Optimization of composite structures A topology and shape sensitivity analysis

Gabriel Delgado Keeffe under the supervision of Grégoire Allaire

Ecole Polytechnique Airbus Group Innovations

 $11 {\rm th} \ {\rm June} \ 2014$

1) Composite optimal design via a level-set method

Composite optimal design via a level-set method

 (a) Multi-layered composites

Composite optimal design via a level-set method

 (a) Multi-layered composites
 (b) Multi-phase materials

Composite optimal design via a level-set method

 (a) Multi-layered composites
 (b) Multi-phase materials

$$DJ = \lim_{a \to 0} \frac{J(a) - J(0)}{h(a)}$$

Composite optimal design via a level-set method (a) Multi-layered composites (b) Multi-phase materials

- $DJ = \lim_{a \to 0} \frac{J(a) J(0)}{h(a)}$
- Topology optimization.
- Inverse problems.

- Overview on topology optimization & the level-set method
- Optimal design of composite materials
- 3 Topological derivative
- 4 Conclusions and perspectives

Outline

Overview on topology optimization & the level-set method

- 2 Optimal design of composite materials
- 3 Topological derivative
- 4 Conclusions and perspectives

Topology optimization

A topology optimization problem can be cast as follows:

Find the stiffest structure $\omega \subset \Omega$ belonging to an admissible set U_{ad} , which solves the problem

$$\min_{\omega \subset \Omega, \omega \in \mathcal{U}_{ad}} J(\omega, u(\omega)),$$

where $u(\omega)$ is the displacement field arising in ω due to prescribed excitations (f, g).

Topology optimization methods

Density based	Boundary variations
Homogenization [Murat and Tartar,	Level set+Shape sensitivity analysis
1985], [Bendsøe and Kikuchi, 1988]	[Allaire et al., 2002], [Wang et al., 2003]
SIMP [Bendsøe, 1995]	Phase field [Chambolle and Bourdin, 2000]

Topology optimization methods

Density based	Boundary variations
Homogenization [Murat and Tartar,	Level set+Shape sensitivity analysis
1985], [Bendsøe and Kikuchi, 1988]	[Allaire et al., 2002], [Wang et al., 2003]
SIMP [Bendsøe, 1995]	Phase field [Chambolle and Bourdin, 2000]

Characteristics

- No need of remeshing.
- Allows naturally topology changes.

Topology optimization methods

Density based	Boundary variations
Homogenization [Murat and Tartar,	Level set+Shape sensitivity analysis
1985], [Bendsøe and Kikuchi, 1988]	[Allaire et al., 2002], [Wang et al., 2003]
SIMP [Bendsøe, 1995]	Phase field [Chambolle and Bourdin, 2000]

Characteristics

- No need of remeshing.
- Allows naturally topology changes.

Comparative advantages

- Clear contour of the shape.
- Easy definition of geometrical parameters.

• Introduced by [Osher and Sethian, 1988].

- Introduced by [Osher and Sethian, 1988].
- Definition of the level set function $\psi: \Omega \to \mathbb{R}$, with $\Omega \subset \mathbb{R}^d$ (d = 2, 3)

$$\left\{ \begin{array}{ll} \psi(x)=0 \Leftrightarrow & x\in\partial\omega,\\ \psi(x)<0 \Leftrightarrow & x\in\omega,\\ \psi(x)>0 \Leftrightarrow & x\in\Omega\backslash\omega. \end{array} \right.$$

- Introduced by [Osher and Sethian, 1988].
- Definition of the level set function $\psi: \Omega \to \mathbb{R}$, with $\Omega \subset \mathbb{R}^d$ (d = 2, 3)

$$\left\{ \begin{array}{ll} \psi(x)=0\Leftrightarrow & x\in\partial\omega,\\ \psi(x)<0\Leftrightarrow & x\in\omega,\\ \psi(x)>0\Leftrightarrow & x\in\Omega\backslash\omega. \end{array} \right.$$

• Evolution of the shape $\omega(t), t \in \mathbb{R}$ Level-set function $\psi(x, t)$

- Introduced by [Osher and Sethian, 1988].
- Definition of the level set function $\psi: \Omega \to \mathbb{R}$, with $\Omega \subset \mathbb{R}^d$ (d = 2, 3)

$$\left\{ \begin{array}{ll} \psi(x)=0\Leftrightarrow & x\in\partial\omega,\\ \psi(x)<0\Leftrightarrow & x\in\omega,\\ \psi(x)>0\Leftrightarrow & x\in\Omega\backslash\omega. \end{array} \right.$$

• Evolution of the shape $\omega(t), t \in \mathbb{R}$ Level-set function $\psi(x, t)$

Shape $\omega(t)$

• If the shape evolves according to a velocity field $\theta(x,t)$ defined on Ω with normal component $\mathcal{V}(x,t)$

Figure: Deformation of ω

Figure: Zoom around x

• If the shape evolves according to a velocity field $\theta(x,t)$ defined on Ω with normal component $\mathcal{V}(x,t)$

Figure: Deformation of ω

Figure: Zoom around x

 $\bullet\,$ One can show that the evolution equation satisfied by ψ reads

$$\begin{cases} \frac{\partial \psi}{\partial t} + \mathcal{V} |\nabla \psi| = 0 & x \in \Omega, t > 0, \\ \psi = \psi_0 & x \in \Omega, t = 0, \\ \frac{\partial \psi}{\partial n} = 0 & x \in \partial\Omega, t > 0. \end{cases}$$

Shape sensitivity analysis

Definition [Hadamard, 1908], [Simon and Murat, 1976] Consider the following type of variations of $\omega \subset \Omega$

$$(Id + \theta)(\omega) := \{x + \theta(x) \text{ for } x \in \omega\}, \theta \in W^{1,\infty}(\Omega; \mathbb{R}^d)$$

The shape derivative of a function $J(\omega)$ is defined as the Fréchet derivative in $W^{1,\infty}(\Omega; \mathbb{R}^d)$ at 0 of the application $\theta \to J((Id + \theta)\omega)$, i.e.

$$J((Id+\theta)\omega) = J(\omega) + J'(\omega)(\theta) + o(\theta).$$

Shape sensitivity analysis

Definition [Hadamard, 1908], [Simon and Murat, 1976] Consider the following type of variations of $\omega \subset \Omega$

$$(Id + \theta)(\omega) := \{x + \theta(x) \text{ for } x \in \omega\}, \theta \in W^{1,\infty}(\Omega; \mathbb{R}^d)$$

The shape derivative of a function $J(\omega)$ is defined as the Fréchet derivative in $W^{1,\infty}(\Omega; \mathbb{R}^d)$ at 0 of the application $\theta \to J((Id + \theta)\omega)$, i.e.

$$J((Id+\theta)\omega) = J(\omega) + J'(\omega)(\theta) + o(\theta).$$

Proposition

Suppose ω and J regular, then there exists a continuous linear form l such that

$$J'(\omega)(\theta) = l((\theta \cdot n)|_{\partial \omega})$$

Shape sensitivity analysis

Definition [Hadamard, 1908], [Simon and Murat, 1976] Consider the following type of variations of $\omega \subset \Omega$

$$(Id + \theta)(\omega) := \{x + \theta(x) \text{ for } x \in \omega\}, \theta \in W^{1,\infty}(\Omega; \mathbb{R}^d)$$

The shape derivative of a function $J(\omega)$ is defined as the Fréchet derivative in $W^{1,\infty}(\Omega; \mathbb{R}^d)$ at 0 of the application $\theta \to J((Id + \theta)\omega)$, i.e.

$$J((Id+\theta)\omega) = J(\omega) + J'(\omega)(\theta) + o(\theta).$$

Proposition

Suppose ω and J regular, then there exists a continuous linear form l such that

$$J'(\omega)(\theta) = l((\theta \cdot n)|_{\partial \omega}) = \int_{\partial \omega} (\theta \cdot n) j ds$$

