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Introduction

This thesis contributes to the domain of Humanoid Robot Motion Con-
trol; more precisely, the model-based online generation of walking trajectories.
Walking motions can be generated online through the control of reduced dy-
namic models that are rich enough in motion information and subsequent
tracking of the resulting trajectories by the complete robot. By focussing
on key characteristics of the gait, the computational burden can be reduced,
redistributing it into a global, low-dimensional (decision) part and a local,
high-dimensional (tracking) part. Since precomputed reference motions be-
come unnecessary, robustness and reactivity are expected to be superior to the
converse approach where adaptation schemes have to be employed to choose
or interpolate between static reference motions.

During the last decade, several control schemes have been developed that
demonstrate the capacity of simplified models to generate robust and reactive
gaits. But, the computational load is small enough only for very simple mod-
els that generate relevant deviations from their comprehensive counterparts,
and the associated walking style is inefficient and unnatural looking. The re-
alizability of the generated motions and the overall stability of the robot are
typically assured by severely constraining the set of possible solutions. Tra-
jectories are obtained with the help of strong assumptions on the motions and
the environment that can easily lose their validity. These measures reduce
the robot’s capacity of taking appropriate decisions and lower the gain due to
the reduced computational time and the absence of offline computed motion
references.

In this thesis, the problem of trajectory generation is addressed from the
perspective of Model Predictive Control (MPC). This point of view will al-
low us first to generalize and second to improve existing solutions in this do-

3



4 INTRODUCTION

main. The main goal of this thesis consists in the development of a generic
MPC-based trajectory generation scheme that meets the target flexibility and
reactivity required for autonomous walking. Embedded in a real-time control
framework, it is designed to ease and to improve the interaction with other
control instances and the user by means of a more abstract interface. A sec-
ond goal consists in improving the efficiency and performance of the control
scheme itself by incorporating more complex gait models.

Its main contributions are:

– Development of a Linear Model Predictive Control (LMPC) scheme for
real-time walking control.

– Extension of the scheme to natural use of toes and oscillations of the
Center of Mass and multiple-mass models for a more precise control of
the motions.

– Verification on different robotic platforms, including the HRP-2, the HRP-
4c and Romeo in a direct user-robot interface as well as in a visual feed-
back loop.

– A Nonlinear MPC (NMPC) prototype capable of computing three dimen-
sional walking trajectories in real-time.

In Chapter 1, we will show the key challenges of motion control for humanoid
robots. We will give an overview of the major realizability restrictions and a
thorough definition of a robot’s stability. This will serve us then to justify the
suitability of Model Predictive Control for motion generation. A generic MPC
scheme will be formulated that will serve as a reference for the definition of
control laws throughout the thesis.

Throughout Chapter 2, we will mention several possible linearized formu-
lations of this motion generation scheme. We will discuss, in thorough detail,
one single formulation that allows for free foot placement and control through
velocity references, therefore capable to be implemented without further mod-
ifications in a visual feedback loop, and we will discuss its real-time imple-
mentation. Simulations and experiments on robotic platforms will serve us
to evaluate the performance of the scheme in particular and the potential of
linear MPC for walking control in general.

Chapter 3 will serve as an example for its generalizability. Extensions of the
scheme will be introduced that allow for considerably more efficiency and walk-
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ing performance through varying waist height and the use of toes. To reduce
the modeling error that becomes significant for faster motions, a multiple-mass
model is proposed.

In Chapter 4, we introduce a nonlinear MPC scheme capable of control-
ling nonlinear dynamic models, and we embed it in a real-time computation
framework. Extended by compliant legs it will prove its capacity to reproduce
major characteristics of the human gait.

Trajectory	  Generator	  

Whole-‐body	  mo4ons	  

Stabilizer	  

Robot	  

Environment	  

Figure 1: One possible control structure. The emphasis of this thesis lies
on the generation of low-dimensional trajectories (filled entity). The solid
interconnections between instances have been considered in this thesis, whereas
the dashed ones are possible feedback interconnections.
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Chapter 1

Controlling the displacement

Among the objectives that a legged robot may fulfill, keeping the balance
plays an imperative role. Any other goal, including the locomotion itself, can
be achieved only if the robot manages to gain sufficient foothold. The central
question that has to be answered when formulating a walking control law can
therefore be stated as follows: How to control the displacement of the overall
body such that the robot keeps balance and secondary goals can be fulfilled?

This chapter serves to justify the approach taken in this thesis from the
theoretical point of view. Leaving the analysis of the actual performance of
the developed schemes to subsequent chapters, we will focus in the following on
the feasibility and stability shown here as essential requirements on generated
motions. In a first part, we will highlight the dynamic structures that govern
and restrain the displacement of legged robots. We will, in a second part,
adapt a concept of stability, and we will give a sufficient condition for its
achievement. This will serve us finally to formulate a general Model Predictive
Control scheme for the displacement control of a biped robot.

1.1 Constrained dynamics

Additionally to the conceptual properties of classical robot manipulators,
comprehensive dynamics of a biped robot exhibit redundant degrees of freedom
and several end-effectors. Complex interactions occur during the unavoidable
contact making, generating impact forces that can destabilize the system. Once
contact is established, its unilateral nature prohibits the generation of forces

7



8 1. CONTROLLING THE DISPLACEMENT

in any direction so that foothold cannot be maintained for arbitrary motions.
How to control the displacement of such a complex and highly constrained
system?

1.1.1 Internal constraints

Let us first have a look at the equations of motion when the robot is con-
strained only by its internal structure. With some generalized coordinates q
describing the robot’s configuration in a global frame, we can express motions
by an equilibrium condition between the generalized internal and external ef-
forts:

T (q, q̇, q̈) = Γ(q, τ) + Λ(q, f), (1.1)

with T (q, q̇, q̈) encompassing the efforts resulting from the robot’s dynamic
properties, Γ(q, τ) the efforts resulting from the actuator torques τ , and Λ(q, f)

the efforts applied by external forces f .
Considering the fact that actuators can generate efforts only on a subset of

q, the robot’s joints, this equation can be decoupled into two parts (cf. [Wieber,
2000]): [

T1(q, q̇, q̈)

T2(q, q̇, q̈)

]
=

[
Γ(q, τ)

0

]
+

[
Λ1(q, f)

Λ2(q, f)

]
, (1.2)

where the first part is actuated by the joint motors and the contact forces,
whereas the second part is actuated only by contact forces. As a not surprising
consequence: A robot requires (sufficient) contact forces to realize a motion
q(t).

1.1.2 External constraints

Now, contrary to the fixed base of a classical robot, the feet of a humanoid
robot can only push the ground and friction is finite, i.e. the normal and
tangential components fn and ft of the reaction forces are bounded:

fn ≥ 0, (1.3)

‖ft‖ ≤ fmaxt (fn). (1.4)

Hence, the generalized efforts vector Λ2(q, f) is limited, and the robot might
not be able to realize a desired motion q(t), even if sufficient efforts can be
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generated by the actuators. The less the support base is extended, the more
the set of realizable trajectories is restricted. Since the feet of a human sized
robot are small compared to its overall size, the efforts that can be applied by
them are very limited, requiring a frequent change of support positions during
walking. And because every unrealizable motion reference might induce a
loss of equilibrium, the above two conditions give the second part of (1.2) a
particular importance for walking control.

Still, the considerations above are not enough to assure that a generated
trajectory can be realized by the system. Like every robot, a humanoid robot
is also restricted by the characteristics of the actuators in the joints and its
geometric structure:

– The torques that can be generated by the joint actuators are always lim-
ited. However, more restricting for walking are usually their limitations
in the maximal angle and velocities:

(q, q̇) ∈ K. (1.5)

– By definition, a biped robot has at least two extremities. The motions
of the legs have to be planned such that they do not interfere with each
other during walking:

q ∈ GI . (1.6)

– The main motivation that governs the development of humanoid robots
is their use in the human environment and in interaction with the hu-
mans itself. The designated workspace can thus be very restrained and
dynamic. This requires exact knowledge about the limitations posed by
the environment when generating motions:

q ∈ GE. (1.7)

We neglect in the following the behavior of the system during the impact phase.
We are supposing for this purpose that impact forces are negligibly small and
cannot cause loss of contact or sliding. This supposition is reasonable for
walking when shock reducing measures in the mechanical structure and the
executed trajectories have been taken.

With the above considerations we get able to define a comprehensive dy-
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namic model to be used throughout this thesis:

T2(q, q̇, q̈) = Λ2(q, f) (1.8)

(q, q̇) ∈ K (1.9)

q ∈ G (1.10)

fn ≥ 0 (1.11)

‖ft‖ ≤ fmaxt (fn). (1.12)

1.2 Stability of a humanoid robot

In related literature, stability and feasibility are very often not strictly sep-
arated in the sense that a (finite) reference or the robot is assumed to be stable
if it is statically or dynamically equilibrated [Kuffner et al., 2002] [Tedrake,
2004] [Dalibard et al., 2009] [Nishiwaki and Kagami, 2010] [Hirukawa et al.,
2006]. We can guess that the crucial observation there is that if a robot is
not dynamically equilibrated, then it will fall, so that the intuitively made,
underlying definition of stability must be:

Definition 1. A robot is stable if it will not fall.

But even if we adapt this definition, two objections can be raised against
expressing it directly as a feasibility constraint condition. First, feasibility at
a certain point in time does not imply that it will be maintained in the future.
Second, and as a consequence, a stability definition has to consider the totality
of the system, including the employed control law.

1.2.1 Feasibility implies stability

On the contrary, we can state approximately that any motion starting from
an unfeasible state with respect to the conditions of the previous section will
stay unfeasible since the handling of such situations is difficult, and a fall
becomes likely. These feasibility conditions define thus the borders to an ‘un-
desirable’ set of states U out of which a fall might be unavoidable.

Therefore, to avoid falling, a necessary condition for a robot is to stay
outside of U , which is possible only from subsets of the feasible state-space
F . The union of this subspaces, the viability kernel V , consists of all states
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(q, q̇) for which at least one motion exists that permits to stay out of U [Aubin,
1991].

Necessary condition for stability. A state (q(t0), q̇(t0)) cannot be stable,
in the sense of Definition 1, if it is not viable, i.e., no motion exists such that,
starting from this state, the system can avoid to get inside U : q(t) ∈ V ⊂
F ∀t ≥ t0

Motions inside the viability kernel are always realizable, but, as mentioned
in [Wieber, 2000], it is neither clear how to compute the viability kernel of a
humanoid robot, nor if this computation is even feasible. What counts more
however, is that the knowledge of the actual viability kernel might not even
be of practical use, since it is not related to the actually employed control law.
The invariant set S of a real control law is always a subspace of the viability
kernel. A sufficient condition for the stability of a humanoid robot is to avoid
motions that lead its state out of S.

Sufficient condition for stability. A state (q(t0), q̇(t0)) is stable, in the
sense of Definition 1, if it is inside the invariant set S of the system:
(q(t0), q̇(t0)) ∈ S ⊂ V ⊂ F .

Determining whether the state of a robot is inside S of the employed control
law can be achieved by simulating the constrained forward dynamics (1.8)-
(1.12) for an infinitely long duration. This leads us directly to the Model
Predictive Control approach. Here, at each iteration the evolution of the cur-
rent state is simulated forward. An optimality criterion serves to compute the
control input, and, what is more important with respect to the above stability
definition, hard constraints on the state and the control can be considered to
respect the limitations of the system.

minimize
∫ tf

t0

L(t)dt + Φ(tf )

subject to

T2(q, q̇, q̈) = Λ2(q, f)

(q, q̇) ∈ K

q ∈ G

fn ≥ 0

‖ft‖ ≤ fmaxt (fn).

(1.13)
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If now the predicted time period spans to infinity and no model plant mismatch
is present, we can state that the robot is stable if it will stay within the
comprehensive set of feasibility conditions for the entire preview period, i.e. a
solution to the above program exists ∀t ∈ [t0,∞].

Sufficient condition for stability. A state (q(t0), q̇(t0)) is stable, in the
sense of Definition 1, if, starting from this state, the system will stay inside
F : (q(t), q̇(t)) ∈ F ∀t ≥ t0.

However, infinite prediction is in general computationally not tractable, and
the length of the prediction horizon has to be reduced, entailing the need of
measures to re-establish the properties of an infinitely long horizon. But before
addressing the implications of a finite prediction horizon on the stability, let
us resume the discussion of the employed model and have a closer look at the
equations of motion.

1.2.2 Simplifying the model

As shown in Section 1.1, the second part of Equation (1.2) plays a dominant
role in the control of motions. Its basic interpretation is that, in accordance
with Newton’s laws of motion, the change of the system’s momentum is pro-
portional to the efforts applied at the contact points. The same principle is
expressed by the following relations between the rate of change of the linear
and angular momenta of rigid bodies, and the external forces and torques:∑

k

mk(c̈k − ~g) =
∑
k

f ck (1.14)∑
k

ck ×mk(c̈k − ~g) +RkIkω̇k =
∑
k

ck × f ck +Rkτk, (1.15)

where ck is the position of the kth rigid body of mk mass, Rk its orientation,
and ωk its angular velocity in an inertial frame of reference. The force acting
through ck and the torque vectors are denoted by f ck and τk, the constant
gravitational acceleration vector as ~g.

These so-called Newton-Euler equations allow for efficient solutions to the
direct and the inverse dynamics problem (cf. [Siciliano et al., 2009]). A closer
look at the Newton equation (1.14) reveals a big advantage of this formalism
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for our purpose. We can comprise the weighted sum of particle accelerations
to the acceleration c̈ of the Center of Mass (CoM), yielding:

m(c̈− ~g) =
∑
k

f ck . (1.16)

The CoM has long been identified as a crucial feature of the human body
and is used to this day as the main indicator of human gait characteristics.
Although the CoM has no direct physiological meaning, evidence suggests that
it plays an important role in the control of human motions [Scholz and Schöner,
1999]. As for robotics, the above change of variables allows to greatly reduce
the complexity of the equations of motion and constitutes therefore the core
abstraction of most related approaches (cf. Section 1.3).

Yet this change of variable cannot be done to an equal extent for the non-
holonomic Euler equation (1.18). Body motions can generate angular momenta
without affecting the state of the CoM. But whereas the CoM’s linear momen-
tum is of great importance for walking, the role of these rotational momenta is
somewhat less clear. By significantly varying angular momentum around the
Center of Mass, humans are able to modulate the reaction forces to increase
maneuverability and balance [Hofmann et al., 2009]. However, it is not yet
clear what rotational momenta should be generated for walking. Deciding the
angular momentum around the CoM decides little about the movements that
the system is going to realize [Wieber, 2005], and evidence shows that its value
is small during nominal walking [Popovic et al., 2004] [Herr and Popovic, 2008].
For these reasons, we will neglect in the following the rotational momenta and
focus on the control of translational CoM motions only:

m(c̈− ~g) =
∑
k

f ck (1.17)

mc× (c̈− ~g) =
∑
k

ck × f ck +Rkτk. (1.18)

Contact forces f ck and the gravity force m~g usually act on a limited set of
bodies, so that the consideration of all body centers ck on the right hand side
of the Newtown-Euler equations is not necessary for the control of external
angular momenta. Additionally, the external forces and torques f ck and τk can
equally be represented by contact forces fk that act on the robot through a
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limited set of contact points pk, yielding:

m(c̈− ~g) =
∑
k

fk (1.19)

mc× (c̈− ~g) =
∑
k

pk × fk. (1.20)

1.2.3 Finite prediction horizon

Still, even with the system simplified in the way described above, an in-
finite prediction horizon is likely to be computationally not feasible, hence a
shortened horizon has to be used. A consequence is that the principle of the op-
timality of subarcs [Bellman, 1957] does not apply anymore. Even if no model
plant mismatch and no disturbances are present, the closed-loop behavior dif-
fers then from the open-loop one. This means in general that the performance
objective L might not be achieved by the closed-loop system. What carries
more weight, however, is that the closed-loop system might become unsta-
ble. Special attention has therefore to be payed to guarantee stability when
employing finite prediction horizons.

