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Chapter 1

In tro duction

1.1 In tro duction

The �rst c hapter starts b y in tro ducing the sub ject of the thesis. T o a v oid

confusion, this in tro duction is follo w ed b y an explanation of the di�erences

and/or similarities b et w een terms that are often encoun tered in the litera-

ture related to the �eld of automatic iden tit y \determination", whic h are

authen tication, recognition, iden ti�cation, and v eri�cation. These de�ni-

tions are follo w ed b y a presen tation of the structure of the thesis and this

c hapter is ended b y clearly stating the original con tributions of this thesis.

1.2 Sub ject of the thesis

This thesis deals with the automatic veri�c ation of the iden tit y of a c o op-

er ative p erson under test, b y com bining the results of analyses of his or her

face, pro�le and v oice. This sp eci�c application whic h is used throughout

this w ork, has b een de�ned in the framew ork of the M2VTS (Multi-Mo dal

V eri�cation for T ele-services and Securit y applications) pro ject of the Eu-

rop ean Union A CTS program [1 ]. The exact de�nition of v eri�cation and

the di�erences with other, often encoun tered terms, suc h as iden ti�cation,

authen tication or recognition, will b e explained hereafter. The k ey idea in

this thesis is to analyze the p ossibilities of using data fusion te chniques to

com bine the results obtained b y di�eren t biometric (face, pro�le and v oice)

exp erts that eac h ha v e analyzed the iden tit y claim of the p erson under test.

In this w ork w e are explicitly a v oiding issues suc h as ethics, resp onsibilit y

or priv acy . The in terested reader can �nd an in tro duction to these delicate

topics in [185 , 186 ].
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2 CHAPTER 1. INTR ODUCTION

The automatic v eri�cation of a p erson is more and more b ecoming an im-

p ortan t to ol in sev eral applications suc h as con trolled access to restricted

(ph ysical and virtual) en vironmen ts. Just think ab out secure tele-shopping,

accessing the safe ro om of y our bank, tele-banking, accessing the services of

in teractiv e dialogue systems [175 ], or withdra wing money from automatic

teller mac hines (A TM).

A n um b er of di�eren t readily a v ailable tec hniques, suc h as passw ords, mag-

netic strip e cards and P ersonal Iden ti�cation Num b ers (PIN) are already

widely used in this con text, but the only thing they really v erify is, in the

b est case, a com bination of a certain p ossession (for instance the p ossession

of the correct magnetic strip e card) and of a certain know le dge , through

the correct restitution of a c haracter and/or digit com bination. As is w ell

kno wn, these in trinsically simple (access) con trol mec hanisms can v ery eas-

ily lead to abuses, induced for instance b y the loss or theft of the magnetic

strip e card and the corresp onding PIN. Therefore a new kind of metho ds

is emerging, based on so called biometric c haracteristics or measures, suc h

as v oice, face (including pro�le), ey e (iris-pattern, retina-scan), �ngerprin t,

palm-prin t, hand-shap e or some other (preferably) unique and measurable

ph ysiological or b eha vioral c haracteristic information of the p erson to b e

v eri�ed.

In this w ork, a biometric measure will also b e called a mo dality . This means

that an iden tit y v eri�cation system whic h uses sev eral biometric measures

or mo dalities (for instance a visual and a v o cal biometric mo dalit y) is a

multi-mo dal iden tit y v eri�cation system.

Another term whic h will b e used v ery often in this w ork is an exp ert . In this

thesis, an exp ert is eac h algorithm or metho d using c haracteristic features

coming from a particular mo dalit y to v erify the iden tit y of a p erson under

test. In this sense, one single biometric measure or mo dalit y can lead to

the use of more than one exp ert (the visual mo dalit y can for instance lead

to the use of t w o exp erts: a pro�le and a fron tal face exp ert). This means

that a mono-mo dal iden tit y v eri�cation system can still b e a m ulti-exp ert

system.

Biometric measures in general, and non-in v asiv e/user-friendly (v o cal, vi-

sual) biometric measures in particular, are v ery attractiv e b ecause they

ha v e the h uge adv an tage that one can not lose or forget them, and they

are really p ersonal (one cannot pass them to someone else), since they are

based on a ph ysical app earance measure. W e can start using these user-

friendly biometric measures no w, thanks to the progress made in the �eld

of automatic sp eec h analysis and arti�cial vision. In general these new ap-
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plications use a classic al tec hnique (passw ord, or magnetic strip e card) to

claim a certain iden tit y whic h is then v eri�ed using one or more biometric

measures.

If one uses only a single (user-friendly) biometric measure, the results ob-

tained ma y b e found to b e not go o d enough. This is due to the fact that

these user-friendly biometric measures tend to vary with time for one and

the same p erson and to mak e it ev en w orse, the imp ortance of this v ariation

is itself v ery v ariable from one p erson to another. This esp ecially is true

for the v o cal (sp eec h) mo dalit y , whic h sho ws an imp ortan t intr a-sp e aker

variability . One p ossible solution to try to cop e with the problem of this

intr a-p erson v ariabilit y is to use mor e than one biometric me asur e . In this

new multi-mo dal con text, it is th us b ecoming imp ortan t to b e able to com-

bine (or fuse ) the outcomes of di�eren t mo dalities or exp erts. There is

curren tly a signi�can t in ternational in terest in this topic. The organization

of already t w o in ternational conferences on the sp eci�c sub ject of A udio-

and Vide o-b ase d Biometric Person A uthentic ation (A VBP A) is probably

the b est pro of of this [16 , 38 ].

Com bining the outcomes of di�eren t exp erts can b e done b y using classi-

cal data fusion tec hniques [2 , 46 , 70 , 71 , 101 , 170 , 172 , 181 ], but the ma jor

dra wbac k of the bulk of all these metho ds is their rather high degree of com-

plexit y , whic h is expressed - amongst else - b y the fact that these metho ds

tend to incorp orate a lot of parameters that ha v e to b e estimated. If this

estimation is not done using enough training data ( i.e. if the estimation

is not done prop erly), this places a serious constrain t on the abilit y of the

system to correctly generalize [9, 121 ]. But actually a ma jor di�cult y of

this particular estimation problem is the scarcit y of m ulti-mo dal training

data. Indeed, to k eep the automatic v eri�cation system user-friendly , the

enrollmen t of a (new) clien t should not tak e to o m uc h time, and as a di-

rect consequence from this, the amoun t of clien t training data tends to b e

limited. T o try to deal with this lac k of training data, one p ossibilit y is

to dev elop simple classi�ers ( i.e. for instance classi�ers that use only few

parameters), so that their parameters can b e estimated using only limited

amoun ts of training data. The price to b e paid when using simple metho ds

is a decrease in system p erformance, as compared to what one could get

with an optimal metho d.
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1.3 Iden tit y determination concepts

Automatic systems for r e c o gnizing a p erson or for authentic ating his iden tit y

(whic h is equiv alen t), all ha v e a database of N so-called authorized p ersons

or clients . Authen tication or recognition is the general term, whic h co v ers

on one hand identi�c ation and on the other hand veri�c ation . These t w o

pro cesses are quite di�eren t as the follo wing more detailed description will

sho w.

Identi�c ation in the strict sense of the w ord supp oses a close d world con text.

This means that w e are sure that the p erson under test is a clien t. The

only thing w e need to �nd out is whic h clien t of the database of authorized

p ersons matc hes \the b est" the p erson under test. There is no criterion

(suc h as a threshold for instance) to de�ne ho w go o d the matc h has to b e,

to b e acceptable. Iden ti�cation is th us a 1-out-of- N matc hing pro cess, and

it is clear that the p erformances decrease with N .

V eri�c ation in the strict sense of the w ord op erates in an op en world con text.

This means that w e are no longer sure that the p erson under test is a clien t.

In this case, the p erson under test claims a certain iden tit y , whic h of course

has to b e the iden tit y of an authorized p erson. If the p erson under test is no

mem b er of the database of authorized p ersons, he is a so-called imp ostor .

