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Abstract

This thesis aims at providing better understanding of the perturbative expansion of gauge
theories with and without supersymmetry. At tree level, the BCFW recursion relations
are analyzed with respect to their validity for general off-shell objects in Yang-Mills
theory, which is a significant step away from their established zone of applicability. Un-
physical poles constitute a new potential problem in addition to the boundary behavior
issue, common to the on-shell case as well. For an infinite family of massive fermion cur-
rents, both obstacles are shown to be avoided under certain conditions, which provides
a natural recursion relation. At one loop, scattering amplitudes can be calculated from
unitarity cuts through their expansion into known scalar integrals with free coefficients.
A powerful method to obtain these coefficients, namely spinor integration, is discussed
and rederived in a somewhat novel form. It is then used to compute analytically the in-
finite series of one-loop gluon amplitudes in N = 1 super-Yang-Mills theory with exactly
three negative helicities. The final part of this thesis concerns the intriguing relationship
between gluon and graviton scattering amplitudes, which involves a beautiful duality be-
tween the color and kinematic content of gauge theories. This BCJ duality is extended
to include particles in the fundamental representation of the gauge group, which is shown
to relieve the restriction of the BCJ construction to factorizable gravities and thus give
access to amplitudes in generic (super-)gravity theories.

Résumé

Cette thèse vise à assurer une meilleure compréhension de l’expansion perturbative des
théories de jauge avec et sans supersymétrie. Au niveau des arbres, les relations de
récurrence BCFW sont analysées par rapport à leur validité pour des objets généraux
off-shell en théorie de Yang-Mills, qui est un pas considérable en dehors de leur zone
d’application établie. Les pôles non physiques constituent un nouveau problème en plus de
celui du comportement limite, ce dernier commun au cas on-shell aussi. Pour une famille
infinie de courants de fermions massifs, on presente certaines conditions qui garantissent
que ces deux obstacles sont évités, fournissant une relation de récurrence naturelle. À une
boucle, des amplitudes de diffusion peuvent être calculées à partir de coupes d’unitarité
grâce à leur expansion en intégrales scalaires connues avec des coefficients libres. Une
méthode puissante pour obtenir ces coefficients, à savoir l’intégration spinorielle, est con-
siderée et rederivée sous une forme assez originale. Elle est ensuite utilisée pour calculer
analytiquement la série infinie des amplitudes des gluons à une boucle dans la théorie de
N = 1 super-Yang-Mills avec exactement trois hélicités négatives. La dernière partie de
cette thèse concerne la relation intrigante entre des amplitudes de diffusion des gluons et
des gravitons, qui implique une belle dualité entre la couleur et le contenu cinématique de
la théorie de jauge. On généralise cette dualité BCJ pour inclure des particules dans la
représentation fondamentale du groupe de jauge, et on montre que cela lève la restriction
de la construction BCJ aux gravités factorisables et ainsi donne accès à des amplitudes
dans des théories de (super-)gravité générales.
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General audience abstract

The scattering amplitudes subfield of particle physics occupies the space between collider
phenomenology and string theory, thus making some mathematical insights from purely
theoretical studies useful for the physics accessible by present-day experiments. Scattering
amplitudes are excellent objects to investigate as in many cases they turn out to be
calculable analytically. One method to compute them is recursive: once amplitudes
for three particles are known, they can be used to construct those with any number of
particles. The amplitudes that cannot be obtained by recursion can usually be cut into
those that can. In this cut approach, the simpler ones are served as an input to compute
more complicated ones. In this thesis, both kinds of methods are considered and used to
obtain new analytic results for infinite families of scattering amplitudes.

Résumé général

Le domaine des amplitudes de diffusion se situe entre la phénoménologie des collisionneurs
et la théorie des cordes. Grâce à cela, certaines idées mathématiques des études purement
théoriques deviennent utiles à la physique accessible par les expériences actuelles. Les
amplitudes de diffusion sont d’excellents objets à étudier, car dans de nombreux cas,
elles s’avèrent être analytiquement calculables. L’une des méthodes pour les calculer
est récursive : une fois les amplitudes pour trois particules connues, elles peuvent être
utilisées pour construire celles avec un nombre quelconque de particules. Les amplitudes
ne pouvant être obtenues par récurrence peuvent généralement être coupées en celles
qui le peuvent. Avec cette approche-là, les plus simples servent de données d’entrée
pour calculer les plus compliquées. Dans cette thèse, les deux types de méthode sont
considérés et utilisés pour obtenir de nouveaux résultats analytiques pour des familles
infinies d’amplitudes de diffusion.
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Introduction

In the last couple of decades, there has been impressive progress in understanding per-
turbative expansion of gauge theories. First came the realization that scattering matrix
elements not only constitute basic words of quantum field theoretic language, but also turn
out to be perfect objects to calculate analytically, as was originally seen at tree level [1].
Then followed a number of beautiful insights at one loop [2–4] and beyond [5–8], not to
mention tree level again [9–11].

These developments resulted in taming gauge theory amplitudes analytically for in-
creasing and in some cases arbitrary number of particles. Such remarkable progress was
most welcome due its relevance to the phenomenology of modern colliders, as precise
predictions of the Standard Model are crucial for extracting new physics from the exper-
imental data. This resulted in many process-specific high-multiplicity calculations (see,
for example, the review [12]), as well as a number of semi-automated programs for more
general next-to-leading order computations [13–19].

Most collider-relevant calculations are numerical, as the analytic complexity tends to
be quite prohibitive for many theories of phenomenological interest, of which quantum
chromodynamics is the prime example. However, it is usually the analytic understanding
that allows for efficient methods to be found and then be used numerically. Hence the
interest in different supersymmetric versions of QCD, which seem more complicated only
from the Lagrangian point of view, but in practice turn out to be much more suitable for
analytic studies.

Apart from the collider-related physics, there is a lot to learn about gravity ampli-
tudes. At first glance, they might seem like rather odd objects to study, as measuring the
cross-section of graviton scattering experimentally is rather unrealistic, to put it mildly.
Nonetheless, amplitude calculations can help answer such basic and yet unresolved ques-
tions as the ultraviolet properties of quantum gravity. Although pure Einstein gravity
is known to diverge starting from two loops [20–22], the situation is still rather unclear
for its supersymmetric extensions [23, 24]: the extent to which supersymmetry improves
the UV behavior of gravity is not well understood. Outstandingly, the absence of the
four-loop divergence in the maximally-supersymmetric gravity was discovered by a per-
turbative calculation [25] and only then followed by symmetry arguments [26–30]. The
next possible divergence is expected at seven loops, which presently seems out of reach,
but the expected divergences of the lower-supersymmetry cases [31, 32] are accessible
by modern methods and are likely to provide more insight in the structure of quantum
gravity.

In this thesis, we consider scattering amplitudes of various kinds: in gauge theory
and in gravity, with and without supersymmetry; we also review and develop different
techniques to deal with them.
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By now, there are three most basic theoretical tools that came into universal use:

• decomposing full amplitudes into simpler color-ordered components [33–35];

• using helicity spinors both for fermions and bosons [36–38];

• supersymmetric Ward identities and superspace coordinates [39–43].

When needed, we recall some aspects of these standard techniques. They are also nicely
explained in Ref. [44] and in the recent reviews [45, 46].

At tree level, it is recursive methods that provide an efficient way to calculate am-
plitudes both numerically and analytically. One such approach, the Berends-Giele re-
cursion [47] operates with intermediate objects, the so-called off-shell currents, which
correspond to amplitudes with one leg off the mass shell. A more modern method, the
Britto-Cachazo-Feng-Witten [10, 11] recursion, deals exclusively with fully on-shell ob-
jects. In Chapter 1, based on Ref. {1}, we will combine features of both approaches and
discover that the on-shell recursion can be applicable to off-shell objects. In particular,
we use it to compute analytically an infinite family of massive fermion currents. Though
these currents are essentially an off-shell continuation of tree-level amplitudes, they can
also serve [48] as key ingredients for unitarity-based calculations of one-loop amplitudes
with massive quarks.

More generally, at loop level, the BCFW recursion has more limited use [49]. Nev-
ertheless, many impressive analytic results [2, 50–58] are known thanks to a variety of
modern on-shell methods. In Chapter 2, based on Ref. {2}, we review the powerful
method of spinor integration [54, 59] and then employ it to calculate analytically the in-
finite series of one-loop gluon amplitudes in N = 1 super-Yang-Mills theory with exactly
three negative helicities. Remarkably, this is achieved thanks to the concise analytic for-
mulas [4, 60] for tree-level amplitudes in N = 4 SYM, which can be obtained through a
supersymmetric version of the BCFW recursion [61,62].

Our results add to the body of one-loop amplitudes known analytically to any mul-
tiplicity. Interestingly, despite being computed in a supersymmetric Yang-Mills theory,
they can be regarded as a part of phenomenologically-relevant QCD amplitudes. More-
over, we also use them to briefly discuss the applicability of the loop-level BCFW recursion
beyond the previously established cases [49].

Somewhat unexpectedly, the progress in gauge theory amplitudes greatly boosted the
understanding of perturbation theory of gravity: the integrands for graviton scattering
amplitudes seem to be elegantly related to those for gluon scattering amplitudes [5,
6]. More precisely, the problem of constructing gravity integrands becomes reduced to
finding such a representation of the gauge theory integrands that its color and kinematic
ingredients satisfy the same algebraic identities. Such representations are said to obey the
Bern-Carrasco-Johansson color-kinematics duality [5, 6]. They were found in numerous
calculations [31,32,63–72] up to four loops in N = 4 SYM [25]. At tree level, this duality
is usually perceived in terms of the celebrated Kawai-Lewellen-Tye relations [73] between
tree-level amplitudes in open and closed string theory, further improved by monodromy
relations and the momentum kernel [74–78], but a first-principle understanding at loop
level is still missing.1 One attempt to shed light on the string-theoretic origin of the BCJ

1With the exception of one-loop amplitudes in the self-dual sector of Yang-Mills theory [79].
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duality was made in Ref. {3}, where both gauge theory and gravity were considered in
the purely closed-string context.

The color-kinematics duality was originally formulated for gauge theories with purely-
adjoint field content. Moreover, it generically gave graviton amplitudes which belong to
gravity theories with some hardwired matter content. For example, the gravity that can
be obtained from the pure non-supersymmetric Yang-Mills theory is Einstein’s general
relativity theory coupled to an antisymmetric tensor and a dilaton.

As it turned out, these two limitations can be resolved in one go. In Chapter 3, based
on Ref. {4}, we discuss an extension of the color-kinematics duality that includes parti-
cles in the fundamental representation of the Yang-Mills gauge group. This provides a
construction for (super-)gravity theories with an arbitrary number of matter supermul-
tiplets which do not interact with each other. Interestingly, it results as well in a recipe
for amplitude integrands in pure gravity theories. In the latter case, the fundamental-
representation construction must develop a ghost-like behavior in order to correctly cancel
the unwanted degrees of freedom, originally present in the adjoint-representation con-
struction.

General conventions

In this thesis, we understand amplitudes, denoted byA, as constructed using the textbook
Feynman rules [80] for the invariant S-matrix elements iM, with all states considered
incoming, but their momenta outgoing. In gauge theory, calculations can be greatly
simplified by separating color factors from kinematic information. Therefore, one usually
deals with color-ordered amplitudes that are defined as the coefficients of the leading
color traces [33–35, 81] and for which there exists a color-stripped version of Feynman
rules [44]. Such amplitudes, denoted by A, include only planar diagrams with the external
leg numbered counterclockwise in a fixed order. Hence, their expressions can contain
momentum sums only for color-adjacent external particles, for which we introduce the
following short-hand notation:

Pi,j ≡ pi + pi+1 + · · ·+ pj−1 + pj, (1)

where indices are taken modulo the number of external particles n.

In a more general context, we will use the calligraphic letter A, instead of the plain
A, to indicate that the amplitude A contains not only kinematic information, but also
color or, in case of supersymmetric gauge theories, superspace degrees of freedom.

Unlike cross sections, scattering amplitudes are usually best expressed not in terms of
particle momenta {pi}ni=1 but as functions of helicity spinors {λi, λ̃i}ni=1 [36–38, 82–84],
for which we use the following bra-ket notation:

u+(pi) = 〈λi| = 〈i|, u−(pi) = |λi〉 = |i〉,
u−(pi) = [λ̃i| = [i|, u+(pi) = |λ̃i] = |i].

(2)

The little-group freedom in choosing spinor phases reflects the fact that only the absolute
value of an amplitude affects the corresponding physical cross section. We will find it

3



convenient to adopt the following relation between spinors with opposite energy signs:

|−p〉 = i|p〉,
|−p] = i |p]. (3)

Moreover, we will use the following sign convention for momentum invariants:

sij = (pi + pj)
2 = 〈ij〉[ji]. (4)

Other than that, we will not make precise the actual dependence of spinors on their
momenta.

Massive spinors can also be introduced in the spinor-helicity formalism, but the details
of various definitions (e.g. [83, 85]) will be irrelevant. In this thesis, we adopt a round
bracket notation u(p) = |p) for an on-shell spinor with an arbitrary spin. The Dirac
equation, for any m, can be written as

{
6p−m

}
|p) =

{
|p〉[p|+ |p]〈p| −m

}
|p) = 0. (5)

The polarization vector for a gauge boson of momentum p is [36–38,82–84], depending
on its helicity,

εµp+ =
1√
2

〈np|γµ|p]
〈npp〉

, εµp− = − 1√
2

[np|γµ|p〉
[npp]

, (6)

where np is an arbitrary but fixed “reference” momentum satisfying n2
p = 0 and either

〈npp〉 6= 0 or [npp] 6= 0, so that the denominator is nonzero. The null reference momenta
are chosen independently for each gauge boson. The set of reference momenta is what we
refer to as the gauge choice for a particular calculation, within the Feynman gauge used
throughout the spinor-helicity formalism.

In the four-point case, we adopt the standard notation for the Mandelstam variables:

s = (p1 + p2)
2, t = (p2 + p3)

2, u = (p1 + p3)
2. (7)

To conclude this section, we note that in the first two chapters, in absence of photons
in our considerations, we will be using wiggly lines for gluons in order to keep the graphs
easily readable. In Chapter 3, however, we will reserve the wiggly line notation for
gravitons, and so gluons will be depicted by curly lines.

4



Chapter 1

Gauge theory at tree level

Modern recursive methods [10,11,47] have immensely simplified the computation of tree-
level amplitudes in gauge theory with respect to the straightforward Feynman-rule ap-
proach. In some contexts, it is interesting to also study amplitudes (or rather, currents)
in which one or more legs is continued off shell, since they carry even more information
than on-shell amplitudes. For example, the Berends-Giele recursion [47] among gluon
currents in Yang-Mills theory is not only computationally powerful for numerical results,
but was also the crucial stepping stone to establishing the first formulas for gluon ampli-
tudes with arbitrary numbers of legs, in certain helicity configurations [47, 86]. It is still
possible to consider the limits in which internal propagators go on-shell and apply the
BCFW construction to find recursion relations [87]. Compared to the recursion relations
for on-shell amplitudes, the ones for currents require committing to a gauge choice, and
summing over all internal polarization states, including unphysical polarizations.

In this chapter, we seek compact analytic forms for currents of n− 2 gluons and two
massive quarks, where one of the quarks is off shell and the remaining particles are on
shell. These currents not only can be used to produce analytic formulas for on-shell tree
amplitudes of gluons with massive quarks, such as those in Refs. [88–96], but they are
also key ingredients of an on-shell method of computing 1-loop amplitudes with external
massive fermions [48]. These amplitudes are of particular interest in the context of LHC
searches for new physics, where production of top quarks plays a large role in both signals
and backgrounds. Massive fermion currents can be computed with the off-shell Berends-
Giele recursion [47]. In Ref. [97], this was used to give a compact result in the case where
all gluons have the same helicity, with a particular gauge choice relative to the massive
spinors.

We study the validity of the BCFW construction [11, 98] for these massive fermion
currents. The construction begins by shifting the momenta of a pair of on-shell external
legs by +zq and −zq respectively, where z is a complex variable and q is obtained by
requiring that both legs remain on shell after the shift. Then, the residue theorem
produces a recursion relation from poles in z taking values where propagators go on shell,
as recalled in Section 1.1. The construction breaks down if there are poles from other
sources. In Yang-Mills theory, the only other possible source is a “boundary term”, from
a nonvanishing limit as z is taken to infinity.1 For off-shell currents, which we define

1If the theory is sufficiently well understood, it is possible to include a boundary term explicitly at
each step of the recursion [87,99–102].

5



more precisely in Section 1.2, there is another problematic source of poles, which we call
“unphysical poles”, see Section 1.3. They are due to the gauge dependence, and they
spoil the recursion relation, since we have no information about how to calculate their
residues independently.

We deal with the two types of obstructions in Section 1.4 and 1.5, respectively. We
identify conditions under which the boundary terms and unphysical poles vanish for
massive fermion currents, so that the BCFW construction produces a recursion relation.
Then, in Section 1.6, we proceed to solve the recursion in the particular case where
all gluons have equal helicities. Compared to the more compact result of Ref. [97],
our formula also requires all gluons to use the same reference spinor but preserves the
genericity of its value.

Our analysis of boundary terms in Section 1.4 is based on grouping Feynman diagrams
conveniently and applying the Ward identity and inductive arguments. The argument
establishes the absence of boundary terms for general off-shell objects in Feynman gauge,
provided that there are two on-shell gluons available to construct the momentum shift.

In our study of unphysical poles in Section 1.5, we use off-shell gluon currents of the
type originally derived by Berends and Giele [47]. We are motivated to generalize the
currents in which one gluon has opposite helicity to all the others, by taking its reference
spinor to be arbitrary. When the opposite-helicity gluon is color-adjacent to the off-shell
leg, we find a very compact form for the current. When it is centrally located among the
other gluons, we prove that the current is, in fact, independent of the arbitrary reference
spinor.

1.1 Recursion for amplitudes

In this section, we review the classical Britto-Cachazo-Feng-Witten recursion deriva-
tion [11] for tree-level scattering amplitudes in gauge theory.

Consider an n-point tree-level amplitude An as a rational function of external helicity
spinors {λi, λ̃i}ni=1. If one makes a linear change of the k-th and l-th spinor variables:

ˆ|k〉 = |k〉, ˆ|l〉 = |l〉+ z|k〉,
ˆ|k] = |k]− z|l], |̂l] = |l],

(1.1)

then the amplitude becomes a rational function An(z) of the complex variable z. We
denote the shift (1.1) by [kl〉. The crucial property of such shifts is that the momenta

p̂k = pk − zq, p̂l = pl + zq, (1.2)

shifted by the complex-valued vector

qµ = 〈k|γµ|l]/2, (1.3)

do not break the general momentum conservation and stay on shell at the same time.
Hence, we can still regard An(z) as a scattering amplitude.

Now let us look at the following integral over a contour big enough to encircle all
finite poles of An(z):∮

dz

2πi

An(z)

z
= An(0) +

∑

poles zP of An(z)

1

zP
Res
z=zP
An(z). (1.4)
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Here we extracted by hand the first evident residue of An(z)/z at z = 0, which is precisely
the original physical amplitude An. On the other hand, there might be a pole at infinity:

∮
dz

2πi

An(z)

z
= lim

z→∞
An(z). (1.5)

From Eqs. (1.4) and (1.5), we immediately obtain

An = −
∑

poles zP of An(z)

1

zP
Res
z=zP
An(z) + lim

z→∞
An(z). (1.6)

To obtain recursion relations among amplitudes, we must have no pole at infinity.
This is assured if limz→∞An(z) = 0, which we call good boundary behavior. We will
discuss in detail how it is achieved for gauge theory amplitudes in Section 1.4.

The remaining poles can have two possible origins, due to their construction from
Feynman rules:

1. vanishing of the denominator of a polarization vector, when written as in Eq. (6).

2. vanishing of the denominator of a propagator.

The poles of the first type are unphysical. They have zero residues thanks to the
gauge invariance of the amplitude: the reference spinor of the shifted gauge boson can
be chosen to eliminate the z dependence in its denominator.

The poles of the second type are physical, and their residues are can be evaluated as
products of two amplitudes with fewer legs, since the vanishing of a propagator denomi-
nator is an on-shell condition.

First, let us consider a pole from a scalar propagator with momentum P . It is only
affected by the shift (1.2) for those Feynman diagrams in which it connects two trees,
each with one of the shifted external legs. Then the propagator momentum sum becomes
P̂ = P ±zq, depending on the direction of P . Taking into account that q2 = 0, we obtain

i

P 2(z)−m2
=

i

P 2 ± 2(P ·q)z −m2
=

±i
2(P ·q)(z − zP )

, (1.7)

where the pole value is

zP = ∓(P 2 −m2)

2(P ·q) . (1.8)

If we take the residue of the shifted propagator (1.7), when combined with the prefactor
−1/zP from Eq. (1.6), it turns out to produce simply the unshifted scalar propagator:

− 1

zP
Res
z=zP

i

P 2(z)−m2
=

i

P 2 −m2
. (1.9)

The sum of all diagrams with such a pole inevitably gives the full amplitudes on both
sides of the P -channel propagator. If there were only scalar poles, a relation to amplitudes
with fewer legs would be already established:

An =
∑

cut channels P of An

Ar+1(zP )
i

P 2 −m2
An−r+1(zP ). (1.10)
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Let us now replace the scalar propagator by a gauge boson one. In Feynman gauge,
it has the metric tensor −gµν in the numerator. On the zP -pole kinematics, it can be
expanded as follows:

− gµν = εµ
P̂+
εν
P̂−

+ εµ
P̂−
εν
P̂+

+ εµ
P̂L
εν
P̂T

+ εµ
P̂T
εν
P̂L
, (1.11)

where the polarization vectors with the null momentum P̂ are defined as in (6), and

εµ
P̂L

= P̂ µ, εµ
P̂T

= −
nµ

P̂

(P̂ ·nP̂ )
. (1.12)

Around the P -channel gauge boson propagator, the Feynman diagrams on both sides
now sum up to two amplitudes, each with one amputated polarization vector. When
such amputated amplitudes are contracted with the tensor (1.11), the contribution from
εµ
P̂L
εν
P̂T

+εµ
P̂T
εν
P̂L

vanishes due to the Ward identities on both sides, while εµ
P̂+
εν
P̂−

+εµ
P̂−
εν
P̂+

produces two usual gauge theory amplitudes. Consequently, in case of a pure gauge
theory, the recursion relation contains a sum over helicities of the intermediate gauge
boson:

An =
∑

cut channels P of An

∑

h=±

Ah
r+1(zP )

i

P 2
A−h

n−r+1(zP ). (1.13)

Finally, if the P -channel propagator is fermionic, on the zP -pole kinematics its nu-
merator can be expanded into the following state sum:

6 P̂ +m =
∑

s=1,2

us(P̂ )us(P̂ ), (1.14)

and the Feynman diagrams on both sides add up to two spinor-amputated amplitudes.
In the massless case, we can flip the momentum sign according to Eq. (3):

6 P̂ = |P̂ 〉[P̂ |+ |P̂ ]〈P̂ | = −i
{
|P̂ 〉[−P̂ |+ |P̂ ]〈−P̂ |

}
, (1.15)

and thus obtain a recursion relation for massless QCD:

An =
∑

gluon channels P of An

∑

h=±

Ah
r+1(zP )

i

P 2
A−h

n−r+1(zP )

+
∑

quark channels P of An

∑

h=±

Ah
r+1(zP )

1

P 2
A−h

n−r+1(zP ).
(1.16)

Here we can see how amplitude calculations are sensitive to sign conventions, such as (3).
In fact, we have used it already in Eq. (1.13), when we implicitly assumed its corollary:

εµ
(−P̂ )±

= εµ
P̂±
. (1.17)

Therefore, the subtle relative phases of gluon and quark contributions in the recur-
sion (1.16) are self-consistent.

It is important to note that the on-shell recursion relations contain significantly less
terms for color-ordered amplitudes An, because they are only allowed to have poles in
sums of color-adjacent momenta.

In conclusion of this review section, we also remark that the BCFW recursion was
found [103–109] to work surprisingly well for graviton amplitudes. Subsequently, the can-
cellations, necessary for the good boundary behavior, were argued to be related [110–112]
to the BCJ color-kinematics duality [5, 6], the latter being the main topic of Chapter 3.
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1.2 Conventions for fermion currents

In this section, we fix the conventions for the main object of interest of this chapter —
off-shell fermion currents.

Momenta of gluons are directed outward, while momenta of fermions are directed
inward. We will be considering color-ordered amplitudes and off-shell currents with one
massive fermion line, for example, iJ

(
1∗
Q̄
, 2Q, 3g, 4g, . . . , ng

)
, where the star means that

the indicated leg is considered off-shell, while the remaining legs are on-shell. Note that
we do not include the propagator for the off-shell leg in our definition. For this current,
the quark line has its arrow pointing from leg 2 to leg 1. Due to that unfortunate, but
conventional [93] numbering, when the quark line matrices are read against the arrow,
then the gluon indices are contracted in reverse numerical order, because they are still
color-ordered counterclockwise. So in slightly different notation, we can write

iJ
(
1∗Q̄, 2Q, 3

h3

g , 4
h4

g , . . . , n
hn

g

)
= |nhn . . . 4h43h3 |2), (1.18)

where the round bracket |2) can be equal to either |2〉 or |2], depending on its spin.
This notation emphasizes the fact that the current is a spinorial object. For example, to
obtain the corresponding amplitude, one should first put p1 on shell and then contract
the current with either [1| or 〈1|:

A
(
1−
Q̄
, 2−Q, 3

h3

g , 4
h4

g , . . . , n
hn

g

)
= 〈1|nhn . . . 4h43h3 |2]. (1.19)

The color-ordered Feynman rules behind these conventions differ from the standard
ones [44] by an extra minus sign in front of the cubic vertex:

p, λ

q, µ r, ν

= − i√
2
[gλµ(p− q)ν + gµν(q − r)λ + gνλ(r − p)µ] , (1.20a)

λ

µ ν

ρ

=
i

2
[2gλνgµρ − gλρgµν − gλµgνρ] . (1.20b)

The polarization vectors, defined in Eq. (6), contain arbitrary but fixed “reference” mo-
menta, independently chosen for each gluon. The set of reference momenta is what we
refer to as the gauge choice for a particular calculation, within the Feynman gauge used
throughout the spinor-helicity formalism. Any current we construct with a specific gauge
choice is expected to fit into a larger calculation, such as the one-loop computations
of [48], in which all external legs are on-shell, so that ultimately, after being combined
with other ingredients computed in the same gauge, no trace of the gauge choice remains.
Therefore, the reference spinors can be chosen to maximize computational convenience.
We delay the choice as far as possible, so that convenience can be evaluated later in the
full context of a larger calculation.

The spinors for the massive fermions satisfy the Dirac equation (5). We do not require
any further details of their definitions, so any of various conventions (e.g. [83,85]) can be
used. The massless limit is smooth.
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1.3 Recursion for currents

Let us now look at what happens, if we apply a BCFW shift to a pair of gluons, since
they are always on-shell in this context. The idea is still to apply the residue theorem on
iJ(z)/z to recover the current as

iJ(z = 0) = −
∑

poles zP of iJ(z)

1

zP
Res
z=zP

iJ(z) + lim
z→∞

iJ(z). (1.21)

If J(z) goes to zero in the limit z → ∞, i.e. in the case of good boundary behavior,
we can hope to obtain recursion relations among currents.

Just as for the amplitudes in Section 1.1, the finite poles of off-shell currents can have
same two possible origins due to their construction from Feynman rules:

1. vanishing of the denominator of a polarization vector, when written as in Eq. (6).

2. vanishing of the denominator of a propagator.

The propagator-induced poles are familiar from the recursion relations for on-shell
amplitudes [11] and were discussed in detail in Section 1.1. The corresponding residues
are easy to evaluate as the product of two currents or amplitudes with fewer legs, because
the vanishing of a propagator denominator puts the corresponding internal line on shell.

The first type of pole will be called an unphysical pole. In Section 1.1, we argued
that in an on-shell amplitude the reference spinor in such a pole could be freely chosen
to eliminate the z dependence in the denominator, but now with a quark line off-shell,
we must fix all reference spinors from the start, and they play an explicit role. These un-
physical poles are problematic, since their location has no natural physical meaning, and
we have no independent way of computing their residues. Thus, we will find conditions
on the currents and shift that prevent the appearance of unphysical poles.

With good boundary behavior and no unphysical poles, there will be a recursion
relation that takes the schematic form

iJn =
∑

cut channels P of Jn

∑

h=±

iJh
r+1(zP )

i

P 2
iJ−h

n−r+1(zP ), (1.22)

where the iĴ are currents and amplitudes with fewer legs, P is the momentum flowing
between them which goes on shell at the pole zP , and the second sum is over internal
helicities. Of course, the propagator acquires a mass if it is fermionic. If all of the off-
shell legs belong to just one of the two currents on the right-hand side, then the other is
replaced by a shifted on-shell amplitude A(zP ).

1.4 Boundary behavior

In this section, the behavior as z →∞ of the fermionic current iJ
(
1∗
Q̄
, 2∗Q, 3g, 4g, . . . , ng

)

under the [kl〉 shift (1.1), where k and l represent any of the gluons. We will conclude
that the boundary term vanishes in the helicity cases (k−g , l

+
g ), (k

−
g , l

−
g ) and thus (k+g , l

+
g )

as well, for a generic gauge choice. The generality of this argument is greatly enhanced by
the fact that we will not require any of the unshifted gluons to be on shell, nor explicitly
constrain the number of fermion lines.
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1.4.1 Choice of shift: helicities and polarizations

Consider the superficial boundary behavior of individual Feynman diagrams, following
the flow of the additional momentum zq. Without the polarization vectors, the diagrams
where the zq momentum goes only through 3-gluon vertices and gluon propagators be-
haves the worst — as O(z). If zq runs through a 4-gluon vertex or through a fermion
line, then such a diagram already behaves as O(1) or better. Now, if we contract the
vector indices for the [kl〉-shifted gluons with their polarization vectors,

ε̂µk− = − 1√
2

[nk|γµ|k〉
[nkk]− z[nkl]

, ε̂µk+ =
1√
2

〈nk|γµ|k]− z〈nk|γµ|l]
〈nkk〉

,

ε̂νl− = − 1√
2

[nl|γν |l〉+ z[nl|γν |k〉
[nll]

, ε̂νl+ =
1√
2

〈nl|γν |l]
〈nll〉+ z〈nlk〉

,

(1.23)

we see that for a generic gauge choice the off-shell current superficially has O
(
1
z

)
behavior

in the (k−g , l
+
g ) case, O(z) in the (k−g , l

−
g ) and (k+g , l

+
g ) cases, and O(z

3) in the (k+g , l
−
g ) case.

Note that this behavior can be altered by special gauge choices, i.e. if nk = l or nl = k,
then ε̂µk− and ε̂νl+ lose their z dependence instead of being O

(
1
z

)
.

The helicity case (k−g , l
+
g ) is thus safe automatically, for a generic gauge choice. In

Section 1.4.5, we will discuss boundary behavior for a special gauge choice that will be
needed in the following sections. In the remainder of this section, we will prove that in a
generic gauge (where nk 6= l) the off-shell current with helicities (k−g , l

−
g ) also vanishes at

infinity, at least as O
(
1
z

)
. To do that, let us multiply this current by the z-independent

factor −
√
2[nll], so that only the numerator [nl|γν |l̂〉 remains contracted with the l-th

gluon’s Lorentz index ν. The resulting expression depends only linearly on [nl|, which
is a 2-dimensional massless spinor and thus can be expressed as a linear combination of
any two independent spinors of the same kind:

[nl| = α[l|+ β[nk|. (1.24)

Therefore, it is enough to show that we get O
(
1
z

)
behavior for the two special cases nl = l

and nl = nk. Let us examine them one by one.

1.4.2 Like-helicity shift, first term

The first term in Eq. (1.24) yields [l|γν |l̂〉 = 2l̂ν , making it possible to use the Ward
identity, which diagrammatically can be expressed as follows:

l̂ν




12

3

...

k̂ . . . l̂, ν

...

n



= g





1− l̂2

3

...

k̂ . . .

...

n
+

12− l̂

3

...

k̂ . . .

...

n

+

12

3+ l̂

...

k̂ . . .

...

n
+ . . . +

12

3

...

k̂ . . .

...

n+ l̂





.

(1.25)
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Each diagram on the right-hand side of (1.25) is supposed to have an appropriate
gauge group generator contracted with the leg to which the momentum l̂ is added, but
that is irrelevant for the discussion of z → ∞ behavior. For any leg that is initially on
shell, such as the k-th gluon, the corresponding right-hand-side term should naturally
vanish, because the resulting leg would go off shell and thus would be left out when
extracting the on-shell pole residue according to the standard LSZ procedure.

Now consider what the Feynman rules tell us about the diagrams on the right-hand
side. In case there are off-shell gluons, if a diagram has the zq momentum going from
the k-th gluon to another through 3-gluon vertices, it must now behave no worse than
O
(
1
z

)
! Indeed, it still has ε̂µk− ∼ O

(
1
z

)
on the k-th leg, and in addition to that the gluon

propagator on the off-shell leg is now O
(
1
z

)
as well. If zq runs through a 4-gluon vertex or

through a fermion line and ends up still on a gluon leg, then such a diagram will behave
at most as O

(
1
z2

)
. A new ingredient here is the diagrams that have zq momentum flowing

through 3-point vertices to an off-shell fermion leg, but it is easy to see that they will
also behave like O

(
1
z

)
or better. In sum, applying the Ward identity in this way reduces

the maximal superficial power of z at infinity by two.
There is one technical caveat about this argument: strictly speaking, the Ward identity

(1.25) is valid for a ghostless gauge, whereas in Feynman gauge it is necessary to introduce
some extra terms on the right-hand side. We address this issue carefully in the next
section and find that the argument still holds in Feynman gauge.

1.4.3 Ward identity argument in Feynman gauge

The supplementary terms we need to consider to fill the gap of the previous section
are due to the fact that the Noether current of the global gauge transformation receives
additional contributions from the gauge-fixing and ghost parts of the effective Lagrangian.

(Note that in the generalized axial gauge the gauge-fixing term ∝
(
nµAa

µ

)2
contains no

derivatives and thus does not contribute to the Noether current.) At tree level, however,
the ghost part of the current does not produce any non-vanishing diagrams, unless we
consider a Green’s function with external ghost legs, which is not the case. Therefore,
the only non-trivial ingredient that we should worry about in Feynman gauge is the
gauge-fixing contribution to the Noether current.

To derive the Ward identities, we consider an infinitesimal global gauge transforma-
tion,

Aa
µ → Aa

µ − gfabcαbAc
µ, (1.26)

which leaves invariant the Rξ-gauge-fixing Lagrangian:

Lξ = −
1

2ξ
(∂µA

aµ)2 . (1.27)

The latter generates the following contribution to the Noether gauge current:

Jaµ
ξ =

∂Lξ

∂(∂µAb
ν)
gfabcAc

ν =
g

ξ
fabcAbµ∂νA

cν . (1.28)

Taking a derivative gives

∂µJ
aµ
ξ (x) =

g

ξ
fabcAbµ(x)∂µ∂νA

cν(x), (1.29)

12



so we retrieve the following momentum-space operator:

l̂νJ
bν
ξ (l̂) = − ig

ξ
f bcd

∫
d4p

(2π)4
pνpρA

cν(p)Adρ(l̂ − p). (1.30)

This operator is to be inserted instead of the l̂-th leg and combined with the remaining
(n− 1) legs of the off-shell current:

− ig

ξ
f bcd

∫
d4p

(2π)4
ε̂µkp

νpρ




12
3

...

k̂, µ, a . . . p, ν, c
l̂−p, ρ, d
...

n



. (1.31)

Note that in Eq. (1.31) only the k̂-th leg is considered propagator-amputated, and
we spell out its contraction with the polarization vector ε̂µk explicitly. In the following,
we specialize to the Feynman gauge ξ = 1 and once again neglect all color information.
Since (1.30) has two gluon legs and already contains one power of g, then in order to
construct a tree level contribution of order O(gn−2) from an object with (n+ 1) external
legs we need to contract two of them together without any interaction insertions. Thus
the other (n− 1) legs must form a normal connected tree-level diagram of order O(gn−3).
An extra disconnected piece will naturally produce a δ-function which will annihilate the
integration in Eq. (1.31).

We cannot contract together the two legs coming from (1.30), because that would
produce δ(4)(p+ l̂−p) = 0. Moreover, if both directly contracted legs are not in Eq. (1.30),
say the i-th and j-th, then we will get δ(4)(pi + pj) = 0. Obviously, we cannot contract
directly a fermion with a gluon either. Thus we are left only with the options of connecting
one of the two legs (1.30) with any of the remaining gluon legs — either the shifted one
k̂ or any of the unshifted legs.

Contraction of the first leg of (1.30) with the on-shell gluon k̂ vanishes immediately
due to the transversality of the polarization vector ε̂µk−, whereas connecting the other leg

to k̂ results in p = k̂ + l̂ :

ε̂µkp
νpρ




k̂, µ l̂−p, ρ

12
3

...

k−1
k+1 . . . p, ν

...

n




= (2π)4δ(4)(l̂ − p+ k̂)ε̂µk(k̂ + l̂)µ · (k̂ + l̂)ν




12
3

...

k−1
k+1 . . . k̂+ l̂, ν

...

n



= O

(
1

z

)
,

(1.32)
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so that the only remaining element dependent on z is ε̂µk− = O
(
1
z

)
. Now if we take an

arbitrary unshifted gluon leg with momentum pj and Lorentz index λ and contract it
with the leg p from (1.30), we get

ε̂µkp
νpρ




j, λ p, ν

12

3

...

k̂, µ . . . l̂−p, ρ
...

n




= (2π)4δ(4)(p+ pj)
−igλν
p2j

pνj · ε̂µkpρj




12

3

...

k̂, µ . . . l̂+pj, ρ

...

n




−i
(l̂ + pj)2

= O

(
1

z

)
.