Here, we review some central ideas on how stability can be established
for the nominal case, i.e. without noise or model-plant mismatch. Being
only a short summary, more detailed reviews can be found in [Mayne et al.,
2000] [Morari and Lee, 1999] [Nicolao et al., 2000] [Primbs et al., 1997].

Terminal equality constraint: A straightforward method to give the so-
lution properties of an infinite horizon consists in employing an equality con-
straint on the state of the system at the end of the prediction horizon. Then,
if the terminal constraint has been fulfilled at the end of the preview period,
feasibility is assured for all subsequent time periods, and the above definition
of stability applies.

A drawback of this method is that such constraints might limit the flexibility
of the controller to achieve secondary goals. Furthermore, the system might
not be able to achieve the desired state inside the previewed period such that
an extension of the horizon can become necessary.

Terminal inequalities and cost: To alleviate the demand on the system,
we can think of expanding the terminal equality constraint to an inequality
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constrained region. But then, such a terminal region might not be enough
to guarantee stability. A suitable terminal cost Φ can be used to achieve
properties of an infinite cost and to guarantee feasibility. This cost function is
thereby usually not motivated by a physical restriction but has the sole purpose
of enforcing stability. Modifying the original control goal, it can influence the
performance of the system and has to be used cautiously. The combination of
both the terminal region and cost is the most popular approach.

Contraction constraint: Instead of applying a terminal constraint on the
final state, another important stream in the literature consists in employing a
contractive constraint on the state in order to force monotonicity.

1.3 Related work

All aspects of the trajectory generation problem that have been discussed
above, i.e. feasibility, model simplification, and stability, have been addressed
in some way in all of the developed schemes for online walking control. Antici-
pation is thereby the key aspect of most approaches. It seems to be a common
understanding that a predicted evolution of the system in some future is re-
quired to achieve stable walking.

The consideration of solely the Center of Mass for walking control has, to the
knowledge of the author, been first made in [Kajita and Tani, 1991] showing
that the motion information provided by this feature is sufficient enough to
generate stable walking motions. The computational simplicity of point-mass
models, also referred to as Inverted Pendulum or Cart Table models, has since
then led to their dominance in online walking control [Kajita et al., 2003]
[Nishiwaki and Kagami, 2009] [Morisawa et al., 2006] [Tajima et al., 2009]
[Harada et al., 2004] [Takenaka et al., 2009].

In all of these approaches, dynamic feasibility is enforced by reference pat-
terns for the reaction torque that are modified online by heuristic adaptation
schemes. Stability is in most cases assured by equality conditions on the state
of the CoM at the end of the control horizon, supposing either an immobile
position or a cyclically continuing trajectory [Kajita et al., 2001] [Morisawa
et al., 2006] [Takenaka et al., 2009] [Harada et al., 2004] [Nishiwaki et al.,
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2002a].

1.4 Conclusion

More than for classical robots, limitations on the realizability of motions
play a crucial role in the control of biped robots since respecting these con-
straints is necessary for avoiding a fall. Model Predictive Control is apt for
the control of constrained systems, but the complexity of the robots dynamics
can deprive from generating feasible motions online. This complexity can be
reduced significantly by focussing on features that are essential for locomotion:
the Center of Mass and its interaction with the contact forces, once contact is
established. The computational load can be reduced furthermore by limiting
the length of the horizon, but measures have to be taken to assure stability.
The motion generation scheme that has been established in this chapter will
serve in the following for the development of practical control schemes.

1.5 Résumé

Encore plus que pour les robots classiques, les limitations sur la viabilité
des mouvements jouent un rôle crucial pour le contrôle des robots bipèdes
car respecter ces contraintes est nécessaire pour l’évitement d’une chute. La
commande prédictive est appropriée pour le contrôle des systèmes sous con-
traintes, mais la complexité de la dynamique des robots peut nous priver de
générer des mouvements viables en ligne. L’étendu de cette complexité peut
être réduite de manière significative si l’on se focalise sur des éléments qui sont
essentiels pour la locomotion: le Centre de Masse et son interaction avec les
forces de contact, une fois le contact établi. Le charge de calcul peut être ré-
duit davantage en limitant la longueur de l’horizon, mais des mesures doivent
être prisent pour assurer la stabilité. Le générateur des mouvements qui a
été établi dans ce chapitre va servir dans la suite pour le développement des
contrôleurs pratiques.



Chapter 2

Linear MPC

In linear MPC (LMPC), the control of a constrained system can be cast as
a convex quadratic program (QP) subject to linear constraints and therefore
solved efficiently. This is one of the main reasons for the dominance of LMPC
in the process industry. Due to recent numerical and theoretical advances in
optimization and control, linear MPC has become tractable in robotics where
processes are faster and successful applications still rare.

This chapter provides an extensive coverage of LMPC for walking control.
We will extract a globally linear system out of the general framework estab-
lished in the previous chapter and discuss possible quadratic programming
formulations. The focus of the chapter will be given to a scheme that allows
for velocity control and free foot placement. Simulation and application re-
sults will serve us to evaluate the performance of this scheme with respect to
reactivity, robustness and flexibility. Solutions to the numerical and stability
issues that are characteristic to Model Predictive Control will be discussed and
applied to this scheme.

2.1 Linear walking control problem

In order to cast the general optimization program (1.13) as a QP subject
to linear constraints, we will discuss in this section the linearization of the
dynamics (1.8)-(1.12). The walking scheme that we will formulate by the end
of the section can be found in [Wieber, 2006], although under a formulation
that is less advantageous from the computational point of view.

17



18 2. LINEAR MPC

2.1.1 Linearized motion equations

In order to formulate (1.13) as a QP, the following linear system subject to
linear state and control constraints has to be found:

d

dt
s = As+Bu,

subject to: Es+ Fu ≤ ε,

(2.1)

with s and u the state and control vectors of the system.
Let us focus first on the Newton-Euler equations (1.19) and (1.20) for one

single particle, the Center of Mass c, and multiple contact points pk:

m



c̈x

c̈y

c̈z − g
cx(c̈z − g)− cz c̈x

cy(c̈z − g)− cz c̈y

cy c̈x − cxc̈y


=
∑
k



fxk

f yk

f zk

pxkf
z
k − pzkfxk

pykf
z
k − pzkf

y
k

pykf
x
k − pxkf

y
k


, (2.2)

with g the gravitational acceleration constant of −9.81 m/s2, m the total mass
of the robot, and fk the force applied at the contact point pk. Being nonlinear
and coupled, this condition cannot be directly considered inside (2.1).

Let us suppose now that:

1. The motions of the point mass and the positions of the contact points
are bound to horizontal planes (Figure 2.1) such that:

cz = h, (2.3)

pzk = 0. (2.4)

2. No sliding of the contact points can occur:

‖fxk ‖ ≤ ∞, ‖f
y
k ‖ ≤ ∞. (2.5)

The horizontal forces fxk , f
y
k can then take arbitrary values, and equations (2.2)

reduce to the following decoupled linear ordinary differential (ODE) system:

m


−g

−hc̈x − cxg
−cyg − hc̈y

 =
∑
k


f zk

pxkf
z
k

pykf
z
k

 . (2.6)
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x

Figure 2.1: Planar case: The motions of the point mass and the positions of
the feet are constrained to horizontal planes.

The above two suppositions build the basis of many related linear generation
schemes. The main difference with respect to our formulation is that in these
works the original model is the inverted pendulum model (e.g. [Kajita et al.,
2003]). In this thesis, we derive the simplified model from a system of rigid
bodies, which will allow us for a smooth extension to multi-body formulations
in Chapter 3 and the general three dimensional case in Chapter 4.

For predefined contact points pk(t), we can rewrite equation (2.6) in form
of the linear system (2.1):

d

dt
ĉx,y(t) = Aĉx,y(t) +Bu, (2.7)

with

ĉx,y =
(
cx,y ċx,y

)T
, (2.8)

and

u = c̈x,y or u = f z, (2.9)

where f z comprises the vertical components of all contact forces fk.
With the assumption that the contact points cannot slide, constraints (1.11)

and (1.12) on the contact forces fk reduce to unilateral constraints (1.11) on
the vertical force components f zk only:

0 ≤ f zk (u, t) := Ef
k ĉ

x,y(t) + F f
k u. (2.10)
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2.1.2 Steering of the point-mass above predefined step

positions

If we neglect for a moment the objective functions L and Φ together with
the implementation details, we can formulate at this point a QP problem for
the control of horizontal CoM motions cx,y(t):

minimize
fzk

∫ tf

t0

L(f zk , t)dt+ Φ(f zk , tf )

subject to

t ∈ [t0, tf ] 0 =
∑
k

f zk +mg

t ∈ [t0, tf ] c̈x,y(t) =
1

h

(
−cx,y(t)g − 1

m

∑
k

px,yk (t)f zk

)
∀k 0 ≤ f zk ,

(2.11)

where the horizontal positions px,yk of the contact points are fixed in advance,
and the dynamic feasibility is assured by a set of linear equality constraints
and bounds on the control variables f zk .

A functionally identical MPC scheme has proven in [Wieber, 2006] that
stable walking trajectories can be obtained this way. The scheme above how-
ever is posed in a computationally more convenient form since the dynamic
feasibility is assured by linear equality constraints and bounds on the decision
variables of the QP instead of general inequality constraints. We will come
back to this formulation in Chapter 4, but in the following, we will focus on a
slightly different formulation.

2.2 Free foot placement

To this day, predefined foot steps are at the basis of most online walk-
ing control schemes. These approaches require, therefore, the consideration
of adaptation strategies (foot step planners) to change support positions on-
line. The heuristics that these adaptation schemes make use of, however,
compromise the stability and reactivity of the robot. Several attempts have
been made to allow for free foot placement inside the actual trajectory genera-
tion scheme, although again, not without using heuristic assumptions [Harada
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et al., 2004] [Morisawa et al., 2007] [Buschmann, 2010].
We can see that the right hand side of equation (2.6) is still nonlinear

for variable pk, which means that the above linear control of the particle is
possible only for fixed foot positions. Now, we can replace the product px,yk f zk

by a change of abstraction from the vertical reaction forces f zk to the horizontal
reaction torques τx,yk , applied at the contact points:

τ y,xk = px,yk f zk , (2.12)

or the Center of Pressure (CoP):

zx,y =

∑
k p

x,y
k f zk∑
k f

z
k

= −
∑

k p
x,y
k f zk

mg
. (2.13)

This latter gives us a convenient geometrical interpretation for the violation of
the unilateral constraints (1.11): If the CoP lies on the border of the convex
hull spanned at the contact points, the robot might lose foothold and fulfill a
rotation around the corresponding edge of the foot. Dynamic feasibility can
thus be assured by a set of inequality conditions on the position z of the CoP
that restrict it to the interior of this convex hull [Wieber, 2006]:

Ez(p
x,y, pθ)zx,y ≤ εz, (2.14)

where px,y and pθ denote the positions and orientations of the supporting feet
in the transverse plane. These constraints are linear with respect to the CoP
and nonlinear with respect to the orientations of the feet, as well as their
positions during the double support phases, when both feet are in contact.

A big advantage of the above geometrical interpretation of condition (1.11)
has been shown in [Diedam et al., 2008], where a slight modification of the
above constraints allowed to modify the foot placements online and in per-
manent accordance with the feasibility requirements. The idea there is to
determine the positions px,y of future single support phases, i.e. the periods
of time t ∈ SS ⊂ [t0, tf ] when the robot is supported by one single foot, by
additional parameters in the control vector u such that:

Ez(p
θ(t))(zx,y(u, t)− px,y(u, t)) ≤ εz ∀t ∈ SS. (2.15)

Although the constraints on the CoP are generally nonlinear with respect to
the positions and orientations of the feet, they are linear with respect to the
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foot positions during single support. Hence, by deciding (only) the orientations
of the feet in advance and by considering the double support phases implicitly
(cf. Section 2.5 for the implications), free foot placement can be achieved
within the following linear MPC control scheme:

minimize
u

∫ tf

t0

L(u, t)dt+ Φ(u, tf ) (2.16)

subject to

t ∈ [t0, tf ] c̈x,y(u, t) =
g

h
(zx,y(u, t)− cx,y(u, t)) (2.17)

t ∈ SS Ez(p
θ(t))(zx,y(u, t)− px,y(u, t)) ≤ εz (2.18)

2.2.1 Kinematic feasibility

To ensure that the generated foot step placements are feasible with respect
to the geometric and kinematic limitations (1.5) and (1.6), we can derive ap-
proximations that can be expressed in the form of linear constraints. We can
derive for example linear bounds on the positions of the feet, one with respect
to the other, with minimum and maximum values preventing collision on one
side and over-stretching of the legs on the other side (cf. Appendix A):

Ep(p
θ(t))px,y(u, t) ≤ εp ∀t ∈ SS. (2.19)

Concerning maximum joint speed, simple bounds on the position of the next
foot step depending on the current position of the foot in the air ptair(t0) and
a simple Cartesian maximum speed vmax can be sufficient:

‖px,y(u, td)− px,yair(t0)‖ ≤ (td − t0)vmax, (2.20)

with td being the instant at which the foot in the air is touching the ground.
The LMPC scheme becomes then:

minimize
u

∫ tf

t0

L(u, t)dt+ Φ(u, tf ) (2.21)

subject to

t ∈ [t0, tf ] c̈x,y(u, t) =
g

h
(zx,y(u, t)− cx,y(u, t)) (2.22)

t ∈ SS Ez(p
θ(t))(zx,y(u, t)− px,y(u, t)) ≤ εz (2.23)

t ∈ SS Ep(p
θ(t))px,y(u, t) ≤ εp (2.24)

t = td ‖px,y(u, t)− px,yair(t0)‖ ≤ (t− t0)vmax. (2.25)
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2.3 Tracking a velocity reference

The free foot placement introduced in the previous section allows to over-
come the main obstacle on the way to truly autonomous robots. Due to the
ability to adapt the foot placement to feasibility requirements of generated
trajectories, be it a contact wrench or a kinematic limitation, trajectory gen-
eration can be done exclusively on a more elevated level than foot position
planning. The robot can for example be controlled through a desired CoM
trajectory or realize a desired contact force other than a CoP reference.

In this section, we are focusing on the control through a given displacement
velocity. Since the chosen objective L together with the constraints have the
greatest influence on the performance of the control scheme, we are going
to examine the behavior of the system against the background of this two
elements, and we will leave the implementation details to subsequent sections.

2.3.1 Minimization of instantaneous velocities.

In [Wieber, 2008], it has been shown that the minimization of any derivative
of the state has a stabilizing effect on the system. Together with the free-foot
placement introduced in the previous section, we can accordingly think of
minimizing the velocity of the CoM with respect to a desired speed:

L(u, t) =
(
ċx,y(u, t)− ċx,yref (t)

)2
. (2.26)

We will examine the performance of the associated control scheme with the
help of the following scenario (cf. Figure 2.2, left):
The robot starts from rest in double support, and walks continuously for 20 s,
making a step regularly every 0.8 s. The velocity reference ċx,yref is switched to
0.3 m/s at the beginning of the first step. To simulate a push, an instantaneous
impulse to the left is applied on the CoM at the beginning of step 3, at time
t = 2.4 s. Then, in the middle of step 7, at time t = 6 s, the reference velocity is
switched to 0.2 m/s on the right. In the beginning of step 15, at time t = 12 s,
it is switched back to 0.3 m/s forward and back to zero in the middle of step
22, at time t = 18 s.

