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Pour ces 3 ans fermes du Moulon -Mes remerciements vont d'abord à Alain et Laurence qui m'ont fait confiance et soutenu au cours de ces trois années. La richesse de nos échanges et de vos engagements m'ont été très précieux. C'est en bonne partie grâce à vous que j'ai pu découvrir, profiter et m'intégrer peu à peu au monde passionnant de la recherche : j'ai maintenant le doigt pris dans l'engrenage de la machine infernale, bravo vous pouvez être fier de vous ! J'espère pouvoir continuer à travailler avec vous sur de nouvelles idées... Merci également aux autres membres de GQMS de m'avoir fait confiance pour donner quelques cours aux étudiants (Julie), pour les échanges qu'on a pu avoir (Tristan, Cyril, Stéphane, Delphine). Merci Tristan (mon prof de TD de stat à Grignon !) pour tes supers cours et démos en direct, ta pédagogie, ton grand tableau et nos échanges. Merci Cyril d'avoir toujours pris le temps de m'expliquer des choses au bureau ou au champs, et pour ton initiation aux dégustations oenologiques, et merci de m'avoir fait découvrir que j'étais marié à un Nez... Merci André de m'avoir recommandé

"Nous n'avons que faire d'aller trier des miracles et des difficultés étrangères : il me semble que parmi les choses que nous voyons ordinairement, il y a des étrangetés si incompréhensibles, qu'elles surpassent toute la difficulté des miracles. Quel monstre est-ce, que cette goutte de semence, de quoi nous sommes produits, porte en soi les impressions, non de la forme corporelle seulement, mais des pensements et des inclinations de nos pères. Cette goutte d'eau, où loge ce nombre infini de formes : et comme portent-elles ces ressemblances, d'un progrès si téméraire et si déréglé, que l'arrière-fils répondra à son bisaïeul, le neveu à l'oncle." Essais de M. de Montaigne (1580). Livre II, chap. 37.

A mes parents RESUME D'importants progrès ont été réalisés dans les domaines du génotypage et du séquençage, ce qui permet de mieux comprendre la relation génotype/phénotype. Il est possible d'analyser l'architecture génétique des caractères (génétique d'association, GA), ou de prédire la valeur génétique des candidats à la sélection (sélection génomique, SG). L'objectif de cette thèse était de développer des outils pour mener ces stratégies de manière optimale. Nous avons d'abord dérivé analytiquement la puissance du modèle mixte de GA, et montré que la puissance était plus faible pour les marqueurs présentant une faible diversité, une forte différentiation entre sous groupes et une forte corrélation avec les marqueurs utilisés pour estimer l'apparentement (K). Nous avons donc considéré deux estimateurs alternatifs de K.

Des simulations ont montré qu'ils sont aussi efficaces que la méthode classique pour contrôler Plant breeding appeared 9 000 to 12 000 years ago, when humans became sedentary and developed agriculture. The first plants that were cultivated for a given species accumulated alleles which facilitated the cultivation, harvest and/or use of harvested products. Note that these favorable alleles may have long existed in wild populations or appeared simultaneously through mutations. This transition from wild reproduction to cultivation occurred independently for many species in several regions of the world and is referred to as domestication. After the first steps of domestication, the process was continued by farmers to increase the value of plants for previous criteria. Both during domestication and later steps, seeds from the plants with the best agronomical characteristics were selected for the sowing of the next season. Divergence between domesticated individuals and their wild ancestors increased with time and could result in huge phenotypic variability. This is for example the case of maize (Zea mays ssp. mays), which became very different from the teosinte subspecies (ssps. parviglumis and mexicana) from which it was domesticated in Mesoamerica starting around 9000 years ago (Beadle 1939;[START_REF] Matsuoka | A single domestication for maize shown by multilocus microsatellite genotyping[END_REF]Doebley 2004). The selection of individuals of higher phenotypic value, called selective breeding, generated plants improved in terms of utility for humans (e.g. yield, composition, precocity), instead of maximizing fitness only as would natural selection do. Selective breeding was used for millennia, until the 20th century for maize. One main limit of this approach is that it is based on the phenotype of single plants in a particular environment. As this phenotype is the result of both genotypic and environmental factors, it does not reflect directly the genetic potential, i.e. the Genetic Value (GV). This could be conceptualized only in the early 1900s after the founding work of precursory scientists.

Gregor Mendel, considered as the founder of genetics, first understood and described the inheritance of traits influenced by few genes (qualitative traits) by studying the segregation of color and shape in peas (Mendel 1866). His work was synthesized into the famous laws of inheritance: the law of segregation and the law of independent assortment. Approximately at the same time Francis Galton developed statistical approaches (1869Galton developed statistical approaches ( , 1879) ) to study quantitative traits (continuous traits, for example human height), laying the foundation of the biometrical school. Mendel's theory was criticized at this time, in particular because it could not explain how continuous traits are inherited, and was thought to be contradictory to the approach of Francis Galton. R. A. Fisher later proved (1918) that Mendel's laws could be extended to continuous traits by showing that the combined effect of many genes and the environment could give rise to continuous phenotypic variations. It is also in the early 20th century that W. Johannsen introduced the notions of genotype and phenotype in his famous experiments on variability between and within pure lines of beans (1903). These first developments of quantitative genetics allowed the mathematical formalization of the relationship between genotype and phenotype, the phenotype being seen as a realization of a genotype in an environment. This gave birth to many concepts of applied statistics used in numerous and various fields. Evolutionary theories also developed since the mid 1800s with the concept of natural selection (see Darwin's seminal book "On the Origin of species", 1859).

This concept together with gradual evolution, and Mendelian genetics were synthesized in the so called "modern evolutionary synthesis" [START_REF] Huxley | Evolution: The Modern Synthesis[END_REF], the most accepted paradigm in evolutionary biology, which establishes that variation has to be heritable to undergo natural selection. We now know that these variations submitted to natural selection can have different origins including genetic and epigenetic factors.

In animal and plant breeding, statistical models could then be developed to predict and compare the gain of different selection strategies [START_REF] Falconer | Introduction to Quantitative Genetics[END_REF][START_REF] Gallais | Théorie de la sélection en amélioration des plantes[END_REF], and as a result optimize these. Genetic progress was formally decomposed into four components: genetic variability, selection intensity, generation interval, and the accuracy of the estimations of GVs. The replicated observation of a genotype in different environments, or the observations of related individuals (first statistically modeled by [START_REF] Henderson | Selection index and expected genetic advance[END_REF] allowed the distinction between the effect of the genotype (GV), the effect of the environment (micro and macro environment), and the potential interaction between the genotypic and environmental effects. The selection strategies based on GV estimates have been extensively and efficiently used in breeding. In plant breeding, the possibility to generate numerous individuals with the same genotype, through cloning or most often the production of inbred lines, allows the evaluation of the genotype in field trial networks. This was the most common approach used for phenotypic evaluation in plants until recently. In maize, which is mostly allogamous, inbred lines have poor performance because of inbreeding and are thus crossed to produce hybrids, taking advantage of heterosis (Shull 1908). Hybrid breeding in maize contributed to a huge increase in productivity, with average grain yields increasing from 1.5 to 8 t/ha between 1935 and 2000 in the USA (Troyer 2005). One limitation of these strategies mainly based on phenotypic data is that they are conducted without knowing the genes underlying the variation of the phenotypic trait (number, positions, and effects) and thus without knowing the favorable alleles that could be combined to produce an improved genotype.

The question is then, how to identify favorable alleles ? A first answer was obtained, again on peas, by [START_REF]The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris[END_REF], who identified an association between the size (quantitative trait) and the color (qualitative trait) of seeds. His experiment thus revealed that a local mutation (responsible for the seed color) was associated with a quantitative trait (the size of the seeds).

The color can be seen here as a phenotypic marker: it directly reveals the genotype at a locus (implied in seed color), which was associated with the genotype at a locus influencing a quantitative trait (a so-called Quantitative Trait Locus or QTL, associated here with the size) through physical linkage. The law of independent assortment states that the alleles at a locus segregate independently from the alleles at another locus during meioses if they are located on different chromosomes. If not, the two loci are physically linked and are separated only if a crossover occurs between them. The probability that a recombination occurs during meioses defines the concept of genetic distance (expressed in centiMorgan, cM). As a consequence, two linked genes are more or less correlated (in Linkage Disequilibrium, LD), depending on the genetic distance that separates them. Correlation between two linked loci implies that a marker can capture (at least partially) the effect of nearby QTL(s). Phenotypic markers are however often of poor interest, because they are rare and often dominant. The development of molecular markers in the 1960s made it possible to carry out the first QTL detection experiments with 10-30 polymorphic markers within a given population. The first molecular markers were protein variants (isozymes) identified by electrophoresis. These variations have the advantage of being codominant but they are not very polymorphic and not numerous enough to cover the entire genome. In the 1980s, new approaches appeared, enabling to detect polymorphism at the DNA level, revealing polymorphism in the presence or absence of restriction sites (Restriction Fragment Length Polymorphism, RFLP), in the length of the amplified fragments (Amplified Fragment Length Polymorphism, AFLP) or in the number of copies of microsatellites (Single Sequence Repeat, SSR). This permitted the development of an increasing number of markers and the first genomewide QTL mapping approaches really started in 1988 with the seminal paper of Paterson et al.. The progress made in DNA sequencing later allowed the identification of numerous polymorphisms at the level of single nucleotides (called SNP). These SNPs rapidly became the most commonly used markers, because they can be automatically analyzed with SNP-arrays providing cheap, numerous and codominant markers. The fact that SNPs are generally biallelic, and thus less informative than SSRs, is counterbalanced by the fact that thousands to millions of SNPs are now available for many species. High throughput SNP-arrays have been developed and are extensively used in human, animal and plant genetics. In maize, a 50,000 SNP-array was developed (GANAL et al. 2011) following the sequencing of B73 [START_REF] Zhou | A Single Molecule Scaffold for the Maize Genome[END_REF]WEI et al. 2009a;WEI et al. 2009b), the first maize inbred line sequenced, and the resequencing of numerous inbred lines.

Technological progress in sequencing makes it now possible to genotype individuals directly by sequencing portions of their genomes. Several Genotyping By Sequencing (GBS) strategies are now available [START_REF] Elshire R | A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species (L Orban[END_REF].

These tools, combined with phenotypic data, offer different ways of detecting QTLs. In linkage-based QTL detection, individuals with contrasted phenotypes are crossed to produce a segregating population. In this kind of populations linkage between markers and QTLs makes it possible to detect associations between phenotypic variability and marker polymorphism.

Major QTLs were detected with this approach, and the underlying gene was sometimes identified after analyzing numerous recombinant individuals in the genomic region of interest [START_REF] Huang | RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population[END_REF][START_REF] Salvi | To clone or not to clone plant QTLs: present and future challenges[END_REF][START_REF] Giuliani | Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes[END_REF][START_REF] Ducrocq | Fine Mapping and Haplotype Structure Analysis of a Major Flowering Time Quantitative Trait Locus on Maize Chromosome 10[END_REF].

However the low diversity of the material used as parents (a significant proportion of QTLs are monomorphic), and the low resolution of the detection (often confined to a range of 10 to 30 cM, FLINT-GARCIA et al. 2003;[START_REF] Zhu | Status and Prospects of Association Mapping in Plants[END_REF]) are important limits to this approach and makes it difficult to identify the underlying genetic factor(s).These difficulties can be circumvented to some extent by increasing the number of parents and the size of the total population [START_REF] Holland | Genetic Design and Statistical Power of Nested Association Mapping in Maize[END_REF][START_REF] Cavanagh | From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants[END_REF][START_REF] Bardol | Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism[END_REF].

Also, the fast increase of available molecular markers allowed to work on more diverse materials with no or limited relatedness. The approach known as Genome Wide Association Study (GWAS) consists of combining genotypic and phenotypic information of diversity panel in a statistical model to detect marker-trait associations. Such panels have accumulated numerous historical recombination events between highly diverse ancestral haplotypes. It results in a lower LD extent than in segregating populations, and as a consequence a much higher resolution (RAFALSKI and MORGANTE 2004). However, contrary to linkage mapping populations, LD in association mapping panels is not only due to genetic linkage, but can also be caused by population structure, relatedness, drift and selection [START_REF] Jannink | Chapter 1 -52 Quantitative Genetics, Genomics and Plant Breeding[END_REF]FLINT-GARCIA et al. 2003). The contribution of these factors relative to linkage can be evaluated statistically (MANGIN et al. 2012) and proved for instance to be substantial in grapevine and maize (MANGIN et al. 2012;BOUCHET et al. 2013). This component of LD due to population structure and relatedness can generate false positives and has thus to be taken into account in association mapping models (EWENS and SPIELMAN 1995;THORNSBERRY et al.2001). Once these effects are correctly modeled, only marker-trait associations due to linkage should be detected. Population structure (Q matrix) and kinship (K matrix) are unknown but they can be estimated using molecular markers (PRITCHARD et al. 2000;[START_REF] Price | Principal components analysis corrects for stratification in genome-wide association studies[END_REF]VANRADEN 2008;ALEXANDER et al. 2009;ASTLE and BALDING 2009). Major genes were identified with GWAS in human, animal and plant genetics (OZAKI et al. 2002;BELÓ et al. 2007;JONES et al. 2008). However, one of the main drawback of these structure and relatedness corrections is that it also reduces the number of detectable true positives, particularly if the trait is correlated to the population structure (LARSSON et al. 2013). For this reason, it is of highest importance to estimate Q and K in an efficient way to maximize detection power and control false positive rate efficiently (YU et al. 2006).

Once QTLs have been detected, markers can be used in breeding programs to follow the favorable alleles in a cross to select improved individuals. This marker-assisted selection (MAS) has typically been efficiently used to introgress resistance alleles in elite material [START_REF] Sanz-Alferez S | The Rp3 disease resistance gene of maize: Mapping and characterization of introgressed alleles[END_REF][START_REF] Thabuis | Marker-assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistatic effects[END_REF][START_REF] Randhawa | Rapid and Targeted Introgression of Genes into Popular Wheat Cultivars Using Marker-Assisted Background Selection (BP Dilkes[END_REF][START_REF] Riar | Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat[END_REF]. This is more difficult when the trait is influenced by many genes, which is often the case in quantitative traits. In that case only the main QTLs are detected, and as a result only a fraction of the total genetic variability is explained. In addition to this, it becomes difficult to pyramid all the favorable alleles in one individual [START_REF] Servin | Toward a Theory of Marker-Assisted Gene Pyramiding[END_REF] when the number of QTLs is high (HOSPITAL and CHARCOSSET 1997). In such cases, [START_REF] Lande | Efficiency of marker assisted selection in the improvement of quantitative traits[END_REF] proposed to select individuals based on an estimation of their genetic value obtained by summing the effect of markers significantly associated to QTLs and possibly combine this information with the phenotype to manage undetected QTL. Comparison of different MAS strategies revealed that the main interest of marker-based selection was its efficiency to reduce generation interval (HOSPITAL et al. 1997). One limit of this approach is that the selection of individuals based on their QTL-based predictions often result in the fast fixation in the first generations of favorable alleles at the biggest QTLs but not at the others (HOSPITAL et al. 1997;[START_REF] Moreau | Use of trial clustering to study QTL × environment effects for grain yield and related traits in maize[END_REF]. Moreover, the marker-QTL associations tend to decrease along generations due to the accumulation of recombination events, which reduces the efficiency of MAS. Finally, the effect of the detected QTLs is often overestimated because only significant associations are considered, and these detected associations are likely to be biased upward [START_REF] Beavis | QTL analyses: power, precision, and accuracy[END_REF].

Correlatively, the use of a significance threshold implies that the identified QTLs capture only a fraction of the genetic variance of quantitative traits, even if a sufficient coverage is used. This phenomenon was first described in human genetics and defined as the "missing heritability" [START_REF] Maher | The case of the missing heritability[END_REF]. We now know that considerable population size is required to get sufficient power for the detection of small to intermediate QTLs [START_REF] Visscher | Sizing up human height variation[END_REF], which is expensive and not always possible. This is an important problem in the deciphering of genetic architecture because most of the quantitative traits of interest are influenced by many genes of small effect (oil content or flowering time in maize were found to be influenced by more than 50 QTLs, [START_REF]The Genetic Architecture of Response to Long-Term Artificial Selection for Oil Concentration in the Maize Kernel[END_REF][START_REF] Buckler | The Genetic Architecture of Maize Flowering Time[END_REF].

When the number of QTLs is that high, it becomes interesting to estimate all the marker effects simultaneously to circumvent the limitations of QTL detection. In that case, the objective is to predict as accurately as possible the GVs of individuals candidate to selection, including possibly unphenotyped individuals. This was first proposed by [START_REF] Whittaker | Marker-assisted selection using ridge regression[END_REF] and further formalized and extended to situations where the number of markers is much higher than the number of observations by [START_REF] Meuwissen | Prediction of total genetic value using genome-wide dense marker maps[END_REF], who called this approach genomic selection (GS). GS can be applied as follows: in a first step the genotypes and phenotypes of reference individuals (the calibration set) are combined to calibrate the chosen statistical model (RR-BLUP, RA-BLUP, BayesA, BayesB or others, see [START_REF] Heslot | Genomic Selection in Plant Breeding: A Comparison of Models[END_REF] for a review). In a second step, the calibrated model is used to predict the genotyped selection candidates, which can then be selected without being phenotyped. These individuals can (i) belong to the same generation as the calibration set, making it possible to increase selection intensity, or (ii) belong to a next generation of yet unphenotyped individuals, making it possible to conduct new cycles of selection more rapidly. GS is expected to be more efficient than post-QTL MAS, because a more important part of the genetic variance is captured, reducing the amount of missing heritability (YANG et al. 2010). [START_REF] Meuwissen | Prediction of total genetic value using genome-wide dense marker maps[END_REF] proposed prediction models based on the mixed model or the bayesian frameworks, which combine the information brought by the observations and prior knowledge on the trait architecture (for example obtained from QTL detections). In the mixed model with all available markers included as random effects (Ridge Regression Best Linear Unbiased Prediction, or RR-BLUP), we suppose that the traits is influenced by a large number of genes having small and independent effects (infinitesimal model). This assumption seems reasonable for many quantitative traits and the predictions obtained with RR-BLUP are often as accurate as more complex models, such as Bayesian models, neural networks, or machine learning [START_REF] Heslot | Genomic Selection in Plant Breeding: A Comparison of Models[END_REF][START_REF] Resende | Accuracy of Genomic Selection Methods in a Standard Data Set of Loblolly Pine (Pinus taeda L.)[END_REF]. However, prior assumptions on the proportion of causal SNPs can sometimes extent the validity of the model to more genetically distant individuals [START_REF] Habier | The impact of genetic relationship information on genome-assisted breeding values[END_REF]. Interestingly, some studies revealed that the prediction accuracies was not only due to LD between markers and QTLs but also to the efficiency of the markers to capture relatedness between individuals [START_REF] Habier | The impact of genetic relationship information on genome-assisted breeding values[END_REF].

Molecular markers can indeed be used to estimate kinship between individuals [START_REF] Loiselle | Spatial genetic structure of a tropical understory shrub Psychotria officinalis (Rubiaceae)[END_REF][START_REF] Ritland | Estimators for pairwise relatedness and individual inbreeding coefficients[END_REF]VANRADEN 2008;ASTLE and BALDING 2009) and the resulting realized relationship matrix can be more informative than pedigree because it takes Mendelian sampling into account (and pedigree information is not always available, and sometimes of poor quality). It was proven that a traditional BLUP model with pedigree matrix replaced by realized kinship was equivalent to RR-BLUP in some conditions presented by [START_REF] Habier | The impact of genetic relationship information on genome-assisted breeding values[END_REF], [START_REF] Goddard | Genomic selection: prediction of accuracy and maximisation of long term response[END_REF]HAYES et al. (2009b). This mixed model (called Realized Additive BLUP or RA-BLUP, [START_REF] Zhong | Factors Affecting Accuracy From Genomic Selection in Populations Derived From Multiple Inbred Lines: A Barley Case Study[END_REF]) is close to the classical model used in GWAS to control false positives (YU et al. 2006). GS has been successfully implemented in dairy cattle and is expected to double genetic progress thanks to the replacement of progeny testing by genomic predictions, and could potentially diminish inbreeding at the same time (HAYES et al. 2009a). In plant breeding, simulations [START_REF] Zhong | Factors Affecting Accuracy From Genomic Selection in Populations Derived From Multiple Inbred Lines: A Barley Case Study[END_REF][START_REF] Jannink | Dynamics of long-term genomic selection[END_REF][START_REF] Heslot | Genomic Selection in Plant Breeding: A Comparison of Models[END_REF] and fields experiments (CROSSA et al. 2010;[START_REF] Literature | Genome-based prediction of testcross values in maize[END_REF][START_REF] Zhao | Accuracy of genomic selection in European maize elite breeding populations[END_REF][START_REF] Hofheinz | Genome-based prediction of test cross performance in two subsequent breeding cycles[END_REF][START_REF] Windhausen | Effectiveness of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and Environments[END_REF]BARDOL et al., in review) gave encouraging results in populations with variable levels of diversity. [START_REF] Bernardo R | Prospects for Genomewide Selection for Quantitative Traits in Maize[END_REF] showed for instance using simulations, that GS provided 18 to 43% more genetic gain per cycle than traditional marker assisted recurrent selection in biparental populations. CROSSA et al. (2010) confirmed the potential interest of GS in more diverse material. Theoretical and experimental results revealed few critical aspects, which have imperatively to be considered when designing GS procedures including marker density, statistical model, phenotypic evaluation, and genetic distance between and within the calibration set and the predicted individuals. All these factors influence the accuracy of the predictions and as a result the genetic progress. Because the predictive ability of a model relies on the kinship between individuals and the LD between QTLs and markers, it is quite clear that relatedness between the calibration set and the prediction set, and the accordance of LD phase in both sets can affect accuracies. Some studies revealed indeed that prediction accuracy could be considerably reduced in case of low relatedness between both sets [START_REF] Habier | The impact of genetic relationship information on genome-assisted breeding values[END_REF][START_REF] Habier | The impact of genetic relationship information on genomic breeding values in German Holstein cattle[END_REF][START_REF] Ly | Relatedness and Genotype × Environment Interaction Affect Prediction Accuracies in Genomic Selection: A Study -General discussion -123 in[END_REF][START_REF] Riedelsheimer | Genomic Predictability of Interconnected Biparental Maize Populations[END_REF]. It is therefore of the highest importance to define the calibration set in an efficient way.

Molecular markers are therefore of considerable interest in genetics to either detect loci of interest and/or improve selection efficiency. Because markers can capture QTL effects thanks to LD, they can be used to detect QTLs (for example in GWAS) or to predict GVs (GS).

GWAS and GS are based on close statistical models, but in GWAS the objective is to detect QTLs, whereas in GS the objective is to predict GVs. The efficiency of different GWAS and GS strategies can be estimated and possibly optimized by estimating their detection power (for GWAS) or their prediction accuracy (for GS). The main objective of this thesis was to optimize the use of available molecular information to maximize QTL detection power in GWAS and prediction accuracy in GS. For this, we proposed new approaches that can be used at critical steps of GWAS and GS, namely the estimation of a relevant kinship matrix to maximize power and control false positive rate efficiently in GWAS, and optimize the composition of the calibration set in GS to maximize prediction accuracy of selection candidates. These approaches were evaluated and compared to existing procedures using simulations based on existing genotypes and using true experimental data. These experimental data were obtained within the European "Cornfed" project, which was developed to characterize the variation of biomass related traits in maize in view of increasing the efficiency of breeding programs targeting this trait. This project includes in particular a Dent (CF-Dent) and a Flint (CF-Flint) panels, expanding a previous panel comprising less representatives of these groups and also including tropical materials (CK-panel, CAMUS-KULANDAIVELU et al., 2006). Flint and Dent represent complementary heterotic groups to create hybrid varieties adapted to Northern European environmental conditions. The two Cornfed panels, each composed of 300 lines, were genotyped with the 50,000 SNP-array and phenotyped in a Western European trial network for traits related to flowering time and biomass productivity.

