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Résumé



Cette thèse se compose de trois parties. La première partie est consacrée à
l’étude des points périodiques des applications birationnelles des surfaces pro-
jectives. Nous montrons que toute application birationnelle de surface dont la
croissance des degrés est exponentielle admet un ensemble de points périodiques
Zariski dense.

Dans la seconde partie, nous démontrons la conjecture de Mordell-Lang dy-
namique pour toute application polynômiale birationnelle du plan affine définie
sur un corps de caractéristique nulle. Notre approche donne une nouvelle dé-
monstration de cette conjecture pour les automorphismes polynomiaux du plan.

Enfin la troisième partie porte sur un problème de géométrie affine inspiré par
la généralisation au cas de toutes les applications polynomiales du plan affine de
la conjecture de Mordell-Lang dynamique. Etant donné un ensemble fini S de
valuations sur l’anneau de polynômes k[x, y] sur un corps algébriquement clos k
triviales sur k, nous donnons une condition nécessaire et suffisante pour que le
corps des fractions de l’intersection des anneaux de valuations de S avec k[x, y]
soit de degré de transcendance 2 sur k.



Abstract



This thesis contains three parts. The first one is devoted to the study of the
set of periodic points for birational surface maps. We prove that any birational
transformation of a smooth projective surface whose degree growth is exponential
admits a Zariski-dense set of periodic orbits.

In the second part, we prove the dynamical Mordell-Lang conjecture for all
polynomial birational transformations of the affine plane defined over a field of
characteristic zero. Our approach gives a new proof of this conjecture for poly-
nomial automorphisms of the affine plane.

The last part is concerned with a problem in affine geometry that was inspired
by the generalization to any polynomial map of the dynamical Mordell-Lang
conjecture. Given any finite set S of valuations that are defined on the polynomial
ring k[x, y] over an algebraically closed field k, trivial on k, we give a necessary
and sufficient condition so that the field of fractions of the intersection of the
valuation rings of S with k[x, y] has transcendence degree 2 over k.
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Introduction



Foreword

This manuscript is divided into three parts that can be read independently.
The precise statements of our main results are explained thoroughly in the intro-
duction of each part. In this introduction we shall present the general framework
in which all the results of this thesis take place, and try to convey the common
ideas lying behind all of them.

We do not pretend to give a survey of the rapidly growing literature on all as-
pects of the subject of algebraic dynamics. In particular, we have chosen to leave
aside many interesting problems (including the dynamics on non-archimedean
Berkovich spaces, equidistributions results, and the geometry of moduli spaces
of dynamical systems) since they do not appear in the results presented in this
thesis.

1. What is algebraic dynamics?

The subject of this thesis, algebraic dynamics, can be defined as the study of
iterations of (rational) endomorphisms on algebraic varieties endowed with their
Zariski topology.

More precisely, an algebraic dynamical system is a pair (X, f) where X is a
quasi-projective variety defined over a field k and f : X 99K X is a dominant
rational (or regular) self-map on X defined over k.

Let us fix some notations. For any closed point p ∈ X(k), we denote by
Of (p) := {fn(p)| n ≥ 0} the orbit of p. We say that p is preperiodic if Of (p) is a
finite set. When there exists an integer n ≥ 1 such that fn(p) = p, then we say
p is periodic of period n.

1.1. Basic questions in algebraic dynamics. Let us begin by presenting
some representative questions from this field, referring to [19] for more open
problems.

Suppose (X, f) is an algebraic dynamical system defined over a projective
variety and k is an algebraically closed field.

1.1.1. Periodic orbits. The first natural question we may raise about peri-
odic points concerns their existence. There are several ways to give a precise
formulation of this problem. Here is one possibility.

Question 1.1. Give necessary and sufficient conditions for the map f to
admit a Zariski dense set of isolated periodic orbits.

When the number of periodic orbits is infinite, one can also ask for a count of
the number of isolated periodic points of a fixed period and its asymptotic value
when the period goes to infinity.

We are far from understanding this simple problem in complete generality.
Let us observe though that the set of periodic points of a rational endomorphism
may not be Zariski dense. For example when f is an automorphism of a projective
space of infinite order, the set of periodic points of f is a finite union of finitely
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many proper linear subspaces. However there are many cases where a positive
answer to the previous question is known to be true.

Recall that an endomorphism f on a projective varietyX is said to be polarized
if there exists an ample line bundle L on X satisfying f ∗L = L⊗d for some integer
d ≥ 2.

Suppose f is a polarized endomorphism. One can show that all its periodic
points of are isolated. Using methods from complex geometry and complex anal-
ysis Briend-Duval [10] and subsequently Dinh-Sibony [17] have proved that the
number of isolated periodic points of f of period m is equivalent to dm dimX , and
that the set of periodic points is Zariski dense in X. By the Lefschetz principle,
these results hold true whenever k has characteristic zero.

More recently, Hrushovski and Fakhruddin [19] gave a purely algebraic proof
of the Zariski density of periodic points over any algebraically closed field. We
shall return to their approach later in this introduction.

The complex analytic methods alluded to above have been used to give a
positive answer to Question 1.1 for several other classes of maps. Building on the
work of Guedj [28], Dinh, Nguyên and Truong [44] proved it when the topological
degree (i.e. the number of preimages of a general point) is large in the sense that
it dominates the action of f on the cohomology of X. This class of maps includes
polarized endomorphisms.

On the other hand, Dinh and Sibony [16] proved the Zariski density of pe-
riodic points for automorphisms f : Am → Am on complex affine spaces that
are regular (i.e. the indeterminacy loci of f and its inverse f−1 are disjoint on
the hyperplane at infinity in Pm). This result extends former works by Bedford-
Lyubich-Smillie [5] in the case of Hénon maps in dimension 2.

In the first part of my thesis, I will give an essentially complete answer to the
question above in the case when f is a birational transformation on a projective
surface over arbitrary algebraically closed field of characteristic different from 2
and 3.

1.1.2. Zariski dense orbits. Recall that we are given an algebraic dynamical
system (X, f) on a projective variety. Another natural and basic question is to
ask for conditions ensuring the existence of a Zariski dense orbit.

Amerik, Bogomolov and Rovinsky [1] have formulated the following precise
conjecture in the case of regular self-maps.

Conjecture 1.2. Let k be an algebraically closed field of characteristic 0.
Let X be a quasi-projective variety defined over k and f : X → X be a dominant
endomorphism defined over k. We suppose that for all m ≥ 1 there exists no
nonconstant rational function g on X satisfying g ◦ fm = g. Then there exists a
point p ∈ X(k) such that the set {fn(p)| n ≥ 0} is Zariski dense in X(k).

Since a polarized endomorphism cannot preserve a fibration fiberwise, the
previous conjecture reduces in this case to a conjecture of Zhang [49] asserting
the existence of a closed point p ∈ X(k) whose iterates form a Zariski dense
subset of X(k).
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When k is uncountable, Conjecture 1.2 was proved by Amerik and Campana
[3]. However the conjecture is wide open, even when k = Q̄.

In [18], Fakhruddin proved Conjecture 1.2 for generic endomorphisms1 on
projective spaces over arbitrary fields k of characteristic zero.

Medvedev and Scanlon proved Conjecture 1.2 for arbitrary fields k of charac-
teristic zero in the case when f := (f1(x1), . . . , fN(xN)) is an endomorphism of
AN

k
where fi’s are one-variable polynomials defined over k. Their proof relied on

model theoretic methods.
In [6], Bell, Ghioca and Tucker proved a weaker version of this conjecture

when f is an automorphism. Namely they showed the existence of a subvariety
V of codimension of at least two defined over k such that the set ∪∞

n=1f
n(V ) is

Zariski dense in X. This result is based on [2, Corollary 9] of Amerik, which
proves that there exists a nonpreperiodic algebraic point when f is of infinite
order.

A proof of Conjecture 1.2 for (most) birational surface selfmaps over any field
of characteristic 0 is given in the first part of my thesis.

1.2. Algebraic and arithmetic methods in the case of polarized en-

domorphisms. Let us explain in more detail how one can use purely algebraic
and arithmetic tools to tackle the problems and conjectures stated in the previous
sections in the case of polarized endomorphisms. These tools will be crucial in
all parts of this thesis.

1.2.1. Zariski density of the set of periodic points. Recall that one wants to
show that the set of periodic points of a polarized dynamical system f : X → X
is Zariski dense.

The strategy we briefly explain below was designed by Hrushovski, Fakhruddin
and Poonen.

Step 1. One first treats the case when k is the algebraic closure of a finite field.
Let U by any Zariski open subset of X. There exists a finite subfield Fq of k
such that X, f , L and U are defined over Fq. Hrushovski’s twisted Lang-Weil
estimates [29] imply that the intersection (U ×U)∩Γf ∩ΓΦqm

is not empty when
m is large enough, where Γf is the graph of f in X ×X and ΓΦqm

is the graph
of the qm-Frobenius map. It follows that there exists a point x ∈ U(k) satisfying
f(x) = Φqm(x). Since f is defined over Fq, we have f

n(x) = Φn
qm(x) for all n ≥ 0.

In particular, x is a periodic point of f contained in U , we conclude that the set
of periodic points of f is Zariski dense in X.

In fact, the argument above holds for all dominant rational endomorphisms.

Step 2. To deal with the general case of a characteristic zero field k, one proves
that one can assume k is a number field, say k = Q, and one uses a reduction
argument. A key property makes it possible to lift periodic points from positive

1An endomorphism f : PN
k
→ PN

k
satisfying f∗OP

N

k

(1) = OP
N

k

(d) is said to be generic if

it conjugates by a suitable linear automorphism on PN
k

to an endomorphism [x0 : · · · : xN ] 7→
[
∑

|I|=d a0,Ix
I : · · · :∑|I|=d aN,Ix

I ] where the set {ai,I}0≤i≤N,|I|=d is algebraically independent

over Q̄.
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characteristic to zero characteristic: the fact that a polarized endomorphism over
any field has only isolated periodic points.

In the case of birational maps this property is no longer satisfied. However
under a suitable assumption on the algebraic complexity of the map, Cantat [12]
has proved that a birational surface map can only have finitely many curves
of periodic points. Everything then boils down to proving that the algebraic
complexity assumption is satisfied for the reduction of a birational surface map
when it is true for the original map. This constitutes the core of our analysis
and relies on the natural linear action of birational surface maps on a suitable
hyperbolic space of infinite dimension. This space is constructed as a set of
cohomology classes in the Riemann-Zariski space of X and was introduced by
Cantat in [13]. See also [9, 14, 21, 34].

1.2.2. Existence of a Zariski dense orbit. Conjecture 1.2 is open in this case
except in dimension 1. However it is possible to prove the existence of a point
with infinite orbit using the notion of canonical height. For simplicity, we suppose
that k = Q in our discussion.

Recall that to an ample line bundle L→ X is attached a real-valued function
hL : X(Q)→ R+ that “measures” the arithmetic complexity of a given point. It
was observed by Call and Silverman [11] that the sequence 1

dn
hL(f

n(p)) converges

for any p ∈ X(Q). The limit ĥf (p) is referred to as the canonical height and
satisfies the relation

ĥf (f(p)) = dĥf (p)

so that any preperiodic point has height 0. It is now a fact that there exists a
point q ∈ X(Q) satisfying ĥf (q) > 0 whence this point has an infinite orbit.

The canonical height turned out to be very important in the study of algebra-
ic and arithmetic properties of polarized endomorphisms. It was thus a natural
question whether one could extend its definition for more general classes of ratio-
nal endomorphisms. Silverman [42] proposed a program to construct canonical
heights and actually constructed it for monomial endomorphisms on projective
spaces and for automorphisms on some special K3 surfaces in [40]. Kawaguchi
and Lee constructed it independently for regular automorphisms on AN [30, 32].
Jonsson and Wulcan constructed it for plane polynomial maps of small topological
degree [33].

2. Dynamical versions of classical arithmetic problems

In [41], Silverman promoted a “dictionary” between the theory of abelian
varieties and algebraic dynamics and translated many classical questions about
abelian varieties into a more dynamical framework.

We gather here three problems that we feel particularly appealing and that
are directly related to this dictionary and refer to [4, 19, 41, 43, 42] for more
open problems.
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2.1. Dynamical Uniform Boundedness Conjecture. Assume k is a num-
ber field. If f : PN

k
→ PN

k
is a dominant endomorphism defined over k then it is

naturally polarized since f ∗OPN (1) = OPN (d) where d is the common degree of
the homogeneous polynomials defining f in homogeneous coordinates.

Denote by ĥf the canonical height for f . We have seen above that ĥf (q) = 0
whenever q is preperiodic. It is actually a theorem that the converse holds true.
Denote by PrePer(f,k) the set of preperiodic points that are defined over k. Then
by the so-called Northcott’s property, one can even show that PrePer(f,k) is a
finite set.

Building on these remarks, the following conjecture was proposed by Morton
and Silverman [41].

Dynamical Uniform Boundedness Conjecture. Fix integers d ≥ 2,
N ≥ 1 and D ≥ 1. There is a constant C(d,N,D) such that for all number
fields k/Q of degree at most D and all dominant endomorphisms f : PN

k
→ PN

k

of degree d defined over k, we have #PrePer(f,k) ≤ C(d,N,D).

Fakhruddin [19] has shown that this conjecture generalizes the strong torsion
conjecture for abelian varieties which states that the order of the torsion group
of an abelian variety defined over a number field can be bounded in terms of the
dimension of the variety and the degree of the number field. We shall mention
that the strong torsion conjecture for abelian varieties is proved in dimension one
by Merel [36].

Dynamical Uniform Boundedness Conjecture is wide open. In fact it not
known even in the case (d,N,D) = (2, 1, 1).

2.2. Dynamical Manin-Mumford. The Manin-Mumford conjecture was
proved by Raynaud [38, 39] and concerns the geometry of subvarieties in abelian
varieties.

More precisely, suppose V is an irreducible subvariety inside an abelian va-
riety A over an algebraically closed field k of characteristic zero such that the
intersection of the set of torsion points of A and V is Zariski dense in V . Then
the conjecture asserts that there exists an abelian subvariety V0 of A and a torsion
point a ∈ A(k) such that V = V0 + a.

Observe that the set of torsion points of A is exactly the set of preperiodic
points of the endomorphism [m] of multiplication by m for any integer m ≥ 2.
The conclusion of Raynaud’ theorem thus amounts to the following statement. If
the set of preperiodic points of the endomorphism [m] is Zariski dense inside V ,
then V is itself preperiodic under [m].

Inspired by this result a first conjecture was proposed by Zhang [48]. It
asserted that given any polarized endomorphism f : X → X on a projective
variety defined over k, then any subvariety V containing a Zariski dense subset
of preperiodic points for f is itself preperiodic.

This optimistic conjecture was later disproved in [26, 37]. This motivated the
proposal of several modified versions of this conjecture [26, 47]. The conjecture
is now known in some very special cases [18, Theorem 1.3], [35, Theorem 7.33],
see also [26, Theorem 3.1].
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2.3. Dynamical Mordell-Lang. The Mordell-Lang conjecture for abelian
varieties was proved by Faltings [20] and Vojta [45]. It says that if V is a
subvariety of a semiabelian variety G defined over an algebraically closed field k

of characteristic 0 and Γ is a finitely generated subgroup of G(k), then V (k)
⋂

Γ
is a union of at most finitely many translates of subgroups of Γ.

According to the dictionary, the following dynamical analogue of the Mordell-
Lang conjecture was proposed by Ghioca and Tucker.

Dynamical Mordell-Lang Conjecture ([25]). Let X be a quasi-pro-
jective variety defined over C, let f : X → X be an endomorphism, and V be
any subvariety of X. For any point p ∈ X(C) the set {n ∈ N| fn(p) ∈ V (C)} is
a union of at most finitely many arithmetic progressions2.

Observe that this conjecture implies the classical Mordell-Lang conjecture in
the case Γ ≃ (Z,+).

Another motivation for this conjecture comes from the Skolem-Mahler-Lech
Theorem [31] on linear recurrence sequences.

More precisely, suppose {An}n≥0 is any recurrence sequence satisfying An+l =

F (An, · · · , An+l−1) for all n ≥ 0, where l ≥ 1 and F (x0, · · · , xl) =
∑l−1

i=0 aixi
is a linear form on kl. The Skolem-Mahler-Lech Theorem asserts that the set
{n ≥ 0| An = 0} is a union of at most finitely many arithmetic progressions.
This statement is equivalent to the dynamical Mordell-Lang conjecture for the
linear map f : (x0, · · · , xl−1) 7→ (x1, · · · , xl−1, F (x0, · · · , xl)) and the hyperplane
V = {x0 = 0}.

It is thus natural to ask whether this theorem still holds when F is an arbitrary
polynomial in k[x0, · · · , xl−1], that is if the Skolem-Mahler-Lech Theorem holds
for non-linear recurrence sequences.

Let us mention that Wibmer [46] has conjectured a generalization of Skolem-
Mahler-Lech Theorem in yet another direction. He also showed that such a
generalization is equivalent to a certain special case of the Dynamical Mordell-
Lang conjecture. Moreover he indicted the connection of the Dynamical Mordell-
Lang conjecture to the Galois theory of linear difference equations.

The Dynamical Mordell-Lang conjecture is already known in quite a few cases.
It is known for all étale maps of quasi-projective varieties by Bell, Ghioca and
Tucker [7]. In the earlier paper [15, 31], the Dynamical Mordell-Lang conjecture
was shown for some automorphisms taking special forms and in particular, in [15],
Cutkosky and Srinivas solved a problem of Zariski by applying a such result.

It is also known in the case f is a generic endomorphism on a projective
space [18], in the case when f = (F (x1), G(x2)) : A2

C → A2
C where F,G are

polynomials and the subvariety V is a line ([27]), and in the case when f =
(F (x1), . . . , F (xn)) : An

K → An
K where F ∈ K[t] is an indecomposable polynomial

defined over a number field K which has no periodic critical points other than
the points at infinity and V is a curve ([8]).

2an arithmetic progression is a set of the form {an+ b| n ∈ N} with a, b ∈ N.
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Let us briefly explain the main ingredient in the proof of the dynamical
Mordell-Lang conjecture for étale maps. It turns out that this ingredient ap-
pears in all other proofs of the conjecture with the important exception of [27].
The key is to find a q-adic parametrization of the orbit Of (p) for a suitable
prime q using (non-archimedean analytic) dynamical arguments. More precisely,
one proves that there exists a q-adic analytic function Φ : Zq → X satisfying
Φ(n) = fn(p) for all n ≥ 0. Since Zq is compact, we have either Im(Φ) ∩ V is
finite or Im(Φ) ⊆ V which concludes the proof.

3. Polynomial mappings of the affine plane

3.1. Dynamical Mordell-Lang conjecture for birational polynomial

morphisms on A2. The second part of this thesis is devoted to the proof of the
dynamical Mordell-Lang Conjecture mentioned above for birational polynomial
maps of the affine space.

This class of maps is of course quite restrictive but the strategy of proof that
we will follow is completely new. It even gives a new proof of the dynamical
Mordell-Lang conjecture for polynomial automorphisms of Hénon type that does
not rely on a q-adic parametrization of an orbit as explained above.

Let us summarize our approach in the case the data f, V, p are all defined over
Q.

We use the work of Favre and Jonsson [24] to construct a suitable compacti-
fication of A2 in which the dynamics of f at infinity has the following property.
A suitable iterate of the map f contracts all curves at infinity to a super attract-
ing fixed point q. We then show that the intersection of fn(V ) with the line at
infinity is reduced to that point q for all n large enough. Finally we use a height
argument to show that either p is periodic, or that there exists a place at which
fn(p) → q. In the later case, one argues in a neighborhood of q to show that
fn(p) belongs to V for only finitely many n’s.

3.2. Intersection of valuation rings in k[x, y]. Let us describe in broad
terms the content of the last part of the thesis.

Denote by k an algebraically closed field. We pick any finite set S of valuations
that are defined on the polynomial ring k[x, y], are trivial on k, and takes at least
one negative value on a non-constant polynomial. We shall then give a necessary
and sufficient condition so that the field of fractions of the intersection of the
valuation rings of S with k[x, y] has transcendence degree 2 over k. Let us say
that S is rich when the later condition is satisfied.

The heuristic lying behind our result is the following. When S contains the
valuation − deg it is not difficult to check that the intersection of the valuation
rings of S with k[x, y] is reduced to the constant hence S is not rich. Our condition
states that S is rich iff all valuations in S are “far” from the valuation − deg. The
precise statement is quite technical and builds on the description of the space of
valuations done by Favre and Jonsson in [22, 23, 24].
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This part does not look to be connected to any dynamical problem. However
it was largely inspired by our approach to the dynamical Mordell-Lang conjecture
for any polynomial maps that we are currently working on.

Let us explain in rough terms how valuations play a role in this problem. For
simplicity, we shall assume that f : A2 → A2 is defined over Q, that its extension
to P2 contracts the line at infinity to a super-attracting point q, and that the
curve V has only one place at infinity. The assumptions are satisfied in most
cases by using [24] and Siegel’s theorem.

Two situations may appear. Either fn(V ) contains q for some n large enough.
Then we may argue in a very similar way as in the case of birational polynomial
maps. Or fn(V ) goes through a point of indeterminacy of f for all n. It is
exactly in that case that we apply the technique developed in Part 3. The set of
valuations associated to the branches of fn(V ) at infinity is rich, and we show
that there exists a polynomial P whose restriction to the branch of fn(V ) at
infinity is vanishing for all n ≥ 0. This implies V and all its images by fn are
components of {P = 0} whence V is periodic.
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geometry, volume I of Progr. Math., pages 327–352. Birkhäuser Boston, Boston, MA, 1983.
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Part 1

Periodic points of birational

transformations on projective surfaces



4. Introduction

Hrushovski and Fakhruddin [21] recently proved by purely algebraic methods
that the set of periodic points of a polarized endomorphism of a projective variety
over any algebraically closed field is Zariski dense. Recall that a morphism f :
X → X of a projective variety is said to be polarized if there is an ample line
bundle L → X such that f ∗L = dL for some d ≥ 2. In this article, we give
a complete classification of birational surface maps whose periodic points are
Zariski dense.

In order to state our main result, we first review some basic notions related to
birational transformations of surfaces. Let X be a projective surface, L be an
ample line bundle on X and f : X 99K X be any birational transformation. We
set degL(f) = (f ∗L · L) and call it the degree of f with respect to L. One can
show (see e.g. [4]) that degL(f

m+n) ≤ 2 degL(f
m) degL(f

n) for all n,m ≥ 0, so
that the limit

λ1(f) := lim
n→∞

degL(f
n)1/n ≥ 1

is well defined. It is independent on the choice of L and it is called the first
dynamical degree of f . It is also constant on the conjugacy class of f in the group
of birational transformations of X. It is a fact ([17, 26]) that when λ1(f) = 1
and degL(f

n) is unbounded, f preserves either an elliptic or a rational fibration
and this invariant fibration is unique.
A point p is said to be periodic non critical if its orbit under f meets neither

the indeterminacy set of f nor its critical set and is finite. Since our map is
birational, if some iteration fn(p), n ≥ 0 of a point p is a non-critical periodic
point, then p itself is periodic non-critical.

Theorem 4.1. Let X be a smooth projective surface over an algebraically closed
field of characteristic different from 2 and 3. Let L→ X be an ample line bundle
and f : X 99K X be a birational transformation of X. Denote by P the set of
non-critical periodic points of f . Then we are in one of the following three cases.

(i) If λ1(f) > 1, then P is Zariski dense.
(ii) If λ1(f) = 1 and degL(f

n) is unbounded then P is Zariski dense if and
only if the action of f on the base of its invariant fibration is periodic.

(iii) If λ1(f) = 1, and degL(f
n) is bounded, then P is Zariski dense if and only

if there is an integer N > 0 such that fN = id.

The most interesting case in the previous theorem is case (i). We actually prove
this result over a field of arbitrary characteristic.

Theorem 4.2. Let X be a projective surface over an algebraically closed field k,
and f : X 99K X be a birational transformation. If λ1(f) > 1 then the set of
non-critical periodic points is Zariski dense in X.

In the case k = C, this theorem has been proved in many cases using ana-
lytic methods. In [3, 20, 16] Diller, Dujardin and Guedj proved it for birational
polynomial maps, or more generally for any birational transformation such that
the points of indeterminacy of f−1 do not cluster too much near the points of
indeterminacy of f .

28
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It follows from [17] that any birational transformation on a non-rational surface
with λ1 > 1 is birationally equivalent to an automorphism i.e. there exists a
birational map π : X ′

99K X between surfaces and an automorphism f ′ : X → X
satisfying π ◦ f ′ = f ◦ π. When f is an automorphism with λ1 > 1, then it is
possible to get a more precise count on the number of isolated periodic points
based on Lefschetz-Saito’s fixed point formula, see [7, 29, 34].

Theorem 4.3. Let X be a smooth projective surface over an algebraically closed
field of characteristic 0, and f : X → X be an automorphism with λ1(f) > 1. We
denote by #Per n(f) the number of isolated periodic points of period n counted
with multiplicities. Then we have

#Per n(f) =

{
λ1(f)

n +O(1), if X is not an abelian surface;
λ1(f)

n +O(λ1(f)
n/2), if X is an abelian surface.

For completeness, we also deduce from the work of Amerik [2] the following
result.

Theorem 4.4 ([2]). Let X be a projective surface over an algebraically closed
field k of characteristic 0, and f : X 99K X be a birational transformation with
λ1(f) > 1. Then there exists a k-point x ∈ X(k) such that fn(x) ∈ X \ I(f) for
any n ∈ Z and {fn(x)|n ∈ Z} is Zariski dense.

This Theorem is closely related to a question of S.-W.Zhang who asked in [36]
whether for any polarized endomorphism on a projective variety defined over an
algebraically closed field k of characteristic 0 there exists a k-point with a Zariski
dense orbit.

Let us explain now our strategy to prove Theorem 4.2. We follow the original
method of Hrushovski and Fakhruddin by reducing our result to the case of finite
fields.

For the sake of simplicity, we shall assume that X = P2 and f = [f0 : f1 : f2]
is a birational transformation with λ1(f) > 1 and has integral coefficients.

First assume we can find a prime p > 0 such that the reduction fp modulo

p of f satisfies λ1(fp) > 1. Then P(fp) is Zariski dense in P2(Fp) by a direct
application of Hrushovski’s arguments. One then lifts these periodic points to
P2(Q) by combining a result of Cantat [8] proving that most periodic points are
isolated together with a simple dimensional argument borrowed from Fakhruddin
[21].

The main difficulty thus lies in proving that λ1(fp) > 1 for at least one prime
p. Recall that a birational transformation of the projective plane is defined over
the integers if it can be represented in homogeneous coordinates by polynomials
with integral coefficients.

Theorem 4.5. Let f be any birational transformation of the projective plane
defined over Z. Then for any prime p sufficiently large, f induces a birational
transformation fp : P2

Fp
99K P2

Fp
on the special fiber at p, and

lim
p→∞

λ1(fp) = λ1(f).
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We also give an example of a birational transformation f such that λ1(fp) <
λ1(f) for all p (see Section 7.3).

In fact we prove a quite general version of Theorem 4.5 for families of birational
transformations of surfaces over integral schemes. It allows us to prove:

Theorem 4.6. Let k be an algebraically closed field and d ≥ 2 be an integer.
Denote by Bird the space of birational transformations of P2

k
of degree d. Then

for any λ < d, the set Uλ = {f ∈ Bird|λ1(f) > λ} is open and Zariski dense in
Bird.

In particular, for a general birational transformation f of degree d > 1, we
have λ1(f) > 1.

In order to prove Theorem 4.5, we need to control λ1(f) in terms of the degree
of a fixed iterate of f . This control is given by our Key Lemma.

Key Lemma. Let X be a projective surface over an algebraically closed field, let
L be an ample bundle on X and let f : X 99K X be a birational transformation.

If q = degL(f
2)

318
√
2 degL(f)

is greater than one, then we have

λ1(f) > q ≥ 1.

In particular if degL(f
2) ≥ 318

√
2 degL(f) then λ1(f) > 1. This result has been

stated in [22] by Favre without proof. To prove this lemma we rely on the natural
linear action of f on a suitable hyperbolic space of infinite dimension. This space
is constructed as a set of cohomology classes in the Riemann-Zariski space of X
and was introduced by Cantat in [9]. See also [4, 10, 22, 33].

The article is organized in 7 sections. In Section 5 we give background informa-
tions on intersection theory on surfaces and Riemann-Zariski spaces. In Section 6
we prove our Key Lemma. We apply it in Section 7 to study the behavior of the
first dynamical degree in families of birational transformations on surfaces. In
Section 7.3 we give an example of a birational transformation f on P2

Z such that
λ1(fp) < λ1(f) for all prime p. In Section 8 we prove Theorem 4.2 and Theorem
4.4. In Section 9, we use Lefschetz-Saito’s formula to study isolated periodic
points of automorphisms and prove Theorem 4.3. In Section 10, we study the
Zariski density of periodic points in the case λ1 = 1. Finally we combine the
results that we obtain in Section 8 and Section 10 to get Theorem 4.1.

5. Background and Notation

In this paper, a variety is always defined over an algebraically closed field
and we use the notation k to denote an algebraically closed field of arbitrary
characteristic except in Subsection 8.4, Section 9 and Section 10. In Subsection
8.4 and Section 9, k denotes an algebraically closed field of characteristic 0. In
Section 10, k denotes an algebraically closed field of characteristic different from
2 and 3.
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5.1. Néron-Severi group. Let us recall the definition and some properties of
the Néron-Severi group [15, 31].

Let X be a projective variety over k. We denote by Pic(X) the Picard group of
X. The Néron-Severi group of X is defined as the group of numerical equivalence
classes of divisors on X. We denote it by N1(X), and write N1(X)R = N1(X)⊗Z

R. The group N1(X) is a free abelian group of finite rank (see [30]). Let φ :
X → Y be a morphism of projective varieties. It induces a natural map φ∗ :
N1(Y )R → N1(X)R.

We denote by N1(X)R the space of numerical equivalence classes of real one-
cycles of X. One has a perfect pairing

N1(X)R ×N1(X)R → R, (δ, γ)→ (δ · γ) ∈ R

induced by the intersection form for which N1(X)R is dual to N1(X)R. We denote
by φ∗ : N1(X)R → N1(Y )R the dual operator of φ∗.

If X is a projective surface defined over k, for any classes α1, α2 ∈ N1(Y ), we
denote by (α1 · α2) their intersection number. We recall the following

Proposition 5.1 (Pull-back formula, see [24]). Let π : X → Y be a surjective
morphism between two projective surfaces defined over k. For any classes α1, α2 ∈
N1(Y ), we have

(π∗α1 · π∗α2) = deg(π)(α1 · α2).

When X is a smooth projective surface, we can (and will) identify N1(X)R and
N1(X)R. In particular we get a natural bilinear form on N1(X)R.

A class α ∈ N1(X)R is said to be nef if and only if (α · [C]) ≥ 0 for any curve
C.

Theorem 5.2 (Hodge index theorem). Let L and M be two R-divisors on a
smooth projective surface, such that (L2) ≥ 0 and (L ·M) = 0. Then we have
(M2) ≤ 0 and (M2) = 0 if and only if (L2) = 0 and M is numerically equivalent
to a multiple of L.

In other words the signature of the intersection form on N1(X)R is equal to
(1, dimN1(X)R − 1).

5.2. Basics on birational maps on surfaces. Recall that the resolution of
singularities of surfaces over any algebraically closed field exists (see [1]).

Let X, Y be two smooth projective surfaces. A birational map f : X 99K Y is
defined by its graph Γ(f) ⊆ X × Y , which is an irreducible subvariety for which
the projections π1 : Γ(f) → X and π2 : Γ(f) → Y are birational morphisms.
We denote by I(f) ⊆ X the finite set of points where π1 does not admit a local
inverse and call it the indeterminacy set of f . We set E(f) = π1π

−1
2 (I(f−1)). For

any algebraic subset V ⊂ X, we write f(V ) := f(V \ I(f)).
If g : Y 99K Z is another birational map, the graph Γ(g ◦ f) of the composite

map is the closure of the set

{(x, g(f(x))) ∈ X × Z| x ∈ X \ I(f), f(x) ∈ Y \ I(g)}.
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This is included in the set

Γ(g) ◦ Γ(f) = {(x, z) ∈ X × Z| (x, y) ∈ Γ(f), (y, z) ∈ Γ(g) for some y ∈ Y }
with equality, if and only if there is no component V ⊆ E(f) such that f(V ) ⊆
I(g).

