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Résumé: Cette thèse est consacrée à la conception d’un contrôle en boucle fermée
d’un écoulement de cavité subsonique. L’objectif est de réaliser un contrôleur qui dépend
seulement de grandeurs observables expérimentalement et qui gère des situations où les
écoulements sont excités par des perturbations aléatoires extérieures. Pour faire face à
ces deux aspects essentiels, deux stratégies ont été définies: l’identification d’un modèle
non-linéaire reproduisant la dynamique de l’écoulement à partir seulement d’informations
mesurables et la conception d’un compensateur linéaire robuste, basée sur la théorie du
contrôle H∞, qui incorpore des propriété de robustesse dans la définition de la fonction
objectif.

La première partie de la thèse est consacrée à l’identification d’un modèle non-linéaire
grâce à des données obtenues à partir d’une expérience menée dans la soufflerie subsonique
(M = 0.1) S19 sur le site Chalais-Meudon de l’ONERA. Afin de décrire la dynamique de
cet écoulement, et en particulier son contenu fréquentiel, l’écoulement sans contrôle a été
caractérisé par des mesures par fil chaud et de pression instationnaire et par des clichés
de vélocimétrie par images des particules (PIV) résolue en temps. Un filtrage temporel a
été appliqué avec succès aux clichés PIV afin d’extraire la dynamique basse fréquence de
l’écoulement. Cette étape est indispensable pour pouvoir gérer des écoulements turbulents
caractérisés par un spectre fréquentiel très étendu. Les modes POD obtenus ont été
utilisés comme base de projection pour le champ de vitesse et les trajectoires associées
ont été interpolées (apprentissage statistique) sur une structure de modèle non-linéaire
autorégressif exogène (NLARX). Il s’avère que les modèles obtenus ne sont pas robustes,
dans le sens où ils ne parviennent pas à reproduire la dynamique d’un ensemble de données
de validation, une fois adaptés à un ensemble de données d’apprentissage. Il a été démontré
que cet échec est dû aux fortes non-linéarités observées dans l’écoulement de cavité, qui
rendent impraticables les méthodes d’identification.

La deuxième partie de la thèse est consacrée à la conception d’un contrôleur robuste à
partir de simulations numériques d’un écoulement de cavité carrée, incompressible et en
régime transitionnel, pour différents nombres de Reynolds. Diverses méthodes de synthèse
de contrôleur ont été testées et évaluées en utilisant plusieurs mesures de robustesse. On a
constaté que la technique traditionnelle de contrôle linéaire quadratique gaussien (LQG)
présente une faible robustesse aux perturbations extérieures, tandis que d’autres, comme
la technique LTR (Loop Transfer Recovery) et les contrôleurs basés sur les perturbations
“les pires” (worst-case), améliorent la robustesse, mais pas suffisamment pour faire face
à la forte non-linéarité de l’écoulement. Dans ce but, on met en place un contrôleur
qui optimise les propriétés de robustesse par rapport à des incertitudes de type “entrée-
multiplicative” et de type “entrée vers sortie”. Celui-ci présente des marges de robustesse
fortement augmentées par rapport à l’introduction de perturbations de la partie stable de
la dynamique entré-sortie, même si le prix à payer en terme de performance est significatif.
Une stratégie pour prendre en compte également des perturbations de la partie instable
de la dynamique entrée-sortie, comme celles obtenues par un changement du nombre de
Reynolds, a été présentée.

Mots clés: cavité, contrôle d’écoulement, boucle fermée, réduction de modèle, modes
POD, projection Galerkin, identification de système, robustesse, incertitudes non struc-
turées.



Summary: This thesis deals with the design of a closed-loop controller of a subsonic
cavity flow. The objective is to build a controller that only relies on observable dynamics
and that handles situations where the flow field is excited by unknown external random
disturbances. For this, two strategies have been defined: the identification of a non-linear
model representing flow dynamics from only measurable information and the design of a
robust linear compensator, based on the H∞ control theory, that incorporates robustness
properties in the objective function definition.

The first part has been devoted to the identification of a non-linear model with data
obtained from an experiment conducted at the ONERA S19 subsonic (M = 0.1) wind
tunnel on the Chalais-Meudon site. In order to provide a full description of the fluid
motion, in particular its frequency content, the natural (without control) flow has been
characterized by hot-wire and unsteady pressure measurements and time-resolved Particle
Image Velocimetry (PIV) snapshots. Time-filtering has been successfully applied to the
PIV snapshots in order to focus on the large-scale low-frequency dynamics of the flow. This
step has been shown critical to deal with turbulent flows characterized by high-frequency
noise. The obtained POD modes have been used as a projection basis of the velocity
field and the associated trajectories fitted to a Non-Linear Auto-Regressive eXogeneous
(NLARX) model structure by an identification process. It turns out that the obtained
models are not robust, in the sense that they do not manage to reproduce the dynamics
of a validation data-set once fitted to a given learning data-set. It has been shown that
this failure is due to the strong non-linearities observed in the cavity flow and that render
identification methods impracticable.

The second part has been devoted to the design of a robust controller from numerical
simulations of an incompressible square cavity flow at different Reynolds numbers in
transitional regime. Various control design methods have been tested and assessed with
respect to several robustness measures. It was found that the traditional Linear Quadratic
Gaussian (LQG) controller exhibits poor robustness to external perturbations and that
loop-transfer recovery (LTR) techniques and “worst-case” controllers improve robustness
but not sufficiently to cope with the strong non-linearities in the flow. To this aim, a
compensator design that optimizes the robustness properties with respect to unstructured
input-multiplicative and input-to-output uncertainties is presented. The latter shows an
important increase in robustness with respect to the introduction of perturbations of
the stable part of the input-output relation even though a cost is payed in terms of
performances. A strategy to deal also with perturbations of the unstable part of the
dynamics, as obtained for example by change in Reynolds numbers, has been introduced.

Key words: cavity, flow-control, feedback, model reduction, POD modes, Galerkin
projection, system identification, robustness, unstructured uncertainties.
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Chapter 1

Introduction

Active flow control played in the very last decades a key role in the suppression of flow-field

unsteadiness that are the main cause of noise, structural vibrations, drag increase and a

number of issues in a large range of industrial applications. The interest in this area led to

a development of technological devices, actuators and sensors, and control methodologies

focused to manipulate the greatest range of flows as reviewed by Cattafesta and Sheplak

(2011).

Among different types of control strategies — active, passive, open-loop, closed-loop,

etc — active closed-loop control in fluid flows has received a lot of attention in recent

years, in particular from the aerospace industry. The advantage of this kind of control is

the small amount of energy input, compared to open-loop control, with the possibility to

strongly alter the flow dynamics.

However, closed-loop control implies different approaches among control theorists and

experimentalists, since the first often ignore the practical limitations imposed by the the

existing technology and, on the other hand, the latter often do not appreciate dynamic

requirements imposed by feedback control.

The study and analysis presented in this thesis are part of the closed-loop control

of unsteady flows. In particular, they focus on the establishment of theoretical control

methods applicable under experimental conditions.

1.1 Subsonic cavity flow

Flows over open cavities have been deeply studied by control theorists, fluid dynamicists

and aeroacousticians, because of the variety of characteristics of such flows. The need

to model different scales of aero-acoustic disturbances, to control competing modes in a

large range of different conditions represent a challenge not always accomplished. For

these and a number of other reasons, the flow over an open cavity is considered as a

canonical problem in flow control.

1
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Figure 1.1: Schematic description of the cavity resonance.

The dynamics of separated flows are of fundamental interest in a number of realistic

configurations. Kelvin-Helmholtz instabilities are commonly present in this type of flows

causing an unsteady behavior in the shear-layer of the separation bubble. It is then

of a great interest to suppress or weaken its unsteadiness. The open-cavity flow is a

prototypical example of sustained instability. This type of flow exhibits a recirculating

component (confined geometrically to the cavity) as well as a strong shear layer that forms

at the top of the cavity and, for sufficiently high Reynolds numbers, becomes unstable

and settles into a characteristic periodic motion (Sipp and Lebedev, 2007).

The control framework depends on the nature of the flow to be controlled. Globally

unstable flows are more easily controlled, because of the limited number of structures at

well-defined frequencies. The techniques applied in these situations have greatly relied on a

mathematical framework established in control theory as described in standard references

(Burl, 1998; Zhou et al., 1996), but additional complications had to be overcome when

adapting them to fluid flows.

Cavity flows are characterized by a self-induced beating at a particular frequency.

This behavior is typical for oscillating flows (Huerre and Rossi, 1998) and it consists in an

exponential amplification of a given perturbation of the flow field followed by its saturation

due to non-linear effects. The flow-induced cavity resonance mechanism is schematized

in Fig. 1.1. A boundary layer of thickness δ separates at the upstream corner of a cavity

of length L and depth D. The mixing layer develops over the cavity and eventually

reattaches near the downstream edge. The downstream wall acts as an acoustic source,

and the generated waves travel upstream. The acoustic waves force the shear layer at the
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upstream edge as a feedback process producing resonant frequencies.

The mechanism has been described by Rossiter (1964) and is influenced by geometric

parameters (L and D) and flow conditions (M and Re). Each flow is then characterized

by specific cavity tones and the following harmonics. For this reason, cavity flows have

been the subject of a huge quantity of studies since the late ’50s. An exhaustive review

of simulations, modeling and active control of flow/acoustic resonance in flows over open

cavities can be found in Colonius (2001).

1.2 Closed-loop control

Flow control is necessary in a number of engineering applications and consists in the

alteration of the original state towards a desired condition. Two strategies can be distin-

guished, passive control and active control. In this study we focus on the latter and, in

particular, to closed-loop active control. However, an overview of flow control is given.

In aeronautic industry, passive control has played, and still plays, an important role,

since it does not require any energy input. It consists in the alteration of the flow through

geometric modifications or by placing artifacts in specific regions. Relevant examples of

these devices and solutions are: vortex generators used to enhance turbulence in boundary

layers (Godard and Stanislas, 2006) and therefore to delay separation (for drag reduction

purposes) (Aider et al., 2010; Pujals et al., 2010), surface riblets used to reduce skin friction

in channel flows (Walsh, 1983; Baron et al., 1993; El-Samni et al., 2007) and cylinders or

rods placed near the leading edge of a cavity to suppress resonances (McGrath and Shaw,

1996; Illy et al., 2008; Yamouni et al., 2013).

Although good results have been shown by passive control techniques in particular

conditions, a lack of adaptability and robustness to changes in flow conditions has been

also remarked and represents a huge limitation. Technology evolution allowed the devel-

opment of active control strategies capable to deal with these situations in a wider range

of applications.

The peculiarity of active control is the need of energy and a more complex system

in order to adapt to flow changes. The amount of energy requested has to be compared

with a global advantage in terms of energy saving or power gain, as explained by Kasagi

et al. (2009). In practical aeronautical applications, an example can be represented by

control techniques designed for skin-friction drag reduction, that has the consequence

of a diminished fuel consumption. Active control can be performed with two different

strategies: closed-loop control, where the control law is defined from feedback given by

real-time measurements, and open-loop control, that relies on no feedback.

Open-loop control lived its golden era in particular during the 90s and the first years of

the 2000s. Many applications have been the objective of this technique, as the suppression
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Figure 1.2: Closed-loop control scheme. Each block represents a transfer function, while
the arrows are related to time-domain quantities.

of cavity resonances or the reduction of viscous drag. To these aims, a wide set of actua-

tion devices has been employed: oscillating electromechanical and piezoelectric flaps and

plates, fluidic oscillating jets, voice-coil drivers, steady and pulsed blowing and resonance

tubes, as reviewed in Cattafesta et al. (2003). Successful results in active open-loop flow

control have been obtained by Zhuang et al. (2006) and Ukeiley et al. (2007) on cavity

tones suppression and by Quadrio and Ricco (2004) on drag reduction from span-wise

wall oscillations.

Closed-loop control became more important with the development of real-time tech-

nologies. The key feature of the closed-loop control is that some flow quantities, measured

or estimated, are fed back to an algorithm that modifies the optimal control signal that

minimizes a prescribed objective (Di Stefano et al., 1990). A simple representation of the

feedback system is schematized in Fig. 1.2, where sensors and actuators are included in

the plant, without specification of the frequency contribution.

A huge importance in feedback control is then assumed by actuators and sensors. Their

performances and efficacy are evaluated in terms of static and dynamic responses, energy

requirement, size, weight, bandwidth, gain (for actuators) and sensitivity (for sensors).

These characteristics have the same importance than the fluid interaction. Typically, in

feedback flow control, actuation devices are: piezoelectric moving flaps, zero-net mass

flows and plasma actuators. Sensors used more frequently in this type of applications

are generally unsteady pressure transducers, hot wires and hot films and thermocouples.

These devices present good features in terms of frequency bandwidth and time response.

The main characteristics and design issues for actuators and sensors are summarized in a

number of reviews as Cattafesta and Sheplak (2011).

The information given by sensors can be used with two different approaches: quasi-

static and dynamic controllers. The first closed-loop strategies were modifications of

open-loop control techniques. For instance, feedback has been used in several works to

slowly tune the frequency of an open-loop forcing to improve the suppression of unsteady
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pressure oscillations or the reduction of velocity fluctuations. These kind of controllers

are called by Cattafesta et al. (2003) “quasi-static” since the feedback dynamic is much

slower than flow dynamics. Notable examples in cavity flows are represented by Shaw

and Northcraft (1999), that modulated a sinusoidal forcing function to reduce the sound

pressure level of cavity resonance, and by Debiasi and Samimy (2004), that used an

adaptive algorithm to adjust the frequency forcing. More recently, and more interesting

for our purpose, are the “dynamic” controllers, where the feedback dynamics have the

same time-scale of the flow dynamics.

Real-time controllers are designed from the application of the control theory and ap-

plied to systems representing flow dynamics. This process can represent a huge difficulty

due to the variety of features of each discipline, control theory and fluid mechanics. Be-

wley (2001) pointed out the importance of having a deep knowledge of both areas and

capitalize technological and theoretical development in order to deal with problems arising

in the research field. With this spirit, different control techniques have been developed

and successfully applied to both numerical and experimental flows.

In this study, active closed-loop control has been attempted to suppress cavity oscil-

lations. Closed-loop control methodologies applied to cavity problems need a model that

represents the most important dynamics. The quality of the model depends on the num-

ber of sensor measurements, their location in the cavity and their capacity to capture flow

information. Many different modeling techniques have been used in recent years, either

based on flow physics or empirically identified directly from an experiment. The most

used techniques are system identification and projection methods, but also physics-based

models as in Rowley (2005).

1.3 Model reduction

The substitution of the high dimensional problem with a reduced model leads to an easy

optimization of the control law. Thus, the latter depends on how flow dynamics are

represented in the model. One of the most important objective of flow control is then to

obtain a reduced model that, in spite of low dimension, is capable to accurately reproduce

the input-output dynamics.

In the majority of studies on transitional flow control, linear models have been consid-

ered to represent the dynamics of the linearized Navier-Stokes equations, as reviewed in

Kim and Bewley (2007). The hypothesis of applicability is that linearized models faith-

fully reproduce input-output dynamics and in the last decade this hypothesis has been

widely supported, at least at sufficiently low Reynolds number. Clearly, the limit of such

models is the inability to capture turbulent dynamics related to different length and time

scales, typically non linear. On the other hand, a non-linear approach can be effective
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even in super-critical conditions (Bergmann and Cordier, 2008). Independently from the

approach, a reduced model musts rely on a discretization of the high-dimensional prob-

lem. In this thesis, we consider reduced basis approaches, that consist in the projection

of the flow equations onto a low-dimensional basis reproducing some important features

of the input-output dynamics. In particular, we focus on Global Modes (GM), Proper

Orthogonal Decomposition (POD) and balanced POD (BPOD).

Model reduction can be obtained by projection of the high-dimensional problem onto

global modes. These modes are computed in the stability analysis and represent the

eigenvectors of the linearized Navier-Stokes operator (Sipp et al., 2010). Due to their

non-orthogonality, an adjoint basis, obtained through the solution of the adjoint Navier-

Stokes operator, is also required. Through a linear combination of global modes, full

system’s linear dynamics can be accurately expressed. A reduced model from projection

onto global modes has been used in boundary-layer flows to model optimal perturbations

and linear growth in the works of Åkervik et al. (2008), Ehrenstein and Gallaire (2005)

and Alizard and Robinet (2011). Since global modes are related only to system dynamics,

Lauga and Bewley (2004) observed that with the introduction of measurements and forc-

ing, global modes expansion is no longer appropriate to capture the modified dynamics.

However, closed-loop control using reduce-order models obtained with this method have

been studied in Åkervik et al. (2008) and Ehrenstein et al. (2012). Barbagallo et al. (2009)

used the least stable modes as basis for the reduced-order model.

Control approaches in recent years have been developed on reduced-order models

mostly based on Proper Orthogonal Decomposition (POD) method. This technique has

the objective of obtaining a low-dimensional orthonormal basis, so that the velocity field

can be expressed as a linear combination. This technique is well suited for fluid mechan-

ics problems (Lumley, 1967), since it does not require any information of the flow, but

relies only on snapshots of the velocity field, that can be easily obtained from numerical

simulations as well as experimental PIV acquisitions. This method turns into solving

an eigenvalue problem, whose size is equal to the number of snapshots (Sirovich, 1987),

from a correlation term computed as a scalar product of the velocity field. Resulting

eigenmodes (POD modes) represent the most energetic structures that can be controlled

and their dynamics are modulated by time projection of the velocity field onto the POD

basis. Model reduction with POD has been applied to numerous works to describe the

energy-based dynamics as in Noack et al. (2003) and Rowley et al. (2004). This spatial

decomposition technique is usually coupled with Galerkin projection, leading to the class

of methods called Galerkin-POD methods, widely used in flow control. Successful results

in this domain can be found in the works of Bergmann and Cordier (2008) on a cylinder

wake, Barbagallo et al. (2009) on a cavity flow and in the experimental work of Samimy

et al. (2007).
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A further step in POD-based model reduction consists in balanced truncation. It is

recognized that to reduce the order of the problem, both controllabilty, i.e. the ability of

the applied forcing to reach flow states, and observability, i.e. the ability of flow states

to register at the sensor locations, are equally important. Moore (1981) first introduced

a model reduction where the basis balances these two characteristics and he applied it

to systems linearized about stable steady states. In flow control a similar basis is well

suited to represent the information from the actuator to the sensor providing a reduced

model subjected to optimal control design. These balanced models were also consequently

applied to unstable systems (Zhou et al., 1999) and non-linear control problems (Scherpen,

1993; Lall et al., 2002). More recently, Rowley (2005) combined the balancing procedure

and Proper Orthogonal Decomposition (POD) modes. Since then, this technique has

been applied to channel flows (Ilak and Rowley, 2006; Ahuja and Rowley, 2008; Ilak and

Rowley, 2008) and boundary layer problems (Bagheri et al., 2009; Ahuja and Rowley,

2010). For the cavity flow problem we refer in this study to the balancing procedure and

detailed results provided by Barbagallo et al. (2009).