The first chapter of this thesis is dedicated to the analytical study of power in GWAS in panels presenting different levels of diversity. It highlights the parameters influencing power and proposes new kinship estimators to maximize power. The efficiency of these estimators are evaluated with simulations based on the CF-Dent, CF-Flint and CK-panel (CAMUS-KULANDAIVELU et al. 2006) genotypes. In the second chapter, we used molecular (50k SNParray) to analyze diversity and Linkage Disequilibrium (LD) in the CF-Dent and CF-Flint panels. Phenotypic variation for flowering time and biomass production was analyzed based on 10 to 11 Western European trials. Chapter 2 also presents GWAS results using models derived in chapter 1, illustrating the interest of approaches evaluated in chapter 1 through simulations. The third and last chapter is devoted to the optimization of the calibration set in GS. We proposed an algorithm for this, and validated its ability in the CF-Dent and CF-Flint panels. These three chapters are presented as scientific articles, chapters 1 and 3 were published in Genetics, and chapter 2 is organized in view of submission to Theor. Appl. Genet.. The chapters were not ordered chronologically with respect to work realized during the PhD, but in a way that, for both GWAS and GS approaches, methodological aspects are presented first, and then followed by application on true phenotypes. GWAS was presented first and GS second, because we characterized the Cornfed panels in terms of diversity, Linkage Disequilibrium and detection power in a same study. It also seemed interesting to us to present first insights in the genetic determinism of traits to facilitate the interpretation of GS results. Finally, limits and perspectives of the present work with respect to genetic analyses and breeding applications are discussed in a last section.

Chapter 1 INTRODUCTION

Quantitative traits are determined by the polymorphism of many genes or genomic regions with small effects, i.e. Quantitative Trait Loci (QTL). Understanding the genetic architecture of such traits, which supposes the identification of these causal loci, is now facilitated by a dramatic increase in the number of molecular markers available. This makes it possible to conduct genomewide association studies (GWAS), in which phenotypes and genotypes of individuals in highly diverse panels are used to detect QTLs [START_REF] Lynch | Genetics and Analysis of Quantitative Traits[END_REF]. Such panels have accumulated numerous historical recombinations, leading to a low extent of linkage disequilibrium (LD).

Compared to linkage mapping, more markers are therefore needed to capture causal signals but with a much higher mapping resolution (RAFALSKI and MORGANTE 2004). Major genes were identified by this approach in human, animal and plant genetics (OZAKI et al. 2002;BELÓ et al. 2007;JONES et al. 2008). However, contrary to linkage mapping populations, LD in association mapping panels is not only due to genetic linkage, but can also be caused by population structure, relatedness, drift and selection [START_REF] Jannink | Chapter 1 -52 Quantitative Genetics, Genomics and Plant Breeding[END_REF]FLINT-GARCIA et al. 2003). The contribution of these factors relative to linkage can be evaluated statistically (MANGIN et al.2012) and proved for instance to be substantial in grapevine and maize (MANGIN et al. 2012;BOUCHET et al. 2013). This component of LD due to population structure and relatedness can generate false positives and has thus to be taken into account in association mapping models to control false positives (EWENS and SPIELMAN 1995;THORNSBERRY et al. 2001). Once these effects are correctly modeled, only markertrait associations due to linkage should be detected.

Population structure can be estimated with softwares such as STRUCTURE (PRITCHARD et al. 2000) and ADMIXTURE (ALEXANDER et al. 2009), or by Principal Component Analysis on the genotypic data [START_REF] Price | Principal components analysis corrects for stratification in genome-wide association studies[END_REF]. These methods permit the estimation of a structure matrix (Q) attributing the admixture coefficient of each individual in each group. Relatedness (K matrix) can be estimated in different ways including Identity By State (IBS), or estimators of Identity By Descent (IBD) considering marker allelic frequencies (VANRADEN 2008;ASTLE and BALDING 2009). YU et al. (2006) proposed a mixed model approach (Q+K) to detect QTL in the context of association mapping. This model has the advantage of controlling false positive rate by including a fixed structure effect (through Q) and/or a random polygenic effect (through K). It was used in many association mapping studies and permitted the detection of QTLs in humans, animals and plants (ZHAO et al. 2007a;HUANG et al. 2010;KANG et al. 2010a;[START_REF] Price | New approaches to population stratification in genome-wide association studies[END_REF]ZHANG et -Chapter 1 -30 al.2010;BOUCHET et al. 2013;ROMAY et al. 2013). However, one of the main drawbacks of these structure and relatedness corrections is that it also reduces the number of detectable true positives, particularly if the trait is correlated to the population structure (LARSSON et al. 2013).Also, including the tested SNP in the computation of K is expected to decrease power at this SNP (LISTGARTEN et al. 2012). In order to increase the power of GWAS, some authors therefore proposed to use only a subset of SNPs as covariates or to estimate genetic similarity (LISTGARTEN et al. 2012;[START_REF] Bernardo R | Genomewide Markers for Controlling Background Variation in Association Mapping[END_REF][START_REF] Speed | Improved Heritability Estimation from Genome-wide SNPs[END_REF] proposed to weight the contribution of the SNPs in the kinship estimation to increase the accuracy of heritability estimates.

It is particularly important to evaluate the power of panels and statistical approaches to discover QTLs. Power may be analytically investigated using the non-centrality parameter of the test statistics. This strategy has first been applied in linkage mapping, where several authors showed how power is influenced by the size of the population, heritability, the effect captured by the marker and the allelic frequencies [START_REF] Soller M | On the power of experimental designs for the detection of linkage between marker lociand quantitative loci in crosses between inbred lines[END_REF]KNAPP and BRIDGES 1990;REBAI and GOFFINET 1993;CHARCOSSET and GALLAIS 1996). Such analytical approach has also been applied in association studies in human and animal genetics [START_REF] Sham | Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data[END_REF][START_REF] Wang | An Analytic Study of the Power of Popular Quantitative-Trait-Locus Mapping Methods[END_REF][START_REF] Cherny | Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits[END_REF][START_REF] Teyssèdre S | Statistical distributions of test statistics used for quantitative trait association mapping in structured populations[END_REF]. Alternatively, the estimation of power has also been addressed through simulation studies (see for instance [START_REF] Stich | Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis[END_REF][START_REF] Erbe M | Comparison of three whole genome association mapping approaches in selected populations[END_REF][START_REF] Macleod | Power of a genome scan to detect and locate quantitative trait loci in cattle using dense single nucleotide polymorphisms[END_REF][START_REF] Bradbury P | Assessment of Power and False Discovery Rate in Genome-Wide Association Studies using the BarleyCAP Germplasm[END_REF]YU et al. 2006;ZHAO et al. 2007b). We can retain from these studies that power of association mapping diminishes with structure and relatedness in addition to the parameters identified in linkage analysis, and that the way of estimating K has an effect on power [START_REF] Stich B | Comparison of Mixed-Model Approaches for Association Mapping[END_REF]. To our knowledge no study was conducted to compare analytically the power along the genome in different association mapping designs.

In this study we derived analytically the power at each marker for the classical mixed model involving relatedness between individuals (YU et al., 2006). This analytical expression of power makes it possible to study the effect of different parameters on local power along the genome. We first used it to compare three diversity panels with different diversity patterns. We highlighted a loss of power due to the use of the genotypic information both to test marker effect and to estimate K, and that this was particularly strong in regions of high LD. We therefore evaluated two alternative estimation strategies of the kinship matrix to increase power in GWAS. In the first one, we used an estimated K matrix specific to each chromosome: only the markers that are physically unlinked to the tested SNP are used to estimate K. In the second one, we weighted the contribution of each marker in the estimation of K by taking into account intra-chromosomic LD. We compared in simulations based on true genotypes of maize inbreds the efficiency of the different strategies to detect QTLs and to control false positives.

MATERIALS AND METHODS

Statistical models for association mapping and power evaluation

Mixed models are now routinely used to control type I error in GWAS (YU et al. 2006). Relatedness among individuals is taken into account by considering that the random polygenic effects are not independent, with a covariance matrix determined by kinship (K, with as many rows and columns as individuals: N). As K includes information on both population structure and relatedness, it is in general not useful to consider admixture information as fixed effects covariates (ASTLE and BALDING 2009). We therefore considered the following statistical model (denoted by M K ):

𝒀𝒀 = 𝟏𝟏𝜇𝜇 + 𝑿𝑿 𝒍𝒍 𝛽𝛽 𝑙𝑙 + 𝑼𝑼 + 𝑬𝑬 , = 𝑿𝑿𝑿𝑿 + 𝑼𝑼 + 𝑬𝑬 , with 𝑿𝑿 = [𝟏𝟏𝑿𝑿 𝒍𝒍 ] and 𝑿𝑿 𝑻𝑻 = (𝜇𝜇, 𝛽𝛽 𝑙𝑙 )
where Y is the vector of N phenotypes, 𝜇𝜇 is the intercept, 𝟏𝟏is a vector of N 1, 𝑿𝑿 𝒍𝒍 is the vector of N genotypes at the tested locus (0 and 1 corresponding to homozygotes and 0.5 to heterozygotes), 𝛽𝛽 𝑙𝑙 is the additive effect of locus l to be estimated, 𝑼𝑼 ↝ 𝑁𝑁(0, 𝑲𝑲𝜎𝜎 𝑔𝑔𝑙𝑙 2 ) is the vector of random polygenic effects, 𝜎𝜎 𝑔𝑔𝑙𝑙 2 being the residual polygenic variance, 𝑬𝑬 ↝ 𝑁𝑁(0, 𝑰𝑰𝜎𝜎 𝑒𝑒 2 ) is the vector of remaining residual effects with variance 𝜎𝜎 𝑒𝑒 2 , I is an identity matrix of size equal to the number of individuals (N), U and E are independent.

Locus effects in this mixed model can be tested using Wald statistics (WALD 1943). In the general case, a given linear combination of fixed effects 𝑳𝑳 𝑻𝑻 𝑿𝑿 = 0 (H0 hypothesis) can be tested against 𝑳𝑳 𝑻𝑻 𝑿𝑿 ≠ 0 (the alternative hypothesis H1) using:

𝑾𝑾 = �𝑳𝑳 𝑻𝑻 𝑿𝑿 � � 𝑻𝑻 �𝑳𝑳 𝑻𝑻 �𝑿𝑿 𝑻𝑻 �𝑲𝑲𝜎𝜎 � 𝑔𝑔𝑙𝑙 2 + 𝑰𝑰𝜎𝜎 � 𝑒𝑒 2 � -1 𝑿𝑿� -1 𝑳𝑳� -1 �𝑳𝑳 𝑻𝑻 𝑿𝑿 � � ,
where 𝑿𝑿 � is a vector of fixed effect estimates, L is a linear combination, 𝜎𝜎 � 𝑔𝑔𝑙𝑙 2 and 𝜎𝜎 � 𝑒𝑒 2 are the REML estimates of 𝜎𝜎 𝑔𝑔𝑙𝑙 2 and 𝜎𝜎 𝑒𝑒 2 .

In GWAS we test the particular linear combination: 𝑳𝑳 𝑇𝑇 𝑿𝑿 = 𝛽𝛽 𝑙𝑙 = 0against 𝑳𝑳 𝑇𝑇 𝑿𝑿 = 𝛽𝛽 𝑙𝑙 ≠ 0, with 𝑳𝑳 = � 0 1 �if the only fixed effects are the intercept and the marker additive effect. Note that the approach could be extended to more complex effects such as dominance by adding extra term(s) in fixed effects. When the variances are known, 𝑊𝑊 follows a χ 2 Analytical evaluation of the impact of panel characteristics on power distribution: χ²(𝜈𝜈 1 ; 𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜆𝜆) where 𝜈𝜈 1 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑿𝑿 𝒍𝒍 ) = 1 and 𝜆𝜆 is the non-centrality parameter (NCP). The non-centrality parameter is equal to:

𝜆𝜆 = 𝛽𝛽 𝑙𝑙 �𝑳𝑳 𝑻𝑻 �𝑿𝑿 𝑻𝑻 �𝑲𝑲𝜎𝜎 𝑔𝑔𝑙𝑙 2 + 𝑰𝑰𝜎𝜎 𝑒𝑒 2 � -1 𝑿𝑿� -1 𝑳𝑳� -1 𝛽𝛽 𝑙𝑙 .
Under H0, = 0 ; whereas under H1, 𝜆𝜆 is positive. Power can thus be determined as the probability P(χ² [𝑑𝑑𝑑𝑑𝑙𝑙 =𝜈𝜈 1 ; 𝑁𝑁𝑁𝑁𝑁𝑁=𝜆𝜆] > χ² 𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 ), 𝜆𝜆 being the NCP and χ² 𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐 = χ² [𝑑𝑑𝑑𝑑𝑙𝑙 =𝜈𝜈 1 ; 𝑁𝑁𝑁𝑁𝑁𝑁=0 ; 1-𝛼𝛼] the value of the central 𝜒𝜒² (1-α) quantile, where α corresponds to the chosen type I error level. The power of the test increases as the NCP increases. 𝜆𝜆depends on the QTL effect 𝛽𝛽 𝑙𝑙 (the magnitude of departure from H0), the marker genotypes and the variance and covariance components. Hence in addition to the number of individuals, power can be influenced by the marker genotypes, the marker effect (𝛽𝛽 𝑙𝑙 ), the heritability (through 𝜎𝜎 𝑔𝑔𝑙𝑙 2 and 𝜎𝜎 𝑒𝑒 2 ) and the relatedness between individuals (K).

When genotypic data are available in a given association mapping panel, it is possible to evaluate analytically power at each marker thanks to the above formula. Consider a panel where N individuals were genotyped at M markers (SNPs). The potential power at a given marker can be investigated by setting a QTL effect β l , a background genetic variance 𝜎𝜎 𝑔𝑔𝑙𝑙 2 and a residual variance 𝜎𝜎 𝑒𝑒 2 to reach a given heritability h².Power at a given marker can then be related to parameters characterizing the marker in the panel of interest. It is first expected to depend on allele frequencies, that can be characterized by the Minor Allele Frequency (MAF). Also, according to the analytical expression of the NCP, power at a marker in M K can be influenced by its correlation with the kinship that reflects both the structure of the panel and the relationships between individuals. It is thus interesting to relate power at a given marker to its Nei's index of differentiation (Fst) among genetic groups (NEI, 1973) and to its correlation with the kinship matrix. Let us denote by K_M l the kinship matrix evaluated from the considered marker l only. To define how power at a given marker is affected by its correlation to K, one can calculate the correlation between K_M l and K at each marker. This correlation between local and global kinship is further referred to as CorK. These statistics (Fst, MAF, CorK and analytical power) can be calculated for each marker in any association mapping panel.

In this article, we applied this strategy to three maize panels (see below). We represented the relationship between MAF, Fst, CorK and local power with the two following approaches. In the first one, analytical power was represented as level plots considering MAF and Fst as x and y-axes, with the R function level.plot. The same procedure was applied to MAF and CorK. In the second approach, cubic smoothing splines were adjusted along the genome to the Fst, CorK and power for the markers with a MAF above 0.4, using the R function smooth.spline (HASTIE and TIBSHIRANI 1990).

Kinship estimation

In practice the kinship matrix K is unknown and has to be estimated. One classically used estimator was proposed by ASTLE and BALDING(2009) and is defined as:

𝐾𝐾_𝐹𝐹𝑟𝑟𝑒𝑒𝐹𝐹 𝑐𝑐,𝑗𝑗 = 1 𝐿𝐿 ∑ �𝐺𝐺 𝑐𝑐,𝑙𝑙 -𝑝𝑝 𝑙𝑙 ��𝐺𝐺 𝑗𝑗 ,𝑙𝑙 -𝑝𝑝 𝑙𝑙 � σ l 2 𝐿𝐿 𝑙𝑙=1
, where G i,l and G j,l are the genotypes of individuals i and j at marler l (G i,l = 0 or 1 for homozygotes, 0.5 for heterozygotes), 𝑝𝑝 𝑙𝑙 is the frequency of the allele coded 1, σ l 2 is the variance of G i,l

In the second approach we used all the markers as estimators of relatedness but we weighted the contribution of each marker. The kinship estimator K_Freq , respectively. One problem that might arise from this formula and other classical estimators as the Identity by State, or the formula of VanRaden (2008), is that LD between SNPs is not taken into account. As a result more weight is given in the kinship estimation to the regions of the genome that carry several markers in strong LD and power may be lower in these regions.

We therefore considered two alternative approaches to limit this effect. In the first one, the kinship matrix (K_Chr) was estimated with all the markers other than those located on the same chromosome as the marker being tested. If the markers located on the other chromosomes are sufficient to reliably estimate relatedness, this method is expected to reasonably control the risk of detecting false positives and avoids considering in the kinship matrix markers linked with the tested marker:

𝐾𝐾_𝑁𝑁ℎ𝑟𝑟 𝑐𝑐,𝑗𝑗 ,𝑐𝑐 = 1 𝐿𝐿 -𝑐𝑐 ∑ �𝐺𝐺 𝑐𝑐,𝑙𝑙 -𝑝𝑝 𝑙𝑙 ��𝐺𝐺 𝑗𝑗 ,𝑙𝑙 -𝑝𝑝 𝑙𝑙 � σ l 2 𝑙𝑙∉c
, where c is the considered chromosome, 𝐿𝐿 -𝑐𝑐 is the number of markers not located on chromosome c. In this formulation the optimal weights may be negative, we added extra constraints to ensure the positivity of the weights, leading to the following optimization program:

𝛺𝛺 𝑇𝑇 𝛥𝛥𝛺𝛺 𝛺𝛺 𝑚𝑚𝑐𝑐𝑟𝑟
under constraint𝛺𝛺 𝑇𝑇 𝔼𝔼 𝑐𝑐𝑗𝑗 (𝐾𝐾 𝑐𝑐𝑗𝑗 ) = 𝑟𝑟 𝑐𝑐𝑗𝑗 and 𝜔𝜔 𝑙𝑙 ≥ 0, for all l.

(1)

In practice, obtaining the optimal weights requires (i) the knowledge of matrix Δ and (ii) to solve the optimization problem (1). The exact expression of matrix Δ is unknown, but one can estimate this matrix from the panel data using the classical moment estimator:

ℂ𝑜𝑜𝑜𝑜 � 𝑐𝑐𝑗𝑗 �𝑟𝑟 � 𝑐𝑐𝑗𝑗𝑙𝑙 , 𝑟𝑟 � 𝑐𝑐𝑗𝑗 𝑙𝑙 ′ � = 𝑟𝑟(𝑟𝑟-1) 2 ∑ ∑ (𝑟𝑟 � 𝑐𝑐𝑗𝑗𝑙𝑙 -𝔼𝔼 � 𝑐𝑐𝑗𝑗 �𝑟𝑟 � 𝑐𝑐𝑗𝑗𝑙𝑙 �)(𝑟𝑟 � 𝑐𝑐𝑗𝑗 𝑙𝑙 ′ -𝔼𝔼 � 𝑐𝑐𝑗𝑗 �𝑟𝑟 � 𝑐𝑐𝑗𝑗 𝑙𝑙 ′ �) 𝑗𝑗 >𝑐𝑐 𝑐𝑐 .
The resulting estimated matrix is then plugged into the optimization program (1). Then to solve the optimization program, one should note that (1) is a quadratic problem with linear constraints, and therefore can be solved using classical optimization techniques (in this article we used the R package solve.QP that implements the dual method of GOLDFARB and IDNANI, 1983).

The main limitation of this strategy lies in step (i): when estimating the covariance, one actually replaces the expectation over all couples having the same kinship 𝑟𝑟 𝑐𝑐𝑗𝑗 by an averaging over all couples in the panel -assuming implicitly that they all have the same kinship. Even if the kinship -Chapter 1 -35 differs between couples, this weighting increases the contribution of markers with a high diversity (leading to a high precision) and not highly correlated with other markers. It therefore corrects the two drawbacks of the naive averaged estimator mentioned earlier.

Let us denote the statistical model for association mapping described above by M K_Freq , M K_Chr and M K_LD Simulation based evaluation of the impact of the estimation of K on false positive control and power

The closed form expression of the non-centrality parameter already revealed that kinship affects power. Comparing the impact of different kinship estimators on power implies to evaluate their ability to guarantee the expected nominal control of false positives under different hypotheses on trait genetic determinism. To this end, we simulated traits influenced by L biallelic QTLs (SNPs).In a first step, QTLs were sampled randomly among the SNPs located on all the chromosomes except one. The chromosome without QTL (further referred to as "H0-chromosome") was used to estimate the false positive rate. All the H0-markers (the markers on the H0-chromosome) were tested with the above mentioned statistical models for each run of simulation. The efficiency of the different estimations of K to control false positives was evaluated by comparing expected and observed quantiles of H0-Pvalues and histograms of H0-Pvalues. In a second step we applied the same procedure, but now sampling the QTLs among the M SNPs (on all chromosomes). A QTL was declared detected when the Pvalue of the corresponding SNP in the genetic model was below the significance threshold. Power of a given model was computed as the number of QTL which were detected. We also applied a less restrictive definition of QTL detection, considering that a QTL could be detected by SNPs located near it. To do so, another analysis was conducted in which markers within a given genetic distance of a QTL were considered H1-markers and the others H0markers. The realized false discovery rate (FDR) was defined as the proportion of H0-markers among the markers declared significant. Power of QTL detection was estimated by considering that a QTL was detected when at least one of the corresponding H1-markers had a significant Pvalue.

This general method will be exemplified with parameters specific to three maize panels described below.

with K estimated as K_Freq, K_Chr and K_LD, respectively.

Genetic material and genotyping data

The above mentioned power analyses (analytical evaluation of power and simulation based evaluation of alternative methods) were applied to three diversity panels of maize. The first panel (called C-K) was described in CAMUS-KULANDAIVELU et al. (2006). It is composed of 375 inbred lines covering American and European diversity. It includes Tropical, Dent and Flint lines. The second and third panels are the Dent and Flint panels of the "Cornfed" project (CF-Dent and CF-Flint), described in RINCENT et al. (2012). They include lines of the C-K panel and lines derived from recent breeding schemes. Both are composed of 300 lines. These panels were genotyped with the 50k SNPs array described in GANAL et al. (2011), as presented in BOUCHET et al. (2013) and RINCENT et al. (2012). Individuals which had marker missing rate and/or heterozygosity higher than 0.1 and 0.05, respectively, were eliminated. Markers, which had missing rate and/or average heterozygosity higher than 0.2 and 0.15, respectively, were eliminated. In each panel, few individuals were highly related. One individual was removed for pairs identical for more than 98% of the loci. In total 315, 277 and 267 individuals and 44487, 45434, and 44255 markers passed the genotyping filter criteria for the C-K, CF-Dent and CF-Flint designs, respectively. Missing genotypes (below 2% in both panels) were imputed with the software BEAGLE (BROWNING and BROWNING 2009). Panels were all adjusted to 267 individuals in order to compare power for a same population size. Individuals removed were chosen at random. To avoid the ascertainment bias noted by GANAL et al. (2011), we only used the markers that were developed by comparing the sequences of nested association mapping founder lines (PANZEA SNPs, GORE et al. 2009) in the estimation of admixture and relationship coefficients (29996, 30119 and 29132 markers passed the filter criteria for the C-K, CF-Dent and CF-Flint lines respectively).

Admixture in the CF-Dent and CF-Flint panels was investigated using the SNP data with the software ADMIXTURE (ALEXANDER et al. 2009), with a number of groups equal to four, determined according to the cross-validation procedure presented in ADMIXTURE. For the C-K panel we used the admixture in five groups estimated by CAMUS-KULANDAIVELU et al. (2006) using 55 SSRs chosen for their broad genome coverage and reproducibility. We estimated the differentiation index among genetic groups (Fst, NEI, 1973) at each marker using the R package rhierfstat (GOUDET 2005).

Finally, the relationship between LD and power along the genome can be empirically investigated using two different measures of LD. Raw LD can be estimated as the squared correlation between allelic doses at two loci (r²). Linkage related LD (denoted by r²K) can be estimated using the algorithm proposed by MANGIN et al. (2012), which corrects r² by K_Freq. LD within these panels (r²), possibly corrected by K_Freq (r²K), was estimated within a sample of 4000 markers regularly spaced on the physical map.

