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Thanks to dr. ir. Gilbert Mâ�tre formerly from IDIAP/vision group (CH)
for his very positive help in the design of experimental protocols and in
the �eld of machine vision, to dr. ir. Eddy Mayoraz from IDIAP/machine
learning group (CH) for his friendly guidance and for his help in formaliz-
ing the paradigm of the multi-linear classi�er, to ir. Fr�ed�eric Gobry from
IDIAP/machine learning group (CH) for his help in writing the code for
the multi-linear classi�er, and to dr. ir. Dominique (Doms) Genoud from
IDIAP/speech group (CH) for his help in the �eld of speaker veri�cation.

Thanks also to ir. Guillaume (Guig) Gravier from ENST/TSI (FR) for
his friendship and for all his help in the �elds of speaker veri�cation and
information technology.

I also would like to thank Bruno, Chris, Dirk, Florence, Idrissa, Lionel,
Marc, Michel, Monica, Nada, Pascal, Vincianne, Wim, Xavier, Yann,
Youssef, and all my other colleagues from RMA/ELTE (BE) and from
ENST/TSI (FR) for the wonderful working atmosphere they all have
contributed to.

I am grateful for the contributions of the following students: Benny Tops,
and Dang Van Thuong.

Finally I would like to thank Renate for her love, support, and so much
more : : :

iv



Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Subject of the thesis . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Identity determination concepts . . . . . . . . . . . . . . . . 4

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . 4

1.5 Original contributions of this thesis . . . . . . . . . . . . . . 7

I General issues related to automatic biometric multi-
modal identity veri�cation systems 9

2 Biometric veri�cation systems 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Requirements for biometrics . . . . . . . . . . . . . . . . . . 11

2.3 Classi�cation of biometrics . . . . . . . . . . . . . . . . . . 12

2.4 General structure of a mono-modal biometric system . . . . 14

2.5 The need for multi-modal biometric systems . . . . . . . . . 15

2.6 Characterization of a veri�cation system . . . . . . . . . . . 17

2.7 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.1 General overview . . . . . . . . . . . . . . . . . . . . 21

2.7.2 Results obtained on the M2VTS database . . . . . . 24

2.8 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Experimental setup 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The M2VTS audio-visual person database . . . . . . . . . . 27

3.3 Experimental protocol . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 General issues . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Experimental protocol . . . . . . . . . . . . . . . . . 32

v



3.4 Identity veri�cation experts . . . . . . . . . . . . . . . . . . 33

3.4.1 Short presentation . . . . . . . . . . . . . . . . . . . 33

3.4.2 Performances . . . . . . . . . . . . . . . . . . . . . . 36

3.4.3 Statistical analysis of the di�erent experts . . . . . . 36

3.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Data fusion concepts 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Taxonomy of data fusion levels . . . . . . . . . . . . . . . . 51

4.3 Decision fusion architectures . . . . . . . . . . . . . . . . . . 53

4.4 Parallel decision fusion as a particular classi�cation problem 54

4.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

II Combining the di�erent experts in automatic biomet-
ric multi-modal identity veri�cation systems 57

5 Introduction to part two 59

5.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Parametric or non-parametric methods? . . . . . . . . . . . 59

5.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Parametric methods 62

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 A simple classi�er: the multi-linear classi�er . . . . . . . . . 63

6.2.1 Decision fusion as a particular classi�cation problem 63

6.2.2 Principle . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.6 Partial conclusions and future work . . . . . . . . . 70

6.3 A statistical framework for decision fusion . . . . . . . . . . 71

6.3.1 Bayesian decision theory . . . . . . . . . . . . . . . . 71

6.3.2 Neyman-Pearson theory . . . . . . . . . . . . . . . . 74

6.3.3 Application of Bayesian decision theory to decision
fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.4 The naive Bayes classi�er . . . . . . . . . . . . . . . 77

6.3.5 Applications of the naive Bayes classi�er . . . . . . . 78

6.3.6 The issue of the a priori probabilities . . . . . . . . . 86

6.3.7 Quadratic and Linear classi�ers . . . . . . . . . . . . 87

vi



6.4 The Multi-Layer Perceptron (MLP) . . . . . . . . . . . . . 92

6.4.1 A neural network representative . . . . . . . . . . . 92

6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.3 Mixture of Experts . . . . . . . . . . . . . . . . . . . 94

6.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Non-parametric methods 97

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Voting techniques . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3 A classical k-NN classi�er . . . . . . . . . . . . . . . . . . . 99

7.4 A k-NN classi�er using distance weighting . . . . . . . . . . 100

7.5 A k-NN classi�er using vector quantization . . . . . . . . . 101

7.6 A decision tree based classi�er . . . . . . . . . . . . . . . . 103

7.7 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Comparing the di�erent methods 107

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2 Parametric versus non-parametric methods . . . . . . . . . 107

8.3 Experimental comparison of classi�ers . . . . . . . . . . . . 108

8.3.1 Test results . . . . . . . . . . . . . . . . . . . . . . . 108

8.3.2 Validation results . . . . . . . . . . . . . . . . . . . . 110

8.3.3 Statistical signi�cance . . . . . . . . . . . . . . . . . 111

8.4 Visual interpretations . . . . . . . . . . . . . . . . . . . . . 113

8.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Multi-level strategy 115

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9.2 A multi-level decision fusion strategy . . . . . . . . . . . . . 115

9.3 Mono-modal mono-expert fusion . . . . . . . . . . . . . . . 116

9.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 116

9.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.4 Mono-modal multi-expert fusion . . . . . . . . . . . . . . . 118

9.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 118

9.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.4.4 Combining the outputs of segmental vocal experts . 120

9.4.5 Combining the outputs of global vocal experts . . . 123

9.5 Multi-modal multi-expert fusion . . . . . . . . . . . . . . . 126

9.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vii



10 Conclusions and future work 129
10.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Bibliographie 135

A A monotone multi-linear classi�er 149

B The iterative goal function 163

C The global goal function 167

D Proof of equivalence 169

E Expression of the conditional probabilities 173

F Visual interpretations 177

G R�esum�e 183

viii



Abbreviations

ATM Automatic Teller Machine

AVBPA Audio- and Video-based Biometric Person Authentication
BDT Binary Decision Tree

DET Detection Error Tradeo�

EER Equal Error Rate (FAR=FRR)

FA False Acceptance

FAR False Acceptance Rate

FE Frontal Expert

FR False Rejection

FRR False Rejection Rate

GMM Gaussian Mixture Model

HMM Hidden Markov Model

k-NN k-Nearest Neighbor
LC Linear Classi�er

LDA Linear Discriminant Analysis

LR naive bayes classi�er using a Logistic Regression model

M2VTS Multi Modal Veri�cation for Teleservices and Security applications

MAJ Majority voting

MAP Maximum A posteriori Probability

MCP Maximum Conditional Probability

ML Maximum Likelihood

MLP Multi-Layer Perceptron

NBG Naive Bayes classi�er using Gaussian distributions

NIST National Institute for Standards and Technology (USA)
NN Nearest Neighbor

NSA National Security Agency (USA)

PE Pro�le Expert

PIN Personal Identi�cation Number

PLC Piece-wise Linear Classi�er

QC Quadratic Classi�er

ROC Receiver Operating Characteristic

TD Temporal Decomposition

TER Total Error Rate

VE Vocal Expert

VQ Vector Quantization

ix





Chapter 1

Introduction

1.1 Introduction

The �rst chapter starts by introducing the subject of the thesis. To avoid
confusion, this introduction is followed by an explanation of the di�erences
and/or similarities between terms that are often encountered in the litera-
ture related to the �eld of automatic identity \determination", which are
authentication, recognition, identi�cation, and veri�cation. These de�ni-
tions are followed by a presentation of the structure of the thesis and this
chapter is ended by clearly stating the original contributions of this thesis.

1.2 Subject of the thesis

This thesis deals with the automatic veri�cation of the identity of a coop-

erative person under test, by combining the results of analyses of his or her
face, pro�le and voice. This speci�c application which is used throughout
this work, has been de�ned in the framework of the M2VTS (Multi-Modal
Veri�cation for Tele-services and Security applications) project of the Eu-
ropean Union ACTS program [1]. The exact de�nition of veri�cation and
the di�erences with other, often encountered terms, such as identi�cation,
authentication or recognition, will be explained hereafter. The key idea in
this thesis is to analyze the possibilities of using data fusion techniques to
combine the results obtained by di�erent biometric (face, pro�le and voice)
experts that each have analyzed the identity claim of the person under test.
In this work we are explicitly avoiding issues such as ethics, responsibility
or privacy. The interested reader can �nd an introduction to these delicate
topics in [185, 186].

1
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The automatic veri�cation of a person is more and more becoming an im-
portant tool in several applications such as controlled access to restricted
(physical and virtual) environments. Just think about secure tele-shopping,
accessing the safe room of your bank, tele-banking, accessing the services of
interactive dialogue systems [175], or withdrawing money from automatic
teller machines (ATM).

A number of di�erent readily available techniques, such as passwords, mag-
netic stripe cards and Personal Identi�cation Numbers (PIN) are already
widely used in this context, but the only thing they really verify is, in the
best case, a combination of a certain possession (for instance the possession
of the correct magnetic stripe card) and of a certain knowledge, through
the correct restitution of a character and/or digit combination. As is well
known, these intrinsically simple (access) control mechanisms can very eas-
ily lead to abuses, induced for instance by the loss or theft of the magnetic
stripe card and the corresponding PIN. Therefore a new kind of methods
is emerging, based on so called biometric characteristics or measures, such
as voice, face (including pro�le), eye (iris-pattern, retina-scan), �ngerprint,
palm-print, hand-shape or some other (preferably) unique and measurable
physiological or behavioral characteristic information of the person to be
veri�ed.

In this work, a biometric measure will also be called a modality. This means
that an identity veri�cation system which uses several biometric measures
or modalities (for instance a visual and a vocal biometric modality) is a
multi-modal identity veri�cation system.

Another term which will be used very often in this work is an expert. In this
thesis, an expert is each algorithm or method using characteristic features
coming from a particular modality to verify the identity of a person under
test. In this sense, one single biometric measure or modality can lead to
the use of more than one expert (the visual modality can for instance lead
to the use of two experts: a pro�le and a frontal face expert). This means
that a mono-modal identity veri�cation system can still be a multi-expert
system.

Biometric measures in general, and non-invasive/user-friendly (vocal, vi-
sual) biometric measures in particular, are very attractive because they
have the huge advantage that one can not lose or forget them, and they
are really personal (one cannot pass them to someone else), since they are
based on a physical appearance measure. We can start using these user-
friendly biometric measures now, thanks to the progress made in the �eld
of automatic speech analysis and arti�cial vision. In general these new ap-
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plications use a classical technique (password, or magnetic stripe card) to
claim a certain identity which is then veri�ed using one or more biometric
measures.

If one uses only a single (user-friendly) biometric measure, the results ob-
tained may be found to be not good enough. This is due to the fact that
these user-friendly biometric measures tend to vary with time for one and
the same person and to make it even worse, the importance of this variation
is itself very variable from one person to another. This especially is true
for the vocal (speech) modality, which shows an important intra-speaker
variability. One possible solution to try to cope with the problem of this
intra-person variability is to use more than one biometric measure. In this
new multi-modal context, it is thus becoming important to be able to com-
bine (or fuse) the outcomes of di�erent modalities or experts. There is
currently a signi�cant international interest in this topic. The organization
of already two international conferences on the speci�c subject of Audio-
and Video-based Biometric Person Authentication (AVBPA) is probably
the best proof of this [16, 38].

Combining the outcomes of di�erent experts can be done by using classi-
cal data fusion techniques [2, 46, 70, 71, 101, 170, 172, 181], but the major
drawback of the bulk of all these methods is their rather high degree of com-
plexity, which is expressed - amongst else - by the fact that these methods
tend to incorporate a lot of parameters that have to be estimated. If this
estimation is not done using enough training data (i.e. if the estimation
is not done properly), this places a serious constraint on the ability of the
system to correctly generalize [9, 121]. But actually a major diÆculty of
this particular estimation problem is the scarcity of multi-modal training
data. Indeed, to keep the automatic veri�cation system user-friendly, the
enrollment of a (new) client should not take too much time, and as a di-
rect consequence from this, the amount of client training data tends to be
limited. To try to deal with this lack of training data, one possibility is
to develop simple classi�ers (i.e. for instance classi�ers that use only few
parameters), so that their parameters can be estimated using only limited
amounts of training data. The price to be paid when using simple methods
is a decrease in system performance, as compared to what one could get
with an optimal method.
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1.3 Identity determination concepts

Automatic systems for recognizing a person or for authenticating his identity
(which is equivalent), all have a database of N so-called authorized persons
or clients. Authentication or recognition is the general term, which covers
on one hand identi�cation and on the other hand veri�cation. These two
processes are quite di�erent as the following more detailed description will
show.

Identi�cation in the strict sense of the word supposes a closed world context.
This means that we are sure that the person under test is a client. The
only thing we need to �nd out is which client of the database of authorized
persons matches \the best" the person under test. There is no criterion
(such as a threshold for instance) to de�ne how good the match has to be,
to be acceptable. Identi�cation is thus a 1-out-of-N matching process, and
it is clear that the performances decrease with N .

Veri�cation in the strict sense of the word operates in an open world context.
This means that we are no longer sure that the person under test is a client.
In this case, the person under test claims a certain identity, which of course
has to be the identity of an authorized person. If the person under test is no
member of the database of authorized persons, he is a so-called impostor.
Veri�cation is thus a 1-out-of-1 matching process, where it is important
that the mismatch between the reference model from the database and
the measured characteristics of the person under test stays below a certain
threshold. The veri�cation performances are independent of N .

Sometimes people do refer to identi�cation in the large sense of the word
as the (sequential) process of identi�cation followed by a veri�cation of the
identi�ed identity. Sometimes this double process is also called identi�ca-

tion in an open world context.

In this thesis we will only consider veri�cation problems. This means that
the decision problem we are confronted with is a typical binary hypothesis
test. Indeed, the decision we have to take is either to accept or to reject the
identity claim of the person under test.

1.4 Structure of the thesis

This thesis has been divided into two parts. In the �rst part, general issues
related to automatic multi-modal identity veri�cation systems, such as a
discussion on biometric modalities (including the characterization of auto-
matic identity veri�cation systems), the presentation of our experimental
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set-up (including the presentation and the analysis of our experts) and a
general overview of data fusion related concepts, are treated. In the second
part, the fusion of the di�erent experts in a multi-modal identity veri�-
cation system is implemented on the decision level, using parametric and
non-parametric methods. These di�erent methods are then compared with
each other and a structured hierarchical approach for gradually upgrading
the performances of automatic biometric veri�cation systems is presented.
At the end of these two parts, we are concluding this thesis by summarizing
our contributions to the �eld and by looking at possible extensions of the
work done.

To be more speci�c, the �rst part is organized as follows. In chapter 2 we
deal with biometric modalities and we start by listing some theoretical and
practical requirements that biometrics in general should conform to. This
is followed by a section which presents a tentative classi�cation of the most
commonly found biometrics into two classes: the so-called physiological and
behavioral biometrics. In the following section the general structure of an
automatic mono-modal biometric veri�cation system is presented, while in
the next section some general arguments for using multi-modal biometric
veri�cation systems are developed. The following section is meant to intro-
duce and de�ne the classical performance characteristics used in the �eld of
automatic identity veri�cation, and the �nal section is giving an overview
of the state of the art in multi-modal biometric identity veri�cation sys-
tems. Chapter 3 gives details about the experimental set-up. It starts by
presenting the M2VTS databases used in this work. After this, the experi-
mental protocol is described. Finally, the three di�erent biometric experts
we have been using throughout this work are brie
y introduced and their
individual performances are highlighted and statistically analyzed. Chap-
ter 4 introduces some elementary data fusion concepts such as the di�erent
data fusion levels and architectures, and shows how it is possible, by mak-
ing some well-funded choices, to transform a general data fusion problem
into a particular classi�cation problem.

The second part of this work deals more particularly with the parallel com-
bination or fusion of the partial (soft) decisions of the di�erent experts.
Chapter 5 explains why we have chosen to experiment with parametric as
well as with non-parametric methods. Chapter 6 deals with parametric
techniques, but to show the usefulness of these parametric methods �rst of
all a trivial but original method is presented: the monotone multi-linear

(or piece-wise linear) classi�er. Unfortunately the performances of this
classi�er are not very good, mainly due to the fact that (valuable) infor-
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mation with respect to the probability density functions of the di�erent
populations is thrown away. Therefore in a fairly early stage of this work
it has been decided to stop developing this simple method and to fall back
instead the less original, but more fundamental statistical decision theory,
by using so-called parametric techniques. In this parametric class, classi-
�ers based on the general Bayesian decision theory (Maximum A-posteriori
Probability and Maximum Likelihood) and on a simpli�ed version of it
(the Naive Bayesian classi�er, which has been applied in the case of sim-
ple Gaussians and in the case of a logistic regression model), have been
studied. Furthermore experiments have also been done using Linear and
Quadratic classi�ers. Neural networks form a special case of the parametric
family, since the number of parameters to be estimated can be very large.
Therefore neural networks are sometimes classi�ed as semi-parametric clas-
si�ers. Still we will present neural networks in the chapter on parametric
techniques, by means of its most popular representative: the Multi-Layer
perceptron. Chapter 7 deals with non-parametric techniques. This chap-
ter starts by presenting a very simple family of non-parametric techniques.
These voting techniques are sometimes referred to as k-out-of-n voting tech-
niques, where k relates to the number of experts that have to decide that
the person under test is a client, before the global voting classi�er accepts
the person under test as a client. After the voting methods, another simple
but very popular technique, the k Nearest Neighbor (k-NN) technique, is
presented with a number of variants. These variants include a distance
weighted and a vector quantized version of the classical k-NN rule. This
chapter ends by presenting the category of (binary) decision trees, by means
of an implementation of the C4.5 algorithm, which is probably the most
popular method in its kind. Chapter 8 deals with the comparison between
the di�erent parametric and non-parametric methods that have been pre-
sented in the second part of the thesis. Chapter 9 presents a multi-level
decision fusion strategy that allows to gradually improve the performances
of an automatic biometric identity veri�cation system, while limiting the
initial investments.

Chapter 10 �nally concludes this thesis, formulates some recommendations
for developing automatic multi-modal biometric identity veri�cation sys-
tems and identi�es possibilities for future work in the same application
�eld.
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1.5 Original contributions of this thesis

The original contributions of this thesis are the following ones:

1. the formulation (in the framework of a multi-modal biometric identity
veri�cation system) of the fusion of the partial (soft) decisions of d
experts in parallel as a particular classi�cation problem in the d-
dimensional space [179];

2. the systematic and detailed statistical analysis of the di�erent experts
that have been used;

3. the development of a simple decision fusion method, based on amono-

tone multi-linear classi�er [179, 180];

4. the analysis of the applicability, the characteristics and the perfor-
mance of the logistic regression method in a Bayesian framework [177];

5. the development of a Vector Quantization version of the classical k-
Nearest Neighbor algorithm [173];

6. the systematic comparison of a large number of parametric as well as
non-parametric techniques to solve the particular classi�cation pro-
blem [174];

7. the introduction of either the non-parametric Cochran's Q test for
binary responses, or the non-parametric Page test for ordered alter-
natives, to measure the statistical signi�cance of the di�erences in
performance of several (i.e. more than two) fusion modules at the
same time;

8. the formulation of a multi-level fusion strategy which allows to grad-
ually improve the performances of an automatic (biometric) identity
veri�cation system [176, 178];

9. the formulation of the mixture of experts paradigm in the framework
of mono-modal multi-expert data fusion, applied to a segmental ap-
proach to text-independent speaker veri�cation [171];

10. the introduction of the use of multi-modal identity veri�cation in
Interactive Dialogue Systems [175].
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Chapter 2

Biometric veri�cation

systems

2.1 Introduction

This chapter starts by de�ning the ideal theoretical and practical require-
ments for any biometric. This is followed by a section which presents a
tentative classi�cation (according to [120]) of the most commonly found
biometrics into two classes: the so-called physiological and behavioral bio-
metrics. In the following section the general structure of an automatic
mono-modal biometric veri�cation system is presented, while in the next
section some general arguments for using multi-modal biometric veri�cation
systems are developed. The following section presents then the main char-
acteristics of identity veri�cation systems. In the �nal section, an overview
of the state of the art of multi-modal biometric person veri�cation systems
is given.

2.2 Requirements for biometrics

Automatic biometric systems have to identify an individual or to verify his
or her identity1 using measurements of the (living) human body. According
to [88, 89], in theory any human characteristic can be used to make an
identity veri�cation, as long as it satis�es the following desirable (ideal)
requirements:

1As already mentioned in chapter 1, we will consider in this work only veri�cation
systems.

11
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universality this means that every person should have the characteristic;

uniqueness this indicates that no two persons should be the same in terms
of the characteristic;

permanence this means that the characteristic does not vary with time;

collectability this indicates that the characteristic can be measured quan-
titatively.

In practice, there are some other important requirements:

performance this speci�es not only the achievable veri�cation accuracy,
but also the resource requirements to achieve an acceptable veri�ca-
tion accuracy;

robustness this refers to the in
uence of the working or environmental
factors (channel, noise, distortions, : : : ) that a�ect the veri�cation
accuracy;

acceptability this indicates to what extent people are willing to accept
the biometric veri�cation system;

circumvention this refers to how easy it is to fool the system by fraud-
ulent techniques (make sure that the individual owns the data, and
that he is not transforming it; this could also include a so-called live-

liness test).

As mentioned before, these requirements should be regarded as ideal. In
other words, the better a biometric satis�es these requirements, the better
it will perform. In practice however, there is no single biometric which
ful�lls all these ideal requirements perfectly. This observation is one of the
main reasons why combining several biometric modalities in multi-modal
systems is gaining �eld.

2.3 Classi�cation of biometrics

A range of mono-modal biometric systems is in development or on the mar-
ket, because no one biometric meets all the needs.The tradeo�s in develop-
ing these systems involve cost, reliability, discomfort in using a device, and
the amount of data needed. Fingerprints, for instance, have a long track
record of reliability (i.e. they make very few classi�cation errors), but the
hardware for capturing �ngerprints was until now rather expensive, and the
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amount of data that needs to be stored to describe a �ngerprint (the tem-
plate) tended to be rather large. In contrast, the hardware for capturing
the voice is cheap (relying on low-cost microphones or on an already ex-
isting telephone), but it varies when emotions and states of health change.
According to [120], biometrics encompasses both physiological and behav-
ioral characteristics. This is illustrated for a number of frequently used
biometrics in Figure 2.1.

Face Fingerprint Hand Eye Signature Voice Keystroke

BehavioralPhysiological

Automated biometrics

Figure 2.1: Classi�cation of a number of biometrics in physiological and
behavioral characteristics.

A physiological characteristic is a relatively stable physical feature such
as a �ngerprint [89, 130, 153], hand geometry [190], palm-print [188], in-
frared facial and hand vein thermograms [141], iris pattern [184], retina
pattern [74], or facial feature [11, 12, 34, 39, 102, 116, 183, 189]. Indeed, all
these characteristics are basically unalterable without trauma to the indi-
vidual. A behavioral trait on the other hand, has some physiological basis,
but also re
ects a person's psychological (emotional) condition. The most
common behavioral trait used in automated biometric veri�cation systems
is the human voice [3, 10, 20, 22, 31, 35, 36, 52, 60, 62, 63, 64, 65, 66, 69,
72, 73, 76, 81, 80, 105, 111, 112, 131, 132, 133, 134, 151, 154, 160]. Other
behavioral traits are gait [126], keystroke dynamics [127], and (dynamic)
signature analysis [124, 125]. One of the main problems with behavioral
characteristics is that they tend to change over time. Therefore biometric
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systems that rely on behavioral characteristics should ideally update their
enrolled reference template(s) on a regular basis. This could be done either
in an automatic manner, each time a reference is used successfully (i.e.
the system decides that an access claim is an authentic client claim), or in
a supervised manner, by re-enrolling each client periodically. The former
method has the advantage to be user-friendly, but has the drawback that
one updates the client references with a template from an impostor in the
case that the system commits a False Acceptance. The latter approach has
the advantage to update the client references always with client templates,
but has the drawback that it is not very user-friendly, since the clients need
to do additional training sessions.

The di�erences between physiological and behavioral methods are impor-
tant. On one hand, the degree of intra-person variability is smaller in a
physiological than in a behavioral characteristic. On the other hand, ma-
chines that measure physiological characteristics tend to be larger and more
expensive, and may seem more threatening or invasive to users (this is for
instance the case for retina scanners). Because of these di�erences, no one
biometric will serve all needs.

2.4 General structure of a mono-modal biometric
system

Automated mono-modal biometric veri�cation systems usually work ac-
cording to the following principles. In a typical functional system a sensor,
adapted to the speci�c biometric, generates measurement data. From these
data, features that may be used for veri�cation are extracted, using image
and/or signal processing techniques. In general, each biometric has its own
feature set. Pattern matching techniques compare the features coming from
the person under test with those stored in the database under the claimed
identity, to provide likely matches. Last but not least, decision theory in-
cluding statistics provides a mechanism for answering the question \Is the
person under test who he or she claims to be?" and for evaluating biomet-
ric technology [77, 78, 158]. Automatic mono-modal biometric veri�cation
systems are usually built arranging two main modules in series: (1) a mod-
ule which compares the measured features from the person under test with
a reference client model and gives a scalar number2 as output, followed by

2This scalar number will be called a score and it states how well the claimed identity
has been veri�ed
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(2) a decision module realized by a thresholding operation. This threshold
can be a function of the claimed identity.

The architecture of an automatic mono-modal biometric veri�cation system
is represented in �gure 2.2.

model

selection

matching
feature

extraction

decision
decision

forming

identification key

score

biometric signal

Figure 2.2: Typical mono-modal biometric veri�cation system architecture.

2.5 The need for multi-modal biometric systems

There can be several reasons why one would prefer multi-modal biomet-
ric veri�cation systems over mono-modal ones. Generally, the criterion
to choose between mono- and multi-modal systems will be system perfor-

mance. The end-user typically desires a guarantee that the classi�cation
errors (FAR and FRR) will be limited by maximal values that will de-
pend on the application. And although there exist mono-modal biometric
veri�cation techniques that do o�er very small classi�cation errors, the
main problem with this category of biometrics is that they are either too
expensive to be used in a general purpose context (for instance identity ver-
i�cation in the case of credit card payments over the Internet using a PC)
or perceived by the user as too invasive. So very often one is confronted
with the obligation of using inexpensive hardware and non-invasive user-
friendly biometrics. Two of the most popular biometrics that can conform
to these constraints are faces and voices. However, the drawback of using
inexpensive hardware (cheap black and white CCD-cameras and low-cost
microphones) to obtain the raw data measurements of these biometrics, has
as a direct consequence that the measurements generally will be corrupted
with noise, or distorted. This obviously leads to a degradation of system
performance. Other problems linked with these popular user-friendly bio-
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metrics are that the visual modality is rather sensitive to lighting conditions
and that the vocal modality tends to vary with time (since it is a behavioral
biometric). This makes the use of a mono-modal biometric veri�cation sys-
tem based solely either on the facial or on the vocal modality a very big
challenge, especially since it is usually not possible to update the database
references of the authorized users on a regular basis.

One possible solution to cope with this problem is to use not one single
mono-modal biometric system, but to use several of them in parallel to
form a so-called multi-modal biometric veri�cation system. It can be felt
intuitively that such a strategy can be helpful, if one considers complemen-

tary biometrics. This complementarity can be achieved with respect to the
di�erent requirements as they were presented in section 2.2. A possible
example of complementary biometrics with respect to the permanence re-
quirement would be the combined use of a physiological (face: more invari-
ant in time) and a behavioral (voice: less invariant) biometric. The main
and very general idea of using multi-modal biometric veri�cation systems
instead of mono-modal ones is thus the ability to use more (complementary)
information with respect to the person under test in the former approach,
than in the latter approach. In chapter 9, a more detailed step-by-step
analysis of a multi-level strategy to gradually improve the performances of
an automated biometric system is presented.

A possible and straightforward way of building a multi-modal veri�cation
system from d such mono-modal systems is to input the d scores provided
in parallel into a fusion module, which combines the d scores and passes
the fused score on to the decision forming module. This module then has
to take the decision accept or reject, based on a threshold. Just as in the
case of the mono-modal system, this threshold can be a function of the
claimed identity. However, two alternatives remain for the fusion module:
a global (i.e. the same for all persons) or a personal (i.e. tailored to the
speci�c characteristics of each authorized person) approach. For the sake
of simplicity and because the personal approach needs more training data
(since in this case the fusion module needs to be optimized for each client),
we have opted in this work for a global fusion module.

Figure 2.3 shows the typical architecture of a general multi-expert veri�-
cation system, including the possible use of personalized fusion or decision
forming. The formal presentation of this general data fusion problem will
be given in chapter 4.
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Figure 2.3: Multi-expert architecture.

