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ABSTRACT

Major progresses have been achieved in genotyping technologies, which makes it easier to
decipher the relationship between genotype and phenotype. This contributed to the
understanding of the genetic architecture of traits (Genome Wide Association Studies,
GWAS), and to better predictions of genetic value to improve breeding efficiency (Genomic
Selection, GS). The objective of this thesis was to define efficient ways of leading these
approaches. We first derived analytically the power from classical GWAS mixed model and
showed that it was lower for markers with a small minimum allele frequency, a strong
differentiation among population subgroups and that are strongly correlated with markers
used for estimating the kinship matrix K. We considered therefore two alternative estimators
of K. Simulations showed that these were as efficient as classical estimators to control false
positive and provided more power. We confirmed these results on true datasets collected on
two maize panels, and could increase by up to 40% the number of detected associations.
These panels, genotyped with a 50k SNP-array and phenotyped for flowering and biomass
traits, were used to characterize the diversity of Dent and Flint groups and detect QTLS. In
GS, studies highlighted the importance of relationship between the calibration set (CS) and
the predicted set on the accuracy of predictions. Considering low present genotyping cost, we
proposed a sampling algorithm of the CS based on the G-BLUP model, which resulted in
higher accuracies than other sampling strategies for all the traits considered. It could reach the

same accuracy than a randomly sampled CS with half of the phenotyping effort.

Key words: maize, genomic selection, association mapping, power, accuracy, biomass.

RESUME

D’importants progrés ont été réalisés dans les domaines du génotypage et du séquengage, ce
qui permet de mieux comprendre la relation génotype/phénotype. Il est possible d'analyser
I’architecture genétique des caracteres (génétique d’association, GA), ou de prédire la valeur
génétique des candidats a la sélection (sélection génomique, SG). L’objectif de cette these
était de développer des outils pour mener ces stratégies de maniere optimale. Nous avons
d’abord dérivé analytiquement la puissance du modéle mixte de GA, et montré que la
puissance était plus faible pour les marqueurs présentant une faible diversité, une forte
différentiation entre sous groupes et une forte corrélation avec les marqueurs utilisés pour
estimer I’apparentement (K). Nous avons donc considéré deux estimateurs alternatifs de K.

Des simulations ont montré qu'ils sont aussi efficaces que la méthode classique pour contrdler
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les faux positifs et augmentent la puissance. Ces résultats ont été confirmés sur les panels
corné et denté du programme Cornfed, avec une augmentation de 40% du nombre de SNP
détectés. Ces panels, génotypés avec une puce 50k SNP et phénotypés pour leur précocité et
leur biomasse ont permis de décrire la diversité de ces groupes et de détecter des QTL. En SG,
des études ont montré I’importance de la composition du jeu de calibration sur la fiabilité des
prédictions. Nous avons proposé un algorithme d’échantillonnage dérivé de la théorie du G-
BLUP permettant de maximiser la fiabilité des prédictions. Par rapport a un échantillon
aléatoire, il permettrait de diminuer de moitié I’effort de phénotypage pour atteindre une

méme fiabilité de prédiction sur les panels Cornfed.

Mots clés : mais, sélection génomique, génétique d’association, puissance, fiabilité, biomasse.
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- General introduction -

Plant breeding appeared 9 000 to 12 000 years ago, when humans became sedentary and
developed agriculture. The first plants that were cultivated for a given species accumulated
alleles which facilitated the cultivation, harvest and/or use of harvested products. Note that
these favorable alleles may have long existed in wild populations or appeared simultaneously
through mutations. This transition from wild reproduction to cultivation occurred
independently for many species in several regions of the world and is referred to as
domestication. After the first steps of domestication, the process was continued by farmers to
increase the value of plants for previous criteria. Both during domestication and later steps,
seeds from the plants with the best agronomical characteristics were selected for the sowing
of the next season. Divergence between domesticated individuals and their wild ancestors
increased with time and could result in huge phenotypic variability. This is for example the
case of maize (Zea mays ssp. mays), which became very different from the teosinte subspecies
(ssps. parviglumis and mexicana) from which it was domesticated in Mesoamerica starting
around 9000 years ago (Beadle 1939; Matsuoka et al. 2002; Doebley 2004). The selection of
individuals of higher phenotypic value, called selective breeding, generated plants improved
in terms of utility for humans (e.g. yield, composition, precocity), instead of maximizing
fitness only as would natural selection do. Selective breeding was used for millennia, until the
20th century for maize. One main limit of this approach is that it is based on the phenotype of
single plants in a particular environment. As this phenotype is the result of both genotypic and
environmental factors, it does not reflect directly the genetic potential, i.e. the Genetic Value
(GV). This could be conceptualized only in the early 1900s after the founding work of
precursory scientists.

Gregor Mendel, considered as the founder of genetics, first understood and described the
inheritance of traits influenced by few genes (qualitative traits) by studying the segregation of
color and shape in peas (Mendel 1866). His work was synthesized into the famous laws of
inheritance: the law of segregation and the law of independent assortment. Approximately at
the same time Francis Galton developed statistical approaches (1869, 1879) to study
quantitative traits (continuous traits, for example human height), laying the foundation of the
biometrical school. Mendel's theory was criticized at this time, in particular because it could
not explain how continuous traits are inherited, and was thought to be contradictory to the
approach of Francis Galton. R. A. Fisher later proved (1918) that Mendel's laws could be
extended to continuous traits by showing that the combined effect of many genes and the
environment could give rise to continuous phenotypic variations. It is also in the early 20th
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- General introduction -

century that W. Johannsen introduced the notions of genotype and phenotype in his famous
experiments on variability between and within pure lines of beans (1903). These first
developments of quantitative genetics allowed the mathematical formalization of the
relationship between genotype and phenotype, the phenotype being seen as a realization of a
genotype in an environment. This gave birth to many concepts of applied statistics used in
numerous and various fields. Evolutionary theories also developed since the mid 1800s with
the concept of natural selection (see Darwin's seminal book "On the Origin of species”, 1859).
This concept together with gradual evolution, and Mendelian genetics were synthesized in the
so called "modern evolutionary synthesis™ (Huxley 1942), the most accepted paradigm in
evolutionary biology, which establishes that variation has to be heritable to undergo natural
selection. We now know that these variations submitted to natural selection can have different

origins including genetic and epigenetic factors.

In animal and plant breeding, statistical models could then be developed to predict and
compare the gain of different selection strategies (Falconer and Mackay 1996; Gallais 1990),
and as a result optimize these. Genetic progress was formally decomposed into four
components: genetic variability, selection intensity, generation interval, and the accuracy of
the estimations of GVs. The replicated observation of a genotype in different environments, or
the observations of related individuals (first statistically modeled by Henderson, 1963)
allowed the distinction between the effect of the genotype (GV), the effect of the environment
(micro and macro environment), and the potential interaction between the genotypic and
environmental effects. The selection strategies based on GV estimates have been extensively
and efficiently used in breeding. In plant breeding, the possibility to generate numerous
individuals with the same genotype, through cloning or most often the production of inbred
lines, allows the evaluation of the genotype in field trial networks. This was the most common
approach used for phenotypic evaluation in plants until recently. In maize, which is mostly
allogamous, inbred lines have poor performance because of inbreeding and are thus crossed to
produce hybrids, taking advantage of heterosis (Shull 1908). Hybrid breeding in maize
contributed to a huge increase in productivity, with average grain yields increasing from 1.5 to
8 t/ha between 1935 and 2000 in the USA (Troyer 2005). One limitation of these strategies
mainly based on phenotypic data is that they are conducted without knowing the genes
underlying the variation of the phenotypic trait (number, positions, and effects) and thus
without knowing the favorable alleles that could be combined to produce an improved

genotype.
16



- General introduction -

The question is then, how to identify favorable alleles ? A first answer was obtained, again on
peas, by Sax (1923), who identified an association between the size (quantitative trait) and the
color (qualitative trait) of seeds. His experiment thus revealed that a local mutation
(responsible for the seed color) was associated with a quantitative trait (the size of the seeds).
The color can be seen here as a phenotypic marker: it directly reveals the genotype at a locus
(implied in seed color), which was associated with the genotype at a locus influencing a
guantitative trait (a so-called Quantitative Trait Locus or QTL, associated here with the size)
through physical linkage. The law of independent assortment states that the alleles at a locus
segregate independently from the alleles at another locus during meioses if they are located on
different chromosomes. If not, the two loci are physically linked and are separated only if a
crossover occurs between them. The probability that a recombination occurs during meioses
defines the concept of genetic distance (expressed in centiMorgan, cM). As a consequence,
two linked genes are more or less correlated (in Linkage Disequilibrium, LD), depending on
the genetic distance that separates them. Correlation between two linked loci implies that a
marker can capture (at least partially) the effect of nearby QTL(s). Phenotypic markers are
however often of poor interest, because they are rare and often dominant. The development of
molecular markers in the 1960s made it possible to carry out the first QTL detection
experiments with 10-30 polymorphic markers within a given population. The first molecular
markers were protein variants (isozymes) identified by electrophoresis. These variations have
the advantage of being codominant but they are not very polymorphic and not numerous
enough to cover the entire genome. In the 1980s, new approaches appeared, enabling to detect
polymorphism at the DNA level, revealing polymorphism in the presence or absence of
restriction sites (Restriction Fragment Length Polymorphism, RFLP), in the length of the
amplified fragments (Amplified Fragment Length Polymorphism, AFLP) or in the number of
copies of microsatellites (Single Sequence Repeat, SSR). This permitted the development of
an increasing number of markers and the first genomewide QTL mapping approaches really
started in 1988 with the seminal paper of Paterson et al.. The progress made in DNA
sequencing later allowed the identification of numerous polymorphisms at the level of single
nucleotides (called SNP). These SNPs rapidly became the most commonly used markers,
because they can be automatically analyzed with SNP-arrays providing cheap, numerous and
codominant markers. The fact that SNPs are generally biallelic, and thus less informative than
SSRs, is counterbalanced by the fact that thousands to millions of SNPs are now available for

many species. High throughput SNP-arrays have been developed and are extensively used in
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- General introduction -

human, animal and plant genetics. In maize, a 50,000 SNP-array was developed (GANAL et al.
2011) following the sequencing of B73 (ZHou et al. 2009; WEI et al. 2009a; WEI et al.
2009b), the first maize inbred line sequenced, and the resequencing of numerous inbred lines.
Technological progress in sequencing makes it now possible to genotype individuals directly
by sequencing portions of their genomes. Several Genotyping By Sequencing (GBS)

strategies are now available (ELSHIRE et al. 2011).

These tools, combined with phenotypic data, offer different ways of detecting QTLs. In
linkage-based QTL detection, individuals with contrasted phenotypes are crossed to produce a
segregating population. In this kind of populations linkage between markers and QTLs makes
it possible to detect associations between phenotypic variability and marker polymorphism.
Major QTLs were detected with this approach, and the underlying gene was sometimes
identified after analyzing numerous recombinant individuals in the genomic region of interest
(HUANG et al. 1997; SALVI and TUBEROSA 2005; GIULIANI et al. 2005; DucrocCQ et al. 2009).
However the low diversity of the material used as parents (a significant proportion of QTLs
are monomorphic), and the low resolution of the detection (often confined to a range of 10 to
30 cM, FLINT-GARCIA et al. 2003; ZHu et al. 2008) are important limits to this approach and
makes it difficult to identify the underlying genetic factor(s).These difficulties can be
circumvented to some extent by increasing the number of parents and the size of the total
population (Yu et al. 2008; CAVANAGH et al. 2008; BARDOL et al. 2013).

Also, the fast increase of available molecular markers allowed to work on more diverse
materials with no or limited relatedness. The approach known as Genome Wide Association
Study (GWAS) consists of combining genotypic and phenotypic information of diversity
panel in a statistical model to detect marker-trait associations. Such panels have accumulated
numerous historical recombination events between highly diverse ancestral haplotypes. It
results in a lower LD extent than in segregating populations, and as a consequence a much
higher resolution (RAFALSKI and MORGANTE 2004). However, contrary to linkage mapping
populations, LD in association mapping panels is not only due to genetic linkage, but can also
be caused by population structure, relatedness, drift and selection (JANNINK and WALSH 2002;
FLINT-GARCIA et al. 2003). The contribution of these factors relative to linkage can be
evaluated statistically (MANGIN et al. 2012) and proved for instance to be substantial in
grapevine and maize (MANGIN et al. 2012; BoucHET et al. 2013). This component of LD due
to population structure and relatedness can generate false positives and has thus to be taken

into account in association mapping models (EWENS and SPIELMAN 1995; THORNSBERRY et
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- General introduction -

al.2001). Once these effects are correctly modeled, only marker-trait associations due to
linkage should be detected. Population structure (Q matrix) and kinship (K matrix) are
unknown but they can be estimated using molecular markers (PRITCHARD et al. 2000; PRICE et
al. 2006; VANRADEN 2008; ALEXANDER et al. 2009; AsTLE and BALDING 2009). Major genes
were identified with GWAS in human, animal and plant genetics (OzAki1 et al. 2002; BELO et
al. 2007; JoNEs et al. 2008). However, one of the main drawback of these structure and
relatedness corrections is that it also reduces the number of detectable true positives,
particularly if the trait is correlated to the population structure (LARSSON et al. 2013). For this
reason, it is of highest importance to estimate Q and K in an efficient way to maximize

detection power and control false positive rate efficiently (Yu et al. 2006).

Once QTLs have been detected, markers can be used in breeding programs to follow the
favorable alleles in a cross to select improved individuals. This marker-assisted selection
(MAS) has typically been efficiently used to introgress resistance alleles in elite material
(SANZ-ALFEREZ et al. 1995; THABUIS et al. 2004; RANDHAWA et al. 2009; RIAR et al. 2012).
This is more difficult when the trait is influenced by many genes, which is often the case in
guantitative traits. In that case only the main QTLs are detected, and as a result only a fraction
of the total genetic variability is explained. In addition to this, it becomes difficult to pyramid
all the favorable alleles in one individual (SERVIN 2004) when the number of QTLs is high
(HosPITAL and CHARCOSSET 1997). In such cases, LANDE and THOMPSON (1990) proposed to
select individuals based on an estimation of their genetic value obtained by summing the
effect of markers significantly associated to QTLs and possibly combine this information with
the phenotype to manage undetected QTL. Comparison of different MAS strategies revealed
that the main interest of marker-based selection was its efficiency to reduce generation
interval (HOSPITAL et al. 1997). One limit of this approach is that the selection of individuals
based on their QTL-based predictions often result in the fast fixation in the first generations of
favorable alleles at the biggest QTLs but not at the others (HOSPITAL et al. 1997; MOREAU et
al. 2004). Moreover, the marker-QTL associations tend to decrease along generations due to
the accumulation of recombination events, which reduces the efficiency of MAS. Finally, the
effect of the detected QTLs is often overestimated because only significant associations are
considered, and these detected associations are likely to be biased upward (Beavis 1998).
Correlatively, the use of a significance threshold implies that the identified QTLs capture only
a fraction of the genetic variance of quantitative traits, even if a sufficient coverage is used.
This phenomenon was first described in human genetics and defined as the "missing
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heritability” (Maher 2008). We now know that considerable population size is required to get
sufficient power for the detection of small to intermediate QTLs (VISSCHER 2008), which is
expensive and not always possible. This is an important problem in the deciphering of genetic
architecture because most of the quantitative traits of interest are influenced by many genes of
small effect (oil content or flowering time in maize were found to be influenced by more than
50 QTLs, LAURIE et al. 2004; BUCKLER et al. 2009).

When the number of QTLs is that high, it becomes interesting to estimate all the marker
effects simultaneously to circumvent the limitations of QTL detection. In that case, the
objective is to predict as accurately as possible the GVs of individuals candidate to selection,
including possibly unphenotyped individuals. This was first proposed by WHITTAKER et al.
(2000) and further formalized and extended to situations where the number of markers is
much higher than the number of observations by MeEuwiISSEN et al. (2001), who called this
approach genomic selection (GS). GS can be applied as follows: in a first step the genotypes
and phenotypes of reference individuals (the calibration set) are combined to calibrate the
chosen statistical model (RR-BLUP, RA-BLUP, BayesA, BayesB or others, see HESLOT et
al.(2012) for a review). In a second step, the calibrated model is used to predict the genotyped
selection candidates, which can then be selected without being phenotyped. These individuals
can (i) belong to the same generation as the calibration set, making it possible to increase
selection intensity, or (ii) belong to a next generation of yet unphenotyped individuals, making
it possible to conduct new cycles of selection more rapidly. GS is expected to be more
efficient than post-QTL MAS, because a more important part of the genetic variance is
captured, reducing the amount of missing heritability (YANG et al. 2010). MEUWISSEN et al.
(2001) proposed prediction models based on the mixed model or the bayesian frameworks,
which combine the information brought by the observations and prior knowledge on the trait
architecture (for example obtained from QTL detections). In the mixed model with all
available markers included as random effects (Ridge Regression Best Linear Unbiased
Prediction, or RR-BLUP), we suppose that the traits is influenced by a large number of genes
having small and independent effects (infinitesimal model). This assumption seems
reasonable for many quantitative traits and the predictions obtained with RR-BLUP are often
as accurate as more complex models, such as Bayesian models, neural networks, or machine
learning (HesLOT et al. 2012; ReSENDE et al. 2012). However, prior assumptions on the
proportion of causal SNPs can sometimes extent the validity of the model to more genetically
distant individuals (HABIER et al. 2007). Interestingly, some studies revealed that the
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prediction accuracies was not only due to LD between markers and QTLs but also to the
efficiency of the markers to capture relatedness between individuals (HABIER et al. 2007).
Molecular markers can indeed be used to estimate Kinship between individuals (LOISELLE et
al. 1995; RITLAND 1996; VANRADEN 2008; AsTLE and BALDING 2009) and the resulting
realized relationship matrix can be more informative than pedigree because it takes Mendelian
sampling into account (and pedigree information is not always available, and sometimes of
poor quality). It was proven that a traditional BLUP model with pedigree matrix replaced by
realized kinship was equivalent to RR-BLUP in some conditions presented by HABIER et
al.(2007), GobbARD (2009) and HAYEs et al. (2009b). This mixed model (called Realized
Additive BLUP or RA-BLUP, ZHONG et al. 2009) is close to the classical model used in
GWAS to control false positives (Yu et al. 2006). GS has been successfully implemented in
dairy cattle and is expected to double genetic progress thanks to the replacement of progeny
testing by genomic predictions, and could potentially diminish inbreeding at the same time
(HAYEs et al. 2009a). In plant breeding, simulations (ZHONG et al. 2009; JANNINK 2010;
HesLOT et al. 2012) and fields experiments (CRossA et al. 2010; ALBRECHT et al. 2011; ZHAO
et al. 2011; HoFHEINZ et al. 2012; WINDHAUSEN et al. 2012; BARDOL et al., in review) gave
encouraging results in populations with variable levels of diversity. BERNARDO and Yu (2007)
showed for instance using simulations, that GS provided 18 to 43% more genetic gain per
cycle than traditional marker assisted recurrent selection in biparental populations. CROSSA et
al. (2010) confirmed the potential interest of GS in more diverse material. Theoretical and
experimental results revealed few critical aspects, which have imperatively to be considered
when designing GS procedures including marker density, statistical model, phenotypic
evaluation, and genetic distance between and within the calibration set and the predicted
individuals. All these factors influence the accuracy of the predictions and as a result the
genetic progress. Because the predictive ability of a model relies on the kinship between
individuals and the LD between QTLs and markers, it is quite clear that relatedness between
the calibration set and the prediction set, and the accordance of LD phase in both sets can
affect accuracies. Some studies revealed indeed that prediction accuracy could be
considerably reduced in case of low relatedness between both sets (HABIER et al. 2007, 2010;
Ly et al. 2013; RIEDELSHEIMER et al. 2013). It is therefore of the highest importance to define

the calibration set in an efficient way.

Molecular markers are therefore of considerable interest in genetics to either detect loci of
interest and/or improve selection efficiency. Because markers can capture QTL effects thanks
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to LD, they can be used to detect QTLs (for example in GWAS) or to predict GVs (GS).
GWAS and GS are based on close statistical models, but in GWAS the objective is to detect
QTLs, whereas in GS the objective is to predict GVs. The efficiency of different GWAS and
GS strategies can be estimated and possibly optimized by estimating their detection power
(for GWAS) or their prediction accuracy (for GS). The main objective of this thesis was to
optimize the use of available molecular information to maximize QTL detection power in
GWAS and prediction accuracy in GS. For this, we proposed new approaches that can be used
at critical steps of GWAS and GS, namely the estimation of a relevant kinship matrix to
maximize power and control false positive rate efficiently in GWAS, and optimize the
composition of the calibration set in GS to maximize prediction accuracy of selection
candidates. These approaches were evaluated and compared to existing procedures using
simulations based on existing genotypes and using true experimental data. These experimental
data were obtained within the European "Cornfed" project, which was developed to
characterize the variation of biomass related traits in maize in view of increasing the
efficiency of breeding programs targeting this trait. This project includes in particular a Dent
(CF-Dent) and a Flint (CF-Flint) panels, expanding a previous panel comprising less
representatives of these groups and also including tropical materials (CK-panel, CAmMUS-
KULANDAIVELU et al., 2006). Flint and Dent represent complementary heterotic groups to
create hybrid varieties adapted to Northern European environmental conditions. The two
Cornfed panels, each composed of 300 lines, were genotyped with the 50,000 SNP-array and
phenotyped in a Western European trial network for traits related to flowering time and

biomass productivity.

The first chapter of this thesis is dedicated to the analytical study of power in GWAS in panels
presenting different levels of diversity. It highlights the parameters influencing power and
proposes new kinship estimators to maximize power. The efficiency of these estimators are
evaluated with simulations based on the CF-Dent, CF-Flint and CK-panel (CAMuUs-
KULANDAIVELU et al. 2006) genotypes. In the second chapter, we used molecular (50k SNP-
array) to analyze diversity and Linkage Disequilibrium (LD) in the CF-Dent and CF-Flint
panels. Phenotypic variation for flowering time and biomass production was analyzed based
on 10 to 11 Western European trials. Chapter 2 also presents GWAS results using models
derived in chapter 1, illustrating the interest of approaches evaluated in chapter 1 through
simulations. The third and last chapter is devoted to the optimization of the calibration set in
GS. We proposed an algorithm for this, and validated its ability in the CF-Dent and CF-Flint
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panels. These three chapters are presented as scientific articles, chapters 1 and 3 were
published in Genetics, and chapter 2 is organized in view of submission to Theor. Appl.
Genet.. The chapters were not ordered chronologically with respect to work realized during
the PhD, but in a way that, for both GWAS and GS approaches, methodological aspects are
presented first, and then followed by application on true phenotypes. GWAS was presented
first and GS second, because we characterized the Cornfed panels in terms of diversity,
Linkage Disequilibrium and detection power in a same study. It also seemed interesting to us
to present first insights in the genetic determinism of traits to facilitate the interpretation of
GS results. Finally, limits and perspectives of the present work with respect to genetic

analyses and breeding applications are discussed in a last section.
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ABSTRACT

Association mapping has permitted the discovery of major QTLs in many species. It can be applied
to existing populations and, as a consequence, it is generally necessary to take into account structure
and relatedness among individuals in the statistical model to control false positives. We studied
analytically power in association studies by computing non-centrality parameter of the tests and its
relationship with parameters characterizing diversity (genetic differentiation between groups and
allele frequencies) and kinship between individuals. Investigation of three different maize diversity
panels genotyped with the 50k SNPs array highlighted contrasted average power among panels and
revealed gaps of power of classical mixed models in regions with high Linkage Disequilibrium
(LD). These gaps could be related to the fact that markers are used for both testing association and
estimating relatedness. We thus considered two alternative approaches to estimate the kinship
matrix to recover power in regions of high LD. In the first one, we estimated the kinship with all the
markers located on other chromosomes than the tested SNP. In the second one, correlation between
markers was taken into account to weight the contribution of each marker to the kinship.
Simulations revealed that these two approaches were efficient to control false positives and more

powerful than classical models.
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INTRODUCTION

Quantitative traits are determined by the polymorphism of many genes or genomic regions with
small effects, i.e. Quantitative Trait Loci (QTL). Understanding the genetic architecture of such
traits, which supposes the identification of these causal loci, is now facilitated by a dramatic
increase in the number of molecular markers available. This makes it possible to conduct genome-
wide association studies (GWAS), in which phenotypes and genotypes of individuals in highly
diverse panels are used to detect QTLs (LyNcH and WALSH, 1998). Such panels have accumulated
numerous historical recombinations, leading to a low extent of linkage disequilibrium (LD).
Compared to linkage mapping, more markers are therefore needed to capture causal signals but with
a much higher mapping resolution (RAFALSKI and MORGANTE 2004). Major genes were identified
by this approach in human, animal and plant genetics (OzAKiI et al. 2002; BELO et al. 2007; JONES et
al. 2008). However, contrary to linkage mapping populations, LD in association mapping panels is
not only due to genetic linkage, but can also be caused by population structure, relatedness, drift
and selection (JANNINK and WALSH 2002; FLINT-GARCIA et al. 2003). The contribution of these
factors relative to linkage can be evaluated statistically (MANGIN et al.2012) and proved for instance
to be substantial in grapevine and maize (MANGIN et al. 2012; BOUCHET et al. 2013). This
component of LD due to population structure and relatedness can generate false positives and has
thus to be taken into account in association mapping models to control false positives (EWENS and
SPIELMAN 1995; THORNSBERRY et al. 2001). Once these effects are correctly modeled, only marker-

trait associations due to linkage should be detected.

Population structure can be estimated with softwares such as STRUCTURE (PRITCHARD et al.
2000) and ADMIXTURE (ALEXANDER et al. 2009), or by Principal Component Analysis on the
genotypic data (PRICE et al. 2006). These methods permit the estimation of a structure matrix (Q)
attributing the admixture coefficient of each individual in each group. Relatedness (K matrix) can
be estimated in different ways including Identity By State (IBS), or estimators of Identity By
Descent (IBD) considering marker allelic frequencies (VANRADEN 2008; ASTLE and BALDING
2009). Yu et al. (2006) proposed a mixed model approach (Q+K) to detect QTL in the context of
association mapping. This model has the advantage of controlling false positive rate by including a
fixed structure effect (through Q) and/or a random polygenic effect (through K). It was used in
many association mapping studies and permitted the detection of QTLs in humans, animals and
plants (ZHAO et al. 2007a; HUANG et al. 2010; KANG et al. 2010a; PRICE et al. 2010; ZHANG et
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al.2010; BoucHET et al. 2013; ROMAY et al. 2013). However, one of the main drawbacks of these
structure and relatedness corrections is that it also reduces the number of detectable true positives,
particularly if the trait is correlated to the population structure (LARSSON et al. 2013).Also,
including the tested SNP in the computation of K is expected to decrease power at this SNP
(LISTGARTEN et al. 2012). In order to increase the power of GWAS, some authors therefore
proposed to use only a subset of SNPs as covariates or to estimate genetic similarity (LISTGARTEN et
al. 2012; BERNARDO 2013). SPeeD et al.(2012) proposed to weight the contribution of the SNPs in

the Kinship estimation to increase the accuracy of heritability estimates.

It is particularly important to evaluate the power of panels and statistical approaches to discover
QTLs. Power may be analytically investigated using the non-centrality parameter of the test
statistics. This strategy has first been applied in linkage mapping, where several authors showed
how power is influenced by the size of the population, heritability, the effect captured by the marker
and the allelic frequencies (SOLLER et al. 1976; KNAPP and BRIDGES 1990; REBAI and GOFFINET
1993; CHARCOSSET and GALLAIS 1996). Such analytical approach has also been applied in
association studies in human and animal genetics (SHAM et al. 2000; WANG 2008; PURCELL et al.
2003; TEYSSEDRE et al. 2012). Alternatively, the estimation of power has also been addressed
through simulation studies (see for instance STiICH and MELCHINGER 2009; ERBE et al. 2010;
MACLEOD et al. 2010; BRADBURY et al. 2011; Yu et al. 2006; ZHAO et al. 2007b). We can retain
from these studies that power of association mapping diminishes with structure and relatedness in
addition to the parameters identified in linkage analysis, and that the way of estimating K has an
effect on power (STicH et al. 2008). To our knowledge no study was conducted to compare

analytically the power along the genome in different association mapping designs.

In this study we derived analytically the power at each marker for the classical mixed model
involving relatedness between individuals (Yu et al., 2006). This analytical expression of power
makes it possible to study the effect of different parameters on local power along the genome. We
first used it to compare three diversity panels with different diversity patterns. We highlighted a loss
of power due to the use of the genotypic information both to test marker effect and to estimate K,
and that this was particularly strong in regions of high LD. We therefore evaluated two alternative
estimation strategies of the kinship matrix to increase power in GWAS. In the first one, we used an
estimated K matrix specific to each chromosome: only the markers that are physically unlinked to
the tested SNP are used to estimate K. In the second one, we weighted the contribution of each

marker in the estimation of K by taking into account intra-chromosomic LD. We compared in
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simulations based on true genotypes of maize inbreds the efficiency of the different strategies to

detect QTLs and to control false positives.

MATERIALS AND METHODS

Statistical models for association mapping and power evaluation

Mixed models are now routinely used to control type I error in GWAS (Yu et al. 2006). Relatedness
among individuals is taken into account by considering that the random polygenic effects are not
independent, with a covariance matrix determined by kinship (K, with as many rows and columns
as individuals: N). As K includes information on both population structure and relatedness, it is in

general not useful to consider admixture information as fixed effects covariates (ASTLE and

BALDING 2009). We therefore considered the following statistical model (denoted by My):

Y:1M+XIBI+U+E1
=XB+ U+ E,withX =[1X;] and BT = (u, B))

where Y is the vector of N phenotypes, u is the intercept, 1is a vector of N 1, X; is the vector of N
genotypes at the tested locus (0 and 1 corresponding to homozygotes and 0.5 to heterozygotes), £;

is the additive effect of locus | to be estimated, U ~ N (0, Kagzl) is the vector of random polygenic
effects, agzl being the residual polygenic variance, E ~» N (0, Ic?2) is the vector of remaining residual

effects with variance o2, | is an identity matrix of size equal to the number of individuals (N), U

and E are independent.