 \bullet The objective is to find a normal descent direction \mathcal{V}^* such that

$$\begin{cases} \psi(t_0, \cdot) \equiv \omega \\ \psi(t_0 + \Delta t, \cdot) \equiv \omega^{\Delta t} \Rightarrow J(\omega^{\Delta t}) - J(\omega) < 0 \\ \frac{\partial \psi}{\partial t} + \mathcal{V}^* |\nabla \psi| = 0; \quad t \in [t_0, t_0 + \Delta t], x \in \Omega \end{cases}$$

 \bullet The objective is to find a normal descent direction \mathcal{V}^* such that

$$\begin{cases} \psi(t_0, \cdot) \equiv \omega \\ \psi(t_0 + \Delta t, \cdot) \equiv \omega^{\Delta t} \Rightarrow J(\omega^{\Delta t}) - J(\omega) < 0 \\ \frac{\partial \psi}{\partial t} + \mathcal{V}^* |\nabla \psi| = 0; \quad t \in [t_0, t_0 + \Delta t], x \in \Omega \end{cases}$$

 This direction can be deduced from the solution of the variational problem

$$\langle \mathcal{V}^*, v \rangle_{H^1(\Omega)} = -l(v), \forall v \in H^1(\Omega),$$

 \bullet The objective is to find a normal descent direction \mathcal{V}^* such that

$$\begin{cases} \psi(t_0, \cdot) \equiv \omega \\ \psi(t_0 + \Delta t, \cdot) \equiv \omega^{\Delta t} \Rightarrow J(\omega^{\Delta t}) - J(\omega) < 0 \\ \frac{\partial \psi}{\partial t} + \mathcal{V}^* |\nabla \psi| = 0; \quad t \in [t_0, t_0 + \Delta t], x \in \Omega \end{cases}$$

 This direction can be deduced from the solution of the variational problem

$$\langle \mathcal{V}^*, v \rangle_{H^1(\Omega)} = -l(v), \forall v \in H^1(\Omega),$$

 \bullet The objective is to find a normal descent direction \mathcal{V}^* such that

$$\begin{cases} \psi(t_0, \cdot) \equiv \omega \\ \psi(t_0 + \Delta t, \cdot) \equiv \omega^{\Delta t} \Rightarrow J(\omega^{\Delta t}) - J(\omega) < 0 \\ \frac{\partial \psi}{\partial t} + \mathcal{V}^* |\nabla \psi| = 0; \quad t \in [t_0, t_0 + \Delta t], x \in \Omega \end{cases}$$

 This direction can be deduced from the solution of the variational problem

$$\langle \mathcal{V}^*, v \rangle_{H^1(\Omega)} = -l(v), \forall v \in H^1(\Omega), \quad l(v) = J'(\omega)(vn),$$

 $\bullet\,$ The objective is to find a normal descent direction \mathcal{V}^* such that

$$\begin{cases} \psi(t_0, \cdot) \equiv \omega \\ \psi(t_0 + \Delta t, \cdot) \equiv \omega^{\Delta t} \Rightarrow J(\omega^{\Delta t}) - J(\omega) < 0 \\ \frac{\partial \psi}{\partial t} + \mathcal{V}^* |\nabla \psi| = 0; \quad t \in [t_0, t_0 + \Delta t], x \in \Omega \end{cases}$$

 This direction can be deduced from the solution of the variational problem

$$\langle \mathcal{V}^*, v \rangle_{H^1(\Omega)} = -l(v), \forall v \in H^1(\Omega), \quad l(v) = J'(\omega)(vn),$$

Indeed, for Δt small enough

$$J(\omega^{\Delta t}) - J(\omega) = \Delta t \times J'(\omega)(\theta^*) + o(\Delta t), \quad \theta^* = \mathcal{V}^* n$$

= $\Delta t \times l(\mathcal{V}^*) + o(\Delta t)$
= $-\Delta t \times \|\mathcal{V}^*\|_{H^1(\Omega)}^2 + o(\Delta t) < 0$

The level set method for topology optimization

• Optimization of a triangular car suspension (courtesy of G. Allaire).

Figure: Iteration 1

Figure: Iteration 26

Figure: Iteration 100

Linear elasticity:

 $\left\{ \begin{array}{ll} -{\rm div}(Ce(u))=0 & \mbox{ in } \Omega \\ u=0 & \mbox{ on } \Gamma_D \\ Ce(u)\cdot n=g & \mbox{ on } \Gamma_N \end{array} \right.$

$$\min_{\omega \subset \Omega, |\omega| = c} J(\omega), \quad J(\omega) = \int_{\Gamma_N} g \cdot u ds$$
$$J'(\omega)(\theta) = -\int_{\partial \omega} \theta \cdot n(Ce(u) : e(u)) dx$$

Outline

Overview on topology optimization & the level-set method

2 Optimal design of composite materials

- 3 Topological derivative
- 4 Conclusions and perspectives

Multi-phase optimal design

• Design variable: shape of each phase (n level-sets $\rightarrow 2^n$ materials)

Figure: Level-set functions Ψ_1, Ψ_2

Figure: Multi-phase material via superposition of Ψ_1, Ψ_2

Multi-layered optimal design

• Design variables: shape of each ply Ψ_i (continuous) & stacking sequence ξ (discrete)

Figure: Multi-layered configuration

Multi-layered optimal design

• Design variables: shape of each ply Ψ_i (continuous) & stacking sequence ξ (discrete)

Figure: Multi-layered configuration

Figure: Orthotropic plies. Reinforced fibers in orientations $-45^{o}, 90^{o}, 0^{o}, 45^{o}$

Figure: Buckling under compression

Figure: Buckled wing

Figure: Buckling under compression

Figure: Buckled wing

$$\begin{aligned} \mathcal{A} &= 2\varepsilon \sum_{i=1}^{N} \left(\chi^{i} \mathcal{A}^{i} + (1-\chi^{i}) \mathcal{A}^{0} \right), \quad \chi^{i}: \text{ characteristic function} \\ \mathcal{D} &= \frac{2\varepsilon^{3}}{3} \sum_{i=1}^{N} \left(i^{3} - (i-1)^{3} \right) \left(\chi^{i} \mathcal{A}^{i} + (1-\chi^{i}) \mathcal{A}^{0} \right) \end{aligned}$$

$$\mathcal{A} = 2\varepsilon \sum_{i=1}^{N} \left(\chi^{i} \mathcal{A}^{i} + (1-\chi^{i}) \mathcal{A}^{0} \right), \quad \chi^{i} : \text{ characteristic function}$$
$$\mathcal{D} = \frac{2\varepsilon^{3}}{3} \sum_{i=1}^{N} \left(i^{3} - (i-1)^{3} \right) \left(\chi^{i} \mathcal{A}^{i} + (1-\chi^{i}) \mathcal{A}^{0} \right)$$

The multi-layered design problem becomes a multi-phase design problem.

 Ω : Hold-all domain g: in-plane loads Γ_N : Neumann BC Γ_D : Dirichlet BC ε : Thickness of each ply 2h: Total thickness laminate \mathcal{A} : extensional stiffness \mathcal{D} : bending stiffness

The linearized buckling problem

Definition (von Kármán plate model)

Let $u \in H^1(\Omega; \mathbb{R}^2)$ be the in-plane displacement and solves

$$\begin{cases} -\operatorname{div}(\mathcal{A}e(u)) = 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \Gamma_D, \\ \mathcal{A}e(u) \cdot n = 2hg, & \text{ on } \Gamma_N, \end{cases}$$
Definition (von Kármán plate model)

Let $w \in H^2(\Omega)$ be the vertical displacement. Consider the eigenvalue problem

$$\begin{cases} \nabla^2 : (\mathcal{D}\nabla^2 w) = \lambda \mathcal{A}e(u) : \nabla^2 w & \text{in } \Omega, \end{cases}$$

Let $u \in H^1(\Omega; \mathbb{R}^2)$ be the in-plane displacement and solves

$$\begin{cases} -\operatorname{div}(\mathcal{A}e(u)) = 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \Gamma_D, \\ \mathcal{A}e(u) \cdot n = 2hg, & \text{ on } \Gamma_N. \end{cases}$$

Definition (von Kármán plate model)

Let $w \in H^2(\Omega)$ be the vertical displacement. Consider the eigenvalue problem

$$\nabla^2 : (\mathcal{D}\nabla^2 w) = \lambda \mathcal{A}e(u) : \nabla^2 w \qquad \text{in } \Omega,$$

Let $u \in H^1(\Omega; \mathbb{R}^2)$ be the in-plane displacement and solves

$$\begin{cases} -\operatorname{div}(\mathcal{A}e(u)) = 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \Gamma_D, \\ \mathcal{A}e(u) \cdot n = 2hg, & \text{ on } \Gamma_N. \end{cases}$$

We chose $\lambda = \lambda_1$, the smallest positive eigenvalue, as the critical buckling load.