Specific parameterization

For analytical investigation of power in the three maize panels, the total additive genetic variance 𝜎𝜎 𝑔𝑔 2 was set to 1000, 𝛽𝛽 𝑙𝑙 was set to 17.9, which corresponds to a QTL explaining 8% of the total genetic variance if it had a minor allele frequency (MAF) of 0.5, 𝜎𝜎 𝑒𝑒 2 was chosen to get an heritability of 0.8. Under these hypotheses, analytical power was investigated for an α type I risk equal to 1,25 10 -6

To estimate kinship with the different formulas presented above, we considered that all individuals were inbred and we estimated 𝜎𝜎 𝑙𝑙 2 as 𝑝𝑝 𝑙𝑙 (1 -𝑝𝑝 𝑙𝑙 ).For comparing the different methods for kinship estimation, we simulated traits influenced by 50 or 100 biallelic QTLs (QTL effects follow a geometric series as in [START_REF] Lande | Efficiency of marker assisted selection in the improvement of quantitative traits[END_REF], with parameter a set to 0.96 and 0.98 when 50 or 100 QTLs were simulated, respectively). Sign of allelic effect at a given locus was assigned randomly. Genotypic values of the individuals were calculated as the sum of the allelic effects at these QTLs. Phenotypes were obtained by adding a residual noise following a normal distribution with mean 0 and variance equal to: 𝜎𝜎 𝑔𝑔 2 � 1 ℎ 2 � -1�, where the heritability ℎ 2 is set to 0.8.We performed 100 runs of simulations for each scenario using the R 3.0.0 software (R development Core Team, 2013).Each chromosome was used ten times as the H0-chromosome.For all simulations, the statistical tests were made with EMMAX (KANG et al. 2010b) to reduce computational time, and then with ASREML-R (GILMOUR et al. 2006) on the markers which had a Pvalue below 0.001 with EMMAX. For Pvalues above 0.001, Pvalues obtained with EMMAX and ASREML-R were very close and highly correlated. As investigations of the two criteria for QTL detection (causal factor only or window around it) led to very comparable results with respect to the main focus of our study, results considering a window around causal factor are therefore presented as supplementary information (Table S1).

which led to a risk of 0.05 with a Bonferroni correction on 40 000 tests. We also considered less stringent threshold corresponding to Bonferroni corrections on 4 000 and 400 tests, although the number of tests was always the same. Power under these hypotheses was calculated in R 3.0.0 (R development Core Team, 2013) for each marker.
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RESULTS

Diversity and Linkage Disequilibrium in maize panels

Diversity and Linkage Disequilibrium (LD) were investigated within the different panels to provide elements on their ability to detect QTL (ie. their power) along the genome. On average, the Minor Alelle Frequency (MAF) was lower in the CF-Flint than in the other panels. Differentiation among genetic groups (Fst) was higher for CF-Dent (0.15) than for C-K (0.11) and CF-Flint (0.08) (Table 1). The raw LD (r²) and its correction by Kinship (r²K) were variable between and within panels (Figure 1). LD was on average higher in the dent panel. Within each panel, it was higher for centromeric than for telomeric regions. High r² values were observed between physically linked markers but also unlinked markers. This last situation occurred mainly between centromeric regions (Figure 1A, chromosomes 5, 7, and 8 and Figure 1B, chromosome 7). Inter-chromosomic LD was reduced to a large extent when considering r²K rather than r². Taking into account covariance between individuals (r²K) also reduced intra-chromosomic LD, in particular between distant blocks with high LD (Figure 1B chromosome 10). Considering r²K instead of r² globally had the strongest impact in the CF-Dent panel.

Relationship between MAF, Fst, CorK and power

Above described parametrization of QTL effects was used to investigate the influence of MAF, Fst, and the correlation between local and global covariance matrices (estimated as CorK_Freq) on power in the three maize panels. Level plots (Figure 2) showed that the MAF, the Fst, and

CorK_Freq had important effects on power, with very similar graphs in all the panels. The highest power was achieved when MAF was high and Fst or CorK_Freq was low. When the MAF was below 0.1, power was close to 0 even if the marker had a low Fst or low CorK_Freq. Some regions of the level plots were not covered by the available markers (regions in white on Figure 2), in particular there was no marker with a CorK_Freq below 0.03.Note that the graphs obtained using K_Chr (or the IBS) were similar to those obtained with K_Freq and led to the same general conclusions (results not shown).

The parameters related to power (MAF, Fst, CorK_Freq) varied between panels (Table 1, see above). As a consequence from above described relationships, the mean analytical power of statistical model M K_Freq varied between the three panels (Table1), and was higher in the C-K panel (11.3%) than in the CF-Dent and CF-Flint panels (below 9.0%).

Variation of analytical power and CorK along chromosomes

Power scans (analytical power at each marker plotted against its physical position) of model M K_Freq revealed an extreme variability along the genome in the three panels (Figure 3). In all panels, power at a given location ranged from zero to a maximal value, which depended on the position according to a V-shaped curve (Figures 3,4). This maximal value was the lowest near centromeres and the highest near telomeres. This global trend was particularly strong in the CF-Dent panel and less pronounced in the C-K panel, for which the maximum power was stable for larger segments. The V-shaped curve also had different local trends for the different chromosomes for a given panel. For instance in the CF-Flint panel, depletion in power in centromeric region was longer for chromosome 7 than for chromosome 6 (Figure 3C). - CorK_Chr is the correlation between the kinship matrix estimated with the considered marker only (K_Freq_M l ) and the kinship matrix estimated with all the PANZEA markers but those located on the same chromosome than the tested SNP (K_Chr). For each parameter a smoothing spline was used along the genome. The orange curve was adjusted to the analytical power at markers with a MAF above 0.4.

Power of model M K_Freq

Simulation based assessment of kinship estimation on false positive control and power

Simulating different genetic models using the genotypes of the three panels allowed the comparison of the efficiency of the three statistical models to control false positives and to detect QTLs. The efficiency to control false positives depended on the genetic model (number of QTLs), the panel, and the estimation procedure for K (Table 2). The distribution of the Pvalues under H0 revealed that M was in accordance with trends of CorK_Freq along the genome.

Correlation between the covariance matrix at the marker and the global covariance matrix (K_Freq and K_Chr) was significantly lower for K_Chr than for K_Freq, and particularly in the pericentromeric regions (Figure4). We observed that peaks of Fst corresponded generally to peaks of both correlations (CorK_Freq andCorK_Chr) (Figure4B, chromosome 7, andFigures 4A and4C chromosome 8). Conversely, pericentromeric regions with low Fst corresponded to a peak of CorK_Freq and a drop of CorK_Chr (Figure4B, chromosomes 8 and 10, and Figure 4C chromosome 7). CorK_Freq, CorK_Chr and the difference between these two parameters were higher in the CF-Dent panel than in the two others.

K_Freq was conservative (Figure 5A) whereas the alternative models M K_Chr and M K_LD gave distributions closer to the expected one (Figures 5B and5C). The observed Pvalue quantiles were closer to the expected Pvalue quantiles with M K_Chr and M K_LD than with M K_Freq (Table 2).

M K_Freq resulted in fewer small Pvalues than expected under H0, for example in the CF-Dent panel we observed only half of the Pvalues that were expected to be below 0.001. Observed Pvalue quantiles with M K_Chr and M K_LD were very close to the expected Pvalue quantiles, although also most of the time below it.

Table 2: Quantiles of the Pvalues under H0 in each panel with the three statistical models and considering two different genetic models (50 or 100 QTLs). We estimated the average and the standard deviation of the 0.001 and 0.01 quantiles over the 100 runs of simulation.

1 ‰ quantile 1% quantile Panel Nb QTLs Approach Average(‰) SD(‰) Average(%) SD(%) The second step of the simulations revealed the ability of the different statistical models to detect QTLs in the different panels. With the usual Bonferroni correction, only few QTLs were detected (Table 3). In each scenario M K_Chr and M K_LD were more powerful than M K_Freq . For example, they respectively permitted the detection of 2.1, 1.3 and 1.2 QTL (SNP considered as QTL) on average in the CF-Dent panel when 50 QTLs were segregating. The difference of power (proportion of SNP considered as QTL detected) between the different models was more important for less stringent significance threshold. The difference of power between M K_Chr and M K_Freq was the highest in the CF-Dent panel. More QTLs were found in the scenario with 50 QTLs than in the scenario with 100 QTLs. This was expected, QTLs having a lower effect on the trait in the 100 than in the 50-QTLs scenario. 

-K 50 M 1.4 K Freq 1.0 2.5 1.2 4.2 1.6 50 M 1.7 K Chr 1.1 3.2 1.5 4.9 1.7 50 M 1.6 K LD 1.1 2.6 1.3 4.3 1.7 100 M 0.3 K Freq 0.5 0.9 0.8 2.1 1.2 100 M 0.5 K Chr 0.7 1.3 1.0 2.8 1.5 100 M 0.4 K LD 0.6 1.1 0.9 2.3 1.4 CF-Dent 50 M 1.2 K Freq 1.0 2.2 1.3 3.6 1.3 50 M 2.1 K Chr 1.4 3.4 1.5 5.3 1.6 50 M 1.3 K LD 1.1 2.5 1.3 4.1 1.4 100 M 0.3 K Freq 0.6 0.9 0.9 2.0 1.4 100 M 0.8 K Chr 1.0 1.7 1.3 3.4 1.7 100 M 0.5 K LD 0.7 1.0 1.1 2.4 1.4 CF-Flint 50 M 1.4 K Freq 1.0 2.4 1.1 3.7 1.2 50 M 1.8 K Chr 1.2 3.0 1.0 4.5 1.3 50 M 1.4 K LD 0.9 2.4 1.1 4.0 1.3 100 M 0.3 K Freq 0.6 0.8 0.9 1.9 1.1 100 M 0.6 K Chr 0.8 1.4 1.2 2.8 1.4 100 M 0.4 K LD 0.7 1.0 1.1 2.1 1.3
a Significance threshold T was set considering a type I risk of 5% with a Bonferroni correction assuming 40 000 tests.

DISCUSSION AND CONCLUSIONS

Analytical investigation of potential power along the genome with usual model (M K_Freq

Power could be related to three parameters characterizing each marker: its MAF, its differentiation index among genetic groups (Fst), and the correlation between its individual kinship matrix with that estimated with all the markers (CorK_Freq when K_Freq is considered). Power at a marker with a low MAF is limited, even if this marker is orthogonal to structure and kinship (Figures 2,3).

This effect was highlighted already for linkage studies [START_REF] Soller M | On the power of experimental designs for the detection of linkage between marker lociand quantitative loci in crosses between inbred lines[END_REF]CHARCOSSET andGALLAIS 1996) and GWAS [START_REF] Lonsdale J | The Genotype-Tissue Expression (GTEx) project[END_REF] and can be explained by the fact that when one of the two alleles is rare, the marker cannot contribute much to the genetic variation. The correlation between kinship at single markers and the global kinship had a strong negative effect on power (Figure 2). The Fst among admixture group also had an important effect on local power (Figures 2,[START_REF] Literature | Genome-based prediction of testcross values in maize[END_REF]. This confirmed that admixture is reflected by the kinship matrix, because differentiated regions had a low power although we used a model with relatedness but no admixture (M

)

Power is a key parameter in association mapping, because it indicates how likely the discovery of a QTL is. We presented a general method based on non centrality parameter to derive analytically Dent and Flint lines) and so the admixture matrix captured ancestral population structure but only a small part of kinship. On the opposite, the CF-Dent and CF-Flint panels are composed of less heterogeneous material and so the admixture matrix captured more relatedness. Finally, shape of the level plots (Figure 2) also suggested that the effect of the different parameters affecting power were not additive. For example Fst and CorK_Freq had a stronger effect on power for markers with -Chapter 1 -47 higher MAF, and MAF had a stronger effect on power for less differentiated markers. These results

show that controlling false positives using the K_Freq model also implies reducing power at differentiated markers (LARSSON et al. 2013). It is interesting to note that no marker had a CorK_Freq below 0.03 (Figure 2). To investigate the maximum power that could be reached theoretically, we generated for each panel a vector of zeros and ones simulating a marker genotype and applied a simple exchange algorithm until analytical power reached a maximum. These virtual markers (one for each panel) had analytical power much higher (above 0.8) than the maximal analytical power of the existing SNPs (below 0.44 in each panel). They had a MAF of 0.5 and a

CorK_Freq value below 0.017. This difference illustrates that the maximum power is strongly constrained by the evolution process that led to the panels.

Both Fst and CorK_Freq appeared highly variable along the genome in each panel. High differentiation (Fst) was observed in particular in pericentromeric regions (Figures 3A and3C, chromosome 8 and Figure 3B, chromosome 7). Pericentromeric regions are known to be more structured than telomeric regions [START_REF] Carneiro M | Recombination and Speciation: Loci Near Centromeres Are More Differentiated Than Loci Near Telomeres Between Subspecies of the European Rabbit (Oryctolagus cuniculus)[END_REF][START_REF] Franchini P | Reduced Gene Flow at Pericentromeric Loci in a Hybrid Zone Involving Chromosomal Races of the House Mouse Mus Musculus Domesticus[END_REF] because of lower recombination rates. CorK_Freq was also higher in regions of high LD (mostly pericentromeric regions, see Figures 1 and4). Beyond the effect of group differentiation, markers in regions of high LD are indeed correlated to many other SNPs that all contribute to the estimation of K_Freq. These LD and Fst features led to the observed V-shape analytical power curve along the chromosome, particularly in the CF-Dent panel in which LD was more extended (Figures 1,3). This is in good agreement with published manhattan plots of GWAS results which showed a reduced number of low Pvalues in the centromeric regions (BOUCHET et al. 2013;LARSSON et al. 2013). In our three panels, we observed that this problem also arose with other classical estimators of relatedness (results not shown) such as the IBS estimator or the first estimator provided on page 4416 in VANRADEN (2008).

As MAF, Fst, LD extent, and consequently CorK_Freq were different in the three panels (Table 1), average power was highly variable among the three panels (adjusted for the same population size).

Among the three diversity panels, the C-K panel appeared to be the most powerful on average due to its higher MAF, lesser LD extent and its lower relatedness. It should be noted that this analytical study assumed that the variance components were known. It was therefore necessary to confirm these results with simulations.

Simulation based comparison of type I risk and power of statistical models associated with different estimations of K

Removing the markers on the same chromosome than the tested one (M K_Chr ) permitted to decrease the correlation between the kinship at the tested SNP and the global covariance (CorK_Chr in Figure 4). CorK_Chr remained nevertheless high in structured regions (high Fst), i.e. regions with important differentiation between genetic groups (Figures 4A and 4C, chromosome 8), which suggests that K_Chr was efficient to estimate covariance between individuals.

To evaluate models involving different kinship estimators for their ability (i) to control false positives at nominal levels and (ii) to detect QTLs, we conducted simulations based on the genotypes of the diversity panels. Using all the markers to estimate kinship matrix (M K_Freq ) led to an over-correction of the H0-Pvalues (Table 2, Figure 5). This was particularly the case in the panel with the highest level of LD (CF-Dent). Under H0, the Pvalue distributions of the two alternative models were much closer to the expected distribution, and revealed that these approaches were also efficient to control false positives (Figure 5). Results obtained with M K_Chr showed that molecular information carried by nine of the ten chromosomes was sufficient to reliably estimate covariance between individuals to control for false positives.

Knowing that the three estimations of the kinship matrix (K_Freq, K_Chr and K_LD) were efficient to control false positives, we could compare their power in a second step of simulations.

QTLs were sampled from the ten chromosomes, and power of M K_Freq , M K_Chr and M K_LD at different threshold was evaluated at the SNPs/QTLs. The alternative models were more powerful than the usual model M K_Freq (Table 3). In particular estimating the covariance matrix using the markers on the non tested chromosome (M K_Chr ) resulted in higher power in each scenario in each panel. As expected the gain of power was higher in the panel with more extended LD (CF-Dent).

The gain of power was lower with M K_LD , but we suppose that this approach could be improved by taking into account gene density along the genome, or a priori information on genetic architecture, and by using a better estimate of the covariance between the marker based estimators when computing optimal marker weights. Note that further research on the K_LD estimator should also consider its scalability when applied to very high dimensional datasets.

To check the stability of these results, when considering that a QTL could be detected by SNPs located near it, we used another simulation approach, in which SNPs within a genetic window around the QTL positions were considered as H1-markers and the others as H0-markers. The results (Table S1) confirmed that at a given realized FDR, the alternative models and in particular M K_Chr were more powerful than the traditional model (M K_Freq ). Considering that true discoveries were within 5 cM of the QTLs, M K_Freq had a power to detect QTLs of 11%, M K_Chr of 26% and M K_LD of 19% at a realized FDR of 10%, when 100 QTLs were simulated in the CF-Dent panel.

In conclusion, the derivation of analytical power permitted to highlight which parameters are linked to power in Association Mapping. In particular the kinship between individuals (K) clearly influenced the Non Centrality Parameter. Analytical power scan in three diversity panels also confirmed that the way of estimating K can affect power. In particular, usual model (M K_Freq
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Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production

R. Rincent, 1,2,3,4 , S. Nicolas, 1 S. 

INTRODUCTION

Maize is together with wheat and rice one of the three main sources of nutritional energy for humans and is extensively being used in animal feeding, either as grain or whole plant forage. The high efficiency of its C4 metabolism also makes it a resource for biofuel production, as attested by the recent development of BioGas in Germany [START_REF] Rath | Biogas production from maize: current state, challenges and prospects. 1. Methane yield potential[END_REF][START_REF] Heuwinkel | Specific biogas yield of maize can be predicted by the -Chapter 2 -89 interaction of four biochemical constituents[END_REF]. This worldwide importance is due to the adaptation to various climatic conditions that maize developed following its domestication approximately 8700 years ago in the regions of Mexico (MATSUOKA et al. 2002;[START_REF] Rebourg | Maize introduction into Europe: the history reviewed in the light of molecular data[END_REF]. It now has the broadest cultivated range of all crops, from the South of Chile to Canada, from altitudes near sea level to highlands above 3000 m (TENAILLON and CHARCOSSET 2011). In Europe, maize cultivation was adopted on a broad scale rapidly after the discovery of America [START_REF] Rebourg | Maize introduction into Europe: the history reviewed in the light of molecular data[END_REF]) and a dramatic evolution of varieties occurred with the development of hybrids following World War 2. Dent lines from Northern American origin proved at that time highly complementary to flint lines from European origins to combine productivity and environmental adaptation features for maize cultivation in Northern Europe. These flint x dent hybrid varieties have proven extremely successful for both grain and silage production and the reciprocal selection of the two groups increased their differentiation and complementarity.

However, their potential for biomass production remains poorly documented and it is therefore of high interest to investigate the variability of this trait and the underlying genetic determinism within these two groups.

Panels of highly diverse materials have proven most useful to investigate the organization of diversity available for breeding at phenotypic and genotypic levels. They also can lead to the discovery of genes of interest thanks to increasing availability of molecular markers, which now makes it possible to get dense molecular polymorphism information on the whole genome.

Genotypic and phenotypic information can indeed be combined to detect QTLs contributing to the variability of traits of interest in genome-wide association studies (GWAS).This strategy was successfully used in many species and resulted in the identification of major genes (OZAKI et al. 2002;BELÓ et al. 2007;JONES et al. 2008).Highly diverse panels have accumulated numerous historical recombination events, leading to a low extent of linkage disequilibrium (LD), which is favorable to finely map QTLs. However, LD in association mapping panels is not only due to genetic linkage, but can also be caused by population structure, relatedness, drift and selection [START_REF] Jannink | Association mapping in plant populations[END_REF]FLINT-GARCIA et al. 2003). The contribution of these factors relative to linkage can be evaluated statistically (MANGIN et al.2012) and proved for instance to be substantial in grapevine and maize (MANGIN et al. 2012;BOUCHET et al. 2013). This component of LD due to 

MATERIALS AND METHODS

Genetic material and genotyping data

A previous panel (further referred to as "C-K panel") of 375 lines representing a broad diversity of European and American materials was successfully used in association genetics in previous studies (CAMUS-KULANDAIVELU et al., 2006[START_REF] Ducrocq | Key Impact of Vgt1 on Flowering Time Adaptation in Maize: Evidence From Association Mapping and Ecogeographical Information[END_REF], BOUCHET et al., 2013) KULANDAIVELU et al. (2006) were assigned to both CF-Dent and CF-Flint panels.

These panels were genotyped with the 50k SNPs array described in GANAL et al. (2011), as presented in RINCENT et al. (2012). Individuals which had marker missing rate and/or heterozygosity higher than 0.1 and 0.05, respectively, were eliminated. Markers which had missing rate and/or average heterozygosity higher than 0.2 and 0.15, respectively, were eliminated. In each panel, few individuals were highly related. One individual was removed for pairs identical for more than 98% of the loci. Three Dent lines and nine Flint lines were eliminated for this reason. Missing genotypes (below 2% in both panels) were imputed with the software BEAGLE (BROWNING and BROWNING 2009). In total 276 and 259 phenotyped individuals passed the genotyping filters for the CF-Dent and CF-Flint panels, respectively (tables S2 andS3).The filtered markers with a Minor Allele Frequency (MAF) above 0.05 were tested for association (42214 and 39076 markers for the CF-Dent and CF-Flint panels, respectively).

Diversity analysis

To avoid the ascertainment bias noted by GANAL et al. Genotype of individual i at marker k (G i,k ) was coded as 1, 0.5 or 0 for homozygote for an arbitrarily chosen allele, heterozygote and the other homozygote, respectively.

Kinship was estimated following ASTLE AND BALDING (2009) as:

𝐾𝐾_𝐹𝐹𝑟𝑟𝑒𝑒𝐹𝐹 𝑐𝑐,𝑗𝑗 = 1 𝐿𝐿 ∑ �𝐺𝐺 𝑐𝑐,𝑙𝑙 -𝑝𝑝 𝑙𝑙 ��𝐺𝐺 𝑗𝑗 ,𝑙𝑙 -𝑝𝑝 𝑙𝑙 � 𝑝𝑝 𝑙𝑙 (1-𝑝𝑝 𝑙𝑙 ) 𝐿𝐿 𝑙𝑙=1
, where 𝑝𝑝 𝑙𝑙 is the frequency of the allele coded 1 of PANZEA marker 𝑙𝑙 in the panel of interest. Note that contrary to the Identity By State (IBS, the proportion of shared alleles) estimation, this formula gives a higher weight to loci with a low diversity. Also, similarity is higher if two individuals share rare alleles than common alleles.

Admixture was estimated in the CF-Dent and CF-Flint panels using the software ADMIXTURE (ALEXANDER et al. 2009) with a number of groups varying from 2 to 8. This software is based on the same statistical model as STRUCTURE (PRITCHARD et al. 2000;[START_REF] Falush | Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies[END_REF]) but uses a fast numerical optimization algorithm, which permits to considerably reduce computational time.

The groups identified by the software were interpreted using the available pedigree information.

Differentiation among genetic groups (Fst, NEI 1973) was estimated at each locus using r-hierfstat (GOUDET 2005) for each number of groups Q (from 2 to 8), using the individuals attributed to one subgroup with a probability above 0.7 (these individuals are then considered as representative of the corresponding subgroup). Diversity(Expected heterozygosity, He) was also estimated at each marker as 2p l (1-p l

Linkage Disequilibrium (LD)

). A Principal Coordinates Analysis (PCoA) was performed on the genetic distance matrices [START_REF] Gower | Some distance properties of latent root and vector methods used in multivariate analysis[END_REF], estimated as 𝟏𝟏 𝑁𝑁,𝑁𝑁 -𝐾𝐾_𝐹𝐹𝑟𝑟𝑒𝑒𝐹𝐹 , where 𝟏𝟏 𝑁𝑁,𝑁𝑁 is a matrix of ones of the same size as K_Freq. We also represented each panel by a network, in which two individuals were linked when their relationship coefficient was above 0.2, unlinked otherwise. For this, the genomic relationship matrix was transformed in a matrix of booleans indicating if the coefficients were above 0.2 or not. These networks were drawn with a Fruchterman and Reingold's forcedirected algorithm [START_REF] Fruchterman | Graph drawing by force-directed placement[END_REF] with the package « network » in R 3.0.0 (R development Core Team, 2013).

To estimate the minimum number of markers needed to cover the genome, we estimated intrachromosomic LD using all the markers. LD was first estimated as the squared correlation between the allelic doses at two markers (denoted by r²) located on the same chromosome (HILL and ROBERTSON 1968). As kinship has to be taken into account in the GWAS model to control false positives, we need to take it into account to estimate the number of markers required to cover the genome. For this reason, the approach of MANGIN et al. (2012) was used to correct for kinship and 65 estimate the part of LD only due to linkage (r²K). To visualize the local variation of LD, r²K was averaged along the genome using a sliding window of 4 Mbp. This was represented on a graph together with marker diversity (He) and differentiation (Fst) after adjusting cubic smoothing splines along the genome using the R function smooth.spline (HASTIE and TIBSHIRANI, 1990).