Locus effects in this mixed model can be tested using Wald statistics (WALD 1943). In the general
case, a given linear combination of fixed effects LT = 0 (HO hypothesis) can be tested against

LT # 0 (the alternative hypothesis H1) using:
T -1 1 -1 —~
w = (LTB) [LT (x7(K6% +152) ' X) L] (L7B),
where B is a vector of fixed effect estimates, L is a linear combination, 64, and 62 are the REML

estimates of o/ and o

31



- Chapter 1 -
In GWAS we test the particular linear combination: L” g = 5, = Oagainst L 8 = 8, # 0, with
L = (2)if the only fixed effects are the intercept and the marker additive effect. Note that the
approach could be extended to more complex effects such as dominance by adding extra term(s) in
fixed effects. When the variances are known, W follows a y? distribution: x?(v;; NCP = 1) where
v; = rank(X;) = 1 and A is the non-centrality parameter (NCP). The non-centrality parameter is

equal to:

A=p [LT (xT(KaZ + 103)_1)()_1 L]_l B,.
Under HO, = 0 ; whereas under H1, A is positive. Power can thus be determined as the probability
POC(ddi=vy ; NeP=2] > X crie ), A being the NCP and X*.i¢ = X*|adi=v, ; ncP=0; 1—a] the value of the
central y* (1-o) quantile, where o corresponds to the chosen type I error level. The power of the test
increases as the NCP increases. Adepends on the QTL effect £, (the magnitude of departure from
HO0), the marker genotypes and the variance and covariance components. Hence in addition to the

number of individuals, power can be influenced by the marker genotypes, the marker effect (5,), the

heritability (through agzl and ¢2) and the relatedness between individuals (K).

Analytical evaluation of the impact of panel characteristics on power

When genotypic data are available in a given association mapping panel, it is possible to evaluate
analytically power at each marker thanks to the above formula. Consider a panel where N
individuals were genotyped at M markers (SNPs). The potential power at a given marker can be

investigated by setting a QTL effect g, a background genetic variance agzl and a residual variance

o2 to reach a given heritability h2Power at a given marker can then be related to parameters
characterizing the marker in the panel of interest. It is first expected to depend on allele frequencies,
that can be characterized by the Minor Allele Frequency (MAF). Also, according to the analytical

expression of the NCP, power at a marker in My can be influenced by its correlation with the

kinship that reflects both the structure of the panel and the relationships between individuals. It is
thus interesting to relate power at a given marker to its Nei's index of differentiation (Fst) among
genetic groups (NEI, 1973) and to its correlation with the kinship matrix. Let us denote by K_M; the
kinship matrix evaluated from the considered marker | only. To define how power at a given marker
is affected by its correlation to K, one can calculate the correlation between K_M, and K at each
marker. This correlation between local and global kinship is further referred to as CorK. These
statistics (Fst, MAF, CorK and analytical power) can be calculated for each marker in any

association mapping panel.
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In this article, we applied this strategy to three maize panels (see below). We represented the
relationship between MAF, Fst, CorK and local power with the two following approaches. In the
first one, analytical power was represented as level plots considering MAF and Fst as x and y-axes,
with the R function level.plot. The same procedure was applied to MAF and CorK. In the second
approach, cubic smoothing splines were adjusted along the genome to the Fst, CorK and power for
the markers with a MAF above 0.4, using the R function smooth.spline (HASTIE and TIBSHIRANI
1990).

Kinship estimation

In practice the kinship matrix K is unknown and has to be estimated. One classically used estimator

was proposed by AsTLE and BALDING(2009) and is defined as: K_Freq;; = %Zfﬂw
0]

where Gj; and G;j, are the genotypes of individuals i and j at marler | (G;;= 0 or 1 for homozygotes,
0.5 for heterozygotes), p; is the frequency of the allele coded 1, ofis the variance of Gj,
respectively. One problem that might arise from this formula and other classical estimators as the
Identity by State, or the formula of VVanRaden (2008), is that LD between SNPs is not taken into
account. As a result more weight is given in the kinship estimation to the regions of the genome that

carry several markers in strong LD and power may be lower in these regions.

We therefore considered two alternative approaches to limit this effect. In the first one, the kinship
matrix (K_Chr) was estimated with all the markers other than those located on the same
chromosome as the marker being tested. If the markers located on the other chromosomes are
sufficient to reliably estimate relatedness, this method is expected to reasonably control the risk of
detecting false positives and avoids considering in the kinship matrix markers linked with the tested

, Where c is the considered chromosome, L_. is the

: L (Gii=p1)(G,1=p1)
marker: K_Chr;; . = :Zm%

number of markers not located on chromosome c.

In the second approach we used all the markers as estimators of relatedness but we weighted the
contribution of each marker. The kinship estimator K_Freq;; can be understood as follows: each

_ (Giy=p1))(Gji-p1)
- 2
0]

marker | yields an estimator l?iﬂ of the true kinship coefficient kj; between

individuals i and j, that are then averaged over all markers to obtainK_Freq;; = %Zz fciﬂ. This

average would be optimal if all estimators had the same variance, and were independent. In practice
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none of these conditions is satisfied: the error variance of each estimator depends on the MAF of
the marker, and LD between markers generates correlations between markers. As a consequence,
estimators with poor precision (high error variance) will have the same weight as estimators with
high precision. Moreover, m highly correlated estimators will accumulate a weight of m/L without
providing m independent information, i.e. too much weight is attributed to highly correlated

estimators. Alternatively, one may look for the weighted combinationK _LD;; = ¥, wll?iﬂ, that is
the best linear combination of coefficient Eiﬂ, l=1,..,L to estimate k; without bias. Define
Ej; (IAcl-ﬂ) and V;; (lAciﬂ) as the mean and variance of estimator IAcL-ﬂ over all couples of individuals
(i,J) having the same kinship k;;. Note A the covariance matrix between estimators l?l-ﬂ , L.e.

Ay = Covy(kyy, ki), 2= (wq,...,w,)" the vector of weights, and Kj; = (kjjq, ..., ki, )Tthe
vector of marker estimators. Then K_LD; ; satisfies:

min V;; (K_LD, ; Junder constraint E;; (K_LD, ;) = k;;
e ™V, (27K, )under constraint E;; (27 K;;) = k;;

e ™n 0T AQunder constraintQ”E;; (K;;) = k;;

In this formulation the optimal weights may be negative, we added extra constraints to ensure the
positivity of the weights, leading to the following optimization program:

m 0" AQunder constraint2” E;; (K;;) = k;; and w; = 0, for all . (1)

In practice, obtaining the optimal weights requires (i) the knowledge of matrix 4 and (ii) to solve
the optimization problem (1). The exact expression of matrix 4 is unknown, but one can estimate

this matrix from the panel data using the classical moment estimator:

S =~ o n(n-1) =~ = [ =~ = [
Covyj (ki ki) = —— i Xj>i(ky — By (ki Dy — By (kyjy )
The resulting estimated matrix is then plugged into the optimization program (1). Then to solve the
optimization program, one should note that (1) is a quadratic problem with linear constraints, and
therefore can be solved using classical optimization techniques (in this article we used the R

package solve.QP that implements the dual method of GOLDFARB and IDNANI, 1983).

The main limitation of this strategy lies in step (i): when estimating the covariance, one actually
replaces the expectation over all couples having the same kinship k;; by an averaging over all

couples in the panel - assuming implicitly that they all have the same kinship. Even if the kinship
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differs between couples, this weighting increases the contribution of markers with a high diversity
(leading to a high precision) and not highly correlated with other markers. It therefore corrects the

two drawbacks of the naive averaged estimator mentioned earlier.

Let us denote the statistical model for association mapping described above by Mk rreq, Mk chr

and My o with K estimated as K_Freq, K_Chr and K_LD, respectively.

Simulation based evaluation of the impact of the estimation of K on false positive control and
power

The closed form expression of the non-centrality parameter already revealed that kinship affects
power. Comparing the impact of different kinship estimators on power implies to evaluate their
ability to guarantee the expected nominal control of false positives under different hypotheses on
trait genetic determinism. To this end, we simulated traits influenced by L biallelic QTLs (SNPs).In
a first step, QTLs were sampled randomly among the SNPs located on all the chromosomes except
one. The chromosome without QTL (further referred to as "HO-chromosome™) was used to estimate
the false positive rate. All the HO-markers (the markers on the HO-chromosome) were tested with
the above mentioned statistical models for each run of simulation. The efficiency of the different
estimations of K to control false positives was evaluated by comparing expected and observed
quantiles of HO-Pvalues and histograms of HO-Pvalues. In a second step we applied the same
procedure, but now sampling the QTLs among the M SNPs (on all chromosomes). A QTL was
declared detected when the Pvalue of the corresponding SNP in the genetic model was below the
significance threshold. Power of a given model was computed as the number of QTL which were
detected. We also applied a less restrictive definition of QTL detection, considering that a QTL
could be detected by SNPs located near it. To do so, another analysis was conducted in which
markers within a given genetic distance of a QTL were considered H1-markers and the others HO-
markers. The realized false discovery rate (FDR) was defined as the proportion of HO-markers
among the markers declared significant. Power of QTL detection was estimated by considering that
a QTL was detected when at least one of the corresponding H1-markers had a significant Pvalue.
This general method will be exemplified with parameters specific to three maize panels described

below.
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Genetic material and genotyping data

The above mentioned power analyses (analytical evaluation of power and simulation based
evaluation of alternative methods) were applied to three diversity panels of maize. The first panel
(called C-K) was described in CAMUS-KULANDAIVELU et al. (2006). It is composed of 375 inbred
lines covering American and European diversity. It includes Tropical, Dent and Flint lines. The
second and third panels are the Dent and Flint panels of the “Cornfed” project (CF-Dent and CF-
Flint), described in RINCENT et al. (2012). They include lines of the C-K panel and lines derived
from recent breeding schemes. Both are composed of 300 lines. These panels were genotyped with
the 50k SNPs array described in GANAL et al. (2011), as presented in BOUCHET et al. (2013) and
RINCENT et al. (2012). Individuals which had marker missing rate and/or heterozygosity higher than
0.1 and 0.05, respectively, were eliminated. Markers, which had missing rate and/or average
heterozygosity higher than 0.2 and 0.15, respectively, were eliminated. In each panel, few
individuals were highly related. One individual was removed for pairs identical for more than 98%
of the loci. In total 315, 277 and 267 individuals and 44487, 45434, and 44255 markers passed the
genotyping filter criteria for the C-K, CF-Dent and CF-Flint designs, respectively. Missing
genotypes (below 2% in both panels) were imputed with the software BEAGLE (BROWNING and
BROWNING 2009). Panels were all adjusted to 267 individuals in order to compare power for a same
population size. Individuals removed were chosen at random. To avoid the ascertainment bias noted
by GANAL et al. (2011), we only used the markers that were developed by comparing the sequences
of nested association mapping founder lines (PANZEA SNPs, GORE et al. 2009) in the estimation of
admixture and relationship coefficients (29996, 30119 and 29132 markers passed the filter criteria
for the C-K, CF-Dent and CF-Flint lines respectively).

Admixture in the CF-Dent and CF-Flint panels was investigated using the SNP data with the
software ADMIXTURE (ALEXANDER et al. 2009), with a number of groups equal to four,
determined according to the cross-validation procedure presented in ADMIXTURE. For the C-K
panel we used the admixture in five groups estimated by CAMUS-KULANDAIVELU et al. (2006) using
55 SSRs chosen for their broad genome coverage and reproducibility. We estimated the
differentiation index among genetic groups (Fst, NEI, 1973) at each marker using the R package r-
hierfstat (GOUDET 2005).

Finally, the relationship between LD and power along the genome can be empirically investigated

using two different measures of LD. Raw LD can be estimated as the squared correlation between
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allelic doses at two loci (r?). Linkage related LD (denoted by r2K) can be estimated using the
algorithm proposed by MANGIN et al. (2012), which corrects r2 by K_Freq. LD within these panels
(r?), possibly corrected by K_Freq (r2K), was estimated within a sample of 4000 markers regularly

spaced on the physical map.

Specific parameterization

For analytical investigation of power in the three maize panels, the total additive genetic variance

agz was set to 1000, B, was set to 17.9, which corresponds to a QTL explaining 8% of the total

genetic variance if it had a minor allele frequency (MAF) of 0.5, 62 was chosen to get an
heritability of 0.8. Under these hypotheses, analytical power was investigated for an a type I risk
equal to 1,25 10 which led to a risk of 0.05 with a Bonferroni correction on 40 000 tests. We also
considered less stringent threshold corresponding to Bonferroni corrections on 4 000 and 400 tests,
although the number of tests was always the same. Power under these hypotheses was calculated in
R 3.0.0 (R development Core Team, 2013) for each marker.

To estimate kinship with the different formulas presented above, we considered that all individuals
were inbred and we estimated oas p;(1 — p;).For comparing the different methods for kinship
estimation, we simulated traits influenced by 50 or 100 biallelic QTLs (QTL effects follow a
geometric series as in LANDE and THOMPSON (1990), with parameter a set to 0.96 and 0.98 when 50
or 100 QTLs were simulated, respectively). Sign of allelic effect at a given locus was assigned
randomly. Genotypic values of the individuals were calculated as the sum of the allelic effects at

these QTLs. Phenotypes were obtained by adding a residual noise following a normal distribution
with mean 0 and variance equal to: agz (1/h2 — 1), where the heritability h? is set to 0.8.We

performed 100 runs of simulations for each scenario using the R 3.0.0 software (R development
Core Team, 2013).Each chromosome was used ten times as the HO-chromosome.For all
simulations, the statistical tests were made with EMMAX (KANG et al. 2010b) to reduce
computational time, and then with ASREML-R (GILMOUR et al. 2006) on the markers which had a
Pvalue below 0.001 with EMMAX. For Pvalues above 0.001, Pvalues obtained with EMMAX and
ASREML-R were very close and highly correlated. As investigations of the two criteria for QTL
detection (causal factor only or window around it) led to very comparable results with respect to the
main focus of our study, results considering a window around causal factor are therefore presented

as supplementary information (Table S1).
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RESULTS

Diversity and Linkage Disequilibrium in maize panels

Diversity and Linkage Disequilibrium (LD) were investigated within the different panels to provide
elements on their ability to detect QTL (ie. their power) along the genome. On average, the Minor
Alelle Frequency (MAF) was lower in the CF-Flint than in the other panels. Differentiation among
genetic groups (Fst) was higher for CF-Dent (0.15) than for C-K (0.11) and CF-Flint (0.08) (Table
1). The raw LD (r?) and its correction by Kinship (r2K) were variable between and within panels
(Figure 1). LD was on average higher in the dent panel. Within each panel, it was higher for
centromeric than for telomeric regions. High r? values were observed between physically linked
markers but also unlinked markers. This last situation occurred mainly between centromeric regions
(Figure 1A, chromosomes 5, 7, and 8 and Figure 1B, chromosome 7). Inter-chromosomic LD was
reduced to a large extent when considering r2K rather than r2. Taking into account covariance
between individuals (r2K) also reduced intra-chromosomic LD, in particular between distant blocks
with high LD (Figure 1B chromosome 10). Considering r2K instead of r2 globally had the strongest
impact in the CF-Dent panel.

Relationship between MAF, Fst, CorK and power

Above described parametrization of QTL effects was used to investigate the influence of MAF, Fst,
and the correlation between local and global covariance matrices (estimated as CorK_Freq) on
power in the three maize panels. Level plots (Figure 2) showed that the MAF, the Fst, and
CorK_Freq had important effects on power, with very similar graphs in all the panels. The highest
power was achieved when MAF was high and Fst or CorK_Freq was low. When the MAF was
below 0.1, power was close to 0 even if the marker had a low Fst or low CorK_Freq. Some regions
of the level plots were not covered by the available markers (regions in white on Figure 2), in
particular there was no marker with a CorK_Freq below 0.03.Note that the graphs obtained using
K_Chr (or the IBS) were similar to those obtained with K_Freq and led to the same general
conclusions (results not shown).

The parameters related to power (MAF, Fst, CorK_Freq) varied between panels (Table 1, see
above). As a consequence from above described relationships, the mean analytical power of

statistical model M _rreq Varied between the three panels (Tablel), and was higher in the C-K panel

(11.3%) than in the CF-Dent and CF-Flint panels (below 9.0%).
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Variation of analytical power and CorK along chromosomes

Power scans (analytical power at each marker plotted against its physical position) of model

My _rreq revealed an extreme variability along the genome in the three panels (Figure 3). In all

panels, power at a given location ranged from zero to a maximal value, which depended on the
position according to a V-shaped curve (Figures 3, 4). This maximal value was the lowest near
centromeres and the highest near telomeres. This global trend was particularly strong in the CF-
Dent panel and less pronounced in the C-K panel, for which the maximum power was stable for
larger segments. The V-shaped curve also had different local trends for the different chromosomes
for a given panel. For instance in the CF-Flint panel, depletion in power in centromeric region was

longer for chromosome 7 than for chromosome 6 (Figure 3C).

Table 1: Average and standard deviation of analytical power and of the parameters related to power. Analytical power
of model Mk_rreq Was estimated in each panel (reduced to a size of 267 individuals), assuming an heritability of 0.8, a

marker effect that would explain 8% of the background genetic variance if it had a Minor Allele Frequency (MAF) of
0.5, and a type | risk of 0.05 with a Bonferroni correction on 40000 tests.

Power (M rreq) CorK_Freq® CorK_Chr® MAF® Fstd
Average SD Average SD Average SD Average SD Average SD
C-K 0.113 0.090 0.087  0.032 0.083 0.029 0.269 0.132 0.112 0.116
CF-Dent 0.090 0.081 0.103  0.033 0.093 0.030 0.260 0.139 0.146  0.118
CF-Flint 0.088 0.086 0.094 0.032 0.088 0.030 0.240 0.147 0.083  0.076

#Correlation between the kinship matrix estimated with a single marker (K_Freq_M)) and the kinship matrix estimated with all the PANZEA markers
(K_Freq). PCorrelation between the kinship matrix estimated with a single marker (K_Freq_M,) and the kinship matrix estimated with all the PANZEA
markers but those located on the same chromosome.® Minor Allele Frequency. 9 Nei's differentiation index among genetic groups.
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Figurel: Linkage Disequilibrium in the C-K (A), CF-
Dent (B) and CF-Flint (C) panels estimated with 4000
markers sampled according to their physical position.
Raw squared correlations (r?) are represented below the
diagonal, and r2 corrected by kinship (r2K) estimated
as K_Freq are presented above the diagonal. Cells
corresponding to LD below 0.05 are in white. Markers
were ordered according to their physical position.
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Figure 2: Level plots of power of model Mk req in the C-K (A), CF-Dent (B), and CF-Flint (C) panels. Each color
corresponds to a range of power described by the right hand side scale. x axis corresponds to the MAF. y axis is the Fst
(Al, B1, C1) or the correlation between the kinship matrix estimated with the considered marker only and the kinship
matrix estimated with all the PANZEA markers (A2, B2, C2).
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Figure 4: Scan of parameters related to power along the genome in C-K (A), CF-Dent (B), and CF-Flint (C) panels. Fst is
Nei's index of differentiation among genetic groups. CorK_Freq is the correlation between the kinship matrix estimated with
the considered marker only (K_Freq_M)) and the kinship matrix estimated with all the PANZEA markers (K_Freq).
CorK_Chr is the correlation between the kinship matrix estimated with the considered marker only (K_Freq_M)) and the
kinship matrix estimated with all the PANZEA markers but those located on the same chromosome than the tested SNP
(K_Chr). For each parameter a smoothing spline was used along the genome. The orange curve was adjusted to the analytical
power at markers with a MAF above 0.4.
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Power of model Mk req Was in accordance with trends of CorK_Freq along the genome.

Correlation between the covariance matrix at the marker and the global covariance matrix (K_Freq
and K _Chr) was significantly lower for K_Chr than for K_Freq, and particularly in the
pericentromeric regions (Figure4). We observed that peaks of Fst corresponded generally to peaks
of both correlations (CorK_Freq and CorK_Chr) (Figure4B, chromosome 7, and Figures 4A and 4C
chromosome 8). Conversely, pericentromeric regions with low Fst corresponded to a peak of
CorK_Freq and a drop of CorK _Chr (Figure4B, chromosomes 8 and 10, and Figure 4C
chromosome 7). CorK_Freq, CorK_Chr and the difference between these two parameters were
higher in the CF-Dent panel than in the two others.

Simulation based assessment of kinship estimation on false positive control and power

Simulating different genetic models using the genotypes of the three panels allowed the comparison
of the efficiency of the three statistical models to control false positives and to detect QTLs. The
efficiency to control false positives depended on the genetic model (number of QTLs), the panel,

and the estimation procedure for K (Table 2). The distribution of the Pvalues under HO revealed that

My rreq Was conservative (Figure 5A) whereas the alternative models My chr and My 1o gave
distributions closer to the expected one (Figures 5B and 5C). The observed Pvalue quantiles were
closer to the expected Pvalue quantiles with My cne and My (o than with Mk req (Table 2).
My _rreq resulted in fewer small Pvalues than expected under HO, for example in the CF-Dent panel

we observed only half of the Pvalues that were expected to be below 0.001. Observed Pvalue

quantiles with My _cnr and My o were very close to the expected Pvalue quantiles, although also

most of the time below it.
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Figure 5: Histograms of Pvalues of the markers on the HO-chromosome using M _greq(A), Mk _cn(B), and Mk o(C).

This was obtained when simulating 100 QTLs in the CF-Dent panel.

Table 2: Quantiles of the Pvalues under HO in each panel with the three statistical models and considering two different
genetic models (50 or 100 QTLs). We estimated the average and the standard deviation of the 0.001 and 0.01 quantiles
over the 100 runs of simulation.

Panel Nb QTLs Approach Average(%o.) SD(%o)

1 %o quantile

1% quantile

Average(%) SD(%)

50 MK_Freq 0.8 0.7 0.81 0.28
50 Mk_chr 1.0 0.9 0.98 0.35
C-K 50 My 1o 0.9 0.9 0.94 0.32
100 MK Freq 0.8 0.6 0.89 0.25
100 Mi_chr 11 0.8 1.08 0.34
100 Mk 1p 1.0 0.8 1.07 0.34
50 Mk _Freq 0.5 0.5 0.61 0.23
50 Mi_chr 0.8 1.0 0.94 0.53
CF- 50 Mk_Lp 0.7 0.8 0.85 0.34
Dent 100 My freq 0.4 05 0.63 0.30
100 M _chr 0.8 0.9 1.02 0.65
100 Mk Lp 0.9 1.6 0.94 0.42
50 M _Freq 0.6 0.7 0.74 0.25
50 Mk_chr 0.9 0.9 0.99 0.39
CF- 50 Mk_Lp 1.2 11 1.09 0.47
Flint 100 Mg g 05 05 0.73 0.25
100 M _chr 0.7 0.6 0.92 0.39
100 Mk b 1.0 0.7 1.06 0.39
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The second step of the simulations revealed the ability of the different statistical models to detect
QTLs in the different panels. With the usual Bonferroni correction, only few QTLs were detected
(Table 3). In each scenario Mk cn and My o were more powerful than Mk greq. FOr example,
they respectively permitted the detection of 2.1, 1.3 and 1.2 QTL (SNP considered as QTL) on
average in the CF-Dent panel when 50 QTLs were segregating. The difference of power (proportion

of SNP considered as QTL detected) between the different models was more important for less
stringent significance threshold. The difference of power between My cnr and My rreq Was the
highest in the CF-Dent panel. More QTLs were found in the scenario with 50 QTLs than in the

scenario with 100 QTLs. This was expected, QTLs having a lower effect on the trait in the 100 than
in the 50-QTLs scenario.

Table 3: Number of QTLs detected with the three statistical models in each panel at different thresholds assuming
different genetic models (50 or 100 QTLs). We computed the average and the standard deviation of the number of QTLs
detected in the 100 runs of simulation.

T? 10*T 100*T
Panel Nb QTLs Approach Average SD  Average SD  Average SD
50 MK Freq 14 10 25 12 42 16
50 Mk chr 1.7 11 32 15 49 17
50 Mk o 16 11 26 13 43 17

oK 100  Mggeg 03 05 09 08 21 12
100 Myga, 05 07 13 10 28 15

100 Mg, 04 06 11 09 23 14

50  Mwreq 12 10 22 13 36 13

50 Mgaoy 21 14 34 15 53 16

50 Mg, 13 11 25 13 41 14

CEDent 100 Mxreg 03 06 09 09 20 14
100 Mg, 08 10 17 13 34 17

100 Mg 05 07 10 11 24 14

50  Myreq 14 10 24 11 37 12

50  Mgoy 18 12 30 10 45 13

CE-Flint 50 My« 14 09 24 11 40 13

100 Mkreg 03 06 08 0.9 19 11
100 Mgcey 06 08 14 12 28 14
100 Mo 04 07 1.0 11 21 13

# Significance threshold T was set considering a type | risk of 5% with a Bonferroni correction
assuming 40 000 tests.

45



- Chapter 1 -
DISCUSSION AND CONCLUSIONS

Analytical investigation of potential power along the genome with usual model (Mk_Freq)

Power is a key parameter in association mapping, because it indicates how likely the discovery of a
QTL is. We presented a general method based on non centrality parameter to derive analytically
theoretical power at each marker locus in a given panel of individuals. It was applied to three
different association mapping panels. While being adjusted to the same population size, these
different panels had different average power. They also displayed different local patterns of power
along the genome.

Power could be related to three parameters characterizing each marker: its MAF, its differentiation
index among genetic groups (Fst), and the correlation between its individual kinship matrix with
that estimated with all the markers (CorK_Freq when K_Freq is considered). Power at a marker
with a low MAF is limited, even if this marker is orthogonal to structure and kinship (Figures 2, 3).
This effect was highlighted already for linkage studies (SOLLER et al. 1976 and CHARCOSSET and
GALLAIS 1996) and GWAS (LONsSDALE et al. 2013) and can be explained by the fact that when one
of the two alleles is rare, the marker cannot contribute much to the genetic variation. The correlation
between kinship at single markers and the global kinship had a strong negative effect on power
(Figure 2). The Fst among admixture group also had an important effect on local power (Figures 2,

3). This confirmed that admixture is reflected by the kinship matrix, because differentiated regions

had a low power although we used a model with relatedness but no admixture (Mx freq). The level

plots showing analytical power at different MAF and CorK_Freq were very similar in the three
panels (Figure 2 A2, B2, C2), but those showing power at different MAF and Fst differed (Figure 2
Al, Bl and C1). This suggests that group differentiation has different relative contribution to local
Kinship variation in the different panels. At a given pair of MAF and Fst value, power was lower in
the CF-Dent and CF-Flint panels than in the C-K panel, whereas five groups were used in this panel
instead of four in the two others. The C-K panel is composed of highly diverse groups (Tropical,
Dent and Flint lines) and so the admixture matrix captured ancestral population structure but only a
small part of kinship. On the opposite, the CF-Dent and CF-Flint panels are composed of less
heterogeneous material and so the admixture matrix captured more relatedness. Finally, shape of the
level plots (Figure 2) also suggested that the effect of the different parameters affecting power were

not additive. For example Fst and CorK_Freq had a stronger effect on power for markers with
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higher MAF, and MAF had a stronger effect on power for less differentiated markers. These results
show that controlling false positives using the K_Freq model also implies reducing power at
differentiated markers (LARSSON et al. 2013). It is interesting to note that no marker had a
CorK_Freq below 0.03 (Figure 2). To investigate the maximum power that could be reached
theoretically, we generated for each panel a vector of zeros and ones simulating a marker genotype
and applied a simple exchange algorithm until analytical power reached a maximum. These virtual
markers (one for each panel) had analytical power much higher (above 0.8) than the maximal
analytical power of the existing SNPs (below 0.44 in each panel). They had a MAF of 0.5 and a
CorK_Freq value below 0.017. This difference illustrates that the maximum power is strongly

constrained by the evolution process that led to the panels.

Both Fst and CorK_Freq appeared highly variable along the genome in each panel. High
differentiation (Fst) was observed in particular in pericentromeric regions (Figures 3A and 3C,
chromosome 8 and Figure 3B, chromosome 7). Pericentromeric regions are known to be more
structured than telomeric regions (CARNEIRO et al. 2009; FRANCHINI et al. 2010) because of lower
recombination rates. CorK_Freq was also higher in regions of high LD (mostly pericentromeric
regions, see Figures 1 and 4). Beyond the effect of group differentiation, markers in regions of high
LD are indeed correlated to many other SNPs that all contribute to the estimation of K_Freq. These
LD and Fst features led to the observed V-shape analytical power curve along the chromosome,
particularly in the CF-Dent panel in which LD was more extended (Figures 1, 3). This is in good
agreement with published manhattan plots of GWAS results which showed a reduced number of
low Pvalues in the centromeric regions (BOUCHET et al. 2013; LARSSON et al. 2013). In our three
panels, we observed that this problem also arose with other classical estimators of relatedness
(results not shown) such as the IBS estimator or the first estimator provided on page 4416 in
VANRADEN (2008).

