

Source Laser impulsionnelle à haute cadence dans l'ultraviolet

Sébastien Forget

20 Novembre 2003

Introduction

Objectif: répondre à un besoin exprimé par nos collègues biologistes.

Quel besoin ?

Expériences de <u>mesure de temps de vie de</u> <u>fluorescence</u> : excitation par laser de molécules biologiques.

Cahier des charges

- C_{laser} = quelques MHz
- Δt_{laser} = moins d'une nanoseconde
- λ_{laser} = ultraviolet
- Plaser = quelques mW seulement
- Compacité et simplicité maximales

État de l'art

- Laser à verrouillage de modes + sélection d'impulsion + conversion de fréquence
- Diodes laser déclenchées par le gain + amplification + conversion de fréquence
- Diodes laser déclenchées par le gain ultraviolettes
- Synchrotron

Notre choix

proche infrarouge (~ 1,06 µm) : Dopage au néodyme

Notre choix

Notre source laser doit être :

- Efficace
- Robuste
 POMPAGE PAR
 DIODES LASER
- Compacte

Entièrement passive
 CHOIX DE LA
 SOURCE

Répondant au cahier des charges

- ultraviolet, accordable, impulsionnel.

Notre choix

Notre source laser doit être :

- Efficace
- Robuste
 POMPAGE PAR
 DIODES LASER
- Compacte
- Entièrement passive

OPTIQUE NON-

LINEAIRE

Répondant au cahier des charges

- ultraviolet, accordable, impulsionnel.

Problématique

Laser solide pompé par diode : INFRAROUGE Besoin de convertir la longueur d'onde jusqu'à L'ULTRAVIOLET Or les rendements de conversion sont proportionnels à la PUISSANCE crête de la

source.

Besoin de puissance : **AMPLIFICATEUR**

Sommaire

La source laser

L'amplification

😑 La conversion de fréquence

Sommaire

La source laser

L'amplification

La conversion de fréquence

Conclusion

Quelle source pour quelles impulsions ?

Equipe Lasers Solides et Applications

EŁ

C

Type de laser impulsionnel	Durée des impulsions	Taux de répétition
Déclenché (Q-switch)	1 – 10 ^{aines} ns	qql 10 ^{aines} à qql 100 ^{aines} kHz
Verrouillage de mode	U – 10 ^{aines} ps	qql 10 ^{aines} MHz

Quelle source pour quelles impulsions ?

Solution

Verrouillage de mode : diminuer la cadence

Déclenchement : diminuer la durée

Cadence
$$\propto \left(\frac{c}{2L}\right)$$
 Augmenter L ...
... jusqu'à plus de 100 m

Diminuer L ...

... jusqu'à <u>moins de 500 µm</u>

 $\Delta t \propto \frac{L}{Pertes}$

Equipe Lasers Solides et Applications

1/Laser à verrouillage de mode : la cavité géante

Principe : augmenter la taille de la cavité grâce à une *cellule multipassage.*

Herriott and Kogelnik, 1965

1/ LVM : le schéma

1/ LVM : les résultats

1/ LVM : les résultats

1/LVM : les résultats

1/ LVM : les résultats

1/LVM: Conclusion

- Taux de répétition ajustable autour de quelques MHz
- Durée des impulsion de moins de 20 ps
- •Faisceau de bonne qualité spatiale (M² =1,1)
- Puissance crête autour de 25 kW
- •Encombrement : environ 2 m²
- •Robustesse : dépendante du SESAM

2/ Laser déclenché : la micro-cavité

Principe :

- Diminuer la taille de la cavité afin de <u>diminuer</u> <u>la durée</u> des impulsions produites.
- Utiliser un milieu laser à fort gain et un absorbant saturable bien choisi pour <u>atteindre les</u> <u>cadences voulues</u>

2/Laser déclenché : Principe

2/Laser déclenché : L'absorbant saturable

2/Laser déclenché : Dimensionnement

On peut montrer que :

$$\Delta t = \frac{4S_p Tr}{\Delta R}$$

$$C = \frac{\frac{2 \sigma_L \eta_p P_p \tau}{A h v_p} - (P + \Delta R)}{2 \tau \Delta R}$$

$$\Delta t < 500 \text{ ps} \rightarrow L = 400 \ \mu \text{m}$$

 $C = 1 MHz \rightarrow \Delta R = 6\%$

2/Laser déclenché : Schéma

2/Laser déclenché : Schéma

2/Laser déclenché : La pompe

2/Laser déclenché : *Résultats*

2/Laser déclenché : Cadence des impulsions

2/Laser déclenché : Durée des impulsions

2/Laser déclenché : Profil spatial

2/Laser déclenché : Energie

Energie très faible : 60 nJ soit 60 mW à 1 MHz

1/ Laser déclenché : Conclusion

- Taux de répétition autour de 1 MHz
- •Encombrement : très réduit
- Durée des impulsion de 400ps
- ...
- Robustesse : dépendante du SESAM
- •*F*
 - •Faisceau de bonne qualité spatiale (M² =1,1)
 - Puissance crête autour de 150 W

Sommaire

La source laser

L'amplification

La conversion de fréquence

Conclusion

L'amplification

Multipassage géométrique classique :

L'amplification <u>3D</u> en pratique...

L'amplification <u>3</u>D en pratique...

Choix du cristal : Nd:YVO₄

L'amplification <u>3D</u> en pratique...

