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Overview on topology optimization & the level-set method

Topology optimization

A topology optimization problem can be cast as follows:

Find the stiffest structure ω ⊂ Ω

belonging to an admissible set Uad,

which solves the problem

min
ω⊂Ω,ω∈Uad

J(ω, u(ω)),

where u(ω) is the displacement field
arising in ω due to prescribed excita-
tions (f, g).

Ω
ω

g g
f

u = 0

Ω
ω

g g
f

u = 0
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Overview on topology optimization & the level-set method

Topology optimization methods

Density based Boundary variations

Homogenization [Murat and Tartar,

1985], [Bendsøe and Kikuchi, 1988]

Level set+Shape sensitivity analysis

[Allaire et al., 2002], [Wang et al., 2003]

SIMP [Bendsøe, 1995]
Phase field [Chambolle and Bourdin,

2000]

Characteristics

No need of remeshing.

Allows naturally topology
changes.

Comparative advantages

Clear contour of the shape.

Easy definition of geometrical
parameters.
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Overview on topology optimization & the level-set method

The Level-set method

Introduced by [Osher and Sethian, 1988].

Definition of the level set function ψ : Ω→ R, with Ω ⊂ Rd (d = 2, 3)


ψ(x) = 0⇔ x ∈ ∂ω,
ψ(x) < 0⇔ x ∈ ω,
ψ(x) > 0⇔ x ∈ Ω\ω.

Ω

ψ < 0

ψ > 0

ψ = 0

Ω\ω

ω

∂ωEvolution of the shape ω(t), t ∈ R
Level-set function ψ(x, t)

t0 t1 t2

Shape ω(t)

t0 t1 t2
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Overview on topology optimization & the level-set method

The Level-set method

If the shape evolves according to a velocity field θ(x, t) defined on Ω
with normal component V(x, t)

(Id + θ)ω

x

θ(x, t)

ω

Ω

Figure: Deformation of ω Figure: Zoom around x

One can show that the evolution equation satisfied by ψ reads
∂ψ
∂t + V|∇ψ| = 0 x ∈ Ω, t > 0,

ψ = ψ0 x ∈ Ω, t = 0,
∂ψ
∂n = 0 x ∈ ∂Ω, t > 0.
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Overview on topology optimization & the level-set method

Shape sensitivity analysis

Definition [Hadamard, 1908], [Simon and Murat, 1976]

Consider the following type of variations of ω ⊂ Ω(
Id+ θ

)
(ω) := {x+ θ(x) for x ∈ ω} , θ ∈W 1,∞(Ω;Rd)

The shape derivative of a function J(ω) is defined as the Fréchet
derivative in W 1,∞(Ω;Rd) at 0 of the application θ → J

((
Id+ θ

)
ω
)
, i.e.

J
((
Id+ θ

)
ω
)

= J(ω) + J ′(ω)(θ) + o(θ).

Proposition

Suppose ω and J regular, then there exists a continuous linear form l such
that

J ′(ω)(θ) = l((θ · n)|∂ω)

=

∫
∂ω

(θ · n)jds
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Overview on topology optimization & the level-set method

Coupling the level set method and shape derivative

The objective is to find a normal descent direction V∗ such that{
ψ(t0, ·) ≡ ω
ψ(t0 + ∆t, ·) ≡ ω∆t ⇒ J(ω∆t)− J(ω) < 0

∂ψ

∂t
+ V∗|∇ψ| = 0; t ∈ [t0, t0 + ∆t], x ∈ Ω

This direction can be deduced from the solution of the variational
problem

〈V∗, v〉H1(Ω) = −l(v),∀v ∈ H1(Ω),

l(v) = J ′(ω)(vn),

Indeed, for ∆t small enough

J(ω∆t)− J(ω) = ∆t× J ′(ω)(θ∗) + o(∆t), θ∗ = V∗n
= ∆t× l(V∗) + o(∆t)

= −∆t× ‖V∗‖2H1(Ω) + o(∆t) < 0
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Overview on topology optimization & the level-set method

The level set method for topology optimization

Optimization of a triangular car suspension (courtesy of G. Allaire).