As MAF, Fst, LD extent, and consequently CorK_Freq were different in the three panels (Table 1),
average power was highly variable among the three panels (adjusted for the same population size).
Among the three diversity panels, the C-K panel appeared to be the most powerful on average due
to its higher MAF, lesser LD extent and its lower relatedness. It should be noted that this analytical
study assumed that the variance components were known. It was therefore necessary to confirm

these results with simulations.
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Simulation based comparison of type I risk and power of statistical models associated with
different estimations of K

Removing the markers on the same chromosome than the tested one (Mx_cnr) permitted to decrease

the correlation between the kinship at the tested SNP and the global covariance (CorK_Chr in
Figure 4). CorK_Chr remained nevertheless high in structured regions (high Fst), i.e. regions with
important differentiation between genetic groups (Figures 4A and 4C, chromosome 8), which
suggests that K_Chr was efficient to estimate covariance between individuals.

To evaluate models involving different kinship estimators for their ability (i) to control false

positives at nominal levels and (ii) to detect QTLs, we conducted simulations based on the
genotypes of the diversity panels. Using all the markers to estimate kinship matrix (Mg _rreq) led to
an over-correction of the HO-Pvalues (Table 2, Figure 5). This was particularly the case in the panel

with the highest level of LD (CF-Dent). Under HO, the Pvalue distributions of the two alternative

models were much closer to the expected distribution, and revealed that these approaches were also
efficient to control false positives (Figure 5). Results obtained with Mk _cnr showed that molecular

information carried by nine of the ten chromosomes was sufficient to reliably estimate covariance

between individuals to control for false positives.

Knowing that the three estimations of the kinship matrix (K_Freq, K _Chr and K_LD) were

efficient to control false positives, we could compare their power in a second step of simulations.
QTLs were sampled from the ten chromosomes, and power of My freq, My che and M pat
different threshold was evaluated at the SNPs/QTLs. The alternative models were more powerful

than the usual model My rreq (Table 3). In particular estimating the covariance matrix using the

markers on the non tested chromosome (‘Mx _cnr) resulted in higher power in each scenario in each

panel. As expected the gain of power was higher in the panel with more extended LD (CF-Dent).
The gain of power was lower with MMk b, but we suppose that this approach could be improved by
taking into account gene density along the genome, or a priori information on genetic architecture,
and by using a better estimate of the covariance between the marker based estimators when

computing optimal marker weights. Note that further research on the K_LD estimator should also

consider its scalability when applied to very high dimensional datasets.
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To check the stability of these results, when considering that a QTL could be detected by SNPs
located near it, we used another simulation approach, in which SNPs within a genetic window

around the QTL positions were considered as H1-markers and the others as HO-markers. The results

(Table S1) confirmed that at a given realized FDR, the alternative models and in particular My _cnr
were more powerful than the traditional model (Mg rreq). Considering that true discoveries were

within 5 cM of the QTLS, Mk _rreq had a power to detect QTLs of 11%, My cnr 0f 26% and My o
of 19% at a realized FDR of 10%, when 100 QTLs were simulated in the CF-Dent panel.

In conclusion, the derivation of analytical power permitted to highlight which parameters are linked
to power in Association Mapping. In particular the kinship between individuals (K) clearly
influenced the Non Centrality Parameter. Analytical power scan in three diversity panels also

confirmed that the way of estimating K can affect power. In particular, usual model (‘Mx freq ) has a

low power in regions of high LD. We proposed two alternative approaches to recover this gap of
power, and we could show with simulations based on true genotypes that they were more powerful
at given type I risks than usual models.
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ABSTRACT

The high whole plant biomass productivity of maize makes it a potential source of energy in animal
feeding and biofuel production. The variability and the genetic determinism of traits related to
biomass are poorly known. We analyzed two highly diverse panels of Dent and Flint lines
representing diverse complementary heterotic groups for Northern Europe. They were genotyped
with the 50k SNP-array and phenotyped as hybrids (crossed to a tester of the complementary pool)
in a western European field trial network for traits related to flowering time, plant height and
biomass. The molecular information revealed major trends in recent breeding, conducting to
different levels of structure and relatedness in the Dent and Flint panels. This study revealed
important potential genetic progress for biomass production, even at constant precocity. Association
mapping was run by combining genotypes and phenotypes in a mixed model with a random
polygenic effect. This permitted the detection of significant associations, confirming height and
flowering time QTLs found in literature. Biomass yield QTLs were detected in both panels but were
unstable across the environments. Alternative kinship estimator only based on markers unlinked to
the tested SNP increased the number of significant associations by around 40% with a satisfying

control of the false positive rate.
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INTRODUCTION

Maize is together with wheat and rice one of the three main sources of nutritional energy for
humans and is extensively being used in animal feeding, either as grain or whole plant forage. The
high efficiency of its C4 metabolism also makes it a resource for biofuel production, as attested by
the recent development of BioGas in Germany (HERRMANN and RATH 2012; RATH et al. 2013). This
worldwide importance is due to the adaptation to various climatic conditions that maize developed
following its domestication approximately 8700 years ago in the regions of Mexico (MATSUOKA et
al. 2002; REBOURG et al. 2003). It now has the broadest cultivated range of all crops, from the
South of Chile to Canada, from altitudes near sea level to highlands above 3000 m (TENAILLON and
CHARCOSSET 2011). In Europe, maize cultivation was adopted on a broad scale rapidly after the
discovery of America (REBOURG et al. 2003) and a dramatic evolution of varieties occurred with the
development of hybrids following World War 2. Dent lines from Northern American origin proved
at that time highly complementary to flint lines from European origins to combine productivity and
environmental adaptation features for maize cultivation in Northern Europe. These flint x dent
hybrid varieties have proven extremely successful for both grain and silage production and the
reciprocal selection of the two groups increased their differentiation and complementarity.
However, their potential for biomass production remains poorly documented and it is therefore of
high interest to investigate the variability of this trait and the underlying genetic determinism within
these two groups.

Panels of highly diverse materials have proven most useful to investigate the organization of
diversity available for breeding at phenotypic and genotypic levels. They also can lead to the
discovery of genes of interest thanks to increasing availability of molecular markers, which now
makes it possible to get dense molecular polymorphism information on the whole genome.
Genotypic and phenotypic information can indeed be combined to detect QTLs contributing to the
variability of traits of interest in genome-wide association studies (GWAS).This strategy was
successfully used in many species and resulted in the identification of major genes (OzAki et al.
2002; BELO et al. 2007; JoNEs et al. 2008).Highly diverse panels have accumulated numerous
historical recombination events, leading to a low extent of linkage disequilibrium (LD), which is
favorable to finely map QTLs. However, LD in association mapping panels is not only due to
genetic linkage, but can also be caused by population structure, relatedness, drift and selection
(JANNINK and WALSH 2003; FLINT-GARCIA et al. 2003). The contribution of these factors relative to
linkage can be evaluated statistically (MANGIN et al.2012) and proved for instance to be substantial

in grapevine and maize (MANGIN et al. 2012; BoucHET et al. 2013). This component of LD due to
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population structure and relatedness can generate false positives and has thus to be taken into
account in association mapping models to control false positives (EWENS and SPIELMAN 1995;
THORNSBERRY et al. 2001). Once these effects are correctly modeled, only marker-trait associations
due to linkage should be detected. Efficient softwares were developed to infer population structure
using genotypic data (PRITCHARD et al. 2000; ALEXANDER et al. 2009), and several estimators of
relatedness between individuals are available (VANRADEN 2008; AsTLE and BALDING 2009;
RINCENT et al. in press). The estimated admixture (Q) and kinship (K) matrices can be introduced in
the GWAS statistical model to control false positive efficiently (Yu et al. 2006).

The objectives of the present work were (i) to investigate diversity in European and American Dent
and Flint inbred lines, (ii) evaluate variability of traits related to biomass and flowering time and
(iii) detect QTLs for these traits. For this, original Dent and Flint panels were assembled within the
European Cornfed project (RINCENT et al. 2012), which objective was to characterize the variation
of biomass related traits in maize in view of increasing the efficiency of breeding programs
targeting this trait. Flint and Dent represent complementary heterotic groups to create hybrid
varieties adapted to Northern European environmental conditions. These panels include first cycle
lines derived from landraces representing the materials from which these groups were created, and
more recent lines created by public institutes and breeding companies, to cover most diversity
available in European material. All lines were genotyped with a 50k SNPs array (GANAL et al.
2011) and phenotyped per se and as hybrids with a tester line representative of the opposite group in

a field trial network composed of 9 to 11 Western European trials.

MATERIALS AND METHODS

Genetic material and genotyping data

A previous panel (further referred to as "C-K panel™) of 375 lines representing a broad diversity of
European and American materials was successfully used in association genetics in previous studies
(CAMUS-KULANDAIVELU et al., 2006, DucrocQ et al., 2008, BOUCHET et al., 2013). Within the
“CornFed” project we developed two new specific Dent and Flint panels (CF-Dent and CF-Flint)
aiming at analyzing more precisely the two genetic groups of interest for maize hybrid breeding in
Northern Europe, as briefly described in a methodological context by RINCENT et al.(2012). Both
panels are composed of 300 lines aiming at best representing the diversity of these groups and
different generations of genetic materials. These include the first inbred lines created from Open

Pollinated Varieties (OPVs), further referred to as first cycle lines, and more recent lines developed
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by public institutes or, in the case of the dent panel, private companies. The dent panel (CF-Dent,
see list in table S2) includes 124 lines from the C-K panel (CAMuUS-KULANDAIVELU et al. 2006)
determined as belonging to the "Corn Belt Dent" and "Stiff Stalk" groups with an admixture
coefficient above 0.5, 58 from the University of Hohenheim, 25 from CSIC, 12 from CIAM, 58
from the ex-PVP (ex Plant Variety Protection) lines (Mikel 2006; Nelson et al. 2008), and 23 recent
lines from INRA. Similarly the Flint panel (CF-Flint, see list in table S3) includes 118 lines of the
C-K panel determined as belonging to the European Flint and Northern Flint groups with an
admixture coefficient above 0.5. These were complemented by lines derived from breeding
programs of the following institutes:70 from the University of Hohenheim (RIEDELSHEIMER et al.
2012), 56 from the Mision Bioldgica de Galicia and the Estacion Experimental de Aula Dei (CSIC),
23 from the Centro Investigacions Agrarias de Mabegondo (CIAM), 23 from the Eidgendssische
Technische Hochschule Zurich (ETHZ) and 10 recent lines from the Institut National de la
Recherche Agronomique (INRA).Four lines (FP1, C105, F816 and EM1027) attributed by
STRUCTURE to both Dent and Flint groups with probabilities close to 0.5 in CAMUS-
KULANDAIVELU et al. (2006) were assigned to both CF-Dent and CF-Flint panels.

These panels were genotyped with the 50k SNPs array described in GANAL et al. (2011), as
presented in RINCENT et al. (2012). Individuals which had marker missing rate and/or
heterozygosity higher than 0.1 and 0.05, respectively, were eliminated. Markers which had missing
rate and/or average heterozygosity higher than 0.2 and 0.15, respectively, were eliminated. In each
panel, few individuals were highly related. One individual was removed for pairs identical for more
than 98% of the loci. Three Dent lines and nine Flint lines were eliminated for this reason. Missing
genotypes (below 2% in both panels) were imputed with the software BEAGLE (BROWNING and
BROWNING 2009). In total 276 and 259 phenotyped individuals passed the genotyping filters for the
CF-Dent and CF-Flint panels, respectively (tables S2 and S3).The filtered markers with a Minor
Allele Frequency (MAF) above 0.05 were tested for association (42214 and 39076 markers for the
CF-Dent and CF-Flint panels, respectively).

Diversity analysis

To avoid the ascertainment bias noted by GANAL et al. (2011), we only used the markers that were
developed by comparing the sequences of nested association mapping founder lines (PANZEA
SNPs, GORE et al. 2009) in the estimation of admixture and kinship coefficients. In total 29418 and
28513markers which had a MAF above 0.01were considered for the diversity analysis in the CF-
Dent and CF-Flint lines respectively. Genotypic data of each panel were organized as G matrices
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with N rows and L columns, N and L being the panel size and number of SNP loci respectively.
Genotype of individual i at marker k (Gijx) was coded as 1, 0.5 or 0 for homozygote for an
arbitrarily chosen allele, heterozygote and the other homozygote, respectively.

Kinship was estimated following ASTLE AND BALDING (2009) as:

1wop  (Gii—p1)(Gji—p1)

K _Freq;; = zZz:l I where p,; is the frequency of the allele coded 1 of PANZEA
=Pl

marker [ in the panel of interest. Note that contrary to the Identity By State (IBS, the proportion of
shared alleles) estimation, this formula gives a higher weight to loci with a low diversity. Also,
similarity is higher if two individuals share rare alleles than common alleles.

Admixture was estimated in the CF-Dent and CF-Flint panels using the software ADMIXTURE
(ALEXANDER et al. 2009) with a number of groups varying from 2 to 8. This software is based on
the same statistical model as STRUCTURE (PRITCHARD et al. 2000; FALUSH et al. 2003) but uses a
fast numerical optimization algorithm, which permits to considerably reduce computational time.
The groups identified by the software were interpreted using the available pedigree information.
Differentiation among genetic groups (Fst, NEI 1973) was estimated at each locus using r-hierfstat
(GouDET 2005) for each number of groups Q (from 2 to 8), using the individuals attributed to one
subgroup with a probability above 0.7 (these individuals are then considered as representative of the
corresponding subgroup). Diversity(Expected heterozygosity, He) was also estimated at each
marker as 2p;(1-p;). A Principal Coordinates Analysis (PCoA) was performed on the genetic
distance matrices (GOWER 1966), estimated as 1y y — K_Freq , where 1 y is a matrix of ones of
the same size as K_Freq. We also represented each panel by a network, in which two individuals
were linked when their relationship coefficient was above 0.2, unlinked otherwise. For this, the
genomic relationship matrix was transformed in a matrix of booleans indicating if the coefficients
were above 0.2 or not. These networks were drawn with a Fruchterman and Reingold's force-
directed algorithm (FRUCHTERMAN and REINGOLD, 1991) with the package « network » in R 3.0.0

(R development Core Team, 2013).

Linkage Disequilibrium (LD)

To estimate the minimum number of markers needed to cover the genome, we estimated intra-
chromosomic LD using all the markers. LD was first estimated as the squared correlation between
the allelic doses at two markers (denoted by r2) located on the same chromosome (HiLL and
ROBERTSON 1968). As kinship has to be taken into account in the GWAS model to control false
positives, we need to take it into account to estimate the number of markers required to cover the
genome. For this reason, the approach of MANGIN et al. (2012) was used to correct for kinship and
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estimate the part of LD only due to linkage (r?K). To visualize the local variation of LD, r2K was
averaged along the genome using a sliding window of 4 Mbp. This was represented on a graph
together with marker diversity (He) and differentiation (Fst) after adjusting cubic smoothing splines
along the genome using the R function smooth.spline (HASTIE and T1BSHIRANI, 1990).

Genetic distances between loci were taken from the map of GANAL et al. (2011) based on the cross
F2xF252. Unmapped markers were positioned according to the local ratio between physical and
genetic distances. The variation of LD with the genetic distances on each chromosome was adjusted
to the model of HiLL and WEIR (1988), using only the pair of markers separated by less than 4 cM.
We estimated the LD decay for each chromosome as the abscissa of the intersection between the
fitted curve and the horizontal line y = 0.1. Knowing the length of each chromosome (in cM) we
could estimate the minimum number of markers required on each chromosome to get an average r?

or r2K of 0.1 between each pair of adjacent markers.

Phenotypic data

The Flint and Dent lines were respectively crossed to a Dent (F353) and a Flint (UHO0OQ7) tester to
produce hybrid progenies for phenotypic evaluation. These two lines were representative of
advanced materials within their respective group. The two hybrid panels were evaluated for
flowering and biomass production related traits. Two separate experiments were conducted for the
Dent and Flint hybrids, with five locations in 2010, and respectively 6 and 5 locations in 2011.
Within each panel, the hybrids were divided into two groups of precocity and each group was
evaluated in a different block. A small number of randomly chosen entries was replicated within
block (18 entries) and across blocks (18 entries) to estimate experimental error and block effects.
Male and Female flowering time, plant height (PLHT), dry matter content at harvest (DMC) and
dry matter yield (DMY) were registered for each plot. Male and female flowering time were
converted into growing degree days in base 6°C, using the mean daily air temperature measured at
each location (these measures were respectively denoted by Tass GDD6, Silk_GDDG6). The
Anthesis to Silking Interval (ASI_GDD6) was obtained by subtracting Tass GDD6 from
Silk_GDD6. DMC and DMY were observed at only nine of the ten trials for the Flint panel. DMC
and DMY were corrected by flowering precocity (DMCcorr and DMYcorr) by regressing the raw
data on Silk_GDD®6 for each block for DMC or for each trial for DMY.

DMCyjyy = p+ ay X Silk_GDD6jy; + Eyjy and  DMCcorryy = Ej

PN
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with i, j, k and | the indices indicating respectively the genotype, the trial, the block and the
repetition in the block, u is the intercept, a;and «; are the trial specific regression coefficients on
silking for DMC and DMY, respectively.
Outlier plots with obviously extreme phenotypes were excluded from the study (less than 2.5% of
the observations were removed in both panels).Least-squares means of genotypes over the global
network were calculated with the GLM procedure (SAS Institute, 2008) by adjusting for block and
trial effects. DMY adjusted means were not corrected by block effects. Such a correction would
indeed rely on the performances of the genotypes common to the two blocks, which are likely to be
affected by competition effects (early genotypes being penalized in the "late™ block and late
genotypes favored in the "early block™). Considering the important difference of residual variance
among trials, we took heteroscedasticity into account by estimating a residual variance for each
trial. For all the traits except DMY and DMY corr, weighted least squares were computed using the
following model:
Yije = o+ G+ T, + T(B)jx + Ejjiq, With Eyjp ™ N(O,ajz), and for DMY and DMYcorr with the
model: Y = u+ G +T; + Ejjjy, With Eyj ™ N(O,ajz), where Y is the phenotype of the
repetition | of genotype i in block k of trial j, i is the global mean, G; is the fixed genotype effect of
individual i, T; is the effect of trial j, and T'(B);y is the effect of block k within trial j.
Trait heritability was estimated at the level of the experimental design. For traits other than DMY
and DMYcorr, variance components of heritability were estimated in two steps. In a first step,
genotypes were considered as fixed effect in order to get block effect estimates based only on the
between block repetitions.

Vi = u+ Gy +T; + Bygy + Eyye
In a second step, phenotypes were corrected by block effects and were analyzed considering
genotype and genotype X trial effects as random:

Yju — Brgy = 1+ G; + T + GxT; + E;.,

where GXT;; is the random interaction effect between genotype i an trial j.
For DMY and DMYcorr, variance components of heritability were estimated in one step only to
prevent confounding block effects with competition between early and late lines:

Yijru = 1+ G +T; + GxT;; + E;
o

2

Heritabilities were then estimated as: h* = , Where agz,aez and g, are the variance

05 +Uez/r+a§xt /L
estimates of the random effects G;, E;; and GxT;;, respectively. L is the mean number of

environments, and r is the average number of repetitions. We also computed adjusted means and
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heritabilities for each trial by simplifying accordingly above described statistical models.
The lines were also evaluated per se for Tass_ GDD6, Silk_GDD6 (Dent and Flint lines) and PLHT
(only the Flint lines). The Dent and Flint lines were evaluated in Saint-Martin de Hinx and Gif-sur-
Yvette (France), respectively. Per se least-squares genotype means were calculated with the GLM
procedure by adjusting for block effect. Variances of the per se experiment were estimated with the

same mixed model used to estimate heritabilities at the trial level in the hybrid experiments.

Phenotypic characterization of the genetic groups within each panel

Genetic groups defined by admixture were compared within each panel for their phenotypic
performance by estimating the genetic average of each group (denoted by p,) using the following
model:

Y, = Zf;:l tqFiq +E; , where Y; is the adjusted mean of individual i, F;, is the admixture

q
coefficient of individual i in group g, Ngq is the number of groups. No=8 was considered for both

panels based on the results of admixture.

Statistical model for association mapping

Mixed models are classically used to detect QTLs while controlling false positive rate in GWAS
(Yu et al. 2006). Relatedness among individuals is taken into account by considering that the
random polygenic effects are not independent, with a covariance matrix determined by K. A fixed
structure effect (associated to a structure matrix Q) can also be included if the dataset is highly
structured. Comparison of Pvalues obtained with different (Q+K) models revealed that K was
sufficient to control both structure and relatedness (fig. S1).

We tested each SNP with a MAF above 0.05 (42214 and 39076 SNPs in the CF-Dent and CF-Flint
panels, respectively) in the following model: Y = X + U + E, where Y is the vector of phenotypes
(adjusted means of the per se performances, or of the hybrid performances at one trial or in the
whole trial network),X includes a vector of 1 and the genotypes at the tested marker (coded as 0, 0.5
or 1 as mentioned above), 8 includes the intercept and the additive effect of the tested marker (5;),

defined as the difference between the two homozygous genotypes, U ~ N (0, K. agzl) is the vector of
random polygenic effects,K being the kinship estimate andagzl the residual polygenic variance,

E ~» N(0,1.02) is the vector of remaining residual effects with variance a2, | is an identity matrix
of size equal to the number of individuals (N), U and E are independent. We used two different
estimates of K in the model: K_Freq as presented above, and K_Chr (RINCENT et al. 2014) which is
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computed only with the markers physically unlinked to the tested SNP:

) , Where c is the considered chromosome, L_, is the number of
A

1
K Chry; . = :Zzec

markers not located on chromosome c. This second estimator was developed to take into account
the fact that including markers in high LD with the tested SNP in the kinship estimation decreased
power (LISTGARTEN 2012, RINCENT et al. 2014). Each marker was tested for association with the
different traits using a Wald test (Wald 1943) in ASReml-R (GILMOUR et al. 2006). The scripts were
written in R 3.0.0 (R development Core Team 2013). The statistical significance threshold was set
to 0.05/Ms, which corresponds to a Bonferroni correction on Mg tests, M being the number of
independent tests estimated as in LI and Ji (2005). This procedure evaluated 3638 and 3527
independent tests in the CF-Dent and CF-Flint panels respectively, which led to a -log;o(Pvalue)
threshold of 4.9 in both panels. Significant SNPs separated by less than 100 kb were considered as a

single QTL for the interpretation of the results.

RESULTS

Diversity and structure analysis

The histograms of the Minor Allele Frequencies (MAF) of the polymorphic PANZEA markers
showed a slight deficit in rare alleles in the CF-Dent panel and a slight excess in the CF-Flint panel,
compared to a uniform distribution (Fig. 1). This trend was consistent with the higher proportion of
monomorphic PANZEA markers observed for the most typical lines (admixture above 0.95 at
No=8) of the Flint group than for those of the Dent group (18% and 15% respectively). MAF was
on average slightly higher in the CF-Dent (0.25) than in the CF-Flint panel (0.24), which resulted in
a lower index of diversity (Nei, 1978) in the Flint than in the Dent panel (0.36 and 0.37,
respectively). Locus diversity He was variable along the genome (Fig. 2), with generally lower

values in centromeric regions.

3 A
Figure 1: Histograms of the Minor Allele
: ‘ Frequencies of the polymorphic PANZEA markers in
B the CF-Dent (A) and CF-Flint (B) panels.
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The cross-validation criterion proposed by ADMIXTURE suggested the presence of at least 4 main
groups in both panels, and the criterion always improved with the number of groups (results not
shown). For an expected number of genetic groups comprised between 2 and 8, all the subgroups
identified by ADMIXTURE were interpretable in terms of pedigree and/or geographical origins.
The genetic groups were composed of lines sharing a common recent ancestor (ex. F252), or a
common ancestral origin (ex. Northern Flint). We noted that groups at level Ng could generally be
related to groups at level Ngo+1 by the subdivision of one subgroup into two (see Fig. S2 for an
empirical synthesis). For a same number of groups, the differentiation among groups was higher in
the CF-Dent than in the CF-Flint panel (Table 1). The Fst over the genome increased with the
number of groups in both panels, but it reached a plateau at 7 in the CF-Flint panel. When
considering four groups, Fst was variable along the genome (Fig. 2), in particular peaks of Fst were
clearly visible in the CF-Dent panel (Chromosomes 7 and 10) and in the CF-Flint panel

(Chromosome 8).
Table 1: Differenciation index among the genetic groups (Fst) estimated with hierfstat, for different number of groups
varying from 2 to 8. Lines were attributed to a given group if their admixture was above a threshold of 0.7)
No=2 No=3 Ng=4 Ng=5 Ng=6 No=7 Ny=8
CF-Dent 0.07 015 024 026 030 032 035
CF-Flint  0.07 0.13 0.15 0.18 0.21 0.23 0.22
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Figure 2: Differentiation among groups (Fst, estimated at Q=4), diversity (He) and Linkage Disequilibrium along

the genome (physical distance in bp) in the CF-Dent (A) and CF-Flint (B) panels. For each parameter a cubic

smoothing spline was adjusted along the genome. Centromere limits, Vgtl and Vgt2 are located by blue, pink and 69
purple lines, respectively.
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The two first axes of the PCoA explained 16.1% and 15.7% of the variability in the CF-Dent and
CF-Flint panels, respectively (Fig. 3). The different groups identified by ADMIXTURE were
clearly identifiable on the PCoA graphs. The first axis separated the lodent from the non lodent
lines in the CF-Dent panel, and the Northern Flint from the other Flint lines in the CF-Flint panel.
Note that extreme positions along the axes were observed for the well known key founders of these
groups (eg. Ph207 for lodent, B73 for Stiff Stalk, Mo17 for Lancaster, D105 for Northern Flint).

Network representations of the CF-Dent and the CF-Flint panels revealed clusters of related
individuals and isolated lines (Fig. 3). The shape of the network was different in the two panels: the
Dent panel was composed of isolated lines and few clusters of related individuals. The network of
the Flint panel also revealed clusters of related individuals but was much looser than the network of
the CF-Dent panel. Groups identified with ADMIXTURE at Nq=4 were in good agreement with the
network visualization. In each panel, one of the four groups (called "Others" in Fig. 3) was
composed of more heterogeneous material including many 1% cycle lines, and appeared fragmented

in the network.
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Figure 3: PCoA (Al and B1) and network (A2 and B2) representations of the CF-Dent (A1 and A2) and CF-Flint
(B1 and B2) panels. Both representation are based on the covariance matrix K_Freq. The most representative
individuals of each subgroup at No=4 (admixture above 0.7) were colored. Few key individuals are indicated in
each panel (and numbered from 1 to 6 in CF-Dent and from 7 t010 in CF-Flint). In the network representation,
individuals are linked if there covariance is above 0.2, unlinked otherwise. In these networks, distances are not
informative.
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Linkage disequilibrium

The LD was on average more extended in the CF-Dent than in the CF-Flint panel (0.21 and 0.12cM
to reach an r2 of 0.1 on average over all chromosomes, respectively, see Table 2). Inter-
chromosomal LD was observed in both panels (fig. S3), particularly between centromeric regions.
When considering physical distances, LD extent was highly variable between chromosomes and
along chromosomes (Fig. 2), being more extended in centromeric regions. Taking relatedness into
account substantially reduced the extent of LD in both panels, particularly in the CF-Dent panel
(Table 2), and considerably reduced inter-chromosomic LD (fig. S3). For intra-chromosomic LD,
the decrease observed when considering relatedness was particularly strong for chromosomes 3 and
8 in both panels, and chromosomes 4 and 7 in the CF-Dent panel only (Table 2). The chromosomes
3, 4 and 8 in the CF-Dent panel had a more extended LD (r?K) than the others (Table 2). In the CF-
Flint panel, all the chromosomes displayed similar r?K except chromosome 8 for which LD was
more extended (0.14 cM to reach a r2K of 0.1 for chromosome 8, only 0.09 to 0.10 cM for the other
chromosomes). Knowing the length of the chromosomes (in cM), these statistics allowed the
estimation of the minimum number of markers required to cover the genome (assuming evenly
spaced markers on the genetic map): more markers are needed in the CF-Flint (24387) than in the

CF-Dent panel (19000) to get a r2K of 0.1 between evenly spaced adjacent markers (Table 2).

Table 2: Extent of Linkage Disequilibrium and number of markers needed to reach an average r2 or r2K of 0.1 for each

chromosome.
CF-Dent CF-Flint
r2 rzK r2 rzK
Chrom. rzextent (cM)* N markers® r2K extent (cM)®  N. markers” r2 extent (cM)?®  N. markers® r2K extent (cM)® N markers®
1 0.12 2740 0.09 3605 0.09 3636 0.09 3841
2 0.10 2461 0.09 2715 0.09 2702 0.09 2838
3 0.32 786 0.16 1572 0.16 1441 0.10 2578
4 0.27 853 0.18 1299 0.10 2209 0.09 2497
5 0.20 1179 0.13 1749 0.10 2390 0.09 2526
6 0.20 968 0.14 1332 0.10 1924 0.09 2037
7 0.28 741 0.11 1877 0.10 2086 0.09 2299
8 0.25 937 0.18 1349 0.23 1008 0.14 1736
9 0.19 993 0.11 1725 0.10 1924 0.09 2113
10 0.19 892 0.10 1778 0.10 1761 0.09 1923
Total 12552 19000 21081 24387

The genetic position of the markers was derived from the genetic map LHRE (Ganal et al. (2011). ® genetic distance (in cM) to reach r2 or r2K equal
to 0.1, after fitting Hill and Weir model. r2 and r2K calculated with the R package LDcorSV. ® Number of markers required to reach an average r2 of

0.1 between adjacent markers.
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Table 3: Variances in the hybrid experimental design. The different traits are male (Tass_GDD®6), female flowering time
(Silk_GDD6), Anthesis To Silking Interval (ASI_GDD®6) expressed in growing degree day in base 6°C, plant height
(PLHT, cm), Dry Matter Content (DMC, %), Dry Matter Content (DMY, t/ha). DMCcorr and DMY corr are the DMC
and DMY corrected by Silk_GDD6.