1.4 System identification

In flow control, the process of going to observed data to a mathematical model is called

System Identification (Ljung, 1999). This technique covers the problem of building a

model when previous history is barely known and only dynamics features are available.

The resulting model can be then considered as a black box between the actuator and

sensor that, accordingly to Kim and Bewley (2007), are the only dynamics required for

compensator design. For this reason, system identification provides models that are well

suited for control in experimental applications. Some successful examples in this domain

are the work of Kegerise et al. (2004) on the suppression of flow-induced cavity tones, the

adaptive control of a separated boundary layer made by Tian et al. (2006), the closed-loop

control of the reattachment length downstream of a backward-facing step by Henning

and King (2007), the suppression of the gust effect on an airfoil studied by Kerstens

et al. (2011) or the approximation of linearized Navier-Stokes equations through system

identification obtained by Hervé et al. (2012).

The range of different techniques to obtain an identified model is wide and new solu-

tions have been continuously proposed in recent years. In this research we focus on those

techniques where the model describing input-output behavior is obtained from projection

onto Navier-Stokes equations. Commonly, this procedure is applied to flow equations

linearized around a steady base flow. The techniques of this type most used recently are

Auto-Regressive eXogenous (ARX) models (Huang and Kim, 2008), in which the error

is modeled as a white noise, and Auto-Regressive Moving-Average eXogenous (ARMAX)



8 CHAPTER 1. INTRODUCTION

models (Hervé et al., 2012), where a colored noise is considered in the algorithm without

an a priori knowledge of the color. Despite the technique used, the system identification

procedure can be summarized as follows. From the available measurements and inputs,

a set of candidate models is analyzed. A model is a predictor of the next output from

the process, given past observations and a set of parameters. The structure of the model

thus depends on the dynamics of the flow to be represented and results as a combina-

tion of constant coefficients, to be determined, and time regressors, i.e. combination of

past measurements and inputs. Because of unpredictable dynamics, the next output is

approximated with an unknown error. Constant coefficients can be computed through a

least-square method that minimizes this error. The model obtained is then tested on a

different set of data.

An alternative is represented by the identification of linear system matrices, known as

subspace identification and first introduced by Kalman (1960). This technique is widely

used in control problems based on Linear Quadratic Gaussian (LQG) regulators, since

it provides an approximation of the noise covariance as required in control design. On

this matter, Juillet et al. (2013) proposed a technique for evaluating a combined approach

involving subspace identification and optimal control design. Among other closed-loop

subspace identification methods, we can cite the work of Chiuso and Picci (2005) on the

consistency of two different subspace identification methods based on a whitening filter

approach and the error estimation approach from a high-order ARX model proposed by

Qin and Ljung (2003). A more detailed review of methods based on subspace identification

technique can be found in Qin (2006).

1.5 Robust control

Linear-quadratic optimal regulators have impressive robustness properties, including guar-

anteed classical gain margins. This result is only valid, however, for the full-state case.

If observers or Kalman filters are used in the implementation, no guaranteed robustness

properties hold. In light of these observations, the robustness properties of control systems

with observers need to be separately evaluated for each design.

The present study provides procedures to directly target robustness. Loop Transfer

Recovery (LTR) technique already improves robustness in the Linear Quadratic Gaussian

(LQG) regulator by adding a fictitious control noise. Cortelezzi and Speyer (1998) intro-

duced the Multi-Input-Multi-Output (MIMO) LQG/LTR synthesis, combined with model

reduction techniques, for designing an optimal linear feedback controller. Among robust

regulators, the H∞ control has been introduced by Doyle et al. (1989). It consists in a

worst-case disturbance (min-max) problem where the objective is to find the particular

disturbance to which the compensator is most sensitive and nonetheless the amounts of
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feedback are kept as small as possible. A worst-case disturbance (H∞) controller has been

developed by Bewley and Liu (1998) to stabilize unstable disturbances in transitional flow.

Such reduced feedback improves robustness in the system model and results in a smaller

demand on the actuator. The problem of finding a robust control is intimately coupled

with the problem of finding the worst-case disturbance in the spirit of a non-cooperative

game. The cost functional is simultaneously maximized by the disturbance and minimized

by the control. The principle behind the robust control theory could be intuitively seen

as a compromise seeking the “best” control that stabilize the flow, between the smallest

control effort and the worst effect done by disturbances. A control which is effective even

in presence of a worst-case disturbance will be robust to a wide range of other possible

disturbances.

In the present study a H∞ controller is developed considering unstructured uncer-

tainties as disturbances, as described by Burl (1998). This type of perturbation can

be related to the internal stability robustness through the Small Gain Theorem (SGT)

leading the H∞ controller to directly target robustness instead of performance. This ap-

proach is known in control community as the input-output approach and is one of the

well-accepted and widely-used methods to study stability of systems. Initiated by Zames

(1966), the small gain theorem says that the feedback loop will be stable if the loop gain

is less than one. This simple rule has been a basis for numerous stabilization techniques

in control theory. However, the application of this method cannot be found in flow control

problems.

1.6 Objective of the thesis and outline

In this work, two key points of closed-loop control applications are investigated: model

reduction through system identification based on observable dynamics and robustness to

stable perturbations. The aim is to build a controller suited for experimental applica-

tions. With this purpose a subsonic, bi-dimensional cavity flow has been studied through

experimental activity and numerical simulations.

As described in Sec. 1.4, system identification technique has been successfully applied

to closed-loop linearized control problems. In particular, auto-regressive models permit

to predict the measurable output through a linear combination of previous acquisitions

and known inputs. However, real applications can be found only for transitional flows at

low Reynolds number where non-linear effects are not predominant. Dealing with these

non-linearities in real cases is a challenge that can be engaged with an approach based on

the system identification technique. This is the first purpose of this thesis, the realization

of a non-linear identified model based on experimental acquisitions. The expectation is

that such a model could deal with the oscillating behavior of the cavity flow.
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Optimal control theory has been widely used in flow control applications. However,

many aspects and features of control theory are not considered in fluid mechanics prob-

lems that have been historically focused on classical control methods as linear quadratic

control. The reason of this “lack of communication” between control and fluid mechan-

ics communities is that the two disciplines have been tied together only in the last two

decades and, even though many progresses have been accomplished, the huge potential of

control theory has not been fully exploited in flow control. An example is represented by

the input-output approach, a technique deeply employed in automatic control to stabilize

feedback systems and almost unknown in fluid mechanics domain. The main objective of

the present work is then to build a controller based on this technique in order to increase

robust behavior to stable perturbations showing that modern automatic control methods

can be suited even for flow control applications and can lead to impressive results.

1.6.1 Outline

This thesis is structured as follows: a first part where a real case has been analyzed

through an experimental activity and a second part in which robust control is developed

from numerical simulations.

In chapter 2 the experimental activity conducted on the S19 wind tunnel is described.

The equipment is functional to perform closed-loop control. The qualification measure-

ments are highlighted in Sec. 2.1, focusing on hot-wire measurements, steady and unsteady

pressure acquisitions. Particular emphasis is given to frequency content. PIV technique

has been used to give a time-resolved description of the flow dynamics and its principle,

along with qualitative results, is shown in Sec. 2.2.

The identification of a non-linear reduced-order model is the main subject of chapter

3. Non-linear models are introduced in Sec. 3.1, where the structure of the identification

algorithm is defined from a POD basis. TR-PIV measurements are then used to compute

POD modes and time projections in Sec. 3.2. In this section, great relevance is also

given to time-filtering process over PIV snapshots. Finally, the different phases of the

identification process are described in Sec. 3.3, with a detailed analysis on the role of each

parameter.

Closed-loop robustness analysis is conducted in chapter 4. Numerical simulations and

model reduction are described in Sec. 4.1 and 4.2. The definition of the closed-loop system

is given in Sec. 4.3. Here, key roles are represented by the closed-loop transfer functions

and perturbations. In the following Sec. 4.4, performances and robustness indicator are

defined. These quantities represent the comparison parameters for the control strategies

studied. A new interpretation of robustness to stable perturbations is also given. In Sec.

4.5 results of classic control strategies as LQG, LQG/LTR and classic H∞ control are

shown. These results are compered with those of the robust control proposed in Sec.
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4.6. Finally, the behavior to unstable perturbations of the most robust compensator is

analyzed in Sec. 4.7, with considerations of future perspectives.
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Chapter 2

Experimental activity

In this chapter, we describe the experimental activity carried out in the continuous closed-

loop subsonic (Ma ≈ 0.1) wind tunnel “S19Ch”, on the Chalais-Meudon site. We aim

at performing a real feedback control capable of suppressing cavity oscillations. To this

purpose, the control strategy will consider the possibility of using unsteady measurements,

such as “traditional” sensors (pressure probes, hot wires and hot films), as well as time-

resolved PIV images. The equipment installed on the wind tunnel has been devised for

this objective.

The model mounted in the S19Ch wind tunnel is represented in Fig. 2.1. It consists of a

cavity of length L = 134mm, original depthDo = 210mm (then modified toDm = 900mm

in order to modify the fundamental frequency of the cavity) and span W = 300mm.

Reference conditions measured upstream the cavity, are closed to ambient temperature

and pressure: Tref = 293.7 ± 10K and Pref = 100383 ± 600Pa. The related Reynolds

number is then Re ≈ 105.

The experimental setting is equipped with an acquisition system that simultaneously

acquires 16 different channels of measurement. Among these, 7 channels are dedicated

to unsteady pressure acquisitions; 3 are for relative steady pressure Ptotal − Patmospheric

and Pstatic − Ptotal measured upstream the cavity and Pstatic − Patmospheric measured at 28

points along the vein; 1 for a hot-wire probe that could be displaced through a system

capable to cover an area of 25cm in the streamwise direction and 10cm in the vertical

direction; 2 channels for temperature acquisitions of Tref and Ttotal. Remaining channels

have been eventually used for tests and minor purposes.

To obtain time-resolved PIV snapshots (to have a description of the flow dynamics,

to build reduced order models and to be used as sensors in a closed-loop control scheme),

a high-frame rate camera and a double cavity laser have been installed. The observation

window of 1280×500 pixels is focused only on the shear layer, giving a description of

the oscillating motion, but the recirculating dynamic on the bottom of the cavity is not

captured.

13
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Figure 2.1: Cavity model installed in the S19Ch wind tunnel.

A field-programmable gate array (FPGA) has been included to quickly process infor-

mation between the TR-PIV system, the actuator (here a low-frequency flap) and the

unsteady pressure measurements. In the perspective of closed-loop control, considering

the low characteristic frequency of the cavity flow and consequently the low operating fre-

quency of the actuator, the process of analysis and impulse granted by the FPGA system

can be considered approximately as real-time process.

The chapter is structured as follows: in Sec. 2.1, measurement techniques and quali-

fication results are presented. These measurements are useful to characterize the flow in

terms of boundary layer width, pressure, turbulence intensity and frequency bandwidth,

in order to provide the parameters needed for the PIV campaign and the actuator design.

Results of TR-PIV are presented in Sec. 2.2. In particular, time resolution permits a high

detail of information as small structures displacement and vorticity evolution, within a

characteristic period.

2.1 Wind tunnel qualification

In this section we analyze measurements conducted at the wind tunnel S19Ch in order

to qualify the vein. The cavity model has been conceived and installed for this specific

study and for this reason no reference data was available. Hot-wire measurements in

the boundary layer and the free shear layer and pressure measurements, both steady and

unsteady pressure, have helped to characterize the flow over the cavity and to modify the

geometry in order to have lower and more manageable frequencies.
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Figure 2.2: (a) Wall normal evolution of the normalized velocity (circles) and the related
variance (diamonds). (b) Scaled velocity in wall units.

2.1.1 Hot-wire measurements

Hot-wire anemometry technique is mostly used to measure turbulence in air flows and

it is based on a heat/convection correlation principle. A very thin wire, generally made

of tungsten, of diameter ∼ 0.5 to 5 µm and length 0.3 to 1 mm, when placed in a flux

of air, changes its temperature and so its resistance. Most hot-wires operate at constant

temperature, so the change of air velocity causes an increment in the voltage necessary

to keep the temperature constant. This imbalance is measured by the data acquisition

system and converted by a calibration law to a local velocity.

In the wind-tunnel qualification campaign, the hot-wire technique has been used to

obtain a measurement of the upstream boundary layer profile, to characterize the cavity

flow frequency and to compute the turbulence level in the flow.

Boundary layer

The upstream boundary layer is measured with a Dantec 55P15 probe, that permits with

its specific geometry to approach the wall up to 0.5 mm. Measurements are taken in the

upstream region, with the cavity closed in order to have no acoustic disturbance. Re-

sults are represented in Fig. 2.2. The first plot (Fig. 2.2(a)) shows the evolution of the

normalized velocity U/U0 in the direction normal to the wall, y, and the corresponding

non-dimensional variance. This measurement allows to compute boundary-layer thick-

ness: the 99% thickness δ.99 = 21.24mm, the displacement thickness δ∗ = 3.35mm, the

momentum thickness θ = 2.55mm and the shape factor H = 1.31.

The second plot, shown in Fig. 2.2(b), presents an evolution of the boundary layer

in estimated scaled wall units. Since it is not possible to compute the exact value of the

velocity very close to the wall, the viscous velocity has been estimated to have unitary

value. Results show only the buffer layer around y+ = 10, the log-law region from y+ =

3 × 101 to 2 × 102 and the outer region. The viscous sublayer is clearly not available
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Figure 2.3: Spectra of measured signals (in V ) at three different locations in the cavity:
x = 4mm, y = 0mm (solid line), x = 60.7mm, y = −25mm (dashed line) and x =
130mm, y = 0mm (dashed-dotted line).

because of the limits of the hot-wire technique when approaching the wall. Note that

the logarithmic behavior is well represented, but since the scaling is just estimated, the

describing law shows a value of the Von Kármán constant quite different from the classic

0.41.

Mixing layer

The mixing layer has been investigated by displacing a Dantec 55P11 hot wire through

an explorer mounted on the top of the cavity, with the flow nominally driven at 40m/s.

The region investigated by the hot-wire probe is a rectangle of 21 points in the longitu-

dinal direction, starting at 4mm from the upstream edge of the cavity to 4mm to the

downstream edge, and 6 points in the normal direction, from y = 0mm to −25mm inside

the cavity. These measurements have been used to characterize the frequency range of

the cavity. In Fig. 2.3 we observe three spectra of the anemometer acquisition at three

different locations: two points close to the upstream and the downstream edge and one

inside the cavity in the recirculating region. Near the corners, the spectra presents a

peak at 288 Hz, while at the lowest location the peak is located at 293 Hz. This small

difference is due to the lack of resolution, since the hot-wire signal is acquired at 20 kHz

and composed of 4096 points and the passage to the frequency domain implies a Fourier

transform that leads to a frequency step of 4.88 Hz.
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Figure 2.4: Time behavior of a normalized velocity signal acquired with a hot-wire probe
located in the free stream.

Turbulence intensity

The quality of a wind-tunnel flow is commonly expressed by the turbulence intensity, also

often referred to as turbulence level, defined as:

I ≡ u′

Ū
, (2.1)

where u′ is the root-mean-square of the turbulent velocity fluctuations and Ū is the mean

velocity. It represents how statistically a flow fluctuates around its mean value, so it is

a good representation of how “clean” the flow in a wind tunnel is and it can be easily

calculated from a hot-wire acquisition, knowing the mean value and the variance. For this

wind tunnel, the turbulence level is I ≈ 0.4% and it is a typical value for high-quality

wind tunnels.

In order to better understand the meaning of the turbulence level we can observe Fig.

2.4 where a normalized velocity signal measured in the free stream is represented. The

horizontal lines stand for the bounds of the 0.4% of the normalized velocity. We can note

how the majority of the oscillations are included between these bounds.

2.1.2 Pressure measurements

The S19 wind-tunnel is equipped with 26 static pressure probes and 7 unsteady pressure

Kulite transducers. In this section we show results for both measurement techniques.
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Figure 2.5: Steady pressure measurements along the model section. Pressure values are
expressed in Pa, while the longitudinal direction is in mm. Top static probes are repre-
sented by squares, bottom probes by circles.

Steady pressure measurements

A series of static pressure probes has been posed along the wind tunnel, from a location

184 mm upstream the cavity to the divergent section, placed on top and on bottom of the

vein. Fig. 2.5 shows the longitudinal behavior of the static pressure, with respect to the

atmospheric pressure. There is no remarkable difference between the top and the bottom

acquisitions, as expected, except for the probes located on the cavity vertical walls. In

detail, there is a significant jump in pressure inside the cavity at the upstream wall, while

on the downstream wall this jump is not present. The static pressure continues to diminish

along the x direction until the divergent region where the flow is finally decelerated.

Unsteady pressure measurements

Unsteady pressure acquisitions are taken from 7 Kulite transducers XCQ-093-15A (15

PSI). Two of them are positioned on the upstream wall of the cavity, four on the down-

stream wall and one on the bottom. From these acquisitions it has been possible to obtain

a power spectra of the cavity, verify that the flow is actually two-dimensional and com-

pare results with those obtained with the hot-wire anemometer. The advantage of using

this kind of transducers is a high sampling frequency, here 20kHz, for 200 blocks of 4096

points, giving a frequency resolution of 4.88 Hz.