Figure 2.2 shows that the MPC scheme, consisting of the above minimiza-
tion of instantaneous velocities subject to constraints (2.22)-(2.25), manages
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Figure 2.2: Walking scenario obtained with our linear MPC scheme. Left:
Foot step placement and ankle motion (dashed grey), Center of Pressure (solid
black) and Center of Mass (solid red) positions of the approximate model (2.6).
Right: Forward speed of the CoM (solid red) and reference speed (dashed blue).

to perfectly realize the desired motion and absorb the perturbation while al-
ways maintaining the CoP within the boundaries of the support polygon. More
precisely, we have considered a safety margin so that the CoP always lies 3
cm inside the true boundaries of the support polygon. In fact, the position
of the CoP plotted here corresponds to the approximate model, but (as for
the HRP-2) the difference with the real CoP is usually less than 2 cm so this
motion appears to be completely safe.

Still, this motion is not completely satisfactory. The trajectory of the CoP
looks chaotic sometimes, which can lead to difficulties on a real robot. This
even has an effect on the speed of the robot, which can be seen to oscillate
around its reference value (Figure 2.2, right). In the approximate model (2.6),
the position of the CoP appears to be related to the position and acceleration of
the CoM, so minimizing the derivative of this acceleration, the jerk ...

c , should
smoothen the trajectory of the CoP and the speed of the CoM:

L(u, t) = . . .+ α
...
c x,y(u, t)2. (2.27)

We can observe in Figure 2.3 that it is indeed the case when introducing a
gain α = 10−6.

When the push on the left occurs at the beginning of step 3, the robot is just
beginning a single support on the left leg, which can not be moved therefore.
And, since it is forbidden for the robot to cross legs because of the risk of
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Figure 2.3: Same scenario as in Figure 2.2 but with smoothened trajectories
due to (2.27). Left: Foot step placement and ankle motion (dashed grey),
position of the Center of Pressure (solid black) and Center of Mass (solid red).
Right: Forward speed of the CoM (solid red) and reference speed (dashed
blue).

collision between them, it is only at the end of step 4 that the left leg can be
moved to the left in order to absorb the perturbation and recover a motion
forward. In the mean time, the robot drifts to the left. This demonstrates
one of the most valuable properties of this walking motion generation scheme:
safety prevails, in the sense that the generated motion is always kept feasible,
even if that means not realizing the desired motion. Here, the goal of the robot
is to move forward, but this goal is fulfilled only when possible.

But once again, this motion is not completely satisfactory yet. We can
observe in Figure 2.3 that during the lateral walk the CoP is positioned at
the front of the feet. Although perfectly correct from the point of view of the
dynamics of the system, this position induces difficulties when a perturbation
or a change of desired velocity needs to be dealt with. This can be seen at
the end of the lateral motion, at time t = 12 s; a delay and an overshoot can
be observed in Figure 2.3, much more than in the similar situation at time
t = 0.8 s. To increase the distance of the CoP to the borders of the feet during
lateral walk we enforce the centering of the CoP:

L(u, t) = . . .+ β (zx,y(u, t)− px,y(u, t))2 ∀t ∈ SS. (2.28)

A gain β = 10−6 is enough to solve this problem (cf. Figure 2.4) since no other
objective interferes with the positioning of the feet during lateral walking. A
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comparison between Figure 2.3 and Figure 2.4 shows that during the lateral
motion only the foot step placements have changed, not the trajectories of the
CoM and CoP. The interpretation of this term can thus be made as follows:
The position of the CoP is decided with respect to the desired motion of the
CoM, and the foot step placement is decided then accordingly, centered around
the CoP when possible, here during the lateral motion.
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Figure 2.4: Same scenario as in Figure 2.2 but with centered CoP due to (2.28).
Left: Foot step placement and ankle motion (dashed grey), position of the
Center of Pressure (solid black) and Center of Mass (solid red). Right: Forward
speed of the CoM (solid red) and reference speed (dashed blue).

2.3.2 Keeping a mean velocity

Having a look at the lateral speed of the CoM in Figure 2.5 (left), we can
observe that because of the unavoidable lateral sway motion, only a mean
desired speed of the CoM can be obtained. But having a more precise look at
the mean speed over prediction horizons, which appears in black on this figure,
we can see that it is very different from the reference speed (in blue) during
the lateral motion, between times t = 6 s and t = 12 s. The objective (2.26)
is regulating the instantaneous speed ċ to the desired value, but during lateral
motion, one step out of two must be realized in a direction opposite to the
desired one since crossing legs is not possible for this robot. So one step out
of two, the instantaneous speed can be perfectly regulated to the desired value
while, one step of two, it can reach only a far lower value, giving in the end a
mean speed of about 2/3 of the desired one. An option could be to regulate
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instead the mean speed over the duration 2Ts of two steps:

L(u, t) = . . .+ γ

(
cx,y(u, t+ 2Ts)− cx,y(u, t)

2Ts
− ċx,yref (t)

)2

. (2.29)

We can see in Figure 2.5 that the resulting mean speed corresponds to the
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Figure 2.5: Lateral speed of the CoM (solid red), mean value of this speed
over prediction horizons (solid green) and reference speed (dashed blue) for
the motion of Figure 2.4. Left: Regulation of instantaneous velocities (2.26).
Right: Regulation of the mean velocity (2.29).

reference speed, but this variant also brings two difficulties. The first one is
that working with a mean speed over two steps instead of an instantaneous
speed requires that the prediction horizon has a duration of at least four steps
(3.2 s here), what can imply longer computation times. The second one is that
regulating only the mean speed generates a stronger sway motion, that can
be seen here when comparing the amplitude of the oscillations in Figure 2.5.
And this can have undesirable effects such as inducing a higher sensibility
to perturbations. However, an infinity of possibilities exist to obtain the de-
sired mean velocity. Reducing the sway motions is possible by minimizing the
instantaneous velocity (2.26) term in the null space of this objective function.

2.3.3 Reactivity due to inequality constraints

Figure 2.6 shows a comparison between the forward speed that we obtained
with the above scheme and the speed that is obtained with the scheme proposed
in [Morisawa et al., 2007] when the desired speed is changed from 0 to 0.3 m/s
(steps of length 24 cm every 0.8 s) at the beginning of a step. The first obvious
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Figure 2.6: Comparison between the forward speed obtained with our method
(solid red) and with the method proposed in [Morisawa et al., 2007] (solid
black) when the reference speed (dashed blue) is changed from 0 to 0.3 ms−1

at the beginning of a step.

observation is that, with the scheme of this section, the speed converges nearly
perfectly to the desired value whereas, with the scheme of [Morisawa et al.,
2007], only the mean value of the speed is obtained. However, the scheme
described there was not designed for such a convergence, so this observation
is not very meaningful. The approximately quadratic shape of the speed is a
classical result of continuously positioning the CoP in the middle of the feet,
whereas with our scheme the CoP moves continuously forward under the feet.
More interesting is the observation that the speed of the CoM rises nearly twice
more quickly. This is noteworthy since the approach in [Morisawa et al., 2007]
has been proposed for fast reaction of the robot. In this sense, the motion of
the robot appears to react almost twice faster with our trajectory generator.

These observations are a direct consequence of the inequality constraints
that we employ. The inequalities on the Center of Pressure relieve us from the
requirement of using a reference and allow for more ‘freedom’ in the choice of
an objective that suits the desired goal. Since the cost function (2.26) can be
interpreted as attaining the desired speed as fast as possible, the consequence
is an improved reactivity.
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Figure 2.7: Walking motions with a rotation phase. Foot step placement and
ankle motion (dashed grey), position of the Center of Pressure (solid black)
and Center of Mass (solid red).

2.4 Tracking a rotational velocity reference

Considering also the rotations of the trunk cθ(t) around the vertical axis can
be done straightforwardly by employing the same linear relationships (2.1) as
for the translational motions. The rotation of the trunk can thus be smoothly
integrated into the instantaneous-velocity term (2.26). However, as mentioned
in Section 2.2, including the orientations pθ of the feet in contact with the
ground as decision variables will give rise to nonlinearities in (2.15) and (2.19).
To keep the linear form of the original QP, we choose here to calculate the
orientations of the feet and the trunk prior to the generation of translational
motions. When rotating the trunk, the robot has to take care of appropriate
orientations of the feet. One intuitive solution consists in aligning the feet with
the rotating trunk as much as possible for the whole preview period:

minimize
u

(
ċθ(u, t)− ċθ_ref (t)

)2
+ α

(
pθ(u, t)− cθ(u, t)

)2
. (2.30)

Although aligning the feet with the trunk reduces the probability of a viola-
tion of kinematic constraints, guaranteeing that the generated foot and trunk
trajectories respect the limitations of the concerned joints requires the consid-
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eration of a set of constraints on the kinematics of the robot:

||pθ(u, t)− cθ(u, t)|| < ∆θmax, (2.31)

||ṗθ(u, t)− ċθ(u, t)|| < ∆θ̇max, (2.32)

||p̈θ(u, t)− c̈θ(u, t)|| < ∆θ̈max. (2.33)

2.5 Real-time implementation

Before being able to solve efficiently the optimization problems discussed
above, their discretized form has to be obtained. In this section, we are going
to discuss the discretization of system (2.1), laying emphasis on the resulting
loss of information in between sampled instants and strategies to reduce the
computational time. The resulting discrete trajectory generation scheme is
described in more detail in Appendix A.

2.5.1 Discretized system

We seek to formulate the following discrete-time model:

ci+1 = Āĉi + B̄ui,

subject to: Ēĉi + F̄ ui ≤ ε̄.
(2.34)

To assure feasibility, the sampling rate has to be chosen in a way that equili-
brates the computational complexity against the maximal possible deviation
in between the sampling instants, that can be approximated by comparing the
profile of the discrete system to an assumed worst-case evolution. A security
margin can then be considered to assure feasibility for a given sampling rate. It
appears that satisfying the feasibility constraints (3.5)-(??) only every 100 ms
is largely enough for generating realizable motions. An important observation
is that at transition times between single and double support phases the con-
straints of both single and double support apply, but those of single support
are the most restrictive and are therefore sufficient on their own. We choose
here therefore to satisfy the constraint on the position of the CoP with a period
T in between chosen to be strictly equal to the length of the double support
phases (ti ∈ DS ⊂ [t0, tf ]) (0.1 s here, with single support periods of 0.7 s) so
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that no sampling time falls strictly inside them. This way, we end up having
to consider the constraints only during single support periods (ti ∈ SS).

The results in Section 2.3 have been obtained with a trivial piecewise con-
stant jerk (...c = const ∀t ∈ [ti, ti+1[) parametrization and a sampling rate of
100 ms (cf. Appendix A for further details):

Ā =


1 T T 2

2

0 1 T

0 0 1

 , B̄ =


T 3

6
T 2

2

T

 . (2.35)

This parametrization has the advantage of a constant sampling gap, but it
leads to the number of decision variables being proportional to the number of
samplings. With a preview period of 1.6 s in the above examples, the minimal
number of variables arises at 32 and the minimal number of constraints at 64.
We know for example from [Lau et al., 2009] that the computation time of a
QP solver rises polynomially with the number of variables and constraints.

To reduce the dimension of the optimization problem, a strategy might be
a parametrization map, as can be found in [Alamir and Murilo, 2008]. An
important observation is that instants that are further away in the future
are of less influence on the control than closer ones. The sampling frequency
can therefore possibly be reduced gradually over the preview window without
considerable impact on the result.

2.5.2 Warm-start

As well as the number of variables, the number of inequality constraints,
or more precisely, the number of active inequality constraints, has a signifi-
cant influence on the resolution time [Lau et al., 2009]. The most prominent
approaches for the resolution of inequality constrained QP problems are the
active set and the interior point methods. Fast solvers exist for both of the ap-
proaches, but the performance can vary drastically depending on the structure
of the optimization problems. Whereas interior point methods are relatively
insensitive to the number of active inequality constraints, active set methods
gain more from their initializations.

In Model Predictive Control, optimization problems are solved in sequences.
Depending on the sampling rate, subsequent problems share a more or less
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Figure 2.8: Active inequality constraints for a walking scenario similar to the
one in Figure 2.7. Upper graph: Activation sequence of inequality constraints.
Graph below: Total number of active (dashed red), activated (positive, blue)
and deactivated constraints (negative, green) at an instant.

similar structure. The knowledge of this structure can be exploited to warm-
start the QP solver. The upper graph in Figure 2.8 shows the evolution of the
active constraints for a scenario similar to the one in Figure 2.7. We can observe
a relatively structured evolution of ‘sliding’ active CoP constraints (numbers
1-64) and ‘static’ active foot positioning constraints (numbers 65-80). The
lower part of Figure 2.8 shows that, by exploiting this structure, the number
of constraints that have to be activated can be reduced significantly. Since
the warm-started active set solver has then a reduced combinatorial research
phase, we can expect a reduction in computational time 1.

1. In praxis, the computation time could be reduced by 50% in average.
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– D Double support
– L/L̄ Current/previewed sin-
gle support on the left foot

– R/R̄ Current/previewed sin-
gle support on the right foot

Figure 2.9: Finite state logic for the starting (left) and the stopping phase
(right): Every state D,L,R, L̄, R̄ corresponds to a different set of constraints,
depending on the support phase of the robot at a sampled instant. The pa-
rameter sl has been introduced to allow for variable number of steps before
stopping in a double support phase.

2.5.3 Gait coordination

In order to avoid nonlinearities, the MPC scheme introduced in this chapter
takes into account only single supports. With the sampling synchronized with
the contact transitions, this is valid during walking but restricting during a
stop. To correct this deficiency we propose to stop only with the feet aligned
in the frontal plane of the robot. Due to its rectangular form, the double
support phase can then be smoothly integrated in the computation of the CoP
constraints.

The assembling of the constraints requires for each instant of the preview
period prior knowledge about the associated support phase. With the dura-
tions of the support phases fixed beforehand, this knowledge can be provided
by the finite state machine (FSM) in Figure 2.5.3. Given a constant speed ref-
erence, the sequence of support phases is then defined only by the predefined
lengths of the single and double support periods.
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2.6 Stability

In the results above, stability has been enforced solely by the minimiza-
tion of the CoM velocity with respect to a reference. Although sufficient for
slower motions, divergence can occur for faster walking or bigger changes in the
velocity reference. As mentioned in the previous chapter, stability can be guar-
anteed by giving the solution properties of an infinite horizon. The common
approach of using a terminal constraint on the state of the particle, however,
would strongly restrict the set of trajectories, and make the fulfillment of such
a constraint difficult. The MPC approach, or more precisely, the possibility of
considering inequality constraints, allows us to ease these difficulties. We can
thus think of a set of terminal inequalities that limit the final position of the
particle above the support polygon. A strongly weighted cost term Φ(tf ) can
additionally be used to enforce zero velocity by the end of the horizon, thus
determining the evolution of the state until infinite time.

A (maybe) more elegant, since less restricting, solution can be given with a
glimpse at [Pratt et al., 2006]. The Capture Point introduced there gives an
estimation of the position of the CoM at t = ∞, assuming an instantaneous
change of the CoP position to the position of the capture point. By limiting
this point to the interior of the support region, we can guarantee that an
immobilization of the CoM is possible in infinite time.
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2.7 Conclusion

Linear Model Predictive Control allows for fast control of humanoid robots.
It is the explicit consideration of inequality constraints that permits to im-
prove the reactivity and robustness and to enhance the level of abstraction
such that displacement control only through a velocity reference becomes pos-
sible. The additional computational load that is due to the consideration of
inequalities can be reduced by exploiting the similarities of subsequent opti-
mization problems as well as by limiting the length and the accuracy of the
preview period.

