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Introduction

Lagrangian singularities first appeared in the work of Arnold and his school
around 1980. Arnold recognized their importance in relation with problems
from mathematical physics, in particular, variational problems with con-
straints ([Arn82]). Most prominently, the so-called obstacle problem leads to
the open swallowtail, a singular subvariety in a certain space of polynomials
in one variable of fixed degree, which comes equipped with a natural sym-
plectic form. Some years later, Givental studied immersions of lagrangian
surfaces in four space ([Giv86]), also called isotropic mappings and discov-
ered a generic mapping the image of which is called open Whitney umbrella.
More recently, lagrangian subvarieties associated to any Frobenius manifold
have been studied extensively by Hertling [Her02]. Singular subspaces of
symplectic manifolds also arises in algebraic analysis, the characteristic vari-
ety of a holonomic D-module is a lagrangian subvariety. These few examples
show that Lagrangian singularities occur at rather different places in math-
ematics, as subspaces of holomorphic symplectic manifolds as well as in the
C∞-setting. There are also classes of lagrangian submanifolds involving real
and complex structures, namely the so-called special lagrangians are sub-
spaces of Calabi-Yau manifolds such that the Kähler form as well as the
imaginary part of the holomorphic form of maximal degree vanish on them.
Singularities of such special lagrangians play an important role in the (con-
jectural) version of mirror symmetry as developed by Strominger, Yau and
Zaslow (see, e.g., [Joy00]).

The central topic of this thesis is the problem how lagrangian singulari-
ties behave under deformations. Partial aspects of this question can already
be found in the work of Givental ([Giv88]). However, the deformations that
are considered in that paper are only perturbations of the symplectic struc-
ture which fixes the lagrangian subspace. In order to take into account
deformations of the space itself, we are led to use rather sophisticated tools
from abstract deformation theory, which have been developed since the six-
ties (quite independently from classical singularity theory) by Grothendieck,
Schlessinger, Illusie, Artin, Deligne and others. In this approach, the main
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idea is to associate to any object that one wants to deform a functor on a
certain category (which is the category of base spaces of the families un-
der consideration) and to study its representability, at least in a somewhat
weaker sense (existence of a so-called “hull”). The classical notion of semi-
universal deformations (e.g., for functions with isolated critical points) is a
special case of this more general principle.

To make this deformation theory program work, the first step is to define
the appropriate functor. Hence we need to know what exactly is meant by
a Lagrangian deformation. We will give in the sequel an informal definition,
postponing the exact formulation to the second chapter (definition 2.4 on
page 48). Given any germ (L, 0) ⊂ (M, 0) of a reduced (complex, say) ana-
lytic subspace L inside a (holomorphic) symplectic manifold M with defining
ideal I ⊂ OM,0, the question arises how to detect whether L is lagrangian
only in terms of the ideal I. It turns out that a necessary condition is that
I is stable under the Poisson bracket, i.e., {I, I} ⊂ I. Such ideals are called
involutive. In addition, the space L must have the right dimension, i.e., half
of the dimension of the manifold M . If we want to deform this situation,
the first thing to realize is that the ambient manifold should deform trivially
and that the deformed space LS will be embedded in M × S, where S is the
parameter space. The condition to impose is that for each s ∈ S, the fibre
Ls ⊂M × {s} is a lagrangian subvariety. In terms of the defining ideal, this
simply means that if IS ⊂ OM×S,0 is the deformed ideal (the ideal defining
LS in M × S), we require that {IS, IS} ⊂ IS. Here the bracket is a bracket
on the product M ×S, this is no longer a symplectic but a Poisson manifold
(i.e, the bracket is degenerate). Again, we need a condition on the dimension
of the fibres. This is automatic if we require the deformation to be flat as
usual for singularities. Then all fibres will have the same dimension, namely,
half of the dimension of M . Given a deformation of LS ⊂ M × S ։ S,
the natural question arises whether it can be trivialized. In the case of flat
deformation of (arbitrary) singularities, a trivialization is given by a vector
field of the ambient manifold. This is still true for a lagrangian deformation,
however, as we are working in the symplectic category, this vector field must
be hamiltonian. The description just given already suffices to define our la-
grangian deformation functor, namely, it is a functor from an appropriate
category of base spaces into the category of sets which associates to a space
S the set of isomorphism classes of lagrangian deformations over S modulo
isomorphisms coming from Hamiltonian vector fields.

Given a deformation functor, there are in general two things one is inter-
ested in. The first one is the existence of a hull (a formally semi-universal de-
formation). This is a deformation over a space Spec(R) where R is a quotient
of a formal power series ring. One of the fundamental results of Schlessinger
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is that such a hull exists if the space of deformations over Spec(k[ǫ]/ǫ2) (called
the tangent space of the functor) is a finite-dimensional vector space over k.
The second point is to study the structure of the hull R, in particular, to
know whether it is smooth or not. This is known as the problem of obstruc-
tions, namely, it consists in detecting whether for a deformation over an Artin
space Spec(A) and a surjection B ։ A there is a deformation over Spec(B)
inducing the given deformation over A. The most conceptual way to treat
these two problems together is to find what is called a “controlling differen-
tial graded Lie algebra” (L, d, [ , ]). This roughly means that the space of
deformations over a ring A is identified with the subset of L1⊗mA consisting
of solutions of the following equation, called Maurer-Cartan equation:

dη +
1

2
[η, η] = 0

In particular, this implies that the first cohomology H1(L) is the tangent
space of the functor and H2(L) contains in some sense “all” obstructions.

One case where this theory has been successfully applied is the problem of
flat deformations of a singularity (X, 0), that is, flat deformations of the ana-
lytic algebra OX,0 (there is of course a corresponding theory in the algebraic
category). Here a dg-Lie algebra, constructed from the so-called (analytic)
cotangent complex exists. It is a complex of OX,0-modules together with
a graded Lie bracket which makes it into a differential graded Lie algebra.
Very roughly, it is defined as the complex of graded derivations of a special
resolution of OX (called the resolvent) where the bracket is the commutator
of derivations and the differential is the bracket with the differential of the
resolvent (which is a derivation of degree one).

For lagrangian singularities, the situation is more difficult, as one has
to take into account both the flatness and the lagrangian condition. We
construct in this work for any lagrangian singularity (L, 0) ⊂ (M, 0) a com-
plex of OL-modules (denoted by C•L,0) together with a C-linear differential
whose first cohomology is identified with the tangent space of the lagrangian
deformation functor. The second cohomology contains information on the
obstruction theory of (L, 0). However, this complex does not control the
deformation problem in the above sense, the main reason is that it is not
equipped with a bracket making it into a differential graded Lie algebra. It
should be seen as an approximation of an object still to be found.

The complex C•L,0 turns out to be related to the theory of differential
modules. This somewhat surprising fact can be explained by the formalism
of Lie-algebroids. A Lie algebroid on a space X is a module over OX together
with a Lie algebra structure, such that elements act as derivations of OX . For
any lagrangian singularity, the conormal module I/I2 has a natural structure
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of a Lie algebroid, where the Lie bracket and the action on OL,0 is essentially
given by the Poisson bracket. There is a natural construction of a (non-
commutative) ring of differential operators from a given Lie algebroid. This
construction generalizes the usual ring of differential operators, which comes
in the same way from the tangent sheaf of a smooth variety X viewed as
a (rather trivial) Lie algebroid. The complex C•L,0 is the analog of the de
Rham complex in D-module theory (therefore we call it lagrangian de Rham
complex). The second main result of this work is a version of Kashiwara’s
constructibility theorem for the lagrangian de Rham complex. In ordinary
D-modules theory, this result states that for a holonomic DX -module M,
the cohomology of the de Rham complex DR•(M,OX) form constructible
sheaves of finite-dimensional vector spaces on X. We prove a similar result
for the complex C•L under a geometric condition on the lagrangian variety L.
This implies in particular by using Schlessinger’s theorem the existence of a
semi-universal deformation (in the formal sense) for lagrangian singularities
satisfying this condition. The relation to the de Rham complex of the space
L also yields a sort of µ = τ theorem for smoothable lagrangian singularities.

A major problem concerning the deformation spaces of lagrangian singu-
larities was to know how to calculate them effectively. In fact, the description
of the tangent space of the lagrangian deformation functor as the first co-
homology of C•L,0 is a priori not sufficient to compute this space. The main
difficulty lies in the non-linearity of the differential. Hopefully, a direct cal-
culation might be possible using the differential structure and the theory
of standard bases over general non-commutative algebras. This subject is
however still in its infancy. Meanwhile, we can offer an algorithm for re-
duced quasi-homogenous lagrangian surfaces. In that case the computation
simplifies to the calculation of the cohomology of a smaller complex, which
is supported on the singular locus of L. Then the differential structure is
much easier to understand, it reduces essentially to a vector bundle over
the complex line together with a meromorphic connection. Classical results
from the theory of ordinary differential equations allow us to calculate the
space of horizontal sections of this bundle, which gives the cohomology we
are interested in. As a byproduct, we obtain a set of rational numbers, the
so called spectral numbers which are invariants attached to the lagrangian
surface. They are in some sense an analogue to the spectrum of a hypersur-
face singularity with isolated critical points, which is an important ingredient
to define a mixed Hodge structure on the cohomology of the Milnor fibre of
the singularity. Quite surprisingly, our lagrangian spectral numbers share a
symmetry property with the classical spectrum, at least in all examples we
have calculated. For the spectrum of a function with isolated critical points,
the symmetry is a deep result using K. Saito’s higher residue pairings. For
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the lagrangian spectrum, the symmetry has not yet been shown. We explain
in the text some ideas and speculations which might lead to a rigorous proof.

There is another deformation problem related to lagrangian singularities,
namely, deformations of so-called isotropic mappings. Suppose that there is
a map from a smooth variety into a symplectic manifold such that the image
is a lagrangian subvariety. Then one might ask about the deformations of
this map requiring that the image stays lagrangian. This problem turns out
to be more difficult to attack than deformations of lagrangian subvarieties,
in fact, there is not yet a systematic way to compute these deformation
spaces. Nevertheless, we can calculate them for simple examples, like plane
curves and isotropic mappings from a plane into four space of rank one. In
general, isotropic mappings of corank one are of rather special type, e.g., their
deformation functor is smooth, which is not true in general. The calculation
of the infinitesimal deformation space of isotropic mappings from a plane into
four space shows an astonishing relation between the dimension of this space
and other (more classical) invariants attached to the map. We conjecture
that this relation holds true in general.

We will give in the following paragraphs a short overview on the content of
this thesis. The first chapter describes in some detail the geometry of different
classes of lagrangian singularities. Apart from the of examples mentioned
above we discuss generating families, integrable systems, the µ/2-stratum,
spectral covers of Frobenius manifolds and singularities of special lagrangian
varieties. We present for each of these classes one example as concrete as
possible (mainly the case of a surface in four-space) by calculating a set of
defining equations f1, . . . , fk, the commutator {fi, fj} of these equations, the
structure of the singular locus etc. Despite the fact that these examples are
well-known, this type of calculations (using computer algebra) is difficult to
find in the literature.

The second chapter introduces the problem of deformations in the la-
grangian context by first studying two very simple examples, which are in
some sense opposite to each other: smooth real lagrangian submanifolds of
C∞-manifolds and germs of plane curves. Here it is elementary to calcu-
late infinitesimal deformation spaces, these are classical results. Then we
introduce a quite general deformation functor, associated to any mapping
i : X → M from an analytic space to a symplectic manifold such that i∗ω
vanishes. For a lagrangian subvariety, one can take i to be the inclusion to
obtain the functor mentioned above. On the other hand, if X is smooth and
i arbitrary then we get the functor of deformations of an isotropic mapping.
These two cases are treated in detail in the following two chapters. The third
one starts by introducing Lie algebroids and modules over them. We define
the de Rham complex of module over a Lie algebroid. Then we prove that
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the conormal module of a lagrangian subvariety L ⊂ M has the structure
of a Lie algebroid. We study simple properties of the lagrangian de Rham
complex C•L, in particular, we compare it to several complexes of differential
forms on the variety L. We introduce the whole theory directly in a relative
setting, that is, we define Lie algebroids over morphisms of analytic spaces.
This situation arises naturally by considering a family L →֒ M × S ։ S of
lagrangian varieties over a base S. The next step is to prove that the first
cohomology of the lagrangian de Rham complex is isomorphic to the tangent
space of the lagrangian deformation functor (again, this is done in a relative
setting, considering infinitesimal deformations of the family). We state and
show a variant of a T 1-lifting theorem for lagrangian singularities which gives
the smoothness of the deformation functors in some cases. Finally, we dis-
cuss a slightly modified deformation problem concerning integrable systems.
Here we have a more complete result, we can construct from the lagrangian
de Rham complex a differential graded Lie algebra controlling deformations
of integrable systems.

The second part of the third chapter contains the proof of the con-
structibility theorem. It follows the proof of Kashiwara’s theorem for D-
modules, namely, we first show that the cohomology sheaves of the complex
C•L are locally constant on strata consisting of points of L with constant em-
bedding dimension. The second step is to show that at each point p ∈ L, the
stalk of a cohomology sheaf is a finite dimensional vector space. This part
uses an idea from functional analysis (the Kiehl-Verdier theorem) which was
already the key ingredient for similar finiteness results in different situations
(e.g., [BG80]). The main geometric argument for both parts of this proof
is the following: Let p ∈ L a point and consider the germ (L, p) of L at p,
which is of dimension n. Its embedding dimension might vary in between n
and 2n. If it is strictly smaller than 2n, then the variety is locally around p
a product L = L′ × C, where C is a smooth curve, and L′ is a lagrangian
subspace in a symplectic manifold of dimension 2n−2. This is already found
in [Giv88]. Now the main point is that such a lagrangian product is rather
rigid, it can only be deformed as a product by deforming the factor L′. We
call this principle propagation of deformations. Globally, it implies that if
the points of L of maximal embedding dimension are isolated (this is essen-
tially the assumption for our constructibility theorem), then the cohomology
of C•L over a small neighborhood of such a point will not change if we restrict
to a smaller neighborhood. By the theorem of Kiehl-Verdier its stalk at this
point must be finite-dimensional. Lagrangian singularities having isolated
points with maximal embedding dimension therefore have a (formally) semi-
universal deformation. Hence singularities satisfying this condition are the
lagrangian analogue to isolated singularities. We finish the second chapter
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by explaining our method of computing the cohomology of C•L for a quasi-
homogeneous surface. We introduce the spectral numbers and make some
conjectures concerning their symmetry.

The last chapter treats isotropic mappings. After introducing basic prop-
erties of their deformation spaces, we calculate the tangent space of its de-
formation functor for monomial curves and for maps having as its image a
lagrangian singularity which can be decomposed into a lagrangian singular-
ity of smaller dimension and a smooth space. Here there is no such rigidity
theorem as for deformations of subvarieties. Therefore in general versal de-
formations of isotropic maps will exist only if the critical values are isolated.
We discuss in detail one particular isotropic map, the normalization of the
open Whitney umbrella. It was already known that this map is rigid. More-
over, there is the following theorem, stated (and proved in particular cases)
by Givental ([Giv86]) and shown in general by Ishikawa ([Ish92]): Consider
the space of germs of isotropic maps form R

n into R
2n, equipped with the

Whitney C∞-topology. Then this space contains a dense open subset of
maps which are equivalent (modulo diffeomorphisms of Rn and symplecto-
morphisms of R2n) to a generalized open Whitney umbrella (which is the
usual one for n = 2). This result is briefly reviewed. We finish this chap-
ter by calculating the dimension of the infinitesimal lagrangian deformation
space as well as the δ-invariant, the usual infinitesimal deformation space
and the dimension of the module of relative differential forms for corank one
maps from R

2 into R
4. We conjecture a linear relation between some of these

numbers.
We have included two appendices in this thesis. The first (rather large)

one reviews the concepts of abstract deformation theory that are used in
the text. As there is not yet a standard reference for this theory, it seems
appropriate to collect the results we need. We discuss first deformation
functors and categories fibred in groupoids as well as differential graded Lie
algebras. We define the notion of a controlling dg-Lie algebra. Finally, the
so called T 1-lifting theorem is stated and proved. This is a tool to deduce
smoothness of a functor from a certain lifting property of its relative tangent
spaces.

In the second part of this appendix we describe basic examples of con-
trolling dg-Lie algebras. These include deformations of complex structures,
associative algebras and flat deformations of analytic algebras. The latter
involves the cotangent complex, which we review in some detail.

The second appendix is a very brief introduction to the theory of differ-
ential modules. The aim is to define notions and principles which are used
(mainly while developing the analogous versions for general Lie algebroids)
in the text. We define the ring DX , modules over it, good filtrations and
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coherent D-modules, the characteristic variety and holonomic D-modules.
We prove Kashiwara’s constructibility theorem in complete analogy with our
proof for the lagrangian de Rham complex.

Let us finish this introduction by listing some problems and questions
related to lagrangian singularities which are still open or only partially an-
swered. We already mentioned the problem of finding a controlling dg-Lie
algebra for the functor of deformations of a lagrangian subvariety. It should
incorporate the cotangent complex in some way because our lagrangian defor-
mations are flat by definition. On the other hand, even the question whether
for an ideal which is involutive up to order n there is a lift to an ideal in-
volutive up to order n + 1 can not answered directly from the complex C•L.
There should be a graded bracket on this complex derived from the Pois-
son bracket which gives the obstruction map. The difficulty comes from the
fact that the Poisson bracket (defined on OM) does not descend to OL. See
theorem 3.20 on page 66 for more details.

The symmetry of the spectrum for a lagrangian surface singularity is
probably related to the existence of a naturally given bilinear form on a
meromorphic bundle, which comes from the quotient of the lagrangian de
Rham complex by the de Rham complex of ordinary differential forms on the
variety. This quotient is supported on the singular locus, and we expect that
it can be identified with a bundle the fibre of which at a point is isomorphic
to the cohomology of the Milnor fibre of the transversal singularity at this
point. However, this bundle must be defined canonically, without choosing
local coordinates. This is still to be done.

Another open question concerns the structure of the category of modules
over the Lie algebroid I/I2 (the conormal module). At least in case when
this module is locally free (i.e., for complete intersections), things are easier
to handle and it is likely that the ring of generalized differential operators
constructed from I/I2 is of finite homological dimension in this case. In
principle, the corresponding proof for ordinary D-modules can be adapted to
this more general situation. However, the crucial ingredient is a dimension
estimate using the Bernstein inequality for the dimension of the character-
istic variety. The characteristic variety of a DX-module is a subspace of the
cotangent bundle T ∗X. In our case, there is an analogue of the cotangent
bundle, namely, a linear space S over the variety L and the algebra OS is
equipped with a Poisson bracket. But S is itself singular (because L is sin-
gular), so it is not a symplectic manifold and it might be difficult to estimate
the dimension of the characteristic variety.

Returning to deformation theory, it should be noticed that although we
define all objects globally, i.e., for a lagrangian subspace of a symplectic
manifold, our results are local in nature. We study essentially deformations
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of germs (or small representatives of them). The global deformation the-
ory is probably also controlled by the lagrangian de Rham complex, e.g.,
the infinitesimal deformations are given by the first hypercohomology of this
complex. This is however not so easy to see, much like in the case of flat de-
formations, where rather heavy machinery (simplicial resolutions of complex
spaces) is needed to study global deformations.

Let L → S be a lagrangian deformation over a base S where OS,0 is an
analytic algebra. Suppose that it is infinitesimal versal, i.e., the tangent space
of S at zero is isomorphic to the tangent space of the deformation functor. In
this situation one would like to know whether the family is versal in the strong
sense, i.e., whether every deformation is equivalent by an analytic change of
coordinate to a deformation induced from L → S. For flat deformations, a
semi-universal deformation in this sense exists if the singularities are isolated,
this is Grauert’s theorem. It uses approximation techniques in order to obtain
convergent solutions. For lagrangian singularities, there is not yet such a
complete picture. We can give a stability theorem for a family as above.
This result is due to M. Garay ([Gar02]) in the case of complete intersections.
We introduce a Kodaira-Spencer map to apply it in general. However, the
convergency of versal deformations in general is unknown. A simple use of
Grauert’s approximation theorem will not be sufficient, because we need that
the analytic coordinate changes stays symplectic.

A last remark concerning the comparison of the different categories we are
working in seems in order. In application (involving the classes of examples
that we treat in the first chapter), one encounters both symplectic manifolds
of class C∞ and holomorphic symplectic manifolds. In the real case one may
consider C∞- or analytic lagrangian submanifolds. In order to give a unified
treatment, we adopt the following terminology: Symplectic manifolds over K
which denotes either R or C are C∞- or holomorphic symplectic manifolds,
respectively. We work only with analytic lagrangian submanifolds in both
cases. For some of our results we need to restrict only the complex case,
in particular, for the constructibility theorem. One can always consider the
complexification of a real analytic lagrangian subspace. However, this may
introduce additional conditions of the complex part on the variety not visible
over R.
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Chapter 1

Examples of lagrangian

singularities

1.1 Involutive ideals and generating families

Throughout this thesis, we will consider symplectic manifolds over the real or
complex numbers (we denote by K either R or C). In the complex case, we
consider only holomorphic symplectic manifolds, i.e., complex manifolds M
with a non-degenerate closed two-form ω which lies in H0(M,Ω2

M ). Hamilto-
nian vector fields and Poisson brackets are defined as usual, i.e., for a function
f ∈ OM the field Hf ∈ ΘM is defined by ω(Hf , Y ) = df(Y ) for all Y ∈ ΘM .
For any two functions f, g ∈ OM we set {f, g} := ω(Hf , Hg) = Hg(f). We
call a reduced analytic subspace L (i.e., a real analytic space resp. a com-
plex space) a lagrangian subvariety iff ω|Lreg vanishes, where Lreg is the
non-singular part of the variety L. A germ (L, p) ⊂ (M, p) will be called
lagrangian singularity. There are several ways of describing a lagrangian
subvariety resp. singularity.

Definition 1.1. Let (M,ω) be symplectic over K. We call an ideal sheaf I ⊂
OM involutive iff it is stable under the Poisson bracket, i.e., iff {I, I} ⊂ I.

The following statement, which follows immediately from the definitions
relates the algebraic condition of involutiveness of an ideal with the geometry
of the subspace that it defines.

Theorem 1.2. Let I ⊂ OM be involutive. Then the subspace L ⊂M defined
by I is coisotropic on its smooth locus. Moreover, suppose I to be a radical
ideal, which is pure of dimension n, then L is lagrangian. If I is prime, then
L is lagrangian iff I is maximal (but not equal to OM ) among all involutive
ideals.

11
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In the examples which will be given later, we always consider lagrangian
singularities with its reduced structure. A simple but important observation
is that involutiveness can be checked on the generators of an ideal.

Lemma 1.3. Let I ⊂ OM,0 be generated by f1, . . . , fk. Then I is involutive
iff {fi, fj} ⊂ I for all i, j ∈ {1, . . . , k}.

This description allows us to check whether a given subspace is lagrangian
in a purely algebraic way. As a first (and rather trivial) example, we remark
that any curve C in K2 is a lagrangian subvariety with respect any symplectic
structure of K2 given by a volume form, because {f, f} always vanishes. The
involutivity of an ideal can be nicely expressed by the so-called structure
constants.

Definition 1.4. Coefficients A
(k)
ij defined by the expression

{fi, fj} =
k∑

i=1

A
(k)
ij fk

are called structure constants of f1, . . . , fk. Note that these functions are not
unique.

There is another method of describing a lagrangian singularity, namely,
generating families. This notion is used in several ways in the literature,
we will describe two different meanings of it. First we recall the well-known
principle of symplectic reduction, which is used to define generating families
and which will appear at several places later. The general situation is the
following: Consider a germ (C, 0) ⊂ (M, 0) of a smooth coisotropic subman-
ifold C of dimension 2n − k (k ∈ {1, . . . , n}) inside a symplectic manifold
(M,ω) of dimension 2n and a germ (M ′, 0) of a symplectic manifold (M ′, ω′)
of dimension 2(n − k) together with a submersion π : C → M ′ such that
i∗ω = π∗ω′ where i : C →֒ M is the inclusion. M ′ is the space of integral
manifolds of the integrable distribution (TpC)⊥ ⊂ TpM .

Theorem 1.5. Let (L, 0) ⊂ (M, 0) be a germ of a smooth lagrangian sub-
manifold L. Suppose that the restriction of the morphism π to C ∩ L is
finite. Then the germ at zero of the image L′ := π(L) is analytic in (M ′, 0)
and lagrangian with respect to the symplectic form ω ′. L′ is smooth iff the
intersection of L and C is transversal.

Now suppose that the symplectic manifold is the cotangent bundle. Let
(L, 0) ⊂ (T ∗B, 0) be a lagrangian singularity. Denote by l : (L, 0) →֒
(T ∗B, 0) ։ (B, 0) the projection on the base. Consider a function germ
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f : (X, 0) × (B, 0) → K where X is smooth of dimension m. Suppose
that f0 : X → K is a function with isolated critical points. Denote by
L̃ ⊂ T ∗X×T ∗B the image of df . Consider the projection π : X×T ∗B ։ T ∗B
(note that X × T ∗B is coisotropic in T ∗X × T ∗B). The restriction of the

projection π to the intersection C := (X × T ∗B) ∩ L̃ is finite because C
is the critical space of the function f which is already finite over the pa-
rameter space B (because f0 has isolated critical points). Therefore, we
can define Lag(f) ⊂ T ∗B to be the reduced lagrangian subvariety, i.e.

Lag(f) := π(L̃ ∩X).

Definition 1.6. We call f a generating family for l iff L = Lag(f).

First note that the constructed Lag(f) is not necessarily singular. It is

smooth iff L̃ and X × T ∗B intersect transversally. This is equivalent to the
condition that the matrix

(
∂2f

∂xi∂xj
,
∂2f

∂xi∂qk

)

(where (x,q) are coordinates on X × B) has maximal rank at the origin.
However, even in this case the projection l needs not to be regular. It is a
classical result of Arnold (see [AGZV85]) that germs of lagrangian projections
l : (L, 0) → (B, 0) (with L smooth) up to symplectomorphisms respecting the
bundle structure T ∗B → B are in one to one correspondence with generating
families f : X × B → K (where X can vary) up to stable R+-equivalence.
This allows one to deduce a classification of such projections from the usual
classification of functions with isolated critical points.

In general, the space Lag(f) will be singular. We give one example to
illustrate the principle of generating functions. Let X = K and B = K

2.
Choose coordinates x on X and p1, p2, q1, q2 on T ∗B. Consider the function
f = x4+q1x

3+q2x
2. This is in some sense the simplest example for dim(B) =

2 and dim(X) = 1 as the function ∂x∂qiF must vanish at the origin (for
i = 1, 2) to give a singular surface. By definition, we have

Lag(f) =

{
(p1, p2, q1, q2) ∈ T ∗B | ∃x :

∂f

∂x
(x,q) = 0, pi =

∂f

∂qi
(x, q)

}

This variety is given by three equations:

f1 := p2
2 + 3

4
p1q1 + 1

2
p2q2

f2 := p1q
2
1 + 2

3
p2q1q2 − 16

9
p1p2 − 8

9
p1q2

f3 := p1p2q1 − 1
2
p1q1q2 − 1

3
p2q

2
2 + 4

3
p2

1
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These are the 2 × 2-minors of the following 3 × 2-matrix



−p1q1 + 1
3
q2
2 −2

3
q1q2 + 16

9
p1

p2 + 1
2
q2 −q1

3
4
p1 p2




which implies that L is a Cohen-Macaulay singularity by the theorem of
Hilbert-Burch (see [Eis95]). We get the following structure constants:

{f1, f2} = 4
3
q1f1 − 1

4
f2

{f1, f3} = −4
3
q2f1 − 3

2
f3

{f2, f3} = −4
3
q1q2f1 −

(
1
6
q2 − p2

)
f2 − 8

3
q1f3

The singular locus of L is a line, its reduced structure is given by (q2, p2, p1).
The Milnor number of the transversal singularity is 3. This can be seen by
comparing the Hilbert polynomials of the jacobian ideal of I, saturated in the
origin and its radical. We see that the transversal type is an A3-singularity.
Away from the origin, L is locally a product of this plane curve germ with
a line. This is a general fact which will be proved later (see lemma 3.31 on
page 75).

For a singular lagrangian subspace of T ∗B, there might be no generating
family. This happens, e.g., for the open Whitney umbrella in R4 (the proof
uses Maslov classes, see, e.g., [CdV01]). However, there is always a generating
family in a somewhat extended sense.

Definition 1.7. Let (L, 0) ⊂ (T ∗B, 0) be a lagrangian singularity. Then
a function germ f : (X, 0) × (B, 0) → K where X is smooth is called a
generating family in the generalized sense iff L is a union of components of
the lagrangian space Lag(f).

If we consider lagrangian singularities which have a smooth normalization,
then we can always construct generating families with additional components.
This construction is due to Zakalyukin (see [Zak90]).

Theorem 1.8. Let (L, 0) ⊂ (T ∗B, 0) be a lagrangian singularity and let a
normalization n : (X, 0) → (L, 0) →֒ (T ∗B, 0) be given, where X is smooth.
Then a generating family F : (X, 0) × (B, 0) → K in the generalized sense
exists.

The proof is based on the following simple observation.

Lemma 1.9. Let (Y, 0) be a germ of a smooth isotropic submanifold of the
standard symplectic space (K2n, ω). Then there exists a germ (Λ, 0) of a
smooth lagrangian manifold L which contains (Y, 0).
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Proof. Let Φ : (K2n, 0) → (K2n, 0) be an isomorphism such that V := Φ(Y )
is a linear subspace of K2n. Then ω′ := Φ∗ω vanishes on V , so that V is
an isotropic sub-vector space of the symplectic space (K2, ω′). There is a
lagrangian sub-vector space Λ′ ⊃ V and we define Λ := Φ−1(Λ′).

Proof of the theorem. Let M := T ∗B × T ∗X be the symplectic product of
the two cotangent bundles. The submanifold C := T ∗B × X is coisotropic
in M . Define Y ⊂ C ⊂ M to be the graph of the map n : X → T ∗B. It
is obvious to see that (Y, 0) is a germ of a smooth isotropic submanifold of

M . Thus we can apply the preceding lemma which yields a germ (L̃, 0) of a

smooth lagrangian L̃ ⊂M with (Y, 0) ⊂ (L̃, 0). Now consider the symplectic
reduction process in M with respect to the submanifold C. Define L′ ⊂ T ∗B
to be the reduced lagrangian space. It is clear that set-theoretically L ⊂ L′,
then, by the irreducibility of L we get that L is a component of L′.

Consider the lagrangian projection (L̃, 0) →֒ (T ∗(B × X), 0) ։ (B ×
X, 0) =: (B′, 0), note that now the source L̃ is smooth. By the Arnold
correspondence there is a generating family F : X ′ × B′ → K. This family
can be considered as defined on (X ′×X)×B. Then the generated lagrangian
is the above constructed L′ which contains L as a component, as required.

We will give a generating family in this extended sense for the open
Whitney umbrella in section 1.3 on page 25.

Quite frequently, one also finds the notion of a generating function asso-
ciated to a lagrangian singularity in the literature. This is a different object
than a generating family as above. To explain it, we first need to recall some
facts on differential forms on singularities. This will also be useful in the
second chapter. Let for a moment (X, 0) ⊂ (KN , 0) denote any germ of an
analytic subspace. Then we can consider several quotients of the module
ΩKN ,0 of differential forms on KN . The “largest” one is usually called module
of Kähler -differentials and defined by

ΩX,0 :=
ΩKN ,0

IΩKN ,0 + dI

where I ⊂ OKN ,0 is the defining ideal. The exterior powers of ΩX,0 together
with the induced differential form a complex, usually called the de Rham
complex of the singularity (X, 0). However, for our purpose the complex

Ω̃•X,0 defined by Ω̃p
X,0 := Ωp

X,0/Tors(Ωp
X,0) (where Tors(Ωp

X,0) are the torsion
submodules of Ωp

X,0) will be more important. It also appears in [Giv88] and

was called Ω•Giv in [Her02]. Givental defines it as differential forms on KN

modulo forms which are zero on the smooth part of X. The module of these
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forms is obviously a quotient of the module of Kähler forms, that is, there is
a sequence

0 −→ K −→ Ωp
X,0 −→ Ωp

Giv −→ 0

On the smooth locus, Ωp
X,0 and Ωp

Giv coincide, therefore the kernel is a torsion
submodule (here we have to suppose that X is reduced). But any torsion

element vanishes on Xreg so we have Tors(Ωp
X,0) ⊂ K and thus Ωp

Giv = Ω̃p
X,0.

The following lemma recalls a well-known fact concerning the cohomology of
these two complexes.

Lemma 1.10. Let (X, 0) ⊂ (KN , 0) be quasi-homogeneous with positive
weights. Then

1. The de Rham-complex Ω•X,0 is acyclic except in degree zero where its
cohomology are the constant functions.

2. The same is true for the complex Ω̃•X,0, we have: H i(X, Ω̃•X,0) = 0 for

i > 0 and H0(X, Ω̃•X,0) = K.

Proof. Denote by E the Euler vector field corresponding to te quasi-homo-
geneous graduation of OKN ,0, i.e., E =

∑N
i=1 λixi∂xi

where (x1, . . . , xN) are
coordinates on KN and λi are their (positive) weights. The equations of X
are quasi-homogeneous, thus there is an induced graduation of OX,0 and of
Ωp
X,0. For a form ω, homogeneous with respect to this graduation we get

LieE(ω) = w · ω where w is the weight of ω. On the other hand, suppose
that ω ∈ Hp(Ω•X,0) for p > 0, then LieE(ω) = diEω so with α := w−1iEω
for w 6= 0 we get dα = ω meaning that ω is zero in the cohomology. But
the only forms with zero weight are the constant functions on L, this implies
thatH•(Ω•X,0) = KX,0 proving the first statement. To show the corresponding

result for the complex Ω̃•X,0, consider the exact sequence of complexes

0 −→ K• −→ Ωp
X,0 −→ Ω̃•X,0 −→ 0

The only point to verify is that for any vector field X ∈ ΘX,0, the morphism
iX : Ωp

X,0 → Ωp−1
X,0 maps the kernel complex K• into itself. But this is obvious,

because the kernel consists of the torsion subsheaves of Ωp
X,0 and the interior

multiplication iX is linear over OX,0.

We will now give the definition and some properties of generating func-
tions as described in [Giv88] (some more details can also be found in [Her02]).
Let (M, 0) be a germ of a symplectic manifold (M,ω). Denote by α the Li-
ouville form defined in a neighborhood of the origin. Let (L, 0) ⊂ (M, 0)

be a germ of a lagrangian singularity. Consider the restriction α ∈ Ω̃1
L,0.
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This form is closed in Ω̃1
L,0 (because ω vanishes on Lreg), thus defining a

class [α] ∈ H1(Ω̃•L,0). It is an invariant of the lagrangian singularity and was
called its class in [Giv88]. However, α is not exact in general. Nevertheless,
there is a Whitney regular stratification of L and α can be integrated along
pathes corresponding to this stratification. This yields a continuous function
F on L which satisfies dF = α on Lreg. Therefore, F is analytic on Lreg. By
definition, we see that F ∈ Ow

L,0, the weak normalization of L. F is called
the generating function of L. An obvious question in the situation is to know
whether F ∈ OL,0. Let us restrict to the complex case in the following. If L
is e.g. weakly normal, then F is holomorphic on the whole of L. By defini-
tion of the complex Ω̃•L,0, if H1(Ω̃•L,0) is zero, then F ∈ OL,0. The problem
to find a holomorphic generating function is therefore reduced to determine
whether H1(Ω̃•L,0) vanishes or not. The following conjecture of Givental is
an analogue of the famous Arnold conjecture (proved by Gromov) for the

local complex analytic case (the assumption Hn(Ω̃•L,0) 6= 0 corresponds to
the compactness of the real Lagrangians in the Arnold conjecture).

Conjecture 1.11. If Hn(Ω̃•L,0) 6= 0, then H1(Ω̃•L,0) 6= 0 and α is not exact.

For lagrangian curves, this statement is true, the proof uses the Gauß-
Manin connection for hypersurface singularities. On the other hand, for a
curve H1(Ω̃•L,0) = 0 vanishes iff (L, 0) is quasi-homogenous. More precisely,

we have that dimC

(
Hn(Ω̃X,0)

)
= µ − τ for any germ of a hypersurface

singularity (X, 0) of dimension n (this is a theorem of K. Saito, see [Sai71]).
There is another special case where vanishing of the de Rham-cohomology
is known, namely, the case of isolated complete intersections. The following
statement is taken from [Gre80].

Theorem 1.12. Let (L, 0) be a complete intersection with isolated singular-
ities. Then

• Hp(Ω•L,0) = 0 for 0 < p < n.

• Hp(Ω̃•L,0) = 0 for p 6= 0, n.

• Hn(Ω̃•L,0) = 0 if (L, 0) is quasi-homogenous.

Related to the above definition of generating functions is the notion of the
front of a lagrangian singularity. We suppose that the symplectic manifold
is a cotangent bundle.
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Definition 1.13. Let (L, 0) ⊂ (T ∗B, 0) be a lagrangian singularity. Denote
by π : T ∗B → B the canonical projection and suppose that it defines a finite
mapping π : L → B. Let F be a generating function. Then the image ΦL of
the mapping (π, F ) : L → B ×K (which is also finite) is called the front of
L.

As we have said, F is an element of Ow
L,0. In particular, it is contained in

the normalization and therefore satisfies an algebraic relation F k +a1F
k−1 +

. . .+ ak = 0 with ai ∈ OL,0. OL,0 is a finite ring extension of OB,0 and hence
there is also a relation of type Fm+b1F

m−1+. . .+bm = 0 with bi ∈ OB,0. Then
the front is the vanishing locus of the polynomial zm+b1z

m−1+. . .+bm = 0 in
B ×K with coordinates (q1, . . . , qn, z) where (q1, . . . , qn) are the coordinates
on the base B. This proves that the front is always an analytic hypersurface
in B ×K regardless whether F lies in OL,0 or not.

We will give one example from [Giv88] with non-analytic generating
function. We will come back to lagrangian singularities of this type later.
Consider the germ (C, 0) of a plane curve C in C2 given by the equation
f = x3 + y7 + xy5. We see C2 as cotangent bundle of C by the projection
(x, y) 7→ x. (C, 0) is a non-quasihomogenous singularity and H1(Ω̃•) is one-
dimensional generated by the form x dy. Therefore, the generating function
F is not holomorphic on (C, 0). However, we can consider the pullback n∗α

and get a closed (and therefore exact) form on the normalization C̃. This

yields a function F ∈ OC̃ . Then the image of the map (F, x) : C̃ → C2 is the
front of the lagrangian singularity (C, 0). Moreover, the image of the map

(F, n) : C̃ → C3 is a legendrian space curve and the front is the front of this
legendrian curve in the classical sense if we consider (C3, 0) as (the germ of)
the space of contact elements of C2 with projection (z, x, y) → (z, x).

1.2 Open Swallowtails

Swallowtails are subspaces of manifolds consisting of polynomials (in one
variable) of fixed degree with certain coefficients fixed. Let us start with
a simple but important example. Consider the space (denoted by P5) of
polynomials P ∈ K[t] of degree five, with fixed leading coefficient and sum
of roots equal to zero. Such a polynomial can be represented as

P (t) = t5 + xt3 + yt2 + zt+ w

and the space P5 is obviously isomorphic to K4 with coordinates (x, y, z, w).
Let us introduce the following symplectic form: ω = 3dx ∧ dw + dz ∧ dy.
The origin of this form will be explained later in a more general context.
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Figure 1.1: The open swallowtail Σ2 ⊂ R4

Consider the subspace of P5 which consists of polynomials having a root of
multiplicity at least three. Denote this space by Σ2. A polynomial P ∈ Σ2

can be written as P (t) = (t−a)3(t2 +3at+ b), so there is a parameterization
of Σ2 (which is in fact the normalization) given by

n : K2 −→ P5

(a, b) 7−→ (b− 6a2, 8a3 − 3ab, 3a2b− 3a4,−a3b)

One can check directly that n∗ω = 0. On the other hand, the image is given
by the following three polynomials

f1 = 15xy2 − 45x2z + 100z2 − 375yw
f2 = 27y3 − 96xyz + 135x2w − 300zw
f3 = 9y2z − 32xz2 + 15xyw − 375w2

which are in fact the minors of the matrix



3w 9y2 − 32xz
z −5xy + 125w

−3y 45x2 − 100z




Then one can calculate explicitly the commutators:

{f1, f2} = −6xf1 + 300f3

{f1, f3} = −4yf1 − 5xf2

{f2, f3} = −32zf1 − 27yf2 + 192xf3

This shows that Σ2 ⊂ P5 is a lagrangian subspace. Its singular locus is a plane
curve which has an A2-singularity at the origin and the transversal singularity
is also a plane cusp. The points of Sing(Σ2) correspond to polynomials which
have a root of multiplicity four. This can of course be calculated directly,
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but we will prove it later for general open swallowtails. The only polynomial
having a root of multiplicity five in P5 is t5. This is the origin in Σ2. By
differentiating an element P (t) in P5 with respect to t, we obtain a polynomial
of degree four with fixed leading coefficient and sum of roots equal to zero.
Denote the space of these polynomials by P4. The subspace Σ2 is mapped to
the space ∆2 ⊂ P4 of polynomials having a root of multiplicity two. This is
a hypersurface in three space, the so-called ordinary swallowtail. It is given
in our coordinates by the single equation

x3y2 + 15y4 − 3x4z − 60xy2z + 40x2z2 − 400/3z3

It has a line of self-intersection. Writing Q ∈ ∆2 as Q(t) = (t − α)2(t2 +
2αt+ β) yields a normalization. The self-intersection points are not critical
values of this normalization, they correspond to polynomials of type Q(t) =
(t−α)2(t+α)2. These polynomials have two images under the normalization.
This phenomena does not occur for polynomials in degree five, hence, the
line of self-intersection disappears. The ordinary swallowtail is drawn in
figure 1.2 on the facing page. Note that over R, the line of self-intersection
is continues outside the surface. We will see this phenomena occurring again
in real representations of several other surfaces. A conceptual picture of the
open swallowtail is given in figure 1.2. We have marked the strata of constant
embedding dimension, namely, the regular locus, the smooth points of the
singular locus and the origin. Again the variety is a product locally along its
singular locus away from the origin. See lemma 3.31 on page 75 and 3.33 on
page 76 for further explanations.