Ω

ω

Figure: Iteration 1

Ω

ω

Figure: Iteration 26

Ω

ω

Figure: Iteration 100

Linear elasticity:
−div(Ce(u)) = 0 in Ω
u = 0 on ΓD
Ce(u) · n = g on ΓN

min
ω⊂Ω,|ω|=c

J(ω), J(ω) =

∫
ΓN

g·uds

J ′(ω)(θ) = −
∫
∂ω
θ·n(Ce(u) : e(u))dx
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Optimal design of composite materials

Multi-phase optimal design

Design variable: shape of each phase (n level-sets → 2n materials)

Ψ2

Ψ1

Figure: Level-set functions Ψ1,Ψ2

Ψ1 < 0

Ψ2 > 0

Ψ1 > 0
Ψ2 < 0

Ψ1 > 0
Ψ2 > 0

Ψ1 < 0

Ψ2 < 0

Figure: Multi-phase material via
superposition of Ψ1,Ψ2
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Optimal design of composite materials

Multi-layered optimal design

Design variables: shape of each ply Ψi (continuous) & stacking
sequence ξ (discrete)

Stack center

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

ξ

Figure: Multi-layered configuration

Figure: Orthotropic plies.
Reinforced fibers in orientations
−45o, 90o, 0o, 45o
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Optimal design of composite materials

The buckling problem

Figure: Buckling under compression

Figure: Buckled wing

Ω
ε

ΓN

g

ΓD

0

−h

+h



Ω : Hold-all domain
g : in-plane loads
ΓN : Neumann BC
ΓD : Dirichlet BC
ε : Thickness of each ply
2h : Total thickness laminate
A : extensional stiffness
D : bending stiffness

A = 2ε

N∑
i=1

(
χiAi + (1− χi)A0

)
, χi : characteristic function

D =
2ε3

3

N∑
i=1

(
i3 − (i− 1)3

)(
χiAi + (1− χi)A0

)
The multi-layered design problem becomes a multi-phase design problem.
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Optimal design of composite materials

The linearized buckling problem

Definition (von Kármán plate model)

Let w ∈ H2(Ω) be the vertical displacement. Consider the eigenvalue
problem

∇2 : (D∇2w) = λAe(u) : ∇2w in Ω,
w = 0,∇w · n = 0 on ΓD,

(D∇2w)nn = 0 on ΓN ,

∇ · (D∇2w) · n+ ∂
∂τ (D∇2w)nτ = λ2hg · ∇w on ΓN ,

Let u ∈ H1(Ω;R2) be the in-plane displacement and solves
−div(Ae(u)) = 0 in Ω,

u = 0 on ΓD,
Ae(u) · n = 2hg, on ΓN .

We chose λ = λ1, the smallest positive eigenvalue, as the critical
buckling load.

16
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Optimal design of composite materials

Elastic transmission conditions (ETC)

Sharp interface formulation

A = A1 +H(ψ)(A0 −A1)
{
A1,A0 : Elastic phases
H : Heaviside function.

Smooth interface formulation

A = A1 +Hε(dω)(A0 −A1){
Hε : Regular approximation H
ε : Interpolation width.

ε ε

A0 A1

Hε

Transmission conditions on ψ = 0 ([[·]] denotes the jump through ∂ω):


[[w]] = 0, [[∇w · n]] = 0,
[[(D∇2w)nn]] = 0,

[[−λ1(Ae(u) : ∇w) · n+ div(D∇2w) · n+ ∂
∂τ (D∇2w)nτ ]] = 0

{
[[u]] = 0, [[Ae(u) · n]] = 0

Signed distance function:

dω(x) =


−d(x, ∂ω) if x ∈ ω,
0 if x ∈ ∂ω,
d(x, ∂ω) if x ∈ Ω\ω̄,

ψ = 0

Ω

ω

A0

A1

17



Optimal design of composite materials

Elastic transmission conditions (ETC)

Sharp interface formulation

A = A1 +H(ψ)(A0 −A1)
{
A1,A0 : Elastic phases
H : Heaviside function.