Definition (von Kármán plate model)

Let $w \in H^2(\Omega)$ be the vertical displacement. Consider the eigenvalue problem

$$\begin{aligned} \nabla^2 : (\mathcal{D} \nabla^2 w) &= \lambda \mathcal{A} e(u) : \nabla^2 w & \text{ in } \Omega, \\ w &= 0, \nabla w \cdot n = 0 & \text{ on } \Gamma_D, \end{aligned}$$

Let $u \in H^1(\Omega; \mathbb{R}^2)$ be the in-plane displacement and solves

$$\begin{cases} -\operatorname{div}(\mathcal{A}e(u)) = 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \Gamma_D, \\ \mathcal{A}e(u) \cdot n = 2hg, & \text{ on } \Gamma_N. \end{cases}$$

We chose $\lambda = \lambda_1$, the smallest positive eigenvalue, as the critical buckling load.

Definition (von Kármán plate model)

Let $w \in H^2(\Omega)$ be the vertical displacement. Consider the eigenvalue problem

$$\left\{ \begin{array}{ll} \nabla^2:(\mathcal{D}\nabla^2w)=\pmb{\lambda}\mathcal{A}e(u):\nabla^2w & \text{ in }\Omega,\\ w=0,\nabla w\cdot n=0 & \text{ on }\Gamma_D,\\ (\mathcal{D}\nabla^2w)_{nn}=0 & \text{ on }\Gamma_N,\\ \nabla\cdot(\mathcal{D}\nabla^2w)\cdot n+\frac{\partial}{\partial\tau}(\mathcal{D}\nabla^2w)_{n\tau}=\pmb{\lambda}2hg\cdot\nabla w & \text{ on }\Gamma_N, \end{array} \right.$$

Let $u \in H^1(\Omega; \mathbb{R}^2)$ be the in-plane displacement and solves

$$\begin{cases} -\operatorname{div}(\mathcal{A}e(u)) = 0 & \text{ in } \Omega, \\ u = 0 & \text{ on } \Gamma_D, \\ \mathcal{A}e(u) \cdot n = 2hg, & \text{ on } \Gamma_N. \end{cases}$$

We chose $\lambda = \lambda_1$, the smallest positive eigenvalue, as the critical buckling load.

Sharp interface formulation

$$\mathcal{A} = \mathcal{A}^1 + H(\psi)(\mathcal{A}^0 - \mathcal{A}^1)$$

 $\left\{ \begin{array}{l} \mathcal{A}^1, \mathcal{A}^0: \ \text{Elastic phases} \\ H: \ \text{Heaviside function.} \end{array} \right.$

Sharp interface formulation

$$\mathcal{A} = \mathcal{A}^1 + H(\psi)(\mathcal{A}^0 - \mathcal{A}^1)$$

 $\left\{ \begin{array}{l} \mathcal{A}^1, \mathcal{A}^0: \ \text{Elastic phases} \\ H: \ \text{Heaviside function.} \end{array} \right.$

Transmission conditions on $\psi = 0$ ($\llbracket \cdot \rrbracket$ denotes the jump through $\partial \omega$):

Sharp interface formulation

$$\mathcal{A} = \mathcal{A}^1 + H(\psi)(\mathcal{A}^0 - \mathcal{A}^1)$$

 $\left\{ \begin{array}{l} \mathcal{A}^1, \mathcal{A}^0: \ \text{Elastic phases} \\ H: \ \text{Heaviside function.} \end{array} \right.$

Transmission conditions on $\psi = 0$ ($\llbracket \cdot \rrbracket$ denotes the jump through $\partial \omega$):

$$\begin{cases} \llbracket w \rrbracket = 0, \quad \llbracket \nabla w \cdot n \rrbracket = 0, & \left\{ \llbracket u \rrbracket = 0, \quad \llbracket \mathcal{A}e(u) \cdot n \rrbracket = 0 \\ \llbracket (\mathcal{D}\nabla^2 w)_{nn} \rrbracket = 0, \\ \llbracket -\lambda_1(\mathcal{A}e(u) : \nabla w) \cdot n + \operatorname{div}(\mathcal{D}\nabla^2 w) \cdot n + \frac{\partial}{\partial \tau}(\mathcal{D}\nabla^2 w)_{n\tau} \rrbracket = 0 \end{cases}$$

Sharp interface formulation

$$\mathcal{A} = \mathcal{A}^1 + H(\psi)(\mathcal{A}^0 - \mathcal{A}^1)$$

 $\left\{ \begin{array}{l} \mathcal{A}^1, \mathcal{A}^0: \ \text{Elastic phases} \\ H: \ \text{Heaviside function.} \end{array} \right.$

Transmission conditions on $\psi = 0$ ($\llbracket \cdot \rrbracket$ denotes the jump through $\partial \omega$):

$$\begin{cases} \llbracket w \rrbracket = 0, \quad \llbracket \nabla w \cdot n \rrbracket = 0, \\ \llbracket (\mathcal{D} \nabla^2 w)_{nn} \rrbracket = 0, \\ \llbracket -\lambda_1 (\mathcal{A} e(u) : \nabla w) \cdot n + \operatorname{div}(\mathcal{D} \nabla^2 w) \cdot n + \frac{\partial}{\partial \tau} (\mathcal{D} \nabla^2 w)_{n\tau} \rrbracket = 0 \end{cases}$$

Sharp interface formulation

$$\mathcal{A} = \mathcal{A}^1 + H(\psi)(\mathcal{A}^0 - \mathcal{A}^1)$$

 $\left\{ \begin{array}{l} \mathcal{A}^1, \mathcal{A}^0: \ \text{Elastic phases} \\ H: \ \text{Heaviside function.} \end{array} \right.$

Smooth interface formulation

$$\mathcal{A} = \mathcal{A}^1 + H_{\epsilon}(d_{\omega})(\mathcal{A}^0 - \mathcal{A}^1)$$

 $\begin{cases} H_{\epsilon} : \text{ Regular approximation } H \\ \epsilon : \text{ Interpolation width.} \end{cases}$

Sharp interface formulation

$$\mathcal{A} = \mathcal{A}^1 + H(\psi)(\mathcal{A}^0 - \mathcal{A}^1)$$

 $\left\{ \begin{array}{l} \mathcal{A}^1, \mathcal{A}^0: \ \text{Elastic phases} \\ H: \ \text{Heaviside function.} \end{array} \right.$

Smooth interface formulation

$$\mathcal{A} = \mathcal{A}^1 + H_{\epsilon}(d_{\omega})(\mathcal{A}^0 - \mathcal{A}^1)$$

 $\begin{cases} H_{\epsilon} : \text{ Regular approximation } H \\ \epsilon : \text{ Interpolation width.} \end{cases}$

Signed distance function:

$$d_{\omega}(x) = \begin{cases} -d(x,\partial\omega) & \text{if } x \in \omega, \\ 0 & \text{if } x \in \partial\omega, \\ d(x,\partial\omega) & \text{if } x \in \Omega \backslash \bar{\omega}, \end{cases}$$
17

Definition (Lightweight design problem)

Find the best composite structure (\mathcal{O}, ξ) , with:

Definition (Lightweight design problem)

Find the best composite structure (\mathcal{O},ξ) , with:

Collection of ply-shapes: $\mathcal{O} = \{\omega_i\}_{i=1...N}$ Stacking sequence: ξ

Definition (Lightweight design problem) Find the best composite structure (\mathcal{O}, ξ) , with:

Collection of ply-shapes: $\mathcal{O} = \{\omega_i\}_{i=1...N}$ Stacking sequence: ξ

$$\min_{\mathcal{O} \in \, \mathcal{U}_{ad}, \xi \in Y} \ \left\{ V(\mathcal{O}) | G(\mathcal{O}, \xi) \leq 0 \right\}, \quad \text{where:} \quad$$

Definition (Lightweight design problem) Find the best composite structure (\mathcal{O}, ξ) , with:

Collection of ply-shapes: $\mathcal{O} = \{\omega_i\}_{i=1...N}$ Stacking sequence: ξ

$$\min_{\mathcal{O} \in \, \mathcal{U}_{ad}, \xi \in Y} \, \left\{ V(\mathcal{O}) | G(\mathcal{O}, \xi) \leq 0 \right\}, \quad \text{where:} \quad$$

Total weight: $V(\mathcal{O})$

Failure constraint: $G(\mathcal{O},\xi)$

Definition (Lightweight design problem) Find the best composite structure (\mathcal{O}, ξ) , with:

Collection of ply-shapes: $\mathcal{O} = \{\omega_i\}_{i=1...N}$ Stacking sequence: ξ

$$\min_{\mathcal{O} \in \mathcal{U}_{ad}, \xi \in Y} \{ V(\mathcal{O}) | G(\mathcal{O}, \xi) \le 0 \}, \quad \text{where:}$$

Total weight: $V(\mathcal{O})$ Admissible shapes: \mathcal{U}_{ad} Failure constraint: $G(\mathcal{O}, \xi)$ Admissible stacking: Y

Definition (Lightweight design problem)

Find the best composite structure (\mathcal{O},ξ) , with:

Collection of ply-shapes: $\mathcal{O} = \{\omega_i\}_{i=1...N}$ Stacking sequence: ξ

$$\min_{\mathcal{O} \in \mathcal{U}_{ad}, \xi \in Y} \ \left\{ V(\mathcal{O}) | G(\mathcal{O}, \xi) \leq 0 \right\}, \quad \text{where:}$$

Total weight: $V(\mathcal{O})$ Admissible shapes: \mathcal{U}_{ad} Failure constraint: $G(\mathcal{O}, \xi)$ Admissible stacking: Y

Related works:

- Stacking sequence optimization: Gürdal, Haftka & co-workers (90's-)
- Fiber orientation tailoring: Lund & co-workers (2005-).

A^5	A_5
\mathcal{A}^0	\mathcal{A}_4
A^3	\mathcal{A}^0
A^2	\mathcal{A}^2
\mathcal{A}^1	

Figure: Transversal cut. Multi-phase structure.

Figure: Each ply has its own shape ω_i

Related works:

- Stacking sequence optimization: Gürdal, Haftka & co-workers (90's-)
- Fiber orientation tailoring: Lund & co-workers (2005-).

Proposition

The mixed lightweight design composite problem can be equivalently written as

$$\min_{\mathcal{O}\in\mathcal{U}_{ad}}\left\{V(\mathcal{O})|\mathcal{M}(\mathcal{O})\leq 0\right\},\,$$

where \mathcal{M} constraint margin function $\mathcal{M}(\mathcal{O}) := \min_{\xi \in Y} G(\mathcal{O}, \xi).$

Proposition

The mixed lightweight design composite problem can be equivalently written as

$$\min_{\mathcal{O}\in\mathcal{U}_{ad}}\left\{V(\mathcal{O})|\mathcal{M}(\mathcal{O})\leq 0\right\},\,$$

where \mathcal{M} constraint margin function $\mathcal{M}(\mathcal{O}) := \min_{\xi \in Y} G(\mathcal{O}, \xi).$

Optimization algorithm

Let $\mathcal{O}^0 \in \mathcal{U}_{ad}$ be an initial feasible point. For $k \geq 0,$ iterate until convergence

Proposition

The mixed lightweight design composite problem can be equivalently written as

$$\min_{\mathcal{O}\in\mathcal{U}_{ad}}\left\{V(\mathcal{O})|\mathcal{M}(\mathcal{O})\leq 0\right\},\,$$

where \mathcal{M} constraint margin function $\mathcal{M}(\mathcal{O}) := \min_{\xi \in Y} G(\mathcal{O}, \xi).$

Optimization algorithm

Let $\mathcal{O}^0 \in \mathcal{U}_{ad}$ be an initial feasible point. For $k \ge 0$, iterate until convergence

Proposition

The mixed lightweight design composite problem can be equivalently written as

$$\min_{\mathcal{O}\in\mathcal{U}_{ad}}\left\{V(\mathcal{O})|\mathcal{M}(\mathcal{O})\leq 0\right\},\,$$

where \mathcal{M} constraint margin function $\mathcal{M}(\mathcal{O}) := \min_{\xi \in Y} G(\mathcal{O}, \xi).$

Optimization algorithm

Let $\mathcal{O}^0 \in \mathcal{U}_{ad}$ be an initial feasible point. For $k \ge 0$, iterate until convergence

1) Solve
$$\xi^k = \operatorname{argmin}_{\xi \in Y} G(\mathcal{O}^k, \xi)$$
.

Proposition

The mixed lightweight design composite problem can be equivalently written as

$$\min_{\mathcal{O}\in\mathcal{U}_{ad}}\left\{V(\mathcal{O})|\mathcal{M}(\mathcal{O})\leq 0\right\},\,$$

where \mathcal{M} constraint margin function $\mathcal{M}(\mathcal{O}) := \min_{\xi \in Y} G(\mathcal{O}, \xi).$

Optimization algorithm

Let $\mathcal{O}^0 \in \mathcal{U}_{ad}$ be an initial feasible point. For $k \geq 0,$ iterate until convergence

1) Solve
$$\xi^k = \operatorname{argmin}_{\xi \in Y} G(\mathcal{O}^k, \xi)$$
.
2) Find \mathcal{O}^{k+1} such that $V(\mathcal{O}^{k+1}) < V(\mathcal{O}^k)$ and $G(\mathcal{O}^{k+1}, \xi^k) \leq 0$.

Proposition

The mixed lightweight design composite problem can be equivalently written as

$$\min_{\mathcal{O}\in\mathcal{U}_{ad}}\left\{V(\mathcal{O})|\mathcal{M}(\mathcal{O})\leq 0\right\},\,$$

where \mathcal{M} constraint margin function $\mathcal{M}(\mathcal{O}) := \min_{\xi \in Y} G(\mathcal{O}, \xi).$

Optimization algorithm

Let $\mathcal{O}^0 \in \mathcal{U}_{ad}$ be an initial feasible point. For $k \geq 0,$ iterate until convergence

1) Solve
$$\xi^k = \operatorname{argmin}_{\xi \in Y} G(\mathcal{O}^k, \xi)$$
.
2) Find \mathcal{O}^{k+1} such that $V(\mathcal{O}^{k+1}) < V(\mathcal{O}^k)$ and $G(\mathcal{O}^{k+1}, \xi^k) \le 0$.

1) Integer programming solver 2) Level-set method.

Proposition

The mixed lightweight design composite problem can be equivalently written as

$$\min_{\mathcal{O}\in\mathcal{U}_{ad}}\left\{V(\mathcal{O})|\mathcal{M}(\mathcal{O})\leq 0\right\},\,$$

where \mathcal{M} constraint margin function $\mathcal{M}(\mathcal{O}) := \min_{\xi \in Y} G(\mathcal{O}, \xi).$

Optimization algorithm

Let $\mathcal{O}^0 \in \mathcal{U}_{ad}$ be an initial feasible point. For $k \geq 0$, iterate until convergence

1) Solve
$$\xi^k = \operatorname{argmin}_{\xi \in Y} G(\mathcal{O}^k, \xi).$$

2) Find \mathcal{O}^{k+1} such that $V(\mathcal{O}^{k+1}) < V(\mathcal{O}^k)$ and $G(\mathcal{O}^{k+1}, \xi^k) \leq 0$.

1) Integer programming solver 2) Level-set method.