Genetic distances between loci were taken from the map of GANAL et al. (2011) based on the cross F2xF252. Unmapped markers were positioned according to the local ratio between physical and genetic distances. The variation of LD with the genetic distances on each chromosome was adjusted to the model of [START_REF] Hill | Variances and covariances of squared linkage disequilibria in finite populations[END_REF], using only the pair of markers separated by less than 4 cM.

We estimated the LD decay for each chromosome as the abscissa of the intersection between the fitted curve and the horizontal line 𝑦𝑦 = 0.1. Knowing the length of each chromosome (in cM) we could estimate the minimum number of markers required on each chromosome to get an average r² or r²K of 0.1 between each pair of adjacent markers.

Phenotypic data

The Flint and Dent lines were respectively crossed to a Dent (F353) and a Flint (UH007) tester to produce hybrid progenies for phenotypic evaluation. These two lines were representative of advanced materials within their respective group. The two hybrid panels were evaluated for flowering and biomass production related traits. Two separate experiments were conducted for the Dent and Flint hybrids, with five locations in 2010, and respectively 6 and 5 locations in 2011.

Within each panel, the hybrids were divided into two groups of precocity and each group was evaluated in a different block. A small number of randomly chosen entries was replicated within block (18 entries) and across blocks (18 entries) to estimate experimental error and block effects.

Male and Female flowering time, plant height (PLHT), dry matter content at harvest (DMC) and dry matter yield (DMY) were registered for each plot. Male and female flowering time were converted into growing degree days in base 6°C, using the mean daily air temperature measured at each location (these measures were respectively denoted by Tass_GDD6, Silk_GDD6 , where 𝜎𝜎 𝑔𝑔 2 , 𝜎𝜎 𝑒𝑒 2 and 𝜎𝜎 𝑔𝑔𝑔𝑔𝑐𝑐 2 are the variance estimates of the random effects 𝐆𝐆 𝑐𝑐 , 𝐄𝐄 𝑐𝑐𝑗𝑗𝑟𝑟 and 𝐆𝐆𝐆𝐆𝐆𝐆 𝑐𝑐𝑗𝑗 , respectively. L is the mean number of environments, and r is the average number of repetitions. We also computed adjusted means and is the phenotype of the repetition l of genotype i in block k of trial j, 𝜇𝜇 is the global mean, 𝐺𝐺 𝑐𝑐 is the fixed genotype effect of individual i, 𝑇𝑇 𝑗𝑗 is the effect of trial j, and 𝑇𝑇(𝐵𝐵) 𝑗𝑗𝑟𝑟 is the effect of block k within trial j.

Trait heritability was estimated at the level of the experimental design. For traits other than DMY and DMYcorr, variance components of heritability were estimated in two steps. In a first step, genotypes were considered as fixed effect in order to get block effect estimates based only on the between block repetitions.

𝐷𝐷 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 = 𝜇𝜇 + 𝐺𝐺 𝑐𝑐 + 𝑇𝑇 𝑗𝑗 + 𝐵𝐵 𝑟𝑟(𝑗𝑗 ) + 𝐄𝐄 𝑐𝑐𝑗𝑗𝑟𝑟

In a second step, phenotypes were corrected by block effects and were analyzed considering genotype and genotype x trial effects as random:

𝐷𝐷 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 -𝐵𝐵 𝑟𝑟(𝑗𝑗 ) � = 𝜇𝜇 + 𝐆𝐆 𝑐𝑐 + 𝑇𝑇 𝑗𝑗 + 𝐆𝐆𝐆𝐆𝐆𝐆 𝑐𝑐𝑗𝑗 + 𝐄𝐄 𝑐𝑐𝑗𝑗𝑟𝑟 ,
where 𝐆𝐆𝐆𝐆𝐆𝐆 𝑐𝑐𝑗𝑗 is the random interaction effect between genotype i an trial j.

For DMY and DMYcorr, variance components of heritability were estimated in one step only to prevent confounding block effects with competition between early and late lines:

𝐷𝐷 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 = 𝜇𝜇 + 𝐆𝐆 𝑐𝑐 + 𝑇𝑇 𝑗𝑗 + 𝐆𝐆𝐆𝐆𝐆𝐆 𝑐𝑐𝑗𝑗 + 𝐄𝐄 𝑐𝑐𝑗𝑗𝑟𝑟 -Chapter 2 - 67
heritabilities for each trial by simplifying accordingly above described statistical models.

The lines were also evaluated per se for Tass_GDD6, Silk_GDD6 (Dent and Flint lines) and PLHT (only the Flint lines). The Dent and Flint lines were evaluated in Saint-Martin de Hinx and Gif-sur-Yvette (France), respectively. Per se least-squares genotype means were calculated with the GLM procedure by adjusting for block effect. Variances of the per se experiment were estimated with the same mixed model used to estimate heritabilities at the trial level in the hybrid experiments.

Phenotypic characterization of the genetic groups within each panel

Genetic groups defined by admixture were compared within each panel for their phenotypic performance by estimating the genetic average of each group (denoted by 𝜇𝜇 𝐹𝐹 ) using the following model:

𝐷𝐷 𝑐𝑐 = ∑ 𝜇𝜇 𝐹𝐹 𝐹𝐹 𝑐𝑐,𝐹𝐹 𝑄𝑄 𝐹𝐹=1
+ 𝐄𝐄 𝑐𝑐 , where 𝐷𝐷 𝑐𝑐 is the adjusted mean of individual i, 𝐹𝐹 𝑐𝑐,𝐹𝐹 is the admixture coefficient of individual i in group q, N Q is the number of groups. N Q

Statistical model for association mapping

Mixed models are classically used to detect QTLs while controlling false positive rate in GWAS (YU et al. 2006). Relatedness among individuals is taken into account by considering that the random polygenic effects are not independent, with a covariance matrix determined by K. A fixed structure effect (associated to a structure matrix Q) can also be included if the dataset is highly structured. Comparison of Pvalues obtained with different (Q+K) models revealed that K was sufficient to control both structure and relatedness (fig. S1).

=8 was considered for both panels based on the results of admixture.

We tested each SNP with a MAF above 0.05 (42214 and 39076 SNPs in the CF-Dent and CF-Flint panels, respectively) in the following model: 𝐷𝐷 = 𝑋𝑋𝛽𝛽 + 𝑈𝑈 + 𝐸𝐸, where Y is the vector of phenotypes (adjusted means of the per se performances, or of the hybrid performances at one trial or in the whole trial network),𝑋𝑋 includes a vector of 1 and the genotypes at the tested marker (coded as 0, 0.5 or 1 as mentioned above), 𝛽𝛽 includes the intercept and the additive effect of the tested marker (𝛽𝛽 𝑙𝑙 ), defined as the difference between the two homozygous genotypes, 𝑈𝑈 ↝ 𝑁𝑁(0, 𝐾𝐾. 𝜎𝜎 𝑔𝑔𝑙𝑙 2 ) is the vector of random polygenic effects,𝐾𝐾 being the kinship estimate and𝜎𝜎 𝑔𝑔𝑙𝑙 2 the residual polygenic variance, 𝐸𝐸 ↝ 𝑁𝑁(0, 𝐼𝐼. 𝜎𝜎 𝑒𝑒 2 ) is the vector of remaining residual effects with variance 𝜎𝜎 𝑒𝑒 2 , I is an identity matrix of size equal to the number of individuals (N), U and E are independent. We used two different , where c is the considered chromosome, 𝐿𝐿 -𝑐𝑐 is the number of markers not located on chromosome c. This second estimator was developed to take into account the fact that including markers in high LD with the tested SNP in the kinship estimation decreased power (LISTGARTEN 2012[START_REF] Rincent R | Recovering power in association mapping panels with variable levels of linkage disequilibrium[END_REF]. Each marker was tested for association with the different traits using a Wald test (Wald 1943) in ASReml-R (GILMOUR et al. 2006). The scripts were written in R 3.0.0 (R development Core Team 2013). The statistical significance threshold was set to 0.05/M eff , which corresponds to a Bonferroni correction on M eff tests, M eff being the number of independent tests estimated as in LI and JI (2005). This procedure evaluated 3638 and 3527 independent tests in the CF-Dent and CF-Flint panels respectively, which led to a -log 10

RESULTS

(Pvalue) threshold of 4.9 in both panels. Significant SNPs separated by less than 100 kb were considered as a single QTL for the interpretation of the results.

Diversity and structure analysis

The histograms of the Minor Allele Frequencies (MAF) of the polymorphic PANZEA markers showed a slight deficit in rare alleles in the CF-Dent panel and a slight excess in the CF-Flint panel, compared to a uniform distribution (Fig. 1). This trend was consistent with the higher proportion of monomorphic PANZEA markers observed for the most typical lines (admixture above 0.95 at N Q =8) of the Flint group than for those of the Dent group (18% and 15% respectively). MAF was on average slightly higher in the CF-Dent (0.25) than in the CF-Flint panel (0.24), which resulted in a lower index of diversity [START_REF] Nei | Estimation of average heterozygosity and genetic distance from a small number of individuals[END_REF] in the Flint than in the Dent panel (0.36 and 0.37, respectively). Locus diversity He was variable along the genome (Fig. 2), with generally lower values in centromeric regions. 
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The cross-validation criterion proposed by ADMIXTURE suggested the presence of at least 4 main groups in both panels, and the criterion always improved with the number of groups (results not shown). For an expected number of genetic groups comprised between 2 and 8, all the subgroups identified by ADMIXTURE were interpretable in terms of pedigree and/or geographical origins.

The genetic groups were composed of lines sharing a common recent ancestor (ex. F252), or a common ancestral origin (ex. Northern Flint). We noted that groups at level N Q could generally be related to groups at level N Q +1 by the subdivision of one subgroup into two (see Fig. S2 for an empirical synthesis). For a same number of groups, the differentiation among groups was higher in the CF-Dent than in the CF-Flint panel (Table 1). The Fst over the genome increased with the number of groups in both panels, but it reached a plateau at 7 in the CF-Flint panel. When considering four groups, Fst was variable along the genome (Fig. 2), in particular peaks of Fst were clearly visible in the CF-Dent panel (Chromosomes 7 and 10) and in the CF-Flint panel (Chromosome 8).

Table 1: Differenciation index among the genetic groups (Fst) estimated with hierfstat, for different number of groups varying from 2 to 8. Lines were attributed to a given group if their admixture was above a threshold of 0.7) The two first axes of the PCoA explained 16.1% and 15.7% of the variability in the CF-Dent and CF-Flint panels, respectively (Fig. 3). The different groups identified by ADMIXTURE were clearly identifiable on the PCoA graphs. The first axis separated the Iodent from the non Iodent lines in the CF-Dent panel, and the Northern Flint from the other Flint lines in the CF-Flint panel.

N Q N =2 Q N =3 Q N =4 Q N =5 Q N =6 Q N =7 Q Fst =8 CF-
Note that extreme positions along the axes were observed for the well known key founders of these groups (eg. Ph207 for Iodent, B73 for Stiff Stalk, Mo17 for Lancaster, D105 for Northern Flint).

Network representations of the CF-Dent and the CF-Flint panels revealed clusters of related individuals and isolated lines (Fig. 3). The shape of the network was different in the two panels: the Dent panel was composed of isolated lines and few clusters of related individuals. The network of the Flint panel also revealed clusters of related individuals but was much looser than the network of the CF-Dent panel. Groups identified with ADMIXTURE at N Q =4 were in good agreement with the network visualization. In each panel, one of the four groups (called "Others" in Fig. 3) was composed of more heterogeneous material including many 1 st cycle lines, and appeared fragmented in the network. 

Linkage disequilibrium

The LD was on average more extended in the CF-Dent than in the CF-Flint panel (0.21 and 0.12cM

to reach an r² of 0.1 on average over all chromosomes, respectively, see Table 2). Interchromosomal LD was observed in both panels (fig. S3), particularly between centromeric regions.

When considering physical distances, LD extent was highly variable between chromosomes and along chromosomes (Fig. 2), being more extended in centromeric regions. Taking relatedness into account substantially reduced the extent of LD in both panels, particularly in the CF-Dent panel (Table 2), and considerably reduced inter-chromosomic LD (fig. S3). For intra-chromosomic LD, the decrease observed when considering relatedness was particularly strong for chromosomes 3 and 8 in both panels, and chromosomes 4 and 7 in the CF-Dent panel only (Table 2). The chromosomes 3, 4 and 8 in the CF-Dent panel had a more extended LD (r²K) than the others (Table 2). In the CF-Flint panel, all the chromosomes displayed similar r²K except chromosome 8 for which LD was more extended (0.14 cM to reach a r²K of 0.1 for chromosome 8, only 0.09 to 0.10 cM for the other chromosomes). Knowing the length of the chromosomes (in cM), these statistics allowed the estimation of the minimum number of markers required to cover the genome (assuming evenly spaced markers on the genetic map): more markers are needed in the CF-Flint (24387) than in the CF-Dent panel (19000) to get a r²K of 0.1 between evenly spaced adjacent markers (Table 2). The genetic position of the markers was derived from the genetic map LHRE (Ganal et al. (2011). 

Phenotypic variation

We observed a high variability for all the traits in both panels and in both hybrid and per se evaluations (Tables 3 andS1), with for instance least-squares means of DMY of the hybrids over the trial network varying between 11 and 20 t/ha in both panels. High heritabilities were observed at the trial network level (over 0.73 and 0.65 in the CF-Dent and CF-Flint panels, respectively). For most of the traits, heritability was higher in the CF-Dent than in the CF-Flint panel. This was related to higher residual variances in the CF-Flint panel. Tass_GDD6 and Silk_GDD6 were the most heritable traits (0.96 and 0.97 in the CF-Dent and CF-Flint panels respectively). ASI_GDD6 and yield traits (DMC, DMCcorr, DMY and DMYcorr) were the less heritable traits. The lowest heritability was 0.65 for ASI_GDD6 in the CF-Flint panel. The heritabilities of the per se evaluations were close to the heritabilities of the hybrid trial network (Table 4), although inbred lines were evaluated at only one trial. This was due to much higher genetic variances in the per se evaluation (up to 6.4 times higher). The correlation between the hybrid and the per se adjusted means were quite high for Tass_GDD6 and Silk_GDD6 (between 0.68 and 0.87), but lower for ASI_GDD6 (between 0.22 and 0.43). These correlations were higher in the CF-Dent than in the CF-Flint panels for the three traits (Table 4).

Phenotypic characterization of the genetic groups within each panel

For hybrid performances, we observed differences between the genetic groups identified within the two panels (Adjusted R² were between 0.11 and 0.47 in CF-Dent and between 0.05 and 0.41 in CF-Flint when considering 8 groups, Table 5). In the CF-Dent panel, the lines related to UH_4068 or to F252 displayed the earliest flowering time and the highest DMC and DMCcorr (Table 5). The Lancaster and Stiff Stalk groups displayed the latest flowering time and were also the most productive (DMY of up to 17.6 t/ha). In the CF-Flint panel, the Lacaune (Fv7 related), the Northern Flints, and the Hohenheim Flints displayed the earliest flowering time and the the highest DMC and DMCcorr. Groups from southern Europe (related to CIAM Aranga and descent from Italian Open Pollinated Varieties (OPV) or from other non Northern Flints introductions into Europe) displayed the latest flowering. The lines related to CIAM Aranga, to UHF047 or to Fv7 (Lacaune) were the most productive when crossed to the Dent tester (DMY of up to 16.6 t/ha). Despite the negative correlation between flowering precocity and productivity in both panels (results not shown), we could observe different levels of productivity for a same precocity in some cases. For example lines related to B73 and those related to 0h43 both displayed late flowering but the first group was more productive. In the Flint panel, the group "CIAM Aranga and EC18 related" was by far the most 74 productive, although earlier than other groups. We observed that the three Flint groups which had the highest contribution in first cycle lines, namely Italian OPVs, Pyrenean and NF, were the less productive, with DMY below 15 t/ha (Table 5). A similar trend was found for dents, with most first cycle lines grouped in the "Minnesota13" group, which displayed the lowest value for DMYcorr.

We also noted substantial variation within genetic groups (see for example Iodent and Italian OPVs in tables S2 and S3, respectively), consistent with the limited proportion of variance explained by admixture for all the traits. Within a given group, the most typical lines (admixture above 0.98) could differ by up to 5 t/ha (e.g. non admixed individuals of the "UH_F047 family" group ranged from 12.7 to 17.7 t/ha, table S3). A formal analysis of genetic gain over breeding generations could not be conducted due to the complexity of the pedigrees but some interesting trends could be noted.

For instance within the Ph207 group, most lines derived from Ph207 founder appear superior to it in terms of performance (table S2). 

Association mapping results

The complete lists of significant SNPs are presented in tables S4 and S5, and the most significant associations (-log(Pvalue) above 5) are summarized in tables 7 and 8. The highest -log(Pvalue) were 9.98 on Chromosome 8 in CF-Dent and 6.71 on chromosome 1 in the CF-Flint panel, corresponding both to associations with flowering trait (Tass_GDD6 or Silk_GDD6).

Regarding the two statistical methods which were used, both kinship estimators (K_Freq and K_Chr) appeared efficient to control false positive rate, as revealed by QQ-plots (Fig. S1). At the chosen Bonferroni threshold, the kinship estimator K_Chr permitted the discovery of more SNPs than K_Freq for all the traits in both panel, at the trial or at the network level except for DMYcorr in the CF-Flint panel (Table 6). K_Chr permitted the discovery of 62 additional SNPs in the CF-Dent panel, and 15 in the CF-Flint panel (11 and 7 at the network level, corresponding to an increase of 41% and 39% in the CF-Dent and CF-Flint panels, respectively). Only 1 and 3 SNPs were identified with K_Freq but not with K_Chr in the CF-Dent and CF-Flint panels, respectively. Comparing the two panels, the total number of SNPs (Table 6) significant in at least one environment or at the network level with one of the two methods (K_Freq or K_Chr) was more than 

DISCUSSION AND CONCLUSION

Genetic Diversity organization

The proportion of polymorphic PANZEA-markers was high in both panels (85% and 82% in the CF-Dent and CF-Flint panels, respectively). There was a high genetic diversity in the CF-Dent and CF-Flint panels (0.37 and 0.36, respectively), in the upper range of those reported in diversity studies based on SNPs [START_REF] Hamblin | Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness[END_REF][START_REF] Lu | Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms[END_REF][START_REF] Truntzler | Diversity and linkage disequilibrium features in a composite public/private dent maize panel: consequences for association genetics as evaluated from a case study using flowering time[END_REF][START_REF] Van | Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers[END_REF], YANG et al. 2010, BOUCHET et al. 2013). The slightly higher diversity in the Dent panel and the higher proportion of monomorphic markers in Flints are consistent with the observations of BOUCHET et al. (2013), who hypothesized that this could be the consequence of the severe bottleneck encountered by Flint material when diverging from tropical germplasm. As in our study (Fig. 1), BOUCHET et al. observed more rare alleles in the Flints and interpreted it as the possible effect of population expansion following bottleneck. The grouping made by ADMIXTURE based on the molecular information revealed the complex structure of both panels. From N Q =2 to N Q =8, all the identified groups could be interpreted using the pedigree information and/or known assignation to heterotic groups (Fig. S2). The groups identified in the CF-Flint panel appear to be related to the ancient history of this material. In particular, the double introduction of maize into the groups in the CF-Dent than in the CF-Flint panel (this was true for N Q =2 to N Q Also, one of the main limitations in the dissection of quantitative traits is the size of the population under study, which affects GWAS power and the reliability of genomic predictions. For this reason, the panel size should be as large as possible. But we showed in this study, that at some point the sampling of additional individuals often results in relatedness (possibly high, fig. 3), which may decrease GWAS marginal gain of power. This highlights the importance of screening collections of landraces and of first cycle lines, which can probably be used to increase panel size and diversity =8, table 1).

Although efforts made to assemble materials from different institutes, it appeared that some heterotic groups or families were common to these institutes. There are however some noticeable exceptions like CIAM-Aranga and Hohenheim Flints which appear specific from the institutes which created the corresponding lines.

Relatedness between individuals greatly influenced LD between pairs of markers (in particular between unlinked markers, fig. S3) in both panels but particularly in CF-Dent. 2005;[START_REF] Salvi | Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize[END_REF][START_REF] Salvi | An updated consensus map for flowering time QTLs in maize[END_REF][START_REF] Goffinet | MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments[END_REF][START_REF] Ducrocq | Key Impact of Vgt1 on Flowering Time Adaptation in Maize: Evidence From Association Mapping and Ecogeographical Information[END_REF]; [START_REF] Van | Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set[END_REF]BOUCHET et al. 2013). The slight drop of diversity in the region of Vgt1 and Vgt2 in the Flint panel (Fig. 2) may be due to the fixation of the early alleles during adaptation to short growing seasons. The higher LD extent in the CF-Dent panel resulted in a reduced number of SNPs required for a minimum coverage of the genome (19000 markers in comparison to 24387 markers in the CF-Flint). The number of SNPs available in GWAS in the panels (42214 and 39076 in the CF-Dent and CF-Flint panels respectively) makes it possible to conduct a first genome-wide analysis. However these available markers are not evenly spaced along the genetic map, and a LD of 0.1 between adjacent pairs of SNP is insufficient to detect QTLs of small to intermediate effect in our panels. In the CF-Flint panel, fewer markers were available for GWAS, whereas more markers were needed to cover the genome than in the CF-Dent panel. This could lead to a lower power in the CF-Flint panel in some regions of the genome. In both panels, we expect that a substantial gain in power could be obtained by increasing the number of markers (by combining GBS, sequencing and imputation for example).
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without increasing too much relatedness, and as a result increase the potential of the panels for the QTL detections, and for the inference of evolutionary events.

Trait variation within and among genetic groups

All the traits in both panels showed high genetic variability, which resulted in high heritabilities at the trial network levels. Male and female flowering time (Tass_GDD6 and Silk_GDD6) were the most heritable traits (above 0.96 at the network level), and Anthesis To Silking Interval (ASI_GDD6), which is highly sensitive to environmental stresses, was the less heritable trait (0.73 in CF-Dent and 0.65 in CF-Flint). Heritabilities at the trial-network level were in the range that is expected for the observed traits. Trial heritabilities of yield traits (DMC, DMCcorr, DMY and DMYcorr) were highly variable between trials, probably because of the different environmental conditions and of the different culture managements. The hybrid heritabilities were slightly higher for the Dent than for the Flint except for flowering time. This is mostly due to higher residual variances in the Flint panel, partly explained by plant lodging in some of the trials.

The heritabilities in the per se evaluation are close to the heritabilities in the hybrid evaluation for Tass_GDD6 and Silk_GDD6. This is due to a genetic variance 5.5 to 6.4 times higher, and a residual variance only 1.2 to 3.4 times higher than in the hybrid experimental design (tables 3 and4). This difference of genetic variability between per se and hybrid evaluation is higher than what is expected under an additive model (in that case per se genetic variability should be four times higher than the hybrid genetic variability). This suggests the existence of a substantial amount of non additive genetic effects. The range of correlations between per se and hybrid adjusted means revealed the importance to evaluate biomass production potential of the lines in hybrid progenies and not per se only.

The high genetic diversity and phenotypic variability of these two panels is encouraging for the development of more productive biomass maize. Comparison of group materials revealed by population structure analysis showed a significant effect on all traits (Table 5). It highlighted groups with original characteristics like the "CIAM Aranga and EC18 related" group in the Flints, or the Stiff Stalk lines (particularly those related to B73) in the Dents, which displayed a high productivity relative to their earliness (Table 5). High variances nevertheless exist within genetic groups.

Although a formal analysis was not possible due to the complexity of pedigrees, we observed some groups for which recent materials were more productive than that of founder ancestral lines (e.g.

Ph207 and derivatives in Dents

). This reveals that both Flint and dent groups have undergone genetic progress (Tables S2 andS3). However, substantial variability remains in the more recent -Chapter 2 -82 lines (e.g. group "CIAM Aranga" in Table S2), which is encouraging for further breeding. High heritability and variability within groups observed in this analysis is encouraging to run GWAS.

Association mapping results

The distribution of the P-values (QQ-plot, fig. S1) illustrates that a random polygenic effect was required to control false positive rate efficiently, and that both K_Freq and K_Chr were efficient for this (distribution near diagonal for P-values above 0.01). However the use of K_Chr instead of K_Freq substantially increased the number of significant SNPs (increase of around 40% in both panels). This confirms the importance of removing markers in LD with the tested marker from the kinship estimation. As expected from simulations in RINCENT et al. 2014, the gain of power was less important in the CF-Flint than in the CF-Dent panel.