The variety Σ2 is quasihomogenous with respect to the weights deg(x) =
2, deg(y) = 3, deg(z) = 4 and deg(w) = 5. This implies that for a form
α ∈ Ω1

Σ2
with dα = ω, a generating function F ∈ OΣ2 exists. For α =

−3wdx + zdy, we obtain the function F = 9a5b − 3a3b2 − 72
7
a7 ∈ ÕΣ2 on

the normalization satisfying dF = n∗α. Using Singular (see [GPS01]), we
see that F lies indeed in the subalgebra OΣ2 and can be expressed as F =
3
7
yz − 6

7
xw. The image of the map Σ2 → K3 which sends (x, y, z, w) to

(w, y, F (x, y, z, w)) is the front of Σ2. It is the hypersurface given by the
following equation, where we take (w, y, t) as coordinates on K

3:

896
16875

x6y3 + 203
625
x3y5 − 896

1875
x7t+ y7

−2009
675

x4y2t− 196
15
xy4t+ 2744

81
x2yt2 − 27440

729
t3

A picture of this surface is given in figure 1.2 on page 22. Its singular locus
is a union of two space curves C1 and C2. The transversal type of the front
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Figure 1.2: The ordinary swallowtail ∆2 ⊂ R3

at C1 is A4. This is not a surprise: The transversal singularity of the open
swallowtail Σ2 is a cusp, and the front of a cusp is easily seen to be of type
A4. At the other component C2, the transversal singularity is A1. This is
just a self-intersection of the front, not a singularity of the parameterization.
However, over the reals the transversal curve at C2 is a point, so that the real
picture of the front is a union of a surface with a space curve (much like for
the ordinary swallowtail in R3). Note that also C1 has embedding dimension
three, in contrast to the singular locus of Σ2 ⊂ K4, which is a plane curve.

In the following definition, we introduce general open swallowtails in poly-
nomial spaces of any (even) dimension.

Definition 1.14. Denote by Fk(x, a) = xk+ a2
(k−2)!

xk−2+. . .+ak the universal

unfolding of xk. Let Pk the space of all polynomials Fk. In particular, we
consider the space of polynomials of odd degree, that is,

P2n+1 =
{
x2n+1 + a2

(2n−1)!
x2n−1 + . . .+ a2n+1 | ai ∈ K

}
∼= K2n

which comes equipped with the following symplectic structure

ω =

n+1∑

i=2

(−1)idai ∧ da2k+3−i

Let Σn be the subspace of polynomials having a root of multiplicity greater
than n.
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Figure 1.3: The front of the open swallowtail

Theorem 1.15. Consider the open swallowtail Σn ⊂ P2n+1.

1. Σn is lagrangian in P2n+1.

2. Σn is a Cohen-Macaulay singularity.

Proof. To prove the first statement, one has to understand the origin of the
symplectic structure in P2n+1. This has been done in detail in [Sev99] (and
can of course be found in [Giv88]). We only remark that P2n+1 is the two-

fold symplectic reduction of the space P̃2n+3 of polynomials of degree 2n+ 3
without any restriction (this space has dimension 2n+ 4). In P̃2n+3 one has
a natural symplectic structure coming from the representation of sl2. By
performing only the first symplectic reduction, one obtains an intermediate
space P̂2n+2 of dimension 2n+2 (which is the space of polynomials of degree
2n+ 2 with fixed leading coefficient). Then the second symplectic reduction

from P̂2n+2 onto P2n+1 is in fact the quotient map onto the orbit space of the
group action which is the translation of the argument. In P̂2n+3, the subspace
of all polynomials having zero as a root of multiplicity greater than n + 1
is lagrangian (because half of the coordinates are zero), and by translating
the argument on obtains precisely any polynomial having an arbitrary root
of multiplicity greater than n.

The second statement is evident for n = 2 by the Hilbert-Burch theorem.
In higher dimension, we use an argument which can be found in [Giv88].
To prepare it, suppose that for a given singularity (X, 0) we have a finite
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mapping (X, 0) → (Y, 0) with Y smooth. Then OX,0 is a Cohen-Macaulay
ring if it is a Cohen-Macaulay OY,0-module. But this is (as OX,0 is OY,0-finite)
equivalent to the condition that OX,0 is a free OY,0-module. Therefore, to
conclude it suffices to prove the following lemma.

Lemma 1.16. Let Σn ⊂ P2n+1. Then

1. A normalization of Σn is given by the following map

ϕ : Σ̃n := Kn −→ Σn ⊂ P2n+1

(t, a2, . . . , an) 7−→ (x− t)n+1 · (xn + b2x
n−1 + . . .+ bn)

where bi ∈ OΣ̃n,0
are chosen such that the coefficient of t2n+1−i in the

polynomial ϕ(t, a) is precisely ai/(2n + 1 − i)! for i = 2, . . . , n (in
particular, b2 = (n+ 1)t).

2. We have the following description of OΣn,0 as subalgebra of OΣ̃n,0
:

OΣn,0 =

{
C(a) +

∫ t

0

Q(z, a)Fn(z, a)dz | C ∈ OPn+1,0, Q ∈ OΣ̃n,0

}

where the function C of the coordinates a2, . . . , an+1 is seen as defined
on the space of polynomials Pn+1 = {xn+1 + a2

(n−1)!
xn−1 + . . .+ an+1}.

3. Consider the map P2n+1 → Pn+1 given by the n-th derivative. Then
the restriction Σn → Pn+1 is finite of degree n+ 1. Moreover, OΣn,0 is
a free OPn+1,0-module of rank n + 1.

Proof. 1. One calculates easily that the bi’s as in the theorem exists and
are uniquely defined. Therefore the map ϕ is well-defined. It is a
normalization because for any polynomial P ∈ Σn, the values t and
a2, . . . , an such that ϕ(t, a) = P are uniquely determined, so the map
is generically one to one.

2. We first show that for any i = 1, . . . , n+1, the following formula holds
in the ring OΣ̃n,0

:

an+i =
(−1)i

(i− 1)!

∫ t

0

Fn(z, a)zi−1dz

Here an+i is seen as lying in OΣ̃n,0
via the inclusion ϕ∗ : OΣn,0 →֒ OΣ̃n,0

.
We prove this formula by induction on i: let first i = 1, then

−
∫ t

0

Fn(z, a)dz = −Fn+1(t, a) + an+1
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But t is a root of Fn+1(z, a) (because this is just the n-th derivative of
F2n+1(z, a) which is supposed to have a zero of multiplicity n+ 1 at t).
For the induction step, we use integration by parts

(−1)i

(i − 1)!

∫ t

0
Fn(z,a)zi−1dz =

(−1)iti

(i − 1)!
Fn+1(t,a) −

(−1)i

(i − 2)!

∫ t

0
zi−2Fn+1(z,a)

The first term vanishes as above, and by setting n′ := n+ 1 we obtain

(−1)i

(i − 1)!

∫ t

0
Fn(z,a)zi−1dz =

(−1)i−1

(i − 2)!

∫ t

0
zi−2Fn′(z,a) = an′+(i−1)

by induction hypothesis. But an′+(i−1) = an+i so the formula is proved.
Using this identity we can already show that any function g ∈ OΣn,0

can be represented as required. Lift g to a function G ∈ P2n+1,0. Then
we have

∂tG =

n∑

i=1

∂an+i
G · ∂tan+i = Fn(t, a) ·

(
n∑

i=1

∂an+i
G

(−1)i

(i− 1)!
ti−1

)

Thus G has the required form. It rests to show that any function
G = C(a) +

∫ t
0
Q(z, a)Fn(z, a) can be written as depending only on

a2, . . . , a2n+1, i.e., can be lifted to OP2n+1,0. This will show that func-
tions of this type lie already in OΣn,0. To do this Givental uses a
trick involving a versality theorem for semi-forms. We will not discuss
this here in detail but quote the result we are needing: Any function
α ∈ K{t, a2, . . . , an+1} can be written as

α(t, a) = Fn(t, a)R(t, a) +
1

2
Fn+1(t, a)∂tR(t, a) +

n∑

i=1

λi(a)

(i− 1)!
ti−1

for functions R ∈ OΣ̃n,0
and λi ∈ K{a} (the non-standard term is

1
2
Fn+1(t, a)∂tR(t, a)). We multiply the above equation by Fn+1:

Fn+1(t, a)α(t, a) =
∂

∂t

(
R(t, a)

F 2
n+1(t, a)

2

)
+

n∑

i=1

λi(a)

(i− 1)!
ti−1Fn+1(t, a)

and integrate:

t∫
0

Fn+1(z, a)α(z, a)dz =
n∑
i=1

λi(a)
t∫

0

zi−1Fn+1(z,a)
(i−1)!

dz

−
(
R(0, a)

F 2
n+1(0,a)

2

)
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Integration by parts yields:

t∫
0

Fn(z, a)Q(z, a)dz =

n∑
i=1

λi(a)an+i+1 −
(
R(0, a)

F 2
n+1(0, a)

2
− Fn+1(0, a)Q(0, a)

)

︸ ︷︷ ︸
λ0(a2,...,an+1)

where Q is a primitive of α. Note that we have used two times the
fact that t is a root of Fk+1. So we have a lift of functions of type∫ t
0
Fn(z, a)Q(z, a)dz + C(a) to OP2n+1,0 as required.

3. The map Σn,0 → PPn+1,0 is of degree n+1 because any (generic) polyno-
mial with (simple) roots t1, . . . , tn+1 has n+1 preimages under this map,
namely, the polynomials (x−tj)n+1

∏n+1
i=1,i6=j(x−ti) for j = 1, . . . , n+1.

This implies that OΣn,0 is a finitely generated OPn+1,0-module of rank
n+1. The last formula shows that it is generated by 1, an+2, . . . , a2n+1,
so it must be free.

1.3 Conormal cones

Conormal cones are a systematic way to construct lagrangian singularities
from given singularities of lower dimension. We first illustrate this with a
simple example. Let (C, 0) ⊂ (K2, 0) be the ordinary cusp singularity, i.e.,
germ at zero of the vanishing locus of the polynomial z3 − w2. Consider the
normalization m : (K, 0) → (C, 0) given by s 7→ (s2, s3) = (z, w). A vector
(a, b) is a normal vector to a point p = m(s) ∈ C iff 2as + 3bs2 = 0, or
a = −3

2
bs. Therefore, if we identify the tangent bundle of K2 with K4 the

map (let (x, y, z, w) be the coordinates in K
4)

ñ : K2\(0, 0) −→ K4

(s, t) 7−→ (−3st, 2t, s2, s3)

is a parameterization of the normal bundle of the smooth part of C. Using
the standard metric on K

4 = TK2, we can identify tangent and cotangent
bundle we obtain a smooth subvariety W0

2 in the cotangent bundle. W0
2 is of

course nothing else than the total space of the conormal bundle of Creg. We
define W2 to be the algebraic closure of W2

0 . The projection of K4 onto K3

along the w-axis sends W2 to the so called ordinary Whitney umbrella (one
also finds the name D∞-singularity). This surface in three-space is given
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Figure 1.4: The ordinary Whitney umbrella in R3

by the single equation y2z − 4
9
x2. It is drawn in figure 1.3. The singular

locus of the ordinary Whitney umbrella is a line, whereas W2 has a unique
singular point at the origin. One can think of W2 as being obtained from the
ordinary Whitney umbrella be unfolding the singular line. Therefore it was
called open (unfolded, unfurled) Whitney umbrella by Givental ([Giv86]). In
our example W2 is given by the following four polynomials.

f1 := xz + 3
2
yw f2 := x2 − 9

4
y2z

f3 := yz2 + 2
3
xw f4 := z3 − w2

Let the symplectic form ω be dx ∧ dz + dy ∧ dw. Then the commutators of
the above equations are:

{f1, f2} = −2f2 {f1, f3} = 1
2
f3

{f1, f4} = 3f4 {f2, f3} = yf1

{f2, f4} = 6zf1 {f3, f4} = 0

This proves that W2 is lagrangian. By looking at theses commutators, one
sees that there are several subsets of {f1, . . . , f4} generating ideals which are
closed under the Poisson bracket (closed Lie subalgebras). These correspond
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to lagrangian varieties including W2 as a component.

closed Lie subalgebra ideal of additional component
(f1, f2, f3) (x, y)
(f1, f2, f4) (y2, w, xz, x2, z3)
(f1, f3, f4) (z, w)

(f1, f2) (y2, xy, xz + 3/2yw, x2)
(f1, f3) (x, y) ∩ (z, w)
(f1, f4) (z2, xz + 3/2yw, zw, w2)
(f3, f4) (zw, yz2 + 2/3xw,w2, z3)

Note, however, that only the the ideals (f1, f2, f3), (f1, f3, f4) and (f1, f3)
defines spaces with reduced structures. In all cases we get a union of W2

together with one or two planes (which might have multiple structure). We
have seen that W2 is not a complete intersection. It is not even a Cohen-
Macaulay singularity, because this would force W2 to be normal (since it is
regular in codimension one), but the map ñ is in fact a normalization.

The natural projection (x, y, z, w) → (z, w) is not finite on W2. Hence
there is no front of W2 with respect to this cotangent fibration. However,
the projection (x, y, z, w) → (z, y) induces a finite map W2 → K2. The
generating function with respect to this projection is F = −4yw and the
associated front in K3 is given by the equation x2y3−z2, see picture 1.3. This
surface is called composed Whitney umbrella in [Giv86]. We will encounter
the open Whitney umbrella, embedded in this cotangent fibration once again
in the last chapter (definition 4.7 on page 105).

The construction of the open Whitney umbrella from a plane cusp can of
course be done in much greater generality. More precisely, let X be a smooth
N -dimensional manifold. Let T ∗X be the cotangent bundle of X and Y a
smooth submanifold of X. Then the conormal bundle of Y in X is defined
as

T ∗YX :=
{
λ ∈ T ∗X|Y | λ|TY ≡ 0

}
⊂ T ∗X|Y ⊂ T ∗X

By choosing local coordinates, one sees immediately that the total space of
T ∗YX is always a lagrangian submanifold of the symplectic manifold T ∗X,
regardless of what the dimension of Y is (extreme cases are: Y = X then
T ∗YX is the zero section of T ∗X and Y = {pt} then its conormal bundle is
just the fibre of the fibration T ∗X → X over the point Y ). Now suppose that
we are given an arbitrary (not necessarily smooth) reduced analytic subspace
Y ⊂ X. Define

C∗YX :=
{
λ ∈ T ∗X|Yreg | λ|TY ≡ 0

}

Lemma 1.17. C∗YX (which is also denoted by T ∗YX) is a lagrangian subva-
riety of the cotangent bundle. It is a conical variety in the fibre direction of
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Figure 1.5: The front of the open Whitney umbrella

T ∗X, that is

(p, q) ∈ C∗YX ⇐⇒ (λp, q) ∈ C∗YX ∀λ ∈ K
∗

Proof. The conormals to smooth points are dense in their closure, so a dense
subset of C∗YX is lagrangian, meaning that the whole space is a lagrangian
subvariety. C∗YX is obviously conical, as the vanishing of a form is equivalent
to the vanishing of a non-zero multiple of it.

Characteristic varieties of holonomic D-modules are union of conormal
cones. We explain the relevant notions in some detail in Appendix B, see
in particular lemma B.8 on page 155. In the following theorem, taken from
[Giv88], generalized Whitney umbrellas in any even dimension are intro-
duced.

Theorem+Definition 1.18. Define the open Whitney umbrella W2n by one
of the following equivalent descriptions.

1. W2n ⊂ K4n is the conormal cone to the open swallowtail Σn ⊂ K2n (see
section 1.2 on page 18).

2. W2n is the submanifold of the space of pairs of polynomials of type

F = z2n+1

(2n+1)!
+ a1

z2n−1

(2n−1)!
+ . . .+ a2n

G = (−1)2nb2n
z2n−1

(2n−1)!
+ b2n−1

z2n−2

(2n−2)!
+ . . .+ b1
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consisting of (F,G) with a common root t of multiplicity (n+ 1, n).

3. Let Fn(q,Q, t) =
∫ t
0

(Q1z
n−1 + . . .+Qn) (zn+1 + q1z

n−1 + . . .+ qn) dz
Then Fn is a generating family in the generalized sense of W2n.

Proof. We will first show the equivalence of the first two definitions. Consider
the following parameterization of the open swallowtail (note that this is not
the same as in section 1.2).

n : Kn −→ P2n+1

(q1, . . . , qn−1, t) 7−→ (z − t)n+1(zn + (n+ 1)tzn−1 + q1z
n−2 + . . .+ qn−1)

The derivative Dn of n, restricted to the regular locus of n is an isomor-
phism from the total space of the tangent bundle of Kn (that is, from K2n)
to the tangent bundle of (W2n)reg. The closure of the latter equals the conor-
mal cone C∗W2n

P2n+1 (because Σn is lagrangian in P2n+1). But the image of
Dn(q, t) (the tangent space of n(q, t)) consists of all polynomials of degree
2n− 1 with t a root of multiplicity at least n.

Now we show that one component of the variety generated by the family
Fn equals W2n. The equation ∂tFn = 0 is a product, the component describ-
ing W2n is tn+1 + q1t

n−1 + . . .+ qn. Consider pi := ∂qiFn and Pi := ∂Qi
Fn. It

follows easily from lemma 1.16 on page 23 that the map (t, q1, . . . , qn−1) 7→
(P1, . . . , Pn, q1, . . . , qn) is the normalization of the n-dimensional swallowtail,
i.e., the image of a point (t,q) is a polynomial of degree 2n+ 1 with t a root
of multiplicity n + 1. For this t, the image of the map (Q1, . . . , Qn−1, t) 7→
(p1, . . . , pn, Q1, . . . , Qn) is a polynomial of degree 2n−1 with t a root of mul-
tiplicity n−1. Therefore, the map (t, q1, . . . , qn−1, Q1, . . . , Qn) 7→ (P,p,Q,q)
is a normalization of W2n.

In [Giv88], there is yet another characterization of W2n. We give it here

without proof. Denote by W̃2n the normalization of W2n. Consider the
so-called Morin map (see [Mor65])

W̃2n −→ K2n+1

(Q1, . . . , Qn, q1, . . . , qn−1, t) 7−→ (Q1, . . . , Qn, q1, . . . , qn, pn)

It can be seen as the restriction of the projection

K
2n+2 −→ K

2n+1

(Q1, . . . , Qn, q1, . . . , qn, pn, t) 7−→ (Q1, . . . , Qn, q1, . . . , qn, pn)

to the codimension two submanifold given by F = tn+1+q1t
n−1+. . .+qnt+qn

and G = Q1t
n +Q1t

n−1 + . . . +Qnt+ pn. Let K ⊂ ΘW̃2n,0
the kernel of the
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derivative of the Morin map at zero. Then there is the following equality of
subalgebras of OW̃2n,0

OW2n,0 =
{
f ∈ OW̃2n,0

| K(f) ∈ mO
W̃2n

}

Of course the definition of the open Whitney umbrella as conormal cone
of the open swallowtail applies to our first example: Σ1 is just the ordinary
cusp in the plane, its conormal space is the two-dimensional open Whitney
umbrella W2.

1.4 Integrable systems

A very important class of lagrangian singularities arises when one supposes
that an involutive ideal I is generated by exactly n equations f1, . . . , fn (i.e.,
the lagrangian singularity is a complete intersection) such that the Poisson
brackets of these generators are zero not only in OL but on the whole of
M . Then the map F = (f1, . . . , fn) : M → Kn, all fibres of which are
lagrangian subspaces of M is called a (completely) integrable system. The
simplest integrable system is again a curve in the plane (the case n = 1):
the Poisson bracket of its defining equation with itself vanishes. The next
step is to consider products of such curves: In general, given two lagrangian
subvarieties L1 ⊂M1 and L2 ⊂M2, the product L1 ×L2 is lagrangian in the
symplectic product (M1 ×M2, pr

∗
1ω1 − pr ∗2ω2), pri being the projections. If

we take n curves Ci ⊂ Mi
∼= K

2 with defining equations fi ∈ K{pi, qi}, then
C1 × . . . × Cn is lagrangian in

∏n
i=1Mi

∼= K2n and the system (f1, . . . , fn)
is integrable. As an example, consider the product of two cusps given by
f1 = x2 − y3 and f2 = s2 − t3 in four-space. This is a lagrangian surface with
one dimensional singular locus which consists of two components isomorphic
to the two cusps. The transversal singularity at a singular point obviously is
also a cusp.

In order to get more interesting examples, we use the following trick:
Consider the case n = 2, choose coordinates (p1, q1, p2, q2) of K

4 and set
z1 = p1 + iq1 and z2 = p2 + iq2 (This can obviously be done only in the real
case, but it is a formal calculus which works as well for K = C as for K = R).
We can now express functions on K4 in the variables z1, z2, z1, z2, and the
Poisson bracket becomes

{f, g} = 2i (∂z1f · ∂z1g − ∂z1g · ∂z1f + ∂z2f · ∂z2g − ∂z2g · ∂z2f)

We want to find functions f1, f2 such that {f1, f2} = 0. Set, for example
f = λz1z1 + µz2z2 and let us look for a g = zα1 z1

βzγ2 z2
δ for some parameters
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λ, µ, α, β, γ, δ ∈ N. It can be easily verified that the commuting condition
transforms to λ(α−β)−µ(γ−δ) = 0 The following table shows the equations
for some coefficients λ, µ and exponents α, β, γ, δ.

λ, µ α, β, γ, δ equations

1, 0 0, 0, 1, 1 p2
1 + q2

1 , p
2
2 + q2

2

1, 2 0, 2, 1, 0 p2
1 + q2

1 + 2(p2
2 + q2

2), p2(p
2
1 − q2

1) + 2p1q1q2

1, 3 3, 0, 0, 1 p2
1 + q2

1 + 3p2
2 + 3q2

2 , 6q2p
2
1q1 − 2q2q

3
1 + 2p2p

3
1 − 6p2p1q

2
1

1, 4 4, 0, 0, 1 p2
1 + q2

1 + 4p2
2 + 4q2

2 ,

2p4
1p2 + 8p3

1q1q2 − 12p2
1q

2
1p2 − 8p1q

3
1q2 + 2q4

1p2

1, 2 1, 3, 1, 0 p2
1 + q2

1 + 2(p2
2 + q2

2), 2p4
1p2 + 4p3

1q1q2 + 4p1q
3
1q2 − 2q4

1p2

2, 3 3, 0, 0, 2 2p2
1 + 2q2

1 + 3p2
2 + 3q2

2 ,

2p3
1p

2
2 − 2p3

1q
2
2 + 12p2

1q1p2q2 − 6p1q
2
1p

2
2 + 6p1q

2
1q

2
2 − 4q3

1p2q2

2, 5 5, 0, 0, 2 2p2
1 + 5p2

2 + 2q2
1 + 5q2

2 , p
5
1p

2
2 − 10p3

1p
2
2q

2
1 + 5p1p

2
2q

4
1 + 10p4

1p2q1q2

−20p2
1p2q

3
1q2 + 2p2q

5
1q2 − p5

1q
2
2 + 10p3

1q
2
1q

2
2 − 5p1q

4
1q2

2

Remark that only in the first four cases we obtain reduced structures. It
is of course always possible to calculate with the radicals, but they are in
general no longer complete intersections.

One might ask whether there are complete intersection singularities whose
defining ideal does not admit a commuting system of generators (see also
[CdV01]). As there is no such example, we state the following conjecture.

Conjecture 1.19. Let (L, 0) ⊂ (K2n, 0) be a lagrangian singularity which is
a complete intersection. Then L defines an integrable system, i.e., there is a
set of generators f1, . . . , fn of the ideal I ⊂ OM,0 defining L in M such that
{fi, fj} = 0 in OM,0.

1.5 The µ/2-stratum

We will encounter the open swallowtail once again in this section. Surpris-
ingly enough, it appears in a different space with different symplectic struc-
ture. The mapping sending the swallowtail as defined before to the “new”
one turns out to carry one symplectic structure into the other.

We start, as in section 1.2 on page 18 with the space of polynomials

P5 = {t5 + xt3 + yt2 + zt+ w}
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together with the symplectic structure ω = dx∧dw+3dz∧dy+wdw∧dz. Note
that this structure coincides with the one from section 1.2 at the origin. Now
consider the subspace of polynomials having two roots, each of multiplicity
two. Like before, any such polynomial can be written as Q = (t − a)2(t −
b)2(t+ 2a+ 2b) yielding a normalization

n : K2 −→ P5

(a, b) 7−→

(
− 3a2 − 3b2 − 4ab , 2a3 + 2b3 + 8a2b + 8ab2,

−7a2b2 − 4a3b − 4ab3 , 2a3b2 + 2a2b3
)

One obtains again a determinantal variety in K4, which we denote by B2,
where 2 stands for the number of double roots of the polynomials that are
the points of B2. Define the following map

R : P5 −→ P5

(x, y, z, w) 7−→
(

3
2
x, 3y, 3x2 − 12z, 8w − 1

2
xy
)

It can be checked by an explicit calculation that R is an automorphism of P5

which sends B2 to Σ2 and which interchanges the two symplectic structures.
As before, we consider the spaces P2n+1 for any n. Let Bn ⊂ P2n+1 the

space of all polynomials having n roots of multiplicity two. Then we have
the following

Theorem 1.20. Consider the space P2n+1 of polynomials of degree 2n + 1
with arbitrary sum of roots, i.e., the space of polynomials of type P (t) =
t2n+1+a0t

2n+. . .+a2n. This space is canonically graded by setting deg(ai) = i.
Define the following map

R : P2n+1 −→ P2n+1

P (t) 7−→ R(P )(x)

where the polynomial R(P )(x) is defined as

R(P )(x) := Res t=∞

(
t2n
(
1 − x

t

)n− 1
2
(
1 +

a0

t
+ . . .+

a2n

t2n+1

) 1
2

)

The map R is an automorphism of the space P 2n+1. It sends the subspace
P2n+1 into itself (thus defining an automorphism of P2n+1) and the subspace
Bn ⊂ P2n+1 of polynomials having n double roots to the space Σn ⊂ P2n+1 of
polynomials having one root of multiplicity n+1. The space Bn is lagrangian
with respect to the symplectic form R∗ω (where ω is the natural symplectic
structure in P2n+1 constructed above).
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Proof. We use a Taylor expansion. One finds that

(1 − p)n−
1
2 = 1 −

(
n− 1

2

)
p+

(
n− 1

2

) (
n− 3

2

)
p2 − . . .

(1 + q)
1
2 = 1 + 1

2
q − 1

8
q2 + . . .

We substitute the above expressions and compute first modulo the ideal
(a0, . . . , a2n)

2 to obtain

R(P )(x) = Res t=∞

( (
1 − 2n−1

2
x
t

+ 2n−1
2

2n−3
2

(
x
t

)2
+ . . .

)
·

(
t2n + a0

2
t2n−1 + . . .+ a2n

2
t−1
))

mod a2

The first factor does not contain any ai and all coefficients are non-zero.
Therefore, the polynomial R(P ) has a fixed highest order coefficient, i.e., the
map R is well-defined. Moreover, R is invertible and respects the grading.
This implies that if the coefficient a0 vanishes, then the sum of roots of R(P )
also vanishes. Therefore we get an automorphism of P2n+1.

Now we prove that R sends Bn to Σn. Any P ∈ Bn can be written as
P (t) = (t− a)

∏n
i=1(t− λi)

2. Then we have

R(P )(x) = Res t=∞

(
√

(t− a)(t− x)2n−1

n∏

i=1

(t− λi)

)

and moreover

R(P )(k)(x) = ck · Res t=∞

(
√

(t− a)(t− x)n−k−
1
2

n∏

i=1

(t− λi)

)

where ck is the constant factor (−1)k (2n−1)·(2n−3)·...·(2n−2k+1)
2k . This shows that

the expression under Res is regular at infinity for x = a and k ≤ n. In other
words, R(P )(k)(a) = 0 for k = 0, . . . , n, which proves that R(P ) ∈ Σn.

The proof of the last statement (the fact that Bn is lagrangian with
respect to R∗ω) will be postponed after we have introduced the symplectic
structure R∗ω in a canonical way.

The space P2n+1 can of course be seen as the universal unfolding of the
A2n-singularity. We will introduce a canonical symplectic structure on the
unfolding space of any function with isolated critical points. Our main ref-
erence for the following paragraphs is [VG82].
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Consider the germ of a holomorphic function

f : (Cn+1, 0) −→ (C, 0)

with isolated critical points. This amounts to say that the Milnor algebra
OCn+1,0/Jf (where Jf is the Jacobi ideal of f) is finite dimensional over C

(denote its dimension by µ). Then it is well known that a semi-universal
unfolding of f is given by a germ of a function

F : (Cn+1 × C
µ, 0) −→ (C, 0)

with F (x, t) = f(x) +
∑µ

i=0 gi · ti, where g1, . . . , gµ is a chosen basis of the
Milnor algebra. Moreover, it is possible and often convenient to take g1 = 1.
Following standard terminology, we will also call the morphism

ϕ : (Cn+1 × C
µ, 0) −→ (C× C

µ, 0)
(x, t) 7−→ (F (x, t), t)

an unfolding of f . We need to choose representatives of the these germs,
they have to respect certain (transversality) conditions. The existence of
good representatives follows from general results as found, e.g. in [Loo84].
Denote by M ⊂ Cµ, S ⊂ C resp. X ⊂ Cn+1 small neighborhoods of 0 in
Cµ, C resp. Cn+1 such that F : X ×M → S and ϕ : X × M → S × M
are representatives of the above germs with the desired properties. There
are distinguished hypersurfaces of M (discussed in [Her02]), namely, the
discriminant, the caustic and the bifurcation diagram. We are only interested
in the discriminant here. There are several ways to introduce it: We first
define the critical space of the unfolding F to be

CF := {(x, t) ∈ X ×M | dxF (x, t) = 0}

The complex structure of CF is taken to be the one given by the Jacobi
ideal (∂xi

F ). It will be in general non-reduced. One might define the “big
discriminant” as Ď := ϕ(CF ) ⊂ S ×M and the discriminant as D := ϕ(C ∩
F−1(0)) ⊂ {0} ×M ∼= M . It is the hypersurface of parameters t such that
the deformed singularity, that is, the zero fibre of the deformed function Ft

is still singular. An important fact is that the regular locus Dreg consists
of those parameters t where F−1

t (0) has exactly one double point (an A1-
singularity). Consider the hypersurface V := F−1(0) ⊂ X ×M . Then the
restriction of the projection X ×M → M to V ∩ F−1(M\D) is a smooth
morphism whose fibres are all homotopy equivalent to the Milnor fibre of
original function f . Therefore, we have a well-defined holomorphic vector
bundle H → M\D of rank µ whose fibres over a point t ∈ M\D are the
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cohomology spaces Hn(Vt,C) = Hn(ϕ−1(0, t),C). This bundle cames with a
flat structure, defining the Gauß-Manin connection ∇ on H . Denote by H
the sheaf of holomorphic sections of H . Then one might ask about possible
extensions of H over the discriminant D. The second part of [Her02] contains
an extensive study of this problem. We quote one result.

Theorem 1.21. Denote by i : M\D →֒ M the inclusion. Let k ∈ Z be fixed.
Then there is a coherent sheaf H(k) of OM -modules, which is a subsheaf of i∗H
with the following properties: There is a connection ∇ on H(k), meromorphic
along D, i.e., a morphism

∇ : H(k) −→ H(k) ⊗ ΩM(∗D)

which is logarithmic (meaning that the image of ∇ is contained in H(k) ⊗
ΩM(log D)). Moreover, the residue endomorphism of ∇ along Dreg (see
[Her02], chapter 8 for a precise definition) is

• semi-simple with eigenvalues n−1
2

− k (with multiplicity one) and zero
(with multiplicity µ− 1) in case that n−1

2
6= k

• nilpotent with one Jordan block of size two in case that n−1
2

= k

These sheaves form a good filtration (definition B.4 on page 153) on the
Gauß-Manin system (see, e.g., [Oda87] and the references therein).

Now that we know about the existence of the modules H(k) we describe
how to construct sections of it. Consider the sheaf of differential n-forms
Ωn
X×M . For any form ω ∈ Ωn

X×M , the restriction to Vt for t /∈ D is closed and
defines an element of Hn(Vt,C). Thus the map Pω : t 7→ [ω]t ∈ Hn(Vt,C) is
a well-defined section of the bundle H. We can also see it as an element of
i∗H. Then we have the following.

Lemma 1.22. The section Pω lies in H(−1).

Proof. The first case to consider is that of a non-degenerate critical point.
Its Milnor number equals one, thus there is only one vanishing cycle γ. Let
t be the coordinate on M (which is also one-dimensional). It is classical to
prove (see [AGZV88] or [Arn90]) that

∫

γ

ω = ct
n+1

2 + . . .

with c 6= 0 and where the points stands for higher order terms. Hence,
for a general function, the residue endomorphism along Dreg has n+1

2
as an

eigenvalue proving that Pω ∈ H(−1).
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Following Varchenko and Givental, we will call the map Pω a period
map (in a similar situation, such a map is called infinitesimal period map
in [Sab02]). Any period map defines via the Gauß-Manin connection a mor-
phism from the tangent bundle to H(−1), namely:

Φω : ΘM −→ H(−1)

X 7−→ ∇XPω

One might consider the covariant derivative of Pω with respect to the vector
field ∂t1 . From the fact that the H(k) define a filtration on the Gauß-Manin
system it follows that ∇k

∂t
Pω ∈ H(k−1). The section ∇k

∂t
Pω defines a period

map denoted by Φk
ω which is called k-th adjoint period map in [VG82].

Denote by φkω := Φk
|M\D the restriction to a morphism from Θ|M\D to H.

A period map Pω is called non-degenerate in [VG82] iff the morphism φω
is an isomorphism of vector bundles. It turns out that the non-degeneracy
of a period map is determined by finite jets of the form ω and that under
some hypothesis (see lemma 1.23 below), almost all forms give rise to non-
degenerate period maps.

Suppose that we are given a form ω which yields an non-degenerate pe-
riod map. Then we can use the bundle isomorphism ΘM\D → H to carry
over existing structures in H onto the tangent bundle. Most important in
the following is the intersection form on H: this is a bilinear (possibly de-
generate) pairing I : H⊗H → OM\D defined by the topological intersection
form of n-cycles in the manifolds Vt. The pairing I is symmetric (resp. anti-
symmetric) iff n is even (resp. odd). The following lemma, taken from [VG82]
shows how I can be carried over to the tangent bundle of M .

Lemma 1.23. Suppose that I is non-degenerate and anti-symmetric (the
number of arguments of f is even). Then µ is even and we have

• Almost all forms ω yield non-degenerate period maps, i.e. forms with
degenerate P k

ω form in the jet space an analytic subset.

• Let ω ∈ Ωn
M×X such that P k

ω is non-degenerate. Then there is an anti-
symmetric form induced on ΘM\D. For k = n+1

2
− 1, this form extends

to a holomorphic form on ΘM which is a closed differential form on
M , i.e., a symplectic structure. We call it intersection form on M .

Proof. For the proof of both parts of the theorem, one needs to study the
behavior of integrals of the type

∫
γj
∇∂ti

P k
ω where γ1, . . . , γµ is a basis of

horizontal sections of the homology bundle. The period map P k
ω is non-

degenerate iff the determinant of the matrix J := (
∫
γj
∇∂ti

P k
ω )i,j (this is the
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Jacobi matrix of the period map) does not vanish outside the discriminant.
This determinant is not a single-valued function in M\D, but its square is
invariant under the monodromy. One can prove that det2(J) depends on
finite jets of the form ω and vanishes outside D only for a proper subset in
the jet space.

For the second statement, it is clear that the intersection form induces
a non-degenerate antisymmetric pairing on ΘM\D. We first have to prove
that it extends over the discriminant. It suffices to show that it extends over
the smooth points of the discriminant because then an extension over the
whole of D exists by Hartog’s theorem. So let p0 be in Dreg. Let l be a
line through p0 in the ∂t0-direction. Then for p ∈ l near p0, the manifold
Vp is a bouquet of µ n-spheres. We can choose a basis of the cohomology
of this manifolds, consisting of cycles γ1, γ2, . . . , γµ where γ1 is the unique
cycle vanishing at p0, and the intersection form is given by I(γ1, γ2) = 1 and
I(γi, γj) = 0 for i, j ∈ {3, . . . , µ}. Obviously, these cycles can be extended to
horizontal sections of the homology bundle over l. Then it is known that the
integrals

∫
γi
Pω can be expanded in a power series in p− p0 of the form (see

also lemma 1.22 on page 35)

∫
γ1
Pω = (p− p0)

n+1
2

∑∞
i=0Ai(p− p0)

i

∫
γ2
Pω = 1

2πi
log(p− p0)(p− p0)

n+1
2

∑∞
i=0Bi(p− p0)

i +
∑∞

i=0Ci(p− p0)
i

∫
γj
Pω =

∑∞
i=0Di(p− p0)

i ∀ i ∈ {3, . . . , µ}

where Ai, Bi, Ci, Di are locally constant sections of the cohomology bundle
over l. If we consider the Jacobi matrix J̃ of the k-th adjoint period map,
then the intersection form on M\D is given by J̃T IJ̃ where I is the matrix
of the intersection form in the cohomology bundle in a basis dual to γi.
Therefore, for k ≤ n+1

2
− 1, J̃T IJ̃ can be extended over Dreg and hence over

D. It remains to prove that it is closed and non-degenerate near the origin.
We have to prove that det(J̃T IJ̃) does not vanish, but this is clear since

det(J̃T IJ̃) = det2(J̃) det(I), I is locally constant and the order of det2(J̃)
equals µ(n − 2k − 1) which is zero for k = n+1

2
− 1. From the fact that the

intersection form I is locally constant it follows that the induced form on M
is closed. This finishes the proof.

Definition 1.24. Suppose that we are in the situation of the lemma, i.e.,
that we have a symplectic structure on M . Then let δ = µ

2
and denote by

Bδ ⊂ D the closure of the set of points t ∈M such that f−1(t) has exactly δ
A1-singularities. We call this subspace the µ/2-stratum.
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Note however that is is unclear whether this space is always non-empty.
In the case of curves, it is of itself a subspace of dimension µ/2, thus non-
empty, see the last remark of this section. Now we prove the main theorem
of this section, which is also due to Givental and Varchenko ([VG82]).

Theorem 1.25. The µ/2-stratum is a lagrangian subvariety with respect to
the symplectic structure of M .

Proof. Let p0 ∈ Bδ
reg and U ⊂ Bδ

reg an open neighborhood of p0 in Bδ
reg.

Identify Tp0M with M near p0 and set W := {q0 + s∂t0 | q0 ∈ U ; s ∈
[0, ǫ) ⊂ R≥0}. For ǫ and U small enough, the intersection (W\U) ∩ D
where D is the discriminant will be empty. We proved in lemma 1.22 on
page 35 that the k-th adjoint period map is a section of H(k−1). By choosing
a trivialization of this bundle over W , the period map P k

ω can be written
as a family of maps Pt : U → H := Hn(Vp,C) where V is a fixed Milnor
fibre for p = p0 + s∂t0 ∈ W\U . In H we can chose a special basis: There
are δ cycles vanishing at p0 ∈ U . These cycles vanish at different points
of f−1(p0), so they do not intersect in H (for s sufficiently small). Denote
them by γ1, . . . , γδ. The intersection form I was supposed to be symplectic,
so there are complementary cycles γ̃1, . . . , γ̃δ such that I(γi, γ̃j) = δij (and
I(γi, γj) = 0, I(γ̃i, γ̃j) = 0). Then we have

∫
γi
Pω = (p− p0)

n+1
2

∑∞
i=0Ai(p− p0)

i = s
n+1

2

∑∞
i=0Ais

i

∫
γ̃i
Pω = log(s)s

n+1
2

∑∞
i=0Bis

i +
∑∞

i=0Cis
i

In particular, we get that
∫
γi
P k
ω (remember that k = n+1

2
− 1) is zero on

U × {0} ⊂ W , that is, P0(U) is zero on the cycles γi. Therefore, also the
intersection form I is zero on the image of P0(U). This implies that the form
induced on W (recall that is was defined on the discriminant D by analytic
continuation of the form on M\D) vanishes on U .