In Fig. 2.6 is shown the Sound Pressure Level (SPL) obtained from the power spectra

of three different Kulites, one at the upstream wall, one at the downstream wall and one
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Figure 2.6: SPL, expressed in dB, of unsteady pressure measurements. Transducers are
located on the upstream wall of the cavity (dashed line), on the downstream wall (solid
line) and on the bottom (dashed-dotted line).

at the bottom wall. The SPL is computed through the relation

SPL(dB) = 20 log10

(√
S

pref

)

(2.2)

where S is the power intensity of the pressure measurement and pref is the reference

pressure equal to 20µPa that is considered as the threshold of human hearing. We can

observe that all the signals present a peak at 292Hz and the second and third harmonics

are located at 580 and 870Hz. Comparing this result with that obtained from the hot-

wire probe we can define the characteristic frequency of the cavity as fc = 290Hz. Other

considerations can be done on this figure, as the presence of high-frequency noise measured

upstream and on the bottom of the cavity.

2.1.3 Frequency adaptation

The objective of this study is to perform a feedback control of a cavity flow. To this

aim, an actuator needs to be conceived and the mechanical design imposes some con-

straints, namely a frequency bound. The imposed maximum range of frequencies that a

motor-based actuator on the actual market can afford is about 150 Hz. The wind-tunnel

qualification measurements have determined the characteristic cavity frequency as 290

Hz, a frequency twice as high than the one requested by the design of the actuator.

In order to modify the cavity frequency, we use a frequency prediction model as a func-

tion of the cavity depth, proposed by East (1966), based on the acoustic mode resonance
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Figure 2.7: (a) East model for frequency (in Hz) prediction as a function of the cavity
depth, D (inmm). The small square represents the characteristic frequency at the original
depth, while the circle stands for the frequency obtained after cavity depth modification.
(b) Comparison of SPL (in dB) obtained from the same transducer measurement with
the original cavity (solid line) and the modified one (dashed line).

in a deep cavity flow. The model reads as follows:

f =
a

D

0.25

1 + A(L/D)B
(2.3)

where a represents the number of the harmonic, L and D are the length of the cavity

and the depth, respectively, and A and B are empirical coefficients. In Fig. 2.7(a) is

represented the prediction model behavior considering a range of depth from the original

cavity depth of 210 mm up to 1 m. We can observe that for small depths there is a

good correspondence with the actual frequency, while for higher values of D, the model

seems to be less accurate. The circle in this plot represents the measured frequency after

modifying the cavity depth up to 900mm. In Fig. 2.7(b) two SPL signals from the same

transducer acquisition show how after the geometry modification a smaller and satisfying

frequency of 125 Hz has been obtained.

2.2 Time-Resolved PIV

The Particle Image Velocimetry (PIV) technique has been used to characterize the velocity

field (U, V ) in the cavity mixing layer. The interest is to acquire a series of snapshots

at high frequency in order to reconstruct flow dynamics through a modal decomposition.

To this aim, a two-dimensional two-components Time-Resolved PIV (2D-2C TR-PIV)

technique has been employed. In this section, the general principle of this method is

introduced as well as results acquisition and snapshots post-processing.
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Figure 2.8: Scheme of a 2D-2C PIV acquisition for a cavity flow.

2.2.1 The PIV technique

The principle schematized in Fig. 2.8 is valid for the classic PIV as well as the TR-PIV. It

consists in a flow seeded with sprayed oil particles of diameter dp; a laser source generates

a laser sheet which defines the measurement plan; when the laser hits the particles they

are illuminated and a camera placed perpendicularly to the sheet acquires a series of pairs

of images separated by a time step dt. The velocity field is then calculated through a

software that correlates each couple of images in order to find particles’ displacements.

2.2.2 TR-PIV measurements

In this study, the TR-PIV technique has been considered. The difference from the classical

PIV is the high-frequency acquisition that permits a good time resolution. Time-resolved

PIV measures velocity fields and turbulence quantities of transient phenomena. The

time-resolved PIV allows to obtain the “real” quantities of transient and turbulent flows
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Figure 2.9: TR-PIV snapshot of the longitudinal component U and flow streamtraces.
Dimensions of the axes are in mm. The origin is the left corner of the cavity.

because of the highly-defined time resolution. LaVision’s FlowMaster time-resolved PIV

systems include Phantom V.12 digital high-speed camera with 6242 Hz frame rate at

full resolution of 1280 × 800 pixel, dual cavity high-repetition rate solid state laser up

to several 10 mJ per pulse and up to 20 kHz repetition rate. All components are fully

controlled from the DaVis software and LaVision’s High Speed controller (HSC). The HSC

enables an easy use of high speed systems with typically demanding trigger requirements

like the synchronization of the external frequency of the device with the recording rate of

the measurement system.

The camera field of view has been fixed at 244mm× 94mm, with a magnification rate

of 5.45 px/mm, so that the mean displacement of a particle between two images is 8 pixel.

The nominal longitudinal velocity considered for the entire campaign is U0 = 34m/s and,

as stated in the previous section, the cavity fundamental frequency is fc ∼ 125Hz. In

order to have a time resolution defined enough to permit the reconstruction of the cavity

dynamics, we want to have at least 20 points per period, so the sampling frequency is

fs = 3kHz (6kHz for single image). For each acquisition it is possible to store 7500

images, corresponding to about 60 periods.

Velocity field estimation has been realized through the software FOLKI-SPIV (Cham-

pagnat et al., 2011). Particles’ displacement is computed by a correlation made on each

pair of images divided in interrogation windows of 15 pixels. In Fig. 2.9 is shown a snap-

shot acquired with the TR-PIV technique. The quality of the camera acquisition permits

to appreciate the velocity fluctuations in the mixing layer. The oscillating behavior is

clearly visible as well as the cavity recirculation on the bottom of the cavity, evidenced

by velocity streamstraces.

The high spatial and time resolution allows also to compute and observe the evolution

of vortical structures. In Fig. 2.10, the vorticity component ωz is represented in a series

of snapshots that covers an entire oscillating period. The characteristic behavior of the
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Figure 2.10: Vorticity ωz development over a characteristic period.

cavity mixing layer can be followed through time by observing a particular structure

formed at x = 50mm in Fig. 2.10(a). This eddy progressively detaches from the leading

edge vorticity tounge (Fig. 2.10(b)-2.10(d)), regroups with smaller eddies (Fig. 2.10(e)-

2.10(g)), impacts on the downstream wall (Fig. 2.10(h)-2.10(k)) and finally looses energy

and dissolves (Fig. 2.10(l)). This cycle is representative of the quantity of time information

obtained through the TR-PIV.

An important information obtained with the time resolution granted by TR-PIV mea-

surements, is the frequency content. The acquisition capacity is limited to 16 Gb, cor-

responding to about 8000 snapshots acquired at 3kHz. With this amount of data, it is

possible to produce a power spectra as that pictured in Fig. 2.11. It is obtained from

a single point measure over 4096 snapshots. We can observe two important features of

the PIV acquisition: the presence of high-frequency noise and the characteristic peak at

126 Hz that confirms qualification results obtained with hot-wire probe and unsteady

pressure sensors and represented in Fig. 2.3 and 2.7(b).
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Figure 2.11: Power spectra S of the velocity field computed from TR-PIV measurements.
Frequencies are expressed in Hz.



Chapter 3

Non-linear model identification

This chapter describes the system-identification technique used to obtain a non-linear

reduced model of a cavity flow. The interest of studying this approach stands in the

possibility of application on closed-loop control of oscillating flows. The cavity flow char-

acterized in the previous section is used to develop the necessary tools to obtain the reduce

model. It consists on a oscillating flow with a well-defined peak at 126 Hz, but the dy-

namics are strongly non-linear. This non-linearity has to be taken into account, since the

reduced model is derived directly from experimental measurements.

This approach can lead to important results, but using experimental results, with

noise and all the complexities coming from a real case, to identify a non-linear model is

a path still not explored. The interest is then to understand the real potential of this

technique, focusing on the meaning of each parameter and the consequences generated on

the identification process.

As explained, measurements from experiments contain a number of information that

can effect the identification. A treatment of these results has to be previewed, in order

to simplify the identification of the most important dynamics, namely the first harmonic.

The application of filters to real measurements has to consider that the main objective

is the closed-loop control that implies real-time alteration of the flow. The effect of

introducing delays into the system has to be analyzed carefully.

The chapter is structured as follows: non-linear reduced-order models are introduced

in Sec. 3.1. A particular focus is given to those models obtained from Proper Orthogonal

Decomposition, as Galerkin projection and system identification, to introduce how the

structure of the model comes from the physics of the cavity flow. Sec. 3.2 treats routine

to obtain POD modes and time projections that will be used as model regressors. Time-

filtering on trajectories are discussed in this same section giving a critical comparison

between original data and filtered ones. Last section (3.3) is devoted to the identification

process and all those problems caused by non-linearity, time delay and time integration,

pointing out the difficulty of this approach with a real non-linear case.

25
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3.1 Non-linear reduced models

Methods of analysis and control of cavity flow oscillations rely on the knowledge of a model

representing the most important dynamics of the system. As in many fluids problems, in

cavity flows one does need to control only the main instabilities and larger eddies. A model

reduction based on an energetic principle should be sufficient to successfully approximate

the limit cycle of the cavity tones.

In this section, we then discuss non-linear reduced-order models based on Proper Or-

thogonal Decomposition (POD). In particular, we focus on reduced model obtained by

Galerkin projection of Navier-Stokes equations and on input/output system identification.

Galerkin projection, due to its widespread use in closed-loop control, is taken as refer-

ence for the algorithm structure design. However, the limitations and drawbacks of its

requirements are used to motivate the choice of focusing on the system identification ap-

proach to obtain the ROM. In particular, we highlight the advantages of the identification

technique, which relies only on dynamics directly observed from measurements.

3.1.1 Proper orthogonal decomposition

The POD was introduced in turbulence by Lumley (1967) and is widely used to extract

coherent structures existing in turbulent flows. It consists in finding a deterministic

function Φ(x, y) that describes the spatial location of the most representative structures

of the instance U(x, y, t). The time dependent quantity in our case stands for the velocity

field U = (U, V ), acquired from the TR-PIV measurements.

The method used to compute POD, known as Snapshot method, has been introduced

by Sirovich (1987). For a given set of M snapshots, it reduces to an eigenvalue problem

M
∑

i=1

C(ti, tj)an(ti) = λnan(tj), (3.1)

with the correlation tensor C(ti, tj), defined through the inner product:

C(ti, tj) =
∆x∆y

4
[U∗

i Uj + V ∗
i Vj ] , (3.2)

where ∆x and ∆y represent the spatial discretization in the longitudinal and normal

direction respectively. The solution of the eigenvalue problem gives M eigenvalues λn

(n = 1, ...,M) and the associated eigenvectors φn. The eigenvalues, since the time instance

considered is the velocity field, represent the contribution of each mode to the total kinetic

energy. By projecting each velocity component onto the normalized eigenvectors, following

an energetic criteria that keeps only the most energetic N eigenvalues, the modes Φu
n(x, y)
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and Φv
n(x, y) can be easily computed as:

Φu
n(x, y) =

1√
M

Uφn

√

λn, (3.3a)

Φv
n(x, y) =

1√
M

V φn

√

λn. (3.3b)

The obtained functions represent a couple of normalized and bi-orthogonal basis, that is

commonly used in model reduction.

The last step is then to compute the temporal projections an(t). For each mode the

nth trajectory is obtained by:

an(t) =
∆x∆y

4
(U∗Φu

n + V ∗Φv
n) . (3.4)

The velocity field can be approximated, with relatively good accuracy, with a small

number of modes, due to the energetic efficacy of POD basis. This is the great advantage

of a POD-based reduction, along with ease in solving an eigenvalue problem from an

elevated number of snapshots.

3.1.2 Galerkin projection

The most classical and used model reduction technique in flow control is the Galerkin

projection. It consists in projecting Navier-Stokes equations onto an orthogonal basis

that energetically reproduces the main features and the input-output behavior of the

original system. The choice of the basis is then crucial and can lead to undesired effects.

It is typically used in numerical flow control applications, as we will do in Chapter 4, as

well as in experimental environments. However, our purpose is not to analyze in detail

such technique, but Galerkin projection is here considered for its wide use in flow control,

to highlight its limitations and to introduce the resulting structure of the model, with

particular focus on non-linear terms. For more details about this technique, the reader

is referred to a number of references such as Rowley et al. (2004), Rowley and Batten

(2008), Cordier et al. (2008), and Bergmann et al. (2009).

The reduced model is derived from Navier-Stokes equations. The velocity field can be

approximated with the product of the POD functions Φn(x, y) with the time projections

an(t) related to the N most energetic eigenvalues λn, as:

U(x, y, t) ≈
N
∑

n=1

Φn(x, y)an(t). (3.5)

By projection of the Navier-Stokes equations onto the POD basis, the reduced-order
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problem becomes, in a general case, a problem for the time projections an(t):

dan(t)

dt
= An +

N
∑

i=1

Bj
nai +

N
∑

i=1

N
∑

j=1

C ij
n aiaj, n = 1, ..., N. (3.6)

where coefficients An, B
i
n and C ij

n are constants, and N corresponds to the number of

modes used in the basis. Note that non-linear terms arise from the projection of the

Navier-Stokes equations onto the POD basis. The same structure, will be used in the

system identification process, considering only non-linear terms with a physical meaning.

This method is widely used in a great number of applications. However, the reduced

models based on Galerkin projection present some notable limitations and drawbacks.

The model must accurately describe non-linear dynamics since time-integration could

lead to a final state different from the initial assumption. Another problem is represented

by the necessity of an observable basis, that implies an adjoint simulation. The spatial

representation of the actuator represents a limit in experimental applications and an

additional model is normally required. Noise has to be treated with particular accuracy

and a statistical information is required for the Kalman filter estimation.

3.1.3 System identification

An alternative approach to obtain a reduced-order model is the system identification. The

great advantage of this technique is that it only relies on data arising from simulations or

experiments. The system is treated more as a black-box where the only interest is in the

frequency response for a given set of known data.

As for Galerkin projection, for system identification technique, a reduction of the

model is necessary to perform flow control. The choice of the same basis will lead to

the same reduced-order model for a projected or an identified model. In this case, the

structure in Eq. (3.6) can be used to identify coefficients from known data. This same

structure can be modified by adding more terms if necessary, to improve the predicted

output.

Independently from the used algorithm, the system identification technique consists in

two different phases: a learning phase followed by a validation. In the first, coefficients are

computed with a least-square method in order to fit a known set of data. In the second

phase, the same coefficients are kept constant and the capacity of the model to reproduce

a different data-set is validated. For this purpose, different parameters and features can

influence the final result, as the number of previous known data, basis dimension, non-

linearities.

Even though system identification techniques seem to be perfect for experimental

applications, it presents some limitations that can be summarized in the following. The
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main problem is the treatment of the non-linear dynamics. Dealing with non-linearity is a

big challenge since previous positive results are obtained on linear or linearized dynamics

and the behavior in a case such as that of the S19 cavity flow is still unknown. In addition,

we have to consider that the regression algorithm has to be tuned. Coefficients are usually

based on a physical interpretation and setting them properly requires some attention.

3.2 POD modes from TR-PIV measurements

The basis chosen for model reduction is obtained from POD modes, that were obtained by

processing TR-PIV acquisitions. In this section the procedure to obtain POD and time

trajectories is described. The objective is to have time-evolving projection coefficients

that can be used in the system identification procedure. Time filtering will be used to

focus on the low-frequency dynamics of the cavity flow.

3.2.1 POD modes and trajectories

The computation of POD modes and projections can be easily achieved from TR-PIV

measurements. The series of snapshots acquired in the experimental campaign is divided

into different velocities and configurations. For this study, an unperturbed configuration

at the nominal velocity of 34 m/s has been chosen to design the reduced-order model.

In order to compute the correlation term in Eq. (3.2), 500 snapshots, corresponding to

about 20 periods, are assembled as Np ×Ns matrix, where Np is the number of geometric

points, equal to 6400, and Ns is the number of snapshots. The geometric parameters used

to non-dimensionalize the modes are ∆x = ∆y = 1.92mm.

The solution of the eigenvalue problem leads to the eigenvalues represented in Fig. 3.1.

It is evident that the first two modes represent the biggest amount of energy, though lower

than the 40% of the total. In order to have a representation of at least 50% of the total

energy, we need to consider the first 9 modes ; note that considering more POD modes will

increase the number of regressors in the system identification process. A steeper slope in

the eigenvalues contribution would be preferred for model reduction and a way to decrease

the importance of less energetic modes has to be found.

POD modes Φu
n and Φv

n are computed from Eq. (3.3). In Fig. 3.2 are represented the

first 2, the 4th and the 5th POD modes. The spatial distribution of the POD structures

highlights the coupling of each pair of modes, as expected. The same expectation resided

in the smaller dimension of eddies for less energetic modes. These results are then coherent

with all the previous studies on cavity flows.

The spatial distribution corresponding to the third mode is unexpected, since it shows

a strong asymmetry in the longitudinal component (Φu
3) and a very weak intensity in

the normal component (Φv
3), as it can be observed in Fig. 3.3. This mode seems to be
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Figure 3.1: Contribution of the first 20 eigenvalues computed from the correlation term
corresponding to a set of Ns =500 snapshot acquired at 3 kHz with a flow at 34 m/s.

linked more to the mean flow than to fluctuations, but it turns out that it is a spurious

mode. By a detailed observation of velocity fields, we noticed that its presence is produced

by reflections generated by the laser sheet which were not completely eliminated. The

energetic level is huge in the longitudinal direction and very low in the vertical component.

This is caused by the presence of a reflection in the downstream corner of the cavity that

influences the velocity field in that region. The result is a discontinuity in the flow direction

and consequently a high level of energy. Since this mode does not represent any physical

turbulent eddy, we choose not to consider it as part of the basis for model reduction.

The last step is to compute projections an(t) that will be used as regressors in the

system identification process. From Fig. 3.4 we can observe the time behavior of the first

four trajectories, i.e. the projections of the snapshots onto the POD basis, within the

first 25 periods. As expected from POD modes, a1 and a2 are more regular and more

intense than the followers since snapshots are projected to symmetric modes as those in

Fig. 3.2(a)-3.2(d). The characteristic frequency is evident in all cases, thanks to the

time resolution of 20 point per period. However, even in projections related to the most

energetic modes, a modulation is present indicating the presence of several frequencies

around the peak at 126 Hz. By observing the smallest projections, a high frequency noise

is also remarked. For these reasons an analysis of snapshot filtering seems an interesting

contribution.

