
HAL Id: pastel-01061470
https://pastel.hal.science/pastel-01061470

Submitted on 6 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transient Behavior of Distributed Algorithms and
Digital Circuit Models

Thomas Nowak

To cite this version:
Thomas Nowak. Transient Behavior of Distributed Algorithms and Digital Circuit Models. Dis-
tributed, Parallel, and Cluster Computing [cs.DC]. Ecole Polytechnique X, 2014. English. �NNT : �.
�pastel-01061470�

https://pastel.hal.science/pastel-01061470
https://hal.archives-ouvertes.fr


Transient Behavior of Distributed Algorithms
and Digital Circuit Models
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Thesis Summary

The overall theme of the thesis is the transient behavior of certain distributed systems. The
results can be grouped into three different categories: Transients of max-plus matrices and
linear systems, convergence of asymptotic consensus systems, and glitch modeling in digital
circuits.

For max-plus algebra, the results are upper bounds on the transient (coupling time) of
max-plus matrices and systems. They strictly improve all existing transience bounds. An
account of the impact of these bounds in applications is given. The proofs mainly consist of
walk reduction and completion procedures. For critical indices, sharper bounds are possible.
In fact, they turn out to be independent of the specific weights, and to only depend on the
structure of the matrix’s digraph and its critical digraph. They are also strict generalizations of
the Boolean transience bounds in non-weighted digraphs by the likes of Wielandt or Dulmage
and Mendelsohn.

For asymptotic consensus, i.e., a set of agents possessing a real value each and repeatedly
updating it by forming weighted averages of its neighbors’ values, the thesis strengthens
certain upper bounds on the rate of convergence and shows new convergence results for the
case of non self-confidence, i.e., agents possibly disregarding their own value. Asymptotic
consensus can be described by a non time-homogeneous linear system in classical algebra.
The results here are typically in completely dynamic networks. The thesis also presents a
worst-case example that shows that exponentially large convergence time is possible even in
static networks; meaning that the worst case convergence time in large classes of dynamic
networks is actually achieved with a completely static one.

The last part of the thesis is about glitch propagation in digital circuits. More specifically,
it is about discrete-value continuous-time models for digital circuits. These models are used
in hardware design tool chains because they are much faster than numerically solving the
differential equations for timing simulations. However, as is shown in the thesis, none of the
existing discrete-value models can correctly predict the occurrence of glitches (short pulses) in
the output signal of circuits. Moreover, the thesis proposes a new discrete-value model and
proves analytically that it does not share the same characteristics with the existing models
that prevented them to correctly predict glitches.
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Chapter 1

Introduction

The evolution of a distributed system is determined by the algorithm that the processes run
and the environment they are in. The environment essentially governs the order in which the
computing steps and communications take place. Oftentimes, this order is not known to the
algorithm designer a priori, but certain properties may be known to hold. An example where
the order is completely known a priori is the synchronous message passing model without
failures: All processes take their steps simultaneously at all integral times 0, 1, 2, . . . and all
message delays are equal and strictly less than 1, say 1/2. Here, the algorithm designer can
be sure that every message that is sent by a process at time t is received by all other processes
at their next computing step at time t + 1. If the designer knows that the algorithm will run
in such an environment, then their control over the behavior of the final system is high. In a
variant of this model, one that allows link failures, the designer does not have this complete
a priori knowledge, and hence their control over the system’s behavior is reduced. It was
shown that a particular variant of the synchronous message passing with link failures, the
Heard-Of model [27], captures the computational power of a wide range of message passing
models, including completely asynchronous models with crash faults.

In this thesis, we do not study distributed algorithm design. Rather, we fix particularly
simple algorithms and study them in different environments. This study is first and fore-
most one of time complexity and timing constraints. We unite both under the term transient
behavior. With a terminating algorithm, the system comes to a halt after the termination time.
Considering its behavior in an unbounded time horizon, the actual execution of the algorithm
appears as an initial, transient, time interval. Not all distributed algorithms terminate, nor are
they designed to terminate: Reactive systems provide an ongoing service, such as clock syn-
chronization or group membership. Their long-term behavior should not be trivial, but a
certain regularity is often observed and desirable. Of course, such a regularity depends on
the environment satisfying certain regularity properties itself. However, even in a completely
regular and predictable environment, the algorithm may need some initial, transient, set-up
time before the regular behavior can ensue.

A particular and simple algorithm is the MaxFlood algorithm, in which every process has
an initial numeric value and communicates its value to all its neighbors, updating its own
value to the maximum of the received values. The algorithm is known to solve the terminat-
ing consensus problem [63] in a large variety of environments. The terminating consensus
problem requires all processes to agree on a single value, to locally decide on this value, and
to halt afterwards. To ensure a non-trivial behavior, the agreed value has to be one of the pro-
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2 CHAPTER 1. INTRODUCTION

cesses’ initial values. In a variant of the terminating consensus problem, the processes need to
locally decide on values that all are in an ε-neighborhood of each other and that are all in the
convex hull of the set of initial values. This is known as the ε-agreement problem. It is solvable
in a larger set of environments than terminating consensus. Both problems require a termi-
nating algorithm. A non-terminating variant of ε-agreement is asymptotic consensus. It only
requires that the processes’ values converge to a common value. Again, this common value
is required to be in the convex hull of the set of initial values. Evidently, a time-invariant
environment in which ε-agreement is solvable for every ε > 0 allows to solve asymptotic
consensus. On the other hand, one can solve ε-agreement by modifying an algorithm for
asymptotic consensus if an upper bound on the speed of convergence is available.

There is a very simple algorithm for asymptotic consensus that works in a large class of
environments: In every computation step of a process, it updates its value to some average
of all values it has received, and then sends out its new value. This simple algorithm has two
remarkable properties: Firstly, it is very simple and yet manages to solve asymptotic consen-
sus in a surprisingly large number of different environments. Secondly, it is an algorithm that
can be observed in nature. More specifically, it serves as a widely accepted model in biology,
physics, and sociology to explain various phenomena such as bird flocking, synchronization
of coupled oscillators, and opinion spreading. It thus stands to reason to expect the algo-
rithm to have a certain robustness against adverse environments. Of course, one can think
of using it to attain approximate agreement in man-made, engineered, systems. And indeed,
it is actually used, for example in sensor fusion. For engineered systems, the viewpoint is
not one of observing and explaining a given system, but of analyzing it for prediction of its
future behavior or for assessing the need to improve the system. The speed of convergence
in the context of asymptotic consensus is a measure for the stabilization time, or the transient
phase, of the system. Obviously, the sharper the analysis of the system and its performance,
the tighter it can be integrated into the timing constraints of a larger system, and hence the
larger the potential performance of the larger system.

The first part of this thesis is therefore devoted to the analysis of the transient behavior of
simple classes of distributed algorithms. By simplicity we mean linearity, i.e., systems whose
behavior can be described by a linear system. The simple algorithm for asymptotic consensus
that we discussed is an instance of a linear distributed algorithm because the update rules for
the local values are averages, which are linear functions of the values of the other processes.
Another notion of linearity is that of max-plus linearity. It means linearity when replacing the
addition by the maximum operation and the multiplication by ordinary addition. It encom-
passes a large number of systems with a time synchronization primitive, as well as the above
mentioned MaxFlood algorithm for terminating consensus.

In the second part of the thesis, we look at transient behavior and stabilization times in
a domain in which they are of even more direct significance for performance of computing
systems, including distributed systems, namely digital circuits. The ability to bound the stabi-
lization time of signals in digital circuits is intimately tied to the ability to run the circuit at a
higher clock frequency. Failure to predict the stabilization time correctly can lead to glitches
which can lead the circuit into a corrupted or even metastable state. Figure 1.1 depicts such a
glitch. The occurrence of glitches becomes more common and more critical with higher clock
frequencies and lower voltage swings. Glitches are even more critical in clockless and asyn-
chronous circuits. Of course, there are elaborate and very exact physical models for analyz-
ing and simulating digital circuits. They rely on differential equations and can be numerically
solved with the help of the widely used Spice simulator. The drawback of these models is that
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Figure 1.1: A glitch (short pulse) in a digital signal

the time needed to simulate the execution of a circuit can be prohibitively large. Therefore, a
number of value discrete event-driven models were developed for the timing analysis of dig-
ital circuits. Naturally, they are less accurate than the differential equation models, but their
execution time can be much lower. They decompose the circuit into a set of Boolean gates
and a set of interconnecting channels. An easy timing model, which is nonetheless widely
use, especially in VHDL or Verilog simulators, is to assign every channel a constant delay
with which it propagates incoming transitions. More complex channel models include the
inertial delay, which propagates two (opposing) transitions only if their time distance exceeds
a certain threshold. With these channel delays, it is easy to rule out the occurrence of short
pulses. However, in physical circuits, short pulses do appear and a faithful model for digital
circuits should correctly predict them, and not rule them out by design.

1.1 Structure of the Thesis and Contribution

The first part of the thesis is devoted to linear distributed algorithms. We first treat max-plus
linearity and then linearity in the classical sense. Certain graph-theoretic techniques transfer
from the max-plus case to the classical case.

In Chapter 2, we give an introduction to max-plus algebra, its applications, and the tran-
sient behavior of such systems. We also survey the state of the art for assessing the length
of the transient phase. In Chapter 3, we start to go beyond the current state of the art when
giving direct generalizations of almost all transience bounds known for Boolean matrices, or
equivalently digraphs, to the general max-plus setting. This corresponds to the passage from
unweighted to weighted digraphs. Although certain transience bounds in max-plus algebra
are already known, none of them had the property that they reduce to classical bounds when
restricting them to Boolean matrices. We then go on to use a different approach whose core
are walk reductions via cycle removal to develop a general proof strategy for proving max-
plus transience bounds in Chapter 4. With this strategy, we are able to improve all currently
known transience bounds in max-plus algebra.

We present the case of linearity in classical algebra in form of a linear asymptotic con-
sensus algorithm in Chapter 5. We discuss the issues of hypothesis under which the system
reaches asymptotic consensus, and the speed of this convergence. It includes a detailed ac-
count of the current state of the art. We also present novel results when studying the rate
of convergence in systems with a constant system matrix. This corresponds to bounding the
spectral gap of the matrix. While certain bounds are known for reversible matrices, we ex-
tend the analysis to non-reversible matrices by considering their singular values. Another
new contribution in this chapter is the extension of the results from constant matrices to time-
dependent matrices whose Perron vector, i.e., their stationary distribution when considered
as a Markov chain, remains constant. We also give an example of a constant matrix whose rate
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of convergence is exponentially small and hence in the same order of magnitude than that of
a large class of time-dependent matrices. This shows that the seemingly easier case of a con-
stant matrix is already the worst case in terms of rate of convergence in this class. We then
deal with convergence of asymptotic consensus with more general time-dependent matrices.
It starts with a discussion of an appropriate tool for proving this convergence, using a coef-
ficient of ergodicity. Our contribution in this chapter is firstly to explicitly bound the rate of
convergence in many cases, and secondly to extend the known results to models where agents
do not necessarily have self-confidence. We do this by introducing the notion of an aperiodic
core of a time-dependent matrix. One application of this notion are the convergence proofs in
certain non-synchronous systems.

The second part of the thesis deals with glitch propagation in digital circuit models. We
show that none of the existing binary circuit models faithfully captures glitch propagation,
and we propose an alternative model not sharing the same deficiency.

In Chapter 6, we introduce the problem of glitch propagation in digital circuits. After
giving the state of the art, we then go on to define what we think is the essence of glitch
propagation, namely the Short Pulse Filtration (SPF) problem. After that, we prove the un-
solvability of bounded SPF and the solvability of unbounded SPF in physical circuits using
a well-accepted differential equation model. In Chapter 7, we present a binary circuit that
encompasses all existing binary models to date. They differ in the way channels propagate
incoming transitions. In this framework, we also define a new class of models, the involu-
tion channel models, and a specific instance based on a first-order model of a physical model,
called the exp-channel model. Chapters 8 and 9 prove the insufficiency of the existing models
by showing that they either fall into a class where not even unbounded SPF is solvable or
into one where even bounded is solvable. We also prove that our newly defined involution
channels, and the exp-channels in particular, do not have the same property by showing that
unbounded SPF is solvable while bounded SPF is not.

Chapter 10 gives a short summary of the results of the thesis and discusses their conse-
quences. It also includes an outlook on possible future work and perspectives.
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Chapter 2

Max-Plus Linear Algorithms

2.1 Introduction

The behavior of certain distributed systems can be described by a sequence of n-dimensional
vectors x(t) in Rn that satisfy a recurrence relation of the form

∀t ≥ 1 ∀i ∈ [n] : xi(t) = max
j∈Ni

(

xj(t − 1) + Ai,j

)

(2.1)

where the Ai,j are real numbers, and the Ni are subsets of [n] = {1, 2, . . . , n}. For exam-

ple, xi(t) may represent the time of the tth occurrence of a certain event i and Ai,j the required

time lag between the (t − 1)th occurrence of j and the tth occurrence of i. Notable examples
are transportation and automated manufacturing systems [49, 32, 39], network synchroniz-
ers [65, 41], and cyclic scheduling [52]. Charron-Bost et al. [25, 26] have shown that it also
encompasses the behavior of an important class of distributed algorithms, namely link rever-
sal algorithms [47], which can be used to solve a variety of problems [90] like routing [47] or
resource allocation [23].

If one allows the Ai,j to be −∞, then we can choose Ni = [n] for all i ∈ [n] in (2.1). Hence
the collection of the Ai,j can be seen as a matrix in R ∪ {−∞}. This translates into

∀t ≥ 1 ∀i ∈ [n] : xi(t) = max
1≤j≤n

(

xj(t − 1) + Ai,j

)

(2.2)

as the governing recurrence for x(t).

Recurrences of the form (2.1) are linear in the max-plus algebra (e.g., [56]). The fundamental
theorem in max-plus linear algebra—an analog of the Perron-Frobenius theorem in classical
algebra—states that the sequence of powers of an irreducible matrix A becomes periodic after
a finite index called the transient of the matrix. A matrix is irreducible if its corresponding
digraph is strongly connected. As an immediate corollary, any max-plus linear system with
an irreducible matrix is periodic from some index transient of the system, which clearly is at
most equal to the transient of the system’s matrix.

The exact sense in which periodicity manifests itself for linear systems is that there is some
transient T, a period p, and a real number α such that

∀t ≥ T : ∀i ∈ [n] : xi(t + p) = xi(t) + α , (2.3)

7
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i.e., after the transient, during one period, every vector entry changes by a common additive
constant. Setting ̺ = α/p, we can rewrite (2.3) as

∀t ≥ T : ∀i ∈ [n] : xi(t + p) = xi(t) + p · ̺ . (2.4)

This representation justifies to dub this form of periodicity as having a linear defect with ratio ̺.
Clearly, for a given system x(t) periodic in the sense of (2.4), the ratio ̺ is a fundamental
performance parameter. If x(t) satisfies recurrence (2.2), then its ratio can be determined with
the digraph defined by matrix A: On the set of nodes [n], it is defined as containing an edge
(i, j) if and only if Ai,j 6= −∞, i.e., Ai,j ∈ R. In view of the event system interpretation, it

contains an edge from i to j if the time of the (t + 1)th occurrence of event i may depend on
the time of the tth occurrence of event j. We denote this digraph by G(A). Assigning every
edge (i, j) in G(A) the weight Ai,j, the ratio of system x(t) is equal to the largest mean weight
of cycles in the digraph G(A). In particular, it is independent of the initial vector x(0). We
will further explore and exploit the digraph representation.

The sense in which (2.2) is linear is in the max-plus algebra. It is adapted to describe
synchronizing discrete event systems. The domain is the one-side extended real line Rmax =
R ∪ {−∞}. Its additive operation is a ⊕ b = max{a, b} and its multiplicative operation is
a ⊗ b = a + b. With these two operations, Rmax is a commutative semi-ring. Its zero element
is −∞ and its unity is 0. Every nonzero element has a multiplicative inverse, but the only
element having an additive inverse is the zero element. Mimicking the definition of the matrix

product in classical algebra, the product of two max-plus matrices A ∈ Rm×n
max and B ∈ R

n×p
max

is the m × p max-plus matrix defined by

(A ⊗ B)i,j =
n

⊕

k=1

Ai,k ⊗ Bk,j = max
1≤k≤n

(

Ai,k + Bk,j

)

. (2.5)

A special case is the application of a m × n max-plus matrix A to a vector v ∈ Rn
max defined as

(A ⊗ v)i = max
1≤j≤n

(

Ai,j + vj

)

. (2.6)

Hence the sequence x(t) defined by (2.2) fulfills the max-plus linear recurrence x(t+ 1) = A⊗
x(t). Using the associativity of the max-plus matrix product, we hence have x(t) = A⊗t ⊗ x(0)
where A⊗t denotes the tth max-plus power of matrix A. The entries of the matrix power A⊗t

can be characterized in terms of its digraph G(A). The (i, j)th entry of A⊗t is equal to the
maximum weight of a walk of length t from node i to j in the digraph. This interpretation
gives the intuition that, if A is irreducible, i.e., G(A) is strongly connected, then every entry
of the matrix powers A⊗t are eventually periodic with linear defect, and that the ratio is
equal to the maximum cycle mean in G(A): As t grows, the largest part of walks of length t
is composed of cycles, and the maximum mean cycles have the best weight-to-length ratio.
These maximum mean cycles are therefore called critical cycles and they eventually govern
the maximum weight walks of length t. Indeed, it turns out that the sequence of powers of
every irreducible max-plus matrix A is eventually periodic with linear defect, i.e.,

∀t ≥ T : A⊗t+p = A⊗t + p · λ (2.7)

for some transient T, some period p, λ being the maximum mean weight of cycles in G(A),
and the addition in (2.7) is understood to be component-wise. Hence, in particular, every
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max-plus linear system with system matrix A is eventually periodic with linear defect λ and
transient at most T.

For all the above mentioned applications, the study of the transient plays a key role in
characterizing the system performance: For example, in the case of link reversal routing, the
system transient corresponds to the time complexity of the routing algorithm. Besides that,
understanding matrix and system transients is of interest on its own for the theory of max-
plus algebra.

2.2 Applications

In this section we present how performance analysis of various distributed systems relate to
studying the transient of the max-plus linear systems that model them.

2.2.1 Synchronizers

One obvious application of max-plus linear systems in distributed computing are network
synchronizers. Their task is to simulate a completely synchronous round structure on top of
a not completely synchronous system. We present a particular instance of a classical synchro-
nizer in a particular type of distributed system, and explain how it is modeled in max-plus
algebra.

Consider a system of n processes with identifiers 1, 2, . . . , n, interconnected by a message-
passing system whose network digraph is strongly connected. We assume that all processes
take their steps synchronously at all integral times t = 0, 1, 2, 3, . . . , but that there are non-
uniform message delays in the system. Assume further that the message delay from process i
to process j is constant and equal to δ(i, j). They run the following algorithm: Every process
has a local variable Ri and a local array with a value Li[j] for every other process j. Every
variable is initialized to 0. At every time step, if all values Li[j] in the array are equal, then the
process increments Ri and sends a message including the new value of Ri to all its neighbors.
The use of this algorithm is that Ri is a global round number that advances only if the process
has received the message of round Ri − 1 from all its neighbors. Hence, one can piggy-back
to the messages the payload of a simulated algorithm designed for completely synchronized
rounds.

The behavior of this synchronization algorithm can be modeled by a max-plus linear sys-
tem with initial vector x(0) whose all entries are 0 and system matrix

Ai,j =

{

δ(j, i) if (j, i) is a link in the network

−∞ else .
(2.8)

Then, process i starts round t, i.e., sets Ri to t for the first time, at time xi(t).
Even and Rajsbaum [41] studied the transience of such a network synchronizer in a sys-

tem with constant integer communication delays. They actually considered a variant of the
classical α-synchronizer [6] in a centrally clocked distributed system of n processes that com-
municate by message passing over a strongly connected network digraph G. Each link has
constant transmission delay, specified in terms of central clock ticks. Processes execute the α-
synchronizer after an initial boot-up phase: Even and Rajsbaum showed that the synchronizer
becomes periodic by time O(∆n3), where ∆ is the maximum delay.
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2.2.2 Cyclic Scheduling

Cohen et al. [30] observed that, in cyclic scheduling, the class of earliest schedules can be
described in terms of a max-plus linear systems.

If a finite set T of tasks (each of which calculates a certain function) is to be scheduled
repeatedly on different processes, precedence restrictions are implied by the data flow. These
restrictions are of the form that task i may start its number n execution only after task j has
finished its number n− h execution. A schedule σ maps a pair (i, n) ∈ T ×N0 to a nonnegative
integer σ(i, t), the tth execution of task i is started. Formally, if Pi denotes the processing time
of task i, then a restriction R between two tasks i and j is an inequality of the form

∀t ≥ hR : σ(i, t) ≥ σ(j, t − hR) + Pj (2.9)

where hR is called the height of restriction R and Pj is its weight.
A uniform graph [52] describes a set of tasks and restrictions. Formally, it is a quadruple

Gu = (T , E, p, h) such that (T , E) is a directed (multi-)graph, and p : E → N∗
0 and h : E → N0

are two functions, the weight and height function, respectively. For a walk W in Gu, let p(W)
be the sum of the weights of its edges and h(W) the sum of the heights of its edges. An
edge from i to j corresponds to a restriction R between i and j of the form (2.9). All incoming
edges of a node j in T have the same weight, namely Pj. An example of a uniform graph is
Figure 2.1.

Call Gu well-formed if it is strongly connected and does not contain a nonempty closed
walk of height 0. Call a schedule σ an earliest schedule if it satisfies all restrictions specified
by Gu and it is minimal with respect to the point-wise partial order on schedules. Denote
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the maximum height in Gu by ĥ. Cohen et al. [30] showed that the earliest schedule σ for
well-formed Gu is unique and fulfills

σ(i, t) = (A⊗t ⊗ v)i (2.10)

for all i ∈ T and t ≥ 0, where v is a suitably chosen (ĥ · |T |)-dimensional max-plus vector
and A a suitably chosen (ĥ · |T |)× (ĥ · |T |) max-plus matrix. In case heights in Gu are binary,
i.e., either 0 or 1, as in our example in Figure 2.2, A and v are obtained as follows: For all
i, j ∈ T , Ai,j is the maximum weight of nonempty walks W from i to j in Gu, where all of W’s
edges have height 0, except for the last edge, which has height 1. In case no such walk exists,
Ai,j = −∞. For all i ∈ T , vi is the maximum weight of walks W from i in Gu, where all of W’s
edges have height 0. As an example the digraph G(A) for the uniform graph in Figure 2.1 is
depicted in Figure 2.2. For this example we obtain the initial vector v = (0, 1, 4, 6, 11, 0, 3).

2.2.3 Full Reversal Routing and Scheduling

Link reversal is a versatile algorithm design paradigm, which was, in particular, successfully
applied to routing [47] and scheduling [8]. Charron-Bost et al. [26] showed that the analysis
of a general class of link reversal algorithms can be reduced to the analysis of Full Reversal, a
particularly simple algorithm on digraphs.

The Full Reversal algorithm comprises only a single rule: Each sink reverses all its (in-
coming) edges. Given a weakly connected initial digraph G0 without anti-parallel edges, we
consider a greedy execution of Full Reversal as a sequence (Gt)t≥0 of digraphs, where Gt+1

is obtained from Gt by reversing the edges of all sinks in Gt. As no two sinks in Gt can be
adjacent, Gt+1 is well-defined. For each t ≥ 0 we define the work vector W(t) by setting Wi(t)
to the number of reversals of node i until iteration t, i.e., the number of times node i is a sink
in the execution prefix G0, . . . , Gt−1.

Charron-Bost et al. [25] have shown that the sequence of work vectors can be described as
a min-plus linear dynamical system. Min-plus algebra is a variant of max-plus algebra, using
min instead of max. Denoting by ⊗′ the matrix multiplication in min-plus algebra, Charron-
Bost et al. established that W(0) = 0 and W(t + 1) = A ⊗′ W(t), where Ai,j = 1 and Aj,i = 0
if (i, j) is an edge of the initial digraph G0; otherwise Ai,j = +∞. Observe that the latter
min-plus recurrence is equivalent to −W(t + 1) = (−A)⊗ (−W(t)) where −A is a max-plus
matrix, i.e., has entries in R ∪ {−∞}.

In the routing case, the initial digraph G0 contains a nonempty set of destination nodes,
which are characterized by having a self-loop. The initial digraph without these self-loops
is required to be weakly connected and acyclic [25, 47]. It was shown that for such initial
digraphs, the execution terminates (eventually all Gt are equal), and after termination, the di-
graph is destination-oriented, i.e., every node has a walk to some destination node. The set of
critical nodes is equal to the set of destination nodes and each strongly connected component
of the subgraph defined by the critical cycles consists of a single node.

When using the Full Reversal algorithm for scheduling, the undirected support of the
weakly connected initial digraph G0 is interpreted as a conflict digraph: nodes model pro-
cesses and an edge between two processes signifies the existence of a shared resource whose
access is mutually exclusive. The direction of an edge signifies which process is allowed to
use the resource next. A process waits until it is allowed to use all its resources—that is, it
waits until it is a sink—and then performs a step, that is, reverses all edges to release its re-
sources. To guarantee liveness, the initial digraph G0 is required to be acyclic: Cycles remain
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Figure 2.3: A simple train network

constant during every execution of Full Reversal. If there are cycles in the initial digraph, the
execution halts it a state in which every node has a path to some node on an (initial) cycle. On
the other hand, no new cycles are formed during a step of the Full Reversal algorithm. Hence
if the initial digraph is acyclic, then every digraph in every execution is acyclic.

2.2.4 Timed Petri Nets and Transportation Systems

Max-plus systems exactly correspond to a subclass of time Petri nets, called timed event
graphs, timed marked graphs, or timed decision-free Petri nets. Petri nets are bipartitioned
into two types of nodes: places and transitions. Event graphs are those Petri nets whose places
have exactly one incoming and one outgoing transition. The qualifies “timed” refers to the
fact that every place has a corresponding holding time for tokens that determines how long a
token has to reside in the place before it can be consumed by the subsequent transition. One
can identify transitions with nodes and places with edges to get an edge-weighted digraph,
which corresponds to a max-plus matrix A. If all places initially have one token and there is at
most one place between all pairs of transitions, then x(t + 1) = A ⊗ x(t) where xi(t) denotes
the time that transition i fires for the tth time. We assume that the initial firing times x(0)
are given. Hence we can directly apply our transience bounds to strongly connected timed
event graphs that initially have one token at every place. If the number of tokens is different,
then one nonetheless identify the Petri net with a max-plus linear system, but the dimension
will be higher and it is not necessarily irreducible, even if the original Petri net is strongly
connected.

A particular instance of timed event graphs that has attracted a lot of attention are train
networks [56, Chapter 8]. The Petri net description includes the travel time between stops,
the desired connecting train relations, as well as the time required to change trains. It has one
transition for every outgoing track at every station. The places and edges are defined by the
line’s trajectory and the connecting train relation. Consider the simple example network in
Figure 2.3. It includes four stations, named M, N, O, and P. It has two train lines: Line A going
from M to N and back; and Line B going from N to P via O and back. Each of the railway
segments MN, NO, and OP possesses a certain travel time that the trains need to cover it;
namely 25, 10, and 25 minutes, respectively. If one assumes that lines A and B should wait
for each other at station N and that initially there is one train leaving every station in every
possible direction, then the Petri net yields an irreducible max-plus matrix describing the
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necessary travel and changeover times in the train system. That is, the earliest times that the
trains can leave is described by a max-plus linear system x(t) = A⊗t ⊗ x(0) with irreducible
system matrix A.

However, trains do not always depart at the earliest possible time because they need to
satisfy a pre-assigned schedule. Schedules are commonly purely periodic, i.e., of the form
yi(t) = yi(0) + t · ∆ where ∆ is the schedule’s temporal period. The actual departure times in
a system respecting the schedule are then given by z(t) = max{x(t), y(t)}.

One interesting performance parameter is the robustness of the system against delays.
This can be modeled by the fact that the initial vector x(0) contains the incurred delays and
one seeks to know the smallest t at which the system will be on schedule again, i.e., z(t) = y(t)
or equivalently y(t) ≥ x(t). This smallest t is called the recovery time. Clearly, the system can
only recover if λ = λ(A) < ∆, i.e., if the schedule leaves some headroom. In this case,
however, one can bound the recovery time in terms of the system’s transient T by

T · (Amax − λ) + Amax · (γc − 1) + maxi xi(0)

∆ − λ
(2.11)

where Amax is the maximum entry of A and γc is the cyclicity of the critical digraph of A. Note
that the bounds on T can become prohibitively big in case of very large-scale train networks.
In these cases, brute-force simulation can be a viable alternative.

2.2.5 Walks in Digraphs

Powers of a max-plus matrices also correspond to maximum weight walks in edge-weighted
digraphs between two fixed nodes and of fixed length. In the particular case of non-weighted
digraphs, they contain the information whether there exists a walk between two given nodes
with a given length.

The periodicity of walk lengths in digraphs has been established and studied extensively,
in particular for applications such as automata theory [74], but also for their general graph-
theoretic interest [18]. The case of primitive matrices has attracted particular interest. Primi-
tive digraphs are those that are connected and whose greatest common divisor of their cycle
lengths is 1. Figure 2.4 shows an example of a primitive digraph; it would not be primitive
without the edge from node 3 to node 2. An alternative definition for primitive digraphs is
that some power of their adjacency matrix is strictly positive. In more concrete terms, this
characterization reads:



14 CHAPTER 2. MAX-PLUS LINEAR ALGORITHMS

Theorem 2.1 ([18, Theorem 3.4.4]). A digraph G = (V, E) is primitive if and only if there exists a
nonnegative integer T such that

∀t ≥ T ∀i, j ∈ V ∃W : W is a walk from i to j with ℓ (W) = t . (2.12)

Given a digraph G = (V, E), denote by Gt the digraph with node set V containing an
edge (i, j) if and only if there is a walk from i to j of length t in G. In particular, G0’s edges
are the self-loops at all nodes. Condition (2.12) in Theorem 2.1 is equivalent to the fact that
there exists some T such that GT, and therefore all Gt with t ≥ T, is the complete digraph.
The smallest T with this property is commonly called the exponent of G. The exponent of the
digraph in Figure 2.4 is equal to 5. Hence, if G is primitive, then the sequence of digraphs
G0, G1 = G, G2, . . . is eventually constant, and equal to the complete digraph, after its expo-
nent. Another way of saying this is that the sequence is eventually periodic with period 1 and
transient T equal to its exponent, i.e., Gt = Gt+1 for all t ≥ T. In fact, even for non-primitive
digraphs, this sequence is eventually periodic. However, the period is not necessarily 1, nor
is it eventually equal to the complete digraph if it is.

Theorem 2.2 (Schwarz [81, Theorem 4.3]). Let G be a digraph. Then the sequence of digraphs Gt

is eventually periodic.

We will call the transient of the sequence of digraphs G0, G1, G2, . . . the index of convergence
and denote it by ind(G). It is exactly equal to the transient of the sequence of matrix pow-
ers A⊗t where matrix A is defined by setting Ai,j = 0 if (i, j) is an edge of G and Ai,j = −∞

else. Matrices whose entries are in the two-element set {−∞, 0} are called Boolean matri-
ces. Every product, and hence in particular every power, of Boolean matrices is Boolean.
The study of transients of max-plus matrices, i.e., the study of maximum weight walks in
weighted digraphs includes the study of Boolean matrices, i.e., unweighted digraphs, when
setting all edge weights to 0.

2.3 State of the Art

2.3.1 Definitions and Preliminaries

A digraph is a pair G = (V, E) of a nonempty set V of nodes and a set E ⊆ V × V of edges. A
walk W in G is a finite sequence of nodes i0, i1, . . . , iℓ such that (ir−1, ir) ∈ E for all 1 ≤ r ≤ ℓ.
We write ℓ(W) = ℓ for its length. It is empty if ℓ = 0 and closed if iℓ = i0. A walk in the
digraph is a path if every node occurs only once. A closed walk is a cycle if it is nonempty and
only the start and end node occurs twice.

The length of the shortest cycle in a digraph G is called the girth of G. If a digraph is
strongly connected, the greatest common divisor of its cycle lengths is called its cyclicity. The
cyclicity of a (possibly not strongly connected) digraph is the least common multiple of the
cyclicities of its strongly connected components. The following two lemmas explicit the role
and definition of the cyclicity of strongly connected digraphs.

Lemma 2.3. Let G be a strongly connected digraph with cyclicity γ. Then the relation on the set of
nodes of G defined by

i ∼ j ⇐⇒ there is a walk W from i to j with ℓ (W) ≡ 0 (mod γ) (2.13)

is an equivalence relation. It has exactly γ equivalence classes.
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Lemma 2.4. Let G be a strongly connected digraph with cyclicity γ. Then, for all nodes i and j and
all walks W1, W2 from i to j, we have the congruence of lengths ℓ (W1) ≡ ℓ (W2) (mod γ).

A particular application of this notion is the existence of closed walks whose length are an
arbitrary, sufficiently large, multiple of the cyclicity. Recall that ind(G) denotes the index of
convergence of G.

Lemma 2.5. Let G be a strongly connected digraph with cyclicity γ. Then for all nodes i and all
multiples t of γ with t ≥ ind(G), there exists a closed walk at i of length t.

The cyclicity has the property that it is an exponent for which a strongly connected di-
graph is completely reducible, i.e., there are no edges between distinct strongly connected com-
ponents. In a completely reducible digraph, the strongly and weakly connected components
coincide.

For a digraph G and a nonnegative integer m, denote by Gm the mth Boolean power of G,
i.e., the digraph that contains an edge (i, j) if and only if there exists a walk from i to j of
length m in G.

Theorem 2.6 ([18, Theorem 3.4.5]). Let G be a strongly connected digraph with cyclicity γ = γ(G).
Then Gγ is completely reducible and its components have cyclicity 1.

To every n × n max-plus matrix A corresponds a digraph G(A) with node set V = [n] =
{1, 2, . . . , n} containing an edge (i, j) if and only if Ai,j 6= −∞. We refer to Ai,j as the weight
of edge (i, j). Matrix A is irreducible if G(A) is strongly connected. If W is a walk in G(A), we
define its weight A(W) as the sum of the weights of its edges. The entry A⊗t

i,j is the maximum

weight of walks from i to j of length t. We follow the convention that max ∅ = −∞. If v is
a max-plus column vector of size n, then the entry

(

A⊗t ⊗ v
)

i
is the maximum of the values

A(W) + vj where the maximum is formed over all nodes j and all walks W from i to j of
length t.

Denote by λ(A) the maximum mean weight A(Z)/ℓ(Z) of cycles in G(A). We call critical
every cycle with maximum mean weight. The sub-digraph of G(A) induced by edges on
critical cycles is called its critical digraph.

2.3.2 Eventually Periodic Sequences

Let p ≥ 1 and ̺ ∈ R. A sequence f : N0 → Rmax is eventually periodic with period p and ratio ̺

if there exists a T ∈ N0 such that

∀t ≥ T : f (t + p) = f (t) + p · ̺ . (2.14)



16 CHAPTER 2. MAX-PLUS LINEAR ALGORITHMS

Obviously, if q is a multiple of p, then f is also eventually periodic with period q and ratio ̺.
Hence there always exists a common period of two eventually periodic sequences.

If an eventually periodic sequence f is not eventually equal to −∞, then it has a unique
ratio ̺. Otherwise, f is eventually periodic with respect to all p and all ̺. In both cases, for
a given period, the set of T that satisfy (2.14) is independent of ̺. In fact it does not depend
on p either, as is stated in the next lemma. We call the minimal T ∈ N0 satisfying (2.14) the
transient of f .

Lemma 2.7. Let f : N0 → Rmax be eventually periodic and let ̺ ∈ R. Then the set of T ∈ N0 that
satisfy (2.14) is independent of p.

The notion of eventual periodicity naturally extends to matrices (and thus also vectors):
A sequence of matrices S(t) is eventually periodic with period p and ratio ̺ if each entry-wise
sequence Si,j(t) is eventually periodic with period p and ratio ̺. Its transient is the maximum
transient of the Si,j(t).

Cohen et al. [31] showed that the sequence of powers of an irreducible max-plus matrix,
and hence of all systems with irreducible matrix, are eventually periodic. Denote by γc(A)
the cyclicity of the critical digraph of G(A).

Theorem 2.8 (Cohen et al. [31]). The sequence of powers A⊗t of an irreducible square max-plus
matrix A is eventually periodic with ratio λ(A) and period γc(A).

Theorem 2.8 is based on the fact that maximum weight walk eventually include in the
majority critical cycles. To give an explicit upper bound on when they visit at least one critical
cycle, several authors defined what they considered to be the “second most significant” cycle
mean. This can be done in a number of ways, and it depends on their use which one is the
most appropriate. One possibility is to consider the second largest cycle mean λ2(A). Another
possibility is the largest cycle mean disjoint to all critical cycles, which we denote by λnc(A).
Hartmann and Arguelles [53] introduced a third parameter, λha(A), which is defined in terms
of the max-balancing [78] of G(A). We do not yet formally define all three parameters, but
give their relative ordering, also with respect to λ(A):

λ(A) > λ2(A) ≥ λnc(A) ≥ λha(A) (2.15)

We denote by ‖A‖ the difference between the greatest and smallest finite entry in A.

2.3.3 Boolean Matrices

The first bound on the index of convergence of digraphs was given by Wielandt [91] for the
case of primitive digraphs, i.e., digraphs whose cyclicity is equal to 1. It was proved for
general digraphs by Schwarz.

Theorem 2.9 (Schwarz [81, Theorem 4.3]). The transient of an n × n Boolean matrix is at most

Wi(n) =

{

(n − 1)2 + 1 if n ≥ 1

0 if n = 0 .
(2.16)

The bound of Wi(n) was refined independently by Dulmage and Mendelsohn [40] and by
Denardo [34] in terms of the digraph’s girth g. They arrived at the same bound, which is in
the order of O(g · n). This suggests that the lower the girth, the lower the transient.
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Theorem 2.10 (Dulmage and Mendelsohn [40]). The transient of an irreducible primitive n × n
Boolean matrix A is at most g · (n − 2) + n where g denotes the girth of G(A).

Schwarz [80] extended Theorem 2.9 to non-primitive irreducible matrices in a different
direction. He showed that the bound of (n− 1)2 + 1 remains true and that even a lower upper
bound holds, which in the order of O(n2/γ) where γ denotes the cyclicity. This suggests that
the higher the cyclicity, the lower the transient. For instance, Schwarz’s bound shows that the
transients of bi-partite graphs, for which γ is a multiple of 2, are at most n2/2 − 2n + 5.

Theorem 2.11 (Schwarz [80]). The transient of an irreducible n × n Boolean matrix A is at most
γ · Wi(⌊n/γ⌋) + (n mod γ) where γ is the cyclicity of G(A).

Because the girth of a strongly connected digraph is always greater or equal to the cyclic-
ity, the two results suggest a necessary trade-off between the two parameters for attaining a
small transient. For instance, the two parameters need to be equal for attaining the minimal
transient of 0.

Kim [59] showed an upper bound involving both the girth and the cyclicity.

Theorem 2.12 (Kim [59]). The transient of an irreducible n × n Boolean matrix A is at most g ·
(

⌊n/γ⌋ − 2
)

+ n where γ is the cyclicity and g the girth of G(A).

The factor rank of an m × n max-plus matrix A is the least number r = rk(A) for which
there exist vectors v1, v2, . . . , vr ∈ Rm

max and w1, w2, . . . , wr ∈ Rn
max such that

A =
r

⊕

α=1

vα ⊗ twα . (2.17)

It is also sometimes called the Boolean rank or the Schein rank. The factor rank of an n × n
max-plus matrix is at most n because one can choose wα to be the αth max-plus unit vector
and (vα)i = Ai,α.

Two bounds involving the factor rank were proved for primitive Boolean matrices:

Theorem 2.13 (Gregory-Kirkland-Pullman [50]). The transient of a primitive irreducible Boolean
matrix with factor rank r is at most Wi(r) + 1.

Theorem 2.14 (Kim [59]). The transient of a primitive irreducible Boolean matrix A with factor
rank r is at most g · (r − 2) + r where g is the girth of G(A).

2.3.4 Nachtigall Decomposition

A significant step in the direction of a transience bound for non-Boolean matrices was done
by Nachtigall [72]. While he did not prove a bound on the transient, he showed that the se-
quence of matrix powers can be written as a maximum of eventually periodic sequences with
bounded transients. Such a decomposition in the form of a maximum, by itself, does not yield
a bound on the transient of the original sequence; it does not even imply that it is eventually
periodic. As a matter of fact, Nachtigall shows the existence of such a decomposition not only
for irreducible matrices, but for general square max-plus matrices, for which the sequence of
powers is not necessarily eventually periodic.
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Theorem 2.15 (Nachtigall [72]). Let A be an n × n max-plus matrix. Then there exist eventually
periodic matrix sequences A1(t), A2(t), . . . , An(t) with transients at most 3n2 such that for all t ≥ 0:

A⊗t = A1(t)⊕ A2(t)⊕ · · · ⊕ An(t) (2.18)

Nachtigall proved Theorem 2.15 by recursively picking a cycle Z with maximum weight-
to-length ratio A(Z)/ℓ(Z) and by partitioning the sets of walks in G(A) into the sets of walks
that do and do not visit cycle Z. Walks that do not visit Z are walks in the sub-digraph
of G(A) that has all edges incident to Z removed. This sub-digraph is the digraph of the
matrix obtained from A by setting to −∞ all rows and columns corresponding to nodes in Z;
its effective size is strictly smaller than the size of A, which enables a recursive descent. If no
cycle exists in G(A) at all, then the transient of A is at most n since in this case, A⊗t

i,j = −∞ for

all i, j and all t ≥ n.

2.3.5 Bound by Hartmann and Arguelles

Hartmann and Arguelles [53] gave the first general transience bound for arbitrary irreducible
max-plus matrices. Their proof is purely graph-theoretic.

When analyzing their proof, one can extract a global proof strategy, variants of which are
also found in later proofs of transience bounds [84]. In order to prove that some number B
is an upper bound on the transient of the sequence A⊗t for an irreducible matrix A, do the
following:

1. Show that one can assume λ(A) = 0, i.e., the sequence A⊗t is eventually periodic with
ratio 0.

2. Fix two nodes i and j, and a congruence class C0 modulo some period p of the se-
quence A⊗t.

3. The assumption λ = 0 guarantees that the maximum maxk∈M A⊗t
i,j formed over an ar-

bitrary nonempty set M of nonnegative integers exists. We choose the set M to consist
of those elements of class C0 that are greater or equal to B. Since the maximum exists,
there exists a walk W from i to j with length in M that attains it. If B is indeed an upper
bound on the transient, the values A⊗t

i,j with t ∈ M will all be equal.

4. Show that, whenever the length of W is greater or equal to some “critical bound” Bc ≤ B,
then it necessarily shares a node with a critical cycle Z.

5. Show that one can reduce walk W by removing subcycles such that it is possible to
attain all lengths in M greater or equal to some “pumping bound” Bp ≤ B by adding
critical cycles. The assumption λ = 0 implies that all subcycles have weight at most 0
and critical cycles have weight equal to 0. Thus the weights of walks obtained in this
way cannot be lower than that of W; hence they are equal to that of W.

6. We then have shown, because the choice of C0 was arbitrary, that the transient of A⊗t
i,j is

at most B ≥ max{Bc, Bp}.

Hartmann and Arguelles used p = γc(A) in step (2). For step (5), they described a walk
reduction based on the following basic application of the pigeonhole principle:



2.3. STATE OF THE ART 19

Lemma 2.16. Let d be a positive integer. Every collection of at least d integers has a nonempty
subcollection whose sum is divisible by d.

They used this lemma to reduce walk W in step (5). After their reduction their walk
could be disconnected, but they showed that adding a copy of (critical) cycle Z reestablishes
connection [53, Theorem 4]:

Lemma 2.17 (Hartmann and Arguelles [53]). Let W be a walk that shares a node with some cycle Z
and let t be an integer such that t ≡ ℓ(W) (mod ℓ(Z)) and t ≥ n2 where n denotes the number
of nodes in the graph. Then there exists a walk W̃ obtained from W by removing cycles and possibly
adding copies of Z such that ℓ(W̃) = t.

To pump the walk length after the walk reduction, they used a result by Brauer [17] on the
Frobenius problem to combine critical cycles to attain a multiple of γc(A). The use of Brauer’s
theorem introduces a term that is necessarily quadratic in n to the transience bound. We want
to note at this point that this use of Brauer’s theorem can be avoided by considering a period
in step (2) different from the critical digraph’s cyclicity because of Lemma 2.7. Hartmann and
Arguelles actually prove Lemma 2.7 later in the paper [53, Lemma 11], but do not use it in the
proof of their transience bound.

The same strategy as described above can be adapted to show transience bounds for sys-
tems A⊗t ⊗ v. In the case that all entries of v are finite, it is possible to show a sharper bound
because the walks under consideration do not have both the start and the end node fixed, but
only the start node. This allows to circumvent the necessity of showing the existence of walks
of prescribed length between two fixed nodes (see Section 2.3.3).

Theorem 2.18 (Hartmann and Arguelles [53]). Let A be an irreducible n × n max-plus matrix.
Then the transient of the sequence of powers A⊗t is at most

max

{

2n2 ,
2n2‖A‖

λ(A)− λha(A)

}

. (2.19)

If, additionally, v is a column vector of size n with only finite entries, then the transient of the sys-
tem A⊗t ⊗ v is at most

max

{

2n2 ,
‖v‖+ n‖A‖

λ(A)− λha(A)

}

. (2.20)

Hartmann and Arguelles also proved a form of asymptotic tightness of their transience
bound for matrices. They gave, for every n of the form n = 3m − 1 and all positive reals λ

and λha with λ > λha, an irreducible n × n max-plus matrix A with λ(A) = λ and λha(A) =
λha (see [53, Figure 1]). Their example has the property that λha(A) = λnc(A) = λ2(A)
and ‖A‖ = λ. They showed by explicit calculation that A’s transient is at least 3 + m(m −
2)λ/(λ − λha).

We can generalize their example to arbitrary n by inserting additional nodes that do not
change the transient. This then shows that, even if one can prescribe all the other parameters
in the matrix bound of Theorem 2.18, it is asymptotically tight when n tends to infinity:

Theorem 2.19. Let Dn and Mn be two sequences of positive real numbers such that Dn ≤ Mn. Then
there exists a sequence of irreducible n × n max-plus matrices An such that λ(An)− λ2(An) = Dn,
‖An‖ = Mn, and the transient of the sequence of matrix powers A⊗t

n is

Ω

(

n2‖An‖
λ(An)− λ2(An)

)

. (2.21)
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Because λ2 = λnc = λha in Hartmann and Arguelles’ example, Theorem 2.19 also holds
with either λnc or λha replacing λ2.

2.3.6 A Bound for Primitive Matrices

A certain class of graph-theoretic arguments has been developed for the case that the matrix
is primitive, i.e., if its critical digraph has a cyclicity equal to 1. This definition is consistent
with the definition of primitivity for Boolean matrices (Section 2.3.3) because all cycles are
critical in the Boolean case. This class of arguments was used by both Akian et al. [1, Remark
7.14] and Bouillard and Gaujal [14]. The resulting bound is at most quadratic in the number
of nodes, and is in general incomparable with the bound of Hartmann and Arguelles.

Bouillard and Gaujal explained how to extend their result to the case of non-primitive
matrices: If A’s critical digraph has cyclicity γc, then A⊗γc is primitive. It is not necessarily
irreducible, but it is guaranteed to be completely reducible, i.e., permutation similar to a block-
wise diagonal matrix whose diagonal blocks are irreducible. Also, every irreducible block
contains at least one critical cycle, i.e., their eigenvalues are equal, which implies that the se-
quence of powers is eventually periodic. If T is the transient of the sequence A⊗kγc , then the
transient of A⊗k is at most Tγc.

Unfortunately, the cyclicity γc can be exponential in the size n of the matrix. This was
shown by Malka et al. [64, Theorem 4] who constructed matrices whose critical digraphs are
disjoint unions of cycles of prime lengths. Using the Prime Number Theorem, one sees that

it is possible to construct a critical digraph with cyclicity γc = eΩ(
√

n). Malka et al. improved
this observation by showing that even the minimal period can be in the same order:

Theorem 2.20 (Malka, Moran, and Zaks [64]). There exists a sequence of irreducible n × n max-
plus matrices An such that the minimal period of the sequence of matrix powers A⊗t

n is exp
(

Ω(
√

n)
)

.