2.6 Characterization of a veri�cation system

In this work, we will consider the veri�cation of the identity of a person as
a typical two-class problem: either the person is the one (in this case he is
called a client), or is not the one (in that case he is called an impostor) he
claims to be. This means that we are going to work with a binary faccept,
rejectg decision scheme.
When dealing with binary hypothesis testing, it is trivial to understand
that the decision module can make two kinds of errors. Applied to this
problem of the veri�cation of the identity of a person, these two errors are
called:

� False Rejection (FR): i.e. when an actual client is rejected as being
an impostor ;

� False Acceptance (FA): i.e. when an actual impostor is accepted as
being a client.

The performances of a speaker veri�cation system are usually given in terms
of the global error rates computed during tests: the False Rejection Rate
(FRR) and the False Acceptance Rate (FAR) [18]. These error rates are
de�ned as follows:

FRR =
number of FR

number of client accesses
(2.1)



18 CHAPTER 2. BIOMETRIC VERIFICATION SYSTEMS

FAR =
number of FA

number of impostor accesses
(2.2)

A perfect identity veri�cation (FAR=0 and FRR=0) is in practice unachiev-
able. However, as shown by the study of binary hypothesis testing [167],
any of the two FAR, FRR can be reduced to an arbitrary small value by
changing the decision threshold, with the drawback of increasing the other
one. A unique measure can be obtained by combining these two errors into
the Total Error Rate (TER) or its complimentary, the Total Success Rate
(TSR):

TER =
number of FA + number of FR

total number of accesses
(2.3)

TSR = 1� TER (2.4)

However, care should be taken when using one of these two unique mea-
sures. Indeed, from the de�nition just given it follows directly that these
two unique numbers could be heavily biased by one or either type of errors
(FAR or FRR), depending solely on the number of accesses that have been
used in obtaining these respective errors. As a matter of fact, due to the
proportional weighting as speci�ed in the de�nition, the TER will always
be closer to that type of error (FAR or FRR) which has been obtained
using the largest number of accesses.
The overall performance of an identity veri�cation system is however bet-
ter characterized by it's so-called Receiver Operating Characteristic (ROC),
which represents the FAR as a function of the FRR [167]. The Detec-
tion Error Tradeo� (DET) curve is a convenient non-linear transformation
of the ROC curve, which has become the standard method for compar-
ing performances of speaker veri�cation methods used in the annual NIST
evaluation campaigns [142]. In a DET curve, the horizontal axis shows the
normal deviate of the False Alarm probability in (%), which is a non-linear
transformation of the horizontal False Acceptance axis of the classical ROC
curve. The vertical axis of the DET curve represents normal deviate of the
Miss probability (in %), which is a non-linear transformation of the False
Rejection axis of the classical ROC curve. The use of the normal deviate
scale moves the curves away from the lower left when performance is high,
making comparisons between di�erent systems easier. It can also be ob-
served that, typically, the resulting curves are approximately straight lines,
which do correspond to normal likelihood distributions, for at least a wide
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portion of their range. Further details of this non-linear transformation are
presented in [115]. Figures 2.4 and 2.5 give respectively an example of a
typical ROC and a typical DET curve.
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Figure 2.4: Typical example of a ROC curve.

Each point on a ROC or a DET characteristic corresponds with a parti-
cular decision threshold. The Equal Error Rate (EER: i.e. when FAR =
FRR), is often used as the only performance measure of an identity veri�-
cation method, although this measure gives just one point of the ROC and
comparing di�erent systems solely based on this single number can be very
misleading [129].

High security access applications are concerned about break-ins and hence
operate at a point on the ROC with small FAR. Forensic applications desire
to catch a criminal even at the expense of examining a large number of false
accepts and hence operate at small FRR/high FAR. Civilian applications
attempt to operate at the operating points with both low FRR and low
FAR. These concepts are shown in Figure 2.6, which was found in [88].

Unfortunately in practice, as will be shown further in the study of the
fusion modules presented in this thesis, it is not always possible to explicitly
identify a continuous decision threshold in a certain fusion module, which
means that in that case it will a fortiori not be possible to vary the decision
threshold to obtain a ROC or a DET curve. So in these speci�c cases only
a single operating point on the ROC can be given. This is incidentally
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Figure 2.5: Typical example of a DET curve.
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Figure 2.6: Typical examples of di�erent operating points for di�erent ap-
plication types.
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also the only correct way of determining the performance of an operational
system, since in such systems the decision threshold has been �xed.
All veri�cation results in this thesis will be given in terms of FRR, FAR, and
TER. For each error the 95 % level con�dence interval will be given between
square brackets. The concept of con�dence intervals refers to the inherent
uncertainty in test results owing to small sample size. These intervals are a
posteriori estimates of the uncertainty in the results on the test population.
They do not include the uncertainties caused by errors (mislabeled data,
for example) in the test process. The con�dence intervals do not represent
a priori estimates of performance in di�erent applications or with di�erent
populations [182].
These con�dence levels will be calculated assuming that the probability
distribution for the number of errors is binomial. But since the binomial law
can not be easily analyzed in an analytical way, the calculation of con�dence
intervals can not be done directly in an analytical way. Therefore we have
used the Normal law as an approximation of the binomial law. This large
sample approach is already statistically justi�ed starting from 30 samples.
Using this approximation, the 95% con�dence interval of an error E based
on N tests, is de�ned by the following lower (given by the minus sign) and
upper (given by the plus sign) bounds:

E � 1:96

r
E (1�E)

N
:

More detailed information about the calculation of con�dence intervals can
be found in [41, 44, 155].

2.7 State of the art

2.7.1 General overview

Some work on multi-modal biometric identity veri�cation systems has al-
ready been reported in the literature. Hereafter, an overview is given of
the most important contributions, with a brief description of the work per-
formed.

1. As early as 1993, Chibelushi et Al. have proposed in [40] to integrate
acoustic and visual speech (motion of visible articulators) for speaker
recognition. The combination scheme used is a simple linear one.
There is no mention of the database used and the result mentioned
is an EER = 1:5%.
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2. In 1995, Brunelli and Falavigna have proposed in [33] a person iden-
ti�cation system based on acoustic and visual features. The voice
modality is based on a text-independent vector quantization and it
uses two types of information: static and dynamic acoustic features.
The face modality implements a template matching technique on
three distinct areas of the face (eyes, nose, and mouth). They use
a database containing up to three sessions of 87 persons. One session
was used for training, the others for testing, which did lead to a total
number of 155 tests. The most performing fusion module is a neural
network. The best results obtained on this particular database are:
FAR = 0:5% and FRR = 1:5%.

3. In 1997, Dieckmann et Al. have proposed in [50] a decision level fu-
sion scheme, based on a 2-out-of-3 majority voting. This approach
integrates two biometric modalities (face and voice), which are ana-
lyzed by three di�erent experts: (static) face, (dynamic) lip motion,
and (dynamic) voice. The authors have tested their approach on a
speci�c database of 15 persons, where the best veri�cation results
obtained were FAR = 0:3% and FRR = 0:2%.

4. In 1997, Duc et Al. did propose in [55] a simple averaging technique
and compared it with the Bayesian integration scheme presented by
Big�un et Al. in [13]. In this multi-modal system the authors use a
frontal face identi�cation expert based on Elastic Graph Matching,
and a text-dependent speech expert based on person-dependent Hid-
den Markov Models (HMMs) for isolated digits. All experiments are
performed on the M2VTS database, and the best results are obtained
for the Bayesian fusion module: FAR = 0:54% and FRR = 0:00%.

5. In 1997, Jourlin et Al. have proposed in [93] an acoustic-labial speaker
veri�cation method. Their approach uses two classi�ers. One is based
on a lip tracker using visual features, and the other one is based on
a text-dependent person-dependent HMM modeling of isolated digits
using acoustic features. The fused score is computed as the weighted
sum of the scores generated by the two experts. All experiments are
performed on the M2VTS database, and the best results obtained for
the weighted fusion module are: FAR = 0:5% and FRR = 2:8%.

6. In 1998, Kittler et Al. have proposed in [98] a multi-modal person
veri�cation system, using three experts: frontal face, face pro�le, and
voice. The frontal face expert is based on template matching, the face
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pro�le expert is using a chamfer matching algorithm, and the voice
expert is based on the use of text-dependent person-dependent HMM
models for isolated digits. All these experts give their soft decisions
(scores between zero and one) to the fusion module. All experiments
are performed on the M2VTS database, and the best combination
results are obtained for a simple sum rule: EER = 0:7%.

7. In 1998, Hong and Jain have proposed in [82] a multi-modal per-
sonal identi�cation system which integrates two di�erent biometrics
(face and �ngerprints) that complement each other. The face ver-
i�cation is done using the eigenfaces approach, and the �ngerprint
expert is based on a so-called elastic matching algorithm. The fusion
algorithm operates at the expert decision level, where it combines
the scores from the di�erent experts (under the statistically indepen-
dence hypothesis), by simply multiplying them. The faccept, rejectg
decision is then taken by comparing the fused score to a threshold.
The databases used in this work are the Michigan State University
�ngerprint database containing 1500 images from 150 persons, and
a face database coming from the Olivetti Research Lab, the Univer-
sity of Bern, and the MIT Media Lab, which contains 1132 images
from 86 persons. The results obtained for the fusion approach on this
database are: FAR = 1:0% and FRR = 1:8%.

8. In 1998, Ben-Yacoub did propose in [7] a multi-modal data fusion
approach for person authentication, based on Support Vector Ma-
chines (SVM). In his multi-modal system he uses the same experts
and the same database as Duc et Al. in the work presented above.
The best results which he obtained for the SVM fusion module are
FAR = 0:07% and FRR = 0:00%.

9. In 1999, Pigeon did propose in [135] a multi-modal person authen-
tication approach based on simple fusion algorithms. In this multi-
modal system the author uses a face identi�cation expert based on
template matching, a pro�le identi�cation expert based on a chamfer
matching algorithm, and a text-dependent speech expert based on
person-dependent HMM models for isolated digits. All experiments
are performed on the M2VTS database, and the best results are ob-
tained for a fusion module based on a linear discriminant function:
FAR = 0:07% and FRR = 0:78%.

10. In 1999, Choudhury et Al. did propose in [43] a multi-modal person
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recognition system using unconstrained audio and video. The system
does not need fully frontal face images or clean speech as input. The
face expert is based on the eigenfaces approach, and the audio ex-
pert uses a text-independent HMM using Gaussian Mixture Models
(GMMs). The combination of these two experts is performed using
a Bayes net. The system was tested on a speci�c database contain-
ing 26 persons and the best results obtained using the best images
and audio clips from an entire session are: FAR = 0:00% and FRR
= 0:00%.

2.7.2 Results obtained on the M2VTS database

To facilitate the comparison with the work presented in this thesis, we
have isolated from the previous state of the art the results which have been
obtained on the same M2VTS database as the one we have been working
on. These results are presented in Table 2.1 hereafter. Where available, the
con�dence interval is indicated between square brackets. Care should be
taken however when comparing these results, since the experts used are not
necessarily the same for all methods. The last line in this Table represents
the best results obtained in this thesis, using a logistic regression model.

Table 2.1: State of the art of the veri�cation results obtained on the M2VTS
database.

Author(s) Experts FRR (%) FAR (%)

Duc et Al. frontal, vocal 0.00 0.54

Jourlin et Al. lips, vocal 2.80 0.50

Kittler et Al. frontal, pro�le, vocal 0.70 (EER) 0.70 (EER)

Ben-Yacoub frontal, vocal 0.00 0.07

Pigeon frontal, pro�le, vocal 0.78 0.07

Verlinde frontal, pro�le, vocal 0.00 0.00

2.8 Comments

As already mentioned, each biometric technology has its strengths and lim-
itations, and no single biometric is expected to e�ectively meet the needs
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of all applications. We have seen that voice is one of the most popular
biometrics, thanks to its high acceptability and its user-friendliness [88].
Since voice is a behavioral biometric modality and since in a multi-modal
approach it is wise to complement a behavioral modality with a physiolog-
ical one, we wanted to add a physiological modality which also was highly
acceptable. These considerations have led to choose the visual modality.
In the framework of the M2VTS application, another important criterion
for choosing the di�erent biometrics was the availability of the hardware.
With respect to the tele-services, the idea was to use so-called multi-media
PC's, which are equipped with low-cost microphones and CCD-camera.
These considerations reinforce each other and they explain why in the multi-
modal system presented in this work, voice and vision were used as the two
(complementary) biometric modalities. Analyzing the state of the art in
automatic biometric multi-modal identity veri�cation systems, it has been
shown that on the M2VTS database, the best method presented in this
thesis (based on the logistic regression model) is the overall best method.





Chapter 3

Experimental setup

3.1 Introduction

This chapter starts by presenting the M2VTS database used in this work.
After this, the experimental protocol used for testing the individual experts
and the fusion modules is described. Finally, the three di�erent biometric
experts (a frontal, a pro�le and a vocal one) we have been using through-
out this work are brie
y introduced and their individual performances are
highlighted. This is followed by a thorough statistical analysis of the results
given by these three di�erent experts for both client and impostor accesses.
In this analysis it is shown that the distribution of the scores per expert and
per type of access (the so-called conditional probability density functions)
do not satisfy the Normality hypothesis. Furthermore it is shown that the
chosen experts do have good discriminatory power, and are complemen-
tary. The potential gain obtained by combining the results of these three
di�erent experts are shown by means of a simple linear classi�er.

3.2 The M2VTS audio-visual person database

The M2VTS [1] multi-modal database comprises 37 di�erent persons and
provides 5 shots for each person. These shots were taken at intervals of at
least one week. During each shot, people were asked (1) to count from \0"
to \9" in French (which was the native language for most of the people)
and (2) to rotate their head from 0 to -90 degrees, back to 0 and further
to +90 degrees, and �nally back again to 0 degrees. The most diÆcult
shot to recognize is the 5th shot. This shot mainly di�ers from the others
because of face \variations" (head tilted, eyes closed, di�erent hair style,

27
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presence of a hat/scarf, : : : ), voice variations or shot imperfections (poor
focus, di�erent zoom factor, poor voice signal to noise ratio, : : : ). More
details with respect to this database can be found in [136, 137, 135].
Taking into account the speci�city of our problem (i.e. combining outputs
of several experts) we are not going to use this 5th shot, since we are not
interested in developing individual powerful experts that work well even
under these extreme conditions as presented by shot number 5.
To show the quality of the pictures contained in the small M2VTS database,
Figures 3.1, 3.2, and 3.3 show respectively the frontal views of some per-
sons, the rotation sequence and the 5 di�erent shots for one and the same
person [135].

3.3 Experimental protocol

3.3.1 General issues

In the most general (but rich) case, three di�erent data sets are needed for
training, �ne-tuning and testing the individual experts. The �rst data set
is called the training set and is used by each expert to model the di�erent
persons. The second data set is called the development or validation set
and is used to �ne-tune the di�erent experts, for instance by calculating the
decision thresholds. The third data set is called the test set and it is used to
test the performances of the obtained experts. For the fusion module, we
can de�ne in the most general case exactly the same data sets as in the case
of the individual experts. This general concept of the use of the di�erent
data sets is illustrated in Figure 3.4. This does not necessarily mean that
one always will need six completely separated data sets, since the fact that
the test set for the individual experts is completely dissociated from the
development of the experts, makes it suitable to be reused for the fusion
module. Furthermore, not all types of experts, nor all fusion modules do
include the modeling of the persons. This means that in the particular case
of experts and fusion modules which do not use data to model persons and
in the obvious case in which we do reuse the expert test set as a data set for
the fusion module, one only needs three di�erent data sets instead of six in
the most general case. This is illustrated in Figure 3.5. In the intermediate
case, where the experts do need separate training and development data,
but the fusion module does not need any development data, one needs four
di�erent data sets, as illustrated in Figure 3.6.

If there is not enough data available to make this possible, the following
errors will be introduced:
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Figure 3.1: M2VTS database: some frontal views.
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Figure 3.2: M2VTS database: views taken from a rotation sequence.

                                    

                        

Figure 3.3: M2VTS database: frontal views of one person coming from the
5 di�erent shots.
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Figure 3.4: The most general case where 6 di�erent datasets are used.
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Figure 3.5: The case where only three di�erent datasets are needed.
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Figure 3.6: The intermediate case where four di�erent datasets are needed.

� if the test data is the same as the training data, performances will be
overestimated. This is true for both the individual experts and the
fusion module. This is of course due to the fact that the experts and
the fusion module will generate the best results for the same data
they have been trained on.

� if the training data for the experts is the same as for the fusion mod-
ule, the fusion module will be under performing. The reason for this is
that the fusion module doesn't get enough information. Indeed, in the
extreme case of experts that perform perfectly on their training data,
the outcome of such an expert would be either 0 or 1, which leaves
the fusion module with the arbitrary choice of setting the threshold
somewhere in between.

3.3.2 Experimental protocol

For our experiments, we have opted for a very simple experimental protocol.
In this protocol we use only the �rst four sessions of the M2VTS database
in the following manner.

1. The �rst enrollment session has been used for training the individual
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experts. This means that each access has been used to model the
respective client, yielding 37 di�erent client models.

2. Then the accesses from each person in the second enrollment session
have been used to generate validation data in two di�erent manners.
Once to derive one single client access by matching the shot of a spe-
ci�c person with its own reference model, and once to generate 36
impostor access by matching it to the 36 models of the other per-
sons of the database. This simple strategy thus leads to 37 client
and 36�37=1.332 impostor accesses, which have been used for vali-
dating the performance of the individual experts and for calculating
thresholds.

3. The third enrollment session has been used to test these experts, using
the thresholds calculated on the validation data set. This same data
set has also been used to train the fusion modules, which again leads
to 37 client and 1.332 impostor reference points.

4. Finally, the fourth enrollment session has been used to test the fusion
modules, yielding once more the same number of client and impostor
claims.

The drawback of this simple protocol, is that the impostors are known

at the expert and supervisor training time. In section 8.3.2, validation
results will be presented using a protocol that does not su�er from the
same drawback. This validation protocol is implemented using a so-called
leave-one-out method [49].

3.4 Identity veri�cation experts

3.4.1 Short presentation

All the experiments in this thesis have been performed using three di�erent
identity veri�cation experts. Each one of these experts will be described
brie
y hereafter.

Pro�le image expert

The pro�le image veri�cation expert is described in detail in [138] and
its description hereafter has been inspired by the presentation of this ex-
pert in [98]. This particular pro�le image expert is based on a comparison
of a candidate pro�le of the person under test with the template pro�le



34 CHAPTER 3. EXPERIMENTAL SETUP

corresponding to the claimed identity. The candidate image pro�le is ex-
tracted from the pro�le images by means of color-based segmentation. The
similarity of the two pro�les is measured using the Chamfer distance com-
puted sequentially [28]. The eÆciency of the veri�cation process is aided by
pre-computing a distance map for each reference pro�le. The map stores
the distance of each pixel in the pro�le image to the nearest point on the
reference pro�le. As the candidate pro�le can be subject to translation,
rotation and scaling, the objective of the matching stage is to compensate
for such geometric transformations. The parameters of the compensating
transformation are determined by minimizing the chamfer distance between
the template and the transformed candidate pro�le. The optimization is
carried out using a simplex algorithm which requires only the distance
function evaluation and no derivatives. The convergence of the simplex
algorithm to a local minimum is prevented by a careful initialization of the
transformation parameters. The translation parameters are estimated by
comparing the position of the nose tip in the two matched pro�les. The
scale factor is derived from the comparison of the pro�le heights and the
rotation is initially set to zero. Once the optimal set of transformation pa-
rameters is determined, the user is accepted or rejected depending on the
relationship of the minimal chamfer distance to a pre-speci�ed threshold.
The system can be trained very easily. It is suÆcient to store one pro�le
per client in the training set.

Frontal image expert

The frontal image veri�cation expert is described in detail in [116] and the
description hereafter was based on the presentation of this expert in [98].
This frontal image expert is based on robust correlation of a frontal face
image of the person under test and the stored face template corresponding
to the claimed identity. A search for the optimum correlation is performed
in the space of all valid geometric and photometric transformations of the
input image to obtain the best possible match with respect to the template.
The geometric transformation includes translation, rotation and scaling,
whereas the photometric transformation corrects for a change of the mean
level of illumination. The search technique for the optimal transformation
parameters is based on random exponential distributions. Accordingly,
at each stage the transformation between the test and reference images
is perturbed by a random vector drawn from an exponential distribution
and the change is accepted if it leads to an improvement of a matching
criterion. The score function adopted rewards a large overlap between the
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transformed face image and the template, and the similarity of the intensity
distributions of the two images. The degree of similarity is measured with a
robust kernel. This ensures that gross errors due to, for instance, hair style
changes do not swamp the cumulative error between the matched images.
In other words, the matching is benevolent, aiming to �nd as large areas of
the face as possible, supporting a close agreement between the respective
gray-level histograms of the two images. The gross errors will be re
ected
in a reduced overlap between the two images, which is taken into account in
the overall matching criterion. The system is trained very easily by means
of storing one template for each client. Each reference image is segmented
to create a face mask which excludes the background and the torso as these
are likely to change over time.

Vocal expert

The vocal identity veri�cation expert is presented in detail in [22]. This
text-independent speaker veri�cation expert is based on a similarity mea-
sure between speakers, calculated on second order statistics [21].
In this algorithm a �rst covariance matrix X is generated from a refe-

rence sequence, consisting ofM m-dimensional acoustical vectors, and pro-
nounced by the person who's identity is claimed:

X =
1

M

MX
i=1

XiX
T
i ;

where XT
i is Xi transposed.

A second covariance matrix Y is then generated in the same way from a se-
quence, consisting of M m-dimensional acoustical vectors, and pronounced
by the person under test.
Then a similarity measure between these two speakers is performed, based
on the sphericity measure �AH (X;Y ):

�AH (X;Y ) = log
A

H
;

A(�1; �2; : : : ; �m) =
1

m

mX
i=1

�i = m�1tr
�
Y X�1

�
;

H(�1; �2; : : : ; �m) = m

 
mX
i=1

1
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�
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���1
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It can be shown that this sphericity measure is always non-negative and
it is equal to zero only in the case that the two covariance matrices X
and Y are the same. The veri�cation process consists then of comparing
the obtained sphericity measure with a decision threshold, calculated on a
validation database.
One of the great advantages of this algorithm is that no explicit extraction
of them eigenvalues �i is necessary, since the sphericity measure only needs
the calculation of the trace tr (�) of the matrix product Y X�1 or XY �1.

3.4.2 Performances

The performances achieved by the three mono-modal identity veri�cation
systems which have been used in these experiments are given in Table 3.1.
The results have been obtained by adjusting the threshold at the EER on
the validation set and applying this threshold as an a priori threshold on
the test set. Observing the results for the pro�le an the frontal experts it
can be seen that, although the optimization has been done according to
the EER criterion, the FRR and the FAR are very di�erent. This indicates
that for these two experts, the training and validation sets are not very
representative of the test set.

Table 3.1: Veri�cation results for individual experts.

Expert FRR (%) FAR (%) TER (%)
(37 tests) (1.332 tests) (1.369 tests)

Pro�le 21.6 [11.4,37.2] 8.5 [7.1,10.1] 8.9 [7.5,10.5]

Frontal 21.6 [11.4,37.2] 8.3 [6.9, 9.9] 8.7 [7.3,10.3]

Vocal 5.4 [ 1.5,17.7] 3.6 [2.7, 4.7] 3.7 [2.8, 4.8]

3.4.3 Statistical analysis of the di�erent experts

Introduction

A statistical analysis of the individual experts1 is important to get an idea
on one hand of their individual discriminatory power, and of their comple-
mentarity on the other hand.

1All the following statistical tests have been performed using the SPSS statistical
software package [162].
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The power of an expert to discriminate between clients and impostors will
increase (for given variances) with the di�erence between the mean value of
the scores obtained for client accesses and the mean value of the scores ob-
tained for impostor accesses. The typical statistical test to see if there exist
signi�cant di�erences between the means (or more generally between the
statistical moment of �rst order) of several populations is the so-called ana-
lysis of variance (ANOVA). In the general case, this analysis is implemented
using an F-test. In the speci�c case of two populations, this ANOVA could
also be performed using an independent samples t-test [123]. Another im-
portant characteristic of an expert is its variance (or more generally the sta-
tistical moment of second order). The equality of variances can be tested
by a Levene test, which is also implemented using an F-test [114]. It is
advantageous that the variance of an expert is the same for clients and for
impostors, because this leads to simpler methods to combine the di�erent
experts (see chapter 6). Obviously we will need to perform t- and F-tests
to analyze the means and the variances of the di�erent experts. However,
the t- and F-tests give only exact results if the populations have a Normal
distribution. So before we can use t- or F-tests, we need to verify the Nor-
mality of the di�erent populations. Thus this is the �rst statistical analysis
that we need to perform. Since the ANOVA is only valid if the variances of
the di�erent populations per expert are equal, we have to check the equal-
ity of variances before performing the ANOVA. These remarks explain the
forced order of the �rst three analyses that are presented below.

We can get an idea of the independence of the di�erent experts (and thus of
the amount of extra information that each expert brings in), by analyzing
their correlation. And a linear discriminant analysis gives us a �rst idea of
the combined discriminatory power of the experts.

Last but not least, the analysis of the extreme values gives us insight into
the possible use of personalized approaches.

Analysis of Normality

The purpose of a Normality analysis is to check whether the observed data
do or do not support the hypothesis H0 that the underlying probability
density function is Normal. There exist two types of tests to perform this
analysis: objective (numerical) and subjective (graphical) tests. An im-
portant remark related to the veri�cation of H0 is that the assumption of
Normality is much more diÆcult to verify when using small sample sizes. In
a sample of small size, the probability of verifying that the data is coming
from a Normal distribution is actually very small.
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The best known representative of the objective/numerical type of tests is
the so-called Kolmogorov-Smirnov (K-S) test for goodness of �t, applied to
the Normal distribution [96]. The results obtained by this test on our data
are presented in Table 3.2. This table shows the values obtained for the
K-S statistic, the degrees of freedom (df) and the signi�cance of this test
at the 95% con�dence level. This con�dence level leads to a critical value
for the signi�cance of 0:05. If the signi�cance is smaller than this critical
value, then we reject the Normality hypothesis H0. If on the other hand
the signi�cance is greater than the critical value, then we say that we do
not have enough evidence to reject H0, so in a binary decision concept we
are forced to accept H0 [123].

Table 3.2: Results for the Kolmogorov-Smirnov test for Normality.

Population Statistic df Signi�cance

Pro�le clients .227 37 .000

Pro�le impostors .195 1332 .000

Frontal clients .133 37 .096

Frontal impostors .052 1332 .000

Vocal clients .087 37 .200

Vocal impostors .060 1332 .000

To be able to analyze the results obtained by this K-S test, it is important
to know that its severity increases with the sample size of the population.
This means that the K-S test is not severe for small sample sizes (as is the
case for the client populations), but very severe for large sample sizes (as is
the case for the impostor populations). This means that if the results lead
to an acceptance of H0, and if the sample size is suÆciently large, then the
Normality assumption is very good. But in the case of a rejection of H0,
this does not mean that we can not accept H0 at all. In that case we need
more information to be able to decide, and therefore we have to go on to
the second type of normality tests: the subjective/graphical tests. In our
case, the only two populations that are not being rejected by the K-S test
as being Normal are the client distributions for the frontal and the vocal
experts. But since the sample sizes coming from these two distributions
are very small (37), this result has to be used with great care. For all the
other populations there is enough evidence to reject the hypothesis H0.
There exist several types of graphical representations, which can be used
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as subjective tests. A �rst useful type of graphical representation is the
so-called Normal Q-Q plot [162]. This kind of representation is shown in
Figure 3.7. The idea is to judge if the plotted sample points do follow suÆ-

ciently (this is clearly subjective) the ideal line which is the representation
of a perfect Normal distribution. Depending on this subjective opinion, we
reject or not the Normality assumption.

A second representation is the detrended variant of the �rst one [162], which
is shown in Figure 3.8. In this type of graphical representation, one needs
to judge whether or not enough (another subjective measure) sample points
are situated between 2:0 and �2:0 standard normal units. If this is the case
we accept the Normality assumption. In the other case, we reject it.

Finally, a third representation can be obtained by plotting the histograms
of the di�erent populations and by comparing them with the ideal Normal
distribution plots [162]. This kind of graphical representation is given in
Figure 3.9. The idea is to check how well (again subjective) the actual
histograms match the ideal Normal distribution plot.

Taking into account the results of the objective K-S test and having in-
spected these graphical representations, we conclude that the Normality
assumptions in the strict sense of the word are not ful�lled for our popula-
tions. This is especially true for the pro�le expert, and in some lesser extent
to the vocal expert. The frontal expert deviates the least from a Normal
deviation. In practice this means a real drawback, because if the normality
hypothesis is satis�ed, this generally leads to substantial simpli�cations.

However, since the observed deviations of Normality are not too important,
and taking into account that the classical t- and F-tests are robust with
respect to deviations from Normality, we are nevertheless going to perform
t- and F-tests, but with the important restriction that the results of these
tests will have to be analyzed with the utmost care. In other words, we
will accept the results obtained by t- and F-tests if and only if they have
a signi�cance level which is far away from the critical value (0:05 for the
95% con�dence interval).

