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A B S T R A C T

In this thesis, some important problems and properties of collective decision-making
are studied. In particular, first, a stability property of preference aggregation rules is
introduced and some well-known classes of rules are tested in this regard. Second, mea-
suring preferential polarization is studied, both theoretically and empirically. Finally,
strategic behavior in information aggregation situations is investigated in light of a sort
of bounded rationality model, both theoretically and experimentally.

The stability notion studied in the first part of the thesis is imposed particularly on so-
cial welfare functions and requires that the outcome of these functions should be robust
to reduction in preference submission that are argued to take place when individuals
submit a ranking of alternatives when the outcomes are also restricted to be rankings.
Given the preference profile of a society, that is a collection of rankings of alternatives,
a compatible collection of rankings of rankings are extracted and the outcome of social
welfare functions in these two levels are compared. It turns out that no scoring rule
gives consistent results, although there might exist Condorcet-type rules.

Polarization measures studied in second part are in form of aggregation of pairwise
antagonisms in a society. The public opinion polarization in the United States for the
last three decades is analyzed in light of this view, by using a well-acclaimed measure
of polarization introduced in the literature of income inequality. The conclusion is that
no significant trend in public opinion polarization can be claimed to exist over the last
several decades. Also, an adaptation of the same measure is shown to satisfy desirable
properties in lieu of ordinal preference profiles when three alternatives are considered.
Furthermore, a measure that is the aggregation of pairwise differences among individu-
als preferences is characterized by a set of axioms.

In the final part of the thesis, information aggregation situations described as in Con-
dorcet jury model is studied in light of cognitive hierarchy approach to bounded ratio-
nality. Specifically, a laboratory experiment is run to test the theoretical predictions of
the symmetric Bayesian Nash equilibrium concept. It is observed that behavior in lab is
not correctly captured by this concept that assumes a strong notion of rationality and
homogeneity among individuals behaviors. To better describe the findings in the exper-
iment, a novel model of cognitive hierarchy is developed and shown to perform better

2



than both strong rationality approach and previous cognitive hierarchy models. This
endogenous cognitive hierarchy model is compared theoretically to previous models of
cognitive hierarchy and shown to improve in certain classes of games.
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R É S U M É

Dans cette thèse, certains problèmes importants et des propriétés de prise de décision
collective sont étudiés. En particulier, d’abord, une propriété de stabilité des règles
d’agrégation de préférences est introduite et certaines classes bien connues de règles
sont testées à cet égard. Deuxièmement, le mesurage de la polarisation préférentielle est
étudié, à la fois théorique et empirique. Enfin, le comportement stratégique dans des
situations d’agrégation de l’information est étudié à la lumière d’une sorte de modèle
de la rationalité limitée, à la fois théoriquement et expérimentalement.

La notion de stabilité étudié dans la première partie de la thèse est imposée en par-
ticulier sur les fonctions de bien-être sociale et exige que le résultat de ces fonctions
doit être robuste à la réduction de la transmission de préférences qui sont soutenu avoir
lieu lorsque les individus présentent un ordre des alternatives lorsque les résultats sont
également limités à être ordres. Pour tous profils sociétaux de préférences donné, qui
est une collection d’ordres des alternatives, une collection compatible d’ordre des classe-
ments est extraite et les résultats des fonctions de bien-être social dans ces deux niveaux
sont comparés. Il s’avère qu’aucune règle de notation donne des résultats cohérents,
bien qu’il puisse y exister des règles Condorcetien.

Mesures de polarisation qui sont étudiées en deuxième partie sont en forme d’agrégation
des antagonismes par paires dans une société. La polarisation de l’opinion publique
aux États-Unis pour les trois dernières décennies est analysé à la lumière de ce point
de vue, en utilisant une mesure de polarisation bien acclamé qui est introduit dans la
littérature de l’inégalité des revenus. La conclusion est qu’aucune tendance significative
dans l’opinion publique polarisation peut être réclamé à exister au cours des dernières
décennies. En outre, une adaptation de la même mesure est montrée à satisfaire des pro-
priétés souhaitables à la place de profils de préférences ordinales lorsque trois alterna-
tives sont considérées. En outre, une mesure qui est en effet l’agrégation des différences
par paires entre les préférences des individus est caractérisée axiomatiquement.

Dans la dernière partie de la thèse, situations de l’agrégation de l’information telles
que décrites comme dans le modèle du jury de Condorcet sont étudiées à la lumière
d’une approche de rationalité limitée qui est connue hiérarchie cognitive. Plus précisément,
une expérience de laboratoire est exécutée pour tester les prédictions théoriques de la
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notion d’équilibre symétrique de Nash Bayésien. On constate que le comportement
en laboratoire n’est pas correctement capturé par ce concept qui suppose une forte no-
tion de la rationalité et de l’homogénéité entre les comportements des individus. Pour
mieux décrire les résultats à l’expérience, un nouveau modèle de hiérarchie cognitive
est développé et montré à faire mieux que la fois l’approche de la rationalité forte et
des modèles précédentes de hiérarchie cognitive. Ce modèle de hiérarchie cognitive
endogène est comparé en théorie aux modèles précédents de la hiérarchie cognitive et
montré pour améliorer dans certaines catégories de jeux.
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Part I

I N T R O D U C T I O N



1

I N T R O D U C T I O N

On April 10, 2010, a dozen distinguished scholars from renowned institutions con-
vened at the Division of Social Sciences of Harvard University for a symposium that
was openly aimed at reaching a conclusion that would, ideally, be the social science
counterpart for what great mathematician David Hilbert once has done at the Interna-
tional Congress of Mathematicians in Paris in 1900.1 Over thirty problems were posed
and discussed (via social media, afterwards) to eventually gather a ranking of hardest
problems in social science. Two of those which made it in the top ten were related to collec-
tive decision-making, including Richard J. Zeckhauser’s question that is formed in the
following plain words:

A critical problem for groups, ranging from the dyad to society as a whole, is how
to aggregate information possessed by different individuals so that the group can use
that information to make the best decisions.

This thesis is yet another attempt at better understanding of the collective decision-
making processes, one of the major ingredients of societies of our time. An accumulation
of works that are initiated out of spirit of inquiry and enlightening supervision, it con-
sists of -mostly conceptual- studies of a multiple of subjects of investigation in collective
decision-making with varying methods.

The very first of these, both chronologically and according to the current composition,
deals with methods of aggregation of preferences and constitutes Part 2.2 We take prefer-
ences as simple phenomena, representable by consistent rankings of alternatives. Given
such revelation by each member of a society, methods of aggregation are employed to
reach a ranking that ideally would be agreeable as the representative for the preference
of the society. It is argued, in the following lines, that when the outputs of aggrega-
tion are the same kind of objects as the ones required from individuals’ submissions,

1 See http://socialscience.fas.harvard.edu/hardproblems.
2 This chapter is based on a work with the same title, co-authored with Jean Lainé and Remzi Sanver.
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introduction

namely rankings, since individuals might evaluate rankings as alternatives themselves,
a preference over these very rankings might be claimed to be possessed by each in-
dividual. Furthermore, assuming a degree of consistency between these two levels of
preference, we can obtain candidates for these hyper-preferences. Once that is achieved,
we can now ask what would be the outcome if the current rule were to be employed in
aggregation of hyper-preferences. Would the outcome be consistent with the outcome
of aggregation of simple preferences? Or in other words, is it of no unfavorable conse-
quence to get away with simple preferences instead of hyper-preferences? The chapter
is formalizing these ideas and providing results as to how two most important classes
of aggregation methods perform in that regard, or are they hyper-stable or not: scoring
rules and Condorcet-type rules. It is shown that the former fails this sort of stability by
nature while the latter may include hyper-stable methods.

Part 3 is on measuring polarization in (political) preferences, without any mention to
reasons or consequences of it. Throughout the part, the idea that polarization can be
seen as aggregation of pairwise antagonisms in a society is sustained. The first chapter
in this part formulates alienation in between individuals as the distance between them
and furthermore takes into consideration the effect of the size of the group of individ-
uals with exactly the same preference on the antagonism in between. The conclusion
is that a very well known class of polarization measures (introduced first in income in-
equality studies) can be adopted naturally to preferential polarization in order to satisfy
the plausible and well established properties. The second chapter, on the other hand,
is about characterizing a very simple method of such an aggregation.3 This method is
simply the summation of the occurrences of differences in preferences on pairs of al-
ternatives and shown to be characterized by three intuitive axioms. The final chapter
of part 3 comprises an empirical approach.4 In this chapter, we investigate the trend
in public opinion polarization in the United States over last couple of decades. It is
shown first that the literature on the subject is remarkably inconclusive on the issue and
that this relies on the fact that different approaches entail different measures. We argue
that the measure of polarization mentioned above is a functional tool also for this job
by talking over the implications of previously used ones. We advance on by actually
employing the method to data obtained from a praised source. In doing this, we benefit
from several technical procedures in order to strengthen analysis. Our final conclusion
in this chapter is that no significant trend in overall polarization in public preferences

3 This chapter is based on a work with the same title, co-authored with Burak Can and Ton Storcken.
4 This chapter is based on a work co-authored with Ug̃ur Özdemir.
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introduction

can be observed in the given time period, although there might be issues on which the
public got more polarized in times.

In Part 4, the final part, we turn to the study of collective decision-making from a foun-
dational perspective; is inclusion even a good thing? Through a model built upon the
classic works of a great Enlightenment persona, a Platonic realist -believer of objective
moral truths-, Marquis de Condorcet, we revisit the question if more opinion is neces-
sarily better in terms of making more accurate decisions. To convince the reader that
this may stand a non-trivial and relevant question even if we fully agree with Condorcet,
we may point to a today-well-agreed idea, which can again be illustrated by Professor
Zeckhauser’s formulation of his another question at the Hard Problems in Social Science
Symposium at Harvard University:5

If we know that individuals are susceptible to all kinds of biases and don’t always
make rational decisions, how do we decide ’what’s good’?

After all, dominant in the literature of information aggregation -especially the works
build on Condorcet’s jury model- is assuming a sort of perfect rationality of individu-
als, either directly or due to employed game theoretic solution concepts. In Chapter 5

we investigate, first, theoretically the consequences of one particular relaxation of this
assumption, which imposes heterogeneity in cognitive undertakes of individuals of the
problem, the problem of collectively choosing the correct alternative with the help of
voting with relying on private and imperfect informations each individual holds.6 We
develop a new approach in this lieu and investigate how composition of individuals
with different cognitive hierarchies may effect the outcome in different models. We then
report results from an experiment we have run with human subjects in computerized
environments. The experimental observations ratify this new model which performs
better than previous models with and without strict rationality requirement in describ-
ing the behaviors of the subjects. Before conclusion, the chapter points to limitations of
the framework and further research questions.

Quixotic as it can be, the work in this thesis would bring incomparable jubilation to its
humble author if it could succeed in contributing even an iota to its readers’ understand-
ing of collective decision-making processes. Each chapter is founded on collaborations
with esteemed scholars (mentors, in fact), and all errors are completely the author’s.

5 Two other relevant questions are due to Nick Bostrom: ”How can humanity increase its collective wisdom?”
and Gary King: ”How do we understand and grapple with collective decision-making where the outcome
for everyone is suboptimal (e.g., the proliferation of weapons of mass destruction)?”.

6 This chapter is based on a work with the same title, co-authored with Yukio Koriyama.
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Part II

H Y P E R - P R E F E R E N C E S



2

H Y P E R - S TA B I L I T Y O F S O C I A L W E L FA R E F U N C T I O N S

(joint work with Jean Lainé and Remzi Sanver)

2.1 introduction

Many collective choice situations involve orderings of a finite set of m alternatives as
resolute outcomes. Natural examples are choosing a social preference or a priority order
over decisions, ranking candidates in sport or arts competitions (e.g. the Eurovision song
contest) or assigning tasks to individuals. In the latter example, there are m positions
to be filled by m individuals, each being assigned a specific position. Given the natural
ranking 1 > ... > m of the positions, a social outcome is an order f (1) � ... � f (m)

over individuals obtained by means of a bijection f from the set of positions to the set
of individuals.

The classical framework of social choice theory calls for individuals to report their
preferences over social outcomes. When social outcomes are linear orders, preferences
over outcomes are orders of orders, or hyper-preferences. However, reporting full prefer-
ences faces a problem of practical implementation: in the no-indifference case, individ-
uals have to rank m! outcomes. More generally, when outcomes are complex combina-
tions of basic alternatives, likewise orderings or subsets, choosing from full preference
profiles is hardly achievable in practice. This suggests to design procedures based on
partial information about individual preferences.1 A simple option is asking each of the
individuals to report only one order. Formally, this procedure reduces to using a Social
Welfare Function (SWF) a, which maps every profile of linear orders to a weak order of
alternatives, completed with a tie-breaking rule.

It follows that some normative properties of SWFs cannot be investigated without
retaining assumptions on how individual orders over alternatives are extended to un-

1 This is what prevails in the Eurovision song contest, where ballots are based on a partial scoring method.
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derlying hyper-preferences. A typical example is given by strategy-proofness, which
can be defined only conditional to the way orders over alternatives are extended to
hyper-preferences. Bossert and Storcken (1992) prove impossibility results for hyper-
preferences generated by the Kemeny distance criterion: given an order P over alternatives,
the hyper-preference from P ranks an order Q above another order Q0 if the Kemeny
distance between P and Q is strictly lower than the one between P and Q0.2 Bossert and
Sprumont (2014) investigate strategy-proofness for hyper-preferences based on the fol-
lowing betweenness criterion: the hyper-preference from P ranks Q above Q0 if the set of
alternative pairs P and Q agree on contains the set of pairs P and Q0 agree on.3 Another
property requiring extending orders to hyper-preferences is the Pareto property, which
states that an SWF (with a tie-breaking rule) chooses at any profile over alternatives a
linear order that is not unanimously less preferred than another order.

In this chapter we introduce a new property for neutral SWFs called hyper-stability,
which also implies linking orders over alternatives to hyper-preferences. Hyper-stability
is a consistency property relating two levels of choice, the one from profiles of orders
over alternatives, or basic profiles, and the one from hyper-preference profiles, or hyper-
profiles. Loosely speaking, an SWF is hyper-stable if its outcome at any basic profile
is top-ranked at the corresponding hyper-profile. More precisely, consider an SWF a

defined for any finite number of alternatives. Hence, a provides a weak order at any
basic profile over m alternatives as well as at any basic profile over m! alternatives.
Furthermore, suppose that a is neutral, meaning that its outcomes are not sensitive to
the labeling of alternatives. Thus, profiles over m! alternatives can be also interpreted
as hyper-preference profiles over orders of m alternatives, or in short hyper-profiles.
While a basic profile clearly entails a huge loss of information about preferences over
outcomes, there may nonetheless exist, in the spirit of revealed-preference theory, a class
of underlying hyper-profiles (over m! orders) compatible with the basic profile at which
a ranks at top at least one linear extension of the weak order chosen from the basic
profile. If this happens at every possible reduced profile, we say that a is hyper-stable.

As for strategy-proofness, a key-issue for hyper-stability is what is meant by a hyper-
profile compatible with a basic profile. We assume here that compatibility holds when
hyper-preferences are generated from orders over alternatives in accordance with the
betweenness criterion. Clearly, this criterion allows to compare only a small number
of orders. Therefore a basic profile generates a large class of compatible hyper-profiles.

2 The Kemeny distance between two linear orders is the number of pairs of alternatives which they disagree
on.

3 See Duddy et al. (2010) for an analysis of strategy-proof SWFs based on ordinally fuzzy preferences.
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Nonetheless, we prove the existence of a unanimous and hyper-stable Condorcet SWF.4

However, many well-known Condorcet SWFs are not hyper-stable.
We also pay attention to the sub-class of hyper-profiles built by means of the Kemeny

distance criterion. Hyper-stability relative to this sub-class is called Kemeny-stability.
We show that no scoring rule is Kemeny-stable, hence hyper-stable, unless there are ex-
actly three alternatives. In this case, we show that there exists a unique normalized
Kemeny-stable scoring rule. Hence, our main result is that ranking by scoring is incom-
patible with hyper-stability, while the Condorcet criterion is not.

To the best of our knowledge, hyper-stability is a new property for SWFs, although
related properties appear in several studies of collective choice. The yeast of the present
study can be found in Binmore (1975), who considers a stronger notion of hyper-stability,
although in a different setting. Suppose that preferences are now weak orders over
three alternatives, which are aggregated to a weak order by means of a neutral SWF a.
Binmore does not comment on hyper-preferences beyond writing “if a rational entity
holds a certain preference preordering over a set of alternatives, then that entity must
also subscribe to a certain partial preordering of the set of all preorderings” (Binmore
(1975), p. 379). Moreover, weak orders are compared according to their respective top-
sets. All relevant top-sets in Binmore’s analysis contain at most two elements and the
criterion works as follows: Given a weak order R, sets {x}, {y}, and {x, y} are ranked
in the order {x}, {x, y}, {y} if and only if xRy. Given the 13 possible weak orders over 3

alternatives, this criterion suffices to find a family T of triples of weak orders on which
basic preferences generate an hyper-profile.5 Since a is neutral, it can be applied to each
of these hyper-profiles, leading to a weak order RT over each triple T in T . Furthermore,
the weak order chosen from the basic profile also induces a weak order eRT over each
triple T in T . Binmore shows that RT and eRT coincide for all T in T if and only if
a is either dictatorial, or anti-dictatorial or constant. There are three main differences
between Binmore’s approach and the present one. First, basic preferences and hyper-
preferences are weak orders in Binmore’s study, while we assume both are linear orders.
Second, Binmore’s setting defines SWFs for three alternatives only. Using neutrality

4 An SWF a is Condorcet if at any profile, it ranks alternatives as in the majority tournament whenever the
latter is a linear order.

5 To see why, label alternatives as x, y and z, and consider the following weak orders R1, R2 and R3 (with
respective a-symmetric parts P1, P2 and P3 ) defined by zP1yP1x, yP2zP2x and yR3zP3x. Denote by ⌫1,
⌫2 and ⌫3 the respective hyper-preferences induced on {R1, R2, R3} by R1, R2 and R3. Then one gets
R1 �1 R3 �1 R2, R2 �2 R3 �2 R1 and R1 ⇠3 R2 ⇠3 R3. It is easily seen that for each of the 13 possible
weak orders, R1, R2 and R3 are ranked as in ⌫1, or ⌫2 or ⌫3. Hence, any basic profile generates an
hyper-profile over the triple {R1, R2, R3}.
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together with a way to generate hyper-preferences, this allows to choose from hyper-
profiles over triples of orders. In contrast, our setting involves a variable number of
alternatives, and defines hyper-preferences as linear orders over all orders. Again, using
neutrality together with a way to generate hyper-preferences, this allows to have a well-
defined outcome at profiles over m alternatives and at hyper-profiles over m! orders.
Third, our definition of hyper-stability is clearly less demanding than Binmore’s one,
since it only requires that some social order chosen from basic profiles is top-ranked
from hyper-profiles, imposing nothing about how this social order itself generates a
social hyper-preference.

Another study related to hyper-stability can be found in Laffond and Lainé (2000),
although the property is not explicitly stated there. Using the same framework as the
present one, Laffond and Lainé characterize the domain of (neutral and independent)
hyper-preferences such that whenever the majority tournament at a basic profile is tran-
sitive, it is a Condorcet winner of any corresponding hyper-profile.6 This characteriza-
tion result can be restated as follows in terms of hyper-stability. Call strongly Condorcet
a Condorcet SWF that uniquely ranks first the Condorcet winner whenever it exists.
Then there exists a class of hyper-preferences making every strongly Condorcet SWF
hyper-stable.

Hyper-stability also appears, at least in watermark, in the literature of moral judg-
ments.7 Sen and Körner (1974) argues that morality requires to formulate judgments
among preferences while rationality does not, and suggests using moral views, defined
as hyper-preferences, as a way out of the Paretian liberal paradox à la Sen (1970).8 If one
accepts basic profiles as expressions of rationality (individuals reporting their first-best
outcome) and hyper-profiles as expressions of moral judgments, hyper-stability can be
interpreted as a property of moral consistency: choices made from rational preferences
does not conflict with the one made from moral judgments.

Furthermore, hyper-stability also relates to a self-selectivity property. Self-selectivity
is defined for a social choice function (SCF) by Koray (2000).9 Roughly speaking, an
SCF is self-selective if it chooses itself against any finite number of other social choice

6 Given a profile involving an odd number of individuals, the majority tournament is the complete and asym-
metric binary relation obtained by pairwise comparisons of alternatives according to the simple majority
rule. Moreover, the (necessarily unique) Condorcet winner of that profile is the alternative which defeats
all other alternatives in the majority tournament.

7 One can think of hyper-preferences also as preferences of individuals over others in the society.
8 See Igersheim (2007). The reader may refer to Jeffrey (1974), McPherson (1982), and Sen (1977) for further

discussion on the more general concept of a meta-preference.
9 A social choice function picks one alternative at every profile of preferences over alternatives. For further

studies of self-selectivity, see Koray and Unel (2003) and Koray and Slinko (2008).
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functions. Self-selectivity thus involves two levels of choice: choices from profiles over
alternatives, and choices from profiles over choice functions. These two levels are con-
nected by means of a consequentialist principle, which states that individuals preferring
alternative x to alternative y will rank any function choosing x above any function choos-
ing y. Koray (2000) shows that a neutral and unanimous SCF is self-selective if and only
if it is dictatorial. While consequentialism allows for a canonical extension of prefer-
ences over alternatives to preferences over SCFs, this is no longer the case for SWFs.
Nonetheless, self-selectivity for SWFs can be defined conditional to the definition of
hyper-preferences. An individual with preference P in some basic profile PN will pre-
fer SWF a1 to SWF a2 if a1(PN) is “closer” to P than a2(PN), where closer can be in
terms of the Kemeny or any other distance. More generally, once defined how a linear
order generates an hyper-preference, two SWFs are compared according to the way this
hyper-preference ranks their respective outcomes. Hence the consequentialist principle
applies, but conditional to the way basic preferences are extended to hyper-preferences.
We say that an SWF is SW self-selective for some preference extension if, at any basic
profile it ranks itself first when compared to any finite set of SWFs. We show below that
hyper-stability is a necessary condition for SW self-selectivity.

The rest of the chapter is organized as follows. Part 2 formally defines hyper-stability,
and investigates its relation to self-selectivity. Hyper-stability of scoring rules is studied
in Part 3. In particular, we provide examples showing that neither the Borda rule, nor
the plurality and anti-plurality rules are Kemeny-stable, hence hyper-stable. Moreover,
we show that no unanimous scoring rule is Kemeny-stable, and that no scoring rule is
hyper-stable. Condorcet SWFs are considered in Part 4. We show that the Slater SWF, the
Kemeny rule, and the Copeland SWF are not hyper-stable, whereas the transitive closure
of the majority relation over alternatives is hyper-stable. The chapter ends up with
comments about alternative concepts of hyper-stability, together with open questions.
Finally, all proofs are postponed to an appendix.

2.2 hyper-stability

2.2.1 Notations and definitions

N denotes the set of non-zero natural numbers. We consider societies with variable
numbers of individuals and of alternatives. Hence, N stands for the sets of potential
alternatives and individuals, and each actual society involves finitely many individuals
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confronting finitely many alternatives. Given a finite subset Xm of N with cardinality m,
the set of linear (resp. weak) orders over Xm is denoted by L(Xm) (resp. R(Xm)). An
order P 2 L(Xm) is a linear extension of R 2 R(Xm) if for any a, b 2 Xm, aPb ) aRb.
The set of all linear extensions of R 2 R(Xm) is denoted by D(R). Given a set N of
n individuals, a weak profile over Xm is an element RN of R(Xm)

n, and a profile is
an element PN of L(Xm)n. The set of all linear extensions of the weak profile RN is
D(RN) = ⇥i2N(D(Ri)).

Denoting by Xm the set of all subsets of N with cardinality m, a function a : [m,n2N [Xm2Xm

L(Xm)n ! [m2NR(Xm) is a social welfare function (SWF) if for all n, m 2 N, for all
Xm 2 Xm and for all PN 2 L(Xm)n, a(PN) 2 R(Xm). Let Xm and X0

m be two different
sets in Xm, and consider any bijection s from Xm to X0

m. If R 2 L(Xm), we define Rs as
the element of L(X0

m) such that for all x, y 2 X0
m, x Rs y if and only if s�1(x) Pi s�1(y).

An SWF a is neutral if for all n, m 2 N, for all Xm, X0
m 2 Xm, for all bijections s from

Xm to X0
m, and for all profiles PN = (P1, ., , , Pn) 2 L(Xm)n, we have a(Ps

N) = [a(PN)]
s,

where Ps
N = (Ps

1 , ..., Ps
n ) 2 L(X0

m)
n. Given any m 2 N, define Am = {1, ..., m} 2 Xm.

Since neutrality states that the way to rank alternatives is non-sensitive to their labeling,
we can define a neutral SWF a as a function from [m,n2N Am to [m2NR(Xm) such that
for all n, m 2 N and for all PN 2 L(Am)n, a(PN) 2 R(Am).

Furthermore, a neutral SWF a is unanimous if, for any m, n 2 N, for any profile
PN 2 L(Am)n, for any two alternatives a, b 2 Am, [a Pi b for all i = 1, ..., n] implies that
[a a(PN) b and ¬(b a(PN) a)]. Finally, the rational social choice correspondence attached to
a is the function fa : [n,m2NL(Am)

n ! 2Am \ ∆ defined by: 8n, m 2 N, 8PN 2 L(Am)
n,

8a 2 Am, a 2 fa(PN) () a a(PN) b for all b 2 Am. Hence, fa selects at each profile PN

the set of best alternatives for a(PN).

2.2.2 Preference extensions

We turn now to the notion of hyper-preference. A preference extension is a function
e : [m2NL(Am) ! [m2NL(L(Am)) such that for all m 2 N and all P 2 L(Am), e(P) 2
L(L(Am)). Hence, a preference extension maps each linear order over m alternatives to
a linear order over all linear orders over alternatives. An element of L(L(Am)) is called
hyper-preference. An extension domain is a subset E of the set of all preference extensions.
Given a profile PN = (P1, ..., Pn) 2 L(Am)n together with a n-tuple E = (e1, ..., en) 2 En,
an hyper-profile of PN is the element PE

N = (e1(P1), ..., en(Pn)).
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Given P, Q 2 L(Am), we define the set A(P, Q) = {(a, b) 2 Am ⇥ Am : aPb and aQb},
which contains all alternative pairs P and Q agree on. We focus on the specific class of
betweenness-consistent preference extensions.

