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Partie 1

Introduction

Dans cette introduction destinée aux mathématiciens non spécialistes, nous expliquons
dans quel contexte s’inscrivent les résultats de cette thése. Le titre annonce qu’il s’agit
d’arithmétique, ce qui n’est peut-étre pas évident a la lecture du texte. L'un des buts de
cette branche des mathématiques est ’étude des équations diophantiennes, c’est-a-dire les
équations “a coefficients entiers” dont on cherche les solutions entiéres. Un probléme for-
mulé aussi vaguement ne peut admettre de solution générale, et ’histoire de I’arithmétique
est jalonnée par les découvertes d’outils permettant d’étudier seulement certaines classes
d’équations diophantiennes. Citons deux outils fondamentaux pour 1’étude des systémes

d’équations polynomiales, c’est-a-dire de la forme

Pl(xl,...,$m):0

P (z1,...,2m) =0

ou chaque P; est un polyndéme & coefficients entiers en les variables X1,..., X,,. Afin de
simplifier le probléme, contentons-nous de travailler sur le corps Q des nombres rationnels
plutét que sur son sous-anneau Z des nombres entiers.

Galois nous enseigne que les solutions rationnelles d’un tel systéme d’équations sont
les solutions (z1,...,Ty) € Q", 00 Q désigne une cléture algébrique de Q, qui sont fixées
par Gal(Q/Q), le groupe de Galois absolu de Q qui agit sur Q. L’intérét de ce point de
vue est que, comme souvent en mathématiques, il est plus aisé d’étudier les propriétés de
solutions dont 'existence est connue a priori que de s’attaquer directement au probléme
d’existence. Plus généralement, il est naturel de voir un objet défini sur Q comme un
objet défini sur Q et muni d’une action de Gal(Q/Q). Notons toutefois que 1'utilisation de
nombres algébriques sur Q remonte & Gauss qui introduisit en 1832 (avant la publication
des résultats de Galois) 'anneau des “entiers de Gauss” Z[i] = {a +ib | a,b € Z} dans le
but de formuler la loi de réciprocité biquadratique.

Une autre approche consiste & compléter le corps Q pour une de ses valuations v.
D’aprés un théoreme d’Ostrowski, & un exposant inessentiel prés, v est soit la valuation
archimédienne usuelle, soit la valuation p-adique pour un nombre premier p. Dans le corps
complété Q, correspondant, on dispose d’outils analytiques (théoréme des valeurs intermé-
diaires, lemme de Hensel .. .) simplifiant grandement la résolution du systéme d’équations.

Afin de prendre en compte toutes ces valuations (également appelées “places”) a la fois, on



considére 'anneau des adéles

A=T[e.=rx J[ ‘@
v p premier

qui est le produit restreint de ces corps et qui contient Q comme sous-anneau, plongé dia-
gonalement. Ici on a noté Q, le complété Q, de Q pour la valuation p-adique v. L’existence
d’une solution & coeflicients rationnels implique donc 'existence d’une solution a coefficients
adéliques. Toute la difficulté consiste a aller dans 'autre sens, c’est-a-dire & déterminer les
obstructions “globales” controélant I'existence d’une solution rationnelle lorsque I’on suppose
I’existence d’une solution adélique. Par exemple le théoréme de Hasse-Minkowski implique
que dans le cas d’une seule équation quadratique, il n’y a pas de telle obstruction. On peut
en déduire le théoréme de Legendre affirmant qu’un entier est somme de trois carrés si et
seulement si il n’est pas de la forme 4%(8b + 7) pour des entiers a et b.

Outre ces outils fondamentaux, la notion récurrente dans cette thése est celle de re-
présentation automorphe, qui reformule et généralise celle de forme modulaire cuspidale

propre pour les opérateurs de Hecke.

1.1 Formes modulaires

Soit H = {z € C | Im(z) > 0} le demi-plan de Poincaré. Le groupe d’automorphismes de
cette courbe complexe s’identifie & PSLa(R) = SLa(R)/{+£1} via Paction définie par

a b az+b a b
<c d>'z_cz+d pour <c d)ESLg(R) et z € H.

Soit I' = SLy(Z) ; il s’agit d’un sous-groupe discret de SLa(R). Le quotient I'\'H a attiré
lattention des mathématiciens car il parameétre les courbes elliptiques (définies analyti-
quement), via ’application qui & z € H associe la courbe elliptique C/(Z @ zZ). Nous ne

détaillerons pas davantage ce point de vue.

Definition 1.1.0.1. Soit k un entier. On dit qu’une fonction holomorphe f : H — C est

une forme modulaire de poids k si :

e Pour tout <CCL Z) elettoutzeH, onaf <gjig> = (cz+d)*f(2). En choisissant

(Z Z) = <(1) i) on constate que f est fonction de q = e*™*, c’est-a-dire qu’il

existe une unique fonction holomorphe F : D(0,1) \ {0} — C telle que f(z) = F(q).

e La fonction F se prolonge en une fonction holomorphe sur D(0,1). Cela revient a
demander que f soit bornée sur la bande {z € C | |Re(z)| < 1/2 et Im(z) > 1}.

On note My(T") le C-espace vectoriel des formes modulaires de poids k.

Etant donnée une fonction holomorphe F sur D(0, 1), la fonction f : 2z — F(e?7%) est

une forme modulaire de poids k si et seulement si pour tout z € H on a f(—1/z) = 2F f(2).
0

11 -1
Cela résulte du fait que le groupe I' est engendré par (0 1) et < 10 ) Dans cette
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définition il peut étre utile de remplacer I' par un sous-groupe convenable, mais nous
ne détaillerons pas les complications que cela entraine. En interprétant My (I') comme
(un sous-espace de) I’espace vectoriel complexe des sections globales d’'un fibré en droites
holomorphe sur une surface de Riemann compacte, on obtient que My (T') est de dimension
finie.

On peut aller plus loin et expliciter les espaces My (T'). Pour k > 2, la série d’Eisenstein

1
Gp(z) = Z CERDL

(m,n)€Z2~{(0,0)}

converge uniformément sur tout compact de H, et il est formel de vérifier qu’il s’agit d’une
forme modulaire de poids k, non nulle si et seulement si k est pair. De plus il est possible
d’expliciter les coefficients de G, vue comme fonction de ¢ = €*™* dans son développement
en série entiére autour de 0. Il est remarquable qu’a un scalaire prés, ces coefficients sont
entiers. La théorie des séries d’Eisenstein permet donc de produire des formes modulaires
tout & fait explicites.

D’autre part, la formule de Riemann-Roch ou la formule des traces permettent de

calculer la dimension de chaque My (T"). Dans notre cas (I' = SLa(Z)) on a formellement :

' 1
Zk:dlmc (My(I)) ¢ = (1 —t4)(1 —t9)

ce qui traduit le fait que la C-algébre commutative graduée @, M (I') est librement en-
gendrée par G4 et Gg.

Cette approche concréte permet de démontrer des identités miraculeuses qui comptent
le nombre de solutions de certaines équations diophantiennes. Donnons un exemple simple

avec la fonction
rqy(m) = card {(z1, ..., 24) ez |22+ 422 =m}

qui compte le nombre de représentations de ’entier m comme somme de quatre carrés.

Introduisons la série génératrice

04(2) = Z ra(m)g™ = (Z q”2>

m>0 nez

2imz

oll ¢ = e“™*  qui définit une fonction holomorphe sur H. Il est clair que 04(z + 1) = 04(z2)

et grace a la formule sommatoire de Poisson on a en outre
04(—1/42) = —42%04(2)

ce qui implique que 64 est une forme modulaire de poids 2 pour le sous-groupe

r1(4)={(‘2 Z)ef,azdzl (mod 4) et ¢ =0 (mod4)}



de I'. D’autre part I'espace Ma(I'1(4)) est de dimension 2 et la comparaison de 64 avec des

séries d’Eisenstein permet de démontrer la formule de Jacobi :

8> d si m est impair,
dlm
ra(m) = 24 > d sim est pair.
dlm
d impair

Les formes modulaires, dont la définition a plutét une saveur analytique, ont donc des
liens avec ’arithmétique. Loin d’étre anecdotique, la méthode ci-dessus admet une vaste
généralisation (correspondance théta) qui fait I'objet de recherches actuelles, mais dont il

ne sera pas question dans cette theése.

1.2 Formes automorphes et représentations galoisiennes

En 1937 Hecke définit, pour chaque nombre premier p, un opérateur Tj, : My(I') — M (T").
Ces opérateurs commutent entre eux et ont la propriété d’étre auto-adjoints pour un pro-
duit scalaire hermitien convenable. Il est donc naturel de vouloir diagonaliser simultané-
ment ces opérateurs. Cela suggére que les formes modulaires propres pour les opérateurs
de Hecke (et s’annulant en ¢ = 0, on dit d’une telle forme qu’elle est cuspidale) sont des
vecteurs bien particuliers dans des représentations irréductibles d’'un groupe adélique, qui
se trouve étre GLa(A). Une représentation irréductible convenable de GLg(A) se décom-
pose en un produit tensoriel restreint ®; m, ol T, est une représentation irréductible de
GL2(Q,), ot v parcourt I’ensemble des valuations de Q. Cette décomposition généralise
le fait suivant : si G; et G2 sont deux groupes finis, les représentations irréductibles de
G1 x G4 sont exactement les produits tensoriels de représentations irréductibles de G et
G2. Les représentations de GL2(A) correspondant aux formes modulaires sont celles qui
interviennent dans I'espace de formes automorphes L?(GL2(Q)\GL2(A)) et telles que pour
la valuation archimédienne notée v, la représentation m, du groupe GLo(R) est “algébrique
et réguliére”. Ce point de vue plus abstrait a au moins deux avantages : il permet d’utiliser
les techniques de la théorie des représentations, et il se généralise & d’autres groupes que
GLg pour lesquels il n’y a pas toujours d’analogues aux formes modulaires.

Les opérateurs de Hecke entrent dans la description d’un lien profond entre formes
modulaires (ou plus généralement, représentations automorphes) et représentations galoi-
siennes. Afin de présenter ces derniéres, revenons & un systéme d’équations polynomiales
a coeflicients rationnels. Les solutions complexes d’un tel systéme d’équations forment une
variété complexe, qui posséde éventuellement des singularités. On est habitué, pour étudier
la topologie d’une telle variété, a considérer ses groupes de cohomologie. On obtient ainsi
des invariants simples du systéme d’équations originel. Néanmoins le lien entre les solu-
tions rationnelles du systéme et ces invariants n’est pas évident, de plus ces considérations
“oublient” que le systéme de départ est & coeflicients rationnels : on doit donc s’attendre a
une perte d’information importante. Grace a la géométrie algébrique, on peut affiner cette
construction. Le systéme d’équations définit une variété algébrique X définie sur Q, que

I’on voit comme une variété algébrique Xz définie sur Q munie d’une action de Gal(Q/Q).
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Pour tout nombre premier ¢, on peut considérer les groupes de cohomologie étale f-adique
Hét(X@, Qy) : ce sont des Qg-espaces vectoriels de dimension finie munis d’une action
continue et linéaire de Gal(Q/Q), c’est-a-dire des représentations galoisiennes f-adiques.
Celles-ci “linéarisent” la variété algébrique X, et on peut espérer que ces invariants sont
suffisamment fins pour permettre de retrouver des informations de nature arithmétique sur
le systéme de départ.

En 1967, dans une lettre adressée & Weil, Langlands imagine un lien entre certaines
représentations automorphes et les représentations galoisiennes se factorisant par le groupe
de Galois d’une extension finie de Q (on parle de représentation d’Artin), dans 'espoir
d’aboutir a des lois de réciprocité non-abéliennes, en termes des coefficients des formes
automorphes. Plus précisément, il demande si & chaque telle représentation galoisienne en
dimension n il est possible d’associer une représentation automorphe de GLj, (A), selon une
“recette” explicite.

L’année suivante Deligne suit le chemin inverse en associant & tout forme modulaire
de poids k > 2, cuspidale et propre pour les opérateurs de Hecke une représentation
galoisienne f-adique de dimension 2, caractérisée par les traces des Frobenius en p pour
tout nombre premier p # ¢, données par les valeurs propres pour les opérateurs T},. Le cadre
est quelque peu différent de celui de la question posée par Langlands puisqu’aucune de ces
représentations n’est d’Artin. Le cas du poids k& = 1, correspondant aux représentations
d’Artin, sera traité en 1974 par Deligne et Serre, en utilisant le résultat de Deligne.

Langlands et Tunnell démontrent un énoncé dans le sens de la question de Langlands
en 1980, en utilisant le changement de base pour le groupe GLs. Il s’agit de représenta-
tions d’Artin en dimension 2, d’images résolubles. Les travaux de Wiles et Taylor-Wiles
en 1995 démontrent pour la premiére fois un cas non résoluble. Soulignons qu’il s’agit de
représentations galoisiennes qui ne sont pas d’Artin. Plus précisément, ils établissent le
cas semistable de la conjecture de Taniyama-Shimura, qui affirme que la représentation
galoisienne de dimension 2 associée & une courbe elliptique provient d’une forme modulaire
de poids 2, cuspidale et propre pour les opérateurs de Hecke. Grace aux travaux de Weil,
Hellegouarch, Frey, Serre et Ribet, cela entraine le célébre théoréme de Fermat. Remar-
quons qu’ici encore, la toute derniére étape de la démonstration repose sur la connaissance
concréte des formes modulaires : le fait qu’il n’y a pas de forme modulaire cuspidale non
nulle en poids 2 et niveau 2 permet de conclure a ’absurdité de 'existence d’un triplet de
Fermat.

A la suite de cette percée, la correspondance de Langlands a connu des avancées im-
portantes dans les deux sens, notamment la preuve de la correspondance de Langlands
locale pour les groupes linéaires (Henniart et Harris-Taylor en 2001), la construction des
représentations galoisiennes f-adiques dans de nombreux cas (Chenevier, Clozel, Harris,
Kottwitz, Labesse, Shin, Taylor, ...), et trés récemment de nombreux cas d’automorphie
potentielle généralisant les travaux de Wiles et Taylor-Wiles (Barnet-Lamb-Gee-Geraghty-
Taylor, utilisant notamment des constructions de Kisin, et Patrikis-Taylor).

Il faut souligner que tous ces résultats concernent les représentations automorphes al-

gébriques et réguliéres ou “quasi-régulieres” aux places archimédiennes, tandis que le pro-



gramme de Langlands se veut plus général. Néanmoins les représentations automorphes
qui ne sont pas algébriques aux places archimédiennes ne correspondent pas conjecturale-
ment a des objets de nature arithmétique comme les représentations galoisiennes f-adiques

considérées ci-dessus.

1.3 Reésultats obtenus dans cette thése

Nous proposons deux applications arithmétiques des travaux récents de James Arthur sur
la classification endoscopique du spectre automorphe discret des groupes symplectiques et
orthogonaux.

La premiére consiste & 6ter une hypothése d’irréductibilité dans un résultat de Richard
Taylor décrivant I'image des conjugaisons complexes par les représentations galoisiennes
p-adiques associées aux représentations automorphes cuspidales algébriques réguliéres es-
sentiellement autoduales pour le groupe GLay 1 sur un corps de nombres totalement réel.
Cet énoncé peut étre vu comme une partie de la compatibilité entre correspondances de
Langlands locale et globale aux places archimédiennes, 1’autre partie consistant & décrire
les poids de Hodge-Tate de la représentation galoisienne en fonction des paramétres de Lan-
glands aux places archimédiennes. Nous étendons également ce résultat au cas de GLoy,
sous une hypothése de parité du caractére multiplicatif. Nous utilisons un résultat de défor-
mation p-adique de représentations automorphes. Plus précisément, nous montrons 1’abon-
dance de points correspondant a des représentations galoisiennes (quasi-)irréductibles sur
les variétés de Hecke pour les groupes symplectiques et orthogonaux pairs. La classification
d’Arthur est utilisée a la fois pour définir les représentations galoisiennes et pour transférer
des représentations automorphes autoduales (pas nécessairement cuspidales) de groupes
linéaires aux groupes symplectiques et orthogonaux.

La deuxiéme application concerne le calcul explicite de dimensions d’espaces de formes
automorphes ou modulaires. Notre contribution principale est un algorithme calculant les
intégrales orbitales aux éléments de torsion des groupes classiques p-adiques non ramifiés,
pour 'unité de ’algébre de Hecke non ramifiée. Cela permet le calcul du co6té géométrique
de la formule des traces d’Arthur, et donc celui de la caractéristique d’Euler-Poincaré du
spectre discret en niveau trivial. La classification d’Arthur permet 'analyse fine de cette ca-
ractéristique d’Euler, jusqu’a en déduire les dimensions des espaces de formes automorphes.
De 1a il n’est pas difficile d’apporter une réponse & un probléme plus classique : déterminer

les dimensions des espaces de formes modulaires de Siegel a valeurs vectorielles.



Partie 2

Eigenvarieties for classical groups and complex conjugations
in Galois representations

2.1 Introduction

Let p be a prime. Let us choose once and for all algebraic closures Q, @p, C and embeddings
Lp Q= @p, loo : Q = C. Let F be a totally real number field. A regular, L-algebraic,
essentially self-dual, cuspidal (RLAESDC) representation of GL,,(Ar) is a cuspidal auto-
morphic representation m together with an algebraic character 7| - |7 of Ax/F* (n being

an Artin character, and ¢ an integer) such that
o 1V ~n|det|?®m,

e For any real place v of F, LL(my)|lwe = @; (z+— 2%iz%i) where LL is the local
Langlands correspondence, W¢ ~ C* is the Weil group of C, and a,;, b,; are
integers and a,; # a, j if 1 # j.

By definition, 7 is regular, L-algebraic, essentially self-dual, cuspidal (RLAESDC) if and
only if 7 @ | det |(»~1/2 is regular, algebraic (in the sense of Clozel), essentially self-dual,
cuspidal (RAESDC). The latter is the notion of “algebraic” usually found in the liter-
ature, and is called “C-algebraic” in | |. Given a RLAESDC representation 7 of
GL,(AF), there is (Theorem 2.4.1.2) a unique continuous, semisimple Galois represent-
ation p,, ... (7) : Gp — GLy,(Q,) such that p,, .. () is unramified at any finite place v of
F not lying above p for which 7, is unramified, and toot,, Iy (pLMOO (W)(Frobv)) is equal
to the trace of the Satake parameter of 7, (contained in this assertion is the fact that this
trace is algebraic over Q). It is conjectured that for any real place v of F, if ¢, € G
is the conjugacy class of complex conjugations associated with v, the conjugacy class of
Prp.ioe (T)(Cy) is determined by LL(m,) (see | |[Lemma 2.3.2| for the case of an arbitrary
reductive group). In the present case, by Clozel’s purity lemma and by regularity, £L(m,)
is completely determined by its restriction to W, and since det (pLP’LC>o (7r)) is known, the

determination of p,, .. (7)(c,) amounts to the following

Conjecture. Under the above hypotheses, | Tr (p, .. (7)(cy)) | < 1.

There are several cases for which this is known. By [Pat] for v an infinite place of F the
value of n,(—1) € {£1} does not depend on v, and we denote the common value 7(—1).

When 7(—1)(=1)? = —1 (this happens only if n is even, and by | | this means
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that p,, ... (7) together with the character p,, .. (7| -|?) = (7 orec)cyclo?, is “symplectic”),
Prpioe (T)(Cy) is conjugate to —p,, ... (7)(cy), so the trace is obviously zero.

In | |, Richard Taylor proves the following

Theorem (Taylor). Let F' be a totally real number field, n > 1 an integer. Let w be a reg-
ular, L-algebraic, essentially self-dual, cuspidal automorphic representation of GLan41/F.
Assume that the attached Galois representation p,, .. (7) : Gp — GLgnH(@p) 18 irredu-
cible. Then for any real place v of I,

Tr (puy 000 (7)(c0)) = £1.

Although one expects p,,,... (7) to be always irreducible, this is not known in general.
However it is known when n < 2 by [C(], and for arbitrary n but only for p in a set of
positive Dirichlet density by [P1].

In this paper, the following cases are proved:

Theorem A (Theorem 2.6.3.4). Let n > 2, F a totally real number field, © a requ-
lar, L-algebraic, essentially self-dual, cuspidal representation of GL,(AfR), such that " ~
((n] - |7) o det) ® w, where n is an Artin character and q an integer. Suppose that one of

the following conditions holds
1. n is odd.
2. m is even, q is even, and Nso(—1) = 1.
Then for any complex conjugation ¢ € G, |Tr(p,, ... (7)(c))| < 1.

This is achieved thanks to the result of Taylor, Arthur’s endoscopic transfer between
twisted general linear groups and symplectic or orthogonal groups, and using eigenvarieties
for these groups. Let us describe the natural strategy that one might consider to prove the
odd-dimensional case using these tools, to explain why it fails and how a detour through
the even-dimensional case allows to conclude.

Let m be a RLAESDC representation of GLg,+1(Ap). Up to a twist by an algeb-
raic character 7 is self-dual and has trivial central character. Conjecturally, there should
be an associated self-dual Langlands parameter ¢, : L — GLg,41(C) where L is the
conjectural Langlands group. Up to conjugation, ¢, takes values in SOgy,4+1(C), and by
functoriality there should be a discrete automorphic representation II of Sp,,(Ap) such
that LL(I1,) is equal to LL(7,) via the inclusion SOg,11(C) < GLg,+1(C) for any place
of I which is either archimedean or such that 7w, is unramified. Arthur’s results in his
book | | imply that this (in fact, much more) holds. To construct p-adic families of
automorphic representations (i.e. eigenvarieties) containing II, it is preferable to work with
a group which is compact at the real places of F', and work with representations having
Iwahori-invariants at the p-adic places. A suitable solvable base change allows to assume
that [F : Q] is even and that m, has Iwahori-invariants for v|p. The last chapter of | |
will allow to “transfer” m to an automorphic representation II of G, the inner form of

Sps,, which is split at the finite places and compact at the real places of F. By | |

11



(which generalizes | |), the eigenvariety 2~ for G is available. Thanks to | ],
one can associate p-adic Galois representations p,, . (-) to automorphic representations
of G, yielding a family of Galois representations on 2", that is to say a continuous map
T : G — O(Z") which specializes to Tr (p,, ... (-)) at the points of 2" corresponding to
automorphic representations of G(Ag). One can then hope to prove a result similar to
[ , Lemma 3.3|, i.e. show that one can “deform” IT (on .2”) to reach a point correspond-
ing to an automorphic representation II' whose Galois representation is irreducible (even
when restricted to the decomposition group of a p-adic place of F'). Since p,, . (II') comes
from an automorphic representation 7’ of GLoy,1+1, 7' is necessarily cuspidal and satisfies
the hypotheses of Taylor’s theorem. Since T'(¢,) is locally constant on 2", we would be
done.

Unfortunately, it does not appear to be possible to reach a representation II" whose
Galois representation is irreducible by using local arguments on the eigenvariety. However
we will prove the following, which includes the case of some even-dimensional special

orthogonal groups as it will be needed later:

Theorem B (Theorem 2.4.2.2, Theorem 2.5.0.3). Let G be an inner form of Spy, or SO4p,
over a totally real number field, compact at the real places and split at the p-adic ones. Let
IT be an irreducible automorphic representation of G(Ap) having Iwahori invariants at all
the places of F' above p, and having invariants under an open subgroup U of G(Ag’)f). Let
Prpoe (II) denote the p-adic representation of the absolute Galois group Gr of F' associated
with IT and embeddings , : Q= @p, loo : Q < C. Let N be an integer. There exists an
automorphic representation ' of G(Ap) such that:

o II' is unramified at the places above p, and has invariants under U ;

o The restriction of p,,..,(II') to the decomposition group at any place above p is either
irreducible or the sum of an Artin character and an irreducible representation of

dimension 2n (the latter occurring only in the symplectic case);

o Forall g in G, Te(pyy..(IV)(9)) = Tr(py, ... (I)(g)) mod pV.

The possible presence of an Artin character (in the case of inner forms of Sp,,,) comes
from the fact that the “standard” representation of SOg2,,+1(C) in GLg,+1(C) is not minus-
cule: the set of characters of a torus T'(C) of SO2y,4+1(C) in this representation has two
orbits under the Weyl group, one of which contains only the trivial character. The key
fact allowing to prove the above theorem is that classical points on the eigenvariety for
G correspond to automorphic representations IT of G(Ap) (say, unramified at the p-adic
places) and a refinement of each II,, v|p, that is to say a particular element in 7'(C) in the
conjugacy class of the Satake parameter of II,. The variation of the crystalline Frobenius
of i, .10 (+) on the eigenvariety with respect to the weight and the freedom to change the
refinement (by the action of the Weyl group) are at the heart of the proof of Theorem B.

Although the strategy outlined above fails, Theorem A can be deduced from Theorem

B. Indeed the precise description of the discrete automorphic spectrum of symplectic and
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orthogonal groups by Arthur shows that formal sums of distinct cuspidal self-dual repres-
entations of general linear groups “contribute” to this spectrum. The even-dimensional case
in Theorem A will be proved by transferring « H 7, where 7, g are regular, L-algebraic,
self-dual, cuspidal representations of GLa,(AFr) (resp. GL3(Afr)) with distinct weights at
any real place of I, to an automorphic representation II of an inner form G of Spy,, o/F.
Since pu,,i00 () © Py (To) does not contain any Artin character (the zero Hodge-Tate
weights come from p,, .. (), which is known to be irreducible), for big enough N any
representation IT' as in B has an irreducible Galois representation.

To treat the original case of a regular, L-algebraic, self-dual, cuspidal representation of
GL2j,4+1(Ar) having trivial central character, we appeal to Theorem B for special ortho-
gonal groups. For example, if n is odd, wHmy, where mq is the trivial character of A;, JF*,
contributes to the automorphic spectrum of G, which is now the special orthogonal group
of a quadratic form on F?"*2 which is definite at the real places and split at the finite
places of F'. Note that w H 7y is not regular: the zero weight appears twice at each real
place of F. However the Langlands parameters of representations of the compact group

SO2,,42(R) are of the form
n+1

P mdjye (z o (z/i)ki>
=1

when composed with SOg,42(C) < GLa,42(C), with k&1 > ... > k,41 > 0. Moreover
LL ((mBmg)y) is of the above form, with k11 = 0. The rest of the proof is identical to
the even-dimensional case.

This fact also shows that some non-reqular, L-algebraic, self-dual, cuspidal represent-
ations of GLa, (Ar) contribute to the automorphic spectrum of G. Consequently we can
also extend Taylor’s result to the Galois representations associated with these slightly non-
regular automorphic representations. These Galois representations were shown to exist by
Wushi Goldring | ].

We now fix some notations for the rest of the article. The valuation v, of @p is the one
sending p to 1, and | - | will denote the norm p~() All the number fields in the paper
will sit inside Q. We have chosen arbitrary embeddings lp Q= @p, oo : Q = C. In fact,
the constructions will only depend on the identification between the algebraic closures of
Qin @p and C (informally, ¢,.3}). Observe that the choice of a p-adic place v of a number
field F' and of an embedding F, — @p is equivalent, via ¢,, to the choice of an embedding
F < Q. The same holds for the infinite places and too. Thus if F is totally real, LpLgol
defines a bijection between the set of infinite places of F' and the set of p-adic places v of
F together with an embedding F,, — @p. The eigenvarieties will be rigid analytic spaces
(in the sense of Tate). If 2" is a rigid analytic space over a finite extension E of Q,, | Z|

will denote its points.

2.2 Assumptions on forthcoming results of Arthur

As the results of this paper rely on | |[Theorem 9.5.3] (the analogue of | , Theorem

1.5.2] in the case of inner forms of quasi-split classical groups), whose proof will only be
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given in [Art], we have stated some properties as assumptions: Assumptions 2.4.1.1, 2.6.1.2,
2.6.2.2 and 2.6.4.1. These will all be consequences of the main global theorem of [Art],
which will make more precise the statement of | |[Theorem 9.5.3].

The reason | |[Theorem 9.5.3] is not precisely stated is that at present it is not
known what global data should play the role of Whittaker data in the case of inner forms of
quasisplit groups. These data are needed to normalize the local Langlands correspondence,
via the normalization of endoscopic transfer factors. There is a satisfactory definition in
the local case: rigid inner forms as defined in [[<al]. A global analogue is necessary to
formulate | |[Theorem 9.5.3] precisely.

A subsequent version of this paper will have the assumptions replaced by actual pro-

positions or lemmas.

2.3 The eigenvariety for definite symplectic groups

In this section we recall the main result of | | in our particular case (existence of the
eigenvariety for symplectic groups), and show that the points corresponding to unramified,
“completely refinable” automorphic forms, with weight far from the walls, are “dense” in

this eigenvariety.

2.3.1 The eigenvariety

2.3.1.1 Symplectic groups compact at the archimedean places

Let F' be a totally real number field of even degree over Q, and let D be a quaternion
algebra over F', unramified at all the finite places of F' (F, @ p D ~ My(F,)), and definite
at all the real places of F'. Such a D exists thanks to the exact sequence relation the
Brauer groups of F' and the F,. Let n be a positive integer, and let G be the algebraic
group over I’ defined by the equation M*M =1, for M € My(D), where (M*), ; = M7,
and -* denotes conjugation in D.

Then G (F ®g R) is a compact Lie group, and for all finite places v of F', G xp F, ~
SPan/Fo.

Fix a prime p. We will apply the results of | | to the group G’ = Reng. Let E

be a finite and Galois extension of Q,, containing all the F;, (v over p).

2.3.1.2 The Atkin-Lehner algebra

The algebraic group G’ xg Q, = Hv‘pG xq Fy, (where v runs over the places of F)
is isomorphic to Hv|p Resg“;szn /F,, which is quasi-split but not split in general. The

algebraic group Sp,,, is defined over Z by the equation ‘M JM = J in My,, where J =
0 1

<_?] JO"> and J, = . We define its algebraic subgroups T,, B,, B,,
n

1 0
N,, N, of diagonal, upper triangular, lower triangular, unipotent upper triangular, and

unipotent lower triangular matrices of Resg; Spon/Fyv, and let T =[], Ty, B =[], Bv,

v|p
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and so on. In | , 2.4], only the action of the maximal split torus of G’ xg @, is
considered. For our purpose, we will need to extend this and consider the action of a
maximal (non-split in general) torus, that is T, instead of a maximal split torus S C T.
The results in | | are easily extended to this bigger torus, essentially because T(Q,)/
S(Qp) is compact. Moreover, we let I,, be the compact subgroup of Sp,,, (O,) consisting
of matrices with invertible diagonal elements and elements of positive valuation below

the diagonal. Finally, following Loeffler’s notation, we let Gy = [],, L. It is an Iwahori

vlp
sugroup of G'(Q,) having an Iwahori decomposition: Gy ~ NoTo Ny where xg = *(Q,)NGy.

For each place v of F' above p, let us choose a uniformizer w, of F,. Let X, be the
subgroup of Sps,, () consisting of diagonal matrices whose diagonal elements are powers

of w,, i.e. matrices of the form

-7

Wy

Let ;F be the submonoid of ¥, whose elements satisfy r; < ... <7, <0, and X" the
one whose elements satisfy r; < ... <r, < 0. Naturally, we set > = Hv|p >y, and similarly
for ¥ and X,

The Atkin-Lehner algebra 7—[;‘ is defined as the subalgebra of the Hecke-Iwahori algebra
H(Go\G'(Qp)/Go) (over Q) generated by the characteristic functions [GouGo), for u € X.
Let H,, be the subalgebra of H(Go\G'(Qp)/Go) generated by the characteristic functions
[GouGyp] and their inverses, for u € T (in | |, a presentation of the Hecke-Iwahori
algebra is given, which shows that [GouGyp] is invertible if p is invertible in the ring of
coefficients).

If SP is a finite set of finite places of F not containing those over p, let #° be the Hecke
algebra (over Q) /

QR  H(G(Or)\G(F.)/G(OF,))
wESPUS,USeo
where S, denotes the set of places above *. This Hecke algebra has unit e®. Let ’Hg be a
commutative subalgebra of @), cq» H(G(Fy)), with unit egp.
Finally, we let H" = H.,l @ Hsr ® HY, H=H,@Hsr @H® and e = e, ® egr @ €.

2.3.1.3 p-adic automorphic forms

The construction in | | depends on the choice of a parabolic subgroup P of G’ and
a representation V of a compact subgroup of the Levi quotient M of P. The parabolic
subgroup we consider here is the Borel subgroup B, and thus, using Loeffler’s notation,
T = M is a maximal (non-split in general) torus contained in B. The representation V is

taken to be trivial.
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The weight space # is the rigid space (over E, but it is well-defined over Q) paramet-
n
rizing locally Qp-analytic (equivalently, continuous) characters of Tj =~ <Hv|p OUX) . As

1+ @, O, is isomorphic to (ppe N F) X ZLF“:QP ], W is the product of an open polydisc of
dimension n[F : Q] and a rigid space finite over E.

The construction in | | defines the k-analytic ((Gj)r>0 being a filtration of Gj)
parabolic induction from Tj to Gy of the “universal character” x : To — O(#')*, denoted by
C(% , k) (k big enough such that y is k-analytic on the open affinoid %), which interpolates
p-adically the restriction to G'(Q)) of algebraic representations of G’ (@p). From there
one can define the spaces M(e, %, k) (| , Definition 3.7.1]) of p-adic automorphic
forms (or overconvergent automorphic forms, by analogy with the rigid-geometric case of
modular forms) above an open affinoid or a point % of # which are k-analytic and fixed
by the idempotent e. This space has an action of H*. By | , Corollary 3.7.3|, when
considering p-adic automorphic forms which are eigenvectors for [GouGy] for some u € X+
and for a non-zero eigenvalue (“finite slope” p-adic eigenforms), one can forget about k,

and we will do so in the sequel.

2.3.1.4 Existence and properties of the eigenvariety

We choose the element

— v c E-H—
n oy

n
w
v v

Theorem 2.3.1.1. There exists a reduced rigid space 2 over E, together with an E-
algebra morphism W : HT — O(Z)* and a morphism of rigid spaces w : X — W such
that:

1. The morphism (w, ¥([GonGo])™') : 27 = W x Gy, is finite
2. For each point z of 2, V@ w': HT ®F Ow(x) = Oz 15 surjective

3. For every finite extension E'/E, Z (E') is in bijection with the finite slope systems
of eigenvalues of Ht acting on the space of “overconvergent” automorphic forms, via

evaluation of the image of ¥ at a given point.

Moreover, for any point x € | 2|, there is an arbitrarily small open affinoid ¥V containing
x and an open affinoid % of W such that ¥ C w=Y(¥), the morphism w|y : ¥V — U is

finite, and surjective when restricted to any irreducible component of V.

Proof. This is | , Theorems 3.11.2 and 3.12.3|, except for the last assertion. To prove
it, we need to go back to the construction of the eigenvariety in | |. Buzzard begins

by constructing the Fredholm hypersurface 2 (encoding only the value of ¥([GonGy))),
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together with a flat morphism 2 — #, before defining the finite morphism 2" — %. By
[ , Theorem 4.6], Z can be admissibly covered by its open affinoids ¥y such that w
restricted to 7 induces a finite, surjective morphism to an open affinoid % of #', and %
is a connected component of the pullback of . We can assume that % is connected, and
hence irreducible, since # is normal. The morphism ¥ — % is both open (since it is flat:
[ , Corollary 7.2]) and closed (since it is finite), so that any irreducible component of
%y is mapped onto /. This can be seen more naturally by observing that the irreducible
components of ¥ are also Fredholm hypersurfaces, by | , Theorem 4.3.2].

By | , Proposition 6.4.2], if #" denotes the pullback to 2" of ¥}, each irreducible
component of ¥ is mapped onto an irreducible component of % (more precisely, this is a
consequence of | , Lemme 6.2.10]). To conclude, we only need to show that if x € ¥,
up to restricting %, the connected component of ¥ containing x can be arbitrarily small.

This is a consequence of the following lemma. O

Lemma 2.3.1.2. Let f : 21 — 25 be a finite morphism of rigid analytic spaces. Then
the connected components of f~H(U), for U admissible open of 25, form a basis for the

canonical topology on Z7.

Proof. 1t is enough to consider the case 27 = SpAi1, Z2 = SpAs. Let 1 be a maximal

ideal of A;. Then f=! ({f(x1)}) = {z1,...,7m}. We choose generators t1,...,t, of f(z1),
and r{” r)
Vs

K3

{ye 2 |tj(y)] > p*N}j  is an admissible covering of the admissible open 23\ {f(z)}
of Z5. Let Vs be the admissible open {:L’ € 27 | Vi, 3k, |r,(j) (x)| > p‘M}, which is a finite

union of open affinoids, hence quasi-compact. Consequently, the admissible open sets

of z;. Using the maximum modulus principle, it is easily seen that ; y :=

Uin = Vunf Q)

_ {1‘ e 21 | Vi, 3k, \r](:)(xﬂ >p~M and |fh(tj)($)| ZP_N}].N

form an admissible covering of V). Therefore there is an N big enough so that
T
Vir=J Ujn
j=1

which implies that

T yenliwl<p '} c U{a: e 2 | vk, [r? (@) gp*M}

(2

and when M goes to infinity, the right hand side is the disjoint union of arbitrarily small
affinoid neighbourhoods of the z;. O

We define the algebraic points of #'(E) to be the ones of the form
(zv,i)v,i = H (o) (H xﬁ:){mi>
v,0 =1

where k, ,; are integers, and such a point is called dominant if ky 51 > kygo > ...
kv,a,n > 0.

v
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Recall that a set S C | 2] is said to accumulate at a point z € | 27| if x has a basis of

affinoid neighbourhoods in which S is Zariski dense.

Proposition 2.3.1.3. Let (¢,), be a finite family of linear forms on RA where A is
the set of triples (v,o,i) for v a place of F' above p, 0 : F, — E and 1 < i < n,
and let (c;), be a family of elements in R>g. Assume that the open affine cone C =
{y e R4 | Vr, ér(y) > cr} 1s nonempty. Then the set of algebraic characters in C yields

a Zariski dense set in the weight space W', which accumulates at all the algebraic points.
Proof. | , Lemma 2.7]. O

In particular the property of being dominant or “very regular” can be expressed in this
way.

By finiteness of G(F)\G (A f)/U for any open subgroup U of G(Ap,f), if IT is an auto-
morphic representation of G(Ap), the representation Iy is defined over too(Q). Loeffler
defines (| , Definition 3.9.1]) the classical subspace of the space of p-adic automorphic
forms above an algebraic and dominant point w of the weight space. This subspace is
isomorphic to ¢y} (e (C*(G(F)\G(AF)) ® W*)G<F®QR)) as HT-module, with W the
representation of G(F ®g R) which is the restriction of the algebraic representation of
G’ xg C having highest weight (5 1e,(w). The classical points of the eigenvariety are the
ones having eigenvectors in the classical subspace.

We need to give an interpretation of classical points on the eigenvariety 2, in terms
of automorphic representations of G(Ag). Namely, there is a classical point x € 2 (E')
defining a character ¥, : H — E' (here E C E' C @p) if and only if there is an automorphic
representation IT = @, IT, = IIc ® I, ® chp) of G(Ap) such that:

o 1t (®U|OOHU) is the algebraic representation having highest weight w(x);
LI ((es ® eS)chp)> contains a non-zero vector on which H% ® Hg acts according to
x5

e ,,(eq,IL,) contains a non-zero vector on which H, acts according to Poav(z) Vo, where

The twist by the character fi,,(,) is explained by the fact that the classical overconvergent
automorphic forms are constructed by induction of characters of the torus extended from
To (on which they are defined by w) to T trivially on X.

2.3.2 Unramified and “completely refinable” points

2.3.2.1 Small slope p-adic eigenforms are classical

The algebraic and dominant points of % are the ones of the form

n
k )
(@oi)oi = [0 (H w)
v,0 =1
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where ky 51 > kyo2 > ... > kysn > 0 are integers. The proof of the criterion given
in | , Theorem 3.9.6] contains a minor error, because it “sees” only the restriction of
these characters to the maximal split torus S (over Q,), and the BGG resolution has to
be applied to split semi-simple Lie algebras.

We correct it in the case of quasi-split reductive groups (in particular the restriction to
a subfield of a quasi-split group remains quasi-split), and give a stronger criterion. This
criterion could be used on an eigenvariety for which only the weights corresponding to a
given p-adic place of F' vary. For this purpose we use the “dual BGG resolution” given in
| |. The proof will be very close to that of | , Propositions 2.6.3-2.6.4]. In the
following G’ could be any quasi-split reductive group over Q,, and we could replace E/Q,
by any extension splitting G'.

Let B be a Borel subgroup of G’, S a maximal split torus in B, T the centralizer of S,
a maximal torus. This determines an opposite Borel subgroup B such that BN B = T.
Let ®F (resp. A) be the set of positive (resp. simple) roots of G’ xg, E, with respect to
the maximal torus T of the Borel subgroup B. One can split A = L;A; where «, 8 belong
to the same A; if and only if a|s = f|s (equivalently, the A; are the Galois orbits of A).
Let ¥ be a subgroup of T(Q,) supplementary to its maximal compact subgroup, and X*
the submonoid consisting of the z € T(Q)) such that |a(z)| > 1 for all @ € A. For each
i, define 7; to be the element of X1/ (Z(G’)(Qp) N'X) generating Nj; ker |o(+)| (here o
denotes any element of Aj, and |o;(-)| does not depend on this choice).

Assume that G is a compact open subgroup of G/(Q,) having an Iwahori factorization
NoTyNy. Using a lattice in the Lie algebra of N and the exponential map, it is easily seen
that Np admits a decreasing, exhaustive filtration by open subgroups (Nj)r>1 having a
canonical rigid-analytic structure. Moreover any ordering of ® endows the Banach space
of Qp-analytic functions on N}, taking values in £ with an orthonormal basis consisting of
monomials on the weight spaces.

