. 3.11, respectively.

g

Second load case

The surface load g = (0,−0.5) applied all over the right boundary of Ω and C0 defined as twice
the initial compliance. The numerical results and the convergence curves are exhibited in Fig.
3.12 and Fig. 3.13, respectively.

g

We remark that in both configurations, the constraints within (3.47) are active at the opti-
mum. Moreover, the optimal design favors the fiber orientations in 45o and −450.
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(a) Total density, iteration 0 (b) Total density, iteration 5

(c) Total density, iteration 10 (d) Final total density (iteration
45)

-45º 

-45º 

90º 

45º 

0º 

0º 

45º 

0º 

(e) Optimal stacking sequence and shape of each ply. The outer layers are upper
in the figure.

Figure 3.8: Results of Problem 3.9.4. (a),(b),(c),(d): Evolution of the total addition of densities of
each ply (darker gray means more plies superposed). (e): Optimal stacking sequence and
in-plane shape of each ply (black represents material). We remark the presence of the four
fiber orientations within the laminate thanks to the imposed constraint on their minimal
volumes. Sub-figure (d) looks thicker than the superposition of plies in (e) due to the
regularization between the the densities and the level-sets.
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(a) Evolution of the objective function
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(b) Evolution of the value of λ1

Figure 3.9: Convergence curves for Problem 3.9.4.
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(a) Total density, iteration 0 (b) Total density, iteration 5

(c) Total density, iteration 30 (d) Final total density (iteration
167)

45º 

45º 

45º 

0º 

-45º 

-45º 

-45º 

90º 

(e) Optimal stacking sequence and shape of each ply. The outer layers are upper
in the figure.

Figure 3.10: Results of Problem 3.9.5 under the first load case (concentrated vertical force).
(a),(b),(c),(d): Evolution of the total addition of densities of each ply (darker gray means
more plies superposed). (e): Optimal stacking sequence and in-plane shape of each ply
(black represents material). We remark that the optimal “long cantilever-type shape” in
(d) is due to the compliance constraint. Sub-figure (d) looks thicker than the superposition
of plies in (e) due to the regularization between the the densities and the level-sets.
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(a) Evolution of the objective function

0 50 100 150
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(b) Evolution of the value of X

Figure 3.11: Convergence curves for Problem 3.9.5 under the first load case.
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(a) Total density, iteration 0 (b) Total density, iteration 5

(c) Total density, iteration 30 (d) Final total density (iteration
167)

-45º 

-45º 

-45º 

0º 

45º 

45º 

45º 

90º 

(e) Stacking sequence and shape of each ply. The outer layers are upper in the
figure.

Figure 3.12: Results of Problem 3.9.5 under the second load case (uniform vertical force).
(a),(b),(c),(d): Evolution of the total addition of densities of each ply (darker gray means
more plies superposed). (e): Optimal stacking sequence and in-plane shape of each ply
(black represents material). Sub-figure (d) looks thicker than the superposition of plies in
(e) due to the regularization between the the densities and the level-sets.
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(a) Evolution of the objective function
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(b) Evolution of the value of X

Figure 3.13: Convergence curves for Problem 3.9.5 under the second load case.
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The topological derivative DJ of cost functionals J that depend on the stress and the dis-
placement (assuming a linearly elastic material behavior) is considered in a quite general 3D
setting where both the background and the inhomogeneity may have arbitrary anisotropic elastic
properties. A small-inhomogeneity expansion of J is mathematically justified for a wide class of
displacement and stress-based cost functionals having smooth densities and computational pro-
cedures are then discussed. Several 2D and 3D numerical examples are presented, in particular
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demonstrating the proposed formulation of DJ on practical cases involving anisotropic elasticity
and non-quadratic cost functionals.

This chapter is a joint work with Marc Bonnet and was published and submitted for publi-
cation through the following articles

• M. Bonnet, G. Delgado, The topological derivative in anisotropic elasticity, The Quar-
terly Journal of Mechanics and Applied Mathematics (2013)

• M. Bonnet, G. Delgado, The topological derivative of stress-based cost functionals in
anisotropic elasticity, submitted (2014)

4.1 Introduction

The concept of topological derivative was rigorously introduced by Sokolowski and Zochowski
in [284] and Masmoudi in [208]. In particular, it can be seen as a mathematical justification for
the topological optimization algorithm proposed by Céa et al. [76, 77], based on the combina-
tion of the shape gradient and a fixed point method, and the bubble method of Schumacher et
al. [113, 268]. The topological derivative DJ(z) quantifies the perturbation induced to a cost
functional J by the virtual creation of an object Ba(z) (e.g. a cavity or an inhomogeneity) of
vanishingly small characteristic radius a at a prescribed location z inside the solid. In structural
optimization, computing the field DJ(z) directs the algorithm towards optimal topologies by in-
dicating where creating new holes is most profitable from the featured cost functional viewpoint,
an approach used by e.g. [263, 25], and also [8] in conjunction with the shape derivative. More-
over, computational evidence [116, 209, 37] as well as more recent theoretical and experimental
studies [17, 38, 308] show that the topological derivative is also effective for flaw identification
problems. Such optimization or inverse problems usually feature cost functionals that involve
volume or surface integrals of densities that depend on the displacement solving (in the present
context) an elastostatic equilibrium problem on the reference solid. Moreover, constitutive or
flaw identification problems are sometimes formulated in terms of energy cost functionals (e.g.
of the Kohn-Vogelius type [181] or error in constitutive equation functionals [187, 106]), whose
densities depend on displacement gradients.

To establish the expression of the topological sensitivity for a given cost functional and a
chosen set of underlying geometrical and physical assumptions, one needs information about
the asymptotic behavior as a → 0 of the perturbation induced to the physical field variable
(e.g. displacement) by the virtual creation of Ba(z). An abundant literature is available on
such asymptotic analyses, see e.g. [79, 314, 212, 165, 19]. A key component for computation-
ally efficient topological derivative formulations is the adjoint solution method which, like with
other types of sensitivity analysis, provides a valuable computational shortcut by replacing the
computation of many sensitivity fields (in the present context, one sensitivity field for each vir-
tual nucleation site z used in the computation) by that of just one adjoint solution. Adjoint
solutions for topological sensitivity appeared in [123, 75] and thence found more widespread use,
see e.g. [54, 40, 116, 37]. Another important component of topological derivative formulae is
the elastic moment tensor (EMT), whose definition and properties are extensively studied in
e.g. [22] for the isotropic case and [239, 46] for the anisotropic case.

Within the present framework of linear elasticity, results available for small-inhomogeneity
asymptotic expansions, as well as their application to the concept of topological derivative,
often assume isotropic elasticity, see e.g. [284, 127, 123, 278, 54]. Comparatively scarce material
is available for the topological derivative in the more-general case of anisotropic elasticity. It
includes the formulation of the elastodynamic topological derivative for arbitrary surface-integral
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cost functionals [136, 137] and that of small-inhomogeneity solution asymptotics for anisotropic
materials [238, 193, 239, 46].

Furthermore, most of the studies so far devoted to the topological derivative and its appli-
cations consider cost functionals that depend on the primary variable, namely the displacement
field in the solid mechanics context of this work. However, some optimization problems in-
volve stress-based cost functionals, which is equivalent (for the present context of linearly elastic
solids) to considering functionals that depend on strains or displacement gradients. Examples
include topology optimization of composite structures with materials constrained by yield cri-
teria, energy-based cost functionals (e.g. [40] for Stokes flows) and flaw identification using
full-field kinematical measurements. All these types of problems may be cast as minimization
problems involving stress-based cost functionals. The asymptotic behavior of such cost func-
tionals is quite different from those depending exclusively of the displacement, due to the fact
that the strain perturbation inside an elastic inhomogeneity has a finite, nonzero limit as a→ 0,
while the asymptotics of displacement-based functionals rests upon the fact that the magnitude
of the displacement perturbation vanishes as a→ 0.

So far, only few works have investigated the small-inhomogeneity asymptotics of stress-based
functionals. The 2D isotropic case is addressed for specific stress-based functionals (elastic en-
ergy, von Mises and Drucker-Prager yield criteria) in [284, 27, 28]. Moreover, results for general
quadratic stress-dependent functionals are given in [267] within a 2D and 3D anisotropic frame-
work. The main purpose of this chapter is to formulate and justify the topological derivative for
stress-dependent functionals, in a quite general three-dimensional framework where the func-
tionals are defined in terms of domain integrals of arbitrary sufficiently smooth densities while
both the background material and the small trial inhomogeneity are allowed to have anisotropic
elastic properties. The results given herein for topological derivatives thus contain expressions
given in [284, 27, 28] as special cases. They are illustrated by computational experiments on 2D
and 3D examples involving anisotropic elasticity and stress-based quadratic or non-quadratic
cost functionals, and inspired by topology optimization or flaw identification.

The chapter is organized as follows. Section 4.2, introduces notation, collects the main facts
on the elastic transmission problem and elastic moment tensor and defines the cost functional.
The asymptotic behavior of the perturbation of the elastic transmission problem, the concept of
topological derivative and the main result are stated and established in Sections 4.3 and 4.4,
respectively. The numerical evaluation of DJ is addressed in Section 4.5, and Section 4.6 is then
devoted to the presentation and discussion of computational experiments.

4.2 Elastic transmission problem and cost functional

In order to make the contents presentation straightforward, only the 3D framework will be
thoroughly described. Remarks on the 2D case will be furnished only when a clarification is
required.

4.2.1 Notation, elastic transmission problem

Consider an elastic body occupying a smooth bounded domain Ω ⊂ R3. The anisotropic elastic
properties of the background material (against which the effect of small inhomogeneities will be
considered), assumed to be homogeneous, are characterized by the fourth-order elasticity tensor
C. The boundary ∂Ω is split according to ∂Ω = ΓD∪ΓN (where ΓD∩ΓN = ∅ and |ΓD| 6= 0), so that
a given force density g ∈L2(ΓN;R3) is applied on ΓN while a given displacement ū∈H1/2(ΓD;R3)
is prescribed on ΓD. Additionally, a body force density f assumed (for reasons given later) to
have C0,β(Ω) Hölder continuity for some β > 0 is applied to Ω.

The background solution, i.e. the displacement field arising in the reference solid due to the
prescribed excitations (f, g, ū), is defined as the solution to

div(C :e(u)) + f = 0 in Ω, t(u) = g on ΓN, u = ū on ΓD (4.1)
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where e(w) and t(w) denote the linearized strain tensor and the traction vector associated with
a given displacement w, respectively defined by

(a) e(w) =
1

2
(∇w +∇wT), (b) t(w) = (C :e(w))·n (4.2)

(with n the unit outward normal to Ω). In (4.2b) and hereinafter, symbols ’ · ’ and ’ : ’ denote
single and double inner products, e.g. (E ·x)i = Eijxj and (C :E)ij = CijkℓEkℓ, with Einstein’s
convention of summation over repeated indices implicitly used throughout.

Alternatively, the background displacement is governed by the weak formulation

Find u ∈W (ū), 〈u,w〉CΩ = F (w), ∀w ∈W0, (4.3)

where 〈u,w〉CD denotes the bilinear elastic energy form associated to given domain D ⊂R3 and
elasticity tensor C, i.e.:

〈u,w〉CD :=

∫

D
e(u) :C :e(w) dV =

∫

D
∇u :C :∇w dV (4.4)

(with the second equality holding by virtue of the well-known major symmetry of C), the linear
form F associated to the loading is defined by

F (w) =

∫

Ω
f ·w dV +

∫

ΓN

g ·w dS, (4.5)

and having introduced, for given ū ∈ H1/2(ΓD;R3), the spaces W (ū) and W0 of displacement
fields that are kinematically admissible with respect to arbitrary and homogeneous prescribed
Dirichlet data, respectively, i.e.:

W (ū) :=
{

v ∈H1(Ω;R3), v= ū on ΓD

}

, W0 := W (0). (4.6)

The C0,β(Ω;R3) regularity assumption on f , which is stronger than the more-usual assumption
f ∈L2(Ω;R3), ensures (e.g. from the properties of elastic volume potentials, see [186], Thm. 10.4)
that u is in C2,β(D;R3) for any subset D ⋐ Ω. It is made in order to later permit Taylor
expansions of displacements or strains about selected internal points.

Well-known properties of elasticity tensors are now recalled for convenience. For general
anisotropic materials, the elasticity tensor C is positive definite (in the sense that E :C :E > 0 for
any symmetric second-order tensor E ∈R3×3

sym, E 6= 0) and has the major and minor symmetries
(i.e. Cijkℓ = Ckℓij = Cjikℓ = Cijℓk); it may thus involve up to 21 independent elastic constants. For
isotropic materials characterized by their bulk modulus κ and shear modulus µ, C is given by

C = 3κJ + 2µK, (4.7)

where J ,K are fourth-order tensors respectively defined by J = (1/3)I⊗I and K = I−J (with
I and I denoting the second-order identity and the fourth-order identity for symmetric tensors,
respectively), so that E = J :E+K :E is the decomposition of a symmetric second-order tensor
E ∈R3×3

sym into its spherical and deviatoric parts.

4.2.2 Transmission problem for a small trial inhomogeneity

Now, consider a single small elastic inhomogeneity located at z ∈Ω, of characteristic linear size
a, occupying the domain

Ba = z + aB, (4.8)

where B ⊂ R3 is a bounded smooth domain and a is small enough to have B̄a ⋐ Ω. The
inhomogeneity has anisotropic properties characterized by the elasticity tensor C⋆, so that the
elastic properties of the whole solid are defined by the tensor-valued field Ca given by

Ca = (1− χ(Ba))C + χ(Ba)C⋆ = C + χ(Ba)∆C, (4.9)



4.2. ELASTIC TRANSMISSION PROBLEM AND COST FUNCTIONAL 155

χ(D) being the characteristic function of the domain D and ∆C := C⋆−C denoting the elastic
tensor perturbation.

The displacement field ua ∈ W (ū) arising in the solid containing the small inhomogeneity
due to the prescribed excitations (f, g, ū) solves the transmission problem

div(Ca :e(ua)) + f = 0 in Ω, (C :e(ua))·n = g on ΓN, ua = ū on ΓD. (4.10)

or, equivalently, the weak formulation

Find ua ∈W (ū), 〈ua, w〉CaΩ = F (w), ∀w ∈W0. (4.11)

Either formulation (4.10) or (4.11) implicitly enforces, by virtue of its distributional inter-
pretation, the perfect-bonding relations ua|+ = ua|− and (C : e(ua)) ·n|+ = (C⋆ : e(ua)) ·n|−
on ∂Ba, where the ± subscripts indicate limiting values from outside and inside Ba, respec-
tively, and n is the unit outward normal vector to ∂Ba. The solution ua of (4.11) a priori
belongs to H2

loc

(

(Ω\B̄a)∪Ba ;R3
)

for f ∈ L2(Ω;R), however, since we suppose f ∈ C0,β(Ω;R3),
ua ∈ C2,β(D;R3) for any subset D ⋐

(

(Ω\ B̄a)∪Ba
)

.
The transmission problem (4.10) can alternatively be formulated in terms of the displacement

perturbation va := ua− u rather than the total displacement ua. Subtracting (4.3) from the
corresponding weak formulation of (4.10) yields the following weak formulation for va:

Find va ∈W0, 〈va, w〉CaΩ = −〈u,w〉∆C
Ba
, ∀w ∈W0. (4.12)

C

BaΩ

C⋆

a

Figure 4.1: Transmission problem for a small inclusion.

Free-space transmission problem (FSTP). The auxiliary problem of a perfectly-bonded
inhomogeneity (B, C⋆) embedded in an infinite elastic medium Ω = R3 subjected to a uniform
remote stress will play an important role in the sequel and is thus given now for later reference
together with some additional useful notation. For an arbitrary constant second-order tensor
E ∈R3×3, let ϕ[E] denote the linear vector-valued function defined by

ϕ[E](ξ) :=E ·ξ. (4.13)

Let the background solution u be chosen as u=ϕ[E], noting that div(C :∇ϕ[E]) = 0. The FSTP
consists in finding the displacement field uB[E] such that

div
(

CB :e(uB[E])
)

= 0 in R3, uB[E](ξ)− ϕ[E](ξ) = O(|ξ|−2) (|ξ| → ∞) (4.14)

where
CB = (1− χ(B))C + χ(B)C⋆ = C + χ(B)∆C

It can be recast into the following weak formulation for the displacement perturbation vB[E] :=
uB[E]− ϕ[E]:

Find vB[E]∈W∞, 〈vB[E], w〉CB
R3 = −〈ϕ[E], w〉∆C

B , ∀w ∈W∞, (4.15)

with the function space W∞ defined by W∞ =
{

w ∈ L2
loc(R

3;R3),∇w ∈ L2(R3;R3×3)
}

. Note
that 〈ϕ[E], w〉∆C

B = 〈ϕ[ET], w〉∆C
B , implying that vB[E] solving (4.15) depends only on the sym-

metric part Esym :=
1

2
(E+ET) ∈ R3×3

sym of E. The FSTP (4.14) is analytically solved for an

ellipsoidal inhomogeneity in Eshelby’s landmark paper [114].
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4.2.3 Elastic moment tensor

The elastic moment tensor (EMT) [22, 239], which will be seen to play an important role in the
small-inhomogeneity asymptotics of cost functionals, is now defined.

Definition 4.2.1 (elastic moment tensor). Let vB[E] denote the solution to the FSTP (4.15)
for given E ∈R3×3. The (fourth-order) elastic moment tensor (EMT) A is defined by

A :E =

∫

B
∆C :∇uB[E] dV =

∫

B
∆C : (E +∇vB[E]) dV ∀E ∈R3×3. (4.16)

Remark 4.2.2. In [22, 19], the EMT is defined, for isotropic materials, in terms of the densities
of two elastic layer potentials that are used there to formulate the FSTP (4.14). That definition
in fact coincides with the present definition (4.16). To see this, integrating (4.16) by parts, one
finds

E′ :A :E =

∫

∂B

(

E′ : (C⋆ − C)·n
)

·uB[E] dS =

∫

∂B

(

t⋆
(

ϕ[E′]
)

− t
(

ϕ[E′]
)

)

·uB[E] dS.

This identity coincides (upon adaptation to the present notations) with the left and right con-
traction of eq. (10.12) in Lemma 10.3 of [19] by two tensors E,E′ ∈R3×3.

Properties of the elastic moment tensor. The main known properties of the EMT are
now collected.

Proposition 4.2.3 (symmetry). The elastic moment tensor A has major and minor symme-
tries: for any pair of second-order tensors E,E′ ∈R3×3, one has the major symmetry

E′ :A :E = E :A :E′ (4.17)

and the minor symmetries

(i) E′ :A :E = E′ :A :ET, (ii) E′ :A :E = E′T :A :E. (4.18)

Proof. First, taking the left inner product of Eq. (4.16) by E′, one obtains

E′ :A :E = E′ :
{

∫

B
∆C :∇vB[E] dV

}

+ E′ :
{

∫

B
∆C dV

}

:E (4.19)

The second term of the above right-hand side is clearly symmetric in E,E′ due to the major
symmetry of ∆C = C⋆−C, so the symmetry of the first term remains to be proved. To this aim,
one starts by noting that, by virtue of definition (4.4) of 〈·, ·〉∆C

B , one has

E′ :
{

∫

B
∆C :∇vB[E] dV

}

= 〈ϕ[E′], vB[E]〉∆C
B . (4.20)

Then, using variational formulation (4.15) for vB[E] with w= vB[E′], one has

−〈ϕ[E′], vB[E]〉∆C
B = 〈vB[E′], vB[E]〉CB

R3

= 〈vB[E], vB[E′]〉CB
R3 = −〈ϕ[E], vB[E′]〉∆C

B

(using the symmetry of 〈·, ·〉CB
R3) which, combined with (4.20) written for E,E′ and E′, E, yields

the desired remaining symmetry

E′ :
{

∫

B
∆C :∇vB[E] dV

}

= E :
{

∫

B
∆C :∇vB[E′] dV

}

(4.21)

The major symmetry (4.17) follows from (4.19), (4.21) and the known major symmetry of ∆C.
Moreover, the minor symmetry (4.18i) follows immediately from the corresponding minor

symmetry of ∆C. Finally, (4.17) and (4.18i) imply (4.18ii).
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Proposition 4.2.4 (scaling). Let B0 have the same shape as B and unit volume (i.e. B0 =
|B|−1/3B), and assume that the contrast ∆C is uniform. Then, one has

A(B, C, C⋆) = |B|A(B0, C, C⋆) (4.22)

Proof. Denote by vB0 the solution to problem (4.14) for the inhomogeneity B0, and let λ =
|B|1/3 be the linear scaling parameter such that B = λB0. Then, on setting (ξ̄, x̄) = λ(ξ̄0, x̄0)

in (4.42), invoking the homogeneity of ∇G∞ and essentially repeating arguments already used
in the asymptotic analysis of Sec. 4.3.3, one easily finds that vB(ξ̄) = λvB0(ξ̄0), and hence
∇vB(ξ̄) = ∇vB0(ξ̄0). Exploiting this remark, and setting ξ̄ = λξ̄0, in (4.16) then yields the
desired result (4.22).

The next important property of A to consider is its sign-definiteness. It can conveniently be
formulated in terms of the generalized eigenvalue problem

(C⋆ − ΛC) :E = 0 (E ∈R3×3
sym), (4.23)

which admits six real and strictly positive eigenvalues Λ1, . . . ,Λ6 and associated eigentensors
E1, . . . E6 ∈ R3×3

sym, by virtue of C⋆ and C defining positive-definite quadratic forms over the six-
dimensional vector space R3×3

sym (i.e. (4.23) could be recast as a generalized eigenvalue problem
for two symmetric positive definite 6×6 matrices, see [215]).