Let f : X 99K Y be a birational map between smooth projective surfaces, and
Γ be a desingularization of its graph. Denote by π1 : Γ → X, π2 : Γ → Y the
natural projections. Then we define the following linear maps

f ∗ = π1∗π
∗
2 : N1(Y )R → N1(X)R,

and

f∗ = π2∗π
∗
1 : N1(X)R → N1(Y )R.

Observe that f∗ = f−1∗.

Proposition 5.3 (see [17]). Let f : X 99K Y be a birational map between smooth
projective surfaces.

(i) The linear map f ∗ (resp. f∗) is integral in the sense that it maps N1(Y )
(resp. N1(X)) to N1(X) (resp. N1(Y )).

(ii) If α ∈ N1(Y )R is nef, then f ∗α ∈ N1(X)R is nef.
(iii) The maps f ∗ and f∗ are adjoint for the intersection form, i.e.

(f ∗α · β) = (α · f∗β),
for any α ∈ N1(Y )R and β ∈ N1(X)R.

It is important to observe that f 7→ f ∗ is not functorial in general. In fact, let
X, Y, Z be smooth projective surfaces, and let f : X 99K Y and g : Y 99K Z be
two birational maps. For any given ample class α ∈ N1(Z)R, f

∗g∗α = (f ◦ g)∗α
if and only if I(E(f)⋂ I(g)) = ∅.
Fix any euclidean norm ‖ · ‖ on N1(X)R. It follows from [17, 19] that the

sequence of rescaled operator norms C ‖(fn)∗‖ is sub-multiplicative for a suitable
constant C > 0. We may thus define the first dynamical degree

λ1(f) := lim
n→∞

‖fn∗‖1/n.

It is not difficult to check that λ1(f) ≥ 1 and that it only depends on the conju-
gacy class of f in the group of all birational transformations of X.
For any class ω ∈ N1

R(X), we set

degω(f) := (f ∗ω · ω).
If L is an ample line bundle on X, we also write degL(f) for deg[L](f). It is
possible to compute the dynamical degree of a map in terms of the degree growth
of its iterates as follows.

Proposition 5.4 ([17, 19]). Let f : X 99K X be a birational transformation on
a projective smooth surface. Then we have λ1(f) = limn→∞ degω(f

n)1/n, for any
big and nef class ω ∈ N1(X).
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Proposition-Definition 5.5 (see [17, 23]). Let f : X 99K X be a birational
transformation on a projective smooth surface, and fix any ample class ω ∈
N1(X)R. Then f is said to be algebraically stable if and only if one of the
following holds:

(i) for every α ∈ N1(X)R and every n ∈ N, one has (f ∗)nα = (fn)∗α;
(ii) there is no curve V ⊆ X such that fn(V ) ⊆ I(f) for some integer n ≥ 0;
(iii) for all n ≥ 0 one has (f ∗)nω = (fn)∗ω.

Observe that in the case X = P2, f is algebraically stable if and only if
degL(f

n) = (degL f)
n for any n ∈ N where L is the hyperplane line bundle.

Theorem 5.6 ([17]). Let f : X 99K X be a birational transformation of a pro-

jective smooth surface, then there is a proper modification π : X̂ → X such that

the lift of f to X̂ is algebraically stable.

5.3. Classes on the Riemann-Zariski space. All facts in this subsection can
be found in [4, 9, 10, 33]. Let X be a smooth projective surface over k.
Given any two birational morphisms π : Xπ → X and π′ : Xπ′ → X, we

say that π′ dominates π and write π′ ≥ π if there exists a birational morphism
µ : Xπ′ → Xπ such that π′ = π ◦ µ. The Riemann − Zariski space of X is
defined to be the projective limit

X := lim←−
π

Xπ.

Definition 5.7. The space of Weil classes of X is defined to be the projective
limit

W (X) := lim←−
π

N1(Xπ)R

with respect to pushforward arrows. The space of Cartier classes on X is defined
to be the inductive limit

C(X) := lim−→
π

N1(Xπ)R

with respect to pullback arrows.

Concretely, a Weil class α ∈ W (X) is given by its incarnations απ ∈ N1(Xπ)R,
compatible with pushforwards; that is, µ∗απ′ = απ as soon as π′ = π ◦ µ.
The projection formula shows that there is an embedding C(X) ⊆ W (X), so

that a Cartier class is a Weil class.
For each π, the intersection pairing N1(Xπ)R × N1(Xπ)R → R is denoted by

(α ·β)Xπ
. By the pull-back formula, it induces a pairingW (X)×C(X)→ R which

is denoted by (α · β).
We define the space

L2(X) := {α ∈ W (X)| inf
π
{(απ · απ)} > −∞}.

It is an infinite dimensional subspace of W (X) that contains C(X). It is endowed
with a natural intersection product extending the one on Cartier classes and that
is of Minkowski’s type. Since this fact is crucial to our proof of Theorem 1.2 we
state it as a
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Proposition 5.8 ([9]). If α, β are any two non zero classes in L2(X) such that
(α2) > 0 and (α · β) = 0, then we have (β2) < 0.

Definition 5.9. We define H(X) to be the unique connected component of {α ∈
L2(X)|α2 = 1} that contains all Cartier nef classes of self intersection +1.

For any α, β ∈ H(X), we define

dH(X)(α, β) = (cosh)−1(α · β),
where cosh(x) = (ex + e−x)/2. Recall that the function dH(X) induces a distance
on the space H(X), see [9, 10].

Let f : X 99K Y be a birational map between two smooth projective surfaces.
For each blowup Y̟ of Y , there is a blowup Xπ of X such that the induced map
Xπ → Y̟ is regular. The associated pushforward map N1(Xπ)R → N1(Y̟)R
and pullback map N1(Y̟)R → N1(Xπ)R are compatible with the projective and
injective systems defined by pushforwards and pullbacks that define Weil and
Cartier classes respectively.

Definition 5.10. Let f : X 99K X be a birational transformation on a smooth
projective surface. We denote by f∗ : W (X) → W (X) the induced pushforward
operator and by f ∗ : C(X)→ C(X) the induced pullback operator.

Proposition 5.11 ([9, 10]). The pullback f ∗ : C(X)→ C(X) extends to a linear
map f ∗ : L2(X)→ L2(X), such that

((f ∗α)2) = (α2)

for any α ∈ L2(X). In particular f ∗ induces an isometry on (H(X), dH(X)).

Observe that since f is birational f∗ = (f−1)∗ and the pushforward f∗ also
induces an isometry on H(X). For any α, β ∈ L2(X) we have

(f ∗α · β) = (α · f∗β).
5.4. Hyperbolic spaces. In this subsection, we review some properties of hy-
perbolic spaces in the sense of Gromov.
Recall that a metric space (M, d) is geodesic if and only if for any two points

x, y ∈ X, there exists at least one isometric immersion of a segment of R with
boundary x and y. For any given number δ ≥ 0, a metric space (M, d) satisfies
the Rips condition of constant δ if it is geodesic, and for any geodesic triangle
∆ = [x, y]

⋃
[y, z]

⋃
[z, x] of M , and any u ∈ [y, z], we have d(u, [x, y]

⋃
[z, x]) ≤ δ.

A space M is called hyperbolic in the sense of Gromov if there is a number
δ ≥ 0 such that M satisfies the Rips condition of constant δ.

Lemma 5.12 ([13]). The hyperbolic plane H2 satisfies the Rips condition of con-
stant log 3.

Since the Rips condition only needs to be tested on geodesic triangles, we have
the following

Lemma 5.13. The space (H(X), dH(X)) satisfies the Rips condition of constant
log 3.
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Recall that a topological space is separable if and only if it admits a countable
dense subset.

Theorem 5.14 ([25]). Let (M, d) be a separable geodesic and hyperbolic metric
space which satisfies the Rips condition of constant δ. If (xi)0≤i≤n is a sequence
of points such that

d(xi+1, xi−1) ≥ max(d(xi+1, xi), d(xi, xi−1)) + 18δ + κ

for some constant κ > 0 and i = 1, · · · , n− 1. Then

d(xn, x0) ≥ κn.

6. Effective bounds on λ1

We begin with proving our

Key Lemma. Let X be a smooth projective surface over k, L be an ample
line bundle on X, and f : X 99K X be a birational transformation. If q =

degL(f
2)

318
√
2 degL(f)

≥ 1, then we have

λ1(f) > q ≥ 1.

Proof. For any n > 0, set Ln = f ∗nL ∈ H(X). Since f ∗ is an isometry of H(X),
we have

dH(X)(Ln+1,Ln−1) = dH(X)(L2,L) = cosh−1(degL(f
2)) = cosh−1(318

√
2 degL(f)q)

for any n ≥ 1. We claim that for any u, q ≥ 1,

cosh−1(318
√
2uq) > cosh−1(u) + 18 log 3 + log(q) (∗).

Taking this claim for granted we conclude the proof. First we have

cosh−1(318
√
2 degL(f)q) > cosh−1(degL(f)) + 18 log 3 + log(q)

Pick κ > log(q) ≥ 0 such that

cosh−1(318
√
2 degL(f)q) > cosh−1(degL(f)) + 18 log 3 + κ.

Then we get

dH(X)(Ln+1,Ln−1) > cosh−1(degL(f)) + 18 log 3 + κ

for every n ≥ 1. Since dH(X)(Ln+1,Ln) = cosh−1(degL(f)), we obtain

dH(X)(Ln+1,Ln) > max(dH(X)(Ln+1,Ln), dH(X)(Ln,Ln−1)) + 18 log 3 + κ.

Let W be the subspace of H(X) spanned by {Ln}. Then W is separable and
for any x, y ∈ W , the geodesic segment [x, y] is included in W . It follows that
(W, dH(X)|W ) is a separated geodesic and hyperbolic metric space which satisfies
the Rips condition of constant log 3. By Theorem 5.14, we get for n > 0

cosh−1(degL(f
n)) = dH(P)(Ln,L) > κn,

which is equivalent to

degL(f
n) > (eκn + e−κn)/2 > eκn/2.

We conclude that λ1(f) ≥ eκ > q.
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Let us prove (∗). For any u ≥ 1, q ≥ 1, we have

cosh−1(318
√
2u) = log(318

√
2u+
√
2× 336u2 − 1) > log(318u+1+

√
2× 336u2 − 1)

> log(318u+
√
2× 336u2) = 18 log 3+log(u+

√
2u2) ≥ 18 log 3+log(u+

√
u2 + 1)

= cosh−1(u) + 18 log 3,

and

cosh−1(318
√
2uq)− cosh−1(318

√
2u) = log

(318
√
2uq +

√
2× 336u2q2 − 1

318
√
2u+

√
2× 336u2 − 1

)
.

It follows that

318
√
2uq +

√
2× 336u2q2 − 1

318
√
2u+

√
2× 336u2 − 1

= q −
√
2× 336u2q2 − q2 −

√
2× 336u2q2 − 1

318
√
2u+

√
2× 336u2 − 1

≥ q,

which concludes the proof. �

Our Key Lemma implies the following estimate on λ1(f) knowing degL(f
n)

and degL(f
2n) for some n sufficiently large.

Corollary 6.1. Let f be a birational transformation of a smooth projective sur-

face X over k. For any integer n > 0, we set qn := degL(f
2n)

318
√
2 degL(f

n)
. If qn ≥ 1, we

have

q1/nn < λ1(f) and lim
n→∞

q1/nn = λ1(f).

Proof. Our Key Lemma implies λ1(f)
n = λ1(f

n) > qn. By the definition of λ1(f),
we have

lim
n→∞

q1/nn =
limn→∞(degL(f

2n))1/n

limn→∞(318
√
2 degL(f

n))1/n
= λ1(f).

�

7. The behavior of λ1 in family

7.1. Lower semi-continuity of λ1. In this subsection we use our Key Lemma
to study the behavior of the first dynamical degree in families. We aim at proving
a version of Theorem 4.5 in the general context of integral schemes, see Theorem
7.3 below. We shall rely on the following

Lemma 7.1. Let S be a smooth integral scheme, and π : X → S be a smooth
projective and surjective morphism such that dimS X = 2. Let L → X be a line
bundle which is nef over S, and f : X 99K X be a birational transformation over
S such that for any point p ∈ S, f induces a birational transformation fp of the
special fiber Xp. Set Lp := L|Xp.

Then p 7→ degLp
(fp) is a lower semi-continuous function on S.

Observe that p 7→ degLp
(fp) is not continuous in general as the following ex-

ample shows.
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Example 7.2. The map

f [x : y : z] = [xz : yz + 2xy : z2]

is a birational transformation of P2 over SpecZ. Denote by L the hyperplane line
bundle on P2

Z. Then fp is birational for any prime p, degLp
(fp) = 1 for p = 2 and

degLp
(fp) = 2 for any odd prime.

Proof of Lemma 7.1. Denote by κ the generic point of S. We claim that on any
integral scheme S we have degLp

(fp) ≤ degLκ
(fκ) on S with equality on a Zariski

open subset of S.
The lower semicontinuity then follows. Indeed pick any λ ∈ R and define

R = {x ∈ S, degLx
(fx) ≤ λ}. Pick any irreducible component Z of the Zariski

closure of R. Our claim applied to Z implies degLκ
(fκ) = degLp

(fp) for some p
hence degLκ

(fκ) ≤ λ. And it follows that degLp
(fp) ≤ degLκ

(fκ) for all p ∈ Z so
that R

⋂
Z = Z is Zariski closed.

We now prove the claim. Let Γ ⊆ X×SX be the graph of f , and π1, π2 : Γ→ X
be the natural projections such that π2 ◦ π−1

1 = f . For any point p ∈ S, let Γp be
the fiber of Γ above p, and π1p, π2p be the restrictions of π1 and π2 respectively
to Γp. Denote by κ the generic point of S, then the function

∫

Γp

π∗
1pLp · π∗

2pLp =

∫

Γκ

π∗
1κLκ · π∗

2κLκ = degLκ
(fκ)

is constant on S by [24, Proposition 10.2].
For p ∈ S, Γp may have several irreducible components, but there is only one

component Γ′
p that satisfies π1p(Γ

′
p) = X, hence degLp

(fp) =
∫
Γ′
p
π∗
1pLp · π∗

2pLp ≤∫
Γp
π∗
1pLp ·π∗

2pLp. Since there is a nonempty open set U of S such that for any point

x ∈ U , Γx is irreducible, it follows that degLx
(fx) =

∫
Γx
π∗
1xLx ·π∗

2pLp = degLκ
(fκ)

for p ∈ U . �

Theorem 7.3. Let S be an integral scheme, π : X → S be a smooth projective and
surjective morphism where the relative dimension dimS X = 2. Let f : X 99K X
be a birational transformation over S such that for any p ∈ S, the reduction
fp is a birational transformation. Then the function p ∈ S 7→ λ1(fp) is lower
semi-continuous.

Proof. As in the proof of Lemma 7.1, it is sufficient to check that for any integral
scheme S then λ1(fp) ≤ λ1(fκ) for all p ∈ S and that and for any λ < λ1(fκ),
there is a nonempty open set U of S, such that for every point p ∈ U , λ1(fκ) ≥
λ1(fp) > λ.
For any p ∈ S, and any integer n > 0, we have degLp

(fn
p ) ≤ degLκ

(fn
κ ) hence

λ1(fp) ≤ λ1(fκ).

The theorem trivially holds in the case λ ≤ 1, so we may assume that λ1,κ >
λ > 1. For every λ1,κ > λ > 1, there is an integer n > 0 such that

( degLκ
(f 2n

κ )

318
√
2 degLκ

(fn
κ )

)1/n
> λ > 1
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by Corollary 6.1. By Lemma 7.1, there is an nonempty open set U ⊆ S such that
for any q ∈ U , degLq

(fn
q ) = degLκ

(fn
κ ) and degLq

(f 2n
q ) = degLκ

(f 2n
κ ), hence

( degLq
(f 2n

q )

318
√
2 degLq

(fn
q )

)1/n
> λ.

By Corollary 6.1, we conclude that for any q ∈ U ,

λ1(fq) ≥
( degLq

(f 2n
q )

318
√
2 degLq

(fn
q )

)1/n
> λ,

as required. �

Corollary 7.4. Let S be an integral scheme, π : X → S be a smooth projective
and surjective morphism such that dimS X = 2. Let f : X 99K X be a birational
transformation over S such that for any p ∈ S, fp is birational. Then there is an
integer M > 0 such that for every p ∈ S, λ1(fp) = 1 if and only if

degLp
(f 2n

p )

318
√
2 degLp

(fn
p )

< 1

for n = 1, 2, · · · ,M.

Proof. Fix any integer m > 0, we set

Zm := {p ∈ S|
degLp

(f 2n
p )

318
√
2 degLp

(fn
p )

< 1, for any 0 < n ≤ m}

and Z = {p ∈ S|λ1(fp) = 1}. By Theorem 7.3 and Corollary 6.1, Z is closed
and we have Z =

⋂
m≥1 Zm. Since Zm is a decreasing sequence of Zariski closed

subsets then ZM =
⋂

m≥1 Zm for some integer M and Z ⊂ ZM .

Suppose by contradiction Z 6= ZM , and pick a point x ∈ ZM \ Z. Let Y be an
irreducible component of ZM containing x and κ be the generic point of Y . Then
Y = Y

⋂
ZN for every N ≥M . Since λ1(fx) > 1, we have λ1(fκ) > 1 by Lemma

7.1. There exists N ≥M such that κ is not in ZN , and we have

degLκ
(f 2N

κ )

318
√
2 degLκ

(fN
κ )
≥ 1.

By lemma 7.1, there is an open subset U of Y such that for any point y ∈ U and
n = 1, 2, · · · , N , we have degLy

(fn
y ) = degLκ

(fn
κ ) and degLy

(f 2n
y ) = degLκ

(f 2n
κ ).

In particular U
⋂
ZN = ∅, which contradicts the fact that Y = Y

⋂
ZN .

We get Z = ZM , and ZM ⊇ ZM ⊇ Z = ZM , so that Z = ZM as required. �

7.2. Proof of Theorem 4.6. If f : P2
k
→ P2

k
is a birational transformation

defined over an algebraically closed field k, we set alg.deg(f) := degO(1)(f) and
call it the degree of f . We denote by Bird the space of birational transformations
of P2

k
of degree d. It has a natural algebraic structure which makes it a quasi-

projective space, see [11] for details.
By Theorem 7.3, it is easy to see that if a component of Bird contains a point

with λ1 > 1, then λ1 > 1 for a general point in this component. However since
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there are few informations on the geometry of the components of Bird for d ≥ 3
[12, 14], it is a priori non obvious to decide which component contains such a
point.

The rest of the section is devoted to the proof of Theorem 4.6 stated in the
introduction.

Theorem 4.6. Let k be an algebraically closed field and d ≥ 2 be an integer.
Denote by Bird the space of birational transformations of P2

k
of degree d. Then

for any λ < d, the set Uλ = {f ∈ Bird|λ1(f) > λ} is open and Zariski dense in
Bird.

In particular, for a general birational transformation f of degree d > 1, we
have λ1(f) > 1.

Remark 7.5. If the base field is uncountable, then the set {f ∈ Bird|λ1(f) =
d} = ⋂∞

n=1 Ud−1/n is dense in Bird. So for very general point f ∈ Bird we have
λ1(f) = d.

Remark 7.6. Our proof actually shows that for any f ∈ Bird, the set {A ∈
PGL 3(k)| λ1(A ◦ f) > λ} is dense in PGL 3(k).

Proof of Theorem 4.6. We claim that for any irreducible component S of Bird,
there is a point f ∈ S such that λ1(f) > λ.

Since the function f 7→ λ1(f) is lower semi-continuous by Theorem 7.3, the
claim immediately implies that the set {f ∈ S| λ1(f) > λ} is Zariski open and
dense which concludes the proof of the Theorem 4.6.

It thus remains to prove the claim. For that purpose, choose f ∈ Bird, and
consider the map

Tf : PGL 3(k)→ Bird
sending A to A◦f . Let I(f) = {z1, z2, · · · , zm}, and I(f−1) = {x1, x2, . . . , xn} be
the indeterminacy sets of f and f−1 respectively. For any i = 1, 2, · · · , n, there
is a curve Ci such that f(Ci) = xi. Let yi be any point in Ci \ (I(f)

⋃
I(f−1)),

and pick a point Ai ∈ PGL 3(k) such that Ai(xi) = yi. Then for any n ≥ 0, we
have (Ai ◦ f)n ◦ Ai(xi) = yi.

For any i = 1, 2, · · · , n, we define the map

V1,i : PGL 3(k)→ P2

by V1,i(A) := A(xi). Let U0,i = PGL 3(k) and set

U1,i = V −1
1,i (P

2 \ I(f)).
Then U1,i is an open subset of PGL 3(k). Since Ai(xi) = yi does not belong to
I(f), Ai lies in U1,i, so U1,i is not empty. Now we define the map

V2,i : U1,i → P2,

by
V2,i(A) = A ◦ f ◦ A(xi)

and set
U2,i = V −1

2,i (P
2 \ I(f)).

Since A ◦ f ◦ Ai(xi) = yi, U2,i is as before an open set containing Ai.
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By induction, for any i we build a sequence of non empty open subsets Ul,i ⊆
Ul−1,i of PGL 3(k), and maps Vl+1,i : Ul,i → P2 sending A to (A ◦ f)l ◦A(xi) such
that for any A ∈ Ul,i, (A ◦ f)t ◦ A(xi) is not in I(f) for t = 0, · · · , l − 1. Let
Ul =

⋂n
i=1 Ul,i. Since the Ul,i’s are nonempty and PGL 3(k) is irreducible, then Ul

is also non empty and Zariski dense. For any A in Ul, we have alg.deg((A◦f)s) =
(alg.deg(A ◦ f))s = ds for s = 0, 1, · · · , l + 1.
Pick l sufficiently large such that (dl/318

√
2)2 > λ. For any point A ∈ U2l−1,

we have alg.deg(A ◦ f)2l = d2l and alg.deg(A ◦ f)l = dl, and by our Key Lemma,
we conclude λ1(A ◦ f) > λ.

Pick any irreducible component S of Bird. There is a birational transformation

G : P2 × S 99K P2 × S
over S by G(x, f) = (f(x), f). Then the map Gf on the fiber at f ∈ S induced
by G is exactly f . For any f ∈ S that is not lying in any other component of
Bird, and for any A ∈ PGL 3(k), we have A ◦ f ∈ S since PGL 3(k) is irreducible.
By the discussion of the previous paragraph, there is a point A ∈ PGL 3(k) such
that λ1(A ◦ f) > λ. Let κ be the generic point of S. Then by Theorem 7.3, we
get

λ1(Gκ) ≥ λ1(GA◦f ) = λ1(A ◦ f) > λ.

Applying again Theorem 7.3, we conclude that λ1(f) > λ for a general point f
in S. �

7.3. An example. In this section we provide an example of a birational trans-
formation f on P2 over Z such that λ1(fp) < λ1(f) for any prime number p > 2
and fp is not dominant when p = 2. Let us introduce the following two birational
transformations g = [xy : xy + yz : z2] and h = [x : x− 2z : −x+ y + 3z].

Proposition 7.7. The map f = h ◦ g = [xy : xy− 2z2 : yz+3z2] is algebraically
stable.

Proof. A direct computation shows that

f−1 = [2x2 − 2xy : (−3x+ 3y + 2z)2 : (x− y)(−3x+ 3y + 2z)],

I(f) = {[1 : 0 : 0], [0 : 1 : 0]} and I(f−1) = {[1 : 1 : 0], [0 : −2 : 3]}.
Observe that the line C := {x = 0} is f -invariant, and that f([0 : y : z]) = [0 :
−2z : y + 3z]. Let us compute the orbits of the points in I(f−1). Since [1 : 1 : 0]
is a fixed point of f , its orbit does not meet I(f). Let i be the automorphism of
C sending [0 : y : z] to [0 : y − 2z : −y + z], then

l := i−1 ◦ f|C ◦ i([0 : y : z]) = [0 : 2y : z],

i−1([0 : 1 : 0]) = [0 : 1 : 1] and i−1([0 : −2 : 3]) = [0 : 4 : 1].

In particular the orbit of [0 : −2 : 3] is equal to i({[0 : 2l+2 : 1]|l = 0, 1, 2 · · · })
which does not meet I(f). We conclude that f is algebraically stable. �

Since f is algebraically stable, we have λ1(f) = alg.deg(f) = 2.

Proposition 7.8. For any prime p > 2, fp is a birational transformation of P2
Fp

and λ1(f) < 2.
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Proof. Observe that f−1 ◦ f = [4xyz2 : 4y2z2 : 4yz3] so that fp is birational as
soon as p ≥ 3. Let np ≥ 2 be the order of 2 in the multiplicative group F×

p . We
have

lnp−2
p ([0 : 4 : 1]) = [0 : 1 : 1]

over Fp, which implies

fnp−2([0 : −2 : 3]) = [0 : 1 : 0] ∈ I(fp).
In particular fp is not algebraically stable. It follows that there is a number n
such that alg.deg(fn

p ) < alg.deg(fp)
n = 2n (in fact the least number having this

property is np − 1), and λ1(fp) ≤ alg.deg(fn
p )

1/n < 2 by Corollary 6.1. �

Remark 7.9. We can compute λ1(fp) by explicitly constructing an algebraically
stable model dominating P2

Fp
. For p > 2, we find that λ1(f) is the greatest real

root of the polynomial
xnp

p − 2xnp−1
p + 1 = 0.

Define Fn(x) = (x − 2)xn−1 + 1. When n > 2, observe that Fn(3/2) < 0, and
Fn(2) = 1 > 0, so that the largest root x of Fn(x) = 0 satisfies 2 > x > 3/2.

Since 2np−1(xp − 2) + 1 < 0 = (xp − 2)x
np−1
p + 1 < (xp − 2)(3/2)np−1 + 1, we get

(1/2)np−1 < 2− λ1(f) < (2/3)np−1.

8. The case λ1 > 1

The purpose of this section is to prove Theorem 4.2.

8.1. The case of finite fields. First we recall the following theorem of Hrushovs-
ki.

Theorem 8.1 ([28]). Let g : X → Spec k be an irreducible affine variety of
dimension r over an algebraically closed field k of characteristic p, and let q be
a power of p. We denote by φq the q-Frobenius map of k, and by Xφq the same
scheme as X with g replaced by g ◦ φ−1

q . Let V ⊆ X × Xφq be an irreducible
subvariety of dimension r such that both projections

π1 : V → X and π2 : V → Xφq

are dominant and the second one is quasi-finite. Let Φq ⊆ X ×Xφq be the graph
of the q-Frobenius map φq. Set

u =
deg π1

deginsep π2
,

where deg π1 denotes the degree of field extension K(V )/K(X) and deginsep π2 is
the purely inseparable degree of the field extension K(V )/K(X).

Then there is a constant C that does not depend on q, such that

|#(V
⋂

Φq)− uqr| ≤ Cqr−1/2.

Building on [21, Proposition 5.5], we show that the set of periodic points of
a birational transformation is Zariski dense over the algebraic closure of a finite
field.
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Proposition 8.2. Pick any prime p > 0, and let X be an algebraic variety over
Fp. Let f : X 99K X be a birational transformation. Then the subset of X(Fp)
consisting of non-critical periodic points of f is Zariski dense in X.

Recall that a non critical periodic point is a point whose orbit under f meets
neither the indeterminacy set of f nor its critical set and is finite.

Proof of Proposition 8.2. Let Z be the Zariski closure of the set of non-critical
periodic points of f in X(Fp) and suppose by contradiction that Z 6= X. Set
Y := Z

⋃
I(f)

⋃ E(f) and then Y is a proper closed subset of X. Let q = pn be
such thatX and f are defined over the subfield Fq of Fp having exactly q elements.
Let φq denote the Frobenius morphism acting on X and let Γf (resp. Γm) denote
the graph of f (resp. φm

q ) in X×X. Let U be an irreducible affine open subset of
X \ Y that is also defined over Fq and such that f is an open embedding from U
to X. Set V = Γf

⋂
(U ×U). By Theorem 8.1 there exists an integer m > 0 such

that (V
⋂
Γm)(Fp) 6=∅ i.e. there exists u ∈ U(Fp) such that f(u) = φm

q (u) ∈ U .

Since f is defined over Fq, it follows that f l(u) = φlm
q (u) ∈ U for all l ≥ 0. In

particular f(u) is a non-critical periodic point of f . This contradicts the definition
of Y and U , and the proof is complete. �

For the convenience of the reader, we repeat the arguments of [21, Theorem
5.1] which allows us to lift any isolated periodic point from the special fiber to
the generic fiber.

Lemma 8.3. Let X be a projective scheme, flat over a discrete valuation ring
R with fraction field K and residue field k. Let F be a birational map X 99K X

over R which is well defined at least at one point on the special fiber. Let X be
the special fiber of X and X ′ be the generic fiber of X , f be the restriction of F
to X, and f ′ be the restriction of F to X ′.

If the set of periodic k-points of f is Zariski dense in X, and moreover there
are only finitely many curves of periodic points in X, then the set consisting of
periodic K-points of f ′ is Zariski dense in the generic fiber of X ′.

Proof. The set of periodic k-points of f of period dividing n can be viewed as the
set of k-points in ∆X

⋂
Γfn , where ∆X is the diagonal and Γfn is the graph of fn

in X ×X.
For any positive integer n, consider the subscheme ∆X

⋂
ΓFn of X×RX, where

∆X is the diagonal and ΓFn is the graph of F n in X ×R X. If x ∈ X \ SingX
is a periodic point of f that does not lie in any curve of periodic points, then
(x, x) is contained in a closed subscheme of ∆X

⋂
ΓFn of dimension one. Since x

is not in any curve of periodic points, the generic point x′ of this subscheme is
in ∆X′

⋂
Γf ′n the generic fiber of ∆X

⋂
ΓFn , so that x′ is a periodic point. Since

x is non critical, F k is a local isomorphism on a neighborhood Uk of x in X.
Since x′ is the generic point of a curve containing x, we get x′ ∈ Uk hence it is
non-critical.

We identify X with ∆X. For any open subset U ′ of X ′, let Z ′ be a Weil-divisor
of X ′ containing X ′ \ U ′. Let Z be the closure of Z ′ in X, then codim(Z) = 1
and each component of Z meets Z ′. Each component of X is of codimension 1.
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If X ⊆ Z, each component of X is a component of Z. Since X ′⋂X = ∅, we get
X * Z. Let U = X \ Z and U = U

⋂
X, then U

⋂
X ′ = U ′ and U 6= ∅. There

is a periodic point x of f not in any curve of periodic points which is a smooth
point in U , then x′ is in U ′ and is a non-critical periodic point of f ′. �

8.2. Invariant curves. From the previous subsection, we see that curves of pe-
riodic points are the main obstructions to lift periodic points from finite fields.
The following theorem which essentially is [8, Corollary 3.3] of Cantat tells us
that if λ1 > 1 on the special fiber, then this obstruction can be removed.

Theorem 8.4 ([8, 18]). Let X be a smooth projective surface defined over k.
Then a birational transformation f : X 99K X with λ1(f) > 1 admits only
finitely many periodic curves.

In particular, there are only finitely many curves of periodic points.

Observe that [8, Corollary 3.3] is stated over the field of complex numbers.
However the proof relies mainly on the fact that dimH i(X,Ω1

X), i = 0, 1 is finite
and thus works over any projective varieties defined over an algebraically closed
field of any characteristic endowed with its Zariski topology.