Let A be an algebraic and dominant weight of T xq, E. By | |, there is an exact
sequence of E[l]-modules, where I = GoX*Go = BgX TNy is the monoid generated by Gy
and X1

0 = Ind§(A) @ sm-Ind*1 — la-Ind 3 (A) — € la-Ind"™ (sa(A + p) — p) (2.3.2.1)
a€A
where 2p = 3 g+ @, “sm” stands for “smooth” and “la” for “locally analytic”. The relation
with Loeffler’s Ind(V), is la—IndgNO()\) ® Al = ligﬂnd(EA)k, where gy, is the character
k

on T" which is trivial on its maximal compact subgroup and agrees with A on 3. Naturally
Ind§ (V) @ sm-Ind 21 @ AG) = lim Ind(Ey )5
k

To prove a classicity criterion, we need to bound the action of 7; on the factors of the
RHS of (2.3.2.1) twisted by A\;l. Let nq = aV()\) € Nfor a € A, then s, (A+p) —A—p =
—(14nq)a. The Banach space of k-analytic functions on Ny is the direct sum of the spaces
of analytic functions on Ny, * € Ny/Nj, and each of these spaces has an orthonormal
(with respect to the supremum norm) basis (v;z);es where J = N®" (monomials on the

weights spaces). This basis depends on the choice of a representative z, but if we fix ¢ and
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o € Ny, we can choose n;l:z:om as a representative of its class. Then if ¢ = Zj a;v; .

-1
B 1, ZoTh
(with a; — 0) is an element of la-IndgNO(sa()\ +p) —p) ® A, and € € Ny,

sm

(- @)(wo) = ;TN age g O o)

jeJ

= D ay Wy (w08)
jeJ

where s(j) = >_gcg+ 7(3)3. This shows that |n;-¢| < ()|~ (") | @], and so the operator
n; has norm less than or equal to |a(n;)|~(**") on la—IndgNO (sa(A+p) — p) ® Mgt

We can then apply the exact functor which to an E[I]-module W associates the auto-
morphic forms taking values in W, and take the invariants under the idempotent e (this
functor is left exact). We obtain that M(e, E\)/M(e, E))qa (the space of p-adic auto-
morphic forms modulo the classical automorphic forms) embeds in @, Mo where each
M, is a Banach space on which the operator [Gon;Gg] has norm < |a(n;)|~(+7). The

following criterion follows:

Lemma 2.3.2.1. If an overconvergent eigenform f € M (e, E)) satisfies [GoniGo| f = wif
with p; # 0 and

vp(pi) < O}ggi —(1 + na)vp(a(n;))

for all i, then f is classical.

In the case of the symplectic group G’, the family (7;); can be indexed by the couples
(v,4) where v is a place of F' above p and 1 <i < n, and A, ; is indexed by the embeddings
F, — E. Specifically, n,; is trivial at all the places except for v, where it equals

: -1 1
Diag(x1,...,Tn, Ty 5., 2] )

wyl ifj<i
1 if j>i
The conditions in the previous lemma can be written

with z; =

Up (i) < e%, infy(1+ kpoi — kvoiy1) fori<n
Up(pon) < & infy (24 2kpom) -

2.3.2.2 Representations having Iwahori-invariants and unramified principal
series

We recall results of Casselman showing that irreducible representations having Iwahori-
invariants appear in unramified principal series, and giving the Atkin-Lehner eigenvalues
in terms of the unramified character being induced.

In this subsection, we fix a place v of F' above p. Recall I, has an Iwahori decomposition
I, = NyoTyoNyo. As in [Cas], if (II, V) is a smooth representation of G(F,), V(N,) is
the subspace of V' spanned by the II(n)(z) — x, n € Ny, Vi, = V/V(N,) and if N,; is a
compact subgroup of N, V(N, ;) = {v eV va H(n)(v)dn = O}.
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Lemma 2.3.2.2. Let (II, V) be an admissible representation of G(F,) over C. Then the
natural (vector space) morphism from Vv to (VNU)T”’O s an isomorphism, inducing a

. -equivariant isomorphism
IU ~ _ Tv,O —1
I = (Ily,) "’ ® o5,
where o = denotes the modulus morphism of By, and u € X acts on 1T by [Lul,)].

Proof. Let N, be a compact subgroup of N, such that V& NV(N,) C V(N,1). There
is a u € X such that ulN, ju™! C N,o. By [Cas, Prop. 4.1.4], and using the fact that
[I,ul,] is invertible in the Hecke-Iwahori algebra, the natural morphism from Vv to V]E\C“’O
is an isomorphism (of vector spaces).

Lemmas 4.1.1 and 1.5.1 in [Cas] allow to compute the action of X7 O

Corollary 2.3.2.3. Any smooth irreducible representation of G(F,) over C having Iwahori
invariants is a subquotient of the parabolic induction (from B,) of a character of the torus
Ty, which is unique up to the action of W (T,, G(Fy)), and unramified.

Proof. 11 is a subquotient of the parabolic induction of a character of the torus T, if and
only if Iy # 0, which is true by the previous lemma. The geometrical lemma | , 2.12]

shows that if x is a smooth character of T,

(mag™ g = @ oy
: Mo W (Th.G(FY) :

O

Since *p is left adjoint to non-normalized induction, the first argument in the proof
shows that II is actually a subrepresentation of Indg(Fv) for at least one y in the orbit
under W(T,,, G(F,)). In that case we will say that (Hjx) is a refinement of II. Note that
up to the action of W(T,, G(Fy)), there is a unique x such that IT is a subquotient of
Indng”).

2.3.2.3 Most points of the eigenvariety arise from unramified, completely re-
finable representations

We will need a result of Tadié¢, characterizing the irreducible principal series. If x1,...,Xn

are characters of F*,

we denote simply by x = (x1,.-.,Xn) the character of T, which
maps

z1

to [T/, xi(z;). Let v be the unramified character of F, such that v(w,) = [F,| "
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Theorem 2.3.2.4. Let x = (x1,-..,Xn) be a character of T,,. Then Ind%pQ"(F”)X 18 irre-
ducible if and only if the following conditions are satisfied

1. For all i, x; is not of order 2.
2. For all i, x; # v
3. For all distinct 1, 7, Xin_l # vE and XiXj 7 vEL
Proof. | , Theorem 7.1] O

Definition 2.3.2.5. An irreducible representation IL, of G(F,) is completely refinable if
Sp n(FU
B,

An automorphic representation I1 of G(Af) is completely refinable if 11, is completely

1t 1s isomorphic to Ind )X for some unramified character x.

refinable for any v|p.

Note that completely refinable representations are unramified (for any choice of hyper-
special subgroup). A representation I, is completely refinable if and only if (Hv)i\—sfv is the
sum of |W(T,, G(F))| unramified characters.

Recall that classical points on the eigenvariety are determined by an automorphic rep-
resentation IT together with a refinement of each I1,,, v|p. Completely refinable automorphic
representations are the ones giving the greatest number of points on the eigenvariety. When
one can associate Galois representations to automorphic representations, each refinement

of IT comes with a “p-adic family” of Galois representations going through the same one.

Proposition 2.3.2.6. Let fi,...,f, € O(Z)*. The set S of points corresponding to

completely refinable, unramified classical points at which

minmin{k, 1 — kv.0,2, - - s kv.on—1 — kv,ons kvont > max{v,(fi),...,vp(fn)} (2.3.2.2)

v,0

1s Zariskt dense and accumulates at all the algebraic points.

Compare | , Proposition 6.4.7], | , Corollary 3.13.3|.

Proof. The hypotheses in the classicality criterion 2.3.2.1 and the ones in Theorem 2.3.2.4
are implied by inequalities of the form 2.3.2.2. First we prove the accumulation property.
We can restrict to open affinoids ¥ of the eigenvariety, and hence assume that the right
hand side of 2.3.2.2 is replaced by a constant. By Theorem 2.3.1.1, ¥ can be an arbitrarily
small open affinoid containing an algebraic point x of %, such that there is open affinoid
% of W such that ¥ C w™ (%), the morphism w|y : ¥ — % is finite, and surjective
when restricted to any irreducible component of ¥. By Proposition 2.3.1.3, the algebraic
weights satisfying 2.3.2.2 are Zariski dense in the weight space # and accumulate at all
the algebraic points of #. | , Lemme 6.2.8] shows that S N ¥ is Zariski-dense in 7.

Each irreducible component 2 of 2" is mapped onto a Zariski-open subset of a con-
nected component of #, by | , Corollaire 6.4.4] (which is a consequence of the decom-
position of a Fredholm series into a product of prime Fredholm series, | , Corollary
4.2.3]), so Z" contains at least one algebraic point (the algebraic weights intersect all the
connected components of #), and hence the Zariski closure of S N 2" contains an open
affinoid of 2"/, which is Zariski dense in 2. O]
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2.4 (Galois representations associated with automorphic rep-
resentations of symplectic groups

2.4.1 A consequence of Arthur’s description of the discrete spectrum
for classical groups

2.4.1.1 Automorphic self-dual representations of GlLy,; of orthogonal type

According to Arthur’s conjectural parametrization of discrete automorphic representations,
each such representation of G(Ap) should be part of an A-packet corresponding to a

discrete parameter, which is a representation
,CF X SLZ(C) — SOQn+1(C)

such that (among other conditions) the commutant of the image is finite.

The standard embedding SOg2;,4+1(C) < GLa,11(C) “transfers” this parameter to a
parameter of GLg,4+1/F, which is not discrete in general, and thus it corresponds to an
automorphic representation of GLa,,11(Ap). Here we define an automorphic representation
m of GLN(AF) as a formal sum of discrete automorphic representations m; of GL,, such
that >, n; = N. We will write 7 = H;m;. By | |, each 7; is the Langlands quotient
of the parabolic induction of twists of a single cuspidal representation by powers of | det |.
We will not need this generality, as we will force the representations m; to be cuspidal in
the sequel.

Since 7 comes from a self-dual parameter, it is self-dual: 7" ~ 7. Even though 7 is not
discrete in general, the discreteness of the parameter which takes values in SO9, 1 implies
that the m;’s are self-dual.

If IT = ®,1I1, is an automorphic representation of G(Af), then for any archimedean
place v of F, the local Langlands parameter of IT,, composed with SOg;,41(C) < GL2;,41(C)
is of the form: .

LLIL,) ~ " & P IndyF (2 (2/2)")
i=1

where € is the only non-trivial character of W¢/Wg, and the r; are integers, with r,, >
Tn—1 > ... > 11 > 0. We define Ag},, to be the set of automorphic representations such
that for each infinite place v of F, riy > 2 and r;41 > r; + 2. The equivalence above is
meant as representations of Wx (i.e. morphisms W — GLg,+1(C)), although L£L£(IL,) is
a parameter taking values in SO2,,41(C) (the two notions coincide).

Similarly, let Agr,,,, be the set of formal sums of self-dual cuspidal representations

m =1 = ®umy of GLap+1(Ar) such that for each infinite place v of F,

LL(my) ~ €" @ P Indyf (2 (2/2)")
=1

where the r;’s are integers,such that vy > 2, 7,41 > r; + 2, and such that the product of

the central characters of the m;’s is trivial.
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These inequalities are imposed to ensure that the corresponding global parameters are
trivial on Arthur’s SLa(C), to simplify the statements. That is why we take formal sums
of cuspidal (not discrete) representations.

Note that there is no non-zero alternate bilinear form preserved by such a parameter

(one could say that the parameter is “completely orthogonal”).

Assumption 2.4.1.1. For any Il € Asp, , there is a m € AgL,,.,, such that the local
Langlands parameters match at the infinite places, and for any finite place v of F, m, is
unramified if I1, is unramified, and in that case the local parameters match, by means of
the inclusion SO2y,41(C) C GL2p41(C).

2.4.1.2 p-adic Galois representations associated with RLASDC representa-
tions of GLy

An automorphic cuspidal representation 7 of GLy(Af) is said to be L-algebraic if for any
infinite place v of F, the restriction of LL(m,) to C* is of the form

z +— Diag ((z“”viéb“vi> >
(A

where a;,b; € Z. By the “purity lemma” | , Lemme 4.9], a,; + b,; does not depend
on v,i. We will say that 7 is L-algebraic regular if for any v as above, the a, ; are distinct.
By purity, this implies that if v is real,

¢ @; Ind}* (z o (z/g)aé,i) if N is odd, with e = 0, 1

LL(m)| - 7% = W A\ P
@iIndy7 (z — (2/2) v»l) if N is even

for some integer s, and integers 0 < a;l <...< a;,LN/QJ‘
As a special case of | , Theorem 4.2] (which builds on previous work of Clozel,

Harris, Kottwitz, Labesse, Shin, Taylor), we have the following theorem.

Theorem 2.4.1.2. Let 7 be a regular L-algebraic, self-dual, cuspidal (RLASDC) rep-
resentation of GLopt+1(Ap). Then m is L-arithmetic, and there is a continuous Galois

representation
Pipios () 1 GF — GL2y41(Qy)

such that if v is a finite place of F and m, is unramified,
1. if v is coprime to p, then p,, ... (7)|cp, s unramified, and
det (T1d — p,, ... (7)(Froby,)) = tpeod det (TTd — A)
where A € GLy(C) is associated with m, via the Satake isomorphism.

2. if v lies above p, p,, ... (T)|Gy, is crystalline. The associated filtered -module (over
Fy0 ®q, @p) 1s such that

— _ fv — -1 _ fv
detig, (Tld ¢ )_LpLOO det (T1d — A)

where A € GLy(C) is associated with m, via the Satake isomorphism. For any
o:F, — @p, the o-Hodge-Tate weights are the a,;, where w is the real place of F'
defined by o, tp and L.
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The power f, appearing at places above p may seem more natural to the reader (and
will actually disappear) after reading subsubsection 2.4.2.1.

Combining this theorem with the transfer detailed in the last section, we obtain

Corollary 2.4.1.3. Let II be an automorphic representation of G(Afp), whose weights
kwi > kw2 > ...kwn > 0 at the real places w are far from the walls (II € Agp, s
enough), and unramified at the places above p. There ezists a continuous semisimple Galois
representation

Pipico (I): Gr — GLQ”H‘l(@p)

such that for any finite place v of F' such that IL, is unramified
1. if v is coprime to p, then p,, ... (I)|Gy, is unramified, and
det (T1d — p,,.... (I)(Frob,)) = 1,5 det (T1d — A)
where A € GLy(C) is associated with 11, via the Satake isomorphism.

2. if v lies above p, py, .., (I1)|Gp, is crystalline. The associated filtered p-module is such
that
det (Tld - gof”> = 1) det (T1d — A)P
P

where A € SO2,4+1(C) C GLayp+1(C) is associated with I, via the Satake isomorph-
ism. For any o : F, — @p, the o-Hodge-Tate weights are ky 1 +n > kyo+n—1>
o> k1 +1>0> —ky1—1>...> —ky1 —n, where w is the real place of F'
defined by o, tp and L.

Proof. There is an automorphic representation m = H;m; of GLa,+1(AF) corresponding to

IT by Assumption 2.4.1.1, obtained by induction from distinct cuspidal representations ;.
Let puy 100 (1) = DiPrpioo (7i). u

Note that in that case, since Il is C-algebraic, II is obviously C-arithmetic (which is
equivalent to L-arithmetic in the case of Sp,,, ), and thus the coefficients of the polynomials

appearing in the corollary lie in a finite extension of Q.

2.4.1.3 The Galois pseudocharacter on the eigenvariety

To study families of representations, it is convenient to use pseudorepresentations (or
pseudocharacters), which are simply the traces of semi-simple representations when the
coefficient ring is an algebraically closed field of characteristic zero. We refer to | |
for the definition, and | , Theorem 1] is the “converse theorem” we will need.

On O(Z"), we put the topology of uniform convergence on open affinoids.

The Zariski-density of the classical points at which we can define an attached Galois

representation implies the following

Proposition 2.4.1.4. There is a continuous pseudocharacter T : Gp — O(Z"), such that
at every classical unramified point of the eigenvariety having weight far from the walls, T
specializes to the character of the Galois representation associated with the automorphic
representation by Corollary 2.4.1.3.
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Proof. This is identical to the unitary case, and thus is a consequence of | , Proposi-
tion 7.1.1], by Proposition 2.3.2.6. O]

Thus at any (classical or not) point of the eigenvariety, there is an attached Galois

representation.

2.4.2 Galois representations stemming from symplectic forms are gen-
erically almost irreducible

2.4.2.1 Crystalline representations over @p

We fix a finite extension K of Q,, and denote Ky the maximal unramified subextension,
e=[K: Ky, f=[Ko:Qp]. Let p: Gxg — GL(V) be a continuous representation of the
absolute Galois group of K, where V is a finite dimensional vector space over L, a finite
Galois extension of Q,. We will take L to be big enough so as to be able to assume in many
situations that L = @p. For example, we can assume that L is an extension of K, and
that p has a composition series 0 = V; C ... C V, =V such that each quotient V;11/V; is
absolutely irreducible.

For any such p, we denote Deis(V) = (Bcris ®q, V) Ck From now on we assume that
p is a crystalline representation, which means that dimg, Deis(V) = dimg, V. It is well-
known that Deys(V) is a filtered p-module over K, and since V' is a vector space over L,
Deris(V) is a ¢p-module over Ko ®q, L, and Dqr(V) = K @, Dais(V) is a module over
K ®q, L with a filtration by projective submodules.

We have a natural decomposition Ko®q, L ~ HaoeTo Lo, with To = Homg, —a1g. (Ko, L)
and L,, ~ L, given by the morphisms oo ® Idy. Similarly, K ®q, L ~ [],cy Lo with
Y = Homg, —aig. (K, L).

Hence we have decompositions

Dcris(v) = H Dcris(V)a'oa DdR(V) = H DdR(V)a'
o0€Yo oceT

The operator ¢ restricts as linear isomorphisms from Deyis(V')s, 10 Deyis(V) 1, and so

000~
ol is a L y,-linear automorphism on each Deyis(V)4,, which are isomorphic as vector spaces
over L equipped with the linear automorphism ¢7.

Each Dgr(V), comes with a filtration, and hence defines dimy, V' = N Hodge-Tate
weights ks 1 < ... < ko n (the jumps of the filtration).

Although we will not use it, it should be noted that by | , Proposition 3.1.1.5],
to verify the weak admissibility of a filtered p-module D over K with an action of L
commuting with ¢ and leaving the filtration stable, it is enough to check the inequality
tn (D) > tg(D') for sub-Ky ® L-modules stable under .

If ¢/ has eigenvalues ¢1,..., 9N, With v,(¢1) < ... < v,(pn), We can in particular
choose D' = @;<;jker(pf — ¢;) (if the eigenvalues are distinct, but even if they are not,

we can choose D’ such that ¢f|p has eigenvalues ¢y, ..., ¢;, counted with multiplicities).
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The worst case for the filtration ylelds the inequalities
(p1) > 71 E k
Up\p o
p\¥1) = e . ,1

1
up(p192) 2 - > kox+ oy

In the sequel, we will only use these inequalities, and we will not be concerned with the
subtleties of the filtrations.

2.4.2.2 Variation of the crystalline Frobenius on the eigenvariety

In this section we explicit the formulas relating the eigenvalues of the crystalline Frobenius
at classical, unramified points of the eigenvariety and the eigenvalues of the Hecke-Iwahori
operators acting on p-adic automorphic forms. Let x be a classical point on the eigen-
variety. There is an automorphic representation II of G(Ap) such that 1,13} (Il) is the
representation having highest weight w(z). Assume that II, is unramified. The point
x defines a refinement of II,, that is an unramified character x, : To — C* such that
I, — Indg/(Qp)Xl«, or equivalently the character 5%/2)@ appearing in (II,) 5. By 2.3.2.2,
for any u € BF, fryp(z) Paln, = (1p ooy © Xz)(sgﬂ.

The diagonal torus in SOgy,41(C) and the identification of it with the dual of the diag-
onal torus of Sp,,, /F, being fixed, the character y, is mapped by the unramified Langlands
olp With y, = Diag(y1,v, - - - Ynw, l,y;}}, e ,yii), and
Yvi = xz(Diag(1,..., @y, ..., 1,1,...,w,},...,1)) (@, being the i-th element). Thus the

v

correspondence for tori to y = (y,)

linearization of the crystalline Frobenius ¢/ on Deris(Piy,i00 (T) |G, )og (for any choice of

oo : Fy, = E in Yq,) has eigenvalues
Lot (Yoi) = @0 by pg1—i() H 0 (o)
oceYy,

and their inverses, together with the eigenvalue 1. Here ¢y, n41-; € O(Z) is defined by

s _ Y ([Goui—1Go))
v,n+1—1 U ([GOUZGO])

with u; = Diag(w; !, ...,y 1,...,1,@y,..., @) (the last @, ! is the i-th element), and
ky o,i the integers defining the weight w(z).

Assume furthermore that II,, admits another refinement x, = x§ for some a = (ay )y
in the Weyl group W(G'(Q,), T(Qp)) = I, W(G(Fy),T,). Each W(G(Fy,),T,) can be
identified with the group of permutations a, : {-n,...,n} — {-n,...,n} such that
ay(—i) = —ay (i) for all 7, acting by

ay(Diag(zy, ..., Tn,z, 1. .. ,:cl_l)) = Diag(xa;1(1), T )y T () ,xa;1(1))

on T, where for commodity we set x_; = xi_l fori < 0. Similarly we define ky 5 —; = —ky 0.4

and ¢, _; = qﬁ_l We also set ky,0 = 0, ¢p0 = 1. The equality x,» = xi can also be

v,
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written

qq(}nJrl)sign(w(i))*w(i)¢U7n+17w(i)(x) H U(wv)kv,o',w(i) - qg+171‘¢v7n+1_i($/) H O_(wv)ku,o',i
UET’U UGT’U

which is valid for any —n < i < n if we set sign(i) = —1 (resp. 0, 1) if ¢ is negative (resp.

zero, positive), and equivalent to

Gunt1-i(T) = Pyt w(i) (5,3)qu—w(i)+(n+1)(sign(i)—sign(w(i))) H 0 (wy)Fvow@ ko,

oYy

This last formula will be useful in the proof of the main result.

2.4.2.3 Main result

Lemma 2.4.2.1. Let K be a finite extension of Qp, and let p : Gx — GLN(@p) be a
crystalline representation. Let (D, o, Fil'D ®K, K) be the associated filtered p-module. Let
kol < ... < kgN be the Hodge-Tate weights associated with the embedding o : K — @p,
Let ©1,..., 0N be the eigenvalues of the linear operator pf (on any of the Dy, oo € Ty),

and suppose they are distinct. Finally, assume that for some T € Y, for all i,

1
vp(pi) — - Z Ko

oceY

1 .
< min - Krjyl — Krj-

eN 1<j<N-1

Then if D' C D is an admissible sub-p-module over Ko ®q, @p (corresponding to a sub-
representation), there is a subset I of {1,...,N} such that D' has ¢/ -eigenvalues (¢;);c;
and T-Hodge-Tate weights (Koi);c;-
Proof. Since the eigenvalues of ¢/ are distinct, and D’ is stable under ¢, there is a subset
Iof {1,...,N} such that D’ = ker [[,.; (¢/ — ¢i). There are unique increasing functions
01, :1— {1,..., N} such that the o-weights of D’ are the Ka.0, 4 (i)» for @ € I. By ordering
similarly the weights of D/D’, we define increasing functions 62, : {1,...,N} \ I —
{1,..., N}, and we can glue the 6., to get bijective maps 6, : {1,...,N} — {1,...,N}.
We will show that 6, = Id.

We now write the admissibility condition for D’ and D/D’. Let i1 be the smallest
element of I. Then ker (Lpf — Lpil) is a sub-p-module of D’. Its induced o-weight is one
of the kg, ;) for @ € I, thus it is greater than or equal to ks, ;). This implies that
vp(piy) > 1/e) sery Ko, (i) We can proceed similarly for the submodules

er (o =) (¢ = 1))

(where the i. are the ordered elements of I), to get the inequality

1
> wler) > - S koo
1<z<r 1<z<roceY
The same applies to D/D’, and by adding both inequalities, we finally get

> o) > % S ko)

1<i<s 1<i<s oY
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We now isolate 7, using the fact that Y ;. Ko, (i) = D 1<i<s Koi for o # 7, and obtain

the inequality

Z vp(s) —é Z Z Koyi 2 é Z Kr0.(i) — Kri

1<i<s 1<i<s €Y 1<i<s

Let r be minimal such that 6,(s) # s (if no such s exists, we are done). In that case, we

necessarily have 6,(s) > s+ 1, and the previous inequality yields

S o) - S0 S gy > L e

1<i<s 1<i<s o0€T

but the hypothesis implies that the left hand side is less than min; (k- j4+1 — K- ;) /e, and

we get a contradiction. O

Theorem 2.4.2.2. Let II be an irreducible automorphic representation of G(Afr) having
Twahori invariants at all the places of F above p, and having invariants under an open

subgroup U of G(Ag’)f). Let N be an integer. There exists an automorphic representation
Il of G(Ap) such that:

o II' is unramified at the places above p, and has invariants under U ;

o The restriction of p,, ... (II') to the decomposition group at any place above p is either
irreducible or the sum of an Artin character and an irreducible representation of

dimension 2n;
e Forall g in G, Te(pyy (I)(9)) = Tr(pi, ... (M)(g)) mod pY.

Proof. We will write IT' = II mod p” for the last property.

Recall that for v a place of F' above p, there are elements ¢, 1, ..., ¢y n € O(Z)* such
that for any unramified classical point x € 2~ (@p) refining an automorphic representation
IT, the filtered p-module associated with the crystalline representation p,, .., (IT)|g,, has
ofv-eigenvalues

<¢U,—n(x)qUn H O-(wv)kv'a’il, ey ¢U,—1($)q;1 H U(wv)kv,a,—n7 17

o

¢v,1(x)(h H G(wu)ku’g’n, ey ¢U7n($)q,:} H U(wv)kv,UJ)
and o-Hodge-Tate weights

kv,a,—l —n,... 7kv,a,—n - 1,0, kv,a,n +1,... 7kv,a,1 +n

(0)

In the following if 3, or zj is a classical point, kvya,i

will be the weights defining w(xy).
The representation II corresponds to at least one point = of the eigenvariety 2" for G’ and
the idempotent ey ® eg,. By Proposition 2.3.2.6, and since G is compact, there exists

a point 21 € Z (E') (near z, and for some finite extension E’ of E) corresponding to an
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unramified, completely refinable automorphic representation II; and a refinement y, such

that for any v,

ZZ Kiai > =05 (601(@1) .- Gua(@1)) + 3n(n + 1),

=1 o
and II; = II mod p». Since II; is completely refinable, there is a point 2} € 2 (E)
associated with the representation II; and the character x*, where a is the element of the
Weyl group acting as —Id on the roots. Specifically, \Ilﬂ’»’l"HS@Hs@EGO = \IJ$/1|’HS®’HS®@GO7
but

JAeY)
—2k
¢v7n+1—i($/1) (st —n— I-H(wl 2i+(2n+2) H o e

for i = 1,...,n, and all places v. There exists a point x9 € 2 (E’) (near 2, and up to
enlarging E’) corresponding to an unramified, completely refinable automorphic represent-

ation Il and a refinement, such that for any v and any j < 0,
(2
Zkvan—}—] van+]+1 > = (¢U,*j+1(x2)) — fu

and ITy = IT; = I mod p". Like before, since Il is completely refinable, there is a point
zy € 2 (E') such that W, lysemswes, = Yoyl usomsoeq, and

e (2)
<z§v7n(x'2) ¢v 1 xg Ho’ wv U""_kval
’ k(2) _@ ) .
¢v,i($2) = ¢v,i+1($2)% H o(wy) vemn—i"Peon—itt for 4 =1,...,m — 1.

Here we used the element of the Weyl group corresponding (at each v) to the permutation
—n -n+1 ... =2 =1 1 ... n
-n+1 —n+2 ... =1 -n n ... n—1)°
Again, we can choose a point z3 € 2 (E’) (near 2, and up to enlarging E’) corresponding

to an unramified automorphic representation Il3 and a refinement, such that for any v and

any 7 € T,

R PRI B 1) B kffm} >

v,T,29
max {07 |vp(¢v,‘r,l(x3))‘v SRR |Up(¢v,‘r,n(x3))|}

and II3 = II mod p". We show that II3 has the desired properties. First we apply the
previous lemma to the local Galois representations associated with Ils, at the places above
p, which are crystalline. Since the differences v,(p;) — %ZGGT Kg; in the hypotheses of

the lemma are equal in our case to

_’Up(d)v,n(wiS))v ) _Up(QSv,l(xB))a 0, Up(¢v,1($3))a cee avp(¢v,n($3))a
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the hypotheses of the lemma are satisfied for all 7 € Y. Thus if p,, .. (73)|cp, is not
irreducible, there is a subset ) C I € {—n,...,n} such that if i1 < ... < i, are the
elements of I and j; < ... < jopt+1—p those of J ={—n,...,n}\ I,

vp(¢v,i1 (I‘g)) >0
vp(¢v,i1 (l‘g)) + Up(¢v,i2 (553)) >0

Up(¢v,i1 (x3)) +oo+ Up(¢v,z} (xS)) =0
Up(@u,j (43)) > 0
Up(Pujy (23)) + Vp(Pu 4y (3)) > 0

Up(gb%jl (z3)) +... + UP((ﬁ’U,janfr (z3)) =0

by the admissibility of the corresponding filtered ¢-modules. For all i, v,(¢yi(zh)) =
Up(dv,i(x3)), so all these conditions hold also at z5. Up to exchanging I and J, we can

assume that i1 = —n. If j; <0,

1
001 (@5)) = =0p(60,-5 (@) = —=0p( @1 (22)) = fo = — Dk sy = B

Voo

and xo was chosen to ensure that this quantity is negative, so we are facing a contradiction.
Thus J has only nonnegative elements, and {—n,...,—1} C I. If we do not assume that
i1 = —n, we have in general that {—n, ..., —1} is contained in I or J. Similarly, suppose

ir =mn. If Jont1—r > 0,

vp(¢v7j2n+17r ('rIQ)) = Up(¢v7j2n+lf'r (IJQ))

1 2 2
= UP(¢U7j2n+1—r (z2)) + fo + P kU,C’,n—j%’H’lf’r - kv,a,n—jmﬂﬂ—i—l
v g

is positive, another contradiction. Therefore {1,...,n} is contained in I or J.
Assume for example that {—n,...,—1} C I and {1,...,n} C J. In that case

Vp(B0,jy (3) - v o1 (73)) = Vp(du1(T2) ... Pun(T2))
= 0p(du1(x]) ... dun(z)))
= —vp(Pp1(z1) ... Pun(z1)) +3n(n+1)f,
2 v )
_a ; Z(T: kv,a’,i

is negative, which is yet another contradiction.

As a consequence, we can conclude that I or J is equal to {0}, and this shows that at
each place v of I above p, the semisimplification of p,, ... (II3)|g, is either irreducible or the
sum of an Artin character and an irreducible representation of dimension 2n. Consequently

I3 has the required properties. O
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2.5 Similar results for even orthogonal groups

In this section we explain (very) briefly how the same method as in the previous sections
applies to orthogonal groups.

Let F be a totally real number field of even degree over Q. Then F' has an even number
of 2-adic places of odd degree over Qq, and as these are the only finite places of F' at which
(=1,-1), = —1 (where (-, -), denotes the Hilbert symbol), we have [, (-1, —1), = 1 where
the product ranges over the finite places of F'. Consequently, there is a unique quadratic
form on F* which is positive definite at the real places of F, and split (isomorphic to
(x,y,2,t) — xy + zt) at the finite places. It has Hasse invariant (—1,—1), at each finite
place v of I, and its discriminant is 1. As a consequence, for any integer n > 1, there
is a connected reductive group G over F' which is compact (and connected) at the real
places (isomorphic to SOy, /R) and split at all the finite places (isomorphic to the split
SO4y,). As before, we let G’ = Resg(}. The proofs of the existence and properties of the
attached eigenvariety 2~ — # are identical to the symplectic case. We could not find
a result as precise as Theorem 2.3.2.4 in the literature, however by | , Proposition
3.5] unramified principal series are irreducible on an explicit Zariski-open subset of the
unramified characters. Specifically, if SOy, (F,) = {M € My, (Fy) | tM JyM = J4n},

I

Tn
v

3

—1
\ Ty ),

and P is any parabolic subgroup containing 7', then for an unramified character xy =
(X15---5Xxn) of T (x; is a character of the variable z;), IndiO‘*"(F”)x is irreducible if
Xi(@y)? # 1 for all i and x;(wy)x;(wy)*t # 1,qu, ¢, " for all i < j. Note that this is
not an equivalence.

The existence of Galois representations p,,,,... (II) attached to automorphic represent-
ations Il of G(AF) is identical to Assumption 2.4.1.1. We now state the main result for

orthogonal groups.

Theorem 2.5.0.3. Let II be an irreducible automorphic representation of G(Afp) having
Twahori invariants at all the places of F above p, and having invariants under an open

subgroup U of G(Ag)f). Let N be an integer. There exists an automorphic representation
Il of G(AFp) such that:

e II' is unramified at the places above p, and has invariants under U ;

o The restriction of p,,,...(II') to the decomposition group at any place above p is irre-

ducible;

o Forall g in Gp, Tr(py, ... (I1)(9)) = Tr(ps, 0 (1) (g)) mod p.
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Proof. The proof is nearly identical to that of Theorem 2.4.2.2. In the orthogonal case
the Weyl group is a bit smaller: it is the semi-direct product of Ss, and a hyperplane
of (Z/QZ)Q". Alternatively, it is the group of permutations w of {—2n,...,—1,1,...,2n}
such that w(—i) = —w(i) for all ¢ and ]_[1221 w(i) > 0. The two elements of the Weyl
group used in the proof of Theorem 2.4.2.2 have natural counterparts in this Weyl group.
The only difference lies in the fact that there is no Hodge-Tate weight equal to 0 in the

orthogonal case, hence the simpler conclusion “p,,, ... (IT')|gy, is irreducible for v|p”. O

2.6 The image of complex conjugation: relaxing hypotheses
in Taylor’s theorem

Let us apply the previous results to the determination of the image of the complex conjuga-
tions under the p-adic Galois representations associated with regular, algebraic, essentially
self-dual, cuspidal automorphic representations of GL,(Afr), F' totally real. Recall that
these representations are constructed by “patching” representations of Galois groups of CM
extensions of F', on Shimura varieties for unitary groups. The complex conjugations are
lost when we restrict to CM fields. In | |, Taylor proves that the image of any com-
plex conjugation is given by (the “discrete” part of) the local Langlands parameter at the
corresponding real place, assuming n is odd and the Galois representation is irreducible,
by constructing the complex conjugation on the Shimura datum. Of course the Galois
representation associated with a cuspidal representation of GL,, is conjectured to be irre-
ducible, but unfortunately this is (at the time of writing) still out of reach in the general
case (however, see [CG] for n < 5; | , Theorem D] for a “density one” result for
arbitrary n but under the assumption that F' is CM and the automorphic representation
is “extremely regular” at the archimedean places; and [P'I] for a “positive density” result
for arbitrary n and without these assumptions).

The results of the first part of this paper allow to remove the irreducibility hypothesis
in Taylor’s theorem, and to extend it to some (“half”) cases of even n, using Arthur’s
endoscopic transfer. Unfortunately some even-dimensional cases are out of reach using
this method, because odd-dimensional essentially self-dual cuspidal representations are
(up to a twist) self-dual, whereas some even-dimensional ones are not.

Since the proof is not direct, let us outline the strategy. First we deduce the even-
dimensional self-dual case from Taylor’s theorem by adding a cuspidal self-dual (with
appropriate weights) representation of GL3, we get an automorphic self-dual representation
of GLay+3 which (up to base change) can be “transferred” to a discrete representation of
the symplectic group in dimension 2n. Since the associated Galois representation contains
no Artin character, it can be deformed irreducibly, and Taylor’s theorem applies. Then
the general odd-dimensional case is deduced from the even-dimensional one, by essentially
the same method, using the eigenvariety for orthogonal groups.

Finally we prove a supplementary, non-regular case, thanks to the fact that discrete
Langlands parameters for the group SOsg, /R are not always discrete when seen as para-

meters for GLa,, i.e. can correspond to a non-regular representation of GLg, /R.
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2.6.1 Regular, L-algebraic, self-dual, cuspidal representations of GL,,, (AF)
having Iwahori-invariants

In this subsection G will denote the symplectic group in dimension 2n+2 defined in section
2.3.
The following lemma is due to C. Meeglin and J.-L.. Waldspurger.

Lemma 2.6.1.1. Let K be a finite extension of Q. Let ¢ : Wi x SU(2) — SO2p,43(C)

be a Langlands parameter (equivalently, a generic Arthur parameter). Assume that the

subgroup I x {1} (I being the inertia subgroup of Wi ) is contained in the kernel of ¢.
Then the A-packet associated with ¢ contains a representation having a non-zero vector

fized under the Iwahori subgroup of Spa, o(K).

Proof. Let {Ily,...,II;} denote the A-packet. Since Arthur’s construction of the II;’s is
inductive for parameters trivial on the supplementary SLo(C), and subquotients of para-
bolic inductions of representations having Iwahori-invariants have too, it is enough to
prove the result when ¢ is discrete. Let 7 be the irreducible smooth representation of
GLan+3(K) having parameter ¢, then 7 ~ Ind%LQ"“’a, where o is the tensor product of
(square-integrable) Steinberg representations St(x;, n;) of GLy, (K) (i € {1,...,7}), x; are
unramified, auto-dual characters of K* (thus x; = 1 or (—1)*()), and the couples (x;,7;)
are distinct. Here L denotes the standard parabolic associated with the decomposition
2n + 3 = ), n;. Since ¢ is self-dual, 7 can be extended (not uniquely, but this will not

, —+
matter for our purpose) to a representation of GLg,, | 3 = GLa,43 % {1, 60}, where

1 1
-1 -1

Let also éignH = GLogpy3 % 6.

Let No be the number of 7 such that n; is odd, and for 7 > 1 let IN; be the number of i
such that n; > 25. Then Ny + 22]-21 N; =2n+ 3, and if s is maximal such that N, > 0,
we let

M = GLpy, x ... x GLy, x GLy, x GLy, X ... x GLN,

which is a #-stable Levi subgroup of GLa,+3, allowing us to define M+ and M. Since the
standard (block upper triangular) parabolic containing M is also stable under 6, 7 is nat-
urally a representation of M T, denoted by 747+ The constituents of the semi-simplification
of 747 either stay irreducible when restricted to M, in which case they are of the form
01 ® 09 ® 0(01) where o7 is a representation of GLy, X ... x GLy, and oy is a represent-
ation of GL No; or they are induced from M to M T, and the restriction of their character
to M is zero. Since we are precisely interested in that character, we can forget about the

second case. By the geometrical lemma,

SS A~ M
Ty = @ Indew(L)’LU (O'meflM)
weWw LM
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where WM is the set of w € So,43 such that w is increasing on I; = {1,...,n1},
I = {n1 +1,...,n1 + no}, etc. and w™! is increasing on J_5 = {1,...,Ns}, J 11 =
{Ns+1,...,Ns+ Ns_1}, etc. Fix the irreducible representation of GLy, X ... x GLy,

S
o1 =®Inde ! ® Xal - P
j=1

i | n;>2j

0 ; odd
where T is the standard maximal torus of GLy;, v; = i o .
! 1/2 n; even

There is a unique w such that Ind%mw( LW (01Aw-11r) @dmits a subquotient of the form
01 ® 0g ® B(01) as above, moreover Ind%mw(L)w (0rAw-1ar7) 18 irreducible, and
GL
og = IndTO Mo ® Xi

Specifically, w maps the first element of I; in J_|(,,41)/2), the second in J_|(y, 11y/2) + 1,
..., the central element (if n; is odd) in Jy, etc.

Let M’ be the parabolic subgroup of Spy,, /K corresponding to M, i.e.
M' = GLy, x ... x GLy, X Spy,_1

By | , 2.2.6], Y, TrIl; is a stable transfer of Trgt T By | , Lemme 4.2.1]

(more accurately, the proof of the lemma),

ZTI" ()3 [o1])

is a stable transfer of Tr (7‘%}[0’1]) (where -[-] denotes the isotypical component on the
factor GLy, X ... x GLpy; ).
Since 7'%[01] = 01 ® 0g ® O(01), the stable transfer of Tr (T%}[Uﬂ) is equal to the

product of Tr(cy) and ), TrII; where the IIj are the elements of the A-packet associated
with the parameter
D x

At least one representation II; is unramified for some hyperspecial compact subgroup of

Spn,—1(K), and so a Jacquet module of a II; contains a nonzero vector fixed by an Iwahori

subgroup. This proves that at least one of the II; has Iwahori-invariants. O

Assumption 2.6.1.2. Let Fyy be a totally real field, and let m be a regular, L-algebraic,
self-dual, cuspidal (RLASDC) representation of GLa,(AR,). Assume that for any place v|p
of Fy, my has vectors fived under an Iwahori subgroup of GLan(Ag,,). Then there erists
a RLASDC representation my of GL3(ApR,), a totally real extension F/Fy which is trivial,

quadratic or quartic, and an automorphic representation I of G(Af) such that
1. For any place v|p of Fy, mo, is unramified.

2. BCp/p,(m) and BCp)p,(mo) remain cuspidal.
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3. For any place v of F above p, 1l,, has invariants under the action of the Iwahori

subgroup Go of G(Fy).

4. For any finite place v of F' such that BCp/p, (7)y and BCpy g, (m0)w are unramified, 11,
is unramified, and via the inclusion SOg2,+3(C) <= GLap43(C), the Satake parameter
of I, is equal to the direct sum of those of BCp/p,(7)y and BCr/ g, (m0)w-

Let us comment briefly on the proof to come. First we construct mg. Let ¢ be a cuspidal
automorphic representation of PGLy/Fj which is unramified at the p-adic places, Steinberg
at the f-adic places for some arbitrary prime £ # p, and whose local langlands parameters
at the real places are of the form Ind%ﬁ (z — (2/2)*) where a is a half-integer big enough
with respects to their analogues appearing in the local Langlands parameters of . Such
a representation exists thanks to | , Theorem 1B]. Let m be the automorphic repres-
entation of GL3/F{ obtained by functoriality from ¢ through the adjoint representation of
13/(}?2(6) = SL2(C) on its Lie algebra. The representation 7y exists and is cuspidal by
| , Theorem 9.3]. The condition at the ¢-adic places ensures that no nontrivial twist
of § (seen as a representation of GLgy/Fp) is isomorphic to d, and the cuspidality of mg
follows. We can twist mg by the central character of 7, to ensure that m @ my has trivial
central character. Clearly mp is a RLASDC representation of GL3/Fj.