(1.33)
In the second line, we have written out the propagator of the (l̂− p) leg, making both z-
dependent legs propagator-amputated, so that the diagram in the brackets is a standard
O(z) and the overall expression obviously vanishes at infinity.

The last remaining type of contribution is not so straightforward. Connecting an
off-shell gluon leg to the (l̂ − p) leg makes p equal to l̂ + pj and thus produces two more
powers of z in the numerator:

ε̂µkp
νpρ




j, λ l̂−p, ρ

12

3

...

k̂, µ . . . p, ν

...

n




= (2π)4δ(4)(l̂ − p+ pj)
−igλρ
p2j

(l̂ + pj)
ρ · ε̂µk(l̂ + pj)

ν




12

3

...

k̂, µ . . . l̂+pj, ν

...

n




−i
(l̂ + pj)2

.

(1.34)
Fortunately, what we can see on the right-hand side apart from other O(1) factors is
just what we started with — a BCFW-shifted off-shell current with both shifted legs
propagator-amputated and contracted with the polarization vector ε̂µk− on one side and

with the momentum (l̂ + pj) on the other. The main difference is that it has one gluon

leg less than before and the momentum of the missing gluon is now added to the l̂-th leg.

So we started with a superficially O(z) object with (n − 4) unshifted gluons on the
left-hand side of (1.25), and we have managed to see that the right-hand side of the Ward
identity gives us O(1

z
) contributions plus (n − 4) superficially O(z) objects of the same

type, but with (n − 5) unshifted gluons. In the same fashion, we can apply the Ward
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identity repeatedly, until there are no unshifted gluons left, which proves that the initial
object was indeed O(1

z
).

In this way, we have verified that the Ward identity argument is still valid in Feynman
gauge.

1.4.4 Like-helicity shift, second term

Now we consider the case nl = nk = n. It turns out to be possible to deduce some
interesting facts about the boundary behavior of an off-shell current simply from the
Feynman rules.

Gluon trees, leading power of z

We start with the leading O(z) diagrams, in which the zq momentum flows only through
3-gluon vertices and gluon propagators, which thus behave as O(z) at most. Let us look
closely at the part of such a diagram that is directly adjacent to the zq momentum flow,
i.e. just a gluon tree with all but the k-th and l-th legs off-shell and their propagators
amputated, keeping in mind that any of the off-shell legs can be extended by any sort of
z-independent tree, including a fermion line.

λ1

k̂

λ2 λ3
λ4

l̂
λ5

Figure 1.1: A generic gluon tree diagram with only 3-point vertices.

A tree with n legs will have (n − 2) vertices ∼ O(z), (n − 3) internal propagators
∼ O

(
1
z

)
and (n− 2) free indices. The highest power of z will be accumulated if we pick

up zqλ from each vertex, a z[n|γν |k〉 term from the l-th gluon’s polarization vector, and
another [n|γµ|k〉 coming from the k-th gluon: n vectors in total. Apart from that, vertices
and propagator numerators can only offer various combinations of metric tensors, and
the fact that there are only (n− 2) free indices means that at least one contraction will
take place among those vectors. But any such contraction eliminates a power of z, since

[n|γµ|k〉qµ = 0, q2 = 0. (1.35)

So the leading O(z) term vanishes and we are left only with O(1) at most.

Fermion line insertion, leading power of z

Similarly, the leading O(1) term vanishes for the diagrams in which zq flows through the
fermion line. To see this, consider once again only the terms directly adjacent to the zq
momentum flow, i.e. the relevant part of the fermion line and mostly off-shell gluon trees
on both of its sides.

The leading power of z in a generic diagram with n gluons will now be attained by
accumulating (n− 1) powers of zqλ from 3-gluon vertices and the numerators of fermion
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k̂
l̂

k̂

l̂

Figure 1.2: A generic diagram with zq flowing through the fermion line and only 3-point gluon
vertices.

propagators. As before, [n|γµ|k〉 and z[n|γν |k〉 will come from the k-th and l-th gluons,
respectively, so in total we have (n+1) vectors with only (n− 2) free indices to attribute
to them. Note that the relevant part of the fermion line consists of an odd number of γ-
matrices and thus can always be expressed as a linear combination of eight basic matrices
{γµ}3µ=0 ∪ {γµγ5}3µ=0 just by using the standard formula:

γλγµγν = gλµγν − gλνγµ + gµνγλ + iǫλµνργργ
5. (1.36)

The free index of the γµ or γµγ5 can either be left free as an off-shell gluon index (leaving
us with only (n − 3) free indices left for (n + 1) vectors) or be contracted with one
of the (n + 1) vectors. So the number of free indices is smaller than the number of
vectors at least by two. The difference with the previous case is that now we have not
only metric tensors to do the index-contraction work, but also the totally antisymmetric
tensor coming from (1.36). So lowering the number of free vector indices by two can be
achieved by either dotting one vector to another, in which case we get zero just as in the
gluon-tree case, or by contracting three vectors to one antisymmetric tensor constructing
terms like ǫλµνρ · zqλ · [n|γµ|k〉 · z[n|γν |k〉, all of which vanish since we have copies of only
two vectors in the leading O(z) term. Thus all diagrams with zq momentum flow through
a fermion line necessarily vanish at z →∞.

Gluon trees, next-to-leading power of z

What is left to consider is the possible O(1) contribution from gluon trees. To begin
with, calculate the simplest gluon tree, i.e. a single 3-gluon vertex contracted with the
two polarization vectors as given in Eq. (1.23):

λ

k̂ l̂

= ε̂µk−

(
gµν(k̂ − l̂)λ + gνλ(2l̂ + k̂)µ − gλµ(2k̂ + l̂)ν

)
ε̂νl−

= − 1

2z[nl]2
(z〈k|γλ|n] · 2〈k|l|n]) + 〈k|γλ|n]〈l|γν |n] · z〈k|γν |l]) +O

(
1

z

)

= −〈k|γλ|n]
2[nl]2

(2〈kl〉[ln] + 2〈lk〉[ln]) +O

(
1

z

)
= O

(
1

z

)
.

(1.37)

Here the O(z) terms vanish trivially in accord with our previous considerations, but we
see from the Fierz identity that the O(1) term is canceled as well. At four legs these
cancellations continue to take place, but start to involve O(1) diagrams with a single
quartic vertex insertion, for instance:
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λ1

λ2k̂

l̂

+

λ1

λ2k̂

l̂

+

λ1

λ2k̂

l̂

= O

(
1

z

)
. (1.38)

Evidently, such an intricate cancellation cannot be deduced by examining Feynman
diagrams separately. Let us look again at the 3-gluon vertex (1.37) from another point
of view. Attaching a gluon propagator to the off-shell line obviously does not change the
power of z, and the resulting off-shell 3-gluon current is a Lorentz vector. If we contract
it with a simple fermion line, we obtain the first diagram in Fig. 1.3, which is a part of
a scattering amplitude — a gauge invariant object that is well established to behave as
O
(
1
z

)
for the (k−g , l

−
g ) shift.

k̂ l̂

p′ r′

+

k̂ l̂

p′ r′

Figure 1.3: Diagrams for the amplitude of 2 gluons and 1 fermion line.

Moreover, the second diagram in Fig. 1.3 has zq momentum flow through its fermion
line, so according to our previous discussion, it is of order O

(
1
z

)
by itself. Thus we can

conclude that the first one is O
(
1
z

)
as well. We obtained it by contracting the initial

off-shell current vector with a correctly defined fermion line. The freedom of choosing the
on-shell fermion momenta and helicities spans the whole Minkowski space. Therefore,
the vector must have the same boundary behavior.

λ1

λ2

...

k̂ . . . l̂

...

λn−3

λn−2

⇒
...

k̂ . . . l̂

...

Figure 1.4: Contracting a gluon off-shell current with fermion lines.

Along the same lines, we can now prove a very general statement: An n-gluon off-shell
current with only two shifted like-helicity legs on shell behaves as O

(
1
z

)
. The current has

a free Lorentz index for each off-shell leg, so it is actually a tensor of rank (n − 2). If
we contract every index with its own fermion line (independent of z), we will obtain an
expression corresponding to a scalar amplitude (Fig. 1.4) which we know behaves as a
whole as O

(
1
z

)
under the (k−g , l

−
g ) shift. The freedom of choice of fermion momenta and

helicities guarantees that if the contracted expression vanishes at z →∞, then the initial
tensor is bound to vanish too.
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k̂
l̂

k̂

l̂

Figure 1.5: Diagrams for 4×{qq̄} → ĝkĝl with zq momentum flow through fermion propagators.

Of course, we will still lack some diagrams to build the full amplitude, but the lacking
terms will in fact be those for which we have already proven the good behavior at z →∞.
Indeed, the result resembles an amplitude for a process where (n − 2) (distinct) quark-
antiquark pairs go to 2 gluons, so it should contain not only the diagrams which are given
by the right-hand side of Fig. 1.4, but also those where some fermion lines have multiple
fermion vertices and thus have fermion propagator insertions in them. Some of them look
like the diagrams which are shown in Fig. 1.5, i.e. have zq flow through at least one of
those fermion lines and thus vanish at z →∞.

Others, however, may look like the diagrams shown in Fig. 1.6, i.e. contain some
fermion lines connected to the shifted gluons only through their connection to other
fermion lines. These diagrams can be reduced to the case of a smaller number of off-shell
legs in the initial gluon current. Thus, we can construct an inductive argument, for which
we have already verified the base case of n = 3, to see that all the diagrams that we need
to add to the contracted n-gluon current to form an amplitude behave as O

(
1
z

)
and the

current itself is therefore bound to be O
(
1
z

)
.

By the way, this inductive proof did not use the weakerO(1) statement of Section 1.4.4,
though we relied heavily on the O

(
1
z

)
statement of Section 1.4.4. To conclude, let us

recall the steps of our argument:

1. Any diagram with zq momentum flow through at least one fermion propagator
behaves well.

2. The boundary behavior of the diagrams with zq momentum flow strictly through
gluon propagators is the same as that of a gluon-only off-shell current.

3. Any off-shell current with 3 gluon legs vanishes as z → ∞ due to the cancellation
which ensures the good behavior of the amplitude qq̄ → ĝĝ.

4. Any off-shell current with n gluon legs vanishes as z → ∞ to ensure the good
behavior of the amplitude (n− 2)× {qq̄} → ĝĝ, provided the good behavior of the
(n− 1)–gluon current and the diagrams with fermion propagator insertions.

1.4.5 Mixed-helicity shift in special gauges

For a generic gauge, the boundary behavior of individual Feynman diagrams under the
[kl〉 shift is automatically O

(
1
z

)
in the mixed-helicity case (k−g , l

+
g ). But in the follow-

ing section, we will find that in order to avoid unphysical poles we need to use special
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k̂
l̂ k̂

l̂

Figure 1.6: Diagrams for 4× {qq̄} → ĝkĝl, that can be reduced to the case of smaller number
of gluon legs.

gauge choices nk = pl or nl = pk. Such gauges eliminate the z-dependence from one of
the polarization vector denominators and thus turn the superficial behavior into O(1).
However, we can easily rephrase our power-counting arguments from Sections 1.4.4 and
1.4.4 for the mixed-helicity case and find that the leading power of z must always involve
at least one contraction of two of the following three vectors: zqλ, [nk|γµ|k〉 and 〈nl|γν |l],
with either gµν or ǫλµνρ. Either by imposing nk = pl or nl = pk, we can guarantee that
any such contraction will give zero and thus ensure vanishing of the boundary term.

It is worth noting that if we take nk = pl and nl = pk simultaneously, the superficial
boundary behavior is worsened by two powers of z, and the argument will in general
be invalid. Suppose that we first impose nl = pk and have nk unfixed. Then we will
be guaranteed to have no pole at infinity, but might still have an unphysical pole at
zk = [nkk]/[nkl]. Now if we take nk = pl, we can see that the pole zk goes smoothly to
infinity. In this way, the unphysical pole and the boundary term can be traded one for
another, and the problem is to find gauges in which neither survives.

1.5 Avoiding unphysical poles

In this section, we address the question of unphysical poles, i.e. the poles that come from
polarization vectors (1.23) instead of propagators. We construct explicit recursive proofs
of the vanishing of the unphysical poles for the following currents:

1. [34〉-shifted iJ
(
1∗
Q̄
, 2Q, 3̂

−
g , 4̂

−
g , 5

−
g , . . . , n

−
g

)
with n3 = n4 = · · · = nn ;

2. [43〉-shifted iJ
(
1∗
Q̄
, 2Q, 3̂

+
g , 4̂

−
g , 5

−
g , . . . , n

−
g

)
with n4 = n5 = · · · = nn = p3 ;

3. [34〉-shifted iJ
(
1∗
Q̄
, 2∗Q, 3̂

−
g , 4̂

+
g , 5

−
g , . . . , n

−
g

)
with n3 = n5 = · · · = nn = p4 .

It is straightforward to prove analogous statements for the currents with the opposite

quark off shell or for flipped helicity assignments. For example, iJ
(
1Q̄, 2

∗
Q, 3

−
g , . . . , (̂n−1)

−

g , n̂
+
g

)

has no unphysical poles under the [n−1|n〉 shift if n3 = · · · = nn−1 = pn. One can also
make a simultaneous flip of all gluon helicities trivially.

In short, the good gauge choices are:

• in the all-minus case, put all reference momenta equal to each other: ni = q;

• in the one-plus cases, put reference momenta of negative-helicity gluons equal to
the momentum of the positive-helicity gluon: n− = p+.
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Note that in the one-plus case with the positive-helicity gluon in central position the
unphysical poles vanish for a matrix-valued current |n− . . . 5−4+3−| with both fermions off
shell, i.e. lacking spinors on both sides of the quark line. In fact, there is strong evidence
(see the numerical results in the following section) that it will continue to be true for
such one-plus currents |n− . . . (m+1)−m+(m−1)− . . . 3−| irrespective of the position of
the positive-helicity gluon with respect to the fermions.

In each case, our recursive argument is based on the following Berends-Giele expan-
sion [47]. Consider constructing the n-particle current with one fermion line by attaching
the n-th gluon to the corresponding (n−1)-particle current. Due to color ordering, it
can be coupled directly to the off-shell quark, to the (n−1)-th gluon, or to some more
complicated gluon tree. If we focus our attention on those gluon trees that include the
n-th gluon and attach to the quark line as a whole, we can expand the current according
to the number of legs in such trees, as shown pictorially in Eq. (1.39):

12

3̂

4̂ 5 . . .

n

=

12

3̂

4̂ . . .n−1
n

+

1
2

3̂

4̂ . . . n−2 n−1

n

+

1
2

3̂

4̂ . . . n−3 n−2
n−1

n + . . . +

1
2

3̂

4̂ 5 6
. . .

n

+

1
2

3̂

4̂ 5
. . .

n
+

12

3̂

4̂ 5 . . .

n

.

(1.39)

1.5.1 All-minus currents

Let us prove that for the [34〉-shifted all-minus current iJ
(
1∗
Q̄
, 2Q, 3̂

−
g , 4̂

−
g , 5

−
g , . . . , n

−
g

)
the

residue at the unphysical pole z3 = [n33]/[n34] vanishes when we make all the gluon
reference momenta equal: n3 = n4 = · · · = nn ≡ q.

Now if we already know that the residue at the unphysical pole z3 = [q3]/[q4] vanishes
for all the corresponding off-shell currents with fewer legs, then only the last two diagrams
in Eq. (1.39) remain to be calculated. That can easily be done just by using color-ordered
Feynman rules, where we make use of the Berends-Giele formula [47] for currents of like-
helicity gluons, which in our conventions is given by

iJµ(1−, 2−, . . . , n−) = − [q|γµ 6P1,n|q]√
2[q1][12] . . . [n−1 n][nq]

. (1.40)
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Evaluating the sum at the pole z3 = 0, defined by [q3̂] = 0, and performing some manip-
ulations using a Schouten identity between the two contributions, we find the residue of
the current (1.39) at the unphysical pole:

[
q3̂
]





1∗
2

3̂−

4̂− 5−

. . .

n−
+

1∗2

3̂−

4̂− 5− . . .

n−





=
i|q]〈3|6P3,n|q][q|( 6p2 −m)|2)
〈3|2|q][34][45] . . . [n−1 n][nq] .

(1.41)
Here the right-hand side obviously vanishes due to the presence of the on-shell spinor |2)
next to ( 6p2 −m).

To conclude the proof, we do not even need to calculate the base of the recur-
sion separately, because all the preceding formulas were general enough be valid for
iJ
(
1∗
Q̄
, 2Q, 3̂

−
g , 4̂

−
g

)
as well. Indeed, in that case the last two diagrams in Eq. (1.39) turn

out to be the usual Feynman diagrams with the Berends-Giele current representing just
the polarization vector of the shifted 4th gluon.

1.5.2 Currents with a single plus-helicity gluon in extreme po-
sition

For the [43〉-shifted current iJ
(
1∗
Q̄
, 2Q, 3̂

+
g , 4̂

−
g , 5

−
g , . . . , n

−
g

)
, we set n4 = · · · = nn = p3

and rename n3 ≡ q. Consider the same expansion (1.39). As in the previous case,
for a recursive proof of the vanishing of the residue at z3 = −〈q3〉/〈q4〉, we only need
to calculate the last two diagrams in Eq. (1.39). We use the following formula for the
one-plus Berends-Giele current:

iJµ(1+, 2−, . . . , n−) = − [1|γµ 6P1,n|1]√
2[12][23] . . . [n−1 n][n1]

{
n∑

l=3

[1|6P1,l 6P1,l−1|1]
P 2
1,lP

2
1,l−1

+
〈2q〉
〈21〉〈1q〉

}
,

(1.42)
in which we retain dependence on the reference momentum n1 ≡ q of the positive-helicity
gluon. This generalization is discussed in Appendix B of Ref. {1}. It turns out that
relaxing one reference momentum results in only one extra term in Eq. (1.42), which
subsequently generates the pole for i6J(3̂+, 4̂−, . . . , n−) at 〈3̂q〉 = 0.

Using the currents (1.40) and (1.42), we see again that the residue at z3 vanishes due
to the presence of the on-shell spinor |2) next to ( 6p2 −m):

〈q3̂〉





1∗
2

3̂+

4̂− 5−

. . .

n−
+

1∗2

3̂+

4̂− 5− . . .

n−





=
−i|3]〈4q〉〈q|6P3,n|3][3|( 6p2 −m)|2)
〈q|2|3]〈43〉[34][4̂5] . . . [n−1 n][n3]

.

(1.43)
This evaluation is valid as well for iJ

(
1∗
Q̄
, 2Q, 3̂

+
g , 4̂

−
g

)
, thus ensuring the base of the

recursive argument.
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1.5.3 Currents with a single plus-helicity gluon in next-to-extreme

position

Here we consider a matrix-valued [34〉-shifted current iJ
(
1∗
Q̄
, 2∗Q, 3̂

−
g , 4̂

+
g , 5

−
g , . . . , n

−
g

)
with

the positive-helicity gluon separated from the fermion line by one negative-helicity gluon.
We set n3 = n5 = · · · = nn = p4 and n4 ≡ q. In the expansion (1.39), we now need
to examine the last three terms. More specifically, we need to examine only their q-
dependent parts, since these are the ones that can have the unphysical pole at 〈q4̂〉 = 0.

The very last diagram in Eq. (1.39) contains the gluon current iJ
(
3̂−, 4̂+, 5−, . . . , n−

)
,

for which we do not know a simple analytic formula. Fortunately, according to the
inductive argument outlined in Appendix B of Ref. {1}, it does not depend on q, so that
diagram cannot contribute to the residue at 〈q4̂〉 = 0. We are thus left with the other
two diagrams. As before,

1∗
2∗

3̂−

4̂+ 5−

. . .

n−

=
i√
2[43]

i6J(4̂+, 5−, . . . , n−)
6p2 − 6p̂3 +m

(p2 − p̂3)2 −m2

(
|4]〈3|+ |3〉[4|

)
. (1.44)

We use the formula

iJ
(
1∗Q̄, 2

∗
Q, 3

−
g , 4

+
g

)
=

i

[n33]〈n44〉

{(
|4]〈n4|+|n4〉[4|

) 6p2−6p3+m
(p2−p3)2−m2

(
|n3]〈3|+|3〉[n3|

)

+
[n34]〈n43〉
2[34]〈43〉 ( 6p3−6p4) +

[n34]

[34]

(
|4]〈n4|+|n4〉[4|

)
− 〈n43〉
〈43〉

(
|n3]〈3|+|3〉[n3|

)}
,

(1.45)
which is derived simply from Feynman rules, to evaluate the third-to-last diagram in
expansion (1.39):

1∗
2∗

3̂−

4̂+ 5− 6−
. . .

n−

=− i√
2〈q4̂〉[43]

i 6J(5−, 6−, . . . , n−)
6p2 − 6p3 − 6p4 +m

(p2 − p3 − p4)2 −m2

{(
|4]〈q|+|q〉[4|

) 6p2 − 6p̂3 +m

(p2 − p̂3)2 −m2
− 〈q3〉〈43〉

}(
|4]〈3|+ |3〉[4|

)
,

(1.46)

After using the formulas (1.40) and (1.42) for the Berends-Giele currents and substi-
tuting

|q〉 = |4̂〉〈3q〉〈34〉 (1.47)
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in the residue of the unphysical pole, we can combine the q-dependent terms of (1.44)
and (1.46) into one term with the following spinor matrix in the middle:

6p2 − 6p̂3 − 6p̂4 +m

(p2 − p̂3 − p̂4)2 −m2
6p̂4

6p2 − 6p̂3 +m

(p2 − p̂3)2 −m2
− 6p2 − 6p̂3 − 6p̂4 +m

(p2 − p̂3 − p̂4)2 −m2
+
6p2 − 6p̂3 +m

(p2 − p̂3)2 −m2
= 0.

(1.48)
Having established the induction, we turn back to iJ

(
1∗
Q̄
, 2∗Q, 3̂

−
g , 4̂

+
g , 5

−
g

)
and see

that its expansion (1.39) contains precisely the three diagrams that we have just ex-
amined in a more general case. This provides the base of our inductive argument for
iJ
(
1∗
Q̄
, 2∗Q, 3

−
g , 4

+
g , 5

−
g , . . . , n

−
g

)
.

Our numerical results, discussed in Section 1.6.3, indicate that the statement about the
matrix-valued one-plus currents might be true irrespective of the position of the positive-
helicity gluon as long as it is separated from the fermion by at least one negative-helicity
gluon. Unfortunately, it remains a challenge to show it. Here we used an explicit formula
for iJ

(
1∗
Q̄
, 2∗Q, 3

−
g , 4

+
g

)
to evaluate one of the diagrams. To prove the vanishing of the

unphysical pole for iJ
(
1∗
Q̄
, 2∗Q, 3

−
g , . . . , (m−1)−g ,m+

g , (m+1)−g , . . . , n
−
g

)
in the same manner,

one would need to have an explicit formula either for iJ
(
1∗
Q̄
, 2∗Q, 3

−
g , . . . , (m−1)−g ,m+

g

)
or

for iJ
(
1∗
Q̄
, 2∗Q,m

+
g , (m+1)−g , . . . , n

−
g

)
.

1.6 Results for currents

In this section, we apply the constructions established in the previous section to compute
massive fermion currents from recursion relations. First, we list 3- and 4-point currents
as a starting point. Next, we give a closed-form expression for currents with an arbitrary
number of gluons if their helicities are all alike. For a fully non-recursive version and its
derivation, we refer the reader to Appendix C of Ref. {1}. Finally, we state our numerical
results for shifts producing recursion relations in the case of one gluon of opposite helicity.

1.6.1 3-point and 4-point currents

For completeness, we begin by listing the 3- and 4-point currents, which are straightfor-
ward to derive from Feynman rules, with full freedom of the choice of reference spinors.

iJ
(
1∗Q̄, 2

∗
Q, 3

−
g

)
= −i |n3]〈3|+|3〉[n3|

[n33]
,

iJ
(
1∗Q̄, 2

∗
Q, 3

+
g

)
= i
|3]〈n3|+|n3〉[3|
〈n33〉

.

(1.49)

iJ
(
1∗Q̄, 2Q,3

−
g , 4

−
g

)
= − i

[n33][n44]

×
{
− 1

〈3|2|3]

[
|4〉[n4|2|3〉[n3| − |n4]〈4|1|n3]〈3|+m|4〉[n4n3]〈3|+m|n4]〈43〉[n3|

]

+
1

[34]

[
[n3n4]

2
( 6p3−6p4) + [n34]

(
|n4]〈4|+|4〉[n4|

)
+ [n43]

(
|n3]〈3|+|3〉[n3|

)]}
|2).

(1.50)
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iJ
(
1∗Q̄, 2

∗
Q, 3

−
g , 4

−
g

)
= − i

[n33][n44]

{(
|n4]〈4|+|4〉[n4|

) 6p2−6p3+m
(p2−p3)2−m2

(
|n3]〈3|+|3〉[n3|

)

+
1

[34]

[
[n3n4]

2
( 6p3−6p4) + [n34]

(
|n4]〈4|+|4〉[n4|

)
+ [n43]

(
|n3]〈3|+|3〉[n3|

)]}
,

(1.51)

iJ
(
1∗Q̄, 2

∗
Q, 3

−
g , 4

+
g

)
=

i

[n33]〈n44〉

{(
|4]〈n4|+|n4〉[4|

) 6p2−6p3+m
(p2−p3)2−m2

(
|n3]〈3|+|3〉[n3|

)

+
[n34]〈n43〉
2[34]〈43〉 ( 6p3−6p4) +

[n34]

[34]

(
|4]〈n4|+|n4〉[4|

)
− 〈n43〉
〈43〉

(
|n3]〈3|+|3〉[n3|

)}
,

(1.52)

iJ
(
1∗Q̄, 2

∗
Q, 3

+
g , 4

−
g

)
=

i

〈n33〉[n44]

{(
|n4]〈4|+|4〉[n4|

) 6p2−6p3+m
(p2−p3)2−m2

(
|3]〈n3|+|n3〉[3|

)

+
〈n34〉[n43]

2〈34〉[43] ( 6p3−6p4) +
〈n34〉
〈34〉

(
|n4]〈4|+|4〉[n4|

)
− [n43]

[43]

(
|3]〈n3|+|n3〉[3|

)}
.

(1.53)

1.6.2 Closed form for all-minus currents

1∗2

3−
4− 5− . . .

n−

=

1∗
2

3̂−
4̂−

5−

...

n−

+

1∗

2

3̂−

4̂−

5−

6−
. . .

n−

+

1∗

2

3̂− 4̂−

5−

6−7−
. . .

n−

+ . . . +

1∗

2

3̂− 4̂−

5−

. . .

n−

Figure 1.7: BCFW derivation of iJ
(
1∗
Q̄
, 2Q, 3

−
g , 4

−
g , . . . , n

−
g

)
.

For n ≥ 5, we compute the all-minus current iJ
(
1∗
Q̄
, 2Q, 3

−
g , 4

−
g , . . . , n

−
g

)
by doing a

[34〉 shift and setting all reference momenta equal to an arbitrary null vector q. Since we
have established the absence of boundary terms and unphysical poles in the preceding
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sections, the BCFW expansion is given as follows:

iJ
(
1∗Q̄, 2Q, 3̂

−
g , 4̂

−
g , . . . , n

−
g

)
= iJ

(
1∗Q̄, (2−3̂)Q, 4̂−g , 5−g , . . . , n−

g

) i( 6p2−6p̂3+m)

(p2−p3)2−m2
A
(
−(2−3̂)Q̄, 2Q, 3̂−g

)

+
∑

(h,h̃)

[
iJ
(
1∗Q̄, 2Q, 3̂

−
g , (4̂+5)hg , 6

−
g , . . . , n

−
g

) i

(p4+p5)2
A
(
−(4̂+5)h̃g , 4̂

−
g , 5

−
g

)

+

n∑

k=6

iJ
(
1∗Q̄, 2Q, 3̂

−
g , (P̂4,k)

h
g , (k+1)−g , . . . , n

−
g

) i

P 2
4,k

A
(
−(P̂4,k)

h̃
g , 4̂

−
g , 5

−
g , . . . , k

−
g

)]
.

(1.54)

See Fig. 1.7. Because we are working with off-shell currents, the sum over intermediate
gluon polarization states (h, h̃) must now include the unphysical polarization state combi-
nations (L, T ), (T, L), which vanished automatically in the on-shell case due to the Ward
identity. This subtlety was first treated in a similar context in Ref. [87]. Specifically, the
numerator of the Feynman propagator is decomposed as

− gµν = ε+µ ε
−
ν + ε−µ ε

+
ν + εLµε

T
ν + εTµε

L
ν , (1.55)

where

εLµ = kµ, εTµ = − qµ
(k ·q) . (1.56)

It is clear that the gluon amplitude in the third line of Eq. (1.54) (the second line of
Fig. 1.7) vanishes identically, due to the form of the all-minus Berends-Giele current (1.40)
contracted with any of the polarization vectors. The three-point gluon amplitude in the
second line of Eq. (1.54) (the last diagram of the first line of Fig. 1.7) vanishes as well.
Therefore, the only contribution that is left is the single term in the first line, involving a
fermionic propagator. The general expression for an n-point all-minus current can then
be written as

|n−(n−1)− . . . 4−3−|2) = −i
[q3̂][q4̂] . . . [q n̂−2][q n−1][qn]

×
{(
|q]〈n|+|n〉[q|

) 6p2−6P̂3,n−1+m

(p2−P3,n−1)2−m2

(
|q]〈n̂−1|+|n̂−1〉[q|

)

+
1

[n−1 n]

[
[qn]

(
|q]〈n|+ |n〉[q|

)
+ [q n−1]

(
|q]〈n̂−1|+|n̂−1〉[q|

)]}

× 6p2−6P̂3,n−2+m

(p2−P3,n−2)2−m2

(
|q]〈n̂−2|+|n̂−2〉[q|

)
× · · ·

× 6p2−6P̂3,4+m

(p2−P3,4)2−m2

(
|q]〈4̂|+|4̂〉[q|

)

× 6p2−6p̂3+m
(p2−p3)2−m2

(
|q]〈3|+|3〉[q|

)
|2),

(1.57)
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where the shifted momenta are defined recursively by




zk =
〈k̂|6p2−6P̂3,k−1|k]
〈k̂|6p2−6P̂3,k−1|k+1]

|k̂] = |k]− zk|k+1]

|k̂+1〉 = |k+1〉+ zk|k̂〉
6P̂3,k ≡ 6P3,k − zk

(
|k+1]〈k̂|+|k̂〉[k+1|

)
,

(1.58)

with k = 3, 4, . . . , n− 2, and the initial values

z2 = 0, z3 =
〈3|2|3]
〈3|2|4] . (1.59)

We have verified this formula numerically through n = 6 by comparison with sums of
Feynman diagrams.

The massless version (m = 0) was found in Ref. [47] for one helicity choice of the
on-shell spinor, namely iJ

(
1∗
Q̄
, 2+Q, 3

−
g , . . . , n

−
g

)
in our reversed fermion momentum con-

vention, so that |2) = |2〉. In our calculation, rather than take the massless limit of
Eq. (1.57), it would be more effective to return to the recursion relation as given in the
nonvanishing first line of Eq. (1.54), so that the propagators can be replaced by simple
spinor products at each step of the recursion. Recovering the compact form of Ref. [47]
is not immediate for general n, however, because we preserve a form of the current in
which the quark spinor |2) is an explicit factor at the right of the expression, free to take
either helicity value. This is important, because the shift of the quark momentum means
that the full internal helicity sum occurs at each stage of our recursion.

It is possible to solve the recursion (1.58) exactly and write the shifted spinors for
Eq. (1.57) in a fully closed form. For this non-recursive form and the outline of its
derivation, we refer the reader to Appendix C of Ref. {1}.

1.6.3 Numerical results

Beyond the case of all gluons having the same helicity, we have found valid shifts nu-
merically through n = 6 in the case of one gluon of opposite helicity to the others (the
“one-plus” case or its parity conjugate). A sufficient condition for a valid shift is to take
the reference momenta of all the negative-helicity gluons equal to the momentum of the
positive-helicity gluon: n− = p+.

For the choice of shifted gluons, we have identified two valid possibilities:

• Shift the two gluons closest to the on-shell fermion; if they both have negative
helicities, choose the shift so that the unphysical pole would come from the gluon
adjacent to the on-shell fermion. (These shifts are all valid in the all-minus case as
well.)

• In the case with the plus-helicity gluon in central position, shift the plus-gluon
along with the any of the adjacent minus-gluons irrespective of their position with
respect to the fermions. The unphysical poles then vanish, even with both fermions
off-shell.
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To be more precise, we found that for iJ
(
1∗
Q̄
, 2∗Q, 3

−
g , 4

+
g , 5

−
g , 6

−
g

)
in gauge n3 = n5 =

n6 = p4 not only [34〉 shift produces no unphysical poles (as we have proved in Section
4.3), but [54〉 as well. Similarly, iJ

(
1∗
Q̄
, 2∗Q, 3

−
g , 4

−
g , 5

+
g , 6

−
g

)
in gauge n3 = n4 = n6 = p5

suffers from no unphysical poles both under [65〉 and [45〉 shifts.
In the 6-point case, we also have currents with two plus and two minus helicities, but

unfortunately we were unable to find a good gauge choice for them.

1.7 Discussion

In this chapter, we have studied currents of n−2 gluons of “mostly-minus” helicity and a
massive quark-antiquark pair, where the antiquark is off shell. Because of the off-shellness
of the antiquark, the choice of reference spinors plays an important role.

BCFW-type recursion relations are obtained under the following conditions, which
ensure the absence of a boundary term and unphysical poles. The reference spinors of
the negative-helicity gluons are all chosen to be equal. If there is a single positive-helicity
gluon, its momentum is taken to be the reference spinor of the negative-helicity gluons.

• In the case where all gluons have negative helicity, we have obtained both a recursive
and a closed form for the current derived from recursion relations.

• In the case where one gluon has positive helicity, and it is color-adjacent to the
quark or antiquark, we have proven the validity of the recursion relation, but we
do not have a closed form.

• In the case where one gluon has positive helicity, and it is color-adjacent to two
other gluons, we have found numerical evidence for the validity of the recursion
relation in general, but were able to prove it only for the simplest configuration,
with the positive gluon in next-to-extreme position.

In Yang-Mills theory, an on-shell alternative to the BCFW construction is the MHV
diagram expansion [9], in which maximally-helicity-violating (MHV) amplitudes play the
role of interaction vertices, with a suitable on-shell prescription for the intermediate legs.
For off-shell currents, there is apparently no sensible expansion in MHV diagrams when
the off-shell leg carries color charge, such as the Berends-Giele currents for gluons.

One might consider applying a BCFW shift to the massive fermion pair, but this
construction fails off-shell. With a conventional definition of massive spinors [83, 85] in
terms of a single reference vector, good boundary behavior is evident, but there are un-
avoidable, complicated unphysical poles, due to

√
z-dependence of the denominators of

the massive spinors. Even with both fermions on shell, the only shift known to be valid
is quite specialized: each of the two massive fermion spinors has its reference vector con-
structed in terms of the other [95]. This choice is not well suited for repeated application
in an analytic recursion relation, because it is undesirable to keep track of the data of
internal legs. One would like the choice of reference spinor to be fixed once for all. Nev-
ertheless, we looked at extending this construction off-shell. There is no z-dependence in
the denominators, but when either of the on-shell massive spinors are stripped off, the
miraculous cancellation reducing the boundary behavior from O(1) to O(1/z) no longer
takes place.
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In the course of studying boundary behavior in Section 1.4, we have proven the good
boundary behavior of general off-shell objects in Feynman gauge, as long as they contain
at least two on-shell gluons that can be shifted. This meshes with the argument of
Ref. [110] in the light-cone gauge q ·A = 0 specified by the BCFW-shift vector q given
in Eq. (1.3). Another analysis [113], based on reduced Yang-Mills vertices, found similar
results as well. Thus we could see that it is not the boundary behavior that hinders the
BCFW recursion off shell, but the unphysical poles, coming from the polarization vectors.

Several questions arise for future exploration. Is there any choice of shift and reference
spinors that eliminates boundary terms and unphysical poles for more general helicity
configurations? If so, can the recursion relation be solved neatly? Do some shifts give
more compact results than others? Is there a neat solution for the current with a single
gluon of opposite helicity, for which we have already proved the existence of recursion
relations? In cases where unphysical poles are present: is there any way to understand
them, so that their residues could be incorporated explicitly in the recursion relation?
Further results addressing these questions would certainly illuminate our understanding
of the BCFW construction and its applicability to gauge-dependent objects.
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Chapter 2

Gauge theory at one loop

Recent developments in understanding scattering amplitudes have lead to impressive
achievements in taming gauge theory amplitudes analytically for increasing and in some
cases arbitrary number of particles. Table 2.1 provides a short summary of existing one-
loop results as of July 2014. In it, “maximally-helicity-violating” (MHV) conventionally
stands for amplitudes with two minus-helicity gluons, whereas the next-to-maximally-
helicity-violating (NMHV) case corresponds to three negative helicities. In addition to
that, general split-helicity color-ordered amplitudes in N = 1 SYM are known as well due
to their simple analytic behavior which permits an elegant one-loop BCFW recursion [49].

N = 4 SYM N = 1 SYM QCD
MHV n-point in 1994 [2] n-point in 1994 [50] n-point in 2006 [51,52,114]
NMHV n-point in 2004 [53] 6-point in 2005 [54], 6-point in 2006 [57,58]

7-point in 2009 [55,56]
n-point in 2013 {2}

Table 2.1: Known analytic results for gluon amplitudes at one loop in gauge theories with and
without supersymmetry, including the result of {2}

In this chapter, we discuss the completion of the lower middle cell of table 2.1 with
n-point analytic results. To do that, we use spinor integration [54, 59] which provides a
sleek way to compute amplitude coefficients of one-loop master integrals from unitarity
cuts in a purely algebraic manner. We briefly review its idea and recipes in Section 2.1.
In fact, our bubble coefficient formula has a novel form with respect to those found in
the literature [115–118], so for completeness we provide a streamlined rederivation of the
spinor integration formalism in Section 2.2. Moreover, later in Section 2.3.4, we slightly
adapt the bubble coefficient formula to make full use of N = 1 supersymmetry.