Proposition 4.2.5 (sign-definiteness). The elastic moment tensor A is positive definite if Λi>
1 (1 ≤ i ≤ 6), and negative definite if Λi < 1 (1 ≤ i ≤ 6). Moreover, if Λi = 1 for some i, then
A :Ei = 0, i.e. Ei is in the null space of A.
Proof. From definition (4.16), for any E ∈ R3×3, one has E : A : E = |B|E : ∆C : E +
〈ϕ[E], vB[E]〉∆C

B . This proof now exploits two different reformulations of E : A : E. For a

first reformulation, setting w = vB in (4.15), one has 〈ϕ[E], vB[E]〉∆C
B = −〈vB[E], vB[E]〉CBB , and

hence
E :A :E = |B|E :∆C :E − 〈vB[E], vB[E]〉CBB . (4.24)

For a second reformulation of E : A : E, let Z := C⋆−1 : ∆C : E ∈ R3×3
sym, so that 〈ϕ[Z], w〉CBB =

〈ϕ[E], w〉∆C
B holds for any w ∈H1(B;R3), and define v̂B[E] := vB[E]+ϕ[Z] in B. Then:

〈ϕ[E], vB[E]〉∆C
B = 〈ϕ[Z], vB[E]〉CBB

= 〈v̂B[E]−vB[E], vB[E]〉CBB
= 〈v̂B[E], v̂B[E]〉CBB − 〈v̂B[E], ϕ[Z]〉CBB − 〈vB[E], vB[E]〉CBB (4.25)

Now, setting again w= vB in (4.15), one obtains

〈vB[E], vB[E]〉CBB = −〈vB[E], vB[E]〉CB
R3\B

− 〈ϕ[E], vB[E]〉∆C
B .

Inserting this identity in the last equality of (4.25), using 〈v̂B[E], ϕ[Z]〉CBB = 〈v̂B[E], ϕ[E]〉∆C
B and

noting that |B|E :∆C :E = 〈ϕ[E], ϕ[E]〉∆C
B , the sought reformulation is finally:

E :A :E = 〈v̂B[E], v̂B[E]〉CBB + 〈vB[E], vB[E]〉CB
R3\B

+ 〈ϕ[E], ϕ[E−Z]〉CBB (4.26)

Let now E be an eigentensor associated vith eigenvalue Λ for problem (4.23). First, (4.23) then
implies E : ∆C :E = (Λ−1)E : C :E; moreover, the last term in the right-hand side of (4.24) is
non-positive. Therefore, E :A :E < 0 for any eigenvalue Λ< 1.

Then, to exploit the second reformulation (4.26), a simple derivation yields

〈ϕ[E], ϕ[E−Z]〉CBB = |B|E :∆C :C⋆−1 :C :E = |B|(Λ−1)E :C :C⋆−1 :C :E.

The above quantity is positive for Λ> 1 while the other terms in the right-hand side of (4.26)
are non-negative. Therefore, E :A :E > 0 for any eigenvalue Λ> 1.

Finally, the proof of Proposition 4.2.5 is completed by noting that if Λ = 1, an eigenvector
E verifies ∆C :E = 0. This implies that E :A :E = |B|E :∆C :E + 〈ϕ[E], vB[E]〉∆C

B = 0.



158 CHAPTER 4. THE TOPOLOGICAL DERIVATIVE IN ANISOTROPIC ELASTICITY

Remark 4.2.6 (isotropic materials). If both matrix and inhomogeneity materials are isotropic,
C and C⋆ are of the form (4.7) with respective moduli pairs κ, µ and κ⋆, µ⋆. The generalized
eigenvalue problem (4.23) then reads

[

3(κ⋆ − Λκ)J + 2(µ⋆ − Λµ)K
]

:E = 0

or, using the relations J :J = J , K :K = K and J :K = 0 verified by J and K,

(κ⋆ − Λκ)J :E = 0 or (µ⋆ − Λµ)K :E = 0.

Hence there are two distinct eigenvalues: (i) Λ1 = κ⋆/κ (multiplicity 1) with eigentensor E1 = I
since J : E = (1/3)tr(E)I for any E ∈ R3×3

sym, and (ii) Λ2 = µ⋆/µ (multiplicity 5). Proposi-
tion 4.2.5 for this case essentially correspond to Theorem 5.4 of [22].

Remark 4.2.7. Proposition 4.2.3, together with the inequalities

E :C :C⋆−1 :∆C :E ≤ E :A :E ≤ E :∆C :E ∀E ∈R3×3
sym

which imply Proposition 4.2.5, constitute Proposition 1 of [46]. Moreover, it is shown in [239]
that (i) positive definiteness of C − C⋆ implies that of −A (Theorem 2.7) and (ii) positive def-
initeness of C−1 − C⋆−1 implies that of A (Theorem 2.8). One easily check that cases (i) and
(ii) are respectively equivalent to the condition Λi > 1 (1 ≤ i ≤ 6) or Λi < 1 (1 ≤ i ≤ 6) of
proposition 4.2.5.

4.2.4 Cost functional

Cost functionals of the form

J(Ca) = Ja(ua,∇ua) with Ja(u, d) =

∫

Ω
ψa
(

x, u(x), d(x)
)

dV (x) +

∫

∂Ω
ψS(x, u(x)) dS(x)

(4.27)
are considered, where ψS : Ω×R3 → R and the density ψa : Ω×R3×R3×3 → R is defined by

ψa = (1− χ(Ba))ψ + χ(Ba)ψ
⋆ = ψ + χ(Ba)∆ψ, (4.28)

with functions ψ, ψ⋆ (hence also ∆ψ := ψ⋆−ψ) and ψS assumed to be twice differentiable in all
their arguments. Moreover, all second-order derivatives of ψS are assumed bounded meanwhile
those of ψ and ψ⋆ are assumed to have C0,γ(Ω×R3×R3×3) Hölder regularity for some γ > 0.We
will denote by x ∈ Ω, u ∈ R3, d ∈ R3×3 the generic arguments of a density ψ(x, u, d). Then,
∂xψ, ∂uψ, ∂dψ will denote the partial derivatives with respect of the corresponding arguments,
with higher-order partial derivatives denoted similarly, e.g. ∂2udψ (with similar notations for ψ⋆

and ψS). The assumed Hölder regularity of ψ can thus be expressed as the existence of a finite
constant K such that, for every combination of indices i, j = x, u, d ,

sup
x0∈Ω
u0∈R3

d0∈R3×3

∣

∣∂2ijψ(x0, u0, d0)
∣

∣+ sup
(x0,x1)∈Ω
(u0,u1)∈R3

(d0,d1)∈R3×3

∣

∣∂2ijψ(x0, u0, d0)− ∂2ijψ(x1, u1, d1)
∣

∣

(

|x0 − x1|γ + |u0 − u1|γ + |d0 − d1|γ
) ≤ K,

with a similar inequality holding for ψ⋆. We note that as well as ∂2ijψS , the above assumption

implies that ∂2ijψ and ∂2ijψ
⋆ are bounded over Ω×R3×R3×3. Moreover, applying repeatedly

Taylor theorem to ψS (w.r.t. u) on both sides of the inequality |∂2uuψS | ≤ C, ψS obeys the
following growth conditions

|ψS(x, u)| ≤ C(1 + |u|2), |∂uψS(x, u)| ≤ C(1 + |u|) |∂uuψS(x, u)| ≤ C. (4.29)
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Owing to the above hypothesis, we state that the criterion Ja(ua,∇ua) is well defined. In-
deed, ua is continuous in Ω (thus bounded), so the volume integral in (4.27) is finite in virtue
of the continuity of ψa. Besides, ua ∈ H2(Ω\Ba), so since ∂Ba ∩ ∂Ω = ∅, the trace of ua on ∂Ω
is square integrable. The finiteness of the surface integral in (4.27) thus stems from estimates
(4.29).

The partial directional derivatives ∂uJa and ∂dJa of Ja with respect to its first and second
arguments for all w ∈W0 and h∈L2(Ω;R3×3) are defined, for later use, by

〈

∂uJa(u, d), w
〉

=

∫

Ω\Ba

∂uψ(x, u, d)·w dV +

∫

Ba

∂uψ
⋆(x, u, d)·w dV +

∫

∂Ω
∂uψS(x, u) · w dS,

〈

∂dJa(u, d), h
〉

=

∫

Ω\Ba

∂dψ(x, u, d) :h dV +

∫

Ba

∂dψ
⋆(x, u, d) :h dV.

(4.30)
These two directional derivatives will play an important role in the definition of the adjoint
state.

Remark 4.2.8. The choice of the variable ∇u instead of the classical strain e(u) in (4.27) is
completely arbitrary. One could have perfectly chosen e(u) instead. The only mayor difference
stands for rigid body motion (translation and rotation) for which e(u) = 0.

Remark 4.2.9. The reason of why the density ψS does not depend on d is due to the fact that
the hypothetic term of the partial directional derivative ∂dJa(u, d) involving ψS would read

∫

∂Ω
∂dψS(x, u, d) : h dS(x), (4.31)

which is not properly defined for h ∈ L2(Ω;R3×3) (in fact one can not define the trace of h
on ∂Ω!). As a consequence, the regularity of the adjoint state, as it will be defined in Section
4.4, would be lesser than required. We avoid this unnecessary complication by removing the
dependence of ψS w.r.t. the variable d. However, cases when the adjoint state is not regular
have been treated in classical control theory [198], notably when the observations depend on the
normal gradient of the state variable on the boundary.

Remark 4.2.10. The assumed Hölder and boundedness conditions on the cost functional den-
sities might seem restrictive, but are satisfied by a number of cost functions often used in appli-
cations (compliance, energy based functionals, least squares misfit functionals, yield functions).
Examples include (i) all quadratic functions of d, and (ii) the useful penalization function

ψ(d) = Ψn(q(d)), Ψn(t) :=
(

1 + tn
)1/n − 1 (4.32)

(where q is any quadratic function of d), introduced in [24] to approximate pointwise yield func-
tions with thresholds, whose derivatives Ψ

′′

n and Ψ
′′′

n are bounded over R+ (one finds e.g. that
0 < |Ψ′′

n| ≤ 21/n(n− 1) for any t > 0, n > 1). Case (ii) is typically used with q(∇u) chosen as
the appropriate squared (von Mises, Hill-Tsai, Drucker-Prager. . . ) yield function, normalized
so that the criterion reads q(∇u)≤ 1.

4.3 Asymptotic behavior of the displacement

In the present section, some results on the small-inhomogeneity asymptotic behavior of ua
[12, 46] are exposed. To facilitate this task, the transmission problem (4.12) is first reformulated
as a domain integral equation involving a domain integral operator whose support is the small
inhomogeneity Ba.
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4.3.1 Elastostatic Green’s tensor

Let the elastostatic Green’s tensor G(ξ, x) be defined by

div
(

C :e
(

G(·, x)
)

)

+ δ(·−x)I = 0 in Ω,

G(·, x) = 0 on ΓD, t
(

G(·, x)
)

= 0 on ΓN (x∈Ω), (4.33)

i.e. G(·, x) = ek⊗Gk(·, x) gathers the three linearly independent elastostatic displacement fields
Gk(·, x) resulting from unit point forces δ(·−x)ek applied at x∈Ω along each coordinate direction
k and fulfilling the homogeneous boundary conditions on ∂Ω implied by the definition of W0.

Moreover, the ensuing analysis will be facilitated by splitting the elastostatic Green’s tensor
according to

G(ξ, x) = G∞(ξ−x) +GC(ξ, x) (4.34)

where G∞(r) is the (singular) elastostatic full-space Green’s tensor, such that

div
(

C :e(G∞)
)

+ δI = 0 (in R3), |G∞(r)| → 0 (|r| → ∞), (4.35)

and the complementary Green’s tensor GC is bounded at ξ = x (and in fact is C∞ for ξ, x ∈ Ω
by virtue of being the solution of an elastostatic boundary-value problem with regular boundary
data and zero body force density). The full-space Green’s tensor is given by the inverse Fourier
integral [227]

G∞(r) =
1

(2π)3

∫

R3

exp(iη ·r)N(η) dV (η) (r ∈R3 \{0}), (4.36)

where, for given η ∈ R3, the second-order tensor N(η) is given by N(η) = K−1(η) in terms of
the Christoffel acoustic tensor K(η), defined by

Kik(η) = Cijkℓηjηℓ. (4.37)

K(η) is invertible for any η 6= 0 and positive definite elasticity tensor C. Moreover, G∞ has the
following homogeneity property, which plays an important role in the sequel:

Lemma 4.3.1. G∞ is a positively homogeneous tensor-valued function of degree -1. Hence, for
any r ∈R3 \{0} and λ∈R\{0}, G∞ and ∇G∞ verify

G∞(λr) = |λ|−1G∞(r), ∇G∞(λr) = |λ|−3λ∇G∞(r) (4.38)

Proof. Replacing r with λr and performing the change of variable η = λ−1η′ in (4.36), the
homogeneity property of G∞ follows from using (i) N(η) = λ2N(η′) by virtue of K being
homogeneous of degree 2 in η (and hence N being homogeneous of degree -2), and (ii) dV (η) =
|λ|−3 dV (η′).

4.3.2 Domain integral equation formulation

Lemma 4.3.1 implies that both G(·, x) and∇G(·, x) have an integrable singularity at x. By virtue
of decomposition (4.34) and the known C∞ regularity of G∞ away from the origin, G(·, x) hence
belongs to W 1,1(Ω;R3×3). On applying equations (4.33) in the sense of distributions for a trial
displacement w ∈W0∩C1(ω) (where ω is a neighbourhood of x) and integrating by parts the
resulting first term over Ω, the Green’s tensor is found to verify the identity

〈G(·, x), w〉CΩ = w(x) x∈Ω, ∀w ∈C1
c (Ω), (4.39)

whose left-hand side is well-defined. Now, take x ∈ Ba∪ (Ω\ B̄a). Setting w =G(·, x) in (4.12)
(noting that the bilinear strain energy integral remains well-defined by virtue of u and va having
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C1 regularity close enough to x) and using identity (4.39) with w = va (by the same latter
argument), the displacement perturbation va is found to satisfy

Find va ∈W0, La[va](x) = −〈u,G(·, x)〉∆C
Ba
, ∀x ∈ Ba∪ (Ω\ B̄a) (4.40)

where the linear integral operator La is defined by

La[v](x) = v(x) + 〈v,G(·, x)〉∆C
Ba

(4.41)

Equation (4.40) is readily recognized as a compactly-written form of the Lippmann-Schwinger
domain integral equation governing the elastostatic inhomogeneity problem. If x ∈ Ba, (4.40)
can be solved for va inside Ba. Then, if x ∈ Ω \ B̄a, (4.40) becomes a representation formula,
expressing va outside of Ba explicitly knowing va inside Ba.

Domain integral equation formulation for the FSTP. In a similar fashion, the free-space
transmission problem (4.14) can be recast as a domain integral equation by setting w=G∞(·−x)
in (4.15), to obtain

Find vB ∈W∞, LB
[

vB[E]
]

(x) = −〈ϕ[E], G∞(· − x)〉∆C
B , ∀x ∈ B∪ (R3 \B̄) (4.42)

with the linear integral operator LB defined by

LB[v](x) = v(x) + 〈v,G∞(·−x)〉∆C
B . (4.43)

The EMT (Sec. 4.2.3) then manifests itself naturally when considering the far-field behavior of
vB[E]. Indeed, from (4.42), vB[E](x̄) is given, for x̄ 6∈ B̄, by the representation formula

vB[E](x̄) = −
∫

B
∇G∞(· − x̄) :∆C : (E +∇vB[E]) dV (4.44)

(having used∇ϕ[E] = E). Applying a Taylor expansion to∇G∞(ξ̄−x̄) about ξ̄ = 0 and invoking
the homogeneity property (4.38) yields ∇G∞(ξ̄ − x̄) = −∇G∞(x̄) + O(|x|−3) (|x| → +∞).
Consequently, the far-field behavior of vB[E](x) as given by (4.44) is obtained as

vB[E](x) = −∇G∞(x) :A :E +O(|x|−3) (|x| → +∞) (4.45)

4.3.3 Asymptotic behavior of va

The leading asymptotic behavior of va is now investigated, which naturally leads to seek the
limiting form for a → 0 of integral equation (4.40). Moreover, since equation (4.40) involves
integrals over the vanishing inhomogeneity Ba, it is convenient to rescale points ξ, x ∈Ba, and
consequently the differential volume element, according to:

(a) (ξ, x) = z + a(ξ̄, x̄), (b) dV (ξ) = a3 dV (ξ̄) (ξ ∈Ba, ξ̄ ∈B). (4.46)

This scaling is then introduced into (4.40). Invoking the decomposition (4.34) of G(ξ, x), the
homogeneity property (4.38) and the boundedness of GC in Ba, one has

∇1G(ξ, x) = a−2∇G∞(ξ̄− x̄) +∇1GC(z, z) + o(1) (4.47)

Moreover, introducing the rescaled coordinates (4.46a) into va and u and setting v̄a(ξ̄) := va(z+
aξ̄), one obtains ∇va(ξ) = a−1∇v̄a(ξ̄) and ∇u(ξ) = ∇u(z) + O(a). Using these expansions,
together with (4.47) and (4.46b), in both sides of equation (4.40) then yields the expansions

La[va](x) = v̄a(x̄) + 〈v̄a, G∞(·, x̄)〉∆C
B +O

(

a2‖∇v̄a‖L2(B)

)

+ o(‖∇v̄a‖L2(B))

= LB[v̄a](x̄) + o(‖∇v̄a‖L2(B)) and

〈u,G(·, x)〉∆C
Ba

= a〈ϕ[∇u(z)], G∞(·, x̄)〉∆C
B + o(a).
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By virtue of the above expansions, the integral equation resulting from retaining only the contri-
butions of lowest order in a in (4.40) is thus found to coincide with the integral equation (4.42)
governing the free-space transmission problem with E = a∇u(z). This suggests setting va in
the form

va(x) = avB[∇u(z)]
(x−z

a

)

+ δa(x) x∈Ba

The function avB[∇u(z)]
(

(x−z)/a
)

indeed defines the leading contribution to the so-called inner
expansion of va, with the remainder δa only contributing higher order terms in the limit a→ 0,
as stated in Lemma 4.3 in [12] (we retrace the proof of the 3D case for the sake of clarity)

Lemma 4.3.2 (asymptotic behavior of va). Let the inner approximation ṽa to va be defined by

ṽa(x) = avB[∇u(z)]
(x−z

a

)

, (4.48)

where vB[∇u(z)] solves the FSTP (4.15) with E = ∇u(z). Moreover, for any cut-off function
θ ∈ C∞

c (Ω) such that θ ≡ 1 in a neighborhood D of z, let δa ∈ H1(Ω;R3) be defined by

va = θṽa + δa (4.49)

Assume also that f has C0,β regularity for some β > 0 in a neighbourhood of z. Then there
exists a constant C > 0 independent of a such that

(a) ‖∇ṽa‖L2(Ω;R3×3) ≤ Ca3/2, (b) ‖ṽa‖L2(Ω;R3) ≤ Ca5/2, (c) ‖δa‖H1(Ω;R3) ≤ Ca5/2 (4.50)

and
(a) ‖∇va‖L2(Ω;R3×3) ≤ Ca3/2, (b) ‖va‖L2(Ω;R3) ≤ Ca5/2. (4.51)

Moreover
(a) ‖∇ṽa‖L∞(Ω\D;R3×3) ≤ Ca3, (b) ‖va‖L2(∂Ω;R3×3) ≤ Ca3. (4.52)

Proof. Estimates (4.50) of ṽa are found first by rescaling (for a small enough)

‖ṽa‖2L2(Ω) = a2
∫

Ω

∣

∣

∣ vB[∇u(z)]
(ξ−z

a

) ∣

∣

∣

2
dV (ξ) = a5

∫

(Ω−z)/a
|vB[∇u(z)](ξ̄)|2 dV (ξ̄)

≤ a5
∫

R3

|vB[∇u(z)](ξ̄)|2 dV (ξ̄) = Ca5

(since the far-field behavior (4.14) implies that vB is square-integrable). Similarly,

‖∇ṽa‖2L2(Ω) = a2
∫

Ω

∣

∣

∣∇ξvB[∇u(z)]
(ξ−z

a

) ∣

∣

∣

2
dV (ξ) ≤ a3

∫

R3

|∇vB[∇u(z)](ξ̄)|2 dV (ξ̄) = Ca3

The estimate on the boundary ‖va‖L2(∂Ω) ≤ a3 follows from (4.40), thanks to the C∞ regularity

of G on ∂Ω when x /∈ Ba. Furthermore, since vB = O(|x|−2) and ∇vB = O(|x|−3) at infinity by
virtue of (4.45), one also deduces by rescaling that

‖ṽa‖L∞(Ω\D) ≤ Ca3 and ‖∇ṽa‖L∞(Ω\D) ≤ Ca3. (4.53)

Attention is now directed towards the estimate (4.50) on δa. Combining (4.12) and a rescaled
version of (4.15), the weak formulation satisfied by δa is found as

Find δa ∈W0, 〈δa, w〉CaΩ = −〈u− ϕ[∇u(z)], w〉∆CBa
−G(w), ∀w ∈W0

where G(w) is defined as

G(w) = 〈θṽa, w〉CaΩ + 〈ϕ[∇u(z)], θw〉∆C
Ba
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(having used that θ = 0 in R3 \Ω and θ = 1 in Ba). Taking w = δa, one then has the following
estimate using the coercive bilinear form (4.4) and the triangular inequality

C‖∇δa‖2L2(Ω) ≤ |〈δa, δa〉CaΩ | ≤ |〈u− ϕ[∇u(z)], δa〉∆CBa
|+ |G(δa)|. (4.54)

The local smoothness assumption on f implies that u is C2 at z. Applying the mean value
theorem, one then has

|∇u(x)−∇u(z)| ≤ Ca in Ba,

so the first term in the right-hand side of (4.54) can be bounded as

| 〈u− ϕ[∇u(z)], δa〉∆CBa
| ≤ Ca5/2‖∇δa‖L2(Ω).