2.3.7 When All Entries Are Finite

Soto y Koelemeijer [84, Theorem 3.5.12] established a transience bound in the case that all ma-
trix entries are finite, i.e., the corresponding digraph is the complete digraph. His approach
is similar to that of Hartmann and Arguelles, but the assumption of existence of all edges in
the corresponding digraph allows to construct shorter walks. Utilizing this fact, he arrived at
a bound that can be lower than that of Hartmann and Arguelles (first part of Theorem 2.18).
But, due to the restriction to all-finite matrices, it is incomparable with the bounds of Hart-
mann and Arguelles and Bouillard and Gaujal.

Theorem 2.21 (Soto y Koelemeijer [84]). Let A be an n× n max-plus matrix with only finite entries.
Then the transient of the sequence of powers A⊗t is at most

max

{

2n2 ,

⌈

2‖A‖
λ(A)− λ2(A)

⌉

+ n − 1

}

. (2.22)

2.4 Comparison of the Existing Boolean Bounds

We begin by comparing the existing bounds in the Boolean case. It is obvious that Schwarz’
bound (Theorem 2.11) is always less or equal to Wielandt’s bound (Theorem 2.9) and that
Kim’s bound (Theorem 2.12) is is always less or equal to Dulmage and Mendelsohn’s bound
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(Theorem 2.10). The following theorem shows that the bound of Kim in Theorem 2.12 is
tighter than the bounds of Wielandt, Schwarz, and Dulmage and Mendelsohn.

Theorem 2.22. Let A be an irreducible n × n Boolean matrix with cyclicity γ and girth g. Then

g ·
(

⌊n/γ⌋ − 2
)

+ n ≤











Wi(n)

γ · Wi
(

⌊n/γ⌋
)

+ (n mod γ)

g · (n − 2) + n .

(2.23)

Proof. The inequality g ·
(

⌊n/γ⌋ − 2
)

+ n ≤ g · (n − 2) + n is trivial.

We now show that γ ·Wi
(

⌊n/γ⌋
)

+ (n mod γ) ≤ Wi(n). If γ > n/2, then ⌊n/γ⌋ = 1 and

thus γ · Wi
(

⌊n/γ⌋
)

+ (n mod γ) = n mod γ ≤ γ − 1 ≤ n − 1 ≤ Wi(n). We hence assume
γ ≤ n/2, in particular n ≥ 2, in the rest of the argument. In any case, we have

γ · Wi
(

⌊n/γ⌋
)

+ (n mod γ) ≤ γ ·
(

(n/γ − 1)2 + 1
)

+ γ − 1 . (2.24)

Setting f (γ) = γ ·
(

(n/γ − 1)2 + 1
)

+ γ − 1, we have

d2

dγ2
f (γ) =

d2

dγ2
γ · (n2/γ2 − 2n/γ + 2)− 1

=
d2

dγ2
n2/γ − 2n + 2γ − 1 = 2n2/γ3

> 0

(2.25)

for all γ > 0. The function f is hence convex in the domain of positive reals. In particular,
f (γ) ≤ max{ f (1), f (n/2)} for all 1 ≤ γ ≤ n/2. It is f (1) = Wi(n). Because d/dγ f (γ) =
−n2/γ2 + 2 < 0 for all 0 < γ < n/

√
2, function f is nonincreasing in the interval [1, n/

√
2].

In particular, f (n/2) ≤ f (1) = Wi(n), i.e., f (γ) ≤ Wi(n) for all 1 ≤ γ ≤ n/2. We have thus
shown γ · Wi

(

⌊n/γ⌋
)

+ (n mod γ) ≤ Wi(n).
To prove the lemma, it hence remains to prove

g ·
(

⌊n/γ⌋ − 2
)

+ n ≤ γ · Wi(⌊n/γ⌋) + (n mod γ) . (2.26)

Because g ≤ n and γ divides g, we have g/γ ≤ ⌊n/γ⌋. We distinguish two cases:

1. g ≤ γ ·
(

⌊n/γ⌋ − 1
)

2. g = γ · ⌊n/γ⌋

In Case 1, because g ≥ 1, we have ⌊n/γ⌋ ≥ 2. Thus,

g ·
(

⌊n/γ⌋ − 2
)

+ n ≤ γ ·
(

⌊n/γ⌋ − 1
)

·
(

⌊n/γ⌋ − 2
)

+ n

= γ ·
(

⌊n/γ⌋ − 1
)2

+ γ + (n mod γ)

= γ · Wi(⌊n/γ⌋) + (n mod γ)

(2.27)

because n = γ · ⌊n/γ⌋+ (n mod γ).
In Case 2, denote by h the longest cycle length in G. It is a multiple of γ and satisfies

g ≤ h ≤ n, which implies g/γ ≤ h/γ ≤ ⌊n/γ⌋ = g/γ, i.e., h = g. Hence all cycles in G have
length g. This implies γ = g and thus ⌊n/γ⌋ = 1. But in this case, both sides of (2.26) are
equal to (n mod γ) because n = γ · 1 + (n mod γ). This concludes the proof.
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Since the factor rank is upper-bounded by the number of nodes, the bounds involving the
factor rank, i.e., Theorem 2.13 and Theorem 2.14, are at most 1 greater than the bounds of
Wielandt (Theorem 2.9) and Dulmage and Mendelsohn (Theorem 2.10).

One can also specialize the more general max-plus transience bounds to Boolean matrices:
The bound of Hartmann and Arguelles gives an upper bound of 2n2 on the transients of
irreducible Boolean n × n matrices, which is strictly larger than Wielandt’s bound of (n − 1)2.
When specializing the bound of Bouillard and Gaujal, one gets an upper bound of g · (n −
2) + 2n − 1 on the transients of primitive Boolean n × n matrices whose digraph has girth g.
The bound g · (n − 2) + n of Dulmage and Mendelsohn is strictly lower. Finally, the bound
of Soto y Koelemeijer gives 2n2 for the Boolean n × n matrix whose entries are all 0. The true
transient of this matrix is equal to zero.



Chapter 3

Transients of Critical Nodes

In a max-plus linear system x(t), we know that all entries xi(t) are eventually periodic with
the same linear defect λ if the system matrix is irreducible. The general goal for max-plus
systems in this thesis is to upper-bound the systems’ transient. The existing bounds in the
literature focused on the maximum of the entry-wise transients, i.e., the minimal T such that
xi(t + p) = xi(t) + p · λ for all indices i ∈ [n]. We will also adopt this viewpoint when
improving all published bounds in Chapter 4. In this chapter, however, we look at the possible
discrepancy between the minimal and the maximal entrywise transient.

To do this, we upper-bound the entry-wise transients of critical nodes, i.e., the transients
of those sequences xi(t) where i is a critical node in the digraph of the system matrix A.
We show that these transients are at most quadratic in the number of nodes. Our bounds
are independent of the exact values of the matrix entries and depend only on the matrix’s
digraph and its critical digraph. This is to be seen in contrast to the worst-case lower bound
by Hartmann and Arguelles (Theorem 2.19), which shows that the global system transient
can be arbitrarily large if λ2(A) is arbitrarily close to λ(A). Hence the difference between the
smallest and the largest entry-wise transient can be arbitrarily large. In applications, it is often
of interest which nodes have small entry-wise transients. For example, if one can choose a
location to build a home or a factory in a train network, one may prefer those locations where
the recovery time in case of delays is small. A small transient gives rise to a small recovery
time. Hence preferring locations on critical cycles is a heuristic for minimizing one’s local
recovery time.

To prove our results, we study the transients of sequences of the form A⊗t
i,j where either i

or j is a critical node. It is clear that the transient of the sequence

xi(t) =
n

⊕

j=1

A⊗t
i,j ⊗ xj(0) (3.1)

is upper-bounded by the maximum of the transients of the A⊗t
i,j with j ∈ [n]. Further, if i is

critical, then we have an upper bound on the transients of A⊗t
i,j , and hence of xi(t).

Interestingly, we are able to give exact generalizations of classical transience bounds for
Boolean matrices. In fact, we generalize all bounds for Boolean matrices recalled in Sec-
tion 2.3.3. Such generalizations do not exist in the literature to date. Being exact general-
izations, the generalized bounds are at least as tight as the original Boolean bounds.

We now present the bounds that we will prove in the rest of the chapter. Denote the
transient of the sequence

(

A⊗t
i,j

)

t
by Ti,j (A).

23
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In the Boolean case, we showed in Theorem 2.22 that Kim’s bound is always lower than
Wielandt’s, Dulmage and Mendelsohn’s, and Schwarz’s. For the generalizations we present
here, this ordering is not true. In fact, the generalization of Kim’s bound is, in general, not
lower than any of the other generalizations.

Theorem 3.1 (Weighted Kim). Let A be an irreducible n × n max-plus matrix and let i, j ∈ [n].
Let H be a critical component of G(A). If either i or j is in H, then Ti,j (A) ≤ g(H) ·

(

⌊n/γ⌋− 2
)

+ n
where γ is the cyclicity of G(A).

We can see that the original bound by Kim, Theorem 2.12, is an immediate consequence
of Theorem 3.1. It suffices to note that all edges are critical in the Boolean case and hence
there is a single critical component H, which is equal to the whole matrix’s digraph. Because
the bound is decreasing in γ, the following weighted analog of Dulmage and Mendelsohn’s
bound is often larger than the bound of Theorem 3.1. However, it can be strictly lower if
γ = 1 and |H| < n. In our proof, we first prove Theorem 3.2 and use it to prove Theorem 3.1.
The original Boolean bound by Dulmage and Medelsohn, Theorem 2.10, is an immediate
consequence of Theorem 3.2.

Theorem 3.2 (Weighted Dulmage-Mendelsohn). Let A be an irreducible n × n max-plus matrix
and let i, j ∈ [n]. Let H be a critical component of G(A). If either i or j is in H, then Ti,j (A) ≤
g(H) · (n − 2) + |H|.

In the Boolean case, the bound of Wielandt is a consequence of Dulmage and Mendel-
sohn’s bound. For the weighted generalizations, this ordering is also not true. The reason
for the ordering in the Boolean case is that a digraph with girth g = n consists of a single
Hamiltonian cycle and hence the corresponding matrix’s transient is zero. In the remaining
cases, i.e., g ≤ n− 1, the bound of Dulmage and Mendelsohn is at most (n− 1) · (n− 2) + n =
(n − 1)2 + 1 = Wi(n) if n ≥ 2. Because our weighted generalizations have the critical com-
ponent’s girth instead of the whole digraphs girth, this argument is no longer valid. In fact,
a max-plus matrix’s digraph can very well contain a critical Hamiltonian cycle without the
matrix’s transient being zero.

As in the Boolean case, the weighted generalization of Schwarz’s bound is lower than that
of Wielandt’s bound. However, because we first prove the generalization of Wielandt’s bound
and use it to prove the generalization of Schwarz’s bound, we give them both. The Boolean
bounds of Schwarz and Wielandt are again easy corollaries.

Theorem 3.3 (Weighted Schwarz). Let A be an irreducible n× n max-plus matrix and let i, j ∈ [n].
If either i or j is critical, then Ti,j (A) ≤ γ ·Wi(⌊n/γ⌋)+ (n mod γ) where γ is the cyclicity of G(A).

Theorem 3.4 (Weighted Wielandt). Let A be an irreducible n× n max-plus matrix and let i, j ∈ [n].
If either i or j is critical, then Ti,j (A) ≤ Wi(n).

We also generalize the bounds involving the factor rank by Gregory, Kirkland, and Pull-
man (Theorem 2.13) and Kim (Theorem 2.14). These generalizations include the digraph’s
cyclicity, in contrast to the original bounds. They both have the property that they are maxi-
mized when γ = 1. Among themselves, they are not comparable in general.
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Theorem 3.5. Let A be an irreducible n × n max-plus matrix and let i, j ∈ [n]. Let H be a critical
component of G(A). If either i or j is in H, then

Ti,j (A) ≤
{

γ · Wi
(

⌊r/γ⌋
)

+ (r mod γ) + 1

g(H) ·
(

⌊r/γ⌋ − 2
)

+ r + 1
(3.2)

where r = rk(A) is the factor rank of A and γ the cyclicity of G(A).

Specialized to Boolean matrices, we not only recover Theorems 2.13 and 2.14, but also
deduce new bounds for Boolean transients. They are factor rank analogues of the bounds of
Schwarz and Kim:

Corollary 3.6. The transient of an irreducible Boolean matrix with factor rank r is less or equal to
both

γ · Wi
(

⌊r/γ⌋
)

+ (r mod γ) + 1 (3.3)

and
g ·

(

⌊r/γ⌋ − 2
)

+ r + 1 (3.4)

where γ is the cyclicity and g is the girth of G(A).

3.1 Proof of Weighted Dulmage-Mendelsohn Transience Bound

We begin the proof of Theorem 3.2 by recalling an elementary result of Nachtigall on the
transient of power entries if one indices is a node that lies on a critical cycle in terms of the
cycle’s length.

Lemma 3.7 (Nachtigall [72, Lemma 3.2]). Let A be an n × n max-plus matrix and let i, j ∈ [n].
Let C be a critical cycle of G(A). If either i or j is a node of C, then Ti,j (A) ≤ ℓ (C) · (n − 1).

To facilitate the proof, we introduce the notion of a visualized matrix and argue that we
can assume our matrices to be visualized without loss of generality. We will reuse this notion
in subsequent proofs. A max-plus matrix A is visualized if it fulfills one of the following
equivalent conditions:

1. Cycle cover: For every edge (i, j) in G(A), there exists a cycle Z in G(A) containing (i, j)
such that the A-weight of every edge of Z is greater or equal to that of (i, j).

2. Max balancing: For every set M ⊆ [n], we have max
i∈M,j 6∈M

Ai,j = max
i 6∈M,j∈M

Ai,j.

Every visualized matrix with λ(A) 6= −∞ has the property that the maximum A-weight is
equal to λ(A) and that an edge (i, j) is in the critical digraph if and only if Ai,j = λ(A), as can
be seen with the cycle cover condition.

Schneider and Schneider [78] showed how to transform any irreducible max-plus matrix
into a visualized one. For that, they used a scaling relative to some potential, i.e., some real
vector v ∈ Rn. The scaling of A relative to v is defined as

B = diag(v)⊗(−1) · A · diag(v) =
(

Ai,j − vi + vj

)

i,j
. (3.5)

In this case, the digraphs of A and B are equal and the A-weight of all closed walks is equal
to their B-weight. Hence also their critical digraphs are equal. Note, however, that in general
‖B‖ 6= ‖A‖.
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Theorem 3.8 (Schneider and Schneider [78]). For every irreducible max-plus matrix exists a po-
tential vector whose relative scaling is visualized.

The following lemma is a main tool for transferring transience bounds for certain critical
indices to others in the same critical component. We will use it throughout the chapter.

Lemma 3.9. Let A be an n× n max-plus matrix and let i1, i2, j ∈ [n]. If there exists a walk of length d
from i1 to i2 in the critical digraph Gc (A), then Ti1,j (A) ≤ Ti2,j (A) + d.

Proof. As neither the transients nor the critical digraph changes when passing to the normal-
ization of A and its visualization, we assume without loss of generality that A is normalized
and visualized.

The lemma’s hypothesis is then equivalent to A⊗d
i1,i2

= 0. Since Gc (A) is completely re-
ducible without isolated nodes, there exists a nonempty walk in Gc (A) from i2 to i1; denote
its length by e. It is A⊗e

i2,i1
= 0. For all t ≥ 0, we have

A⊗t+d+e
i2,j ≥ A⊗e

i2,i1
+ A⊗t+d

i1,j = A⊗t+d
i1,j ≥ A⊗d

i1,i2
+ A⊗t

i2,j = A⊗t
i2,j . (3.6)

Thus A⊗t+d+e
i2,j = A⊗t

i2,j for all t ≥ Ti2,j (A). There is hence equality in (3.6) for all t ≥ Ti2,j (A).

In particular,

∀t ≥ Ti2,j (A) : A⊗t+d
i1,j = A⊗t

i2,j , (3.7)

from which the lemma follows.

Proof of Theorem 3.2. We prove the theorem only for the case that i is in H. The case that j is
in H follows from the first case by passing to the transpose of A.

Denote by C a cycle in H of minimal length, i.e., ℓ (C) = g(H). By Lemma 3.7,

Tk,j (A) ≤ g(H) · (n − 1) (3.8)

for all nodes k of C.

Because i is a node of H and there are at most |H| − g(H) nodes in H not on C, there exists
a path in H of length at most |H| − g(H) from i to some node k of C. Lemma 3.9 hence implies

Ti,j (A) ≤ Tk,j (A) + |H| − g(H) . (3.9)

Combination of (3.9) and (3.8) concludes the proof.

3.2 Proof of Weighted Wielandt Transience Bound

We complete the proof in Section 3.2.2, but we first need some technical machinery to for-
malize walk reductions and what it means to remove subcycles from a walk. We chose the
multigraph approach to do this. As this is not standard, we develop it in Section 3.2.1.
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3.2.1 Walk-Multigraph Correspondence

To prove Theorem 3.4, we need to speak about removing and adding cycles to a given walk.
For this, we choose the formalism of the multigraph corresponding to a walk, which we de-
velop in this subsection. We will use this formalism also in the next chapter. A multigraph
has a multiset of edges instead of a set. That is, it can contain the same edge more than once.

Definition 3.10 (Almost even multigraphs, induced multigraphs). Let M = (V, E) be a multi-
graph. We call M even if every node’s in-degree is equal to its out-degree, i.e., d−M (k) = d+M (k)
for all k ∈ V. Let i, j ∈ V. We say that M is (i, j)-almost even if either i = j and M is even, or

• for every node k ∈ V \ {i, j}, the in-degree of k is equal to its out-degree, i.e., d−M (k) =
d+M (k),

• the in-degree of i is one less than its out-degree, i.e., d−M (i) = d+M (i)− 1, and

• the in-degree of j is one more than its out-degree, i.e., d−M (j) = d+M (j) + 1.

We call M almost even if there exists i, j ∈ V such that M is (i, j)-almost even.
If W is a walk in some digraph, then define its induced multigraph M(W) = (V, E) by set-

ting V to be the set of nodes of W and E the multiset of edges in W, counted with multiplicity.
If W is a multiset of walks in digraphs, then define its induced multigraph M(W) as the
union multigraph

⋃

W∈W M(W).

Lemma 3.11. A multigraph is even without isolated nodes if and only if it is induced by a nonempty
multiset of cycles.

Proof. Let C be a nonempty multiset of cycles and let M(C) = (V, E) be the multigraph in-
duced by C. If |C| = 1, i.e., C = {C} for some cycle C, then d−M (k) = d+M (k) = 1 for all nodes
k ∈ V. Because the union of even multigraphs is even and the union of multigraphs without
isolated nodes does not have isolated nodes, we have proved the first part of the lemma.

Now let M = (V, E) be an even multigraph without isolated nodes. We prove by induc-
tion on |E| that M is induced by a multiset of cycles. If |E| = 1, then V contains a single node i
and the sole element of E is the self-loop (i, i). Hence M is induced by a cycle of length 1.
Let now |E| > 1. Because there are no isolated nodes in M, every node in M has either an
incoming or an outgoing edge. But because M is also even, every node in M has at least one
outgoing edge. For every k ∈ V, let f (k) be an outgoing neighbor of k, i.e., let f : V → V
such that (k, f (k)) ∈ E for all k ∈ V. Now pick any node k ∈ V. As V is finite, there exist
positive integers s < t such that f s(k) = f t(k). Choose s and t such that t − s is minimal. The
walk C with edges ( f r(k), f r+1(k)) where s ≤ r < t is a cycle because t − s is minimal. The
multigraph M(C) induced by C is an even sub-multigraph of M. If M(C) = M, then we are
done. If not, then the multigraph M′ = (V ′, E′) where

E′ = E \ {( f r(k), f r+1(k)) | s ≤ r < t}
V ′ = {i ∈ V | d+

(V,E′) (i) > 0} (3.10)

is even, has no isolated nodes, and satisfies M = M′ ∪ M(C). Application of the induction
hypothesis then concludes the proof.

Lemma 3.12. Let W be a nonempty walk in a digraph. Denote by i the start node and by j the end
node of W. Then M(W) is (i, j)-almost even, has no isolated nodes, and is weakly connected.
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Proof. Let i0, i1, . . . , iℓ be the sequence of nodes of W. We have, for all nodes k of M(W),

d+
M(W) (k) = |{0 ≤ m < ℓ | im = k}| = |{0 ≤ m ≤ ℓ | im = k}| − δ(j, k)

d−
M(W) (k) = |{0 < m ≤ ℓ | im = k}| = |{0 ≤ m ≤ ℓ | im = k}| − δ(i, k)

(3.11)

where δ(a, b) denotes the Kronecker delta, i.e., δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.
We distinguish the two cases i = j and i 6= j.

If i = j, then δ(i, k) = δ(j, k) for all k and hence d+
M(W) (k) = d−

M(W) (k) for all nodes k

of M(W) by Equation (3.11), i.e., M(W) is even.
If i 6= j, then we have d+

M(W) (k) = d−
M(W) (k) only for all nodes k 6∈ {i, j}. For k = i, we get

d+
M(W) (i) = d+

M(W) (i) + δ(j, i) = d−
M(W) (i) + δ(i, i) = d−

M(W) (i) + 1 (3.12)

from Equation (3.11), and similarly for k = j, we get d−
M(W) (j) = d+

M(W) (j) + 1. Hence M(W)

is (i, j)-almost even in both cases.

Lemma 3.13. Let M = (V, E) be a multigraph and let i, j ∈ V. If M is (i, j)-almost even, has no
isolated nodes, and is weakly connected, then there exists a walk W from i to j in M’s underlying
digraph such that M = M(W).

Moreover, there exists a path P from i to j and a multiset C of cycle in M’s underlying digraph
such that M is induced by {P} ∪ C.

Proof. We first prove the case i = j, in which P can be chosen to be empty. By Lemma 3.11,
there exists a multiset C of cycles such that M = M(C). Assume that C has maximum cardi-
nality among all multisets of cycles that induce M. We show by induction on |C| that there
exists a single closed walk W such that M = M(W). If |C| = 1, the claim is trivial.

So let C ∈ C such that C ′ = C \ {C} is nonempty. Let M1, M2, . . . , Ms be the weakly con-
nected components of M(C ′). Because all of them are even, there exist multisets C ′

1, C ′
2, . . . , C ′

s

of cycles with maximum cardinality such that Mr = M(C ′
r) for all 1 ≤ r ≤ s. Because M is

induced by the multiset {C} ∪⋃s
r=1 C ′

r and C was assumed to have maximum cardinality, we
have

|C| ≥ 1 +
s

∑
r=1

|C ′
r| (3.13)

and hence |C ′
r| ≤ |C| − 1 for all 1 ≤ r ≤ s. Because the Mr are weakly connected by definition,

we can thus apply the induction hypothesis to them and get the existence of closed walks
W1, W2, . . . , Ws such that Mr = M(Wr) for all 1 ≤ r ≤ s. The cycle C shares a node with
every Wr because otherwise M would not be weakly connected. Write C = V0 · V1 · · ·Vs such
that the start node ir of Vr shares a node with Wr for all 1 ≤ r ≤ s. Because the Wr are closed,
we can assume without loss of generality that ir is the start (and end) node of Wr. But then
W = V0 · W1 · V1 · · ·Wr · Vr is a closed walk that induces M.

It remains to prove the case i 6= j. In this case, there exists a path P in M from i to j: Let Nℓ

be the set of nodes in M of distance at most ℓ from i, i.e.,

Nℓ =
{

k |
ℓ
⋃

m=0

Wm(i → k) 6= ∅
}

. (3.14)

Because of the degree conditions imposed by the (i, j)-almost evenness, Nℓ+1 ) Nℓ if j 6∈ Nℓ.
There hence exists a path P from i to j in M. Denote by M′ the resulting multigraph after
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removing the edges of P from M. The nontrivial weakly connected components of M′ are all
even and we can hence use the lemma in the already proved case of even weakly connected
multigraphs.

Definition 3.14 (Realization, path-cycles decomposition). Let M = (V, E) be an almost even
weakly connected multigraph without isolated nodes. Let i, j ∈ V such that M is (i, j)-almost
even. A walk W in M’s underlying digraph is called an (i, j)-realization of M if M = M(W).

Let W be a walk in a digraph G. A path-cycles decomposition of W is a pair (P, C) where P
is a path in G and C is a multiset of cycles in G such that M(W) = M({P} ∪ C).

3.2.2 Critical Hamiltonian Cycles

We now prove Theorem 3.4.

Lemma 3.15. Let d be a positive integer and let x1, x2, . . . , xd be integers. Then there exists a
nonempty subset I of [d] such that

∑
i∈I

xi ≡ 0 (mod d) . (3.15)

Proposition 3.16. Let G be a digraph with |G| = n that contains a Hamiltonian cycle CH. Then, for
every walk W in G, there exists a walk V obtained from W by removing cycles and adding copies of CH

whose length satisfies

ℓ (V)− Wi(n) ∈ {0, 1, . . . , n − 1} and ℓ (V) ≡ ℓ (W) (mod n) . (3.16)

Proof. Let (P, C) be a path-cycles decomposition of W. Let C ′ be a minimal sub-multiset of C
such that

∑
C∈C ′

ℓ (C) ≡ ∑
C∈C

ℓ (C) (mod n) . (3.17)

By Lemma 3.15, we have |C ′| ≤ n − 1. Also, ℓ (C) ≤ n − 1 for all C ∈ C ′.
Denote by i the start node and by j the end node of P, i.e., also of W. Let M be the

multigraph induced by {P} ∪ C ′. The multigraph M is (i, j)-almost even. We distinguish two
cases:

1. M is weakly connected.

2. M is not weakly connected.

In Case 1, we choose W ′ to be any (i, j)-realization of M. Its length satisfies

ℓ
(

W ′) = ℓ (P) + ∑
C∈C ′

ℓ (C)

≤ (n − 1) + (n − 1) · (n − 1)

< Wi(n) + n − 1 .

(3.18)

In Case 2, there in particular exists a cycle Ĉ ∈ C ′ that is node-disjoint to P, i.e., (ℓ (P) +
1) + ℓ(Ĉ) ≤ n, which is equivalent to ℓ (P) + ℓ(Ĉ) ≤ n − 1. Let M′ be the multigraph induced
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by {P} ∪ C ′ ∪ {CH}. As CH is Hamiltonian, M′ is connected. Because CH is a closed walk, M′

is (i, j)-almost even. Choose W ′ to be any (i, j)-realization of M′. Its length satisfies

ℓ
(

W ′) = ℓ (P) + ℓ(Ĉ) + ∑
C∈C ′\{Ĉ}

ℓ (C) + ℓ (CH)

≤ (n − 1) + (n − 2) · (n − 1) + n

= Wi(n) + n − 1 .

(3.19)

In both cases, W ′ is a walk obtained from W by removing cycles and adding copies of CH

that satisfies ℓ (W ′)− Wi(n) ≤ n − 1. If ℓ (W ′)− Wi(n) ≥ 0, then set V = W ′. If not, let V be
obtained from W ′ by adding ⌈(Wi(n)− ℓ (W ′))/n⌉ copies of CH . We thus arrive at a walk V
obtained from W by removing cycles and adding copies of CH whose length satisfies 0 ≤
ℓ (V)− Wi(n) ≤ n − 1 and ℓ (V) ≡ ℓ (W) (mod n).

Lemma 3.17. Let A be an n × n max-plus matrix. Let i ∈ [n] and T ≥ 0. If there exists a p > 0 such

that A⊗T
i,j = A

⊗T+p
i,j for all j ∈ [n], then Ti,j (A) ≤ T for all j ∈ [n].

Proof. For all j ∈ [n] and all t ≥ T, we have

A
⊗t+p
i,j = max

k∈[n]
A
⊗T+p
i,k + A⊗t−T

k,j = max
k∈[n]

A⊗T
i,k + A⊗t−T

k,j = A⊗t
i,j (3.20)

by definition of max-plus matrix multiplication and the lemma’s hypothesis. This concludes
the proof.

Proof of Theorem 3.4. We prove the theorem only for the case that i is critical. The case that j
is critical follows from the first case by passing to the transpose of A. Also, because neither
the transients nor the critical digraph changes when passing to the normalization of A and its
visualization, we assume without loss of generality that A is normalized and visualized.

If g(H) ≤ n − 1, then the theorem follows from Theorem 3.2. We hence assume g(H) = n,
that is, there exists a critical Hamiltonian cycle CH in G(A).

Let W be a walk of maximum weight amongst all walks from i to j whose length is in
the set Wi(n) + n · N0. Such a walk exists if A is normalized. By Proposition 3.16, there
exists a walk V obtained from W by removing cycles and adding copies of CH such that
ℓ (V) = Wi(n). We have A(V) ≥ A(W). But by the choice of W, A(V) ≤ A(W), that is,
A(V) = A(W).

Let V ′ be obtained from V by adding a copy of CH . The length of V ′ is Wi(n) + n and the
weight of V ′ is the same as that of V, i.e., A(V ′) = A(V) = A(W). Because, in particular, V
has maximum weight amongst all walks from i to j of length Wi(n) and V ′ amongst all of
length Wi(n) + n, we have

A
⊗Wi(n)
i,j = A(V) = A(V ′) = A

⊗Wi(n)+n
i,j (3.21)

Application of Lemma 3.17 now concludes the proof.

3.3 Proof of Weighted Schwarz Transience Bound

Call a cyclicity class of a digraph G small if its cardinality is minimal.
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Lemma 3.18. Let G be a strongly connected digraph with n nodes. Denote by m the cardinality of
small cyclicity classes of G and by γ the cyclicity of G. Then m ≤ ⌊n/γ⌋.

Moreover, if m = ⌊n/γ⌋, then the number of small cyclicity classes of G is at least γ− (n mod γ).

Proof. Let Γ1, Γ2, . . . , Γγ be the cyclicity classes of G and let Γ1, Γ2, . . . , Γp be the small classes.
Then

n =
γ

∑
q=1

|Γl | = p · m +
γ

∑
q=p+1

|Γl | ≥ p · m + (γ − p) · (m + 1) = γ · m + γ − p . (3.22)

Because p ≤ γ, (3.22) implies n ≥ γ · m, i.e., m ≤ n/γ, which implies m ≤ ⌊n/γ⌋. This proves
the first part of the lemma.

If m = ⌊n/γ⌋, then (3.22) implies p ≥ γ −
(

n − γ · ⌊n/γ⌋
)

= γ − (n mod γ). This proves
the second part of the lemma.

Proof of Theorem 3.3. We prove the theorem only for the case that i is critical. The case that j
is critical follows from the first case by passing to the transpose of A. Also, because neither
the transients nor the critical digraph changes when passing to the normalization of A and its
visualization, we assume without loss of generality that A is normalized and visualized.

Let p be the number and m the cardinality of small cyclicity classes of G(A). Let k be a
critical node in a small cyclicity class of G(A). Set B = A⊗γ. Then k is a critical node in a
strongly connected component of size m in G(B). By Theorem 3.4, we have Tk,j (B) ≤ Wi(m).
This implies Tk,j (A) ≤ γ · Wi(m) by Lemma 3.17. There exists a path in Gc (A) of length at
most γ − p from i to some node k in a small class of G(A). By Lemma 3.9, we hence have

Ti,j (A) ≤ Tk,j (A) + γ − p ≤ γ · Wi(m) + γ − p . (3.23)

We distinguish two cases:

1. m ≤ ⌊n/γ⌋ − 1

2. m = ⌊n/γ⌋

These are all possible cases by the first part of Lemma 3.18.

In Case 1, we have

Wi(m) ≤ Wi
(

⌊n/γ⌋ − 1
)

≤ Wi(⌊n/γ⌋)− 1 . (3.24)

Hence combination of (3.23) and (3.24) implies

Ti,j (A) < γ · Wi(⌊n/γ⌋) ≤ γ · Wi(⌊n/γ⌋) + (n mod γ) . (3.25)

In Case 2, we have p ≥ γ − (n mod γ) by the second part of Lemma 3.18. Hence (3.23)
implies Ti,j (A) ≤ γ · Wi(⌊n/γ⌋) + (n mod γ).
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3.4 Proof of Weighted Kim Transience Bound

We prove the theorem only for the case that i is in H. The case that j is in H follows from the
first case by passing to the transpose of A. Also, because neither the transients nor the critical
digraph changes when passing to the normalization of A and its visualization, we assume
without loss of generality that A is normalized and visualized.

Let p be the number and m the cardinality of small cyclicity classes of G(A). Let k be
a critical node in a small cyclicity class of G(A). Set B = A⊗γ. Then k is a critical node
in a strongly connected component of size m in G(B). By Theorem 3.2, we have Tk,j (B) ≤
g(H)/γ · (m − 2) + m. This implies

Tk,j (A) ≤ g(H) · (m − 2) + γ · m (3.26)

by Lemma 3.17. There exists a path in H of length at most γ − p from i to some node k in a
small class of G(A). By Lemma 3.9, we hence have

Ti,j (A) ≤ g(H) · (m − 2) + γ · m + γ − p . (3.27)

We distinguish two cases:

1. m ≤ ⌊n/γ⌋ − 1

2. m = ⌊n/γ⌋

These are all possible cases by the first part of Lemma 3.18.
In Case 1, we have

g(H) · (m − 2) ≤ g(H) ·
(

⌊n/γ⌋ − 2
)

− g(H) ≤ g(H) ·
(

⌊n/γ⌋ − 2
)

− γ . (3.28)

Combination of (3.27) and (3.28) implies

Ti,j (A) ≤ g(H) ·
(

⌊n/γ⌋ − 2
)

+ γ · m − p

< g(H) ·
(

⌊n/γ⌋ − 2
)

+ n
(3.29)

because γ · m ≤ n.
In Case 2, we have p ≥ γ − (n mod γ) by the second part of Lemma 3.18. Hence (3.27)

implies

Ti,j (A) ≤ g(H) ·
(

⌊n/γ⌋ − 2
)

+ γ · ⌊n/γ⌋+ (n mod γ)

= g(H) ·
(

⌊n/γ⌋ − 2
)

+ n .
(3.30)

This concludes the proof.

3.5 Proof of Weighted Transience Bounds Involving the Factor

Rank

Define the r × r matrix B by setting bα,β =
⊕n

i=1 wα,i · vβ,i. We will apply the bounds of Theo-
rems 3.4, 3.2, 3.3, and 3.1 to the critical nodes of B and transfer the result to the critical nodes
of A.
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i j k l

n+α n+β n+γ

vα,i wα,j vβ,j wβ,k vγ,k wγ,l

Figure 3.1: A walk in G(Z)

Form the following (n + r)× (n + r) matrix Z: For i ∈ [n] and α ∈ [r], set zi,n+α = vα,i and
zn+α,i = wα,i. All other entries of Z are 0. Figure 3.1 depicts an example of a walk in G(A).

The entries of Z⊗2 satisfy:

z
(2)
i,j = ai,j for all i, j ∈ [n]

z
(2)
n+α,n+β = bα,β for all α, β ∈ [r]

z
(2)
i,n+β = 0 for all i ∈ [n] and β ∈ [r]

z
(2)
n+α,j = 0 for all α ∈ [r] and j ∈ [n]

(3.31)

Matrix Z is irreducible: Because A is irreducible, by the first equality in (3.31), there exists
a walk in G(Z) between every pair of nodes in [n]. None of the vectors vα, wα is zero by
the minimality of r, i.e., every node in {n + 1, . . . , n + r} has an incoming and an outgoing
neighbor in {1, . . . , n}. Hence there exists a walk between every pair of nodes in G(Z).

Every walk in G(Z) alternates between nodes in {1, . . . , n} and nodes in {n + 1, . . . , n +
r}. In particular, all walks in G(Z) between two nodes in {1, . . . , n} or two nodes in {n +
1, . . . , n + r} have even length. This implies that also B is irreducible by the second equality
in (3.31).

Every nonempty closed walk in G(Z) of length ℓ surjectively corresponds to both a closed
walk in G(A) of length ℓ/2 and a closed walk in G(B) of length ℓ/2. See Figure 3.2 for an
example of this correspondence. In particular, the cyclicities of G(A) and G(B) are equal, i.e.,
also G(B) has cyclicity d. The correspondence also maps critical closed walks to critical closed
walks. That is, k is also a critical node in G(Z) and it has both a critical incoming neighbor
n + α and a critical outgoing neighbor n + β in Gc(Z). Furthermore, both α and β are critical
in G(B) and they are contained in the same component H′ of Gc(B). The correspondence also
yields the equality g(H′) = g(H) of the girths.

By Theorems 3.3 and 3.1, we have Tβ(B), Tα(B) ≤ T where T + 1 is the minimum of the
right-hand sides of (3.2). The second equality in (3.31) implies the two inequalities Tn+β(Z) ≤
2T and Tn+α(Z) ≤ 2T, which implies Tk(Z), Tk(Z) ≤ 2T + 1 by Lemma 3.9. The first equality
in (3.31) now implies Tk(A), Tk(A) ≤ ⌈(2T + 1)/2⌉ = T + 1, which concludes the proof.
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i1

i2

i3 i4
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n+α1

n+α2
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n+α4
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G(Z)

i1

i2

i3 i4

i5

G(A)

α1

α2

α3

α4

α5
G(B)

Figure 3.2: Correspondence between closed walks in G(Z), G(A), and G(B)



Chapter 4

Global Transience Bounds

While the previous chapter dealt with the entry-wise transients of critical nodes only, the
present chapter deals with the global transients of matrices and systems. That is, the maxi-
mum of all entry-wise transients. The chapter is logically independent from Chapter 3, but
it reuses and further develops some of the techniques used, such as the cycle decomposition
based on the multigraph approach. The bounds presented in this chapter improve all pub-
lished bounds on the transients of matrices and systems. However, not all of them are exact
generalizations of known bounds for Boolean matrices, as was the case of the bounds for
critical nodes in Chapter 3. Nonetheless, one of our bounds is a generalization of Wielandt’s
bound and one is a generalization of Dulmage and Mendelsohn’s bound. These two general-
izations, while generalizing the Boolean bounds, do not generalize their weighted analogues
from Chapter 3.

The chapter is organized as follows: Section 4.1 states our transience bounds that we will
prove in this chapter. Section 4.2 applies our transience bounds to the applications we in-
troduced in Section 2.2. In Sections 4.3–4.7, we prove our transience bounds for max-plus
matrices. We modify our proof strategy to deduce transience bounds for max-plus linear sys-
tems in Section 4.8. Section 4.9 discusses the relation between matrix and system transients.
Finally, in Section 4.10, we present a different, more algebraic and arguably shorter and sim-
pler, approach for proving transience bounds that uses the Nachtigall decomposition.

4.1 Results

We prove transience bounds for both matrices and systems. The matrix bounds being up-
per bounds also on the system transients and the system transients being more important
in applications. All of them are a maximum of two terms: one to ensure connectivity to
the critical digraph and one for the necessary combinatorial constructions starting from a
critical node. The bounds put forward in Chapter 3 only contained one term because con-
nectivity to the critical digraph was ensured by assumption. We denote the bound to ensure
connectivity to the critical digraph the critical bound. This critical bound includes the factor
1/

(

λ(A) − λ0(A)
)

where λ0(A) is the maximum cycle mean of some sub-matrix of A, i.e.,
λ0(A) = λ(B) where B is a matrix derived from A by setting certain entries to −∞. For
all such B, we have λ0(A) ≤ λ(A). We will furthermore make sure that λ0(A) < λ(A).
Hence, the smaller λ(B), the lower the critical bound. If G(B) does not contain any cycle,
then λ0(A) = λ(B) = −∞ and hence 1/

(

λ(A)− λ0(A)
)

= 0.

35
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We consider two different ways to define B: the Hartmann-Arguelles scheme and the cycle
threshold scheme. The λ0 in the cycle threshold scheme, which we denote by λct, is always
smaller than the λ0 in the Hartmann-Arguelles scheme, which we denote by λha. This makes
the critical bound smaller. However, it necessitates a larger combinatorial term. A simpler
choice for B, and therefore λ0, that was used in the literature is setting all those Ai,j to −∞

where either i or j is a critical node. The next two subsections introduce each of the two
schemes we consider and present the corresponding transience bounds we deduce.

Both schemes are defined in terms of sub-digraphs of G(A) that is to be removed. These
digraphs G0 will be super-digraph of the critical digraph Gc(A), which guarantees λ0(A) <
λ(A). Then let B be the matrix defined by

Bi,j =

{

Ai,j if neither i nor j is a node of G0

−∞ else .
(4.1)

4.1.1 Hartmann-Arguelles Scheme

This subsection introduces another choice for G0, used by Hartmann and Arguelles, and
shows how to reduce the criticality threshold of Gc to that of this G0 = Gha. Its idea is to
grow the critical digraph as long as one can be sure that we can exchange edges of walks
that visit the enlarged digraph for a closed walk in the enlarged digraph that connects to the
critical digraph Gc. This is done in the visualization of the max-plus matrix because we can
then use the cycle cover property to decide whether or not to keep an edge solely by looking
at its weight.

Let V be the visualization of A. Given µ ∈ Rmax, define the Hartmann-Arguelles threshold
digraph Tha(µ) induced by all edges (i, j) in G(A) = G(V) with Vi,j ≥ µ. For µ = λ(A) = λ(V)

we have Tha(µ) = Gc(A) = Gc(V). Let λha be the maximum of µ ≤ λ(A) such that Tha(µ)
has a strongly connected component that does not contain any strongly connected component
of Gc(A). If no such µ exists, then λha = −∞ and Tha(λha) = G(V).

The sub-digraph G0 = Gha defining B in the Hartmann-Arguelles scheme is the union of
the strongly connected component’s of Tha(λha) intersecting Gc(A). We denote this matrix B
by Bha. Observe that λ(Bha) = λha and the digraphs Tha(µ), for all µ, are completely reducible
due to the max-balancing property of V.

The following theorem is our main theorem for bounds on matrix transients using the
Hartmann-Arguelles scheme. It contains four bounds: The first two contain the maximum
girth of components of the critical digraph, whereas the latter two contain the cyclicity and
the index of convergence. For reasons that become apparent in the proof of the bounds, we
dub the first two “repetitive” and the latter two “explorative” bounds. The difference between
the first and the second bound, as well as between the third and the fourth, is that the second
and the fourth use the maximum path length and the maximum cycles length as a parameter.
Both these parameters are NP-hard to compute in general, but they can be useful to include
for the case that one has a priori bounds on them. Two trivial a priori bounds are n − 1 for
the length of paths and n for the length of cycles if n is the number of nodes in the digraph.
Symbolically, we write cdd(G) for the cab driver’s diameter, i.e., the longest path length in G,
and cf(G) for the circumference, i.e., the longest cycle length in G.
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Theorem 4.1. Let A be an irreducible n × n max-plus matrix. Then its transient T(A) is bounded
by all of the following terms:

n + max

{

ĝ(n − 2) ,
(γ̂ + 1)(n − 1) · ‖A‖

λ(A)− λha(A)

}

(4.2)

cdd+max

{

(ĝ − 1)(cf−1) + ĝ · cdd ,
((γ̂ − 1) cf+(γ̂ + 1) cdd) · ‖A‖

λ(A)− λha(A)

}

(4.3)

n + max

{

γ̂(n − 2) + ˆind ,
(γ̂ + 1)(n − 1) · ‖A‖

λ(A)− λha(A)

}

(4.4)

cdd+max

{

(γ̂ − 1)(cf−1) + γ̂ · cdd+ ˆind ,
((γ̂ − 1) cf+(γ̂ + 1) cdd) · ‖A‖

λ(A)− λha(A)

}

(4.5)

where ĝ is the maximum girth of critical components, γ̂ is the maximum cyclicity of critical compo-
nents, cf = cf(G(A)) is the circumference of G(A), cdd = cdd(G(A)) is its cab driver’s diameter,

ˆind is the maximum index of convergence of critical components, and nc is the number of critical nodes.

Note that the first bound in theorem, Equation 4.2, is a direct generalization of Dulmage
and Mendelsohn’s bound for Boolean matrices (Theorem 2.10), for then λha = −∞ and the
bound reduces to n + g · (n − 2) where g is the girth of G(A).

The following corollary is a bound for primitive irreducible matrices. It is reminiscent of
the bound of Bouillard and Gaujal [14]. Except for an explicit critical bound, the bound is a
strict improvement of their bound.

Corollary 4.2. Let A be an irreducible n × n max-plus matrix whose critical digraph has cyclicity 1.
Then its transient is bounded by

T(A) ≤ n + max

{

n + nc − 2 + (nc − 2h2)ĝ ,
(2n − 2)‖A‖

λ(A)− λha(A)

}

(4.6)

where nc is the number of critical nodes, ĝ is the maximum girth of critical components, and h2 is the
number of critical components of size at least 2.

Proof. We use bound (4.4) and estimate ˆind. Let H1, H2, . . . , Hh be the critical components and
H1, H2, . . . , Hh2

be the components of size at least 2. Denoting by nk the number of nodes of Hk

and by gk its girth, we have

ˆind = max
1≤k≤h

ind(Hk) ≤
h

∑
k=1

ind(Hk) =
h2

∑
k=1

ind(Hk) ≤
h2

∑
k=1

(nk + (nk − 2)gk)

≤
h2

∑
k=1

(nk + (nk − 2)ĝ) = nc + (nc − 2h2)ĝ

(4.7)

by Theorem 2.10. Plugging this estimate into (4.4) and noting γ̂ = 1 concludes the proof.

The following theorem contains the analogues of the bounds of Theorem 4.1 for max-plus
linear systems. Their critical bound depends on the initial vector and can be lower than that
in the matrix bounds.
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Theorem 4.3. Let A be an irreducible n × n max-plus matrix and let v ∈ Rn. Then its tran-
sient Tv(A) is bounded by all of the following terms:

max

{

n + ĝ(n − 2) ,
‖v‖+ ‖A‖ · (n − 1)

λ(A)− λha(A)

}

(4.8)

max

{

(ĝ − 1)(cf−1) + (ĝ + 1) · cdd ,
‖v‖+ ‖A‖ · (n − 1)

λ(A)− λha(A)

}

(4.9)

max

{

n + γ̂(n − 2) + ˆind ,
‖v‖+ ‖A‖ · (n − 1)

λ(A)− λha(A)

}

(4.10)

max

{

(γ̂ − 1)(cf−1) + (γ̂ + 1) · cdd+ ˆind ,
‖v‖+ ‖A‖ · (n − 1)

λ(A)− λha(A)

}

(4.11)

where ĝ is the maximum girth of critical components, γ̂ is the maximum cyclicity of critical compo-
nents, cf = cf(G(A)) is the circumference of G(A), cdd = cdd(G(A)) is its cab driver’s diameter,

ˆind is the maximum index of convergence of critical components, and nc is the number of critical nodes.

4.1.2 Cycle Threshold Scheme

This subsection introduces another, completely novel, choice for a super-digraph G0 of the
critical digraph. We will proof that it is always larger than the Hartmann-Arguelles di-
graph Gha. Its idea is not to pass via edge weights of the visualization of the matrix and
then using the cycle cover property, but to directly define G0 in terms of cycle weights.

For µ ∈ Rmax, define the cycle threshold digraph Tct(µ) induced by all nodes and edges
belonging to the cycles in G(A) with mean weight greater or equal to µ. Again, for µ = λ(A)
we have Tct(µ) = Gc(A). Let λct be the maximum of µ ≤ λ(A) such that Tct(µ) has a strongly
connected component that does not contain any strongly connected component of Gc(A). If
no such µ exists, then λct = −∞ and Tct(λct) is equal to G(A).

The sub-digraph G0 = Gct defining B in the cycle threshold scheme is the union of the
strongly connected component of Tct(λct) intersecting Gc(A). This matrix B will be denoted
by Bct. We again observe that λ(Bct) = λct.