Proof. Assume by contradiction that there exists infinitely many f−invariant
curves. By [8, Corollary 3.3], there is a rational function Φ : X 99K P1 and a non-
zero constant α such that Φ◦f = αΦ. This implies λ1(f) = 1. For the convenience
of the reader, we give a proof of this fact. By Theorem 5.6, we may assume that
f is algebraically stable on X. Then there is a nef class ω ∈ N1(X)R \ {0}, such
that f ∗(ω) = λ1(f)ω. Let [F ] ∈ N1(X)R be the class of a fiber of the invariant
fibration. Since f is birational, we have f ∗[F ] = f∗[F ] = [F ], and

(ω · [F ]) = (ω · f∗[F ]) = (f ∗ω · [F ]) = λ1(f)(ω · [F ]).
If (ω · [F ]) 6= 0, we are done. Otherwise, since (F 2) = 0 and L is nef, then L = lF
for some l ∈ R by Theorem 5.2. In this case we also have that λ1(f) = 1, because
f ∗[F ] = [F ]. �

8.3. Proof of Theorem 4.2. Let L be any very ample line bundle on X. We
may assume that the transcendence degree of k over its prime field F is finite,
since we can find a subfield of k which is finitely generated over F such that X,
f and L are all defined over this subfield. We complete the proof by induction
on the transcendence degree of k over F .
If k is the closure of a finite field, then the theorem holds by Proposition 8.2.
If k = Q, there is a regular subring R of Q which is finitely generated over Z,

such that X, L, f are defined over R. By Theorem 7.3, there is a maximal ideal
m of R such that the fiber Xm is smooth and the restriction fm of f on this fiber
is a birational transformation with λ1(fm) > 1. Since R is regular and finitely
generated over Z, the localization Rm of R at m is a discrete valuation ring such
that Frac (Rm) = Q and Rm/mRm = R/m. Then, by Proposition 8.2 the set
of non-critical periodic points of fm is Zariski dense in the special fiber. Since
λ1(fm) > 1, Theorem 8.4 shows that the number of curves of periodic points
is finite. We are thus in position to apply Lemma 8.3: the set of non-critical
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periodic points of f forms a Zariski dense subset of X, and the theorem holds in
this case.

If the transcendence degree of k over F is greater than 1, we pick an alge-
braically closed subfield K of k such that the transcendence degree of K over F
equals the transcendence degree of k over F minus 1. Then we pick a subring
R of k which is finitely generated over K, such that X, L and f are all defined
over R. Since SpecR is regular on an open set, we may assume that R is regu-
lar by adding finitely many inverses of elements in R. We may repeat the same
arguments as in the case k = Q.

8.4. Existence of Zariski dense orbits. In this subsection, we denote by k

an algebraically closed field of characteristic 0. Our aim is to show the following
result from the introduction:

Theorem 4.4. Let X be a projective surface over an algebraically closed field k of
characteristic 0. Let f : X 99K X be a birational transformation with λ1(f) > 1.
Then there is a point x ∈ X such that fn(x) ∈ X \ I(f) for any n ∈ Z and
{fn(x)|n ∈ Z} is Zariski dense.

As a first intermediate step, we extend E. Amerik’s results [2] to arbitrary
algebraically closed field of characteristic 0. Namely we prove

Theorem 8.5. Let X be a variety over an algebraically closed field k of charac-
teristic 0, and f : X 99K X be a birational transformation, then there is a point
x ∈ X such that fn(x) ∈ X \ I(f) for all n ∈ Z and {fn(x)|n ∈ Z} is infinite.

Remark 8.6. Proposition 8.5 can not be true over Fp, since for any q = pn,
#X(Fq) is finite.

To do so we shall rely on the following Lemma which is completely standard
and whose proof is left to the reader.

Lemma 8.7. Let π : X → Y be a dominant morphism between two irreducible
varieties defined over an algebraically closed field. For every point x ∈ X, there
is an irreducible subvariety S through x of X, such that dimS = dimY , and the
restriction of π on S is dominant to Y .

We are now in position to prove

Proof of Theorem 8.5. In the case k = Q, the theorem is due to E. Amerik in [2].
In the general case, there is a subring R of k which is finitely generated over

Q on which X and f are defined, and we may assume that k is the algebraic
closure of the fraction field of R. We then pick a scheme π : XR → SpecR
and a birational transformation fR of XR over R such that the geometric generic
fiber of XR is X and the restriction of fR on X is f . Pick any closed point
m ∈ SpecR such that the restriction fm of f on the special fiber Xm at m is
birational. Since R/m = Q, there is a point y ∈ Xm such that fn

m(y) ∈ Xm \ I(fm)
for any n ∈ Z and {fn

m(y)|n ∈ Z} is infinite. By Lemma 8.7, there is an irreducible
subvariety S of X containing y and such that dimS = dimR, and the restriction
of π to S is dominant to SpecR. Let x be the generic point of S, then we have
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x ∈ XR(k) = X. We thus get fn(x) ∈ X \I(f) for any n ∈ Z and {fn(x)| n ∈ Z}
is infinite. �

Proof of Theorem 4.4. By Theorem 8.4, there are only finitely many invariant
curves for f . Let C be the union of these curves and set U = X \ C. By
Theorem 8.5, there is a non-preperiodic point x ∈ U such that fn(x) ∈ U \ I(f)
for any n ∈ Z. Let O be the Zariski closure of {fn(x)|n ∈ Z} in X. If O 6= X,
then dimO = 1 since it is infinite. The union of all one-dimensional irreducible
components of O is then invariant and intersects U which is a contradiction. �

9. Automorphisms and Lefschetz-Saito’s fixed point formula

In this section, k is any algebraically closed field of characteristic 0.

9.1. Proof of Theorem 4.3. Since there are only finitely many coefficients in
the definition of X and f , we may always assume that the transcendence degree
of k over Q is finite, and embed k in C. We may thus suppose that k = C.

Introduce the Lefschetz number

L(fn) :=
∑

i

(−1)iTr[fn∗ : H i(X)→ H i(X)].

Recall from [29, Lemma 7.8] that

|L(fn)− λ1(f)n| = 4(λ1(f))
n/2 +O(1)

if X is an abelian surface, and

|L(fn)− λ1(f)n| = O(1)

otherwise.
The theorem now follows from the next result whose proof will occupy Subsec-

tion 9.2 below.

Theorem 9.1. Let X be a smooth projective surface over C and f be an auto-
morphism of X with λ1(f) > 1. We have

|#Per n(X)− L(fn)| = O(1).

Remark 9.2. Theorem 4.3 gives an alternative to the methods of Hrushovski and
Fakrhuddin to prove the Zariski density of periodic points for automorphisms.
Indeed, the Zariski closure of the set of all periodic points is f -invariant. Since
it is infinite, it is either X or a curve. But the latter case is impossible since an
automorphism of a projective curve admits only finitely many isolated periodic
points.

9.2. Local invariants associated to fixed points. The proof of Theorem 9.1
relies on a version of Lefschetz-Saito’s formula previously used by Iwasaki and
Uehara. Let us recall the ingredients appearing in this formula. We refer to [29]
for detail.
We fix f : X → X an automorphism of a projective smooth surface, and denote

by Fix(f) the set of fixed points.
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Pick any x ∈ Fix(f), and write m ⊂ ÔX,x for the maximal ideal in the com-
pletion of the local ring at x. Since X is smooth, we have the isomorphism
ÔX,x ≃ C[[z1, z2]], and m is the ideal generated by z1, z2. We may then write

f(z1, z2) = (z1 + gh1, z2 + gh2)

for some elements g, h1, h2 ∈ m, where g 6= 0 and h1, h2 are relatively prime. The
first important invariant is

(9.1) δ(f, x) := dimC C[[z1, z2]]/(h1, h2).

Since h1, h2 are relatively prime, δ is finite.
Next denote by Λ(f, x) the set of irreducible components of the fixed point

locus of f at x, and pick C ∈ Λ(f, x) any irreducible component. Then we set

(9.2) vC(f) = ordC(g)

Note that given any reduced equation h ∈ m of C, we have vC(f) = max{m ∈
N|hm divides g} = min{ordC(φ◦f−φ), φ ∈ m}. In particular this quantity does
not depend on the choice of coordinates.

Let us introduce the holomorphic 1-form

ωf,x := h2dz1 − h1dz2.
A smooth curve C ∈ Λ(f, x) is said to be:

• of type I if the restriction ωf,x|C ∈ Ω1
C is non zero;

• of type II if ωf,x|C vanishes identically.

Observe that the form ωf,x depends on the choice of coordinates, but the type
of a curve does not. It is also independent on the choice of a point x on the
curve (see [29]). We shall denote by XI(f) (resp. XII(f)) the set of irreducible
curves that are fixed by f and of type I (resp. of type II). Suppose C ∈ Λ(f, x)
is smooth. If it is of type I, then we set

(9.3) µC,x(f) := ordx(ωf,x|C).
If s : C[[t]] → C is any local parametrization of C at x, then we have µC,x(f) =
ordt(s

∗ωf,x). If C is of type II, define

(9.4) µC,x(f) := ordx(∂f,x|C),
where ∂f,x = h1∂z1 + h2∂z2 . In terms of the 1-form, ωf,x this multiplicity can be
interpreted as follows. By assumption there exists a ∈ m such that a|C 6= 0 and
ωf,x − adh is divisible by h. Then we have µC,x(f) := ord0(a). We leave to the
reader to check that these quantities are independent on the choice of coordinates.

Proposition 9.3. Suppose f : X → X fixes a smooth curve C pointwise. Pick
x ∈ C and assume df(x) has one eigenvalue λ which is not a root of unity. Then
C is of type I, and we have

(9.5) vC(f
n) = 1, and δ(fn, x) = µx,C(f

n) = 0

for all n ∈ Z \ {0}.
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Proof. Locally we may choose coordinates z1, z2 such that C = {z1 = 0}, and
then we have f(z1, z2) = (z1+z1(λ−1+o(1)), z2+z1h2) for some power series h2.
The computations of vC(f), µx,C(f) and δ(fn, x) then follow immediately from
the definitions. �

Proposition 9.4. Suppose f : X → X fixes a point x, and assume df(x) = id.
If the set of all periodic points has simple normal crossing singularities at x, then
we have

(9.6) δ(fn, x) = δ(f, x), vC(f
n) = vC(f), and µx,C(f

n) = µx,C(f) ,

for all n ∈ Z \ {0}.
Proof. Since f is tangent to the identity then there exists a unique formal vector
field ∂ vanishing up to order 2 and such that exp(∂) = f . Let us recall how this
vector field is constructed, see for instance [5].
Choose coordinates z1, z2 and write

f = (z1 + gh1, z2 + gh2) = (z1 +
∑

n≥2

pn(z1, z2), z2 +
∑

n≥2

qn(z1, z2))

where pn, qn are homogeneous polynomials of degree n. Similarly write ∂ =∑
n≥2 an(z1, z2)∂z1 +

∑
n≥2 bn(z1, z2)∂z2 with an, bn homogeneous of degree n. For

each m ≥ 2, set ∂m =
∑

n≤m an(z1, z2)∂z1 +
∑

n≤m bn(z1, z2)∂z2 , and define recur-

sively ∂jm(φ) = ∂m(∂
j−1
m (φ)) for any φ. Then we have

pm+1 = am+1 +HTm+1

(
m∑

j=2

1

j!
∂jm(z1)

)
(9.7)

qm+1 = bm+1 +HTm+1

(
m∑

j=2

1

j!
∂jm(z2)

)
,(9.8)

where HTm+1(φ) denotes the homogeneous part of degree m + 1 of the power
series expansion of φ in z1, z2.

Since the fixed point locus of f is assumed to have simple normal crossing
singularities at x we may choose coordinates such that g(z1, z2) = zn1

1 z
n2

2 for
some n1, n2 ≥ 0 with n1 + n2 ≥ 1.

We first claim that ∂ = zn1

1 z
n2

2 ∂̃ for some reduced formal vector field ∂̃, i.e.
whose zero locus is zero dimensional.

Indeed by assumption zn1

1 z
n2

2 divides pn and qn for all n ≥ 2. Let us prove by
induction that zn1

1 z
n2

2 divides an and bn for all n. This is true for n = 2 since
p2 = a2 and q2 = b2. Suppose it is true for all m ≤ n. Then zn1

1 z
n2

2 divides ∂m for
2 ≤ m ≤ n, hence ∂jm(z1) and ∂

j
m(z2) for all j, and it follows from (9.7) and (9.8)

that zn1

1 z
n2

2 also divides an+1 and bn+1 as required. Conversely if for some m1,m2

the monomial zm1

1 zm2

2 divides an, bn for all n, the same argument shows it divides
pn and qn as well for all n. This proves the claim.
The claim implies by definition that vC(f) = ordC(∂) for any curve of fixed

point C of f . Since fn = exp(n∂) by construction, it follows that

vC(f
n) = ordC(n∂) = ordC(f) = vC(f) .
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Assume now C = {z1 = 0} is a curve a fixed point so that n1 ≥ 1. Write

∂̃ = ã∂z1 + b̃∂z2 with ã, b̃ having no common factors.

Suppose first that ∂̃ is generically transverse to C, i.e. ã(0, z2) 6≡ 0. Let us
compute exp(∂)(z1) = z1 +

∑
j≥1

1
j!
∂jz1. Write ∂jz1 = gãj so that

(9.9) ã1 = ã and ãj+1 = ∂̃g ãj + g ∂̃ãj.

Then for any j ≥ 1, we get

ord0(ãj+1(0, z2)) = ord0(∂̃g(0, z2)) + ord0(ãj(0, z2)) ≥ 1 + ord0(ã) .

Since f(z1, z2) = (z1+ g
∑

1
j!
ãj, ⋆), we conclude first that C is of type I and then

that µx,C(f) = ord0(
∑

1
j!
ãj(0, z2)) = ord0(ã(0, z2)). This proves that

µx,C(f
n) = ord0(nã(0, z2)) = ord0(ã(0, z2)) = µx,C(f) .

Suppose next that C is ∂̃-invariant, i.e. ã(0, z2) ≡ 0 but b̃(0, z2) 6≡ 0. We are now

interested in exp(∂)(z2) = z2 +
∑

j≥1
1
j!
∂jz2. Write ∂jz2 = gb̃j so that as before

we have

(9.10) b̃1 = b̃ and b̃j+1 = ∂̃g b̃j + g ∂̃b̃j.

Then it is not difficult to see that C is of type II, and ord0(̃bj+1(0, z2)) ≥ 1+ord0(̃b)
for all j ≥ 1, so that

µx,C(f
n) = ord0(nb̃(0, z2)) = ord0(̃b(0, z2)) = µx,C(f) .

Finally let I = 〈ã, b̃〉 ⊂ ÔX,x be the ideal generated by ã and b̃. Since ∂̃φ ∈ I for

any φ, by induction on j we see that b̃j+1, ãj+1 ∈ I2+(g)I ⊂ m·I ⊂ I for all j ≥ 1.

From the identities h1 =
∑

1
j!
ãj and h2 =

∑
1
j!
b̃j, we infer J := 〈h1, h2〉 ⊂ I.

We claim that the integral closures of I and J are equal. Grant this claim. For
any m-primary ideal a ⊂ ÔX,x, we let e(a) = limn→∞

1
2n2 dim{C}(ÔX,x/a

n) be the
(Hilbert-Samuel) multiplicity of a. Two ideals having the same integral closure
have the same multiplicity, see [32]. We thus have

δ(x, f) := e(J) = e(I) = e〈ã, b̃〉 = e〈nã, nb̃〉 = δ(fn, x)

for all n 6= 0, which concludes the proof of the proposition.
To prove the claim, pick any sequence of point blow-ups π : X̂ → X centered

above x and such that the ideal sheaf J ·OX̂ is locally principal so that we can write
J ·OX̂ = OX̂(−

∑
miEi) where Ei are exceptional andmi = ordEi

(π∗J) ≥ 1. Now

recall that h1−ã and h2−b̃ lie in m·I. Pick any exceptional curve Ei. By definition

ordEi
(π∗I) = min{ordEi

(π∗ã), ordEi
(π∗b̃)}. Say ordEi

(π∗I) = ordEi
(π∗ã). Then

we have

ordEi
(ã− h1) ≥ ordEi

(π∗m) + ordEi
(π∗I) > ordEi

(π∗ã)

hence ordEi
(π∗h1) = ordEi

(π∗ã) = ordEi
(π∗I). On the other hand, ordEi

(π∗h2) ≥
ordEi

(π∗I), hence we get ordEi
(π∗J) = ordEi

(π∗I). It follows from [32, Théorème
2.1 (iv)] that I is included in the integral closure J̄ of J , and J ⊂ I ⊂ J̄ implies
Ī = J̄ as was to be shown. �
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Remark 9.5. When f is tangent to the identity, the proof shows that we have the
following geometrical interpretations. Let F be the (formal) foliation associated
to the formal vector field ∂ vanishing up to order 2 at 0 and satisfying f = exp(∂).

Let ∂̃ be the reduced vector field associated to ∂.
Then a curve C of fixed points is of type I, if it is generically transversal to

F , and of type II if it is a leaf of F . The multiplicity vC(f) is the generic order
of vanishing of ∂ along C; δ(f) is the Hilbert-Samuel multiplicity of the ideal

generated by ∂̃m. When C is smooth, then µx,C(f) is the order of vanishing of

∂̃|C (when C is of type II), or of its dual 1-form (when C is of type I).

Finally we define

(9.11) v(C,x)(f) := δ(f, x) +
∑

C∈Λ(f,x)
vC(f)µC,x(f).

9.3. Proof of Theorem 9.1. By Theorem 8.4, there are only finitely many
curves of periodic points on X. In particular, one can find an integerM such that
any curve of periodic points is included in Fix(fM). In the sequel we shall assume
that M = 1. Pick a curve C ⊆ Fix(f). At any point x ∈ C, the differential dfx
has two eigenvalues, one equal to 1 and the other one to λ(x) = det dfx. Since C
is compact, it follows that λ(x) ≡ λ(C) is a constant. Replacing f by a suitable
iterate, we may also assume that either λ(C) = 1 or λ(C)n 6= 1 for all n ≥ 1.

Step 1: Suppose that Fix(f) has only simple normal crossing singularities. We
apply Lefschetz-Saito’s formula, see [29, Theorem 1.2], and use results from the
preceding section.

Theorem 9.6. Assume f : X → X is an automorphism such that all irreducible
components of Fix(fn) are smooth. Then we have

(9.12) L(fn) =
∑

x∈Fix(fn)

vx(f
n) +

∑

C∈XI(fn)

χ(C) vC(f
n) +

∑

C∈XII(fn)

(C2) vC(f
n).

Here χ(C) denotes the Euler characteristic of C, and C2 its self-intersection. It
follows easily from our standing assumptions and from Propositions 9.3 and 9.4
that |L(fn)−#Per n| is actually independent on n.

Step 2: Let S1 ⊆ X be the set of singular points of curves of periodic points.
This set is finite and f -invariant so that f lifts as an automorphism f1 to the
blowup π1 : X1 → X of X at all points in S1. The exceptional components of π1
are permuted by f1, and we have

|Tr(f ∗n
1 )H1,1 − Tr(f ∗n)H1,1 | ≤ #S1.

On the other hand, π∗ : H
i,j(X1)→ H i,j(X) is an isomorphism for (i, j) 6= (1, 1),

so that
|L(fn

1 )− L(fn)| = O(1).

There are at most 2 isolated fixed points of fn on each exceptional component,
hence |#Per n(X1)−#Per n(X)| = O(1). Repeating the argument finitely many
times, we end up with an automorphism for which the union of all curves of



50

periodic points has only simple normal crossing singularities and all curves are
smooth. This concludes the proof.

10. The case λ1 = 1

In this section, we denote by k an algebraically closed field of characteristic
different from 2 and 3. Our aim is to prove Theorem 4.1 in the remaining case
λ1 = 1.

Recall the following structure theorem for this class of maps.

Theorem 10.1. ([17, 26]) Let X be a smooth projective surface over k, let L→ X
be an ample line bundle, and let f be a birational transformation of X. Assume
λ1(f) = 1. Then up to a birational conjugacy, we are in one of the following three
cases:

(i) the sequence degL(f
n) is bounded, f is an automorphism and some positive

iterate of f acts on N1(X) as the identity;
(ii) the sequence degL(f

n) is equivalent to cn for some c > 0, and f preserves
a rational fibration;

(iii) the sequence degL(f
n) is equivalent to cn2, for some c > 0 and f is an

automorphism preserving an elliptic fibration.

We shall argue case by case.

10.1. The case when deg(fn) is bounded.

Proposition 10.2. Let X be a projective variety, f be an automorphism of X
which acts on N1(X) as the identity. If the periodic points of f are Zariski dense,
then there is an integer n > 0 such that fn = id.

Remark 10.3. When k is the algebraic closure of a finite field, any automorphism
f acting trivially on N1(X) satisfies fn = id for some n ≥ 1 since all points in
X are periodic. However in any other field there are some automorphisms acting
trivially on N1(X) of infinite order such as [x : y : z] → [x : ty : z] on X = P2

where t ∈ k is not a root of unity.

Remark 10.4. When the action of f on the Picard group is the identity, then the
arguments of [21, Proposition 2.1] apply directly. We can thus find an embedding
of X in PN and an automorphism A ∈ PGLN+1 such that f = A|X . The result
then follows easily.

Proof of Proposition 10.2. We denote by Aut(X) the automorphism group of X.
Pick a line bundle L → X and let Aut[L] be the subgroup of all automorphisms
fixing the class [L] ∈ N1(X). We denote by Aut0(X) the irreducible component
of the identity. For any g ∈ Aut[L](X), let Γg ⊆ X × X be the graph of g. We
denote by π1, π2 the projections onto the first and second factors. Since π∗

1L⊗π∗
2L

is ample on X ×X, we may consider the Hilbert polynomial Pg(m) of Γg:

Pg(m) = χ(Γg, (π
∗
1L⊗ π∗

2L)
⊗m) = χ(X, (L⊗ g∗L)⊗m).

By the Hirzebruch-Riemann-Roch theorem, we see that χ(X, (L ⊗ g∗L)⊗m) is a
polynomial function of m whose coefficients only depend on the numerical class
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[L ⊗ g∗L] = 2[L] ∈ N1(X), it follows that P := Pg is independent of g. Let Y
be the Hilbert scheme parameterizing closed subschemes of X ×X with Hilbert
polynomial P : it is a scheme that admits finitely many irreducible components
and Aut[L](X) is an open subvariety of Y .
Since f acts on N1(X) as the identity, it follows that f ∈ Aut[L](X), hence

fM ∈ Aut0(X) for some M ≥ 1. We may thus assume that f ∈ Aut0(X). Let
Sm be the set of fixed points of fm! for m ≥ 1, so that Sm ⊆ Sm+1 for any m ≥ 1.
Let Fm = {g ∈ Aut0(X)| g|Sm

= id}. Then Fm is a closed set and Fm+1 ⊆ Fm

for any m ≥ 1. By noetherianity there is an integer l such that Fl =
⋂

m≥1 Fm,
and it follows that then fn ∈ Fl =

⋂
m≥1 Fm for n = l!. In particular, we

have fn|Sm = id for any m ≥ 1. Since the Zariski closure of
⋃

m≥1 Sm is X by
assumption, we conclude that fn = id. �

Proposition 10.5. Let X be a smooth projective surface over k, and L→ X be
an ample line bundle. Let f be a birational transformation of X, such that the
sequence degL(f

n) is bounded. If the set of non critical periodic points of f is
Zariski dense, then there is an integer n > 0 such that fn = id.

Proof. By Theorem 10.1, we may assume that f is an automorphism and acts on
N1(X) as the identity and we conclude by Proposition 10.2. �

10.2. The linear growth case.

Proposition 10.6. Let X be a projective smooth surface over k, and L → X
be an ample line bundle. Let f be a birational transformation of X, such that
degL(f

n) ∼ cn for some c > 0 . Then the set of non-critical periodic points of
f is Zariski dense if and only if its action on the base of its invariant rational
fibration is periodic.

Proof. Suppose first that the set of non-critical periodic points is Zariski dense.
By Theorem 10.1, we may assume thatX = C×P1

k
where C is a smooth projective

curve defined over k and f is written under the form

f(x, y) =
(
g(x),

A1(x)y +B1(x)

A2(x)y +B2(x)

)

where g is an automorphism of C and A1(x), B1(x), A2(x), B2(x) are rational
functions on C such that A1(x)B2(x) − A2(x)B1(x) 6= 0. Since the set non-
critical periodic points of f is Zariski dense, the set of all periodic points of g
is also Zariski dense, hence gn = id for some n ≥ 0. Replacing f by a suitable
iterate, we may thus assume that g = id, and

f =
(
x,
A1(x)y +B1(x)

A2(x)y +B2(x)

)
. (∗∗)

Conversely suppose that degL(f
n) → ∞ and that f can be written under the

form (∗∗). We denote the function field of C by K. Let

T (x) = (A1(x) + B2(x))
2/(A1(x)B2(x)− A2(x)B1(x))
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and let t1, t2 ∈ K be the two eigenvalues of the matrix
(
A1(x) B1(x)
A2(x) B2(x)

)
.

If (A1(x) + B2(x))
2/(A1(x)B2(x)− A2(x)B1(x)) ∈ k, then

t1/t2 + t2/t1 + 2 = (A1(x) + B2(x))
2/(A1(x)B2(x)− A2(x)B1(x)) ∈ k,

which implies t1/t2 ∈ k, since k is algebraically closed.
If t1 = t2, then t1 = t2 = (A1(x) +B2(x))/2 ∈ K. We may replace Ai(x) (resp.

Bi(x)) by 2Ai(x)/(A1(x) + B2(x)) (resp. 2Bi(x)/(A1(x) + B2(x))), so that we
may assume that t1 = t2 = 1. Changing coordinates if necessary, f can be the
written as (x, y + B(x)) where B(x) ∈ K. It follows that degL f

n is bounded,
which is a contradiction.

If t1 6= t2, then K(t1) is a finite extension over K. There is a curve π : B → C
corresponding to this field extension. Since f acts on C trivially, it induces a

map f̃ on P1×C B. We set L̃ = (id×C π)
∗L. Since t1, t2 are rational functions on

B, f̃ is under the form (x, (t1/t2)y), this implies that degL̃ f̃
n is bounded. Since

degL̃ f̃
n = deg π × degL f

n, we get a contradiction.
We have shown that T (x) is a non-constant rational function on B. For any

n > 0, pick a primitive n−th root rn of unity, there is at least one point x ∈ C
such that T (x) = 2+ rn+1/rn. Changing coordinates if necessary, f acts on this
fiber as y 7→ rny has finite order. It follows that periodic points of f are Zariski
dense. �

10.3. The quadratic growth case. The proof of the following theorem is sim-
ilar to the proof of [6, Proposition 7.4].

Proposition 10.7. Let X be a smooth projective surface over k, and  L → X
be an ample line bundle. Let f : X 99K X be an automorphism of X such that
degL(f

n)→∞. Then the set of periodic points of f is Zariski dense if and only
if its action on the base of its invariant elliptic fibration is periodic.

Proof. Let π : X → C be the invariant elliptic fibration. Denote by g the
automorphism on the base curve C induced by f .
Suppose first that the set of periodic points of f is Zariski dense. Then the set

of periodic points of g is Zariski dense too. So there is an integer N > 0, such
that gN = id.
Conversely suppose that degL(f

n) → ∞ and g = id. Since f is an elliptic
fibration, then all but finitely many fibers are elliptic curves.
By [35, Theorem 10.1 III], the order of the automorphism group of an elliptic

curve (as an algebraic group) is a divisor of 24. We may replace f by f 24, so
that the restriction of f to each smooth fiber is a translation. Observe that f |Ex

admits a fixed point on a smooth fiber Ex if and only if f |Ex
is the identity.

Assume by contradiction that the set of periodic points of f is not Zariski dense.
Then there is a set T = {x1, · · · , xm} ∈ C, such that for any x ∈ C \ T , Ex is a
smooth elliptic curve and f has no periodic points in Ex.
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By replacing L by a sufficiently large power, we may assume it is very ample.
By Bertini’s Theorem (see [27]), we can find a general section S of L such that
for any x ∈ T , the intersection of S and Fx is transverse, and these intersection
points are smooth in S and in Fx.
Let H be the set of periodic points which lies in S. Then H ⊆ S

⋂
(
⋃

x∈T Ex)
is a finite set. By replacing f by f l for some l > 0, we may assume that all points
in H are fixed. Observe that for any i 6= j, we have f i(S)

⋂
f j(S) = H. Let x

be any point in H and write π(x) = y. In some local coordinates (z1, z2) at x,
since both S and Fy are smooth at x and the intersection of S and Ey at x is
transverse, we may assume that S = (z2 = 0), Ey = (z1 = 0) and π depends only
on z1. Then f

−1 can be written as

f−1 = (z1, z2 + h(z1, z2))

where h(0, 0) = 0. Since the fixed point locus is given by h = 0 and this set lie
in z1 = 0 in this chart, it follows that we can write h = zl1(a + b(z1, z2)) where
l ≥ 1, a 6= 0 and b(0, 0) = 0.

Lemma 10.8. One can find local coordinates (z1, z2) such that for any integer n,
one has

f−n = (z1, z2 + zl1(na+ bn(z1, z2)))

where b1 = b and bn(0, 0) = 0.

It follows that fn(S) is defined by the equation z2 + zl1(na + bn(z1, z2)) = 0.
When n is not divisible by the characteristic of k, it follows that the intersection
product (S · fn(S))x is equal to l independently on n. It follows that (f ∗L ·L) =
Σx∈H(S · fn(S))x is bounded which gives a contradiction. �

Proof of Lemma 10.8. We proceed by induction on n. If it is true for n, then we
have

f−(n+1) = f−1 ◦ f−n,

so that

f−n−1 = (z1, z2 + zl1(na+ bn(z1, z2)) + zl1(a+ b(z1, z2 + zl1(na+ bn(z1, z2))))))

= (z1, z2 + zl1((n+ 1)a+ bn+1(z1, z2)))

where bn+1 = bn(z1, z2) + b(z1, z2 + zl1(na + bn(z1, z2))). In particular, we have
bn+1(0, 0) = 0. �
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[4] Sébastien Boucksom, Charles Favre, and Mattias Jonsson. Degree growth of meromorphic
surface maps. Duke Math. J., 141(3):519–538, 2008.

[5] F. E. Brochero Mart́ınez, F. Cano, and L. López-Hernanz. Parabolic curves for diffeomor-
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Part 2

Dynamical Mordell-Lang conjecture for

birational polynomial morphisms on A2



11. Introduction

The Mordell-Lang conjecture proved by Faltings [9] and Vojta [21] says that
if V is a subvariety of a semiabelian variety G defined over C and Γ is a finitely
generated subgroup of G(C), then V (C) ∩ Γ is a union of at most finitely many
translates of subgroups of Γ.

The following dynamical analogue of the Mordell-Lang conjecture was proposed
by Ghioca and Tucker.

Dynamical Mordell-Lang Conjecture ([13]). LetX be a quasiprojective vari-
ety defined over C, let f : X → X be an endomorphism, and V be any subvariety
of X. For any point p ∈ X(C) the set {n ∈ N| fn(p) ∈ V (C)} is a union of at
most finitely many arithmetic progressions.

An arithmetic progression is a set of the form {an + b| n ∈ N} with a, b ∈ N
possibly with a = 0.
Observe that this conjecture implies the classical Mordell-Lang conjecture in

the case Γ ≃ (Z,+).

The Dynamical Mordell-Lang conjecture has been proved by Denis [6] for au-
tomorphisms of projective spaces and was later generalized by Bell [2] to the case
of automorphisms of affine varieties. In [3], Bell, Ghioca and Tucker proved it
for étale maps of quasiprojective varieties. The conjecture is also known in the
case where f = (F (x1), G(x2)) : A2

C → A2
C where F,G are polynomials and the

subvariety V is a line ([14]), and in the case f = (F (x1), · · · , F (xn)) : An
K → An

K

where F ∈ K[t] is an indecomposable polynomial defined over a number field K
which has no periodic critical points other than the point at infinity and V is a
curve ([4]).

Our main result can be stated as follows.

Theorem A. Let K be any algebraically closed field of characteristic 0, and
f : A2

K → A2
K be any birational polynomial morphism defined over K. Let C be

any curve in A2
K, and p be any point in A2(K). Then the set {n ∈ N| fn(p) ∈ C}

is a union of at most finitely many arithmetic progressions.

Observe that if p is preperiodic or C is periodic, then {n ∈ N| fn(p) ∈ C} is
infinite if and only if there exists one n ≥ 0 such that fn(p) ∈ C. It is easy to see
that the conclusion of Theorem A is equivalent to say that this is the only one
possibility.
In the case the map is an automorphism of A2

K of Hénon type (see [11]) then
this result follows from [3]. Our proof provides however an alternative approach
and does not rely on the construction of p-adic invariant curves.