We make only two additional remarks on the singularities Bδ: First, in
the case of the A2n-singularity the spaces Bδ obviously coincide with the
Bn’s defined above. It remains to prove that the map R carries the inter-
section form to the form coming from the representation of sl2. Givental
proves this in an indirect way, in fact, he shows that the symplectic form
on P2n+1 relative to which the “first” open swallowtail Σ2 is lagrangian is
unique up to a constant factor. As R carries B2 to Σ2, and B2 and Σ2 are
lagrangian with respect to the two symplectic forms, it follows that R is a
symplectomorphism.
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The second remark concerns the case n = 1, then M is the semi-universal
deformation space of a plane curve singularity (C, 0), and Bδ is the subspace
of points t such that the deformed curve Ct is the image of a deformation of
the normalization C̃ of the original curve. Bδ is called δ-constant stratum,
and the number δ is the usual δ-invariant of the normalization n : C̃ → C.
The normalization of Bδ (which is smooth by work of Teissier [Tei77]) is the
semi-universal deformation space of the map n. In particular, in this case
the space Bδ is non-empty.

1.6 Further examples

In this last section we mention very briefly other classes lagrangian singular-
ities. Much more could be said on these examples, but a detailed description
is beyond the scope of this thesis.

1.6.1 Spectral covers of Frobenius manifolds

Frobenius manifolds has become a very active field of research in the last
years. Manifolds with multiplication on the tangent bundle and compatible
flat metric has first been introduced by K. Saito around 1980 (a good survey
of Saito’s work is [Oda87]). The very definition of a Frobenius manifold is
due to Dubrovin (see, e.g., [Dub96]). We give the definition of a Frobenius
manifold and show how to associate to it in a canonical way a lagrangian
subvariety of the cotangent bundle.

Definition 1.26. Let M be a complex-analytic manifold and g a flat metric,
i.e. a symmetric and non-degenerate (2, 0)-tensor such that the associated
Levi-Civita connection ∇ is flat. Let a commutative and associative multi-
plication on the tangent bundle ΘM (that is, a symmetric (2, 1)-tensor Ω) be
given. We write X ◦ Y := ΩX(Y ) for all X, Y ∈ ΘM . Suppose that we have
a global unit field e. Let the following conditions be satisfied

• The metric is compatible with the multiplication, that is, g(X ◦Y, Z) =
g(X, Y ◦ Z) for X, Y, Z ∈ ΘM .

• ∇Ω = 0.

• The unit field e is horizontal, i.e., ∇e = 0.

Then (M, ◦, g, e) is called a Frobenius manifold. Suppose moreover that there
is a field E with LieE(◦) = d·◦ and LieE(g) = D ·g (d,D ∈ C, d 6= 0) and such
that the endomorphism ∇E : ΘM → ΘM which sends a vector field X ∈ ΘM
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to ∇XE is horizontal. Then we call (M, ◦, g, e,E) a Frobenius manifold with
conformal structure and E its Euler field.

Consider the symmetric algebra S•(ΘM) of ΘM . This is a sheaf of alge-
bras which can be canonically identified with the subsheaf of OT ∗M consisting
of function on the cotangent bundle which are polynomial with respect to
the fibers of the projection T ∗M → M (see lemma B.2 on page 152). The
multiplication tensor can be seen as a morphism ΘM → End(ΘM). It ex-
tends by composition to the tensor algebra T •(ΘM) and descends due to
commutativity to S•(ΘM). The morphism

S•(ΘM) −→ End(ΘM)

obtained in this way provides ΘM with a S•(ΘM)-module structure. There-
fore, the annihilator of ΘM as a S•(ΘM)-module defines an ideal sheaf I ⊂
S•(ΘM). Denote its extension to OT ∗M also by I.

Definition 1.27. The subvariety L ⊂ T ∗M defined by I ⊂ OT ∗M is called
the spectral cover (or the analytic spectrum) of the Frobenius manifold M .

One remarks that the analytic spectrum only depends on the multiplica-
tion but not on the metric. This facts is used extensively in the first part
of [Her02], where manifolds (M, ◦, e,E) without metric are studied (they are
called F-manifolds). The following theorem relates Frobenius manifolds with
lagrangian subvarieties.

Theorem 1.28. Let the multiplication ◦ be generically semi-simple, that is,
suppose that generically one can finds local coordinates (q1, . . . , qn) on M
such that ∂qi ◦ ∂qj = δij. Then the spectral cover L is a reduced subvariety of
the cotangent bundle T ∗M which is a lagrangian on its smooth locus.

The proof can be found in [Aud98b] or [Aud98a]. Frobenius manifolds
with generically semi-simple multiplication are also called massive.

There are two main classes of examples of Frobenius manifolds: Quantum
cohomology and unfolding of singularities. In the first case, the manifoldM is
the total cohomology in even degreeH2∗(X,C) (one can define it on the whole
cohomology using super-structures) of a smooth projective manifoldX (there
is also a more general definition working for any symplectic manifold). The
metric is simply the intersection form, which is obviously flat. However, the
product comes from the so called genus zero Gromov-Witten invariants and
is a multiplication of two elements α, β ∈ H2∗(X,C) depending on a third
class ξ ∈ H2∗(X,C). Therefore it defines a multiplication on the tangent
bundle of M . However, it is not true that the Frobenius structure defined
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in this way is always massive, see [Aud98a] for a discussion of this fact. One
might ask whether for manifolds with multiplication on the tangent bundle
which is not semi-simple, the ideal defining the spectral cover (or even its
radical) is still involutive.

For unfoldings of singularities, the situation is in some sense inverse to
the one just described: The manifold M is the parameter space of a semi-
universal unfolding (just like in section 1.5 on page 31) and the multiplication
cames simply from the Kodaira-Spencer map of the unfolding. In fact, it is
true in general that the spectral cover determines completely the multipli-
cation. For a semi-universal unfolding, the spectral cover is isomorphic to
the critical space of the family. Therefore it is a smooth space, and we are
in the situation of the Arnold correspondence between lagrangian mappings
and families of functions (see definition 1.6 on page 13). In particular, every
germ of a Frobenius manifold with smooth analytic spectrum is a product of
semi-universal unfoldings of hypersurface singularities.

However, the main difficulty to get a Frobenius structure on M in this
case is the construction of the metric. One uses in principle the same theory
as described in section 1.5, that is, a period map which identifies the tangent
bundle of M with a certain locally free extension H(k) of the cohomology bun-
dle over M\D (D being the discriminant). Apart from the intersection form,
there is a second topologically defined form in the fibres of the cohomology
bundle, namely, the so called Seifert form. In contrast to the intersection
form, it is always non-degenerate and symmetric. The main point now is to
choose the right period map which transfers this form to the tangent bundle
(it needs to define a flat metric on M). K. Saito’s constructed such a map
which comes form a section of H(k) called the primitive form. Its construc-
tion is rather subtle and uses deep results from algebraic analysis. One can
consult the original articles of K. Saito as well as [Oda87] or [Her02] for a
more simplified treatment.

1.6.2 Special lagrangian singularities

Let us consider the complex linear space Cn as a real symplectic manifold
(thus, as R2n) with symplectic form given by ω =

∑n
i=1 dzi ∧ dzi, where

z1, . . . , zn are complex coordinates. Then we can speak about real lagrangian
submanifolds (or subvarieties) of Cn. On the other hand, the presence of a
complex structure makes it possible to distinguish certain of these lagrangian
submanifolds.

Definition 1.29. A special lagrangian submanifold of Cn is a (real) n-
dimensional submanifold L such that the symplectic form ω and the imagi-
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nary part of the holomorphic n-form Ω := dz1 ∧ . . . ∧ dzn vanishes on L.

This definition comes from the so-called calibrated geometry, namely, spe-
cial lagrangian submanifolds are characterized by the condition that they are
area-minimizing, in the sense that they admit an orientation such that at each
point p ∈ L, we have Re(Ω)|TpL = vol |TpL, where vol is the natural volume
form given by the metric on C

n and the orientation of L. This definition can
be found in [HL82].

It should be noticed that in the above definition, the fact that L is a
submanifold of Cn is not really used. The only point is the existence of
a holomorphic n-form. This leads to the more general notion of a special
lagrangian submanifold of a Calabi-Yau manifold.

Definition 1.30. Let X be a Calabi-Yau manifold of dimension n, that is,
a (complex) n-dimensional Kähler manifold which admits a non-vanishing
holomorphic differential form Ω of degree n. Then L ⊂ X is called spe-
cial lagrangian iff it is lagrangian with respect to the Kähler form ω and iff
Im(Ω)L = 0.

For other characterizations of Calabi-Yau manifolds, see the discussion
of applications of the T 1-lifting theorem in the first appendix, in particular
corollary A.25 on page 138. In [Joy00], an even more general notion, that of
an almost Calabi-Yau manifold is used.

We informally define singular special lagrangian subvarieties of Calabi-
Yau manifolds as varieties whose smooth locus is an special lagrangian sub-
manifold. The interest in these varieties comes from the so called SYZ-
conjecture (after Strominger, Yau and Zaslow): It is expected that mirror
symmetry can be expressed as a duality between two maps f : M → B and
f ∗ : M∗ → B, where M and M∗ is a (mirror) pair of Calabi-Yau 3-folds, B
is a real three-dimensional manifold and the maps f and f ∗ are fibrations
in special lagrangian three-tori over an open dense subset B0. The main
problem is to understand what happens over B\B0. It is unknown in general
what type of degenerations can occur. The reader can consult [Joy00] and
the reference therein for further details concerning singularities of special
lagrangians. We restrict ourselves here to one simple example, which can
already be found in [HL82].

Consider the following map

f : C3 −→ R3

(z1, z2, z3) 7−→ (|z1|2 − |z2|2, |z1|2 − |z3|2, Im(z1z2z3))

The zero fibre of this map (denote it by L0) can be described geometrically as
follows: Consider a three-dimensional (real) torus T 3, given by the equations



1.6. FURTHER EXAMPLES 43

|zi|2 = 1 as lying in the five-dimensional sphere S5 of radius
√

3. Then
cut this torus with the subspace given by z1z2z3 = 1. This yields a two-
dimensional subtorus T 2 of T 3. Finally, take the cone over this manifold
inside R6, that is, the set of all real lines through the origin and points of
T 2. This cone diffeomorphic to L0.

It follows from the construction that L0 has a unique singular point at the
origin in R6. We chose coordinates (x, y, z, w, p, q) of R6 such that z1 = x+iy,
z2 = z + iw and z3 = p+ iq, so that ω = dx ∧ dy + dz ∧ dw + dp ∧ dq and

Ω = dx ∧ dz ∧ dp− (dx ∧ dw ∧ dq + dy ∧ dw ∧ dp+ dy ∧ dz ∧ dq)

+i (dx ∧ dz ∧ dq + dx ∧ dw ∧ dp+ dy ∧ dz ∧ dp− dy ∧ dw ∧ dq)

Then L0 is given by the following equations:

f1 := z2 − p2 + w2 − q2

f2 := x2 − p2 + y2 − q2

f3 := zpy + xpw + xzq − ywq

Its singular locus (reduced structure) is given by the vanishing of

x2 + y2 p2 + q2 z2 + w2

pw + zq py + xq zy + xw
zp− wq xp− yq xz − yw

This shows that over R, the singular locus is a point whereas over C, it is of
dimension two. In fact, a primary decomposition shows that it is a union of
three components, given by the following ideals:

I1 = (w, z, py + xq, p2 + q2, xp− yq, x2 + y2)

I2 = (q, p, zy + xw, z2 + w2, xz − yw, x2 + y2)

I3 = (y, x, pw + zq, p2 + q2, zp− wq, z2 + w2)
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Chapter 2

Lagrangian deformations

In this chapter we start to investigate deformation theoretic questions for
lagrangian singularities. To motivate constructions which will be introduced
later, we first discuss two simple cases, namely, that of smooth real lagrangian
submanifolds and that of plane curve singularities. Here the deformation the-
ory is considerable simpler to describe than in the general case and more or
less complete results were already known. In the third section of this chapter,
we introduce a general framework covering all deformation problems associ-
ated to singular lagrangian subvarieties. We work in the context of categories
fibred in groupoids and deformation functors, which we explain in some detail
in Appendix A. The aim of the first two sections is to describe infinitesimal
deformations in a “naive” sense, that is, we consider deformations over the
double point up two an appropriate group action (which takes into account
the symplectic structure). The more intrinsic meaning of these deformations
spaces as tangent spaces of a functor will become clear in the general case
discussed in the third section and in the next two chapters.

2.1 Real lagrangian submanifolds

We state and prove a classical result concerning deformations of real la-
grangian submanifolds L ⊂ (M,ω). The setup is as follows: One starts with
a symplectic C∞-manifold (M,ω) (which we suppose to be simply connected
for simplicity) and a (smooth) lagrangian submanifold L ⊂ M . Recall the
following theorem (see, e.g., [Wei73]).

Theorem 2.1. There is an open (tubular) neighborhood U of L in M , an
open neighborhood V of the zero section T ∗LL ⊂ T ∗L and a symplectomor-
phism Φ : U → V such that Φ(L) = T ∗LL.
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We denote by L(M,ω) the space of all lagrangian submanifolds of M .
This space can be equipped with a topology, see [Wei73]. Now we consider a
deformation of L in M , that is, a map γ : I → L(M,ω) where I is an interval
in R containing zero such that γ(0) = L and such that γ(t) ⊂ U for all t ∈ I.

Using the symplectomorphism Φ, we get a one-parameter family βt of
sections of T ∗L, that is, a family of differential forms on L. Moreover, any
γt ∈ L(M,ω) is lagrangian, meaning that β∗t ω = 0, but β∗t ω = β∗t (dα) = dβt
where α is the Liouville form on V ⊂ T ∗L. Therefore, we obtain a family of
closed forms on L. Suppose that βt are exact one forms, i.e., that there is a
family of functions Ft : L → R with dFt = βt. Then the flow of the (time-
dependent) hamiltonian field XFt defines a family of symplectomorphisms
of V , thus, a family of symplectomorphisms of U trivializing the family γt.
This shows that the space of deformations of L coincides with the space of
maps Φ̃ from I to H1(L,R), the first de Rham cohomology group of L. In

particular, infinitesimal deformations are given by vectors ∂
∂t

Φ̃t=0. Therefore
we have

Theorem 2.2. The infinitesimal deformation space of a smooth lagrangian
submanifold L ⊂M is naturally isomorphic to H1(L,R).

2.2 Curve singularities

We will discuss another simple example of lagrangian deformations, where
the deformation spaces can be calculated “by hand”: germs of curves in the
plane (seen as a symplectic manifold by any volume form ω ∈ ΩK2,0). Such a
curve is obviously a lagrangian subspace and moreover, any deformed curve
is still lagrangian. However, the automorphism group acting is the symplec-
tic group which is strictly smaller than the usual automorphism group (the
one used for V -equivalence, also called contact equivalence). Therefore, it is
natural to expect the space of (infinitesimal) deformations of a lagrangian
curve singularity to be bigger then the usual T 1. This indeed the case and
can be seen as follows: Denote the singularity by (C, 0) ⊂ (K2, 0) and sup-
pose it be given by f ∈ OK2,0. Then any deformation over K[ǫ]/ǫ2 is given

by a equation of type f + ǫf̃ with f̃ ∈ OK2,0. But any f̃ ∈ (f) is a triv-

ial deformation because then the ideals (f) and (f + ǫf̃) are the same in
OK2,0[ǫ]/ǫ

2. So deformations are parameterized by OC,0. But some of them
are still trivial, namely, those induced from hamiltonian vector fields in K2.
The space of these fields is again parameterized by OC,0 since elements from
(f) give hamiltonian fields tangent to C. We see that the space of infinites-
imal lagrangian deformations of the curve germ (C, 0), which we denote by
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T 1
LagDef (C, 0) is given as the cokernel of the map

δ : OC,0 −→ OC,0

h 7−→ {h, f}

As we have a canonically given non-degenerate two-form ω, there is an iso-
morphism OK2,0

∼= Ω2
K2,0 which does not depend on any choice. The Poisson

bracket on OK2,0 of two elements h1, h2 corresponds under this isomorphism
to dh1 ∧ dh2. Therefore, we get

T 1
LagDef (C, 0) ∼=

Ω2
K2,0

fΩ2
K2,0 + df ∧ dOK2,0

(2.1)

This last quotient is a quite familiar object in singularity theory, if we see
f as a mapping germ f : (K2, 0) → (K, 0), then Ω2

K2,0/df ∧ dOK2,0 is the
germ of sections of a free OK,0-module, called the Brieskorn lattice of f and
denoted by ′′H . The rank of this module equals µ, the Milnor number of the
singularity f . Thus we obtain

Theorem 2.3. The space of infinitesimal lagrangian deformations of a germ
of a plane curve (C, 0) given by an equation f ∈ OK2,0 up to symplectomor-
phisms of K2 is canonically isomorphic to the zero fibre of the Brieskorn
lattice of f . In particular, T 1

LagDef(C, 0) is a µ-dimensional vector space.

This result is remarkable in several ways: First, the usual infinitesimal
deformation space T 1

Def (C, 0) is of dimension τ , the Tjurina number of (C, 0).
Recall that τ = dimKOK2,0/ (f, ∂x1f, . . . , ∂xnf). We have the equality τ = µ
iff f is quasi-homogeneous with positive weights (see [Sai71]). In general, the
Milnor number is greater than the Tjurina number. In that case we see that
the space of symplectic structures modulo symplectomorphisms which leave
the curve C invariant is of dimension µ − τ . This also follows from results
of Givental (see [Giv88]), in fact, he proves that (in the complex case), there
is at most one symplectic structure ω (up to symplectomorphisms fixing C)

for a given class [α] ∈ H1(Ω̃•C) such that dα = ω and ωCreg = 0.

2.3 The lagrangian deformation functor

Motivated by the two above examples, we will now define a very general
framework which covers different deformation problems associated to la-
grangian subvarieties. More precisely, consider a mapping (which might not
be an embedding) i : X →M of a (not necessarily smooth) reduced analytic
space X into a symplectic manifold (M,ω) over K, such that the image is
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lagrangian, that is, such that i∗ω = 0 where we see i∗ω as an element of Ω̃2
X ,

the module of Kähler two-forms on X modulo torsion (see also the discussion
on page 16). Denote by Art the category of Artin rings.

Definition 2.4. Let a mapping i : X → M as above be given. We define a
category co-fibred in groupoids over Art (denoted by LagIsoX/M ) as follows:
Its objects are diagrams of the following type

M

��

�

� // M × S

��

X

i ??���
//

��

XS
iS

??���

f

��
{∗} // S

with S ∈ Artopp, f : XS → S flat and
(
pr ◦ ĩ

)∗
ω = 0 ∈ Ω̃2

XS/S
, where

pr : M × S → M is the projection. Morphisms (over a morphism S ′ → S
in Artopp) are the obvious (huge) commutative diagrams connecting two of
the above diagrams, where the map M × S ′ → M × S is fibrewise symplectic
and induces the identity over {∗}. It is easily checked that LagIsoX/M is
indeed a category co-fibred in groupoids. As explained in Appendix A (see
section A.1.2 on page 122), we get a functor LagIsoX/M ∈ Fun by associating
to S ∈ Artopp the set of isomorphism classes of elements of LagIsoX/M (S).

The name LagIso is chosen according to the two particular deformation
problems covered by this functor: deformations of lagrangian subvarieties
and of isotropic mappings, see definition 2.6 on the next page.

In order to fit into the general pattern as described in Appendix A, we
need to check some technical properties of the functor LagIsoX/M .

Lemma 2.5. LagIsoX/M satisfies the axioms (H1) and (H2) from defini-
tion A.7 on page 124 and also axiom (H5) from definition A.19 on page 134.

Proof. (H5) obviously implies (H1). Moreover, once we have proved (H5),
the bijectivity in (H2) follows immediately as in the prove for the case of flat
deformations in [Art76]. We use the prove of (H5) in [Gro97]. So let us be
given surjections A′ → A and A′′ → A in Art and deformations (XA′, iA′) ∈
LagIsoX/M (A′), (XA′′, iA′′) ∈ LagIsoX/M(A′′) and (XA, iA) ∈ LagIsoX/M (A)
with

OXA′ ⊗A′ A = OXA′′ ⊗A′′ A = OXA

and such that the OM×R-module structures of OXR
(where R = A,A′, A′′)

representing the morphism iR is compatible with these tensor products. Then
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we set

τA′,A′′,A (XA′, XA′′) := X̃ :=
(
X,OXA′ ×OXA

OXA′′

)

We see that there is a natural algebra morphism ĩ∗ : OM×Ã → OX̃ , where

Ã := A′′ ×A A
′ (because OM×Ã

∼= OM×A′′ ×OM×A
OM×A′). Then obviously

ĩ∗ ◦ (pr)∗ω = 0, because this pullback is a relative form which is zero on the
factors of the fibred sum.

The following two chapters are devoted to study to special cases of the
functor LagIso. For notational convenience, we define functors which distin-
guish these two cases.

Definition 2.6. Let (M,ω) a 2n-dimensional symplectic manifold over K.

• Let L ⊂ M be a lagrangian subvariety, given by an involutive ideal
sheaf I ⊂ OM . Then we denote by LagDef L the functor LagIsoL/M
associated to the embedding i : L →֒ M . The elements of LagDef L(S)

for S ∈ Artopp are isomorphism classes of deformed ideals Ĩ ⊂ OM×S

which are involutive with respect to the Poisson-structure on M ×S up
to the action of relative symplectomorphisms in M × S.

• Consider an isotropic mapping i : X → M (i.e. i∗ω = 0) where X is
an open subset of Kn. Then we let IsoDef i := LagIsoX/M be the functor
of deformations of the mapping i. IsoDef i(S) are deformed isotropic
maps ĩ : X × S → M × S (i.e. ĩ∗ ◦ pr∗ω = 0) up to the action of the
group which is the semi-direct product of the group Aut S(X × S) with
SympS(M × S).

It should be clear that the functor LagIso reduces in the two particular
cases to the functors LagDef and IsoDef : in the first case, if i : L →֒ M is
an embedding, then by flattness a deformation iS : LS →M ×S of this map
will still be an embedding, that is, LagIsoL/M consists of deformations of the
subspace L inside M . On the other hand, if X is open in Kn, it does not
deform at all, so elements of LagIsoX/M are isomorphisms classes of mappings
i : X × S →M × S.

We remark that one can of course define local versions of these functors,
that is one starts with germs of objects of the above type. This is indeed the
case that we will consider mainly in the next two chapters. However, we can
always work with the functors as defined by supposing that L, M and the
mapping i are small representatives for the given germs (L and M have to
be Stein in the complex case).



50 CHAPTER 2. LAGRANGIAN DEFORMATIONS

When defining the functor LagIsoX/M for a general mapping i : X → M ,
one may ask whether there are such maps where X is not smooth and i is
not an embedding. In the following theorem, we give an example.

Theorem 2.7. Fix a positive integer n and let (X, 0) ⊂ (K3, 0) be the three-
dimensional An-singularity, given by the equation xz − yn+1 = 0. Then the
map germ

β : (K3, 0) −→ (K4, 0)
(x, y, z) 7−→ (x, y, zy, xy)

defines an isotropic map (X, 0) → (K4, 0), i.e., we have (β∗ω)|Xreg = 0.

Proof. Consider the following commutative diagram of map germs

(K2, 0)

α
��?

??
??

??
??

ϕ // (K4, 0)

(K3, 0)

β

??���������

where
α : (K2, 0) −→ (K3, 0)

(s, t) 7−→ (sn+1, st, tn+1) =: (x, y, z)

is the normalization of (X, 0) and

ϕ : (K2, 0) −→ (K4, 0)
(s, t) 7−→ (sn+1, tn+1, stn+2, sn+2t)

is the composition. Then ϕ∗ω. This proves the theorem.

There is one deformation problem we are going to consider which is not
covered by the above formalism, namely, deformations of an integrable sys-
tem. In principle this problem can also be seen as a special version of the
functor LagIso by using the graph construction, but this needs supplementary
effort to be written down properly, without being very useful in applications.
Therefore, we will define an extra functor, adapted for this problem. The
relation with the deformation of lagrangian submanifolds via the graph con-
struction will become clear later (see lemma 3.27 on page 72).

The definition of the deformation functor for an integrable system is
rather simple: Let us consider a mapping

F = (f1, . . . , fn) : M −→ U ⊂ K
n

such that {fi, fj} = 0 for all i, j. We call a map

F̃ = (f̃1, . . . , f̃n) : M × S −→ U
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with F̃ (p,q, 0) = F (p,q) an unfolding of F over S. We have a natural group
action on the set of all unfoldings of F over S, namely, let Symp2n

S be the
group of all S-symplectomorphisms of M × S (i.e., the group of all families
of symplectomorphisms of M , parameterized by S). This defines a groupoid
HamDefF (S) and one sees that HamDefF becomes a category co-fibred in
groupoids. Therefore, we obtain a functor HamDef F by sending S ∈ Artopp

to Iso (HamDefF (S)).
As the spaces involved here are smooth and therefore deform trivially, it

is easy to check the following fact.

Lemma 2.8. The functor HamDef F satisfies conditions (H1), (H2) and
(H5).

We will see that this deformation functor is much simpler to handle than
the functor LagDef . However, it is only of theoretical interest because its
tangent space is almost never finite-dimensional.
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Chapter 3

Lagrangian subvarieties

The first special case of the general lagrangian deformation problem described
in the last chapter is concerned with lagrangian subvarieties L embedded in
a symplectic manifold M . It turns out that the deformation theory of L is
related to a “symplectic analogue” of the de Rham complex, namely, a sheaf
complex on L which coincides with the de Rham complex on the smooth
locus of L. This construction is a special case of the general formalism of Lie
algebroids, which we introduce in the first section.

3.1 Lie algebroids

We give the definition of a Lie algebroid. We treat directly the relative case,
i.e., Lie algebroids over morphisms X → S of complex spaces. Studying
deformations of lagrangian families turns out to be quite useful (like in any
deformation theory), and the relative version of the lagrangian de Rham
complex can be directly deduced from Lie algebroids in the relative setting.
This complex, defined for modules over arbitrary Lie algebroids is an analogue
of the de Rham complex in (ordinary) D-module theory (see Appendix B),
namely, for a Lie algebroid g one constructs a non-commutative algebra Dg of
generalized differential operators and defines DR(M) as RHomDg

(OX ,M)
for any module M over g.

3.1.1 Lie algebroids and differential operators

We define Lie algebroids and generalized differential operators first indepen-
dently. Both of them form categories in a natural way. We show that there
is a pair of adjoint functors between these categories. The material of this
section is essentially taken from [Käl98], [BB93] and [Rin63].
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Definition 3.1. Let S be an analytic space over K, X → S a morphism
of analytic spaces and g a sheaf of OS-Lie algebras, that is, a sheaf of OS-
algebras satisfying the usual relations for Lie algebras. Suppose moreover that
g is a coherent sheaf of OX-modules together with a fixed morphism of OS-Lie
algebras (the structure morphism, also called anchor by various authors)

α : g −→ ΘX/S = DerOS
(OX ,OX)

such that for all δ1, δ2 ∈ g and f ∈ OX we have

[δ1, fδ2] = α(δ1)(f)δ2 + f [δ1, δ2]

Then we call g a Lie algebroid relative to the morphism X → S (or Lie
algebroid over X/S for short). Lie algebroids over X/S form a category: a
homomorphism of OX-modules and OS-Lie algebras is a morphism of Lie
algebroids iff it commutes with the structure morphisms.

As usual, most interesting from the geometric viewpoint is the case OS =
K, then we have a Lie algebroid onX. The basic Lie algebroid is the (relative)
tangent sheaf itself. For a smooth variety X, the tangent sheaf ΘX and
the structure sheaf OX generate a non-commutative algebra, the ring of
differential operators DX (see Appendix B for some aspects of D-module
theory, in particular lemma B.1 on page 152). In the following, we define
differential operators associated to any Lie algebroid.

Definition 3.2. Let X be an analytic space over S. Then a ring of differ-
ential operators on X/S is a (non-commutative) OS-algebra D together with
a filtration

0 ⊂ D(0) ⊂ D(1) ⊂ . . . ⊂ D
such that D(m)D(n) ⊂ D(m+n), ∪∞i=0D(i) = D and such that the associated
graded ring

gr(D) := ⊕∞i=0D(i)/D(i− 1)

is a commutative OS-algebra. Moreover, we require that there is an inclusion
i : OX → D(0) such that

[i(OX),D(n)] ⊂ D(n− 1)

One can define the category of differential operators on X/S where mor-
phism are algebra homomorphisms respecting the filtrations. Then to any
ring D we associate a Lie algebroid g by setting

g := {δ ∈ D(1) | [δ, i(OX)] ⊂ i(OX)}
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Here the Lie bracket is the usual commutator of elements on D (one has
to check that g is stable under this commutator). The structure morphism
α : g → ΘX/S is defined as α(δ)(f) := i−1([δ, f ]) for δ ∈ g, f ∈ OX . That this
defines in fact a derivation will be proved in a more general context below (see
theorem 3.6 on page 57). We get a functor L from the category of differential
operators to the category of Lie algebroids. The following construction gives
a left adjoint to L.

Let a Lie algebroid g be given. Define the OX-module g̃ := OX⊕g, which
becomes a Lie algebra under the following bracket

[ , ] : g̃ × g̃ → g̃

(h1, g1), (h2, g2) 7−→ (α(g1)(h2) − α(g2)(h1), [g1, g2])

Consider the universal enveloping algebra UOS
(g̃) of g̃ over OS, i.e. the

quotient of the tensor algebra T •OS
(g̃) by the ideal generated by x̃⊗ ỹ − ỹ ⊗

x̃ − [x̃, ỹ] for x̃, ỹ ∈ g̃. Inside UOS
(g̃) we have the subalgebra of “elements

from g and OX ”, that is, the subalgebra generated by the image of g̃ in
UOS

(g̃). Denote this subalgebra by U+
OS

(g̃). Finally, we have to take into
account the OX -module structure of g. Therefore we define Dg to be the
quotient of U+

OS
(g̃) by the ideal generated by elements of the form h⊗ x̃−hx̃,

where h ∈ OX and x̃ ∈ g̃. The ring Dg is canonically filtered: We define a
grading on the Lie algebra g̃ by setting deg(g) = 1 and and deg(h) = 0 for
g ∈ g, h ∈ OX . This induces a filtration by order on T •OS

(g̃) and thus on Dg.
We denote the associated graded ring by gr(Dg). It can be checked that this
ring is commutative.

Lemma 3.3. The functor D from Lie algebroids to differential operators
defined in this way is left adjoint to L.

Proof. Let g be a Lie algebroid and D any ring of differential operators on
X/S. Then any morphism

Φ : g −→ L(D)

of Lie algebroids extends first uniquely to a morphism of Lie algebras Φ̃ :

g̃ → L̃(D) and then to a (OS-)algebra homomorphism

Φ̂ : T •OS
(OX ⊕ g) −→ D

(h1, g1) ⊗ (h2, g2) 7−→ h1h2 + h1Φ(g2) + h2Φ(g1)
+α(g1)(h2) + Φ(g1)Φ(g2)

where gi ∈ g and hi ∈ OX . Then it is easy to see that Φ̂ vanishes on elements
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of the form

(h1, g1) ⊗ (h2, g2) − (h2, g2) ⊗ (h1, g1) − (α(g1)(h1) − α(g2)(h1), [g1, g2])

h⊗ (h1, g1) − (hh1, hg1)

and defines thus a unique algebra morphism Dg → D.

We proceed to imitate some of the known constructions and objects for
ordinary differential operators. Denote by S•OX

(g) the symmetric algebra
over OX of g. On this algebra we have a Poisson-bracket, defined by the
bracket on g and the Leibniz rule. More precisely, denote by j the embedding
g →֒ S•OX

(g) and define

{j(x), j(y)} = j([x, y])
{f, g} = 0

{j(x), g} = α(x)g

for all x, y ∈ g and f, g ∈ OX . Remark that j(g) generates S•OX
(g) as an

algebra over OX , therefore the bracket is well defined by the above definitions
and the Leibniz rule.

On the other hand, the general theory of filtered rings (see [Gab81] and
[Bjö93]) shows that the graded ring gr(Dg) also carries a natural Poisson
bracket (which is defined essentially in the same way). Then the morphism

g −→ gr1(Dg) →֒ Dg

extends to a morphism of Lie algebras (Poisson algebras) S•OX
(g) −→ gr(Dg)

which is surjective by construction. The following lemma (which is in fact a
generalization of the Poincaré-Birkhoff-Witt theorem) is proved in [Rin63].

Lemma 3.4. Let g be locally free over OX . Then the natural morphism
S•OX

(g) −→ gr(Dg) is an isomorphism.

A basic question concerns the coherence of Dg, gr(Dg) and S•OX
(g). The

methods to prove coherence are the same as for ordinary differential opera-
tors, an indication of this fact is found in [Käl98].

Lemma 3.5. Dg, gr(Dg) and S•OX
(g) are coherent sheaves of rings.

3.1.2 Modules over Lie algebroids

A module over a Lie algebroid is intuitively an OX -module M with an action
of g on M, i.e., a bracket [ , ] : g ×M → M such that [g, fm] = f [g,m] +
α(g)(f)m and [fg,m] = f [g,m] for all g ∈ g, f ∈ OX and m ∈ M. This can
be reformulated in the following way.
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Theorem+Definition 3.6. Consider a faithful OX-module M, that is, sup-
pose that the natural morphism

i : OX −→ EndOX
(M)

h 7−→ (m 7→ h ·m)

is injective.

• The linear Lie algebroid associated to M is defined as follows: De-
note by D(M)(1) the subsheaf of EndOS

(M) of all operators δ such that
[δ, EndOX

(M)] ⊂ EndOX
(M). Then set

cX(M) := {δ ∈ D(M)(1) | [δ, i(OX)] ⊂ i(OX)}

The Lie bracket on cX(M) is just the commutator (well defined due to
the Jacobi identity), whereas the structure morphism is α(δ) := (f 7→
i−1([δ, f ])). Then (cX(M), [ , ], α) is a Lie algebroid.

• Let g be a Lie algebroid and M a (faithful) OX-module. Then a struc-
ture of a left g-module on M is by definition a morphism of Lie alge-
broids g → cX(M).

Proof. We have to show that the structure morphism is well defined, i.e. that
α(δ) is really an OS-derivation of OX . Let f1, f2 ∈ OX and denote by φ1, φ2

the multiplication with f1, f2, respectively. Moreover, let hk := α(fk) =
i−1([δ, fk]) (k = 1, 2). Then, as [δ, i(OX)] ⊂ i(OX), we have

[δ, φ1]φ2 = φ2[δ, φ1]

that is

δ(f1f2m) − f2δ(f1m) − f1δ(f2m) + f1f2δ(m) = 0

for all m ∈ M. Moreover

f2δ(f1m) − f2f1δ(m) = f2h1m
f1δ(f2m) − f1f2δ(m) = f1h2m

These three equations give

δ(f1f2m) − f1f2δ(m) = [δ, f1f2]m = h1f2m+ f1h2m

This proves α(f1f2) = α(f1)f2 + f1α(f2). On the other hand, for any δ ∈
EndOX

(M) we have δ(sm) = sδ(m) for s ∈ OS and m ∈ M, therefore
α(δ)(s) = 0. So we get α(δ) ∈ DerOS

(OX ,OX).
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Remark that a left g-module as defined is nothing else than a left module
over Dg. There is also a corresponding definition of a right g-module, but
we will not give it here. The structure sheaf OX is always a (left) module
over the Lie algebroid g, because cX(OX) = ΘX and the structure morphism
α : g → ΘX is a morphism of Lie algebroids.

Very much like for ordinary differential modules, one defines coherent left
g-modules to be those which are coherent over Dg. This condition turns
out to be equivalent to the local existence of good filtrations. Therefore
one can define the graded module gr(M) of a coherent g-module M. It
is a gr(Dg)-module (in particular, it is a module over S•(g)). The radical
of the annihilator of gr(M) is independent of the good filtration chosen.
Suppose in the following that g is a locally free OX -module. Then there is
a linear space over X, called Spec(S•(g)) (it is the spectrum of the algebra
S•(g) in the algebraic case) and a projection p : Spec(S•(g)) → X such
that p∗OSpec(S•(g)) = S•(g). The space Spec(S•(g)) replaces the cotangent
bundle in usual D-module theory where X is smooth, in the sense that we
have a Poisson bracket on S•(g) and that the following holds.

Lemma 3.7. Denote by J (M) ⊂ S•(g) the radical of the annihilator of the
S•(g)-module gr(M). Then {J ,J } ⊂ J . The subvariety defined by J (M)
is called the singular support or the characteristic variety of the coherent
g-module M.

The proof follows from Gabbers theorem (see [Gab81]). We remark that in
contrast to the case g = ΘX for smooth X, it is not clear whether there is
any dimension estimate of the characteristic variety that can be deduced from
this result. The main difficulty is that on the space Spec(S•(g)) one does not
have a symplectic structure so it makes no sense to speak about coisotropic
subvarieties and one cannot conclude that dim(char(M)) ≥ dim(X). For
the same reasons, the proof of the fact that the homological dimension of the
ring DCn,0 equals n does not immediately generalize to the rings Dg,0.

3.1.3 The de Rham complex

In the theory of ordinary DX-modules (for X smooth) we can associate to
any DX -module M its de Rham-complex, which generalizes the de Rham
complex of differential forms. A similar construction exists for modules over
general Lie algebroids. We start with a slightly more general situation by
considering a Lie algebroid g over X/S, an OX -module M and a morphism
of OX-modules β : g → cX(M). Denote Dg by D for short.
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Definition 3.8. Set Cp(g,M) := HomOX
(
∧p

g,M) and define a differential
δ : Cp(g,M) → Cp+1(g,M):

(δ (φ)) (h1 ∧ . . . ∧ hp+1) :=
∑p+1

i=1 (−1)i β (hi)φ
(
h1 ∧ . . . ∧ ĥi ∧ . . . ∧ hp+1

)

+
∑

1≤i<j≤p+1
(−1)i+j−1 φ

(
[hi, hj ] ∧ h1 ∧ . . . ∧ ĥi ∧ . . . ∧ ĥj ∧ . . . ∧ hp+1

)

Lemma 3.9. If M is a g-module, i.e., if β is a morphism of Lie algebroids,
then δ2 = 0 and we call the complex (C•(g,M), δ) defined in this way the de
Rham complex of the Lie algebroid g with values in M. Moreover, if g is OX-
projective, this complex can be canonically identified with RHomD(OX ,M).

Proof. Consider the following left D-module:

Sp pD := D ⊗OX

p∧
g

with the map s : Sp pD → Sp p−1
D

s (P ⊗ h1 ∧ . . . ∧ hp) :=∑p
i=1 (−1)i Phi ⊗ h1 ∧ . . . ∧ ĥi ∧ . . . ∧ hp+1+∑

1≤i<j≤p

(−1)i+j P ⊗ [hi, hj] ∧ h1 ∧ . . . ∧ ĥi ∧ . . . ∧ ĥj ∧ . . . ∧ hp

The terminology is chosen according to ordinary DX-module OX theory for
smooth X: in that case there is a resolution on the left DX-module OX called
Spencer complex which is defined just as above in our more general setting.

One has first to check that the map s is well defined, then one calculate
its square. Both of these calculations are quite nasty but straightforward.
We conclude that (Sp •D, s) is a complex. This already suffices to prove the
first statement of the lemma: If M is a D-module, then we can apply the
functor HomD(−,M) to the Spencer complex (in our extended sense). But
obviously

HomD(Sp pD,M) = HomD(D ⊗OX

p∧
g,M) ∼= HomOX

(

p∧
g,M)

and the differential δ of the de Rham complex is the dual of the differential
s from the Spencer complex under the functor HomD(−,M).

For the second statement, one needs to show that Sp •D is a resolution of
OX (viewed as a D-module) in case that g is OX -projective. This is first
proved in the case that g is locally free over OX , just like in ordinary D-
module theory (see [Meb89]), namely, one considers a filtered version of the
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Spencer complex and deduces the acyclicity from the exactness of its asso-
ciated graded complex, which is in fact a Koszul complex of the generators
of g. The general case where g is only OX-projective can then be deduced
from this more special one. All these arguments are explained in detail in
[Rin63].

Consider now the special case where M = OX with its natural structure
of a left g-module mentioned above. OX is an algebra, this allows us to
construct a (graded) algebra structure on the complex C•(g,OX) similar to
the product of differential forms.