Moreover, one has

G(δa) = 〈θṽa, δa〉CaΩ − 〈ṽa, θδa〉CaΩ =

∫

Ω

{

∇δa :Ca : (ṽa⊗∇θ)−∇ṽa :Ca : (δa⊗∇θ))
}

dV.

Hence, since ∇θ vanishes in a neighborhood D of Ba, by estimates (4.53), it follows that

|G(δa)| ≤ C
{

‖ṽa‖L∞(Ω\D) + ‖∇ṽa‖L∞(Ω\D)

}

‖∇θ‖L2(Ω\D)‖∇δa‖L2(Ω)

≤ Ca3‖∇δa‖L2(Ω).

Finally, from (4.54), the following global estimate holds:

‖∇δa‖L2(Ω) ≤ C(a3 + a5/2) ≤ Ca5/2,

completing the proof by the Poincaré inequality.

We finish this section with the following lemma that relates ua and the elastic moment tensor
A

Lemma 4.3.3. For any vector field w ∈C2(D;R3), where D⊂Ω is a neighbourhood of Ba, one
has

〈w, ua〉∆C
Ba

= a3∇w(z) :A :∇u(z) + o(a3) (4.55)

where A is the elastic moment tensor defined by (4.16).

Proof. one notes that the following expansion is available for ∇w:

∇w(ξ) = ∇w(z) +O(|ξ−z|) = ∇w(z) +O(a|ξ̄|) (ξ ∈Ba).

Moreover, a similar expansion is available for u, while (4.49) yields

∇va(ξ) = ∇vB[∇u(z)](ξ̄) +∇δa(ξ) (ξ ∈Ba, ξ̄ ∈B).

Using the above expansions and rescaling (4.46), one obtains

〈w, ua〉∆C
Ba

= a3∇w(z) :
{

∫

B
∆C :

(

∇u(z) +∇vB[∇u(z)](ξ̄)
)

dV (ξ̄)
}

+ 〈w, δa〉∆C
Ba

+O(a4)

= a3∇w(z) :A :∇u(z) + 〈w, δa〉∆C
Ba

+O(a4)

using definition (4.16) of the EMT. Finally, the estimate

〈w, δa〉∆C
Ba
≤ C‖∇w‖L2(Ba)‖∇δa‖L2(Ba) ≤ Ca3/2‖δa‖H1(Ω) ≤ Ca3/2a5/2 = Ca4 = o(a3)

holds for some constant C by virtue of (4.50). This completes the proof.
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Remark 4.3.4. As also remarked in [12], ṽa provides the leading contribution to the inner ex-
pansion of va in the sense that (i) θ = 1 in Ba and can be made to vanish outside of an arbitrarily
small neighbourhood of Ba and (ii) ‖∇δa‖L2(Ω) = O(a5/2) while ‖∇ṽa‖L2(Ω) = O(a3/2).

Remark 4.3.5. Lemma 4.3.2, established assuming C to be constant (homogeneous background
material), is expected to also hold for heterogeneous elastic properties that are smooth in a fixed
neighbourhood of z (with the EMT then defined in terms of C(z)). Both [79] for the electrostatic
case and [46] for the elastic case assume smooth heterogeneous background properties in Ω, the
former emphasizing that the assumption may be significantly weakened. A numerical experiment
involving a piecewise constant C for non-destructive testing is shown in Section 4.6.

Remark 4.3.6. Expansion (4.49) is the specialization to diametrically-small inhomogeneities
of expansions obtained by [46] for more general classes of anisotropic inhomogeneities with van-
ishing measure |Ba| (e.g. thin or elongated inhomogeneities).

4.4 Topological derivative

In this section, we state our main result (Theorem 4.4.2) and give its proof in Section 4.4.1. The
generalization to piecewise-regular densities ψ and the regularity of the adjoint state are then
addressed in Sections 4.4.2 and 4.4.3, respectively. Finally, particular instances of Theorem 4.4.2
are discussed in Section 4.4.4. In order to ease the exposition, we recall Definition 1.1.22, but
this time, making explicit the dependence w.r.t. the elastic tensor Ca.

Definition 4.4.1 (Topological derivative). Assume that J(Ca) in (4.27) can be expanded with
respect the inclusion Ba (4.8) in the form

J(Ca) = J(C) + δ(a)DJ(z) + o(δ(a)), (4.56)

where z is the center of the inclusion Ba, the elastic tensors Ca, C (4.9) correspond to the perturbed
and non-perturbed transmission problems (4.10) and (4.1), and δ(a) is assumed to vanish as
a → 0 and characterizes the small-inhomogeneity asymptotic behavior of J(Ca). Then, the
coefficient DJ(z), which also depends a priori on the shape B and the moduli C, C⋆, is called the
topological derivative of J at z ∈Ω.

Theorem 4.4.2. Assume a three-dimensional setting as laid out in Section 4.2 and so as to ease
the notation, denote vB := vB[∇u(z)]. Any cost functional J of the form (4.27) and fulfilling
the assumptions made in Section 4.2.4 admits an expansion of the form (4.56), with δ(a) = a3

and the topological derivative DJ(z) of J at z ∈Ω given by

DJ(z) = |B|∆ψ(z, u(z),∇u(z))−∇p(z) :A :∇u(z)

+ ∂d(∆ψ)(z, u(z),∇u(z)) :

∫

B
∇vB(x̄) dV (x̄)

+

∫

R3\B
G(z,∇vB(x̄)) dV (x̄) +

∫

B
G⋆(z,∇vB(x̄)) dV (x̄). (4.57)

The functions G and G⋆: R3×R3×3 → R are defined, for a given background solution u, by

G(z, d) := ψ(z, u(z),∇u(z)+d)− ψ(z, u(z),∇u(z))− ∂dψ(z, u(z),∇u(z)) :d (4.58a)

G⋆(z, d) := ψ⋆(z, u(z),∇u(z)+d)− ψ⋆(z, u(z),∇u(z))− ∂dψ⋆(z, u(z),∇u(z)) :d, (4.58b)

and p∈W0 is the adjoint state, defined as the solution of the weak formulation

〈

p, w
〉C

Ω
=
〈

∂uJ0(u,∇u), w
〉

+
〈

∂dJ0(u,∇u),∇w
〉

∀w ∈W0, (4.59)

with ∂uJ0 and ∂uJ0 as defined by (4.30).
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When the densities ψ, ψ⋆ are linear or quadratic in their third argument (i.e. when ∂2ddψ and
∂2ddψ

⋆ are independent on d), letting D(z) := ∂2ddψ(z, u(z)) and D⋆(z) := ∂2ddψ
⋆(z, u(z)), the last

two terms in (4.57) are given by the more explicit expression

1

2

∫

R3\B
∇vB(x̄) :D(z) :∇vB(x̄) dV (x̄) +

1

2

∫

B
∇vB(x̄) :D⋆(z) :∇vB(x̄) dV (x̄)

Moreover, under two-dimensional plane-strain conditions (where only in-plane displacements
are nonzero), the result (4.57) still holds (with Ω⊂R2, B⊂R2 and the next-to-last integral now
taken over R2 \B), while δ(a) = a2 in expansion (4.56).

4.4.1 Proof of the main result

The detailed proof to follow concentrates on the 3D case, its adaptation to the 2D case being then
outlined in a comment. The proof consists in finding the leading contribution to the difference
J(Ca)− J(C) = Ja(ua,∇ua)− J0(u,∇u) as a→ 0. To this end, we write

Ja(ua,∇ua)− J0(u,∇u) =
(

Ja(u,∇u)− J0(u,∇u)
)

+
(

Ja(ua,∇ua)− Ja(u,∇ua)−
〈

∂uJa(u,∇u), va
〉

)

+
(

Ja(u,∇ua)− Ja(u,∇u)−
〈

∂dJa(u,∇u),∇va
〉

)

+
(

〈

∂uJa(u,∇u), va
〉

+
〈

∂dJa(u,∇u),∇va
〉

)

, (4.60)

with ∂uJa and ∂uJa as defined by (4.30), and separately evaluate the leading contribution of
each bracketed term in the right-hand side of (4.60); this is done in the following Lemmas 4.4.3
to 4.4.6. Using the results of the lemmas in the above decomposition then directly establishes
both the expansion (4.56) and the expression (4.57) of DJ(z) stated in Theorem 4.4.2.

Lemma 4.4.3. Let ∆ψ be defined as in (4.28). One has

Ja(u,∇u)− J0(u,∇u) = a3|B|∆ψ(z, u(z),∇u(z)) + o(a3).

Proof. By interior regularity for u and the assumed smoothness of ψ, ψ⋆, ∆ψ(x, u(x),∇u(x)) is
continuous at x = z. Therefore, the Lemma follows easily from:

Ja(u,∇u)− J0(u,∇u) =

∫

Ω

(

ψa(x, u,∇u)− ψ(x, u,∇u)
)

dV (x)

=

∫

Ba

∆ψ(x, u,∇u) dV (x) = a3|B|∆ψ(z, u(z),∇u(z)) + o(a3),

where the last step exploits the fact that the volume of Ba is |Ba| = a3|B|.

Lemma 4.4.4. Let the displacement perturbation va solve problem (4.12). One has

Ja(ua,∇ua)− Ja(u,∇ua)−
〈

∂uJa(u,∇u), va
〉

= o(a3),

with ∂uJa as defined by (4.30)

Proof. The proof is based on Taylor expansions. A first-order expansion of ψ with respect to
its first argument first yields

ψ(x, ua,∇ua)− ψ(x, u,∇ua) = ∂uψ(x, u,∇ua)·va + 1
2va ·∂2uuψ(x, u+δuva,∇ua)·va
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for some δu(x) ∈ [0, 1]. Moreover, a zeroth-order Taylor expansion of ∂uψ with respect to its
second argument gives

∂uψ(x, u,∇ua)·va − ∂uψ(x, u,∇u)·va = ∇va :∂2duψ(x, u,∇u+δd∇va)·va

for some δd(x) ∈ [0, 1]. Both expansions are valid due to the assumed regularity of ψ. Similar
expansions also hold for the densities ψ⋆, ψS , for some δ⋆u(x), δ⋆d(x), δuS(x) ∈ [0, 1]. Combining all
of these expansions, one finds

Ja(ua,∇ua)− Ja(u,∇ua) =
〈

∂uJa(u,∇u), va
〉

+Ra (4.61)

with the remainder Ra given by

Ra =

∫

Ω\Ba

[

1
2va ·∂2uuψ(x, u+δuva,∇ua)·va +∇va :∂2duψ(x, u,∇u+δd∇va)·va

]

dV

+

∫

Ba

[

1
2va ·∂2uuψ⋆(x, u+δ⋆uva,∇ua)·va +∇va :∂2duψ

⋆(x, u,∇u+δ⋆d∇va)·va
]

dV

+

∫

∂Ω

1
2va ·∂2uuψS(x, u+δuSva)·va dS

Next, thanks to the boundedness of the second-order partial derivatives of ψ, ψ⋆ and ψS , there
exists a constant C > 0 such that

Ra ≤ C
(

‖va‖2L2(Ω) + ‖∇va‖L2(Ω) ‖va‖L2(Ω) + ‖va‖2L2(∂Ω)

)

Finally, estimates (4.51) and 4.52 imply that there exists a constant C > 0 such that

Ra ≤ Ca4 = o(a3).

Using the above estimate in (4.61) completes the proof.

Lemma 4.4.5. One has

Ja(u,∇ua)− Ja(u,∇u)−
〈

∂dJa(u,∇u),∇va
〉

= a3
{

∫

R3\B
G(z,∇vB(x̄)) dV (x̄) +

∫

B
G⋆(z,∇vB(x̄)) dV (x̄)

}

+ o(a3) (4.62)

where ∂dJa is defined by (4.30) and the functions G and G⋆: R3 × R3×3 → R are defined
by (4.58a,b).

Proof. We remark that since ψS has no third argument, we omit the terms involving ψS in Ja
for the following analysis. The combination to be estimated is first recast in the form

Ja(u,∇ua)− Ja(u,∇u)−
〈

∂dJa(u,∇u),∇va
〉

=

∫

Ω\Ba

G(x,∇va) dV (x) +

∫

Ba

G⋆(x,∇va) dV (x)

=
(

Ja(u,∇ua)− Ja(u,∇u+∇ṽa)−
〈

∂dJa(u,∇u+∇ṽa),∇v̂a
〉

)

+
(

∂dJa(u,∇u+∇ṽa),∇v̂a
〉

−
〈

∂dJa(u,∇u),∇v̂a
〉

)

+
(

Ja(u,∇u+∇ṽa)− Ja(u,∇u)−
〈

∂dJa(u,∇u),∇ṽa
〉

)

(4.63a)

having used functions G, G⋆ defined by (4.58a,b) for the last equality, and with v̂a defined
(using (4.49) in the second equality below) by

v̂a = va − ṽa = δa + (θ−1)ṽa. (4.63b)
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Since ∇v̂a = ∇δa+ (θ−1)∇ṽa+∇θ⊗ṽa, we note for later use that estimates (4.50) and (4.52)
(together with the fact that the support of (θ−1)∇ṽa is Ω\D) imply

‖∇v̂a‖L2(Ω) = O(a5/2). (4.63c)

We first focus on contributions of integrals over Ω\Ba, i.e. of the density G, to (4.63a). To
begin, each bracketed combination in (4.63a) is reformulated by exploiting Taylor expansions
(of first-order with respect to its third argument, with integral remainder) of ψ, to obtain

∫

Ω\Ba

G(x,∇va) dV (x) =

∫

Ω\Ba

∇v̂a(x) :D2

(

x, u+ ṽa,∇v̂a(x)
)

:∇v̂a(x) dV (x)

+

∫

Ω\Ba

∇v̂a(x) :D1

(

x,∇v̂a(x)
)

:∇ṽa(x) dV (x)

+

∫

Ω\Ba

∇ṽa(x) :D3

(

x,∇ṽa(x)
)

:∇ṽa(x) dV (x), (4.63d)

with

D1(y, d) =

∫ 1

0
∂ddψ

(

y, u(y),∇u(y)+ td)
)

dt,

D2(y, w, d) =

∫ 1

0
∂ddψ

(

y, u(y),∇w(y)+ td
)

(1− t) dt,

D3(y, d) = D2(y, u, d).

(4.63e)

Both D1

(

x,∇v̂a(x)
)

and D2

(

x, u(x)+ṽa(x),∇v̂a(x)
)

are bounded over Ω, due to the boundedness
of the second-order partial derivatives of ψ. This remark is exploited by applying the Cauchy-
Schwarz inequality to the first two integrals I1 and I2 of the right-hand side of (4.63d) and
invoking estimates (4.50a) and (4.63c), to obtain I1 = O(a5) = o(a3) and I2 = O(a4) = o(a3).
Using these estimates, applying the change of variables x̄ = (x−z)/a to the third integral of the
right-hand side of (4.63d) (whereby dV (x) = a3 dV (x̄)), and recalling definition (4.49) of ṽa,
we obtain
∫

Ω\Ba

G(x,∇ṽa) dV (x) = a3
∫

((Ω−z)/a)\B
∇vB(x̄) :D3(z+ax̄,∇vB(x̄)) :∇vB(x̄) dV (x̄) + o(a3)

= a3
∫

((Ω−z)/a)\B
∇vB(x̄) :D3(z,∇vB(x̄)) :∇vB(x̄) dV (x̄) +R+ o(a3)

= a3
∫

((Ω−z)/a)\B
G(z,∇vB(x̄)) dV (x̄) +R+ o(a3) (4.63f)

(having noted that ∇vB(x̄) :D3(z,∇vB(x̄)) :∇vB(x̄) = G(z,∇vB(x̄))), where the remainder R is
such that

R := a3
∫

((Ω−z)/a)\B
∇vB(x̄) :

[

D3(z+ax̄,∇vB(x̄))−D3(z,∇vB(x̄))
]

:∇vB(x̄) dV (x̄)

≤ Ca3+γ
∫

((Ω−z)/a)\B
|∇vB(x̄)|2|x̄|γ dV (x̄) ≤ Ca3+γ

∫

R3\B
|∇vB(x̄)|2|x̄|γ dV (x̄), (4.63g)

by virtue of the inequality

|D3(z+ax̄, d)−D3(z, d)| ≤ Caγ |x̄|γ (4.63h)

stemming from the assumed C0,γ Hölder regularity of ∂ddψ and the known C2 interior regularity
of u in Ω, which implies that there exists τ ′, τ ′′ ∈ [0, 1] such that

u(x)−u(z) = a∇u(z+τ ′ax̄)·x̄, ∇u(x)−∇u(z) = a∇2u(z+τ ′′ax̄)·x̄. (4.63i)
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The known O(|x̄|−3) far-field behavior of ∇vB(x̄) [227] implies that the last integral in (4.63g)
over the unbounded domain R3 \ B is finite for any γ < 3, and hence that R = O(a3+γ) = o(a3).
Finally, taking the limit ((Ω−z)/a) \ B → R3 \ B in (4.63f) (which is legitimate as the integral
over the limiting unbounded domain R3 \ B is finite), the desired asymptotic form of (4.63d) is
obtained:

∫

Ω\Ba

G(x,∇va) dV (x) = a3
∫

R3\B
G(z,∇vB(x̄)) dV (x̄) + o(a3). (4.63j)

The second integral in the right-hand side of (4.63a) can be estimated following similar
arguments. A representation similar to (4.63d) holds, with integrals taken over Ba and ψ
replaced by ψ⋆ in (4.63e). Noting in addition that now v̂a = δa since θ = 1 in Ba, the first two
integrals in the right-hand side of the counterpart of (4.63d) are easily established to be of order
o(a3) using estimates (4.50). Using again the change of variables x̄ = (x−z)/a in the remaining
integral, one then finds

∫

Ba

G⋆(x,∇va) dV (x) = a3
∫

B
G⋆(z,∇vB(x̄)) dV (x̄) +R⋆ + o(a3), (4.63k)

where, exploiting through (4.63h) the assumed Hölder regularity of ψ⋆, the remainder R⋆ is such
that

R⋆ := a3
∫

B
∇vB(x̄) :

[

D(z+ax̄,∇vB(x̄))−D(z,∇vB(x̄))
]

:∇vB(x̄) dV (x̄)

≤ Ca3+γ
∫

B
|∇vB(x̄)|2|x̄|γ dV (x̄) = O(a3+γ).

The desired asymptotic form of (4.63k) is therefore obtained:

∫

Ba

G⋆(x,∇va) dV (x) = a3
∫

B
G⋆(z,∇vB(x̄)) dV (x̄) + o(a3) (4.63l)

The lemma finally follows from using expansions (4.63j) and (4.63l) in (4.63a).

Finally, the leading contribution to the last bracketed combination of (4.60) is given in the
following lemma in terms of an adjoint solution.

Lemma 4.4.6. Let the adjoint solution p∈W0 be defined by the weak formulation

〈

p, w
〉C

Ω
=
〈

∂uJ0(u,∇u), w
〉

+
〈

∂dJ0(u,∇u),∇w
〉

∀w ∈W0, (4.64)

with ∂uJ0 and ∂dJ0 as defined by (4.30). One has

〈

∂uJa(u,∇u), va
〉

+
〈

∂dJa(u,∇u),∇va
〉

= a3|B|
{

−∇p(z) :A :∇u(z) + ∂d(∆ψ)(z, u(z),∇u(z)) :

∫

B
∇vB dV (x̄)

}

+ o(a3) (4.65)

Proof. One has

〈

∂uJa(u,∇u), va
〉

+
〈

∂dJa(u,∇u),∇va
〉

=
〈

∂uJ0(u,∇u), va
〉

+
〈

∂dJ0(u,∇u),∇va
〉

+
〈

∂u∆J(u,∇u), va
〉

+
〈

∂d∆J(u,∇u),∇va
〉

(4.66a)

Invoking the definition (4.64) of the adjoint solution, the identity

〈

va, w
〉C

Ω
= −

〈

ua, w
〉∆C

Ba
, ∀w ∈W0
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verified by the transmission problem, one finds

〈

∂uJ0(u,∇u), va
〉

+
〈

∂dJ0(u,∇u),∇va
〉

=
〈

p, va
〉C

Ω
= −

〈

ua, p
〉∆C

Ba

= −a3|B|∇p(z) :A :∇u(z) + o(a3), (4.66b)

where the last equality holds by virtue of Lemma 4.3.3 and p having C2 interior regularity
(see Section 4.4.3). Next, using decomposition (4.49) of va and the fact that ∆J has Ba as its
geometrical support (implying in particular that no surface contribution of ψS is present and
θ = 1 in Ba), one has

〈

∂u∆J(u,∇u), va
〉

+
〈

∂d∆J(u,∇u),∇va
〉

=
〈

∂u∆J(u,∇u), (ṽa+δa)
〉

+
〈

∂d∆J(u,∇u),∇(ṽa+δa)
〉

(4.66c)

The partial derivatives of ∆ψ(x, u(x),∇u(x)) being bounded by virtue of the assumptions made
on ψ, ψ⋆ and the C2 interior regularity of u, there exists a constant C > 0 such that

〈

∂u∆J(u,∇u), (ṽa+δa)
〉

+
〈

∂d∆J(u,∇u),∇δa
〉

≤ a3/2(‖ṽa‖L2(Ω;R3) + ‖δa‖H1(Ω;R3)))

≤ Ca4, (4.66d)

the last inequality stemming from estimates (4.50).