One can deduce transience bounds with the cycle threshold scheme and thus λct similarly
as in Theorem 4.1. The first terms in the maximum of these bounds will be strictly larger than
that in Theorem 4.1. We will show a particular case of this requiring a little more work, but
showing that the term can be chosen to be the Wielandt number Wi(n). Even in the case of
the Hartmann-Arguelles scheme, this is a nontrivial extension of Theorem 4.1. A particular
consequence is that T(A) ≤ Wi(n) if λct(A) = −∞. By that, it is a strict generalization of
Wielandt’s bound (Theorem 2.9).

Theorem 4.4. Let A be an irreducible n × n max-plus matrix. Then its transient is bounded by

T(A) ≤ max

{

Wi(n) ,
(n2 − n + 1) · ‖A‖

λ(A)− λct(A)
+ n − 1

}

(4.12)

We now give more precise bounds in the case that the matrix has all finite entries, which
translates into its digraph being the complete digraph on n nodes. Trivially, every such matrix
is irreducible. In particular, we strictly improve the bound given by Soto y Koelemeijer for
these matrices (Theorem 2.21).
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Theorem 4.5. Let A be an n × n max-plus matrix with all finite entries, i.e., A ∈ Rn×n. Then its
transient is bounded by

T(A) ≤ max

{

Wi(n) ,
2‖A‖

λ(A)− λct(A)
+ n − 2

}

. (4.13)

We also prove an analogue of Theorem 4.4 for linear systems:

Theorem 4.6. Let A be an irreducible n × n max-plus matrix and let v ∈ Rn. Then the transient is
bounded by

Tv(A) ≤ max

{

Wi(n) ,
‖v‖+ ‖A‖ · (n − 1)

λ(A)− λct(A)

}

(4.14)

4.1.3 Comparison of the Different Schemes

In this section, we compare our two schemes with each other and also with the trivial choice
of the critical digraph for B. We start with a computational comparison.

Theorem 4.7. Let A be an irreducible max-plus matrix. The digraphs Gc and Gha can be computed
in polynomial time. The computation of the threshold digraphs Tct(0) is NP-hard.

Proof. Denote by n the number of nodes of the digraph G(A).
For the computation of Gc, we can use Karp’s algorithm. This takes O(n3) time.
Concerning Gha, Schneider and Schneider [78] proved that a max-balancing of A can be

computed in time O(n4). The same order of complexity is added if we examine the at most
n2 threshold digraphs (for each of them, the strongly connected components can be found in
O(n2) time).

To show NP-hardness of the computation of Tct(µ), we reduce the Longest Path Prob-
lem [48, p. 213, ND29] to it. Consider the Longest Path Problem as a decision problem that
takes as input an edge-weighted digraph with integer weights, a pair of nodes (i, j) with i 6= j
in the digraph, and an integer K. The output is YES if there exists a path of weight at least K
from i to j. The output is NO if there is none. Observe that if i 6= j, then by inserting the edge
(j, i) with weight −K, the Longest Path Problem can be polynomially reduced to the problem
of calculating Tct(0) by checking whether the new edge (j, i) belongs to Tct(0).

The relation between these schemes is as follows. The cycle threshold scheme is more
precise, while the non-critical scheme is the coarser. We measure this in terms of the size of B
and the value λ(B).

Lemma 4.8. Gc is a sub-digraph of Gha, which is a sub-digraph of Gct. In particular, λct ≤ λha ≤ λnc.

Proof. Evidently both Gct and Gha are super-digraphs of Gc, which is extracted from all non-
critical nodes. This implies that λ(Bct) ≤ λ(Bnc) and λ(Bha) ≤ λ(Bnc).

We show that Gha is a sub-digraph of Gct. For this we can assume that the whole digraph
is max-balanced, and notice first that Tha(µ) ⊆ Tct(µ) for any value of µ. We also have that
Tha(µ1) ⊇ Tha(µ2) and Tct(µ1) ⊇ Tct(µ2) for any µ1 ≤ µ2. Now consider the value λct. The
components of Tct(λct) which do not contain the components of Gc(A), have the property
that any other cycle intersecting with them has a strictly smaller cycle mean. It follows that
all edges of these components have cycle mean λct. Indeed, suppose that there is a component
containing an edge with a different weight. In this component, any cycle that contains this
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edge also has an edge with weight strictly greater than λct. The cycle cover property implies
that there is a cycle containing this edge, where this edge has the smallest weight. The mean
of that cycle is strictly greater than λct, a contradiction. But then Tha(λct) contains these
components as its strongly connected component’s. In particular they do not contain the
components of Gc(A), hence λct ≤ λha.

If µ = λct = λha then Tha(µ) ⊆ Tct(µ), while we have shown that the components of
Tct(µ) not containing the components of Gc(A) are also components of Tha(µ). It follows that
Gha ⊆ Gct.

If λct < λha then we obtain that

Gct ⊇ Tct(λha) ⊇ Tha(λha) ⊇ Gha , (4.15)

thus Gha ⊆ Gct in any case, hence G(Bct) ⊂ G(Bha).

The following example shows that all three schemes can differ.

Example 4.9. Consider the following matrix A, described by its digraph G(A). The node
set N of G(A) is partitioned into N = Nc ∪ Nnc ∪ Nha ∪ Nct. Further choose parameters
λc > λnc > λha > λct > z such that λha ≤ (2λct + λnc)/3. For example, set λc = 0, λnc = −1,
λha = −3, λct = −4, z = −5. The edges in G(A) are as follows: For each X ∈ {c, nc, ha, ct}
the nodes in NX are connected by one cycle of length |NX| whose edges all have weight λX.
Choose an arbitrary node iX in NX. There are 6 additional edges in G(A): The two edges
(ic, inc) and (inc, ic) with weight λnc, the two edges (inc, iha) and (iha, ic) with weight λct, and
the two edges (iha, ict) and (ict, iha) with weight z. Figure 4.1 depicts digraph G(A).

The cycle cover condition holds in G(A), and so A is visualized. Indeed, the cycle cover
condition trivially holds for all edges contained in a single node set NX and for the edges
of the cycles of length 2. But it also holds for the two edges (iha, ic) and (inc, iha) because
λnc > λct.

The critical digraph of A is induced by the node set Nc. This implies that the edge set
of Bnc is induced by Nnc ∪ Nha ∪ Nct, the edge set of Bha by Nha ∪ Nct, and the edge set of Bct

by Nct.

4.2 Applications

In this section, we apply our transience bounds to the applications presented in Section 2.2.
Because the matrices’ and vectors’ entries are often integers, we take a closer look: If A is

an integer matrix, i.e., all finite entries of A are integers, the term λ − λha or λ − λct cannot
become arbitrarily small: This is obvious when λha = −∞ or λct = −∞; otherwise, let C0 be
a critical cycle, and let C1 be a cycle such that λ0 = A(C1)/ℓ(C1). Then we have

λ − λ0 =
A(C0)ℓ(C1)− A(C1)ℓ(C0)

ℓ(C0)ℓ(C1)
,

and so
1

λ − λ0
≤ (n − n0) · n0 ≤ n2

4
, (4.16)

where n0 denotes the number of non-isolated nodes in G(B). It follows that, in case of integer
matrices, the transient is in O(‖A‖ · n3) for a given initial vector.
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4.2.1 Synchronizers

As an example, let us consider a network synchronizer in the “ℓ-sized cherry” digraph fam-
ily Hℓ,c, with ℓ ≥ 2 and c ≥ 1, introduced by Even and Rajsbaum [41]. Each weighted
digraph Hℓ,c contains n = 4ℓ nodes and is constructed as follows: Let Ĉ and C be two cy-
cles of length ℓ and ℓ + 1 respectively, with edge weights 3c, except for one link per cycle
with weight 3c + 1. There exists for both Ĉ and C a path of length ℓ to a distinct node s, and
an anti-parallel path back. Hereby the edges in the path from s to C and from s to Ĉ have
weight c, the edges in the path from Ĉ to s have weight 3c, and from C to s, 4c.

We observe that the nodes of Ĉ are the critical nodes, ‖A‖ = 3c, n = 4ℓ nc = ℓ, and
λ = 3c + 1/ℓ. Even and Rajsbaum’s bound is

(112c − 16)ℓ3 + (32 − 12c)ℓ2 + 8ℓ− 1 , (4.17)

resulting in an upper bound of 5711 on the transient in case of H3,2. It is λha = 3c + 1/(ℓ+ 1).
Moreover for the critical sub-digraph Gc, the maximum girth of strongly connected compo-
nents of Gc is ĝ = ℓ. Thereby we may bound the synchronizer’s transient with Theorem 4.3
by

max
{

4ℓ2 + ℓ , 3c(4ℓ3 + 3ℓ2 − ℓ
}

= 12cℓ3 + 9cℓ2 − 3cℓ (4.18)

resulting in an upper bound of 792 on the transient in case of H3,2.
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Since Even and Rajsbaum express transmission delays with respect to a discrete global
clock, all weights are integers. All our transience bounds are in O(‖A‖ · n3). The example
digraph family shows that this is asymptotically tight since Even and Rajsbaum proved that
the transient for digraph Hc,ℓ is in Ω(c · ℓ3) = Ω(‖A‖ · n3).

4.2.2 Cyclic Scheduling

We apply our transience bounds to a naturally arising special case of restrictions, namely
those whose direct dependencies in a given iteration reach back at most to the previous one,
and not further back (i.e., restrictions with binary heights). For this case, we are able to state
explicit upper bounds, and thereby asymptotic upper bounds, on the number of task execu-
tions from where on the schedule becomes periodic.

However, we cannot directly apply our transience bounds on the digraph G(A) obtained
from Gu, since G(A) is not necessarily strongly connected, as it is the case for the example in
Figure 2.2.

However, we present a transformation of Gu yielding a strongly connected digraph G(A)
in case of binary heights, and has the same earliest schedule as the original digraph Gu: For
every restriction between tasks i and j in Gu one can add the redundant restriction σ(i, t) ≥
σ(j, t − 1) + Pj without changing the earliest schedule, since σ(j, t) ≥ σ(j, t − 1) for all tasks j
and t ≥ 1. With this transformation we obtain:

Proposition 4.10. If Gu is well-formed, has binary heights, and contains all redundant restrictions,
then A is irreducible.

Proof. It suffices to show that whenever there is an edge from i to j in Gu, then this edge also
exists in G(A). Because Gu contains all redundant restrictions, if there exists an edge from i
to j, then there also exists an edge of height 1 from i to j. Hence there exists a walk of length 1
from i to j in Gu whose last (and only) edge has height 1. Hence, by definition of A, the
entry Ai,j is finite. This concludes the proof.

Figures 4.3 and 4.2.2 depict the transformed digraph Gu of the above example with redun-
dant restrictions and its corresponding weighted digraph G(A). Observe that, in contrast to
Figure 2.2, G(A) is strongly connected in Figure 4.2.2.

Because of (2.10) and Proposition 4.10 we may now directly apply our transience bounds
to (the strongly connected) digraph G(A), obtaining upper bounds on the transients of the
earliest schedule for Gu.

For the given example, ‖v‖ = 11, the critical cycle is from node 7 to 5 and back, λ = 6.5,
λha = 6, Bmax = 8, Amin = 1, ĝ = 2, γ̂ = 2, ˆind = 0, and we obtain a critical bound of 106.

Bounds in terms of the parameters of the original uniform graph Gu can be derived as well
by relating graph parameters of Gu to parameters of G = G(A). For that purpose, we denote
by δ(Gu) and ∆(Gu) the minimum and maximum weight of an edge in Gu, respectively. From
the definition of max-plus matrix A and initial vector v, it immediately follows that in case of
binary heights, n = |T |, ‖v‖ ≤ (|T | − 1) · ∆(Gu), Amax ≤ |T | · ∆(Gu), Amin ≥ δ(Gu),

λ(G) = max{p(C)/h(C) | C is a closed walk in Gu} , (4.19)

λha(A) is at most the second largest A(C)/h(C) of closed walks C in Gu, and ĝ is at most
the number of links with height 1 in closed walks C in Gu with maximum A(C)/h(C). As a
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consequence of the above bounds, the transient is in O(‖A‖ · |T |3) = O(|T |4), assuming con-
stantly bounded δ(Gu) and ∆(Gu). To the best of our knowledge, this is the first asymptotic
bound on the transient of an earliest schedule with tasks T and binary heights.

4.2.3 Link Reversal

In link reversal systems used for routing, we have λ = 0 and λha ≤ −1/(n − nc) ≤ −1/(n −
1). Since ĝ = 1, we obtain from Theorem 4.1, for n ≥ 3, that the termination time is at most
(n − 1)2, which improves on the asymptotic quadratic bound given by Busch and Tirtha-
pura [20].

If the undirected support of initial digraph G0 without the self-loop at the destination
nodes is a tree, we can use our bounds to give a new proof that the termination time of Full
Reversal routing is linear in n [25, Corollary 5]. In that particular case either λha = −1/2 or
λha = −∞. Theorem 4.1 yields the linear bound 2(n − 1), whereas Hartmann and Arguelles
arrive at 2n2.

In the scheduling case, the critical components have at least two nodes because there are
no self-loops. Malka and Rajsbaum [65, Theorem 6.4] proved by reduction to Timed Marked
Graphs that the transient is at most in the order of O(n4). Theorem 4.6, together with (4.16)
shows a transience bound of n2 · (n − 1)/4 = O(n3). Thus, our bounds allow to improve this
asymptotic result by an order of n.

In the case of Full Reversal scheduling on trees we again obtain a bound linear in n: In this
case it holds that λ = −1/2, and λha = −∞. Thus the critical bound is N. Further, Gc = G and
ĝ = 2. Theorem 4.1 thus imply that 2n − 4 is an upper bound on the transient of Full Reversal
scheduling on trees. By contrast Hartmann and Arguelles again obtain the quadratic bound
of 2n2.

4.3 Proof Strategy for Matrix Transients

This section describes our graph-based strategy to prove upper bounds on the transient of an
irreducible n × n max-plus matrix A.

We start by defining, for a set N of nonnegative integers and a pair of nodes (i, j), an N-
realizer for (i, j) to be any walk of maximum A-weight in the set of walks in W(i → j) with
length in N. As shown in the next proposition, of particular interest is the case of sets N of
the form

N
(t,π)
≥B = {s ∈ N0 | s ≥ B ∧ s ≡ t (mod π)} (4.20)

where B, n, and π are positive integers.

Theorem 4.11. Let A be an n × n max-plus matrix and let i, j ∈ [n]. If B and π are positive integers
such that for every integer t ≥ B, either

• there exists an N
(t,π)
≥B -realizer for (i, j) of length t or

• there exists no N
(t,π)
≥B -realizer for (i, j) at all,

then the sequence A⊗t
i,j is eventually periodic with period π and transient at most B.
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Proof. Let t ≥ B. If there is no N
(t,π)
≥B realizer, then clearly A⊗t

i,j = A⊗t+π
i,j = −∞.

So let Wt be an N
(t,π)
≥B -realizer for (i, j) of length t. Denote by X(t) the set of walks W

in W(i → j) with ℓ(W) ∈ N
(t,π)
≥B , and let x(t) be the maximum of values A(W) where W ∈

X(t). It follows that x(t) = A(Wt).
From t + π ≡ t (mod π) follows X(t + π) = X(t) and so x(t + π) = x(t). Moreover,

we have W t(i → j) ⊆ X(t) and W t+π(i → j) ⊆ X(t + π), which implies A⊗t
i,j ≤ x(t) and

A⊗t+π
i,j ≤ x(t + π). Conversely because Wt ∈ W t(i → j), we have A⊗t

i,j ≥ A(Wt) = x(t).

Similarly, A⊗t+π
i,j ≥ A(Wt+π) = x(t + π). Since x(t + π) = x(t), it follows that A⊗t

i,j = A⊗t+π
i,j .

This concludes the proof.

We say that a max-plus matrix A is normalized if λ(A) = 0. The sequence of powers of
a normalized irreducible max-plus matrix is eventually periodic without linear defect. The
normalization of a matrix A is the matrix Ā defined by Āi,j = Ai,j − λ(A). The normalization
of a max-plus matrix with λ(A) 6= −∞ is normalized. Its transient does not change when
passing to the normalization, nor does its critical digraph. Also, ‖Ā‖ = ‖A‖.

Based on Theorem 4.11, we now define a strategy for determining upper bounds on sys-
tem transients. The strategy includes the following parameters:

• a completely reducible sub-digraph H of the critical digraph Gc(A) that contains at
least one cycle of each critical component. For a node k of H, denote by Hk its strongly
connected component and by dk = γ(Hk) its cyclicity.

• integers BH
crit, BH,k

red , and BH,k
pump for all nodes k of H

We choose π = γ(H) to be the cyclicity of H, i.e., the least common multiple of the dk. Let B

be the maximum of BH
crit and the BH,k

red + BH,k
pump.

We want to show that the transient T(A) of A is at most B. Let t ≥ B and i, j ∈ [n].

1. Normalized matrix. Because neither our bounds nor the transients change when passing

to the normalization of A, we assume A to be normalized. Let W0 be an N
(t,π)
≥B -realizer

for (i, j) if it exists. If not, there is nothing to show.

2. Critical bound. Show that B ≥ BH
crit implies that the realizer W0 can be chosen to contain

at least one node of H. Let k be the first node of H on W0.

3. Walk reduction. Next we show that we can reduce W0, by removing subcycles and adding
critical cycles, to arrive at a new walk Ŵ0 that (a) contains the critical node k, (b) whose
length ℓ(Ŵ0) is in the same residue class modulo dk as ℓ(W0), and (c) ℓ(Ŵ0) is upper-

bounded by BH,k
red .

4. Pumping in the critical digraph. In this step, we completely walk Ŵ0 to length t by

adding a critical closed walk in Hk. This yields an N
(t,π)
≥B -realizer because removing

cycles at most increases the weight and adding a critical closed path does not change
the weight due to the normalization assumption, i.e., A(W) ≥ A(W0), which is the same
as A(W) = A(W0) because W0 is a realizer.

We show that there are closed walks at node k in H of length s for every multiple s of dk

larger or equal to BH,k
pump. If we set s = t − ℓ(Ŵ0), then s is a multiple of dk and is larger
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Figure 4.5: Pumping repetitively (left) and exploratively (right)

or equal to B− BH,k
red ≥ BH,k

pump. We can hence complete Ŵ0 by adding to it a critical closed
walk of length s to obtain a new walk W of length t from i to j.

Theorem 4.11 then shows that B is a bound on the transient.
To deduce the bounds we present in Section 4.7, we make the following choices for the

parameter H. The choices for the critical bound, the reduction bound, and the pumping
bound are more involved and, in fact, the heart of the proof.

4.4 Pumping in the Critical Digraph

This section is dedicated to step 4 of the proof strategy, i.e., how to pump in the critical di-
graph. Our ability to pump is limited to find closed walks in the sub-digraph H. We present
two possible, reasonable, and fundamentally different choices for H: the repetitive choice and
the explorative one.

In the repetitive case, we choose a shortest cycle in every critical component and define H
as their induced digraph. The index of convergence of all Hk are zero and we can immediately
pump by multiples of the girth dk = g(Hk) by inserting copies of the chosen cycle.

For the explorative case, we choose H = Gc(A) to be the whole critical digraph. Here, we
can pump by arbitrary multiples of the cyclicity of k’s critical component, provided they are
not smaller than the component’s index of convergence.

There is hence a trade-off between the two choices: In the repetitive case the index of
convergence of H is smaller, in fact zero, whereas in the explorative case the cyclicity dk is
smaller, which allows for a smaller walk reduction bound. Figure 4.5 illustrates the difference
between the two choices.

We are thus led to introduce the parameters ĝ(A), the maximum girth of critical compo-
nents of A, the parameter γ̂(A), the maximum cyclicity of critical components of A, and the
parameter ˆind(A), the maximum index of convergence of critical components of A. In fact,

ˆind(A) = ind(Gc(A)).
In any case, we will choose the pumping bound to satisfy

BH,k
pump ≥ dk ·

⌈

ind(Hk)

dk

⌉

− dk + 1 , (4.21)

which is always upper-bounded by the index of convergence ind(Hk). In the repetitive case,
where ind(Hk) = 0, it is equal to −dk + 1, and hence can even be negative. While this seems
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bizarre, it is not counter-intuitive because the pumping bound in step 4 only has to guarantee
that one is able to pump in multiples of dk greater or equal to the bound. Thus, even if

BH,k
pump = −dk + 1, every multiple of dk greater or equal to BH,k

pump is nonnegative. The general
reasoning for the choice of the pumping bound in (4.21) is the following elementary lemma.

Lemma 4.12. If a ≡ b (mod d), then a ≤ b if and only if a − d + 1 ≤ b.

Hence, by the lemma, every multiple s of dk greater or equal to BH,k
pump is greater or equal

to ind(Hk) because both dk · ⌈ind(Hk)/dk⌉ and s are congruent 0 modulo dk.

4.5 Walk Reductions

This section concerns step 3 of the proof strategy, i.e., we give choices for BH,k
red . To do this, we

deal with walk reductions in a more general context: Given a sub-digraph H of G, we seek to
reduce the walks that visits H by removing cycles and inserting cycles of H in such a way that
the reduced walk’s length is lower than some threshold while satisfying length congruence
and connectedness conditions.

We introduce two notions of “walk reduction thresholds” that can be both used to give

a possible choice for the reduction bound BH,k
red in the proof strategy. The first one is more

general, while the second one is more tailored to our specific proof strategy for transience
bounds and makes use of the fact that we assume k to be the first node of H on walk W in
step 2 of the proof strategy. This amounts to a less natural definition of the second walk
reduction that has the upside that we can formally fix node k once and for all in the walk
reductions. The fact that we assume that it appears before all other occurrence of nodes of H
yields a sharper bound with one of our walk reduction methods. So, while theoretically we
only need the second definition to prove our transience bounds for max-plus matrices, the
first, more natural, definition, on the other hand, is of its own graph-theoretic interest.

Definition 4.13 (Walk reduction threshold). Let H be a sub-digraph of G, k a node of H, and d

a positive integer. The walk reduction threshold Td,k
red(G, H) is the smallest nonnegative integer T

for which the following holds: For all walks W ∈ W(i
k−→ j) there is a walk Ŵ ∈ W(i

k−→ j)
obtained from W by removing cycles and possibly inserting cycles of H such that ℓ

(

Ŵ
)

≡
ℓ (W) (mod d), where d is the cyclicity of Hk, and ℓ

(

Ŵ
)

≤ T.

We can choose BH,k
red = Tred(G(A), H) in the proof strategy.

We will present one walk reduction method, the “Arithmetic Method”, that makes use of
the fact that the fixed node k in step 2 is the first one of H on the considered walk. To fully
utilize this method, we also give a modified definition of the walk reduction threshold that
restricts k to be the first node of H on walk W:

Definition 4.14 (Modified walk reduction threshold). Let H be a sub-digraph of G, k a node

of H, and d a positive integer. The modified walk reduction threshold T̃d,k
red(G, H) is the smallest

nonnegative integer T for which the following holds: For all walks W ∈ W(i
k−→ j) on which k

is the first node of H there is a walk Ŵ ∈ W(i
k−→ j) obtained from W by removing cycles and

possibly inserting cycles of H such that ℓ
(

Ŵ
)

≡ ℓ (W) (mod d) and ℓ
(

Ŵ
)

≤ T.
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Here we can choose BH,k
red = T̃dk ,k

red (G(A), H) in the proof strategy.
The modified walk reduction threshold is never larger than the ordinary walk reduction

threshold because it constrains the considered walks more, the rest of the definition being
equal.

In the rest of this section, we give three ways to bound the walk reduction thresholds; two
for the first threshold and one for the modified one. Each of the three walk reduction methods
has its strengths and weaknesses. The first and second method only remove cycles; the first
one even leaves the order of nodes on the walk intact, while the second one does not.

We dub the first method “Repeated Cycle Removal” and we present it in Section 4.5.1.
The advantage of leaving the order of nodes intact while reasoning about the structure of the
reduced walk is that we will have a description of the walk in terms of a bounded number
of alternating paths and cycles. This allows the use of the cab driver’s diameter and the
circumference as a parameter.

However, if all one has are the two trivial bounds cdd(G) ≤ n − 1 and cf(G) ≤ n, then
the second method is strictly better. We call it the “Arithmetic Method” and present it in
Section 4.5.2. It proceeds by observing that a walk necessarily includes a closed subwalk
whose length is a positive multiple of d as soon as there is a node that appears at least d + 1
times on the walk. By splitting the walk into two parts, one up to k and one from k on, and
using the observation on each of the two parts separately, one can show a bound on the walk
reduction threshold. By a closer inspection of the argument, we also find a sharper bound
on the modified walk reduction threshold. Because of the way the proof is constructed, we
do not obtain a description in terms of alternating paths and cycles, and can therefore not
introduce the cab driver’s diameter or the circumference as a parameter in the bound.

The third method, the “Cycle Decomposition” method presented in Section 4.5.3, is similar
to the technique used in Section 3.2.2 to prove the generalization of Wielandt’s bound in the
case of the existence of a critical Hamiltonian cycle. In a similar vein, we prove an upper
bound on the walk reduction threshold for the case that the sub-digraph H is induced by a
Hamiltonian cycle. The resulting bound is strictly better than the other two bounds in this
case.

4.5.1 Walk Reduction by Repeated Cycle Removal

Given a walk W, a positive integer d, and a node k of W, we define a reduced walk, denoted
Redd,k(W), such that (a) it contains node k and has the same start and end nodes as W, (b)
its length is in the same residue class modulo d as W’s length, and (c) its length is bounded
by (d + 1)cdd(G) + (d − 1)cf(G). Properties (a) and (b) can be achieved by removing a col-
lection of cycles from W whose combined length is divisible by d and whose removal retains
connectivity to k. The key point of the reduction is that we can iterate this removal until the
resulting length is bounded as demanded by (c).

We call a finite, possibly empty, sequence of nonempty subcycles S = (C1, C2, . . . , Cn) a
cycle pattern of a walk W if there exist walks U0, U1, . . . , Un such that

W = U0 · C1 · U1 · C2 · · ·Un−1 · Cn · Un . (4.22)

The choice of the Um’s in (4.22) may be not unique, and we fix some global choice function to
make it deterministic. Then we define the removal of S from W as

Rem(W,S) = U0 · U1 · · ·Un . (4.23)
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Figure 4.6: Structure of the reduced walk Ŵ = Redd,k(W)

The walks W and Rem(W,S) have the same start and end nodes. Furthermore the length
satisfies ℓ

(

Rem(W,S)
)

= ℓ(W)− ℓ(S) where ℓ(S) = ∑C∈S ℓ(C). In particular, Rem(W,S) =
W if and only if ℓ(S) = 0, i.e., S is the empty cycle pattern.

Given any node k of a walk W, let Sk(W) denote the set of cycle pattern S of W whose
removal does not impair connectivity to k, i.e., k is a node of Rem(W,S). Further for any
positive integer d, define Sd,k(W) as the subset of cycle pattern S ∈ Sk(W) that, in addition,
leave the length’s residue class modulo d intact, i.e., ℓ(S) ≡ 0 (mod d). The set Sd,k(W) is not
empty, because k is a node of W and we can hence choose S to be the empty cycle pattern.

Choose S ∈ Sd,k(W) such that ℓ(S) is maximal. There may be several possible choices
for S , and we again fix some global choice function to make the choice deterministic; then set

Stepd,k(W) = Rem(W,S) . (4.24)

The limit
Redd,k(W) = lim

t→∞
Stept

d,k(W) (4.25)

exists because the sequence of walks (Stept
d,k(W))t≥0 is stationary after at most ℓ(W) steps,

and we call it the (d, k)-reduction of W. More specifically, Redd,k(W) = W if and only if Sd,k(W)
is reduced to the sole empty cycle pattern. The walks W and Redd,k(W) have the same start
and end nodes. Also, k is a node of Redd,k(W) and ℓ

(

Redd,k(W)
)

≡ ℓ(W) (mod d).

Theorem 4.15. Let G be a digraph. For each positive integer d and each node k, the length of the
(d, k)-reduction of any walk W containing node k satisfies

ℓ
(

Redd,k(W)
)

≤ (d + 1)cdd(G) + (d − 1)cf(G) . (4.26)

Proof. We denote Ŵ = Redd,k(W). By definition of the (d, k)-reduction, Redd,k(Ŵ) = Ŵ. Let S
be any cycle pattern of Ŵ in Sk(Ŵ), and let n be the number of cycles of S . We first show that
n ≤ d − 1. Indeed, suppose for contradiction that n ≥ d. Then Lemma 3.15 implies that there
exists a nonempty subsequence of S that is in Sd,k(Ŵ), which contradicts Redd,k(Ŵ) = Ŵ.

Now let us choose S in Sk(Ŵ) with maximal ℓ(S). If S = (C1, C2, . . . , Cn), then there exist
walks U0, U1, . . . , Un such that

Ŵ = U0 · C1 · U1 · C2 · · ·Un−1 · Cn · Un . (4.27)

By definition of Sk(Ŵ), k is a node of Rem(Ŵ,S). Hence there exists some index r such
that k is a node of Ur. Each Um with m 6= r is a (possibly empty) path, because otherwise
we could add a nonempty subcycle of Um to S , a contradiction to the maximality of ℓ(S).
Similarly, if Ur = W1 ·W2 such that k is the end node of W1, then both W1 and W2 are (possibly
empty) paths. Hence, apart from the at most (d − 1) cycles in S , the reduced walk Ŵ consists
of at most (d + 1) subpaths. Its structure is shown in Figure 4.6.
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This bound on the length of the reduced walk gives the following bound on the walk
reduction threshold:

Corollary 4.16. We always have Td,k
red(G, H) ≤ (d + 1)cdd(G) + (d − 1)cf(G). If n is the number

of nodes of G, then Td,k
red(G, H) ≤ (d − 1) + 2d(n − 1).

4.5.2 Walk Reduction by Arithmetic Method

We begin with the observation that there is a closed subwalk whose length is a positive mul-
tiple of d as soon as there is one node that appears at least d + 1 times in the walk. It is the
key lemma in the theorem that follows.

Lemma 4.17. Let d ∈ N and let W ∈ W(i → j). Then there exists a walk W ′ ∈ W(i → j)
obtained from W by removing cycles such that ℓ (W ′) ≡ ℓ (W) (mod d) and each node appears at
most d times in W ′.

Proof. Let i0, i1, . . . , iL be the sequence of nodes of W.
If a given node appears twice, first as ia and then as ib and if a ≡ b (mod d), then the

subwalk defined by i0, · · · , ia, ib+1, · · · , iL is strictly shorter than W and has the same length
modulo d.

Iterating this process, we get a sequence of subwalks of W. Since the sequence of length is
strictly decreasing, the sequence is finite and we denote the last walk by W ′.

Obviously, ℓ (W ′) ≡ ℓ (W) (mod d) and a node does appear twice as ia and ib only if
a 6≡ b (mod d), so the pigeonhole principle implies that it appears at most d times; otherwise
there would exist ia and ib with a ≡ b (mod d).

We can now prove the following upper bound on the modified walk reduction threshold.
Note that the bound is decreasing in the number of nodes of the sub-digraph H.

Theorem 4.18. If G has n nodes and k is a node of H, then T̃d,k
red(G, H) ≤ (d + 1)n − |V(H)| − 1.

Proof. Let W ∈ W(i
H−→ j) and let k be the first node of H appearing on W.

We proceed with the following steps:

1. Let W1 be the shortest prefix of W from i to k, and let W2 be the remaining subwalk. So
we have

W1 ∈ W(i → k), W2 ∈ W(k → j), ℓ (W1) + ℓ (W2) = ℓ (W) (4.28)

2. As long as there is a node l that appears twice in W1 and at least once in W2, we can
write W1 = U1 · U2 · U3 and W2 = V1 · V2, where U1, U2, V1 end with l and U2, U3, V2

start with l. Thus, we can replace W1 by U1 · U3 and W2 by V1 · U2 · V2. Equation (4.28)
still holds, but now l appears only once in W1. Step 2 is over when all nodes that appear
more than once in W1 do not appear in W2. Let us denote the resulting walks by W3

and W4 respectively.

3. Apply Lemma 4.17 to W3 and W4, obtaining W ′
1 and W ′

2 respectively.

4. Set Ŵ = W ′
1 · W ′

2.

Obviously, ℓ
(

Ŵ
)

≡ ℓ (W1) + ℓ (W2) ≡ ℓ (W) (mod d). Now we take a node l of V and
bound the number of its appearances.
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• If l is a node of W ′
2, then it is also a node of W4, it appears at most once in W3, thus also

in W ′
1. Therefore, l appears at most d + 1 times in Ŵ.

• If l is not a node of W ′
2, then it appears only in W ′

1, thus at most d times.

• If l ∈ V(H) \ {k}, then we have a sharper bound since it only appears in W ′
2: It appears

at most d times.

• Node l = k appears only once in W ′
1; at the end. Thus k also appears at most d times

because it appears at most d times in W ′
2.

In summary, nodes of H appear at most d times, all other nodes at most d + 1 times. The total
number of appearances of all nodes in Ŵ is hence at most d · |V(H)|+ (d + 1)(n − |V(H)|) =
(d + 1)n − |V(H)|, so ℓ

(

Ŵ
)

is bounded by (d + 1)n − |V(H)| − 1 as claimed.

4.5.3 Walk Reduction by Cycle Decomposition

In this subsection, we use the same technique used in Section 3.2.2 to prove upper bounds on
the walk reduction threshold.

Theorem 4.19. Let Z be a cycle of G and k a node of Z. Then, if n denotes the number of nodes of G,
we have:

T
ℓ(Z),k
red (G, Z) ≤ (n − 1) cf(G) + ℓ (Z) (4.29)

This same proof method also leads to:

Theorem 4.20. If Z is a Hamiltonian cycle of G. Then, if n denotes the number of nodes of G, we

have: Tn,k
red(G, Z) ≤ n2 − n + 1.

We prove the two theorems in the rest of this subsection.

To any walk W ∈ W(i
k−→ j), we apply the following procedure.

1. We choose a decomposition of the walk W into a path P and a collection of cycles Zα for
α ∈ S.

We denote by nW the number of nodes in the walk’s multigraph M(W) and by cddW

the maximum length of a path in M(W).

2. We take a subset R1 of S of smallest cardinality such that M(P) ∪ M(Z) ∪⋃

α∈R1
M(Zα)

is connected and contains all nodes appearing in W. We have |R1| ≤ nW − ℓ (Z)− ℓ (P)
because the connection of M(P) ∪ M(Z) with all the nodes of W can be ensured by
adding at most nW − ℓ(Z)− ℓ (P) edges of W to M(P) ∪ M(Z), and hence by adding to
it at most nW − ℓ(Z)− ℓ (P) of the cycles Zα.

3. Let R2 be a result of recursively removing from S \ R1 sets of indices whose correspond-
ing cycles have a combined length that is a multiple of ℓ (Z). By Lemma 3.15, |R2| ≤
ℓ (Z)− 1. Let R = R1 ∪ R2 and set cfW = maxα∈R ℓ (Zα). It is |R| ≤ nW − ℓ (P)− 1.

4. If M0 = M(P) ∪ ⋃

α∈R M(Zα) is connected, then we choose walk Ŵ ∈ W(i
k−→ j) such

that M(Ŵ) = M0.
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5. Otherwise, we choose Ŵ ∈ W(i
k−→ j) such that M(Ŵ) = M0 ∪ M(Z).

By construction, ℓ
(

Ŵ
)

≡ ℓ (W) (mod ℓ (Z)) in both cases. We now bound the length

of Ŵ: If M(W) does not contain any cycles, then R = ∅ and thus ℓ
(

Ŵ
)

≤ ℓ (P) ≤ nW − 1. We
hence assume that M(W) contains cycles in the rest of the proof. In particular, this assumption
means that cfW ≥ 1.

If M0 is connected, then

ℓ
(

Ŵ
)

= ℓ (P) + ∑
α∈R

ℓ (Zα) ≤ ℓ (P) + cfW ·(nW − ℓ (P)− 1)

≤ (nW − 1) · cfW +ℓ (P) · (1 − cfW) ≤ (nW − 1) · cfW ,
(4.30)

which gives
ℓ
(

Ŵ
)

≤ (n − 1) cf(G) . (4.31)

If M0 is not connected, then we have, in the same vein,

ℓ
(

Ŵ
)

≤ (nW − 1) cfW +ℓ (Z) ≤ (n − 1) cf(G) + ℓ (Z) , (4.32)

which completes the proof of Theorem 4.19.
On the other hand, there is some α̂ ∈ R such that ℓ(P) + ℓ(Zα̂) ≤ nW − 1, because other-

wise every Zα with α ∈ R would share a node with P. Because |R \ {α̂}| ≤ nW − ℓ (P)− 2, we
have

ℓ(Ŵ) = ℓ(Z) + ℓ(P) + ℓ(Zα̂) + ∑
α∈R
α 6=α̂

ℓ(Zα)

≤ ℓ (Z) + nW − 1 + (nW − ℓ (P)− 2) · nW

≤ nW · (nW − 1) + ℓ (Z)− 1 .

(4.33)

If ℓ(Z) = n, i.e., Z is Hamiltonian, then R1 is empty and the cycles in R2 have length at
most n − 1. So we obtain ℓ

(

Ŵ
)

≤ (n − 1)(n − 1) + ℓ (Z) = n2 − n + 1 in the same way
as (4.33). This proves Theorem 4.20.

4.6 Critical Bound

In this section, we seek to give possible choices for the critical bound BH
crit. We hence want

to show the existence of realizers that visit H for sufficiently lengths. Formally, define the H-
criticality threshold of A, written as TH

crit, to be the smallest T such that, whenever there exists

an N
(t,π)
≥T -realizer of (i, j), then there also exists N

(t,π)
≥T -realizer of (i, j) that contains a node

of H.
We prove bounds on the H-criticality threshold by reducing thresholds for smaller H to

that of larger H. Clearly, a priori, the criticality thresholds of larger H are lower than that
of smaller H. In our proof strategy, we decided to choose H as a completely reducible sub-
digraph of the critical digraph that contain at least one cycle of every critical component. We
call each such H a representing sub-digraph of the critical digraph.

By repeating a critical closed walk connecting an arbitrary critical node with a node in H,
we can see that the criticality threshold of every representing sub-digraph is upper bounded
by the threshold of the critical digraph:

Lemma 4.21. If H contains at least one node of every critical component, then TH
crit ≤ TGc

crit.
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4.6.1 Avoiding Super-Digraphs of the Critical Digraph

In this subsection we will consider a super-digraph G0 of the critical digraph and study the
G0-criticality threshold by comparing weights of walks that do not visit G0 to ones that do. In
subsequent subsections, we show how to derive G0-criticality thresholds for smaller G0 from
the results of this section.

Theorem 4.22. Let A be an irreducible n× n max-plus matrix, let G0 be a super-digraph of the critical

digraph Gc(A), and let B be defined as in (4.1). If λ(B) = −∞, then TG0
crit(A) ≤ cdd(G(B)) + 1 ≤

n − 1. Otherwise,

TG0
crit(A) ≤ Tred(G(A) , H) · (λ(A)− Amin) + cdd(G(B)) · (Bmax − λ(B))

λ(A)− λ(B)
(4.34)

for all representing sub-digraphs H of Gc(A), where Amin is the minimal finite entry of A and Bmax

is the maximum (necessarily finite) entry of B.

Proof. Because neither the critical threshold nor the bound changes, we assume A to be nor-
malized and λ(B) to be finite because the other case is easy. This implies that Bmax ≥ λ(B)
and λ(A) = 0 > λ(B) ≥ Amin. Set GA = G(A), GB = G(B), and Gc = Gc(A).

Denote by T the right-hand side of (4.34). Assume by contradiction that there exist i, j and

a t ≥ T such that all N
(π,t)
≥T -realizers for (i, j) are walks in G(B) and that there is one.

Let V be such a realizer. By reducing V to a path we see that it has weight at most

A(V) ≤ cdd(GB) · (Bmax − λ(B))− t · λ(B) . (4.35)

On the other hand, there is some walk W0 ∈ W(i
H−→ j) with ℓ (W0) ≡ t (mod π). By

definition of the walk reduction threshold, there is a strongly connected component Hk of Gc

and a walk Ŵ0 ∈ W(i
Hk−→ j) obtained from W0 by removing cycles and adding cycles in Hk

such that ℓ
(

Ŵ0

)

≡ ℓ (W0) ≡ t (mod dk) and ℓ
(

Ŵ0

)

≤ Tred(GA, Gc). Because dk is the cyclicity

of k’s component Hk, there is a closed walk in H that can be added to Ŵ0 to obtain a walk W
with ℓ (W) ≡ t (mod π), ℓ (W) ≥ T, and

A(W) = A(Ŵ0) ≥ Amin · ℓ
(

Ŵ0

)

≥ Amin · Tred(GA, Gc) . (4.36)

By the contradictory assumption, because W contains nodes of Gc and hence of G0, W is

not a N
(π,t)
≥T -realizer, i.e., A(W) < A(V). But this means

0 < A(V)− A(W)

≤ cdd(GB) · (Bmax − λ(B))− t · λ(B) + Tred(GA, Gc) · (−Amax) ,
(4.37)

which implies

t <
Tred(GA, Gc) · (−Amax) + cdd(GB) · (Bmax − λ(B))

−λ(B)
= T , (4.38)

a contradiction to t ≥ T.
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We can also follow a different, more constructive way to show existence of a realizer that
visits G0. In the proof of the previous theorem, we also constructed a realizer, but we did
not pay all too much attention to its length during construction because we then reduced its
length using the walk reduction threshold. In the next theorem, we do a “hands-on” con-
struction of the realizer. The resulting bound is often worse than that of Theorem 4.22, but
one can construct examples where it is better.

Theorem 4.23. Let A be an irreducible n× n max-plus matrix, let G0 be a super-digraph of the critical

digraph Gc(A), and let B be defined as in (4.1). If λ(B) = −∞, then TG0
crit(A) ≤ cdd(G(B)) + 1 ≤

n − 1. Otherwise,

TG0
crit(A) ≤ ‖A‖ · cdd(G(B)) + diam(G(A)) + g(Gc(A)) + ind(G(A))

λ(A)− λ(B)
. (4.39)

In particular, TG0
crit(A) ≤ n2 · ‖A‖/(λ(A)− λ(B)).

Proof. Note that the terms in the theorem statement remain unchanged when passing to the
normalization of A. We hence assume that A is normalized.

Denote by Amax and Amin the maximum and minimum finite entries of A, respectively. By
definition, ‖A‖ = Amax − Amin. Set G = G(A), GB = G(B), and Gc = Gc(A).

If λ(B) = −∞, then G(B) does not contain an cycles and hence the maximum length of
walks in G(B) is cdd(G(B)), which is at most n − |V(G0)| − 1 ≤ n − 2. In summary, every
walk in G(A) of length at least cdd(G(B)) + 1 ≤ n− 1 is not in G(B) and thus contains a node
of G.

In the rest of the proof, we hence consider the case λ(B) 6= −∞. The normalization as-
sumption λ(A) = 0 implies Amin ≤ λ(B) < 0 ≤ Amax.

Denote by T the right-hand side of (4.39). Assume by contradiction that there exist i, j and

a t such that all N
(π,t)
≥T -realizers for (i, j) are walks in G(B) and that there is one.

Let V be such a realizer. By reducing V to a path we see that it has weight at most

A(V) ≤ T · λ(B) + ‖A‖ · cdd(GB) . (4.40)

We now construct a walk W in G(A) from i and j of length ℓ (V) and show A(W) > A(V).
This then shows the theorem in the case λ(B) 6= −∞. Let Z be a shortest critical cycle. By
the normalization assumption, A(Z) = 0. Further let k be the start node of Z and let W1

be a shortest path from i to k. Because W1 is a shortest path, ℓ (W1) ≤ diam(G). Set r =
⌊(

ℓ (V)− ℓ (W1)− ind(G)
)

/ℓ(Z)
⌋

. We have

ℓ (V)− ℓ (W1 · Zr) = ℓ (V)− ℓ (W1)− r · ℓ (c)
≤ ind(G(A)) + ℓ (c)− 1

≤ ind(G) + g(Gc)− 1

(4.41)

since Z a shortest cycle in Gc.
Because also ℓ (V)− ℓ (W1 · Zr) ≥ ind(G), there exists a walk W2 whose length is equal to

ℓ (V)− ℓ (W1 · Zr) from k to j: Denote by γ the cyclicity of G. By the definition of ind(G), there
exists a walk W2 from k to j of such that ℓ (V)− ℓ (W1 · Zr · W2) is between 0 and γ − 1. But
then, because both V and W1 · Zr ·W2 share their start and end nodes, ℓ (V) ≡ ℓ (W1 · Zr · W2)
(mod γ), hence ℓ (V)− ℓ (W1 · Zr · W2) is zero.
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Figure 4.7: Walk W in proof of Theorem 4.23

Define the walk W = W1 · Zr · W2, which is depicted in Figure 4.7. Its weight satisfies

A(W) = A(W1) + A(W2) ≥ Amin ·
(

ℓ (W1) + ℓ (W2)
)

≥ −‖A‖ ·
(

diam(G) + g(Gc) + ind(G)
)

.
(4.42)

Together with (4.40), the contradictory assumption A(W) < A(V) yields

T < ‖A‖ · cdd(GB) + diam(G) + g(Gc) + ind(G)

−λ(B)
, (4.43)

a contradiction to the definition of T. This concludes the proof of (4.39).
It remains to show that cdd(GB) + diam(G) + g(Gc) + ind(G) ≤ n2. We have already

seen that cdd(GB) ≤ n − |V(G0)| − 1. Trivially, diam(G) ≤ n − 1. Moreover, because Gc is a
sub-digraph of G0, we have g(Gc) ≤ |V(G0)|. If we upper-bound ind(G) with Theorem 2.9,
we deduce ind(G) ≤ n2 − 2n + 2. Putting all these estimates together, we have

cdd(GB) + diam(G) + g(Gc) + ind(G)

≤n − |V(G0)| − 1 + n − 1 + |V(G0)|+ n2 − 2n + 2 = n2 .
(4.44)

This concludes the proof.

4.6.2 Hartmann-Arguelles Scheme

Lemma 4.24. We have TH
crit ≤ max

{

TGha
crit , Trp(G, H)

}

for every representing sub-digraph H of Gc

where Trp(G, H) is the maximum of values

T̃dk ,k
red (G, H) + dk ·

⌈

ind(Hk)

dk

⌉

− dk + 1 (4.45)

where k is a node of H, Hk is k’s strongly connected component in H, and dk is the cyclicity of Hk.

Proof. We can assume without loss of generality that A is normalized and visualized because
the set realizers does not change when passing to the visualization. Denote by T the right-
hand side of the claimed inequality.

Let i and j be two nodes of G(A), t ∈ N0, and let V be a N
(π,t)
≥T -realizer for (i, j). Then,

because T ≥ TGha
crit , there exists a N

(π,t)
≥T -realizer W0 for (i, j) that contains a node of Gha.
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Denote the maximum weight of edges in W0 by µ(W0) and define the digraph

G̃ =

{

Gha if µ(W0) ≤ µha ,

Tha(µ(W0)) otherwise .
(4.46)

By the definition of Hartmann-Arguelles threshold digraphs, Gc ⊆ G̃ ⊆ Gha. In both cases
of (4.46), walk W0 contains a node l of digraph G̃, which is completely reducible due to the
assumed max-balancing of A.

Let W0 = W1 ·W2 with W1 ending at node l. By definition of G̃, there exists a critical node k
of H in the same strongly connected component of G̃ as k. Let V1 be a walk in G̃ from l to k
and V2 be a walk in G̃ from k to l. Set V = V1V2 and W3 = W1 · Vπ · W2. We have ℓ (W3) ≡ t
(mod π).

By definition of the walk reduction threshold, there exists a walk Ŵ3 ∈ W(i
k−→ j) obtained

from W3 by removing cycles and possibly inserting cycles in H such that ℓ
(

Ŵ3

)

≤ Tdk ,k
red (G, H)

and ℓ
(

Ŵ3

)

≡ ℓ (W3) ≡ t (mod dk). By Lemma 4.12, we have t− ℓ
(

Ŵ3

)

≥ ind(Hk), and there

hence exists a critical closed walk in H at node k whose addition to Ŵ3 yields a walk W with
ℓ (W) = t.

Since A is max-balanced and λ(A) = 0, all edges have nonpositive weights, and the
weight of each edge of G̃ is not smaller than that of any edge of W. Each edge of W is either
removed, kept, or replaced by an edge of G̃ in W̃, thus we conclude that A(W) ≥ A(W0).