Definition 3.10. Denote by ∧ the following product:

Cp(g,OX) × Cq(g,OX) −→ Cp+q(g,OX)

(Φ,Ψ) 7−→ Φ ∧ Ψ

with

(Φ ∧ Ψ)(f1 ∧ . . . ∧ fp+q) =

∑

I
∐
J={1,...,n}

i1<...<ip , j1<...<jq

sgn(I, J) · Φ(fi1 ∧ . . . ∧ fip) · Ψ(fj1 ∧ . . . ∧ fjq)

The sign is defined as

sgn(I, J) := sgn

(
1, . . . . . . . . . , p+ q

i1, . . . , ip, j1, . . . , jq

)

Theorem 3.11. The triple (C•(g,OX), δ,∧) is a differential graded algebra
(see definition A.2 on page 120). More precisely, we have for any Φ ∈ Cp,
Ψ ∈ Cq and Γ ∈ Cr:

1. Φ ∧ Ψ = (−1)deg(Φ)·deg(Ψ) · Ψ ∧ Φ

2. (Φ ∧ Ψ) ∧ Γ = Φ ∧ (Ψ ∧ Γ)

3. δ(Φ ∧ Ψ) = δ(Φ) ∧ Ψ + (−1)deg(Φ) · Φ ∧ δ(Ψ)

Proof. The first two points are trivial, while the third has to be checked by
an explicit calculation.
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Up to this point, we have developed the theory of Lie algebroids in some
analogy to ordinary D-module theory. In particular, the complex C•(g,M) is
a generalization of the de Rham complex of a D-module. The case M = OX

is rather trivial in D-module theory, it gives the usual de Rham complex
of the manifold X. However, if X is singular, then there is the de Rham
complex of Kähler differential forms (see the definition on page 15), which
contains important information on the structure of the singularities. The
complex C•(g,OX) is related to the complex of Kähler differentials as the
following lemma shows. Note that we have to consider the complex Ω•X/S of
relative differential forms.

Lemma 3.12. Consider a Lie algebroid g over X/S. Then there is a mor-
phism of differential graded algebras J : Ω•X/S → C•(g,OX).

Proof. First we dualize the structure morphism α : g → ΘX/S to get

α∗ :
(
ΩX/S

)∗∗ → g∗ = C1(g,OX)

Then we define J to be the composition α∗ ◦ ι, where ι : ΩX/S →
(
ΩX/S

)∗∗
is the canonical morphism. The product structure on C•(g,OX) allows us to
define an extension of J to the whole de Rham complex by setting

J(ω1 ∧ . . . ∧ ωp) := J(ω1) ∧ . . . ∧ J(ωp)

This shows directly that the morphism J is a morphism of graded algebras.
But it is even a morphism of DGA’s: It suffices to verify that the diagram

Ω1
X/S

J

��

C0(g,OX) = OX = Ω0
X/S

d

77oooooooooooooo

δ
''OOOOOOOOOOOOO

C1(g,OX)

(3.1)

is commutative. This is obvious.

3.2 The lagrangian Lie algebroid

After these generalities, we return to lagrangian singularities. We associate
a Lie algebroid to any family of lagrangian subvarieties L → S and consider
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its de Rham complex with coefficients in OL. So let us be given a flat family

L �

� //

f

��

M × S

pr2
����

��
��

��
��

S

of lagrangian varieties over a base S. Recall that this means that L is a
reduced analytic subspace in the manifold M × S, given by an ideal sheaf I
such that {I, I} ⊂ I ({ , } is the Poisson structure on M × S induced by
the symplectic form on M) and such that each fibre (one is sufficient) Ls has
dimension n (where dim(M) = 2n).

Lemma 3.13. Let g := I/I2 be the conormal sheaf of L. Then g is a Lie
algebroid on L/S which is isomorphic to ΘL/S on (L/S)reg, the regular locus
of f : L → S.

Proof. We have to define the Lie bracket and the structure morphism. The
bracket is obviously induced by the Poisson bracket on M×S, more precisely,
we have {Ii, Ij} ⊂ Ii+j−1 (this is rapidly verified by induction), thus there
is a well defined bracket { , } : g× g → g. By the same argument, there is a
bracket g ×OL → OL such that {g, f · h} = {g, f}h+ f{g, h} for g ∈ g and
f, h ∈ OL and {g, f} = 0 for f ∈ OS. This defines the structure morphism
α : g → ΘL/S by setting α(g) = {g,−}. α is a Lie algebra morphism, this
follows immediately from the Jacobi identity in OM×S .

Consider again the morphism J : ΩL/S → (I/I2)∗ from above. This
morphism is an isomorphism on (L/S)reg, because both ΩL/S and (I/I2)∗

are locally free away from the singularities and can be identified with the
sheaf of sections of the relative cotangent and conormal bundle. But these are
canonically isomorphic because the regular locus of each fibre Ls is lagrangian
in M ×{s}, see theorem 2.1 on page 45. Moreover, on (L/S)reg we also have
an isomorphism of ΩL/S with (ΩL/S)

∗∗. This shows that the structure map
is an isomorphism on (L/S)reg.

Denote by (C•L/S , δ,∧) the de Rham complex of the Lie algebroid g with

values in OL (with its DGA-structure). It is useful to write down explicitly
the first terms of this complex:

C0
L/S = OL →֒ C1

L/S = HomOL
(g,OL) −→ C2

L/S = HomOL
(
∧2

g,OL)

h 7−→ (f 7→ {f, h})

φ 7−→ f1 ∧ f2 7→ φ({f1, f2})
−{f1, φ(f2)} − {φ(f1), f2}
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The product ∧ : C0
L/S × CpL/S → CpL/S is just the multiplication coming from

the OL-module structure on CpL/S , whereas

C1
L/S × C1

L/S −→ C2
L/S

(φ, ψ) 7−→ (f1 ∧ f2 7→ φ(f1)ψ(f2) − φ(f1)ψ(f2))

Lemma 3.14. The morphism J : Ω•L/S → C•L/S of DGA’s is an isomorphism

on (L/S)reg. Its kernel complex equals Tors(Ω•L/S) consisting of the torsion
subsheaves of Ω•L/S.

Proof. J1 : Ω1
L/S → C1

L/S was seen to be an isomorphism on (L/S)reg, this is
obviously true for the whole morphism J .

The sheaves CpL/S are of “Hom”-type, hence torsion free, so Tors(Ω•L/S)
lies in the kernel of J . Conversely, any kernel element is torsion, because J
is an isomorphism at a general point.

We note a simple observation concerning the vanishing of the lagrangian
de Rham complex.

Lemma 3.15. Let f : L → S a lagrangian family of relative dimension n
and x ∈ L a point. Then the germ of CpL,x vanishes for all p > n.

Proof. Let L := Lf(x) the fibre of f over f(x). Then Ωp
L,x = 0 for all p > n

and x ∈ Lreg. Therefore, CpL is concentrated on the singular locus of L which
is a proper subspace (L is reduced). But the sheaves CpL are torsion free,
which leads immediately to CpL,x = 0.

3.3 Applications to deformation theory

Using the technical tools introduced so far, we state and prove our results
on the deformation theory of lagrangian subvarieties. The main point is the
description of the infinitesimal deformation space of a lagrangian singularity
(L, 0) ⊂ (M, 0) as the first cohomology of the complex C•L,0. However, it
will also be of importance to consider the relative case, that is, the relative
tangent space of the functor LagDef for a lagrangian family L → S. This
is not more involved, therefore we treat directly this case, which includes
the absolute one as usual (take S = {pt}). Given a lagrangian subvariety
L ⊂ M , we conjecture that its infinitesimal deformations are controlled by
the global lagrangian de Rham complex. This can be proved in some special
cases.
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3.3.1 Infinitesimal deformations

We consider a lagrangian family f : L →֒ M×S ։ S such that each fibre Ls
is a small contractible representative of the germ (Ls, 0) ⊂ (M × {s}, (0, s))
(which we suppose to be Stein for K = C).

Theorem 3.16. The relative tangent space of LagDef L/S equals f∗H1(C•L/S).
The zeroth cohomology H0(C•L/S) is the sheaf f−1OS.

First we state a simple lemma, the proof of which can be found in [Ban94].

Lemma 3.17. Let U be a symplectic manifold and suppose that H 1(U,K) =
0 (and that U is Stein in the complex case). Then the Lie algebra of the
symplectomorphism group of U is exactly the Lie algebra of Hamiltonian
vector fields on U .

Proof of the theorem: We suppose that L is embedded in U×S where U ⊂M
is a contractible (Stein) neighborhood of each fibre Ls in M .

We first proof the second statement. Take an element h from H0(C•L/S) =

Ker(δ : OL → C1
L/S). Then {h, g} ∈ I for all g ∈ I. If h is not constant

on the fibres of f , then the ideal (I, h) is strictly larger than I, not the
whole ring and still involutive. This is a contradiction to the fact that L is a
lagrangian family, which means that I is maximal under all involutive ideals.
So the kernel must be the constant sheaf.

To prove that H1(C•L) = T 1
LagDef (L/S), two things have to be checked: As

C1
L/S is the normal module of L in U ×S, we must first identify the elements

of Ker(δ1 : C1
L/S → C2

L/S) with the lagrangian deformations. Then we have

to show that the image of δ0 : OL → C1
L/S are the trivial deformations. But

this is easy, because for f ∈ OL, δ(f) acts as Hf , thus inducing a trivial
deformation of each fibre. Furthermore, of all deformations coming from
relative vector fields on M × S, only those induced by relative hamiltonian
vector fields are trivial in the lagrangian sense (this follows from the preceding
lemma).

Take an element Φ ∈ Ker(δ1), which means that

φ ({g, h}) − {g, φ(h)} − {φ(g), h} = 0

for all f, g ∈ I/I2. Then Φ corresponds to the deformation given by

Ĩ = (f1 + ǫφ(f1), . . . , fk + ǫφ(fk))

The ideal Ĩ is involutive iff for any two elements f + ǫφ(f), g + ǫφ(g), we

have {f + ǫφ(f), g + ǫφ(g)} ∈ Ĩ, which is equivalent to

F := {f, g} + ǫ ({f, φ(g)}+ {φ(f), g}) ∈ Ĩ
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Consider G := {f, g}+ ǫφ ({f, g}), which is an element of Ĩ, so the condition

F ∈ Ĩ is equivalent to F −G ∈ Ĩ, that is

{f, φ (g)} + {φ (f) , g} − φ ({f, g}) ∈ I
This means exactly that φ ∈ Ker(δ1).

Given a family of lagrangian subvarieties f : L →֒ M × S ։ S, one is
of course interested in the global deformation spaces. We first observe the
following

Corollary 3.18. There is an exact sequence

0 → R1f∗f
−1OS → R1f∗(C•L/S) → f∗H1(C•L/S) → R2f∗f

−1OS → R2f∗C•L/S
Furthermore, there are two special cases:

• Let the family L be contractible along the fibres of f . Then

R1f∗C•L/S = f∗H1(C•L/S)
and in fact: T 1

LagDef (L/S) = f∗H1(C•L/S).

• Let f be smooth (and Stein if K = C). Then it follows that

R1f∗C•L/S = R1f∗f
−1OS

and the space of global deformations of the family L → S is indeed
R1f∗f

−1OS.

Proof. The exact sequence follows from the usual local to global spectral se-
quence. The assertion for a contractible family L is just the last theorem.
In the second case, note that the space of embedded deformations is f∗NL,
where NL is the normal normal bundle of L in M × S. Each fibre Ls is a
smooth lagrangian submanifold of M , therefore we have a bundle isomor-
phism NL ∼= ΩL/S . Therefore each infinitesimal deformation corresponds to
a fibrewise global one-form on L, i.e., a section of f∗ΩL/S . It is closed iff the
deformation is lagrangian and the subspace of exact one-forms are deforma-
tions induced by hamiltonian vector fields, these are the trivial ones. This
yields T 1

LagDef (L/S) = R1f∗f
−1OS (here the assumption that f is Stein is

needed in the complex case).

By analogy with the cotangent complex, we conjecture the following gen-
eralization.

Conjecture 3.19. The space of infinitesimal lagrangian deformations of a
family of analytic lagrangian subspaces L ⊂M × S is

T 1
LagDef(L/S) = R1f∗C•L/S
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3.3.2 Obstructions

Unfortunately, the complex (C•L, δ) does not have a bracket, i.e., there is
no controlling dg-Lie algebra for the functor LagDefL. However, we can
extract some information on the obstruction theory for this functor from the
second cohomology of C•L. As there are only partial results on the obstruction
theory, we restrict in what follows to the case of a (single) lagrangian germ
(L, 0) ⊂ (M, 0).

Theorem 3.20. Chose for a given deformation Φ ∈ C1
L elements gi ∈ OM

such that the class of gi modulo I equals Φ(fi). Denote by obfi∧fj
the class

of the element {gi, gj} in OL. Then we have the following: If there exists a
map ob : C1

L → C2
L such that ob(Φ)(fi ∧ fj) = obfi∧fj

then

• δ (Im(ob)) = 0 and ob (Im(δ : OL → C1
L)) = 0, so ob defines a map

ob : H1(C•L) −→ H2(C•L)

• ob(Φ) = 0 ∈ H2(C•L) iff there exits a (not necessarily flat) deformation
over Spec(K[ǫ]/ǫ3) whose fibers are lagrangian subvarieties inducing the
given deformation over Spec(K[ǫ]/ǫ2).

Proof. The first statement can be verified by a direct calculation which uses
several times the Jacobi identity. So we suppose that there is a map ob :
H1(C•L) → H2(C•L). Let Φ ∈ H1(C•L) be an element of Ker(ob). This condition
is equivalent to the existence of Ψ ∈ H1(C•L) with ob(Φ) = δ(Ψ), i.e.

{Φ(f),Φ(g)} = Ψ ({f, g}) − {f,Ψ(g)} − {Ψ(f), g} ∀f, g ∈ L

But this means that the following ideal is involutive.

J = (f1 + ǫΦ(f1) + ǫ2Ψ(f1), . . . , fk + ǫΦ(fk) + ǫ2Ψ(fk))

proving that the given lagrangian deformation can be lifted to third order.

Remark: Unfortunately, the Poisson-bracket does not descend to OL, so it
is not clear whether the elements obfi∧fj

always extend to a map ob : C1
L → C2

L.
Furthermore, H2(C•L) does not contain any information on whether a given
Φ ∈ H1(C•L) can be lifted as a flat deformation. For these reasons, the last
result is rather weak and of no great use in practical calculations. As already
said, there is for the moment no complete obstruction theory for the functor
LagDef L. Meanwhile, we can give a condition for the T 1-lifting criterion to
hold true.
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Theorem 3.21. Let L ⊂ M be lagrangian and suppose that the functor Def L
is smooth and that H2(C•L) = 0. Then the T 1-lifting criterion holds for the
functor LagDef L, i.e., the functor is smooth in this case.

Proof. We start by considering the functors Def L and EmbDef L. The latter
is the functor of embedded deformations of L as an analytic space. It is a
classical result that the natural transformation EmbDef L → Def L is smooth
(see, e.g., [Art76]). Hence, for Def L smooth we get that also EmbDef L is
smooth.

Denote as usual by Ak the ring K[ǫ]/ǫk+1 and by Lk a family of lagrangian
varieties over Ak with zero fibre L, that is, Lk ∈ LagDefL(Ak). The relative
tangent space T 1

EmbDef(Lk/Ak) (for Lk seen as lying in EmbDef L(Ak)) equals

C1
Lk/Ak

= HomOL
(Ik/I2

k ,OL)

where Ik is the defining ideal sheaf of Lk in OM⊗̂Ak. Now fix a non-negative
integer n. We have to prove that for any given Ln ∈ LagDefL(An) there
exists an element in LagDef L(An+1) which restricts to Ln. We have from
theorem 3.16 on page 64 that T 1

LagDef(Ln/An) = H1(C•Ln/An
). The sequence

0 −→ K
·ǫn−→ An −→ An−1 −→ 0

yields by tensoring with the flat An-module OLn

0 −→ OL
·ǫn−→ OLn −→ OLn−1 −→ 0 (3.2)

Applying the functor HomOLn
(
∧• In/I2

n,−) to this sequence yields the exact
sequence of complexes

0 −→ C•L −→ C•Ln/An
−→ C•Ln−1/An−1

It is not exact on the right in general. However, it follows from lemma A.22 on
page 136 that the T 1-lifting theorem holds for the functor EmbDef L, so that
the map C1

Ln/An
→ C1

Ln−1/An−1
is surjective. Therefore, we obtain a connecting

homomorphism and the following long exact cohomology sequence

−→ H1(C•Ln/An
) −→ H1(C•Ln−1/An−1

) −→ H2(C•L)

−→ H2(C•Ln/An
) −→ H2(C•Ln−1/An−1

)

By assumption, H2(C•L) = 0 so we get a surjection

T 1
Ln/An

։ T 1
Ln−1/An−1

Then the T 1-lifting criterion (theorem A.20 on page 135) yields the smooth-
ness of LagDef L.
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Corollary 3.22. Let L ⊂ M be either a complete intersection of arbitrary
dimension or a Cohen-Macaulay surface. Then Def L is smooth, in particular,
LagDef L is smooth if H2(C•L) = 0.

Proof. In both cases it is known that T 2
L (see corollary A.32 on page 148 for

its definition) vanishes which gives the smoothness of Def L.

We remark that is is not clear in which cases this theorem applies, be-
cause for smoothable lagrangian singularities it is likely that the dimension
of H2(C•L) equals the second Betti number of a smooth fibre (see corol-
lary 3.39 on page 83), which might not vanish, at least for surfaces. However,
vanishing of H2(C•L) is not really needed in the proof, it suffices that the map

H2(C•L) −→ H2(C•Ln/An
)

given by multiplication with ǫn is injective. This is a much weaker condi-
tion which hopefully can be verified for interesting classes of examples like
complete intersection of codimension two Cohen-Macaulay spaces.

3.3.3 Stability of families

Up to now, we were only concerned with deformations over Artin bases.
Therefore, all statements on versality were in fact statements on formal ver-
sality (existence of a hull, see definition A.6 on page 124). Indeed, very little
is known about the existence of deformations over convergent bases which
are semi-universal in the strong sense, i.e., where there exist convergent base
changes which induces every given deformation. This has to be compared to
the general situation in deformation theory, e.g. flat deformations of singular-
ities, where one needs supplementary effort and rather different techniques to
obtain the existence of semi-universal deformations (see [dJP00]). However,
there is a result, due to M. Garay ([Gar02]) for the functor LagDef L which
can be used to prove rigidity (in the analytic sense) for certain examples. In
the quoted paper, the theorem is stated for complete intersections, but this
assumption is not essential. We adopt the proof to the general case. In order
to do this, we first introduce an important tool form general deformation
theory in our setting, namely, the so-called Kodaira-Spencer map.

Lemma 3.23. Consider any lagrangian family L → S. Then there is a
natural morphism

KS : ΘS −→ f∗H1(C•L/S)
called the Kodaira-Spencer map. We can also consider the so-called reduced
Kodaira-Spencer map KS red : TS,0 −→ H1(C•L,0) (where L := f−1(0)) which is
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the reduction of KS by the maximal ideal mOS,0
. Then if KS red is surjective

then also KS is surjective.

Proof. The proof relies on the coherence of the relative cohomology sheaves
of C•L/S for a lagrangian family. We defer the statement and the proof of this

result to the next section (theorem 3.35 on page 77).
Let us first define the map KS . Denote by I ⊂ OM×S the defining

ideal sheaf of L. Then we let KS (ϑ) be the class [Φ] in H1(C•L/S) of the
homomorphism

Φ ∈ C1
L/S = HomOL

(I/I2,OL)
defined by Φ(g) := ϑ(g) for g ∈ I where ϑ is seen as a vector field in ΘM×S .
It is easily shown that Φ lies in the kernel of δ : C1

L/S → C2
L/S because

the Poisson bracket on OM×S and derivation with respect to S commutes.
From theorem 3.35 we know that f∗H1(C•L/S) is OS-coherent. Hence KS is a
morphism between coherent OS-modules. Therefore, if the reduction modulo
mOS,0

is surjective, the map KS is itself surjective.

Now we state the theorem on stability of lagrangian families.

Theorem 3.24. Let (L, 0) ⊂ (M, 0) be given with dim(H1(C•L,0)) <∞. Sup-
pose that there is a flat lagrangian deformation f : L → S over a smooth
complex space S which is infinitesimal versal, i.e., such that the reduced
Kodaira-Spencer map

KS red : T0S → H1(C•L,0)
is surjective. Then this family is stable, that is, each one parameter defor-
mation over a smooth base T is analytically (symplectic) equivalent to f .

For the proof, we need the general principle of integration of vector fields,
which can be stated as follows.

Lemma 3.25. Let (X, 0) be a germ of an analytic space and ϑ ∈ ΘX,0 a
derivation of OX,0 such that there exists g ∈ mOX,0

with ϑ(g) = 1 ∈ OX,0.
Then K := ker(ϑ) is an analytic subalgebra of OX,0 and the map K{G} →
OX,0, G 7→ g is an isomorphism.

See the first chapter of [BF00] for the proof.

Proof of the theorem. Let F : LT → ST be a one-parameter deformation of f
over T , where T is an open neighborhood of the origin in K. It follows from
the last lemma that in order to show that the family F is trivial we have to
find a compatible pair of vector fields (θ, δ) ∈ ΘLT

×ΘST
trivializing F . This

means that dF (θ) = δ and that there is a function t ∈ OST
with δ(t) = 1
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and (F ∗t)−1(0) ∼= L. The spaces S and T are smooth, therefore we can
suppose that ST ∼= S × T and that OT,0 = K{t}. Denote by p : S × T → S
the projection and let IT the ideal which defines LT in M × S × T . We
are left to show that there is ϑ ∈ p∗ΘM×S such that (ϑ + ∂t)(IT ) ⊂ IT
(then ϑ + ∂t defines the field θ ∈ ΘLT

as required). However, there is one
additional condition on ϑ, namely, we need that ϑ − df (ϑ) is an element of
HamM×S/S ⊂ ΘM×S/S, the space of relative vector field which are fibrewise
hamiltonian, otherwise the automorphism obtained by integration would not
be symplectic.

From the last lemma we have two surjective morphisms

KSL/S : ΘS −→ f∗H1(C•L/S)
KSLT /ST

: ΘS×T −→ F∗H1(C•LT /ST
)

These are the Kodaira-Spencer maps of the families f : L → S and F :
LT → ST . They are both surjective because their reductions modulo the
respective maximal ideals (mOS

and mOS×T
) coincide and are surjective by

assumption. Moreover, the natural restriction morphism C•LT /ST
→ C•L/S in-

duces a map F∗H1(C•LT /ST
) → f∗H1(C•L/S). We compose it with the inclusion

f∗H1(C•L/S) →֒ p∗f∗H1(C•L/S) to obtain a morphism

Φ : F∗H1(C•LT /ST
) −→ p∗f∗H1(C•L/S)

The reduction of this morphisms is the identity on H1(C•L), therefore Φ is an
isomorphism by the coherence of the two cohomology sheaves. This gives a
surjective morphism

p∗KSL/S : p∗ΘS −→ F∗H1(C•LT /ST
)

so that there is ϑ1 ∈ p∗ΘS with p∗KSL/S(ϑ1) = KSLT /ST
(∂t). Looking at

the definition of the Kodaira-Spencer map, this equality (recall that it is an
equality in the cohomology of the complex C•LT /ST

) shows that there exists

a function h ∈ OM×S×T such that (Xh + ϑ1 + ∂t)(IT ) ⊂ IT . Therefore
the vector field ϑ := ϑ1 + Xh satisfies the requirements. This finishes the
proof.

Note that in abstract deformation theory as in described in Appendix A
one can construct a Kodaira-Spencer map for any cofibred groupoid. For the
cofibred category LagDefL, this general description reduces to the above
definition. The abstract Kodaira-Spencer map sits in an exact sequence (see
[BF00] for a detailed account) and it seems that the proof of the theorem just
given can be directly deduced form the exactness of this sequence. However,
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in order to do this one has to consider a category over the category of local
analytic rings (and not only over Art) in order to get the convergent stability
theorem as stated above.

In general, we do not yet have a versality theorem for lagrangian singu-
larities, but the above stability criterion allows us to detect whether a given
lagrangian singularity is rigid in a rather weak sense.

Theorem 3.26. Let (L, 0) ⊂ (M, 0) be lagrangian with H1(C•L,0) = 0. Then
any deformation LS →֒ M × S ։ S where S is a smooth analytic space can
be trivialized by an analytic symplectomorphism.

Proof. As H1(C•L,0) vanishes, the trivial family L × S → S is infinitesimal
versal. Thus the last theorem implies that any family LS → S can be induced
from this one, or, in other words, can be trivialized.

This gives not yet rigidity in the usual sense, because we assume the base
of the family LS → S to be smooth in order to apply the theorem. Therefore
it is a priori possible that there are deformations over singular curves which
cannot analytically trivialized in the symplectic category. This gap is still to
be filled.

3.3.4 Integrable systems

In this section we will construct a controlling dg-Lie algebra for deformations
of integrable systems. Its definition is a special case of the lagrangian de
Rham complex. However, its terms are modules on the whole symplectic
manifold, which is the main reason for the existence of a Lie bracket making
it into a dg-Lie algebra.

So let us consider an analytic mapping F : M → U , where M is a 2n-
dimensional symplectic manifold and U is an open domain in Kn. Therefore,
F has components F = (f1, . . . , fn). Then the condition for this system to
be completely integrable is {fi, fj} = 0 ∈ OM (see page 30 and page 50). To
associate a Lie algebroid to this situation, consider the graph of the mapping
F :

M
�

� Γ //

F

��

M × U

pr2

zzttttttttttttt

U

Denote by L the image of Γ and let I ⊂ OM×U the defining ideal sheaf. It is
immediate that I is involutive with respect to the Poisson bracket { , }U on
M ×U . So we are in the general situation described above and I/I2 is a Lie



72 CHAPTER 3. LAGRANGIAN SUBVARIETIES

algebroid over the morphism pr2 : M×U → U . We denote the corresponding
de Rham complex by C•F . It is a complex of locally free sheaves onM (because
the graph is smooth in M × U). It can be explicitly written down.

Lemma 3.27. The terms of the complex C•F are

CpF ∼= HomOM

(
p∧
I/I2,OM

)
∼=

p∧
OM

together with the following differential

δ : CpF ∼= O(n
p)
M −→ Cp+1

F
∼= O( n

p+1)
M

(gi1...ip)i1<...<ip 7−→
(

n∑
l=1

(−1)l{fl, gj1...ĵl...jp+1
}
)

j1<...<jp+1

Moreover, the product structure of C•F is given by

CpF × CqF −→ Cp+qF

(
(gi1...ip)i1<...<ip , (hj1...jq)j1<...<jp

)
7−→ g ∧ h

with
g ∧ h :=

∑

I
∐
J={1,...,n}

i1<...<ip , j1<...<jq

sgn(I, J) · gi1...ip · hj1...jq

Proof. The conormal module I/I2 of L is generated by the classes of the
functions Fi := xi − fi ∈ OM×U where xi are coordinates in U . Then the
statements of the lemma are immediate by using the fact that {c, Fi} = {c, fi}
for any c ∈ OL ∼= OM .

The complex C•F differs in one point from the the complex C•L/S for a
general lagrangian family: it consists of modules of homomorphisms into
OM , which is not only an algebra but also a Lie algebra under the Poisson
bracket. This is not the case for the complex C•L/S in general and allows us
to define the structure of a dg-Lie algebra on C•F by using exactly the same
formula as for the product

[g, h] :=
∑

I
∐
J={1,...,n}

i1<...<ip , j1<...<jq

sgn(I, J) ·
{
gi1...ip, hj1...jq

}
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Theorem 3.28. The complex (C•F , δ, [ , ]) has the structure of a dg-Lie alge-
bra.

Proof. One has to do the same explicit calculations as for the proof of theo-
rem 3.11 on page 60.

We can now describe the relation between the functor HamDef F and the
complex C•F for a germ of a completely integrable system F : (K2n, 0) →
(Kn, 0). We consider the functor HamDef F as well as the dg-Lie algebra C•F
for a representative F : V → U with V and U open domains in M and Kn,
respectively.

Theorem 3.29. Denote by L := (C•F , δ, [ , ]) the dg-Lie algebra associated
to the mapping F . Then there is an isomorphism of functors η : DefL →
HamDef F .

Proof. The definition of the transformation η is straightforward: Let A be in
Art and g ∈ MC L(A), i.e.:

g = (g1, . . . , gn) ∈ C1
F ⊗mA = (OV ⊗ mA)n

such that δ(g) + 1
2
[g, g] = 0. This means that for any i < j

{gi, fj} − {fi, gj} + {gi, gj} = 0

which is easily seen to be equivalent to the vanishing of all commutators of
the deformed system

FS = (f1 + g1, . . . , f1 + gn) : V × Spec(A) → U

On the other hand, each deformation of F , that is, an element in the groupoid
HamDefF (S) representing a given isomorphy class in HamDef F (S) is of the
above form with all commutators vanishing. Therefore it defines an element
in MC L(A). It remains to identify the group of S-symplectomorphisms with
GL(S). But this is clear, as locally (see lemma 3.17 on page 64) each sym-
plectomorphism is generated by a hamiltonian field and the action

(
L0 ⊗ mS

)
×
(
L1 ⊗ mS

)
→ L1 ⊗ mS

is precisely the action of a (relative) hamiltonian field on the deformed map
FS.
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3.4 Properties of the lagrangian de Rham com-

plex

3.4.1 Constructibility and Coherence

As we have seen in the last chapter, the cohomology of the complex C•
plays an important role in the deformation theory of L. From Schlessinger’s
theorem (theorem A.8 on page 125) we know that the main point in proving
the existence of (formally) semi-universal deformations is the finiteness of
this cohomology. The following section is devoted to study this problem. It
turns out that there is a natural condition for a variety L that ensures that
the cohomology of C•L is finite over K.

When one studies the functor Def L of flat deformations (see section
A.2.3), a formally (and even convergent) semi-universal deformation exists by
Schlessinger’s theorem if the singularities are isolated. Our condition there-
fore has to be seen as an analog (in the symplectic/lagrangian context) to
the condition dim(Sing(L)) = 0. However, we insist on the fact that it is a
considerably weaker condition, meaning that there are many lagrangian sin-
gularities with non-isolated singular locus having finite-dimensional T 1

LagDef

(and eventually a semi-universal deformation). We will discuss examples in
the next section.

In fact, we have two more precise results: First, in the absolute case,
even to prove finiteness one needs to study the structure of the cohomology
sheaves of the complex C•L. We will show that these cohomology sheaves are
constructible with respect to a suitable stratification of the variety L. On
the other hand, the complex C• has been introduced in a relative setting for
a morphism f : L → S. In this case one is interested in the hyperdirect
image sheaves Rif∗C•L/S . The preceding result can be extended to prove the
coherence of these sheaves. It is an open problem whether they are always
free. However, for i = 1 freeness can be proved under some assumptions
yielding a nice application for smoothable singularities L.

We start by introducing the above mentioned condition. In the whole
section, we will consider a Stein representative L for a germ (L, 0) ⊂ (M, 0)
of a lagrangian singularity.

Definition 3.30. Define SLk to be the following set

SLk := {p ∈ L | edim(p) = 2n− k} ⊂ L

for k ∈ {0, . . . , n} where edim(p) is the embedding dimension of the germ
(L, p). Then we will say that L satisfies “Condition P” iff the inequality
dim(SLk ) ≤ k holds for all k.
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The following lemma explains the meaning of this condition in somewhat
more geometric terms.

Lemma 3.31. Let p ∈ SLk ⊂ L with k > 0. Then the germ (L, p) can be
decomposed into a product

(L, p) ∼= (L′, p′) × (C, 0)

where (C, 0) is the germ of a smooth curve. This decomposition is compatible
with the decomposition of the ambient symplectic space

(M, 0) ∼= (M ′, 0) × (M ′′, 0)

(with dim(M) = 2n, dim(M ′) = 2n − 2 and dim(M ′′) = 2) by symplectic
reduction. Therefore, L′ is a lagrangian variety in the symplectic space M ′.
Furthermore, we have p′ ∈ SL

′

k−1.

Proof. Recall theorem 1.5 on page 12: Any non-degenerate hamiltonian func-
tion on a symplectic manifold fibres (locally) its own level hypersurfaces in
symplectic leafs. We have k ≥ 1, therefore there is a non-degenerate hamilto-
nian function h on M which vanishes oh L, this implies that Xh is tangent to
L. Then by integration of vector fields (lemma 3.25 on page 69 with (X, 0) =
(L, p)), we get the required decomposition (L, p) ∼= (L′, p′) × (C, 0) inside
(M, 0) ∼= (M ′, 0) × (M ′′, 0). Obviously, edim(L′, p′) = edim(L, p) − 1.

This result implies that whenever a stratum SLk is non-empty then there
are k independent non-degenerate hamiltonian vector fields defined in a
neighborhood of a point p ∈ SLk which are tangent to SLk . Thus, the dimen-
sion of this stratum must be at least k. So “Condition P” can be restated by
saying that either dim(SLk ) = k or SLk = ∅.

The preceding lemma can be used to show that there are germs of singular
spaces which do not admit any lagrangian embedding.

Corollary 3.32. Let n > 1 and (X, 0) ⊂ (Kn+1, 0) be an isolated hypersur-
face singularity. Then there is no lagrangian embedding (X, 0) →֒ (K2n, 0).

Proof. Suppose that a lagrangian embedding exists. The embedding dimen-
sion of the germ (X, 0) is n + 1 < 2n, so by the previous lemma there is
a decomposition (X, 0) = (Y, 0) × (Kn−1, 0) showing that (X, 0) has non-
isolated singularities.

The two preceding results can be found in [Giv88]. We show now that for
products of a lagrangian germ with a smooth factor the deformation theory
(and more generally the cohomology of the whole complex) behaves partic-
ularly well. The phenomena described by the following lemma is illustrated
in figure 3.1 on page 78.
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Lemma 3.33 (Propagation of Deformations). Let (L, 0) ⊂ (M, 0) be
a germ of a lagrangian subvariety which can be decomposed, i.e., there is a
germ (L′, 0) (which is lagrangian in (M ′, 0)) such that (L, 0) = (L′, 0)×(C, 0)
with C a smooth curve. Denote by π : L → L′ the projection. Then there is
a quasi-isomorphism of sheaf complexes

j : π−1C•L′ → C•L

Proof. Let h ∈ OM,0 be the hamiltonian function which fibresM and L. Then
there is (as it follows from the proof of lemma 3.31 and from lemma 3.25 on
page 69) a function g ∈ mOM,0

with {h, g} = 1. Let I ⊂ OM,0 resp. I ′ ⊂ OM ′,0

define (L, 0) resp. (L′, 0). Then

OM ′,0 = {α ∈ OH,0 | {α, h} = 0} and

I ′ = I ∩ OM ′,0 = {α ∈ I | {α, h} = 0}

where H is the smooth hypersurface in M given by the vanishing of h. More
specifically, we have OH,0

∼= OM ′,0{g} and OL,0
∼= OL′,0{g}. This implies the

following relation between the conormal modules I/I2 and I ′/I ′2

I/I2 =
(
I ′/I ′

2 ⊗OL′,0
OL,0

)
⊕OL,0

where the (free) factor OL,0 is generated by the class of h in I/I2. Further-
more, the Lie algebra structure on I/I2 is of special type: For all fi ∈ I ′/I ′2

the bracket {h, fi} vanishes. We get

p∧
I/I2 =

(
OL,0 ⊗OL′,0

p∧
I ′/I ′2

)
⊕
(
OL,0 ⊗OL′,0

p−1∧
I ′/I ′2

)

and

CpL,0 = HomOL,0

(
OL,0 ⊗OL′,0

∧p I ′/I ′2,OL,0

)

⊕ HomOL,0

(
OL,0 ⊗OL′,0

∧p−1 I ′/I ′2,OL,0

)

We write elements of CpL,0 as infinite sums of type
∑∞

i=0 (Φi,Ψi) g
i. Then the

differential is (for details of the calculation see [Sev99]):

δ : CpL,0 −→ Cp+1
L,0

∞∑
i=0

(Φi,Ψi) g
i 7→

∞∑
i=0

(δΦi, δΨi + (−1)p+1(i+ 1)Φi+1) g
i
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We define the morphism j to be the inclusion

HomOL′,0
(
∧p I ′/I ′2,OL′,0) →֒ HomOL,0

(
OL,0 ⊗OL′,0

∧p I ′/I ′2,OL,0

)
⊕

HomOL,0

(
OL,0 ⊗OL′,0

∧p−1 I ′/I ′2,OL,0

)

Φ 7−→ (Φ, 0) · g0

It remains to show that the cokernel of this inclusion is acyclic. Then it
follows immediately from the long exact cohomology sequence that j is a
quasi-isomorphism. So let Γ be an element outside of the image of j such
that δ(Γ) = 0, that is:

Γ =

∞∑

i=1

(Φi,Ψi)g
i + (0,Ψ0)

with δΦi = 0 and δΨi = (−1)p(i + 1)Φi+1 for all i ∈ {0, 1, . . .}. But then Γ
vanishes in the cohomology because it can be written as Γ = δΛ with

Λ :=

∞∑

i=1

(
(−1)pΨi−1

i
, 0

)
gi ∈ Cp−1

L,0

Corollary 3.34. There are isomorphisms of sheaves

π−1Hi(C•L′) ∼= Hi(C•L)

Proof. This follows because π−1 is an exact functor.

Now we come to the main theorem of this section. We consider directly
the relative situation of a lagrangian family L → S. We restrict to the com-
plex case for simplicity. If K = R, one might consider the complexification
of the lagrangian variety. Recall that we suppose the morphism f : L → S
to be Stein.

Theorem 3.35. Suppose that “Condition P” is satisfied for each fibre Ls of
f . Then

• Hi(C•Ls
) are constructible sheaves of finite dimensional vector spaces

with respect to the stratification given by the SLs

k .

• Rif∗C•L/S is a coherent sheaf of OS-modules.
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Deformation of a transversal slice

��

//

Deformations of the surface

��

//

Figure 3.1: Propagation of deformations

• Rif∗C•L/S = f∗H1(C•L/S) and then
(
Rif∗C•L/S

)
0

= H i(CL/S,0)

Proof. First note that by embedding S
i→֒ U into a smooth ambient space U

and by considering the higher direct image sheaves of the composition i ◦ f ,
we can always assume S to be smooth.

For the first part, two things have to checked: We must prove that the
restriction of the cohomology sheaves to the strata SLs

k are locally constant
and that the stalks of Hi(C•Ls

) are finite dimensional over C. The first state-

ment is a direct consequence of the last corollary: Let p ∈ SLs

k be a point at
which Ls is decomposable, i.e. k > 0. By induction, we find a neighborhood

U ⊂ Ls of p such there is an analytic isomorphism h : U
∼=−→ Z ×Bk

ǫ , where
Z is lagrangian in M ′ with dim(M ′) = 2n − 2, Bǫ := {z ∈ C | |z| < ǫ} and
each q ∈ U ∩SLs

l corresponds via h to a point (q′, b) ∈ Z×Bk
ǫ with q′ ∈ SZl−k.

In particular, the image of U ∩ SLs

k under h is ({pt}, B(ǫ)k), so Hp(C•Ls
) is

constant on U ∩ SLs

k .
Now we come to the next part. In fact, in order to prove that the stalks

of Hi(C•Ls
) are finite dimensional it suffice to show that Rif∗C•L is coherent on

S. In this way we can handle the two parts of the theorem at the same time.
The following theorem, which we adapt from [vS87], will be used. Note that
it uses the fundamental result from functional analysis (proposition B.10).
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For further references, see also [BG80] and the appendix of [Gar02].

Theorem 3.36. Let a germ g : (Y, 0) → (T, 0) of a flat Stein morphisms of
complex spaces be given. Denote by (Y0, 0) := (g−1(0), 0) the germ at zero of
the zero fibre of g. Embed Y0 and T in some CN and in CM , respectively, so
that Y ⊂ C

N ×T . Choose a so called standard representative g : X → S,
i.e., a morphism representing the given germ such that:

1. S := Sη := T ∩Dη

2. X := Xǫ,η := ((Bǫ × S) ∩ Y ) ∩ g−1(Dη)

for an open ǫ-ball Bǫ ⊂ CN and an open η-ball Dη ⊂ CM . For small ǫ and η
the fibres of g will be Stein, contractible and intersect ∂Bǫ × S transversally.
Let (K•, d) be a sheaf complex on X with the following properties

1. all Kp are OX-coherent

2. the differentials d : Kp → Kp+1 are g−1OS-linear

3. there is a neighborhood U of ∂X := (∂Bǫ × S) ∩ Y ∩ g−1(Dη) in CN×S
and a vector field ϑ of class C∞ on U such that

• ϑ is transversal to ∂Bǫ × S

• the flow of ϑ respects X and the fibers of g.

• the restriction of the cohomology sheaves Hp(K•) to the integral
curves of ϑ are locally constant sheaves.

Then the sheaves Rpg∗K• are OS-coherent.