Recall that the algebraic degree of a polynomial transformation f(x, y) =
(f1(x, y), f2(x, y)) is defined by deg f := max{deg f1, deg f2}. The limit λ(f) :=
limn→∞(deg fn)1/n exists and we refer to it as the dynamical degree of f (see
[7, 8]). Our proof shows that when λ(f) > 1, then Theorem A holds for fields of
arbitrary characteristic.
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Note however that our Theorem A does not hold when charK > 0 and λ(f) = 1
(see [2, Proposition 6.1] for a counter-example).

To explain our strategy, we fix a birational polynomial morphism f : A2
K → A2

K .
By some reduction arguments, we may assume that K = Q.

We may compactify A2 by [10] to a smooth projective surface, such that f
extends to a birational transformation on X fixing a point Q in X \ A2, and f
contracts all curves at infinity to Q (see [10] and Section 16.1).
The key idea of our proof is to take advantage of this attracting fixed point and

to apply the following local version of the Dynamical Mordell-Lang conjecture.

Theorem 11.1. Let X be a smooth projective surface over an arbitrary valued
field (K, | · |) and f : X 99K X be a birational transformation defined over K.
Let C be any curve in X. Pick any K-point p such that fn(p) ∈ X \ I(f) for all
integers n ≥ 0, and fn(p) tends to a fixed K-point Q ∈ I(f−1) \ I(f) with respect
to a projective metric induced by | · | on X.

If the set

{n ∈ N| fn(p) ∈ C}
is infinite, then either fn(p) = Q for some n ≥ 0 or C is fixed.

To complete the proof of Theorem A we now rely on a global argument. When
the curve C is passing through the fixed point Q in X, we cover the Q-points of
the curve C by the basin of attraction of Q with respect to all absolute values
on Q. If the point p belongs to one of these attracting basins, then the local
dynamical Mordell-Lang applies and we are done. Otherwise it is possible to
bound the height of p and Northcott theorem shows that it is periodic.

Finally when neither the curve C nor its iterates contain the fixed point Q, we
are in position to apply the next result which allows us to conclude.

Theorem 11.2. Let X be a smooth projective surface over an algebraically closed
field, f : X 99K X be an algebraically stable birational transformation and C be
an irreducible curve in X such that fn does not contract C for any n ≥ 0.

If fn(C) ∩ I(f) 6= ∅ for all n ≥ 0, then C is periodic.

We should mention that it seems that it would be difficult to deal with arbitrary
endomorphisms of surfaces using our approach. The key point of our proof is to
take advantage of an attracting fixed point in some suitable model. But such a
point does not exist for a general surface endomorphism.

The article is organized in 8 sections. In Section 12 we give background in-
formation on birational surface maps and metrics on projective varieties defined
over a valued field. In Section 13 we prove Theorem 11.2, which is a criterion
for a curve to be periodic. In Section 14 we prove some basic properties of the
maps satisfying the conclusion of dynamical Mordell-Lang conjecture. In Section
15 we prove Theorem 11.1. In Section 16 we prove Theorem A in the case the
dynamical degree λ(f) = 1. In Section 17 we prove a technical lemma which gives
a upper bound on height when λ(f) > 1. In Section 18 we prove Theorem A.
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12. Notations and basics

12.1. Basics on birational maps on surfaces. See [5, 7, 10] for details.
In this section a variety is defined over an algebraically closed field k. Recall

that the resolution of singularities exists for surfaces over any algebraically closed
field (see [1]).

Let X be a smooth projective surface. We denote by N1(X) the Néron-Severi
group of X i.e. the group of numerical equivalence classes of divisors on X and
write N1(X)R := N1(X)⊗R. Let φ : X → Y be a morphism of smooth projective
surfaces. It induces a natural map φ∗ : N1(Y )R → N1(X)R. Since dimX = 2,
one has a perfect pairing

N1(X)R ×N1(X)R → R, (δ, γ)→ (δ · γ) ∈ R

induced by the intersection form. We denote by φ∗ : N
1(X)R → N1(Y )R the dual

operator of φ∗.

Let X, Y be two smooth projective surfaces and f : X 99K Y be a birational
map. We denote by I(f) ⊆ X the indeterminacy set of f . For any curve C ⊂ X,
we write

f(C) := f(C \ I(f))
the strict transform of C.

Let f : X 99K X be a birational transformation and Γ be a desingularization
of its graph. Denote by π1 : Γ → X, π2 : Γ → X the natural projections. Then
the diagram

Γ
π1

��

π2

��

X
f

// X

(∗)

is commutative and we call it a resolution of f .

Proposition 12.1 ([15]). We have the following properties.

(i) The morphisms π1, π2 are compositions of point blowups.
(ii) For any point p 6∈ I(f), there is a Zariski open neighborhood U of p in X

and an injective morphism σ : U → Γ such that π1 ◦ σ = id.

Then we define the following linear maps

f ∗ = π1∗π
∗
2 : N1(X)R → N1(X)R,

and
f∗ = π2∗π

∗
1 : N1(X)R → N1(X)R.

Observe that this definition is independence on the choice of the resolution and
f∗ = f−1∗. Note that in general we have (f ◦ g)∗ 6= g∗f ∗.

For any big and nef class ω ∈ N1
R(X), we set

degω(f) := (f ∗ω · ω),
the limit limn→∞ degω(f

n)1/n exists and does not depend on the choice of ω (see
[7, 8]). We denote this limit by λ(f) and call it the dynamical degree of f.
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Definition 12.2 (see [7]). Let f : X 99K X be a birational transformation on a
smooth projective surface. Then f is said to be algebraically stable if and only
if there is no curve V ⊆ X such that fn(V ) ⊆ I(f) for some integer n ≥ 0.

In the case X = P2, f is algebraically stable if and only if deg(fn) = (deg f)n

for any n ∈ N.

Theorem 12.3 ([7]). Let f : X 99K X be a birational transformation of a smooth

projective surface. Then there exists a smooth projective surface X̂, and a proper

modification π : X̂ → X such that the lift of f to X̂ is an algebraically stable
map.

By a compactification of A2, we mean a smooth projective surfaceX admitting
a birational morphism π : X 99K P2 that is an isomorphism above A2 ⊆ P2, see
[10].

The theorem follows from [10, Proposition 2.6] and [10, Theorem 3.1], and
provides us with a good compactification of A2.

Theorem 12.4 ([10]). Let f : A2 → A2 be a birational polynomial transforma-
tion with λ(f) > 1. Then there exists a compactification X of A2 satisfying the
following properties.

(i) The map f extends to an algebraically stable map f̃ on X.

(ii) There exists an f̃ -fixed point Q ∈ X \ A2 such that df̃ 2(Q) = 0.

(iii) There exists an integer n ≥ 1 such that f̃n(X \ A2) = Q.

12.2. Branches of curves on surfaces. [12, 16] Let X be a smooth projective
surface over an algebraically closed field k. Let C be an irreducible curve in X
and p be a point in C.

Definition 12.5. A branch of C at p is a point in the normalization of C whose
image is p.

Let IC,p be the prime ideal associated to C in the local function ring OX,p at p

and ÎC,p be the completion of IC,p in the completion of local function ring ÔX,p.

Let i : C̃ → C is a normalization of C and p̃ a point in i−1(p). Let s be

the branch of C at p defined by the point p̃. The morphism i : C̃ → C induces

a morphism i∗ : ÔX,p → ÔC̃,p̃ between the completions of local function rings.
The map s 7→ ps := ker i∗ gives us a one to one correspondence between the set

of branches of C at p and the set of prime ideals of ÔX,p with height 1 which

contains ÎC,p.
Given any two different branches s1 and s2 at a point p ∈ X, the intersection

number is denoted by

(s1 · s2) := dimk ÔX,p/(ps1 + ps2).

For convenience, we set (s1 · s2) := 0 if s1 and s2 are branches at different points.

Let Z be a smooth projective surface and f : X 99K Z be a birational map. If
f does not contract C then we denote by f(s) the branch of f(s) defined by the
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point p̃ in the normalization f ◦ i : C̃ → f(C) and call it the strict transform of
s. Observe that f(s) is a branch of f(C) and when p 6∈ I(f), we have that f(s)
is a branch of curve at f(p).

If f is regular at p, we write

f∗s =

{
f(s), when f does not contract C;

0, otherwise.

Let Y be another smooth projective surface and π : Y → X be a birational
morphism. Denote by π#s := π−1(s) the strict transform of s. Let Ei, i =
1, · · · ,m be the exceptional curves of π. There is a unique sequence of non
negative integers (ai)0≤i≤m such that for any irreducible curve D in Y different
from π#C, we have (s · π∗D) = (π#s+

∑m
i=1 aiEi ·D). Denote by π∗s := π#s+∑m

i=1 aiEi and call it the pull back of s.

Proposition 12.6. We have the following properties.

(i) We have π∗π
∗s = s.

(ii) For any irreducible curve (resp. any branch of curve) D in Y different
from π#C (resp. π#s), we have

(π∗s ·D) = (s · π∗D).

(iii) For any curve (resp. any branch of curve) D in X different from C (resp.
s) then we have

(s ·D) = (π#s · π∗D).

12.3. Metrics on projective varieties defined over a valued field. A field
with an absolute value is called a valued field1.

Definition 12.7. Let (K, | · |v) be a valued field. For any integer n ≥ 1, we define
a metric dv on the projective space Pn(K) by

dv([x0 : · · · : xn], [y0 : · · · : yn]) =
max0≤i,j≤n |xiyj − xjyi|v

max0≤i≤n |xi|v max0≤j≤n |yj|v
for any two points [x0 : · · · : xn], [y0 : · · · : yn] ∈ Pn(K).

Observe that when | · |v is archimedean, then the metric dv is not induced by
a smooth riemannian metric. However it is equivalent to the restriction of the
Fubini-Study metric on Pn(C) or Pn(R) to Pn(K) induced by σv.

More generally, for a projective variety X defined over K, if we fix an em-
bedding ι : X →֒ Pn, we may restrict the metric dv on Pn(K) to a metric dv,ι
on X(K). This metric depends on the choice of embedding ι in general, but for
different embeddings ι1 and ι2, the metrics dv,ι1 and dv,ι2 are equivalent. Since we
are mostly intersecting in the topology induced by these metrics we shall usually
write dv instead of dv,ι for simplicity.

1This definition of valued field is not universally adopted. In some literatures, a valued field
means a field with a nonarchimedean absolute value.
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13. A criterion for a curve to be periodic

Our aim in this section is to prove Theorem 11.2 from the introduction. Let
us recall the setting:

(i) X is a smooth projective surface over an algebraically closed field;
(ii) f : X 99K X is an algebraically stable birational transformation;
(iii) C is an irreducible curve in X such that fn does not contract C and

fn(C) ∩ I(f) 6= ∅ for all n.
Our aim is to show that C periodic. Let us begin with the following special case.

Lemma 13.1. Let x be a point in I(f) ∩ C. If there exists a branch s of C at x
such that fn(s) is again a branch at x for all n ≥ 0, then C is fixed by f .

Proof of Lemma 13.1. Since f is birational, we may chose a resolution of f as in
the diagram (∗) in Section 12.1.

If C is not fixed, we have f(s) 6= s so that A := (s ·f(s))x <∞. By Proposition
12.1, π2 is invertible on a Zariski neighbourhood of x. Let Fx be the fiber of π1
over x.

For any m ≥ 0, we have,

((fm(s) · fm+1(s))x =
∑

y∈Fx

(π#
1 f

m(s) · π∗
1f

m+1(s))y

≥(π#
1 f

m(s) · π∗
1f

m+1(s))π−1
2 (x)

=(π#
1 f

m(s) · π#
1 f

m+1(s))π−1
2 (x) + (π#

1 f
m(s) · Fx)π−1

2 (x)

=(fm+1(s) · fm+2(s))x + (π#
1 f

m(s) · Fx)π−1
2 (x)

≥(fm+1(s) · fm+2(s))x + 1.

It follows that A = (s · f(s))x ≥ (fm(s) · fm+1(s))x +m ≥ m for all m ≥ 0 which
yields a contradiction. �

We now treat the general case.

Proof of Theorem 11.2. Recall that fn does not contract C and fn(C)∩I(f) 6= ∅
for all n. By Lemma 13.1, it is sufficient to find a point x ∈ I(f) ∩ C such that
the image by fn of the branch of C at x is again a branch of a curve at x for all
n ≥ 0. By contradiction we suppose that C is not periodic.
To do so, we introduce the set

P (f) = {x ∈ I(f)| there is n1 > n2 ≥ 0 such that f−n1(x) = f−n2(x)}
and the set

O(f) = {f−n(x)| x ∈ P (f) and n ≥ 0}.
By definition, O(f) is finite. Since f is algebraically stable, O(f) = O(fn) for all
n ≥ 1. Replacing f by f l for a suitable l ≥ 1, we may assume that O(f) = P (f).
Set N(f) = I(f) \ P (f).
First, we prove

Lemma 13.2. For all n ≥ 0, fn(C) ∩O(f) 6= ∅.
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Proof of Lemma 13.2. We assume that I(f) = {p1, · · · , pm} and define the map

F = (f−1, · · · , f−1) : Xm
99K Xm.

Denote by πi the projection onto the i-th factor and set

D = ∪mi=1π
−1
i (C).

Pick a point q = (p1, · · · , pm) ∈ Xm. Since fn(C) ∩ I(f) 6= ∅ for all n ≥ 0 by
assumption, we have F n(q) ∈ D for all n ≥ 0. Let Z ′ be the Zariski closure of
{F n(q)|n ≥ 0}. Then we have Z ′ ⊆ D. Let Z be the union of all irreducible
components of Z ′ of positive dimension. If Z is empty, then pi is f

−1-preperiodic
for all i and we conclude.

Otherwise since {F n(q)|n ≥ 0} ∩ I(F ) = ∅, the proper transformation of Z by
F is well defined and satisfies F (Z) = Z, hence all irreducible components of Z
are periodic. Let l be a common period for all components of Z. Observe that
any irreducible component of Z is included in some π−1

i (C) for i = 1, · · · ,m. In
other words, there exists k ≥ 0 and i ∈ {1, · · · ,m} such that f−ln−k(pi) ∈ C
for all n ≥ 0. If pi is not f−1-preperiodic, then C is the Zariski closure of
{f−ln−k(pi)|n ≥ 0} which is f−l-invariant. This implies C to be periodic which
contradicts to our hypothesis. It follows that pi is f

−1-preperiodic.
Repeating the same argument for fn(C), we have fn(C) ∩ O(f) 6= ∅ for all

n ≥ 0. �

Denote by D(n) the number of branches of fn(C) at points of O(f). Since
f−1(O(f)) ⊆ O(f), we have D(n) is decrease and by Lemma 13.2, we have
D(n) ≥ 1. Replace C by fM(C) for some M ≥ 0, we may assume that D(n) is
constant for n ≥ 0. It follows that for any branch of curve of fn(C) at a point in
O(f), its image by f is again a branch of fn+1(C) at a point of O(f). Set

S = {x ∈ O(f)| there are infinitely many n ≥ 0 such that x ∈ fn(C)}.
By the finiteness of O(f), we may suppose that

fn(C) ∩O(f) = fn(C) ∩ S
for all integer n ≥ 0.

We claim that

Lemma 13.3. Replacing f by a positive iterate, there exists a point x ∈ C ∩ S
for which there is a branch s of C at x such that fn(s) is again a branch of curve
at x for all n ≥ 0.

According to Lemma 13.1, we conclude. �

Proof of Lemma 13.3. Pick a resolution of f as in the diagram (∗) in Section 12.1.
For any point x ∈ S, denote by Fx the fibre of π1 over x and Ex = π2(Fx) ∩ S.

We have Ex 6= ∅. Otherwise, there exists n ≥ 0 for which x ∈ fn(C) and a
branch s of fn(C) at x. The assumption Ex = ∅ implies that f(s) is not a branch
at any point in S. This shows that D(n+1) < D(n) and we get a contradiction.

On the other hand, let x1, x2 be two different points in S. If Ex1
∩ Ex1

6= ∅,
there exists y ∈ S such that y ∈ π2(Fx1

) ∩ π2(Fx2
). By Zariski’s main theorem,
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π−1
2 (y) is a connected curve meeting Fx1

and Fx2
. So π1(π

−1
2 (y)) is a curve and it is

contracted by f to y ∈ S ⊆ I(f). This contradicts the fact that f is algebraically
stable. So we have

Ex1
∩ Ex1

= π2(Fx1
) ∩ π2(Fx2

) ∩ S = ∅.
Set T =

∐
x∈S Ex ⊆ S. Since #Ex ≥ 1 for all x, we have #T ≥ #S. It follows

that T = S and #Ex = 1 for all x ∈ S. This allows us to define a map G : S → S
sending x ∈ S to the unique point in Ex. Then G is an one to one map. For all
n ≥ M, f sends a branch of fn(C) at a point x ∈ S to a branch of fn+1(C) at
the point G(x). By replacing f by f (#S)!, we may assume that G = id. Then for
any x ∈ S ∩ C and s a branch of C at x, we have fn(s) is again a branch at x
for all n ≥ 0. �

14. The DML property

For convenience, we introduce the following

Definition 14.1. Let X be a smooth surface defined over an algebraically closed
field, and f : X 99K X be a rational transformation. We say that the pair (X, f)
satisfies the DML property if for any irreducible curve C on X and for any closed
point p ∈ X such that fn(p) 6∈ I(f) for all n ≥ 0, the set {n ∈ N| fn(p) ∈ C} is
a union of at most finitely many arithmetic progressions.

In our setting the DML property is equivalent to the following seemingly
stronger property.

Proposition 14.2. Let X be a smooth surface defined over an algebraically closed
field, and f : X 99K X be a rational transformation. The following statements
are equivalent.

(1) The pair (X, f) satisfies the DML property.
(2) For any curve C on X and any closed point p ∈ X such that fn(p) 6∈

I(f) for all n ≥ 0 and the set {n ∈ N|fn(p) ∈ C} is infinite, then p is
preperiodic or C is periodic.

Proof. Suppose (1) holds. Let C be any curve in X and p be a closed point in X
such that fn(p) 6∈ I(f) for all n ≥ 0. Assume that the set {n ∈ N| fn(p) ∈ C}
is infinite. The DML property of (X, f) implies that there are integers a > 0
and b ≥ 0 such that fan+b(p) ∈ C for all n ≥ 0. If p is not preperiodic, the set
Oa,b := {fan+b(p)| n ≥ 0} is Zariski dense in C and fa(Oa,b) ⊆ Oa,b. It follows
that fa(C) ⊆ C, hence C is periodic.
Suppose (2) holds. If the set S := {n ∈ N| fn(p) ∈ C} is finite or p is

preperiodic, then there is nothing to prove. We may assume that S is infinite
and p is not preperiodic. The property (2) implies that C is periodic. There
exists an integer a > 0 such that fa(C) ⊆ C. We may suppose that f i(C) 6⊆ C
for 1 ≤ i ≤ a − 1. Since p is not preperiodic, there exists N ≥ 0, such that
fn(p) 6∈ (∪1≤i≤a−1f

i(C)) ∩ C for all n ≥ N. So S \ {1, · · · , N − 1} takes form
{an+ b| n ≥ 0} where b ≥ 0 is an integer, and it follows that (X, f) satisfies the
DML property. �



66

Theorem 14.3. Let X be a smooth surface defined over an algebraically closed
field, and f : X 99K X be a rational transformation, then the following properties
hold.

(i) For any m ≥ 1, (X, f) satisfies the DML property if and only if (X, fm)
satisfies the DML property.

(ii) Suppose U is an open subset of X such that the restriction f|U : U → U
is a morphism. Then (X, f) satisfies the DML property, if and only if
(U, f|U) satisfies the DML property.

(iii) Suppose π : X → X ′ is a birational morphism between smooth projective
surfaces, and f : X 99K X, f ′ : X ′

99K X ′ are rational maps such that
π ◦ f = f ′ ◦ π. If the pair (X, f) satisfies the DML property, then (X ′, f ′)
satisfies the DML property.

(iv) Suppose π : X → X ′ is a birational morphism between smooth projective
surfaces, and f : X 99K X, f ′ : X ′

99K X ′ are birational transformations
such that π ◦ f = f ′ ◦ π. If f ′ is algebraically stable and the pair (X ′, f ′)
satisfies the DML property, then (X, f) satisfies the DML property.

Definition 14.4. Let X be a smooth projective surface defined over an alge-
braically closed field and f : X 99K X be a birational transformation. We say that
(X ′, f ′) is a birational model of (X, f) if there is a birational map π : X ′

99K X
such that

f ′ = π−1 ◦ f ◦ π.
Corollary 14.5. Let X be a smooth projective surface defined over an algebraical-
ly closed field and f : X 99K X be an algebraically stable birational transformation
such that (X, f) satisfies the DML property. Then all birational models (X ′, f ′)
of (X, f) satisfy the DML property.

Proof of Corollary 14.5. Pick Y a desingularization of the graph of f and set
π1, π2 the projections which make the diagram

Y
π1

~~

π2

  

X
φ

// X ′

to be commutative. Since f is algebraically stable, its lift to Y satisfies the DML
property by Theorem 14.3 (iv). We conclude that (X ′, f ′) satisfies the DML
property by Theorem 14.3 (iii). �

Proof of Theorem 14.3. (i). The ”only if” part is trivial, so that we only have to
deal with the ”if” part. We assume that (X, fm) satisfies the DML property. Let
C be a curve in X and p be a point in X such that fn(p) 6∈ I(f) for all n ≥ 0.
Suppose that the set {n ∈ N| fn(p) ∈ C} is infinite. Since

{n ∈ N| fn(p) ∈ C} = ∪m−1
i=0 {n ∈ N| fnm(f i(p)) ∈ C},

then for some i, the set {n ∈ N| fnm(f i(p)) ∈ C} is also infinite. Since (X, fm)
satisfies the DML property, C is periodic or f i(p) is preperiodic. It follows that
C is periodic or p is preperiodic.
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(ii). If (X, f) satisfies the DML property, since f|U : U → U is a morphism,
(U, f|U) satisfies the DML property.

Conversely suppose that (U, f|U) satisfies the DML property. Let C be an
irreducible curve in X, p be a closed point in X such that fn(p) 6∈ I(f) for all
n ≥ 0 and the set {n ∈ N|fn(p) ∈ C} is infinite. The set E = X − U is a proper
closed subvariety of X. If p ∈ U , then we have that C 6⊆ E. Since (U, f|U) satisfies
the DML property, we have either p is preperiodic or C is periodic. Otherwise,
we may assume that for all n ≥ 0, fn(p) ∈ E, then the Zariski closure D of
{fn(p)| n ≥ 0}, is contained in E. We assume that p is not preperiodic, then
C ⊆ D. Since D is fixed, we have that C is periodic.

(iii). It is sufficient to treat the case when π is the blowup at a point q ∈ X ′. Let
C ′ be a curve in X ′, p′ be a point in X ′ such that (f ′)n(p′) 6∈ I(f ′) for all n ≥ 0
and the set {n ∈ N| (f ′)n(p′) ∈ C ′} is infinite. We assume that p′ is not a periodic
point, so that for n large enough, f

′n(p′) 6= q. Replacing p by f
′m(p′) for some m

large enough, we may assume that f
′n(p′) 6= q for all n ≥ 0. Set p = π−1(p′) and

C = π−1(C ′), then we have fn(p) 6∈ I(f) for all n ≥ 0 and the set

{n ∈ N| fn(p) ∈ C}
is infinite. This implies C and then C ′ to be periodic.

(iv). Let C ⊆ X be a curve, p be a point in X such that fn(p) 6∈ I(f) for all
n ≥ 0 and the set {n ∈ N| fn(p) ∈ C} is infinite. We may assume that C is
irreducible. Let E be the exceptional locus of π.

Lemma 14.6. If C ⊆ E and π(C) is a point in I(f ′), then (iv) holds.

Proof of Lemma 14.6. Set q := π(C) ∈ I(f ′). Since f ′ is algebraically stable, we
have q 6∈ I((f ′

)−n) and

π(f−n(C)) = (f
′

)−n(q)

for all n ≥ 1. It follows that f−n(C) is a point or an exceptional curve of π for
n ≥ 1.

If there exists l ≥ 1 such that f−l(C) is a point, we pick two integers n1 > n2 ≥ l
such that fn1(p), fn2(p) ∈ C. Then fn1−l(p) = fn2−l(p), which implies p to be
preperiodic.

Otherwise f−n(C) is an exceptional curve of π, for all n ≥ 0. Since there are
only finitely many irreducible components of E, we have that C is periodic. �

Denote by K = π−1(I(f ′)).

Lemma 14.7. If there are infinitely many n ≥ 0 such that fn(p) ∈ K, then (iv)
holds.

Proof of 14.7. There is an irreducible component F of K such that the set {n ≥
0| fn(p) ∈ F} is infinite.

If F is a point, then p is preperiodic.
Otherwise F is a curve, then F ⊆ E and π(F ) ⊆ I(f ′). Suppose that p is not

preperiodic, Lemma 14.6 shows that F is periodic. Then F ′ = ∪k≥0f
k(F ) is a

curve and fn(p) ⊆ F ′ for all n ≥ 0. If C ⊆ F ′, then C is periodic. If C 6⊆ F ′,
then C ∩ F ′ is finite, and this shows that p is preperiodic. �
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Lemma 14.8. If C ⊆ E, then (iv) holds.

Proof. By Lemma 14.7, we may assume that there exists an integer N ≥ 0, such
that fn(p) 6∈ K for all n ≥ N.

Set q := π(C). By Lemma 14.6, we assume that q 6∈ I(f ′). Then we have

π(fN+l(p)) = f
′l(π(fN(p)))

for l ≥ 0. It follows that there are infinitely many l ≥ 0, such that f
′l(π(fN(p))) =

q. Then q is preperiodic and the obit of f
′N(q) does not meet I(f ′). Since

π(fn(C)) = f
′n(q) for all n ≥ 0, we have fn(C) ⊆ ∪k≥Nπ

−1(fk(q)) for all n ≥ N.
Hence ether C is periodic or for some n ≥ 1, fn(C) is a point. In the second case,
we conclude that p is preperiodic. �

Let L = K ∪ E.
Lemma 14.9. If there are infinitely many n ≥ 0 such that fn(p) ∈ L, then (iv)
holds.

Proof of Lemma 14.9. There is an irreducible component F of L such that {n ≥
0| fn(p) ∈ F} is infinite.
If F is a point, then p is preperiodic.
Otherwise F is a curve, then F ⊆ E. Suppose that p is not preperiodic, Lemma

14.8 shows that F is periodic. Then F ′ = ∪k≥0f
k(F ) is a curve and fn(p) ⊆ F ′

for all n ≥ 0. If C ⊆ F ′, then C is periodic. Otherwise C 6⊆ F ′, we have that
C ∩ F ′ is finite and then p is preperiodic. �

We may assume that there is an integer M ≥ 0, such that fn(p) 6∈ L for all
n ≥M.
If C 6⊆ E, π(C) is a curve. For all l ≥ 0 we have

π(fM+l(p)) = f
′l(π(fM(p))) 6∈ I(f ′).

Since (X ′, f ′) satisfies the DML property, either π(C) is periodic or π(p) is prepe-
riodic. When π(C) is periodic, we have C is periodic. Otherwise π(p) is prepe-
riodic. For any l ≥ 0, π is invertible on some Zariski neighborhood of the point
f

′l(π(fM(p))) and then we conclude that p is peperiodic. �

15. Local dynamical Mordell Lang theorem

The aim of this section is to prove Theorem 11.1. We are in the following
situation:

(i) X is a smooth projective surface defined over an arbitrary valued field
(K, | · |).

(ii) f : X 99K X is a birational transformation defined over K;
(iii) Q is K-point of X such that Q ∈ I(f−1) \ I(f) and f(Q) = Q;
(iv) p is K-point of X such that fn(p) 6∈ I(f) for all n ≥ 0;
(v) fn(p)→ Q as n→∞ with respect to the topology induced by | · |;
(vi) C is a curve in X such that the set {n ∈ N| fn(p) ∈ C} is infinite;
(vii) for all n ≥ 0, fn(p) 6= Q.

We want to prove that C is fixed by f.
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Proof of Theorem 11.1. Since fn(p) → Q as n → ∞, we may suppose that
fn(p) 6∈ I(f−1) for all n ≥ 0. If f−1(C) is one point, then fn(p) 6∈ C for all
n ≥ 0 which is a contradiction. Then f−1(C) is not a point. By the same reason,
f−n(C) is not a point for all n ≥ 0.

Pick a resolution of f as in the diagram (∗) in Section 12.1. Recall Proposition
12.1. There is an infinite sequence {nk}k≥0 such that fnk(p) ∈ C \{Q}. It follows
that fnk−m(p) ∈ f−m(C) for k large enough. Setting k →∞, we get Q ∈ f−m(C)
for all m ≥ 0.
If C 6= f−1(C), then we have f−m(C) 6= f−m−1(C) for allm ≥ 0. By computing

local intersection at Q, we get

(15.1) (f−m(C) · f−m−1(C))Q =
∑

x∈π−1
2 (Q)

(π∗
2f

−m(C) · π#
2 f

−m−1(C))x

=
∑

x∈π−1
2 (Q)

((
π#
2 f

−m(C) +
s∑

i=1

vEi
(f−m(C))Ei

)
· π#

2 f
−m−1(C)

)

x

where Ei, 1 ≤ i ≤ s are irreducible exceptional curves for π2. Since

Supp(
s∑

i=1

vEi
(f−m(C))Ei) = ∪1≤i≤sEi = π−1

2 (Q),

we have

(5.1) =
∑

x∈π−1
2 (Q)

(π#
2 f

−m(C)·π#
2 f

−m−1(C))x+

((
s∑

i=1

vEi
(f−m(C))Ei

)
· π#

2 f
−m−1(C)

)

≥
∑

x∈π−1
2 (Q)

(π#
2 f

−m(C) · π#
2 f

−m−1(C))x + 1

=
(
σ(f−m−1(C)) · σ(f−m−2(C))

)
σ(Q)

+ 1

= (f−m−1(C) · f−m−2(C))Q + 1.

It follows that

0 < (f−m(C)·f−m−1(C))Q ≤ (f−m+1(C)·f−m(C))Q−1 ≤ · · · ≤ (C ·f−1(C))Q−m

for all m ≥ 0, which yields a contradiction. So we have C = f−1(C) and then
f(C) = C. �

Observe that our proof of Theorem 11.1 actually gives

Proposition 15.1. Let X be a projective surface over an algebraically closed field
and f : X 99K X be a birational map with a fixed point Q ∈ I(f−1) \ I(f). Then
all periodic curves passing through Q are fixed.
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16. The case λ(f) = 1

In this section, we prove Theorem A in the case λ(f) = 1. Denote by K an
algebraically closed field of characteristic 0.

Recall from [7] and [10], that if λ(f) = 1, then we are in one of the following
two cases:

(1) there exists a smooth projective surface X and an automorphism f ′ on X
such that the pair (X, f ′) is birationally conjugated to (A2, f);

(2) in suitable affine coordinates, f(x, y) = (ax + b, A(x)y + B(x)) where A
and B are polynomials with A 6= 0 and a ∈ K∗, b ∈ K.

The case of automorphism has been treated by Bell, Ghioca and Tucker. The-
orem A thus follows from [3, Theorem 1.3] in case (1) and in case (2) where
degA = 0. So in this section we suppose that f takes form

f(x, y) = (ax+ b, A(x)y +B(x)) (∗∗)
with A,B ∈ K[x], degA ≥ 1, a ∈ K∗ and b ∈ K.

16.1. Algebraically stable models. Any map of the form (∗∗) can be made
algebraically stable in a suitable Hirzebruch surface Fn for some n ≥ 0. It is
convenient to work with the presentation of these surfaces as a quotient by
(Gm)

2, as in [17]. By definition, the set of closed points Fn(K) is the quotient of
A4(K)\ ({x1 = 0 and x2 = 0}∪{x3 = 0 and x4 = 0}) by the equivalence relation
generated by

(x1, x2, x3, x4) ∼ (λx1, λx2, µx3, µ/λ
nx4)

for λ, µ ∈ K∗. We denote by [x1, x2, x3, x4] the equivalence class of (x1, x2, x3, x4).
We have a natural morphism πn : Fn → P1 given by πn([x1, x2, x3, x4]) = [x1 : x2]
which makes Fn into a locally trivial P1 fibration.
We shall look at the embedding

in : A2 →֒ Fn : (x, y) 7→ [x, 1, y, 1].