Hence W is also a N
(π,t)
≥T -realizer, but one that includes a node of H.

4.6.3 Cycle Threshold Scheme

A finite sequence of cycles Z1, . . . , Zm in G0 is called a staircase in G0 if, for all 1 ≤ r ≤ m − 1,
Zr and Zr+1 share a node, A(Zr)/ℓ (Zr) ≤ A(Zr+1)/ℓ (Zr+1) and, moreover, the cycle mean
of Zr+1 is the greatest among all the cycles sharing a node with Zr.

Lemma 4.25. Let µ > µct and Z be a cycle in Tct(µ) or µ = µct and Z be a cycle in Gct(µ) with
A(Z)/ℓ (Z) = µ. Then there exists a staircase Z1, . . . , Zm in Tct(µ) such that Z1 = Z and Zm is
critical.

Proof. Suppose by contradiction that no such staircase exists. Let Z1, . . . , Zm be a staircase
in Tct(µ) such that Z1 = Z and A(Zm)/ℓ (Zm) is maximal.

Denote µ′ = A(Zm)/ℓ (Zm), so µ′ < λ(A). If the strongly connected component of Tct(µ′),
in which Zm lies, contains a cycle of mean weight strictly greater than µ′, then we can build
a staircase with a greater cycle mean of the final cycle, a contradiction. So that component of
Tct(µ′) does not contain a cycle of mean weight strictly greater than µ′, which is a contradic-
tion to the definition of µct and the fact that µ′ ≥ µct. Thus we must have µ′ = λ(A).

Lemma 4.26. We have TGc
crit ≤ max

{

TGct
crit , T′

rp

}

where T′
rp is the maximum of the values

T̃
ℓ(Z),k
red + 1 (4.47)

where Z is a cycle of G(A) and k is a node of Z.
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Proof. We assume without loss of generality that A is normalized. Denote by T the right-hand
side of the claimed inequality.

Let i and j be two nodes of G(A), t ≥ T, and let V be a N
(π,t)
≥T -realizer for (i, j). Then,

because T ≥ TGct
crit , there exists a N

(π,t)
≥T -realizer W0 for (i, j) that contains a node of Gct.

Denote by ν(W) the largest cycle mean of cycles in the walk’s multigraph M(W). We
assume in the following that ν(W) is maximal among all W ∈ W t(i → j) with A(W) = A⊗t

i,j .

We prove the lemma by showing ν(W) = 0. Assume by contradiction that ν(W) < 0, and
define

G̃ =

{

Gct if ν(W) ≤ µct ,

Tct(ν(W)) otherwise .
(4.48)

By the definition of cycle threshold digraphs, Gc ⊆ G̃ ⊆ Gct.

By Lemma 4.25, there exists a staircase Z1, . . . , Zm in G̃ such that Z1 has A(Z1) = ν(W)
and shares a node k1 with W, and Zm is critical. We inductively define walks W1, . . . , Wm as
follows: Set W1 = W. For every 2 ≤ r ≤ m, let kr be a node in both Zr−1 and Zr. These exist
by definition of a staircase.

Let 1 ≤ r < m and assume that Wr is already defined. There is a walk Ŵr ∈ W(i
kr−→ j)

with ℓ
(

Ŵr

)

≡ t (mod ℓ (Zr)), obtained from Wr by removing cycles and inserting copies
of Zr such that

ℓ
(

Ŵr

)

≤ T̃
ℓ(Zr),kr

red (G, Zr) ≤ t − 1 . (4.49)

We hence have t − ℓ
(

Ŵr

)

> 0. Thus, the number τ = (t − ℓ
(

Ŵr

)

)/ℓ (Zr) is a positive integer.

Now define Wr+1 as walk Ŵr after inserting τ copies of Zr, to have ℓ (Wr+1) = t. Thus Zr is a
subwalk of Wr+1 and hence contains node kr+1. The walk Wm contains a critical node.

We now show that A(Wr+1) ≥ A(Wr). For this we will prove by induction that, for all
1 ≤ r ≤ m − 1, the mean weight of Zr is not less than that of any cycle of M(Wr). This is
true for r = 1 by definition of G̃. Observe that the cycles of M(Wr+1) are (1) Zr and cycles
using the edges of Zr, (2) cycles that were already in M(Wr). For the latter cycles we use the
inductive assumption, while the cycles using edges of Zr share a common node with it and
hence their mean weight does not exceed that of Zr+1 by the definition of a staircase.

Setting W̃ = Wm we obtain W̃ ∈ W t(i
Gc−→ j) and A(W̃) ≥ A(W), i.e., W̃ is an N

(π,t)
≥T -

realizer for (i, j).

Lemma 4.27. We have TGc
crit ≤ max

{

TGct
crit , Wi(n)

}

where n is the number of nodes of G(A).

Proof. We use the same proof as for Lemma 4.26, except that we specifically use the cycle
decomposition walk reduction in the definition of Ŵr and that we demand that Zm be the first
critical cycle in the staircase.

The latter assumption guarantees the number nWr
of distinct nodes of Wr is not n, that is,

at most n − 1, for all 1 ≤ r ≤ m − 1. Plugging this estimate into inequality (4.33) and using
ℓ (Zr) ≤ n, we get that the length of the reduced walks Ŵr is at most

ℓ
(

Ŵr

)

≤ (n − 1)(n − 2) + n − 1 = n2 − 2n + 1 , (4.50)

which is at most t − 1 because t ≥ Wi(n) = n2 − 2n + 2.

The rest of the proof is the same as that of Lemma 4.26.
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4.7 Putting it Together

Proof of Theorem 4.1. We use the proof strategy in Section 4.3. For all four claimed bounds,
we list our parameter choices and the walk reductions used. We use Theorem 4.22 with the
Hartmann-Arguelles scheme G0 = Gha for all four bounds. Note that cdd(G(Bha)) is lower
than the first term in the maximum of all four claimed bounds.

For bounding the walk reduction threshold for the criticality threshold in Theorem 4.22,
the bound, BT, is larger or equal to cdd(BG) in all four claimed bounds. We use this fact to
bound the second term, R, in the maximum of the claimed bounds by

R =
BT(λ(A)− Amin) + cdd(GB)(Bmax − λ(B))

λ(A)− λ(B)

=
(BT − cdd(GB))(λ(A)− Amin) + cdd(GB)(λ(A)− Amin + Bmax − λ(B))

λ(A)− λ(B)

=
(BT − cdd(GB))(λ(A)− Amin) + cdd(GB)(Bmax − Amin)

λ(A)− λ(B)
+ cdd(GB)

≤ BT · ‖A‖
λ(A)− λ(B)

+ cdd(GB)

(4.51)

because λ(A), Bmax ≤ Amax and BT ≥ cdd(GB).
For (4.2), we choose H = Gc(A) for bounding the walk reduction threshold in the critical

bound Theorem 4.22, and choose H repetitively and use Theorem 4.18 for bounding the walk

reduction threshold for the reduction bound BH,k
red and in Lemma 4.24.

For (4.3), we choose H = Gc(A) for bounding the walk reduction threshold in the critical
bound Theorem 4.22, and choose H repetitively and use Theorem 4.15 for bounding the walk

reduction threshold for the reduction bound BH,k
red and in Lemma 4.24.

For (4.4), we choose H = Gc(A) for bounding the walk reduction threshold in the crit-
ical bound Theorem 4.22, and choose H = Gc(A) exploratively and use Theorem 4.18 for

bounding the walk reduction threshold for the reduction bound BH,k
red and in Lemma 4.24.

For (4.5), we choose H = Gc(A) for bounding the walk reduction threshold in the crit-
ical bound Theorem 4.22, and choose H = Gc(A) exploratively and use Theorem 4.15 for

bounding the walk reduction threshold for the reduction bound BH,k
red and in Lemma 4.24.

Proof of Theorem 4.4. Using the proof strategy laid out in Section 4.3, we choose for H one
critical cycle in every critical component and for BH

crit the maximum of Wi(n) and the second
term in the maximum in theorem statement. If H does not contain a Hamiltonian cycle, i.e.,

all its cycles have length at most n − 1, then we choose BH,k
red = (dk + 1)(n − 1) and BH,k

pump =
−dk + 1 where dk is the length of the critical cycle in H on which k is included. This choice is

in accordance with Theorem 4.18 and we have BH,k
red + BH,k

pump = (dk + 1)(n− 2) + 2, which is at
most Wi(n) because dk ≤ n − 1. If H does contain a Hamiltonian cycle, then it is induced by

one and we choose BH,k
red = n2 − n + 1 and BH,k

pump = −n + 1 in accordance with Theorem 4.20.

In this case, we have BH,k
red + BH,k

pump = Wi(n).
By noting that, in any case, we have T̃red(G, H) ≤ n2 − n + 1 concludes the proof with

Theorem 4.22 and Lemma 4.27.

Lemma 4.28. Let A be a max-plus matrix with λ(A) = 0. Then, for every t ∈ N0, there exists a
walk W in G(A) with ℓ (W) = t and A(W) ≥ 0.
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Proof. Let Z be a critical cycle in G(A). By forming blocks of length t, we decompose Zt =

W1 · W2 · · ·Wℓ(Z) with ℓ (Wk) = t for all k. Because 0 = A(Zt) = ∑
ℓ(Z)
k=1 A(Wk), there is at least

one Wk of nonnegative A-weight.

Theorem 4.29. Let A be an n × n max-plus matrix with all finite entries, i.e., A ∈ Rn×n. Further,
let G0 be a super-digraph of the critical digraph Gc(A) and let B be defined as in (4.1). Then,

TG0
crit(A) ≤ 2‖A‖

λ(A)− λ(B)
+ cdd(G(B)) . (4.52)

Proof. Because neither the critical threshold nor the bound changes, we assume A to be nor-
malized. This implies that λ(A) = 0 > λ(B) ≥ Amin.

Denote by T the right-hand side of (4.52). Assume by contradiction that there exist i, j and

a t such that all N
(π,t)
≥T -realizers for (i, j) are walks in G(B) and that there is one.

Let V be such a realizer. Denoting by V̂ any reduction of V to a path by removing cycles,
we have

A(V) ≤ ℓ (V) · λ(B)− ℓ
(

V̂
)

· λ(B) + A(V̂)

≤ T · λ(B)− cdd(G(B)) · λ(B) + A(V̂) .
(4.53)

On the other hand, we construct a walk W from i to j of length in N
(π,t)
≥T as follows: Since

ℓ (V) ≥ T ≥ 2+ cdd(G(B)), the integer s = ℓ (V)− ℓ
(

V̂
)

− 2 is nonnegative. By Lemma 4.28,
there is a walk W1 with ℓ (W1) = s and A(W1) ≥ 0. Denote by k the start node of W1 and by l
its end node. Since the digraph G(A) is complete, the weight of walk W = V̂ · (j, k) ·W1 · (l, j)
satisfies

A(W) ≥ A(V̂) + 2Amin (4.54)

and its length is equal to ℓ (V).
By assumption, A(W) < A(V), which, in combination with (4.53) and (4.54), means

T <
−2Amin

−λ(B)
+ cdd(G(B)) ≤ 2‖A‖

−λ(B)
+ cdd(G(B)) , (4.55)

a contradiction to the choice of T.

4.8 Linear Systems

In this section, we study transients of max-plus linear systems, i.e., the sequence of vectors
A⊗t ⊗ v for an irreducible system matrix A and an initial vector v. Because the sequence A⊗t

is eventually periodic if A is irreducible, so is the linear system and the system’s transient is
upper bounded by that of the matrix. And the system’s transient can really be lower, depend-
ing on the initial vector v. In this section, we adapt the proof technique of Section 4.3 to linear
systems whose initial vector’s entries are all finite. The reason for this is that the matrix’s tran-
sient is always attained with an initial vector with −∞ entries, so the analysis would lead to
the same bounds as those for matrices. However, with all finite initial vectors, one can prove
a sharper critical bound BH

crit that includes ‖v‖, the maximum difference of entries of v. We
discuss the relationship between matrix and system transients in more detail in Section 4.9.
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4.8.1 Modified Proof Strategy

The proof strategy to prove transience bounds for systems is almost the same as that for
matrices. The only difference is an adapted definition of a realizer and a different critical
bound. A different definition of realizers is need because the graph correspondence for entries
of the system’s vectors is different from that of matrices: Setting x(t) = A⊗t ⊗ v, we have

xi(t) = max
j∈[n]

(

A⊗
i,j + vj

)

= max
{

A(W) + vj | W ∈ W t(i →) and j = End(W)
}

, (4.56)

where W t(i →) denotes the set of walks of length t starting at node i and End(W) denotes
the end node of walk W. This equality leads us to not use the A-weight when dealing with
linear systems, but to adapt the definition of the weight, taking into account the initial vector.
We hence define Av(W) = A(W) + vj where j = End(W) is the end node of W and call it the
Av-weight of W. We also use the notation W(i →) for all walks starting at node i. With this
adapted walk weight definition, (4.56) transforms into

xi(t) = (A⊗ ⊗ v)i = max
{

Av(W) | W ∈ W t(i →)
}

. (4.57)

We write Tv(A) for the transient of the linear system A⊗t ⊗ v.
To repeat our analysis of linear systems analogously to matrices, we need to define an

adapted version of a realizer: An N-realizer for i is a maximum Av-weight walk in W(i →)
with length in N.

However, we do not need to re-prove all the lemmas and theorems we used in the ma-
trix case. This is due to the fact that we can reuse many results because of the following
correspondence between realizers for one node i and realizers for a pair of nodes (i, j):

Lemma 4.30. Let A be an n × n max-plus matrix and v a vector in Rn. If W ∈ W(i → j) is an
N-realizer for i, then it is also an N-realizer for (i, j).

Moreover, if there is an N-realizer for i that ends in j, then every N-realizer for (i, j) is an N-
realizer for i.

Proof. Being an N-realizer for i means that Av(W) = A(W) + vj ≥ Av(W ′) for all walks
W ′ ∈ W(i →) with ℓ (W ′) ∈ N. Because W(i → j) ⊆ W(i →), the inequality is in particular
true for all W ′ ∈ W(i → j) with ℓ (W ′) ∈ N, for which Av(W ′) = A(W ′) + vj. Subtracting vj

from both sides gives A(W) ≥ A(W ′), which shows that W is an N-realizer for (i, j).
On the other hand, if W0 is a N-realizer for (i, j), then A(W0) ≥ A(W ′) for all W ′ ∈ W(i →

j) with ℓ (W ′) ∈ N. In particular, for W ′ = W, we have A(W0) ≥ A(W). Adding vj to both
sides gives Av(W0) ≥ Av(W) and hence W0 is a N-realizer for i because W is.

An analog of Theorem 4.11 for proving bounds on the transient via realizers exists and is
proved very similarly:

Theorem 4.31. Let A be an n × n max-plus matrix, let v be a vector in Rn
max, and let i ∈ [n]. If B

and π are such that for every integer t ≥ B either

• there exists an N
(t,π)
≥B -realizer for i of length t, or

• there exists no N
(t,π)
≥B -realizer for i at all,

then the sequence (A⊗t ⊗ v)i is eventually periodic with period π and transient at most B.
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Figure 4.8: Walk W in proof of Theorem 4.32

4.8.2 Critical Bounds for Systems

The following theorem gives a way to choose BH
crit for step 2 of the proof strategy for linear

systems. The rest of the proof stays the same, noting Lemma 4.30.

Theorem 4.32. Let A be an irreducible n× n max-plus matrix, let G0 be a super-digraph of the critical
digraph Gc(A), and let B be defined as in (4.1). Further, let

T ≥ max

{

n − 1 ,
‖v‖+ ‖A‖ · (n − 1)

λ(A)− λ(B)

}

, (4.58)

t ∈ N0, and i ∈ [n]. there is a N
(t,π)
≥T -realizer for i that includes a node of G0.

Proof. Because neither the critical threshold nor the bound changes, we assume A to be nor-
malized and λ(B) to be finite because the other case is easy. This implies that Amax ≥ λ(A) =
0 > λ(B) ≥ Amin. Set GA = G(A), GB = G(B), and Gc = Gc(A).

We proceed by contradiction: Suppose that no N
(t,π)
≥T -realizer for i contains a node of G0.

Let W0 be such a walk. Let Ŵ0 be W0 after removing all subcycles in any order. This is a path.
Next choose a critical node k, and then a prefix Wc of Ŵ0, such that the distance between k

and the end node of Wc is minimal. Let W2 be a path of minimal length from the end node
of Wc to k. Let W3 be the walk such that Ŵ0 = Wc ·W3. Further let Z be a critical cycle starting
at k.

We distinguish two cases for ℓ (W0), namely (a) ℓ (W0) ≥ ℓ(Wc) + ℓ(W2), and (b) ℓ (W0) <
ℓ(Wc) + ℓ(W2).

Case a: Let m ∈ N0 be the quotient in the Euclidean division of ℓ (W0)− ℓ(Wc)− ℓ(W2)
by ℓ(Z), and choose W1 to be a prefix of Z of length ℓ (W0)−

(

ℓ(Wc) + ℓ(W2) + m · ℓ(Z)
)

(see
Figure 4.8). Clearly W1 starts at k. If we set W = Wc · W2 · Zm · W1, we get ℓ(W) = ℓ (W0) and

Av(W) ≥ min
1≤j≤n

(vj) + A(Wc) + A(W2) + A(W1) (4.59)

since we assume λ = 0.
For the Av-weight of W0, we have

Av(W0) ≤ Av(Ŵ0) + λ(B)·
(

ℓ(W0)− ℓ(Ŵ0)
)

≤ max
1≤j≤n

(vj) + A(Ŵ0) + λ(B)·
(

ℓ(W0)− ℓ(Ŵ0)
) (4.60)
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By assumption Av(Ŵ) > Av(W), and from (4.59), (4.60), and λ(B) < 0 we therefore obtain

ℓ(W0) <
‖v‖+ A(W3)− A(W1)− A(W2)

−λ(B)
+ ℓ(Ŵ0)

≤ ‖v‖+ Amax ℓ(W3)− Amin (ℓ(W1) + ℓ(W2))

−λ(B)
+ ℓ(Ŵ0)

≤ ‖v‖+ Amax ℓ(W3)− Amin (ℓ(W1) + ℓ(W2) + ℓ(Ŵ0))

−λ(B)

(4.61)

Denote by n0 the number of nodes in G0. The following three inequalities hold: ℓ(W3) ≤
n − n0 − 1, λ(B) ≥ Amin, and ℓ(W1) < ℓ (Z) ≤ nc. Moreover from the minimality constraint
for the length of W2 follows that ℓ(W2) + ℓ(Ŵ0) ≤ n − nc. Thereby

ℓ(W0) <
‖v‖+ ‖A‖ · (n − 1)

−λ(B)
, (4.62)

a contradiction to ℓ (W0) ≥ T and the lemma follows in case (a).

Case b: In this case ℓ(Wc) ≤ n < ℓ(Wc) + ℓ(W2), and we set W = Wc · W ′
2, where W ′

2 is a
prefix of W2, such that ℓ(W) = ℓ(W0). Hence,

Av(W) ≥ min
1≤j≤n

(vj) + A(Wc) + A(W ′
2) . (4.63)

We again obtain (4.60). By assumption Av(Ŵ) > Av(W), and by similar arguments as in case
a we derive

ℓ(Ŵ) ≤ ‖v‖+ A(W3)− A(W ′
2)

−λ(B)
+ ℓ(W0) (4.64)

and since W ′
2 is a prefix of W2 with ℓ(W ′

2) < ℓ(W2),

ℓ(Ŵ) <
‖v‖+ Amax ℓ(W3)− Amin ℓ(W2)

−λ(B)
+ ℓ(W0) , (4.65)

which is less or equal to the bound obtained in (4.61) of case (a). By similar arguments as in
case (a), the lemma follows also in case (b).

4.9 Matrix vs. System Transients

By letting one component of the initial vector v tend to infinity, one can see that the tran-
sient T(A) of a max-plus matrix A is equal to the transient Tv(A) of some linear system with
system matrix A. However, in this argument, the value ‖v‖ also tends to infinity, which
categorically prohibits the use of our bounds for linear systems to bound the transients of
matrices. In this section, we give an alternative argument that theoretically permits this use.
While it may not provide better bounds for matrices than that of Section 4.7, it provides fur-
ther insights on the relationship between the transients of matrices and systems. We show
that the transient of matrix A is actually equal to the transient of a specific linear system with
matrix A and initial vector v with ‖v‖ is in O

(

‖A‖ · n2
)

, provided the system transient is
sufficiently large, namely at most equal to some term quadratic in n.
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Obviously, T(A) is an upper bound on the Tv(A)’s. Conversely, the equalities A⊗t
i,j =

(

A⊗t ⊗ ej
)

i
, where the ej’s are the unit vectors defined by e

j
i = 0 if i = j and e

j
i = −∞

otherwise, show that max
{

Tej(A) | j ∈ [n]
}

≥ T(A). Hence,

sup
{

Tv(A) | v ∈ R
n
max

}

= T(A) . (4.66)

We now seek a similar expression of T(A), but with finite initial vectors v, i.e., with v ∈ Rn.
We define:

B̃ = 2(n − 1) + ˆind + (ind(G) + γ̂ − 1) (4.67)

µ = sup
{

A⊗t
i,h − A⊗t

i,j | h, i, j nodes of G , t ≥ B̃ , A⊗t
i,j 6= −∞

}

(4.68)

Clearly µ is finite, i.e., µ ∈ R. Then we consider the µ-truncated unit vectors obtained by
replacing the infinite entries of the ej’s by −µ.

In Theorem 4.35 below, we show that if B ≥ B̃ and B is a bound on the system transients
for all µ-truncated unit vectors, then B is also a bound on the matrix transient. A technical
difficulty in the proof lies in the fact that, contrary to the sets W t(i →) which occur in the
expression of the ith component of linear systems, the sets W t(i → j) that we consider for
matrix powers may be empty. The next two lemmas deal with this technicality.

Lemma 4.33. For any pair of nodes i, j of G and any integer t ≥ ind(G) + γ(G) + n− 2, there exists
a walk W from i to j such that t − ℓ(W) ∈ {0, . . . , γ(G)− 1}.

Proof. Let i, j be any two nodes, and let W0 be a path from i to j. For any integer t, consider
the residue r of t − ℓ(W0) modulo γ(G). By definition of ind(G), if t − ℓ(W0)− r ≥ ind(G),
then there exists a closed walk C starting at node j with length equal to t − ℓ(W0)− r. Then,
W0 · C is a walk from i to j with length t − r, where r ∈ {0, . . . , γ(G)− 1}. The lemma follows
since t − ℓ(W0)− r ≥ ind(G) as soon as t ≥ ind(G) + (n − 1) + γ(G)− 1.

Lemma 4.34. Let t ≥ ind(G) + γ(G) + n − 2. Then A
⊗t+γ(G)
i,j = −∞ if and only if A⊗t

i,j = −∞.

Proof. It is equivalent to claim that W t+γ(G)(i → j) = ∅ if and only if W t(i → j) = ∅ for
every integer t ≥ ind(G) + γ(G) + n − 2.

Suppose W t+γ(G)(i, j) 6= ∅, and let W0 ∈ W t+γ(G)(i, j). By Lemma 4.33, there exists a
walk W ∈ W(i, j) such that t = ℓ(W) + r with r ∈ {0, 1, . . . , γ(G)− 1}. Lemma 2.4 implies
that γ(G) divides ℓ(W0) − ℓ(W) = (t + γ(G))− (t − r) = γ(G) + r; hence γ(G) divides r.
Therefore, r = 0, i.e., ℓ(W) = t and thus W t(i → j) 6= ∅.

The converse implication is proved similarly.

Theorem 4.35. If t ≥ B̃ and A⊗(t+γ) ⊗ v = A⊗t ⊗ v for all µ-truncated unit vectors v, then
A⊗(t+γ) = A⊗t.

Proof. Let i and j be nodes in G, and let t ≥ B̃. Further let v be the µ-truncated unit vector
with vj = 0 and vh = −µ for h 6= j. Since B̃ ≥ ind(G) + γ(G) + n − 2 and γ = γ(Gc) is a

multiple of γ(G), we derive from Lemma 4.34 that A
⊗t+γ
i,j = −∞ if and only if A⊗t

i,j = −∞.

There are two cases to consider:

1. A⊗t
i,j − ∞ and A

⊗t+γ
i,j = −∞. In this case, A

⊗t+γ
i,j = A⊗t

i,j trivially holds.
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2. A⊗t
i,j 6= −∞ and A

⊗t+γ
i,j 6= −∞. Recall that

(

A⊗t ⊗ v
)

i
= max

{

A⊗t
i,j + vh | h ∈ [n]

}

. (4.69)

By definition of µ and v, for any node h 6= j,

A⊗t
i,h − A⊗t

i,j ≤ µ = vj − vh . (4.70)

It follows that
(

A⊗t ⊗ v
)

i
= A⊗t

i,j + vj . (4.71)

As t + γ ≥ t, we similarly have

A
⊗t+γ
i,j =

(

A⊗t+γ ⊗ v
)

i
− vj =

(

A⊗t ⊗ v
)

i
− vj = A⊗t

i,j . (4.72)

Thus A
⊗t+γ
i,j = A⊗t

i,j holds also in this case.

The key point for establishing our bound on matrix transients is the following upper
bound on µ, which is quadratic in n. The proof uses the pumping technique developed for
the explorative bound twice.

Theorem 4.36. µ ≤ ‖A‖ · B̃

Proof. First, we observe that each term in the inequality to show is invariant under substitut-
ing A by A. Hence we assume that λ = 0. It follows that

A⊗t
i,h ≤ Amax · (n − 1) ≤ Amax · B̃ . (4.73)

We now give a lower bound on A⊗t
i,j in the case that it is finite, i.e., if W t(i → j) 6= ∅. Let k

be a critical node in the strongly connected component H of Gc with minimal distance from i
and let W1 be a shortest path from i to k. Further, let W2 be a shortest path from k to j. Let r
denote the residue of t − ℓ(W1 · W2) − ind(G) modulo γ(H), and let s = t − ℓ(W1 · W2) −
ind(G)− r. Since s ≡ 0 (mod γ(H)), and

s ≥ B̃ − 2(n − 1)− ind(G)−
(

γ(H)− 1
)

≥ ˆind ≥ ind(H) , (4.74)

there exists a closed walk Zc of length s in component H starting at node k. Let τ = ind(G)+ r;
then, τ ≥ ind(G). Moreover, s = τ − ℓ(W1 · Zc · W2), and W1 · Zc · W2 ∈ W(i → j). By
Lemma 2.4, it follows that γ(G) divides τ, because W t(i → j) 6= ∅. Hence there exists a
closed walk Znc of length τ starting at node j.

Now define W = W1 · Zc · W2 · Znc. Clearly, ℓ(W) = t and

A(W) ≥ Amin · (t − s) ≥ Amin ·
(

2(n − 1) + ind(G) + γ(H)− 1
)

, (4.75)

and so

A⊗t
i,j ≥ Amin ·

(

2(n − 1) + ind(G) + γ̂ − 1
)

≥ Amin · B̃ . (4.76)

From (4.73) and (4.76) follows µ ≤ (Amax − Amin) · B̃ = ‖A‖ · B̃.
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Figure 4.9: Walk W in proof of Theorem 4.36

4.10 A Closer Look at the Nachtigall Decomposition

In this section, we present a different technique and proof strategy to prove transience bounds
for max-plus matrices that are almost as tight as those developed in the previous sections of
this chapter. For this reason, we do not try to optimize the bounds, but rather focus on the
novelty of the proof technique. We will use and improve the max-plus matrix decomposition
defined by Nachtigall.

The next two lemmas play an important role in our proofs: They state transience bounds
for a sequence obtained by simple composition of two eventually periodic sequences f and g
with common ratio in terms of the transients of f and g. Their proofs are not hard.

Lemma 4.37. Let f , g : N0 → Rmax be eventually periodic with common ratio ̺ and respective
transients Tf and Tg. Then the sequence max{ f , g} is eventually periodic with ratio ̺ and transient
at most max{Tf , Tg}.

In analogy to classical convolution, the max-plus convolution f ⊗ g of two sequences f and g
is given by

( f ⊗ g)(t) = max
t1+t2=t

(

f (t1) + g(t2)
)

. (4.77)

Lemma 4.38 ([72, Lemma 6.1]). Let f , g : N0 → Rmax be eventually periodic with common ratio ̺,
common period p, and respective transients Tf and Tg. Then the convolution f ⊗ g is eventually
periodic with ratio ̺, period p, and transient at most equal to Tf + Tg + p − 1.

The next lemma characterizes the convolution in terms of walks in the matrix’s digraph.

Lemma 4.39. Let A ∈ Rn×n
max and i, j, k ∈ [n]. Then, for all t ∈ N0:

(

Ai,k ⊗ Ak,j

)

(t) = max
{

A(W) | W ∈ W t(i
k−→ j)

}

(4.78)

Proof. Denote by L the left-hand side and by R the right-hand side, respectively, of the claimed
equality.

We first prove L ≤ R by showing A⊗t1

i,k + A⊗t2

k,j ≤ R whenever t = t1 + t2 with nonnegative

integers t1 and t2: This inequality is trivial if A⊗t1

i,k = −∞ or A⊗t2

k,j = −∞. Otherwise, let

W1 ∈ W t1(i → k) such that A(W1) = A⊗t1

i,k and W2 ∈ W t2(k → j) such that A(W2) = A⊗t2

k,j .

Setting W = W1 · W2 yields W ∈ W t(i
k−→ j). Hence A⊗t1

i,k + A⊗t2

k,j = A(W) ≤ R by definition

of R.
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We now prove L ≥ R: The inequality is trivial if R = −∞ Otherwise, let W ∈ W t(i
k−→ j).

Then W can be written as W = W1 · W2 with End(W1) = Start(W2) = k. Set t1 = ℓ (W1) and
t2 = ℓ (W2). Trivially, t = t1 + t2. Since W1 ∈ W t1(i → k) and W2 ∈ W t2(k → j), we have
A(W1) ≤ A⊗t1

i,k and A(W2) ≤ A⊗t2

k,j , i.e., A(W) = A(W1) + A(W2) ≤ A⊗t1

i,k + A⊗t2

k,j ≤ L. This

concludes the proof.

4.10.1 Transience Bounds via Critical Bound

In this subsection, we show how to quickly arrive at a transience bound when combining the
convolution approach with a critical bound. It is possible to get a transience bound without
explicitly using a critical bound; we discuss this in the following two subsections. The fol-
lowing theorem is a critical bound that is not too hard to prove, even without the apparatus
of the preceding sections. It is a particular consequence of Theorem 4.22 when choosing G0 to
be the critical digraph.

Lemma 4.40 (Critical Bound). Let A ∈ Rn×n
max be irreducible. For all i, j ∈ [n] and t ∈ N0, each

walk with maximum A-weight in W t(i → j) contains a critical node if

t = Bc ≥ max

{

n ,
‖A‖ · n2

λ(A)− λnc(A)

}

. (4.79)

Together with Nachtigall’s lemma (Lemma 3.7), this critical bound easily gives a tran-
sience bound when using the convolution representation. It is worse than the bounds we
presented in the previous sections, but it is nonetheless asymptotically tight, as is shown by
Theorem 2.19.

Theorem 4.41. Let A ∈ Rn×n
max be irreducible. Let cf be the circumference of the critical digraph Gc(A).

Then the transient of A is at most

max

{ ‖A‖ · 2n2

λ(A)− λnc(A)
, cf · (2n − 1)− 1

}

. (4.80)

Proof. From Lemmas 4.39 and 4.40, we know that

A⊗t
i,j = max

k crit.

(

(Ai,k ⊗ Ak,j)(t)
)

(4.81)

when t ≥ Bc. For each critical node k, let ℓk denote the length of a critical cycle containing k.
By Lemmas 2.7 and 3.7, we obtain that all sequences Ai,k and Ak,j are eventually periodic, with
period ℓk, ratio λ(A), and transient less or equal to cf · (n − 1) because ℓk ≤ cf. Lemma 4.38
shows that the sequence

(

(Ai,k ⊗ Ak,j)(t)
)

t≥0
is eventually periodic, with ratio λ(A), and

transient less or equal to 2cf · (n − 1) + cf − 1. By Lemma 4.37, the same property holds for
the sequence of values maxk crit.((Ai,k ⊗ Ak,j)(t)). This proves that each sequence

(

A⊗t
i,j

)

t
is

eventually periodic, with ratio λ(A), and transient at most equal to

max
{

Bc , cf · (2n − 1)− 1
}

, (4.82)

which concludes the proof.
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4.10.2 Nachtigall Decomposition

Nachtigall [72] introduced a representation of the sequence of matrix powers of an n × n
square matrix as the maximum of at most n “simple” matrix sequences, i.e., eventually pe-
riodic sequences with small period and small transient (Theorem 2.15). He showed that this
representation can be computed efficiently. However, no results on the transient of the origi-
nal matrix were obtained. In this section, we present and prove a more precise version of this
representation using arguments similar to the original proof. This refined representation will
allow us to derive a transience bound of the sequence of powers of the original matrix in the
next section.

The proof of Nachtigall’s representation picks a maximum mean A-weight cycle in the
corresponding digraph of the matrix and decomposes the sequence of matrix powers into
the part that involves this strongly connected component and the part that does not. It turns
out that the first part can be written as convolutions of two “simple” sequences. The simple
structure of the sequences in the convolution relies on the fact that a maximum mean A-weight
cycle was chosen. The second part is the sequence of powers of the matrix in which the cycle
is deleted. The procedure is then recursively applied to the second part.

Given a matrix A ∈ Rn×n
max and a set I ⊆ [n] of indices, we define the deletion of I in A as the

matrix B ∈ Rn×n
max whose entries satisfy Bi,j = −∞ if i ∈ I or j ∈ I, and Bi,j = Ai,j otherwise.

The results of this section are the following: Lemma 4.42 shows the decomposition of the
sequence of matrix powers into the part that involves a given set of indices and the part that
does not. Finally, in Theorem 4.43, we show an improved version of Nachtigall’s decomposi-
tion. The improvements lie in a bound of 2n2 on the involved transients, whereas Nachtigall
states a bound of 3n2, and a more precise statement on the form of the involved sequences.

Lemma 4.42. Let A ∈ Rn×n
max , I ⊆ [n], and B the deletion of I in A. Then for all i, j ∈ [n] and all

t ∈ N0:

A⊗t
i,j = max

{

max
k∈I

(

Ai,k ⊗ Ak,j

)

(t) , B⊗t
i,j

}

(4.83)

Proof. By Lemma 4.39, we have

max
k∈I

(

Ai,k ⊗ Ak,j

)

(t) = max
{

A(W) | W ∈ W t(i
I−→ j)

}

. (4.84)

By definition of deletion, W t
G(B)(i → j) is equal to the set of walks in W t

G(A)(i → j) that do

not contain a node in I. For all these walks W, we have B(W) = A(W). We can hence see that

(Bt)i,j = max
{

B(W) | W ∈ W t
G(B)(i → j)

}

(4.85)

= max
{

A(W) | W ∈ W t
G(A)(i → j) and W does not contain a node in I

}

. (4.86)

Forming the maximum over both sides of (4.84) and (4.86) concludes the proof.

Theorem 4.43 (Improved Nachtigall decomposition). Let A ∈ Rn×n
max . Then there exist eventually

periodic matrix sequences S1(n), S2(n), . . . , SN(n) with periods at most n and transients at most 2n2

such that for all t ∈ N0:

At = max
{

S1(t), S2(t), . . . , Sn(t)
}

(4.87)

Moreover, there exist pairwise disjoint subsets I1, I2, . . . , In of [N] such that
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1. for all i, j, m ∈ [N] and all t ∈ N0 we have

(

Sm(t)
)

i,j
= max

k∈It

(

(

Bm

)

i,k
⊗

(

Bm

)

k,j

)

(n) (4.88)

where matrix Bm is defined as the deletion of
⋃m−1

r=1 Ir in A.

2. if G(A) contains a cycle, then I1 6= ∅, S1(t) has the ratio λ(A), and for all m ∈ [n] the sequence
Sm(t) has a ratio equal to the mean A-weight of some cycle in G(A).

Proof. We define the sets Im, and hence the matrices Bm and the sequences Sm(t), inductively.
By definition, B1 = A. If G(Bm) contains a cycle, denote by Cm a cycle in G(Bm) of maximal
mean A-weight and let Im be the set of nodes of Cm. Otherwise, set Im = [n] \ ⋃m−1

r=1 Ir. It is
clear, in both cases, that Im is disjoint to every Ir with r < m. Also, |Im| > 0 if and only if
|⋃m−1

r=1 Ir| < n. Because Bm+1 is the deletion of Im in Bm, Lemma 4.42 implies

(Bm)
t = max

{

Sm(t) , (Bm+1)
t
}

. (4.89)

Let h denote the greatest positive integer such that |Ih| > 0. We derive that h ≤ n. For
all m > h, we have (Bm)i,j = −∞ for all i and j, because then Bm is the deletion of [n] in A.
Repeated application of (4.89) hence shows (4.87).

Lemmas 4.37, 4.38, and 3.7 show that, whenever G(Bm) contains a cycle, then the transient
of Sm(t) is at most

2 · ℓ(Cm) · (n − 1) + ℓ(Cm)− 1 ≤ 2n2 − n − 1 , (4.90)

its period is at most ℓ(Cm) ≤ n, and has a ratio equal to A(Cm)/ℓ(Cm). If G(Bm) does not
contain a cycle, then necessarily Sm(t) = (Bm)t, which is infinite for all t ≥ n. Hence in this
case Sm(t) has transient at most n, period equal to 1, and arbitrary ratio; in particular the
smallest mean A-weight of cycles in G(A), if it contains a cycle.

Note that Theorem 4.43 does not imply that the transient of any sequence of matrix powers
is at most 2n2. The reason for this is that Lemma 4.37 is not necessarily applicable to the
maximum in the Nachtigall decomposition because the involved sequences can have different
ratios.

4.10.3 Transience Bounds via Nachtigall Decomposition

In this section we deduce from Theorem 4.43 an upper bound on the transient of the sequence
of matrix powers At of an irreducible square matrix A.

Theorem 4.43 expresses At as the maximum of eventually periodic sequences with small
transients, i.e., at most 2n2. Some of them will share a common ratio, some of them will not.
For sequences with a common ratio, Lemma 4.37 is applicable and shows that their maximum
has also a transient of at most 2n2. For a pair of sequences with different ratios, however,
Lemma 4.37 gives no information.

It is possible that the maximum is not even eventually periodic: If f and g are two even-
tually periodic scalar sequences such that f ’s ratio is strictly larger than that of g, then the
maximum max{ f , g} is eventually periodic if and only if, for all t large enough, f (t) = −∞

implies g(t) = −∞. This condition is not necessary for eventual periodicity if the two ratios
are equal. For example, define f by setting f (t) = 2t if t is even and f (t) = −∞ if t is odd,
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t

max{Tf ,Tg}

f (t)

g(t)

Figure 4.10: Eventually periodic sequences with differing ratios

and g by setting g(t) = −∞ if t is even and g(t) = t if t is odd. Both f and g are eventually pe-
riodic and their ratios satisfy ̺ f = 2 > ̺g = 1. However, f (t) = −∞ if and only if g(t) 6= −∞

for all t ∈ N0. The sequence max{ f , g} has the form max{ f (t), g(t)} = 2t whenever t is even
and max{ f (t), g(t)} = t whenever t is odd, which is not eventually periodic.

The next lemma closes the gap by bounding the transient of a maximum of eventually
periodic sequences with different ratios. A similar result for the case that both sequences are
eventually finite can be constructed from the proof of [15, Proposition 4(2)].

Lemma 4.44. Let f , g : N0 → Rmax be eventually periodic with respective periods p f and pg,
respective ratios ̺ f and ̺g, and respective transients Tf and Tg. Assume that ̺ f > ̺g and that there
exists an R ∈ N0 such that for all t ≥ R, f (t) = −∞ implies g(t) = −∞.

Then the sequence max{ f , g} is eventually periodic with period p f , ratio ̺ f , and transient at most

T + p − 1 +
Γ

̺ f − ̺g
(4.91)

where Γ = max
{

g(s) − f (s′) + (s′ − s)̺ f | T ≤ s, s′ ≤ T + p − 1 and f (s′) 6= −∞
}

∪
{

0
}

,

T = max{Tf , Tg}, and p = max{p f , pg}.

Proof. By eventual periodicity of both f and g, we can assume R ≤ max{Tf , Tg}, which we do.
By replacing f (t) and g(t) by f (t)− t̺ f and g(t)− t̺ f , respectively, we can assume ̺ f = 0.

Let t ≥ T + p − 1 + Γ/(̺ f − ̺g). We show that max{ f (t), g(t)} = f (t), which then con-
cludes the proof because t ≥ Tf .

The statement is trivial if g(t) = −∞. So let g(t) 6= −∞. Setting

s = t − pg ·
⌊

t − T − pg + 1

pg

⌋

and s′ = t − p f ·
⌊

t − T − p f + 1

p f

⌋

, (4.92)

we get T ≤ s, s′ ≤ T + p − 1. Because t ≥ R, also f (t) 6= −∞, which implies f (s′) 6= −∞

because s′ ≥ Tf . Hence g(s)− f (s′) ≤ Γ.
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Because s, s′ ≥ Tf , Tg, we have:

g(t)− f (t) = g(s)− f (s′) + ̺g · pg ·
⌊

t − T − pg + 1

pg

⌋

(4.93)

≤ Γ + ̺g ·
Γ

−̺g
= 0 (4.94)

Hence f (t) ≥ g(t), which concludes the proof.

We now provide a general transience bound for sequences of matrix powers using the
Nachtigall decomposition. We do this by applying Lemma 4.37 and Lemma 4.44 entry-wise
to the maximum in (4.87). We do this by pairwise comparing the entries of Sm(t) to the entries
of some other Sm(t). If they have equal ratios, Lemma 4.37 is applicable. If not, we show by
using Theorem 2.9 that Lemma 4.44 is applicable. By part 2 of Theorem 4.43, we know that
all Sm have a ratio equal to some cycle mean and that S1 has ratio λ(A). Hence, if S1 and Sm

do not have a common ratio, Sm has a ratio at most equal to the second largest cycle mean,
i.e., λ2(A).

We arrive at the following theorem bounding the transient of the sequence of matrix pow-
ers. Numerically, it is even worse than the bound of Theorem 4.41, but its proof avoid an
explicit critical bound, and is solely based on the Nachtigall decomposition.

Theorem 4.45. Let A ∈ Rn×n
max be irreducible. Then its transient is at most

2n2 +
3n2‖A‖

λ(A)− λ2(A)
. (4.95)

Proof. Denote by Amin the smallest finite entry of A and by Amax the largest. It is ‖A‖ =
Amax − Amin. Let

At = max
{

S1(t), S2(t), . . . , Sn(t)
}

= max
1≤m≤n

max
{

S1(t), Sm(t)
}

(4.96)

as in Theorem 4.43. Let i, j, r ∈ [n]. We will show that the sequence max
{

S1, Sm

}

has ratio
λ(A) and transient at most 2n2 + 3n2‖A‖/(λ(A)− λ2(A)). Component-wise application of
Lemma 4.37 then concludes the proof.

If the ratios of S1 and Sm are equal, we simply apply Lemma 4.37 to see that the sequence
max

{

S1, Sm

}

is eventually periodic with ratio λ(A) and transient at most 2n2.

We apply Lemma 4.44 to the two sequences f (t) =
(

S1(t)
)

i,j
and g(t) =

(

Sm(t)
)

i,j
. Both Tf

and Tg are at most 2n2, ̺ f is equal to λ(A), and ̺g is at most λ2(A) by part 2 of Theorem 4.43.
Because both sequences have periods at most equal to n, they have a common period p less
than n2.

We now show that we can choose R = n2: Let n ≥ n2 and
(

Sm(t)
)

i,j
6= −∞. In particular,

by noting (4.88) and Lemma 4.39, there exist a walk Ŵ in G(Bm) from i to j of length t con-
taining a node of Im. Walk Ŵ is also a walk in G(A) because Bm is a sub-digraph of G(A).
Because G(A) is strongly connected, there exists a k ∈ I1 by part 2 of Theorem 4.43. Theo-
rem 2.9 shows that there exists a walk in Wn

G(A)(i → j) that contains node k, which implies
(

S1(t)
)

i,j
6= ∞ by Lemma 4.39.
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Hence max{Tf , Tg, R} ≤ 2n2 and thus

p + max{Tf , Tg, R} ≤ 3n2 . (4.97)

By Lemma 4.39, whenever
(

S1(t)
)

i,j
is finite, it is the A-weight of some walk in G(A) of

length t. In particular,
(

S1(t)
)

i,j
≤ Amax · t . (4.98)

Similarly,
(

Sm(t)
)

i,j
≥ Amin · n if

(

Sm(t)
)

i,j
6= −∞ . (4.99)

Combining (4.97), (4.98), and (4.99) hence yields Γ ≤ 3n2(Amax − Amin) = 3n2‖A‖.
In summary, Lemma 4.44 shows that max

{

S1, Sm

}

is eventually periodic with ratio λ(A)
and transient at most 2n2 + 3n2‖A‖/(λ(A)− λ2(A)). This concludes the proof.





Chapter 5

Asymptotic Consensus

5.1 Introduction

Asymptotic consensus is a phenomenon observed in certain biological, physical, and socio-
logical systems. It is also utilized in some engineered man-made computer systems. The phe-
nomenon consists in agents communicating in a very simple fashion to asymptotically reach
agreement on a common real value. In nature, it can be observed (e.g.,[76, 58, 86, 7, 54, 55])
in bird flocking, firefly synchronization, synchronization of coupled oscillators, or opinion
spreading. In engineering, it is used for sensor fusion, dynamic load balancing protocols,
robot formation protocols, replication techniques, or rendezvous in space.

The distributed computing model in which we study asymptotic consensus is the follow-
ing: There are n distinguishable agents, each agent i ∈ [n] = {1, 2, . . . , n} possessing a real
state variable xi and communicating by exchanging messages. There is a global discrete time
base, referred to by nonnegative integers in N0 = {0, 1, 2, . . . }. At every time t ∈ N0, we
denote the content of the agents’ state variables by xi(t). The initial value of state variable xi

is xi(0). At every time t ∈ N0, every agent sends the content of its state variable to all other
agents. Messages may be delayed and/or lost. All agents simultaneously update their state
variable at all positive times t = 1, 2, 3, . . . to some weighted average value of the received
values, at most one of each other agent, and its current content of its own state variable.

Since the new content of the state variable is a mean value, for each agent i and each
time t ≥ 1, there exist coefficients Ai,j,τ(t) with

xi(t) =
n

∑
j=1

t−1

∑
τ=0

Ai,j,τ(t) · xj(τ) (5.1)

and
n

∑
j=1

t−1

∑
τ=0

Ai,j,τ(t) = 1 . (5.2)

Since at most one value of every agent appears in the mean value, there exists a δi,j(t) > 0 for
every j ∈ [n] such that Ai,j,τ(t) is zero for all τ except possibly for τ = t − δi,j(t). Hence (5.1)
can be rewritten as

xi(t) =
n

∑
j=1

Ai,j(t) · xj

(

t − δi,j(t)
)

(5.3)

73
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with
n

∑
j=1

Ai,j(t) = 1 . (5.4)

A configuration of asymptotic consensus is a collection of real values, one for each agent’s state
variable, i.e., a vector in Rn. An execution of asymptotic consensus is an infinite sequence of
configurations x(t) ∈ Rn following the evolution (5.3) for some choice of the Ai,j(t) and
the δi,j(t). An execution reaches asymptotic consensus if x(t) converges and all component-wise
limits limt→∞ xi(t) are equal.

An averaging matrix is a matrix whose entries are all nonnegative and whose row sums are
all 1. In other words, it is a row stochastic matrix. Equation (5.4) assures that the collection
of the Ai,j(t) is an averaging matrix for all t. A delay matrix for time t is a matrix of integers
between 1 and t. For every t, the collection of the δi,j(t) is a delay matrix for t. Hence an
execution is determined by the initial configuration x(0), the sequence of the averaging ma-
trices A(t), and the sequence of the delay matrices δ(t). A pair consisting of a sequence of
averaging matrices A(t) and a sequence of vectors δ(t) such that every δ(t) is a delay matrix
for t is referred to as a setting. An environment is a nonempty set of settings. We say that a
setting or an environment reaches asymptotic consensus if all of its executions do.