QTLs were identified for all the traits in both panels (Tables 6,7, 8, S3 and S4, Fig. 4 and5).

Globally, more QTLs were discovered in the CF-Dent than in the CF-Flint panel in the hybrid evaluation (173 and 108 QTLs respectively) and in the per se evaluation (25 and 14 QTLs, respectively). This is consistent with the higher MAF, number of markers and LD extent in the CF-

Dent panel (see above).

As expected based on knowledge of trait complexity and consequences on power, more QTLs were found for Tass_GDD6 and Silk_GDD6 than for more complex traits (ASI_GDD6 or DMC), and these flowering QTLs were more stable across environments. In particular four regions of the genome in the CF-Dent panel (Fig. 4, chromosomes 2, 3, 4 and 8) and one region of the genome in the CF-Flint panel (Fig. 5, chromosome 1) were associated with flowering time in most of the environments. Polymorphism in the vicinity of ZcN8 gene appeared as the most significant in both hybrid and per se evaluations in the CF-Dent panel.It corresponds tothe Vgt2 QTL found in numerous studies [START_REF] Chardon | Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8[END_REF][START_REF] Salvi | Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize[END_REF][START_REF] Salvi | An updated consensus map for flowering time QTLs in maize[END_REF][START_REF] Goffinet | MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments[END_REF][START_REF] Ducrocq | Key Impact of Vgt1 on Flowering Time Adaptation in Maize: Evidence From Association Mapping and Ecogeographical Information[END_REF]VANINGHELANDT et al. 2012;BOUCHET et al. 2013;ROMAY et al. 2013). Note that it was not significant in the flint panel, neither in hybrid nor per se evaluations, consistent with the quasi fixation of the early allele in Flint reported by BOUCHET et al. (2013). None of four other regions for flowering time appeared as strongly significant in BOUCHET et al. (2013). Also, the strong association with days to silking corresponding to gene ZmCCT (in ROMAY et al. 2013) on Chromosome 10 was not detected in our study, probably because the late allele at this locus [START_REF] Ducrocq | Fine Mapping and Haplotype Structure Analysis of a Major Flowering Time Quantitative Trait Locus on Maize Chromosome 10[END_REF] is underrepresented in our panels, or marker density was too low in this region for capturing this effect.

PLHT was an exception to the global trend, as more QTLs were found in the CF-Flint than in the CF-Dent panel (18 and 8 QTLs, respectively), probably because it is the only trait (with Tass_GDD6 to some extent) which had a much higher genetic variance in the CF-Flint than in the CF-Dent panel (table 3). We found common associations with the study of [START_REF] Peiffer | The genetic architecture of maize height[END_REF] in particular in the CF-Flint panel (e.g. the QTL close to position 249 Mb on chromosome 1 near the gene brassinosteroid-deficient dwarf1, PETTEM, 1956). Interestingly, most of the PLHT QTLs are not associated with flowering traits, as also found by [START_REF] Peiffer | The genetic architecture of maize height[END_REF].As both flowering time and plant height are increasingly documented in the literature and less subject than yield to GxE interactions, a formal meta-analysis of our study and literature investigations would be highly beneficial to go beyond these preliminary trends.

For DMY or DMYcorr, many significant associations were discovered but they were highly instable between environments (more than 96% of these SNPs were significant in only one environment).

The genetic determinism of these traits is more difficult to investigate because of interactions with the environment and/or because they are highly integrative. We noted that some associations for DMY were common to flowering time, suggesting a pleiotropic effect of the corresponding QTL.

Note however that the QTL observed at network level for DMYcorr and DMY at position 154077833 on chromosome 1 (Table 8) in the Flint and position 190732112 on chromosome 5 in the Dents do not belong to this category and therefore would be particularly interesting to select for biomass yield without modifying flowering time. Finally DMC, DMCcorr and ASI displayed the fewer number of detected QTL, highlighting that they are most likely affected by numerous factors of small effects and strong environmental effects.

Most of the significant SNPs identified with the hybrid adjusted means were different from those identified with the per se adjusted means. This could be due to interactions between alleles (dominance and possibly epistasis), which was also shown by the genetic variance higher than expected in the per se evaluations. This was more pronounced in the CF-Flint than in the CF-Dent panel. The proportion of SNPs significant in only one environment was also higher in the CF-Flint panel. We can hypothesize from the comparison between both panels, that the CF-Flint panel is probably submitted to more gene*gene and gene*environment interactions.

Conclusions:

We could illustrate, using genotypic and phenotypic information, that Dent and Flint groups have a different history and that this has strong consequences on diversity, variability, LD extent, which in turn influence detection power. The combination of phenotypic and genotypic data permitted the identification of flowering time and biomass related QTLs in both panels. This study would -Chapter 2 -84 probably be strongly enriched by increasing the number of markers, population size with original individuals and by using statistical models which takes interactions into account. Although further analyses are required, the identified biomass QTLs are potentially of considerable interest, because they could be introgressed in elite material to increase productivity.

The technological progresses achieved in the last decades allowed geneticists to go much deeper in the analysis of complex traits. In particular, the increasing availability of molecular markers at low cost makes it easier to decipher the relationship between genotypes and phenotypes. Molecular markers contributed to the cognitive understanding of the traits genetic architecture (with QTL detection, linkage based and GWAS), and to the predictions of genetic values of possibly unphenotyped individuals (genomic predictions). GWAS and GS are based on close statistical models [START_REF] Meuwissen | Prediction of total genetic value using genome-wide dense marker maps[END_REF]YU et al. 2006), but have different objectives (detection versus prediction). A huge number of research programs and papers in plant, animal and human genetics are devoted to these approaches. These two kinds of tools are of considerable interests in plant genetics and in particular in plant breeding. They bring great extensions to the breeders' toolbox, and seem to be promising for crop breeding [START_REF] Bernardo R | Prospects for Genomewide Selection for Quantitative Traits in Maize[END_REF][START_REF] Jannink | Genomic selection in plant breeding: from theory to practice[END_REF]. However, for these approaches to be efficient, it is necessary to be careful at different methodological critical steps (efficiency being defined as detection power in GWAS and prediction accuracy in GS). The main objective of this thesis was to optimize the use of genotypic information in GWAS and GS to maximize their efficiency. A key step in these approaches is the estimation of kinship between individuals with molecular markers. The kinship matrix is involved in the most commonly used statistical models for GWAS and GS. It permits the control of false positive rate in GWAS, and to infer genetic information from relatives in GS. We studied the parameters affecting power in GWAS and proposed new marker based kinship estimators to increase power and control false positives efficiently (chapter 1). These methods were compared through simulations based on true genotypes (chapter 1) and used to detect QTLs related to flowering time or biomass in two maize diversity panels (chapter 2). In GS, some papers had highlighted the important effect of relationship between the calibration set and the predicted individuals on the accuracies [START_REF] Habier | The impact of genetic relationship information on genome-assisted breeding values[END_REF][START_REF] Heffner | Genomic Selection for Crop Improvement[END_REF][START_REF] Zhong | Factors Affecting Accuracy From Genomic Selection in Populations Derived From Multiple Inbred Lines: A Barley Case Study[END_REF].

Considering that phenotyping is likely to remain more limiting than genotyping, we proposed an algorithm based on the genotypic data to optimize the composition of calibration sets. The parameters used in this algorithm were derived from the G-BLUP model and we compared its efficiency to that of more common approaches, based on true datasets (chapter 3). These studies were mostly based on the genotypes and phenotypes collected on two maize diversity panels in the framework of the European project Cornfed described in chapter 2. In this last section we will discuss more globally these three chapters and propose perspectives.

Increasing power in association mapping

Kinship estimator

Previous analytical and empirical studies had revealed that GWAS based on panels of intermediate size (hundreds to thousands of individuals) could only capture QTLs of intermediate to big size [START_REF] Long | The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits[END_REF]ZHAO et al. 2007). This was confirmed in our simulations based on the Cornfed and Camus-Kulandaivelu ( 2006) genotypes (chapter 1).

It is therefore necessary to optimize power in these designs to detect as many QTLs as possible. Analytical derivation of power revealed that allele frequencies and kinship between individuals could affect power in addition to population size (chapter 1). In practice true kinship is unknown and has thus to be estimated. We could show that the way of estimating it could affect power. Classical kinship estimators such as those proposed by ASTLE andBALDING (2009), VANRADEN (2008), or the simple Identity By State resulted in low power in regions of high LD. This is due to the fact that in these kinship estimators, markers are assumed to be independent so LD is not taken into account. As a consequence, regions with strong LD have a higher contribution in the kinship estimation and are overcorrected. We proposed two alternative ways of estimating kinship and compared their efficiency to detect QTLs through simulations. It revealed that these approaches could control false positive rate efficiently and were more powerful than classical approaches. In particular, the approach consisting in removing the markers physically linked to the tested position from the kinship estimation permitted the detection of more QTLs. This was shown by simulations and for real phenotypes from the Cornfed data, with an increase of about 40% of significant SNPs (chapter 2).

Marker density

For GWAS to be efficient, we need a sufficient genotyping density to have at least one marker in high LD with each QTL. From our estimations of LD (0.1 to 0.2cM to reach an r²K of 0.1 depending on the chromosome and the panel, see Table 2), the 50k SNP-array used in this thesis (GANAL et al. 2011) is already a good basis (as shown in BOUCHET et al. 2013 for the C-K panel), but additional markers would be highly beneficial, as mentioned in chapter 2.

This will be soon achieved by combining SNP-arrays, Genotyping-By-Sequencing and sequencing approaches. Other factors contributing to phenotypic variations such as Copy Number Variants (CNV), or epigenetics variants are also expected to be characterized soon (CNV-arrays, methylome...) to track more genetic variations. This increase of available molecular polymorphisms leads to an increase in the number of tests, so that significance thresholds need to be adapted accordingly to limit the number of false positives in the detection. We need to consider for this the number of independent tests and not the total number of markers. LD between markers has again to be taken into account for this, as for example two markers in complete LD correspond to only one test. Different ways of estimating this number of independent tests were proposed [START_REF] Cheverud | A simple correction for multiple comparisons in interval mapping genome scans[END_REF]LI and JI 2005).

The approach of Li and Ji estimated around 3600 independent tests in both panels, which is more than 10 times lower than the number of tested SNPs. This equivalent number of independent tests should be revised on a regular basis when considering additional marker information but it is expected that, considering the LD of our panels, it should stabilize at some step before the total number (millions) of polymorphisms is reached.

Our results also illustrate a strong effect of relatedness on LD between distant polymorphisms. This illustrates that relatedness needs to be taken into account in association genetics models to prevent false positives. Even if this was not approached in the thesis, it is interesting to further analyze the local structure and organization of LD in genomic regions.

Softwares as Fastphase [START_REF] Scheet | A Fast and Flexible Statistical Model for Large-Scale -General discussion -125 Population Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase[END_REF] or Clusthaplo (LEROUX et al. 2014) were developed to infer local haplotypes. The analysis of the Cornfed Dent panel with Fastphase revealed long haplotypes in regions near centromeres [START_REF]Modélisation haplotypique : comparaison d'approches, application au maiïs et à l'analyse de caractères quantitatifs[END_REF]. This information about ancestry is interesting to consider to detect associations between ancestral haplotypes and phenotypes. It allowed the detection of additional QTLs in multiparental connected populations [START_REF] Bardol | Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism[END_REF] and in association panels [START_REF] Dupuis M.-C | Results of a haplotype-based GWAS for recurrent laryngeal neuropathy in the horse[END_REF][START_REF] Zhang | Ancestral haplotype-based association mapping with generalized linear mixed models accounting for stratification[END_REF][START_REF]Modélisation haplotypique : comparaison d'approches, application au maiïs et à l'analyse de caractères quantitatifs[END_REF] and would deserve further consideration on the data presented in our study.

Population size and diversity

One efficient way of increasing power is to increase the size of the diversity panels. In theory this is possible, but the description of the Cornfed panels in chapters 1 and 2 showed that it may be difficult to sample large numbers of independent individuals among the genetic materials presently available. A few lines (eg. B73, Mo17, Ph207) were intensively used as parents of breeding programs in maize, which generated groups of related individuals [START_REF] Dubreuil | Organization of RFLP diversity amonginbred lines of Maize representing the most -Chapter 2 -86 significant heteroticgroups[END_REF]ROMAY et al. 2013), clearly identifiable in the Cornfed panels (chapter 2). Our results in chapter 1 suggest that adding related individuals only leads to marginal improvement in power. This highlights how important it is to go back to old landrace populations to increase genetic diversity in our material. However, at this step one has to be careful not to sample too distant individuals, which would result in introducing structure in the panel. Another way to increase power may therefore be to develop new lines from parents belonging to different sub-groups, which converges in a way towards multiparental designs (eg., NAM, MAGIC). Optimizing such designs calls for further investigations.

Note also that panels of important size make it difficult to evaluate all the genotypes in a same experimental design (because of a difference in precocity for instance) and call for specific experimental planning. We have to consider in particular that the genotypes need to be evaluated in various environments to estimate the genotype*environment interactions (and more precisely QTL*environment interactions). The instability of most QTLs detected in chapter 2 clearly highlights that this has to be taken into account, as already observed in various studies [START_REF] Moreau | Use of trial clustering to study QTL × environment effects for grain yield and related traits in maize[END_REF]BOER et al. 2007). Considering the high cost of phenotyping in field network and/or platforms, we believe it is of high interest to develop sampling algorithms for optimizing the composition of association mapping panels to maximize their detection power at a given population size. This could be possibly formalized using the analytical study of power developed in chapter 1.

Using molecular information to maximize GS efficiency: optimizing the sampling of the calibration set

Although improvements can be expected from higher marker densities, the reduced number and size of the QTLs identified in this study (chapter 2) illustrates the limits of GWAS for highly polygenic traits. Genomic selection, which estimates all the marker effects simultaneously, allows the breeder to work on a much higher proportion of the genetic variance. It was shown in simulations and on true phenotypes that high prediction accuracies could be reached [START_REF] Jannink | Genomic selection in plant breeding: from theory to practice[END_REF]CROSSA et al. 2010;[START_REF] Literature | Genome-based prediction of testcross values in maize[END_REF], potentially leading to great genetic progress. This was confirmed on the Cornfed datasets with reliabilities close to 0.8 for flowering time (chapter 3).

The optimal use of GS in the selection schemes depends on the species and on the breeder's strategy, but we believe that most of the cultivated species could benefit from this approach at some step(s). Breeding of long cycle species such as trees could be greatly improved by GS, which could considerably reduce their breeding cycle, and thus increase genetic progress even with prediction accuracies lower than typical heritabilities. For other species with short breeding cycle, GS can reduce the cycle to a lesser extent but it could also be used to reduce the amount of phenotyped individuals and thus reduce the costs. It is particularly interesting for traits difficult and/or expensive to measure. Another use of GS is to eliminate individuals with poor expected performances at an early step in the breeding program, to focus phenotyping evaluation only on the most promising individuals. In all cases, genetic progress is highly influenced by the prediction accuracies. As shown in a few studies, the calibration of the prediction formula is one of the critical step in GS [START_REF] Habier | The impact of genetic relationship information on genome-assisted breeding values[END_REF][START_REF] Heffner | Genomic Selection for Crop Improvement[END_REF][START_REF] Zhong | Factors Affecting Accuracy From Genomic Selection in Populations Derived From Multiple Inbred Lines: A Barley Case Study[END_REF]. We confirmed on the Cornfed datasets that accuracies of the selection candidate predictions are highly influenced by the composition of the Calibration Set (CS). Inadequate CS can potentially lead to accuracies close to zero or even negative which would be disastrous for breeders. On the opposite, optimizing the composition of the CS would allow the breeder to intensify the phenotypic effort on key individuals. We developed an algorithm based on the G-BLUP framework to optimize the composition of the CS in order to maximize prediction accuracies. This algorithm requires the genotypes of all the individuals but no phenotypes. It is based on the expected reliability of the predictions (or generalized CD, LALOË 1993). This algorithm was very efficient in both Cornfed panels for various traits such as flowering time or dry matter yield, for which it gave higher accuracies than random sets in all the considered scenarios. We showed that a same genetic progress could be potentially reached with half of the phenotyping cost when this algorithm is used instead of random sampling. One other potential use of this algorithm would be the optimal sampling of reference individuals to be re-sequenced or densely genotyped for imputing other individuals. As the algorithm samples the most informative individuals with regard to the predicted set, this seems reasonable, but still has to be tested.

Even though GS in panels can have practical applications like prescreening of materials for selecting parents of breeding programs, next steps of breeding programs involve in general families of full or half sibs. Our sampling approach therefore has to be validated on other genetic material with various diversity levels. We applied this approach to more structured populations (multiparental connected populations as commonly used by breeders) in collaboration with J. Crossa (results not shown here). First results on this type of dataset seem encouraging, but need further investigations. One of the major issues is to both define the composition of the optimal CS but also to define its optimal size. Although CD seems promising, it has to be noted that experimental studies revealed that the use of the phenotypes of distant individuals could decrease prediction accuracy [START_REF] Riedelsheimer | Genomic Predictability of Interconnected Biparental Maize Populations[END_REF]). This cannot be explained by the CD, which always increases when additional phenotypes are used. This is because the CD doesn't take into account the fact that distant individuals can bring more noise than information. One possibility to take this into account is to weight the information used to predict GV by considering both the CD and the correlation between the LD phases in the different populations (GIBBS et al. 2009, LEGARRA et al. in press). Related to this idea, and, similarly to what was done on the alternative kinship estimators in GWAS to optimize power, it may be important to take LD into account in GS models. In the classically used GS models, one assumes that the markers are independent. Introducing a covariance matrix between the markers seems encouraging [START_REF] Mary-Huard | Multi-trait genomic selection via multivariate regression with structured regularization[END_REF]. Note that the different objectives of GWAS and GS may lead to different ways of taking LD into account to optimize their efficiency. In GWAS, we want to limit confounding between fixed (tested marker) and random (polygenic effect) effects. In GS we want to regularize (i.e. constraint the variation of)

the effects attributed to SNPs in an efficient way.

Finally, it should be noticed that considerations above apply well in the context of highly polygenic traits (infinitesimal model). When some QTL have noticeably stronger effects, kinship could be improved for both GWAS and GS by being estimated at the causal genes.

This supposes knowing their positions and having markers in complete LD with these genes. This is not possible, but prior knowledge on the genetic architecture could potentially be used to improve kinship estimate. In a Bayeasian framework, this can be achieved by taking into account prior knowledge. An alternative in a mixed model framework is to consider known QTLs as putative fixed effects in the model (BARDOL et al. submitted).

Diversity analysis and association mapping in the Dent and Flint Cornfed panels

The different history that the CF-Dent and CF-Flint panels have undergone was highlighted in the diversity analysis (chapter 2). It resulted in different structure, LD extent and phenotypic variability. We could show with simulations (chapter 1) and true datasets (chapter 2) that these characteristics lead to different levels of power in association mapping, CF-Dent being more powerful than CF-Flint. Associations were found for all traits in both panels (Tables S4 andS5). Although promising QTL were detected for biomass yield, most of the strongest associations (around 70%) were found for flowering traits and plant height (Tables 7 and8).

This suggests different genetic architectures with bigger QTL for flowering time. We believe that this could be explained by the different types of selection that were applied to these traits.

Optimal flowering time and plant height depends on the local conditions and breeding strategies, which results in stabilizing selection. The QTL-allele conferring a higher genetic value is not always the same, depending on the breeding strategy and genetic value determined by other QTL. This can maintain polymorphism, even for QTL with strong effects. On the opposite, we suppose that most of the breeding strategies have led to higher biomass productivity (as main breeding objective, or as correlative response of breeding for grain yield). This directional selection may have resulted in the fixation of the favorable alleles, in particular for the strongest QTLs, which would explain why we found less strong associations for biomass traits than for flowering and height traits. Some QTLs for biomass were also associated with flowering traits. In the context of multitrait selection for biomass increase at constant flowering time, they were submitted to a "less directional" selection than QTLs purely related to biomass. If the effect of flowering time is strong enough relative to that on biomass yield, this is expected to prevent fixation at corresponding QTL. In addition to the reduced significance of the detected biomass QTL (chapter 2), one other major limit of using these QTLs in marker assisted selection is their strong instability in the different environments. We believe it asks for more integrated breeding approaches.

Towards an integrated approach in plant breeding

An important challenge in the future of plant breeding is to use GWAS and GS tools within more integrated approaches. If genotyping and sequencing costs continue to decrease, and more importantly if phenotyping relevant with respect to agronomical targets is automatized in some ways (phenotyping platforms, drones...), we can expect to go much deeper in the understanding of biological processes. This would permit for instance the study of interactions between genes and between genes and the environment (epistasis, dominance and qtl*environment interactions). These interactions are now highly simplified in our models or even not considered at all, although they substantially contribute to phenotypic variability, for example through the heterosis phenomenon [START_REF] Shull | Duplicate genes for capsule-form in Bursa pastoris[END_REF]. Considering these interaction effects is an important challenge in plant breeding, because the breeders want to estimate the total genetic value of the selection candidates. Animal breeders are more focused on selecting breeding animals (for reproduction) and as a result select individuals on their additive genetic value (the breeding value). But in plant breeding, not considering these interactions limits the potential of breeding to some extent for many crops. Some approaches were proposed to study these interactions in the context of GWAS, in particular to detect epistatic interactions [START_REF] Vargas | Mapping QTLs and QTL × -General discussion -126 environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods[END_REF]BOER et al. 2007;LARIEPE et al. 2012;[START_REF] Mackay | Epistasis and quantitative traits: using model organisms to study gene-gene interactions[END_REF]. In GS, dominance is sometimes introduced in the statistical model [START_REF] Maenhout | Prediction of maize single-cross hybrid performance: support vector machine regression versus best linear prediction[END_REF][START_REF] Technow | Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects[END_REF][START_REF] Su | Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers (AA Palmer[END_REF], and other studies aimed at predicting genotype by environment interactions [START_REF] Schulz-Streeck T | Genomic selection allowing for marker-by-environment interaction[END_REF][START_REF] Heslot | Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions[END_REF]. One other potential progress in integrated breeding would be to take advantage of the information brought by ecophysiological models. One promising way is to include genetic parameters in ecophysiological models and consider these as traits. This would help the breeders predict the specific response of a genotype to given environmental conditions, and thus to develop genotypes adapted to local environments. In the context of climate change, it would also help to develop varieties robust to environmental stresses. The decomposition of integrated traits as yield in more basic traits, would also have the advantage to base the predictions on biological factors and no more on a black-box. We could expect for instance that this would increase the validity of the predictions to more distant individuals (the next generations). Few authors combined QTL detection results to ecophysiological models [START_REF] Reymond | Combining Quantitative Trait Loci Analysis and an Ecophysiological Model to Analyze the Genetic Variability of the Responses of Maize Leaf Growth to Temperature and Water Deficit[END_REF][START_REF] Quilot | Analysing the genetic control -General discussion -124 of peach fruit quality through an ecophysiological model combined with a QTL approach[END_REF][START_REF] Chenu | Simulating the Yield Impacts of Organ-Level Quantitative Trait Loci Associated With Drought Response in Maize: A "Gene-to-Phenotype" Modeling Approach[END_REF]) and could efficiently predict relatively simple traits. This approach applied to more integrated traits, together with the characterization of groups of environments would be highly beneficial to plant breeding.

These perspectives don't question the interest of optimization procedures but rather call for the development of more elaborated algorithms. We have to keep in mind that the phenotyping and genotyping effort will always be limited to some extent, because resources are limited and in competition with other sectors. Other studies are thus required to enrich this field of investigation.

Another simulation approach was used to compare the ability of the different models to detect QTLs. The genetic model was simulated as in the second step of simulations presented in the paper (the QTLs were sampled among all the PANZEA SNPs) but considering now that markers within a given genetic distance of a QTL were under H1 and the others under H0. We considered genetic distances of 1, 2, 3, 5 and 10 cM. For each genetic model (50 or 100 QTLs) and each panel, 200 runs were used to estimate the proportion of QTLs (PowerQTL), and the proportion of H1-markers (Power) declared significant at a realized FDR of 0.1. The realized false discovery rate (FDR) was defined as the proportion of markers under H0 among the markers declared significant. To estimate PowerQTL, we considered that a QTL was detected when at least one of the corresponding H1-markers had a significant Pvalue. EC133A_ciam 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 886 894 4 34 17 -0,9 1,1 Lp5_usda 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 892 903 10 32 17 -1,8 1,3
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Figure1:

  Figure1: Linkage Disequilibrium in the C-K (A), CF-Dent (B) and CF-Flint (C) panels estimated with 4000 markers sampled according to their physical position. Raw squared correlations (r²) are represented below the diagonal, and r² corrected by kinship (r²K) estimated as K_Freq are presented above the diagonal. Cells corresponding to LD below 0.05 are in white. Markers were ordered according to their physical position.