If we take (Y, 0) = (L, 0) ⊂ (M × S, 0), g = f and K• = C•L/S , then
the only thing to verify is the existence of a vector field as described in the
theorem. Choose a standard representative X := Lǫ′,η′ → S := Sη such
that on each fibre Xs we have edimXs(p) < 2n for all p /∈ {0} × S (this is
possible due to “Condition P”). The vector field we are looking for will be
constructed in two steps: Let p ∈ ∂X be a point with p ∈ SXs

k with k > 0.
Then it follows from lemma 3.31 on page 75 that there are k independent
holomorphic hamiltonian vector fields η1, . . . , ηk tangent to the stratum SXs

k

and to the fibres of f . We lift them to sections of ΘM×S/S defined in a
neighborhood Up ⊂M × S of p. The stratum SXs

k has complex dimension k
(“Condition P”), therefore, the 2k fields η1, . . . , ηk, iη1, . . . , iηk, viewed as C∞-
vector fields span the real tangent space of SXs

k at p. As SXs
k was transversal

to ∂Xs := (∂Bǫ × {s}) ∩ Y ∩ g−1(Dη), a linear combination of these vector
fields will define a field as required in the neighborhood Up. Here we use the
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fact that the cohomology sheaves of C•L/S are constant on the strata SXs
k , thus,

on the integral curves of the above fields. To conclude, we choose a partition
of unity subordinate to the covering of a neighborhood U of ∂X defined by
the Up. This allows us to glue the fields defined on the neighborhoods Up to
a field as required in theorem 3.36. Thus the coherence of the higher direct
image sheaves is proved.

The last part of the theorem follows easily as in [vS87] (Proposition 1),
because the vector field constructed above defines for each s ∈ S a shrinking
of f−1(s) onto one point as required in the proof of the proposition in loc.cit.

Summarizing what has been done, we get the following main result by
theorem 3.16 on page 64, theorem 3.35 on page 77 and Schlessinger’s result
(theorem A.8 on page 125).

Theorem 3.37. Let (L, 0) ⊂ (M, 0) be a lagrangian singularity satisfying
“Condition P”. Then a formally semi-universal deformation (LS, 0) →֒ (M ×
S, 0) ։ (S, 0) with S ∈ Ârt exists and satisfies

dim
(
(mOS

/m2
OS

)∗
)

= dim(H1(C•C,0))

It is a very natural question to ask whether “Condition P” is always
satisfied for a lagrangian variety L ⊂ M . This is obviously not the case
for non-reduced spaces L, but the following example (which can be found
in [Giv88], see also the discussion on page 18) shows that there exist even
reduced varieties L ⊂ M where points with maximal embedding dimension
are non-isolated.

Consider any non-quasihomogeneous plane curve singularity (C, 0) ⊂
(C2, 0). It has an associated legendrian space curve K := Im(F, n), where

F ∈ OC̃ is the generating function and n : C̃ → C the normalization map.
K is a singular legendrian subspace of the contact manifold C3. Now for
any germ of a contact manifold (K, 0) of dimension 2n− 1 we can equip the
direct product (M, 0) = (K, 0) × (C∗, p) with a symplectic structure (which
is called symplectization of (K, 0) in [Giv88]): in our example, if (p, q, z, t)
are local coordinates on M = C3 × C∗ on (M, 0), then

ω = d (t(dz − pdq))

We have the projection π : (M, 0) → (K, 0) and the preimage L := π−1(Λ) is
a lagrangian subspace of (M, 0). Obviously, at all points (0, q) ∈ L we have
edim(0,q)L = 4. Therefore, (L, 0) does not satisfy “Condition P”. Probably,
there are examples of this type where the cohomology of C•L,0 (and in partic-
ular the tangent space of LagDef L,0) is not finite over C. However, as these
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spaces are non-quasihomogenous, a direct calculation of the cohomology of
the complex C• is very difficult (see section 3.5).

3.4.2 Freeness of the relative cohomology

Now that we know about the coherence of the cohomology of C•L/S , one might
ask about their freeness. This is an open problem in general, but there is a
partial result for the first cohomology. The ideas presented in this section
can also be found in [GvS02].

Theorem 3.38. Consider a lagrangian family f : L → S over a smooth base
S and suppose that

• L := f−1(0) is a complete intersection.

• The family is an infinitesimal miniversal deformation of L (in the sense
of theorem 3.24 on page 69, i.e., the reduced Kodaira-Spancer map is an
isomorphism). In particular, we have that dim(S) = dim

(
H1(C•L,0)

)
.

Then f∗H1(C•L/S) is a locally free sheaf of OS-modules. Moreover, if dim(L) =

2, then also f∗H2(C•L/S) is locally free.

Proof. We will show that the stalk of f∗H1(C•L/S) at zero (which we denote

temporarily by H) is a free OS,0-module. We know from theorem 3.35 on
page 77 thatH is finitely generated and equalsH1(C•L/S,0). It will be sufficient

to show that H is a Cohen-Macaulay module, that is, depth(H) = dim(S).
Denote C•L/S,0 by C• for short and chose a system of parameters (s1, . . . , sk) of

S. From the freeness of I/I2 we get the existence of a short exact sequence
of complexes

0 → C•
(s1, . . . , si) C•

·si+1−→ C•
(s1, . . . , si) C•

−→ C•
(s1, . . . , si+1) C•

→ 0

The long exact cohomology sequence yields

. . .→ H0 (C•/ (s1, . . . , si) C•) α−→ H0 (C•/ (s1, . . . , si+1) C•)
→ H1 (C•/ (s1, . . . , si) C•)

·si+1−→ H1 (C•/ (s1, . . . , si) C•)
→ H1 (C•/ (s1, . . . , si+1) C•) −→ . . .

But we have identifications H0 (C•/(s1, . . . , sj)C•) ∼= C{sj+1, . . . , sk} for any
j ∈ {1, . . . , k}, so the map α is just the restriction

C{si+1, . . . , sk} −→ C{si+2, . . . , sk}
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which sends h to h|si+1=0 and therefore surjective. This yields injectivity of

H1 (C•/ (s1, . . . , si) C•)
·si+1−→ H1 (C•/ (s1, . . . , si) C•)

To conclude, we need to indentify the modules H1 (C•/ (s1, . . . , si) C•) and
H1(C•)/ (s1, . . . , si)H

1(C•). The long exact sequence shows that the there is
an inclusion

H1(C•)/ (s1, . . . , si+1)H
1(C•) →֒ H1 (C•/ (s1, . . . , si+1) C•)

Consider the Kodaira-Spencer map KS : ΘS → H1(C•) of the family f (see
lemma 3.23 on page 68 for its definition). Tensoring with OS/(s1, . . . , si+1)OS

yields a morphism

KSi+1 : ΘS/(s1, . . . , si+1)ΘS −→ H1(C•)/(s1, . . . , si+1)H
1(C•)

Compose it with the above inclusion to obtain a morphism

ΘS/(s1, . . . , si+1)ΘS −→ H1 (C•/ (s1, . . . , si+1) C•)

The reduction of this morphism module the ideal (si+1, . . . , sk) is the re-
duced Kodaira-Spencer map of the family f , therefore, it is surjective by
assumption. Coherence of the two sheaves shows that the morphism itself is
surjective. Now we have a commutative diagram

ΘS/(s1, . . . , si)ΘS
//

��

H1 (C•/ (s1, . . . , si) C•)

��
ΘS/(s1, . . . , si+1)ΘS

// // H1 (C•/ (s1, . . . , si+1) C•)

This shows that we can lift any class in H1 (C•/ (s1, . . . , si+1) C•) to a class
in H1 (C•/ (s1, . . . , si) C•). Hence the inclusion

H1(C•)/ (s1, . . . , si+1)H
1(C•) →֒ H1 (C•/ (s1, . . . , si+1) C•)

is also surjective. This proves that that si+1 is a non-zerodivisor on

H1(C•)/(s1, . . . , si)H
1(C•)

for i ∈ {0, . . . , k − 1}. Therefore, H1(C•) is a Cohen-Macaulay OS-module.
For dim(L) = 2, we have automatically that

H2 (C•/ (s1, . . . , si) C•) → H2 (C•/ (s1, . . . , si+1) C•)
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is surjective. On the other hand, the surjectivity of this map at the H1-level
which we have just proved shows (by using again the connecting homomor-
phism) that

H2 (C•/ (s1, . . . , si) C•)
·si+1−→ H2 (C•/ (s1, . . . , si) C•)

is injective. Then, by the same argument, H2(C•) is Cohen-Macaulay and
therefore locally free over OS .

Corollary 3.39. Let (L, 0) ⊂ (M, 0) be a complete intersection. Consider
a deformation f : L → S of L such that the hypothesis of the last theorem
are fulfilled. Suppose moreover that (L, 0) is smoothable and denote by Lǫ the
smooth general fibre of f . Then the following equality holds

dim(H1(C•L,0)) = b1(Lǫ)

where b1 denotes the first Betti-number of Lǫ. For a surface we also get
dim(H2(C•L,0)) = b2(Lǫ).

Proof. We use the morphism J : Ω1
L/S → C1

L/S from page 61. J was seen
to be an isomorphism at smooth points of any fibre Ls. Let D ⊂ S be
the discriminant set of f which is a proper subspace by assumption. The
last theorem then implies that f∗H1(C•L/S) is a locally free extension of the

cohomology bundle
⋃
ǫ∈S\DH

1(Lǫ,C) over the discriminant. Moreover, the

zero fibre f∗H1(C•L/S)/mOS
f∗H1(C•L/S) is canonically identified with the space

H1(C•L,0). This proves the first statement. The second one follows by the same
argument using the freeness of f∗H2(C•L/S) for two-dimensional lagrangian
singularities.

This result is already sufficient to calculate the dimension of Hi(C•L) if L
is a product of two curves.

Corollary 3.40. Let f ∈ C{x, y} and g ∈ C{s, t} be two functions defining
plane curve singularities (C, 0) and (D, 0). Then for the lagrangian surface
L := C ×D ⊂ C4 we have

dim(H1
L,0) = µ(f) + µ(g)

dim(H2
L,0) = µ(f) · µ(g)

Proof. L is completely integrable, therefore the involutive ideal Ĩ = (f +
ǫ1, g + ǫ2) (ǫi ∈ C) is a non-trivial lagrangian deformation. It is obviously a
smoothing, so we can apply the last corollary. Then the Künneth formula
for the cohomology of a smooth fibre Lǫ shows that H1(Lǫ,C) = H1(Cǫ,C)⊕
H1(Dǫ,C) and H2(Lǫ,C) = H1(Cǫ,C) ⊗H1(Dǫ,C).
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3.5 Computations

We are going to use all the techniques developed up to now to calculate the
deformations spaces and related invariants for a some examples of singular
lagrangian varieties. Most of these computations are by large too complicated
to be done by hand, but computer algebra turns out to be a quite powerful
tool. In particular, we made extensive use of the program Macaulay2 ([GS]).
We will not include the code that has been developed for the calculations
in the text, but indicate as explicit as possible how one gets the results. To
simplify the calculation, we will only consider the complex case here.

Our main source of examples are lagrangian surface singularities in four
space. For surfaces satisfying “Condition P”, we have a stratification consist-
ing of three strata: the regular locus Lreg, the singular locus (denoted Σ)
away from the origin and the origin, which is the unique point with maximal
embedding dimension (equal to four). Our aim is to calculate the stalks of the
cohomology of C•L at the origin. This will be possible for one important class
of examples, these are quasi-homogeneous varieties with positive weights. To
be more precise, we suppose that our space L is strongly quasi-homogeneous
in the sense of [CJNMM96], this means that for each point p ∈ L, we can
choose local coordinates of the ambient space such that the defining equa-
tions for (L, p) ⊂ (M, p) become quasi-homogeneous with positive weights.
Recall that there is a morphism of DGA’s J : Ω•L → C•L which is an isomor-
phism on the smooth locus. Moreover, the kernel of this map consists of the
torsion subsheaves of Ω•L (see lemma 3.14 on page 63), therefore, there is an

injection of complexes Ω̃•L →֒ C•L.

Lemma 3.41. Let L ⊂M be strongly quasi-homogeneous. Then

1. The de Rham complex Ω•L as well as the complex Ω̃•L are resolutions of
the constant sheaf CL.

2. Define E• := Coker
(
Ω̃•L →֒ C•L

)
. Suppose dim(L) = 2. Then E• is a

two-term complex E1 δ→ E2 and we have H1(C•L) ∼= Ker
(
E1 δ→ E2

)
and

H2(C•L) ∼= Coker
(
E1 δ→ E2

)
.

Proof. The first statement follows from lemma 1.10 on page 16. For the sec-
ond one, we first notice that E0 = 0, Moreover, it follows from lemma 3.15 on
page 63 that for surfaces, Ep = 0 for p > 2. From the exact sequence

0 −→ (Ω̃•L, δ) −→ (C•L, δ) −→ (E•, δ) −→ 0
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we deduce the long exact cohomology sequence

. . . −→ H1(Ω̃•L) −→ H1(C•L) −→ H1(E•) −→

H2(Ω̃•L) −→ H2(C•L) −→ H2(E•) −→ H3(Ω̃•L) −→ . . .

which gives (due to acyclicity of Ω̃•) H1(C•L) ∼= Ker
(
E1 δ→ E2

)
and H2(C•L) ∼=

Coker
(
E1 δ→ E2

)
.

Using this result, we are left with the calculation of the cohomology of
the complex E•. This is still a non-trivial task, as the differential is not OL-
linear. However, this complex is supported on the singular locus which is
one-dimensional. This simplifies the calculation considerably.

Let t ∈ mOL
⊂ OL be any function on L which is finite when restricted

to Σ. Let Σ̃ be the normalization of Σ. We choose a coordinate s on the
normalization such that in OΣ̃,0 we have s = tk where k is the degree of the
map t : Σ → C.

Lemma 3.42. The product with δ(t) induces an OL-linear morphism jt :
C1
L → C2

L which descends to a morphism on the quotient jt : E1 → E2. At
points p ∈ Σ\{0}, this map is an isomorphism.

Proof. It follows directly from the definition of the product structure that
there is a commutative diagram of OL-linear morphisms

Ω1
L

J

��

dt∧ // Ω2
L

J

��
C1
L

δ(t)∧ // C2
L

Therefore, we obtain a mapping on the quotient jt : E1 → E2 which sends
a class φ to δ(t) ∧ φ. To prove the second statement, we have to calculate
explicitly the modules E1

p and E2
p for a decomposable lagrangian germ (L, p) ∼=

(L′, p) × (C, 0) where (C, 0) is a germ of a smooth curve. We are in the
situation of lemma 3.33 on page 76: There is a regular hamiltonian function
h ∈ OM,p which fibres the germ (L, p) and a regular function g ∈ OM,p such
that {f, g} = 1. Then we can chose coordinates (x, y, h, g) of M around p.
In these coordinates, the variety L is given by an ideal I = (f(x, y), h) ⊂
C{x, y, h, g} with symplectic form dx∧dy+dh∧dg. The singular locus L near
p is in these coordinates given by the vanishing of x, y and h. Therefore we
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can assume that on Σ̃, the coordinate s coincides with g around the preimage
of p. In particular, g does not vanish around p ∈M .

Denote the local ring OL,p by R. The conormal module I/I2 is a free
R-module on the two generators f and h, so that

HomR(I/I2, R) = Rn1 ⊕ Rn2

with n1(f) = 1, n2(h) = 0, n2(f) = 0, n2(h) = 1. Obviously we have
HomR(

∧2 I/I2, R) ∼= R(n1 ∧ n2) and the complex C•L,p reads

0 → R −→ Rn1 ⊕ Rn2 −→ R(n1 ∧ n2) → 0
r 7−→ ({r, f}, {r, h})

(a, b) 7−→ {a, h} + {f, b}
We need to calculate the modules of differential forms on L. We have Ωp

R =
Ωp
OM,p

/(IΩp
OM,p

+ dI ∧ Ωp−1
OM,p

). Therefore

Ω1
R = M1 ⊕M2

Ω2
R = M3 ⊕M4

where

M1 :=
Rdx⊕Rdy

R df
M2 := Rdg

M3 :=
Rdx ∧ dy

R df ∧ dx⊕Rdf ∧ dy
M4 :=

Rdx ∧ dg ⊕ Rdy ∧ dg
Rdf ∧ dg

Now the map J can be written down explicitly

J : M1 −→ Rn1 ⊕ Rn2

dx 7−→ ({x, f}, {x, h})
dy 7−→ ({y, f}, {y, h})

J : M2 −→ Rn1 ⊕ Rn2

dg 7−→ ({g, f}, {g, h}) = (0, 1)

J : M3 −→ R

dx ∧ dy 7−→ J(dx) ∧ J(dy) = 0

J : M4 −→ R

dx ∧ dg 7−→ J(dx) ∧ J(dg)

dy ∧ dg 7−→ J(dx) ∧ J(dg)
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So E1
p = coker

(
Ω1
L,p → C1

L,p

)
is Rn1/ (RJ(dx) +RJ(dy)), whereas E 2

p =

coker
(
Ω2
L,p → C2

L,p

)
equals R (n1 ∧ n2)/ (RJ(dx ∧ dg) +RJ(dy ∧ dg)). If we

identify Rn1 and R (n1 ∧ n2) with ΩC2,0/fΩC2,0 via the (given) volume form
dx ∧ dy, then we see that E1

p and E2
p equals ′′H/(f · ′′H) where ′′H is the

Brieskorn lattice of function f , see also the discussion before theorem 2.3 on
page 47.

Next we calculate the map jt : E1
p → E2

p . It follows immediately using the
above description of these two modules that

jt : E1
p −→ E1

p

a 7−→ a · {t, h}

Moreover, a · {t, h} = a · {sk, h} = a · {gk, h} = a · k · gk−1. As g does not
vanish near p, we see that jt is an isomorphism between E1

p and E2
p .

The last lemma shows in particular that E 1 and E2 are outside of the
origin locally free OΣ-modules of rank µ, where µ is the Milnor number of
the transversal curve singularity. We are now able to proceed the calculation
of the cohomology of the operator δ : E 1 → E2. From the fact that the
function t is finite on Σ and the last lemma we obtain

Theorem 3.43. Denote by Ẽi (i = 1, 2) the germ at zero of the direct image

sheaf t∗E i. Denote the induced differential t∗δ : Ẽ1 → Ẽ2 again by δ and
the mapping t∗jt : Ẽ1 → Ẽ2 by i. The quadruple (Ẽ1, Ẽ2, i, δ) defines an
(E,F )-connection in the sense of [Mal74].

Proof. We are in the following situation: The modules Ẽi are OC,0-modules
of rank µ, so it remains only to verify the following relation between t, i and
δ:

δ(t · e) = i(e) + t · δ(e)
for any e ∈ E1. It suffices to do this for the sheaves E i, that is, we have
to show that for any Φ ∈ C1

L the following relation holds in C2
L: δ(t · Φ) =

jt(Φ) + t · δ(Φ). The function t ∈ OL can be seen as an element in C0
L, then

this relation follows immediately from the fact that (C•, δ,∧) is a differential
graded algebra.

To simplify notations, we set Ẽ = Ẽ1 and F̃ = Ẽ2. To proceed our
calculations, we need to work with torsion free modules. This is not re-
ally a restriction: The morphisms δ, jt : Ẽ → F̃ obviously send Tors(Ẽ)

to Tors(F̃ ), so that the cohomology on the torsion part can be calculated
explicitly (note that the torsion submodules are artinien). Therefore, we set
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E := Ẽ/Tors(Ẽ) and F := F̃ /Tors(F̃ ) and obtain an (E,F )-connection on
the free modules E, F .

We still can not compute the cohomology of δ directly because it is a
map of (infinite-dimensional) vector spaces. However, the (E,F ) connection
defines a meromorphic connection ∇t on the localization M := E⊗CC{t}[t−1]
together with two lattices which are the images of E (resp. F ) in M =
E⊗CC{t}[t−1] (= F ⊗CC{t}[t−1]). Recall that a lattice is a C{t}-submodule
of M of rank (say k) equal to the dimension of M as C{t}[t−1]-vector space.
To any such lattice E in (M,∇t) is associated a set of complex numbers
α1, . . . , αl with multiplicities nα1 , . . . , nαl

such that
∑l

i=1 nαi
= k. This set

is called the spectrum of E in (M,∇t). We recall its definition. Set

Cα :=
{
m ∈ M|∃N ∈ N : (t∇t − α)Nm = 0

}

V≥α :=
⋃
β∈[α,α+1) C{t}Cβ

V>α :=
⋃
β∈(α,α+1] C{t}Cβ

The spaces Cα are finite-dimensional C–vector subspaces of M whereas V>α

and V>α are C{t}-modules of rank k, hence lattices. Any section m ∈ M
can be decomposed in a series

m =
∑

α

s(m,α)

where s(m,α) ∈ Cα. A homogeneous element s(m,α) is also called elemen-
tary section. For any m ∈ M, the non-zero section s(m,α) with minimal α
(here one has to choose an order in C compatible with the usual order in R)
is called principal part of m. Then one defines

nα := dimC

E ∩ V ≥α
E ∩ V >α + tE ∩ V ≥α

Therefore, the spectrum encodes the dimension of the spaces of principal
sections of elements from E. The reader might consult [Var83], [Her02] or
[Sab02] for further detail. Let us denote the spectrum by Sp(E,M). If
α ∈ Sp(E,M) is a spectral number, then e2πiα is an eigenvalue of the mon-
odromy operator T : H → H , where H is the vector space of multivalued
sections of M which are flat with respect to ∇t. Note that the monodromy
does not depend on the lattice, but the spectral numbers does, and this
additional information consists in the choice of a logarithm of a given mon-
odromy eigenvalue (the choice of an integer by which the logarithm can be
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shifted). The following lemma shows how the spectral numbers can be used
to calculate the cohomology of the operator δ.

Lemma 3.44. Let an (E,F, δ, j)-connection be given and set M := E ⊗C

C{t}[t−1] as above. Denote the image of E in M again by E. Then we have

ker(E
δ−→ F ) ∼=

⊕

α∈Z≤0

E ∩ V ≥α
E ∩ V >α + tE ∩ V ≥α

Moreover, the dimension of the cokernel is given by the index formula

dimC

(
coker(E

δ−→ F )
)

= dimC

(
ker(E

δ−→ F )
)

−rank(E) + dimC (coker(j))

Note that here we suppose that E and F are free, otherwise the dimension of
the torsion parts has to be taken into account.

Proof. The “⊃” part is clear: Given a principal part e in C−k ∩E for k ∈ N,
one sees immediately that tke is annihilated by t∇t and hence by ∇t as t
is invertible on M. Conversely, let e be an element of the kernel of δ, i.e.,
∇te = 0, then t∇te = 0. Then by choosing a basis of E and decomposing we
can suppose that e = a(t)e0 where e0 is a basis vector. Let a(t) = tkǫ, where
k is the order of a (so ǫ is a unit). Then

0 = (t∇t)(t
kǫe0) = tk ((kǫ+ tǫ′)e0 + t∇te0)

This implies that we obtain a non-zero class in the quotient

(
E ∩ V ≥−k

)
/
(
E ∩ V >−k + tE ∩ V ≥−k

)

which shows the first statement. A proof of the index formula can be found
in [Mal74].

By this result, we are left with the calculation of the spectral numbers.
This is possible due to the following observation, a proof of which can be
found in [Her02] (the result is of course much older).

Lemma 3.45. Let E ⊂ (M,∇t) be a logarithmic (or saturated) lattice, i.e.,
suppose that E is stable under the action of the operator t∇t. Then the spec-
tral numbers of Sp(E,M) are the eigenvalues of the residue endomorphism,
that is, of the endomorphism

t∇t : E/tE −→ E/tE
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This simplifies the whole situation: the residue endomorphism is just a
map of finite-dimensional vector spaces, which can easily be calculated. Re-
turning to our situation of the (E,F )-connection coming from the modules
E i on the singular locus of the lagrangian variety, the problem of calculating
the cohomology would be solved if the lattice E were logarithmic. Unfor-
tunately, this is not the case in general, but we can overcome this difficulty
using the following trick. Suppose that there is a sublattice E ′ ⊂ E such that
E ′ is logarithmic. By the very definition of a lattice, the quotient E/E ′ is
artinien, so one can calculate the cohomology of δ on E/E ′ explicitly. Using
the above lemma, the spectrum Sp(E ′,M) gives the cohomology of δE′. It
rests to show that in our situation, there is always such a lattice E ′.

Lemma 3.46. Let L be a strongly quasi-homogeneous lagrangian surface
singularity. Consider the above defined (E,F )-connection (E,F, δ, j). Then
the modules E, F are naturally graded vector spaces and the maps δ and j
are homogeneous morphisms such that deg(tδ) = deg(j). Moreover, there is
a submodule E ′ ⊂ E with (tδ)(E ′) ⊂ j(E ′).

Proof. It is clear that the grading on OM induces a grading on Ω•L, C•L and
thus on the quotient E•. Note that the exterior differential in the de Rham
complex is homogenous of degree zero, but the degree of δi : CiL → Ci+1

L is
−deg(J) where J : Ω1 → C1

L. Thus also deg(δ : E1
L → E2

L) = −deg(J). If
we choose the projection t ∈ OL to be homogeneous, then the C{t}-modules
Ei are graded and the mappings δ and j are homogenous. It is an easy
calculation that deg(tδ) = deg(j).

We know from lemma 3.42 on page 85 that the cokernel of j is artinien.
This implies that there is a certain degree d such that j maps ⊕i≥dE

1
i isomor-

phically to ⊕i≥dE
2
i+deg(j). Then E ′ := ⊕i≥dE

1
i is the lattice we are looking

for.

The results presented up to this moment implies the following algorithm
to calculate the first two cohomologies of the complex C•L,0 for a quasi-
homogeneous surface singularity: The first point is to compute presenta-
tions of the modules CiL,0 and Ωi

L,0 as OL,0-modules as well as the morphisms
J i : Ωi

L,0 → CiL,0 for i = 1, 2 and the morphism jt for a convenient function t
(which must not vanish on any component of the singular locus of L). The
calculation these modules is standard in computer algebra (see [GP02] or
[EGSS02]). On the other hand, computing the morphisms J and jt involves
an implementation of the Poisson-bracket which can of course be done. Nev-
ertheless, J and jt are OL-linear thus representable by a matrix. However,
this is not true for δ which makes the whole thing complicated.
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We obtain presentations for E i and jt (seen as a OL,0-linear map from
E1 to E2). Now one uses the decomposition in graded parts of E i to choose
the a submodule E ′ corresponding to the sublattice E ′ and calculates the
residue endomorphism in any base of E ′/tE ′ as well as the operator δ on the

(artinien) modules E/E ′ and Tors(Ẽ). Then the index formula allows us
to deduce the dimension of the cokernel of δ, that is, the dimension of the
second cohomology of C•L.

In the sequel, we will list results for the following examples: the two-
dimensional open swallowtail Σ2 ⊂ K

4, conormal cones of plane curves (these
are also surfaces in four space) and some integrable systems in K4. For the
open swallowtail, we obtain.

Theorem 3.47. The dimension of the first and second cohomology groups
of C•Σ2,0

are

dim
(
H1(C•Σ2,0

)
)

= 0 dim
(
H2(C•Σ2,0

)
)

= 1

Moreover, the spectral numbers for a suitable chosen lattice E ′ are:

Sp(E ′,M) =

{
8

10
,
13

10
,
22

10
,
27

10

}

For conormal cones, we present in the following table results for T ∗CC
2

where C is a curve singularity. If there are no spectral numbers given, then

the modules E i are artinien.

C dim(H1) dim(H2) Sp(E′,M) (with multiplicity)

y2 − x3 0 0

y2 − x5 0 0 4
5 , 16

5

y3 − yx3 0 0 9

y3 − x5 0 0 29
5 , 41

5

y3 − x7 0 0 37
7 , 61

7 , 69
7 , 85

7 , 93
7 , 117

7

y5 − x7 0 0 116
7 , 132

7 , 148
7 , 164

7 ,

y3 − x6 1 1 7
2 , 10

2
(2)

, 13
2

xy(x + y)(x − y) 1 1

xy(x + y)(x − y)(x + 2y) 2 2

Finally, we consider integrable systems. We return to the examples in

K4 from table 1.4 on page 31, given by coefficients (λ, µ) and exponents
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(α, β, γ, δ).

λ, µ α, β, γ, δ dim(H1) dim(H2) Sp(E′,M) (with multiplicity)

1, 0 0, 0, 1, 1 2 1 3(4)

1, 2 0, 2, 1, 0 3 2 2
2

(2)
, 3

2

(2)
, 4

2

(2)
, 5

2

(2)
, 6

2

(2)

1, 3 3, 0, 0, 1 4 3 3
3
(2)

, 5
3
(2)

, 7
3
(4)

, 9
3
(4)

, 11
3

(4)
, 13

3
(2)

, 15
3

(2)

1, 4 4, 0, 0, 1 5 4 4
4
(2)

, 7
4
(2)

, 9
4
(2)

, 10
4

(2)
, 12

4
(2)

, 13
4

(2)
,

14
4

(2)
, 15

4

(2)
, 16

4

(2)
, 17

4

(2)
, 18

4

(2)
, 19

4

(2)
,

20
4

(2)
, 22

4

(2)
, 23

4

(2)
, 25

4

(2)
, 28

4

(2)

In all of the above examples, there is an astonishing symmetry popping
up. Comparing the above situation with the classical theory of the spectral
numbers of a hypersurface singularity (which is the spectrum of the Brieskorn
lattice inside the Gauß-Manin system), one is led to look for a non-degenerate
form on the module (M,∇), i.e., a form (·, ·) : M⊗M → C{t}[t−1] such that
d(·, ·) = (∇·, ·)+(·,∇·). This would imply the symmetry of Sp(F,M) for any
lattice F ⊂ M, particular for the latticeE. Therefore, although the latticeE ′

we have used to calculate the spectral numbers is not canonically associated
to the lagrangian surface L ⊂ C4, the observed symmetry is an important
hint to the existence of such an duality. One might speculate that it comes
(much like in the case of a hypersurface singularity) from the topology of the
lagrangian singularity. However, as we are dealing with arbitrary varieties
(non-complete intersections which might not even be smoothable), this kind
of argument is much more difficult to make work. What we know is that
locally around a point p ∈ Sing(L)\0, L is a product of a curve Cp with
a line. Hence one can consider the cohomology H1(Cpǫ,C) of a (canonical)
Milnor fibre of such a transversal curve. This is a vector space of a dimension
which equals the rank of the modules E i at the point p (see the proof of
lemma 3.42 on page 85). Speculating further in this direction, we might
state the following

Conjecture 3.48. Let L ⊂ C4 a quasi-homogenous lagrangian surface sin-
gularity with one-dimensional singular locus, which we denote by Σ. Let µ be
the Milnor number of its transversal singularity. Then there is a vector bun-
dle H on Σ∗ := Σ\0 of rank µ such that each fibre is canonically isomorphic
to H1(Cpǫ,C). This bundle comes equipped with a flat structure, induced by
the symplectic structure of M . Moreover, choosing a projection t ∈ OL as
above one obtains a meromorphic bundle H on C∗ and the modules E and F
are both locally free extensions over the origin. The constructed connection
∇ on M (i.e., the connection coming from the morphism δ) coincides with
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the (conjectured) connection on H the topological bundle. Finally, the Seifert
form on the Milnor fibre induces a non-degenerate pairing on M which ex-
plains the symmetry of the spectral numbers.

We only remark that the main difficulty in proving this speculation is the
construction of the topological bundle. It does exist locally around any point
p (this is evident due to the product structure), but one need to construct it
without any choice, only in terms of the ideal I which defines L.
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Chapter 4

Isotropic Mappings

This chapter contains mainly calculations of deformation spaces for some sim-
ple examples of isotropic mappings. We call any map i from an n-dimensional
to an 2n-dimensional symplectic manifold isotropic iff the pullback i∗ω of
the symplectic form vanishes. Then the image of this map is obviously a
lagrangian singularity, but the deformation theory of the map differs consid-
erably from that (developed in the last chapter) of its image. Unfortunately,
there is for the moment no good algorithm (even in the quasi-homogeneous
case) which allows one to calculate systematically the deformation spaces.
Therefore, we have to restrict ourselves to examples sufficiently simple to
be computed by hand. We will mostly be concerned with germs of maps
from K2 to K4, and we assume them to have rank one. This simplifies the
computations.

4.1 Generalities and basic examples

When studying a mapping f : X → Y between analytic spaces, or even a
germ of it at points x ∈ X and f(x) ∈ Y , the abstract theory of deformations
as developed in the second chapter becomes much more complicated. The
main reason is that all objects (modules, complexes and so on) that one has
to consider involve two spaces (X and Y ) and should therefore “live” on both
of them. This idea can indeed be carried out by using the concept of sites
and topoi. One can develop a variant of the cotangent complex in this setup.
The interested reader might consult [Ill71], [Ill72] or [Buc81]. However, we
will consider a much simpler situation, namely a germ of a mapping

f : (Kn, 0) −→ (Km, 0)

which we might suppose to be isotropic (in case that m = 2n). There are
several group actions which one can allow, corresponding to the so-called R,

95
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L, R−L-equivalence etc. We will use R−L-equivalence. Therefore, the cor-
responding deformation functor Def f associates to S ∈ Art an equivalence
class of map germs

F : (Kn × S, 0) −→ (Km × S, 0)

where F1 and F2 are isomorphic iff F1 = Φ ◦F2 ◦φ for analytic isomorphisms
Φ ∈ AutS(K

m) and φ ∈ AutS(K
n). In the symplectic case (m = 2n, Km

symplectic and f isotropic) recall the definition of the functor IsoDef f (def-
inition 2.6 on page 49): elements of IsoDef f(S) are isomorphism classes of
map germs as above with (F ◦ π)∗ω = 0 (π : K2n × S → K2n being the pro-
jection) with F1 equivalent to F2 iff F1 = Φ ◦ F2 ◦ φ where Φ ∈ SympS(K

m)
and φ ∈ AutS(K

n). Obviously, Def f is unobstructed. However, this is not
true for IsoDef f as we will see in the sequel.

The tangent space of Def f is known to be

T 1(f) ∼= f ∗ΘKm,0

df(ΘKn,0) + ΘKm,0

where df(ΘKn,0) is the image of the derivative df : ΘKn,0 → f ∗ΘKm,0 of the
map f . It is an important observation that this is not an OKn,0-module but
only an OKm,0-module (because of the term ΘKm,0 in the denominator). The
structure of the tangent space of IsoDef f is more subtle. For notational
simplicity, we denote (K2n, 0) by (M, 0) and (Kn, 0) by (N, 0) . Let LV f be
the following vector subspace of f ∗ΘM,0:

LV f :=

{
2n∑

i=1

gi∂xi
∈ f ∗ΘM,0 | (fi + ǫgi)

∗
i=1,...,2nω = 0

}

where x1, . . . , x2n are coordinates on (M, 0). These are the deformed isotropic
mappings. Denote by HamM,0 the sub-vector space of ΘM,0 consisting of
germs of hamiltonian vector fields on M . Then HamM,0 lies naturally in
LV f : A deformation of f by an element Xh ∈ HamM,0 ⊂ ΘM,0 ⊂ f ∗ΘM,0

is still isotropic, thus an element of LV f . Moreover, the derivative df maps
ΘN,0 into LV f (this follows directly from the isotropy of f). Then we have

Lemma 4.1. The tangent space of IsoDef f is

T 1
IsoDef(f) =

LV f

df(ΘN,0) + HamM,0

Note that this is only a K-vector space.
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To illustrate the above facts, we calculate the most basic example, namely,
a map germ f : (K, 0) → (K2, 0) defining a monomial curve.

Lemma 4.2. Let p, q ∈ N, gcd(p, q) = 1, p < q and

f : (K, 0) −→ (K2, 0)
t 7−→ (tp, tq)

be an irreducible germ of a monomial curve singularity. Then we have

T 1(f) ∼= T 1
IsoDef(f) ∼= C

δ

with δ = (p− 1)(q − 1)/2.

Proof. This can essentially be shown by a close look at a monomial diagram.
We will first recall an elementary proof of the equality dim T 1(f) = δ. The
following facts will be used: let n be a natural number greater or equal to
(p−1)(q−1), then there exists r, s ∈ N := {0, 1, 2, . . .} such that rp+sq = n.
Moreover, in the interval [0, (p−1)(q−1)−1] there are exactly (p−1)(q−1)/2
numbers admitting such an representation and they are distributed in the
following way: if n ∈ [0, . . . , (p − 1)(q − 1) − 1] and n = rp + sq for some
r, s ∈ N, then the number n′ := (p − 1)(q − 1) − n (this is n “reflected” at
(p− 1)(q− 1)/2) can not be represented as r′p+ s′q for r′, s′ ∈ N. Choosing
coordinates x, y in K2 we have

T 1
Def (f) =

K{t}∂x ⊕K{t}∂y
K{t}(ptp−1, qtq−1) + K{tp, tq}∂x + K{tp, tq}∂y

It follows that a deformation of type trp+sq∂x or trp+sq∂y is trivial because
the function trp+sq is in K{tp, tq}. So a non-trivial deformation consists of
terms tk∂x or tk∂y such that k is not representable as k = rp + sq. These

are a priori 2 (p−1)(q−1)
2

= (p − 1)(q − 1) deformations. But the submodule
K{t}(ptp−1, qtq−1) causes further identifications: a term tk∂x is equivalent to
q
p
tk+q−p∂y whenever k ≥ p − 1. So in order to count deformations properly

we proceed as follows (see figure 4.1 on the next page): We first take all
monomials from the lower row which are not trivial (i.e., not representable
as trp+sq), the we add those from the upper row not related to any of the
lower row (those of the form tk∂x with 0 < k < p − 1, these are nontrivial
because k < p < q). These are (p − 1)(q − 1)/2 + (p − 2) deformations not
related by an isomorphism. But in the first group (those from the second
row) we have some monomials isomorphic to a trivial deformation of type
tl∂x. A proper count shows that this are exactly p− 2 ones. So the result is

dim T 1(f) =
(p− 1)(q − 1)

2
= δ



98 CHAPTER 4. ISOTROPIC MAPPINGS

Figure 4.1: Monomial diagram

To prove the desired formula for lagrangian deformations, we assume the
symplectic form to be ω = dx ∧ dy. Any deformation of f is automatically
isotropic, so LV f = f ∗ΘM,0. This leads to:

T 1
IsoDef(f) =

K{t}∂x ⊕K{t}∂y
K{t}(ptp−1, qtq−1) + {(−∂yh ◦ f, ∂xh ◦ f) | h ∈ OK2,0}

(4.1)

It therefore suffices to prove the following: Let trp+sq∂x or trp+sq∂y be a
deformation with r, s ∈ N. Then it is trivial not only as an ordinary but also
as an lagrangian deformation. Let’s treat the case trp+sq∂x, the other one is
similar: We have the following equalities

trp+sq∂x = xrys∂x = −∂y(−
1

s+ 1
xrys+1)∂x

By the second relation in the denominator of formula 4.1, the last term is
equivalent to

∂x(−
1

s + 1
xrys+1)∂y = − r

s+ 1
xr−1ys+1∂y =

− r

s + 1
trp+sq−p+q∂y = − r

s+ 1
t(r−1)p+(s+1)q∂y

On the other hand, it follows from the first relation in equation 4.1 that that

− r

s + 1
t(r−1)p+(s+1)q∂y = − r

q(s+ 1)
t(r−1)p+sq+1qtq−1∂y ∼=

− pr

q(s+ 1)
t(r−1)p+sq+1tp−1∂x = − r

q(s+ 1)
trp+sq∂x

This is a contradiction, we get that the deformations

− r

q(s+ 1)
trp+sq∂x and trp+sq∂x

are equivalent, which is impossible. So they are zero.
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For lagrangian deformation of a curve (C, 0) (deformation of the image
of an isotropic mapping f : (K, 0) → (K2, 0)) we had (see formula 2.1 on
page 47) that

dim
(
T 1
LagDef(C, 0)

)
= µ > τ = dim

(
T 1
Def (C, 0)

)

These numbers coincides in the quasi-homogeneous case, so the result on
curves of type t 7→ (tp, tq) is not too surprising. However, if the image

curve C is not quasi-homogenoues, then the cohomology H1(Ω̃C,0) is not zero.
Therefore, we can consider the lagrangian family (C × S, 0) ⊂ ((M, 0), ωS)
where ωS is a non-trivial deformation of the symplectic form. Equivalently,
there is an analytically trivial family (CS, 0) ⊂ (M × S, 0) which is not
trivializable by a symplectic automorphism. As the family CS is trivial in
the analytic category, it must be a δ-constant deformation. Therefore, it can
be realized by a deformation of the normalization (the isotropic mapping)
f , which is also trivial for the functor Def f but not for IsoDef f . However,
as for lagrangian subvarieties, the calculation of the deformation spaces for
non-quasihomogenous examples is rather difficult.

The next example we are discussing are mappings having a decomposable
lagrangian space as its image. Here we will see that there is no rigidity
principle as in the case of deformations of the image: Therefore, we expect
T 1
IsoDef(f) to be finite only when T 1

Def (f) is finite. We use the following
notations: LetM := K

2n+2 with coordinates (p0, q0, p1, . . . , pn, q1, . . . , qn) and
symplectic form ω =

∑n
i=0 dpi ∧ dqi, write M ′ for the symplectic reduction

of M with respect to p0. Denote by N the space Kn+1 with coordinates
x1, . . . , xn, t and by N ′ the space Kn with coordinates x1, . . . , xn.