The term
〈

∂d∆J(u,∇u),∇ṽa
〉

remains to be estimated. By the mean value theorem applied
to ∂d(∆ψ)(x, u(x),∇u(x)), there exists t(x)∈ [0, 1] such that

∂d(∆ψ)(x, u(x),∇u(x)) = ∂d(∆ψ)(z, u(z),∇u(z)) + ∂2xd∆ψ(xt, ut,∇ut)·(x−z)

+ ∂2ud∆ψ(xt, ut,∇ut)·[u(x)−u(z)] + ∂2dd∆ψ(xt, ut,∇ut) : [∇u(x)−∇u(z)]

where xt, ut, ∇ut are defined by

xt := z + t(x−z),

ut := u(z) + t[u(x)−u(z)],

∇ut := ∇u(z) + t[∇u(x)−∇u(z)].

(4.66e)

Introducing x−z= ax̄ and expansions (4.63i), stemming from the C2 interior regularity of u, in
the above definitions, one obtains for x∈Ba

∂d(∆ψ)(x, u(x),∇u(x)) = ∂d(∆ψ)(z, u(z),∇u(z)) +O(a)

which in turn implies

〈

∂d∆J(u,∇u),∇ṽa
〉

= a3∂d(∆ψ)(z, u(z),∇u(z)) :

∫

B
∇vB dV + o(a3) (4.66f)

The lemma finally follows by substituting (4.66d) and (4.66f) into the right-hand side of (4.66c)
and then using the resulting estimate together with (4.66b) in (4.66a).

Remark 4.4.7. The foregoing analysis still holds if the cost functional format (4.27) is extended
to also allow integrals of the form

∫

Γ
ψS(x, u) dS(x)

where Γ ⊂ Ω̄ is an arbitrary surface, provided DJ(z) is evaluated at points z 6∈Γ.
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The two-dimensional case. The proof for the two-dimensional plane-strain case is identical,
except for the fact that estimates (4.50) to (4.52) must be replaced by their following two-
dimensional counterparts:

(a) ‖∇ṽa‖L2(Ω;R2) ≤ Ca, (b) ‖ṽa‖L2(Ω;R2) ≤ Ca2
√

| log a|, (c) ‖δa‖H1(Ω;R2) ≤ Ca2,
(4.67a)

(a) ‖∇va‖L2(Ω;R2) ≤ Ca, (b) ‖va‖L2(Ω;R2) ≤ Ca2. (4.67b)

(a) ‖∇ṽa‖L∞(Ω\D) ≤ Ca2, (b) ‖va‖L2(∂Ω;R2) ≤ Ca2, (4.67c)

which can be established e.g. by adapting to the two-dimensional case Lemma 4.3.2 (see [12]).

4.4.2 Case of piecewise-regular cost functional densities

Now we extend the previous results to the topological derivative of functionals Jω defined by an
integral over a portion ω ⊂ Ω of the elastic body Ω, of the form

Jω(Ca) = Ja(ua,∇ua;ω), with Ja(u, d;ω) =

∫

ω
ψa(x, u,∇u) dV (x),

where the trial inhomogeneity Ba is assumed to satisfy either Ba⋐ω or Ba⋐ (Ω\ ω̄) (the case
where Ba ∩ ∂ω 6= ∅ not being considered). If Ba⋐ω, the previous analysis remains valid, with
DJ still given by (4.57) and the only change concerning the adjoint solution, which now satisfies
the weak formulation

∫

Ω
e(p) : C : e(q) dV =

∫

Ω
χω
{

∂dψ : ∇q + ∂uψ · q
}

dV, ∀q ∈W0(Ω). (4.68)

On the other hand, if Ba ⋐ (Ω \ ω̄), ψa − ψ = 0 in ω and the cut-off function θ in decomposi-
tion (4.49) can be chosen, for any sufficiently small a, such that θ= 0 in ω. This choice implies
that va = δa in ω for any z ∈Ω\ω, and hence, by estimate (4.50c), that

‖va‖H1(ω;R3) ≤ Ca5/2.

Consequently, retracing the proof of Theorem 4.4.2, contributions to DJ arising from ∂ddψ and
∂ddψ

⋆ in Lemma 4.4.5 are o(a3), and DJ is simply given, in terms of the solutions u of (4.3)
and p of (4.68), by

DJ(z) = −∇p(z) : A : ∇u(z). (4.69)

4.4.3 Regularity of the adjoint solution

As it was previously seen, the point-wise evaluation of DJ at some z ∈Ω requires the background
displacement u and the adjoint solution p to have some local regularity at z, namely u, p ∈
C2,α(D;R3) for some neighborhood D ⋐ Ω of z and α ∈ (0, 1). The needed regularity for u
follows directly from the regularity of the body force density f ∈ C0,α(Ω;R3). When the cost
function J depends only on u, the adjoint state p solves

Find p∈W0, 〈p, w〉CΩ =
〈

∂uJ0(u), w
〉

, ∀w ∈W0.

Then, if ∂uψ(x, u(x)) ∈ C0,α(Ω;R3), p fulfills automatically the required interior regularity in
Ω. On the contrary, the case when the cost functional depends on ∇u is slightly more delicate.
In such a case p solves

Find p∈W0, 〈p, w〉CΩ =
〈

∂dJ0(∇u),∇w
〉

, ∀w ∈W0
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Thus if ∂dψ(x,∇u(x)) ∈ C1,α(Ω;R3×3), p fulfills the required regularity. We remark that the
components of the tensor (∇u)ij ∈ C1,α(Ω) so we can take any function ψ(·, d) ∈ C1(R3×3) for
this purpose. Finally when the cost function J is defined in a sub-domain ω of Ω,

〈

∂dJ0(∇u),∇w
〉

=

∫

ω
∂dψ(x,∇u) :∇w dV =

∫

Ω
χω∂dψ(x,∇u(x)) :∇w dV,

the adjoint state p solves










−div(Ce(p)) = −div(χω∂dψ(x,∇u)) in Ω,

p = 0 on ΓD,

C :e(p)·n = 0 on ΓN ,

where ΓN ∩ ω = ∅ is assumed. We can easily check that div(χω∂dψ(x,∇u(x))) ∈ H−1(Ω;R3) if
∂dψ(x,∇u(x)) ∈ C1,α(Ω;R3×3). Then by the Lax-Milgram theorem p ∈ W0(Ω). To achieve the
required C2,α local regularity of p at z ∈Ω, we only need to select z /∈ ∂ω.

Indeed, if z ∈ (Ω\ω̄), there is a smooth neighborhood D⊂Ω\ω̄ of z such that div(C :e(p)) =
0 in D. Therefore (e.g. [213, Theorem 4.16]), there exists a neighborhood D′

⋐ D of z where
p ∈ C2,α(D′;R3).

Otherwise if z ∈ ω, there exists a smooth neighborhood D ⋐ ω of z where p solves the
problem

{

−div(Ce(q)) = −div(∂dψ(x,∇u)) in D,

q = p on ∂D.

The adjoint state p can be decomposed as p = p1 + p2, where p1 solves the problem
{

−div(Ce(q)) = 0 in D,

q = p on ∂D

and p2 solves
{

−div(Ce(q)) = −div(∂dψ(x,∇u)) in D,

q = 0 on ∂D.

Therefore, there exists a neighborhood D′
⋐ D of z where p1 ∈ C2,α(D′;R3). Moreover p2 ∈

C2,α(D;R3) if ∂dψ(x,∇u(x)) ∈ C1,α(D;R3×3), thanks to the interior regularity of p2. Hence
p∈C2,α(D′;R3).

4.4.4 Particular cases

A few particular instances of the general result given by Theorem 4.4.2, and their connections
to previously-available results, are now discussed.

Displacement-based functional. In this case, ∂dψ= ∂dψ
⋆ = 0, and hence G = G⋆ = 0. Only

the first two terms in the expression (4.57) of DJ then remain; moreover the second term in the
right-hand side of the adjoint problem (4.64) vanishes. As a result, formula (4.57) reduces to
known results for displacement-based functionals.

Quadratic stress-based functional. This case is such that ∂2ddψ = D(z), ∂2ddψ
⋆ = D⋆(z),

where D and D⋆ are symmetric fourth-order tensor fields. It is studied in [267], where D and
D⋆ are constant, and otherwise arbitrary, tensors. Expression (4.57) of DJ for this case is
indeed found, after adjusting for notational differences, to coincide with [267, Theorem 3.1].
Reference [267] also gives a number of useful explicit formulae on Eshelby’s solution and its use
in evaluating DJ for quadratic stress-based functional, including one for the evaluation of the
last two integrals in (4.57) when B is the unit sphere and the tensor D is isotropic.
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Drucker-Prager penalty functional. The penalty functional considered in [28] is based
on the following assumptions: (a) two-dimensional isotropic elasticity, plane-strain conditions,
identical Poisson ratio in background and inhomogeneity materials, (b) circular trial inhomo-
geneities (i.e. B taken as the unit disk), (c) ψ(d) = Ψn(α2

DP(C : d)), with α2
DP denoting the

yield function associated with the Drucker-Prager criterion, and a similar definition for ψ⋆ in
terms of the inhomogeneity material. Using these assumptions in equation (4.57), we recover
equation (44) of [28] as a special case.

Quadratic energy-like functional. Due to their importance in practical applications and
the possibility to greatly simplify the general expression (4.57), two examples of energy-based
functionals are now presented.
The first kind of energy functional measures the error in strain energy between ua and a given
vector field u0 ∈ H1(Ω;R3), and is defined by

E1(Ca) = E1(ua, Ca) =
1

2
〈ua−u0, ua−u0〉CaΩ (4.70)

The particular case of the strain energy of ua corresponds to setting u0 = 0 in (4.70).

The second kind of energy functional is the elastic counterpart of the functional used in [181]
for electric impedance tomography. It is used for e.g. material or flaw identification from
overdetermined boundary data. Let ΓN = Γo ∪Γno, assuming that a measurement uobs of the
displacement induced in the solid by the excitation (f, g, ū) defined in Sec. 4.1 is available on
Γo. One can then define ’Neumann’ and ’Dirichlet’ displacement fields that differ only by their
boundary data on Γo, on which either forces or displacements may be prescribed (the remaining
data being as in Sec 4.1). The ’Neumann’ and ’Dirichlet’ fields coincide for perfect measurement
uobs and a flawless solid with correctly known material characteristics, whereas a discrepancy
between them reveals that the model for the reference solid is incorrect, e.g. due to the presence
of a hidden defect. The ’Neumann’ and ’Dirichlet’ background fields uN and uD are defined by
the following weak formulations:

Find uN ∈WN(ū), 〈uN, w〉CΩ = F (w), ∀w ∈WN
0 . (4.71a)

Find uD ∈WD(ū), 〈uD, w〉CΩ = F (w), ∀w ∈WD
0 . (4.71b)

having set WD(ū) =
{

v ∈ H1(Ω;R3), v = ū on ΓD, v = uobs on Γo

}

, WD
0 := WD(0) and

WN(ū) = W (ū), WN
0 = W0 in terms of definition (4.6). Moreover, the ’Neumann’ and ’Dirichlet’

fields uN
a and uD

a for a small trial inhomogeneity Ba located at z are defined by the following
weak formulations for the perturbations vN

a := uN
a −uN and vD

a := uD
a −uD:

Find vN
a ∈WN

0 , 〈vN
a , w〉CΩ + 〈vN

a , w〉∆C
Ba

= −〈uN, w〉∆C
Ba
, ∀w ∈WN

0 . (4.72a)

Find vD
a ∈WD

0 , 〈vD
a , w〉CΩ + 〈vD

a , w〉∆C
Ba

= −〈uD, w〉∆C
Ba
, ∀w ∈WD

0 . (4.72b)

The energy functional E2(Ca) is then defined so as to evaluate the ’Neumann’–’Dirichlet’ dis-
crepancy through the strain energy of the difference uN

a −uD
a defined in terms of the perturbed

material Ca, i.e.:

E2(Ca) = E2(u
N
a , u

D
a , Ca) =

1

2
〈uN
a −uD

a , u
N
a −uD

a 〉CaΩ (4.73)

Now we express the topological derivative of E1, E2 through the following Proposition via
an alternative argument to Theorem 4.4.2

Proposition 4.4.8. The topological derivative of the energy functional E1(Ca) is given by

DE1(z) =
|B|
2
e(u0)(z) :∆C :e(u0)(z)− 1

2
e(u)(z) :A :e(u+2q)(z) (4.74)
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where the adjoint solution q is defined by the weak formulation

Find q ∈W (γD(u0−u)), 〈q, w〉CΩ = 0, ∀w ∈W0, (4.75)

(with γD(w) denoting the trace on ΓD of w ∈H1(Ω;R3)).

The topological derivative of the energy functional E2(Ca) is given by

DE2(z) =
1

2
e(uD)(z) :A :e(uD)(z)− 1

2
e(uN)(z) :A :e(uN)(z) (4.76)

In both (4.74) and (4.76), A denotes again the elastic moment tensor (4.16).

Proof. The functional E1(Ca) depends quadratically on va. Expanding E1(Ca) into terms of
order 0, 1 and 2 in va, one obtains the following, exact, expression:

2E1(Ca)− 2E1(C) = 〈u−u0, u−u0〉∆C
Ba

+ 2〈u−u0, va〉CaΩ + 〈va, va〉CaΩ (4.77)

The definition (4.75) of the adjoint field q implies that q+u−u0 ∈ W0. Hence, one may set
w = q+u−u0 in (4.12), to obtain after some manipulation:

〈u−u0, va〉CΩ = 〈q+u−u0, va〉CΩ = −〈q+u−u0, ua〉∆C
Ba

(where the first equality exploits (4.75) with w= va ∈W0)), and thus

〈u−u0, va〉CaΩ = 〈u−u0, va〉∆C
Ba
− 〈q+u−u0, ua〉∆C

Ba
= −〈u−u0, u〉∆C

Ba
− 〈q, ua〉∆C

Ba

Next, weak formulation (4.12) with w = va yields

〈va, va〉CaΩ = −〈u, va〉∆C
Ba

Finally, inserting the last two equalities into (4.77) and rearranging terms, one finds

2E1(Ca)− 2E1(C) = −〈u−u0, u+u0〉∆C
Ba
− 2〈q, ua〉∆C

Ba
− 〈u, va〉∆C

Ba

= 〈u0, u0〉∆C
Ba
− 〈u+2q, ua〉∆C

Ba
,

with the desired result (4.74) following by applying (4.55) for the last term of the right-hand
side.

The functional E2(Ca) depending quadratically on vD
a , v

N
a , one obtains the alternative expres-

sion:

2E2(Ca)− 2E2(C) = 〈uN−uD, uN−uD〉∆C
Ba

+ 2〈uN−uD, vN
a −vD

a 〉CaΩ + 〈vN
a −vD

a , v
N
a −vD

a 〉CaΩ (4.78)

Now, using weak formulation (4.12) with (va, w) replaced in succession by (vN
a , v

N
a )∈WN

0 ×WN
0 ,

(vD
a , v

D
a )∈WD

0 ×WD
0 and (vN

a , v
D
a )∈WN

0 ×WN
0 (noting for the last case that vD

a ∈WD
0 ⊂WN

0 ), one
obtains the identities

〈vN
a , v

N
a 〉CaΩ = −〈uN, vN

a 〉∆C
Ba
, 〈vD

a , v
D
a 〉CaΩ = −〈uD, vD

a 〉∆C
Ba
, 〈vN

a , v
D
a 〉CaΩ = −〈uN, vD

a 〉∆C
Ba
,

and hence

〈vN
a −vD

a , v
N
a −vD

a 〉CaΩ = −〈uN, vN
a 〉∆C
Ba
− 〈uD−2uN, vD

a 〉∆C
Ba

(4.79)

Next, using again weak formulation (4.12), this time with (va, w) replaced by (vN
a , u

N−uD)∈
WN

0 ×WN
0 , one has

〈uN−uD, vN
a 〉CaΩ = −〈uN, uN−uD〉∆C

Ba
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while invoking weak formulations (4.71a) and (4.71b) with w= vD
a ∈WD

0 ⊂WN
0 yields

〈uN−uD, vD
a 〉CΩ = 0

Combining the last two identities, one obtains

〈uN−uD, vN
a −vD

a 〉CaΩ = −〈uN−uD, vD
a 〉∆C
Ba
− 〈uN, uN−uD〉∆C

Ba
(4.80)

Substituting (4.79) and (4.80) into (4.78) and rearranging terms yields

2E2(Ca)− 2E2(C) = 〈uD, uD〉∆C
Ba
− 〈uN, uN〉∆C

Ba
+ 〈uD, vD

a 〉∆C
Ba
− 〈uN, vN

a 〉∆C
Ba

= 〈uD, uD
a 〉∆C
Ba
− 〈uN, uN

a 〉∆C
Ba
.

The sought result (4.76) finally stems from applying (4.55) to each term of the right-hand side
in the above equality.

We can easily check that the above expressions of the topological derivative are particular
instances of (4.57). Indeed, consider

Ja(∇u) = E1(Ca) =
〈

u−u0, u−u0
〉Ca
Ω
.

Then taking D= C and D⋆ = C⋆, the application of (4.57) yields

DJ(z) = |B|e(u−u0)(z) :∆C :e(u−u0)(z)− e(p)(z) :A :e(u)(z)

+ |B|e(u− 2u0)(z) :∆C :

∫

B
e(vB) dV

= |B|e(u0)(z) :∆C :e(u0)(z) + e(u−2u0−p)(z) :A :e(u)(z). (4.81)

We have used identities
∫

R3

e(vB) :Ca :e(vB) dV = −|B|e(u)(z) :∆C :

∫

B
e(vB) dV

(obtained from (4.15) with w= vB) in the first equality of (4.81), and

|B|e(u− 2u0) :∆C :

∫

B
e(vB) dV = e(u− 2u0) :

(

A− |B|∆C
)

:e(u)(z)

(resulting from left multiplication of (4.16) by e(u− 2u0)) in the second equality of (4.81).

4.5 Numerical evaluation of the topological derivative

The evaluation of the topological derivative (4.57) in a 2D or 3D framework requires numerical
procedures, even in the simplest cases (isotropic elasticity, spherical shape for B). In particular
an integral over the unbounded region R3\B must be estimated, besides to the perturbation
solution of the FSDT vB (4.15) and the elastic moment tensor A, which are not analytically
available when the medium and the inhomogeneity are fully anisotropic. The details of such
procedures will depend upon whether B is an ellipsoid, or has some other shape, as ∇vB is
constant inside B in the former case but not necessarily in the latter [114]. In the sequel, we
concentrate on the ellipsoidal (respectively elliptical in 2D) case, which is sufficient for most
applications.

4.5.1 3D case, ellipsoidal trial inclusion.

Define B as

B =
{

x ∈ R3, (x1/a1)
2 + (x2/a2)

2 + (x3/a3)
2 ≤ 1

}

, a1, a2, a3 > 0.

where the axes of the Cartesian frame (O, x1, x2, x3) are assumed, without loss of generality, to
be aligned with the ellipsoid principal axes.
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Formula for interior values of vB: Consider a constant eigenstrain E⋆ ∈R3×3
sym applied over

B endowed with homogeneous elastic properties C [227]. The displacement field u∞[E⋆] thus
created is given explicitly by the representation formula

u∞[E⋆](x) = 〈ϕ[E⋆], G∞(·−x)〉CB, x∈R3 (4.82)

When B is an ellipsoid and E⋆ ∈R3×3
sym is uniform, the above representation can be analytically

evaluated, revealing that u∞[E⋆] depends linearly on x inside B. The interior (fourth-order)
Eshelby tensor S int associated to B and C is then defined by setting

S intijkℓ =
1

2

(

S̃ intijkℓ + S̃ intjikℓ
)

, ∇u∞(x) = S̃ int :E⋆ (x∈B). (4.83)

The Cartesian components of S int in the orthonormal frame (e1, e2, e3) are given in the general
anisotropic case by ([227], eq. (17.19))

S intijkℓ =
1

8π
Cmnkℓ

∫

S2

(

ξjNim

(

ξ
)

+ ξiNjm

(

ξ
)

)

ξn dS(ξ̂), (4.84)

where S2 := {ξ̂ ∈ R3, |ξ̂|= 1} is the unit sphere, ξ := a−1
1 ξ̂1e1 +a−1

2 ξ̂2e2 +a−1
3 ξ̂3e3 and N(ξ) is

defined as in (4.36) and (4.37). Note that (4.84) has been expressed as an integral over the unit
sphere by effecting on eq. (17.19) of [227] the transformation u = cosφ with φ∈ [0, π].

As it was proven in Eshelby’s celebrated paper [114], the solution vB[E] of the FSTP (4.15)
can be solved analytically for an ellipsoidal inhomogeneity and has a constant strain and gradient
inside B. This gradient can be established by means of the equivalent inclusion method [227]
and the interior Eshelby tensor S int introduced in (4.84). As a matter of fact, the equivalent
inclusion method consists in finding an eigenstrain E⋆⋆ such that the solution vB[E] of integral
equation (4.42) has the form

vB[E] = u∞[E⋆⋆] = ϕ[S int :E⋆⋆] in B (4.85)

Inserting the above ansatz in (4.42) and comparing with (4.82), the equivalent-inclusion analogy
is found to be achieved by setting

E⋆⋆ = −(C+∆C :S int)−1 :∆C :E (4.86)

Hence e(vB[E]) can be cast explicitly inside B as

e(vB[E]) = −S int : (C+∆C :S int)−1 :∆C :E. (4.87)

For an arbitrary anisotropic background, the evaluation of (4.84) requires a numerical
quadrature (see Sec. 4.6, and also the more complete treatment of [124]), while analytical formu-
lae involving elliptic integrals are available for isotropic background materials [227]. The latter
reduce to the following elementary closed-form expression when B is a ball:

S int = s1J + s2K, with s1 :=
1+ν

3(1−ν)
, s2 :=

8−10ν

15(1−ν)
, (4.88)

where J and K are defined as in (4.7) and ν := (3κ− 2µ)/(6κ+ 2µ) is Poisson’s ratio. The
Eshelby tensor S int has the minor symmetries S intijkℓ = S intjikℓ = S intijℓk, as is evident from (4.83).