Analysis of variance

The results obtained by the Levene test are given in Table 3.3. The H0

hypothesis is that there are no di�erences in the variances of the di�erent
populations. As we can see by the signi�cance of 0:000 for the vocal and
the pro�le experts and of 0:003 for the frontal expert, this H0 hypothesis
is strongly rejected for all experts. Since the rejection is so strong, we do
accept the results of this Levene test and conclude that all experts have
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Figure 3.7: Normal Q-Q plots for clients and impostors, ranked per expert.
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Figure 3.8: Detrended Normal Q-Q plots for clients and impostors, ranked
per expert.
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distribution, and ranked per expert.
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signi�cant di�erent variances for both populations.

Table 3.3: Results for the Levene test for equality of variances.

Population F-Statistic Signi�cance

Pro�le 33.125 .000

Frontal 9.062 .003

Vocal 28.284 .000

To con�rm the results of this analysis, we can have a look at a box-plot

representation2 of the di�erent experts, presented in Figure 3.10. From
these representations it follows that for each expert the variance of the
client population is indeed signi�cantly smaller than the variance of the
impostor population.

Since an ANOVA for analyzing the di�erences between the means of the
populations can strictly speaking only be used with Normal distributions
and equal variances, we do have a problem here. Fortunately, since we have
only two di�erent populations, we can also use an independent samples t-
test, which can be calculated as well for equal variances (in this case the t-
test is in an exact form) as for unequal variances (this time the t-test is in an
approached form). This means that we will calculate the di�erence of means
hereafter, using an independent samples t-test with unequal variances.

Analysis of means

The results of the independent samples t-test with unequal variances are
given in Table 3.4. The H0 hypothesis is that there are no di�erences
between the means of the di�erent populations. As we can see by the sig-
ni�cance of 0:000, this H0 hypothesis is strongly rejected for all experts.
Since the rejection is so strong, we do accept the results of this t-test and

2The \box" in the box-plot is delimited at the bottom by the 25th and at the top by
the 75th percentile. The height of the box thus gives an idea of the variance. The black
line in the middle of the box represents the median (50th percentile), which is a robust
estimation of the mean. The whiskers underneath and on top of the box respectively
show the lowest and the highest values, with the exception of outliers (represented by a
circle) and extreme values (represented by an asterisk). An outlier is de�ned by a value
which is situated 1.5 times the thickness of the box outside the box, and an extreme

value is de�ned by a value which is situated 3 times the thickness of the box outside the
box [162].
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conclude that all experts have signi�cant di�erent means for both popula-
tions.

Table 3.4: Results for the independent samples t-test with unequal vari-
ances for detecting di�erences in means.

Expert t-Statistic df Signi�cance

Pro�le -29.398 372.665 0.000

Frontal -18.855 40.275 0.000

Vocal -38.198 61.642 0.000

To con�rm the results of this analysis, we can again have a look at the
box-plot representation of the di�erent experts, presented in Figure 3.10.
In these representations it can be seen that for each expert the median of
the client population is indeed signi�cantly higher than the median of the
impostor population. And since the median is a robust estimation of the
mean, the same conclusions are valid for the mean.

Analysis of correlation

Another important statistical analysis is the calculation of the correlation
that exists between the di�erent experts. A popular way of seeing the
importance of this is to say that the more the errors the di�erent experts
make are de-correlated, the better our fusion could get since the amount
of new information introduced by each expert will tend to be larger. The
correlation matrix is represented in Table 3.5. As could be expected from
the diversity of the experts we are using, the correlation is very low.

Table 3.5: Correlation matrix for our three experts.

Correlation Pro�le Frontal Vocal

Pro�le 1.000 0.011 -0.043

Frontal 0.011 1.000 0.256

Vocal -0.043 0.256 1.000

This correlation can also be visualized by taking the experts two-by-two
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and plotting the observed results for each population. These matrix scatter
plots are shown in Figure 3.11, and the fact that all the distributions have
shapes in the form of a cloud indicates that the correlation is very low.

Figure 3.11: Visual representation of the correlation of the di�erent experts
taken two-by-two.

A direct conclusion from this correlation analysis is that a Principal Com-
ponent Analysis (PCA) is not useful here, because of the low correlation
between the di�erent experts. Another reason is obviously the fact that we
only have used three experts, so there is no real need for performing a data
reduction by means of PCA.

Linear discriminant analysis

To examine the discriminatory power and the complementarity of the three
experts at the same time, we have performed a linear discriminant analy-
sis [114, 162]. The results of this linear discriminant analysis are shown in
Table 3.6.

When we compare the results of the linear discriminant analysis with those
obtained by the individual modalities, it is clear that combining the three
experts does lead to far better performances, even if the combination is done
using a simple linear classi�er. This indicates that the di�erent experts do
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Table 3.6: Results of the linear discriminant analysis (LDA).

Method FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

LDA 0.0 [0.0,9.4] 5.4 [4.3,6.7] 5.3 [4.2,6.6]

have enough discriminatory power and are suÆciently complementary to
make it worth while to investigate the combination problem in more detail.

Analysis of extreme values

Another important point in descriptive statistics is the analysis and the
handling of extreme values. Normally speaking, extreme values should be
discarded from the calculation of characteristic statistical measures such
as means or variances. In our work however we will not do that, since
these extreme values can contain interesting information as will be shown
hereafter.

Indeed, in Figure 3.10 it can be seen that the pro�le expert presents a large
number of extreme values (represented by asterisks) for impostor accesses.
These extreme values can also be observed in Figure 3.11, where they form
very speci�c alignments in the four sub-plots where the scores of the pro�le
expert are plotted against one of the axis.

One of the possible explanations for this phenomenon, taking into account
the experimental protocol, is that the pro�le of one the clients is very
di�erent from the pro�les of all other clients. After analyzing the scores of
the pro�le expert it turned out that, when claiming the identity of client
number eight, 22 out of the 36 other clients obtained a score equal to
zero! This phenomenon is represented under form of matrix scatter plots
in Figure 3.12.

In order to understand this phenomenon, it is interesting to have a look
at some typical pro�le images of client number eight. Such images are
presented in Figure 3.13.

From these pro�le images, it is easy to see that the chin of this speci�c client
is very pronounced, which makes it a very personal characteristic. There-
fore few pro�les of other clients of the database will present good results
when being matched against this typical pro�le, which obviously leads to
very good impostor rejection performances. This observation suggests that,
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Figure 3.12: Matrix plots representing the scores for all 37 persons claiming
the identity of client number eight (i.e. one client access and 36 impostor
accesses).

Figure 3.13: Typical pro�le images of client number eight.
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in some speci�c cases, a personalized approach based for instance on spe-
ci�c characteristics of certain persons, might improve system performance
substantially. This is an interesting observation, especially when seen in
the light of the actual e�orts to come to robust methods, in which extreme
values, such as the ones we have been considering here, are very likely to
be excluded!
In this work we did however not use such a personalized approach, since
the chosen application does not provide enough training data. This will
also become obvious in section 8.3.2, where it will be shown that the vali-
dation protocol which is presented there, does not support a personalized
approach. Finally one can add that in some applications it is not always
possible to use a personalized approach. This is for instance the case in the
�eld of mine detection, where the speci�c characteristics of a certain type
of (buried) mine can change dramatically as a function of a large number
of parameters related to the burying conditions.

3.5 Comments

In this chapter we have analyzed the performances of three biometric ex-
perts (frontal, pro�le and voice) using the proposed protocol on the M2VTS
multi-modal database. Furthermore, the behavior of these experts has been
statistically analyzed. This analysis did lead to the following observations:

1. The normality hypotheses for underlying probability distributions for
the di�erent populations involved, are not satis�ed. The deviations
from normality are however not very large.

2. The three experts do show good discriminatory power.

3. The variances of the di�erent populations are not the same.

4. The three experts are complementary.

5. There is evidence that combining the three experts improves the per-
formances onto a level that is better than those of the best expert.

6. There is evidence that suggests that a personalized approach could
(further) improve system performance.





Chapter 4

Data fusion concepts

4.1 Introduction

This chapter starts by giving a general overview of the di�erent possible
levels on which data can be fused. After having restricted data fusion
to decision fusion for this application, several architectures for our fusion
module are presented, from which the parallel architecture is chosen. Fi-
nally, the decision fusion problem using several biometric expert opinions
in parallel, is transformed into a particular classi�cation problem. The
advantage of this formulation is that it allows to fall back immediately
on a broad class of solution techniques coming from the �eld of Pattern
Recognition, which will be experimented and commented in part two of
this work [2, 19, 24, 25, 27, 29, 32, 45, 47, 48, 49, 56, 61, 70, 71, 75, 84, 97,
98, 99, 100, 101, 103, 109, 144, 145, 157, 164, 170, 172, 181, 187].

4.2 Taxonomy of data fusion levels

Data fusion in the broad sense can be performed at di�erent hierarchical
levels or processing stages. A very commonly encountered taxonomy of data
fusion in the broad sense is given by the following three-stage hierarchy [46]:

Data fusion Data fusion in the strict sense is the process of combining
directly the data streams of raw measurements coming out of the
di�erent sensors. These measurements could for instance be the grey
values of the pixels generated by several cameras looking in di�erent
parts of the spectrum at the same scene;

51
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Feature fusion Feature fusion is the process of combining features ex-
tracted from the raw measurements. Typical vocal features, related
to the problem of speaker recognition, could for instance be the cep-
stral coeÆcients calculated for di�erent frequency-bands in a multi-
band approach [10]. Examples of visual features, linked with identity
veri�cation, could be the distance between the eyes and the mouth in
a facial image or the distance between the eyes and the nose tip in a
pro�le image.

Decision fusion Decision fusion is the process of combining partial soft
(for instance a continuous score between 0 and 1) or hard (0 for
a reject and 1 for an acceptance) decisions, given by the di�erent
experts. In this case the term expert is appropriate, since each single
module uses expert knowledge to transform the information carried
by the measured data into a decision.

This three-level hierarchy has become fairly accepted, although it stays a
matter of subjective choice. One could add an additional dimensionality
to the fusion process, representing temporal fusion. Temporal fusion can
be de�ned as fusion of data acquired over a period of time. But since
this kind of fusion can occur at any of the three levels discussed above,
temporal fusion can be viewed as orthogonal to the presented three-level
categorization. One could also add spatial or spectral fusion, which are
terms that appear in the literature, but these two processes are essentially
examples of data or feature fusion rather than new categories in themselves.

In this work, we will limit ourselves to the use and the discussion of decision
fusion techniques. We will consider that all experts output their local
decisions by generating scores in the interval [0,1]. These scores are a
measure of their respective belief of the acceptability of the identity claim:
the higher the score, the higher the belief that the identity claim is genuine.
This way of doing, has the great advantage to separate the design of the
specialized experts (which is obviously very application dependent), from
the fusion problem. This allows for developing generic decision fusion rules,
which are application independent. The only thing we need to suppose is
that there exist good experts for the application we are studying. Another
reason we did choose for a decision fusion rather than for a feature fusion
approach, is that this choice decreases the dimensionality of the problem.
This reduction in dimensionality is beni�cial, since it comes along with
a reduction in the number of training examples needed for training the
di�erent possible fusion modules.



4.3. DECISION FUSION ARCHITECTURES 53

4.3 Decision fusion architectures

Combining the partial decisions from the d di�erent experts in a decision
fusion strategy without considering the temporal fusion aspect, could be
done using one of the two following basic architectures [46]:

Serial suite As shown in Figure 4.1, a serial expert architecture consists of
a set of d experts whose decisions are combined in series or tandem.
This architecture is for instance well-suited to deal with situations
where the di�erent experts do not use a binary faccept, rejectg, but
rather a ternary faccept, reject, undecidedg decision scheme. If in
the latter case, the current expert can not decide, he hands the infor-
mation he has on to the next expert in the sequence. For this serial
scenario to be e�ective, the next expert in line obviously needs to be
designed as a real expert in dealing with the cases that can not be
solved by the previous expert. This architecture is thus particularly
well-suited to combine the decisions from experts which have varying
ranges of e�ectiveness and to model sequential decision re�ning from
one sensor to the next. This is not the case in our problem.

Parallel suite As shown in Figure 4.2, a parallel expert architecture con-
sists of a set of d experts that are interrogated in parallel. The deci-
sions derived from these experts are combined in parallel by the fusion
module. This architecture is particularly well-suited to combine the
decisions or scores from experts that are capable of operating simul-
taneously and independently of one another. This is the case in our
problem.

Next to the two fairly simple architectures presented above, one can also
imagine more complicated combinations of these two basic schemes, such
as parallel-serial or serial-parallel architectures. These combinations are
more complex than the previous two and fall outside the scope of this
work. Another possible extension of architectures presented so far, is the
introduction of some kind of generalized feed-back mechanism. In this
case, the idea is to postpone the decision until for instance a new set of
measurements has been taken. The basic idea behind this technique can
be illustrated by the following example: if a vocal expert is undecided in
a ternary decision scheme, the automatic veri�cation system could prompt
the user under test to more speech instances, until the vocal expert has
enough information to make his decision. This extension also falls outside
the scope of this thesis.
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Our choice between one of either basic architectures was not only based
upon the descriptions presented above, but also on the results of the im-
portant research presented in [166]. In this paper, Viswanathan et Al. have
compared the serial and the parallel distributed decision fusion mechanisms.
Their conclusions are:

1. For certain noise distributions, the parallel structure is not superior
to the serial scheme. For additive white Gaussian noise (AWGN) and
two sensors for instance, it can be shown that the serial fusion scheme
performs better than the parallel one. However, with three or more

sensors, the performance is essentially the same.

2. As a drawback, any serial network is vulnerable to link failures.

3. Considering the complexity of the serial scheme and the results from
the(limited) comparative study, the choice seems to favor the parallel
fusion for the distributed decision fusion problem.

The results of this study are a con�rmation of the conclusions of the research
presented in [149].
Taking into account the descriptions of the basic architectures and the
results of the two studies mentioned above, we do opt for a parallel decision
fusion scheme in the case of our application.

Expert 2 Expert dExpert 1

Figure 4.1: A typical serial multi-expert decision fusion architecture.

4.4 Parallel decision fusion as a particular classi-
�cation problem

In a veri�cation system with d experts in parallel, the decision fusion mod-
ule using a binary decision scheme has to realize a mapping from the uni-
tary hypercube of IRd into the set frejected; acceptedg. A classi�er having
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Expert 1

Expert 2

Expert d

Figure 4.2: A typical parallel multi-expert decision fusion architecture.

a d-dimensional input vector and two classes frejectedg; facceptedg is char-
acterized by such a mapping. The multi-expert fusion module can therefore
be considered as a multi-dimensional classi�er. This particular classi�ca-
tion case will be our standard fusion approach, since it allows to fall back
immediately onto techniques available in the vast �eld of Pattern Recogni-
tion.

4.5 Comments

In this chapter we have presented di�erent aspects of data fusion techniques.
For all these aspects, we had to make motivated choices to come to the
data fusion solution which suits best our application. These choices are
commented hereafter:

1. A �rst choice that we had to make was that of the level at which the
fusion was going to take place. We have opted for the decision fusion
level because of two main reasons:

(a) This way of doing, has the great advantage to separate the design
of the specialized experts which is obviously very application
dependent, from the fusion problem. This allows for developing
generic decision fusion rules, which are application independent.

(b) This choice decreases the dimensionality of the problem.
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2. A second choice was the one involving the architecture of the fusion
module. We have opted for a parallel decision fusion structure for the
following reasons:

(a) The parallel architecture is particularly well-suited to combine
decisions or scores from experts that are capable of operating
simultaneously and independently of one another.

(b) In a situation where at least three sensors are combined (as is the
case in our application), it has been shown that the performances
in noisy conditions of the parallel architecture are not worse than
those of a serial structure.

(c) The parallel structure is less vulnerable than the serial one.

(d) The parallel structure is less complex than the serial one.

3. Finally we decided to implement the parallel decision fusion strategy
as a particular classi�cation problem, to be capable of reusing directly
the methods of the �eld of Pattern Recognition.
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Chapter 5

Introduction to part two

5.1 Goal

The goal of this chapter is to justify the use of both parametric and non-
parametric methods as paradigms in this second part of the thesis. A �rst
justi�cation can immediately be found in the fact that these two types of
methods represent in fact the two possible approaches to statistical infer-
ence [169]:

1. the particular (parametric) inference, which aims to create simple
statistical methods of inference that can be used for solving real-life
problems, and

2. the general (non-parametric) inference, which aims to �nd one single
induction method for any problem of statistical inference.

A more detailed study of advantages and drawbacks of these two approaches
is given in the next section.

5.2 Parametric or non-parametric methods?

In the well-studied area of decision fusion, the basic problem is to combine
the decisions made by a number of distributed experts [147]. A typical
fusion rule in this case is in the form of a Bayesian rule [37, 163] or a
Neyman-Pearson test [53, 165]. Such rule can be derived both in the case
of independent and correlated individual decisions. In either case, some
knowledge of the underlying probability densities is needed for an accu-
rate implementation of the test, under a parametric form. Furthermore,
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these expressions for the probability densities must be in a convenient form
to ensure reasonable computational speeds. If both these conditions are
ful�lled together, then parametric methods, such as the ones presented in
chapter 6, are the best choice. If on the other hand either the underlying
probability distributions are not known, or the Bayesian test is too diÆcult
to implement, then non-parametric methods based on the availability of
training samples, such as the ones presented in chapter 7, might be used.
The empirical data set, which is �nite, can only result in an approximate
implementation of the optimal fusion rule. The degree of approximation
between a fusion rule that can be obtained if the underlying probabilities
are known and its empirical implementation based on a �nite sample, de-
pends on the sample size. In this context it is worth mentioning Vapnik's
result that it is easier - in an information theoretic sense - to estimate a
classi�er directly from data than estimating a distribution [169]. Further-
more Rao has shown that, under some smoothness conditions, the optimal
fusion rules derived for known distributions can be implemented with an
arbitrary level of con�dence, given a suÆciently large training sample [146].
These observations do justify the use of the non-parametric methods from
chapter 7, which do not estimate distributions, but are just sample based.

Are there then any justi�cations for the use of parametric methods? Gen-
erally, parametric methods are preceded by a model veri�cation step where
the assumed distributions are tested, using for example, Kolmogorov-
Smirnov type tests. The results from this type of test, assuming Normal
distributions, have been presented in section 3.4.3. And, although the Nor-
mality hypothesis is - sensu stricto - not ful�lled, we have shown that the
deviations from this Normality hypothesis are not too important, so that
it is at least interesting to see how parametric methods, assuming Normal
distributions, do perform. This has led to the Bayesian approach, explained
in detail in the next chapter. The main advantage of the Bayesian approach
is that it leads to the optimal classi�er, in the sense that it implements the
lowest Bayes risk [37, 163]. There are however a number of problems with
this approach. The most important problem is that the probability density
functions (pdfs) have to be estimated correctly. This usually implies the
selection of the structure (class of functions) for the approximator and the
optimization of the free parameters to best �t the pdf. This optimization is
performed on a training set. According to Occam's razor principle (which
pleads for preferring the simplest hypothesis that �ts the data [121]), the
plasticity of the approximator has to be chosen carefully. For highly plastic
approximators, quite general pdfs may be approached, but an important
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(often impossible to obtain) number of samples is needed for performing
the training. Furthermore, the training set should be representative (which
in general does not correspond to the equal a priori probability hypothesis)
and over-training has to be avoided to reach good generalization [23]. On
the other hand, by using an approximator with limited plasticity (few
parameters, regularization techniques, etc.), fewer examples are needed
but more a priori knowledge is implicitly encoded by limiting the possible
solutions. This also means that poor prior knowledge will lead to bad
results. In practice, the best compromise should be searched, but the true
decision rules can most of the time not be implemented and the theoretical
minimal Bayes risk remains an unachievable lower bound. This has as a
consequence that in the �eld of pattern recognition and related disciplines,
it is common practice to see that other, non-Bayesian, methods are being
used. However, sometimes it is possible to justify some of those approaches
in the light of the general Bayesian approach, which has the advantage
of expliciting the underlying conditions/constraints. This will be done in
chapter 6, where we will suppose that the probability distributions involved
are (1) simple Gaussian distributions, or (2) members of the exponential
family with equal dispersion parameters (the logistic regression model).

5.3 Comments

According to these considerations, it is absolutely worthwhile to investigate
both parametric and non-parametric techniques as paradigms for solving
our particular classi�cation problem.



Chapter 6

Parametric methods

6.1 Introduction

In this chapter, a trivial but original method is presented �rst of all: the
monotone multi-linear (or piece-wise linear) classi�er [179, 180]. The main
purpose of this method is to be simple. Unfortunately the performances of
this simple classi�er are only good if some user-de�ned parameters (� and
�) are correctly set. However, this parameter setting problem is a very
delicate one, since it is application dependent and since it needs enough
training data. This lack of robustness is mainly due to the fact that (valu-
able) information with respect to the probability density functions of the
di�erent populations is thrown away. Therefore in a fairly early stage of
this work it has been decided to stop developing this simple method and to
fall back instead on the less original, but more fundamental statistical de-
cision theory, by using so-called parametric techniques. In this parametric
class, classi�ers based on the general Bayesian decision theory (Maximum
a-posteriori Probability and Maximum Likelihood) and on a simpli�ed ver-
sion of it (the Naive Bayesian classi�er, which has been applied in the case
of simple Gaussians and in the case of a logistic regression model), have
been studied [177]. Furthermore experiments have also been done using
Linear and Quadratic classi�ers. Neural networks form a special case of
the parametric family, since the number of parameters to be estimated can
be very large. Therefore neural networks are sometimes classi�ed as semi-
parametric parameters. Still we will present neural networks in this chapter
on parametric techniques, by means of its most popular representative: the
Multi-Layer perceptron. All of the aforementioned methods are presented
in more detail in the following sections.
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6.2 A simple classi�er: the multi-linear classi�er

To solve the decision fusion problem explained in the previous chapter,
the �rst fusion module that we have studied, was developed on a very
simple basis. The main idea behind this �rst classi�er was to approach the
boundary (supposed to be monotonic) which separates the two populations
by a number of monotone hyper-planes. We called this classi�er monotone
multi-linear classi�er or piece-wise linear classi�er in reference to the use
of several hyper-planes, each one building a monotone linear classi�er. In
this particular classi�er, the score given by each expert is assumed to be a
monotone measure of identity correctness. Formally this property can be
stated as: given the two scores s1 � s2, if accept is the best decision for
s1, then accept is the best decision for s2, and if reject is the best decision
for s2, then reject is the best decision for s1. A detailed description of the
development and the characteristics of this monotone multi-linear classi�er
can be found in appendix A. A short summary presenting the results and
including the main conclusions is given hereafter.

6.2.1 Decision fusion as a particular classi�cation problem

As was explained in section 4.4, this multi-expert fusion module can be
designed as a multi-dimensional classi�er, however with some paradigm

speci�c constraints (see also Figure 6.1):

Monotonicity The monotonicity hypothesis of the scores as formulated
above, induces a monotonicity constraint for the separation border
between the two populations, and thus also for our multi-linear clas-
si�er. Formally this constraint can be stated as follows: given the
two sets of scores (s11; s
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Scarcity of training data In an operational veri�cation system, large
amounts of impostor accesses can be simulated with the recordings of
other persons. In most applications, client accesses however are scarce
since clients would not accept performing long training sessions. This
scarcity of client training data has led us to approximate the possibly
complex separation boundary between the two populations, by a set
of simple linear segments.
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Tunable FAR/FRR trade-o� As described in section 2.6, any of the
two errors, FAR and FRR, can be reduced as close to zero as desired,
with the drawback of increasing the other one. In certain applica-
tions security is preferred (FAR small), in others client comfort (FRR
small). A user-de�nable parameter to tune the FAR/FRR trade-o�
is therefore desired in the development of a classi�er. In this multi-
linear classi�er, this trade-o� role will be played by a parameter �
which will be de�ned hereafter.

In the next section we present a classi�er (fusion module) designed to take
into account the constraints mentioned above.

reject

accept

score2

score1

impostor access

client access

1

2

3

Figure 6.1: Particular classi�cation problem: (1) monotonicity, (2) scarcity
of client accesses for training, (3) tunable FAR/FRR trade-o�.

6.2.2 Principle

The classi�er developed for this fusion module realizes a mapping from
the unitary hypercube of IRd, d being the number of experts, into f0; 1g
or frejected; acceptedg. The principle of a multi-linear classi�er is to use
hyper-planes in IRd, chosen so that each pair consisting of a client example
C1 and an impostor example C2 is suÆciently discriminated. The classi�er
training consists of a supervised phase in which the di�erent hyper-planes
are determined in order to optimally separate pairs of points of either class.



6.2. A SIMPLE CLASSIFIER: THE MULTI-LINEAR CLASSIFIER 65

The regions generated by these hyper-planes are labeled with the class
identi�er (accept, reject). At testing, each data point from the test set is
simply given the class label of the region it is belonging to.

6.2.3 Training

Given examples of the two classes, the goal is to �nd hyper-planes separat-
ing optimally all pairs of points of either class and to label the generated
regions with the corresponding class identi�er. The training of the multi-
linear classi�er consists of three steps:

First step Reduction of training samples using the monotonicity hypoth-
esis;

Second step Determination of the set of hyper-planes that realizes the
optimal separation;

Third step Class attribution to the generated regions using the Logical
Analysis of Data (LAD) method..

As an initial step, the training data can be cut down using the monotonicity
constraint. As a result of this data reduction, only the data points situated
along the separation surface of the two classes are maintained. The aim of
the training phase is to determine a set of S hyper-planes maximizing the
global discrimination between the client and impostor examples. As dis-
cussed in [117], when more than one separator is involved, it is more natural
to consider the discrimination between the set of pairs of client/impostor
points instead of reasoning on the discrimination between the two sets of
client and impostor points.

Thus, our goal is to �nd hyper-planes maximizing the global pairwise dis-
crimination, which we call �. This parameter can be set by the user, and
it will have an in
uence on the number of hyper-planes that will be gener-
ated. A reference value for � is given by �0 de�ned as half of the minimal
Euclidean distance between a pair of client/impostor points. This reference
value is nothing else than the discrimination one would obtain using a sin-
gle hyper-plane cutting orthogonally and at the middle, the segment which
links the minimal distant pair of client/impostor points. Clearly, the bigger
the required � is, the more hyper-planes will be necessary to achieve the
discrimination.

Another user-de�nable parameter is �, which dictates the bias these hyper-
planes show towards one of either classes. This bias is achieved by weighting
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di�erently the distances between a particular hyper-plane and data points
coming from one or the other class. The default value of � is 1, which is the
value that introduces no bias at all. Values of � greater than one introduce
a bias towards the client prototypes and values of � smaller than one give
a bias towards the impostor prototypes.

Figure 6.2 shows the set of hyper-planes resulting from the application of
the method cited above on a synthetic data set for � = 1 and � = �0.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fusion of two modalities

Modality one

M
od

al
ity

 tw
o

Positive points
Negative points

Figure 6.2: Set of hyper-planes generated for � = 1 and � = �0.

In practice, the set of hyper-planes is determined in two phases. First, an
incremental procedure introduces them one by one. At each iteration, the
hyper-planes previously introduced are �xed and the new one is adjusted
in order to separate the pairs with the poorest discrimination. This phase
terminates when every pair is suÆciently discriminated. Second, a global
post-optimization tends to increase the global discrimination of each pair
without adding new hyper-planes. The resulting set of S hyper-planes after
training induces a partition of the d dimensional space. Each region of this
partition is then coded by a word of S bits, indicating its membership to
each hyper-plane. Afterwards the label of one of either classes is attributed
to each region, using the Logical Analysis of Data (LAD) [30].
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Table 6.1: Veri�cation results for the individual experts.

Expert Mean value

FRR (%) FAR (%) TSR (%)

Vocal 29.5 0.0 85.6

Pro�le 11.1 30.6 79.2

Frontal 5.0 7.8 93.6

6.2.4 Testing

During testing the membership of each data point w.r.t. the set of hyper-
planes is calculated and each data point receives simply the class label of
the region of the hyper-space it is lying in.

6.2.5 Results

The tests have been carried out using the M2VTS database [137] and the
same test protocol as the one speci�ed in [55]. This protocol is the very �rst
one that has been developed in the M2VTS project team and it is not the
same as the one we have used in the remainder of this work. However, due
to the bad results of this simple method, this is of no practical importance
since we are not going to use the results of this method for comparison or
any other further purposes. In this speci�c protocol, we have used three
shots for training purposes (one shot has been left out for test purposes),
each shot containing 36 persons (one person has been left out for impostor
tests). Each test set contains 36 client and 36 impostor accesses. Several
tests have been performed for di�erent values for � and �. For each setting
of � and � �ve di�erent experiments have been carried out using di�erent
shots and persons. The obtained veri�cation results are the means over
these �ve experiments and are expressed in terms of FRR, FAR and TSR
(in %).

Table 6.1 shows the veri�cation results for the individual experts where the
decision has been taken with a threshold �xed to achieve EER on train-
ing data. The veri�cation results after fusion are given in Tables 6.2, 6.3
and 6.4.

The in
uence of � is shown in Table 6.2. For values of � greater than
one we observe an increase of the FRR, as could be expected. By using
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Table 6.2: Veri�cation results after fusion as a function of � only.