This chapter did not cover the entire potential of LMPC for motion con-
trol. Other control goals can be thought of such as following a desired CoM
trajectory or applying a contact force. Obstacle avoidance can be achieved by
inequality constraints on the positions of the controlled particles, and external
forces can be considered for the interaction with the environment as well as
the compensation of perturbations.

However, even if LMPC allows to improve the performance of the approach
of movement control by means of simplified models, the scheme introduced in
this chapter is still far from the flexibility of humans, and the resulting walking
motions lack efficiency and naturalness. Strong assumptions have to be made
to achieve linearity; in this chapter, the vertical positions of the Center of Mass
and the contact points have been fixed to horizontal planes. Orientations have
been computed prior to translational motions, and the duration of support
phases fixed beforehand. In an attempt to (partly) overcome these deficiencies,
the focus of the following two chapters will be kept on the generation of walking
motions only.
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2.8 Résumé

La commande prédictive linéaire permet le contrôle rapide des robots hu-
manoïdes. C’est la prise en compte explicite des contraintes d’inégalités qui
permet d’améliorer la réactivité et la robustesse, ainsi que augmenter le niveau
d’abstraction tel que le contrôle du déplacement par uniquement des références
en vitesse devient possible. Le temps de calculs supplémentaire qui est du à la
considération des inégalités peut être réduit en exploitant des similarités des
problèmes d’optimisation subséquentes ainsi qu’en limitant la longueur et la
précision de la période de prédiction.

Ce chapitre ne couvre pas le potentiel complet de LMPC pour le contrôle des
mouvements. D’autres objectives de contrôle sont possibles tels que suivre une
trajectoire du CdM ou appliquer des forces de contact. L’évitement d’obstacles
peut être atteint par des contraintes d’inégalités sur la position des partic-
ules contrôlés, et des forces externes peuvent être considérées pour assurer
l’interaction avec l’environnement ainsi que pour compenser des perturbations.

Même si LMPC permet d’améliorer la performance de l’approche du con-
trôle des mouvements par moyen des modèles simplifiés, la loi de commande
introduit dans ce chapitre est toujours loin de la flexibilité des humains, et mou-
vement de la marche manque de l’efficacité et du naturel. Des suppositions
fortes doivent être fait pour atteindre linéarité; dans ce chapitre, le positions
verticales du Centre de Masse et des points de contact ont été fixés apriori.
Pour surmonter (partiellement) ces inconvénients, l’accent des chapitres suiv-
ants va être maintenu sur uniquement la génération des mouvements de la
marche.
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2.9 Appendix A: Control scheme in more details

2.9.1 Discrete dynamics

We consider trajectories of the CoM which have piecewise constant jerks
...
c x and ...

c y over time intervals of constant length T so that we can compute
the state of the CoM at discrete times ti with:

ĉx,yi+1 = Ā ĉx,yi + B̄
...
c x,y(ti), (2.36)

with

ĉx,yi =


cx,y(ti)

ċx,y(ti)

c̈x,y(ti)

 , (2.37)

and

Ā =


1 T T 2

2

0 1 T

0 0 1

 , B̄ =


T 3

6
T 2

2

T

 . (2.38)

We consider furthermore the position zx,y of the CoP on the ground:

zx,yi =
(

1 0 h/g
)
ĉx,yi . (2.39)

Using the dynamics (2.36) recursively, we can derive relationships between
the jerk of the CoM, its position and velocity, and the position of the CoP over
longer time intervals NT :

Cx,y
i+1 =


cx,yi+1
...

cx,yi+N

 = Sp ĉ
x,y
i + Up

...
C
x,y
i , (2.40)

Ċx,y
i+1 =


ċx,yi+1
...

ċx,yi+N

 = Sv ĉ
x,y
i + Uv

...
C
x,y
i , (2.41)

Zx,y
i+1 =


zx,yi+1
...

zx,yi+N

 = Sz ĉ
x,y
i + Uz

...
C
x,y
i , (2.42)
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with

...
C i =


...
c i
...

...
c i+N−1

 . (2.43)

The matrices Sp , Sv , Sz ∈ RN×3 and Up , Uv , Uz ∈ RN×N introduced here follow
directly from a recursive application of the dynamics (2.36):

Sp =


1 T T 2

2
...

...
...

1 NT N2 T 2

2

 , Up =


T 3

6
− T h

g
0 0

... . . . 0

(1 + 3N + 3N2)T
3

6
. . . T 3

6

 ,

(2.44)

Sv =


0 1 T
...

...
...

0 1 NT

 , Uv =


T 2

2
0 0

... . . . 0

(1 + 2N)T
2

2
. . . T 2

2

 , (2.45)

Sz =


1 T T 2

2
− h

g
...

...
...

1 NT N2 T 2

2
− h

g

 , Uz =


T 3

6
− T h

g
0 0

... . . . 0

(1 + 3N + 3N2)T
3

6
− T h

g
. . . T 3

6
− T h

g


(2.46)

2.9.2 Optimization problem

The objective function is stated as follows:

minimize...
C i,P̄i

1

2

∥∥∥Ċx
i+1 − Ċ

x_ref
i+1

∥∥∥2

+
1

2

∥∥∥Ċy
i+1 − Ċ

y_ref
i+1

∥∥∥2

+
α

2
‖
...
C
x
i ‖

2
+
α

2
‖
...
C
y
i ‖

2

+
β

2

∥∥∥Zx
i+1 − Z

x_ref
i+1

∥∥∥2

+
β

2

∥∥∥Zy
i+1 − Z

y_ref
i+1

∥∥∥2

+
γ

2

∥∥∥ECx
i+1 − Ċ

x_ref
i+1

∥∥∥2

+
γ

2

∥∥∥ECy
i+1 − Ċ

y_ref
i+1

∥∥∥2

,

(2.47)

with the double diagonal matrix:

E :=
[
−I 0 I

]
/(2τstep), (2.48)

computing the mean speed of the CoM over two steps out of Cx
i+1 and Cy

i+1,
with τstep the duration of a step. The CoP reference vector is going through
the centers of the current and the previewed support feet p̂i and P̄i due to:

Z
x_ref
i+1 = V p̂xi + V̄ P̄ x

i , (2.49)
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Z
y_ref
i+1 = V p̂yi + V̄ P̄ y

i , (2.50)

with

V =



1
...
1

0
...
0

0
...
0



, V̄ =



0 0
...

...
0 0

1 0
...

...
1 0

0 1
...

...

0 1
. . .



, (2.51)

assembled by the finite state machine introduced in Section 2.5. The ones
in the vector V ∈ RN and matrix V̄ ∈ RN×m simply indicate which sampling
times ti fall into which step, where sampling times correspond to rows and steps
to columns, and therefore which foot position must be taken into account at
what time.

Optimization problem (2.47) can be expressed as a canonical QP:

minimize
ui

1

2
uTi Qiui + rTi ui, (2.52)

over the vector

ui =


...
C
x
i

P̄ x
i...
C
y
i

P̄ y
i

 , (2.53)

of motion parameters which gathers the jerk
...
C i of the CoM and the future

steps P̄i, with a cyclically varying quadratic term because of the cyclically
varying matrix V̄ :

Qi =

[
Q′i 0

0 Q′i

]
, (2.54)

with

Q′i =

[
UT
v Uv + αI + βUT

z Uz + γUT
p E

TEUp −βUT
z V̄

−βV̄ TUz βV̄ T V̄

]
, (2.55)
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and

ri =



UT
v (Sv ĉ

x
i − Ċ

x_ref
i+1 ) + βUT

z (Sz ĉ
x
i − V p̂xi ) + γUT

p E
T (ESpĉ

x
i − Ċ

x_ref
i+1 )+

−βV̄ T (Sz ĉ
x
i − V p̂xi )

UT
v (Sv ĉ

y
i − Ċ

y_ref
i+1 ) + βUT

z (Sz ĉ
y
i − V p̂

y
i ) + γUT

p E
T (ESpĉ

y
i − Ċ

y_ref
i+1 )

−βV̄ T (Sz ĉ
y
i − V p̂

y
i )


.

(2.56)

2.9.3 Constraints on the Center of Pressure

Considering that the foot on the ground has a polygonal shape, potentially
depending on the support foot s ∈ {Left ,Right}, the unilateral condition can
be expressed as a set of linear constraints on the position of the CoP:

[
dxs
(
pθ
)

dys
(
pθ
)] [zx − px

zy − py

]
≤ b
(
pθ
)
, (2.57)

which are linear with respect to the position (px, py) of the foot on the ground
but nonlinear with respect to its orientation pθ. The column vectors dx and dy

gather the x and y coordinates of the normal vectors to the edges of the feet,
and the column vector b corresponds to the positioning of these edges.

Considering this constraint at all instants ti+1 . . . ti+n of the preview period
can be done by:

D

[
Zx
i+1 − V p̂xi − V̄ P̄ x

i

Zy
i+1 − V p̂

y
i − V̄ P̄

y
i

]
≤ b
(
pθ
)
, (2.58)

with the simple double block-diagonal matrix:

D =


dxs,i+1

(
pθi+1

)
0 dys,i+1

(
pθi+1

)
0

. . . . . .

0 dxs,i+n
(
pθi+n

)
0 dys,i+n

(
pθi+n

)
 , (2.59)

and the vector:

b
(
pθ
)

=


b
(
pθi+1

)
...

b
(
pθi+n

)
 . (2.60)
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Expressed with respect to the vector ui introduced in (2.53), this constraint
takes the following form:

D

[
Uz −V̄ 0 0

0 0 Uz −V̄

]
ui ≤ b

(
pθ
)

+D

[
V p̂xi − Sz ĉxi
V p̂yi − Sz ĉ

y
i

]
, (2.61)

which can be introduced directly in the QP (2.52).

2.9.4 Constraints on the foot positioning

We have derived simple linear constraints on the positions of the feet one
with respect to the other with minimum and maximum values preventing col-
lision on one side and over-stretching of the legs on the other side:

G


−1 1 0 −1 1 0

. . . . . .

0 −1 1 0 −1 1



p̂xi

P̄ x
i

p̂yi

P̄ y
i

 ≤ h
(
pθ
)
, (2.62)

with

G
(
pθ
)

=


axs,i+1

(
pθi+1

)
0 ays,i+1

(
pθi+1

)
0

. . . . . .

0 axs,i+n
(
pθi+n

)
0 ays,i+n

(
pθi+n

)
 . (2.63)

To do so, we took in consideration the MPC scheme in [Kajita et al., 2003].
Starting from the standard initial position of HRP-2, we used extensive offline
calculations to build a point cloud of positions that can be reached by the
center of the left foot with one single step.

The offline computation involved random positions, which were used as
inputs by the MPC scheme in [Kajita et al., 2003] to generate joint space
trajectories. Each trajectory was then checked with an ad hoc verification
process that declared a trajectory feasible when it did not violate joint limits
and avoided self-collisions.

The point cloud in Figure 2.10 shows all the positions that lead to feasible
trajectories. We have defined a 5 edges polygon included in this area, as
shown in Figure 2.10. It is symmetric about the y-axis in order not to take
into account specificities of the HRP-2 robot and the MPC scheme in [Kajita
et al., 2003], that tend to result in a slightly larger feasible zone when walking
backwards.
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Figure 2.10: Polygonal approximation (solid red) of the feasible region of the
final position of one foot relative to the support foot (dotted blue region).

2.9.5 Support and trunk orientations

Although tracking a rotational reference can be done by a QP as described
in Section 2.4, our implementation differs in the sense that feasibility is verified
analytically. The trajectory of the trunk orientation cθ consists for this purpose
of a fourth-order-polynomial acceleration phase, and a subsequent constant-
velocity period that spans until the end of horizon tf . The trajectories in
between previewed foot positions consist of third-order polynomials. These
two suppositions allow for a straightforward verification of kinematic feasibility
constraints for the vertical hip joint and to avoid self collisions. The overall
resolution process consists of the following steps:

1. The desired trunk velocity ċθ_ref is obtained after a fixed period of time
and keeps constant for the rest of the preview period.

2. If ċθ_ref exceeds the maximal attainable velocity of the hip joint, it is
reduced to the maximal value.

3. If the orientation of the trunk with respect to the stance foot at the end
of the current support phase exceeds the maximal allowable value, the
velocity is reduced such that the maximal angular difference is obtained.

4. The acceleration peak in the middle of the acceleration period is obtained
analytically.

5. If this maximal allowable acceleration exceeds the limitation of the hip
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joint, ċθ_ref is computed by fixing the acceleration in the middle to the
maximal acceleration of the hip joint.

6. As the desired solution, the orientation of the previewed support foot is
posed such that the trunk and the foot are aligned in the middle of the
support period.

7. The resulting maximal velocity of the hip joint is computed based on the
assumption of third order polynomial trajectories, and the orientation
corrected if maximal value is exceeded.

8. For self-collision avoidance, the orientations of the feet with respect to
each other are verified and corrected, if necessary.

9. The capacity to achieve a rectangular double support phase with maxi-
mal velocity is verified and the foot angles corrected, if necessary.

10. Finally, the angular difference between the trunk and the support foot
at the end of each support phase is verified. If a violation occurs, the
overall process restarts with a reduced velocity reference ċθ_ref .
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2.10 Appendix B: Application on the Visual Ser-

voing

The following work has been effectuated in a collaboration with Claire Dune.

In the MPC scheme developed in the previous sections, we have shown that
walking motions can be generated without predefined foot step placements but
only a desired CoM velocity. The interaction with other control instances can
be eased drastically this way. The above scheme has been successfully tested
in series with a visual servoing controller (cf. [Dune et al., 2010]). The visual
servoing scheme that will be introduced in the following computes a desired
velocity that is given as a reference to the trajectory generator.

2.10.1 Visual Servoing

The system we consider in the following is an on-board camera rigidly linked
to the robot’s CoM. Let C and K be the frames attached to the CoM and the
camera and ċ and k̇ their velocities. The visual servoing system regulates
to zero the error vector e = s − s∗ between some current visual features s
and some desired visual features s∗ [Chaumette and Hutchinson, 2006]. The
key feature of this control scheme is the interaction matrix L which links the
time variation of the visual features ṡ to the relative camera/object kinematics
screw k̇. It is defined by:

ṡ = Lk (2.64)

Then, the classical control law that regulates e with an exponential decrease
ė = −λe is:

k̇ = −λL̂+e (2.65)

where L̂+ denotes the Moore-Penrose pseudo inverse of an approximation or a
model of L, and λ is a positive scalar value.

2.10.2 Control of the trajectory generator

The trajectory generator of Chapter 2 ensures that the CoM tracks a ref-
erence velocity yet only in average and in the limits of the feasibility require-
ments. Let us describe two consequences in detail:
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– Limiting the velocity: In order to ensure the tracking of the reference
velocity, the three velocity components have to be limited to feasible
ones, i.e. velocities that respect the feasibility constraints which depend
on the robot’s geometry and actuator capabilities. The robot’s maximal
speed ċlimit is determined by the size of the polygonal constraints (2.19)
and the stepping frequency. Yet this speed cannot be reached instantly
from a stationary position.
We can distinguish three phases in the walking motion: i) an initial state
(400 ms) where the robot is standing in double support, i.e. the two
feet are on the ground and the robot stands still, ii) a nominal walking
phase with a constant period of τstep = 800 ms, and iii) a final phase
where the robot stands in double support. To switch from the initial
double support state to the nominal walking phase, there is a transitory
phase during which the CoP is brought from the center of the two feet
to the center of the left foot. Then the robot starts walking, and the
velocity of the CoM increases gradually during the first steps to reach a
steady state where the reference velocity can be tracked up to ċ. We then
set a transient maximum velocity for the first two steps. The maximum
velocity is then:

ċmax =

{
t

2τstep
ċlimit if t ≤ 2τstep

ċlimit else.
(2.66)

– Canceling the sway motion: Due to self-collision constraints, the stepping
motion induces a lateral sway motion that prevents the CoM velocity
from following instantaneously the expected one. The sway motion is
mandatory for a proper walk and the control law should not compensate
for it but to cancel its effects on the visual error computation.
Let us define ḃ the additional sway motion of period T = τstep/τ , such
that

∑i+T
l=i ḃl = 0. The behavior of the trajectory generator can be ap-

proximated by ċ = ¯̇c+ ḃc where ¯̇c would be the velocity if there where no
swaying. This induces a motion of the camera of k̇ = ¯̇k+ kVcḃc, where cVk

is the twist matrix associated to the cam-com transform cMk. If we as-
sume cMk to be constant over the time the camera velocity can be written
k̇ = ¯̇k + ḃk. The features will then oscillate in the image and the feature
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variation can be written:

ė = ṡ = L¯̇k + Lḃk. (2.67)

Let us define a virtual camera K̄ that corresponds to the position of the on-
board camera if there was no sway motion. The velocity ¯̇k of this virtual
camera is sent as input in the trajectory generator. In order to compute a
control law that does not include the sway motion, we will servo this virtual
camera s(k̄) to s(k̄∗).