Note that for BCp/p,(7) and BCp/p,(mo) to remain cuspidal, it is enough for F'/Fy
to be totally ramified above a finite place of Fy at which 7 and mg are unramified. To
begin with one can choose such a quadratic extension of Fp, in order to define G. The
automorphic representation W := BCp g, (7) ® BCp g, () can be seen as a global, ortho-
gonal parameter. This determines a global packet Py of representations of G(Ar), and
Arthur’s results shall attach to each II € Py a character of Sy ~ Z /27, and characterize
the automorphic II’s as the ones whose character is trivial. We can choose the components
II, at the finite places of F' not lying above p to be associated with a trivial character of
Sy, , and taking a quadratic extension split above the p-adic and real places of F' (at which
I, is imposed) allows to “double” the contribution of the characters, thus yielding a trivial

global character.

Proposition 2.6.1.3. Let F' be a totally real field, and let m be a reqular, L-algebraic,
self-dual, cuspidal representation of GLoy, (Ap). Suppose that for any place v of F above p,

Ty has tnvariants under an Iwahori subgroup. Then for any complex conjugation ¢ € G,
Tr(py . (7)(€)) = 0.

Proof. By the previous assumption, up to a (solvable) base change to a totally real exten-
sion (which only restricts the Galois representation to this totally real field, so that we get
even more complex conjugations), we can take a RLASDC representation my of GL3(Ar)
and transfer m @ mp to an automorphic representation IT of G(Ap). The representation
IT defines (at least) one point x of the eigenvariety 2~ defined by G (and by an open
subgroup U of G(A;{j)f)). Of course, by the Cebotarev density theorem and the compat-
ibility of the transfer at the unramified places, the representation associated with II is

equal to py, 1., (T) © pu, .00 (M0). Since the Hodge-Tate weights of p,,, ... (7)|G, are non-zero
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for any place v|p, p,,.., (7) does not contain an Artin character. By [ |y Pepioo (o) is
irreducible and thus does not contain any character. There are only finitely many Artin
characters taking values in {1} and unramified at all the finite places at which II is un-
ramified. For any such character 7, the pseudocharacter T" on the eigenvariety is such that

T, — n is not a pseudocharacter, hence we can find gy, 1, ..., gy 2, +3 such that

ty = Z (Te =)o (gn1s - gnonts) # 0

0€S2n+3

Let us choose N greater than all the vp(t,) and such that p™ > 2n + 4. Let II' be an
automorphic representation of G(Ap) satisfying the requirements of Theorem 2.4.2.2 for
this choice of N. Then the Tr(p,, . (II')) — n are not pseudocharacters, thus p,, . (I')
does not contain an Artin character and by Theorem 2.4.2.2 it is irreducible. This Galois
representation is (by construction in the proof of Corollary 2.4.1.3) the direct sum of
representations associated with cuspidal representations. Since it is irreducible, there is
only one of them, and it has the property that its associated Galois representations is
irreducible, so that the theorem of | | can be applied: for any complex conjugation
c € Gp, Tr(py,,.. M) (c)) = +1. Since det p,, ... (AT') = 1, Tr(p,, ... AT)(c)) = (—1)"FL.
AspV > 2n+4 and |Tr(p,, ... (1) () = Tr(pu, 0o (IT)(€))| < 2n+4, we can conclude that
Tr(py, 000 A1) (c)) = (—1)™*, and hence that Tr(p,, ... (7)(¢))+Tr(p, 000 (M) (€)) = (—1)"FL.
We also know that det p,, ... (m0) = det p,,... (7)(c) = (=1)", and that Tr(p,,,.. (m0)(c)) =
+1 by Taylor’s theorem, from which we can conclude that Tr(p,, . (m0)(c)) = (—1)"*.
Thus Tr(p,,,... (7)(c)) = 0. O

2.6.2 Regular, L-algebraic, self-dual, cuspidal representations of GLs, 1 (Af)
having Iwahori-invariants

In this subsection, G is the orthogonal reductive group defined in section 2.5, of dimension
2n + 2 if n is odd, 2n 4 4 if n is even.

Lemma 2.6.2.1. Let K be a finite extension of Q. Let ¢ : Wi x SU(2) — SO2,,(C) be
a Langlands parameter. Assume that the subgroup I x {1} (I being the inertia subgroup of
Wi ) is contained in the kernel of ¢.

Then the packet of representations of the split group SOaepn, (K) associated with ¢ by

Arthur contains a representation having a non-zero vector fized under the Iwahori subgroup.

Proof. Of course this result is very similar to 2.6.1.1. However Mceglin and Waldspurger
have not put their lemma in writing in this case, and the transfer factors are no longer
trivial, so that one needs to modify the definition of “stable transfer”. For this one needs
to use the transfer factors A&QWSOM(-, -) defined in | |. They depend in general on
the choice of an inner class of inner twistings | , 1.2] (in our case an inner class of
isomorphisms between GLa,,/K and its quasi-split inner form defined over K, which we
just take to be the identity), and a Whittaker datum of the quasi-split inner form. Arthur
chooses the standard splitting of GLoy,, and an arbitrary character K — C*, but this

will not matter to us since both GLg,, and SOs,, are split, so that the factor (zs,ss) of
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[ , 4.2] (by which the transfer factors are multiplied when another splitting is chosen)
is trivial. Indeed to compute this factor we can choose the split torus Ty of SOg,, /K,
which is a norm group (see | , Lemma 3.3B]|) for the split torus 7" of GLa,,/K, and
thus, using the notations of | , 4.2], T® is split and H! (K, T?) is trivial, so that 2’ =1
(27 is the image of 2’ in H(K,J), so that it is trivial). Since both groups are split the
e-factor of | , 5.3] is also trivial, so the transfer factors are canonical.

Let H = SOgy,,(K), T the representation of éi;m associated with ¢, and 77 the sum
of the elements of the packet associated with ¢ by Arthur. Note that by construction,
this packet is only a finite set of orbits under Ogy,(K)/SOoy,(K) ~ Z/27 of irreducible,
square-integrable representations of SO, (K'). Each orbit has either one or two elements.
In the latter case where the orbit is (say) {71, 72} one can still define a “partial” character
(in the sense of Harish-Chandra):

Or (h) + @ﬁ(h/) = Or,(h) + O, (h/) = O, (h) + Or,(h)

whenever h is regular semisimple conjugacy class in SOg,,,(K) and b’ is the complement of
h in its conjugacy class under Og,, (K). Although the individual terms on the left cannot
be distinguished, their sum does not depend on the choice of a particular element (e.g.
71) in the orbit. In that setting, Arthur shows (| , 8.3]) that the following character
identity holds:

> IDu(h)|'?0.x(h)A(h,g) = [Dgp, (9)]"*O(g) (2.6.2.1)
h

where the sum on the left runs over the the stable conjugacy classes h in SOg,, (K) which
are norms of the conjugacy class g in é\izm(K), both assumed to be strongly &;m-regular.
There are two such stable conjugacy classes h, they are conjugate under Og,,(K) and the
two transfer factors on the left are equal (this can be seen either by going back to the
definition of Kottwitz and Shelstad, or by Waldspurger’s formulas recalled below). This
fact together with the stability of the “partial” distribution ©_u (which is part of Arthur’s
results) imply that the expression on the left is well-defined. Note that as in | |
and | |, the term Ary is not included in the product defining the transfer factor A.
Contrary to the case of symplectic and odd orthogonal groups treated in | |, the

1/2 are not equal.

transfer factors are not trivial, and the terms |Dg(h)|'/? and [Déz,, (9)]
However the latter play no particular role in the proof. This character identity 2.6.2.1 is
the natural generalization of the notion of “stable transfer” of | .

Let

M = GLy, x ... x GLy, x GLy, x GLy, X ... x GLN,

be a f-stable Levi subgroup of GLgy,, and M’ = GLy, x ... X GLy, x SOy, the cor-
responding parabolic subgroup of SOsg,,. To mimic the proof of 2.6.1.1, we only need to
show that Tr (Tﬁ,) is a stable transfer of Try; (TM), where “stable transfer” has the above
meaning, that is the character identity 2.6.2.1 involving transfer factors. Note that M™
has a factor GL,,_ ;2 X GLy,_ n, /2 together with the automorphism 6(a,b) = (6(b), 0(a)),
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for which the theory of endoscopy is trivial: 8-conjugacy classes are in bijection with con-
jugacy classes in GL,,,_y, /2 (over K or K) via (a,b) — af(b) and the f-invariant irreducible
representations are the ones of the form o ® 6(0).

So we need to check that if g = (g1, go) is a strongly regular GLg,, (K)-conjugacy class in
(f}\igm(K) determined by a conjugacy class g1 in GL,,_n,/2(K) and a GLy, (K)-conjugacy
class go in GLy, (K), and if hg is the Og,, (K )-conjugacy class in SOg,,(K) corresponding
to go, then

A@NO,SONO (ho,90) = Agi,,.. 504, (91, 0), (91, 90))-

Although this is most likely known by the experts (even in a general setting) we will check it.
Fortunately the transfer factors have been computed by Waldspurger in | |. We recall
his notations and formulas. The conjugacy class g1, being regular enough, is parametrized
by a finite set I3, a collection of finite extensions K; of K for i € I, and (regular enough,
i.e. generating Ki; over K) elements z;; € K4;. Asin | |, go is parametrized by
a finite set Iy, finite extensions K4; of K, Ky;-algebras K;, and z; € K;. Each K; is
either a quadratic field extension of K4; or K4; x K1;, and x; is determined only modulo
NKZ./KhKiX. Then g is parametrized by I = I1 U1y, with K; = K4 x K4; and z; = (21, 1)
for i € Iy, and the same data for Iy. Let 7; be the non-trivial K;-automorphism of Kj,
and y; = —x;/7;(x;). Let I* be the set of i € I such that K; is a field (so I* C I). For any
i € I, let ®; be the set of K-morphisms K; — K, and let Pr(T) = [],; [Tpca, (T — &(yi)).
Define Py, similarly. For i € I* (vesp. I}), let C; = x; ' Pj(y;)Pr(—1)y; ™ (1 + ;) (resp.
Cio = xi_lPI’O(yi)PIO(—l)yil_m(l + vyi)). We have dropped the factor n of | , 1.10],
because as remarked above, the transfer factors do not depend on the chosen splitting.
Observe also that the factors computed by Waldspurger are really the factors Ag/Apy of
[ , 5.3], but the € factor is trivial so they are complete.

Waldspurger shows that

NGt so,, ((91:h0), (91,90)) = ] sienk, k., (Ci)
ier-

where signy., /. is the nontrivial character of K¥:/Nik, k., K. We are left to show that
[Licrsigng, k., (Ci/Cip) = 1.

Ci/Cio = y /"™ 1T IT w (=1 —o(y;))

j€l o€P;

=TI II u' @+ é@in) (v + élai) ™) (blajn) — 1) (p(z0) " = 1)

Jj€h d’eq)i]

= ()" N | TT T i+ 6(zi)(@(0) ™ = 1)

j€I1 (z’G(I)i]'

where ®,; is the set of K-morphisms Ky; — K. Thus

H SignKi/Kii(Ci/Ci,O) = H SignKi/Kii’KX ((_1)m7N0/2>

i€l iel*
=1
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since [[;cp-signg, /i, [xx is easily checked to be equal to the Hilbert symbol with the
discriminant of our special orthogonal group, which is 1 (this is the condition for g to

have a norm in the special orthogonal group). O

Assumption 2.6.2.2. Let Fjy be a totally real field, and let m be a regular, L-algebraic,
self-dual, cuspidal representation of GLany1(AR,). Assume that for any place v|p of Fy,
my has vectors fizred under the Iwahori. Then there exists a RLASDC representation my of
GL1(AR,) ifn is odd (resp. GL3(Ag,) if n is even), a totally real extension F/Fy which is

trivial or quadratic, and an automorphic representation Il of G(Af) such that
1. For any place v|p of Fy, mo, is unramified.
2. BCp/p,(m) and BCp)p,(mo) remain cuspidal.

3. For any place v of F above p, 1I,, has invariants under the action of the Iwahori
subgroup of G(Fy).

4. For any finite place v of F' such that BCp/p, (7)y and BCpy g, (m0)y are unramified, 11,
is unramified, and via the inclusion SOgy42(C) < GLay42(C) (resp. SO2p44(C) —
GL2,42(C)), the Satake parameter of 11, is equal to the direct sum of those of
BCr/p,(m)y and BCryg, (70)w-

This is very similar to Assumption 2.6.1.2. In fact in this case the group Sy is trivial,
which explains why it is enough to take a quadratic extension of Fy. This is only necessary
to be able to define the group G. The crucial observation is that the local Langlands
parameters of BCp/ g, (7) ® BCp g, (m0) at the infinite places correspond to parameters for
the compact groups SOgy,+2/R (resp. SOg2;,44). These parameters are of the form

" & P Indfif (2 — (2/2)")
=1

(r1>...>ry, >0) for BCpp, (), and

1 if n is odd
€D Ind%ﬁ (z—(2/2)") if nis even

so that the direct sum of the two is always of the form

k—1
1@ eo @ dyf (2 - (2/2)7)
i=1

for distinct, positive r;. This is the Langlands parameter corresponding to the representa-
tion of SO9x(R) having highest weight Zle(ri —(k—1))e; with rp = 0, where the root sys-
tem consists of the +e; £e; (i # j) and the simple roots are e; —es, ..., ex_1 —ex, €x—1 +€k.
Note that, contrary to the symplectic case, there is one outer automorphism of the
even orthogonal group, and so there may be two choices for the Satake parameters of II,,
mapping to the same conjugacy class in the general linear group. Fortunately we only need

the existence.
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Proposition 2.6.2.3. Let F' be a totally real field, and let w be an L-algebraic, self-dual,
cuspidal representation of GLap+1(Ar). Suppose that for any place v of F above p, 7, has

invariants under an Iwahori. Then for any complex conjugation c € G, Tr(p,, ... (7)(c)) =
+1.

Proof. The proof is similar to that of Proposition 2.6.1.3. We use the previous assumption
to be able to assume (after base change) that there is a representation my (of GLi(Af) if n
is odd, GL3(Ar) if n is even) such that 7@ m transfers to an automorphic representation IT
of G(Ap), with compatibility at the unramified places. The representation II has Iwahori-
invariants at the p-adic places of F', and thus it defines a point of the eigenvariety 2
associated with G (and an idempotent defined by an open subgroup of G(A%)f)). By
Theorem 2.5.0.3, I is congruent (at all the complex conjugations, and modulo arbirarily big
powers of p) to another automorphic representation II' of G, and p,, ... (IT') is irreducible.
Hence py, ... IT') = py, .00 (') for some RLASDC 7’ of GLgy(AF), which is unramified at
all the p-adic places of F, and we can apply Proposition 2.6.1.3 to /. This proves that

Tr(pry 100 (1) () = =Tr(p1y, 000 (T0) (¢)) = £L. m

2.6.3 Almost general case

We will now remove the hypothesis of being Iwahori-spherical at p, and allow more general

similitude characters, using Arthur and Clozel’s base change.

Lemma 2.6.3.1. Let E be a number field, S a finite set of (possibly infinite) places of
E, and for each v € S, let K™ be a finite abelian extension of E,. There is an abelian

extension F' of E such that for any v € S and any place w of F' above v, the extension
F,/E, is isomorphic to K(”)/EU.

Proof. After translation to local and global class field theory, this is a consequence of
| , Théoréme 1]. O

Before proving the last theorem, we need to reformulate the statement, in order to
make the induction argument more natural. Let 7w be a regular, L-algebraic, cuspidal
representation of GLa,+1(Afp). At a real place v of F, the Langlands parameter of 7, is

of the form
€ ® @Ind%ﬁz — (z/2)™
7

and according to the recipe given in | , Lemma 2.3.2], p,, ... (7)(cy) should be in the

same conjugacy class as

(=1)°

—= O
O =
= O
S =
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Since it is known that det p,, ... (7)(cy) = (=1)T", p,, .o (7)(cy) ~ LL(my)(4) if and only
if |Trp,, .0 (7)(cy)| = 1. Similarly, in the even-dimensional case, p,, ... (7)(cy) ~ LL(7,)(j)
if and only if Trp,, ... (7)(cy) = 0.

Theorem 2.6.3.2. Let n > 2, F a totally real number field, m a reqular, L-algebraic,
essentially self-dual, cuspidal representation of GL,(Afp), such that 7 ~ ((n] - |7) o det) ®

w, where n is an Artin character. Suppose that one of the following conditions holds
1. n is odd.
2. n is even, q is even, and ns(—1) = 1.

Then for any complex conjugation ¢ € G, |Tr(p,, ... (7)(c))| < 1.

Proof. We can twist 7 by an algebraic character, thus multiplying the similitude character
n|-|? by the square of an algebraic character. If n is odd, this allows to assume n =1, =0
(by comparing central characters, we see that n| - |7 is a square). If n is even, we can
assume that ¢ = 0 (we could also assume that the order of 1 is a power of 2, but this is not
helpful). The Artin character 7 defines a cyclic, totally real extension F’/F. Since local
Galois groups are pro-solvable, the preceding lemma shows that there is a totally real,
solvable extension F”/F’ such that BCpx /r(m) has Iwahori invariants at all the places
of F” above p. In general BCpn /F(ﬂ') is not cuspidal, but only induced by cuspidals:
BCpyp(m) = m .. . Br,. However it is self-dual, and the particular form of the Langlands
parameters at the infinite places imposes that all m; be self-dual. We can then apply
Propositions 2.6.1.3 and 2.6.2.3 to the m;, and conclude by induction that for any complex
conjugation ¢ € G, the conjugacy class of p,, .. (7m)(c) is given by the recipe found in
[ , Lemma 2.3.2], that is to say |Trp,, ... (7)(c)| < 1. O

Remark 2.6.3.3. The case n even, 1oo(—1) = (—=1)4*! is trivial. The case n even, q odd

and Noo(—1) = —1 remains open.

For the sake of clarity, we state the theorem using the more common normalization of

C-algebraic representations.

Theorem 2.6.3.4. Let n > 2, F' a totally real number field, m a regular, algebraic, essen-
tially self-dual, cuspidal representation of GLy(AR), such that ©¥ ~ n|det |27, where n is

an Artin character. Suppose that one of the following conditions holds
1. n is odd.
2. n is even, q is odd, and nso(—1) = 1.

Then for any complex conjugation c € G, |Tr(r,, ... (7)(c))] < 1.

Proof. Apply the previous theorem to | det |(*~1)/2, O
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2.6.4 A supplementary, non-regular case

In this subsection G is the orthogonal group of section 2.5.

Assumption 2.6.4.1. Let Fy be a totally real field, and let m be an L-algebraic, self-dual,
cuspidal representation of GLap(Af,). Assume that for any place v|p of Fy, m, has vectors
fized under the Twahori, and that for any real place v of Fy,

n
LL(my) ~ P Indy (2 (2/2))
i=1
where T, > ... > r1 > 0 are integers (note that 7 is not regular if 11 = 0). Then
there exists a totally real extension F/Fy which is trivial or quadratic, and an automorphic
representation I1 of G(Ap) such that

1. BCg/p,(m) remains cuspidal.

2. For any place v of F' above p, 11, has invariants under the action of the Iwahori
subgroup of G(Fy).

8. For any finite place v of I such that BCpp (), is unramified, 11, is unramified,
and via the inclusion SOgy,12(C) < GLoy,(C), the Satake parameter of 11, is equal
to the one of BCpy/p, (7)o

Of course this is very similar to Assumptions 2.6.1.2 and 2.6.2.2, and as in the latter
case the group Sy is trivial.

For L-algebraic, self-dual, cuspidal automorphic representations of GLs,, having “almost
regular” Langlands parameter at the archimedean places as above, the corresponding p-adic
Galois representation is known to exist by | |. Exactly as in the previous subsection,

we have the following:

Theorem 2.6.4.2. Let n > 2, F' a totally real number field, m an L-algebraic, essentially
self-dual, cuspidal representation of GLa,(Afp), such that m¥ ~ nrm, where n is an Artin

character. Assume that at any real place v of F, n,(—1) =1 and

LL(my) ~ P Ind)E (2 (2/2)")

=1
where T, > ... > r1 > 0 are integers. Then for any complexr conjugation ¢ € Gp,
Tr<pbpyﬁoo (71')(0)) =0.
Proof. Identical to that of Theorem 2.6.3.2. O

Proposition 2.6.4.3. Let w be as in the previous theorem. Then for any place v of F
above p, p, ... (T)|ay, is Hodge-Tate. If o : F, — @p is a Qp-embedding, the o-Hodge-
Tate weights of p,...(T)|ay, are the rqo; (if ro1 = 0, it has multiplicity two), where
Tom > ... > rg1 > 0 are the integers appearing in LL(my,) as in the previous theorem

(where w is the real place of F' determined by o and tp, Loo).
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Proof. First observe that by totally real and solvable base change and Assumption 2.6.4.1,
we can assume that 7 corresponds to an automorphic representation IT of G(Af) having
Iwahori-fixed vectors at all the p-adic places, and thus corresponds to a point on the
eigenvariety 2 /E. Let p := p,, .. (), and let V' denote the E-vector space underlying
this representation (as usual E' is a “big enough” p-adic field).

Recall that for any p-adic place v of F', Dgen(V) is a free E®q, Fy(pipee )-module of rank
dimg V, together with a linear operator ©. As in 2.4.2.1 we can write E ®q, Fy(pp=) =~
I, Es ®F, Fo(ppe) and thus Dgen(V) = [[, Dsen,o(V) (0 runs over the embeddings
F, — @p and E, is just a copy of E). The operator O is just a collection of operators 0,
on each Dgepn (V). Moreover ©, comes from the infinitesimal action of Gal(F,(pp~)/Fy)
on Dsen o(V'), hence its characteristic polynomial has coefficients in E;. Therefore ©, can
be defined over E, = E, ®F, F\, C E; ®F, F,(upe), but since the result is not functorial,
we will not directly use it. Note that if we write E, ®p, F,(pp=) as a product of fields
(algebraic extensions of E,), ©, can be concretely described as a collection of matrices
over these fields, all being similar to a single matrix over E,, so that the semisimplicity of
O, is equivalent to the semisimplicity of any of these matrices. For this reason in the rest
of the proof we will treat ©, as an endomorphism of a vector space over @p.

The proposition is a small improvement of | ||[Lemma 7.5.12]. By this Lemma,
which states the analyticity of the Sen polynomial, we know that the characteristic poly-

nomial of ©, is

i=1
as expected. We need to show that the Sen operator O, is semisimple. It is enough
to show that ker ©, = ker ©2 in the case 71,0 = 0. This is in turn implied by the fact
that p is orthogonal, because then by functoriality Dgen (V') admits a non-degenerate
quadratic form for which ©, is infinitesimally orthogonal, i.e. antisymmetric, and since
ker(©2 —r2) is non-degenerate if i > 1, the orthogonal of these eigenspaces, that is ker ©2,
is non-degenerate too. Finally, all the elements of soo are semisimple.

Let us show that p is indeed orthogonal, that is that V admits a G p-invariant non-
degenerate quadratic form. Note that for automorphic RLASDC representations of GLs,, /F,
it is known that the associated Galois representation is orthogonal by the main result of
| |. By the analogue of Assumption 2.4.1.1 for the special orthogonal group G, all
classical points having weight “far enough from the walls” come from such representations.
We will use a deformation argument similar to | |[Proposition 2.4].

First we replace 2" by a curve. Of course we want this curve to contain a given
classical point z € | 27| corresponding to II. We also want to ensure that there are “many”
classical points on %/, that is to say we want Proposition 2.3.2.6 to hold. Let ¢  be an open
affinoid of 2" x4 #' containing z, where #” is the one-dimensional reduced subspace of

W parameterizing weights of the form

(xvvi)v|p,i:1..n =y (H H NFU/QI? (CBZ,ZZ))

v =1
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times w(z), for v a continuous character of Z;. By | ||Lemma 7.8.11], there is a
smooth connected affinoid curve %’ and a finite morphism f : %’ — % whose image is an
irreducible component of % containing z, such that the 2n-dimensional pseudocharacter

f¥ o T is the sum of the traces of continuous representations
Rj : GF — GLO(Q/)(Mj)

for sheaves M; locally free of rank n; (3_;n; = 2n), and such that R; ®o ) k(y) is
absolutely irreducible for y in a Zariski-open subset of #.
We now work with %, and still denote by z any point of %/ above z € 2. Note that
—\ SS
(R Qo k(z)) ~ p. The points y of %’ at which the semisimplification of

B R; 0w k(y)
J
comes from an automorphic RLASDC representation of G Lo, are still Zariski-dense, and
by consideration of the Hodge-Tate weights, the representations R; are pairwise non-
isomorphic on a Zariski-open subset of Z”. Since T(g) = T(g~!) for all ¢ € G, each
Rj is either “self-dual” (in the sense that Tr(R;(g™!)) = Tr(R;(g)) for all g € Gp), or part
of a pair (R;j, R;j) (j # j') where Tr(R;(g™")) = Tr(R;/(g)) for all g € Gp, and thus

(Rj Qo) @) - (Rj’ Qo) m) i

for any point y of #.

To prove the orthogonality of p, it is enough to prove that for each “self-dual” Rj,
(R Qo) %) ” is orthogonal. We can now work locally, and simply consider R; as a
representation

R;j: Gp — GL,,(0,)

where O, is the local ring of % at z, a (henselian) discrete valuation ring. We conclude

using the following lemma. O

Lemma 2.6.4.4. Let A be a discrete valuation ring, let K be its fraction field and k its
residue field, and assume that char(k) # 2. Let R : G — GL,(A) a representation such
that R ® o K is absolutely irreducible and orthogonal. Then (R ®4 k)* is also orthogonal.

Proof. We first remark that the semisimplification of an orthogonal representation is again
orthogonal. Denote by w a uniformizer of A. Let V' = K" be the K-vector space underlying
the representation R. By assumption V admits a Gp-stable lattice L = A™. Fix a Gp-
invariant, non-degenerate symmetric bilinear form (-,-) on V™. Replacing L by w*L for

some integer k > 0 if necessary, we can assume that
LY :={veV |VuelL, (uv) € A}
contains L. We wish to find a lattice L' such that L ¢ L' ¢ LY and (L')" = L'. This

would endow L'/wL' with a Gp-invariant non-degenerate symmetric bilinear form, and
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it is well-known that (L'/wL')® ~ (R ®4 k)*. Even though this will not be possible in
general, by attempting to do so we will show that (R ®4 k)™ is orthogonal.

The A-module LY /L is torsion and of finite type. Let n be the smallest integer such
that @"LY C L. If n > 1, replace L by L + w™ ' LY, which strictly contains L and is still
integral with respect to (-,-). After a finite number of iterations of this procedure, we are
left with a lattice L such that

LcLYcw 'L

Therefore
(L/wL)*® ~ (LY/L)” ® (L/wL)™

and it is straightforward to check that (-,-) induces on both factors a Gp-invariant non-

degenerate symmetric bilinear form. O
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Partie 3

Dimensions of spaces of level one automorphic forms for split
classical groups using the trace formula

3.1 Introduction

Let G be a Chevalley reductive group over Z admitting discrete series at the real place, i.e.
one of SO2,41, Spy,, or SOy, for n > 1. We give an algorithm to compute the geometric
side in Arthur’s “simple” trace formula in | | (see also | |) for G and the trivial
Hecke operator in level one at the finite places, that is the characteristic function of G(z)

There are essentially three steps to compute the geometric side of the trace formula:

1. for any prime p, compute the local orbital integrals of the characteristic function
of G(Z,) at torsion elements 7, in G(Q,) (with respect to a Haar measure on the

connected centraliser of 7,),

2. for any semisimple elliptic and torsion conjugacy class v € G(Q) with connected cent-
raliser I, use the Smith-Minkowski-Siegel mass formula to compute Vol(I(Q)\I(A)),

3. analyse the character of stable (averaged) discrete series on arbitrary maximal tori
of G(R) to express the parabolic terms using elliptic terms for groups of lower

semisimple rank.

We explain how to compute local orbital orbitals for special orthogonal groups (resp.
symplectic groups) in sections 3.3.2.2 and 3.3.2.3, using quadratic and hermitian (resp.
alternate and antihermitian) lattices. To compute the volumes appearing in local orbital
integrals we rely on the local density formulae for such lattices given in | I, | |
and | ]. We choose a formulation similar to | | for the local and global volumes
(see section 3.3.2.4). For the last step we follow | |, and we only add that for the
trivial Hecke operator the general formula for the archimedean factor of each parabolic
term simplifies significantly (Proposition 3.3.3.2). Long but straightforward calculations
lead to explicit formulae for the parabolic terms (see section 3.3.3.4).

Thus for any irreducible algebraic representation V) of G¢ characterised by its highest
weight A, we can compute the spectral side of the trace formula, which we now describe. Let
K be a maximal compact subgroup of G(R) and let g = C ®g go where go = Lie(G(R)).

For an irreducible (g, K )-module 7, consider the Euler-Poincaré characteristic

EP (7o @ V) = Y (=1)"dim H' (g, Koo), Too ® VY)

i
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where V), is seen as a representation of G(R). Let I1g;s.(G) be the set of isomorphism classes
of irreducible (g, K») x G(Af)-modules occurring in the discrete automorphic spectrum
of G. For 7 € Ilgisc(G) denote by m, € Z>1 the corresponding multiplicity. Let II§ (G)

be the set of m € Ilgisc(G) which are unramified at all the finite places of Q. For any
dominant weight A the set of 7 € II§I (G) such that H*((g, Koo), Too ® V) # 0 is finite.

disc
The spectral side of Arthur’s trace formula in | | for our choice of function at the
finite places is
> meEP(re @ VY). (3.1.0.1)
TEIYE (G)

This integer is interesting but it is only an alternate sum. To obtain subtler informa-
tion, e.g. the sum of m, for 7 isomorphic to a given (g, K~ )-module, we use Arthur’s
endoscopic classification of the discrete automorphic spectrum for symplectic and special
orthogonal groups | |. Arthur’s work allows to parametrise the representations m con-
tributing to the spectral side 3.1.0.1 using self-dual automorphic representations for general
linear groups. Denote Wg the Weil group of R and e¢/g the character of Wg having kernel
We ~ C*. For w € %Z define the bounded Langlands parameter I, : Wr — GL2(C) as

Indy? (2 — (2/]2)*")
so that Ip ~ 1 @ ec/r. The three families that we are led to consider are the following.

1. Forn > 1land wy,...,w, € %Z\Zsuchthatwl > oo > wy > 0, define S(wy, ..., wy)
as the set of self-dual automorphic cuspidal representations of GLg,/Q which are

unramified at all the finite places and with Langlands parameter at the real place
Iw1@"'@Iwn‘

Equivalently we could replace the last condition by “with infinitesimal character hav-
ing eigenvalues {+wy,...,+w,}’. Here S stands for “symplectic”, as the conjectural

Langlands parameter of such a representation should be symplectic.

2. For n > 1 and integers w; > --- > w, > 0 define O,(wy,...,w,) as the set of
self-dual automorphic cuspidal representations of GLa,1/Q which are everywhere

unramified and with Langlands parameter at the real place
le @ @Iwn @Eg/R

Equivalently we could replace the last condition by “with infinitesimal character

having eigenvalues {4wq, ..., tw,,0}". Here O, stands for “odd orthogonal”.

3. Forn > 1 and integers wy > -+ > wap—1 > way > 0 define O (w1, ..., way,) as the set
of self-dual automorphic cuspidal representations of GLy,/Q which are everywhere

unramified and with Langlands parameter at the real place
le @ T @ Iw2n'

In this case also we could replace the last condition by “with infinitesimal character
having eigenvalues {twy, ..., +tway,}”, even in the slightly singular case where wa, =

0. Here O, stands for “even orthogonal”.
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Following Arthur using these three families we can define, for any G and A as above, a set
U (G)unrA of “formal Arthur-Langlands parameters” which parametrises the representations
7 € I[I§" (G) contributing to 3.1.0.1. We stress that for a given G all three families take

disc
part in these formal parameters. Among these formal parameters, one can distinguish a

subset \II(G);?;)‘ of “simple” parameters, that is the tempered and non-endoscopic ones.

When G = SOg, 41 (resp. Spy,, resp. SOy,), this set is exactly S(wi,...,w,) (resp.
Oo(w1, ..., wy), resp. Op(wy, ..., way,)) where (w;); is determined by A. The contribution

of any element of \IJ(G);?;’/\ to the spectral side 3.1.0.1 is a non-zero number depending only

on G(R). Therefore it is natural to attempt to compute the cardinalities of the sets S(-),
Oo(+) and Oc(-) inductively, the induction being on the dimension of G. More precisely
we have to compute the contribution of ¥(G)™rA \II(G);?;/\ to 3.1.0.1 to deduce the
cardinality of ¥(G)¥™,

sim
When the highest weight X is regular, any element of ¥(G)™ is tempered and con-

unr
disc

series representation having same infinitesimal character as V). Thanks to the work of

sequently any 7 € IT{ (G) contributing to the spectral side is such that 7 is a discrete
Shelstad on real endoscopy and using Arthur’s multiplicity formula it is not difficult to
compute the contribution of ¥(G)"™ A\ ¥(G)"™* to the Euler-Poincaré characteristic on
the spectral side in this case (see section 3.4.2.1). The general case is more interesting be-
cause we have to consider non-tempered representations 7. Since Arthur’s construction
of non-tempered Arthur packets at the real place in | | is rather abstract, we have to
make an assumption (see Assumption 3.4.2.4) in order to be able to compute explicitly
the non-tempered contributions to the Euler-Poincaré characteristic. This assumption is
slightly weaker than the widely believed Assumption 3.4.2.3, which states that the relevant
real non-tempered Arthur packets at the real place coincide with those constructed long
ago by Adams and Johnson in | |.

Thus we obtain an algorithm to compute the cardinalities of the sets S(wi,...,wy),
Oo(w1, ..., wy) and Og(wy,...,ws,), under assumption 3.4.2.4 when A is singular. For
the computer the hard work consists in computing local orbital integrals. Our current
implementation, using Sage | |, allows to compute them at least for rank(G) < 6. See
section 3.7.2 for some values.

Once these cardinalities are known we can count the number of 7 € II§% (G) such
that 7o is isomorphic to a given (g, Ko )-module having same infinitesimal character as
V) for some highest weight A\. A classical application is to compute dimensions of spaces
of (vector-valued) Siegel cusp forms. For a genus n > 1 and m; > -+ > my, > n+
1, let r be the holomorphic (equivalently, algebraic) finite-dimensional representation of
GL,(C) with highest weight (mq,...,my). Let I'; = Spy,(Z). The dimension of the
space S;(I'y,) of level one vector-valued cuspidal Siegel modular forms of weight  can then
be computed using Arthur’s endoscopic classification of the discrete spectrum for Sp,,.
We emphasise that this formula depends on Assumption 3.4.2.3 when the my’s are not
pairwise distinct, in particular when considering scalar-valued Siegel cusp forms, of weight
my = --- = my. Our current implementation yields a dimension formula for dim S, (T';,)

for any n < 7 and any r as above, although for n > 3 it would be absurd to print this
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huge formula. See the table in section 3.5.4 for some values in the scalar case. The case
n = 1is well-known: @, oM (I'1) = C[E4, Eg] where the Eisenstein series Fy, Fg are
algebraically independant over C, and the dimension formula for S,,(I';) follows. Igusa
[ | determined the ring of scalar Siegel modular forms and its ideal of cusp forms
when n = 2, which again gives a dimension formula. Tsushima [ I, [ | gave a
formula for the dimension of S,(I'2) for almost all representations r as above (that is for
mi > mg > 5 or mp = mg > 4) using the Riemann-Roch-Hirzebruch formula along with a
vanishing theorem. It follows from Arthur’s classification that Tsushima’s formula holds for
any (my, mg) such that m; > mg > 3. In genus n = 3 Tsuyumine | | determined the
structure of the ring of scalar Siegel modular forms and its ideal of cusp forms. Recently
Bergstrom, Faber and van der Geer | | studied the cohomology of certain local
systems on the moduli space A3 of principally polarised abelian threefolds, and conjectured
a formula for the Euler-Poincaré characteristic of this cohomology (as a motive) in terms of
Siegel modular forms. They are able to derive a conjectural dimension formula for spaces of
Siegel modular cusp forms in genus three. Our computations corroborate their conjecture,
although at the moment we have only compared values and not the formulae.

Of course the present work is not the first one to attempt to use the trace formula
to obtain spectral information, and we have particularly benefited from the influence of
[ | and | ]. In | | Gross and Pollack use a simpler version of the trace for-
mula, with hypotheses at a finite set S of places of QQ containing the real place and at least
one finite place. This trace formula has only elliptic terms. They use the Euler-Poincaré
function defined by Kottwitz in | | at the finite places in S. These functions have the
advantage that their orbital integrals were computed conceptually by Kottwitz. At the
other finite places, they compute the stable orbital integrals indirectly, using computations
of Lansky and Pollack | | for inner forms which are compact at the real place. They
do so for the groups SLo, Sp,; and Go. Without Arthur’s endoscopic classification it was
not possible to deduce the number of automorphic representations of a given type from the
Euler-Poincaré characteristic on the spectral side, even for a regular highest weight A. The
condition card(S) > 2 forbids the study of level one automorphic representations. More re-
cently, Chenevier and Renard | | computed dimensions of spaces of level one algebraic
automorphic forms in the sense of | |, for the inner forms of the groups SO7, SOg and
SOy which are split at the finite places and compact at the real place. They used Arthur’s
classification to deduce the cardinalities of the sets S(w1,ws,ws) and S(wi,ws, w3, wy)
and, using the conjectural dimension formula of | |, Oc(w1,wa,ws,wy). Unfortu-
nately the symplectic groups do not have such inner forms, nor do the special orthogonal
groups SO,, when n mod 8 ¢ {—1,0,1}. Thus our main contribution is thus the direct

computation of local orbital integrals.

3.2 Notations and definitions

Let us precise some notations. Let A; denote the finite adeles H; Qpand A=RxA;. We

will use boldface letters to denote linear algebraic groups, for example G. For schemes we

50



denote base change using simply a subscript, for example G, instead of G x¢ @Q, where
G is defined over Q. For a reductive group G we abusively call “Levi subgroup of G” any
Levi subgroup of a parabolic subgroup of G, i.e. the centraliser of a split torus. Rings are
unital. If R is a ring and A a finite free R-module, rkr(A) denotes its rank. If G is a finite
abelian group G” will denote its group of characters.

Let us define the reductive groups that we will use. For n > 1, let ¢, be the quadratic

form on Z™ defined by
L(n+1)/2]

qn(z) = Z Liln41—i-

=1

Let O,, be the algebraic group over Z representing the functor

Category of commutative rings — Category of groups

A {g€GL,(A) | gnog=aqn}-

For n odd define SO,, as the kernel of det : O,, — uo. For n even, det : O,, — s factors
through the Dickson morphism Di : O,, — Z/2Z (constant group scheme over Z) and the
morphism Z/27 — pz “mapping 1 € Z/27Z to —1 € pg”. In that case SO,, is defined as the
kernel of Di. For any n > 1, SO,, — Spec(Z) is reductive in the sense of | ||Exposé
XIX, Définition 2.7|. It is semisimple if n > 3.

For n > 1 the subgroup Sp,,, of GL2,/7Z defined as the stabiliser of the alternate form

n
(@,9) = D> TiYant1-i — Tani1-ili
i=1
is also semisimple over Z in the sense of | |[Exposé XIX, Définition 2.7].

If G is one of SOg,41 (n > 1), Spy,, (n > 1) or SOy, (n > 2), the diagonal matrices
form a split maximal torus T, and the upper-triangular matrices form a Borel subgroup
B. We will simply denote by t = (¢1,...,t,) the element of T(A) (A a commutative ring)
whose first n diagonal entries are t1,...,t,. For i € {1,...,n}, let e, € X*(T) be the

character t — t;. The simple roots corresponding to B are

€] —€2,...,Ep_1 — €Ep,En ifG:SOQn+1,
€1 —€9,...,6n_1 — €p, 26, if G = Sp,,,,
€1 —€9,...,€n_1—€n,en_1+e, if G=S8S0y,.

In the first two cases (resp. third case), the dominant weights in X*(T) are the k =
o kiep with ky > - >k, >0 (vesp. k1 > -+ > ko1 > |knl).

3.3 Computation of the geometric side of Arthur’s trace for-
mula

Arthur’s invariant trace formula | | for a reductive group G/Q simplifies and becomes
more explicit when G(R) has discrete series and a “nice” smooth compactly supported dis-

tribution fs(geo)dgoo is used at the real place, as shown in | | (see also | | for a
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topological proof). In section 3.3.1 we recall the elliptic terms Ty (foo (goo)dgoo Hp fp(gp)dgp)
on the geometric side of this trace formula, where Hp fp(gp)dgy is a smooth compactly sup-
ported distribution on G(Ay). Then (section 3.3.2) we give an algorithm to compute these
elliptic terms when G is a split classical group and for any prime p, f,(g,)dgy is the trivial
element of the unramified Hecke algebra. Finally (section 3.3.3) we give explicit formulae

for the parabolic terms using the elliptic terms for groups of lower semisimple rank.

3.3.1 Elliptic terms

3.3.1.1 Euler-Poincaré measures and functions

Let G be a reductive group over R. Thanks to | |, we have a canonical signed Haar
measure on G(R), called the Euler-Poincaré measure. It is non-zero if and only if G(R)
has discrete series, that is if and only if G has a maximal torus defined over R which is
anisotropic.

So assume that G(R) has discrete series. Let K be a maximal compact subgroup of
G(R), go = Lie(G(R)) and g = C®g go. Let V) be an irreducible algebraic representation
of G, parametrised by its highest weight \. We can see V) as an irreducible finite-
dimensional representation of G(R), or as an irreducible (g, K)-module. If 7 is a (g, K)-

module of finite length, consider

EP(m,\) := > (~1)'dim H' (g, K), 7 ® Vy).
Clozel and Delorme | ||[Théoréme 3| show that there is a smooth, compactly supported

distribution fy(g)dg on G(R) such that for any 7 as above,

Tr (7 (fa(9)dg)) = EP(m, A).