Smooth interface formulation

A = A1 +Hε(dω)(A0 −A1){
Hε : Regular approximation H
ε : Interpolation width.

ε ε

A0 A1

Hε

Transmission conditions on ψ = 0 ([[·]] denotes the jump through ∂ω):


[[w]] = 0, [[∇w · n]] = 0,
[[(D∇2w)nn]] = 0,

[[−λ1(Ae(u) : ∇w) · n+ div(D∇2w) · n+ ∂
∂τ (D∇2w)nτ ]] = 0

{
[[u]] = 0, [[Ae(u) · n]] = 0Signed distance function:

dω(x) =


−d(x, ∂ω) if x ∈ ω,
0 if x ∈ ∂ω,
d(x, ∂ω) if x ∈ Ω\ω̄,

ψ = 0

Ω

ω

A0

A1

17



Optimal design of composite materials

Elastic transmission conditions (ETC)

Sharp interface formulation

A = A1 +H(ψ)(A0 −A1)
{
A1,A0 : Elastic phases
H : Heaviside function.

Smooth interface formulation

A = A1 +Hε(dω)(A0 −A1){
Hε : Regular approximation H
ε : Interpolation width.

ε ε

A0 A1

Hε

Transmission conditions on ψ = 0 ([[·]] denotes the jump through ∂ω):
[[w]] = 0, [[∇w · n]] = 0,
[[(D∇2w)nn]] = 0,

[[−λ1(Ae(u) : ∇w) · n+ div(D∇2w) · n+ ∂
∂τ (D∇2w)nτ ]] = 0

{
[[u]] = 0, [[Ae(u) · n]] = 0

Signed distance function:

dω(x) =


−d(x, ∂ω) if x ∈ ω,
0 if x ∈ ∂ω,
d(x, ∂ω) if x ∈ Ω\ω̄,

ψ = 0

Ω

ω

A0

A1

17



Optimal design of composite materials

Elastic transmission conditions (ETC)

Sharp interface formulation

A = A1 +H(ψ)(A0 −A1)
{
A1,A0 : Elastic phases
H : Heaviside function.

Smooth interface formulation

A = A1 +Hε(dω)(A0 −A1){
Hε : Regular approximation H
ε : Interpolation width.

ε ε

A0 A1

Hε

Transmission conditions on ψ = 0 ([[·]] denotes the jump through ∂ω):
[[w]] = 0, [[∇w · n]] = 0,
[[(D∇2w)nn]] = 0,

[[−λ1(Ae(u) : ∇w) · n+ div(D∇2w) · n+ ∂
∂τ (D∇2w)nτ ]] = 0

{
[[u]] = 0, [[Ae(u) · n]] = 0

Signed distance function:

dω(x) =


−d(x, ∂ω) if x ∈ ω,
0 if x ∈ ∂ω,
d(x, ∂ω) if x ∈ Ω\ω̄,

ψ = 0

Ω

ω

A0

A1

17



Optimal design of composite materials

Elastic transmission conditions (ETC)

Sharp interface formulation

A = A1 +H(ψ)(A0 −A1)
{
A1,A0 : Elastic phases
H : Heaviside function.

Smooth interface formulation

A = A1 +Hε(dω)(A0 −A1){
Hε : Regular approximation H
ε : Interpolation width.