Then Fn \ A2 is union of two lines: one is the fiber at infinity F∞ of πn, and the
other one is a section of πn which we denote by L∞.

Recall that f has the form (∗∗). For each n ≥ 0, set d = max{degA, degB−n}.
By the embedding in, the map f extends to a birational transformation

fn : [x1, x2, x3, x4] 7→ [ax1 + bx2, x2, A(x1/x2)x
d
2x3 +B(x1/x2)x

d+n
2 x4, x

d
2x4]

on Fn. For any n ≥ degB − degA+ 1, we have d = degA and

I(fn) = {[x1, x2, x3, x4] ∈ Fn|x2 = x3 = 0}.
The unique curve which is contracted by fn is F∞ = {x2 = 0} and its image is
fn(F∞) = [1, 0, 1, 0]. It implies the following:

Proposition 16.1. For any integer n ≥ degB − degA + 1, fn is algebraically
stable on Fn and contracts the curve F∞ to the point [1, 0, 1, 0].
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16.2. The attracting case. In the remaining of this section, we fix an integer
m such that the extension of f to Fm is algebraically stable. For simplicity, we
write f for the map fm induced by f on Fm.

Proposition 16.2. Let | · | be an absolute value on K such that |a| > 1. Then
(Fm, f) satisfies the DML property.

Proof. Since a 6= 1, by changing coordinates, we may assume that f = (ax,A(x)y+
B(x)). Since f contracts the fiber F∞ to O := L∞ ∩ F∞, the point O is fixed
and the two eigenvalues of df at O are 1/a and 0. Since |a| > 1, there is a neigh-
bourhood U of O, such that U ∩ I(f) = ∅, f(U) ⊆ U and fn → O uniformly on
U.

Let C be an irreducible curve in P2
K and p be a point in A2

K such that the set
{n ∈ N| fn(p) ∈ C} is infinite. By Lemma 14.3, we may assume that p ∈ A2

K

and C 6⊆ L∞ ∪ F∞.
If C ∩ F∞ = {O}, there is an open set V of P1

K , such that [1 : 0] ∈ V and
π−1
m (V ) ∩ C ⊆ U. Since |a| > 1, for n large enough, fn(p) ∈ π−1

m (V ). So there is
an integer n1 > 0 such that fn1(p) ∈ U. Theorem 11.1 implies that the curve C
is fixed.

We may assume now that fn(C) ∩ F∞ 6= {O} for all n ≥ 0.
If C ∩ F∞ = ∅, then C is a fiber of the rational fibration πm : Fm → P1. Since

{n ∈ N| fn(p) ∈ C} is infinite, the curve C is fixed.
Finally assume that fn(C)∩ F∞ 6= ∅ for all n ≥ 0. Since f contracts F∞ to O,

we have

fn(C) ∩ I(f) 6= ∅,
and we conclude by Theorem 11.2 that C is periodic in this case. �

16.3. The general case.

Proposition 16.3. The pair (Fm, f) satisfies the DML property.

Proof. Let C be a curve in Fm, and p be a point in A2
K such that the set {n ≥

0|fn(p) ∈ C} is infinite. We may assume that the transcendence degree of K
is finite, since we can find a subfield of K such that it has finite transcendence
degree and f, C and p are all defined over this subfield.
In the case f acts on the base as the identity, the proposition holds trivially.

Assume that it is not that case. Let O = L∞∩F∞. As in the proof of Proposition
16.2, we only have to consider the case C ∩ F∞ = O.

If a is a root of unity, we may replace f by fn for some integer n > 0 and assume
that a = 1 and b = 1. Since the transcendence degree ofK is finite, we may embed
K in the field of complex numbers C. Let | · | be the standard absolute value on
C. Since f contracts F∞ to O, there is a neighborhood U of O with respect to the
usual euclidian topology such that for all point q ∈ U ∩{(x, y) ∈ C2| Re(x) > 0},
we have limn→∞ fn(q) = O. Since C ∩ F∞ = O, there exists M > 0, such that
C ∩ {(x, y)| Re(x) > M} ⊆ U and we conclude by using Theorem 11.1 in this
case.
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If a is an algebraic number over Q and is not a root of unity, by [20, Theorem
3.8] there exists an absolute value | · |v (either archimedean or non-archimedean)
on Q such that |a|v > 1. This shows that (Fm, f) satisfies the DML property by
Proposition 16.2.

If a is not an algebraic number over Q, we claim that there exists a field
embedding ι : K →֒ C such that |ι(a)| > 1, and we may conclude again by using
Proposition 16.2.

It thus remains to prove the claim. There is a subring R of K which is finitely
generated over Q, such that f, C and p are all defined over R. There is an integer
l > 0, such that R = Q[t1, · · · , tl]/I, where I is a prime ideal of Q[t1, · · · , tl]. It
induces an embedding SpecR := V ⊆ Al

Q
. We set

VC := V ×SpecQ SpecC ⊆ Al
C.

For any polynomial F ∈ Q[t1, · · · , tl] \ I, we also define VF := {F = 0}. Then
VC \ VF is a dense open set in the usual euclidian topology. Since Q[t1, · · · , tl] \ I
is countable, the set VC \ (∪F∈Q[t1,··· ,tl]\IVF ) is dense. Interpreting a a nonconstant
holomorphic function on VC, we see that there exists an open set W ⊆ VC such
that |a| > 1 on W.

Pick a closed point (s1, · · · , sl) ∈ W \(∪F∈Q[t1,··· ,tl]\IVF ) and consider the unique

morphism ι : R = Q[t1, · · · , tl]/I → C sending ti to si. This morphism is in fact
an embedding. We may extend it to an embedding of K as required. �

17. Upper bound on heights when λ(f) > 1

17.1. Absolute values on fields. ([20]) SetMQ := {|·|∞ and |·|p for all prime p}
where | · |∞ is the usual absolute value and | · |p is the p-adic absolute value defined
by |x| := p−ordp(x) for x ∈ Q.

Let K/Q be a number field. The set of places on K is denoted byMK and
consists of all absolute values on K whose restriction to Q is one of the places in
MQ. Further we denote byM∞

K the set of archimedean places; and byM0
K the

set of nonarchimedean places.
When v is archimedean, there exists an embedding σv : K →֒ C (or R) such

that | · |v is the restriction to K of the usual absolute value on C (or R).

Similarly, we introduce the set of places on function fields.
Let C be a a smooth projective curve defined over an algebraically closed field

k and L := k(C) be the function field of C. The set of places on L, denoted by
ML consists of all absolute values of the form:

| · |p : x 7→ eordp(x)

for any x ∈ L and any closed point p ∈ C.
Let K/L be a finite field extension. The set of places on K is denoted byMK

and consists of all absolute values on K whose restriction to L is one of the places
inML. In this case, all the places inMK are nonarchimedean. SetM0

K =MK

andM∞
K = ∅ for convenience.
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Let K/L be a finite field extension where L = Q or a function field k(C) of a
curve C. For any place v ∈ MK , denote by nv := [Kv : Lv] the local degree of v
then we have the product formula

∏

v∈MK

|x|nv

v = 1

for all x ∈ K∗.
For any v ∈MK , denote by Ov := {x ∈ K| |x|v ≤ 1} the ring of v-integers. In

the number field case, we also denote by OK := {x ∈ K| |x|v ≤ 1 for all v ∈M0
K}

the ring of integers.

17.2. Basics on Heights. We recall some basic properties of heights that are
needed in the proof of Theorem A, see [18] or [19] for detail.

In this section, we set L = Q or k(C) the function field of a curve C defined
over an algebraically closed field k. Denote by L its algebraic closure.

Proposition-Definition 17.1. Let K/L be a finite field extension. Let p ∈
Pn(K) be a point with homogeneous coordinate p = [x0 : · · · : xn] where x0, · · · , xn ∈
K. The height of p is the quantity

HPn(p) := (
∏

v∈MK

max{|x0|v, · · · , |xn|v}nv)1/[K:L].

The height HPn(p) depends neither on the choice of homogeneous coordinates of
p, nor on the choice of a field extension K which contains p.

When L = k(C), we have a geometric interpretation of the height HPn(p).
Observe that Pn

L is the generic fiber of the trivial fibration π : Pn
C := Pn×C → C.

We set sp : D → Pn
C the normalization of the Zariski closure of p in Pn

C . Then we
have

HPn(p) = e
deg(s∗pOP

n
C
(1))/ deg(π◦sp).

Proposition 17.2. Let f : Pn
L
99K Pm

L
be a rational map and X be a subvariety

of Pn
L

such that I(f) ∩ X is empty and the restriction f |X is finite of degree d
onto its image f(X).

Then there exist A > 0 such that for all point p ∈ X(L), we have

1

A
HPn(p)d ≤ HPm(f(p)) ≤ AHPn(p)d.

Proposition 17.3 (Northcott Property). Let K/Q be a number field, and B > 0
be any constant. Then the set

{p ∈ Pn(K)| HPn(p) ≤ B}
is finite.

Remark 17.4. The Northcott Property does not hold in the case K = k(C)
when k is not a finite field. For example, the set

{p ∈ Pn(k(t))| HPn(p) = 0} = {[x : y]| (x, y) ∈ k2 \ {(0, 0)}}
is infinite.
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17.3. Upper bounds on heights. Let K be a number field or a function field
of a smooth curve over an algebraically closed field k′. Let f : A2

K
→ A2

K
be any

birational polynomial morphism defined over K and assume that λ(f) > 1.
According to Theorem 12.4, we may suppose that there exists a compactifica-

tion X of A2
K

, a closed point Q ∈ X \ A2
K

such that f extends to a birational

transformation f̃ on X which satisfies the following properties:

(i) f̃ is algebraically stable on X;

(ii) there exists a closed point Q ∈ X \ A2 fixed by f̃ , such that df̃(Q) = 0;

(iii) f̃(X \ A2) = Q.

To simplify, we write f = f̃ in the rest of the paper. We fix an embedding
X ⊆ PN

K
. Let C be an irreducible curve in X whose intersection with A2

K
is non

empty.

Proposition 17.5. Suppose that C is not periodic and C \ A2
K

= {Q}. Then
there exists a number B > 0 such that for any point p ∈ C(K) for which the set
{n ∈ N| fn(p) ∈ C} is infinite, we have HPN (p) ≤ B.

Proof. Assume that X, f, C and Q are all defined over K and Q = [1 : 0 : · · · :
0] ∈ PN

K . We can extend f to a rational morphism on PN which is regular at
Q. Then there exists an element a ∈ K∗ and Fi ∈ (x1, · · · , xN)K[x0, · · · , xN ] for
i = 0, · · · , N such that

f([1 : x1 : · · · : xN ]) = [a+ F0 : F1 : · · · : FN ]

for any [1 : x1 : · · · : xN ] ∈ X. Since f is regular at Q and a 6= 0, there is a finite
set S ⊆M0

K such that for any v ∈M0
K \ S, we have |a|v = 1 and all coefficients

of f are defined in Ov. Recall that we may endow X with a metric dv, see Section
12.3.
For any v ∈ M0

K \ S, set rv := 1 and Uv := {x ∈ X(K)| dv(x,Q) < 1}. Since
df(Q) = 0, we see that for all x ∈ Uv, dv(f(x), Q) ≤ dv(x,Q)

2, hence

lim
n→∞

fn(x) = Q.

For any v ∈ S, set rv := |a|v and Uv := {x ∈ X(K)| dv(x, q) < rv}. We see
that for all x ∈ Uv, dv(f(x), Q) ≤ dv(x,Q)

2/rv, and again it follows that

lim
n→∞

fn(x) = Q.

For any v ∈M∞
K , since df(Q) = 0, there is rv > 0 such that for any x ∈ Uv :=

{x ∈ X(K)| dv(x, q) < rv} we have f(x) ⊆ Uv and

lim
n→∞

fn(x) = Q.

If p ∈ ∪v∈MK
Uv, Theorem 11.1 shows that C is periodic and this contradicts

our assumption. In other words, we need to estimate the height of a given point

p ∈ C(K) \ ∪v∈MK
Uv.

If C intersects the line at infinity only at the point Q, then we may directly
estimate the height of p given by the embedding of C into PN

K . Since we do not
assume that this is the case, we shall work first with a height induced by a divisor
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on C given by the divisor Q, and then estimate hPN (p) using Proposition 17.2. To

do so, let i : C̃ → C ⊆ X be the normalization of C and pick a point Q′ ∈ i−1(Q).

There is a positive integer l such that lQ′ is a very ample divisor of C̃. So there

is an embedding j : C̃ →֒ PM for some M > 0 such that

Q′ = [1 : 0 : · · · : 0] = H∞ ∩ C̃
where H∞ = {xM = 0} is the hyperplane at infinity. Let

g : C̃ → P1

be a morphism sending [x0 : · · · : xM ] ∈ C̃ to [x0 : xM ] ∈ P1. It is well defined

since {x0 = 0} ∩H∞ ∩ C̃ = ∅. Then g is finite and

g−1([1 : 0]) = H∞ ∩ C̃ = [1 : 0 · · · : 0].
By base change, we may assume that C̃, i, j, g are all defined over K.

In the function field case, there is a smooth projective curve D such that
K = k′(D); and in the number field case, we set D = SpecOK .

We consider the irreducible scheme C̃ ⊆ PM
D over D whose generic fiber is C̃

and the irreducible scheme X ⊆ PN
D over D whose generic fiber is X. Then i

extends to a map ι : C̃ 99K X over D birationally to its image. For any v ∈M0
K ,

let

pv = {x ∈ Ov| v(x) > 0}
be a prime ideal in Ov. There is a finite set T consisting of those places v ∈M0

K

such that ι is not regular along the special fibre C̃Ov/pv at pv ∈ D or C̃Ov/pk ∩
H∞,Ov/pv 6= {[1 : 0 : · · · : 0]}.

For any v ∈M0
K \ T ∪ S, observe that we have

Vv :={[1 : x1 : · · · : xM ] ∈ C̃(K)| |xi|v < 1, i = 1, · · · ,M}
={[1 : x1 : · · · : xM ] ∈ C̃(K)| |xM |v < 1} = g−1(Ωv) ∩ C̃(K)

with Ωv := {[1 : x] ∈ P1(K)| |x|v < tv} and tv := 1.
For any v ∈ T ∪ S ∪M∞

K , by the continuity of i, there is sv > 0 such that

i(Vv) ∈ Uv

where Vv = {[1 : x1 : · · · : xM ] ∈ C̃(K)| |xi|v < sv, i = 1, · · ·M}. Since g−1([1 :
0]) = {[1 : 0 : · · · : 0]}, there exists tv > 0, such that

g−1(Ωv) ∩ C̃ ⊆ Vv

where Ωv = {[1 : x] ∈ P1(K)| |x|v < tv}.
We need to find an upper bound for the height of points in C(K) \ ∪v∈MK

Uv.
Since the set Sing(C) of singular points of C is finite, we only have to bound the
height of points in C(K) \ (Sing(C) ∪v∈MK

Uv).

Let p be a point in C(K) \ (Sing(C) ∪v∈MK
Uv). Observe that i−1(p) ∈ C̃(K)

and x := j(i−1(p)) is also defined over K. We have x 6∈ Vv hence y := g(x) 6∈ Ωv

for all v ∈MK .
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For any y = [y0 : y1] ∈ P1(K) \ (∪v∈MK
Ωv), we have |y1/y0|v ≥ tv for all v. We

get the following upper bound

HP1(y)[K:Q] =
∏

v∈MK

max{|y0|v, |y1|v}nv

≤
∏

v∈MK

max{|y1|v/tv, |y1|v}nv

=
∏

v∈MK

|y1|nv

v

∏

v∈MK

max{1, 1/tv}nv

=
∏

v∈MK

max{1, 1/tv}nv =: B′ <∞.

By Proposition 17.2 applied to g : C̃ →֒ PM and i : C̃ → PN , we get HPN (p) ≤ B
for some constant B independent on the choice of p as we require. �

18. Proof of Theorem A

Let C be a curve in A2
K . We want to show that for any point p ∈ A2(K) such

that the set

{n ∈ N| fn(p) ∈ C}
is infinite, then either p is preperiodic or C is periodic.
According to Section 16, we may assume that λ(f) > 1. As in Section 17.3,

we use Theorem 12.4 to get a compactification X of A2
K . For simplicity, we also

denote by f the map induced by f onX. There exists n ≥ 1 such that fn contracts
X \ A2

K to a superattracting fixed point Q ∈ X \ A2
K . We extend C to a curve

in X. Suppose that C is not periodic. By Theorem 11.2, we may assume that
C(K) \ A2(K) = {Q}. Finally we fix an embedding X →֒ PN

K for some N ≥ 1.

We first treat the case K = Q.
There is a number field K ′ such that both f and p are defined over K ′. Then

fn(p) ∈ A2(K ′) for all n ≥ 0.
Proposition 17.5 and the Northcott Property imply that the set {fn(p)| n ≥

0} ∩ C is finite. Since the set {n ∈ N| fn(p) ∈ C} is infinite, there exists
n1 > n2 > 0 such that fn1(p) = fn2(p). We conclude that p is preperiodic.

Next we consider the general case of an algebraically closed field K of charac-
teristic 0.

By replacing K by an algebraically closed subfield over which p, C and f are
all defined, we may suppose that the transcendence degree tr.d.K/Q of K over
Q is finite. We argue by induction on tr.d.K/Q.

If tr.d.K/Q = 0, then K = Q and we are due by what precedes.
If tr.d.K/Q ≥ 1, then there is an algebraically closed subfield k of K such that

tr.d.k/Q = tr.d.K/Q− 1.
There is a smooth projective curve D over k, such that X, f, p,Q and C are

defined over the function field k(D) of D. Observe that K = k(D).
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We consider the irreducible scheme

π : X ⊆ PN
D → D

over D whose generic fiber is X and C ⊆ PN
D the Zariski closure of C in X .

The map f extends to a birational map f ′ : X 99K X over D. For any x ∈ D,
denote by Xx and Cx the fiber of X and C at x respectively, and denote by fx
the restriction of map f ′ to the fiber Xx.
Proposition 17.5 implies that there is a number M ≥ 0 such that for all n ≥ 0

either fn(p) 6∈ C or HPN (fn(p)) ≤M.
A point s ∈ X(k(D)) is associated to its Zariski closure in X which is a section

of π : X → D. For simplicity, we also write s for this section. Then the height of
s is

HPN (s) = e(s·L)

where L := OPN
D
(1).

For any section s, observe that π induces an isomorphism from s to the curve
D. We may consider the Hilbert polynomial

χ(L⊗n, s) = 1− g(s) + n(s · L) = 1− g(D) + n logH(s).

It follows that there is a quasi-projective k-variety MH that parameterizes the
sections s of π such that HPN (s) ≤M (see [5]).
Let T1 be the set of points x ∈ D such that fx is birational and I(f

−1
x )∩I(fx) 6=

∅. Observe that T1 is finite. Let T2 be the set of the points x ∈ D \ T1, such that
Cx is fixed. Since C is not fixed, T2 is finite. Because k is algebraically closed,
D \ (T1 ∪ T2) is infinite. For any point x ∈ D, denote by px :MH → Xx the map
sending s to s(x). Pick a sequence of distinct points {xi}i≥0 ⊆ D \ (T1 ∪ T2). For
any l ≥ 1, let

pl =
l∏

i=1

pxi
:MH →

l∏

i=1

Xxi
.

Observe that any two points s1, s2 ∈ MH are equal if and only if pi(s1) = pi(s2)
for all i ≥ 0.

We claim the following lemma, and prove it later.

Lemma 18.1. Let X be any reduced quasi-projective variety over an algebraically
closed field k. For any i ≥ 1, let πi : X → Yi be a morphism. If for any difference
points x1, x2 ∈ X, there exists i ≥ 0, such that πi(x1) 6= πi(x2), then for l large
enough the map

pl =
l∏

i=1

πi : X →
l∏

i=1

Yi

is finite.

By Lemma 18.1, there is an integer L large enough, such that the map pL is
finite. By Proposition 15.1, Cxi

is not periodic for all i ≥ 1. The set N := {n ≥
0|fn(p) ∈ C} is infinite, enumerate N = {n1 < n2 < · · · < ni < ni+1 < · · · }.
For any i ≥ 0, there exists si ∈ MH such that si = fni(p). By the induction
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hypothesis, we know that sn0
(xi) = fn0(p)(xi) is a preperiodic point of fxi

for
any 1 ≤ i ≤ L. Then the orbit Gi of p(xi) in Xxi

is finite. So the set

pL({si}i≥0) ⊆
L∏

i=0

Gi

is finite. Since pL is finite, then we have {si}i≥0 is finite. Then there is i1 > i2
such that si1 = si2 , and f

ni1 (p) = fni2 (p). Then p is preperiodic. �

Proof of Lemma 18.1. We prove this lemma by induction on the dimension of X.
If dimX = 0, then the result is trivial.
If dimX > 0, we may assume that X is irreducible. We pick any point x ∈ X,

and let Fl be the fiber of pl which contains x. Observe that

Fl+1 ⊆ Fl,

so that there is an integer L′ ≥ 1, such that for any L ≥ L′,

FL = ∩l≥0Fl.

Since for any point x1 ∈ X − {x}, there exists i ≥ 0, such that πi(x1) 6= πi(x),
we have

FL = ∩l≥0Fl = {x},
so that

dimX − dim pL(X) ≤ dimFL = 0.

In particular pL is generically finite. It means that there exists an open set U of
pL(X), such that pL : p−1

L (U)→ U is finite. Set X ′ = X − p−1
L (U), then we have

dimX ′ ≤ dimX − 1.
By the induction hypothesis, there is L′′ ≥ L′, such that for any L ≥ L′′, pL|X′

is finite and then pL is finite. �

Remark 18.2. With a little modification, this proof of Theorem A still works
for birational polynomial endomorphisms f on the affine plan defined over fields
of arbitrary characteristic satisfying λ1f > 1.
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Part 3

Intersection of valuation rings in k[x, y]



19. Introduction

Let R := k[x, y] denote the ring of polynomials in two variables over an alge-
braically closed field k. Given any finite set of valuations S on R that are trivial
on k, we define RS = ∩v∈S{P ∈ R, v(P ) ≥ 0} as the intersection of the valuation
rings of the elements in S with R. We obtain in this way a k-subalgebra of R,
and it is a natural question to ask for the transcendence degree of the fraction
field of RS over k which is an integer δ(S) ∈ {0, 1, 2}.

Our main result is the construction of a symmetric matrix M(S) whose sig-
nature characterizes the case when δ(S) = 2. We should mention that when all

valuations in S are divisorial, this matrix M(S) is the same as the matrix M̃ in
[7, Corollary 4.9].
As we shall see below, this construction is based on the analysis developped by

C. Favre and M. Jonsson [4] on the tree of normalized rank 1 valuations centered
at infinity on R. In the case S consists only of divisorial valuations, M(S) can
however be defined using classical intersection theory on an appropriate projective
compactification of the affine plane, and we shall explain that one can recover in
this way recent results by Schroer [11] and Mondal [9].

To get some insight into the problem, let us now describe a couple of examples.
We first observe that if S1, S2 are two finite sets of valuations satisfying S1 ⊆ S2,
then we have RS2

⊆ RS1
. Also it is only necessary to consider valuations v that

are centered at infinity in the sense that R is not contained in the valuation ring
of v.
We first recall the definition of a monomial valuation. Given (s, t) ∈ R2 \
{(0, 0)}, we denote by vs,t : R→ R the rank 1 valuation defined by

(19.1) vs,t

(∑

i,j≥0

ai,jx
iyj

)
:= min {si+ tj| ai,j 6= 0} .

The valuation vs,t is centered at infinity iff min{s, t} < 0, and one immediately
checks that R{vs,t} = k when max{s, t} < 0 so that δ({vs,t}) = 0 in this case.
This happens in particular when (s, t) = (−1,−1) that is δ({− deg}) = 0.
Fix the compactification A2

k ⊂ P2
k, and write L∞ = P2

k \ A2
k for the line at

infinity. Recall that a polynomial P ∈ R is said to have one place at infinity,
if the closure of P = 0 intersects L∞ at a single point and the germ of curve it
defines at that point is analytically irreducible. If P has one place at infinity,
it follows from a theorem of Moh [13] that all curves {P = λ} have one place
at infinity. This pencil thus defines a rank 1 (divisorial) valuation v|P | sending
Q ∈ R to v|P |(Q) := −#{P−1(λ)∩Q−1(0)}/ degP for λ generic. One has in this
case R{v|P |} = k[P ], hence δ({v|P |}) = 1.
To get examples of a finite family valuations such that δ = 2, it is necessary to

choose valuations that are far enough from − deg. A first construction arises as
follows. Pick s, t ∈ R2 such that s < 0 < t and let m be any integer larger than
|s|/t. Since k[xym, y] ⊂ Rvs,t it follows that δ({vs,t}) = 2.
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Next choose {si}1≤i≤m any finite set of branches based at points lying on L∞
of algebraic curves defined in A2 by equations {Pi = 0}. Let vi be the rank 2
valuation on R associated to the branch si. Then one checks that (P1 · · ·Pm).R ⊂
R{v1,··· ,vm} so that δ({v1, · · · , vm}) = 2.

A first (simple) characterization of the case δ(S) = 2 is as follows.

Theorem 19.1. Let S be any finite set of rank one valuations on R = k[x, y]
that are trivial on k∗. Then the transcendence degree δ(S) of the fraction field of
the intersection of R with the valuation rings of the valuations in S is equal to 2
iff there exists a polynomial P ∈ R satisfying v(P ) > 0 for all v ∈ S.

We now describe more precisely our main result. Since the construction of our
matrix M(S) relies on the fine tree structure of the space of normalized rank 1
valuations centered at infinity (see Section 20), we first explain our main theorem
in the simplified (yet important) situation when all valuations are divisorial.

Now pick any proper modification π : X → P2 that is an isomorphism above
the affine plane with X a smooth projective surface. Let {E0, E1, · · · , Em} be
the set of all irreducible components of X \ A2

k with E0 the strict transform of
L∞, and S be a subset of {ordE0

, ordE1
, · · · , ordEm

}.
Since the intersection form on the divisors Ei’s is non-degenerate, for each i,

there exists a unique divisor Ěi supported at infinity such that (Ěi ·Ej) = δi,j for
all i, j. Observe that (Ě0 · Ě0) = +1 > 0.
Finally we define M(S) to be the symmetric matrix whose entries are given by

[(Ěi · Ěj)]1≤i,j≤m.
Our main theorem in the case of divisorial valuations reads as follows.

Theorem 19.2. Given any finite set of divisorial valuations S on R that are
centered at infinity, we have δ(S) = 2 if and only if the matrix M(S) is negative
definite.

By the Hodge index theorem, the matrix M(S) is negative definite if and only
if χ(S) := (−1)m detM(S) > 0.

When S is reduced to a singleton, Theorem 19.2 is due to P. Mondal, see [9,
Theorem 1.4].

To treat the case of not necessarily divisorial valuations we need to briefly
recall some facts on the valuation tree as defined by C. Favre and M. Jonsson
(see Section 20 for details).
We denote by V∞ the set of functions

v : k[x, y]→ R ∪ {+∞}
that satisfy the axiom of valuations v(PQ) = v(P ) + v(Q), and v(P + Q) ≥
min{v(P ), v(Q)} and normalized by min{v(x), v(y)} = −1. However, we allow v
to take the value +∞ on a non-constant polynomial. The set V∞ is a compact
topological space when equipped with the topology of the pointwise convergence.
It can be also endowed with a natural partial order relation given by v ≤ v′ if
and only if v(P ) ≤ v′(P ) for all P ∈ R. The unique minimal point for that order
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relation is − deg, and V∞ carries a tree structure in the sense that for any v′ the
set {v ∈ V∞| − deg ≤ v ≤ v′} is isomorphic as a poset to a segment in R with its
standard order relation. In particular, one may define the minimum v ∧ v′ of any
two valuations v, v′ ∈ V∞.

There is a canonical way to associate an element v̄ ∈ V∞ to a given valuation
v on R that is trivial on k. When v has rank 1, we may assume it takes its values
in R, and v̄ is the unique valuation that is proportional to v and normalized
by min{v̄(x), v̄(y)} = −1. For instance when E is an irreducible component
of π−1(L) for some proper modification π : X → P2 as above, then we define
bE := −min{ordE(x), ordE(y)}, and we have vE = 1

bE
ordE ∈ V∞. When v has

rank 2 and is associated to a branch s at infinity of an irreducible curve at infinity
C in A2, then v̄(P ) is the local intersection number of s with the divisor of P
with the convention that v̄(P ) = +∞ when P vanishes on C. Finally when v has
rank 2 and its valuation ring contains the valuation ring of a divisorial valuation
centered at infinity, we set v̄ to be this divisorial valuation.

The skewness function α : V∞ → [−∞, 1] is the unique upper semicontinuous
function on V∞ that is decreasing along any segment starting from − deg, and
that satisfies α(vE) = b−2

E (Ě · Ě) for any divisorial valuation (in the notation
introduced above). On the other hand, α(v) = −∞ when v is associated to a
branch at infinity of an algebraic curve in A2.

Now given any finite subset S = {v1, · · · , vm} of valuations centered at infinity
and trivial on k, we let S̄ = {v̄, v ∈ S} ⊂ V∞ and define

(19.2) M(S̄) := [α(v̄i ∧ v̄j)]1≤i,j≤m.

This is a symmetric matrix with entries in R ∪ {−∞}.
As above, we then have

Main Theorem. Given any finite set of valuations S on R that are trivial on k
and centered at infinity, we have δ(S) = 2 if and only if M(S̄) is negative definite.

When one entry of the matrix α(v̄i ∧ v̄j) is equal to −∞, we say that M(S̄) is
negative definite if and only if the matrix [(max{α(v̄i∧ v̄j),−t}]1≤i,j≤m is negative
definite for t large enough.

Observe that one can use the Hodge index theorem to characterize the case
whenM(S̄) is negative definite by a numerical invariant χ(S̄) := (−1)l detM(S̄).
Here l denotes the cardinality of S̄ and det(M(S̄)) := limt→−∞ det(max{α(v̄i ∧
v̄j), t})1≤i,j≤m when one entry of the matrix α(v̄i ∧ v̄j) is equal to −∞. Ob-
serve that the limit exists because the quantity det(max{α(v̄i ∧ v̄j), t})1≤i,j≤m is
a polynomial for t large enough.
Indeed our Main Theorem can be phrased by saying that δ(S) = 2 if and only

if χ(S̄) > 0.
When S contains only one point v, we get M(S) = α(v) and Theorem 19.1

together with our Main Theorem imply the following result of P. Mondal.

Theorem 19.3 ([9]). For a valuation v ∈ V∞, the existence of a non constant
polynomial P ∈ k[x, y] such that v(P ) > 0 is equivalent to α(v) < 0.
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Our Main Theorem also implies the following

Corollary 19.4. Let s1, · · · , sm be a finite set of formal branches of curves cen-
tered at infinity. Then there exists a polynomial P ∈ k[x, y] such that ord∞(P |si) >
0 for all i = 1, · · · ,m.

In a sequel to this paper [14], we shall use these results to get a proof of the
dynamical Mordell-Lang conjecture for polynomial endomorphisms on A2

Q
.

We conclude this introduction by giving a criterion of arithmetic nature for an
analytic branch at infinity to be algebraic.

The setting is as follows. Let K be a number field. For any finite set S of places
of K containing all archimedean places, denote by OK,S the ring of S-integers in
K. For any place v on K, denote by Kv the completion of K w.r.t. v. We cover
the line at infinity L∞ of the compactification of A2

K = SpecK[x, y] by P2
K by

charts Uq = SpecK[xq, yq] centered at q ∈ L∞(K) so that q = {(xq, yq) = (0, 0)},
L∞ ∩ Ui = {xi = 0}, and xq = 1/x, yq = y/x + c for some c ∈ K (or xq = 1/y,
yq = x/y).