An important parameter of a setting is the maximum entry of the delay matrices, if it
exists. We call a setting B-bounded if all entries of its delay matrices are at most B. A 1-bounded
setting is called synchronous and is determined by only the sequence of averaging matrices.
If the nonzero entries of the averaging matrices are lower bounded by some positive α, then
we say that the setting has minimal confidence α. It has self-confidence if all diagonal entries
are positive. The communication digraph of a stochastic matrix A in Rn×n has node set [n] and
contains an edge (i, j) if and only if Ai,j > 0.

In a synchronous setting, the evolution of configurations x(t) is governed by the linear
recursive law

x(t) = A(t) · x(t − 1) (5.5)

where A(t) is a row stochastic matrix. Defining the product matrices

P(t) = A(t) · A(t − 1) · · · A(1) , (5.6)

we have

x(t) = P(t) · x(0) . (5.7)

In particular, the sequence of state vectors is determined by the initial vector x(0) and the
sequence of row stochastic matrices A(t).

In the following sections, we will also use the notation

P(t, s) = A(t) · A(t − 1) · · · A(s + 1) (5.8)

for partial products. It is P(t) = P(t, 0) for all t and P(t, s) = I, the identity matrix, if t ≤ s.
We will also refer to row stochastic matrices simply as stochastic matrices. If all A(t) are equal
to a constant matrix A, then P(t) = At. We will use the notation t A for the transpose of A to
distinguish it from its tth power.

We now exhibit asymptotic consensus through the example of bird flocking with n birds:
At every time t of some discrete time base, every bird i has a position in Euclidean space
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Figure 5.1: Birds’ observations while flocking

si(t) =
(

s
(1)
i (t) , s

(2)
i (t) , s

(3)
i (t)

)

∈ R3 and a velocity vi(t) =
(

v
(1)
i (t) , v

(2)
i (t) , v

(3)
i (t)

)

∈ R3.

We assume that the time base is N0 and that the birds’ velocities influence their positions in
the physically obvious manner, i.e., that

si(t) = si(t − 1) + vi(t) (5.9)

for all t ≥ 1 and all birds i ∈ [n].
As described, among others, by Ballerini et al. [7], birds seem to follow three rule sets

while flocking: (1) attraction towards each other, (2) short range repulsion to avoid collisions,
and (3) alignment of the velocities. The application of these rule sets is determined by the po-
sition and velocity of surrounding birds, each being taken into account with a certain weight
depending, among other factors, on metric distance and the angle between the vision center
and the line of sight to the neighbor. Figure 5.1 shows an example of the relative weights with
which a bird perceives its neighbors.

Based on these observations, the birds change their velocity following the three rule sets.
We ignore the first two and focus only on the alignment of velocities, which is an instance of
asymptotic consensus. To align the velocities, a bird observes a set of neighbors and changes
its own velocity to a weighted average of their velocities and its own current velocity. The
new adapted velocity is influenced by its own current velocity, if only because of its inertia.
There hence exists a stochastic matrix A(t) such that

vi(t) =
n

∑
j=1

Ai,j(t) · vj(t − 1) (5.10)

for all i ∈ [n]. Figure 5.2 depicts the influence on the velocity for our example; the first row
of A(t) is equal to

(

0.5 , 0.15 , 0.2 , 0.15
)

.
Writing Equation (5.10) for all entries of the vectors on both sides, we have

v
(d)
i (t) =

n

∑
j=1

Ai,j(t) · v
(d)
j (t − 1) (5.11)

for all d ∈ {1, 2, 3} and all i ∈ [n]. Writing v(d)(t) for the vector
(

v
(d)
1 (t) , v

(d)
2 (t) , . . . , v

(d)
n (t)

)

in Rn, this translates into
v(d)(t) = A(t) · v(d)(t − 1) (5.12)

for all d ∈ {1, 2, 3}. Hence the sequences v(1)(t), v(2)(t), and v(3)(t) are executions of asymp-
totic consensus with identical synchronous settings.
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Figure 5.2: Birds’ influence on new adapted velocity

Note that the matrices A(t) are dependent on the birds’ positions si(t), which in turn
depend on the previous velocities vi(t − 1). Hence the setting is dependent on the initial
positions and velocities. In the following sections, we will consider the setting and the initial
vector to be fixed by an external force. We will give necessary conditions for settings for
which asymptotic consensus is reached and bound the speed of convergence. Hence, to use
these results for an application like bird flocking, it is necessary to show that the settings that
occur in the applications satisfy one of the necessary conditions.

5.2 State of the Art

There is a well-known sufficient graph-theoretic condition for constant synchronous settings
with averaging matrix A to reach asymptotic consensus. It uses the notion of the digraph of a
stochastic matrix A in Rn×n, which is defined as the digraph with node set V = [n] containing
an edge (i, j) ∈ E if and only if Ai,j > 0. We denote it by G(A). We have the equality

G
(

At
)

= G(A)t for all t ∈ N0.

Definition 5.1 (Ergodic matrices). A stochastic matrix A is ergodic if G(A) is primitive.

The vector 1 = t(1, 1, . . . , 1) is a right-eigenvector to the eigenvalue 1 of every stochastic
matrix. By the Perron-Frobenius theorem [43], if A is an ergodic matrix, there exists a unique
left-eigenvector π to the eigenvalue 1 that is a probability vector, i.e., tπ · A = tπ. We call this
eigenvector π the Perron vector of A.

The following theorem states the sufficiency of ergodicity and also the fact that the speed
of convergence is exponential. It is a classical result in Markov theory.

Theorem 5.2. Let A be an ergodic matrix in Rn×n with Perron vector π. Then there exists some

̺ < 1 such that |A(t)
i,j − πj| = O(̺t) for all i, j ∈ [n] as t → ∞.

Translated into the language of asymptotic consensus, this theorem states that every con-
stant synchronous execution with ergodic averaging matrix A reaches asymptotic consensus,
and that |xi(t)− c∞| = O(̺t) where c∞ is the common limit of the xi(t). It also motivates the
definition of the rate of convergence of an execution as the value limt→∞‖x(t)− c∞ · 1‖1/t where
‖·‖ is some norm. The rate of convergence of a setting is the maximum rate of convergence of
its executions.
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Numerous techniques have been developed for bounding the rate of convergence more
concretely. Two of the main techniques are coupling [75, 2] and stopping and stationary
times [3, 4], which both are probabilistic techniques and are often adapted to special classes
of stochastic matrices. A third large class of techniques are spectral methods, which study the
eigenvalues of the stochastic matrix. We will detail this class of techniques a bit more in the
remainder of this subsection.

The fundamental result for the spectral method is equality of the rate of convergence and
the second largest eigenvalue. Denote by ρ2(A) the second largest absolute value of eigen-
values of A, counted with multiplicity. All eigenvalues of a stochastic matrix have absolute
value at most 1, and ρ2(A) is strictly less than 1 if A is ergodic. The term 1 − ρ2(A) is called
the matrix’s spectral gap. A lower bound on the spectral gap directly translates to an upper
bound on ρ2(A).

Theorem 5.3. The rate of convergence of a constant synchronous setting with averaging matrix A is
equal to ρ2(A).

Many authors have proposed bounds on the value ̺2(A), including Mihail [70], Diaconis
and Stroock [35], Sinclair and Jerrum [83], Fill [42], Chung [29], and Landau and Odlyzko [61].

Tsitsiklis introduced the bounded intercommunication assumption. It states that if an edge
(i, j) appears in infinitely many communication digraphs, then is appears in one of the di-
graphs G(A(t)) , G(A(t + 1)) , . . . , G(A(t + B − 1)) for a fixed B and all t.

Theorem 5.4 (Tsitsiklis [88]). A synchronous setting with averaging matrices A(1), A(2), . . . with
self-confidence and minimal confidence α reaches asymptotic consensus if the digraph G∞ formed by
the edges appearing in infinitely many communication digraphs is strongly connected and the bounded
intercommunication assumption holds.

Moreau and Hendrickx and Blondel independently showed that the bounded intercom-
munication assumption can be replaced by the assumption that every communication di-
graph is bi-directional:

Theorem 5.5 (Moreau [71], Hendrickx and Blondel [57]). A synchronous setting with averaging
matrices A(1), A(2), . . . with self-confidence and minimal confidence α reaches asymptotic consensus
if the digraph G∞ formed by the edges appearing in infinitely many communication digraphs is strongly
connected and every communication digraph is bi-directional.

Blondel et al. generalized this result to B-bounded settings:

Theorem 5.6 (Blondel et al. [13]). A B-bounded setting with averaging matrices A(1), A(2), . . .
with self-confidence and minimal confidence α reaches asymptotic consensus if the digraph G∞ formed
by the edges appearing in infinitely many communication digraphs is strongly connected and every
communication digraph is bi-directional.

Touri and Nedić generalized the assumption of bi-directional digraphs to digraphs that
are completely reducible. Charron-Bost [24] very recently showed its extension to B-bounded
settings.

Theorem 5.7 (Touri and Nedić [87]). A synchronous setting with averaging matrices A(t) with
self-confidence and minimal confidence α reaches asymptotic consensus if the digraph G∞ formed by
the edges appearing in infinitely many communication digraphs is strongly connected and every com-
munication digraph is completely reducible.
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012· · ·B−1

Figure 5.3: The B copies of an agent in Cao, Morse, and Anderson’s reduction

If an execution x(t) reaches asymptotic consensus, one can ask the question of the speed
at which this convergence occurs. Olshevsky and Tsitsiklis noted that this speed is sometimes
exponential and have hence defined the rate of convergence as

lim
t→∞

‖x(t)− x∗‖1/t
2 . (5.13)

Theorem 5.8 (Olshevsky and Tsitsiklis [73]). A synchronous setting with constant equal-neighbor
averaging matrices A(t) = A of a connected bi-directional digraph reaches consensus. Moreover, the
rate of convergence is at most 1 − Ω(n3). There exist connected bi-directional digraphs such that the
rate of convergence is 1 − O(n3).

Cao, Morse, and Anderson studied coordinated communication digraphs, i.e., digraphs
that have a node j such that every other node has a path to j. They obtained the following
result:

Theorem 5.9 (Cao, Morse, and Anderson [21, 22]). A B-bounded setting with averaging matrices
A(1), A(2), . . . with self-confidence and minimal confidence α reaches asymptotic if every communi-
cation digraph is coordinated. Moreover, the rate of convergence is less than 1.

To prove their result, they described a reduction of B-bounded settings to synchronous
settings, albeit with B times as many agents as the original setting [22, Section 4.1]. The idea
is to replicate every agent B times, but to shift the copies in time, i.e., at time t there is one copy
holding the value xi(t), one xi(t− 1), and so on until xi(t− B+ 1). This results in synchronous
setting for asymptotic consensus. The replication of agents is illustrated in Figure 5.3. Only
the copy for the current value xi(t) has links to other agents’ copies. Nonetheless, no such
restriction exists for incoming edges. In the new resulting communication digraphs, even if
all agents have self-loops in the original communication digraphs, not all nodes have them.

Chazelle introduced and studied the s-energy of executions, which gives a means to talk
about the efficiency of convergence even in the case when the convergence rate is 1 and the
convergence speed is arbitrarily slow. He also proved bounds on the rate of convergence for
fixed confidence equal-neighbor settings. Their averaging matrices have the form

Ai,j =











ci if (i, j) ∈ E and i 6= j

1 − (d(i)− 1)ci if i = j

0 else

(5.14)

with cid(i) ≤ 1 and fixed ci, where d(i) is the degree of agent i.
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Theorem 5.10 (Chazelle [28]). A synchronous setting with averaging matrices A(1), A(2), . . . that
are fixed self-confidence equal neighbor matrices of connected bi-directional digraphs reaches asymp-
totic consensus. Moreover, the rate of convergence is less than 1 − c/n2 where c is the minimal confi-
dence.

5.3 Rate of Convergence in Constant Synchronous Settings

In this section, we study synchronous settings with a constant averaging matrix A(t) = A. We
further restrict our attention to the case that A is ergodic, i.e., the communication graph G(A)
is primitive. Ergodicity of the matrix is a sufficient condition for reaching asymptotic con-
sensus in a constant synchronous setting (Theorem 5.2). We make this restriction to be able
to use linear algebraic spectral methods to assess the speed of convergence. The condition of
ergodicity, however, is not necessary for reaching asymptotic consensus in a constant setting.

For every probability vector π ∈ Rn, one defines the inner product

〈x, y〉π = ∑
i=1

πixiyi (5.15)

on Cn. It is positive definite if and only if π is positive. If it is, then

‖x‖π =
√

〈x, x〉π (5.16)

is a norm on Cn. An ergodic matrix A ∈ Rn×n with Perron vector π is reversible if πi Ai,j =
πj Aj,i for all i, j ∈ [n]. An ergodic matrix A with Perron vector π is self-adjoint with respect
to 〈·, ·〉π if and only if it is reversible.

To give an upper bound on ̺2(A), and hence the rate of convergence, we will need the
following lemma about the real quadratic form defined by a strongly connected digraph.

Lemma 5.11 (Poincaré inequality). Let G = ([n], E) be a digraph with diameter at most D. Then
the real quadratic form defined by Q(z) = ∑(i,j)∈E(zi − zj)

2 satisfies the inequality Q(z) ≥ 1/D ·
(za − zb)

2 for all a, b ∈ [n].

Proof. Let P be a path from a to b in G. Trivially,

Q(z) ≥ ∑
(i,j) in P

(zi − zj)
2 . (5.17)

By the Cauchy-Schwarz inequality, because there are at most D edges in P, we now deduce

Q(z) ≥ 1

D



 ∑
(i,j) in P

(zi − zj)





2

=
1

D
(za − zb)

2 , (5.18)

which concludes the proof.

The next lemma is an expression of an eigenvalue of A as a sum involving the squared dif-
ferences of components of a corresponding eigenvector. We denote the real part of a complex
number x by ℜx.
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Lemma 5.12. Let A be an n × n ergodic matrix with Perron vector π and let z be an eigenvector of A
corresponding to some eigenvalue λ, i.e., Az = λz. Further assume that ‖z‖π = 1. Then

1 −ℜλ =
1

2 ∑
1≤i,j≤n

πi Ai,j|zi − zj|2 . (5.19)

Proof. We denote by S the sum on the right-hand side of the claimed equality. We first calcu-
late:

S =
1

2 ∑
i,j

πi Ai,j(zi − zj)(z̄i − z̄j)

=
1

2 ∑
i,j

πi Ai,j|zi|2 −
1

2 ∑
i,j

πi Ai,jzi z̄j −
1

2 ∑
i,j

πi Ai,j z̄izj +
1

2 ∑
i,j

πi Ai,j|zj|2
(5.20)

Because A is stochastic, we have ∑j Ai,j = 1 and hence

1

2 ∑
i,j

πi Ai,j|zi|2 =
1

2 ∑
i

πi|zi|2 =
1

2
‖z‖2

π =
1

2
. (5.21)

Because π is a left-eigenvector to the eigenvalue 1, we have ∑i πi Ai,j = πj and hence

1

2 ∑
i,j

πi Ai,j|zj|2 =
1

2 ∑
j

πj|zj|2 =
1

2
‖z‖2

π =
1

2
. (5.22)

Because all πi and Ai,j are real, we also have

1

2 ∑
i,j

πi Ai,jzi z̄j +
1

2 ∑
i,j

πi Ai,j z̄izj = ℜ∑
i,j

πi Ai,j z̄izj

= ℜ 〈z, Az〉π = ℜ 〈z, λz〉π

= ℜλ ‖z‖2
π = ℜλ

(5.23)

Plugging (5.21), (5.22), and (5.23) into (5.20) now yields S = 1 −ℜλ.

5.3.1 The Reversible Case

We now state our main theorem about reversible ergodic matrices. The proof essentially fol-
lows a proof given by Chazelle [28, Section 3.3] for fixed confidence equal-neighbor settings.

Theorem 5.13. Let A be the averaging matrix of a constant synchronous setting Σ with self-confidence
at least α̂ > 0. Assume further that A is ergodic and reversible with Perron vector π and that the
communication digraph contains a spanning strongly connected sub-digraph H of diameter D such
that πi Ai,j ≥ β > 0 for all edges (i, j) in H. Then Σ’s spectral gap is at least min{β/2D, 2α̂}.

In particular, it is at least πminα/2D where α is Σ’s minimal confidence and πmin is the minimal
entry of the Perron vector π.

Proof. The matrix A is self-adjoint with respect to 〈·, ·〉π and hence all of its eigenvalues are
real. Let 1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn > −1 be the eigenvalues of A and let (vk) be an
orthonormal eigenbasis (with respect to 〈·, ·〉π) of A with v1 = t(1, . . . , 1) and Avk = λkvk. It
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is ̺2(A) = max{|λ2|, |λn|}. We will show that λn ≥ −1 + 2α and λ2 ≤ 1 − β/2n. This then
concludes the proof.

To show the first inequality, define the stochastic matrix B = (A − α̂I)/(1 − α̂). Because
of the relation Bvk = (λk − α̂)/(1 − α̂) · vk, all of its eigenvalues are real. In fact, matrix B
is self-adjoint. Denote by 1 = µ1 ≥ µ2 ≥ · · · ≥ µn ≥ −1 the eigenvalues of B. It is µk =
(λk − α̂)/(1 − α̂). In particular (λn − α̂)/(1 − α̂) ≥ −1, from which λn ≥ −1 + 2α̂ follows.

Set z = v2. There exists at least one index a with z2
a ≥ 1 since otherwise we have ‖z‖2

π =

∑
n
i=1 πiz

2
i < ∑

n
i=1 πi = 1. Also, there exists at least one index b with sgn(za) 6= sgn(zb) because

otherwise 〈z, v1〉π = ∑
n
i=1 πizi 6= 0. In particular, |za − zb| ≥ 1. We have, by definition of πmin

and α, and by Lemmas 5.11 and 5.12,

1 − λ2 = 〈z, (1 − λ2)z〉π = 〈z, (I − A)z〉π =
1

2 ∑
1≤i,j≤n

πi Ai,j|zi − zj|2

≥ 1

2 ∑
(i,j) in H

πi Ai,j|zi − zj|2 ≥ β

2 ∑
(i,j) in H

|zi − zj|2 ≥ β

2D
|za − zb|2 ≥ β

2D
.

(5.24)

This concludes the proof.

Example 5.14 (Equal neighbor settings with bi-directional communication digraphs). If A is
the equal-neighbor matrix of a connected bi-directional digraph G = (V, E) with self-loops,
then it is of the form Ai,j = 1/d(i) if (i, j) ∈ E where d(i) is the out-degree of node i in G. The
fact that G includes self-loops ensures its primitivity. Hence A is ergodic. A short computation
verifies that its Perron vector is given by πi = d(i)/|E| and that A is reversible.

In the constant synchronous setting with averaging matrix A, all confidences are lower-
bounded by α = α̂ ≥ 1/n where n is the number of nodes in G. For all edges (i, j) ∈ E, we
have πi · Ai,j = 1/|E| ≥ β = 1/n2. Theorem 5.13 hence gives the bound 1/2Dn2 ≥ 1/2n3 on
the setting’s spectral gap where D is the diameter of G.

This cubic lower bound is well-known and usually derived by different methods such as
the cover time of the equivalent lazy random walk (e.g., [9]). It is asymptotically tight in the
number of nodes. The estimation β ≥ πminα does not yield the same bound, as πmin can be
in the order of 1/n2, which would yield the lower bound ≥ 1/2Dn3 ≥ 1/2n4 on the spectral
gap. This is one power of n worse than utilizing the precise definition of β.

Similarly, if A is a fixed confidence equal neighbor matrix of a bi-directional graph with
self-loops: Every diagonal entry is at least α̂ ≥ c where c is the smallest confidence. Further-
more, πi = 1/

(

ci ∑k 1/ck

)

and thus πi Ai,j ≥ β = c/n since ∑k 1/ck ≤ n/c. This yields a lower
bound of c/2Dn on the spectral gap with the theorem.

We hence recover a particular case of Theorem 5.10. Its general form will be a special case
of Corollary 5.25.

Corollary 5.15. A constant synchronous fixed confidence equal-neighbor setting with communication
digraph G reaches asymptotic consensus if G is bi-directional and connected. Furthermore, the rate of
convergence is at most 1 − 1/2n2c where n is the number of agents and c is the smallest confidence.

We have seen that utilizing the bound 1 − ̺2(A) ≥ πminα/2D might not always be suffi-
cient to prove tight bounds on the spectral gap. Nevertheless, we can use it to prove worst-
case bounds independent of the particular structure and entries of A. For this, we prove a
lower bound on πmin solely in terms of the minimal positive entry α and the diameter D:
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Lemma 5.16. Let A be an n × n ergodic matrix with Perron vector π, minimal positive entry α, and
let D be the diameter of G(A). Then the minimal entry πmin of π fulfills πmin ≥ αD/n.

Proof. Let j ∈ [n] be any index. We first show that πj ≤ α−Dπmin:
There exists a path j0, j1, . . . , jℓ in G(A) from j0 = j to jℓ with πjℓ = πmin and length at

most D, i.e., ℓ ≤ D. Because π is a left-eigenvector to 1 and the edge (jk−1, jk) is in G(A), we
have

πjk =
n

∑
i=1

πi Ai,jk ≥ πjk−1
Ajk−1,jk ≥ απjk−1

(5.25)

for all 1 ≤ k ≤ ℓ, and we have thus shown πmin ≥ αℓπj ≥ αDπj.
But then

1 =
n

∑
j=1

πj ≤ nα−Dπmin , (5.26)

which implies πmin ≥ αD/n.

Combining the lower bound on πmin with the second part of Theorem 5.13, we hence get
a bound on the spectral gap solely in terms of the minimal confidence, the diameter, and the
number of agents:

Corollary 5.17. The spectral gap of a constant synchronous setting with reversible averaging matrix
and self-confidence is at least αD+1/2Dn where α is the minimal confidence, D is the communication
digraph’s diameter, and n is the number of agents.

5.3.2 Extension to the Non-Reversible Case

If A is not reversible, we cannot directly use the proof of Theorem 5.13 because it relies on
the fact that the second largest eigenvalues are real, as it uses Lemma 5.12, which only talks
about the real part of the eigenvalues. It also relies on the fact that the relevant eigenvector is
real. Both are not true in general if the matrix is not reversible. In this subsection, we will use
a reversibilization of A, i.e., a reversible matrix whose eigenvalues have a certain relation to
the eigenvalues of the original matrix A.

Two natural candidates for reversibilizations are the “multiplicative” one A∗ · A and the
“additive” one (A + A∗)/2 (cf. [42]) where A∗ denotes the adjoint matrix with respect to the
inner product 〈·, ·〉π of A’s Perron vector π. We will use the multiplicative one. Clearly, both
are self-adjoint and hence reversible with respect to π. The additive reversibilization is always
ergodic if A is because the digraph G(A) is contained in that of (A + A∗)/2. The multiplica-
tive reversibilization is not necessarily ergodic if A is, but it is ergodic if the diagonal of A is
positive because then G(A) is also a sub-digraph of G(A∗A).

The fundamental use of the multiplicative reversibilization is the fact that it occurs when

looking at the norm ‖Az‖2
π = 〈A∗Az, z〉π. The next lemma shows that the latter value is upper

bounded by ̺2(A∗A) · ‖z‖2
π whenever z is π-orthogonal to 1. It is the variational character-

ization of the second largest eigenvalue. As π-orthogonality is preserved when applying A,
this then shows that Atz → 0 for all z with 〈z, 1〉π = 0 if ̺2(A∗A) < 1, i.e., if A∗A is ergodic.

Lemma 5.18. Let B be ergodic and reversible with Perron vector π. Then

̺2(B) = max
{

|〈Bz, z〉π| | 〈z, 1〉π = 0 and ‖z‖π = 1
}

. (5.27)
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Proof. Matrix B is self-adjoint and hence all of its eigenvalues are real and it has an orthonor-
mal eigenbasis. Let {v1, . . . , vn} be such a basis with Bvk = λkvk, v1 = 1, and |λ2| = ̺2(B).

It is ‖z‖π = 1 if and only if there exists an α ∈ Rn with ‖α‖2 = 1 such that z = ∑
n
k=1 αkvk.

It is 〈z, 1〉π = 1 if and only if α1 = 0. We have

|〈Bz, z〉π| =
n

∑
k=1

|λk| · |αk|2 = |α1|2 + ̺2(B) · |α2|2 +
n

∑
k=3

|λk| · |αk|2 . (5.28)

This implies the lemma.

Applying the lemma to B = A∗A hence shows that A is contracting on the π-orthogonal
complement of the subspace generated by 1. On one hand, this is interesting as we will
use it to bound the remaining eigenvalues of A, whose eigenvectors necessarily lie in the
complement. On the other hand, it will allow us to prove convergence and rate bounds for
dynamic matrices, supposing that all have the same Perron vector π and that the second
eigenvalues of their multiplicative reversibilizations are uniformly bounded away from 1.

Lemma 5.19. Let A be an ergodic matrix with Perron vector π. Then ‖Az‖π ≤
√

̺2(A∗A) ‖z‖π

for all z with 〈z, 1〉π = 0.

The fact that all eigenvectors of nonzero eigenvalues are, in fact, π-orthogonal to 1 thus
allows us to upper bound the second eigenvalue of A in terms of the second eigenvalue of its
multiplicative reversibilization:

Lemma 5.20. Let A be an ergodic matrix. Then ̺2(A) ≤
√

̺2(A∗A).
If A is reversible with positive diagonal, then equality holds.

Proof. Every eigenvector z of A not corresponding to eigenvalue 1 is π-orthogonal to 1: If
Az = λz with λ 6= 1, then

〈z, 1〉π = 〈z, A∗1〉π = 〈Az, 1〉π = λ 〈z, 1〉π (5.29)

shows that 〈z, 1〉π = 0.
In particular, if nonzero, this applies to an eigenvector z corresponding to an eigenvalue of

absolute value ̺2(A). Hence, ̺2(A) = ‖Az‖π / ‖z‖π ≤
√

̺2(A∗A) by Lemma 5.19. If ̺2(A)
is zero, then the inequality is trivial.

Now assume that A is reversible with positive diagonal. Then A∗A = A2 is ergodic. By
Theorem 5.3, we have

̺2(A) = lim
t→∞

‖At − 1 · tπ‖1/t = lim
t→∞

‖A2t − 1 · tπ‖1/2t = ̺2(A2)1/2 , (5.30)

which concludes the proof.

We can now assemble the lemmas with Theorem 5.13 for the reversible case to give an
extension to non-reversible ergodic matrices. Compared to the reversible case, we lose a
factor of α̂/2 in the bound on the convergence rate.

Theorem 5.21. Let A be the averaging matrix of a constant synchronous setting with communication
digraph diameter D and self-confidence at least α̂ > 0. If π is the Perron vector of A and β is the
minimal positive value of πi Ai,j, then the setting’s spectral gap is at least min{α̂β/4D, α̂2}.

In particular, it is at least πminα2/4D where α is the minimal confidence and πmin is the minimal
entry of the Perron vector π.
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Proof. Set A′ = A∗A, α̂′ = α̂2, H′ = G(A), and β′ = α̂β. We want to apply Theorem 5.13 to A′.
We have already established that A′ is ergodic and reversible, as well as the fact that H =
G(A) is a sub-digraph of G(A′). Because A is ergodic, the graph H is strongly connected; it
has diameter D. The diagonal entries of A′ are at least α̂′ because

A′
i,i = (A∗A)i,i = ∑

k

Ak,iπk

πi
Ak,i ≥ A2

i,i ≥ α̂2 = α̂′ . (5.31)

Now let (i, j) be an edge of H′, i.e., πi Ai,j ≥ β. Then

πi A
′
i,j = πi(A∗A)i,j = ∑

k

πk Ak,i Ak,j ≥ Ai,iπi Ai,j ≥ α̂β . (5.32)

Theorem 5.13 is hence applicable and shows

1 − ̺2(A) ≥ 1 −
√

1 − min{β′/2D, 2α̂′} ≥ min{β′/4D, α̂′} (5.33)

with Lemma 5.20 and the elementary inequality
√

1 − x ≤ 1 − x/2 for x ∈ [0, 1].

As in the reversible case, we can give a bound only in terms of smallest confidence, the
diameter, and the number of agents, using Lemma 5.16:

Corollary 5.22. The spectral gap of a constant synchronous setting with self-confidence is at least
αD+2/4Dn. where α is the minimal confidence, D is the communication digraph’s diameter, and n is
the number of agents.

Example 5.23 (Equal neighbor settings with Eulerian digraphs). A Eulerian digraph is one in
which every node’s in-degree is equal to its out-degree. Let G = (V, E) be a Eulerian digraph
with self-loops. Let A be the equal neighbor matrix for G. Like in the bi-directional case, A is
ergodic. Furthermore, its Perron vector is again given by πi = d(i)/|E|. But, since G(A) = G
is not bi-directional, A is not reversible.

The diagonal entries of A are at lower-bounded α̂ = 1/n where n is the number of nodes
in G. For all edges (i, j) ∈ E, we have πi · Ai,j = 1/|E| ≥ β = 1/n2. Theorem 5.13 hence gives

the bound 1 − ̺2(A) ≥ 1/4Dn3 ≥ 1/4n4 where D is the diameter of G.

However, this bound is not tight. Cover time methods are able to show a cubic bound of
1 − ̺2(A) = Ω(1/n3) like in the bi-directional case. Theorem 5.21 is nonetheless useful, also
for equal-neighbor matrices in Eulerian digraphs, if we look at dynamic settings, which we
do in the following subsection.

5.3.3 Dynamic Settings with Constant Perron Vector

In this subsection, we show how to can generalize the proofs for a constant setting to dy-
namic settings if their matrices’ Perron vector is constant. The main tool is the fact that the
multiplicative reversibilization gives a bound on the contraction constant in the orthogonal
complement of the Perron vector. Constant Perron vectors occur under the popular assump-
tion that the averaging matrices be doubly stochastic. A non-coordinator based technique to
achieve doubly is stochastic matrices are fixed confidence equal-neighbor algorithms.
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Theorem 5.24. Let A(1), A(2), . . . be the averaging matrices of a synchronous setting with the same
Perron vector π. Further suppose that all communication digraphs are strongly connected and that
there exists some ̺ < 1 such that ̺2

(

A(t)∗A(t)
)

≤ ̺ for all t ∈ N0.

Then the setting reaches asymptotic consensus and its rate of convergence is at most
√

̺.

Proof. Let y be any vector. We will show that limt→∞

∥

∥P(t)y − 1tπy
∥

∥

1/t

π
≤ √

̺, which then
concludes the proof.

We can write y = α1 + βz where 〈z, 1〉π = 0. Then,

∥

∥P(t)y − 1tπy
∥

∥

π
= |β| · ‖P(t)z‖π ≤ |β| · ̺t/2 · ‖z‖π (5.34)

by repeated application of Lemma 5.19 because 〈P(t)z, 1〉π = 0 for all t ∈ N0.

This theorem, together with Theorems 5.13 and 5.21, provides a means to show asymptotic
consensus and to bound the rate of convergence of synchronous dynamic settings whose
averaging matrices are all ergodic and have a common Perron vector. A particular application
for equal neighbor matrices is the following corollary. It is a generalization of Theorem 5.10
from bi-directional to Eulerian digraphs.

Corollary 5.25. Let A(1), A(2), . . . be the averaging matrices of a synchronous fixed confidence
equal-neighbor setting whose communication digraphs are connected and Eulerian. Then the setting
reaches asymptotic consensus and its rate of convergence is at most 1− c/4Dn2 where n is the number
of agents, c is the smallest confidence, and D is the maximum diameter.

If all digraphs are bi-directional, then the rate of convergence is at most 1 − c/4Dn.

Proof. For the Eulerian case, we use Theorem 5.21 with α̂ = c and β ≥ c/n and then The-
orem 5.24. For the bi-directional case, we use Theorem 5.13, then Lemma 5.20, and then
Theorem 5.24.

Combining the theorem with our general lower bound in Corollary 5.22, we get:

Corollary 5.26. Let A(1), A(2), . . . be the averaging matrices of a synchronous setting having the
same Perron vector and whose communication digraphs are strongly connected, have self-loops, and
the minimal confidence is at least α > 0. Then the setting reaches asymptotic consensus and its rate
of convergence is at most 1 − αD+2/4nD where n is the number of agents and D is the maximum
diameter.

If the matrices are doubly stochastic, i.e., also their columns sum to 1, then their Perron
vector is uniform πi = 1/n. In fact, this is a characterization of doubly stochastic matrices.
Doubly stochastic matrices are widely used in engineering applications. We can give a bound
on their rate of convergence:

Corollary 5.27. Let A(1), A(2), . . . be the averaging matrices of a synchronous setting that are dou-
bly stochastic and whose communication digraphs are strongly connected, have self-loops, and the
minimal confidence is at least α > 0. Then the setting reaches asymptotic consensus and its rate of
convergence is at most 1 − α2/4nD where n is the number of agents and D is the maximum diameter.
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5.3.4 Worst-Case Lower Bound

We have seen worst-case bounds on the convergence rate bounding it away from 1 with a
term exponential in n, e.g., Corollary 5.26. In the next section, we will see a wider class of
dynamic settings in which the convergence rate is bounded away by a term of the order αn.
In this subsection, we present an example showing that there exists even a constant setting
that indeed has a convergence rate exponentially close to 1.

To prove the lower bound of the example, we need a result that lower bounds ̺2(A) in
terms of the bottleneck ratio of A.

The bottleneck ratio is also referred to as Cheeger constant or conductance. It measures
the minimal normalized weight of outgoing edges from a set of nodes in G(A).

Definition 5.28 (Bottleneck ratio [62, Section 7.2]). Let A be an ergodic matrix in Rn×n with
Perron vector π and let S ⊆ [n]. The bottleneck ratio of S in A is defined as

ΦS(A) = π(S)−1 ∑
i∈S

∑
j∈[n]\S

πi Ai,j . (5.35)

The bottleneck ratio of the matrix A is defined as the minimal bottleneck ratios of all S with
π(S) ≤ 1/2, i.e.,

Φ(A) = min
S⊆[n]

π(S)≤1/2

ΦS(A) . (5.36)

A proof of the following theorem can be found in textbooks (e.g., [62, Theorem 7.2 and
Theorem 12.3]).

Theorem 5.29. Let A be an ergodic matrix with Perron vector π. If πmin denotes the minimal entry
of π, then

1 − ̺2(A) ≤ 4 · Φ(A) · log
4

πmin
. (5.37)

Example 5.30. The following example was described by Chung [29, Proof of Lemma 6.3] to
show that the bottleneck ratio can be exponentially small in the size of A. More specifically,
it is an ergodic matrix in Rn×n with minimal positive entry α = 1/2 whose spectral gap is at
most αΩ(n), i.e., exponential in n. Chung used the bottleneck ratio to bound the eigenvalues
of the Laplacian. We, on the other hand, use it in conjunction with Theorem 5.29 to bound
the eigenvalues of the matrix itself, and not of its Laplacian. This allows us to directly infer a
lower bound on its convergence rate.

The example is an equal-neighbor matrix. Its digraph is heavily non-bidirectional in the
sense that there is a node whose difference between in-degree and out-degree is in the order
of n. The digraph has to be non-bidirectional because otherwise its spectral gap would be
at least n−3, which is far away from being exponential in n. Nonetheless, all nodes have
out-degree 2, which means that all matrix entries are either 0 or 1/2.

The digraph is depicted in Figure 5.4. It has n = 2m nodes and consists of two isomorphic
parts that are connected via two anti-parallel edges. We will list the edges between the nodes
1, 2, . . . , m, which also determine the edges between the nodes m + 1, m + 2, . . . , 2m via the
isomorphism ī = 2m − i + 1. The digraph also contains the two anti-parallel edges (m, m̄)
and (m̄, m). The edges between the nodes 1, 2, . . . , m are: (a) the edges (i, i + 1) for all i < m
and (b) the edges (i, 1) for all i ∈ {1, 2, . . . , m}.
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Figure 5.4: Chung’s example of a digraph with small bottleneck ratio

We can verify that the Perron vector is given by

πi =
1

2i+1
for i ∈ {1, 2, . . . , m − 1} and πm =

1

2m
. (5.38)

By symmetry, this also defines the Perron vector for the remaining indices between m + 1
and 2m since πi = π2m−i+1. We note the particular value πm = 1/2m, which is exponentially
small in m, and hence in n. Choosing S = {1, 2, . . . , m}, we have π(S) = 1/2 by symmetry,
and its bottleneck ratio is equal to ΦS(A) = 2πm · Am,m̄ = 1/2m. Hence the bottleneck ratio
of A is at most Φ(A) ≤ 1/2m. The smallest entry of its Perron vector is πmin = πm = 1/2m.
Hence Theorem 5.29 gives the bound

1 − ̺2(A) ≤ 1

2m−2
· log 2m+2 = O

( m

2m

)

(5.39)

on the spectral gap.

5.4 Asymptotic Consensus in Dynamic Settings with Aperiodic

Core

In this section, we study asymptotic consensus within dynamic settings, i.e., settings in which
the averaging matrices A(t) and delay vectors δ(t) depend on t. We give both convergence
conditions and upper-bound the rate of convergence. We start the chapter by studying syn-
chronous settings, which translate to products P(t) of stochastic matrices A(t). We treat B-
bounded settings as special cases of our results on synchronous settings via the reduction of
B-bounded to synchronous settings.

5.4.1 Coefficient of Ergodicity

Definition 5.31 (Coefficients of ergodicity [82, Definition 4.6]). Let Sn be the set of stochastic
matrices in Rn×n. A coefficient of ergodicity on Rn×n is a continuous mapping µ : Sn → [0, 1].
It is proper if µ(A) = 0 if and only if A has rank 1, i.e., is of the form A = 1 · tv for some
stochastic vector v.
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The use of a coefficient of ergodicity µ shows that µ
(

P(t)
)

converges to zero as t → ∞.
Much of the complication in the proofs comes from the need to show some form of sub-
multiplicativity for proving convergence to zero.

Theorem 5.32 (Hajnal [51, Theorem 2]). The two mappings

δ(A) = max
j

max
i1,i2

|Ai1,j − Ai2,j| (5.40)

and
λ(A) = 1 − min

i1,i2
∑

j

min{Ai1,j, Ai2,j} . (5.41)

are proper coefficients of ergodicity. Furthermore, we have δ(AB) ≤ λ(A)δ(B).

It is natural to ask what this technique yields when applied to a constant sequence A(t) =
A, i.e., powers of a stochastic matrix A. The next theorem is a result by Hajnal that answers
this question. It characterizes the matrices A for which Theorem 5.32 is able to show ergodic-
ity of P(t) = At.

Definition 5.33 (Scrambling matrices [51]). A stochastic matrix A in Rn×n is scrambling if for
all i1, i2 ∈ [n] there exists some j ∈ [n] such that both Ai1,j > 0 and Ai2,j > 0.

Theorem 5.34 (Hajnal [51]). A stochastic matrix A is scrambling if and only if λ(A) < 1.

We will further provide sufficient conditions on the averaging matrices of synchronous
and B-bounded settings for reaching asymptotic consensus in all executions; that is, inde-
pendent of the agents’ initial values. Since this also includes the standard basis vectors, in
synchronous settings, this is equivalent for the sequence of matrix products P(t) converg-
ing and the limit being a rank 1 matrix. For this, we will use a coefficient of ergodicity that
measures how far a stochastic matrix is from having rank 1. It will turn out to be equal to
the coefficient λ defined by Hajnal [51], but we introduce it in a different manner, namely in
form of a semi-norm, that establishes its sub-multiplicativity; a fact that is not obvious from
Hajnal’s definition. In fact, authors like Hajnal, Wolfowitz, and Chatterjee and Seneta used a
substitute for sub-multiplicativity involving a second coefficient, see Theorem 5.32.

An execution x(t) reaches asymptotic consensus if and only if the limit x∗ = limt→∞ x(t)
exists and all of its entries are equal, i.e., x∗ = c∗ · 1 for some scalar c∗ ∈ R. Thus, a nec-
essary condition for reaching asymptotic consensus is that the distance of x(t) to the vector
space 〈1〉 generated by 1 tends to zero. We will show, at least for executions in synchronous
and B-bounded settings, that this condition is actually also sufficient for reaching asymptotic
consensus.

We choose the infinity norm to define the distance to the subspace 〈1〉. This distance is
actually a vector semi-norm, which we will use to show that the resulting matrix semi-norm
is sub-multiplicative. We then show that the matrix semi-norm is equal to the coefficient of
erogdicity λ, which shows sub-multiplicativity of λ. We choose a normalization factor of 2
to have the additional property that the distance is equal to the maximum distance between
vector entries. We hence define

‖x‖⊥ = 2 inf
c∈R

‖x − c · 1‖∞ . (5.42)

Lemma 5.35. The following propositions are true.
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1. The mapping x 7→ ‖x‖⊥ is a semi-norm on Rn.

2. ‖x‖⊥ = xmax − xmin.

We now prove that ‖x(t)‖⊥ → 0 is necessary and sufficient for x(t) to converge to a
multiple of 1. For a vector x ∈ Rn, we denote by hull(x) the convex hull of the set {xi | i ∈ [n]}
of its entries. More concretely, hull(x) is the interval [xmin, xmax] where xmin is the minimal
and xmax the maximum entry of x. For an interval I ⊆ R, we write len(I) for its length. In
our case, len(hull(x)) = xmax − xmin.

Because every entry of Ax is a convex combination of the xi, we get:

Lemma 5.36. If A is a stochastic matrix in Rn×n and x ∈ Rn, then hull(Ax) ⊆ hull(x).

We can now prove our claimed characterization.

Theorem 5.37. Let A(1), A(2), . . . be a sequence of stochastic matrices in Rn×n and let x ∈ Rn.
If the sequence of vectors defined by x(0) = x and x(t) = A(t) · x(t − 1) converges to some vector
x∗ = c∗ · 1 ∈ 〈1〉, then

1

2
‖x(t)‖⊥ ≤ ‖x(t)− x∗‖∞ ≤ ‖x(t)‖⊥ (5.43)

for all t ∈ N0.

Proof. Since hull(x∗) = {c∗} and hull(x∗) ⊆ hull(x(t)) for all t ∈ N0 by the second part of
Lemma 5.36, it is c∗ ∈ hull(x(t)) for all t ∈ N0. In particular, |xi(t)− c∗| ≤ len(hull(x(t))) for
all i ∈ [n] since xi(t) ∈ hull(x(t)) by definition. Hence

‖x(t)− x∗‖∞ = max
i∈[n]

|xi(t)− c∗| ≤ len(hull(x(t))) = ‖x(t)‖⊥ (5.44)

by the first part of Lemma 5.36. The inequality ‖x(t)‖⊥ /2 ≤ ‖x(t)− c∗ · 1‖∞ = ‖x(t)− x∗‖∞

holds by the definition of ‖x(t)‖⊥ as an infimum.

Because the convex hull of the agents’ values in the reduced execution y(t) of a B-bounded
settings to a synchronous settings is equal to the convex hull of the values in x(t), x(t −
1), . . . , x(t− B+ 1), we have ‖y(t)‖⊥ → 0 if and only if ‖x(t − d)‖⊥ → 0 for all 0 ≤ d ≤ B− 1,
which in turn is equivalent to ‖x(t)‖⊥ → 0 because of monotonicity. We hence have:

Corollary 5.38. An execution x(t) of a B-bounded setting reaches asymptotic consensus if and only
if ‖x(t)‖⊥ → 0.

Starting from the vector semi-norm, we define a matrix semi-norm by mimicking the def-
inition of the operator norm. More explicitly, for a matrix A ∈ Rn×n, we set

‖A‖⊥ = sup
x∈Rn

‖x‖⊥ 6=0

‖Ax‖⊥
‖x‖⊥

. (5.45)

Lemma 5.39. The following propositions are true.

1. The mapping A 7→ ‖A‖⊥ is a sub-multiplicative semi-norm on Rn×n.

2. If A is stochastic, then ‖A‖⊥ = 0 if and only if img A = 〈1〉.
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The following theorem characterizes convergence of the semi-norm of an infinite matrix
product of stochastic matrices to zero. It shows that it is equivalent that the product converges
to a rank 1 matrix.

Theorem 5.40. Let
(

A(t)
)

be a sequence of stochastic matrices. The sequence of products P(t) =
A(t) · A(t − 1) · · · A(1) converges to a stochastic matrix of rank 1 if and only if ‖P(t)‖⊥ → 0.

Proof. If P(t) converges to a rank 1 stochastic matrix P, then ‖P‖⊥ = 0. The mapping A 7→
‖A‖⊥ is continuous because

∣

∣ ‖A‖⊥ − ‖B‖⊥
∣

∣ ≤ ‖A − B‖⊥ ≤ ‖A − B‖∞ (5.46)

by the reverse triangle inequality and because ‖C‖⊥ ≤ ‖C‖∞. Hence ‖P(t)‖⊥ → ‖P‖⊥ = 0.
To prove the converse implication, we show that P(t) · x is a Cauchy sequence for all

x ∈ Rn if ‖P(t)‖⊥ → 0. This then concludes the proof because then the limit P = lim P(t)
exists and is of rank at most 1 by the second part of Lemma 5.39 because ‖P‖⊥ = 0. Every
P(t) is stochastic because the product of two stochastic matrices is stochastic. The condition
∀i : ∑

n
j=1 Pi,j(t) = 1 is preserved when taking the limit, hence P is stochastic, and of rank 1

because stochastic matrices are nonzero.
So let x ∈ Rn and ε > 0. Because ‖P(t) · x‖⊥ → 0, there exists a T such that ‖P(T) · x‖⊥ ≤

ε. Let c ∈ R such that ‖P(T) · x‖⊥ = 2‖P(T) · x − c · 1‖∞. Then, denoting P(t, T) = P(t) ·
P(t − 1) · · · P(T + 1), for every t ≥ T, we have

‖P(t) · x − P(T) · x‖∞ ≤ ‖P(t, T) · P(T) · x − c · 1‖∞ + ‖P(T) · x − c · 1‖∞

≤ ‖P(t, T) · (P(T) · x − c · 1)‖∞ + ε/2

≤ ‖P(T) · x − c · 1‖∞ + ε/2 ≤ ε

(5.47)

because ‖P(t, T)‖∞ ≤ 1 since it is stochastic. This concludes the proof.

Corollary 5.41. A synchronous setting with averaging matrices A(t) reaches asymptotic consensus
in all executions if and only if ‖P(t)‖⊥ → 0.

We now give different expressions for it. In particular, we show that it is equal to the
coefficient of ergodicity λ used by Hajnal.

Lemma 5.42. Let A be a stochastic matrix in Rn×n. The following equalities for ‖A‖⊥ are true.

1. ‖A‖⊥ = max
x∈{0,1}n

‖Ax‖⊥

2. ‖A‖⊥ = max
i1,i2∈[n]

n

∑
j=1

(Ai1,j − Ai2,j)+ where (z)+ = max{z, 0} is the positive part of z ∈ R

3. ‖A‖⊥ = 1 − min
i1,i2∈[n]

n

∑
j=1

min{Ai1,j, Ai2,j}

Proof. By homogeneity of the vector semi-norm, we can restrict the supremum in the defini-
tion of ‖A‖⊥ to all x with ‖x‖⊥ = 1, i.e., len(hull(x)) = 1. Further, if we denote the minimal
entry of x by xmin and set x′ = x − xmin · 1, we have ‖x′‖⊥ = ‖x‖⊥ = 1 and ‖Ax′‖⊥ = ‖Ax‖⊥.
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We can hence restrict the supremum to all x with hull(x) = [0, 1]. Using the third part of
Lemma 5.35, we thus have

‖A‖⊥ = sup
hull(x)=[0,1]

‖Ax‖⊥ = sup
hull(x)=[0,1]

max
i1,i2∈[n]

(

n

∑
j=1

Ai1,jxj −
n

∑
j=1

Ai2,jxj

)

= max
i1,i2∈[n]

sup
hull(x)=[0,1]

n

∑
j=1

(Ai1,j − Ai2,j)xj .