ε ε

A0 A1

Hε

Transmission conditions on ψ = 0 ([[·]] denotes the jump through ∂ω):


[[w]] = 0, [[∇w · n]] = 0,
[[(D∇2w)nn]] = 0,

[[−λ1(Ae(u) : ∇w) · n+ div(D∇2w) · n+ ∂
∂τ (D∇2w)nτ ]] = 0

{
[[u]] = 0, [[Ae(u) · n]] = 0

Signed distance function:

dω(x) =


−d(x, ∂ω) if x ∈ ω,
0 if x ∈ ∂ω,
d(x, ∂ω) if x ∈ Ω\ω̄,

ψ = 0

Ω

ω

A0

A1

17



Optimal design of composite materials

Elastic transmission conditions (ETC)

Sharp interface formulation

A = A1 +H(ψ)(A0 −A1)
{
A1,A0 : Elastic phases
H : Heaviside function.

Smooth interface formulation

A = A1 +Hε(dω)(A0 −A1){
Hε : Regular approximation H
ε : Interpolation width.

ε ε

A0 A1

Hε

Transmission conditions on ψ = 0 ([[·]] denotes the jump through ∂ω):


[[w]] = 0, [[∇w · n]] = 0,
[[(D∇2w)nn]] = 0,

[[−λ1(Ae(u) : ∇w) · n+ div(D∇2w) · n+ ∂
∂τ (D∇2w)nτ ]] = 0

{
[[u]] = 0, [[Ae(u) · n]] = 0

Signed distance function:

dω(x) =


−d(x, ∂ω) if x ∈ ω,
0 if x ∈ ∂ω,
d(x, ∂ω) if x ∈ Ω\ω̄,

ψ = 0

Ω

ω

A0

A1

17



Optimal design of composite materials

Composite optimization problem

Definition (Lightweight design problem)

Find the best composite structure (O, ξ), with:

Collection of ply-shapes: O = {ωi}i=1...N Stacking sequence: ξ

min
O∈ Uad,ξ∈Y

{V (O)|G(O, ξ) ≤ 0} , where:

Total weight: V (O) Failure constraint: G(O, ξ)
Admissible shapes: Uad Admissible stacking: Y

Related works:

Stacking sequence optimization: Gürdal, Haftka & co-workers (90’s-)

Fiber orientation tailoring: Lund & co-workers (2005-).

ω2
ω3

ω4

ω5

ε

ω1
Π = 0

Figure: Each ply has its own shape
ωi

A1
A2
A3

A5

A0

A2

A5

A4

A0

Figure: Transversal cut. Multi-phase
structure.
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Optimal design of composite materials

Bi-level formulation

Proposition

The mixed lightweight design composite problem can be equivalently
written as

min
O∈Uad

{V (O)|M(O) ≤ 0} ,

where M constraint margin function M(O) := min
ξ∈Y

G(O, ξ).

Optimization algorithm

Let O0 ∈ Uad be an initial feasible point. For k ≥ 0, iterate until
convergence

{

1) Solve ξk = argminξ∈YG(Ok, ξ).
2) Find Ok+1 such that V (Ok+1) < V (Ok) and G(Ok+1, ξk) ≤ 0.

1) Integer programming solver 2) Level-set method.

19
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Optimal design of composite materials

Multi-phase shape sensitivity analysis

Introduce the general criterion J(ω) =
∫

Ω j(x, u) dx

Some formulae of J ′(ω)(θ) in engineering literature are incorrect.

In a multi-phase framework, three shape derivative formulae arise:

Proposition [Allaire, Dapogny, Delgado & Michailidis (2014)]
I. Continuous sharp interface

The shape derivative of J reads

J ′(ω)(θ) = −
∫
∂ω
D(u, p) θ · nds, with

D(u, p) = −σ(p)nn : [[e(u)nn]]− 2σ(p)nτ : [[e(u)nτ ]] + [[σ(u)ττ ]] : e(p)ττ .

where σ(v) = A e(v) and p is the adjoint state, solution of

−div (Ae(p)) = −j′(x, u) in Ω, Ae(p) · n = 0 on ΓN , p = 0 on ΓD.
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Optimal design of composite materials

Multi-phase shape sensitivity analysis

Proposition [Allaire, Dapogny, Delgado & Michailidis (2014)]
II. Discrete sharp interface

Let Ωh be a conformal simplicial mesh of Ω and uh, ph the finite element
approximations of u, p, respectively. Suppose that ∂ω is never aligned with
the face of an element of Ωh. Then the discrete shape derivative of
Jh(ω) =

∫
Ωh
j(x, uh)dx reads

J ′h(ω)(θ) = −
∫
∂ω

[[A]]e(uh) : e(ph) θ · nds.