If 7 is irreducible and belongs to the L-packet Ilgisc(A) of discrete series having the same
infinitesimal character as Vj, this number is equal to (—1)4(G®) where 2¢(G(R)) =
dim G(R) — dim K. If 7 is irreducible and tempered but does not belong to Ilgisc(A)
it is zero.

These nice spectral properties of fy allow Arthur to derive nice geometric properties,
similarly to the p-adic case in | |. If v € G(R), the orbital integral O~(fx\(g9)dg)
vanishes unless « is elliptic semisimple, in which case, letting I denote the connected
centraliser of v in G:

O,(fx(g)dg) = Tr (v|V) HEP I(R)-
In fact | ||[Theorem 5.1] computes more generally the invariant distributions Ing (7, fx)
occurring in the trace formula (here M is a Levi subgroup of G), and the orbital integrals
above are just the special case M = G. These more general invariant distributions will be

used in the parabolic terms.

3.3.1.2 Orbital integrals for p-adic groups

We recall more precisely the definition of orbital integrals for the p-adic groups. Let p be
a prime and G a reductive group over Q,. Let K be a compact open subgroup of G(Q)),
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v € G(Qp) a semisimple element, and I its connected centraliser in G. Lemma 19 of | |
implies that for any double coset KcK in G(Q,), the set X of [g] € K\G(Q,)/I(Q,) such
that gyg~! € KcK is finite. Let u (resp. v) be a Haar measure on G(Q,) (resp. I(Qy)).
Then the orbital integral at v of the characteristic function of KcK

1ker (9797") @(g>

O'Y(]-KcKnuvy) = dv

/G(Qp)/I(Qp)

is equal to

w(K)
2 v(g1KgNI(Qy))

lgleXx

The Haar measure O~(1gck, it, V)V is canonical, i.e. it does not depend on the choice of
v. Thus O, canonically maps the space of smooth compactly supported complex valued
distributions on G(Q,) (i.e. linear combinations of distributions of the form 1x.x (g)du(g))

to the one-dimensional space of complex Haar measures on I(Q,).

Remark 3.3.1.1. Note that any automorphism of the algebraic group 1 preserves v, and
thus if I and v are fized, for any algebraic group I isomorphic to 1, there is a well-defined

corresponding Haar measure on I'.

3.3.1.3 Definition of the elliptic terms

Let G be a reductive group over Q such that G(R) has discrete series. Let A be a highest
weight for the group G¢. Choose a Haar measure dgo, on G(R), and let fo, be a smooth
compactly supported function on G(R) such that the distribution foo \(goo)dgee computes
the Euler-Poincaré characteristic with respect to V) as in 3.3.1.1. Let Hp fp(gp)dgy be
a smooth compactly supported distribution on G(Ay). For almost all primes p, Gg, is
unramified, f, = 1k, and i} K, dg, = 1 where K, is a hyperspecial maximal compact
subgroup in G(Q,). Let C be the set of semisimple conjugacy classes cl(y) in G(Q) such
that v belongs to an anisotropic maximal torus in G(R). For cl(y) € C, denote by I the
connected centraliser of v in G. Given such a v, for almost all primes p, Ig, is unramified
and O~(fp(gp)dgp) is the Haar measure giving measure one to a hyperspecial maximal
compact subgroup of I(Q,) (see | , Corollary 7.3]). Thus [], Oy(fp(gp)dgp) is a well-
defined complex Haar measure on I(Af). Let f(g9)dg = foo,r(9o0)d9oo [1, fp(9p)dgp- The

elliptic part of the geometric side of Arthur’s trace formula is

Vol(I(Q)\I(A))
Cent (v, G(Q))/I(Q))

Ta(f(9)dg) = card Tr(v| Vi) (3.3.1.1)

cl(y)eC

where I(R) is endowed with the Euler-Poincaré measure, I(Ay) the complex Haar measure
[1, O+(fp(gp)dgp) and I(Q) the counting measure. The set of cl(y) € C' such that for any
prime p, v is conjugate in G(Q)) to an element belonging to the support of f, is finite, so

that the sum has only a finite number of nonzero terms.
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3.3.2 Computation of the elliptic terms in the trace formula

Our first task is to explicitly compute To(f(g)dg) when G is one of SOg;,11, Spy,, or SOy,
and moreover for any prime p, f, = 1g(z,) and fG(Zp) dg, = 1. In this case any 7 € G(Q)

whose contribution to Ten(f(g)dg) is nonzero is torsion (y"

= 1 for some integer r > 0),
since 7 is compact in G(Q,) for any place v. Here “compact” means that the smallest
closed subgroup of G(Q,) containing v is compact, and it is equivalent to the fact that
the eigenvalues of v in any faithful algebraic representation of G@ have norm one.

First we describe the semisimple conjugacy classes in G(Q) and their centralisers, a
necessary first step to compute the set C' and the groups I. Then we explain how to
enumerate the conjugacy classes of torsion elements in the group G(Z,). To be precise we

can compute a collection of subsets (Y;)s of G(Z,) such that

{9€G(Zy)|3r>0,¢" =1} = | [{zya™" [y € Vs, 2 € G(Zy)).
s
Note that this leaves the possibility that for a fixed s, there exist distinct 3,7’ € Yy which
are conjugated under G(Z,). Thus it seems that to compute local orbital integrals we
should check for such cases and throw away redundant elements in each Yy, and then
compute the measures of the centralisers of y in G(Z,). This would be a computational
nightmare. Instead we will show in section 3.3.2.3 that the fact that such orbital integrals
are masses (as in “mass formula”) implies that we only need to compute the cardinality of
each Y,. Finally the Smith-Minkowski-Siegel mass formulae of | | provide a means to

compute the global volumes.

3.3.2.1 Semisimple conjugacy classes in classical groups

Let us describe the absolutely semisimple conjugacy classes in classical groups over a field,
along with their centralisers. It is certainly well-known, but we could not find a reference.
We explain in detail the case of quadratic forms (orthogonal groups). The case of alternate
forms (symplectic groups) is similar but simpler since characteristic 2 is not “special” and
symplectic automorphisms have determinant 1. The case of (anti-)hermitian forms (unitary
groups) is even simpler but it will not be used hereafter.

Let V' be a vector space of finite dimension over a (commutative) field K, equipped with
a regular (“ordinaire” in the sense of | , Exposé XII|) quadratic form ¢. Let v € O(q)
be absolutely semisimple, i.e. v € Endg (V') preserves ¢ and the finite commutative K-
algebra K[v] is étale. Since =y preserves ¢, the K-automorphism 7 of K[v] sending 7 to
7~1 is well-defined: if dimg V is even or 2 # 0 in K, 7 is the restriction to K[y] of the
antiautomorphism of End g (V') mapping an endomorphism to its adjoint with respect to the
bilinear form By, corresponding to ¢, defined by the formula By (z,y) := ¢(z+y)—q(x)—q(y).

In characteristic 2 and odd dimension, (V, ¢) is the direct orthogonal sum of its y-stable
subspaces V' = ker(y—1) and V" = ker P(~y) where (X —1)P(X) € K[X]\{0} is separable
and annihilates . If V" were odd-dimensional, the kernel of By |y «y» would be a y-stable
line Kz with ¢(z) # 0, which imposes y(z) = =, in contradiction with P(1) # 0. Thus
K[y] = K [y|vr] x K if V" # 0, and 7 is again well-defined.
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Thanks to 7 we have a natural decomposition as a finite product:

(K[v),7) = H(Am%')

%

where for any i, A; is a finite étale K-algebra generated by +; such that ~; — v~ lisa
well-defined K-involution 7; of A; and F; = {z € A;|7i(x) = z} is a field. Moreover the

minimal polynomials P; of «; are pairwise coprime. For any 4, either:
e v2=1and A; = K,
e 72 £ 1 and A; is a separable quadratic extension of F;, Gal(4;/F;) = {1,7;},
e v2 £ 1, A; ~ F; x F; and 7; swaps the two factors.

Let Iiviv, Iaela and Igye be the corresponding sets of indices. There is a corresponding

V=V

where V; is a projective A;-module of constant finite rank.

orthogonal decomposition of V:

Lemma 3.3.2.1. For any i, there is a unique T;-hermitian (if T; is trivial, this simply
means quadratic) form h; : Vi — F; such that for any v € Vi, q(v) = Trp, /i (hi(v)).

Proof. If © € Iy this is obvious, so we can assume that dimp, A; = 2. Let us show that

the K-linear map

T : {r;-hermitian forms on V;} — {K-quadratic forms on V; preserved by ~; }

hi (’U — TrFi/Khi(U))

is injective. If h; is a 7;-hermitian form on V;, denote by By, the unique 7;-sesquilinear map
Vi x V; — A; such that for any v,w € Vi, hi(v + w) — hi(v) — hi(w) = Trg, /5, By, (v, w),
so that in particular h;(v) = By, (v,v). Moreover for any v,w € V;, Bpgp,)(v,w) =
Tra, Kk Bn;(v,w). If h; € kerT, then By, = 0 and by non-degeneracy of Try, x we
have By, = 0 and thus h; = 0.

To conclude we have to show that the two K-vector spaces above have the same dimen-
sion. Let d = dimg F; and n = dim, V;, then dim g {7;-hermitian forms on V;} = dn?. To
compute the dimension of the vector space on the right hand side, we can tensor over K
with a finite separable extension K’/K such that ; is diagonalizable over K’. Since vZ # 1
the eigenvalues of 1 ®7; on K' @ V; are tq, tfl, ey ty, t;l where the tjl are distinct and
# 1. Furthermore each eigenspace U, :=ker(1®@; — t, ® 1),U, :=ker(1®v; — ;' @ 1)
has dimension n over K’'. If ¢’ is a K'-quadratic form on K’ @ V; preserved by 1 ® ~;,
then:

e for any k, q’|Uki = 0 since 2 # 1,

e for any k 75 l, BQ'|U§><Uli = 0 since tk/tl,tktl 75 1.
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Hence ¢’ is determined by the restrictions of By to U, ]:r x U, ", and conversely any family
of K'-bilinear forms U,” x U, — K’ (k € {1,...,d}) give rise to a K’-quadratic form on
K' @k V; preserved by 1 ® v;, and we conclude that the dimension is again dn?. O

The regularity of ¢ implies that of h; (when ’y? # 1, regularity means non-degeneracy
of By,). In the split case, V; can be more concretely described as a pair (W;, W) of vector
spaces over F; having the same dimension, h; identifies W/ with the dual W} of W; over
F;, and thus the pair (V;, h;) is isomorphic to ((W;, W), (w, f) — f(w)).

If instead of g we consider a non-degenerate alternate form (-,-), we have the same
kind of decomposition for (K[v],v). Moreover the above lemma still holds if instead of
considering hermitian forms h; we consider 7;-sesquilinear forms B; : V; x V; — A; such
that for any v € V;, Try, /5, (Bi(v,v)) = 0.

Proposition 3.3.2.2. Two absolutely semisimple elements v,~" of O(V,q) are conjugate
if and only if there is a bijection o between their respective sets of indices I and I' and
compatible isomorphisms (A;, ;) ~ (A;(i),'y(;(i)) and (Vi, h;) ~ (Vg’(i),h;(i)) Moreover
the algebraic group Cent(y, O(V, q)) is naturally isomorphic to

I] oi,hi) x ] Resp xU(Vi,hi) x ] Resp xGL(W;).

7;eltriv ie[ﬁeld ie[split

If dimg V is odd O(V, q) = SO(V, q) X u2, so this proposition easily yields a description
of absolutely semisimple conjugacy classes in SO(V,q) = SO(V, q)(K) and their central-
isers. If dimg V is even the proposition still holds if we replace O(V,q) by SO(V, q) and
Hielmv O(V;, h;) by S (Hielmv O(Vi,hi)) and add the assumption Iy # 0. If dimg V
is even and Iy, = 0, the datum (A;,~;, Vi, hi)ier determines two conjugacy classes in
SO(V, q).

In the symplectic case there is a similar proposition, but now the indices i € Iy, yield
symplectic groups.

Note that if K is a local or global field in which 2 # 0, the simple and explicit invari-
ants in the local case and the theorem of Hasse-Minkowski (and its simpler analogue for
hermitian forms, see | |) in the global case allow to classify the semisimple conjugacy
classes explicitly. For example if K = Q, given M > 0 one can enumerate the semisimple
conjugacy classes in SO(V, ¢) annihilated by a non-zero polynomial having integer coeffi-
cients bounded by M.

3.3.2.2 Semisimple conjugacy classes in hyperspecial maximal compact sub-
groups

To compute orbital integrals in the simplest case of the unit in the unramified Hecke
algebra of a split classical group over a p-adic field, it would be ideal to have a similar
description of conjugacy classes and centralisers valid over Z,. It is straightforward to
adapt the above description over any ring (or any base scheme). However, it is not very
useful as the conjugacy classes for which we would like to compute orbital integrals are

not all “semisimple over Z,”", i.e. Zp[y] is not always an étale Z,-algebra. Note that the
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“semisimple over Z,” case is covered by | , Corollary 7.3] (with the natural choice
of Haar measures, the orbital integral is equal to 1). Nevertheless using the tools of the
previous section, we give in this section a method to exhaust the isomorphism classes of
triples (A, q,7y) where A is a finite free Z,-module, ¢ is a regular quadratic form on A
and v € SO(A,q). The symplectic case is similar. This means that we will be able to
enumerate them, but a priori we will obtain some isomorphism classes several times. In
the next section we will nonetheless see that the results of this section can be used to
compute the orbital integrals, without checking for isomorphisms.

Let A be a free Zy-module of finite rank endowed with a regular quadratic form g,
and let v € Autz, (A) preserving ¢ and semisimple over Q,. We apply the notations and
considerations of section 3.3.2.1 to the isometry v of Q, ®z, A, to obtain quadratic or

hermitian spaces (Qp ®z, A)i. Consider the lattices
A, =AN (Qp ®z, A)Z. =ker (P;(y) | A).

Let N > 0 be such that p" belongs to the ideal of Z,[X] generated by the [] i by for all
i. Then A/ (@;A;) is annihilated by p”, so this group is finite. Since A; is saturated in A
and ¢ is regular, for any v € A; \ pA;,

{pN € B(v, ;) if p > 3 or kg, A; is even, (332.1)

p™ € B(v,A;) or q(v) € Z5 if p=2 and rkg,A; is odd.

The Zy[v;]-module A; is endowed with a hermitian (quadratic if v? = 1) form h; taking
values in Fj. The sesquilinear (bilinear if %-2 = 1) form B; : A; x A; — A; associated with
h; has the property that for all v, w € A;,

B(’U,’LU) = TrAi/Qp (BZ'(U, w)) .

From now on we assume for simplicity that Z,[v;] is normal (i.e. either it is the integer ring
of an extension of @, or the product of two copies of such an integer ring), as it will be the
case in our global situation which imposes that the +;’s be roots of unity. The structure
of quadratic or hermitian modules over such rings is known: see | | for the quadratic
case, | | for the hermitian case. The “split” case amounts to the comparison of two
lattices in a common vector space (isomorphism classes of such pairs are parametrised by
“invariant factors”). Choose a uniformiser w; of Z,[y;] (by definition, in the split case w;
is a uniformiser of OF,). In all cases, there is a (non-canonical) orthogonal decomposition
A =B,y AET) such that w;TB¢|AET>XAZ(r) is integral and non-degenerate. If (wfi) is the
different of Z,[v]/Z, and (p) = (w;*), condition 3.3.2.1 imposes (but in general stays

7

stronger than) the following:

(3.3.2.2)

)

AET) =0unless —d; <r < —d; + Ne; if p> 3 or rkgz, A; is even,
A" =0 unless 0 < 7 < max(1, N) if p =2 and 1kz,A; is odd.

Note that in the second case ’yiz =1 and h; is a quadratic form over Z,. These conditions

provide an explicit version of the finiteness result in section 3.3.1.2, since for any ¢ and r
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(r)

there is a finite number of possible isomorphism classes for A; 7, and when the A;’s are

fixed, there is only a finite number of possible y-stable g-regular A’s since
Pri c Acp BN P,
i i

For efficiency it is useful to sharpen these conditions. Denote by o an orbit of Z/27Z x
Gal (F,/F,) acting on IFTDX, where the non-trivial element of Z/27Z acts by x +— z~ 1.
Concretely, o is an orbit in the set of primitive m-th roots of unity (m coprime to p) under
the subgroup (p, —1) of (Z/mZ)™. Let I, be the set of indices i such that v; modulo some
(at most two possibilities) maximal ideal of Z,[;] belongs to o. Then for o # o, [[,c; P

and J],c 1,, P generate the unit ideal in Z, [X], thus A = @, A, where

Aj, = Saty (EBAz) = ker (H Pi(v) | A) .

i€l, i€l,

i€l,

Here Satp(A’), the saturation of A" in A, is defined as A N (Q,A’). Our task is now to
enumerate the y-stable g-regular lattices containing €P;c; A; in which each A; is saturated.
For i € I,, there is a canonical (“Jordan-Chevalley over Z,”) decomposition ; = «;3; where
®,,(;) = 0 (m associated with o as above) and

[/ —
n—-+00

Since we assumed that Zp[v;] = Zp[;][8;] is normal, either 5; € Zp[oy] or over each factor
of Qplai], Qpli] is a non-trivial totally ramified field extension and 3; — 1 is a uniformiser.
In any case, define hl := Tr Fi/Qplo +a;1}(hi), a quadratic or hermitian (with respect to
7t a; > a; ) form on the Zy[e;]-module A;. On Ag,, v = az,Br, as above, the restriction
of ay, to A; (i € I,) is a;, and the minimal polynomial of «; over Q, does not depend
on i € I,. Thus we can see the A;, i € I, as finite free quadratic or hermitian modules
over the same ring Z, [y, ], each of these modules being endowed with an automorphism
B; satistying 57 " —5 1. Moreover since Zplag,] is an étale Zy,-algebra, the regularity of ¢
(restricted to Ay,) is equivalent to the regularity of A’ = @;h; on A7,. Knowing the A;’s,
finding the possible A; ’s amounts to finding the [-stable h'-regular lattices containing
D 1, Ai in which each A; is saturated, where 8 = ®;0;.

Let us now specialise to the case where each v; is a root of unity, i.e. 57 " =1 for some

n > 0. Denote by ®, the r-th cyclotomic polynomial.

Lemma 3.3.2.3. Let m > 1 be coprime to p. In Zy[X], for any k > 1, p belongs to the
ideal generated by @k, (X) and Op, (ka,l)'

Proof. For k =1, since ®p,(X?) = $py,(X) Py, (X), by derivating we obtain the following
equality in the finite étale Z,-algebra Z,[X]/ P, (X):

Dy (X) = pXP1O! (XP) /D, (X) = p x unit.

Hence there exists U,V € Zy[X] such that @, (X)U(X) + &,,(X)V(X) = p. For any
k > 1 we have @, (X) = ®ppn (kafl), and the general case follows. O
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Having chosen quadratic or hermitian lattices (A;) there is a natural order in which

iely
to proceed to enumerate the possible Ay, . Let us focus on one orbit o. To lighten notation
name the indices I, = {1,...,s} in such a way that for 1 < t < s, B[®,

0 < k1 < ... < ks. Having fixed o we also drop the indices I, from our notations. The

where

lemma tells us that for any 1 <t < s, p annihilates

Satp (A1 @ ... D A1)/ (Satpa (A1 D ... D Ay) D Aygq)

t

and thus we also have that p*~* annihilates

A/ (Satp (A1 @ ... ON) D A1 © ... Ag).

This will provide a sharper version of condition 3.3.2.1. Let B’ be the sesquilinear (bi-
linear if a? = 1) form on A associated with h/. For any i € I, there is an orthogonal
decomposition with respect to B': A; = @, LZ(T) where each LZ(T) is p"-modular for B’,
ie. p*’”B'\LgﬂxLy) takes values in Zy[a] and is non-degenerate. For 1 < ¢ < s denote
M,; = Satp (A1 @ ... ® Ay), which can similarly be decomposed orthogonally with respect
to B': M, =@, Mt(r). Note that M7 = A;. Analogously to condition 3.3.2.1, for 1 <t < s
we have

Lgr)l = Mt(r) =0 unless0<r<s-—t. (3.3.2.3)

and if s = 1 we simply have that the hermitian (or quadratic) module (A1, h’) over Z,[a]

is regular. We can deduce a sharper version of condition 3.3.2.2. If s > 1 then

AgT) =0unless —d; <7 < —d;+(s—1)e; (3.3.2.4)
for1 <t <s, AET) =0unless —d¢ <r < —di+ (s—t+1)e. (3.3.2.5)
while for s = 1:
AY):Oifr#—dl ifp>3orm>1, (3.3.2.6)
A1 is a regular quadratic Ze-module if p =2 and m = 1. o

Let us recapitulate the algorithm thus obtained to enumerate non-uniquely the iso-
morphism classes of triples (A, ¢,7) such that (A, q) is regular and + is torsion. Begin with
a datum (A;,7;)ier, i.e. fix the characteristic polynomial of . For any orbit o for which
s = card(I,) > 1:

1. For any i € I,, enumerate the isomorphism classes of quadratic or hermitian Zy[c;]-
modules A; subject to conditions 3.3.2.4 and 3.3.2.5, compute B’ on A; x A; and
throw away those which do not satisfy condition 3.3.2.3.

2. For any such family (A;);cs,, enumerate inductively the possible Saty (A1 & ... D Ay).
At each step t = 1,...,s, given a candidate M; for Satp (A1 & ...® A¢), we have to
enumerate the candidates M1 for Saty (A1 @ ... B Ay), i.e. the S-stable lattices
containing M; ® Ay such that

(a) h' is integral on Myyq,
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(b) both M; and A4y are saturated in My,
(c) if t < s —1, M1 satisfies condition 3.3.2.3,
(d) if t =s—1, My41 (a candidate for A) is regular for h'.

Remark 3.3.2.4. The first step can be refined, since already over Q, there are obstructions
to the existence of a reqular lattice. These obstructions exist only when h' = q is a quadratic

form, i.e. a%o =1, so let us make this assumption for a moment. Consider its discriminant

D = disc(q) € Q) /squares(Q)). If rkz, A = 2n is even, then Qy[X]/(X* — (=1)"D) is
unramified over Qp. If tkz, A is odd, the valuation of disc(q)/2 is even. Moreover in any
case, once we fir the discriminant, the Hasse-Witt invariant of q is determined. We do
not go into more detail. A subtler obstruction is given by the spinor norm of v. Assume
that N = tkgz, A is at least 3, and for simplicity assume also that det(y) = 1. The regular
lattice (A, q) defines a reductive group SO(q) over Z,. The fppf exact sequence of groups
over Ly,

1 — p2 — Spin(q) — SO(q) — 1

yields for any Z,-algebra R the spinor norm SO(q)(R) — Hflppf(R, p2) whose kernel is the
image of Spin(q)(R). Moreover if Pic(R) = 1 (which is the case if R = Q, or Z,) we
have Hflppf(R,ug) = R*/squares(R*). Thus another obstruction is that the spinor norm
of v must have even valuation. We can compute the spinor norm of each ~; easily. If
v; = —1 its spinor norm is simply the discriminant of the quadratic form h;. If i & Ly
a straightforward computation shows that the spinor norm of ~; is NAi/Qp(l + ’Yi)dimAi Vi

Note that it does not depend on the isomorphism class of the hermitian form h;.

Let us elaborate on the second step of the algorithm. For an orbit o for which s =1,
we simply have to enumerate the modules A; satisfying 3.3.2.6 and such that the resulting
quadratic form ¢ (equivalently, 1) is regular.

We have not given an optimal method for the case s > 1. A very crude one consists in
enumerating all the free Fy[a]-submodules in p~1Z,/Z, @7, (M; ® A¢y1) and keeping only
the relevant ones. The following example illustrates that one can do much better in many

cases.

Example 3.3.2.5. Consider the “second simplest” case s = 2. Assume for simplicity that
p>2 orm > 1. Then condition 3.3.2.3 shows that for any pair ((A1,h1), (A2, ha)) found
at the first step of the algorithm, we have

M=V  wmd A=LParL]
)

where each LZ(-T is p"-modular. Moreover for any i € {1,2} the topologically unipotent

automorphism B; stabilises

pLZ(-O) D Lgl) ={v e A |Vw € Ay, Bj(v,w) € pZy|al]}
and thus B; induces a unipotent automorphism B; of (Vi,n;) where V; = Lgl)/le(l) and

1; 15 a the non-degenerate quadratic or hermitian form p_lh; mod p on V. It is easy to
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check that any relevant A D Ay & Ay is such that

pA/(pA1 © pA2) = {v1 @ f(v1) |v1 € Vi}

for a unique isomorphism f : (Vi,m1, 1) = (Va, —n2, B2). Conversely such an isomorphism

yields a relevant A.

For p = 2 and m = 1 there is a similar but a bit more complicated description of the
relevant lattices A D A1 @ Ag. In that case each form 7; is a “quadratic form modulo 4”,
ie. x — (x,r) mod 4 where (-,-) is a symmetric bilinear form on a free Zs-module N.
Note that (z,2) mod 4 only depends on the class of x in Fo ® N. A further complication
comes into play when rkyz, (A1) + rkz,(A2) is odd, but we do not go into more detail.

In the case of an arbitrary s > 1, the observation made in example 3.3.2.5 still applies
at the last step t = s— 1, replacing (A1, Ag) with (Ms_1,As). We do not go into the details
of our implementation of the previous steps (t < s —1). We merely indicate that in general
pMiy1/(My @ A1) is still described using an isomorphism f between a [S-stable subspace
of @, Mt(r) mod p and a S-stable subspace of @, -, LET) mod p.

Remark 3.3.2.6. Regarding all the results of this section, the symplectic case is similar,
replacing “quadratic” by “symplectic” and “hermitian” by “antihermitian”, and even simpler
because the prime 2 is “less exceptional”. More precisely, the classification of hermitian
modules for e.g. the quadratic extension Zp[Cyk]/Zp[Cyr + %1] is more involved for p = 2
than for the other primes (see [ /), but once we have enumerated the possible iso-
morphism classes of A;’s, the enumeration of the relevant A D &;A; can be done uniformly

mp.

3.3.2.3 Orbital integrals for the unit in the unramified Hecke algebra of a
p-adic classical group

In this section we show that thanks to the fact that orbital integrals are formally sums of
masses (where “mass” takes the same meaning as in “mass formula”, or in overly fancy terms,
the “measure of a groupoid”), they can be computed by counting instead of enumerating
and checking isomorphisms. As before we focus on the case of special orthogonal groups,
the case of symplectic groups being easier.

Let Ag be a free Z,-module of finite rank endowed with a regular quadratic form ¢o and
consider the algebraic group G = SO(Ag, qo) which is reductive over Zy. Let f = 1g(z,)
be the characteristic function of G(Z,) and fix the Haar measure on G(Q,) such that
fG(Zp) dg = 1. Let v € G(Qp) be semisimple (for now we do not assume that it is
torsion), and let Iy be its connected centraliser in Gq,. Fix a Haar measure v on Ip(Q,).

Consider the isomorphism classes of triples (A, g, ) such that
e A is a free Zy,-module of finite rank endowed with a regular quadratic form ¢,
e 7€ S0(A,q),

e there exists an isomorphism between (Q, ®z, A, q,7) and (Q, ®z, Ao, q0,70)-
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We apply the previous section’s notations and results to such (A, g,v). The last condition
can be expressed simply using the classical invariants of quadratic (over Q) or hermitian
(over Qp[vi]) forms, as in Proposition 3.3.2.2. It implies that I and the connected cent-
raliser I of v in SO(Q, ®z, A, ¢) are isomorphic, and by Remark 3.3.1.1 we can see v as a

Haar measure on I(Q,). Then

Oy (f(g9)dg) = | > v(I(Q,) NSO(A, )" | v

(Asqyy)

where the sum ranges over isomorphism classes as above. Note that I(Q,) N SO(A,q)
stabilises each A;, so that it is a subgroup of [[,I'; C I(Q,) where

I — SO(AZ, hz) if7 ¢ Itriv
' U(Ai, hi)  if i € Tgeg U Ispiit.-

In fact I(Q,) NSO(A, g) is the stabiliser of A/ @; A; for the action of [, I'; on (Q,/Z,) ®z,
(@, Ai). Grouping the terms in the above sum according to the isomorphism classes of

the quadratic or hermitian modules A;, we obtain

O (flg)dg) = | D exz(((lf}lfl))) V. (3.3.2.7)
(Aivhi)iel i

Now the sum ranges over the isomorphism classes of quadratic or hermitian lattices (A;, h;)
over Zp[v;], which become isomorphic to the corresponding datum for (Q, ®z, Ao, q0,70)

when p is inverted, and
ext ((Ay, hi);) := card {q—regular (@i7i)-stable A D EBAi | Vi, A; saturated in A} :

We will study the volumes appearing at the denominator below, but for the moment we
consider these numerators. Motivated by the global case, assume from now on that ~q is
torsion as in the end of the previous section. It is harmless to restrict our attention to a
single orbit o, and assume I = I,. For the computation of orbital integrals, the benefit
resulting from the transformation above is that instead of enumerating the possible My,
knowing M; at the last step ¢t = s — 1, we only have to count them. Let us discuss the
various cases that can occur, beginning with the simplest ones.

The unramified case corresponds to s = 1 and A; = Q,[y1] = Qpla], and in that case
there is a unique relevant isomorphism class (A1, hy). It is easy to check that we recover
Kottwitz’s result | ||Corollary 7.3] that the orbital integral equals 1 for the natural
choice of Haar measures.

The case where s = 1 but Qp[v1]/Qplc] can be non-trivial (i.e. ramified) is not much
harder: the algorithm given in the previous section identifies the relevant isomorphism
classes (A1, h1) appearing below the sum, and ext(Aj,h;) = 1. In this case we have
reduced the problem of computing the orbital integral by that of computing the volume of
the stabilisers of some lattices. When G = Spy = SLy it is the worst that can happen.
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The first interesting case is s = 2. Assume for simplicity that p > 2 or m > 1, and let us
look back at example 3.3.2.5, using the same notations. Then ext((A1, h1), (A2, h2)) =0
unless (Vi,m1,61) =~ (Va,—n2,P2), in which case ext((A;, h;);) = card (Aut(Vi,n1,P1)).
This group is the centraliser of a unipotent element in a classical group over a finite field.
Results of Wall | | give the invariants of such conjugacy classes as well as formulae
for their centralisers. In many cases (e.g. if rkz,(A) < p? — 1) the automorphism B; of
V1 is trivial, and thus we do not need the general results of Wall, but merely the simple
cardinality formulae of finite classical groups. For G = Sp, or SO, we have s < 2 and
Bilyy; =1 at worst.

When s > 2 the situation is of course more complicated, and it seems that we cannot
avoid the enumeration of successive lattices Myy1 O My @ Apyq for t < s — 1, although the
last step t = s — 1 is identical to the above case. Note however that these “very ramified”

5=1 e.g. in rank less than 25 it can

cases are rare in low rank. More precisely rkz, A > p
happen that s > 2 only for p = 2,3. Thus the “worst cases” have p = 2. This is fortunate
because for fixed k£ and n the number of k-dimensional subspaces in an n-dimensional

vector space over a finite field with ¢ elements increases dramatically with gq.

Remark 3.3.2.7. In the case where G is an even special orthogonal group, some of the
semisimple conjugacy classes in G(Qp) were parametrised only up to outer conjugation.
Since G(Zy) 1is invariant by an outer automorphism of G, for any 0,7, € G(Qp) which
are conjugate by an outer automorphism of Gq,, the orbital integrals for f(gy)dgy at yo

and 7y, are equal. Of course the above formula for the orbital integral is valid for both.

3.3.2.4 Local densities and global volumes

To complete the computation of adélic orbital integrals we still have to evaluate the de-
nominators in formula 3.3.2.7 and the global volumes. Formulae for local densities and
Smith-Minkowski-Siegel mass formulae are just what we need. But we will use the point of
view suggested by | | and used in | |, i.e. fix canonical Haar measures to see local
orbital integrals as numbers. For this we need to work in a slightly more general setting
than cyclotomic fields.

If k is a number field or a p-adic field, denote by Oy its ring of integers. If k is a number
field Ay, = k ®g A will denote the adéles of k.

Let k& be a number field or a local field of characteristic zero, and let K be a finite
commutative étale k-algebra such that dim; K < 2,i.e. K =k or k x k or K is a quadratic
field extension of k. Let 7 be such that Auty(K) = {Idg,7}. This determines 7. Let V
be a vector space over K of dimension r > 0. Let « € {1, —1}, and assume that o = 1 if
dimg K = 2. Assume that V' is endowed with a non-degenerate 7-sesquilinear form (-, -)
such that for any vy,v9 € V we have (va,v1) = a7 ({(v1,v2)). Let G = Aut(V, (-,-))" be
the connected reductive group over k associated with this datum. Then G is a special
orthogonal (K = k and a = 1), symplectic (K = k and a« = —1), unitary (K/k is a
quadratic field extension and o = 1) or general linear (K = k x k and a = 1) group.

If k is a number field, by Weil | | the Tamagawa number 7(G) equals 2 (resp. 1)

in the orthogonal case if » > 2 and V' is not a hyperbolic plane (resp. if » = 1 or V is
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a hyperbolic plane), 1 in the symplectic case, 2 in the unitary case if » > 0 and 1 in the
general linear case.

If k is a p-adic field, consider a lattice N in V, i.e. a finite free O-module N C V such
that V = KN. Denote NV = {v e V|Vw € N, (v,w) € Ok }. If {-,-)|nxn takes values in
Ok then NY D N and we can consider [NV : N], i.e. the cardinality of the finite abelian
group NV/N. In general define [NY : N] as [NY : NY N N]/[N : NV N N]. Recall also
[ |[Definition 3.5] the density Sy associated with (N, (-, -)).

In | | Gross associates a motive M of Artin-Tate type to any reductive group over

a field. For the groups G defined above, letting n be the rank of G, we have

Pr_, Q1 —2x) orthogonal case with r odd and symplectic case,
M=<{xQ(1—-n)® @;;% (1 —2x) orthogonal case with > 0 even,
D, x*Q(1 — x) unitary and general linear cases.

In the orthogonal case with r > 0 even let (—1)"D be the discriminant of (V, (-,)) (i.e.
the determinant of the Gram matrix), then y is defined as the character Gal(k(v/D)/k) —
{#£1} which is non-trivial if D is not a square in k. In the general linear case y is trivial,
and in the unitary case x is the non-trivial character of Gal(K/k). For L-functions and
e-factors we will use the same notations as | ].

If k is a number field Dy, will denote the absolute value of its discriminant. For K = k
or K =k x k denote D/, = 1, whereas for a quadratic field extension K of k we denote
Dk /i = [Nk /oD k/i)| where Dy, is the different ideal of K/k and the absolute value of
the ideal mZ of Z is m if m > 1. There are obvious analogues over any p-adic field, and
Dy, (vesp. D) is the product of Dy, (resp. D, /i, where K, =k, ® K) over the finite
places v of k.

For (k,K,a,V{(-,-)) (local or global) as above define as in | |

if K =k
n(V):{T—i_a 1 ,

T if dimy K =2
and
2" in the orthogonal case with r even,
p= < 20+0/2 ip the orthogonal case with r odd,
1 in the symplectic, unitary and general linear cases.

Finally, consider the case where k = R and G(R) has discrete series, i.e. the Euler-Poincaré
measure on G(R) is non-zero, i.e. G has a maximal torus T which is anisotropic. Re-
call Kottwitz’s sign e(G) = (—1)4(®) and the positive rational number ¢(G) defined in
| 11§8]. Explicitly,

1 in the symplectic case,
c(G) = 2”/(@7%) in the orthogonal case with signature (a,b), b even,

2"/ (M) in the unitary case with signature (a, b).

The following theorem is a reformulation of the mass formula | ||Theorem 10.20]

in our special cases.
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Theorem 3.3.2.8. Let k be a totally real number field and let K, o, (V,{-,-)) and G be as
above. Let M denote the Gross motive of G. Assume that for any real place v of k, G(ky)
has discrete series. Define a signed Haar measure v = [[, vy, on G(Ay) as follows. For
any real place v of k, vy, is the Euler-Poincaré measure on G(ky). For any finite place v of
k, vy is the canonical measure L,(M"(1))|wg,, | on G(k,) (see [ 1[§4]). In particular,
for any finite place v such that Gy, is unramified, the measure of a hyperspecial compact
subgroup of G(ky) is one. Then for any Og-lattice N in V,

dim G/2 ~r(r+1)/4
D D _1)a(Gr)
/ v =1(G) x L(M) x —~ K/k ><HL
G(k)\G(A) (M) oo c(Gg,)
Vo n(V)/2
x pdimo k H [N = N M) \Zjv (G(ky) N GL(Vy))
ey L. (MY (1) By,

Proof. To get this formula from | ||Theorem 10.20|, use the comparison of measure at
real places | |[Proposition 7.6, the fact that L,(MY(1))8n, = 1 for almost all finite

places of k, and the functional equation A(M) = e(M)A(MY (1)) (see | 119.7]). O

Note that the choice of v at the finite places does not play any role. This choice was

made to compare with the very simple formula | |[Theorem 9.9]:

Q(Gkv

v = 7(G : (3.3.2.8)
/G(m\G(Ak) H Gkv

We obtain that under the hypotheses of the theorem,

e(M)p— dimak L,(MY(1))BN,
H Vo (G(k ) a GL( )) DdlmG/Q r(r+1)/4 H NV - ]n (vy/2: (3329)
v finite k K/k v ﬁmte U ’

We can compute explicitely

v D;}f in the unitary case if r = n is even,
6( ) — ) n—1/2 . P fQ
dmG/2 (/A |Nk/(@( )‘ in the orthogonal case if r is even,
/ 1 otherwise,

where in the second case (—1)"D is the discriminant of (-,-) and § is the discriminant of
k(v/D)/k. As the proof of the following proposition shows, the factor = 9™e¥ which is

nontrivial only in the orthogonal cases, is local at the dyadic places.

Proposition 3.3.2.9. Let p be a prime. Let ko be a p-adic field and let (Ko, o, Vo, (-, )o)
and Gq be as above. Let vy be the canonical Haar measure L(MV(1))|lwg,| on Go(ko)-
Ifp=2 Ky=kyand o = 1, let g = p~ 9™k otherwise let zo = 1. Then for any
Ok, -lattice Ny in Vy,

10 (Go (ko) N GL(No)) = L(MY (1)) x o x B x [Ny : NoJ "0/

—n/2 . . ) B ]
DKo/ko in the unitary case if 1 = n is even,

X |NkO/Qp (50)‘”’71/2 in the orthogonal case if v is even,

1 otherwise,
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where in the second case (—1)" Dy is the discriminant of (-,-)o and &y is the discriminant

of ko(v/Do)/ko.

Proof. We apologise for giving a global proof of this local statement. We only give details
for the hardest case of orthogonal groups.

When p > 2 and the symmetric bilinear form (-, -)o|n,x N, is integer-valued and non-
degenerate, Gy is the generic fiber of a reductive group over Oy, and the equality is obvious.
Note that this does not apply for p = 2, even assuming further that the quadratic form
v = (v,v)p/2 is integer-valued on Ny, because the local density Sy, is defined using the
bilinear form (-, -)o, not the quadratic form v — (v, v)/2.

Next consider the case p = 2 and Ny arbitrary. By Krasner’s lemma there ex-
ists a totally real number field k£ and a quadratic vector space (V,(-,-)) which is posit-
ive definite at the real places of k and such that £ has a unique dyadic place vy and
(ko, Vo, (-, Y0) = (kvys kvy @k V., (-,+)). Let S be the finite set of finite places v # vy of k
such that (k, ® V, (-,-)) is ramified, i.e. does not admit an integer-valued non-degenerate
Oy, -lattice. For any v € S there is a finite extension E®) of k, over which (k, @4 V, (-, -))
becomes unramified. By Krasner’s lemma again there exists a finite extension k' of k
which is totally split over the real places of k and over vy and such that for any v € .S, the
k,-algebra k, ®y k' is isomorphic to a product of copies of E® . Let Sy be the set of dyadic
places of ¥/, i.e. the set of places of k' above vg. There exists a lattice N in k' ®j V' such
that for any finite v ¢ Sp the symmetric bilinear form (-,-)|n7xn7 is integer-valued and
non-degenerate, and for any v € Sy we have (-, ) N7 N7 = (-, -)o|NgxNo- Applying formula
3.3.2.9 we obtain the desired equality to the power card(Sy), which is enough because all
the terms are positive real numbers. Having established the dyadic case, the general case
can be established similarly.

The unitary case is similar but simpler, because the dyadic places are no longer excep-
tional and it is sufficient to take a quadratic extension k’/k in the global argument. The

symplectic and general linear cases are even simpler. O

Remark 3.3.2.10. 1. In this formula, one can check case by case that the product of
AR No]~™V0)/2 and the last term is always rational, as expected since all other

terms are rational by definition.

2. We did not consider the case where o = —1 and K/k is a quadratic field extension,
i.e. the case of antihermitian forms, although this case is needed to compute orbital
integrals for symplectic groups. If y € K* is such that 7(y) = —y, multiplication by
y induces a bijection between hermitian and antihermitian forms, and of course the

automorphism groups are equal.

3. There are other types of classical groups considered in [ | and which we left
aside. For a central simple algebra K over k with dimy K = 4 (i.e. K = My(k) or
K is a quaternion algebra over k) they also consider hermitian (resp. antihermitian)
forms over a K-vector space. The resulting automorphism groups are inner forms

of symplectic (resp. even orthogonal) groups. Using the same method as in the proof
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of the proposition leads to a formula relating the local density By, to the canonical

measure of Aut(Ny) in these cases as well.