Proposition

The mixed lightweight design composite problem can be equivalently written as

$$\min_{\mathcal{O}\in\mathcal{U}_{ad}}\left\{V(\mathcal{O})|\mathcal{M}(\mathcal{O})\leq 0\right\},\,$$

where \mathcal{M} constraint margin function $\mathcal{M}(\mathcal{O}) := \min_{\xi \in Y} G(\mathcal{O}, \xi).$

Optimization algorithm

Let $\mathcal{O}^0 \in \mathcal{U}_{ad}$ be an initial feasible point. For $k \geq 0$, iterate until convergence

1) Solve
$$\xi^k = \operatorname{argmin}_{\xi \in Y} G(\mathcal{O}^k, \xi)$$
.

2) Find \mathcal{O}^{k+1} such that $V(\mathcal{O}^{k+1}) < V(\mathcal{O}^k)$ and $G(\mathcal{O}^{k+1}, \xi^k) \leq 0$.

1) Integer programming solver 2) Level-set method.

• Introduce the general criterion $J(\omega) = \int_{\Omega} j(x, u) \, dx$

- Introduce the general criterion $J(\omega) = \int_\Omega j(x,u) \, dx$
- Some formulae of $J'(\omega)(\theta)$ in engineering literature are incorrect.

- Introduce the general criterion $J(\omega) = \int_\Omega j(x,u) \, dx$
- Some formulae of $J'(\omega)(\theta)$ in engineering literature are incorrect.
- In a multi-phase framework, three shape derivative formulae arise:

- Introduce the general criterion $J(\omega) = \int_{\Omega} j(x, u) \, dx$
- Some formulae of $J'(\omega)(\theta)$ in engineering literature are incorrect.
- In a multi-phase framework, three shape derivative formulae arise:

Proposition [Allaire, Dapogny, Delgado & Michailidis (2014)] I. Continuous sharp interface

The shape derivative of ${\boldsymbol{J}}$ reads

$$J'(\omega)(\theta) = -\int_{\partial\omega} D(u,p) \,\theta \cdot n \, ds, \quad \text{with}$$

 $D(u,p) = -\sigma(p)_{nn} : \llbracket e(u)_{nn} \rrbracket - 2\sigma(p)_{n\tau} : \llbracket e(u)_{n\tau} \rrbracket + \llbracket \sigma(u)_{\tau\tau} \rrbracket : e(p)_{\tau\tau}.$

where $\sigma(v) = \mathcal{A} \, e(v)$ and p is the adjoint state, solution of

 $-{\rm div}\ ({\mathcal A} e(p))=-j'(x,u)\ {\rm in}\ \Omega,\quad {\mathcal A} e(p)\cdot n=0\ {\rm on}\ \Gamma_N,\quad p=0\ {\rm on}\ \Gamma_D.$

Proposition [Allaire, Dapogny, Delgado & Michailidis (2014)] II. Discrete sharp interface

Let Ω_h be a conformal simplicial mesh of Ω and u_h, p_h the finite element approximations of u, p, respectively. Suppose that $\partial \omega$ is never aligned with the face of an element of Ω_h . Then the discrete shape derivative of $J_h(\omega) = \int_{\Omega_h} j(x, u_h) dx$ reads

$$J_{h}'(\omega)(\theta) = -\int_{\partial\omega} \llbracket \mathcal{A} \rrbracket e(u_{h}) : e(p_{h}) \,\theta \cdot n \, ds.$$

$$\sigma^{0}(u_{h}^{0}) \cdot n^{0} \neq \sigma^{1}(u_{h}^{1}) \cdot n^{1}$$
$$u_{h}^{0} = u_{h}^{1}$$
$$\mathcal{A}^{*} = \rho \mathcal{A}^{0} + (1 - \rho) \mathcal{A}^{1}$$
21

Proposition [Allaire, Dapogny, Delgado & Michailidis (2014)] III. Smooth interface

Consider the smooth interface frame $\mathcal{A} = \mathcal{A}^1 + H_{\epsilon}(d_{\omega})(\mathcal{A}^0 - \mathcal{A}^1)$, with d_{ω} the signed distance function. Then the function J is shape differentiable in the sense of Gâteaux, and

$$J'_{\epsilon}(\Omega^{0})(\theta) = -\int_{\partial\omega} \theta(x) \cdot n(x) \sum_{j=0}^{1} f_{j}(x) dx,$$

$$f_j(x) = \int_{\operatorname{ray}_{\partial\omega(x)}\cap\omega^j} H'_{\varepsilon}(d(z)) \left(\mathcal{A}^1 - \mathcal{A}^0\right) e(u)(z) : e(p)(z)(1 + d(z)\kappa) dz.$$

Proposition [Allaire, Dapogny, Delgado & Michailidis (2014)] III. Smooth interface

Consider the smooth interface frame $\mathcal{A} = \mathcal{A}^1 + H_{\epsilon}(d_{\omega})(\mathcal{A}^0 - \mathcal{A}^1)$, with d_{ω} the signed distance function. Then the function J is shape differentiable in the sense of Gâteaux, and

$$J'_{\epsilon}(\Omega^{0})(\theta) = -\int_{\partial\omega} \theta(x) \cdot n(x) \sum_{j=0}^{1} f_{j}(x) dx,$$

$$f_j(x) = \int_{\operatorname{ray}_{\partial\omega(x)}\cap\omega^j} H'_{\varepsilon}(d(z)) \left(\mathcal{A}^1 - \mathcal{A}^0\right) e(u)(z) : e(p)(z)(1 + d(z)\kappa) dz.$$

Proposition [Allaire, Dapogny, Delgado & Michailidis (2014)] III. Smooth interface

Consider the smooth interface frame $\mathcal{A} = \mathcal{A}^1 + H_{\epsilon}(d_{\omega})(\mathcal{A}^0 - \mathcal{A}^1)$, with d_{ω} the signed distance function. Then the function J is shape differentiable in the sense of Gâteaux, and

$$J'_{\epsilon}(\Omega^{0})(\theta) = -\int_{\partial\omega} \theta(x) \cdot n(x) \sum_{j=0}^{1} f_{j}(x) dx,$$

$$f_j(x) = \int_{\operatorname{ray}_{\partial\omega(x)}\cap\omega^j} H'_{\varepsilon}(d(z)) \left(\mathcal{A}^1 - \mathcal{A}^0\right) e(u)(z) : e(p)(z)(1 + d(z)\kappa) dz.$$

Proposition (Convergence)

$$\lim_{\epsilon \to 0} J'_{\epsilon}(\omega)(\theta) = J'(\omega)(\theta), \quad \forall \theta \in W^{1,\infty}(\Omega; \mathbb{R}^2)$$

Test case formulation: Composite fuselage skin panel

- $\Omega = \{x \in [0,2] \times [0,1]\}$. Symmetric multi-layered plate (16 plies).
- Each ply is composed of two phases (one of them "void").
- A shear load g is applied.

Figure: Approximative flat model.

Figure: Composite test case.

Test case formulation: Composite fuselage skin panel

- $\Omega = \{x \in [0,2] \times [0,1]\}$. Symmetric multi-layered plate (16 plies).
- Each ply is composed of two phases (one of them "void").
- A shear load g is applied.

Figure: Approximative flat model.

• Optimization problem:

$$\min_{\mathcal{O}\in\mathcal{U}_{ad},\xi\in Y}\left\{\tilde{V}(\mathcal{O})|\lambda_1^{-1}(\mathcal{O},\xi)\leq 1\right\},\,$$

Figure: Composite test case.

Test case formulation: Composite fuselage skin panel

- $\Omega = \{x \in [0,2] \times [0,1]\}$. Symmetric multi-layered plate (16 plies).
- Each ply is composed of two phases (one of them "void").
- A shear load g is applied.

Figure: Approximative flat model.

Figure: Composite test case.

• Optimization problem:

$$\min_{\mathcal{O}\in\mathcal{U}_{ad},\xi\in Y}\left\{\tilde{V}(\mathcal{O})|\lambda_1^{-1}(\mathcal{O},\xi)\leq 1\right\},\quad \tilde{V}(\mathcal{O})=V(\mathcal{O})+\gamma P(\mathcal{O}),\;\gamma>0.$$
Test case formulation: Composite fuselage skin panel

- $\Omega = \{x \in [0,2] \times [0,1]\}$. Symmetric multi-layered plate (16 plies).
- Each ply is composed of two phases (one of them "void").
- A shear load g is applied.