Theorem 4.3. Consider the maps

f : (N, 0) −→ M
(x1, . . . , xn, t) 7−→ (0, t, f1, g1, . . . , fn, gn)

with fi ∈ ON ′,0 and

f ′ : (N ′, 0) −→ M
(x1, . . . , xn) 7−→ (f1, g1, . . . , fn, gn)

Suppose f ′ to be isotropic, i.e. f ′∗ω′ = 0 which implies f ∗ω = 0. Then we
have

T 1
IsoDef(f) ∼= T 1

IsoDef(g) ⊗K{t}
Proof. The elements of LV f ⊂ f ∗ΘM,0 are vector fields of type

r0∂p0 + s0∂q0 + r1∂p1 + s1∂q1 . . .+ rn∂pn + sn∂qn
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with ri, si ∈ OKn,0. These coefficients satisfy a certain system of differential
equations which is given by the vanishing of the following two-form on K

n:

dr0 ∧ dt+
n∑

i=1

(dfi ∧ dsi + dgi ∧ dri)

We calculate in the quotient T 1
IsoDef(f), thus we can assume s0 to be zero,

as there is a term of type K{x1, . . . , xn, t}∂q0 in the denominator.
The lagrangian condition can be restated as

dxr0 ∧ dt =

n∑

i=1

((dxsi + ∂tsidt) ∧ dfi + dgi ∧ (dxri + ∂tridt))

where dx denotes the differential with respect to x. This equals the two
conditions:

∑n
i=1 (dxsi ∧ dfi − dgi ∧ dxri) = 0

∑n
i=1 (∂tsidt ∧ dfi + dgi ∧ ∂tridt) = dxr0 ∧ dt

Now if (r, s) := (r1, s1, . . . , rn, sn) is in T 1
IsoDef(f

′) ⊗ K{t}, then it can be
decomposed into (r, s) =

∑∞
j=0(r, s)jt

j with (r, s)j ∈ T 1
IsoDef(g). Then the

first condition is obviously satisfied: it is just the fact that (r, s)j defines a
lagrangian deformation of f for each j. The second equality can be written
as

n∑

i=1

(∂tridgi − ∂tsidfi) = dxr0

so by the Poincaré lemma, applied to the differential dx, we must have

dx

n∑

i=1

(∂tridgi − ∂tsidfi) = 0

in order to get a solution. But this means

∂t

n∑

i=1

(dxri ∧ dgi − dxsi ∧ dfi) = 0

which is just the derivative of the first condition and therefore automatically
satisfied. Summarizing, we can assume that T 1

IsoDef(f) is given as

T 1
IsoDef(f) =

r1∂p1 ⊕ . . .⊕ rn∂pn ⊕ s1∂q1 ⊕ . . .⊕ sn∂qn∑n
i=1 ∂xi

(f1, g1, . . . , fn, gn) + {XH |H ∈ OK2n+2,0}
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where XH is the Hamilton vector field associated to H . As we have already
seen, each representative (r, s) of a class in this quotient may by decomposed
into a series (r, s) =

∑∞
j=0(r, s)

(j)tj , where (r, s)(j) is a lagrangian deforma-

tion of f ′. It remains to show that (r, s) is trivial iff each (r, s)(j) is a trivial
deformation of f ′. But this is clear, because the first terms in the denomina-
tor do not contain the variable t and in the second one (the Hamilton field,
which may contain p0 and q0) we do not derive with respect to p0 or q0, so
the whole denominator may be decomposed as a series in t, too.

4.2 Corank 1 mappings

In this section we focus on isotropic mappings which are of corank one, that
is, map germs from (Kn, 0) to (K2n, 0) such that the differential has rank n−1
at the origin. The particular case n = 2 has been studied in [Giv86] where
it is proved that open Whitney umbrellas form an open subset of the space
of all isotropic mappings from R2 to R4 (in the C∞-topology). Givental also
conjectured that this subset is dense. This has been proved in [Ish92]. We
also discuss the smoothness of the functor IsoDef f in case that f is of corank
one and for some other examples.

Let us start be recalling (see theorem 1.18 on page 28) that the open
Whitney umbrella W2 in K4 is the image of the mapping

n : K2 −→ K4

(s, t) 7−→ (−3st, 2t, s2, s3)

Equations for the image have been given in chapter one. In the following
paragraphs, we check that n is indeed a stable map, at least in the formal
sense (this is of course well known).

Lemma 4.4. We have T 1
IsoDef(n) = 0.

Proof. This calculation will serve as a model for further computations if
isotropic mappings from a plane into the four-space. In contrast to the case
of curves, we have to take into account the isotropy condition. However,
the fact that n is of corank one makes it easy to fulfill this condition. More
precisely, any infinitesimal deformation ñ is given as (s, t) 7→ (−3st+ ǫa, 2t+
ǫb, s2 + ǫc, s3 + ǫe). with a, b, c, e ∈ K{s, t} (we avoid the use of the letter d
which denotes the exterior differential). The deformed map ñ is isotropic iff
d(−3st + ǫa) ∧ d(s2 + ǫc) + (2t + ǫb) ∧ (s3 + ǫe) = 0. From n∗ω and ǫ2 = 0
we get that this is equivalent to

−3d(st) ∧ dc+ da ∧ d(s2) + 2dt ∧ de+ db ∧ d(s3) = 0
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Therefore the space LV n is given by all quadruples (a, b, c, e) satisfying this
condition. However, we are only interested in T 1

IsoDef(n), which is a quotient
of LV n. We have

T 1
IsoDef(n) =

LV n

r2(−3t, 0, 2s, 3s2) + r2(−3s, 2, 0, 0) +Xh ◦ n

with r1 and r2 arbitrary functions from K{s, t} and Xh the hamiltonian
vector field of a function h ∈ K{x, y, z, w}. Therefore, any deformation
of type b∂y (recall that LVn ⊂ n∗ΘK4,0) is equivalent to a deformation of

type a∂x. We get the following simplification: Denote by L̃V n the subspace
of K{s, t}∂x ⊕ K{s, t}∂z ⊕ K{s, t}∂w consisting of triples (a, c, e) such that
−3d(st) ∧ dc+ da ∧ d(s2) + 2dt ∧ de = 0. This is obviously equivalent to

∂se =
3

2
∂sc−

3

2
∂tc+ s∂ta

and we have

T 1
IsoDef(n) =

L̃V n

r2(−3t, 0, 2s) + r2(−3s, 2, 0) + (−∂zh, ∂wh, ∂xh) ◦ n

We see that ones we are given a and c, the remaining component e is uniquely
determined by the isotropy condition, and for any (a, c) there is (up to con-
stants) a unique e making the deformed map isotropic. Thus it will be

sufficient to calculate a vector space basis for the (a, c)-subspace of L̃V n rep-
resenting the quotient T 1

IsoDef(n). A system of generators of this space is

given by all monomials sktl∂x and sktl∂z. We have to show that they are all
equal to zero in the quotient. We will use the following principle: We take
any monomial m and calculate relations (elements of the denominator of the
above formula for T 1

IsoDef(n)) involving m. Here a relation between monomi-
als m1 ∼ m2 means that the difference lies in the denominator. Then it may
happens that we get a relation of type m ∼ λm where λ ∈ K is different from
one. Thus the difference and therefore also m itself lies in the denominator
(as everything is linear over K), i.e., m is zero in T 1

IsoDef(n). We start with

m = s2ktl∂x. We have

m = zk
(
y
2

)l
∂x = −∂z

(
− 1
k+1

(
y
2

)l
zk+1

)
∂x

∼= ∂w

(
− 1
k+1

(
y
2

)l
zk+1

)
∂y + ∂x

(
− 1
k+1

(
y
2

)l
zk+1

)
∂z = 0

Thus the deformation given by m is trivial.
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Now let m := s2ktl∂z . This is a bit more complicated, but a very typical
calculation as we will see later.

m = zk
(
y
2

)l
∂z = ∂x

(
x
(
y
2

)l
zk
)
∂z

∼= ∂w

(
x
(
y
2

)l
zk
)
∂y − ∂z

(
x
(
y
2

)l
zk
)
∂x

∼= −kzk−1x
(
y
2

)l
∂x = −ks2k−2(−3st)tl∂x = 3t

(
ks2k−1tl

)
∂x ∼= 2ks2ktl∂z

We are precisely in the situation described above: as 2k 6= 1, we conclude
that m is zero in the quotient. Lets now m := s2k+1tl∂z. Then

m = 2s

(
1

2
s2ktl

)
∂z ∼=

3

2
s2ktl∂z

But this last term was already seen to be zero. The last monomial is of type
m := s2k+1tl∂x. Here we have

m ∼= 2
3
s2ktl∂y = 2

3
zk
(
y
2

)l
∂y ∼=

= 2
3
∂w

(
wzk

(
y
2

)l)
∂y ∼= 2

3
∂x

(
wzk

(
y
2

)l)
∂z − 2

3
∂z

(
wzk

(
y
2

)l)
∂x

∼= −2
3
kwzk−1

(
y
2

)l
∂x = −2

3
ks3s2k−2tl∂x = −2

3
ks2k+1tl∂x

This shows that also in this case m is a trivial deformation. The proof is
finished.

This calculation also yields the idea of the proof for the following fact.

Theorem 4.5. Let i : (K2, 0) → (K4, 0) the germ of any isotropic mapping
of corank one. Then IsoDef i is smooth.

Proof. Let i be given as (s, t) 7→ (a, b, c, e) with ∂te non-vanishing at the
origin. Then by a coordinate change in K2 (this does not affect the symplectic
form) we can assume that e = t. Now it is easy to see that any deformation
over Spec(An) = Spec(K[ǫ]/ǫn+1) is equivalent to one of the following type

in : (K2, 0) × Spec(An) −→ (K4, 0)

(s, t, ǫ) 7−→ (a+
n∑
i=1

ǫnan, b+
n∑
i=1

ǫnbn, c+
n∑
i=1

ǫncn, t)
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with ak, bk, ck ∈ K{s, t}. Now a deformation over Spec(An+1) of type in +
(an+1ǫ

n+1, bn+1ǫ
n+1, cn+1ǫ

n+1, t) (one can always reduce to this case as above)
is lagrangian iff

dt ∧ dbn+1 =

n+1∑

k=0

dai ∧ dcn+1−i + dan+1−i ∧ dci

where we set a0 := a and c0 := c. But this is equivalent to

(∂sbn+1) dt ∧ ds =
n+1∑

k=0

dai ∧ dcn+1−i + dan+1−i ∧ dci

which can always be satisfied. Therefore, any given deformation over the
space Spec(An) can be extended over Spec(An+1) which gives the smoothness
of IsoDef i by lemma A.21 on page 136.

The following example, taken from [Ish96], shows that there are corank
two mappings having obstructed deformations.

Theorem 4.6. Consider the map-germ

i : (K2, 0) −→ (K4, 0)
(s, t) 7−→ (s2, t2, 0, 0)

Then IsoDef i is not smooth.

Proof. We will exhibit an infinitesimal deformation which cannot be extended
to higher order. Consider

i1 : (K2, 0) × Spec(A1) −→ (K4, 0)
(s, t, ǫ) 7−→ (s2 + ǫt, t2, ǫs, ǫt)

Obviously, we have i∗1ω = 0, so i1 ∈ LVi. It can be easily checked that the
class of i1 in T 1

IsoDef(i) is non-zero. Any extension i2 of i1 over Spec(A2) is
of the form (s, t, ǫ) 7→ (s2 + ǫt+ ǫ2a, t2 + ǫ2b, ǫs+ ǫ2c, ǫt+ ǫ2e) with a, b, c, e ∈
K{s, t}. Then

i∗2ω = d(s2) ∧ dc+ dt ∧ ds+ d(t2) ∧ de = (1 − 2s∂tc + 2t∂se)dt ∧ ds

This form is non-zero at the origin for any (a, b, c, e) showing that there is
no isotropic extension of i1 over A2.
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Note, however, that in this example the tangent space T 1
IsoDef(i) is not

finite-dimensional. In fact, is is not so obvious to find examples of maps
of rank zero with finite dimensional tangent space. As explained before, it
is unlikely that maps i where T 1

Def(i) is not finite have finite-dimensional
tangent space for the functor LagDef . So we first have to look for rank zero
maps i such that dim(T 1

Def (i)) <∞. Consider the following example

i : (K2, 0) −→ (K4, 0)
(s, t) 7−→ (s3, t3, 1

3
st3 + 1

4
t4, 1

4
s4 + 1

3
s3t)

Using standard methods in computer algebra (e.g., calculation of a presen-
tation of i∗ΘK4,0 as a OL,0-module, where L is the image of i), we obtain
that

dim
(
T 1
Def(i)

)
= 234

It is of course very hard to detect the dimension of dim
(
T 1
IsoDef(i)

)
. There

should be simpler examples (with smaller codimension), but it is not so clear
how to construct them.

4.3 Symplectic and Lagrange stability

In this section we review the results of Givental and Ishikawa concerning the
open Whitney umbrella as generic singularity of corank one isotropic maps
from a plane into four space. We work only over R here. The results are
valid in the C∞-category. First we give a slightly different definition of the
open Whitney umbrella in any dimension. They are given as the images of
the following isotropic mappings.

Definition 4.7. Let n, k ∈ N and k ≤
[

1
2
n
]
. Define the following map

fn,k : (Rn, 0) −→ (R2n, 0)
(x1, . . . , xn−1, z) 7−→ (p1, . . . , pn, q1, . . . , qn)

where
qi := xi i = 1, . . . , n− 1

qn := zk+1

(k+1)!
+
∑k−1

j=1 xj
zk−j

(k−j)!

pn :=
∑k−1

j=0 xk+j
zk−j

(k−j)!

pi :=
∫ (

∂pn

∂xi

∂qn
∂z

− ∂qn
∂xi

∂pn

∂z

)
dz i = 1, . . . , n− 1
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Obviously, if we take k = 0, we get just a smooth lagrangian (sub-vector)
space in R

2n. Moreover, for any n, k, we have that fn,k = f2k,k × fn−2k,0.
Therefore, as before the only interesting case is n = 2k and corresponds to
the open Whitney umbrella W2k as introduced in definition 1.18 on page 28.
However, by choosing pi and qi as coordinates on R2n, we fix an identification
of R2n with T ∗Rn which is not the same as in the definition of the open
Whitney whitney umbrella as conormal cone of the open swallowtail. For
n = 2, it is the cotangent fibration we have used to calculate the front (the
composed Whitney umbrella, see figure 1.3 on page 28).

Theorem 4.8. Let n = 2k and denote by Iso(Rn,R2n) be the space of
isotropic mappings from R

n to R
2n of corank one, equipped with the Whitney

C∞-topology. Then there is a dense open set W ⊂ Iso(Rn,R2n) with the
following property: Let i ∈ W be given, then for any point x ∈ Rn there is
a neighborhood U of x in Rn and a neighborhood V of i in W such that the
restriction of all j ∈ V to U ⊂ Rn is symplectically left-right equivalent to
f2n,n.

We will give the main ideas of Ishikawa’s proof without carrying out
all details. The first point is the following equivalence between isotropic
map germs and germs of parameterized fronts. First fix an identification
of R2n with T ∗Rn, denote the base space by B and by π the projection
T ∗B → B. Moreover, we abbreviate the source Rn of the isotropic maps by
N . Then for any ϕ ∈ Iso(N, T ∗B) we have the generating function F ∈ EN,0,
i.e., a function such that de = ϕ∗α, where α is the Liouville form on T ∗B
(see the definition on page 16). Set ψ := π ◦ ϕ. We say that two maps
ϕ, ϕ′ ∈ Iso(N, T ∗B) are Lagrange equivalent iff they are symplectically left-
right equivalent and if the symplectomorphism respects the bundle structure
given by π.

Lemma 4.9. Two isotropic maps ϕ, ϕ′ ∈ Iso(N, T ∗B) are Lagrange equiv-
alent iff there is σ ∈ Aut(N), τ ∈ Aut(B), and a function S ∈ EB,0 such
that

τ ◦ ψ′ = ψ ◦ σ and F = F ′ ◦ σ + S ◦ ψ

Proof. Suppose first that ϕ and ϕ′ are equivalent. Then there is an automor-
phism σ of N and Φ ∈ Symp(T ∗B) respecting the fibration given by π such

that ϕ′ ◦ σ = Φ ◦ ϕ This implies that Φ∗α = α + π∗dS̃. Hence,

d(σ∗F ′) = σ∗ϕ′∗α =

ϕ∗
(
α + π∗dS̃

)
= d

(
F + ψ∗S̃

)
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Therefore, σ∗F ′ = F +ψ∗S̃ + c for some constant c and by setting S = c− S̃
we obtain σ, τ and S as required. On the other hand, suppose σ, τ and S be
given. Then Φ := π∗τ + dS is a symplectomorphism respecting the bundle
structure and we have Φ∗α = α+ π∗dS̃. It follows that

(Φ ◦ ϕ ◦ σ−1)∗α = (ϕ ◦ σ−1)∗(α + π∗dS̃) =

σ−1∗(dF − dψ∗S) = σ−1∗d(σ∗F ′) = dF ′ = ϕ′∗α

The composition of both ϕ′ and Φ◦ϕ◦σ−1 with π equals ψ′ and the pullback
of the Liouville form by these two maps coincides, as we have just proved.
Therefore, we also have Φ ◦ ϕ ◦ σ−1 = ϕ′.

Note that we did not made use of the fact that the maps under consider-
ation are of corank one. In that case, we can say more.

Lemma 4.10. Write the isotropic map ϕ : N → T ∗B in the form

(x1, . . . , xn−1, z) 7−→ (p1, . . . , pn−1, v(x, z), x1, . . . , xn−1, u(x, z))

Then the generating function is

F (x, z) =

∫ z

0

v(x, t)∂tu(x, t)dt+ b(x)

for a function b ∈ ERn−1,0 (the ring of functions in the variables x1, . . . , xn−1).

Proof. By definition, dF =
∑n−1

i=1 pidxi + vdu. On the other hand, dF =∑n
i=1 ∂xi

F dxi + ∂zF dz, which implies that ∂zF = v∂zu.

The important point is that given functions v and u, one can construct
an isotropic mapping of the above type in an essentially unique way.

Lemma 4.11. Suppose that v(x, 0) = 0. Then the map

ϕv : N −→ T ∗B
(x1, . . . , xn−1, z) 7−→ (p1, . . . , pn−1, v, x1, . . . , xn−1, u)

where

pi :=

∫ z

0

(∂xi
v · ∂tu− ∂xi

u · ∂tv) dt i ∈ {1, . . . , n− 1}

is isotropic. Moreover, let ϕ′ : N → T ∗B be isotropic such that π ◦ ϕ′ =
π ◦ ϕ. Then ϕ′ is Lagrange equivalent to the map ϕv′ where v′(x, z) :=
(pn ◦ ϕ′)(x, z) − (pn ◦ ϕ′)(x, 0).
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This lemma is proved by comparing the generating functions and applying
lemma 4.9 on page 106. In particular, by taking u := zk+1

(k+1)!
+
∑k−1

j=1 xj
zk−j

(k−j)!

and v :=
∑k−1

j=0 xk+j
zk−j

(k−j)!
, one obtains that fv ∼= fn,k.

Now the proof of the theorem goes as follows: First one has to detect the
open dense subset W ⊂ Iso(N, T ∗B) all germs of which are equivalent to the
open Whitney umbrella. This set is determined by the following condition: a
map germ ϕ = (p1, . . . , pn−1, v, ψ) is inW iff the map ψ̃ = (ψ, v) : Rn → R

n+1

is a Morin singularity (see [Mor65]), i.e., if the r-jet jrψ̃ is transverse to
the Thom-Boardman-symbol Σ1k ,0 inside the r-jet space J r(V,Rn+1) where
r =

[
n
2

]
+ 2 and k ∈ {0, . . . , r} (see, e.g., [GG80] for definitions). It follows

from the last lemma that the set W defined in this way is open, because
Iso(N, T ∗B) carries the topology induced from C∞(N, T ∗B).

Given a map ϕ ∈ W , it is not difficult to see that it is symplectically
equivalent to ϕ̃(x, z) = (p1, . . . , pn−1, v, q1, . . . , qn−1, u) with

qi = xi ∀ i ∈ {1, . . . , n− 1}
qn =: u(x, z) = zk+1

(k+1)!
+
∑k−1

j=1 xj
zk−j

(k−j)!

pn =: v(x, z)

for some v with the property that ∂lv
∂zl |(0,0)

= 0 for l ∈ {0, . . . , k}. However,

to do this transformation, it is sometimes necessary to interchange the co-
ordinates p and q, therefore here we only have symplectic but not Lagrange
equivalence.

It follows that for the generating function F of ϕ we have ∂zF = v · ∂zu.
Now the main point in the proof is to consider the algebra

Hψ = {e ∈ EN,0 | ∃ϕ : de = ϕ∗α , π ◦ ϕ = ψ}

of all generating functions of isotropic mappings lifting a given map ψ : N →
B. One can show that Hψ is naturally a EB,0-module via ψ and that it is
generated by functions 1, H1, . . . , Hk with

Hl :=

∫ z

0

tl

l!

(
tk

k!
+

k∑

j=1

aj(x)
tk−j

(k − j)!

)
dt

for fixed functions ai ∈ mR{x}. At this point it is necessary to use Malgrange’s
preparation theorem for differential algebras. We obtain that F = b0 ◦ ψ +∑k

j=1 bj ◦ ψHj where bi : B → R. This implies (using the chain rule)

v = (∂qnb0) ◦ ψ +
n∑

j=1

(∂qnbj) ◦ ψHj +
k∑

j=1

bj ◦ ψ
zj

j!
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Now it is possible to show that the map

σ : N −→ N

(x, z) −→
{
xi (1 ≤ i ≤ k − 1, 2k ≤ i ≤ n)
b2k−i ◦ ψ (k ≤ i ≤ 2k − 1)

is an automorphism of N leaving Hj (j ∈ {0, . . . , k}) invariant and that there
is an automorphism τ of B such that ψ ◦σ = τ ◦ψ. Moreover, the generating
function F satisfies

F = b0 ◦ ψ +

k∑

j=1

bj ◦ ψHj = b0 ◦ ψ + F ′ ◦ σ

for a function

F ′ =
k∑

j=1

x2k−jHj =

∫ z

0

(
k∑

j=1

x2k−j
tj

j!

)
∂udt

This is the generating function of the open Whitney umbrella fn,k = f2k,k

which proves the theorem by applying lemma 4.9 on page 106.
We obtain as an immediate consequence.

Corollary 4.12. The only stable isotropic map germ from R
n to R

2n of
corank one is the open Whitney umbrella.

We finish this section by remarking that the subsequent papers of Ishikawa
(see in particular [Ish96]) contains also a treatment of the above questions
with respect to the Lagrange automorphism group, that is, the semi-direct
product of Aut(N) with the subgroup of Symp(T ∗B) consisting of symplec-
tomorphisms preserving the Lagrange fibration π : T ∗B → B.

4.4 Further computations and conjectures

In this section we study isotropic mappings of corank one which are not
symplectically equivalent to open Whitney umbrellas. We calculate sev-
eral invariants attached to them, the most difficult one being its lagrangian
codimension, that is, the dimension of T 1

IsoDef . It seems that there is al-
ways a linear relation between this dimension and some other invariants.
More precisely, we will compare the dimension of T 1

IsoDef(ϕ) for a mapping
ϕ : (K2, 0) → (K4, 0) with the dimension of the usual T 1

Def(ϕ) as well as with
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two other invariants: namely, the dimension of the module of relative differ-
ential forms with respect to the mappings ϕ, i.e., ΩK2,0/ϕ

∗Ω2
K4,0 and with the

δ-invariant. Recall that this is the dimension of the quotient ϕ∗OK2,0/OL,0

where L := Im(ϕ). Then modules ΩK2,0/ϕ
∗Ω2

K4,0 and ϕ∗OK2,0/OL,0 are sup-
ported on the critical locus of the map ϕ (resp. on its image), therefore, they
will be in general artinien only if the critical locus is isolated.

To obtain other examples than open Whitney umbrellas, we use the-
orem 4.3 on page 99: Any decomposable isotropic mapping deforms into
infinitely many corank one maps. Take the A2k+1-singularity, crossed with a
line

ϕ : (K2, 0) −→ (K4, 0)
(s, t) 7−→ (s2, t, s2k+1, 0)

According to lemma 4.2 on page 97 and theorem 4.5 on page 103, the la-
grangian deformations are of the following form

ϕ̃ : (s, t) 7−→
(
s2, t, s2k+1 +

2k∑

i=1

s2k−iǫi(t),

2k∑

i=1

2

2(k + 1) − i
s2(k+1)−iǫ′i(t)

)

Similar formulas can be written down for deformations of more general map-
pings of type (s, t) 7→ (sp, t, sq, 0). Of all deformations obtained in this way we
are mostly interested in those which are quasi-homogeneous in the variables
(s, t). We will consider the following examples of map germs ϕi : (K2, 0 →
(K4, 0)

ϕ1 : (s, t) 7−→
(
s2, t, s3 + st2, 4

3
s3t
)

ϕ2 : (s, t) 7−→
(
s2, t, s5 + st4, 8

3
s3t3

)

ϕ3 : (s, t) 7−→ (s2, t, s7 + st6, 4s3t5)
ϕ4 : (s, t) 7−→

(
s2, t, s9 + st8, 16

3
s3t7

)

ϕ5 : (s, t) 7−→ (s3, t, s5 + st4, 3s4t3)

The calculation of the dimensions of T 1
Def(ϕ), ΩK2,0/K4,0 and ϕ∗OK2,0/OL,0

is a standard procedure due to the fact that all objects involved here are
modules over either OK2,0, OK4,0 or OL,0. One obtains the following results

ϕ dimK(T 1
Def (ϕ)) dimK

(

ΩK2,0/K4,0

)

dimK

(

ϕ∗OK2,0

OL,0

)

(

s2, t, s3 + st2, 4

3
s3t

)

3 5 2
(

s2, t, s5 + st4, 8

3
s3t3

)

10 19 4
(

s2, t, s7 + st6, 4s3t5
)

21 55 6
(

s2, t, s9 + st8, 16

3
s3t7

)

36 97 8
(

s3, t, s5 + st4, 3s4t3
)

28 77 8
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As already said, the computation of dimK(T 1
IsoDef(ϕ)) is much more in-

volved. However, for the first four examples one has the advantage that both
t and s2 are elements of the ring OL,0 which simplifies everything. We have
already seen an example of the calculation for map with this property (the
open Whitney umbrella), so we will not reproduce the details here. How-
ever, for ϕ5 things are more complicated. Here we have only t, s3 ∈ OL,0.
Although the computations are in principle the same as before, one has to
be much more carefully. Therefore, we will give prove the following theorem
in some detail for the map ϕ5.

Theorem 4.13. The lagrangian codimension of the above maps is as follows

dimK(T 1
IsoDef(ϕ1)) = 1

dimK(T 1
IsoDef(ϕ2)) = 6

dimK(T 1
IsoDef(ϕ3)) = 15

dimK(T 1
IsoDef(ϕ4)) = 28

dimK(T 1
IsoDef(ϕ5)) = 20

The proof of the last equality will be given in several steps. By definition,
we have to compute the length of

T 1
IsoDef(ϕ5) :=

(a, b, c, e) ∈ O4
K2,0 | ∂se = 3s2∂tc+ t4∂sa− 4st3∂ta

dϕ5(ΘK2,0) + HamK4,0

where HamK4,0 denotes space of Hamilton vector fields on (K4, 0). Substi-
tuting the map we obtain

T 1
IsoDef(ϕ5) =

(a,b,c,e)∈K{s,t}4 | ∂se=3s2∂tc+t4∂sa−4st3∂ta

K{s,t}(3s2,0,5s4+t4,12s3t3)+K{s,t}(0,1,t4,9s4t2)+{ϕ−1
5 (−∂zh,−∂wh,∂xh,∂yh) | h∈O

K4,0}

∼= (a, b, c) ∈ K{s, t}3

K{s, t}(3s2, 0, 5s4 + t4) + K{s, t}(0, 1, 4st3) + ϕ−1
5 (−∂zh,−∂wh, ∂xh)

Now we have to analyze this quotient “by hand”. We consider only monomial
deformations, as anything is K-linear. The first case is:

s3ptl∂x = xpyl∂x = −∂z
(
−zxpyl

)
∂x ∼= −∂x

(
−zxpyl

)
∂z

= pzxp−1yl = p(s5 + st4)s3p−3tl∂z = p
(
s3p+2tl + s3p−2tl+4

)
∂z
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On the other hand, we have for s > 0

s3ptl∂x = 3s2
(

1
3
s3p−2tl

)
∂x ∼= (5s4 + t4)

(
1
3
s3p−2tl

)
∂z

=
(

5
3
s3p+2tl + 1

3
s3p−2tl+4

)
∂z

This is obviously impossible except for the zero coefficient. Note that the
restriction s > 0 is not a real one, as the monomial tl∂x is easily seen to be
a trivial deformation (can be trivialized by the hamiltonian field X−zyl). So
we have:

Lemma 4.14. The deformations s3ptl∂x are trivial for all p, l ∈ N. The
same argument works in the case s3ptl∂z.

Let us analyze the more complicated cases.

s3p+1tl∂x = 3s4t3
(

1
3
s3(p−1)tl−3

)
∂x = 1

3
wxp−1yl−3∂x

= −∂z
(

1
3
− zwxp−1yl−3

) ∼= −zxp−1yl−3∂y + pzwxp−2yl−3∂z

= − (s5 + st4) s3p−3tl−3∂y + p (s5 + st4) 3s4t3s3p−6tl−3∂z

∼= − (s5 + st4) s3p−3tl−34st3∂z + p (s5 + st4) 3s4t3s3p−6tl−3∂z

= (3p− 4)
(
s3(p+1)tl + s3p−1tl+4

)
∂z

The first term equals zero in the quotient, as we had already seen. So we get

s3p+1tl∂x = (3p− 4)
(
s3p−1tl+4

)
∂z = (5s4 + t4 − 5s4)(3p− 4)

(
s3p−1tl

)
∂z

∼= 3s2(3p− 4)
(
s3p−1tl

)
∂x − 5(3p− 4)

(
s3(p+1)tl

)
∂z

∼= 3(3p− 4)
(
s3p+1tl

)
∂x

As 3(3p − 4) is never equal to one, this means that we can only have zero
coefficient. Note however that in order to get this result we had to suppose
that l > 2 and p > 0.

Lemma 4.15. s3p+1tl∂x is trivial for l > 2 and p > 0.

We now proceed with deformations of the form s3p+1tl∂z:

s3p+1tl∂z ∼= 1
4
s3ptl−3∂y = 1

4
xpyl−3∂y = −∂w(−1

4
wxpyl−3)∂y

∼= −∂x(−1
4
wxpyl−3)∂z = p

4
wxp−1yl−3∂z = p

4
3s4t3s3p−3tl−3∂z = 3p

4
s3p+1tl∂z
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Lemma 4.16. The deformation s3p+1tl∂z is trivial provided that l > 2.

An easy consequence is triviality of deformations of the type s3p+2tl∂x for
l > 2:

s3p+2tl∂x = 3s2
(

1
3
s3ptl

)
∂x ∼= 1

3
(5s4 + t4) s3ptl∂z ∼= 5

3
s3(p+1)+1tl∂z

Lemma 4.17. s3p+2tl∂x is trivial for l > 2.

The only case that remains is s3p+2tl∂z. This is similar to what we already
did.

s3p+2tl∂z = (5s4 + t4 − t4) 1
5
s3(p−1)+1tl∂z

∼= 3
5
s2s3(p−1)+1tl∂x − t4 1

5
s3(p−1)+1tl∂z = 3

5
s3ptl∂x − 1

5
s3(p−1)+1tl+4∂z

The first term is obviously trivial, but the second too, as l + 4 > 2.

Lemma 4.18. s3p+2tl∂z is trivial for all p > 0.

Now we have to calculate the exceptional cases excluded in the previous
discussion. We start with s3p+2tl∂x and suppose p > 1 but l arbitrary (maybe
l < 3)

s3p+2tl∂x = (s5 + st4 − st4)s3(p−1)tl∂x = zxp−1yl∂x − s3(p−1)+1tl+4∂x

The last term vanishes as p > 1 and l + 4 > 2. So we have

s3p+2tl∂x = zxp−1yl∂x = −∂z
(
−1

2
z2xp−1yl

)
∂x ∼=

p− 1

2
z2xp−2yl∂z

= p−1
2

(s10 + 2s6t4 + s2t8) s3p−6tl∂z = p−1
2

(
s3(p+1)+1tl + s3(p−2)+2tl+8

)
∂z

As we had p > 2, the last term vanishes by what we already calculated, so

s3p+2tl∂x = p−1
2

(
s3(p+1)+1tl

)
∂z = p−1

10
(5s4 + t4 − t4) s3ptl∂z

∼= 3(p−1)
10

s3p+2tl∂x − p−1
10
t4s3ptl∂z

The last term is zero as usual, so we have 3(p−1)
10

= 1 which is impossible.

Lemma 4.19. s3p+2tl∂x is trivial for p > 2.
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We continue with s2tl∂z and suppose that l > 6:

s2tl∂z = 1
4
stl−3∂y = (s5 + st4 − s5) 1

4
tl−7∂y = 1

4
zyl−7∂y + s6t4∂z

= −∂w
(
−1

4
wzyl−7

)
∂y ∼= −1

4
wyl−7∂x = −3

4
s4yl−4∂x

∼= −1
4
(5s4 + t4) s2yl−4∂z = −1

4
s2yl∂z

This means

Lemma 4.20. The deformation s2tl∂z is trivial for l > 6.

As we go on, we find that for p > 3 by lemma 4.19:

s3p+1tl∂z = (5s4 + t4 − t4)
1

5
s3(p−1)tl∂z ∼=

3

5
s3(p−1)+2tl∂x = 0

Lemma 4.21. The deformation s3p+1tl∂z is trivial for p > 3.

Furthermore

s3p+1tl∂x =
1

3

(
5s4 + t4

)
s3(p−1)+2tl∂z =

5

3
s3(p−1)+2tl+4∂z = 0

for p− 1 > 0 by lemma 4.18.

Lemma 4.22. The deformation s3p+1tl∂x is trivial for p > 1.

And finally

stl∂x =
(
s5 + st4 − s5

)
tl−4∂x = zyl−4∂x − s5tl−4∂x

The second term vanishes for l > 6 (lemma 4.17) so

stl∂x = zyl−4∂x = −∂z
(
−1

2
z2yl−4

)
∂x ∼= 0

So

Lemma 4.23. stl∂x is trivial for l > 6.

We summarize the results in the following table.

s3ptl∂x = 0 ; ∀p, l lemma 4.14 s3ptl∂z = 0 ; ∀p, l lemma 4.14

s3p+1tl∂x = 0 ; l > 2, p > 2 lemma 4.15 s3p+1tl∂z = 0 ; l > 2 lemma 4.16

s3p+2tl∂x = 0 ; l > 2 lemma 4.17 s3p+2tl∂z = 0 ; p > 0 lemma 4.18

s3p+2tl∂x = 0 ; p > 2 lemma 4.19 s2tl∂z = 0 ; l > 6 lemma 4.20

s3p+1tl∂x = 0 ; p > 1 lemma 4.22 s3p+1tl∂z = 0 ; p > 3 lemma 4.21

stl∂x = 0 ; l > 6 lemma 4.23
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This proves the finite-dimensionality of T 1
IsoDef(ϕ5). But we need to know

the exact dimension. Therefore we have to look at linear relations between
the remaining monomials. These are

1. s∂x st∂x st2∂x st3∂x st4∂x st5∂x st6∂x

2. s2∂x s2t∂x s2t2∂x

3. s4∂x s4t∂x s4t2∂x

4. s5∂x s5t∂x s5t2∂x

5. s∂z st∂z st2∂z

6. s2∂z s2t∂z s2t2∂z s2t3∂z s2t4∂z s2t5∂z s2t6∂z

7. s4∂z s4t∂z s4t2∂z

8. s7∂z s7t∂z s7t2∂z

Let us consider s2tl∂x for l < 3. We have

s2tl∂x ∼=
5

3
s4tl∂z

so the second and the seventh line are linear dependent. Furthermore

s7tl∂z =
(
5s4 + t4 − t4

)
s3tl∂z ∼=

3

5
s5tl∂x

It follows that the last line is a multiple of the fourth one. We can thus
reduce the table as follows:

1. s∂x st∂x st2∂x st3∂x st4∂x st5∂x st6∂x

2. s2∂x s2t∂x s2t2∂x

3. s4∂x s4t∂x s4t2∂x

4. s5∂x s5t∂x s5t2∂x

5. s∂z st∂z st2∂z

6. s2∂z s2t∂z s2t2∂z s2t3∂z s2t4∂z s2t5∂z s2t6∂z

Moreover, we see that for t > 4

stl∂x =
(
s5 + st4 − s5

)
tl−4∂x = zyl−4∂x − s5tl−4∂x ∼= −s5tl−4∂x



116 CHAPTER 4. ISOTROPIC MAPPINGS

so the three entries of the fourth line are multiples of the last three one of
the first row. In the same manner,

s4tl∂x =
1

3

(
5s4 + t4

)
s2tl∂z =

1

3
s2tl+4∂z

proving that the third row is a multiple of the last entries of the sixth row.
So we can once again reduce the table to

1. s∂x st∂x st2∂x st3∂x st4∂x st5∂x st6∂x

2. s2∂x s2t∂x s2t2∂x

5. s∂z st∂z st2∂z

6. s2∂z s2t∂z s2t2∂z s2t3∂z s2t4∂z s2t5∂z s2t6∂z

Now it is more or less obvious (and can be indeed verified) that the
remaining elements are linearly independent over K and therefore constitute
non-trivial deformations. So we get the final result

dimK

(
T 1
IsoDef(ϕ5)

)
= 20

Summarizing the above results, we obtain

map dimK

(

ϕ∗OK2,0

OL,0

)

dimK(T 1
Def (ϕ)) dimK(T 1

IsoDef (ϕ)) dimK

(

ΩK2,0/K4,0

)

ϕ1 3 5 1 2

ϕ2 10 19 6 4

ϕ3 21 55 15 6

ϕ4 36 97 28 8

ϕ5 28 77 20 8

This leads to the following conjecture

Conjecture 4.24. For isotropic mappings from (K2, 0) to (K4, 0) of corank
one, the following relation holds true

δ = dimK

(
T 1
IsoDef(ϕ)

)
+ dimK

(
ΩK2/K4

)

whenever all of these three dimension are finite

If the image of ϕ is the open Whitney umbrella in K4, this relation is
satisfied:

(
T 1
IsoDef(ϕ)

)
= 0 in this case as we have proved (theorem 4.4) and
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one shows directly that dimK

(
ΩK2/K4

)
= δ = 1. Hence one may try to prove

the conjecture by a “conservation of number”-argument using corollary 4.12
(see [dJP00] for a description of this principle), that is, one has to show that
the modules ϕ∗OK2×S,0/OLS ,0, T

1
IsoDef(ϕS) and ΩK2×S,0/K4×S,0, where S is a

parameter space and ϕS : K2 ×S → LS ⊂ K4 ×S a deformation of the given
map ϕ, are free OS-modules. This is however not clear at all, therefore, the
above statement remains a conjecture.
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Appendix A

Deformation Theory

The aim of this large appendix is to give a review of abstract deformation
theory of as developed by Schlessinger, Artin, Deligne, Millson and others.
All facts presented herein are “well-known”, but the appropriate references
are rather scattered in the literature, therefore we tried to put them together
here in one place. There are three central notions which we will explain:
Categories fibred in groupoids, deformation functors and controlling differ-
ential graded Lie algebras (dg-Lie algebras for short). The first two are
(non-equivalent) ways to formalize a given deformation problem. On the
other hand, to any dg-Lie algebra (L, d, [ , ]) one can associate either a cate-
gory fibred in groupoids over the category of Artin rings (called DefL) or a
functor on the category of Artin rings (called Def L). For a given deformation
problem, one tries to construct an appropriate dg-Lie algebra and to prove
the equivalence of the given fibred category with DefL (resp. the isomorphy
of the given deformation functor with Def L). This approach encompasses
the more classical notion of the tangent space and of an obstruction theory
for a functor. However, it might be very hard to find the right dg-Lie alge-
bra and to prove the above equivalence. We describe some basic examples
as deformations of complex manifolds, associative algebras and Lie algebras,
and, more detailed, a local version of the cotangent complex.

A.1 Formal deformation theory

In this first part we work in a completely abstract setting. We first introduce
differential graded Lie algebras and turn then our attention to deformation
functors and fibred categories. We finally explain the meaning of a “control-
ling” dg-Lie algebra. We work over an arbitrary field of characteristic zero,
denoted by k.

119
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A.1.1 Differential graded Lie algebras

We give the basic definitions and properties of dg-Lie algebras as described,
e.g., in [Man98].

Definition A.1. A dg-Lie algebra is a Z-graded vector space L = ⊕i∈ZL
i

together with a differential, that is, a linear map d : Li → Li+1 satisfying
d2 = 0 and a linear bracket

[ , ] : Li × Lj −→ Li+j

such that

• [a, b] + (−1)ij [b, a] = 0 for all a ∈ Li and b ∈ Lj.

• d[a, b] = [da, b] + (−1)i[a, db] for a ∈ Li and b ∈ Lj.