We use the canonical measure defined by Gross (called v, above) when computing local
orbital integrals. In the previous section we explained how to compute the numerators in
formula 3.3.2.7 for the local orbital integrals. Proposition 3.3.2.9 reduces the computation
of the denominators to that of local densities. Using an elegant method of explicitly
constructing smooth models, Gan and Yu | | give a formula for Sy, for p > 2 in
general and for p = 2 only in the case of symplectic and general linear groups and in the
case of unitary groups if Ky/kg is unramified. Using a similar method Cho | | gives
a formula in the case of special orthogonal groups when p = 2 and ky/Q2 is unramified.
This is enough for our computations since we only need the case kg = Qy. For m > 1
and ¢ = (, the quadratic extension Q(¢)/Q(¢ 4 ¢~1) is ramified over a dyadic place if
and only if m is a power of 2. In this case the different Dq,(¢)/Q,(c+¢-1) is generated by
a uniformiser of Q2(¢ + ¢~'), which is the minimal ramification that one can expect from
a ramified quadratic extension in residue characteristic 2. Cho | ||Case 1] also proved
an explicit formula for the local density in this case. To be honest | | only asserts it
in the case where kg is unramified over Q2. Nevertheless the proof in “Case 1” does not
use this assumption. This completes the algorithm to compute the local orbital integrals
in all cyclotomic cases over Q. Note that the result is rational and the computations are
exact (i.e. no floating point numbers are used).

Finally, the global volume is evaluated using Gross’ formula 3.3.2.8. The value of L(M)
is known to be rational and computable by | |. However, we only need the values of
L(M) for M which is a direct sum of Tate twists of cyclotomic Artin motives (concretely,
representations of Gal(E/F') where E is contained in a cyclotomic extension of Q). Thus
we only need the values of Dirichlet L-functions at non-negative integers, i.e. the values of

generalised Bernoulli numbers (see e.g. | |-

Remark 3.3.2.11. Formally it is not necessary to use the results of [ | to com-
pute the factors Vol(I(Q)\I(A)) in formula 3.3.1.1, the mass formula in [ | along
with the formulae for the local densities Sy, would suffice. Apart from the fact that it is
less confusing and more elegant to clearly separate local and global measures, using Gross’
canonical measure, which is compatible between inner forms by definition, allows to com-
pute k-orbital integrals once we have computed orbital integrals. The fundamental lemma
gives a meaningful way to check the results of computations of orbital integrals. More pre-
cisely we need the formulation of the fundamental lemma for semisimple singular elements
/ /[Conjecture 5.5] which has been reduced to the semisimple regular case by [ 1153/
and [ |[Lemma 2.4.A]. For an unramified endoscopic group the fundamental lemma for
the unit of the unramified Hecke algebra at reqular semisimple elements is a consequence
of the work of Hales, Waldspurger and Ngo. The case of a ramified endoscopic group is
/ |[Proposition 7.5]: the k-orbital integral simply vanishes.
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3.3.2.5 Short description of the global algorithm

Let G be one of SOg;,4+1 or Sp,,, or SOy, over Z, let Hp fp be the characteristic function
of G(Z) and [[, dg, the Haar measure on G(Ay) such that G(Z) has measure one. Let A
be a dominant weight for G¢ and let f 1 (goo)dgoo be the distribution on G(R) defined
in section 3.3.1.1. Denote f(g)dg = foo,)(go0)dgoo Hp fp(gp)dgp. We give a short summary

of the algorithm computing Tey(f(g)dg) for a family of dominant weights A, by outlining
the main steps. Realise G as SO(A, ¢) (resp. Sp(A,a)) where A is a finite free Z-module
endowed with a regular quadratic form ¢ (resp. nondegenerate alternate form a). Denote
N = rankz(A).

1.

Enumerate the possible characteristic polynomials in the standard representation of
G for v € C(G(Q)). That is, enumerate the polynomials P € Q[X] unitary of degree
d such that all the roots of P are roots of unity, and the multiplicity of —1 as root

of P is even.

. For each such P, and for any prime number p, in Q,[X] write P = [[, P; as in section

3.3.2.1. For any i, enumerate the finite set of isomorphism classes of quadratic or
hermitian (resp. alternate or antihermitian) lattices (A;, h;) as in section 3.3.2.2. For
almost all primes p, the minimal polynomial rad(P) = P/ged(P, P') is separable
modulo p, there is a unique isomorphism class (A;, h;) to consider and h; is non-

degenerate. Thus we only need to consider a finite set of primes.

. The combinations of these potential local data determine a finite set of conjugacy

classes in G(Q).

. For any such conjugacy class over Q, compute the local orbital integrals using section

3.3.2.3 and Proposition 3.3.2.9. Compute the global volumes using Gross’ formula
3.3.2.8.

. Let C' be the set of G(Q)-conjugacy classes in C(G(Q)). For ¢ € C’ define the

“mass”’ of ¢

ez 3T VoL@\LA)
c card(Cent(7, G(Q))/(@)

cl(y)ec
so that
Tai(f(9)dg) = ) mcTr(c| Vy).
ceC’
Using Weyl’s character formula, we can finally compute Tg(f(g)dg) for the dom-
inant weights A we are interested in. Some conjugacy classes ¢ € C’ are singular,
so that a refinement of Weyl’s formula is needed: see | ||[Proposition 1.9] and
| |[Proposition 2.3].

We give tables of the masses m. in section 3.7.1, for the groups of rank < 4. Our

current implementation allows to compute these masses at least up to rank 6 (and for

Spy4 also), but starting with rank 5 they no longer fit on a single page.
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Remark 3.3.2.12. In the orthogonal case the group G is not simply connected and thus in

G(Q) there is a distinction between stable conjugacy and conjugacy in G(Q). However, if
7,7 € C(G(Q)) both contribute non-trivially to Ten(f(g9)dg) and are conjugated in G(Q),
then they are stably conjugate. Indeed their spinor norms have even valuation at every
finite prime, and are trivial at the archimedean place since they each belong to a compact
connected torus, therefore their spinor norms are both trivial. This implies that they lift to
elements 7,4 in the spin group Gg.(Q), and moreover we can assume that 4 and ' are
conjugated in Gg.(Q), which means that they are stably conjugate.

This observation allows to avoid unnecessary computations: if the spinor norm of =y is

not equal to 1, the global orbital integral O~(f(g)dg) vanishes.

3.3.3 Computation of the parabolic terms using elliptic terms for groups
of lower semisimple rank

In the previous sections we gave an algorithm to compute the elliptic terms in Arthur’s trace
formula in | |. After recalling the complete geometric side of the trace formula, i.e.
the parabolic terms, we explain how the archimedean contributions to these terms simplify
in our situation where the functions f, at the finite places have support contained in a
compact subgroup. The result is that we can express the parabolic terms very explicitely
(perhaps too explicitely) using elliptic terms for groups of lower semisimple rank in section
3.3.3.4.

3.3.3.1 Parabolic terms

Let us recall the geometric side of the trace formula given in | 1186]. We will slightly
change the formulation by using Euler-Poincaré measures on real groups instead of trans-
ferring Haar measures to compact inner forms. The translation is straightforward using
| ||[Theorem 1]. Let G be one of SOg2,41, Spy,, or SO4,. Of course the following
notions and Arthur’s trace formula apply to more general groups.

First we recall the definition of the constant term at the finite places. Let p be a
finite prime, and denote K = G(Z,). Let P = MN be a parabolic subgroup of G
having unipotent radical N admitting M as a Levi subgroup. Since K is a hyperspecial
maximal compact subgroup of G(Qp) it is “good™ there is an Iwasawa decomposition
G(Qp,) = KP(Q,). When p is not ambiguous write op(m) = |det(m|Lie(N))[,. In
formulae we require the Haar measures on the unimodular groups G(Q,), M(Q,) and
N(Qp) to be compatible in the sense that for any continuous h : G(Q,) — C having

compact support,

/ h(g)dg = / h(knm) dk dn dm = h(kmn)dép(m) dk dn dm.
G(Qp) KxN(Qp)xM(Qp) KxN(Qp)xM(Qp)

If fp(g)dg is a smooth compactly supported distribution on G(Q,), the formula

fona(m) = dp(m)'/? /K /N . fo(kmnk™Y)dndk
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defines a smooth compactly supported distribution f,n(m)dm on M(Q,). Although
it seems to depend on the choice of N and the good compact subgroup K, the or-
bital integrals of f, m(m)dm at semisimple G-regular elements of M(Q,) only depend
on f, (see | |[Lemma 9]). The case of arbitrary semisimple elements follows us-
ing | |[Theorem 0]. When f, is the characteristic function 1g(z,) of G(Zp) (and
vol(G(Zp)) = 1), the fact that Ty is defined over Z, and the choice K = G(Z,) imply that
for any choice of N, f) m = 1nyz,) (if vol(M(Zy)) = 1).

We can now define the factors appearing on the geometric side of the trace formula.
As for elliptic terms, consider a smooth compactly supported distribution Hp Ip(9p)dgp
on G(Ay). Fix a split maximal torus Ty of G (over Z). The geometric side is a sum
over Levi subgroups M containing T, they are also defined over Z. For such M, denote
by Am the connected center of M and let C(M(Q)) be the set of semisimple conjugacy
classes of elements v € M(Q) which belong to a maximal torus of Mg which is anisotropic
modulo (Anm)r = Amg- If 7 is (a representative of) an element of C(M(Q)), let I denote
the connected centraliser of v in M. Define :M(y) = |Cent(y, M(Q))/1(Q)|. For any
finite prime p, to fp(gp)dg, we associate the complex Haar measure O, (f,m) on I(Qy).
For p outside a finite set (containing the primes at which I is ramified), the measure of a

hyperspecial maximal compact subgroup of I(Q)) is 1. Define a complex Haar measure on
I(A)/Am(A) as follows:

e Give I(R)/AMm(R) its Euler-Poincaré measure. It is nonzero by our assumption on

Y-

e Give AM(Qp) its Haar measure such that its maximal compact subgroup (in the
case at hand An(Zp)) has measure 1, and endow I(Q,)/Anm(Qp) with the quotient

measure.

Now fix a dominant weight A for G and denote 7 = A+p (where 2p is the sum of the pos-
itive roots) the associated infinitesimal character. For f(g)dg = fooA(goo)dgoo Hp To(9p)dgp,
the last ingredient occurring in Tyeom(f(g)dg) is the continuous function v — ®n(7y, 7)
defined for semisimple 7 € M(R) which belong to a maximal torus of Mg which is an-
isotropic modulo (Apg)g. This function will be defined in terms of characters of discrete
series and studied at compact elements v in section 3.3.3.3. If 7 does not satisfy these
properties define ®pp(y,7) = 0.

The geometric side Tgeom(f(g)dg) of the trace formula is

—1\ " AM [ (T, M) vol (NQ)\I(A)/Am(A))
2 (2) W(To.G)| 2~ card (Cont(y, M(Q)/1Q) M7

(3.3.3.1)
After the definition of the function ®y; it will be clear that the term corresponding to
M =G is Ten(f(g)dg).

M>T, yeC(M(Q))
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3.3.3.2 Sums of averaged discrete series constants

Harish-Chandra gave a formula for the character of discrete series representations of a
real reductive group at regular elements of any maximal torus. This formula is similar
to Weyl’s character formula but it also includes certain integers which can be computed
inductively. In the case of averaged discrete series this induction is particularly simple. We
recall the characterisation of these integers given in | ][83] and compute their sum
and alternate sum. When the support of Hp fp(gp)dgp is contained in a compact subgroup
of G(Ay), in the trace formula only these alternate sums need to be computed, not the
individual constants.

Let X be a real finite-dimensional vector space and R a reduced root system in X*.
Assume that —Id € W(R), i.e. any irreducible component of R is of type A, B, (n > 2),
Cn (n > 3), Doy, (n > 2), E7, Eg, Fy or Go. If Ry is a subsystem of R having the
same property, letting Ro be the subsystem of R consisting of roots orthogonal to all
the roots in Ry, —Idrg, € W(Rz2) by | |[ch. V, §3, Proposition 2|, and rank(R) =
rank(R;) +rank(Rsz). In particular for & € R, R, := {8 € R | a(8Y) = 0} is a root system
in Y* where Y = ker a.

Recall that Xyeg := {7 € X |Va € R, a(z) # 0}, and define X}, similarly with respect
to RY. For z € X, we denote by A, the basis of simple roots of R associated with the
chamber containing x. There is a unique collection of functions cg : Xyeg X X — Z for

root systems R as above such that:
1. ¢4(0,0) =1,

2. for all (z,\) € Xyeg X X}, such that A(z) > 0, ¢r(z,\) =0,

reg

3. for all (z,\) € Xyeg X X7, and a € Ay, €r(x, A) +Er(sa(z), N) = 2¢r, (y, Aly) where

reg

Y =kera and y = (z + sq(x))/2.

In the third property note that for any 8 € R ~ {*a} such that g(z) > 0, S(y) > 0:
writing 8 = Z'yeAz ny with n, > 0, we have

Bly) = B(x) — o@Bla?) > oony, (’Y(JU) — W) > 0. (3.3.3.2)

vyeA~{a}

In the second property we could replace “A(x) > 0” by the stronger condition that R # ()
and x and A define the same order: {a € R | a(x) > 0} = {a € R | A(«") > 0}. By
induction ¢g is locally constant, and W (R)-invariant for the diagonal action of W (R) on
Xreg X Xieg-

The existence of these functions follows from Harish-Chandra’s formulae and the ex-

istence of discrete series for the split semisimple groups over R having a root system as

above. However, | | give a direct construction.
Let 29 € Xieg and Ao € X, define the same order. For w € W(R) define d(w) =

ER(.%'(), w()\())) = ER(wfl (1’0), )\0).
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Proposition 3.3.3.1. Let R be a root system as above, and denote by q(R) the integer
(|R|/2 4 rank(R)) /2. Then

Y dw)=W(R)and Y e(w)d(w)=(-1)"|W(R)|.

weW (R) weW (R)

Proof. The two formulae are equivalent by | |[Theorem 3.2] so let us prove the first
one by induction on the rank of R. The case of R = () is trivial. Assume that R is
not empty and that the formula holds in lower rank. Denote W = W(R). For o € R
let Co = {x € Way | @« € A} and D, the orthogonal projection of C, on Y = ker a.
Geometrically, C, represents the chambers adjacent to the wall Y on the side determined
by a. For z € C,, by a computation similar to 3.3.3.2, orthogonal projection on Y maps the
chamber containing = onto a connected component of Y~ BeR\{+a} ker 3, i.e. a chamber
in Y relative to R. Thus the projection C,, — D,, is bijective and in any R,-chamber of ¥
there is the same number |D,|/|W (R4 )| of elements in D,.

rank(R) > d(w)= > > eg(x, )

weW zeEWz9 €A,
1
=3 > en(®, Xo) + Cr(sal), o)
acR zeC,
= Z Z R, (Y, Aoly)
a€ER y€D,
= Z |Do| = Z |A;| = rank(R)|W|.
acR zeWxg

At the second line we used the permutation o — —a of R and the fact that = € C, &
Sa(x) € C_qy. O

3.3.3.3 Character of averaged discrete series on non-compact tori

In this section we consider a reductive group G over R which has discrete series. To
simplify notations we assume that G is semisimple, as it is the case for the symplectic and
special orthogonal groups. Fix a dominant weight A\ for G¢, and let 7 = A + p where 2p
is the sum of the positive roots. Let M be a Levi subgroup of G and denote by Ang the
biggest split central torus in M. If v € M(R) is semisimple, G-regular and belongs to a

maximal torus anisotropic modulo Aypg, define

1/2
Em(7,7) = (~1)UEE [ DF(7)] Y. 60y
7'rooendisc('f—)
where D () = det (Id — Ad(y) | g/m). Note that for v € G(R) semisimple elliptic reg-

ular, G (7, T)peprr) = Tr (V[VA) pepi®) = O (fA(9)dg) where fy(g)dg is the smooth
compactly supported distribution of section 3.3.1.1.

When M xgR admits a maximal torus T anisotropic modulo Ay Xg R, Arthur shows
that ®m(-, 7) extends continuously to T(R) (beware that the statement | 11(4.7)] is

erroneous: in general ®pg(7,7) is not identically zero outside the connected components
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that intersect the center of G). Following | 1184], to which we refer for details, let
us write the restriction of ®p (-, 7) to any connected component of T(R)g_reg as a linear
combination of traces in algebraic representations of M.

Let R be the set of roots of T on G (over C). Let Ry be the set of roots of T on
M. Let v € T(R) be G-regular, and let I' be the connected component of v in T(R). Let
Ry be the set of real roots a € R such that a(y) > 0. As the notation suggests, it only
depends on I'. Moreover Rr and Rpp are orthogonal sub-root systems of R: the coroots of
R factor through T MMy, which is anisotropic, while the roots in Rr factor through the
biggest split quotient of T. Finally ®n(y,7) = 0 unless v belongs to the image of Gg.(R),
and in that case the Weyl group W (Rr) of Rr contains —Id and rk(Rr) = dim Ap. In
the following we assume that v € Im(Gg.(R) = G(R)).

Since «y is G-regular, it defines a set of positive roots RY = {a € R, | a(y) > 1} in Rr.
Choose a parabolic subgroup P = MIN with unipotent radical N such that R;r is included
in the set of roots of T on N. In general this choice is not unique. Choose any set of
positive roots RK/I for Rypi. There is a unique Borel subgroup B C P of G containing T
such that the set of roots of T on BN M is RK,[. Let R™ be the set of positive roots in R
corresponding to B.

There is a unique z, € (RRr)* = R ®z X,(Am) such that for any o € Rr, a(z,) =
a(y). Then z is Rp-regular and the chamber in which z, lies only depends on the
connected component of v in T(R)g_reg. Denote by pr the orthogonal projection R @z
X*(T) — RRr. When we identify RRr with R ®z X*(An), pr is simply “restriction to

An”. By | |[proof of Lemma 4.1 and end of §4| we have
5 1/2
Pai(r.7) = HQER;(?)_ ST, 2 <l o) ()~ ] )
where
op(7) = |det (v|LieN)| =[] la(l.

+
a€RT—Ry;

Since pp — pBnM is invariant under W (Rpg), in the above sum we can combine terms in the
same orbit under W (Ry) to identify Weyl’s character formula for algebraic representations
of M. Let E = {we W(R)|Vae Rl URY;, w'(a) € R"}, a set of representatives
for the action of W (Rr) x W(Rwm) on the left of W(R). Denoting Vg n the algebraic
representation of M with highest weight )\, we obtain

Pm(y,7) = op (7)1/2 Z Z e(wywo)d(wy)Tr (’Y|VM,w1wo(TB)*PB)
woEE w1 €W (Rr)

Furthermore wywo(m8) — wo(mB) € ZRr is invariant under W (Rpg), hence in the above

sum
Tr (Y Vwywo(rp)—ps) = [w1wo(TB) — wo(T8)] (V) X Tr (VIVM 10 () —ps )

and [wijwo(mB) — wo(7B)] () is a positive real number, which does not really depend on ~y
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but only on the coset (T N Mger)(R)y (equivalently, on z.). Finally we obtain

Opn(v,7) = dp(1)' /2 Y 6(w0)[ > ew)d(wn) [wiwo(me) — wo(78)] (7)

woEE w1 €W (Rr)

x Tr (7|VM,w0(TB)—ﬂB)

This formula is valid for y in the closure (in T(RR)) of a connected component of T(R)G—reg-

Proposition 3.3.3.2. If~ is compact, i.e. the smallest closed subgroup of G(R) containing

v is compact, then we have

On(y,m) = (D)MW (Re) D e(wo)Tr (YVad wo(ms) —ps) -

woEFE

Proof. This formula follows from [wjwo(m8) — wo(7B)] (7) = 1 and Proposition 3.3.3.1. [

3.3.3.4 Explicit formulae for the parabolic terms

Let G be one of SOg;,41 or Spy,, or SOy, over Z, let Hp fp be the characteristic function
of G(Z) and [],dgy the Haar measure on G(Ay) such that G(Z) has measure one. Let A
be a dominant weight for G¢ and let fu A(goo)dgoo be the distribution on G(R) defined
in section 3.3.1.1. Denote f(g)dg = foo.r(9o0)dgoo Hp fp(gp)dgp. Using Proposition 3.3.3.2
and tedious computations, we obtain explicit formulae for the geometric side Tgeom (f(g)dg)
of Arthur’s trace formula defined in section 3.3.3.1. For a dominant weight A = kie; +
-+ kpey it will be convenient to write Tgeom (G, k) for Teeom(f(g)dg) to precise the group
G, and similarly for Tyy. If G is trivial (SOg or SOy or Spy) then Ty is of course simply
equal to 1.

Any Levi subgroup M of G is isomorphic to [[; GL,, x G’ where G’ is of the same type
as G. Note that M(R) has essentially discrete series (i.e. ®p(+,-) is not identically zero)
if and only if for all 7,n; < 2 and in case G is even orthogonal, G’ has even rank. Thus
the Levi subgroups M whose contribution to Tyeom (that is formula 3.3.3.1) is nonzero are
isomorphic to GL{ x GL§ x G’ for some integers a, c.

Since PGLy ~ SOs, for k € Z>( we denote Ten(PGLg, k) = T (SOs3, k). For non-
negative k € 1/2Z\Z it is convenient to define Ty (PGL2, k) = 0, so that for any k € Z>g
we have Tey(PGLo, k/2) = Ten(Spy, k) /2.

For a,c,d € Z>q, let E, . 4 be the set of o in the symmetric group S,12.4+4 such that

eco(a+l)<o(a+3)<---<ola+2c—1),

o forany 1 <i<¢ o(a+2i—1)<o(a+2i),

e o(a+2c+1)<---<o(n).
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For a > 0 and z € {0,...,a}, define

P (0, z) (—1)2(_1)/2 %?(—nbf: <;:> <2ab—_9i>(_1)p

It is easy to check that

5 B (_1)11(0,—1)/2 P - 1
77( )(a’,j(}) = TTI‘Q(\/?D/Q ((1 + \/j1> (1 -V _1) ) € WZ

Forn>a,o0€ S, and k = (k1,...,k,) € Z", let
n'Ba, k, o) =nP) (a,card{i € {1,...,a} | ko +0(i) +i=1 (mod2)}).

Theorem 3.3.3.3 (Parabolic terms for G = SOq,,41). Let a,c,d € Z>o not all zero and
n=a+2c+d. The sum of the contributions to Tgeom(SO2n+1,k) in formula 3.3.3.1 of the
Levi subgroups M in the orbit of GL{ x GL§ x SOs411 under the Weyl group W(Ty, G)
18

> 1P(ak0)

GEEa,c,d
x IT |:Tell (PGLa, (Fs(at2i-1) — Ko(a+2i) +0(a+2i) —o(a+2i—1) —1)/2)
i=1

—Ten(PGLa, (ky(aq2i-1) + ko(as2i) — 0(a +2i) —o(a+2i — 1) + 2”)/2)}
XTell(SOQd—i—l, (ka(n—d+l) +n—d+1- O'(’I’L —d+ 1)7 SRR ka(n) +n— U(n)))

We have a similar formula for the symplectic group. For a > 0 and = € {0,...,a},
define ,
—1)ale—1)/2 2 o z\ (a—x r
0y = TS e S (T) (570
2 rJ\b—r
b=0 r=0
Then we have
(—1)%/2 if a is even and x = q,
7N a,z) = (=1)@=1/2 if g is odd and z = 0,
0 otherwise.

Forn>a,0€ S, and k = (k1,...,k,) € Z", let
na, k,o) =n (a,card{i € {1,...,a} | ko +0(i) +i=1 (mod2)}).

Theorem 3.3.3.4 (Parabolic terms for G = Sp,,). Let a,c,d € Z>q not all zero and
n=a+ 2c+d. The sum of the contributions to Tgeom(SPay,, k) in formula 3.3.3.1 of the
Levi subgroups M in the orbit of GL{ x GL§ x Spy, under the Weyl group W (To, G) is

> 1ak0)

O'EE,lyc,d
x I1 |:Tell (PGLa, (Fs(at2i-1) — Ko(at2i) +0(a+2i) —o(a+2i—1) —1)/2)
=1
—Ten(PGLa, (ky(at2i-1) + ko(ar2i) — 0(a +2i) —o(a+2i — 1) +2n + 1)/2)}
XTell(Sp2d7 (ka(n—d+l) +n—d+1- U(?’L —d+ 1)7 SUR) ka(n) +n— O'(’I’L)))
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For a > 0 and z € {0,...,2a}, define

0 = 533 () (o)

b=0 r=0
We have
1 if a =0,
n'P)(a,z) = 1/2 ifa >0 and z(2a — ) =0,
0 otherwise.

For n > a, 0 € So, and k = (kq, ..., koy) € Z2", let
n'Pa, k, o) = nP (a,card{i € {1,...,2a} | ko) +o(i) +i=1 (mod 2)}).

For the group SOy, we need only consider dominant weights k with ko, > 0 (i.e.
the same inequalities as for the other two infinite families) since the end result is invari-
ant under the outer automorphism of SOy, that is Tyeom (SOun, (K1, . .., kan—1, —kan)) =
Tocom (SOun, (k1, ..., kan—1,k2n)).

Theorem 3.3.3.5 (Parabolic terms for G = SOuy,). Let a,c,d € Z>o not all zero and
n=a+c+d. The sum of the contributions to Tyeom(SOun, k) in formula 3.3.3.1 of the
Levi subgroups M in the orbit of GL3* x GLS x SOyy under the Weyl group W (To, G) is

> 1Pa,k,0)

0€E2q,¢,2d

x ]1 [Tell (PGLy, (kg(2a+2i-1) = Ko(2a+2i) + 0(20 4 20) — 0(2a + 21 — 1) — 1)/2)
=1

+Ten(PGLa, (kg(2a42i-1) + Ko(2a+2i) — 0(2a + 2i) — 0(2a + 21 — 1) +4n — 1)/2)}
XTen(SOud, (ky2n—24+1) +2n —2d +1—0(2n —2d+1),..., ky2n) + 2n — 0(2n))).

3.4 Endoscopic decomposition of the spectral side

3.4.1 The spectral side of the trace formula

The previous sections give an algorithm to compute the geometric side of Arthur’s trace
formula in | |. Let us recall the spectral side of this version of the trace formula.
As before G denotes one of the reductive groups SOgy,+1, Spy,, or SOy, over Z. Let
K be a maximal compact subgroup of G(R) and denote g = C ®g Lie(G(R)). Let
Adise(G(Q)\G(A)) be the space of Koo x G(Z)-finite and Z(U(g))-finite functions in the
discrete spectrum L3, (G(Q)\G(A)). It is also the space of automorphic forms in the
sense of | | which are square-integrable. There is an orthogonal decomposition

AdlSC(G(Q)\G(A)) = @ Mg

ﬂEHdisc (G)

where Ilgs.(G) is a countable set of distinct isomorphism classes of unitary (g, Koo) X
G(Af)-modules and m, € Z>1. Denote ITjN (G) C Ilgisc(G) the set of 7 such that for

any prime number p the representation m, is unramified, i.e. 77,? (Zv) #0.
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Let A be a dominant weight for G¢, and denote V) the corresponding algebraic rep-
resentation of G(C), which by restriction to G(R) we see as a (g, Koo )-module. If X is an

admissible (g, Ko )-module, define its Euler-Poincaré characteristic with respect to V)

EP(X & V5) = S(~1)" dim Hi((g, Koo), X © V5.
>0
We refer to | | for definitions and essential properties of (g, Ko )-cohomology. By
| |[Chapter I, Corollary 4.2] for any irreducible (g, Ko )-module X, we have that
H*((9,Kx), X ® V) =0 unless X has the same infinitesimal character as V).

For our particular choice of function on G(Ay) the spectral side of Arthur’s trace

formula in | | is
> mgEP(me ® V7). (3.4.1.1)
Telly (G)
By | ||Theorem 1] there is only a finite number of nonzero terms. Vogan and Zuck-
erman | | (see also | |[Chapter VI, §5]) have classified the irreducible unitary

(g, Koo)-modules having cohomology with respect to V), and computed this cohomo-
logy. However, the integer 3.4.1.1 alone is not enough to recover the number m(X) of
7 € I (G) such that 7 is isomorphic to a given irreducible unitary (g, Ko )-module X
having the same infinitesimal character as V).

Arthur’s endoscopic classification of the discrete automorphic spectrum of G | |
allows to express m(X) using numbers of certain self-dual cuspidal automorphic repres-
entations of general linear groups. Conversely these numbers can be obtained from the
Euler-Poincaré characteristic 3.4.1.1 for various groups G and weights A. For explicit com-
putations we will have to make Assumption 3.4.2.4 that relates the rather abstract Arthur
packets at the real place with the ones previously defined by Adams and Johnson in | ].

Note that it will not be necessary to use | | since the Euler-Poincaré characteristic

is a much simpler invariant than the whole cohomology.

3.4.1.1 Arthur’s endoscopic classification

Let us review how Arthur’s very general results in | | specialise in our particular
situation: level one and regular infinitesimal character. We are brief since this was done
in | 1183], though with a slightly different formulation. We refer to | | for the
definition of L-groups. For G a reductive group over F we will denote G the connected
component of the neutral element in “G (which Borel denotes “G0).

Let F' be a local field of characteristic zero. The Weil-Deligne group of F' is denoted
by W if F is archimedean Wj. = W, whereas in the p-adic case Wi = Wp x SU(2).
Consider a quasisplit special orthogonal or symplectic group G over F. Let ¢ : W X
SLo(C) — “G be a local Arthur parameter, i.e. ¥lwy, is a continuous semisimple splitting
of 'G — W/, with bounded image and Ylsry(c) s algebraic. If 9|sp, (¢ is trivial then ¢
is a tempered Langlands parameter. The general case is considered for global purposes,

which we will discuss later. Consider the group Cy = Cent(1, (A}) and the finite group

Sy = Cy/CHZ(G)CHIF/D),
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For the groups G considered here the group Sy is isomorphic to a product of copies of
{£1}. Arthur | |[Theorem 1.5.1] associates with v a finite multiset II,, of irreducible
unitary representations of G(F'), along with a character (-, ) of Sy for any 7 € II,. In
the even orthogonal case this is not exactly true: instead of actual representations, Il is
comprised of orbits of the group Out(G) ~ Z/27Z of outer automorphisms of G on the
set of isomorphism classes of irreducible representations of G(F'). These orbits can be
described as modules over the Out(G)-invariants of the Hecke algebra H(G(F)) of G(F),
which we denote H'(G(F)). Here we have fixed a splitting Out(G) — Aut(G) defined over
F. Note that if F' is p-adic, G is unramified and K is a hyperspecial subgroup of G(F')
we can choose a splitting Out(G) — Aut(G) that preserves K. If F' is archimedean and
K is a maximal compact subgroup of G(F'), we can also choose a splitting that preserves
K, and H'(G(F)) is the algebra of left and right K-finite Out(G)-invariant distributions
on G(F) with support in K. Note that the choice of splitting does not matter when one
considers invariant objects, such as orbital integrals or traces in representations.
Denote Std : “G — GLy(C) the standard representation, where

on if G~ (SOg41)p, ie. G~ Spy, (C),
N=<2n+1 if GF ~ (Sp2n)F , l.e. (:1 ~ SOQn_H((C),
on if Gy~ (SO9,) 5, i.e. G ~ SOy, (C).

In the first two cases det o Std is trivial, whereas in the third case it takes values in {£1}
and factors through a character Gal(F/F) — {#1}, which by local class field theory we
can also sec as a character ng : F* — {£1}. If G = Sp,,(C) (resp. G = SOg,41(C)),
the standard representation Std induces a bijection from the set of conjugacy classes of
Arthur parameters ¢ : W} x SLy(C) — G to the set of conjugacy classes of Arthur
parameters ¢’ : W, x SLa(C) — GLy(C) such that det o)’ is trivial and there exists a
non-degenerate alternate (resp. symmetric) bilinear form on CV preserved by Im(v)'). The
third case, where G is an even special orthogonal group, induces a small complication.
Composing with Std still induces a surjective map from the set of conjugacy classes of
Arthur parameters ¢ : Wi x SLa2(C) — LG to the set of conjugacy classes of Arthur
parameters ¢’ : W} x SLy(C) — GLy(C) having determinant ng and such that there
exists a non-degenerate bilinear form on CV preserved by Im(v’). However, the fibers
of this map can have cardinality one or two, the latter case occurring if and only if all
the self-dual irreducible constituents of ¢/ have even dimension. The Arthur packet II,,
along with the characters (-, 7) of Sy are characterised | |[Theorem 2.2.1] using the
representation of GLx (F') associated with Std o by the local Langlands correspondence,
and twisted and ordinary endoscopic character identities. The characters ({:,7))rer, of
Sy, are well-defined only once we have fixed an equivalence class of Whittaker datum for G,
since this choice has to be made to normalise the transfer factors involved in the ordinary
endoscopic character identities.

In the p-adic case, we will mainly be interested in unramified Arthur parameters 1, i.e.
such that ¢‘W1/7 is trivial on the inertia subgroup and on SU(2). Of course these exist only

if G is unramified, so let us make this assumption. We refer to | | for the definition
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of unramified Whittaker data with respect to a choice of hyperspecial maximal compact
subgroup. Note that several conjugacy classes of Whittaker data can correspond to the
same conjugacy class of hyperspecial subgroups, and that G,q(F) acts transitively on both
sets of conjugacy classes.

The following lemma is implicit in | |. Note that a weak version of it is needed to

make sense of the main global theorem | ||Theorem 1.5.2].

Lemma 3.4.1.1. Let ¢ : Wy, x SL2(C) — LG be an Arthur parameter for the p-adic field
F. Then 11 contains an unramified representation if and only if v is unramified. In that

case, Ily, contains a unique unramified representation m, which satisfies (-, m) = 1.

Proof. This is a consequence of the proof of | |[Lemma 7.3.4]. We borrow Arthur’s
notations for this (sketch of) proof. Let f be the characteristic function of GLN(OF)x0 C
GL ~N(F). Arthur shows that fN(w) = 1 if 4 is unramified. If 1) is ramified, the represent-
ation of GLy(F) associated with Std o ¢ is ramified, thus fy () = 0. The statement of
the lemma follows easily from these two identities, the characterization | |[Theorem
2.2.1] of the local Arthur packets by endoscopic character relations, and the twisted funda-
mental lemma (which applies even when the residual characteristic of F' is small!) proved
in | |[Lemma 7.3.4]. O

To state Arthur’s global theorem we only consider the split groups SOgzy,+1, Sps,, and
SO3,, over Q. From now on G denotes one of these groups. By | |[Theorem 1.4.1],
any self-dual cuspidal automorphic representation m of GLj; over a number field has a
sign s(m) € {£1}, which intuitively is the type of the conjectural Langlands parameter of
m: s(m) = 1 (resp. —1) if this parameter is orthogonal (resp. symplectic). Unsurprisingly
if M is odd then s(m) = 1, and if M is even and s(m) = —1 then the central character
X Of 7 is trivial. Moreover Arthur characterises s(m) using Sym? and A? L-functions
[ ||[Theorem 1.5.3]. This partition of the set of self-dual cuspidal automorphic repres-
entations of general linear groups allows to define substitutes for discrete Arthur-Langlands
parameters for the group G. Define s(G) = —1 in the first case (CA-‘w = Sp,,(C)) and
s(G) = 1 in the last two cases (G = SOgy,11(C) or SOs,(C)). Define U(G) as the set of

formal sums ¢ = H;ecrm;[d;] where
1. for all i € I, m; is a self-dual cuspidal automorphic representation of GL,, /Q,
2. for all i € I, d; € Z>1 is such that s(m;)(—1)%~1 = s(G),
3. N =) crnid;,
4. the pairs (m;,d;) are distinct,
5. [Lier Xfé = 1, where x, is the central character of ;.

The last condition is automatically satisfied if G = Sp,,(C). The notation m;[d;] sug-
gests taking the tensor product of the putative Langlands parameter of m; with the d;-
dimensional algebraic representation of SLy(C). Each factor m;[d;] corresponds to a discrete

automorphic representation of GL,,4, over Q by | |.
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Let v denote a place of Q. Thanks to the local Langlands correspondence for general
linear groups applied to the (m;),’s, for ¢ € U(G), 9 specialises into a local Arthur
parameter ¢, : W(, x SLa(C) — GLy(C). By | |[Theorem 1.4.2] we can see v, as a
genuine local Arthur parameter W@v x SLa(C) — LG, but in the even orthogonal case 1, is
well-defined only up to outer automorphism. To be honest it is not known in general that
Py(Wg, ) is bounded (this would be the Ramanujan-Petersson conjecture), but we will not
comment more on this technicality and refer to the discussion preceding | |[Theorem
1.5.2| for details. Thus we have a finite multiset II,, of irreducible unitary representations
of G(Q,), each of these representations being well-defined only up to outer conjugacy in
the even orthogonal case.

As in the local case we want to define Cy, = Cent(1), G) and

Sy = 0y /COZ(G) VD = ¢, /Z(G).

Observe that this can be done formally for 1) = H;cm;[d;]. An element s of Cy, is described
by J C I such that ), ;n;d; is even, and s corresponds formally to —Id on the space
of H;cym;[d;] and Id on the space of H;cr. ym;[d;]. Thus one can define a finite 2-group
Sy along with a natural morphism Sy, — Sy, for any place v of Q. The last ingredient
in Arthur’s global theorem is the character e, of Sy. It is defined in terms of the root
numbers €(m; X 7;,1/2) just after | ||[Theorem 1.5.2]. If all the d;’s are equal to 1, in
which case we say that 1 is formally tempered, then €, = 1.

Fix a global Whittaker datum for G, inducing a family of Whittaker data for Gg,
where v ranges over the places of Q. Our reductive group is defined over Z, and the global
Whittaker datum can be chosen so that for any prime number p it induces an unramified
Whittaker datum on G(Q,) with respect to the hyperspecial subgroup G(Z,). Let K be
a maximal compact subgroup of G(R), and denote g = C®g Lie(G(R)). The following is a
specialization of the general theorem | ||Theorem 1.5.2] to the “everywhere unramified”

case, using Lemma 3.4.1.1.

Theorem 3.4.1.2. Recall that Agise(G(Q)\G(A)) is the space of Koo x G(Z)-finite and
Z(U(g))-finite functions in the discrete spectrum L3, (G(Q)\G(A)). Let W(G)"™ be the

set of v = Bym;[d;] € W(G) such that for any i, m; is unramified at every prime. There is

a H'(G(R))-equivariant isomorphism

Aie(GO\GA)*E = B D mym
YEW(G) T €y
<'77r00>:6¢’
where my, = 1 except if G is even orthogonal and for all i n;d; is even, in which case
my, = 2.
For mo € Iy the character (-, 7o) of Sy, induces a character of Sy, using the morph-
ism Sy — Sy, and the inner direct sum ranges over the s such that this character of

Sy is equal to €y.

In the even orthogonal case, 7 is only an Out(Gg)-orbit of irreducible representations,

and it does not seem possible to resolve this ambiguity at the moment. Nevertheless
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it disappears in the global setting. There is a splitting Out(G) — Aut(G) such that
Out(G) preserves G(Z), and thus if {X7, X5} is an Out(Gg)-orbit of isomorphism classes
of irreducible unitary (g, K~ )-modules, then X; and X have the same multiplicity in

Aise(G(Q)\G(A))E@),

3.4.1.2 The spectral side from an endoscopic perspective

We keep the notations from the previous section. Suppose now that G(R) has discrete
series, i.e. G is not SO9, with n odd. Let A be a dominant weight for G¢. Using Theorem

3.4.1.2 we can write the spectral side of the trace formula 3.4.1.1 as

> > myEP(me ® VY). (3.4.1.2)

YEU(G)T oo €l
<77roo> =€y

We need to be cautious here since EP (7o, ® V") is not well-defined in the even orthogonal

(1)

case. If m is the restriction to H'(G(R)) of two non-isomorphic (g, K )-modules msg

2)

and 7', we define
EP (00 ® V) = fEP (( U g r?) @ v;) .

In 3.4.1.2 we can restrict the sum to 7, ’s whose infinitesimal character equals that of V) (up
to outer automorphism in the even orthogonal case), which is A 4+ p via Harish-Chandra’s
isomorphism, where 2p is the sum of the positive roots. Thanks to the work of Mezo,
we can identify the infinitesimal character of the elements of Il . To lighten notation,
we drop the subscript oo temporarily and consider an archimedean Arthur parameter
¥ 1 Wr x SLa(C) — LG. Recall that W = C*, Wg = W U jWe where j2 = —1 € W
and for any z € Wg, jzj "
Wr — Wg x SL2(C) mapping w € Wr to

(el 0
o e

where || - || : Wrp — Ry is the unique morphism mapping z € W¢ to zz. Let 7 be a

= Z. Define a Langlands parameter ¢, by composing 1) with

~

maximal torus in G. Conjugating by an element of G if necessary, we can assume that
0yp(We) C T and write @y(2) = p(2)pe(z) for z € We, where p1, po € C ®z Xi(T) are
such that p1 —pe € X, (T). The conjugacy class of (u1, p2) under the Weyl group W (T, (A})
is well-defined. Note that for any maximal torus T of G¢ we can see p1, uo as elements of

C ®z X*(T), again canonically up to the action of the Weyl group.

Lemma 3.4.1.3. The Weyl group orbit of 1 is the infinitesimal character of any element
of IL.

Proof. Recall | |[Theorem 2.2.1] that the packet Il is characterised by twisted and
standard endoscopic character identities involving the representation of GLy(R) having
Langlands parameter Std o ¢. The lemma follows from | ||[Lemma 24| (see also
[Wal][Corollaire 2.8]), which establishes the equivariance of twisted endoscopic transfer for

the actions of the centers of the enveloping algebras. O
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Attached to A is a unique (up to é-conjugacy) discrete parameter ¢y : Wg — G
having infinitesimal character A+ p. We explicit the GLy (C)-conjugacy class of Stdoy, in
each case. For w € %Zzo it is convenient to denote the Langlands parameter Wr — GLy(C)

— g 2wy (2/]2])* 0 (0 (=1
Iy = Indy? (2 (2/|2)™) s 2 € We = < 0 (2/]2])-20 ) iy 0 .
Note that this was denoted I, in | | to emphasise motivic weight in a global setting.