L'amplification <u>3D</u> en pratique...

L'amplification 3D l'aspect « industriel »

L'amplification 3D résultats

Rappel : en sortie du microlaser...

... peu d'énergie

... profil spatial mauvais

➔ On utilise un <u>préamplificateur fibré</u> (fibre double cœur dopée Ytterbium) :

- Augmentation de l'énergie
- Filtrage spatial par la fibre

L'amplification 3D résultats

Laser déclenché : Conclusion

- Taux de répétition autour de 1 MHz
- •Encombrement : très réduit
- Durée des impulsion de 400ps
- ...
- Robustesse : dépendante du SESAM

- •Faisceau de bonne qualité spatiale (M² =1,1)
- Puissance crête autour de 10 kW

Laser déclenché + ampli: Conclusion

- Taux de répétition autour de 1 MHz
- •Encombrement : très réduit
- Durée des impulsion de 400ps

•Robustesse : dépendante du SESAM

• Faisceau de bonne qualité spatiale (M² =1,1)

• Puissance crête autour de 10 kW

Rappel: LVM cavité longue Conclusion

C

 \bigcirc

- Taux de répétition ajustable autour de quelques MHz
- Durée des impulsion de moins de 20 ps
- •Faisceau de bonne qualité spatiale (M² =1,1)
- Puissance crête autour de 25 kW
- •Encombrement : environ 2 m²
- •Robustesse : dépendante du SESAM

Sommaire

La source laser

L'amplification

La conversion de fréquence

Problématique

- *Molécules d'intérêt biologique absorbent souvent dans l'ultraviolet (parfois le visible).*
- Il est intéressant d'avoir une certaine plage d'accordabilité en longueur d'onde.

Nos lasers émettent à 1064 nm dans l'infrarouge : il faut abaisser leur longueur d'onde : Optique Non-Linéaire

Génération d'harmoniques

Il est « facile » de doubler, tripler ou quadrupler la fréquence de nos lasers :

Simple passage dans des cristaux nonlinéaires appropriés.

Génération de second harmonique

Quid de l'accordabilité ?

- On veut obtenir une accordabilité de plusieurs dizaines de nanomètres dans le visible.
- On veut un système passif, en simple passage.

Le couple $\lambda_{1,} \lambda_{2}$ est fixé par la condition d'accord de phase

L'accord de phase

Conservation de la quantité de mouvement :

$$\overrightarrow{k_3} = \overrightarrow{k_2} + \overrightarrow{k_1}$$
 soit $\overrightarrow{k_3} - \overrightarrow{k_2} - \overrightarrow{k_1} = \overrightarrow{\Delta k} = \overrightarrow{0}$

Possible en jouant sur la dispersion et les polarisations

Le quasi accord de phase

$$\overrightarrow{k_3} - \overrightarrow{k_2} - \overrightarrow{k_1} = \overrightarrow{\Delta k} \neq \overrightarrow{0}$$

Si on inverse périodiquement le coefficient non-linéaire :

Le quasi accord de phase

Nombre de longueur de cohérence parcourues

C

Le quasi accord de phase

$$d_{eff,QAP} = \frac{2}{\pi} d_{eff}$$
 Mais ...

- Plus de contrainte sur les polarisations
- Possibilité de les choisir afin d'avoir accès au <u>meilleur coefficient non linéaire</u>
- Pas de problème de double réfraction

 \bigcirc

En chiffres et en pratique

Cristal le plus utilisé en QAP: le niobate de lithium (ppLN) $d_{33} \approx 27 \text{ pm/V} \text{ donc } d_{eff,QAP} \approx 17 \text{ pm/V}$

Par comparaison en accord de phase « classique » : $d_{eff} \le quelques pm/V$

Schéma expérimental

Lentille de focalisation

Four contenant le ppLN

Réseau

Signal 660 nm

pompe

Pompe résiduelle

-01

Résultats : accordabilité

Résultats

- Puissance : quelques dizaines de milliwatts
- Qualité de faisceau très médiocre

Sommaire

La source laser

L'amplification

😑 La conversion de fréquence

()

Laboratoire de Photophysique Moléculaire

<u>image d'une coupe</u> <u>de prostate</u>

image en transmission *image d'intensité de fluorescence*

image des temps de vie de fluorescence

C

 \bigcirc

Perfectionnement du laser à cavité longue :

- Encombrement
- Fiabilité long terme
- Adaptation aux besoins des utilisateurs
- Nouvelles longueurs d'ondes

Conclusion

Equipe de direction

Producteur	Monsieur Patrick Georges
Producteur exécutif	Professeur François Balembois
Avis féminin	Madame la maîtresse Gaëlle Lucas-Leclin
Grain de sel	Frédéric Druon

Avec par ordre d'apparition

Louis MacDonagh

Aude Bouchier

Emilie Hérault

Stéphanie Le Moal

Consulting industriel et scientifique

Pierre-Jean Devilder Laurent Lefort

Sandrine Lêveque-Fort

Décors et costumes

Gérard Roger

L'atelier d'Optique

L'atelier de Mécanique

Et aussi...

Sébastien Chénais

Sylvie Yiou

Pierre Raybaut

Renaud Lebrun

Mathieu Jacquemet

Celui ou celle que j'ai oublié

et

L'ensemble du personnel de l'Institut d'Optique

Equipe Las

Merci

à tous