3.2.2 Time-filtering

The observation of time projections leads us to filter TR-PIV measurements in order to

avoid high-frequency noise and modulations around the characteristic peak. This pro-

cedure is not common in experimental results, but since the objective is to develop an
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Figure 3.2: POD modes computed from 500 snapshot acquired at 3 kHz with a flow at
34 m/s. (a) Φu

1 , (b) Φ
v
1, (c) Φ

u
2 , (d) Φ

v
2, (e) Φ

u
4 , (f) Φ

v
4, (g) Φ

u
5 , (h) Φ

v
5. Levels are from

-0.035 to 0.035.
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Figure 3.3: Third POD mode computed from 500 snapshots acquired at 3 kHz with a
flow at 34 m/s. (a) Φu

3 , (b) Φ
v
3. Levels are from -0.035 to 0.035.
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Figure 3.4: Time projections corresponding to the first 4 POD modes computed from
snapshots acquired at 3kHz at a velocity of 34 m/s.
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Figure 3.5: Comparison of the original longitudinal velocity field (a) and the filtered
longitudinal velocity field (b) at the same instant t.

algorithm to identify a reduced-order model, it is worth filtering high frequencies in order

to simplify the identification procedure.

A Fourier filter has been applied to the original set of snapshots. This filter consists

in performing a Fast Fourier Transform (FFT) through the snapshots, putting to 0 all

coefficients higher than a certain frequency (in our case 150 Hz) and anti-transform with

an Inverse Fourier Transform (IFT). We then processed 4096 snapshots, corresponding to

195 periods, and used the resulting flow fields to compute POD modes and trajectories.

This procedure should highlight the most significant dynamics of the oscillating cavity

behavior and consequently use, for the identification, a small number of modes, ideally

the first two.

In Fig. 3.5, we can compare an example of an original snapshot and the corresponding

filtered flow field. The first effect of applying a time filter is that spatial structures are

also filtered. We can notice how the smallest eddies, related to the highest frequencies,

disappear and only the “main” motion survives.

Another result is the amplification of the reflection on the downstream corner of the

cavity. Velocity field at this location is not natural since a discontinuity is present. Un-

fortunately, this kind of errors are common in optic techniques and are not easily solvable

(Scarano and Sciacchitano, 2011). This particular result explains the shape of the 3rd

mode. In fact, the presence of a discontinuity is energetic enough to make the related

structure to appear among the first modes and probably affects higher order POD modes.

In the system identification phase this consequence has to be considered.

Once the fields are filtered, POD modes and time projections can be computed as it

has been done with the original snapshots. In Fig. 3.6 the energy contribution of the first

20 modes shows how the first two modes increased their importance on the total kinetic

energy.

The first 4 modes Φu
n(x, y) and Φv

n(x, y), excluding the 3rd, can be computed with the

same procedure as described in the previous section. Modes shown in Fig. 3.7 reveal the

consequence of time filtering. We can observe that the first two modes are not affected
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Figure 3.6: Contribution of the first 20 eigenvalues computed from the correlation term
corresponding to a set of Ns =500 snapshot acquired at 3 kHz with a flow at 34 m/s and
filtered with a Fourier filter abouve 150 Hz.

by the FFT, since they are related to the main oscillating motion. This is not a trivial

result since solving the eigenvalue problem implies the use of a non-linear procedure as

the singular value decomposition. A different matter is the effect on the 4th and 5th

mode. In these cases the filter produces a relevant modification in the spatial distribution

related to the oscillating smallest eddies. The result is clearly not physical and the loss of

information is huge. This leads to consider for model reduction only the first two modes,

related to the resonance at 126Hz. This choice reduces the dynamics represented by the

model close to those of a classic harmonic oscillator.

In Fig. 3.8 filtered trajectories, obtained by projection of the filtered snapshots onto

the first two modes, are shown. By comparison with the corresponding trajectories in

Fig. 3.4, the shape is much more regular in the filtered case. However, projections

are still strongly modulated, confirming the presence of several frequencies around the

characteristic peak, but the high frequency noise is avoided everywhere. On the original

time projections (those obtained from the original set of snapshots) the same Fourier

filter has been applied and results are compared in the same figure. We can note that

computing time projections from filtered fields and directly filter trajectories obtained with

the original snapshots, produce the same result. In fact, red and black lines, representing

filtered trajectories and projections from filtered fields respectively, superpose perfectly,

confirming that the FFT at 150Hz does not affect the oscillating motion at 126Hz.

A final remark can be done on the use of the FFT. The Fourier filter acts directly

on the spectra, without introducing any delays. The objective of this procedure was to

highlight the main dynamics in order to obtain a model representing a bigger amount of

energy. If image-filtering was a productive path in this sense, we can implement a real
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Figure 3.7: First 4 POD modes computed from 500 snapshot acquired at 3 kHz with a
flow at 34 m/s and filtered with a Fourier filter above 150 Hz. (a) Φu

1 , (b) Φ
v
1, (c) Φ

u
2 , (d)

Φv
2, (e) Φ

u
4 , (f) Φ

v
4, (g) Φ

u
5 , (h) Φ

v
5. Levels are from -0.035 to 0.035.
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Figure 3.8: Comparison of the time projections corresponding to the first 2 POD modes
computed from snapshots acquired at 3kHz at a velocity of 34 m/s and filtered with a
Fourier filter above 150 Hz. Red lines represent the filtered trajectories obtained from
the original velocity fields; black lines represent trajectories from the filtered snapshots.

filter introducing a delay to deal with. We then consider only for this study the Fourier

filter an easier way to accomplish this purpose.

3.2.3 Summary

Dealing with experimental results implies the presence of high frequency noise and a

high energetic level related to the smallest eddies. In this section, we proposed a model

reduction based on an energetic criterion. To this aim we computed POD modes and time

projections from TR-PIV snapshots. Features related to the high frequency content have

been detected in the observation of trajectories as well as a high energetic contribution

of the smallest eddies. Since the reduced-order model is not capable to represent high

frequency dynamics, an approach based on time filtering has been proposed. Results have

shown that time filtering helps the selection of the most energetic modes, focusing on the

low frequency dynamics related to the main oscillating motion. This is considered as a

novel approach in post-processing of PIV measurements.

3.3 NLARX model structure and identification of the

free dynamics

The Non-Linear Auto-Regressive eXogenous (NLARX) model identification is analyzed in

more detail. Here, the key role of every parameter and the problem of the regularization,

are described. After a sensitivity analysis, the model obtained is identified on a learning

dataset and validated on a different set of data. We show the difference between a sin-

gle time-step prediction and a long-period simulation and how, in this second case, the

model may reveal its instability. Results presented in the following are obtained after a
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parametric analysis on the whole set of parameters present in the identification procedure.

3.3.1 Model description

The NLARX model is obtained in two steps: a learning phase and a testing phase. In the

learning phase a small number of periods is used to identify the non-linear model coeffi-

cients modulating regressors an(t− i) and their non-linear combinations. The coefficients

of the model are computed in order to fit as best as possible the original data. In the

following validation phase, these are kept constant and the dynamics are computed and

compared with a different set of data. This second phase can be done with two different

approaches, simulation or prediction. The simulation consists in integrating the resulting

model up to a given finite time knowing only the initial state, while the second approach

only assesses the quality of the prediction over one time step (this is more limiting test

since the initial state is provided at every time step).

The NLARX model is as a non-linear combination of the various time projections

an(t). It depends on a number of different parameters: the number of modes used, the

order of the algorithm, i.e. the number of non-linear terms, and time delay, corresponding

to the number of previous regressors considered. For the trajectory related to the first

mode a1(t), the prediction algorithm can be written as:

a1(t) = θ0 +
N
∑

i=1

nd
∑

n=1

Ainai(t− n) +
N
∑

j=1

N
∑

i=1

nd
∑

n=1

Bijnai(t− n)aj(t− n)+

N
∑

k=1

N
∑

j=1

N
∑

i=1

nd
∑

n=1

Cijknai(t− n)aj(t− n)ak(t− n), (3.7)

where N corresponds to the number of modes used, nd is the time delay, and θ0, Ain, Bijn

and Cijkn are the coefficients to be identified. Note that the algorithm structure in Eq.

(3.7) differs from that obtained from Galerkin projection in Eq. (3.6) for the third order

term. This term has been added to the algorithm formulation since it leads to better

results. A third order term can be found in the Stuart-Landau amplitude equation used

in the stability analysis of a cavity flow by Sipp and Lebedev (2007).

In a more compact form, considering the whole time history of nt time steps and all

the time projections N , Eq. (3.7) can be rewritten as:

Y = Q · R, (3.8)

where Y is the N × (nt − nd) matrix containing the predicted trajectories, Q is a N ×
(9×nd+1) coefficients matrix and R is the regressors matrix containing all the non-linear

combinations of the previous time projections and has dimension (19×nd+1)× (nt−nd).
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3.3.2 Model learning

In the learning phase the coefficients matrix Q is computed through a least-square algo-

rithm from Eq. (3.8):

Q = YR∗ (RR∗)−1 . (3.9)

The solution of this problem may not easily be solved because of the dimensions of the

problem and because of the nearly singular matrix RR∗.

The dimension of the problem depends on the number of regressors nt chosen to

reconstruct previous time history, time delay nd, the order of the model and the number of

modes N . The combination of these parameters can increase the problem dimension, but

since the number of modes and the number of previous points are kept small, dimension

is a manageable problem.

An ill-posed problem can be a more bothersome issue. In the least-square method the

inversion of the matrix RR∗ is needed and a poor conditioning can affect the final result.

In order to avoid this problem, the Tikhonov regularization is adopted. It consists in

including the Tikhonov matrix Γ in the least-square problem and regulate ill-conditioning

through a factor α:

Q = YR∗ (RR∗ + αΓΓ∗)−1 . (3.10)

In this case, the Tikhonov matrix has been chosen as the identity matrix while α is tuned

from 0 (no need of regularization) up to 2 for more complex cases.

Single time-step simulation

In Fig. 3.9, the model identified is compared to the learning data set. The model used

is a full third-order model, computed on a data set of nt = 300 elements, with a delay

nd = 4 and based on 2 filtered modes, obtained in the previous section. The model

reproduces the original data accurately, with a fit of 99.8% for both trajectories. This

result is expected since the solution of the least-square problem is optimal to fit known

data on a single time-step. Considering only two coupled modes, filtered and representing

the most important contribution to total energy, has the evident consequence of a perfect

fit. A less trivial, but also less efficient, result can be obtained by considering non-filtered

modes.

Long-period prediction

The model obtained from Eq. (3.10) fits the learning data-set with a negligible error if

we perform a single time-step simulation. A robust model should reproduce the set of

data on which it has been computed even if integrated in a long-period prediction. In Fig.

3.10 the comparison between the predicted trajectories (red lines) and the original ones
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Figure 3.9: Model fitting from the learning data set of the first 2 time projections. Black
lines represent the original data, red lines represent the model.
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Figure 3.10: Model fitting from the learning data set of the first 2 time projections,
considering a long-period prediction. Black lines represent the original data, red lines
represent the model.

(black lines) shows the true behavior of the identified model. The fitting is decreased to

63.5% for a1 and 67.5% for a2, evincing a poor robustness of the non-linear model. In

particular, although the frequency behavior is well captured, the model fails to reproduce

the non-linearity and stabilizes to a fixed-amplitude oscillation.

These results are obtained after a parametric analysis on the whole set of parameters

and represent the best compromise among them. However, the long-time prediction poor

fitting is not encouraging for our purpose, since the non-linearity still represents a great

issue to deal with.

3.3.3 Model validation

The model found in the learning phase has to be validated on a different data set. This pro-

cedure can be done, even in this phase, with two different approaches: a single time-step

simulation or a long-period prediction. Results shown in the following confirm considera-

tions about robustness sorted out in the learning phase.



40 CHAPTER 3. NON-LINEAR MODEL IDENTIFICATION

0.7 0.8 0.9 1
-150

-100

-50

0

50

100

150

t

a
1

(a)

0.7 0.8 0.9 1
-150

-100

-50

0

50

100

150

t

a
2

(b)

Figure 3.11: Model fitting from the testing data set of the first 2 time projections. The
model is obtained with a single time-step simulation. Black lines represent the original
data, red lines represent the model.

Single time-step simulation

The simulation approach consists in keeping the coefficients matrix Q constant and com-

pute the new state by knowing the previous at each time step. This method assumes

that the correct state is available and it cannot be considered realistic. However, it is

interesting to observe the behavior of the model on a different set of data.

In Fig. 3.11 the model is validated with a single time-step simulation on the first

2 trajectories. The model reproduces the dynamics with no significant errors. The fit

obtained is in fact 99.7% on the first mode and 99.6% on the second.

Long-period prediction

The long-period prediction can be considered as the definitive test of the model. In the

prediction phase only the initial state is known and the model predicts the new state as

a function of data previously estimated. This time integration reproduces what happens

in a real application since the state is not known at every time step.

As we can observe in Fig. 3.12, the model fails to reproduce the dynamics of the

time projections, with only a poor fit of 18.0% and 16.0% for the two modes. This result

cannot be improved by changing model parameters and this limit has to be related to the

presence of the non-linearity. In fact, by observing the predicted trajectory, the oscillating

behavior is well represented in frequency, as in the learning phase. Despite this, non-linear

behavior is not reproduced, even though the oscillation is stable.

3.3.4 Critical analysis

A non-linear model reproducing at least the most important oscillating motions has been

identified. Because of the simplicity of the model, due to the choice of reducing the number
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Figure 3.12: Model fitting from the testing data set of the first 2 time projections. The
model is obtained with a long-period prediction. Black lines represent the original data,
red lines represent the model.

of modes to only the first two, the oscillation characteristic frequency is well reproduced

and even after long-period integration the trajectory prediction does not blow up. On the

other hand, capturing non-linearities is still a hard challenge. This is a strong limitation

since every choice was made to reduce any other influence and keep only non-linearity

as challenging point. This result has a definitive impact on future choices on closed-loop

control strategies applied to our configuration.

Despite this consideration, in order to find the best strategy to identify the non-

linear model, all parameters have been analyzed. The effect of each parameter can be

summarized as follows.

Model order. Non-linear terms, as quadratic and cubic terms, are present in the model.

Their presence is justified by the Navier-Stokes equations and the Stuart-Landau model.

The influence on the model is an increased fit in both phases, learning and validation.

However, the model is more complex and consequently more sensitive to any other change

of parameters and this can affect the time integration leading the model to blow up.

Number of modes. The number of trajectories used increases the number of variables

to be identified. This does not affect the learning phase, but the long-period prediction,

because more non-linearities are introduced into the model.

Time delay. The number of known time instants are not necessarily useful to improve

the model. On the contrary, because of the non-linear nature of the cavity flow and

consequently of the time trajectories, the model is forced to follow a path that is not

repeatable. Increasing nd more than 2 immediately causes a violent blowing-up of the

predicted model.

The system identification technique, analyzed in this chapter, revealed a great po-

tential for flow-control applications. The possibility of obtaining a reduced-order model

directly from observable dynamics is still an undeniable advantage with respect to a model

obtained from Galerkin projection. However, non-linearity represents a huge limitation
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to this approach. It has been demonstrated that a non-linear model has a poor behavior

in predicting dynamics in a long term. In addition, the model is strongly dependent on

the parameters used to tune the coefficients computation, implying a bad robustness of

this technique.



Chapter 4

Robust feedback control of a cavity

flow

This chapter describes a strategy to obtain a more robust control based on a reduced model

from Petrov-Galerkin projection of linearized Navier-Stokes equation onto unstable global

modes and stable balanced POD modes. Results are gathered from numerical simulations

of a laminar flow over a squared cavity, the same case analyzed by Sipp and Lebedev

(2007) and Barbagallo et al. (2009).

System identification has been analyzed in the previous chapter as a valid approach to

obtain a reduced model that can be easily used to develop a control technique to control

oscillating flows in real applications. However, it has been shown how this technique is

strongly limited by non-linear behavior of the cavity flow examined and is not robust to

changes of the set of parameters considered in the identification process. These drawbacks

led us to consider other strategies to develop a control technique with good perspective

in real applications. The most promising is to increase control robustness to external

perturbations.

The need of robust control begun with the necessity of compensate for the limitations of

the Linear Quadratic Gaussian (LQG) control when applied far from the design conditions.

The lack of robustness to external disturbances is remarked when a Linear Quadratic

Regulator (LQR) is coupled with a Kalman filter that estimates the state. Optimal

control theory and its limitations is explained in a number of references as Burl (1998).

In order to increase robustness in linear control, two strategies have been undertaken:

Loop-Transfer Recovery (LTR) and robust control based on H∞ norm to define the cost

function. The first technique has been introduced by Moore et al. (1981) and it consists in

introducing a colored fictitious noise to the system. Robust H∞ control technique, from

Doyle et al. (1989), has been applied to flow control by Bewley and Liu (1998), showing

good results in increasing robustness by defining the cost function as a min-max problem,

i.e. designing the controller that minimizes the cost considering the worst disturbance.

43
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These two techniques are considered as references to develop a strategy that consider

robustness directly into the definition of the cost function

The chapter is structured as follows: cavity flow is defined in Sec. 4.1 as well as

linearized governing equations. The cavity problem is completed by actuator and sensor

definition. In Sec. 4.2 the procedure to obtain a reduced-order model is described. In

particular, we focused on a basis composed by global modes for the unstable subspace

and balance POD modes for the stable subspace. The closed-loop system is defined in

Sec. 4.3, through the definition of the closed-loop transfer function and perturbations.

The key role of this study is played by the definition of performances and robustness

in Sec. 4.4. Along with classical robustness from Nyquist theorem, a model based on

unstructured uncertainties is proposed. Results from classic control design, i.e. LQG,

LTR and H∞ control, are shown in Sec. 4.5 while robust control results obtained with

the strategy proposed in this study are proposed in Sec. 4.6. A final consideration on

unstable perturbations, as changes in Reynolds number, and the possibility of suppress

such disturbances, are analyzed in Sec. 4.7.