V eri�cation is th us a 1-out-of-1 matc hing pro cess, where it is imp ortan t

that the mismatc h b et w een the reference mo del from the database and

the measured c haracteristics of the p erson under test sta ys b elo w a certain

threshold. The v eri�cation p erformances are indep enden t of N .

Sometimes p eople do refer to identi�c ation in the large sense of the w ord

as the (sequen tial) pro cess of iden ti�cation follo w ed b y a v eri�cation of the

iden ti�ed iden tit y . Sometimes this double pro cess is also called identi�c a-

tion in an op en world c ontext .

In this thesis w e will only consider veri�c ation problems. This means that

the decision problem w e are confron ted with is a t ypical binary h yp othesis

test. Indeed, the decision w e ha v e to tak e is either to ac c ept or to r eje ct the

iden tit y claim of the p erson under test.

1.4 Structure of the thesis

This thesis has b een divided in to t w o parts. In the �rst part, general issues

related to automatic m ulti-mo dal iden tit y v eri�cation systems, suc h as a

discussion on biometric mo dalities (including the c haracterization of auto-

matic iden tit y v eri�cation systems), the presen tation of our exp erimen tal
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set-up (including the presen tation and the analysis of our exp erts) and a

general o v erview of data fusion related concepts, are treated. In the second

part, the fusion of the di�eren t exp erts in a m ulti-mo dal iden tit y v eri�-

cation system is implemen ted on the decision lev el, using parametric and

non-parametric metho ds. These di�eren t metho ds are then compared with

eac h other and a structured hierarc hical approac h for gradually upgrading

the p erformances of automatic biometric v eri�cation systems is presen ted.

A t the end of these t w o parts, w e are concluding this thesis b y summarizing

our con tributions to the �eld and b y lo oking at p ossible extensions of the

w ork done.

T o b e more sp eci�c, the �rst part is organized as follo ws. In c hapter 2 w e

deal with biometric mo dalities and w e start b y listing some theoretical and

practical requiremen ts that biometrics in general should conform to. This

is follo w ed b y a section whic h presen ts a ten tativ e classi�cation of the most

commonly found biometrics in to t w o classes: the so-called ph ysiological and

b eha vioral biometrics. In the follo wing section the general structure of an

automatic mono-mo dal biometric v eri�cation system is presen ted, while in

the next section some general argumen ts for using m ulti-mo dal biometric

v eri�cation systems are dev elop ed. The follo wing section is mean t to in tro-

duce and de�ne the classical p erformance c haracteristics used in the �eld of

automatic iden tit y v eri�cation, and the �nal section is giving an o v erview

of the state of the art in m ulti-mo dal biometric iden tit y v eri�cation sys-

tems. Chapter 3 giv es details ab out the exp erimen tal set-up. It starts b y

presen ting the M2VTS databases used in this w ork. After this, the exp eri-

men tal proto col is describ ed. Finally , the three di�eren t biometric exp erts

w e ha v e b een using throughout this w ork are briey in tro duced and their

individual p erformances are highligh ted and statistically analyzed. Chap-

ter 4 in tro duces some elemen tary data fusion concepts suc h as the di�eren t

data fusion lev els and arc hitectures, and sho ws ho w it is p ossible, b y mak-

ing some w ell-funded c hoices, to transform a general data fusion problem

in to a particular classi�c ation problem.

The second part of this w ork deals more particularly with the parallel com-

bination or fusion of the partial (soft) decisions of the di�eren t exp erts.

Chapter 5 explains wh y w e ha v e c hosen to exp erimen t with parametric as

w ell as with non-parametric metho ds. Chapter 6 deals with parametric

tec hniques, but to sho w the usefulness of these parametric metho ds �rst of

all a trivial but original metho d is presen ted: the monotone multi-line ar

(or pie c e-wise line ar) classi�er . Unfortunately the p erformances of this

classi�er are not v ery go o d, mainly due to the fact that (v aluable) infor-



6 CHAPTER 1. INTR ODUCTION

mation with resp ect to the probabilit y densit y functions of the di�eren t

p opulations is thro wn a w a y . Therefore in a fairly early stage of this w ork

it has b een decided to stop dev eloping this simple metho d and to fall bac k

instead the less original, but more fundamen tal statistical decision theory ,

b y using so-called p ar ametric tec hniques. In this parametric class, classi-

�ers based on the general Ba y esian decision theory (Maxim um A-p osteriori

Probabilit y and Maxim um Lik eliho o d) and on a simpli�ed v ersion of it

(the Naiv e Ba y esian classi�er, whic h has b een applied in the case of sim-

ple Gaussians and in the case of a logistic regression mo del), ha v e b een

studied. F urthermore exp erimen ts ha v e also b een done using Linear and

Quadratic classi�ers. Neural net w orks form a sp ecial case of the parametric

family , since the n um b er of parameters to b e estimated can b e v ery large.

Therefore neural net w orks are sometimes classi�ed as semi-parametric clas-

si�ers. Still w e will presen t neural net w orks in the c hapter on parametric

tec hniques, b y means of its most p opular represen tativ e: the Multi-La y er

p erceptron. Chapter 7 deals with non-parametric tec hniques. This c hap-

ter starts b y presen ting a v ery simple family of non-parametric tec hniques.

These voting tec hniques are sometimes referred to as k -out-of- n v oting tec h-

niques, where k relates to the n um b er of exp erts that ha v e to decide that

the p erson under test is a clien t, b efore the global v oting classi�er accepts

the p erson under test as a clien t. After the v oting metho ds, another simple

but v ery p opular tec hnique, the k Nearest Neigh b or ( k -NN) tec hnique, is

presen ted with a n um b er of v arian ts. These v arian ts include a distance

w eigh ted and a v ector quan tized v ersion of the classical k -NN rule. This

c hapter ends b y presen ting the category of (binary) decision trees, b y means

of an implemen tation of the C4.5 algorithm, whic h is probably the most

p opular metho d in its kind. Chapter 8 deals with the comparison b et w een

the di�eren t parametric and non-parametric metho ds that ha v e b een pre-

sen ted in the second part of the thesis. Chapter 9 presen ts a m ulti-lev el

decision fusion strategy that allo ws to gradually impro v e the p erformances

of an automatic biometric iden tit y v eri�cation system, while limiting the

initial in v estmen ts.

Chapter 10 �nally concludes this thesis, form ulates some recommendations

for dev eloping automatic m ulti-mo dal biometric iden tit y v eri�cation sys-

tems and iden ti�es p ossibilities for future w ork in the same application

�eld.
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1.5 Original con tributions of this thesis

The original con tributions of this thesis are the follo wing ones:

1. the form ulation (in the framew ork of a m ulti-mo dal biometric iden tit y

v eri�cation system) of the fusion of the partial (soft) decisions of d

exp erts in parallel as a particular classi�cation problem in the d -

dimensional space [179 ];

2. the systematic and detailed statistical analysis of the di�eren t exp erts

that ha v e b een used;

3. the dev elopmen t of a simple decision fusion metho d, based on a mono-

tone m ulti-linear classi�er [179 , 180 ];

4. the analysis of the applicabilit y , the c haracteristics and the p erfor-

mance of the logistic regression metho d in a Ba y esian framew ork [177 ];

5. the dev elopmen t of a V ector Quan tization v ersion of the classical k -

Nearest Neigh b or algorithm [173 ];

6. the systematic comparison of a large n um b er of parametric as w ell as

non-parametric tec hniques to solv e the particular classi�cation pro-

blem [174 ];

7. the in tro duction of either the non-parametric Co c hran's Q test for

binary resp onses, or the non-parametric P age test for ordered alter-

nativ es, to measure the statistical signi�cance of the di�erences in

p erformance of sev eral ( i.e. more than t w o) fusion mo dules at the

same time;

8. the form ulation of a m ulti-lev el fusion strategy whic h allo ws to grad-

ually impro v e the p erformances of an automatic (biometric) iden tit y

v eri�cation system [176 , 178 ];

9. the form ulation of the mixture of exp erts paradigm in the framew ork

of mono-mo dal m ulti-exp ert data fusion, applied to a segmen tal ap-

proac h to text-indep enden t sp eak er v eri�cation [171 ];

10. the in tro duction of the use of m ulti-mo dal iden tit y v eri�cation in

In teractiv e Dialogue Systems [175 ].
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Chapter 2

Biometric v eri�cation

systems

2.1 In tro duction

This c hapter starts b y de�ning the ide al theoretical and practical require-

men ts for an y biometric. This is follo w ed b y a section whic h presen ts a

ten tativ e classi�cation (according to [120 ]) of the most commonly found

biometrics in to t w o classes: the so-called ph ysiological and b eha vioral bio-

metrics. In the follo wing section the general structure of an automatic

mono-mo dal biometric v eri�cation system is presen ted, while in the next

section some general argumen ts for using m ulti-mo dal biometric v eri�cation

systems are dev elop ed. The follo wing section presen ts then the main c har-

acteristics of iden tit y v eri�cation systems. In the �nal section, an o v erview

of the state of the art of m ulti-mo dal biometric p erson v eri�cation systems

is giv en.