� � Mean value

FRR (%) FAR (%) TSR (%)

0.80 1:00 ��0 22.2 0.0 88.9

0.85 1:00 ��0 18.9 0.0 90.5

0.90 1:00 ��0 13.9 0.0 93.0

0.95 1:00 ��0 27.8 0.0 86.0

1.00 1:00 ��0 28.4 0.0 85.8

1.10 1:00 ��0 30.0 0.0 85.0

Table 6.3: Veri�cation results after fusion as a function of � only.

� � Mean value

FRR (%) FAR (%) TSR (%)

1.00 2:00 ��0 35.4 0.0 82.6

1.00 1:00 ��0 28.4 0.0 85.8

1.00 0:67 ��0 20.5 0.0 89.7

1.00 0:50 ��0 18.9 0.0 90.5

1.00 0:40 ��0 32.8 0.0 83.6

1.00 0:25 ��0 30.0 0.0 85.0

values of � smaller than one we �rst see as expected a decrease of the FRR,
but when � reaches the value of 0.85, the FRR starts increasing again.
Normally when the hyper-planes lean more and more towards the impostor
prototypes, we would expect a further decrease of the FRR and a gradual
increase of the FAR. The fact that this doesn't happen can be explained
by the following observations:

� a change in � not only modi�es the position, but also the number of
hyper-planes;

� due to the use of the monotonicity propriety for reducing the number
of data points in the training phase, the information related to the
probability densities of both populations is lost. Also, some of the
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Table 6.4: Veri�cation results after fusion as a function of both � and �.

� � Mean value

FRR (%) FAR (%) TSR (%)

0.85 0:67 ��0 7.3 0.0 96.3

0.85 0:50 ��0 10.6 0.0 94.7

0.90 0:67 ��0 6.7 0.0 96.6

0.95 0:67 ��0 5.6 0.0 97.2

0.95 0:50 ��0 10.6 0.0 94.7

remaining data points might not be representative of the rest of the
population (there could be outliers);

� this method is very sensitive to the problem of over-training, as it is
based only on the border between the two populations. This means
that the generalization capability of this method on unseen data is
very bad;

� the impostor and/or client prototypes determined during the training
are not really representative for the client and/or impostor accesses
made during testing;

� the monotonicity hypothesis is not really valid.

The in
uence of � is shown in Table 6.3. We could expect an increase in
performance when the number of hyper-planes becomes larger, since the
LAD method seems to get more information for labeling the di�erent sec-
tions of the partition of the hyper-space. But as the number of hyper-planes
increases, the number of sections in that partition also increases and since
in this method we are using only very few training data, the population of
these sections will be getting sparse very rapidly. This phenomenon is in
our opinion at the basis of what we observe in Table 6.3. When � increases,
the FRR also increases and when � decreases the FRR decreases until a
certain point (0:50 � �0) from where on the FRR starts increasing again.
This last phenomenon can be explained by the fact that when � gets to
small, the corresponding hyper-plane(s) don't have to be \very good" (the
stop criterion for each iteration is reached sooner), which obviously will
lead to more errors.
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The combined in
uence of � and � is shown in Table 6.4. These results
indicate that this method can have good performances. Indeed, the best
results of the multi-linear classi�er outperform those of the best individual
expert. The main problem with this is the fact that these \best results" are
obtained for speci�c values of the parameters � and � and unfortunately
there is no easy way of knowing a priori which values to give to these
parameters for optimizing the classi�er in a certain application.

Analyzing the results obtained after fusion, one can see that the FAR is
in our case always equal to zero. This could indicate that the generated
hyper-planes are lying too close to the client prototypes.

6.2.6 Partial conclusions and future work

As shown above, this simple method performs well, only if the user-de�ned
parameters � and � have been correctly set. But �nding these correct

settings is a very delicate problem, since it is application dependent and
it requires enough representative training data to be available. One of the
main reasons for this lack of robustness, is without any doubt the fact that
the monotonicity property is used for throwing away valuable data points.
This means that we make no use at all of the information which is available
in the training data with respect to the probability densities of the di�e-
rent populations. Indeed, the determination of the optimal hyper-planes is
completely based on the training data (empirical risk minimization), which
can cause problems in the generalization phase. Taking this into account,
a possibility to improve the results of this method could be to use Support
Vector Machines (SVMs), which minimize the structural risk [168, 169].

Another possible improvement of this method could be to learn the user-
de�ned parameters, for instance by means of a genetic algorithm. How-
ever, this has not been done, since the original purpose for developing this
method was to design a very simple method.

Since the results of this very �rst fusion module are only relatively good
when the user-de�ned parameters are correctly set, we decided to stop the
development of this classi�er, and to use for our further work methods
which do take into account the available probability density information.
This change of approach has thus led to the use of three classes of methods
which are going to be presented hereafter: parametric, semi-parametric and
non-parametric methods. The �rst class to be highlighted is the one of the
parametric techniques.
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6.3 A statistical framework for decision fusion

In this section, some elementary notions of statistical decision theory will
be highlighted. More detailed information can be found in references such
as [5, 6, 14, 15, 49, 56, 59, 61, 85, 86, 91, 94, 95, 104, 106, 107, 110, 118,
121, 128, 164, 167]. In the references cited above, the statistical decision
theory has been explicitly or implicitly divided into two di�erent sub�elds,
which will be dealt with separately in what follows. The �rst sub�eld is
the Bayesian decision theory and the second one is the Neyman-Pearson

theory. The Bayesian decision theory itself can then again be subdivided
into two di�erent approaches, which will also be explained hereafter. The
�rst Bayesian approach is the minimization of the error probability and the
second one is the minimization of the Bayes risk.

Although in the next sections a complete overview of all subdivisions of the
statistical decision theory will be given, in this work we only experimented
the Bayesian strategy of minimizing the probability of error. We did neither
experiment the more general strategy of minimizing the Bayes risk, nor
the Neyman-Pearson approach. The reason of this choice is that we did
not want to bias the results of this work by specifying di�erent costs or
constraints for the di�erent class error probabilities.

6.3.1 Bayesian decision theory

In this section only a brief overview of the most important results of the
Bayesian decision theory will be given in the speci�c case of a two-class
problem [177]. These two classes are denoted by C1 for Clients and C2 for
Impostors, or by Ci; i = 1; 2 if the expressions are valid for both classes.

Let X be a random observation coming from one of either classes. In the
most general case X will be a multi-dimensional feature vector constructed
by the concatenation of all feature vectors ~Mk, given to all k experts k =
1; : : : ; n. The decision problem is to classify correctly each observation in
its respective class. Let P (X;Ci) be the joint probability distribution of
X and Ci. If we suppose that this joint probability distribution is known,
then the connected marginal and conditional probabilities can be derived
from it. To measure the performance of a classi�er we de�ne a loss function
lji, which gives the cost of classifying a class i observation into a class j
event. Using this general loss function and applying the de�nition of the
conditional loss RfCijXg for classifying observation X into a class i event
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found in [56] to our two-class problem, we obtain:

RfCijXg =
2X

j=1

lji:P (Cj jX) (6.1)

where P (Cj jX) is the a posteriori probability of deciding Cj, given X. This
conditional loss can then be used to de�ne the expected loss L, also called
the Bayes risk as follows:

L =

Z
RfC(X)jXg:p(X):dX (6.2)

where C(X) represents the decision of the classi�er. This decision function
C(X) depends on the classi�er design and it can be easily seen that the
expected loss L will be minimized if the classi�er is designed such that for
each X we have the following:

C(X) = Ci such that RfC(X)jXg = min
i
RfCijXg: (6.3)

Minimizing the probability of error

In our application we have opted for the zero-one loss function de�ned by:

lji =

�
0 if i = j
1 if i 6= j

(6.4)

which assigns no loss to correct classi�cation and a unit loss to any error,
regardless of the class. With this type of loss function the expected loss
L is equal to the error probability of classi�cation and the conditional loss
becomes:

RfCijXg =
X
i6=j

P (Cj jX); (6.5)

and since we obviously have thatX
i

P (CijX) = 1 (6.6)

we can rewrite the conditional loss as follows:

RfCijXg = 1� P (CijX): (6.7)
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Under these assumptions, the optimal classi�er, de�ned as the one that
achieves minimum expected loss L, is the classi�er that implements the
following decision rule:

C(X) = Ci if P (CijX) = max
j

P (CjjX): (6.8)

Stated otherwise, this means that the optimal classi�er (which achieves
the minimum error probability of classi�cation) implements the maximum

a posteriori (MAP) decision rule. The minimum error rate achieved by this
optimal classi�er is then called the Bayes risk. Using Bayes rule, the a
posteriori probability P (CijX) can be rewritten as:

P (CijX) =
P (XjCi):P (Ci)

P (X)
(6.9)

where P (Ci) and P (X) are the a priori probabilities of Ci and X respec-
tively, and P (XjCi) is the conditional probability of X, given Ci. Since
P (X) does not depend on the class index, the MAP decision only depends
on the numerator of the right-hand side of the previous equation.

MAP = max
i

P (CijX) (6.10)

MAP = max
i

P (XjCi):P (Ci) (6.11)

By assuming that the a priori probabilities are equal for both classes (this
is a strong assumption, which is going to be discussed in section 6.3.6), the
MAP decision rule reduces to a maximum conditional probability (MCP)
rule. P (XjCi) is often called the likelihood of X given Ci and a decision
that maximizes P (XjCi) is hence also called a maximum likelihood (ML)
decision.

MCP = ML = max
i

P (XjCi) (6.12)

It is interesting to see that implementing both these MAP and ML rules in
our two-class application can be done by a so-called likelihood ratio test.
Indeed, rewriting the MAP decision rule, we can easily obtain the following
likelihood ratio decision rule:

l(X)
4
=
P (XjC1)

P (XjC2)

client
>
<

impostor

P (C2)

P (C1) (6.13)
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In the case of the ML decision rule where we suppose that the two classes
have the same a priori probability, the likelihood ratio decision rule simpli-
�es to:

l(X) =
client
>
<

impostor
1

(6.14)

From the above equations, it can be directly observed that the only thing
that changes between the MAP and the ML decision rule, presented under
the form of a likelihood ratio test, is the threshold.

Minimizing the Bayes risk

It can be shown that in the case a di�erent loss-function lji is chosen (one
which assigns for instance a di�erent cost to either type of error FA and
FR), one still obtains a likelihood ratio test in which the only thing that
is changed is the threshold, this of course to be able to take into account
the various costs. In [164], it is shown that the general MAP rule that
minimizes the Bayes risk, corresponding to the speci�ed loss-function, is
given by the following likelihood ratio test:

l(X) =
client
>
<

impostor

P (C2):(l12 � l22)

P (C1):(l21 � l11) (6.15)

where

l11 = cost of correctly accepting a client;

l22 = cost of correctly rejecting an impostor;

l12 = cost of wrongly accepting an impostor = FA;

l21 = cost of wrongly rejecting a client = FR:

6.3.2 Neyman-Pearson theory

In many physical situations it is diÆcult to assign realistic costs lji or a
priori probabilities. If this is the case, then the Bayesian decision theory
can not be used as such. A simple procedure to bypass this diÆculty is
to work directly with the conditional probabilities and with the two error
rates FAR and FRR. As explained in some detail previously, one can not
minimize both error rates at the same time. An obvious criterion is then
to constrain one of the error rates and to minimize the other one. This is
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exactly what is done in the Neyman-Pearson theory. In what precedes it
was shown that when one seeks to minimize the probability of error or the
more general Bayes risk, one is led to a likelihood ratio test. Here it will be
shown that applying the Neyman-Pearson theory also leads to a likelihood
ratio test.
The Neyman-Pearson criterion �xes one of the class error probabilities, say
FAR, to satisfy:

FAR =

Z
C1

P (XjC2):dX = � (6.16)

where the integral is calculated over the area where the claim is accepted
and � is some predetermined small number, and seeks to minimize the
other class error probability:

FRR =

Z
C2

P (XjC1):dX (6.17)

where the integral is this time calculated over the area where the claim is
rejected.
In order to minimize equation (6.17), subject to the constraint (6.16), the
following quantity should be minimized:

FRR + �:(FAR� �) (6.18)

where � is a Lagrange multiplier. Doing this, it can be shown (see for
instance [164]) that implementing the Neyman-Pearson criterion leads to
the following decision rule:

l(X) =
client
>
<

impostor
�

(6.19)

The only problem left now is to determine the threshold �. To satisfy the
constraint (6.16), we choose � so that FAR = �. If we now denote the
density of the likelihood ratio l(X) when the person under test is in reality
an impostor as P (l(X)jC2), then we require the following:

FAR =

Z 1
�

P (l(X)jC2):dl(X) = �: (6.20)

Solving equation (6.20) for �, provides the threshold. Although equa-
tion (6.20) may sometimes be diÆcult to solve in applications, the phi-
losophy of the Neyman-Pearson method is quite sound, since one often
wishes to formulate the decision rule in terms of the desired class error
probabilities.
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6.3.3 Application of Bayesian decision theory to decision

fusion

In a multi-expert decision fusion context, each expert k has access to a fea-
ture vector ~Mk. Ideally, as explained in section 6.3.1, the decision should be
based on P (CijX) or, by expliciting X, on P (Cij ~M1; ~M2; : : : ; ~Mn), taking
into account the loss function. However, this usually implies the direct use
of the feature vectors ~Mk, which might be undesirable or in some practical
cases even impossible. The direct use of these feature vectors means that
we completely deny the pertinence and usefulness of the available experts.
Even if the theory obtained in section 6.3.1 states that the optimal classi�-
cation should be based on P (Cij ~M1; ~M2; : : : ; ~Mn), this theory says nothing
on how to obtain the best estimate of these probabilities.

A brute force approach, in which one tries to estimate directly the above
probabilities using for instance Multi Layer Perceptrons (MLPs), might be
appealing because it could lead to the optimum decision and it does not
rely on any of the hypotheses that we will introduce in the next sections.
However, if one would do that, this would only result in estimates of the
real probabilities and these estimates could be so bad that they would be
useless, because the corresponding MAP or ML decision would be far away
from the desired optimum decision. Several reasons may hinder a good
estimation of the underlying probabilities:

� First of all, large multi-modal databases are extremely rare and very
expensive. It is more realistic to look for a large database for each
separate modality.

� Furthermore, the best estimation of the desired probabilities may be
obtained by making a good usage of the available databases and the
a priori knowledge, and by limiting the parameter space by making
appropriate assumptions. This a priori knowledge has to be intro-
duced into the system by (human) experts. This might be easier at
the level of each modality (mono-modal experts are needed) than at
the fusion level. In most cases the introduction of this a priori knowl-
edge has been done, either explicitly or implicitly, by the designer of
the available mono-modal experts.

Good experts make an eÆcient use of the available databases and a priori
knowledge. The di�erent mono-modal experts could then be designed and
tuned adapting their complexity (and thus their performance [57]) to the
size of the respective mono-modal databases. In our opinion these kinds of
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experts should thus be used as they are and they should not be replaced by
some kind of a pseudo-optimal probability density function estimator (such
as an MLP) which denies their pertinence and expertise. Therefore our
objective will be to make the best decision, based on the output (scalar)
scores sk; k = 1; : : : ; n of the available experts, and not on their input
feature vectors. Starting from this point, several approaches to estimate
P (Cijs1; s2; : : : ; sn) will be presented in the next sections.

6.3.4 The naive Bayes classi�er

Formalization

Introducing the independence hypothesis transforms the general Bayesian
approach presented above into the so-called naive Bayes classi�er [119,
121]. This hypothesis is acceptable when looking at the results of the cor-
relation analysis presented in section 3.4.3. If we suppose that the di�erent
experts are independent, then the scores of these experts are independent
given either class. In our particular case, using the scores that are provided
by the d experts (s1; s2; : : : ; sd), and denoting the two classes by C1 and
C2 for clients and impostors respectively, this can be formalized by the
following two speci�c hypotheses:

h1 : P (s1; s2; : : : ; sdjC1) =

dY
k=1

P (skjC1) (6.21)

h2 : P (s1; s2; : : : ; sdjC2) =
dY

k=1

P (skjC2) (6.22)

Under these two hypotheses, we show in appendix E that

P (C1js1; s2;:::; sd) = 1

1 + exp
h
�
n�Pd

k=1 xk

�
+ x0

oi (6.23)

where

xk = ln
P (skjC1)

P (skjC2)
(6.24)

x0 = ln
P (C1)

P (C2)
(6.25)
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and sk is the scalar score given by the k�th expert.

The interest of obtaining the mathematical expressions presented in equa-
tions (6.23), (6.24), and (6.25) is that in some speci�c cases they can be
reduced to very simple expressions. This will be shown in section 6.3.5.

6.3.5 Applications of the naive Bayes classi�er

Simple Gaussian distributions

In this section, we will particularize the general approach of the naive Bayes
classi�er under the hypothesis that all mono-variate conditional probabili-
ties P (sjjCi) are Gaussian. The only parameters to estimate are the mean
and the variance of the mono-variate Gaussian distributions. Those param-
eters are estimated using the training data set. Note that no multi-modal
database is needed to do this. Then the multi-variate conditional proba-
bility P (s1; s2; : : : ; sdjCi) may be computed. Under the independence hy-
potheses we made in section 6.3.4 it is a product of Gaussian distributions,
which is also a Gaussian with a diagonal covariance matrix. In the next sec-
tion, we will show that if the Gaussian distributions have the same variance
for the client and the impostor classes, then the a posteriori probability is
a logistic function.

Figure 6.3 shows the modeled normal client and impostor distributions in
our application, when using the vocal expert only. It can be seen that there
exists an overlap between the two distributions, which will be responsible
for the classi�cation errors. This is again shown in Figure 6.4 for the pro�le
and vocal experts. This Figure clearly illustrates that the fusion of (well-
chosen) experts or modalities may signi�cantly reduce the classi�cation
errors. The overlap indeed still exists, but it has become smaller.

If furthermore the a priori probabilities are equal, the ML decision rule
from equation (6.12) may be used. The results obtained in our speci�c
application using the three experts and the approach explained above, are
shown in Table 6.5. Note that in our case, the equal prior hypothesis
is questionable. Indeed, the a priori probabilities are (for the test set)
equal to 1=37 and 36=37 for respectively clients and impostors. Using these
numbers in the MAP decision rule from equation (6.11) it can be observed in
Table 6.5 that changing the ML rule into a MAP rule leads to a decrease in
the FAR and an increase in the FRR. This was expected. Indeed, since the
a priori probability of an impostor is much higher than the one for a client,
the major tendency will be to reject the claim (which is well adapted to
impostors, hence the decrease in FAR), but which is not so good for clients
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Figure 6.3: Typical overlap between modeled client and impostor distribu-
tions for the vocal expert.
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Figure 6.4: Overlap between modeled client and impostor distributions for
the pro�le and the vocal experts.
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(thus the increase in FRR). This is a global observation using Bayesian
techniques, where the class with the smallest a priori probability tends to
be underestimated. Since the only di�erence between the MAP and the ML
decision rules is the decision threshold, these two decision rules implement
the same discriminant or decision function, which is shown in the case of
the pro�le and vocal experts in Figure 6.5.

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

expert three

client decision

expert two

Figure 6.5: Shape of the MAP and ML decision function obtained using
simple Gaussian distributions for the pro�le and the vocal experts.

It can be seen that although we had to make a number of hypotheses in
order to reduce the computational complexity, the results given by the MAP
and the ML rule supposing simple Gaussian distributions are relatively
good.

The logistic regression model

Maintaining the independence hypothesis, another particularization of the
general framework of section 6.3.4, can be obtained by assuming that for
each expert (k = 1; : : : ; d) the mono-modal conditional probability den-
sity functions for both classes are members of the exponential family with
equal dispersion parameters. This assumption is formally expressed by the
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Table 6.5: Veri�cation results for a classi�er using simple Gaussian distri-
butions.

Rule FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

ML 2.7 [0.5,13.8] 0.7 [0.4,1.3] 0.7 [0.4,1.3]

MAP 5.4 [1.5,17.7] 0.0 [0.0,0.3] 0.1 [0.0,0.5]

following equations:

P (skjC1) = f(sk): exp [(ck:sk + ck0)] ; (6.26)

and

P (skjC2) = f(sk): exp [(ik:sk + ik0)] ; (6.27)

where f(�) is any monotonic function, and ck; ck0; ik; ik0 are two sets of two
class-dependent parameters for Clients and Impostors respectively. Using
this, it is easy to see that equations (6.23), (6.24), and (6.25) of section 6.3.4
reduce to

P (C1js1; s2; : : : ; sd) = 1

1 + exp [�g(s)] = �(X) (6.28)

where

g(s) = �0 + �1:s1 + : : :+ �d:sd; (6.29)

�0 =

dX
k=1

(ck0 � ik0) + ln
P (C1)

P (C2)
; (6.30)

and

�k = ck � ik for k = 1; : : : ; d: (6.31)

Equation (6.28) is known as the logistic regression model or logistic distribu-
tion function and the linear expression in the scores of the experts presented
in equation (6.29) is called the logit or log-odds transformation [83, 174].
This method performs a statistical analysis of the observed (training) data
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and the discrimination function it implements is the logistic distribution

function, which is formalized hereafter:

E(Y jX) = �(X) =
exp [g(s)]

1 + exp [g(s)]

In this expression E(Y jX) is the conditional probability for the (binary)
output variable Y given the d-dimensional input vector X, with g(s) =
�0 + �1:s1 + : : : + �d:sd and X = (s1; s2; : : : ; sd). This equation gives as
a result for the input pattern X, the probability �(X) of belonging to
the class of clients (Y = 1) and, in an indirect manner, the probability
[1 � �(X)] of belonging to the class of impostors (Y = 0). The typical
non-linear shape of the discriminant function implemented by the logistic
regression model is shown in Figure 6.6 for the speci�c case where there
are only two experts.
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Figure 6.6: Shape of the discriminant function obtained using the logistic
regression model for the pro�le and the vocal experts.

As it can be seen, the mathematical expressions of equations (6.23), (6.24),
and (6.25) have been reduced to very simple expressions. Once the logistic
regression parameters �i have been obtained, g(s) is calculated as a linear
function of the scores s1; s2; : : : ; sd of the di�erent experts. It can easily
be shown that this linear function g(s) is actually nothing else than the
equation of the hyper-plane which acts as separation frontier in the d-
dimensional space of the expert scores. To see this, we simply set the
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decision threshold to the MAP value of 0:5 (see further). In this case we
obtain the following expressions for the separation frontier between the two
classes:

�(X) =
exp [g(s)]

1 + exp [g(s)]
= 0:5; (6.32)

which leads to

1

1 + exp [�g(s)] = 0:5; (6.33)

which is equivalent to

exp [�g(s)] = 1; (6.34)

which leads to

g(s) = 0; (6.35)

what we wanted to proof.

In [119], it is shown that the hyper-plane obtained by the logistic regression
performs better over a large variety of databases than the one obtained
when using the linear discriminant function. This is especially true in the
case that the normality assumption (which has to be made when using
linear discriminant analysis), is invalid [75]. And, as it has been shown in
chapter 3, this is typically the case in our type of application.

To obtain the (d+1) logistic regression parameters �i with i = 0; 1; : : : ; d,
themaximal likelihood principle is used, so as to maximize the probability of
�nding the observed training data. Since each �i with i 6= 0 multiplies one
of the d experts, and since all experts output scores in the same range i.e.
between 0 and 1, the value of �i is a measure of the importance of the i-th
expert in the fusion process, under the hypothesis of equal dispersion pa-
rameters. A large �i indicates an important expert, a small �i indicates an
expert that does not contribute very much. Table 6.6 shows the values for
the parameters �i obtained for the three experts in our application. These
values have been calculated on the training data using the SPSS software
package [162]. As can be seen, the vocal expert is the most important one
for the logistic regression and the frontal expert is the least important one.
This interesting property allows the designer to choose the most relevant
experts very easily, without using Principal Component Analysis or other
less convenient methods as suggested in [152].
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Table 6.6: Parameter estimations for the logistic regression model.

Expert Parameter Value

Constant �0 17.183

Pro�le �1 -0.4801

Frontal �2 -0.1865

Vocal �3 -0.6172

Note that the acceptable class of conditional probabilities, as de�ned by
equations (6.26) and (6.27), is known as the exponential family with equal
dispersion parameters for the two classes (clients and impostors) [91]. One
particular case of this family is the well-known Gaussian distribution, which
transforms equations (6.26) and (6.27) into:

P (skjC1) =
1p
2�:�k

: exp

�
�(sk � �ck)

2

2�2k

�
(6.36)

and

P (skjC2) =
1p
2�:�k

: exp

�
�(sk � �ik)

2

2�2k

�
; (6.37)

where �ck and �ik represent the mean of respectively the class of clients
and impostors and �2k is their common variance. In this particular case
equations (6.30) and (6.31), give:

�0 =

dX
k=1

(�ik)
2 � (�ck)

2

2�2k
+ ln

P (C1)

P (C2)
; (6.38)

and

�k =
�ck � �ik
�2k

; (6.39)

where �k is nothing else than the di�erence of the means of the distributions
for the two classes for the k-th expert, divided by their common variance.
The general observation that the value of �k is a measure of the importance
of the k-th expert in the fusion process, together with the expression of �k
in this particular case, is in accordance with our intuition which says that
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an expert behaves better when the distributions of the two classes (clients
and impostors) are more separated and when their variance is smaller.
It is also interesting to compare the approach using the strict Gaussian
case of section 6.3.5 with this particular member of the exponential fam-
ily with equal dispersion parameters. In the latter approach, the equality
constraint on the dispersion parameter imposes the same variance for both
classes, which is strictly spoken a restriction compared to the former ap-
proach, where the variances may di�er. However, the latter approach also
works when we assume that the class-conditional probability densities are
members of the (same) exponential family distribution with equal disper-
sion parameters. Since this approach is invariant to a family of classi�cation
problems, it is more robust than the former approach, as we do not require
here one particular distribution to be speci�ed [91]. Another advantage of
the approach based on the logistic regression model is that fewer parame-
ters need to be estimated (d + 1 instead of 4d (�ik and �ik for each class i
and for each expert k) or 3d (if we suppose that the two classes have equal
variances for each expert) for the approach in section 6.3.5).
Once the di�erent parameters �k have been estimated on the training data,
an unknown test pattern is simply classi�ed by calculating �(x). This
result needs then to be compared with a threshold. In the case of the MAP
decision rule (which minimizes the total number of errors) and in the simple
case of our two-class problem, the optimal MAP threshold is 0:5. To show
this, we consider the case in which we classify the unknown person as a
client. According to the MAP decision rule, this will be the case if the a
posteriori probability P (C1jX) is greater than the a posteriori probability
P (C2jX) (6.11). Since P (C1jX) = �(X) and P (C2jX) = 1 � �(X), the
MAP decision rule reduces to:

�(X) > 1��(X); (6.40)

which leads to

�(X) > 0:5 (6.41)

what we wanted to proof.
If we use another optimization criterion, we obtain another decision thresh-
old. Instead of the optimal threshold in the sense of Bayes, we can also
choose other thresholds. One such a threshold is the EER threshold which
is calculated on the training database, as explained in section 3.3. In our
case, the value of this EER threshold is 0.012. The veri�cation results for
these two operating points are given in Table 6.7. It can be seen that the
theoretical optimal threshold leads indeed to the smallest TER.
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Table 6.7: Veri�cation results for a classi�er using a logistic regression
model.

Threshold FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

0.500 (MAP) 2.7 [0.5,13.8] 0.0 [0.0,0.3] 0.1 [0.0,0.5]

0.012 (EER) 0.0 [0.0, 9.4] 1.1 [0.6,1.8] 1.1 [0.7,1.8]

6.3.6 The issue of the a priori probabilities

We have shown in section 6.3.1 that in the Bayesian framework, the optimal
Bayes decision is a function of the a priori probabilities (note that this is
not the case if one has chosen for a Neyman-Pearson approach). These
probabilities may be fed in explicitly (e.g.: the MAP rule in the case of
the simple Gaussian distributions) or may be learned (e.g.: the case of the
logistic regression model) on a training database. In the latter case, it is the
frequency on the learning database that is learned. However, ideally the
frequency that the system will face during operational deployment should
be used as the a priori probability.

Most often, the frequency on the training database is not representative of
the frequency that the system will encounter during operational deployment
(which is one of the problems encountered in the speci�c case when using
MLPs). Indeed, this requirement is generally not taken into account when
the database is built. As an example, the M2VTS contains 37 persons and
all comparisons that are performed take into account a client frequency of
1/37. However, the frequency of clients that will present themselves to the
system during deployment will be function of the application.

In some learning schemes (e.g. MLP, logistic regression), the database
should be balanced to reach good results. Indeed, learning is often per-
formed by means of a non linear optimization. With an unbalanced
database, the poorly represented class has only a very week contribution
to the error function leading to a near optimal solution for the trivial
classi�er that always assigns the pattern to the most represented class.

Since unfortunately, the deployment frequency is often diÆcult to estimate,
this means that in many cases the training is done with a frequency that
is not representative. This argument is often used to criticize the Bayesian
approach and it has been presented as an advantage for other methods
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which also try to minimize the number of classi�cation errors and which do
not need these a priori probabilities. However, in our opinion the optimal
Bayes decision (typically the minimization of the number of errors) does
depend on the a priori probability. This may be illustrated by the following
example. If a man has to classify a person moving in the dark in his
home using only visual information, it will probably be classi�ed as his
partner, although no detail is visible but the a priori probability for a
person moving in the house is high for the partner. If the person was
in reality a burglar, one could easily be mislead. On the other hand, that
same man will have no diÆculties using only visual information by daylight
to classify a person moving in the house as a burglar, even if the a priori
probability for the partner is higher. This hypothetical example shows that
if the measurements are suÆciently discriminative, we do not (need to) rely
on a priori probabilities. On the other hand, if the measurements are not
discriminative enough, we do need the a priori probabilities.