CF-Dent panel
Tass_GDD6 Silk_ GDD6 ASI_GDD6 PLHT DMC DMCcorr DMY DMYcorr

Genot. variance 1322.3 1515.0 68.9 1331 103 2.5 2.0 15

Trial TrialxG variance 295.7 436.9 87.0 51.7 36 2.6 1.9 1.6
network Resid. variance 3245 375.0 218.7 129.7 51 51 3.3 35
Nb of trial 11 11 11 10 11 11 11 11
Heritability 0.96 0.96 0.73 0.89 0.93 0.80 0.82 0.78

Heritability per trial
Mons 2010 0.77 0.84 0.58 0.62 0.81 0.42 0.54 0.57
Pontevedra 2010 0.89 0.90 0.50 0.63 0.58 0.39 0.19 0.06
Coruna 2010 0.81 0.77 0.31 . 0.71 0.47 0.65 0.51
Roggestein 2010 0.88 0.92 0.69 0.86 0.89 0.52 0.58 0.58
Einbeck 2010 0.92 0.92 0.43 0.80 0.89 0.82 0.73 0.64
Trial Mons 2011 late 0.92 0.90 0.43 0.47 0.86 0.46 0.79 0.77
Moulon 2011 0.88 0.79 0.27 0.88 0.63 0.48 0.55 0.49
Mons 2011 early 0.74 0.66 0.29 0.64 0.69 0.35 0.67 0.59
Pontevedra 2011 0.80 0.87 0.31 0.33 0.63 0.32 0.26 0.10
Coruna 2011 0.76 0.77 0.31 0.52 0.78 0.68 0.58 0.44
Pocking 2011 0.83 0.82 0.38 041 0.84 0.65 0.60 0.58
CF-Flint panel

Genot. variance 1623.5 1558.6 53.5 193.9 6.8 2.2 1.9 14

. TrialxG variance 181.2 143.5 74.5 116.0 45 33 1.8 15
neTt\r/\I/E:)Irk Residual variance 345.4 363.7 218.9 196.3 6.5 6.6 38 42

Nb of trial 10 10 9 9 9 9 9 9
Heritability 0.97 0.97 0.65 0.86 0.86 0.69 0.76 0.71

Heritability per trial

Mons 2010 0.69 0.78 0.24 0.65 . . . .
Pontevedra 2010 0.88 0.84 0.34 0.73 0.60 0.47 0.38 0.29
Coruna 2010 0.90 0.84 0.47 . 0.47 041 0.45 0.31
Roggestein 2010 0.92 0.90 0.74 0.71 0.75 0.66 0.41 0.41
Trial Einbeck 2010 0.90 0.94 0.36 0.78 0.82 0.61 0.56 0.47
Moulon 2011 0.83 0.87 0.43 0.50 0.47 0.38 0.74 0.71
Ploudaniel 2011 0.88 0.78 . 0.87 0.70 0.62 0.61 0.42
Pontevedra 2011 0.91 0.88 0.58 0.51 0.35 0.20 0.35 0.32
Coruna 2011 0.82 0.73 0.55 0.59 0.74 0.50 0.56 0.39
Pocking 2011 0.82 0.77 0.00 0.85 0.78 0.66 0.62 0.62

Table 4: Variances in the per se experimental design (Dent panel, one trial), and correlation between the per se and the
hybrid adjusted means (Corr Hyb/PerSe).

CF-Dent CF-Flint
Tass_ GDD6 Silk GDD6 ASI_GDD6  Tass GDD6 Silk GDD6 ASI_GDD6 PLHT
Genot. Variance 7382 8361 433 10440 8666 653 728.3
Residual variance 604 429 223 1186 461 1118 39.4
heritability 0.93 0.96 0.68 0.91 0.96 0.40 0.96
Corr Hyb/PerSe 0.85 0.87 0.43 0.68 0.77 0.22 0.58
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Phenotypic variation

We observed a high variability for all the traits in both panels and in both hybrid and per se
evaluations (Tables 3 and S1), with for instance least-squares means of DMY of the hybrids over
the trial network varying between 11 and 20 t/ha in both panels. High heritabilities were observed at
the trial network level (over 0.73 and 0.65 in the CF-Dent and CF-Flint panels, respectively). For
most of the traits, heritability was higher in the CF-Dent than in the CF-Flint panel. This was related
to higher residual variances in the CF-Flint panel. Tass_GDD6 and Silk_GDD6 were the most
heritable traits (0.96 and 0.97 in the CF-Dent and CF-Flint panels respectively). ASI_GDD6 and
yield traits (DMC, DMCcorr, DMY and DMYcorr) were the less heritable traits. The lowest
heritability was 0.65 for ASI_GDD6 in the CF-Flint panel. The heritabilities of the per se
evaluations were close to the heritabilities of the hybrid trial network (Table 4), although inbred
lines were evaluated at only one trial. This was due to much higher genetic variances in the per se
evaluation (up to 6.4 times higher). The correlation between the hybrid and the per se adjusted
means were quite high for Tass_ GDD6 and Silk_GDD6 (between 0.68 and 0.87), but lower for
ASI_GDD6 (between 0.22 and 0.43). These correlations were higher in the CF-Dent than in the CF-
Flint panels for the three traits (Table 4).

Phenotypic characterization of the genetic groups within each panel

For hybrid performances, we observed differences between the genetic groups identified within the
two panels (Adjusted R? were between 0.11 and 0.47 in CF-Dent and between 0.05 and 0.41 in CF-
Flint when considering 8 groups, Table 5). In the CF-Dent panel, the lines related to UH_4068 or to
F252 displayed the earliest flowering time and the highest DMC and DMCcorr (Table 5). The
Lancaster and Stiff Stalk groups displayed the latest flowering time and were also the most
productive (DMY of up to 17.6 t/ha). In the CF-Flint panel, the Lacaune (Fv7 related), the Northern
Flints, and the Hohenheim Flints displayed the earliest flowering time and the the highest DMC and
DMCcorr. Groups from southern Europe (related to CIAM Aranga and descent from Italian Open
Pollinated Varieties (OPV) or from other non Northern Flints introductions into Europe) displayed
the latest flowering. The lines related to CIAM Aranga, to UHF047 or to Fv7 (Lacaune) were the
most productive when crossed to the Dent tester (DMY of up to 16.6 t/ha). Despite the negative
correlation between flowering precocity and productivity in both panels (results not shown), we
could observe different levels of productivity for a same precocity in some cases. For example lines
related to B73 and those related to O0h43 both displayed late flowering but the first group was more
productive. In the Flint panel, the group "CIAM Aranga and EC18 related" was by far the most
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productive, although earlier than other groups. We observed that the three Flint groups which had
the highest contribution in first cycle lines, namely Italian OPVs, Pyrenean and NF, were the less
productive, with DMY below 15 t/ha (Table 5). A similar trend was found for dents, with most first
cycle lines grouped in the "Minnesotal3" group, which displayed the lowest value for DMYcorr.
We also noted substantial variation within genetic groups (see for example lodent and Italian OPVs
in tables S2 and S3, respectively), consistent with the limited proportion of variance explained by
admixture for all the traits. Within a given group, the most typical lines (admixture above 0.98)
could differ by up to 5 t/ha (e.g. non admixed individuals of the "UH_F047 family™" group ranged
from 12.7 to 17.7 t/ha, table S3). A formal analysis of genetic gain over breeding generations could
not be conducted due to the complexity of the pedigrees but some interesting trends could be noted.
For instance within the Ph207 group, most lines derived from Ph207 founder appear superior to it in

terms of performance (table S2).

Table 5: Characterization of the different genetic groups at Q=8 in the CF-Dent and CF-Flint panels. The group means
of each trait were obtained by regressing the adjusted means on the admixture coefficients. The different traits are male
(Tass_GDD®6), female flowering time (Silk_GDD®), Anthesis To Silking Interval (ASI_GDD®6) expressed in growing
degree day in base 6°C, plant height (PLHT, cm), Dry Matter Content (DMC, %), Dry Matter Yield (DMY, t/ha).
DMCcorr and DMY corr are the DMC and DMY corrected by Silk_GDD6.

Tass_  Silk_ ASI_

Genetic groups Frequence GDD6  GDD6  GDD6 DMC DMY PLHT DMCcorr DMYcorr
Stiff Stalk (B73 type) 0.07 906 916 10 319 17.5 267 -1.2 1.4
Lancaster (MO17 type) 0.09 940 963 21 30.1 17.6 273 -1.0 1.0
UH_4068 family (mostly lodent at K=3) 0.09 854 866 12 38.2 16.1 253 2.0 0.5
CF- lodent (Ph207 type) 0.15 870 887 18 36.1 16.1 252 1.0 0.3
Dent Stiff Stalk (B14 type) 0.12 913 927 13 33.0 17.3 263 0.2 11
Minnesotal3 (Wf9, A3 type) 0.27 890 916 25 32.6 15.0 253 -0.9 -1.1
Lancaster (OH43 type) 0.09 903 920 18 314 16.1 254 -1.5 -0.1
F252 family 0.11 840 853 15 39.1 14.7 241 21 -0.8
Adj. R2? 0.33 0.33 0.13 047 0.23 0.20 0.34 0.23

Hohenheim Flint (D171 type, from

. 0.13 848 876 21 33.7 14.7 247 11 0.1
composite)
CF- UH_F047 family 0.10 867 893 20 323 15.2 257 0.3 0.3
Flint Lacaune (Fv7 type) 0.11 843 874 24 335 15.4 239 0.8 0.7
CIAM Aranga and EC18 related 0.06 899 931 22 30.6 16.6 258 0.0 13
Descent from italian OPVs (numerous 1st
0.09 912 942 21 29.9 149 257 -0.3 -0.5
cycles)
Descent from non NF introductions in
0.17 952 984 21 28.2 15.8 270 -04 -0.2
Europe (Spanish and others)
Pyrenean (Numerous 1st cycle) 0.16 876 908 26 30.7 14.7 250 -0.8 -0.3
NF (numerous 1st cycles) 0.18 855 891 27 32.2 14.5 253 0.0 -0.4
Adj. R2? 0.38 0.41 0.05 0.27 0.06 0.12 0.06 0.07

# Adjusted R2 of the regression on the admixture at No=8.
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Association mapping results

The complete lists of significant SNPs are presented in tables S4 and S5, and the most significant
associations (-log(Pvalue) above 5) are summarized in tables 7 and 8. The highest -log(Pvalue)
were 9.98 on Chromosome 8 in CF-Dent and 6.71 on chromosome 1 in the CF-Flint panel,
corresponding both to associations with flowering trait (Tass_GDD®6 or Silk_GDD6).

Regarding the two statistical methods which were used, both kinship estimators (K_Freq and
K_Chr) appeared efficient to control false positive rate, as revealed by QQ-plots (Fig. S1). At the
chosen Bonferroni threshold, the kinship estimator K_Chr permitted the discovery of more SNPs
than K_Freq for all the traits in both panel, at the trial or at the network level except for DMYcorr
in the CF-Flint panel (Table 6). K_Chr permitted the discovery of 62 additional SNPs in the CF-
Dent panel, and 15 in the CF-Flint panel (11 and 7 at the network level, corresponding to an
increase of 41% and 39% in the CF-Dent and CF-Flint panels, respectively). Only 1 and 3 SNPs
were identified with K_Freq but not with K_Chr in the CF-Dent and CF-Flint panels, respectively.

Table 6: Statistics on the significant SNPs and QTLs in the CF-Dent and CF-Flint panels evaluated on tester.

Estimation of K Tass_GDD6 Silk GDD6 ASI_GDD6 PLHT DMC DMCcorr DMY DMYcorr sum

Asso_network? K_Freq 12 8 0 2 3 0 1 1 27
Asso_network K_Chr 16 10 0 4 5 1 1 1 38
Asso_trials” K_Freq 35 27 22 12 14 5 48 33 196
CF-Dent Asso_trials K_Chr 45 39 26 14 23 8 56 47 258
Asso_per_trial® K_Freq 6.18 4.09 2 1.09 145 0.45 4.36 3.09
Asso_per_trial K_Chr 7.91 5.82 2.36 136 227 0.73 5.18 4.45
Prop_Asso_specific? K_Freq 0.69 0.74 1 1 0.93 1 1 0.97 4
Prop_Asso_specific K_Chr 0.71 0.77 1 093 0.96 1 0.98 0.96 2
QTLs® K_Freq and K_Chr 29 24 22 8 21 9 33 27 173
Asso_network® K_Freq 1 2 1 4 1 0 4 5 18
Asso_network K_Chr 2 3 2 8 1 0 4 5 25
Asso_trials” K_Freq 16 17 12 15 8 5 12 16 101
CF-Flint  Asso_trials K_Chr 18 19 14 19 13 6 12 15 116
Asso_per_trial® K_Freq 2.3 2.3 1.2 1.6 0.8 0.5 1.2 1.6
Asso_per_trial K_Chr 29 2.5 1.4 2.1 1.3 0.6 1.2 15
Prop_Asso_specific® K_Freq 0.69 0.88 1 0.93 1 1 1 1 5
Prop_Asso_specific K_Chr 0.72 0.89 1 0.89 1 1 1 1 5
QTLs® Kfreq and K_Chr 14 16 15 18 11 6 13 15 108

@ Number of significant SNPs when considering the trial network adjusted means, ® Number of significant associations when considering
the trial specific adjusted means, “Mean number of significant associations per trial, ®Proportion of significant associations specific to one trial,
¢ Number of regions (QTLs) detected.

Comparing the two panels, the total number of SNPs (Table 6) significant in at least one

environment or at the network level with one of the two methods (K_Freq or K_Chr) was more than
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two times higher in the CF-Dent (258 SNPs) than in the CF-Flint panel (116 SNPs). This difference
was less pronounced when considering regions (QTLs) instead of SNPs (173 and 108 QTLs
identified in the CF-Dent and CF-Flint panels, respectively). The only exception to this global trend
was PLHT, for which more QTLs were discovered CF-Flint panel than in the CF-Dent.

Considering traits, more SNPs were discovered for DMY, DMYcorr, Tass GDD6 and Silk_GDD6
than for DMC, DMCcorr, and ASI_GDD®6 (Table 6). However, most of the DMY and DMYcorr
SNPs (96% to 100%) were declared significant in only one environment, whereas some
Tass_GDD6 and Silk_ GDD6 QTLs were stable across most of the environments (Fig. 4,
chromosomes 2, 3, 4, 7 and 8; and fig. 5 chromosome 1). The proportion of SNP significant in only
one environment was higher in the CF-Flint than in the CF-Dent panel, with the exception of PLHT.
At the network level, more SNPs were declared significant for Tass_GDD6 and Silk_GDD6 in the
CF-Dent panel, and for DMY and DMY corr in the CF-Flint panel. Note that some of the significant
SNPs were associated with more than one trait (Tables S4 and S5). These pleiotropic effects
particularly concerned the following couples of traits: Tass GDD6 and Silk_GDD®6, Tass GDD6
(or Silk_GDD6) and DMC (or DMY, or PLHT), PLHT and DMY (or DMC, or Tass_GDD6, or
Silk_GDD®6). In the CF-Flint panel, one SNP was associated with Tass_ GDD6, Silk_GDD6, PLHT
and DMC.

When testing associations with per se adjusted means, QTLs of Tass_GDD6 and Silk_GDD6 were
discovered but only one QTL of ASI_GDD6 (in the CF-Dent panel) and no QTL of PLHT. And
again, more QTLs were found in the CF-Dent panel (25) than in the CF-Flint panel (14). Most of
these QTLs were located on chromosomes 3 and 8 in the CF-Dent panel and on the chromosomes 1,
3 and 9 in the CF-Flint panel. Five QTLs of Tass_GDD6 and four of Silk_ GDD6 were found
associated with both hybrid and per se performances (including Zcn8, see discussion) in the CF-
Dent panel. In the CF-Flint panel, only one QTL of Tass GDD6 and one QTL of Silk_GDD6 were
found in both hybrid and per se evaluations.
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Table 7: Most significant associations in the CF-Dent panel at the network level.
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Trait Chr Pos MAF -log K_Freq® -log_K_Chr® effect’ Closest gene Gene descr.
Tass_GDD6 8 123506141 0.27 8.81 9.98 11.65 GRMZM2G179264 ZCN8 protein
Tass GDD6 2 178262299 0.22 7.07 7.22 11.68 GRMZM2G098828 ATP binding
Tass_ GDD6 4 233828118 0.47 5.78 6.29 8.36 GRMZM2G064023 Citrate synthase activity
Tass_GDD6 8 115446396 0.14 5.37 5.93 11.58 GRMZM2G111396 Unknown
Tass_GDD6 7 122130497 0.05 5.71 5.79 17.30 GRMZM2G075348 Uncharacterized
Tass_ GDD6 8 118188472 0.39 5.36 5.76 7.80 GRMZM2G047842 Uncharacterized
Tass_GDD6 8 126077120 0.37 4.56 5.74 6.88 GRMZM2G380515 Zinc ion binding
Tass_GDD6 3 150832948 0.48 511 5.23 -8.86 GRMZM2G082387  Transcription factor
Tass_ GDD6 8 126287026 0.36 3.88 5.00 6.41 GRMZM2G118834 Uncharacterized
Silk_GDD6 8 123506141 0.27 7.83 8.86 11.97 GRMZM2G179264 ZCN8 protein
Silk_GDD6 2 178262299 0.22 7.42 7.57 12.97 GRMZM2G098828 ATP binding
Silk_GDD6 8 11544639 0.14 5.42 5.90 12.59 GRMZM2G111396 Unknown
Silk_GDD6 7 122130497 0.05 5.22 5.31 17.80 GRMZM2G075348 Uncharacterized
PLHT 2 186447969 0.14 4.59 5.19 428 GRMZM2G381059 Protein binding
PLHT 2 178262299 0.22 4.88 5.10 411 GRMZM2G098828 ATP binding
DMYcorr 5 190732112 0.19 6.00 6.07 0.49 GRMZM2G031952 Cytoskeleton
DMY 5 190732112 0.19 6.54 6.70 0.56 GRMZM2G031952 Cytoskeleton
DMC 3 150832948 0.48 5.26 5.41 0.74 GRMZM2G082387  Transcription factor
DMC 10 31219126 0.11 4.95 5.35 -1.05 AC189796.3 Unknown
% _log(Pvalue) with K_Freq, ° -log(Pvalue) with K_Chr, ¢ effect at the network level.
Table 8: Most significant associations in the CF-Flint panel at the network level.
Trait Chr Pos MAF  -log_K_Freq®  -log_K_Chr® effect’ Closest gene Gene descr.
Tass_GDD6 1 53414468 0.24 5.37 5.75 12.14 GRMZM2G031001 DNA binding
Silk_GDD6 1 53414468 0.24 6.15 6.72 1241 GRMZM2G031001 DNA binding
Silk_GDD6 1 300441295 0.36 5.10 5.44 -8.52 GRMZM2G377487 Unknown
Fatty acid
PLHT 8 101237704 0.14 5.96 6.12 6.43 GRMZM2G055667 biosynthetic process
PLHT 1 154077833 0.17 5.31 6.10 6.03 GRMZM2G056039 Heat shock protein
PLHT 9 119310870 0.13 5.88 5.78 -7.25 GRMZM2G098179 Response to freezing
PLHT 1 153344342 0.25 4.62 5.64 511 GRMZzZM2G422631 Cell wal modification
PLHT 1 53414468 0.24 4.63 5.05 5.30 GRMzZM2G031001 DNA binding
PLHT 8 84808001 0.06 4.83 5.03 8.79 GRMZM2G128809 RNA binding
DMYcorr 1 17966974 0.23 5.60 5.76 -0.52 GRMZM2G059102  Transcription factor
DMYcorr 1 154077833 0.17 5.20 5.45 0.55 GRMZM2G056039 Heat shock protein
DMY 1 154077833 0.17 6.00 6.42 0.65 GRMZM2G056039  Heat shock protein
DMY 1 153344342 0.25 491 5.39 0.53 GRMzZM2G422631 Cell wal modification
Cortical cell
DMC 4 152972399  0.17 5.30 5.33 -0.97 GRMZM2G406313 delineating
ASI_GDD6 7 32478358 0.08 5.40 5.68 -456 GRMZM2G472146  Signaling pathway
ASI_GDD6 7 99894530 0.24 4.79 5.09 -2.77 GRMZM2G166692 Unknown

¥log(Pvalue) with K_Freq, ® log(Pvalue) with K_Chr, ¢ effect at the network level. 2
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- Chapter 2 -
DISCUSSION AND CONCLUSION

Genetic Diversity organization

The proportion of polymorphic PANZEA-markers was high in both panels (85% and 82% in the
CF-Dent and CF-Flint panels, respectively). There was a high genetic diversity in the CF-Dent and
CF-Flint panels (0.37 and 0.36, respectively), in the upper range of those reported in diversity
studies based on SNPs (HAMBLIN et al. 2007, Lu et al. 2009, TRUNTZLER et al. 2012, VAN
INGHELANDT et al. 2010, YANG et al. 2010, BoucHET et al. 2013). The slightly higher diversity in
the Dent panel and the higher proportion of monomorphic markers in Flints are consistent with the
observations of BOUuCHET et al. (2013), who hypothesized that this could be the consequence of the
severe bottleneck encountered by Flint material when diverging from tropical germplasm. As in our
study (Fig. 1), BoucHET et al. observed more rare alleles in the Flints and interpreted it as the
possible effect of population expansion following bottleneck. The grouping made by ADMIXTURE
based on the molecular information revealed the complex structure of both panels. From Nq=2 to
No=8, all the identified groups could be interpreted using the pedigree information and/or known
assignation to heterotic groups (Fig. S2). The groups identified in the CF-Flint panel appear to be
related to the ancient history of this material. In particular, the double introduction of maize into
Europe (in Southern Europe by Columbus in 1493, and in Northern Europe before 1539, REBOURG
et al., 2003) is still clearly visible in our results (Southern OPVs vs. Northern Flint, respectively,
Fig. 3). The CF-Dent panel does not show such ancient historical patterns, consistent with the fact
that this group originated from Corn-Belt dent open pollinated varieties which displayed limited
population structure (CAMUS-KULANDAIVELU et al. 2006). Admixture groups observed in our study
appear to be the result of the diverse breeding strategies which have been applied since the early
development of hybrid maize in the US. The network and PCoA visualizations revealed that the
material available relates to a large extent to a limited number of key lines, in particular in the CF-
Dent panel (Fig. 3). Each key line and the material derived from it generated structure groups which
were also clearly visible in the network and PCoA visualizations. This clustering around key lines
(B73, Mol7, and PH207) corresponds to the three main dent groups (Stiff Stalk, Lancaster and
lodent, respectively) and was also shown by RomAY et al. (2013) using Genotyping By Sequencing
data. The fact that the Flint panel was less structured by modern breeding than the Dent panel is
consistent with the fact that it was submitted to less breeding cycles. Hybrids involving Flint
parents are indeed recent (1960s) compared to the first Dent hybrids (1930s) developed in the USA

in the early 20th century. The different history of the panels also resulted in higher differentiation of
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the groups in the CF-Dent than in the CF-Flint panel (this was true for No=2 to Ng=8, table 1).
Although efforts made to assemble materials from different institutes, it appeared that some
heterotic groups or families were common to these institutes. There are however some noticeable
exceptions like CIAM-Aranga and Hohenheim Flints which appear specific from the institutes
which created the corresponding lines.
Relatedness between individuals greatly influenced LD between pairs of markers (in particular
between unlinked markers, fig. S3) in both panels but particularly in CF-Dent. When taking kinship
into account, LD remained higher in the CF-Dent panel. As observed in previous studies (VAN
INGHELANDT et al. 2010, BoucHET et al. 2013), LD decreased with the physical (and genetic)
distance. LD decay was variable between chromosomes, with an higher extend on chromosome 3, 4
and 8 in the CF-Dent panel, and chromosome 8 in the CF-Flint panel. This is in accordance with
RomAY et al. (2013) and KHOBRAGADE et al. (pers. com.), who identified particularly long
haplotypes on chromosome 4, in regions including important domestication genes. Other important
genes related to flowering time (Vgtl and Vgt2) are located on chromosome 8 (CHARDON et al.
2005; SALvi et al. 2007, 2009; VEYRIERAS et al. 2007; DucrocQ et al. 2008; VAN INGHELANDT et
al. 2012; BoucHET et al. 2013). The slight drop of diversity in the region of Vgtl and Vgt2 in the
Flint panel (Fig. 2) may be due to the fixation of the early alleles during adaptation to short growing
seasons. The higher LD extent in the CF-Dent panel resulted in a reduced number of SNPs required
for a minimum coverage of the genome (19000 markers in comparison to 24387 markers in the CF-
Flint). The number of SNPs available in GWAS in the panels (42214 and 39076 in the CF-Dent and
CF-Flint panels respectively) makes it possible to conduct a first genome-wide analysis. However
these available markers are not evenly spaced along the genetic map, and a LD of 0.1 between
adjacent pairs of SNP is insufficient to detect QTLs of small to intermediate effect in our panels. In
the CF-Flint panel, fewer markers were available for GWAS, whereas more markers were needed to
cover the genome than in the CF-Dent panel. This could lead to a lower power in the CF-Flint panel
in some regions of the genome. In both panels, we expect that a substantial gain in power could be
obtained by increasing the number of markers (by combining GBS, sequencing and imputation for
example).
Also, one of the main limitations in the dissection of quantitative traits is the size of the population
under study, which affects GWAS power and the reliability of genomic predictions. For this reason,
the panel size should be as large as possible. But we showed in this study, that at some point the
sampling of additional individuals often results in relatedness (possibly high, fig. 3), which may
decrease GWAS marginal gain of power. This highlights the importance of screening collections of
landraces and of first cycle lines, which can probably be used to increase panel size and diversity
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without increasing too much relatedness, and as a result increase the potential of the panels for the

QTL detections, and for the inference of evolutionary events.

Trait variation within and among genetic groups

All the traits in both panels showed high genetic variability, which resulted in high heritabilities at
the trial network levels. Male and female flowering time (Tass_GDD6 and Silk_GDD®6) were the
most heritable traits (above 0.96 at the network level), and Anthesis To Silking Interval
(ASI_GDD6), which is highly sensitive to environmental stresses, was the less heritable trait (0.73
in CF-Dent and 0.65 in CF-Flint). Heritabilities at the trial-network level were in the range that is
expected for the observed traits. Trial heritabilities of yield traits (DMC, DMCcorr, DMY and
DMYcorr) were highly variable between trials, probably because of the different environmental
conditions and of the different culture managements. The hybrid heritabilities were slightly higher
for the Dent than for the Flint except for flowering time. This is mostly due to higher residual
variances in the Flint panel, partly explained by plant lodging in some of the trials.

The heritabilities in the per se evaluation are close to the heritabilities in the hybrid evaluation for
Tass_GDD6 and Silk_GDDS6. This is due to a genetic variance 5.5 to 6.4 times higher, and a
residual variance only 1.2 to 3.4 times higher than in the hybrid experimental design (tables 3 and
4). This difference of genetic variability between per se and hybrid evaluation is higher than what is
expected under an additive model (in that case per se genetic variability should be four times higher
than the hybrid genetic variability). This suggests the existence of a substantial amount of non
additive genetic effects. The range of correlations between per se and hybrid adjusted means
revealed the importance to evaluate biomass production potential of the lines in hybrid progenies
and not per se only.

The high genetic diversity and phenotypic variability of these two panels is encouraging for the
development of more productive biomass maize. Comparison of group materials revealed by
population structure analysis showed a significant effect on all traits (Table 5). It highlighted groups
with original characteristics like the "CIAM Aranga and EC18 related" group in the Flints, or the
Stiff Stalk lines (particularly those related to B73) in the Dents, which displayed a high productivity
relative to their earliness (Table 5). High variances nevertheless exist within genetic groups.
Although a formal analysis was not possible due to the complexity of pedigrees, we observed some
groups for which recent materials were more productive than that of founder ancestral lines (e.g.
Ph207 and derivatives in Dents). This reveals that both Flint and dent groups have undergone

genetic progress (Tables S2 and S3). However, substantial variability remains in the more recent
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lines (e.g. group "CIAM Aranga" in Table S2), which is encouraging for further breeding. High

heritability and variability within groups observed in this analysis is encouraging to run GWAS.

Association mapping results

The distribution of the P-values (QQ-plot, fig. S1) illustrates that a random polygenic effect was
required to control false positive rate efficiently, and that both K_Freq and K_Chr were efficient for
this (distribution near diagonal for P-values above 0.01). However the use of K_Chr instead of
K_Freq substantially increased the number of significant SNPs (increase of around 40% in both
panels). This confirms the importance of removing markers in LD with the tested marker from the
Kinship estimation. As expected from simulations in RINCENT et al. 2014, the gain of power was
less important in the CF-Flint than in the CF-Dent panel.

QTLs were identified for all the traits in both panels (Tables 6, 7, 8, S3 and S4, Fig. 4 and 5).
Globally, more QTLs were discovered in the CF-Dent than in the CF-Flint panel in the hybrid
evaluation (173 and 108 QTLs respectively) and in the per se evaluation (25 and 14 QTLs,
respectively). This is consistent with the higher MAF, number of markers and LD extent in the CF-
Dent panel (see above).