2.2 Requiremen ts for biometrics

Automatic biometric systems ha v e to iden tify an individual or to v erify his

or her iden tit y

1

using measuremen ts of the (living) h uman b o dy . According

to [88 , 89 ], in theory an y h uman c haracteristic can b e used to mak e an

iden tit y v eri�cation, as long as it satis�es the follo wing desirable (ideal)

requiremen ts:

1

As already men tioned in c hapter 1, w e will consider in this w ork only v eri�cation

systems.

11
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univ ersalit y this means that ev ery p erson should ha v e the c haracteristic;

uniqueness this indicates that no t w o p ersons should b e the same in terms

of the c haracteristic;

p ermanence this means that the c haracteristic do es not v ary with time;

collectabilit y this indicates that the c haracteristic can b e measured quan-

titativ ely .

In practice, there are some other imp ortan t requiremen ts:

p erformance this sp eci�es not only the ac hiev able v eri�cation accuracy ,

but also the resource requiremen ts to ac hiev e an acceptable v eri�ca-

tion accuracy;

robustness this refers to the inuence of the w orking or en vironmen tal

factors (c hannel, noise, distortions, : : : ) that a�ect the v eri�cation

accuracy;

acceptabilit y this indicates to what exten t p eople are willing to accept

the biometric v eri�cation system;

circum v en tion this refers to ho w easy it is to fo ol the system b y fraud-

ulen t tec hniques (mak e sure that the individual owns the data, and

that he is not transforming it; this could also include a so-called live-

liness test).

As men tioned b efore, these requiremen ts should b e regarded as ideal. In

other w ords, the b etter a biometric satis�es these requiremen ts, the b etter

it will p erform. In practice ho w ev er, there is no single biometric whic h

ful�lls all these ideal requiremen ts p erfectly . This observ ation is one of the

main reasons wh y com bining sev eral biometric mo dalities in m ulti-mo dal

systems is gaining �eld.

2.3 Classi�cation of biometrics

A range of mono-mo dal biometric systems is in dev elopmen t or on the mar-

k et, b ecause no one biometric meets all the needs.The tradeo�s in dev elop-

ing these systems in v olv e cost, reliabilit y , discomfort in using a device, and

the amoun t of data needed. Fingerprin ts, for instance, ha v e a long trac k

record of reliabilit y ( i.e. they mak e v ery few classi�cation errors), but the

hardw are for capturing �ngerprin ts w as un til no w rather exp ensiv e, and the
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amoun t of data that needs to b e stored to describ e a �ngerprin t (the tem-

plate) tended to b e rather large. In con trast, the hardw are for capturing

the v oice is c heap (relying on lo w-cost microphones or on an already ex-

isting telephone), but it v aries when emotions and states of health c hange.

According to [120 ], biometrics encompasses b oth ph ysiological and b eha v-

ioral c haracteristics. This is illustrated for a n um b er of frequen tly used

biometrics in Figure 2.1.

Face Fingerprint Hand Eye Signature Voice Keystroke

BehavioralPhysiological

Automated biometrics

Figure 2.1: Classi�cation of a n um b er of biometrics in ph ysiological and

b eha vioral c haracteristics.

A ph ysiological c haracteristic is a relativ ely stable ph ysical feature suc h

as a �ngerprin t [89 , 130 , 153 ], hand geometry [190 ], palm-prin t [188 ], in-

frared facial and hand v ein thermograms [141 ], iris pattern [184 ], retina

pattern [74 ], or facial feature [11 , 12 , 34 , 39 , 102 , 116 , 183 , 189 ]. Indeed, all

these c haracteristics are basically unalterable without trauma to the indi-

vidual. A b eha vioral trait on the other hand, has some ph ysiological basis,

but also reects a p erson's psyc hological (emotional) condition. The most

common b eha vioral trait used in automated biometric v eri�cation systems

is the h uman v oice [3 , 10 , 20 , 22 , 31 , 35 , 36 , 52 , 60, 62 , 63 , 64 , 65 , 66 , 69,

72 , 73 , 76 , 81 , 80 , 105 , 111 , 112 , 131 , 132 , 133 , 134 , 151 , 154 , 160 ]. Other

b eha vioral traits are gait [126 ], k eystrok e dynamics [127 ], and (dynamic)

signature analysis [124 , 125 ]. One of the main problems with b eha vioral

c haracteristics is that they tend to c hange o v er time. Therefore biometric
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systems that rely on b eha vioral c haracteristics should ideally up date their

enrolled reference template(s) on a regular basis. This could b e done either

in an automatic manner, eac h time a reference is used successfully ( i.e.

the system decides that an access claim is an authen tic clien t claim), or in

a sup ervised manner, b y re-enrolling eac h clien t p erio dically . The former

metho d has the adv an tage to b e user-friendly , but has the dra wbac k that

one up dates the clien t references with a template from an imp ostor in the

case that the system commits a F alse Acceptance. The latter approac h has

the adv an tage to up date the clien t references alw a ys with clien t templates,

but has the dra wbac k that it is not v ery user-friendly , since the clien ts need

to do additional training sessions.

The di�erences b et w een ph ysiological and b eha vioral metho ds are imp or-

tan t. On one hand, the degree of in tra-p erson v ariabilit y is smaller in a

ph ysiological than in a b eha vioral c haracteristic. On the other hand, ma-

c hines that measure ph ysiological c haracteristics tend to b e larger and more

exp ensiv e, and ma y seem more threatening or invasive to users (this is for

instance the case for retina scanners). Because of these di�erences, no one

biometric will serv e all needs.

2.4 General structure of a mono-mo dal biometric

system

Automated mono-mo dal biometric v eri�cation systems usually w ork ac-

cording to the follo wing principles. In a t ypical functional system a sensor,

adapted to the sp eci�c biometric, generates measuremen t data. F rom these

data, features that ma y b e used for v eri�cation are extracted, using image

and/or signal pro cessing tec hniques. In general, eac h biometric has its o wn

feature set. P attern matc hing tec hniques compare the features coming from

the p erson under test with those stored in the database under the claimed

iden tit y , to pro vide lik ely matc hes. Last but not least, decision theory in-

cluding statistics pro vides a mec hanism for answ ering the question \Is the

p erson under test who he or she claims to b e?" and for ev aluating biomet-

ric tec hnology [77 , 78, 158 ]. Automatic mono-mo dal biometric v eri�cation

systems are usually built arranging t w o main mo dules in series: (1) a mo d-

ule whic h compares the measured features from the p erson under test with

a reference clien t mo del and giv es a scalar n um b er

2

as output, follo w ed b y

2

This scalar n um b er will b e called a sc or e and it states ho w w ell the claimed iden tit y

has b een v eri�ed
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(2) a decision mo dule realized b y a thresholding op eration. This threshold

can b e a function of the claimed iden tit y .

The arc hitecture of an automatic mono-mo dal biometric v eri�cation system

is represen ted in �gure 2.2.

model

selection

matching
feature

extraction

decision
decision

forming

identification key

score

biometric signal

Figure 2.2: T ypical mono-mo dal biometric v eri�cation system arc hitecture.