This e�ect may be understood mathematically by analyzing equa-
tion (6.23). The discrimination power of the measures is represented
by
P

k xk, whereas the a priori probabilities are represented by x0. It is
only in the case that the �rst term is signi�cantly bigger than the second
one that the a priori probabilities have no e�ect on the global sum.

The above reasoning shows that the a priori probabilities do indeed a�ect
the optimum decision, especially when the discrimination power is low.
Schemes that are argued to be preferable because they do not need these
a priori probabilities as an input, try to solve this problem by for instance
keeping ambiguities if discrimination power is low.

We believe that in practice a reasonable range for the a priori probabilities
should be considered. The corresponding range of the posterior probabili-
ties may then be computed and the e�ect on the optimal decision can then
be analyzed.

6.3.7 Quadratic and Linear classi�ers

Quadratic classi�er

It has been shown in section 6.3 that various decision criteria led to a
likelihood ratio test of the form

l(X) =
P (XjC1)

P (XjC2)

client
>
<

impostor
�

(6.42)
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where the threshold � is de�ned explicitly in terms of the a priori prob-
abilities and the Bayes costs for criteria that minimize the probability of
error or the Bayes risk (see section 6.3.1), and de�ned implicitly for the
Neyman-Pearson criterion (see section 6.3.2).
Let us suppose now that the multivariate class conditional probabilities
P (XjCi) are characterized by d-dimensional Gaussian densities with d being
the number of experts and with respective means �i and covariance matrices
�i:

P (XjC1) =
1

(2�)
d
2 :
p
j�cj

: exp

�
�1

2
(X � �c)

T��1c (X � �c)

�
(6.43)

and

P (XjC2) =
1

(2�)
d
2 :
p
j�ij

: exp

�
�1

2
(X � �i)

T��1i (X � �i)

�
(6.44)

In this particular case, it is trivial to see that the likelihood ratio l(X) from
the decision rule in equation (6.42) becomes:

l(X) =

s
j�ij
j�cj : exp

�
�1

2
(X � �c)

T��1c (X � �c) +
1

2
(X � �i)

T��1i (X � �i)

�
:

(6.45)

If the quantity h(X) is de�ned as:

h(X) = �2 ln l(X); (6.46)

then the decision rule 6.42 can be expressed as:

h(X) = (X � �c)
T��1c (X � �c)� (X � �i)

T��1i (X � �i) + ln
j�cj
j�ij

client
<
>

impostor
T

(6.47)

where

T = �2 ln�: (6.48)

The decision rule can then also be written as:

h(X) = XTAX + bTX + c
client
<
>

impostor
T

(6.49)
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where

A = ��1c � ��1i ;

b = 2
�
��1i �i ���1c �c

�
;

c = �Tc �
�1
c �c � �Ti �

�1
i �i + ln

j�cj
j�ij :

The decision rule obtained in this speci�c case is called a Gaussian or
quadratic classi�er. It can be shown easily (see for instance [164]) that
the quadratic classi�er computes the Mahalanobis distances to the mean of
either class and compares the di�erence in those distances to a threshold.
Another interesting property of this classi�er is that the decision boundary
that it de�nes is a general quadratic surface. The quadratic classi�er can
also be applied to scores that are not characterized by Gaussian density
functions. But in this case, the probability of error (or the Bayes risk, or
the Neyman-Pearson criterion, depending on which threshold � has been
chosen) is not necessarily minimized. Still one could then interpret the
quadratic classi�er as de�ning a decision boundary that is best matched to
the second moment statistics of the scores.

It should be noted that this approach is di�erent from the one that we
have followed when applying the naive Bayes (NB) classi�er to simple
Gaussian distributions in section 6.3.5. Indeed, in the case of the naive
Bayes classi�er approach using simple Gaussian distributions, it was shown
that the covariance matrices of the multivariate conditional probability
densities were diagonal, due to the independence hypotheses. This means
that in that particular case only 4d parameters have to be estimated (the
mean � and variance � for each expert and for either class). In the
case we are considering here, no independence hypotheses are made and
2[d + d(d + 1)=2] = 2d[1 + (d + 1)=2] parameters need to be estimated
(the d-dimensional mean � and the d(d + 1)=2 elements of the symmetric

covariance matrix � for either class). The di�erence between these two
approaches increases rapidly with the number of experts d, as is shown in
Table 6.8.

Linear classi�er

In the case that the two covariance matrices are equal, that is �c = �i = �,
the matrix A of equation (6.49) is identically zero and the decision rule
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Table 6.8: Number of parameters to estimate as a function of the number
of experts d.

d NB using Gaussians Quadratic classi�er

1 4 4

2 8 10

3 12 18

4 16 28

5 20 40

becomes:

h(X) = bTX + c
client
<
>

impostor
T

(6.50)

where

b = 2��1 (�i � �c) ;

c = �Tc �
�1�c � �Ti �

�1�i:

The decision boundary thus reduces to a linear boundary (hyper-plane) and
the classi�er is correspondingly called a linear classi�er. In the open liter-
ature, the term Linear Discriminant Analysis (LDA) is also often used [79,
118]. It is again important to note that this approach is di�erent from
the one that we have followed when applying the naive Bayes classi�er to
distributions coming from the exponential family with equal dispersion pa-
rameters in section 6.3.5. Indeed, in the case of the application of the naive
Bayes (NB) classi�er approach, the (diagonal) covariance matrices of the
multivariate conditional probability densities had to be the same for either
class. This means that in that approach only 3d parameters have to be
estimated (the mean � for each expert and for either class and the common
variance � for each expert), or even as few as d+ 1 if the approach of the
logistic regression model is used. In the case we are considering here, no
independence hypotheses are made and 2d+ d(d+ 1)=2 = d[2 + (d+ 1)=2]
parameters need to be estimated (the d-dimensional mean � for either class
and the d(d+1)=2 di�erent elements of the common symmetric covariance
matrix �). The di�erence between these two approaches still increases with
the number of experts d, as is shown in Table 6.9.
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Table 6.9: Number of parameters to estimate as a function of the number
of experts d.

d Logistic regression NB using exponentials linear classi�er

1 2 3 3

2 3 6 7

3 4 9 12

4 5 12 18

5 6 15 25

The results obtained using quadratic and linear classi�ers are presented
in Table 6.10, where the results for the two applications of the Logistic
regression are also repeated for comparison purposes.

Table 6.10: Performance of quadratic and linear classi�ers versus the Lo-
gistic regression approach.

Fusion module FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

Quadratic classi�er (EER) 2.7 [0.5,13.8] 10.1 [ 8.6,11.8] 9.9 [[ 8.4,11.6]

NB using Gaussians (MAP) 5.4 [1.5,17.7] 0.0 [0.0,0.3] 0.1 [0.0,0.5]

NB using Gaussians (ML) 2.7 [0.5,13.8] 0.7 [0.4,1.3] 0.7 [0.4,1.3]

Linear classi�er (EER) 2.7 [0.5,13.8] 16.9 [15.0,19.0] 16.5 [14.6,18.6]

Logistic regression (MAP) 2.7 [0.5,13.8] 0.0 [0.0,0.3] 0.1 [0.0,0.5]

Logistic regression (EER) 0.0 [0.0, 9.4] 1.1 [0.6,1.8] 1.1 [0.7,1.8]

The di�erences in performance observed through the results in Table 6.10
between the quadratic and the linear classi�er on the one hand and their
respective naive Bayes counterpart on the other hand can be explained by
several reasons:

1. In the quadratic and linear classi�ers, no independence assumptions
are made. This results in an important increase in the number of
parameters to be estimated as compared to the naive Bayes classi�er,
where the independence assumptions are made. Since there is no large
training database available, the methods based on the naive Bayes
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classi�er that need only to estimate a small number of parameters do
have better generalization performances.

2. The quadratic and linear classi�ers have been determined taking into
account all values, including the extreme ones. This leads to a bias
in the positioning of the decision surfaces.

3. Another very important di�erence between the various classi�ers is
the value of the threshold. In the MAP and ML cases, the value
of the threshold is de�ned a priori, whereas in the EER case, the
threshold has been calculated on the training database to satisfy the
EER criterion.

6.4 The Multi-Layer Perceptron (MLP)

6.4.1 A neural network representative

To show the possibilities of neural networks, we have been using the most
typical representative of this family: the Multi-layer Perceptron (MLP).
Under certain conditions, a statistical justi�cation can be found for this
method [23]. A MLP is a neural classi�er that separates the training data
of the two classes by implementing a separation surface which can have any
arbitrary \
exible" shape [23]. The \
exibility" of the separating surface is
determined by the complexity of the architecture. We used a classical MLP
architecture with 3 neurons on the input layer (three scores coming from
three experts), 5 neurons on the hidden layer and one neuron (two classes)
on the output layer, sigmoidal activation functions for all neurons and the
Backpropagation training algorithm. Using sigmoidal activation functions,
the value of the output neuron lies in the interval [0,1], and the optimal
decision threshold is �xed at 0:5. Figure 6.7 shows the MLP architecture
we have used in our application.

We also tried to use the same MLP but with two output nodes (one for
each class), but this architecture does not give such good results as the one
using only a single output node and a decision threshold on 0:5. There are
two fundamental reasons that can explain this di�erence between perfor-
mance [23]. The �rst is that in the MLP with two output nodes there are
more weights that need to be estimated than in the MLP with only one
output node, and since we only have a small database, this leads to a less
optimal estimation. The second reason is that in the case of the MLP with
two output nodes, there is a complementarity constraint which links the
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Figure 6.7: Example of the Multi-Layer Perceptron architecture we have
used.

two outputs. This means that this constraint should be taken into account
in the training algorithm. But in the standard software implementations
of MLPs (such as the one available in Matlab's Neural Network Toolbox
we used) this is usually not done, which again leads to sub-optimal perfor-
mances of the MLP using two outputs as compared to the MLP with only
one output.

6.4.2 Results

Table 6.11 shows the results obtained by using the method presented above.

Table 6.11: Performance of mono-modal multi-method fusion modules.

Fusion module FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

Multi-layer Perceptron 0.0 [0.0, 9.4] 0.4 [0.2,0.9] 0.4 [0.2,0.9]
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6.4.3 Mixture of Experts

Another possible use of MLPs is in the framework of the so-called Mixture

of Experts [87]. This method has not been tested on the M2VTS database,
but we did investigate it for combining the outputs of segmental vocal
experts [171]. This method is therefore not included in this chapter, but it
is explained in section 9.4.4.

6.5 Comments

In theory [169], the normal usage for parametric statistical inference is when
the investigator knows the problem to be analyzed rather well. He knows
the physical laws that generate the stochastic properties of the data and
the functions to be found up to a �nite number of parameters. Estimating
these parameters using the data is considered to be the essence of statisti-
cal inference. In practice however these parametric methods also have to
be computationally feasible. Computational problems might occur in high-
dimensional cases, due to the so-called \curse of dimensionality". We are
not confronted with this problem, since we did opt for a decision fusion ap-
proach, which reduces the dimensionality of the problem. Furthermore, in
our application we do not know the problem that well, so we had to limit
ourselves to assume some of the most simple and most commonly used
statistical distributions for estimating the underlying probability distribu-
tions. These favorite distributions are typically members of the exponential
family.

When analyzing the results obtained by the parametric techniques we have
experimented more closely, it is interesting to see that the best TER re-
sults are obtained by the naive Bayes classi�er using the logistic regression
model. This model assumes that the underlying conditional probability dis-
tributions are members of the exponential family (which is a very loose con-
straint), but with the same dispersion parameters for both classes (which is
a very stringent constraint and we have indeed shown that in our applica-
tion the di�erent populations do not have the same dispersion parameters).
On the other hand we also have tested the same naive Bayes classi�er, but
assuming this time that the underlying conditional probability distributions
are Gaussians (and no other member of the exponential family), this time
allowing for di�erent dispersion parameters (i.e. variances) for the di�erent
populations. We also know that these assumptions are not satis�ed, since
the normality hypothesis is violated. The results obtained by this Gaussian
naive Bayes classi�er are not as good as those obtained by the naive Bayes
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classi�er using the logistic regression model. This suggests that at least
in our application deviations from the \equality of dispersion parameters"
assumption in the naive Bayes classi�er using a logistic regression model
are not as critical as deviations from the \Gaussian assumption" in the
Gaussian naive Bayes classi�er approach.
In any case, taking into account that for each method that we have experi-
mented the assumptions we have made are not ful�lled, the results obtained
by these parametric techniques in this application are surprisingly good.
This is probably due to the fact that there is not a lot of data available,
and therefore it is not possible to estimate a large number of parameters.
This could explain the relative success of the methods requiring the es-
timation of only a small number of parameters, even if the assumptions
regarding the underlying distributions are not completely ful�lled. This
phenomenon can be seen as an application of Ljung's \pragmatic princi-
ple" observation that, in practice, the role of (model) identi�cation is more
often that of �nding an approximate description, catching some relevant

features, than that of determining the true, exact dynamics [108].





Chapter 7

Non-parametric methods

7.1 Introduction

The purpose of this chapter is to present a few non-parametric techniques,
not to give an exhaustive overview of all existing methods. This chapter
starts by presenting a very simple and popular family of non-parametric
techniques. These voting techniques are sometimes referred to as k-out-of-n
voting techniques, where k relates to the number of experts that have to
decide that the person under test is a client, before the global voting clas-
si�er accepts the person under test as a client. After the voting methods,
another simple but very popular technique, the k Nearest Neighbor (k-NN)
technique, is presented with a number of variants. These variants include
a distance weighted and a vector quantized version of the classical k-NN
rule. This chapter ends by presenting the category of decision trees, by
means of an implementation of the C4.5 algorithm, which is probably the
most popular method in its kind.

7.2 Voting techniques

The �rst category of non-parametric or empirical techniques that we have
studied is the class of the k-out-of-d voting techniques [46]. The global
decision rule (obtained by fusing the hard decisions made by the d experts)
implemented by this class is very simple. It says to accept the identity
claim of the person under test if at least k-out-of-d experts decide that
the person under test is indeed a client. These methods are really very
simple, since they are only based on the actual hard decisions. They do
not take into account the soft decisions or scores and they do not analyze the

97
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earlier behavior of the expert (by calculating for instance some statistical
moments). For some values of k, particular decision fusion schemes are
obtained:

1. k = 1. This is the so-called OR rule. The identity claim is accepted
if at least one of the d experts decides that the person under test
is a client. Intuitively this strategy leads to a very indulgent fusion
scheme, which means that the acceptance will be fairly easy. This is
good news for the clients since it means that the FRR will tend to be
small, but bad news with respect to the protection against potential
impostors since the FAR will tend to be higher.

2. k = d. This is the so-called AND rule. The identity claim is accepted
only if all the d experts decide that the person under test is a client.
Intuitively this strategy leads to a very severe fusion scheme, which
means that the acceptance will be rather diÆcult. This is bad news
for the clients since it means that the FRR will tend to increase, but
good news with respect to the protection against potential impostors
since the FAR will tend to be smaller.

3. k = (d + 1)=2 This is the so-called MAJORITY rule. It is obviously
a compromise between the two previous rules.

Table 7.1 shows the results obtained by using the methods presented above
using our three experts. The threshold settings for the di�erent experts
have been calculated for each individual expert on the training dataset using
the EER criterion. There has been no attempt to optimize the threshold
settings of the di�erent experts in order to obtain the best performances
using a speci�c voting scheme. This kind of optimization study has been
undertaken in an exhaustive way in [135], but the generalization results on
the test set were very disappointing.

Table 7.1: Performance of mono-modal multi-method fusion modules.

Voting scheme FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

OR 0.0 [0.0, 9.4] 7.4 [6.1,8.9] 7.2 [5.9,8.7]

AND 8.1 [2.8,21.3] 2.0 [1.4,2.9] 2.2 [1.6,3.1]

MAJORITY 0.0 [0.0, 9.4] 3.2 [2.4,4.3] 3.1 [2.3,4.2]
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As has been announced, the OR rule leads to a small FRR, while the AND
rule assures a small FAR. The compromise strategy of the MAJORITY rule
o�ers in this particular case the best choice. When analyzing these results,
one should bear in mind the extreme simplicity of these methods.

7.3 A classical k-NN classi�er

The classical (also called pooled) k-NN classi�er [56, 164] is a very simple
classi�er that needs no speci�c training phase. The only things needed are
reference data points for both classes (clients, impostors). An unknown
(test) data point y is then attributed the same class label as the label of
the majority of its k nearest (reference) neighbors. To �nd these k nearest
neighbors the Euclidean distance between the test point and all the refe-
rence points is calculated, the obtained distances are ranked in ascending
order and the reference points corresponding to the k smallest Euclidean
distances are taken. The exhaustive distance calculation step during the
test phase leads rapidly to important computing times, which is the major
drawback of this otherwise very simple algorithm. This computing time
drawback can be solved for the testing phase by pre-calculating during the
training phase a so-called distance map. This distance map is nothing else
than a discrete version of the input space (all continuous expert score inter-
vals are quanti�ed) where with each point in this discrete space a class-label
is attached using the chosen k-NN rule. An unlabeled test point can then
labeled immediately by giving it the same label as that of the correspond-
ing discrete point on the distance map. The statistical justi�cation of this
method can be found in [23]. A special case of the k-NN classi�er can be
obtained when k = 1. In this particular case, the classi�er is called the
Nearest Neighbor (NN) classi�er.
Let k1 and k2 respectively be the number of client and impostor neighbors
(such that k1+k2=k), the decision rule is then given by:

k1 � k2

client
>
<

impostor
0

Notice that there is no explicit notion of a continuous decision threshold
for this type of classi�er. The only threshold being k, but since this is a
discrete number, it can not be used to trace a ROC. The results obtained
with this fusion module are shown in Table 7.2 as a function of k.
Comparing these results with those obtained in Table 3.1 shows the bene�ts
of combining several individual experts in a multi-modal system, even when
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Table 7.2: Veri�cation results for the k-NN classi�er.

k FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

1 8.1 [2.8,21.3] 0.0 [0.0,0.3] 0.2 [0.1,0.6]

2 8.1 [2.8,21.3] 0.0 [0.0,0.3] 0.2 [0.1,0.6]

3 8.1 [2.8,21.3] 0.1 [0.0,0.5] 0.3 [0.1,0.8]

4 8.1 [2.8,21.3] 0.1 [0.0,0.5] 0.3 [0.1,0.8]

using such a simple fusion module as in this case. It can also be observed
that in our typical application the number of neighbors k does not play an
important role and the best results are obtained for k = 1, which is the
NN-classi�er. This can be explained by the fact that the di�erent experts
perform already well individually (i.e. the two classes are well separated:
increasing the neighborhood then does indeed not improve performances).
Another, more important, observation is that there is a great unbalance be-
tween the large FRR and the small FAR (a lot of clients are being rejected
as impostors) [173]. A possible explanation for this undesired phenomenon
is the fact that there are 1332 impostor but only 37 client reference points.
This could indeed lead to the situation that for the \critical" client claims
(i.e. the client test points which are lying close to the separation surface
between the two classes), the impostor reference points in the chosen neigh-
borhood outnumber the client reference points. If that would be the case,
a possible solution to reduce the FRR could be to weight the importance
of the di�erent neighbors in the majority voting scheme.

7.4 A k-NN classi�er using distance weighting

In a distance weighted k-NN classi�er [164], the weighting of the k nearest
neighbors is done as a function of their respective Euclidean distance to the
test data point (the further a neighbor from the test data point, the smaller
its weight). This could work if there is a relatively large \gap" between the
two classes. In that case, a \critical" client access would have a small
number of client reference points that are lying close and a large number
of impostor reference points that are lying further away). The weighting
function we have chosen here is represented in Figure 7.1. It is a sigmoidal



7.5. A K-NN CLASSIFIER USING VECTOR QUANTIZATION 101

function, which gives the relative weight of a neighbor as a function of its
normalized distance (i.e. the Euclidean distance between the considered
neighbor and the test point divided by the Euclidean distance between the
(k+1)-th neighbor and the test point). Other weighting functions with the
same general sigmoidal shape, but with a di�erent position of the points of
in
exion, have also been tested. Unfortunately the results obtained using
this approach (whatever the chosen weighting function from the sigmoidal
class) are exactly the same as the ones shown in Table 7.2. Since distance
weighting does not seem to be able to counter the outnumbering problem,
this means that there is not a big \gap" between the two classes in our ap-
plication. Therefore we decided to use a more drastic approach by reducing

the number of impostor reference points.
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Figure 7.1: Typical distance weighting function.

7.5 A k-NN classi�er using vector quantization

Obviously reducing the number of impostor data points is not without risk
since this operation induces a loss of information. To try to minimize this
loss, a clustering technique which replaces the actual impostor reference
data points by a certain number of characteristic \codebook prototypes"
has been chosen. The clustering is performed during an explicit training
phase by the k-means algorithm [164], which has the advantage (compared
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to other classical clustering techniques) that it allows to �x a priori the
number of prototypes P. This property allows to choose the ratio of the
number of client and impostor prototypes. The k-means algorithm which
has been implemented in this thesis, uses the Euclidean distance measure
to divide the impostor reference data set into P clusters. Each cluster is
then replaced by the centroid of its respective samples. The results obtained
after this reduction operation are again the same for both previous discussed
k-NN classi�ers. They are shown in Table 7.3 for k = 1 (the value for which
the best results have been obtained) as a function of P. The last line in this
table (P=1332) corresponds to the classical k-NN classi�er. This time,
as opposed to the results obtained in the two previous sections, the FRR
and the FAR are both very close to zero at the same time. It can also be
observed that the FRR increases (and the FAR decreases) with P, as could
be expected. It is interesting to observe the variation of the two errors

Table 7.3: Veri�cation results as a function of P for a 1-NN classi�er using
vector quantization.

P FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

111 0.0 [0.0, 9.4] 0.5 [0.2,1.0] 0.5 [0.2,1.0]

333 2.7 [0.5,13.8] 0.4 [0.2,0.9] 0.5 [0.2,1.0]

666 2.7 [0.5,13.8] 0.4 [0.2,0.9] 0.5 [0.2,1.0]

1332 8.1 [2.8,21.3] 0.0 [0.0,0.3] 0.2 [0.1,0.6]

FRR and FAR as a function of P. At one extreme a FRR=0 is obtained
for P=111, indicating that a small number of impostor reference points
reduces the chances for a client to be rejected as an impostor. At the other
extreme a FAR=0 is obtained for P=1332, indicating that using all available
impostor reference points reduces the chances that an impostor is going to
be accepted as a client. The optimal number of impostor prototypes P
will depend on the cost-function as speci�ed by the application. The main
advantage for the vector quantization version, abstraction being made of the
cost-function, is the fact that the number of distance calculations needed
during the testing phase decreases rapidly with the reduction in the number
of impostor reference points. Nevertheless the overall computing time still
continues to be the major drawback for any kind of k-NN based classi�er.
Trying to reduce this amount of computing time has led us to use a decision
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tree based method. This is explained in the next section.

7.6 A decision tree based classi�er

Decision tree learning is a supervised classi�cation method in which the
learned function (using the training data) is represented by a decision
tree [121]. Learned trees can also be represented as sets of \if-then" rules
to improve human readability. Decision trees classify unknown instances
(i.e. test data) by sorting them down the tree from the root to some leaf
node, which provides the classi�cation of the instance. Each node in the
tree speci�es a test of some attribute of the instance, and each branch de-
scending from that node corresponds to one of the possible values for this
attribute. In our speci�c case (use of a decision tree as a fusion module),
these attributes are representing the scores of the instance obtained for
each of the di�erent experts. Figure 7.2 shows a typical binary decision
tree, which is a speci�c kind of decision tree where each node has exactly
two descending branches. This classi�er is thus based on recursive parti-

Root node

Leaf node

no yes

no
yes no yes

yesno

class 1 class 2

class 1 class 2 class 1

X < T1?

Y < T2? Z < T4?

Z < T3?

Intermediate node

Figure 7.2: Typical binary decision tree.

tioning of the sample space. Space is divided into boxes, and at each stage
in the procedure, each box is examined to see if it can be split into two
boxes, the split being parallel to the coordinate axes. In our application,
the C4.5 algorithm [143] has been chosen, which generates the decision tree
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top-down, starting with the question \which attribute should be tested at
the root of the tree?" To answer this question, each instance attribute is
evaluated using a statistical test to determine how well it alone classi�es
the training examples. The best attribute is selected and used as the test
at the root of the tree. A descendant of the root node is then created for
each possible value of this attribute. In the C4.5 algorithm, the measure
for determining the \best" attribute is the information gain. This measure
is used to select the best attribute at each step in growing the tree and it
is de�ned as the expected reduction in entropy caused by partitioning the
examples according to this attribute.
Formally, the entropy H(S) of a collection S containing both client and
impostor examples is de�ned as:

H(S) = �pc log2 pc � pi log2 pi (7.1)

where pc is the proportion of client examples in S and pi is the proportion
of impostor examples in S.
The information gain G(S;A) of an attribute A, relative to a collection of
examples S, is then de�ned as:

G(S;A) = H(S)�H(S=A) (7.2)

where the �rst term in the right hand side of the equation is the entropy
of the original collection S and the second term is the expected value of
the entropy after S is partitioned using attribute A. The expected entropy
described by this second term is the sum of the entropies of each subset Sv,
weighted by the fraction of examples that belong to Sv:

H(S=A) =
X

v2V alues(A)

jSvj
jSj H (SV ) (7.3)

where V alues(A) is the set of all possible values for attribute A, and SV is
the subset of S for which attribute A has value V .
This implies that continuous-valued attributes need to be incorporated
into the learning tree. This can be accomplished by dynamically de�n-
ing new discrete-valued attributes that partition the continuous attribute
value into a discrete set of intervals. In particular, for an attribute A that
is continuous-valued, the algorithm can dynamically create a new boolean
attribute Ac that is true if A < c and false otherwise. The only question is
how to select the best value for the threshold c. Clearly, one would like to
pick a threshold c that produces the greatest information gain. By sorting
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the examples according to the continuous attribute A, then identifying ad-
jacent examples that di�er in their classi�cation, it is possible to generate
a set of candidate thresholds midway between the corresponding values of
A. It can be shown that the value of c that maximizes information gain
must always lie at such a boundary [121]. These candidate thresholds can
then be evaluated by computing the information gain associated with each.

In our speci�c application, the C4.5 algorithm generates a binary tree
(which means that in each node a binary test is performed) using the
training data. But before the thus generated tree for classifying unknown
test points can actually be used, the tree needs to be pruned. This is
an application of the well-known Occam's razor principle, which pleads
for using the simplest hypothesis that �ts the data to avoid over-�tting

problems [23, 121]. Over-�tting reduces the generalization capability of a
decision tree (it can be compared with over-training in the case of a neural
network). After the generation of the decision tree using a training set,
the pruning is implemented using a bottom-up strategy on a validation set.
Starting at the leaf nodes, the tree is ascended and subtrees are removed
in intermediate nodes according to a certain criterion. The intermediate
node where the cut has been made becomes thus a leaf node. This new leaf
node is assigned the most common classi�cation of the training examples
associated with it. The pruning criterion applied in the C4.5 algorithm is
the reduced-error pruning, which stipulates that nodes are removed only if
the resulting pruned tree performs no worse on the validation data than
the original one.

Again there is no explicit presence of a decision threshold in this fusion
module, which means that again only a single point of the ROC is found.
The results obtained using the C4.5 algorithm are given in Table 7.4. As
with the k-NN based classi�er, the in
uence of reducing the number of
impostor data points has been studied by using the k-means clustering
algorithm.

The variation of FRR and FAR as a function of P shows very much the
same behavior as in the case of the k-NN based classi�er. The drawback
of this decision tree based method is that for smaller values of P it is
outperformed by the k-NN based classi�er. The advantage of the decision
tree with respect to the k-NN based classi�er resides in the lower computing
time.
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Table 7.4: Veri�cation results as a function of P for the C4.5 algorithm.

P FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

111 5.4 [1.5,17.7] 1.3 [0.8,2.1] 1.4 [0.9,2.2]

333 8.1 [2.8,21.3] 0.7 [0.4,1.3] 0.9 [0.5,1.6]

666 5.4 [1.5,17.7] 0.4 [0.2,0.9] 0.5 [0.2,1.0]

1332 8.1 [2.8,21.3] 0.3 [0.1,0.8] 0.5 [0.2,1.0]

7.7 Comments

In theory [169], the normal usage for non-parametric statistical inference is
when one does not have reliable a priori information about the statistical
law underlying the problem or about the function that one would like to
approximate. In practice one might also opt for non-parametric methods
if the parametric ones are not computationally feasible. The clear advan-
tage of non-parametric methods is that one does not need to assume a
certain distribution for the underlying probability distribution functions.
This advantage is however at the same time their greatest drawback, since,
to obtain similar performances, non-parametric methods tend to need more
training data than parametric methods.
When analyzing the results obtained by the non-parametric techniques we
have experimented more closely, it can be seen that the best TER results
are obtained by the classical NN classi�er and by the simple AND voting
classi�er. This is at least partially due to the typical application we are
working with. Indeed, as already mentioned, these kind of applications
always generate much more impostor than client examples. This means
that methods which minimize FAR are always going to have a good TER
(at least the way we have de�ned the TER). The AND method is typically
such a technique, since it requires all experts to decide that the person
under test is a client before the identity claim is accepted. The good TER
results obtained in the case of the classical NN classi�er are also easy to
understand, since the number of impostor prototypes is so large that the
probability of classifying an unknown and critical case as a client (which
could lead to a FAR) is negligible. And, in the same context, this also ex-
plains why the TER results are getting worse when the number of impostor
prototypes is reduced.