Figure 2 :

 2 Figure 2: Level plots of power of model M K_Freq in the C-K (A), CF-Dent (B), and CF-Flint (C) panels. Each color corresponds to a range of power described by the right hand side scale. x axis corresponds to the MAF. y axis is the Fst (A1, B1, C1) or the correlation between the kinship matrix estimated with the considered marker only and the kinship matrix estimated with all the PANZEA markers (A2, B2, C2).

Figure 3 :

 3 Figure 3: Power scan of statistical model M K_Freq in the C-K (A), CF-Dent (B) and CF-Flint (C) panels. Power at each marker is plotted against its physical position. Markers with a MAF above 0.4 and below 0.1 are represented by green and red dots, respectively. Red curve displays local Fst. Purple and light blue vertical lines indicate the chromosome and the centromere limits, respectively.

Figure 4 :

 4 Figure 4: Scan of parameters related to power along the genome in C-K (A), CF-Dent (B), and CF-Flint (C) panels. Fst is Nei's index of differentiation among genetic groups. CorK_Freq is the correlation between the kinship matrix estimated with the considered marker only (K_Freq_M l ) and the kinship matrix estimated with all the PANZEA markers (K_Freq).CorK_Chr is the correlation between the kinship matrix estimated with the considered marker only (K_Freq_M l ) and the kinship matrix estimated with all the PANZEA markers but those located on the same chromosome than the tested SNP (K_Chr). For each parameter a smoothing spline was used along the genome. The orange curve was adjusted to the analytical power at markers with a MAF above 0.4.

Figure 5 :

 5 Figure 5: Histograms of Pvalues of the markers on the H0-chromosome using M K_Freq (A), M K_Chr (B), and M K_LD (C). This was obtained when simulating 100 QTLs in the CF-Dent panel.

  theoretical power at each marker locus in a given panel of individuals. It was applied to three different association mapping panels. While being adjusted to the same population size, these different panels had different average power. They also displayed different local patterns of power along the genome.K_Freq ). The level plots showing analytical power at different MAF and CorK_Freq were very similar in the three panels (Figure2A2, B2, C2), but those showing power at different MAF and Fst differed (Figure2A1, B1 and C1). This suggests that group differentiation has different relative contribution to local kinship variation in the different panels. At a given pair of MAF and Fst value, power was lower in the CF-Dent and CF-Flint panels than in the C-K panel, whereas five groups were used in this panel instead of four in the two others. The C-K panel is composed of highly diverse groups(Tropical, 
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  (2011), we only used the markers that were developed by comparing the sequences of nested association mapping founder lines(PANZEA SNPs, GORE et al. 2009) in the estimation of admixture and kinship coefficients. In total 29418 and 28513markers which had a MAF above 0.01were considered for the diversity analysis in the CF-Dent and CF-Flint lines respectively. Genotypic data of each panel were organized as G matrices -Chapter 2 -64 with N rows and L columns, N and L being the panel size and number of SNP loci respectively.

Figure 1 :

 1 Figure 1: Histograms of the Minor Allele Frequencies of the polymorphic PANZEA markers in the CF-Dent (A) and CF-Flint (B) panels.

Figure 2 :

 2 Figure 2: Differentiation among groups (Fst, estimated at Q=4), diversity (He) and Linkage Disequilibrium along the genome (physical distance in bp) in the CF-Dent (A) and CF-Flint (B) panels. For each parameter a cubic smoothing spline was adjusted along the genome. Centromere limits, Vgt1 and Vgt2 are located by blue, pink and purple lines, respectively.

Figure 3 :

 3 Figure 3: PCoA (A1 and B1) and network (A2 and B2) representations of the CF-Dent (A1 and A2) and CF-Flint (B1 and B2) panels. Both representation are based on the covariance matrix K_Freq. The most representative individuals of each subgroup at N Q =4 (admixture above 0.7) were colored. Few key individuals are indicated in each panel (and numbered from 1 to 6 in CF-Dent and from 7 to10 in CF-Flint). In the network representation, individuals are linked if there covariance is above 0.2, unlinked otherwise. In these networks, distances are not informative.

  a genetic distance (in cM) to reach r² or r²K equal to 0.1, after fitting Hill and Weir model. r² and r²K calculated with the R package LDcorSV. b Number of markers required to reach an average r² of 0.1 between adjacent markers.

Figure 4 :

 4 Figure 4: Significant SNPs identified in the CF-Dent panel for the different traits in the different environments and in the global adjusted means. Circle diameters is proportional to the -log10(Pvalue), and the red color indicates the additional significant SNPs when using K_Chr as covariance matrix (the markers physically linked to the tested SNP are not used to estimate kinship). Chromosomes are separated by black lines, Vgt1 and Vgt2 are indicated by purple lines. The trials are: a: Mons 2010, b: Pontevedra 2010, c: Coruna 2010, d: Roggestein 2010, e: Einbeck 2010, f: Mons 2011, g: Moulon 2011, h: Mons Precoce 2011, i: Pontevedra 2011, j: Coruna 2011, k: Pocking 2011.

Figure 5 :

 5 Figure 5: Significant SNPs identified in the CF-Flint panel for the different traits in the different environments and in the global adjusted means. Circle diameters is proportional to the -log10(Pvalue), and the red color indicates the additional significant SNPs when using K_Chr as covariance matrix (the markers physically linked to the tested SNP are not used to estimate kinship). Chromosomes are separated by black lines, Vgt1 and Vgt2 are indicated by purple lines. The trials are: a: Mons 2010, b: Pontevedra 2010, c: Coruna 2010, d: Roggestein 2010, e: Einbeck 2010, f: Moulon 2011, g: Ploudaniel 2011, h: Pontevedra 2011, i: Coruna 2011, j: Pocking 2011.

Fig. 3 )

 3 Fig.3). The CF-Dent panel does not show such ancient historical patterns, consistent with the fact that this group originated from Corn-Belt dent open pollinated varieties which displayed limited population structure(CAMUS-KULANDAIVELU et al. 2006). Admixture groups observed in our study appear to be the result of the diverse breeding strategies which have been applied since the early development of hybrid maize in the US. The network and PCoA visualizations revealed that the material available relates to a large extent to a limited number of key lines, in particular in the CF-Dent panel (Fig.3). Each key line and the material derived from it generated structure groups which were also clearly visible in the network and PCoA visualizations. This clustering around key lines (B73, Mo17, and PH207) corresponds to the three main dent groups (Stiff Stalk, Lancaster and Iodent, respectively) and was also shown byROMAY et al. (2013) using Genotyping By Sequencing data. The fact that the Flint panel was less structured by modern breeding than the Dent panel is consistent with the fact that it was submitted to less breeding cycles. Hybrids involving Flint parents are indeed recent (1960s) compared to the first Dent hybrids (1930s) developed in the USA in the early 20th century. The different history of the panels also resulted in higher differentiation of

Figure S1 :

 S1 Figure S1: QQ-plot of Tass_GDD6 in the CF-Dent (A) and CF-Flint (B) panels, using different (Q+K) models and two different ways of estimating the kinship matrix (K_Freq and K_Chr).

Figure S2 :

 S2 Figure S2: Admixture in the CF-Dent and CF-Flint panels from N Q =2 to N Q =8. Each group was called according to the pedigree of the lines. Frequency of each group are indicated in bracket. Arrows were drawn between groups sharing a high proportion of lines.

Figure S3 :

 S3 Figure S3: CF-Dent (A) and CF-Flint (B) panels estimated with 4000 markers sampled according to their physical position. Raw squared correlations (r²) are represented below the diagonal, and r² corrected by relatedness (r²K) estimated as K_Freq are presented above the diagonal. Cells corresponding to LD below 0.05 are in white. Markers were ordered according to their physical position.

  

  

  𝑐𝑐𝑗𝑗𝑙𝑙 ) and 𝕍𝕍 𝑐𝑐𝑗𝑗 (𝑟𝑟 � 𝑐𝑐𝑗𝑗𝑙𝑙 ) as the mean and variance of estimator 𝑟𝑟 � 𝑐𝑐𝑗𝑗𝑙𝑙 over all couples of individuals (i,j) having the same kinship 𝑟𝑟 𝑐𝑐𝑗𝑗 . Note Δ the covariance matrix between estimators 𝑟𝑟 � 𝑐𝑐𝑗𝑗𝑙𝑙 , i.e.

	none of these conditions is satisfied: the error variance of each estimator depends on the MAF of
	the marker, and LD between markers generates correlations between markers. As a consequence,
	estimators with poor precision (high error variance) will have the same weight as estimators with
	high precision. Moreover, m highly correlated estimators will accumulate a weight of m/L without
	providing m independent information, i.e. too much weight is attributed to highly correlated
	estimators. Alternatively, one may look for the weighted combination𝐾𝐾_𝐿𝐿𝐿𝐿 𝑐𝑐,𝑗𝑗 = ∑ 𝜔𝜔 𝑙𝑙 𝑟𝑟 � 𝑐𝑐𝑗𝑗𝑙𝑙 𝑙𝑙	, that is
	the best linear combination of coefficient 𝑟𝑟 � 𝑐𝑐𝑗𝑗𝑙𝑙 , 𝑙𝑙 = 1, … , 𝐿𝐿 to estimate 𝑟𝑟 𝑐𝑐𝑗𝑗 without bias. Define
	𝔼𝔼 𝑐𝑐𝑗𝑗 (𝑟𝑟 � 𝛥𝛥 𝑙𝑙𝑙𝑙 ′ = ℂ𝑜𝑜𝑜𝑜 𝑐𝑐𝑗𝑗 (𝑟𝑟 � 𝑐𝑐𝑗𝑗𝑙𝑙 , 𝑟𝑟 � 𝑐𝑐𝑗𝑗 𝑙𝑙 ′ ), 𝛺𝛺 = (𝜔𝜔 1 , … , 𝜔𝜔 𝐿𝐿 ) 𝑇𝑇 the vector of weights, and 𝐾𝐾 𝑐𝑐𝑗𝑗 = �𝑟𝑟 � 𝑐𝑐𝑗𝑗 1 , … , 𝑟𝑟 � 𝑐𝑐𝑗𝑗𝐿𝐿 �	𝑇𝑇 the
	vector of marker estimators.Then 𝐾𝐾_𝐿𝐿𝐿𝐿 𝑐𝑐,𝑗𝑗 satisfies:
		𝑚𝑚𝑐𝑐𝑟𝑟 𝕍𝕍 𝑐𝑐𝑗𝑗 �𝐾𝐾_𝐿𝐿𝐿𝐿 𝑐𝑐,𝑗𝑗 �under constraint 𝔼𝔼 𝑐𝑐𝑗𝑗 (𝐾𝐾_𝐿𝐿𝐿𝐿 𝑐𝑐,𝑗𝑗 ) = 𝑟𝑟 𝑐𝑐𝑗𝑗
	⇔	𝛺𝛺 𝑚𝑚𝑐𝑐𝑟𝑟	𝕍𝕍 𝑐𝑐𝑗𝑗 (𝛺𝛺 𝑇𝑇 𝐾𝐾 𝑐𝑐𝑗𝑗 ) under constraint 𝔼𝔼 𝑐𝑐𝑗𝑗 (𝛺𝛺 𝑇𝑇 𝐾𝐾 𝑐𝑐𝑗𝑗 ) = 𝑟𝑟 𝑐𝑐𝑗𝑗
	⇔	𝛺𝛺 𝑚𝑚𝑐𝑐𝑟𝑟	𝛺𝛺 𝑇𝑇 𝛥𝛥𝛺𝛺	under constraint𝛺𝛺 𝑇𝑇 𝔼𝔼 𝑐𝑐𝑗𝑗 (𝐾𝐾 𝑐𝑐𝑗𝑗 ) = 𝑟𝑟 𝑐𝑐𝑗𝑗
					i,j can be understood as follows: each
	marker l yields an estimator 𝑟𝑟 � 𝑐𝑐𝑗𝑗𝑙𝑙 =	�𝐺𝐺 𝑐𝑐,𝑙𝑙 -𝑝𝑝 𝑙𝑙 ��𝐺𝐺 𝑗𝑗 ,𝑙𝑙 -𝑝𝑝 𝑙𝑙 � σ l 2	of the true kinship coefficient k ij between
	individuals i and j, that are then averaged over all markers to obtain𝐾𝐾_𝐹𝐹𝑟𝑟𝑒𝑒𝐹𝐹 𝑐𝑐,𝑗𝑗 =	1 𝐿𝐿	∑ 𝑟𝑟 � 𝑐𝑐𝑗𝑗𝑙𝑙 𝑙𝑙	. This
	average would be optimal if all estimators had the same variance, and were independent. In practice
					34

Table 1 :

 1 Average and standard deviation of analytical power and of the parameters related to power. Analytical power

	of model M K_Freq was estimated in each panel (reduced to a size of 267 individuals), assuming an heritability of 0.8, a
	marker effect that would explain 8% of the background genetic variance if it had a Minor Allele Frequency (MAF) of
	0.5, and a type I risk of 0.05 with a Bonferroni correction on 40000 tests.			
			Power (M K_Freq )	CorK_Freq a	CorK_Chr b	MAF c	Fst d
			Average	SD	Average	SD	Average	SD	Average	SD	Average	SD
	C-K		0.113	0.090	0.087	0.032	0.083	0.029	0.269	0.132	0.112	0.116
	CF-Dent	0.090	0.081	0.103	0.033	0.093	0.030	0.260	0.139	0.146	0.118
	CF-Flint	0.088	0.086	0.094	0.032	0.088	0.030	0.240	0.147	0.083	0.076
	a Correlation between the kinship matrix estimated with a single marker (K_Freq_M l ) and the kinship matrix estimated with all the PANZEA markers
	(K_Freq).	b Correlation between the kinship matrix estimated with a single marker (K_Freq_M l ) and the kinship matrix estimated with all the PANZEA
	markers but those located on the same chromosome.						

c Minor Allele Frequency. d Nei's differentiation index among genetic groups.

Table 3 :

 3 Number of QTLs detected with the three statistical models in each panel at different thresholds assuming different genetic models (50 or 100 QTLs). We computed the average and the standard deviation of the number of QTLs detected in the 100 runs of simulation.

		T a	10*T	100*T
	Panel	Nb QTLs Approach Average SD Average SD Average SD
	C		
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  relatedness can generate false positives and has thus to be taken into account in association mapping models to control false positives(EWENS and SPIELMAN 1995; THORNSBERRY et al. 2001). Once these effects are correctly modeled, only marker-trait associations due to linkage should be detected. Efficient softwares were developed to infer population structure using genotypic data(PRITCHARD et al. 2000; ALEXANDER et al. 2009), and several estimators of relatedness between individuals are available(VANRADEN 2008; ASTLE and BALDING 2009; RINCENT et al. in press). The estimated admixture (Q) and kinship (K) matrices can be introduced in the GWAS statistical model to control false positive efficiently(YU et al. 2006).The objectives of the present work were (i) to investigate diversity in European and American Dent and Flint inbred lines, (ii) evaluate variability of traits related to biomass and flowering time and (iii) detect QTLs for these traits. For this, original Dent and Flint panels were assembled within the

	-Chapter 2 -
	population structure and
	62

European Cornfed project

(RINCENT et al. 2012)

, which objective was to characterize the variation of biomass related traits in maize in view of increasing the efficiency of breeding programs targeting this trait. Flint and Dent represent complementary heterotic groups to create hybrid varieties adapted to Northern European environmental conditions. These panels include first cycle lines derived from landraces representing the materials from which these groups were created, and more recent lines created by public institutes and breeding companies, to cover most diversity available in European material. All lines were genotyped with a 50k SNPs array

(GANAL et al. 2011) 

and phenotyped per se and as hybrids with a tester line representative of the opposite group in a field trial network composed of 9 to 11 Western European trials.

  or, in the case of the dent panel, private companies. The dent panel (CF-Dent, see list in tableS2) includes 124 lines from the C-K panel(CAMUS-KULANDAIVELU et al. 2006) determined as belonging to the "Corn Belt Dent" and "Stiff Stalk" groups with an admixture coefficient above 0.5, 58 from the University of Hohenheim, 25 from CSIC, 12 from CIAM, 58 from the ex-PVP (ex Plant Variety Protection) lines[START_REF]Availability and analysis of proprietary dent corn inbred lines with expired US plant variety protection[END_REF][START_REF] Nelson | Molecular Characterization of Maize Inbreds with Expired[END_REF], and 23 recent lines from INRA. Similarly the Flint panel (CF-Flint, see list in tableS3) includes 118 lines of the C-K panel determined as belonging to the European Flint and Northern Flint groups with an admixture coefficient above 0.5. These were complemented by lines derived from breeding programs of the following institutes:70 from the University of Hohenheim[START_REF] Riedelsheimer C | Genomic and metabolic prediction of complex heterotic traits in hybrid maize[END_REF], 56 from the Misión Biológica de Galicia and the Estación Experimental de Aula Dei (CSIC), 23 from the Centro Investigacións Agrarias de Mabegondo (CIAM), 23 from the Eidgenössische

	. Within the
	"CornFed" project we developed two new specific Dent and Flint panels (CF-Dent and CF-Flint)
	aiming at analyzing more precisely the two genetic groups of interest for maize hybrid breeding in
	Northern Europe, as briefly described in a methodological context by RINCENT et al.(2012). Both

panels are composed of 300 lines aiming at best representing the diversity of these groups and different generations of genetic materials. These include the first inbred lines created from Open Pollinated Varieties (OPVs), further referred to as first cycle lines, and more recent lines developed -Chapter 2 -63 by public institutes Technische Hochschule Zürich (ETHZ) and 10 recent lines from the Institut National de la Recherche Agronomique (INRA).Four lines (FP1, C105, F816 and EM1027) attributed by STRUCTURE to both Dent and Flint groups with probabilities close to 0.5 in CAMUS-

  and l the indices indicating respectively the genotype, the trial, the block and the repetition in the block, 𝜇𝜇 is the intercept, 𝛼𝛼 𝑟𝑟 and 𝛼𝛼 𝑗𝑗 are the trial specific regression coefficients on silking for DMC and DMY, respectively.Outlier plots with obviously extreme phenotypes were excluded from the study (less than 2.5% of the observations were removed in both panels).Least-squares means of genotypes over the global network were calculated with the GLM procedure (SAS Institute, 2008) by adjusting for block and trial effects. DMY adjusted means were not corrected by block effects. Such a correction would indeed rely on the performances of the genotypes common to the two blocks, which are likely to be affected by competition effects (early genotypes being penalized in the "late" block and late genotypes favored in the "early block"). Considering the important difference of residual variance among trials, we took heteroscedasticity into account by estimating a residual variance for each trial. For all the traits except DMY and DMYcorr, weighted least squares were computed using the following model:𝐷𝐷 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 =𝜇𝜇 + 𝐺𝐺 𝑐𝑐 + 𝑇𝑇 𝑗𝑗 + 𝑇𝑇(𝐵𝐵) 𝑗𝑗𝑟𝑟 + 𝐸𝐸 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 , with 𝐸𝐸 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 ~ N(0,𝜎𝜎 𝑗𝑗 2 ), and for DMY and DMYcorr with the model: 𝐷𝐷 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 = 𝜇𝜇 + 𝐺𝐺 𝑐𝑐 + 𝑇𝑇 𝑗𝑗 + 𝐸𝐸 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 , with 𝐸𝐸 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 ~ N(0,𝜎𝜎 𝑗𝑗 2 ), where Y ijkl

	). The
	Anthesis to Silking Interval (ASI_GDD6) was obtained by subtracting Tass_GDD6 from
	Silk_GDD6. DMC and DMY were observed at only nine of the ten trials for the Flint panel. DMC
	and DMY were corrected by flowering precocity (DMCcorr and DMYcorr) by regressing the raw data on Silk_GDD6 for each block for DMC or for each trial for DMY. 2 𝜎𝜎 𝑔𝑔 Heritabilities were then estimated as: ℎ² = 𝜎𝜎 𝑔𝑔 2 + 𝜎𝜎 𝑒𝑒 2 𝑟𝑟 � +𝜎𝜎 𝑔𝑔𝑔𝑔𝑐𝑐 2 𝐿𝐿 ⁄

𝐿𝐿𝐷𝐷𝑁𝑁 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 = 𝜇𝜇 + 𝛼𝛼 𝑟𝑟 × 𝑆𝑆𝑐𝑐𝑙𝑙𝑟𝑟_𝐺𝐺𝐿𝐿𝐿𝐿6 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 + 𝐸𝐸 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 and 𝐿𝐿𝐷𝐷𝑁𝑁𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 = 𝐸𝐸 � 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 𝐿𝐿𝐷𝐷𝐷𝐷 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 = 𝜇𝜇 + 𝛼𝛼 𝑗𝑗 × 𝑆𝑆𝑐𝑐𝑙𝑙𝑟𝑟_𝐺𝐺𝐿𝐿𝐿𝐿6 𝑐𝑐𝑗𝑗𝑟𝑟 𝑙𝑙 + 𝐸𝐸 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 and 𝐿𝐿𝐷𝐷𝐷𝐷𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 = 𝐸𝐸 � 𝑐𝑐𝑗𝑗𝑟𝑟𝑙𝑙 with i, j, k

Table 2 :

 2 Extent of Linkage Disequilibrium and number of markers needed to reach an average r² or r²K of 0.1 for each

	chromosome.								
			CF-Dent				CF-Flint
		r²			r²K			r²		r²K
	Chrom. r² extent (cM) N markers a	b	r²K extent (cM) N. markers a	b	r² extent (cM) N. markers a	b	r²K extent (cM) N markers a	b
	1	0.12	2740		0.09	3605		0.09	3636	0.09	3841
	2	0.10	2461		0.09	2715		0.09	2702	0.09	2838
	3	0.32	786		0.16	1572		0.16	1441	0.10	2578
	4	0.27	853		0.18	1299		0.10	2209	0.09	2497
	5	0.20	1179		0.13	1749		0.10	2390	0.09	2526
	6	0.20	968		0.14	1332		0.10	1924	0.09	2037
	7	0.28	741		0.11	1877		0.10	2086	0.09	2299
	8	0.25	937		0.18	1349		0.23	1008	0.14	1736
	9	0.19	993		0.11	1725		0.10	1924	0.09	2113
	10	0.19	892		0.10	1778		0.10	1761	0.09	1923
	Total		12552			19000			21081	24387

Table 3 :

 3 Variances in the hybrid experimental design. The different traits are male (Tass_GDD6), female flowering time (Silk_GDD6), Anthesis To Silking Interval (ASI_GDD6) expressed in growing degree day in base 6°C, plant height (PLHT, cm), Dry Matter Content (DMC, %), Dry Matter Content (DMY, t/ha). DMCcorr and DMYcorr are the DMC and DMY corrected by Silk_GDD6.

	CF-Dent panel

Table 4 :

 4 Variances in the per se experimental design (Dent panel, one trial), and correlation between the per se and the hybrid adjusted means (Corr Hyb/PerSe).

			CF-Dent			CF-Flint		
		Tass_GDD6 Silk_GDD6 ASI_GDD6	Tass_GDD6 Silk_GDD6 ASI_GDD6 PLHT
	Genot. Variance	7382	8361	433	10440	8666	653	728.3
	Residual variance	604	429	223	1186	461	1118	39.4
	heritability	0.93	0.96	0.68	0.91	0.96	0.40	0.96
	Corr Hyb/PerSe	0.85	0.87	0.43	0.68	0.77	0.22	0.58

Table 5 :

 5 Characterization of the different genetic groups at Q=8 in the CF-Dent and CF-Flint panels. The group means of each trait were obtained by regressing the adjusted means on the admixture coefficients. The different traits are male (Tass_GDD6), female flowering time (Silk_GDD6), Anthesis To Silking Interval (ASI_GDD6) expressed in growing degree day in base 6°C, plant height (PLHT, cm), Dry Matter Content (DMC, %), Dry Matter Yield (DMY, t/ha). DMCcorr and DMYcorr are the DMC and DMY corrected by Silk_GDD6.