The major symmetry S intijkℓ = S intkℓij holds for the special case (4.88) but is not true in general.
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Formula for exterior points of vB: In order to evaluate the integral over R3 \B in (4.57),
more elaborate actions are needed since the integration domain is unbounded and ∇vB[E](x) is
not anymore constant as it was for the inner case x ∈ B (in fact decays at infinity).

First we deal with the integration on R3 \B. Transform x into y according to

y = (x1/a1, x2/a2, x3/a3) (|y| ≥ 1). (4.89)

Then it is natural to set y = |y|ŷ, with ŷ ∈ S2 (let us recall the unit sphere) and 1≤ |y| ≤+∞.
Apply the transformation t = |y|−1 (with 0 ≤ t ≤ 1) to the radial variable, so that (4.89)
represents any x∈R3\B in the form x(ŷ, t). Introducing the above change of coordinates to the
first integral term of (4.57), the result reads

∫

R3\B
G(z,∇vB(x)) dV (x) =

1

a1a2a3

∫ 1

0

1

t4

{

∫

S2

G(z,∇vB(x(ŷ, t))) dS(ŷ)
}

dt, (4.90)

which is to be evaluated using numerical quadrature (using e.g. a Gaussian rule for t and a
Lebedev rule on S2 [190]). This in turn requires the ability to evaluate ∇vB[E](x(ŷ, t)) for any
given quadrature point (ŷ, t). Applying again (4.82) for x ∈ R3\B and the equivalent inclusion
method, ∇vB is in this case given by (Eq. (18.6) of [227])

Sextijkℓ =
1

2

(

S̃extijkℓ + S̃extjikℓ

)

, ∇vB[E](x) = S̃ext(x) :E⋆⋆ (x ∈ R3\B). (4.91)

The tensor E⋆⋆ is again defined by (4.86) and Sext(x) is the exterior (spatially varying) Eshelby

tensor, given through S̃ext(x) as

S̃extijmn(x(ŷ, t)) =
1

4π
Ckℓmn

{

∫

S⋆(ŷ,t)
Nik(ξ)ξℓξj dS(ŝ)− 2

∮

L+(ŷ,t)
tNik(ξ)ξℓξj dφ(ŝ)

}

, (4.92)

where ξ = ξ(ŝ) is defined for ŝ∈S2 by

ξ = (ŝ1/a1, ŝ2/a2, ŝ3/a3), (4.93)

S⋆(ŷ, t) is the portion of S2 defined by S⋆(ŷ, t) :=
{

ŝ ∈ S2 : 0≤ ŝ·ŷ≤ t
}

, L+(ŷ, t) the circular
contour on S2 defined by L+(ŷ, t) :=

{

ŝ ∈ S2 : ŝ·ŷ= t
}

(Fig. 4.2), dS(ŝ) and dφ(ŝ) respectively
denote the solid angle differential on S2 and the polar angle differential on the circle L+(ŷ, t),
and the tensor N(ξ) is given by N(ξ) = K−1(ξ), with K given by (4.37).

ℓ̂(φ)

S⋆

ξ1

ξ2

ξ3

L+

y

ŷ

O

Figure 4.2: Parametrization of the set S⋆⊂S2.
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Remark 4.5.1. If the point x is inside B, the line integral in (4.92) can be dropped, and S⋆ in
the surface integral is replaced by S2. The symmetric part of the resulting equation is identical
to (4.84).

It is useful to recast (4.92) in a form more suitable for numerical quadrature. To this end, let
S⋆(ŷ, t) be represented in terms of coordinates (z, φ) spanning the fixed domain Q :=

{

(z, φ) ∈
[0, 1]× [0, 2π[

}

by

S⋆(ŷ, t) =
{

ŝ∈S2 | ŝ = (1− t2z2)1/2ℓ̂(φ) + tzŷ
}

with ℓ̂(φ) spanning the unit circle S1 := {ŝ·ŷ = 0} (this representation stems from parameterizing
ŝ using angular spherical coordinates (θ, φ) and setting z := t−1 cos θ). L+(ŷ, t) is then the subset
of S⋆(ŷ, t) such that z = 1. The (z, φ) parametrization implies that dS(ŝ) = t dz dφ, and also
induces a corresponding representation ξ(tz, φ) of ξ as defined by (4.93). Inserting it in (4.92)

and rearranging the resulting expression, the tensor S̃ext is given, for a given evaluation point
x̄(ŷ, t), by an integral over the fixed domain Q:

S̃extijmn(x(ŷ, t)) =
t

4π
Ckℓmn

∫ 1

0
dz

∫ 2π

0

[

Σkℓij(tz, φ)− 2Σkℓij(t, φ)
]

dφ (4.94)

with

Σkℓij(tz, φ) = Nik(ξ(tz, φ))ξℓ(tz, φ)ξj(tz, φ).

For a given x̄(ŷ, t), S̃ext(x̄(ŷ, t)) can then be evaluated by means of standard numerical quadra-
ture in Q (using e.g. product rules that are Gaussian in z and uniform in φ). In addition, a
Taylor expansion in t about t= 0 yields Σkℓij(tz, φ)− Σkℓij(t, φ) = (z−1)∂1Σkℓij(0, φ) +O(t2),
where ∂1 denotes the partial derivative w.r.t. the first argument. It is moreover straightfor-
ward to show that ∂1Σkℓij(0, φ) is for any (kℓij) a polynomial in (cosφ, sinφ) involving only
odd-degree terms, and hence that its integral over φ∈ [0, 2π] vanishes. Consequently, the Taylor
expansion of (4.94) about t= 0 is S̃extijmn(x̄(ŷ, t)) = O(t3), implying that the integral in t of (4.90)

is well defined. This remark is consistent with the otherwise known O(|x|−3) behavior of ∇vB(x)
as |x| → +∞.

When the background material is isotropic, and characterized using e.g. its shear modulus
µ and Poisson’s ratio ν, the Christoffel tensor N has a simple closed-form expression

N(ξ) =
1

µ|ξ|2
[

I − 1

2(1−ν)
ξ̂⊗ ξ̂

]

(4.95)

with ξ̂ := ξ/|ξ| and Iij = δij . The exterior Eshelby tensor for a unit ball is then found (by
analytical evaluation of (4.94) using (4.95), or by completing derivations presented in [227,
Sec. 11]) to have the following closed-form expression (wherein x̄ := |x̄|):

2(1− ν)Sextijkℓ(x̄) =
[ 7

x̄9
− 5

x̄7

]

xixjxkxℓ +
[ 1

x̄5
− 1

x̄7

]

δijxkxℓ +
[ 1−2ν

x̄5
− 1

x̄7

]

δkℓxixj

+
[ ν

x̄5
− 1

x̄7

]

(δikxjxℓ + δjkxixℓ + δiℓxjxk + δjℓxixk)

+
[ 1

5x̄5
− 1−2ν

3x̄3

]

δijδkℓ +
[ 1

5x̄5
+

1−2ν

3x̄3

]

(δikδjℓ + δjkδiℓ). (4.96)

Moreover, Sext(x̄) :E evaluated for an arbitrary tensor E ∈ R3×3
sym using the above formula

coincides with equation (23) of [267].



178 CHAPTER 4. THE TOPOLOGICAL DERIVATIVE IN ANISOTROPIC ELASTICITY

Computation of the elastic moment tensor A: With the help of (4.87), the value of A
is then found as follows:

Lemma 4.5.2 (elastic moment tensor for an ellipsoidal inhomogeneity). The elastic moment
tensor A associated with an ellipsoidal inhomogeneity (B, C+ ∆C) embedded in a medium with
elasticity tensor C is given by

A = |B|C : (C+∆C :S int)−1 :∆C (4.97)

Proof. Using expression (4.87) of e(vB) in (4.16) and using the fact that the integrand in the
resulting formula is constant, one obtains

E′ :A :E = |B|
(

E′ :∆C :E − E′ :∆C :S int : (C+∆C :S int)−1 :∆C :E
)

Then, since the above equality holds for any constant tensors E′, E, the sought expression (4.97)
is readily obtained by invoking the identity ∆C :S int : (C+∆C :S int)−1 = I−C : (C+∆C :S int)−1.

When the background is isotropic and the inhomogeneity spherical and also isotropic, A
admits a quite simple explicit expression. Using that C and C⋆ are of the form (4.7) with
respective moduli pairs κ, µ and κ⋆, µ⋆ and S int is given by (4.88), invoking the relations J :J =
J , K :K = K and J :K = 0 verified by J and K and noting in particular that (AJ +BK)−1 =
A−1J +B−1K for any (A,B) 6= (0, 0), one easily evaluates (4.97) to obtain

A =
4π

3

[

3κ
Λ1−1

1+S1(Λ1−1)
J + 2µ

Λ2−1

1+S2(Λ2−1)
K
]

(4.98)

(with Λ1 := κ⋆/κ, Λ2 := µ⋆/µ). For 0 ≤ ν ≤ 0.5 one has 1/3 ≤ S1 ≤ 1 and 8/15 ≥ S2 ≥ 2/5;
combined with Λ1,2 ≥ 0. This implies that both denominators in (4.98) are strictly positive,
ensuring in particular the invertibility of C+∆C :S int upon which (4.98) depends, except for the
special case ν = 0.5, κ⋆ = 0.

4.5.2 2D plane-strain case, elliptical trial inclusion.

Now define B as
B =

{

x ∈ R2, (x1/a1)
2 + (x2/a2)

2 ≤ 1
}

, a1, a2 > 0,

where the axes of the Cartesian frame (O, x1, x2) are assumed, without loss of generality, to
be aligned with the ellipse principal axes. Inclusion and inhomogeneity problems in plane-
strain have been addressed in many references, with solution methods usually based on complex
potentials, see e.g. [321, 50, 305, 163]. Here, the tensors S int and Sext are derived for the plane-
strain case without recourse to complex potentials, from a direct evaluation of (4.82), meanwhile
all tensors and inner products are defined with reference to the vector space R2 instead of R3 (in
particular, E⋆ ∈ R

2,2
sym now). Moreover, G∞(·−x) is now the elastostatic fundamental solution

for plane-strain, with ∇G∞ given in Fourier integral form

∇G∞(r) =
i

(2π)2

∫

R2

exp(iη ·r)N(η)⊗η dV (η) (r ∈R2 \{0}), (4.99)

with N(η) now defined in terms of the two-dimensional version of the acoustic tensor K(η) (i.e.
Kik = Cijkℓηjηℓ with 1≤ i, j, k, ℓ≤ 2).

Similarly to the 3D framework, the 2D solution vB[E](x) of the FSTP (4.15) fulfills

e
(

vB
)

(x) = S int : E⋆⋆, (x ∈ B) (4.100)

e
(

vB
)

(x) = Sext(x) : E⋆⋆, (x ∈ R2\B) (4.101)

where E⋆⋆ is given by the 2D adaptation of (4.86).



4.5. NUMERICAL EVALUATION OF THE TOPOLOGICAL DERIVATIVE 179

Proposition 4.5.3. Set x = y
(

a1 cos γ, a2 sin γ
)

, y ∈ [1,∞). The plane-strain interior and
exterior Eshelby tensors S int and Sext(x), respectively read

S intijkℓ =
1

2

(

S̃ intijkℓ + S̃ intjikℓ
)

, Sextijkℓ =
1

2

(

S̃extijkℓ + S̃extjikℓ
)

, where (4.102)

S̃ intijkℓ =
1

π

{∫ π/2

−π/2

(

α̂i(θ)⊗Njm

(

α̂(θ)
)

⊗ α̂n(θ)
)

dθ

}

:Cmnkℓ,

S̃extijkℓ(x) = S̃ intijkℓ −
2

π

{∫ π/2

−π/2

(

αi(θ(w))⊗Njm

(

α(θ(w))
)

⊗αn(θ(w))
)

dw

}

:Cmnkℓ.

The above parameterizations are specified through

α̂(θ) =
(

a−1
1 cos(θ), a−1

2 sin(θ)
)

, (4.103)

α(θ) =
(

a−1
1 cos(θ+γ), a−1

2 sin(θ+γ)
)

,

and the function θ(w) in the second integral is defined implicitly by sin θ =
√

1−y−2 sinw.

Proof. The derivation is done by means of a direct evaluation of the 2D version of the integral
representation formula (4.82). Thus, for E⋆ ∈ R2×2

sym,

e
(

u∞[E⋆]
)

(x) = S int : E⋆, (x ∈ B) (4.104)

e
(

u∞[E⋆]
)

(x) = Sext(x) : E⋆ (x ∈ R2\B). (4.105)

Under the present conditions (anisotropic, plane-strain), (4.99) and (4.82) yield

u∞[E⋆](x) =
i

(2π)2

{

∫

R2

∫

B
exp(iη ·(ξ−x))N(η)⊗η dV (ξ) dV (η)

}

:C :E⋆ (4.106)

The above fourth-dimensional integral over (ξ, η) ∈ B×R2 is now evaluated with the help of
coordinate transformations. The evaluation point x ∈ R2 is parameterized as

x(y, γ) = y (a1 cos(γ), a2 sin(γ)) , γ ∈ [0, 2π], y ∈ (0,∞), (4.107)

and two mappings are introduced. First, f : (t, θ)∈R+\{0}× [0, 2π[ 7−→ (η1, η2)∈R2\{(0, 0)}
is defined by

{

η1(t, θ) = tα1(θ)

η2(t, θ) = tα2(θ)
with α(θ) = (α1, α2)(θ) :=

(

a−1
1 cos(θ+γ), a−1

2 sin(θ+γ)
)

, (4.108)

which implies

dV (η) = (a1a2)
−1t dt dθ,

Then, for given η ∈ R2 \{0} (i.e. for given (t, θ) ∈ R+ \{0}), g : (z1, z2) ∈ D 7−→ (ξ1, ξ2) ∈ B
(where D⊂R2 is the closed unit disk) is defined by

{

ξ1 = a1( z1 sin θ + z2 cos θ)

ξ2 = a2(−z1 cos θ + z2 sin θ)
with

−
√

1− z22 ≤ z1≤
√

1− z22 ,
−1≤ z2≤ 1

(4.109)

which implies

dV (ξ) = a1a2 dz1 dz2
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Now, mappings (4.108) and (4.109) are substituted into the integral representation formula (4.106).
Noting that definitions (4.107), (4.108) and (4.109) imply

α(θ)·x = y cos θ, η ·(ξ−x) = t[z2−α(θ)·x],

one first finds, using mapping (4.109) and the fact that the integrand of the resulting integral
over (z1, z2) does not depend on z1, that

∫

B
eiη·(ξ−x) dV (ξ) = a1a2e

−itα(θ)·x

∫ 1

−1
2
√

1− z22 eitz2 dz2 = a1a2
2π

t
e−itα(θ)·xJ1(t),

where J1 is the Bessel function of first kind and order 1, the last equality stemming from formula
3.752 of [130] together with the function z2 7−→

√

1− z22 sin kz2 being odd.
Then, using the above result into (4.106) and applying mapping (4.108), one obtains

i

(2π)2

∫

R2

∫

B
exp(iη ·(ξ−x))N(η)⊗η dV (ξ) dV (η)

=
i

2π

∫ 2π

0

{

N
(

α(θ)
)

⊗α(θ)

∫ ∞

0
e−itα(θ)·xJ1(t)

dt

t

}

dθ

=
1

π

∫ π/2

−π/2

{

N
(

α(θ)
)

⊗α(θ)

∫ ∞

0
sin
(

t α(θ)·x
)

J1(t)
dt

t

}

dθ (4.110)

Remark 4.5.4. The last equality above is established by using that (i) α(θ) is 2π-periodic, (ii)
α(θ+π) =−α(θ) and (iii) N(−η) =N(η) (N being homogeneous of degree −2).

The inner integral in (4.110) in fact admits a known closed-form expression (formula 6.693(1)
of [130]), which depends on the value of α(θ)·x = y cos θ:

∫ ∞

0
sin
(

t α(θ)·x
)

J1(t)
dt

t
= α(θ)·x 0≤α(θ)·x≤ 1 (4.111a)

= α(θ)·x−
√

(α(θ)·x)2 − 1 α(θ)·x≥ 1 (4.111b)

If x∈B, (4.107) implies that y≤ 1, and hence that α(θ)·x≤ 1 for any θ. From (4.106), (4.110)
and (4.111a,b), u∞(x) is then such that

u∞[E⋆](x) =
(

S̃ int :E⋆
)

· x, ∇u∞[E⋆](x̄) = S̃ int :E⋆.

Thus, the constant tensor S̃ int is given by

S int =
{ 1

π

∫ π/2

−π/2
α(θ)⊗N

(

α(θ)
)

⊗α(θ) dθ
}

:C =
{ 1

π

∫ π/2

−π/2
α̂(θ)⊗N

(

α̂(θ)
)

⊗α̂(θ) dθ
}

:C, (4.112)

where α̂ was defined in (4.103) and the result stems from properties (ii) and (iii) listed in Re-
mark 4.5.4.

If x ∈ R2 \ B̄, (4.107) implies that y > 1. Let θ̄ = arccos(1/y), so that the subset of
θ ∈ [−π/2, π/2] where α(θ)·x≥ 1 is θ ∈ [−θ̄, θ̄]. In that case, using (4.106), (4.110) and (4.111a,b)
and differentiating the resulting expression of u∞(x) with respect to x, one finds

∇u∞[E⋆](x) = S̃ext(x) :E⋆

with

S̃ext(x) = S̃ int − 2

π

{∫ θ̄

−θ̄

[

(α(θ)·x)
√

(α(θ)·x)2 − 1
α(θ)⊗N

(

α(θ)
)

⊗α(θ)

]

dθ

}

:C
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Even though this representation of the 2D general Eshelby tensor is valid, it is not suited
for numerical evaluation due to the term 1/

√

(α · x)2 − 1, which is (weakly) singular at the
endpoints θ=±θ̄. We recast it into a form suitable for numerical quadrature by setting

sin θ =
√

1−y−2 sinw, θ ∈ [−θ̄, θ̄], w ∈ [−1, 1]

Then, since α(θ)·x= y cos θ, one easily finds that

(α(θ)·x) dθ =
√

y2−1 cosw dw,
√

(α(θ)·x)2 − 1 =
√

y2−1 cosw

Consequently, S̃ext(x) is now expressed as

S̃ext(x) = S̃ int − 2

π

{∫ π/2

−π/2

[

α(θ(w))⊗N
(

α(θ(w))
)

⊗α(θ(w))
]

dw

}

:C

where the integral can now be evaluated by usual quadrature rules.

The exterior Eshelby tensor for a circular inclusion of unit radius is then found, for example
by analytical evaluation of (4.102) using (4.95), to have the following closed-form expression
(with all indices ranging in {1, 2}):

2(1− ν)Sextijkℓ(x̄) =
[ 6

x̄8
− 4

x̄6

]

xixjxkxℓ +
[ 1

x̄4
− 1

x̄6

]

δijxkxℓ +
[ 1−2ν

x̄4
− 1

x̄6

]

δkℓxixj

+
[ ν

x̄4
− 1

x̄6

]

(δikxjxℓ + δjkxixℓ + δiℓxjxk + δjℓxixk)

+
[ 1

4x̄4
− 1−2ν

2x̄2

]

δijδkℓ +
[ 1

4x̄4
+

1−2ν

2x̄2

]

(δikδjℓ + δjkδiℓ). (4.113)

Meanwhile the analytical evaluation of (4.112) for a general ellipse inclusion yields the fol-
lowing explicit expression of S int, which coincides with formulae (11.22) of [227] given for the
ellipsoid infinitely elongated along the x3 direction:

S int1111 = A(1−m)(3+γ+m) S int1122 = A(1−m)(1−γ−m)

S int2211 = A(1+m)(3+γ−m) S int1122 = A(1+m)(1+γ−m) (4.114)

S int1212 = A(1+m2 +γ) S int1112 = S int2212 = S int1211 = S int1222 = 0

with A = [8(1−ν)]−1, γ = 2(1−2ν) and m = (a1−a2)/(a1 +a2).