Chapter 8

Comparing the di�erent

methods

8.1 Introduction

This chapter starts with a general comparison between the di�erent meth-
ods used. After that, the next section is devoted to the experimental com-
parison of classi�ers, where we do not only present the results obtained
during the test phase, but also during a subsequent validation phase. In
the same section, we discuss the statistical signi�cance of the di�erences
observed between the presented methods. In the next section, we present
a detailed comparison of the di�erent methods. And �nally, this section
is followed by a visualization in a very simple bi-dimensional situation of
the decision boundaries or the decision mechanisms implemented by most
of the fusion modules.

8.2 Parametric versus non-parametric methods

As already mentioned in chapter 5, the optimal fusion modules are imple-
mented by a Bayesian or a Neyman-Pearson test. These tests do however
require the knowledge of the underlying probability distributions. Typi-
cally, parametric expressions for the probability distributions in a compu-
tationally convenient form are needed. Generally, parametric methods are
preceded by a model veri�cation step where the assumed distributions are
tested, using for example, Kolmogorov-Smirnov goodness-of-�t type tests.
If the veri�cation tests are successful and if the parametric model is com-
putationally convenient, then this parametric method should be used. But,

107
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even in the case where these veri�cation tests are not successful, but where
the deviations from the pre-supposed model are small, this method can
be used to get at least a quick and approximated result. It is only in the
case of computationally inconvenient forms or large deviations from a pre-
supposed model, that parametric methods assuming speci�c distributions
do not make sense. In that speci�c case, one can still try another type of
parametric method, that does not pre-supposes any speci�c distribution:
the Multi-Layer Perceptron. This kind of method can learn the underly-
ing distributions, provided there are enough training data available. In
our multi-modal context, this means that we would need huge multi-modal
databases to be able to train correctly an MLP which learns the under-
lying multi-dimensional probability distributions. At this moment, such
large multi-modal databases are not readily available. It is furthermore
not always computationally attractive to try to train one very huge MLP.
A possible way out of these very stringent requirements, is to assume that
the di�erent experts that are being used are class-conditionally indepen-
dent. This assumption allows then to use one MLP per expert instead of one
global MLP for all experts. Furthermore, this way the training of the dif-
ferent expert-based MLPs can be done using mono-modal databases, since
this time the estimated probability distributions are mono-dimensional. In
the case of computationally inconvenient forms or large deviations from a
pre-supposed model, where either the independence hypothesis is not re-
alistic and in which there are no large training databases available, or the
global MLP is too complex, one can try to use so-called non-parametric
methods.

8.3 Experimental comparison of classi�ers

8.3.1 Test results

Table 8.1 gives a global view of the best veri�cation results obtained on the
test set with each classi�er we have been using.
The �rst and most important observation we can make when looking at
the results obtained by the fusion methods that we have experimented is
that, in our application, fusion always improves the system performances
beyond those of even the best single expert. The second observation is that
these results seem to indicate that, generally speaking and again in our
application, the class of the parametric methods does perform better than
the class of non-parametric methods. Two indications that this statement
is true in our case are that:
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Table 8.1: Summary table of veri�cation results on the test set of di�erent
fusion methods.

Method FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

ML 2.7 [0.5,13.8] 0.7 [0.4,1.3] 0.7 [0.4,1.3]

MAP 5.4 [1.5,17.7] 0.0 [0.0,0.3] 0.1 [0.0,0.5]

LR 2.7 [0.5,13.8] 0.0 [0.0,0.3] 0.1 [0.0,0.5]

QC 0.0 [0.0, 9.4] 2.4 [1.7,3.4] 2.3 [1.6,3.2]

LC 0.0 [0.0, 9.4] 3.1 [2.3,4.2] 3.0 [2.2,4.0]

MLP 0.0 [0.0, 9.4] 0.4 [0.2,0.9] 0.4 [0.2,0.9]

OR 0.0 [0.0, 9.4] 7.4 [6.1,8.9] 7.2 [5.9,8.7]

AND 8.1 [2.8,21.3] 0.0 [0.0,0.3] 0.2 [0.1,0.6]

MAJ 0.0 [0.0, 9.4] 3.2 [2.4,4.3] 3.1 [2.3,4.2]

k-NN 8.1 [2.8,21.3] 0.0 [0.0,0.3] 0.2 [0.1,0.6]

k-NN + VQ 0.0 [0.0, 9.4] 0.5 [0.2,1.0] 0.5 [0.2,1.0]

BDT 8.1 [2.8,21.3] 0.3 [0.1,0.8] 0.5 [0.2,1.0]

1. The mean TER calculated over the 6 parametric methods (1:10) is
smaller than the mean TER calculated over the 6 non-parametric
methods (1:95).

2. The mean rank (\1" being attributed to the \best" method (i.e. the
method with the lowest TER), \2" to the \second best", and so on)
calculated over the 6 parametric methods (5:83) is smaller than the
mean rank calculated over the 6 non-parametric methods (7:17).

From a �rst, intuitive, analysis it would seem like we �nd here three groups
of methods. A �rst group with TER values lying between 0:1 and 0:7, a
second group with values between 2:3 and 3:1, and �nally the \OR"-voting
method with a TER result of 7:2. More speci�cally, the logistic regression
method (a parametric method) gives the overall best TER results, and the
\OR" voting scheme (a simple non-parametric method) gives the overall
worst TER results. To verify the good results obtained with the logistic
regression model, we did a validation test using this method.
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8.3.2 Validation results

These validation results have been obtained on the same M2VTS database,
but this time using a more sophisticated protocol: the so-called leave-one-

out method [49]. In this case the M2VTS database has been split in two
groups: group 1 consisting of 18 persons and group 2 containing 19 persons.
These two groups have been used in turn respectively as training and testing
data set for the fusion module, in such a way that if one group was used
for training, the other one was used for testing. The purpose of this is
split is to introduce a total separation between the training and the testing
data sets. The fact that therefore not only the impostors, but also the
clients are di�erent in the training and the testing data sets, has as a direct
consequence that the use of individual thresholds is not possible. For each
group, client and impostor accesses are generated, rotating through the �rst
four shots of the database. For group 1 this leads to 4�18=72 client and
4�18�17=1.224 impostor accesses. For group 2 the same method leads to
4�19=76 client and 4�19�18=1.368 impostor accesses. So this strategy
produces in total 148 client and 2.592 impostor tests. This validation test
protocol is visualized in Figure 8.1, and it is the same as the one described
in [135].
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Figure 8.1: Visualization of the leave-one-out validation protocol.

The results obtained using this leave-one-out validation protocol are given
in Table 8.2. This validation experiment shows indeed that the logistic re-
gression does perform as well as predicted by the tests done using the origi-
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nal, more limited, test protocol. The veri�cation performances obtained on
the validation set extracted from this small database are extremely good,
but when trying to generalize one should keep in mind the limitations of
the described work.

Table 8.2: Validation of the logistic regression using a leave-one-out proto-
col on the M2VTS database.

Method FRR (%) FAR (%) TER (%)
(148 tests) (2.592 tests) (2.740 tests)

LR 0.0 [0.0,2.5] 0.0 [0.0,0.2] 0.0 [0.0,0.1]

8.3.3 Statistical signi�cance

As can be observed in Table 8.1, the FAR, FRR and TER results from
most of the methods used are lying very close to one another and they have
con�dence intervals which are overlapping each other in almost all cases.
This means that, based on such FAR, FRR or TER results, it is not easy
to decide without hesitation which method to use. That is why it would be
very useful to have a systematic method which detects statistical signi�cant
di�erences between the FAR, FRR and/or TER results obtained by all the
methods used.

In the case the scores obtained by the di�erent fusion modules are indepen-
dently drawn from normally distributed populations with the same vari-
ance, this problem can be solved by performing a basic analysis of variance
(ANOVA), supplemented with so-called ad-hoc tests [123]. The ANOVA
tells us if there are statistical signi�cant di�erences between the di�erent
methods, and the ad-hoc tests (Least Signi�cant di�erence (LSD), Dun-
can's Multiple Range Test and many others) tells us where the statistical
signi�cant di�erences exactly are. It is reminded here that the statistical
comparison needs to be done between all the methods at the same time (as
opposed to a series of pairs-wise comparisons), to avoid the in the statis-
tical community well-known e�ect of dramatically increasing the type one
error [114, 159].

Applying the ANOVA method in our case leads to a �rm rejection of the
hypothesis H0, which means that there are signi�cant di�erences between
the presented fusion modules. To �nd out where these statistical signi�cant



112 CHAPTER 8. COMPARING THE DIFFERENT METHODS

di�erences are, we did use Duncan's Multiple Range Test. The result of
this ad-hoc test with the highest power (i.e. the method with the lowest
error of type II) is that three di�erent groups of methods are signi�cantly
distinct. These groups are the following ones:

1. the �rst group (the one with the best performances) is formed by the
following methods: LR, MAP, AND, k-NN, MLP, k-NN + VQ, BDT,
and ML;

2. the second group consists of: QC, LC, and MAJ;

3. and �nally the worst method in our case is the \OR"-vote.

However, since some of the fusion modules we use generate hard binary
decisions as their output, we are, strictly speaking, not allowed to perform
an ANOVA. Therefore we do have to use non-parametric methods. For the
same reason as in the parametric case, it is here again absolutely necessary
to compare all methods at the same time. In [51], �ve approximate sta-
tistical tests are presented for determining whether one learning algorithm
out-performs another one on a particular learning task, but unfortunately
these tests only allow a two-by-two comparison.
We believe that, depending on the discrete or continuous aspect of the
output of the fusion module, two di�erent non-parametric statistical tests
can be applied to test the hypothesis H0: all used fusion methods are
of equal performance, against the alternative H1: there are variations in
performance. If one or more of the outputs of the fusion modules are binary
or hard decisions, then Cochran's Q test for binary responses is suitable
to solve this problem. If however the outputs of all fusion module are a
continuous or soft decisions, then Page's test for ordered alternatives could
be used. The latter test has the advantage that it has more power than the
former [159, 161].
Since in this speci�c case there are several fusion modules with binary (in
casu \0" for a reject and \1" for an acceptance) outputs, the only possibility
is to use Cochran's Q test. In conventional terms of this test, the di�erent
fusion methods are called the treatments and the di�erent access tests are
called the blocks. If we have t treatments and b blocks with binary responses,
the appropriate test statistic is:

Q =
t (t� 1)

P
i T

2
i � (t� 1)N2

tN �Pj B
2
j

where Ti is the total of 0's and 1's for treatment i, Bj is the total for block j
and N is the grand total. The exact distribution of Q is diÆcult to obtain,
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but for large samples Q has approximately a chi-squared distribution with
t� 1 degrees of freedom [161].

The application of Cochran's test for binary responses gives in our case
a Q value which is much larger than the corresponding critical value of
the corresponding chi-squared distribution, which leads us to reject the
hypothesis H0. This means that there are signi�cant di�erences between
the presented fusion methods, which is the same conclusion as the one
obtained by performing the ANOVA. And although Cochran's test does
not say where exactly these di�erences are, we did however establish one
thing for sure: the best method (which in our case is the logistic regression)
is statistically signi�cant better than the worst method (which in our case
is the \OR" voting scheme). This result is rather trivial, since for these
two \extreme" methods the 95% con�dence intervals do not overlap at all.

To conclude this section it can be seen that the results of the ANOVA
and ad-hoc tests (although strictly speaking not allowed) do reinforce our
�rst, intuitive approach. The allowed Cochran's Q test does con�rm the
results of the ANOVA, but unfortunately we did not �nd a non-parametric
equivalent for the ad-hoc tests. Combining all this information leads us to
the conclusion that there is no statistically justi�ed evidence to prefer one
speci�c method from the �rst (best performing) group above another one
from the same group.

8.4 Visual interpretations

We have already pointed out that no single method is going to be optimal
for all applications. A possible help for choosing the methods to investigate
is the visual interpretation of the decision boundaries or mechanisms they
implement. Indeed, if the di�erent populations involved could be repre-
sented, then it would be possible to �gure out which decision boundaries
(and thus which methods) would �t best the application. This is obviously
only possible in a simple two-dimensional scenario. In appendix F, some
typical visual representations of decision boundaries and decision mecha-
nisms of popular classi�ers are presented.

8.5 Comments

The �rst and most important observation we can make when looking at the
results obtained by the fusion methods that we have experimented is that,
in our application, fusion always improves the system performances beyond
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those of even the best single expert. The second observation is that these
results seem to indicate that, generally speaking and again in our appli-
cation, the class of the parametric methods does perform better than the
class of non-parametric methods. More speci�cally, the logistic regression
method (a parametric method) gives the overall best TER results, and the
\OR" voting scheme (a simple non-parametric method) gives the overall
worst TER results. Furthermore, the validation experiment which has been
performed, has con�rmed the good performances of the logistic regression
model.
The strong preference we have developed in our case for the logistic regres-
sion is based on the following considerations:

1. logistic regression did obtain the least number of errors (one single
error on 1369 access tests) on the M2VTS database;

2. logistic regression uses the soft decision scores of the di�erent experts,
which do contain more information than just the binary hard decision;

3. logistic regression is the parametric method that needs the smallest
number of coeÆcients to be estimated. The fact that this is a good
property can be justi�ed by a combination of the \simplicity-favoring"
idea of Occam's razor principle and the earlier mentioned \pragmatic
principle" result obtained by Ljung.

In this chapter on comparing di�erent fusion modules, we have added two-
dimensional visualizations of the decision boundaries or decision mecha-
nisms of most of the classi�ers that we have discussed. This could be
useful in order to determine which methods to select in a given application.



Chapter 9

Multi-level strategy

9.1 Introduction

In this chapter we present a multi-level decision fusion strategy that allows
to gradually improve the performances of an automatic biometric identity
veri�cation system, while limiting the investments to the strictly necessary.
This chapter is an improvement and an extension of what we have presented
in [176, 178].

9.2 A multi-level decision fusion strategy

In the most general case, experts do have non-zero FA and/or FR errors.
This is due to the fact that, generally speaking, the classes are not com-
pletely separated in the measurement space. Furthermore, both these errors
are increased by the measurement noise. A solution to solve this problem,
which is detailed in section 9.3, consists in combining the results obtained
by one single expert over multiple instances obtained during multiple tests
(temporal fusion). This way we can e�ectively reduce the variance of the
results, which allows to improve the baseline system performances without
having to modify the originally chosen approach. If these performances do
not satisfy the end-user's needs, we can pass on to the next improvement.

If we know the statistical distributions of the results obtained by each
veri�cation expert for either class (clients, impostors), then we can use
the Bayesian decision rule which allows us to operate at the minimal error
rate [56]. The classi�cation error is going to be zero only in the case where
the two distributions are not overlapping at all. We will only be able
to reduce the two types of error rate (FAR, FRR) at the same time by
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increasing the number of examples (training data), which also increases the
power of the statistical test. In other words if we use more training data
then we will be able to reduce the variances of the estimators of the real
parameters of the distributions. Very often though we only have access to a
limited set of training data, which generally means that using this approach,
the possible improvements may be limited. Another way to reduce these
two error rates is then to combine the results obtained by di�erent experts
using the same modality. This type of fusion allows to increase the system
performance if the correlation of the errors that the di�erent experts make
is not equal to one. This improvement in performance will be bigger when
the results (and the errors) obtained by the di�erent experts are more de-
correlated, since the information gain increases with the de-correlation. In
section 9.4, we will present such a mono-modal multi-expert system based
on the visual biometric modality. If system performance after both types
of mono-modal fusion still does not meet the end-user's needs, it is possible
to go on to the next step.
In a third step we can hope to improve the performances even more by �nd-
ing characteristics which increase the separability of the hypotheses under
test by increasing the dimensionality of the feature-space. To achieve this it
is possible to use supplementary biometric modalities. The discrimination
between the two distributions (clients, impostors) will be easier if the cor-
relation between the di�erent biometric modalities is small. We will study
this case in section 9.5 for vocal and visual biometric modalities.

9.3 Mono-modal mono-expert fusion

9.3.1 Introduction

The �rst step in the proposed strategy is to use a temporal integration

in order to improve the performances of an identity veri�cation system
by reducing the variance on the measurements. An application of this
technique is presented in [100]. The authors suppose in this paper on the
one hand that the decision to accept (!1) or to reject (!2) a person is based
on the a posteriori probability of classes P (!j jxi); j = 1; 2 and that, on the
other hand, they dispose of multiple instances xi of biometric measures
coming from the single modality. It is also supposed that the di�erent
measurements xi have been acquired under the same circumstances and
that they can be considered to be multiple measurements which are di�erent
only by their noise component. This way the a posteriori class conditional
probabilities can also be considered as noisy estimates of the nominal value
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of this probability, i.e.:

P (!j jxi) = P (!jjx) + �(!jjxi):

This way, better estimations P̂ (!jjx) of this a posteriori probability can be
obtained by combining the noisy estimations either in a linear manner or
by using rang order statistics. According to this study, the most interesting
noise-reducing temporal fusion methods are the mean and the median rules,
which are respectively given by the following two equations :

P̂ (!j jx) = 1

R

RX
i=1

P (!jjxi):

P̂ (!j jx) = medRi=1P (!jjxi):

9.3.2 Results

We have applied the principles exposed in the referenced paper [100] to
the pro�le expert [138]. For these experiments the expert uses only the
image part of the multi-modal M2VTS database. As can be observed,
Table 9.1 shows indeed a reduction in the veri�cation error when the num-
ber of instances N increases. The performance gain is very spectacular at
the beginning of a sequence but levels of after the integration of the �rst
instances.

Table 9.1: Veri�cation error as a function of the number of instances N.

Method N FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

Mean 1 18.9 [9.5,34.2] 15.6 [13.8,17.7] 15.7 [13.9,17.7]

Mean 2 8.1 [2.8,21.3] 11.8 [10.2,13.6] 11.7 [10.1,13.5]

Mean 3 8.1 [2.8,21.3] 9.5 [ 8.1,11.2] 9.5 [ 8.0,11.2]

Median 1 18.9 [9.5,34.2] 15.6 [13.8,17.7] 15.7 [13.9,17.7]

Median 2 13.5 [5.9,28.0] 10.4 [ 8.9,12.2] 10.5 [ 9.0,12.3]

Median 3 8.1 [2.8,21.3] 11.9 [10.3,13.8] 11.8 [10.2,13.7]
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9.4 Mono-modal multi-expert fusion

9.4.1 Introduction

The combination of multiple experts using the same (biometric) modality
is a widely used concept. We can cite for instance [8, 29, 58, 67, 90, 139,
160, 187].

The two experts we have used here are the previous pro�le image ex-
pert [138] which we have combined with the frontal image expert [116].
Although these two experts examine the same generic biometric modality
(visual appearance), one can intuitively feel that they will probably be at
least partially de-correlated. In fact an indication of this de-correlation can
be given by the mean correlation coeÆcient between the scores of the pro-
�le and the frontal image experts for a same person (note that these are
class-conditional scores). This mean value in our application is typically
less than 25 %, which underpins our intuitive feeling. A graphical repre-
sentation can be found in Figures 9.1 and 9.2, where a typical example of
the class-conditional scores is plotted for both experts and for both classes.
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Figure 9.1: Typical scatter-plot of the client scores of the pro�le expert as
a function of those of the frontal expert.
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Figure 9.2: Typical scatter-plot of the impostor scores of the pro�le expert
as a function of those of the frontal expert.

9.4.2 Methods

To show the possibilities of this mono-modal multi-expert fusion, we have
been using �ve typical simple decision fusion modules such as: voting meth-
ods (AND, OR), linear (LC) and quadratic (QC) classi�ers and a Multi-
layer Perceptron (MLP). Under certain conditions, a statistical justi�cation
can be found for all these methods [23, 46, 56, 61, 164].

QC This classi�er separates the training data of the two classes by imple-
menting a quadratic separation surface (see 6.3.7).

LC This classi�er separates the training data of the two classes by imple-
menting a linear separation surface (see 6.3.7).

MLP This classi�er separates the training data of the two classes by imple-
menting a separation surface which can have any arbitrary \
exible"
shape (see 6.4).

OR To accept a person under test as a client, it is suÆcient that one of
the experts accepts that person as a client (see 7.2).

AND To accept a person under test as a client, it is necessary that all of
the experts accept that person as a client (see 7.2).
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9.4.3 Results

Table 9.2 shows the results obtained by using typical simple decision fusion
modules such as: voting methods (AND, OR), linear (LC) and quadratic
(QC) classi�ers and a Multi-layer Perceptron (MLP).

Table 9.2: Performance of mono-modal multi-expert fusion modules.

Fusion module FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

QC 2.7 [0.5,13.8] 10.1 [ 8.6,11.8] 9.9 [[ 8.4,11.6]

LC 2.7 [0.5,13.8] 16.9 [15.0,19.0] 16.5 [14.6,18.6]

MLP 5.4 [1.5,17.7] 3.2 [ 2.4, 4.3] 3.3 [ 2.5, 4.4]

OR 0.0 [0.0, 9.4] 40.4 [37.8,43.1] 39.3 [36.7,41.9]

AND 8.1 [2.8,21.3] 2.0 [ 1.4, 2.9] 2.2 [ 1.6, 3.1]

By comparing the results obtained on the M2VTS database and presented
in Table 9.2 with those of Table 9.1, it can be seen that this example
of a mono-modal multi-expert data fusion e�ectively allows to improve the
system performances beyond those of the previous lower level (mono-modal
mono-expert) approach.

9.4.4 Combining the outputs of segmental vocal experts

Another example of mono-modal multi-expert data fusion is presented
in [171]. In this case, segmental approaches to text-independent speaker
veri�cation are tested on a subset of the NIST-NSA'98 speaker evalua-
tion database. Unlike the schemes based on Large Vocabulary Continu-
ous Speech Recognition (LVCSR) with previously trained phone models,
the systems used in this approach are based on units derived in an un-
supervised manner using the ALISP (Automatic Language Independent
Processing) tools [42, 134]. The speech segmentation is achieved using a
temporal decomposition (TD) [4, 17] followed by unsupervised clustering.
Among several available algorithms for performing this clustering (Ergodic
HMM, self-organizing map, etc.), Vector Quantization (VQ) was chosen
for its simplicity. The VQ codebook is trained by a k-means algorithm
with binary splitting [68]. TD and VQ provide a symbolic transcription of
the data in an unsupervised way. Each vector of the acoustic sequence is
declared as a member of one class (which is a hard decision), determined
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through the segmentation and the labeling. The number of classes is �xed
by the number of centroids in the VQ codebook. In our experimental work,
8 classes have been used. Speaker modeling is then done independently
for each class of speech sounds using the mixture of Gaussian distributions
(GMM) [150, 151]. The next step to be performed is the fusion of the scores
generated by these di�erent models.
Among the techniques to merge the scores of the 8 class-dependent scores,
logistic regression and a method based on the Mixture of Experts tech-
nique [87], were investigated.
The results obtained by the logistic regression are presented in Figure 9.3
for the training data and in Figure 9.4 for the test data.
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Figure 9.3: Comparison of the results of the 8 di�erent classes (in green),
the mean of these classes (in black) and the logistic regression (in red),
obtained on the training data.

The underlying idea for the approach based on the paradigm of the mix-
ture of experts is that we are not sure about the quality of the original
classi�cation of the di�erent segments. Indeed, a given segment has been
attributed the label of the nearest class prototype by a hard decision, but
we did not use the information hidden in the distances towards the 7 other
class prototypes. This leads us to think that it might be interesting to
feed all segments to all segmental experts in parallel (which still have been
trained on their respective labeled segments as before), whatever the label
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Figure 9.4: Comparison of the results of the 8 di�erent classes (in green),
the mean of these classes (in black) and the logistic regression (in red),
obtained on the test data.

of that particular segment might be. To weight the likelihood ratio outputs
LLRi of each of the segmental experts, we add a MLP, which will serve as
gating network. This gating network receives the same acoustic vectors as
input as the segmental experts, has 20 hidden neurons with tanh activa-
tion functions, and has eight output neurons with softmax [23] activation
functions. This softmax function assures that the outputs Wi of the gating
network sum to unity and are non-negative, thus implementing the (soft)
competition between the di�erent segmental experts [122].

Formally, the i-th output Wi of the gating network is calculated as follows:

Wi =
exp(zi)P8
j=1 exp(zj)

; (9.1)

where the zj are the gating network outputs before thresholding.

These 8 di�erent output values Wi are then used to weight the 8 outputs
LLRi of the 8 segmental experts in the following manner:

Total LLR =

8X
i=1

Wi � LLRi
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The gating network is trained using speech segments from the claimed
speaker. For these speech segments, the target vector is 1 for the output
neuron corresponding with the largest LLRi, and 0 for the 7 other outputs.
During the test phase, the 8 output neurons of the gating network are
going to vary with the presented input segment. This means that if an
input segment is lying close to k class segmentation prototypes, this will
be translated by the fact that k di�erent output neurons will tend to have
signi�cant outputs. In this manner, k segmental experts will signi�cantly
and proportionally contribute to the total LLR.

The structure of this data fusion module is represented in Figure 9.5.
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Figure 9.5: Combining the outputs of the di�erent segmental experts.

The testing of this mixture of experts method is actually in progress.

9.4.5 Combining the outputs of global vocal experts

In the same context of mono-modal multi-expert fusion, the logistic regres-
sion model has been experimented on the data of the NIST-NSA'99 speaker
veri�cation evaluation campaign. This data set contains 1.311 male client
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accesses, 14.617 male impostor accesses, 1.846 female client accesses, and
19.846 female impostor accesses. In this context we have fused in total 12
vocal experts, 6 from the ELISA consortium (ENST, IDIAP, IRISA, LIA,
RIMO, VERE) and 6 from other participants (A2RT, Dragon, Ensigma,
IITM, MIT, OGI). The training of the logistic regression model has been
done using the male data (15.928 accesses) and the testing has been per-
formed on the female data (21.692 accesses). The EER results before and
after fusion are shown in Table 9.3.

Table 9.3: Comparison of the EER performances of the best single expert
versus those of a fusion module based on the logistic regression model (LR).

Experts Best single expert EER (%) LR Fusion EER (%)
(21.692 tests) (21.692 tests)

ELISA (6) 12.0 [11.6,12.4] 12.0 [11.6,12.4]

Others (6) 10.0 [ 9.6,10.4] 8.0 [7.6, 8.4]

All (12) 10.0 [ 9.6,10.4] 7.0 [6.7, 7.3]

When looking at the results of the 6 submissions coming from the ELISA
consortium, it can be seen that the EER for the best single expert is the
same as the EER obtained after fusing the 6 experts.
This phenomenon can be explained by the following observations:

1. The 6 vocal experts coming from the ELISA consortium are very
correlated, since most of them are directly derived from the same
baseline GMM-based method. This implies that the de-correlation
of the errors of these 6 experts will be rather small, so the potential
gain of the fusion process (i.e. the distance between the DET-curves
before and after fusion) is also likely to be small.

2. The coeÆcients of the logistic regression are optimized for the operat-
ing point speci�ed by the minimization of the cost function CDET , as
de�ned by NIST1. This operating point is not the EER, but a point
which is lying far more to the left, because of the extreme unbalance
between the two weighting factors. This means that the DET-curve
after fusion will be optimized in the neighborhood of the NIST oper-
ating point and not around the EER.

1The NIST cost function CDET is a weighted sum of the FAR and FRR error rates:
CDET = 0:1� FRR+ 0:99� FAR [142].
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The observation that the DET-curves representing the di�erent systems
used in the ELISA consortium are lying close together, combined with the
observation that the coeÆcients of the logistic regression are optimized
around the NIST operating point can indeed account for the fact that the
EER after fusion is not better than the EER of the best single expert. This
phenomenon can be observed in Figure 9.6, where the green curves repre-
sent the results of the 6 ELISA experts and the red curve shows the results
obtained by the logistic regression fusion module. The NIST operating
point for each DET-curve is shown by the respective black plus-sign.
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Figure 9.6: DET-curves presenting the results of the 6 ELISA experts (in
green), and of the logistic regression fusion module (in red).

The DET-curves obtained in the testing phase using all 12 vocal experts
are presented in Figure 9.7. The green curves represent the results of the 6
ELISA experts, the blue curves represent the results of the 6 other experts
and the red curve shows the results obtained by the logistic regression fusion
module. Observing these results it can be seen that fusing the results of 12
vocal experts using a logistic regression model improves the global system
performances beyond those of the best single expert.
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Figure 9.7: DET-curves presenting the results of the 6 ELISA experts (in
green), of the 6 other experts (in blue), and of the logistic regression fusion
module (in red).