		Genetic groups	Frequence	Tass_ GDD6	Silk_ GDD6	ASI_ GDD6	DMC DMY PLHT DMCcorr DMYcorr
		Stiff Stalk (B73 type)	0.07	906	916	10	31.9	17.5	267	-1.2	1.4
		Lancaster (MO17 type)	0.09	940	963	21	30.1	17.6	273	-1.0	1.0
		UH_4068 family (mostly Iodent at K=3)	0.09	854	866	12	38.2	16.1	253	2.0	0.5
	CF-	Iodent (Ph207 type)	0.15	870	887	18	36.1	16.1	252	1.0	0.3
	Dent	Stiff Stalk (B14 type)	0.12	913	927	13	33.0	17.3	263	0.2	1.1
		Minnesota13 (Wf9, A3 type)	0.27	890	916	25	32.6	15.0	253	-0.9	-1.1
		Lancaster (OH43 type)	0.09	903	920	18	31.4	16.1	254	-1.5	-0.1
		F252 family	0.11	840	853	15	39.1	14.7	241	2.1	-0.8
		Adj. R2 a		0.33	0.33	0.13	0.47	0.23	0.20	0.34	0.23
		Hohenheim Flint (D171 type, from composite)	0.13	848	876	21	33.7	14.7	247	1.1	0.1
	CF-	UH_F047 family	0.10	867	893	20	32.3	15.2	257	0.3	0.3
	Flint	Lacaune (Fv7 type)	0.11	843	874	24	33.5	15.4	239	0.8	0.7
		CIAM Aranga and EC18 related	0.06	899	931	22	30.6	16.6	258	0.0	1.3
		Descent from italian OPVs (numerous 1st cycles)	0.09	912	942	21	29.9	14.9	257	-0.3	-0.5
		Descent from non NF introductions in Europe (Spanish and others)	0.17	952	984	21	28.2	15.8	270	-0.4	-0.2
		Pyrenean (Numerous 1st cycle)	0.16	876	908	26	30.7	14.7	250	-0.8	-0.3
		NF (numerous 1st cycles)	0.18	855	891	27	32.2	14.5	253	0.0	-0.4
		Adj. R2 a		0.38	0.41	0.05	0.27	0.06	0.12	0.06	0.07

a Adjusted R² of the regression on the admixture at N Q =8.

Table 6 :

 6 Statistics on the significant SNPs and QTLs in the CF-Dent and CF-Flint panels evaluated on tester. Number of significant SNPs when considering the trial network adjusted means, b Number of significant associations when considering the trial specific adjusted means, c Mean number of significant associations per trial, d Proportion of significant associations specific to one trial,

				Estimation of K	Tass_GDD6 Silk_GDD6 ASI_GDD6 PLHT DMC DMCcorr DMY DMYcorr sum
	Asso_network a	K_Freq	12	8	0	2	3	0	1	1	27
	Asso_network	K_Chr	16	10	0	4	5	1	1	1	38
	Asso_trials	b	K_Freq	35	27	22	12	14	5	48	33	196
	CF-Dent Asso_trials		K_Chr	45	39	26	14	23	8	56	47	258
	Asso_per_trial c	K_Freq	6.18	4.09	2	1.09	1.45	0.45	4.36	3.09
	Asso_per_trial	K_Chr	7.91	5.82	2.36	1.36	2.27	0.73	5.18	4.45
	Prop_Asso_specific d	K_Freq	0.69	0.74	1	1	0.93	1	1	0.97	4
	Prop_Asso_specific	K_Chr	0.71	0.77	1	0.93	0.96	1	0.98	0.96	2
	QTLs	e		K_Freq and K_Chr	29	24	22	8	21	9	33	27	173
	Asso_network a	K_Freq	1	2	1	4	1	0	4	5	18
	Asso_network	K_Chr	2	3	2	8	1	0	4	5	25
	Asso_trials	b	K_Freq	16	17	12	15	8	5	12	16	101
	CF-Flint Asso_trials		K_Chr	18	19	14	19	13	6	12	15	116
	Asso_per_trial c	K_Freq	2.3	2.3	1.2	1.6	0.8	0.5	1.2	1.6
	Asso_per_trial	K_Chr	2.9	2.5	1.4	2.1	1.3	0.6	1.2	1.5
	Prop_Asso_specific d	K_Freq	0.69	0.88	1	0.93	1	1	1	1	5
	Prop_Asso_specific	K_Chr	0.72	0.89	1	0.89	1	1	1	1	5
	QTLs	e		Kfreq and K_Chr	14	16	15	18	11	6	13	15	108

a e Number of regions (QTLs) detected.

Table 7 :

 7 Most significant associations in the CF-Dent panel at the network level.

	Trait	Chr	Pos	MAF -log_K_Freq	a	-log_K_Chr b	effect c	Closest gene	Gene descr.
	Tass_GDD6	8	123506141 0.27	8.81		9.98	11.65 GRMZM2G179264	ZCN8 protein
	Tass_GDD6	2	178262299 0.22	7.07		7.22	11.68 GRMZM2G098828	ATP binding
	Tass_GDD6	4	233828118 0.47	5.78		6.29	8.36 GRMZM2G064023 Citrate synthase activity
	Tass_GDD6	8	115446396 0.14	5.37		5.93	11.58 GRMZM2G111396	Unknown
	Tass_GDD6	7	122130497 0.05	5.71		5.79	17.30 GRMZM2G075348	Uncharacterized
	Tass_GDD6	8	118188472 0.39	5.36		5.76	7.80 GRMZM2G047842	Uncharacterized
	Tass_GDD6	8	126077120 0.37	4.56		5.74	6.88 GRMZM2G380515	Zinc ion binding
	Tass_GDD6	3	150832948 0.48	5.11		5.23	-8.86 GRMZM2G082387	Transcription factor
	Tass_GDD6	8	126287026 0.36	3.88		5.00	6.41 GRMZM2G118834	Uncharacterized
	Silk_GDD6	8	123506141 0.27	7.83		8.86	11.97 GRMZM2G179264	ZCN8 protein
	Silk_GDD6	2	178262299 0.22	7.42		7.57	12.97 GRMZM2G098828	ATP binding
	Silk_GDD6	8	115446396 0.14	5.42		5.90	12.59 GRMZM2G111396	Unknown
	Silk_GDD6	7	122130497 0.05	5.22		5.31	17.80 GRMZM2G075348	Uncharacterized
	PLHT	2	186447969 0.14	4.59		5.19	4.28 GRMZM2G381059	Protein binding
	PLHT	2	178262299 0.22	4.88		5.10	4.11 GRMZM2G098828	ATP binding
	DMYcorr	5	190732112 0.19	6.00		6.07	0.49 GRMZM2G031952	Cytoskeleton
	DMY	5	190732112 0.19	6.54		6.70	0.56 GRMZM2G031952	Cytoskeleton
	DMC	3	150832948 0.48	5.26		5.41	0.74 GRMZM2G082387	Transcription factor
	DMC	10	31219126	0.11	4.95		5.35	-1.05	AC189796.3	Unknown

a -log(Pvalue) with K_Freq, b -log(Pvalue) with K_Chr, c effect at the network level.

Table 8 :

 8 Most significant associations in the CF-Flint panel at the network level.

	Trait	Chr	Pos	MAF	-log_K_Freq	a	-log_K_Chr b	effect c	Closest gene	Gene descr.
	Tass_GDD6	1	53414468	0.24	5.37		5.75	12.14 GRMZM2G031001	DNA binding
	Silk_GDD6	1	53414468	0.24	6.15		6.72	12.41 GRMZM2G031001	DNA binding
	Silk_GDD6	1	300441295	0.36	5.10		5.44	-8.52 GRMZM2G377487	Unknown
										Fatty acid
	PLHT	8	101237704	0.14	5.96		6.12	6.43 GRMZM2G055667	biosynthetic process
	PLHT	1	154077833	0.17	5.31		6.10	6.03 GRMZM2G056039	Heat shock protein
	PLHT	9	119310870	0.13	5.88		5.78	-7.25 GRMZM2G098179 Response to freezing
	PLHT	1	153344342	0.25	4.62		5.64	5.11 GRMZM2G422631 Cell wal modification
	PLHT	1	53414468	0.24	4.63		5.05	5.30 GRMZM2G031001	DNA binding
	PLHT	8	84808001	0.06	4.83		5.03	8.79 GRMZM2G128809	RNA binding
	DMYcorr	1	17966974	0.23	5.60		5.76	-0.52 GRMZM2G059102 Transcription factor
	DMYcorr	1	154077833	0.17	5.20		5.45	0.55 GRMZM2G056039	Heat shock protein
	DMY	1	154077833	0.17	6.00		6.42	0.65 GRMZM2G056039	Heat shock protein
	DMY	1	153344342	0.25	4.91		5.39	0.53 GRMZM2G422631 Cell wal modification
										Cortical cell
	DMC	4	152972399	0.17	5.30		5.33	-0.97 GRMZM2G406313	delineating
	ASI_GDD6	7	32478358	0.08	5.40		5.68	-4.56 GRMZM2G472146	Signaling pathway
	ASI_GDD6	7	99894530	0.24	4.79		5.09	-2.77 GRMZM2G166692	Unknown

a log(Pvalue) with K_Freq, b log(Pvalue) with K_Chr, c effect at the network level. a

Table S1

 S1 Power of the QTL detections with M K_Freq , M K_Chr , and M K_LD at a realized FDR of 0.1. PowerQTL is the proportion of QTL discovered, Power is the proportion of H1-markers discovered.

						PowerQTL					Power
		Nb QTLs Window (cM) M	K_Fre	M	K_Ch	M	K_L	M	K_Fre	M	K_Ch	M	K_L
					q		r	D		q		r	D
		50	1	0.08	0.11	0.10	0.0012	0.0028 0.0025
		50	2	0.11	0.14	0.13	0.0010	0.0024 0.0021
		50	3	0.12	0.16	0.15	0.0009	0.0021 0.0019
		50	5	0.15	0.21	0.19	0.0008	0.0019 0.0017
		50	10	0.24	0.32	0.29	0.0008	0.0019 0.0016
	C-K	100	1	0.03	0.05	0.04	0.0004	0.0011 0.0008
		100	2	0.05	0.07	0.06	0.0004	0.0010 0.0008
		100	3	0.06	0.10	0.08	0.0004	0.0010 0.0008
		100	5	0.09	0.15	0.13	0.0004	0.0011 0.0009
		100	10	0.21	0.32	0.27	0.0006	0.0017 0.0013
		50	1	0.09	0.12	0.11	0.0019	0.0052 0.0041
		50	2	0.11	0.17	0.15	0.0015	0.0052 0.0038
		50	3	0.13	0.21	0.19	0.0014	0.0054 0.0038
		50	5	0.17	0.28	0.26	0.0013	0.0053 0.0036
		50	10	0.26	0.46	0.40	0.0014	0.0065 0.0037
		100	1	0.04	0.07	0.06	0.0007	0.0030 0.0020
	CF-Dent	100	2	0.05	0.12	0.09	0.0006	0.0032 0.0019
		100	3	0.07	0.17	0.12	0.0006	0.0036 0.0019
		100	5	0.11	0.26	0.19	0.0007	0.0045 0.0022
		100	10	0.24	0.54	0.42	0.0011	0.0081 0.0039
		50	1	0.09	0.10	0.09	0.0014	0.0026 0.0023
		50	2	0.11	0.14	0.12	0.0012	0.0023 0.0019
		50	3	0.13	0.17	0.15	0.0010	0.0022 0.0018
		50	5	0.16	0.22	0.19	0.0010	0.0022 0.0017
		50	10	0.25	0.35	0.30	0.0010	0.0024 0.0016
	CF-Flint	100	1	0.03	0.05	0.04	0.0005	0.0013 0.0010
		100	2	0.05	0.08	0.06	0.0004	0.0013 0.0010
		100	3	0.06	0.10	0.08	0.0004	0.0013 0.0009
		100	5	0.09	0.16	0.13	0.0005	0.0015 0.0010
		100	10	0.18	0.34	0.27	0.0006	0.0023 0.0014

Table S1 :

 S1 Statistics on the hybrid and per se adjusted means in the CF-Dent and CF-Flint panels.

			Tass_GDD6 Silk_GDD6 ASI_GDD6 PLHT DMC DMCcorr DMY DMYcorr
		mean	888.1	906.1	18.1	255.8 34.0	0.0	16.0	0.0
	Hybrids	min max	816.6 995.3	827.5 1008.2	-3.9 42.7	225.2 26.0 286.8 40.9	-4.0 4.2	11.6 19.7	-3.8 3.0
	CF-Dent	var mean	1165.0 876.8	1351.2 883.2	72.4 6.5	153.9 8.9	2.3	1.9	1.5
	Per se	min max	662.2 1070.9	662.2 1115.7	-76.9 156.8				
		var	7964.1	8776.8	634.5				
		mean	882.7	913.9	23.3	254.5 31.3	0.0	15.1	0.0
	Hybrids	min max	803.4 1034.7	841.4 1056.8	1.6 48.0	217.3 24.3 296.5 37.3	-4.4 4.4	11.1 19.6	-4.2 4.0
	CF-Flint	var mean	1593.3 1003.0	1535.4 968.6	68.0 40.0	237.9 5.9 116.9	2.5	2.3	1.9
	Per se	min max	784.1 1308.5	809.2 1305.0	-80.3 189.9	53.6 351.4			
		var	11576.7	9096.2	1741.0	772.0			

Table S2 :

 S2 Admixture and performances of the Dent lines (crossed to the tester)

		StiffStalk	Lancaster	UH_4068f	Iode	StiffStalk	Minneso	Lancaster	F252fa	Tass_G	Silk_G	ASI_G	D	DM	PL	DMCc	DMYc
	Accession	B73	Mo17	amily	nt	B14	ta13	Oh43	mily	DD6	DD6	DD6	MC	Y	HT	orr	orr
	B109_uh	1,00	0,00	0,00 0,00	0,00	0,00	0,00	0,00	915	931	16	31	19		-1,0	2,5

Table S3 :

 S3 Admixture and performances of the Flint lines (crossed to the tester).

		Hohen.	UH_F047fa	Lacau	CIAMAran	Ital.O	Spanis	Pyre		Tass_G	Silk_GD	ASI_GD	DM	DM	PLH	DMCco	DMYco
	Accession	Fl.	m.	ne	ga	P	h	n.	NF	DD6	D6	D6	C	Y	T	rr	rr
	UH_5271_uh	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	846	875	21	34	14		1,3	-0,4
	UH_F016_uh	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	864	885	15	33	17		0,9	1,9
	UH_L054_uh	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	873	895	13	34	16		1,9	1,5
	UH_5231_uh	0,93	0,06	0,00	0,00	0,00	0,00	0,01	0,00	867	886	14	31	15		-1,0	0,4
	UH_5250_uh	0,82	0,00	0,18	0,00	0,00	0,00	0,00	0,00	841	887	38	30	15		-2,0	-0,2
	UH_L038_uh	0,82	0,00	0,00	0,00	0,00	0,14	0,00	0,05	870	902	22	31	15		0,0	-0,1
	FV362_inra	0,78	0,00	0,22	0,00	0,00	0,00	0,00	0,00	850	870	13	35	15		2,5	0,2
	UH_1107_uh	0,78	0,00	0,00	0,00	0,00	0,00	0,15	0,08	846	884	32	31	15		-1,4	0,5
	UH_5248_uh	0,76	0,00	0,09	0,00	0,00	0,00	0,01	0,14	825	864	35	34	13		0,6	-1,1
	UH_5267_uh	0,75	0,25	0,00	0,00	0,00	0,00	0,00	0,00	881	899	16	33	16		0,7	1,6
	F02803_inra	0,75	0,01	0,24	0,00	0,00	0,00	0,00	0,00	876	891	11	33	15		1,5	0,7
	UH_2109_uh	0,74	0,26	0,00	0,00	0,00	0,00	0,00	0,00	836	868	29	32	15		-0,9	0,0
	UH_L031_uh	0,74	0,00	0,00	0,00	0,00	0,26	0,00	0,00	885	916	20	32	13		0,7	-1,8
	UH_1224_uh	0,73	0,00	0,00	0,00	0,00	0,00	0,23	0,04	864	893	20	32	15		0,4	-0,3
	FV361_inra	0,73	0,14	0,00	0,00	0,02	0,11	0,00	0,00	857	883	20	35	15		3,0	0,6
	UH_F050_uh	0,71	0,29	0,00	0,00	0,00	0,00	0,00	0,00	859	886	22	34	15		1,2	0,7
	UH_8007_uh	0,66	0,00	0,11	0,00	0,00	0,00	0,19	0,04	869	890	18	31	13		-1,0	-1,7
	F363_inra	0,62	0,12	0,23	0,00	0,00	0,00	0,03	0,00	855	871	15	35	15		2,0	0,3
	UH_F035_uh	0,62	0,23	0,10	0,00	0,00	0,00	0,06	0,00	842	866	17	34	14		1,4	-0,2
	UH_5172_uh	0,59	0,02	0,07	0,00	0,00	0,09	0,19	0,05	876	898	16	32	17		0,5	1,7
	UH_5264_uh	0,58	0,27	0,15	0,00	0,00	0,00	0,01	0,00	858	878	13	34	13		1,0	-1,3
	F364_inra	0,55	0,00	0,41	0,00	0,00	0,00	0,00	0,04	855	896	30	34	16		2,1	0,9
	UH_L016_uh	0,48	0,39	0,00	0,01	0,00	0,12	0,00	0,00	878	913	26	31	15		-0,8	0,1
	UH_L021_uh	0,45	0,27	0,00	0,00	0,00	0,28	0,00	0,00	864	896	24	31	15		-0,3	0,4
	F03802_inra	0,45	0,00	0,32	0,00	0,00	0,22	0,00	0,02	846	875	23	37	17		4,4	2,1
	UH_L042_uh	0,44	0,33	0,00	0,01	0,00	0,19	0,00	0,04	882	906	16	32	16		0,5	0,7
	UH_5206_uh	0,39	0,10	0,09	0,00	0,00	0,07	0,25	0,10	847	881	35	35	15		3,2	0,4
	UH_5113_uh	0,38	0,00	0,00	0,00	0,00	0,00	0,25	0,36	856	883	20	31	16		-1,2	0,9
	UH_7727_uh	0,35	0,00	0,00	0,00	0,00	0,33	0,00	0,32	848	879	24	36	15		3,3	0,2
	UH_F023_uh	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	870	904	23	31	18		-0,8	2,7
	UH_F070_uh	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	875	899	19	34	15		2,2	-0,2
	UH_F084_uh	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	868	893	20	32	16		0,0	1,4
	UH_F093_uh	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	869	894	25	32	17		-0,1	1,7
	UH_F098_uh	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	841	864	14	35	16		2,2	1,7

Table S4 :

 S4 Significant associations in the CF-Dent panel.