We shall say that s is an adelic branch defined over K at infinity if it is given
by the following data.

(i) s is a formal branch based at a point q ∈ L∞(K) given in coordinates xq, yq
as above by a formal Puiseux series yq =

∑
j≥1 ajx

j/m
q ∈ OK,S[[x

1/m
q ]] for

some positive integer m and some finite set S of places of K containing
all archimedean places.

(ii) for each place v ∈ S, the radius of convergence of the Puiseux series

determining s is positive, i.e. lim supj→∞ |aj|−m/j
v > 0.

Observe that for any other place v /∈ S, then the radius of convergence is a least
1. In the sequel, we set rC,v to be the minimum between 1 and the radius of
convergence over Kv of this Puiseux series.

Any adelic branch s at infinity thus defines an analytic curve

Cv(s) := {(xi, yi) ∈ Ui(Kv)| yi =
∞∑

j=1

aijx
j

mi , |xi|v < min{rCi,v, 1}}.

Theorem 19.5. Suppose s1, · · · , sl, l ≥ 1 is a finite set of adelic branches at
infinity. Let {Bv}v∈MK

be a set of positive real numbers such that Bv = 1 for all
but finitely many places.

Finally let pn = (x(n), y(n)), n ≥ 0 be an infinite collection of K-points in
A2(K) such that for each place v ∈ MK then either max{|x(n)|v, |y(n)|v} ≤ Bv or
pn ∈ ∪li=1C

v(si).
Then there exists an algebraic curve C in A2

K such that any branch of C at
infinity is contained in the set {s1, · · · , sl} and pn belongs to C(K) for all n large
enough.

In particular, by the theorem of Faltings [1], the geometric genus of C is at
most one.
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The article is organized in five sections. Section 20 contains background infor-
mations on the valuation tree V∞. Section 21 is entirely devoted to the description
of a potential theory in V∞. Especially important for us are the notion of subhar-
monic functions and the definition of a Dirichlet energy. The proof of our main
theorem can be found in Section 22. Section 23 contains various remarks in the
case δ = 0 or 1. Finally Section 24 contains the proof of Theorem 19.5.
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20. The valuation tree

Let k be any algebraically closed field. In this section, we recall some basic
facts on the space of normalized valuations centered at infinity in the affine plane
and its tree structure following [2, 3, 4, 5].

20.1. Definition. The set V∞ is defined as the set of functions v : k[x, y] →
(−∞,+∞] satisfying:

(i) v(P1P2) = v(P1) + v(P2) for all P1, P2 ∈ k[x, y];
(ii) v(P1 + P2) ≥ min{v(P1), v(P2)};
(iii) v(0) = +∞, v|k∗ = 0 and min{v(x), v(y)} = −1.

We endow V∞ with the topology of the pointwise convergence, for which it is a
compact space.

Given v ∈ V∞, the set Pv := {P, v(P ) = +∞} is a prime ideal. When it is
reduced to (0) then v is a rank 1 valuation on k[x, y]. Otherwise it is generated
by an irreducible polynomial Q, and for any P ∈ k[x, y] the quantity v(P ) is the
order of vanishing of P |Q at a branch of the curve Q−1(0) at infinity with the
convention v(P ) = +∞ when P ∈ Pv.

Let s be a formal branch of curve centered at infinity. We may associate to s
a valuation vs ∈ V∞ defined by P 7→ −min{ord∞(x|s), ord∞(y|s)}−1ord∞(P |s).
Such a valuation is called a curve valuation.

Suppose X is a smooth projective compactification of A2
k. The center of v ∈

V∞ in X is the unique scheme-theoretic point on X such that its associated
valuation is strictly positive on the maximal ideal of its local ring. A divisorial
valuation is an element v ∈ V∞ whose center has codimension 1 for at least one
compactification X as above.

More precisely, let E be an irreducible divisor of X \ A2
k. Then the order of

vanishing ordE along E determines a divisorial valuation on k[x, y], and vE :=
(bE)

−1ordE ∈ V∞ where bE := −min{ordE(x), ordE(y)}.
Warning. In the sequel, we shall refer to elements in V∞ as valuations even
when the prime ideal Pv is non trivial.

20.2. The canonical ordering and the tree structure. The space V∞ of
normalized valuations is equipped with a partial ordering defined by v ≤ w if and
only if v(P ) ≤ w(P ) for all P ∈ k[x, y] for which − deg is the unique minimal
element.
All curve valuations are maximal and no divisorial valuation is maximal.
It is a theorem that given any valuation v ∈ V∞ the set {w ∈ V∞, − deg ≤ w ≤

v} is isomorphic as a poset to the real segment [0, 1] endowed with the standard
ordering. In other words, (V∞,≤) is a rooted tree in the sense of [2, 5].
It follows that given any two valuations v1, v2 ∈ V∞, there is a unique valuation

in V∞ which is maximal in the set {v ∈ V∞| v ≤ v1 and v ≤ v2}. We denote it by
v1 ∧ v2.
The segment [v1, v2] is by definition the union of {w, v1 ∧ v2 ≤ w ≤ v1} and

{w, v1 ∧ v2 ≤ w ≤ v2}.
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Pick any valuation v ∈ V∞. We say that two points v1, v2 distinct with v lie in
the same direction at v if the segment [v1, v2] does not contain v. A direction (or
a tangent vector) at v is an equivalence class for this relation. We write Tanv for
the set of directions at v.

When Tanv is a singleton, then v is called an endpoint. In V∞, the set of
endpoints is exactly the set of all maximal valuations. This set is dense in V∞.

When Tanv contains exactly two directions, then v is said to be regular. In
V∞, regular points are given by monomial rank 1 valuations as in (19.1) for which
the weights are rationally independent, see [2, 5] for details.

When Tanv has more than three directions, then v is a branched point. In
V∞, branched points are exactly the divisorial valuations. Given any smooth
projective compactification X in which v has codimension 1 center E, one proves
that the map sending an element V∞ to its center in X induces a map Tanv → E
that is a bijection.

Pick any v ∈ V∞. For any tangent vector ~v ∈ Tanv, we denote by U(~v) the
subset of those elements in V∞ that determine ~v (i.e. we say w determines ~v if ~v
is the equivalence class of w). This is an open set whose boundary is reduced to
the singleton {v}. The complement of {w ∈ V∞, w ≥ v} is equal to U(~v0) where
~v0 is the tangent vector determined by − deg.

It is a fact that finite intersections of open sets of the form U(~v) form a basis
for the topology of V∞.

Finally recall that the convex hull of any subset S ⊂ V∞ is defined the set of
valuations v ∈ V∞ such that there exists a pair v1, v2 ∈ S with v ∈ [v1, v2].

A finite subtree of V∞ is by definition the convex hull of a finite collection of
points in V∞. A point in a finite subtree T ⊆ V∞ is said to be an end point if it
is maximal in T.

20.3. The valuation space as the universal dual graph. One can under-
stand the tree structure of V∞ from the geometry of compactifications of A2

k as
follows.

Pick any smooth projective compactification X of A2
k. The divisor at infinity

X \A2
k has simple normal crossings, and we denote by ΓX its dual graph: vertices

are in bijection with irreducible components of the divisor at infinity, and vertices
are joined by an edge when their corresponding component intersect at a point.

The choice of coordinates x, y on A2
k determines a privileged compactification

P2
k for which the divisor at infinity is a rational curve L∞ and ordL∞ = − deg. In

this case, the dual graph is reduced to a singleton.

For a general compactification X, we may look at the convex hull (in V∞) of
the finite set of valuations vE where E ranges over all irreducible components of
X \A2

k. It is a fact that the finite subtree that we obtain in this way is a geometric
realization of the dual graph ΓX . To simplify notation, we shall identify ΓX with
its realization in V∞. Observe that the dual graph ΓX inherits a partial order
relation from its inclusion in V∞.

There is also a canonical retraction map rX : V∞ → ΓX sending a valuation
v ∈ V∞ to the unique rX(v) ∈ ΓX such that [rX(v), v] ∩ ΓX = {rX(v)}.
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Say that a compactification X ′ dominates another one X when the canonical
birational map X ′

99K X induced by the identity map on A2
k is regular. The

category C of all smooth projective compactifications of A2
k is an inductive set for

this domination relation, and one can form the projective limit ΓC := lim←−X∈C ΓX

using the retraction maps. In other words, a point in ΓC is a collection of points
vX ∈ ΓX such that rX(vX′) = vX as soon as X ′ dominates X.

It is a theorem that ΓC endowed with the product topology is homeomorphic
to V∞.

Warning. In the sequel, we shall mostly consider smooth projective compactifi-
cations that dominates P2

k, and refer to them as admissible compactifications of
the affine plane.

Observe that ΓX contains − deg when X is an admissible compactification.

20.4. Parameterization. The skewness function α : V∞ → [−∞, 1] is the func-
tion on V∞ that is strictly decreasing (for the order relation of V∞) satisfying
α(− deg) = 1 and

|α(vE)− α(vE′)| = 1

bEbE′

.

whenever E and E ′ are two irreducible components of X \A2
k that intersect at a

point in some admissible compactification X of the affine plane.
Since divisorial valuations are dense in any segment [− deg, v] it follows that

α is uniquely determined by the conditions above. One knows that α(v) ∈ Q for
any divisorial valuation, that α(v) ∈ R \ Q for any valuation that is a regular
point of V∞, and that α(v) = −∞ for any curve valuation. However there are
endpoints of V∞ with finite skewness.

There is a geometric interpretation of the skewness of a divisorial valuation as
follows. Let X be an admissible compactification of A2

k, and E be an irreducible
component of X \ A2

k. Let Ě be the unique divisor supported on the divisor at
infinity such that (Ě · E) = 1 and (Ě · F ) = 0 for all components F lying at
infinity. Then we have

α(vE) =
1

b2E
(Ě · Ě) .

Since the skewness function is strictly decreasing, it induces a metric dV∞ on
V∞ by setting

dV∞(v1, v2) := 2α(v1 ∧ v2)− α(v1)− α(v2)
for all v1, v2 ∈ V∞. In particular, any segment in V∞ carries a canonical metric
for which it becomes isometric to a real segment.
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21. Potential theory on V∞

As in the previous section k is any algebraically closed field. We recall the basic
principles of a potential theory on V∞ including the definition of subharmonic
functions, and their associated Laplacian. We then construct a Dirichlet pairing
on subharmonic functions and study its main properties.

We refer to [5] for details.

21.1. Subharmonic functions on V∞. To any v ∈ V∞ we attach its Green
function

gv(w) := α(v ∧ w) .
This is a decreasing continuous function taking values in [−∞, 1], satisfying
gv(− deg) = 1. Moreover pick any v′ ∈ V∞ and define the function g(t) :
[α(v′), 1] → [−∞, 1] by sending t to gv(vt) where vt is the unique valuation in
[− deg, v′] with skewness t. Then g is a piecewise affine increasing and convex
function with slope in {0, 1}.

Denote by M+(V∞) the set of positive Radon measures on V∞ that is the set
of positive linear functionals on the space of continuous functions on V∞. We
endow M+(V∞) with the weak topology.

Lemma 21.1. For any positive Radon measures ρ on V∞, there exists a sequence
of compactification Xn ∈ C, n ≥ 0 such that Xn+1 dominates Xn for all n ≥ 0,
and ρ is supported on the closure of ∪n≥0ΓXn

.

Proof. Observe that V∞ is complete rooted nonmetric tree and weakly compact
(See [2, Section 3.2]), thus [2, Lemma 7.14] applies. By [2, Lemma 7.14], there
exists a sequence of finite subtrees Tn n ≥ 0 satisfying Tn ⊆ Tn+1 for n ≥ 0 such
that ρ is supported on the closure T of ∪n≥0Tn. Since Tn is a finite tree and the
divisorial valuations are dense in Tn, there exists a sequence of subtrees Tm

n such
that

• all vertices in Tm
n are divisorial;

• Tm
n ⊆ Tm+1

n for m ≥ 0;
• Tn is the closure of ∪m≥0T

m
n .

Set Yn := ∪1≤i,j≤nT
j
i , then we have

• Yn is a finite tree;
• all vertices in Yn are divisorial;
• Yn ⊆ Yn+1 for n ≥ 0;
• T is the closure of ∪n≥0Yn.

To conclude, we pick by induction a sequence of increasing compactification Xn ∈
C such that Yn ⊆ ΓXn. �

Lemma 21.2. Let ρ be any positive Radon measures on V∞ and Tn be a sequence
of finite subtree of V∞ such that Tn ⊆ Tn+1 for n ≥ 0 and ρ is supported on the
closure of ∪n≥0Tn. Then we have rTn∗ρ→ ρ weakly.

Proof. Let T be the closure of ∪n≥0Tn and f be any continuous function on
V∞. For any ε > 0 and any point v ∈ T , there exists a neighborhood Uv of v



91

such that supUv
|f − f(v)| ≤ ε/2. We may moreover choose it such that either

Uv = {w,w > w1} or Uv = {w,w1 < (w ∧ w2) < w2}. Since T is compact, it is
covered by finitely many such open sets Uv1 , . . . , Uvm . Since ∪n≥1Tn is dense in T ,
for any i = 1, · · · ,m, there exists wi ∈ Uvi ∩ (∪n≥1Tn). There exists N ≥ 0, such
that TN contains {w1, · · · , wm}. For any n ≥ N , if v is a point in Uvi , we have
rTn

v ∈ Uvi . It follows that for all points v ∈ T , we have |f(v) − f(rTn
)(v)| ≤ ε

and∣∣∣
∫

V∞

f(v)dρ(v)−
∫

V∞

f(v)drTn∗ρ(v)
∣∣∣ =

∣∣∣
∫

T

f(v)− f(rTn
(v))dρ(v)

∣∣∣ ≤ ερ(V∞)

which concludes the proof. �

Given any positive Radon measure ρ on V∞ we define

gρ(w) :=

∫

V∞

gv(w) dρ(v) .

Observe that gv(w) is always well-defined in [−∞, 1] since gv ≤ 1 for all v. Since
the Green function gv is decreasing for all v ∈ V∞, we get

Proposition 21.3. For any any positive Radon measure ρ on V∞, gρ is decreas-
ing.

The next result is

Theorem 21.4. The map ρ 7→ gρ is injective.

To prove this theorem, we first need the following

Lemma 21.5. For any continuous function f : V∞ → R and any ε > 0, there
exists X ∈ C such that |f − f ◦ rX | ≤ ε.

Proof of Lemma 21.5. For any v we may find a neighborhood Uv such that

sup
Uv

|f − f(v)| ≤ ε/2.

We may moreover choose it such that Uv = {w,w > w1} or Uv = {w,w1 <
(w ∧ w2) < w2} where w1, w2 are divisorial. Since V∞ is compact it is covered
by finitely many such open sets Uv1 , . . . , Uvm . Choose X to be an admissible
compactification such that the boundary valuations of Uvi all have codimension
1 center in X. For any v ∈ V∞ pick an index i such that v ∈ Uvi . Then we have
|f(v) − f ◦ rX(v)| ≤ |f(v) − f(vi)| + |f(rX(v)) − f(vi)| < ε. This concludes the
proof. �

Proof of Theorem 21.4. By contradiction, suppose that ρ1 6= ρ2 in M+(V∞) but
gρ1 = gρ2 . There exists a continuous function f : V∞ → R satisfying

∫

V∞

f(v)dρ1(v) 6=
∫

V∞

f(v)dρ2(v).

Set M := max{ρ1(V∞), ρ2(V∞)}.
By Lemma 21.5, for any ε > 0, there exists X ∈ C such that |f ◦ rX−f | ≤ ε/2.

There exists a piecewise linear function h on ΓX such that |f ◦rX−h◦rX | ≤ ε/2.
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Since ΓX is a finite graph, there exists v1, · · · , vm ∈ ΓX such that h ◦ rX =∑m
i=1 rigvi where r1, · · · , rm ∈ R.
Since gρ1(vi) = gρ2(vi) for i = 1, · · · ,m, we have

∫

V∞

h ◦ rX(v)dρ1(v) =
∫

V∞

m∑

i=1

rigvi(v)dρ1(v) =
m∑

i=1

ri

∫

V∞

gv(vi)dρ1(v)

=
m∑

i=1

rigρ1(vi) =
m∑

i=1

rigρ2(vi) =

∫

V∞

h ◦ rX(v)dρ2(v).

It follows that

|
∫

V∞

f(v)dρ1(v)−
∫

V∞

f(v)dρ2(v)| ≤ 2εM.

We obtain a contradiction by letting ǫ→ 0. �

One can thus make the following definition.

Definition 21.6. A function φ : V∞ → R ∪ {−∞} is said to be subharmonic if
there exists a positive Radon measure ρ such that φ = gρ. In this case, we write
ρ = ∆φ and call it the Laplacian of φ.

Denote by SH (resp. SH+(V∞)) the space of subharmonic functions on V∞
(resp. of non-negative subharmonic functions on V∞).

Proposition 21.7. For any subharmonic function φ on V∞, there exists a se-
quence of compactifications Xn ∈ C, n ≥ 0 such that Xn+1 dominates Xn for all
n ≥ 0, and φ = limn→∞ φ ◦ rXn

pointwise.

Proof. Write ρ for ∆φ. 21.3 PickXn as in Lemma 21.1. By Lemma 21.2, rX∗ρ→ ρ
weakly. For any w ∈ V∞, pick a sequence wn ∈ [− deg, w] satisfying wn → w when
n→∞.

gρ(w) =

∫

V∞

gv(w) dρ(v) = lim
m→∞

∫

V∞

gv(wm) dρ(v)

= lim
m→∞

lim
n→∞

∫

V∞

gv(wm) drXn∗ρ(v). (1)

Observe that
∫
V∞

gv(wm) drXn∗ρ(v) =
∫
V∞

gv(rXn∗(wm)) dρ(v) which is decreasing
in n and m. We have

gρ(w) = lim
n→∞

lim
m→∞

∫

V∞

gv(wm) drXn∗ρ(v) = lim
n→∞

∫

V∞

gv(w) drXn∗ρ(v)

= lim
n→∞

∫

V∞

gv(rXn
w) dρ(v) = lim

n→∞
gρ ◦ rX(w).

�
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21.2. Reduction to finite trees. Let T be any finite subtree of V∞ containing
− deg. Denote by rT : V∞ → T the canonical retraction defined by sending v to
the unique valuation rT (v) ∈ T such that [rT (v), v] ∩ T = {rT (v)}.

For any function φ, set RTφ := φ ◦ rT . Observe that RTφ|T = φ|T and that
RTφ is locally constant outside T .

Moreover we have the following

Proposition 21.8. Pick any subharmonic function φ Then for any finite subtree
T , RTφ is subharmonic, RTφ ≥ φ and ∆(RTφ) = (rT )∗∆φ.

Proof. Set ∆φ = ρ. Then we have

RTφ(w) =

∫

V∞

gv(rT (w))dρ

=

∫

V∞

grT (v)(w)dρ =

∫

V∞

gv(w)drT∗ρ = grT∗ρ

which concludes our proposition. �

Let T be a finite tree containing {− deg} such that for all points v ∈ T , we have
α(v) > −∞. Let φ = gρ be a subharmonic function satisfying Supp ρ ⊆ T. Set
t(v) := −α(v). Let E be the set of all edges of T . For each edge I = [w1, w2] ∈ E,
this function t(v) parameterizes I. Denote by d2φ|I

dt2
dt the usual real Laplacian of

φ|I on the segment I i.e. the unique measure on I such that

(i) For any segment (v1, v2) ⊆ I, we have
∫
[v1,v2]

d2φ|I
dt2

dt = D ~v1φ(v1)+D ~v2φ(v2)

where ~vi is the direction at vi in (v1, v2) for i = 1, 2.

(ii) d2φ|I
dt2

dt{wi} = −D~wi
φ where ~wi is direction at wi in I for i = 1, 2.

Proposition 21.9. We have

(i)

∆φ = φ(− deg)δ− deg +
∑

I∈E

d2φ|I
dt2

dt;

(ii) the mass of ∆φ at a point v ∈ T is given by φ(− deg)δ− deg{x}+
∑
D−→v φ

the sum is over all tangent directions −→v in T at v;
(iii) for any segment I contained in T , φ|I is convex and for any point v ∈ T ,

we have
φ(− deg)δ− deg{v}+

∑
D−→v φ ≥ 0

where δ− deg is the dirac measure at − deg and the sum is over all tangent
directions −→v in T at v.

Sketch of the proof. First check that our proposition holds when φ = gv for any
v ∈ T . Since all the conclusions in our proposition are linear, they hold for
gρ(w) =

∫
V∞

gv(w)dρ =
∫
T
gv(w)dρ also. �

Theorem 21.10. Let Xn ∈ C, n ≥ 0 be a sequence of compactifications such that
Xn+1 dominates Xn for all n ≥ 0 and let T be the closure of ∪n≥0ΓXn

. Suppose that
we are given a sequence φn of subharmonic functions satisfying Supp∆φn ⊆ ΓXn

and RΓXn
φm = φn when m ≥ n.
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Then there exists a unique subharmonic function φ ∈ SH(V∞) satisfying Supp∆φ ⊆
T , RΓXn

φ = φn and φ = limn→∞ φn.

Proof. Set ρn := ∆φn. For any m ≥ n, we have rXn
ρm = ρn. It follows that

ρn(V∞) is independent on n and we may suppose that ρn(V∞) = 1 for all n ≥ 0.
Given a continuous function f on V∞ and a real number ε > 0, by Lemma 21.5,
there exists N ≥ 0 such that |f ◦ rXn

− f ◦ rXm
| ≤ ε for all n,m ≥ N. It follows

that |
∫
V∞

fdρn−
∫
V∞

fdρm| ≤ ε for all n,m ≥ N. It follows that limn→∞
∫
V∞

fdρn
exists.
The functional f 7→ limn→∞

∫
V∞

fdρn is continuous, linear and positive, and
thus defines a positive Radon measure ρ. Observe that rΓXn

ρ = ρn for all n ≥ 0
and ρn → ρ when n → ∞. Set φ := gρ. We have RΓXn

φ = φn. By Proposition
21.7, we get φ = limn→∞ φn. �

21.3. Main properties of subharmonic functions. The next result collects
some properties of subharmonic functions.

Theorem 21.11. Pick any subharmonic function φ on V∞. Then

(i) φ is decreasing and φ(− deg) = ∆φ(V∞) > 0 if φ 6= 0;
(ii) φ is upper semicontinuous;
(iii) for any valuation v ∈ V∞ the function t 7→ φ(vt) is convex, where vt is the

unique valuation in [− deg, v] of skewness t.

Proof. The first statement follows from Proposition 21.3 and the equality

φ(− deg) =

∫

V∞

gv(− deg)dρ(v) = ρ(V∞).

The second statement is a consequence of Proposition 21.7 and Proposition
21.9 that implies that φ ◦ rX is continuous on V∞ for any X ∈ C. The last
statement follows from Proposition 21.9. �

Now pick any direction ~v at a valuation v ∈ V∞. One may define the directional
derivative D~vφ of any subharmonic function as follows. If α(v) 6= −∞, pick any
map t ∈ [0, ǫ) 7→ vt such that v0 = v, |α(vt) − α(v0)| = t and vt determines
~v for all t > 0. By property (iii) above, the function t 7→ φ(vt) is convex and
continuous at 0, so that its right derivative is well-defined. We set

D~vφ :=
d

dt

∣∣∣∣
t=0

φ(vt) .

This definition does not depend on the choice of map t 7→ vt. If α(v) = −∞,
then v is an endpoint in V∞ and there exists a unique direction ~v at v. For any
w < v, denote by ~w the direction at w determined by v. Then we define

D~vφ := − lim
w→v

D~wφ

which exists since φ|[− deg,v] is convex.
Given any direction ~v at a valuation in V∞, recall that U(~v) is the open set of

valuations determining ~v.
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Theorem 21.12. Pick any subharmonic function φ on V∞. Then one has

∆φ(U(~v)) = −D−→v φ

for any direction ~v that is not determined by − deg. In particular, one has

∆φ{− deg} =
∑

−→v ∈Tan− deg

D−→v φ+ φ(− deg) ; and

∆φ{v} =
∑

−→v ∈Tanv

D−→v φ

if v 6= − deg.

Proof. Since ~v is not determined by − deg, v is not an endpoint of V∞. Pick
w ∈ U(~v), we have w > v. Set I := [− deg, w]. We have ∆RIφ(U(~v)) =∫
V∞

d2φ
dt2
dt =

∫
V∞

ddφ
dt

= −D−→v RIφ. Since RIφ|I = φ|I and ∆RI = rI∗∆φ, we

have ∆RIφ(U(~v)) = ∆φ(U(~v)) and D−→v RIφ = D−→v φ. It follows that ∆φ(U(~v)) =
−D−→v φ.

If v = − deg, then we have

φ(− deg) = ∆φ(V∞) = ∆φ{− deg}+
∑

−→v ∈Tan− deg

∆φ(U(~v))

= ∆φ{− deg} −
∑

−→v ∈Tan− deg

D−→v φ.

It follows that
∆φ{− deg} =

∑
−→v ∈Tan− deg

D−→v φ+ φ(− deg).

If v 6= − deg, let wn be a sequence of valuations in [− deg, v). Denote by ~wn the
direction at wn determined by v and ~v0 the direction at v determined by − deg.
Observe that

− lim
n→∞

D ~wn
φ = lim

n→∞
∆φ(U( ~wn)) = ∆φ{v}+

∑
−→v ∈Tanv \{ ~v0}

∆φ(U( ~wn)).

It follows that D ~v0φ = ∆φ{v} −∑−→v ∈Tanv D−→v φ and then

∆φ{v} =
∑

−→v ∈Tanv \{ ~v0}

D−→v φ.

�

Theorem 21.13. Suppose φ : V∞ → [−∞,+∞) is a function such that

(i) for any valuation v ∈ V∞ the function [α(v), 1] ∋ t 7→ φ(vt) is continuous
and convex, where vt is the unique valuation in [− deg, v] of skewness t;

(ii) the inequalities

(21.1)
∑

~v∈Tan− deg

D~vφ+ φ(− deg) ≥ 0 ; and
∑

~v∈Tanv

D~vφ ≥ 0

are satisfied for all valuations v 6= − deg.

Then φ is subharmonic.
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Proof. Let v1, v2 ∈ V∞ be two valuations satisfying v1 < v2. There exists an end
point w ∈ V∞ satisfying v1, v2 ∈ [− deg, w]. Denote by ~w the unique direction in
Tanw. By (ii), we have D~wφ ≥ 0. Since φ is convex on [− deg, w], it is decreasing
on [− deg, w]. It follows that φ(v1) ≥ φ(v2) and then φ is decreasing.

For any v ∈ V∞ \{− deg}, denote by ~v the direction at v determined by − deg .
For any n ≥ 1, set Tn := {v ∈ V∞\{− deg}| D~vφ ≥ 1/n}. Since the map v 7→ D~vφ
is non negative and decreasing, it follows that Tn is a tree.

We claim that Tn is a finite tree. If Tn = {− deg}, there is nothing to prove.
For convenience, we define D−−−→− deg

φ := −∑~v∈Tan− deg
D~vφ = φ(− deg). Let w be

a valuation in Tn and v1, · · · , vm, m ≥ 1 be valuations in Tn satisfying vi∧vj = w
for all i 6= j. Denote by ~wi the direction at w determined by vi. Then we have

m∑

i=1

D~viφ ≤
m∑

i=1

−D~wi
φ ≤ D~wφ.

Pick m valuations v1, · · · , vm ∈ Tn such that any two valuations vi, vj i 6= j
are not comparable. Let S be the set of maximal elements in the set {vi∧vj| 1 ≤
i < j ≤ m} and write S = {w1, · · · , wl}. Observe that l ≤ m − 1 if m ≥ 2.
Let Sw be the set of vi satisfying vi > w. Then we have

∑
v∈Sw

D~vφ ≤ D~wφ and
{v1, · · · , vm} =

∐
w∈S Sw. It follows that

∑m
i=1D~viφ ≤

∑
w∈S D~wφ. By induction,

we have
m∑

i=1

D~viφ ≤ D ~∧m
i=1vi

φ ≤ D−−−→− deg
φ = φ(− deg).

Since D~viφ ≥ 1/n, we conclude that m ≤ nφ(− deg). This fact implies that Tn is
a finite tree with at most nφ(− deg) end points.

As in the proof of Lemma 21.1, we an now show that there exists a sequence
of admissible compactification Xn ∈ C, n ≥ 0 such that Xn+1 dominates Xn for
all n ≥ 0 and ∪n≥0Tn is contained in the closure of ∪n≥0ΓXn

. Set φn := RΓXn
φ.

Let v be a point in V∞. Set I := [− deg, v] and In := I ∩ ΓXn
= [− deg, vn].

Observe that vn is increasing and define v′ := limn→∞ vn. Observe that for all
(v′, v] ⊆ V∞ \ (∪n≥1Tn), and then D~w = 0 for all w ∈ (v′, v]. It follows that

φ(v) = φ(w) = lim
n→∞

φ(vn) = lim
n→∞

φn(v).

Denote by ρn := φn(− deg)δ− deg{x}+
∑ d2φ|I

dt2
dt where the sum is over all edges

of ΓXn
. It is a Radon measure supported on ΓXn

. It follows that φn = gρn which
is subharmonic and φn = RΓXn

φm for any m ≥ n. Then we conclude by applying
Theorem 21.10. �

The next result collects the main properties of the space of subharmonic func-
tions.

Theorem 21.14. The sets SH(V∞) and SH+(V∞) are convex cones that are
stable by max. In other words, given any c > 0, and any φ, φ′ ∈ SH(V∞) (resp.
in SH+(V∞)), then cφ, φ + φ′ and max{φ, φ′} all belong to SH(V∞) (resp. to
SH+(V∞)).
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Proof. By Theorem 21.13, it is easy to check that cφ and φ + φ′ all belong
to SH(V∞) (resp. to SH+(V∞)) when c > 0, and φ, φ′ ∈ SH(V∞) (resp. in
SH+(V∞)).

We only have to check that max{φ, φ′} belongs to SH(V∞) when φ, φ′ ∈ SH(V∞).
It is easy to see that the condition (i) in Theorem 21.13 holds. For any point
v ∈ V∞ and any direction ~v at v, if φ(v) > φ′(v) (resp. φ(v) < φ′(v)), then
D~v max{φ, φ′} = D~vφ (resp. D~v max{φ, φ′} = D~vφ

′). It follows that the condi-
tion (ii) in Theorem 21.13 holds when φ(v) 6= φ′(v). Otherwise, if φ(v) = φ′(v),
we haveD~v max{φ, φ′} = max{D~vφ,D~vφ

′} and then the condition (ii) in Theorem
21.13 holds. Now we conclude by applying Theorem 21.13. �

21.4. Examples of subharmonic functions. For any nonconstant polynomial
Q ∈ k[x, y], we define the function

log |Q|(v) := −v(Q) ,
which takes values in [−∞,∞).

Proposition 21.15. The function log |Q| is subharmonic, and

∆(log |Q|) =
∑

i

miδvsi

where si are the branches of the curve {Q = 0} at infinity, and mi is the inter-
section number of si with the line at infinity in P2

k.

Sketch of proof. Let g =
∑

imigvsi . One has to prove that log |Q| = g. To that

end, we pick any admissible compactificationX of A2
k and prove that log |Q|(vE) =

g(vE) for any irreducible component of X∞ := X \ A2
k. The proof then goes by

induction on the number of irreducible component of X∞ and observing that this
number is 1 only if X = P2

k. �

Proposition 21.16. The function log+ |Q| := max{0, log |Q|} belongs to SH+(V∞).
Denote by s1, · · · , sl the branches of {Q = 0} at infinity and by T the convex

hull of {− deg, vs1 , · · · , vsl}. Then the support of ∆(log+ |Q|) is the set of points
v ∈ T satisfying v(Q) = 0 and w(Q) < 0 for all w ∈ (v,− deg].