Figure: Approximative flat model.

Figure: Composite test case.

• Optimization problem:

$$\min_{\mathcal{O}\in\mathcal{U}_{ad},\xi\in Y}\left\{\tilde{V}(\mathcal{O})|\lambda_1^{-1}(\mathcal{O},\xi)\leq 1\right\},\quad \tilde{V}(\mathcal{O})=V(\mathcal{O})+\gamma P(\mathcal{O}),\ \gamma>0.$$

- Continuous algorithm: Sequential linear programming.
- Discrete algorithm: Outer approximation method.

t1

Test case results

t0

t2

Number of iterations

Number of iterations

t3

50

Test case results

Figure: Initial configuration

Figure: Final configuration (45 iter.)

Outline

- Overview on topology optimization & the level-set method
- 2 Optimal design of composite materials
- 3 Topological derivative
- 4 Conclusions and perspectives

Theory	*[Sokolowski & Zochowski99] *[Masmoudi98]

• Purpose: Measures the sensibility of a cost function J defined on $\Omega \subset \mathbb{R}^d$ w.r.t. the creation of a virtual inclusion B_a of size $a \ll 1$

 $\left\{ \begin{array}{l} \mathcal{C}: \mbox{ Physical properties } \Omega \\ \mathcal{C}^*: \mbox{ Physical properties } B_a \end{array} \right.$

Theory	*[Sokolowski & Zochowski99] *[Masmoudi98]
Topology Optimization	*Bubble method [Schumacher, 1996] *Hard kill method [Nov02] *Level-set method [Ams04],[Alla05]
Inverse problems	*Flaw identification [Bon11],[Guz06] *Medical imaging [Ammari07]

Figure: Topology Optimization

Figure: Inverse problems [Guz06]

Theory	*[Sokolowski & Zochowski99] *[Masmoudi98]
Topology Optimization	*Bubble method [Schumacher, 1996] *Hard kill method [Nov02] *Level-set method [Ams04],[Alla05]
Inverse problems	*Flaw identification [Bon11],[Guz06] *Medical imaging [Ammari07]

	*Energy functionals
Criteria	*Displacement-based functionals
	*Von-mises yield criterion

Theory	*[Sokolowski & Zochowski99] *[Masmoudi98]
Topology Optimization	*Bubble method [Schumacher, 1996] *Hard kill method [Nov02] *Level-set method [Ams04],[Alla05]
Inverse problems	*Flaw identification [Bon11],[Guz06] *Medical imaging [Ammari07]

	*Energy functionals
Criteria	*Displacement-based functionals
	*Von-mises yield criterion

Novelty of this work	*General anisotropic framework
	*Stress-based functionals

• Let u_a, u be the perturbed and non-perturbed elastic displacements within Ω .

 $\left\{ \begin{array}{l} \mathcal{C}: \ \text{Elastic tensor in } \Omega \\ \mathcal{C}^*: \ \text{Elastic tensor in } B_a \\ f,g: \ \text{Volume \& Surface loads} \\ z: \ \text{Center of } B_a \end{array} \right.$

• Let u_a, u be the perturbed and non-perturbed elastic displacements within Ω .

- $\begin{array}{c} \begin{array}{c} \mathcal{C}^{*} \\ \mathcal{C}^{*} \\ \mathcal{B}_{a} \end{array} \end{array} \begin{array}{c} \mathcal{C} : \ \text{Elastic tensor in } \Omega \\ \mathcal{C}^{*} : \ \text{Elastic tensor in } B_{a} \\ f, g: \ \text{Volume \& Surface loads} \\ z: \ \text{Center of } B_{a} \end{array} \end{array}$
- where $W = \{v \in H^1(\Omega; \mathbb{R}^3) | v = 0 \text{ on } \Gamma_D \subset \partial \Omega\}$ and $u_a, u \in W$ are solutions of:

$$\int_{\Omega} \nabla u \colon \mathcal{C}_a \colon \nabla v dx = \int_{\Omega} f \cdot v dx + \int_{\Gamma_{\mathsf{N}}} g \cdot v ds, \quad \forall v \in W,$$

for $C_a = C^* \chi_{B_a} + C(1 - \chi_{B_a})$ and $C_0 = C$, respectively.

- Let u_a, u be the perturbed and non-perturbed elastic displacements within Ω .
- The cost function will take the form

$$J(u_a,\nabla u_a):=\int_{\Omega\setminus B_a}\phi(x,u_a,\nabla u_a)dx+\int_{B_a}\phi^\star(x,u_a,\nabla u_a)dx$$

where ϕ, ϕ^{\star} are twice differentiable and $\partial_{ij}^2 \phi, \partial_{ij}^2 \phi^{\star} \in C^{0,\alpha}$, $\alpha \in (0,1)$.

- Let u_a, u be the perturbed and non-perturbed elastic displacements within Ω .
- The cost function will take the form

$$J(u_a,\nabla u_a):=\int_{\Omega\setminus B_a}\phi(x,u_a,\nabla u_a)dx+\int_{B_a}\phi^\star(x,u_a,\nabla u_a)dx$$

where ϕ, ϕ^{\star} are twice differentiable and $\partial_{ij}^2 \phi, \partial_{ij}^2 \phi^{\star} \in C^{0,\alpha}$, $\alpha \in (0,1)$.

Definition

Let the cost functional ${\boldsymbol{J}}$ be and assume that it can be expanded in the form

$$J(u_a, \nabla u_a) - J(u, \nabla u) = a^3 D J(z) + o(a^3).$$

Then DJ(z) is called the topological derivative of J at $z \in \Omega$.

How to compute u_a for a small inhomogeneity?

Lemma

Consider the auxiliary problem of an inhomogeneity $(\mathcal{B}, \mathcal{C}^*)$ centered at the origin, embedded in an infinite elastic medium $(\mathbb{R}^3, \mathcal{C})$ subjected to an uniform remote strain $\nabla u(z), z \in \Omega$.

Suppose that $B_a = z + a\mathcal{B}$, then the following near-field development stands $u_a = u + a(u_{\mathcal{B}} - u^{\infty}) \left(\frac{x - z}{a}\right) + o(a).$

• More generally known as Polarization tensor [Nazarov, 2009].

- More generally known as Polarization tensor [Nazarov, 2009].
- Depends on the geometry \mathcal{B} and the elastic law \mathcal{C}^* of an inclusion embedded in an elastic medium \mathcal{C} .

- More generally known as Polarization tensor [Nazarov, 2009].
- Depends on the geometry \mathcal{B} and the elastic law \mathcal{C}^* of an inclusion embedded in an elastic medium \mathcal{C} .
- Important ingredient in the computation of the topological derivative.

- More generally known as Polarization tensor [Nazarov, 2009].
- Depends on the geometry \mathcal{B} and the elastic law \mathcal{C}^* of an inclusion embedded in an elastic medium \mathcal{C} .
- Important ingredient in the computation of the topological derivative.