	DMCcorr DMYcorr Silk_GDD6	PZE-102105700 PZE-101137930 PZE-107065530		2 1 7	132572326 178689818 122130497	0,31 0,07 0,05	0,51 3,12 5,22	0,61 3,24 5,31	Max-4,87 5,86 -0,45 0,10 5,31 17,80
	Trait DMCcorr DMYcorr Silk_GDD6	Name PZE-102146070 PZE-101178657 PZE-108064653	Chr	2 1 8	Pos 193189169 223626792 115446396	MAF 0,34 0,36 0,14	-logP_K_Freq 1,27 0,80 5,42	-logP_K_Chr 1,31 0,86 5,90	logP 4,92 5,00 7,34 12,59 effet 0,17 0,12
	ASI_GDD6 DMCcorr DMYcorr Silk_GDD6	PZE-101089397 PZE-103018185 PZE-102097611 SYN3437		1 3 2 8	80963531 10518979 113206951 120459721	0,07 0,07 0,06 0,30	2,79 4,73 3,02 2,59	2,92 4,87 3,12 3,29	4,88 4,87 -0,77 3,19 5,19 -0,52 5,56 -6,29
	ASI_GDD6 DMCcorr DMYcorr Silk_GDD6	SYN25693 PZE-103091384 PZE-102140170 PZE-108068741		1 3 2 8	107883631 150832948 188360287 120768244	0,19 0,48 0,24 0,36	0,17 1,75 1,76 3,27	0,14 1,78 1,91 3,95	5,10 -0,29 5,31 0,24 5,13 -0,22 6,58 -6,50
	ASI_GDD6 DMCcorr DMYcorr Silk_GDD6	PZE-101143122 PZE-106013540 PZE-104087710 SYN10628		1 6 4 8	184242633 34603600 162559844 122465125	0,14 0,48 0,45 0,20	3,16 0,71 0,75 3,13	3,21 0,80 0,76 3,69	6,83 4,95 -0,12 2,59 5,28 -0,10 5,08 7,93
	ASI_GDD6 DMCcorr DMYcorr Silk_GDD6	PZE-102076429 PZA00250.1 PZE-105006142 PZE-108070194		2 6 5 8	57661247 132889427 3090863 123056834	0,33 0,26 0,06 0,47	2,82 1,99 0,40 3,39	2,84 2,18 0,47 4,05	6,59 5,15 -0,27 1,87 5,90 0,11 5,08 -6,55
	ASI_GDD6 DMCcorr DMYcorr Silk_GDD6	SYN5941 SYN35963 SYN6476 PZE-108070380		2 6 5 8	178262299 151581241 59995577 123506141	0,22 0,32 0,22 0,27	0,51 0,83 1,44 7,83	0,53 1,06 1,51 8,86	4,95 5,14 5,00 8,86 11,97 0,75 0,13 0,19
	ASI_GDD6 DMCcorr DMYcorr Silk_GDD6	PZE-102186878 PZE-107085004 PZE-105076197 SYN23066		2 7 5 9	230928395 140712419 84345125 118046086	0,08 0,41 0,27 0,45	4,19 4,35 3,74 1,57	4,12 4,51 3,98 1,62	7,54 5,91 -0,34 4,31 6,57 -0,30 5,15 4,46
	ASI_GDD6 DMY DMYcorr Tass_GDD6	SYN31045 SYN11901 PZE-105078037 PZE-101071092		3 1 5 1	219899838 8515602 88044014 53621515	0,29 0,05 0,17 0,37	1,91 1,63 1,00 2,28	1,98 1,72 1,07 2,47	6,00 5,95 7,31 -0,16 1,50 0,35 5,40 5,08
	ASI_GDD6 DMY DMYcorr Tass_GDD6	SYN24156 SYN28649 PZE-105134814 SYN39244		4 1 5 1	1254252 20216839 190732112 217212143	0,13 0,17 0,19 0,37	0,06 1,07 6,00 2,25	0,09 1,06 6,07 2,40	4,89 5,75 -0,19 0,12 6,07 0,49 5,38 4,52
	ASI_GDD6 DMY DMYcorr Tass_GDD6	PZE-104082520 SYN24828 SYN18865 PZE-102067477		4 1 6 2	156714293 20419410 62193454 44992791	0,20 0,17 0,23 0,31	1,99 1,07 2,82 1,97	1,99 1,06 3,25 2,42	5,27 5,75 -0,19 1,83 5,48 -0,27 4,96 4,82
	ASI_GDD6 DMY DMYcorr Tass_GDD6	PZE-104099884 PZE-101032846 PZE-108056042 PZE-102075412		4 1 8 2	176896645 20529530 100949959 55829631	0,13 0,17 0,30 0,07	3,76 1,07 3,02 3,30	3,77 1,06 3,14 3,79	4,91 5,75 -0,19 3,11 5,08 0,28 5,48 12,07
	ASI_GDD6 DMY DMYcorr Tass_GDD6	PZE-105041198 SYN27887 PUT-163a-76908411-3976 SYN5941		5 1 9 2	27247368 20642806 106399234 178262299	0,15 0,17 0,40 0,22	2,66 1,07 2,40 7,07	2,78 1,06 3,08 7,22	5,29 5,75 -0,19 2,19 6,17 0,23 7,54 11,68
	ASI_GDD6 DMY DMYcorr Tass_GDD6	SYN17491 PZE-101197402 PZE-110019212 PZE-102167180	5 1 10 2	142480380 245790961 23250814 211498614	0,19 0,16 0,06 0,18	1,43 0,62 2,86 1,96	1,49 0,72 2,87 1,98	5,21 5,02 5,81 -0,48 1,60 0,14 5,37 -6,06
	ASI_GDD6 DMY DMYcorr Tass_GDD6	PZE-105108793 PZE-102140170 SYN8176 PZE-103012466	5 2 10 3	165742446 188360287 85188524 6649723	0,17 0,24 0,38 0,30	0,62 2,33 1,98 3,81	0,61 2,53 2,25 4,06	5,11 5,74 -0,28 0,87 4,87 0,23 6,09 6,51
	ASI_GDD6 DMY DMYcorr Tass_GDD6	SYN19125 SYN25546 SYN17973 PZE-103091384	5 3 10 3	178322096 158889565 95382609 150832948	0,41 0,36 0,39 0,48	2,47 2,29 3,19 5,11	2,33 2,30 3,58 5,23	5,45 -1,59 5,16 0,26 5,24 -0,27 6,12 -8,86
	ASI_GDD6 DMY DMYcorr Tass_GDD6	PZE-106058040 PZE-104087710 PZE-110054571 PZE-103091660	6 4 10 3	106964908 162559844 103737016 151341647	0,10 0,45 0,45 0,33	3,74 0,91 1,41 2,94	3,76 0,95 1,76 2,82	5,64 -2,97 5,57 -0,13 5,22 0,18 6,05 6,31
	ASI_GDD6 DMY DMYcorr Tass_GDD6	SYN35090 PZE-105006142 PZE-110054698 SYN25546	6 5 10 3	107754798 3090863 104287640 158889565	0,08 0,06 0,45 0,36	1,10 0,56 1,62 4,49	1,12 0,67 1,98 4,57	5,13 5,30 4,93 5,34	1,74 0,16 0,19 8,36
	ASI_GDD6 DMY DMYcorr Tass_GDD6	SYN34382 PZE-105076197 PZE-110054906 SYN16049	6 5 10 3	163178351 84345125 104920707 160514830	0,49 0,27 0,45 0,23	2,26 3,28 1,41 1,81	2,30 3,52 1,76 1,80	4,98 6,67 -0,31 1,64 5,22 0,18 4,89 5,34
	ASI_GDD6 DMY DMYcorr Tass_GDD6	PZE-107063100 PZE-105078037 PZE-110054954 PZE-104093308	7 5 10 4	120203200 88044014 105232535 169801533	0,29 0,17 0,46 0,40	2,36 0,87 1,67 4,25	2,31 0,95 2,03 4,50	5,42 7,41 -0,16 1,81 5,20 0,20 5,02 7,64
	ASI_GDD6 DMY DMYcorr Tass_GDD6	SYN14551 PZE-105134814 PZE-110055076 PZE-104121926	7 5 10 4	144205589 190732112 105787691 198929997	0,12 0,19 0,48 0,30	2,36 6,54 1,74 2,94	2,46 6,70 2,08 3,36	5,20 6,70 6,37 5,24	2,47 0,56 0,20 6,44
	ASI_GDD6 DMY DMYcorr Tass_GDD6	PZE-108076600 PZE-106025056 PZE-110062376 SYN11060	8 6 10 4	131968792 59883557 117571189 232934677	0,16 0,26 0,49 0,24	0,79 1,74 2,39 4,40	0,83 2,18 2,67 4,60	5,20 6,25 -0,22 1,12 6,04 -0,22 6,78 -7,09
	ASI_GDD6 DMY PLHT Tass_GDD6	PZE-110044134 PZE-106025268 PZE-101187908 PZE-104144719	10 6 1 4	84047481 60194317 233000449 233541810	0,16 0,26 0,09 0,34	1,90 1,97 0,55 1,99	1,92 2,42 0,62 2,16	4,95 6,65 -0,24 1,86 4,99 -1,41 5,70 4,56
	ASI_GDD6 DMY PLHT Tass_GDD6	PZE-110066651 PZE-106025544 SYN5941 SYN36949	10 6 2 4	122809735 61014030 178262299 233828118	0,10 0,26 0,22 0,47	0,17 1,90 4,88 5,78	0,14 2,34 5,10 6,29	5,09 6,68 -0,23 0,44 5,41 4,11 7,69 8,36
	DMC DMY PLHT Tass_GDD6	PZE-102028065 PZE-106025785 PZE-102137600 SYN1693		2 6 2 5	13287473 61607500 186447969 59291752	0,39 0,23 0,14 0,15	1,75 2,27 4,59 2,57	1,78 2,72 5,19 3,15	5,05 4,93 -0,27 0,31 6,90 4,28 4,90 8,05
	DMC DMY PLHT Tass_GDD6	PZE-102115993 PZE-106025894 PZE-102140170 SYN16484		2 6 2 5	153437719 61754377 188360287 188467017	0,24 0,23 0,24 0,41	3,41 2,10 3,61 1,16	4,19 2,55 3,97 1,29	7,22 -0,62 5,84 -0,25 5,87 -3,31 5,51 2,83
	DMC DMY PLHT Tass_GDD6	PZE-103019324 PZE-106025970 PZE-105037558 PZE-106041442		3 6 5 6	11529830 61857563 22552184 90548488	0,13 0,23 0,48 0,31	3,14 2,26 3,28 0,86	3,23 2,73 3,42 0,86	4,91 -0,79 6,27 -0,26 6,16 2,66 5,25 2,71
	DMC DMY PLHT Tass_GDD6	PZE-103091384 PZE-106026150 SYN10486 SYN17287		3 6 6 7	150832948 62179786 154322421 119042427	0,48 0,23 0,13 0,20	5,26 2,79 1,45 3,80	5,41 3,26 1,41 3,88	5,54 5,99 -0,30 0,74 5,29 2,11 5,92 7,53
	DMC DMY PLHT Tass_GDD6	SYN16049 SYN31342 PZE-107080558 PZE-107065530		3 8 7 7	160514830 25128932 135572251 122130497	0,23 0,41 0,18 0,05	1,71 0,70 3,34 5,71	1,86 0,91 3,43 5,79	5,15 -0,42 5,20 0,11 5,25 3,62 5,79 17,30
	DMC DMY PLHT Tass_GDD6	PUT-163a-148946654-487 PZE-108043407 PZE-109070379 PZE-107074700		3 8 9 7	211146412 72173318 114964362 130495196	0,17 0,44 0,20 0,07	1,21 2,07 4,02 3,46	1,24 2,35 4,38 3,46	5,14 4,96 -0,21 0,33 4,95 3,65 4,93 10,55
	DMC DMY Silk_GDD6 Tass_GDD6	PZE-103176862 PZE-108056027 PZE-102003082 PZE-108000403		3 8 2 8	222726491 100939003 2020244 503482	0,47 0,29 0,43 0,29	1,54 3,14 1,85 1,06	1,55 3,28 2,06 0,94	4,91 -0,27 5,24 0,31 5,53 -4,48 5,23 3,14
	DMC DMY Silk_GDD6 Tass_GDD6	PZE-104093308 PUT-163a-76908411-3976 SYN5941 PZE-108064653		4 9 2 8	169801533 106399234 178262299 115446396	0,40 0,40 0,22 0,14	2,89 2,42 7,42 5,37	3,19 3,10 7,57 5,93	7,58 -0,51 6,18 0,26 7,57 12,97 6,21 11,58
	DMC DMY Silk_GDD6 Tass_GDD6	PZE-104117587 SYN8176 PZE-102137574 SYN27932	4 10 2 8	193892648 85188524 186441433 118188472	0,16 0,38 0,13 0,39	1,54 1,32 2,38 5,36	1,76 1,48 2,81 5,76	5,07 4,96 5,17 5,76	0,40 0,20 7,78 7,80
	DMC DMY Silk_GDD6 Tass_GDD6	PZE-104117602 PZE-110048719 PZE-102167180 PZE-108070194	4 10 2 8	193998611 91358505 211498614 123056834	0,16 0,21 0,18 0,47	1,54 1,06 2,67 3,71	1,76 1,22 2,72 4,30	5,07 5,17 -0,18 0,40 5,79 -7,88 5,26 -6,34
	DMC DMY Silk_GDD6 Tass_GDD6	SYN36949 SYN17973 SYN24935 PZE-108070380	4 10 2 8	233828118 95382609 234407011 123506141	0,47 0,39 0,37 0,27	4,70 2,54 3,71 8,81	4,99 2,83 3,87 9,98	4,99 -0,62 5,52 -0,26 4,94 6,46 9,98 11,65
	DMC DMY Silk_GDD6 Tass_GDD6	PZE-104146792 PZE-110054571 PZE-103091384 PZE-108072699	4 10 3 8	234820975 103737016 150832948 126077120	0,17 0,45 0,48 0,37	0,61 1,05 4,08 4,56	0,64 1,34 4,15 5,74	5,08 5,30 6,06 -8,50 0,19 0,16 5,74 6,88
	DMC DMY Silk_GDD6 Tass_GDD6	PZE-105056998 PZE-110054698 PZE-103091660 PZE-108072730	5 10 3 8	55222259 104287640 151341647 126287026	0,31 0,45 0,33 0,36	1,55 1,26 1,55 3,88	1,29 1,56 1,48 5,00	5,03 5,00 5,56 5,00	0,34 0,18 4,66 6,41
	DMC DMY Silk_GDD6	PZE-105134814 PZE-110054906 PZE-103093822	5 10 3	190732112 104920707 154669325	0,19 0,45 0,07	2,22 1,05 4,06	2,36 1,34 4,22	5,20 -0,56 5,30 0,16 5,22 14,89
	DMC DMY Silk_GDD6	PZE-106001730 PZE-110054954 SYN25546	6 10 3	2722897 105232535 158889565	0,07 0,46 0,36	1,07 1,31 4,45	1,05 1,61 4,49	4,89 -0,65 5,27 0,18 5,42 9,00
	DMC DMY Silk_GDD6	SYN37180 PZE-110055076 PZE-104005694	7 10 4	115969947 105787691 1512170	0,13 0,48 0,07	1,50 1,41 3,67	1,40 1,70 3,57	5,19 -0,48 6,41 0,19 4,96 14,09
	DMC DMY Silk_GDD6	PZE-107085004 PZE-110062376 SYN4676	7 10 4	140712419 117571189 158146519	0,41 0,49 0,14	3,02 2,50 3,05	3,16 2,84 3,11	5,42 -0,46 5,99 -0,25 4,90 10,05
	DMC DMYcorr Silk_GDD6	SYN2781 SYN28649 PZE-104093308		8 1 4	132204010 20216839 169801533	0,36 0,17 0,40	2,95 1,01 4,73	3,49 1,00 4,98	5,00 -0,44 5,75 -0,17 5,21 8,77
	DMC DMYcorr Silk_GDD6	PZE-109003341 SYN24828 PZE-104104590		9 1 4	3897669 20419410 180785427	0,45 0,17 0,20	1,09 1,01 4,28	1,12 1,00 4,41	5,12 5,75 -0,17 0,24 5,83 9,42
	DMC DMYcorr Silk_GDD6	PZE-110022209 PZE-101032846 PZE-104144719	10 1 4	31035820 20529530 233541810	0,29 0,17 0,34	2,42 1,01 2,42	2,59 1,00 2,56	5,01 -0,51 5,75 -0,17 6,14 5,57
	DMC DMYcorr Silk_GDD6	PZE-110022293 SYN27887 SYN36949	10 1 4	31219126 20642806 233828118	0,11 0,17 0,47	4,95 1,01 4,65	5,35 1,00 4,96	5,35 -1,05 5,75 -0,17 6,06 8,13
	DMCcorr DMYcorr Silk_GDD6	PZE-102028065 SYN20148 PZE-105028662		2 1 5	13287473 68555034 14841088	0,39 0,29 0,06	2,55 2,68 2,55	2,66 2,65 2,82	5,41 5,15 5,05 11,57 0,24 0,25

Table S5 :

 S5 Significant associations in the CF-Flint panel.

								-Appendix II -
	DMY Silk_GDD6 PZE-108105367 SYN13602	10 85642012 8 159981703	0,41 0,11	3,24 1,39	3,34 1,38	5,45 5,07	0,35 6,75
	DMY Silk_GDD6 SYN1030 PZE-110065697	10 121515142 8 162222740	0,31 0,13	2,73 4,65	2,88 4,75	5,67 6,67	0,33 13,59
	Trait DMYcorr Silk_GDD6 PZE-109081270 Name SYN9368	Chr	Pos 3407925 9 129469502 1	MAF 0,36 0,18	-logP_K_Freq -logP_K_Chr 0,82 0,82 2,85 2,84	Max-logP 4,93 4,96	effet -0,13 9,01
	ASI_GDD6 SYN36074 DMYcorr SYN10537 Silk_GDD6 PZE-110050012	1 44802906 1 17966974 10 94200010	0,14 0,23 0,34	3,35 5,60 3,27	3,42 5,76 3,68	5,21 6,27 4,91	2,67 -0,52 7,85
	ASI_GDD6 PZE-102110668 DMYcorr SYN101 Silk_GDD6 PZE-110051214	2 143259003 1 18143655 10 96393513	0,12 0,27 0,47	1,06 3,83 2,31	1,12 3,84 2,64	6,42 4,87 5,77	1,37 -0,40 -5,99
	ASI_GDD6 SYN30953 DMYcorr SYN13856 Tass_GDD6 PZE-101070781	2 202643907 1 154077833 1 53414468	0,11 0,17 0,24	1,49 5,20 5,37	1,46 5,45 5,75	5,61 5,45 5,93	-1,81 0,55 12,14
	ASI_GDD6 PZE-104067263 DMYcorr PZE-101182771 Tass_GDD6 PZE-101180507	4 133252441 1 227438388 1 225044054	0,41 0,13 0,15	0,70 3,60 1,64	0,74 3,63 1,78	5,17 5,64 5,25	0,71 0,51 6,77
	ASI_GDD6 SYN2340 DMYcorr PZE-101205141 Tass_GDD6 PUT-163a-74241827-3665	4 156955443 1 253793852 1 278514200	0,26 0,27 0,26	2,32 1,37 3,77	2,42 1,40 3,78	5,12 5,24 5,36	-1,77 0,21 -8,56
	ASI_GDD6 PZE-106063139 DMYcorr PUT-163a-71764007-3479 Tass_GDD6 SYN300	6 114481013 2 189633700 1 300441295	0,18 0,19 0,36	0,70 1,13 4,45	0,70 1,15 4,68	5,81 4,89 5,74	0,99 -0,21 -8,38
	ASI_GDD6 PZE-107027539 DMYcorr SYN10842 Tass_GDD6 PZE-103042081	7 32478358 5 173161573 3 39396493	0,08 0,18 0,17	5,40 0,81 3,47	5,68 0,81 3,52	5,68 5,10 4,97	-4,56 0,16 10,49
	ASI_GDD6 PZE-107050502 DMYcorr PZE-105146456 Tass_GDD6 PZE-103052172	7 99894530 5 199643263 3 58297700	0,24 0,41 0,41	4,79 4,66 4,58	5,09 4,70 4,54	5,09 5,26 5,43	-2,77 0,38 9,05
	ASI_GDD6 SYN17065 DMYcorr PZE-106112449 Tass_GDD6 PZE-103116753	7 140572906 6 159681296 3 176260144	0,34 0,13 0,21	2,18 0,80 3,37	2,48 0,80 3,36	4,96 5,38 5,26	-1,65 -0,19 9,69
	ASI_GDD6 PZE-108068669 DMYcorr PZE-107091664 Tass_GDD6 PZE-104010147		8 120610321 7 146548837 4 7174847	0,33 0,13 0,25	0,64 0,83 4,83	0,75 0,83 4,87	5,20 5,18 5,29	-0,82 0,21 -10,03
	ASI_GDD6 SYN32327 DMYcorr PZE-107106303 Tass_GDD6 PZE-104050441		9 27015269 7 158237314 4 78545218	0,16 0,12 0,19	1,50 1,97 3,05	1,48 1,97 3,24	5,69 5,17 5,39	1,56 -0,35 9,76
	ASI_GDD6 PZE-109051312 DMYcorr SYN35860 Tass_GDD6 PZE-107013193	9 88794757 8 22173140 7 9531124	0,10 0,23 0,10	1,04 2,18 3,28	1,05 2,17 3,38	8,62 6,25 5,53	1,52 -0,28 13,50
	ASI_GDD6 PZE-109080576 DMYcorr PZE-109091780 Tass_GDD6 PZE-107071389	9 128645534 9 138892323 7 127608827	0,06 0,06 0,08	1,72 4,40 3,45	1,74 4,41 3,69	5,17 6,71 5,15	2,75 -0,75 15,15
	ASI_GDD6 PZE-110036842 DMYcorr PZE-110065697 Tass_GDD6 PZE-107099933	10 70312175 10 121515142 7 154625997	0,09 0,31 0,37	0,55 2,67 3,44	0,53 2,77 3,50	5,66 5,73 5,11	1,03 0,29 -7,61
	ASI_GDD6 PZE-110054216 PLHT PZA03613.2 Tass_GDD6 SYN1030	10 102987075 1 2941215 8 162222740	0,09 0,41 0,13	0,90 2,65 4,51	0,93 2,71 4,55	5,70 5,39 8,02	-1,65 2,82 13,95
	DMC PLHT Tass_GDD6 PZE-109038492 PZE-101070781 PZE-101070781	1 53414468 1 53414468 9 57188600	0,24 0,24 0,14	3,18 4,63 2,98	3,37 5,05 3,18	5,42 5,43 5,20	-0,62 5,30 11,12
	DMC PLHT	PZE-101085247 PZE-101102330	1 74605720 1 100904886	0,47 0,46	1,90 2,44	1,92 3,18	4,91 5,38	-0,43 -3,26
	DMC PLHT	PZE-101103268 PZE-101122758	1 102950723 1 153344342	0,32 0,25	3,08 4,62	3,21 5,64	5,93 5,64	-0,58 5,11
	DMC PLHT	PZA03580.2 SYN13856	1 175296774 1 154077833	0,35 0,17	3,78 5,31	3,85 6,10	5,46 6,51	-0,59 6,03
	DMC PLHT	PZE-101160270 PZE-101129465	1 202420962 1 165231088	0,48 0,09	2,98 2,26	3,26 2,64	5,56 4,91	-0,50 4,36
	DMC PLHT	PZE-104019337 PZE-101130308		4 19944254 1 166772606	0,06 0,08	2,54 3,60	2,62 4,02	5,69 5,57	0,84 6,53
	DMC PLHT	PZE-104078745 PZE-101199628	4 152972399 1 248736328	0,17 0,21	5,30 1,97	5,33 1,94	6,28 5,91	-0,97 -3,02
	DMC PLHT	PZE-107045416 PUT-163a-4226354-2040	7 92726573 1 277740868	0,08 0,19	1,11 3,50	1,07 3,67	5,29 4,90	0,45 -4,20
	DMC PLHT	PZE-109044922 PUT-163a-74241827-3665	9 76536460 1 278514200	0,15 0,26	2,77 3,62	2,76 3,81	5,08 4,95	0,64 -4,01
	DMC PLHT	SYN1108 PZE-102068428	10 113164779 2 46205534	0,49 0,45	1,67 3,34	1,91 3,58	4,94 5,13	0,33 3,46
	DMC PLHT	PZE-110085234 SYN29939	10 136958512 3 216270627	0,19 0,43	0,42 2,55	0,49 2,42	4,88 5,33	-0,16 3,12
	DMCcorr PLHT	SYN3797 SYN34674	4 63825919 7 9541223	0,14 0,33	1,40 1,28	1,42 1,22	6,06 6,45	0,32 -2,07
	DMCcorr PLHT	ZM012702-0484 PZE-107028382	4 184782238 7 33915862	0,09 0,11	1,43 1,85	1,33 2,01	5,20 4,93	0,40 -4,24
	DMCcorr PLHT	PZE-107045416 PZE-107099933	7 92726573 7 154625997	0,08 0,37	1,19 4,45	1,22 4,35	6,20 5,26	0,35 -4,11
	DMCcorr PLHT	SYN18508 PZE-108049320	7 156213202 8 84808001	0,44 0,06	0,56 4,83	0,53 5,03	4,98 5,03	0,12 8,79
	DMCcorr PLHT	PZE-108047916 SYN17872		8 80390227 8 101237704	0,41 0,14	0,79 5,96	0,98 6,12	6,02 6,12	-0,15 6,43
	DMCcorr PLHT	SYN23829 PZE-109073790		9 37286714 9 119310870	0,43 0,13	2,52 5,88	2,75 5,78	4,87 5,88	-0,33 -7,25
	DMY Silk_GDD6 PZE-101070781 SYN9368	1 1 53414468 3407925	0,36 0,24	0,86 6,15	0,86 6,72	4,87 9,09	-0,15 12,41
	DMY Silk_GDD6 PZE-101163301 SYN10537	1 17966974 1 206514625	0,23 0,13	4,62 1,21	4,66 1,33	5,20 5,13	-0,52 5,11
	DMY Silk_GDD6 SYN16123 PZE-101122758	1 153344342 1 299406832	0,25 0,50	4,91 1,54	5,39 1,43	5,39 5,00	0,53 -4,38
	DMY Silk_GDD6 SYN300 SYN13856	1 154077833 1 300441295	0,17 0,36	6,00 5,10	6,42 5,44	6,42 5,92	0,65 -8,52
	DMY Silk_GDD6 PZE-102068514 PZE-101182771	1 227438388 2 46437351	0,13 0,08	4,13 3,33	4,16 3,74	6,12 5,02	0,61 13,30
	DMY Silk_GDD6 SYN14630 PZE-101205141	1 253793852 2 232987692	0,27 0,28	1,84 3,60	1,88 3,86	5,28 5,01	0,28 -6,95
	DMY Silk_GDD6 SYN10208 PZE-102118123	2 158375830 3 2745080	0,27 0,07	2,85 1,64	3,18 1,70	5,56 5,40	-0,36 7,10
	DMY Silk_GDD6 PZE-103073710 PZE-106112449	6 159681296 3 122074590	0,13 0,07	0,91 2,40	0,92 2,44	5,42 5,41	-0,23 14,19
	DMY Silk_GDD6 PZE-104050441 PZE-107106303	7 158237314 4 78545218	0,12 0,19	2,12 2,70	2,12 2,86	5,14 5,52	-0,40 8,75
	DMY Silk_GDD6 PZE-107013193 SYN35860		8 22173140 7 9531124	0,23 0,10	1,84 3,32	1,80 3,42	6,06 5,08	-0,28 13,13
	DMY Silk_GDD6 PZE-107126988 PZE-109091780	9 138892323 7 169443263	0,06 0,44	3,86 2,95	3,87 2,91	6,79 4,93	-0,77 -7,21
									157
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Chapter 2 ABSTRACT

The high whole plant biomass productivity of maize makes it a potential source of energy in animal feeding and biofuel production. The variability and the genetic determinism of traits related to biomass are poorly known. We analyzed two highly diverse panels of Dent and Flint lines representing diverse complementary heterotic groups for Northern Europe. They were genotyped with the 50k SNP-array and phenotyped as hybrids (crossed to a tester of the complementary pool) in a western European field trial network for traits related to flowering time, plant height and biomass. The molecular information revealed major trends in recent breeding, conducting to different levels of structure and relatedness in the Dent and Flint panels. This study revealed important potential genetic progress for biomass production, even at constant precocity. Association mapping was run by combining genotypes and phenotypes in a mixed model with a random polygenic effect. This permitted the detection of significant associations, confirming height and flowering time QTLs found in literature. Biomass yield QTLs were detected in both panels but were unstable across the environments. Alternative kinship estimator only based on markers unlinked to the tested SNP increased the number of significant associations by around 40% with a satisfying control of the false positive rate. two times higher in the CF-Dent (258 SNPs) than in the CF-Flint panel (116 SNPs). This difference was less pronounced when considering regions (QTLs) instead of SNPs (173 and 108 QTLs identified in the CF-Dent and CF-Flint panels, respectively). The only exception to this global trend was PLHT, for which more QTLs were discovered CF-Flint panel than in the CF-Dent.

Considering traits, more SNPs were discovered for DMY, DMYcorr, Tass_GDD6 and Silk_GDD6 than for DMC, DMCcorr, and ASI_GDD6 (Table 6). However, most of the DMY and DMYcorr SNPs (96% to 100%) were declared significant in only one environment, whereas some Tass_GDD6 and Silk_GDD6 QTLs were stable across most of the environments (Fig. 4, chromosomes 2, 3, 4, 7 and 8; and fig. 5 chromosome 1). The proportion of SNP significant in only one environment was higher in the CF-Flint than in the CF-Dent panel, with the exception of PLHT.

At the network level, more SNPs were declared significant for Tass_GDD6 and Silk_GDD6 in the CF-Dent panel, and for DMY and DMYcorr in the CF-Flint panel. Note that some of the significant SNPs were associated with more than one trait (Tables S4 andS5). These pleiotropic effects particularly concerned the following couples of traits: Tass_GDD6 and Silk_GDD6, Tass_GDD6 
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