Definition 2.2.1. A preference extension e is betweenness-consistent if for all m 2 N and all
P, Q, Q0 2 L(Am), A(P, Q) � A(P, Q0) implies Q e(P) Q0.

We denote by B the domain of betweenness-consistent preference extensions. Given
P, Q 2 L(Am), the Kemeny distance between P and Q is defined by dK(P, Q) = |{(a, b) 2
Am ⇥ Am : aPb and bQa}|, that is the number of pairs of alternatives P and Q disagree
on.

Definition 2.2.2. A preference extension e is Kemeny if for all m 2 N and all P, Q, Q0 2
L(Am), dK(P, Q) < dK(P, Q0) implies Q e(P) Q0.

We denote by K the domain of Kemeny preference extensions. Pick up any P 2
L(Am). The Kemeny distance allows to induce from any P 2 L(Am) the element ⌫P

2 R(L(Am)) defined by: 8Q, Q0 2 L(Am), Q ⌫P Q0 iff dK(P, Q)  dK(P, Q0), and Q �P

Q0 iff dK(P, Q) < dK(P, Q0). In words, the weak order ⌫P induced by P ranks orders
according to their respective distances to P. Given profile PN = (P1, ..., Pn) 2 L(Am)n,
the Kemeny weak profile for PN is defined by PK

N = ( ⌫P1 , ..., ⌫Pn). Thus, a preference
extension e is Kemeny if for all m 2 N and all P 2 L(Am), e is a linear extension of
⌫P. We call Kemeny hyper-profile any linear extension of PK

N . Clearly, every Kemeny
extension is betweenness-consistent, and thus K ⇢ B.

The Kemeny distance criterion can be criticized by arguing that when comparing two
orders, inversions in the lower tail of the ranking are less important that inversions in the
upper tail. If three candidates a, b, c are to be ranked as gold, silver and bronze medal,
and if they are ranked as aPbPc, then one may prefer order aQcQb to order bQ0aQ0c,
since reversing order for gold and silver may be seen as a more significant deviation
than reversing order for silver and bronze. This calls for breaking symmetry by using
weighted Kemeny distance (equivalently, this calls for some specific way to break ties in
the Kemeny weak profiles). Note however that such a critic no longer holds if agendas
are interpreted as task assignments. Indeed, suppose that aQcQb stands for assigning
task 1 to individual a, task 2 to c, and task 3 to b, a similar meaning being given to
Q0. Provided that all tasks are given the same importance, Q and Q0 involve only one
mismatch from the viewpoint P, and nothing suggests why Q should be preferred to
Q0.
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The following example illustrates the construction of Kemeny hyper-profiles. Con-
sider the following profile PN = (P1, P2, P3) over 3 alternatives a, b, c:

PN =

0

BBBB@

P1 P2 P3

a c c
b b a
c a b

1

CCCCA

The Kemeny weak profile PK
N of PN is defined by

PK
N =

0

BBBBBBB@

⌫P1 ⌫P2 ⌫P3

abc cba cab
acb, bac bca, cab cba, acb
bca, cab acb, bac abc, bca

cba abc bac

1

CCCCCCCA

where xyz stands for the linear order xPyPz, and where two orders belonging to the
same row and column are indifferent. A Kemeny hyper-profile for PN is any element
ṖN of D(PK

N). For instance,

ṖN =

0

BBBBBBBBBBBB@

Ṗ1 Ṗ2 Ṗ3

abc cba cab
bac cab cba
acb bca acb
bca bac abc
cab acb bca
cba abc bac

1

CCCCCCCCCCCCA

Contrarily to the Kemeny distance criterion, betweenness-consistency does not auto-
matically induces a weak order over orders. For instance, e(P1) 2 B only if the fol-
lowing conditions holds: (1) e(P1) uniquely ranks P1 first and its inverse cba last, (2)
acb is ranked above cab, and (3) bac is ranked above bca. The reader will easily check
that hyper-profile ePN below is built from a vector of betweenness-consistent preference
extensions which are not Kemeny.
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ePN =

0

BBBBBBBBBBBB@

eP1 eP2 eP3

abc cba cab
bac cab cba
bca bac acb
acb bca abc
cab acb bca
cba abc bac

1

CCCCCCCCCCCCA

2.2.3 Hyper-stability: definition

We are now ready to formally define hyper-stability:

Definition 2.2.3. A neutral social welfare function a is hyper-stable for the domain E of prefer-
ence extensions and a number m of alternatives if for all n 2 N, for all PN 2 L(Am)n, for all
E = (e1, ..., en) 2 En, we have D(a(PN)) \ fa(PE

N) 6= ∆. Moreover, a is hyper-stable for E if it
is hyper-stable for E and any m 2 N.

A neutral SWF a is hyper-stable for domain E if at every finite profile PN of linear
orders over m alternatives, at least one linear extension of the weak order a(PN) is
ranked first by a when applied to any hyper-profile PE

N induced from PN by a vector of
preference extensions in E . We furthermore say that a is Kemeny-stable if it is hyper-stable
for K. Figure 1 below illustrates hyper-stability.

↵PN = ... ..
, , ...,

E = (e1, e2, ..., en)

PE
N = ...

...
... ...

↵
..

�(↵(PN )) =

...

...

...

f↵(P
E
N ) \�(↵(PN ))

Figure 2.2.1.. Hyper-stability.

A society with size n has to rank m alternatives, and has agreed on some SWF a to
do so. Interpreting a as a voting rule, individual ballots are linear orders of alternatives
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(profile PN), and ballots are aggregated by means of a to a weak order a(PN) of alterna-
tives. Since a(PN) may involve ties, and since resolute outcomes are linear orders, the
final choice results from the use of some tie-breaking rule. The set D(a(PN)) contains all
possible outcomes when some tie-breaking rule prevails. We assume that “preferences
behind ballots” are induced from ballots by some n-tuple E = (e1, ..., en) of preference
extensions. Therefore, any set of ballots PN together with E generates an hyper-profile
PE

N over orders. Since a is neutral and defined for any number of alternatives, it can be
applied to PE

N , leading to a weak order a(PE
N) over outcomes. Hyper-stability prevails

for E if starting from any PN , at least one possible final outcome from PN is ranked first
by a (or, equivalently, chosen by fa) at the generated hyper-profile PE

N .

2.2.4 Hyper-stability and SW self-selectivity

The main motivation for studying hyper-stability is that full preferences over outcomes
are hardly known in practice. Another motivation stems from its close relationship with
self-selectivity. Self-selectivity is defined by Koray (2000) for a neutral social choice func-
tion (SCF).10 Suppose that the society has to choose one alternative among finitely many,
as well as the SCF itself. Moreover, suppose that given individual preferences over alter-
natives, individuals compare SCFs by considering only their respective outcomes. Ac-
cording to this consequentialist principle, initial preferences over alternatives naturally
extend to preferences over SCFs: consider any finite subset G of neutral SCFs together
with a profile PN = (P1, ..., Pn) 2 L(Am)n ; define for all i = 1, ..., n the weak order R(Pi)

over G by: 8F, G 2 G, F R+(Pi) G , F(PN) Pi G(PN), and F R⇠(Pi) G , F(PN) =

G(PN), where R+(Pi) (resp. R⇠(Pi)) is the asymmetric (resp. symmetric) part of R(Pi).
It follows that PN induces a dual profile of weak orders RG

N = (R(P1), ..., R(Pn)) over
G. Self-selectivity holds for an SCF F if, at any profile over alternatives, F selects itself
at some linear extension of the dual profile over any finite set of SCFs. Formally, F is
self-selective if for all m, n 2 N, for all PN 2 L(Am)n and for all finite subsets G of neu-
tral SCFs with F 2 G, there exists a linear extension ePG

N of RG
N with F(ePG

N) = F. Koray

10 An SCF maps any profile of linear orders over any finite set to an element of that set. Defining neutrality
along the same lines as for SWFs allows to formally define an SCF as a function F : [m,n2NL(Am)n !
[m2N Am such that for all n, m 2 N and all PN 2 L(Am)n, F(PN) 2 Am.
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(2000) proves that, given any fixed size n of the society, a neutral and unanimous SCF is
self-selective if and only if it is dictatorial.11

Self-selectivity for neutral SWFs can defined along the same lines: at any profile
over alternatives, a self-selective SWF ranks itself first among finitely many other SWFs.
However, since an SWF provides a weak order, there is no longer a natural duality
between preferences over alternatives and preferences over SWFs. In order to make
the consequentialist principle meaningful, we need to connect both preference levels by
means of a preference extension. It follows that self-selectivity is defined conditional to
some domain of preference extensions. This last point is the major difference between
the SCF and the SWF settings: choosing preference extensions brings an extra degree of
freedom in the analysis, which may allow to escape from Koray’s impossibility result.

We formalize self-selectivity for SWFs as follows. An SWF a is called strict if for all
n, m 2 N and all PN 2 L(Am)n, one has a(PN) 2 L(Am). A linearization of SWF a is
a strict SWF a⇤ such that for all n, m 2 N, for all a, b 2 Am and for all PN 2 L(Am),
a a⇤(PN) b implies a a(PN) b. The set of all linearizations of a is denoted by L(a).
Pick up a profile PN = (P1, ..., Pn) 2 L(Am)n together with a domain E , and consider
any finite subset A = {a1, ..., aK} of neutral SWFs. A strict selection of A is a subset
A⇤ = {a⇤

1, ..., a⇤
K} of linearizations of a1, ..., aK. For all 1  i  n, define the weak

order ⌫A⇤
Pi

over A⇤ by: 81  k, k0  K, a⇤
k �A⇤

Pi
a⇤

k0 , a⇤
k (PN) ei(Pi) a⇤

k0(PN), and a⇤
k ⇠A⇤

Pi

a⇤
k0 , a⇤

k (PN) = a⇤
k0(PN) for some (e1, ..., en) 2 En. Thus, as for SCFs, PN together with

E = (e1, ..., en) 2 En induces a dual profile of weak orders REA⇤
N = (⌫A⇤

P1
, ...,⌫A⇤

Pn
) over

A⇤.

Definition 2.2.4. A neutral SWF a is SW self-selective for the domain of preference extensions
E if and only if for all m, n 2 N, for all PN 2 L(Am)n, for all finite subsets A of neutral SWFs
that contain a, for all strict selections A⇤ of A, for any E = (e1, ..., en) 2 En, there exists a
linear extension ePEA⇤

N of REA⇤
N for which L(a) \A⇤\ fa(ePEA⇤

N ) 6= ∆.

A neutral SWF a is SW self-selective for domain E if the following holds: pick up any
strict selection A⇤ of any finite set A of neutral SWFs including a, together with any
profile PN over alternatives. Every n-tuple of preference extensions in E generates from
PN a dual profile of weak orders over A⇤. SW selectivity holds if there exists a linear
extension of this dual profile at which a ranks first at least some of its linearizations in
A⇤.

11 An SCF F is dictatorial if 91  i  n such that, for all PN 2 L(Am)n, F(PN) = a , aPib for all b 2 Am\{a}.
Moreover, F is unanimous if for any m, for any PN 2 L(Am)n, for all a, b 2 Am, [aPib for all 1  i  n] )
b /2 F(PN).
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Note that, although it offers a natural adaptation of the original concept to SWFs,
the formalization of SW self-selectivity looks complex for two main reasons. First, two
different SWFs may have the same outcome at some profile PN . Therefore, choosing a
domain E is not enough to provide a dual profile of linear orders over SWFs. Second,
two SWFs may produce different weak orders at PN that admit the same linearization.
Moreover, note the crucial role played by neutrality, which allows for a to be well-defined
for profiles over alternatives and for dual profiles over SWFs.

Proposition 1 below states that hyper-stability is a weaker property than SW self-
selectivity.

Proposition 2.2.1. If a neutral SWF is hyper-stable for a domain E , then it is SW self-selective
for E .

2.3 scoring rules

We first study hyper-stability of scoring rules. Given a number m of alternatives, a score
vector is an element Sm = (s1,m, s2,m, ..., sm,m) of Rm

+, where (1) sm,m = 0, (2) s1,m � s2,m �
... � sm,m, and (3) s1,m > 0. Given a profile PN 2 L(Am)n together with a score vector Sm,
the score of the alternative x 2 Am in PN is Sm(x, PN) = Âi2N sri(x,PN),m, where ri(x, PN)

is the rank of x in Pi. A SWF a is a scoring rule if there exists a sequence {Sm
a }m�3 =

{S1
a, S2

a, S3
a...} of score vectors such that, for any m, n 2 N, for any PN 2 L(Am)N , for

any two alternatives x, y 2 Am, x a(PN) y () Sm
a (x, PN) � Sm

a (y, PN). Clearly, every
scoring rule is neutral. We begin with the analysis of well-known scoring rules, namely
the Borda rule, the plurality rule and the anti-plurality rule.

The Borda rule B is defined by: for any m 2 N, for any k 2 {1, ..., m� 1}, sk,m
B = sk+1,m

B + 1.
It is easily checked that B is not Kemeny-stable, hence not hyper-stable for E . Indeed,
consider the following profile PN involving 3 alternatives a, b, c and 6 individuals, where
the first row indicates the number of individuals sharing the same preference order

PN =

0

BBBB@

3 1 2
a c c
b b a
c a b

1

CCCCA

Next, consider the following linear extension ṖN of PK
N :
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2.3 scoring rules

ṖN =

0

BBBBBBBBBBBB@

3 1 2
abc cba cab
bac cab cba
acb bca acb
bca bac abc
cab acb bca
cba abc bac

1

CCCCCCCCCCCCA

where abc stands for the order ranking a first, b second and c third. Then B(PN) =

{acb} = D(B(PN)), whereas S6
B(acb, ṖN) = 16 < S6

B(abc, ṖN) = 19 implies that acb /2
fB(ṖN). Since D(B(PN)) \ fB(ṖN) = ∆, B is not Kemeny-stable.

The plurality rule is the scoring rule p, where, for any m 2 N, sk,m
p = 0 for any

k = 2, ..., m, and s1,m
p = 1. Consider an alteration P0

N of the profile PN above where
the individual with preference cba changes to bca. Then p(P0

N) = {acb}, while, for any
linear extension Ṗ0

N of P0K
N , fp(Ṗ0

N) = {abc}. Hence, p is not Kemeny-stable.
The anti-plurality rule is the scoring rule l, where, for any m 2 N, Sk,m

l = 1 for any
1  k  m � 1. Consider the following profile PN 2 L(A3)

15 together with its associated
Kemeny weak profile PK

N :

PN =

0

BBBB@

3 2 3 3 4
a a b c c
b c a a b
c b c b a

1

CCCCA
PK

N =

0

BBBBBBB@

3 2 3 3 4
abc acb bac cab cba

acb, bac abc, cab abc, bca cba, acb cab, bca
bca, cab cba, bac acb, cba abc, bca bac, acb

cba bca cab bac abc

1

CCCCCCCA

Clearly, l(PN) = {abc}. We conclude that, for all P 2 L(A6)\{abc}, P l(ṖN) abc for
all ṖN 2 D(PK

N). Thus, abc /2 fl(ṖN), and therefore l is not Kemeny-stable.
We state below four negative results about Kemeny-stable scoring rules. The key-

ingredient of the proofs is the following characterization of Kemeny-stable scoring rules
for 3 alternatives.

Theorem 2.3.1. A scoring rule a is Kemeny-stable for three alternatives if and only if s1,3
a =

2.s2,3
a > 0 and s1,6

a = 4
3 s2,6

a = 4
3 s3,6

a = 4s4,6
a = 4s5,6

a > s6,6
a = 0.

Hence, there exists a unique pair of normalized score vectors {S3
a, S6

a} making a scor-
ing rule a Kemeny-stable for three alternatives.12 Clearly, the condition stated in Theo-
rem 1 is necessary for hyper-stability.

12 A score vector Sm is normalized if s1,m = 1.
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2.4 condorcet social welfare functions

A scoring rule a is non-truncated if there exists no m 2 N and no k 2 {2, ..., m � 1}
such that sk,m

a = 0: the score vector defined for some number m of alternatives gives a
strictly positive score to any rank above the last one.

Theorem 2.3.2. There is no Kemeny-stable and non-truncated scoring rule.

A scoring rule a is strict-at-top if, for any m 2 N, s1,m
a > s2,m

a : all score vectors give a
score to the top-ranked alternative strictly higher than any other score. Typical examples
of strict-at-top scoring rules are the plurality and the Borda rules. Note that any convex
scoring rule is also strict-at-top.13

Theorem 2.3.3. There is no Kemeny-stable and strict-at-top scoring rule.

Since a unanimous scoring rule must be strict-at-top and non-truncated, we can state
the following corollary of Theorems 2 and 3.

Theorem 2.3.4. There is no Kemeny-stable and unanimous scoring rule.

When enlarging the Kemeny domain K to the domain B of betweenness-consistent
preference extensions, we get an even stronger negative result:

Theorem 2.3.5. No scoring rule is hyper-stable for B.

2.4 condorcet social welfare functions

We turn now to the analysis of Condorcet SWFs. We start with some additional notations
and definitions. Given a profile PN 2 L(Am)

n, where n is odd, the majority tournament
for PN is the complete and asymmetric binary relation µ(PN) defined over Am ⇥ Am by:
8(x, y) 2 Am ⇥ Am, x µ(PN) y , |{i 2 N : xPiy}| > |{i 2 N : yPix}|. A SWF a is
Condorcet if, for any m 2 N, for any n 2 2N + 1, and for any profile PN 2 L(Am)

n, we
have a(PN) = µ(PN) if µ(PN) 2 L(Am).

We prove below the existence of a neutral Condorcet SWF that is hyper-stable for B.
Beforehand, we show that three well-known neutral Condorcet SWFs violate Kemeny
stability. The Copeland solution is the SWF j defined by: 8m 2 N, 8n 2 2N + 1, 8 PN 2
L(Am)

n, 8x, y 2 Am, x j(PN) y , c(x, PN) � c(y, PN), where c(x, PN) = |{z 2 Am :
x µ(PN) z}|. Consider the following profile PN together with the linear extension ṖN of
PK

N :

13 A scoring rule a is convex if, for any m 2 N, the score vector Sm
a = (s1,m

a , ..., sm,m
a ) is such that (s1,m

a � s2,m
a ) �

(s2,m
a � s3,m

a ) � ... � (sm�1,m
a � sm,m

a ).

36



2.4 condorcet social welfare functions

PN =

0

BBBB@

1 1 1 1 1
a a b b c
b c c a a
c b a c b

1

CCCCA
ṖN =

0

BBBBBBBBBBBB@

1 1 1 1 1
abc acb bca bac cab
acb cab bac bca acb
bac abc cba abc cba
cab cba cab acb bca
bca bac abc cba abc
cba bca acb cab bac

1

CCCCCCCCCCCCA

Then, we have j(PN) = abc, while c(abc, ṖN) = 3 < c(acb, ṖN) = 4 implies that
D(j(PN)) \ fj(ṖN) = ∆. Thus, j is not Kemeny-stable.

The Slater solution is the social welfare correspondence14 b defined by: 8m 2 N, 8n 2
2N + 1, 8 PN 2 L(Am)

n, 8P 2 L(Am), b(PN) = ArgMinP2L(Am)dK(P, µ(PN)). A SWF
a is Slater-consistent if, at any profile PN , it always selects one linear order in b(PN).
Consider the following profile PN 2 L(A8)

5:

PN =

0

BBBBBBBBBBBBBBBBB@

1 1 1 1 1
b a d c d
c b a a b
d c b d c
a d c b a
a0 b0 d0 d0 c0

b0 c0 a0 b0 a0

c0 d0 b0 c0 d0

d0 a0 c0 a0 b0

1

CCCCCCCCCCCCCCCCCA

Define X = {a, b, c, d} and Y = {a0, b0, c0, d0} and consider the restrictions PN |X and
PN |Y of PN to X and Y respectively. We have that µ(PN |X) and µ(PN |Y) are isomorphic.
Moreover, we observe that (1) a µ(PN) b µ(PN) c µ(PN) d µ(PN) a, (2) c µ(PN) a, (3) d
µ(PN) b, and (4) 8(x, y) 2 X ⇥ Y, x µ(PN) y. This ensures that b(PN |X) = {cdab} and
b(PN |Y) = {c0d0a0b0}. Thus, b(PN) = {cdabc0d0a0b0}. Now, consider Q = dbcad0b0c0a0.
The next table gives the Kemeny distances between each of the 5 linear orders in P =

(P1, ..., P5) and respectively, b(PN) and Q:

14 A social welfare correspondence is a mapping d from [
n,m2N

L(Am)n to [
m2N

2R(Am)\∆ such that, for any n, m 2

N, for any PN 2 L(Am)n, d(PN) 2 2R(Am)\∆, where 2R(Am)\∆ is the set of all non-empty subsets of weak
orders over Am.

37



2.4 condorcet social welfare functions

Pi b(PN) Q
P1 3 + 4 2 + 5
P2 4 + 3 5 + 2
P3 3 + 3 2 + 2
P4 1 + 3 4 + 0
P5 3 + 1 0 + 4

.

It follows that in the Kemeny weak profile PK
N , Q is strictly preferred to b(PN) by

individual 3, while all other individuals are indifferent. Hence, there exists a linear
extension ṖN of PK

N where Q is unanimously preferred to b(PN). Since the Slater solution
always selects Pareto-optimal outcomes, and since b(PN) is a singleton, we conclude that
no Slater-consistent SWF is Kemeny-stable.

The Kemeny rule is the Condorcet social welfare correspondence w defined by: 8 PN =

(P1, ..., Pn) 2 L(Am)
n, 8P 2 L(Am), w(PN) = ArgMinP2L(Am) Âi2N dK(P, Pi). A SWF

a is Kemeny-consistent if, for any profile PN , it always selects a linear order in w(PN).
Consider the following profile PN 2 L(A3)9 together with the linear extension ṖN of PK

N :

PN =

0

BBBB@

2 3 4
b c a
c a b
a b c

1

CCCCA
ṖN =

0

BBBBBBBBBBBB@

2 3 4
bca cab abc
cba cba acb
bac acb bac
cab bca cab
abc abc bca
acb bac cba

1

CCCCCCCCCCCCA

The reader will check that w(PN) = {abc}, whereas w(ṖN) = {(cab)(abc)(acb)(bca)(cba)(bac)}
which leads to fw(ṖN) = {cab}. Hence, there is no Kemeny-stable and Kemeny-consistent
SWF.

We now establish the existence of a Condorcet and unanimous SWF which is hyper-
stable for B. The transitive closure q(PN) of µ(PN) is defined by: 8x, y 2 Am, x q(PN) y if
and only if there exist x1, x2, ..., xH 2 Am such that x µ(PN) x1, x1 µ(PN) x2, ... , xH µ(PN)

y. Consider the SWF q, which maps every profile PN 2 [m,nL(Am)n (where n is odd) to
the transitive closure q(PN) of µ(PN). It is easily checked that q is unanimous.

Theorem 2.4.1. q is hyper-stable for B.

Note that there are other neutral Condorcet SWFs that are hyper-stable for B. Indeed,
define the SWF y by: 8m, n 2 N, 8PN 2 L(Am)n, y(PN) = µ(PN) if µ(PN) 2 L(Am),
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2.5 discussion

and otherwise, a y(PN) b and b y(PN) a for all a, b 2 Am. Then y is hyper-stable for B.
This is an immediate corollary of the Proposition 2 below. Given any PN 2 L(Am)

n, the
Condorcet winner of PN is the element CW(PN) 2 Am such that CW(PN) µ(PN) a for all
a 2 Am/CW(PN).

Proposition 2.4.1. Let PN 2 L(Am)n be such that µ(PN) 2 L(Am). For any E 2 Bn, either
CW(PE

N) does not exist, or CW(PE
N) = µ(PN).

2.5 discussion

Our main result is that no unanimous scoring rule is Kemeny-stable, hence hyper-stable
for the larger domain B of betweenness-consistent preference extensions. However, the
transitive closure of the majority relation is a unanimous Condorcet SWF which is hyper-
stable for B.

Hyper-stability does not draw a clear border between scoring rules and Condorcet
SWFs. Indeed, the Kemeny SWF and several other Condorcet SWFs based on well-
known tournament solutions are not Kemeny-stable. Characterizing the class of Con-
dorcet SWFs which are hyper-stable for B is an open question worth being addressed.
Another open problem is studying hyper-stability for non-unanimous scoring rules.

Further open questions relate to alternative concepts of hyper-stability. Consider the
following property. An SWF a is Condorcet hyper-stable if 8n, m 2 N, 8PN 2 L(Am)

n,
8E 2 Bn, a(PN) 2 L(Am) ) [a(PN) = CW(PE

N)]. Then no Condorcet SWF is Condorcet
hyper-stable. To see why, consider the PN 2 L(A3)5 and its Kemeny hyper-profile
ṖN 2 D(PK

N) shown below:

PN =

0

BBBB@

1 1 1
a a b
b c c
c b a

1

CCCCA
ṖN =

0

BBBBBBBBBBBB@

1 1 1
abc acb bca
bac cab cba
acb abc bac
bca cba cab
cab bac abc
cba bca acb

1

CCCCCCCCCCCCA

Since µ(PN) = abc, then a(PN) = abc for any Condorcet a. However, abc is defeated
in µ(ṖN) by cab, hence the result. A natural question is whether any Condorcet SWF a

satisfies the following weaker version of Condorcet hyper-stability: 8n, m 2 N, 8PN 2
L(Am)

n such that a(PN) 2 L(Am), there exists E 2 Bn for which a(PN) = CW(PE
N).
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2.5 discussion

Remark that, in the Kemeny hyper-profile ṖN above, all three individual preferences
are extended through the same linear extension of the Kemeny weak order. This com-
mon linear extension can be defined as a linear order over the permutations of the set
{1, 2, 3} of ranks. Indeed, given two orders P and Q = (a1a2...am) in L(Am), define
rP(Q) = (rP(a1), ..., rP(am)) by 8h = 1, ..., m, rP(ah) = |{b 2 Am : bPah}| + 1, that is,
the rank given to ah in P. Moreover, given PN = (P1, ..., Pn) 2 L(Am)

n , we say that the
hyper-profile PE

N = (e1(P1), ..., en(Pn)) is uniform if there exists a linear order � over the
permutations of {1, ..., m} such that, for any i = 1, ..., n, for any Q, Q0 2 L(Am), [Q ei(Pi)

Q0 , rPi(Q) � rPi(Q
0)]. In the example above, � is defined by: (123) � (213) � (132) �

(231) � (312) � (321). We say that an SWF a is uniformly hyper-stable for B if 8n, m 2 N,
8PN 2 L(Am)

n, D(a(PN)) \ fa(PE
N) 6= ∆ for all uniform hyper-profiles PE

N with E 2 Bn.
As a first step towards a complete study of uniform hyper-stability, we remark that

the Borda rule B is not uniformly hyper-stable. Indeed, consider the following profile
PN , together with the Kemeny hyper-profile ṖN 2 D(PK

N):

PN =

0

BBBB@

1 1 2
a b c
b a b
c c a

1

CCCCA
ṖN =

0

BBBBBBBBBBBB@

1 1 2
abc bac cba
acb bca cab
bac abc bca
cab cba acb
bca acb bac
cba cab abc

1

CCCCCCCCCCCCA

We get B(PN) = bca. Moreover, ṖN is uniform (to see why, check that ṖN is built in
accordance with (123) � (132) � (213) � (312) � (231) � (321)). Finally, S6

B(bca, ṖN) =

11 < S6
B(cba, ṖN) = 12.