We have now to express s̄ = s(k̄) with regards to the current measurement
s = s(k). With (2.64), we can write:

s(t)− s(0) =

∫ t

0

Lk̇dt =

∫ t

0

L(¯̇k + ḃk)dt, (2.68)

and
s̄(t)− s̄(0) =

∫ t

0

L¯̇kdt. (2.69)

Then, assuming that s(0) = s̄(0) and the above two equations, we obtain
s(t) = s̄(t) +

∫ t
0
Lḃkdt, from which we can deduce the corrected visual error:

ē(t) = s̄(t)− s∗ = e(t)−
∫ t

0

Lḃkdt. (2.70)

Notice that when ē→ 0 then e→
∫ t

0
Lḃk. In this study, we do not expect e to

converge to zero but to oscillate around zero with a period T due to the sway
motion. The convergence of the control law is then reached when

∫ t
tT
edt = 0,

which is obtained if
∫ t
t−T

∫ t
0
Lḃkdt = 0. Let us define E =

∫ t
t−T

∫ t
0
Lḃkdt and

note that in general E 6= 0. It can be estimated over one period of time T . We
can then use a sliding window to define the current error ē = e− (

∫ t
0
Lḃk −E)

and deduce the control law:

¯̇k = −λL+(e−
∫ t

0

Lḃk − Edt). (2.71)
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Figure 2.11: Model tracking while walking on a square on the ground with the
HRP-2. The robot, firstly, walks forward, then sideways, then backwards, and
sideways again to reach its initial position. Top left: Object’s position (x, y, z)
and orientation (rx, ry, rz) in the camera frame. Top right: Norm of the error.
Bottom left: Control input of the pattern generator for desired longitudinal
(Tx, Ty) and rotational (rz) velocities. Bottom right: Control output of the
pattern generator for translational motions.
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Chapter 3

Toward more efficient walking

The MPC scheme that we have introduced in the previous chapter is based
on the (commonly made) assumptions that the motion of the Center of Mass is
limited to a horizontal plane and that the support foot does not rotate around
the heel or the toe during the entire support phase, i.e. foothold is always held
with the entire sole. To circumvent the resulting restrictions on the motion of
the robot, the height of the CoM has to be reduced, leading to the walk with
strongly bent knees that is characteristic to most humanoid robots today.

Biomechanical studies highlight a walking pattern that differs in several
points from the one generated by this scheme:

(a) The support leg is kept straightened during the entire stance phase.

(b) Toe flexion extends the effective leg length at the end of single support
phases.

(c) The height of the CoM follows a sinusoid-like curve with the lowest po-
sition in the middle of the double support phase and the highest in the
middle of the single support phase.

We know that this pattern is energetically advantageous [Donelan et al., 2002]
[Gordon et al., 2009] [Ortega and Farley, 2005] [Adamczyk et al., 2006] [Kuo,
2007] [Franken et al., 2008] [Srinivasan and Ruina, 2006] [Tlalolini et al., 2009]
since little muscle force is needed to support the body if the knee is kept
straightened. However, overstating point (a) leads to stiff legs and inverted-
pendulum-like walking motions that increase the vertical velocity at the end
of single support phases [Kuo et al., 2005] and consequently the impact forces
together with the amount of positive and negative work that is necessary to

49
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redirect the Center of Mass during the double support phase. The production
of both the positive and negative work requires energy expenditure in human
muscles. The extension (b) of the stance leg during the redirection phase re-
duces this vertical velocity of the CoM together with the work that is necessary
to redirect it to a new single support phase [Adamczyk and Kuo, 2009] [Kuo,
2002]. These two characteristics, almost straight stance legs and toe flexion,
are the major reasons for the sinusoid-like evolution (c) of the CoM.

Even if evidence exists that the above two strategies increase the efficiency
and performance of human walking motions, the same conclusion cannot be
directly applied to robots. Joint actuators might be capable of producing elec-
tric power from negative mechanical work and energy can be stored for longer
periods than in the human body. However, straight leg walking obviously alle-
viates the load on the joints by reducing the velocities and torques, especially
in the knees. And toe flexion allows to increase the achievable stride length,
as well as the height of the CoM during the double support phase. Imitat-
ing the above features of the human walk is therefore likely to improve the
performance of walking robots.

As mentioned in the previous chapter, the assumption on the ‘flatness’ of
the CoM motion has been made to avoid nonlinearities in the optimization
problem. Additionally, if we are to avoid heuristics, the use of toes requires
the consideration of a notion of the above mentioned gains in performance
in the trajectory generation procedure. All existing approaches lack such a
criterion and are based on predetermined strategies.

In this chapter, we achieve the imitation of the above characteristics by our
online trajectory generation scheme. In Section 3.1, we show how variations
of the CoM height can be achieved without losing the linearity of the hori-
zontal motion equations. The proposed solution can be found in similar forms
in [Buschmann, 2010] [Terada and Kuniyoshi, 2007] [Tajima et al., 2009], al-
though either in a more restricting or a numerically less advantageous form.
We address in Section 3.2 the geometric feasibility constraints that become im-
portant when the robot is walking with straightened legs. The offered solution
is extended in Section 3.3 to a criterion for a more efficient and versatile use
of toes than what can be found in the literature, for example in [Buschmann,
2010] [Sellaouti et al., 2006] [Kajita et al., 2007] [Nishiwaki et al., 2002b] [Miura
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et al., 2011].

3.1 Vertical displacement of the waist

We have seen in the previous chapter that the motion of the CoM c of a
robot walking on a perfectly horizontal ground is linked to the position of the
Center of Pressure z on the ground by the following nonlinear second order
differential equations:

cx,y − cz

c̈z − g
c̈x,y = zx,y. (3.1)

This equation is linear w.r.t. the horizontal motion cx,y and even Linear
Time-Invariant (LTI) when the height cz of the CoM is fixed, what allowed
as to define the LMPC scheme of the previous chapter. In what follows, we
exploit the fact that when the height of the CoM varies as a predefined function
of time t → cz, equation (3.1) becomes Linear Time-Variant (LTV), but can
be handled equally well within the same control scheme.

Similar approaches for achieving vertical variations of the CoM without
loosing the linearity can be found in [Buschmann, 2010] [Tajima et al., 2009]
[Terada and Kuniyoshi, 2007] [Nagasaki et al., 2004] [Nagasaka et al., 2004].
There however, the right hand side is predefined prior to the resolution of
the ODEs. The consequence is that no analytical solution can be given for
arbitrary vertical variations of the Center of Mass so that numerical integration
methods have to be employed or violations of boundary conditions accepted.
In our case, the above dynamics make part of our Quadratic Programming
formulation, therefore allowing a direct implementation of predefined vertical
CoM trajectories.

3.2 Ensuring realizability

Obviously, predefining the vertical motion of the CoM must be done with
care: frequency and amplitude have to be synchronized with the step duration
and length. With the periods of the different support phases fixed in advance,
as already required in the scheme of the previous chapter, the synchronization
with the step sequence can be achieved easily. To obtain a desired gain in
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x

cz(t)

Figure 3.1: Shematic figure: Polyhedric constraints on the CoM position at the
end of a double support phase with respect to the precedent support position,
and constraints on the ensuing support position relative to the CoM position
at the beginning of the double support phase.

efficiency, however, the amplitude of the vertical motion has to be chosen
depending on the stride length and the walking direction, making the use of
heuristic adaptation strategies necessary. A database of predefined trajectories
for such a heuristic adaptation scheme can be obtained with a comprehensive
set of simulations, what we will do here in Section 3.4.

3.2.1 Geometric feasibility

Whereas, the constraints (2.15) keep valid for a varying CoM height, con-
straints (2.19) are not associated with the position of the CoM, which does have
an impact on the feasibility of leg motions. These constraints have therefore
to be reconsidered from scratch.

Given the positions and orientations p of the support feet, we can define
the set of reachable CoM positions in the cartesian space:

c ∈ C(p). (3.2)

In the following, we make the common assumption that the CoM of the robot
doesn’t move much with respect to its hip when walking. A simple forward
kinematics procedure taking into account only the kinematics of the support
legs is then sufficient to compute this reachable set. Figure 3.2 shows a sagittal
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Figure 3.2: Feasible region in the sagittal plane of a straight HRP-2 waist be-
fore and after 45◦ rotation around the toe. The height indicated by the dashed
line maximizes the horizontal reachability. The area above, on the contrary,
leads to more ‘comfortable’ leg configurations that are, for this reason, more
relevant for walking.

cut through C(0) for the HRP-2 robot. Being nonlinear and nonconvex, this
set cannot be considered directly inside our linear control scheme. This entire
set, however, is not of equal interest for walking: lower CoM positions lead to
strongly flexed legs and consequently to high torques and high velocities in the
knee joints, and the corresponding walk looks unnatural. We are interested
therefore in CoM positions that lead to relatively stretched legs, i.e. the higher,
convex part of the feasibility region (cf. Figure 3.2). Approximated by a convex
polyhedron, this subset can be expressed by a set of inequalities linear with
respect to the position of the Center of Mass:

Ec(p
θ
i )(c

x,y,z
i − px,y,zi ) ≤ ec, (3.3)

and nonlinear w.r.t. to the orientations pθ of the supporting foot.

3.2.2 Constraint sampling

For the HRP-2 robot that we used to obtain the results in Section 3.4, an
accurate approximation of the feasible area could be achieved by a polyhedron
with ten faces. This number has to be multiplied by the numberN of previewed
samples if these constraints are verified for each sampling instant. Disregarding
that this does not necessarily increase the resolution time significantly, verify-
ing the above constraints that frequently might not be required to ensure the
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realizability of generated motion references. Considering these constraints is
the more important the closer the CoM is to the limits of C, which can imply
that ensuring feasibility at the beginning and end ti ∈ [SS+, −SS] ⊂ SS of a
support phase alone can imply feasibility for all instants in between.

We then get the following optimization problem:

minimize...
c x,y

1..N ,p
x,y
1..S

N∑
i=1

(ċx,yi − ċ
x,y
i,ref )

2 (3.4)

subject to

ti ∈ [t0, tf ] cx,yi −
czi

c̈zi − g
c̈x,yi = zx,yi (3.5)

ti ∈ SS Ez(p
θ
i )(zi − p

x,y
i ) ≤ ez (3.6)

Ep(p
θ
j)(p

x,y
j+1 − p

x,y
j ) ≤ ep (3.7)

ti ∈ SS+ Ec(p
θ
i+1)(cx,y,zi − px,y,zi+1 ) ≤ ec (3.8)

ti ∈ −SS Ec(p
θ
i−1)(cx,y,zi − px,y,zi−1 ) ≤ ec. (3.9)

Note that now constraints (3.8) and (3.9) prohibit the over-stretching of the
legs, but constraints of the form (3.7) are still necessary to prevent self colli-
sions.

3.3 Purposeful toe flexing

As mentioned in the Introduction, straight legs alone do not lead to more
efficient or natural looking motions. Although straightening the stance legs
lowers the load on the joints and allows for a greater maximal horizontal dis-
placement velocity, it also increases the vertical velocity of the height of the
CoM at the beginning and end of its redirection phase around the double
support phase, and therefore increases the required positive and negative me-
chanical work. This drawback can be circumvented by toe flexion at the end
of the single support phase, what allows to increase the effective length of the
stance leg at this period and thus reduce the vertical oscillation of the CoM.
The question then is how to ensure that the generated walking motions exhibit
this feature, or equivalently, how to express the gain due to the use of toes in
our walking generation scheme.
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3.3.1 Dynamic and geometric feasibility

Toe support phases require the CoP to lie under the toe, and in the case
of non-actuated, compliant toe joints the position of the CoP relative to the
position of the toe joint pT is even directly related to the angle of toe flexion
pφT :

pφT :=

{
Kzx zx > pxT

0 else
, (3.10)

with x pointing in the sagittal direction of the foot.
Toe motions cannot therefore be generated independently from the position

of the CoP but forcing it to be under the toe will influence the motion of the
CoM due to (3.1), what may perturb the realization of other objectives such
as walking with a desired speed or following a position reference of the CoM.

An elegant solution to this problem can be found by looking closer at the
feasibility constraint (3.3) and how it evolves in case of a rotation around the
stance toe of angle pφT (gray in Figure 3.2):

Ec(p
θ
T )Rc(−pφT )(cx,y,z − px,y,z) ≤ ec, (3.11)

where Rc(−pφT ) rotates the original constraints around the toe joint by the
angle pφT , which is equivalent to the rotation of the CoM by the angle −pφT .
Taking into account the rotation of these constraints would allow the above
control scheme to decide upon the toe angle depending on the desired position
of the CoM. However, even in the case of a globally linear approximation of
equation (3.10):

pφT = K(zx − pxT ) (3.12)

inequalities (3.11) stay nonlinear, and this prohibits their straightforward con-
sideration by the above linear QP. In order to do so, we require a linear ap-
proximation of these inequalities of the following form:

Ec(p
θ
T )(cx,y,z − px,y,z +

∆cx,y,z

∆pφT
K(zx − pxT )) ≤ ec, (3.13)

but then this approximation has to work in the general case.
One useful fact in this regard is that we are mainly interested in toe flexion

by the end of the single support phase. Extending inequalities (3.8) to the
form of (3.13) only at ti ∈ SS+ is enough to achieve this goal and has the
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consequence that the CoM is not over-constrained at earlier instants. In the
upper part of figure 3.3, we can see the evolution of the frontal part of the
constraints (3.11) for a given CoM position and a stiffness K that allows to
reach the maximal toe angle (here 45◦) with the CoP at the frontal border
of the supporting toe (here 0.135 m). In its lower part, positions of the CoM
relative to the center of one foot are plotted for several walking speeds and
directions. The linear approximation (3.13) of the nonlinear constraints in
dashed enforces the use of toes but at the same time does not over-restrict the
set of feasible CoM positions when walking backwards. Contrary to (3.11),
such approximations do reduce the feasible positions of the CoM the more the
closer the CoP approaches the heel so that, dependent on the chosen K, several
of the shown maneuvers might not be realizable with the associated control
scheme.

Because the maximal attainable sagittal position of the CoM depends also
on its deviation in the frontal plane, the gradient ∆cx,y,z/∆pφ has to be chosen
such that it is valid for a relevant set of CoM deviations in the frontal plane.
In the case of the HRP-2 robot, an accurate, conservative estimation of this
gradient can be given for a large set of inclinations pψ around the ankle in
the frontal plane (pψ ∈ [−25◦, 25◦]) by translating the original polyhedron by
the distance that is covered by the toe ankle after a rotation of pφ = 45◦.
The results that are presented in the next section have been obtained with
this approximation and a stiffness K that allows to fulfill a maximal rotation
around the toe joint by 45◦.