4.1 Flow configuration, governing equations and setup

4.1.1 Flow configuration

We consider a two-dimensional open square cavity, which has the same geometry and

boundary conditions as that described in Sipp and Lebedev (2007). The reference quan-

tities used to non-dimensionalize the governing equations are the uniform flow velocity

U∞, the cavity depth D, thus the Reynolds number is defined as Re = U∞D/ν, where ν

is the viscosity. The origin of the coordinate system is set at the upstream corner of the

cavity, so that the downstream edge is at (x = 1, y = 0). On the boundaries, conditions

are set as follows: uniform unitary flow at the inlet boundary (x=-1.2), free-slip condi-

tion on the upper boundary (y = 0.5) and on the boundaries (−1.2 ≤ x < −0.4, y = 0)

and (1.75 < x ≥ 2.5), while from the starting point of the laminar boundary layer at

(x = −0.4, y = 0) the no-slip condition is prescribed, together with cavity walls and the

downstream wall until (x = 1.75, y = 0). The mesh used is composed by 194771 triangles,

corresponding to 880495 degrees of freedom for the three variables (u, v, p).
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Figure 4.1: The contour plot corresponds to the streamwise component of the base flow,
u0 obtained at Re = 7500, while the spatial profile of the control input u(t) is represented
by the isolines.

4.1.2 Governing equations

The full non-dimensionalized non-linear governing equations are written for the velocity

field u = (u, v) and the pressure p.

∂u

∂t
+ (u · ∇) u = −∇p+

1

Re
∆u, (4.1a)

∇ · u = 0. (4.1b)

Before proceeding with linear control design, the flow has to be linearized around a

steady solution, the base flow u0(x, y) = (u0, v0). It is determined with a Newton-Raphson

method, after setting to zero the unsteady term of the non-linear Navier-Stokes equations

summarized in Eq. (4.1). The base flow in Fig. 4.1 displays a thin shear layer and a

recirculating vortex in the cavity. The boundary layer starting at (x = −0.4, y = 0) is

also visible.

Once the steady solution is computed, the flow can be decomposed into base flow and

unsteady perturbations u′(x, y, t) = (u′, v′), so that u = u0 + u′ and p = p0 + p′. By

substituting the expression for u and p into Eq. (4.1) and the base flow being a steady

solution of the Navier-Stokes equations, we obtain the perturbative form of the governing

equations:

∂u′

∂t
+ (u′ · ∇) u0 + (u0 · ∇) u′ + (u′ · ∇) u′ = −∇p′ +

1

Re
∆u′, (4.2a)

∇ · u′ = 0. (4.2b)

The evolution of the perturbations u′ = (u′, v′) and p′, obtained by linearization of

the non-dimensionalized two-dimensional Navier-Stokes equations around the base flow
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u0, reads as follows:

∂u′

∂t
+ (u′ · ∇) u0+(u0 · ∇) u′ = −∇p′ +

1

Re
∆u′, (4.3a)

∇ · u′ = 0, (4.3b)

or in compact form:

Q
dX

dt
= A X , (4.4)

where Q is the identity matrix selecting only the velocity components, X = (U ,V ,P)

is the state vector composed by the perturbations of the two velocity components and the

pressure field, and A is the linearized Navier-Stokes operator. The spatial discretization

is finally obtained through a mesh of unstructured (P2,P2,P1) finite elements. The final

form of the discretized governing equations is:

Q
dX

dt
= AX. (4.5)

4.1.3 Actuator and sensor definition

The control input considered is a blowing and suction actuator, added to the system

(4.4) through a modification of the boundary condition over a section of the wall near

the upstream edge of the cavity, as shown by the isolines in Fig. 4.1. The spatial profile

B2 is the solution of the steady inhomogeneous problem due to the modification of the

boundary condition, so that:

Q
dX

dt
= A X + QB2ũ(t), (4.6)

We also introduce the measurement of the boundary layer near the downstream edge

of the cavity:

m̃(t) =

∫ x=1.1

x=1

∂u

∂y

∣

∣

∣

∣

y=0

dx = C2X . (4.7)

In the SISO system we also introduce a noise to the control input, w(t), and to the

measurement, g(t). The state noise w is therefore spatially introduced into the system by

B2 since it is related to the control input, i.e. a noise introduced directly by the actuator.

The measurement noise g is always present in every practical application and it is simply

added to the measurement. The state-space formulation of the flow control problem,
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avoiding time dependency for an easier reading, finally reads as:

Q
dX

dt
= AX+QB2u+QB2w, (4.8a)

m = C2X+ g, (4.8b)

where the matrix C2 extracts the shear of the boundary layer from the state vector X.

More details on noises and how they affect control design will be given in Sec. 4.3.1.

4.2 Model reduction

Because of the high number of degrees of freedom required for the discretization adopted to

solve the Navier-Stokes equations, the design of a compensator that stabilizes the problem

defined in Eq. (4.8) is not easy. However, the compensator only needs the most important

features of the dynamics between the sensor and the actuator. For this reason, a reduced-

order model is required. In addition, we also consider that for a real-time control, the

compensator should be as fast as possible with respect to the flow dynamics, so it needs

to be based on a reduce-order model.

In order to obtain a reduced-order model, it is common to use a projection technique or

a system identification technique. We already spoke about the latter in Chapter 3, where

this technique is based on an auto-regressive non-linear model, learned from experimental

results. Here we focus on a Petrov-Galerkin projection technique since the objective of

this part of the study is to obtain a method that increases robustness and a more classical

technique for the reduced-order model is sufficient.

In model reduction procedure, the objective is to find a matrix V , called the reduced

basis, such that the state vector X can be decomposed as:

X = V X̂,

where the upper symbol (•̂) represents a reduced quantity. With a second basis W that

satisfies the bi-orthogonality condition with V , such that W ∗QV = I, the reduced state

vector is then:

X̂ = W ∗QX,

so that the resulting system in the state-space form, can be rewritten as:

dX̂

dt
=ÂX̂ + B̂2u+ B̂2w, (4.9a)

m = Ĉ2X̂ + g, (4.9b)
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where the reduced matrix are computed as:

Â = W ∗AV, B̂2 = W ∗QB2, Ĉ2 = C2V.

The choice of the reduced basis is critical for good performances. Since the objective

is to stabilize an unstable flow, unstable global modes must be included in the reduction

basis. The action of the controller, however, also triggers some stable states; for this

reason, it is necessary to include in the reduction basis a stable subspace, which can be

treated separately from the unstable problem, due to the choice of using global modes.

The choice of the stable basis is not trivial: a solution deeply analyzed by Barbagallo et al.

(2009) is to use a model truncation based on Balanced POD (BPOD) modes obtained

with the Snapshot method introduced by Rowley (2005). In the following we discuss in

more detail global modes and BPOD modes.

4.2.1 Global modes

Global modes are used as a projection basis in order to obtain a reduced-order model of

the unstable subspace. These modes are the eigenvectors of the linearized Navier-Stokes

operator and they represent the spatial structures related to the eigenvalues. From the

system described in Eq. (4.5) global modes can be computed by assuming an exponential

time-dependence for the state vector X(x, y, t) = X̃(x, y)eλt, with λ ∈ C, leading to the

eigenvalue problem:

λQX̃ = AX̃, (4.10)

that can be solved using Arnoldi methods based on a shift-invert strategy and a sparse

direct LU solver (MUMPS (Amestoy et al., 2001)) to handle the matrix inverses. The

eigenvalues are complex λ = σ + iω, where σ and ω correspond to the amplification rate

and frequency of the modes. The basis obtained is non-orthogonal since global modes

do not satisfy this property. An adjoint basis is therefore required to project along the

directions of the global modes; it is obtained by computing the eigenvalues of the adjoint

linearized Navier-Stokes operator. As in Barbagallo et al. (2009), we compute only the

unstable global modes, since they are used only to represent the unstable subspace. In

this study, we consider four different unstable cases: the first two (Re = 5500 and 6500)

have three unstable modes, while the third (7500) and the fourth (8000) present a fourth

weak instability, as shown in Fig. 4.2.

As an example, in Fig. 4.3, we have represented some global modes computed at

Reynolds 7500. It is seen that the number of structures in the shear-layer increases,

as expected, with the frequency of the modes. These global modes have already been

described by Barbagallo et al. (2009). Finally, in Fig. 4.3(d), a typical adjoint structure

which is, as expected, located at the left corner of the cavity because of the convective



4.2. MODEL REDUCTION 49

-0.2 0 0.2 0.4 0.6 0.8 1
5

10

15

20
5500
6500
7500
8000

σ

ω

Figure 4.2: Least stable direct global modes at different Reynolds numbers.
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Figure 4.3: (a) cross-stream component of the direct global mode at ω = 7.9; (b) stream-
wise component of the direct global mode at ω = 10.9; (c) streamwise component of the
direct global mode at ω = 16.7; (d) cross-stream component of the adjoint global mode
at ω = −13.8.
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non-normality.

4.2.2 Balanced POD modes

Considering the system described by 4.8, we would like that the stable subspace of the

truncated model should be as controllable than observable. We therefore introduce the

Controllability Gramian GC and the Observability Gramian GO. With X denoting a

divergence-free flow field, the controllability gramian is related to the control energy

through the relation
∫∞
0

u∗(t)u(t) = X∗G−1
C X, so it represents how much an input af-

fects each state. On the other hand, the observability gramian is related to the measure-

ment energy through
∫∞
0

m∗(t)m(t) = X∗GOX, indicating how much each state affects

future outputs. A balanced truncation selects the structures that are most observable and

controllable and therefore excludes states that are either weakly controllable or weakly

observable.

To compute the Gramians, we have to perform linearized DNS simulations of impulse

responses in the stable subspace of the system 4.8. First, to approximate GC , we solve

the direct problem initialized by the control state B2:

Q
dX

dt
= AsX, (4.11a)

X(0) = PsB2. (4.11b)

Then, to approximate GO, we solve the adjoint problem initialized with the measurement

state C∗
2:

Q
dY

dt
= A∗

sY, (4.12a)

Y(0) = P ∗
sC

∗
2. (4.12b)

Every time step, all the solutions are projected onto the stable space, by the projection

matrices Ps and P ∗
s . The controllability Gramian can be now computed as:

GC = XX∗, (4.13)

while the observability Gramian is:

GO = YY∗. (4.14)

The balanced truncation is then computed by performing a Singular Value Decomposition

(SVD) of the matrix Y∗X = UΣV ∗, and using, as a reduction basis, the matrix T and S,
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Figure 4.4: Hankel singular values σj for Reynolds (a) 5500 and (b) 7500.

obtained as:

T = XV Σ−1/2, S = YUΣ−1/2,

that represent the Balanced POD modes and their dual modes. The number of BPOD

modes, i.e. the dimension of T and S, to consider in order to capture the most important

dynamics, are chosen from the fall-off of the Hankel singular values Σi. In figure 4.4 are

shown the Hankel singular values for two different Reynolds numbers, 5500 and 7500.

From the approximation criterion, based on the H∞-error norm of the open-loop transfer

function and defined in Barbagallo et al. (2009), we know that, for the present case of

cavity flow, a few balanced modes (10 at least) are sufficient to reproduce the exact

dynamic with a relative error lower than 1%.

In our study we consider 14 BPOD modes for Re = 5500 and 6500, and 12 BPOD

modes for 7500 and 8000, in order to have a reduced model of dimension 20× 20. In Fig.

4.5 the comparison of the impulse response of the actual system projected on the stable

subspace from a DNS and the stable part of the reduced model obtained with a BPOD

basis, shows how perfectly the reduced model represents the actual stable subsystem. In

Fig. 4.5(a) is represented the time response, while in Fig. 4.5(b) is shown the amplitude

of the open-loop transfer function of the stable subspace from the input u(t) to the mea-

surement m(t), computed as Fourier transforms of the impulse responses shown in Fig.

4.5. We show both graphics in order to introduce the frequency domain as the frequency
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Figure 4.5: Impulse response of the stable system at Reynolds 5500. (a) Time behavior
of the measurement m(t). (b) Open-loop transfer function amplitude in dB over a range
of frequencies expressed in rad/s. Thick dashed line corresponds to the DNS; thin solid
line corresponds to the reduced model based on BPOD.

domain will be favored in the rest of this study.

4.2.3 Summary

In order to design a compensator from a high-dimensional problem, a reduced-order model,

representing the input/output dynamics, is required. Since the flow must be stabilized,

unstable global modes are considered as a subspace of the model basis. The need of in-

cluding stable modes to the reduced-order model, led us to consider balanced POD modes.

In this section we have shown that only a few of these modes are capable to reproduce

input/output dynamics with a negligible error, since they are based on controllability and

observability properties of the system, and can be easily used as reduction basis.

4.3 Closed-loop system

The closed-loop system stability and its behavior to stable perturbations represent the

principles leading the compensator design. The main features related to the closed-loop

system, namely the closed-loop transfer function and the closed-loop perturbations, are

defined in the following.
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∆(s)

(sI − A)−1

K(s)

B2 C2
u

w

g

X m

Figure 4.6: Closed-loop perturbed system. The closed-loop system composed by the
plant and the compensator is enclosed in the dashed box. Noises w and g are the system
inputs, while m is the measurement output. The perturbation ∆(s) represents all possible
disturbances to the closed-loop system.

4.3.1 Closed-loop transfer function

The system described by Eq. (4.9) represents the plant with state and measurement

disturbances added. The related open-loop transfer function is written with a Laplace

transform as:

P (s) = C2 (sI − A)−1 B2. (4.15)

Since the cavity flow is unstable, the objective of this study is the design of a compensator

that stabilizes the plant. We add to the system a compensator that closes the loop between

the measurement and the control input as represented in the block diagram of Fig. 4.6.

The compensator estimates the state, provides a control gain matrix and can be designed

with any control strategy. It acts only on the control input u, providing a feedback law

from the measurement m and it is represented by the transfer function K(s). Note that

here we do not define the compensator transfer function K(s), since it depends on the

control design and is specific for each strategy.

Once the loop is closed, the resulting system has to be stable, i.e. the closed-loop

transfer function must not have poles with real part in the right half-plane. We then

consider, as an example, the transfer functions representing the dynamics between the

measurement m and the noise g:

T cl
mg(s) =

P (s)K(s)

1− P (s)K(s)
. (4.16)

It can be shown that the poles of the numerator are canceled by those of the denominator,

so the only possible instabilities reside in the zeros of the denominator. The condition
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imposed in the compensator design is then that all the solutions of 1−P (s)K(s) = 0 have

negative real part. This condition has to be satisfied when designing K(s).

4.3.2 Closed-loop perturbations

In real systems the presence of certain disturbances can affect the stability of the closed-

loop system. In Fig. 4.6, a perturbation ∆(s) is added as a feedback to the stable closed-

loop. The connection of the uncertainty to the stable closed-loop is not yet specified

since it can represent a measurement error, an amplification of the control input or an

excitation of the internal dynamics. For this reason, ∆ is modeled as a transfer-function,

with a pair of complex-conjugate stable poles λ1,2
∆ = σ∆ ± iω∆ and a zero at σ∆, so that

the transfer function reads:

∆(s) =
1

s− λ1
∆

+
1

s− λ2
∆

=
2s− 2σ∆

s2 − 2σ∆s+ σ2
∆ + ω2

∆

. (4.17)

The closer the poles are to the imaginary axis, the more a resonance will appear if the

damping ratio ζ = −σ∆/ω∆ is smaller than 1. In this case the perturbed system is

under-damped, i.e. the system will oscillate exceeding the desired output.

In Fig. 4.7 the behavior of the filter for a given frequency ω∆ = 10rad/s for different

values of σ∆ is presented. The amplitude of the filter transfer function is represented on

two axes, one expressed in dB and the other indicating the real absolute value computed

from (4.17). It can be noticed that this filter does not behave as a classical low-pass filter,

since the gain is not unitary meaning that for every frequency the effect of the disturbance

will be always a reduction of the closed-loop transfer function amplitude, except for smaller

values of ζ. Once applied to the system, this kind of filter always damps low frequencies

by a factor depending on the values of σ∆ and ω∆, while the behavior at higher frequencies

is asymptotic as 1/ω2
∆.

4.4 Performance and robustness definition

Since the main objective of this paper is to investigate the robustness stability and the

performances of an output-feedback compensator, we need to define a set of measures

that define unambiguously performance and robustness.

4.4.1 Performance definition

The performance of a generic partial-state control problem, is quantified by a cost func-

tion, normally based on a 2-norm or an ∞-norm. For a generic transfer function H(s)

describing, in Laplace space, the dynamics between an output y(t) and an input u(t)
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Figure 4.7: Amplitude of the perturbation ∆ expressed in dB on the left axis and non-
dimensional on the right axis, for a given range of frequencies in rad/s. Every curve is
obtained from Eq. (4.17), with a fixed value of ω∆ = 10rad/s. Values close to each curve
indicate the damping ratio ζ = −σ∆/ω∆.

(SISO), the 2-norm and the ∞-norm are defined as follows:

‖H‖2 :=
(

1

2π

∫ ∞

−∞
|H(jω)|2 dω

)
1

2

, (4.18)

‖H‖∞ := sup
ω

|H(jω)| (4.19)

In terms of the time domain, it may be shown that: ‖H‖2 = ‖y‖2 for a simulation y(t)

triggered by u(t) = δ and y(0) = 0, while ‖H‖∞ = sup‖u‖
2
6=0

‖y‖
2

‖u‖
2

for simulations y(t)

triggered by any u(t) and y(0) = 0. Here the 2-norm of a signal is defined as ‖y‖2 =
(∫∞

0
|y(t)|2 dt

)

1

2 . Note that the definition in the time domain is allowed by the Parseval

theorem only if stable systems are considered, while the definition in the frequency domain

is allowed also for unstable systems as soon as there is no marginal pole.

The cost function is related to desired outputs, experienced noise environments and

has properties depending to the used norms. In this study, as well as in the majority of

flow control applications, we fixed as reference output the amount of control input zu = u

and the output measurement zm = C2X, while the measurement noise and the actuator

noise are chosen as the reference disturbance environments. As outlined in Sec. 4.3.1,

the compensator shall be designed to guarantee the stability of the closed-loop system.

Here we introduce the performance as an additional target of the compensator design.