Finally, an alternative route worth being followed is to characterize the set of pref-
erence extensions for which a given SWF, or a given class of SWFs (e.g. scoring rules,
Condorcet SWFs) is hyper-stable.
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Part III

P O L A R I Z AT I O N



3

A N A D A P TAT I O N O F E S T E B A N - R AY P O L A R I Z AT I O N M E A S U R E
T O S O C I A L C H O I C E

3.1 introduction and the model

Since polarization is understood to be closely related to social discord and induction
of enmity, it is of interest how to understand and conceptualize polarization within
a society with ordinal preferences.1 One approach, not specifically preference based,
suggests that it should be considered as the aggregation of pairwise antagonisms within
society. In this note, following Esteban and Ray (1994), we suggest that antagonism felt
by an individual towards another depends on the alienation between the two and also
on the feeling of identification he/she enjoys by being in wherever he/she is. Alienation
then can be thought of as a function of the dissimilarity between the two stances. We
further postulate that identification can be seen as a function of the support of one’s
opinion. In a formal way, this would mean to measure polarization in a society with a
function as follows.

Â
j

Â
i

a(I(mi), A(d(oi, oj)))

Here the function I(mi) represents how much i is identified with his/her position, as
a function of mi, the share of the population who thinks the same with i. The function
A(d(oi, oj)) represents the alienation as an increasing function of the distance of opinions
of i and j. Finally, the function a(I, A) represents the antagonism felt by i towards j, as
a function of identification i enjoys by being wherever i is and alienation between i and
j. Summing up for all directed pairs is then a measure of polarization as discussed. We
construe the set of properties in Esteban and Ray (1994) and show that a subclass of the

1 See Gurer (2008) where Arrovian impossibilities are explored when preferences in a society cluster around
one preference. It is furthermore conjectured that bipolar cases would resemble unipolar cases in terms of
effects on impossibilities.
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3.1 introduction and the model

functions above satisfies those properties for ordinal preferences over three alternatives.
To our knowledge, this is the first attempt at this question.2

Let A be the set of alternatives with |A| = m. There are m! possible linear orders
(or preferences) and the set of all those is denoted L(A). Let P̄ = (P1, P2, ..., Pm!) be an
arbitrary listing of the set L(A). A preference profile for a society of N individuals is
an element of L(A)N . Given P̄ and PN 2 L(A)N while letting NP̄

i = |{j 2 N : Pj = Pi}|
we have a representing preference distribution (p, P̄) where p = (p1, p2, ..., pm!) is such
that pi = NP̄

i /N. Hence we have that Âm!
i=1 pi = 1. Finally, a polarization measure is a

mapping P : D ! R+ where D denotes the set of all preference distributions (p, P̄).

abc

acb

cba

cab

bcabac

Figure 3.1.1.. Kemeny graph, three alternatives.

In the following analysis, we will be employing a particular metric on preferences.
Given any P, P0 2 L(A), the Kemeny distance between P and P0 is defined as dk(P, P0) =

|P\P0| where P\P0 is the symmetric difference.3 The graph for three alternatives is
depicted in Figure 3.1.1.

Now we introduce a set of properties on preferential polarization measures following
the axiomatization in Esteban and Ray (1994).4

Definition 3.1.1 (Property 1). Let pi > p j = pk be the only masses of a profile such that p j

and pk are at least as close to each other as they are to pi, or dk(Pj, Pk)  min{dk(Pj, Pi), dk(Pk, Pi)}.
A polarization measure is said to satisfy Property 1 if joining the two smaller masses at a point
at least as further as the average distance to pi increases polarization.

Figure 3.1.2 depicts, for illustration, two situations Property 1 apply to for the case
of three alternatives. The two small masses on the right can be joined in a middle

2 Baldiga and Green (2013) analyze social choice functions in terms of assent maximizing attributes. Alcalde-
Unzu and Vorsatz (2008) provide axiomatic characterizations of some consensus measures. Garcı́a-Lapresta
and Pérez-Román (2011) analyze properties of a class of consensus measures that are based on the distances
among individual weak orders.

3 This widely known and used metric is due to Kemeny (1959) for which Bogart (1973) and Kemeny and
Snell (1962), inter alia, provide axiomatic characterizations. Can and Storcken (2013) provides a refinement
of previous characterizations. For a general treat of weighted distances between preferences, see Can (2012).

4 In fact, Property i here may be matched with Axiom i in Esteban and Ray (1994), although we keep in mind
that there is no unique translation of each axiom into the current setting.
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3.1 introduction and the model

Figure 3.1.2.. Property 1.

way further away than the larger mass (as in the move 1 in the figure), or they can be
imbricated at one of the positions with small densities (as in the move 2 in the figure).
These types of moves do not decrease (and in case of the move 2, do not increase) the
average distance, hence alienation, but increase within group support.

Let �Pi denote the order where every pairwise comparison in the order Pi is reversed
and p�i denote the proportion of the society with the preference �Pi.

Definition 3.1.2 (Property 2). A polarization measure satisfies Property 2 if moving a mass
that is opposed mildly towards only smaller masses increases polarization. Formally, let the mass
at Pi move to Pi0 . If dk(Pi, Pk) > dk(Pi0 , Pk) and pk < p�k, then there exists e > 0 such that
p�i < e implies that this move should increase polarization.

Figure 3.1.3.. Property 2.

Property 2 basically requires that polarization increases whenever an in between mass
is moved towards the side which has a smaller support. This idea is explained in Figure
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3.1 introduction and the model

3.1.3. Required is that the move should be towards only smaller poles and is not carried
by a strongly opposed mass.

Definition 3.1.3 (Property 3). A polarization measure satisfies Property 3 if for any profile of
preferences with three consecutive masses, dissolution of the middle mass equally into two sides
increases polarization.

Figure 3.1.4.. Property 3.

Property 3 is an exact counterpart of Axiom 3 in Esteban and Ray (1994) and the
intuition is clear. The following homotheticity property requires that the size of the
society does not matter. Let lPN denote a profile where NlP̄

i = lNP̄
i for all i  m!.

Definition 3.1.4 (Homotheticity). Let PN and P0
Ñ be two profiles with possibly distinct sizes;

N and Ñ. A polarization measure P satisfies homotheticity if P(PN) � P(P0
Ñ) implies

P(lPN) � P(lP0
Ñ) for all l > 0.

Finally, bipolarity, as a regularity property, requires that full concentration at one order
is the least polarized case and that bipolar society where one half is at the exact opposite
of the other is the most polarized.

Definition 3.1.5 (Bipolarity). Suppose PN is such that pQ = 1
2 = p�Q for some Q 2 L(A)

and that P0
N is such that p0

Q0 = 1 for some Q0 2 L(A). A polarization measure P is said to
satisfy bipolarity if P(PN) � P(ṖN) � P(P0

N) for all N 2 N and ṖN 2 L(A)N.
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3.2 results

Proposition 3.2.1. The polarization measure defined as

P⇤
a (p, P̄) =

m!

Â
j=1

m!

Â
i=1

p1+a
i p j(dK(Pi, Pj))

satisfies properties 1-3 for any a 2 (0, a⇤) with a ' 1.6 and m = 3.

Note that this function reduces to Gini Index with Kemeny distance when a = 0
and the higher a is the higher the sensitivity to identification. In what follows, let’s fix
P̄ = ((abc) = P1, (bac) = P2, (acb) = P3, (bca) = P4, (cab) = P5, (cba) = P6) and denote
the initial profile by PN and the profile after a described move by P0

N .

Proof. Property 1: Without loss of generality, three cases may apply.
(i) p1 > p4 = p6, and move p4 ! P6: We have P(P0

N)� P(PN) = p4(p
1+a
1 � p1+a

4 ) +

p1+a
4 (6p1(2a � 1)).

(ii) p1 > p2 = p4, and move p2 ! P6: We have P(P0
N)� P(PN) = p4(p

1+a
1 � p1+a

4 ) +

p1+a
4 (4p1(2a � 1)).

(iii) p1 > p4 = p5, and move (iii.a) p4 ! P5 or (iii.b) {p4, p5} ! P6: (iii.a) induces
that P(P0

N) � P(PN) = 4p1p1+a
4 (2a � 1) whereas (iii.b) induces P(P0

N) � P(PN) =

2p4p1+a
1 + 2p1p1+a

4 (3 · 2a � 2). In all cases, we have P(P0
N) > P(PN) if a > 0.

Property 2: Let p4 move to P6 to induce P0
N . We have P(P0

N) � P(PN) > p4(p
1+a
1 +

p1+a
2 � p1+a

3 � p1+a
5 � p1+a

6 ) + p1+a
4 (p1 + p2 � p3 � p5 � p6) which is positive if the

move is only towards smaller poles, or formally both p1 > p6 and p2 > p5, for any sup-
port p3 of opposition to P4 smaller than e⇤ where e⇤ = min{p1 + p2 � p5 � p6, (p1+a

1 +

p1+a
2 � p1+a

5 � p1+a
6 )

1
1+a } whenever a > 0.

Property 3: The question reduces to that of the Axiom 3 in Esteban and Ray (1994), and
the proof that a is bounded above approximately by 1.6, which pertains to the estab-
lished (in the same text) fact that there exists a⇤ > 0 such that maxz�0[(1 + a)(z � za

2 �
z1+a)� 1

2 ] < 0 if and only if a < a⇤, can be found in the last paragraph of the proof of
the Theorem 1 in that paper, p. 837.

Furthermore, it is quick to observe that the measure P⇤ is anonymous and neutral in the
sense that it treats individuals and preferences equally. A polarization measure P is said
to be anonymous if for any profile PN , for any permutation s : N ! N of individuals, we
have that P(PN) = P(PsN), where PsN = (Ps(i))i2N . Similarly, a polarization measure P
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3.2 results

is said to be neutral if for any profile PN , for any permutation d : A ! A of alternatives,
we have that P(PN) = P(dPN) where dPN = (dPi)i2N with aPib () d(a)dPid(b).

Proposition 3.2.2. The polarization measure P⇤
a is anonymous, neutral and homothetic for any

a � 0 and m 2 N.

Proof. Take any N 2 N and let s : N ! N be an arbitrary permutation. Since NP
i = NsP

i ,
we have pi = p0

i for all i 2 Nm! where p0
i = NsP

i /N, which demonstrates anonymity. For
neutrality it suffices to observe that dk(P, P0) = dk(dP, dP0) for any P, P0 2 L(A), under
any permutation d : A ! A.5 The homotheticity follows the fact that the summation is
taken over the supports as percentages.

Finally, if we take a as 1, which reflects a simple antagonism function where alienation
is represented as the distance and identification as just the relative societal support of
one’s preference6, the measure satisfies the bipolarity condition. Let us denote by #
support profile a profile in the support of which there are only # different preference
orderings.

Proposition 3.2.3. The measure P⇤
1 satisfies bipolarity, for m = 3.

Proof. The measure is zero if we have full concentration at one order, and strictly positive
in all other cases. For any two support profile, increasing distance in between increases
polarization clearly. Once they are at exact opposites, making them equal in density will
increase the measure.

Lemma 3.2.1. The bipolar case is more polarized than any three support profile under P⇤
1 .

Proof. Suppose first that the three masses are not equidistant to each other. Two cases
are possible. (Case i) One is further away from the two. Let, without loss of general-
ity, the support be {p1, p2, p5}. If p5 > p2, moving p1 to P2 increases the value if
p2

5p1 + p2
1(p5 � p2) + 6p1p2p5 > p2

2p1 which is true. If p2 > p5, moving p1 to P5 in-
creases the value if p2

2p1 + p2
1(p2 � p5) + 3p1p2p5 > p2

5p1 which is true. (Case ii) One
is at unit distance to both. Let, without loss of generality, the support be {p1, p2, p3} and
that p2 > p3. Moving p1 to P3 increases the value if p2

2p1 + p2
1(p2 � p3) + 4p1p2p3 >

p2
3p1 which is true.

Now suppose the three masses are equidistant to each other. Let, without loss of gener-
ality, the support be {p1, p4, p5} and we move p1 to P5. For this to increase polarization

5 A characterization of Kemeny distance incorporating neutrality can be found in Bogart (1973).
6 Formally, T(I, a) = a · I where I(pi) = pi and a(d(Pi, Pj)) = dK(Pi, Pj).
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it is enough to have p4 to be the greatest of the three. If they are all equal size 1
3 , we

have P⇤
1 (PN) = 3( 1

3 )
2(2 1

3 + 2 1
3 ) =

4
9 < 2( 1

2 )
2(3 1

2 ) =
3
4 where the latter is of the bipolar

case.

The following lemma shows that from any five or six support profile, we can reduce
the domain to four masses and increase polarization.

Lemma 3.2.2. For any six (five) support profile, there exists a move that reduces the support of
the profile to five (four) and increases the value of P⇤

1 .

Proof. Let masses at each (or all but one) location be positive. Without loss of generality,
either (i) p1 > p4 + p5 + p6 or (ii) p5 > p4 + p2 + p1 is true. Suppose the first is true
and move the mass p2 to P4.7 The difference P(P0

N)�P(PN) = p2[p2
1 +p2

3 � (p2
4 +p2

5 +

p2
6)] + p2

2[p1 + p3 � (p4 + p5 + p6)] is clearly positive. This is regardless of p3 being
non-zero or not (in other words, the support being five or six masses) hence the lemma
demonstrated.

Corollary 1. For any six support profile there exists a consecutive pair of moves that induces a
four support profile with higher value under P⇤

1 .8

The final lemma below concludes the proof of the proposition by showing that from
any (out of three possible) four support profile we can reduce to a two support profile
with higher measure.

Lemma 3.2.3. The bipolar profile is more polarized than any PN with four masses under P⇤
1 .

Proof. Let S ✓ L(A) be the orders that have nonzero support in PN . Without loss of
generality, we have three cases.

(a) S = {P1, P3, P4, P6}. We have three distinct cases; either (i) p4 � p3 and p1 � p6 ,
or (ii) p4 < p3 and p1 < p6 , or (iii) p4 > p3 and p1 < p6 (not distinctively p4 < p3 and
p1 > p6 is also possible.). For the first two cases, moving p4 to P6 and p3 to P1 increases
polarization if (p4 � p3)(p1 � p6) � 0, which is true. For the third case, moving p1 to
P4 and p6 to P3 increases polarization if (p4 � p3)(p6 � p1) � 0, which is true.

(b) S = {P1, P4, P5, P6}. Moving p6 to P1 induces P(P0
N) � P(PN) > 3p1p6(p1 �

p6) > 0 if p1 � p6. If otherwise, moving p4 to P2 and p5 to P3 induces P(P0
N) �

P(PN) = (p4 + p5)(p2
6 � p2

5) + (p2
4 + p2

5)(p6 � p1) > 0 which leaves us with the exact
situation as before and hence moving p1 to P6 increases polarization.

7 If the second is true, moving p6 to P4 will do the same.
8 Proof left to the reader, since it only incorporates application of the move in the Lemma 2.4 consecutively.
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(c) S = {P1, P2, P4, P6}. Moving p2 to P3 induces P(P0
N)� P(PN) = 2p2p4(p2 + p4)

which is positive and leaves us with the case (a).

Thus established is the proof of sthe proposition.
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4

M E A S U R I N G P O L A R I Z AT I O N I N P R E F E R E N C E S

(joint work with Burak Can and Ton Storcken)

4.1 introduction

Higher polarization in ideologies or preferences over policies is generally considered as
a bad feature in politics mainly due to representational concerns. It is argued to cause
policy gridlock (Jones (2001)), decrease turnout if it is only in elite level (Hetherington
(2008)) and increase economic inequality (McCarty et al. (2003)).

Due to the disagreements in measurement, we see disparity in the results of polariza-
tion analyses. For instance, the increase in polarization in the U.S. politics is somewhat
unequivocal for the elite level although the literature on public polarization is incon-
clusive. For a review in line with this conclusion, see Hetherington (2009). This paper
introduces yet another approach to the measurement of polarization. However, the ma-
jor component of our contribution is in that of the subject of measurement. Although
there are quite a number of articles analyzing the measurement of polarization for dis-
tributions that can be represented on a line1, this paper is among the very first attempts
for analyzing polarization measures for ordinal preference profiles.2

Some of the related concepts that could be found analyzed in the social choice lit-
erature could be listed as consensus (Herrera-Viedma et al., 2011), assent (Baldiga and
Green, 2013) and cohesiveness (Alcalde-Unzu and Vorsatz, 2013). According to numer-
ous authors, as formulated in Bosch (2006), consensus can be formulated such that it
can be measured with mappings that assign to any profile of preferences a value in unit
interval, which has the following two properties necessarily: first, the value given to a

1 See, inter alia, Esteban and Ray (1994) and Montalvo and Reynal-Querol (2005).
2 For a measure of ordinal preference polarization which adopts the methodology of Esteban and Ray (1994)

with the use of a metric à la Kemeny (1959), see previous chapter.
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profile is highest, namely 1, if and only if all individuals agree on how to rank alter-
natives and second, the same value given to any two profiles if the only difference in
between them is the names of either the alternatives or individuals. Alcalde-Unzu and
Vorsatz (2008) have introduced some axiomatic characterizations in this vein. Garcı́a-
Lapresta and Pérez-Román (2011) analyze properties of a class of consensus measures
that are based on the distances among individual weak orders.

Baldiga and Green (2013) define conflict between two individuals as the disagreement
in their top choices. They then use an aggregate-assent maximizing approach to the
selection of the choice rule, where the assent between preferences is the probability that
these preferences would be conflictual on a random feasible set.

Finally, Alcalde-Unzu and Vorsatz (2013) denote the level of similarity among pref-
erences in a profile as cohesiveness and characterize a class of cohesiveness measures
with a set of plausible axioms. This class of functions falls within the above definition
of consensus.

In what follows we argue, first, that polarization is not necessarily the opposite of
consensus and hence calls for a particular treatment. The least polarized case naturally
coincides with a fully consensual state, which is easily defined as a unanimous prefer-
ence profile. However, there is no unique way of framing the most polarized situation.
This would entail a normative approach, which we embrace in this paper as follows.
Since we investigate polarization in preferences that are represented as linear orders,
we restrict the most polarized situations to societies which are divided equally into two
completely opposite linear orders.

Second, we impose that the polarization level should not depend on the number of
individuals in a society but stay the same if the supporting individuals of each prefer-
ence is multiplied by equal terms. Furthermore, we require a form of equal treatment
of marginal changes in the composition of preferences. More precisely, if a single indi-
vidual changes her preference to conform with the majority view on a single issue, then
the change in polarization should not depend on the size of this majority. Finally, we
impose neutrality towards alternatives.

In this paper, we show that interpreting polarization as an aggregation of antago-
nisms in a society is the only way of measuring polarization with the properties above.
In this context antagonisms are taken as disagreements over pairwise comparisons of
alternatives.

We proceed as follows. In the next section we introduce basic notations and formal
definitions regarding the axiomatic model. Section 3 provides our main results and
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proofs thereof. We conclude in Section 4 by pointing to a possible direction for further
research. We show the logical independence of axioms in the appendix.

4.2 model

4.2.1 Preliminaries

Let A be a finite and nonempty set of m alternatives. For any finite and nonempty set
of individuals N, and for any individual i in N, let p(i) denote the preference of i in
terms of a linear order, i.e., a complete, antisymmetric and transitive binary relation on
A. Furthermore, p indicates a profile, a combination of such individual preferences and
L the set of all preferences on A. So, p is an element of LN .

We denote by Ā the set of all subsets of A with cardinality 2. For a given profile p in
LN and different alternatives a and b in A let nab(p) denote the number of individuals
who prefer a to b, i.e., nab(p) = #{i 2 N : (a, b) 2 p(i)}. Let dab(p) = |nab(p)� nba(p)|
denote the absolute difference between the number of voters preferring a to b and those
preferring b to a at profile p.

For a preference R, let RN denote the unanimous profile where all individuals have
preference R. Let �R = {(y, x) : (x, y) 2 R} be the preference where all pairs in R
are reversed. If p denotes a permutation on A, then the permuted preference of R is
pR = {(p(a), p(b)) : (a, b) 2 R} which naturally defines the permuted profile pp in a
coordinate-wise manner, i.e., (pp)(i) = p(p(i)).

For two profiles p and q of two disjoint sets of individuals, say N1 and N2 respectively,
let (p, q) denote the profile, say r, such that r(i) = p(i) if i is in N1 and r(i) = q(i) if i is
in N2. Similarly define p2 = (p0, p00), where p0 2 LN0 and p00 2 LN00 , to be a replication
of p if there are bijections s0 : N $ N0 and s00 : N $ N00 such that p(i) = p0(s0(i)) and
p(i) = p00(s00(i)) for all i 2 N. This naturally extends to define p3, p4, .. accordingly.

Let p and q be two profiles in LN . We say that p and q form an elementary change from
ab to ba whenever there is an individual i in N who ranks a and b consecutively in p and
furthermore q(i) =

⇣
p(i) [ {(b, a)}

⌘
\ {(a, b)} and for all j in N \ {i}, p(j) = q(j). This

means that q(i) can be obtained from p(i) by only reversing the ordered pair (a, b).
Finally, a polarization measure Y assigns to any profile p in LN a real number Y(p),

where N is any finite and nonempty set of individuals. Next we discuss a few norma-
tively appealing conditions on the polarization measures.
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4.2.2 Conditions on Polarization Measures

We first impose a regularity condition on polarization measures to normalize between
0 and 1. The former value is attained by profiles wherein each individual has the same
preferences, i.e., a unanimous profile. In this regard, we see the maximal consensus as a
case of minimal polarization. However, we furthermore restrict the maximally polarized
case. The profiles (with even number of individuals) where half of the individuals have
a preference R and the rest have �R, for some R 2 L are considered to be the maximally
polarized profiles.

Regularity : Y(p) 2 [0, 1] for all p 2 LN and furthermore Y(RN) = 0 and Y(RN1 , (�R)N2) =

1 for all preferences R and all finite and nonempty sets N1 and N2 of individuals such
that N1 and N2 are disjoint and equal in size, i.e., #N1 = #N2.

Neutrality is a standard property in social choice. In this context, it requires that a
renaming of the alternatives does not change the polarization level.

Neutrality : Y(p) = Y(pp) for all permutations p on A and all profiles p.
The following condition requires that when societies are replicated by some positive

integer, the polarization is unchanged. Note that this also implies anonymity, i.e., renam-
ing the individuals does not change the polarization level. Formally:

Replication invariance : Y(pk) = Y(p) for all positive integers k, and all profiles p.
Finally, we introduce our final condition which we call support independence. This

condition requires that selementary changes in favor of an alternative that has a majori-
tarian support against another lead to identical changes in polarization across profiles.
For instance, if a majority of individuals agree that a is better than b in each of the two
profiles, then an increase in the support of a over b should lead to the same amount of
change in the polarization for both of these profiles.

Support independence : Y(p)� Y(q) = Y(bp)� Y(bq) for any two elementary changes
p, q 2 LN and bp, bq 2 LN both from ba to ab for some alternatives a and b with nab(p) �
n/2 and nab(bp) � n/2.

4.3 result

Assume for simplicity that the issue in hand is a binary choice, that there are only two
alternatives. If the absolute difference between numbers of individuals preferring a
to b and b to a, i.e., dab, is 0, then the polarization should intuitively be maximal. If
this number is equal to n, then we have that everyone prefers a over b or vice versa,
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a full agreement. Hence polarization should be minimal. Therefore, the polarization
can be related to n � dab. If we normalize by dividing by n, then we have a bound on
the polarization (between 0 and 1) therefore regularity is also satisfied. For profiles on
more than two alternatives, we iterate this process over all pairs of distinct alternatives.
Thereafter we normalize this value with respect to the number of such pairs and the
number of individuals. Hence we obtain the following polarization measure:

Y⇤(p) = Â
{a,b}2Ā

n � dab(p)
n · (m

2 )
.

It is easy to verify that Y⇤ satisfies the conditions introduced in Section 4.2.2. In the
sequel, we will show that it is indeed the only measure that satisfies these conditions.
Before, we discuss some features regarding elementary changes that are instrumental in
what follows.

Let p and q form an elementary change from ab to ba, so that nab(p)� 1 = nab(q) and
nba(p) + 1 = nba(q). This change can be of one of the following three;

(i) a minority decrement if nab  n/2,

(ii) a majority decrement if nab � n/2 and

(iii) a swing if nab(p) > n/2 and nab(q) < n/2.3

The first two changes are straightforward. For the third, consider the case where 4
individuals prefer a to b and 3 prefer b to a. An elementary change, in this case, from ab
to ba makes the former minority a majority.

Remark 1. Note that if p and q form an elementary change from ab to ba that is a minority
decrement, then q and p form an elementary change from ba to ab that is a majority decrement.
This duality allows us to construct the forthcoming lemmas by focusing on either of the two first
elementary changes.

The following Lemma shows that all minority decrements yield an equal change in
polarization regardless of what alternatives are involved. By Remark 1, the result also
holds for majority decrements. Let Y satisfy the four conditions; regularity, neutrality,
replication invariance and support independence.

3 Hence nab(p) = nba(q).
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Lemma 4.3.1. Let p and q be a minority elementary change from ab to ba and let bp and bq be a
minority elementary change from xy to yx. We have

Y(p)� Y(q) = Y(bp)� Y(bq).

Proof. Let p{a,b} be the profile obtained from p by shifting a and b to the two top positions
for each individual while leaving preference between a and b as well as those between
alternative in A\{a, b} unchanged. That is for all individuals i in N let p{a,b}(i) =

p(i)|{a,b}2 [ ({a, b}⇥ A\{a, b})[ p(i)|(A\{a,b})2 . Similarly define q{a,b}. Then by support
independence we have

Y(p)� Y(q) = Y(p{a,b})� Y(q{a,b}).