Here, we are focussing on the use of active toes. Active toes can compensate
for intermediate violations because of the capacity to generate the additional
torque that is necessary for a desired rotation. Then, even if the orientation
of the toe is assumed to be linear with respect to the relative position of
the CoP z+, the actual orientation of the toe does not have to follow this
reference. Full-body trajectories can consequently be obtained inside a classic
inverse kinematics procedure, with the only supposition that the CoP stays
underneath the stance toe during the entire rotation. An actuated toe joint
introduces furthermore a redundancy to a leg with three pitch joints. During
toe flexion, the mapping from the joints to the position of the Center of Mass
is then not unique in the sagittal plane which offers the possibility to fulfill
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Figure 3.3: Upper part: Evolution of constraints (3.11) in the sagittal direction
x for a given position of the CoM and a supposed linear relation between the
sagittal position zx of the CoP and the toe angle pφ. Lower graph: Trajectories
of the CoM with respect to the CoP during stance phases of the left foot
(indicated by vertical lines) for several walking speeds and directions. The
points are the positions of the CoM at ti ∈ SS+ when the robot is walking
forward (blue), sideways (green), and back (red). The linear approximation
(dashed black) respects all constraints at the minimal and the maximal toe
orientation but reduces the set of feasible positions (at ti ∈ SS+) so that
walking backwards is possible only with a slower speed.

supplementary objectives at the joints. Similarly to what can be found for
example in [Buschmann, 2010], we choose the norm of the leg joint velocities
‖q̇L‖ as a minimization objective subject to constraints for the tracking of the
CoM:

minimize ‖q̇L‖2 (3.14)

subject to

ċ− J(qL)q̇L = 0, (3.15)

with J(qL) the Jacobian of a given configuration of qL.
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3.4 Walking efficiency

To study the influence of extensions (3.3) and (3.13) on the efficiency of
the complete control scheme, i.e. trajectory generation and tracking, we have
performed a series of dynamic simulations with varying walking speeds and ver-
tical oscillations of the CoM. The vertical oscillation cz(t) of each simulation is
the result of fifth order polynomial interpolations between predetermined ver-
tical positions, velocities, and accelerations of the CoM at redirection instants
tr ∈ [t0, tf ] around the double support phase:

cz(tr) ∈ [0.8, 0.9]m,

‖ċz(tr)‖ ∈ [0, 0.1]
m

s
.

(3.16)

The horizontal displacement of each simulation is due to a constant reference
ċx,yref in the forward direction:

ċx,yref ∈ [0.1, 0.8]
m

s
. (3.17)

In each simulation, the HRP-2 robot is walking forward for 10 s, trying to
realize the prior specified velocity reference for the given vertical evolution of
the CoM. Every simulation is performed twice: with the (static) polyhedral
constraints introduced in Section 3.2, and the enforced use of toes as discussed
in Section 3.3. The resulting motions have been verified against the limitations
of the robot, and the realizable motions have been recorded and analyzed.

Figure 3.4 traces two different approximations of the energy consumption
against the realized average horizontal velocity:∫ Tsim

0

∑
j

Γ(qj1(t), q̈j1(t))2dt, (3.18)

∫ Tsim

0

∑
j

‖Γ(qj1(t), q̈j1(t))q̇j1(t)‖dt, (3.19)

where qj1(t) is the position of an actuated joint j and Tsim the duration of a
simulation. The first criterion reflects the ohmic drop in the joint motors by
the integral of the square of torques, whereas the second measures directly the
mechanical work effectuated by the joints during the entire simulation.
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Figure 3.4: Energy consumption for realized mean velocities and different ver-
tical oscillations of the CoM, with the use of toes (red +) and without (green
x) as well as different velocity references (dashed black).

Contrary to the second criterion, the first one shows a considerable sensitiv-
ity to the variation of the vertical CoM oscillations, showing that a significant
reduction of torque load can be achieved by a proper adaptation of the vertical
evolution. The observed difference between the two criterions is due to the fact
that the first one is minimized by an equal distribution of the joint torques,
whereas the second rises proportionally to the velocities and torques in every
joint. Therefore, the vertical evolution alone does not affect the total amount
of work to a considerable extent.

This is different when toes are used, what can be observed for higher CoM
positions, but especially for horizontal displacement velocities above 0.3 m/s.
There again however, the reduction is significantly stronger for the first crite-
rion, as toe joints permit to lower the maximal torques in other joints of the
leg. We can expect a higher gain in terms of the second criterion when using



60 3. TOWARD MORE EFFICIENT WALKING

passive toes, what however, has not been addressed in this thesis.

Both criterions show, on the contrary, that the inclusion of toe motions
inside our scheme can allow for a decrease in energy consumption for a wider
range of displacement velocities if the vertical oscillations have been chosen
properly. The strong fluctuation of the minima in the upper graph of Fig-
ure 3.4 shows, however, that with the chosen set of vertical oscillations (3.16),
this has not been achieved for all realized average velocities. A larger set of
vertical trajectories is needed to complete these results and to provide a more
comprehensive basis for the adaptation scheme mentioned in Section 3.1.
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Figure 3.5: Attained sagittal CoM velocities with (solid red) and without the
use of toes (dotted blue) or polyhedric constraints (dashed black) for a given
velocity reference (dashed green).

We can see, furthermore, that the use of toes allows to realize consider-
ably faster walking speeds ċx,yref in the forward direction. If, on the contrary,
the desired velocity is not realizable for the chosen oscillation of the CoM,
the scheme of manages reduce the displacement velocity. The polyhedric con-
straints restrict the set of achievable CoM and foot positions such that only
geometrically feasible trajectories are generated.

This can be observed in more thorough detail in Figures 3.5 and 3.6 that
compare three different schemes introduced in this and the previous chapter.
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Figure 3.6: CoM (solid red), CoP (solid black) and foot trajectories (dashed
black) generated during the simulations in Figure 3.5. From up to down:
Polygonal constraints on the support positions, polyhedral constraints on the
CoM and the support positions, and polyhedral constraints extended to the
use of toes.

Although the velocity obtained with the scheme of the previous chapter is
negligibly smaller than the one of Section 3.2, an obvious difference in the
horizontal evolutions of the CoM and CoP with respect to the positions of the
feet can be observed in Figure 3.6. Due to polyhedric constraints, the scheme
of Section 3.2 places the feet further ahead of the CoM and the CoP to allow
for a realization of the desired CoM trajectory. The absence of these con-
straints (3.9), and the resulting ‘unconsciousness’ of the geometric limitations
cause the scheme of the previous chapter to generate unrealizable motions for
higher speed references ċx,yref or CoM positions. It is for this reason that these
constraints constitute an important completion of our trajectory generation
scheme. By rendering it more robust to unrealizable references they enforce
the most valuable property of our trajectory generation scheme: The feasibil-
ity requirements are always respected, even if it means not to realize a desired
motion.
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3.5 Conclusion

Reproducing characteristics of the human walk can significantly improve the
walking performance of robots. The combination of both the natural oscillation
of the CoM and the use of toes allows to reduce the load on the leg joints
and to augment the walking speed. As an essential element of this chapter,
polyhedral constraints on the position of the CoM allow first to ensure the
geometric realizability of the CoM and leg motions, and second, to consider
the use of toes inside the preview of walking trajectories.

In this chapter, vertical oscillations of the CoM have been given prior to
the generation of horizontal trajectories, but the question how to adapt the
vertical variations such that natural and efficient walking motions can always
be obtained has not been answered. All predefinitions made in this and the
previous chapter helped to avoid nonlinearities but made the use of adaptation
schemes necessary. The finite state machine for gait coordination and the
decoupled QP for the computation of foot orientations are examples of such
schemes. The following chapter is an attempt to avoid the precomputation
of vertical trajectories by a unified, nonlinear approach for the generation of
three-dimensional walking trajectories.
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3.6 Résumé

Reproduire les caractéristiques de la marche humaine peut améliorer de
manière significative la performance des robots. La combinaison des deux,
l’oscillation naturelle du CdM et l’utilisation des orteils, permet de réduire les
efforts dans les articulations des jambes et d’augmenter la vitesse de la marche.
En tant qu’élément essentiel de ce chapitre, des contraintes polyédriques sur la
position du CdM permettent d’abord d’assurer la faisabilité géométrique des
mouvement du CdM et des jambes, et deuxièmement, prendre en considération
l’utilisation des orteils lors de la prédiction des trajectoires de la marche.

Dans ce chapitre, les mouvements verticales du CdM ont été donnés avant
de générer les trajectoires horizontales, mais la question de comment adapter
ces variations verticales tel que des mouvement naturels et efficaces peuvent
toujours être atteints n’a pas été répondu. Toutes prédéterminations faites
dans ce et les chapitres précédents aidaient à éviter des non-linéarités mais
rendaient nécessaire l’utilisation des algorithmes d’adaptation. La machine
à état fini pour la coordination de la marche et le problème d’optimisation
découplé pour le calcul des orientation des pieds sont des exemples pour tel
chemins. Le chapitre suivant est une tentative d’éviter des prédéterminations
des trajectoires verticales par une approche unifiée, non-linéaire des trajectoires
de la marche à trois dimensions.
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3.7 Appendix C: Multi-body motions

We can observe that for faster walking with the HRP-2 robot the Centers
of Pressure of the comprehensive and the point-mass models deviate strongly
and that his deviation becomes critical when the robot is supported only by
the stance toe. A point-mass model is able to capture a crucial part of the
robots dynamics - the Center of Mass. The state of the CoM can give very
accurate information on the contact forces for slower walking motions, but
this model loses its accuracy when bodies of the robot generate non-negligible
variations in the momentum of the robot. This change of momentum can
result from rotational and longitudinal motions of body parts like the legs, the
arms, or the trunk, and requires the consideration of additional point-masses
for longitudinal motions or rigid bodies for rotational motions.

Here, we show how to improve the accuracy of the CoP prediction inside
our linear MPC scheme. We review the motion equations of multiple rigid
bodies introduced in Chapter 1 and show how to reduce them to a linear form.
A three-point-mass model will serve us thereupon to improve the prediction of
the CoP for faster motions.

3.7.1 System of rigid bodies

Let us restart from equation (1.14) and (1.15) the series of simplifications
made in Chapter 1: ∑

k

mk(c̈k − ~g) =
∑
k

f ck (3.20)∑
k

ck ×mk(c̈k − ~g) +
∑
k

RkIkω̇k =
∑
k

ck × f ck +Rkτk. (3.21)

But instead of simplifying the equations by introducing the Center of Mass,
we will assume that the bodies are perfectly symmetric with respect to their
origins ck so that their orientations do not affect the torques generated during
rotational momenta changes ω̇k:∑

k

mk(c̈k − ~g) =
∑
k

f ck (3.22)∑
k

ck ×mk(c̈k − ~g) +
∑
k

Ikω̇k =
∑
k

ck × f ck + τk, (3.23)
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By reintroducing the contact points pk, we get:∑
k

mk(c̈k − ~g) =
∑
k

f ck , (3.24)∑
k

ck ×mk(c̈k − ~g) +
∑
k

Ikω̇k =
∑
k

pk × fk, (3.25)

and with the assumption of horizontally aligned, non-sliding contact points as
well as the CoP equation (2.13), we get the following two nonlinear, ordinary
differential equations for the motions of rigid bodies:

1∑
kmk(c̈zk − g)

∑
k

mk

(
(c̈zk − g)cxk − czkc̈xk + Ikω̇

y
k

(c̈zk − g)cyk − czkc̈
y
k + Ikω̇

x
k

)
=

(
zx

zy

)
. (3.26)

Here again, with predefined vertical motions for each body, we end up with
linear relationships between the horizontal body motions and the CoP.

1∑
k f

z
k (t)

∑
k

mk

(
(c̈zk(t)− g)cxk − czk(t)c̈xk + Ikω̇

y
k

(c̈zk(t)− g)cyk − czk(t)c̈
y
k + Ikω̇

x
k

)
=

(
zx

zy

)
. (3.27)

3.7.2 Three-point-mass model for fast walking

Walking motions are usually obtained with the trunk of the robot kept
relatively straight. The observed deviations are thus not the result of rotational
momenta changes but mainly the translational accelerations of the legs. The
HRP-2 has indeed relatively heavy legs, making together about 30 % of the
total mass. Faster walking is therefore likely to generate angular momenta that
can lead to strong deviations of the real CoP from the previewed one if only a
single point-mass model is used. The motions of the upper body and the legs
have then the greatest influence on the evolution of the CoP. We choose here,
therefore, to replace the CoM model by three point-masses cw,l,r that represent
the longitudinal motions of the waist and both legs 1.

With the angular moment τk defined by:

τ yk = mkγ
x
k = mk(c̈

z
k − g)cxk −mkc

z
kc̈
x
k,

τxk = mkγ
y
k = mk(c̈

z
k − g)cyk −mkc

z
kc̈
y
k,

1. As a positive side effect, the generation of waist motions offers the possibility to im-
prove the accuracy of the polyhedral constraints (3.3) introduced above.
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and the vertical reaction force f zk due to the vertical acceleration of the particle
k:

f zk = mk(c̈
z
k − g),

we get:

1

f zc + f zr + f zl

(
τ yc + τ yl + τ yr

τxc + τxl + τxr

)
=

(
zxk

zyk

)
. (3.28)

3.7.3 Identification of leg masses

Our goal is to reduce the deviations of the previewed CoP zp(t) from the
realized one zr(t) 2. Different criteria can be thought of for the identification
of the point-masses, depending on whether the maximal or the mean deviation
is to be minimized. In the following we will focus on the mean deviation.

To identify the three-mass model we are fitting the CoP generated by the
simplified model to the CoP of the complete model. We can see that contrary
to (3.27), equation (3.26) is linear with respect to the masses. Therefore, to
identify the three masses, the following linear least squares problem can be
formulated:

minimize
Mp

‖ΓpMp − Tr‖2, (3.29)

withMp being the vector of masses to be identified and ΓpMp, Tr the previewed
and the realized evolution of torques:

ΓpMp =


γw(t1) γr(t1) γl(t1)
. . .

γw(tN) γr(tN) γl(tN)



mw

mr

ml

 , (3.30)

Tr =


zr(t1)

∑
fz(t1),

...
zr(tN)

∑
fz(tN)

 , (3.31)

2. The identification of the masses can be made only with respect to a limited set of
trajectories such that model errors are unavoidable. Model errors however are different from
perturbations in the sense that they are systematic. Inside an MPC framework, model errors
can be compensated for by assuming that the measured deviations from the prediction will
stay constant for the following preview period. Compensating control can be computed if
the deviation is taken into account.
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where N is the number of recorded samples.
Being linear this least squares problem can be solved analytically with:

Mp = (ΓTp Γp)
−1ΓTp Tr. (3.32)

3.7.4 Preview Control of the three-mass model

In order to modify the previous control scheme as little as possible, we
control the jerk of the waist ...

c w, and the trajectories of the feet cp(t) are
obtained by single fifth-order polynomial 3 interpolations between the current
position and previewed landing positions p(i) (cf. Appendix A). With the
polynomial equations

chp(t) = at5 + bt4 + ct3 + dt2 + et+ f, (3.33)

ċhp(t) = 5at4 + 4bt3 + 3ct2 + 2dt+ e, (3.34)

c̈hp(t) = 20at3 + 12bt2 + 6ct+ 2d, (3.35)

(3.36)

ph0 , ṗ
h
0 , p̈

h
0 defining the horizontal state of a foot at an instant t0, and phn the

previewed position of the following support foot at the touchdown instant td,
the foot trajectories are determined by the following equations:

a = −1

2

p̈h0(td − t0)2 + 6ṗh0(td − t0) + 12ph0 − 12phn
(td − t0)5

, (3.37)

b =
1

2

3p̈h0(td − t0)2 + 16ṗh0(td − t0) + 30ph0 − 30phn
(td − t0)4

, (3.38)

c = −1

2

3p̈h0(td − t0)2 + 12ṗh0(td − t0) + 20ph0 − 20phn
(td − t0)3

, (3.39)

d =
1

2
p̈h0 , (3.40)

e = ṗh0 , (3.41)

f = ph0 , (3.42)

that are all linear with respect to the previewed landing position phn.