2.5 The need for m ulti-mo dal biometric systems

There can b e sev eral reasons wh y one w ould prefer m ulti-mo dal biomet-

ric v eri�cation systems o v er mono-mo dal ones. Generally , the criterion

to c ho ose b et w een mono- and m ulti-mo dal systems will b e system p erfor-

manc e . The end-user t ypically desires a guaran tee that the classi�cation

errors (F AR and FRR) will b e limited b y maximal v alues that will de-

p end on the application. And although there exist mono-mo dal biometric

v eri�cation tec hniques that do o�er v ery small classi�cation errors, the

main problem with this category of biometrics is that they are either to o

exp ensive to b e used in a general purp ose con text (for instance iden tit y v er-

i�cation in the case of credit card pa ymen ts o v er the In ternet using a PC)

or p erceiv ed b y the user as to o invasive . So v ery often one is confron ted

with the obligation of using inexp ensiv e hardw are and non-in v asiv e user-

friendly biometrics. Tw o of the most p opular biometrics that can conform

to these constrain ts are faces and v oices. Ho w ev er, the dra wbac k of using

inexp ensiv e hardw are (c heap blac k and white CCD-cameras and lo w-cost

microphones) to obtain the ra w data measuremen ts of these biometrics, has

as a direct consequence that the measuremen ts generally will b e corrupted

with noise, or distorted. This ob viously leads to a degradation of system

p erformance. Other problems link ed with these p opular user-friendly bio-
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metrics are that the visual mo dalit y is rather sensitiv e to ligh ting conditions

and that the v o cal mo dalit y tends to v ary with time (since it is a b eha vioral

biometric). This mak es the use of a mono-mo dal biometric v eri�cation sys-

tem based solely either on the facial or on the v o cal mo dalit y a v ery big

c hallenge, esp ecially since it is usually not p ossible to up date the database

references of the authorized users on a regular basis.

One p ossible solution to cop e with this problem is to use not one single

mono-mo dal biometric system, but to use sev eral of them in parallel to

form a so-called m ulti-mo dal biometric v eri�cation system. It can b e felt

in tuitiv ely that suc h a strategy can b e helpful, if one considers c omplemen-

tary biometrics. This complemen tarit y can b e ac hiev ed with resp ect to the

di�eren t requiremen ts as they w ere presen ted in section 2.2. A p ossible

example of complemen tary biometrics with resp ect to the p ermanenc e re-

quiremen t w ould b e the com bined use of a ph ysiological (face: more in v ari-

an t in time) and a b eha vioral (v oice: less in v arian t) biometric. The main

and v ery general idea of using m ulti-mo dal biometric v eri�cation systems

instead of mono-mo dal ones is th us the abilit y to use more (complemen tary)

information with resp ect to the p erson under test in the former approac h,

than in the latter approac h. In c hapter 9, a more detailed step-b y-step

analysis of a m ulti-lev el strategy to gradually impro v e the p erformances of

an automated biometric system is presen ted.

A p ossible and straigh tforw ard w a y of building a m ulti-mo dal v eri�cation

system from d suc h mono-mo dal systems is to input the d scores pro vided

in parallel in to a fusion mo dule, whic h com bines the d scores and passes

the fused score on to the decision forming mo dule. This mo dule then has

to tak e the decision ac c ept or r eje ct , based on a threshold. Just as in the

case of the mono-mo dal system, this threshold can b e a function of the

claimed iden tit y . Ho w ev er, t w o alternativ es remain for the fusion mo dule:

a global (i.e. the same for all p ersons) or a p ersonal (i.e. tailored to the

sp eci�c c haracteristics of eac h authorized p erson) approac h. F or the sak e

of simplicit y and b ecause the p ersonal approac h needs more training data

(since in this case the fusion mo dule needs to b e optimized for e ach clien t),

w e ha v e opted in this w ork for a global fusion mo dule.

Figure 2.3 sho ws the t ypical arc hitecture of a general m ulti-exp ert v eri�-

cation system, including the p ossible use of p ersonalized fusion or decision

forming. The formal presen tation of this general data fusion problem will

b e giv en in c hapter 4.
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Figure 2.3: Multi-exp ert arc hitecture.

2.6 Characterization of a v eri�cation system

In this w ork, w e will consider the v eri�cation of the iden tit y of a p erson as

a t ypical t w o-class problem: either the p erson is the one (in this case he is

called a client ), or is not the one (in that case he is called an imp ostor ) he

claims to b e. This means that w e are going to w ork with a binary f accept,

reject g decision sc heme.

When dealing with binary h yp othesis testing, it is trivial to understand

that the decision mo dule can mak e t w o kinds of errors. Applied to this

problem of the v eri�cation of the iden tit y of a p erson, these t w o errors are

called:

� F alse Rejection (FR): i.e. when an actual client is rejected as b eing

an imp ostor ;

� F alse Acceptance (F A): i.e. when an actual imp ostor is accepted as

b eing a client .

The p erformances of a sp eak er v eri�cation system are usually giv en in terms

of the global error rates computed during tests: the F alse Rejection Rate

(FRR) and the F alse Acceptance Rate (F AR) [18 ]. These error rates are

de�ned as follo ws:

FRR =

n um b er of FR

n um b er of clien t accesses

(2.1)
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F AR =

n um b er of F A

n um b er of imp ostor accesses

(2.2)

A p erfect iden tit y v eri�cation (F AR=0 and FRR=0) is in practice unac hiev-

able. Ho w ev er, as sho wn b y the study of binary h yp othesis testing [167 ],

an y of the t w o F AR, FRR can b e reduced to an arbitrary small v alue b y

c hanging the decision threshold, with the dra wbac k of increasing the other

one. A unique measure can b e obtained b y com bining these t w o errors in to

the T otal Error Rate (TER) or its complimen tary , the T otal Success Rate

(TSR):

TER =

n um b er of F A + n um b er of FR

total n um b er of accesses

(2.3)

TSR = 1 � TER (2.4)

Ho w ev er, care should b e tak en when using one of these t w o unique mea-

sures. Indeed, from the de�nition just giv en it follo ws directly that these

t w o unique n um b ers could b e hea vily biased b y one or either t yp e of errors

(F AR or FRR), dep ending solely on the n um b er of accesses that ha v e b een

used in obtaining these resp ectiv e errors. As a matter of fact, due to the

prop ortional w eigh ting as sp eci�ed in the de�nition, the TER will alw a ys

b e closer to that t yp e of error (F AR or FRR) whic h has b een obtained

using the largest n um b er of accesses.

The o v erall p erformance of an iden tit y v eri�cation system is ho w ev er b et-

ter c haracterized b y it's so-called R e c eiver Op er ating Char acteristic (R OC) ,

whic h represen ts the F AR as a function of the FRR [167 ]. The Detec-

tion Error T radeo� (DET) curv e is a con v enien t non-linear transformation

of the R OC curv e, whic h has b ecome the standard metho d for compar-

ing p erformances of sp eak er v eri�cation metho ds used in the ann ual NIST

ev aluation campaigns [142 ]. In a DET curv e, the horizon tal axis sho ws the

normal deviate of the F alse Alarm probabilit y in (%), whic h is a non-linear

transformation of the horizon tal F alse Acceptance axis of the classical R OC

curv e. The v ertical axis of the DET curv e represen ts normal deviate of the

Miss probabilit y (in %), whic h is a non-linear transformation of the F alse

Rejection axis of the classical R OC curv e. The use of the normal deviate

scale mo v es the curv es a w a y from the lo w er left when p erformance is high,

making comparisons b et w een di�eren t systems easier. It can also b e ob-

serv ed that, t ypically , the resulting curv es are appro ximately straigh t lines,

whic h do corresp ond to normal lik eliho o d distributions, for at least a wide
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p ortion of their range. F urther details of this non-linear transformation are

presen ted in [115 ]. Figures 2.4 and 2.5 giv e resp ectiv ely an example of a

t ypical R OC and a t ypical DET curv e.
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Figure 2.4: T ypical example of a R OC curv e.