Considering the permutation p on A such that p(a) = x, p(x) = a, p(b) = y, p(y) = b
and p(z) = z for all z 2 A\{a, b, x, y} neutrality implies

Y(p{a,b})� Y(q{a,b}) = Y(pp{a,b})� Y(pq{a,b}).

Note that pp{a,b} and pq{a,b} are preferences at which the alternatives x and y are in the
two top position for every individual. Furthermore they form a minority elementary
change from xy to yx. Therefore support independence implies

Y(pp{a,b})� Y(pq{a,b}) = Y(bp)� Y(bq).

So, all in all
Y(p)� Y(q) = Y(bp)� Y(bq).

Next we prove that all minority elementary changes yield a decrease of polarization
by a = 2

n·(m
2 )

. By Remark 1, then, all elementary changes in majority increase polarization
by that same amount a.

Lemma 4.3.2. Let p and q be a minority elementary change from ab to ba. Then

Y(p)� Y(q) =
2

n · (m
2 )

.
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Proof. By Lemma 4.3.1 it is sufficient to prove that at some minority elementary change,
polarization decreases by a = 2

n·(m
2 )

. Replication invariance implies that we may assume
that the set of individuals is even, that is n = 2 · k. Consider any two set of individuals
#N1 = #N2 = k with N1 \ N2 = ∆ and a combined set of individuals N = N1 [ N2. Given
any preference R, consider the following two profiles (RN1 , (�R)N2) and RN . Note that
there is a path of k · (m

2 ) elementary changes from the former to the latter. By regularity
Y(RN1 , (�R)N2) = 1 Y(RN) = 0. By Lemma 4.3.1, each step in this path cause the
same change in polarization, say a. Note that the amount of swaps from (�R) to R
is (m

2 ). The number of individuals requiring this many swaps is n/2. Therefore each
elementary change should decrease the polarization by 2/n(m

2 ).

We have shown that each minority (or majority) elementary change causes the same
amount of decrease (or increase) in the polarization. Next we show that swing elemen-
tary changes does not affect the polarization level.

Lemma 4.3.3. Let p and q be a swing elementary change from ab to ba. Then

Y(p) = Y(q).

Proof. Consider the profiles p2, (p, q) and q2. Both p2 and (p, q) as well as q2 and (p, q)
form minority elementary changes. The former pair from ab to ba the latter pair from
ba to ab. So, Y(p2)� Y(p, q) = a = Y(q2)� Y(p, q). Hence, Y(p2) = Y(q2). Therefore
by replication invariance we have Y(p) = Y(q).

Now we can state our main theorem.

Theorem 4.3.1. A polarization measure Y satisfies regularity, neutrality, replication invariance
and support independence if and only if Y = Y⇤.

Proof. Assume Y satisfies the conditions. Take any preference R and consider the profile
RN . By regularity, Y(RN) = Y⇤(RN) = 0. Any profile p in LN can be acquired by a
sequence of elementary changes beginning from RN by minority decrements, majority
decrements or swings. By Lemmas 4.3.2 and 4.3.3, the increase (or decrease) induced by
each of the elementary changes should be the same. Hence for any p in LN , we conclude
Y(p) = Y⇤(p).
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4.4 conclusion

In this paper, we have modeled polarization as an aggregation of antagonisms per issues
within a profile. The polarization measure we introduce simply check for each issue,
i.e., pairwise comparison of alternatives, and compares the strength of a majority versus
minority. These pairwise comparisons on issues are then aggregated and normalized to
a real number between 0 and 1. The measure is very intuitive and is characterized by a
few plausible conditions.

There are many directions for future research. The relation between the extent of
polarization and the social aggregation outcomes would be a natural route of inquiry.
Gurer (2008) studies the Arrovian impossibilities when the preferences in the society
cluster, in some sense, around a preference, where it is also conjectured that in a bipolar
society the sum of the distances from the two opposite clusters, around which the society
is polarized, will be decisive concerning whether we end up with possibilities. The anal-
ysis is dependent on a metric-based approach to alienation between preferences. Thus,
the relevance of polarization measures based on pairwise comparisons of alternatives to
social aggregation outcomes is an open and immediate question one might ask.

Note that the current analysis treats pairs of alternatives impartially, i.e., every issue is
of equal importance for polarization. Of course, in many real life situations we may have
differing weights on issues. Another question for future research would be analyzing
richer domains of preferences, e.g., weak orders, or restricted ones, e.g., single-peaked
domains which are politically relevant and interesting.
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M E A S U R I N G U . S . P U B L I C O P I N I O N P O L A R I Z AT I O N

(joint work with Ug̃ur Özdemir)

“I believe we can seize this future together because we are not as divided as our
politics suggests. We’re not as cynical as the pundits believe. We are greater than
the sum of our individual ambitions and we remain more than a collection of red
states and blue states. We are, and forever will be, the United States of America.”
Barack Obama
Victory Speech on November, 7, 2012

5.1 introduction

There is a never ending public and academic debate on the trend of public polarization
in the U.S. for the last couple of decades. Although politicians were never exempt from
it1, Obama’s victory speech is particularly relevant for he reveals his corner on the issue
by taking side with those who claim that the public is not polarized but the elites are. In
the academic dimension, there are two major camps on the issue: those who forefront
an increase in the polarization and those who hold that if anything happened it is not
polarization but sorting. 2

In this chapter we argue that the measures used in the literature are not theoretically
connected to a notion of polarization and most of the disagreement arises from this very
fact. We adapt an axiomatically derived measure due to Esteban and Ray (1994) ,which
originates in the measurement of income inequality but is nevertheless conceptually

1 In fact, as in the example of the influential “culture war speech” by Patrick Buchanan in 1992 Republican
National Convention, politicians have embraced the issue deeply.

2 Sorting refers to the situation where party affiliations of individuals are getting more aligned with ideolo-
gies; more and more liberals vote for democrats and vice versa. Today these camps are mainly represented
by Alan Abromowitz and colleagues and Morris Fiorina and colleagues respectively.
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suitable for measuring preferential polarization. Before going into detail as to why we
preferred this method and how we proceed let us first clarify a bit more the subject
matter.

Aside from the conceptual discussion of what polarization is, we should first make clear
polarization of whom and what we will be analyzing. As it is prevalent in the literature,
either public (or mass) or elite polarization is to be measured. In another dimension we
have to choose between partisan (marked with the distance between party affiliates) and
preferential (or attitudinal, opinion) polarization. Hence, we might summarize the issues
with the following matrix.

Elite Partisan Elite Preferential
Public Partisan Public Preferential

This chapter is an attempt at providing insights into the public preferential polar-
ization in the United States since 1980s.3 For that purpose, we introduce the use of a
method for measuring polarization of the public opinion in the form of responses to sur-
vey questions while discussing the conceptualization and assumptions that lie behind
our methods.

Citizens do not have a House-like institution with devices such as roll call votes to
directly reveal their political ideologies intensively in a dynamic manner. Also, it is
not always the best way to extract ideologies from the votes of the public for offices
(presidential, house or senate) simply due to representation issues, as argued in Fiorina
and Abrams (2008). Hence it comes to public opinion surveys where large numbers of
individuals are asked about many issues that are thought to be salient and representative
regarding ideological preferences.

Aside from the measure, there are two further methodological apparatuses we employ
in the chapter. First, we use a scaling due to Aldrich and McKelvey (1977) to correct for
differential-item functioning that arises when respondents interpret issue scales like the
standard seven-point liberal-conservative scale differently and distort their placements
of the stimuli and themselves in estimating ideal points of the individuals. Second, we
use the scaling due to Poole (1998) in estimating the latent ideological dimension of
respondents.

We delve into the American National Election Survey data for years between 1982-
2008 to implement the framework developed in the chapter. Our findings suggest a
significant increase in the polarization in the latent ideological dimension during the

3 The methodology followed here is readily applicable for elite preferential polarization as well. We do this
in an ongoing project.
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1990s. Although there is an upward trend during the 2000s, we are unable to classify
this as significant. The trends in the separate issue areas show some significant changes
but do not present a clear pattern.

The organization of the chapter is as follows. In Section 2 we explore the previous lit-
erature on the subject and expose some measures of polarization utilized before. Section
3 is devoted to introduction of measures while Section 4 is devoted to the methodology
and data. Section 5 comments on the results. We conclude afterwards in section 6 while
addressing some limitations and further research interests.

5.2 literature review

Although the concept of polarization has a clear intuitive meaning, it is not as clear when
it comes to formally defining and measuring it. DiMaggio et al. (1996) conceptualize
polarization process as the motion in the opinions toward the poles of a distribution. A
large body of research, in light of this view, hence searches for clusters around poles,
or simply bi-modality, in distributions representing public preferences. In fact what we
see in Fiorina et al. (2005), Fiorina et al. (2008), Fiorina and Abrams (2008), Fiorina and
Abrams (2010) along side DiMaggio et al. (1996) (updated in Evans (2003)) is this kind
of an approach: commenting on the variation in distribution of preferences over years in
form of a decrease in the center and increase in the extreme ends or comparing variances,
kurtosis or simply the weights of extreme category responses.4 As strongly emphasized
in Fiorina and Levendusky (2006), no polarization is observed by these works for the
last couple of decades5, instead, voters aligned better: correlation between policy views
and partisan identification increased.6

But, let us look at what Downey and Huffman (2001) noted, illustrated in Figure 5.2.1
below. Here we end up in a trimodal distribution from a normal-like distribution when
half-way masses on both sides move in equal weights to middle and extreme points. In
this case kurtosis and variance stay silent.7

Next, consider the following Table 5.2.1 reproduced from Fiorina et al. (2008), which
shows the change from 1984 to 2004 in percentages of respondents that chose each point

4 In Abramowitz and Saunders (2006), Abramowitz (2006) and Jacobson (2006) also we see utilization of
standard deviation variation as an indicator of polarization.

5 Fiorina and Abrams (2008), however, acknowledges that the activists (in fact, campaign-active partisans)
are polarized since 1970s.

6 See also, inter alia, Davis and Robinson (1997), Baker (2005), Layman and Carsey (2002) and Levendusky
(2009).

7 The changes in variances are insignificant due to Downey and Huffman (2001) who provide also evidence
on how prevalent trimodal distributions, for example, in General Social Survey data.
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Figure 5.2.1.. Kurtosis and variance cannot tell the difference.

on the scales for six items, for illustration of another example of an approach in the
same vein.

Left Shift
Item 1 6 2 3 0(-9) 0 -2 -2
Item 2 5 4 5 -3(-5) -3 -3 -2

Right Shift
Item 3 0 -2 -5 -5(-7) -1 6 8

Item 4 -5 -4 -3 -5(-4) 8 4 2

Polarization
Item 5 2 1 0 -2(-7) 0 1 3

No Change
Item 6 1 -1 3 -1

Table 5.2.1.. Percentage changes from 1984 to 2004 in positions for six items
in the American National Election Studies. Numbers in paren-
theses are changes when “Don’t Know”s are treated as moder-

ates.

The items 1-5 has seven points and the item 6 has 4 points in the scale, going from
extremely liberal to extremely conservative, from left to right. For example, the entry
“-1” next to “Item 3” stands for the fact that the percentage of respondents who chose
the first conservative position from center decreased by one, from 1984 to 2004, while “2”
in the row means the percentage of respondents that chose the second liberal position
from center for “Item 1” increased by 2. The authors argue that polarization can only be
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claimed to be observed for the fifth item. In items 1 and 2 they see a shift towards left
and in items 3 and 4 towards right that leads exclusion of these from the polarized in
their view. In item 6, they see no change and the only case they see polarization is item
5 where a movement from center to extremes are observed. However if the moves are
from the high supported side to the low so that the side with low approaches to the side
with high in size, we would be inclined to see polarization.8 Consider the following case,
in Figure 5.2.2, where a right to left shift induces a distribution with two equal masses.
The latter situation seems clearly more compelling to be tagged as more polarized.

Figure 5.2.2.. A left shift.

Although not as severe as Hunter (1992) depicts, some prominent authors claimed an
increasing trend of polarization among American public for recent decades by employ-
ing another set of measures. Leaving behind phenomena such as partisan, geographical
or religion-based polarization -that are argued sometimes wrongly in place of public
preferential polarization- we move forward to cast an eye on two prevalent methods
that can be found especially in Alan Abramowitz and his colleagues’ works.

The first of these methods includes a comparison of some sort of correlation between
issues. For a better exposition see Figure 5.2.3 where each respondent i, j and k picks
positions on seven different issues, from extremely liberal to extremely conservative,
in the same manner. To keep everything comparable with Abramowitz and Saunders
(2008), where we gathered the following method, we depict one of the issues (the issue
number 1) as a four-scale issue.9

Respondent i has four extremely liberal positions, two centrist positions and one ex-
tremely conservative position. Respondent j has four slightly liberal positions, one lib-
eral position, one centrist position and one slightly conservative position. Respondent
k has five extremely conservative positions and two extremely liberal positions. The
method proposes to label respondents with 0 or 1 as absolute value difference between
liberal and conservative positions with low, respondents with 2 or 3 as absolute value

8 Not that we suggest increase in polarization for that particular data, but the point is that this method might
lead to inappropriate conclusions.

9 The two positions with bold markers in between the extreme points are to denote interim positions for the
four-scaled issue.
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Figure 5.2.3.. Clustering effect.

difference with moderate and respondents with 4 or beyond with high in polarizedness
scale. It advances on by comparing the proportions of highly polarized respondents
among years. So in a year with only j type respondents, we will have only highly po-
larized profile hence high polarization while in a year with any combinations of i and k
(even when half are of i type and half are of k) we will have a moderate profile.10

One other prevalent indicator used in some papers such as Fiorina and Abrams (2010),
Abramowitz (2010), Abramowitz (2006), Jacobson (2006), Abramowitz and Saunders
(2005) and Abramowitz and Saunders (2006) is the change in the ratio of the weights
on the extremist responses to the weights on the centrist. However, let’s consider the
situation similar to the distribution A in Figure 5.2.1 with the only difference that the
middle mass is now 100 instead of 200. If we similarly dissolve the masses in between
extremes and center into both sides equally, the ratio of the extreme masses to the middle
mass doesn’t change whereas this change, we argue, should increase polarization.

For another review of methods in the literature, we refer the reader to Hill and Tau-
sanovitch (2014) where provided an analysis of measures used previously, related espe-
cially to the application to the data from American National Election Studies.11 Other
interesting reviews may include, among others, Hetherington (2009), Prior (2013), Fior-
ina and Abrams (2008), Nivola and Brady (2006) and McCarty et al. (2006).

10 These methods are also applied to some omnibus scales that are prone to some rescaling issues. We provide,
in the Appendix B, examples of rescalings found in the aforementioned literature.

11 The authors come up with a list of ten different measures employed.
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We now turn to a novel approach to the measurement of polarization, borrowed from
the economics literature on inequality measurement.

5.3 measuring preferential polarization

Polarization is usually seen as an intensifying disagreement in preferences (or ideolo-
gies). Naturally, assessment of it depends highly on the context. In American politics,
polarization is generally seen as a separation of politics into liberal and conservative camps,
remarked in McCarty et al. (2006). At the congress and elites level, academic literature
reflects more or less a consensus on that it has increased.12 On the contrary, the litera-
ture is rather polarized on if the polarization of public opinion has increased (or took
place, if taken as a process) or not.

Obviously, most of the debate13 until today rests on the fact that there does not exist a
unique definition of polarization, especially for the case of public preferences. Following
the work of Joan Esteban and Debraj Ray that is initiated as a study on income polariza-
tion, we argue that the (public preferential) polarization can be seen as the aggregation
of pairwise antagonisms within society. The antagonism between two individuals can be
seen as a function of the distance between positions (alienation) and increasing with the
support of the held positions (identification). Esteban and Ray (1994) characterized first
a class of functions of this feature with some plausible axioms. This class of measures,
basically, consists of those that sum up all pairwise alienations, weighted in a certain
way with the population shares of the positions of the components.

To illustrate, suppose we have N individuals and y 2 RN is the vector of positions.
For each such vector y let there be m(y) 2 N positions with nonzero support. Let
M(y) = (M1(y), ..., Mm(y)(y)) 2 Rm(y) be the vector of those positions. Furthermore,

let f(y) = (f1(y), ..., fm(y)(y)) 2 R
m(y)
++ be the vector of frequencies for each reported

position, hence Âj2{1,...,m(y)} fi(y) = 1, for all y. The class of functions given by

P(y, a) = K
m(y)

Â
i=1

m(y)

Â
j=1

[fj(y)(fi(y))
1+a|Mi(y)� Mj(y)|] (5.1)

12 Reader might be referred to, inter alia, Hetherington (2009), Theriault (2008), McCarty et al. (2006), Layman
and Carsey (2002) and Layman et al. (2010) and for the rare contrary argument to Harbridge (2009) and
Krehbiel and Peskowitz (2012).

13 We remind the reader that Fiorina vs Abramowitz is only an example of the debate, there are others for both
sides. The recent The Monkey Cage blog at the Washington Post website can give a hint about the ongoing
saliency of the discussion today. http://www.washingtonpost.com/blogs/monkey-cage/
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where a 2 [1, a⇤] with a⇤ being approximately 1.6 is the only class within the de-
scription above that satisfies the aforementioned axioms.14 We think this measure is
conceptually better suited for measuring public polarization for the cases where the
distribution can be, or originally is, described with clusters on a line. To illustrate, we
discuss some properties along with examples we introduced before.

The function has a value zero whenever there is full consensus in the society. It
is hence the case also when we have all of the respondents have the same type (i, j
or k) in the clustering example above. Naturally, the case where half is type i and
half is type k is more polarized than the consensus case for any plausible reduction
of dimensions. For left (or right) shift discussion of Figure 5.2.2 above, consider the
case where p portion of the society hold a leftist position and the rest 1 � p = p + e

hold a rightist position. The polarization, if the distance is d and a = 1, in this case
is: p2(p + e)d + p(p + e)2d = dp(p + e)[2p + e]. When e is equally shared by both
positions however, the new measure is: d(p + e

2 )
2[2p + e]. The difference, #2/4, is always

positive. Finally, the kurtosis-variance example goes as follows: The distribution A has
value 0.264 while distribution C has almost double, 0.448. Thus, we established that the
measure gives the desired comparisons in the discussions above.

This is not the first work to propose the use of this measure for polarization in politics.
Clark (2009) employs it to measure ideological polarization on the Supreme Court while
Oosterwaal and Torenvlied (2010) compares the trend in polarization in the Netherlands
measured by P . However, as it will be elaborated further below, we will be dealing with
data generated from large surveys that describe the distributions of preferences with
(estimated) density functions. This very fact brings the need of a measure applicable to
such distributions and the version of the measure to be utilized in this chapter, thus, is
due to Duclos et al. (2004) where the authors provide a natural extension. The class of
functions, (denoted by DER from now on)

Pa( f ) ⌘
Z Z

f (x)1+a f (y)|x � y|dxdy (5.2)

with a 2 [0.25, 1], defined on all continuous densities in R+ is shown to be character-
ized by a set of axioms in the same vein as before. A detailed analysis is provided in the
Appendix C.

14 Reader is advised to refer to the original paper by Esteban and Ray (1994) for an exhaustive analysis. The
parameter a stands for the weight given to concentrations compared to distances.
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5.4 data and the estimation methodology

5.4 data and the estimation methodology

We use the ANES data for the election years between 1984 and 2008 for our empirical
analysis. There are seven questions we are studying:15

1. Liberal/conservative, with scale 1 (extremely liberal) to 7 (extremely conservative)

2. Government aid to blacks, with scale 1 (help) to 7 (no help)

3. Defense spending, with scale 1 (greatly decrease) to 7 (greatly increase)

4. Jobs and living standards, with scale 1 (provide) to 7 (let go)

5. Government services and spending, with scale 1 (few provision) to 7 (more provi-
sion)

6. Health insurance, with scale 1 (govt plan) to 7 (private plan)

7. Abortion, with scale 1 (never permit) to 4 (always permit)

These are chosen following the earlier literature Abramowitz and Stone (2006); Abramowitz
and Saunders (2008); Abrams and Fiorina (2012); Fiorina and Abrams (2008); Fiorina
et al. (2005).

Single Survey Question With
Self Placements and The Per-
ceptual Placements of the Ma-
jor Candidates and The Par-
ties

A-M Scaling
Vector of Ideal
Points on the Sin-
gle Issue for The
Respondents

DER Estima-
tion

Di↵erent Estimates and
Std. Errors for Di↵er-
ent ↵s

Multiple Survey Questions
With Self Placements Only

Poole Scaling
Vector of Ideal
Points on the
Underlying Di-
mension for The
Respondents

DER Estima-
tion

Di↵erent Estimates and
Std. Errors for Di↵er-
ent ↵s

Figure 5.4.1.. The Outline of the Empirical Strategy.

Figure 5.4.1 summarizes our empirical approach. Basically there are two different
procedures we follow. In the first one, we use the Aldrich-McKelvey scaling in order to

15 The exact wording of these questions are given in Appendix D.
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correct for the differential item functioning bias and measure polarization in separate
issues using these ideal points. Note that A-M technique produces ideal points on a
continuous scale hence we are able to estimate the distribution confidently with DER. In
the second one, we initially derive a single policy dimension from the underlying seven
issues using the Poole’s scaling and estimate the polarization using this “aggregate”
distribution.

In what follows we are going to elaborate these different steps involved in our analy-
sis.

5.4.1 Estimation of the DER Measure

The estimator for the function in (5.2) à la Duclos et al. (2004) is given by:

pa( f ) = Ân
i=1 wi f (yi)

aa(yi)

Ân
i=1 wi

(5.3)

where wis are the weights given to the positions, f (.) is the density function of the ideal
point distribution, yis are empirical quantile for percentiles between (i � 1)/n and i/n,
a 2 [0.25, 1] and

a(yi) = µ + yi

 
2 Âi

j=1 wj � wi

ÂN
i=1 wi

� 1

!
�
 

2 Âi�1
j=1 wjyj + wiyi

ÂN
i=1 wi

!
. (5.4)

If the weights are taken to be equal, the function pa reduces to

pa( f ) =
1
n

n

Â
i=1

f (yi)
aa(yi) (5.5)

where

a(yi) = µ � yi +
2
n
[yi(r(i)� 1)�

i�1

Â
j=1

yj]. (5.6)

The following normalization leads to the final version of the function which is used
to estimate polarization:

Pa( f ) =
1

2µ1�a
pa( f ). (5.7)
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Hence, in order to find the polarization index, we need to have the empirical distri-
bution of individual ideal points. We find this distribution using the Gaussian kernel
density estimation:16

f̂ (y) ⌘ n�1
n

Â
i=1

Kh(y � yi) (5.8)

Kh(z) ⌘ h�1K(z/h) (5.9)

K(u) = (2p)�0.5 exp�0.5u2
(5.10)

where h is the bandwidth for kernel function and it is chosen so as to minimize the
mean squared error.

The meaning of a needs some further elaboration since it will be critical in interpret-
ing our results. As it was discussed earlier, there are two forces which determine the
polarization level: alienation and identification. An individual located at point x feels
alienation vis-a-vis another located at y, and this alienation increases with the distance
between these individuals, |x � y|. However, for this alienation to be translated into
polarization, the individual must - to a greater or a lesser degree- identify with the rest
of the society. An individual located at ideal point x experience a sense of identification
and this is given by f (x).

The weight of the density function on the measure increases with a as seen in the
functional forms in (5.5) and (5.7), which would mean that the weight assigned to iden-
tification increases. In terms of what we see from the empirical distributions, the shadow
of peaks and multi-modality kicks in as a gets bigger. Note that there is always a “trade-
off” between the height of the distribution and the width of the distribution since the
area underneath any density function is constant and equal to 1. The former is related
to identification and the latter with increasing distances, hence alienation. The interplay
between these two forces is the most critical dynamic behind the DER measure, and a

parametrizes the relative weights of these two forces.
Finally, the standard errors are computed by bootstrapping and all analyses are car-

ried out with the statistical computing environment R.

5.4.2 Aldrich-McKelvey Scaling

A-M Scaling Aldrich and McKelvey (1977) is a solution offered for the differential item
functioning problem in estimating the positions of political stimuli and survey respon-

16 We have tried other kernels for robustness, but results do not change.
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dents along a latent policy dimension from issue scale data. This problem arises in all
cases where the respondents interpret issue scales differently and distort their place-
ments of the stimuli and themselves. The method treats placements as linear distortions
of the “true” positions of the stimuli. By estimating each respondents perceptual dis-
tortion parameters, it is possible to recover the locations of the stimuli as well as the
respondents.

Let zij be the perceived location of the political stimulus j (party or candidate) by
individual i. The A-M model assumes that the individuals reports a noisy linear trans-
formation of the true location of stimulus, zj:

zij = a + bizj � uij

where ai is the shift term, bi is the stretch term, and uij satisfies the usual Gauss-Markov
assumptions for error terms.17 So in cases where you not only have the self-placements
of the voters on the issue scale but also their perceptual placements of different political
stimuli such as political parties and candidates, A-M scaling offers a way to correct for
the bias due to interpersonal differences in interpreting the scale.

Aldrich and McKelvey estimate these parameters using a Lagrange multiplier. We
use the maximum-likelihood based method for A-M scaling available in the R package
basicspace Poole et al. (2012). In fact, very recently, a Bayesian implementation has
been introduced in Armstrong et al. (2014). There are two main advantages of this
Bayesian approach: it can handle missing data and it allows for idiosyncratic error vari-
ances. The latter is an important improvement since the assumption that respondents
are assumed to have an unequal likelihood of reporting an incorrect ordering of the
stimuli is quite unrealistic given the variation in respondents’ political sophistication.
We will be replicating our results using this Bayesian methodology in further research.

5.4.3 Poole’s Scaling

This is a scaling procedure, introduced in Poole (1998), for estimating the latent (un-
observable) dimensions underlying a set of manifest (observable) variables. We will be
using this technique to derive the underlain ideological positions of the respondents that
are, we believe, observable through their self-placements on different issues. In contrast
to more prevalent dimension reduction techniques such as factor analysis which work
with a covariance matrix computed from the data matrix, it analyzes the data matrix di-

17 Zero in expectation, homoscedasticity and independence.
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rectly without any intermediary transformations of the original data.18 This allows for
the method to handle missing observations which is an important problem especially
with the survey data. Poole (1998) provides Monte Carlo experimentation to show that
the procedure performs well, in deed, in reproducing the missing elements of a matrix
even when the level of missing data is high.