Intuitively, the main difficulty in finding universal NMHV formulas is that even at 7
points general patterns are not yet obvious, because the numbers of minus and plus he-
licities are still comparable to each other, whereas MHV amplitudes become “saturated”
by positive helicities already for 6 external gluons. So in Section 2.4, we construct a
double cut for an arbitrary multiplicity from the start, for which we use the tree input
from Ref. [62]. Next, in Section 2.5, we carefully analyze how the cut depends on loop
momentum variables, which is essential for getting to the master integral coefficients.

For the explicit formulas for the bubble and box coefficients, we refer the reader

29



to Sections 6 and 7 of Ref. {2}. We note that their further use is facilitated by their
Mathematica implementation, freely distributed along with it (see Appendix F therein
for a brief description). To verify our results, we performed a number of non-trivial
checks, which are summarized in Section 2.6.

We hope that our all-multiplicity results will provide a helpful testing ground for
further theoretic developments. For instance, it is an interesting question whether any
kind of on-shell recursion relations can be established between the coefficients we have
found. We only took a quick peek into this, as is mentioned in Section 2.7.

2.1 Method: spinor integration

Scattering amplitudes in four dimensions are known to be reducible [119–123] to the
following basis of master integrals:

A1-loop = µ2ǫ
(∑

Cbox I4 +
∑

Ctri I3 +
∑

Cbub I2 +R
)
, (2.1)

where the sums go over all distinct scalar integrals and R is the purely-rational part. In
this thesis, we adopt the conventional definition [124, 125] for dimensionally-regularized
massless scalar integrals:

In = (−1)n+1(4π)
d
2 i

∫
ddℓ1
(2π)d

1

ℓ21(ℓ1 −K1)2 . . . (ℓ1 −Kn−1)2
, (2.2)

where d = 4−2ǫ. Due to the normalization, all the coefficient formulas we provide further
contain trivial prefactors (4π)−d/2. Analytic expressions for these integrals can be found
in Ref. [125].

Since all one-loop integrals are well known, the problem of finding the amplitude is
equivalent to finding their coefficients and rational part R. Rather than try to construct
one-loop amplitudes from Feynman rules, it is much easier to construct their unitarity
cuts from known tree amplitudes. If we denote the unitarity cut operator by δ2, we obtain

δ2A
1-loop =

∑
Cbox δ2I4 +

∑
Ctri δ2I3 +

∑
Cbub δ2I2. (2.3)

Of course, each cut is sensitive only to those coefficients whose integrals’ cuts do not
vanish, but by going through different cuts one can obtain all coefficients. As is ev-
ident from Eq. (2.3), R is the only term in Eq. (2.1) completely invisible to four-
dimensional cuts. This can be cured by considering d-dimensional cuts, (see, for instance,
Refs. [59, 126, 127]). However, d-dimensional tree amplitudes are much less available in
the literature than their four-dimensional versions, so other methods [52,58,128–130] are
often preferable. Fortunately, amplitudes in supersymmetric theories have a vanishing
rational part [50], so the four-dimensional cut methods are sufficient for the purposes of
this thesis.

In the rest of this section, we concentrate on the particular method of spinor inte-
gration in four dimensions [54, 57, 59, 115–117, 131]. We will summarize its ideas, write
down the explicit formulas for the coefficients of the master integrals, and then give its
streamlined derivation.

30



2.1.1 General idea

We start by constructing the standard unitarity cut, the double cut, from two tree am-
plitudes. Here, for simplicity, we write the four-dimensional K-channel cut without any
prefactors:

Cut =
∑

h1,h2

∫
d4ℓ1 δ(ℓ

2
1)δ(ℓ

2
2)A

tree(−ℓh̄1

1 , . . . , ℓ
h2

2 )Atree(−ℓh̄2

2 , . . . , ℓ
h1

1 ). (2.4)

The most important step is then to trade the constrained loop variables ℓ1 and ℓ2 = ℓ1−K
for homogeneous spinor variables λ and λ̃ such that

ℓµ1 =
K2

2

〈λ|γµ|λ̃]
〈λ|K|λ̃]

, (2.5a)

ℓµ2 = −1

2

〈λ|K|γµ|K|λ̃]
〈λ|K|λ̃]

. (2.5b)

The integration measure transforms as follows:

∫
d4ℓ1 δ(ℓ

2
1)δ(ℓ

2
2) = −

K2

4

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]
〈λ|K|λ̃]2

. (2.6)

If one then expands these homogeneous variables in arbitrary basis spinors:

λ = λp + zλq, λ̃ = λ̃p + z̄λ̃q, (2.7)

then the connection to the integral over the complex plane becomes evident:
∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃] = −(p+ q)2
∫
dz ∧ dz̄. (2.8)

So the phase space spinor integration can be treated as a complex plane integration in
disguise. In this spinorial language, it is possible to define simple and self-consistent rules
for taking residues. For instance, we calculate the residue of simple pole 〈ζ|λ〉 as follows:

Res
λ=ζ

F (λ, λ̃)

〈ζ|λ〉 = F (ζ, ζ̃). (2.9)

The full set of rules is given in detail in Appendix A.
In essence, the method of spinor integration uses a spinorial version of Cauchy’s

integral theorem [131] to actually perform that complex plane integration in a manner
which exposes coefficients of different scalar integrals.

In short, once we rewrite the cut (2.4) using homogeneous spinor variables

Cut =

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃] Ispinor, (2.10)

integral coefficients are given by general algebraic formulas which are given below. To
write them we only need to introduce a short notation for the following vectors:

Qµ
i (Ki, K) = −Kµ

i +
K2

i

K2
Kµ. (2.11)

31



These arise naturally because all loop-dependent physical poles come from propagators
which can be rewritten in homogeneous variables as

(ℓ1 −Ki)
2 = K2 〈λ|Qi|λ̃]

〈λ|K|λ̃]
. (2.12)

2.1.2 Box coefficient

The coefficient of the scalar box labeled by two uncut propagators i and j can be expressed
as

Cbox
ij = − 2K2

(4π)
d
2 i
Ispinor〈λ|Qi|λ̃]〈λ|Qj|λ̃]

{∣∣∣∣λ=λij
+

λ̃=λ̃ij
−

+

∣∣∣∣λ=λij
−

λ̃=λ̃ij
+

}
, (2.13)

where spinors λ = λij± and λ̃ = λ̃ij± correspond to on-shell combinations of propagator
momenta:

P ij
± (Ki, Kj, K) = Qi + xij±Qj, (2.14)

xij± =
−(Qi ·Qj)±

√
(Qi ·Qj)2 −Q2

iQ
2
j

Q2
j

. (2.15)

It is easy to see that these formulae are equivalent to the well-understood quadruple
cut method [3,7]. Indeed, the sole purpose of factors 〈λ|Qi|λ̃] and 〈λ|Qj|λ̃] in Eq. (2.13)
is just to cancel the corresponding propagator factors in the denominator of Ispinor. Now,
by definition

〈λij±|Qi|λ̃ij∓] = 〈λij±|Qj|λ̃ij∓] = 0, (2.16)

so formula (2.13) effectively puts propagators i and j on shell, thus converting the original
double cut into a quadruple cut and summing over the two solutions.

2.1.3 Triangle coefficient

The coefficient of the scalar triangle labeled by one uncut propagator i can be found to
be equal to

Ctri
i =

2

(4π)
d
2 i

1

(K2(xi+ − xi−)2)n−k+1

× 1

(n−k+1)!

d(n−k+1)

dt(n−k+1)
Ispinor〈λ|Qi|λ̃]〈λ|K|λ̃]n−k+2

{∣∣∣∣ λ=λi
+−tλi

−

λ̃=xi
+λ̃i

−
−txi

−
λ̃i
+

+

∣∣∣∣ λ=λi
−
−tλi

+

λ̃=xi
−
λ̃i
+−txi

+λ̃i
−

}∣∣∣∣
t=0

,

(2.17)
where spinors λ = λi± and λ̃ = λ̃i± correspond to the following on-shell momenta:

P i
±(Ki, K) = Qi + xi±K, (2.18)

xi± =
−(K ·Qi)±

√
(K ·Qi)2 −K2Q2

i

K2
. (2.19)

Here and below in this section, (n− k) is the difference between the numbers of λ-factors
in the numerator and the denominator of Ispinor, excluding the homogeneity-restoring
factor 〈λ|K|λ̃]n−k+2.
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2.1.4 Bubble coefficient

Finally, we find the coefficient of the K-channel scalar bubble through the following
general formula:

Cbub=
4

(4π)
d
2 i

∑

residues

1

(n−k)!
d(n−k)

ds(n−k)

1

s
ln

(
1+s

〈λ|q|λ̃]
〈λ|K|λ̃]

)[
Ispinor

〈λ|K|λ̃]n−k+2

〈λ|K|q|λ〉

∣∣∣∣
|λ̃]=|K+s q|λ〉

]∣∣∣∣
s=0

,

(2.20)

where the derivative in s is just a way to encode the extraction of the (n−k)-th Taylor
coefficient around s = 0. Note that the formula contains an arbitrary light-like vector
q. Nonetheless, the answer does not depend on it and thus can be simplified by an
appropriate choice of q.

We point out the fact that Eq. (2.20) looks different from equivalent spinor integration
formulas given earlier in Refs. [115–118], because here we chose to write it using as a sum
over spinor residues thus leaving the next step to be carried out afterwards according
to the conventions given in Appendix A. So in fact, Eq. (2.20) can be considered as an
intermediate step in derivation of more involved formulas with all pole residues already
taken explicitly in full generality with the price of generating extra sums and derivatives
in another auxiliary parameter. Further in Section 2.3.4, we provide another formula
which is even better suited for calculations with N = 1 supersymmetry.

2.2 Derivation of spinor integration formulas

In this section, we derive the coefficient formulas (2.13), (2.17) and (2.20) from the four-
dimensional spinor integration.

First of all, we need the expressions for cut integrals to identify their coefficients in
the cut expressions. Using the notation from the previous section, we can write [54]:

δ2I
bub = −i(4π)−ǫ2πi, (2.21a)

δ2I
tri
i = i(4π)−ǫ 2πi

K2(xi+ − xi−)
ln

(−xi−
−xi+

)
, (2.21b)

δ2I
box
ij = −i(4π)−ǫ 2πi

K2Q2
j(x

ij
+ − xij−)

ln

(
−xij−
−xij+

)
, (2.21c)

where, strictly speaking, the operation δ2 acts on two loop propagators as the following
replacement rule:

1

ℓ2
→ −2πiδ+(ℓ2). (2.22)

Formulas (2.21) can be immediately derived from the two following identities:

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]
〈λ|K|λ̃]2

=
2πi

K2
, (2.23a)

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]
〈λ|P |λ̃]〈λ|Q|λ̃]

=
2πi

2
√
(P ·Q)2 − P 2Q2

ln

(
(P ·Q) +

√
(P ·Q)2 − P 2Q2

(P ·Q)−
√

(P ·Q)2 − P 2Q2

)
. (2.23b)
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As summarized in Section 2.1.1, we should start with a generic K-channel cut inte-
grand (2.4) and transform it to the spinor integral form (2.10).

In the most general d-dimensional case, we can express the product of two amplitudes
as follows:

∑

h1,h2

Atree(−ℓh̄1

1 , . . . , ℓ
h2

2 )Atree(−ℓh̄2

2 , . . . , ℓ
h1

1 ) =

∏n
i=1(−2(Pi ·ℓ1))∏k
i=1(ℓ1 −Ki)2

, (2.24)

for some fixed complex-valued Pi constructed from external kinematics. Then, by plug-
ging in Eqs. (2.5) and (2.6), we can rewrite the K-channel cut as

Cut =

∫
ddℓ1 δ+(ℓ

2
1) δ+(K

2 − 2(K ·ℓ1))
∏n

i=1(−2(Pi ·ℓ1))∏k
i=1(ℓ1 −Ki)2

=
π−ǫ

Γ(−ǫ)

(
K2

4

)−ǫ∫ 1

0

du u−1−ǫ
√
1− u

×
(
−(K2)n−k+1

4

)∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]
〈λ|K|λ̃]n−k+2

∏n
i=1〈λ|Ri(Pi, K, u)|λ̃]∏k
i=1〈λ|Qi(Ki, K, u)|λ̃]

,

(2.25)

where we introduced

Rµ
i (Pi, K, u) = −

√
1− uP µ

i −
(1−

√
1− u)(Pi ·K)

K2
Kµ, (2.26)

Qµ
i (Ki, K, u) = −

√
1− uKµ

i +
K2

i − (1−
√
1− u)(Ki ·K)

K2
Kµ, (2.27)

and the u-integration part comes from (−2ǫ)-dimensional phase-space measure.
In the cut-constructible case, it is harmless to omit it, so we rewrite (2.25) simply as

Cut = −(K2)n−k+1

4

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]
〈λ|K|λ̃]n−k+2

∏n
i=1〈λ|Ri(Pi)|λ̃]∏k

i=1〈λ|Qi(Ki, K)|λ̃]
, (2.28)

where vectors Qi now coincide with their definition (2.11) and Ri degenerate to

Rµ
i (Pi) = −P µ

i . (2.29)

2.2.1 Separating the bubble contribution

We now consider the spinor integral

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]
〈λ|K|λ̃]n−k+2

∏n
i=1〈λ|Ri|λ̃]∏k
i=1〈λ|Qi|λ̃]

. (2.30)

The following derivation can be considered as the evaluation of the core four-dimensional
integral in the d-dimensional unitarity cut (2.25), meaning that the u-dependence of Ri

and Qi can in principle be retained all along. Alternatively, one can think of it in terms
of the purely four-dimensional cut (2.28). The first perspective lets us consider all Qi

massive, as is always true for their d-dimensional definition (2.27). However, thanks to
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the cut-constructibility of the supersymmetric amplitudes, which we aim to calculate in
this chapter, it is sensible to leave the question of u-integration [59, 115–117, 127, 132]
beyond the scope of this thesis.

We deform the denominator of (2.30) using an arbitrary massless vector nµ and a set
of infinitesimal parameters {si}n−k+1

i=1 :

1

〈λ|K|λ̃]n−k+2

∏n
i=1〈λ|Ri|λ̃]∏k
i=1〈λ|Qi|λ̃]

= lim
{s}→0

1

〈λ|K|λ̃]
1∏n−k+1

i=1 〈λ|K+sin|λ̃]

∏n
i=1〈λ|Ri|λ̃]∏k
i=1〈λ|Qi|λ̃]

. (2.31)

Now that all the denominators are different, we can use the following reduction formula:

∏n
i=1〈λ|Ri|λ̃]∏n+1
i=1 〈λ|Qi|λ̃]

=
n∑

i=1

1

〈λ|Qi|λ̃]

∏n
j=1〈λ|Rj|Qi|λ〉∏n+1
j 6=i 〈λ|Qj|Qi|λ〉

, (2.32)

to get

lim
{s}→0

1

〈λ|K|λ̃]

{ n−k+1∑

i=1

1

〈λ|K+sin|λ̃]

∏n
j=1〈λ|Rj|K+sin|λ〉∏n−k+1

j 6=i 〈λ|K+sjn|K+sin|λ〉
∏k

j=1〈λ|Qj|K+sin|λ〉

+
k∑

i=1

1

〈λ|Qi|λ̃]

∏n
j=1〈λ|Rj|Qi|λ〉∏n−k+1

j=1 〈λ|K+sjn|Qi|λ〉
∏k

j 6=i〈λ|Qj|Qi|λ〉

}
.

(2.33)

In the second line of Eq. (2.31), it is harmless to take the limit:

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]
〈λ|K|λ̃]n−k+2

∏n
i=1〈λ|Ri|λ̃]∏k
i=1〈λ|Qi|λ̃]

=
k∑

i=1

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]Fi(λ)

〈λ|K|λ̃]〈λ|Qi|λ̃]

+ lim
{s}→0

n−k+1∑

i=1

1∏n−k+1
j 6=i (si−sj)

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]G(λ, si)
〈λ|K|λ̃]〈λ|K+sin|λ̃]

,

(2.34)

where we denote

Fi(λ) =
1

〈λ|K|Qi|λ〉n−k+1

∏n
j=1〈λ|Rj|Qi|λ〉∏k
j 6=i〈λ|Qj|Qi|λ〉

, (2.35)

G(λ, si) =
1

〈λ|K|n|λ〉n−k

∏n
j=1〈λ|Rj|K+sin|λ〉∏k
j=1〈λ|Qj|K+sin|λ〉

. (2.36)

Note that when n− k + 2 = 0, the standard loop-momentum power-counting tells us
that the cut reduces only to boxes and there is no need to use Eq. (2.32) to get to the box
coefficient formula (2.13). If n = k − 1, there are triangles, but still no bubbles. They
come into play when n ≥ k along with the second sum in Eq. (2.32). At n ≥ k + 2 the
integrated expression can contain rational terms, invisible for four-dimensional cuts.

We will first treat the first sum in Eq. (2.32) which will be shown to contain only
boxes and triangles. The second sum is nothing but the bubble contribution, which will
be computed later.
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2.2.2 Boxes and triangles

We start by introducing a Feynman parameter to gather the two λ̃-containing denomi-
nators under Fi(λ) into one:

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]Fi(λ)

〈λ|K|λ̃]〈λ|Qi|λ̃]
=

∫ 1

0

dx

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]Fi(λ)

〈λ|(1− x)K+xQi|λ̃]2
≡
∫ 1

0

dx

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]Fi(λ)

〈λ|Qi(x)|λ̃]2
.

(2.37)
Then we use the following formula:

[λ̃dλ̃][η̃λ̃]n

〈λ|K|λ̃]n+2
=

[λ̃∂λ̃]

n+ 1

[η̃λ̃]n+1

〈λ|K|λ̃]n+1〈λ|K|η̃]
, (2.38)

in which we set n = 0 to obtain

∫ 1

0

dx

∫
〈λdλ〉[λ̃∂λ̃]

Fi(λ)[η̃λ̃]

〈λ|Qi(x)|λ̃]〈λ|Qi(x)|η̃]
. (2.39)

Here we transformed the spinor measure 〈λdλ〉[λ̃dλ̃] which in standard complex variables
corresponds to dz ∧ dz̄ to 〈λdλ〉[λ̃∂λ̃]. The latter translates to dz ∧ dz̄ ∂

∂z̄
which, according

to Cauchy’s integral theorem [0905.2909], is equivalent to summing the residues of all
poles of the integrand.

We are free to choose η̃ = λ̃i+, for which

〈λ|Qi(x)|λ̃i+] =
〈λ|K|Qi|λ〉
〈λ|λi+〉

(
x(xi+ + 1)− 1

)
, (2.40)

so we get ∫ 1

0

dx

∫
〈λdλ〉[λ̃∂λ̃]

Fi(λ)

〈λ|K|Qi|λ〉
〈λ|P i

+|λ̃]
(x(xi+ + 1)− 1) 〈λ|Qi(x)|λ̃]

, (2.41)

where the apparent pole at λi+ coming from 〈λ|K|Qi|λ〉 in the denominator has zero

residue due to 〈λ|P i
+|λ̃] in the numerator. Next we split the last two denominators and

take the integral in x:

∫ 1

0

dx

∫

not at λi
+

〈λdλ〉[λ̃∂λ̃]
Fi(λ)

〈λ|K|Qi|λ〉

{
xi+ + 1

x(xi+ + 1)− 1
− 〈λ|Qi−K|λ̃]
x〈λ|Qi−K|λ̃] + 〈λ|K|λ̃]

}

=

∫

not at λi
+

〈λdλ〉[λ̃∂λ̃]
Fi(λ)

〈λ|K|Qi|λ〉

{
ln(−xi+)− ln

〈λ|Qi|λ̃]
〈λ|K|λ̃]

}
.

(2.42)

The first term in Eq. (2.42) is analytic in λ, so we can replace the sum over all
residues but λi+ by simply the residue at λi+ with a minus sign. In the second term, we
can just split the only multiple pole λi− from the rest. Even when taking the multiple pole

according to Eq. (A.2), we replace λ̃ by the pole value λ̃i−, which simplifies the argument
of the logarithm to

〈λ|Qi|λ̃i−]
〈λ|K|λ̃i−]

= −xi−. (2.43)
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The remaining poles are simple and come from the following denominators in Fi(λ):

〈λ|Qj|Qi|λ〉 =
〈λ|λij+〉[λ̃ij+|λ̃ij−]〈λij−|λ〉

xij+ − xij−
. (2.44)

After restoring the full form of Fi(λ) and the original sum over i, we obtain:

k∑

i=1

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]Fi(λ)

〈λ|K|λ̃]〈λ|Qi|λ̃]
= −2πi

k∑

i=1

Res
λ=λi

+

1

〈λ|K|Qi|λ〉n−k+2

∏n
l=1〈λ|Rl|Qi|λ〉∏k
l 6=i〈λ|Ql|Qi|λ〉

ln(−xi+)

−2πi
k∑

i=1

Res
λ=λi

−

1

〈λ|K|Qi|λ〉n−k+2

∏n
l=1〈λ|Rl|Qi|λ〉∏k
l 6=i〈λ|Ql|Qi|λ〉

ln(−xi−)

+2πi
k∑

i 6=j

Res
λ=λij

±

1

〈λ|K|Qi|λ〉n−k+2

∏n
l=1〈λ|Rl|Qi|λ〉∏k
l 6=i〈λ|Ql|Qi|λ〉

ln
〈λ|K|λ̃]
〈λ|Qi|λ̃]

.

(2.45)
We concentrate on the last double sum in order to isolate box contributions. For that

we denote

Fij(λ) =
1

〈λ|K|Qi|λ〉n−k+2

∏n
l=1〈λ|Rl|Qi|λ〉∏k
l 6=i,j〈λ|Ql|Qi|λ〉

, (2.46)

and change the summing

2πi
k∑

i 6=j

Res
λ=λij

±

Fij(λ)

〈λ|Qj|Qi|λ〉
ln
〈λ|K|λ̃]
〈λ|Qi|λ̃]

= 2πi
k∑

i<j

Res
λ=λij

±

{
Fij(λ)

〈λ|Qj|Qi|λ〉
ln
〈λ|K|λ̃]
〈λ|Qi|λ̃]

+
Fji(λ)

〈λ|Qi|Qj|λ〉
ln
〈λ|K|λ̃]
〈λ|Qj|λ̃]

} (2.47)

Now we can actually take the residues according to the rules (A.1). It is easy to prove
that due to

|Qi|λij±〉 =
±xij±

xij+ − xij−
|λ̃ij∓]〈λij∓|λij±〉,

|Qj|λij±〉 =
∓1

xij+ − xij−
|λ̃ij∓]〈λij∓|λij±〉,

(2.48)

Fij and Fji actually coincide at the poles:

Fij(λ
ij
±) = Fji(λ

ij
±) =

1

〈λij±|K|λ̃ij∓]n−k+2

∏n
l=1〈λij±|Rl|λ̃ij∓]∏k
l 6=i,j〈λij±|Ql|λ̃ij∓]

. (2.49)

This lets us group together the two contributions in Eq. (2.47):

2πi
k∑

i<j

{
(xij+ − xij−)Fij(λ

ij
+)

[λ̃ij+|λ̃ij−]〈λij−|λij+〉
ln
〈λij+|Qi|λ̃ij+]
〈λij+|Qj|λ̃ij+]

− (xij+ − xij−)Fij(λ
ij
−)

〈λij−|λij+〉[λ̃ij+|λ̃ij−]
ln
〈λij−|Qi|λ̃ij−]
〈λij−|Qj|λ̃ij−]

}

= −
k∑

i<j

2πi

Q2
j(x

ij
+ − xij−)

{
ln(−xi+)Fij(λ

ij
+)− ln(−xi−)Fij(λ

ij
−)

}
,

(2.50)
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where, among other things, we used that

Qi =
xij+P

ij
− − xij−P ij

+

xij+ − xij−
,

Qj =
P ij
+ − P ij

−

xij+ − xij−
.

(2.51)

We then regroup the logarithms and rewrite Eq. (2.45) as

−
k∑

i=1

2πi
{
ln(−xi+) Res

λ=λi
+

+ ln(−xi−) Res
λ=λi

−

} 1

〈λ|K|Qi|λ〉n−k+2

∏n
l=1〈λ|Rl|Qi|λ〉∏k
l 6=i〈λ|Ql|Qi|λ〉

+
k∑

i<j

2πi

Q2
j(x

ij
+ − xij−)

ln

(
−xij−
−xij+

)
Fij(λ

ij
+) + Fij(λ

ij
−)

2

−
k∑

i<j

2πi

Q2
j(x

ij
+ − xij−)

ln
(
xij+x

ij
−

) Fij(λ
ij
+)− Fij(λ

ij
−)

2
.

(2.52)

The second line of Eq. (2.52) already contains the right cut box expression. To see
that the third line belongs to cut triangles we note that

ln
(
xij+x

ij
−

)
= ln

(
Q2

i

Q2
j

)
= ln

(
Q2

i

K2

)
− ln

(
Q2

j

K2

)
= ln

(
xi+x

i
−

)
− ln

(
xj+x

j
−

)
. (2.53)

It is also straightforward to prove that

2πi Res
λ=λij

±

1

〈λ|K|Qi|λ〉n−k+2

∏n
l=1〈λ|Rl|Qi|λ〉∏k
l 6=i〈λ|Ql|Qi|λ〉

= −2πi Res
λ=λij

±

1

〈λ|K|Qj|λ〉n−k+2

∏n
l=1〈λ|Rl|Qj|λ〉∏k
l 6=j〈λ|Ql|Qj|λ〉

=
2πi

Q2
j(x

ij
+ − xij−)

[
Fij(λ

ij
+)− Fij(λ

ij
−)
]
,

(2.54)
so the third line of Eq. (2.52) becomes

−
k∑

i<j

2πi

Q2
j(x

ij
+ − xij−)

{
ln
(
xi+x

i
−

)
− ln

(
xj+x

j
−

)}Fij(λ
ij
+)− Fij(λ

ij
−)

2

= −1

2

k∑

i<j

{
ln
(
xi+x

i
−

)
2πi Res

λ=λij
±

1

〈λ|K|Qi|λ〉n−k+2

∏n
l=1〈λ|Rl|Qi|λ〉∏k
l 6=i〈λ|Ql|Qi|λ〉

+ ln
(
xj+x

j
−

)
2πi Res

λ=λij
±

1

〈λ|K|Qj|λ〉n−k+2

∏n
l=1〈λ|Rl|Qj|λ〉∏k
l 6=j〈λ|Ql|Qj|λ〉

}

= −1

2

k∑

i=1

ln
(
xi+x

i
−

) k∑

j 6=i

2πi Res
λ=λij

±

1

〈λ|K|Qi|λ〉n−k+2

∏n
l=1〈λ|Rl|Qi|λ〉∏k
l 6=i〈λ|Ql|Qi|λ〉

= +
1

2

k∑

i=1

ln
(
xi+x

i
−

)
2πi Res

λ=λi
±

1

〈λ|K|Qi|λ〉n−k+2

∏n
l=1〈λ|Rl|Qi|λ〉∏k
l 6=i〈λ|Ql|Qi|λ〉

,

(2.55)
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where in the last line thanks to analyticity of the integrands we replaced the sum over all
simple poles λ = λij± by the sum over the two multiple poles λ = λi± with a minus sign.

We can now group the first and the third lines of Eq. (2.52) into the correct cut
triangle logarithm:

k∑

i=1

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]Fi(λ)

〈λ|K|λ̃]〈λ|Qi|λ̃]
=

k∑

i<j

2πi

Q2
j(x

ij
+ − xij−)

ln

(
−xij−
−xij+

)
Fij(λ

ij
+) + Fij(λ

ij
−)

2

+
k∑

i=1

2πi ln

(−xi−
−xi+

)
1

2

{
Res
λ=λi

+

− Res
λ=λi

−

} 1

〈λ|K|Qi|λ〉n−k+2

∏n
l=1〈λ|Rl|Qi|λ〉∏k
l 6=i〈λ|Ql|Qi|λ〉

.

(2.56)

We now use Eq. (A.2) to take the residues of the multiple poles. When taking the
residue λi+, we pick the reference spinor to be equal to λi− and vice versa. This lets us
make use of the following properties:

|K|λi±〉 =
∓1

xi+ − xi−
|λ̃i∓]〈λi∓|λi±〉,

|Qi|λi±〉 =
±xi±

xi+ − xi−
|λ̃i∓]〈λi∓|λi±〉.

(2.57)

When the smoke clears, we use Eq. (2.49) and finally rewrite:

k∑

i=1

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]Fi(λ)

〈λ|K|λ̃]〈λ|Qi|λ̃]

=
k∑

i<j

2πi

Q2
j(x

ij
+ − xij−)

ln

(
−xij−
−xij+

)
1

2

1

〈λ|K|λ̃]n−k+2

∏n
l=1〈λ|Rl|λ̃]∏k
l 6=i,j〈λ|Ql|λ̃]

{∣∣∣∣λ=λij
+

λ̃=λ̃ij
−

+

∣∣∣∣λ=λij
−

λ̃=λ̃ij
+

}

+
k∑

i=1

2πi

K2(xi+ − xi−)
ln

(−xi−
−xi+

)
1

2

1

(K2(xi+ − xi−)2)(n−k+1)

× 1

(n−k+1)!

d(n−k+1)

dt(n−k+1)

∏n
l=1〈λ|Rl|λ̃]∏k
l 6=i〈λ|Ql|λ̃]

{∣∣∣∣ λ=λi
+−tλi

−

λ̃=xi
+λ̃i

−
−txi

−
λ̃i
+

+

∣∣∣∣ λ=λi
−
−tλi

+

λ̃=xi
−
λ̃i
+−txi

+λ̃i
−

}∣∣∣∣
t=0

.

(2.58)

2.2.3 Bubble

We return to the second line in Eq. (2.34) and, much in the same way as in the previous
section, we gather the two λ̃-containing denominators into one by introducing a Feynman
parameter and then reduce the spinor measure with the formula (2.38):

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]G(λ, si)
〈λ|K|λ̃]〈λ|K+sin|λ̃]

=

∫ 1

0

dx

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]G(λ, si)
〈λ|K+xsin|λ̃]2

=

∫ 1

0

dx

∫
〈λdλ〉[λ̃∂λ̃]

G(λ, si)[η̃λ̃]

〈λ|K+xsin|λ̃]〈λ|K+xsin|η̃]
.

(2.59)
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We can now simplify the integral in x by picking the reference spinor |η̃] = |n], so after
restoring the original sum in si we get

lim
{s}→0

n−k+1∑

i=1

1∏n−k+1
j 6=i (si−sj)

∫
〈λdλ〉[λ̃∂λ̃]

(
− 1

si

)
ln

(
1 + si

〈λ|n|λ̃]
〈λ|K|λ̃]

)
G(λ, si)

〈λ|K|n|λ〉 . (2.60)

Now we use the following non-trivial lemma:

lim
{s}→0

m∑

i=1

f(si)∏m
j 6=i(si−sj)

=
1

(m− 1)!

d(m−1)

ds(m−1)
f(s)

∣∣∣∣
s=0

, (2.61)

to reduce the singular limit in {si}n−k+1
i=1 to a well-defined Taylor coefficient extraction

procedure encoded by a derivative in a single parameter s:

− 1

(n−k)!
d(n−k)

ds(n−k)

∫
〈λdλ〉[λ̃∂λ̃]

1

s
ln

(
1 + s

〈λ|n|λ̃]
〈λ|K|λ̃]

)
G(λ, s)

〈λ|K|n|λ〉

∣∣∣∣
s=0

. (2.62)

Note that the logarithm expansion starts already with a factor of s, which cancels the
overall 1/s and that is the only role it plays in this contribution. Thus it has nothing to do
with neither boxes nor triangles. As discussed earlier, the spinor measure 〈λdλ〉[λ̃∂λ̃] here
means is equivalent to the operation of taking the residues of the integrand. This means
that all operations in Eq. (2.62) are already purely algebraic, so we prefer to implement
it in this form.

Finally, we rewrite the entire cut integral as the sum of box, triangle and bubble
contributions:

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]
〈λ|K|λ̃]n−k+2

∏n
i=1〈λ|Ri|λ̃]∏k
i=1〈λ|Qi|λ̃]

=
k∑

i<j

2πi

Q2
j(x

ij
+ − xij−)

ln

(
−xij−
−xij+

)
1

2

1

〈λ|K|λ̃]n−k+2

∏n
l=1〈λ|Rl|λ̃]∏k
l 6=i,j〈λ|Ql|λ̃]

{∣∣∣∣λ=λij
+

λ̃=λ̃ij
−

+

∣∣∣∣λ=λij
−

λ̃=λ̃ij
+

}

+
k∑

i=1

2πi

K2(xi+ − xi−)
ln

(−xi−
−xi+

)
1

2

1

(K2(xi+ − xi−)2)(n−k+1)

× 1

(n−k+1)!

d(n−k+1)

dt(n−k+1)

∏n
l=1〈λ|Rl|λ̃]∏k
l 6=i〈λ|Ql|λ̃]

{∣∣∣∣ λ=λi
+−tλi

−

λ̃=xi
+λ̃i

−
−txi

−
λ̃i
+

+

∣∣∣∣ λ=λi
−
−tλi

+

λ̃=xi
−
λ̃i
+−txi

+λ̃i
−

}∣∣∣∣
t=0

−2πi
∑

residues

1

(n−k)!
d(n−k)

ds(n−k)

1

s
ln

(
1 + s

〈λ|n|λ̃]
〈λ|K|λ̃]

)
1

〈λ|K|n|λ〉n−k+1

∏n
j=1〈λ|Rj|K+sn|λ〉

∏k
j=1〈λ|Qj|K+sn|λ〉

∣∣∣∣
s=0

.

(2.63)

To get the final coefficient formulas (2.13), (2.17), (2.20), one just needs to restore
the original prefactors from the double cut and compare the result with the cut integral
expressions (2.21c), (2.21b), (2.21a), respectively.
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2.3 Setup: N = 1 SYM at one loop

In this section, we describe the general traits of N = 1 super-Yang-Mills theory at
one loop, which will lead us to a simplified version (2.81) of the bubble coefficient for-
mula (2.20), better suited to that setup.

2.3.1 Supersymmetry expansion

The concept of supersymmetry proved to be directly useful for understanding even non-
supersymmetric gauge theories. Whereas gluon tree amplitudes for pure quantum chro-
modynamics equal those of supersymmetric Yang-Mills theory, their one-loop analogues
obey a simple expansion [2, 133]:

A1-loop
QCD = A1-loop

N=4 SYM − 4A1-loop
N=1 chiral + 2A1-loop

N=0 scalar, (2.64)

which splits the calculation of direct phenomenological interest into three problems of
increasing difficulty.1 Taking into account that

A1-loop
N=1 SYM = A1-loop

N=4 SYM − 3A1-loop
N=1 chiral, (2.65)

it becomes clear that calculations in N = 4, 1 SYM are important steps to full under-
standing of QCD.

In this thesis, we deal with one-loop NMHV amplitudes inN = 1 SYM. More precisely,
we concentrate on n-point one-loop contributions from the N = 1 chiral multiplet in the
adjoint representation, which consists of a complex scalar and a Majorana fermion. In
fact, its effective number of supersymmetries is two, which is reflected in its alternative
name, N = 2 hyper multiplet, and can be easily seen from its relation to N = 2 SYM:

A1-loop
N=2 SYM = A1-loop

N=4 SYM − 2A1-loop
N=1 chiral. (2.66)

Moreover, amplitudes in four dimensions are known to be reducible [119–123] to the
following basis of master integrals:

A1-loop = µ2ǫ
(∑

Cbox I4 +
∑

Ctri I3 +
∑

Cbub I2 +R
)
, (2.67)

where the sums go over all distinct scalar integrals and R is the purely rational part. How-
ever, we know supersymmetry can constrain the general expansion (2.67): the strongest,
N = 4, supersymmetry leaves nothing but boxes {I4} [2], whileN = 1, 2 supersymmetries
eliminate the rational part R [50]. Since R is the only term in Eq. (2.67) invisible to four-
dimensional cuts, supersymmetric amplitudes can be characterized as cut-constructible.

2.3.2 UV and IR behavior

Now we review a useful result from Ref. [54], where it was derived that one can include all
the infrared divergent one-mass and two-mass triangles into the definition of new, finite,

1For more information about various gauge theory supermultiplets, see Table 3.1 in Section 3.4.
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boxes and thus leave only three-mass triangles in expansion (2.67). Moreover, the only
remaining divergent integrals are the bubbles:

I2 =
1

ǫ
+O(1), (2.68)

so they alone must produce the remaining singular behavior of the amplitude. As the
latter is proportional to the tree amplitude

A1-loop
N=1 chiral =

1

ǫ

∑
Cbub +O(1) =

1

(4π)
d
2 ǫ
Atree +O(1), (2.69)

we retrieve a non-trivial relation among bubble coefficients:

∑
Cbub =

1

(4π)
d
2

Atree, (2.70)

which we use as the first consistency check for our analytic results.
Having considerably reduced our problem, we now summarize how we deal with the

rest. The best and immediately algebraic method to compute box coefficients is from
quadruple cuts, first introduced in Ref. [3]. Three-mass triangle coefficients can be found
from triple cuts [134,135], and it was done in full generality in Ref. [55,56]. In the follow-
ing, we will thus concentrate mostly on bubbles, for which we use the spinor integration
technique [54], described in Section 2.1.

For all calculations in this work, we pick the cut-channel momentum to be P1,k, defined
according to Eq. (1). For brevity, we will spell it simply as P1k. If one wishes to compute
another channel cut Pr,s, one should simply cyclically relabel the legs i → (i− r+1)
and set k = s − r + 1. As described in Appendix F of Ref. {2}, the functions provided
in the attached Mathematica notebook have input arguments that are adapted for such
relabeling.