∂ω

A∗ = ρA0 + (1− ρ)A1

A1

A0

σ0(u0
h) · n0 6= σ1(u1

h) · n1

u0
h = u1

h

A∗ = ρA0 + (1− ρ)A1
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Optimal design of composite materials

Multi-phase shape sensitivity analysis

Proposition [Allaire, Dapogny, Delgado & Michailidis (2014)]
III. Smooth interface

Consider the smooth interface frame A = A1 +Hε(dω)(A0 −A1), with dω
the signed distance function. Then the function J is shape differentiable in
the sense of Gâteaux, and

J ′ε(Ω
0)(θ) = −

∫
∂ω
θ(x) · n(x)

1∑
j=0

fj(x)dx,

fj(x) =

∫
ray∂ω(x)∩ωj

H ′ε (d(z)) (A1 −A0)e(u)(z) : e(p)(z)(1 + d(z)κ)dz.

Proposition (Convergence)

lim
ε→0

J ′ε(ω)(θ) = J ′(ω)(θ), ∀θ ∈W 1,∞(Ω;R2)
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Optimal design of composite materials

Multi-phase shape sensitivity analysis
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Optimal design of composite materials

Test case formulation: Composite fuselage skin panel

Ω = {x ∈ [0, 2]× [0, 1]}. Symmetric multi-layered plate (16 plies).
Each ply is composed of two phases (one of them “void”).
A shear load g is applied.

Composite panel location

Figure: Approximative flat model.

ΓD
Ω

g

x1

x2

Figure: Composite test case.

Optimization problem:

min
O∈Uad,ξ∈Y

{
Ṽ (O)|λ−1

1 (O, ξ) ≤ 1
}
,

Ṽ (O) = V (O)+γP (O), γ > 0.

Continuous algorithm: Sequential linear programming.
Discrete algorithm: Outer approximation method.
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Topological derivative

Brief overview of the state of the art

Theory
*[Sokolowski & Zochowski99]

*[Masmoudi98]

Topology Optimization

*Bubble method [Schumacher, 1996]

*Hard kill method [Nov02]
*Level-set method [Ams04],[Alla05]

Inverse problems
*Flaw identification [Bon11],[Guz06]

*Medical imaging [Ammari07]

Criteria

*Energy functionals

*Displacement-based functionals
*Von-mises yield criterion

Novelty of this work
*General anisotropic framework

*Stress-based functionals

Purpose: Measures the sensibility of a cost function J defined on
Ω ⊂ Rd w.r.t. the creation of a virtual inclusion Ba of size a << 1

C

BaΩ

C?

a

{
C : Physical properties Ω
C∗ : Physical properties Ba

Figure: Topology Optimization

Figure: Inverse problems [Guz06]
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Topological derivative

The topological derivative in 3D elastostatics

Let ua, u be the perturbed and non-perturbed elastic displacements
within Ω.

The cost function will take the form

J(ua,∇ua) :=

∫
Ω\Ba

φ(x, ua,∇ua)dx+

∫
Ba

φ?(x, ua,∇ua)dx

where φ, φ? are twice differentiable and ∂2
ijφ, ∂

2
ijφ

? ∈ C0,α, α ∈ (0, 1).

Definition

Let the cost functional J be and assume that it can be expanded in the
form

J(ua,∇ua)− J(u,∇u) = a3DJ(z) + o(a3).

Then DJ(z) is called the topological derivative of J at z ∈Ω.