Finally one can easily prove that Lemma 4.5.2 remains also valid for the plane-strain frame-
work. Thus, substituting the above result into (4.97), rewriting it in matrix form using the Voigt
convention and using therein the plane-strain versions C = κ̄J̄ + µK̄ and ∆C = ∆κ̄J + ∆µK of
the isotropic elastic constitutive relation (where κ̄ := κ+µ/3 is the plane-strain bulk modulus,
J̄ := I⊗I/2 and K̄ := I−J̄ ), an algebraic calculation yields

A1111 = |B|µτ +1

τ −1

(1+m)(2τ −1−m)∆1∆2 + (τ +1)∆1 + (τ −1)∆2

(1−m2)τ∆1∆2 + (τ +1)∆1 + (τ +1)(τ −m2)∆2/2 + (τ +1)2/2

A2222 = |B|µτ +1

τ −1

(1−m)(2τ −1+m)∆1∆2 + (τ +1)∆1 + (τ −1)∆2

(1−m2)τ∆1∆2 + (τ +1)∆1 + (τ +1)(τ −m2)∆2/2 + (τ +1)2/2

A1122 = |B|µτ +1

τ −1

(1−m2)∆1∆2 + (τ +1)∆1 + (1−τ2)∆2/2

(1−m2)τ∆1∆2 + (τ +1)∆1 + (τ +1)(τ −m2)∆2/2 + (τ +1)2/2

A1212 = |B|µ (τ +1)∆2

(τ +m2)∆2 + τ +1
(4.115)

with ∆1 = κ̄⋆/κ̄− 1, ∆2 = µ⋆/µ− 1, τ = 3− 4ν and |B| = πa1a2. The above expression of A
has been checked to coincide (after notational adjustment) with the corresponding result of [20]
(Theorem 3.2), established using a different method.
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4.6 Numerical examples

This section presents several applications and numerical results related to the topological deriva-
tive. In view of the essential role of the EMT A in the evaluation of DJ , its computation is
examined in Sec. 4.6.1 for ellipsoidal (or spherical) inhomogeneities, corresponding to the most
often used form of topological derivative. In this case, (4.97) shows that an accurate evaluation
of A mainly hinges on that of S, which is thus the main focus of Sec. 4.6.1. Then, a numerical
validation of expression (4.57) for DJ , performed in 2D conditions by comparing J(Ca) evaluated
either numerically or using expansion (4.56), is presented in Sec. 4.6.2. A sensibility analysis in
a 2D anisotropic ply and an isotropic 3D beam is performed in Sections 4.6.3 and 4.6.4, respec-
tively. Finally, 2D and 3D applications in flaw identification are illustrated in Sections 4.6.5
and 4.6.6 for energy misfit functionals.

The finite element analysis for each of the foregoing 2D and 3D test cases was carried out
with the software Freefem++ [118]. The finite elements for the displacement and adjoint state
where chosen as Lagrange P1 elements on a triangular and tetrahedral mesh, respectively. The
mesh of the surface of a human femur was obtained from the mesh database of the GAMMA
project [166], while its inner tetrahedral mesh and the surface mesh adaptation were generated
thanks to TetGen [304] and FreeYams [119], respectively. The plot of the 2D, 3D functions and
meshes was done with Medit [214].

The term in the topological derivative (4.57) involving an integral on R3 \B was evaluated
using (4.90) and two quadrature rule, namely a Gauss-Legendre quadrature on t ∈ [0, 1] and a
Lebedev quadrature [190] on ŷ ∈ S2. In the 2D case, two Gauss-Legendre quadratures where
used. The known analytical expression (4.96) of the 3D isotropic exterior Eshelby tensor Sext
for the unit sphere was directly applied to avoid its high numerical cost.

Since the topological derivative depends on the derivatives of u and p, the finite element
representation of DJ(z) is P0 (piecewise constant). To facilitate graphical post-processing, a
regularized version DJr of DJ was computed, by applying a standard regularization procedure
consisting in solving the variational problem

∫

Ω

(

DJr w + ε∇DJr ·∇w
)

dV =

∫

Ω
DJ w dV, ∀w ∈H1(Ω).

The parameter ε controls the diffusion and regularization of DJ , at a slight expense of accuracy.
For this study ε was set to ε = 10−6.

4.6.1 Numerical evaluation of the EMT for ellipsoidal inhomogeneities

Considering an ellipsoidal inhomogeneity shape B, the computation of A using (4.97) is straight-
forward once S int is known. Evaluating the latter usually requires a numerical quadrature of
integral (4.84). A set of high-accuracy quadrature rules specially designed for integrals over
S2, proposed in [190], are used here for this purpose. Each such rule is based on a set of
NL points η̂q ∈ S2 and weights wq, determined so as to integrate exactly spherical harmonics
of order up to L (they are freely available, as a Matlab file getLebedevSphere.m, from e.g.
www.mathworks.com). Formula (4.84) then becomes

S intijkℓ =
1

8π
Cmnkℓ

NL
∑

q=1

wq
[

ηq,jNim

(

ηq
)

+ ηq,iNjm

(

ηq
)]

ηq,n(θ) + ǫ(NL) (4.116)

(where ǫ(NL) denotes the quadrature error). In this section, the accuracy of the numerical
computation of S int is quantified in terms of the relative L∞ discrepancy between S int and a
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Figure 4.3: Cylindrical inclusion with elliptical cross-section: relative error ǫ∞(S int) as a function of
quadrature order NL for various values of aspect ratio a2/a1.

reference value Sref, denoted ǫ∞(S int) and defined by

ǫ∞(S int) :=
|S int − Sref|∞
|Sref|∞

=

max
i,j,k,ℓ

|S intijkℓ − Srefijkℓ|

max
i,j,k,ℓ

|Srefijkℓ|
, (4.117)

First, three cases with available analytical exact solutions Sref are considered, namely (a) a
spherical inclusion (a1 = a2 = a3), (b) a penny-shaped thin inclusion (a1 = a2, a3 → 0) and (c)
a cylindrical inclusion with elliptical cross-section (a3 →∞). An isotropic background material
with a Poisson ratio ν = 0.3 is assumed for all three cases. Numerical quadrature for cases (b)
and (c) used a3 = 10−40 and a3 = 1040, respectively. In cases (a) and (b), (4.116) achieves an ex-
act evaluation (within double-precision accuracy) with N5 = 14 and N3 = 6 quadrature points,
respectively. Case (c) corresponds to an elliptical inclusion under two-dimensional plane-strain
conditions, with the exact solution Sref given by (4.114), but the numerical quadrature was
still done using the three-dimensional formula (4.116), treating the inclusion as an extremely
elongated ellipsoid (a3 = 1040) so as to test the numerical quadrature under more severe condi-
tions. Relative errors ǫ∞(S int) achieved for various values of NL and the aspect ratio a2/a1 of
the cross-section are shown in Fig. 4.3. Clearly, due to the very high aspect ratio a3/a1 used,
sufficient accuracy (say ǫ(S int) ≤ 10−2) requires hundreds to thousands of quadrature points
depending on the aspect ratio a2/a1.

Next, the influence of either geometrical or material distortion on the quadrature order
NL required to achieve a fixed target accuracy ǫ(S int) = 10−5 in (4.116) is investigated. In
Fig. 4.4a, an ellipsoidal inclusion with semiaxes (a1, a2, a1) in an isotropic background material is
considered, with the aspect ratio a2/a1 varying over the range [1, 30], while Fig. 4.4b corresponds
to the case of a spherical inclusion in various anisotropic materials, with the anisotropy index AU

varying between 0 (isotropic) to about 150 (highly anisotropic). The universal elastic anisotropy
index, introduced in [256], is defined as

AU = 5
µV
µR

+
κV
κR
− 6 ≥ 0, (4.118)

where CV = 3κVJ + 2µVK and CR = 1/(3κR)J + 1/(2µR)K are the Voigt estimate of C and the
Reuss estimate of C−1, respectively. Both estimates are defined from averaging over all possible
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Figure 4.4: Quadrature order NL needed to achieve target accuracy ǫ(S int) = 10−5 for (a) isotropic
background material and varying values of aspect ratio a2/a1 or (b) varying values of
anisotropy index AU of background material.

spatial orientations, and are hence isotropic. They are given by CV = H(C) and CR = H(C−1),
where H is the Haar measure over the set of rotations of R3, defined by

H(E) =
1

8π2

∫ 2π

0

∫ 2π

0

∫ π

0
Q(θ, φ, ψ) :E :QT(θ, φ, ψ) sin θ dθ dφ dψ (4.119)

(θ, φ, ψ denoting the Euler angles). In (4.119), the fourth-order rotation tensor Q is defined
(see [93, 215]) by Q := 1/2(QikQjℓ + QiℓQjk)ei⊗ ej ⊗ ek ⊗ eℓ in terms of the rotation matrix
Q := Qz(ψ)Qx(θ)Qz(φ) ∈ R3×3, where

Qz(α) =





cosα − sinα 0
sinα cosα 0

0 0 1



 , Qx(α) =





1 0 0
0 cosα − sinα
0 sinα cosα



 .

Clearly, suitable values of the quadrature order NL are strongly influenced by both geometrical
and material distortion. The latter effect is relevant in e.g. combined topology/material struc-
tural optimization, where the ability to accurately compute DJ(z) for arbitrary trial materials
spanning wide ranges of anisotropy is important.

4.6.2 Numerical assessment of the topological derivative

In this section, a simple cantilever structure featuring an anisotropic elliptic inhomogeneity Ba is
considered, under plane-strain two-dimensional conditions (Fig. 4.5). The structure is clamped
along its left side and loaded on its right side by g = (0,−1). No body forces are applied
(f = 0), and the remaining part of the boundary is traction-free. Two cases are considered for
the constitutive properties (using the Voigt matrix notation, which reduces to 3×3 matrices for
the plane-strain case): (a) a fully isotropic case with

C =





1.34 0.57 0.
0.57 1.34 0.
0. 0. 0.38



 , C⋆ = 10−9C

i.e. with a very soft inhomogeneity close to a void, and (b) a fully anisotropic case with

C =





1. 0.5 0.
0.5 2. 0.
0. 0. 0.04



 , C⋆ =





3. 0.4 0.
0.4 1.5 0.
0. 0. 0.03




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Figure 4.5: 2D Test case and the nested mesh structure of the inhomogeneities Ba.

A specific objective function was considered, namely the potential energy (compliance)

J(Ca) = Epot(ua) := −1

2

∫

ΓN

ua ·g ds,

A finite element analysis for cases (a) and (b) with various (small) values of a was performed,
meanwhile the computation of DJ(z) relied on a Gauss-Legendre quadrature formula for the
numerical evaluation of S int (4.102).

The discrepancy ǫ(a) between the variation of J(Ca) and DJ is defined by

ǫ(a) :=
|∆J − a2DJ(z)|
|a2DJ(z)| , with ∆J := J(Ca)− J(C).

ǫ(a) is plotted against a in Fig. 4.6, for an elliptic inhomogeneity with aspect ratio a1/a2 = 1
(disk) or 2m and (in the latter case) main axis rotation angles α = 0 or π/4. A numerical test
of correctness of the evaluation of DJ(z) then consists in checking that ǫ(a) = o(1) for small
a. This desired trend is clearly visible for all considered cases in Fig. 4.6. The results there
moreover suggest that ǫ(a) = O(a2), even though one would a priori have expected a linear
behavior. This empirical remark is consistent with higher-order topological expansions obtained
in other situations [53] where for 2D problems the O(a3) contribution to the objective function
expansion is found to vanish whenever the shape B has central symmetry, which is the case of
an elliptic inhomogeneity.
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Figure 4.6: 2D Test case with nested inhomogeneities

Remark 4.6.1. This asymptotic validation is here limited to the 2D case because accurate
numerical results require a very fine mesh of the inhomogeneity and its vicinity.

4.6.3 Sensitivity analysis of the Hill-Tsai failure criterion

As it was evoked in Section 1.3, composite materials are quite popular in industry thanks their
low weight, high fatigue resistance and good endurance against corrosion. The elastic constitu-
tive relation for such materials, restricted for two-dimensional problems to the in-plane compo-
nents of the stress tensor, may be conveniently written in the principal orthotropy directions,
and using the Voigt notation, in the form







σℓ
σt
τℓt







=
1

1−νℓtνtℓ





Eℓ νtℓEℓ 0
νℓtEt Et 0

0 0 2Gℓt











eℓ
et
eℓt







where the stresses are denoted as σℓ in the fiber direction, σt in the direction transverse to the
fibers, and τℓt for the shear stresses. This model involves four independent elastic constants,
since one must have νtℓEℓ = νℓtEt.

The Hill-Tsai failure criterion, suitable for orthotropic materials, is an adaptation of the von
Mises yield criterion whereby the material strength depends on the direction, according to the
orientation of the fiber reinforcement. This criterion can be written as [125]

α2(σ) :=
σ2ℓ
σ̂2ℓ

+
σ2t
σ̂2t
− σℓσt

σ̂2ℓ
+
τ2ℓt
τ̂2ℓt

< 1, (4.120)

where σ̂ℓ, σ̂t and τ̂ℓt denote known rupture strengths.

Unlike their metal counterparts, composite structures are incapable to conduct away the
extreme electrical currents and electromagnetic fields generated by lighting strikes. Hence the
need for protection of composite structures has prompted the development of specialized light-
ing strike protection materials [122]. An example of such material features metallic pieces of
conductive material added into the laminate. This numerical example examines, by means of
the topological derivative, the sensitivity of the Hill-Tsai criterion (4.120) to the addition of
small metallic inhomogeneities to the orthotropic material, so as to determine (and avoid) those
locations for which this material addition make the laminate most vulnerable to failure.
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Figure 4.7: Orthotropic ply Ω clamped to a circular support: configuration and mesh (∼ 3, 700 ele-
ments). A horizontal uniform load g is applied on its right side.

Let Ω = {(x, y) ∈ (0, 1)× (0, 2)} ⊂ R2 be a rectangular 45o carbon/epoxy fiber ply (i.e. a
composite membrane, with fiber direction eℓ = (ex + ey)/

√
2 and 60% fiber volume fraction),

clamped to a circular support. An uniform horizontal tensile traction g = 10−5Eℓex is applied
on its right side (Fig. 4.7).

The elastic parameters of the composite ply are Eℓ = 135 GPa, Et = 10 GPa, Gℓt =
5 GPa, νℓt = 0.3, while the ultimate tensile failure strengths involved in the criterion (4.120)

are σ̂ℓ = 1500 MPa, σ̂t = 50 MPa, τ̂ℓt = 70 MPa. The metallic inclusions are considered circular
and made of aluminum, whose isotropic elastic characteristics are E = 72 GPa, ν = 0.34, while
the von Mises yield strength is σ̂ = 20MPa.

Let the densities ψ, ψ⋆ entering the definition (4.27) of the cost functional J(Ca) be given,
in terms of the penalization function Ψn introduced in (4.32), by

ψ(d) = Ψn

(

α2(C :d)
)

, ψ⋆(d) = Ψn

(

α2
⋆(C⋆ :d)

)

(4.121)

(with n≥ 1). The function α for the composite membrane is given by (4.120). The corresponding
function α⋆ for the aluminum is also taken of the form (4.120) with σ̂ℓ = σ̂t = σ̂ and τ̂ℓt = σ̂/

√
3,

as this choice reduces the Hill-Tsai criterion to the plane-stress von Mises criterion for isotropic
materials. With this choice, J(Ca) is always nonnegative; moreover, in the limit n → ∞,
J(Ca) = 0 unless the threshold (4.120) is violated at some location. The value n= 5 is used in
the numerical experiments to follow. The topological derivative DJ is given by (4.57), with

G(z, d) = ψ(∇u(z) + d)− ψ(∇u(z))− ∂dψ(∇u(z)) :d, (4.122)

and with G⋆ similarly defined in terms of ψ⋆. The derivative ∂dψ is found to be given by

∂dψ(∇u) :d =
[ (

1 + α2n(C :∇u)
)(1−n)/n

α2(n−1)(C :∇u)
]

∂dα
2(C :∇u) :d (4.123)

where, since α2(σ) is a symmetric quadratic form in σ,

∂dα
2(C :∇u) :d = 1

2α
2
(

C : (∇u(z)+d )
)

− 1
2α

2
(

C : (∇u(z)−d )
)

.

Figure 4.10 shows the distributions of values of the Hill-Tsai criterion (4.120) and its topo-
logical derivative. The metallic inclusion should not be placed in zones where DJ takes higher
values.

4.6.4 Sensitivity of the von Mises criterion for an isotropic 3D beam

Consider a beam occupying the domain Ω = { (x, y, z) ∈ (−0.1, 0.1)× (−0.5, 0.5)× (−0.1, 0.1) },
clamped on its rear face y =−0.5, made of an isotropic elastic material (Fig. 4.11). A traction
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Figure 4.10: Orthotropic ply: sensitivity analysis of the Hill-Tsai failure criterion.

g = xez is applied on the front face, so as to produce torsion around the main axis x = z = 0.
The remaining faces are traction-free.

The beam is meshed with ∼ 75, 500 tetrahedral elements and the isotropic elastic properties
of the material are normalized and given as Young’s modulus E = 1 and Poisson’s ratio ν = 0.3.
We study the variation of the von Mises criterion when a small spherical cavity is introduced in
the beam. This is a typical example of sensitivity analysis for topology optimization. The von
Mises yield criterion sets a threshold on the equivalent stress σeq:

α(σ) ≤ 1, with α(σ) := σeq/σ̂, σeq :=
(

3
2dev(σ) :dev(σ)

)1/2
, (4.124)

where dev(σ) := σ− 1
3tr(σ)I is the deviatoric stress tensor and σ̂ is a critical stress threshold for

the material, here chosen as σ̂ = 0.1. Under the given torsional loading, the stress state then
satisfies (4.124) in the entire beam (see Figure 4.12).

Considering σeq as a function of the displacement gradient through the elastic constitutive
equation σ= C :∇u, and given that the trial cavity Ba contains no material (i.e. C⋆ = 0), ψ and
ψ⋆ are chosen as

ψ(∇u) = Ψn

(

α2(C :d)
)

, ψ⋆(d) = 0 (4.125)

where Ψn is again the penalty function (4.32), with n ≥ 1 and α is defined by (4.124). Then if
n → ∞, the value of the integral of (4.125) on Ω is nonzero only if (4.124) is violated in some

1.0

0.2
0.2

ex ey

ez

0.0

5.0× 10−2

1.0× 10−1

2.5× 10−2

7.6× 10−2

Figure 4.11: Beam under torsion: geometrical configuration, with color scale of displacement modulus
(undeformed and deformed views)
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1.6×10−3
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Figure 4.12: Beam under torsion: contour plot of 2σ2
eq/3 = |dev(σ)|2 on the boundary (left) and inside

the beam along a transversal cut (right).

Figure 4.13: Beam under torsion: color maps of |DJ | in planes x = 0 (top left), x = 0.05 (top right)
and x = 0.1 (bottom). The left boundary corresponds to the clamped face of the beam.

part of the domain. Let us take e.g. n = 5. Thus, noting that ∆ψ = −ψ, the topological
derivative of the functional

Ja(Ca) = Ja(∇ua) =

∫

Ω\Ba

ψ(∇ua) dV

is given by

DJ(z) = −|B|ψ(∇u(z))−∇p(z) :A :∇u(z) + ∂dψ(∇u(z)) : |B|∇vB[∇u(z)]

+

∫

R3\B
G(z,∇vB[∇u(x)])(x̄) dV,

where G(z, d) again has the form (4.122), this time with ψ defined by (4.125) and (4.124). The
derivative ∂d still has the form (4.123), now with

∂dα
2(C :∇u) :d =

3

σ̂2
dev(C :∇u) :dev(C :d)

The distribution of the values of DJ for three different cut planes is plotted in Figure 4.13.

Remark 4.6.2. The similarities between the distribution of |σdev| in Figure 4.12 and the topo-
logical derivative in Figure 4.13 are noticeable. This observation supports the idea of using |σ|
as a sensitivity measure for topology optimization. In fact this property is exploited by evolu-
tionary algorithms [153] and soft kill option algorithms [34] for lightweight design subjected to a
yield criterion. In general, these algorithms search the optimal topology through a fully stressed
design, by gradually removing the low stressed material w.r.t. a certain reference value.
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4.6.5 2D anisotropic flaw identification using an energy cost functional

To illustrate the usefulness of the topological derivative of energy-based cost functionals, the
detection of three circular anisotropic inhomogeneities Bk =Ba(zk) (k= 1, 2, 3) having the same
radius a and embedded in an anisotropic reference material is considered,

C =





1. 3. 0.
3. 10. 0.
0. 0. 0.03



 (4.126)

again under two-dimensional plane-strain conditions (with geometry as shown in Fig. 4.14). B1

and B3 are softer than the background (C⋆ = 0.5C), while B2 is harder (C⋆ = 2C). The solid is
clamped on its bottom and lateral sides, while a uniform normal pressure g= 1 is applied on its
top side. The displacement response u0 of the flawed solid is computed using finite elements. The
identification problem then consists of identifying the inclusions knowing the kinematic response
u0, which may in practice be available from full-field measurement techniques such as digital
image correlation. In any case this remains as an academic example, due to the cost in practice of
acquiring all these measures. Here, the identification problem may be formulated as minimizing
the functional E1 defined by (4.70). Figure 4.15 shows the topological derivative DE1(z) (more
precisely, the normalized and thresholded quantity z 7→ Min

(

DE1(z), 0
)

/
[

− Min
(

DE1(z)
)]

),
where the EMT is defined using either C⋆ = 0.5C or C⋆ = 2C. According to the choice of
EMT, the topological derivative field DE1(z) is seen to reveal correctly, through locations at
which DE1(z) is most negative, the locations of the softer and stiffer flaws. This is consistent
with similar findings made in [136] for the elastodynamic case and using least-squares output
cost functionals. Alike results have been obtained on this example for cases where C⋆ is not
proportional to C.