We choose to emphasise Hodge weights, i.e. eigenvalues of the infinitesimal character:
our I, has Hodge weights w and —w. Let ec/r be the non-trivial continuous character
Wgr — {1}, so that [y = 1@ ec/r- If G = SOgp 41, we can write A = kieq + -+ + knen
where ky > -+ > k, > 0 are integers, and p = (n — %)61 +(n— %)62 4+t %en. In this
case Std o ¢, is

n
@ Ikr+n+1/2—'r'
r=1

If G = Sp,,,, we can write A = kie; + --- + kpe, where k1 > --- > k, > 0 are integers,
and p =ne; + (n — 1)ez + - -+ + e,. Then Std o ¢y is

n
€¢/r @ @ Ty yng1—r
r=1
Finally, if G = SOy, we can write A = kiej + - - - + kapea, where ky > -+ > ko1 > |kop|
are integers, and p = (2n — 1)e; + (2n — 2)ea + - - - + e2,—1. Then Std o ), is

2n
@ Ikr+2n—7" .
r=1

Replacing (k1, ..., kan—1, kon) with (k1,...,kan—1, —kopn) yields the same conjugacy class
under GLy(C).

From this explicit description one can deduce several restrictions on the global paramet-
ers ¢ € ¥(G)"™ contributing non-trivially to the spectral side 3.4.1.2. These observations
were already made in | |, using a different formulation. We define ¥(G)* as the subset
of ¥(QG) cousisting of 1) such that the infinitesimal character of 1, is equal to A+ p. Define
also U(G)UmA = U (G)™ N U(G)A.

1. In the first two cases (G = SOgy,+1 of Spy,,) the infinitesimal character of Std o ) is
algebraic and regular in the sense of Clozel | |. Clozel’s definition of “algebraic”
is “C-algebraic” in the sense of | |, and we will also use the term “C-algebraic” to
avoid confusion. In the third case (G = SQy,) we have that || - ||'/2 @ (Std o py) is
C-algebraic, but not always regular. It is regular if and only if ko, # 0. In all cases,
Clozel’s purity lemma | |[Lemme 4.9] implies that if 1) = B;m;[d;] € ¥(G)?, then
for all ¢ the self-dual cuspidal automorphic representation m; of GLy,/Q is tempered

at the real place. Equivalently, 1o (Wg) is bounded.

2. Let ¥(G)gim be the set of simple formal Arthur parameters in ¥(G), i.e. those
Y = Biermi[d;] such that I = {ig} and d;, = 1. Denote ¥(G)2 = U(G)gmNV(G) .

sim
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Then ¥(G)2, is the set of self-dual cuspidal automorphic representations of GLy/Q
such that the central character of 7 is trivial and the local Langlands parameter of
Too 18 Std o ). Indeed in all three cases Std o @) is either orthogonal or symplectic,

and thus 7wy, determines s(m).

. Let m > 1 and consider a self-dual cuspidal automorphic representation 7 of GLg,,/Q
such that | det ]1/ 2 @ 7 is C-algebraic regular. Self-duality implies that the central
character y, of m is quadratic, i.e. yp : AX/Q* — {#1}. Since |det|'? ® 7 is
C-algebraic and regular, there are unique integers wy > - -+ > w,, > 0 such that the

local Langlands parameter of m is

which implies that x,|gx(—1) = (—1)™. If moreover we assume that 7 is everywhere
unramified, then y, is trivial on Hp Zy . Since A* = Q*Rxo Hp Z, , this implies

that xr is trivial, and thus m must be even.

. The previous point has the following important consequence for our inductive com-
putations. Let G be a split symplectic or special orthogonal group admitting discrete
series at the real place, and A a dominant weight for G. Let ¢ = B;m;[d;] € ¥(G)"",
Then for any 4, there is a split symplectic or special orthogonal group G’ ad-
mitting discrete series at the real place and a dominant weight \ for G’ such
that m;, € ¥(G’ );?;)‘/ We emphasise that this holds even if G = SOy, and
A =kiey + - + kopeo, with ko, = 0. To be precise, we have the following classific-

ation:

(a) G = SOg,41 and thus G = Spy,(C). For a dominant weight A and ¢ =
Bicrmi[d;] € W(G)"A there is a canonical decomposition I = I U I U I3
where

unr,\’
sim

i. for all i € I1, d; is odd, n; is even and m; € V(SOp,4+1)
ii. for all ¢ € I, d; is even, n; is divisible by 4 and m; € \IJ(SOni);r;’X,
iii. card(I3) € {0,1} and if I3 = {i}, d; is even, n; is odd and 7; € \I/(Spni_l)sui?;’)‘/.
(b) G = Spy,, and thus G = SOz,41(C). For a dominant weight A and 1 =
Hicrmi[d;] € ¥(G)"rA there is a canonical decomposition I = I U I U I3

where

i. Iy = {j}, dj is odd, n; is odd and 7; € \II(Spnj—1)um’X,

sim
ii. for all i € I, d; is odd, n; is divisible by 4 and 7; € \I/(SOm):iI;”\l,
iii. for all ¢ € I3, d; is even, n; is even and m; € \IJ(SOniH);lirr‘;’)‘l
Note that n;d; = 2n +1 mod 4.

(¢) G = SOy, and thus G = SO4,(C). For a dominant weight A\ and ¢ =
Bicrmi[d;] € W(G)"A there is a canonical decomposition I = I; U I U I3

where
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i. for all 7 € I, d; is odd, n; is divisible by 4 and 7; € \I/(S()ni);r;’x,

nr,\

:im ?

iii. card(l3) € {0,2}. If Is = {i,5} and up to exchanging ¢ and j, d; = 1

unr,\
sim

ii. for all i € I, d; is even, n; is even and m; € V(SO 4+1)

and d; is odd, n; and n; are odd, and m; € ¥(Sp,, ;)
unr,\’
\Il(Spnj—l)sim .

Note that in all three cases, if \ is regular then for any ¢ = B;c;m;[d;] € U(G)™A
we have that 1o, = ¢y and thus all d;’s are equal to 1 (i.e. ¢ is formally tempered)

and m; €

and moreover in the third case I3 = ().

As in the introduction, it will be convenient to have a more concrete notation for the sets
V(G

1. For n > 1, the dominant weights for G = SOg,1 are the characters A = kie; +

-+« + kpen such that ky > --- > k, > 0. Then A+ p = wie; + --- + wpe, where

w, = kr +n 4+ % — 7, so that wy > --- > w, > 0 belong to %Z\Z. Define
S(wy, ..., wy) = \II(SOgnJrl);Irlrrl’)‘, that is the set of self-dual automorphic cuspidal

representations of GLsg,/Q which are everywhere unramified and with Langlands
parameter at the real place

Iw1@"'@1wn'

Equivalently we could replace the last condition by “with infinitesimal character hav-

ing eigenvalues {f+wq, ..., +w,}". Here S stands for “symplectic”, as G = Spsy, (C).

2. Forn > 1, the dominant weights for G = Sp,,, are the characters A = kje1+- - -+kpen
such that k; > --- > k, > 0. Then A\ +p = wie1+- - -+wpe, where w, = k.4+n+1—r,
so that wy > -+ > wy > 0 are integers. Define O, (w1, ..., wy,) = \IJ(SpQH);I;”\, that
is the set of self-dual automorphic cuspidal representations of GLay4+1/Q which are

everywhere unramified and with Langlands parameter at the real place
Ly @+ @ L, © €y

Equivalently we could replace the last condition by “with infinitesimal character

having eigenvalues {fws,...,+w,,0}”. Here O, stands for “odd orthogonal”, as

G = S02,41(C).

3. For n > 1, the dominant weights for G = SQy,, are the characters A = kje; +--- +
kanean such that k1 > -+ > ko1 > |kop|. Since we only consider quantities invariant
under outer conjugation we assume ko, > 0. Then A+ p = wye; +- - - +wape2, where
w, = k. +n — 1, so that wy > --- > wo,_1 > wo, > 0 are integers. Define
Oc(wy, ..., way) = W(SO%)&%’)‘, that is the set of self-dual automorphic cuspidal
representations of GLyy,/Q which are everywhere unramified and with Langlands
parameter at the real place

le P @[w%_

In this case also we could replace the last condition by “with infinitesimal character
having eigenvalues {+wq, ..., *wa,}”, even when ko, = 0. Here O, stands for “even
orthogonal”, as G = SOy, (C).

84



unr,\
sim

dimension of G. Observe that for 1) € ¥(G)gim, the group Sy is trivial. Thus the contri-
bution of any ¢ € \P(G)unr’)‘ to the spectral side 3.4.1.2 is simply

sim

It is now natural to try to compute the cardinality of U(G) inductively on the

> EP(mee @ V5).
=
Recall that for such a 1), the local Arthur parameter ¥ is ). In that case Arthur defines
II,, as the L-packet that Langlands | | associates with ). In the next section we
will review these packets in more detail, in particular Shelstad’s definition of (-, 7) for
Too € Il , but since Sy, is trivial all that matters for now is that card(Ily, ) is positive (and
easily computed) and that all the representations in Il,, are discrete series. By | ||ch.
III, Thm. 5.1] for any 7 € I,

EP (oo ® V5) = (—1)2(GR)

and thus to compute the cardinality of \P(G)Suirrﬁ’)‘ we want to compute the contribution of

T(G)mrA < W(G)M to the spectral side 3.4.1.2.

This is particularly easy if A is regular, since as we observed above in that case any
Y € U(G)™A is “formally tempered” or “formally of Ramanujan type”, i.e. ¥ = ©i.
Moreover €, is trivial. Shelstad’s results reviewed in the next section allow the explicit
determination of the number of 7, € II,, such that (-, 7) is equal to a given character
of Swoo .

The general case is more interesting. The determination of €, in the “conductor one”
case was done in | |, and the result is simple since it involves only epsilon factors at
the real place of Q. In all three cases, for any 1 = B;crm[d;] € U(G)™ the abelian

2-group Sy, is generated by (s;)ics where J = {i € I |n;d; is even} and s; € Cy, is formally

—Id on the space of m;[d;] and Id on the space of 7;[d;] for j # i. By | 11(3.10)]
€y(si) = H e(m; x wj)mi“(divdj)
jeI~{i}

and since m; and 7; are everywhere unramified e(m; x 7;) can be computed easily from
the tensor product of the local Langlands parameters of (7)o and (7m;)ac. Note that by
| |[Theorem 1.5.3] e(m; x m;) = 1 if s(m;)s(mj) = 1. The explicit computation of IL,__,
along with the map IL;_  — 512007 does not follow directly from Arthur’s work, even in our
special case where the infinitesimal character of 1, is that of an algebraic representation
Vy. We will need to make an assumption (Assumption 3.4.2.4) relating Arthur’s packet
Iy to the packets constructed by Adams and Johnson in | |. The latter predate
Arthur’s recent work, in fact | | has corroborated Arthur’s general conjectures: see
[ 1185]. Under this assumption, we will also be able to compute the Euler-Poincaré

characteristic of any element of II,_ in section 3.4.2.2.

Remark 3.4.1.4. Our original goal was to compute, for a given group G/Q as above,
dominant weight A and simple (g, Koo )-module module X with infinitesimal character A+ p,
the multiplicity of X in Agisc(G(Q)\G(A))G@). This is possible once the cardinalities of
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unr,\ . . .
V(G )gn " are computed, under Assumption 3.4.2.3 if we do not assume that X is r/egular.
However, Arthur’s endoscopic classification shows that computing card (\II(G’);I;/\) s a
more interesting problem from an arithmetic perspective, since conjecturally we are counting

the number of self-dual motives over Q with conductor 1 and given Hodge weights.

Remark 3.4.1.5. Except in the even orthogonal case with A\ = kie1 + - -+ + konesn and
kan = 0, it is known that any ¥ € W(G)™™ is tempered also at the finite places by | /.

sim

Remark 3.4.1.6. If G is symplectic or even orthogonal, it has non-trivial center Z iso-
morphic to pe. Thus Z(R) C Z(Q)Z(Z), and Z(R) acts trivially on AdiSC(G(Q)\G(A))G(z).
This implies that \II(G);I;)‘ is empty if Nz is not trivial, since Z(R) acts by X\ on any
discrete series representation with infinitesimal character A + p. Using the concrete de-
scription above, it is elementary to deduce that in fact W(G)"™™ A is empty if Az ) is not

trivial.

3.4.2 Euler-Poincaré characteristic of cohomological archimedean Ar-
thur packets

3.4.2.1 Tempered case: Shelstad’s parametrization of L-packets

For archimedean local fields in the tempered case the A-packets II; in | | are not
defined abstractly using the global twisted trace formula. Rather, Arthur defines Il,, as
the L-packet that Langlands | | associates with ¢y, and the map II,, — SQ/\,ﬂ' —
(-,m) is defined by Shelstad’s work, which we review below. Mezo [Mez] has shown
that these Langlands-Shelstad L-packets satisfy the twisted endoscopic character relation
[ |[Theorem 2.2.1 (a)], and Shelstad’s work contains the “standard” endoscopic char-
acter relations | ||Theorem 2.2.1 (b)].

In this section we will only be concerned with the local field R and thus we drop the
subscripts oo, and we denote Gal(C/R) = {1,0}. Let G be a reductive group over R, and
denote by Ag the biggest split torus in the connected center Zg of G. Let us assume that
G has a maximal torus (defined over R) which is anisotropic modulo Ag, i.e. G(R) has
essentially discrete series. Consider a dominant weight Ao for (Gger)c defining an algebraic
representation V), of Gger(C) and a continuous character xo : Zg(R) — C* such that xo
and Ag coincide on Zg(R) N Gger(C). Let Igisc(Ao, x0) be the finite set of essentially

discrete series representations m of G(R) such that

® |G, (r) has the same infinitesimal character as V|G .. (®),

® T|ze®) = Xo-

Harish-Chandra has shown that inside this L-packet of essentially discrete series, the rep-
resentations are parameterised by the conjugacy classes (under G(R)) of pairs (B, T)
where T is a maximal torus of G anisotropic modulo Ag and B is a Borel subgroup of
G containing T¢. For such a pair (B, T), xo and the character Ag of Tge;(R) which is
dominant for B extend uniquely to a character Ag of T(R). If we fix such a pair (B, T),

the pairs (B’, T) which are in the same conjugacy class form an orbit under the subgroup
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W, .= W(G(R), T(R)) of W := W(G(C), T(C)). Concretely, if 7 € IIgisc(Mo, X0) is the

representation associated with this conjugacy class, then for any v € T(R)G_reg,

_(c1r@ § AuBet ()
Or(y) = (1) wezwc AyBuw-1(7)

where O is Harish-Chandra’s character for m, and Ag(v) = [[,eperm)(1 — a(y)™).
Therefore the choice of (B, T) as a base point identifies the set of conjugacy classes with
WAW, by g € N(G(C), T(C)) - (¢Bg~", ).

Langlands | | and Shelstad | I, | I, [ | gave another formulation
for the parameterisation inside an L-packet, more suitable for writing endoscopic character
relations. By definition of the L-group we have a splitting (B, 7, (X4)aca) of G which
defines a section of Aut(G) — Out(G) and G = G xWg. Let (B, T) be as above. Thanks
to B we have a canonical isomorphism T - T, which can be extended into an embedding
of L-groups ¢ : YT — LG as follows. For z € Wg, define 1(z) = [lacrs @V (2/12]) x 2
where Rp is the set of roots of 7 in B. Define ¢(j) = ng x j where ng € N(G,7T) N Gger
represents the longest element of the Weyl group W(a,T) for the order defined by B.
Then ¢ is well-defined thanks to | ||[Lemma 3.2|. Since conjugation by ng X j acts
by t =t~ on TN (A}der, the conjugacy class of ¢+ does not depend on the choice of ny.
The character A\g of T(R) corresponds to a Langlands parameter ¢y, : Wg — LT. If
G is semisimple, Ap is the restriction to T(R) of an element of X*(T) = X.(7) and for
any z € We, oag(2) = AB(2/]2]). Composing ¢y, with ¢ we get a Langlands parameter
¢ : Wr = LG, whose conjugacy class under G does not depend on the choice of (B, T).
Langlands has shown that the map (Ao, x0) +— ¢ is a bijection onto the set of conjugacy
classes of discrete Langlands parameters, i.e. Langlands parameters ¢ such that S, :=
Cent(yp, G)/Z(G)CalC/B) g finite.

Consider a discrete Langlands parameter ¢, and denote by I, = II(Ao, xo) the corres-
ponding L-packet. Assume that G is quasisplit and fix a Whittaker datum (see [I<al| for
the general case). Then Shelstad defines an injective map I, — S, m = (-, 7). It has the
property that (-, 7) is trivial if 7 is the unique generic (for the given Whittaker datum)
representation in the L-packet.

Recall the relation between these two parametrizations of the discrete L-packets. Let
(B, T) be as above, defining an embedding ¢ : “T — G and recall that W and W, denote
the complex and real Weyl groups. Let C, = Cent(yp, é), so that S, = CLP/Z(a)Gal(C/R).

Using ¢ we have an isomorphism between H'(R, T) and m(Cy,)". We have a bijection
WAW — ker (H'(R,T) - H' (R, G))

mapping g € Ng(c)(T(C)) to (¢ — g 'o(g)). Kottwitz | | has defined a natural
morphism H!(R,G) — 7 (Z(é)Gal(C/R))A and thus the above bijection yields an injec-
tion 1 : WA\W — SJ. If m € I, corresponds to (the conjugacy class of) (B, T) and
7' € IL, corresponds to (¢Bg~!,T), then for any s € S,




Finally, the generic representation in I, corresponds to a pair (B, T) as above such that
all the simple roots for B are noncompact. This is a consequence of | |[Theorem 3.9]
and | ||Theorem 6.2]. In particular there exists such a pair (B, T). We will make use

of the converse in the non-tempered case.

Lemma 3.4.2.1. Let H be a reductive group over R. Assume that T is a mazimal torus of
H which is anisotropic modulo Ag, and assume that there exists a Borel subgroup B D T¢

of H¢ such that all the simple roots of T in B are non-compact. Then H is quasisplit.

Proof. We can assume that H is semisimple. We use the “R-opp splittings” of | 11812].
Let A be the set of simple roots of T in B. For any @ € A we can choose an sly-triple
(Hay X0, Ye) in h = CoprLie(H(R)). The pair (X4, Yy ) is not unique: it could be replaced
by (2Xa,r 1Y,) for any z € C*. Since o(a) = —a, 0(X,) = yY, for some y € C*,
and y € R* because ¢ is an involution. The sign of y does not depend on the choice of
(Xa, Ya), and making some other choice if necessary, we can assume that y = +1. It is
easy to check that a is non-compact if and only if y > 0. Thus the hypotheses imply the
existence of an R-opp splitting, that is a splitting (X4 )aea such that o(X,) = Y, for any
a. Note that this splitting is unique up to the action of T(R).

Let H' be the quasisplit reductive group over R such that H' admits an anisotropic
maximal torus and He ~ H{.. We know that H' admits a pair (B’, T’) where T' is an
anisotropic maximal torus and all the simple roots of B’ are non-compact. Therefore there
exists an R-opp splitting (X/,)aeas for (B, T').

There is a unique isomorphism f : H¢ — H{ identifying (B, Tc, (Xa)aca) with
(B, T, (X))aea’) and to conclude we only have to show that it is defined over R, i.e.
that it is Galois-equivariant. It is obviously the case on T, since any automorphism of T¢
is defined over R. Moreover by construction f(o(X,)) = o(X }(a)) for any o € A. Since
T¢ and the one-dimensional unipotent groups corresponding to £« for a € A generate

Hc, f is o-equivariant. O

There are as many conjugacy classes of such pairs (B, T) such that all the simple roots
are non-compact as there are conjugacy classes of Whittaker datum. For the adjoint group
SOg2,+1 there is a single conjugacy class, whereas for G = Sp,,, or SOy, there are two.
However, for our purposes it will fortunately not be necessary to precise which pair (B, T)
corresponds to each conjugacy class of Whittaker datum.

For the quasi-split group G = SO(V, q) where dimV > 3 and disc(q) > 0, T is the

stabiliser of a direct orthogonal sum
Po---@P,

where each P; is a definite plane and n = |dimV/2]. Let I, (resp. I_) be the set of
i € {1,...,n} such that P, is positive (resp. negative), V_ = @,.; P and V; = V. The
group K of real points of

S(0(V4,q) x O(V-,q))
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is the maximal compact subgroup of G(R) containing T(R). For each i, choose an iso-
morphism e; : SO(F;, q)c — Gy, arbitrarily. For dim V' even, the roots e; —eg, ..., e,-1 —

én,en—1 + e, are all noncompact if and only if

(I, I} = {{1,3,5,..},{2.4,...}}

and modulo conjugation by W, = N (K, T(R))/T(R) there are two Borel subgroups B D
T ¢ whose simple roots are all noncompact. For dim V' odd the roots e;—es, ..., e,_1—¢€,, €,

are all noncompact if and only if
I_={nn-2n—-4,..}and I ={n—1,n-3,...}
and there is just one conjugacy class of such Borel subgroups. In both cases
ker (H'(R,T) - H'(R,G))
is isomorphic to the set of (¢;)1<i<n Where ¢; € {£1} and
card{i € I | eg=—1} =card{i € [_ | ¢, = —1}.

For the symplectic group G = Sp(V,a) (where a is a non-degenerate alternate form)
H'(R,G) is trivial, so that the set of () (7 € IL,) is simply the whole group S).
However, for the non-tempered case and for the application to Siegel modular forms it will
be necessary to have an explicit description of the pairs (B, T) as for the special orthogonal
groups. There exists J € G(R) such that J?2 = —Id and for any v € V ~\ {0}, a(Jv,v) > 0.

Then J is a complex structure on V' and
h(v1,v2) := a(Jv1, va) + ia(v1, va)

defines a positive definite hermitian form A on V. Choose an orthogonal (for h) de-
composition V = @, P; where each P; is a complex line, then we can define T as the
stabiliser of this decomposition. The maximal compact subgroup of G(R) containing T(R)
is K = U(V,h)(R), and W, ~ S,,. Thanks to the complex structure there are canonical
isomorphisms e; : U(P;, h) — Uj (fori € {1,...,n}). Modulo conjugation by W, the two
Borel subgroups containing T¢ and having non-compact simple roots correspond to the

sets of simple roots
{e1 + ez, —ea —e3,...,(—=1)"(en—1 + €n), (—1)"“26,1},
{—e1 —eg,ea+es,..., (—1)”71(671_1 +ep), (—1)"2e,}.

3.4.2.2 Adams-Johnson packets and Euler-Poincaré characteristics

Let us now consider the general case, which as we observed above is necessary only when
the dominant weight X\ is not regular. For a quasisplit special orthogonal or symplectic
group G and an Arthur parameter ¢ : Wg x SL2(C) — “G having infinitesimal character
A+ p, we would like to describe explicitly the multiset II, along with the map II;, —
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SI//)\. We would also like to compute the Euler-Poincaré characteristic EP(m @ V') for any
m € II,. Unfortunately it does not seem possible to achieve these tasks directly from
Arthur’s characterisation | |[Theorem 2.2.1]. We will review Adams and Johnson’s
construction of packets Hff using Arthur’s formulation, which will lead us naturally to
Assumption 3.4.2.4 relating Arthur’s Il with Hﬁ‘] . This review was done in | ],
[ | and | | but we need to recall Adams and Johnson’s results precisely in order
to compute Euler-Poincaré characteristics. Moreover we will uncover a minor problem in
[ 1185]. Finally, | | was written before Shahidi’s conjecture | ||Conjecture
9.4] was formulated, and thus we need to adress the issue of normalization of transfer
factors by Whittaker datum. This is necessary to get a precise and explicit formulation of
[ | in our setting, which is a prerequisite for writing an algorithm.

As in the previous section G could be any reductive algebraic group over R such that
G(R) has essentially discrete series. To simplify notations we assume that G is semisimple.
To begin with, we consider general Arthur parameters ¢ : Wg x SLy(C) — G, i..

continuous morphisms such that
e composing with G — Wg, we get Idy,
e |y, is semisimple and bounded,
® V[gr,(c) is algebraic.

As before we fix a Gal(C/R)-invariant splitting (B, T, (Xa)aca) in G. Assume that 1 is
pure, i.e. the restriction of ¥ to Ryg C W is trivial. Otherwise 1 would factor through a
Levi subgroup of “G. After conjugating by an element of G we have a B-dominant To €
$X,(T) such that for any z € W¢, ¥(z) = (279)(2/]2]). TAhe set of roots o € R(T, G) suAch
that (79, @) > 0 defines a parabolic subgroup Q = LU of G with Levi £ = Cent(y)(W¢), G)
and 1(SLa(C)) C Lger- After conjugating we can assume that

2eC* <<g 201> € SL2(C)>

takes values in 7 N Lger and is dominant with respect to B N Lger. Let us restrict our
attention to parameters ¢ such that 9[gr,c) : SL2(C) — Lger is the principal morphism.

After conjugating we can assume that

d (¥[sra(c)) <<8 é) 65[2) = > X

aEA,

We claim that 1(j) € G x {j} is now determined modulo left multiplication by Z(L).
Let n: W(G,T)x Wg — N(XG,T) = N(G,T) x Wg be the set-theoretic section defined
in | 1[§2.1]. Let wo € W(G, T) be the longest element in the Weyl group (with respect
to B). Since G has an anisotropic maximal torus, conjugation by (any representative of)
wo X j acts by t +— ¢t~ on T. Let wy be the longest element of the Weyl group W (L, T).
Then wiwg % j preserves Az and acts by ¢+ ¢t~ on Z(£). By | |[Proposition 9.3.5]
n(wiwe » j) = n(wiwg) x j preserves the splitting (Xy)aeca,, and thus commutes with
¥ (SLa(C)). The following lemma relates 1 (j) and n(wjwy X 7).
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Lemma 3.4.2.2. There is a unique element a € Z(L)\ (é‘r X {j}) commuting with ) (SLa(C))
and such that for any z € Wg, ap(2)a™t = (z71).

Proof. If a and b are two such elements, ab~! € G commutes with Y(We), thus ab™! € L.
Furthermore ab commutes with ¥ (SLg(C)), hence ab=t € Z(L). O

Since n(wiwp % j) and ¥(j) satisfy these two conditions, they coincide modulo Z(L).
In particular conjugation by 1 (j) acts by ¢t = ¢t~ on Z(L£), and thus the group

Cy = Cent(y),G) = {t € Z(L) | * =1}

is finite, and so is Sy, := Cw/Z((A})Gal(C/R). In addition, (279)(—1) = 9(j)? = n(wiwg x 5)?
only depends on L. By | ][Lemma 2.1.A], n(wiwg x 5)% = [Tocro aV(—1) where Rg

is the set of roots of 7 occurring in the unipotent radical & of Q. Thus
1
0 v
™ € X.(Z(£)°) + 5 > Y.
aERg

Conversely, using the element n(wjwgy % j) we see that for any standard parabolic subgroup
Q = LU O B of G and any strictly dominant (for Ro) 7o € X.(Z(£)°) + %ZaeRQ aV,

there is at least one Arthur parameter mapping z € W to (279)(z/|z|) and <8 é) € sly

t0 > nen, Xa- Finally, for any u € Z(L£), we can form another Arthur parameter ' by im-

posing ¥’ xsLa(c) = Y|wexsry(cy and ' (j) = uyp(j). It follows that the set of conjugacy
classes of Arthur parameters " such that 9|y, xsr,(c) is conjugated to [, xsr,(c) is 2

torsor under
Z(E)/{t2 lte Z(L)} = Hl(Gal(C/]R), Z(L)) where o acts by wiwy % j on Z(L).

Recall the norm || - || : Wg — R~ which maps j to 1 and z € W to zZ, which is used
to define the morphism Wr — Wg x SLg(C) mapping w to

o (10
o )

Composing ¢ with this morphism we get a Langlands parameter ¢, : Wg — LG which
is not tempered in general. For z € Wg, ¢yu(2) = (1 — 7')(2/|2])(7 + 7/)(|2|) (formally

7(2)7'(2)) where

1 1
T:To+§ Z a”  and TIZ—T0+§ Z a’.

aE€ERpAL a€Rpnc

Then 7 € 3 4ep, @ + X«(T) and the following are equivalent:
1. 7 is regular,
2. T — %EaERB a" is dominant with respect to Rz,

3. 10 — % ZaeRQ a" is dominant with respect to Rg.
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In fact for any pure Arthur parameter ¢, without assuming a priori that ¢|gr, ) — £ is
principal, if the holomorphic part 7 of ¢y|w, is regular, then WSLQ(C) — L is principal.
The orbit of 7 under the Weyl group is the infinitesimal character associated with ¢, and
we have seen that it is the infinitesimal character of any representation in the packet IL
associated with ¢ (Lemma 3.4.1.3). For quasisplit special orthogonal or symplectic groups
we checked this (up to outer conjugacy in the even orthogonal case) in Lemma 3.4.1.3.

From now on we also assume that the infinitesimal character 7 of 1 is regular. Note
that 7 is then the infinitesimal character of the restriction to G(R) of the irreducible algeb-
raic representation V) of G¢, where 7 = A + p. Let us describe the set of representations
HfZJ that Adams and Johnson associate with ¢ as well as the pairing II,, — 512. To be
honest Adams and Johnson do not consider parameters 1, they only work with repres-
entations, but | 1185] interpreted their construction in terms of parameters. We will
only add details concerning Whittaker normalisation. As in the tempered case we begin
by considering pairs (B, T) where T is an anisotropic maximal torus of G and B a Borel
subgroup of G¢ containing T¢. We have a canonical isomorphism between the based root
data

(X*(T(C))ABvX*(T(C)vA]\g) and (X*(T)7A2/37X*(T)7AB)

and we can associate with (Q, £) a parabolic subgroup Q D B of G¢ and a Levi subgroup
Lc D Tc of Ge. As the notation suggests L¢ is defined over R (for any root a of T¢ in
Ge, o(a) = —a), and we denote this real subgroup of G by L. Consider the set ¥g of
conjugacy classes of pairs (Q, L) (Q a parabolic subgroup of G¢ and L a real subgroup of
G such that L¢ is a Levi subgroup of Q) obtained this way. The finite set 35 of conjugacy
classes of pairs (B, T) surjects to 3g. If we fix a base point (B, T), we have seen that ¥z
is identified with W \W. This base point allows to identify X¢g with W \W /Wy, where
Wi = W(L(C), T(C)), and

WAW/Wy, ~ ker (H'(R,L) —» H'(R,G)) .

For any cl(Q,L) € Xg there is a canonical isomorphism L ~ £ identifying the splittings.
Given another cl(Q',L’) € Xg, there is a unique g € G(C)/L(C) conjugating (Q, L) into
(Q/,L'), yielding a canonical isomorphism of L-groups “L ~ “L/. As in the tempered
case we want to extend L ~ £ into an embedding ¢ : YL — G as follows. For z € W,
define +(2) = [laer, aV(z/|z]) x z. Define 1(j) = n(wiwy x j). We have computed
n(wiwg X j)? = HaeRQ aV(—1) above and thus ¢ is well-defined. Note that contrary to the
tempered case, there are other choices for ¢(j) even up to conjugation by Z(L£): we could
replace ¢(j) by ut(j) where u € Z(L), and it can happen that u is not a square in Z(L).
This issue seems to have been overlooked in | 1[85]. We will not try to determine
whether n(wjwg % j) is the correct choice here and we will consider this problem in a
separate note, since for our present purpose this choice does not matter.

For any class cl(Q, L) € ¥g there is a unique Arthur parameter

1/JQ7L : WR X SLQ((C) — LL
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such that up to conjugation by 6}, Y = 1oYqrL. Now ¥quLlsr,c) : SL2(C) — L is the
principal morphism. Thus 9q r|w; takes values in Z (fl) x Wrg, and the conjugacy class of
¥qL is determined by the resulting element of HY(Wg, Z (f;)), which has compact image.

Recall that for any real reductive group H there is a natural morphism
vt - H (W, Z(H)) — Homgon (H(R),C*)

which is surjective and maps cocyles with compact image to unitary characters of H(R).
To define this morphism we can use the same arguments as | |181]. If H is simply
connected, then H is adjoint and H(R) is connected. More generally, if Hge, is simply
connected then the torus C = H/Hy, is such that Z (ﬁ) = C and

H(R)*® = ker (C(R) - H'(R, Hyer)) -

Finally if H is arbitrary there exists a z-extension C — H — H where C is an induced torus
and Hye, is simply connected. Then H'(Gal(C/R), C(C)) is trivial, thus H(R) — H(R)
and

Hormeon: (FI(R), €) = ker (Homeon: (FI(R), C*) — Homeon(C(R), C¥))

Parallelly, C"® is connected so that CV& — H1(Wg, Z(H)) is trivial and thus
Wi, Z(88)) = e (110, Z(00) = 11072, ©)).

Asin | ||§1] the morphism v obtained this way does not depend on the choice of a
z-extension. Note that when H is quasi-split, vg is an isomorphism, by reduction to the
case where Hye, is simply connected and using the fact that a maximally split maximal
torus in a simply connected quasi-split group is an induced torus. It is not injective in
general, e.g. when H is the group of invertible quaternions.

Hence 1q 1, defines a one-dimensional unitary representation 7['37Q7L of L(R), and ap-
plying cohomological induction as defined by Zuckerman, Adams and Johnson define the
representation my Q1 = Ré(W&Q’L) of G(R), where q = Lie(Q) and ¢ = ¢(G) — ¢(L).
Vogan has shown that this representation is unitary. They define the set Hﬁ‘] in bijection
with Xg:

)" = {ry.qr | cl(Q,L) € To}.

The endoscopic character relations that they prove | ||Theorem 2.21] allow to identify
the map I, — S/, as Arthur did in | 1[85]. Assume that G is quasisplit (this is
probably unnecessary as in the tempered case using the constructions of [l<al]), and fix a

Whittaker datum for G. Then any cl(B,T) € X determines an element of S (here ¢
could be any discrete parameter, the group S, is described in terms of B, 7 independently).
It is easy to check that if (B, T) and (B’, T') give rise to pairs (Q,L) and (Q’,L’) which
are conjugated under G(R), then the restrictions to Sy, of the characters of S, associated
with (B, T) and (B/,T') coincide. We get a map Hfz‘] — S} which is not injective in

general.
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Adams and Johnson (| |[Theorem 8.2], reformulating the main result of | )

give a resolution of 7y q . by direct sums of standard modules
0—mpqr — XM ... 5 X0 = 0. (3.4.2.1)

Recall that a standard module is a parabolic induction of an essentially tempered rep-
resentation of a Levi subgroup of G, with a certain positivity condition on its central
character. Johnson’s convention is opposite to that of Langlands, so that my, q 1, embeds in
a standard module. Apart from its length, the only two properties of this resolution that

we need are

1. X9 is the direct sum of the discrete series representations of G(R) having infinitesimal
character 7 and corresponding to the cl(B,T) € X3 mapping to cl(Q,L) € o,

2. for any i > 0, X* is a direct sum of standard modules induced from proper parabolic
subgroups of G, therefore EP(X' ® Vy¥) = 0.

Thus we have the simple formula
EP(ryqL @ Vy) = (—1)1®~Wcard (fiber of cl(Q, L) by X5 — 2g).

Note that my q 1, is a discrete series representation if and only if L is anisotropic.

Let us be more precise about the endoscopic character relations afforded by Adams-
Johnson representations, since Shahidi’s conjecture was only formulated after both | |
and | |. Let sy be the image by 1 of —1 € SLy(C), which we will see as an ele-
ment of Sy. Arthur and Kottwitz have shown that for cl(Q, L), cl(Q',L’) € g, we have
(s Mpr) = (1) =9E) (s, 7, 1), Let (Bo, To) be a pair in G corresponding to
the base point (i.e. the generic representation for our fixed Whittaker datum) for any dis-
crete L-packet. It determines a pair (Qg, Lo) such that cl(Qq, Lg) € ¥o. The simple roots
of By are all non-compact and thus the same holds for the Borel subgroup By N (Lg)c of
(Lop)c. By Lemma 3.4.2.1 the group Ly is quasisplit. Thus for any cl(Q,L) € ¥o we have
(spymp.qL) = (—1)40)=aL) " Note that if (B, T1) corresponds to the generic element
in tempered L-packets for another Whittaker datum, the pair (L, Q1) that it determines
also has the property that Lq is quasisplit. Since Ly and L; are inner forms of each other,
they are isomorphic and g(Lg) = ¢(L1). This shows that the map

Flg)dg = > (s, m)Tr (x(f(9)dg)),

AJ
WEHw

defined on smooth compactly supported distributions on G(R), is canonical: it does not
depend on the choice of a Whittaker datum for the quasisplit group G. By | |[Theorem
2.13] it is stable, i.e. it vanishes if all the stable orbital integrals of f(g)dg vanish. Consider
an arbitrary element x € Sy. It determines an endoscopic group H of G and an Arthur
parameter ¢y : Wr X SLa(C) — “H whose infinitesimal character is regular. Thanks to
the choice of a Whittaker datum we have a well-defined transfer map f(g)dg — fH2(h)dh

from smooth compactly supported distributions on G(R) to smooth compactly supported
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distributions on H(R). Adams and Johnson have proved | |[Theorem 2.21] that there
is some ¢ € C* such that

S (sp, mTr (n(F(9)d9) =t 3 (s m)Tr (/A ()an) (3:4.22)

AJ AJ
WEHw Wean

for any smooth compactly supported distribution f(g)dg on G(R). We check that ¢ = 1.
Let ¢ : Wg — G be the discrete Langlands parameter having infinitesimal character 7.
Conjugating if necessary, we can assume that the holomorphic parts of ¢|w. and @y|w;
are equal and not just conjugated. In this way we see Sy, as a subgroup of S,. We restrict
to distributions f(g)dg whose support is contained in the set of semisimple regular elliptic

elements of G(R). In that case by Johnson’s resolution 3.4.2.1

> (spz, mTr (n(f(g)dg)) = (—1)7) >~ (z, m)Tr (x(f(g)dg))

WEHQJ welly,
= (=12T) 3" Ty (x(fH(h)dh))
mEllpgy

where the second equality is the endoscopic character relation for (¢, ). Let (B, TE)
be a pair for H such that the simple roots of Bgl are all non-compact. Then the pair
(le, L%I) that it determines is such that L%){ is quasisplit and has same Langlands dual
group as Lo, thus L ~ Lg. In particular ¢(L{!) = ¢(Lo) and

(1)@ " Tr (w(fH(h)dh)) = > (sy,m)Tr (x(fH(h)dh)) .

LS. reld)

Therefore the endoscopic character relation 3.4.2.2 holds with ¢ = 1 for such distributions
f(g)dg. By choosing f(g)dg positive with small support around a well-chosen semisimple
regular elliptic element we can ensure that both sides do not vanish, so that t = 1.

This concludes the precise determination of the map 7 — (-, 7), normalised using Whit-
taker datum as in the tempered case. Note that this normalised version of | |[Theorem
2.21] is completely analogous to | |[Theorem 2.2.1(b)|. We are led to make the follow-

ing assumption.

Assumption 3.4.2.3. Let G be a quasisplit special orthogonal or symplectic group over
R having discrete series. Fixz a Whittaker datum for G. Let 1) be an Arthur parameter for
G with reqular infinitesimal character 7 = X+ p. Then for any x € S’),

@ T @ . (3.4.2.3)

TrGHﬁJ melly,
(- my=x (m)=x

Note that in the even orthogonal case, this only assumes an isomorphism of H'(G(R))-

modules.

To compute Euler-Poincaré characteristics we only need the character of the direct sum

appearing in Assumption 3.4.2.3 on an anisotropic maximal torus. This follows from the
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fact that the standard modules form a basis of the Grothendieck group of finite length
(g, K)-modules. Using also the fact that Arthur and Adams-Johnson packets satisfy the
same endoscopic relations, we can formulate a weaker assumption which is enough to

compute the Euler-Poincaré characteristic of the right hand side of 3.4.2.3 for any x € S{Z)\.

Assumption 3.4.2.4. Let G be a quasisplit special orthogonal or symplectic group over
R having discrete series. Let 1 be an Arthur parameter for G with reqular infinitesimal
character T = XA+ p, and let T be a maximal torus of G which is anisotropic. Let Lg
denote the quasisplit reductive group defined in the discussion above. If G is symplectic or

odd orthogonal, the assumption is that for any v € Tieg(R),

D {5y, MO (y) = (~1)U DT Tr(|V).
W€H¢

In the even orthogonal case, this identity takes the following meaning. Lety € Treg(R) and
consider a 7' € G(R) outer conjugated to . For m in ILy, which is only an Out(G)-orbit

of representations, we still denote by m any element of this orbit. The assumption is

Y (s (Ox(7) + O2(7) = (~1)HD =1L (Te(y|Vy) + Te(v|Vy)) -
melly

Of course it does not depend on the choice made in each orbit.

Thus under this assumption we have an algorithm to compute inductively the cardin-
ality of each \I’(G);I;’)‘.
Remark 3.4.2.5. For this algorithm it is not necessary to enumerate the sets

WAW/Wy, ~ ker (H'(R,L) - H'(R,G))

parametrizing the elements of each Ily. It is enough to compute, for each discrete series
7 represented by a collection of signs as in the previous section, the restriction of (-, ) to
Sy and the sign (—1)9%).

unr,\
sim

See the tables in section 3.7.2 for some values for card <\II(G)

ordered lexicographically.

) in low weight A

3.5 Application to vector-valued Siegel modular forms

Let us give a classical application of the previous results, to the computation of dimensions
of spaces S, (I'),) of vector-valued Siegel cusp forms in genus n > 1, weight r and level one.
It is certainly well-known that, under a natural assumption on the weight r, this dimension
is equal to the multiplicity in LﬁiSC(PGSan(Q)\PGSpZn(A)/PGSan(z)) of the holo-
morphic discrete series representation corresponding to r. Although | | contains “half”
of the argument, we could not find a complete reference for the full statement. To set our
mind at rest we give details for the other half. We begin with a review of holomorphic

discrete series. We do so even though it is redundant with | | and | |, in order to
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give precise references, to set up notation and to identify the holomorphic discrete series
in Shelstad’s parametrisation.

Note that it is rather artificial to restrict our attention to symplectic groups. For any
n > 3 such that n # 2 mod 4, the split group G = SO,, has an inner form H which is
split at all the finite places of Q and such that

e if n=-1,0,1 mod 8, H(R) is compact,
e if n=3,4,5 mod 8 H(R) ~ SO(n — 2,2).

In the second case H(R) has holomorphic discrete series which can be realised on a her-
mitian symmetric space of complex dimension n — 2. In the first case H(R) also has holo-
morphic discrete series which can be realised on a zero-dimensional hermitian symmetric

space.