5.5 observations on the results

The plots which summarize our findings are given in the Appendix A, Figures C.1.1-
C.1.4. These are the polarization estimates with %95 confidence intervals around them.
Our main finding is depicted in Figure C.1.1a. There is an upward trend in polarization
for the primary ideology dimension after 1992. The increase is significant19 between
years 1992 and 1996 and between 1996 and 2000. Although the trend continues up until
year 2008, these increases are not significant. We also observe a decrease in polarization
from year 1988 to 1992. Hence our results suggest that 1990s was the decade in which
public polarization increased significantly. One other observation is that the polarization
differences get more evident as a gets smaller, or as the relative weight of alienation
increases. This is due to a “release” in the distribution which increases alienation, as
can be seen in Figure C.1.5a.

We are not going discuss the results for each and every issue-year pair. Instead we
will make some particular observations which we think are interesting for these issues.

The polarization on the blacks issue also increases from 2000 to 2004 and from 2004

to 2008, but this time for a = 1 and a = 0.5. The reason why the polarization also
increases for a = 0.5 is that the multi-modality is not as severe and peaks are not as
high in 2008 and the distances are greater in 2004 compared to the job issue as depicted
in Figure C.1.6a. One rather interesting observation about this alienation-identification
framework is that the polarization on the blacks issue increases significantly for a = 0.25
and decreases significantly for a = 1 from 1984 to 1988. This is a nice illustration how the
interaction between alienation and identification can yield significantly different results
under different values of a.

The polarization on the defense spending issue has an upward trend from 1992 until
2000 for a = 0.25 and a = 0.5. This is in accord with the fact that American public
was quite divided on this issue along the partisan lines starting with the First Gulf War

18 In effect this is a method to obtain an Eckart-Young lower-rank approximation matrix of a matrix with
missing entries.

19 Unless otherwise noted, we refer to a significance at the 0.05 level.
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in 1990. This divide continued with other military operations US participated such as
the Bosnian and Kosovo wars. It is also interesting to note that the polarization in this
issue decreases significantly from 2000 to 2004. This can be attributed to the increased
external threat awareness and nationalistic sentiments which led to a convergence of
opinions on this issue after the September 11 terrorist attacks.

The polarization on the job creation issue increases from 2004 to 2008 only for a = 1,
i.e, when the weight of identification is highest. As it can be seen from the Figure
C.1.5b, the multimodal (peaked) structure of the distribution derives this result. This
observation is quite consistent with the fact that the public became more polarized about
the extent to which government should intervene an economy in recession starting with
the 2000s. A similar pattern is visible for the government services issue which supports
this explanation.

The polarization on the abortion issue makes a significant peak in year 2000. The fact
that, together with gay/lesbian rights, it was particularly an important issue in the 2000

presidential election concurs this observation. Although the debate on abortion is still
alive, it never gained that momentum it had in between Al Gore and George W. Bush.

5.6 conclusion

In this chapter we have suggested a methodology to measure public polarization and
implemented it for the election years in the U.S. from 1984 to 2008. Pointing out the
need for a theoretically supported measure in the literature, we adapted a measure
à la Duclos et al. (2004) for this purpose. With its intuitive axiomatic support, DER
is a reliable measure to help us understand the dynamics of preferential polarization.
Rather than using some summary statistic, it uses the distribution of ideal points in the
society as a whole. By parametrizing the relative weight it puts on alienation versus
identification, it provides a nice micro-behavioral foundation. In fact, Identifying how
the interaction between alienation and identification lead to changes in polarization can
be an important step towards having a more nuanced understanding of the nature of
polarization in different issues. The two other tools we employed were the A-M scaling
Aldrich and McKelvey (1977) to correct for the differential item-functioning and Poole’s
scaling Poole (1998) to derive the latent policy dimension.

Our empirical findings show that although the US polarization measured on the un-
derlying latent ideology dimension has an upward trend after 1992, this is only sig-
nificant during the 1990s. There is not a common pattern when we do an issue-wise
analysis. Although there are significant changes between some time periods, issues do
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not seem to have a shared pattern. This discrepancy between the aggregated ideology
dimension and its components is probably due to the fact that individuals are changing
their opinions on different issues but becoming more consistent about their choices on
different issues overall. This certainly needs a more careful analysis of the particular
issues and time periods.

5.6.1 Limitations of the Framework and Future Work

We study polarization on a unidimensional policy space. However, there is a robust
finding in the spatial voting literature that a two dimensional policy space is needed in
order to capture the ideological spectrum Benoit and Laver (2006). This suggests that
developing a polarization measure for multidimensional spaces will be a significant
contribution.

We used the same question (issues) to measure polarization every year. Even if this
approach is convenient in the sense that it makes comparisons more meaningful, it
implicitly assumes that the salient issues do not change from one year to another. This
is certainly a restrictive assumption. We could try to identify different issues for different
years depending on their saliency. One way to do this would be to run a logit model
using the vote choice of respondents as the dependent variable and choose those issues
which seem to have significant effect.

We might as well consider giving more weight to those individuals who have higher
engagement in the political issues. If public polarization is the sum of all binary antago-
nisms, then it can be argued that the more “activist” the individuals are the more their
effect should be on the level of polarization. As we discussed earlier, the DER measure
is general enough to handle these weights. ANES includes questions that can be uses to
determine the activism level of the respondents.20

Using alternative dimensions for alienation and identification seems to be another
promising direction for future study. One might argue, for instance, that people iden-
tify themselves with their income group but the alienation takes place on the liberal-
conservative scale.

We can employ the estimated polarization measure as a dependent variable and in-
vestigate the causes of polarization and use it as an explanatory variable in order to
understand its consequences. The latter is particularly important in that it is related to
the fundamental question of why we care about polarization in the first place. After all,
the consequences of polarization “are not entirely clear and may include some benefi-

20 See Schofield et al. (2011).
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cial as well as detrimental consequences.” as discussed in Epstein and Graham (2007).
There have been some work on the consequences of elite polarization on voter turnout
Crepaz (1990), on foreign policy McCormick and Wittkopf (1990) and on the judicial
system Binder (2000) but the effects of public polarization has not been studied.21 The
absence of a well-defined continuous measure was probably one of the reasons why this
has been the case.

21 One exception is Abramowitz and Stone (2006). This chapter however uses proxy measures for polarization,
like the ratio of the extreme voters.
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6

T H E C O N D O R C E T J U RY T H E O R E M U N D E R C O G N I T I V E
H I E R A R C H I E S

(joint work with Yukio Koriyama)

6.1 introduction

Since Condorcet’s earlier work in 1785, mathematical support has been provided for the
idea of increasing accuracy of collective decisions by including more individuals in the
process. In his seminal Essai, Condorcet considered nonstrategic individuals voting to
make a decision on a binary issue where each alternative is commonly preferred to the
other one in one of the two states of the world. Each individual receives independently
an imperfectly informative private signal about the true state of the world. Then under
majority rule, the probability of reaching a correct decision monotonically increases with
the size of the electorate and converges to certainty in the limit.

Although allowing strategic behavior may revoke assumptions of this basic model this
property survives in various circumstances of collective decision making (e.g. Austen-
Smith and Banks (1996) and Feddersen and Pesendorfer (1997)). In most models, prob-
ability of making a right decision increases and converges to one as the group size
increases, even when strategic players may vote against their signals. This asymptotic
efficiency is often coined as the Condorcet property.

In the literature of the binary-state, binary-issue decision making, often the signals are
also assumed to be binary. However, we find that this assumption does not necessarily
span most of the situations considered to be captured with these models.

On the other hand, assuming complete rationality of the voters may be too much re-
quiring when the strategy space and the number of players are large. This intuition finds
support from experimental evidence and information aggregation situations are not, to
say the least, exempt from it. Especially when a major aspect of the strategic models
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comprises the presumption that voters take into account their probability of being piv-
otal (Downs (1957)). As shown by Esponda and Vespa (2013) in their experimental study,
hypothetical thinking in direction to extract information from others’ strategies required
in strategic voting models are too strong as an assumption and does not find support
in lab. Battaglini et al. (2008) report from another experimental study an increase in
irrational non-equilibrium play as the size of electorate increases.1

Models of nonequilibrium strategic thinking have been proposed to explain structural
deviations from equilibrium thinking in a variety of games. A sizable part of bounded
rationality literature is devoted to the models of cognitive hierarchy, starting with Nagel
(1995) and Stahl and Wilson (1995), which allow heterogeneity among the individuals in
levels of strategic thinking. The construction of this model dictates a foundational level
of cognitive hierarchy, level-0, which represents a strategically naı̈ve initial approach to
game. Then a level-k player (hereafter Lk, where k � 1) is assumed to best respond to
others with a cognitive hierarchy of level k � 1. The construction of levels resonate with
rationalizability, as in Bernheim (1984), due to the fact that the decisions made by a level-
k survive k rounds of iterated deletion of strictly dominated strategies in two-person
games.

The closely related Poisson-CH model is introduced in Camerer et al. (2004). They
allow heterogeneity in beliefs on others’ levels in a particular way. A level-k type best
responds to a mixture of lower levels, which is estimated by consistent truncations up to
level k � 1 from a Poisson distribution, for each k > 0. The relevant Poisson distribution
is either obtained from maximum likelihood estimations applied to data or calibrated
from previous estimates.

The set of level-1 strategies in this Poisson-CH model (hereafter CH1) is exactly the
same as that of L1. For higher levels, Lk and CHk differ. For example, strategies in
CHk are not rationalizable in general.2 Common in these models is the assumption that
level-k players do not assign any probability to the levels higher than k. This assumption
captures the idea that there is a hierarchy in cognitive limits among players.

Another assumption shared by these two models is that of overconfidence. Both models
presumes that no individual assigns a positive possibility to opposing another player
with the same level of cognitive hierarchy. In this paper, we propose a new model,
the model of endogenous cognitive hierarchy (ECH), without imposing the overconfidence
assumption. ECH builds on the Poisson-CH model by allowing individuals to best
respond to others who may belong to the same level of cognitive hierarchy. While it may

1 As Camerer (2003), chapter 7, stresses the effect of group size on behavior in strategic interactions is a
persistent phenomenon, especially towards coordination.

2 Crawford et al. (2013) provides a fine review of these models and applications.
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be reasonable to assume ignorance on higher levels due to cognitive limits, we show in
this paper that exclusion of the same level opponents leads to significant consequences
both theoretically and empirically.

There are three reasons why overconfidence assumption should not be taken as granted.
First, we show that in a large class of games exclusion of self awareness, or imposing
overconfidence, leads to a significant difference in the asymptotic behavior of the play-
ers. In these games, the prescribed strategies are extreme (distance from the symmetric
Nash strategy diverges away) in both level-k and CH. We argue that such divergence
is not coherent with the idea of cognitive hierarchy. Second, in our experiments, we
find that ECH can explain the observed behavior much better than level-k or CH. Third,
a large number of subjects, i.e., 97%, answered in the questionnaire that they do not
exhibit such overconfidence, as shown in Figure 6.1.1. In fact, most of them think that
most of others use the same reasoning, as shown in Figure D.1.1 in the Appendix.

Never Sometimes Most of the time Always
0

10

20

30

40

50

Figure 6.1.1.. Frequencies of responses to the Question 2 in a post-
experimental questionnaire: “When you made decisions, did
you think that the other participants in your group used ex-

actly the same reasoning as you did?”.

We present results from a laboratory experiment designed to explore the effect of
the size of electorate on accuracy of decisions under majority rule. We deviate from
previous literature by setting signals to induce differing posterior probabilities on the
true state of the world, contrary to binary signals.

Related Literature

Gerling et al. (2005) provides an extensive survey on the studies of collective decision
making modeled similar to Condorcet jury model. Palfrey (2013) presents an ideal sur-
vey on experiments in political economy, and particularly in strategic voting. Costinot
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and Kartik (2007) study voting rules and show that the optimal voting rule is the same
when players are sincere, playing according to Nash equilibrium, to level-k, or belong-
ing to a mixture of these. Koriyama and Szentes (2009) provides a general analysis of
optimal group size under costly information acquisition and Bhattacharya et al. (2013)
tests experimentally the theoretical predictions about individual behavior and group de-
cision under costly information acquisition. They find poor support for the comparative
statics predictions of the theory.

The paper proceeds as follows. We introduce the endogenous cognitive hierarchy
model formally in the following section where we discuss its properties while relating
to previous models. We furthermore compare the implications of models in a stylized
setting of information aggregation. In Section 3 we introduce our experimental design
that carries novelties due to our modeling concerns and signal setup. Section 4 pro-
vides the results of the experiment and compares how different models fit to data. We
conclude by summarizing our findings and future research possibilities after Section 5,
where we further investigate the implications of both ECH and CH models. Appendices
are devoted to proofs and detailed experimental data.

6.2 the model

Let (N, S, u) be a symmetric normal-form game where N = {1, . . . , n} is the set of
players, S ⇢ R is a convex set of pure strategies, and u : Sn ! Rn is the payoff function.

In the cognitive hierarchy models, each player forms a belief on the frequency with
respect to the cognitive hierarchy levels of the other players. Let gk(h) denote the belief
of a level-k player on the frequency that the other player belongs to level-h.

In the standard level�k model à la Nagel (1995), first, a naı̈ve, nonstrategic behavior
is specified. This constitutes the initial level of cognitive hierarchy, the level�0, or L0.
Second, Lk for k 2 N+ believes that all the other players belong to one level below:

gk(h) =

(
1 if h = k � 1,
0 otherwise.

In the cognitive hierarchy model introduced in Camerer et al. (2004), every level�k,
or CHk, best responds to a mixture of lower levels in a consistent manner. To be more
specific, let f = ( f0, f1, . . .) be a distribution over N that represents the composition of
cognitive hierarchy levels. Then a CHk has a distributional belief that is specified by
gk = (gk(0), gk(1), . . . , gk(k � 1)) where
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gk (h) =
fh

Âk�1
m=0 fm

for h = 0, . . . , k � 1,

for all k 2 N+. Given a global distribution of congnitive hierarchy levels, consistency
requires each level to embrace a belief on distribution of other players’ levels that is
a truncation up to one level below. Thus, these two models share the following two
assumptions.

Assumption 1. (Cognitive limit) gk(h) = 0 for all h > k.

Assumption 2. (Overconfidence) gk(k) = 0 for all k > 0.

In what follows, we introduce the endogenous cognitive hierarchy model of games for-
mally, in which overconfidence is dropped while cognitive limit assumption is pre-
served.

6.2.1 Endogenous Cognitive Hierarchy Model

Fix an integer K > 0 that prescribes the highest level considered in the model.3 Then, a
sequence of truncated distributions g = (g1, . . . , gK) is uniquely defined from f . As in
the cognitive hierarchy model, we focus on the symmetric equilibirum, i.e. the mixed
startegy assigned to each level describes the distribution of pure strategies played in
the level. A sequence of mixed strategies s = (s0, . . . , sK) where sk 2 D(S) for all
k 2 {1, ..., K} is an ECH equilibrium when there exists a global distribution f such that
for each k, sk is a best response assuming that the other players’ levels are drawn from
the truncated distribution.

Definition 6.2.1. A sequence of symmetric strategies s = (s0, . . . , sK) is called endogenous

cognitive hierarchy equilibrium when there exists a distribution f over N under which

supp (sk) ⇢ arg max
si2S

Es�i [u (si, s�i) |gk, s] , 8k 2 N+,

where gk is the truncated distribution induced by f such that

gk (h) =
fh

Âk
m=0 fm

for h = 0, . . . , k,

3 We assume fi > 0 for all i  K. For the truncated distribution to be well-defined, it is sufficient to assume
f0 > 0, but we restrict ourselves to the cases where all levels are present with a positive probability.
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and the expectation over s�i is drawn from a distribution

gk (s) :=
k

Â
m=0

gk (m) sm,

for each player j 6= i.

A standard assumption is that the levels follow a Poisson distribution:

f t(k) = tk e�t

k!
.

This assumption is adopted in the literature and a detailed argument can be found in
Camerer et al. (2004). We discuss the implications and limitations of the assumption
later in following sections.

Next, we move to the analysis of voting situations modeled as a Condorcet jury model.

6.2.2 A Condorcet Jury Model

We consider a binary-state, binary decision making in the group of n players. The true
state of the world takes one of the two values, w 2 {�1, 1}, with a common prior of
equal probabilities. The utility is a function of the realized state and the decision

u(d, w) =

8
><

>:

0 if d 6= w,
q if d = w = 1,
1 � q if d = w = �1,

for each individual.4 Voter i receives a private signal that is distributed with a Normal
distribution with known common error around the true state, si ⇠ N (w, s). Then, i
submits a vote vi, upon receiving a signal, which is in the form of added bias, i.e.,
vi(si) = si + bi, so an individual i’s strategy, in fact, is to pick a bias, bi 2 R. The
decision is reached by the unbiased rule, that is by the sign function on the summation
of votes: µ(v) = sgn(Âi2N vi). The expected utility of v = (v1, . . . , vi, . . . , vn) can be
written as

E(si)i2N ,w[u(µ((vi(si))i2N , w))].

4 The assumption of symmetric prior is without loss of generality since we allow the utility loss of the two
types of errors to be heterogeneous.
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We obtain the best response function

b(b�i) = � Â
j2N\{i}

bj +
s2

2
ln(q/(1 � q)),

where b�i denotes the biases of all voters except i.5

6.2.2.1 Group accuracy under cognitive hierarchies

In this section we consider the group accuracy under cognitive hierarchy models. To do
this let us fix K = 2, that is the highest level in the group to be 2.6 We first show that
if the composition of levels stays the same, or in other words if the Poisson parameter
that moves with the average level in the composition is fixed, increasing the jury size
will increase the probability of correct decision. In other words, Condorcet property
continues to hold.

Proposition 6.2.1. Let t be fixed. The probability of correct decision in ECH model converges
to 1 as n ! • while it goes to 1/2 in CH.

ECH

CH

level!k

NE

2 4 6 8 10

0.5

0.6

0.7

0.8

0.9

Figure 6.2.1.. The probability of correct group decision under different mod-
els. In CH, ECH and level�k models s = 2, q = 3/4, t = 3
and b0 = �1 are taken, while for NE only s = 2 and q = 3/4

are relevant.

5 The algebra leading to this can be found in Appendix D.2.
6 To specify an upper bound for levels is necessary for the analysis to be complete and in picking this

particular value we rely on, first, the previous literature on cognitive hierarchy applications and second,
ex-post, this assumption proves a good fit for our experimental results.
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It is also shown that this is not the case in CH model where the accuracy is as good
only as random voting, in the limit. Figure 6.2.1 shows the comparison of models in an
exemplary modification. Proof of the proposition can be found in Appendix D.2.

6.2.3 Cognitive hierarchy as a model of complexity induced by group size

The idea of group bounded rationality may be argued to be represented best when
we have decreasing sophistication as the complexity of the problem increases. In our
context, we can think of the complexity as positively correlated with the size of the jury.
And as shown in what follows, under certain assumptions, this leads to moving away
from the Condorcet property.

Proposition 6.2.2. Let t = n�1. Then the probability of correct decision converges to 1 if
b0 2 (�2, 2), collapses to 1/2 if |b0| > 2 and converges to 3/4 if b0 2 {�2, 2}.

In fact, we conjecture that the speed of the fall in t is negatively correlated with the
bound on the size of the level�0 bias to preserve Condorcet property. In our calculations
we see that if t = n�g, the interval (�a, a) where a b0 within secures Condorcet property
is shrinking as g > 1 is increasing. Proof of the proposition can be found in Appendix
D.2.
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Figure 6.2.2.. The truncated distributions for several Poisson parameters.
The corresponding means are 0.46 (t = 0.5), 1.03 (t = 1.5),

1.41 (t = 3) and 1.72 (t = 7).

The conclusions of this section are based on the Poisson distribution assumption,
for which truncated distributions for several parameters are shown in Figure 6.2.2. A
foundation for this assumption given in Camerer et al. (2004) is as follows. If it is
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assumed, due to working memory limits, that as k increases fewer and fewer players do
the next step of thinking beyond k, we may constrain f (k)/ f (k � 1) to decline with k. If,
furthermore, this decline is proportional to 1/k, we obtain Poisson distribution.

However, since what matters is the change in the composition of levels, the relevant
conclusions would not be affected by the particular choice of distribution. The reasoning
is that in the case cognitive aspects of the current situation is not related at all to the
complexity induced by the group size, having larger groups would comprise higher
presence of naı̈ve thinking only in absolute terms, not in proportional terms, and hence
the bias can be addressed accurately in ECH due to presence of also higher levels but not
in CH. In the case complexity induced by higher group size translates into more naı̈ve
thinking in proportional terms, large enough level�0 bias may worsen the outcome in
ECH model as well.

6.3 experimental design

All our -computerized- experimental sessions were run at the Experimental Economics
Laboratory of Ecole Polytechnique in November and December 2013.7 In total we had
180 actual participants and 9 sessions. Each session with 20 subjects lasted about one
hour. Earnings were expressed in points and exchanged for cash to be paid right after
each session. Participants earned an average of about 21 Euros, including 5 Euros of
show-up fee. Complete instructions and details can be found in an online appendix.8

The instructions pertaining to whole experiment were read aloud in the beginning of
each session. Before each phase (treatment) during the experiment, the changes from the
previous phase are read aloud and an information sheet including the relevant details
of the game is distributed. These sheets are collected while distributing the sheets for
the following phase.

We employed a within-subjects design where each subject played all four phases con-
secutively in a session. Following a direct-response method, in each phase there were
15 periods of play, which makes 60 periods in total that are played by each participant.9

Since the question of our research relates to the strategic aspect of group decision, our

7 We utilized a z-Tree (Fischbacher (2007)) program and a website for registrations, both developed by Sri
Srikandan.

8 The online appendix can be found at http://sites.google.com/site/ozkesali.
9 In third phase, two groups of nine randomly chosen members are formed before each period. Having 20

participants in total, hence, two randomly chosen subjects waited during each period. The same method
is applied in fourth phase as well, this time one random subject waited at each period. Subjects are told
both orally and through info sheets that in the case the random lottery incentive mechanism picks a period
where a subject has been waiting, the payoff from that phase for this subject will be taken as 500 points.
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experiment was presented to subjects as an abstract group decision-making task where
natural language is used to avoid any reference to voting or election of any sort. In
the beginning of each period, computer randomly formed groups of subjects, where the
common size of the groups is determined by the current phase. Then the subjects are
shown a box full of hundred cards, all colorless (gray in z-Tree). This is also when the
unknown true color of the box for each group is determined randomly by the computer.
Subjects were informed that the color of the box would be either blue or yellow, with
equal probability. Furthermore, it was common knowledge that the blue box contained
60 blue and 40 yellow cards whereas the yellow box contained 60 yellow and 40 blue
cards. After confirming to see the next page, they are shown only 10 randomly drawn
cards with random locations in the box on the screen, this time with their true colors.
These draws were independent among all subjects but were coming from the same box
for subjects in same groups.

On the very screen subjects observed their 10 randomly drawn cards, they are required
to vote for either blue or yellow. The decision for the group is reached by majority
rule, which was conclusive all the time since we only had odd number of subjects in
groups and abstention was not allowed. Once everyone in a group voted by clicking the
appropriate button, on a following screen, subjects are shown the true color of the box,
the number of the votes for blue, the number of votes for yellow and the earning for
that period. Once everyone confirmed, the next period started.

Phase 1 Phase 2 Phase 3 Phase 4

Sessions n = 5 n = 5 n = 9 n = 19
A,B 500 : 500 800 : 300 800 : 300 800 : 300
1-7 500 : 500 900 : 200 900 : 200 900 : 200

Table 6.3.1.. Experimental design. Each phase consists of 15 periods.

The payoffs were symmetric at the first phase of each session. The size of the groups
for each period was fixed to be 5 in this phase and each subject earned 500 points in any
correct group decision (i.e., blue decision when true color of the box is blue and yellow
decision when true color of the box is yellow). In case of incorrect decision no points
earned.

The following three phases for each treatment differed only in the size of the groups
(5,9 or 19) where a biased payoff scheme is fixed. For two sessions (Sessions A and
B), the correct group decision when true color of the box is blue earned each subject
800 points whereas the correct group decision when true color of the box is yellow
earned 300 points. For seven sessions (Sessions 1 to 7), the correct group decision when
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true color of the box is blue earned each subject 900 points whereas the correct group
decision when true color of the box is yellow earned 200 points. The summary of these
can be found in Table 6.3.1. We implemented a random lottery incentive system where
final payoffs at each phase is determined by the payoffs from a randomly drawn period.
In the beginning of each session, during general instructions being read aloud and as
part of instructions, subjects played two forced trial periods.

Each session concluded after a short questionnaire, which can be found in the online
appendix.

6.3.1 Equilibrium Predictions

In what follows we provide the theoretical predictions given the parameter values used
in our experiment. In doing so, we consider only (noisy) symmetric Nash equilibrium
for now. To compare with the data, we first estimate individual strategies that are
restricted to be in form of cutoff strateies. Specifically, each player is assumed to have a
cutoff value, so that she votes for blue in case of observing higher number of blue cards
than this cutoff and for yellow otherwise. Since we have a direct-response method,
these cutoff strategies must be estimated from observed behaviors. Thus, given 12 plays
in a phase after excluding the first three periods, we estimate by maximum likelihood
method a cutoff strategy for each player for each phase, assuming behaviors to follow
a logit probabilistic function with individual-specific error parameters that are common
across phases.10 Table 6.3.2 provides the cutoff strategy of the unique symmetric Nash
equilibrium for each phase.11 We don’t have experimental observations with unbiased
prior and group sizes 9 and 19.

Session Payoff n = 5 n = 9 n = 19 #
1 � 7 900 : 200 4.43 4.67 4.84 140

A, B 800 : 300 4.66 4.84 4.93 40

A, B & 1 � 7 500 : 500 5 � � 180

Table 6.3.2.. The average symmetric equilibria cutoff strategies. Rightmost
column is the number of observations.

The equilibrium strategies get closer to 5, the unbiased play, as the size of the groups
increases. This feature also holds as the payoff bias decreases, for which if the group

10 The scale parameter values are also endogenously determined by the maximum likelihood estimations and
are used throughout the analysis of the experimental data as individual’s logistic error values.

11 These values are averages for each phase. The values calculated by using each session’s average errors can
be found in the Table D.1.1.
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size is 5 we also have unbiased case. Table 6.3.3 below shows the predicted accuracy of
group decisions for each phase.