In Fig. 4.8 a scheme describes performance definition as the output of the closed-loop

system when excited by the two noises g and w. These definitions hold whatever the

control strategy that manages to stabilize the closed-loop system, i.e. the technique used

for the compensator design. For both desired outputs, performances are cost functions
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Figure 4.8: Closed-loop system with performances definition.

defined as the 2-norm and the ∞-norm of the closed-loop transfer functions between the

disturbances w and g and the reference outputs zu and zm. Defining disturbances as

d = {w, g} and the desired outputs z = {zm, zu}, the set of closed-loop transfer functions

read as follows:

T cl
zd(s) =

[

T cl
mg(s) T cl

mw(s)

T cl
ug(s) T cl

uw(s)

]

=









P (s)K(s)

1− P (s)K(s)

P (s)

1− P (s)K(s)
K(s)

1− P (s)K(s)

P (s)K(s)

1− P (s)K(s)









, (4.20)

so that z = T cl
zd(s)d. For each term of Eq. (4.20) we can finally define performances as:

Φzd
2 =

∥

∥T cl
zd

∥

∥

2
, (4.21)

and

Φzd
∞ =

∥

∥T cl
zd

∥

∥

∞ . (4.22)

These parameters represent a cost of control design and should be kept as small as possible.

A controller has better performance than another if it has smaller values of Φzd
∞ and Φzd

2 .

4.4.2 Classic robustness definition

The discrepancy between the model used in the control design P and the real plant P̃

can lead to a bad performance once the compensator is implemented in the real system

P̃ . The problem is that if the controller is designed only to have good performances, the

stability to unknown perturbations (here P̃ − P ) is not assured.

The stability of a closed-loop system (Burl, 1998) is always given by an analysis of the

zeros of:

1− P (s)K(s) = 0. (4.23)

The closed-loop system is internally stable if all the solutions of Eq. (4.23) have negative

real parts. Since the closed-loop system is designed to be stable, robustness is the capa-
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bility of the compensated system to remain stable after a perturbation, i.e. the ability of

a controller, designed on a reduced model P , of being robust in a slightly different system

P̃ . Following this definition, if we perturb the compensated plant, the higher the stability

margin, the more robust.

In order to quantify the robustness margins, we define the actual plant as the reduced-

model plant perturbed by two different perturbations, one that changes its magnitude,

i.e. the amplitude of the measured response to a random input, and one its phase, i.e. a

delay in the input-output dynamics. These two models are summarized as follows:

P̃ (s) = αP (s), (4.24a)

P̃ (s) = eiφP (s). (4.24b)

We then define GM+ as the smallest gain α greater than 1 that produces a zero with

a positive real part in 1 − P̃ (s)C(s), GM− as the highest gain α between 0 and 1 that

causes the instability of the system, and the phase margin PM as the minimum positive

angle φ that causes instability.

The robustness analysis described above is the Nyquist stability criterion applied to

the uncertain system in Eq. (4.24). From the Nyquist plot, gain and phase margins can



58 CHAPTER 4. ROBUST FEEDBACK CONTROL OF A CAVITY FLOW

T cl
zdwd

(s)

∆(s)

wd zd

Figure 4.10: Unstructured uncertainty block scheme.

be determined graphically. In particular, from Fig. 4.9, gain margins are defined as:

GM+ = 20 log10

(

−1

a

)

, 0 > a > −1, (4.25a)

GM− = 20 log10

(

−1

a

)

, a < −1, (4.25b)

PM = φ. (4.25c)

4.4.3 Unstructured uncertainty

In the previous classic robustness definition, the mathematical model used consists in

a gain and phase perturbation of the nominal plant P (s). In order to evaluate system

robustness, other types of perturbations may be used. In particular, we consider perturba-

tions of the closed-loop system called unstructured uncertainties, whom transfer function

is stable and characterized by a given ∞-norm.

We consider the closed-loop system in Fig. 4.10 that has a disturbance input wd and

a perturbed output zd. We combine the compensator K(s) with the plant P (s) in order

to obtain the closed-loop system described by T cl
zdwd

(s) with a stable perturbation ∆(s)

in a feedback loop. If we evaluate the internal stability (the reader is referred to Burl

(1998) for a detailed demonstration), we find out that if the perturbation ∆(s) is stable

and bounded, i.e. if ‖∆‖∞ ≤ 1/γ, the condition for internal stability is that:

∥

∥T cl
zdwd

∥

∥

∞ < γ, (4.26)

This result is known as Small Gain Theorem (SGT).

The SGT, as just explained, involves the parameter γ that represents the bound re-

lating the closed-loop system and the admissible stable perturbation. The actual link

between T cl
zdwd

(s) and ∆(s) can be deeply and more clearly analyzed by simply non-

dimensionalizing the perturbation with the amplitude of the closed-loop transfer function,
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Figure 4.11: Normalized unstructured uncertainty block scheme.

so that:

∆(s) = ∆′(s)
1

∣

∣T cl
zdwd

(s)
∣

∣

. (4.27)

In Fig. 4.11 the normalized system is shown. The stability condition in Eq. (4.26) is

still valid, but the normalization implies the the bound on the perturbation ∆′ is now

expressed as:

‖∆′(s)‖∞ =
∥

∥∆(s)
∣

∣T cl
zdwd

(s)
∣

∣

∥

∥

∞ ≤ 1. (4.28)

By definition of the ∞-norm, it follows that the inequality in Eq. (4.28) is valid if:

|∆(s)| ≤ 1
∣

∣T cl
zdwd

(s)
∣

∣

, ∀ω. (4.29)

This last result implies that the condition for robust stability expressed by the SGT is

violated, and the system becomes unstable, when the amplitude of a stable perturbation

is bigger than the inverse of the amplitude of the closed-loop transfer function. Eq. (4.29)

also states that the condition on the amplitude of perturbations and closed-loop system

just explained has to be verified for all the range of frequencies. This consideration is

hidden in the classical formulation of the SGT in Eq. (4.26). From these considerations,

we can then define the maximum disturbance allowed as the inverse of the ∞-norm of the

closed-loop transfer function:

ρ∞ =
1

∥

∥T cl
zdwd

(s)
∥

∥

∞
(4.30)

In this study, we consider two types of connections of the unstructured perturbation

to the closed-loop system: the input-multiplicative model and the input-to-output model,

both represented in Fig. 4.12.

Input-multiplicative perturbation

This type of perturbations represents unknown perturbations in series with the plant.

The model is described in Fig. 4.12(a). The stable disturbance ∆(s) acts on the stable
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Figure 4.12: Unstructured uncertainty models used. (a) input-multiplicative model; (b)
input-to-output model.

closed-loop system by modifying the open-loop transfer function P . The perturbed plant

transfer function is then:

P̃ (s) = P (s) (1 + ∆(s)) , (4.31)

where P (s) is the nominal plant and in our case corresponds to the reduced model.

The set of equations considered in this particular case, referred to the scheme in Fig.

4.12(a), is then:

Ẋ = AX + B2u+ B2wd (4.32a)

m = C2X (4.32b)

zd = u (4.32c)

wd = ∆(s)zd (4.32d)

u = K(s)m, (4.32e)

from that the closed-loop transfer function can be expressed as:

T cl,im
zdwd

(s) =
K(s)P (s)

1−K(s)P (s)
. (4.33)

Since we are interested in the robust stability of the closed-loop system when the

perturbation is introduced to the system as an input-multiplicative disturbance, i.e. when

the curve of the amplitude of ∆(s) remains under the curve of the inverse of the closed-

loop transfer function T cl
zdwd

(s), we define the robustness indicator related to this type of



4.4. PERFORMANCE AND ROBUSTNESS DEFINITION 61

perturbation as:

ρim∞ =
1

∥

∥

∥
T cl,im
zdwd (s)

∥

∥

∥

∞

(4.34)

In order to guarantee robust control, using the SGT we know that, with a stable pertur-

bation, the value of ρ∞ shall be as big as possible.

Input-to-output perturbation

The input-to-output perturbation expresses an additive uncertainty operating in parallel

with the plant as schematized in Fig. 4.12(b). Adding a stable perturbation ∆(s) in

feedback with the closed-loop system corresponds to a modification of the open-loop

transfer function as:

P̃ (s) = P (s) + ∆(s), (4.35)

where P (s) is the nominal plant as in the previous case.

We consider as set of equations related to the input-to-output model the following:

Ẋ = AX + B2u (4.36a)

m = C2X+ wd (4.36b)

zd = u (4.36c)

wd = ∆(s)zd (4.36d)

u = K(s)m. (4.36e)

The closed-loop transfer function can be defined as:

T cl,io
zdwd

(s) =
K(s)

1−K(s)P (s)
. (4.37)

As for the input-multiplicative case, we can define the robustness indicator related to

the inverse of the ∞-norm of the closed-loop transfer function defined in Eq. (4.37):

ρio∞ =
1

∥

∥

∥
T cl,io
zdwd(s)

∥

∥

∥

∞

. (4.38)

4.4.4 Summary

Performances and robustness represent the features on which a controller efficacy is evalu-

ated. In this section these characteristics have been defined. Performances are classically

defined as the 2-norm and the ∞-norm of the closed-loop transfer functions from the

external disturbances and the desired outputs. On the other hand, robustness can be

defined from the classical Nyquist approach as stability margins or in a modern inter-
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Figure 4.13: Closed-loop system with performances and design parameters.

pretation of the small gain theorem. This study provided a new definition of robustness

as the maximum stable disturbance allowed that makes the closed-loop system unsta-

ble. This perturbation can be modeled as an unstructured uncertainty in feedback to the

system and the robustness indicator can be defined as the inverse of the ∞-norm of the

closed-loop transfer function from the perturbed input to the perturbation output.

4.5 Control design targeting performance

Flow control implies the modification of the normal behavior of a flow in order to obtain

a desired state. To this aim, among different active-control strategies, optimal control

is frequently used. In this study we analyze optimal-control related strategies and we

evaluate in each case the robustness measures. We then consider for the compensator

design the closed-loop system represented in Fig. 4.6 and the input/output definition

schematized in Fig. 4.13. The blocks containing Sg and Sw represent noise weights that

in the particular case of white noises correspond to the noise variances, while ℓ is the

control cost. The resulting set of equations is then:

Ẋ = AX + B2u+ B2

√

Sww̃, (4.39a)

m = C2X+
√

Sgg̃, (4.39b)

zm = C2X, (4.39c)

z̃u = ℓu, (4.39d)

u = K(s)m. (4.39e)

The control design is based on a variational principle that leads to a minimization of

a cost function of the desired output. This cost function could be different if we consider

a H2 control, that minimizes the 2-norm, or a H∞ control, that minimizes the ∞-norm.

Once the desired output z is specified, the minimization of the cost function leads to a pair

of Riccati equations, one corresponding to the controller, the other one to the estimator.
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For each case, we define the minimized norm, the cost function, the Riccati equations for

the controller and the estimator, and the final form of the compensator. We eventually

show and discuss performances and robustness results.

4.5.1 LQG in small gain limit hypothesis

Optimal control methodologies are widely used in flow control applications. Linear

Quadratic Regulator (LQR) technique provides the designer with flexibility to perform

trade-offs among various performance criteria. The limitation of this method is that the

state must be known when generating the control. High-order systems represent then a

huge limitation since measuring the whole state can be expensive. A preferable method-

ology consists in using a partial state information and then estimating the state with

a Kalman filter. When the LQR is coupled with a state estimator and control noise

and measurement disturbances are modeled as white noise, we obtain a Linear Quadratic

Gaussian (LQG) regulator. Details on LQR and Kalman filter design can be found in any

control manual as in Burl (1998).

The objective of the LQG control is the optimal minimization of the closed-loop trans-

fer function. Here the term “optimal” refers to seeking the minimum of the 2-norm of

the closed-loop transfer function Φzd
2 , as it is defined in Sec. 4.4. In the present study

we consider the Small Gain Limit (SGL) hypothesis. As explained in Barbagallo et al.

(2009), it consists in a condition that appears as the control cost ℓ and the ratio between

measurement disturbance
√

Sg and input noise
√
Sw tend to infinity. In this particular

situation, the controller and the Kalman filter act only on the unstable modes. Under this

particular condition, the design reduces to the minimization of the 2-norm of the closed-

loop transfer function between the measurement perturbation and the control input, i.e.

the minimization of Φug
2 .

In the following, a description of the design technique is given along with the analysis

of performance and robustness results.

Framework

The design of an LQG compensator consists of a LQR controller and a state estimator, the

Kalman Filter. Both controller and estimator are designed from a variational principle

that minimizes a cost function, leading to a Riccati equation. This kind of controller

follows the H2 control theory, since the cost function is obtained from the 2-norm of the

desired output. In the H2 framework, the control and the estimator design are decoupled,

so we firstly proceed to the design of the controller. The cost function can be formalized
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as that corresponding to the LQR design:

F2
c =

∫ T

0

(C2X)
∗ C2X+ ℓ2u2dt. (4.40)

The minimization of Eq. (4.40) leads to the Riccati equation:

A∗X + XA−XB2B
∗
2X +

1

ℓ2
C∗

2C2 = 0 (4.41)

but, since we are in the SGL, the last term is negligible, so that:

A∗X + XA−XB2B
∗
2X = 0. (4.42)

We express the control gain matrix that stabilizes the system 4.9, as K = −B2X .

The design of the Kalman filter follows the same procedure of the controller design.

The estimated state is described by the following equation:

Ẋe = AXe + B2u− L (m− C2Xe) , (4.43)

where the matrix L is the Kalman gain. Since the estimation leads to an error from the

real state, the design of the Kalman filter has the objective of minimizing the mean square

estimation error between the real state X and Xe. The error dynamics equation can be

obtained by subtracting Eq. (4.43) to the first line of Eq. (4.39):

ė = (A− LC2) e+ B2

√

Sww̃ − L
√

Sgg̃. (4.44)

The objective functional can be formalized as:

F2
e =

∫ T

0

E [e∗e] dt, (4.45)

where the function E[] stands for the expected value.

The minimization of the objective functional in Eq. (4.45) leads to a Riccati equation

for the estimator:

AY + YA∗ − YC∗
2C2Y +

Sw

Sg

B2B
∗
2 = 0, (4.46)

which reads in the SGL:

AY + YA∗ − YC∗
2C2Y = 0, (4.47)

with Y satisfying the Riccati equation. The Kalman gain can be eventually computed as

L = −YC∗
2. Since the feedback input is related to the estimated state as u = KXe, we
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Re GM+ GM− PM ρim
∞

ρio
∞

Φmg
2

Φug
2

Φmg
∞ Φug

∞ Φmw
2

Φuw
2

Φmw
∞

Φuw
∞

5500 2.28 -1.06 8.62 0.12 47.7 7.04 0.019 8.68 0.021 2978 7.04 3179 8.68
6500 1.82 -0.65 7.75 0.07 42.4 8.56 0.022 14.1 0.024 8032 8.56 43307 14.1
7500 0.32 -0.53 2.32 0.04 39.5 10.2 0.025 26.4 0.025 23389 10.2 181016 26.4
8000 0.73 -0.88 5.06 0.09 38.7 9.91 0.025 11.5 0.026 8556 9.91 40520 11.5

Table 4.1: Robustness analysis results at different Reynolds numbers on the SGL condi-
tions. Gain margins are in dB and phase margin is in degrees.

can define the output feedback transfer function that appears in Eq. (4.39):

K(s) = −K [sI − (A + B2K+ LC2)]
−1 L. (4.48)

The compensator designed with the technique described above can be analyzed on its

performance and robustness behavior.

Results

The LQG compensator is one of the most used algorithm in many control problems.

Unfortunately, the resulting compensator lacks robustness and this is considered as an

important issue in real control applications. A robustness and performance analysis is

carried out to show this behavior at different Reynolds numbers. The objective in this

analysis is to know how the plant, manipulated by a compensator designed on a given

reduced model, reacts to stable perturbations added to the compensated system and so

when the system begins to be unstable.

In Table 4.1 are summarized performance and robustness results. Since control design

targets performance with a H2 approach, we expect to obtain small values of the Φzd
2 . In

particular, due to the SGL hypothesis, values of the quantity Φug
2 are the smallest that

can be obtained with any control technique. For this reason, values corresponding to this

quantity are taken as reference for comparison with other control techniques. Practically,

the value of 0.021, representing the performance Φug
2 for Reynolds 5500, is the lowest cost

payed in the present study, with comparison to all control techniques studied.

The design of the LQG is based on performance minimization and the consequence

is a lack in robustness. The observation of Nyquist stability margins reveals admissible

amplitude perturbations about ±1dB and phase margins below 10 , evincing poor robust-

ness. Parameters ρim∞ and ρio∞ express the bound of admissible perturbations introduced

in series and in parallel to the closed-loop system before the closed-loop system becomes

unstable. Since the input-multiplicative perturbation seems to be the most critical we use

it as an example to better understand the meaning of this kind of uncertainties and the

SGT.

In fig. 4.14(a) is represented the stability threshold of the closed-loop system perturbed

by an input-multiplicative uncertainty ∆(s) as defined in Eq. (4.17). The graphic is
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Figure 4.14: (a) Stability threshold for an input-multiplicative perturbation of a closed-
loop system with an LQG/SGL compensator at different Reynolds numbers; (b) ampli-
tude, expressed in dB, of the inverse closed-loop transfer function. For both figures, the
black line corresponds to Re = 5500 case, red line Re = 6500, blue line Re = 7500 and
green line Re = 8000. Lines with squares and circles in (b) represent |∆| and are obtained
with the fixed values of σ∆ and ω∆ represented by a square and a circle in (a).
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obtained by varying the parameters σ∆ and ω∆. Inside the bounded region (the lowest

left corner), the perturbed closed-loop system is unstable. As explained in Sec. 4.4.3,

the instability arises when the amplitude of the perturbation is bigger than the inverse

of the amplitude of the closed-loop transfer function. The parameter ρim∞ indicates how

large could be the admissible perturbation or, in other words, how big is the minimum

of 1/
∣

∣T cl
uw

∣

∣. As expected from the values of ρim∞ , the case corresponding to Re = 7500

is the least robust, while the closed-loop system designed at Re = 5500 is the most

robust, but results for the other two cases are in contrast with robustness analysis, even

though they are coherent with Nyquist margins criterion. This misleading result comes

from the closed-loop transfer function. If we look at the amplitude of 1/
∣

∣T cl
uw

∣

∣, shown in

Fig. 4.14(b), we observe a negative peak that is more accentuated for Re = 7500 and it

progressively attenuates by diminishing the Reynolds. This local minimum is equivalent

to ρim∞ for Re = 7500 and 8000 and its presence at high frequency makes these last cases

less robust.