Definition

Let $u_{\mathcal{B}}$ denote the perturbed solution of the free-space transmission problem. The elastic moment tensor (EMT) \mathcal{E} is defined for any value of $\nabla u(z)$ as

$$\mathcal{E}: \nabla u(z) = \int_{\mathcal{B}} \left(\mathcal{C}^{\star} - \mathcal{C} \right) : \nabla u_{\mathcal{B}} dx.$$

Proposition [Delgado and Bonnet, 2014 (review)]

Suppose ${\mathcal B}$ is an ellipsoid. The topological derivative at z of $J(u_a, \nabla u_a)$ reads

Proposition [Delgado and Bonnet, 2014 (review)]

Suppose ${\mathcal B}$ is an ellipsoid. The topological derivative at z of $J(u_a, \nabla u_a)$ reads

$$\begin{split} DJ(z) &= -\nabla p(z) : \mathcal{E} : \nabla u(z) + |\mathcal{B}|(\phi^* - \phi)(z, u(z), \nabla u(z)) \\ &+ \partial_d (\phi^* - \phi)(z, u(z), \nabla u(z)) : \int_{\mathcal{B}} \nabla v_{\mathcal{B}}(x) dx \\ &+ \int_{\mathbb{R}^3 \setminus \mathcal{B}} \mathcal{G}(z, \nabla v_{\mathcal{B}}(x)) dx + \int_{\mathcal{B}} \mathcal{G}^*(z, \nabla v_{\mathcal{B}}(x)) dx. \end{split}$$

Proposition [Delgado and Bonnet, 2014 (review)]

Suppose ${\mathcal B}$ is an ellipsoid. The topological derivative at z of $J(u_a, \nabla u_a)$ reads

$$DJ(z) = -\nabla p(z) : \mathcal{E} : \nabla u(z) + |\mathcal{B}|(\phi^* - \phi)(z, u(z), \nabla u(z)) + \partial_d(\phi^* - \phi)(z, u(z), \nabla u(z)) : \int_{\mathcal{B}} \nabla v_{\mathcal{B}}(x) dx + \int_{\mathbb{R}^3 \setminus \mathcal{B}} \mathcal{G}(z, \nabla v_{\mathcal{B}}(x)) dx + \int_{\mathcal{B}} \mathcal{G}^*(z, \nabla v_{\mathcal{B}}(x)) dx.$$

• The function $p \in W$ is the adjoint state.

Proposition [Delgado and Bonnet, 2014 (review)]

Suppose ${\mathcal B}$ is an ellipsoid. The topological derivative at z of $J(u_a, \nabla u_a)$ reads

$$\begin{split} DJ(z) &= -\nabla p(z) \colon \mathcal{E} \colon \nabla u(z) + |\mathcal{B}|(\phi^* - \phi)(z, u(z), \nabla u(z)) \\ &+ \partial_d(\phi^* - \phi)(z, u(z), \nabla u(z)) \colon \int_{\mathcal{B}} \nabla v_{\mathcal{B}}(x) dx \\ &+ \int_{\mathbb{R}^3 \setminus \mathcal{B}} \mathcal{G}(z, \nabla v_{\mathcal{B}}(x)) dx + \int_{\mathcal{B}} \mathcal{G}^*(z, \nabla v_{\mathcal{B}}(x)) dx. \end{split}$$

• The function $p \in W$ is the adjoint state.

• $v_{\mathcal{B}} = u_{\mathcal{B}} - u^{\infty}$ represents the free-space perturbation.

Proposition [Delgado and Bonnet, 2014 (review)]

Suppose ${\mathcal B}$ is an ellipsoid. The topological derivative at z of $J(u_a, \nabla u_a)$ reads

$$DJ(z) = -\nabla p(z) : \mathcal{E} : \nabla u(z) + |\mathcal{B}|(\phi^* - \phi)(z, u(z), \nabla u(z)) + \partial_d(\phi^* - \phi)(z, u(z), \nabla u(z)) : \int_{\mathcal{B}} \nabla v_{\mathcal{B}}(x) dx + \int_{\mathbb{R}^3 \setminus \mathcal{B}} \mathcal{G}(z, \nabla v_{\mathcal{B}}(x)) dx + \int_{\mathcal{B}} \mathcal{G}^*(z, \nabla v_{\mathcal{B}}(x)) dx.$$

• The function $p \in W$ is the adjoint state.

- $v_{\mathcal{B}} = u_{\mathcal{B}} u^{\infty}$ represents the free-space perturbation.
- The function $\mathcal{G}(z, d)$ (respectively $\mathcal{G}^*(z, d)$) is defined as $\phi(z, u(z), \nabla u(z) + d) - \phi(z, u(z), \nabla u(z)) - \partial_d \phi(z, u(z), \nabla u(z)) : d$

Proposition [Delgado and Bonnet, 2014 (review)]

Suppose ${\mathcal B}$ is an ellipsoid. The topological derivative at z of $J(u_a, \nabla u_a)$ reads

$$DJ(z) = -\nabla p(z) : \mathcal{E} : \nabla u(z) + |\mathcal{B}|(\phi^* - \phi)(z, u(z), \nabla u(z)) + \partial_d(\phi^* - \phi)(z, u(z), \nabla u(z)) : \int_{\mathcal{B}} \nabla v_{\mathcal{B}}(x) dx + \int_{\mathbb{R}^3 \setminus \mathcal{B}} \mathcal{G}(z, \nabla v_{\mathcal{B}}(x)) dx + \int_{\mathcal{B}} \mathcal{G}^*(z, \nabla v_{\mathcal{B}}(x)) dx.$$

- The function $p \in W$ is the adjoint state.
- $v_{\mathcal{B}} = u_{\mathcal{B}} u^{\infty}$ represents the free-space perturbation.
- The function $\mathcal{G}(z, d)$ (respectively $\mathcal{G}^*(z, d)$) is defined as $\phi(z, u(z), \nabla u(z) + d) - \phi(z, u(z), \nabla u(z)) - \partial_d \phi(z, u(z), \nabla u(z)) : d$
- Similar results: [Amstutz et al., 2012], [Schneider and Andrä, 2013].

• The choice of \mathcal{B} as an ellipsoid allow us to use the following result [Eshelby, 1957]

 $\nabla v_{\mathcal{B}} = Cst$, inside \mathcal{B}

• The choice of ${\cal B}$ as an ellipsoid allow us to use the following result [Eshelby, 1957]

$$\nabla v_{\mathcal{B}} = Cst, \quad \text{inside } \mathcal{B}$$

• The computation of the EMT the follows as

 $\mathcal{E} = |\mathcal{B}|\mathcal{C} : (\mathcal{C} + \Delta \mathcal{C} : \mathcal{S})^{-1} : \Delta \mathcal{C}; \quad \mathcal{S} = \mathcal{S}(\mathcal{C}, \mathcal{B}) : \text{Eshelby tensor.}$

• The choice of \mathcal{B} as an ellipsoid allow us to use the following result [Eshelby, 1957]

$$\nabla v_{\mathcal{B}} = Cst, \quad \text{inside } \mathcal{B}$$

• The computation of the EMT the follows as

 $\mathcal{E} = |\mathcal{B}|\mathcal{C} : (\mathcal{C} + \Delta \mathcal{C} : \mathcal{S})^{-1} : \Delta \mathcal{C}; \quad \mathcal{S} = \mathcal{S}(\mathcal{C}, \mathcal{B}) : \text{Eshelby tensor.}$

• New terms appearing in DJ are due to the dependence of J on ∇u_a .

• The choice of \mathcal{B} as an ellipsoid allow us to use the following result [Eshelby, 1957]

$$\nabla v_{\mathcal{B}} = Cst, \quad \text{inside } \mathcal{B}$$

• The computation of the EMT the follows as

 $\mathcal{E} = |\mathcal{B}|\mathcal{C} : (\mathcal{C} + \Delta \mathcal{C} : \mathcal{S})^{-1} : \Delta \mathcal{C}; \quad \mathcal{S} = \mathcal{S}(\mathcal{C}, \mathcal{B}) : \text{Eshelby tensor.}$

- New terms appearing in DJ are due to the dependence of J on ∇u_a .
- In particular the evaluation of the term

$$\int_{\mathbb{R}^3 \backslash \mathcal{B}} \mathcal{G}(z, \nabla v_{\mathcal{B}}(x)) dx$$

is numerically expensive to integrate.

• Objective: Detection of an elastic default or anomaly in an anisotropic medium.

- Objective: Detection of an elastic default or anomaly in an anisotropic medium.
- Cost functional: Full-field kinematical measurements over a set of control volumes $\omega \subset \Omega$

$$J(\nabla u_a) = \int_{\omega} \nabla (u_a - u^*) : \ \mathcal{C}_a : \nabla (u_a - u^*) dx.$$

- Objective: Detection of an elastic default or anomaly in an anisotropic medium.
- Cost functional: Full-field kinematical measurements over a set of control volumes $\omega \subset \Omega$

$$J(\nabla u_a) = \int_{\omega} \nabla (\mathbf{u}_a - u^*) : \ \mathcal{C}_a : \nabla (\mathbf{u}_a - u^*) dx.$$

• u_a is the virtual perturbed displacement.