Ω

gΓN

ΓD

f

∂Ω = ΓD ∪ ΓN

Ba

C C∗

z


C : Elastic tensor in Ω
C∗ : Elastic tensor in Ba
f, g : Volume & Surface loads
z : Center of Ba

where W =
{
v ∈ H1(Ω;R3)|v = 0 on ΓD ⊂ ∂Ω

}
and ua, u ∈W are

solutions of:∫
Ω
∇u : Ca :∇vdx =

∫
Ω
f · vdx+

∫
ΓN

g · vds, ∀v ∈W,

for Ca = C∗χBa + C(1− χBa) and C0 = C, respectively.
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Topological derivative

How to compute ua for a small inhomogeneity?

Lemma

Consider the auxiliary problem of an inhomogeneity (B, C?) centered at
the origin, embedded in an infinite elastic medium (R3, C) subjected to an
uniform remote strain ∇u(z), z ∈ Ω.

C
B

R3

C?


uB : perturbed displacement in R3

u∞ : unperturbed displacement in R3

u∞ = ∇u(z) · x, x ∈ R3

Suppose that Ba = z + aB, then the following near-field development
stands

ua = u+ a(uB − u∞)
(x− z

a

)
+ o(a).
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Topological derivative

Elastic moment tensor (EMT)

More generally known as Polarization tensor [Nazarov, 2009].

Depends on the geometry B and the elastic law C∗ of an inclusion
embedded in an elastic medium C.

Important ingredient in the computation of the topological derivative.

Definition

Let uB denote the perturbed solution of the free-space transmission
problem. The elastic moment tensor (EMT) E is defined for any value of
∇u(z) as

E : ∇u(z) =

∫
B

(C? − C) : ∇uBdx.

30



Topological derivative

Elastic moment tensor (EMT)

More generally known as Polarization tensor [Nazarov, 2009].

Depends on the geometry B and the elastic law C∗ of an inclusion
embedded in an elastic medium C.

Important ingredient in the computation of the topological derivative.

Definition

Let uB denote the perturbed solution of the free-space transmission
problem. The elastic moment tensor (EMT) E is defined for any value of
∇u(z) as

E : ∇u(z) =

∫
B

(C? − C) : ∇uBdx.

30



Topological derivative

Elastic moment tensor (EMT)

More generally known as Polarization tensor [Nazarov, 2009].

Depends on the geometry B and the elastic law C∗ of an inclusion
embedded in an elastic medium C.

Important ingredient in the computation of the topological derivative.

Definition

Let uB denote the perturbed solution of the free-space transmission
problem. The elastic moment tensor (EMT) E is defined for any value of
∇u(z) as

E : ∇u(z) =

∫
B

(C? − C) : ∇uBdx.

30



Topological derivative

Elastic moment tensor (EMT)

More generally known as Polarization tensor [Nazarov, 2009].

Depends on the geometry B and the elastic law C∗ of an inclusion
embedded in an elastic medium C.

Important ingredient in the computation of the topological derivative.

Definition

Let uB denote the perturbed solution of the free-space transmission
problem. The elastic moment tensor (EMT) E is defined for any value of
∇u(z) as

E : ∇u(z) =

∫
B

(C? − C) : ∇uBdx.

30



Topological derivative

Main result

Proposition [Delgado and Bonnet, 2014 (review)]

Suppose B is an ellipsoid. The topological derivative at z of J(ua,∇ua)
reads

DJ(z) = −∇p(z) :E :∇u(z) + |B|(φ∗ − φ)(z, u(z),∇u(z))

+

∂d(φ
∗ − φ)(z, u(z),∇u(z)) :

∫
B
∇vB(x)dx

+

∫
R3\B

G(z,∇vB(x))dx+

∫
B
G?(z,∇vB(x))dx.

The function p∈W is the adjoint state.

vB = uB − u∞ represents the free-space perturbation.