9.5 Multi-modal multi-expert fusion

The third step in the proposed development strategy is to fuse multiple
experts which are based on multiple (biometric) modalities. This approach
has, for instance, been used in the following references [33, 40, 50, 54, 92,
100].

This step is in fact nothing else than what has been presented in this work
in the �rst eight chapters. For the ease of the reader, Table 9.4 repeats
the best veri�cation results obtained on the test set with each classi�er we
have been using in this work.

By comparing the results obtained on the M2VTS database and presented
in Table 9.4 with those of Table 9.2, it can be seen again that this example
of a multi-modal multi-expert data fusion e�ectively allows to improve the
system performances beyond those of the previous lower level (mono-modal
multi-expert) approach.
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Table 9.4: Summary table of veri�cation results on the test set of di�erent
fusion methods.

Method FRR (%) FAR (%) TER (%)
(37 tests) (1332 tests) (1369 tests)

ML 2.7 [0.5,13.8] 0.7 [0.4,1.3] 0.7 [0.4,1.3]

MAP 5.4 [1.5,17.7] 0.0 [0.0,0.3] 0.1 [0.0,0.5]

LR 2.7 [0.5,13.8] 0.0 [0.0,0.3] 0.1 [0.0,0.5]

QC 0.0 [0.0, 9.4] 2.4 [1.7,3.4] 2.3 [1.6,3.2]

LC 0.0 [0.0, 9.4] 3.1 [2.3,4.2] 3.0 [2.2,4.0]

MLP 0.0 [0.0, 9.4] 0.4 [0.2,0.9] 0.4 [0.2,0.9]

OR 0.0 [0.0, 9.4] 7.4 [6.1,8.9] 7.2 [5.9,8.7]

AND 8.1 [2.8,21.3] 0.0 [0.0,0.3] 0.2 [0.1,0.6]

MAJ 0.0 [0.0, 9.4] 3.2 [2.4,4.3] 3.1 [2.3,4.2]

k-NN 8.1 [2.8,21.3] 0.0 [0.0,0.3] 0.2 [0.1,0.6]

k-NN + VQ 0.0 [0.0, 9.4] 0.5 [0.2,1.0] 0.5 [0.2,1.0]

BDT 8.1 [2.8,21.3] 0.3 [0.1,0.8] 0.5 [0.2,1.0]

9.6 Comments

From the veri�cation results in Table 9.4, it can be seen that this example
of multi-modal multi-expert fusion e�ectively allows to improve the system
performances beyond those of the two previously presented lower level
(mono-modal mono-expert and mono-modal multi-expert) approaches.
This shows that on the M2VTS database and using our three experts,
it is possible to gradually improve performances of biometric identity
veri�cation systems, by increasing the number of experts and, eventually,
the number of modalities. Data fusion can thus be used in an identity
veri�cation system at di�erent levels.

The �rst level is the temporal fusion of results obtained by a single expert
(using only one biometric modality) to reduce the measurement variance.

A second level can be reached when combining the results obtained by
di�erent experts, working on the same biometric modality, to minimize the
classi�cation errors by relying on the de-correlation of the errors made by
the di�erent experts. In this context we did not only combine successfully
the (highly de-correlated) pro�le and frontal face expert using the M2VTS
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database. Indeed, we also tested logistic regression on the combination of
highly correlated segmental as well as global vocal experts using the NIST-
NSA databases. And, although performance improvements are obviously
not as spectacular as in the de-correlated case, we also did obtain signi�cant
performance improvements if we compare with to those of the best single
expert.
Finally, the third level of application is to reduce the classi�cation errors
even more by trying to increase the separation between the distributions of
the two populations by increasing the dimension of the space using di�erent
biometric modalities, which should be as de-correlated as possible.
This global strategy has the great advantage to gradually improve the per-
formances of an identity veri�cation system.



Chapter 10

Conclusions and future work

10.1 Conclusions

The objective of this thesis is to contribute to the multi-modal identity
veri�cation by the use of data fusion techniques. Three di�erent experts
derived from two biometric modalities (vocal and visual information) were
used in this study. This choice was mainly dictated by the complementarity
(behavioral versus physiological) of these two modalities and by the fact
that these three experts are very easy to integrate in a low-cost platform
such as a PC equipped with a microphone and a CCD camera. The out-
puts of the three experts, which we have called scores, are then presented
in parallel to a fusion module. This fusion module implements either a
parametric or a non-parametric classi�cation method, and takes the �nal
decision with respect to the acceptance or the rejection of the identity claim
of the person under test.

After an introduction (chapter 1) stating the goal and the structure of this
thesis, the remainder of this work has been divided in two parts.

In the �rst part general issues related to automatic multi-modal identity
veri�cation systems were presented in three chapters. In chapter 2 we have
seen that each biometric technology has its strengths and limitations, and
no single biometric is expected to e�ectively meet the needs of all appli-
cations. We have also seen that voice is one of the most popular behav-
ioral biometrics, thanks to its high acceptability and its user-friendliness.
And since in a multi-modal approach it is wise to complement a behav-
ioral modality with a physiological one, we have chosen to add the visual
modality. In chapter 3 we have analyzed the performances of three biomet-
ric experts (frontal, pro�le and voice) using the proposed protocol on the
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M2VTS multi-modal database. Furthermore, the behavior of these experts
has been statistically analyzed. This analysis did lead to the following
observations: the normality hypotheses for underlying probability distri-
butions for the di�erent populations involved, are not satis�ed, the three
experts do show good discriminatory power, the variances of the scores of
the di�erent populations are not the same, the three experts are compli-
mentary, and there is evidence that combining the three experts improves
the performances onto a level that is better than those of the best expert.
In chapter 4, we have presented di�erent aspects of data fusion techniques.
For all these aspects, we made motivated choices to come to the data fu-
sion solution which suits best our application. The result of these choices
was that we decided to implement a parallel decision fusion strategy as a
particular classi�cation problem, which gives us the enormous advantage
of being to reuse directly the methods of the Pattern Recognition �eld.

In the second part of this thesis, the attention has been shifted towards
the combination of the di�erent experts. The �rst chapter in this part
(chapter 5), justi�es the analysis of both parametric and non-parametric
methods as possible classi�cation methods. In chapter 6, we present the
parametric approach. In theory, the normal usage for parametric statistical
inference is when the investigator knows the problem to be analyzed rather
well. He knows the physical laws that generate the stochastic properties of
the data and the functions to be found up to a �nite number of parameters.
Estimating these parameters using the data is considered to be the essence
of statistical inference. In our application we do not know the problem that
well, so we had to limit ourselves to assume some of the most simple and
most commonly used statistical distributions for estimating the underlying
probability distributions. These favorite distributions are typically mem-
bers of the exponential family. The experiments presented in this chapter,
show that in our application the best TER results are obtained by the logis-
tic regression model. This model assumes that the underlying conditional
probability distributions are members of the exponential family (which is
a very loose constraint), but with the same dispersion parameters for both
classes (which is a very stringent constraint and we have indeed shown that
in our application the di�erent populations do not have the same dispersion
parameters). On the other hand we also have tested the naive Bayes classi-
�er, assuming that the underlying conditional probability distributions are
Gaussians, this time allowing for di�erent dispersion parameters for the
di�erent populations. We also know that these assumptions are not sat-
is�ed, since the normality hypothesis is violated. The results obtained by
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this naive Bayes classi�er are not as good as those obtained by the logistic
regression model. This suggests that at least in our application deviations
from the \equality of dispersion parameters" assumption in the logistic re-
gression model are not as critical as deviations from the \Gaussian assump-
tion" in the naive Bayes classi�er approach. In any case, taking into account
that for each method that we have experimented the assumptions we have
made are not ful�lled, the results obtained by these parametric techniques
in this application are surprisingly good. This is probably due to the fact
that there is not a lot of data available, and therefore it is not possible
to estimate a large number of parameters. This could explain the relative
success of the methods requiring the estimation of only a small number of
parameters, even if the assumptions regarding the underlying distributions
are not completely ful�lled. This phenomenon can be seen as an application
of Ljung's observation that, in practice, the role of (model) identi�cation is
more often that of �nding an approximate description, catching some rele-

vant features, than that of determining the true, exact dynamics [108]. In
chapter 7 we have presented the non-parametric approach. In theory, the
normal usage for non-parametric statistical inference is when one does not
have reliable a priori information about the statistical law underlying the
problem or about the function that one would like to approximate. The
clear advantage of non-parametric methods is that one does not need to
assume a certain distribution for the underlying probability distribution
functions. This advantage is however at the same time their greatest draw-
back, since non-parametric methods tend to need more training (learning)
data than parametric methods. When analyzing the results obtained by
the non-parametric techniques we have experimented more closely, it can
be seen that the best TER results are obtained by the classical 1-NN classi-
�er and by the simple \N-out-of-N" voting classi�er (AND). This is at least
partially due to the typical application we are working with, since they al-
ways generate much more impostor than client examples. This means that
methods which minimize FAR are always going to have a good TER (at
least the way we have de�ned the TER). This also explains why the TER
results are getting worse when the number of impostor prototypes is re-
duced. In chapter 8 we present a comparison between the results obtained
by the parametric and the non-parametric methods.The �rst and most im-
portant observation we can make when looking at the results obtained by
the fusion methods that we have experimented is that, in our application,
fusion always improves the system performances beyond those of even the
best single expert. The second observation is that these results seem to in-
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dicate that, generally speaking and again in our application, the class of the
parametric methods does perform better than the class of non-parametric
methods. More speci�cally, the logistic regression method (a parametric
method) gives the best overall best TER results, and the \OR" voting
scheme (a simple non-parametric method) gives the overall worst TER re-
sults. Cochran's non-parametric Q test for binary responses has then been
used to show that this result is statistically signi�cant. Furthermore, the
validation experiment which has been performed, has con�rmed the good
performances of the logistic regression model.

The strong preference we have developed in our case for the logistic regres-
sion is based on the following considerations:

1. logistic regression did obtain the least number of errors (one single
error on 1369 access tests) on the M2VTS database;

2. logistic regression uses the soft decision scores of the di�erent experts,
which do contain more information than just the binary hard decision;

3. logistic regression is the parametric method that needs the smallest
number of coeÆcients to be estimated. The fact that this is a good
property can be justi�ed by a combination of the \simplicity-favoring"
idea of Occam's razor principle and the earlier mentioned \pragmatic
principle" result obtained by Ljung.

In this chapter on comparing di�erent fusion modules, we have added two-
dimensional visualizations of the decision boundaries or decision mecha-
nisms of most of the classi�ers that we have discussed. This could be
useful in order to determine which methods to select in a given application.
In chapter 9 we have presented a multi-level decision fusion strategy that
allows to gradually improve the performances of an automatic biometric
identity veri�cation system, while limiting the investments to the strictly
necessary. It has indeed been shown that on the M2VTS database and using
our three experts, multi-modal data fusion e�ectively allows to improve the
system performances beyond those of the mono-modal mono-method and
mono-modal multi-method approaches. This strategy can then in theory
be continued until the system performances meet the user requirements.
In the same chapter and using the highly correlated data coming from the
experts which participated in the NIST-NSA'99 speaker veri�cation eval-
uation campaign, it has been shown that, in the context of mono-modal
multi-method fusion, the logistic regression fusion module outperforms even
the best single expert.
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With this thesis it has been shown that the problem of automatically veri-
fying the identity of a person can be solved for a given application. To do
so, one must use one or more biometric modalities, use expert knowledge
to develop veri�cation algorithms that use features derived from these bio-
metrics as input and give scores as outputs, and, most importantly, one
must combine the outputs of these di�erent experts using a robust fusion
module. In our application, using the M2VTS database and the three ex-
perts presented in this work, the best performing fusion module was based
on the logistic regression model. The veri�cation performances obtained on
the validation set extracted from this small database were extremely good,
but when trying to generalize one should keep in mind the limitations in-
troduced in this work.

10.2 Future work

A �rst interesting research topic that was started but needs to be continued,
is the test involving the gating network in the framework of the mono-modal
multi-method fusion.

Another point which would be interesting to explore is the development of
a non-parametric version of the so-called ad-hoc tests.

Furthermore, it would be interesting to compare the results of the multi-
linear classi�er (which is in fact an example of a classi�er minimizing the
empirical risk), with those of a classi�er based on Support Vector Machines
(SVMs). These SVMs have been introduced by Vapnik to improve the
generalization capabilities, by minimizing the so-called structural risk [168,
169].

Instead of the binary faccept, rejectg decision, it is possible to use a scheme
in which a third decision, which could be called undecided could be added.
This third decision could be used to de�ne a set of margins around the
decision threshold. In a Bayesian approach, where the goal is to minimize
the risk, the straightforward way of implementing this fundecidedg option,
is to de�ne a cost related to the fact that no decision is taken and to
minimize the total cost in the same way as the one which is explained in
section 6.3.1.

Obviously if the fundecidedg option is used, something has to be done in
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the event of the outcome of a non-decision. Several approaches could be
used, all linked with a particular cost which could be taken into account in
the Bayes risk as mentioned above. A �rst possibility is to call a human
operator to solve the faccept,rejectg problem. This is clearly a possibility,
but since we try to realize an automated biometric identity veri�cation
system, it is perhaps not the most desirable one. Another possibility is
to implement the identity veri�cation in a sequential way. Indeed, in the
case of a non-decision pronounced by the �rst stage system that we have
described until now, a second stage system could be used. This second
stage system, that would only act in the case of a non-decision, could be
based on the same biometric modalities as the �rst one (with respect to
the vocal expert, the automated system could for instance ask the person
under test to pronounce more sentences). It could also be based on other,
slower or less popular but more performing biometric modalities, such as
�ngerprint analysis.

A possible improvement with respect to the system presented in this work,
is the use of personal characteristics. This idea is based on the fact that
the human recognition capabilities can also be guided by particular features
that are very typical for one speci�c person (the extremely big eyes, the very
pronounced chin, the oversized nose or the large ears of a certain person).
This is an interesting observation, especially when seen in the light of the
actual e�orts to come to robust methods, in which extreme values, such
as the ones we have been considering here, are very likely to be excluded!
Using this kind of person-speci�c a priori knowledge will probably allow
an increase in automated biometric identity veri�cation systems. The only
drawback of this idea is that enough training data has to be available for
each person.

Another interesting future research topic is the integration of multi-modal
biometrics on a so-called smart-card [148].

Last but not least, the association of a con�dence measure with each score
a certain expert is giving, could lead to an improvement in performances
by using methods such as fuzzy logic and Dempster-Shafer evidence the-
ory [26, 113, 156]. These forms of uncertainty management could also be
used to improve the proposed multi-level strategy by formally integrat-
ing uncertainty in the transition strategy between the di�erent hierarchical
levels.
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Appendix A

A monotone multi-linear

classi�er

Principle

We have developed a classi�er determining regions in the d-dimensional
space corresponding to the two classes, based on a combination of hyper-
planes. We call this classi�er multi-linear classi�er in reference to the use
of several hyper-planes, each one building a linear classi�er.

The classi�er training consists of a supervised phase in which the di�e-
rent hyper-planes are determined by hyper-planes which optimally sepa-
rate pairs of points of either class and where the regions generated by these
hyper-planes are labeled with the class identi�er (accept, reject).

At testing, each data point from the test set is simply given the class label
of the region it is belonging to.

Training

Overview

Given examples of the two classes, the goal is to �nd hyper-planes separat-
ing optimally all pairs of points of either class and to label the generated
regions with the corresponding class identi�er. Let's describe the samples
available for training by the two sets:

� the set of positive points (representing the client claims) fakgk2K 2
IRd; jKj being the total number of positive points;
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� the set of negative points (representing the client claims) falgl2L 2
IRd; jLj being the total number of negative points;

The training of the multi-linear classi�er consists of:

First step Reduction of training samples;

Second step Determination of hyper-planes;

Third step Class attribution to intersections of hyper-planes.

Each of these steps is going to be detailed separately hereafter.

Reduction of training samples

In a �rst step the classi�er reduces the number of data points in the two
classes by using the monotonicity hypothesis. In this speci�c case, the
constraint of monotonicity implies that a given linear separator (i.e. a
hyper-plane):

� has a positive normal vector, which can be formally expressed as
ws
i � 0;8i = 1; : : : ; d;

� is considered to separate a particular pair of points only if the positive
point (client) is on the positive side of the separator, and the negative
point (impostor) on the negative side.

This monotonicity hypothesis allows a preprocessing of the input of the
problem as follows: if there exists two points x and y in the positive set
(respectively negative set) such that xi � yi;8i = 1; : : : ; d, the point y
(respectively x) can be suppressed from the input set.

As a result of this data reduction, only data points situated along the
separation surface of the two classes are maintained. This technique reduces
thus also the number of couples that can be formed consisting of one point
from each class. These couples are the ones used in the next step.

Determination of hyper-planes

Principle The hyper-planes are determined bymaximizing a separabil-
ity (discrimination) measure of point pairs.

The goal is thus to determine a set of S hyper-planes given by (ws; ws
0) 2

IRd � IR; s 2 S, with the following property for the discrimination between
two points. A given hyper-plane (ws; ws

0) discriminates between two points
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x,y 2 IRd if (xws�ws
0) and (yws�ws

0) are both non-zero and of opposite
signs. Because of the monotonicity constraint, it will be considered that
(ws; ws

0) discriminates between x,y only if yws�ws
0 < 0 < xw

s�ws
0, and

in this case, the quality of this discrimination is given by the minimum of
the module of these two values, i.e. by minfxws � ws

0, �yw
s + ws

0g.
The total discrimination for the whole set of separators for each pair of
points is simply the sum of the discrimination obtained for each separator.
This total discrimination for a pair is de�ned as �. A reference value for �
is given by �0, de�ned as half of the minimal Euclidean distance between
a pair of positive/negative points (x;y). This is the discrimination for
(x;y) that would obtain a single hyper-plane cutting orthogonally and at
the middle, the segment [x;y]. It is obvious that the total number S of
hyper-planes thus obtained will (amongst else) strongly depend on this user-
de�ned value of �. The greater this value of � is chosen to be, the greater
the total number of hyper-planes in the set will be. This dependency of the
number of separators in the set on the choice of �, can be observed in the
example of section A.

As we already have announced, we wish to be capable to introduce a bias in
the classi�er. This can be achieved by weighting di�erently the separation
towards positive and negative points. Therefore the previous discrimination
measure will be replaced by minf�(xws � ws

0), �yw
s + ws

0g, where � is
any non-zero constant. It is clear that the value of � determines the bias
that show the hyper-planes with respect to a certain class. In section A
this \attraction tendency" can be observed. The reference value for � is
\1", which corresponds to no bias at all.

One can thus see that the number S of hyper-planes generated and the bias
they show towards one of either classes, are governed by two user-de�ned
parameters respectively called � and �.

Proposed hybrid approach To solve this formal problem, we propose
to use two successive phases: an iterative one followed by a global one. The
purpose of the iterative phase is to generate iteratively a set of S linear
separators (coarse tuning). The subsequent global phase is then used to
locally optimize this set of S hyper-planes (�ne tuning).

The iterative phase In this phase the total separability � to be achieved
is �xed (by the user) and using this value a �rst hyper-plane is calculated.
Subsequently, hyper-planes are continued to be inserted iteratively, until
the total discrimination � is reached for each pair of points. At each
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iteration u the following problem has to be solved: given the two sets of
points fakgk2K ; falgl2L � IRd and the hyper-planes (ws; ws

0) 2 IRd�IR; s =
1; : : : ; u� 1 already determined before the current iteration, �nd (wu; wu

0 ),
maximizing the following iterative goal function:

maximize
X

k2K;l2L

minf� ;
X
s2S

�klsg (A.1)

where �kls = maxf0;minf�(akws � ws
0);�a

l
w
s + ws

0gg (A.2)

under the normalization conditions � 1 � ws
i � 1;8s 2 S;8i = 0; : : : ; d

(A.3)

and with S = f1; : : : ; ug:

The advantage of this method is that the number of hyper-planes need not
to be �xed a priori. The disadvantage is that the di�erent hyper-planes
are added sequentially to the total set of separators and once they have
been entered they are not altered (�ne-tuned) any more by the subsequent
iterations.
As can be seen in equation (A.1), the maximal quality of the discrimination
for a certain pair is limited to �. This has explicitly been done to limit the
in
uence of distant pairs (which are easy to separate) on the determination
of the current hyper-plane.
The iterative phase has been implemented using a gradient descent method.
The computation of the gradient of the iterative goal function is detailed
in appendix B. The initial points for this method are obtained in a hybrid
manner. Some of the initial points are, as is usually the case, chosen at
random. However, a certain number of those initial points are found using
a heuristic approach, i.c. by calculating a hyper-plane that separates the
n worst discriminated pairs at a certain moment. These hyper-planes are
calculated using one of two simple classical linear classi�ers: either a Fisher
or a nearest-mean linear classi�er [164, 56], depending on the convergence
of the Fisher classi�er. The number of random initialization points and the
number n of worst discriminated pairs at a certain moment can both be
varied by the user, to allow for the generation of a bigger and/or di�erent
set of initialization hyper-planes.
The reason why we have chosen this hybrid form of initialization is to be
able to cope with the following phenomenon. After only a few iterations,
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the iterative goal function in equation (A.1) rapidly degenerates in this
sense that it doesn't stay a smooth surface, where one can easily use a gra-
dient descent method starting from a randomly chosen initialization point.
Instead of the smooth initial surface, there soon appear very scarce and
local peaks in the goal function. This is due to the very brutal non-linear
behavior of our goal function, showing indeed a succession of max and min

operators, which introduces discontinuities of the �rst kind. So to have
more chances to place the initialization points at least somewhere in the
neighborhood of the slopes of (one of) these peaks, the aforementioned
heuristic with respect to the separation of the n worst separated points is
used. The appearance of these peaks can be clearly observed in the sim-
ple two dimensional example of section A. This simple heuristic approach
guarantees by no means that the global optimum (maximum) of the itera-
tive goal function for the current iteration is going to be reached at each
iteration.

Comment w.r.t. a smoother version of the iterative goal function
We did try to improve the degree of smoothness of our iterative goal func-
tion by replacing the max/min operators in equation (A.1)by a sigmoidal
function such as the atanh, but this only improves the smoothness of the
slopes of the peaks and it doesn't change at all the highly undesirable fact
that this goal function rapidly shows very large plateaus where the gradient
descent method has absolutely no chance of working. So this sigmoidal like
function didn't improve the behavior of the iterative goal function drasti-
cally, but it did increase the computing time severely, so we decided to fall
back to the original max/min type of goal function, adding the heuristic
approach for �nding useful initial points.

The global phase In this global phase, the number S of separators is
�xed a priori and the purpose of this phase is then to globally maximize
the discrimination over all pairs of points by locally acting on all S hyper-
planes at the same time (�ne-tuning). The following global goal function

has to be optimized: �nd (wu; wu
0 ), which

maximize min
k2K;l2L

X
s2S

�kls (A.4)

where �klsis de�ned as in (A:2); under the constraints described in (A:3):
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To try to optimize the set of S hyper-planes that has been found during the
iterative phase, the global phase uses a new goal function, as can be seen
when comparing equations (A.4) and (A.1). The main di�erence is that in
the global phase we are optimizing the global separation for all pairs, which
for a single pair is not limited any longer to the value of �, as it was the
case during the iterative phase.

The global phase has also been implemented using a gradient descent
method. The computation of the gradient of the global goal function is
detailed in appendix C. An initial pair of points is selected at random at
each iteration; if the total separation of this pair is above the current min-
imum, nothing is changed, otherwise, the parameters ws

i are modi�ed in
the direction of the gradient of the objective function given in (A.4). This
gradient is calculated in the point where the goal function in equation (A.4)
is minimal. If there are jN j such points instead of one, then the gradient is
calculated in each point. But in this global approach we can use only one
general direction for optimizing all S hyper-planes at the same time. To be
able to �nd this best direction, the following problem needs to be solved:

Using all jN j global gradient vectors: rS
glob1

; : : : ;rS
globjNj

2 IR(d+1):S ,

�nd an xS 2 IR(d+1):S such that

8n 2 N : wS + �:xS maximizes expression (A.4) for all minimal pairs.

Where d is the number of modalities to be combined,

andS is the number of hyper-planes in the set,

w 2 IR(d+1):S is the vector that contains all S hyper-planes,

jN j is the number of pairs with minimal separation and � is any positive number.

To be able to solve this problem in an easy way, we have transformed it into
an alternative form. In appendix D it is shown that the preceding problem
is equivalent with the following one:
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Find xS 2 IR(d+1):S

Such that 8n 2 N; xS :rS
globn

> 0 is maximal.

This problem can now be solved easily using linear programming, since all
constraints are purely linear [140].

Class attribution to intersections of hyper-planes

The resulting set of S hyper-planes after training induces a partition of
the d dimensional space. Each region of this partition is then coded by
a word of S bits, indicating its membership to each hyper-plane. A \1"
means the considered region is lying on the positive side of the considered
separator and a \0" means on the negative side. Afterwards the label of
one of either classes is attributed to each region, using the Logical Analysis
of Data (LAD) [30] method.

One possibility o�ered by the 
exibility of LAD is to attribute a \?" to a
certain bit instead of a \1" or a \0", to express a certain doubt with respect
to the classi�cation. In our case we have decided to do this for the regions
lying very close to (i.e. in a small zone determined by �0 along both sides
of) a certain separator.

Coding of training samples In the binarization phase, a data point
of the training set is characterized by a word of S bits, according to its
membership of a certain region of the partition.

Labeling of the partition After the binarization phase, one of either
classes needs to be attributed to each region of the partition and this is
done using LAD.

Testing

During testing the membership of each data point w.r.t. the S hyper-planes
is calculated and each data point receives simply the class label of the region
of the hyper-space it is lying in.
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Synthetic two-dimensional example

Representation of the two classes

Figure A.1 shows the two (synthetic) classes of positive and negative points
that are used to explain the basic ideas and mechanisms explained so far.
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Figure A.1: Simple two dimensional two class problem

Appearance of the goal-function

Figures A.2 and A.3 show the appearance of the iterative goal function (A.1)
in the case of this simple example, after respectively two and �ve itera-
tions. To be able to represent the three components ws

0; w
s
1and ws

2 of a
hyper-plane, the two dimensional components ws

1and ws
2 have been repre-

sented onto one axis by using the transformation \angle" = arccos(ws
1) =

arcsin(ws
2), the other axis being w

s
0. This transform has also the advantage

that it satis�es automatically the normalization constraints (A.3).

It can be clearly seen by comparing Figures A.2 and A.3 that already after
�ve iterations the goal function has enormous plateaus in which the classical
gradient descent doesn't work.
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Figure A.2: Example of the iterative goal function after two iterations
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Figure A.3: Example of the iterative goal function after �ve iterations
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Determination of hyper-planes

Figure A.4 shows the set of hyper-planes that the multi-linear classi�er has
found in the case of this example (S = 5). This set of hyper-planes has been
found for the reference values for � and � and will be used as a reference
case to be compared with the following Figures..
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Figure A.4: Set of hyper-planes generated for � = 1 and � = �0

In
uence of �

Figure A.5 and A.6 show the in
uence of � on the attraction tendency of
the set of hyper-planes towards one of either classes. Figure A.5 has been
obtained for � = 0:9 and Figure A.6 for � = 1:1. When � becomes smaller
than the reference value, an attraction tendency towards the negative points
can be observed and when � on the other hand becomes larger than the
reference value, an attraction towards the positive points can be seen. Both
these sets of hyper-planes have been found for the reference value for �.
From the comparison of these two �gures with our reference case, it can be
seen that the value of � has also an in
uence on the number of hyper-planes
that are generated. When � is chosen smaller than the reference value, the
number of hyper-planes decreases w.r.t. our reference case (S = 4 < 5)
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and when � becomes larger than the reference, the number of hyper-planes
increases w.r.t. our reference case (S = 6 > 5).

This e�ect could have been expected since, when taking a closer look at
equation (A.2), we see that � has a direct in
uence on the actually cal-
culated discrimination. In the case the two classes are well separated, a
value of � close to the reference value should generate the lowest number
of hyper-planes. The more � di�ers from the reference value, the more
the hyper-planes are approaching the points of one of either classes and
the more hyper-planes will therefore be needed to \zig-zag" around these
points. This is a drawback of this method, since ideally spoken the number
of hyper-planes generated should only be in
uenced by �. The interde-
pendence of � and � makes it more diÆcult to �ne-tune the method for a
speci�c application.
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Figure A.5: Set of hyper-planes generated for � = 0:9 and � = �0

In
uence of �

Figure A.7 and A.8 show the in
uence of � on the number of generated
hyper-planes. Figure A.7 has been obtained for � = 0:25 � �0 and Fig-
ure A.8 for � = 4 ��0. These sets of hyper-planes have both been found
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Figure A.6: Set of hyper-planes generated for � = 1:1 and � = �0

for the reference value for �. When � becomes smaller than the reference
value, the number of hyper-planes generated decreases w.r.t. our reference
case (S = 2 < 5). When on the other hand � becomes larger than the
reference value, the number of hyper-planes generated increases w.r.t. our
reference case (S = 19 > 5).