Eac h p oin t on a R OC or a DET c haracteristic corresp onds with a parti-

cular decision threshold. The Equal Error Rate (EER: i.e. when F AR =

FRR), is often used as the only p erformance measure of an iden tit y v eri�-

cation metho d, although this measure giv es just one p oin t of the R OC and

comparing di�eren t systems solely based on this single n um b er can b e v ery

misleading [129 ].

High securit y access applications are concerned ab out break-ins and hence

op erate at a p oin t on the R OC with small F AR. F orensic applications desire

to catc h a criminal ev en at the exp ense of examining a large n um b er of false

accepts and hence op erate at small FRR/high F AR. Civilian applications

attempt to op erate at the op erating p oin ts with b oth lo w FRR and lo w

F AR. These concepts are sho wn in Figure 2.6, whic h w as found in [88 ].

Unfortunately in practice, as will b e sho wn further in the study of the

fusion mo dules presen ted in this thesis, it is not alw a ys p ossible to explicitly

iden tify a con tin uous decision threshold in a certain fusion mo dule, whic h

means that in that case it will a fortiori not b e p ossible to v ary the decision

threshold to obtain a R OC or a DET curv e. So in these sp eci�c cases only

a single op erating p oin t on the R OC can b e giv en. This is inciden tally
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Figure 2.5: T ypical example of a DET curv e.
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Figure 2.6: T ypical examples of di�eren t op erating p oin ts for di�eren t ap-

plication t yp es.
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also the only correct w a y of determining the p erformance of an op erational

system, since in suc h systems the decision threshold has b een �xe d .

All v eri�cation results in this thesis will b e giv en in terms of FRR, F AR, and

TER. F or eac h error the 95 % lev el con�dence in terv al will b e giv en b et w een

square brac k ets. The concept of c on�denc e intervals refers to the inheren t

uncertain t y in test results o wing to small sample size. These in terv als are a

p osteriori estimates of the uncertain t y in the results on the test p opulation.

They do not include the uncertain ties caused b y errors (mislab eled data,

for example) in the test pro cess. The con�dence in terv als do not represen t

a priori estimates of p erformance in di�eren t applications or with di�eren t

p opulations [182 ].

These con�dence lev els will b e calculated assuming that the probabilit y

distribution for the n um b er of errors is binomial. But since the binomial la w

can not b e easily analyzed in an analytical w a y , the calculation of con�dence

in terv als can not b e done directly in an analytical w a y . Therefore w e ha v e

used the Normal la w as an appro ximation of the binomial la w. This large

sample approac h is already statistically justi�ed starting from 30 samples.

Using this appro ximation, the 95% con�dence in terv al of an error E based

on N tests, is de�ned b y the follo wing lo w er (giv en b y the min us sign) and

upp er (giv en b y the plus sign) b ounds:

E � 1 : 96

r

E (1 � E )

N

:

More detailed information ab out the calculation of con�dence in terv als can

b e found in [41 , 44, 155 ].

2.7 State of the art

2.7.1 General o v erview

Some w ork on m ulti-mo dal biometric iden tit y v eri�cation systems has al-

ready b een rep orted in the literature. Hereafter, an o v erview is giv en of

the most imp ortan t con tributions, with a brief description of the w ork p er-

formed.

1. As early as 1993, Chib elushi et Al. ha v e prop osed in [40 ] to in tegrate

acoustic and visual sp eec h (motion of visible articulators) for sp eak er

recognition. The com bination sc heme used is a simple linear one.

There is no men tion of the database used and the result men tioned

is an EER = 1 : 5%.
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2. In 1995, Brunelli and F ala vigna ha v e prop osed in [33 ] a p erson iden-

ti�cation system based on acoustic and visual features. The v oice

mo dalit y is based on a text-indep enden t v ector quan tization and it

uses t w o t yp es of information: static and dynamic acoustic features.

The face mo dalit y implemen ts a template matc hing tec hnique on

three distinct areas of the face (ey es, nose, and mouth). They use

a database con taining up to three sessions of 87 p ersons. One session

w as used for training, the others for testing, whic h did lead to a total

n um b er of 155 tests. The most p erforming fusion mo dule is a neural

net w ork. The b est results obtained on this particular database are:

F AR = 0 : 5% and FRR = 1 : 5%.

3. In 1997, Diec kmann et Al. ha v e prop osed in [50 ] a decision lev el fu-

sion sc heme, based on a 2-out-of-3 ma jorit y v oting. This approac h

in tegrates t w o biometric mo dalities (face and v oice), whic h are ana-

lyzed b y three di�eren t exp erts: (static) face, (dynamic) lip motion,

and (dynamic) v oice. The authors ha v e tested their approac h on a

sp eci�c database of 15 p ersons, where the b est v eri�cation results

obtained w ere F AR = 0 : 3% and FRR = 0 : 2%.

4. In 1997, Duc et Al. did prop ose in [55 ] a simple a v eraging tec hnique

and compared it with the Ba y esian in tegration sc heme presen ted b y

Big • un et Al. in [13 ]. In this m ulti-mo dal system the authors use a

fron tal face iden ti�cation exp ert based on Elastic Graph Matc hing,

and a text-dep enden t sp eec h exp ert based on p erson-dep enden t Hid-

den Mark o v Mo dels (HMMs) for isolated digits. All exp erimen ts are

p erformed on the M2VTS database, and the b est results are obtained

for the Ba y esian fusion mo dule: F AR = 0 : 54% and FRR = 0 : 00%.

5. In 1997, Jourlin et Al. ha v e prop osed in [93 ] an acoustic-labial sp eak er

v eri�cation metho d. Their approac h uses t w o classi�ers. One is based

on a lip trac k er using visual features, and the other one is based on

a text-dep enden t p erson-dep enden t HMM mo deling of isolated digits

using acoustic features. The fused score is computed as the w eigh ted

sum of the scores generated b y the t w o exp erts. All exp erimen ts are

p erformed on the M2VTS database, and the b est results obtained for

the w eigh ted fusion mo dule are: F AR = 0 : 5% and FRR = 2 : 8%.

6. In 1998, Kittler et Al. ha v e prop osed in [98 ] a m ulti-mo dal p erson

v eri�cation system, using three exp erts: fron tal face, face pro�le, and

v oice. The fron tal face exp ert is based on template matc hing, the face
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pro�le exp ert is using a c hamfer matc hing algorithm, and the v oice

exp ert is based on the use of text-dep enden t p erson-dep enden t HMM

mo dels for isolated digits. All these exp erts giv e their soft decisions

(scores b et w een zero and one) to the fusion mo dule. All exp erimen ts

are p erformed on the M2VTS database, and the b est com bination

results are obtained for a simple sum rule: EER = 0 : 7%.

7. In 1998, Hong and Jain ha v e prop osed in [82 ] a m ulti-mo dal p er-

sonal iden ti�cation system whic h in tegrates t w o di�eren t biometrics

(face and �ngerprin ts) that complemen t eac h other. The face v er-

i�cation is done using the eigenfaces approac h, and the �ngerprin t

exp ert is based on a so-called elastic matc hing algorithm. The fusion

algorithm op erates at the exp ert decision lev el, where it com bines

the scores from the di�eren t exp erts (under the statistically indep en-

dence h yp othesis), b y simply m ultiplying them. The f accept, reject g

decision is then tak en b y comparing the fused score to a threshold.

The databases used in this w ork are the Mic higan State Univ ersit y

�ngerprin t database con taining 1500 images from 150 p ersons, and

a face database coming from the Oliv etti Researc h Lab, the Univ er-

sit y of Bern, and the MIT Media Lab, whic h con tains 1132 images

from 86 p ersons. The results obtained for the fusion approac h on this

database are: F AR = 1 : 0% and FRR = 1 : 8%.

8. In 1998, Ben-Y acoub did prop ose in [7 ] a m ulti-mo dal data fusion

approac h for p erson authen tication, based on Supp ort V ector Ma-

c hines (SVM). In his m ulti-mo dal system he uses the same exp erts

and the same database as Duc et Al. in the w ork presen ted ab o v e.