2.3.3 Example: MHV-MHV bubbles in N = 1 SYM

In this section, we employ the spinor integration technique to derive explicitly a simple
but non-trivial family of bubble coefficients in N = 1 SYM. To be more precise, we
consider the contribution of the N = 1 chiral multiplet in the loop. To get bubble
coefficients in pure N = 1 SYM one just needs to multiply our results by −3.

l11−

. . .

p+

. . .

k− l2 (k+1)+

. . .

m−

. . .

n+

Figure 2.1: P1k-channel cut for A
1-loop
N=1 chiral(p

+∈{1, . . . , k},m−∈{k+1, . . . , n})

Consider the P1k-channel cut of N = 1 chiral one-loop amplitude with one plus-
helicity gluon p+ to the left of the cut and one minus-helicity gluon m− to the right, see
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Fig. 2.1. The amplitude to the right of the cut is then just MHV, whereas the one to
the left is then (k + 2)-point Nk−2MHV=MHV. A nice property of this cut is that it
is omnipresent as a two-particle cut in MHV amplitudes, a three-particle cut in NMHV
amplitudes, a four-particle cut in NNMHV amplitudes and so on. At the same time, it
is very simple to write down:

∑

h1,h2

A(−ℓh̄1

1 , . . . , ℓ
h2

2 )A(−ℓh̄2

2 , . . . , ℓ
h1

1 ) =

(
− [ℓ1p]〈ℓ1m〉

[ℓ2p]〈ℓ2m〉
+ 2− [ℓ2p]〈ℓ2m〉

[ℓ1p]〈ℓ1m〉

)

× (−1)ki[ℓ1p]2[ℓ2p]2
[ℓ11][12] . . . [k−1|k][kℓ2][ℓ2ℓ1]

i〈ℓ1m〉2〈ℓ2m〉2
〈ℓ2|k+1〉〈k+1|k+2〉 . . . 〈n−1|n〉〈nℓ1〉〈ℓ1ℓ2〉

.

(2.71)
The second line is just a product of tree amplitudes with two scalar legs and the factor in
the first line sums supersymmetric Ward identity (SWI) factors [39–41] due to two scalars
and two helicities of the Majorana fermion circulating in the loop. Due to supersymmetry,
instead of complicating the cut integrand, that sum helps to simplify it:

∑

h1,h2

A1A2 =
(−1)k〈m|P1k|p]2

P 2
1k[12] . . . [k−1|k]〈k+1|k+2〉 . . . 〈n−1|n〉

〈ℓ1m〉〈ℓ2m〉[ℓ1p][ℓ2p]
〈ℓ1n〉〈ℓ2|k+1〉[ℓ11][ℓ2k]

≡ F

P 2
1k

〈ℓ1m〉〈ℓ2m〉[ℓ1p][ℓ2p]
〈ℓ1n〉〈ℓ2|k+1〉[ℓ11][ℓ2k]

=
F

P 2
1k

〈ℓ1m〉〈ℓ1|P1k|p]〈m|P1k|ℓ1][pℓ1]
〈ℓ1n〉〈ℓ1|P1k|k]〈k+1|P1k|ℓ1][1ℓ1]

,

(2.72)

where in the last line by F we denoted a kinematic factor independent of loop momenta
and then we eliminated ℓ2 in favor of ℓ1. Now the introduction of the homogeneous
variables is trivial, so after restoring the integration measure (2.6) we get:

Cut(P1k) =−
F

4

∫

λ̃=λ̄

〈λdλ〉[λ̃dλ̃]
〈λ|P1k|λ̃]2

〈λ|m〉〈λ|P1k|p]〈m|P1k|λ̃][p|λ̃]
〈λ|n〉〈λ|P1k|k]〈k+1|P1k|λ̃][1|λ̃]

. (2.73)

We then plug the spinorial integrand into (2.20) to obtain the bubble coefficient:

Cbub,P1k

N=1 chiral =−
F

(4π)
d
2 i

∑

residues

1

s
ln

(
1 + s

〈λ|q|λ̃]
〈λ|P1k|λ̃]

)

×
{ 〈λ|m〉〈λ|P1k|p]〈m|P1k|λ̃][p|λ̃]
〈λ|n〉〈λ|P1k|k]〈k+1|P1k|λ̃][1|λ̃]

1

〈λ|P1k|q|λ〉

∣∣∣∣
|λ̃]=|P1k+s q|λ〉

}∣∣∣∣
s=0

.

(2.74)

Here we used the fact that the integrand (2.72) was homogeneous in ℓ1, so the power of
the derivative in s is zero. Therefore, only the first term in the expansion of the logarithm
1
s
ln(1 + st) = t+O(s) survives in the limit s→ 0:

Cbub,P1k

N=1 chiral =
F

(4π)
d
2 i

∑

residues

[q|λ̃]
〈λ|P1k|λ̃]

〈λ|m〉2〈λ|P1k|p]2
〈λ|k+1〉〈λ|n〉〈λ|P1k|1]〈λ|P1k|k]〈λ|P1k|q]

. (2.75)

We see 5 poles in the denominator: |λ〉 = |k+1〉, |λ〉 = |n〉, |λ〉 = |P1k|1], |λ〉 = |P1k|k] and
|λ〉 = |P1k|q]. Note that the factor 〈λ|K|λ̃] never contains any poles because in complex
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variable representation (2.7) it becomes proportional to (1+zz̄). The sum of the residues
produces the final answer:

Cbub,P1k

N=1 chiral(p
+∈{1, . . . , k},m−∈{k+1, . . . , n})

=
(−1)k
(4π)

d
2 i

〈m|P1k|p]2
[12] . . . [k−1|k]〈k+1|k+2〉 . . . 〈n−1|n〉

×
{ 〈m|k+1〉2〈k+1|P1k|p]2[k+1|q]
〈k+1|n〉〈k+1|P1k|1]〈k+1|P1k|k]〈k+1|P1k|k+1]〈k+1|P1k|q]

+
〈mn〉2〈n|P1k|p]2[nq]

〈n|k+1〉〈n|P1k|1]〈n|P1k|k]〈n|P1k|n]〈n|P1k|q]

+
1

P 2
1k

(
[1p]2

[1k][1q]

〈m|P1k|1]2〈1|P1k|q]
〈1|P1k|1]〈k+1|P1k|1]〈n|P1k|1]

+
[kp]2

[k1][kq]

〈m|P1k|k]2〈k|P1k|q]
〈k|P1k|k]〈k+1|P1k|k]〈n|P1k|k]

+
[pq]2

[1q][kq]

〈m|P1k|q]2
〈k+1|P1k|q]〈n|P1k|q]

)}
.

(2.76)

Each term in Eq. (2.74) can be generically eliminated by an appropriate choice of
reference spinor |q]. Moreover, specific helicity configurations can further simplify the
formula. For instance, if in a P1,3-channel NMHV bubble the plus-helicity leg gluon p+

is 3+ followed by the minus-helicity gluon m− = 4− and we pick |q] = |3], then only two
terms survive:

C
bub,P1,3

N=1 chiral(1
−, 2−, 3+, 4−, 5+, . . . , n+) =

1

(4π)
d
2 i

〈4|P1,3|3]2
[12]〈45〉 . . . 〈n−1|n〉〈n|P1,3|1]

{ 〈4|n|3]
[23]〈n|P1,3|n]

+
〈2|1|P1,3|4〉
P 2
1,3〈1|P1,3|1]

}
.

(2.77)

We checked on various examples that our result numerically coincides with the equiv-
alent all-n formula found earlier in Ref. [56]. More than that, we found that we can
reproduce their formula term by term by choosing in Eq. (2.76) |q] = |P1k|m〉:

C
bub,P1k

N=1 chiral(p
+∈{1, . . . , k},m−∈{k+1, . . . , n}) = (−1)k

(4π)
d

2 i

〈m|P1k|p]2
[12] . . . [k−1|k]〈k+1|k+2〉 . . . 〈n−1|n〉

×
{

1

P 2
1k〈k+1|n〉

( 〈k+1|P1k|p]2〈m|P1k|k+1|m〉
〈k+1|P1k|1]〈k+1|P1k|k]〈k+1|P1k|k+1]

− 〈n|P1k|p]2〈m|P1k|n|m〉
〈n|P1k|1]〈n|P1k|k]〈n|P1k|n]

)

+
1

[1k]

(
[1p]2〈m|P1k|1|m〉

〈1|P1k|1]〈k+1|P1k|1]〈n|P1k|1]
− [kp]2〈m|P1k|k|m〉
〈k|P1k|k]〈k+1|P1k|k]〈n|P1k|k]

)}
.

(2.78)

Needless to say, any bubble with an MHV-MHV cut can be obtained from the P1k-
channel bubble (2.76) by appropriate relabeling.

2.3.4 Modified bubble formula

We can already learn a more general lesson from the calculation in Section 2.3.3. The
supersymmetric helicity sum is well known [50] to simplify cut integrands instead of
complicating them.
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We consider the N = 1 chiral multiplet in the adjoint representation of the gauge
group which in fact has an effective N = 2 supersymmetry. Thanks to that, for all
N = 1 chiral double cuts the numerator and the denominator have the same number of
loop-momentum-dependent factors and after introducing homogeneous variables λ, λ̃ the
only overall factor 〈λ|K|λ̃]−2 comes from the cut measure (2.6). This means that when
plugging the cut integrand into the general bubble formula (2.20) we will always have a
zero power of the derivative in s, so we can set s to zero from the start:

Cbub
N=1 chiral =

4

(4π)
d
2 i

∑

residues

〈λ|q|λ̃]
〈λ|K|λ̃]

[
Ispinor

〈λ|K|λ̃]2
〈λ|K|q|λ〉

∣∣∣∣
|λ̃]=|K|λ〉

]
. (2.79)

Taking into account that

Ispinor = −
K2

4

1

〈λ|K|λ̃]2
∑

h1,h2

A1A2, (2.80)

where by
∑

h1,h2
A1A2 we just mean the double cut after loop-variable change, we retrieve

a more direct formula for N = 1 chiral bubble coefficients:

Cbub
N=1 chiral = −

K2

(4π)
d
2 i

∑

residues

[λ̃|q]
〈λ|K|λ̃]〈λ|K|q]

[ ∑

h1,h2

A1A2

∣∣∣∣
|λ̃]=|K|λ〉

]
. (2.81)

Incidentally, a close analogue of (2.81) has already been discovered in Ref. [136] with
the help of N = 1 superspace.

2.4 Cut integrand construction

l11+
. . .

m−
1

. . .
m−

2

. . .
k+ l2 (k+1)+

. . .

m−
3

. . .

n+

Figure 2.2: P1k-channel cut for A
1-loop,NMHV
N=1 chiral (m−

1 ,m
−
2 ∈{1, . . . , k},m−

3 ∈{k+1, . . . , n})

Constructing appropriate cut integrands is crucial for using spinor integration and
getting clean analytic expressions. In short, what we do is we sew tree amplitudes and
sum over the N = 1 chiral multiplet circulating in the cut. An NMHV amplitude has 3
minus-helicity gluons, so all its non-zero double cuts have an MHV amplitude on one side
of the cut and an NMHV one on the other side, as shown in Fig. 2.2. For some 3-particle
cuts the NMHV amplitude happens to be MHV and the computation is greatly simplified
which we exploited in Section 2.3.3. But for all other integrands one needs to sew NMHV
tree amplitudes, which we describe in detail in the following section.
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R S

T
r

s

t

r+1

r−1

s−1

t−1

Figure 2.3: Cut box diagram for determining the values of r, s and t

2.4.1 NMHV tree amplitudes

NMHV tree amplitudes are known to be encoded in the N = 4 SYM n-point superam-
plitude [4, 60, 61]:

ANMHV
n = AMHV

n

r+n−3∑

s=r+2

r+n−1∑

t=s+2

Rrst, (2.82)

where the overall prefactor is the well-known MHV superamplitude:

AMHV
n =

i δ(8)(Q)

〈12〉〈23〉 . . . 〈n−1|n〉〈n1〉 , (2.83)

with the delta-function of the supermomentum defined in terms of auxiliary Grassmann
variables ηAi as

δ(8)(Q) =
4∏

A=1

m∑

i<j

ηAi 〈ij〉ηAj . (2.84)

Moreover, the rest of the formula (2.82) involves the following object:

Rrst =
−〈s−1|s〉〈t−1|t〉 δ(4)(Ξrst)

P 2
S〈s−1|PS |PT |r〉〈s|PS |PT |r〉〈t−1|PS |PR|r〉〈t|PS |PR|r〉

, (2.85)

where the Grassmann delta-function is a product of the components of

ΞA
rst = −

r−1∑

i=t

ηAi 〈i|PS |PR|r〉+
s−1∑

i=r

ηAi 〈i|PS |PT |r〉. (2.86)

Remarkably, in Eq. (2.82) r can be chosen arbitrarily. The possible values of s and
t (mod n) are already given in the explicit double sum in Eq. (2.82), but we also find
insightful the following graphic approach from Ref. [60]. After picking the r, one draws
all cut-box-like diagrams with one vertex having only one external leg r, the opposite
vertex with at least two external legs s, . . . , t − 1 and the other two vertices having at
least one external legs, see Fig. 2.3. For brevity, in Eqs. (2.85) and (2.86) we denote
the three collections of external legs as R = {r + 1, . . . , s − 1}, S = {s, . . . , t − 1} and
T = {t, . . . , r − 1}.
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Component amplitudes can then be extracted from the super-amplitude (2.82) using,
for example, the package GGT [62] in the following representation:

Atree(1+g ,
+. . ., a−g ,

+. . ., b−g ,
+. . ., n−

g ) =
i

〈12〉〈23〉 . . . 〈n1〉
n−3∑

s=2

n−1∑

t=s+2

RnstD
4
nst;ab,

(2.87a)

Atree(1+g ,
+. . ., a−A

Λ , +. . ., b+BCD
Λ , +. . ., c−g ,

+. . ., n−
g ) =

iǫABCD

〈12〉〈23〉 . . . 〈n1〉
n−3∑

s=2

n−1∑

t=s+2

RnstD
3
nst;acDnst;bc,

(2.87b)

Atree(1+g ,
+. . ., aAB

S , +. . ., bCD
S , +. . ., c−g ,

+. . ., n−
g ) =

iǫABCD

〈12〉〈23〉 . . . 〈n1〉
n−3∑

s=2

n−1∑

t=s+2

RnstD
2
nst;acD

2
nst;bc,

(2.87c)

where Rrst is just the bosonic part of Rrst:

Rrst =
−〈s−1|s〉〈t−1|t〉

P 2
S〈s−1|PS |PT |r〉〈s|PS |PT |r〉〈t−1|PS |PR|r〉〈t|PS |PR|r〉

, (2.88)

whereasDrst;ab arise from differentiating the product of super-delta functions insideAMHV
n

and Rrst :

Drst;ab =





〈ab〉〈r|PS |PT |r〉 if a, b ∈ S
−〈br〉〈a|PS |PT |r〉 if a ∈ S, b ∈ R
〈ar〉〈b|PS |PT |r〉 if a ∈ R, b ∈ S
〈br〉〈a|PS |PR|r〉 if a ∈ S, b ∈ T
−〈ar〉〈b|PS |PR|r〉 if a ∈ T , b ∈ S
−P 2

S〈ar〉〈br〉 if a ∈ R, b ∈ T
P 2
S〈ar〉〈br〉 if a ∈ T , b ∈ R

0 otherwise.

(2.89)

By the derivation in Grassmann variables, Drst;ab is antisymmetric in a and b.
From Eq. (2.87), it is clear that, much like ratios of spinor products relate MHV ampli-

tudes with fermions and scalars to purely gluonic ones through standard supersymmetric
Ward identities (SWI), ratios of different Drst;ab do the same job for NMHV amplitude
contributions. We note here that one could in principle try to encode this information us-
ing N = 1 superfields [136–138]. More than that, as we have already noted, the effective
number of supersymmetries of the N = 1 chiral multiplet in the adjoint representation
is two, so one can imagine even defining N = 2 hyper superspace. However, even if
Grassmann variables are undoubtedly an indispensable tool for describing the theory in
general, sometimes they seem to put us farther away from calculating explicit formulas.
In this chapter, we find it direct enough to assemble the cut without using the superspace.

2.4.2 Cut integrand

Now we are ready to write down the cut integrand in full generality. Consider the P1k-
channel cut shown on Fig. 2.2. It has two minus-helicity gluons labeled m−

1 and m−
2 on
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the left of the cut and one such gluon m−
3 on the right. Evidently, all other cuts can be

obtained from this one by appropriate relabeling.
A scalar cut would be just a product of the right-hand side scalar MHV amplitude

and left-hand side scalar NMHV amplitude. As explained above, to account for the fact
that there are two scalars and two helicities of the Majorana fermion circulating in the
loop, we multiply it further by a sum of SWI factors:

∑

h1,h2

A(−ℓh̄1

1 , . . . , ℓ
h2

2 )A(−ℓh̄2

2 , . . . , ℓ
h1

1 ) =
i〈−ℓ2|m3〉2〈ℓ1|m3〉2

〈−ℓ2|k+1〉〈k+1|k+2〉 . . . 〈n−1|n〉〈n|ℓ1〉〈ℓ1|−ℓ2〉

× i

〈−ℓ1|1〉〈12〉 . . . 〈k−1|k〉〈k|ℓ2〉〈ℓ2|−ℓ1〉

m1−3∑

s=m1+2

m1−1∑

t=s+2

Rm1stD
2
m1st;m2(−ℓ1)

D2
m1st;m2ℓ2

×
(〈−ℓ2|m3〉Dm1st;m2(−ℓ1)

〈ℓ1|m3〉Dm1st;m2ℓ2

+ 2 +
〈ℓ1|m3〉Dm1st;m2ℓ2

〈−ℓ2|m3〉Dm1st;m2(−ℓ1)

)
,

(2.90)
where both sums in the second line go cyclically over labels {−ℓ1, 1, , . . . , k, ℓ2}.

Note that in Eq. (2.90) we picked m1 to be the first argument of Rrst and Drst;ab

and m2 to be the last, but in principle m1 and m2 can be interchanged due to the
arbitrariness of the choice of r in the NMHV expansion (2.82), which is a non-trivial
property of tree amplitudes. It comes from the BCFW recursion that underlies formulas
(2.82)-(2.89) [139] and is related to the freedom of choosing BCFW shifts. Anyway, the
roles of m1 and m2 can also be interchanged by a vertical flip of the amplitude.

To make full use of the effective N = 2 supersymmetry of the N = 1 chiral multiplet
in the adjoint representation of the gauge group we rewrite it as follows:

∑

h1,h2

A1A2 = −
1

〈12〉 . . . 〈k−1|k〉〈k+1|k+2〉 . . . 〈n−1|n〉
〈ℓ1|m3〉〈m3| −ℓ2〉

〈ℓ1|1〉〈ℓ1|n〉〈ℓ1|ℓ2〉2〈k|ℓ2〉〈k+1|ℓ2〉

×
m1−3∑

s=m1+2

m1−1∑

t=s+2

Rm1stDm1st;m2(−ℓ1)Dm1st;m2ℓ2

(
〈−ℓ2|m3〉Dm1st;m2(−ℓ1) + 〈ℓ1|m3〉Dm1st;m2ℓ2

)2
,

(2.91)
where the last factor squared is typically subject to non-trivial simplifications involving
the Schouten identity.

The most important thing for applying spinor integration is the dependence of the
integrand on the loop variables. Thus we need to do a case-by-case analysis of Eq. (2.91)
to expose them. But first we consider a helicity configuration for which there is only one
case that contributes.

2.4.3 Simpler bubble coefficients

Consider a P1k-channel cut with minus-helicity gluons k− and (k−1)− adjacent to the
cut. The other negative helicity leg m− is at an arbitrary position on the other side of
the cut, see Fig. 2.4. It turns out that the general formula (2.91) simplifies greatly in this
case. Indeed, if we take r = m1 = (k−1), m2 = k and m3 = m, we can see from definition
(2.89) that D(k−1)st;kℓ2 is non-zero only for s = ℓ2, because for all subsequent values of
s ∈ {−ℓ1, . . . , k−4} both a = k and b = ℓ2 will belong to R = {k−1, k, . . . , s−1}. So the
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l11+

. . .

(k−2)+
(k−1)−

k− l2 (k+1)+

. . .

m−

. . .

n+

Figure 2.4: P1k-channel cut for A
1-loop,NMHV
N=1 chiral ((k−1)−, k−∈{1, . . . , k},m−∈{k+1, . . . , n})

double sum in s ∈ {ℓ2,−ℓ1, . . . , k−4} and t ∈ {s+2, . . . , k−2} ⊂ {1, . . . , k−2} collapses
to a single sum in t ∈ {1, . . . , k−2}:

∑

h1,h2

A1A2 =
1

〈12〉 . . . 〈k−1|k〉〈k+1|k+2〉 . . . 〈n−1|n〉
〈ℓ1|m〉〈−ℓ2|m〉

〈n|ℓ1〉〈ℓ1|1〉〈ℓ1|ℓ2〉2〈k|ℓ2〉〈ℓ2|k+1〉

×
k−2∑

t=1

R(k−1)ℓ2tD(k−1)ℓ2t;k(−ℓ1)D(k−1)ℓ2t;kℓ2

(
〈−ℓ2|m〉D(k−1)ℓ2t;k(−ℓ1) + 〈ℓ1|m〉D(k−1)ℓ2t;kℓ2

)2
,

(2.92)
where we compute

R(k−1)ℓ2t =
〈k|ℓ2〉〈t−1|t〉

P 2
t,k−1P

2
t,k〈k−1|k〉3〈ℓ2|Pt,k|Pt,k−1|k−1〉〈t−1|Pt,k|k]〈t|Pt,k|k]

, (2.93)

D(k−1)ℓ2t;k(−ℓ1) = 〈k−1|k〉〈−ℓ1|Pt,k|Pt,k−1|k−1〉, (2.94a)

D(k−1)ℓ2t;kℓ2 = 〈k−1|k〉〈ℓ2|Pt,k|Pt,k−1|k−1〉, (2.94b)

and the chiral sum is simplified by a Schouten identity:

〈−ℓ2|m〉D(k−1)ℓ2t;k(−ℓ1) + 〈ℓ1|m〉D(k−1)ℓ2t;kℓ2 = 〈k−1|k〉〈ℓ1|ℓ2〉〈m|Pt,k|Pt,k−1|k−1〉. (2.95)

Putting all these ingredients together, we observe numerous cancellations and find

∑

h1,h2

A1A2 =
1

〈12〉 . . . 〈k−2|k−1〉〈k+1|k+2〉 . . . 〈n−1|n〉

×
k−2∑

t=1

〈m|Pt,k|Pt,k−1|k−1〉2〈t−1|t〉
P 2
t,k−1P

2
t,k〈t|Pt,k|k]〈t−1|Pt,k|k]

〈ℓ1|m〉〈ℓ1|Pt,k|Pt,k−1|k−1〉〈m|ℓ2〉
〈ℓ1|1〉〈ℓ1|n〉〈k+1|ℓ2〉

≡
k−2∑

t=1

Ft〈t−1|t〉
〈t−1|Pt,k|k]

〈ℓ1|m〉〈ℓ1|Pt,k|Pt,k−1|k−1〉〈m|ℓ2〉
〈ℓ1|1〉〈ℓ1|n〉〈k+1|ℓ2〉

,

(2.96)

where in the last line for brevity we denoted the common factor independent of the loop
momenta by Ft. Note that, as expected, the number of loop momentum spinors is the
same for the numerator and the denominator. Moreover, one should not miss the fact
that the (t−1)-th leg can become (−ℓ1), so poles are different for t = 1 and t 6= 1. We
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then trade ℓ2 for ℓ1, introduce the homogeneous variables to find the following expression
for the cut:

∑

h1,h2

A1A2 = F1
〈λ|m〉〈λ|P1k|P1,k−1|k−1〉〈m|P1k|λ̃]
〈λ|P1k|k]〈λ|n〉〈k+1|P1k|λ̃]

+
k−2∑

t=2

Ft〈t−1|t〉
〈t−1|Pt,k|k]

〈λ|m〉〈λ|Pt,k|Pt,k−1|k−1〉〈m|P1k|λ̃]
〈λ|1〉〈λ|n〉〈k+1|P1k|λ̃]

.

(2.97)

To obtain the bubble coefficient, we plug this expression directly into our simplified
formula (2.81):

Cbub,P1k

N=1 chiral =
P 2
1k

(4π)
d
2 i

∑

residues

[q|λ̃]
〈λ|P1k|λ̃]

{
F1

〈λ|m〉2〈λ|P1k|P1,k−1|k−1〉
〈λ|k+1〉〈λ|n〉〈λ|P1k|k]〈λ|P1k|q]

+
k−2∑

t=2

Ft〈t−1|t〉
〈t−1|Pt,k|k]

〈λ|m〉2〈λ|Pt,k|Pt,k−1|k−1〉
〈λ|1〉〈λ|k+1〉〈λ|n〉〈λ|P1k|q]

}
.

(2.98)

We see 5 poles in the denominators: |λ〉 = |1〉, |λ〉 = |k+1〉, |λ〉 = |n〉, |λ〉 = |P1k|k] and
|λ〉 = |P1k|q]. The answer is then given by the sum of their residues:

C
bub,P1k

N=1 chiral =
1

(4π)
d

2 i

1

〈12〉 . . . 〈k−2|k−1〉〈k+1|k+2〉 . . . 〈n−1|n〉

×
{ k−2∑

t=2

P 2
1k〈m|Pt,k|Pt,k−1|k−1〉2〈t−1|t〉

P 2
t,kP

2
t,k−1〈t−1|Pt,k|k]〈t|Pt,k|k]

( 〈1m〉2〈1|Pt,k|Pt,k−1|k−1〉[1q]
〈1n〉〈1|k+1〉〈1|P1k|1]〈1|P1k|q]

+
〈nm〉2〈n|Pt,k|Pt,k−1|k−1〉[nq]
〈n1〉〈n|k+1〉〈n|P1k|n]〈n|P1k|q]

+
〈k+1|m〉2〈k+1|Pt,k|Pt,k−1|k−1〉[k+1|q]
〈k+1|1〉〈k+1|n〉〈k+1|P1k|k+1]〈k+1|P1k|q]

+
〈m|P1k|q]2〈k−1|Pt,k−1|Pt,k|P1,k|q]
P 2
1k〈1|P1k|q]〈k+1|P1k|q]〈n|P1k|q]

)

+
〈m|P1k|P1,k−1|k−1〉2

P 2
1,k−1〈1|P1k|k]

(
1

P 2
1k

( 〈m|P1k|k]2〈k−1|P1k|k]〈k|P1k|q]
〈n|P1k|k]〈k+1|P1k|k]〈k|P1k|k][kq]

− 〈m|P1k|q]2〈k−1|P1k|q]
〈n|P1k|q]〈k+1|P1k|q][kq]

)

+
〈k+1|m〉2〈k+1|P1k|P1,k−1|k−1〉[k+1|q]

〈k+1|n〉〈k+1|P1k|k]〈k+1|P1k|k+1]〈k+1|P1k|q]
+
〈nm〉2〈n|P1k|P1,k−1|k−1〉[nq]
〈n|k+1〉〈n|P1k|k]〈n|P1k|n]〈n|P1k|q]

)}
.

(2.99)

This expression can be further simplified by an appropriate choice of the arbitrary spinor
|q]. For example, setting it equal to |P1k|m〉 gives the following formula:

Cbub,P1k

N=1 chiral =
1

(4π)
d
2 i

1

〈12〉 . . . 〈k−2|k−1〉〈k+1|k+2〉 . . . 〈n−1|n〉

×
{ k−2∑

t=2

〈m|Pt,k|Pt,k−1|k−1〉2〈t−1|t〉
P 2
t,kP

2
t,k−1〈t−1|Pt,k|k]〈t|Pt,k|k]

(〈m|P1k|k+1|m〉〈k+1|Pt,k|Pt,k−1|k−1〉
〈k+1|1〉〈k+1|n〉〈k+1|P1k|k+1]

+
〈m|P1k|1|m〉〈1|Pt,k|Pt,k−1|k−1〉

〈1n〉〈1|k+1〉〈1|P1k|1]
+
〈m|P1k|n|m〉〈n|Pt,k|Pt,k−1|k−1〉

〈n1〉〈n|k+1〉〈n|P1k|n]

)

+
〈m|P1k|P1,k−1|k−1〉2
P 2
1kP

2
1,k−1〈1|P1k|k]

(〈m|P1k|k+1|m〉〈k+1|P1k|P1,k−1|k−1〉
〈k+1|n〉〈k+1|P1k|k]〈k+1|P1k|k+1]

+
〈m|P1k|n|m〉〈n|P1k|P1,k−1|k−1〉
〈n|k+1〉〈n|P1k|k]〈n|P1k|n]

+
P 2
1k〈m|P1k|k|m〉〈k−1|P1k|k]

〈n|P1k|k]〈k+1|P1k|k]〈k|P1k|k]

)}
.

(2.100)
In the following sections, we choose to provide only formulas with q left arbitrary.
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2.5 Loop momentum dependence

In this section, we carefully study the dependence of the cut expression (2.91) on the cut
loop momenta ℓ1 and ℓ2. They can be subsequently replaced by homogeneous variables
λ and λ̃ in order to find the bubble coefficient corresponding to that cut.

2.5.1 Case-by-case analysis

First of all, we find that in Eq. (2.91) the factor most frequently equal to zero is

Dm1st;m2ℓ2 =





〈m1|ℓ2〉〈m1|Pm1+1,s−1|Ps,t−1|m2〉 if {s, t} ∈ A
−P 2

s,t−1〈m1|m2〉〈m1|ℓ2〉 if {s, t} ∈ B
〈m2|ℓ2〉

(
〈m1|Pm1+1,s−1|ℓ1]〈ℓ1|m1〉 if {s, t} ∈ C

− 〈m1|Pm1+1,s−1|P1,m1−1|m1〉
)

−〈m1|m2〉
(
〈m1|ℓ1〉[ℓ1|Ps,k|ℓ2〉 − 〈m1|P1,m1−1|Ps,k|ℓ2〉

)
if {s, t} ∈ D

〈m2|ℓ2〉〈m1|Pt,m1−1|Pm1+1,s−1|m1〉 if {s, t} ∈ E
−〈m1|m2〉〈m1|Pt,m1−1|Pt,s−1|ℓ2〉 if {s, t} ∈ F
0 otherwise,

(2.101)
where we define the non-zero cases:

A : s ∈ {m1+2, . . . ,m2}, t ∈ {m2+1, . . . , ℓ2} (2.102a)

B : s ∈ {m2+1, . . . , k−1}, t ∈ {m2+3, . . . , ℓ2} (2.102b)

C : s ∈ {m1+2, . . . ,m2}, t = −ℓ1 (2.102c)

D : s ∈ {m2+1, . . . , k}, t = −ℓ1 (2.102d)

E : s ∈ {m1+2, . . . ,m2}, t ∈ {1, . . . ,m1−1} (2.102e)

F : s ∈ {m2+1, . . . , ℓ2}, t ∈ {1, . . . ,m1−1}. (2.102f)

Thus, we need to consider all other factors solely in these six cases. For clearness, we
depict them on a two-dimensional mesh in Fig. 2.5.

Next, we expose the loop-momentum dependence of Dm1st;m2(−ℓ1):

Dm1st;m2(−ℓ1)=





−〈−ℓ1|m1〉〈m1|Pm1+1,s−1|Ps,t−1|m2〉 if {s, t} ∈ A
P 2
s,t−1〈−ℓ1|m1〉〈m1|m2〉 if {s, t} ∈ B
−〈−ℓ1|m1〉

(
〈m1|Pm1+1,s−1|ℓ1]〈ℓ1|m2〉 if {s, t} ∈ C

− 〈m2|P1,s−1|Ps,m1−1|m1〉
)

P 2
−ℓ1,s−1〈−ℓ1|m1〉〈m1|m2〉 if {s, t} ∈ D
−〈−ℓ1|m2〉〈m1|Pt,m1−1|Pm1+1,s−1|m1〉 if {s, t} ∈ E
〈m1|m2〉〈−ℓ1|Pt,s−1|Pt,m1−1|m1〉 if {s, t} ∈ F .

(2.103)

Then we combine the D-terms together, and, after applying Schouten identities where
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Figure 2.5: Values of s and t corresponding to non-zero contributions to the P1k-channel cut.

necessary, we find:

〈−ℓ2|m3〉Dm1st;m2(−ℓ1) + 〈ℓ1|m3〉Dm1st;m2ℓ2

=





〈ℓ1ℓ2〉〈m1m3〉〈m1|Pm1+1,s−1|Ps,t−1|m2〉 if {s, t} ∈ A
P 2
s,t−1〈ℓ1ℓ2〉〈m1m2〉〈m3m1〉 if {s, t} ∈ B

−
(
〈ℓ1ℓ2〉〈m2m3〉〈m1|P1,s−1|Ps,m1−1|m1〉

+〈m1m2〉〈m3ℓ2〉〈ℓ1|P1,s−1|Ps,m1−1|m1〉 if {s, t} ∈ C
−〈m2m3〉〈ℓ1m1〉〈m1|Pm1+1,s−1|P1,k|ℓ2〉

)

−〈m1m2〉
(
〈ℓ1m1〉〈m3|Pm1,s−1|Ps,k|ℓ2〉 if {s, t} ∈ D

+ 〈m3m1〉〈ℓ1|P1,m1−1|Ps,k|ℓ2〉
)

−〈ℓ1ℓ2〉〈m2m3〉〈m1|Pt,m1−1|Pm1+1,s−1|m1〉 if {s, t} ∈ E
〈ℓ1ℓ2〉〈m1m2〉〈m3|Pt,s−1|Pt,m1−1|m1〉 if {s, t} ∈ F .

(2.104)
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Finally, we write three distinct cases for the Rm1st factor:

Rm1st =





−〈s−1|s〉〈t−1|t〉/
(
P 2
s,t−1 〈m1|Pm1+1,t−1|Ps,t−1|s−1〉〈m1|Pm1+1,t−1|Ps+1,t−1|s〉

〈m1|Pm1+1,s−1|Ps,t−2|t−1〉〈m1|Pm1+1,s−1|Ps,t−1|t〉
)

if {s, t} ∈ A ∪ B
〈s−1|s〉〈ℓ1ℓ2〉/

(
P 2
−ℓ1,s−1〈m1|P−ℓ1,m1−1|P−ℓ1,s−2|s−1〉〈m1|P−ℓ1,m1−1|P−ℓ1,s−1|s〉

〈ℓ1|P1,s−1|Pm1+1,s−1|m1〉〈m1|Pm1+1,s−1|Ps,k|ℓ2〉
)

if {s, t} ∈ C ∪ D
〈s−1|s〉〈t|t−1〉/

(
P 2
t,s−1 〈m1|Pt,m1−1|Pt,s−2|s−1〉〈m1|Pt,m1−1|Pt,s−1|s〉
〈m1|Pm1+1,s−1|Pt+1,s−1|t〉〈m1|Pm1+1,s−1|Pt,s−1|t−1〉

)

if {s, t} ∈ E ∪ F .
(2.105)

Here the first and the third cases can develop simple loop dependence on the borders of
their respective domains: in the first case |t〉 can be become includes |ℓ2〉, whereas the
third case includes s = ℓ2 and t = 1⇒ t−1 = −ℓ1 which have even a non-trivial overlap.
These subcases can only lead to loop spinors appearing on the edges of spinor products
and we will deal with these cases along the way.

Of course, in some particular lower-point cases these formulae can be simplified further
using momentum conservation and Schouten identities, but they are simple enough for
us to proceed in full generality.

2.5.2 NMHV pole structure

In principle, to obtain explicit bubble coefficients formulas, all that remains to do is to
make loop-variable change in the cut integrand (2.91) and plug it into our simplified
master formula (2.81) in which the only non-trivial operation is taking spinor residues
with respect to λ. We need to do it separately for different cases A through F and their
subcases with slightly modified loop dependence and then sum over the cases. Thus, we
write a frame formula for a generic NMHV bubble coefficient :

Cbub,P1k

N=1 chiral(m
−
1 ,m

−
2 ∈{1, . . . , k},m−

3 ∈{k+1, . . . , n})
=
∑

{s,t}∈A

Rs,t
A +

∑

{s,t}∈B

Rs,t
B +

∑

{s,t=−ℓ1}∈C

Rs
C +

∑

{s,t=−ℓ1}∈D

Rs
D +

∑

{s,t}∈E

Rs,t
E +

∑

{s,t}∈F

Rs,t
F ,

(2.106)

where we introduced a shorthand notation for residue sums of each individual contribution
to the cut (2.91).

However, it is well known [8,132,140,141] that, in contrast to the Parke-Taylor MHV
amplitudes [1], the tree-level NMHV amplitudes derived from BCFW recursion contain
spurious poles, i.e. poles that do not correspond to any physical propagator. They can
be viewed as an artifact of the on-shell derivation, or as a price to pay to have more
compact expressions than what one would obtain from Feynman diagram calculations.
These poles obtain a geometrical meaning in (momentum) twistor variables [8, 140,141].

Fortunately, by definition spurious poles have zero residues, so we can just omit them
in our calculation of bubble coefficients. To do this, we need to tell them apart from
physical poles. As already mentioned, the common MHV prefactor of (2.82) contains
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only physical poles. Evidently, spurious poles come from denominators of different R-
invariants. Each term can have a non-zero spurious residue, but they are bound to cancel
in a sum over s and t.