- Objective: Detection of an elastic default or anomaly in an anisotropic medium.
- Cost functional: Full-field kinematical measurements over a set of control volumes $\omega \subset \Omega$

$$J(\nabla u_a) = \int_{\omega} \nabla (u_a - \boldsymbol{u}^*) : \ \mathcal{C}_a : \nabla (u_a - \boldsymbol{u}^*) dx.$$

- u_a is the virtual perturbed displacement.
- u^* corresponds to the measured data.

Figure: Full-field measurement setting

- Objective: Detection of an elastic default or anomaly in an anisotropic medium.
- Cost functional: Full-field kinematical measurements over a set of control volumes $\omega \subset \Omega$

$$J(\nabla u_a) = \int_{\omega} \nabla (u_a - u^*) : \ \mathcal{C}_a : \nabla (u_a - u^*) dx.$$

- u_a is the virtual perturbed displacement.
- u^* corresponds to the measured data.

Figure: Full-field measurement setting

• Some examples: Magnetic resonance elastography [Yuan et al., 2012], Digital image correlation via X-ray tomography [Bay et al., 1999].

• Let $z \in \Omega$. Suppose that either a) $\omega = \Omega$ or b) $z \notin \omega$:

Figure: $\omega = \Omega$

Figure: $z \notin \omega$

• Let $z \in \Omega$. Suppose that either a) $\omega = \Omega$ or b) $z \notin \omega$:

Figure: $\omega = \Omega$

Figure: $z \notin \omega$

• Then the topological derivative formula simplifies

$$DJ(z) = -\nabla p(z) : \mathcal{E} : \nabla u(z)$$

• Let $z \in \Omega$. Suppose that either a) $\omega = \Omega$ or b) $z \notin \omega$:

• Then the topological derivative formula simplifies

$$DJ(z) = -\nabla p(z) : \mathcal{E} : \nabla u(z)$$

• The goal is to find the places z where DJ attains the most negative values.

Topological derivative

First application: 2D framework, $\omega = \Omega$

• Objective: Identify each inclusion.

Figure: Orthotropic medium C ($E_1 = 0.1, E_2 = 1, \nu_{12} = 0.3, G_{12} = 0.03$) with three inclusions: B_1, B_3 are softer ($C^* = 0.5C$) while B_2 is harder ($C^* = 2C$).
First application: Results

Figure: Values of DJ using as test material $C^* = 0.5C$.

Figure: Values of DJ using as test material $C^* = 2C$.

Second application: 3D composite framework, $\omega \subset \Omega$

• Objective: Detect the failure point

Figure: Multi-layered cube made of three orthotropic materials C_1, C_2, C_3 . Failure point $C^* = 10^{-5} \times C$

Figure: Elastic displacements after the application of the loads g_1, g_2 .

Second application: Results

Green: DJ iso-surfaces around its minimum value -1.3×10^{-3} . Gray: Show the correct location of the failure point.

Second application: Results

Green: DJ iso-surfaces around its minimum value -6.9×10^{-2} . Gray: Show the correct location of the failure point.

Outline

- Overview on topology optimization & the level-set method
- 2 Optimal design of composite materials
- 3 Topological derivative
- 4 Conclusions and perspectives

• This thesis was set as an exploratory work to ameliorate composite design in industry via the level-set technology.

- This thesis was set as an exploratory work to ameliorate composite design in industry via the level-set technology.
- The level-set method was extended to a multi-phase & multi-layered composite framework.

- This thesis was set as an exploratory work to ameliorate composite design in industry via the level-set technology.
- The level-set method was extended to a multi-phase & multi-layered composite framework.
- Various approximations of the shape derivative (sharp, smeared & discrete) were given in an anisotropic multi-phase framework.

- This thesis was set as an exploratory work to ameliorate composite design in industry via the level-set technology.
- The level-set method was extended to a multi-phase & multi-layered composite framework.
- Various approximations of the shape derivative (sharp, smeared & discrete) were given in an anisotropic multi-phase framework.
- The topological derivative for anisotropic materials was studied for a large class of criteria.

• Enrich the composite problem with a more realistic shell model & other manufacturing constraints for industrial applications.

- Enrich the composite problem with a more realistic shell model & other manufacturing constraints for industrial applications.
- Introduce the topological derivative in the topology optimization loop of the level-set algorithm.

- Enrich the composite problem with a more realistic shell model & other manufacturing constraints for industrial applications.
- Introduce the topological derivative in the topology optimization loop of the level-set algorithm.
- Perform a robustness and sensitivity analysis of the topological derivative for non-destructive control.

- Enrich the composite problem with a more realistic shell model & other manufacturing constraints for industrial applications.
- Introduce the topological derivative in the topology optimization loop of the level-set algorithm.
- Perform a robustness and sensitivity analysis of the topological derivative for non-destructive control.
- Extend the computation of the topological derivative to an elastodynamic framework.

Thank you for your attention!

Communications

- G. ALLAIRE, C. DAPOGNY, G. DELGADO, AND G. MICHAILIDIS. *Mutli-phase structural optimization via a level-set method*. ESAIM: Control, Optimisation and Calculus of Variations (2014).
- M. BONNET, G. DELGADO. *The topological derivative in anisotropic elasticity*. Quarterly Journal of Mechanics and Applied Mathematics (2013).
- G. DELGADO, M. BONNET. The topological derivative of stress-based cost functionals in anisotropic elasticity. Submitted (2014).
- G. ALLAIRE, G. DELGADO. Stacking sequence and shape optimization of laminated composite plates via a level-set method. In preparation (2014).

References I

- G. Allaire, F. Jouve, and A.M. Toader. A level-set method for shape optimization. *Comptes Rendus Mathematique*, 334(12):1125–1130, 2002.
- S Amstutz, A. A. Novotny, and E. A. de Souza Neto. Topological derivative-based topology optimization of structures subject to drucker-prager stress constraints. *Comp. Meth. Appl. Mech. Eng.*, 233: 123–136, 2012.
- Brian K Bay, Tait S Smith, David P Fyhrie, and Malik Saad. Digital volume correlation: three-dimensional strain mapping using x-ray tomography. *Experimental Mechanics*, 39(3):217–226, 1999.
- Martin Philip Bendsøe. Optimization of structural topology, shape, and material. Springer, 1995.

References II

- M.P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design using a homogenization method. *Computer methods in applied mechanics and engineering*, 71(2):197–224, 1988.
- A Chambolle and B Bourdin. Optimisation topologique de structures soumises à des forces de pression. *Actes du 32ème Congrès National d'Analyse Numérique.*, 2000.
- J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion and related problems. *Proc. Roy. Soc. A*, 241:376–396, 1957.
 Jacques Hadamard. *Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées*, volume 33. Imprimerie nationale, 1908.
- François Murat and Luc Tartar. Calcul des variations et homogénéisation, In les méthodes de l'homogénéisation: théorie et applications en physique. *Coll. Dir. Etudes et Recherches EDF*, (57):319–369, 1985.

References III

- SA Nazarov. Elasticity polarization tensor, surface enthalpy, and eshelby theorem. *Journal of Mathematical Sciences*, 159(2):133–167, 2009.
- S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. *Journal of computational physics*, 79(1):12–49, 1988.
- Axel Schumacher. Topologieoptimierung von Bauteilstrukturen unter Verwendung von Lochpositionierungskriterien. PhD thesis,
 Forschungszentrum für Multidisziplinäre Analysen und Angewandte Strukturoptimierung. Institut für Mechanik und Regelungstechnik, 1996.
- J. Simon and F. Murat. Sur le contrôle par un domaine géométrique. *Publication 76015 du Laboratoire d'Analyse Numérique de l'Université Paris VI*, (76015):222 pages, 1976.

References IV

- M.Y. Wang, X. Wang, and D. Guo. A level set method for structural topology optimization. *Computer methods in applied mechanics and engineering*, 192(1):227–246, 2003.
- H. Yuan, B. B. Guzina, and R. Sinkus. Application of topological sensitivity toward tissue elasticity imaging using magnetic resonance data. *J. Eng. Mech. ASCE*, 2012.