• [a, [b, c]] = [[a, b], c] + (−1)ij [b, [a, c]]

We remark that the subspace L0 with the induced bracket is a Lie algebra in
the usual sense.

A morphism between dg-Lie-algebras is a morphism of complexes which
preserves the bracket. A dg-Lie algebra is called formal if it is isomorphic
to its cohomology (viewed as a dg-Lie algebra with trivial differential and
induced bracket).

For further use, we also give the related definition of a differential graded
algebra.

Definition A.2. A differential graded algebra (DGA) is a Z-graded vector
space A := ⊕i∈ZA

i together with a differential d : Ai → Ai+1 satisfying d2 = 0
and a linear product

∧ : Ai × Aj −→ Ai+j

such that

• a ∧ b = (−1)ijb ∧ a for all a ∈ Ai, b ∈ Aj.

• a ∧ (b ∧ c) = (a ∧ b) ∧ c for all a, b, c ∈ A.

• d(a ∧ b) = da ∧ b+ (−1)ia ∧ db for all a ∈ Ai, b ∈ A.

Again, a morphisms of DGA’s is a morphisms of complexes commuting with
the differentials and respecting the products.

Let us return to dg-Lie algebras.



A.1. FORMAL DEFORMATION THEORY 121

Definition A.3. Let (L, d, [ , ]) be a dg-Lie algebra. The set MCL ⊂ L1

(called the set of solutions of the Maurer-Cartan equation) is by definition

MCL =

{
a ∈ L1 | da+

1

2
[a, a] = 0

}

It is immediate to verify that MCL is preserved under a morphism of dg-Lie
algebras.

In order to relate dg-Lie-algebras to deformation problems, we have to
find a way to encode the action of an automorphism group on a given set of
deformations. Therefore, we will introduce the so-called gauge action. It is
known (see, e.g., [Man01b]), that for any (ordinary) Lie algebra g, there is a
group structure on

ĝ := lim
←−

(g/gi)

where gi := [g, gi−1] is the descending central series. If g is nilpotent, we get
a product on g = ĝ which is called Campbell-Baker-Hausdorff-multiplication.
The formula which defines it is somewhat complicated to write down, we
note the first terms of the Campbell-Baker-Hausdorff-product ∗:

a ∗ b = a+ b+
1

2
[a, b] +

1

12
[a, [a, b]] − 1

12
[b, [b, a]] + . . .

For every representation ρ : g → End(V ) there is an induced representation
of groups eρ : (g, ∗) → Aut(V ) satisfying eρ(n) = exp(ρ(n)) =

∑∞
i=0

1
i!
ρ(n)i.

Lemma A.4. Let (L, d, [ , ]) be a dg-Lie algebra such that L0 is nilpotent.
Consider the adjoint action ρ : L0 → End(L1) where ρ(n)(v) = [n, v]. Then
the (conical) set {

v ∈ L1 | [v, v] = 0
}

is invariant under the exponential action eρ.

Proof. See [Man98].

We want to show that not only the set {v ∈ L1 | [v, v] = 0} but even MCL
is invariant under the action eρ. This can be done in an elegant way as follows:
Consider for a given dg-Lie algebra (L, d, [ , ]) the following Z-graded k-vector
space:

Ld := ⊕i∈ZL
i
d

where Lid := Li for i 6= 1 and L1
d := L1⊕kd. Define a dg-Lie-algebra structure

on Ld by

dd(a+ cd) := d(a)
[a+ c1d, b+ c2d]d := [a, b] + c1d(b) + (−1)ic2d(a)
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for a ∈ Li, b ∈ Lj and c, c1, c2 ∈ k. Then we see that the mapping

Φ : L −→ Ld
v 7−→ d+ v

is a morphism of dg-Lie-algebras and that a ∈ L1 is a solution of the Maurer-
Cartan equation iff [Φ(v),Φ(v)]d = 0. We can now apply lemma A.4 to the
dg-Lie-algebra (Ld, dd, [ , ]d). It is obvious that the action eρ preserves the
affine hyperplane {v + d | v ∈ L1}. But the set MCL is in bijection with the
intersection of this affine hyperplane with the cone {v ∈ L1 | [v, v] = 0}, so
we finally get that the action eρ preserves MCL.

A.1.2 Categories fibred in groupoids and deformation

functors

Fibred categories are a very general setup to discuss any type of deformation
problems. We do not give the lengthy definition here (see [BF96]) but only
note that a fibred category is a functor p : F → C satisfying properties
concerning the pullback of an object f ∈ F by a morphism (A→ p(f)) ∈
Mor(C). It follows that the fibre F (A) is a category. Given a fibred category,
one can associate a canonical functor from C to Sets which sends A ∈ C

to the set of isomorphism classes of objects in F (A). It is also possible
to construct a fibred category from such a functor, but this category will
differ from the original one, namely, by passing from a fibred category to the
associate functor one forgets information contained in the automorphisms
of the fibre categories. Most of the fibred categories found in deformation
theory have a special property: The fibre categories are groupoids, i.e., there
are only isomorphisms over the identity morphism of an object A ∈ C. In
that case one says that F is a category fibred in groupoids. In principle it is
more appropriate to work with categories fibred in groupoids than with the
associate functors. However, the latter approach is more simple and sufficient
for our purpose. We will therefore restrict ourselves to a description of the
theory of functors associated to deformation problems. We will make an
additional assumption in the sequel: The category C will be assumed to be
the category of Artin rings (or its opposite category). In that case one can
study deformation problems only in the formal sense, that is, statements
like existence of versal deformations, triviality of given deformations etc.
will always be statements on algebras or modules over formal power series
rings. How to obtain convergent solutions is a completely different issue. We
will not treat it here, one might consult [dJP00] for a description of some
techniques involving approximation theorems.
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The classical reference for the theory of functors on Artin rings is [Sch68],
who gives conditions for a functor to have a hull (or, in other words, a formally
versal deformation). He introduced the vector space T 1

F called tangent space
of the functor F and the most important of the above conditions is that
its dimension is finite. More recently, Fantechi and Manetti have described
in [FM98] a similar formalism for obstructions, that is, they associate to a
deformation functor a vector space called T 2

F which contains obstructions to
extend a given deformation to a larger space. In case that the deformation
problem is governed by a dg-Lie algebra (L, d, [ , ]) (we will define what
this means), these spaces are simply the first and second cohomology of
L. The meaning of the higher cohomology groups is less obvious, but can
apparently be understood using the concept of extended deformation functors
(see [Man99] and [BK98]).

Consider the category Art of local Artin rings with residue field k and
the category Ârt of complete local (noetherian) rings with residue field k.
We call short exact sequences

0 −→M −→ B −→ A −→ 0

in Art small extensions of A by M iff mBM = 0. Small extensions with
one-dimensional kernels, that is, sequences of the form

0 −→ k −→ B −→ A −→ 0

are called principal small extensions.
Let Set be the category of pointed sets with distinguished element ∗.

Then we consider functors from Art to Set such that F (k) = ∗. Such func-
tors together with natural transformations form a category which is called
Fun in [Man98]. There are special morphisms in Fun.

Definition A.5. Let ν : F → G be a natural transformation of functors in
Fun. Then we will call ν:

• smooth iff for any surjection A′ → A the canonical map

F (A′) −→ G(A′) ×G(A) F (A)

is surjective. A functor F ∈ Fun is called smooth if the morphism
F → {∗} to the constant functor (the final object in the category Fun)
is smooth.

• unramified, if the induced morphism on tangent spaces

T 1
F := F (k[ǫ]) −→ T 1

G := G(k[ǫ])

is injective.
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• étale iff it is smooth and unramified (Note that then ν is automatically
bijective on tangent spaces, these morphisms are also called minimally
smooth).

Now we can characterize functors which admits universal or at least versal
deformation spaces.

Definition A.6. A functor F ∈ Fun is called pro-representable iff there
exists R ∈ Ârt such that F is isomorphic to the functor hR : Art → Set
defined by hR(A) := Hom(R,A) via the natural transformation

PBR : hR −→ F
(Φ : R → S) 7−→ F (Φ)

(PB stands for pull-back). R is called a hull iff the morphism PBR is only
étale.

Note that the tangent space of a functor having a hull R is canonically
identified with the Zariski tangent space (mR/m

2
R)
∗

of Spec(R).
Schlessinger introduced conditions for a functor to be pro-representable or

to have a hull. We list here these properties together with some modifications
which can be found [FM98].

Definition A.7. Let F ∈ Fun and A′ → A and A′′ → A be morphism in
Art, the latter being a small extension. Consider the canonical map

ηA′,A′′,A : F (A′ ×A A
′′) −→ F (A) ×F (A) F (A′′)

Then we have the following conditions for the functor F :

(H1) the map ηA′,A′′,A is surjective for all small extensions A′′ → A.

(H2) ηA′,A′′,A is bijective for A = k, A′′ = k[ǫ]. A functor satisfying (H1)
and (H2) is called deformation functor.

(H2’) ηA′,A′′,A is bijective for A = k and arbitrary A′′. Such a functor is
called deformation functor with obstruction theory (see section A.1.3 on
page 126).

(H3) the tangent space T 1
F of F is finite-dimensional over k. (Note that

H2 guarantees that T 1
F is a vector space.)

(H4) The map ηA′,A′′,A is bijective for every small extension A′′ → A. A
functor satisfying this condition is also called homogeneous.
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We now reproduce the fundamental theorem from [Sch68] which justifies
the above conditions.

Theorem A.8. Let F ∈ Fun be a deformation functor with finite-dimensio-
nal tangent space ((H1), (H2) and (H3) are satisfied). Then there is a hull

R ∈ Ârt. If, in addition, (H4) holds, then R pro-represents F .

Proof. We follow the proof in [Art76]. A hull in the above sense is a complete

ring R ∈ Ârt, together with elements Xn ∈ F (Rn) where Rn := R/mn+1
R

such that OXn ⊗Rn k = OX0 and OXn ⊗Rn Rn−1 = OXn−1 for all n (X0 is the
unique object in F (k)) and such that for all Xn the versality condition holds
in the subcategory Artn of rings P ∈ Art with mn+1

P = 0. We proceed by
induction on n. For n = 1, choose a basis of ǫ1, . . . , ǫτ of T 1

F and consider
S = k[ǫ1, . . . , ǫτ ] and R1 = S/m2

S. Set X1 := k ⊕ T 1
F . Then X1 is versal

over R1. Now suppose that a versal Xn−1 over Rn−1 is constructed. Suppose
Rn−1 to be a quotient of S by an ideal Jn−1. Consider the following set

S :=
{
I ⊂ S|I ⊂ Jn−1; mSJn−1 ⊂ I; ∃XI ∈ F (I),OXI

⊗S/I Rn−1 = OXn−1

}

This set is closed under intersections: As S/(I1 ∩ I2) = S/I1 ×S/Jn−1
S/I2,

we see by the axiom (H1) that any two deformations over S/I1 and S/I2
are liftable to a deformation over S/(I1 ∩ I2). Therefore, there is a minimal
element, which we denote by Jn. Define Rn := S/Jn and Xn := XI (one can
take any XI over Rn here that lifts Xn−1). It remains to check that Xn/Rn

is versal which amounts to show that the transformation

PBRn : hRn −→ F
(Φ : Rn → A) 7−→ Φ∗F (A)

(of functors on Artn) is smooth. Suppose that we are given a surjection
A′ → A in Artn, a morphism XA′ → XA over A′ → A and Φ : Rn → A.
Then we have to find a lift Rn → A′ such that OXA′ = OXn ⊗Rn A

′. It
is in fact sufficient to do it only for small extensions A′ → A, and even
only for principal small extensions. So suppose that ker(A → A′) is of
dimension one. Denote by R′ the fibre sum ring R′ := Rn ×A A

′. Then
by (H1), there is a deformation XR′ over R′ restricting to Xn over Rn and
to XA′ over A′. By smoothness of S, we can lift the morphism S ։ Rn

to R′. But the image of S → R′ and of S ։ Rn coincides, due to the
minimality of Jn. This yields a splitting Rn → R′ of the morphism R′ → Rn

and we can write R′ ∼= Rn ×k k[ǫ]/ǫ
2, where the isomorphism depends on a

chosen homomorphism from Hom(Rn, k[ǫ]/ǫ
2). For each such isomorphism

R′ ∼= Rn×k k[ǫ]/ǫ
2, we get an induced deformation X̃R′ := OXRn

⊗Rn R
′. On
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the other hand, Hom(Rn, k[ǫ]/ǫ
2) = Hom(R1, k[ǫ]/ǫ

2) = T 1
F , so X̃R′ depends

on the choice of an element from T 1
F . Axiom (H2) tells us that F (R′) ∼=

F (Rn) ×F (k) T
1
F . Obviously, X̃R′ and XR′ both projects on XRn over Rn.

Then by taking their difference in T 1
F as the homomorphism defining the

identification R′ ∼= Rn ×k k[ǫ]/ǫ
2, we get alter X̃R′ to become isomorphic to

XR′ . Then we have XRn ⊗Rn R
′ = X̃R′ = XR′ and XR′ ⊗′R A′ = XA′ , so the

composition map Rn → R′ → A′ (the first one is the splitting from above,
the second the projection) is the required morphism satisfying OXRn

⊗RnA
′ =

OXA′ . The proof of the second statement will not be given here. It can be
found in [Sch68].

A.1.3 Obstruction theory

From the previous section we know that functors F ∈ Fun satisfying Sch-
lessinger’s conditions admit a hull R. But this does not give any information
on the structure of the space Spec(R). In particular, we do not know whether
it is smooth or not. Obstruction theory is concerned with this question. More
specifically, one asks whether for a given small extension

0 −→M −→ B −→ A −→ 0

the induced map F (B) → F (A) is surjective. Note that this is nothing else
than the fact that the functor F is smooth in the sense of definition A.5 on
page 123.

The most general treatment on obstruction theory is found in [FM98].
In this paper, obstructions are not defined for a single element F ∈ Fun
but rather for a morphism F → G of deformation functors and consequently
called relative obstruction theories. However, in our applications this gener-
ality will not be needed. Therefore, we will restrict ourselves to the theory
described in [Man98].

Definition A.9. Let F ∈ Fun, then an obstruction theory of F , denoted
by (V, vF ) consists of the following data:

• a k-vector space V

• a map vF (e) : F (A) → V ⊗k M associated to any small extension

e : 0 −→M −→ B −→ A −→ 0

such that the following properties are satisfied:
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1. Let η ∈ F (A) given, such that η lies in the image of the map F (B) →
F (A). Then vF (e)(η) = 0

2. Let α : e1 → e2 be a morphism of small extensions, i.e.:

e1 : 0 // M1
//

αM

��

B1
//

αB

��

A1
//

αA

��

0

e2 : 0 // M2
// B2

// A2
// 0

and η ∈ F (A1) then

vF (e2) (F (αA)(η)) = (IdV ⊗ αM) (vF (e1)(η))

An obstruction theory for which the converse of 1. holds is called complete.
Morphisms of obstruction theories are defined in the obvious way: by a map
of vector spaces ϕ : V → V ′ such that v′F (e) = ϕ◦vF (e). Then an obstruction
theory (O, vF ) is called universal iff it is “the smallest one”, i.e. if there is an
unique morphism (OF , vF ) → (V, vF ) for any other given obstruction theory
(V, vF ) of the functor F .

A major result in [FM98] is that a functor F ∈ Fun satisfying the condi-
tions (H1) and (H2’) (which were called deformation functors with obstruc-
tion theory in the above definition) does indeed have a universal obstruc-
tion theory which is complete and consists only of obstructions associated
to principal extensions. However, the proof is rather abstract and does not
give much advice how to construct a universal obstruction theory for a given
deformation functor.

As a first application, we give conditions for functors and morphisms to
be smooth.

Theorem A.10. Let ν : F → G be a morphism of functors and (V, vF ),
(W, vG) obstruction theories for F and G, respectively, then we call a linear
map vν : V → W compatible iff for each small extension 0 → M → B →
A → 0 and each η ∈ F (A) we have (vG ◦ ν)(η) = (vν ⊗ IdM) ◦ vF (η). Then
the following holds: ν is smooth if (V, vF ) is complete, vν is injective and
T 1
F → T 1

G is surjective.

Proof. First we prove the following preliminary fact: For any functor F ∈
Fun and any small extension as in the theorem, there is a natural transitive
action of T 1

F ⊗M on the fibres of F (B) → F (A). For this one first needs
to identify F (k ⊕M) (k ⊕M being the trivial extension of M by k) with
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T 1
F ⊗M which is easily done by induction on the length of B. Then consider
C := B ×A B. We have C ∼= B ×k (k ⊕M) so, by (H2’)

F (C) = F (B) × (T 1
F ⊗M)

From the natural morphism α : F (C) → F (B) ×F (A) F (B) we obtain a map

F (B) × (T 1
F ⊗M) −→ F (B) ×F (A) F (B)

which by construction is the identity of the first factor. Composing with the
second projection, we get finally a map F (B) × (T 1

F ⊗M) −→ F (B) which
induces the group action we are looking for. Transitivity follows immediately
from the surjectivity of α which comes from condition (H1).

Let an element (a, b′) ∈ F (A) ×G(A) G(B) be given. Our task is to find
b ∈ F (B) which projects to a ∈ F (A) and b′ ∈ G(B). Denote by a′ ∈ G(A)
the common image of a and b′ in G(A). As b′ is a lift of a′ to G(B), we
have that vG(a′) = 0 ∈ W ⊗M . By compatibility and injectivity of vν we

get vF (a) = 0 ∈ V ⊗M . But (V, vF ) is complete, so we can find b̃ ∈ F (B)

lifting a ∈ F (A). It is not true that the image b̃′ = ν (̃b) is equal to b′. But

as (̃b′, b′) ∈ G(B) ×G(A) G(B) we find t′ ∈ T 1
G ⊗M which sends b̃′ to b′. By

surjectivity of T 1
F → T 1

G there is t ∈ T 1
F ⊗M which can be used to find an

element b lying in the same fibre of F (B) → F (A) as b̃ and having the desired
properties.

For any morphism ν : F → G of functors and for any obstruction theory
(W, vG) of G, the composition (W, vG ◦ ν) is an obstruction theory for F . By
taking W = OG and using the universality of OF we obtain a linear map
OF → OG. Applying the preceding theorem yields:

Corollary A.11. Let ν : F → G be a morphism and consider the universal
obstruction theories OF and OG.

• ν is smooth iff T 1
F → T 1

G is surjective and OF → OG is injective.

• F is smooth iff OF = 0

Proof. It remains to prove that for a smooth morphism ν the map oν : OF →
OG is injective. So suppose that there is an x ∈ OF such that oν(x) = 0.
By universality, there is a small extension B ։ A and η ∈ F (A) such that
vF (η) = x. As OG is complete, we can lift ν(η) ∈ G(A) to G(B). But then
by smoothness of ν there is a lift of η to F (B) which in turn implies that
vF (η) = x = 0.
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The universal obstruction theory of a pro-representable functor can be
explicitly described. First remark that for each small extension e : 0 →
M → B → A → 0 a morphisms φ : A′ → A resp. ψ : M → M ′ we have a
pullback φ∗e and a pushforward ψ∗e defined as follows: φ∗e is the extension

0 −→M −→ A′ ×A B −→ A′ −→ 0

whereas ψ∗e is
0 −→M ′ −→ B′ −→ A −→ 0

with B′ := (B ⊕M ′) / ({m,ψ(m) |m ∈M}).

Theorem A.12. Let R = P/I where P = k[[x1, . . . , xn]] and I ⊂ m2
P . Then

we have the small extension

uR : 0 −→ I/mP I −→ P/mP I −→ R −→ 0

and the universal obstruction space of the functor pro-represented by R is
OhR

:= (I/mP I)
∗.

Proof. Define the obstruction map vhR
as follows: Let

e : 0 −→M −→ B −→ A −→ 0

be any small extension and η ∈ hR(A). This induces a morphism η : P → A.
Choose any lift to a morphism η̃ : P → B. Obviously, η̃(I) ⊂M and η̃ maps
mP to mB. Therefore, η(mP I) = 0 ∈ B and we obtain a map P/mP → B
which in turn induces a mapping

λη : I/mP I −→M

Then define vhR
(η) := λη ∈ (I/mP I)

∗ ⊗ M . We see that λη is zero iff
η(I) = 0 ∈ B. This means that there is a lift of η to B showing that we
have a well-defined obstruction theory. That it is indeed universal is proved
in [FM98].

We note that using the above definitions of pullback and pushforward, we
could have defined λη as the element of (I/mP I)

∗ ⊗M = Hom(I/mP I,M)
such that η∗e = λη∗uR.

We introduce now a concept which will be important in the next section,
where functors canonically associated to any dg-Lie algebra will be consid-
ered. We will call a functor G a group functor if the composition with the
forgetful functor from Groups to Sets is an element in Fun. We will suppose
that G is smooth (meaning that it is smooth viewed as an element in Fun).
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Then for a given deformation functor F ∈ Fun we say that G acts on F iff
there is for each A ∈ Art a morphism

G(A) × F (A) −→ F (A)

which is a group action in the usual sense. Moreover, we require these actions
to be compatible with morphisms in Art.

Lemma A.13. Consider the action

∗ : T 1
G × T 1

F −→ T 1
F

and the induced map ν : T 1
G → T 1

F , given by ν(g) = g ∗ 0. Then we have:

1. (g + h) ∗ (a + b) = (g ∗ a) + (h ∗ b) and t(g ∗ a) = (tg) ∗ (ta) for all
g, h ∈ T 1

G, a, b ∈ T 1
F and t ∈ k.

2. ν is linear.

3. g ∗ v = ν(g) + v.

Proof. The first point is clear from the definition since the structure of a
vector space of T 1 is defined by using morphisms in Art. Then by setting
a = b = 0 in the formulas in 1. we get that ν is linear and by setting h = 0
and a = 0 we obtain the formula in 3.

In this situation, one can consider the quotient functor D := F/G which
associates to A ∈ Art the set of orbits of F (A) under the action of G(A).
Then we have an obvious morphism F → D in Fun.

Theorem A.14. D is a deformation functor and the projection F → D is
smooth. We have T 1

D = coker (ν : T 1
G → T 1

F ). The group action of G on any
obstruction theory (V, vF ) is trivial. In particular, there is an isomorphism
OF → OD.

Proof. The first two points are clear from the definitions. Lemma A.13
describes the action of G on F on the infinitesimal level and yields thus
T 1
D = coker(ν). The statement on obstructions then follows from theo-

rem A.10 on page 127.
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A.1.4 The functors MCL, GL and Def L

We are now in the position to describe the precise relation between dg-Lie
algebras and deformation functors.

Definition A.15. Let (L, d, [ , ]) be a dg-Lie algebra. Then we define

• The gauge functor GL : Art → Groups, defined as:

GL(A) := exp(L0 ⊗mA)

• The Maurer-Cartan functor MCL : Art → Sets:

MCL(A) := MCL(L⊗ mA) =

{
x ∈ L1 ⊗ mA | dx+

1

2
[x, x] = 0

}

• The deformation functor Def L which is by definition the quotient of
MCL by GL. Remember that the action of GL on MCL was defined in
section A.1.1 using the fact that L0 ⊗ mA is nilpotent.

Lemma A.16. Tangent and obstruction spaces of the above functors are as
follows.

1. GL is smooth with tangent space T 1
GL

= L0 ⊗ kǫ.

2. T 1
MCL

= Z1(L) ⊗ kǫ where we use the notations Z i(L) = ker(d : Li →
Li+1) and Bi(L) = Im(d : Li−1 → Li).

3. A complete obstruction theory for MCL is given by (H2(L), vMCL
),

where vMCL
will be defined in the proof.

4. The primary obstruction map of the functor MCL, i.e., the obstruc-
tion map associated to the small extension

0 −→ kǫ −→ k[ǫ]/(ǫ3) −→ k[ǫ]/(ǫ2) −→ 0

is given by Z1 → H2, x 7→ 1
2
[x, x].

5. T 1
DefL

= H1(L). As for MCL, H
2 is a complete obstruction space with

primary obstruction map H1 → H2, x 7→ 1
2
[x, x].

Proof. 1. The smoothness of GL is obvious, as we have a surjective group
homomorphism exp(L0⊗mB) ։ exp(L0⊗mA) for any small extension
B ։ A . The tangent space of GL (as a vector space) is by definition
L0 ⊗mk[ǫ]/(ǫ2) = L0 ⊗ kǫ.
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2. Recall that the Lie bracket on a tensor product of a (graded) Lie algebra
with an associative algebra is defined as the Lie bracket on the terms
coming from the Lie algebra times the ordinary product on the other
terms. This implies that for an element x of L⊗ kǫ, the bracket [x, x]
is automatically zero. Therefore, MCL(k[ǫ]/(ǫ2)) = Z1(L) ⊗ kǫ.

3. We first have to define the obstruction map vMCL
. Consider a small

extension in Art:

0 −→M −→ B −→ A −→ 0

Let x ∈ MCL(A) be given. Then choose a lift x̃ ∈ L1 ⊗ mB. Define
h := dx̃+ 1

2
[x̃, x̃]. As x̃ projects to x ∈ A and dx+ 1

2
[x, x] = 0 in A we

see that h ∈ L2 ⊗M . Then

dh = ddx̃+ [dx̃, x̃] =

[
h− 1

2
[x̃, x̃], x̃

]
= [h, x̃] − 1

2
[[x̃, x̃], x̃]

By the graded Jacobi identity, [[x̃, x̃], x̃] = 0. But the first term also
vanishes, because [L2 ⊗M,L1 ⊗mB] = 0 (remember that mBM = 0).
So h ∈ Z2(L) ⊗ M and we define vMCL

(x) to be the class of h in
H2(L)⊗M . It is clear from the construction that the obstruction class
vMCL

(x) is independent of the choice of the lifting x̃. Indeed, any other
lift is given by x̃ + z with z ∈ L1 ⊗M . Then h = dx̃+ 1

2
[x̃, x̃] + dz as

[z, z] = [z, x̃] = 0 (because M ·M ⊂ mAM = 0 ∈ B). So the class of h
in H2(L)⊗M is well-defined. Now we have to show that (H2, vMCL

) is
a complete obstruction theory. One part is easy: Given x ∈ MCL(A)
which lifts to y ∈MCL(B) then vMCL

(x) = 0, just take x̃ = y. On the
other hand, suppose, that vMCL

(x) = 0, that is, there is z ∈ L1 ⊗M
with dx̃ + 1

2
[x̃, x̃] = dz then set y := x̃ − z. By the same argument as

above we get y ∈MCL(B) thus defining a lift of x.

4. Let an x be an element in T 1
MCL

= Z1(L) ⊗ mk[ǫ]/(ǫ2), then the lift
x̃ ∈ L1 ⊗ mk[ǫ]/(ǫ3) can be chosen to lie in Z1(L) ⊗ mk[ǫ]/(ǫ3), therefore,
the obstruction is simply 1

2
[x̃, x̃] = 1

2
[x, x] ∈ H2(L) ⊗ kǫ2.

5. The action of T 1
GL

on T 1
MCL

is easy to describe: Let x ∈ Z1(L)⊗kǫ and
a ∈ L1 ⊗ kǫ be given, then, by definition, the action of a is given as an
action ead(a) on L1

d⊗kǫ preserving the hyperplane {d+x | x ∈ L1⊗kǫ},
namely

ead(a)(d+ x) =
(
(d+ x) + [a, d+ x]d + 1

2
[a, [a, d+ x]d]d + . . .

)

= (d+ x+ [a, d+ x]d) = (d+ x+ dad)
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So the action T 1
GL

→ End(T 1
MCL

) is simply

a 7−→ (x 7→ x+ da)

So we see that T 1
DefL

= H1(L). It follows from theorem A.14 on

page 130 that (H2(L), vDefL
) with vDefL

(x) := vMCL
(x′) where x′ is

a lift of x ∈ Def L(A) to MCL(A) is a complete obstruction theory.
From the last point we see that the primary obstruction map is

H1(L) −→ H2(L)
x 7−→ 1

2
[x, x]

Suppose now that we are give a morphism φ : L → K of dg-Lie algebras
(we would like to stress the fact that this is a morphism of complexes which is
compatible with the brackets). This induces obviously morphism of functors
φG : GL → GK and φMC : MCL → MCK which are compatible in the sense
that the diagram

GL ×MCL //

φG×φMC

��

MCL

φMC

��
GK ×MCK // MCK

commutes. So we have a morphism of deformation functors Def L → Def K .

Theorem A.17. If φ : H1(L) → H1(K) is bijective and φ : H2(L) → H2(K)
is injective, then Def L → Def K is étale. If moreover φ : H0(L) → H0(K) is
surjective, then Def L → Def K is an isomorphism.

Proof. The first statement follows directly from theorem A.10 on page 127.
The second one is a bit more involved and requires careful analysis of the
action of GL on MCL. A proof can be found in [Man98].

Now we obtain the following fundamental result as an easy consequence.

Corollary A.18. Suppose that φ : L → K is a quasi-isomorphism. Then
Def L and Def K are isomorphic.

A.1.5 The T 1-lifting property

The ideas that we will present in this section are essentially due to Z. Ran,
see e.g. [Ran92]. However, we will rather follow the paper [Gro97] (Note that
a more general version of what follows is proven in [FM99]). The T 1-lifting
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property is a criterion which ensures the smoothness of a functor by study-
ing relative versions of its tangent space. Originally, this was used to prove
that the moduli space of deformations of a Calabi-Yau manifold (the func-
tor of deformations of its complex structure) is smooth. We reproduce this
argument in section A.2.1 on page 137 to illustrate the T 1-lifting criterion.

We first consider the general situation of definition A.7 on page 124 and
introduce an additional condition for a functor in Fun.

Definition A.19. Let F ∈ Fun be a deformation functor. Then we say that
condition (H5) holds iff for each pair of surjections A′ → A and A′′ → A we
have a map

τA′,A′′,A : F (A′) ×F (A) F (A′′) −→ F (A′ ×A A
′′)

such that ηA′,A′′,A ◦ τA′,A′′,A is the identity on F (A′) ×F (A) F (A′′) and such
that the following holds: Consider a commutative diagram

B //

��

A′′

��
A′ // A

This induces morphisms ϕ1 : F (B) → F (A′ ×A A′′) and ϕ2 : F (B) →
F (A′) ×F (A) F (A′′). Then we require that ϕ1 = τA′,A′′,A ◦ ϕ2.

This condition is in some sense a relative version of the above condition
(H2). More precisely, let us use the following abbreviations

An := k[ǫ]/(ǫn+1)
Bn := k[x, y]/(xn+1, y2)
Cn := k[x, y]/(xn+1, y2, xny)

let αn : An+1 → An , βn : Bn → An, ξn : Bn → Bn−1 and γn : Bn → Cn the
natural morphisms, set

πn : An+1 −→ Bn

ǫ 7−→ x+ y

π′n : An −→ Cn
ǫ 7−→ x+ y

and define
T 1
Xn/An

:= {Yn ∈ F (Bn) |F (βn)(Yn) = Xn}
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Then (H5) can be used to show that T 1
Xn/An

is an An-module: A pair α, β

of elements from T 1
Xn/An

lies naturally in F (Bn) ×F (An) F (Bn), is therefore

mapped to F (Bn×An Bn) by φBn,Bn,An and then to F (Bn) by the underlying
map Bn ×An Bn → Bn. With all these notations, we can state the main
theorem on the T 1-lifting criterion.

Theorem A.20. Let F ∈ Funk be a deformation functor with a complete ob-
struction theory (V, vF ) and which satisfies condition (H5). Pick an element
Xn ∈ F (An). Let Xn−1 := F (αn−1)(Xn) be the restriction. Put

Yn−1 := F (πn−1)(Xn) ∈ T 1
Xn−1/An−1

⊂ F (Bn−1)

Then there is Xn+1 ∈ F (An+1) lifting Xn iff Yn−1 lies in the image of the
canonical restriction mapping T 1

Xn/An
→ T 1

Xn−1/An−1
.

Proof. As βn ◦ πn = αn, we have F (βn)(Yn−1) = Xn−1, so Yn−1 is indeed an
element of T 1

Xn−1/An−1
. Consider the following morphism of small extensions

e1 : 0 // k
·ǫn+1

//

µ

��

An+1
αn //

πn

��

An //

π′
n

��

0

e2 : 0 // k
·xny // Bn

γn // Cn // 0

where µ is the multiplication by n+1. From this we get the following diagram
by applying the functor F :

F (An+1)
F (αn)

//

F (πn)

��

F (An)

F (π′
n)

��
F (Bn)

F (γn)
// F (Cn)

The functor is supposed to satisfy (H5), therefore we can factor both F (γn)
and F (π′n) through Pn−1 := F (Bn−1) ×F (An−1) F (An) by a morphism τ :=
τBn−1,An,An−1 such that the following diagram commutes

F (An+1)
F (αn) //

F (πn)

��

F (An)

F (π′
n)

��
F (πn−1)×idF (An)

��

F (Bn)

F (ξn)×F (βn)
..

F (γn)
// F (Cn)

Pn−1

τ

__?????????
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Now consider F (π′n)(Xn) ∈ F (Cn). We see that F (π′n)(Xn) is in the image
of F (γn) iff

τ
(
F (πn−1) × idF (An)

)
(Xn) = τ(Yn, Xn)

is in the image of F (γn) iff (Yn, Xn) is in the image of F (ξn) × F (βn) iff Yn
is in the image of

F (ξn)|T 1
Xn/An

: T 1
Xn/An

−→ T 1
Xn−1/An−1

⊂ F (Bn−1)

On the other hand, the morphism of small obstructions is compatible with
the obstruction theories. So F (π′n)(Xn) can be lifted to F (Bn) iff

vF (e2)(F (π′n)(Xn)) = 0

which by compatibility is equivalent to (IdV ⊗ µ) (vF (e1)(Xn)) (Xn) = 0.
IdV ⊗ µ is an isomorphism because char(k) = 0 so we obtain that this is
the same as the vanishing of vF (e1)(Xn) which in turn is equivalent to the
existence of a lift Xn+1 ∈ F (An+1).

To use the T 1-lifting criterion, we need to check the following simple fact.

Lemma A.21. Let F be a functor such that the natural restriction map
F (An+1) → F (An) is surjective. Then F is smooth.

Proof. In [FM98] there is a general proof using the factorization theorem
(theorem 6.2 and corollary 6.4). However, for functors with finite-dimensional
tangent spaces the situation is of course much simpler. Therefore, suppose
that F has a hull X. Let OX = k[[x1, . . . , xm]]/I. If X is not smooth, then
there is an infinitesimal curve OX → An which can not be extended to a
curve OX → An+1. This violates the surjectivity of F (An+1) → F (An).

For our purpose, we need to know that the converse of the T 1-lifting
theorem is true.

Lemma A.22. Let F ∈ Fun be smooth. Then the T 1-lifting property holds
for F .

Proof. LetXn ∈ F (An) be give. Then the element F (πn−1)(Xn) ∈ T 1
Xn−1/An−1

extends to T 1
Xn/An

because F (π′n−1)(Xn) ∈ F (Cn) extends over Bn (F is

smooth) and this extension lies obviously in T 1
Xn/An

.
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A.2 Examples of controlling dg-Lie algebras

This part gives concrete examples which are applications of the general princi-
ple that “a deformation problem is governed by a dg-Lie algebra”. All of these
examples are of interest in their own right, but some of them (deformation of
Lie algebras, the cotangent complex) are directly related to deformations of
lagrangian singularities which are discussed in the second chapter. We give
references at the beginning of each section.

A.2.1 The Kodaira-Spencer algebra

The Kodaira-Spencer algebra is the most classical example of a dg-Lie algebra
controlling a deformation problem. Consider a complex manifold M , that is,
a C∞- manifold together with an integrable complex structure

J : TM −→ TM

The functor of deformations of M , that is, smooth families MS → S
of complex manifolds Ms with M0 = M reduces by the Ehresmann lemma
to the functor of deformations of the complex structure. Now consider the
dg-Lie algebra (L, d, [ , ]) with:

Li := Γ(M,A0,i
M ⊗ ΘM)

where A0,i
M is the sheaf of C∞-sections of the bundle of anti-holomorphic

exterior forms of degree i. The differential d is induced from the Dolbeault
differential ∂ on antiholomorphic forms whereas the bracket comes from the
Lie bracket on vector fields and from the exterior product on forms, explicitly:

[ΦdzI ,ΨdzJ ] := [Φ,Ψ]dzI ∧ dzJ

Denote by Def X the functor of deformations of the complex structure.
Then we have the following statement:

Theorem A.23. The functors Def X and Def L are equivalent.

Proof. We will associate to an element of MCL(A) a deformation of the
complex structure over Spec(A). By definition, if γ ∈ MCL(A) then it is of
the form

γ ∈ Γ(X,A0,1 ⊗ ΘM) ⊗mA = HomC∞
M

(ΘM ,ΘM) ⊗ mA

(where ΘM is the antiholomorphic tangent bundle). The graph of such a γ
defines a deformed almost complex structure and it can be checked that this
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structure is integrable precisely iff dy + 1
2
[γ, γ] = 0. On the other hand, the

Lie algebra of the automorphism group of X is known to be the space of
global holomorphic vector fields, which implies that GL(A) = exp(L0 ⊗mA)
as required.

Corollary A.24. The space of infinitesimal deformations of the complex
structure is H1(X,ΘX) whereas T 2

DefX
= H2(X,ΘX).

As an application, we prove that deformations of Calabi-Yau manifolds
are unobstructed.

Corollary A.25. Let X be a three dimensional Calabi-Yau manifold, that
is, a compact Kähler manifold with c1(X) = 0. Suppose moreover that
H1(X,OX) = 0. Then the functor Def (X) is smooth.

Proof. It is well known that for a Calabi-Yau manifold, the canonical bundle
ωX is trivial. By Serre duality, we then have

H1(X,ΘX) ∼= HomC(H2(X,Ω1
X),C)

The last lemma shows that this space equals T 1
Def(X). We want to apply

the T 1-lifting criterion, that is, we are going to show that for a given family
Xn → An, the restriction morphism

HomAn

(
H2(Xn,ΩXn/An), An

)
→ HomAn−1

(
H2(Xn−1,ΩXn−1/An−1

), An−1

)

is surjective. We will prove this in a number of steps. In fact, it will be
sufficient to show that H2(Ω1

Xn/An
) is free over An and that H2(Ω1

Xn/An
) →

H2(Ω1
Xn−1/An−1

) is surjective for all n > 0. Then required surjectivity on

the “Hom”-spaces follows by applying the functor HomAn

(
H2(Ω1

Xn/An
),−

)

(which is exact due the freeness of H2(Ω1
Xn/An

)) to the exact sequence

0 −→ C
·ǫn−→ An −→ An−1 −→ 0

Let us first prove that H2(Ω1
Xn/An

) is free over An. It suffices to show that the

morphism H2(Ω1
Xn/An

) → H2(Ω1
Xn+1/An+1

), given by multiplication by ǫ, is
injective. The cohomology sequence of the short exact sequence of complexes

0 −→ Ω•Xn/An

·ǫ−→ Ω•Xn+1/An+1
−→ Ω•X −→ 0

(this sequence is exact due to the smoothness of X) shows that it is sufficient
to show the surjectivity of H1(Ω1

Xn+1/An+1
) → H1(Ω1

X). In order to do that,
one considers the map

dlog : H1(O∗X) −→ H1(Ω1
X)
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of logarithmic differentiation. By Serre duality, H1(OX) = 0 implies that
H2(OX) = 0, hence the map H1(O∗X) → H2(X,Z) is surjective. But again,
H1,0 = H0,1 = 0 so H1(O∗X) ⊗ C → H1,1 is also surjective. This implies that
the image of dlog generates H1(Ω1

X) as a C-vector space. Now consider the
diagram

H1(O∗Xn+1
) //

dlog

��

H1(O∗X)

dlog

��
H1(Ω1

Xn+1/An+1
) // H1(Ω1

X)

Take any class in H1(Ω1
X). We can write it as a C-linear combination of

elements in the image of dlog. Take the inverse image of these genera-
tors in H1(O∗X). If the map H1(O∗Xn+1

) → H1(O∗X) is surjective, then
we can find a preimage of the given class in H1(Ω1

Xn+1/An+1
). But surjec-

tivity of H1(O∗Xn+1
) → H1(O∗X) is clear: we are again left to show that

multiplication by ǫ is injective as a map H2(O∗Xn
) → H2(O∗Xn+1

). But
from H2(OX) = 0 we get that H2(O∗Xk

) injects in in H3(Xk,ZXk
) (for

any k) which is topological, i.e., the multiplication by ǫ is an injective map
H3(Xn,ZXn) → H3(Xn+1,ZXn+1).

It remains to show the surjectivity of H2(Ω1
Xn/An

) → H2(Ω1
Xn−1/An−1

).
This is much easier, in fact, as before we get from the long exact cohomology
sequence that it is sufficient to prove H3(Ω1

X) = 0. By using duality once
again we have H3(Ω1

X) = Hom(Ω1
X ,OX)′ = H0(X,ΘX)′ where ′ stands for

the vector space dual. Interior derivation of the canonical three form gives
an isomorphism ΘX = Ω2 so that

H3(Ω1
X) = H0(X,ΘX)′ = H0(X,Ω2

X) = H2(X,OX)

But H2(X,OX) = 0 as we have already remarked.