3. The interpolation with order 5 polynomials can cause high acceleration peaks between
the sampling instants. A solution can be to consider several polynomials of a lower order
as in the case of trajectories with a piecewise constant jerk or splines with second-order
continuous derivatives.



68 3. TOWARD MORE EFFICIENT WALKING

For a fixed sampling rate we can formulate the following recursive relation
that determines the foot trajectories for the preview period:

Cp = Sp


chp

ċhp

c̈hp

+ Up


ph1
...
phs

 . (3.43)

The constraints on the CoP become consequently:

Ēz

(
Z − Ck

)
≤ ε̄z, (3.44)

with the evolution of the CoP being determined by:

Z =Szwĉ
w + U z

w

...
Cw+

Szl ĉl + U z
l Pl+

Szr ĉr + U z
rPr,

and the one of the support positions by:

Ck = Vl(Slĉl + UlPl)+

Vr(Srĉr + UrPr),

where the selection matrices V indicate the foot in the air.



Chapter 4

3D motions

In our purpose to obtain linear MPC formulations, we were obliged in the
previous two chapters to predetermine the vertical evolutions of the particles
and the contact points. Such measures obviously limit the capacity of the
control scheme to react to varying control goals or external conditions. Adap-
tation schemes have to be employed on top of the actual trajectory generator
to reduce this deficiency. The question of how to switch between trajecto-
ries to obtain smooth transitions and robust motions is not easy to answer
though (cf. [Wieber and Chevallereau, 2004]). Also, the set of trajectories
that can be precomputed offline is inevitably limited so that no guarantee can
be given that the chosen trajectory is an appropriate one (cf. Section 3.4).

Prior to generating three dimensional walking trajectories, however, sev-
eral newly arising questions have to be reconsidered again. Since the vertical
evolutions, that had been predetermined in the previous chapters, are to be
generated within the optimization problem, the feasibility conditions have to
be reconsidered, and, what is more, an appropriate control goal has to be found.
As has been shown in the previous chapters, the motions of point-masses or
rigid bodies in the three-dimensional space are related to the contact forces by
nonlinear differential equations, nonlinearities arising even for a single point
mass system. Linear approximations might not be acceptable for stronger ver-
tical CoM variations that are not avoidable for tasks like climbing stairs or
walking down a slope. Generating three dimensional motion trajectories by
means of Model Predictive Control requires therefore the resolution of nonlin-
ear optimization problems.

69
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Several related optimization-based approaches exist in computer graphics
that manage to generate three-dimensional walking trajectories by means of
simplified models. By considering the vertical CoM motions independently
from horizontal ones, [Mordatch et al., 2010] succeed to generate walking mo-
tions on nonplanar ground. Although decoupled computation of vertical varia-
tions can lead to naturally looking walking motions, their feasibility can not be
guaranteed anymore, the more so as in this approach the Zero Moment Point
(ZMP) is used to assure dynamic feasibility on nonplanar ground. In [Van
De Panne, 1997] point-mass motions are generated through the minimization
of two objectives, although again, without explicitly ensuring physical plausi-
bility 1. As concluded in Chapter 1, feasibility is the most important exigence
on walking motion references in robotics, and, as shown in Chapters 2 and 3,
considering the limitations of a system by the control law can improve its
performance.

The trajectory generator introduced in this chapter can be seen as an ex-
tension of both the second approach mentioned above and the MPC schemes
developed throughout the previous chapters. Building on algorithms for fast
computation of neighboring optimization problems, simulations of a point-
mass model will serve us to prove the capacity of this scheme to achieve stable
and natural walking motions.

4.1 Numerical NMPC methods

Nonlinear MPC allows to make use of comprehensive dynamic models like
the one developed in Chapter 1, but the computational load can limit the
online applicability. The supposition that underlies the approach taken in
the following sections is that numerical methods for NMPC have achieved a
status where real-time control of a robot by means of dimensionality-reduced
nonlinear models has become feasible on a modern computer [Diehl et al.,
2005b] [Houska et al., 2011]. Several generic real-time computation schemes

1. Interestingly, the approach taken in [Van De Panne, 1997] can be seen as the three-
dimensional version of Kajita’s ZMP Preview Control scheme [Kajita et al., 2003], which is in
many ways the basis of this thesis. The contribution of Section 4.3 has therefore similarities
to the extension of Kajita’s ZMP Preview Control [Kajita et al., 2003] by [Wieber, 2006],
where dynamic feasibility has first been considered explicitly.
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have been developed in the near past that have the potential to extend the
application domain from process industries to robotics, where time scales are
in the range of milli- or even microseconds. An extensive introduction to
these approaches can be found in [Diehl et al., 2009]. The following is a short
summary of strategies that are applied by them:

– Offline pre-computations: Subsequent optimization problems vary, but
some variations might be predictable, and state invariant parts might
exist that can be precomputed offline.

– Delay compensation by prediction: As the system’s state evolves during
the computation of a control, the accuracy of the solution can be improved
by starting the resolution procedure from a predicted state instead of the
current one.

– Division into preparation and feedback phases: Since solutions of consec-
utive optimization problems of a sufficiently fast sampled process share
similarities, it can be possible to compute a first solution with an old state
and, subsequently, use the current state to make a quick approximation
of the current optimal solution.

– Iterating while the problem changes: Instead of iterating until the solution
converges to a minimum, the behavior of a plant might be improved by
applying suboptimal control but more frequently.

The results of this chapter have been obtained with the Real Time Iteration
Scheme [Diehl et al., 2005a] that exhibits two crucial features:

1. To augment the sampling frequency, only one SQP-type iteration per
sampling time is performed.

2. To achieve additionally short feedback delays, each iteration is divided
into a preparation and a short, approximating feedback phase.

4.2 Nonlinear Optimal Control Problem

Still, even with adapted numerical methods as discussed above, the dimen-
sion and the form of the optimization problem play a decisive role for the
computation time. In this section, we are going to develop a numerically con-
venient, nonlinear formulation of the general MPC scheme in Chapter 1.
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4.2.1 Dynamic equilibrium of a system of particles

Let us recall the approximation of a robot by a limited number of point-
masses ci and a set of contact points pk. The set of dynamically feasible states
of such a system is defined by the following equilibrium conditions between
the system and the environment:

– Change of linear momenta:∑
i

mi(c̈i − g)−
∑
k

f ik = 0. (4.1)

– Change of angular momenta:∑
i

mi(c̈i − g)× ci −
∑
k

pk × f ik = 0, (4.2)

with pk being the kth contact point and fk =
∑

i f
i
k the force acting at it.

– The contact forces have to respect the unilateral and bilateral inequality
conditions (1.11) and (1.12), that prevent the contact body from taking
off or sliding:

fk ∈ Ak. (4.3)

By combining the left and the right sides of equations (4.1) and (4.2) in the
internal and the external dynamic wrenches W int and Wext, the above equilib-
rium conditions can be equally written as:

W int(c, c̈) = W ext(p, f), (4.4)

stating that the internal and external wrenches have to be in a permanent
equilibrium.

4.2.2 Optimization Problem

With the above feasibility conditions, an optimization problem for the gen-
eration of dynamically equilibrated motions can be formulated as follows:

minimize
u

∫ tf

t0

L(u, t)dt+ Φ(u, tf )

subject to

t ∈ [t0, tf ] W int(u, t)−W ext(u, t) = 0 (4.5)

t ∈ [t0, tf ] f(u, t) ∈ A(u, t). (4.6)
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However, condition (4.5) is a set of nonlinear equality constraints, which can
pose computational difficulties. To solve a problem with nonlinear equality
constraints either penalty functions have to be employed or dual problems
formulated. The choice of an appropriate penalty function is not an easy one
though, and the resulting dual problems are not differentiable. One possible
solution consists in reformulating the problem such that the nonlinearities are
transferred either to inequality constraints or to the objective function L.

4.2.3 Control parameterization

As already seen in Chapter 2, appropriate variables for the control of par-
ticles can be either their accelerations c̈i or the associated contact forces f ik:

ui = c̈i ↔ uik = f ik, (4.7)

and as well as for the linear case, the choice on the decision variables has a
consequence on the well-posedness of the optimization problems.

Depending on the contact model, the set of feasible contact forces A can
take different forms. For a linear friction model, A is a cross-product of rev-
olution cones and can be approximated by a polytope A. The decision upon
the parameterization (4.7) modifies its consideration inside the optimization
problem. In the first case (u = c̈) conditions (4.5) and (4.6) can be transformed
into a set of nonlinear inequalities (cf. Appendix A):

Af(u, t) ≥ 0. (4.8)

The other way around (uik = f ik), feasible forces can be expressed as positive
linear combinations of force vectors lying on the edges of the contact polyhe-
drons (cf. Figure 4.1):

f ik = α1f
i
k_1 + ...+ αMf

i
k_M , (4.9)

with M being its number of edges. The resulting contact torques τk, then also
feasible, are equally defined by:

τ ik = α1τ
i
k_1 + ...+ αMτ

i
k_M , (4.10)

so that the external wrench wk applied at a contact point k can be written as:

wik = α1w
i
k_1 + ...+ αMw

i
k_M . (4.11)
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fk 

fk_2 fk_1 

pk 

Figure 4.1: Every vector inside a convex polyhedral set can be expressed as a
linear combination of the vectors lying on the edges of this set.

This second way offers us thus the possibility to satisfy condition (4.6) without
the use of general inequalities but by variable bounds that are easier to han-
dle inside an optimization routine. Then, however, we still face optimization
problems with nonlinear equality constraints.

4.2.4 Eliminating the nonlinear coupling

Let’s have a closer look at condition (4.5) for one single particle c and
multiple, nonplanar contact points pk. All conclusions made in the following
also apply in the more general case of multiple particles. Condition (4.5),
written out in full, is:

m



c̈x

c̈y

c̈z − g
cx(c̈z − g)− cz c̈x

cy(c̈z − g)− cz c̈y

cy c̈x − cxc̈y


=
∑
k



fxk

f yk

f zk

pxkf
z
k − pzkfxk

pykf
z
k − pzkf

y
k

pykf
x
k − pxkf

y
k


. (4.12)

We substitute for convenience the nonlinear terms on the left side by additional
variables τ+, τ−, yielding:

m



c̈x

c̈y

c̈z − g
τ y+ − τ

y
−

τx+ − τx−
τ z+ − τ z−


=
∑
k



fxk

f yk

f zk

pxkf
z
k − pzkfxk

pykf
z
k − pzkf

y
k

pykf
x
k − pxkf

y
k


. (4.13)
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Then, the acceleration of a particle in one dimension, can be expressed in two
different ways:

c̈x =
1

m

∑
k

fxk , (4.14)

and

c̈x =
τ z+
cy

=
τ z+
τx+

(c̈z − g) =
τ z+
τx+

1

m

∑
k

f zk . (4.15)

We can get a closer look at the inner coupling between the forces with:

∑
k

fxk =
τ z+
τx+

∑
k

f zk , (4.16)

or further developed:

∑
k

fxk =
τ z+
τx+

τ y+
τ z−

τx−
τ y−

∑
k

fxk , (4.17)

and equivalently:

τx+τ
z
−τ

y
− = τ z+τ

y
+τ

x
−. (4.18)

As mentioned above, nonlinear equality constraints are difficult to handle in-
side an optimization problem, requiring this inner coupling to be eliminated.

In Chapter 2, this elimination has been achieved by assuming that friction
is infinite. Since the vertical positions of the contact points were aligned with
the inertial frame of reference (pzk = 0), any vertical contact torque τ z could
be generated by horizontal contact forces fx/yk without affecting horizontal
torques τx/y. Reciprocally, any horizontal contact force was admissible, and
the optimization problem (2.11) could be formulated by considering only the
vertical contact forces f zk together with the following subset of the dynamic
constraints (4.12):

m


c̈z − g

cx(c̈z − g)− cz c̈x

cy(c̈z − g)− cz c̈y

 =
∑
k


f zk

pxkf
z
k

pykf
z
k

 . (4.19)
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We can consequently express motions in three dimensions by three ordinary,
decoupled differential equations:

c̈z =
1

m

∑
k

f zk + g (4.20)

c̈x = − 1

cz
(

1

m

∑
k

pxkf
z
k − cx

∑
k

f zk ) (4.21)

c̈y = − 1

cz
(

1

m

∑
k

pykf
z
k − cy

∑
k

f zk ). (4.22)

Since we are interested in avoiding nonlinear equalities or inequalities, we will
adapt in the following these suppositions and choose the contact forces as
the control parameters, but, in order to consider also foot placements on non-
planar ground, we have to extend the above equations by vertically not aligned
contact points.

Again, in order for the above decoupling to be valid, we have to be able
to generate any horizontal contact force fx/yk without applying a torque in
the chosen inertial reference frame. With the supposition that contact points
cannot slide, such forces can equally be generated by one single or a subset of
the total number of contact points, as soon as they are aligned with the origin.
The above decoupling can therefore be kept valid also for multiple contact
points on non-planar surfaces:

m


c̈z − g

cx(c̈z − g)− cz c̈x

cy(c̈z − g)− cz c̈y

 =
∑
k


f zk

pxkf
z
k

pykf
z
k

+
∑
l


f zl

pxl f
z
l − pzl fxl

pyl f
z
l − pzkf

y
l

 , (4.23)

where pl are non-aligned contact points.
The horizontal forces fx/yl that are applied at these contact points generate

a torque and therefore have to be added to the control vector u, but, a positive
side-effect of this is that friction limits can be considered for the associated
solid 2.

Now, if we preview walking trajectories over several steps, we will inevitably
encounter cases where the robot is supported by one single foot on a surface
that is not aligned with the origin. All non-zero horizontal forces generate

2. The assumption of non-sliding contact points is common to all CoP-based walking
generation approaches. Here however, this assumption has to be made only for a subset of
contact points, allowing for a consideration of friction limits for the rest.
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then a torque, such that no compensation can be made, and the generated
trajectories might be not realizable. However, let’s suppose that the contact
points of the perfectly rigid foot are aligned horizontally, as is the case when
the robot is mounting stairs. Then all horizontal contact forces share the same
line of action, so that, with pzc the height of the points, we can state:∑

k

pzkf
x
k = pzc

∑
k

fxk = pzcmc̈
x, (4.24)∑

k

pzkf
y
k = pzc

∑
k

f yk = pzcmc̈
y. (4.25)

We get then:

m


c̈z − g

cx(c̈z − g)− c̈x(cz − pzc)
cy(c̈z − g)− c̈y(cz − pzc)

 =
∑
k


f zk

pxkf
z
k

pyl f
z
k

 , (4.26)

and consequently:

c̈z =
1

m

∑
k

f zk + g (4.27)

c̈x = − 1

cz − pzc
(

1

m

∑
k

pxkf
z
k − cx

∑
k

f zk ) (4.28)

c̈y = − 1

cz − pzc
(

1

m

∑
k

pykf
z
k − cy

∑
k

f zk ). (4.29)

4.3 3D Control of the Center of Mass

We consider now the control of point-mass motions in the three-dimensional
space with predefined foot positions. As in the previous chapters, the double
support phases are taken into account implicitly, so that according to the
considerations of the previous sections, the CoM dynamics are described by
the following three nonlinear second-order differential equations:

c̈z =
1

m

∑
k

f zk + g (4.30)

c̈x = − 1

cz − pzc
(

1

m

∑
k

pxkf
z
k − cx

∑
k

f zk ) (4.31)

c̈y = − 1

cz − pzc
(

1

m

∑
k

pykf
z
k − cy

∑
k

f zk ). (4.32)
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Figure 4.2: By neglecting maximum friction forces for one foot, we can assume
that any tangential force can be compensated for, so that the external and
internal momenta (4.1) and (4.2) are always equilibrated.