As expected based on knowledge of trait complexity and consequences on power, more QTLs were
found for Tass_GDDG6 and Silk_GDD6 than for more complex traits (ASI_GDD6 or DMC), and
these flowering QTLs were more stable across environments. In particular four regions of the
genome in the CF-Dent panel (Fig. 4, chromosomes 2, 3, 4 and 8) and one region of the genome in
the CF-Flint panel (Fig. 5, chromosome 1) were associated with flowering time in most of the
environments. Polymorphism in the vicinity of ZcN8 gene appeared as the most significant in both
hybrid and per se evaluations in the CF-Dent panel.lt corresponds tothe Vgt2 QTL found in
numerous studies (CHARDON et al. 2005; SALviI et al. 2007, 2009; VEYRIERAS et al. 2007; DUCROCQ
et al. 2008; VANINGHELANDT et al. 2012; BOUCHET et al. 2013; ROMAY et al. 2013). Note that it was
not significant in the flint panel, neither in hybrid nor per se evaluations, consistent with the quasi
fixation of the early allele in Flint reported by BOUCHET et al. (2013). None of four other regions
for flowering time appeared as strongly significant in BOUCHET et al. (2013). Also, the strong
association with days to silking corresponding to gene ZmCCT (in RomAY et al. 2013) on
Chromosome 10 was not detected in our study, probably because the late allele at this locus
(Ducrocq et al., 2009) is underrepresented in our panels, or marker density was too low in this
region for capturing this effect.

PLHT was an exception to the global trend, as more QTLs were found in the CF-Flint than in the

CF-Dent panel (18 and 8 QTLs, respectively), probably because it is the only trait (with
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Tass_GDD6 to some extent) which had a much higher genetic variance in the CF-Flint than in the
CF-Dent panel (table 3). We found common associations with the study of PEIFFER et al. (2014) in
particular in the CF-Flint panel (e.g. the QTL close to position 249 Mb on chromosome 1 near the
gene brassinosteroid-deficient dwarfl, PETTEM, 1956). Interestingly, most of the PLHT QTLs are
not associated with flowering traits, as also found by PEIFFER et al. (2014).As both flowering time
and plant height are increasingly documented in the literature and less subject than yield to GXE
interactions, a formal meta-analysis of our study and literature investigations would be highly
beneficial to go beyond these preliminary trends.

For DMY or DMY corr, many significant associations were discovered but they were highly instable
between environments (more than 96% of these SNPs were significant in only one environment).
The genetic determinism of these traits is more difficult to investigate because of interactions with
the environment and/or because they are highly integrative. We noted that some associations for
DMY were common to flowering time, suggesting a pleiotropic effect of the corresponding QTL.
Note however that the QTL observed at network level for DMYcorr and DMY at position
154077833 on chromosome 1 (Table 8) in the Flint and position 190732112 on chromosome 5 in
the Dents do not belong to this category and therefore would be particularly interesting to select for
biomass yield without modifying flowering time. Finally DMC, DMCcorr and ASI displayed the
fewer number of detected QTL, highlighting that they are most likely affected by numerous factors
of small effects and strong environmental effects.

Most of the significant SNPs identified with the hybrid adjusted means were different from those
identified with the per se adjusted means. This could be due to interactions between alleles
(dominance and possibly epistasis), which was also shown by the genetic variance higher than
expected in the per se evaluations. This was more pronounced in the CF-Flint than in the CF-Dent
panel. The proportion of SNPs significant in only one environment was also higher in the CF-Flint
panel. We can hypothesize from the comparison between both panels, that the CF-Flint panel is

probably submitted to more gene*gene and gene*environment interactions.

Conclusions:

We could illustrate, using genotypic and phenotypic information, that Dent and Flint groups have a
different history and that this has strong consequences on diversity, variability, LD extent, which in
turn influence detection power. The combination of phenotypic and genotypic data permitted the
identification of flowering time and biomass related QTLs in both panels. This study would
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probably be strongly enriched by increasing the number of markers, population size with original
individuals and by using statistical models which takes interactions into account. Although further
analyses are required, the identified biomass QTLs are potentially of considerable interest, because

they could be introgressed in elite material to increase productivity.
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ABSTRACT Genomic selection refers to the use of genotypic information for predicting breeding values of selection candidates. A
prediction formula is calibrated with the genotypes and phenotypes of reference individuals constituting the calibration set. The size
and the composition of this set are essential parameters affecting the prediction reliabilities. The objective of this study was to maximize
reliabilities by optimizing the calibration set. Different criteria based on the diversity or on the prediction error variance (PEV) derived
from the realized additive relationship matrix-best linear unbiased predictions model (RA-BLUP) were used to select the reference
individuals. For the latter, we considered the mean of the PEV of the contrasts between each selection candidate and the mean of the
population (PEVmean) and the mean of the expected reliabilities of the same contrasts (CDmean). These criteria were tested with
phenotypic data collected on two diversity panels of maize (Zea mays L.) genotyped with a 50k SNPs array. In the two panels, samples
chosen based on CDmean gave higher reliabilities than random samples for various calibration set sizes. CDmean also appeared
superior to PEVmean, which can be explained by the fact that it takes into account the reduction of variance due to the relatedness
between individuals. Selected samples were close to optimality for a wide range of trait heritabilities, which suggests that the strategy
presented here can efficiently sample subsets in panels of inbred lines. A script to optimize reference samples based on CDmean is
available on request.
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et al 2001). The GS formula potentially includes all the
marker effects, without preselection based on a significance
threshold. If the marker density is sufficient, this permits the
model to capture an important part of the genetic variance
(Yang et al. 2010). Compared to traditional marker-assisted
selection (MAS), the efficiency of which is limited by
the power of marker-trait association tests, GS is expected
to be more efficient, especially for highly polygenic traits
(Bernardo and Yu 2007). GS was first used in animal breed-
ing, particularly dairy cattle, and its use clearly improved
the selection efficiency (Hayes et al. 2009a). It is now also
widely studied by plant breeders, and interesting results
were obtained (Jannink et al. 2010; Crossa et al. 2010;
Albrecht et al. 2011).

Powerful statistical tools and relevant data sets (geno-
types and phenotypes to train the prediction model) are key
factors for the predictive efficiency. There are two ways to
use the genotypic data in genomic selection. The first way is
to estimate the marker effects in the calibration set and then
to predict the breeding values of the selection candidates by
multiplying their genotypes by the marker effects. This
approach is used, for example, in the mixed model called
random regression-best linear unbiased predictions (RR-
BLUP; Whittaker et al. 2000; Meuwissen et al. 2001). The
second approach is to use the marker genotypes to estimate
a relationship matrix between phenotyped individuals of the
reference population and nonphenotyped individuals, can-
didates to selection. This relationship matrix can then be
used to estimate a variance/covariance matrix between the
genetic values in a mixed model called RA-BLUP (RA for
realized additive relationship matrix; Zhong et al. 2009), or
G-BLUP. It has been proven that RR and RA-BLUP are sta-
tistically equivalent under conditions presented by Habier
et al. (2007), Goddard (2009), and Hayes et al (2009Db).

The implementation of genomic selection is facilitated by
recent advances in genotyping. We now have access to geno-
typing arrays, which provide genotypes of very good quality
at low cost. The costs of sequencing are also decreasing and
it is, or will soon become, possible to genotype the genetic
material by sequencing (Huang et al 2009; Metzker 2009;
Elshire et al. 2011). In plant breeding, large collections of in-
dividuals are usually available to the breeder, corresponding
to germplasm released by public institutes, private germplasm
released at the end of their protection by patent (PVP), and
individuals that have been used as parents of the current
breeding program. All this material can be easily genotyped
and potentially used to create the calibration set. Conversely,
although there have been very important advances in the
automatization of phenotyping, it is still very expensive to
obtain relevant phenotypes with a high heritability for a large
set of individuals. In addition, multi-environment trials are
needed to test individuals under different conditions and es-
timate the genotype X environment interactions (GEI). As
a result, it is now clearly admitted that the collection of phe-
notypic data relevant in terms of traits and environmental
conditions with respect to the breeding objectives is the most
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limiting factor for running genomic selection and that it is
also a key factor that needs to be optimized, with the con-
straint of a limited budget. Beyond plant breeding, this issue
extends to a large extent to animal selection for traits that are
either destructive or costly to measure, such as traits related
to disease resistance or fertility (Boichard and Brochard
2012).

The question is then how to choose the reference indi-
viduals (calibration set) to phenotype, to maximize the re-
liability of the prediction of nonphenotyped individuals that
are candidates to selection. Indeed, it has been shown that
the accuracy of genomic predictions (that is the correlation
between predicted and true breeding values) is highly in-
fluenced by the population used to calibrate the model
(Albrecht et al. 2011; Pszczola et al. 2012). In a situation in
which a large collection of individuals is available, one ob-
jective is to define which ones must be included in the cali-
bration set to discriminate as accurately as possible which
individuals from the selection population are the best ones
(Figure 1). A first way to perform sampling could be to
choose the individuals that capture most of the diversity
present in the population. Another criterion could be to se-
lect the calibration set that minimizes the prediction error
variance (PEV) of the genetic values. This criterion is valid at
the individual level but does not take into account the ge-
netic variance of the contrasts between individuals and may
result in the sampling of close relatives. One classical way of
evaluating the efficiency of a given selection method is to
compute its accuracy, defined as the correlation between
predicted and true values, which is an important factor of
the expected genetic gain. This ecriterion is directly available
in simulation studies in which true genetic values are known
or can be indirectly measured by using cross-validation ap-
proaches in experimental data.

A few studies have used the expected accuracy, estimated
as ,/1— PEV/0§ (where a§ is the additive genetic vari-
ance, and PEV represents the part ofrr;“ that is not accounted
for by the predictions) to compare experimental designs and
statistical models for dairy cattle (VanRaden 2008; Hayes
et al. 2009¢; Pszczola et al. 2012). In these articles, individ-
uals were assumed to be unrelated. As a consequence this
criterion has the same disadvantage as PEV: it doesn’t con-
sider the decrease of genetic variance when close relatives
are sampled.

To account for this possible decrease in genetic variance,
it is possible to directly maximize the expected reliabilities of
the contrasts between each selection candidate and the
population mean. It can be implemented with the general-
ized coefficient of determination (Laloé 1993), which ex-
presses the precision of any contrast between individuals.
This criterion is the squared correlation between the true
and the predicted contrast of genetic values. It is a function
of the PEV and of the genetic variance. The generalized co-
efficient of determination (CD) is used by animal geneticists
to optimize experimental designs. In particular it can be
used to track disconnectedness, i.e., individuals that cannot
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be compared because they (or their relatives) were not phe-
notyped at least once in the same environment. The gener-
alized CD was used, for example, to compare the efficiency
of testing designs in beef cattle (Laloé and Phocas 2003) and
sheep (Kuehn et al. 2007).

In plant breeding, the generalized CD was used by
Maenhout et al. (2010) to get the most accurate BLUPs from
phenotypic data available from a breeding company. The
phenotypic data of breeding companies are very unbalanced,
some phenotypes being disconnected from the others.
Maenhout et al. (2010) assumed that the genotyping bud-
get was limited, and they wanted to use the phenotypes
already available for predicting the value of untested hy-
brids. Their challenge was, then, how to choose the indivi-
duals to genotype in order to optimize the use of available
phenotypes. With this exception, to our knowledge, this cri-
terion was paid little attention in plant breeding so far and
it could be used for different applications such as the opti-
mization of the sampling of the calibration set in genomic
selection.

Since phenotyping is now the limiting factor in genome-
wide analysis, we consider the case in which all the in-
dividuals are genotyped but only a proportion is going to be
phenotyped (calibration set). In this article, we propose
a method based on the generalized CD to optimize the
sampling of the calibration set for predicting as accurately as
possible the nonphenotyped individuals (Figure 1). To val-
idate our optimization algorithm, we used phenotypic data
for flowering time, plant biomass, and dry matter content,
collected on two maize inbred panels for which genotypic
information is available and compared several strategies for
selecting the calibration set.

Materials and Methods
Genetic material

Our optimization procedure was evaluated on two maize
diversity panels developed for the European program “Corn-
Fed.” These are composed respectively of 300 Flint lines and
300 Dent lines. This material includes 242 lines from the
panel presented by Camus-Kulandaivelu et al. (2006) and
lines derived from recent breeding schemes: 58 Dent lines
from PVP (Mikel 2006; Nelson et al. 2008), 128 from the
University of Hohenheim (Riedelsheimer et al. 2012), 81
from the Misién Biol6gica de Galicia and the Estacién Ex-
perimental de Aula Dei, Spain (CSIC), 35 from the Centro
Investigacions Agrarias de Mabegondo, Spain (CIAM), 23
from the Eidgenossische Technische Hochschule Zirich
(ETHZ), and 33 from the Institut National de la Recherche
Agronomique (INRA). This collection was created with the
objective of covering European and American diversity of
interest for temperate climatic conditions, as available
from public institutes. Choice was guided by pedigree to
avoid as far as possible overrepresentation of some parental
materials.

Field data

The Flint and Dent lines were respectively crossed to a Dent
and a Flint tester. The two panels were evaluated separately
for flowering time and biomass production in two adjacent
trials at five locations in 2010: Mons (France), Pontevedra
and Mabegondo (Spain), and Roggenstein and Einbeck
(Germany). The hybrids within each panel were divided
into two groups according to their expected precocity. These
two groups were evaluated as two blocks. A small number of
randomly chosen entries was replicated within blocks (18
entries) and across blocks (18 entries) to estimate experi-
mental error and an eventual block effect. Male flowering
time (Tass GDD®6), plant dry matter yield (DM Yield), and
dry matter content (DMC) were registered for each plot.
DMC and DM _Yield were observed at only four of the five
locations for the Flint panel. Male flowering time was
registered when 50% of the plants were shedding pollen
and then converted into growing degree days (GDD) in base
6°, using the mean daily air temperature measured at each
location. These traits were used here as examples, to test the
optimized sampling algorithm. Plants with obviously ex-
treme phenotypes were excluded from the study (between
2.2 and 2.8% of the data were removed for each trait).
Least-squares means were calculated with the GLM
procedure (SAS Institute, 2008) by adjusting for block and
trial effects (the phenotypes are compiled in File S1 and File
S2). Trait heritability at the level of the experimental design
was estimated with a mixed model (Trial as fixed effect,
genotypes and genotypes x trial as random effects) after
removing the block effects. Heritability was calculated as

2
2 g

o+ 0%, p/nTrial +of /nRep’

where o7 is the additive genetic variance, o7 is the environ-
mental variance, aéxE is the interaction variance, nTrial is
the number of trials, and nRep is the mean number of rep-
licates over the whole experimental design.

Genotyping, diversity, and relationship matrix

The two diversity panels were genotyped with the 50k SNPs
array described by Ganal et al. (2011). This llumina array
includes 49,585 SNPs. Individuals, which had marker miss-
ing rate and average heterozygosity >0.1 and 0.05, respec-
tively, were eliminated. Markers, which had missing rate
and average heterozygosity >0.2 and 0.15, respectively,
were eliminated. In total, 261 Flint lines and 261 Dent lines
passed the genotyping and phenotyping filter criteria. To
avoid the bias noted by Ganal et al. (2011) in the diversity
analysis, we used only the markers that were developed by
comparing the sequences of nested association mapping
founder lines (PANZEA SNPs; Gore et al. 2009) to estimate
Nei's index of diversity (Nei 1978) and relationship coeffi-
cients (30,027 and 29,094 markers passed the filter criteria
for the Dent and the Flint lines, respectively, see File S1 and
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File 52). Nei'’s index of diversity of each Panzea SNP was
calculated and averaged over the genome to estimate diver-
sity in the two panels.

One easy way to estimate the relationship between individ-
uals with molecular markers is to calculate for each pair of
individuals the proportion of shared alleles, also called identity-
by-state (IBS). With biallelic markers it can be calculated as

AIBs = 56 T G262
K
where G is the matrix of genotypes (with dimension number
of individuals x number of markers) coded as 0, 0.5, and 1
for the homozygote, the heterozygote, and the other homo-
zygote, respectively, K is the total number of markers, and
G, =1-G, where 1 is a matrix of ones.

In this formula, a same weight is given to all markers.
Another formula was proposed by Leutenegger et al. (2003),
Amin et al (2007), and Astle and Balding (2009) in which
a particular weight, depending on the allele frequency, is
given to each marker,

Gix — i) (Gix — i)
Pr(l—px)

1 —x
A _freq; ;= EZk—l ( \
where i and j indicate individuals, G;; is the genotype of
individual i at marker k, and p;. is the frequency of the allele
coded 1 of marker k in the panel. This estimator attributes
a higher weight to similarity for rare alleles and to markers
with low diversity. The allele frequencies p;. are estimated in
a reference population (here each panel). We consider here
the diversity panel as the base population; as a result the
mean of the values of genomic relationship matrix A_freq is
equal to zero. This formula can give negative estimates of
relationship coefficient. Negative coefficients have no sense
in terms of probability, but can be interpreted as negative
correlations. These two genomic relationship matrices are
positive semidefinite (Astle and Balding 2009) and invertible
when the number of markers is sufficient and identical indi-
viduals are removed. Genomic relationship matrices, as de-
scribed above, were estimated independently in both panels.

Statistical model

The genomic predictions were based on the RA-BLUP model,
which allows a more direct derivation of PEV and CD for the
breeding values (see below), using the following mixed model

y=Xp+Zu+e,

where y is a vector of phenotypes, B is a vector of fixed
effects (in our case only the intercept), u is a vector of
random genetic values, and e is the vector of residuals. X
and Z are design matrices.

The variance of the random effects u is var(u) :Aaé,
where A is the genomic relationship matrix and o-§ is the
additive genetic variance in the panel. The variance of the
residuals e is var(e) = Io2, where I is the identity matrix.
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The prediction of u is obtained by solving Henderson's
(1984) equations

X'X X'Z Bl Xy
ZX ZZ+ANATY|a| |zy)

where A = % /oy is the ratio between the residual and the
additive variances in a simplified situation; in our case

| o%/nRep + o7 /nTrial
= = :
A is the genomic relationship matrix. Note that in this model
we consider that a trait is determined by a large number of
genes, each having small and independent effects. Genetic
effects are assumed to follow a Gaussian distribution accord-
ing to the central limit theorem (Fisher 1918).

Optimization criteria and CD

The final objective is to identify the individuals from the
population that are best suited to build the calibration panel.
One strategy for reaching this objective is to maximize the
precision of the prediction of the difference between the
value of each nonphenotyped individual and the mean of
the total population of candidate individuals, which includes
the phenotyped and the nonphenotyped individuals. This
difference can be viewed as a specific contrast between
genetic values of individuals.

A dassical approach for this is to compute the expected
PEV of each individual, which can be obtained from

)

X'X X'Z
Ca1 Ca

ZX Z'Z+AAT!
where PEV (i) = Var(u — u) = diag(Ca) xo2.
More generally, the PEV of any contrast ¢ of the predicted
performances can be calculated as

ZMZ +~AA 1) 7!
e
ccC

diag |:

where c is a contrast, i.e., 1'c = 0. M is an orthogonal pro-
jector on the subspace spanned by the columns of X:
M=1I-X(X'X) X' and (X'X) is a generalized inverse of
X'X (Laloé 1993).

A complementary approach to optimizing the choice of
individuals to be phenotyped is to estimate the expected
reliability of the prediction of contrasts. Laloé (1993)
expressed the precision of any contrast with the generalized
CD, defined as the squared correlation between the true and
the predicted contrast of genetic values. This CD is equiva-
lent to the expected reliability of the contrast

CD(c) = diag

c(A-a@mz+aat) e
c'Ac '
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The CD takes values between 0 and 1, a CD close to
0 meaning that the prediction of the contrast is not reliable,
whereas CD close to 1 means that the prediction is highly
reliable. The CD is a balance between PEV and the genetic
variance (of the contrast), which takes into account re-
lationship (Laloé et al. 1996).

Note that compared to the approach of Hayes et al
(2009¢) who considered /T~ FEV/o2  an estimation of accu-
racy, the term ¢’Ac in the CD takes into account covariances
between the candidate individuals. The use of generalized
CD instead of PEV as optimization criterion is expected to
prevent the selection of very closely related individuals.

The set of individuals to phenotype within each panel
(Dent or Flint) was optimized by minimizing the mean of the
PEVs of the contrast between each nonphenotyped individ-
ual and the mean of the panel: PEVmean = mean[diag
(PEV(C))], where C is a matrix of contrasts: each column
is a contrast between an unphenotyped individual and the
mean of the population. Dimensions of C are total number of
individuals x number of nonphenotyped individuals.

We also optimized the sampling by maximizing the mean of
the CDs of the contrast between each nonphenotyped individual
and the mean of the panel: CDmean = mean[diag (CD(C))].
In this case, the individuals that we decide not to phenotype
are those that are the most reliably predicted with those that
are phenotyped. In other words, we optimize the choice of
individuals to phenotype, so that their phenotypes are as
useful as possible to predict the unphenotyped individuals
(Figure 1). We expect this strategy to sample key individuals
that cover the panel variability as well as possible.

These approaches based on PEVmean or CDmean were
used with the two relatdonship matrices described above: the
IBS matrix A_IBS and the genomic relationship matrix A_freq.

These criteria, PEVmean and CDmean, were compared to
other criteria expected to improve the calibration set sam-
pling: we also considered as selection criteria the mean and
the maximum of the genomic relationship matrix A freq

between the individuals in the calibration set (respectively
denoted by Amean and Amax). These two criteria Amean
and Amax were minimized to maximize the variability in the
calibration set.

Optimization algorithm

Several exchange algorithms and simulated annealing
(Kirkpatrick et al. 1983; Cerny 1985) classically used to
optimize experimental designs (Atkinson et al. 2007) were
implemented in R 2.14.0 to optimize the different criteria. A
simple exchange algorithm, further referred to as Algo1, was
retained. At each step the random exchange of one individual
between the calibration set and the set of nonphenotyped
individuals is accepted if the criterion were improved and
was rejected otherwise. More complex algorithms did not
give significantly better results and needed more iterations
to converge. They were therefore not retained for further
investigations.

For each panel, we used Algol 50 times to select a certain
number of individuals (10, 30, 50, 70, 100, 150, or 200) for
phenotyping, each time with a different random initial
sample. Preliminary tests showed that 50 repetitions were
sufficient to obtain stable results. We then used the true
phenotypes of these individuals (calibration set) to predict
the remaining individuals (validation set). We compared
results obtained for optimized calibration sets with those
obtained for randomly determined calibration sets (50
random sets for each calibration set size). This procedure
was applied to each trait in each panel.

Observed prediction reliability and robustness
of the optimization to variation of heritability

To compare the ability of the phenotyped individuals to
predict the unphenotyped individuals (the validation set of
individuals), we calculated the observed reliability of the
predictions. The genomic selection reliability is defined by the
square correlation between the genomic estimated breeding
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values (GEBV) and the true breeding wvalues (TBV):
corr?(GEBV, TBV), which is the square of the genomic selec-
tion accuracy (Dekkers 2007). We do not have access to
the TBV of the candidate plants. Considering that
corr(GEBV,Y) = corr(GEBV, TBV) x corr(Y, TBV), where Y
stands for the observed phenotypic performance, we estimated
the genomic selection reliability as corr?(GEBV, Y)/h?, since
h? = corr?(Y, TBV). For each panel and each calibration set
size we compared the observed prediction reliabilities using
the optimized or the random set.

In the CD calculation, the only parameter that is related to
the trait is the variance ratio A. This parameter is related to
the heritability of the trait: A = (1 — h%)/h® . We need to set
a specific value for A to use the sampling algorithm. But in
practice, the calibration set will probably be phenotyped for
traits of different heritabilities. It is thus important to know;,
for a set optimized with a specific value of A, for which range
of heritabilities it is optimum. To answer this question, we
compared the CDmean of selection candidates obtained after
sampling the calibration set with different values of lambda.
If the CDmean obtained with different lambda values are
correlated, one can assume that close subsets of individuals
would be selected by the sampling approach.

For this, random sets of individuals were successively
selected, and each time the CDmean was calculated (with
the genomic relationship matrix) using three different
values for A: 4, 1, and 0.25 corresponding to heritabilities
of 0.2, 0.5, and 0.8. The correlations between the three
series of CDmean were then calculated.

Link between the PEV and the observed prediction error

For the Flint and the Dent panels independently, 50 sets of
150 individuals were sampled randomly or with the
optimization algorithm (CDmean). These calibration sets
were used to predict the genetic values of the unphenotyped
individuals from the same panel. We calculated the PEVs of
the contrasts between each predicted individual and the
mean of the population (using a A corresponding to the
estimated heritability) and compared it to the observed pre-
diction error (defined as the difference between the obser-
vation and the prediction). This comparison is interesting to
check if our statistical model gives good estimates of the PEV
and then indirectly if the estimated variance/covariance ma-
trix fits the true variance/covariance matrix.

Genetic properties of optimized calibration sets

To visualize the genetic properties of the calibration sets
optimized with CDmean, two kinds of tools were used:
a principal coordinates analysis (PCoA) on the distance
matrices (Gower 1966), and a network representation of the
genomic relationship matrix.

A PCoA was performed on the distance matrix of each
panel (we considered the distance between two individuals
by one minus their relationship coefficient A_freq;). The
individuals were then plotted using their coordinates on
the two axes of the PCoA explaining most of the total var-
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iance. This representation gives an idea of the variability
present in each panel. Using these graphs, we visualized
the individuals selected by the sampling algorithm based
on CDmean. It gives a rough idea of the variability of the
panel captured by the calibration set.

To further understand how the individuals selected to be
part of the calibration set relate to the other individuals of the
population we used a visualization of the genomic relation-
ship matrix. We represented the individuals in a network, in
which two individuals are linked when their relationship
coefficient (A_freq;) is >0.2, unlinked otherwise (Rozenfeld
et al. 2008; Thomas et al 2012). For this, the genomic re-
lationship matrix was transformed in a matrix of Boolean in-
dicating if the coefficients were >0.2 or not. The networks of
the two panels were drawn with a Fruchterman and Rein-
gold’s force-directed placement algorithm (Fruchterman and
Reingold 1991) with the package “network” in R.

Results
Trait variation

Tass GDD6, DMC, and DM _Yield have an important vari-
ability in the two panels (Table 1). The average of these
traits are only slightly different between the two panels
because the Dent lines (usually late lines) were crossed to
a Flint tester (early lines) and the Flint lines to a Dent tester.
The genotype x environment interaction and the residual
variances were low compared to the genetic variances for
Tass_GDD®6. The residual and interaction variances are rel-
atively more important for DMC but remain below genetic
variance. The residual variance was greater than the genetic
variance for DM Yield and the interaction variance was
equal to the genetic variance in the Dent panel. The herita-
bility of these traits is between 0.65 (DM_Yield in the Dent
panel) and 0.95 (Tass_GDD6 in both panels).

Description of the diversity and of the genomic
relationship matrix

The index of diversity (Nei 1978) in the Dent and the Flint
panels was 0.34 and 0.32, respectively, leading to a mean
A_IBS of 0.66 and 0.68, respectively. Histograms of the ge-
nomic relationship coefficients A_freq; in the Flint and the
Dent panels show that most of the coefficients are <0.1, but
some pairs of individuals are closely related in particular in
the Flint panel (Figure 2). For these individuals the identity-
by-state can be up to 0.99. The coefficient A_freq;; of these
pairs of individuals can almost reach 2 if the two individuals
share many rare alleles. Three Dent and five Flint pairs were
almost identical despite all the care that was used to create
these diversity panels.

Observed prediction reliability and robustness
of the optimization to variation of heritability

The reliabilities were lower in the Flint than in the Dent
panel for the three traits and particularly for DM_Yield. For
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Table 1 Statistics on Flowering time (Tass_GDD6, growing degree days), dry matter yield (DM_Yield, t x ha), and dry matter

content (DMC, %) in the two panels of hybrids

Dent Flint
Tass_GDD6 DM_Yield bMC Tass_GDD6 DM_Yield bMC
Mean 864.5 17.0 334 8724 15.9 324
Genotypic vanance 1354.5 *** 1.9 *** 13.0 *#* 1692.1 *** 2.1 FF* 8.6 FFF
Trial % genotype variance 7.5 %% 1.9 *** 4.1 FF* 958 #** 07 * f.1 FF*F
Residual variance 292.2 *** 3.6 *E* 6.5 *** 355.2 #** 3.9 *x* 8.1 *x*
Heritabil ity 0.95 0.65 0.87 0.95 0.67 0.72

The variances were estimated in a mixed model with Genotype, Trial x genotype and Residual as random effects, *P < 0.05, ***P < 0.001. The observations were previously
corrected by block effects. The heritability corresponds fo the broad-sense entry-mean heritability.

DM Yield in the Flint panel the reliabilities are <0.3 even
with a calibration set of size 200 (Figure 3). As expected
the observed reliability increased with the size of the cali-
bration set. For the random samples, an increase of the
calibration set size generates an increase of the reliability
following the law of diminishing returns (Figure 3). For the
set optimized with PEVmean and CDmean, this trend is less
clear. Within calibration set sizes, there were clear differ-
ences between the reliabilities obtained with the different
approaches. All the approaches except the minimization of

b

1500 2000 2500
1 1 1

1000
1

500
1

Number of relationtionship coefficients

Amax gave better reliabilities than the reliabilities obtained
after random sampling. The approach based on PEVmean
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was equivalent or worse than random sampling in few
situations (particularly for DMC in the Flint panel). The
reliabilities obtained by minimizing Amax in the calibra-
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(Figure 3).

T
05 1.0 15
relationship cosfficient

1500 2000 2500
1 1 ]

1000
1

MNumber of relationtionship coefficients [04]

2 Figure 2 Histograms of the relationship coeffidents be-
tween pairs of individuals. (&) Dent and (B) Flint. The re-
lationship coefficients were extracted from A_freq. The
two panels are considered as the reference populations;
as a consequence the mean of the relationship coefficients
is equal to zero in each panel.