(5.48)

Clearly, the supremum in the last expression in (5.48) is attained by the vector x ∈ Rn by
setting xj = 1 if Ai1,j − Ai2,j > 0 and xj = 0 otherwise. This shows the second claimed
equality. Because ‖Ax‖⊥ is equal to the last expression in (5.48), we have also shown the first
claimed equality.

Starting from the second claimed equality, we get

‖A‖⊥ = max
i1,i2∈[n]

n

∑
j=1

max{Ai1,j − Ai2,j , 0} = max
i1,i2∈[n]

n

∑
j=1

(

Ai1,j + min{−Ai2,j,−Ai1,j}
)

= 1 + max
i1,i2∈[n]

n

∑
j=1

max{−Ai1,j,−Ai2,j} = 1 − min
i1,i2∈[n]

n

∑
j=1

min{Ai1,j , Ai2,j}
(5.49)

because ∑
n
j=1 Ai1,j = 1 and max(−A) = −minA. This shows the third claimed equality.

5.4.2 Proving Convergence with the Semi-norm

The semi-norm of a stochastic matrix is at most one. The following lemma gives a sufficient
condition for the case that it is strictly less than one, and gives a means to bound the distance
to one.

Theorem 5.43. Let A ∈ Rn×n be a stochastic matrix, α ≥ 0, and j0 ∈ [n]. Suppose that all of A’s
entries in the j0

th column are at least α, i.e., Ai,j0 ≥ α for all i ∈ [n]. Then ‖A‖⊥ ≤ 1 − α.

Proof. Write A = E + B where Ei,j = α if j = j0 and Ei,j = 0 otherwise. Because the image of E
is contained in 〈1〉, we have ‖E‖⊥ = 0 and hence ‖A‖⊥ = ‖B‖⊥ by the triangle inequality.
The entries of B are all nonnegative and its row sums ∑j Bi,j are all equal to 1 − α.

Let x ∈ Rn. For every c ∈ R, we have:

1

2
‖Bx‖⊥ ≤ ‖Bx − (1 − α)c · 1‖∞ = max

i∈[n]

∣

∣

(

n

∑
j=1

Bi,jxj

)

− (1 − α)c
∣

∣

= max
i∈[n]

∣

∣

n

∑
j=1

Bi,j · (xj − c)
∣

∣ ≤ max
i∈[n]

n

∑
j=1

Bi,j · |xj − c|

≤ max
i∈[n]

n

∑
j=1

Bi,j · ‖x − c · 1‖∞ = (1 − α) · ‖x − c · 1‖∞

(5.50)

Forming the infimum over all c ∈ R now shows that ‖Bx‖⊥ ≤ (1 − α) · ‖x‖⊥ and hence
‖A‖⊥ = ‖B‖⊥ ≤ 1 − α.
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1 2

3

Figure 5.5: Digraph G(A) of matrix A in Example 5.44

Example 5.44. We now give an example of a matrix whose semi-norm is strictly less than 1,
but that does not have a strictly positive column, i.e., Theorem 5.43 cannot be used to prove
this. The matrix is equal to

A =





1/2 1/2 0
1/2 0 1/2

0 1/2 1/2



 (5.51)

and its digraph is depicted in Figure 5.5. Using the first expression in Lemma 5.42, one can
see that the semi-norm ‖A‖⊥ is equal to 1/2.

However, if the sequence of powers At, or the sequence of products P(t), or any sequence
of matrices B(t) really, converges to a rank 1 stochastic matrix B, then necessarily some col-
umn is eventually positive. This is because every rank 1 stochastic matrix can be written as
B = 1 · tv where v is a probability vector. A probability vector never being zero, it has some
positive entry, say, vj0 . But for all i, the sequence Bi,j0(t) converges to vj0 , i.e., is eventually
positive at some point.

Hence, while the hypothesis of Theorem 5.43 is not necessary for At converging to a rank 1
matrix, the hypothesis that some power of A fulfills it is both necessary and sufficient. We
develop this argument more carefully in the following section.

The following lemma characterizes positivity of entries in products of stochastic matrices
solely in terms of the matrices’ associated digraphs. It should be noted that, because we study
backward products, the walks grow at the start node and not at the end node.

Lemma 5.45. Let 0 ≤ s ≤ t and i, j ∈ [n]. Then Pi,j(t, s) is positive if and only if there exist

it, it−1, . . . , is ∈ [n] with it = i and is = j such that (iτ, iτ−1) is an edge of G
(

A(τ)
)

for all s + 1 ≤
τ ≤ t.

5.4.3 Aperiodic Cores

Classically, in asymptotic consensus, self-confidence of the agents is assumed. That is, every
communication digraph contains self-loops at all nodes. This can model the fact that an agent
does not ignore or forget its own previous value. We generalize the existence of self-loops,
however: A missing self-loop in a specific communication digraph can model memory loss
of an agent. We replace the assumption of self-loops to aperiodic cores, which are sub-digraphs
of all of the settings’ communication digraphs. They can be seen as a “distributed safety
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net against memory loss”. In this sense, existence of self-loops is the assumption of a non-
distributed safety measure against memory loss or temporary self-distrust. Their function in
the proofs is similar to that of self-loops, but they are more general. A parameter that we use
over and over in our results is that of the index of convergence of the aperiodic core. If one
assumes self-loops, then this parameter is equal to 0. So, in our theorem statements, if one
assumes self-confidence, then ind(H) = 0.

We call a node j in a digraph G a leader of another node i if G contains a path from i to j.
A digraph is j-coordinated if j is a leader of every node. In this case, node j is called a leader
of G. A digraph is coordinated if it is j-coordinated for some j. If j is a node of a digraph G, we
say that G is j-aperiodic if j’s strongly connected component in G is primitive. A digraph H is
a core of a sequence G1, G2, . . . of digraphs if H is a sub-digraph of every Gt.

5.4.4 Coordinated Aperiodic Cores

We start with assuming that there is a core that is coordinated and leader-aperiodic. The
assumption of a core in particular applies if the communication digraph is constant. We
hence get a direct generalization of the constant ergodic case:

Theorem 5.46. A synchronous setting with averaging matrices A(t) with spanning core H and
minimal confidence α reaches asymptotic consensus if there exists some agent j0 such that H is j0-
coordinated and j0-aperiodic. Moreover, the rate of convergence is at most 1 − αind(H)/ ind(H).

We prove this theorem in the rest of the subsection.
In general, given a sequence of stochastic matrices A(1), A(2), . . . in RN×N and a node j ∈

[N], we define Sj(t, s) to be the set of indices i ∈ [N] such that Pi,j(t, s) is positive. Denote
by µj(t, s) the smallest (positive) Pi,j(t, s) with i ∈ Sj(t, s). We also define Sj(t) = Sj(t, 0) and
µj(t) = µj(t, 0).

It is easy to see that µj(t, s) ≥ αt−s if α is the minimal confidence. This will be our main tool
to bound the convergence rate: If Sj(t, s) = [N], then ‖P(t, s)‖⊥ ≤ 1 − αt−s by Theorem 5.43.
And if we can show Sj(t, s) = [N] whenever t − s ≥ T where T is some constant, then

lim
t→∞

‖P(t)‖1/t
⊥ = lim

k→∞
‖P(kT)‖1/kT

⊥ ≤ (1 − αT)1/T ≤ 1 − αT/T . (5.52)

Because all hypotheses we consider are time-invariant, it is sufficient to show Sj(T) = [N].
For Theorem 5.46, we choose T = ind(H): We show that Sj(ind(H)) = [N]. This is

done by reducing the problem to one with a constant matrix. So let A be any stochastic
matrix whose digraph G(A) is equal to H. If At has a positive column, then so does P(t)
because H is a sub-digraph of every communication digraph. This shows the claim since
ind(G(A)) = ind(H).

5.4.5 Clusterings

We pair the idea of the distributed safety net in form of an aperiodic core with the notion of
clusters, which have a leader that is the sole agent of the cluster to regard values of agents
other than the cluster’s. We will prove that it is not necessary for every agent to be contained
in an aperiodic component, but only for the cluster leaders.

A natural example of these clusterings occurs in the reduction of B-bounded settings with
self-confidence to synchronous ones (see Figure 5.3), for which ind(H) = B − 1. If we do
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Figure 5.6: C-aperiodic digraph with leaders 1, 2, 3, 4

not assume self-confidence in B-bounded settings, then asymptotic consensus is not neces-
sarily reached, even if the averaging matrices are constant and ergodic. By proving results
on cluster-aperiodic cores in synchronous settings, we are hence also proving results on B-
bounded settings with self-confidence.

A digraph is a cluster with leader l if it is l-coordinated. A clustering C is a collection of
node-disjoint clusters C1, C2, . . . , Cn together with respective leaders l1, l2, . . . , ln. A digraph is
C-aperiodic if every cluster Cm is a sub-digraph, every node is contained in some cluster, and it
is l-aperiodic for every leader lm of C. Figure 5.6 shows an example of a C-aperiodic digraph.

A digraph respects a clustering C if the only edges leaving a cluster are the leader’s. Given
a digraph that respects clustering C, the corresponding cluster digraph is the digraph when
collapsing all clusters of C to single node.

5.4.6 Dynamic Coordinated Communication Digraphs

We now prove that asymptotic consensus is also reached if there is no coordinated core, but
that coordination at every time step suffices.

Theorem 5.47. A synchronous setting with averaging matrices A(1), A(2), . . . with a C-aperiodic
spanning core H and minimal confidence α reaches asymptotic consensus if every communication
digraph respects C and is coordinated. Moreover, the rate of convergence is at most

1 − α(n−1)2(ind(H)+1)/(n − 1)2(ind(H) + 1) (5.53)

where n is the number of clusters in C.

Corollary 5.48. A B-bounded setting with averaging matrices A(1), A(2), . . . with self-confidence
and minimal confidence α reaches asymptotic consensus if every communication digraph is coordi-

nated. Moreover, the rate of convergence is at most 1 − α(n−1)2B/(n − 1)2B.

Corollary 5.48, without the explicit bound on the rate of convergence is included in Theo-
rem 5.9.

We prove the theorem in the rest of the subsection. Denote the number of nodes by N.
The sets Sj(t) satisfy a weak form of monotonicity if the sequence of communication

graphs have an aperiodic core. If there are self-loops in all communication digraphs, then
clearly Sj(t) ⊆ Sj(t + 1), which is a special case of the following lemma.
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Lemma 5.49. If H is a spanning C-aperiodic core and all communication digraphs respect C, then
Sj(t1) ⊆ Sj(t2) whenever t2 − t1 ≥ ind(H) and j is a leader of C.

Proof. Let i ∈ Sj(t1). Since all communication digraphs respect the clustering, i’s leader li
appears in some earlier set: li ∈ Sj(t

′
1) with t′1 ≤ t1.

Because H is li-aperiodic and t2 − t′1 ≥ ind(H), there exists a walk of length t2 − t′1 from i
to li in H by Theorem 2.1 and the definition of ind(H). The fact that H is a sub-digraph of
all G

(

A(τ)
)

shows that Pi,li(t2, t′1) is positive by Lemma 5.45.

Hence

Pi,j(t2) = ∑
k

Pi,k(t2, t′1) · Pk,j(t
′
1) ≥ Pi,li(t2, t′1) · Pli ,j(t

′
1) (5.54)

is positive, which shows i ∈ Sj(t2).

The following lemmas are used to lower bound the steps need until Sj(t) = [N].

Lemma 5.50. If H is a spanning C-aperiodic core, all communication graphs respect C, j is a leader
of C, t ≥ ind(H), and G(A(t + 1)) is j-coordinated, then either Sj(t) = [N] or Sj(t + 1) \ Sj(t) 6=
∅.

Proof. The hypothesis that t ≥ ind(H) guarantees that j ∈ Sj(t) by Lemma 5.49. Every node
has a path to j, and hence to Sj(t), in G(A(t + 1)). Now, if Sj(t) 6= [N], there is some i ∈
[n] \ Sj(t) that has an outgoing neighbor k0 in Sj(t), i.e., Ai,k0

(t + 1) > 0. The condition
k0 ∈ Sj(t) means Pk0,j(t) > 0 and hence

Pi,j(t + 1) = ∑
k

Ai,k(t + 1) · Pk,j(t − 1) ≥ Ai,k0
(t + 1) · Pk0,j(t) > 0 , (5.55)

which shows i ∈ Sj(t + 1).

Lemma 5.51. Let H be a spanning C-aperiodic core, all communication graphs respect C and j be a
leader of C. If l is any leader of some cluster C of C and l ∈ Sj(t), then C ⊆ Sj(t + ind(H)).

Proof. Because C is l-aperiodic and l-coordinated, we have C ⊆ Sl(τ) for all τ ≥ ind(C).
Because ind(H) ≥ ind(C), the lemma follows with an application of Lemma 5.45.

Set tm = m · (ind(H) + 1). For m ≥ 1, let jm be a leader of the digraph G(A(tm)) and also
of C. Lemma 5.49 specialized to s = tm−1 and t = tm − 1 = tm−1 + ind(H) gives Sj(tm − 1) ⊇
Sj(tm−1) for all leaders j and all m ≥ 1. Lemma 5.50 applied to t = tm and j = jm gives:
Sjm(tm) ) Sjm(tm−1) if Sjm(tm − 1) 6= [N].

If m = (n − 1)2 = (n − 2)n + 1, then some j0 ∈ [n] appears at least n − 1 times in the
sequence of leaders j1, j2, . . . , jm. By the above and Lemma 5.51, it is hence Sj0(tm) = [N],
which shows the theorem.

5.4.7 Dynamic Communication Digraphs with Fixed Leader

In this subsection, we assume a fixed leader in every communication digraph and are able to
show a tighter bound on the rate of convergence. The case of strongly connected communi-
cation digraphs is a special case.
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Theorem 5.52. A synchronous setting with averaging matrices A(1), A(2), . . . with a C-aperiodic
spanning core H and minimal confidence α reaches asymptotic consensus if every communication
digraph respects C and there is an agent j0 such that every communication digraph is j0-coordinated.
Moreover, the rate of convergence is at most

1 − α(n−1)(ind(H)+1)/(n − 1)(ind(H) + 1) (5.56)

where n is the number of clusters in C.

Corollary 5.53. A B-bounded setting with averaging matrices A(1), A(2), . . . with self-confidence
and minimal confidence α reaches asymptotic consensus if there is an agent j0 such that every commu-
nication digraph is j0-coordinated. Moreover, the rate of convergence is at most 1− α(n−1)B/(n− 1)B.

Corollary 5.53, without the explicit bound on the rate of convergence is included in Theo-
rem 5.9.

We use the notation of the previous subsection. The theorem follows similarly by noticing
that, in this case, jm = j0 for all m ≥ 1 and hence j0 appears n − 1 times in the sequence of
leaders j1, j2, . . . , jn−1.

5.4.8 Completely Reducible Communication Digraphs

We now show that one can replace the assumption of coordination by the assumption of
completely reducibility at every time step and eventual weak connectivity.

Theorem 5.54. A synchronous setting with averaging matrices A(1), A(2), . . . with a C-aperiodic
spanning core H and minimal confidence α reaches asymptotic consensus if every communication
digraph respects C, all cluster communication digraphs are completely reducible, and the digraph G∞

formed by all edges that appear in infinitely many cluster communication digraphs is weakly connected.

Corollary 5.55. A B-bounded setting with averaging matrices A(1), A(2), . . . with self-confidence
and minimal confidence α reaches asymptotic consensus if every communication digraph is completely
reducible and the digraph G∞ of edges that appear in infinitely many communication digraphs is weakly
connected.

Corollary 5.55 for synchronous settings is Theorem 5.7.

We prove this theorem in the rest of this subsection. We do not use the exact same proof
strategy as in the previous subsection: We show the existence of a T such that

‖P(T)‖⊥ ≤ 1 − αn(ind(H)+1) . (5.57)

This suffices to show the theorem because the conditions in the theorem are time-invariant
and repeated application thus shows that ‖P(t)‖⊥ → 0. Even though we cannot bound T
with the hypotheses of the theorem, we can bound the semi-norm uniformly, which is critical
for the proof to work. Theorem 5.40 then concludes the proof.

We first show that G∞ is completely reducible. For that, we show the following lemma.

Lemma 5.56. Every union of completely reducible digraphs is completely reducible.
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Proof. Let G be a set of completely reducible digraphs and let H =
⋃ G be their union. Let i

and j be two nodes in H and suppose that there exists a path P from i to j in the union
digraph H. We will show that there then exists a path from j to i in H. This is trivial if i = j so
suppose the contrary, i.e., that P is nonempty.

Let i0, i1, . . . , in be P’s sequence of nodes. For every 1 ≤ k ≤ n, the edge ek is in some
digraph G ∈ G. Now, because G is completely reducible, there exists a path Pk in G from ek

to ek−1. But then the composite walk Pn · Pn−1 · · · P1 is a walk in H from j to i.

Hence G∞ is completely reducible because Lemma 5.56 shows that

G∞ = lim
T→∞

⋃

t≥T

G(A(t)) (5.58)

is a decreasing limit of a sequence of completely reducible digraphs. Because all digraphs are
finite, this sequence is eventually constant. Hence its limit G∞ is equal to one of the sequence’s
elements and hence completely reducible.

The next lemma captures the essence of the complete reducibility assumption: If Sj(t) does
not change, then µj(t) does not decrease. Together with the weak monotonicity of Lemma 5.49
and eventual connectivity, we are able to show the theorem.

Lemma 5.57. Under the hypotheses of Theorem 5.54, if j is a leader of C and Sj(t) = Sj(t + 1), then
µj(t + 1) ≥ µj(t).

Proof. Let Pi,j(t + 1) be positive, i.e., i ∈ Sj(t + 1) = Sj(t). By definition of Sj(t), we have

Pi,j(t + 1) = ∑
k∈Sj(t)

Ai,k(t + 1) · Pk,j(t) . (5.59)

Because Sj(t) = Sj(t + 1), we derive that Ai,k(t + 1) is zero whenever i 6∈ Sj(t) and k ∈ Sj(t).
Because every node of a cluster is leader-coordinated, every the nodes of a cluster are either
all in Sj(t) or all outside of Sj(t). Hence, because the cluster digraph A(t + 1) is completely
irreducible, we also have that Ai,k(t + 1) is zero whenever i ∈ Sj(t) and k 6∈ Sj(t).

By assumption, we have i ∈ Sj(t), and hence by the above and by stochasticity of A(t+ 1):

1 = ∑
k

Ai,k(t + 1) = ∑
k∈Sj(t)

Ai,k(t + 1) (5.60)

Because Pk,j(t) ≥ µj(t) for all k ∈ Sj(t), combination of Equations (5.59) and (5.60) yields
Pi,j(t + 1) ≥ µj(t).

Choose any leader j0 of C. For every i ∈ [n], let ti be the least nonnegative integer such
that Ci ⊆ Sj0(ti). All ti are well-defined as G∞ is strongly connected. By permuting indices,
we can assume without loss of generality that t1 ≤ t2 ≤ · · · ≤ tn. Because P(0) is the identity
matrix, we have Sj0(0) = {j0} and hence t1 = 0.

We inductively show

µj0(tm) ≥ α(m−1)(ind(H)+1) (5.61)

for all 1 ≤ m ≤ n. This is true for m = 1. To prove the inductive step, we distinguish two
cases: (A) tm − tm−1 < ind(H) and (B) tm − tm−1 ≥ ind(H).
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In case (A), we have

µj0(tm) ≥ αtm−tm−1 · µj0(tm−1) ≥ α(m−1)(ind(H)+1) (5.62)

by the induction hypothesis.
In case (B), we have Sj0(t) = Sj0(tm−1) for all t with tm−1 + ind(H) ≤ t ≤ tm − 1 by

Lemma 5.49 and the definition of tm. Repeated application of Lemma 5.57 hence yields
µj0(tm − 1) ≥ µj0

(

tm−1 + ind(H)
)

. We thus have

µj0(tm) ≥ α · µj0(tm − 1) ≥ α · µj0(tm−1 + ind(H))

≥ αind(H)+1 · µj0(tm−1) ≥ α(m−1)(ind(H)+1)
(5.63)

by the induction hypothesis.
In particular, we have shown Equation (5.61) for m = n. Now set T = tn + ind(H). By

Lemmas 5.49 and 5.51, Sj0(T) = [N] for all and µj0(T) ≥ αn(ind(H)+1). This concludes the proof
of the theorem.
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Chapter 6

Glitch Propagation in Digital Circuits

6.1 Introduction

Binary value-domain models that allow to model glitch propagation have always been of
interest, especially in asynchronous design [89]: Pure delay channels and inertial delay chan-
nels, which propagate input pulses with some constant delay only when they exceed some
minimal duration, are still the basis of most digital timing analysis approaches and tools.
The tremendous advances in digital circuit technology, in particular increased speeds and re-
duced voltage swings, raised concerns about the accuracy of these models [11]. For example,
neither pure nor inertial delay models can express the well-known phenomenon of propa-
gating glitches that decay from stage to stage, which is particularly important for analyzing
high-frequency pulse trains or oscillatory metastability [67].

At the same time, the steadily increasing complexity of contemporary digital circuits fuels
the need for fast digital timing analysis techniques: Although accurate Spice models, which
facilitate very precise analog-level simulations, are usually available for those circuits, the
achievable simulation times are prohibitive. Refined digital timing analysis models like the
PID model proposed by Bellido-Dı́az et al. [11], which is both fast and more accurate, are
hence very important from a practical perspective [12].

The interest in binary models that faithfully model glitch propagation and even metasta-
bility has also been stimulated recently by the increasing importance of incorporating fault-
tolerance in circuit design [33]: Reduced voltage swings and smaller critical charges make
circuits more susceptible to particle hits, crosstalk, and electromagnetic interference [46, 68].
Since single-event transients, caused by an ionized particle hitting a reverse-biased transis-
tor, just manifest themselves as short glitches, accurate propagation models are important for
assessing soft error rates, in particular, for asynchronous circuits. After all, if system-level
fault-tolerance techniques like triple modular redundancy are used for transparently mask-
ing value failures, the only remaining issue is timing failures, among which glitches are the
most problematic ones.

For example, the DARTS Byzantine fault-tolerant distributed clock generation [45] em-
ploys standard asynchronous circuit components, like micropipelines [85], which store clock
ticks received from other nodes; a new clock tick is generated when sufficiently many mi-
cropipelines are non-empty. Clearly, since any “wait-for-all” mechanism may deadlock in the
presence of faulty components, handshaking was replaced by threshold logic in conjunction
with some bounded delay assumptions. This way, DARTS can tolerate arbitrary behavior
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of Byzantine faulty nodes, except for the generation of pulses with a duration that drive the
Muller C-elements of a pipeline into metastability. Analyzing the propagation of such pulses
along a pipeline is thus important in order to assess the achievable resilience against such
threats [44]. The situation is even worse in case of self-stabilizing algorithms [37], which must
be able to recover from an arbitrary initial/error state: Neither handshaking nor any bounded
delay condition can be resorted to during stabilization in an algorithm like the one presented
by Dolev et al. [36]. Consequently, glitches and the possibility of metastability cannot be
avoided.

As a consequence, discrete-value circuit models, analysis techniques and supporting tools
for a fast but nevertheless accurate glitch and metastability propagation analysis will be a key
issue in the design of future VLSI circuits. We will rigorously prove that none of the existing
binary-value candidate models proposed in the past captures glitch propagation adequately.
We also propose a new model that does not suffer from the properties we use to show the
inadequacy of the existing models.

6.2 State of the Art

Unger [89] proposed a general technique for deriving asynchronous sequential switching cir-
cuits that can cope with unrelated input signals. It assumes signals to be binary valued, and
requires the availability of combinational circuit elements, as well as pure and inertial delay
channels.

Bellido-Dı́az et al. [11] proposed the PID model and justified its appropriateness both
analytically and by comparing the model predictions against Spice simulation results. The
results confirm very good accuracy even for such challenging scenarios as long chains of
gates and ring oscillators.

Marino [66] showed that the problem of building a synchronizer can be reduced to the
problem of building an inertial delay channel. The reduction circuit only makes use of combi-
national gates and pure delay channels in addition to inertial delay channels. Marino further
shows, in a continuous value signal model, that for a set of standard designs of inertial delay
channels, input pulses exist that produce outputs violating the requirements of inertial delay
channels. Barros and Johnson [10] extended this work, by showing the equivalence of arbiter,
synchronizer, latch, and inertial delay channels.

Marino [67] developed a general theory of metastable operation, and provided impossi-
bility proofs for metastability-free synchronizers and arbiter circuits for several continuous-
value circuit models. Branicky [16] proved the impossibility of time-unbounded determin-
istic and time-invariant arbiters modeled as ordinary differential equations. Mendler and
Stroup [69] considered the same problem in the context of continuous automata.

Brzozowski and Ebergen [19] formally proved that, in a model that uses only binary val-
ues, it is impossible to implement Muller C-Elements (among other basic state-holding com-
ponents used in (quasi) delay-insensitive designs) using only zero-time logical gates intercon-
nected by wires without timing restrictions.

6.3 Short Pulse Filtration

There exist a number of devices, theoretical or physical, that seek to suppress glitches in
circuits. These include latches, synchronizers, and inertial delay (ID) devices. For all of these,
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Figure 6.1: An arbiter

there exist various formal definitions. Barros and Johnson [10] proved equivalence of these
devices for certain definitions. We choose to focus on a one-shot version of ID devices to study
adequacy of binary circuit models. An ID device has one input and one output. It is required
to propagate pulses whose length is above some threshold, and to suppress them if their
length is below some other, not necessarily equal, threshold. The reason for its definition is
that short pulses, which we dub as glitches, can cause subsequent devices to enter a metastable
state.

Another well studied object in the domain of digital circuits is the arbiter. Its job is to
arbitrate access to a shared resource. In its simplest version, it has two inputs and two outputs.
The two inputs are called request lines, denoted req1 and req2. The two outputs are called the
grant lines, denoted grant1 and grant2. Figure 6.1 schematically depicts an arbiter. The basic
safety requirement is that the grant lines should never both be 1 at the same time, which
guarantees mutual exclusion. With regard to the liveness requirements, there are a number of
different possible definitions. They differ mainly in the delay from the time of a request until
the arbiter reaches a decision and grants access. This time may be required to be bounded or
not. It turns out that the reaction time of physical arbiter circuits seems to be larger when the
time distance between the requests on the requests is smaller. Definitions moreover differ in
whether a decision has to be reached if both request lines become activated at exactly the same
time. For a definition with bounded reaction time, it was shown by Barros and Johnson [10]
that an arbiter is equivalent to an ID device.

Although the experimental validation of the PID model [11] showed good accuracy for
the evaluated examples, the question of the general ability of such a model to actually capture
the behavior of real physical circuits remained open. And indeed, any bounded single-history
channel fails to do so in case of the simple Short Pulse Filtration (SPF) problem. The SPF
problem requires a circuit to capture a single input pulse if its duration is long enough, and
suppress it otherwise, without generating any output glitches. An SPF is hence a one-shot ID
device.

A bounded single-history channel is characterized by a bounded channel delay function
δ(T) that may depend on the input-to-previous-output transition time T, i.e., may also take
into account the previous output transition time. Pure delay, inertial delay and PID channels
all belong to this class of models.

Binary circuit models based on channels with constant δ(T), i.e., pure delays, do not allow
to solve SPF in unbounded time, although there is a simple physical circuit that achieves this.
Using channels with non-constant δ(T), including inertial delays and PID channels, on the
other hand, allows to design circuits that solve SPF in bounded time, which contradicts the
impossibility of building such circuits physically [67]. Therefore, none of the existing binary
circuit models can faithfully capture glitch propagation in real circuits.

We propose a class of channel models that does not suffer from this deficiency: Like
bounded single history channels, our involution channels involve channel delay functions δ(T)
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that may depend on the input-to-previous-output time T. However, unlike bounded single-
history channels, we do not assume δ(T) to be bounded from below but only from above: To
support different input thresholds, different instances δ↓(T) resp. δ↑(T) can be employed for
falling resp. rising transitions, leading to −δ↓(−δ↑(T)) = T. The case of ordinary involutions
corresponds to a 50% threshold for both rising and falling transitions., i.e., functions that form
their own inverse.

In the rest of this section, we give an overview of the results we prove on SPF. In Sec-
tion 6.4, we define the Short Pulse Filtration (SPF) problem in the physical circuit model of
Marino and recall the behavior of physical circuits with respect to SPF. That is, we show that
unbounded SPF is solvable with physical circuits while bounded SPF is not.

In Chapter 7, we present a generic binary value-domain model for digital clocked and
clockless circuits, and introduce the SPF problem. Our generic model comprises zero-time
logical gates interconnected by channels that encapsulate model-specific propagation delays
and related decay effects. Non-zero time logical gates can be expressed by appending chan-
nels with delay at the gate’s inputs and outputs. The simplest channel is a pure delay channel,
which propagates its input signal with a fixed delay and without any decay, i.e., a pulse has
the same duration at the channel’s input and output. We then turn our attention to a gener-
alization of constant delay channels, termed bounded single-history channels, which are FIFO
channels with a generalized delay function that also takes into consideration the last output
transition. We distinguish between forgetful and non-forgetful single-history channels, depend-
ing on their behavior when a pulse disappears at the output due to decay effects. All existing
binary models we are aware of can be expressed as single-history channels with specific delay
functions: A pure delay channel (P) as either a forgetful or non-forgetful single-history chan-
nel, a classical inertial delay channel (I) as a forgetful single-history channel, and the channel
model proposed by Bellido-Dı́az et al. [11] (PID), which additionally has a decay component,
as a non-forgetful single-history channel. We also define the involution channels and use a sim-
ple analog channel model to motivate why involutions are good candidates for suitable delay
functions. It also reveals that the standard first-order model used, e.g., in [77] actually gives
an instance of general involution channels.

In Chapter 8, we prove that even unbounded SPF is unsolvable when only pure, i.e., con-
stant delay channels are available. This is in contrast with the solvability result with physical
circuits of Section 6.4. We also provide a simple circuit that solves unbounded SPF with in-
volution channels, along with a correctness proof. Finally, we prove that weakening SPF to
eventual SPF fails to witness the above modeling mismatch: Eventual SPF can by solved both
with constant delay and physical channels.

In Chapter 9, we show that bounded SPF is impossible to solve with involution channels.
In a nutshell, our proof inductively constructs an execution that can determine the final out-
put only after some unbounded time. We then prove that bounded SPF is solvable if just
a single forgetful or non-forgetful bounded single-history channel with non-constant delay
is available. However, this is again in contradiction with the result of Section 6.4 showing
impossibility of bounded SPF with physical circuits.

Figure 6.2 summarizes our (un)solvability results. Our results reveal that involution chan-
nels indeed allow to solve SPF precisely when this is possible in physical circuits, while all
other existing binary models do not. We see this as a hint that involution channels are better
adapted for fast simulations of digital circuits when wanting to take glitch phenomena into
account.



6.4. SHORT PULSE FILTRATION IN PHYSICAL SYSTEMS 105

bounded SPF

SPF

eventual SPF

constant forgetful non-
forgetful

involutionphysical

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 6.2: Solvability (X) and unsolvability (X) results for the various channels

6.4 Short Pulse Filtration in Physical Systems

In this section, we will introduce the SPF problem in the model of Marino [67] and use the
classic results obtained for bistable elements to determine the solvability/unsolvability bor-
der of the SPF problem for real (physical) circuits.

The model of Marino considers circuits which process signals with both continuous value
domain and continuous time domain. Accordingly, we assume (normalized) signal voltages
to be within [0, 1], and denote by L0 = [0, l0] resp. L1 = [l1, 1], with 0 < l0 < l1 < 1, the signal
ranges that are interpreted as logical 0 resp. logical 1 by a circuit.

A physical circuit with a single input and a single output solves Short Pulse Filtration (SPF)
if it fulfills the following requirements:

(i) If the input signal is constantly logical 0, then so is the output signal.

(ii) There exists an input signal such that the output signal attains logical 1 at some point in
time.

(iii) There exists some fixed ε > 0 such that, if the output signal is not interpreted as logi-
cal 1 at two points in time t and t′ with t′ − t < ε, then it is not logical 1 at any time in
between t and t′. Informally, this condition prohibits output signals that may be inter-
preted as pulses (see Section 6.3) with a duration less than ε.

A physical circuit solves bounded SPF if additionally:

(iv) There exists a time T such that if the input signal switches to logical 1 by time t, then
the output signal value is either logical 0 or logical 1 at time t + T and remains logical 0
respectively logical 1 thereafter.

We will next argue why there is no physical circuit that solves bounded SPF, but that there
are physical circuits solving unbounded SPF.

6.4.1 Unsolvability of Bounded Short Pulse Filtration

The proof is by reduction to the non-existence of a physical bistable storage element that
stabilizes within bounded time in the model of Marino. A single-input bistable element is a
physical circuit with a single input and a single output that fulfills properties (i) and (ii) of
SPF as well as:

(iii’) If the output is logical 1 at some time t, it also remains logical 1 at all times larger than t.
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NORSPFi

o

Figure 6.3: Building a bistable storage element from a circuit solving SPF

For a single-input bistable element stabilizing within bounded time, additionally (iv) has to hold.

The following Corollary 6.1, which proves the non-existence of a single-input bistable
element that stabilizes within bounded time, follows immediately from Theorem 3 in [67].

Corollary 6.1. There is no single-input bistable element stabilizing within bounded time.

Now assume, for the sake of a contradiction, that there existed a physical circuit solving
bounded SPF and consider the circuit shown in Figure 6.3, with the NOR’s initial output equal
to 1 and the inverter’s initial output equal to 0 at time t = 0.

It is not difficult to prove that this circuit implements a single-input bistable element sta-
bilizing within bounded time: In case the input signal i is always logical 0, the SPF’s output
signal will always be logical 0 due to property (i) of the SPF. Thus the circuit shown in Fig-
ure 6.3 will always drive a logical 0 at its output, which confirms property (i) for the bistable
element.

Now let u be an input pulse that makes the SPF circuit produce a logical 1 at its output.
Letting t′ be the first time the SPF circuit drives a logical 1 at its output, its output must remain
logical 1 within [t′, t′ + ε] for some ε > 0 due to property (iii) of the SPF. Assuming that the
signal propagation delay of the NOR gate and the inverter is short enough for the inverter’s
output to reach a logical 1 before time t′ + ε, the NOR gate will subsequently drive a logical 0
on its output forever, irrespective of the output of the SPF circuit. The circuit’s output signal o
will hence continuously remain logical 1 once it switched to logical 1, which also confirms
properties (ii) and (iii’) of the bistable element.

Due to the use of a circuit solving bounded SPF in the compound circuit, we further obtain
that there exists some T > 0 such that, for any input pulse u′ that switches to logical 1 by
time t, the circuit shown in Figure 6.3 produces a logical 1 by time t + T, a contradiction to
the non-existence of a single-input bistable element stabilizing in bounded time. We hence
obtain:

Theorem 6.2. No physical circuit solves bounded SPF.

6.4.2 Solvability of Unbounded Short Pulse Filtration

To show the existence of a circuit solving unbounded SPF, we make use of a circuit known as
a metastability filter (see, e.g., [60, p. 40]). According to Marino [67], pulses of arbitrary length
may drive the internal state of every storage loop (including the one shown in Figure 6.3) into
a metastable region for an unbounded time. A circuit may hence produce an output signal
within some region of metastable output values [v−M, v+M] ⊂ [0, 1] during an unbounded time,
where the values v−M, and v+M depend on technology parameters. However, since it is possible
to compute safe bounds V−

M , and V+
M such that [v−M, v+M] ⊂ [V−

M , V+
M ] ⊂ [0, 1], a continuously

valid output signal can be produced by means of a subsequent high-threshold buffer: By
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connecting the output o of Figure 6.3, ignoring the SPF block, to the input of a (high-threshold)
buffer, which maps input signal values within [0, B−

M] to output signal values that are logical 0,
and input values within [B+

M, 1] to output values that are logical 1, where V+
M < B−

M, we obtain
a physical circuit that solves (unbounded) SPF. Hence:

Theorem 6.3. There is a physical circuit that solves unbounded SPF.





Chapter 7

Binary Circuit Model

7.1 Basics: Signals, Circuits, Executions, Problem Definition

Since the purpose of our work is to replace analog models by a purely digital model, we will
now formally define the binary-value continuous-time circuit model we use. It unifies all
models of this sort that we are aware of.

7.1.1 Signals

A falling transition at time t is the pair (t, 0), a rising transition at time t is the pair (t, 1). A
signal is a (finite or infinite) list of alternating transitions such that

S1) the initial transition is at time −∞; all other transitions are at times t ≥ 0.

S2) the transition times are strictly increasing.

S3) if there are infinitely many transitions in the list, then the set of transition times is un-
bounded.

To every signal s corresponds a function R+ → {0, 1} whose value at time t is that of the
most recent transition. We follow the convention that the function already has the new value
at the time of a transition, i.e., the function is constant in the half-open interval [tn, tn+1) if tn

and tn+1 are the times of two consecutive transitions. A signal is uniquely determined by
such a function and its value at −∞.

7.1.2 Circuits

Circuits are obtained by interconnecting a set of input ports and a set of output ports, forming
the external interface of a circuit, and a set of combinational gates via channels. We constrain
the way components are interconnected in a natural way, by requiring that any gate input,
channel input and output port is attached to only one input port, gate output or channel
output. Moreover, gates and channels must alternate on every path in the circuit.

Formally, a circuit is described by a directed graph with the following properties:

C1) The vertices are partitioned into input ports, output ports, channels, and gates.

C2) Input ports have no incoming edges and at least one outgoing edge.
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C3) Output ports have exactly one incoming edge from a gate and no outgoing edges.

C4) Channels are nodes that have exactly one incoming and exactly one outgoing edge. Every
channel is assigned a channel function, which maps the input to the output.

C5) Every gate is assigned a Boolean function {0, 1}d → {0, 1}, where d is the number of
incoming edges.

C6) There is a fixed order on the incoming edges of every gate.

C7) Gates and channels alternate on every path in a circuit.

7.1.3 Executions

An execution of circuit C is an assignment of signals to vertices that respects the channel
functions and Boolean gate functions.

Formally, an execution of circuit C is a collection of signals sv for all vertices v of C such
that the following properties holds:

E1) If i is an input port, then there are no restrictions on si.

E2) If o is an output port, then so = sv, where v is the unique gate v associated with o.

E3) If c is a channel, then sc = fc(sv), where v is the unique incoming neighbor of c and fc the
channel function.

E4) If b is a gate with d incoming neighbors v1, . . . , vd, ordered according to the fixed order of
condition (C6) and gate function fb, then for all times t,

sb(t) = fb

(

sv1
(t), sv2(t), . . . , svd

(t)
)

. (7.1)

7.1.4 Short Pulse Filtration.

A pulse of length ∆ at time T has initial value 0, one rising transition at time T, and one falling
transition at time T + ∆.

A signal contains a pulse of length ∆ at time T if it contains a rising transition at time T, a
falling transition at time T + ∆ and no transition in between.

A circuit solves Short Pulse Filtration (SPF) if it fulfills the following conditions:

F1) It has exactly one input port and exactly one output port. (Well-formedness)

F2) If the input signal is zero, then so is the output signal. (No generation)

F3) There exist an input pulse such that the output signal is not the zero signal. (Nontriviality)

F4) There exists an ε > 0 such that the output signal never contains a pulse of length less
than ε. (No short pulses)

A circuit solves bounded SPF if additionally the following condition holds:

F5) There exists a K > 0 such that the last output transition is before time T + K if T is the
time of the last input transition. (Bounded stabilization time)
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Figure 7.1: Input/output signal of a single-history channel, involving the input-to-previous-
output delay T and the resulting output-to-input delay δ(T)

7.2 Bounded Single-History Channels

This section formally introduces the notion of bounded single-history channels in the binary
circuit model. They are a generalization of constant delay channels that covers all channel
models for binary circuit models in the existing literature that we are aware of.

Intuitively, a bounded single-history channel propagates each event, occurring at time t,
of the input signal to an event at the output happening after some bounded output-to-input
delay δ(T), which depends on the input-to-previous-output delay T = t − t′. Note that T is
positive if the channel delay is short compared to the input signal transition times, and nega-
tive otherwise. Figure 7.1 illustrates this relation and the involved delays. In case FIFO order
would be invalidated, i.e., t+ δ(T) ≤ t′, such that the next output event would not occur after
the previous one, both events cancel.

There exist two variants of bounded single-history channels in the literature, depending
on whether the time of an canceled event is remembered or not. We dub these two variants
forgetful and non-forgetful bounded single-history channels, which we both formally define
below. At the end of this section, we give a list of channel models that are special cases of our
definition of bounded single-history channels.

Formally, a bounded single-history channel c is characterized by an initial value I ∈ {0, 1},
a nondecreasing delay function δ : R → R such that δ(∞) = δ∞ = limT→∞ δ(T) is finite and
positive, and the fact whether it is forgetful or not. We detail the channel behavior in the next
two subsections.

7.2.1 Forgetful Single-History Channels

This class of channels includes the classical inertial delay channels as used, for example, in
VHDL simulators [5].

Their behavior is defined by the following algorithm: Let s be a signal. In case the chan-
nel’s initial value I is equal to the initial value of s, or there is an event at time 0 in the event
list of s, let the channel’s input list

(

(tn, xn)
)

n
be the event list of s. Otherwise, let the channel’s

input list be the event list of s with an additional event at time 0 and value equal to the initial
value of s. The algorithm iterates the input list and updates the output list, which will define
the channel’s output signal c(s).

Initially, let (−∞, I) be the sole element of the output list. In its nth iteration the algorithm
considers input event (tn, xn) and modifies the output list accordingly:
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1. Denote by (t′n, x′n) the last event in the output list. If xn = x′n, then input event (tn, xn)
has no effect: Proceed to the (n + 1)th iteration.

2. Otherwise, let Tn = tn − t′n be the difference of input and previous-output event times.
Note that Tn = ∞ is possible. In this case δ(Tn) = δ(∞) = limT→∞ δ(T), which is finite
by assumption.

If tn + δ(Tn) > t′n, then add the event
(

tn + δ(Tn), xn

)

to the output list.

If tn + δ(Tn) ≤ t′n, then delete the event (t′n, x′n) from the output list.

Note that the output sequence’s first event is always (−∞, I), all other events have positive
times (since δ(∞) > 0), its sequence of event times is strictly increasing, and its sequence of
values is alternating.

If the input list is finite, the algorithm halts. If not, the output sequence nonetheless stabi-
lizes in the sense that, for every time t, there exists some N such that all iterations with n ≥ N
make no changes to the output sequence at times ≤ t. The next lemma (Lemma 7.2) proves
this property and makes the limit output list as n tends to infinity well-defined. So, even if
the input list is infinite, there exists a well-defined (infinite) output list S that is the result of
the described algorithm. The channel’s output signal c(s) is then defined by event list S:

Definition 7.1. For input signal s, the output signal c(s) of the forgetful bounded single-
history channel c is the signal whose event list is the list S as defined by the above algorithm.

Lemma 7.2. Denote by Sn the output list after the nth iteration of the forgetful channel algorithm,
and by Sn|t its restriction to the events at times at most t. For all t there exists an N such that Sn|t is
constant for all n ≥ N.

Proof. The lemma is trivial if the input list is finite, so we assume it to be infinite.
Because the sequence of input event times (tn) tends to infinity, there exists an N such that

tN ≥ max
(

t , t − δ(−δ(∞))
)

. (7.2)

We show by induction that Sn|t = SN |t for all n ≥ N. This is trivial for n = N, so let n > N.
Then tn > tN .

Let (t′n, x′n) be the last element in Sn−1, and Tn = tn − t′n. The case xn = x′n is trivial, so let
xn 6= x′n. We distinguish two cases, depending on whether δ(Tn) > −Tn or not:

Case 1: δ(Tn) > −Tn. Because δ is nondecreasing, δ(Tn) ≤ δ(∞), and hence Tn > −δ(∞)
and also δ(Tn) ≥ δ(−δ(∞)). This implies tn + δ(Tn) > tN + δ(−δ(∞)) ≥ t by using (7.2).
Hence Sn|t = Sn−1|t = SN |t by the induction hypothesis.

Case 2: δ(Tn) ≤ −Tn. We show that t′n > t by contradiction: Let t′n ≤ t. Then Tn =
tn − t′n > tN − t ≥ 0, by using (7.2). From δ(∞) > 0, we thus obtain Tn > −δ(∞). Hence
δ(Tn) ≥ δ(−δ(∞)) by monotonicity of δ. By assumption, δ(−δ(∞)) ≤ δ(Tn) ≤ −Tn = t′n − tn,
which implies tn ≤ t′n − δ(−δ(∞)), i.e., tN < t − δ(−δ(∞)). This is a contradiction to (7.2),
which shows that t′n > t. Hence Sn|t = Sn−1|t = SN |t by the induction hypothesis.

7.2.2 Non-Forgetful Single-History Channels

The PID channel introduced by Bellido-Dı́az et al. [11] is not covered by the above forgetful
bounded single-history channels, since it has been designed to reasonably match analog RC
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waveforms: Analog signals like exponential functions do not “forget” sub-threshold pulses.
Hence, they cannot be modeled via delay functions δ(T) that depend on the input-to-previous
output delay T. To also cover the PID model, we hence introduce non-forgetful bounded
single-history channels, the delay function of which may also depend on the last canceled
event.

The output-eventlist generation algorithm for non-forgetful channels thus maintains an
additional variable r, which, in each iteration, contains the time of the potential output event
considered in the last iteration. Note that this approach was already used in the PID-channel-
model by Bellido-Dı́az et al. [11, Fig. 13]. Similar to the forgetful case, it determines the output
signal c(s) of a non-forgetful bounded single-history channel c, given input signal s with input
event list

(

(tn, xn)
)

n
as follows:

Initially, the output list contains the sole element (−∞, I) and r = r−1 = −∞. In its nth

iteration, the algorithm considers input event (tn, xn) and modifies the output list accordingly:

1. Denote by (t′n, x′n) the last event in the output list. If xn = x′n, then input event (tn, xn)
has no effect: Proceed to the (n + 1)th iteration.

2. Otherwise, let Tn = tn − rn−1 be the difference of input and most recent potential output
event times and set rn = tn + δ(Tn).

If tn + δ(Tn) > rn−1, then add the event
(

tn + δ(Tn), xn

)

to the output list.

If tn + δ(Tn) ≤ rn−1, then delete the event (t′n, x′n) from the output list.

We first show that if event (t′n, x′n) is deleted in the nth iteration, then rn−1 = t′n: Assume
by contradiction that this is not the case, and let n be the first iteration where the statement is
violated. Then it must hold that n ≥ 2, as in iteration n − 2 some event (τ, xn−2) must have
been added to the output list that was deleted in iteration n − 1, due to τ′ = tn−1 + δ(Tn−1) ≤
rn−2 = τ. Furthermore, in iteration n, our assumption of deleting some event with a time
different from rn−1 = τ′ implies τ′′ = tn + δ(Tn) ≤ τ′. However, from tn−1 < tn, τ ≥ τ′

and monotonicity of δ, tn−1 + δ(tn−1 − τ) < t + δ(t − τ′), i.e., τ′ < τ′′, which provides the
required contradiction.

Thus, an event is either deleted in the next iteration, or never deleted. The output se-
quence’s first event (−∞, I) is obviously never deleted.

By analogous arguments, one can show that the sequence of event times is strictly increas-
ing, with an alternating sequence of values. Unlike in the case of forgetful channels, however,
the event list generation algorithm may produce events with finite negative times that will
be removed from the final output. In case the input list is finite, the algorithm clearly halts.
If not, we again have the same stabilization property as for forgetful bounded single-history
channels, which we will provide in Lemma 7.4 below. Thus the algorithm’s final output list S
is again well-defined and we can define:

Definition 7.3. For input signal s, the output signal c(s) of the forgetful bounded single-
history channel c is the signal whose event list is the list S as defined by the above algorithm.
after deleting all events with finite negative times and the first non-negative time event if its
value is equal to the channel’s initial value I.

Lemma 7.4. Denote by Sn the output list after the n-th iteration of the forgetful channel algorithm,
and by Sn|t its restriction to the events at times at most t. For all t, there exists an N such that Sn|t is
constant for all n ≥ N.
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Proof. The lemma follows from the fact that an event can only be deleted one iteration after
it was added to the output list, and the fact that in each iteration n, Tn > −δ(∞) and thus
tn + δ(Tn) is lower bounded by tn + limt→0+ δ(−δ(∞) + t).