Discussion

It is important to realize that there shouldn't be too many hyper-planes.
Indeed, the ideal number of separators results from the classical trade-o�
between the robustness and the sensitivity of a classi�er. In the speci�c
case of our multi-linear classi�er this compromise can be explained as fol-
lows. The more hyper-planes there are, the larger the number of regions
of the partition of the d dimensional space. This means that the number
of training data points that are likely to fall in a single region becomes
smaller. This means that the attribution of the class label to the di�erent
regions is going to be more and more in
uenced by isolated training data
points. This makes the classi�er on the one hand more sensitive, but on
the other hand at the same time also less robust. This duality is explained
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Figure A.7: Set of hyper-planes generated for � = 1 and � = 0:25 ��0
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Figure A.8: Set of hyper-planes generated for � = 1 and � = 4 ��0
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below:

Greater sensitivity If those isolated training data points are representa-
tive for the real (unknown) characteristics of the rest of the population
then the classi�er did a good job on capturing this level of detail.

Smaller robustness If those isolated training data points are outliers
who's characteristics are only marginal related to those of the rest
of the population, then the classi�er is going to accumulate a lot of
errors.

This duality can also be expressed in terms of \over-training" and \under-
training" the classi�er. Over-training the classi�er means that we are in
fact modeling the noise on the training data, which leads to a bad general-
ization capability. This happens when we generate a lot of hyper-planes but
the isolated training points are in fact outliers or extreme values. Under-
training the classi�er means that we are not modeling enough signi�cant
variations in the training data, which means that we are generalizing too
much. This happens when we generate only a small number of hyper-
planes such that meaningful isolated training data points are grouped with
the bulk of the training data.
This compromise can be �xed using a supplementary data set (which can
be seen as a kind of validation set).



Appendix B

The iterative goal function

The iterative goal function has been de�ned in expression (A.1). To simplify
this expression, we introduce the following notations:

~ws =

�
w
s

ws
0

�
; ~ak =

�
a
k

�1
�
; ~al =

�
a
l

�1
�
2 IRd+1

with w
s =

0
B@

ws
1

...
ws
d

1
CA ; ak =

0
B@

ak
1

...
akd

1
CA ; al =

0
B@

al
1

...
ald

1
CA 2 IRd; s 2 f1; : : : ; Sg

In these expressions d is the number of modalities, S is the number of
hyper-planes in the set, k is the number of positive and l the number of
negative points, ~ws is the hyper-plane being added during the current
iteration s.

Furthermore we split �kls into two parts: a �rst part �kl that represents
the separation on each pair (k; l) obtained during the previous iterations
f1; : : : ; s � 1g (note that this part is independent of the currently added
hyper-plane ~ws), taking into account the \clipping" e�ect induced by the
max operator in the expression (A.1) and a second part Ækls that represents
the dynamic portion of the separation, added during the current iteration
s (this part depends of course of the current hyper-plane ~ws). This con-
vention can be written as follows:

�kls( ~w
s) = �kl + Ækls( ~w

s)
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Using these new notations, the iterative goal function for the iteration s
becomes:

goaliter =
X
k;l

minf�;�kl + Ækls( ~w
s)g;

where Ækls( ~w
s) = maxf0;minf�:Æk( ~ws);�Æl( ~ws)gg;

with Æx( ~w
s) = ~ws:~ax; x 2 fk; lg:

Rewriting this goal function to eliminate the max and the min gives:

goaliter =

0
B@ X

k;l
s:t:�kls��

�+
X
k;l

s:t:�kls<�

�kl +
X
k;l

s:t:�kls<�

Ækls( ~w
s)

1
CA

Replacing the �rst two terms (which, as already has been stated, are inde-
pendent of ~ws) respectively by A and B, the expression becomes:

goaliter =

0
B@A+B +

X
k;l

s:t:�kls<�

Ækls( ~w
s)

1
CA

Replacing Ækls( ~w
s) by its expression and eliminating the max operator leads

to the following expression:

goaliter =

0
BBB@A+B +

X
k;l

s:t:�kls<�

and minf�:Æk;�Ælg>0

minf�:Æk( ~ws);�Æl( ~ws)g

1
CCCA

Eliminating the min operator gives us then:

goaliter =

0
BBB@A+B +

X
k;l

s:t:�kls<�

and 0<�:Æk��Æl

�:Æk( ~w
s) +

X
k;l

s:t:�kls<�

and 0<�Æl<�:Æk

�Æl( ~ws)

1
CCCA
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Deriving with respect to ~ws yields:

rs
iter =

0
BBB@0 + 0 +

X
k;l

s:t:�kls<�

and 0<�:Æk��Æl

�:~ak +
X
k;l

s:t:�kls<�

and 0<�Æl<�:Æk

�~al

1
CCCA

This gradient can then be rewritten in its �nal form as:

rs
iter =

0
BBB@

X
k;l

s:t:�kls<�

and 0<�:Æk��Æl

�:~ak �
X
k;l

s:t:�kls<�

and 0<�Æl<�:Æk

~al

1
CCCA
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The global goal function

The global goal function has been de�ned in expression (A.4). To simplify
this expression, we introduce the following new notations:

~wS =

0
B@

~w1

...
~wS

1
CA 2 IR(d+1):S

where ~ws =

�
w
s

ws
0

�
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�
a
k

�1
�
; ~al =

�
a
l

�1
�
2 IRd+1

and w
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0
B@
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...
ws
d

1
CA ; ak =

0
B@
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1

...
akd

1
CA ; al =

0
B@

al
1

...
ald

1
CA 2 IRd; with s 2 f1; : : : ; Sg

In these expressions d is the number of modalities, S is the number of
hyper-planes in the set, k is the number of positive and l the number of
negative points, ~wS is the vector containing all S hyper-planes.

What is particular for this global approach is that all hyper-planes are used
at the same time (this was not the case for the iterative approach, where
only the last added hyper-plane was used). With these new notations, the
global goal function becomes:

goalglob = min
k;l

 X
s

�kls( ~w
s)

!
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where �kls( ~w
s) = maxf0;minf�:Æk( ~ws);�Æl( ~ws)gg;

with Æx( ~w
s) = ~ws:~ax; x 2 fk; lg:

This time however there is no need to split �kls as we have done in the
iterative approach, since in this global goal function, the separation for the
pair (k; l) is calculated directly for all S hyper-planes of the set, without
having to deal with the \clipping" e�ect of the iterative goal function.
Taking this into account and rewriting the global goal function replacing
�kls by its value, gives:

goalglob = min
k;l

 X
s

maxf0;minf�:Æk( ~ws);�Æl( ~ws)gg
!

Eliminating the max operator gives us then the following expression:

goalglob = min
k;l

0
B@ X

s
s:t: 0<minf�:Æk;�Ælg

minf�:Æk( ~ws);�Æl( ~ws)g

1
CA

Eliminating the min operator gives:

goalglob = min
k;l

0
B@ X

s
s:t: 0<�:Æk��Æl

�:Æk( ~w
s) +

X
s

s:t: 0<�Æl<�:Æk

�Æl( ~ws)

1
CA

Deriving with respect to ~ws yields then the gradient for the pair (k; l):

rS
glob = min

k;l

0
B@ X

s
s:t: 0<�:Æk��Æl

�:~ak �
X
s

s:t: 0<�Æl<�:Æk

~al

1
CA
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Proof of equivalence

To simplify the development of this proof of equivalence between two alter-
native problem formulations, we introduce again the following notations:

~xS =
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CA 2 IRd; with s 2 f1; : : : ; Sg

In this expression d is the number of modalities, S is the number of
hyper-planes in the set, k is the number of positive and l the number of
negative points.

Using these conventions, the original problem can be stated as follows:

Using all jN j global gradient vectors: rS
glob1

; : : : ;rS
globjNj

2 IR(d+1):S ,

�nd an xS 2 IR(d+1):S such that

8n 2 N : wS + �:xS maximizes expression (A.4) for all minimal pairs.
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In this expression jN j is the number of pairs with minimal separation and
� is any positive number.

8n 2 N , we can rewrite the global goal function as follows:

For k; l �xed, k 2 K; l 2 L:

goalglob( ~w
S) =

SX
s=1

�kls

where �kls is the same as in expression (A.2).

Rewriting this gives:

goalglob( ~w
S) =

SX
s=1

maxf0;minfws:ak;�ws:algg

Returning to our problem, we can introduce xS in the previous expression:

goalglob( ~w
S + �.xS) =

SX
s=1

maxf0;minf(ws + �:xs):ak;�(ws + �:xs):algg

We can eliminate the max by restricting the summation to only those hyper-
planes that separate the considered minimal pair. This gives us the follow-
ing:

goalglob(w
S + �.xS) =

X
s separates k;l

minf(ws + �:xs):ak;�(ws + �:xs):alg

Since we want to maximize the additional separation on the minimal pair
introduced by going in the direction xS), maximizing the previous expres-
sion is equivalent with the following expression:

goalglob(w
S + �.xS) - goalglob(w

S) =

X
s separates k;l

�
minf(ws + �:xs):ak;�(ws + �:xs):alg �minfws:ak;�ws:alg

�

This expression can be rewritten as:

goalglob(w
S + �.xS) - goalglob(w

S) =
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X
s separates k;l

�
minfws:ak + �:xs:ak;�ws:al � �:xs:alg �minfws:ak;�ws:alg

�

Since � is any positive number and since all other quantities involved are
positive, the minimum of both expressions between brackets will not shift.
This reduces the previous expression to:

goalglob(w
S + �.xS) - goalglob(w

S) =
X

s separates k;l

minf�:xs:ak;��:xs:alg

Since � doesn't depend on s, we can place � before the summation:

goalglob(w
S + �.xS) - goalglob(w

S) = �:
X

s separates k;l

minfxs:ak;��:xs:alg

As we want to maximize this expression and since � is positive, this is
equivalent with the following:

goalglob(w
S + �.xS) - goalglob(w

S) =
X

s separates k;l

minfxs:ak;��:xs:alg

Posing xs:ak = Æk and �xs:al = �Æl, and knowing that both these quan-
tities are strictly positive (because we only consider the hyper-planes that
actually do separate k; l), we can rewrite the goal we are after as maximiz-
ing the RHS (Right Hand Side) of the previous expression. This gives us
the following new formulation of the problem to be solved:

Maximize
X
s

s:t: 0<Æk;�Æl

minfxs:ak;�xs:alg

Splitting the min function gives us the following:

Maximize

0
B@ X

s
s:t: 0<Æk��Æl

x
s:ak �

X
s

s:t: 0<�Æl<Æk

x
s:al

1
CA

Rewriting this expression using the complete vector of hyper-planes xS,
this expression becomes:

Maximize x
S :

0
B@ X

s
s:t: 0<Æk��Æl

a
ks �

X
s

s:t: 0<�Æl<Æk

a
ls

1
CA
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The expression between brackets is nothing else than the gradient rS
globn

of the global goal function for the considered minimal pair. This is shown
in Appendix C. Using that knowledge, the previous line gives:

Maximize x
S .rS

globn

So the original problem can be restated as follows:

Find xS 2 IR(d+1):S

Such that 8n 2 N; xS :rS
globn

> 0 is maximal.



Appendix E

Expression of the conditional

probabilities

Theorem

In this appendix we show that under hypothesis h:

P (C1js1; s2; : : : ; sn) = 1

1 + exp [�f(Pn
k=1 xk) + x0g] (E.1)

where

xk = ln
P (skjC1)

P (skjC2)
(E.2)

x0 = ln
P (C1)

P (C2)
(E.3)

� C1 and C2 stand respectively for Client and Impostor

� sk is the scalar score related to the k�th expert

� Hypothesis h is composed of two sub-hypotheses h1 and h2, which
are de�ned as follows:

h1 = P (s1; s2; : : : ; snjC1) =
nY
k

P (skjC1) (E.4)

h2 = P (s1; s2; : : : ; snjC2) =
nY
k

P (skjC2) (E.5)
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Proof

PC1 = P (C1js1; : : : ; sn) = P (s1; : : : ; snjC1):P (C1)

P (s1; : : : ; sn)
(E.6)

PC1 =
P (s1; : : : ; snjC1):P (C1)

P (s1; : : : ; snjC1):P (C1) + P (s1; : : : ; snjC2):P (C2)
(E.7)

PC1 =
1

1 + 1
D

(E.8)

where

D =
P (s1; : : : ; snjC1):P (C1)

P (s1; : : : ; snjC2):P (C2)
(E.9)

D
h
=
P (s1jC1)

P (s1jC2)
: : : : :

P (snjC1)

P (snjC2)
:
P (C1)

P (C2)
(E.10)

and the announced result is obtained by substituting:

P (C1)

P (C2)
= exp [x0] (E.11)

P (skjC1)

P (skjC2)
= exp [xk] (E.12)

Corrolarium

It is very easy to extend the previous theorem, which was valid for the
class of clients, to the class of impostors. This extension can be formalized,
under the same hypothesis h and with the same conventions as in the case
of the theorem, as follows:

P (C2js1; s2; : : : ; sn) = 1

1 + exp [+ f(Pn
k=1 xk) + x0g] (E.13)

The proof of this corrolarium is analogous to the proof of the theorem and
very straightforward. To explain the change of sign in the exponential, it
is suÆcient to see that

ln
P (skjC2)

P (skjC1)
= �lnP (skjC1)

P (skjC2)
(E.14)
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and

ln
P (C2)

P (C1)
= �lnP (C1)

P (C2)
(E.15)

And of course, it can be easily shown that

P (C1js1; : : : ; sn) + P (C2js1; s2; : : : ; sn) = 1 (E.16)





Appendix F

Visual interpretations

In this appendix, some typical visual representations of decision boundaries
and decision mechanisms of popular classi�ers are presented. They are
based on a well-known bi-dimensional classi�cation example, inspired by
the important work performed in the STATLOG project and presented
in [119].

Linear classi�er

A typical example of the decision boundary that a linear classi�er (see
sections 6.3.5 and 6.3.7) induces, is given in Figure F.1.

Piece-wise linear classi�er

A typical example of the decision boundary that a multi-linear classi�er
(see section 6.2) induces, is given in Figure F.2.

Quadratic classi�er

A typical example of the decision boundary that a quadratic classi�er (see
section 6.3.7) induces, is given in Figure F.3.

MLP classi�er

A typical example of the decision boundary that an MLP classi�er (see
section 6.4) induces, is given in Figure F.4.
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Figure F.1: Typical example of the decision boundary generated by a linear
classi�er.
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Figure F.2: Typical example of the decision boundary generated by a piece-
wise linear classi�er.
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Figure F.3: Typical example of the decision boundary generated by a
quadratic classi�er.
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Figure F.4: Typical example of the decision boundary generated by a MLP.
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k-NN classi�er

A typical example of the classi�cation mechanism that a k-NN classi�er
(see section 7.3), is given in Figure F.5.

S

S S

S

S

S

S S

S

S

E

E
E

E

E E

E

E E

E E

E

EE

E

E

E

A A

AA A

A

A

A

A

A

A

A A

A

A

A

A

A A

E

S

E
E

E E
E

A

A

A

A
A

A

A

Petal length

Pe
ta

l w
id

th

X

Virginica

Figure F.5: Typical example of the decision mechanism used by a k-NN
classi�er using a Euclidean metric.

If the Euclidean metric is replaced by the Mahalanobis distance measure,
then the decision mechanism changes in the most general case from search-
ing the k nearest neighbors in a circle to looking for them in an ellipse.
A typical example of the classi�cation mechanism that this kind of Maha-
lanobis based classi�er uses, is given in Figure F.6.

Binary tree classi�er

A typical example of the decision boundary that a binary tree classi�er
induces (see section 7.6), is given in Figure F.7.
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Figure F.6: Typical example of the decision boundary generated by a k-NN
classi�er using a Mahalanobis metric.
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Appendix G

R�esum�e

Introduction

Cette th�ese traite de la v�eri�cation automatique de l'identit�e d'une per-
sonne coop�erative, en combinant les r�esultats d'analyses d'images de face
et de pro�l, et d'analyses vocales. Cette sp�eci�cit�e, qui a �et�e utilis�ee
tout au long de ce travail, a �et�e d�e�nie dans le cadre du projet M2VTS
(Multi-Modal Veri�cation for Tele-services and Security applications) du
programme ACTS de l'Union Europ�eenne.

L'id�ee principale dans cette th�ese est d'analyser les possibilit�es des tech-
niques de fusion de donn�ees a�n de combiner les r�esultats obtenus par les
di��erents experts biom�etriques (face, pro�l, voix), chaque expert ayant pris
une d�ecision concernant l'identit�e proclam�ee. Dans ce travail on a volon-
tairement omis de traiter des sujets d�elicats tels que l'�ethique, la respons-
abilit�e ou la protection de la vie priv�ee.

La v�eri�cation automatique de l'identit�e d'une personne devient de plus
en plus un outil important dans plusieurs applications telles que l'acc�es
contrôl�e �a des environnements (physiques et virtuels) restreints.

Un certain nombre de techniques matures, telles que des mots de passe, des
cartes �a bande magn�etique et des codes d'identi�cation personnels (PIN),
sont d�ej�a largement utilis�ees dans ce contexte, mais la seule chose r�eellement
v�eri��ee est, dans le meilleur des cas, une combinaison d'une certaine pos-

session (par exemple la possession de la bonne carte �a bande magn�etique)
et d'une certaine connaissance, par le biais de la reproduction correcte du
code alphab�etique et/ou num�erique. On sait que ces m�ecanismes tr�es sim-
ples de contrôle (d'acc�es) peuvent facilement amener �a des abus, induits
par exemple par la perte ou le vol de la carte magn�etique et du PIN cor-
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respondant. De ce fait, un nouveau type de m�ethodes fait son apparition,
bas�e sur ce que l'on appelle des caract�eristiques ou mesures biom�etriques,
telles que la voix, le visage, le pro�l, ou une autre information physiologique
ou comportementale mesurable et (de pr�ef�erence) propre �a la personne �a
v�eri�er.

Les caract�eristiques biom�etriques en g�en�eral, et les mesures biom�etriques
non-invasives et conviviales (voix, image) en particulier, sont tr�es at-
trayantes car elles ont le grand avantage de ne pouvoir être perdues ou
oubli�ees, et elles sont vraiment personnelles (on ne peut pas les transmettre
�a quelqu'un d'autre).

Lorsque l'on n'utilise qu'une seule mesure biom�etrique (conviviale), les
r�esultats obtenus ne sont peut-être pas suÆsamment satisfaisants. Ceci est
du au fait que ces mesures biom�etriques conviviales ont tendance �a varier
avec le temps pour une même personne, et pour rendre cela encore plus
probl�ematique, l'importance même de cette variation varie d'une personne
�a l'autre. Ceci est particuli�erement vrai pour la modalit�e vocale, qui mon-
tre une variabilit�e intra-locuteur importante. Une solution possible pour
essayer de r�esoudre ce probl�eme est de combiner ou fusionner les r�esultats
de di��erentes modalit�es ou experts. Actuellement, il y a un int�erêt interna-
tional signi�catif pour ce th�eme de recherche. L'organisation, r�ecemment,
de deux conf�erences internationales sur ce sujet pr�ecis (Audio- and Video-

based Biometric Person Authentication: AVBPA), en est probablement la
meilleure preuve.

Combiner les r�esultats de di��erents experts peut être fait en utilisant les
techniques classiques de fusion de donn�ees, mais le d�esavantage majeur de la
plupart de ces techniques est leur degr�e de complexit�e relativement �elev�e.
Cette complexit�e s'exprime - entre autre - par le fait que ces m�ethodes
ont tendance �a incorporer un grand nombre de param�etres qui doivent
être estim�es. Si cette estimation n'est pas faite en utilisant suÆsamment
de donn�ees d'entrâ�nement (i.e. si l'estimation n'est pas faite correcte-
ment), ceci place une contrainte s�erieuse sur la capacit�e du syst�eme �a
g�en�eraliser correctement. Mais, actuellement, une des diÆcult�es majeures
de ce probl�eme d'estimation est la p�enurie de donn�ees d'entrâ�nement mul-
timodales. En e�et, a�n de garder un syst�eme de v�eri�cation automatique
convivial, l'enregistrement d'un (nouveau) client ne doit pas prendre trop
de temps, ce qui a pour cons�equence directe que les donn�ees d'entrâ�nement
pour les clients sont plutôt limit�ees.

A�n de combler ce manque de donn�ees d'entrâ�nement, une possibilit�e est
de d�evelopper des m�ethodes de fusion (classi�cateurs) simples, c.a.d. des
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classi�cateurs qui n'utilisent que tr�es peu de param�etres.

Dans ce travail, on se limite �a l'utilisation de techniques de fusion de
d�ecisions. On consid�erera que tous les experts prennent leur d�ecision locale
en g�en�erant un score dans l'intervalle [0,1]. Ces scores sont une mesure
de leur croyance respective de l'acceptabilit�e de la proclamation d'identit�e
: plus haut est le score, plus grande est la croyance que la proclamation
d'identit�e est authentique. Cette mani�ere de travailler a le grand avan-
tage de s�eparer la conception des experts sp�ecialis�es (ce qui est manifeste-
ment tr�es d�ependant de l'application) du probl�eme de fusion. Ceci per-
met de d�evelopper des r�egles de fusion de d�ecision tr�es g�en�eriques, qui ne
d�ependent pas de l'application. Une autre raison de choisir la fusion de
d�ecisions �a la place d'une fusion de caract�eristiques est que ce choix d�ecrô�t
la dimensionalit�e du probl�eme. Cette r�eduction en dimensionalit�e est tr�es
b�en�e�que, puisqu'elle va de pair avec une r�eduction du nombre de donn�ees
d'entrâ�nement n�ecessaire pour entrâ�ner les di��erents modules de fusion.

Finalement, on a d�ecid�e d'impl�ementer une strat�egie de fusion de d�ecisions
parall�ele sous forme d'un probl�eme de classi�cation, ce qui a comme �enorme
avantage de pouvoir utiliser directement les m�ethodes du domaine de la
Reconnaissance de Forme.

M�ethodes utilis�ees

Dans ce travail, on a utilis�e aussi bien des m�ethodes param�etriques que des
m�ethodes non-param�etriques. Ceci peut se justi�er, entre autre, par le fait
que ces deux types de m�ethodes repr�esentent en fait les deux approches
possibles pour aborder l'inf�erence statistique:

1. l'inf�erence particuli�ere (param�etrique), qui a comme but de cr�eer des
m�ethodes d'inf�erence statistique simples, qui peuvent être utilis�ees
pour r�esoudre des probl�emes de la vie r�eelle;

2. l'inf�erence g�en�erale (non-param�etrique), qui a comme but de trouver
une seule m�ethode d'induction, pour tous les probl�emes d'inf�erence
statistique.

M�ethodes param�etriques

En th�eorie, on utilise habituellement l'inf�erence statistique param�etrique
lorsque l'on connâ�t relativement bien le probl�eme �a analyser. On connâ�t
les lois physiques qui g�en�erent les propri�et�es stochastiques des donn�ees
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et des fonctions �a trouver, jusqu'�a un certain nombre �ni de param�etres.
Estimer ces param�etres en utilisant les donn�ees est consid�er�e comme
l'essentiel de l'inf�erence statistique. Pourtant, en pratique, ces m�ethodes
param�etriques doivent �egalement être calculables. Des probl�emes de calcul
peuvent se pr�esenter dans les cas de grande dimensionalit�e. On n'est pas
confront�e �a ce genre de probl�emes dans cette application, puisqu'on a opt�e
pour une approche de fusion de d�ecisions, qui r�eduit la dimensionalit�e du
probl�eme. De plus, le probl�eme n'�etant pas parfaitement d�e�ni, on a opt�e
pour les distributions statistiques les plus simples et les plus utilis�ees pour
estimer les distributions de probabilit�e sous-jacentes. Ces distributions
favorites sont typiquement des membres de la famille exponentielle.

En analysant les r�esultats obtenus par les techniques param�etriques
exp�eriment�ees d'un peu plus pr�es, il est int�eressant de voir que les meilleurs
r�esultats sont obtenus par le classi�cateur Bayesien na��f, utilisant le mod�ele
de la r�egression logistique. Ce mod�ele suppose que les distributions de
probabilit�e sous-jacentes sont des membres de la famille exponentielle (ce
qui est une contrainte tr�es faible), mais avec les mêmes param�etres de
dispersion pour les deux classes (ce qui est une contrainte tr�es stricte,
puisqu'on a d�emontr�e que, dans notre application, les di��erentes popula-
tions n'ont pas les mêmes param�etres de dispersion). D'un autre côt�e, on
a �egalement test�e ce même classi�cateur Bayesien na��f, cette fois-ci en sup-
posant que les distributions de probabilit�es sous-jacentes sont Gaussiennes
(et pas un autre membre de la famille exponentielle), et en permettant aux
di��erentes populations d'avoir des param�etres de dispersion (i.e. variances)
di��erents. On sait �egalement que ces suppositions ne sont pas valides, vu
que l'hypoth�ese de normalit�e n'est pas satisfaite. Les r�esultats obtenus
par ce classi�cateur Bayesien na��f ne sont pas aussi bons que ceux obtenus
par le classi�cateur Bayesien na��f qui utilise le mod�ele de la r�egression
logistique. Ceci sugg�ere que, au moins dans notre application, l'hypoth�ese
d'�egalit�e des param�etres de dispersion pour la r�egression logistique, n'est
pas aussi critique que celle de normalit�e dans le classi�cateur Bayesien na��f
Gaussien.

De toute fa�con, compte tenu que pour toute m�ethode exp�eriment�ee les
hypoth�eses sous-jacentes ne sont pas remplies, les r�esultats obtenus par les
m�ethodes param�etriques dans cette application, sont tr�es bons.

M�ethodes non-param�etriques

En th�eorie, on utilise habituellement l'inf�erence statistique non-param�etrique
quand on n'a pas d'information a priori concernant les lois statistiques



187

sous-jacentes au probl�eme ou concernant la fonction qu'on aimerait ap-
procher. En pratique, on pourrait �egalement opter pour des m�ethodes non-
param�etriques lorsque les m�ethodes param�etriques ne sont pas calculables.
L'avantage majeur des m�ethodes non-param�etriques est qu'on ne doit pas
pr�esupposer une certaine distribution pour les distributions de probabilit�e
sous-jacentes. Cet avantage est en même temps le plus gros inconv�enient
puisque, �a performances �egales, ces m�ethodes non-param�etriques ont ten-
dance �a avoir besoin de plus de donn�ees (d'entrâ�nement) que des m�ethodes
param�etriques. Ceci s'explique facilement car, dans le premier cas il faut
estimer toute la distribution, tandis que dans le deuxi�eme cas il suÆt
d'estimer quelques param�etres d'une distribution pr�echoisie.

En analysant de plus pr�es les r�esultats obtenus par les techniques non-
param�etriques exp�eriment�ees, on voit que les meilleurs r�esultats TER (Total
Error Rate) sont obtenus par le classi�cateur 1-PPV classique (ou simple-
ment PPV: Plus Proche Voisin) et par la simple m�ethode de vote unanime
(ET). Ceci est au moins partiellement du �a l'application typique avec laque-
lle on travaille. En e�et, ce genre d'applications g�en�ere toujours plus de
donn�ees imposteur que de donn�ees client. Ceci veut dire que les m�ethodes
qui minimisent le FAR (False Acceptance Rate) auront toujours un bon
TER (au moins avec notre d�e�nition du TER, qui n'est rien d'autre que
la somme des FAR et FRR (False Rejection Rate), pond�er�ees par le nom-
bre d'exemples respectifs qui a servi �a calculer ces taux d'erreurs). La
m�ethode \ET" est typiquement une m�ethode de ce type, car elle exige
que tous les experts d�ecident que la personne test�ee soit un client, avant
d'accepter la proclamation d'identit�e. Les bons r�esultats en TER du clas-
si�cateur PPV classique sont �egalement facile �a comprendre, vu que le nom-
bre d'exemples imposteur est si grand que la probabilit�e de classer comme
client une observation inconnue, qui tomberait pr�es de la fronti�ere entre les
deux populations (ce qui pourrait amener a une augmentation du FAR), est
n�egligeable. Et, dans le même contexte, ceci explique �egalement pourquoi
les r�esultats TER deviennent moins bons lorsque le nombre d'exemples
imposteur diminue.

Conclusions

Dans cette th�ese, on a montr�e que le probl�eme de la v�eri�cation au-
tomatique d'identit�e d'une personne peut se r�esoudre pour une appli-
cation donn�ee. Pour le faire, il faut utiliser une ou plusieurs modalit�es
biom�etriques, mettre en oeuvre l'expertise disponible a�n de d�evelopper
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des algorithmes de v�eri�cation bas�es sur les caract�eristiques d�eriv�ees de
ces modalit�es biom�etriques, et combiner les sorties de ces di��erents experts
en utilisant un module de fusion robuste. Dans notre application, en
utilisant la base de donn�ees M2VTS et les trois experts pr�esent�es dans ce
travail, le module de fusion donnant les meilleures performances est bas�e
sur l'utilisation d'un mod�ele de r�egression logistique. Les performances
obtenues sur la base de validation, extrait de cette petite base de donn�ees,
sont extrêmement bons, mais avant de g�en�eraliser il faut bien se rendre
compte des limitations du travail d�ecrit.