L
ﬂ

T
0.5 1.0 15
relationship coefficient

2.0

Optimization of Calibration Set for GS 21

99



The approach based on CDmean always gave higher
reliabilities than random sampling. The use of A_IBS as var-
iance/covariance matrix gave lower reliabilities. Considering
the results obtained in the two panels with the different cal-
ibration set sizes, CDmean with A_freq was the best method.

The correlations between the CDmeans computed for the
three levels of heritability were =0.90 most of the time
(Table 2) and always >0.70. The CDmeans calculated with
the intermediate value of h2 (h2 = 0.5) had minimum cor-
relations of 0.86 and 0.91 with the CDmeans calculated with
the two extreme heritabilities (0.2 and 0.8), for the Flint and
Dent panels, respectively.

Link between the PEV and the observed prediction error

Another way of checking the reliability of our statistical
models was to compare the expected PEVs and the observed
prediction errors (Table 3 and Figure 4). Figure 4 illustrates
the results obtained after 1 of the 50 repetitions of the al-
gorithm on Tass GDD6. This showed that the larger ob-
served prediction errors mostly corresponded to high PEV,
particularly for Flints.

The PEVs obtained with the approach based on CDmean
were lower than the PEVs obtained with a random calibra-
tion set. This expectation was validated by the observed
prediction errors, which were lower with CDmean than with
random sampling.

Genetic properties of optimized calibration sets

The two first PCoA axes represented, respectively, 16.4 and
15.8% of the total variability in the Dent and the Flint panels
(Figure 5). When the calibration set was small, the algo-
rithm tended to select individuals on the extremities of the
graph. When the calibration set was larger, the algorithm
selected representative individuals. For example, in A2
many individuals were selected from the lower left cluster,
where most individuals were placed. These patterns were
stable across runs.

Figure 6 presents pairs of individual with a genomic re-
lationship coefficient >0.2 (A_freq;) as linked by an edge.
This visual representation gives a global idea of the relation-
ships in the panels: individuals related to others are clus-
tered into groups, while more originals lines are isolated on
the graph. When few lines were phenotyped, the algorithm
selected individuals representing the biggest clusters. But
when the calibration set size was bigger, it was composed
of few individuals in the clusters and many isolated individ-
uals. At a given calibration set size, the algorithm selected
all the “isolated” lines and few lines in the kinship clusters.
When increasing even further the calibration set size, the
few individuals that were not in the calibration set were
located at the center of the kinship clusters.

Discussion

The objective of this study was to maximize the reliability of
genomic predictions by optimizing the composition of the

722 R. Rincent et al.

calibration set of individuals based on genotypic data only
(Figure 1). To do so, we used different criteria that were
expected to be related to the reliability of the genomic pre-
diction. These criteria can be used before collecting pheno-
typic data to optimize the calibration set. The algorithms
based on these criteria were tested on two independent
panels that included inbred lines of different origins and
on three traits with heritabilities ranging from 0.65 to
0.95. There were clear differences of observed reliabilities
between the two panels and between the three traits (Figure
3). The limited number of degrees of freedom available for
estimating error variance may affect the estimation of her-
itabilities, which may affect the scale of observed reliabilities
for a given panel-trait combination (through the division by
h?). The low reliabilities obtained for the Flint panel for
DM _Yield may be explained by a combination of (i) low
precision of data used for prediction (similar, however, to
that of Dent panel for the same trait), (ii) looser pedigree
structure than in the Dent panel, and (iii) larger nonadditive
effects possibly related to more important plant lodging,
which deserve further investigations.

Whatever the differences in reliability range among
panel-trait combinations, all the optimization criteria except
Amax (the maximum of the relationship coefficients be-
tween the reference individuals) increased the observed re-
liability compared to random sampling.

The only exception to this was PEVmean for intermediate
calibration set sizes for DMC in Flint panel. In particular, the
approaches based on CDmean and Amean always gave
higher reliabilities than random sampling whatever calibra-
tion set sizes. For Amean this is in accordance with Pszczola
et al. (2012), who showed that the relatedness between the
reference individuals and between the candidates and the
reference individuals has a strong effect on the accuracy. For
calibration sets of reduced size, Amean and CDmean yielded
similar reliabilities because they both sampled the less-re-
lated individuals. For larger calibration sets, the approach
based on CDmean gave better results, which can be
explained by the consideration of the whole network of kin-
ship, whereas Amean considers only the mean. CDmean
explicitly takes into account the information brought by
the experiment.

The optimization based on PEV was one of the most
efficient approaches. However, the approach uniquely based
on PEV (PEVmean) has two important drawbacks, which
can explain why it can sometimes be worse than random
sampling (Figure 3): (i) it doesn't take into account the de-
crease of genetic variance due to kinship, (ii) and it is highly
dependent on the trait heritability. The first point can be
neglected if all the individuals are independent. In this case
the approaches based on PEVmean and on CDmean are
equivalent. But most of the time the individuals considered
by breeders are to some extent related, even in diversity
panels like those considered in the present study. Not con-
sidering these relationship coefficients can lead to biased
estimation of accuracy. This can partly explain why the
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Table 2 Correlation between the CDmeans calculated with different values of &

. . Dent Flint

Calibration set
Size A=4 N A=1 )\:4; A=0.25 A=1 N A=0.25 A=4 N A=1 }t:ﬂ-; A=0.25 h=1 N A=0.25

10 0.99 0.98 1.00 0.99 0.97 0.99

50 0.93 0.82 0.97 0.91 0.81 0.98

70 0.86 0.71 0.97 0.95 0.89 0.99
100 0.93 0.86 0.98 0.97 0.94 0.99
200 0.99 0.96 0.99 0.97 0.93 0.99

For each calibration set size, the CDmeans of 200 random samples were calaulated with three different values of k. Each value of the table indicates the correlation between
CDmeans calaulated with two values of . The values in italics are the correlations <0.9. The three values of A (4, 1, 0.25) are, respectively, equivalent to heritabilities of 0.2,

0.5, and 0.8.

formulas used in animal genetics, which consider the indi-
viduals as unrelated, overestimate accuracy compared to
what is found by using cross-validation (VanRaden 2008;
Hayes et al. 2009c; Pszczola et al. 2012). In the CD calcula-
tion, the covariance between the candidate individuals is
taken into account by c’Aco-é, and as a result the reliability
is better estimated.

The second point, sensitivity to heritability, is very im-
portant because the calibration set is often phenotyped for
many traits of interest with different heritability levels. The
calibration set has thus to be optimal for a wide range of
heritability levels. Both PEV and CD depend on A, which is
directly related to the trait heritability. To test the effect
of A on the different methods, we used the algorithm on
Tass_GDD6 with a k of 1 corresponding to a heritability of
0.5. The reliabilities obtained with CDmean with the two A
values are very close, whereas PEVmean can be less accurate
than random sampling if the A value used for the optimiza-
tion is different from the true A (Supporting Information,
Figure S1). The robustness of CDmean to variation of heri-
tability is confirmed in Table 2, which shows that if an in-
termediate value of A is chosen, the calibration set is close to
optimality for a wide range of heritabilities. In fact this sec-
ond point is related to the first one: the reduction of vari-
ance due to relationship is not taken into account in the PEV
calculation, which makes it highly dependent on the trait
heritability. For example, if the set is optimized by minimiz-
ing the PEV with a very low heritability, the calibration set is
composed only of highly related individuals (results not
shown), whereas if the heritability is high, the calibration
set would explore the whole variability of the panel. In the
CD calculation the term ¢'Ac prevents selection of individuals
too closely related.

The absence of a clear plateau for CDmean method
according to calibration size in Figure 3 leads us to check

whether improvement in reliability observed with CDmean-
based optimization may be partly explained by the selection
of validation sets (the complement to calibration set in our
main approach) presenting a broad variation. To address
this issue, we performed a different cross-validation proce-
dure on Tass GDD6. We considered here validation sets
determined a priori. In a first step 30 individuals were ran-
domly sampled to define the validation set. In a second step
calibration sets were sampled from the remaining individu-
als at random or using different approaches to optimize the
prediction reliability for the validation set. Although a dimin-
ishing return according to calibration population size in-
crease was observed, the ranking in methods (Figure 52)
was consistent with what was found before (Figure 3). This
shows that an increase in reliability for CDmean cannot be
attributed mostly to the extraction of an “easy to predict”
validation set. We also performed the optimization on the
adjusted means of DMC and DM _Yield of each single trial
and found consistent results: the different approaches were
ranked in the same order except for one trial for which the
reliabilities were very low whatever the calibration set size
and the method (results not shown).

Previous elements show that CDmean is preferable to
PEVmean and is a criterion of choice to predict reliability
and to optimize the calibration set. Under our conditions,
using the optimized sampling algorithm based on CDmean
and using A_freq as variance/covariance matrix, an opti-
mized set of approximately 100 lines can reach the same
reliability as random samples of approximately 200 lines.
Cost of heavy phenotypic evaluations could therefore be
substantially reduced by using an optimized calibration set.

This approach can also be used to estimate the precision
of a particular prediction after collecting phenotypic data
(Figure 4). This information is important because it would
help the breeders to select the best individuals considering

Table 3 Means of the expected and observed error variances in the Dent and Flint panels for Tass_GDD6

Dent

Flint

Mean PEVmean

Observed prediction error variance

Mean PEVmean Observed prediction error variance

865.6
610.8

654.7
367.9

Random set
Optimized set

1204.1
857.9

973.8
699.8

The calibration set was composed of 150 individuals randomly sampled, or sampled with the algorithm based on CDmean. The procedure was repeated 50 times.

724 R. Rincent et al.
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not only the best predicted values but also associated reli-
abilities. This information would also be useful to identify
situations in which a complementary sampling of the cali-
bration data set is needed to increase the reliability of the
predictions of original individuals that were poorly pre-
dicted with the initial calibration set.

When the calibration set is small, it appears that the
algorithm based on CDmean samples individuals that are
“extreme” on the PCoA representation (Figure 5). As a con-
sequence, the variability explained by the main axes is well
captured by the calibration set. When the calibration set is
larger, the selected individuals are spread across the whole
graph, and they are always separated by a minimum dis-
tance. When two individuals are highly related, the algo-
rithm never selects both of them as clearly illustrated by
network visualizations (Figure 6). The number of clusters
depends on the threshold used to determine if two individ-
uals appear related or not. We used a threshold on A_freq;;
of 0.2 because the clusters of related lines were then clearly
visible. When the calibration set is small, the individuals
selected are in the biggest clusters. This choice permits reli-
able prediction of more individuals than if isolated lines

were selected. If the calibration set becomes larger, both
isolated and linked individuals are selected. It can be
explained by the fact that when the clusters are represented
by a sufficient number of phenotyped individuals, it brings
more information to phenotype an isolated individual than
an additional one in the clusters. At a certain calibration set
size, the only lines that are not in the calibration set are in
the center of the clusters. These lines are among the most
typical of each group; they are also the most easily predicted
when many genetically close lines are phenotyped.

In addition to these general trends, we showed that the
selection of the reference individuals by the approaches
based on CDmean or PEVmean depends on the method used
to estimate the variance/covariance matrix. This relation-
ship matrix should reflect the variance/covariance between
individuals at the QTL positions. It is thus possible that the
best formula with which to estimate A is not the same for
different traits, according to the weight that is given to the
markers. The use of A freq instead of A IBS slightly in-
creased the observed reliability of the predictions. It shows
that A_freq gave better estimates of the relationship coeffi-
cient between individuals than A_IBS, at least with our data.

Optimization of Calibration Set for GS 725
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Figure 5 Principal coordinates analysis on the Dent and the Flint panel. Axis1 and Axis2 are the two first components of a PCoA on the distance matrix
of the corresponding panel. The individuals selected by the algorithm based on CDmean are represented by red dots, other by circles. A1 and A2: PCoA
on the Dent panel, calibration set composed of 5 individuals (A1) and 30 individuals (A2). B1 and B2: PCoA on the Flint panel, calibration set composed

of 5 individuals (B1) and 30 individuals (B2).

In the case of highly polygenic traits, we consider that the
QTL are spread on the whole genome, and so we use
markers covering the whole genome to estimate the vari-
ance/covariance matrix. We need a number of markers high
enough to have at least one marker in high linkage disequi-
librium (LD) with each QTL. Goddard et al. (2011) showed
that an incomplete coverage of the genome by markers can
be a cause of overestimation of the accuracy. CDmean and
PEVmean could be subject to this bias because we used
a variance/covariance matrix estimated with markers to cal-
culate these criteria. Goddard et al. (2011) proposed calcu-
lating a variance/covariance matrix based on the genomic
relationship matrix and on the pedigree to predict accuracy
without bias. In our case the pedigree was not available and
so we could not use their correction. However, our marker
density compared to LD was such that a risk of having an
important bias was limited.

The approaches we proposed were tested on two in-
dependent diversity panels and three traits and globally
consistent results were obtained. It would be interesting to
test these approaches on other types of populations, in
particular in the presence of strong population structure. We
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have considered here two heterotic groups separately. It may
be interesting to test the approach to optimizing samples
including lines of different heterotic groups, with the
objective of obtaining accurate predictions across and within
heterotic groups. It would then be required to have an
important coverage of the genome to capture ancestral LD,
otherwise the reliability would be overestimated as dis-
cussed before. Breeders are also interested in applying
genomic selection in multifamilial populations (Albrecht
et al. 2011; Zhao et al. 2012). Albrecht et al (2011) showed
that in such situations the prediction reliabilities are highly
dependent on the composition of the calibration set. In par-
ticular, if few families are not represented in the calibration
set, the observed reliabilities are lower than if few indi-
viduals are sampled in each family. Optimizing the calibra-
tion set therefore deserves specific attention in this case.
CDmean could be used to optimize the sampling if the
proper contrasts are considered: between each individual
and its family mean, between each individual and the mean
of the population, and between each family. These questions
deserve consideration in future studies. Our study was based
on diversity panels, and we could not evaluate how the
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Figure 6 Network representation of the genomic relationship coeffidents.
(A1, A2, and A3) Dent panel, 3 calibration set sizes: 10 (A1), 100 (A2), and
200 (A3). (B1, B2 and B3) Fint panel, 3 calibration set sizes: 10 (B1), 100
(B2), and 200 (B3). These networks are drawn with a Fruchterman and
Reingold's force-directed placement algorithm. Each node represents an
individual; the pairs of individuals with a relationship coefficient =>0.2 are
linked by an edge. The individuals selected by the CDmean algorithm are
represented by red squares and others by blue points.

reliability would evolve across the next generations derived
from these materials. This aspect also has to be studied,
because the gain of time due to selection on predicted values
instead of phenotypic observations is the main interest of
genomic selection. It would therefore be important to eval-
uate how often the prediction formula must be recalibrated.

Finally, although displaying contrasted heritabilities and
possibly different contribution of nonadditive effects (see
above), the three traits considered here are known to be
highly polygenic (see Chardon et al. 2004 and Buckler et al.
2009 for Tass GDD®6), which justified the choice of the RA-
BLUP model. For traits depending on major genes, this
model might be inappropriate or nonoptimal and it may
be preferable to use Bayesian or neural network models
(Jannink et al. 2010). Our optimization criterion is based
on the BLUP theory and so would be inappropriate if major
genes are involved. It is, however, possible that CDmean

would also be to some extent useful in increasing the re-
liability of Bayesian methods. It would be interesting to de-
rive a similar criterion from the Bayesian theory to predict
reliability before collecting phenotypes.
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- General discussion -

The technological progresses achieved in the last decades allowed geneticists to go much
deeper in the analysis of complex traits. In particular, the increasing availability of molecular
markers at low cost makes it easier to decipher the relationship between genotypes and
phenotypes. Molecular markers contributed to the cognitive understanding of the traits genetic
architecture (with QTL detection, linkage based and GWAS), and to the predictions of genetic
values of possibly unphenotyped individuals (genomic predictions). GWAS and GS are based
on close statistical models (MEuwISSEN et al. 2001; Yu et al. 2006), but have different
objectives (detection versus prediction). A huge number of research programs and papers in
plant, animal and human genetics are devoted to these approaches. These two kinds of tools
are of considerable interests in plant genetics and in particular in plant breeding. They bring
great extensions to the breeders' toolbox, and seem to be promising for crop breeding
(BERNARDO and Yu 2007; JANNINK et al. 2010). However, for these approaches to be
efficient, it is necessary to be careful at different methodological critical steps (efficiency
being defined as detection power in GWAS and prediction accuracy in GS). The main
objective of this thesis was to optimize the use of genotypic information in GWAS and GS to
maximize their efficiency. A key step in these approaches is the estimation of kinship between
individuals with molecular markers. The kinship matrix is involved in the most commonly
used statistical models for GWAS and GS. It permits the control of false positive rate in
GWAS, and to infer genetic information from relatives in GS. We studied the parameters
affecting power in GWAS and proposed new marker based kinship estimators to increase
power and control false positives efficiently (chapter 1). These methods were compared
through simulations based on true genotypes (chapter 1) and used to detect QTLs related to
flowering time or biomass in two maize diversity panels (chapter 2). In GS, some papers had
highlighted the important effect of relationship between the calibration set and the predicted
individuals on the accuracies (HABIER et al. 2007; HEFFNER et al. 2009; ZHONG et al. 2009).
Considering that phenotyping is likely to remain more limiting than genotyping, we proposed
an algorithm based on the genotypic data to optimize the composition of calibration sets. The
parameters used in this algorithm were derived from the G-BLUP model and we compared its
efficiency to that of more common approaches, based on true datasets (chapter 3). These
studies were mostly based on the genotypes and phenotypes collected on two maize diversity
panels in the framework of the European project Cornfed described in chapter 2. In this last

section we will discuss more globally these three chapters and propose perspectives.
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- General discussion -

Increasing power in association mapping

1. Kinship estimator

Previous analytical and empirical studies had revealed that GWAS based on panels of
intermediate size (hundreds to thousands of individuals) could only capture QTLs of
intermediate to big size (LONG and LANGLEY 1999; ZHAO et al. 2007). This was confirmed in
our simulations based on the Cornfed and Camus-Kulandaivelu (2006) genotypes (chapter 1).
It is therefore necessary to optimize power in these designs to detect as many QTLs as
possible. Analytical derivation of power revealed that allele frequencies and kinship between
individuals could affect power in addition to population size (chapter 1). In practice true
kinship is unknown and has thus to be estimated. We could show that the way of estimating it
could affect power. Classical kinship estimators such as those proposed by ASTLE and
BALDING (2009), VANRADEN (2008), or the simple Identity By State resulted in low power in
regions of high LD. This is due to the fact that in these kinship estimators, markers are
assumed to be independent so LD is not taken into account. As a consequence, regions with
strong LD have a higher contribution in the kinship estimation and are overcorrected. We
proposed two alternative ways of estimating kinship and compared their efficiency to detect
QTLs through simulations. It revealed that these approaches could control false positive rate
efficiently and were more powerful than classical approaches. In particular, the approach
consisting in removing the markers physically linked to the tested position from the kinship
estimation permitted the detection of more QTLs. This was shown by simulations and for real
phenotypes from the Cornfed data, with an increase of about 40% of significant SNPs
(chapter 2).

2. Marker density
For GWAS to be efficient, we need a sufficient genotyping density to have at least one marker
in high LD with each QTL. From our estimations of LD (0.1 to 0.2cM to reach an r2K of 0.1
depending on the chromosome and the panel, see Table 2), the 50k SNP-array used in this
thesis (GANAL et al. 2011) is already a good basis (as shown in BOUCHET et al. 2013 for the
C-K panel), but additional markers would be highly beneficial, as mentioned in chapter 2.
This will be soon achieved by combining SNP-arrays, Genotyping-By-Sequencing and
sequencing approaches. Other factors contributing to phenotypic variations such as Copy

Number Variants (CNV), or epigenetics variants are also expected to be characterized soon
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(CNV-arrays, methylome...) to track more genetic variations. This increase of available
molecular polymorphisms leads to an increase in the number of tests, so that significance
thresholds need to be adapted accordingly to limit the number of false positives in the
detection. We need to consider for this the number of independent tests and not the total
number of markers. LD between markers has again to be taken into account for this, as for
example two markers in complete LD correspond to only one test. Different ways of
estimating this number of independent tests were proposed (CHEVERUD 2001; L1 and Ji 2005).
The approach of Li and Ji estimated around 3600 independent tests in both panels, which is
more than 10 times lower than the number of tested SNPs. This equivalent number of
independent tests should be revised on a regular basis when considering additional marker
information but it is expected that, considering the LD of our panels, it should stabilize at
some step before the total number (millions) of polymorphisms is reached.

Our results also illustrate a strong effect of relatedness on LD between distant
polymorphisms. This illustrates that relatedness needs to be taken into account in association
genetics models to prevent false positives. Even if this was not approached in the thesis, it is
interesting to further analyze the local structure and organization of LD in genomic regions.
Softwares as Fastphase (SCHEET and STEPHENS 2006) or Clusthaplo (LEROUX et al. 2014)
were developed to infer local haplotypes. The analysis of the Cornfed Dent panel with
Fastphase revealed long haplotypes in regions near centromeres (GIRAUD 2012). This
information about ancestry is interesting to consider to detect associations between ancestral
haplotypes and phenotypes. It allowed the detection of additional QTLs in multiparental
connected populations (BARDOL et al. 2013) and in association panels (Duruls et al. 2011,
ZHANG et al. 2012, GIRAUD 2012) and would deserve further consideration on the data

presented in our study.

3. Population size and diversity
One efficient way of increasing power is to increase the size of the diversity panels. In theory
this is possible, but the description of the Cornfed panels in chapters 1 and 2 showed that it
may be difficult to sample large numbers of independent individuals among the genetic
materials presently available. A few lines (eg. B73, Mol7, Ph207) were intensively used as
parents of breeding programs in maize, which generated groups of related individuals
(DuBREUIL et al. 1996; ROMAY et al. 2013), clearly identifiable in the Cornfed panels (chapter
2). Our results in chapter 1 suggest that adding related individuals only leads to marginal
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improvement in power. This highlights how important it is to go back to old landrace
populations to increase genetic diversity in our material. However, at this step one has to be
careful not to sample too distant individuals, which would result in introducing structure in
the panel. Another way to increase power may therefore be to develop new lines from parents
belonging to different sub-groups, which converges in a way towards multiparental designs
(eg., NAM, MAGIC). Optimizing such designs calls for further investigations.

Note also that panels of important size make it difficult to evaluate all the genotypes in a same
experimental design (because of a difference in precocity for instance) and call for specific
experimental planning. We have to consider in particular that the genotypes need to be
evaluated in various environments to estimate the genotype*environment interactions (and
more precisely QTL*environment interactions). The instability of most QTLs detected in
chapter 2 clearly highlights that this has to be taken into account, as already observed in
various studies (MOREAU et al. 2004; BoOER et al. 2007). Considering the high cost of
phenotyping in field network and/or platforms, we believe it is of high interest to develop
sampling algorithms for optimizing the composition of association mapping panels to
maximize their detection power at a given population size. This could be possibly formalized
using the analytical study of power developed in chapter 1.

Using molecular information to maximize GS efficiency: optimizing the sampling of the

calibration set

Although improvements can be expected from higher marker densities, the reduced number
and size of the QTLs identified in this study (chapter 2) illustrates the limits of GWAS for
highly polygenic traits. Genomic selection, which estimates all the marker -effects
simultaneously, allows the breeder to work on a much higher proportion of the genetic
variance. It was shown in simulations and on true phenotypes that high prediction accuracies
could be reached (JANNINK et al. 2010; CrRossA et al. 2010; ALBRECHT et al. 2011), potentially
leading to great genetic progress. This was confirmed on the Cornfed datasets with
reliabilities close to 0.8 for flowering time (chapter 3).

The optimal use of GS in the selection schemes depends on the species and on the breeder's
strategy, but we believe that most of the cultivated species could benefit from this approach at

some step(s). Breeding of long cycle species such as trees could be greatly improved by GS,
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which could considerably reduce their breeding cycle, and thus increase genetic progress even
with prediction accuracies lower than typical heritabilities. For other species with short
breeding cycle, GS can reduce the cycle to a lesser extent but it could also be used to reduce
the amount of phenotyped individuals and thus reduce the costs. It is particularly interesting
for traits difficult and/or expensive to measure. Another use of GS is to eliminate individuals
with poor expected performances at an early step in the breeding program, to focus
phenotyping evaluation only on the most promising individuals. In all cases, genetic progress
is highly influenced by the prediction accuracies. As shown in a few studies, the calibration of
the prediction formula is one of the critical step in GS (HABIER et al. 2007; HEFFNER et al.
2009; ZHONG et al. 2009). We confirmed on the Cornfed datasets that accuracies of the
selection candidate predictions are highly influenced by the composition of the Calibration
Set (CS). Inadequate CS can potentially lead to accuracies close to zero or even negative
which would be disastrous for breeders. On the opposite, optimizing the composition of the
CS would allow the breeder to intensify the phenotypic effort on key individuals. We
developed an algorithm based on the G-BLUP framework to optimize the composition of the
CS in order to maximize prediction accuracies. This algorithm requires the genotypes of all
the individuals but no phenotypes. It is based on the expected reliability of the predictions (or
generalized CD, LALOE 1993). This algorithm was very efficient in both Cornfed panels for
various traits such as flowering time or dry matter yield, for which it gave higher accuracies
than random sets in all the considered scenarios. We showed that a same genetic progress
could be potentially reached with half of the phenotyping cost when this algorithm is used
instead of random sampling. One other potential use of this algorithm would be the optimal
sampling of reference individuals to be re-sequenced or densely genotyped for imputing other
individuals. As the algorithm samples the most informative individuals with regard to the
predicted set, this seems reasonable, but still has to be tested.

Even though GS in panels can have practical applications like prescreening of materials for
selecting parents of breeding programs, next steps of breeding programs involve in general
families of full or half sibs. Our sampling approach therefore has to be validated on other
genetic material with various diversity levels. We applied this approach to more structured
populations (multiparental connected populations as commonly used by breeders) in
collaboration with J. Crossa (results not shown here). First results on this type of dataset seem
encouraging, but need further investigations. One of the major issues is to both define the

composition of the optimal CS but also to define its optimal size. Although CD seems
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promising, it has to be noted that experimental studies revealed that the use of the phenotypes
of distant individuals could decrease prediction accuracy (RIEDELSHEIMER et al. 2013). This
cannot be explained by the CD, which always increases when additional phenotypes are used.
This is because the CD doesn't take into account the fact that distant individuals can bring
more noise than information. One possibility to take this into account is to weight the
information used to predict GV by considering both the CD and the correlation between the
LD phases in the different populations (GiBBs et al. 2009, LEGARRA et al. in press). Related to
this idea, and, similarly to what was done on the alternative kinship estimators in GWAS to
optimize power, it may be important to take LD into account in GS models. In the classically
used GS models, one assumes that the markers are independent. Introducing a covariance
matrix between the markers seems encouraging (CHIQUET et al. 2013). Note that the different
objectives of GWAS and GS may lead to different ways of taking LD into account to optimize
their efficiency. In GWAS, we want to limit confounding between fixed (tested marker) and
random (polygenic effect) effects. In GS we want to regularize (i.e. constraint the variation of)
the effects attributed to SNPs in an efficient way.

Finally, it should be noticed that considerations above apply well in the context of highly
polygenic traits (infinitesimal model). When some QTL have noticeably stronger effects,
kinship could be improved for both GWAS and GS by being estimated at the causal genes.
This supposes knowing their positions and having markers in complete LD with these genes.
This is not possible, but prior knowledge on the genetic architecture could potentially be used
to improve Kkinship estimate. In a Bayeasian framework, this can be achieved by taking into
account prior knowledge. An alternative in a mixed model framework is to consider known

QTLs as putative fixed effects in the model (BARDOL et al. submitted).

Diversity analysis and association mapping in the Dent and Flint Cornfed panels

The different history that the CF-Dent and CF-Flint panels have undergone was highlighted in
the diversity analysis (chapter 2). It resulted in different structure, LD extent and phenotypic
variability. We could show with simulations (chapter 1) and true datasets (chapter 2) that these
characteristics lead to different levels of power in association mapping, CF-Dent being more
powerful than CF-Flint. Associations were found for all traits in both panels (Tables S4 and
S5). Although promising QTL were detected for biomass yield, most of the strongest

associations (around 70%) were found for flowering traits and plant height (Tables 7 and 8).
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This suggests different genetic architectures with bigger QTL for flowering time. We believe
that this could be explained by the different types of selection that were applied to these traits.
Optimal flowering time and plant height depends on the local conditions and breeding
strategies, which results in stabilizing selection. The QTL-allele conferring a higher genetic
value is not always the same, depending on the breeding strategy and genetic value
determined by other QTL. This can maintain polymorphism, even for QTL with strong
effects. On the opposite, we suppose that most of the breeding strategies have led to higher
biomass productivity (as main breeding objective, or as correlative response of breeding for
grain yield). This directional selection may have resulted in the fixation of the favorable
alleles, in particular for the strongest QTLS, which would explain why we found less strong
associations for biomass traits than for flowering and height traits. Some QTLs for biomass
were also associated with flowering traits. In the context of multitrait selection for biomass
increase at constant flowering time, they were submitted to a "less directional™ selection than
QTLs purely related to biomass. If the effect of flowering time is strong enough relative to
that on biomass yield, this is expected to prevent fixation at corresponding QTL. In addition
to the reduced significance of the detected biomass QTL (chapter 2), one other major limit of
using these QTLs in marker assisted selection is their strong instability in the different

environments. We believe it asks for more integrated breeding approaches.