7.2.3 Examples of Single-History Channels

Below, we summarize how the existing binary-value models are mapped to bounded single-
history channels:

1) A classic pure-delay channel is a bounded single-history channel whose delay function δ is
constant and positive. The behavior of a pure-delay channel does not depend on whether
it is forgetful or not.

2) An inertial channel is a forgetful bounded single-history channel whose delay function δ

is of the form

δ(T) =

{

δ0 if T > T0

−T0 if T ≤ T0

(7.3)

for parameters δ0 > 0 and T0 > −δ0. An inertial channel filters an incoming pulse if and
only if its pulse length is less or equal to T0 + δ0; otherwise, it is forwarded with delay δ0.

3) The PID-channels of Bellido-Dı́az et al. [11] are non-forgetful with delay function

δ(T) = tp0 ·
(

1 − e−(T−T0)/τ
)

(7.4)

for (measured) positive parameters tp0, τ, and T0. Note that δ(T0) = 0, limt→∞ δ(T) = tp0,

and dδ(T)
dT |T=0 = tp0/τ here.

7.3 Involution Channels

Intuitively, a channel propagates each transition at time t of the input signal to a transition at
the output happening after some output-to-input delay δ(T), which depends on the input-to-
previous-output delay T = t − t′. Note that T is positive if the channel delay is short compared
to the input signal transition gaps, and negative otherwise. Figure 7.1 illustrates this relation
and the involved delays.

Formally, an involution channel is characterized by an initial value I ∈ {0, 1} and two in-

creasing concave delay functions δ↑ : (−δ↓∞, ∞) → (−∞, δ↑∞) and δ↓ : (−δ↑∞, ∞) → (−∞, δ↓∞)

such that both δ↑∞ = limT→∞ δ↑(T) and δ↓∞ = limT→∞ δ↓(T) are finite and

−δ↑
(

− δ↓(T)
)

= T and − δ↓
(

− δ↑(T)
)

= T (7.5)

for all applicable T. All such functions are necessarily continuous and strictly increasing. For
simplicity, we will also assume them to be differentiable; δ being concave thus implies that its
derivative δ′ is decreasing.

The behavior of involution channels is defined as follows:
Initialization: If the channel’s initial value I is different from the initial value X of the channel
input signal s and s has no transition at time 0, add the transition (0, X) at time 0 to s. If
multiple channels share a common input signal, as depicted in Figure 7.2, we require that



7.3. INVOLUTION CHANNELS 115
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c2 b′ z
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Figure 7.2: A circuit (graph) with vertex v (being an input or a gate), gates w, z, and channels c1

and c2 (on the left) and the physical equivalent (on the right). Both channels must have the
same initial value I; b and b′ are the Boolean functions assigned to gates w and z, respectively

they all have the same initial value I. This is without loss of generality, as one can always
replicate the input signal.

Output transition generation algorithm: Let t1, t2, . . . be the times of the transitions of s, and set
t0 = −∞ and δ0 = 0.

• Iteration: Determine the tentative list of pending output transitions: Recursively de-
termine the input-to-output delay for the input transition at time tn by setting δn =
δ↑(tn − tn−1 − δn−1) if tn is a rising transition and δn = δ↓(tn − tn−1 − δn−1) if it is falling.
The nth and mth pending output transitions cancel if n < m but tn + δn ≥ tm + δm. In this
case, we mark both as canceled.

• Return: The channel output signal c(s) has initial value I and contains every pending
transition at time tn + δn, provided it has not been marked as canceled.

Definition 7.5. An involution channel is strictly causal if δ↑(0) > 0, which is equivalent to the
condition δ↓(0) > 0 due to (7.5).

The next lemma identifies an important parameter δmin of a strictly causal involution chan-
nel, which gives its minimal pure delay.

Lemma 7.6. A strictly causal involution channel has a unique δmin defined by δ↑(−δmin) = δmin =
δ↓(−δmin), which is positive.

For the derivative, δ′↑(−δ↓(T)) = 1/δ′↓(T) and hence δ′↑(−δmin) = 1/δ′↓(−δmin).

Proof. Set f (T) = −T + δ↑(−T). This function is continuous and strictly decreasing, since δ↑
is continuous and nondecreasing. Because f (0) = δ↑(0) is positive and the limit of f (T) as

T → δ↑∞ is −∞, there exists a unique δmin between 0 and δ↑∞ for which f (δmin) = 0. Hence,
δ↑(−δmin) = δmin. The second equality follows from δmin = δ↓(−δ↑(−δmin)) = δ↓(−δmin)
according to (7.5).

The second part of the lemma follows by differentiating Equation (7.5).

We next show that δmin indeed deserves its name: A particular consequence of the follow-
ing lemma is that the channel delay for any non-canceled transition is at least δmin.

Lemma 7.7. The nth and (n + 1)th pending output transitions cancel if and only if tn+1 ≤ tn + δn −
δmin.



116 CHAPTER 7. BINARY CIRCUIT MODEL

Proof. Let δ be either δ↑ or δ↓, depending on whether tn+1 is a rising or falling transition. By
definition, the two transitions cancel if and only if

δn+1 = δ(tn+1 − tn − δn) ≤ −(tn+1 − tn − δn) . (7.6)

Set T = tn+1 − tn − δn. By Lemma 7.6, equality holds in (7.6) if and only if T = −δmin. Because
the left-hand side of (7.6) is increasing in T and the right-hand side is strictly decreasing in T,
(7.6) is equivalent to T ≤ −δmin, which in turn is equivalent to tn+1 ≤ tn + δn − δmin.

In the remainder, we assume all channels to be strictly causal involution channels.

7.4 Constructing Executions of Circuits with Strictly Causal

Involution Channels

The definition of an execution of a general circuit as given in Section 7.1 is “existential”, in the
sense that it only allows to check for a given collection of signals whether it is an execution
or not. And indeed, in general, circuits may have no execution or may have several different
executions. By contrast, in case of circuits involving strictly causal involution channels only,
executions are unique and can be constructed iteratively: We give a deterministic construction
algorithm below.

Given a circuit C with strongly causal involution channels, let (si)i∈I be any collection of
signals for all the input ports I ; Ei denotes si’s corresponding transition list. Without loss of
generality, we can assume that all output ports are driven by gates and identify the output
port with the output of its driving gate. The channel with predecessor x (an input port or
a gate output) and successor y (a gate input) is denoted by the tuple (x, y). The algorithm
iteratively generates the list of transitions Eσ of (the output of) every vertex σ in the circuit,
and hence the corresponding signal sσ(t). In the course of the execution of this algorithm, a
subset of the generated transitions will be marked fixed: Non-fixed transitions could still be
canceled by other transitions later on, fixed transitions will actually occur in the constructed
execution.

The detailed algorithm is as follows:
Initialization: For all channels (v, w) in C, E(v,w) = ((−∞, I)) initially, with I being the ini-
tial value of channel (v, w). According to the implicit reset of our channels introduced in
Section 7.3, the transition (0, X) is also added to E(v,w) if the initial transition (−∞, X) of Ev

satisfies X 6= I. Note that this is well-defined also in case of channels (v, w) and (v, w′) at-
tached to the same v, as we require E(v,w) = E(v,w′) in this case. For a gate v, Ev = ((−∞, X))
initially, where X is the value of the Boolean function corresponding to v applied to the val-
ues of the initial transitions in Eσ for all of v’s predecessors σ. The zero-input gates 0 and 1
used for generating constant 0 and constant 1 signals have E0 = ((−∞, 0) and E1 = ((−∞, 1),
respectively. Initially, all transitions at −∞ are fixed and all others are not.
Iteration: If there is no non-fixed transition left, terminate with the execution made up by all
fixed transitions. Otherwise, let t ≥ 0 be the smallest time of a non-fixed transition.

(i) Mark all transitions at t fixed.

(ii) For each newly fixed transition from step (i), occurring in Eσ where σ is a predecessor
of a gate v: If signal sv’s current value sv(t) = X differs from the value of v’s Boolean
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function applied to the values sσ′(t) for all of v’s predecessors σ′ (which also include σ),
add the transition (t, 1 − X) to Ev and mark it fixed.

(iii) For each newly fixed transition (t, x) ∈ Ev from steps (i) or (ii), occurring in Ev of a gate
output or an input port: For each successor channel (v, w) of v, apply the iteration step
of (v, w)’s transition generation algorithm with input list Ev, output list E(v,w), and cur-
rent input transition (t, X). If this leads to a cancellation in E(v,w), remove both canceling
and canceled transition from the list. Lemma 7.10 will show that no fixed transition will
ever be removed this way.

We will now show that this algorithm indeed constructs an execution of C. Let tℓ be
the smallest finite time of non-fixed transitions at the beginning of iteration ℓ ≥ 1 of the
algorithm, and denote by δC

min > 0 the minimal δmin of all channels in circuit C. By slight
abuse of notation, we omit C when it is clear from the context.

Lemma 7.8. For all iterations ℓ ≥ 1, (a) no transition (t, X) with t 6= tℓ is newly marked fixed in
the iteration, (b) a transition (t, X) added during and not removed by the end of iteration ℓ either has
time t = tℓ or t > tℓ + δmin > tℓ, and (c) every transition at time tℓ is fixed at the end of the iteration.

Proof. Statement (a) is implied by the fact that transitions are only marked fixed in step (i)
and (ii), which act on transitions at time tℓ only.

For (b), assume by contradiction that a transition (t, X) with t ≤ tℓ + δmin but different
from tℓ was added in iteration ℓ and still exists at the end of iteration ℓ. Such a transition
can only be added via step (iii). For the respective channel algorithm with delay function δ,
δ(tℓ − t′) ≤ δmin must have held, where t′ is the time of the channel’s last output transition.
From Lemma 7.6, we deduce that this implies tℓ ≤ t′ − δmin. By Lemma 7.7, this leads to a
cancellation and hence removal of (t, X), which provides the required contradiction.

For (c), assume by contradiction that, at the end of iteration ℓ, there exists a non-fixed
transition (tℓ, X). Since step (i) marks all transitions at time tℓ fixed and (ii) adds only fixed
transitions at time tℓ, the non fixed transition must have been newly added in step (iii). How-
ever, from (b), we know that this requires t > tℓ + δmin > tℓ, a contradiction.

From an inductive application of Lemma 7.8, we obtain that the sequence of iteration start
times (tℓ)ℓ≥1 is strictly increasing without bound:

Lemma 7.9. For all iterations ℓ > 1, tℓ − tℓ−1 > 0. If tℓ does not involve an input transition, then
tℓ − tℓ−1 > δmin.

Proof. By Lemma 7.8 (b), tℓ+1 is larger than tℓ + δmin, provided no input transition occurs
earlier. As we do not allow Zeno behavior of input signals, tℓ − tℓ−1 > 0 is guaranteed also in
the latter case.

The following lemma proves that the generated event lists are well-defined, in the sense
that no later iteration can remove events that may have generated causally dependent other
events already.

Lemma 7.10. No fixed transition is canceled in any iteration.
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Figure 7.3: Simple analog channel model

Proof. Assume by contradiction that some iteration ℓ ≥ 2 is the first in which a fixed transition
is canceled. From Lemma 7.9, it follows that such a transition can only be canceled in step (iii).
Thus, there exists a transition at time tℓ that generated a new transition at some time t that
results in the cancellation of a fixed transition at time t′. Lemma 7.7 implies that tℓ − t′ ≤
−δmin < 0 in this case. By Lemma 7.8, however, t ≤ t′ < tℓ and thus tℓ − t′ > 0, which
provides the required contradiction.

We are now ready for the main result of this section, which asserts the existence of a unique
execution of our circuit C:

Theorem 7.11. At the end of iteration ℓ ≥ 1, the collection of signals sv corresponding to Ev, v
in G, restricted to time [−∞, tℓ] is the unique execution of circuit C restricted to time [−∞, tℓ]. If
the algorithm terminates at the beginning of iteration ℓ, then this collection of signals is the unique
execution of circuit C.

Proof. From Lemma 7.9, we deduce that for all times t ≥ 0, there is an iteration ℓ ≥ 1 such
that tℓ > t or the algorithm terminates. From Lemma 7.10, we further know that in both
cases the algorithm does not add transitions with times less or equal to t. Uniqueness of the
execution follows from the fact that the construction algorithm is deterministic.

7.5 Specific Class of Involution Channels: Exp-Channels

In order to motivate why involutions are promising candidates for suitable δ-functions, con-
sider the simple analog channel model depicted in Figure 7.3. This well-known model, see,
e.g., [77] for an instance, consists of a (pure) delay element with delay Tp, a slew rate limiter
and a comparator, all of which are idealized. The circuit input ui, coming from the compara-
tor of the previous stage, hence takes on the value 0 or 1 (Volt) and switches between those
two values with infinite slope. The unit (Volt) will be omitted subsequently. Both ui(t) and
the output ud(t) of the delay element can hence be viewed as binary-valued signals. The slew
rate limiter replaces the infinite-slope transitions of ud with the predefined slew rate functions
f↑ for the rising edge and 1 − f↓ for the falling edge on its output ur. These functions (collec-
tively termed “ f ” below) must have the following properties: f (0) = 0, limt→∞ f (t) = 1, and
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f is strictly increasing and continuous. Finally, the comparator discretizes ur by comparing
its value to a threshold Vth, thereby generating output signal uo.

In order to analyze the behavior of such a channel, we consider its input ui(t) to be a
signal made up of a sequence of alternating transitions (tn, xn)n≥0: tn is the time of the n-th
transition, and xn = 0 resp. xn = 1 identifies it to be falling resp. rising; the initial transi-
tion occurs at time t0 = −∞ for convenience. Let (t̂n)n≥0 be the corresponding sequence
of switching times of the pure delay output ud, i.e., t̂n = tn + Tp for n ≥ 0. Note that
t̂0 = −∞, and assume for simplicity that the initial values of ui and ud are x0 = x̂0 = 0.
Then, ∀k ∈ N0, ∀t ∈ [t̂2k, t̂2k+1) : ud(t) = 0 and similarly ud(t) = 1 when t ∈ [t̂2k+1, t̂2k+2).
The slew rate limiter replaces the infinite-slope transitions with instances of f↑ and 1 − f↓
as follows: ∀k ∈ N0, ∀t ∈ [t̂2k, t̂2k+1) : ur(t) = 1 − f↓(t − t̂2k + θ2k) and similarly ur(t) =
f↑(t − t̂2k+1 + θ2k+1) when t ∈ [t̂2k+1, t̂2k+2). The sequence (θn)n≥0 is defined implicitly, by
requesting continuity of ur(t) for all t. More explicitly, this requires θ0 = 0 and, in case
of n = 2k + 1, i.e., a rising transition at t̂n, θn = f−1

↑ (ur(t̂n)). Substituting ur(t̂n), we get

θn = f−1
↑ (1 − f↓(t̂n − t̂n−1 + θn−1)). For falling transitions, the formula is the same with f↑

and f↓ swapped; note that the inverse of 1 − f (x) is just f−1(1 − x).
The comparator again produces the “binary-valued” output signal uo(t), by comparing ur

to a threshold voltage Vth ∈ (0, 1). Knowing that ur is composed of alternating instances of the
bijective functions f↑ and 1− f↓, there exist unique ∆↑ = f−1

↑ (Vth) and ∆↓ = f−1
↓ (1−Vth) such

that f↑(∆↑) = Vth and 1 − f↓(∆↓) = Vth. Therefore, we can derive uo(t) directly from ur, by
generating rising transitions at time t2k+1 − θ2k+1 + ∆↑ and falling transitions at t2k − θ2k + ∆↓.
Note carefully that the resulting output transition times need not be strictly increasing any
more, which results in cancellation of transitions.

The overall input to output behavior of the channel for any rising input transition (tn, 1)
on ui can now be stated as follows: t̂n = tn + Tp is mapped to the instance f↑(t − tn − Tp + θn)
in the slew rate limiter, from which the comparator generates the corresponding transition of
uo at time t′n = tn + Tp − θn + f−1

↑ (Vth). Substituting for θn, we get t′n = tn + Tp − f−1
↑ (1 −

f↓(tn − tn−1 + θn−1)) + f−1
↑ (Vth). Utilizing the input-to-previous-output transition time T =

tn − tn−1 − Tp + θn−1 − f−1
↓ (1 − Vth), we obtain t′n = tn + Tp − f−1

↑ (1 − f↓(T + Tp + f−1
↓ (1 −

Vth))) + f−1
↑ (Vth). The output-to-input delay δ↑(T) = t′n − tn (and δ↓(T), which is obtained

analogously) is thus:

δ↑(T) = Tp − f−1
↑ (1 − f↓(T + Tp + f−1

↓ (1 − Vth))) + f−1
↑ (Vth)

δ↓(T) = Tp − f−1
↓ (1 − f↑(T + Tp + f−1

↑ (Vth))) + f−1
↓ (1 − Vth)

(7.7)

If Vth = 0.5 is plugged into the definitions above, we obtain δ↑(T) = δ↓(T) = δ(T). By
plugging in −δ(T) into the resulting definition of δ(T), it is easy to verify that −δ(T) is indeed
an involution.

We conclude this section with the observation that the model used in [77], which uses a
first-order RC low-pass filter for the slew rate limiter, is actually a particular simple instance of

an involution channel: It produces transitions with f↑(t) = f↓(t) = f (t) = 1 − e−(t/τ), where

τ is the RC constant. The inverse is f−1(u) = −τ ln(1 − u), which leads to the following
δ-functions:

δ↑(T) = τ ln(1 − e−(T+Tp−τ ln(Vth))/τ) + Tp − τ ln(1 − Vth) (7.8)

δ↓(T) = τ ln(1 − e−(T+Tp−τ ln(1−Vth))/τ) + Tp − τ ln(Vth) (7.9)
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In the sequel, we call these channels exp-channels.

Lemma 7.12. An exp-channel is strictly causal if and only if Tp > 0. For exp-channels, δmin = Tp.



Chapter 8

Unbounded Short Pulse Filtration in
Binary Models

8.1 Unsolvability of Unbounded Short Pulse Filtration with

Constant Delay Channels

In this section, we show that no circuit whose channels are all positive constant delay channels
solves SPF. The idea of the proof is to exploit the fact that the value of the output signal of the
circuit at each time t only depends on a finite number of values of the input signal at times t′

between 0 and t.

Calling each such time t′ a measure point for time t, we show that indeed only a finite
number of measure points exists for time t, i.e., the circuit cannot distinguish two different
input signals that do not differ in the input signal values at the measure points for time t: For
both such input signals, the output signal must have the same value at time t. Combining that
indistinguishability result with a shifting argument of the input signal allows us to construct
an arbitrary short pulse at the output of the circuit, a contradiction to property (F4) of Short
Pulse Filtration.

8.1.1 Dependence Graphs

For each constant delay circuit with a single input port and a single output port, we introduce
its dependence graph, which describes the way the output signals may depend on the input
signals.

Let C = (G, I, O, c, m) be a circuit with constant delay channels, a single input port i, and
a single output port o. For every channel cu,v of C, denote by δ(u, v) its delay parameter δ and
by x(u, v) its initial value. The dependence graph DG(t) of C at time t is a directed graph with
vertices (v, τ), where v is a vertex in G and τ a time. It is defined as follows:

• The pair (o, 0) is a vertex of DG(t).

• If (v, τ) is a vertex of DG(t) and (u, v) is an edge in G such that τ + δ(u, v) ≤ t, then
the pair

(

u, τ + δ(u, v)
)

is also a vertex of DG(t) and there is an edge in DG(t) from
(

u, τ + δ(u, v)
)

to (v, τ).
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Figure 8.1: Example circuit
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Figure 8.2: Example dependence graph DG(6)
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Figure 8.3: Input pulses with measure points (×), labeled with the corresponding input leaf
names

• If (v, τ) is a vertex of DG(t) and (u, v) is an edge in G such that τ + δ(u, v) > t, then
cu,v’s initial value x(u, v) is a vertex of DG(t) and there is an edge in DG(t) from x(u, v)
to (v, τ).

Because all δ(u, v) are strictly positive, the dependence graphs are finite and acyclic. A
vertex of DG(t) without incoming neighbors is a leaf, all others intermediate vertices. A vertex
of the form (i, τ), with i ∈ I, is an input leaf and we call the time t − τ the corresponding
measure point for time t. If DG(t) = DG(t̃), then the measure points for t are exactly the
measure points for t̃ shifted by the difference t − t̃. All leaves of DG(t) are either input leaves
or elements of {0, 1} (initial values of channels).

As an example, consider the circuit shown in Figure 8.1. The dependence graph DG(6) is
shown in Figure 8.2. Leaves are depicted as filled nodes, while intermediate nodes are empty.
From the construction of the graph, we immediately see that in each execution the output
signal value so(6) only depends on the (input) signal values si(4), si(2), and si(0). Thus, in
particular, so(6) is the same for both input signals depicted in Figure 8.3.

Generalizing the observations from the example, we thus observe:

Lemma 8.1. The value of the output signal at time t only depends on the values of the input signal at
the measure points for time t, according to DG(t).
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Furthermore, if DG(t) = DG(t̃) and the values of input signals si and s̃i coincide at the respective
measure points for t and t̃, then the respective output signals fulfill so(t) = s̃o(t̃).

Proof. For a path π in G, denote by δ(π) the sum of delays δ(u, v) over all edges (u, v) of π.
For every vertex v of G and every time t ∈ R+, let P(→ y, t) be the set of maximum length
paths π ending in v such that δ(π) ≤ t.

It is clear, by the channel algorithm, that the value of sv(t) is uniquely determined by the
collection of values su

(

t − δ(π)
)

where u is the start vertex of π ∈ P(→ v, t). Moreover, by

maximality of π, if u 6= i, then su

(

t − δ(π)
)

only depends on the initial values of channels of

incoming edges to u. Hence sv(t) is uniquely determined by the collection of values si

(

t −
δ(π)

)

where π ∈ P(→ y, t) starts at i. This holds in particular for v = o.

This lemma immediately shows that circuits with positive constant delay channels have
unique executions:

Lemma 8.2. If C is a circuit with only constant delay channels, then for all assignments of input
signals (si)i∈I there exists a unique execution of C extending this assignment.

Due to the fact that there are only finitely many measure points for a given time t, they are
discrete and hence there is always a small margin until a new measure point appears:

Lemma 8.3. For every time t ∈ R+, there exists an ε > 0 such that DG(t) = DG(t + ε′) for all
0 ≤ ε′ ≤ ε.

Proof. Let ε > 0 be smaller than all positive values of the form δ(u, v) + τ − t where (v, τ) is
an intermediate vertex of DG(t) and (u, v) is an edge in G. If no such intermediate vertex or
edge exists, choose ε > 0 arbitrarily.

Let (v, τ) be an intermediate vertex of DG(t) and (u, v) be an edge in G. If t + ε − τ <

δ(u, v), then clearly t − τ < δ(u, v), because ε > 0. On the other hand, if t − τ < δ(u, v), then
δ(u, v) + τ − t is positive and hence δ(u, v) > t + ε − τ by choice of ε. Thus, the conditions t −
τ < δ(u, v) and t + ε − τ < δ(u, v) are equivalent. This shows that the two dependence
graphs DG(t) and DG(t + ε) and hence all dependence graphs in between are equal.

8.1.2 Unsolvability Proof

Assume by contradiction that C solves SPF. By the nontriviality property (F3), there exists an
input pulse such that the corresponding output signal is non-zero, i.e., there exists an input
pulse of some length and a time t such that the corresponding output signal’s value at time t
is 1.

By Lemma 8.3, there exists an ε > 0 such that DG(t) = DG(t + ε). We may choose ε

arbitrarily small, in particular strictly smaller than all differences of distinct measure points
for time t.

Clearly, DG(t̃) = DG(t) for all times t̃ between t and t + ε, in particular, for t̃ = t + ε/2.
Denote by ∆ the infimum of input pulse lengths (where all pulses start at the same time) such
that the corresponding output signal’s value at time t̃ is 1. This infimum is finite by the choice
of t and t̃. There hence exists an input pulse p with the above property of length at most
∆ + ε/4. We show that its corresponding output signal sp contains a pulse of length strictly
less than ε, in contradiction to the no short pulses property (F4).
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Figure 8.4: Input pulse p, together with its derived pulses p+ and p̃+, and measure points for
time t̃

Denote by S the time of p’s rising transition and by T the time of p’s falling transition.
Now let p+ be the pulse whose rising transition is at time S and whose falling transition is
at time T − ε/2. If S ≥ T − ε/2, then let p+ be the zero signal instead. The length of p+ is
either strictly less than ∆ or it is the zero signal. Hence, by the definition of the no generation
property (F2), its corresponding output signal’s value at time t̃ is 0. This implies that there
exists a measure point for time t̃ within [T − ε/2, T), because p and p+ coincide everywhere
else (see marked measure point on the right in Figure 8.4).

Because we chose ε to be smaller than all differences of distinct measure points for time t
(and hence also for time t̃), we see that there is no measure point for t̃ in the interval [T, T +
ε/2).

Likewise, by defining p− as the pulse with rising transition at time S + ε/2 and falling
transition at time T, we infer that there is one measure point for time t̃ in the interval [S, S +
ε/2) and there is no measure point for t̃ in the interval [S − ε/2, S) (see Figure 8.4).

Now consider the pulse p̃+ generated by shifting pulse p into the past by ε/2, i.e., p̃+’s
rising transition is at time S − ε/2 and its falling transition is at T − ε/2. Because p̃+ coincides
with p+ at all measure points for t̃, the output signal s p̃+ corresponding to p̃+ has value 0
at time t̃. Because DG(t̃) = DG(t̃ + ε/2), the second part of Lemma 8.1 shows that s p̃+(t̃ +
ε/2) = 0.

Likewise, by considering p shifted into the future by ε/2, we see that also s p̃+(t̃− ε/2) = 0.
But because sp(t̃) = 1, this shows that the output signal sp contains a pulse of length strictly
less than ε. Since ε can be chosen arbitrarily small, this concludes the proof.

8.2 Solvability of Unbounded Short Pulse Filtration with

Involution Channels

In this section, we show that unbounded SPF is solvable in our circuit model with strictly
causal involution channels. We do this by verifying that the circuit shown in Figure 8.5, which
consists of a fed back OR-gate and a high-threshold filter (implemented by a channel), indeed
solves SPF. In order not to obfuscate the essentials, we restrict our attention to certain classes
of involution channels. More specifically, in our proof, the channel in the feed-back loop
must be strictly causal and symmetric, i.e., δ↑ = δ↓ = δ. When using an exp-channel, for
example, this implies a threshold Vth = 0.5. The channel implementing the high-threshold
filter is assumed to be an exp-channel, because we have to adjust its parameters appropriately.
However, the proof could be adapted to show the possibility of unbounded SPF with any
given class of strictly causal involution channels.
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Figure 8.5: A circuit solving unbounded SPF, consisting of an OR-gate fed back by channel c,
and a high-threshold filter HT

We consider a pulse of length ∆ at time 0 at the input and reason about the behavior of
the feed-back loop. Then, we show that this behavior can be translated to a legitimate SPF
output by using a high-threshold buffer. We start by identifying two extremal cases: If ∆ is
very small, then the pulse is filtered by the channel in the feed-back loop, if it is very big, the
pulse is captured by the storage loop, leading to a stable output 1.

Lemma 8.4. If the input pulse’s length ∆ satisfies ∆ ≥ δ∞, then the output of the OR has a unique
rising transition at time δ∞.

Proof. Assigning the channel output sc a single rising transition at time δ∞ is part of a consis-
tent execution, in which the OR’s output has a single rising transition at time 0. The lemma
now follows from uniqueness of executions.

Lemma 8.5. If the input pulse’s length ∆ satisfies ∆ ≤ δ∞ − δmin, then the OR output contains only
the input pulse.

Proof. The input signal contains only two transitions: One at time t1 = 0 and one at time
t2 = ∆ ≤ δ∞ − δmin. Since δ1 = δ∞ and hence t2 = t1 + ∆ ≤ t1 + δ1 − δmin, the two pend-
ing transitions of c’s output cancel by Lemma 7.7, and no further transitions are generated
afterwards.

Now suppose that the input pulse length satisfies δ∞ − δmin < ∆0 < δ∞. For these pulse
lengths ∆0, the output signal will contain a series of pulses of lengths ∆0, ∆1, ∆2, . . . For all but
one ∆0, this series will turn out to be finite and the output signal will either eventually be 0 or
eventually 1. To compute these pulse lengths, we define the auxiliary function

f (∆) = δ
(

∆ − δ(−∆)
)

+ ∆ − δ(−∆) , (8.1)

which gives ∆n = f (∆n−1) for all n ≥ 2. To see this, note that ∆n−1 at the channel input is
also present at the channel output, so the rising resp. falling transition is delayed by δ(−∆n−1)
resp. δ(∆n−1 − δ(−∆n−1)). The first generated pulse starts from a zero channel input and thus
fulfills

∆1 = ∆0 − δ∞ + δ(∆0 − δ∞) . (8.2)

The procedure stops if either f (∆n) ≤ 0 (pulse canceled; the output is constant 0 there-
after) or f (∆n) ≥ δ(0) > 0 (pulse captured; the output is constant 1 thereafter).

The only case in which the procedure does not stop is if f (∆1) = ∆1. There is a unique
∆1 > 0 with this property, denoted ∆̃1. By (8.1), it is also characterized by the relation
δ(−∆̃1) = 2∆̃1. Since δ(−δ(0)) = 0 by the involution property, we must have ∆̃1 < δ(0).
Since ∆1 → δ(0) as ∆0 → δ∞ and ∆1 → 0 as ∆0 → δ∞ − δmin, there exists a unique ∆0 such
that ∆1 = ∆̃1. Denote it by ∆̃0.
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The following lemma shows that the procedure indeed stops if and only if ∆1 6= ∆̃1, and
can be used to bound the number of steps until it stops.

Lemma 8.6. | f (∆1)− ∆̃1| ≥ (1 + δ′(0)) · |∆1 − ∆̃1| if ∆1 > 0.

Proof. We have

f ′(∆1) =
(

1 + δ′(−∆1)
)

· δ′
(

∆1 − δ(−∆1)
)

+ 1 + δ′(−∆1) ≥ 1 + δ′(0)
(8.3)

because δ′(−∆1) ≥ δ′(0) and δ′(T) > 0 for all T as δ is concave and increasing. The mean
value theorem of calculus now implies the lemma.

Theorem 8.7. The fed-back OR gate with a strictly causal symmetric involution channel has the
following output when the input pulse has length ∆0:

• If ∆0 > ∆̃0, then the output is eventually constant 1.

• If ∆0 < ∆̃0, then the output is eventually constant 0.

• If ∆0 = ∆̃0, then the output is a periodic pulse train with duty cycle 50%.

Furthermore, the stabilization time in the first two cases is in the order of log 1/|∆0 − ∆̃0|.

Proof. If ∆0 ≥ δ∞ or ∆0 ≤ δ∞ − δmin, then Lemmas 8.4 and 8.5 show the theorem.

So let ∆0 ∈ (δ∞ − δmin, δ∞). By Lemma 8.6, the number of generated pulses until the
procedure stops is in the order of log 1/|∆1 − ∆̃1|. Setting g(∆0) = ∆0 − δ∞ + δ(∆0 − δ∞), and
applying the mean value theorem of calculus to this function, we see analogously as in the
proof of Lemma 8.6 that

|∆1 − ∆̃1| ≥
(

1 + δ′(0)
)

· |∆0 − ∆̃0| . (8.4)

Hence the number of generated pulses is in the order of log 1/|∆0 − ∆̃0|. Since both the length
∆n of the occurring pulses and, by symmetry, the time between them is at most δ(0), we have
the same asymptotic bound on the stabilization time.

We now turn to the analysis of the high-threshold filter.

Lemma 8.8. Let c be an exp-channel c with threshold Vth. Then there exists some ∆ > 0 such that
every periodic pulse train with pulse lengths at most ∆ and duty cycle (ratio of 1-to-0) at most Vth is
mapped to the zero signal by c.

Proof. Let t1, t2, . . . be the times of transitions in the input pulse train with duty cycle γ ≤ Vth,
i.e., t1 = 0, t2n+2 = t2n+1 + ∆, and t2n+1 = t2n + ∆/γ. We assume that ∆ is smaller than both
−τ log(1 − Vth) and a to-be-determined ∆0. We inductively show that all pulses get canceled:

If ∆ ≤ −τ log(1 − Vth), then the first pulse is canceled and δ2 ≤ Tp. If δ2n ≤ Tp, then

δ2n+1 = δ↑(∆/γ − δ2n) ≥ δ↑(∆/Vth − Tp)

= Tp − τ log(1 − Vth) + τ log(1 − Vthe−∆/Vthτ)
(8.5)
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Hence t2n+1 and t2n+2 = t2n+1 + ∆ cancel if

∆ ≤ δ2n+1 − Tp

= −τ log(1 − Vth) + τ log(1 − Vthe−∆/Vthτ) ,
(8.6)

which is equivalent to

h(∆) = Vthe−∆/Vthτ + (1 − Vth)e
∆/τ ≤ 1 . (8.7)

It is h(0) = 1 and

h′(∆) = − 1

τ
e−∆/Vthτ +

1 − Vth

τ
e∆/τ , (8.8)

in particular h′(0) < 0. There hence exists some ∆0 > 0 such that h(∆) ≤ 1 for all 0 ≤ ∆ ≤ ∆0.
In particular, t2n+1 and t2n+2 cancel. Also,

δ2n+2 = δ(∆ − δ2n+1) ≤ δ(−Tp) = Tp (8.9)

because h(∆) ≤ 1. We can hence continue the induction.

By letting τ grow, one can even achieve the following result.

Lemma 8.9. Let ∆ > 0 and 0 < γ < 1. Then there exists an exp-channel with threshold Vth = γ

such that every periodic pulse train with pulse lengths at most ∆ and duty cycle at most γ is mapped
to the zero signal by c.

Proof. We use the notation of the proof of Lemma 8.8. The unique root of h′(∆) is equal to

∆τ = −τ log(1 − Vth)

1 + 1/Vth
, (8.10)

which goes to infinity as τ → ∞. We can choose ∆0 = ∆τ because h′(∆) ≤ 0 for all 0 ≤ ∆ ≤
∆τ. Because also −τ log(1 − Vth) goes to infinity as τ → ∞, we can find, for any given ∆,
some τ > 0 such that both ∆ ≤ −τ log(1 − Vth) and ∆ ≤ ∆τ. But for these ∆, all input pulse
trains with pulse lengths ∆ and duty cycle at most Vth = γ get mapped to the zero signal.

In particular, by choosing γ = 0.6 and ∆ large enough such that the output of the feed-
back loop is already constant 1 at time T + ∆ if the duty cycle in the loop passes 0.6 at time T,
we show:

Theorem 8.10. There is a circuit that solves unbounded SPF.

8.3 Eventual Short Pulse Filtration with Constant Delay Channels

We proved that SPF is not solvable with constant delay channels. In this section, we consider
the weaker eventual SPF problem, which drops the “no short pulses” requirement (F4) and
replaces it with an eventual analogue (F4e): A circuit solves eventual SPF if conditions (F1)–(F3)
and the following condition hold:
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Figure 8.6: Circuit Cev solving eventual SPF

F4e) There exists an ε > 0 and a K > 0 such that, in all executions with a pulse at time T
as the input signal, the output signal does not contain a pulse of length less than ε after
time T + K. (Eventually no short pulses)

We show that eventual SPF is solvable using only constant delay channels. More specifi-
cally, we prove that circuit Cev in Figure 8.6 solves eventual SPF. The circuit contains a delay
parameter α, which we will choose to be a positive irrational like α =

√
2.

We will show that the circuit’s output is eventually stable at 1 whenever the input is a
pulse of positive length. We derive a bound on this stabilization time in terms of the input
pulse length ∆. The bound is almost linear in 1/∆: It is in the order of O(∆−1−ε) for all ε > 0.

The measure points of circuit Cev for time t are of the form t − (αk + ℓ)− 2, where k and ℓ

are nonnegative integers. We can hence characterize the circuit’s behavior with the following
obvious lemma.

Lemma 8.11. In every execution (sv) of circuit Cev, the following are equivalent: (i) so(t) = 1, and
(ii) there exist nonnegative integers k and ℓ such that si

(

t − (αk + ℓ)− 2
)

= 1.

We may restrict our considerations to input pulses starting at time 0. In the following, let
the input signal si be a pulse of length ∆ > 0. We are looking for the stabilization time, which
is the minimal time T = T(∆) such that, for all t ≥ T, we have so(t) = 1.

To prove finiteness and effective bounds on the stabilization time, we relate it to the
number-theoretic concept of discrepancy of the sequence (αn) modulo 1 (see, e.g., [38]). The
discrepancy compares the number of sequence elements in a given interval with their ex-
pected number if the elements were uniformly distributed.

For a given nonempty subinterval (x, y] ⊆ (0, 1] and a given positive integer N, denote by
A(x, y; N) the number of αn’s with n ≤ N that lie in the interval modulo 1: αn ∈ (x, y] + Z.
The expected number of such αn’s is (y − x)N. The discrepancy DN(α) is then defined as the
maximum difference between A(x, y; N) and (y − x)N, formed over all nonempty subinter-
vals (x, y] of (0, 1].

It is well-known that DN(α)/N → 0 if and only if α is irrational. Also, if α has a bounded
continued fraction expansion, then DN(α) = O(log N) and the constant can be computed [79].
This is, in particular, true for α =

√
2.

Lemma 8.12. Let K = K(∆) be the least integer K such that for all real t there exists an integer k,
0 ≤ k ≤ K, with αk ∈ (t − ∆, t] + Z. Then, T(∆) ≤ α · K(∆) + ∆ + 2.

Proof. The lemma is trivial if K = ∞, so assume the contrary.
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Let t ≥ αK + ∆ + 2. By the definition of K, there exists a k with 0 ≤ k ≤ K and an ℓ such
that t − ∆ − ℓ− 2 < αk ≤ t − ℓ− 2, which is equivalent to 0 ≤ t − (αk + ℓ)− 2 < ∆.

By Lemma 8.11, it remains to prove that ℓ is nonnegative. The inequality t− (αk+ ℓ)− 2 <

∆ is equivalent to ℓ > t − ∆ − αk − 2. Noting −αk ≥ −αK and t ≥ αK + ∆ + 2 shows ℓ > 0
and concludes the proof.

Lemma 8.13. Let 0 < ∆ ≤ 1. If DN(α)/N < ∆/2, then K(∆) ≤ N.

Proof. Suppose the contrary, i.e., that there exists a real t such that, for all n ≤ N, we have
αn 6∈ (t − ∆, t] + Z. Let 0 < x < y ≤ z < u ≤ 1 such that we can decompose the interval
(t−∆, t] +Z =

(

(x, y] +Z
)

∪
(

(z, u] +Z
)

modulo 1. None of the two intervals (x, y] and (z, u]
contains an αn modulo 1 with n ≤ N. Hence A(x, y; N) = A(u, z; N) = 0, which implies
2DN(α) ≥ (y − x)N + (u − z)N = ∆N, a contradiction.

Theorem 8.14. Circuit Cev solves eventual SPF if α is irrational. If α =
√

2, then the stabilization
time satisfies T(∆) = O(∆−1−ε) as ∆ → 0 for all ε > 0.

Proof. (F1) is obviously fulfilled. Because all initial values of channels are 0, also (F2) holds.
Because DN(α)/N → 0 whenever α is irrational, for all ∆ > 0, there exists some N such that
DN(α)/N < ∆/2. Hence Lemma 8.13 and Lemma 8.12 show that T(∆) is finite, which shows
(F3) and (F4e).

We now prove the bound on the stabilization time. Let γ = −1 − ε < −1. There exists
a C1 > 0 such that DN(α) ≤ C1 log N. Because 1 + 1/γ > 0, there exists a C2 > 0 such that
log N < C2N1+1/γ. Thus if

N ≥
(

∆

2C1C2

)γ

(8.11)

then
DN(α)

N
≤ C1 log N

N
< C1C2N1/γ ≤ ∆

2
, (8.12)

which, by Lemma 8.13, implies

K(∆) ≤
(

∆

2C1C2

)γ

+ 1 (8.13)

for all 0 < ∆ ≤ 1. That is, K(∆) = O(∆γ) as ∆ → 0.
It is easy to see that K(∆) → ∞ as ∆ → 0. Hence Lemma 8.12 implies T(∆) = O(K(∆))

as ∆ → 0, as claimed.





Chapter 9

Bounded Short Pulse Filtration in
Binary Models

9.1 Unsolvability of Bounded Short Pulse Filtration with

Involution Channels

9.1.1 Continuity of Involution Channels

In this subsection, we prove that strictly causal involution channels are continuous in a certain
sense that we will define precisely. For ease of exposition, we give the proof only in the case
of symmetric channels, i.e., for the case that δ↑ = δ↓ = δ.

We begin by noting that channels are monotone. To compare two signals, we write s1 ≤ s2

if s2 is 1 whenever s1 is.

Lemma 9.1. Let s1 and s2 be signals such that s1 ≤ s2 and let c be a channel. Then c(s1) ≤ c(s2).

We next define a distance for signals, for which channels will turn out to be continuous.

Definition 9.2. For a signal s and a time T, denote by µT(s) the combined amount in [0, T]
that s is 1. In more symbolic terms, µT(s) is the measure of the set {t ∈ [0, T] | s(t) = 1}.

For any two signals s1 and s2 and every T, we define their distance up to time T by setting
‖s1 − s2‖T = µT(|s1 − s2|).

With the next lemma, we identify an optimal choice for adding a pulse to the end of a
signal when wanting to maximize µT. We will use it later when bounding the maximum
impact an infinitesimally small pulse can have.

We use the shorthand notation (x)+ to mean max{x, 0}.

Lemma 9.3. Let s be a signal that is eventually constant 0 and let c be a channel. Denote by tn the time
of the last (falling) transition in s and by δn its delay in the channel algorithm for c. Then the maximal
µT(c(s

′)) among all s′ obtained from s by adding one pulse of length ∆ after time tn is attained by the
addition of the pulse at time tn + (δn − δmin)+.

Proof. We first show the lemma for T = ∞ and then extend the result to finite T. Let s′γ be the
addition of the pulse of length ∆ to s at time tn + γ.

131
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For all 0 ≤ γ ≤ δn − δmin, set

f (γ) = γ + δ(∆ − δ(γ − δn)) .

In the class of all s′γ with γ ≤ δn − δmin, the maximum of µ∞(c(s′γ)) is attained at the maximum
of f . This is because the transition at time tn + γ cancels that at time tn in this case. The
derivative of f is equal to

f ′(γ) = 1 − δ′(∆ − δ(γ − δn)) · δ′(γ − δn) .

The condition f ′(γ) = 0 is equivalent to δ′(∆− δ(γ− δn)) = 1/δ′(γ− δn), which is equivalent
to δ(∆ − δ(γ − δn)) = −(γ − δ2), or ∆ = 0. Hence f ′(γ) is never zero. Since f ′(γ) → 1
as γ → ∞, the derivative of f is always positive, hence f is increasing. This shows that
γ = δn − δmin is a strictly better choice than any other γ in this class.

For the class of s′γ with γ ≥ (δn − δmin)+, we define the function

g(γ) = ∆ + δ(∆ − δ(γ − δn))− δ(γ − δn) .

Since the transitions at tn and tn + γ do not cancel in this class, the maximum of µ∞(c(s′γ))
is attained at the maximum of g. But it is easy to see, using the monotonicity of δ, that g is
decreasing. The maximum of g is hence attained at γ = (δn − δmin)+.

We have shown that the choice γ = γ0 = (δn − δmin)+ maximizes µ∞(c(s′γ)), which con-
cludes the proof for T = ∞

Let now T be finite. Denote by T0 the time of the last, falling, output transition in c(s′γ0
). In

this case, transitions of c(s) and c(s′γ0
) are the same except the last, falling, transition which is

delayed from tn + δn to T0. We distinguish the two cases (a) T ≤ T0 and (b) T > T0. In case (a),
the last transition of c(s) is delayed beyond T in c(s′γ0

). Because all other transitions remain
unchanged in all c(s′γ), the measure µT(c(s

′
γ0
)) is maximal among all µT(c(s

′
γ)) if T ≤ T0. In

case (b), we have µT(c(s
′
γ0
)) = µ∞(c(s′γ0

)). But because µT ≤ µ∞ and µ∞(c(s′γ0
)) is maximal

among all µ∞(c(s′γ)), so is µT(c(s
′
γ0
)) among all µT(c(s

′
γ)).

We next effectively bound the maximum impact on µT that a set of pulses of small com-
bined length can have.

Lemma 9.4. Let s be a signal that is eventually constant 0 and let c be a channel. Then there exists a
constant d such that the maximal µT(c(s

′)) among all s′ obtained from s by adding pulses of combined
length ε after the last transition of s is at most µT(c(s)) + d · ε.

Proof. It suffices to show the lemma for T = ∞. Let ε = ∑
∞
k=1 εk. We add, one after the other,

pulses of length εk after the last transition. We show that the maximum gain after adding K
pulses is at most ∑

K
k=1 εk.

Denote by tn the last transition in s and by δn its delay. By Lemma 9.3, it is optimal to add
the first pulse (of length ε1) at time tn + (δn − δmin)+; call the resulting signal s′1.

We first assume δn − δmin ≥ 0. Here, the two new transitions in s′1 are tn+1 = tn + δn − δmin

and tn+2 = tn + δn − δmin + ε1. Their corresponding delays are δn+1 = δmin and δn+2 =
δ(ε1 − δmin). By the mean value theorem of calculus and Lemma 7.6, we have

δn+2 − δn+1 = δ(ε1 − δmin)− δ(−δmin) = ε1 · δ′(ξ) (9.1)
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for some −δmin ≤ ξ ≤ ε1 − δmin. Since δ′ is increasing and δ′(−δmin) = 1, we hence deduce
0 ≤ δn+2 − δn+1 ≤ ε1. Thus µT(c(s

′
1)− c(s)) = ε1 + δn+2 − δn+1 ≤ 2ε1. Since δn+2 > δmin, we

can continue this argument inductively.
If now δn − δmin < 0, then tn is replaced by tn + ε1 in s′1. This changes the measure by

(

δ(tn − tn−1 + ε1 − δn−1)− δ(tn − tn−1 − δn−1)
)

+
, (9.2)

which is at most ε1 · δ′(tn − tn−1 − δn−1) by the mean value theorem. We note that this second
case only occurs until the first case happens one time. We can hence merge all the εk of the
first case and set d = max(2, δ′(tn − tn−1 − δn−1)).

We combine the previous two lemmas to show continuity of channels:

Theorem 9.5. Let c be an involution channel and let T ≥ 0. Then the mapping s 7→ c(s) is continu-
ous with respect to the distance d(s1, s2) = ‖s1 − s2‖T.

Proof. Let s be a signal. We show that, if ‖s − sn‖T → 0, then ‖c(s)− c(sn)‖T → 0. Because

|s − sn| = (max(s, sn)− s) + (s − min(s, sn)) , (9.3)

the condition ‖s − sn‖T → 0 is equivalent to the conjunction of ‖s − max(s, sn)‖T → 0
and ‖s − min(s, sn)‖T → 0. Furthermore, because max(c(s), c(sn)) ≤ c(max(s, sn)) and
min(c(s), c(sn)) ≥ c(min(s, sn)) by Lemma 9.1, we have

|c(s)− c(sn)| ≤ c(max(s, sn))− c(s)

+ c(s)− c(min(s, sn)) ,
(9.4)

which shows that we can suppose without loss of generality sn ≥ s for all n.
Let (tm, 0), (tm+1, 1) be a negative pulse in s. Since there are only finitely many negative

pulses before time T, it suffices to show µT(c(sn)− c(s)) → 0 in the case that sn − s is zero
outside of [tm, tm+1], i.e., that the only additions of sn with respect to s lie in the given negative
pulse.

Let µT(sn − s) ≤ ε. It follows from Lemma 9.4 that the increase in measure incurred di-
rectly from the new pulses is O(ε). Furthermore, by Lemma 9.3, the measure incurred by later
transitions tk with k > m are biggest when merging all new pulses at the end of the negative
pulse. Because the delays of these transitions depend continuously on ε and µT(c(sn)− c(s))
depends continuously on these delays, we have µT(c(sn)− c(s)) → 0 as ε → 0.