Of course, for our one-loop calculation we are only concerned by telling apart poles
that depend on the loop momentum. The common MHV denominator in Eq. (2.91)
already captures four massless physical poles: 〈ℓ1|1〉 ⇒ (ℓ1 − p1)2, 〈k|ℓ2〉 ⇒ (ℓ2 + pk)

2,
〈k+1|ℓ2〉 ⇒ (ℓ2 − pk+1)

2, 〈ℓ1|n〉 ⇒ (ℓ1 + pn)
2. So what we seek is a physical massive pole

that has to look like

P 2
−ℓ1,j

= (ℓ1 − P1,j)
2 = (ℓ2 + Pj+1,k)

2 = P 2
j+1,ℓ2

. (2.107)

Moreover, the presence of such a pole means that one can cut it and obtain a non-zero
three-mass triple cut. This can only occur if one cuts between the two minus-helicity
gluons on the left-hand side of the original double cut, as shown in Fig. 2.6. Therefore,
j ∈ {m1, . . . ,m2−1} ∩ {2, . . . , k−2}.

l1· · · 1+m−
1

. . .
j+

(j+1)+
. . .
m−

2
· · · k+ l2 (k+1)+

. . .

m−
3

. . .

n+

Figure 2.6: P1k-channel cut for A
1-loop,NMHV
N=1 chiral (m−

1 ,m
−
2 ∈ {1, . . . , k},m−

3 ∈ {k+1, . . . , n}) has
non-vanishing three-mass triple cuts only between m1 and m2.

Let us then examine one-by-one each of the five denominators of Rm1st:

1. P 2
S = P 2

s,t−1 produces massive physical poles, unless it is canceled by the numerator;
it develops the desired loop-momentum dependence (2.107) for either {s = −ℓ1, t =
j+1} or {s = j+1, t = −ℓ1}. However, the position of s in the former also constrains
t to be in {2, . . . ,m1−1}, which is inconsistent with j = t−1 ∈ {m1, . . . ,m2−1},
so only the latter case is meaningful.

2. 〈s−1|PS |PT |r〉 = 〈m1|Pt,m1
|Pt,s−1|s−1〉 can obviously produce a non-zero momentum

square only if the two spinor arguments become adjacent. With s ∈ {m1+2, . . . ,m1−
3} it is only possible in case s−1 = m1+1. Moreover, to obtain the right loop
dependence (2.107), we need to have t = −ℓ1, for which this denominator becomes
〈m1|m1+1〉P 2

−ℓ1,m1
.

3. 〈s|PS |PT |r〉 = 〈m1|Pt,m1
|Pt,s|s〉 cannot produce a momentum square as s is never

adjacent to m1.

4. 〈t−1|PS |PR|r〉 = 〈m1|Ps,m1
|Ps,t−1|t−1〉 cannot produce a momentum square because

t−1 is never adjacent to m1.

5. 〈t|PS |PR|r〉 = 〈m1|Ps,m1
|Ps,t|t〉 can be factorized with a momentum square as

〈m1|m1−1〉P 2
s,m1−1 for t = m1−1, but it cannot result in the desired loop-momentum

dependence (2.107) for any s.

54



Thus we have only two potential sources of physical massive poles: the first one,
P 2
−ℓ1,m1

, comes from factorizing 〈s−1|PS |PT |r〉 for s = m1+2, while all subsequent poles
come simply from P 2

S for s ∈ {m1+2, . . . ,min(m2, k−1)}. In both cases t remains equal
to −ℓ1, which corresponds to cases C and D. Moreover, the only way a massive pole can
occur in case D is having the minus-helicity gluons adjacent to each other: m2 = m1+1,
so that s = m2+1 = m1+2.

To sum up, for a generic helicity configuration, case C contains all physical massive
poles:

• Rm1(m1+2)(−ℓ1) generate two poles P 2
−ℓ1,m1

and P 2
−ℓ1,m1+1

;

• subsequent Rm1s(−ℓ1) with s ∈ {m1+3, . . . ,m2} each have only one pole P 2
−ℓ1,s−1.

The configuration with two adjacent minus-helicity gluons generates a single physical
massive pole P 2

−ℓ1,m1
through Rm1(m2+1)(−ℓ1) which belongs to case D. All other non-

MHV-like loop-dependent poles are spurious and thus can be omitted in the sum over
residues.

2.5.3 Massive pole residues

In this section, we specify how we take residues of massive poles. If we have such a pole

(ℓ1 − P1,i)
2 = P 2

1k

〈λ|Qi|λ̃]
〈λ|P1k|λ̃]

, (2.108)

after using (2.81), it becomes proportional to 〈λ|Qi|K|λ〉 . Then from the definitions of
Qi, P

i
± and xi± in Eq. (2.11), (2.18) and (2.19), respectively, one can deduce that

〈λ|Qi|K|λ〉 = −
〈λ|λi+〉[λ̃i+|λ̃i−]〈λi−|λ〉

xi+ − xi−
. (2.109)

This lets us split a massive pole into two massless ones, which is why we introduce
momenta P i

± in the first place. So after taking the residues in the standard way (A.1)
and doing some simplifications we obtain the following simple prescription:

Res
λ=λi

±

F (λ, λ̃)

〈λ|P1k|λ̃]〈λ|Qi|P1k|λ〉
= − F (λi±, λ̃

i
±)

4
(
(P1,i−1 ·Pi,k)2 − P 2

1,i−1P
2
i,k

) . (2.110)

The drawback of our method is that it introduces a superficial non-rationality in
otherwise rational coefficient formulas. Indeed, massless momenta P i

± are defined in

Eq. (2.18) through xi± which contain a non-trivial square root
√
(K ·Qi)2 −K2Q2

i , equal

to
√
(P1,i−1 ·Pi,k)2 − P 2

1,i−1P
2
i,k. However, this square root dependence is guaranteed to

effectively cancel in the sum over ±-solutions.
Other methods may produce explicitly rational expressions, such as the three-mass

triangle formula from Ref. [55,56], where our approach (2.17) would generate superficially
non-rational results. We leave dealing with this minor issue for future work.
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2.6 Checks

Having explained all the ingredients of our calculation, for the explicit results we refer
the reader to Sections 6 and 7 of {2}. Their further use is aided by the Mathematica
implementation of the lengthy formulas, which is distributed along with that paper (see
Appendix F therein for more information). Now we summarize the checks that we we
used to ensure the validity of our results.

First of all, we verified that the sum of all bubble coefficients (2.70) coincides nu-
merically with the tree amplitude, as discussed in Section 2.3.2. We ensured this for all
distinct helicity configurations at 6, 7 and 8 points.

As another strong and independent cross-check, we compared our results with nu-
merical data kindly produced with the help of the powerful NGluon package [142] by
one of its authors. To simulate the N = 1 chiral multiplet in the loop, we had to add
separate contributions from the fermion and the scalar loop. Moreover, to remove the
discrepancies due to different implementation of spinor-helicity formalism, we compared
ratios of the master integral coefficients to the tree amplitude. In this way, we witnessed
agreement for all types of coefficients up to machine precision of 13 digits for 8-point
amplitudes and 12 digits for 17-point amplitudes.

Producing numerical tests for a large number (such as 25) of external gluons becomes
more involved, as their kinematics gets more and more singular. There are numerical
instabilities at the level of coefficient/tree ratios which we believe to come from the
spurious poles in Rrst (2.88). They cancel in the sum over s and t, but can contaminate
the numerical accuracy. In fact, this issue occurs for the tree amplitude itself.

2.7 Discussion

In this chapter, we have studied one-loop NMHV amplitudes in N = 1 super-Yang-Mills
theory for any number of external gluons and showed a way find general analytic formulas
for all missing scalar integral coefficients:

• bubbles with arbitrary helicity assignment;

• two-mass-easy and one-mass boxes with two minus-helicity gluons attached to one
of the massive corners, but otherwise arbitrary.

We have also numerically verified the remaining all-n formulas calculated previously in
Ref. [56] which are provided in Appendices B and C of Ref. {2} for completeness.

Our principal method was spinor integration [54,59]. It is a general one-loop method
which combines mathematical elegance with simplicity of computer implementation.
Even though we adapted it to the case of bubbles with massless N = 1 chiral super-
multiplet in the loop, the method is general and can also be applied to theories with
massive particle content [115] and arbitrary loop-momentum power-counting [127].

For all our results, we performed numerical tests at 8 and 17 points and found agree-
ment with numerical data produced by other methods.

Thus, NMHV amplitudes N = 1 SYM add to the body of one-loop amplitudes known
for all n. Of course, such amplitudes were already numerically accessible for phenomeno-
logical studies for multiplicities of order 20 [142, 143]. Hopefully, new analytic results
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will prove useful for the search of general mathematical structure of amplitudes, such as
recursion relations between separate coefficients or their meaning in (momentum) twistor
space [140].

To illustrate one possible train of thought for further developments, we have found
several series of bubble coefficients that obey simple BCFW recursion relations inher-
ited from the tree amplitudes which constitute the corresponding unitarity cuts. For
example, consider the coefficients of Pn,2-channel bubbles in amplitudes of the form
A(1−, 2−, 3+, 4−, 5+, . . . , n+). From our solution (2.76), we can obtain:

C
bub,Pn,2

N=1 chiral(1
−, 2−, 3+,4−, 5+, . . . , n+) =

− 1

(4π)
d
2 i

〈4|Pn,2|n]2
[12]

{ 〈4|3|n]
〈45〉 . . . 〈n−2|n−1〉〈n−1|3〉〈3|Pn,2|2]〈3|Pn,2|3][n1]

+
〈12〉〈4|Pn,2|2]2

P 2
n,2〈34〉 . . . 〈n−2|n−1〉〈2|Pn,2|2]〈3|Pn,2|2]〈n−1|Pn,2|2]

+
〈4|n−1〉

〈34〉〈45〉 . . . 〈n−2|n−1〉〈n−1|3〉
〈4|n−1|n]

〈n−1|Pn,2|2]〈n−1|Pn,2|n−1][n1]

}
.

(2.111)
It is easy to check that these coefficients are recursively related through the [45〉-shift for
n > 7. However, the recursion fails if one tries to derive the 7-point coefficient from the
6-point one, even though the cuts still satisfy that relation, which is drawn in Fig. 2.7.

Of course, such a relation would also fail even if we flip the helicity of the 3rd gluon.
That would produce the split-helicity case in which the recursion is well understood and
takes place only if one packs adjacent scalar bubble integrals into two-mass triangles with
a Feynman parameter in the numerator and then works with coefficients of that modified
basis [49]. The problem is that, unlike the split-helicity case, the NMHV integral basis
consists not only from bubbles, but also from three-mass triangles and various boxes, and
it is not yet understood how to repackage the full set of one-loop integrals to make the
recursion work.

This brings about another example within the same NMHV amplitude family: we
witnessed the validity of the [45〉-shift relation between three-mass triangles (23, 4567, 81)
and (23, 456, 71), but not between (23, 456, 71) and (23, 45, 61).

In both examples, the recursion seems to work, but for some reason later than ex-
pected, which leaves it unreliable for any predictive calculations. However, it seems to be
the perfect tool to obtain better understanding of the underlying structure of the NMHV
amplitudes beyond the tree level. For instance, impressive developments in N = 4 SYM
at the all-loop integrand level [8] also heavily rely on the BCFW construction implemented
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in super-twistor variables. It then seems natural that the on-shell recursion might even-
tually prove helpful to tame integrated loop amplitudes as well, hopefully, for arbitrary
configurations of negative and positive helicities.
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Chapter 3

Gauge theory and gravity

Over the last decade, the progress in the field of scattering amplitudes has revealed
beautiful mathematical structures, hidden from the Lagrangian point of view. One of
them, discovered by Bern, Carrasco Johansson [5, 6], is a duality between the kinematic
and color content of gauge theories. That is, amplitudes can be constructed using kine-
matic numerators that satisfy Lie-algebraic relations mirroring those of the color factors.
This has both interesting practical and conceptual consequences. It greatly simplifies
the construction of loop amplitudes in (super-)Yang-Mills theory, and more importantly,
the duality relates multiloop integrands of (super-)Yang-Mills amplitudes to those of
(super-)gravity via a double-copy procedure. This has triggered a number of calcula-
tions and novel results in N ≥ 4 supergravity that are otherwise extremely difficult to
obtain [31, 32, 63,64,66–69,72, 144,145].

While the duality is a conjecture for loop amplitudes, it is supported by strong ev-
idence through four loops in N = 4 SYM [6, 64, 146] and through two loops in pure
Yang-Mills theory [6, 147]. Additional evidence comes from the attempts to understand
the kinematic algebra [79,148,149] and the Lagranian formulation [150,151] of the duality.
The appearance of similar structures in string theory [74–76,152–157],{3}, Chern-Simons-
matter theories [71,158,159], and, more recently, scattering equations [149,160–163] have
shed light on the universality of the duality.

The color-kinematics duality was originally formulated for gauge theories with all
fields in the adjoint representation of the gauge group. The gravity theories that can
be obtained from the corresponding double copy of adjoint fields are known as “factor-
izable” [69, 70]. For N < 4 supersymmetry, such factorizable gravities have fixed matter
content that goes beyond the minimal multiplets required by supersymmetry, thus they
are non-pure supergravities. While this limitation is of little consequence at tree level,
for loop amplitudes the inability to decouple or freely tune the extra matter content is
a severe obstruction. Many interesting gravity theories, such as Einstein gravity, pure
N < 4 supergravity, or supergravities with generic matter, have been inaccessible at loop
level from the point of view of color-kinematics duality. In contrast to this, the loop-level
construction of pure 4 ≤ N ≤ 8 supergravities is well known [6, 66, 67].

Recently, the color-kinematics duality has been studied away from the case of purely-
adjoint gauge theories. In Refs. [71,159], the duality was found to hold for two- or three-
dimensional theories of SU(N1)×SU(N2) bi-fundamental matter, whose group-theory
structure can be embedded a Lie three-algebra. Moreover, in Ref. [70], the duality was
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considered in the context of quiver gauge theories with fields both in the adjoint and
bi-fundamental representations. However, these instances of the color-kinematics dual-
ity stay somewhat close to the adjoint case: in the former case, due to the mentioned
embedding using adjoint-like indices in the former case, and in the latter case, thanks
to the theory formulation through orbifold projections of adjoint parent theories. The
resulting double-copy prescription of Ref. [70] gave many non-factorizable gravities, even
if not pure supergravities.

In this chapter, we eliminate the discussed limitations formulate a double-copy pre-
scription for amplitude integrands in Einstein gravity, pure supergravity theories, and
supergravities with tunable non-self-interacting1 matter. This is achieved by introducing
the color-kinematics duality to gauge theories with matter fields in the fundamental rep-
resentation. We note that even at tree level, for four or more fundamental particles, the
double copy that follows from the fundamental color-kinematics duality is distinct from
the field-theory KLT relations [73, 164].

Our main task is to obtain amplitudes for pure N < 4 supergravities, including Ein-
stein gravity. To do this, we combine double copies of the adjoint and fundamental
representations with a ghost prescription. The double copies of fundamental matter are
promoted to opposite-statistics states, which then cancel the unwanted matter content in
the factorizable gravities or adjoint double copies. This construction critically relies on
the double copy of fermionic fundamental matter or supersymmetric extensions thereof.
As a naive alternative in the N = 0 case, the fundamental scalar double copies works
at one loop, but starting at two loops it produces interactions that no longer cancel
the dilaton-axion states. Although fundamental-scalar amplitudes appear to nontrivially
satisfy the color-kinematics duality, the corresponding double copies indicate that the
gravity amplitudes are corrected by four-scalar terms, and possibly higher-order interac-
tions, consistently with the analysis of Ref. [165]. In this thesis, we mostly limit ourselves
to the scalars that are paired up with fermions within supersymmetric multiplets.

While we do not provide a rigorous proof of our framework, we show its validity on
various example calculations through two loops, and we give a multiloop argument using
the effective R-symmetry of the tree amplitudes present in unitarity cuts. As a warm-
up, we discuss non-supersymmetric tree-level amplitudes. At one loop, we obtain all the
four-point color-kinematics numerators with internal fundamental matter, and then we
use them to reproduce all the four-point one-loop supergravity amplitudes with external
graviton multiplets and with or without matter in the loop. As a highly nontrivial check
at two loops, we show in great detail how our prescription cancels the dilaton and axion
in the unitarity cuts of the four- and five-point Einstein gravity.

Interestingly, our approach directly generalizes to amplitudes in (super-)gravity the-
ories with arbitrary non-self-interacting matter: abelian vectors, fermions and scalars.
Indeed, once we obtain the tools to correctly subtract unwanted matter from loops, we
can reverse the procedure and add more matter instead, introducing tunable parameters
to count the number of matter states. This generalization has a simple intuitive under-
standing: the limited set of factorizable gravities can be regarded as a “straightjacket”
imposed by the purely-adjoint color-kinematics duality with its unique color representa-
tion, and as soon as we relax this and “complexify” the duality to include the fundamental

1By “non-self-interacting” we mean no interactions beyond those required by general coordinate
invariance and supersymmetry, so that matter multiplets do not interact with each other.
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Figure 3.1: Basic Jacobi identity for the color factors or kinematic numerators.

representation, we naturally gain access to a wider range of (super-)gravities. Indeed, this
observation is consistent with the quiver and orbifold constructions of Ref. [70].2

3.1 Color-kinematics duality in the adjoint represen-

tation

In this section, we briefly review the BCJ duality and the double copy construction, in
the purely-adjoint context.

To begin with, consider a n-point L-loop color-dressed amplitude in gauge theory as a
sum of Feynman diagrams. The color factors of graphs with quartic gluon vertices, written
in terms of the structure constants f̃abc, can be immediately understood as sums of cubic
color diagrams. Their kinematic decorations can also be adjusted, in a non-unique way,
so that their pole structure would correspond to that of trivalent diagrams. This can be
achieved by multiplying and dividing terms by the denominators of missing propagators.
Each four-point vertex can thus be interpreted as an s-, t- or u-channel trees, of a linear
combination of those. By performing this ambiguous diagram-reabsorption procedure,
one can represent the amplitude as a sum of cubic graphs only:

AL-loop
n = iL−1gn+2L−2

∑

cubic graphs Γi

∫ L∏

j=1

ddℓj
(2π)d

1

Si

ci ni(ℓ)

Di(ℓ)
, (3.1)

where the denominators Di, symmetry factors Si and color factors ci are understood in
terms of the Feynman rules of the adjoint scalar φ3-theory (without factors of i) and the
numerators ni generically lose their Feynman rules interpretation.

Note that the antisymmetry f̃abc = −f̃ bac and the Jacobi identity

f̃a2a3bf̃ ba4a1 − f̃a2a4bf̃ ba3a1 = f̃a1a2bf̃ ba3a4 , (3.2)

shown pictorially in Fig. 3.1, induces numerous algebraic relations among the color factors,
such as the one depicted in Fig. 3.2.

We are now ready to introduce the main constraint of the BCJ color-kinematics duality
[5, 6]: let the kinematic numerators ni, defined so far very vaguely, satisfy the same
algebraic identities as their corresponding color factors ci:

ci = −cj ⇔ ni = −nj,

ci − cj = ck ⇔ ni − nj = nk.
(3.3)

2We note as well that interesting gravitational matter amplitudes can also be obtained through adjoint
double copies [166,167] that give an arbitrary amount of non-abelian vector multiplets.
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This reduces the freedom in the definition of {ni} substantially, but not entirely. The
numerators that obey this duality are usually called the BCJ numerators. Note that even
the basic Jacobi identity (3.2), obviously true for the four-point tree-level color factors,
is much less trivial when written for the corresponding kinematic numerators.

Once imposed for gauge theory amplitudes, that duality results in the BCJ double
copy construction for gravity amplitudes in the following form:

ML-loop
n = iL−1

(κ
2

)n+2L−2 ∑

cubic graphs Γi

∫
dLdℓ

(2π)Ld
1

Si

nin
′
i

Di

, (3.4)

where only one of the numerator sets, {ni} or {n′
i}, needs to obey the color-kinematics

duality (3.3). In this way, gauge and gravity theories are related at the integrand level
in loop momentum space. In this thesis, we loosely refer to Eqs. (3.1) and (3.4), related
by the duality (3.3), as the BCJ construction.

← ℓ
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Figure 3.2: Sample Jacobi identity for one-loop numerators

A comment is due at loop level: the loop-momentum dependence of numerators ni(ℓ)
should be traced with care. For instance, in the kinematic Jacobi identity given in Fig. 3.2,
one permutes the legs 3 and 4, but keeps the momentum ℓ fixed, because it is external to
the permutation. Indeed, if one writes that identity for the respective color factors, the
internal line ℓ will correspond to the color index outside of the basic Jacobi identity of
Fig. 3.1. In general, the correct loop-level numerator identities correspond to those for
the unsummed color factors in which the internal-line indices are left uncontracted.

Formulas (3.1) and (3.4) are a natural generalization of the original discovery at tree
level [5]. The double copy for gravity (3.4) has been proven in Ref. [150] to hold to any
loop order, if there exists a BCJ representation (3.1) for at least one of the gauge theory
copies. Such representations were found in numerous calculations [6, 31, 32, 63–72] up to
four loops in N = 4 SYM [25]. A systematic way to find BCJ numerators is known for
Yang-Mills theory at tree level [151], and in N = 4 SYM at one loop [168]. Moreover, for
a restricted class of amplitudes in the self-dual sectors of gauge theory and gravity, one
can trace the Lagrangian origin of the infinite-dimensional kinematic Lie algebra [79,148].

The string-theoretic understanding of the double copy at tree level dates back to the
celebrated KLT relations [73] between tree-level amplitudes in open and closed string
theory, later improved with the discovery of monodromy relations and the momentum
kernel in Refs. [74–78]. In the field theory limit, these relations implement the fact that
in amplitudes the degrees of freedom of a graviton can be split off into those of two gauge
bosons. Recently, a new representation of the integrands open string amplitudes was pro-
posed by Mafra, Schlotterer and Stieberger [152] where a new chiral block representation
of the open-string integrands, was introduced to construct BCJ numerators at n points.
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All of this is applicable at tree level, whereas at loop level, the relationship between open
and closed string amplitudes becomes obscure.

At the integrand level, five-point amplitudes were recently discussed in Ref. [169] in
open and closed string theory. The authors of that work studied how the closed-string
integrand is related to the square of the open-string integrand, and observed a detailed
squaring behavior. They also discussed the appearance of left-right mixing terms in this
context.

Another attempt to shed light on the string-theoretic origin of the BCJ duality was
made in Ref. {3}, where both gauge theory and gravity were considered in the purely
closed-string context. It is shown that at tree level one can adapt the same mechanism
that was used for open-string integrands in Ref. [152], i.e. the MSS chiral block rep-
resentation, to the closed string. The loop-level analysis concentrated on the detailed
comparison of the one-loop four-point integrands in N = 2 SYM, obtained in the BCJ
form from field theory, and in the worldline proper-time form from string theory. On the
one hand, the BCJ representation is known to induce total derivatives which integrate to
zero in gauge theory, but in the double copy produce the contributions necessary to repro-
duce correct gravity amplitudes. On the other hand, in the heterotic string construction
of Yang-Mills amplitudes, the left- and right-moving sector do not communicate to each
other as they have different target spaces, whereas in gravity amplitudes the two sectors
mix due to left-right contractions. The analysis in Ref. {3} illustrated the relationship
between these left-right contractions and the squares of the total derivatives in the loop
momentum space.

3.2 Color-kinematics duality in the fundamental rep-

resentation

Now we give the general construction of the color-kinematics duality for scattering am-
plitudes in theories that have both adjoint and fundamental particles.

Once again, we write the amplitudes of d-dimensional (super-)Yang-Mills theory with
fundamental matter as3

AL-loop
n = iL−1gn+2L−2

∑

cubic graphs Γi

∫
dLdℓ

(2π)Ld
1

Si

nici
Di

, (3.5)

where now the sum runs over all n-point L-loop graphs Γi with trivalent vertices of two
kinds, (adj., adj., adj.) and (adj., fund., antifund.), which correspond to particle lines
of two types: adjoint vector and fundamental matter. The color factors ci are built
out of products of structure constants f̃abc and generators T a

jk̄
matching the respective

vertices.As before, each denominator Di is the product of the squared momenta of all
internal lines of the graph, thus containing all the physical propagator poles. Si are the
usual combinatorial symmetry factors that appear, for example, in Feynman diagrams.
The numerators ni are functions of momenta, polarizations and other relevant quantum
numbers, excluding color.

3We use a different numerator normalization compared to Ref. [6]. Relative to that work, we absorb
one factor of i into the numerators, giving a uniform overall iL−1 to the gauge and gravity amplitudes.
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Figure 3.3: The algebra in the adjoint vector case (a) and in the fundamental matter case (b).
Curly lines represent gluons or vector supermultiplets, solid lines represents fermions, scalars or
supersymmetric matter. Alternatively, these diagrams describe standard Lie-algebra relations
for the color factors of the gauge group, as indicated by the external labels.

The color factors in (3.5) now satisfy linear relations of the schematic form

ci − cj = ck, (3.6)

which originate from the Jacobi identity and the commutation relation for the generators
of the gauge group:

f̃daef̃ ebc − f̃dbef̃ eac = f̃abef̃dec, (3.7a)

T a
ī T

b
jk̄ − T b

ī T
a
jk̄ = f̃abe T e

ik̄. (3.7b)

These relations are depicted diagrammatically in Fig. 3.3. It is important to note the
normalization convention in which the right-hand side of Eq. (3.7b) is free of factors of
i and

√
2. Additionally, we normalize the generators so that Tr(T aT b) = δab, which,

together with Eq. (3.7b), implies that

f̃abc = Tr([T a, T b]T c) =
√
2ifabc, (3.8)

where fabc are the structure constants more commonly found in the literature. These
conventions imply that the generators are hermitian, (T a

ī)
∗ = T a

jı̄, and the structure

constants are imaginary4 (f̃abc)∗ = −f̃abc.
The second property of the representation (3.5) is the Z2-freedom in the definition of

the color factors: the interchange of two adjoint indices of the same vertex amounts to a
flip in the overall sign of the color factor, i.e.

cj → −cj : (. . . f̃abc . . .)→ −(. . . f̃abc . . .) = (. . . f̃ bac . . .). (3.9)

To streamline the notation, we adopt the convention that the interchange of a fun-
damental and an antifundamental leg also induces a sign flip of the color factors. This
amounts to introducing new generators T a

ı̄j trivially related to the standard ones:

T a
ı̄j = −T a

jı̄. (3.10)

4The choice of imaginary structure constants yields hermitian generators in the adjoint representation:
(T a

adj)bc = f̃ bac ⇒ (T a
adj)bc = (T a

adj)
∗
cb.
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Figure 3.4: A typical one-loop graph with external adjoint and internal fundamental particles

When these generators have suppressed superscripts, we write them as T
a
. With this

convention we note that a color factor picks up a minus sign whenever two legs attached
to a cubic vertex of any representation are interchanged. In practice, this means that we
can identify the relative sign of a vertex with the cyclic orientation of its three legs, thus
clockwise and counterclockwise orderings have different overall signs.

While we mainly consider matter particles to be in the fundamental representation of
the gauge group, it is sometimes convenient to work with adjoint matter. The latter is
obtained by simply swapping the generators as follows:

T a
ī → f̃ bac with i→ b, ̄→ c. (3.11)

By applying this rule, one goes from a complex representation to a real one, which makes
the color factors of matter and antimatter fields indistinguishable from one another. Let
us illustrate how this affects a one-loop amplitude in the form (3.5), which is relevant for
the explicit calculations of Section 3.6.

Consider the one-loop “ring diagram” shown in Fig. 3.4. Its color factor is

c12···n = Tr(T a1T a2 . . . T an) = T a1
ī T

a2
jk̄
. . . T an

l̄ı . (3.12)

Now consider the same diagram, but with the internal arrows reversed. We denote the
operation of reversing fundamental matter arrows (matter↔ antimatter) by a bar, hence
the corresponding color factor is given by

c12...n = Tr(T
a1
T

a2
. . . T

an
) = T a1

ı̄j T
a2
j̄k
. . . T an

l̄i
= (−1)n Tr(T an . . . T a2T a1). (3.13)

These two diagrams have the same propagators but different color factors. However, if
we promote them to the adjoint representation using the rule (3.11), both color factors
(3.12) and (3.13) are mapped to the same object

cadj12...n = f̃ ba1cf̃ ca2d . . . f̃ eanb. (3.14)

Since the two graphs have now identical color factors, it becomes natural to repackage
them as follows:

c12...nn12...m + c12...nn12...n −→ cadj12...n(n12...n + n12...n) = cadj12...nn
adj
12...n, (3.15)

where n12...n denotes the antimatter contribution, and nadj
12...n defines an effective numer-

ator for adjoint matter inside the loop. As can be easily verified, for generic one-loop
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=

Figure 3.5: The additional two-term kinematic identity that can be imposed on the kine-
matic numerators in particular situations. However, it is not mandatory for obtaining a color-
kinematics representation. In general, the corresponding color factors do not satisfy this relation.

numerators with adjoint external states and internal matter, the same convenient relation
exists between the fundamental and adjoint contributions,

nadj
i = ni + ni. (3.16)

In the case that the matter multiplet is effectively non-chiral, implying that ni is effectively
CPT-invariant and ni = ni, the promotion in Eq. (3.15) gives a numerator from a non-
minimal adjoint-matter multiplet. Then the definition nadj

i = ni = (ni + ni)/2 may be
more convenient to use, since it gives the minimal-multiplet contribution.

Returning to the general multiloop amplitude, we note that thus far the formula (3.5)
is a trivial rewrite of standard (super-)Yang-Mills perturbation theory. The only minor
change is that we have implicitly absorbed the quartic interactions into the cubic graphs.
To expose a duality between color and kinematics [5, 6], we need to enforce nontrivial
constraints on the kinematic numerators, effectively making them behave as objects of
a kinematic Lie algebra. In particular, we demand that the numerator factors obey the
algebraic relations that are ubiquitous for color factors of any Lie algebra. Namely, the
Jacobi/commutation relations (3.6) and the antisymmetry (3.9) under the interchange
of legs attached to a single vertex. These imply dual relations schematically written as
follows:

ci − cj = ck ⇔ ni − nj = nk, (3.17a)

ci = −cj ⇔ ni = −nj. (3.17b)

For every such three-term color identity, there is a corresponding kinematic numerator
identity, and for each sign flip in a color factor, there is a corresponding sign flip in the
kinematic numerator.

As before, the three-term identities for numerators take the same pictorial form as the
Lie-algebra identities for color factors, as shown in Fig. 3.3. However, they now represent
the kinematic constraints that can be consistently imposed on the interactions involving
not only adjoint but also fundamental particles. That these constraints are consistent with
the amplitudes of various (super-)Yang-Mills theories is highly nontrivial. Recall that in
the purely-adjoint case the constraints (3.3) lead to the BCJ relations [5] between tree-
level amplitudes, which were proven in the context of string [74, 75, 77, 78, 170] and field
theory [160,171–173]. In the following, we will show that imposing the constraints (3.17)
is sensible as well, so we expect to find new relations for amplitudes with fundamental
particles shortly.

In addition to the three-term Jacobi/commutation identities (3.7), in Section 3.3 we
will observe that we can impose another nontrivial two-term constraint, shown in Fig. 3.5,
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valid for fundamental matter numerators in particular situations. For the four-point pure-
matter amplitude, the identity is simply

nt = ns, (3.18)

where ns and nt are the s- and t-channel kinematic numerators, respectively. It is consis-
tent for indistinguishable complex scalars in any spacetime dimension, if they have the
following Lagrangian:

Lscalar matter = (Dµφ)ı̄(D
µφ)i −

g2

4
(φı̄T

a
īφj)(φk̄T

a
kl̄φl). (3.19)

For indistinguishable minimal-Lorentz-representation fermions in d = 3, 4, 6, 10 dimen-
sions, the identity should also hold. This can be explained by considering the real or
non-chiral version of the two-term identity, i.e. by converting between complex and real
scalars, or Weyl and Majorana fermions. For a real scalar, the identity becomes equiv-
alent to the adjoint Jacobi relation for kinematic numerators (with one term equal to
zero), which holds at tree level because the (YM + scalar)-theory is equivalent to pure
Yang-Mills theory in the higher-by-one spacetime dimension. For the non-chiral (Majo-
rana) fermion, the identity again becomes equivalent to the adjoint Jacobi relation for
kinematic numerators, which holds [70] in d = 3, 4, 6, 10 due to a Fierz identity, where
the numerators and amplitudes belong to N = 1 SYM theory.

Although this identity can be consistently imposed (at tree level), it is not necessary
for obtaining a BCJ representation for the amplitude. Without going into details, this
can be seen from the fact that the corresponding color factors will in general not satisfy
this relation. In terms of the generators, it would correspond to

T a
īT

a
kl̄

?
= T a

il̄T
a
k̄. (3.20)

Although fundamental representations of generic gauge groups do not obey this relation,
the generator of U(1) do so, as well as generators of tensor representations of U(N)5. The
sufficient condition for the BCJ duality is that the kinematic numerators obey the same
general relations as those of the color factors. Since Eq. (3.20) is not a general identity,
imposing it on the numerators is optional.

An important feature of the amplitude representation in Eq. (3.5) is that it is not
unique. As the numerators of individual diagrams are not gauge-invariant, they have
a shift freedom that leaves the amplitude invariant. It is known as generalized gauge
invariance [5, 6]. More precisely, a shift of the numerators ni → ni +∆i does not change
the amplitude, provided that ∆i satisfy

∑

i

∫
dLDℓ

(2π)DL

1

Si

∆ici
Di

= 0. (3.21)

The duality conditions (3.3) constrain to some extent the freedom of the numerators, but
not entirely. The remaining freedom to move terms between different diagrams means that

5For example, consider the N⊗N symmetric (antisymmetric) representation of U(N) with generators

T̃ a
βγ̄ = Tr(MβT

aM†
γ), where Mβ form a basis of symmetric (antisymmetric) N -by-N matrices.
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there usually exists many different amplitude representations that obey color-kinematics
duality. This can be useful for finding representations that make various properties
manifest. But more importantly, generalized gauge invariance provides a guidance for
constructing gravity amplitudes out of the gauge-theory numerators. Any prescription
for this must preserve the generalized gauge invariance: the gravity amplitudes cannot
depend on the arbitrariness of the gauge-theory numerators. We will use this fact in
Section 3.5.3.

The purely-adjoint BCJ duality is known [6] to provide the double copy construc-
tion (3.4) for gravity amplitudes. In Section 3.5, we will present a generalization of
Eq. (3.4) which will include fundamental matter particles.

3.3 Tree-level examples

In this section, we give examples of the extended BCJ duality for some simple tree-level
amplitudes, so as to make the formal description of Section 3.2 more concrete, and to
connect to the standard Feynman diagram expansion.

3.3.1 Four-point amplitudes with fermions

Consider the massless four-quark amplitude in QCD, qq̄qq̄. If we take legs 1 and 3 to be
quarks and legs 2 and 4 to be antiquarks, and make no distinction between flavors, then
the tree-level amplitude is the sum of the following two Feynman diagrams:

1−, i

2+, ̄ 3−, k

4+, l̄

= −i T a
īT

a
kl̄

〈13〉[24]
s

= −icsns

s
,

1−, i

2+, ̄ 3−, k

4+, l̄

= −i T a
il̄T

a
k̄

〈13〉[24]
t

= −ictnt

t
.

(3.22)
An important property of that amplitude is that the corresponding u-channel dia-

gram cannot be constructed from Feynman rules, as it is kinematically zero because of
the external helicity choice. Incidentally, in these diagrams kinematics is dual to color.
That the Feynman rules land exactly on such a representation is a somewhat accidental
property of the particularly simple amplitude, and it can be traced back to the gauge
invariance of the individual diagrams. Indeed, there exist no (generalized) gauge freedom
that can shuffle terms between the two numerators. This is clear if we consider the quarks
to have two different flavors, e.g. qq̄q′q̄′, in which case only the first of the diagrams (3.22)
is allowed in the amplitude and thus must be gauge invariant by itself.

Let us take a step back and carefully check that we have a BCJ representation of
the form described in the previous section. First of all, as the only adjoint particle is
the intermediate gluon, neither of the two identities of the kinematical algebra (shown
in Fig. 3.3) can be enforced. Interestingly, the diagrams (3.22) are clearly related by
relabeling 2↔ 4, and this is the only relation between the color factors T a

īT
a
kl̄
and T a

il̄
T a
k̄.

This relation6 is also satisfied by the kinematic numerators −i〈13〉[24], up to an extra

6In the fully-adjoint case, the relabeling relation also corresponds to the three-term Jacobi iden-
tity (3.7a) among the numerators, with one of them being zero.
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Figure 3.6: A double copy (3.26) of diagrams that obeys the color-kinematics duality in the
fundamental representation. It gives a four-scalar amplitude with gravitational interactions.

minus sign due to Fermi-Dirac statistics. In principle, on the gauge theory side such
signs should be traced with care by considering the parity of the full permutation of
external fermion states. For example, the permutation {1, 2, 3, 4} → {1, 4, 3, 2} relating
graphs (3.22) is odd, hence the aforementioned sign.

We also have the option to enforce the two-term identity. Since the numerators are
already unique, the identity should be automatically true. Indeed,

ns = 〈13〉[24] = nt. (3.23)

This example may seem trivial on the Yang-Mills side, but it is highly nontrivial that
one can now construct gravity amplitudes using these numerators. For example, the
four-graviphoton amplitude7 is given by

M tree
4 (1−γ , 2

+
γ , 3

−
γ , 4

+
γ ) = −i

(n2
s

s
+
n2
t

t

)
= −i〈13〉2[24]2

(1
s
+

1

t

)
. (3.24)

And if we have two types of U(1)-vectors, say γ and γ′, we have the following amplitude

M tree
4 (1−γ , 2

+
γ , 3

−
γ′ , 4

+
γ′) = −in

2
s

s
= −i〈13〉

2[24]2

s
, (3.25)

obtained by obvious removing the t-channel graph.
There are many interesting generalizations of these amplitudes, but let us now focus

on the amplitudes that will be relevant for obtaining pure Einstein gravity. We are
interested in the “impurities” that come from dilaton and axion amplitudes. Since these
particles are scalars the relevant amplitudes have no helicity weights, the double copies
should then be such that the external helicities are anticorrelated, as shown in Fig. 3.6.
The amplitude in that figure is given by

M tree
4 (1−+

ϕ , 2+−
ϕ , 3−+

ϕ , 4+−
ϕ ) = −i

(nsns

s
+
ntnt

t

)
= −iu2

(1
s
+

1

t

)
= i

u3

st
, (3.26)

where, as before, ns and nt denote the numerators in Eq. (3.22) with inverted matter and
antimatter. They can be obtained by simple relabeling:

ns(1
+, 2−, 3+, 4−) = −nt(2

−, 3+, 4−, 1+), nt(1
+, 2−, 3+, 4−) = −ns(2

−, 3+, 4−, 1+). (3.27)

Indeed, the states in the amplitude (3.26) correspond to a complex scalar ϕ−+ that
can be understood as a linear combination of the dilaton and axion, ϕ−+ ∼ φ + ia, and

7For brevity, we use plain M to denote gravity amplitudes M with omitted coupling constant, i.e.
with κ = 2.