Session Payoff n = 5 n = 9 n = 19
1 � 7 900 : 200 0.833 0.913 0.980

A, B 800 : 500 0.868 0.935 0.987

A, B & 1 � 7 500 : 500 0.879 � �

Table 6.3.3.. The average predicted accuracy of group decisions given equi-
librium strategies.

As discussed before, the group accuracy in each case increases as the group size
increases. Also, as the prior bias decreases we see that the group accuracy increases,
for which if the group size is 5 we also have unbiased case. We will investigate the
experimental data in light of these comparisons at both the individual and group level.
Table 6.3.3 gives the global averages, session specific averages can be found in detail in
Table D.1.1.

6.4 experimental results

In this section we present and analyze our experimental results by investigating behav-
iors of our subjects at both individual level and group level.

6.4.1 Individual behavior

In the whole experiment, only five percent of the subjects are observed to behave that
seems to be different than a cutoff strategy. Figure 6.4.1 below shows the histograms for
distributions of estimated cutoff values from those sessions we take into consideration
throughout the analysis, namely Sessions 1 to 7.

The frequencies of the interval [4, 5) for group sizes 5,9 and 19 are 73%, 67% and 81%,
respectively. On the other hand, the frequencies of the interval [0, 1) are 9%, 14% and
14%. The frequencies of cutoffs that are higher than or equal to 5 are 26%, 29% and
19%. We want to emphasize at this point that these two latter significant frequencies
constitute the major subject of our analysis. Table 6.4.1 below provides the averages for
each phase.

We see that as the payoff bias increases the average biases towards the favored alterna-
tive (namely, blue) increases, which resonates with Table 6.3.2. This observation extends
also to the comparisons including the unbiased phase.
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Figure 6.4.1.. The global histograms of the cutoff strategies for each phase
within Sessions 1 � 7. Hence we have, in total, 140 observa-
tions for each case where the payoffs are 900 : 200. Note
that the intervals [4, 5), which are the most voluminous, are

divided into four equal subintervals.

Session Payoff n = 5 n = 9 n = 19
1 � 7 900 : 200 4.06 3.99 3.92

A, B 800 : 300 4.26 4.46 4.34

A, B & 1 � 7 500 : 500 4.85 n/a n/a

Table 6.4.1.. The averages for estimated cutoff strategies.

However, the claim that the bias in strategies towards the favored alternative should
decrease as groups get larger due to pivotality approach argument, which is suggested
by our theoretical predictions as well, occurs to be rejected for our data. Consider the
first row of Table 6.4.1, which shows the averages for the cutoff estimations for each
biased payoff phase in Sessions 1 to 7.12 The average cutoff values in data appears to
be slightly decreasing with the size of the group in the case of highly biased payoffs.
Furthermore, although the comparisons in between group sizes 5 and 9, and 5 and 19
conform with theoretical predictions, the comparison between the sizes 9 and 19 differs
highly. Finally, relying on the comparison within columns -especially the first one- of
Table 6.4.1, we can say that our subjects appear to react in a way predicted by the theory
to the biases in payoffs.

6.4.2 Group decision accuracy

Table 6.4.2 below shows the averages for observed accuracies of group decisions.13

12 For session-specific phase averages for cutoff estimations, see Table D.1.2.
13 For session-specific phase averages for group decision accuracies, see Table D.1.3.
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Session Payoff n = 5 n = 9 n = 19
1 � 7 900 : 200 0.776 0.833 0.774

A, B 800 : 300 0.813 0.833 0.958

A, B & 1 � 7 500 : 500 0.806 n/a n/a

Table 6.4.2.. The averages for observed frequencies of correct group deci-
sions.

We see some apparent discrepancies with the theoretical predictions. First thing to
note is that in all cases groups do worse than theory’s predictions. Furthermore, com-
paring first rows of Tables 6.3.3 and 6.4.2, we see that the Condorcet property cannot be
confirmed with our data. Namely, as the size of the group increases we should see an
increase in the accuracy of group decisions. Although significantly different from the
absolute values of theoretical predictions, we see increase in accuracy, as expected, as
moving from group size 5 to 9 or 5 to 19. More important is the fact that the observed
accuracy of group decision in the case of 19 players is the lowest of the three. However,
if we run a difference in proportions test for the Sessions 1 � 7, the differences don’t
seem to be significant.

Guarnaschelli et al. (2000) also report decreasing accuracy with larger juries under
majority rule and binary signals. They conclude that group accuracy might not be
as robust as to accommodate small changes in individual behavior. However, in our
experimental data, since we see discrepancies from theoretical predictions in individual
behaviors as well we cannot relate inaccuracy observations fully to vulnerability.

The fall in the group accuracy when moving from the 800 : 300 to unbiased can be
explained by the facts that the unbiased phases were the very first phases of each session
and if we look within session values it disappears.14

6.4.3 Cognitive hierarchy models

6.4.3.1 Level-k approach

Since a Lk player is reacting against her belief of n � 1 players playing a k � 1 level
strategy, the need for playing in an opposite manner that is necessary to correct for the
bias of the Lk-1 is amplified. So, if L0 strategy is to play a cutoff rule that is biased
towards an alternative, the L1 can do best only by playing in an opposite way and in

14 Specifically, 0.885 is the average of the frequencies of correct decisions in the first phases of the two sessions
(A and B).
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higher magnitude.15 Thus, a L1 voter will use strategy 10, under her belief that level�0
play is 0. The same argument applies and L2 plays 0. This oscillation continues, of
course, to the infinity.

Level�0 Level�1 Level�2
0 10 0

Table 6.4.3.. Strategies under level�k approach.

We will fix the strategy 0 to represent the level�0 play throughout our analysis of
cognitive hierarchy models since this appears as a natural candidate: the bias towards
voting for blue created by payoff scheme may tempt the easy or unsophisticated thinking
of the problem. To confirm a level�k thinking approach then, we should see only 0s and
10s in our observations, a nonexistent phenomenon, so we do not attempt at explaining
our experimental data with such model. Battaglini et al. (2010) are the first to observe
the anomaly of level�k thinking model in Condorcet jury models.

6.4.3.2 Poisson-CH model

The Poisson-CH model postulates that a CHk player is reacting against her belief of
n � 1 players coming from a truncated Poisson distribution of levels up to her own level.
The CH1 play is based on beliefs that are exactly the same with the level�k approach,
hence it is to have cutoff strategy 10 if CH0 is to play the strategy 0.

To calculate predictions for Poisson-CH model, we need to specify the Poisson param-
eter, t, and the upper bound for how many levels exist. For the latter, relying on the
previous experimental findings and the fact that it is enough to see some sort of conver-
gence, we restrict attention to the case where we have only up to 2 levels of cognitive
hierarchy. For the former we find the best fitting parameter within the interval [0, 3].

Table 6.4.4 shows the plays of second level voters, predicted by the Poisson-CH model
for sessions 1 to 7, as well as the log likelihood values if we are to explain data by the
relevant specification. The log-likelihood values are observed to monotonically increase
within t 2 [0, 3], so we provide in Table 6.4.4 the boundary case, i.e., t = 3.

15 Not that if level�0 play is assumed to be to vote for blue all the time, a L1 voter will see that she is never
pivotal and will be indifferent. However, since we base our analysis on cutoff strategies that take the form
of logistic functions, we always have nonzero probability for being pivotal.

89



6.4 experimental results

n = 5 n = 9 n = 19
Session CH2 LL CH2 LL CH2 LL

1 3.176 -89.275 3.156 -107.466 3.101 -111.062

2 2.440 -73.222 2.330 -76.270 2.049 -83.437

3 3.040 -80.131 3.006 -89.057 2.916 -94.087

4 2.774 -78.152 2.712 -74.629 2.560 -78.758

5 3.173 -153.911 3.152 -93.234 3.097 -97.726

6 2.834 -69.145 2.779 -74.191 2.643 -79.065

7 3.040 -74.943 3.006 -84.370 2.917 -88.523

Table 6.4.4.. The CH2 strategies and the log-likelihood values when level�0
is 0, CH1 is 10 and the Poisson parameter is 3 under the as-
sumption that there are only up to two levels of cognitive hier-

archy existing in the group.

6.4.4 Endogenous Cognitive Hierarchy model

For the analysis of ECH model, we keep the restrictions applied to the Poisson-CH.
Hence, the Poisson parameter is fixed to lie in the interval [0, 3] and the level distribution
is restricted to include only up to level�2.

Table 6.4.5 shows the best fitting ECH models for the Phase 2, under aforementioned
restrictions. As seen in the second column, most of the sessions have the feature of
being better a fit with highest possible t, namely 3. Sessions 2 and 4 are exceptions,
where we see lower t values that makes the model fit better, which is partly due to the
relatively high frequencies of cutoff estimates that are lower than 4. In particular, we
have five subjects with cutoffs lower than 3 in both Sessions 2 and 4, and two subjects
with approximately 0 in the Session 2 while it is three in Session 4.

Session 1 also has two subjects with cutoff value 0. However there is only one more
subject with a cutoff value lower than 3. The other sessions have at most one subject
with a cutoff value of 0.

Letting t be larger than 3, but still below 10, we have the following further observa-
tions for Phase 2. Sessions 1,3 and 7 can be explained best with the truncated Poisson
ECH model with a Poisson parameter lower than 10. These are 5 for Sessions 1 and 3

with log-likelihoods -26.12 and -25.45, respectively. For Session 7, t = 7 gives the lowest
LL value which is -32.69. Sessions 5 and 6, hits the boundary, i.e., 10, in terms of best
fitting t, which explains the comparison between ECH and NE in Table 6.4.8.

When we move to the phase 3, namely the case n = 9, we have a similar picture. Table
6.4.6 provides the model specifications and log-likelihood values for phase 3. First thing
to note is that only the model specification for Session 4 fits best the data when t is
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6.4 experimental results

Session t⇤ Level 0 Level 1 Level 2 LL
1 3 0 4.705 4.535 -26.291

2 2.2 0 4.636 4.425 -39.647

3 3 0 4.687 4.508 -25.739

4 2 0 4.726 4.519 -32.101

5 3 0 4.704 4.534 -23.688

6 3 0 4.652 4.464 -28.340

7 3 0 4.688 4.508 -33.976

Table 6.4.5.. ECH model specifications when for the case n = 5 with log-
likelihood values.

lower than the bound we imposed, namely 3. This occurs at around the same value as
in the previous phase, namely 2.1. This is not observed to be the case for Session 2.

Session t⇤ Level 0 Level 1 Level 2 LL
1 3 0 5.123 4.761 -33.818

2 3 0 5.047 4.690 -33.68

3 3 0 5.111 4.756 -25.238

4 2.1 0 5.175 4.792 -35.984

5 3 0 5.123 4.761 -33.237

6 3 0 5.090 4.731 -38.772

7 3 0 5.111 4.756 -41.256

Table 6.4.6.. ECH model specifications when for the case n = 9 with log-
likelihood values.

Now consider the conjecture that the best fitting t will be decreasing as the group
size increases. Clearly, data from Session 2 contradict already with this and Session 4

does not represent a clear difference. As noted above, the Sessions 1 and 3 had 5 as the
best fitting t value. While it is not lower than 5 for Session 3, for Session 1 we have 4.5
now, complying with the argument.

The best fitting Poisson parameter for Session 5 is not lower in Phase 3 than its value
in Phase 2. In fact, this phase continues to be better explained by NE. See Table 6.4.8.

On the other hand, significantly lower t values specify the best fitting ECH models
for Sessions 6 and 7. These values are 4 and 6, respectively, in Phase 3, whereas these
were 10 and 7 in Phase 2.

Moving to the final phase, we do not see anymore Poisson parameter values of best
fitting ECH models that are lower than our first upper bound of 3. Furthermore, none
of the sessions have the complying feature, comparing to Phase 3 values. Table 6.4.7 is
devoted to Phase 4.
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Session t⇤ Level 0 Level 1 Level 2 LL
1 3 0 5.4657 4.927 -29.06

2 3 0 5.4524 4.893 -37.529

3 3 0 5.4634 4.9 -47.63

4 3 0 5.4586 4.9 -38.449

5 3 0 5.4657 4.927 -41.454

6 3 0 5.4597 4.9 -38.114

7 3 0 5.4634 4.9 -36.027

Table 6.4.7.. ECH model specifications when for the case n = 19 with log-
likelihood values.

6.4.5 Which model fits the best?

In this section we compare the performances of models in explaining our experimental
data. First, note that in all sessions ECH fits better than CH. In some sessions and phases
we have NE fitting better than ECH, although not plenty. But it is quick to observe that
there exists high enough t that could result in ECH dominating NE. This is due to the
fact that as t increases, the level�2 becomes dominant and at the limit only level�2
remains which is basically the symmetric Nash play.

n = 5 n = 9 n = 19
Session CH ECH NE CH ECH NE CH ECH NE
1 -89.27 -26.29 -53.31 -107.46 -33.82 -58.30 -111.06 -29.06 -34.42

2 -73.22 -39.64 -46.52 -76.27 -33.68 -45.40 -83.43 -37.53 -51.35

3 -80.13 -25.73 -36.74 -89.05 -25.24 -31.07 -94.08 -47.63 -35.85

4 -78.15 -32.10 -53.91 -74.62 -35.98 -72.28 -78.75 -38.45 -70.04

5 -153.91 -23.68 -21.32 -93.23 -33.24 -24.06 -97.72 -41.45 -47.55

6 -69.14 -28.34 -25.10 -74.19 -38.77 -51.13 -79.06 -38.11 -40.14

7 -74.94 -33.97 -41.85 -84.37 -41.26 -49.07 -88.52 -36.03 -54.26

Table 6.4.8.. Comparison of log-likelihoods of the models. Here, t is re-
stricted to [0, 3] and the best fitting one is taken, for both of

ECH and CH.

As discussed above also, in Phase 2, data belonging to Sessions 5 and 6 can be ex-
plained better by NE, if t  10, although the difference is not large. Only Session 5

carries this comparison to Phase 3, and none to Phase 4. However, Phase 4 of Session
3 appears to be explained better by NE. Thus, we have ECH dominating the two other
models in 18 cases out of 21, under current restrictions on t.
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6.5 discussion on ech and ch models

6.4.5.1 Group Accuracy under ECH

Phase 1 2 3 4 5 6 7 ave.
n=5 0.824 0.730 0.824 0.752 0.844 0.822 0.832 0.804

n=9 0.904 0.852 0.903 0.839 0.918 0.887 0.908 0.887

n=19 0.979 0.946 0.977 0.957 0.984 0.969 0.978 0.970

Table 6.4.9.. The predicted group accuracy for each phase in each session
under best fitting ECH models.

Table 6.4.9 shows the group accuracy predictions of the best fitting ECH models. Com-
paring with the first row of Table 6.4.2, the last column of Table 6.4.9 does not appear
to be a good predictor for the observed group accuracy. This holds true for the session-
wise comparisons as well. But it should be noted that the differences in observations
failed significance tests. Nonetheless, ECH gives predictions that are closer than NE pre-
dictions to data for any session. The average values for the latter is already presented in
Table 6.3.3.

Furthermore, as discussed in Section 2.3, the Poisson distribution assumption plays
a significant role here. As can be seen also in Figure 6.2.2, for all high enough values
of t, for instance, we have level�1 having higher share in the distribution compared
to level�0 which clearly restricts the estimations. Removing any such assumption on
distribution and estimating using maximum likelihood methods from data might give
better results.16 It should be noted that current analysis avoids -in a way- overfitting
that would emerge under such approach.

6.5 discussion on ech and ch models

In certain classes of games, ECH behaviors differ significantly from those of CH.

6.5.1 Perfect substitution

Suppose that the game has perfect strategic substitutability. The best reply of a player is
to correct the sum of the biases caused by the other players’ strategies:

BRi (s�i) = �Â
j 6=i

sj.

16 We obtained some better fitting Poisson-free models of ECH for some sessions, these can be provided upon
request.
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6.5 discussion on ech and ch models

Proposition 6.5.1. Suppose that the game has perfect strategic substitutability. Let bk be the
bias from symmetric Nash strategy. Then, for any b0 6= 0, the ratio bk/b0 grows in the order of
nk for Lk and CHk while it grows in the order of n0 for ECHk.

Proof of the proposition can be found in Appendix D.2.

6.5.2 Cournot competition

Consider a standard Cournot competition with linear demand and constant marginal
cost of production which represents a game with strategic substitutability. We have that
the best response function is a contraction if n = 2, an expansion if n > 3. In particular,
let the best reply function be q0 = 1

2 (1 � Q�i). Since the profit function is quadratic, we
have the best response function under uncertainty as a function of the expectation:

q0 =
1
2
(1 � E [Q�i]) .

The Nash equilibrium production level is q = 1
n+1 .

,! Level-k Approach
Let q0 denote L0 play. Then L1’s best response is to correct for the bias created by

n � 1 others:
q1 =

1
2
(1 � (n � 1) q0) .

Similarly, L2’s best response is:

q2 =
1
2

✓
1 � (n � 1)

1
2
(1 � (n � 1) q0)

◆
,

=
1
2

✓
1 � 1

2
(n � 1)

◆
+

(n � 1)2

4
q0.

Hence L2 will do best by reacting in an opposite and amplified way compared to L1.
So L2’s reaction will be destined to be biased at least as much as and in the direction of
L0. Naturally, L3 will be tending towards hitting the other corner. Iterating along in k, a
bang-bang type oscillation in strategy space is required.

,! CH Model
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By definition, CH1 is the same as L1:

q1 =
1
2
(1 � (n � 1) q0) .

For CH2, we have

q2 =
1
2

✓
1 � (n � 1)

✓
f0

f0 + f1
q0 +

f1

f0 + f1
q1

◆◆
,

=
1
2

✓
1 � (n � 1) f1

2( f0 + f1)

◆
� (n � 1)

f0 � (n � 1) f1

2( f0 + f1)
q0,

where f0 and f1 represent the weights of CH0 and CH1 under global distribution f ,
respectively.

,! ECH Model
An ECH1 player’s belief assigns weighted frequencies to ECH0 and ECH1 that are

the same with a CH2 belief above. Hence ECH1 best responds as

q1 =
1
2

✓
1 � (n � 1)

✓
f0

f0 + f1
q0 +

f1

f0 + f1
q1

◆◆
,

which can be rearranged as

✓
2 + (n � 1)

f1

f0 + f1

◆
q1 =

✓
1 � (n � 1)

f0

f0 + f1
q0

◆
.

Similarly found is ECH2’s best response:

q2 =
1
2
(1 � (n � 1) (g2(0)q0 + g2(1)q1 + g2(2)q2)) .

That is,

q2 =
1 � (n � 1) (g2(0)q0 + g2(1)q1)

2 + (n � 1) g2(2)
.

We have symmetric Nash equilibria where q⇤ = 0.0909. Suppose now that f follows
Poisson distribution with coefficient t = 3 and let n = 10. Tables 6.5.1 and 6.5.2 give the
model specifications when q0 = 0.05 and q0 = 0.2 respectively.
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q0 q1 q2

level�k 0.05 0.275 0
CH 0.05 0.275 0

ECH 0.05 0.101 0.092

Table 6.5.1.. Model specifications for Cournot competition when q0 = 0.05,
t = 3 and n = 10.

q0 q1 q2

level�k 0.2 0 0.5
CH 0.2 0 0.275

ECH 0.2 0.063 0.087

Table 6.5.2.. Model specifications for Cournot competition when q0 = 0.2,
t = 3 and n = 10.

6.5.3 Keynesian Beauty contest

On the other hand, in the games where the best reply function is a contraction mapping,
behavior under ECH do not differ much from those under CH. Consider a standard
Keynesian beauty contest game, a game with strategic complementarity, where n players
simultaneously submit a number between 0 and 100, and the winner is the one who
chooses a number closest to the 0 < p < 1 times average of all submissions. The best
response function is a contraction mapping defined as BRi (x�i) =

p
n�p Âj 6=i xj. Suppose

that the utility function is quadratic as a function of the distance from the winning
number. Then the best reply under uncertainty is the expected winning number:

BRi (x�i) =
p

n � p
E

"

Â
j 6=i

xj

#
.

hence, the unique NE is x = 0.

,! Level�k Approach
L1’s best response is:

b1 = p
n � 1
n � p

b0.

L2’s best response is:

b2 = p
n � 1
n � p

b1 =

✓
p

n � 1
n � p

◆2
b0.
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The strategies converge to Nash equilibrium levels.

,! CH Model
By definition, CH1 is the same as L1:

b1 = p
n � 1
n � p

b0..

For CH2:

b2 = p
n � 1
n � p

✓
f0

f0 + f1
b0 +

f1

f0 + f1
b1

◆
,

= p
n � 1
n � p

✓
f0

f0 + f1
+

f1

f0 + f1
p

n � 1
n � p

◆
b0.

,! ECH Model
ECH1’s best response is:

b1 = p
n � 1
n � p

✓
f0

f0 + f1
b0 +

f1

f0 + f1
b1

◆
.

Hence, ✓
1 � p

n � 1
n � p

f1

f0 + f1

◆
b1 = p

n � 1
n � p

f0

f0 + f1
b0.

ECH2’s best response is:

b2 = p
n � 1
n � p

(g2(0)b0 + g2(1)b1 + g2(2)b2) .

Hence,

b2 =
p n�1

n�p (g2(0)b0 + g2(1)b1)

1 � p n�1
n�p g2(2)

.

The unique Nash equilibrium strategy when p < 1 is 0. Now suppose that f follows
Poisson distribution with coefficient t = 3 and let n = 10. Tables 6.5.3 and 6.5.4 give the
model specifications when p = 2/3 and p = 1/2 respectively.
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6.6 conclusion

b1/b0 b2/b0

level�k 0.643 0.413
CH 0.643 0.470

ECH 0.310 0.221

Table 6.5.3.. Model specifications for the Keynesian beauty contest when
p = 2/3, t = 3 and n = 10.

b1/b0 b2/b0

level�k 0.474 0.224
CH 0.474 0.287

ECH 0.184 0.115

Table 6.5.4.. Model specifications for the Keynesian beauty contest when
p = 1/2, t = 3 and n = 10.

6.6 conclusion

We have delivered results from an experiment designed to test the effect of group size
on decision accuracy. The experimental results suggest systematic heterogeneity among
individual behaviors. We provide a cognitive hierarchy model that advances upon the
current ones by allowing self-level consideration by individuals to account for this sys-
tematic deviation from symmetric equilibrium thinking. This model is theoretically
shown to be able to accommodate our observations and performs better than previ-
ous models of cognitive hierarchy as well as symmetric Bayesian Nash equilibrium in
explaining individual behavior.

The modeling consists of specification of distribution for cognitive hierarchy levels.
In this paper we employed Poisson distribution for that regard. This specification hints
that the bounded rationality of a group that is related to the sophistication induced by
the size of the group resonates with the best fitting Poisson parameter. In other words,
we would expect to see that as group size increases, since the problem in hand would
get more demanding, nonstrategic play that is seen to appear in a systematic way should
be amplified and hence best fitting Poisson parameters would be lower. And if this is
severe enough, we could capture the decrease in group decision accuracy. However,
we don’t see this in our data. Consequently, the model falls short of explaining lower
group decision accuracy in larger groups. It should be noted, on the other hand, that the
particular restriction of Poisson distribution assumption plays a role here and dropping

98



6.6 conclusion

that would lead to get closer to the group bounded rationality argument above, since
we already see increase in tendency towards lower levels.

In current experimental design learning and ordering effects were not targets of in-
vestigation. Battaglini et al. (2010) and Bhattacharya et al. (2013) reports no observation
of significant learning effects. Furthermore, we excluded first three periods of all treat-
ments in our analysis and implemented a random matching design so that at each period
subjects knew that their group is randomly formed with possibly different members.
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A
A P P E N D I X T O C H A P T E R 2

a.1 proof of proposition 2 .2 .1

Let a be a neutral SFW that is SW self-selective for some domain E . Pick up any profile
PN 2 L(Am)n where D(a(PN)) = {Q1, ..., QH}, together with any E = (e1, ..., en) 2 En.
Consider the set of SWFs A = {a1, a2, ..., aH, r1, ..., rm!�H} such that:

- a1(PN) = Q1, ..., aH(PN) = QH

- 8k 6= k0 2 {1, ..., m! � H}, ak(PN) 6= ak0(PN)

- [1km!�Hrk(PN) = L(Am) |D(a(PN))

Since all elements of A are strict SWFs, then A is a strict selection. Moreover, all
elements of A having different outcomes from PN , then REA

N is a profile of linear orders
over A. Furthermore, [[1hHah(PN)][ [[1km!�1rk(PN)] = L(Am) implies that REA

N is
a profile over all m! linear orders, so that L(a)\A = L(a). It follows from definition that
REA

N is isomorphic to PE
N . Since a is SW self-selective for E, then L(a)\ fa(ePEA

N ) 6= ∆.
Finally, since REA

N is isomorphic to PE
N , the neutrality of a ensures that D(a(PN)) \

fa(PE
N) 6= ∆ and the conclusion follows.

a.2 proof of theorem 2 .3 .1

We first establish three necessary conditions for Kemeny-stability.

Proposition A.2.1. A scoring rule a is Kemeny-stable only if s2,3
a > 0 and s1,6

a > s2,6
a = s3,6

a >

s4,6
a = s5,6

a > 0.

Proposition A.2.2. A scoring rule a is Kemeny-stable only if s1,6
a = s2,6

a + s4,6
a .

Proposition A.2.3. A scoring rule a is Kemeny-stable only if s1,3
a = 2s2,3

a .
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A.2 proof of theorem 2 .3 .1

a.2.1 Proof of Proposition A.2.1

The proof is organized in six 6 intermediate lemmas:

Lemma A.2.1. If a is a Kemeny-stable scoring rule, then s2,3
a > 0.

Proof: Suppose that s2,3
a = 0, and consider the following profile PN 2 L(A3)n1+n2+n3+n4 ,

where n1 > n2 > n3 + n4, together with the following linear extension ṖN of PK
N :

PN =

0

BBBB@

n1 n2 n3 n4

a b c c
c c a b
b a b a

1

CCCCA
ṖN =

0

BBBBBBBBBBB@

n1 n2 n3 n4

acb bca cab cba
cab bac acb cab
abc cba cba bca
bac cab bca acb
cba abc abc bac
bca acb bac abc

1

CCCCCCCCCCCA

One gets that D(a(PN)) = {abc}. Kemeny-stability requires that S6
a(abc, ṖN) = n1s3,6

a +

(n2 + n3)s5,6
a � S6

a(cab, ṖN) = (n1 + n4)s2,6
a + n2s4,6

a + n3s1,6
a , hence that n1(s3,6

a � s2,6
a ) +

n2(s5,6
a � s4,6

a ) + n3(s5,6
a � s1,6

a ) � n4s2,6
a , which is clearly impossible ⇤

Lemma A.2.2. If a is a Kemeny-stable scoring rule, then s2,6
a = s3,6

a and s4,6
a = s5,6

a .