In particular, Supp∆(log+ |Q|) is finite.
Proof. By Theorem 21.14 we have log+ |Q| ∈ SH(V∞). Observe that log+ |Q| is
locally constat on V∞ \ T so that the support of ∆ log+ |Q| is included in T . Let
{v1, · · · , vm} be the set of points v ∈ T satisfying v(Q) = 0 and w(Q) < 0 for all
w ∈ (v,− deg]. For any v ∈ V∞, we have log |Q| ≥ deg(Q)α(v). It follows that
α(vi) ≤ 0 and then vi 6= − deg. Denote by m′

is the intersection number of si with
the line at infinity in P2

k. For any i = 1, · · · ,m, denote by Si the set of branches of
the curve sj satisfying vsj > vi. Observe that Si 6= ∅ and {s1, · · · , sl} =

∐m
i=1 Si.

By Theorem 21.12, we have ∆ log+ |Q|{vi} =
∑

sj∈Si
mj > 0. Then we have∑m

i=1 ∆ log+ |Q|{vi} =
∑

j=1mj = deg(Q) = log+ |Q|(− deg) = ∆(log+ |Q|)(V∞).
It follows that

∆(log+ |Q|) =
m∑

i=1

(
∑

sj∈Si

mj)δvi .
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It follows that Supp∆(log+ |Q|) = {v1, · · · , vm} and moreover we have m ≤
deg(Q). �

21.5. The Dirichlet pairing. Let φ, ψ be any two subharmonic functions on
V∞. Since φ is bounded from above one can define the Dirichlet pairing

〈φ, ψ〉 :=
∫

V 2
∞

α(v ∧ w)∆φ(v)∆ψ(w) ∈ [−∞,+∞).

Observe that 〈φ, ψ〉 = 〈ψ, φ〉.
Proposition 21.17. The Dirichlet pairing induces a symmetric bilinear form on
SH(V∞) that satisfies

〈φ, ψ〉 =
∫

V∞

φ∆ψ (∗).

Proof. The linearity and the symmetry are obvious from the definition. Equation
(*) follows from Fubini’s Theorem. �

We shall prove

Theorem 21.18 (Hodge inequality). For any two subharmonic functions φ, ψ,
we have

(φ(− deg)ψ(− deg)− 〈φ, ψ〉)2 ≤ (φ(− deg)2 − 〈φ, φ〉)(ψ(− deg)2 − 〈ψ, ψ〉).
Proof of the Theorem 21.18. We first need the following

Proposition 21.19. Let φ, ψ be two subharmonic functions in SH(V∞). Then
there exists a sequence of compactifications Xn ∈ C, n ≥ 0 such that Xn+1 domi-
nates Xn for n ≥ 0 and 〈φ, ψ〉 = limn→∞〈RΓXn

φ,RΓXn
ψ〉.

We only have to prove our theorem in the case ∆φ and ∆ψ are supported on
a finite subtree T of V∞. Set t(v) := −α(v) for v ∈ T. Denote by E the set of all
edges of T , vI1 , v

I
2 the two endpoints of I and ~vI1 , ~v

I
2 the two direction at vI1 and

vI2 . Denote by {v1, · · · , vl} the set of all endpoints and branch points in T and
Tv the set of direction at v in T.

By integration by parts, we have
∫

I

φ
d2ψ

dt2
=

∫

V∞

φI
d2ψI

dt2
= −

∫

I

dφ

dt

dψ

dt
dt

for all I ∈ E. Then we have

〈φ, ψ〉 =
∫

V∞

φ(v)ψ(− deg)δ− deg(v)+
∑

I∈E

∫

I

φ
d2ψ

dt2
= φ(− deg)ψ(− deg)−

∫

T

dφ

dt

dψ

dt
dt.

It follows that 〈φ, ψ〉 = 〈ψ, φ〉, and by Cauchy inequality, we get

(φ(− deg)ψ(− deg)− 〈φ, ψ〉)2 ≤ (φ(− deg)2 − 〈φ, φ〉)(ψ(− deg)2 − 〈ψ, ψ〉).
�
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Proof of Proposition 21.19. By Proposition 21.7, there exists a sequence of com-
pactifications Xn ∈ C n ≥ 0 such that Xn+1 dominates Xn for n ≥ 0 and RΓXn

φ
(resp. RΓXn

ψ) decreases pointwise to φ (resp. ψ).
We have

|〈φ, ψ〉 − 〈RΓXn
φ,RΓXn

ψ〉| ≤
∣∣∣
∫

V∞

RΓXn
(φ)∆RΓXn

(ψ)−
∫

V∞

φ∆RΓXn
ψ
∣∣∣

+
∣∣∣
∫

V∞

φ∆RΓXn
ψ −

∫

V∞

φ∆ψ
∣∣∣.

Observe that
∣∣∣
∫

V∞

RΓXn
(φ)∆RΓXn

(ψ)−
∫

V∞

φ∆RΓXn
ψ
∣∣∣→ 0

and ∣∣∣
∫

V∞

φ∆RΓXn
ψ −

∫

V∞

φ∆ψ
∣∣∣→ 0

by monotone convergence. It follows that

|〈φ, ψ〉 − 〈RΓXn
φ,RΓXn

ψ〉| → ∞
as n→∞.

�

Finally, we collect two useful results.

Proposition 21.20. Pick any two subharmonic functions φ, ψ ∈ SH(V∞). For
any finite subtree T ⊂ V∞ one has

〈RTφ,RTψ〉 ≥ 〈φ, ψ〉 .
Proof. Since RTφ ≥ φ, for any ψ ∈ SH(V∞) we have 〈RTφ, ψ〉 =

∫
V∞

RTφ∆ψ ≥∫
V∞

φ∆ψ = 〈φ, ψ〉. It follows that
〈RTφ,RTψ〉 ≥ 〈φ,RTψ〉 ≥ 〈φ, ψ〉.

�

Proposition 21.21. Pick any subharmonic function φ ∈ SH(V∞). For any finite
subtree T ⊂ V∞ one has

〈RTφ,RTφ〉 ≥ 〈φ, φ〉
and the equality holds if and only if ∆φ is supported on T .

Proof. By Proposition 21.20, we only have to show that 〈RTφ,RTφ〉 > 〈φ, φ〉
when ∆φ is not supported on T .
Suppose that ∆φ is not supported on T . It follows that ∆φ(V∞ \ T ) > 0. Pick

X ∈ C such that rX∗∆φ(V∞ \ T ) > 0, and set Y := T ∪ ΓX , so that Y is a finite
tree.
Since 〈RT (φ), RT (φ)〉 ≥ 〈RY (φ), RY (φ)〉 ≥ 〈φ, φ〉, by replacing φ by RY φ, we

may suppose that ∆φ is supposed by Y . There exists a connected component U
of Y \T satisfying

∫
U
∆φ > 0. There exists a unique point y0 ∈ U ∩T where U is
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the closure of U in Y . It follows that φ(y) < φ(y0) = RTφ(y) for all y ∈ U. Then
we conclude that

〈φ, φ〉 =
∫

Y

φ∆φ =

∫

T\U
φ∆φ+

∫

U

φ∆φ

<

∫

T\U
φ∆φ+

∫

U

RTφ∆φ ≤
∫

T\U
RTφ∆φ+

∫

U

RTφ∆φ

=

∫

Y

RTφ∆φ =

∫

Y

φ∆RT (φ)

=

∫

Y

RT (φ)∆RT (φ) = 〈RT (φ), RT (φ)〉.

�

21.6. Positive subharmonic functions. We prove here a technical result that
will play an important role in the next section.

For any set S ⊂ V∞ we define B(S) := ∪v∈S{w, w ≥ v}.
Proposition 21.22. Let φ be a function in SH+(V∞) such that 〈φ, φ〉 = 0 and
Supp∆φ = {v1, · · · , vs} where s is a positive integer.

Then for any finite set S ⊆ B({v1, · · · , vs}) satisfying {v1, · · · , vs} 6⊆ S, there
exists a function ψ ∈ SH+(V∞) such that

• ψ(v) = 0 for all v ∈ B(S);
• 〈ψ, ψ〉 > 0.

Example 21.23. Let Q ∈ k[x, y] be any nonconstant polynomial. Proposi-
tion 21.16 implies that log+ |Q| ∈ SH+(V∞), 〈log+ |Q|, log+ |Q|〉 = 0 and #Supp∆ log+ |Q| <
∞ so that the preceding proposition applies to φ = log+ |Q|.
Proof. Write ∆φ =

∑s
i=1 riδvi with ri > 0. Since 〈φ, φ〉 = 0 we have φ(vi) = 0

for all i. Observe now that the restriction of φ to any segment [− deg, vi] is not
locally constant. It follows that the sets B({vi}) are disjoint, or in other words
that vi ∧ vj < vi for any i 6= j.

Suppose first that there exists an index i ∈ {1, · · · , s} such that S∩B({vi}) = ∅,
and denote by T the convex hull of {− deg, v1, · · · , vs} \ {vi}. Then ψ := RTφ
satisfies all the required conditions.

Otherwise we may suppose that v1 /∈ S and pick w1 ∈ S satisfying w1 > v1.
Choose any v′1 < v1 such that (Supp∆φ) ∩ B({v′1}) = {v1}, and w1 ∈ (v′1, v1),

w2 ∈ (v1, w1) such that α(w1)−α(v1) = α(v1)−α(w2). The subharmonic function
ψ :=

∑s
i=2 rigvi +

r1
2
(gw1 + gw2) satisfies all required conditions. �

21.7. The class of L2 functions. We define L2(V∞) to be the set of functions
φ : {v ∈ V∞| α(v) > −∞} → R such that φ = φ1 − φ2 on {v ∈ V∞| α(v) > −∞}
with φi ∈ SH(V∞) and 〈φi, φi〉 > −∞ for i = 1, 2. Then L2(V∞) is a vector space.

For sake of convenience, we shall always extend φ to V∞ by setting φ(v) to be an
arbitrary number in φ(v) ∈ [lim infw<v φ(w), lim supw<v φ(w)] when α(v) = −∞.
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Observe that by Proposition 21.19 (iii), we have 〈φ1, φ2〉 > −∞ so that the
pairing 〈·, ·〉 extends to L2(V∞) as a symmetric bilinear form and the Hodge
inequality 21.18 is still valid.

All bounded subharmonic functions are contained in L2(V∞). In particular,
gv ∈ L2(V∞) if α(v) > −∞ and SH+(V∞) ⊆ L2(V∞).
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22. Proof of the Main Theorem

22.1. First reductions. Let us recall the setting from the introduction. Let
R := k[x, y] denote the ring of polynomials in two variables over an algebraically
closed field k. Let S be a finite set of valuations on R that are trivial on k. We
define RS = ∩v∈S{P ∈ R, v(P ) ≥ 0}. This is a k-subalgebra of k[x, y] and we
denote by δ(S) ∈ {0, 1, 2} the transcendence degree of its field of fraction over k.
We first do the following reduction.

Lemma 22.1. Given any finite set of valuations S on R that are trivial on k
and centered at infinity, we have δ(S) = 2 if and only if δ(S̄) = 2.

Proof. Since RS ⊂ RS̄ it follows that δ(S) = 2 implies δ(S̄) = 2.
Conversely suppose that δ(S̄) = 2. Let v1, . . . , vs be the rank 2 valuations in

S whose associated valuations v̄1, . . . , v̄s in V∞ are divisorial. Observe that when
v ∈ S \ {v1, . . . , vs} then R{v} = R{v̄}.

By Theorem 22.7 (ii), there is a nonzero polynomial P ∈ R such that v(P ) > 0
for all v ∈ S̄. Pick any polynomial Q. Then for m large enough, we have
v(PmQ) > 0 for all v ∈ S̄. In particular, we get v̄i(P

mQ) > 0 which implies
vi(P

mQ) > 0. We conclude that PmQ also belongs to RS so that the fraction
field of RS is equal to k(x, y) and δ(S) = 2. �

In the rest of this section, let S = {v1, · · · , vl} ⊂ V∞ be a finite set. It will be
convenient to use the following terminology.

Definition 22.2. A subset of valuations S ⊂ V∞ is said to be rich when δ(S) = 2.

We shall also write:

• Smin ⊂ S for the set of valuations that are minimal for the order relation
restricted to S;
• S+ ⊂ S for the subset of valuations in S with finite skewness;
• Smin

+ ⊂ Smin for the subset of valuations in Smin with finite skewness;
• B(S) for the set of all valuations v ∈ V∞ such that v ≥ w for some w ∈ S;
• B(S)◦ for the interior of B(S);
• M(S) for the symmetric matrix whose entries are given by [α(vi∧vj)]1≤i,j≤l.

The set B(S) is compact and has as many connected components as there are
elements of Smin. In fact, the boundary of any connected component of B(S) is
a singleton, and this point lies in Smin. Observe that RSmin = RS.

The next result follows directly from the Hodge index theorem in the case of
divisorial valuations and by a continuity argument in the general case.

Lemma 22.3. Let S be a finite subset of V∞ such that α(v) > −∞ for all v ∈ S.
Then the symmetric matrix M(S) has at most one non-negative eigenvalue.

Definition 22.4. Let S be a finite subset of V∞. The symmetric matrix M(S) is
said to be negative definite if and only if the matrix [(max{α(vi∧ vj),−t}]1≤i,j≤m

is negative definite for t large enough.
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Observe that for −t large enough the function t 7→ det(max{α(vi∧vj), t})1≤i,j≤l

is a polynomial, and that we defined

χ(S) = lim
t→−∞

(−1)#S det(max{α(vi ∧ vj), t})1≤i,j≤l ∈ R ∪ {±∞}

with the convention χ(∅) := 1. When S = S+ we simply have χ(S) := (−1)#S det((α(vi∧
vj))1≤i,j≤l).

With this definition, lemma 22.3 implies immediately

Lemma 22.5. Let S be a finite subset of V∞. The symmetric matrix M(S) is
negative definite if and only if χ(S) > 0.

Finally we make the following reduction

Lemma 22.6. Let S be a finite subset of V∞. We have χ(S) > 0 if and only if
χ(Smin

+ ) > 0.

Proof. Suppose that S = {v1, · · · , vl} and S+ = {v1, · · · , vl′} where l′ ≤ l. When
−t is large enough the function t 7→ det(max{α(vi∧ vj), t})1≤i,j≤l is a polynomial
with leading term χ(S+)t

l−l′ . It follows that χ(S) > 0 if and only if χ(S+) > 0.
Now, we may suppose that S = S+.

Since Smin is a subset of S, ifM(S) is negative definite thenM(Smin) is negative
definite. By Lemma 22.5, we conclude the ” only if” part.

To prove the ” if” part, we suppose that χ(Smin) > 0. For any w ∈ Smin, set
Sw := {v ∈ S| v ≥ w}. It follows that S =

∐
w∈Smin Sw. For any w ∈ Smin,

denote by C(Sw) the set of valuations taking forms ∧v∈S′
w
v where S ′

w is a subset
of Sw. Set C(S) :=

∐
w∈Smin C(Sw). We complete the proof of our theorem by

induction on the number #C(S)−#Smin.
If #C(S)−#Smin = 0, then S = C(S) = Smin. Our theorem trivially holds.
If #C(S) − #Smin ≥ 1, there exists w ∈ Smin satisfying C(Sw) ≥ 2. Let w0

be a maximal element in C(Sw) then w0 > w. Let w1 be the maximal element in
[w,w0) ∩ Sw and set S1 := C(S) \ {w0}. For any valuation v ∈ C(S) \ {w0}, we
have v ∧ w0 = v ∧ w1. Then we have

M(C(S)) =




α(w0) . . . α(w0 ∧ v) . . . α(w0 ∧ w1) . . .
. . . . . . . . . . . . . . . . . .

α(v ∧ w0) . . . α(v) . . . α(v ∧ w1) . . .
. . . . . . . . . . . . . . . . . .

α(w1 ∧ w0) . . . α(w1 ∧ v) . . . α(w1) . . .
. . . . . . . . . . . . . . . . . .




=




α(w0) . . . α(w1 ∧ v) . . . α(w1) . . .
. . . . . . . . . . . . . . . . . .

α(v ∧ w1) . . . α(v) . . . α(v ∧ w1) . . .
. . . . . . . . . . . . . . . . . .

α(w1) . . . α(w1 ∧ v) . . . α(w1) . . .
. . . . . . . . . . . . . . . . . .



.
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It follows that

M(C(S)) =




α(w0) . . . α(w1 ∧ v) . . . α(w1) . . .
. . . . . . . . . . . . . . . . . .

α(v ∧ w1) . . . α(v) . . . α(v ∧ w1) . . .
. . . . . . . . . . . . . . . . . .

α(w1) . . . α(w1 ∧ v) . . . α(w1) . . .
. . . . . . . . . . . . . . . . . .




=




1 . . . 0 . . . 0 . . .
. . . . . . . . . . . . . . . . . .
0 . . . 1 . . . 0 . . .
. . . . . . . . . . . . . . . . . .
1 . . . 0 . . . 1 . . .
. . . . . . . . . . . . . . . . . .







α(w0)− α(w1) . . . 0 . . . 0 . . .
. . . . . . . . . . . . . . . . . .
0 . . . α(v) . . . α(v ∧ w1) . . .
. . . . . . . . . . . . . . . . . .
0 . . . α(w1 ∧ v) . . . α(w1) . . .
. . . . . . . . . . . . . . . . . .







1 . . . 0 . . . 1 . . .
. . . . . . . . . . . . . . . . . .
0 . . . 1 . . . 0 . . .
. . . . . . . . . . . . . . . . . .
0 . . . 0 . . . 1 . . .
. . . . . . . . . . . . . . . . . .



.

It follows that χ(C(S)) = (α(w1)− α(w0))χ(S1). Since C(S1) = S1 = C(S)\{w0}
and Smin

1 = Smin, we have χ(S1) > 0 by induction hypotheses. Since α(w1) −
α(w0) > 0, we have χ(C(S)) > 0 and M(C(S)) is negative definite. Since M(S)
is a principal submatrix of M(C(S)), it is also negative definite. It follows that
χ(S) > 0. �

22.2. Characterization of rich sets using potential theory on V∞. As an
important intermediate step towards our Main Theorem we shall prove the fol-
lowing characterization of rich subsets of V∞ in terms of the existence of adapted
functions in L2(V∞).

Theorem 22.7. Let S be a finite set of valuations in V∞. Then the following
statements are equivalent.

(i) The set S is rich, i.e. δ(S) = 2.
(ii) There exists a nonzero polynomial P ∈ RS such that v(P ) > 0 for all

v ∈ S.
(iii) There exists a valuation v ∈ S and a nonzero polynomial P ∈ RS such

that v(P ) > 0.
(iv) There exists a function φ ∈ SH+(V∞) such that φ(v) = 0 for all v ∈ B(S)

and 〈φ, φ〉 > 0.
(v) There exists a function φ ∈ L2(V∞) such that φ(v) = 0 for all v ∈ B(S)

and 〈φ, φ〉 > 0.
(vi) There exists a finite set S ′ ⊆ V∞ such that S ⊆ B(S ′)◦ and S ′ is rich.

Moreover when these conditions are satisfied, then the fraction field of RS is equal
to k(x, y).
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Proof. Observe first that when (ii) is satisfied, then for any polynomial Q there
exists an integer n such that QP n belongs to RS. This implies that k[x, y] is
included in the fraction field of RS hence the latter is equal to k(x, y).

We now prove the equivalence between the six statements. The three implica-
tions (ii)⇒(iii), (iv)⇒(v) and (vi)⇒(i) are immediate.

(i)⇒(ii). Replacing S by Smin, we may suppose that S = Smin. By contradic-
tion, we suppose that v(P ) = 0 for all v ∈ S and all P ∈ RS \ {0}.

For every v ∈ S, we have min{v(x), v(y)} = −1. Since k is infinite, for a
general linear polynomial Q ∈ k[x, y], we have v(Q) < 0 for all v ∈ S. Since the
transcendence degree of Frac (RS) over k is 2, we have

m∑

i=0

aiQ
i = 0

where m ≥ 1, ai ∈ RS. We may suppose that am 6= 0. Let v be a valuation in
S. It follows that v(aiQ

i) = iv(Q) + v(ai) ≥ iv(Q) > mv(Q) for i = 1, · · · ,m −
1. If v(am) = 0 for some v, we have v(

∑m
i=0 aiQ

i) = mv(Q) < 0 which is a
contradiction. It follows that v(am) > 0 for all v ∈ S.
(iii)⇒(iv). By assumption there exists a polynomial P ∈ RS and a valuation

v0 ∈ S for which v0(P ) > 0. It follows that Supp(∆ log+ |P |) 6⊆ S. Since we have
S ⊂ B(Supp∆ log+ |P |), Proposition 21.22 implies the existence of φ ∈ SH+(V∞)
such that φ(v) = 0 for all v ∈ B(S). And we get 〈φ, φ〉 > 0 as required.

The proof of the implication (v)⇒(vi) is the core of our Theorem 22.7. We
state it as a separate Proposition 22.8 and prove it below. �

Proposition 22.8. Let S be a finite subset of V∞. Suppose that there exists a
function φ ∈ L2(V∞) such that φ(v) = 0 for all v ∈ B(S), and 〈φ, φ〉 > 0.

Then there exists a finite set S ′ of divisorial valuations such that S ⊆ B(S ′)◦

and Frac (RS′) = k(x, y).

The proof relies on the following lemma that is a corollary of [11, Proposition
3.2]. For the convenience of the reader, we give a simplified proof of it at the end
of this section.

Lemma 22.9. Let X be any smooth projective compactification of A2
k. Let C be

a reduced curve contained in X \ A2
k, and set U := X \ C.

If there exists a R-divisor A supported on C such that A2 > 0, then the fraction
field of the ring of regular functions on U is equal to k(x, y).

Proof of Proposition 22.8. We may assume S = Smin. Let TS be the convex hull
of S ∪ {− deg}. This is a finite tree. Write φ = φ1 − φ2 where both functions φi

lie in SH(V∞) and satisfy 〈φi, φi〉 > −∞ for i = 1, 2. By Proposition 21.19 and
Proposition 21.20, there exists a finite tree T containing TS such that

〈RT (φ1), RT (φ2)〉 ≤ 〈φ1, φ2〉+
1

2
〈φ, φ〉.
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Using Proposition 21.20, we get

〈RT (φ1)−RT (φ2), RT (φ1)−RT (φ2)〉 ≥ 〈φ1, φ1〉+ 〈φ2, φ2〉 − 2〈RT (φ2), RT (φ1)〉

≥ 〈φ1, φ1〉+ 〈φ2, φ2〉 − 2〈φ1, φ2〉 −
1

2
〈φ, φ〉

=
1

2
〈φ, φ〉 > 0 .

Replacing φ by RT (φ1) − RT (φ2), we may thus assume that φ is the difference
of two functions φ1, φ2 ∈ SH(V∞) such that ∆φ1 and ∆φ2 are supported on a
finite tree T whose set of vertices is the union of S and a finite set of divisorial
valuations.

Proposition 22.10. Let T be any finite subtree of V∞ containing − deg, and T ′

be any dense subset of T . Suppose φ ∈ L2(V∞) is a function such that ∆φ is
supported on T and φ(v) ∈ R for any end point v of T .

Then for any ǫ > 0 there exists a piecewise linear function φ′ such that

(1) the support of ∆φ′ is a finite collection of valuations that belong to T ′;
(2) φ = φ′ at any endpoint of T ;
(3) |〈φ, φ〉 − 〈φ′, φ′〉| ≤ ǫ.

Applying this lemma to ǫ = 1
2
〈φ, φ〉, and to the set T ′ consisting of all divisorial

valuations lying in T \ S, we obtain a piecewise linear function φ′ such that
〈φ′, φ′〉 > 0 and the properties (1) – (3) above are satisfied.

Let S ′ be the set of extremal points of the support of ∆φ′. Observe that thanks
to our choice of T ′ and the fact that φ|S = 0, we have S ⊂ B(S ′)◦ and φ′|S = 0.

Now pick any smooth projective compactification X of A2
k such that any valu-

ation in Supp∆φ′ ∪S ′ has codimension 1 center in X. Denote by E1, · · · , Es the
centers of valuations in S ′, and by Es+1, · · · , El the other irreducible components
of X \ A2. Introduce now the R-divisor

A′ :=
l∑

i=1

bEi
φ′(vEi

)Ei .

By [4, Lemma A.2.],

(
l∑

j=1

bEj
gvEi

(vEj
)Ej · Ek) = 0

when k 6= i, and

(
l∑

j=1

bEj
gvEi

(vEj
)Ej · Ek) = b−1

Ei

when k = i. It follows that Ěi = bEi

∑l
j=1 bEj

gvEi
(vEj

)Ej for all i = 1, · · · , l.
Write φ′ =

∑l
i=1 cigvEi

. Then we have

A′ =
l∑

i=1

bEi
φ′(vEi

)Ei =
l∑

i=1

bEi

(
l∑

j=1

cjgvEj
(vEi

)

)
Ei
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=
l∑

j=1

b−1
Ej
cj

(
bEj

l∑

i=1

bEi
gvEj

(vEi
)Ei

)
=

l∑

j=1

b−1
Ej
cjĚj.

It follows that

(A′)2 =

(
(

l∑

i=1

bEi
φ′(vEi

)Ei) · (
l∑

i=1

b−1
Ei
ciĚi)

)

=
l∑

i=1

ciφ
′(Ei) = 〈φ′, φ′〉 > 0.

Since φ′|S′ = 0 and S ′ is the set of extremal points of the support of ∆φ′ it
follows that φ′(vEi

) = 0 for any vEi
∈ B(S ′). In other words, the support C of A′

contains no component Ci such that vCi
∈ B(S ′). Now pick P ∈ Γ(X \ C,OX).

Then vEj
(P ) ≥ 0 for all j = 1, · · · , s hence v(P ) ≥ 0 for all v ∈ B(S ′) and we

conclude that

Γ(X \ C,OX) ⊂ RS′ = ∩j{P ∈ k[x, y]| vEj
(P ) ≥ 0} .

One completes the proof using Lemma 22.9. �

Proof of Proposition 22.10. Write φ = φ1 − φ2 where both functions φi lie in
SH(V∞) and satisfy 〈φi, φi〉 > −∞ for i = 1, 2.
Step 1. We first suppose that all end points of T are contained in T ′.
For any n ≥ 0, let Tn be a subset of T ′ such that

• all end points of T are contained in Tn;
• for any end point w of T and any point v ∈ [− deg, w], there exists a
point v′ ∈ [− deg, w] ∩ Tn such that |α(v)− α(v′)| ≤ 1/2n+1.

For i = 1, 2, let φn
i be the unique piecewise linear function on T such that φn

i (v) =
φi(v) for all v ∈ Tn. We extend φn

i to a function on V∞ by φn
i (v) := φn

i (rT (v)) for
all v ∈ V∞. We see that

(i) φn
i ∈ SH(V∞);

(ii) ∆φn
i is supported on T ;

(iii)
∫
T
∆φn

i =
∫
T
∆φi;

(iv) 0 ≤ φn
i (v)− φi(v) ≤

∫
T
∆φi/2

n for all v ∈ V∞.

Set φn = φn
1 − φn

2 . We have

〈φn, φn〉 =
∑

i=1,2;j=1,2

(−1)i+j

∫

T

φn
i ∆φ

n
j

=
∑

i=1,2;j=1,2

(−1)i+j(

∫

T

φi∆φj +

∫

T

(φn
i − φi)∆φ

n
j +

∫

T

(φn
j − φj)∆φi)

≥ 〈φ, φ〉 − 2(

∫

T

(φn
1 − φ1)∆φ

n
2 +

∫

T

(φn
2 − φ2)∆φ1)

≥ 〈φ, φ〉 − 4

∫

T

∆φ1

∫

T

∆φ2/2
n.

Then we have 〈φn, φn〉 > 0 for n large enough. Set φ′ := φn, then we conclude
our Proposition.
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Step 2. We complete the proof by induction on the number nT of end points of
T not contained in T ′.

When nT = 0, by Step 1, our Proposition holds.

When nT ≥ 1, there exists an end point w′ of T not contained in T ′. There
exists an increasing sequence vn ∈ [− deg, w] tending to w satisfying φ(vn) →
limv<w,v→w φ(v) = φ(w). Since w is an end point, we may suppose that Tn :=
T \ (vn, w] is a finite tree. There exists a function g ∈ SH+(V∞) such that
Supp∆g ⊆ [− deg, w] and it is strict decreasing on [− deg, w]. By replacing φi by
φi + g for i = 1, 2, we may suppose that φi’s are strict decreasing on [− deg, w].

When φ(vn) = φ(w), set ψn := RTn
φ.

When φ(vn) > φ(w), the function φ1(v) − φ2(vn) is decreasing. Observe that
φ1(vm)−φ2(vn) = φ(vm)−φ2(vn)+φ2(vm)→ φ(w)−φ2(vn)+φ2(w) whenm→∞.
Since φ2 is strict decreasing on [− deg, w], we have φ2(vn) > φ2(w) and then there
exists v′ ∈ (vn, w) such that φ1(v

′)−φ2(vn) = φ(w), set ψn := RT\(v′,w]φ1−RTn
φ2.

When φ(vn) < φ(w), by the previous argument for −φ, there exists v′ ∈ (vn, w)
such that φ1(vn)− φ2(v

′) = φ(w), set ψn := RTn
φ1 −RT\(v′,w]φ2.

By Proposition 21.19 and Proposition 21.20, there exists n ≥ 0 such that
|〈ψn, ψn〉 − 〈φ, φ〉| ≤ ε/2. Since T ′ is dense in T , there exists w′ ∈ (vn, w) ∩ T ′

such that Supp∆ψn ⊆ T \ (vn, w]. Apply the induction hypotheses to ψn, there
exists a piecewise linear function φ′ such that

• the support of ∆φ′ is a finite collection of valuations that belong to T ′;
• φ′ = ψn = φ at any endpoint of T ;
• |〈ψn, ψn〉 − 〈φ′, φ′〉| ≤ ǫ/2.

It follows that |〈φ, φ〉 − 〈φ′, φ′〉| ≤ ǫ which concludes our Proposition. �

Proof of Lemma 22.9. Decompose A = A+ − A− into its positive and negative
parts. Since (A+)2 + (A−)2 − 2A+A− = A2 > 0, and A+A− ≥ 0, we have
(A+)2 > 0 or (A−)2 > 0. Replacing A by A+ or A−, we may thus suppose that
A is effective.
Pertubing slightly the coefficients of A, we can also impose that A is a Q-

divisor. Let A = P + N be the Zariski decomposition of A, see [6, Theorem
2.3.19]. Here P is a nef and effective Q−divisor, N is an effective Q−divisors,
and they satisfy P · N = 0 and N2 < 0. It follows that P 2 ≥ P 2 + N2 = A2.
Replacing A by a suitable multiple of P we may thus assume that A is an effective
nef integral divisor with A2 > 0. Now pick any effective integral divisor D whose
support is equal to the union of all components of X \A2

k that are not contained
in C. For n large enough nA−D is big, hence H0(nA−D,X) 6= 0. Since

H0(nA−D,X) = {P ∈ k(x, y)| div(P ) + nA ≥ D} ,
we may find P ∈ k(x, y) such that div(P ) + nA ≥ D. Since A is supported on
X \U and D is effective, P is a regular function on U . Now pick any polynomial
Q ∈ k[x, y]. For m large enough, vE(P

mQ) ≥ 0 for any component E of the
support of D, which implies PmQ to be regular on U . This shows that Q is
included in the fraction field of Γ(U,OX) hence the latter is equal to k(x, y). �
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22.3. Reduction to the case of finite skewness. Recall that given a finite set
S ⊂ V∞, we let Smin

+ be the subset of S consisting of valuations that are minimal
in S and of finite skewness.

Our aim is to prove

Theorem 22.11. Let S be a finite subset of V∞. Then S is rich if and only if
Smin
+ is rich.

The proof relies on the following result of independent interest.

Theorem 22.12. Let S be a finite set of valuations in V∞. Suppose that there
exists a function φ ∈ SH(V∞) such that 〈φ, φ〉 > 0 and φ(v) = 0 for all v ∈ B(S).

For any integer l ≥ 0, there exists a real number Ml ≤ 1 such that for any set
S ′ of valuations such that

(1) S ′ \B(S) has at most l elements and,
(2) S ′ \B(S) ⊂ {v ∈ V∞| α(v) ≤Ml},

then there exists a function φ′ ∈ L2(V∞) satisfying φ′(v) = 0 for all v ∈ B(S ′)
and 〈φ′, φ′〉 > 0.