The b est results whic h he obtained for the SVM fusion mo dule are

F AR = 0 : 07% and FRR = 0 : 00%.

9. In 1999, Pigeon did prop ose in [135 ] a m ulti-mo dal p erson authen-

tication approac h based on simple fusion algorithms. In this m ulti-

mo dal system the author uses a face iden ti�cation exp ert based on

template matc hing, a pro�le iden ti�cation exp ert based on a c hamfer

matc hing algorithm, and a text-dep enden t sp eec h exp ert based on

p erson-dep enden t HMM mo dels for isolated digits. All exp erimen ts

are p erformed on the M2VTS database, and the b est results are ob-

tained for a fusion mo dule based on a linear discriminan t function:

F AR = 0 : 07% and FRR = 0 : 78%.

10. In 1999, Choudh ury et Al. did prop ose in [43 ] a m ulti-mo dal p erson
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recognition system using unconstrained audio and video. The system

do es not need fully fron tal face images or clean sp eec h as input. The

face exp ert is based on the eigenfaces approac h, and the audio ex-

p ert uses a text-indep enden t HMM using Gaussian Mixture Mo dels

(GMMs). The com bination of these t w o exp erts is p erformed using

a Ba y es net. The system w as tested on a sp eci�c database con tain-

ing 26 p ersons and the b est results obtained using the b est images

and audio clips from an en tire session are: F AR = 0 : 00% and FRR

= 0 : 00%.

2.7.2 Results obtained on the M2VTS database

T o facilitate the comparison with the w ork presen ted in this thesis, w e

ha v e isolated from the previous state of the art the results whic h ha v e b een

obtained on the same M2VTS database as the one w e ha v e b een w orking

on. These results are presen ted in T able 2.1 hereafter. Where a v ailable, the

con�dence in terv al is indicated b et w een square brac k ets. Care should b e

tak en ho w ev er when comparing these results, since the exp erts used are not

necessarily the same for all metho ds. The last line in this T able represen ts

the b est results obtained in this thesis, using a logistic regression mo del.

T able 2.1: State of the art of the v eri�cation results obtained on the M2VTS

database.

Author(s) Exp erts FRR (%) F AR (%)

Duc et Al. fron tal, v o cal 0.00 0.54

Jourlin et Al. lips, v o cal 2.80 0.50

Kittler et Al. fron tal, pro�le, v o cal 0.70 (EER) 0.70 (EER)

Ben-Y acoub fron tal, v o cal 0.00 0.07

Pigeon fron tal, pro�le, v o cal 0.78 0.07

V erlinde fron tal, pro�le, v o cal 0.00 0.00

2.8 Commen ts

As already men tioned, eac h biometric tec hnology has its strengths and lim-

itations, and no single biometric is exp ected to e�ectiv ely meet the needs
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of all applications. W e ha v e seen that v oice is one of the most p opular

biometrics, thanks to its high acceptabilit y and its user-friendliness [88 ].

Since v oice is a b eha vioral biometric mo dalit y and since in a m ulti-mo dal

approac h it is wise to complemen t a b eha vioral mo dalit y with a ph ysiolog-

ical one, w e w an ted to add a ph ysiological mo dalit y whic h also w as highly

acceptable. These considerations ha v e led to c ho ose the visual mo dalit y .

In the framew ork of the M2VTS application, another imp ortan t criterion

for c ho osing the di�eren t biometrics w as the a v ailabilit y of the hardw are.

With resp ect to the tele-servic es , the idea w as to use so-called m ulti-media

PC's, whic h are equipp ed with lo w-cost microphones and CCD-camera.

These considerations reinforce eac h other and they explain wh y in the m ulti-

mo dal system presen ted in this w ork, v oice and vision w ere used as the t w o

(complemen tary) biometric mo dalities. Analyzing the state of the art in

automatic biometric m ulti-mo dal iden tit y v eri�cation systems, it has b een

sho wn that on the M2VTS database, the b est metho d presen ted in this

thesis (based on the logistic regression mo del) is the o v erall b est metho d.





Chapter 3

Exp erimen tal setup

3.1 In tro duction

This c hapter starts b y presen ting the M2VTS database used in this w ork.

After this, the exp erimen tal proto col used for testing the individual exp erts

and the fusion mo dules is describ ed. Finally , the three di�eren t biometric

exp erts (a fron tal, a pro�le and a v o cal one) w e ha v e b een using through-

out this w ork are briey in tro duced and their individual p erformances are

highligh ted. This is follo w ed b y a thorough statistical analysis of the results

giv en b y these three di�eren t exp erts for b oth clien t and imp ostor accesses.

In this analysis it is sho wn that the distribution of the scores p er exp ert and

p er t yp e of access (the so-called conditional probabilit y densit y functions)

do not satisfy the Normalit y h yp othesis. F urthermore it is sho wn that the

c hosen exp erts do ha v e go o d discriminatory p o w er, and are complemen-

tary . The p oten tial gain obtained b y com bining the results of these three

di�eren t exp erts are sho wn b y means of a simple linear classi�er.

3.2 The M2VTS audio-visual p erson database

The M2VTS [1] m ulti-mo dal database comprises 37 di�eren t p ersons and

pro vides 5 shots for eac h p erson. These shots w ere tak en at in terv als of at

least one w eek. During eac h shot, p eople w ere ask ed (1) to coun t from \0"

to \9" in F renc h (whic h w as the nativ e language for most of the p eople)

and (2) to rotate their head from 0 to -90 degrees, bac k to 0 and further

to +90 degrees, and �nally bac k again to 0 degrees. The most di�cult

shot to recognize is the 5

th

shot. This shot mainly di�ers from the others

b ecause of face \v ariations" (head tilted, ey es closed, di�eren t hair st yle,

27
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presence of a hat/scarf, : : : ), v oice v ariations or shot imp erfections (p o or

fo cus, di�eren t zo om factor, p o or v oice signal to noise ratio, : : : ). More

details with resp ect to this database can b e found in [136 , 137 , 135 ].

T aking in to accoun t the sp eci�cit y of our problem ( i.e. com bining outputs

of sev eral exp erts) w e are not going to use this 5

th

shot, since w e are not

in terested in dev eloping individual p o w erful exp erts that w ork w ell ev en

under these extreme conditions as presen ted b y shot n um b er 5.

T o sho w the qualit y of the pictures con tained in the small M2VTS database,

Figures 3.1, 3.2, and 3.3 sho w resp ectiv ely the fron tal views of some p er-

sons, the rotation sequence and the 5 di�eren t shots for one and the same

p erson [135 ].

3.3 Exp erimen tal proto col

3.3.1 General issues

In the most general (but ric h) case, three di�er ent data sets are needed for

training, �ne-tuning and testing the individual exp erts. The �rst data set

is called the tr aining set and is used b y eac h exp ert to mo del the di�eren t

p ersons. The second data set is called the development or validation set

and is used to �ne-tune the di�eren t exp erts, for instance b y calculating the

decision thresholds. The third data set is called the test set and it is used to

test the p erformances of the obtained exp erts. F or the fusion mo dule, w e

can de�ne in the most general case exactly the same data sets as in the case

of the individual exp erts. This general concept of the use of the di�eren t

data sets is illustrated in Figure 3.4. This do es not necessarily mean that

one alw a ys will need six completely separated data sets, since the fact that

the test set for the individual exp erts is completely disso ciated from the

dev elopmen t of the exp erts, mak es it suitable to b e reused for the fusion

mo dule. F urthermore, not all t yp es of exp erts, nor all fusion mo dules do

include the mo deling of the p ersons. This means that in the particular case

of exp erts and fusion mo dules whic h do not use data to mo del p ersons and

in the ob vious case in whic h w e do reuse the exp ert test set as a data set for

the fusion mo dule, one only needs thr e e di�eren t data sets instead of six in

the most general case. This is illustrated in Figure 3.5. In the in termediate

case, where the exp erts do need separate training and dev elopmen t data,

but the fusion mo dule do es not need an y dev elopmen t data, one needs four

di�eren t data sets, as illustrated in Figure 3.6.