We subsume the position c and the velocity ċ of the CoM particle in the
state vector s, and the components of the control vector u are the vertical
contact forces. We can formulate then a set of discrete first-order difference
equations:

s(ti+1) = h(s(ti), u), (4.33)

together with the following bounds on the control vector u:

0 ≤ uk ≤ ∞. (4.34)

4.3.1 Inverted Pendulum Walk

A question, that has been answered in the previous chapters by the require-
ments on the linearity of the system, now has to be answered again: How to
generate walking motions with one single particle? Or more precisely: What
optimization criterions serve to generate CoM motions that lead to feasible
and natural walking motions? Energy consumption has long been identified as
a minimization criterion of the human walk, but one single particle lacks the
complexity to reflect the exchange of work during walking.

Considering the simplicity of the CoM model, we are obliged to employ
heuristics that are considered to be essential features of the human gait. So,
what are these features? Two major observations have contributed to the
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development of simplified models for walking. The first observation is that the
human walk resembles a ‘compass gait’ where the CoM vaults over rigid legs.
The second observation is that biological systems seem to prefer a walking
style that leads to the characteristic two peaks of the vertical ground reaction
force (GRF).

Since the observation that the human walk resembles a compass gait, the
inverted pendulum model, which embodies the compass gait, has been recog-
nized to be able to partially explain the dynamics of walking. Its capacity to
generate stable locomotion has first been proven by [McGeer, 1990]. Several
passive dynamic walkers have been conceived since then that are capable of
walking down a slope with straight stance legs. This paradigm has been influ-
ential in [Van De Panne, 1997] for the motion control of computer animated
walking figures. By minimizing the deviation of the leg length with respect
to a nominal value inside an optimization-based routine, plausible walking,
turning, leaping, and running motions could be generated. Finally, the Lin-
earized Inverted Pendulum, that has first been introduced in [Kajita and Tani,
1991] and has become since then the basis of most online walking generation
approaches in humanoid robotics, is a derivation of the inverted pendulum
model.

However, due to the incompleteness of this model, we choose here only to
imitate the straight leg walking. We are defining for this purpose a dominant
minimization term on the leg length, which is approximated by ‖c− p‖, with
respect to the nominal length l0:

L(u, ti) = (‖c(u, ti)− p(ti)‖ − l0)2 . (4.35)

An additional, weakly weighted ‘inertial’ term on the derivative of the forces
serves to smoothen the evolution of the CoM trajectory (cf. Chapter 2):

L(u, ti) = ... +
α

2
(u(ti)− u(ti−1))2 . (4.36)

To enforce stability, the position of the CoM is driven above the center of the
foot by the end of the preview horizon:

Φ(u, tN) =
γ

2
(c(u, tN)− p(tN)− c0)2 , (4.37)

with c0 being an upright vector of the nominal leg length l0.
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The resulting optimal control problem becomes:

minimize
u

N∑
i=1

(‖c(u, ti)− p(ti)‖ − l0)2 +
α

2
(f(u, ti)− f(u, ti−1))2 + (4.38)

γ

2
(c(u, tN)− p(u, tN)− c0)2 , (4.39)

subject to the model difference equation:

s(ti+1) = g(s(ti), u), (4.40)

and bounds on the variables:

0 ≤ u ≤ umax, (4.41)

that assure the dynamic feasibility.
During the following simulation, the robot is walking forward, making a

step every 0.8 s of 20 cm length and width. Three vertical steps of 4 cm and
2 cm height have been considered between the second and the sixth step. As
in the previous chapters, the double support phase of 100 ms is neglected by
sampling only inside single support phases. The total mass mc of the robot is
50 kg. The nominal leg length is 1 m. The foot length is 20 cm and the foot
width 10 cm. The simulation parameters have been chosen as follows:

– α = 10−6

– γ = 103

– N = 10

We can observe in Figure 4.3 the expected inverted pendulum like evolution
of the vertical CoM position. The robot was able to mount the steps in the
middle of the course. For higher steps however, a modification of the cost-
function needs to be done, since the dominant leg-length term prohibits a
greater variation of the leg length.

The ability of the above MPC scheme to handle nonlinear differential mo-
tion equations makes the predefinitions of the previous chapters unnecessary.
We can thus think of liberating the foot positions, making the support du-
rations variable, turning without decoupling the preview of the orientations,
considering the double support phases, etc. In the following, we are going
to focus on the second important feature of the human walk that has been
mentioned in the beginning of this section: the natural ground reaction force
pattern.
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Figure 4.3: The evolution of the CoM for an enforced nominal leg length and
predefined foot positions.

4.3.2 Compliant leg behavior

The force curve of the motions generated above shows pronounced peaks
between single support phases (Figure 4.4). As a consequence of the inverted-
pendulum-like behavior, the redirection of the CoM requires high efforts during
a relatively short time. Biological walking shows a considerably smoother
force profile. The natural CoM curve follows a sinusoidal-like vertical path
that leads to the characteristic double-peaked ground force pattern under the
stance leg. Compliant leg behavior has been identified as being able to explain
this observation, and the natural CoM motions fit the behavior of the spring
loaded inverted pendulum (SLIP) especially well for running motions:

mc̈ = k

(
l0

‖c− p‖
− 1

)
(c− p) +m~g. (4.42)

[Geyer et al., 2006] have shown that the same model can reproduce the vertical
and horizontal GRF patterns also for normal walking, although not equally
well for arbitrary walking speeds. By generating high impact forces, it would
additionally affect the stability of the system. Here again, we are therefore not
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Figure 4.4: Sum of vertical ground reaction forces with (solid red) and without
(dashed black) enforced compliance.

interested in reproducing the entire dynamics of a spring.
There is, however, no doubt that compliance in the legs explains an impor-

tant part of the leg behavior not only during running but also for walking.
We are going therefore to enforce the behavior of a spring to some extent by
a weakly weighted minimization of the difference between the acceleration of
the CoM particle and the acceleration of the above mass-spring system:

L(u, ti) = ... +

β

2

(
c̈(u, ti)−

k

m

(
l0

‖c(u, ti)− p(ti)‖
− 1

)
(c(u, ti)− p(u, ti))− ~g

)2

.
(4.43)

Figure 4.4 shows the evolution of the ground reaction forces for the same
scenario as above, but with k = 2000 kg/s2 and β = 4 ∗ 10−2. We can observe
that the force peaks are smaller for the entire simulation, but especially during
climbing stairs. Additionally, we find the sinusoidal force shape indicating a
sinusoidal shape also for cz(t).

The control objectives chosen in this section respond to the observed char-
acteristics of the walk, but observations are different for running, and very
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simple models, like those introduced in this thesis, lack the complexity to al-
low for a handing of both modes of locomotions through a unique control law.
Running, climbing stairs, or sitting down on a chair, therefore, require different
approaches. The control parametrization and the simplifications of this chap-
ter, on the contrary, are more generic and can serve as the basis for efficient
generation of three-dimensional motions via NMPC.

To obtain stable motions in the above simulations, two SQP iterations where
necessary, making an average computational time of 30 ms on a 2.25 GHz Intel
Core 2 Duo. Although real-time capable on a modern computer, the compu-
tational load is still too large for embedded hardware used in contemporary
robots such that the question of how to reduce the computational time has to
be addressed.
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Conclusion

Generic motion control by means of Model Predictive Control involves the
resolution of nonlinear optimization problems. In this chapter, an efficient
formulation for the generation of motions in the three-dimensional space has
been proposed. By controlling the contact wrench of a particle, dynamic fea-
sibility can be assured by bounds on the control variables. The consideration
of friction forces is possible for a subset of the contact points.

Stable walking has been achieved by enforcing a nominal leg length. Ad-
ditionally, enforced compliance in the legs served to generate more natural
patterns of the ground reaction forces and CoM motions.

Although the goal of real-time trajectory generation has been achieved on a
modern PC, the computational time is still beyond the available machine time
of embedded hardware, and further insight into the numerics is necessary.

Résumé

Le contrôle générique des mouvements par moyen de la Commande Pré-
dictive inclut la résolution des problèmes d’optimisation non-linéaires. Dans
ce chapitre, une formulation efficace pour la génération des mouvements dans
l’espace 3D a été proposé. En commandant les torseurs de contact d’un partic-
ule, la faisabilité dynamique peut être assuré par des bornes sur les variables
de contrôle. La prise en compte des forces de frottement est possible dans un
sous-ensemble des points de contact.

La marche stable a été atteinte en renforçant la longueur nominale de la
jambe. De plus, une flexibilité dans les jambes a servi de générer des carac-
téristiques des forces de réaction et des mouvements du CdM plus naturels.

Même si l’objectif de générer des trajectoires en temps réels a été atteint
sur un ordinateur moderne, le temps de calcul est toujours en dehors le temps
de calcul des systèmes embarqués, et un aperçu plus précis dans la résolution
numérique des problèmes posés ici est nécessaire.
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4.4 Appendix D: Feasibility by inequality con-

straints

We approximate the friction cones

‖f tk‖ ≤ µfnk , (4.44)

that emerge when considering the linear friction law, by inscribed four-sided
pyramids. Then, sliding of one single contact point k can be avoided if:

A′fk =



1 0 µ

−1 0 µ

0 1 µ

0 −1 µ

0 0 1



fxk

f yk

f zk

 ≥ 0, (4.45)

and the totality of points if:

Af =



1 0 µ1

−1 0 µ1

0 1 µ1

0 −1 µ

0 0 1



fx

f y

f z

 ≥ 0, (4.46)

where f subsumes the forces vectors fk of all points.
With condition 4.12 written as:

C = W


fx

f y

f z

 , (4.47)

where

C =



c̈x

c̈y

c̈z − g
cx(c̈z − g)− cz c̈x

cy(c̈z − g)− cz c̈y

cxc̈y − cy c̈x


and W =



1 0 0

0 1 0

0 0 1

−Pz 0 Px

0 −Pz Py

Py Px 0


, (4.48)

the dynamic equilibrium is assured if:

AW+
C ≥ 0. (4.49)
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Final Discussion

The ZMP Preview Control scheme, first introduced in [Kajita et al., 2003],
was unique in several ways. For the first time Model Predictive Control was ap-
plied successfully to online generation of walking trajectories. Stable motions
were obtained by the sole minimization of multiple performance criterions for a
short preview period, without strong suppositions on the CoM trajectory. Due
to the linearity of this scheme, the control could be computed sufficiently fast
to allow for robust and reactive walking (cf. [Nishiwaki and Kagami, 2008]).
This scheme, however, didn’t break with the common practice of assuring re-
alizability of motions. Reference patterns for the evolution of contact forces
still had to be determined prior to obtaining walking motions.

A shift in this paradigm had been initiated in [Wieber, 2006]. Explicit con-
sideration of feasibility requirements had allowed to improve the robustness
and to generate motions without predefined CoP references. This contribu-
tion made use of the most valuable property of Model Predictive Control, the
explicit consideration of limitations, but still, motions were determined to a
large extent by the placement of the feet. This deficiency could be overcome
in [Diedam et al., 2008]. For the first time, foot placement could be decided
online, in permanent accordance with the dynamic feasibility requirements of
the generated motions, but again, foot position references had to be given.

In Chapter 2, we have completed this change of approach, away from pre-
determined contact force and foot references, toward a more elevated control
of the Center of Mass. We have shown that real-time control of a robot by a
desired velocity reference is not only possible, but also improves its robustness
and reactivity. The such enhanced level of abstraction allowed for a seamless
implementation inside a Visual Servoing scheme in [Dune et al., 2010].

We have improved the efficiency of the LMPC-based trajectory generator in

87
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Chapter 3 by incorporating the explicit consideration of geometric limitations.
Polyhedral constraints on the position of the CoM help to ensure the realiz-
ability of walking trajectories for arbitrary vertical oscillations of the CoM or
unfeasible displacement references. Subsequently, these constraints made it
possible to generate feasible toe motions. As a consequence, a larger maximal
displacement speed, as well as more naturally looking and more energetically
efficient walking motions, have been achieved. Additionally, multi-point mod-
els can improve the accuracy of the prediction and thus the achievable walking
performance.

To reduce the dependency on restricting predefinitions, our approach of
generating walking motions by means of simplified models has been extended
to nonlinear MPC in Chapter 4. We have established a formulation that
allows to consider the dynamic limitations of the robot through simple bounds
on the variables. This scheme has proven to be capable of generating motion
trajectories in real-time, and we were able to achieve three-dimensional walking
motions on non-planar ground. Due to enforced compliance in the legs, the
scheme managed additionally to reproduce the natural profiles of the CoM and
the contact forces observed in human walking.

Various possibilities to carry on the MPC approach taken in this thesis can
be distinguished on the horizon. Explicit consideration of external constraints
allows to cope with the highly structured and dynamic environment of humans.
The consideration of contact forces allows for interaction with external objects
other than the ground. The high efficiency of existing resolution methods and
the resulting reactivity might allow for stabilizing control on the level of the
trajectory generation. Although, in order to lower the computational time
to the microsecond range, the numerical aspect of nonlinear Model Predic-
tive Control requires special attention, with its capacity to handle nonlinear
equations, NMPC has the potential to further release from predefinitions that
limit the flexibility of the approach. But still, the full potential of linear MPC
for walking control has not yet been fully exploited, as could be shown also
by [Dimitrov et al., 2011], and contributions that the author does not foresee
will surely follow.
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Commande prédictive d’un robot humanoïde

Résumé : L’étendue des mouvements que les robots humanoïdes peuvent réaliser est fortement
limitée par des contraintes dynamiques. Une loi de commande qui ne prend pas en compte ces res-
trictions, d’une manière ou d’une autre, ne va pas réussir à éviter une chute. La commande prédictive
est capable de considérer les contraintes sur l’état et le contrôle de manière explicite, ce qui la rend
particulièrement appropriée pour le contrôle des mouvements des robots marcheurs.

Nous commençons par dévoiler la structure spécifique de ces contraintes, démontrant notamment
l’importance des appuis au sol. Nous développons ensuite une condition suffisante pour l’évitement
d’une chute et nous proposerons une loi de commande prédictive qui y réponde. Cette formulation
nous sert ensuite pour la conception des contrôleurs pratiques, capables d’un contrôle plus efficace
et plus robuste de la marche humanoïde.
Mots clés : Robots Marcheurs Humanoïdes, Commande Prédictive, Masse Ponctuelle, Orteils,
Génération des Trajectoires, Stabilité

Model Predictive Control of a humanoid robot

Abstract: The range of motions that humanoid robots are able to realize is strongly limited by
inherent dynamical constraints so that any control law that does not consider these limitations, in one
way or another, will fail to avoid falling. The Model Predictive Control (MPC) technique is capable of
handling constraints on the state and the control explicitly, which makes it highly apt for the control of
walking robots.

We begin by unveiling the specific structure of these constraints, stressing especially the impor-
tance of the supports on the ground. We give thereupon a sufficient condition for keeping balance
and formulate an MPC law that complies with it. This formulation serves us then for the design of
practicable controllers capable of more efficient and more robust control of the humanoid walk.
Keywords: Humanoid Walking Robots, Model Predictive Control, Point Mass, Toes, Trajectory Gen-
eration, Stability
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