4.6.6 3D anisotropic non-destructive testing

Two applications of non-destructive control in anisotropic materials are now presented, one
pertaining to medical imaging and the other to composite structures. Indeed, several groups
have recently investigated the topological derivative as a means for imaging hidden flaws, see for
instance [325, 17], and also [308] for an application on experimental data. Existing investigations
in this direction are based on usual displacement-based cost functionals (typically of the output

L = 2

H = 1

x

y

z1 = (0.3,−0.35)

z2 = (1, 0.65)

z3 = (1, 7.65)

g = 1

B1

B2

B3

(a2 = 0.003)

Figure 4.14: Flaw identification using an energy cost functional: setting and notations.
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least-squares type). In contrast, we examine in this example an alternative approach where the
misfit to experimental data is formulated in terms of an energy (and hence strain- or stress-
based) cost functional. Assuming the availability of a displacement measurement u0 over a
part ω of the elastic solid Ω, using e.g. full-field kinematical data [35], the strain energy of the
measurement misfit is given by

Jω(Ca) = Ja(∇ua;ω) =

∫

ω
∇(ua − u0) :Ca :∇(ua − u0) dV. (4.127)

Depending on whether the trial inhomogeneity Ba is located inside or outside of ω, we distinguish
two cases:

1. Ba ⊂ ω. This case is relevant when complete displacement measurements are available
over a particular region ω inside Ω. Adapting (4.81), the topological derivative reads

DJ(z) = |B|∇u0(z) :∆C :∇u0(z)−∇(p+ 2u0 − u) :A :∇u (z ∈ω),

where the adjoint solution p satisfies the variational formulation

〈

p, w
〉C

Ω
= 2
〈

u− u0, w
〉C

ω
, ∀w ∈W0(Ω).

2. Ba ⊂ Ω\ ω̄. The interest of this situation is justified when we have a set of small control
volumes inside a body and we want to identify the position of the anomaly outside the
measured volumes. As it was previously seen in Section 4.4.2, there is no second order
contribution in the topological derivative and DJ simply reads

DJ(z) = −∇p(z) : A : ∇u(z) (z ∈Ω\ ω̄).

First application. It is concerned with the detection of anomalous femoral bone tissue. The
local change of elastic properties in femoral bone may be provoked e.g. by cancer metastasis,
traumatic or pathological fractures. Moreover, bone cell elasticity and morphology changes
during the cell cycle [175], and elasticity differences between cancerous and healthy tissues of
various kinds have been experimentally established [184, 294].

Additionally, bone is a complex material, with a multiphasic, heterogeneous and anisotropic
microstructure [107]. In particular, femoral bone can be accurately modelled as transversely
isotropic material whose principal orientations are defined based either on the trabecular struc-
tures or the harvesian system, according to whether the bone is cancellous or cortical [323].

Consider the proximal part Ω of a femoral bone (Fig. 4.16), contained in the box
{

(x, y, z) ∈
(0.03, 0.09)× (0.04, 0.08)× (0.01, 0.11)

}

and meshed with ∼213, 600 tetrahedral elements (mesh
size h = 0.001). The elastic properties of the healthy bone are by simplification assumed to be
homogeneous and transversely isotropic, with normalized elastic constants given by

Ex = Ey = 0.5, Ez = 1, νxy = νxz = νyz = 0.35, Gxz = Gyz = 0.03.

Figure 4.15: Flaw identification using an energy cost functional: topological derivative DE1(z) for
C⋆ = 0.5C at the left and C⋆ = 2C at the right.
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Figure 4.16: Femoral bone: a uniform vertical load g = −10−3ez is applied on the head of the femur
(simulating the body weight) while the distal horizontal section z = 0.01 is clamped (left).
The right panel shows a color scale of the displacement modulus.

The anomalous tissue is assumed to be a small and stiffer spherical inhomogeneity (Fig. 4.17)
with radius 0.005 and center at (0.05, 0.06, 0.06). Its Young and shear moduli are twice those of
the healthy bone, while both materials have the same Poisson ratios. The bone is clamped at
z = 0.01 and loaded with a vertical force density g = −1×10−3ez applied on the top surface of
the femur (z ∈ [0.10, 0.11]).

The measurement region ω is defined as the vertically central zone of the femur (shown in red
in Fig. 4.17). Simulated data is assumed to be exact for simplicity. While this constitutes a strong
idealization, previous numerical experiments on flaw identification by topological derivative have
shown the approach to be only moderately sensitive to measurement noise [37]. This remains
in any case only as an academic example.

Figure 4.20 shows three iso-surfaces of DJ with decreasing levels η ≈ −0.19 (yellow), η ≈
−0.45 (green) and η ≈−0.71 (blue), where an iso-surface Sη with level η relative to the (negative)
absolute minimum DJmin := minz∈Ω DJ(z) is defined by

Sη =
{

z ∈Ω,DJ(z) = η|DJmin|
}

(4.128)

Those iso-surfaces show the location of the anomalous tissue to be correctly identified.

Second application. It consists in detecting a failure point leading to damage inside a com-
posite structure. Multi-laminate composite structures, as it was detailed in Section 1.3, are
made of multiple orthotropic plies, each of them composed of a weak matrix (most often poly-
meric) and reinforcement fibers (carbon, glass, kevlar, etc). We consider here a composite cube
Ω = {(x, y, z) ∈ (0, 0.2)3}, filled up with ∼ 23, 000 tetrahedral elements (mesh size h = 0.011),
made of three stacked layers of equal thickness (Fig. 4.23) whose constitutive elastic properties
are transversely isotropic. The normalized elastic constants for the bottom layer are

Ex = 1 , Ey = Ez = 0.05, νxy = νxz = νyz = 0.35, Gxz = Gyz = Gxy = 0.03,

The middle and top layers have the same elastic constants than the lowest one, but with the
horizontal principal orthotropy directions resulting from a 45o and 90o rotation of the x, y axes,
respectively. The failure point is modeled as a spherical inhomogeneity, of centre (0.1, 0.15, 0.1)
and radius 0.01, and with very low elastic moduli properties C⋆ = 10−5C. The considered misfit
criterion is again of the form (4.127), this time with the measurement region ω consisting of a set
of M small disconnected control volumes: ω = ∪ωj (1≤ j ≤M), with ωj ⊂Ω and ωi ∩ ωj = ∅.
Two of such configurations (but with control volumes of different size) are shown on Fig. 4.26
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Figure 4.17: Femoral bone: anomalous tissue (left, in red) and measurement region ω (right, in red).
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Figure 4.18: Three-
dimensional
view.

Figure 4.19: Transversal cut
view.

Figure 4.20: Femural bone: iso-surfaces η ≈−0.19 (yellow), η ≈−0.45 (green) and η ≈−0.71 (blue) of
DJ .

for M = 44 and M = 729. They respectively occupy 0.4% and 0.8% of the total volume. The
adjoint solution p in this case solves

∫

Ω
∇p :C :∇q dV = 2

M
∑

i=1

∫

ωi

∇(u− u0) :C :∇q dV, ∀q ∈W0(Ω).

Fig. 4.29 shows one iso-surface (in green) of DJ with negative level surrounding the minimum
of DJ(z) for each control volume configuration of Figure 4.26 (with η ≈ −0.65 and η ≈ −0.3,
respectively). As expected, the identification quality improves with the number of measurement
zones. Moreover, the absolute minima of DJ are found to be DJmin ≈ −1.3×10−3 and DJmin ≈
−6.9×10−2, respectively, which is another indication of configuration 2 being more sensitive to
a small defect.
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Figure 4.21: Layered cube, and fiber
orientation.
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Figure 4.22: A color scale of the displacement
modulus.

Figure 4.23: Layered cube: two uniform compression loads g1 = −0.1ex and g2 = 0.1ex are respectively
applied on the faces of the cube x = 0.2 and x = 0. Displacements are not affine in the
spatial coordinates due to the anisotropy.

Figure 4.24: Configuration 1 (M = 44).
Figure 4.25: Configuration 2 (M =

729).

Figure 4.26: Layered cube: control volumes ωj (1≤ j ≤M).
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Figure 4.27: Configuration 1 (M = 44).
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Figure 4.28: Configuration 2 (M =
729).

Figure 4.29: Layered cube: iso-surface Sη with η ≈ −0.65 (left) and η ≈ −0.3 (right) of DJ . The grey
sphere shows the correct location of the failure point.
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We discuss the problem of the optimal design of a micro-tubular fuel cell applying an in-
verse homogenization technique. Fuel cells are extremely clean and efficient electrochemical
power generation devices, made up of a cathode/electrolyte/anode structure, whose energetic
potential has not being fully exploited in propulsion systems in aeronautics due to their low
power densities. Nevertheless, thanks to the recent development of additive layer manufactur-
ing techniques (3D printing), complex structures usually impossible to design with conventional
manufacturing techniques can be constructed with a low cost, allowing notably to build porous
or foam-type structures for fuel cells. We seek thus to come up with the micro-structure of
an arrangement of micro-tubular cathodes which maximizes the contact surface subjected to a
pressure drop and a permeability constraint. The optimal periodic design (fluid/solid) emerges
from the application of a shape gradient algorithm coupled to a level-set method for the geo-
metrical description of the corresponding cell problem.

This chapter is based on a joint work with E. Moullet and Ch. Nespoulous in the framework
of the internship in Airbus Group of the former one.

5.1 Introduction

Fuel cells are energy conversion devices which can continuously convert chemical energy into
electrical energy and heat, without involving direct combustion. This feature offers many ad-
vantages over traditional power sources such as improved efficiency, greater fuel diversity, high
scalability, no moving parts (hence less noise and vibration) and lower impact on the environment
[129].

A fuel cell is a fairly simple device, mainly composed of three elements: an anode, a cathode,
and an electrolyte between the two electrodes. The two electrodes are connected together by
an electrical circuit. On the surface of these electrodes, electrochemical reactants react through
half-redox reactions, producing (or consuming) ions, electrons, and in most cases, heat. Ions

195



196 CHAPTER 5. OPTIMAL DESIGN OF A MICRO-TUBULAR FUEL CELL

pass through the electrolyte meanwhile electrons are “channeled” in the electric circuit and then
routed to the second electrode to be consumed.

The efficiency of current fuel cells, which ranges from 40% to 60%, is higher than thermal
systems such as gas turbines since their operation is not constrained by any theoretical thermo-
dynamic limitation as the maximum Carnot efficiency. Furthermore, coupled to a gas turbine at
a high temperature (800−1000oC), the spawned hybrid system can achieve really high efficiencies
(near 85%), producing electricity from the waste of heat. This feature makes high temperature
operating fuel cells an interesting complement to aircraft engines [253, 280, 264, 259, 289].
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Figure 5.1: Different types of fuel cells: Polymeric Electrolyte Membrane (PEMFC), Alkaline (AFC),
Phosphoric Acid (PAFC), Molten Carbonate (MCFC) and Solid Oxide (SOFC).

Among the different types of fuel cells (see Fig. 5.1), one can recognize the Solid Oxide Fuel
Cells (SOFC) as a particularly appealing model for high temperature applications in hybrid
systems. SOFC possesses various advantages w.r.t other fuel cells such as a solid electrolyte
allowing different geometries and shapes, good performance and durability, and high operating
temperature (800−1000oC) for reforming. This last attribute has the potential of hybridization
with a gas turbine, as it is show in Fig. 5.3.

The cathode of a SOFC is usually an alloy of lanthanum, strontium, and manganese oxide.
On its surface takes place the half reduction reaction of oxygen, producing an oxygen ion. The
electrolyte is e.g. made of YSZ (yttrium stabilized zirconia). This allows the ion transport to the
anode (nickel mixed with YSZ), in contact with which it reacts with hydrogen to produce water
and electrons. Finally, these electrons are conducted and used by an electric device (Figure 5.2).
Both the anode and the cathode must be very porous so as to allow the transport of the fuel
and the oxygen, respectively.

SOFC can be designed following many geometric configurations. However, the most com-
mon designs are the planar and the tubular ones. Each design offers advantages and drawbacks
depending of the application requirement. Planar design configuration has a low physical compo-
nent volume profile and short current path between single cells, allowing higher power densities,
meanwhile tubular designs have e.g. high thermo-mechanical properties, simple sealing require-
ments and good thermal shock resistance [101].

Despite of the impressive energy efficiencies achieved by the SOFC, the foregoing geometries
lack of an essential property required by any aircraft system: high gravimetric and volumetric
energy densities. Indeed, fuel cells are still too heavy to propel any large aircraft since they
have a lower power density when compared with conventional turbines [154]. For instance, the
gravimetric power density (kW/kg) of a SOFC compared to the turbojet CFM-56 (one of the
most popular turbojets in the world and often used as a reference for studies of this type) is at
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Figure 5.2: Triple structure of a solid oxide fuel cell. The O2 from the air is consumed in the cathode,
meanwhile the O2− ions liberated from the reduction reaction travel through the electrolyte
to the anode, where the oxidation reaction of the fuel (H2) takes place, liberating heat, water
and electricity.
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Figure 5.3: Example of an hybrid system.

least five times smaller.

In order to improve the fuel cell efficiency, various alternatives have emerged, such as minia-
turization of the structure through a micro-tubular configuration [101] and the use of porous
materials (foam) in the design of some components (e.g. bipolar/end plates) [185]. In general
these techniques take advantage of recent developments in additive layer manufacturing or 3D
printing procedures, which allow the construction of extremely complicated 3D structures from
a CAD model.

Thus, the design of fuel cells with very small features, leading notably to periodic patterns,
becomes a foremost challenge in the construction of future technologies (see Figure 5.4). An
adapted tool for this purpose is inverse homogenization. The homogenization method for topol-
ogy optimization, which has been successfully implemented in structural optimal design (see
e.g. [4, 42, 85, 13, 43]), consists in admitting composites regions where the void appears at a
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Figure 5.4: Evolution of power density vs active surface of SOFC

micro-scale (see Section 1.1). The theoretical foundations are given in [182, 302]. Meanwhile
in homogenization the effective properties of a material are found from the micro-structure, in
inverse homogenization the micro-structure does not exist initially but we seek to come up with
a micro-structure with prescribed or extreme homogenized properties. The design of materials
with extreme or prescribed properties using inverse homogenization in elasticity, fluid mechanics,
wave propagation, etc., is well known in the literature [69, 274, 273, 143, 277, 328, 132, 44].

In the process of finding the optimal micro-structure, a topology optimization problem must
be solved within the so-called cell problem. The cell problem defines the link between the
physical macroscopic (effective) properties and the micro-structure characterized by a certain
geometry. Among the most popular methods in topology optimization for fluid flow problems,
the level-set method for shape optimization [11, 66, 272, 319] arises as a viable, robust and
efficient alternative to more standard density-based approaches [4, 6, 42]. First introduced by
[252, 271], the level-set method is capable of tracking fronts and free boundaries, allowing thus
to naturally manage topology changes. Moreover, in the context of fluid flows, it enables to
directly implement the no-slip boundary condition, avoiding any kind of interpolation scheme
[80].

In the present chapter we propose an optimal configuration of a micro-tubular fuel cell,
whose cathode constitutes a tubular periodic structure designed by inverse homogenization.
This particular structure leads to a maximal surface micro-structure subjected to a permeabil-
ity constraint for the air phase and a pressure drop constraint for the fuel phase. In Section 5.2,
the main features of the problem are described, namely the physical modeling of a porous fuel
cell, the homogenization of the equations governing the system and the optimization problem we
contemplate to solve. Then the shape gradients of the functionals involved in the optimization
problem, according to Definition 1.1.13, are recalled in Section 5.3. Finally an example of an
optimal periodical micro-structure (fluid/solid) is detailed in Section 5.4, emerging from the ap-
plication of the level-set method for topology optimization (see Section 1.2) to the corresponding
cell problem.

5.2 Problem setting

5.2.1 Physical modeling of a porous fuel cell

A generic SOFC, regardless of the geometrical configuration (planar, tubular, monolithic, etc),
is always composed of two porous electrodes (anode and cathode), a dense electrolyte, an anodic
and cathodic gas channel and two current collectors. However, for the sake of simplicity, we
propose to study a reduced model of a micro-tubular SOFC [101], as described in Figure (b)
5.5, focusing on the three former components. Thus, we consider a periodically perforated
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domain, where the air flows freely around a periodic collection of cathode/electrolyte/anode
tubes. The air cannot penetrate inside the tubes and the fuel flows orthogonally through them.
The air transports several species but we concentrate on the O2, which is consumed in the
electrochemical reaction on the surface of the cathode.

(a) (b)

Figure 5.5: Micro-tubular fuel cell: (a) Micro-tubular SOFC of 3W, AIST [236]. (b) Micro-tubular
design with arbitrary shaped tubes proposed in [225].

Assumptions. Now we list the main physical assumptions of our model, similarly to [57]

(1) Steady state velocity of the air (also called slow steady state).

(2) Laminar and incompressible flow. This assumption derives from the low gas speed in the
SOFC gas channels, where the density variation of each specie is not related to compres-
sions/expansions, but rather caused either internally by heat release of chemical reactions
or externally by wall heating and by mass variation. Furthermore, considering that the gas
speed in SOFC gas channels is always very low (low Mach number < 0.3), it is a common
practice to assume a laminar flow in the gas channels, meaning that the non-linear term
in the momentum conservation equation (inertia term) is negligible with respect to the
viscous term.

(3) Isothermal state. Since the temperature of the SOFC is quite high (800o − 1000oC), the
local variations can be underestimated. This allows in particular to avoid the dependence
of the diffusion tensor and the reaction ratio of O2 with respect to the temperature.

(4) The electrochemical reactions are confined to the electrode-electrolyte interface. The place
where the electrochemical reaction takes place, the so-called triple-phase-boundary, is the
site where ions, electrons and gas coexist, thus enabling the redox reactions. Since this
place represents a small portion of the entire electrode domain and the high electronic
conductivity of the electrodes compared to the ionic conductivity, the redox reactions are
likely to take place very close to the electrode-electrolyte interface.

(5) The cathode/electrolyte/anode is a lumped structure so it can be treated as one interface.

Generally speaking, the physic of the SOFC is modeled as a complex system where chemical
reactions, electrical conduction, ionic conduction, gas phase mass transport, and heat transfer
take place simultaneously and are tightly coupled [158, 161, 96]. Nevertheless, we simplify the
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physical description by focusing only on the gas mass transport and the chemical reaction on
the cathode.

Γǫ
ΓD

ΓN

ΓN

Ωǫ

Figure 5.6: Transversal section of the porous SOFC and boundary conditions. The air flows from the
left to the right. The fuel penetrates orthogonally through the figure inside the red tubes.
Γǫ represents the anode/electrolyte/cathode lumped structure.

Let Ωǫ ⊂ Rd be the porous volume of the fuel cell where the air flows freely, delimited by
the boundaries ΓD, ΓN and Γǫ. The air is injected through ΓD, meanwhile ΓN is impermeable.
A periodic arrangement of anode/electrolyte/cathode tubes constitutes the interface Γǫ. The
redox reaction takes place on Γǫ and the adimensional parameter ǫ corresponds to the ratio
between the characteristic size of each tube and a macroscopic characteristic length. See Fig.
5.6.

Conservation and constitutive laws. The fluid adimensionalized equations (mass conser-
vation and momentum conservation) plus the specie (O2) diffusion-convection-(surface)reaction
adimensionalized equation respectively read [31]















div(uǫ) = 0 x ∈ Ωǫ,
−ǫ2µ∆uǫ = ∇pǫ x ∈ Ωǫ,
∂Xǫ
∂t + uǫ · ∇Xǫ = λ∆Xǫ t > 0, x ∈ Ωǫ,
Xǫ = Xinit t = 0, x ∈ Ωǫ,

(5.1)

where Xǫ, Xinit represent the current and the initial concentrations of O2 in the air, uǫ is the local
velocity of the air, pǫ the local pressure, µ the viscosity of the air and λ the diffusion coefficient.
The parameter ǫ as it was explained above, corresponds to the ratio between the characteristic
size of each tube and a macroscopic characteristic length. We remark that in this model, the dif-
fusion and the convection of the O2 in the transport equation are equilibrated at the macro-scale.

Boundary conditions







uǫ = uD Xǫ = XD t > 0, x ∈ ΓD,
uǫ · n = 0 Dǫ∇Xǫ · n = 0 t > 0, x ∈ ΓN ,
uǫ = 0 ∇Xǫ · n = −ǫ 1

4eR(Xǫ) t > 0, x ∈ Γǫ,
(5.2)

where (uD, XD) are the velocity of the air and the concentration of O2 at the inflow boundary
ΓD, e is the electron charge and R(Xǫ) is the Butler-Volmer reaction term [174], which can be
simplified [266, 57] to

R(Xǫ) = j0(X
m
ǫ , T ) exp

(

− αc
zF

RT
η
)

.
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j0 corresponds to the exchange current density and depends linearly upon Xm
ǫ , m is the order of

reaction, η is the over-potential with respect the Nerst equilibrium potential, αc is the cathodic
transfert coefficient, T the temperature, z the number of electrons involved in the electrode
reaction, R the universal gas constant and F the Faraday constant. All the above parameters
are assumed constants.

We remark that the coefficient m is positive and in order to prove the existence of a weak
solution of (5.1), (5.2), m should be smaller than a certain critical value m̄, which depends
on the dimension d of the space. By taking e.g. m ≤ 1, R(Xǫ) ∈ L2(Γǫ) and the variational
formulation of (5.1), (5.2) will be well posed. Typical values for m are e.g. 0.4 in [176], for
a composite cathode made of 60% volume of LSM (lanthanum-strontium-manganite) and 40%
YSZ, and 0.25 in [92, 57]. Thus, depending on the physical characteristics of the cathode, the
reaction term R is in general non-linear.

5.2.2 Homogenized system

Before stating the homogenization of the system (5.1),(5.2), let us describe more precisely the
assumptions on the porous domain Ωǫ [4]. As usual in periodic homogenization, a periodic
structure is defined by a domain Ω and an associated micro-structure, or periodic cell Y = (0, 1)d,
which is made of two complementary parts : the solid part ω and the fluid part Y \ω (see Figure
5.7). We assume that Y \ω is a smooth and connected open subset of Y , identified with the unit
torus (i.e. Y \ω, repeated by Y−periodicity in Rd, is a smooth and connected open set of Rd).
The domain Ω is covered by a regular mesh of size ǫ: each cell Y ǫ

i is of the type (0, ǫ)d, and is
divided in solid part ωǫi and fluid part Y ǫ

i \ωǫi , i.e. is similar to the unit cell Y rescaled to size ǫ.
The fluid part Ωǫ of a porous medium is defined by

Ωǫ = Ω\
N(ǫ)
⋃

i=1

ωǫi ,

where the number of cells is N(ǫ) = |Ω|ǫ−d(1 + o(1)).