Summary

The linear quadratic control is the most used technique on flow control applications. It

has been considered in this study as it represents the simplest way to obtain a linear

controller and a reference case to understand performance and robustness analysis. It has

been shown that, since this design technique is optimized on a 2-norm performance, the

obtained compensator presents poor robustness properties in terms of stability margins

as well as rejection of unstructured uncertainties. This result suggests to seek other

techniques to achieve satisfying robustness properties.

4.5.2 Loop transfer recovery

From the optimal control theory (Burl, 1998; Zhou et al., 1996), we have knowledge of

high robustness properties of linear quadratic regulators. They present, in fact, gain

margins between 0.5 and ∞ (GM− = −6dB and GM+ = ∞dB) and phase margin of

at least 60 . This is valid only if the entire state is known at every instant. By duality,

a similar consideration can be done for an optimal estimator, i.e. the Kalman filter.

When the controller is realized combined with an estimator, robustness properties are

not guaranteed anymore, indeed in some cases these margins are reduced to values such

low to easily transform the system from stable to unstable even for small changes in

its characteristic parameters. The reason of this behavior is that the open-loop transfer

function of the optimal controller and that of the Kalman filter are completely different

from that obtained by combining controller and estimator.

The technique of the Loop Transfer Recovery (LTR) tries to design the estimation gain



68 CHAPTER 4. ROBUST FEEDBACK CONTROL OF A CAVITY FLOW

matrix L of the LQG in order to recover stability margins and the robustness to input-

multiplicative perturbations of the LQR. The LTR method can be intuitively understood

by considering the closed-loop system opened between the control input and the Kalman

filter and making the dynamic of the estimator sufficiently fast to be ignored. This purpose

can be accomplished with the introduction of a fictitious noise wf (t), with variance Swf
,

to the control input in the estimator design. By increasing the noise to ∞ the poles are

driven toward a condition where they are canceled by the plant zeros, leading the open-

loop transfer function to that of the optimal estimator. Since this technique is based on a

cancellation poles-zeros, it is not applicable if there are no zeros in the right haf-plane, i.e.

for minimum phase systems, and the number of measurements is greater than or equal to

the number of control inputs.

The addition of the fictitious noise in the Kalman filter design leads to a suboptimal

LQG problem with noise increasing. The consequence is an increment in robustness prop-

erties, but on the other hand also an increment of the cost as the noise is increased. The

design of the LQG/LTR compensator is then based on a compromise between robustness

and performance. As this technique is a modification of the LQG problem, the objective

of the the LQG/LTR control problem is the minimization of the 2-norm of the closed-loop

transfer function. In this case, since the control cost and the noise ratio can assume any

values, there is not a preferred minimized performance as in the previous case, but all the

four components of Φzd
2 are minimized.

In the following a description of the framework is briefly summarized. Thereafter,

a sensitivity analysis on the design parameters is given and finally, results for the best-

robustness case are presented.

Framework

In the LQG/LTR control design the objective functional for the controller and the esti-

mator are defined as in Eq. (4.40) and (4.45). With respect to the previous case, the

design parameters can assume finite values, in particular the control cost ℓ can tend to

a small value, meaning a “cheap” control, as well as to a great value, leading again the

controller to the SGL hypothesis. The noise ratio Swf
/Sg has also a finite value and could

be chosen as a design parameter.

The LTR framework is similar to the SGL case, being both LQG controllers. The

Riccati equation for the controller is then:

A∗X + XA− 1

ℓ2
XB2B

∗
2X + C∗

2C2 = 0, (4.49)

where ℓ is a finite number and the control gain matrix defined as K = −ℓ−2B2X . Note

that in the limit ℓ → ∞, we reach the SGL hypothesis(see Sec. 4.5.1).
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The Kalman filter design is then depending on the ratio Swf
/Sg. The associated

Riccati equation reads:

AY + YA∗ −
Swf

Sg

YC∗
2C2Y + B2B

∗
2 = 0. (4.50)

The Kalman gain matrix is defined as LLTR = −Swf
/SgYC∗

2, while the output feedback

transfer function K(s) has the same structure as in Eq. (4.48. Note that in the limit

Swf
/Sg → 0 , we reach the SGL hypothesis (see Sec. 4.5.1).

Since we can vary the values of ℓ and Swf
/Sg, a parametric study on these two pa-

rameters can be performed.

Parametric study

The two parameters, the control cost ℓ and the noise ratio Swf
/Sg, can be taken in a large

range of values. A parametric study will then enable to find which combination is the

most robust and also the most affordable in terms of performances. For each case, the

investigated range for the control cost is between 10−4 and 104, while the noise ratio is

varied within 10−8 and 108.

Contour plots in Fig. 4.15 show the robustness indicator ρim∞ computed for every

Reynolds number along with the iso-lines representing the quantity ρio∞. For every case the

behavior is the same with a region of high robustness for positive values of log10(Swf
/Sg ·

ℓ2), with a local maximum, for both ρim∞ and ρio∞, obtained at intermediate values of ℓ2

and Swf
/Sg. We then choose, as design point for the LQG/LTR control, a cost weight

of ℓ = 101.75 and a noise ratio of Swf
/Sg = 10−3.5, which corresponds to the maximum

robustness to input-multiplicative and input-to-output stable perturbations.

Results for ℓ = 101.75 and Swf
/Sg = 10−3.5

In Tab. 4.2 results for the best-robustness property case are summarized. Robustness and

performances can be easily compared to the SGL case, since both control design are made

with the H2 approach. The case analyzed here presents a smaller value of ℓ than the SGL

and a bigger value of Sw, increased by the fictitious noise. These have a consequence on

performances depending on the control input, namely Φug
2 and Φuw

2 . In particular, while

the reduced cost of control leads to an increment in the performance related to the control

input, as in Φug
2 , the increment of noise acts in the opposite way, leading to a smaller value

of Φuw
2 than that of the SGL case.

The LTR technique has been introduced to increase robustness an this result is clearly

achieved as it can be observed by analyzing values of stability margins and unstructured

perturbations rejection. If compared with the previous case, in fact, the maximum dis-

turbance allowed has been increased from 50% to 250% considering a input-multiplicative
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Figure 4.15: Parametric analysis over the four different Reynolds numbers. Contours
correspond to the robustness parameter ρim∞ . Iso-lines correspond to ρio∞

Re GM+ GM− PM ρim
∞

ρio
∞

Φmg
2

Φug
2

Φmg
∞ Φug

∞ Φmw
2

Φuw
2

Φmw
∞

Φuw
∞

5500 1.54 -1.72 10.2 0.18 54.1 6.60 0.028 5.66 0.019 2493 6.60 1897 5.66
6500 1.32 -1.46 8.78 0.15 49.0 7.71 0.032 6.57 0.020 2890 7.71 2218 6.57
7500 1.18 -1.29 7.84 0.14 47.3 8.71 0.038 7.35 0.021 3336 8.71 2645 7.35
8000 1.13 -1.23 7.50 0.13 47.6 9.15 0.043 7.67 0.021 3577 9.15 2885 7.67

Table 4.2: Best robustness analysis results at different Reynolds numbers on the
LQG/LTR controller design. Gain margins are in dB and phase margin is in degrees.
All results are for Swf

/Sg = 10−3.5 and ℓ2 = 103.5
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Figure 4.16: (a) Stability threshold for an input-multiplicative perturbation on closed-loop
systems with an LQG/LTR compensator at different Reynolds numbers; (b) amplitude,
expressed in dB, of the inverse closed-loop transfer function; the amplitude is expressed
in dB while the frequency in rad/s. For both figures, black line corresponds to Re = 5500
case, red line to Re = 6500, blue line to Re = 7500 and green line to Re = 8000. Lines
with squares and circles in (b) represent |∆| and are obtained with the fixed values of σ∆

and ω∆ represented by a square and a circle in (a).

perturbation and between 15 and 20% for a input-to-output perturbation.

In Fig. 4.16(a) the stability threshold is clearly coherent with ρim∞ in Tab. 4.2, since

robustness decreases with Reynolds numbers, and the bounded region is also narrower

than in the previous case. The explanation to this result is evident by looking at the

clean shape of the amplitude of 1/
∣

∣T cl
uw

∣

∣ in Fig. 4.16(b) and the absence of other local

minima.

Summary

The loop transfer recovery is a method that modifies the LQG technique in order to

make the estimator dynamics infinitely faster than those of the controller. Under these

conditions the compensator can be considered as a linear quadratic regulator that presents

good robustness properties. These conditions are obtained with the introduction of a

fictitious noise into the system in the estimator design phase. Even though robustness

has been increased, this method presents some drawbacks related to its application in

non-minimum phase systems.
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4.5.3 H∞ control

Control design techniques previously proposed are based on the minimization of the 2-

norm of the closed-loop transfer function. The main limitation of the family of compen-

sators designed with a H2 strategy is a poor robustness to external perturbations and even

with the help of corrective methods as the LTR, the robustness problem is not completely

solved. Instead of a 2-norm approach, the optimization problem can be formulated with a

different approach, based on a ∞-norm. This design control strategy has been introduced

by Doyle et al. (1989) and succesfully, in terms of increment in robustness, applied by

Bewley and Liu (1998) since it has been related to the minimization of the worst-case of

disturbance that represents a classic engineering problem.

The H∞ technique analyzed here has the functional objective to minimize the upper

bound of the ∞-norm of the closed-loop transfer function from the control input to the

measurement noise, Φug
∞ . Therefore, even though from this strategy a good robustness is

often recovered, the H∞ control design can be considered a performance-based technique.

The solution of the control problem, formalized with a Riccati approach, is not unique

since it provides a family of stabilizing controllers that satisfy the condition of the closed-

loop transfer function bounded by a design parameter γ.

In the following, the H∞ control problem is formulated as a min-max problem and

robustness and performances results of the obtained controller are then discussed.

Framework

The formulation of the cost function, for controller and estimator, can be expressed as

a min-max problem. The objective of these problems is to find, for the controller, the

optimal control input that minimizes the effect of the worst possible disturbance and, for

the estimation problem, the measurement m such that the closed-loop transfer function

between the disturbance input and the estimation error is bounded. For both problems,

the bound of the closed-loop transfer function is expressed by the parameter γ, which acts

in opposition with the cost of the control input and the estimation error minimization, but

has the foremost role of coupling the design of controller and estimator, since it appears

in both Riccati equations.

The two cost function can be expressed as follows:

F⌋
∞ =

∫ T

0

(XC2)
∗ C2X+ ℓ2u2 − γ2w2dt, (4.51)

for the controller, and

F∞
e =

∫ T

0

E [e∗e]− γ2w2dt, (4.52)

for the estimator. Note that the state equation of the estimation error differs from that
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in Eq. (4.43). The estimated state, in fact, can be expressed as:

dXe

dt
= A∞Xe − Z∞Lm, (4.53)

where A∞ and Z∞ read as follows:

A∞ = A+
1

γ2
B2B

∗
2X + B2K+ Z∞LC2, (4.54a)

Z∞ =

(

I − 1

γ2
XY

)−1

, (4.54b)

being X and Y solutions of the Riccati equations for the controller

A∗X + XA−X
(

1

ℓ2
B2B

∗
2 −

1

γ2
B2B

∗
2

)

X + C∗
2C2 = 0, (4.55)

and for the estimator:

AY + YA∗ − Y
(

Sw

Sg

C∗
2C2 −

1

γ2
C∗

2C2

)

Y + B2B
∗
2 = 0. (4.56)

Furthermore, the solutions of equations (4.55) and (4.56) are subordinated to a condition

on the spectral radius, i.e. the maximum eigenvalue λi ∈ C, of the scalar product XY :

ρ (XY) = max
i

(|λi|) < γ2. (4.57)

The above condition has to be satisfied and imposes the lower limit of λi. The procedure

is then to fix ℓ and the ratio Sw/Sg and decrease iteratively the value of γ, until the

condition in Eq. (4.57) is violated. We eventually express the gain matrix K = −B∗
2X

and the Kalman matrix L = −YC∗
2.

The output feedback transfer function can easily be computed from the system de-

scribed in Eq. (4.53) and reads as:

K(s) = −K(sI − A∞)−1 Z∞L. (4.58)

Results

The performance and robustness analysis is carried out with different values of parameters

ℓ and Sw/Sg. In Tables 4.3 results for the most robust case are summarized. The set

of parameters has been varied to reproduce some cases of interest in order to have a

comparison with the other control cases. Among the entire set of studied cases, the

one with noise ratio and control cost fixed as in the LQG/LTR case has resulted in the

best results. Especially in terms of negative gain margin, the min-max problem seems
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Re γ GM+ GM− PM ρim
∞

ρio
∞

Φmg
2

Φug
2

Φmg
∞ Φug

∞ Φmw
2

Φuw
2

Φmw
∞

Φuw
∞

5500 2.49 0.015 -3.27 1.04 0.002 0.51 40.0 0.143 562 1.98 11486 40.0 159723 562
6500 2.67 0.014 -2.80 0.83 0.001 0.40 49.7 0.165 764 2.50 15251 49.7 234085 764
7500 2.81 0.013 -2.49 0.91 0.002 0.51 48.5 0.150 652 1.95 16248 48.5 218550 652
8000 2.87 0.012 -2.37 0.87 0.001 0.51 51.2 0.153 696 1.97 17982 51.2 145252 696

Table 4.3: Robustness analysis results at different Reynolds numbers for a H∞ controller
that targets performance. Gain margins are in dB and phase margin is in degrees. All
results are for Sw/Sg = 10−3.5 and ℓ2 = 103.5

to ameliorate this robustness indicator, but all other quantities, expressing robustness or

performances, are considerably worse than for previous cases.

In particular in Fig. 4.17(a), we remark a wide unstable area for small frequencies

and compared to other cases no advantage in robustness has been gained by using this

compensator. Reynolds dependency also plays a key role, stronger than in the LQG/SGL,

and it is evident by observing the closed-loop transfer function amplitude in Fig. 4.17(b)

that shows a more pronounced negative peak for Re = 5500 and 7500. The presence of

this peak, as for the SGL case, seems to be coherent with the positive gain margin and

the phase margin, that are worse for these last cases.

The reason why this controller fails so badly is not truly investigated. Our purpose

was to simply apply the method proposed by Bewley and Liu (1998). Our objective is

to show how the “classic” robust control strategy cannot be applied as it is, just as an

optimization of the min-max problem using the ∞-norm. In other words, our purpose

was to prove that a H∞ design does not necessarily yield a robust controller, as already

suggested by Burl (1998).

Summary

In this section, a compensator has been designed with the classical H∞ technique, intro-

duced by Doyle et al. (1989). This method provides a controller based on the minimization

of the ∞-norm of the closed-loop transfer function. Contrary to Bewley and Liu (1998),

this technique shows catastrophic results in terms of robustness. We have shown here that

the simple application of this method, if a perturbation rejection model is not included in

control design, does not automatically provide a robust compensator.

4.6 Control design targeting robustness

In order to obtain a robust controller we studied a different approach to that proposed by

Doyle et al. (1989) and applied in Bewley and Liu (1998). The strategy comes from the

H∞ control theory, but involves the application of the Small Gain Theorem (SGT) when

feedback stable perturbations act on the clsoed-loop system. The method proposed in

this section deeply differs from the previous H∞ control, since the objective is not just to
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Figure 4.17: (a) Stability threshold for an input-multiplicative perturbation on closed-loop
systems with a “classic” H∞ compensator at different Reynolds numbers; (b) amplitude,
expressed in dB, of the inverse closed-loop transfer function. For both figures, the black
line corresponds to Re = 5500 case, the red line to Re = 6500, the blue line to Re = 7500
and the green line to Re = 8000. Lines with squares and circles in (b) represent |∆| and
are obtained with the fixed values of σ∆ and ω∆ represented by a square and a circle in
(a).
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minimize the ∞-norm of the closed-loop transfer function. In this case, an unstructured

uncertainty is added in feedback to the closed-loop system so that the desired output of

the system is the input of the disturbance model, whose output is the input of the com-

pensator. Control design problem has the objective of maximize the allowed perturbation

delta with a H∞ approach, i.e. maximize the bound of ∞-norm of ∆.

The SGT, explained in Sec. 4.4, states that the condition on the perturbation model

can be satisfied with the minimization of the ∞-norm of the closed-loop transfer function

between the perturbation output and the perturbed input. This objective leads to a com-

pensator that directly targets a specific disturbance with respect to whom the closed-loop

system is led to be more robust. Here, two different models of unstructured disturbances

are considered: the input-multiplicative model and the input-to-output model. For each

control design strategy, the framework describing the design technique and results of per-

formance and robustness of the obtained compensators are given.

4.6.1 Input-multiplicative perturbation

In this case we chose as disturbance an input noise proportional to the control input, that

is now the disturbance performance zd, applied to the closed-loop system as in the system

in Fig. 4.12(a). As discussed in Sec. 4.4, the input-multiplicative perturbation represents

a disturbance in series with the system, commonly present in engineering problems. In-

creasing the rejection ability of the compensator to this kind of perturbations represents

a desired achievement in control design, as seen for the LTR technique.

From the definition of the input-multiplicative unstructured uncertainty defined by Eq.

(4.32) and schematized in Fig. 4.12(a), the controller is designed and both performances

and robustness results are analyzed.