If there is not enough data a v ailable to mak e this p ossible, the follo wing

errors will b e in tro duced:
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Figure 3.1: M2VTS database: some fron tal views.
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Figure 3.2: M2VTS database: views tak en from a rotation sequence.

                                    

                        

Figure 3.3: M2VTS database: fron tal views of one p erson coming from the

5 di�eren t shots.
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Figure 3.4: The most general case where 6 di�eren t datasets are used.
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Figure 3.5: The case where only three di�eren t datasets are needed.
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Figure 3.6: The in termediate case where four di�eren t datasets are needed.

� if the test data is the same as the training data, p erformances will b e

o v erestimated. This is true for b oth the individual exp erts and the

fusion mo dule. This is of course due to the fact that the exp erts and

the fusion mo dule will generate the b est results for the same data

they ha v e b een trained on.

� if the training data for the exp erts is the same as for the fusion mo d-

ule, the fusion mo dule will b e under p erforming. The reason for this is

that the fusion mo dule do esn't get enough information. Indeed, in the

extreme case of exp erts that p erform p erfectly on their training data,

the outcome of suc h an exp ert w ould b e either 0 or 1, whic h lea v es

the fusion mo dule with the arbitrary c hoice of setting the threshold

somewhere in b et w een.

3.3.2 Exp erimen tal proto col

F or our exp erimen ts, w e ha v e opted for a v ery simple exp erimen tal proto col.

In this proto col w e use only the �rst four sessions of the M2VTS database

in the follo wing manner.

1. The �rst enrollmen t session has b een used for training the individual
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exp erts. This means that eac h access has b een used to mo del the

resp ectiv e clien t, yielding 37 di�eren t clien t mo dels.

2. Then the accesses from eac h p erson in the second enrollmen t session

ha v e b een used to generate v alidation data in t w o di�eren t manners.

Once to deriv e one single clien t access b y matc hing the shot of a sp e-

ci�c p erson with its o wn reference mo del, and once to generate 36

imp ostor access b y matc hing it to the 36 mo dels of the other p er-

sons of the database. This simple strategy th us leads to 37 clien t

and 36 � 37=1.332 imp ostor accesses, whic h ha v e b een used for v ali-

dating the p erformance of the individual exp erts and for calculating

thresholds.

3. The third enrollmen t session has b een used to test these exp erts, using

the thresholds calculated on the v alidation data set. This same data

set has also b een used to train the fusion mo dules, whic h again leads

to 37 clien t and 1.332 imp ostor reference p oin ts.

4. Finally , the fourth enrollmen t session has b een used to test the fusion

mo dules, yielding once more the same n um b er of clien t and imp ostor

claims.

The dra wbac k of this simple proto col, is that the imp ostors are known

at the exp ert and sup ervisor training time. In section 8.3.2, v alidation

results will b e presen ted using a proto col that do es not su�er from the

same dra wbac k. This v alidation proto col is implemen ted using a so-called

le ave-one-out metho d [49 ].

3.4 Iden tit y v eri�cation exp erts

3.4.1 Short presen tation

All the exp erimen ts in this thesis ha v e b een p erformed using three di�eren t

iden tit y v eri�cation exp erts. Eac h one of these exp erts will b e describ ed

briey hereafter.

Pro�le image exp ert

The pro�le image v eri�cation exp ert is describ ed in detail in [138 ] and

its description hereafter has b een inspired b y the presen tation of this ex-

p ert in [98 ]. This particular pro�le image exp ert is based on a comparison

of a candidate pro�le of the p erson under test with the template pro�le
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corresp onding to the claimed iden tit y . The candidate image pro�le is ex-

tracted from the pro�le images b y means of color-based segmen tation. The

similarit y of the t w o pro�les is measured using the Chamfer distance com-

puted sequen tially [28 ]. The e�ciency of the v eri�cation pro cess is aided b y

pre-computing a distance map for eac h reference pro�le. The map stores

the distance of eac h pixel in the pro�le image to the nearest p oin t on the

reference pro�le. As the candidate pro�le can b e sub ject to translation,

rotation and scaling, the ob jectiv e of the matc hing stage is to comp ensate

for suc h geometric transformations. The parameters of the comp ensating

transformation are determined b y minimizing the c hamfer distance b et w een

the template and the transformed candidate pro�le. The optimization is

carried out using a simplex algorithm whic h requires only the distance

function ev aluation and no deriv ativ es. The con v ergence of the simplex

algorithm to a lo cal minim um is prev en ted b y a careful initialization of the

transformation parameters. The translation parameters are estimated b y

comparing the p osition of the nose tip in the t w o matc hed pro�les. The

scale factor is deriv ed from the comparison of the pro�le heigh ts and the

rotation is initially set to zero. Once the optimal set of transformation pa-

rameters is determined, the user is accepted or rejected dep ending on the

relationship of the minimal c hamfer distance to a pre-sp eci�ed threshold.

The system can b e trained v ery easily . It is su�cien t to store one pro�le

p er clien t in the training set.

F ron tal image exp ert

The fron tal image v eri�cation exp ert is describ ed in detail in [116 ] and the

description hereafter w as based on the presen tation of this exp ert in [98 ].

This fron tal image exp ert is based on robust correlation of a fron tal face

image of the p erson under test and the stored face template corresp onding

to the claimed iden tit y . A searc h for the optim um correlation is p erformed

in the space of all v alid geometric and photometric transformations of the

input image to obtain the b est p ossible matc h with resp ect to the template.

The geometric transformation includes translation, rotation and scaling,

whereas the photometric transformation corrects for a c hange of the mean

lev el of illumination. The searc h tec hnique for the optimal transformation

parameters is based on random exp onen tial distributions. Accordingly ,

at eac h stage the transformation b et w een the test and reference images

is p erturb ed b y a random v ector dra wn from an exp onen tial distribution

and the c hange is accepted if it leads to an impro v emen t of a matc hing

criterion. The score function adopted rew ards a large o v erlap b et w een the
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transformed face image and the template, and the similarit y of the in tensit y

distributions of the t w o images. The degree of similarit y is measured with a

robust k ernel. This ensures that gross errors due to, for instance, hair st yle

c hanges do not sw amp the cum ulativ e error b et w een the matc hed images.

In other w ords, the matc hing is b enev olen t, aiming to �nd as large areas of

the face as p ossible, supp orting a close agreemen t b et w een the resp ectiv e

gra y-lev el histograms of the t w o images. The gross errors will b e reected

in a reduced o v erlap b et w een the t w o images, whic h is tak en in to accoun t in

the o v erall matc hing criterion. The system is trained v ery easily b y means

of storing one template for eac h clien t. Eac h reference image is segmen ted

to create a face mask whic h excludes the bac kground and the torso as these

are lik ely to c hange o v er time.

V o cal exp ert

The v o cal iden tit y v eri�cation exp ert is presen ted in detail in [22 ]. This

text-indep enden t sp eak er v eri�cation exp ert is based on a similarit y mea-

sure b et w een sp eak ers, calculated on second order statistics [21 ].

In this algorithm a �rst co v ariance matrix X is generated from a r efe-

r enc e sequence, consisting of M m -dimensional acoustical v ectors, and pro-

nounced b y the p erson who's iden tit y is claimed:

X =

1

M

M

X

i =1

X

i

X

T

i

;

where X

T

i

is X

i

tr ansp ose d .

A second co v ariance matrix Y is then generated in the same w a y from a se-
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It can b e sho wn that this sphericit y measure is alw a ys non-negativ e and

it is equal to zero only in the case that the t w o co v ariance matrices X

and Y are the same. The v eri�cation pro cess consists then of comparing

the obtained sphericit y measure with a decision threshold, calculated on a

v alidation database.

One of the great adv an tages of this algorithm is that no explicit extraction

of the m eigen v alues �

i

is necessary , since the sphericit y measure only needs

the calculation of the trace tr ( � ) of the matrix pro duct Y X

� 1

or X Y

� 1

.