9.1.2 Unsolvability in Forward Circuits

We call a circuit a forward circuit if its graph is acyclic. Forward circuits are exactly those
circuits that do not contain feed-back loops. From the fact that the composition of continuous
functions is continuous, we obtain from Theorem 9.5:

Theorem 9.6. No forward circuit with involution channels solves bounded SPF.

Proof. Suppose that there exists a forward circuit that solves bounded SPF with stabilization
time bound K. Denote by s∆ its output signal when feeding it a ∆-pulse at time 0 as the input.
Because s∆ in forward circuits is a finite composition of continuous functions by Theorem 9.5,
the measure µT(s∆) depends continuously on ∆.
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By the nontriviality condition (F3) of the SPF problem, there exists some ∆0 such that s∆0

is not zero. Set T = 2∆0 + K.
Let ε > 0 be smaller than µT(s∆0

). We show a contradiction by finding a ∆ such that s∆

either contains a pulse of length less than ε (contradiction to the no short pulses condition
(F4)) or contains a transition after time ∆ + K (contradicting the bounded stabilization time
condition (F5)).

Since µT(s∆) → 0 as ∆ → 0 by the no generation condition (F2) of SPF, there exists a ∆1 <

∆0 such that µT(s∆1
) = ε by the intermediate value property of continuity. By the bounded

stabilization time condition (F5), there are no transitions in s∆1
after time ∆1 + K. Hence s∆1

is 0 after this time because otherwise it is 1 for the remaining duration T − (∆1 + K) > ∆0 > ε,
which would mean that µT(s∆1

) > ε. There thus exists a pulse in s∆1
before time ∆1 + K. But

any such pulse is of length at most ε because µ∆1+K(s∆1
) ≤ µT(s∆1

) = ε. This is a contradiction
to the no short pulses condition (F4).

9.1.3 Simulation with Unrolled Circuits

We next show how to simulate (part of) an execution of a circuit C by a forward circuit C′

generated from C by unrolling of feedback channels. Intuitively, the deeper the unrolling, the
longer the time C′ behaves as C.

Definition 9.7. Let C be a circuit with input i. For v being a gate or input in C and k ≥ 0, the
k-unrolled circuit Ck(v) is constructed inductively as follows: If v = i, or v is a gate with no
predecessor in C, then Ck(v) is the circuit that comprises only of vertex v and whose output
is v. We slightly misuse the circuit definition here by allowing circuits with a single vertex.
Otherwise, v is a gate with predecessors and we distinguish two cases:

If k = 0, Ck(v) comprises of: gate v(α), with α being a unique identifier, and for each prede-
cessor σ of v in C: if σ = i, add i and an edge from i to v(α); if σ is a channel, add channel σ(β)

and gate x̃(γ), with β and γ being unique identifiers and x being the channel’s initial value.
Furthermore, add edges from x̃(γ) to σ(β) and from σ(β) to v(α). The Boolean function assigned
to v(α) is the same as for v and the ordering of the predecessors of v(α) reflects the ordering
of the predecessors of v. The Boolean function assigned to x̃(α) is constant x. The channel
functions of σ(β) and σ are equal.

If k > 0, Ck(v) is the circuit that comprises of gate v(α), with unique identifier α, and for
each predecessor σ of v in circuit C: If σ is a channel, let w be its predecessor in C. Add
and connect the output of circuit Ck−1(w) to a channel σ(β) and the channel to v(α). If σ = i,
add i and connect it to v(α). Again, the Boolean functions, orderings and channel functions
are assigned in accordance with those in C.

In all cases, we call a vertex σ(α) corresponding to σ.

Let o be the single output of circuit C. To each vertex σ in Ck(o), we assign a value z(σ)
from N0 ∪ {∞} as follows: z(0̃(α)) = z(1̃(α)) = 0, z(i) = z(σ) = ∞ if σ has no predeces-
sor in C, z(σ) = 1 + z(w) for a channel σ with predecessor w, and z(σ) = min{z(σ′) |
σ′ is a predecessor of σ} for a gate σ. Figure 9.1 shows an example of a circuit and an un-
rolled circuit with z values assigned to inputs and gates.

We further adapt the constructive algorithm in Section 7.4 to assign to each generated
transition a causal depth d(e) of transition e. All initial transitions and input transitions have
causal depth 0; all transitions initially added at time 0 have causal depth 1. Algorithm step (i)
is extended such that each transition e at time t that was marked fixed in a set Ev, with v being
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i x

y

o

0̃(2)

0̃(1) y(2)

i x(1)

y(1) o(1)

Figure 9.1: Circuit C (left) and C2(o) (right) under the assumption that both incoming channels
to gate y have initial value 0; it is z(0̃(1)) = z(0̃(2)) = 0, z(i) = z(x(1)) = ∞, z(y(2)) = 1,
z(y(1)) = 2, and z(o(1)) = 3

a gate, gets assigned d(e) equal to the maximum over all d(e′), where e′ is a fixed transition
at time t′ ≤ t in Eσ with σ being a predecessor of v. Algorithm step (iii) is extended such that
for each transition e in a set Ev, with v being a gate or an input, that generates a transition e′

in some E(v,w), d(e′) = d(e) + 1. We observe:

Lemma 9.8. For all k ≥ 1, (a) the constructive algorithm never assigns a causal depth larger than k
to a transition marked fixed in iteration k, and (b) at the end of iteration k the sequence of the causal
depths of the transitions in Eσ is non decreasing, for all vertices σ.

We are now in the position to prove the main result of a circuit simulated by an unrolled
circuit.

Theorem 9.9. Let C be a circuit with involution channels with output port o that solves bounded SPF.
Let Ck(o) be an unrolling of C, σ a vertex in C and σ′ a vertex in Ck(o) corresponding to σ. For all
input signals i, if a transition e within Eσ is marked fixed by the execution constructing algorithm run
on circuit C (respectively Ck(o)) with input signal i and d(e) ≤ z(σ′) then e is added and marked
fixed in Eσ′ by the algorithm run on circuit Ck(o) (respectively C) with input signal i.

Proof. We will show the statement by induction on d(e) ≥ 0 for the case where e is a tran-
sition in C’s execution. The proof for the case where e is a transition in Ck(o)’s execution is
analogous.

Induction base: By construction of an unrolling, Eσ and Eσ′ have the same initial transitions
if σ is a gate or channel, and the same transitions if σ = σ′ is the input. Since for all these
transition e, d(e) = 0 ≤ z(σ′), the statement holds for d(e) = 0.

Induction step: Assume that the lemma holds for all transitions e with d(e) ≤ k. We show
that it also holds for transitions e′ with d(e′) = k+ 1 if k+ 1 ≤ z(σ′). If e′ is a transition initially
added by the constructive algorithm at time 0, d(e′) = 1. From the definition of the unrolling
we immediately obtain that e′ is also added to Eσ′ if z(σ′) ≥ 1. Otherwise, e′ must have
been added within an iteration of the constructive algorithm. Assume by contradiction that e′

is the first transition (in the order transitions are generated by the constructive algorithm)
with causal depth k + 1 added to a list in C but not added to the respective list in Ck(o). We
distinguish two cases for σ:

If σ = (v, w) is a channel in C: Transition e′ may only have been added to E(v,w) by the
channel algorithm with input transition list Ev and a current transition e′′ with d(e′′) = k. The
time of transition e′ depends on the time of e′′ and on the last output transition only. From the
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fact that e′ is the first with depth k + 1 not added to Eσ′ , and the induction hypothesis applied
to both Ev and E(v,w), we deduce that transition e′ is also added to Eσ′ ; a contradiction to the
assumption that it is the first one not added.

Since σ cannot be the input port, because all its transitions have causal depth 0, the case
of σ being a gate in C remains: However, then e′ is generated due to a transition e′′ on a
predecessor w of σ in C. Further, d(e′′) ≤ k + 1 and z(w′) ≥ k + 1 must hold for vertex w′

corresponding to w. Since, e′ is the first transition with causal depth less or equal k + 1 not
added to both circuits’ lists, e′′ was added to both Ew′ and Ew′ , and thus e′ is added to Eσ′ ; a
contradiction that it is the first one not added. This completes the induction step.

9.1.4 The Unsolvability Result

Let the aligned bounded SPF problem be the SPF problem with the following modifications: We
first require that if the input signal is a pulse, then the pulse must start at time 0 and be of
length at most 1. We call such signals, valid input signals. Further, we require that if output
signal o makes a transition to 1, it must do so before time K + 1, and o must remain 1 from
thereon until time K + 2, from whereon it is 0 until time K + 3 followed by a pulse of length 1
at time K + 3. If the input is constant 0, we require that the output is a pulse of length 1
at time K + 3. From every circuit that solves the (original) bounded SPF problem, we can
easily build a circuit that solves the aligned SPF problem by adding capturing circuitry like
Figure 8.5. In the following, we show that no circuit solves the aligned version of bounded
SPF and thus, by the above reduction, the original bounded SPF problem.

Let C be a circuit that solves the aligned bounded SPF problem. Then, for all input sig-
nals, the output signal o of C always contains a transition (K + 4, 0), regardless of the input.
Let DC

o (i) be the causal depth of this transition in circuit C when the input signal is i.

Lemma 9.10. Let C be a circuit that solves the aligned bounded SPF problem. Then there exists an
input signal i such that DC

o (i) > (K + 5)/δmin + 2.

Proof. Let N = (K + 5)/δmin + 2, and assume by contradiction that DC
o (i) ≤ N for all valid

input signals i. Consider the N-unrolled circuit CN(o). From Theorem 9.9, we obtain that
transition (K + 4, 0), with causal depth in C at most N occurs at output o of C if and only if it
occurs at CN(o)’s output o′ corresponding to o. From Lemma 9.8 (b), we obtain that the same
holds for all transitions at output o with times less than K + 4; i.e., C’s and CN(o)’s output
signals restricted to time [−∞, K + 4] are the same for all valid input signals i. One can easily
extend the forward circuit CN(o) such that it remains a forward circuit and solves aligned
bounded SPF, by suppressing all transitions at the output that occur after time K + 4. Since
Theorem 9.6 also holds for the aligned bounded SPF problem, no such forward circuit exists;
a contradiction to the initial assumption.

From Lemma 9.10 and 9.8, we obtain that, for input i, the constructive algorithm does
not mark fixed the output transition (K + 4, 0) before iteration (K + 5)/δmin + 2. However,
from Lemma 7.9 and the fact that input signal i contains at most 2 transitions besides the
initial transition at −∞, we conclude that all iterations ℓ ≥ (K + 5)/δmin + 2 have tℓ ≥ K + 5.
From Lemma 7.8, we conclude that all transitions still existent at the end of these iterations
must have times at least K + 5; a contradiction to the fact that the output transition occurs at
time K + 4. We thus obtain:

Theorem 9.11. No circuit with involution channels solves bounded SPF.
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Figure 9.2: Circuit Cff

9.2 Solvability of Bounded Short Pulse Filtration with One

Non-Constant Delay Bounded Single History Channel

In this section we prove that bounded SPF is solvable as soon as there is a single non-constant
delay bounded single-history channel available. More specifically, we show that, given a
bounded single-history channel with non-constant delay, there exists a circuit that uses only
constant delay channels apart from the given non-constant channel that solves bounded SPF.
Different circuits, and hence proofs, are used in for different types of channels.

The right-sided limit of δ at −δ∞ is denoted by δinf = limt→0+ δ(−δ∞ + t); note that δinf =
−∞ is allowed here.

In the rest of this section, let c∗ be a bounded single-history channel that is not a constant
delay channel as defined in Section 7.3. This is equivalent to saying that its delay function δ

is non-constant for T > −δ∞, because Tn > −δ∞ in every step of the channel algorithm:

Lemma 9.12. A bounded single-history channel with delay function δ is a constant delay channel if
and only if δ is constant in the open interval (−δ∞, ∞).

Note that δinf < δ∞ in case of a non-constant delay channel. From the fact that −δ∞ <

Tn ≤ ∞ in every step of the channel algorithm, we also obtain:

Lemma 9.13. All events in the event list of a bounded single-history channel’s input signal are delayed
by times within [δinf, δ∞].

9.2.1 Forgetful Channels

In this subsection, assume that c∗ is forgetful. Consider circuit Cff depicted in Figure 9.2,
which contains channel c∗ as well as two constant delay channels. For the moment assume
that the initial value of c∗ is 0. We will show at the end of this subsection that bounded SPF is
also solvable with c∗ if its initial value is 1.

It remains to describe how to choose delay parameter ε > 0. We will show in the follow-
ing that for each non-constant delay forgetful bounded single-history channel c there exists
a γ(c) > 0 such that c(s) is the zero signal whenever s is a pulse of length less than γ(c).
More generally we will show that, if signal s does not contain pulses of length greater or equal
to γ(c), then c(s) is the zero signal. We then choose 0 < ε < γ(c∗) for the delay parameter ε

in circuit Cff.

If the input signal of circuit Cff is a pulse of length at least ε, then the signal sOR at the OR
gate is eventually stable 1 because of the ε-delay feedback loop, and hence the circuit’s output
signal is eventually stable 1. If the circuit’s input signal is a pulse of length ∆ < ε, then sOR
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only contains pulses of length ∆ < γ(c∗), from which it follows that the circuit’s output signal
is zero.

Let δ be the delay function of a bounded single-history channel c. We define:

γ(c) = inf
{

∆ > 0 | ∆ − δ∞ + δ
(

∆ − δ∞

)

> 0
}

(9.5)

We will prove γ(c∗) > 0 in Lemma 9.15. Before characterizing the non-constant delay chan-
nels as those c with γ(c) > 0, we need a preliminary lemma on pulse-filtration properties of
non-constant delay channels.

Lemma 9.14. Let c be a non-constant delay bounded single-history channel with initial value 0. If s
is a pulse of length less than γ(c), then c(s) is zero.

Proof. The event list of s consists of two events (S, 1) and (T, 0), possibly preceded by an
additional event (0, 0), depending on whether S = 0 or S > 0. Because the initial value of c
is 0, we may assume without loss of generality that the sequence consists of only these two
events.

After iteration n = 0 of the channel algorithm, the output list is equal to
(

(−∞, 0), (S +

δ∞, 1)
)

. Hence, in iteration n = 1,

T1 = T − S − δ∞ < γ(c)− δ∞ , (9.6)

i.e., T1 + δ∞ < γ(c). By definition of γ(c), this implies

(T1 + δ∞)− δ∞ + δ((T1 + δ∞)− δ∞) ≤ 0 , (9.7)

and thus T1 + δ(T1) ≤ 0. Thus, the event (S + δ∞, 1) gets removed from the output list and
the output signal is the constant zero signal.

Lemma 9.15. Let c be a bounded single-history channel with initial value 0. The following statements
are equivalent:

1. c is not a constant delay channel.

2. There exist a pulse s such that c(s) is the zero signal.

3. γ(c) > 0

Proof. Let δ be the delay function of c. If s is a pulse of length ∆, then c(s) is zero if and only if

∆ − δ∞ + δ
(

∆ − δ∞

)

≤ 0 . (9.8)

This implies γ(c) ≥ ∆ and hence establishes the equivalence of (2) and (3). If we can show
that c is not a constant delay channel if and only if

∃ε > 0 : δ(−δ∞ + ε) ≤ δ∞ − ε , (9.9)

then we can choose ∆ = ε, concluding the proof.
The sufficiency of (9.9) for c not being a constant delay channel is immediate. To prove

the necessity of (9.9), assume that c is not a constant delay channel. Then there exist β, β′ > 0
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such that δ(β − δ∞) < δ(β′ − δ∞) and since δ is nondecreasing, δ(β − δ∞) < δ∞. Thus, there
exists a z > 0, such that,

δ(β − δ∞) ≤ δ∞ − z . (9.10)

There are two cases for z: If β ≤ z, we obtain from (9.10) that δ(β − δ∞) ≤ δ∞ − β. Choos-
ing ε = β shows that (9.9) holds. Otherwise, i.e., if β > z, we obtain from (9.10) and the fact
that δ is nondecreasing

δ(z − δ∞) ≤ δ(β − δ∞) ≤ δ∞ − z . (9.11)

Choosing ε = z shows that (9.9) holds.

Note that, while Lemmas 9.14 and 9.15 hold for both forgetful and non-forgetful channels,
the following lemma does not hold for arbitrary non-forgetful channels.

Lemma 9.16. Let c be a non-constant delay forgetful bounded single-history channel with initial
value 0. Let s be a signal that does not contain pulses of length greater or equal to γ(c) and that is not
eventually equal to 1. Then c(s) is the zero signal.

Proof. The lemma is proved by inductively repeating the proof of Lemma 9.14 for all pulses
contained in s.

Lemma 9.17. Circuit Cff solves bounded SPF.

Proof. We first note that, given an input signal, there is a unique execution for circuit Cff

according to Lemma 8.2, because the sole non-constant channel c∗ is not part of a feedback
loop.

The well-formedness property (F1) of SPF is hence fulfilled. The no generation property
(F2) is also obvious.

If the input signal is a pulse of length at least ε, then sOR(t) = 1 for all t ≥ S + 1, and
hence so(t) = 1 for all t ≥ S + 1 + δ∗(∞). In particular, this shows the nontriviality property
(F3).

If the input signal is a pulse of length less than ε, then sOR(t) only contains pulses of
lengths less than ε, hence less than γ(c∗) by the choice of ε. By Lemma 9.16, the output signal
is zero in this case. This, together with the above, shows (F4) and (F5).

It remains to show that assuming c∗ to have initial value 0 is is not restricting: If its initial
value is 1 we modify circuit Cff by adding an inverter before and after channel c∗. A proof
analogous to Lemma 9.17’s yields:

Theorem 9.18. Let c∗ be a non-constant delay forgetful bounded single-history channel. Then there
exists a circuit solving bounded SPF whose channels are either constant delay channels or c∗.

9.2.2 Non-Forgetful Channels

Theorem 9.19 reveals that a single non-constant delay non-forgetful bounded single-history
channel c∗ (with initial value 0) also allows to solve bounded SPF:

Theorem 9.19. Let c∗ be a non-constant delay non-forgetful single history channel with initial value 0.
Then there exists a circuit solving SPF whose channels are all either constant delay channels or c∗.
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Let δ be the delay function of c∗. Recall from Lemma 9.12 that δinf < δ∞, since δ is non-
decreasing and not constant. We distinguish three cases for function δ with respect to its
behavior at −δinf.

1. There exists a t > −δinf such that δ(t) < δ∞.

2. δ(t) = δ∞ for all t > −δinf, and

2.1 δ is continuous at −δinf, i.e., at −δinf its left limit limt→0− δ(−δinf + t) equals its right
limit δ∞.

2.2 δ is non-continuous at −δinf, i.e., δ− = limt→0− δ(−δinf + t) < δ∞.

For Cases 1 and 2.1, we show that circuit CNF depicted in Figure 9.5 solves bounded SPF.
All its clocks CLKA/C/F produce a signal with period A+ B+C+D, where parameters A to D
are chosen later on in accordance with δ. Let τk = k(A + B + C + D) denote the beginning
of the k-th round, for k ≥ 0. Clock CLKC is designed such that its output signal is 0 during
[τk, τk + A + B) ∪ [τk + A + B + C, τk+1) and 1 during [τk + A + B, τk + A + B + C). Such
a clock can easily be built from constant delay channels and inverters only. Clock CLKA’s
output signal is 1 during [τk, τk + A) and 0 during [τk + A, τk+1). The output signal of CLKF

is 0 during [τk, τk + E) ∪ [τk + E + F, τk+1) and 1 during [τk + E, τk + E + F). Again, E and F
are chosen later on in accordance with δ.

Abbreviating tk = τk + 2, we observe that circuit CNF generates a signal sOR at the input of
channel c∗, which is the OR of two subsignals that consist of four phases within time [tk, tk+1),
k ≥ 0 (i.e., per round): Phase A (of round k) denotes the interval of times [tk, tk + A), phase B
the interval [tk + A, tk + A+ B), phase C the interval [tk + A+ B, tk + A+ B+C) and phase D
the interval [tk + A + B + C, tk + A + B + C + D). The value of sOR is 1 during phase A, and 0
during phases B and D. During phase C it is either 0 or contains a pulse, depending on
signal i. Analogously, we define output phase F (of round k) as the interval of times [tk +
E, tk + E + F). Note that phase E and F of round k follow phase D of round k, and overlap
with phase A of round k + 1.

Informally, for Cases 1 and 2.1, circuit CNF solves bounded SPF according to the following
reasoning: Property (F1) trivially holds for circuit CNF. Clearly, if the circuit’s input signal
is 0, then the channel’s input signal sOR is 0 during phase C of all rounds k ≥ 0. Subsequently,
we will prove that if this is the case, then the channel’s output signal c∗(sOR) during phase F
is 0 for all rounds k ≥ 0. Since phase F is the only phase where o could possibly produce a
non-0 output due to the AND gate, both (F2) and (F4) follow. Property (F3) is implied by the
fact that there exists an input signal i such that sOR contains a pulse during phase C of some
round k ≥ 0. We will prove below that if this is the case, then the channel’s output signal
is 1 during phase F of round k + 1. Essentially, this follows from a reduced delay of the rising
transition at the end of phase D, caused by not forgetting the (canceled) pulse in phase C.
From this and the fact that all delays are bounded, (F5) follows.

Case 1. In this case, we choose

(i) C > 0, D > 0 and 0 < ∆ < δ∞ such that δ(C + D − δinf) ≤ δ∞ − ∆. Such values for C, D
and ∆ exist, because of the assumption of Case 1.

(ii) ε > 0, ε′ > 0 and C > 0 small enough such that δ∞ − ε′ ≥ δinf + ε + C and ε′ < ∆/4.
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c∗(sOR)(t)
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Figure 9.3: Case 1: Input and Output of channel c∗ in circuit CNF if phase C does not contain
a pulse

(iii) C > 0 and ε′ > 0 small enough such that δ(C + ε′ − δ∞) ≤ δinf + ε.

(iv) A = B > max(ε′, ∆, δ∞ − δinf) and large enough such that δ(A − δ∞) ≥ δ∞ − ε′.

(v) E = δ∞ − ∆ and F = ∆/2.

It is easy to check that Assumptions (i)–(v) are compatible with each other.
Figures 9.3 and 9.4 depict signal sOR in absence and presence of a pulse. We will first show

that the channel’s output signal c∗(sOR) has value 0 during output phase F of round 0:

The signal is depicted in Figure 9.3: Signal sOR’s transition to value 1 at time t0 is delayed
by c∗ by δ0 = δ∞ > 0. Its next transition back to value 0 at time t0 + A is delayed by, say, δ1.
Because of Lemma 9.13, δ1 ≥ δinf. From this and Assumption (iv) on A,

A + δ1 > (δ∞ − δinf) + δinf = δ0 . (9.12)

It follows that output c∗(sOR)’s transition to 0 does not cancel c∗(sOR)’s transition to 1 from
before. All of sOR’s following transitions occur at times at least t0 + A + B, and by (iv), at
times greater than t0 + δ∞ − δinf. Since all these transitions are delayed by at least δinf time,
none of them can cancel c∗(sOR)’s transition to 1 at time t0 + δ∞ either. Since channel c∗ has
initial value 0, it follows that its output has value 0 during [0, t0 + δ∞). Since

t0 + δ∞ > t0 + δ∞ − ∆/2 = t0 + E + F , (9.13)

the channel’s output indeed has value 0 during output phase F of round 0.

We next show, for k ≥ 0, that if signal sOR does not contain a pulse within phase C of
round k, signal c∗(sOR) has value 0 during output phase F of round k + 1:

Assume the input signal sOR of channel c∗ does not contain a pulse within phase C of
round k. The signal is depicted in Figure 9.3.

Signal sOR’s transition to value 1 at time tk is delayed by c∗ by δ0 ≤ δ∞.
There is no transition of sOR before sOR’s transition back to value 0 at time tk + A. Let δ1

be its delay. Because of (iv), and δ being non-decreasing, A + δ1 > (δ∞ − δinf) + δinf. Thus,
and because transitions are delayed by at least δinf, none of the transitions from time tk + A
on may cancel c∗(sOR)’s transition to 1 at time tk + δ0.
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The transition of sOR to value 1 at time tk+1 = tk + A + B + C + D is delayed by δ2, where

δ2 = δ(B + C + D − δ1) ≥ δ(B − δ∞) ≥ δ∞ − ε′ , (9.14)

because of Assumption (iv). Together with (ii) this yields

δ2 > δ∞ − ∆/4 . (9.15)

It will thus not occur at output c∗(sOR) before time tk+1 + δ∞ − ∆/4, and thus, by (v), not
before the end of output phase F of round k + 1 at time tk+1 + δ∞ − ∆/2.

Furthermore, from (9.14) and (iv),

B + C + D + δ2 > δ∞ ≥ δ1 , (9.16)

because (iv) in particular implies B > ε′. It follows that output c∗(sOR)’s transition to 1 does
not cancel c∗(sOR)’s transition to 0 at time tk + A + δ1. All sOR’s subsequent transitions occur
at earliest at time tk+1 + A > tk+1 + δ∞ − δinf, by (iv) and the fact that they are delayed by
at least δinf, hence cannot cancel c∗(sOR)’s transition to 1 at time tk+1 + δ2. Thus, c∗(sOR) has
value 0 during [tk + A + δ1, tk+1 + δ2). Together with (9.15), this implies that c∗(sOR)’s value
is 0 during phase F of round k + 1.

We now show, for k ≥ 0, that if signal sOR contains a pulse within phase C of round k,
signal c∗(sOR) has value 1 during output phase F of round k + 1:

Assume the input signal sOR of channel c∗ contains a pulse within phase C of round k. The
signal is depicted in Figure 9.4.

Signal sOR’s transition to value 1 at time tk is delayed by δ0 ≤ δ∞. By the same arguments
as in the proof before, it is not canceled by any following transition.

Signal sOR’s transition to 0 at time tk + A is delayed by δ1. Since no further transition of sOR

occurs before time tk + A+ B, and since B > δ∞ − δinf, it follows that sOR’s transition to 0 is not
canceled by any following transition. The transition of sOR to 1 at time tk + A + u is delayed
by δ2, where δ2 = δ(u − δ1) ≥ δ(B − δ∞), since u ≥ B, δ1 ≤ δ∞ and δ is non-decreasing. Thus,
by (iv),

δ2 ≥ δ∞ − ε′ . (9.17)

The transition of sOR back to value 0 at time tk + A + u + x is delayed by δ3, where

δ3 = δ(x − δ2) ≤ δ(C + ε′ − δ∞) , (9.18)

since x ≤ C, δ is non-decreasing, and by (9.17). By (iii),

δ3 ≤ δinf + ε . (9.19)

The pulse occurring during phase C is filtered out at the output c∗(sOR) of channel c∗, since
δ2 ≥ x + δ3: The latter follows from (9.17), (ii) and (9.19), as δ2 ≥ δ∞ − ε′ ≥ δinf + ε + C ≥ δ3.

The transition of sOR to value 1 at time tk+1 = tk + A + u + x + y is delayed by δ4, where
δ4 = δ(y − δ3) ≤ δ(C + D − δinf), since δ is non-decreasing and y ≤ C + D, δ(t) ≥ δinf

for all t > −δ∞ such that δ3 = δ(x − δ2) ≥ δinf. By Assumption (i), we may thus deduce
δ4 ≤ δ∞ − ∆. Since no further transition of sOR occurs before time tk+1 + A, and A > δ∞ −
δinf by Assumption (iv), c∗(sOR)’s transition at time tk+1 + δ4 is not canceled by any later
transition. Since A > δ∞ − δinf > E + F − δinf, by Assumptions (iv) and (v), and the fact
that a transition is delayed by at least time δinf, no other transition of c∗(sOR) occurs during
(tk+1 + δ4, tk+1 + E + F]. It follows that c∗(sOR)’s value is 1 during phase F of round k + 1.
Case 2.1. In this case, we choose
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Figure 9.4: Case 1: Input and Output of channel c∗ in circuit CNF if phase C contains a pulse
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Figure 9.5: Circuit CNF used in Cases 1 and 2.1
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Figure 9.6: Circuit CNC used in Case 2.2

(i) A = D > max(0, δ∞ − δinf) and large enough such that δ(A − δ∞) = δ∞. Such an A
must exist, because of the assumption of Case 2.1.

(ii) B, C, ε > 0 small enough such that B + C + ε + δinf ≤ δ∞.

(iii) 0 < ε′ < B + C

(iv) ε > 0 small enough such that δ(−δinf − ε) ≥ δ∞ − ε′. Such a value exists, since δ is
continuous at −δinf by the assumption of Case 2.1.

(v) B + C > 0 small enough such that δ(B + C − δ∞) ≤ δinf + ε.

(vi) E = A + δ∞ and F = B + C − ε′.

Again, it is easy to verify that Assumptions (i)-(vi) are compatible with each other.
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Figure 9.7: Case 2.1: Input and Output of channel c∗ in circuit CNF if phase C does not contain
a pulse

Figures 9.7 and 9.8 depict signal sOR in absence and presence of a pulse.

We next show by induction on k ≥ 0 that signal sOR’s transition at time tk is delayed by δ∞,
and that the channel’s output c∗(sOR) has value 0 during phase F of round k in the absence of
a pulse within phase C of round k, and value 1 in the presence of a pulse.

Assume the input signal sOR of channel c∗ contains no pulse within phase C of round k.
The signal is depicted in Figure 9.7.

Signal sOR’s transition to value 1 at time tk is delayed by some δ0. Clearly, if k = 0 (i.e.,
in round 0), δ0 = δ∞. As induction hypothesis assume in the following that signal sOR’s
transition at time tk is delayed by δ∞. We will show that this implies that signal sOR’s transition
at time tk+1 is delayed by δ∞.

Obviously, the next transition of sOR back to value 0 at time tk + A is delayed by δ1, where

δ1 = δ(A − δ0) = δ(A − δ∞) = δ∞ , (9.20)

by the choice of A according to Assumption (i). Further, by Assumption (i), A > δ∞ − δinf,
implying that no transition of sOR after time tk can cancel the transition of c∗(sOR) to 1 at
time tk + δ0.

The transition of sOR to value 1 at time tk+1 = tk + A + B + C + D is delayed by δ2, where

δ2 = δ(B + C + D − δ1) = δ(B + C + D − δ∞) = δ∞ , (9.21)

because of Assumption (i). Thus, the initial transition of round k + 1 at time tk+1 will be de-
layed by δ∞, which completes the inductive step. Since D > δ∞ − δinf > 0, by Assumption (i),
it follows that c∗(sOR)’s transition to 0 at time tk + A + δ1 is not canceled by any transition. By
analogous arguments, the transition to 1 at time tk+1 + δ2 is not canceled by any transition.
Our choice of E and F in (vi) thus implies that the channel output’s value is 0 during phase F
of round k, see Figure 9.7.

Now assume that there is a pulse within phase C of round k. The channel’s input and
output signals are depicted in Figure 9.8.

Signal sOR’s initial transition to value 1 at time tk clearly is delayed by δ0 = δ∞ if k = 0.
As induction hypothesis assume in the following that sOR’s transition at time tk is delayed by
δ∞. We will show that this implies that sOR’s transition at time tk+1 is delayed by δ∞.
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Figure 9.8: Case 2.1: Input and Output of channel c∗ in circuit CNF if phase C contains a pulse

By the same reasoning as in the proof before, c∗(sOR)’s transition to 1 at time tk + δ0 is not
canceled by any following transition. Further, sOR’s transition back to value 0 at time tk + A
is delayed by δ1 = δ∞.

The transition of sOR to value 1 at time tk + A + u is delayed by δ2, where δ2 = δ(u − δ1) ≤
δ(B + C − δ∞) ≤ δinf + ε, by Assumption (v). From (ii), we further obtain u + δ2 ≤ B + C +
δinf + ε ≤ δ∞. It follows that this output transition cancels the last output transition to 0.

The transition of sOR back to value 0 at time tk + A + u + x is delayed by δ3, where δ3 =
δ(x − δ2) ≥ δ(−δinf − ε) ≥ δ∞ − ε′, holds because of Assumption (iv).

The transition of sOR to value 1 at time tk+1 is delayed by δ4, where δ4 = δ(y − δ3) ≥
δ(D − δ∞) = δ∞, by Assumption (i), which completes the inductive step.

Moreover, since D > δ∞ − δinf > 0, it follows that c∗(sOR)’s transition to 0 at time tk + A +
u + x + δ3 is not canceled by any transition. By similar arguments, c∗(sOR)’s transition to 1 at
time tk+1 + δ4 is not canceled by any following transition.

Assumption (vi) hence implies that c∗(sOR)’s value is 1 during phase F of round k + 1,
see Figure 9.8.
Case 2.2. For this case, circuit CNC depicted in Figure 9.6 solves bounded SPF. The algorithm
and its proof rest on the following idea: We first show in Lemma 9.20 that every channel c∗

whose δ is in accordance with Case 2.2 does not produce pulses of length within the non-
zero interval [max(0, δ− − δinf), δ∞ − δinf). The remaining part of circuit CNC thus just has to
filter out all pulses with duration less than max(0, δ− − δinf) (ensured by the AND gate) and
continuously hold all pulses of length δ∞ − δinf (done by the OR gate).

Lemma 9.20. Let c∗ be a non-constant delay non-forgetful channel chosen in accordance to Case 2.2.
If the channel’s input signal is a pulse, then its output signal is either 0 or a pulse whose length is not
within the non-zero interval [max(0, δ− − δinf), δ∞ − δinf].

Proof. Assume that δ(−δinf) = δ∞; the proof for the case δ(−δinf) = δ− < δ∞ is almost the
same. Without loss of generality, assume that the input pulse starts at time 0 and let x > 0
be its length. Clearly, the transition of the output signal to 1 is scheduled at time δ∞, the
transition back to 0 is scheduled at time x + δ(x − δ∞). We distinguish two cases for the input
pulse length x:

In case x < δ∞ − δinf, we have δ(x − δ∞) ≤ δ− and the following two sub-cases: If ad-
ditionally x ≤ δ∞ − δ−, then x + δ(x − δ∞) ≤ x + δ− ≤ δ∞, so the output events cancel. If
δ∞ − δinf > x > δ∞ − δ−, the length of the output pulse is x + δ(x − δ∞) − δ∞ < δ− − δinf.
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This confirms the lower boundary of the “forbidden pulse length interval” given in our
lemma. In case of x ≥ δ∞ − δinf, on the other hand, δ(x − δ∞) = δ∞ a pulse with length
x + δ(x − δ∞)− δ∞ ≥ δ∞ − δinf is generated at the output of c∗, which also confirms the upper
boundary of the interval.

If we choose the circuit parameters in Figure 9.6 according to ε′ = max(0, δ− − δinf) and
0 < ε < δ∞ − δinf − ε′, it is not difficult to show that the resulting circuit CNC solves bounded
SPF in Case 2.2: Properties (F1) and (F2) trivially hold for circuit CNC. To prove (F3), consider
that if the input signal i is a pulse of length 2δ∞, the output signal sc∗(i) of c∗ is a pulse of length
at least δ∞. Thus, the output of the AND gate sAND is a pulse of length at least δ∞ − ε′ > ε,
resulting in the circuit’s output o making a transition to 1 and remaining 1 from there on.

Property (F4) directly follows from Lemma 9.20: If sc∗(i) is a pulse whose length is smaller
than max(0, δ− − δinf) = ε′, then it is completely filtered out; sAND and hence o are hence
permanently 0. Otherwise, by Lemma 9.20, sc∗(i) must be a pulse of length at least δ∞ − δinf.
Thus, sAND is a pulse of length at least δ∞ − δinf − ε′ > ε, which is sufficiently long to be
permanently captured in the storage looped formed by the OR gate. The circuit’s output o
hence makes a transition to 1 and remains 1 from there on.

Finally, (F5) is due to bounded channel delays.



Chapter 10

Conclusion

This thesis dealt with prediction of transient behavior in certain distributed systems and dig-
ital circuits. We contributed to the state of the art in different ways: For max-plus linear
systems, we gave analytic upper bounds on the finite transient from which on the system
is periodic. For the linear algorithm for asymptotic consensus, we gave upper bounds and
worst-case lower bound examples on the rate of convergence to the common limit value. For
glitch propagation in digital circuits, we showed that all previously existing binary models
were insufficient for correctly predicting the occurrence of short pulses, and we defined a
new binary model that does not suffer from the same deficiency. Our results hence came in
two different styles: The results for linear distributed systems were theoretical, analytical, up-
per bounds on performance parameters, whereas the results for glitch propagation reasoned
about automated circuit simulators as implemented, for example, in VHDL or Verilog tool
chains to circumvent resource intensive Spice simulator runs. We discuss the contribution in
each of these three domains in more detail, and give an outlook on future research directions
they enable, in the following paragraphs.

The first bulk of results were on transients of max-plus systems and matrices. We showed
their explicit applicability in transportation systems, synchronized networks, link reversal
routing and scheduling, and cyclic scheduling. From the viewpoint of applications, the study
of system transients is of much higher immediate importance than the study of matrix tran-
sients. We chose to give results, and develop them in parallel, for two reasons: Firstly, the
transient of the system matrix is an upper bound on the system transients independent of the
initial vector. In fact, it is equal to the maximum system transient when varying the initial vec-
tor. Matrix transients are hence, in particular, system transients. Secondly, matrix transients
are of interest in their own right as when interpreting max-plus matrices as edge-weighted
digraphs. Under this interpretation, matrix transients are generalizations of a well-studied
object in non-weighted digraphs, namely the index of convergence, also called the exponent.

Due to the lower bound example by Hartmann and Arguelles, it is clear that there can be
no transience bounds only in terms of the dimension of the matrix. Indeed, the transient of
their example is unbounded in the second largest cycle mean. The second largest cycle mean,
or more precisely the difference between the largest and the second largest, is hence the fun-
damental parameter controlling the global transients of max-plus matrices and systems. Our
study refined this observation in two different directions: We identified a set of graph param-
eters that also influence the transient. Each of those allow a system designer to construct a
system with a small transient in graph-theoretic terms. Moreover, we identified three alterna-
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tive cycle means, which we referred to as “schemes”. For all of these, there exist—and one can
construct—examples for which the scheme is, in fact, equal to the second largest cycle mean.
However, we exhibited examples of classes of matrices for which the three schemes were all
different from the second largest cycle mean, and different from each other. We showed with
our transience bounds using the schemes that each of the three schemes can take the role of
the fundamental parameter for transients, just as the second largest cycle mean. In this sense,
all three schemes yield lower transience bounds than taking the second largest cycle mean.
We showed a strict order between the different schemes, and identified the Cycle Threshold
scheme as the smallest one. In particular, it is equal to −∞ the most often, in which case our
transience bounds become independent of the specific edge weights. However, the graph-
theoretic constructions needed to utilize the Cycle Threshold scheme are more complicated
than for the other schemes.

We showed that the second largest cycle mean is not the most significant parameter for
the transients of critical nodes. We showed transience bounds for critical nodes that are inde-
pendent of the specific weights, but only depend on the matrix’s digraph and its set of critical
cycles (i.e., its critical digraph). Compared with the lower bound for global matrix transients,
there can hence be an arbitrarily large gap between the smallest and the largest transient of
entries of a max-plus matrix; even if the matrix’s dimension is fixed. Moreover, the results are
direct generalizations of the known transience bounds in the Boolean case, i.e., the bounds
on the index of convergence, or exponent, of digraphs to weighted digraphs. We therefore
extended the theorems of Wielandt, Dulmage and Mendelsohn, Denardo, Schwarz, Kim, and
Gregory, Kirkland, and Pullman, from non-weighted to weighted digraphs. We developed
the remainder of our bounds on transients of max-plus matrices and systems. They bounded
the global transient, i.e., the maximum transient among all entries. We were able to strictly
improve all max-plus transience bounds known to date. Chapter 4 also contained a qualita-
tive and quantitative comparison between matrix and system transients, and the necessary
steps to extend Nachtigall’s matrix decomposition to a fully-blown transience bound, which
gives an alternative proof technique.

Our results on max-plus matrices and systems hence allow for a fine-grained analysis and
prediction of a large class of systems with some form of synchronization primitive which ren-
der them max-plus linear systems. In one of our discussed examples, however, the parameter
of interest was not the the transient, but rather a related parameter; namely the recovery time
of train networks. One direction of future work can hence focus on directly bounding param-
eters related to the transient in various application examples. Another route to extending the
work on max-plus systems presented in this thesis is to integrate the parameters into a design
toolbox. As we have mentioned, the transient is computable in polynomial time. It is hence
possible to re-compute it after every change to the system design to see whether the transient
changes. However, visualising the parameters we identified here and presenting them in ag-
gregated form to the system designer can help to guide their decisions and the direction in
which they explore the design space.

The next set of results was on asymptotic consensus systems, which model natural phe-
nomena like bird flocking, firefly synchronization, or opinion dynamics, as well as engineered
systems like sensor fusion networks, robot control formation, or dynamic load balancing pro-
tocols. We gave new results on the rate of convergence of such systems and also some new
sufficient conditions for convergence. The contribution here was twofold: On one hand, we
refined existing proofs for convergence to extract explicit upper bounds on the rate of con-
vergence. On the other hand, we extended also existing convergence conditions by removing
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the assumption of necessary self-confidence of every agent at every time instance. We re-
laxed this assumption of self-confidence to that of an arbitrary perpetually existing aperiodic
sub-digraph of positive confidence, for which the self-confidence assumption is a particular
instance. Another instance are non-synchronous systems, for which we were able to prove
new convergence results and convergence rate bounds. On the technical side, the first batch
of results on asymptotic consensus used spectral techniques to show convergence rate bounds
for systems with constant communication, as well as systems with constant Perron vectors.
The second batch of results used graph-theoretic arguments, bearing some similarities to ar-
guments for max-plus systems, to show our results for completely dynamic settings. Future
work can focus on identifying applications in which self-confidence is not necessarily a given.

The second part of the thesis dealt with glitch propagation in digital circuits. More specif-
ically, we constructed a fast binary-valued model that has the potential to faithfully capture
glitch propagation phenomena. We also showed that all other binary valued models existing
to date fail to do so. While the behavior of digital circuits can be simulated very accurately
with numerical toolboxes such as Spice, the resource intensity of these simulations can be
prohibitive; this is true, in particular, when the results of the simulations are needed over
and over in an iterative design process. Predicting the occurrence and timing of glitches is of
utmost importance since input glitches can drive a circuit into a metastable state, which can
render it unusable for a significant amount of time.

Technically, we defined the Short-Pulse Filtration problem, which is also closely related
to arbitration and synchronization. We showed that physical circuits cannot solve bounded
SPF, while there exist physical circuits that solve unbounded SPF. We then identified a com-
mon generalization of all existing binary-valued circuit models, which we called bounded
single-history channels. After that, we showed that the classical constant-delay channels can-
not model circuits solving unbounded SPF, which shows that constant-delay channels cannot
capture the SPF problem correctly since unbounded SPF is indeed solvable in physical cir-
cuits. Similarly, we showed that non constant-delay bounded single-history channels can
always model circuits that solve bounded SPF, which again shows that these channel mod-
els do not capture the SPF problem. On the other hand, we identified the boundedness of
all existing channels as the reason for their inability to faithfully model glitch propagation.
We therefore defined a binary-valued model based on involution channels, which do have
the single-history property, but are not bounded from below. And indeed, we showed that,
with this class of channel models, unbounded SPF is solvable while bounded SPF is not, in
accordance with physical reality.

While we identified the involution channel model as the only existing binary-valued cir-
cuit model that is theoretically able to correctly predict the occurrence of glitches, it is not
clear that simulations based on this model are actually sufficiently accurate. In principle,
even though we showed that the involution channel model is the only candidate that passes
the theoretical test of correctly modeling glitch propagation, it is possible that previous mod-
els give more accurate simulation results for some classes of circuits and executions. Future
work should hence focus on implementing the involution channel model in a simulation tool-
box and compare its results with those of other binary-valued models and Spice simulations
or even measurements on real chips.
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retransmission-based synchronizer. Theoretical Computer Science, 509:25–39, 2013.

http://arxiv.org/abs/1307.3716v2




Comportement transitoire d’algorithmes distribués et modèles de circuits
Thomas Nowak

Le thème global de la thèse est le comportement transitoire de certains systèmes répartis. Les résultats peuvent
être divisés en trois groupes : transients de matrices et systèmes max-plus, convergence de systèmes de consensus
asymptotique et la modélisation de “glitches” dans des circuits numériques.

Pour l’algèbre max-plus, les résultats sont des bornes supérieures sur les transients de matrices et système
linéaires max-plus. Elles améliorent strictement les bornes publiées. La thèse inclut une discussion de l’impact
des bornes dans des applications. Les preuves utilisent notamment des réductions de chemins. La thèse contient
aussi des bornes plus précises pour les transients des indices critiques. Ces bornes sont, en fait, indépendantes
des poids spécifiques et ne dépendent que de la structure du graphe de la matrice et son graphe critique. De plus,
elles sont des généralisations strictes des bornes booléennes pour des graphes non pondérés ; par exemple les
bornes de Wielandt ou de Dulmage et Mendelsohn.

Quant au consensus asymptotique, la thèse améliore des bornes supérieures sur le taux de convergence et
établit de nouveaux résultats sur la convergence dans le cas où les agents n’ont pas nécessairement de confiance
en soi, c’est-à-dire qu’ils peuvent ignorer leurs propres valeurs. Ces résultats sont notamment pour des réseaux
complètement dynamiques. Elle contient aussi un exemple d’un réseau complètement statique dont le taux de
convergence est dans le même ordre que celui d’une grande classe de réseaux dynamiques.

La dernière partie de la thèse est sur la propagation de “glitches” (signaux transitoires très courts) dans
des circuits numériques. Plus spécifiquement, elle traite des modèles à valeur discrète et temps continu pour
des circuits numériques. Ces modèles sont utilisés dans des outils pour la conception de circuits car ils sont
beaucoup plus vites que la résolution des équations différentielles. Cependant, comme c’est prouvé dans la thèse,
les modèles existants ne prédisent pas correctement l’occurrence de glitches dans le signal sortant d’un circuit.
De plus, la thèse contient une proposition d’un nouveau modèle qui ne partage pas les caractéristiques avec les
modèles existants qui leur interdisent de prédire correctement l’occurrence de glitches.

Mots clés : systèmes distribués ; systèmes dynamiques ; comportement transitoire

Transient Behavior of Distributed Algorithms and Digital Circuit Models
Thomas Nowak

The overall theme of the thesis is the transient behavior of certain distributed systems. The results can be grouped
into three different categories: Transients of max-plus matrices and linear systems, convergence of asymptotic
consensus systems, and glitch modeling in digital circuits.

For max-plus algebra, the results are upper bounds on the transient (coupling time) of max-plus matrices
and systems. They strictly improve all existing transience bounds. An account of the impact of these bounds in
applications is given. The proofs mainly consist of walk reduction and completion procedures. For critical indices,
sharper bounds are possible. In fact, they turn out to be independent of the specific weights, and to only depend
on the structure of the matrix’s digraph and its critical digraph. They are also strict generalizations of the Boolean
transience bounds in non-weighted digraphs by the likes of Wielandt or Dulmage and Mendelsohn.

For asymptotic consensus, i.e., a set of agents possessing a real value each and repeatedly updating it by
forming weighted averages of its neighbors’ values, the thesis strengthens certain upper bounds on the rate of
convergence and shows new convergence results for the case of non self-confidence, i.e., agents possibly disre-
garding their own value. Asymptotic consensus can be described by a non time-homogeneous linear system in
classical algebra. The results here are typically in completely dynamic networks. The thesis also presents a worst-
case example that shows that exponentially large convergence time is possible even in static networks; meaning
that the worst case convergence time in large classes of dynamic networks is actually achieved with a completely
static one.

The last part of the thesis is about glitch propagation in digital circuits. More specifically, it is about discrete-
value continuous-time models for digital circuits. These models are used in hardware design tool chains because
they are much faster than numerically solving the differential equations for timing simulations. However, as is
shown in the thesis, none of the existing discrete-value models can correctly predict the occurrence of glitches
(short pulses) in the output signal of circuits. Moreover, the thesis proposes a new discrete-value model and
proves analytically that it does not share the same characteristics with the existing models that prevented them to
correctly predict glitches.

Keywords: distributed systems; dynamical systems; transient behavior
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