Towards an integrated approach in plant breeding

An important challenge in the future of plant breeding is to use GWAS and GS tools within
more integrated approaches. If genotyping and sequencing costs continue to decrease, and
more importantly if phenotyping relevant with respect to agronomical targets is automatized
in some ways (phenotyping platforms, drones...), we can expect to go much deeper in the
understanding of biological processes. This would permit for instance the study of interactions
between genes and between genes and the environment (epistasis, dominance and
gtl*environment interactions). These interactions are now highly simplified in our models or
even not considered at all, although they substantially contribute to phenotypic variability, for
example through the heterosis phenomenon (SHuLL 1914). Considering these interaction
effects is an important challenge in plant breeding, because the breeders want to estimate the
total genetic value of the selection candidates. Animal breeders are more focused on selecting

breeding animals (for reproduction) and as a result select individuals on their additive genetic
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value (the breeding value). But in plant breeding, not considering these interactions limits the
potential of breeding to some extent for many crops. Some approaches were proposed to study
these interactions in the context of GWAS, in particular to detect epistatic interactions
(VARGAS et al. 2006; BOER et al. 2007; LARIEPE et al. 2012; MAcKAY 2014). In GS,
dominance is sometimes introduced in the statistical model (MAENHOUT et al. 2009;
TecHNOW et al. 2012; Su et al. 2012), and other studies aimed at predicting genotype by
environment interactions (SCHULz-STREECK et al. 2013; HesLOT et al. 2014). One other
potential progress in integrated breeding would be to take advantage of the information
brought by ecophysiological models. One promising way is to include genetic parameters in
ecophysiological models and consider these as traits. This would help the breeders predict the
specific response of a genotype to given environmental conditions, and thus to develop
genotypes adapted to local environments. In the context of climate change, it would also help
to develop varieties robust to environmental stresses. The decomposition of integrated traits as
yield in more basic traits, would also have the advantage to base the predictions on biological
factors and no more on a black-box. We could expect for instance that this would increase the
validity of the predictions to more distant individuals (the next generations). Few authors
combined QTL detection results to ecophysiological models (REYMOND et al. 2003; QUILOT et
al. 2005; CHENu et al. 2009) and could efficiently predict relatively simple traits. This
approach applied to more integrated traits, together with the characterization of groups of
environments would be highly beneficial to plant breeding.

These perspectives don't question the interest of optimization procedures but rather call for
the development of more elaborated algorithms. We have to keep in mind that the
phenotyping and genotyping effort will always be limited to some extent, because resources
are limited and in competition with other sectors. Other studies are thus required to enrich this

field of investigation.
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Another simulation approach was used to compare the ability of the different models to detect
QTLs. The genetic model was simulated as in the second step of simulations presented in the
paper (the QTLs were sampled among all the PANZEA SNPs) but considering now that
markers within a given genetic distance of a QTL were under H1 and the others under HO. We
considered genetic distances of 1, 2, 3, 5 and 10 cM. For each genetic model (50 or 100
QTLs) and each panel, 200 runs were used to estimate the proportion of QTLs (PowerQTL),
and the proportion of H1-markers (Power) declared significant at a realized FDR of 0.1. The
realized false discovery rate (FDR) was defined as the proportion of markers under HO among
the markers declared significant. To estimate PowerQTL, we considered that a QTL was
detected when at least one of the corresponding H1-markers had a significant Pvalue.

Table S1 Power of the QTL detections with Mk _Freq, Mk_chr, and Mk_pat a realized FDR of 0.1. PowerQTL
is the proportion of QTL discovered, Power is the proportion of H1-markers discovered.

PowerQTL Power
Nb QTLs Window (cM) Mk rre Mkon MiL Mk rre Mkcn ML
o r D o r D
50 1 0.08 0.11 0.10 0.0012  0.0028 0.0025
50 2 0.11 0.14 0.13 0.0010 0.0024 0.0021
50 3 0.12 0.16 0.15 0.0009 0.0021 0.0019
50 5 0.15 0.21 0.19 0.0008 0.0019 0.0017
50 10 0.24 0.32 0.29 0.0008 0.0019 0.0016
C-K 100 1 0.03 0.05 0.04 0.0004  0.0011 0.0008
100 2 0.05 0.07 0.06 0.0004 0.0010 0.0008
100 3 0.06 0.10 0.08 0.0004 0.0010 0.0008
100 5 0.09 0.15 0.13 0.0004 0.0011 0.0009
100 10 0.21 0.32 0.27 0.0006 0.0017 0.0013
50 1 0.09 0.12 0.11 0.0019  0.0052 0.0041
50 2 0.11 0.17 0.15 0.0015 0.0052 0.0038
50 3 0.13 0.21 0.19 0.0014  0.0054 0.0038
50 5 0.17 0.28 0.26 0.0013  0.0053 0.0036
50 10 0.26 0.46 0.40 0.0014 0.0065 0.0037
100 1 0.04 0.07 0.06 0.0007  0.0030 0.0020
CF-Dent
100 2 0.05 0.12 0.09 0.0006  0.0032 0.0019
100 3 0.07 0.17 0.12 0.0006 0.0036 0.0019
100 5 0.11 0.26 0.19 0.0007  0.0045 0.0022
100 10 0.24 0.54 0.42 0.0011  0.0081 0.0039
50 1 0.09 0.10 0.09 0.0014 0.0026 0.0023
50 2 0.11 0.14 0.12 0.0012  0.0023 0.0019
50 3 0.13 0.17 0.15 0.0010  0.0022 0.0018
50 5 0.16 0.22 0.19 0.0010 0.0022 0.0017
50 10 0.25 0.35 0.30 0.0010 0.0024 0.0016
CF-Flint 100 1 0.03 0.05 0.04 0.0005 0.0013 0.0010
100 2 0.05 0.08 0.06 0.0004 0.0013 0.0010
100 3 0.06 0.10 0.08 0.0004  0.0013 0.0009
100 5 0.09 0.16 0.13 0.0005 0.0015 0.0010
100 10 0.18 0.34 0.27 0.0006 0.0023 0.0014
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Table S1: Statistics on the hybrid and per se adjusted means in the CF-Dent and CF-Flint panels.

- Appendix Il -

Tass_GDD6 Silk_ GDD6 AS| GDD6 PLHT

DMC DMCcorr DMY DMYcorr

mean 888.1 906.1 18.1 255.8 34.0 0.0 16.0 0.0
min 816.6 827.5 -3.9 2252 26.0 -4.0 11.6 -3.8
Hybrids
max 995.3 1008.2 42.7 286.8 40.9 4.2 19.7 3.0
var 1165.0 1351.2 72.4 1539 8.9 2.3 1.9 15
CF-Dent
mean 876.8 883.2 6.5
min 662.2 662.2 -76.9
Per se
max 1070.9 1115.7 156.8
var 7964.1 8776.8 634.5
mean 882.7 913.9 23.3 2545 31.3 0.0 15.1 0.0
. min 803.4 841.4 1.6 2173 243 -4.4 11.1 -4.2
Hybrids
max 1034.7 1056.8 48.0 296.5 37.3 4.4 19.6 4.0
var 1593.3 1535.4 68.0 2379 59 25 2.3 19
CF-Flint
mean 1003.0 968.6 40.0 116.9
min 784.1 809.2 -80.3 53.6
Per se
max 1308.5 1305.0 189.9 351.4
var 11576.7 9096.2 1741.0 772.0
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Table S2: Admixture and performances of the Dent lines (crossed to the tester)

StiffStalk  Lancaster ~ UH_4068f lode StiffStalk Minneso Lancaster ~F252fa Tass. G Silk G ASI.G D DM PL DMCc DMYc
Accession B73 Mo1l7 amily nt B14 tal3 0Oh43 mily DD6 DD6 DD6 MC Y HT orr

NS701_usda 0,81 0,00 0,00 0,00 0,19 0,00 0,00 0,00 919 922 2 33 17 216 -0,4 11
N192_inra 0,79 0,00 0,06 0,00 0,14 0,00 0,00 0,00 894 904 12 32 16 257 -13 0,0
NK764_usda 0,70 0,00 0,00 0,00 0,30 0,00 0,00 0,00 884 903 18 34 16 252 08 05
PHG86_usda 0,65 0,00 0,03 0,00 0,29 0,00 0,00 0,03 922 918 2 32 18 211 -15 2,2
F7025_inra 0,64 0,00 0,00 0,00 0,00 0,00 0,00 0,36 900 926 24 33 17 266 01 10
EC136_ciam 0,63 0,00 0,01 0,01 0,00 0,27 0,04 0,05 873 889 16 34 15 252 -0,8 -1.2
DK?78010_usd

a 0,61 0,00 0,00 0,00 0,39 0,00 0,00 0,00 898 900 7 34 17 255 -0,2 10
LH74_inra 0,59 0,00 0,00 0,00 0,41 0,00 0,00 0,00 939 931 -4 33 17 255 09 05
B84_inra 0,44 0,00 0,00 0,00 0,36 0,18 0,00 0,00 925 950 20 30 19 266 -11 2,2
EC326A_ciam 0,43 0,12 0,00 0,01 0,23 0,09 0,13 0,00 870 881 10 36 17 264 0,0 0,9
B104_inra 0,43 0,00 0,00 0,03 0,24 0,28 0,00 0,02 932 962 27 28 16 266 -2,4 -0,2
B110_uh 0,41 0,01 0,04 0,07 0,22 0,25 0,00 0,00 925 949 22 30 18 265 -11 17
F924_inra 0,31 0,10 0,02 0,02 0,24 0,25 0,00 0,05 908 914 6 33 17 267 -0,9 0,9

NC258_usa 0,00 0,83 0,00 0,02 0,04 0,06 0,05 0,00 995 1005 9 28 20 269 -0,3 24
CR1Ht_usda 0,00 0,79 0,00 0,03 0,00 0,13 0,00 0,06 872 892 19 32 16 250 -17 0,0
LH59_usda 0,00 0,74 0,00 0,00 0,00 0,00 0,26 0,00 912 935 19 31 15 257 -17 -14
AS5707_usda 0,00 0,73 0,03 0,02 0,05 0,17 0,00 0,00 934 955 20 31 16 270 -1,0 -0,8
DKMDF-

13D_USDA 0,00 0,69 0,00 0,00 0,00 0,00 0,31 0,00 956 966 12 32 18 278 10 10
LH60_usda 0,00 0,67 0,03 0,02 0,00 0,24 0,00 0,03 928 957 25 31 16 269 -0,6 -0,2
F816_inra 0,03 0,67 0,00 0,06 0,00 0,11 0,00 0,13 864 885 23 34 16 268 -15 03
PHK76_usda 0,00 0,64 0,02 0,02 0,09 0,00 0,23 0,00 910 919 11 33 16 269 -0,4 03
PHJ40_usda 0,04 0,47 0,00 0,03 0,21 0,14 0,06 0,04 878 893 13 35 16 248 04 -0,2
EP72_csic 0,00 0,43 0,05 0,04 0,11 0,18 0,08 0,10 922 945 19 30 18 265 -2,1 17
LAN496_inra 0,00 0,40 0,02 0,03 0,08 0,38 0,01 0,07 915 950 31 32 15 250 03 -15
B106_inra 0,01 0,39 0,06 0,06 0,02 0,34 0,03 0,09 933 963 26 31 17 271 -0,5 0,0
W602S_uh 0,07 0,36 0,10 0,05 0,02 0,19 0,16 0,05 891 936 43 32 17 254 -0,2 04
W604S_uh 0,06 0,34 0,03 0,01 0,06 0,16 0,29 0,04 932 946 15 31 17 259 -0,7 01
PHT77_usda 0,00 0,33 0,00 0,03 0,03 0,29 0,30 0,02 918 936 19 33 18 272 0,7 15

D09_uh 0,00 0,00 0,81 0,00 0,00 0,00 0,00 0,19 853 868 16 37 16 258 10 01
UH_P072_uh 0,00 0,01 0,76 0,21 0,01 0,00 0,00 0,00 873 880 9 38 17 244 2,5 11
UH_P017_uh 0,00 0,00 0,63 037 0,00 0,00 0,00 0,00 857 875 19 38 16 251 2,2 04
UH_P075_uh 0,00 0,00 062 038 0,00 0,00 0,00 0,00 864 880 5 37 17 251 11 13
UH_P046_uh 0,00 0,00 0,58 042 0,00 0,00 0,00 0,00 836 850 14 39 15 247 13 -0,5
UH_P087_uh 0,00 0,00 0,54 0,46 0,00 0,00 0,00 0,00 876 884 9 37 16 263 19 05
UH_P060_uh 0,00 0,00 0,50 0,50 0,00 0,00 0,00 0,00 877 892 17 37 17 255 2,6 13
UH_P104_uh 0,07 0,00 0,50 0,26 0,09 0,08 0,00 0,00 877 886 13 37 14 247 15 -15
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UH_S015_uh 0,08 0,00 0,38 0,02 0,12 0,30 0,07 0,02 863 881 21 36 17 242 13 0,9

UH_6148_uh 0,00 0,00 0,00 0,95 0,05 0,00 0,00 0,00 859 877 18 37 16 253 0,9 01
UH_P033_uh 0,00 0,00 0,00 0,95 0,00 0,00 0,00 0,05 867 884 17 36 17 245 03 10
UH_6246_uh 0,00 0,00 0,00 0,92 0,00 0,00 0,00 0,08 864 880 18 36 15 245 0,6 -0,3
UH_6161_uh 0,00 0,00 0,02 089 0,08 0,00 0,00 0,01 864 878 16 36 16 252 0,7 -0,2
UH_P042_uh 0,00 0,06 0,00 082 0,05 0,04 0,00 0,03 878 890 12 36 16 247 08 01
UH_6145_uh 0,00 0,00 0,03 082 0,08 0,00 0,00 0,07 855 874 24 38 16 251 25 0,2
PHG50_usda 0,00 0,03 0,00 0,76 0,00 0,21 0,00 0,00 879 901 20 33 16 247 -1,6 03
FC1890_inra 0,00 0,09 0,00 0,69 0,00 0,22 0,00 0,00 899 914 14 34 17 257 08 12
UH_P066_uh 0,00 0,00 0,00 0,69 0,28 0,00 0,00 0,03 860 866 6 37 16 249 10 01
UH_P148_uh 0,00 0,00 031 0,69 0,00 0,00 0,00 0,00 879 888 11 38 16 262 34 01
PHG83_usda 0,00 0,14 0,00 0,69 0,00 0,17 0,00 0,00 922 939 8 32 18 261 -0,8 14
UH_P115_uh 0,00 0,00 0,33 0,67 0,00 0,00 0,00 0,00 874 889 13 37 17 248 25 13
UH_P074_uh 0,00 0,00 0,34 0,66 0,00 0,00 0,00 0,00 863 881 18 34 16 247 -0,7 05
11430_usda 0,00 0,03 0,00 0,66 0,00 0,01 0,30 0,00 898 906 9 3 15 255 16 -14
UH_P064_uh 0,03 0,02 0,10 0,66 0,07 0,09 0,03 0,00 869 884 3 37 17 270 2,0 14
UH_P136_uh 0,00 0,00 0,35 0,65 0,00 0,00 0,00 0,00 871 876 6 37 16 253 15 0,0
UH_P131_uh 0,00 0,00 0,28 0,65 0,00 0,00 0,00 0,07 860 870 11 37 17 244 11 10
Mo12_usa 0,00 0,04 0,03 0,65 0,00 0,19 0,02 0,08 851 884 30 37 13 249 15 -2,3
UH_P135_uh 0,00 0,00 0,26 0,63 0,00 0,00 0,00 0,11 853 867 17 38 16 259 2,3 0,9
UH_6179_uh 0,00 0,00 0,03 0,62 0,00 0,00 0,06 0,29 878 896 16 36 17 264 17 10
UH_6102_uh 0,00 0,00 0,39 0,61 0,00 0,00 0,00 0,00 876 895 20 34 16 256 -0,3 0,2
UH_P040_uh 0,00 0,00 039 0,61 0,00 0,00 0,00 0,00 855 858 8 39 16 252 2,4 0,0
UH_6103_uh 0,00 0,00 0,40 0,60 0,00 0,00 0,00 0,00 855 870 13 38 16 252 19 0,2
EC242C_ciam 0,00 0,08 0,00 0,59 0,20 0,07 0,06 0,00 861 889 32 36 15 236 12 -0,8
UH_P130_uh 0,00 0,01 0,36 0,558 0,04 0,00 0,00 0,00 851 852 1 40 17 241 35 11
UH_6132_uh 0,00 0,00 043 057 0,00 0,00 0,00 0,00 848 873 22 36 16 253 1,0 08
FV353_inra 0,00 0,00 0,00 0,54 0,00 0,18 0,07 0,21 867 879 13 35 16 258 -0,6 01
B103_inra 0,00 0,12 0,00 0,53 0,10 0,23 0,01 0,00 862 888 25 34 15 235 -0,9 -0,7
F912_inra 0,00 0,04 0,00 0,53 0,24 0,12 0,02 0,05 897 902 9 3 16 256 03 -0,1
UH_P089_uh 0,01 0,02 0,00 0,552 0,00 0,20 0,04 0,21 882 902 20 33 17 255 -11 0,6
UH_6110_uh 0,00 0,00 048 0,52 0,00 0,00 0,00 0,00 858 883 24 37 16 258 14 01
UH_P084_uh 0,49 0,00 0,00 051 0,00 0,00 0,00 0,00 873 883 12 34 17 258 -0,9 14
FC1819_inra 0,00 0,26 0,01 039 0,21 0,09 0,00 0,05 869 877 10 36 16 239 0,7 -0,1
PHV78_usda 0,00 0,31 0,00 0,35 0,01 0,31 0,02 0,00 952 960 9 30 18 2711 -13 18

PHG39_usda 0,00 0,12 0,00 0,00 0,88 0,00 0,00 0,00 943 940 -2 32 18 268 -0,3 12
LH145_usda 0,00 0,00 0,15 0,00 0,85 0,00 0,00 0,00 895 917 23 36 16 262 23 -0,2
PHT55_usda 0,00 0,13 0,00 0,03 0,84 0,00 0,00 0,00 951 955 6 31 18 270 0,0 18
EC151_ciam 0,00 0,00 0,06 0,00 0,72 0,00 0,22 0,00 898 918 19 32 15 247 -0,9 -0,7
EC334_ciam 0,00 0,05 0,04 0,01 0,66 0,17 0,02 0,05 914 936 20 33 16 253 0,0 0,0
B37_inra 0,00 0,00 0,00 0,00 0,63 0,21 0,08 0,07 939 968 26 29 18 267 -1,9 16
EC175_ciam 0,14 0,00 0,09 0,03 0,63 0,08 0,01 0,01 870 901 21 31 17 276 2,6 0,7
EC169_ciam 0,24 0,03 0,03 0,00 0,61 0,08 0,00 0,00 872 889 20 3% 16 251 04 0,0
DKFBHJ_usda 0,09 0,00 0,00 0,07 0,60 0,19 0,06 0,00 891 901 14 34 15 260 0,2 -1,0
DE811_inra 0,04 0,26 0,00 0,00 0,59 0,07 0,03 0,01 932 951 6 31 16 271 -1,0 -0,2
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F7019_inra 0,00 0,00 0,14 0,00 0,59 0,00 0,00 0,27 874 879 8 36 17 249 08 0,9
PHGB80_usda 0,01 0,31 0,00 0,00 0,56 0,07 0,06 0,00 908 922 16 32 18 262 -2,0 15
PHG71_usda 0,00 0,00 0,00 045 0,55 0,00 0,00 0,00 880 894 17 35 17 253 08 08
LH146Ht_usda 0,35 0,00 0,12 0,00 0,53 0,00 0,00 0,00 869 887 20 35 17 256 0,6 1,0
F918_inra 0,00 0,00 0,00 0,02 0,52 0,41 0,00 0,04 926 954 26 30 17 265 -15 0,5
F894_inra 0,00 0,00 0,01 0,07 0,51 0,35 0,06 0,00 917 941 21 32 18 264 0,0 1,7
DK4676A_usd

a 0,05 0,01 0,02 0,05 0,49 0,22 0,09 0,06 886 881 -2 32 16 247 -2,7 01
F618_inra 0,00 0,00 0,00 0,07 0,48 0,39 0,07 0,00 905 918 12 33 18 259 0,0 19
NKH8431_usd

a 0,23 0,00 0,06 0,01 0,42 0,23 0,00 0,05 871 887 15 35 17 251 0,0 12
F584_inra 0,03 0,02 0,00 0,06 0,42 0,33 0,08 0,07 915 940 23 30 16 254 -1,9 -0,3
PHBO09_usda 0,16 0,03 0,00 0,02 0,41 0,18 0,18 0,02 902 911 11 33 18 269 -0,6 16
EC130_ciam 0,00 0,07 0,01 0,00 0,40 0,34 0,15 0,03 869 878 11 34 15 230 -0,5 -11
EZ48_csic 0,19 0,00 0,00 0,05 0,37 0,30 0,09 0,00 945 966 22 30 18 275 -0,1 1,0
PHK?29_usda 0,33 0,10 0,00 0,04 0,37 0,09 0,05 0,03 922 939 18 32 19 276 0,0 3,0
PHV63_usda 0,13 0,27 0,00 0,03 0,36 0,15 0,06 0,00 935 944 7 32 18 262 04 1,7
F1808_inra 0,25 0,03 0,02 023 0,36 0,11 0,00 0,00 901 907 6 33 18 255 -0,7 24
F7081_inra 0,00 0,00 0,06 0,02 0,35 0,24 0,04 0,30 904 917 12 33 16 265 -0,2 0,1
Wf9_inra 0,00 0,00 0,00 0,00 0,00 1,00 0,00 0,00 897 931 34 31 14 257 -17 -2,0
CG1_uh 0,03 0,00 0,00 0,00 0,00 0,97 0,00 0,00 859 895 33 32 15 260 -2,9 -14
A3_inra 0,05 0,00 0,01 0,01 0,01 0,92 0,00 0,00 889 922 32 33 16 265 -0,3 -0,7
B89_inra 0,05 0,00 0,00 0,06 0,00 0,83 0,06 0,00 878 914 33 34 16 253 01 -0,5
EM1163_inra 0,00 0,03 0,06 0,00 0,05 0,82 0,01 0,02 864 893 26 38 14 254 3.2 -2,0
AB54_inra 0,00 0,00 0,06 0,03 0,00 0,81 0,00 0,09 864 881 17 35 16 242 -0,2 01
SDp254_inra 0,00 0,13 0,00 0,07 0,00 0,80 0,00 0,00 880 904 23 33 15 246 -11 -0,5
F604_inra 0,00 0,07 0,05 0,02 0,01 0,76 0,01 0,07 848 872 22 36 14 248 -0,5 -1,8
EP77_csic 0,00 0,02 0,05 0,01 0,06 0,75 0,02 0,10 879 888 13 36 16 270 15 -0,4
LH85_usda 0,00 0,00 0,06 0,05 0,00 0,75 0,03 0,12 857 872 19 36 15 237 0,7 -11
EZ5_csic 0,01 0,07 0,00 0,00 0,05 0,71 0,03 0,13 920 947 28 30 16 267 -19 -0,1
MS71_uh 0,02 0,04 0,04 0,05 0,08 0,71 0,02 0,03 898 921 27 32 15 250 -1,0 -0,9
Ab554_inra 0,00 0,05 0,09 0,00 0,00 0,71 0,00 0,14 860 873 14 37 13 246 14 -2,7
F496_inra 0,04 0,07 0,00 0,00 0,07 0,71 0,07 0,03 860 885 27 3 15 240 -0,2 -0,8
Pa374_inra 0,03 0,08 0,02 0,01 0,06 0,70 0,07 0,04 872 893 23 35 16 247 03 0,5
EA3076_csic 0,00 0,08 0,04 0,03 0,00 0,70 0,03 0,12 918 959 35 31 15 273 -0,9 -1,9
F608_inra 0,00 0,03 0,02 0,05 0,07 0,70 0,11 0,01 899 919 19 33 16 260 03 -0,1
NC358_uh 0,04 0,08 0,04 0,01 0,00 0,69 0,04 0,10 925 965 3 29 17 251 -14 0,2
Pa405_uh 0,06 0,03 0,04 0,00 0,05 0,68 0,05 0,09 886 926 38 35 16 255 17 -0,8
B113_uh 0,04 0,10 0,01 0,02 0,04 0,68 0,07 0,05 902 927 23 31 16 261 -15 -0,1
W23_uh 0,08 0,03 0,10 0,00 0,00 0,66 0,07 0,06 879 910 30 34 16 263 0,2 -0,2
CQ201_uh 0,04 0,07 0,01 0,02 0,06 0,64 0,12 0,05 848 873 28 33 15 233 -2,3 -0,9
N16_inra 0,05 0,05 0,11 0,04 0,04 0,63 0,00 0,08 961 993 30 28 18 272 -1,0 14
FV181_inra 0,10 0,08 0,08 0,01 0,01 0,63 0,01 0,08 830 839 11 38 15 233 0,2 -1,0
A374_inra 0,08 0,00 0,03 0,08 0,06 0,63 0,10 0,04 907 927 19 34 15 249 15 -1,0
0h02_inra 0,05 0,05 0,03 0,04 0,05 0,62 0,06 0,10 947 965 16 33 17 274 24 01
Pad1_inra 0,02 0,01 0,00 0,00 0,01 0,61 0,35 0,00 939 977 3 28 16 273 -2,5 -0,4
PP147_inra 0,10 0,09 0,03 0,00 0,00 0,61 0,06 011 930 954 24 30 16 279 -1,0 -0,4
F7001_inra 0,02 0,01 0,01 0,05 0,12 0,61 0,10 0,08 901 921 19 32 18 273 -0,8 19
A375_inra 0,09 0,00 0,00 0,02 0,08 0,61 0,18 0,02 902 915 13 3 15 257 17 -0,9
W182B_inra 0,05 0,04 0,07 0,02 0,08 0,61 0,11 0,04 861 868 9 36 15 255 0,1 -11
YUBCla_inra 0,01 0,03 0,00 0,01 0,14 0,61 0,10 0,10 871 904 24 31 14 245 -4,0 -2,3
EM1027_inra 0,02 0,13 0,03 0,03 0,05 0,60 0,06 0,08 922 940 17 31 17 267 -0,8 0,6
N6_inra 0,06 0,07 0,02 0,02 0,06 0,60 0,08 0,09 905 936 33 30 14 247 -17 -2,5
A340_inra 0,01 0,07 0,03 0,01 0,03 0,60 0,08 0,17 855 873 20 34 16 260 -18 0,0
FV335_inra 0,08 0,07 0,01 0,02 0,05 0,60 0,07 011 863 882 21 3 17 254 0,2 13
1a153_inra 0,00 0,08 0,06 0,03 0,05 0,59 0,01 0,18 851 870 20 37 14 237 0,9 -1,0
PB7_inra 0,05 0,08 0,04 0,03 0,03 0,59 0,01 0,16 853 874 22 37 13 237 0,7 -2,6
Oh33_inra 0,01 0,06 0,04 0,09 0,10 0,59 0,02 0,08 919 930 10 34 15 266 15 -11
EP55_csic 0,04 0,02 0,03 0,01 0,14 0,59 0,10 0,06 879 908 26 36 15 257 2,0 -0,7
EP52_csic 0,06 0,04 0,05 0,00 0,04 0,59 0,16 0,06 910 927 17 31 18 260 -23 23
B108_uh 0,04 0,13 0,06 0,00 0,04 0,59 0,06 0,08 904 902 2 32 16 261 -14 03
A310_inra 0,02 0,06 0,05 0,05 0,00 0,59 0,07 0,17 895 916 26 31 14 258 -18 -2,0
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Mo15W_inra
EC232_ciam
B97_inra
Mt42_inra
WH_inra
W182E_inra
PHGB84_usda
PB98TR_inra
EP67_csic
W33_inra
C105_inra
F7057_inra
EP2_csic
A188_inra
EZ19_csic
F908_inra
FV218 _inra
B98_uh
W117_inra
EP56_csic
LH82_inra
PHR36_usda
N25_inra
PB116_inra
W9_inra
CO151_uh
A347_inra
K55_inra
MS153_inra
F670_inra
NC260_usa
FV230_inra
CO316_inra
PHG35_usda
T8 inra
EZAT_csic
EP29_csic
F904_inra
W95115_inra
CL29 _inra
LH93_usda
B111_uh
N22_inra
F888_inra
EP51_csic
PHZ51_usda
PHGA47_usda
EP28_csic
FP1_inra
F838_inra
Pa36_inra
Al48_inra
EC140_ciam
NK807_usda
EZ11A _csic
A158_inra
UH_S020_uh

F752_inra
DK2MA22_us
da

FV356_inra
DKMBPM_us
da

0,04
0,02
0,09
0,06
0,09
0,02
0,02
0,00
0,01
0,11
0,02
0,08
0,08
0,03
0,11
0,07
0,00
0,04
0,08
0,02
0,05
0,02
0,12
0,00
0,02
0,00
0,10
0,04
0,03
0,06
0,03
0,07
0,00
0,00
0,03
0,10
0,05
0,00
0,05
0,03
0,02
0,24
0,05
0,05
0,03
0,03
0,02
0,05
0,00
0,06
0,03
0,01
0,41
0,05
0,07
0,01
0,02
0,02

0,00
0,00

0,02

0,10
0,08
0,04
0,02
0,03
0,04
0,22
0,10
0,08
0,00
0,08
0,08
0,07
0,12
0,00
0,00
0,00
0,10
011
0,03
0,09
0,16
0,09
0,30
0,00
0,04
0,01
013
0,01
0,04
032
0,06
0,08
011
022
0,00
0,00
0,02
0,18
0,01
0,10
0,01
0,15
0,03
0,17
0,39
012
0,04
0,06
0,09
0,01
0,05
0,05
0,03
0,00
0,01
0,05
0,07