We make another remark on deformations of Calabi-Yau manifolds: There
is a construction of a dg-Lie algebra (due to Kontsevich and Barannikov,
see [BK98]), canonically associated to any Calabi-Yau which includes the
Kodaira-Spencer dg-Lie algebra. Its definition is rather simple, one considers
the exterior algebra of the tangent sheaf and the defines the graded space

Li := Γ(M,A0,p−i+1
M ⊗

p∧
ΘM)

together with the Dolbeaut differential ∂ as above. The bracket is induced
from the the product on forms and from the so-called Schouten-Nijenhuis-
bracket on polyvector fields. One can show that the versal deformation space
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(in the formal sense) is the total cohomology space

H := ⊕n
i=1H

i(X,C)

of the manifold X. This dg-Lie algebra parameterizes therefore a more gen-
eral object attached to X than just its complex structure. Apparently, this
object is the derived category of coherent sheaves on X, viewed as A∞-
category. Moreover, there is some additional structure on the L, formalized
as the so-called dGBV-algebra (differential Gerstenhaber-Batalin-Vilkovisky
algebra) which equips the versal deformation space H with the structure
of a (formal) Frobenius manifold. This structure has become very impor-
tant to study the mirror symmetry phenomena, i.e., to identify Calabi-Yau
manifolds with from apparently very different origins.

A.2.2 Deformation of associative, commutative and Lie

algebras

This section deals with deformation of purely algebraic structures: associa-
tive, commutative and Lie algebras . The corresponding differential graded
Lie algebras are constructed quite similarly. The material in this section is
rather classical, a standard reference is [GS88].

We start with an associative algebra A over a field k. A is seen as a vector
space over k together with a k-bilinear multiplication

µ : A× A −→ A

such that (associativity condition) µ (a, µ(b, c)) = µ (µ(a, b), c). A deforma-
tion is a family (over a base S) of maps µt : A × A −→ A where t is a
parameter from the base. As we want to deal with arbitrary bases (e.g.,
artinien rings), we define more carefully the functor Def A(S) to be an asso-
ciative S-algebra structure on A ⊗k S modulo isomorphisms. We will now
construct a dg-Lie algebra controlling this deformation problem.

Consider first a slightly more general situation. Let M be an A-bimodule
(where the bimodule structure is given by morphisms α : A ×M → M and
β : M ×A→M) and

Cn(A,M) := HomK(A⊗n,M)

be the vector space of k-multilinear maps from A× . . .× A to M . Define a
differential δ : Cn(A,M) → Cn+1(A,M) by

δ(φ)(a0 ⊗ . . .⊗ an) := α (a, φ(a1, . . . , an))
+
∑n

i=1(−1)iφ(a0, . . . , µ(ai−1, ai), . . . , an) + (−1)n+1β (φ(a0, . . . , an−1), an)



A.2. EXAMPLES OF CONTROLLING DG-LIE ALGEBRAS 141

One has to check that δ is indeed a differential. The cohomology Hk(A,M)
of this complex is called Hochschild -cohomology of the algebra A with coef-
ficients in M .

Now consider extensions

e : 0 −→M −→ B −→ A −→ 0

of the algebra A by an A-bimodule M such that B is a k-algebra (with
multiplication µe) and the map B → A is a map of k-algebras. Moreover,
we require that the two B-bimodule structure of M (the one given by the
inclusion M →֒ B and the one given by the algebra map B → A) coincide.
This immediately implies that M is a two-sided ideal in B with M 2 = 0.
Two extensions are called equivalent iff there is a commutative diagram

0 // M // B //

��

A // 0

0 // M // B′ // A // 0

The set isomorphism classes of such extensions forms a vector space by the
usual Baer sum, where the zero element consists of the semi-direct product
B = A×M with multiplication

µ0 ((a,m), (a′, m′)) = (µ(a, a′), α(a,m′) + β(m, a′))

Lemma A.26. This vector space is isomorphic to H2(A,M). In particular,
extensions of A by itself modulo isomorphisms are classified by H 2(A,A).

Proof. For any extension e, the algebra B is isomorphic to A ×M as a k-
vector space. Then the first component of the multiplication µe is equal to
µ, because B/M is isomorphic to A as an algebra. On the other hand we
know that

µe(a,m
′) = α(a,m′)

µe(m, a
′) = β(m, a′)

Finally, µe(m,m
′) = 0, therefore, the multiplication is given by

µe ((a,m), (a′, m′)) = (µ(a, a′), α(a,m′) + β(m, a′) + λ(a, a′))

for some λ ∈ C2(A,M). The associativity equation for B reads:

µe (µe ((a1, m1), (a2, m2)) , (a3, m3)) = µe ((a1, m1), µe ((a2, m2), (a3, m3)))
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which is equivalent to

α (a1, α(a2, m3)) + α (a1, β(m2, a3)) + α (a1, λ(a2, a3)) +
β (m1, µ(a2, a3)) + λ (a1, µ(a2, a3))

=
α (µ(a1, a2), m3) + β (α(a1, m2), a3) + β (λ(a1, a2), a3) +

β (β(m1, a2), a3) + λ (µ(a1, a2), a3)

By definition, we have

α (a1, α(a2, m3)) = α (µ(a1, a2), m3)
α (a1, β(m2, a3)) = β (α(a1, m2), a3)
β (m1, µ(a2, a3)) = β (β(m1, a2), a3)

Thus associativity is equivalent to

α (a1, λ(a2, a3)) + λ (a1, µ(a2, a3)) = β (β(m1, a2), a3) + λ (µ(a1, a2), a3)

meaning that δλ = 0.

Now consider an extensions e which is equivalent to e0 by a commutative
diagram as above. The arrow g : B → A × M (where the latter algebra
corresponds to e0) is necessarily an isomorphism and of the form g(a,m) =
(a,m+ h(a)) for some h ∈ C1(A,M) (This follows immediately from the
commutativity). Its inverse is given by g−1(a,m) = (a,m− h(a)). To say
that e and e0 are equivalent is to say that g is an algebra isomorphism, i.e.:

g (µe ((a,m), (ã, m̃))) = µe0 (g(ã, m̃), g(ã, m̃))

that is:

µe ((a,m), (ã, m̃)) = g−1 (µe0 (g(a,m), g(ã, m̃)))
= g−1 (µe0 ((a,m+ h(a)), (ã, m̃+ h(ã))))
= g−1 (µ(a, ã), α(a, m̃+ h(ã)) + β(m+ h(a), ã))

Therefore we get

α(a, m̃) + β(m, ã) + λ(a, ã) = α(a, m̃+ h(ã)) + β(m+ h(a), ã) − h(µ(a, ã))

and thus

λ(a, ã) = α(a, h(ã)) + β(h(a), ã) − h(µ(a, ã))

Therefore λ = δh. This finishes the proof of the lemma.
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It is clear that infinitesimal deformations of the algebra A, that is, k[ǫ]/ǫ2-
algebra structures on A[ǫ]/ǫ2 are precisely extensions of A by itself. There-
fore, the tangent space of the functor Def A is isomorphic to H2(A,A). Thus
we have to construct the structure of a dg-Lie algebra on the Hochschild com-
plex C•(A,A). In order to define the Lie bracket, we first shift (somewhat
artificially) the degree of the terms of this complex by setting C

n
(A,M) :=

Cn+1(A,M). Then we define the composition product

C
n
(A,A) × C

m
(A,A) −→ C

n+m
(A,A)

(g, f) 7−→ g ◦ f

with

(g ◦ f) (a1, . . . , an+m+1) :=

n+1∑
i=1

(−1)m(i−1)g (a1, . . . , ai−1, f(ai, . . . , ai+m), ai+m+1, . . . , an+m+1)

The bracket is just the commutator with respect to this product:

[ , ] : C
p × C

p −→ C
p+q

(g, f) 7−→ g ◦ f − (−1)pqf ◦ g

Theorem A.27. The triple (C
•
(A,A), δ, [ , ]) is a dg-Lie algebra. Moreover

the associated functor Def C is isomorphic to Def A.

Proof. To prove the first statement, three things has to be checked: the
anti-commutativity and Jacobi identity of the bracket and the compatibility
between bracket and differential (all three statements has to been understand
in the graded sense). We first remark that the differential can be written in
terms of the bracket as

δφ = (−1)deg(φ)+1φ ◦ µ− µ ◦ φ = −[µ, φ]

for any φ ∈ C
•
(A,A) (note that we use shifted degrees here). Then the

equality (compatibility of bracket and differential)

δ[φ, ψ] = [δφ, ψ] + (−1)deg(φ)[φ, δψ]

is equivalent to the graded Jacobi identity. To prove it (and the anti-
commutativity), one has to check explicitly rather huge identities for the
product ◦. We refrain from doing this here.
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Now consider a ring S ∈ Art. To any element λ ∈MCC(S) we associate
the “deformed multiplication”

µλ := µ+ λ : (A⊗k S) ⊗S (A⊗k S) → A⊗k S

This obviously defines an algebra structure (over S) on A⊗k S. We want to
know whether it is associative, this means by definition of the composition
product:

(µλ ◦ µλ) (a, b, c) = µλ(µλ(a, b), c) − µλ(a, µλ(b, c)) = 0

So the deformed multiplication is associative iff

(µ+ λ) ◦ (µ+ λ) = µ ◦ µ+ µ ◦ λ+ λ ◦ µ+ λ ◦ λ = 0

The original multiplication was associative, therefore µ ◦ µ = 0. Moreover,
deg(λ) = 1 so [λ, λ] = 2λ ◦ λ. Therefore the associativity condition for µλ is
equivalent to

δλ+
1

2
[λ, λ] = 0

This means that we have a surjective morphism of functors MCC → Def A.
Now it can be verified that whenever a given deformation µλ over S is al-
tered by an automorphism from exp(C1), then the resulting deformation can
be transformed back by an automorphism of A⊗ S. Moreover, all automor-
phisms of A⊗S are of this type, therefore, the induced morphisms of functors
Def C → Def A is an isomorphism.

The cases of deformation of commutative and Lie algebras can now be de-
scribe rather briefly. Let A be an associative and commutative algebra. Then
we want to consider commutative deformations, consequently, we look for a
dg-Lie algebra which is a subcomplex of the Hochschild complex. Consider
the symmetric group Sn and define for all 0 < r < n a pure r-shuffle to be a
permutation π ∈ Sn such that π(1) < . . . < π(r) and π(r + 1) < . . . < π(n).
Then the r-th shuffle operator is sr :=

∑
pure shuffles sgn(π)π. Now we define

the n-th Harrison cochain module to be

Chn(A,M) := {φ ∈ Cn(A,M) | φ ◦ sr = 0 ∀r}

Theorem A.28. Ch•(A,M) together with the Hochschild differential is a
subcomplex of C•(A,M). Moreover, for M = A, the bracket from the Hoch-
schild complex restricts to Ch•(A,A), which therefore becomes a sub dg-Lie
algebra of Cn(A,A). The associated functor Def Ch is the functor of com-

mutative deformations of A.
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Proof. This is proved with the same methods as in the associative case. We
only remark that for n = 0 and n = 1 there are no shuffles so Hochschild
and Harrison cohomology coincides. On the other hand, for n = 2 we have
precisely one shuffle, namely a⊗b−b⊗a, therefore, H2(Ch•(A,M)) classifies
commutative extensions of A by a symmetric A-bimodule M . In particular,
H2(Ch•(A,A)) are the infinitesimal commutative deformations of A.

Finally, we consider deformations of Lie algebras. We give only the def-
inition of the corresponding dg-Lie algebra, referring to [GS88] for details.
Let g be a Lie algebra over k and M be an g-module (which is by definition
a module over the universal enveloping algebra U(g)). Then we define the
module

Cn(A,M) := Hom

(
n∧

g,M

)

and a differential δ : Cn(g,M) → Cn+1(g,M) by

(δφ) (g1 ∧ . . . ∧ gn+1) :=∑n+1
i=1 (−1)i [gi, φ (g1 ∧ . . . ∧ ĝi ∧ . . . gn+1)]

+
∑

1≤i<j≤n+1

(−1)i+j−1 φ ([gi, gj] ∧ g1 ∧ . . . ∧ ĝi ∧ . . . ∧ ĝj ∧ . . . ∧ gn+1)

In the case M = g there is a bracket, defined for two elements φ ∈ Cn(g, g)
and ψ ∈ Cm(g, g) as

[φ, ψ] = φ ∧ ψ − (−1)(m−1)(n−1)ψ ∧ φ

where

(φ ∧ ψ)(g1, . . . , gn+m−1) =

∑
pure shuffles

sgn(π)φ
(
ψ(aπ(1), . . . , aπ(n)), aπ(n+1), . . . , aπ(m+n−1)

)

Theorem A.29. (C
•
(A,A), δ, [ , ]) (reduced degree) is the controlling dg-Lie

algebra of the Lie algebra deformation problem.

A.2.3 The cotangent complex

We will construct a dg-Lie algebra which controls flat deformations of sin-
gularities. Here we consider only germs of complex spaces and their defor-
mations. The global case is considerably more involved as one has to take
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into account deformations of singularities and of complex structures simulta-
neously (see, e.g., [BM97]). Our main reference for this section is [Man01a].
Consider an analytic algebra A, given as a quotient

A0 −→ A := A0/(f1, . . . , fk)

where A0 := K{x1, . . . , xn}. We first construct a resolvent of A, which is by
definition a free differential graded A0-algebra R, concentrated in negative de-
grees, with finitely many generators in each degree, which is quasi-isomorphic
to A. The idea of the construction is rather simple, we will define a chain

R(0) := A0 ⊂ R(1) ⊂ R(2) ⊂ . . .

of DGA’s of the above type, not necessarily acyclic but where in each step
some of the remaining cohomology has been killed. Then the union

R :=

∞⋃

i=0

R(i)

will be quasi-isomorphic to A.
Define R(0) to be the single degree complex A0 concentrated in degree

zero. Then set
R(1) := K{x1, . . . , xn}[y1, . . . , ys1]

with s1 := k and deg(xi) = 0 and deg(yj) = −1. The differential δ is uniquely
determined by

δ(xi) = 0 and δ(yj) = fj

and by requiring that R(1) is a DGA. Now we proceed inductively. Suppose
that R(i) is constructed such that H j(R(i)) = 0 for all j > −i. Then choose

a system h
(i)
1 , . . . , h

(i)
ti of generators of H−i(R(i)) and set

R(i+ 1) := R(i)[ysi+1, . . . , ysi+1
]

with si+1 := si+ti, deg(yl) = −i−1 and δ(yl) = h
(i)
l−si

for l ∈ {si+1, . . . , si+1}.
Now for any DGA (O, d, •) over K, we consider the set DerK(O,O) of all

derivation of O into itself. More precisely:

Dern
K
(O,O) := {Φ ∈ HomK(O,O) | Φ(Ok) ⊂ On+k,

Φ(a • b) = Φ(a) • b+ (−1)n·deg(a)a • Φ(b), Φ(K) = 0}
DerK(O,O) :=

⊕
n∈ZDer

n
K
(O,O)

This definition makes DerK(O,O) into a dg-Lie algebra, where the (graded)
bracket is the commutator of derivations and the differential d is defined as
the commutator with δ. One can show that this construction is unique up
to homotopy equivalence.
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Definition A.30. Let A be an analytic algebra as above. Define

(LA, d, [ , ]) := DerK(R,R)

to be the dg-Lie algebra of derivations of the resolvent of A.

The importance of this construction is given by the following theorem.

Theorem A.31. Denote by Def A the functor of flat deformations of the
analytic algebra A. Then we have an isomorphism of functors Def LA

→
Def A.

Proof. First we define a transformation

MCLA
−→ Def A

So let B be an Artin ring and take an element η ∈ L1
A⊗mB = Der1

K
(R,R)⊗

mB. Then we can consider the “perturbed” differential

δη := δ + η : Ri ⊗B −→ Ri+1 ⊗ B

Let us calculate its square: As deg(δη) = 1, we see that [δη, δη] = 2δ2
η and so

2δ2
η = [δ + η, δ+ η] = δ2 + [δ, η] + [η, δ] + [η, η] = 2[δ, η] + [η, η] = 2dη + [η, η]

This implies that δη is a differential iff dη+ 1
2
[η, η] = 0, i.e. iff η ∈MCLA

(B).
It is well-known in homological algebra that a complex of modules flat over B
is exact iff its reduction modulo mB is exact. Therefore, RB := (R⊗B, δ+η)
is a resolution of

AB := coker
(
R−1 ⊗ B

δη−→ R0 ⊗ B
)

As RB ⊗B K = R, we see that AB is a family over B with special fi-
bre isomorphic to A. We are left to show that AB → B is flat. But
TorB1 (AB,K) = H−1(R) = 0, so we are done by the local flatness crite-
rion. This shows that we have defined a morphism MCLA

−→ Def A by
sending η ∈MCLA

(B) to the isomorphism class of AB.
As a second step, we now prove that this morphism is surjective. So let

us be given a flat family AB which specializes to the algebra A over K. We
have the morphism R0 ⊗B → R0 → A, and the surjection AB → A. R0 was
a free K-algebra, so this yields a morphism of flat B-algebras R0 ⊗B → AB.
As its reduction over the special point is surjective, the morphism is itself
surjective. So the situation is as follows

0 // IB,0 //

����

R0 ⊗ B //

����

AB //

����

0

0 // I0 // R0
// A // 0
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where IB,0 is flat over B. Therefore we can extend the differential δ on
R(1) to a differential δB on R(1) ⊗ B by choosing lifts Fi of the elements
δ(yi) = fi ∈ I0 to IB,0 and setting δB(yi) = Fi. Remark that now we have
H0(R(1)⊗B) = 0. Then we proceed inductively: at each step k flatness over
A of the kernel of ∂B at degree k guarantees the existence of an extension of
the given differential on R.

So we obtain a DGA (R⊗B, δB, •) which is quasi-isomorphic to AB and
whose restriction over K is the given resolvent of A. But this also implies that
the differential can be written as δB = δ+ η with η ∈ mB. Therefore, we get
an η ∈ MCLA

(B) which shows that the above transformationMCLA
→ Def A

is surjective.
Remark that given ξ ⊗ b ∈ GLA

(B) = Der0
K
(R,R) ⊗ mB , we get an

automorphism

eξ⊗b : R⊗ B −→ R ⊗B

x⊗ b̃ 7−→ ∑∞
i=0

1
i!
ξi(x) ⊗ bib̃

which induces the identity on R and sends the differential δ+η to δ+eξ⊗b(η).
In particular, we have

eξ⊗b (coker(δ + η : R−1 ⊗B → R0 ⊗ B))
= coker

(
δ + eξ⊗b(η) : R−1 ⊗ B → R0 ⊗ B

)

This means that the morphism MCLA
→ Def A factors through MCLA

→
Def LA

→ Def A and obviously, Def LA
→ Def A is surjective. The last step is

now to show that Def LA
→ Def A is also injective. So take η, η′ ∈MCLA

(B)
and consider the two complexes (R⊗B, δ+η) and (R⊗B, δ+η ′). We suppose
that the induced deformations AB and A′B are isomorphic. It can be proved
that this isomorphism can be lifted to an automorphism g0 : R0⊗B → R0⊗B,
so that

g0 ((δ + η)(R−1 ⊗ B)) ∼= (δ + η′)(R−1 ⊗ B)

Moreover, g restricts to the identity over K. This extends to an automor-
phism g : R⊗B → R⊗B, such that g◦(δ+η) = δ+η′ and even δ+g◦η = δ+η′

as g(δ) = δ. But every automorphism of R⊗B is the exponential of a nilpo-
tent derivation of degree zero, so there is l ∈ Der0

K
(R,R) ⊗mB with el = g.

Then we have el(η) = η′ and this means that the classes of η and η′ in Def LA

are equal. This finishes the proof.

Corollary A.32. The spaces of infinitesimal automorphisms, infinitesimal
deformations and obstructions of an analytic algebra A := A0/I with I =
(f1, . . . , fk), denoted by T 0

A, T 1
A and T 2

A, respectively, are as follows:
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1. T 0
A = HomA(Ω1

A, A) =: ΘA/K

2. T 1
A = coker

(
ΘA0/K → HomA0(I, A)

)

3. T 2
A = coker (HomA0(R−1, A) → HomA0(R, A)), where R is the module

of relations of I.

Moreover, the primary obstruction map can be described as follows: Let
φ ∈ HomA0(I, A) be a first-order deformation. Then define an element in
HomA0(R, A) by sending a relation r1, . . . , rk between the generators of I to
the sum

∑k
i=0 si · φ(fi). Here s1, . . . , sk is a lifting of the relation r1, . . . , rk,

i.e.
∑k

i=0(fi+ǫφ(fi)(ri+ǫsi) ∈ I (The existence of such a lifting is guaranteed
by the flatness of the given deformation).

Proof. We have to calculate the cohomology of the dg-Lie algebra L. We
use the following modification of L: Let R be the resolvent of the algebra
A constructed above and consider H := DerR0(R,R). This also has the
structure of a dg-Lie algebra and there is an exact sequence of complexes

0 −→ H −→ L −→ DerK(R0, R) −→ 0

Furthermore, we have

H0(DerK(R0, R)) = {α ∈ Der0
K
(R0, R) | δ ◦ α = α ◦ δ}

= DerK(R0, A)

and H i(DerK(R0, R)) = 0 for i 6= 0 (This follows because DerK(R0, R)
is concentrated in degrees ≤ 0, R is exact in degree ≤ 0 and R0 is free).
Moreover, we have H i(H) = 0 for i ≤ 0 and therefore H i(L) = H i(H) for
i > 1. We get an exact sequence

0 −→ H0(L) −→ DerK(R0, A) −→ H1(H) −→ H1(L) −→ 0

Any class α ∈ H0(L) induces in particular a derivation α ∈ DerK(R0, R0)
with α(I) ⊂ I, therefore α ∈ DerK(A,A) = ΘA/K. On the other hand, given
any β ∈ DerK(A,A), we can extend it to a derivation of R because of the
exactness of R in negative degree and get something in H0(L). Therefore,
H0(L) = ΘA/K. Now consider a cocycle representing a class in H1(H), that
is, an η ∈ Der1

R0
(R,R) with δη = −ηδ. In particular, η sends R−1 into R0

and η(δ(R−2)) = δ(η(R−2)) ⊂ δ(R−1). So we get

η : R−1/δ(R−2) −→ R0/δ(R−1)

but by the construction of the resolvent R we have R−1/δ(R−2) = I and
R0/δ(R−1) = A. So we obtain a well defined element in HomR0(I, A). One
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sees that η sends I into itself iff it is a coboundary. This means that we get
a well-defined injective map H1(H) → HomR0(I, A). Surjectivity is obvious,
because as above, a derivation from R−1 to R0 coming from a morphism in
HomR0(I, A) can be extended to the whole R. The above exact sequence
thus reads

0 −→ ΘA/K −→ ΘR0/K −→ HomA0(I, A) −→ H1(L) −→ 0

This proves the statement on T 1
A. Next we calculate H2(L) = H2(H). First

note that the module R of relations of I is canonically identified with the
image of δ : R−2 → R−1. Then given ϑ ∈ Der2

K
(R,R) with δϑ = ϑδ, define

an element of HomA0(R, A) by sending r ∈ R to the class of ϑ(r̂) in A, where
r̂ is a preimage of r in R−2. This is well defined: if the chosen preimage is
r̂ is in Im(δ : R−3 → R−2), i.e. r̂ = δ(r′), then ϑ(r̂) = ϑ(δ(r′)) = 0 ∈ A.
Moreover, the defined morphism from Im(δ : R−2 → R−1) to A extends to
R−2 iff ϑ = η ◦ δ + δ ◦ η for some η ∈ Der1

K
(R,R), i.e. iff ϑ is a coboundary.

Therefore, we have a morphism

H2(L) −→ coker (HomA0(R−1, A) → HomA0(R, A))

which is easily seen to be an isomorphism. From the general discussion above
(see lemma A.16 on page 131) we know that the primary obstruction map is
given by

ob : T 1
A −→ T 2

A

φ 7−→ 1
2
[φ, φ]

Then given any relation r ∈ R (which we see as an element of R−2), we have
to prove that the class of

1

2
[φ, φ](r) = (φ ◦ φ) (r)

in A coincides with
∑k

i=0 si ·φ(fi), where (s1, . . . , sk) is a lifting of the relation
r = (r1, . . . , rk). This is clear: Consider the perturbed differential δφ = δ+ǫφ,
then

δφ(r) =

k∑

i=1

(riyi + ǫφ(r)) =

k∑

i=1

(ri + ǫsi) yi

where yi are the generators of the free R0-module R−1. On the other hand, we
have δφ(yi) = fi+ǫφ(fi), therefore, (φ ◦ φ) (r) = φ(

∑k
i=1 siyi) =

∑k
i=1 siφ(fi).

This finishes the proof.



Appendix B

Algebraic analysis

Algebraic analysis, or in other words, the theory of (algebraic or analytic)
D-modules is the study of systems of differential equations by algebraic meth-
ods. More precisely, to any system of such equations on a, say, complex man-
ifold X is associated a sheaf of modules over the sheaf of non-commutative
rings of differential operators on X. Any such DX-module M possesses a
characteristic variety char(M), which is in some sense a differential analog
of the usual support of an OX -module. Namely, it is an analytic subspace of
the cotangent bundle T ∗X with the crucial property that it is a co-isotropic
subvariety with respect to the usual symplectic structure of T ∗X. The special
class of DX-modules for which it is lagrangian, i.e. dim(char(M)) = dimX
is called holonomic and is of particular importance. We will explain the
notions mentioned here in more detail, in particular characteristic varieties.
Good general references for D-modules are [Pha79], [GM93]. See also the
comprehensive monograph [Bjö93]. In this chapter we restrict our attention
to the analytic D-module theory over the complex numbers.

B.1 The characteristic variety

Let X be a complex analytic manifold. Let (U ; (x1, . . . , xn)) ⊂ X be a
coordinate chart. Then there exists the ring of differential operators with
holomorphic coefficient in U , denoted DX(U) and defined as follows:

DX(U) :=
⋃∞
n=0 DX(U)(n)

DX(U)(n) :=

{
P =

n∑
|I|=0

aI∂I | aI ∈ OX(U)

}

151
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where I = (i1, . . . , in) is a multi-index and ∂I := ∂xi1
. . . ∂xin

. Here ∂xi
is the

C-linear endomorphism of OX(U) of differentiation with respect to xi. Note
that DX(U)(0) is naturally equal to OX(U) where a function on U is acting
on OX(U) by multiplication. Then the multiplication law in the ring DX(U)
is given by the usual commutator rules of differential operators, i.e.:

∂xi
xj − xj∂xi

= ∂ij
∂xi
∂xj

− ∂xj
∂xi

= 0

We note the following characterizations of DX(U) and DX(U)(n).

Lemma B.1. Consider the ring EndC(OX(U)) of C-linear endomorphism
of OX(U).

• The ring DX(U) is isomorphic to the subring of EndC(OX(U)) gener-
ated by OX(U) and the operators ∂xi

• We have

DX(U)(n) = {P ∈ EndC(OX(U)) | [P,DX(U)(0)] ⊂ DX(U)(n− 1)}

where [ , ] is the operator commutator.

Note that DX(U) is filtered by the subrings DX(U)(n). The associ-
ated graded ring can be canonically identified with the commutative ring
C[x1, . . . , xn, ξ1, . . . , ξn].

We now turn over to the global situation. On the complex manifold X
we have the ring sheaf OX of holomorphic functions and the sheaf EndC(OX)
of C-linear endomorphism of OX . Let DX(0) = OX and define recursively

DX(n) := {P ∈ EndC(OX) | [P,DX(U)(0)] ⊂ DX(n− 1)}

and DX := ∪∞n=0DX(n). Then DX is called the sheaf of holomorphic differen-
tial operators on X. As before DX is filtered by the subsheaves DX(n) and it
can be shown that the associated graded sheaf is isomorphic to OX [ξ1, . . . , ξn].
This can also be expressed as follows:

Lemma B.2. The graded sheaf gr(DX) associated to the above filtration is
isomorphic to the subsheaf of π∗(OT ∗X) which consists of functions which are
polynomial in the fibers of π : T ∗X → X.

We quote another fundamental result. The somewhat technical proof
relies essentially on the corresponding result for the sheaf OX (Oka’s lemma).
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Proposition B.3. DX is a coherent sheaf of rings, that is, for each open set
U ⊂ X and each morphism

ϕ : Dp
X |U −→ Dq

X |U

the sheaf Ker(ϕ) is locally of finite type.

As already said, differential systems on a manifold X can be represented
as a module over DX . Here we explain this correspondence.

Consider any coherent module M over DX . Coherence implies that for
each U ⊂ X there is a presentation:

Dp
X |U

ϕ−→ Dq
X |U −→ M −→ 0

The morphism ϕ corresponds to a matrix (A)i,j with differential operators
as entries. This means that the generators mj of M satisfy:

p∑

j=1

Ai,jmj = 0 ∀i = 1 . . . q

Thus we see that solving the system of differential equations given by the
matrix A is equivalent to associating a function (say holomorphic) to each
mj , so to giving a DX-linear homomorphism from M to OX (remark that
OX is naturally a DX-module by ordinary differentiation). So a differential
system corresponds to a DX-module M and its holomorphic solutions are
given by the sheaf HomDX

(M,OX). The advantage of this description is
that it is independent of any choice, whereas a differential system can have
several representation (e.g., a single differential equation of degree n can
always be transformed into a system of n first-order equations).

The next step consists in studying filtrations on DX-modules which are
in some sense compatible with the natural filtration on DX . These are called
“good” and defined as follows.

Definition B.4. Let M be a given coherent DX-module. A good filtration
of M is given by submodules (Mk)k∈N such that

• Mk ⊂ Mk+1 and DX(n)Mk ⊂ Mk+n for all n, k ∈ N

• M =
⋃
k∈NMk

• each Mk is OX-coherent

• There is N ∈ N such that

DX(n)MN = Mn+N

for all n ∈ N
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By the very definition of coherence, any such DX-module admits locally
a good filtration (take the filtration induced by the standard filtration of Dk

X

with Dk
X ։ M). It is not clear under which circumstances a globally defined

good filtration exist. However, it is known that for holonomic modules there
is always a global good filtration.

Now we will define the geometric object which relates D-modules to la-
grangian subvarieties. Consider a coherent DX-module M and a good filtra-
tion (Mk) over some open set U . Then gr(M)|U is a module over gr(DX)|U ,
thus, we can define the annihilator of gr(M)|U in gr(DX)|U , which is a co-
herent sheaf of ideals of gr(DX)|U . Now the crucial fact is that although this
annihilator ideal depends on the chosen locally good filtration, its radical is
an invariant of M|U which can therefore be glued into an ideal of gr(DX).
More precisely, the following holds.

Theorem B.5. There is a sheaf of ideals in gr(DX), denoted by
√

(gr(M))
such that on each restriction to an open subset U where M|U has a good
filtration we have

√
(gr(M))|U = rad

(
anngr(DX)|U

(
gr(M)|U

))

As we said in lemma B.2 on page 152, gr(DX) is closely related to OT ∗X .
In particular, OT ∗X is a flat module over π−1 (gr(DX)) (this is easily to be
seen true at every point of X). Thus we have the inclusion

π−1
(√

(gr(M))
)
⊗π−1(gr(DX)) OT ∗X →֒ OT ∗X

The ideal in OT ∗X generated in this way defines an analytic subset of the
holomorphic cotangent bundle. This is the characteristic variety attached
to the coherent DX-module M. Usual notations for this space are char(M)
or SS(M) (the latter symbol refers to the name “singular support”, which is
justified from the microlocal viewpoint).

Proposition B.6. The characteristic variety char(M) is a coisotropic sub-
set of the symplectic manifold T ∗X, i.e., the Poisson bracket of two elements
of the defining ideal

π−1
(√

(gr(M))
)
⊗π−1(gr(DX)) OT ∗X

lies still in that ideal.

There are at least two different proofs of this result. One uses microlocal
techniques, the other one, due to Gabber, is a far more general result on
filtered rings and modules over them (see [Gab81] and [Bjö93]). We remark
that Gabber’s proof can be generalized in the context of differential operators
constructed from Lie algebroids, see section 3.1.1.
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B.2 Holonomic DX-modules

As we said in the last section, a characteristic variety is always coisotropic.
This implies that dim (char(M)) ≥ n where n is the dimension of the under-
lying variety X. Note that this Bernstein inequality is proved independently
of the involutiveness of char(M).

Definition B.7. Let M be a coherent DX-module. M is called holonomic iff
its characteristic variety is of dimension n, i.e., if it is a lagrangian subvariety
of T ∗X.

According to this definition, holonomic DX-modules provides examples
for lagrangian subvarieties. The simplest lagrangian submanifold of the
cotangent bundle is its zero section. It is easy to show that iff the charac-
teristic variety is just the zero section, then the good filtration is stationary
which in turn implies that the DX-module is OX -coherent. Then it is even
locally free over OX and its DX-module structure is nothing else than an
integrable connection.

In general, the characteristic variety is much more complicated. But at
least we have the following relation with the conormal space construction.

Lemma B.8. Let M be a holonomic DX-module. Let π : T ∗X → X be the
projection. Denote by CM the union of the components of char(M) which
are different from the zero-section of π. Then we have

CM =
⋃

Z⊂π(CM)

T ∗ZX

where Z runs over the irreducible components of π(CM).

Its well known that flat connections on vector bundles (i.e. locally free
OX -modules) are in one to one bijection with local systems on X (which
in turn are equivalent to representations of the fundamental group). The
so called Riemann-Hilbert-correspondence determines the class of holonomic
DX-modules to which this fact can be generalized. The first essential step
is Kashiwara’s constructibility theorem. We include this fundamental result
here in order to motivate one of our central theorems on deformations of
lagrangian singularities (see 3.35 on page 77). We will use some notions from
complex analysis concerning stratifications. See for example [Mer93].

Theorem B.9. Let M be DX coherent and holonomic. Then there is a
Whitney regular stratification of X such that the solution complex of M

Sol•(M) := RHomDX
(M,OX)

is constructible with respect to this stratification.
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Remarks:

• Constructibility of a sheaf means that the restriction of this sheaf to
each stratum is a local system of finite dimensional vector spaces over
C.

• The solution complex Sol•(M) is seen as an object in the derived cate-
gory of sheaves of complex vector spaces onX. Therefore, constructibil-
ity of such a complex means constructibility of its cohomology sheaves.

• We could have considered the sheaf complex

DR•(M) := RHomDX
(OX ,M)

instead, which is called the de Rham complex of M. Then constructibil-
ity holds as well. But this can be deduced more generally from the
duality theorem for holonomic modules.

• In the definition of the solution complex of M (as well as in that of the
de Rham complex) we do not actually use the fact that M is a single
holonomic module, that is, we can state the same theorem for complexes
of holonomic modules (i.e complexes of DX-modules such that their
cohomologies are holonomic). It follows from general consideration
about derived categories that the proof of constructibility in this case
is almost the same as for single degree complexes.

We will only give an idea of the proof following [Bjö93] and skip the technical
details. We will use the fact (but not prove) that the spaces Z ⊂ π(char(M))
provides a Whitney stratification of X. Then first we show that the restric-
tions

ExtpDX
(M,OX)|Z

for each p ∈ N and Z ⊂ π(char(X)) form a local system. The second step
consists in proving that the stalk of ExtpDX

(M,OX) at each point is finite-
dimensional. The essential ingredient for booth steps is the following result
from functional analysis whose proof can be found in [KV71].

Proposition B.10. Consider two (bounded) complexes of Frechét spaces with
continuous linear differentials. Suppose that we are given a morphism of these
complexes consisting of compact operators. If, under these hypotheses, the
mapping is a quasi-isomorphism, then the cohomology of the two complexes
are finite-dimensional vector spaces

The second technical result (which is needed to use the preceding con-
struction) concerns the restriction morphism of a holonomic DX-module with
respect to C1-domains with non-characteristic boundary.
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Definition B.11. Let ϕ a real valued function of class C1 and consider the
domain Ω = {x ∈ X |ϕ(x) < 0}. Suppose furthermore that ∂Ω is compact
and that ϕ is regular there. Then we set

N∗Ω = {(x, ∂ϕ(x)) | x ∈ ∂Ω}

where ∂ϕ is the holomorphic differential of ϕ. We say that Ω is non-charac-
teristic with respect to some holonomic DX-module M iff

char(M) ∩N∗Ω = ∅

We note the following important fact which is used two times in the proof
of the constructibility theorem: Consider a function ϕ as above. Then for
any regular real subspace Z the set of values c of ϕ such that x ∈ ϕ−1(c)∩Z
and (x, ∂ϕ(x)) ∈ T ∗ZX is finite.

The technical result which is needed for the proof is as follows.

Lemma B.12. Let a family of C1-domains Ωt with t ∈ [0, 1] be given such
that

Ωt =
⋃

s<t

Ωs and Ωt =
⋂

s>t

Ωs

and suppose that all Ωt are non-characteristic with respect to M. Then each
of the restriction morphisms

Hp(Ω1, Sol
•(M)) −→ Hp(Ωt, Sol

•(M))

is an isomorphism.

An proof can be found in [Bjö93]. Note however that it uses microlocal
techniques in order to obtain a vanishing result for certain local cohomology
groups.

Proof of the theorem. As the result is local in nature, we can assume that
X is an embedded in some C

n. Let Z ⊂ π(char(M)) be a component and
x0 ∈ Z a point. We consider the restriction F := Ext

p
DX

(M,OX)|Z∩Bx0(ǫ)

where Bx0(ǫ) is a small ǫ-ball around x0 inside X. We have to show that F
is a constant sheaf. Define for any x ∈ Z ∩ Bx0(ǫ) and any t ∈ (0, 1) the set
Ωt(x) := {y ∈ Bx0(ǫ) : |(1−t)x−ty−x0| < ǫt}. We have Ω1(x) = Bx0(ǫ) for
any x. Moreover, it can be shown that there is an ǫ0 such thatN∗∂Ωt(x)

does not

meet the conormal cone to π(char(M)) for any t and x ∈ Z ∩Bx0(ǫ0). This
implies that ∂Ωt(x) is non-characteristic with respect to M, which makes it
possible to apply lemma B.12 to get that the restrictions

Hp(Bx0(ǫ0), Sol
•(M)) −→ Hp(Ωt(x), Sol

•(M))
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are isomorphism. By letting t → 0, we obtain that the stalk Fx is equal to
Hp(Bx0(ǫ0), Sol

•(M)) therefore, F is constant.
For the second part, that is, the finiteness of the stalks Ext

p
DX

(M,OX)x0,
we use a similar argument: There is an ǫ such that ∂Bx0(ǫ

′) is non-charac-
teristic with respect to M for every ǫ′ < ǫ. Now we consider the family
Ωt(x0) := Bx0(tǫ). Then the desired result follows immediately from lemma
B.12 and proposition B.10 on page 156.

Now that we have seen that Sol defines in fact a functor from the category
of holonomic D-modules to constructible sheaves one might ask whether this
functor is an equivalence. It turns out that this is case when we restrict this
functor to a subclass of consisting of regular holonomic modules. Recall first
the case where X is one-dimensional. Then the singular locus of M, i.e. the
components of π(char(X)) which are of dimension less then n, is a (possibly
empty) discrete set of points. Outside of these points M is a connection in the
sense described above. Then (restricting the situation around one singular
point) the localized module M[t−1] (t being a coordinate around the singular
point) is called a meromorphic connection with regular singularity if there is
a basis of this module over C{t}[t−1] such that the matrix of the connection
with respect to this basis has a pole of order at most one. Then it is known
that regular singular connections are in one-to-one correspondence to local
systems on the punctured disc. Consequently, one possible definition of a
regular holonomic module M is that the pull-back (which is defined in the
category of DX-modules) to any curve is regular in the sense just described.
The next definition makes this precise and presents equivalent definitions of
regularity.

Theorem B.13. The following conditions are equivalent.

1. Let γ : C → X holomorphic, where C is smooth and one-dimensional.
Then the complex γ+(M), where γ+ is the pull-back functor in the
category of coherent DX-modules is regular, i.e. its localization around
each singular point is a meromorphic connection.

2. There is a globally defined good filtration on M such that the annihilator
of gr(M) is gr(DX) is a radical ideal (Note that for each holonomic
DX-module there exists a globally defined good filtration).

3. Denote by ÔX,x the completion of the local ring at a point x ∈ X. Then
we have for all points x:

RHomDX,x
(Mx, ÔX,x/OX,x) = 0

that is, the formal and the analytic solution complex coincides.
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A holonomic module satisfying one of these condition is called regular holo-
nomic.

With this definition in mind we can state the Riemann-Hilbert correspon-
dence.

Theorem B.14. The functor DR is an equivalence from the derived category
of complexes of regular holonomic DX-modules to the derived category of
complexes of constructible sheaves of C-vector spaces.

Remark: In the third chapter, we study a sheaf complex arising from a
lagrangian singularity. It turns out that the cohomology of this complex is
constructible under some hypothesis. Therefore, by the Riemann-Hilbert cor-
respondence, there is a (complex of) holonomic D-module(s) corresponding
to it via the functor DR.
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