3.5.1 Bounded symmetric domains of symplectic type and holomorphic
discrete series

Let us recall Harish-Chandra’s point of view on bounded symmetric domains and his
construction of holomorphic discrete series (see | I, | I, | I, | |) in the
case of symplectic groups. Let n > 1 and G = Sps,,, over R in this section, and denote
G = G(R), g9 = Lie(G) and g = C ®g go- Then G is the stabiliser of a non-degenerate
alternate form a on a 2n-dimensional real vector space V. As before choose J € G such
that J2 = —1 and for any v € V ~ {0}, a(Jv,v) > 0, which endows V with a complex
structure and realises a as the imaginary part of the positive definite hermitian form h
defined by

h(v1,v2) = a(Jvi,v2) + ia(vy, ve).

Then K = U(V, h) is a reductive subgroup of G, and K = K(R) is a maximal compact
subgroup of G. Note that both G and K are connected. The center Zk of K is one-
dimensional and anisotropic, and the complex structure J yields a canonical isomorphism
Zyx ~ Uj. Let uy (resp. u_) be the subspace of g such that the adjoint action of z € Zk (R)
on u; (resp. u_) is by multiplication by 2% (resp. 272). Then g = u, ® £ @ u_ and
[up,uy] = u_,u_] = 0. Moreover uy ® u_ = C ®g po where pg is the subspace of
go = Lie(G) on which J acts by —1, i.e. go = po @ €y is the Cartan decomposition of gg
for the Cartan involution §# = Ad(J). There are unipotent abelian subgroups U, U_ of
G associated with u;,u_, and the subgroups KcU; and KcU_ are opposite parabolic
subgroups of G¢ with common Levi subgroup K. It follows that the multiplication map
U; x K¢ x U_ — Gg¢ is an open immersion. Furthermore G € U, (C)K(C)U_(C).
For g € G, we can thus write g = g4gog— where (g4, 90,9-) € U4(C) x K(C) x U_(C),
and Harish-Chandra showed that g — log(g;) identifies G/K with a bounded domain
D C uy. This endows G/K with a structure of complex manifold, and for any g € G, left
multiplication by g yields a holomorphic map G/K — G/K.

Remark 3.5.1.1. Let us compare this point of view with the classical one. Let V = R?"

0 1”), that is a(vy,ve) =

and choose the alternate form a(-,-) having matric A = ( L0
—in

97



‘v Avg. The complex structure J whose matriz is also A satisfies the above conditions,
and the resulting mazimal compact subgroup K is the stabiliser of il,, for the usual action
of G on the Siegel upper half plane Hy = {7 € M,(C) | ' = 7 and Im(7) > 0}: for

a,b,e,d € M,(R) such that g = (CCL Z) € Gand 1 € Hy, g(t) = (a7 + b)(cT +d) L.

We now have two identifications of G/K with domains, D and H,, and they differ by the
Cayley transform H, — D, 7+ (7 —il,) (T +il,) L.

Observe that GK(C)U_(C) = exp(D)K(C)U_(C) is open in G(C). Consider an irre-
ducible unitary representation r : K — GL(W), i.e. an irreducible algebraic representation
of K¢ endowed with a K-invariant positive definite hermitian form. Harish-Chandra con-
sidered the space of holomorphic functions f : GK(C)U_(C) — W such that

1. for any (s,k,n) € GK(C)U_(C) x K(C) x U_(C), f(skn) = r(k)~Lf(s),

2. JolIf(9)|Pdg < oo.

It has an action of G defined by (g- f)(s) = f(g~'s), and we get a unitary representation
of G on a Hilbert space 7. Since G/K ~ GK(C)U_(C)/K(C)U_(C), s is isomorphic
to the space of f € L2(G,W) such that

L. for any (9,k) € G x K, f(gk) = r(k)~"f(9),
2. the function G/K — W, g+ r(go)f(g) is holomorphic.

Harish-Chandra proved that 7. is zero or irreducible, by observing that in any closed
invariant subspace, there is an f such that G/K — W, ¢g — r(g0)f(g) is constant and
nonzero. Actually this a special case of | ||[Lemma 12, p. 20]). Hence when ¢ # 0,
there is a K-equivariant embedding ¢ : W — 7., and any vector in its image is uy-
invariant. More generally, using the simple action of Zg(R) on U} we see that when
. # 0 the K-finite vectors of J7,. are exactly the polynomial functions on D. Note that
when 77, # 0 it is square-integrable by definition, i.e. it belongs to the discrete series of G.

Harish-Chandra determined necessary and sufficient conditions for 7% # 0. Let T be a
maximal torus of K, and choose an order on the roots of T in K. This determines a unique
order on the roots of T in G such that the parabolic subgroup KcU, is standard, i.e.
contains the Borel subgroup B of G¢ such that the positive roots are the ones occurring
in B. To be explicit in the symplectic case, T is determined by a decomposition of V as
an orthogonal (for the hermitian form h) direct sum V. =V; @ --- @ V,, where each Vj is
a line over C. For any k£ we have a canonical isomorphism ey : U(Vy, h) ~ U;. We can
choose the order on the roots so that the simple roots are e; —es, ..., e,_1 — en, 2¢,. Note
that among these simple roots, only 2e, is noncompact. Let A = mie; + --- + mue, be
the highest weight of r, so that m; > --- > m,,. This means that up to multiplication by
a scalar there is a unique highest weight vector v € W ~ {0}, that is such that for any
b€ K(C)nNB(C), r(b)v = A(b)v. Let p =ney + --- + e, be half the sum of the positive
roots of T in G. Then % # 0 if and only if for any root a of T in Uy, (a¥, A+ p) < 0

(see | |[Lemma 29, p. 608]). In our case this condition is equivalent to m; +n < 0.
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Assume that 7. # 0. Note that ¢(v) is a highest weight in the g-module () k _fn,
i.e. the Lie algebra of the unipotent radical of B cancels ¢(v). Since 4% is irreducible
and unitary, (J4.)k_gn is a simple g-module whose isomorphism class determines that of
. (see | |[chapter VIII]), and thus it is the unique simple quotient of the Verma
module defined by B and A. In particular, A 4+ p is a representative for the infinitesimal
character of J#.. One can show that (J4.)k_fin = U(9) @u(eau,) W, where W is seen as a
£ ® uy-module by letting uy act trivially.

Remark 3.5.1.2. Before Harish-Chandra realised these holomorphic discrete series con-
cretely, in [ | he considered the simple quotient of the Verma module defined by \ and
B, for A an arbitrary dominant weight for Kc N B. He determined a necessary condition
for this g-module to be unitarisable | /[Corollary 1 p.768]: for any root o of T in Uy,
(@Y, X) <0 (in our case this is equivalent to my < 0). He also determined a sufficient con-
dition [ J[Theorem 3 p.770]: for any root o of T in Uy, (aV, A+ p) <0 (in our case
this is equivalent to my +mn < 0). For classical groups Enright and Parthasarathy [ /
gave a necessary and sufficient condition for unitarisability. In our symplectic case, this
condition s
2<j<i

It would be interesting to determine whether all these unitary representations are globally

relevant, i.e. belong to some Arthur packet.

The character of 7% was computed explicitely in | I, 1 | and | |. There
exists a unique Borel subgroup B’ D T¢cU_ of G¢ such that B N K¢ = BN Kc. The
order on the roots defined by B’ is such that A + p is strictly dominant, i.e. for any root
a occurring in B’ (aV, A+ p) > 0. Let W, = W(T(R),G) = W(T(R), K). Then among
the discrete series of G with infinitesimal character A + p, 4. is determined by the G-
conjugacy class of the pair (B’,T) (see section 3.4.2.1). In our case the simple roots for

B aree; —eo,...,ep-1 — €, and —2e;.

Remark 3.5.1.3. This characterisation of the holomorphic discrete series in their L-packet
is enough to determine which Adams-Johnson representations are holomorphic discrete
series. Using the notations of section 3.4.2.2, the representation my Q1 1S a holomorphic
discrete series if and only if Q D B’ and L is anisotropic. By [ J[Lemma 9.4] the
packet Hg‘] contains a holomorphic discrete series representation if and only if Stdo does

not contain [d] or ec/r[d] as a factor for some d > 1 (necessarily odd).

We have made an arbitrary choice between U, and U_. We could have also identified
G/K with a bounded domain D" C u_:

G/K c U_(C)K(C)U,(C)/K(C)UL(C) ~ U_(C).

The resulting isomorphism of manifolds D ~ D’ is antiholomorphic. Given an infinitesimal

character 7 which occurs in a finite-dimensional representation of G, we have a discrete
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series representations of GG in the L-packet associated with 7, 71'};7‘1 = (J) g _py (resp.
W?O,I) It is characterised among irreducible unitary representations having infinitesimal

character 7 by the fact that it has a nonzero K-finite vector cancelled by uy (resp. u_).
hol

T,—"

Since K stabilises uy and u_, ﬂ?‘jlr %7

Let us now define holomorphic discrete series for the group G’ = PGSp(V, a). Assume
that »,_, my is even, i.e. the center of G acts trivially in W?‘i (and 7'[‘7}_10_1) The image of G
in G’ has index two, and there is an element of G’ normalizing K and exchanging U, and
U_. Thus if 7 is such that the kernel of 7r1;7°1_l contains the center of G, 7l := Indgl (Wﬁff_)
is irreducible and isomorphic to Indg/ (71'71}0_1) Among irreducible unitary representations

hol

29 is characterised by the fact that it has a nonzero

having infinitesimal character 7, w

K-finite vector cancelled by uy. Of course we could replace 1y by u_.

3.5.2 Siegel modular forms and automorphic forms

Let us recall the link between Siegel modular forms and automorphic cuspidal representa-
tions for the group PGSp. Almost all that we will need is contained in | |, in which
the authors construct an isometric Hecke-equivariant map from the space of cuspidal Siegel
modular forms to a certain space of cuspidal automorphic forms. We will simply add a
characterisation of the image of this map.

For the definitions and first properties of Siegel modular forms, see | | or

[ ]. We will use the classical conventions and consider the alternate form a on Z*"

_(i 1(;L> € M>,(Z) for some integer n > 1. Let pu: GSp(A4) —

GL; be the multiplier, defined by the relation a(g(v1),g(v2)) = p(g)a(vi,ve). Let G =
Sp(A) = ker(u) and G’ = PGSp(A) = G4, both reductive over Z.

whose matrix is A = (

Recall the automorphy factor j(g,7) = ¢t +d € GL,(C) for g = d

and 7 € H,. As in the previous section denote by K the stabiliser of i1,, € H,, under the

b) € GSp(A,R)

action of G(R). Let K’ be the maximal compact subgroup of G'(R) containing the image

of K by the natural morphism G(R) — G/(R). Observe that the map k = <_ab 2) =

K — j(k,il,) = a — ib is an isomorphism between K and the unitary group U(1,).
In the previous section, using the complex structure J whose matrix is equal to A, we
have identified K with the unitary group U(h) for a positive definite hermitian form h
on R?" with the complex structure J. We emphasise that the the resulting isomorphism
U(1,) ~ U(h) is not induced by an isomorphism between the hermitian spaces: one has

L on one side.

to compose with the outer automorphism = +— ‘o~
Let (V,r) be an algebraic representation of GL,,. We can see the highest weight of r as
(m1,...,mg) where my > ...mg are integers. The representation k € K — r(j(k,i1y)) is
the restriction to K of an algebraic representation r’ of K¢. As in the previous section we
choose a Borel pair (B¢, T) in K and denote by e; — es,...,e,_1 — €, the corresponding
simple roots. Then the highest weight of r’ is —mye; — -+ — mye,.
Let I';, = Sp(A,Z), and denote by S,(I';,) the space of vector-valued Siegel modular

forms of weight r. When m; = --- = my, that is when r is one-dimensional, this is the
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space of scalar Siegel modular forms of weight my. Asgari and Schmidt associate with any

f € S(y,) a function @; € L2(G'(Q)\G/(A), V) such that
1. &;f is right G'(Z)-invariant,
2. for any g € G/(A), the function G'(R) — W, h — Cff(gh) is smooth,
3. for any X € u_ and any g € G'(A), (X - ®;)(g) =0,
4. for any g € G/(A) and any k € K, &)f(gk) = r(j(k,iln))éf(g),
5. if is cuspidal.

The third condition translates the Cauchy-Riemann equation for the holomorphy of f into
a condition on ® 7. If the measures are suitably normalised, f ® ¢ is isometric for the
Petersson hermitian product on S,(I';). Finally, f — ® 7 is equivariant for the action of
the unramified Hecke algebra at each finite place.

Let N, be the unipotent radical of B, let n. be its Lie algebra and let hy be the
Lie algebra of T. The representation r’ allows to see V as a simple £-module, and n.V
has codimension one in V. Let L be a linear form on V such that ker(L) = n.V. We
can see X*(T) as a lattice in Homg(ho,iR) C h*. Let A = myeq + -+ + mpe, which
we can see as an element of (h @ n, @ u_)* trivial on n. ® u_. For any v € V and any
Xehpdndu_, L(—r(X)v) = A(X). For g € G'(A), define ®¢(g) = L(EIv)f(g)). Then
;€ L*(G'(Q)\G'(A)) satisfies the following properties

1. @ is right G’(i)—invariant and right K’'-finite,

2. for any g € G’(A), the function G'(R) — W, h +— ®¢(gh) is smooth,

3. forany X e h@n.@u_ and any g € G'(A), (X - ¢)(g) = MX)Py(g),
4. ®; is cuspidal.

Again f +— ® is equivariant for the action of the unramified Hecke algebras at the finite
places, and is isometric (up to a scalar). The third condition implies that ®; is an eigen-
vector for Z(U(g)) and the infinitesimal character A4py gu_ = (m1—1)e1+- - -+(my—n)ey,.

In particular ® is a cuspidal automorphic form in the sense of | |, which we denote
by @5 € Acusp(G'(Q)\G'(A)).

Lemma 3.5.2.1. Any ® € Acusp(G'(Q)\G'(A)) satisfying the four conditions above is
equal to @5 for a unique f € Sp(I'y).

Proof. Since ® is K'-finite and transforms under h & n. according to A\, ® = L(®P) for a
unique function ® : G/(Q)\G’(A) — V such that for k € K, ®(gk) = r(j(k,il,)) " 1®(g).
It is completely formal to check that there is a unique f € M, (I';,) such that d=2a 7, and
thanks to the Koecher principle we only need to use that ® has moderate growth when
n =1. We are left to show that f is cuspidal. Write f(7) =} cqim c(s5)e?™T(7) where

¢s € V and the sum ranges over the set Sym, of symmetric half-integral semi-positive
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0 0

0 s')) = 0. We use the
cuspidality condition on ® for the parabolic subgroup P of G defined over Z by

definite n x n. We need to show that for any s’ € Sym,, 4, ¢

( 1 n—1 1 n-—1
1 * * * *

p— n—110 * * e
1 0 0 * 0
n—1\0 * * *

J

Denote N the unipotent radical of P, and observe that N = Ny x N1 where

1 0 t1 to 1 t3 0 0

o Lyt 0 o 1, 0 0

No=910 0o 1 o and — Ni=q1, 1 0
0 0 0 1, 0 0 3 1,4

are vector groups. Moreover No(Q)\Ng(A) ~ Ny(Z)\No(R) and similarly for Nj. There-
fore for any g € G(R),

/ / ®(ngnig)dnodni = 0.
N1 (Z)\N1(R) /No(Z)\No(R)

By definition of &3., for some m € R depending only on 7,
®(non1g) = u(g)™r(j(nonig, iln))~" f(nonig(iln)).

Fix 7 € H,, of the form (Zg 7(_),) where T' € Rsg and 7" € H,—1, and let g € G(R) be

such that 7 = ¢(il,,). We will evaluate the inner integral first. Fix ny; € N1(R) determined
by t3 € R"! as above. For any ng € N(R) determined by (¢1,t2) € R x R"™! as above,

j(nonig,il,) = j(nig,il,) and we have the Fourier expansion

d(nonig) = plg)"r(j(nig,il,))~" D S e <(t81 33>>6%m<3w>

Sy S
$1€Z,s2€1/2Zn—1 \s'€Sym,,_;

X exp (2’i7T(81(t3T,tt3 + T + tl) + 259 (T’ttgttg)))

and thus
& m . . — O 0 s S/7_/
/ Bomg)inn = ulo)"rmai) ey 5)) e
No(Z)\No(R) s’€Sym,, _;
= wle)mrG(g, i) D] C<<O 0>>62"”TT(S’T’>
e 0 s
s’€Sym,, _;

does not depend on n;. Note that to get the last expression we used

e e (o 2) =< (e )6 )6 )=l 7))

Hence we can conclude that for any s’ € Sym,,_, ¢ <<8 g,)) =0. O
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Assume that m, > n + 1, i.e. that A\ + pn.gu_ is the infinitesimal character of an L-
packet of discrete series for G'(R). Assume also that Y ,_, my is even, since otherwise
Sy(I'y) = 0. By the theorem of Gelfand, Graev and Piatetski-Shapiro

Aasp(G'(Q\G'(A) = D mar

€ cusp (G')
where Ileusp (G') is the set of isomorphism classes of irreducible admissible (g, K') x G'(Ay)-
modules occurring in Aqusp (G'(Q)\G'(A)) and m, € Z>;. Consider a 7 € Ieusp(G’). For
any prime p, Tr;; (Zr) # 0 if and only if 7, is unramified, and in that case dim¢ 71'1? "Ze) _ g,
Since 7, is unitary, it has a highest weight vector for (A\,n, @ u_) if and only if 7 is
the holomorphic discrete series with infinitesimal character (my —1)e; + - - - + (my, — n)en,
and in that case the space of highest weight vectors has dimension one. Thus dim S, (I';,)
is equal the sum of the m, for 7 = ®)m, € Ilousp(G’) such that 7 is a holomorphic
discrete series with infinitesimal character (m; —1)e; +- - -+ (m, —n)e, and for any prime
number p, m, is unramified. By | | any 7 € Hgise(G’) N Heusp(G') is such that
is not tempered. Therefore dim S, (I',,) is equal to the sum of the multiplicities m, for
7 € Igise(G’) such that

e for any prime number p, 7, is unramified,

hol

29 with infinitesimal character

® 7 is the holomorphic discrete series representation

T=(mp—1)e; + -+ (my — n)ey,.

Recall that G = Spy,,. Thanks to | ||[Proposition 4.7] we have that dim S,(T',) is
also equal to the sum of the multiplicities m for m € Ilgis.(G) such that 7 is unramified

everywhere and 7o, o~ wﬁci

Remark 3.5.2.2. For any central isogeny G — G’ between semisimple Chevalley groups
over Z, the integer denoted oo, w5 in [ |[Proposition 4.7] is always equal to 1. This
follows from the fact that G'(R)/G(R) is a finite abelian group.

Thus we have an algorithm to compute dim S, (I'),) from the cardinalities of S(-), O,(+)
and Og(-), under Assumption 3.4.2.3 if my,...,m, are not distinct. Note that since the
Adams-Johnson packets Hfz‘] have multiplicity one, under Assumption 3.4.2.3 the multi-
plicites m, for m as above are all equal to 1, and thus Siegel eigenforms in level one and
weight r satisfying m,, > n + 1 have multiplicity one: up to a scalar they are determined
by their Hecke eigenvalues at primes in a set of density one. This was already observed in
[ |[Corollary 4.10].

Remark 3.5.2.3. Without assuming that my, > n + 1, the construction in [ | shows
that f — @y is an isometry from the space of square-integrable modular forms (for the
Petersson scalar product) to the space of square-integrable automorphic forms which are
A-equivariant under n. ® u_ and G'(Z)-invariant.

In fact for my, > n+1 (even my > n) we could avoid using [ | and Lemma 3.5.2.1
and use the fact [ [[Satz 3] that for m, > n square-integrable Siegel modular forms

are cusp forms.
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3.5.3 Example: genus 4

Let us give more details in case n = 4, which is interesting because there an endoscopic
contribution from the group SOg (the formal parameter O (w1, wa, w3, w4)E1 below) which
cannot be explained using lower genus Siegel eigenforms. First we list the possible Arthur
parameters for the group Spg in terms of the sets S(wi,...), Oy(wi,...) and Og(wy,...).
The non-tempered ones only occur when N = (mqy —n —1)e; + -+ + (my, —n — 1)e, is
orthogonal to a non-empty subset of the simple coroots {ej —e3,...,e; | —e’ er}. The
convention in the following table is that the weights w; € %Zzo are decreasing with ¢. For

example S(ws)[2] B O,(w1,w2) occurs only if mg = my, and if this is the case then

7 7
(m1, ma, mg, myg) = w1+1,w2—|—2,w3+§,w3+§ .

Table 3.1: Unramified cohomological Arthur parameters for Spg

O (wl,wg,wg,w4) Oe(wl,wg,wg,w4)531 Oe(wl,w4)EﬂOe(w2,w3)Eﬂl
Oc(wa,ws) B Op(w1,ws) | Oe(wi,wq) B Op(wa,ws) | Oc(wr,ws) B Oc(wa,wy) B 1
Oe(wa,wy) B Op(wy,ws) | Oc(wi,ws) B Oy(we,ws) | Oc(wy,ws) B Oc(ws,wy) B 1
Oe (w3, wy) B Op (w1, we) Oc (w1, we2) B Oy (ws, wy) Oe(wy,we) B S(ws)[2] B 1
S(’w3)[2] H Oo(wl, wg) Oe(wl, w4) H S(’wg)[Q] H1 S(wg)[Z] H Oo(wl, w4)
Oc(ws, wq) B S(w1)[2] B 1 S(w1)[2] B Op(ws, wy) S(wy,ws)[2] B 1
S(wn) (2] B S(ws)[2] B 1 S(w)[B1 S(wn)[2 B 5]
Oe(w1, w2) 8 [5] Oo(w1)[3] [9]

Among these 24 types for ¢ € \P(Spg)unr’x, some never yield Siegel modular forms. In
the last four cases (S(w1)[2]8[5], Oc (w1, w2)B[5], Op(w1)[3] and [9]), IL,_ does not contain
the holomorphic discrete series. In the other 20 cases, I, contains the holomorphic

discrete series representation 7rh°1 but it can happen that (-, L‘(jlr)] s,, never equals €. For

example if 9 is tempered (the first 11 cases) €, is always trivial, whereas <~,7T}Tlfﬂlr>\8w is
trivial if and only if 1) does not contain O, (w1, ws) or O (w1, w4) or Og(w2,w3) as a factor.

In the following table we list the 11 types that yield Siegel modular forms for some
dominant weight A’ for Spg. In the last column we give a necessary and sufficient condition

on the weights for having (-, 72 )[s, = €y.
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Table 3.2: The 11 possible Arthur parameters of Siegel eigenforms for I'y
Type (my,ma, m3, my) Occurs iff

O, (w1, wa, w3, wy) w1+ 1, wy + 2, w3 + 3, wy +4 always

( )
Oc (w1, we, w3, wy) B 1 (w1 + 1, we + 2, w3 + 3, wy + 4) always
Oc (w1, w3) B Oc(wao,ws) B1 | (wy + 1, wa + 2, w3 + 3, wy + 4) always
O (w2, wq) B Op(wy, ws) ( )
Oe (w1, w3s) B Op(w2, wy) ( )

S(w3)[2] B Oo (w1, w2)
S(w2)[2] B O (w1, ws) B 1
S(w2)[2] B Oo (w1, wa)
S(w1)[2] B Oy(ws, wy)
S(wy,ws)[2] B 1 (w1 + 3, w1 + 3, w3+ I, w3 +

S(wy)[4]H1 (

wy + 1, we + 2, w3 + 3, wy + 4 always

wy + 1, we + 2, w3 + 3, wy + 4 always

w1+1,w2+2,w3+%,w3+% w3—|—%isodd

)
w1+1,w2+%,w2+%,w4+4) wg—i—% is even
)

w1+1,w2+%,w2+%,w4+4 wg—l—%iseven

(
(
(
(w1 + 3, w1 + 3, w3 +3,ws +4) | wi + 3 is odd
%) wy + ws is odd
w1+ 5, w1+ 5w+ 5w+ 3) | wi+ g s even

3.5.4 Some dimensions in the scalar case

In genus n greater than 4 the enumeration of the possible Arthur parameters of Siegel
eigenforms is best left to a computer. Our implementation currently allows to compute
dim S, (T',,) for n < 7 and any algebraic representation r of GL,, such that its highest
weight my > --- > m,, satisfies m, > n + 1.

Table 3.3 displays the dimensions of some spaces of scalar Siegel cusp forms. Note
that our method does not allow to compute dim Sk(I',,) when k& < n (question marks in
the bottom left corner), and that for scalar weights is is necessary to make Assumption
3.4.2.3. We do not include the values dim Si(T",,) when n + 1 < k < 7 because they all
vanish. The question marks on the right side could be obtained simply by computing more
traces in algebraic representations (Tr(y|V)) in the geometric side of the trace formula).
For more data see http://www.math.ens.fr/ taibi/dimtrace/. For n > 8 we have not
(yet) managed to compute the masses for Sp,,. Nevertheless we can enumerate some
endoscopic parameters, and thus give lower bounds for dim Si(T'),): these are the starred

numbers.
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Table 3.3: Dimensions of spaces of scalar Siegel cusp forms

k|8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
dimS,Ty)|0 0 0 0 1 0 O o0 1 o0 1 0 1 0 1
dimS,Tz)|0 0 1 0o 1 0 1 ©0 2 0 2 0 3 0 4
dimSy(’s)|[o o o o 1 0 1 0 3 0 4 0 6 0 9
dimS,Ty,) |1 0 1 o0 2 o0 3 0 7 0 12 1 22 1 38
dimS,Ts) |0 0 0 0 2 0 3 0 13 0 28 0 76 0 186
dimS,Tg) |0 0 1 0 3 0 9 0 33 0 117 1 48 ? 7
dimS,T7) [0 0 0 0O 3 0 9 0 8 0 ?2 0 ? 0 2
dimS,(Ts) | 7 0° 1 0° 4% 1* 23° 2¢ 234
dimS,(Te) | 7 7 0% 0° 2* 0° 25% 0F 843

dimS,(Tw) |7 7 7 0 2 0° 43 1* 1591*
dimS,(Ty) |7 2 72 7 1* 0° 32* 0* 6478

In principle for n <7 one can compute the generating series » ;- 1 (dim Si(I'y)) T k.
We have not attempted to do so for n > 4.

3.6 Reliability

The complete algorithm computing the three families of numbers
e card (S(wi,...,wy)) forn>1, w; € %Z\Zand wy > > wy >0,
e card (O,(wy,...,wy)) forn > 1, w; € Z and wy > -+ > w, > 0,
e card (Oc(wy,...,way)) forn > 1, w; € Z and wy > -+ > wa, > 0,

is long and complicated. Our implementation consists of more than 5000 lines of source
code (mainly in Python, using Sage | |), therefore it certainly contains errors. There
are several mathematically meaningful checks suggesting that the tables produced by our

program are valid:

1. When computing the geometric side of the trace formula we obviously always find
a rational number. The trace formula asserts that it is equal to the spectral side,
which is an integer, being an Euler-Poincaré characteristic. The first check that our

tables pass is thus that the geometric sides are indeed integral.

2. With a one-line modification, our algorithm can be used to compute global orbital
integrals for special orthogonal groups G/Q which are split at every finite place and
such that G(R) is compact. On a space of dimension d such a group exists if and
only d = —1,0,1 mod 8. Recall that for d € {7,8,9}, up to isomorphism there is a
unique regular and definite positive quadratic form ¢ : Z¢ — Z. These are the lattices
E;, Eg and Eg @ A;. Each one of these three lattices defines a reductive group G
over 7Z such that Gq is as above, and their uniqueness is equivalent to the fact that
the arithmetic genus G(Ayf)/ G(z) has one element. Chenevier and Renard | |
computed the geometric side of the trace formula, which is elementary and does not

depend on Arthur’s work in the anisotropic case, to count level one automorphic
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representations for these groups. This is possible because G(Z) is closely related to
the Weyl groups of the root systems E7 and Eg, for which Carter | | described
the conjugacy classes and their orders. We checked that we obtain the same “masses”
(see section 3.3.2.5).

. The numbers card (S(wi, . .., wy)), card (Op(w1, . .., wy)) and card (Og (w1, . . . , way,))
belong to Zx>q. Our tables pass this check.

. In low rank there are exceptional isogenies between the groups that we consider:
PGSp, ~ SO3, PGSp, ~ SO3, (SO4),. ~ SLy x SLy, which by | |[Proposition
4.7| imply:

(a) For any odd w; € Zsg, card (S(w1/2)) = card (O,(w1)). Note that card (O,(w1)) =
0 if wy is even.

(b) For any integers w; > wg > 0 such that w; + ws is odd,

card (S <w1 ;w2, W ;w2>> = card (O, (w1, w2)) .

Note that card (O,(w1,w2)) = 0 if w1 4+ w2 is even.

(c¢) For any integers wy > wy > 0 such that wy + wy is odd,

ot ((72) ) o (5(752)) = cnd 0,00,

and for any odd integer w > 0,

<card (5(%0)) = O.(w,0).

Note that card (O (w1, w2)) = 0 if wy + we is even.

5. By results of Mestre | |, Fermigier | | and Miller | |, in low motivic

weight (that is 2w;) some of the cardinalities of S(wy, ... ), Op(wi,...) and O(wy, .. .)
are known to vanish. In forthcoming work, Chenevier and Lannes improve their
method to show that if n > 1 and « is a self-dual cuspidal automorphic representa-
tion of GL,,/Q such that

e for any prime number p, 7, is unramified,

e the local Langlands parameter ¢ of my is either

— a direct sum of copies of 1, ec/g and I, for integers 1 < r < 10, or

— a direct sum of copies of I, for r € %Z N Z and % <r< %.
then ¢ belongs to the following list:

o 1,

o 112, Ii52, 172, 1192,

e ec/r ® T, e€c/r D g,
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[ 7,/2 @ 119/2 Wlth re {5, 7,9, 11, 13},
o I,® Iy, I, ® Ip with r € {2,3,4,5,6,7},
e 1P Is® g, 1P 17D L.

Note that they make no regularity assumption. This implies the vanishing of 2521
values in our tables for groups of rank < 6. In our tables, the only non-vanishing
card (S(wi,...)), card (Oo(w1,...)) or card (O (w1, ...)) with wy < 10 are the fol-

lowing.

e For wy € {4, 12 1777 21, card (S(wy)) = 1. These are the well-known modular

forms.
e card (S (%, %)) =1.

6. Finally, we can compare the values that we obtain for the dimensions of spaces of
Siegel modular forms with known ones. Our formulae coincide with those given in
[ | (genus two, scalar) and | | and | | (genus two, vector-valued). Tsuy-
umine | | gave a dimension formula in the scalar case in genus 3. There seems
to be a typographical error in the formula on page 832 of | |, the denominator
should be

(1-=THA-T2)?*(1 =T (1 -T")(1-T*)(1-T%)
instead of
1-—TH(1 -T31 -7 -7 - T72)(1 - 1),

With this correction we find the same formula as Tsuyumine. In | | Bergstrom,
Faber and van der Geer conjecture a formula for the cohomology of local systems on
the moduli space Ajs in terms of motives conjecturally associated with Siegel cusp
forms. As a corollary they obtain a conjectural formula for dim S, (I's) where r is an
algebraic representation of GLj3 of highest weight m1 > mo > m3 > 4. For m; < 24
(1771 values) we have checked that our values coincide. We have also checked that
our tables agree with Nebe and Venkov’s theorem and conjecture in weight 12 | |

and Poor and Yuen’s results in low weight | .

3.7 Tables
3.7.1 Masses

Table 3.4: Masses for the group SOg
Char. pol. mass | Char. pol. mass | Char. pol. mass

o3 ~1/12 | ®1®3 1/4 DDy 1/3
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Table 3.5: Masses for the group SOs;

Char. pol. mass Char. pol. mass | Char. pol. mass | Char. pol. mass
P9 —1/1440 | ®3®3 —~1/48 | 193 7/288 | 03P, 1/4
o33 —1/24 GELI —1/36 | ©193P3  1/12 D103 —1/36
O, P3¢ 2/9 d, D2 —1/36 |  ®1P1o 1/6 D1 D5 2/5
Table 3.6: Masses for the group SO~
Char. pol. mass Char. pol. mass Char. pol. mass
o7 1/483840 PIP3 —19/23040 P33 —331/13824
P, 0§ 1/7680 P3D2D, —11/192 P3P, 1/64
P32 25/1152 | ®, P393 —7/384 1 DDy 3/16
O 1P, Dy 3/16 DD —1/1440 P3P —1/36
D1 P35 7/864 | ®1P303D, 1/24 O D3P2 —1/72
P33 7/144 D, P3P3 —1/144 P93 1/216
PIDIDg  —23/432 | D1 P3Dg 1/48 D1 D2D, D 1/8
O102D30  5/27 EQIH 1/432 1 PLP2 1/48
Dy D307 1/216 GELIP —1/72 D1 P3D19 1/24
D1 D3P1o 5/36 1Dy 1/3 P3P -1/15
P, D0, 1/10 D1 D3P5 1/15 1920 3/10
1Dy 3/7
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Table 3.7: Masses for the group SOg

Char. pol. mass Char. pol. mass Char. pol. mass
il 1/116121600 P P2 1/1935360 O —4963/1658880
P3PS —31/92160 P, 98 121/116121600 | ®;P3d, —67/23040
ELELON —7/768 10§Dy 1/2560 P D3 109/138240
P3D2P3 37/4608 P, 05P3 —331/27648 10203 1/128
P10} 1/7680 P3D3Pg —1/64 P, DDy 1/64
P30, Py —1/64 12D, Dy 21/64 D103 1/32
DI, 1/1451520 PID2P; —49/23040 P3D5D; —331/41472
105D 1/23040 P339, 5/576 D1 95D3D, 1/192
PID;P3 25/3456 D1 P23 P2 —7/1152 1 DLD3 Dy 1/16
D1 D30,Ps 1/16 D3 67/17280 D302 7/576
P, PIP7 ~7/10368 | ;93034 —1/144 P, P32 1/864
D303 —25/2592 P, 0303 1/864 P, 03 1/25920
PIDLIDg —83/51840 LR —7/576 D, P5Dg 37/51840
PID2P, D —1/96 105D, Pg 1/32 D1 DD —23/864
O P3D6Dg 1/8 P3IDID3Dg —11/324 D1 P3D3Pg 1/36
1 DLD3D, P 1/6 1 D230 1/324 P02 1/51840
PID3P2 —1/576 P, 0] P2 —133/3456 | 939,93 —-1/16
D, 307 1/864 D3P DZ —1/2592 D1 P30;P2 —13/288
P, P3D2 41/2592 P, P3P} 1/324 PP} 1/25920
PIDy,y —1/8640 P3P, —1/288 D130y 7/1728
103D, D2 1/8 103D 1/48 P3D3P 1o —5/432
D1 D3P3D12 5/144 D1 D3Py 1/432 D1 P2DsP 1o 5/54
D1 D2D1o 1/432 92, 1/48 D1 Doy 1/4
D3, -1/36 1 P20, 1/12 D1 D3Py 4/9
D1 D3Pg 2/9 D1 DsP1g 1/9 P D; —7/3600
DIDD; —-1/60 105D 7/720 D1 P30,P5 1/20
19205 —1/60 PID3D; 1/180 01 PID3P5 1/60
102D —1/90 1 P305Dg 4/45 P05 P2 —1/90
D1 D5P 1o 1/15 P, 02 1/100 PID2Py —1/40
P13 11/200 D1 03049 3/20 D1 P3D3Dqg 1/10
102D D1 1/5 192, 1/100 D1 Dy 3/10
DDy 1/5 D P3 1/5 P3P, —1/28
D, P30, 3/28 D1 P3P, 1/7 D193y, 3/7
Table 3.8: Masses for the group Spy
Char. pol.  mass | Char. pol. mass | Char. pol. mass
P2 —1/12 P32 —1/12 d, 1/2
d3 1/3 P 1/3
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Table 3.9: Masses for the group Spy

Char. pol. mass Char. pol. mass | Char. pol. mass Char. pol.  mass
b —1/1440 | ®3®3 7/144 3 —1/1440 |  ®3dy —1/24
P3dy —1/24 3 —1/24 Py 1/2 GEL —1/36
P2dy —1/36 b3D, 1/6 3 —1/36 P2dg —1/36
P23 —-1/36 4D 1/6 D3dg 4/9 P2 —1/36
3P 1/6 P 2/5 ®q 2/5
Table 3.10: Masses for the group Spg
Char. pol. mass Char. pol. mass Char. pol. mass
Y 1/362880 | ®1®3 31/17280 | @293  31/17280
PS5 1/362880 | ®7d, —1/2880 | ®293d, 7/288
DI, —1/2880 P22 7/288 P32 7/288
o3 1/48 P2 dg —1/24 P3dg —~1/24
PPy 3/4 P, —1/4320 | ®2930; 7/432
GRTi —1/4320 | D2P3D, —1/72 P3D5D, —1/72
P3d3 —1/72 O3Pg 1/6 o293 25/432
P393 1/432 P30, —1/72 P3 1/162
Pl —1/4320 | ®2P3d4 7/432 DI —1/4320
P20, D —1/72 P30, D —1/72 DI —1/72
O Py 1/6 P2P3Pg —1/27 P3D3Dg —1/27
D3P, D¢ 2/9 GELIN 1/54 P22 1/432
P32 25/432 D4PZ —1/72 D302 1/54
P} 1/162 RSP —1/72 P30, —1/72
OyP1y 5/12 P3P19 2/9 P12 2/9
Dy 4/9 D1 4/9 P25 -1/30
P35 —1/30 O,y P5 1/5 O3D5 2/15
5D 2/15 P29 —-1/30 P39 —-1/30
4Py 1/5 3010 2/15 D10 2/15
P 47 Py 47
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Table 3.11: Masses for the group Spg

Char. pol. mass Char. pol. mass Char. pol. mass Char. pol. mass
o 1/87091200 B8P3 —127/4354560 o103 871,/2073600 DIP5 —127/4354560
i 1/87091200 BSD, 1/725760 D1P3D, 31/34560 BIDID,y 31/34560

D5Dy 1/725760 O10F 31/34560 DI D3D3 —361/3456 D307 31/34560
o303 —7/576 o303 —7/576 iy 1/5760 didg —1/2880
DIDLDg 7/288 DD —1,/2880 BID, g -3/16 P3P, s -3/16
D3Dg —1/48 3 1/24 P16 1 PPy 1/1088640
D1 DD 31/51840 DID5Ps 31/51840 PSBs 1/1088640 D1 D3Py —1/8640
D2P2D3P, 7/864 APy —1/8640 D2P5 D3 7/864 DIPy D32 7/864
o303 1/144 ELOR -1/72 TGRS -1/72 D3P, Ps 1/4
D103 241/51840 | ®IDid3 —175/5184 PID3 1/51840 PID3D, 25/864
DIDp2P, 1/864 Pip32 1/864 Dby —1/72 23 —25/1944
D3P3 —1/1944 D3P, 1/324 3 1/19440 D Dg 1/1088640
D1 D2dg 31/51840 ID5Dg 31/51840 DS D 1/1088640 D1 D,4Pg —1/8640
D2D2P, P 7/864 P3P, D¢ —1/8640 I1D3dg 7/864 DID3dg 7/864
DD 1/144 PIPsDs —1/72 B3P Ds -1/72 O, PsDs 1/4
D1 P3P —1/3240 | ®IP3D3D 7/324 DiP3D6 —1/3240 DIP3 Dy D —1/54
D3D;D,Pg —1/54 D3P;Dg —1/54 D3P Ps 2/9 D33 Dg —25/648
DLD2dg —1/648 2D, P 1/108 D3 D 5/243 D2 1/51840
OID3DZ —175/5184 DLD2 241/51840 1D, PF 1/864 D3, D3 25/864
DID3 1/864 DD —1/72 BID;DF —1/648 P3D; D7 —25/648
D3P, P2 1/108 Dip2 11/648 PIp3 —1/1944 I3 —25/1944
o, 0} 1/324 D03 5/243 o} 1/19440 1D, —1/8640
OID2P, 7/864 i1 —1/8640 D2P,P 1, —5/144 DID,4P1 —5/144
BID1o 7/144 Dy Do 1/12 I3 —1/54 B3D3D12 —1/54
O30,P15 5/9 DiPo 1/108 DI PeD1o —1/54 DLDeD1o —1/54
D, PsD12 5/9 B3PD1o 14/27 DiD1o 1/108 o3, 1/36
Doy 1/3 DI Dy —1/27 P3Dg —1/27 O, 2/9
D3P 16/27 DDy 4/27 DI d1g —1/27 P3d1g -1/27
OyDig 2/9 D3D15 4/27 Ded1s 16/27 D15 —1/3600
DI P3P 7/360 DiDs —1/3600 DI, D5 —1/60 P3P, D5 —1/60
NiytoR —1/60 5D 1/5 DIP;3 D5 —1/90 D3D3D5 —1/90
D30, 1/15 D3D5 —1/90 DI D5D —1/90 D3D5D6 —1/90
O,D5Dg 1/15 D3P5D6 8/45 o5 D2 —1/90 D5D1p 1/15
o2 1/75 1Py —1/3600 DIP3D1 7/360 P3P0 —1/3600
DIP4P10 —1/60 P3P4D 1o —1/60 D3P0 —1/60 Dsd1 1/5
DIP3B1 —1/90 D3P3D 1 —1/90 D3P,P10 1/15 P3P, —1/90
DI DeD1 —1/90 D3DsD1g —1/90 D, PP 1/15 D3DsP1 8/45
2P —1/90 B10P1o 1/15 D51 24/25 o2, 1/75
o 2/5 15 4/15 P30 4/15 D3D, —1/21
D3P, —1/21 O,P; 2/7 o3P, 4/21 D P7 4/21
PIDyy -1/21 D3P,y —1/21 O,P14 2/7 P3Py 4/21
DDy 4/21

For even orthogonal groups and when the characteristic polynomial is coprime to ®;®,,
the characteristic polynomial defines two conjugacy classes over Q. They have the same

mass.
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Table 3.12: Masses for the group SOy

Char. pol.  mass | Char. pol. mass | Char. pol. mass
P 1/144 P22 1/8 3 1/144
3 —1/24 | D393 1/9 P2 —-1/36
P3dg 1/9 o2 —1/36 3PS 1/6
Table 3.13: Masses for the group SOg
Char. pol. mass Char. pol. mass Char. pol. mass
iy 1/58060800 DY o2 1/15360 o] 1357/165888
29§ 1/15360 ol 1/58060800 | ®1®3d, 1/64
P205D, 1/64 o2 —55/13824 | ®29302 17/768
D302 —55/13824 o1 1/7680 P2D2dg 3/16
P2, Py 3/32 P30, Dy 3/32 P2 1/32
Gl 1/25920 PlD2ds 1/96 P203d3 41/5184
P202P30, 1/8 P2H,P2 1/432 ELiH —19/1728
P292P3 1/96 P02 —1/5184 P32 1/864
P23 1/648 Pl 1/25920 Pl 41/5184
D203 dg 1/96 DD 1/25920 | ®2®39,P 1/8
P02 P 1/432 P2D2P3D¢ 23/81 P3D2Dg 1/648
P02 —1/5184 P2H2P2 1/96 PI0% —19/1728
PIp2 1/864 PIP,P2 1/648 P02 41/2592
P393 1/648 O 1/25920 Pidyy 1/864
P2D2P15 1/48 Pidy 1/864 PId )y 1/48
P2P3P 1, 5/108 GELO P 1/432 P3Py 5/108
P2D 1y 1/432 P2, 1/48 Doy 1/4
P2dg 1/9 D3Py 1/9 B2P g 1/9
PP 1/9 Pl 1/100 D290 3/20
P2P30; 1/5 P2 1/100 D230, 3/20
Pidy 1/100 P3P6P 1/5 GEN 1/100
Po 3/10 dq5 1/5 ®3 1/5
P2, 3/7 P3Py 3/7

3.7.2 Some essentially self-dual, algebraic, level one, automorphic cuspidal
representations of GL, for n <13

The following tables list the non-zero

card(S(wy, ...