Y

ω

Y \ω

Figure 5.7: Unit cell of a porous medium.

Now according to [155, 156] for general heterogeneous catalysis and [266] for PEM fuel cells,
the homogenization of the initial boundary value problem (5.1),(5.2) corresponds to the following
system















div(u∗) = 0 x ∈ Ω

u∗ = −K
µ∇p∗ x ∈ Ω

∂X∗

∂t + u∗ · ∇X∗ = λdiv(D∇X∗) + |∂ω|R(X∗) x ∈ Ω
X∗ = Xinit t = 0, x ∈ Ω,

(5.3)
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and the boundary conditions

{

u∗ = uD X∗ = XD t > 0, x ∈ ΓD,
u∗ · n = 0 ∇X∗ · n = 0 t > 0, x ∈ ΓN .

(5.4)

The functions u∗, p∗, X∗ correspond to the homogenized velocity, pressure and O2 concen-
tration, respectively. D is the effective porous media diffusion tensor, |∂ω| is the perimeter of
the micro-fuel-tube ω scaled to the unit cell and K is the permeability tensor.

The definition of the tensors K and D stems from the so-called cell problems [155], namely

Kij =

∫

Y \ω
∇ui(y) : ∇uj(y)dy, Dik =

∫

Y \ω

(

ei +∇πi
)

·
(

ek +∇πk
)

dy (5.5)

where the tensorial product “ :” represents the twice-contracted tensorial product, i.e. for
A,B ∈ Rd×d

A : B =
∑

k,ℓ

AkℓBkℓ,

and the respective cell problems read














∇pi −∆ui = ei, x ∈ Y \ω,
div(ui) = 0, x ∈ Y \ω,
ui = 0, x ∈ ∂ω,
y → pi(y), ui(y) Y-periodic,







−div(∇πj + ej) = 0, x ∈ Y \ω,
∇πj · n = −ej · n, x ∈ ∂ω,
y → πj(y) Y-periodic,

(5.6)

with (ei)1≤i≤d being the canonical basis of Rd.

5.2.3 Optimization problem

The topology optimization problem consist in finding the optimal lay-out ω∗ ⊂ Y , representing
the scaled shape of the fuel tubes inside the unit-cell, which solves



















max
ω⊂Y
|∂ω|

s.t.
|ω| ≥ Cf |∂ω|
tr(K)
d ≥ kmin,

(5.7)

where the tensor K is defined according to (5.5) and tr() is the trace operator. The first
constraint represents a lower bound Cf ≥ 0 of the fuel tube hydraulic diameter, which pre-
vents a drastic pressure drop and a “too oscillating” boundary. The constant Cf must satisfy
Cf ≤

√

1/4π, according to the isoperimetric inequality. The second constraint involves a lower
bound kmin of the trace of K (which is intended to give a mesure of the permeability [132])
avoiding a high pressure drop in the cathode. In other words, we try to find the shape ω with
the largest perimeter (so it maximizes the factor on the electro-chemical reaction term R of the
homogenized transport equation in (5.3)) such that two constraints of pressure drop inside and
outside the tubes are fulfilled.

Let ω0 ⊂ Y be a regular fixed open set. Then the following result (inspired in Theorem
1.1.9) yields the existence of an optimal solution of (5.7)

Proposition 5.2.1. Denote as Uad the collection of open subsets of Y close to ω0 (likewise in
(1.10)) in the sense of the pseudo-distance

dD(ω0,ω) = inf
T∈D|T (ω0)=ω

(

‖T − Id‖W 2,∞ +
∥

∥T−1 − Id
∥

∥

W 2,∞

)

,
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where D (similarly to (1.8)) is the set of diffeomorphism

D =
{

T such that (T − Id) ∈W 2,∞(Rd;Rd), (T−1 − Id) ∈W 2,∞(Rd;Rd)
}

.

Furthermore, chose in particular the family of applications T = Id+ θ, where θ ∈W 2,∞(Rd;Rd)
and ‖θ‖W 2,∞ < 1. Then problem (5.7) admits at least one optimal solution in Uad.

Proof. It is a classical result that the set Uad is compact w.r.t. the above topology, introduced
by F.Murat and J.Simon [229]. Furthermore since ‖θ‖W 2,∞ < 1, any minimizing sequence of
(5.7) has a convergent subsequence in W 1,∞(Rd;Rd)), due to the Sobolev embedding theorem.
Finally the existence of a solution of (5.7) stems from the continuity of the perimeter, the area
and the permeability tensor K w.r.t. ‖θ‖W 1,∞ , thanks to their respective shape differentiability.
The concept of the shape derivative will be recalled in the next section.

Remark 5.2.2. Another logical choice of topology to prove the existence of a solution for (5.7),
could be the one induced by the L1(Y ) convergence of characteristics functions (Theorem 1.1.6),
allowing a richer topology variety than the above one. However, in this topology the perimeter
|∂ω| is only lower semi-continuous, preventing the application to any maximization problem.

5.3 Shape sensitivity analysis

In this section we recall the shape gradients, according to Definition 1.1.13, of the shape func-
tionals involved in (5.7). The respective proofs can be found in [265].

Lemma 5.3.1. Let ω be a smooth subset of Y . Define

Jsurf (ω) = |∂ω| =
∫

∂ω
ds and Jvol(ω) = |ω| =

∫

ω
dx.

Then the respective shape gradients at 0 in the direction θ read

J ′
surf (ω)(θ) =

∫

∂ω
θ · nH ds, J ′

vol(ω)(θ) =

∫

∂ω
θ · n ds,

where H is the mean curvature of ∂ω defined by H = div(n).

Proposition 5.3.2. Define the spaces

H1
0,#(Y \ω)d =

{

v ∈ H1(Y \ω)d : v|∂ω = 0, y → v(y) is Y−periodic
}

,

L2
0,#(Y \ω) =

{

q ∈ L2(Y \ω) :

∫

Y \ω
qdx = 0, y → q(y) is Y−periodic

}

.

Let ui ∈ H1
0,#(Y \ω)d and pi ∈ L2

0,#(Y \ω), i = 1, ..., d be the collection of solutions of the
variational formulation of the first cell problem in (5.6)

∫

Y \ω

(

∇ui : ∇vi−div(vi)pi−div(ui)qi
)

dx =

∫

Y \ω
ei·vidx, ∀(vi, qi) ∈ (H1

0,#(Y \ω)d, L2
0,#(Y \ω)).

(5.8)
Define the cost function (which does not depend on the pressure)

J(ω) =

∫

Y \ω
j(x, u,∇u)dx, where u = (ui)i=1...d,
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and the collection of adjoint states (Ui, Pi) ∈ (H1
0,#(Y \ω)d, L2

0,#(Y \ω)), such that ∀(vi, qi) ∈
(H1

0,#(Y \ω)2, L2
0,#(Y \ω))

∫

Y \ω

(

∇Ui : ∇vi−div(vi)Pi−div(Ui)qi
)

dx = −
∫

Y \ω

( ∂j

∂ui
(x, ui,∇ui)·vi+

∂j

∂∇ui
(x, ui,∇ui) : ∇vi

)

dx.

(5.9)
Then J(ω) is shape differentiable at 0 in the direction θ and the shape derivative reads

J ′(ω)(θ) =

∫

∂ω

{

j(x, u,∇u)−
d
∑

i=1

(∂Ui
∂n
· ∂ui
∂n

+
∂j

∂∇ui
· n · ∂ui

∂n

)}

θ · nds.

Corollary 5.3.3. According to (5.5)

tr(K)

d
=

1

d

d
∑

i=1

Kii =
1

d

∫

Y \ω

d
∑

i=1

|∇ui|2dx,

so the shape derivative reads

1

d
tr(K)′(ω)(θ) = −1

d

d
∑

i=1

∫

∂ω

(

(∂ui
∂n

)2
+
∂ui
∂n
· ∂Ui
∂n

)

θ · nds,

with Ui solution of the adjoint problem

∫

Y \ω

(

∇Ui : ∇vi−div(vi)Pi−div(Ui)qi
)

dx = −2

∫

Y \ω
∇ui : ∇vi, ∀(vi, qi) ∈ (H1

0,#(Y \ω)2, L2
0,#(Y \ω))

5.4 Numerical results

Now we detail the numerical solution of problem (5.7) via a the level-set method for topology
optimization described in Section 1.2.

At each iteration of the algorithm, the shape of the tube in the unit cell Y is parametrized
via a level-set function







ψ(x) = 0 for x ∈ ∂ω,
ψ(x) < 0 for x ∈ ω,
ψ(x) > 0 for x ∈ Y \ω,

defined on a fixed mesh in an Eulerian framework. Since the interface ∂ω does not necessarily
match with the mesh, in order to simulate an impenetrable interface in (5.6), an artificial
permeability (or porosity) term is added on the left side of equations (5.8) and (5.9), respectively

∫

Y

5

2ρ2
(ui · vi)dx,

∫

Y

5

2ρ2
(Ui · vi)dx, (5.10)

where 2ρ2/5 represents the permeability of the medium [61, 111]. For topology optimization
purposes, ρ is a regular approximation ofH(ψ), whereH is the Heaviside function and min

x∈Y
ρ(x) =

δ > 0 [42, 55]. Typically this value is set up to δ = 0.001. We remark that thanks to the
introduction of (5.10), all integrals are thus calculated in Y .

For the optimization algorithm we use an augmented Lagrangian method

L(ω, ℓ, µ) = |∂ω|−ℓ1(Cf |∂ω|−|ω|)−ℓ2(kmin−
tr(K)

d
)+

µ1
2

(Cf |∂ω|−|ω|)2 +
µ2
2

(kmin−
tr(K)

d
)2,
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Figure 5.8: Example of the 2D stokes solutions u1, u2 (left and right respectively) of the cell problem
for a circular domain in (5.8). The black zone represents the air phase (transporting the
oxygen) meanwhile the white one the fuel phase. A solid interface lays between them. We
remark that inside the fuel phase the velocity of the air is almost zero, due to (5.10).

where ℓ = (ℓi)i=1,2 and µ = (µi)i=1,2 are lagrange multipliers and penalty parameters for the
constraints. The Lagrange multipliers are updated at each iteration n according to the optimality
condition

ℓn+1
1 = ℓn1 − µ1(Cf |∂ωn| − |ωn|) and ℓn+1

2 = ℓn2 − µ2(kmin −
tr(K)

d
).

The penalty parameters are augmented every 5 iterations. With such an algorithm the con-
straints are enforced only at convergence.

Fig. 5.9 shows different optimal periodic layouts starting from an intuitive circular arrange-
ment. The radius of the circle in Y was set up to r = 0.3, meanwhile the coefficients Cf = 0.15
and kmin = 0.011 were calculated so as both constraints in (5.7) were active within this layout.
The first optimal design (second row Fig. 5.9) corresponds to the optimal solution of the algo-
rithm for the foregoing parameters. Then the second design (third row Fig. 5.9) was established
by reducing Cf and kmin to the half. The perimeter gain w.r.t. the circular layout is 7% for the
former design and 60% for the latter one.

The above results demonstrate the capabilities of topology optimization via a level-set
method to enhance the design of micro-tubular fuel cells for the aeronautic industry. Thanks the
application of an inverse homogenization technique and the level-set method, periodic optimal
micro-tubular fuel cells with a sharp contour can easily be designed and then manufactured by
3D printing. The foregoing study thus suggests a promising use of these technologies in the
future computer aided design of fuel cells.
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Figure 5.9: Two micro-tubular optimal designs for different values of kmin and Cf starting from a cir-
cular layout. The base cell results are on the left and the corresponding periodic structures
on the right.



Conclusions and perspectives

Throughout this work, we have presented several topics related to optimal design and sensitivity
analysis in an elastic anisotropic and a fluid/solid framework. The main contributions of this
thesis thus rely on (1) the treatment of anisotropic topology optimization problems, notably on
(1.a) elastic multi-phase materials and (1.b) laminated composite plates; (2) the development
of the topological derivative for stress-dependent criteria within a full anisotropic framework;
and (3) the presentation of an innovative approach for optimal design of micro fuel cells.

We proceed now to give a more detailed description in each case:

(1) The shape derivative for various mechanical criteria was established in a sharp multi-
phase framework in Chapter 2 for the 2D/3D linear elasticity and in Chapter 3 for the linearized
von Kármán plate equations. The main ingredients of the preceding analysis were the transmis-
sion conditions, showing that depending whether the chosen framework is discrete or continuous
different formulae for the shape derivative arise. Moreover in Chapter 2 we evoked the impact
of the position of the contours of each phase with respect to the others in the shape differen-
tiability of the problem, altogether with the difficulty of calculating the jumps involved in the
shape derivative. The aforementioned study contributes to enrich and enlighten some misun-
derstandings in the existing literature on the subject.

(1.a) We proposed in Chapter 2 a level-set method for topology optimization where the
smeared interface between multiple materials is parameterized via the signed distance func-
tion. This particular parameterization is shape differentiable and it naturally avoids the non-
differentiability difficulty existing in the sharp setting when multiple interfaces superpose. Fur-
thermore, relying on the signed distance function for describing a smoothed interface enables
the control of the regularization width around the interface during the optimization process,
preventing the excessive generation of intermediate-density material. Also, this smooth inter-
face approach yields a consistent formula for the shape derivative which converges to the sharp
one when the regularization width tends to zero. All the above elements contribute to settle the
proposed topology optimization algorithm as a robust and efficient alternative in the optimal
design of the so-called graded materials.

(1.b) The main subject of this thesis was set forth in Chapter 3, introducing the in-plane
shape as a new optimization variable in the design process of laminated composites. For that
purpose, a full anisotropic version of the von Kármán equations was introduced, alongside with
the respective linearized buckling problem. The problem of finding the optimal shape of each
ply (continuous variable) and the stacking sequence (discrete variable) was presented, taking
the form of a mixed optimization problem whose objective function is the total weight sub-
jected to various stiffness constraints. By virtue of this particular structure, which commonly
features lightweight design, we rigorously proved that this composite problem is equivalent to
a bi-level problem, where the higher level depends upon the shape of each ply meanwhile the
lower level determines the best stacking sequence for a fixed in-plane shape through the so-
called constraint margin function. The stationarity conditions for the latter formulation were

207
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established in an infinite dimensional framework, relying on the concept of generalized gradient
for the shape derivative. A convergent feasible descent direction algorithm was proposed to
solve the aforementioned problem and the theoretical existence of an optimal solution was dis-
cussed, contributing novel elements to the standard literature regarding pointwise and buckling
constraints.

Referring to the evaluation of the constraint margin function, the typical manufacturing
constraints concerned in the set up of laminated composites were discussed, formulating them
as linear inequalities with respect to the stacking sequence. Moreover, fixing the proportion of
plies following a certain fiber orientation within the laminate, we established the concavity with
respect to the stacking sequence of the first eigenvalue of the linearized von Kármán equations
and the reserve factor (simplified measure of the first buckling load). The foregoing elements,
i.e. the linearity of the manufacturing constraints plus the concavity of the buckling measures,
lay down a convex optimization framework for the evaluation of the constraint margin function.
For this reason, a classical convex integer programming algorithm was proposed (OA method),
setting up an effective alternative to the popular genetic algorithms. Besides of being capable
of tackling non-convex problems by means of α-under estimators, the OA method does not bear
the need of evaluating so many times the objective function and constraints like the genetic
algorithms. This is a feature of paramount importance when each evaluation of the model implies
to run a costly finite element computation, as it is the case when solving the von Kármán system
for non-homogeneous anisotropic plates. Thus, when the laminate features a relatively “small”
number of plies, the proposed algorithm to evaluate the constraint margin function remains
competitive.

Despite the rigorous character of treating the composite design problem as a truly mixed
programming problem by means of a suitable bi-level formalism, the proposed method undergoes
the following limitations:

• Blended panels. An important feature of a composite laminate is the structural integrity
across the multiple panels making up the structure. This can be characterized by means
of the following definition of relaxed generalized blending [311]: Two adjacent panels are
completely blended if there are no dropped edges in physical contact.

a
d
b

a
c

b

Panel 1 Panel 2
(a) Fully blendend.

d b
ac

b e

Panel 1 Panel 2
(b) Not fully blended.

Even though the concept of “panel” itself is not trivial to define within a multi-shaped
laminate, one can always consider the “holes” of each ply filled with another material
(Configuration I, Section 3.2), so that the blending feature does not intervene. Conversely,
if the “holes” within each ply must be necessarily void and inwardly flatten (Configuration
II), we must at least suppose that the measure of the common interior interface between two
plies with shapes Ωi,Ωj is negligible, i.e. |∂Ωi ∩ ∂Ωj | = 0, ∀i, j = 1, ..., N . Nevertheless,
since during the optimization process the shapes evolve freely, this constraint is rather
difficult to verify at each iteration.

• Fulfilling the manufacturing constraints pointwise. At each iteration, when the
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constraint margin function is evaluated, the optimal stacking sequence fulfills “globally”
the manufacturing constraints, notably the minimal proportion of plies with a certain
fiber orientation. Nevertheless, since the shape of each ply is different from the others, the
manufacturing constraints should rather be satisfied pointwise. Unfortunately this is not
possible from a numerical point of view, due to the large number of nodes involved in the
mesh of Ω. This drawback is “artificially” avoided by considering the “holes” of each ply
filled with a neutral material which for manufacturing purposes behaves in the same way
the the main material occupying the ply.

• Worst case of the OA method. Albeit the OA method always provides a deterministic
optimal solution, the worst-case involves testing all the admissible solutions, as for any
deterministic method.

(2) Chapter 4 was devoted to determine the topological derivative DJ of an ellipsoidal in-
clusion in an anisotropic elastostatic framework of a criterion J that depends upon the elastic
displacements and stresses. These developments were motivated by the current lack of mate-
rial in literature treating the foregoing case. Thus, a formula of the topological derivative DJ
was established for a large class of mechanical criteria, namely displacement-based functions,
pointwise approximations of the von Mises and Hill-Tsai yield criteria and quadratic energy-like
functionals oriented to inverse problems. The general formula of DJ relies on the concept of
elastic moment tensor, the classical adjoint state and the computation of the inner and outer
values (w.r.t. the inclusion) of the solution of the free-space transmission problem. The elastic
moment tensor is expressed in terms of the so-called Eshelby tensor. A complete analysis of the
numerical evaluation of DJ was furnished, yielding a powerful tool for potential applications
on problems involving inherent anisotropy, such as bone tissue imaging, flaw identification in
composites and topology optimization subject to the Hill-Tsai failure criterion.

(3) Chapter 5 addressed the optimal design of a solide oxide fuel cell as a complement of an
aircraft engine. First, a simplified model of a periodical micro-tubular fuel cell and its consequent
homogenization was presented, enabling a suitable tool for evaluating the physical behavior of
the simplified device. Then an optimal design problem formulated as an inverse homogenization
problem was established, looking for the best shape of the micro fuel tube inside the unit cell.
This problem was solved via a level-set method for topology optimization, allowing the design of
fuel cells which can easily be manufactured by 3D printers. The foregoing study thus suggests
a promising use of these technologies in the future computer aided design of fuel cells.

Perspectives

As possible future works, we suggest the following issues:

• Incorporate other typical composite manufacturing constraints (or “best practices” rules)
in the optimization process. For example the requirement that the fibers of the outer plies
located on the surface of the laminate must be oriented in 90o. As a matter of fact, most
of these constraints (see e.g. [36, 125]) can be managed as linear constraints, likewise those
presented.

• Add more plies to the composite design problem. Thanks to the parallelizable structure
of the proposed method, the main restriction in terms of numerical cost for the algorithm
lies in the mixed integer programming solver needed to evaluate the constraint margin
function.

• Endow the total weight of the composite structure with different multipliers (or densities)
ρij according to each fiber orientation and position within the laminate, in order to obtain



210 CHAPTER 5. OPTIMAL DESIGN OF A MICRO-TUBULAR FUEL CELL

a more “uniform” distribution of the mass through the laminate. Thus, the modified total
weight will read

V̂ (Ω, ξ) =
N
∑

i=1

4
∑

j=1

ρijξij

∫

Ω
χidV, ρij > 0.

This measure tends to enforce the presence of the disadvantaged fiber orientations by
assigning them lower densities. Since the objective function now depends on the stacking
sequence ξ, a more general decomposition framework must be applied. See e.g. [141].

• Perform a robustness and sensitivity analysis of the topological derivative to different
non-destructive control applications.

• Extend the general formula of the topological derivative to the anisotropic elastodynamic
case.

• Incorporate the topological derivative in the level-set algorithm for anisotropic topology
optimization [8].

• Enrich the fuel cell model by introducing electric interactions between different species
[266].
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formes. Technical report, Renault, École des Ponts, 2012.
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l’homogénéisation: théorie et applications en physique. Coll. Dir. Etudes et Recherches
EDF, (57):319–369, 1985.
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[246] A. A. Novotny, R. Feijóo, E. Taroco, and C. Padra. Topological sensitivity analysis.
Computer Methods in Applied Mechanics and Engineering, 192(7):803–829, 2003.

[247] I. Nowak. Relaxation and decompostion methods for mixed integer nonlinear programming,
volume 152. Birkhäuser Basel, 2005.
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