The function G(z, d) (respectively G∗(z, d)) is defined as

φ(z, u(z),∇u(z)+d)− φ(z, u(z),∇u(z))− ∂dφ(z, u(z),∇u(z)) :d

Similar results: [Amstutz et al., 2012], [Schneider and Andrä, 2013].
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Topological derivative

Main result: remarks

The choice of B as an ellipsoid allow us to use the following result
[Eshelby, 1957]

∇vB = Cst, inside B

The computation of the EMT the follows as

E = |B|C : (C + ∆C :S)−1 :∆C; S = S(C,B) : Eshelby tensor.

New terms appearing in DJ are due to the dependence of J on ∇ua.

In particular the evaluation of the term∫
R3\B

G(z,∇vB(x))dx

is numerically expensive to integrate.
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Topological derivative

Numerical applications in non-destructive control

Objective: Detection of an elastic default or anomaly in an
anisotropic medium.

Cost functional: Full-field kinematical measurements over a set of
control volumes ω ⊂ Ω

J(∇ua) =

∫
ω
∇(ua − u∗) : Ca : ∇(ua − u∗)dx.

ua is the virtual perturbed displacement.
u∗ corresponds to the measured data.

Ω
(ω, u∗)

Ba

Figure: Full-field measurement setting

Some examples: Magnetic resonance elastography [Yuan et al., 2012],
Digital image correlation via X-ray tomography [Bay et al., 1999].
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Topological derivative

Numerical applications in non-destructive control

Let z ∈ Ω. Suppose that either a) ω = Ω or b) z /∈ ω:

Figure: ω = Ω Figure: z /∈ ω

Then the topological derivative formula simplifies

DJ(z) = −∇p(z) : E : ∇u(z)

The goal is to find the places z where DJ attains the most negative
values.
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The goal is to find the places z where DJ attains the most negative
values.
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Topological derivative

First application: 2D framework, ω = Ω

Objective: Identify each inclusion.

L = 2

H = 1

x

y

z1 = (0.3,−0.35)

z2 = (1, 0.65)

z3 = (1, 7.65)

g = 1

B1

B2

B3

(a2 = 0.003)

Figure: Orthotropic medium C (E1 = 0.1, E2 = 1, ν12 = 0.3, G12 = 0.03) with
three inclusions: B1, B3 are softer (C∗ = 0.5C) while B2 is harder (C∗ = 2C).
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Topological derivative

First application: Results

Figure: Values of DJ using as test
material C∗ = 0.5C.

Figure: Values of DJ using as test
material C∗ = 2C.
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Topological derivative

Second application: 3D composite framework, ω ⊂ Ω

Objective: Detect the failure point

Figure: Multi-layered cube made of
three orthotropic materials
C1, C2, C3. Failure point
C∗ = 10−5 × C

Figure: Elastic displacements after the
application of the loads g1, g2.
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Topological derivative

Second application: Results

Figure: ω = ∪{ωi}i=1,...,44.

Green: DJ iso-surfaces around its minimum value −1.3× 10−3.
Gray: Show the correct location of the failure point.
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Topological derivative

Second application: Results

Figure: ω = ∪{ωi}i=1,...,729.

Green: DJ iso-surfaces around its minimum value −6.9× 10−2.
Gray: Show the correct location of the failure point.
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Outline

1 Overview on topology optimization & the level-set method
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4 Conclusions and perspectives
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Conclusions

This thesis was set as an exploratory work to ameliorate composite
design in industry via the level-set technology.

The level-set method was extended to a multi-phase & multi-layered
composite framework.

Various approximations of the shape derivative (sharp, smeared &
discrete) were given in an anisotropic multi-phase framework.

The topological derivative for anisotropic materials was studied for a
large class of criteria.
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Perspectives

Enrich the composite problem with a more realistic shell model &
other manufacturing constraints for industrial applications.

Introduce the topological derivative in the topology optimization loop
of the level-set algorithm.

Perform a robustness and sensitivity analysis of the topological
derivative for non-destructive control.

Extend the computation of the topological derivative to an
elastodynamic framework.
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Conclusions and perspectives

Thank you for your attention!
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