Proof: Suppose first that s1,3
a > 2s2,3

a , and consider PN 2 L(A3)4, and ṖN 2 D(PK
N):

PN =

0

BBBB@

1 1 1 1
a a b c
b c c b
c b a a

1

CCCCA
ṖN =

0

BBBBBBBBBBB@

1 1 1 1
abc acb bca cba
bac cab cba bca
acb abc bac cab
bca cba cab bac
cab bac abc acb
cba bca acb abc

1

CCCCCCCCCCCA

Since S3
a(a, PN) = 2s1,3

a , and S3
a(b, PN) = S3

a(c, PN) = s1,3
a + 2s2,3

a , then D(a(PN)) =

{abc, acb}. Moreover, we have (1) S6
a(abc, ṖN) = S3

a(acb, ṖN) = s1,6
a + s3,6

a + s5,6
a , and (2)

S6
a(bca, ṖN) = s1,6

a + s2,6
a + s4,6

a . Kemeny stability implies from (1) and (2) that s3,6
a + s5,6

a �
s2,6

a + s4,6
a (3), which in turn leads to s2,6

a = s3,6
a and s4,6

a = s5,6
a .

Suppose now that s1,3
a < 2s2,3

a , and consider profile PN above and the hyper-profile
Ṗ0

N 2 D(PK
N) obtained from ṖN by switching in each order alternatives respectively

ranked (1) second and third, and (2) fourth and fifth. We get D(a(PN)) = {bca, cba},
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and we reach the same conclusion as above by a symmetric argument. Finally, suppose
that s1,3

a = 2s2,3
a , and consider the profile PN 2 L(A3)4Z�1 below, where Z > 1, together

with the Kemeny weak profile PK
N :

PN =

0

BBBB@

Z Z Z � 1 Z
a b c c
b a b a
c c a b

1

CCCCA
PK

N =

0

BBBBBB@

Z Z Z � 1 Z
abc bac cba cab

acb, bac abc, bca bca, cab cba, acb
bca, cab cba, acb acb, bac abc, bca

cba cab abc bac

1

CCCCCCA

Then a(PN) = abc. Moreover, there exists ṖN 2 D(PK
N) such that S6

a(abc, ṖN) = Z(s1,6
a +

s3,6
a + s5,6

a ) and S6
a(cab, ṖN) = Zs1,6

a + (Z � 1)s2,6
a + Zs4,6

a . Kemeny stability requires that
s3,6

a + s5,6
a � Z�1

Z s2,6
a + s4,6

a for all Z > 1. Thus, s2,6
a + s4,6

a  s3,6
a + s5,6

a , and hence s2,6
a = s3,6

a

and s4,6
a = s5,6

a ⇤
We assume in the sequel that a is such that s2,6

a = s3,6
a and s4,6

a = s5,6
a (property (⇤)).

Clearly, (⇤) implies that given any profile PN over 3 alternatives, given any Kemeny-
stable SWF a, one has a(ṖN) = a(fPN) for any two 8ṖN , fPN 2 D(PK

N).

Lemma A.2.3. If a is a Kemeny-stable scoring rule, then [s1,6
a = s2,6

a ] ) [s4,6
a = s5,6

a > 0].

Proof: Consider the following PN 2 L(A3)3Z+W below, where Z, W � 1 are chosen
such that W < s2,3

a

s1,3
a

Z:

PN =

0

BBBB@

Z Z Z W
a b c a
b a b c
c c a b

1

CCCCA

Then a(PN) = bac. Furthermore, using (⇤) together with Kemeny stability and s1,6
a =

s2,6
a , one must have S6

a(bac, ṖN) = 2Zs1,6
a + (Z + W)s5,6

a � S6
a(abc, ṖN) = (2Z + W)s1,6

a .
Thus, s1,6

a  Z+W
W s5,6

a . Finally, since s1,6
a > 0, then s5,6

a > 0 ⇤

Lemma A.2.4. If a is a Kemeny-stable scoring rule, then [s1,6
a = s2,6

a ] ) [2s1,3
a = 3s2,3

a ].

Proof: Define the two profiles PN 2 L(A3)5 and P0
N 2 L(A3)3Z+1, where Z > 1, as

follows:

PN =

0

BBBB@

2 1 1 1
a a c b
b c b c
c b a a

1

CCCCA
P0

N =

0

BBBB@

2Z 1 Z
a c c
b a b
c b a

1

CCCCA
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Suppose first that 2s1,3
a > 3s2,3

a . It follows from 2s1,3
a > 3s2,3

a that a(PN) = abc. Using
(⇤), we have s1,6

a = s2,6
a = s3,6

a � s4,6
a = s5,6

a . Hence, 8ṖN 2 D(PK
N), S6

a(abc, ṖN) =

3s1,6
a + s5,6

a , and S6
a(bac, ṖN) = 3s1,6

a + 2s5,6
a . Since Kemeny-stability requires S6

a(abc, ṖN) �
S6

a(bac, ṖN), then we get s5,6
a = 0, in contradiction with Lemma 3.

Similarly, suppose that 2s1,3
a < 3s2,3

a . From 0 < 2s1,3
a < 3s2,3

a , we get that a(P0
N) =

bac for Z large enough. Moreover, 8ṖN 2 D(P0K
N ), S6

a(bac, ṖN) = Z(2s1,6
a + s5,6

a ) <

S6
a(acb, ṖN) = Z(2s1,6

a + s5,6
a ) + s1,6

a , in contradiction with Kemeny stability ⇤

Lemma A.2.5. If a is a Kemeny-stable scoring rule, then s1,6
a > s2,6

a .

Proof: Suppose that s1,6
a = s2,6

a . From Lemma 3 and 4 together with (⇤), we have
s1,6

a = s2,6
a = s3,6

a , 2s1,3
a = 3s2,3

a , and s4,6
a = s5,6

a > 0. Then, consider the following profile
PN 2 L(A3)4:

PN =

0

BBBB@

2 1 1 1
a b c c
b a b a
c c a b

1

CCCCA

Since S3
a(a, PN) = 2s1,3

a + 2s2,3
a , S3

a(b, PN) = s1,3
a + 3s2,3

a , and S3
a(c, PN) = 2s1,3

a , then,
using Lemma 1 and Lemma 4, a(PN) = abc. From Kemeny-stability, we have that for
any ṖN 2 D(PK

N), S6
a(abc, ṖN) = 3s1,6

a + s5,6
a � S6

a(acb, ṖN) = 3s1,6
a + 2s5,6

a . But this implies
that s5,6

a = 0, in contradiction with Lemma 3 ⇤

Lemma A.2.6. If a is a Kemeny-stable scoring rule, then s3,6
a > s4,6

a .

Proof: Suppose that s3,6
a = s4,6

a . It follows from Lemma 2 together with Lemma 5 that
s1,6

a > s2,6
a = s3,6

a = s4,6
a = s5,6

a � s6,6
a = 0. Using Lemma 1, we get the following possible

cases:
Case 1: s1,3

a = s2,3
a > 0

Consider the 4 following profiles:

PN =

0

BBBB@

3 2 3 3 4
a a b c c
b c a a b
c b c b a

1

CCCCA
P0

N =

0

BBBB@

1 3 1
a b c
b a a
c c b

1

CCCCA
P00

N =

0

BBBB@

1 1 1 1
a a b c
b c a b
c b c a

1

CCCCA

P000
N =

0

BBBB@

2 2 1
a b c
c a a
b c b

1

CCCCA
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If s2,6
a > 0, then a(PN) = abc. Since S6

a(abc, ṖN)

= 3s1,6
a + 8s2,6

a < S6
a(cba, ṖN) = 4s1,6

a + 8s2,6
a for all ṖN 2 D(PK

N), then a is not Kemeny-
stable. If s2,6

a = 0, then a(P0
N) = abc. Since f a(ṖN) = {bac} for all ṖN 2 D(P0K

N ), then a is
not Kemeny-stable.

Case 2: s1,3
a > s2,3

a > 0
If s2,6

a > 0, then a(P00
N) = abc. Since S6

a(abc, ṖN)

= s1,6
a + 2s2,6

a < S6
a(bac, ṖN) = s1,6

a + 3s2,6
a for all ṖN 2 D(P00K

N ), then a is not Kemeny-
stable. Finally, if s2,6

a = 0, then a(P000
N ) = abc. Since S6

a(abc, ṖN) = 0 < S6
a(acb, ṖN) = 2s1,6

a

for all ṖN 2 D(P000K
N ), then a is not Kemeny-stable. Thus, Kemeny-stability requires that

s3,6
a > s4,6

a ⇤

By combining the six lemmas above, we get that any Kemeny-stable scoring rule a

must satisfy (1) s1,6
a > s2,6

a = s3,6
a > s4,6

a = s5,6
a � 0, and (2) s1,3

a � s2,3
a > 0, hence

Proposition 3.

a.2.2 Proof of Proposition A.2.2

Suppose first that s1,3
a > 2s2,3

a , and consider the two profiles PN , P0
N 2 L(A3)4 below:

PN =

0

BBBB@

1 1 1 1
a a b c
b c c b
c b a a

1

CCCCA
P0

N =

0

BBBB@

1 2 1
a a b
b c c
c b a

1

CCCCA

Since S3
a(a, PN) = 2s1,3

a and S3
a(b, PN) = S3

a(c, PN) = s1,3
a + 2s2,3

a , then s1,3
a > 2s2,3

a )
D(a(PN) = {abc, acb}. Using Proposition 3, we get that for any ṖN 2 D(PK

N), S6
a(abc, ṖN) =

s1,6
a + s2,6

a + s5,6
a , while S6

a(bac, ṖN) = 2s2,6
a + 2s5,6

a . Therefore, Kemeny-stability requires
s1,6

a � s2,6
a + s5,6

a . Similarly, since S3
a(a, P0

N) = 3s1,3
a , S3

a(b, P0
N) = s1,3

a + s2,3
a and S3

a(c, P0
N) =

3s2,3
a , then s1,3

a > 2s2,3
a ) a(P0

N) = abc. For any Ṗ0
N 2 D(P0K

N ), S6
a(abc, Ṗ0

N) = s1,6
a + 2s2,6

a +

s5,6
a , while S6

a(acb, Ṗ0
N) = 2s1,6

a + s2,6
a . Thus, Kemeny-stability requires s1,6

a  s2,6
a + s5,6

a .
Therefore, if s1,3

a > 2s2,3
a , then s1,6

a = s2,6
a + s5,6

a .
Now suppose that s1,3

a < 2s2,3
a , and consider profiles ePN 2 L(A3)5Z+1, where Z > 1,

and PN 2 L(A3)4 below:

ePN =

0

BBBB@

2Z Z + 1 Z Z
a c c b
b b a c
c a b a

1

CCCCA
PN =

0

BBBB@

1 1 1 1
a a b c
b c c b
c b a a

1

CCCCA
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Since S3
a(a, ePN) = 2Zs1,3

a + Zs2,3
a , S3

a(b, ePN) = Zs1,3
a + (3Z + 1)s2,3

a and S3
a(c, ePN) =

(2Z + 1)s1,3
a + Zs2,3

a , then if Z is chosen large enough, s1,3
a < 2s2,3

a ) a(PN) = bca.
Moreover, using again Proposition 3, Kemeny-stability implies that for any Z > 1 and
any ṖN 2 D(ePK

N), S6
a(bca, ṖN) � S6

a(abc, ṖN). Thus, Zs1,6
a +(Z+ 1)s2,6

a + 3Zs5,6
a � 2Z(s1,6

a +

s5,6
a ), and therefore s1,6

a  (1 + 1
Z )s

2,6
a + s5,6

a for all Z > 1, leading to s1,6
a  s2,6

a + s5,6
a .

Similarly, we get D(a(PN)) = {bca, cba}, while for any ṖN 2 D(PK
N), S6

a(bca, ṖN) =

S6
a(cba, ṖN) = s1,6

a + s2,6
a + s5,6

a , while S6
a(bac, ṖN) = 2s2,6

a + 2s5,6
a . Thus, Kemeny-stability

implies s1,6
a � s2,6

a + s5,6
a . Therefore, if s1,3

a < 2s2,3
a , then s1,6

a = s2,6
a + s5,6

a .
Finally, suppose that s1,3

a = 2s2,3
a and consider QN 2 L(A3)4Z+3 and Q0

N 2 L(A3)10Z+1,
where Z > 1:

QN =

0

BBBB@

Z Z + 1 Z + 1 Z + 2
a b b c
c c a a
b a c b

1

CCCCA
Q0

N =

0

BBBB@

3Z 3Z + 1 2Z 2Z
a b b c
c c a a
b a c b

1

CCCCA

Since s1,3
a = 2s2,3

a , then a(QN) = cba. From Proposition 3, one has for any ṖN 2 D(QK
N)

that S6
a(cba, ṖN) = (2Z + 3)s2,6

a + (2Z + 1)s5,6
a and S6

a(acb, ṖN) = Zs1,6
a + (Z + 2)s2,6

a +

(Z + 1)s5,6
a . Kemeny-stability implies s1,6

a  (1 + 1
z )s

2,6
a + s5,6

a , and thus s1,6
a  s2,6

a + s5,6
a .

Furthermore, we have a(Q0
N) = bca, while Kemeny stability implies that for any ṖN 2

D(Q0K
N ) that S6

a(bca, ṖN) � S6
a(bac, ṖN). Hence, (3Z + 1)s1,6

a + 2Zs2,6
a + 2Zs5,6

a � 2Zs1,6
a +

(3Z+ 1)s2,6
a + 3Zs5,6

a , leading to s1,6
a � s2,6

a + Z
Z+1 s5,6

a for all Z > 1, Therefore, if s1,3
a = 2s2,3

a ,
then s1,6

a = s2,6
a + s5,6

a , and the proof is complete.

a.2.3 Proof of Proposition A.2.3

Consider the following profiles PN 2 L(A3)2Z+2 and P0
N 2 L(A3)56Z+1, where Z > 1:

PN =

0

BBBB@

Z + 1 1 Z
a a c
b c b
c b a

1

CCCCA
P0

N =

0

BBBB@

11Z 28Z 17Z 1
a a b c
b c c b
c b a a

1

CCCCA

Suppose that s1,3
a < 2s2,3

a . Then a(PN) = bac for Z large enough. Moreover, from
Proposition 3, S6

a(bac, ṖN) = (Z + 1)(s2,6
a + s5,6

a ) < S6
a(acb, ṖN) = s1,6

a + (Z + 1)s2,6
a + Zs5,6

a

for all ṖN 2 D(PK
N), in contradiction with Kemeny-stability.

Suppose that s1,3
a > 2s2,3

a . Then a(P0
N) = abc for Z large enough. Using again Proposi-

tion 3, S6
a(abc, ṖN) = 11Zs1,6

a + 28Zs2,6
a + 17Zs5,6

a while S6
a(acb, ṖN) = 28Zs1,6

a + 11Zs2,6
a +
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s5,6
a for all ṖN 2 D(P0K

N ). Since s5,6
a > 0 from Proposition 3, we get by using Proposition 4,

S6
a(abc, ṖN) = 39Zs2,6

a + 28Zs5,6
a < S6

a(abc, ṖN) = 39Zs2,6
a + 28Zs5,6

a + s5,6
a , in contradiction

with Kemeny-stability.

a.2.4 End of proof of Theorem 2.3.1

(Necessary part) Using Propositions 3,4 and 5, it suffices to prove that if a is Kemeny-
stable, then s2,6

a = 3s5,6
a . Consider the following profiles PN 2 L(A3)3Z+1 and P0

N 2
L(A3)3Z�4, where Z > 2:

PN =

0

BBBB@

2Z + 1 Z
a b
b c
c a

1

CCCCA
P0

N =

0

BBBB@

Z � 1 Z � 1 Z � 2
a b c
c a b
b c a

1

CCCCA

Suppose that s2,6
a > 3s5,6

a . Since s1,3
a = 2s2,3

a from Proposition 5, then a(PN) = abc.
For any ṖN 2 D(PK

N), we get from Proposition 3 together with Proposition 4 that
S6

a(abc, ṖN) = (2Z + 1)s1,6
a + Zs5,6

a = (2Z + 1)s2,6
a + (3Z + 1)s5,6

a , while S6
a(bac, ṖN) =

(3Z + 1)s2,6
a . But since s2,6

a > 3s5,6
a , we get S6

a(bac, ṖN) > S6
a(abc, ṖN) for all Z > 2, in

contradiction with Kemeny-stability.
Suppose that s2,6

a < 3s5,6
a . Using again s1,3

a = 2s2,3
a from Proposition 5, we get a(P0

N) =

abc. For any ṖN 2 D(P0K
N ), we get from Proposition 3 together with Proposition 4 that

S6
a(abc, ṖN) = (2Z � 2)s2,6

a , while S6
a(cba, ṖN) = (Z � 2)s1,6

a + (2Z � 2)s5,6
a = (Z � 2)s2,6

a +

(3Z � 4)s5,6
a . Thus, S6

a(bac, ṖN) > S6
a(abc, ṖN) for Z large enough, in contradiction with

Kemeny-stability. Hence one must have s2,6
a = 3s5,6

a , which proves the necessary part.
(Sufficiency part). Consider any n 2 N together with any profile PN 2 L(A3)n having

the form

PN =

0

BBBB@

n1 n2 n3 n4 n5 n6

a a b b c c
b c a c a b
c b c a b a

1

CCCCA

with Â6
h=1 nh = n. Pick up any scoring rule a fulfilling the conditions (⇤) s1,3

a = 2s2,3
a >

0, and (⇤⇤) s1,6
a = 4

3 s2,6
a = 4

3 s3,6
a = 4s4,6

a = 4s5,6
a > s6,6

a = 0. We get that:
- S3

a(a, PN) = (2n1 + 2n2 + n3 + n5)s2,3
a

- S3
a(b, PN) = (2n3 + 2n4 + n1 + n6)s2,3

a

- S3
a(c, PN) = (2n5 + 2n6 + n2 + n4)s2,3

a
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A.3 proof of theorem 2 .3 .2

Moreover, suppose without loss of generality that s5,6
a = 1 and abc 2 D(a(PN)). It

follows that:
- n1 + 2n2 + n5 � n3 + 2n4 + n6 (1)
- 2n1 + n2 + n3 � n4 + n5 + 2n6 (2)
- n1 + 2n3 + n4 � n2 + 2n5 + n6 (3)
Now, pick up any ṖN 2 D(PK

N). Then we get from (⇤⇤) that:
- S6

a(abc, ṖN) = 4n1 + 3(n2 + n3) + (n4 + n5)

- S6
a(acb, ṖN) = 4n2 + 3(n1 + n5) + (n3 + n6)

- S6
a(bac, ṖN) = 4n3 + 3(n1 + n4) + (n2 + n6)

- S6
a(bca, ṖN) = 4n4 + 3(n3 + n6) + (n1 + n5)

- S6
a(cab, ṖN) = 4n5 + 3(n2 + n6) + (n1 + n4)

- S6
a(cba, ṖN) = 4n6 + 3(n4 + n5) + (n2 + n3)

Then one easily checks that (3) ) S6
a(abc, ṖN) � S6

a(acb, ṖN), (1) ) S6
a(abc, ṖN) �

S6
a(bac, ṖN), (1)+(2) ) S6

a(abc, ṖN) � S6
a(bca, ṖN), (2)+(3) ) S6

a(abc, ṖN) � S6
a(cab, ṖN),

and (1)+(2)+(3) ) S6
a(abc, ṖN) � S6

a(cba, ṖN). Hence abc 2 D(a(PN)) \ fa(ṖN), and the
proof is complete.

a.3 proof of theorem 2 .3 .2

Let a be a non-truncated and Kemeny-stable scoring rule. Consider profile PN 2
L(A6)A+B+C+1, where A > B > C > 1 :

PN =

0

BBBBBBBBBBB@

A B C 1
a b c f
c c a e
b a b d
d d d c
e e f b
f f e a

1

CCCCCCCCCCCA

Using Theorem 1, and normalizing S6
a by setting s1,6

a = 1, we get S6
a(a, PN) = A +

3
4 (B + C), S6

a(b, PN) = 3
4 (A + C) + B + 1

4 , S6
a(c, PN) = 3

4 (A + B) + C + 1
4 , S6

a(d, PN) =
1
4 (A + B + C) + 3

4 , S6
a(e, PN) = 1

4 (A + B) + 3
4 , and S6

a( f , PN) = 1
4 C + 1. Obviously, A,B

and C can be chosen to ensure that a(PN) = abcde f . Consider the following Kemeny
hyper-profile ṖN 2 D(PK

N)
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A.4 proof of theorem 2 .3 .3

ṖN =

0

BBBBBBBBBBBBBBBBBBB@

A B C 1
acbde f bcade f cabd f e f edcba
cabde f cbade f cabde f ...
abcde f bacde f cbad f e ...

... bcdae f cadb f e ...

... bcaed f cab f de ...

... bcad f e acbd f e ...

... cabde f ... ...

... abcde f ... ...

... ... ... ...

1

CCCCCCCCCCCCCCCCCCCA

We get that S6!
a (cabde f , ṖN) = (A + C)s2,6!

a + Bs7,6!
a + sz,6!

a , where z < 6!, whereas
S6!

a (abcde f , ṖN) = As3,6!
a + Bs8,6!

a + Csw,6!
a , where w > 6. Finally, Kemeny-stability im-

plies that s1,6!
a = ... = s8,6!

a , and sz,6!
a = 0, which contradicts that a is non-truncated.

a.4 proof of theorem 2 .3 .3

The proof is similar to the one above. Consider profile PN 2 L(A6)9 below:

PN =

0

BBBBBBBBBBB@

4 3 1 1
a b c c
c c a b
b a b a
d d d d
e e e e
f f f f

1

CCCCCCCCCCCA

We get S6
a(a, PN) = 4s1,6

a + s2,6
a + 4s3,6

a , S6
a(b, PN) = 3s1,6

a + s2,6
a + 5s3,6

a , S6
a(c, PN) =

2s1,6
a + 7s2,6

a , S6
a(d, PN) = 9s4,6

a , S6
a(e, PN) = 9s5,6

a , and S6
a( f , PN) = 0. If a is Kemeny-stable,

it follows from Theorem 1 that s2,6
a = s3,6

a , which implies that D(a(PN)) ✓ {P 2 L(A6) :
P = (abc ! Q), where Q 2 L({d, e, f })}. Consider the following Kemeny hyper-profile
ṖN 2 D(PK

N)
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A.5 proof of theorem 2 .3 .5

ṖN =

0

BBBBBBBBBBBBBBBBBBB@

4 3 1 1
acbde f bcade f cabde f cbade f
cabde f cbade f acbde f cabde f
abcde f bacde f cbade f bcade f

... bcdae f cadbe f cbdae f

... bcaed f cabed f cbaed f

... bcad f e cabd f e cbad f e

... cabde f abcde f abcde f

... abcde f ... ...

... ... ... ...

1

CCCCCCCCCCCCCCCCCCCA

We get that S6!
a (cabde f , ṖN) = 4s2,6!

a + 3s7,6!
a + s1,6!

a + s2,6!
a , whereas S6!

a (abcde f , ṖN) =

4s3,6!
a + 3s8,6!

a + s7,6!
a + s7,6!

a . Using s2,6!
a � s3,6!

a and s7,6!
a � s8,6!

a together with the strict-at-top
property, we have that S6!

a (cabde f , ṖN) > S6!
a (abcde f , ṖN). The conclusion follows from

the fact that abcde f maximizes S6!
a (P, ṖN) in D(a(PN)).

a.5 proof of theorem 2 .3 .5

Consider profile PN 2 L(A3)5 below:

PN =

0

BBBB@

2 1 1 1
a b c c
b a b a
c c a a

1

CCCCA

Pick up a scoring rule a hyper-stable for B. Since K ⇢ B, then a is Kemeny-stable.
It follows from Theorem 1 that score vectors must be such that (⇤) s1,3

a = 2s2,3
a > 0, and

(⇤⇤) s1,6
a = 4

3 s2,6
a = 4

3 s3,6
a = 4s4,6

a = 4s5,6
a > s6,6

a = 0. It follows that a(PN) = abc. It
is straightforward to check that the following hyper-profile PE

N is built from a 5-tuple
E = (e1, e1, e3, e4, e5) of betweenness-consistent preference extensions:

PE
N =

0

BBBBBBBBBBB@

2 1 1 1
abc bac cba cab
bac bca bca acb
acb abc bac cba
bca acb cab bca
cab cba acb abc
cba cab abc bac

1

CCCCCCCCCCCA
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A.6 proof of theorem 2 .4 .1

Note that all extensions in E but e4 are Kemeny. We get S6
a(abc, PE

N) = 12s5,6
a <

S6
a(bac, PE

N) = 13s5,6
a , which contradicts hyper-stability for B.

a.6 proof of theorem 2 .4 .1

Given any Q 2 L(Am), we write Q = (Q1 ! Q2 ! ... ! QH), where, for any 1  h  H,
Qh 2 L(Bh) is a segment of Q, and where {B1, B2, ..., BH} is a partition of Am into non-
empty sets. Lemma 7 is a useful intermediate step towards the proof.

Lemma A.6.1. Let Q, Q0 2 L(Am) be respectively defined by Q = (Q1 ! x ! Q2 ! y !
Q3) and Q0 = (Q1 ! y ! Q2 ! x ! Q3), where Qh 2 L(Bh), for 1  h  3. Then, for any
PN 2 L(Am)n with n is odd, and any E = (e1, ..., en) 2 Bn, [x µ(PN) y] ) [Q µ(PE

N) Q0].