69



1−

2+ 3−

4+

×

1+

2− 3+

4−

=

1−

2+ 3−

4+

×

1+

2− 3+

4−

+

1−

2+ 3−

4+

×

1+

2− 3+

4−

+

1−

2+

3−

4+

×

1+

2−

3+

4−

Figure 3.7: An equality between two different double copies: with two distinct fermion lines
and with a single fermion line. Note that the propagators are implicitly included in this identity,
and the t- and u-channel poles on the second line are spurious.

similarly for the complex conjugate ϕ+− ∼ φ − ia. If we have two different complex
scalars, ϕ and ϕ′, then we can have the following amplitude by removing the t-channel
graph:

M tree
4 (1−+

ϕ , 2+−
ϕ , 3−+

ϕ′ , 4
+−
ϕ′ ) = −insns

s
= −iu

2

s
. (3.28)

As will be crucial for us in the following, these dilaton-axion amplitudes were con-
structed by taking double copies of fermion states. This is not the conventional way, as
most often we think of dilaton-axion amplitudes as arising in the double copy of ampli-
tudes with only gluon states. In that case, the relation between the gluon polarization
vectors and the polarization tensors of ϕ+− and ϕ−+ is more transparent:

ε+−
µν = ε+µ ε

−
ν , ε−+

µν = ε−µ ε
+
ν . (3.29)

In particular, in the KLT approach [73], we would construct the amplitude in Eq. (3.26)
as a double copy of color-ordered gluon amplitudes:

M tree
4 (1−+

ϕ , 2+−
ϕ , 3−+

ϕ , 4+−
ϕ ) = −isAtree

4 (1−g , 2
+
g , 3

−
g , 4

+
g )A

tree
4 (2−g , 1

+
g , 3

+
g , 4

−
g ) = i

u3

st
, (3.30)

which gives the same result as in Eq. (3.26). Similarly, one can construct the amplitude
in Eq. (3.28) through the double copy of gluons and a single fermion pair, either using
the KLT prescription or the BCJ duality for adjoint particles. The KLT formula is

M tree
4 (1−+

ϕ , 2+−
ϕ , 3−+

ϕ′ , 4
+−
ϕ′ ) = −isAtree

4 (1−f , 2
+
f , 3

−
g , 4

+
g )A

tree
4 (2−f , 1

+
f , 3

+
g , 4

−
g ) = −i

u2

s
, (3.31)

which again agrees with Eq. (3.28). Since the KLT approach is equivalent to the tree-level
adjoint BCJ double copy, we have an interesting equality between the double copies of a
single diagram (3.28) and a triplet of diagrams, as is illustrated in Fig. 3.7.

For amplitudes with a single fermion pair, one can put the fermions either in the
adjoint or in the fundamental representation, and the BCJ duality and double copy work
in the same way for both cases. This, together with the identity in Fig. 3.7, explains
why we were able to obtain the four-point amplitudes from either the KLT approach
or fundamental color-kinematics duality. However, more generally, at higher points, the
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KLT formula [73,164] will not be able to reproduce the wide range of gravitational inter-
actions that can be obtained from the double copy of diagrams satisfying the extended
BCJ duality. This is because the latter approach should admit an unlimited number of
distinguishable (chiral) matter particles (see Section 3.5.2), whereas the KLT formula
should be limited to the double-copy spectrum of the adjoint states naturally occurring
in SYM theories.

3.3.2 Five-point amplitudes with fermions

The ease of constructing four-point gravity amplitudes is no coincidence. Let us add
another particle to the picture, a gluon, and observe how the double-copy structure
generalizes. For easier bookkeeping, we first assume that the quarks have distinct flavors,
so the process is of the following type: qq̄q′q̄′g. There are only five nonvanishing tree-level
diagrams that can be constructed from Feynman rules. For completeness, we give all five
contributions, though some of them are related by relabeling:

1−, i2+, ̄

3−, k 4+, l̄

5, a =
i√
2

1

s15s34
T a
im̄T

b
m̄T

b
kl̄ 〈1|ε5|1+5|3〉[24] = −ic1n1

D1

, (3.32a)

1−, i2+, ̄

3−, k 4+, l̄

5, a = − i√
2

1

s25s34
T b
im̄T

a
m̄T

b
kl̄ 〈13〉[2|ε5|2+5|4] = −ic2n2

D2

, (3.32b)

1−, i2+, ̄

3−, k 4+, l̄

5, a =
i√
2

1

s12s35
T b
īT

a
km̄T

b
ml̄ 〈1|3+5|ε5|3〉[24] = −i

c3n3

D3

, (3.32c)

1−, i2+, ̄

3−, k 4+, l̄

5, a = − i√
2

1

s12s45
T b
īT

b
km̄T

a
ml̄ 〈13〉[2|4+5|ε5|4] = −i

c4n4

D4

, (3.32d)

1−, i2+, ̄

3−, k 4+, l̄

5, a =
i√
2

1

s12s34
f̃abcT b

īT
c
kl̄

(
〈1|ε5|2]〈3|5|4]− 〈1|5|2]〈3|ε5|4]

− 2〈13〉[24]((p1+p2)·ε5)
)
= −ic5n5

D5

.

(3.32e)

The amplitude is the sum of these five diagrams.
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In Eq. (3.32), we defined five color factors ci that satisfy two Lie algebra identities:

c1 − c2 = −c5 ⇔ T a
im̄T

b
m̄T

b
kl̄ − T b

im̄T
a
m̄T

b
kl̄ = −f̃abcT b

īT
c
kl̄, (3.33a)

c3 − c4 = c5 ⇔ T b
īT

a
km̄T

b
ml̄ − T b

īT
b
km̄T

a
ml̄ = f̃abcT b

īT
c
kl̄. (3.33b)

For the amplitude to satisfy the color-kinematics duality, it is necessary that the kinematic
numerators ni obey similar identities. As we are not yet probing the four-gluon vertex,
it turns out that these identities automatically hold for the above Feynman diagrams,
provided the gluon polarization vector is transverse. This can be verified using some
spinor algebra involving Schouten identities:

n1 − n2 = −n5 ⇔ (3.34a)

〈1|ε5|1+5|3〉[24] + 〈13〉[2|ε5|2+5|4] = −〈1|ε5|2]〈3|5|4] + 〈1|5|2]〈3|ε5|4] + 2〈13〉[24]((p1+p2)·ε5).
n3 − n4 = n5 ⇔ (3.34b)

〈1|3+5|ε5|3〉[24] + 〈13〉[2|4+5|ε5|4] = −〈1|5|2]〈3|ε5|4] + 〈1|ε5|2]〈3|5|4] + 2〈13〉[24]((p3+p4)·ε5).

This five-point amplitude is an interesting example of the interplay between the color-
kinematics duality with fundamental particles and the (generalized) gauge invariance.
The appearance of the kinematical Lie algebra identities is correlated with the fact that
the five-point numerators are allowed to be gauge dependent. We can see this gauge
dependence by parameterizing the polarization vectors with a reference momentum qµ,
as in Eq. (1.23). If we specialize to the case of the plus-helicity gluon, so that εµp+ =

〈q|γµ|p]/(
√
2〈qp〉), we obtain the following numerators:

n1 = −〈13〉[24]
〈q|1|5]
〈q5〉 , (3.35a)

n2 = 〈13〉
(
[24]
〈q|2|5]
〈q5〉 + [25][54]

)
, (3.35b)

n3 = −〈13〉[24]
〈q|3|5]
〈q5〉 , (3.35c)

n4 = 〈13〉
(
[24]
〈q|4|5]
〈q5〉 − [25][54]

)
, (3.35d)

n5 = −n1 + n2 = n3 − n4, (3.35e)

which carry a nontrivial dependence on qµ.
Note that if all four quarks had the same flavor, qq̄qq̄g, as in Section 3.3.1, we would

have to include five more diagrams with fermion lines stretching between 4+ and 1−

and between 2+ and 3−. Not surprisingly, they can be obtained from the diagrams in
Eq. (3.32) by relabeling 1 ↔ 3. More than that, if we use the two-term identity from
Fig. 3.5, four of these numerators can be directly identified with those in Eq. (3.35):

n6 ≡ −n1

∣∣
1↔3

= n3,

n7 ≡ −n2

∣∣
1↔3

= n2,

n8 ≡ −n3

∣∣
1↔3

= n1,

n9 ≡ −n4

∣∣
1↔3

= n4,

n10 ≡ −n5

∣∣
1↔3

,

(3.36)
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where the negative signs come from swapping the fermions 1 ↔ 3. These relations turn
out to be consistent for any value of q, confirming the validity of the two-term identity.

Now, let us construct gravity amplitudes. As before, we can easily construct a four-
photon one-graviton amplitude

M tree
5 (1−γ , 2

+
γ , 3

−
γ , 4

+
γ , 5

++
h ) = −i

10∑

i=1

n2
i

Di

, (3.37)

as well as a four-scalar one-graviton amplitude

M tree
5 (1−+

ϕ , 2+−
ϕ , 3−+

ϕ , 4+−
ϕ , 5++

h ) = −i
10∑

i=1

nini

Di

. (3.38)

Moreover, one can verify that, in analogy with Eq. (3.25) and Eq. (3.28), taking just
the five first diagrams (3.32) results in the gauge-invariant amplitude that corresponds
to gravitational interactions of two distinguishable scalars:

M tree
5 (1−+

ϕ , 2+−
ϕ , 3−+

ϕ′ , 4
+−
ϕ′ , 5

++
h ) = −i

5∑

i=1

nini

Di

. (3.39)

The same procedure can be done for the photon amplitude (3.37).
At five points, the number of distinct matter particles is still quite small, so we can

reproduce the above amplitudes by applying the KLT relation [73] in different ways:

M tree
5 (1, 2, 3, 4, 5) = i

(
s12s34A

tree
5 (1, 2, 3, 4, 5)Atree

5 (2, 1, 4, 3, 5)

+ s13s24A
tree
5 (1, 3, 2, 4, 5)Atree

5 (3, 1, 4, 2, 5)
)
.

(3.40)

Using this formula, one can easily check Eqs. (3.37), (3.38) and (3.39).

3.3.3 Four-point amplitudes with scalars

Let us now consider amplitudes with fundamental scalars. We will show that, even
though scalars have more complicated interactions with gluons, their amplitudes can be
represented in a color-kinematics form.

First, consider a free massless complex scalar minimally coupled to QCD with the
following Lagrangian:

Lscalar matter = (Dµφ)ı̄(D
µφ)i. (3.41)

The simplest process is φφφφ. If we take legs 1 and 3 to be scalars and legs 2 and 4 to
be antiscalars, and make no distinction between flavors, then the tree-level amplitude is
the sum of the following two Feynman diagrams:

1, i

2, ̄ 3, k

4, l̄

= i T a
īT

a
kl̄

(u
s
+
1

2

)
= −icsn

free
s

s
,

1, i

2, ̄ 3, k

4, l̄

= i T a
il̄T

a
k̄

(u
t
+
1

2

)
= −ictn

free
t

t
.

(3.42)
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Obviously, both diagrams are gauge-invariant separately. Therefore, for the same
reason as in the fermion case, they comprise a BCJ representation.

However, the two-term identity from Fig. 3.5 is not satisfied:

nfree
s = −

(
u+

s

2

)
6= nfree

t = −
(
u+

t

2

)
. (3.43)

Moreover, these numerators are evidently not related by supersymmetry to those in
Eq. (3.23). Indeed, from supersymmetric Ward identities [39–44], one would rather obtain
the following numerators:

ns = −u = nt, (3.44)

related to those in Eq. (3.23) by the replacement 〈13〉 → 〈24〉.
As advertised in Section 3.2, to fix this, we can consider the following scalar self-

interaction term:

Lself-interaction = −g
2

4
(φı̄T

a
īφj)(φk̄T

a
kl̄φl), (3.45)

which adds another Feynman diagram to the process (3.42):

1, i

2, ̄ 3, k

4, l̄

= − i
2

(
T a
īT

a
kl̄ + T a

il̄T
a
k̄

)
= −i

(
cs(ns − nfree

s )

s
+
ct(nt − nfree

t )

s

)
. (3.46)

Obviously, by symmetrically absorbing this diagram into those in Eq. (3.42), one obtains
the simpler scalar numerators (3.44). Taking into account that those are related to the
fermion numerators (3.23), we regard the four-scalar contact term as needed for gener-
alizing to supersymmetric theories. In the supersymmetric theories, such an interaction
is consistent with the statement that we only work with matter supermultiplets that are
“non-self-interacting”, i.e. they contain no self-interactions beyond those required by
supersymmetry and gauge invariance.

In the rest of this section, we will consider both cases, with and without scalar self-
interaction. However, we will refrain from building gravity amplitudes out of them,
because in the former case they simply coincide with the fermion double copies, as follows
from supersymmetric Ward identities, and in the latter case the resulting gravity theory
has not been identified yet.

3.3.4 Five-point amplitudes with scalars

Now let us consider five-point amplitudes with complex scalars.

First, we replace only one of the fermion pairs in Eq. (3.32) by complex scalars,
obtaining the following process: φφqq̄g. Note that it is entirely insensitive to the scalar
self-interaction (3.45). There are seven nonvanishing tree-level diagrams that can be
constructed from Feynman rules, two of which contain a four-point φAAφ vertex. To
obtain a color-kinematics representation, we should absorb the latter diagrams into two
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trivalent diagrams with the same color factors:

1, i2, ̄

3−, k 4+, l̄

5, a+

1, i2, ̄

3−, k 4+, l̄

5, a =
i√
2

1

s15s34
T a
im̄T

b
m̄T

b
kl̄

×
(
2(p1 ·ε5)〈3|2|4] + (p1 ·p5)〈3|ε5|4]

)
= −ic1n1

D1

,

(3.47a)

1, i2, ̄

3−, k 4+, l̄

5, a +

1, i2, ̄

3−, k 4+, l̄

5, a =
i√
2

1

s25s34
T b
im̄T

a
m̄T

b
kl̄

×
(
2(p2 ·ε5)〈3|1|4] + (p2 ·p5)〈3|ε5|4]

)
= −ic2n2

D2

,

(3.47b)

1, i2, ̄

3−, k 4+, l̄

5, a = − i

2
√
2

1

s12s35
T b
īT

a
km̄T

b
ml̄ 〈3|ε5|3+5|1−2|4] = c3n3

D3

, (3.47c)

1, i2, ̄

3−, k 4+, l̄

5, a =
i

2
√
2

1

s12s45
T b
īT

b
km̄T

a
ml̄ 〈3|1−2|4+5|ε5|4] = −i

c4n4

D4

, (3.47d)

1−, i2+, ̄

3−, k 4+, l̄

5, a =
i√
2

1

s12s34
f̃abcT b

īT
c
kl̄

(
((p1+p2)·ε5)〈3|1−2|4]

− ((p1−p2)·p5)〈3|ε5|4] + ((p1−p2)·ε5)〈3|5|4]
)
= −ic5n5

D5

.

(3.47e)

Thanks to this reabsorption, n1 and n2 are associated to their purely trivalent graphs.
The amplitude is the sum of the resulting five contributions. It can be verified that now
both the color factors and the kinematics numerators obey equivalent relations:

c1 − c2 = −c5 ⇔ n1 − n2 = −n5, (3.48a)

c3 − c4 = c5 ⇔ n3 − n4 = n5. (3.48b)

Moreover, as fundamental lines are of different origin, no two-term identities can be
imposed in this case, so the color-kinematics duality is satisfied in its fullest version.

If we specialize to the case of plus-helicity gluon with a reference spinor |q〉, we obtain
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the following explicit numerators:

n1 = −〈3|2|4]
〈q|1|5]
〈q5〉 − (p1 ·p5)

〈3q〉[54]
〈q5〉 , (3.49a)

n2 = −〈3|1|4]
〈q|2|5]
〈q5〉 − (p2 ·p5)

〈3q〉[54]
〈q5〉 , (3.49b)

n3 =
〈3q〉[5|3+5|1−2|4]

2〈q5〉 , (3.49c)

n4 = −
〈3|1−2|4+5|q〉[54]

2〈q5〉 , (3.49d)

n5 = −n1 + n2 = n3 − n4. (3.49e)

On the other hand, we may consider another set of numerators defined by the SWI-
replacement 〈13〉 → −〈23〉 in Eq. (3.35). In fact, for the gauge choice |q〉 = |3〉, they
are equal to the numerators (3.49). As the amplitude is gauge-independent, we see that
these two numerators sets are equivalent.

Now let us consider the process with no fermions at all, but for simplicity let the

scalars be distinct: φφφ′φ
′
g. If we start by looking at the case with no self-interaction,

then we can construct only five inequivalent tree-level diagrams from Feynman rules, two
of which contain a four-point φAAφ vertex. To obtain a color-kinematics representation,
it suffices to include them into two trivalent diagrams with the same color factors:

1, i2, ̄

3, k 4, l̄

5, a +

1, i2, ̄

3, k 4, l̄

5, a =

i√
2

1

s15s34
T a
im̄T b

m̄T
b
kl̄

×
(
2(p1 ·ε5)(p2 ·(p3−p4))

+ (p1 ·p5)(ε5 ·(p3−p4))
)
= −ic1n

free
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D1
,

(3.50a)

1, i2, ̄

3, k 4, l̄

5, a +

1, i2, ̄

3, k 4, l̄

5, a =

i√
2

1

s25s34
T b
im̄T a

m̄T
b
kl̄

×
(
2(p2 ·ε5)(p1 ·(p3−p4))

+ (p2 ·p5)(ε5 ·(p3−p4))
)
= −ic2n

free
2

D2
,

(3.50b)

1, i2, ̄

3, k 4, l̄

5, a =

i√
2

1

s12s34
f̃abcT b

īT
c
kl̄

(
((p1+p2)·ε5)((p1−p2)·(p3−p4))

− ((p3−p4)·ε5)((p1−p2)·p5)

+ ((p1−p2)·ε5)((p3−p4)·p5)
)
= −ic5n

free
5

D5
.

(3.50c)

Again, we can verify that the color factors and the kinematics numerators obey equivalent
relations:

c1 − c2 = −c5 ⇔ nfree
1 − nfree

2 = −nfree
5 . (3.51)

The amplitude is the sum of these three and two more contributions, which can be
obtained from Eqs. (3.50a) and (3.50b) by relabeling {1↔ 3, 2↔ 4}.
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The amplitude with four indistinguishable scalars can be further obtained by relabel-
ing, as in Eq. (3.36), though without fermionic minus signs. However, in contrast with
the fermion case, the two-term identity is not respected:

nfree
6 ≡ nfree

1

∣∣
1↔3
6= nfree

3 ,

nfree
7 ≡ nfree

2

∣∣
1↔3
6= nfree

2 ,

nfree
8 ≡ nfree

3

∣∣
1↔3
6= nfree

1 ,

nfree
9 ≡ nfree

4

∣∣
1↔3
6= nfree

4 ,

nfree
10 ≡ nfree

5

∣∣
1↔3

.

(3.52)

Moreover, the numerators (3.50) are not supersymmetrically related to those in Eq. (3.32).
The situation is thus the same as for the four-scalar amplitudes. Therefore, we can

fix it in the same way. Indeed, if we consider fundamental scalars with self-interaction
described by the Lagrangian (3.19), we can find a way to reabsorb diagrams with the four-
point interactions φAAφ and φφφφ into the trivalent graphs and to obtain the following
color-kinematics representation:

1, i2, ̄

3, k 4, l̄

5, a = − i
√
2

s15s34
T a
im̄T

b
m̄T

b
kl̄ (p1 ·ε5)s24 = −i

c1n1

D1

, (3.53a)
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3, k 4, l̄
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√
2

s25s34
T b
im̄T

a
m̄T

b
kl̄

(
(p2 ·ε5)(s25−s13) + (p4 ·ε5)s25

)
= −ic2n2
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,

(3.53b)
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3, k 4, l̄
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=
i√
2

1

s12s34
f̃abcT b

īT
c
kl̄

(
((p1+p2)·ε5)((p1−p2)·(p3−p4))

− ((p3−p4)·ε5)(((p1−p2)·p5)−(p3 ·p4))
+ ((p1−p2)·ε5)(((p3−p4)·p5)−(p1 ·p2))
+ (p4 ·ε5)s12 − (p2 ·ε5)s34

)
= −ic5n5

D5

,

(3.53c)

obeying

c1 − c2 = −c5 ⇔ n1 − n2 = −n5. (3.54)

Again, the numerators of the flipped trivalent diagrams are defined by simple relabeling:

n3 = n1

∣∣
1↔3,2↔4

,

n4 = n2

∣∣
1↔3,2↔4

.
(3.55)

The amplitude with four indistinguishable scalars can be obtained by further relabeling,
as in Eqs. (3.36) and (3.52). Moreover, the two-term identity from Fig. 3.5 is now satisfied,
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just as in the fermion case:
n6 ≡ n1

∣∣
1↔3

= n3,

n7 ≡ n2

∣∣
1↔3

= n2,

n8 ≡ n3

∣∣
1↔3

= n1,

n9 ≡ n4

∣∣
1↔3

= n4,

n10 ≡ n5

∣∣
1↔3

.

(3.56)

In addition to that, it can be easily checked that for any helicity of the gluon, and
for any choice of its reference momentum, the scalar numerators related to the fermion
ones (3.32) by the SWI-replacement 〈13〉 → 〈24〉, or to the mixed ones (3.47) by the
SWI-replacement 〈23〉 → −〈24〉.

These five-point calculations are fully consistent with the four-point example of Sec-
tion 3.3.3. That is, the fundamental scalars described by the particular self-interacting
Lagrangian (3.19) can be considered as the supersymmetry continuation of the massless
fermions, and respect the two-term identity in Fig. 3.5.

It is interesting to relate these calculations to an earlier attempt [174] to impose the
color-kinematics duality on fundamental scalars. In the spirit of that work, we take
the limit corresponding to multi-Regge kinematics for the double copies of the numera-
tors (3.50) with both co- and anti-aligned scalar lines. Indeed, in doing so, we recover
the full multi-Regge gravitational vertex, which includes the square of Lipatov’s effective
vertex of QCD [175–179] and the correct subleading terms required by the Steinmann
relations [180, 181]. This is consistent with the behavior of a correct gravitational am-
plitude [182], but at the same time somewhat surprising since the similar calculation of
Ref. [174] yielded a double-copy amplitude with missing subleading terms. While we do
not resolve the mismatch here, we note that in later work [165] the missing terms were
recovered in the context of the adjoint-representation double copy.

Having considered these explicit tree-level examples of the color-kinematics duality
for fundamental matter, we can now proceed to discussing formal aspects of how we treat
supersymmetric Yang-Mills theories with fundamental matter multiplets.

3.4 On-shell spectrum and supermultiplets

In this section, we briefly describe the supersymmetric multiplets to set the notation for
the subsequent sections. More precisely, we explain how on-shell superspace variables are
used to package the on-shell states of super-Yang-Mills theories into their supermultiplets:
a vector multiplet VN , as well as a chiral ΦN and an antichiral ΦN matter multiplets.
We put them respectively belong into the adjoint, fundamental and antifundamental
representations of the gauge group.

Note that from now on, it will be more convenient to use the same letters for on-shell
states and their fields, for example, A± for the helicity states of gluons. Moreover, we
denote on-shell Weyl fermions by λ± or ψ±, depending on whether they belong to a vector
or a matter multiplet, respectively. Similarly, the vector-multiplet scalars are denoted by
ϕ and the matter-multiplet ones by φ.

Perhaps the best starting point for understanding the spectrum of massless gauge
theories is the on-shell supermultipet of N = 4 SYM [4, 42, 43, 136]. Using standard
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auxiliary Grassmann variables ηA, this vector multiplet can be expressed as a super-wave
function

VN=4 = A+ + λ+Aη
A +

1

2
ϕABη

AηB +
1

3!
ǫABCDλ

A
− η

BηCηD + A−η
1η2η3η4, (3.57)

where the R-symmetry indices live in SU(4) and ǫABCD is its Levi-Civita tensor. The
N = 4 vector multiplet is necessarily non-chiral, in contrast to the cases with lower
supersymmetry. However, the lower supersymmetric multiplets can be considered as its
direct truncations.

The on-shell vector multiplets for reduced supersymmetry can be divided into a chiral
multiplet VN and an antichiral one V N . For N = 2, 1, 0 they are explicitly:

VN=2 = A+ + λ+Aη
A + ϕ12η

1η2, V N=2 = ϕ12 + ǫABλ
A
−η

B + A−η
1η2,

VN=1 = A+ + λ+η1, V N=1 = λ− + A−η
1,

VN=0 = A+, V N=0 = A−,

(3.58)

where SU(2) indices A,B = 1, 2 are inherited from SU(4) R-symmetry and are raised and
lowered using ǫAB. We find it convenient to assemble these chiral vector multiplets into
a single non-chiral multiplet

VN = VN + V N θ, (3.59)

where we introduced an auxiliary parameter θ defined as

θ =
4∏

A=N+1

ηA. (3.60)

It is nilpotent, θ2 = 0, and commuting or anticommuting for an even or odd number of
supersymmetries, respectively.

While the non-chiral multiplets (3.59) do not increase the supersymmetry with respect
to their chiral constituents, they allow the more uniform treatment of the components
of the N = 2, 1, 0 scattering amplitudes by assembling its full state dependence into a
single generating function An(pi, η

A
i , θi). For example, the n-point MHV tree amplitude

in N < 4 super-Yang-Mills theories can be written as

AMHV,tree
n (pi, η

A
i , θi) =

i δ(2N )(Q)
∑m

i<j θiθj〈ij〉4−N

〈12〉〈34〉 . . . 〈n−1|n〉〈n1〉 , (3.61)

where θ’s mark the external legs that belong to the V N multiplet and η’s encode the on-
shell supersymmetry inside both multiplets. The delta-function of the supermomentum
QA

α =
∑

i |i〉αηAi is defined analogously to Eq. (2.84) as

δ(2N )(Q) =
N∏

A=1

m∑

i<j

ηAi 〈ij〉ηAj . (3.62)

All vector multiplets discussed so far, whether chiral or non-chiral, belong to the
adjoint representation of the gauge group. For the matter content, on the other hand,
one can choose between the adjoint, fundamental or antifundamental representations.
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Field +1 +1
2

0 −1
2
−1 Field +1

2
0 −1

2
Field +1

2
0 −1

2

VN=4 1 4 6 4 1 ΦN=2 1 2 1 ΦN=2 1 2 1

VN=2 1 2 2 2 1 ΦN=1 1 1 0 ΦN=1 0 1 1

VN=1 1 1 0 1 1 ΦN=0 1 0 0 ΦN=0 0 0 1

VN=0 1 0 0 0 1 Φscalar
N=0 0 1 0 Φadj

N=2 1 2 1

Table 3.1: Summary of the particle and helicity content of the various on-shell YM supermul-
tiplets considered in this thesis

The last two choices naturally define the chiral matter multiplet ΦN and the antichiral
one ΦN . For N = 2, 1 they are explicitly

(ΦN=2)i = ψ+
i + φAiη

A + ψ−
i η

1η2, (ΦN=2)ı̄ = ψ+
ı̄ + ǫAB φ

A

ı̄ η
B + ψ−

ı̄ η
1η2,

(ΦN=1)i = ψ+
i + φi η

1, (ΦN=1)ı̄ = φı̄ + ψ−
ı̄ η

1.
(3.63)

Note that although the notation is similar for the states in the two N = 2 matter
multiplets, the states are distinct, as emphasized by the fundamental/antifundamental
subscripts that distinguish the color representations.

Non-supersymmetric matter can either be a chiral Weyl fermion or a complex scalar:

(ΦN=0)i ≡ (Φfermion
N=0 )i = ψ+

i , (ΦN=0)ı̄ ≡ (Φ
fermion

N=0 )ı̄ = ψ−
ı̄ ,

(Φscalar
N=0 )i = φi, (Φ

scalar

N=0 )ı̄ = φı̄.
(3.64)

We consider the Weyl fermions to be the default N = 0 matter multiplets. With this
choice, the formalism for constructing pure supergravities will be uniform for any value
of N .

For completeness, and for later use, we remark that if the chiral and antichiral N = 1
multiplets in Eq. (3.63) are put into the adjoint representation of the gauge group (or
any real representation), then it is convenient to combine them into a non-chiral minimal
N = 2 multiplet. After relabeling the scalar fields, we have

ΦN=1 + ΦN=1 η
2 → Φadj

N=2 = ψ+ + φAη
A + ψ−η1η2. (3.65)

Note that in Chapter 2, as well as in the literature on scattering amplitudes, this matter
multiplet is conventionally referred to as “N = 1 chiral”, even though it effectively has
N = 2 supersymmetry. In this chapter, to avoid confusion with the fundamental chiral
multiplets, we prefer to call it “N = 2 adjoint.”

Similarly, the non-supersymmetric chiral fermion matter can be promoted to a Majo-
rana fermion, and the fundamental complex scalar becomes equivalent to two real scalars,
all in the adjoint representation.

Finally, the particle and helicity content of the supermultiplets discussed so far is
summarized in Table 3.1.

3.5 Construction of pure gravity theories

In this section, we address the problem of constructing pure (super-)gravity theories
with N < 4 supersymmetry. Such theories are “non-factorizable”, meaning that their
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SUGRA tensoring vector states ghosts = matter⊗matter

N = 0+0 Aµ⊗Aν = hµν ⊕ φ⊕ a (ψ+⊗ψ−)⊕ (ψ−⊗ψ+) = φ⊕ a
N = 1+0 VN=1⊗Aµ =HN=1 ⊕ ΦN=2 (ΦN=1⊗ψ−)⊕ (ΦN=1⊗ψ+) = ΦN=2

N = 2+0 VN=2⊗Aµ =HN=2 ⊕ VN=2 (ΦN=2⊗ψ−)⊕ (ΦN=2⊗ψ+) = VN=2

N = 1+1 VN=1⊗VN=1 =HN=2 ⊕ 2ΦN=2 (ΦN=1⊗ΦN=1)⊕ (ΦN=1⊗ΦN=1) = 2ΦN=2

N = 2+1 VN=2⊗VN=1 =HN=3 ⊕ VN=4 (ΦN=2⊗ΦN=1)⊕ (ΦN=2⊗Φ+
N=1) = VN=4

N = 2+2 VN=2⊗VN=2 =HN=4 ⊕ 2VN=4 (ΦN=2⊗ΦN=2)⊕ (ΦN=2⊗ΦN=2) = 2VN=4

Table 3.2: Pure gravities are constructed from states that are double copies of pure SYM
vectors, and similarly ghosts from matter-antimatter double copies. For compactness, pairs of
chiral vectors, or pairs of chiral matter multiplets, are combined into non-chiral real multiplets.

loop amplitudes cannot be constructed by squaring, or double copying, numerators of
pure (super-)Yang-Mills theories. However, remarkably, pure gravity amplitudes can be
obtained from non-pure Yang-Mills theory, as we show next.

3.5.1 Double copies of physical states

We define the following tensor products of the adjoint and fundamental on-shell states in
SYM theories with N - andM-fold supersymmetry:

factorizable graviton multiplet : HN+M ≡ VN ⊗ V ′
M, (3.66a)

gravity matter : XN+M ≡ ΦN ⊗ Φ
′

M, (3.66b)

gravity antimatter : XN+M ≡ ΦN ⊗ Φ′
M. (3.66c)

where we take 0 ≤ N ≤ 2 and 0 ≤ M ≤ 2, so that XN+M is either a vector multiplet
VN+M, or a lower-spin matter multiplet ΦN+M. These are the states that naturally
appear in the double copies of amplitudes that obey the color-kinematics duality for
adjoint and fundamental particles.

The factorizable graviton multiplet (3.66a), naturally obtained in the adjoint double
copy (3.4), is characteristic of some supergravity theory, but it is not the spectrum of
a pure supergravity theory. Indeed, H is reducible into the (non-chiral) pure graviton
multiplet H and a (chiral) complex matter multiplet X:

HN+M ≡ VN ⊗ V ′
M = HN+M ⊕XN+M ⊕XN+M. (3.67)

For example, in the bosonic case the double copy reduces to the graviton, dilaton and
axion: Aµ ⊗Aν = hµν ⊕ ϕ+− ⊕ ϕ−+ with ϕ ∼ φ+ ia. This and other cases are explicitly
listed in Table 3.2. While this reduction is easy to carry out for the on-shell asymptotic
states, the same is not true for the off-shell internal states that are obtained from the
double copy construction (3.4). The reason is that the double copies of gluons Aµ ⊗ Aν

are difficult to decompose since amplitudes have no free Lorentz indices, or, alternatively,
reducing the product using little-group indices would break Lorentz invariance of the
off-shell states.
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In this thesis, we propose to use the fact that multiplets X and X appear not only in
the product (3.67) of the adjoint vectors but also as the fundamental matter double copy
in Eqs. (3.66b) and (3.66c). This will let us take the factorizable graviton multiplet H
and mod out by X and X. To do that, we will promote the matter double copies X and
X to be ghosts8.

First of all, let us do some simple counting of the on-shell degrees of freedoms to
show that it is indeed the same X, X that appear in Eqs. (3.66) and (3.67). For this,
we add the bosonic and fermonic counts of states in the multiplets. To start with, note
that all minimal (chiral) supermultiplets with N -fold supersymmetry have exactly 2N

states (e.g. see Eqs. (3.58) and (3.63)). Therefore, non-chiral pure vector and graviton
multiplets have twice as many states, 2N+1, except for the maximally-supersymmetric
multiplets that we do not consider here. For example, pure YM theory and Einstein
gravity both have N = 0, so they both contain 20+1 = 2 physical states: the two on-shell
gluons or gravitons. For this bosonic case, Eq. (3.67) becomes

4 = 2⊗ 2 = 2⊕ 1⊕ 1, (3.68)

where the right-hand side represents the two gravitons, dilaton and axion, or rather the
mixed dilaton-axion states ϕ+− and ϕ−+ introduced in Section 3.3.1. In that picture,
X can be thought of as ϕ+− = A+ ⊗ A−. For a general 0 ≤ N ,M ≤ 2 supersymmetic
theory, Eq. (3.67) becomes

2N+M+2 = 2N+1 ⊗ 2M+1 = 2N+M+1 ⊕ 2N+M ⊕ 2N+M. (3.69)

Indeed, the right-hand side represents the pure graviton multiplet in N +M supergravity
plus two minimal (chiral) matter multiplets in the same theory. Clearly, the matter
multiplet X defined in Eq. (3.66b) has the same state counting,

2N+M = 2N ⊗ 2M, (3.70)

and similarly for X. In the bosonic case, we have 1 = 1 ⊗ 1, which now implies that
X = ϕ+− = ψ+ ⊗ ψ−, where ψ+, ψ− are on-shell Weyl fermions.

In this way, we have shown that simple counting is consistent with our recipe for
obtaining the pure graviton multiplet H from V ⊗ V ′ by modding out by Φ ⊗ Φ

′
and

Φ⊗ Φ′.

3.5.2 Numerator double copies

In Section 3.2, we considered (super-)Yang-Mills theories where adjoint and fundamental
color representations are dual to vector and matter multiplets, respectively, in the sense
that the kinematic structure of the amplitudes is governed by the adjoint and funda-
mental color-kinematics duality. In Section 3.5.1, we explained how the on-shell SYM
states can be tensored to obtain the on-shell spectrum of pure supergravities, including
Einstein gravity. To obtain gravity amplitudes, we now have to do the same double-copy
construction for the interacting theories with internal off-shell states.

8This is superficially similar to the Faddeev-Popov method [183] that removes the unphysical YM
states from propagating in loops, although the details are quite different.
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Pure (super-)gravity amplitudes are obtained by recycling the cubic diagrams (3.5)
of the Yang-Mills theory and constructing the proper double copies of the kinematic
numerators, similarly to Eq. (3.4). The numerator double copies should be constructed
so that internal adjoint lines in gauge theory become an off-shell equivalent of V⊗V ′ lines
in gravity. And similarly, fundamental and antifundamental gauge-theory lines become
gravitational lines that are off-shell continuations of Φ⊗Φ

′
and Φ⊗Φ′, respectively. That

is, the numerator copies should not be taken between diagrams that produce cross terms
between the vector and matter internal lines. Such double copies would in general not
be consistent since the kinematic algebra is different for the two types of states.

In fact, the above double-copy structure is already present in Yang-Mills theory. By
definition, since Eq. (3.5) describes gauge theory amplitudes, there are no products of
numerators and color factors, nici, that involve cross-terms between internal vector lines
and fundamental color lines. Thus the transition from Yang-Mills to gravity amplitudes
should be as straightforward as replacing the color factors with kinematic numerators.
For example, replacing ci → n′

i in Eq. (3.5) would give valid gravity amplitudes, albeit

with undesired matter content given by Φ⊗Φ′ and Φ⊗Φ
′
. To get matter states such as

Φ⊗Φ
′
, we can instead let ci → n′

i, where the bar operation swaps matter and antimatter.
However, that would give gravity amplitudes with extra physical matter. Since we are
trying to remove the matter already present in the decomposition of V ⊗ V ′, what we
want is matter that behaves as ghosts. This means that we should insert a minus sign for
each closed loop of matter particles. Hence we do the following replacement in Eq. (3.5),

ci → (−1)|i|n̄′
i (3.71)

where |i| counts the number of closed matter loops in the i’th trivalent graph. More
generally, we can do the replacement ci → (NX)

|i|n̄′
i, where NX + 1 is the number of

complex matter multiplets in the desired gravity theory.