0,15
0,01

0,10

0,03
0,04
0,09
0,04
0,10
0,08
0,00
0,03
0,12
0,04
0,02
0,02
0,02
0,02
0,05
0,04
0,00
0,05
0,02
0,02
0,00
0,03
0,06
0,01
0,02
0,00
0,05
0,04
0,07
0,03
0,01
0,09
0,13
0,02
0,04
0,06
0,06
0,00
0,05
0,02
0,06
0,01
0,03
0,10
0,04
0,03
0,04
0,03
0,04
0,03
0,04
0,02
0,00
0,00
0,09
0,08
0,24
0,00

0,10
0,00

0,00

0,04
0,05
0,04
0,04
0,02
0,05
0,14
0,00
0,02
0,00
0,00
0,00
0,01
0,04
0,05
0,02
0,01
0,02
0,00
0,05
0,26
0,18
0,04
0,00
0,00
0,00
0,11
0,04
0,05
0,06
0,05
0,03
0,10
0,32
0,04
0,00
0,04
0,22
0,00
0,00
0,04
0,05
0,10
0,05
0,09
0,06
0,02
0,00
0,04
0,03
0,03
0,00
0,01
0,00
0,03
0,01
0,04
0,09

0,01
0,24

0,00

0,03
0,04
0,01
0,03
0,00
0,06
0,00
0,06
0,03
0,00
0,07
0,02
0,02
0,04
0,20
0,06
0,10
0,06
0,00
0,00
0,04
0,04
0,03
0,03
0,02
0,09
0,07
0,05
0,00
0,01
0,08
0,00
0,05
0,04
0,03
0,20
0,03
0,00
0,08
0,21
0,00
0,17
0,06
0,18
0,04
0,01
0,02
0,12
0,26
0,10
0,00
0,00
0,01
0,30
0,11
0,01
0,15
0,33

0,02
0,17

0,07

058
058
058
058
057
057
057
057
057
057
0,56
0,55
055
055
0,55
0,55
0,55
055
0,55
0,55
055
055
054
053
053
052
052
052
052
051
051
051
051
0,50
0,50
049
0,49
0,49
048
047
046
046
045
045
045
045
045
045
045
044
044
043
043
042
041
0,40
039
038

0,38
0,38

0,38

0,08
0,08
0,07
0,03
0,09
0,09
0,04
0,08
0,10
0,03
0,11
0,08
0,06
0,04
0,05
0,17
0,00
0,07
0,04
0,09
0,00
0,00
0,07
0,04
0,08
0,03
0,06
0,06
0,16
0,09
0,00
0,01
0,00
0,00
0,05
0,10
0,25
0,03
0,11
0,20
0,20
0,00
0,04
0,08
0,07
0,01
0,34
0,19
0,06
0,15
0,08
0,22
0,05
0,06
0,21
0,15
0,04
0,08

0,27
0,07

0,37

011
0,10
0,07
0,19
0,09
0,10
0,00
0,16
0,08
0,26
0,14
0,17
0,18
0,16
0,00
0,08
0,33
011
0,20
0,24
0,01
0,03
0,05
0,09
0,34
0,32
0,08
0,12
0,15
0,19
0,01
0,23
0,12
0,00
0,10
0,05
0,09
0,25
0,05
0,06
0,12
0,06
0,12
0,06
0,11
0,03
0,00
0,12
0,08
0,10
0,38
0,27
0,04
0,13
0,07
0,32
0,07
0,02

0,07
0,13

0,06

946
890
910
831
833
856
941
921
872
856
847
890
831
851
974
859
868
924
849
847
870
901
934
905
876
827
913
942
883
866
943
844
841
945
979
899
886
865
881
817
933
927
963
906
862
933
886
837
889
929
861
828
879
892
926
853
936
949

900
856

963

988
887
935
843
850
874
952
969
893
861
872
908
861
866
1005
883
882
970
869
868
878
924
973
933
903
844
919
957
923
887
961
863
847
959
1008
917
905
895
900
828
964
935
984
926
898
958
891
844
912
947
885
850
889
898
944
864
953
960

940
858

968

38

25
13
14
17
14
42
21

26
19
30
15
27
22
16
41
21
22
11
23
35
26
27
18

13
33
21
18
18

13
28
20
20
30
17
12
29

16
19
37
23
1

21
19
26
25
15

14

13
16

33

10

28
34
30
40
38
33
32
30
35
37
35
34
33
36
27
35
35
30
36
38
35
31
29
31
37
39
35
32
32
35
31
35
40
30
26
30
32
33
32
38
31
31
29
32
31
31
35
38
33
33
36
39
32
33
28
38
33
31

32
37

31

16
18
18
13
13
15
18
15
16
13
13
15
13
16
18
15
15
17
15
13
16
17
15
15
14
14
14
18
16
14
18
16
15
17
17
16
15
14
15
12
17
17
16
16
14
18
16
13
16
18
12
12
16
17
17
14
18
18

15
16

17

- Appendix Il -

266
257
272
228
238
245
269
257
260
246
230
243
238
262
287
259
242
279
238
230
248
252
270
254
237
232
261
264
256
246
285
250
238
271
280
258
248
234
244
232
261
262
265
265
244
280
255
234
264
256
244
228
258
253
272
233
266
270

248

276

1,9
1,0
24
22
02
23
00
-0,7
03
13
0,9
01
2,6
00
16
01
03
0,6
0,6
2,0
00
1,7
1,2
13
29
12
11
11
21
03
0,1
14
21
1,2
3,0
2,7
0,6
1,7
18
-0,2
01
03
11
0,7
31
0,2
03
01
-0,2
09
13
13
2,2
13
33
21
16
0,6

-0,1
08

13

-0,9
2,2
16

-2,0

-2,3

-0,3
15

-18
04

-2,7

-2,7

-11

-2,8
0,9
03

-0,5

-0,5
08

-0,3

-2,6
0,1
0,6

-11

-11

-18

-14

-19
13

-0,5

-18
12
03

-0,3
01

-0,2
03

-0,5

-2,4

-15

-2,5
0,6
04

-13

-0,1

-2,3

12
0,0

-19

-0,4
19

-3,5

-3,8
0,5
0,7
0,5

-19
1,0
14

-1,1
0,3

0,9
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UH_S067_uh
EZ46_csic
W401_inra
PHWG5_usda

C0O158_inra
DKHBAL_usd
a

EP27_csic

DK78371A _us
da

Va26_inra
H95_inra
Oh40B_inra
LH123Ht_usda

F7038_inra
CO125_inra
FV288_inra
UH_2500_uh
UH_1603B_uh
F7028_inra
FV317_inra
UH_8513_uh
FV284_inra
F7009_inra
FV113_inra
FV277_inra
F922_inra
FV354_inra
FV330_inra
UH_2551_uh
UH_1595_uh
UH_1675_uh

0,04
0,10
0,01
0,00
0,01

0,00
0,00

0,00
0,04
0,00
0,01
0,02

0,03
0,00
0,00
0,01
0,00
0,15
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,03
0,00
0,00
0,01
0,00

0,03
0,00
0,00
0,28
0,08

0,29
0,00

0,20
0,00
0,03
0,11
0,41

0,00
0,00
0,07
0,00
0,00
0,12
0,17
0,00
0,00
0,00
0,01
0,00
0,02
0,16
0,04
0,00
0,09
0,04

0,28
0,10
0,11
0,02
0,31

0,01
0,06

0,00
0,00
0,00
0,00
0,00

0,00
0,04
0,00
0,13
0,11
0,00
0,02
0,12
0,05
0,03
0,03
0,01
0,00
0,00
0,01
0,15
0,12
0,20

0,01
0,04
0,02
0,19
0,02

0,05
0,04

0,00
0,00
0,01
0,00
0,01

0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,06
0,00
0,00
0,00
0,00
0,10
0,00
0,22
0,06
0,07
0,05

0,13
0,14
0,00
0,00
0,00

0,29
0,20

0,00
0,02
0,02
0,01
0,09

0,00
0,00
0,00
0,00
0,00
0,00
0,12
0,00
0,03
0,05
0,02
0,00
0,01
0,02
0,00
0,00
0,06
0,29

0,37
0,37
0,36
0,34
0,34

0,32
0,32

0,00
0,14
0,24
0,19
0,00

0,00
0,00
0,00
0,02
0,04
0,00
0,00
0,11
0,26
0,27
0,35
0,41
0,25
0,23
0,26
0,26
0,26
0,05

0,03
0,20
0,15
0,17
0,10

0,00
0,29

0,80
0,80
0,69
0,67
0,47

0,00
0,00
0,00
0,02
0,07
0,00
0,00
0,07
0,03
0,05
0,01
0,01
0,06
0,06
0,00
0,14
0,00
0,00

0,12
0,06
0,36
0,00
0,14

0,04
0,09

0,00
0,00
0,01
0,00
0,00

0,97
0,96
0,92
0,82
0,79
0,73
0,69
0,65
0,62
0,61
0,59
0,58
0,57
0,50
0,47
0,39
0,38
0,37

865
896
828
931

990
839

918
908
955
898
938

870
852

863
862
893
874
856
841
849
863
841
889
880

839
856
837

874
906
837
951
862

996
858

927
928
977
923
952

898
867
874
889
870
912
889
861
864
862
875
845
895
886
854
856
879
852
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242
265
231
265
255

272
239

269
265
260
268

261
256
243
246
246
252
245
258
225
225
242
247
272

239
248
240
243

05
-2,8
0,9
0,0
0,5
05
04

-2,3
-0,3
0,0
01
-7

19
18
09
19
09
42
2,0
0,7
03
2,0
11
-18
31
13
-14
04
-1,0
35

-0,3
04
-1.2
11
-0,8
19
-19

08
07
00
04
06

02
14
0,1
14
03
0,1
038

04
13
14

04
04

24
08
03

07
07
04
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Table S3: Admixture and performances of the Flint lines (crossed to the tester).

Accession

UH_5231_uh

UH_5250_uh
UH_L038_uh
FV362_inra
UH_1107_uh
UH_5248_uh
UH_5267_uh
F02803_inra
UH_2109_uh
UH_L031_uh
UH_1224_uh
FV361_inra
UH_F050_uh
UH_8007_uh
F363_inra
UH_F035_uh
UH_5172_uh
UH_5264_uh
F364_inra
UH_L016_uh
UH_L021_uh
F03802_inra
UH_L042_uh
UH_5206_uh
UH_5113_uh

UH_7727_uh

UH_F043_uh

UH_F106_uh

UH_F038_uh

Hohen.

Fl.

0,93
0,82
0,82
0,78
0,78
0,76
0,75
0,75
0,74
0,74
0,73
0,73
0,71
0,66
0,62
0,62
0,59
0,58
0,55
0,48
0,45
0,45
0,44
0,39
0,38

0,35

0,14
0,00

0,25

UH_F047fa

m.

0,06
0,00
0,00
0,00
0,00
0,00
0,25
0,01
0,26
0,00
0,00
0,14
0,29
0,00
0,12
0,23
0,02
0,27
0,00
0,39
0,27
0,00
0,33
0,10
0,00

0,00

0,86
0,83

0,75

Lacau

ne

0,00
0,18
0,00
0,22
0,00
0,09
0,00
0,24
0,00
0,00
0,00
0,00
0,00
0,11
0,23
0,10
0,07
0,15
0,41
0,00
0,00
0,32
0,00
0,09
0,00

0,00

0,00
0,06

0,00

CIAMAran

a

0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,01
0,00
0,00
0,01
0,00
0,00

0,00

0,00
0,00

0,00

Ital.0

P

0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,02
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00

0,00

0,00
0,04

0,00

Spanis

h

0,00
0,00
0,14
0,00
0,00
0,00
0,00
0,00
0,00
0,26
0,00
0,11
0,00
0,00
0,00
0,00
0,09
0,00
0,00
0,12
0,28
0,22
0,19
0,07
0,00

0,33

0,00
0,05

0,00

Pyre
n.

0,01
0,00
0,00
0,00
0,15
0,01
0,00
0,00
0,00
0,00
0,23
0,00
0,00
0,19
0,03
0,06
0,19
0,01
0,00
0,00
0,00
0,00
0,00
0,25
0,25

0,00

0,00
0,00

0,00

NF

0,00
0,00
0,05
0,00
0,08
0,14
0,00
0,00
0,00
0,00
0,04
0,00
0,00
0,04
0,00
0,00
0,05
0,00
0,04
0,00
0,00
0,02
0,04
0,10
0,36

0,32

0,00
0,03

0,00

Tass G Silk_GD

DD6

867

841

870

850

846

825

881

876

836

885

864

857

859

869

855

842

876

858

855

878

864

846

882

847

856

848

876

869

849

D6

886

887

902

870

884

864

899

891

868

916

893

883

886

890

871

866

898

878

896

913

896

875

906

881

883

879

908

898

876

ASI_GD

D6

14

38

22

13

32

35

16

1

29

20

20

20

22

18

15

17

16

13

30

26

24

23

16

35

20

24

21

22

18

DM DM

C

31

30

31

35

31

34

33

33

32

32

32

35

34

31

35

34

32

34

34

31

31

37

32

35

31

36

31

31

34

Y

15

15

15

15

15

13

16

15

15

13

15

15

15

13

15

14

17

13

16

15

15

17

16

15

16

15

15

15

13

PLH  DMCco

T

- Appendix Il -

251

241

256

244

247

237

262

258

242

237

244

250

256

230

253

244

257

237

254

284

273

263

253

251

247

243

256

259

249

m

DMYco
"

-1,0 04
-2,0 -0,2
0,0 -0,1
2,5 0,2
-1,4 05
0,6 -11
0,7 16
15 0,7
-0,9 0,0
0,7 -18
0,4 -0,3
3,0 0,6
12 0,7
-1,0 -17
2,0 03
14 -0,2
0,5 17
10 -13
2,1 0,9
-0,8 01
-0,3 04
4,4 2,1
0,5 0,7
3,2 04
-1,2 0,9
33 0,2

-0,6 01
-0,9 0,0
0,9 -13



UH_F048_uh
UH_5222_uh
UH_F020_uh
UH_F037_uh
UH_F027_uh
UH_L048_uh
UH_2065_uh

UH_F018_uh

UH_1118_uh

FV1_inra
EZ59_csic
F564_inra
UH_1199_uh
PB268_inra
FV373_inra
FV85_inra
FV355b_inra
UH_3056_uh
F657wx_inra
FV160_inra
UH_5257_uh
FV344_inra
F902_inra
F350_inra
F337_inra
CO255_inra
F03801_inra
F916_inra

F359_inra

EC35G_ciam

882

860

873

857

869

848

865

879

803

871

914

859

857

858

847

873

900

838

829

872

894

835

843

919

856

880

907

892

885

890

877

885

871

894

907

841

915

945

876

874

877

901

868

891

937

871

859

882

880

914

859

883

870

954

883

913

- Appendix Il -

253

256

223

257

249

256

254

251

242

217

246

259

257

247

241

224
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- Appendix Il -

Table S4: Significant associations in the CF-Dent panel.

Trait Name Chr Pos MAF -logP_K_Freq -logP_K_Chr I'\c/)lga; effet

ASI_GDD6 PZE-101089397 1 80963531 0,07 2,79 2,92 4,88 3,19
ASI_GDD6 SYN25693 1 107883631 0,19 0,17 0,14 510 -0,29
ASI_GDD6 PZE-101143122 1 184242633 0,14 3,16 321 683 2,59
ASI_GDD6 PZE-102076429 2 57661247 0,33 2,82 2,84 6,59 1,87
ASI_GDD6 SYN5941 2 178262299 0,22 0,51 053 495 0,75
ASI_GDD6 PZE-102186878 2 230928395 0,08 4,19 4,12 7,54 4,31
ASI_GDD6 SYN31045 3 219899838 0,29 1,91 1,98 6,00 1,50
ASI_GDD6 SYN24156 4 1254252 0,13 0,06 009 489 0,12
ASI_GDD6 PZE-104082520 4 156714293 0,20 1,99 1,99 527 1,83
ASI_GDD6 PZE-104099884 4 176896645 0,13 3,76 3,77 4,91 3,11
ASI_GDD6 PZE-105041198 5 27247368 0,15 2,66 2,78 529 2,19
ASI_GDD6 SYN17491 5 142480380 0,19 1,43 1,49 5,21 1,60
ASI_GDD6 PZE-105108793 5 165742446 0,17 0,62 061 511 0,87
ASI_GDD6 SYN19125 5 178322096 0,41 2,47 2,33 545 -1,59
ASI_GDD6 PZE-106058040 6 106964908 0,10 3,74 3,76 564 -2,97
ASI_GDD6 SYN35090 6 107754798 0,08 1,10 1,12 5,13 1,74
ASI_GDD6 SYN34382 6 163178351 0,49 2,26 2,30 4,98 1,64
ASI_GDD6 PZE-107063100 7 120203200 0,29 2,36 2,31 5,42 1,81
ASI_GDD6 SYN14551 7 144205589 0,12 2,36 2,46 520 2,47
ASI_GDD6 PZE-108076600 8 131968792 0,16 0,79 083 520 1,12
ASI_GDD6 PZE-110044134 10 84047481 0,16 1,90 1,92 495 1,86
ASI_GDD6 PZE-110066651 10 122809735 0,10 0,17 0,14 509 044
DMC PZE-102028065 2 13287473 0,39 1,75 1,78 505 031
DMC PZE-102115993 2 153437719 0,24 3,41 4,19 7,22  -0,62
DMC PZE-103019324 3 11529830 0,13 3,14 3,23 491 -0,79
DMC PZE-103091384 3 150832948 0,48 5,26 541 554 0,74
DMC SYN16049 3 160514830 0,23 1,71 1,8 515 -042
DMC PUT-163a-148946654-487 3 211146412 0,17 1,21 1,24 5,14 0,33
DMC PZE-103176862 3 222726491 0,47 1,54 1,55 4,91 -0.27
DMC PZE-104093308 4 169801533 0,40 2,89 319 7,58 -0,51
DMC PZE-104117587 4 193892648 0,16 1,54 1,76 5,07 0,40
DMC PZE-104117602 4 193998611 0,16 1,54 1,76 5,07 0,40
DMC SYN36949 4 233828118 0,47 4,70 499 499 -0,62
DMC PZE-104146792 4 234820975 0,17 0,61 0,64 5,08 0,19
DMC PZE-105056998 5 55222259 0,31 1,55 1,29 503 034
DMC PZE-105134814 5 190732112 0,19 2,22 2,36 520 -0,56
DMC PZE-106001730 6 2722897 0,07 1,07 1,05 4,89 -0,65
DMC SYN37180 7 115969947 0,13 1,50 1,40 519 -048
DMC PZE-107085004 7 140712419 0,41 3,02 3,16 542 -0,46
DMC SYN2781 8 132204010 0,36 2,95 349 500 -044
DMC PZE-109003341 9 3897669 0,45 1,09 1,12 512 0,24
DMC PZE-110022209 10 31035820 0,29 2,42 2,59 501 -0,51
DMC PZE-110022293 10 31219126 0,11 4,95 535 535 -1,05
DMCcorr PZE-102028065 2 13287473 0,39 2,55 2,66 5,41 0,24
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Silk_GDD6 PZE-107065530 7 122130497 0,05 5,22 5,31 531 17,80
Silk_GDD6 PZE-108064653 8 115446396 0,14 5,42 5,90 7,34 12,59
Silk_GDD6 SYN3437 8 120459721 0,30 2,59 3,29 556 -6,29
Silk_GDD6 PZE-108068741 8 120768244 0,36 3,27 3,95 6,58 -6,50
Silk_GDD6 SYN10628 8 122465125 0,20 3,13 3,69 5,08 7,93
Silk_GDD6 PZE-108070194 8 123056834 0,47 3,39 4,05 5,08 -6,55
Silk_GDD6 PZE-108070380 8 123506141 0,27 7,83 8,86 8,86 11,97
Silk_GDD6 SYN23066 9 118046086 0,45 1,57 1,62 5,15 4,46
Tass_GDD6 PZE-101071092 1 53621515 0,37 2,28 2,47 5,40 5,08
Tass_GDD6 SYN39244 1 217212143 0,37 2,25 2,40 5,38 4,52
Tass_GDD6 PZE-102067477 2 44992791 0,31 1,97 2,42 4,96 4,82
Tass_GDD6 PZE-102075412 2 55829631 0,07 3,30 3,79 5,48 12,07
Tass_GDD6 SYN5941 2 178262299 0,22 7,07 7,22 7,54 11,68
Tass_GDD6 PZE-102167180 2 211498614 0,18 1,96 1,98 537 -6,06
Tass_GDD6 PZE-103012466 3 6649723 0,30 3,81 4,06 6,09 6,51
Tass_GDD6 PZE-103091384 3 150832948 0,48 5,11 5,23 6,12 -8,86
Tass_GDD6 PZE-103091660 3 151341647 0,33 2,94 2,82 6,05 6,31
Tass_GDD6 SYN25546 3 158889565 0,36 4,49 4,57 5,34 8,36
Tass_GDD6 SYN16049 3 160514830 0,23 1,81 1,80 4,89 5,34
Tass_GDD6 PZE-104093308 4 169801533 0,40 4,25 4,50 5,02 7,64
Tass_GDD6 PZE-104121926 4 198929997 0,30 2,94 3,36 5,24 6,44
Tass_GDD6 SYN11060 4 232934677 0,24 4,40 4,60 6,78 -7,09
Tass_GDD6 PZE-104144719 4 233541810 0,34 1,99 2,16 5,70 4,56
Tass_GDD6 SYN36949 4 233828118 0,47 5,78 6,29 7,69 8,36
Tass_GDD6 SYN1693 5 59291752 0,15 2,57 3,15 4,90 8,05
Tass_GDD6 SYN16484 5 188467017 0,41 1,16 1,29 5,51 2,83
Tass_GDD6 PZE-106041442 6 90548488 0,31 0,86 0,86 5,25 2,71
Tass_GDD6 SYN17287 7 119042427 0,20 3,80 3,88 5,92 7,53
Tass_GDD6 PZE-107065530 7 122130497 0,05 5,71 5,79 579 17,30
Tass_GDD6 PZE-107074700 7 130495196 0,07 3,46 3,46 4,93 10,55
Tass_GDD6 PZE-108000403 8 503482 0,29 1,06 0,94 5,23 3,14
Tass_GDD6 PZE-108064653 8 115446396 0,14 5,37 5,93 6,21 11,58
Tass_GDD6 SYN27932 8 118188472 0,39 5,36 5,76 5,76 7,80
Tass_GDD6 PZE-108070194 8 123056834 0,47 3,71 4,30 526 -6,34
Tass_GDD6 PZE-108070380 8 123506141 0,27 8,81 9,98 9,98 11,65
Tass_GDD6 PZE-108072699 8 126077120 0,37 4,56 5,74 5,74 6,88
Tass_GDD6 PZE-108072730 8 126287026 0,36 3,88 5,00 5,00 6,41
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Table S5: Significant associations in the CF-Flint panel.

Trait Name Chr Pos MAF -logP_K_Freq -logP_K_Chr
ASI_GDD6  SYN36074 1 44802906 0,14 3,35 3,42
ASI_GDD6 PZE-102110668 2 143259003 0,12 1,06 1,12
ASI_GDD6  SYN30953 2 202643907 0,11 1,49 1,46
ASI_GDD6  PZE-104067263 4 133252441 0,41 0,70 0,74
ASI_GDD6  SYN2340 4 156955443 0,26 2,32 2,42
ASI_GDD6  PZE-106063139 6 114481013 0,18 0,70 0,70
ASI_GDD6  PZE-107027539 7 32478358 0,08 5,40 5,68
ASI_GDD6  PZE-107050502 7 99894530 0,24 4,79 5,09
ASI_GDD6  SYN17065 7 140572906 0,34 2,18 2,48
ASI_GDD6 PZE-108068669 8 120610321 0,33 0,64 0,75
ASI_GDD6  SYN32327 9 27015269 0,16 1,50 1,48
ASI_GDD6  PZE-109051312 9 88794757 0,10 1,04 1,05
ASI_GDD6  PZE-109080576 9 128645534 0,06 1,72 1,74
ASI_GDD6  PZE-110036842 10 70312175 0,09 0,55 0,53
ASI_GDD6  PZE-110054216 10 102987075 0,09 0,90 0,93
DMC PZE-101070781 1 53414468 0,24 3,18 3,37
DMC PZE-101085247 1 74605720 0,47 1,90 1,92
DMC PZE-101103268 1 102950723 0,32 3,08 3,21
DMC PZA03580.2 1 175296774 0,35 3,78 3,85
DMC PZE-101160270 1 202420962 0,48 2,98 3,26
DMC PZE-104019337 4 19944254 0,06 2,54 2,62
DMC PZE-104078745 4 152972399 0,17 5,30 5,33
DMC PZE-107045416 7 92726573 0,08 1,11 1,07
DMC PZE-109044922 9 76536460 0,15 2,77 2,76
DMC SYN1108 10 113164779 0,49 1,67 1,91
DMC PZE-110085234 10 136958512 0,19 0,42 0,49
DMCcorr ~ SYN3797 4 63825919 0,14 1,40 1,42
DMCcorr ZM012702-0484 4 184782238 0,09 1,43 1,33
DMCcorr ~ PZE-107045416 7 92726573 0,08 1,19 1,22
DMCcorr SYN18508 7 156213202 0,44 0,56 0,53
DMCcorr ~ PZE-108047916 8 80390227 0,41 0,79 0,98
DMCcorr SYN23829 9 37286714 0,43 2,52 2,75
DMY SYN9368 1 3407925 0,36 0,86 0,86
DMY SYN10537 1 17966974 0,23 4,62 4,66
DMY PZE-101122758 1 153344342 0,25 4,91 5,39
DMY SYN13856 1 154077833 0,17 6,00 6,42
DMY PZE-101182771 1 227438388 0,13 4,13 4,16
DMY PZE-101205141 1 253793852 0,27 1,84 1,88
DMY PZE-102118123 2 158375830 0,27 2,85 3,18
DMY PZE-106112449 6 159681296 0,13 0,91 0,92
DMY PZE-107106303 7 158237314 0,12 2,12 2,12
DMY SYN35860 8 22173140 0,23 1,84 1,80
DMY PZE-109091780 9 138892323 0,06 3,86 3,87
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Figure S1: QQ-plot of Tass_GDD6 in the CF-Dent (A) and CF-Flint (B) panels, using

different (Q+K) models and two different ways of estimating the kinship matrix (K_Freq

and K_Chr).
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Non lodent (.70) lodent (.30)
| stiff Stalk (.20) | | Other (.54) | lodent (.26)
| stiff Stalk (18) | | Other (.53) | | UH_4068 (.12) | | Ph207 (0.18) |

| stiff Stalk (.18) | | Lancaster (.23) | | Other (.33) | | UH_4068 (.10) | | Ph207(.16) |

| stiff Stalk (.16) | | Other (:32) | | OH43 (.09) | [F252 (.16) | [ UH_4068 (10)| [Ph207(16)]

| stiff Stalk (.15) | | Mo17 (.10) | [ M13(29) | | OH43 (.09) | | F252 (12) | [ UH_4068 (.10) | | Ph207(.15) |

[B73(07) | [Bra12)| [mo17(09)] [m13(27)| |oH4as(o9) | |[Fes2(an)| [uH_4088(09) | | Ph207(15) |

| « Northern Flint » (.49) |

Non NF (.51)

Non NF (.43)

| Northern Flint (.32) | D171 (.24) |

| Northern Flint (:24) | | Fv7 (21)|  |D171(21)]  |Non NF (.35)]

| Northern Flint (.22) | | Fv7 (.15) || D171 (.20) | | Other (.18) | | Southern OPVs(.25) |

Figure S2: Admixture in the CF-Dent and CF-Flint panels from No=2 to No=8. Each group was called according to

the pedigree of the lines. Frequency of each group are indicated in bracket. Arrows were drawn between groups
sharing a high proportion of lines.
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Figure S3: CF-Dent (A) and CF-Flint (B) panels estimated with 4000 markers sampled
according to their physical position. Raw squared correlations (r) are represented below
the diagonal, and r2 corrected by relatedness (r2K) estimated as K_Freq are presented
above the diagonal. Cells corresponding to LD below 0.05 are in white. Markers were
ordered according to their physical position.
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Figure S1 Reliability of the predictions of Tass_GDD6 using different sampling algorithms on the Dent panel (A) and
the Flint panel (B) using a A value corresponding to an heritability of 0.5. The calibration sets were randomly sampled,
or defined by: maximizing CDmean with a relationship matrix based on the IBS or weighted by the allelic frequencies;
minimizing PEVmean with a relationship matrix weighted by the allelic frequencies; minimizing the mean (Amean) or
the maximum (Amax) of the relationship coefficient between the reference individuals. The individuals that are not in
the calibration set are in the validation set. As a consequence for each calibration set size the reliability is calculated
with a different number of individuals. For each point, the vertical line indicates an interval of 205 (o being the
standard deviation of observed reliabilities over the 50 runs).
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Figure S2 Cross-validation on the predictions of flowering time using different sampling algorithms in the Dent panel
(A) and the Flint panel (B). In a first step 30 individuals are randomly sampled to constitute the validation set. In a
second step calibration sets are sampled from the remaining individuals using different approaches to optimize the
prediction reliability of the validation set. These calibration sets were randomly sampled, or defined by: maximizing
CDmean with a relationship matrix based on the IBS or weighted by the allelic frequencies; minimizing PEVmean with
a relationship matrix weighted by the allelic frequencies; minimizing the mean (Amean) or the maximum (Amax) of
the relationship coefficient between the reference individuals. For each point, the vertical line indicates an interval of
20y (og being the standard deviation of observed reliabilities over the 50 runs). Optimization of PEVmean and CDmean
was made with h?=0.95.
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