,Wp)), card(Oy(wy, . ..

,wyp)) and card(Oe(wy, . .

. 7w2n))

as defined in the introduction. These values depend on Assumption 3.4.2.4 when w; =

w;4+1 + 1 for some ¢ or

° w, = % for card(S(wy, ...

;wn)),
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e w, = 1 for card(O, (w1, ..., wy)),
e w, =0 for card(Oc (w1, ..., wa)).
Much more data is available at http://www.math.ens.fr/"taibi/dimtrace/.
Table 3.14: card (S(w))

2w card. | 2w card. | 2w card. | 2w card.
11 1 23 2 33 2 43 3

15 1 25 1 35 3 45 3
17 1 27 2 37 2 47 4
19 1 29 2 39 3 49 3
21 1 31 2 41 3 51 4
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Table 3.15: card (S (w1, ws))

card.

(2wy, 2ws)

~~ AN AN AN N N N N N N N S S N N N N N N S N S
MWD P~ ~~ —~ —~ " NI~ NI~ MDD ~ —~ —~ = MN1O I~ - MO D~
NN M A MO~ = AN AN ANNNNNNONNMOO~-0 A A A AN
DO = o A A A = = D)D) MMM MM MNMNMNMmM
SLIRALIEALIIN TSI T TR TR AT AT AT AT AT AT AT AT AT AT AT T T T AT AT AT AT T TR T TR T T T T
S N N e e e e e e e e e e e e e e e e e e e S e e e e e e e e e e S N

card.

(2wy, 2ws)

card.

(2w1, 2ws)

SN AN F TN FOANM AN O T OO0 N FAN A —10 <1010 O 10 D~ O 10

card.

(2w1, 2ws)

\l/\l/\l/3\l/\l/\n4|u/\l/\l/\l/13579)))135791)))1357915\!/
I~ 100 A~ 4100~ A A " "4 M~ A~ " "4 N1~ - — NN ™
O A A A R R RIS I I IS I IS IS I I~ s s IS IS IS N NN O O O Oy O Oy Oy O O O
—S AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN NN AN AN AN AN AN NN NN AN AN
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Table 3.16: card (S (w1, we, w3))

(2w;); card. | (2w;); card. | (2w;); card. | (2w;); card.
(23,13,5) 1 |(27,21,7) 2 | (29,19,13) 5 | (31,13,5) 3
(23,15,3) 1 |(27,21,9) 4 |(29,19,15) 1 | (31,13, 7) 2
(23,15,7) 1 | (27,21, 11) 2 |(20,19,17) 1 |(31,13,9) 4
(23,17,5) 1 |(27,21,13) 3 |(20,21,3) 5 |(31,153) 3
(23,17,9) 1 |(27,21,15) 1 |(29,21,5) 1 | (31,15, 5) 2
(23,19,3) 1 |(27,21,17) 1 |(29,21,7) 10 | (31,15, 7) 5
(23,19,11) 1 |(27,23,3) 1 |(29,21,9) 4 |(31,159) 3
(25,13,3) 1 |(27,23,5) 3 |(29,21,11) 8 | (31,15 11) 2
(25,13,7) 1 |(@27.23,7) 1 |(20,21,13) 4 |(31,17,1) 2
(25,15,5) 1 |(27,23,9) 2 |(20,21,15) 5 | (31,17,5) T
(25,15,9) 1 |(27,23,11) 2 |(29,21,17) 1 | (31,17,7) 4
(25,17,3) 2 |(27,23,13) 1 |(29,21,19) 1 |(31,17,9) 9
(25,17, 7) 2 |(27,23,15) 1 |(29,23,1) 1 | (31,17,11) 3
(25,17,11) 1 |(27,23,17) 1 |(29,23,3) 2 |(31,17,13) 5
(25,19,1) 1 |(27,25,5) 2 |(20,23,5) 5 |(31,19,3) 6
(25,19,5) 2 |(27,25,7) 1 |(29,23,7) 5 |(31,19,5) 4
(25,19,9) 2 |(27,25,9) 1 |(29,23,9 6 |(31,19,7) 10
(25,19,13) 1 | (27,25,11) 1 |(29,23,11) 7 |(31,19,9) 8
(25,21,3) 2 |(27,25,13) 1 |(29,23,13) 5 | (31,19,11) 9
(25,21,7) 2 |(27,25,15) 1 |(29,23,15) 5 | (31,19,13) 6
(25,21,11) 2 | (27,25,17) 1 |(29,23,17) 3 | (31,19,15) 4
(25,21,15) 1 |(29,9,7) 1 |(29,23,19) 1 |(31,21,1) 3
(27,9, 5) 1| (29,11,5) 1 |(20,253) 3 |(31,21,3) 1
(27,13,5) 2 [(29,13,3) 1 |(29,25,5) 3 | (31,21,5) 11
(27,13, 7) 1 (29, 13, 5) 1 (29, 25, 7) 7 ] (31,21, 7) 7
(27,13,9) 1 |(29,13,7) 3 | (29,925, 9) 4 |(31,21,9) 15
(27,15,3) 1 |(29,13,9) 1 |(20,25 11) 7 |(31,21,11) 9
(27,15,5) 1 |(29,15,1) 1 |(29,2513) 4 | (31,21,13) 12
(27, 15, 7) 2 (29, 15, 5) 3 (29, 25 15) ) (31, 21, 15) 6
(27,15,9) 1 |(29,15,7) 2 | (29,25 17) 3 | (31,21,17) 6
(27,17,5) 4 | (29,159 3 | (29, 25 19) 2 | (31,23,1) 1
(27,17,7) 1 |(29,15,13) 1 |(29,25,21) 1 |(31,23,3) 6
(27,17,9) 3 |(29,17,3) 3 |(20,27,1) 1 |(31,23,5) 6
(27,17,11) 1 |(29,17,5) 1 |(29,27,5) 1 |(31,23,7) 12
(27,17,13) 1 | (29,17,7) 6 | (29, 27 7 2 | (31,23,9) 11
(27, 19, 3) 2 (29, 17, 9) 3 (29, 27, 9) 3 (31,23, 11) 13
(27,19,5) 2 | (29,17,11) 3 | (29, 27 11) 1 |(31,23,13) 10
(27,19,7) 3 |(29,17,13) 1 |(29,27,13) 2 | (31,23,15) 10
(27,19,9) 3 |(29,19,1) 1 |(20,27,15) 1 | (31,23,17) 6
(27,19,11) 3 |(29,19,3) 1 |(20,27,17) 1 |(31,23,19) 3
(27,19,13) 2 |(29,19,5) 6 |(29,27,19) 1 | (31,25,1) 3
(27,19,15) 1 |(29,19,7) 3 | (31,9, 5) 1 | (31,25,3) 2
27,21,1) 1 [(29,19,9) 7 |(31,11,3) 1 | (31,25,5) 11
(27,21,5) 4 |(29,19,11) 4 |(31,11,7) 1 | (31,25, 7) 9
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Table 3.17: card (S(wy, w2, w3, wy))
)i card. | (2w;); card. | (2w;); card.

27,19, 13, 9) 3 (27, 23,15, 7) 7 | (27,25,19,7) 3

1| (27,19,15,3) 2 |(27,23,15,9) 4 |(27,25,19,9) 6
1 27,19, 15, 5) 1 (27, 23, 15, 11) ) (27, 25, 19, 11) 3
1 | (27,19, 15, 7) 1 | (27,23,15,13) 1 | (27,25, 19,13) 3
1| (27,19,15,9) 1 |(27,23,17,1) 5 |(27,25.21,3) 4
1 | (27,19, 17, 5) 1| (27,23, 17, 3) 2 | (27,25,21,7) 4
1 | (27,19, 17, 9) 1 | (27,23,17,5) 6 | (27,25,21,9) 2
1 27, 21,9, 3) 2 (27,23, 17, 7) ) (27, 25, 21, 11) 3
1 27,21,9,7) 1 (27, 23, 17, 9) 7 (27, 25, 21, 13) 1
1 27, 21, 11, 3) 1 (27,23, 17, 11) 3 (27, 25, 21, 15) 1
1 | (27,21,11,5) 2 | (27,23,17,13) 4 | (27, 25,23, 3) 1
1 | (27,21,11,7) 2 |(27,23,19,3) 5 | (27,25,23,9) 1
1 | (27,21,13,3) 5 | (27, 23,19, 5) 1 | (27,2523, 11) 1
1 | (27,21,13,5) 2 | (27,23,19,7) 6 | (29,15, 7,5) 1
2 | (27,21,13,7) 6 | (27,23,19,9) 2 | (29,15,9,3) 1
1 27,21, 13, 9) 2 (27, 23, 19, 11) 3 (29, 15, 13, 3) 1
1| (27,21, 15, 1) 1 | (27,23,19,13) 1 | (29,17, 7,3) 1
1 | (27,21,15,3) 2 | (27,23,19,15) 1 | (29,1709, 5) 3
1 27, 21, 15, 5) 4 (27, 23, 21, 1) 1 (29, 17, 11, 3) 2
25, 23, 9, 3) 1 | (27,21,15,7) 4 | (27,23, 21, 5) 1| (29,17, 11, 7) 1
1 27,21, 15, 9) 4 (27, 23, 21, 9) 1 (29, 17, 13, 1) 1
2 | (27,21,15,11) 2 | (27, 25,9, 3) 2 | (20,17,13,5) 4
1 | (27,21,17,3) 5 | (27,25,11,1) 1 |(29,17,13,7) 1
1 27,21, 17, 7) 6 (27, 25, 11, 3) 1 (29, 17, 13, 9) 2
1 27,21, 17, 9) 2 (27, 25, 11, 5) 2 (29, 17, 15, 3) 1
3| (27,21,17,11) 3 | (27,25,13,3) 5 | (29,17,15,7) 1
1 27, 21, 19, 3) 1 (27, 25, 13, 5) 1 (29, 19, 7, 5) 1
1 | (27,21,19,5) 1 |(27,25,13,7) 4 |(29,19,09,3) 4
1 | (27,21,19,7) 1 |(27,25,13,9) 1 | (29,19,9,5) 1
1 | (27,21,19,9) 1 | (27, 25, 15 1) 3 ](29,19,9,7) 1
1 | (27,21,19,11) 1 |(27,25,15,3) 2 |(29,19,11,1) 1
1 | (27,23,7,3) 2 | (27, 25, 15 5 5 |(29,19,11,3) 1
1 27,23,9,1) 1 (27, 25, 15, 7) 3 (29, 19, 11, 5) 4
1 27,23,9,5) 2 (27, 25, 15, 9) 5 (29, 19, 11, 7) 1
1 | (27,23,11,3) 5 |(27,25,15,11) 1 | (29,19, 11, 9) 1
2 27,23, 11, 5) 1 (27, 25, 17, 3) 7 ] (29,19, 13, 3) 8
2 | (27,23,11,7) 4 | (27,25,17,5) 2 |(29,19,13,5) 4
1 27,23, 13, 1) 4 (27, 25, 17, 7) 7 (29, 19, 13, 7) 6
2 | (27,23, 13, 3) 1 | (27,25,17,9) 4 |(29,19,13,9) 4
1 | (27,23,13,5) 6 | (27,25, 17,11) 5 | (29,19,13,11) 1
1 | (27,23,13,7) 3 |(27,25,17,13) 1 |(29,19,15,1) 2
1 27, 23, 13, 9) 6 (27, 25, 19, 1) 3 (29, 19, 15, 3) 2
4 | (27,23,15,3) 7 |(27,25,19,3) 2 |(29,19,15,5) 5
1 27, 23, 15, 5) 3 (27, 25, 19, 5) ) (29, 19, 15, 7) 3
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Table 3.18: card (S(wy, we, w3, wy))

card. | (2w;); card.
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Table 3.19: card (S (w1, we, w3, wy, ws, we))

card. | (2w;); card. | (2w;); card.
25,21, 17, 13, 7, 3) 1 (25, 23, 21, 19, 11, 7) 1 (27,23,17, 15,7, 1) 4
95,23, 17,11,7,3) 1 |(25,23,21,19,13,5) 1 | (27,23, 17,15, 7,5) 3
25,23,17, 13,7, 1) 1 (27,21, 15,13, 7, 3) 1 (27, 23,17, 15,9, 3) 8
13,9, 3) 2 | (27,21, 17, 11, 7, 3) 1 | (27, 23,17, 15, 9, 5) 1
13,7,3) 2 | (27, 21,17, 13, 5, 3) 1 | (27,23, 17, 15,9, 7) 1
13,9, 1) 2 | (27,21, 17,13, 7, 1) 1| (27,23,17,15,11,1) 2
13,9,5) 3 | (27,21,17,13,7,5) 2 | (27,23,17,15,11,5) 3
13,11,3) 2 | (27,21,17,13,9,3) 4 | (27,23,17,15,13,3) 1
15,7, 1) 2 | (27,21, 17, 13, 9, 5) 1 | (27,23,19,9, 5, 3) 1
15,9,3) 2 |(27,21,17, 15,7, 3) 2 | (27,23,19,9,7, 1) 1
15,9, 5) 2 | (27, 21,17, 15, 9, 5) 2 | (27,23, 19, 11, 5, 1) 1
15,11, 1) 3 (27,21, 19, 13, 7, 3) 3 (27,23,19,11, 7, 3) 7
15,11, 5) 3 | (27,21, 19, 13,9, 1) 1| (27, 23,19, 11, 9, 1) 2
15, 13, 3) 1 (27, 21, 19, 13, 9, 3) 2 (27,23, 19, 11, 9, 5) 4
17,9,1) 2 | (27,21, 19, 13, 9, 5) 2 | (27, 23, 19, 13, 5, 3) 7
17,9,5) 2 | (27,21,19,13,11,3) 1 | (27,23,19, 13,7, 1) 7
17,11,3) 2 | (27,21,19,13,11,5) 1 | (27,23, 19, 13, 7, 3) 3
17,13,1) 1 | (27,21, 19, 15, 5, 3) 1 | (27,23,19, 13,7, 5) 8
17,13,5) 1 | (27, 21,19, 15,7, 1) 1 | (27,23,19,13,9,3) 25
11, 7, 3) 1| (27,21,19,15,9,3) 4 | (27,23,19,13,9,5) 9
13,7,1) 2 |(27,21,19,15,9,5) 2 |(27,23,19,13,9,7) 6
13,9, 3) 2 | (27,21,19,15,11,3) 2 | (27,23,19,13,11,1) 6
13,11, 1) 1 | (27,21,19,15,11,5) 1 | (27,23,19,13,11,3) 3
15,7, 3) 2 | (27,21,19,15,11,7) 1 | (27,23,19,13,11,5) 7
15,9, 1) 2 (27, 21, 19, 17,9, 5) 1 (27,23, 19, 13, 11, 7) 2
15, 9, 5) 2 | (27,21,19,17,11,3) 2 | (27,23, 19, 15, 5, 1) 6
15, 11, 3) ) (27,23, 15, 11, 7, 3) 1 (27,23, 19, 15, 7, 3) 13
15,11,5) 1 |(27,23,15,13,7, 1) 1 | (27,23,19,15,7,5) 3
15,11, 7) 2 | (27,23, 15, 13,9, 3) 2 | (27,23,19,15,9,1) 15
15, 13, 5) 1 (27,23,17,9, 7, 3) 2 (27,23, 19, 15, 9, 3) 8
17,7, 1) 2 | (27,23,17, 11, 5, 3) 3 | (27,23,19,15,9,5) 24
17,7,5) 1 |(27,23,17,11,7,1) 2 |(27,23,19,15,9,7) 5
17,9, 3) 3| (27,2317, 11, 7, 5) 2 | (27,23,19, 15,11, 1) 1
17,9, 7) 1 (27,23,17,11, 9, 3) 3 (27,23, 19, 15, 11, 3) 18
17,11, 1) 3 | (27, 23, 17, 13 5 1) 1 | (27,23,19,15,11,5) 8
17,11,5) 3 | (27,23,17,13,7.3) 12 | (27,23,19,15, 11,7) 9
17,11, 7) 1 | (27, 23, 17, 13 7 5) 1 | (27,23,19,15,11,9) 1
17, 13, 3) 3 (27, 23,17, 13,9, 1) 6 (27,23, 19, 15, 13, 1) 8
17,13,7) 1 | (27,23, 17, 13,9, 3) 1 | (27,23, 19,15, 13,3) 2
17,15,1) 1 | (27, 23,17, 13,9, 5) o |(27,23,19,15 13,5) 8
17, 15, 5) 1 (27, 23,17, 13,9, 7) 1 (27,23, 19, 15, 13, 7) 3
19, 7, 3) L | (27.93,17.13,11,3) 4 | (27,2319, 15,13.9) 3
19, 9, 1) 1 | (27,23,17,13,11,7) 1 | (27,23, 19,17, 5, 3) 4
19, 9, 5) 1 | (27,23, 17, 15, 5, 3) 2 | (27,23,19,17,7,1) 6
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Table 3.20: card (O,(w))

card.

w

37
39
41

43

card.

w

29
31

33

35

card.

w

21

23
25
27

card.

w

11
15
17
19

Table 3.21: card (O, (w1, w2))

card.

(w1, w2)

card.

(w1, w2)

card.

(w17w2)

N O 0D ~—~—~—r— NI~ -~ —~—O AN F OV ON ~ —~—~—~m— MO D~ — —~
oA A A AN MO~ A A A HO 0 A~ = NN~~~ A~~~ N <A
R ER A EA RN RN EA RN EA BN BN e oo R e o o R i i A b D i I ')
A AN A A A AN AN A A A AN AN AN AN AN A AN AN AN AN AN AN AN AN AN AN NN AN AN ANANANADNAN

card.

(w1, w2)

o A A = = = = = AN AN NN A A A S ANNMMNMNOAN A AN NN~ N <M

—~ TN N N —~ N TN N N N N N N —
~N~~—~O NN ~~—~ O N F A~~~ N ~ O N F O ~—~—~r— N~~~ ~O
© 0 O© 0 ™= I~ H 0O ™ ™ ™1~ © 0™ ™™ ™1~~~ <f O 0 —
R I T e N Vo Vo S Yo S T SV S AR U SUY NS SUCYo B B e B o Bt o B = il = il = i = Nl o Nl = Nl o Nl o Sl o Sl o i o i Bl B R R R
N = A = A A A A A = = A AN AN AN AN AN NN

120



Table 3.22: card (O, (w1, wa, w3))

(wi); card. | (w;); card. | (w;); card.
(12, 8, 4) 1 [(16,9,5) 1 [(17,12,7) 5
(13, 8, 5) 1| (16,9,7) 1 | (17,12,9) 6
(13,10,3) 1 |(16,10,2) 1 |(17,12,11) 2
(13,10,5) 1 | (16,10,4) 2 |(7.13.2) 1
(13,10,7) 1 |(16,10,6) 2 | (17,13,4) 4
(13,12,5) 1 |(16,10,8) 1 |(17,13,6) 5
(13,12,7) 1 | (16,11, 3) 1 |(17,13,8) 3
(13,12,9) 1 |(16,11,5) 2 | (17,13,10) 2
(14, 7, 3) 1| (16,11,7) 1 |(17,14,3) 4
(14, 8, 4) 1 | (16,11,9) 1 |(17,14,5) 6
(14, 9, 5) 1| (16,12,2) 1 |(17,14,7) 8
(14,10,4) 1 |(16,12,4) 3 | (17, 14,9 7
(14,10,6) 1 |(16,12,6) 3 | (17,14,11) 6
(14,12,2) 1 |(16,12,8) 2 | (17,14,13) 2
(14,12,6) 1 |(16,12,10) 2 | (17,15,2) 2
(14,12,8) 1 |(16,13,3) 2 | (17,154 2
(15, 8, 3) 1 | (6,13,5 2 |(17,156) 3
(15, 8, 5) 1 (16,13,7) 2 | (17,15,8) 4
(15, 8, 7) 1 |(16,13,9) 1 | (17,15,10) 2
(15, 9, 4) 1 | (16,13,11) 1 | (17,15 12) 1
(15,10,3) 1 |(16,14,2) 2 |(17,16,1) 1
(15,10,5) 2 |(16,14,4) 2 | (17,16,3) 2
(15,10,7) 1 |(16,14,6) 3 | (17,16,5) 4
(15,10,9) 1 |(16,14,8) 3 |(17,16,7) 6
(15,11,4) 1 |(16,14,10) 2 | (17,16,9) 7
(15,11,6) 1 |(16,14,12) 1 | (17,16,11) 3
(15,12,3) 2 | (17,6, 3) 1 | (17,16,13) 4
(15,12,5) 2 | (17,7, 4) 1 | (18,6, 4) 1
(15,12,7) 3 | (17,8, 3) 1| (18,7, 3) 1
(15,12,9) 2 | (17,8, 5) 3 | (187 5) 1
(15,13,4) 1 | (17,8, 7) 1| (18,8, 2) 1
(15,13,6) 1 |(17,9,2) 1| (18,8, 4) 3
(15,13,8) 1 | (17,9, 4) 1| (18, 8, 6) 2
(15,14,1) 1 | (17,9, 6) 1 | (18,9, 3) 2
(15,14,5) 2 |(17,10,3) 3 | (18,9, 5) 3
(15,14,7) 3 |(17,10,5) 3 | (18,9,7) 2
(15,14,9) 3 |17 10,7) 4 |(1810,2) 2
(15, 14, 13) 1 (17, 10, 9) 2 (18, 10, 4) 4
(16, 6, 4) 1| a7,11,2) 1 | (18 0,6) 4
(16, 7, 5) 1 | (17,11,4) 3 |(18,10,8) 2
(16, 8, 2) 1 | ar11,6) 1 | (18 11 3) 3
(16, 8, 4) 1 | (17,11,8) 1 | (18,115 4
(16, 8, 6) 1 | (17,12,3) 3 | (18,11, 7) 4
(16, 9, 3) 1 | (712,57 | (18,11,9) 2
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Table 3.23: card (O, (w1, wa, w3, wy))

(w;); card. | (w;); card. | (w;); card.
(13,10,9,4) 1 | (15,12, 11,6) 4 | (15, 14, 13,10) 3
(13,12, 7, 4) 1 | (15,12, 11,8) 2 | (16,8, 7,3) 1
(13,12, 9, 4) 1 | (15,12, 11,10) 1 | (16,10, 7, 3) 1
(13,12,9,6) 1 | (15,13, 7, 3) 2 | (16, 10, 7, 5) 1
(13,12, 11,4) 1 | (15,13, 7, 5) 1 | (16, 10, 8, 4) 1
(14,10,9,5) 1 | (15,13,8,2) 1 | (16, 10,9, 3) 2
(14, 12, 7, 3) 1| (15,13, 8, 4) 1 | (16, 10, 9, 5) 2
(14,12,8,4) 1 | (15,13, 8, 6) 1 | (16, 10,9, 7) 1
(14, 12, 9, 3) 1 | (15, 13,9, 3) 3 | (16,11, 6, 3) 1
(14,12,9,5) 2 | (15, 13,9, 5) 4 | (16,11, 7, 4) 1
(14, 12,9, 7) 1| (15, 13,9, 7) 2 | (16, 11, 8, 5) 1
(14,12,10,4) 1 | (15,13,10,4) 2 | (16, 11,9, 2) 1
(14,12,10,6) 1 | (15,13,10,6) 2 | (16, 11,9, 4) 2
(14,12,11,3) 1 | (15,13, 10, 8) 1 | (16,11, 9, 6) 2
(14,12, 11,5) 1 | (15,13, 11, 1) 1 | (16, 11, 9, 8) 1
(14,12, 11,7) 1 | (15,13,11,3) 2 |(16,11,10,3) 1
(14, 13, 8, 5) 1 (15, 13, 11, 5) 3 (16, 11, 10, 7) 1
(14,13,10,5) 1 | (15,13,11,7) 3 | (16, 12, 5, 3) 1
(14,13,10,7) 1 | (15,13,11,9) 1 | (16,12, 6, 4) 2
(15, 10, 5, 4) 1 | (15, 14, 5, 2) 1| (16,12, 7, 3) 2
(15,10,7,4) 1 | (15,14, 7,2) 1| (16,12, 7, 5) 3
(15, 10, 7, 6) 1| (15, 14,7, 4) 4 (16,12, 8, 2) 1
(15,10,9,2) 1 | (15,14, 7, 6) 2 | (16, 12, 8, 4) 3
(15, 10, 9, 4) 1 | (15, 14, 8, 3) 1 | (16, 12, 8, 6) 3
(15, 10, 9, 6) 1 | (15,14, 8, 5) 1| (16,12, 9, 1) 1
(15,10,9,8) 1 | (15,14, 9, 2) 3 | (16,12, 9, 3) 5
(15,11,7,5) 1 | (15,14, 9, 4) 6 | (16, 12,09, 5) 6
(15,11,9,3) 1 | (15, 14,9, 6) 7 | (16, 12,9, 7) 5
(15, 11, 9, 5) 1 | (15, 14,9, 8) 3 1(16,12,10,2) 2
(15,11,9,7) 1 | (15,14,10,3) 2 | (16,12, 10,4) 5
(15,12, 5,4) 2 | (15,14,10,5) 3 | (16,12,10,6) 4
(15,12,7,2) 1 | (15, 14,10,7) 1 |(16,12,10,8) 3
(15,12, 7,4) 2 | (15, 14,11,2) 2 |(16,12,11,3) 5
(15,12,7,6) 3 | (15 14,11,4) 7 | (16,12, 11,5) 6
(15, 12, 8, 3) 1 | (15, 14,11,6) 8 | (16,12,11,7) 3
(15, 12, 9, 2) 1 | (15,14,11,8) 7 |(16,12,11,9) 1
(15,12,9,4) 5 | (15, 14,11,10) 2 | (16, 13, 4, 3) 1
(15,12,9,6) 4 | (15,14,12,3) 3 | (16, 13,5, 4) 1
(15,12,9,8) 3 | (15, 14,12,5) 3 | (16, 13,6, 3) 2
(15,12,10,1) 1 | (15,14,12,7) 2 | (16, 13,6, 5) 2
(15,12,10,3) 1 | (15,14,13,2) 1 | (16,13,7,2) 1
(15,12,10,5) 2 | (15,14,13,4) 4 | (16, 13,7, 4) 2
(15,12,11,2) 2 | (15, 14,13,6) 3 | (16, 13,7, 6) 2
(15,12,11,4) 4 | (15,14,13,8) 3 | (16, 13,8, 3) 4
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Table 3.24: card (O, (w1, wa, w3, wyg, ws))
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Table 3.25: card (O, (w1, we, w3, wy, ws, we))

(w;); card. | (w;); card. | (w;); card.
(13, 11, 10, 8, 4, 3) 1 | (14, 12, 11, 8, 4, 2) 1 | (14,13, 10,8, 7, 1) 1
(13,12, 9, 8, 5, 4) 1| (14,12, 11, 8, 5, 1) 2 | (14,13, 10, 8, 7, 3) 2
(13,12, 9, 8, 7, 2) 1| (14,12,11,8,5,3) 4 | (14,13, 10,8, 7, 5) 1
(13, 12, 10, 8, 5, 3) 1| (14,12, 11, 8, 6, 2) 3 | (14,13, 10,9, 5, 2) 1
(13,12, 11, 6, 5, 4) 1| (14, 12, 11, 8, 6, 4) 3| (14, 13, 10, 9, 5, 4) 1
(13,12, 11, 8, 3, 2) 1| (14,12, 11, 8,7, 1) 2 | (14,13, 10,9, 7 2) P
(13,12, 11, 8, 5, 2) 2 | (14,12, 11, 8,7, 3) 3| (14,13, 10,9, 7, 4) 1
(13, 12, 11, 8, 5, 4) 2 | (14,12, 11, 8,7, 5) 2 | (14,13, 11, 6, 4, 3) 2
(13,12, 11, 8, 7, 2) 1| (14,12, 11, 9, 4, 3) 1| (14, 13, 11, 7, 4, 2) 2
(13,12, 11, 8, 7, 4) 2 | (14,12, 11,9, 5, 2) 3| (14,13, 11,7, 5, 1) 1
(13, 12, 11, 8, 7, 6) 1 | (14,12, 11, 9, 5, 4) 3 | (14,13, 11,7, 5, 3) 2
(13,12, 11, 9, 5, 3) 1 (14, 12, 11, 9, 6, 3) 3 (14, 13, 11, 7, 6, 2) 2
(13,12, 11,9, 7, 1) 1 | (14,12, 11,9, 7, 2) 2 | (14,13, 11,7, 6, 4) 2
(13,12, 11,10,5,2) 1 | (14,12, 11,9, 7, 4) 3| (14, 13,11, 8, 4, 1) 1
(13,12, 11, 10, 5,4) 2 | (14, 12,11, 9, 7, 6) 1| (14, 13,11, 8, 4, 3) 5
(13,12,11,10,7,2) 2 | (14,12, 11,10,4,2) 1 | (14,13, 11,8, 5, 2) 3
(13,12, 11,10, 7,4) 2 | (14,12,11,10,5,1) 1 | (14,13, 11,8, 6, 1) P
(13,12,11,10,7,6) 2 | (14,12, 11,10,5,3) 3 | (14, 13, 11,8, 6, 3) 6
(13,12, 11,10,9,2) 1 | (14,12, 11,10,6,2) 3 | (14,13, 11,8, 6,5) 4
(13,12,11,10,9,6) 1 | (14,12, 11,10,6,4) 3 | (14,13, 11, 8,7, 2) 1
(14, 11, 9, 8, 4, 3) 1| (14,12,11,10,7,1) 2 | (14,13, 11, 8, 7, 4) 1
(14, 11, 9, 8, 6, 3) 1 | (14,12, 11,10,7,3) 5 | (14,13, 11,9, 4, 2) 3
(14, 11, 10, 8, 5, 3) 1 (14, 12, 11, 10, 7, 5) 3 (14, 13, 11,9, 5, 1) 1
(14,12, 9,7, 5, 2) 1 | (14,12,11,10,8,2) 2 | (14,13, 11,9, 5, 3) 6
(14, 12, 9, 7, 5, 4) 1| (14,12,11,10,8,4) 3 | (14,13,11,9,6,2) 4
(14, 12,9, 8, 5, 3) 2 | (14,12, 11,10,8,6) 1 | (14,13, 11,9, 6, 4) 6
(14, 12, 9, 8, 6, 2) 1 | (14,12, 11,10,9,1) 1 | (14,13, 11,9, 7, 1) P
(14, 12, 9, 8, 6, 4) 1 | (14,12,11,10,9,3) 1 | (14,13,11,9,7, 3) 4
(14,12, 9, 8, 7, 3) 1 | (14,12, 11,10,9,5) 1 | (14,13, 11,9, 7, 5) 3
(14, 12, 10, 6, 5, 2) 1 (14, 13, 9, 6, 4, 3) 1 (14, 13, 11, 9, 8, 2) 1
(14, 12, 10, 7, 5, 1) 1| (14,13,9,7, 4, 2) 1| (14,13, 11, 9, 8, 4) 3
(14,12,10,7,5,3) 1 | (14,13,9,7,5,3) 1 | (14,13,11,9,8,6) 2
(14, 12, 10, 8, 4, 3) 1| (14,13,9,7, 6, 4) 1 | (14,13, 11,10,4,1) 1
(14, 12, 10, 8, 5, 2) 2 | (14,13,9,8, 4, 3) 2 | (14,13,11,10,4,3) 4
(14, 12, 10, 8, 5, 4) 2 | (14,13,9,8, 6, 3) 3| (14,13, 11,10,5,2) 1
(14, 12, 10, 8, 6, 1) 1 (14, 13,9, 8, 6, 5) 1 (14, 13, 11, 10, 5, 4) 1
(14, 12, 10, 8, 6, 3) 2 | (14, 13, 10, 6, 4, 2) 1 | (14,13, 11,10,6,1) 2
(14, 12, 10, 8, 7, 2) 2 | (14, 13, 10, 6, 5, 3) 1 | (14,13, 11,10,6,3) 8
(14, 12, 10, 8, 7, 4) 1| (14, 13, 10, 7, 5, 2) 2 | (14,13, 11,10,6,5) 4
(14, 12, 10, 9, 5, 3) 1 | (14, 13, 10,7, 5, 4) 1 | (14,13,11,10,7,2) 3
(14, 12, 11, 6, 5, 1) 1| (14, 13, 10, 8, 4, 2) 2 | (14,13, 11,10,7,4) 1
(14,12, 11, 7, 5, 2) 1 | (14, 13, 10, 8, 5, 3) 4 | (14,13,11,10,8,1) 1
(14,12,11,7,5,4) 2 | (14,13,10,8,6,2) 1 |(14,13,11,10,83) 5
(14, 12, 11, 8, 3, 1) 1| (14, 13, 10, 8, 6, 4) 2 | (14,13, 11,10, 8,5) 4
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Table 3.26: card (O, (w1, w2))

(w1,we) card. | (wi,wy) card. | (w1,we) card. | (wi,wz) card.
(13, 2) 1T [(24,7 2 | (296 6 |(33,0 1
(14, 3) 1| (24,9 2 | (20, 8) 2 | (33,2) 6
(15, 4) 1| (24,13) 2 |(20,10) 3 | (33,4) 4
(16, 1) 1 (25,2 4 |(29,12) 3 |(33,6) 6
(16, 5) 1 | (25,4) 2 |(20,14) 3 |(33,8 3
(17, 2) 1 | (25, 6) 2 | (20,18) 4 |[(33,10) 6
(17, 6) 2 | (25,8) 2 | (30, 1) 4 |(33,12) 3
(18, 1) 1 | (25,100 3 |(30,3) 4 |(33,14) 4
(18, 3) 1 (25,14 3 (30,5 3 |(33,16) 3
(18,7 1 |(26,1) 2 |(30,7) 4 | (33,18 4
(19, 2) 1| (26, 3) 4 1(30,9) 3 1(33,22 4
(19,4) 2 |(26,5) 2 |(@30,11) 3 |(341) 6
(19, 8) 2 | (26, 7) 2 1(30,13) 3 |(34,3) 4
(20, 1) 1 (26,9 3 |(30,15 3 |(345 6
(20, 3) 2 | (26,11) 2 |(30,19 3 |47 6
(20,5) 1 |(26,15) 3 | (31,0) 1 (34,9 3
(20, 9) 2 | (27,0) 1| (31,2) 4 | (34,11) 6
(21, 2) 2 | (27, 2) 2 | (31, 4) 6 | (34,13) 4
(21, 4) 1 |4 4 | (3L6) 2 | (3415 3
21,6) 2 |(@n,6) 2 |(3L8 6 |(3417) 4
(21,10) 2 |(27,8) 3 | (31,100 3 | (34,19) 4
(22, 1) 2 | (27,100 2 |(31,12) 3 |(34,23) 4
(22, 3) 1 |(@7r,12) 3 | (3L14) 3 | (35,0 3
(22, 5) 2 | (27,16) 3 |(31,16) 4 | (35,2 4
@27 2 | (@8 1) 4 | (3L20) 4 |(354) 6
(22,11) 2 | (28, 3) 2 | (32,1) 4 | (35,6) 6
(23,00 1 |(28,5 4 |(323) 6 |(35,8 6
(23, 2) 1| (28,7) 3 | (32, 5) 4 | (3510 3
(23, 4) 2 | (28,9) 2 | (32,7) 3 1(35,12) 8
(23,6) 2 |(28,11) 3 |(32,9) 6 |(3514) 3
(23, 8) 2 | (28,13) 3 |(32,11) 3 |(3516) 4
(23,12) 3 | (28,17) 3 |(3213) 3 | (35 18) 4
(24, 1) 2 | (20,0) 1 | (32,15) 4 | (3520 4
24,3) 2 |(20,2) 4 | (3217 3 |(35,24) 5
(24, 5) 2 | (20, 4) 2 | (32,21) 4 |(361) 6

125



Table 3.27: card (O (w1, we, w3, wy))

(w;); card. | (w;); card. | (w;); card.
(12,9, 5, 2) 1 | (14,12,10,2) 1 | (15,12, 7,2) 2
(12,10,7,1) 1 |(14,12,10,4) 1 | (15,12, 7,4) 3
(13,9, 5, 1) 1| (14,13, 6, 1) 1 | (15,12,8,1) 3
(13,9, 7, 3) 1 | (14,13,7,2) 1 |(1512,8,3) 2
(13, 10, 5, 2) 1 | (14,13,8,1) 2 |(1512,85 @ 2
(13,10,7,4) 1 |(14,13,9,0) 1 |(15,12,9,2) 4
(13, 11, 5, 3) 1| (14,13, 9, 4) 1| (15,12, 9, 4) 1
(13,11, 7, 1) 1 | (14,13,10,3) 1 | (15,12, 9,6) P
(13,12, 7, 2) 1 | (14,13,11,2) 1 |(1512,10,1) 2
(13,12,8,1) 1 | (15,7 4,2) 1 | (15,12, 10,3) 2
(13,12, 9, 4) 1 | (15,8, 5,2) 1 | (1512, 10,5) 1
(13,12,10,3) 1 | (15,9, 4,2) 1 | (15,12,10,7) 1
(14, 8, 5, 3) 1 (159 5 1) 1 | (15,12,11,4) 1
(14, 9, 4, 1) 1 | (15,9, 5,3) 1 | (15,12,11,8) 1
(14, 9, 6, 1) 1 | (15,9,6,2) 1 | (15,13,3,1) 1
(14, 9, 7, 2) 1 | (15,9,7,1) 1 | (15,13, 4, 2) 1
(14,10, 5,1) 1 | (15,9,7,3) 1 | (15,13,5,1) 1
(14, 10, 6, 2) 1 | (15,10, 3, 2) 1 | (15,13, 5, 3) p
(14,10,7,1) 1 |(15,10,5,0) 1 |(15,13,6,2) 2
(14, 10, 7, 3) 1 | (15, 10, 5, 2) 1| (15, 13, 6, 4) 1
(14,10,8,2) 1 |(15,10,5,4) 1 |(1513,7,1) 3
(14, 10, 8, 4) 1 | (15, 10, 6, 1) 1| (15,13, 7, 3) 1
(14,11,4,1) 1 |(15,10,7,2) 3 |(15,13,7.5) 2
(14,11,5,2) 1 | (15,10,7,4) 1 |(15,13,8,0) 1
(14, 11, 6, 1) 1 | (15,10, 7, 6) 1 | (15,13, 8, 2) p
(14, 11, 6, 3) 1 (15, 10, 8, 1) 1 (15, 13, 8, 4) 1
(14, 11, 7, 0) 1 | (15, 10, 8, 3) 1 | (15,13, 8, 6) 1
(14,11,7,4) 1 |(15,10,9,4) 1 |(15,13,9,1) 3
(14, 11, 8, 1) 1 | (15,11, 4, 2) 1 | (15,13,9,3) 2
(14,11,8,3) 1 | (15,11,5,1) 2 |(1513,9,5) 1
(14, 11, 8, 5) 1 | (15 11, 5, 3) 1| (15,13, 9,7) 1
(14,11,9,2) 1 |(1511,6,2) 1 |(15,13,10,2) 3
(14, 12, 4, 2) 1 | (15, 11,7, 1) 2 |(15,13,10,4) 1
(14,12,5,1) 1 |(15,11,7,3) 3 | (15,13,11,1) 1
(14,12,5,3) 1 |(15,11,8,2) 2 | (15,13, 11,3) 2
(14, 12, 6, 2) 1 | (15,11, 8, 4) 1 | (15,13, 11,5) 1
(14,12,6,4) 1 | (15,11,9,1) 1 | (15, 14,5,2) 1
(14,12,7,1) 2 | (15,11, 9, 3) 1| (15,14, 5, 4) 1
(14,12,7,5) 1 | (15,11,9,5) 1 |(15 14,6,1) 1
(14, 12, 8, 0) 1| (15,12, 4, 1) 1 | (15,14,7,2) 3
(14,12,8,2) 1 |(1512,5,2) 3 | (15 14,7,6) 1
(14, 12, 8, 6) 1 | (15,12,6,1) 2 |(1514,8,1) 2
(14,12,9,1) 1 |(15,12,6,3) 2 | (15 14,83) 1
(14, 12, 9, 3) 1| (15, 12,7, 0) 1| (15, 14, 9, 0) 1
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Table 3.28: card (O, (w1, we, w3, wy, ws, we))
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