Thus we propose the following formula for amplitudes in pure (super-)gravity:

ML-loop
n = iL−1

(κ
2

)n+2L−2∑

i

∫
dLdℓ

(2π)Ld
(−1)|i|
Si

nin
′
i

Di

, (3.72)

where the sum runs over all m-point L-loop graphs with trivalent vertices of two kinds:
(fact. grav., fact. grav., fact. grav.) and (fact. grav., matter, antimatter), correspond-
ing to particle lines of two types: factorizable graviton multiplets and matter ghosts.
The graphs are in one-to-one correspondence with the ones in the gauge theory ampli-
tude (3.5), and the denominators Di and the symmetry factors Si are same. The objects
ni and n

′
i are the numerators of two gauge theory amplitudes where at least one of the

two copies obeys the color-kinematics duality. The bar on top of one of the numerators
denotes the operation of conjugating the matter particles and reversing the fundamental-
representation flows. Finally, the contribution of each graph enters the sum with a sign
determined by the number of closed matter-ghost loops |i|.

When there are no fundamental lines in the diagram, both the matter conjugation the
sign modifier acts trivially, so eliminating all graphs with matter ghosts reduces Eq. (3.72)
to the adjoint double copy (3.4).
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3.5.3 Gauge invariance of the gravity construction

Now let us show that the double-copy construction (3.72) for pure gravity amplitudes
obeys generalized gauge invariance. This means that the freedom to shift numerators in
gauge theory should correspond to a similar freedom in shifting one copy of the gravity
numerators. If this was not true, the result of the double copy would depend on the
gauge chosen for the Yang-Mills amplitude computation, and thus be necessarily wrong.
Moreover, while it is not obvious, experience tells us that the notion of generalized gauge
invariance is perhaps as useful and constraining for amplitudes as the more familiar notion
of gauge invariance is for Lagrangians. Therefore, showing that the gravity construction
is generalized-gauge-invariant is a strong check of consistency.

Recall that the generalized gauge invariance in Yang-Mills theory allows us to freely
shift ni → ni +∆i provided that ∆i satisfy

∑

i

∫
dLdℓ

(2π)Ld
1

Si

∆ici
Di

= 0. (3.73)

The origin of this freedom comes from the overcompleteness of the color factor basis.
Indeed, the Jacobi identities and commutation relations satisfied by the color factors can
indirectly enter the amplitude multiplied by arbitrary kinematic functions, which we may
refer to as pure gauge garbage. For example, consider a shift of the numerators ni, nj

and nk of to some three diagrams with identical graph structure except for a single edge:

AL-loop
n → AL-loop

n +

∫
Kpure gauge

(
f̃dacf̃ cbe − f̃dbcf̃ cae − f̃abcf̃dce

)
cabderest , (3.74a)

AL-loop
n → AL-loop

n +

∫
Kpure gauge

(
T a
ī T

b
jk̄ − T b

ī T
a
jk̄ − f̃abc T c

ik̄

)
cabkı̄,rest, (3.74b)

where the standard loop integration measure is suppressed for brevity. Taking into ac-
count that the denominators and symmetry factors are included into Kpure gauge, the three
numerators will be shifted by

∆i = SiDiKpure gauge, ∆j = SjDjKpure gauge, ∆k = SkDkKpure gauge. (3.75)

Of course, Kpure gauge is multiplied here by something that vanishes (3.7), so the amplitude
cannot depend on it.

Translating this example to gravity through the replacement ci → (−1)|i|n̄′
i, we obtain

9

ML-loop
n →ML-loop

n + (−1)|i|
∫
Kpure gauge

(
n̄′
i − n̄′

j − n̄′
k

)
. (3.76)

The crucial point here is that the commutation and Jacobi relations in Fig. 3.3 leave
the number of closed fundamental matter loops invariant, so in Eq. (3.76) we safely set
|i| = |j| = |k|. For the gravitational amplitude (3.76) to be free of the pure-gauge garbage,
the numerators n̄′

i must satisfy the color-dual algebra: n̄′
i − n̄′

j = n̄′
k.

In summary, shifting the gauge-theory numerators ni → ni + ∆i gives new gravity
numerators nin̄

′
i → (ni + ∆i)n̄

′
i. If n̄i satisfy the same algebraic relations as the color

9 This argument trivially extends to the more general replacement prescription ci → (NX)|i|n̄′
i.
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Figure 3.8: Two-loop cuts of the four-graviton amplitude that can have ghost matter ciculating
in only a single loop at the time.

factors ci, then we are guaranteed to leave the gravity amplitude invariant, since the
following identity is inherited from the Yang-Mills case:

∑

i

∫
dLdℓ

(2π)Ld
1

Si

∆in̄
′
i

Di

= 0. (3.77)

As in the purely-adjoint case [150], this argument can be easily extended to show that,
to obtain a consistent double-copy amplitude, it is sufficient for only one of the two
numerator sets (ni or n̄

′
i) to satisfy the color-kinematics duality,

From this line of arguments, one can also see that the additional two-term alge-
braic identity (3.18), depicted in Fig. 3.5, is optional. It is not needed for obtaining
generalized-gauge-invariant amplitudes since the corresponding color identity is not gener-
ically present for fundamental representations of classical groups, such as SU(N). In fact,
in those spacetime dimensions where the two-term identity (3.18) can be imposed, the
double-copy gravity amplitudes stay the same with or without imposing it. Indeed, one
can think of the identity (3.18) as a special gauge choice in Yang-Mills theory, hence the
gravity amplitudes cannot depend on this choice. We have also confirmed this property
by constructing explicit tree-level amplitudes through seven points.

3.5.4 Checks of two-loop cuts

In this section, we consider an explicit multiloop example that provides a nontrivial check
that the double-copy prescription correctly eliminates the dilaton and axion contributions
from the unitarity cuts in Einstein gravity. We concentrate on two-loop cuts in four
dimensions; the one loop case will be treated in full rigor in subsequent sections with
complete four-point calculations in d = 4 − 2ǫ dimensions. For the construction of the
two-loop four-point amplitude it is sufficient to consider three types of unitarity cuts:
the two shown in Fig. 3.8 and the first diagram shown in Fig. 3.9. For the purpose of
checking the cancellation of dilaton and axion contributions the latter cut is the most
nontrivial. The two cuts in Fig. 3.8 can only have matter circulating in a single sub-loop
at the time, so they can at most teach us about the dilaton-axion cancellations that take
place in one-loop amplitudes, the topic of the following sections.

Now, consider the double s-channel cut of the four-graviton two-loop amplitude. To
be explicit, consider the external configuration M(1−−

h , 2++
h , 3−−

h , 4++
h ), and focus on only

the internal matter contributions as shown in Fig. 3.9. If the theory is pure, these matter
contributions should add up to zero. As shown, the cut has an expansion in terms of
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Figure 3.9: A two-loop cut of the four-graviton amplitude. A particular internal helicity
configuration is expanded using the diagrammatic rules given in Fig. 3.10. In the text, we
explain that these dilaton-axion contributions cancel among themselves, leaving the pure gravity
cut.

different particle and diagram contributions coming from our prescription. In order to not
clutter the diagrams with explicit double-line notation that reflect the tensor structure
of the gravity states, we translate to the particle-line notation given in Fig. 3.10. As
explained in Section 3.3.1, the complexified dilaton-axion contributions arise as double
copies of gluons with anticorrelated helicities, gravitons from double copies of correlated
gluons, and matter ghosts from anticorrelated fermions (quarks).

The diagrammatic expansion in Fig. 3.9 is straightforward, except for the special
treatment of the opposite-statistics nature of the ghosts. In particular, in last two di-
agrams the intermediate graviton channel needs to be resolved before the sign of the
diagram can be determined due to the different number of ghost loops.

To calculate the result of the cut we can take advantage of a convenient simplification.
If we focus for a moment on the left- and the right-most four-point tree amplitudes (or
blobs) appearing in the factorization of the cut, we see that they are in fact identical for
all the five contributions in Fig. 3.9. They are explicitly

M tree
4 (1−−

h , 2++
h , (−ℓ2)−+

ϕ , (−ℓ1)+−
ϕ ) =M tree

4 (1−−
h , 2++

h , (−ℓ2)−+
ϕ′ , (−ℓ1)+−

ϕ′ )

=
i〈1|ℓ1|2]4

s(p1−ℓ1)2(p1−ℓ2)2
,

(3.78a)

M tree
4 (3−−

h , 4++
h , (−ℓ4)+−

ϕ , (−ℓ3)−+
ϕ ) =M tree

4 (3−−
h , 4++

h , (−ℓ4)+−
ϕ′ , (−ℓ3)−+

ϕ′ )

=
i〈3|ℓ3|4]4

s(p3−ℓ3)2(p3−ℓ4)2
,

(3.78b)

where ϕ denote the complexified dilaton-axion states arising from gluon double copies,
and ϕ′ are the fundamental fermion double copies.

The amplitudes in Eq. (3.78) only contribute to the cut as overall factors corresponding
to the outer blobs in Fig. 3.9, and thus we may ignore them for now and only check the
possible cancelation among the five terms associated with the middle blob gravity tree
amplitudes. Conveniently, we already have all the ingredients at hand, from the results of
Section 3.3.1. The first term is M tree

4 (ℓ−+
1ϕ, ℓ

+−
2ϕ, ℓ

−+
3ϕ, ℓ

+−
4ϕ ), and second and the third terms

give identical contributions

−M tree
4 (ℓ−+

1ϕ′ , ℓ
+−
2ϕ′ , ℓ

−+
3ϕ, ℓ

+−
4ϕ ) = −M tree

4 (ℓ−+
1ϕ, ℓ

+−
2ϕ, ℓ

−+
3ϕ′ , ℓ

+−
4ϕ′). (3.79)
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Figure 3.10: Diagrammatic rules for the gravity cut lines in Fig. 3.9: graviton lines correspond
to double copies of gluon lines, whereas mixed dilaton-axion lines can be realized either in the
same way or as fundamental double copies of fermions.

For the fourth and fifth terms we recycle the numerators ns and nt from Eq. (3.22), with
pi → li. Finally, we get the following sum for the cut

M tree
4 (ℓ−+

1ϕ, ℓ
+−
2ϕ, ℓ

−+
3ϕ, ℓ

+−
4ϕ )− 2M tree

4 (ℓ−+
1ϕ, ℓ

+−
2ϕ, ℓ

−+
3ϕ′ , ℓ

+−
4ϕ′)− i nsns

(ℓ1+ℓ2)2
+ i

ntnt

(ℓ2+ℓ3)2

= −i nsns

(ℓ1+ℓ2)2
− i ntnt

(ℓ2+ℓ3)2
+ 2i

nsns

(ℓ1+ℓ2)2
− i nsns

(ℓ1+ℓ2)2
+ i

ntnt

(ℓ2+ℓ3)2
= 0.

(3.80)
which is identically zero using Eqs. (3.26) and (3.28).

Cancellations also happen among cuts where some of internal states are gravitons and
some are matter states, that is, configurations such as M tree

4 (l++
1h , l

−−
2h , ℓ

−+
3ϕ, ℓ

+−
4ϕ ) for the

middle blob. These are again effectively the same type of cancelation that has to happen
for one-loop amplitudes. In summary, these cancelations leaves the full four-dimensional
cut corresponding to Fig. 3.9 completely free of dilaton and axion contributions. This
shows that our prescription (3.72) for calculating pure gravity amplitudes works correctly
for this two-loop four-point example. We have repeated the same calculation (3.80) in the
various supersymmetric settings listed in Table 3.2. In all cases, the unwanted matter,
corresponding to X and X multiplets, cancels out.

The four-point analysis can be repeated in exactly the same way for the two-loop
cut of the five-graviton amplitude M(1−−

h , 2++
h , 3−−

h , 4++
h , 5++

h ). Its most nontrivial cut is
shown in Fig. 3.11. To analyze it, we can use the tree-level input of Section 3.3.2. At five
points, the cancellation analogous to Eq. (3.80) takes the explicit form,

M tree
5 (ℓ−+

1ϕ, ℓ
+−
2ϕ, ℓ

−+
3ϕ, ℓ

+−
4ϕ, 5

++
h )− 2M tree

5 (ℓ−+
1ϕ, ℓ

+−
2ϕ, ℓ

−+
3ϕ′ , ℓ

+−
4ϕ′ , 5

++
h )− i

5∑

i=1

nini

Di
+ i

10∑

i=6

nini

Di
= 0,

(3.81)

where we used Eqs. (3.38) and (3.39) to obtain zero. We have also checked numerically
that a similar cancellation occurs for cuts of the same topology with up to three more
gravitons in the outer two blobs and up to two more gravitons in the middle blob of this
cut topology.

It is interesting to note that if we try to perform similar exercises and cut checks
for double copies of fundamental scalars, instead of fermions, we encounter trouble. The
resulting ghost contributions will cancel the dilaton and axion in one-loop amplitudes,
however, at two loops the construction fails to produce pure theories. This happens
already for the cut analogous to Fig. 3.9, with fermion double copies replaced by scalar
ones. In the next section, we give an indirect argument that confirms that scalars double
copies are unsuitable for canceling the dilaton and axion.
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Figure 3.11: A two-loop cut of the five-graviton amplitude

3.5.5 General multiloop argument

In this section, we argue that our prescription cancels the dilaton and axion from four-
dimensional unitarity cuts at any loop order. We expect the construction to also produce
correct (4 − 2ǫ)-dimensional unitarity cuts, but since such cuts can be very subtle and
regularization dependent, we give no explicit argument in that case.

For simplicity, we restrict the argument to Einstein gravity as the supersymmetric
cases should be straightforward generalizations thereof. We want to show that a generic
four-dimensional unitarity cut,

∑

S states

M tree
(1) M

tree
(2) . . .M

tree
(k) , (3.82)

constructed from double copies of YM diagrams according to our prescription, contains
only gravitons in the internal states.

In the bosonic case, our prescription involves the product of two copies of (YM + fund.
fermion) theories, where the states are tensored according to their gauge-group represen-
tation. Let us use the fact that at tree level the states and partial amplitudes in this YM
theory can be mapped to those of N = 1 SYM simply by replacing the fundamental-
representation color factors with those in the adjoint (cf. Eq. (3.11)). Indeed, from the
works of Refs. [62, 139, 184–186], we know that the color-stripped tree-level amplitudes
of N = 1 SYM (which are a subsector of N = 4 SYM) can be combined to construct
all the tree amplitudes in massless multiple-flavor QCD, and vice versa. Therefore, for
convenience, we map the states of (YM + fund. fermion)-theory to a subsector of N = 4
SYM, and thus we can label the fields by the familiar SU(4) R-charge indices.

Let us look at the on-shell gravitational states that the tensor product of two copies
of (YM + fund. fermion)-theory gives us according to our prescription. If we reserve the
R-charge indices 1, . . . , 4 for the left side of the double copy and 5, . . . , 8 for the right
side, then the we have the tensor products for the gluons (A+⊕A−

1234)⊗ (A+⊕A−
5678), as

well as the matter states ψ+
1 ⊗ ψ−

678 and ψ−
234 ⊗ ψ+

5 , where the latter should be promoted
to ghosts inside loop amplitudes. This results in the following spectrum:

S = {h+, ϕ1234, ϕ5678, ϕ̂1 678, ϕ̂234 5, h
−
1234 5678}, (3.83)

where the hat notation marks the states that are treated as ghosts in the loop amplitudes.
Now let us consider the simplest possible R-charge rotation, a permutation of the

indices R25 = {2↔ 5}, which gives the following set of states:

S ′ = {h+, ϕ134 5, ϕ2 678, ϕ̂1 678, ϕ̂234 5, h
−
1234 5678}. (3.84)
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Although we will not prove it, we claim that the gravitational tree amplitudes, and thus
the unitarity cut (3.82), following from a double-copy construction should be invariant
under this rotation. This can be argued because of the close relationship between the tree-
level kinematical numerators of (YM + fund. fermion)-theory and those of N = 1 SYM,
which in turn can be obtained from N = 4 SYM. If this claim is true, we can observe
that the rotated spectrum S ′ corresponds to double copies A+⊗A+, A−

1234⊗A−
5678, (ψ̂

+
1 ⊕

ψ+
2 )⊗ψ−

678 and (ψ̂−
234⊕ψ−

134)⊗ψ+
5 . This can be considered to belong to a color-kinematics

construction with adjoint and fundamental fields, where on one side we have (YM +
fund. fermion + fund. fermion ghost) and on the other side (YM + fund. fermion). If
the fundamental fields are restricted to live on internal lines of the loop amplitudes, as
they are in our construction, then the amplitudes in the (YM + fund. fermion + fund.
fermion ghost)-theory receives no contributions from the fermions, because they must
cancel each other entirely. Since the numerators corresponding to fundamental particles
vanish on one side of the double copy, the gravity amplitude receives no contributions
from fermion double copies. We can then remove the scalars produced by these double
copies, and the spectrum S ′ is secretly equivalent to the pure gravity spectrum

S ′′ = {h+, h−1234 5678}. (3.85)

In other words, in our prescription, the four-dimensional unitarity cuts should be
equivalent to those of the pure gravity theory

∑

S states

M tree
(1) M

tree
(2) . . .M

tree
(k) =

∑

S′ states

M tree
(1) M

tree
(2) . . .M

tree
(k)

=
∑

S′′ states

M tree
(1) M

tree
(2) . . .M

tree
(k) .

(3.86)

Indeed, this is consistent with the explicit calculations in Section 3.5.4.
Note that for the above argument to be valid something must fail if applied to scalar

double copies, since we observed that the calculations in Section 3.5.4 do not work for
them. To see this, consider the possible scalar prescription that relies on tensor products
(A+⊕A−

1234)⊗ (A+⊕A−
5678) and φ12⊗ φ78 and φ34⊗ φ56. This gives the following states:

Sφ = {h+, ϕ1234, ϕ5678, ϕ̂12 78, ϕ̂34 56, h
−
1234 5678}. (3.87)

Now perform, for example, the rotation R15;26 = {1↔ 7, 2↔ 8} of the R-charge indices:

S ′
φ = {h+, ϕ34 78, ϕ12 56, ϕ̂12 78, ϕ̂34 56, h

−
1234 5678}. (3.88)

Assuming that this is a valid double-copy spectrum the resulting matter can be thought of
either as φ12⊗(φ56⊕ φ̂78) and φ34⊗(φ̂56⊕φ78), or as (φ12⊕ φ̂34)⊗φ56 and (φ̂12⊕φ34)⊗φ78,
or even as (φ̂12⊕φ34)⊗(φ̂56⊕φ78). The first two cases look similar to the above fermionic
situation, so we can attempt to interpret either of them as coming from a color-kinematics
construction with a (YM + fund. scalar + fund. scalar ghost)-theory on one side of the
double copy. However, one can check that there will be an irregular four-scalar interaction
that couples the ghosts to the non-ghost scalars, preventing a complete cancellation of
the matter. Needless to say, this cannot happen to fermions. The third factorization
(φ̂12 ⊕ φ34) ⊗ (φ̂56 ⊕ φ78) is an even stranger case, since either side appears to contain a
theory with one complex scalar whose antiparticle is a ghost, which is clearly not sensible.
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Figure 3.12: The three graphs that contribute to one-loop four-point amplitudes. Curly lines
correspond to adjoint vector multiplets and solid lines represent fundamental matter (or, in
general, particles of any representation). Our convention is that the external momenta are
outgoing in all graphs.

Of course, one can consider doing other swaps of the R-symmetry indices, but all
possible permutations have similar problems. While this does not conclusively prove that
the scalar double-copy prescription fails for pure gravities, it does show that the argument
that worked for fermion double copies encounter obstructions when applied to scalars. In
any case, the explicit cut checks in the previous section show that starting at two loops
the scalar double copy fails to properly cancel the dilation and axion states.

3.6 One-loop four-point gauge-theory amplitudes with

internal matter

In this section, we work out the duality-satisfying numerators for massless one-loop four-
point amplitudes with four external vector-multiplet legs and internal fundamental matter
running in the loop.

3.6.1 Reducing numerators to a master

At four points, the master diagram that determines all other one-loop topologies is the
box in Fig. 3.12, whose numerator we denote as

nbox(1, 2, 3, 4, ℓ), (3.89)

where ℓ is the loop momentum and 1, . . . , 4 are collective labels for the momentum,
helicity and particle type of the external legs. Other numerators can be obtained from
the master using a set of kinematic identities that follow from the color-kinematics duality.
Thanks to our conventions for the color algebra, Eqs. (3.7a) and (3.7b), the dual kinematic
relations for both fundamental and adjoint loop states translate to antisymmetrization
of the external legs, which we denote by a commutator bracket. In this way, the triangle
and the bubble numerators, shown in Fig. 3.12, are obtained from the box as

ntri(1, 2, 3, 4, ℓ) ≡ nbox([1, 2], 3, 4, ℓ),

nbub(1, 2, 3, 4, ℓ) ≡ ntri(1, 2, [3, 4], ℓ) = nbox([1, 2], [3, 4], ℓ).
(3.90)
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Figure 3.13: Three graphs that do not contribute to the amplitudes in dimensional regulariza-
tion because they give scaleless integrals.

More explicitly, ntri(1, 2, 3, 4, ℓ) = nbox(1, 2, 3, 4, ℓ) − nbox(2, 1, 3, 4, ℓ), etc. Further anti-
symmetrization gives the numerators of snail- and tadpole-type graphs, shown in Fig. 3.13:

nsnail(1, 2, 3, 4, ℓ) ≡ nbox([[1, 2], 3], 4, ℓ),

ntadpole(1, 2, 3, 4, ℓ) ≡ nbox([[1, 2], [3, 4]], ℓ),

nxtadpole(1, 2, 3, 4, ℓ) ≡ nbox([[[1, 2], 3], 4], ℓ).

(3.91)

Here a “snail” is synonymous to a bubble on an external leg, whereas “tadpole” and
“xtadpole” stand for tadpoles on an internal leg and an external leg, respectively. These
three diagrams will integrate to zero in dimensional regularization, as they will be iden-
tified with scaleless integrals.

All graphs that we considered so far have the counterclockwise orientation of the fun-
damental color flow. At one loop, a symmetry trick can be used to obtain the numerators
with the internal-matter arrow reversed. The matter-conjugated box diagram is given
by mirroring the graph, so that it is equivalent to the master box with all arguments
reversed,

nbox(1, 2, 3, 4, ℓ) = nbox(4, 3, 2, 1,−ℓ), (3.92)

and the others are obtained by conjugating Eqs. (3.90) and (3.91). In Section 3.6.3, we
give an alternative definition of ni using the building blocks of the numerators.

In addition to the above relations, we need to constrain the numerators with the
theory-specific physical information. This is done using the unitarity method [2, 50].
Eqs. (3.90) and (3.91) together with the unitarity cuts are equivalent to imposing the
color-kinematics duality through functional equations. In the absence of a direct way to
obtain the duality-satisfying numerators, we will find a solution of these equations using
an ansatz for the master box numerator.

3.6.2 The ansatz construction

In this section, we explicitly construct a compact ansatz for the master numerator nbox,
suitable for a wide range of four-point amplitudes of various theories (see alternative
constructions in Refs. [69, 70, 187] and {3}).

To begin with, we list the elementary building blocks that are allowed to appear in
the numerators. These include the Mandelstam invariants s, t and u, of which only two
are independent, as well as the scalar products ℓ · pi of the loop and external momenta.
Here we introduce a shorthand notation for the three independent combinations of such
products that we use in the rest of this chapter:

ℓs = 2 ℓ ·(p1 + p2), ℓt = 2 ℓ ·(p2 + p3), ℓu = 2 ℓ ·(p1 + p3). (3.93)
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Another invariant is the Lorentz square of the loop momentum ℓ2. However, in di-
mensional regularization, we must distinguish between the four-dimensional square and
the d-dimensional one. We choose to work with the latter and the difference between the
two:

µ2 = ℓ2d=4 − ℓ2, (3.94)

which corresponds to the square of the loop-momentum component orthogonal to the
four-dimensional spacetime and is positive-valued in the metric signature (+− · · · −).

Finally, we introduce the parity-odd Levi-Civita invariant

ǫ(1, 2, 3, ℓ) = Det(p1, p2, p3, ℓd=4), (3.95)

which integrates to zero in gauge theory, but do contribute to gravity when squared in
the double-copy construction (3.72).

These building blocks already make it possible to write down an ansatz for each of
the distinct helicity configurations of the external states. For four external gluons, a
sufficient set of configurations consists of the split-helicity case (1−, 2−, 3+, 4+) and the
alternating-helicity case (1−, 2+, 3−, 4+). All other external-state configurations in SYM
are obtainable via supersymmetric Ward identities [39–41, 188] and permutations of la-
bels. However, instead of using such identities we choose to rely the extended on-shell
superspace formalism of Section 3.4 to take care of the bookkeeping of external states.
Namely, for the four-point MHV amplitude, we introduce variables

κij =
[12][34]

〈12〉〈34〉δ
(2N )(Q)〈ij〉4−N θiθj, (3.96)

where the auxiliary parameter θi mark that the external leg i belong to the anti-chiral vec-
tor multiplet, V N , also containing the negative-helicity gluon. Implicitly the unmarked
legs are of chiral type, VN , which contains the positive-helicity gluon. The super momen-
tum delta function δ(2N )(Q) ensures that the N -fold supersymmetry Ward identities are
respected among the components. The remaining kinematic factors guarantee that the
gluonic components take on a simple familiar form,

κij = istAtree
4 (. . . i−. . . j−. . . )(η1i η

2
i η

3
i η

4
i )(η

1
j η

2
j η

3
j η

4
j ) + . . . . (3.97)

For example, the pure-gluon component of κ12 is explicitly 〈12〉2[34]2 using the spinor-
helicity variables. Thus, for a given graph topology we can ignore the helicity labels and
instead work with a single generating function, spanned by the six independent κij that
encode all the component numerators.

Now we can write down an ansatz for the master numerator of a superamplitude with
external vector multiplets and any type of internal massless particles,

nbox(1, 2, 3, 4, ℓ) =
∑

1≤i<j≤4

κij
sNij

(∑

k

aij;kM
(N)
k + iǫ(1, 2, 3, ℓ)

∑

k

ãij;kM
(N−2)
k

)
, (3.98)

where aij;k and ãij;k are free parameters of the ansatz, sij ≡ (pi+pj)
2 are the Mandelstam

invariants, and M
(N)
k denotes a monomial of dimension 2N built out of N products of

quadratic Lorentz invariants. The monomials are drawn from the following set:

M (N) =
{ N∏

i=1

mi

∣∣∣ mi ∈ {s, t, ℓs, ℓt, ℓu, ℓ2, µ2}
}
, (3.99)
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ℓ

1−

2+ 3−

4+

=

ℓ−p1−p2

1−

2+3−

4+

Figure 3.14: The cyclic symmetry of the alternating-helicity box diagram that should be
imposed on the numerator ansatz

which contains C6
N+6 distinct elements, Ck

n being the binomial numbers. Hence the ansatz
have 6(C6

N+6 + C6
N+4) free coefficients in total. We vary the parameter N in Eq. (3.98)

depending on the effective number of supersymmetries Neff of the amplitude, such that

N = 4−Neff , (3.100)

which is in accord with the classic loop-momentum power-counting argument of Ref. [50]
and the ansatz rules for color-kinematics numerators of Ref. [64].

As a simple and illuminating example that the ansatz (3.98) is finely tuned to the
correct answer, we can consider the case of N = 3 SYM, which is equivalent to Neff = 4
SYM on shell. Thus, using N = 0, the ansatz becomes the six-fold parametrization

nN=3
box (1, 2, 3, 4, ℓ) =

∑

1≤i<j≤4

aij;0 κij, (3.101)

where in order to make κij well defined it is given by Eq. (3.96) using N = 3. As is
easily checked, for aij;0 = 1 the sum collapses to the known answer proportional to the
tree superamplitude:

nN=3
box = nN=4

box = istAtree
4 (pi, η

A
i ) =

[12][34]

〈12〉〈34〉δ
(8)(Q). (3.102)

Finally, note that the ansatz (3.98) was chosen so that the numerators with minus-
helicity legs i and j will only contain poles in the sij channel. This is a nontrivial highly-
constraining aesthetic condition. We found that such pole structure gives a necessary
and sufficient class of non-localities for the four-point one-loop numerators, if they are
built as rational functions of gauge-invariant building blocks. Certainly, numerator non-
localities can be completely avoided by using gauge-dependent building blocks, such as
formal polarization vectors [147, 187], but we choose to work with the former type of
ansatz.

3.6.3 Imposing symmetries and cuts

Before proceeding with the calculations of specific theories, we impose some extra uni-
versal constraints on the box numerator ansatz. They are not always necessary for the
color-kinematics duality to be satisfied, but they often simplify the construction of the
amplitudes both in gauge theory and in gravity.

We choose to impose the cyclic symmetry natural to the box topology:

nbox(1, 2, 3, 4, ℓ) = nbox(2, 3, 4, 1, ℓ− p1). (3.103)
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ℓ

1−

2− 3+

4+

=

p1+p2−ℓ

1−

2− 3+

4+

(a)

ℓ

1−

2+ 3−

4+

=

p1−ℓ
1− 2+

3−4+

(b)

Figure 3.15: The anti-fundamental boxes can be obtained as the flipped fundamental boxes.
Through the matter-conjugation operation, these relations impose constraints on the ansatz.

Without this constraint the relabeling symmetry of the box numerator, and the decen-
dant numerators (3.90) and (3.91), would cease to be manifest. In general, the constraint
(3.103) give identifications of various components in the supersymmetry expansion, and
in particular it implies a two-site permutation symmetry of the alternating-helicity com-
ponent nbox(1

−, 2+, 3−, 4+, ℓ).
Furthermore, we would like to extend the cyclic symmetry of the box numerator to

a dihedral symmetry. The diagram flip relation Eq. (3.92) should then be imposed as a
symmetry constraint on the ansatz. Recall that this equation reads

nbox(1, 2, 3, 4, ℓ) = nbox(4, 3, 2, 1,−ℓ). (3.104)

The graph-symmetry origin of this equation is illustrated in Fig. 3.15, where it is applied
to the two distinct helicity components of the box numerator. To use the above equation
as a constraint, we need to precisely define how reversing the internal matter arrow
operates on the ansatz (3.98). The matter conjugation should flip the chirality of the
internal-loop matter particles while keeping the external chiral vectors unaltered. By
using CPT invariance, we can alternatively regard this as a flip of the chirality of the
external vector particles while keeping the internal matter unaltered. For consistent
interactions, we also need to flip the sign of parity-odd momentum invariants. The
conjugated one-loop four-point MHV numerators are then

ni(1, 2, 3, 4, ℓ) = ni(1, 2, 3, 4, ℓ)
∣∣
κij→κ∁

ij , ǫ(1,2,3,ℓ)→−ǫ(1,2,3,ℓ)
, (3.105)

where κ∁ij = κkl marks the pair of legs {k, l} = {1, 2, 3, 4} \ {i, j} unmarked by κij.
Combining Eqs. (3.105) and (3.104) give the desired extra constraint.

The ansatz (3.98) is ultimately constrained by the unitarity cuts. We choose to work
with the non-planar single-line cuts shown in Fig. 3.16. These cuts can be constructed
by taking color-ordered six-point tree-level amplitudes and identifying a conjugate pair
of fundamental particles on opposite-site external legs. Because the tree amplitude is
color ordered, the identification of momenta on opposite ends of the amplitude does not
produce singularities corresponding to soft or collinear poles.

As the internal loop momenta are subject to only one constraint, ℓ2 = 0, the single-
line cuts are sensitive to most terms in the integrand of the amplitude. Undetected terms
correspond to tadpoles and snails (external bubbles), which invariably integrates to zero
in a massless theory. Indeed, the tadpole and snail graphs previously described do not
contribute to this cut, instead these will be indirectly constrained through the kinematic
relations of the numerators.
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Figure 3.16: Non-planar single-line cuts used to compute the numerators and amplitudes

Even after the symmetries and unitarity cuts are imposed on the numerators, there
remain free parameters in ansatz that can be interpreted as the residual generalized gauge
freedom of the current amplitude representation. For simplicity, we will fix this freedom
by suitable aesthetic means, as discussed in the next section.

3.6.4 The amplitude assembly

In this section, we provide the precise details on how to assemble the full one-loop gauge-
theory amplitude from the numerators and the color factors. This discussion will be valid
for all of the YM theories and amplitudes discussed in the subsequent sections.

The complete MHV (super-)amplitude can be written as

A1-loop
4 =

∑

S4

(1
8
Ibox +

1

4
Itri +

1

16
Ibub

)
, (3.106)

where the three non-scalar integrals correspond to the canonically labeled graphs in
Fig. 3.12, and the sum runs over the set S4 of 24 permutations of the four external
legs. The rational numbers correspond to the symmetry factors that remove overcount-
ing, both from the permutation sum and the internal phase-space integration. In the case
of fundamental matter multiplets in the loop, each integral is formed by combining two
diagrams with opposite orientations of the internal-matter arrow:

Ii =
∫

ddℓ

(2π)d
(cini + cini)

Di

, (3.107)

where d = 4 − 2ǫ is the spacetime dimension in dimensional regularization, and the
denominators Di are products of the squared momenta of the four internal lines in each
graph in Fig. 3.12, thus accounting for the four propagators. The color factors for the
canonically labeled box, triangle and bubble graphs are

cbox = Tr(T a1T a2T a3T a4),

ctri = Tr([T a1 , T a2 ]T a3T a4),

cbub = Tr([T a1 , T a2 ][T a3 , T a4 ]).

(3.108)

The antifundamental color factors ci are obtained from ci by replacing T a
ī → T a

ı̄j as
discussed in Section 3.2.

From Eq. (3.108), it is obvious that the fundamental matter amplitude can be rewrit-
ten in terms of only single traces, thus giving color-ordered partial amplitudes in its
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decomposition

A1-loop,fund
4 (1, 2, 3, 4) =

∑

{i1,i2,i3,i4}∈S4/Z4

Tr(T ai1T ai2T ai3T ai4)Afund
4 (i1, i2, i3, i4), (3.109)

where the sum runs over the cyclically inequivalent subset of S4.
As explained in Section 3.2, the fully adjoint amplitude can be obtained from the

amplitude in Eq. (3.106) after swapping the generators inside the color factors (3.11).
The integrals Ii then take the following form:

Ii =
∫

ddℓ

(2π)d
cadji nadj

i

Di

, (3.110)

where the adjoint color factors are given by

cadjbox = f̃ ba1cf̃ ca2df̃da3ef̃ ea4b,

cadjtri = f̃a1a2cf̃ bcdf̃da3ef̃ ea4b,

cadjbub = f̃a1a2cf̃ bcdf̃debf̃ ea3a4 .

(3.111)

In the color-ordering decomposition of the amplitude, the adjoint color factors (3.111)
produce double traces, which in SU(Nc) gives the following:

A1-loop,adj
4 (1, 2, 3, 4) = Nc

∑

{i1,i2,i3,i4}∈S4/Z4

Tr(T ai1T ai2T ai3T ai4)Aadj
4 (i1, i2, i3, i4)

+
∑

{i1,i2,i3,i4}∈S4/S4;2

Tr(T ai1T ai2) Tr(T ai3T ai4)Aadj
4;2(i1, i2, i3, i4),

(3.112)

where S4;2 is the subset of S4 that leaves the double trace structure invariant. The

partial amplitudes Aadj
4;2 in the subleading-color part are not independent but related to

the leading-color partial amplitudes Aadj
4 [2, 35].

A difference in the structure of the one-loop color-ordered partial amplitudes Afund
m

and Aadj
m is that the latter satisfy refection relations,

Aadj
m (1, 2, 3, . . . ,m) = (−1)mAadj

m (m, . . . , , 3, 2, 1), (3.113)

whereas the former generally do not. However, for the cases where the matter is effectively
non-chiral, and thus ni = n̄i, the reflection relation is restored for the fundamental partial
amplitudes. In this case, it is also true that the partial amplitudes Aadj

4 and Afund
4 in

Eqs. (3.109) and (3.112) are identical.

3.6.5 The amplitude with N = 2 fundamental or adjoint matter

Here we construct the four-point one-loop amplitude with a N = 2 fundamental mat-
ter multiplet ΦN=2 circulating in the loop and external adjoint vector multiplets VN=2.
Because ΦN=2 has maximal amount of supersymmetry for matter, it is effectively a non-
chiral multiplet. Only the color representation distinguish it from its conjugate multiplet.
Similarly, the color-stripped partial amplitudes are insensitive to the representation. To
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see this note that the particle content of the multiplets ΦN=2, ΦN=2 in Eq. (3.63) and
Φadj

N=2 in Eq. (3.65) coincide up to the gauge-group representation indices. Using this fact,
we can equate the one-loop kinematical numerators for different representations,

nN=2,fund
i = nN=2,fund

i = nN=2,adj
i , (3.114)

which reduces the fundamental matter computation to the one with the adjoint matter.
Color-kinematics dual numerators for the component amplitude with external gluons

and adjoint N = 2 internal matter have already been constructed in Refs. [69, 147, 187]
and {3}. The result presented here is a minor variation of these known forms. The
main novelties are that we use the compact ansatz Eq. (3.98), embed the external gluons
into their vector supermultiplets, generalize the internal color representation and give the
complete results for the integrand, including the µ-terms and the snail diagrams.

Using the ansatz in Eq. (3.98) for N = 4−Neff = 2, we have 174 free parameters to
solve for. By combining the equation

nbox = nbox, (3.115)

with the definition (3.105) of the antifundamental numerators, we can reduce the ansatz
by a half, leaving only 87 free parameters.