Framework

The compensator design is based on the minimization of the ∞-norm of the closed-loop

transfer function between the disturbance model input wd and output zd. This can be

formalized with the expression of the cost function for controller and estimator as:

F∞
c =

∫ T

0

z2d − γ2w2
ddt, (4.59)

and

F∞
e =

∫ T

0

E [e∗e]− γ2w2
ddt. (4.60)

Note that the estimator state equation is the same of Eq. (4.53).
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Re γ GM+ GM− PM ρim
∞

ρio
∞

Φmg
2

Φug
2

Φmg
∞ Φug

∞ Φmw
2

Φuw
2

Φmw
∞

Φuw
∞

5500 4.37 1.79 -2.26 13.2 0.23 0.24 15.3 13.2 4.36 4.13 4382 15.3 3928 4.36
6500 5.13 1.55 -1.88 11.2 0.20 0.54 11.9 2.09 5.12 1.85 5373 11.9 11093 5.12
7500 5.75 1.39 -1.66 10.0 0.17 0.97 13.2 2.60 5.73 1.03 7164 13.2 30184 5.73
8000 6.03 1.34 -1.58 9.56 0.17 0.84 14.0 3.17 5.99 1.19 6683 14.0 15851 5.99

Table 4.4: Robustness analysis results at different Reynolds numbers for a H∞ controller
with input-multiplicative disturbance. Gain margins are in dB and phase margin is in
degrees.

The set of Riccati equations to be solved are then:

A∗X + XA−X
(

B2B
∗
2 −

1

γ2
B2B

∗
2

)

X = 0, (4.61)

for the controller, with the control gain matrix K = −B∗
2X , and:

AY + YA∗ − YC∗
2C2Y + B2B

∗
2 = 0, (4.62)

for the estimator, with the Kalman gain matrix defined as L = −YC∗
2. The two equations

have to be solved in the limit imposed by the condition of the spectral radius of the

scalar product XY , as for the standard H∞ control proposed by Doyle et al. (1989). This

condition is even more important here than in the classic robust control. In fact, looking

at the above equations we can remark how the estimator design does not directly depend

to γ unless for this condition, that has to be satisfied.

Results

Once the loop is closed we can perform the robustness and performance analysis. In

Tab. 4.4 are summarized results for the input-multiplicative perturbation case. In this

case, the most immediate result is an increasing in robustness, for stability margins and

unstructured uncertainty related to the input-multiplicative perturbation model, paid

with an increased cost in performances and a poor robustness to disturbances in series

with the closed-loop system. This result highlights the importance of directly targeting

robustness through a disturbance model. In fact, since this technique is built on a model

that rejects input-multiplicative perturbations, any other type of disturbances is penalized.

The cost payed is not only in terms of performances, but also in robustness to different

perturbations.

In Fig. 4.18(a), the stability threshold presents a region of instability at low frequen-

cies, a large band where the bound of stability oscillates around a minimum and a region

that is eventually more stable at higher frequencies. This behavior is explained by ob-

serving the closed-loop transfer function in Fig. 4.18(b). The controller based on the

maximization of the admissible input-multiplicative perturbation results on the closed-
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Figure 4.18: (a) Stability threshold for an input-multiplicative perturbation on closed-loop
systems with an input-multiplicative H∞ compensator at different Reynolds numbers; (b)
amplitude, expressed in dB, of the inverse closed-loop transfer function. For both figures,
black line corresponds to Re = 5500 case, red line Re = 6500, blue line Re = 7500 and
green line Re = 8000. Lines with squares and circles in (b) represent |∆| and are obtained
with the fixed values of σ∆ and ω∆ represented by a square and a circle in (a).

loop transfer function as a bandpass filter, with a band as large as possible. This result,

compared with the LTR case, shows how the robust control is better for a wide range

of frequencies around the natural frequency of the system, while it does not accept per-

turbations at lower or higher frequencies. This result is explained by considering that if

we use the ∞-norm to design the controller, we only act on the maximum value of the

admissible disturbance, that is actually higher than any other controller.

Summary

A controller that deals with input-multiplicative perturbations has been designed. This

kind of disturbance is really common in engineering applications. In this study, a compen-

sator has been designed by including the rejection to this perturbation in the definition

of the objective functional. Through the small gain theorem the last sentence means that

robustness to these perturbations is directly included in the definition of the objective

functional. The analysis of robustness results has shown that this novel approach of com-

pensator design provides a controller that is stable to input-multiplicative perturbations

in a wide range of frequency.
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Re γ GM+ GM− PM ρim
∞

ρio
∞

Φmg
2

Φug
2

Φmg
∞ Φug

∞ Φmw
2

Φuw
2

Φmw
∞

Φuw
∞

5500 0.016 1.92 -1.54 11.1 0.16 67.4 7.91 0.022 6.14 0.015 3864 7.91 4611 6.14
6500 0.016 0.91 -0.89 2.36 0.04 63.6 12.7 0.032 24.8 0.016 15175 12.7 81259 24.8
7500 0.032 0.31 -0.55 2.31 0.03 44.8 10.2 0.025 27.3 0.022 24173 10.2 187310 27.3
8000 0.029 0.70 -1.02 4.85 0.08 44.6 9.95 0.026 12.0 0.022 8876 9.95 42298 12.0

Table 4.5: Robustness analysis results at different Reynolds numbers for a H∞ controller
with input-to-output disturbance. Gain margins are in dB and phase margin is in degrees.

4.6.2 Input-to-output perturbation

The second case studied is an input-to-output perturbation model. This model represents

a stable disturbance in parallel with the system. Even though is less common than the

input-multiplicative uncertainty, this model is useful in this study to better understand

the robust control design technique and how the target of design is robustness to a specific

perturbation. With respect to the previous case, we consider the problem defined in Eq.

(4.36) and represented in Fig. 4.12(b).

Framework

The cost function for the controller and the estimator are the same of the previous case,

defined in Eq. (4.59) and (4.60). Here the H∞ parameter γ acts on compensator design

only through the condition on the spectral radius, as the Riccati equations are decoupled,

as shown below.

A∗X + XA−XB2B
∗
2X + C∗

2C2 = 0. (4.63)

AY + YA∗ − YC∗
2C2Y + B2B

∗
2 = 0. (4.64)

As usual, the control and estimator gain matrix are K = −B∗
2X and L = −YC∗

2, while

the compensator matrix A∞ is:

A∞ = A+ B2K+ Z∞LC2. (4.65)

Results

In Tab. 4.5 results are summarized. With respect to the input-multiplicative model, this

controller presents poor values of robustness except those corresponding to disturbances

in parallel with the closed-loop system. More generally, even performances are more costly

than the previous case and this cost is payed only to give to the closed-loop system a great

robustness only to an input-to-output perturbation.

This behavior is more evident in Fig. 4.19. The region of instability is widely bigger

because of the presence of the negative peak at ω ∼ 17rad/s, since the method based on

the SGT focused only on reduction of the bound of the corresponding modeled pertur-

bation. In this case, the compensator is optimal to sustain disturbances in parallel with
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Figure 4.19: (a) Stability threshold for a input-multiplicative perturbation on closed-loop
systems with an input-to-output H∞ compensator at different Reynolds numbers; (b)
amplitude, expressed in dB, of the inverse closed-loop transfer function. For both figures,
black line corresponds to Re = 5500 case, red line Re = 6500, blue line Re = 7500 and
green line Re = 8000. Lines with squares and circles in (b) represent |∆| and are obtained
with the fixed values of σ∆ and ω∆ represented by a square and a circle in (a).

closed-loop system, but is not robust to other type of stable perturbations.

Summary

A different type of perturbation model has been considered in the definition of the design

objective functional. The input-to-output model represents a disturbance in parallel with

the closed-loop system. This model has been used to provide a controller that rejects this

kind of perturbation. Even though this compensator shows good robustness to input-to-

output perturbations, this case has been considered to show that the choice of disturbance

rejection considered in the compensator design excludes robustness to other types of

perturbations. In fact, the controller provided in this section presents poor robustness

properties to input-multiplicative perturbations.

4.7 Unstable perturbations

The design methods analyzed in this study have been compared on their property of

robustness to stable perturbations connected to closed-loop system through an input-

multiplicative model. In particular, we designed a robust H∞ controller that directly
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Figure 4.20: Stability behavior of H2 controllers, LQG/SGL (a) and LQG/LTR (b) at
different Reynolds number. White squares represent maximum closed-loop poles with
negative real parts (stable cases). Squares in gray scale represent maximum closed-loop
poles with positive real parts (unstable). Instability intensity is represented through the
color map from light gray (weak instability) to black (strong instability). Black solid line
is the design locus, stable by definition since the plant P (s) and the compensator K(s)
are obtained at the same Reynolds number (ReP and ReK respectively).

targets robustness to this type of uncertainty. With an iterative process the smallest γ that

provides the most robust compensator in the sense of the unstructured disturbance model

used has been found. This means that in the input-multiplicative model the smallest γ

represents the bound for this kind of stable disturbance that guarantees to a closed-loop

system to remain stable. We found out that the designed input-multiplicative compensator

works well in a range of frequencies where a stable filter is applied as perturbation.

In flow control a frequent perturbation could be represented by a change of conditions,

in particular a change in Reynolds number. This disturbance is evidently unstable, if

considered as in input-multiplicative perturbation, and the SGT is violated. Nevertheless,

some considerations on robust control could be done. In order to analyze the behavior of

the studied compensator to this type of perturbation, we compare the stability analysis

conducted on the SGL and the LTR and represented in Fig. 4.20(a) and 4.20(b). We

can observe the improvement in robustness by using the LTR instead of the SGL. This

result means that after a change in conditions, the LTR framework is more robust farther

from the design point than the SGL. The white region, in fact, represents the ensemble

of conditions where the closed-loop system remains stable.

The same analysis can be done on the robust control obtained with the input-multiplicative

perturbation. The stability analysis represented in Fig. 4.21(a) shows a less robust behav-
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Figure 4.21: Stability behavior of H∞ controllers, with the input-multiplicative model for
the lowest γ (a) and for an “optimal” γ (b) at different Reynolds number. White squares
represent maximum closed-loop poles with negative real parts (stable cases). Squares
in gray scale represent maximum closed-loop poles with positive real parts (unstable).
Instability intensity is represented through the color map from light gray (weak instability)
to black (strong instability). Black solid line is the design locus, stable by definition since
the plant P (s) and the compensator K(s) are obtained at the same Reynolds number
(ReP and ReK respectively).

ior with respect to the LQG/LTR framework and, more surprisingly, also to the LQG in

SGL hypothesis. This result does not confute robustness properties found in the previous

section, since the model has been set up under the hypothesis of stable perturbations.

However, robustness properties under unstable disturbances represent an interesting field

of study.

The principle of the worst-case scenario, applied to the H∞ control, led to an iterative

procedure with the aim of finding the smallest value of γ with detriment to performances.

We then tried to relax this value for the input-multiplicative case and observe the behavior

of the resulting compensator under unstable perturbations. The obtained controller has

properties summarized in Tab. 4.4.

The stability analysis has been conducted on the obtained compensator. The compari-

son between Fig. 4.21(a) and 4.21(b) shows the benefit of increasing γ in order to improve

stability, suggesting a range of effectiveness. The main difference between the model used

to design the compensator and the perturbation related to the different Reynolds is that

the first is a stable perturbation of the closed-loop system, while the second is a pertur-

bation acting on the plant and this perturbation is unstable. Since the SGT is valid for

stable systems, the condition of application of the theorem is then no more valid and this
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Re γ GM+ GM− PM ρim
∞

ρio
∞

Φmg
2

Φug
2

Φmg
∞ Φug

∞ Φmw
2

Φuw
2

Φmw
∞

Φuw
∞

5500 4.57 1.75 -2.16 12.7 0.22 1.19 8.55 0.86 4.53 0.84 3627 8.55 3623 4.53
6500 5.62 1.50 -1.75 10.6 0.18 1.85 8.59 0.84 5.47 0.54 3617 8.59 4249 5.47
7500 6.92 1.32 -1.46 9.07 0.16 4.34 9.00 0.67 6.45 0.23 3720 9.00 5370 6.45
8000 7.08 1.27 -1.41 8.74 0.15 2.08 9.57 0.90 6.65 0.48 3942 9.57 2923 6.65

Table 4.6: Robustness analysis results at different Reynolds numbers for a H∞ controller
with input-multiplicative disturbance at “optimal” values of γ. Gain margins are in dB
and phase margin is in degrees.

explains how we cannot afford the smallest γ.
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Chapter 5

Conclusions

The main purpose of this study was to develop a closed-loop technique that could be used

in real applications. To achieve this objective two strategies have been analyzed: in the

first part of this thesis, a non-linear reduced-order model based on system identification

from TR-PIV measurements has been studied; in the second part, robustness properties

of linear closed-loop control have been improved by introducing a perturbation model in

the control-design phase.

The experimental activity described in Chapter 2 has been necessary to qualify the

cavity flow. The all set of measurements acquired gave access to a complete characteri-

zation of the flow in terms of pressure distribution, boundary layer and turbulence level.

Unsteady measurements gave the frequency information corresponding to the character-

istic oscillating behavior of the cavity flow. The fundamental frequency of oscillation has

been found about 125 Hz, after a modification of the cavity depth, in order to obtain a

more manageable bandwidth for the actuator design.

Qualification results have been used to perform a TR-PIV campaign. The objective

of this acquisition was not only to have access to mean features of the flow field, but

to produce a full data set to be used in the system identification procedure. The high

frequency sampling of 3 kHz gave full access to the oscillating-related structures as well as

smaller fluctuating eddies. The quality of post-precessed images gave a good description

of the detachment of vortex structures from the leading edge of the cavity through the

shear layer until the impact onto the downstream wall.

As explained, the TR-PIV was necessary to obtain from it an identified non-linear

reduced-order model, based on an energetic decomposition as POD modes. With this

purpose, high-frequency related features have been filtered above 150 Hz in order to keep

only dynamics related to the first oscillating harmonic. Fourier filter is not commonly

applied to PIV images and results could not be compared with any precedent work.

However, time filtering gave interesting results on how even through a non-linear process

as the eigenvalue decomposition, some features are preserved (related to the main motion)
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while others lose any physical meaning.

Time filtering eventually led to keep only the first two POD modes as basis for the

reduced-order model. Model reduction has been a central part of this study, because of

the key role assumed in the system identification technique. The choice of considering

only the first two modes, simplified the algorithm structure, allowing a deeper analysis on

the others parameters, still conserving the non-linearity of the oscillating motion. In the

perspective of closed-loop control, time filtering gave good results and can be considered as

a valid and innovative technique to be applied to PIV measurements and, more generally,

to experimental data.

The system identification technique has been studied in Chapter 3. Non-linear dynam-

ics have been the most challenging issues to deal with, since every other dynamic related

to smaller eddies and high-frequency noise have been filtered. In order to reproduce the

non-linear behavior the algorithm structure considered was the same as that obtained

from a Galerkin projection of Navier-Stokes equations onto a POD basis. A third-order

term has been added accordingly to the Stuart-Landau amplitude equation.

The coefficients of the algorithm have been determined through a least-square method

over a learning data-set and then validate on a different set of data. Some parameters have

been considered in this process, observing their influence in both phases. The experience

has shown that the number of modes considered plays against the known previous time

steps. On the other hand, even with a small amount of time trajectories, a long known

time history can produce ill-posed problems.

In general, this technique has shown poor robustness to design parameters, since even

a small change in those can produce instabilities in model prediction. Furthermore, even

if the frequency content is well reproduced, long-time prediction fails in following the non-

linear behavior. Although this method is promising and has previously shown good results

on linear or linearized dynamics, it has not be considered in this study as an affordable

choice to closed-loop control.

A different approach to achieve the purpose of a control suitable for experimental cases

has been discussed in Chapter 4. A linearized cavity control problem already studied by

Barbagallo et al. (2009) has been the subject of a robustness analysis. Different control

design strategies have been compared on performances and robustness parameters. From

a traditional LQG regulator we analyzed the increment in robustness obtained with a

LTR and the direct application of the robust control theory introduced by Doyle et al.

(1989), showing poor results.

A new approach has been proposed involving models of stable unstructured uncertain-

ties, directly included in control design. The minimization of the cost function, in terms

of H∞-norm, carries the principle of bounded perturbation expressed in the small gain

theorem. A new interpretation of such theorem has been given, since for the first time
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frequency contribution has been considered.

Including a bounded perturbation model in control design has led to important results,

in terms of robustness increment, especially with the input-multiplicative perturbation

model, even though this increment is obtained to the detriment of a cost in performances.

5.1 Perspectives

The presented study has analyzed a detailed qualification of the experimental flow from

which an identified non-linear model has been deduced as well as a numerical study on

performance and robustness properties of different control design techniques. However,

future works must be considered to continue a promising research field.

Installation of an actuator on the S19 facility

The experimental activity has been carried out with the purpose of performing real-time

closed-loop control. This purpose can be achieved with a flap installed at the leading

edge of the cavity, moving in given bandwidth of 0-150 Hz. A preliminary study has been

conducted, leading to a design of an actuator moved by a motor of maximum couple 1.5

Nm. The flap is capable of perturbing the flow on a range of ±4mm, in order to act

on velocity fluctuations. The study has been carried out at the ONERA Department of

Fundamental and Experimental Aerodynamics.

Model reduction from experimental measurements

Time filtering is to be considering an innovation on PIV post-processing to flow control.

The purpose of using TR-PIV acquisitions is not only to deduce a reduced-order model,

but also to use snapshots as sensor information in the feedback procedure. With the aim of

avoiding high frequency noise, time-filtering has revealed promising results, but a Fourier

filter is not applicable to real-time case, since the FFT must be applied to a known series

of snapshots. Preliminary studies on a Cauchy filter applied to raw snapshots have shown

the only disadvantage of introducing a delay that can be easily modeled in a reduced-order

model.

System identification technique has shown its weak points. However, this is a quite

new field in flow control applications and many paths are still not explored or need some

insight. In particular, we refer to neural networks that show great potential in statistical

learning of non-linear dynamics (Dreyfus et al., 2011).

Model of unstable Reynolds perturbations

Results obtained on robustness are the greatest results achieved in this study. Even so,

the two different models proposed only consider stable perturbations. In the last section

of Chapter 4 some considerations about unstable perturbations as the change of Reynolds

number have been considered. A possible solution to deal with these perturbations could

be the introduction of a structured uncertainty in the control design that permits to model
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Figure 5.1: An example of modeling parameter uncertainties as feedback perturbations δ1
and δ2.

not only the stable part, but also unstable modes. This model is described by Burl (1998)

and it considers the plant as a series of poles that can be separately perturbed by different

δ, as in the scheme in Fig. 5.1. These blocks are then included in the iterative process

that finds the bound for the maximum structured singular value of the resulting perturbed

closed-loop system. This should be considered as a future step to improve compensator

robustness in more real cases.
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