In the particular case where S = ∅, the previous result says the following.

Corollary 22.13. For any positive integer l > 0, there exists a real number
Ml ≤ 1 such that given any valuations v1, · · · , vl satisfying α(vi) ≤ Ml, there
exists a function φ ∈ L2(V∞) satisfying φ′(v) = 0 for all v ∈ B({v1, · · · , vl}) and
〈φ′, φ′〉 > 0.

Proof of Theorem 22.11. As before, we may suppose that S = Smin.
Since Smin

+ ⊆ S, we only have to show the ”if” part. Suppose that Smin
+ is rich,

and set l = #(S \Smin
+ ). Since Smin

+ is rich, Theorem 22.7 implies the existence of
a function φ ∈ SH+(V∞) such that 〈φ, φ〉 > 0 and φ(v) = 0 for all v ∈ B(Smin

+ ).
Since S \ B(Smin

+ ) ⊂ {α = −∞} Theorem 22.12 then implies the existence of
φ′ ∈ L2(V∞) satisfying φ′(v) = 0 for all v ∈ B(S) and 〈φ′, φ′〉 > 0.

We conclude that S is rich by applying Theorem 22.7 once again. �

Proof of Theorem 22.12. We first make a couple of reductions. Let TS be the
convex hull of S. Replacing φ by RTS

(φ), we may suppose that ∆φ is supported
on TS. We can also scale φ so that φ(− deg) = 1 which implies 0 ≤ φ(v) ≤ 1 for
all v ∈ V∞ since φ(v) = 0 for all v ∈ B(S).

Further, we may apply Theorem 22.7 (vi) and suppose M0 := infS α > −∞.
To simplify notation, set r := 〈φ, φ〉 > 0.

We prove the theorem by induction on l. In the case l = 0, there is nothing
to prove. Suppose that the result holds for (l − 1) ≥ 0 with Ml−1 ≤M0, and set
Ml :=Ml−1 − 2l/r.

Suppose S ′ is a set of valuations satisfying the conditions (1) and (2) of the
theorem. When #(S ′ \B(S)) ≤ l− 1, we are done since Ml < Ml−1. So we have
#(S ′ \ B(S)) = l, and we write S ′ \ B(S) = {v1, · · · , vl}. If there exist a pair of
valuations vi, vj such that α(vi ∧ vj) ≤Ml−1, then we may conclude by replacing
S ′ by (S ′ \ {vi, vj}) ∪ {vi ∧ vj} and using the induction hypothesis.
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Whence α(vi∧vj) > Ml−1 when i 6= j. For each i, let v0i be the unique valuation
in V∞ such that v0i ≤ vi and α(v

0
i ) =Ml−1, so that v0i 6= v0j when i 6= j. Define

Φi = xi(gvi − gv0i ) ∈ L2(V∞) with xi := φ(vi)/(Ml−1 − α(vi)) .

Observe that Φi(− deg) = 0, ∆Φi = xi(δvi − δv0i ); 1 ≥ |Φi| ≥ 0, and that Φi(v) =

−φ(vi) when v ≥ vi. It follows that 〈Φi,Φi〉 = −xiφ(vi) and 〈Φi,Φj〉 = 0 when
i 6= j.

Set

φ′ := φ+
l∑

i=1

Φi .

Then φ′ ∈ L2(V∞), and it is not difficult to check that φ′(v) = 0 for all v ∈ B(S ′).
Finally we have

〈φ′, φ′〉 = 〈φ′, φ〉+
l∑

i=1

〈φ′,Φi〉 = 〈φ′, φ〉 −
l∑

i=1

xiφ
′(v0i )

= 〈φ, φ〉 −
l∑

i=1

xiφ(vi) ≥ r −
l∑

i=1

φ(vi)
2/(Ml−1 − α(vi))

≥ r −
l∑

i=1

1/(Ml−1 − α(vi)) ≥ r/2 > 0 ,

which concludes the proof. �

22.4. Proof of the Main Theorem.

By Lemma 22.1, Lemma 22.6 and Theorem 22.11 we may suppose that S =
Smin
+ .
Denote by T the convex hull of S ∪ {− deg}. To simplify notation, set S =

{v1, · · · , vl} and v0 := − deg . Since α(v0 ∧ v0) = 1 > 0, by Lemma 22.3, we have
the following

Lemma 22.14. The matrix [α(vi ∧ vj)]0≤i,j≤l is invertible, and its determinant
has the same sign as (−1)l.

We may thus find real numbers a0, . . . , al such that




1 1 . . . 1
1 α(v1) . . . α(v1 ∧ vl)
. . . . . . . . . . . .
1 α(v1 ∧ vl) . . . α(vl)







a0
a1
...
al


 =




1
0
...
0


 (∗).

Lemma 22.15. The subset S is rich if and only if a0 is positive.
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Now observe that



1 1 . . . 1
1 α(v1) . . . α(v1 ∧ vl)
. . . . . . . . . . . .
1 α(v1 ∧ vl) . . . α(vl)







a0 0 . . . 0
a1 1 . . . 0
. . . . . . . . . . . .
al 0 . . . 1


 =




1 1 . . . 1
0 α(v1) . . . α(v1 ∧ vl)
. . . . . . . . . . . .
0 α(v1 ∧ vl) . . . α(vl)


 ,

hence a0 > 0 iff χ(S) := (−1)l det(α(vi ∧ vj)1≤i,j≤l) > 0 as required.

Proof of Lemma 22.15. Set φ∗ :=
∑l

0 aigvi ∈ L2(V∞). By (*), we have φ∗(− deg) =
1, φ∗(v) = 0 for all v ∈ B(S) and 〈φ∗, φ∗〉 = a0.
Suppose first that a0 > 0 〈φ∗, φ∗〉 = a0 > 0. It follows from Theorem 22.7 that

S is rich.

Conversely if S is rich, then again by Theorem 22.7 there exists φ ∈ SH+(V∞)
such that φ(v) = 0 for all v ∈ B(S) and 〈φ, φ〉 > 0. By replacing φ by RT (φ), we
may suppose that ∆φ is supported on T, and by scaling, that φ(− deg) = 1.
Observe that on each connected component of T \ (S ∪ {− deg}), we have

∆(φ−φ∗) = ∆(φ−φ∗) = ∆φ ≥ 0. The following lemma is basically the maximum
principle for subharmonic functions on finite trees.

Lemma 22.16. Let T be a finite subtree in V∞ and S be the set of end points
of T . Suppose that all points in S are with finite skewness. Let φ subharmonic
function on T \ S i.e. ∆φ is a positive measure on T \ S. Then if there exists a
point w ∈ T \ S satisfying φ(w) = sup{φ(v)| v ∈ T \ S} then φ is constant in the
connected component containing w.

Since φ− φ∗(vi) = 0 for all i = 0, · · · , l, Lemma 22.16 implies that φ− φ∗ ≤ 0
on T . Then we conclude that

a0 =

∫
φ∗∆φ∗ ≥

∫
φ∆φ∗ =

∫
φ∗∆φ ≥

∫
φ∆φ > 0.

�

Proof of Lemma 22.16. We suppose that there exists a point w ∈ T \S satisfying
φ(w) = sup{φ(v)| v ∈ T \ S}.

If w is not a branch point, then there exists open segment I in T containing w

such that there are no branch points in I. Since ∆φ|I = d2φ
dt2

, we get that φ|I is
convex. It follows that φ is constant on I.

If w is a branch point, we have 0 ≤ ∆φ{w} =
∑

~wD~wφ where the sum is
over all tangent directions −→w in T at w. Then there exists a direction ~v satisfying
D~vφ = max{D~wφ} where the max is over all tangent directions−→w in T at w. Then
we have D~vφ ≥ 0. There exists a segment [w, v′) determining ~v and containing
no branch points except w. Since φ is convex on [w, v′) and D~vφ ≥ 0, it follows
that φ is constant on [w, v′) and then D~wφ = 0 for all tangent directions −→w in T
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at w. We conclude that there exists an open set U in T containing w such that
φ is constant on U .

So the set {w| sup{φ(v)| v ∈ T \ S}} is both open and closed. It is thus a
union of connected components of Y \ S which concludes our lemma. �
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23. Further remarks in the case χ(S) = 0

In this section, we discuss the case when χ(S) = 0 for some finite subset S of
valuations in V∞, and explore its relations with the condition δ(S) = 1.

As before, k is any algebraically closed field. To simplify the discussion we
shall always assume that S = Smin, that is no two different valuations in S are
comparable.

23.1. Characterization of finite sets with χ(S) = 0.

Theorem 23.1. If any valuation in S has finite skewness, the following condi-
tions are equivalent:

(1) χ(S) = 0;
(2) there exists φ ∈ SH+(V∞) such that φ|S = 0, the support of ∆φ is equal

to S, and 〈φ, φ〉 = 0.

Moreover when either one of these conditions are satisfied, the function φ as in
(2) is unique up to a scalar factor. If all valuations in S are divisorial and we
normalize φ such that φ(− deg) = +1 then the mass of ∆φ at any point is a
rational number.

Remark 23.2. When S = S+, χ(S) = 0 if and only if the matrix M(S) has a
one-dimensional kernel by Lemma 22.3.

Definition 23.3. When χ(S) = 0 and S = Smin
+ , let φS be the unique function

in SH+(V∞) such that φS(− deg) = +1, φS|S = 0, the support of ∆φS is equal to
S, and 〈φS, φS〉 = 0 as above.

Proof. Denote by T the convex hull of S ∪ {− deg}. To simplify notation, set
S = {v1, · · · , vl} and v0 := − deg .

(1) ⇒ (2). By Lemma 22.14, we may thus find real numbers a0, . . . , al such
that 



1 1 . . . 1
1 α(v1) . . . α(v1 ∧ vl)
. . . . . . . . . . . .
1 α(v1 ∧ vl) . . . α(vl)







a0
a1
...
al


 =




1
0
...
0


 .

As in the proof of the Main theorem, the sign of a0 is the same as χ(S). It follows

that a0 = 0. Consider the function φ :=
∑l

i=1 aigvi . Observe that φ(− deg) = 1,
φ|S = 0 and Supp∆φ ⊆ S. Lemma 22.16 implies that φ > 0 on T . Since φ is
piecewise linear on T and φ = 0 on B(S), ai = ∆φ(vi) > 0 for i = 1, · · · , l. It
follows that φ ∈ SH+(V∞), Supp∆φ = S, φ|S = 0 and 〈φ, φ〉 =∑l

i=1 aiφ(vi) = 0.

(2)⇒ (1). Write φ =
∑l

i=1 aigvi where ai ∈ R+, i = 1, · · · , l. Since φ|S = 0, we
have 


α(v1) . . . α(v1 ∧ vl)
. . . . . . . . .

α(v1 ∧ vl) . . . α(vl)





a1
...
al


 =



0
...
0


 .

It follows that χ(S) = (−1)l det(α(vi ∧ vj)1≤i,j≤l) = 0.



114

Further, Lemma 22.3 implies that the rank of the l× l matrix [α(vi∧ vj)]1≤i,j≤l

is l − 1. It follows that the function φ is unique up to a scalar factor. When
all vi, i = 1, · · · , l are divisorial, then all α(vi ∧ vj), 1 ≤ i, j ≤ l are rational. If
we normalize φ such that φ(− deg) = +1 then the mass of ∆φ at any point is a
rational number. �

23.2. The relation between χ(S) = 0 and δ(S) = 1. Let us begin with the
following simple consequence of the Main Theorem.

Proposition 23.4. If δ(S) = 1 then χ(S) = 0 and v is divisorial for all v ∈ S.

Remark 23.5. The converse of Proposition 23.4 is not true. Let L∞ be the line
at infinity of P2

C. Let O be a point in L∞ and (u, v) be a local coordinate at O
such that locally L∞ = {u = 0} and {v = 0} is a line in P2

C. Let C be a branch
of curve at O defined by (v−u2)5−u3 = 0. We blow up 14 times at the center of
( the strict transform of) C and denote by E the last exceptional curve. One can
check that α(vE) = 0. By [8, Example 1.3, Example 2.5], we have δ({vE}) = 0.

Proof of Proposition 23.4. Write S = {v1, · · · , vl}. Pick any non constant poly-
nomial Q ∈ RS, and define φ := log+ |Q| ∈ SH+(V∞). Since δ(S) 6= 2 it follows
from Theorem 22.7 (iv) that 〈φ, φ〉 ≤ 0 hence 〈φ, φ〉 = 0, and φ(v) = 0 for all
v ∈ S.
Suppose v1 ∈ S is not divisorial, then there exists w1 < v1 such that φ(w1) =

φ(v1) = 0. By Proposition 21.22 and Proposition 22.8, we have S is rich which
contradicts to our assumption. It follows that v is divisorial for all v ∈ S.

For every v′1 > v1, By Proposition 21.22, the set S ′ := {v′1, v2, · · · , vl} is rich.
It follows that χ(S ′) > 0. Let v′1 → v1, we have χ(S) ≥ 0. Since S is not rich, we
have χ(S) ≤ 0 and then χ(S) = 0. �

Our aim is to state a partial converse to the preceding result. To do so we
need to introduce an important invariant that is referred to as the thinness of a
valuation in [4]. Recall that this is unique function A : V∞ → [−2,∞] that is
increasing and lower semicontinuous function on V∞ and such that

A(vE) =
1

bE
(1 + ordE(dx ∧ dy))

for any irreducible component E of X \ A2
k in any admissible compactification.

By the very definition we have A(− deg) = −2 and the thinness of any divisorial
valuation is a rational number whereas the thinness of any valuation associated
to a branch of an algebraic curve is +∞.

We can now state the main result of the section.

Proposition 23.6. Suppose χ(S) = 0, v is divisorial for all v ∈ S and
∫
A∆φS ≤

0. Then δ(S) = 1.

Proof. Write S = {v1, · · · , vl} and vi := vEi
for Ei ∈ E . Write φS =

∑l
i=1 rigvi

where ri ∈ Q+. Let X be a compactification of A2
k such that Ei can be realized

as an irreducible component of X \ A2
k. Let EX be the set of all irreducible
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components of X \A2
k. Set θ :=

∑
E∈EX

bEφS(vE)E =
∑l

i rib
−1
Ei
Ěi. Then we have

(θ ·KX) =
l∑

i=1

rib
−1
Ei
(Ěi ·KX) =

l∑

i=1

rib
−1
Ei
ordEi

KX

=
s∑

i=1

rib
−1
Ei
(−1 + bEi

A(vi)) = −
s∑

i=1

rib
−1
Ei

+

∫
A∆φS < 0.

There exists m ∈ Z+ such that D := mθ is a Z divisor supported by X∞. Then
we have that D is effective, D2 = 0 and (D ·K) ≤ −1. Recall the Riemann-Roch
theorem we have

h0X(D)− h1X(D) + h2X(D) = χ(OX) + (D · (D −K)) /2 = χ(OX)− (D ·K)/2.

Since X is rational, we have χ(OX) = 1. Since D is effective, we have h2X(D) =
h0(KX −D) ≤ h0(KX) = 0. It follows that

h0X(D) ≥ 1− (D ·K)/2 > 1.

Then there exists an element P ∈ k(x, y) \ k such that div(P ) + D is effective.
Since D is supposed by X \ A2

k, we have P ∈ k[x, y] \ k. It follows that
vi(P ) = (bEi

)−1ordEi
(P ) ≥ −(bEi

)−1ordEi
(D) = −mφS(vi) = 0

for all i = 1, · · · , l. �

Remark 23.7. The condition
∑l

i=1 riA(vi) ≤ 0 is not necessary. Set P :=
y2 − x3 ∈ C[x, y]. Consider the pencil Cλ consisting of the affine curves Cλ :=
{P = λ} ⊆ C2 for λ ∈ C. We see that Cλ has one branch at infinity for every
λ ∈ C. Let v|C| be the normalized valuation defined by Q 7→ 3−1ord∞(Q|Cλ

) for
λ generic. We see that α(v|C|) = 0, A(v|C|) = 1/3 > 0 and P ∈ RS.

23.3. The structure of RS when δ(S) = 1.

Proposition 23.8. Suppose that δ(S) = 1. Then there exists a polynomial P ∈
k[x, y] \ k such that RS = k[P ].

Proof of Proposition 23.8. Set S = {v1, · · · , vl} and suppose that S = Smin.

If there exists Q ∈ k[x, y] such that Q ∈ Frac (RS) \ RS, then we have∑d
i=1 aiQ

i = 0 where d ≥ 1, ai ∈ RS and ad 6= 0. Since S is not rich, we
have v(ai) = 0 for all v ∈ S and i = 1, · · · , d. Since Q 6= RS, there exists v ∈ S
satisfying v(Q) < 0. Then we have v(aiQ

i) = iv(Q) < 0 for i = 1, · · · , d. It
follows that v(aiQ

i) = iv(Q) > dv(Q) = v(adQ
d) for i = 1, · · · ,m − 1. Then we

have v(
∑d

i=0 aiQ
i) = dv(Q) < 0 which is a contradiction. Then we have

Frac (RS)
⋂

k[x, y] = RS.

Pick a polynomial P ∈ RS \k with minimal degree. If there are infinitely many
r ∈ k such that P−r is not irreducible, then by [10, Théorème fundamental], there
exists a polynomial Q ∈ k[x, y] and R ∈ k[t] of degree at least two satisfying P =
R ◦Q. Then we have Q ∈ ¯Frac (RS) ∩ k[x, y] = Frac (RS) and deg(Q) < deg(P )
which contradicts the minimality of deg(P ). It follows that there are infinitely
many r ∈ k such that P − r is irreducible.
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If RS 6= k[P ], there exists R ∈ RS \ k[P ] with minimal degree. Since R ∈
Frac (RS) = k(P ), we have

m∑

i=0

ai(P )R
i = 0

where m ≥ 1, ai ∈ k[t] and am 6= 0 in k[t]. There exists r ∈ k such that the
polynomial P − r is irreducible and am(r) 6= 0. We have

0 = (
m∑

i=0

ai(P )R
i)|{P−r=0} =

m∑

i=0

ai(r)(R|{P−r=0})
i.

It follows that r1 := R|{P−r=0} is a constant in k. Since P − r is irreducible, there
exists R1 ∈ k[x, y] such that R− r1 = (P − r)R1. It follows that

R1 ∈ k(R,P )
⋂

k[x, y] ⊆ Frac (RS)
⋂

k[x, y] = RS

and degR1 < degR. Since the degree of R is minimal in RS \ k[P ], we have
R1 ∈ k[P ]. Then we have R = (P − r)R1 + r1 ∈ k[P ] which contradicts to our
hypotheses. It follows that RS = k[P ]. �
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24. An application to the algebraization problem of analytic

curves

The aim of this section is to prove Theorem 19.5.

24.1. K-rational points on plane curves. Let K be a number field,M∞
K the

set of its archimedean places, M0
K the set of its non-archimedean places, and

MK =M∞
K ∪M0

K . For any v ∈ MK , denote by Ov := {x ∈ K| |x|v ≤ 1} the
ring of v-integers and define OK := {x ∈ K| |x|v ≤ 1 for all v ∈M0

K}.
Let S be a finite set of places of K containing all archimedean places. We

define the ring of S-integers to be

OK,S = {x ∈ K| |x|v ≤ 1 for all v ∈MK \ S}.
Let X be a compactification of A2

K . We fix an embedding A2
K →֒ X. Fix a

projective embedding X →֒ PN defined over K. For each place v ∈ MK , there
exists a distance function dv on X, defined by

dv([x0 : · · · : xN ], [y0 : · · · : yN ]) =
max0≤i,j≤N |xiyj − xjyi|v

max0≤i≤N |xi|v max0≤j≤n |yj|v
for any two points [x0 : · · · : xN ], [y0 : · · · : yN ] ∈ X(K) ⊆ PN(K). Let C be an
irreducible curve in X which is not contained in X∞ := X \ A2

K .

Proposition 24.1. Pick any point q ∈ C(K)
⋂
X∞. For every place v ∈MK, let

rv be a positive real number and set Uv := {p ∈ A2(Kv)| dv(q, p) < rv}. Suppose
moreover that rv = 1 for all places v outside a finite subset S of MK. Then the
set C(K) \ ∪v∈MK

Uv is finite.

Proof. We shall prove that C(K)\∪v∈MK
Uv is a set of points of bounded heights

for a suitable height.

Let i : C̃ → C be the normalization of C and pick a point Q ∈ i−1(q).

There exists a positive integer l such that lQ is a very ample divisor of C̃.

Choose an embedding j : C̃ →֒ PM such that

O = [1 : 0 : · · · : 0] = H∞
⋂

C̃

where H∞ = {xM = 0} is the hyperplane at infinity. Let g : C̃ → P1 be the

rational map sending [x0 : · · · : xM ] ∈ C̃ to [x0 : xM ] ∈ P1. It is a morphism since

{x0 = 0}⋂H∞
⋂
C̃ = ∅. It is also finite and satisfying

g−1([1 : 0]) = H∞
⋂

C̃ = [1 : 0 · · · : 0].

By base change, we may assume that C̃, i, j, g are all defined over K.

Set D = SpecOK . We consider the irreducible scheme C̃ ⊆ PM
D over D whose

generic fiber is C̃ and the irreducible scheme X ⊆ PN
D over D whose generic fiber

is X. Then i extends to a map ι : C̃ 99K X over D that is birational onto its
image.
For any v ∈M0

K , let
pv = {x ∈ Ov| v(x) > 0}
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be a prime ideal in Ov. There is a finite set T consisting of those places v ∈
M0

K such that ι is not regular along the special fibre COv/pv at pv ∈ D or

COv/pk

⋂
H∞,Ov/pv 6= {[1 : 0 : · · · : 0]}.

Pick any place v ∈M0
K \ (S

⋃
T ), and define

Vv ={[1 : x1 : · · · : xM ] ∈ C̃(K)| |xi|v < 1, i = 1, · · · ,M}
={[1 : x1 : · · · : xM ] ∈ C̃(K)| |xM |v < 1}.

Since rv = 1, for such a place we set Ωv := {[1 : x] ∈ P1(K)| |x|v < 1}. We have

Vv = g−1(Ωv)
⋂
C̃(K), so that i−1(Uv

⋂
C(K)) ⊇ Vv for all v ∈M0

K \ (S
⋃
T ).

Now choose a place v ∈ S
⋃
T . Since g−1([1 : 0]) = Q, we may supose that

rv > 0 satisfying i−1(Uv

⋂
C(K)) ⊇ g−1({[1 : x] ∈ P1(K)| |x|v < rv}).

By contradiction, we suppose that there exists a sequence {pn = (xn, yn)}n≥0 of
distinct K-points in C(K)

⋂
A2(K). Since there are only finitely many singular

points in C, we may suppose that for all n ≥ 0, C is regular at pn. Set qn :=
i−1(pn), and yn := g(qn). Since g is finite, we may suppose that the yn’s are
distinct. Write yn := [xn : 1] so that |xn|v < rv for all v ∈MK .

We now observe that

[K : Q]hP1(yn) =
∑

v∈MK

nv log(max{|xn|v, 1})

≤
∑

v∈MK\{v∈MK}
nv log(max{rv, 1})

=
∑

v∈S
⋃

T

nv log(max{rv, 1})

where hP1 denotes the naive height on P1. We get a contradiction by Northcott
property (see [12]). �

We also have a version of Proposition 24.1 for S-integral points.
Given any finite set of places containingM∞

K , we say that (x, y) ∈ A2(K) ⊆ X
is S-integral if x, y ∈ OK,S.

Proposition 24.2. Let {pn = (xn, yn)}n≥0 be an infinite set of S-integral points
lying in C

⋂
A2. Then for any point q ∈ X∞

⋂
C(K), there exists a place v ∈MK

such that there exists an infinite subsequence {pni
}i≥1 satisfying pni

→ q with
respect to dv as i→∞.

Proof of Proposition 24.2. We define C̃, i,j,g and T as in the proof of Proposition
24.1.
We may suppose that for all n ≥ 0, pn is regular in C. The K-points qn :=

i−1(pn) are distinct K-points in C̃.
For any v ∈M0

K \ (S
⋃
T ), Set

Vv ={[1 : x1 : · · · : xM ] ∈ C̃(K)| |xi|v < 1, i = 1, · · · ,M}
={[1 : x1 : · · · : xM ] ∈ C̃(K)| |xM |v < 1}.
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We set Ωv := {[1 : x] ∈ P1(K)| |x|v < 1}, then Vv = g−1(Ωv)
⋂
C̃(K). It

follows that qn 6∈ Vv. Set [xn : 1] := g(qn). Then we have |xn|v < 1 for all
v ∈MK \ {S

⋃
T}

Since g is finite, we may suppose that g(qn)’s are distinct. By Northcott prop-
erty, we have hP1(g(qn))→∞ as n→∞. Observe that

[K : Q]hP1(g(qn)) =
∑

v∈MK

nv log(max{|xn|v, 1})

=
∑

v∈MK\{S⋃
T}
nv log(max{|xn|v, 1}) +

∑

v∈S⋃
T

nv log(max{|xn|v, 1})

=
∑

v∈S⋃
T

nv log(max{|xn|v, 1})

Since S
⋃
T is finite, there exists v ∈ S⋃T , such that there exists a subsequence

ni such that log(max{|xni
|v, 0}) → ∞ as i → ∞. Then g(qni

) → [1 : 0] with
respect to dv as i → ∞. Since g−1([1 : 0]) = {Q}, we have qni

→ Q and then
pni

= i(qni
)→ q respect to dv as i→∞. �

24.2. The adelic analytic condition in Theorem 19.5. Let K be a number
field. Recall that s is an adelic branch at infinity defined over K if it is given by
the following data.

(i) s is a formal branch based at a point q ∈ L∞(K) given in coordinates

xq, yq as in the introduction by a formal Puiseux series yq =
∑

j≥1 ajx
j/m
q ∈

OK,S[[x
1/m
q ]] for some positive integer m and a finite set S of places of K

containing all archimedean places.
(ii) for each place v ∈ S, the radius of convergence of the Puiseux series

determining s is positive, i.e. lim supj→∞ |aj|−m/j
v > 0.

Further, we say s is a adelic branch at infinity if it is a adelic branch defined
over some number field.

Remark 24.3. The definition of adelic branch at infinity does not depend on
the choice of affine coordinate in A2

Q
.

Remark 24.4. If C is a branch of an algebraic curve at infinity defined over Q,
then C is adelic.

An adelic branch need not to be algebraic. Pick a formal Puiseux series yq =∑∞
i=1 aix

i
m
q ∈ K[[x

1
m
q ]] which comes from a branch at q ∈ L∞(K) of an algebraic

curve such that all ai’s are non zero. For example yq =
∑∞

i=1 x
i
q =

xq

1−xq
. To each

subset T of Z+, we attach a formal Puiseux series yq =
∑

i∈T aix
i
m
q ∈ K[[x

1
m
q ]]

which defines a formal curve CT . It is easy to check that all CT ’s are adelic-
analytic curves and CT 6= CT ′ if T 6= T ′. So the cardinality of set {CT}T⊆Z+ is
2ℵ0 . On the other hand, since Q is countable, the set of all branches of algebraic
curves at O is countable. Then there exists an adelic-analytic curve CT for some
T ⊆ Z+ which is not algebraic.
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24.3. Proof of Theorem 19.5. Let S be a finite set of places of K containing
all archimedean places. We may suppose that s1, · · · , sl, l ≥ 1 are adelic branches
defined over K. Denote by qi the center of si. Write Ui for Uqi , xi (resp. yi) for xqi
(resp. yqi). By changing coordinates, we may suppose that xi = 1/x, yi = y/x+ci

for some ci ∈ OK,S. Suppose that si is defined by yi =
∑

j=1 aijx
j

mi ∈ OK,S[[x
1

mi ]]

where mi is a positive integer. Observe that Cv(si) is contained in the ball
{p ∈ P2(Kv)| dv(p, qi) < 1} for v ∈ MK \ S. We may suppose that Bv = 1 for
v ∈MK \ S.

Since α(vsi) = −∞, by Theorem 22.12 and Theorem 22.7, there exists a poly-
nomial P ∈ Q[x, y] such that vi(P ) > 0 for all i = 1, · · · , l. Replacing K by a
larger number field and S by a larger set, we may suppose that P ∈ OK,S[x, y].

Observe that P (x, y) = P (x−1
i , (yi − ci)x−1

i ) in Ui, so that

P |si = P

(
x−1
i , (

∑

j=1

aijx
j

mi − ci)x−1
i

)

is a formal Puiseux series. We may write it as
∑∞

j bi,jx
j

mi

i ∈ K((x
1

mi

i )). It is easy

to see that bi,j ∈ OK,S. Observe that qi is not a pole of P |Ci
. It follows that

bi,j = 0 for j ≤ 0 and then P |Ci
∈ K[[x

1
mi ]]. There exists a real number Mv ≥ 0

satisfying |P (p)|v ≤ Mv for all p ∈ Cv(si), i = 1, · · · , l and v ∈ MK . Observe
that we may chose Mv = 1 for v ∈MK \ S.

There exists a number Rv satisfying |P (x, y)|v ≤ Rv for all (x, y) ∈ K2 sat-
isfying |x|v ≤ Bv, |y|v ≤ Bv. We may chose Rv = 1 for all v ∈ MK \ S. Set
Av := max{Bv,Mv}, we have Av = 1 for v ∈MK \ S.

The height of P (pn) is

h(P (pn)) =
∑

v∈MK

log{1, |P (pn)|v}

≤
∑

v∈MK

log{1, Av} =
∑

v∈S
log{1, Av} <∞.

By Northcott property, the set T := {P (pn)| n ≥ 0} is finite. We denote by D
the curve defined by the equation

∏
t∈T (P (x, y)− t) = 0. Then D contains the set

{pn}n≥0. Let C be the union of all irreducible components of D which contains
infinitely many pn. Then for n large enough, we have pn ∈ C.
We only have to show that all branches of C at infinity are contained in the

set {s1, · · · , sl}. By contradiction, we suppose that there exists a branch Z1 of
C at infinity which is not contained in {s1, · · · , sl}. Let Z be the irreducible
component containing Z1. Set RZ := {pn}n≥0

⋂
Z. Then RZ is an infinite set.

Pick a compactification X of A2
K such that all centers q′i of the strict transforms

of si’s are difference from the center z of the strict transform of Z1. For every
v ∈MK there exists rv > 0 such that the ball Dv := {p ∈ P2(Kv)| dv(p, z) < rv}
does not intersect Cv(si) for all i = 1, · · · , l and does not in intersect the set
{(x, y) ∈ A2(Kv)| max{|x|v, |y|v} ≤ Bv}. Moreover we may suppose that rv = 1
for all v outside a finite set F of MK . Let Uv := Dv

⋂
Z(Kv). By Proposition
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24.1, we have the set Z(K) \ (∪v∈MK
Uv) is finite. Then there exists a point

pn ∈ RZ and a place v ∈ MK such that pn = (xn, yn) ∈ Uv. Then we have
max{|xn|v, |yn|v} > Bv and p 6∈ Cv(si) for all i = 1, · · · , l, which contradicts to
our hypotheses.

Remark 24.5. In fact, we can prove a stronger version of Theorem 19.5. Our
proof actually shows that it is only necessary to assume that pn is a sequence of
Q̄ points having bounded degree over Q (instead of assuming it to belong to the
same number field).

We also have an analogue of Theorem 19.5 for S-integer points.

Theorem 24.6. Let K be a number field and S be a finite subset of places in
MK containing M∞

K .
Let s1, · · · , sl where l ≥ 1 be a finite set of formal curves in P2

Q
define over K

whose centers qi’s are K-points in the line L∞ at infinity. Suppose that for all
place v ∈ S, si is convergence to a v-analytic curve Cv(si) in a neighbourhood at
qi w.r.t. v for i = 1, · · · , l.

Finally let pn = (x(n), y(n)), n ≥ 0 be an infinite collection of S-integer points
in A2(K) such that for each place v ∈ MK then either max{|x(n)|v, |y(n)|v} ≤ Bv

or pn ∈ ∪li=1C
v(si).

Then there exists an algebraic curve C in A2
K such that any branch of C at

infinity is contained in the set {s1, · · · , sl} and pn belongs to C for all n large
enough.

The proof of Theorem 24.6 is very similar to the proof of Theorem 19.5. We
leave it to the reader.
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