Proof: Define B = {x, y} [ B2, where Q2 2 L(B2). Pick up any Pi 2 L(Am) where
xPiy, and consider the restriction Pi|B of Pi to B. We can write Pi|B = (V1 ! x ! V2 !
y ! V3), where V1, V2, and V3 are segments of Pi|B, with Vh 2 L(B2h), 1  h  3, and
{B21, B22, B23} being a partition of B2. Then A(Pi|B, Q|B) = {x, y}[ [{x}⇥ (B22 [ B23)][
[(B21 [ B22) ⇥ {y}] [ A(Pi|B2 , Q2), while A(Pi|B, Q0|B) = A(Pi|B, Q|B)\{x, y}. Hence,
A(Pi|B, Q0|B) ⇢ A(Pi|B, Q|B). Since Q and Q0 have the same segment Q1 at top and the
same segment Q3 at bottom, then A(Pi, Q0) ⇢ A(Pi, Q). From betweenness-consistency
of ei, we get Q ei(Pi) Q0. Finally, x µ(PN) y implies that |{i : xPiy}| > n

2 , hence that
|{i : Q ei(Pi) Q0}| > n

2 and the conclusion follows ⇤

Given PN 2 L(Am)n, the top-cycle for PN is the subset T(B, PN) of Am containing
all maximal elements for q(PN). The transitive closure partition of Am is the ordered
set S(q, PN) = (S1, S2, ..., SJ) of indifference classes for q(PN), where 8j  j0 2 {1, ..., J},
8(x, x0) 2 Sj ⇥ Sj0 , x q(PN) x0 and ¬(x0 q(PN) x) if j < j0. By definition of q, one has
D(q(PN)) = {Q 2 L(Am) : Q = (Q1 ! Q2 ! ... ! QJ) where, for each j = 1, ..., J, Qj

2 L(Sj)}. The proof of Theorem 6 is complete if we show that for any E = (e1, ..., en) 2
Bn, D(q(PN)) \ T(L(Am), PE

N) 6= ∆.
Pick up any P 2 L(Am)\D(q(PN)) and any E = (e1, ..., en) 2 Bn. Define B(P) = {x 2

Am : x 2 Sj for some j and 8y 2 Sj0\{x}, xPy ) j0 > j}, and B = Am\B(P). Consider
order Q(P) 2 D(q(PN)) such that:

- Q(P) |B(P)= P |B(P)

- xPy ) x Q(P) y for all x, y 2 B \ Sj for some j 2 {1, ..., J}.
Write P |B= b1b2...bT, where T = |B|. There exists a permutation s of {1, ..., T}

such that Q(P) |B= bs(1)bs(2)...bs(T). Then, there is a finite sequence {wh}1hH of
transpositions of Am, where H  T, such that w1 swaps b1 and bs(1) in P |B, leading
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A.7 proof of proposition 2 .4 .1

to P1 |B= bw1(1)bw1(2)...bw1(T), w2 swaps bw1(2) and bs(2) in P1 |B, leading to P2 |B=
bw2�w1(1)bw2�w1(2)...bw2�w1(T), ..., wH swaps bs(T) and bwT�1�...�w1(T) in PT�1 |B, leading to
PT |B= Q(P) |B. Since bs(1) µ(PN) bs(2) µ(PN)...µ(PN) bs(T), then Lemma 7 ensures
that for all 1  h  H, either Ph+1 |B= Ph |B or (Ph+1 |B) µ(PE

N |B) (Ph |B). Hence
(Q(P) |B) q(PE

N |B) (P |B), and thus Q(P) q(PE
N) P. This proves that for any order P not

in D(q(PN)), there exists Q 2 D(q(PN)) such that Q q(PE
N) P.

Finally, since T(L(Am), PE
N |D(q(PN))) 6= ∆, there exists Q 2 D(q(PN)) such that Q q(PE

N)

Q0 for all Q0 2 D(q(PN))\{Q}. Thus, there exists Q 2 D(q(PN)) such that Q q(PE
N) Q0 for

all Q0 2 L(Am)\{Q}. Thus D(q(PN))\ T(L(Am), PE
N)) 6= ∆ and the proof is complete.

a.7 proof of proposition 2 .4 .1

Let PN = (P1..., Pi, ..., Pn) 2 L(Am)n. Choose any E = (e1, ..., en) 2 Bn. Suppose with-
out loss of generality that µ(PN) = a1a2...am. Moreover, suppose that CW(PE

N) = Q =

b1b2...bm, with b1 6= a1 = bh for some 2  h  m. Now define Q0 = a1b2...bh�1bhbh+1...bm 2
L(Am). It follows from Lemma 7 above that [1 µ(PN) b1] ) [Q0 µ(PE

N) Q0], which con-
tradicts CW(PE

N) = Q. Thus, b1 = a1. We conclude by iterating the same argument for
b2, ..., bm.
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B
A P P E N D I X T O C H A P T E R 4

b.1 appendix : logical independence of axioms

Regularity: The following measure satisfies replication invariance, neutrality and sup-
port independence but not regularity:

Y0(p) = Â
{a,b}2Ā

dab(p)
n

.

To show it satisfies the first three axioms is rather straightforward. To see violation of
regularity it would suffice to consider a unanimous profile.
Support independence: Consider the function Ȳ which assigns 1 to all but unanimous
profiles, to which it assigns 0. It is quick to observe that his function fails only the
support independence axiom.
Neutrality: For any set of alternatives A, let x, y 2 A be a predefined choice of pairs. The
following measure satisfies replication invariance, regularity and support independence
but not neutrality:

Ẏ(p) =
n � dxy(p)

n
Replication Invariance: Let m = 2, n = 3. We first construct a function K̄ such that
K̄(p) = 0 for all unanimous profiles, and K̄(p) = 1 for all other profiles. Consider the
measure below which for n = 3 and m = 2 equals K̄(p) and in all other cases equals
Y⇤(p):

Ŷ(p) =

(
K̄(p) if m = 2 and n = 3
Y⇤(p) otherwise.

This measure satisfies neutrality, support independence, regularity but not replication
invariance.
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C
A P P E N D I X T O C H A P T E R 5

c.1 results
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Figure C.1.2.. Issues.
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C.2 rescaling and several other measures

c.2 rescaling and several other measures

The following analysis of polarization with a rescaling method is provided to make
sample of the approaches in aggregating issue-wise data.

1 7

�1 +1

�7 +7

1 5

Issues

Collapse

Combine

Collapse

Figure C.2.1.. The rescaling method employed in (Abramowitz, 2006).

Abramowitz (2006) employs the scaling method depicted in Figure C.2.1 in the fol-
lowing way.1 First, the responses from the survey questions are collapsed into three
categories (liberal, moderate and conservative) with groupings, respectively, 1 � 3, 4
and 5 � 7 for questions with seven scales. For questions with four scale, the groupings
were 1-2, 3 and 4. Second this new scale then combined into a fifteen point liberal-
conservative scale, i.e. a respondent with liberal position on all issues got -7. Then, this
fifteen point scale collapsed again into a 5 point scale: (�7,�5) as consistent liberals,
(�4,�2) as moderate liberals, (�1,+1) as inconsistents etc. Finally, on this 5 point scale,
the percentage at the central position, position 3, and positions 1 and 5 is compared over
years. A decrease at position 3, for instance, indicated an increase in polarization.

Abramowitz and Saunders (2008) also use the average correlation between responses
to different issues and see the values 0.20 in 1980s, 0.26 in 1990s and 0.32 in 2004 as a
proof of increase in ideological thinking, hence in polarization.

Another measure in the same paper is introduced by first arguing that the ones whose
opinions matter first are the ones that are well informed and politically engaged. Po-
litical engagement is measured with interest (in political campaign), knowledge (an
aggregate of 10 questions including accurately placing candidates on abortion and lib-
eral/conservative scales) and participation. Then comparing the weight of individuals
with high stances (on an omnibus scale where responses to 16 questions are collapsed,
combined and recoded), for example, among the low and high knowledge individuals,
it is shown that polarization is more among the high knowledge individuals.

1 A very similar approach can be found in Abramowitz and Saunders (2008), among others.
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C.2 rescaling and several other measures

Finally, the authors also create an overall index of political engagement by combining
the three measures of interest, knowledge and participation to eventually show that
(although the means are the same) the standard deviation of high engagement group
being the double of the low engagement group on the omnibus scale is a strong indicator
of the high polarization among the high engagement group. Furthermore, they compare
the number of respondents on the extreme (left and right) points on the scale for each
group.

In another very influential work, Alesina et al. (1999), we see the median distance
to median (MDM) as a measure for polarization where authors argue that polarization
in the form of preference variations among ethnic groups is the underlying reason for
public good underprovision.

−4 −3 −2 −1 0 1 2 3 4
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0.3

0.4

0.5

0.6

0.7
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Figure C.2.2.. A case for median distance to median.

Figure C.2.2 presents two distributions, the uni-modal distribution is the standard
Normal distribution and the bimodal distribution is a mixture of two Normal distribu-
tions with means �0.8 and 0.8 and a common variance of 0.2. Hence MDM for the
bimodal distribution is smaller than the unimodal distribution, leading to conclude un-
der the analysis of Alesina et al. (1999) that it is less polarized. But this would contradict
an intuitive approach that considers heavy concentrations as an ingredient of polariza-
tion. In fact MDM is just a proxy for the variance of the distribution and its implications
regarding to polarization is no more that the implications of the variance, that of which
we demonstrated in the above text as a bad measure of polarization.
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c.3 axiomatic analysis of the der measure

The overarching idea of the DER measure is to aggregate pairwise antagonisms in the
society. For the sake of illustration, suppose we have a distribution of preferences that
can be described by a function f defined on R+. Assuming that the distance between
any two point on R+ represents the alienation between two individuals with preferences
represented with those points, the antagonism, as argued in Duclos et al. (2004), can
be seen as a function of the alienation as well as the identification which would be a
function of the density at the point. So the effective antagonism of x towards y under f can
be represented by a function T( f (x), |x � y|). It is assumed that T is increasing in |x � y|
and that T(·, 0) = T(0, ·). The polarization then would be (proportional to) the sum of
all effective antagonisms:

P( f ) =
Z Z

T( f (x), |x � y|) f (x) f (y)dxdy.

Within this large class of functions, the analysis advances on searching for subclasses
that satisfy certain plausible axioms. Before getting into the presentations of axioms, we
need to define one central item of the analysis, namely, a squeeze. A squeeze is a sort of
mean-preserving reduction in the spread of a distribution. More specifically, a l-squeeze,
used in what follows, of f is a transformation such that:

f l(x) ⌘ 1
l

f (
x � [1 � l]µ

l
).

Any l-squeeze collapses the density inwards towards the global mean and the following
properties can be proved. (i) For each l 2 (0, 1), f l is a density function. (ii) For each
l 2 (0, 1), f l shares the same mean with f . (iii) 0 < l < l0 < 1 implies that f l second-
order stochastically dominates f l0

. Finally, (iv) as l # 0, f l converges weakly to the
degenerate measure granting all weight to µ.

Given this, a measure in the above class is shown in Duclos et al. (2004) to satisfy the
following four axioms, DER1-4, if and only if it is proportional to

Pa( f ) ⌘
Z Z

f (x)1+a f (y)|x � y|dydx

for some a 2 [0.25, 1].

DER1 If a distribution is composed of a single basic density, then a squeeze of that density
cannot increase polarization.

126



C.3 axiomatic analysis of the der measure

Figure C.3.1.. A squeeze should not increase polarization.

DER2 If a symmetric distribution is composed of three basic densities with the same root
and mutually disjoint supports, then a symmetric squeeze of the side densities
cannot reduce polarization.

Figure C.3.2.. A symmetric double squeeze should not decrease polariza-
tion.

DER3 Consider a symmetric distribution composed of four basic densities with the same
root and mutually disjoint supports, as in Figure 4. Slide the two middle densities
to the side as shown (keeping all supports disjoint).Then polarization must go up.

Figure C.3.3.. A symmetric outward slide should increase polarization.

DER4 If P(F) � P(G) and p > 0, then P(pF) � P(pG), where pF and pG represent
(identical) population scalings of F and G, respectively.
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c.4 data

The wording of the questions we used in the empirical analysis change slightly in dif-
ferent years. We quote here some representative version. The questions are the same in
cases where respondents locate themselves and the political stimuli (parties and candi-
dates).

1. Liberal-Conservative Scale

We hear a lot of talk these days about liberals and conservatives. Here is a seven-
point scale on which the political views that people might hold are arranged from
extremely liberal to extremely conservative.

Q. Where would you place yourself on this scale, or haven’t you thought much
about this?

1. extremely liberal
2. liberal
3. slightly liberal
4. moderate, middle of road
5. slightly conservative
6. conservative
7. extremely conservative
8. Don’t know
9. NA
0. Haven’t thought much

2. Aid to Blacks

Some people feel that the government in Washington should make every effort to
improve the social and economic position of blacks. Others feel that the govern-
ment should not make any special effort to help blacks because they should help
themselves.

Q. Where would you place yourself on this scale, or haven’t you thought much
about this?

1. government should help blacks
2., 3., 4., 5., 6.,
7. blacks should help themselves
8. Don’t know
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9. NA
0. Haven’t thought much

3. Defense Spending

Some people believe that we should spend much less money for defense. Others
feel that defense spending should be greatly increased.

Q. Where would you place yourself on this scale, or haven’t you thought much
about this?

1. greatly decrease defense spending
2., 3., 4., 5., 6.,
7. greatly increase defense spending
8. Don’t know
9. NA
0. Haven’t thought much

4. Jobs and Living Standards

Some people feel the government in Washington should see to it that every person
has a job and a good standard of living. others think the government should just
let each person get ahead on his own.

Q. Where would you place yourself on this scale or haven’t you thought much
about this?

1. government see to a job and good standard of living
2., 3., 4., 5., 6.,
7. government let each person get ahead on own
8. Don’t know
9. NA
0. Haven’t thought much

5. Health Insurance

There is much concern about the rapidrise in medical and hospital costs. Some
people feel there should be a government insurance plan which would cover all
medical and hospital expenses for everyone. Others feelthat all medical expenses
should be paid by individuals, and through private insurance plans like blue cross
or other company-paid plans.

Q. Where would you place yourself on this scale, or haven’t you thought much
about this?
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1. government insurance plan
2., 3., 4., 5., 6.,
7. private insurance plan
8. Don’t know
9. NA
0. Haven’t thought much

6. Abortion

There has been some discussion about abortion during recent years.

Q. Which one of the opinions on this page best agrees with your view? You can
just tell me the number of the opinion you choose.

1. By law, abortion should never be permitted.
2. the law should permit abortion only in case of rape, incest or when the woman’s
life is in danger.
3. The law should permit abortion for reasons other than rape, incest, or danger
to the woman’s life, but only after the need for the abortion has been clearly estab-
lished.
4. By law, a woman should always be able to obtain an abortion as a matter of
personal choice.
7. Other
8. Don’t know
9. NA
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d.1 predictions and experimental results

Phase 1 Phase 2 Phase 3 Phase 4

Session s w s w s w s w e
A 5 0.888 4.67 0.868 4.84 0.935 4.93 0.987 0.164

B 5 0.887 4.66 0.868 4.83 0.935 4.93 0.987 0.185

1 5 0.886 4.48 0.849 4.70 0.922 4.87 0.984 0.233

2 5 0.856 4.33 0.802 4.61 0.890 4.81 0.970 0.554

3 5 0.882 4.46 0.841 4.68 0.918 4.85 0.983 0.297

4 5 0.871 4.40 0.823 4.65 0.907 4.83 0.978 0.420

5 5 0.886 4.48 0.849 4.70 0.922 4.87 0.984 0.229

6 5 0.874 4.42 0.827 4.66 0.910 4.83 0.979 0.396

7 5 0.882 4.46 0.841 4.68 0.918 4.85 0.983 0.297

1 � 7 ave. 4.43 0.833 4.67 0.913 4.84 0.980 0.346

A, B ave. 4.66 0.868 4.84 0.935 4.93 0.987 0.175

All ave. 0.879 0.308

Table D.1.1.. Nash equilibrium strategies, s, and predicted group accura-
cies, w, including the unbiased phase and A and B sessions.
Rightmost column gives session averages for logistic error

value estimations that are used in calculating strategies.

Phase A B 1 2 3 4 5 6 7

1 5.01 4.78 4.97 4.52 4.74 5.20 5.13 4.46 4.85

2 4.27 4.24 3.91 4.00 4.00 3.74 4.53 4.19 4.05

3 4.64 4.29 4.12 3.86 4.25 3.23 4.39 4.05 4.01

4 4.47 4.21 4.29 3.54 4.06 3.29 4.17 4.08 4.00

Table D.1.2.. Phase averages for cutoff estimations in each session.
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Figure D.1.1.. Frequencies of responses to the Question 2a: “If answered
”Yes” in Question 2, what is the percentage of the other par-
ticipants using the same reasoning, according to your estima-

tion?”.

Phase A B 1 2 3 4 5 6 7

1 0.938 0.938 0.833 0.708 0.896 0.708 0.854 0.750 0.625

2 0.833 0.792 0.792 0.667 0.854 0.792 0.792 0.792 0.771

3 0.833 0.833 0.792 0.708 0.917 0.833 0.875 0.917 0.792

4 1.000 0.917 0.917 0.500 0.917 0.667 0.833 0.750 0.833

Table D.1.3.. Phase averages for accurate group decision frequencies in each
session.

d.2 proofs

The expected utility
E(si)i2N ,w[u(µ((vi(si))i2N , w))]

can be written as

q
2

Pr

"

Â
1jn

sj + Â
1jn

bj > 0|w = 1

#
+

1 � q
2

Pr

"

Â
1jn

sj + Â
1jn

bj < 0|w = �1

#
.

Since the sum of signals are also distributed normally, i.e. with N (wn, s
p

n), we have
the following first order condition

qf

✓�Âj 6=i bj � bi � n
s
p

n

◆
� (1 � q)f

 
�Âj 6=i bj � bi � (�n)

s
p

n

!
= 0,
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where f is the normal density function which gives the best response function

b(b�i) = � Â
j2N\{i}

bj +
s2

2
ln(q/(1 � q)), (⇤)

where b�i denotes the biases of all voters except i.
An ECH1 player has a belief that the frequency of ECH0 players is g1(0) and the

frequency of ECH1 is 1 � g1(0) where

g1(0) =
f t(0)

f t(0) + f t(1)
=

1
1 + t

.

Denoting the ECH1 players’ strategy by bECH
1 and ECH0 strategy by b0, we have

bECH
1 = � n � 1

1 + tn
b0 +

s2

2
ln(q/(1 � q)),

using (⇤). So we have that, as n ! •,

bECH
1 (b0) ! � 1

t
b0 +

s2

2
ln(q/(1 � q)).

Moving to second level, consider first the CH model. In what follows, we write bCH
1

in place of b(b0) in (⇤) above.

bCH
2 = �(n � 1)[b0g1(0) + bCH

1 g1(1)] +
s2

2
ln(q/(1 � q)),

= �(n � 1)
✓

1 � (n � 1)t
1 + t

◆
b0 +

✓
1 � (n � 1)t

1 + t

◆
s2

2
ln(q/(1 � q)).

For ECH2, note first that

g2(0) =
f t(0)

f t(0) + f t(1) + f t(2)
=

2
2 + 2t + t2 ,

similarly, that

g2(1) =
2t

2 + 2t + t2 and g2(2) =
t2

2 + 2t + t2 .
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So an ECH2 best responds, according to this belief as follows

bi = �(n � 1)[b0g2(0) + bECH
1 g2(1) + b2g2(2)] +

s2

2
ln(q/(1 � q)),

=
�(n � 1)

2 + 2t + t2

✓
2 � 2t(n � 1)

1 + tn

◆
b0 �

t2(n � 1)
2 + 2t + t2 b2 +

✓
1 � 2t(n � 1)

2 + 2t + t2

◆
s2

2
ln(q/(1 � q)).

For equilibrium, we have,

b⇤2

✓
1 +

t2(n � 1)
2 + 2t + t2

◆
=

�(n � 1)
2 + 2t + t2

✓
2 � 2t(n � 1)

1 + tn

◆
b0 +

✓
1 � 2t(n � 1)

2 + 2t + t2

◆
s2

2
ln(q/(1 � q)),

b⇤2 = � 2(n � 1)(t + 1)
(2 + 2t + t2n)(1 + tn)

b0 +

✓
2 + 4t + t2 � 2tn

2 + 2t + t2n

◆
s2

2
ln(q/(1 � q)).

Where we have the first coefficient vanishing as n ! •, while the second one con-
verges to � 2

t :

bECH
2 (b0) ! �s2

t
ln
✓

q
1 � q

◆
.

d.2.1 Proof of Proposition 1

Proof. CH
Given b0 and t, we have (b0, bCH

1 (b0), bCH
2 (b0)) with frequencies pt = 1

2+2t+t2 (2, 2t, t2)

as above. The probability of the correct decision is (Pr[d = 1|w = 1] + Pr[d = �1|w =

�1])/2 where

Pr[d = 1|w = 1] = Pr

"

Â
1jn

sj + S(b0, t, s, n, q) > 0|w = 1

#
,
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if S(b0, t, s, n, q) denotes the summation of biases under CH. Algebra shows that

(2 + 2t + t2)S(b0, t, s, n, q) =
✓

2 � 2(n � 1)t � t2(n � 1)
1 � (n � 1)t

1 + t

◆
b0

+

✓
s2t +

t2s2

2

✓
1 � (n � 1)t

1 + t

◆◆
ln
✓

q
1 � q

◆
.

We see that ∂S/∂n is a linear function of and has the same sign with b0. Furthermore,
as n ! •,

S ! sgn(b0)•

and

Pr

"

Â
1jn

sj + S(b0, t, s, n, q) > 0|w = 1

#
=

1
2

Erfc
✓
�n � S(b0, t, s, n, q)p

2ns

◆

where
�n � S(b0, t, s, n, q)p

2ns
! sgn(�b0)•.

Similarly,

Pr

"

Â
1jn

sj + S(b0, t, s, n, q) < 0|w = �1

#
=

1
2

Erfc
✓
�n + S(b0, t, s, n, q)p

2ns

◆

where
�n + S(b0, t, s, n, q)p

2ns
! sgn(b0)•,

as n ! •. Without loss of generality, assume b0 > 0. Then the former probability con-
verges to 1 whereas the latter to 0. Thus, the probability of a correct decision converges
to 1/2.

ECH
Given b0 and t, we have (b0, bECH

1 (b0), bECH
2 (b0)) with frequencies pt = 1

2+2t+t2 (2, 2t, t2)

since we assume from now on that the level-2 has the correct belief. The probability of
the correct decision is (Pr[d = 1|w = 1] + Pr[d = �1|w = �1])/2 where

Pr[d = 1|w = 1] = Pr

"

Â
1jn

sj > S(b0, t, s, n, q)|w = 1

#
,
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if S(b0, t, s, n, q) denotes minus the summation of biases under ECH. Algebra shows
that
✓
� n

2 + 2t + t2

◆�1
S(b0, t, s, n, q) =

✓
2 � (n � 1)

1 + tn
2t � 2(n � 1)(1 + t)

(2 + 2t + t2n)(1 + tn)
t2
◆

b0

+

✓
2t +

2 + 4t + t2 � 2tn
2 + 2t + t2n

t2
◆

s2

2
ln
✓

q
1 � q

◆
,

or, simply,

S(b0, t, s, n, q) = � 2n(1 + t)

(1 + nt)(2 + 2t + nt2)
b0 �

nt(2 + t)

2 + 2t + nt2
s2

2
ln
✓

q
1 � q

◆
.

As n ! •, we have

S(b0, t, s, n, q) ! � (2 + t)s2

2t
ln
✓

q
1 � q

◆
.

Hence the probability

Pr
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1jn

sj < S(b0, t, s, n, q)|w = �1

#
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2
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✓
�n � S(b0, t, s, n, q)p
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,

as well as

Pr

"

Â
1jn

sj > S(b0, t, s, n, q)|w = 1

#
=

1
2

Erfc
✓
�n + S(b0, t, s, n, q)p

2ns

◆
,

are approaching 1, which means that probability of correct decision is converging to
certainty under both states of the world. Note that here we have Erfc( xp

2
) = 1 � 2F(x),

where F is the cumulative distribution function for a standard normal variable.

d.2.2 Proof of Proposition 2

Proof. In this case we have

S(b0, t, s, n, q)|t=1/n = �n(1 + n)
3 + 2n

b0 +
1 + 2n
6 + 4n

s2 ln
✓

q
1 � q

◆
,
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which we denote by S(b0, 1/n, s, n, q).
So, first

Pr

"

Â
1jn

sj > S(b0, 1/n, s, n, q)|w = 1

#
=

1
2

Erfc
✓
�n + S(b0, 1/n, s, n, q)p

2ns

◆
,

where
�n + S(b0, 1/n, s, n, q)p

2ns
! sgn(�1 � b0

2
)•.

And also

Pr

"

Â
1jn

sj < S(b0, 1/n, s, n, q)|w = �1

#
=

1
2

Erfc
✓
�n � S(b0, 1/n, s, n, q)p

2ns

◆
,

where
�n � S(b0, 1/n, s, n, q)p

2ns
! sgn(�2 + b0)•.

We know that Erfc(�•) = 2, Erfc(•) = 0 and Erfc(0) = 1, hence probability of
correct decision is 1 in the limit if b 2 (�2, 2), 0 if |b| > 2 and 3/4 if b 2 {�2, 2}.

d.2.3 Proof of Proposition 3

Proof. Denote the level�0 strategy as b0 for all models.
Level-k approach

For higher levels, we have

b1(n) = �(n � 1)b0,

b2(n) = �(n � 1)b1 = �(n � 1)[�(n � 1)b0] = [�(n � 1)]2b0,
...

bk(n) = [�(n � 1)]kb0.

Hence we have that bk(n)/b0(n) 2 O(nk).
Cognitive Hierarchy

The proof is done by induction. Observe first that, as in level�k, b1(n) = �(n � 1)b0,
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hence b1(n)/b0(n) 2 O(n). Now suppose for t 2 N, we have that bt(n)/b0(n) 2 O(nt).
For t + 1, it holds that:

bt+1(n) = �(n � 1)

 
1

Ât
j=0 f (j)

t

Â
j=0

f (j)bj(n)

!
,

bt+1(n)/b0(n) = �(n � 1)

 
1

Ât�1
j=0 f (j)

t�1

Â
j=0

f (j)bj(n)/b0(n)

!
� (n � 1) f (t)bt(n)/b0(n).

Hence, it can be shown that the first term in the summation is dominated by the latter,
which belongs to O(nt+1).
Endogenous Cognitive Hierarchy
Oberve first that we have the following:

b1(n) = �(n � 1)
✓

f (0)
f (0) + f (1)

b0 +
f (1)

f (0) + f (1)
b1(n)

◆
,

which can be simplified as;

b1(n) =
�(n � 1) f (0)b0

f (0) + f (1)� (n � 1) f (1)
.

In fact, can be shown also is that

bk(n) =
�(n � 1) f (0)b0(n)� (n � 1)Âk�1

j=1 f (j)bj(n)

Âk
j=0 f (j)� (n � 1) f (k)

.

So we have bk(n)/b0 ! C for some constant C as n ! •.
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