Imposing the dihedral symmetries from Section 3.6.3 gives further constraints: the
cyclic symmetry (3.103) fixes 58 parameters. A single further variable is fixed by the
flip relation (3.92), which becomes a symmetry after imposing Eq. (3.115). Enforcing the
d-dimensional unitarity cuts in Fig. 3.16 on the cut integrand fixes 24 out of 28 remaining
parameters. At this point, the cubic diagram representation satisfies all conditions to be
the correct amplitude, along with the built-in color-kinematics duality.

We choose to fix the remaining four free parameters by imposing aesthetic or practical
constraints to obtain compact and manageable numerator expressions. Requiring that
the snail numerator nsnail vanishes for any on-shell external momenta gives two additional
conditions. Finally, requiring that the parity-even part of the s-channel triangle defined
in Eq. (3.90) is proportional to s gives two more conditions. The latter implicitly enforces
no dependence on κ12 and κ34 in that triangle.10

Having thus solved for all free parameters, we obtain the following box numerator:

nN=2,fund
box =(κ12 + κ34)

(s− ℓs)2
2s2

+ (κ23 + κ14)
ℓ2t
2t2

+ (κ13 + κ24)
st+ (s+ ℓu)

2

2u2

− 2iǫ(1, 2, 3, ℓ)
κ13 − κ24

u2
+ µ2

(κ12 + κ34
s

+
κ23 + κ14

t
+
κ13 + κ24

u

)
,

(3.116)

where the short-hand notation (3.93) for loop-momentum invariants is used and the
parameters κij encoding the external multiplets are defined in Eq. (3.96).

The other numerators are given by the kinematic relations in Eqs. (3.90) and (3.91).
To be explicit, the triangle numerator is

nN=2,fund
tri =(κ23 + κ14)

s(t− 2ℓt)

2t2
− (κ13 + κ24)

s(u− 2ℓu)

2u2

+ 2iǫ(1, 2, 3, ℓ)
κ23 − κ14

t2
+ 2iǫ(1, 2, 3, ℓ)

κ13 − κ24
u2

,

(3.117)

10Alternatively, one can demand that the bubble numerator vanishes, as was done in Refs. [69,187] and
{3}. This also fixes the last two parameters, but gives a more complicated expression for the triangle.
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and the internal bubble numerator is

nN=2,fund
bub = s

(κ23 + κ14
t

− κ13 + κ24
u

)
. (3.118)

In principle, we could ignore any further contributions to the integrand of the am-
plitude, since snail (external bubble) and tadpole diagrams should integrate to zero in
dimensional regularization. However, for completeness, we give the result for the only
non-vanishing diagram of this type – the snail. Because of N = 2 supersymmetry power
counting, it must include an overall factor p24 (in analogy to a one-loop propagator cor-
rection), which vanishes on shell. This contribution is not visible in our ansatz, because
the external legs were placed on shell from the very start. Nevertheless, a careful analysis
of a singular two-particle unitarity cut reveals that the numerator of the snail diagram
shown in Fig. 3.13 is given by

nN=2,fund
snail = −p

2
4

2

(κ23 + κ14
t

− κ13 + κ24
u

)
. (3.119)

As the snail graph has a propagator 1/p24, the above numerator gives a finite contribution
to the integrand, after the 0/0 is properly canceled out. Once this is done the snail-
diagram contribution can be included into the amplitude (3.106) as

1

4

∑

S4

Isnail, (3.120)

where Isnail is defined by eqs. (3.107) or (3.110) with the respective color factors

csnail = Tr([[T a1 , T a2 ], T a3 ]T a4) or cadjsnail = f̃a1a2cf̃ ca3df̃ bdef̃ ea4b. (3.121)

Of course, the snail diagram (3.120) still integrates to zero, so it would be justified
to drop it. Nevertheless, we choose to explicitly display the snail graph because there
is some potential interest in the planar N = 2 integrand, in analogy with the recent
advances with the planar N = 4 integrand [8,189]. Lastly, the two remaining numerators
ntadpole and nxtadpole are manifestly zero, consistent with naive expectations in N = 2
supersymmetric theories.

If we now assemble the full amplitude (3.106) and recast it into the color-ordered
form (3.109), we obtain the two inequivalent partial amplitudes in D = 4− 2ǫ, which are
most easily expressed as

AN=2,fund
4 (1−, 2−, 3+, 4+) =

i〈12〉2[34]2
(4π)D/2

{
− 1

st
I2(t)

}
, (3.122a)

AN=2,fund
4 (1−, 2+, 3−, 4+) =

i〈13〉2[24]2
(4π)D/2

{
− rΓ
2u2

(
ln2

(−s
−t

)
+ π2

)
+

1

su
I2(s) +

1

tu
I2(t)

}
,

(3.122b)

where I2 is the standard scalar bubble integral

I2(t) =
rΓ

ǫ(1− 2ǫ)
(−t)−ǫ. (3.123)
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Here and below, the integrated expressions are shown up to O(ǫ), and the standard
prefactor of dimensional regularization is

rΓ =
Γ(1 + ǫ)Γ2(1− ǫ)

Γ(1− 2ǫ)
. (3.124)

Due to Eq. (3.114), the partial amplitudes (3.122) are the coefficients of both the
clockwise and counterclockwise fundamental color traces in the color-dressed amplitude.
Moreover, they coincide with the primitive amplitudes A1-loop,adj

4 with adjoint N = 1
matter in the loop (same as adjoint N = 2 in our convention, see Eq. (3.65)), which is
the version that is best known in the literature [50, 190].

3.6.6 The amplitude with N = 1 fundamental matter

In this section, we work out the numerators of the four-point one-loop amplitude with a
N = 1 fundamental matter multiplet ΦN=1 circulating in the loop and adjoint vectors
VN=1 on the external legs. The result is the first known color-kinematics representation
of this amplitude.

At one loop, the amplitude, along with its numerators, can be naturally decomposed
into two simpler components: the parity-even and parity-odd contributions:

nN=1,fund
i =

1

2
nN=1,even
i +

1

2
nN=1,odd
i , (3.125a)

nN=1,fund
i =

1

2
nN=1,even
i − 1

2
nN=1,odd
i , (3.125b)

where we define

nN=1,even
i ≡ nN=1,fund

i + nN=1,fund
i , (3.126a)

nN=1,odd
i ≡ nN=1,fund

i − nN=1,fund
i . (3.126b)

According to Eq. (3.16), summing over the fundamental and antifundamental one-loop
numerators effectively corresponds to promoting the N = 1 multiplet to the adjoint
representation, which by Eq. (3.65) is equivalent to a contribution of a N = 2 multiplet.
Thus we have the following equalities:

nN=1,even
i = nN=2,adj

i = nN=2,fund
i . (3.127)

Since we have already found compact expressions for the N = 2 numerators in Sec-
tion 3.6.5, we can now focus entirely on the parity-odd N = 1 numerators. Unlike the
parity-even ones, they have the expected amount of supersymmetry, hence Neff = 1. Us-
ing the ansatz (3.98) as before, except with N = 4−Neff = 3, gives us 546 free parameters
to solve for. Similarly to the procedure in the previous section, we can immediately elim-
inate half of the parameters by imposing the defining property that the box numerator
should be odd under matter conjugation:

nodd
box = −nodd

box , (3.128)

which reduces the problem to 273 undetermined parameters.
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Next comes the dihedral symmetry of Section 3.6.3: the cyclic symmetry (3.103)
fixes 208 parameters. An additional 20 are constrained by the flip relation (3.92), which
becomes a symmetry after imposing Eq. (3.128).

Out of the remaining 45 free parameters, 20 are fixed by the four-dimensional unitar-
ity cuts shown in Fig. 3.16. Requiring that the snail numerator vanishes on shell gives 17
additional constraints. Demanding that the power counting of the numerator is at worst
ℓm for one-loop m-gons gives 3 more conditions, leaving only five parameters to fix. One
can check that four of them correspond to the genuine freedom of the color-kinematics
representations, and one parameter is determined by d-dimensional unitarity cuts. How-
ever, since it is difficult to analytically continue four-dimensional chiral fermions to d > 4,
computing the correct unitarity cut is challenging. Instead, in our final representation, we
denote this unfixed parameter by a and manually choose the remaining four parameters
to the values that give more compact expressions.

The box numerator for the N = 1 odd contribution is then given by

nN=1,odd
box =(κ12 − κ34)

(ℓs − s)3
2s3

+ (κ23 − κ14)
ℓ3t
2t3

+ (κ13 − κ24)
1

2

( ℓ3u
u3

+
3sℓ2u
u3
− 3sℓu

u2
+
s

u

)

− 2iǫ(1, 2, 3, ℓ)(κ13 + κ24)
2ℓu − u
u3

− aµ2(κ13 − κ24)
s− t
u2

,

(3.129)
and the triangle and bubble numerators can be obtained using the definition (3.90), see
Ref. {4} for explicit expressions. As for the three remaining numerators nsnail, ntadpole

and nxtadpole, defined by Eq. (3.91), they are manifestly zero in this representation.
We note that the combinations of ni and ci that appear in Eq. (3.107) can be rewritten

as follows:

nN=1,fund
i ci + nN=1,fund

i ci =
1

2
nN=1,even
i (ci + ci) +

1

2
nN=1,odd
i (ci − ci). (3.130)

This implies that we can write the following relation for the color-dressed amplitudes:

AN=1,fund
4 =

1

2
AN=2,fund

4 +
1

2
AN=1,odd

4 , (3.131)

where the last “amplitude” is constructed from parity-odd numerators and color factors,

coddi = ci − ci. (3.132)

Although chiral gauge anomalies are not the topic of the current work, it is interesting
to note that this contribution contains all the anomalies of the N = 1 amplitude.

The two inequivalent color-ordered amplitudes for the odd part must coincide with
those for chiral fermions (see Section 3.6.8). These amplitudes were, for example, com-
puted from four-dimensional unitarity cuts and locality conditions in Ref. [191];

AN=1,odd
4 (1−, 2−, 3+, 4+) = 0, (3.133a)

AN=1,odd
4 (1−, 2+, 3−, 4+) =

irΓ〈13〉2[24]2
(4π)D/2

{
s−t
2u3

(
ln2

(−s
−t

)
+ π2

)
+

2

u2
ln

(−s
−t

)
− s−t

2stu

}
.

(3.133b)

After comparing to these results, the integration of the color-kinematics representa-
tion (3.129) fixes the last parameter to a = 3/2. Interestingly, the precise value of a
is irrelevant for the gravity amplitudes constructed in Section 3.7, as the parameter a
drops out after the double-copy amplitudes are integrated.
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3.6.7 The MHV amplitude with fundamental N = 0 scalar mat-

ter

In this section, we construct the MHV amplitude with the fundamental scalar Φscalar
N=0

circulating in the loop and external adjoint vectors VN=0, i.e. gluons. As in the N = 2
case, after ignoring the color representation the scalar matter is effectively CPT-invariant

and thus the color-stripped amplitudes for Φscalar
N=0 , Φ

scalar

N=0 and Φadj scalar
N=0 are the same.

Therefore, we can equate the numerators of the different multiplets:

nscalar
i = nscalar

i = nadj scalar
i . (3.134)

The color-kinematics representation of the amplitude with an adjoint scalar has been
previously constructed [147,187] in a fully-covariant form (using formal polarization vec-
tors). The result presented here will be a helicity-based computation of this amplitude.
The main novelties are that we use the compact ansatz Eq. (3.98) that relies on the four-
dimensional notation for the external legs, and that we trivially generalize the internal
color representation. Note that we only give the MHV amplitude, leaving out, for brevity,
the amplitudes exclusively present in non-supersymmetric theories: the all-plus-helicity
and one-minus-helicity amplitudes, and their parity conjugates (see Ref. [187] for these).

Using the ansatz (3.98) with Neff = 0 gives a parametrization with 1428 free variables.
Imposing that

nbox = nbox, (3.135)

immediately reduces the undetermined parameters by a factor of two. The cyclic sym-
metry (3.103) fixes 512 out of 714 remaining parameters, and the flip relation (3.92)
eliminates 29 more. The d-dimensional unitarity cuts in Fig. 3.16 fix 118 parameters,
leaving 55 free.

Next we impose practical constraints. Similarly to Refs. [147, 187], we demand that
the snail diagram in Fig. 3.13 gives a scaleless integral: otherwise it will not necessarily
integrate to zero.11 A scaleless snail integral is achieved if its numerator is allowed to be a
function of only one scalar product between the external and internal momenta, namely
p4 · ℓ, where p4 is the external momentum directly entering the bubble subgraph of the
snail. This means that the integral is a function of only p24 = 0, so it must vanish in
dimensional regularization. This constraint fixes 25 parameters.

Continuing with aesthetic conditions, we require that the triangle numerator has no
dependence on κ12 or κ34, which gives 20 more conditions. Demanding that the power
counting of each m-gon numerator is at most ℓm gives 5 more constraints. The remaining
5 parameters are fixed manually to obtain more compact expressions for the numerators.

As a result, we obtain the following box numerator for the one-loop four-gluon am-

11Imposing that the snail numerator vanish would be ideal, but this is not consistent with the
ansatz (3.98) and the cuts in the N = 0 case.
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plitude with a scalar in the loop:

nscalar
box =− (κ12 + κ34)

( ℓ4s
4s4
− ℓ2s(2ℓ

2 + 3ℓs)

4s3
+

2ℓ2ℓs + ℓ2s − 2µ4

2s2
− 2ℓ2 − ℓs + s

4s

)

− (κ23 + κ14)
( ℓ4t
4t4
− ℓ2t (2ℓ

2 − ℓs − ℓu + t)

4t3
− µ4

t2

)

− (κ13 + κ24)
(ℓ3u(ℓu + 3s)

4u4
− ℓu(ℓu(2ℓ

2 − ℓs)− ℓ2s + ℓ2t + 4s(ℓ2 + ℓu + 2µ2))

4u3

− ℓ2s − ℓ2t + 3ℓ2u + 4ℓ2t+ 8µ2(ℓu − s+ µ2)

8u2
− ℓs − s

4u

)

+ 2iǫ(1, 2, 3, ℓ)(κ13 − κ24)
ℓ2u − uℓu − 2µ2u

u4
.

(3.136)
The other numerators are given by the kinematic relations (3.90) and (3.91) and can
be found in Ref. {4}. There are also numerators for external bubbles and external and
internal tadpoles that can be obtained from Eq. (3.91). They do not vanish but still
integrate to zero.

Assembling the pieces of the N = 0 amplitude for a fundamental or an adjoint scalar
is done along the lines of Section 3.6.4. In both cases, the primitive color-stripped ampli-
tudes are the same, only the color dressing will differ between the gauge-group represen-
tations. The primitive color-stripped amplitudes for a single scalar contribution in the
loop are known [190] to be:

AN=0,scalar
4 (1−, 2−, 3+, 4+) =

i〈12〉2[34]2
(4π)D/2

{
− 1

6st
I2(t)−

rΓ
9st

}
, (3.137a)

AN=0,scalar
4 (1−, 2+, 3−, 4+) =

i〈13〉2[24]2
(4π)D/2

{
− rΓst

2u4

(
ln2

(−s
−t

)
+ π2

)
(3.137b)

−
(
s−t
2u3
− 1

6su

)
I2(s)−

(
t−s
2u3
− 1

6tu

)
I2(t) +

rΓ
2u2
− rΓ

9st

}
,

and indeed our construction agrees with these.

3.6.8 The MHV amplitude with fundamental N = 0 fermion
matter

Here we present the MHV amplitude with a fundamental chiral fermion Φfermion
N=0 circulating

in the loop and external adjoint vectors VN=0, i.e. gluons. This amplitude is actually a
simple linear combination of the three amplitudes discussed above, so no extra work is
needed. Note that, as for the scalar case, we only give the MHV amplitude.

The basic identity that we use is that a chiral fermion is obtained after subtracting
the scalar Φscalar

N=0 from the ΦN=1 multiplet. For the one-loop amplitudes this implies that

Afermion
4 = AN=1,fund

4 −Ascalar
4 =

1

2
AN=2,fund

4 +
1

2
AN=1,odd

4 −Ascalar
4 , (3.138)

where we used Eq. (3.131). Hence we can define the fundamental fermion numerators as:
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nfermion
i ≡ 1

2
nN=2,fund
i +

1

2
nN=1,odd
i − nscalar

i , (3.139a)

nfermion
i ≡ 1

2
nN=2,fund
i − 1

2
nN=1,odd
i − nscalar

i . (3.139b)

Note that, just as in the N = 1 case, the parity-odd contributions to the chiral fermion
amplitude come entirely from the odd N = 1 sector. Thus, interestingly, the chiral-
anomalous part of the chiral fermion amplitude effectively has N = 1 supersymmetry.

3.7 One-loop four-point supergravity amplitudes

In this section, we assemble the duality-satisfying numerators into various one-loop four-
point supergravity amplitudes. Similar to Eq. (3.106), we write these amplitudes as

M1-loop
4 =

(κ
2

)4∑

S4

(1
8
Ibox +

1

4
Itri +

1

16
Ibub

)
, (3.140)

where the three integrals correspond to the canonically labeled graphs in Fig. 3.12, and the
rational prefactors compensate for overcount in the sum over the set S4 of 24 permutations
of the four external legs, as well as overcount in the phase space of the bubble graph.

3.7.1 Matter amplitudes

Here we check the double-copy construction for gravity amplitudes with external graviton
multiplets HN

12 and internal matter of the types shown in the right column of Table 3.2.
First of all, consider the following double copy of the N = 2 numerators of Sec-

tion 3.6.5:

IN=2+2,matter
i =

∫
ddℓ

(2π)d
nN=2,fund
i nN=2,fund

i + nN=2,fund
i nN=2,fund

i

Di

, (3.141)

which is a precise implementation of the last line and right column of Table 3.2. Due
to the effective CPT invariance of the N = 2 matter numerators, this fundamental-
representation double copy gives exactly twice the known [69,147,187],{3} adjoint double
copy,

IN=2+2,matter
i = 2 IN=4,matter

i = 2

∫
ddℓ

(2π)d
(nN=2,adj

i )2

Di

. (3.142)

The adjoint-representation double copy corresponds to a single VN=4 multiplet contribu-
tion in the loop. Up to this factor of two, we recover the N = 4 matter amplitude, first
computed by Dunbar and Norridge in Ref. [192]:

MN=4,matter
4 (1−−, 2−−, 3++, 4++) =

irΓ〈12〉4[34]4
(4π)D/2

1

2s4

{
− tu

(
ln2

(−t
−u

)
+ π2

)

+ s(t−u) ln
(−t
−u

)
+ s2

}
,

(3.143)

12More precisely, to get HN multiplets, the external dilaton-axion multiplets X, X should be projected
out, which is straightforward for external states.
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and the other component amplitudes are given by supersymmetry Ward identities.
Using the same relation for the N = 2 matter numerators, and additionally taking

into account that
nN=1,fund
i + nN=1,fund

i = nN=2,adj
i , (3.144)

the fundamental-representation double copy in the second-to-last line of Table 3.2 be-
comes

IN=2+1,matter
i =

∫
ddℓ

(2π)d
nN=2,fund
i nN=1,fund

i + nN=2,fund
i nN=1,fund

i

Di

= IN=4,matter
i . (3.145)

So these contributions also reduce to the adjoint-representation double copy (3.142) of
the amplitude (3.143), though this time without the factor of two.

The discussed two entries of Table 3.2 can be regarded merely as a new perspective
on the corresponding adjoint-representation double copies. However, the remaining part
of the right column of Table 3.2 is genuinely tied to the novel fundamental construction,
and not trivially related to adjoint double copies. For instance, the (N = 1)2 matter
double copy successfully exploits13 the chiral structure, giving

IN=1+1,matter
i =

∫
ddℓ

(2π)d
nN=1,fund
i nN=1,fund

i + nN=1,fund
i nN=1,fund

i

Di

= 2 IN=2,matter
i ,

(3.146)
where the last identity indicates that this construction corresponds to twice the con-
tribution of a single non-chiral N = 2 matter multiplet. The graviton component of
this matter amplitude was computed in Ref. [192] using non-chiral building blocks, its
integrated form is

MN=2,matter
4 (1−−, 2−−, 3++, 4++) =

irΓ〈12〉4[34]4
(4π)D/2

{
− t2u2

2s6

(
ln2

(−t
−u

)
+ π2

)

+
(t− u)(t2 + 8tu+ u2)

12s5
ln

(−t
−u

)
+
t2 + 14tu+ u2

24s4

}
.

(3.147)

The fact that this amplitude agrees with our chiral double copy, up to the factor of two,
is a highly nontrivial check of our construction.

The remaining three entries of Table 3.2 provide even more constraining checks of our
procedure, as they include the non-supersymmetric chiral-fermion numerators (3.139).
We verified that the double copy,

IN=0+0,matter
i =

∫
ddℓ

(2π)d
nfermion
i nfermion

i + nfermion
i nfermion

i

Di

= 2 IN=0,scalar
i , (3.148)

reproduces twice the scalar-matter amplitude [192]:

MN=0,scalar
4 (1−−, 2−−, 3++, 4++) =

irΓ〈12〉4[34]4
(4π)D/2

1

2

{
− t3u3

s8

(
ln2

(−t
−u

)
+ π2

)

+
(t−u)(t4+9t3u+46t2u2+9tu3+u4)

30s7
ln

(−t
−u

)
+

2t4+23t3u+222t2u2+23tu3+2u4

180s6

}
.

(3.149)

13Recall that N = 1 (chiral) adjoint matter works differently since it effectively has N = 2 supersym-
metry and thus produces (N =2)2 = (N =4) matter in the double copy.
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GR
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YM

− 2 ×

mattermatter

Figure 3.17: A pure gravity amplitude obtained by subtraction of dilaton and axion. At one
loop, the matter contribution can be from either a fermion or a scalar.

Replacing the left-copy fermion numerators by the chiral N = 1 numerators,

IN=1+0,matter
i =

∫
ddℓ

(2π)d
nN=1,fund
i nfermion

i + nN=1,fund
i nfermion

i

Di

= IN=2,matter
i , (3.150)

also reproduces the correct amplitude (3.147). Doing the same for N = 2 numerators,

IN=2+0,matter
i =

∫
ddℓ

(2π)d
nN=2,fund
i nfermion

i + nN=2,fund
i nfermion

i

Di

= IN=2,vector
i , (3.151)

results in the correct VN=2-matter amplitude, which can be otherwise calculated as

MN=2,vector
4 (1, 2, 3, 4) =MN=4,matter

4 (1, 2, 3, 4)− 2MN=2,matter
4 (1, 2, 3, 4). (3.152)

In addition, even if they are not included in Table 3.2, we note that the fundamental
scalar numerators of Section 3.6.7 also produce sensible double copies at one loop, such
as

IN=0′+0′, scalarmatter
i =

∫
ddℓ

(2π)d
nscalar
i nscalar

i + nscalar
i nscalar

i

Di

= 2 IN=0,scalar
i , (3.153)

which integrates to twice the scalar-matter amplitude (3.149). However, this is equivalent
to the adjoint construction of Refs. [147, 187]. Eq. (3.144) also implies that the double
copy

IN=1+0′,matter
i =

∫
ddℓ

(2π)d
nN=1,fund
i nscalar

i + nN=1,fund
i nscalar

i

Di

= IN=2,matter
i , (3.154)

trivially follows from the adjoint double copy (N =2, adj) × (N =0, scalar), which inte-
grates to the N = 2 matter amplitude (3.147).

While the double copies involving scalars work flawlessly for one-loop amplitudes with
external graviton multiplets, we expect similar constructions to be more problematic or
ambiguous at higher loops. In particular, as far as we know, the scalars cannot be used
to obtain pure gravity amplitudes at two loops and higher. Furthermore, in the absence
of supersymmetry, the scalar self-interactions are not fixed by universal considerations.

3.7.2 Pure gravity amplitudes

In the previous section, we checked that our fundamental numerators produce all the
matter-amplitude double copies from Table 3.2. Based on that and the conventional
adjoint-representation double copies, we can now formulate what the recipe in Section 3.5
gives for pure (super-)gravity four-point14 one-loop amplitudes. We will not write out the

14In principle, the formulas in this subsection are valid for any multiplicity at one loop, once the
corresponding numerators are known.
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explicitly integrated forms of the one-loop four-point amplitudes, as they can be found
in Ref. [192]. After integration, all our amplitudes agree with the results therein.

As in illustrated in Fig. 3.17, the integrals for pure Einstein gravity, or general rela-
tivity (GR), in our framework are given by

IGR
i =

∫
ddℓ

(2π)d
(nYM

i )2 − 2nfermion
i nfermion

i

Di

. (3.155)

The pure Yang-Mills numerators can be easily constructed from the numerators (3.102),
(3.116) and (3.136) through the well-known [133] one-loop supersymmetry decomposition.
This decomposition, for both numerators and amplitudes at one loop, is given by

nYM
i = nN=4

i − 4nN=2,adj
i + 2nadj scalar

i ,

AYM
m = AN=4

m − 4AN=2,adj
m + 2Aadj scalar

m .
(3.156)

The fermion ghosts in Eq. (3.155) subtract the dilaton and the axion contributions.
However, due to the fact that at one loop double copies of anti-aligned chiral fermions
are equal to scalar double copies, the same integrals can be reproduced simply as

IGR
i =

∫
ddℓ

(2π)d
(nYM

i )2 − 2(nadj scalar
i )2

Di

. (3.157)

Although the latter construction is nice, the higher-loop cut checks from Section 3.5.4
suggest that this equality is accidental. The fundamental-fermion framework resulting in
Eq. (3.155) is the one that should be generally valid at higher loops.

The pure N = 1 supergravity amplitude is generated by the following integrals:

IN=1SG
i =

∫
ddℓ

(2π)d
nN=1SYM
i nYM

i − nN=1,fund
i nfermion

i − nN=1,fund
i nfermion

i

Di

, (3.158)

and the integrals for pure N = 2 supergravity are given by

IN=2SG
i =

∫
ddℓ

(2π)d
(nN=1SYM

i )2 − 2nN=1,fund
i nN=1,fund

i

Di

. (3.159)

The numerators for N = 1 SYM can be constructed from the numerators (3.102) and
(3.116) through the following one-loop supersymmetry decomposition [133]:

nN=1SYM
i = nN=4

i − 3nN=2,adj
i . (3.160)

In Eqs. (3.158) and (3.159), the matter ghosts subtract the contributions from one and
two N = 2 matter multiplets, respectively.

Alternatively, we can write the pure N = 2 supergravity using the integrals

IN=2SG
i =

∫
ddℓ

(2π)d
nN=2SYM
i nYM

i − nN=2,fund
i nfermion

i − nN=2,fund
i nfermion

i

Di

, (3.161)

where the ghosts cancel a VN=2-matter multiplet, i.e. an abelian vector multiplet. The
numerators for N = 2 SYM can be constructed from the numerators (3.102) and (3.116)
through the following decomposition [133]:

nN=2SYM
i = nN=4

i − 2nN=2,adj
i . (3.162)
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The fact that the above two very different constructions of pure N = 2 supergravity
give the same amplitude is highly nontrivial. If our prescription does not encounter
unexpected obstructions at higher loops, this nontrivial equality should be true in all
generality.

The pure N = 3 supergravity amplitude is obtained through the integrals

IN=3SG
i =

∫
ddℓ

(2π)d
nN=2SYM
i nN=1SYM

i − nN=2,fund
i nN=1,fund

i − nN=2,fund
i nN=1,fund

i

Di

,

(3.163)
where the ghosts subtract out a VN=4-matter multiplet, equal to the combination of two
N = 3 chiral multiplets.

Although pure N = 4 supergravity is a factorizable theory, meaning that its ampli-
tudes and integrals can be written as an adjoint double copy of pure YM theories,

IN=4SG
i =

∫
ddℓ

(2π)d
nN=4SYM
i nYM

i

Di

, (3.164)

they can also be obtained through a fundamental-representation double copy

IN=4SG
i =

∫
ddℓ

(2π)d
nN=2SYM
i nN=2SYM

i − 2nN=2,fund
i nN=2,fund

i

Di

. (3.165)

Similarly to the N = 2 case, that these two very different constructions of pure N = 4
supergravity give the same amplitude is a nontrivial result [69, 193].

With that said, we have gone through all the cases listed in Table 3.2. Our double-
copy prescription produces the correct one-loop four-point amplitudes for N = 0, 1, 2, 3, 4
pure supergravities, as confirmed by comparing to the previously known results [192].

3.8 Discussion

In this chapter, we have extended the scope of color-kinematics duality to matter fields
in the fundamental representation. As we showed on various examples, this allows us to
construct gravity scattering amplitudes in a broad range of (super-)gravity theories using
the double-copy prescription. This includes Einstein gravity, pure N < 4 supergravity,
and supergravities with arbitrary non-self-interacting matter.

Our main focus is on the issue of unwanted matter degrees of freedom propagating in
the loops that occur when one attempts to construct pure N < 4 supergravities using the
color-kinematics duality. Such supersymmetric dilaton-axion matter is inherent to the
standard double copy of adjoint-representation gauge theories. Using the fundamental
representation for Yang-Mills matter gives us a means to differentiate these fields from the
adjoint ones, so that the double copies can be performed separately. If we promote the
matter double copies to be ghosts, they cancel the unwanted matter states in the double
copy of the vector fields. Moreover, the ghost double-copy prescription, ci → (−1)|i|n̄′

i,
can be easily replaced by a tunable-matter prescription, ci → (NX)

|i|n̄′
i, thus producing

theories with any number of matter multiplets coupled to gravity.
We have presented nontrivial evidence supporting our framework using examples both

for tree and loop-level amplitudes, as well as more general arguments. At tree level, we
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have checked the construction of gravitational amplitudes with non-self-interacting mat-
ter though seven points, with the most general external states. At one loop, we have
constructed the color-kinematics representation of four-gluon amplitudes with general
fundamental matter circulating in the loop. Using the double-copy prescription, we have
obtained the one-loop four-graviton amplitudes in Einstein gravity, pure N < 4 super-
gravity and supergravity with generic matter.

Our explicit calculations give novel and simple forms for Yang-Mills numerators con-
tainingN = 2, 1 supersymmetric fundamental matter, as well as non-supersymmetric fun-
damental scalars and fermions. Equivalent numerators that satisfy the color-kinematics
duality were known [69,147,187],{3} for all but the odd part ofN = 1 the matter contribu-
tion, which we give in Eq. (3.129). After integration, our new representations of one-loop
gravity amplitudes are in full accord with the results of Dunbar and Norridge [192]. More-
over, they provide a direct check of the nontrivial equality of the symmetric N = 1 + 1
and the asymmetric N = 2 + 0 supergravity construction.

At two loops, we have checked the consistency of the construction of Einstein gravity
and pure N < 4 supergravity. We considered four-dimensional unitarity cuts of two-loop
amplitudes, and applied the ghost prescription to the matter double copies. The cuts
show that, when using double copies of fundamental fermions, our construction correctly
eliminates the unwanted dilaton-axion degrees of freedom naturally present in the double
copy of pure Yang-Mills theory. We have checked that the same cancellation happens
in the supersymmetric generalizations. The two-loop checks also show that when using
double copies of fundamental scalars the cancellation with the dilaton-axion states is
incomplete. Table 3.2 summarizes the valid double copies for the matter ghosts.

While the double copy of fundamental scalars is unsuitable for the construction of
Einstein gravity, it is interesting to note that the fundamental-scalar amplitudes nontriv-
ially satisfy the color-kinematics duality. The resulting double-copy amplitude should
correspond to some gravitational amplitudes that are corrected by four-scalar terms and
possibly higher-order interactions. We leave the details of the non-supersymmetric double
copy of fundamental scalars for future work.

While our construction of pure supergravities passes many nontrivial checks, it is well
known that higher-loop calculations can be plagued by subtleties coming from dimen-
sional regularization. Thus it is important that our prescription is carefully scrutinized
by explicit L > 1 calculations in both pure and matter-coupled supergravities. Start-
ing at two loops, the scheme-dependence of different types of dimensional-regularization
prescriptions would be interesting to study. It would be also interesting to see how our
double-copy prescription for pure gravities can be extended beyond d = 4−2ǫ dimensions.

We hope that our results will open a new window into the study of pure N = 0, 1, 2, 3
supergravity multiloop amplitudes and their ultraviolet properties. Pure Einstein gravity
is known to have a divergence in the two-loop effective action, as was proven in Refs. [20–
22] using computerized symbolic manipulations. The N = 1, 2, 3 theories are known
to have no divergences at one and two loops due to supersymmetry [23, 24, 194, 195],
but the status of these theories at three loops and beyond is unknown. It would be
interesting to reinvestigate the N < 4 theories from the modern point of view using new
analytic methods and structures, including the current results, in hope of gaining better
understanding of the structure of quantum gravity.
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Conclusion

In this thesis, we have given an account of some exemplary topics in the field of scattering
amplitudes.

In Chapter 1, we reviewed the BCFW recursion [10, 11] — an on-shell method of
calculating tree-level amplitudes that had greatly boosted the understanding of the per-
turbation theory of gauge theories over the last decade. We have taken a significant step
away from their established zone of applicability by studying the on-shell recursion for
tree-level objects that are not entirely on-shell. Surprisingly, we discovered that the stan-
dard obstacle for securing the recursion poses no more problems than in the fully on-shell
case. Instead, we ran into a new issue — that of the unphysical poles. However, we found
ways to evade them and thus use the on-shell recursion method to find an infinite family
of off-shell fermion currents.

Interestingly, solutions to infinite families of problems exist beyond tree level. First
such achievements [2, 50] can be regarded as the turning point for establishing the am-
plitudes field as it is today. Since then, more impressive all-multiplicity results fol-
lowed [49, 51, 51–53, 55, 56, 196, 197]. However, most of them relied on the simplicity
of the n-point tree-level MHV amplitude [1], which served as the indispensable input for
analytic loop calculations.

In Chapter 2, we showed that the tree-level NMHV amplitudes [4,60] are also simple
enough to use them for analytic one-loop calculations. Remarkably, that simplicity can
be uncovered via the supersymmetric rendition of the BCFW recursion [61,62]. We took
these tree-level NMHV amplitudes as the input to compute all the one-loop NMHV am-
plitudes for gluon scattering in N = 1 super-Yang-Mills theory. For that, we employed
the powerful method of spinor integration [54, 59], for which we also provided a stream-
lined rederivation, motivated by a new version of the general formula for the coefficient
of the bubble master integral.

Recently, there have been impressive advances in applying the BCFW recursion
to the four-dimensional integrands of the maximally-supersymmetric Yang-Mills the-
ory [8, 189, 198–200] up to all loops. In contrast to this, the applicability of recursive
methods to integrated loop-level amplitudes is very limited [49]. Interestingly, our an-
alytic results for the NMHV amplitude seem to suggest the possibility of non-trivial
recursion relations among various loop-integral coefficients. Once this phenomenon is
understood systematically, it might extend the scope of the inductive approach beyond
the previously established cases.

Another big class of quantum field theories has seen rapid progress — the perturbation
theory of gravity. In principle, gravity can be considered as a gauge field theory, the
associated vector bundle of which was replaced by the cotangent bundle. This corresponds
to swapping the independent color vector space by the Minkowski space cotangent to the
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spacetime itself, this being done locally, at each spacetime point.
That intimate connection between Yang-Mills theories and gravities was converted

into a computation device by the discovery of the BCJ color-kinematics duality and
double copy [5,6], according to which gravity amplitude integrands are obtained from the
gauge theory ones by replacing color factors by kinematic factors. It is also seems natural
that this recipe requires the kinematic factors not to be arbitrary but rather respect the
gauge theory algebra. The corresponding kinematic algebra was even made manifest in
the self-dual sector of the gauge theories [148].

The BCJ duality was originally formulated for gauge theories in fields in the adjoint
representation. In the lower-supersymmetry cases, the double copy of such theories results
in gravities with some hardwired matter content. For example, the gravity that can
be obtained from the pure non-supersymmetric Yang-Mills theory is Einstein’s general
relativity theory coupled to an antisymmetric tensor and dilaton.

In Chapter 3, we transcended both these limitations by extending the scope of the
color-kinematics duality to include particles in the fundamental representation. Intu-
itively, this can be regarded as the “complexification” of the once “real” BCJ construc-
tion. The (super-)gravity theories given by such a double copy contain an arbitrary
number of matter supermultiplets which do not interact with each other. Remarkably,
this includes the pure gravity theories, that are obtained from the adjoint-representation
construction, after the unwanted degrees of freedom are canceled by the ghost-like double
copies, made possible by the novel fundamental-representation construction.

Even though the details of its d-dimensional realization are still to be clarified, we
expect that our generalization of the BCJ construction will open new venues for the study
of pure N = 0, 1, 2, 3 supergravity multiloop amplitudes and their ultraviolet properties.
For instance, pure Einstein gravity is known [20–22] to diverge at two loops, whereas the
UV behavior of the N = 1, 2, 3 theories is currently unclear beyond two loops [23,24,194,
195]. Hopefully, investigating the N < 4 theories using the modern approaches will shed
more light on the structure of quantum gravity.
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Appendix A

Spinor residues

Simple spinor residues are defined as

Res
λ=ζ

F (λ, λ̃)

〈ζ|λ〉 = F (ζ, ζ̃) = −Res
λ=ζ

F (λ, λ̃)

〈λ|ζ〉 . (A.1)

Multiple spinor poles can in principle be extracted using the following formula:

Res
λ=ζ

F (λ, λ̃)

〈ζ|λ〉k =
1

〈η|ζ〉k−1

{
1

(k − 1)!

d(k−1)

dt(k−1)
F (ζ − tη, ζ̃)

}∣∣∣∣
t=0

, (A.2)

where η is an arbitrary auxiliary spinor not equal to the pole spinor ζ. However, in N = 1
SYM there are no multiple poles.

Care must be taken when dealing with poles of the form 〈λ|K|q] because it is equiv-
alent to a pole 〈ζ|λ〉 with the following value of ζ:

〈ζ| = [q|K|, |ζ〉 = −|K|q],
[ζ̃| = −〈q|K|, |ζ̃] = |K|q〉.

(A.3)
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