3.4.2 P erformances

The p erformances ac hiev ed b y the three mono-mo dal iden tit y v eri�cation

systems whic h ha v e b een used in these exp erimen ts are giv en in T able 3.1.

The results ha v e b een obtained b y adjusting the threshold at the EER on

the v alidation set and applying this threshold as an a priori threshold on

the test set. Observing the results for the pro�le an the fron tal exp erts it

can b e seen that, although the optimization has b een done according to

the EER criterion, the FRR and the F AR are v ery di�eren t. This indicates

that for these t w o exp erts, the training and v alidation sets are not v ery

represen tativ e of the test set.

T able 3.1: V eri�cation results for individual exp erts.

Exp ert FRR (%) F AR (%) TER (%)

(37 tests) (1.332 tests) (1.369 tests)

Pro�le 21.6 [11.4,37.2] 8.5 [7.1,10.1] 8.9 [7.5,10.5]

F ron tal 21.6 [11.4,37.2] 8.3 [6.9, 9.9] 8.7 [7.3,10.3]

V o cal 5.4 [ 1.5,17.7] 3.6 [2.7, 4.7] 3.7 [2.8, 4.8]

3.4.3 Statistical analysis of the di�eren t exp erts

In tro duction

A statistical analysis of the individual exp erts

1

is imp ortan t to get an idea

on one hand of their individual discriminatory p o w er, and of their comple-

men tarit y on the other hand.

1

All the follo wing statistical tests ha v e b een p erformed using the SPSS statistical

soft w are pac k age [162 ].
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The p o w er of an exp ert to discriminate b et w een clien ts and imp ostors will

increase (for giv en v ariances) with the di�erence b et w een the mean v alue of

the scores obtained for clien t accesses and the mean v alue of the scores ob-

tained for imp ostor accesses. The t ypical statistical test to see if there exist

signi�can t di�erences b et w een the means (or more generally b et w een the

statistical momen t of �rst order) of sev eral p opulations is the so-called ana-

lysis of v ariance (ANO V A). In the general case, this analysis is implemen ted

using an F-test. In the sp eci�c case of t w o p opulations, this ANO V A could

also b e p erformed using an indep enden t samples t-test [123 ]. Another im-

p ortan t c haracteristic of an exp ert is its v ariance (or more generally the sta-

tistical momen t of second order). The equalit y of v ariances can b e tested

b y a Lev ene test, whic h is also implemen ted using an F-test [114 ]. It is

adv an tageous that the v ariance of an exp ert is the same for clien ts and for

imp ostors, b ecause this leads to simpler metho ds to com bine the di�eren t

exp erts (see c hapter 6). Ob viously w e will need to p erform t- and F-tests

to analyze the means and the v ariances of the di�eren t exp erts. Ho w ev er,

the t- and F-tests giv e only exact results if the p opulations ha v e a Normal

distribution. So b efore w e can use t- or F-tests, w e need to v erify the Nor-

malit y of the di�eren t p opulations. Th us this is the �rst statistical analysis

that w e need to p erform. Since the ANO V A is only v alid if the v ariances of

the di�eren t p opulations p er exp ert are equal, w e ha v e to c hec k the equal-

it y of v ariances b efore p erforming the ANO V A. These remarks explain the

forced order of the �rst three analyses that are presen ted b elo w.

W e can get an idea of the indep endence of the di�eren t exp erts (and th us of

the amoun t of extr a information that eac h exp ert brings in), b y analyzing

their correlation. And a linear discriminan t analysis giv es us a �rst idea of

the com bined discriminatory p o w er of the exp erts.

Last but not least, the analysis of the extreme v alues giv es us insigh t in to

the p ossible use of p ersonalized approac hes.

Analysis of Normalit y

The purp ose of a Normalit y analysis is to c hec k whether the observ ed data

do or do not supp ort the h yp othesis H

0

that the underlying probabilit y

densit y function is Normal. There exist t w o t yp es of tests to p erform this

analysis: ob jectiv e (n umerical) and sub jectiv e (graphical) tests. An im-

p ortan t remark related to the v eri�cation of H

0

is that the assumption of

Normalit y is m uc h more di�cult to v erify when using small sample sizes. In

a sample of small size, the probabilit y of v erifying that the data is coming

from a Normal distribution is actually v ery small.



38 CHAPTER 3. EXPERIMENT AL SETUP

The b est kno wn represen tativ e of the ob jectiv e/n umerical t yp e of tests is

the so-called Kolmogoro v-Smirno v (K-S) test for go o dness of �t, applied to

the Normal distribution [96 ]. The results obtained b y this test on our data

are presen ted in T able 3.2. This table sho ws the v alues obtained for the

K-S statistic, the degrees of freedom (df ) and the signi�c anc e of this test

at the 95% con�dence lev el. This con�dence lev el leads to a critical v alue

for the signi�cance of 0 : 05. If the signi�cance is smaller than this critical

v alue, then w e r eje ct the Normalit y h yp othesis H

0

. If on the other hand

the signi�cance is greater than the critical v alue, then w e sa y that w e do

not ha v e enough evidence to reject H

0

, so in a binary decision concept w e

are forced to ac c ept H

0

[123 ].

T able 3.2: Results for the Kolmogoro v-Smirno v test for Normalit y .

P opulation Statistic df Signi�cance

Pro�le clien ts .227 37 .000

Pro�le imp ostors .195 1332 .000

F ron tal clien ts .133 37 .096

F ron tal imp ostors .052 1332 .000

V o cal clien ts .087 37 .200

V o cal imp ostors .060 1332 .000

T o b e able to analyze the results obtained b y this K-S test, it is imp ortan t

to kno w that its sev erit y increases with the sample size of the p opulation.

This means that the K-S test is not sev ere for small sample sizes (as is the

case for the clien t p opulations), but v ery sev ere for large sample sizes (as is

the case for the imp ostor p opulations). This means that if the results lead

to an acceptance of H

0

, and if the sample size is su�cien tly large, then the

Normalit y assumption is v ery go o d. But in the case of a rejection of H

0

,

this do es not mean that w e can not accept H

0

at all. In that case w e need

more information to b e able to decide, and therefore w e ha v e to go on to

the second t yp e of normalit y tests: the sub jectiv e/graphical tests. In our

case, the only t w o p opulations that are not b eing rejected b y the K-S test

as b eing Normal are the clien t distributions for the fron tal and the v o cal

exp erts. But since the sample sizes coming from these t w o distributions

are v ery small (37), this result has to b e used with great care. F or all the

other p opulations there is enough evidence to reject the h yp othesis H

0

.

There exist sev eral t yp es of graphical represen tations, whic h can b e used
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as sub jectiv e tests. A �rst useful t yp e of graphical represen tation is the

so-called Normal Q-Q plot [162 ]. This kind of represen tation is sho wn in

Figure 3.7. The idea is to judge if the plotted sample p oin ts do follo w su�-

ciently (this is clearly sub jectiv e) the ideal line whic h is the represen tation

of a p erfect Normal distribution. Dep ending on this sub jectiv e opinion, w e

reject or not the Normalit y assumption.

A second represen tation is the detrended v arian t of the �rst one [162 ], whic h

is sho wn in Figure 3.8. In this t yp e of graphical represen tation, one needs

to judge whether or not enough (another sub jectiv e measure) sample p oin ts

are situated b et w een 2 : 0 and � 2 : 0 standard normal units. If this is the case

w e accept the Normalit y assumption. In the other case, w e reject it.

Finally , a third represen tation can b e obtained b y plotting the histograms

of the di�eren t p opulations and b y comparing them with the ideal Normal

distribution plots [162 ]. This kind of graphical represen tation is giv en in

Figure 3.9. The idea is to c hec k how wel l (again sub jectiv e) the actual

histograms matc h the ideal Normal distribution plot.

T aking in to accoun t the results of the ob jectiv e K-S test and ha ving in-

sp ected these graphical represen tations, w e conclude that the Normalit y

assumptions in the strict sense of the w ord are not ful�lled for our p opula-

tions. This is esp ecially true for the pro�le exp ert, and in some lesser exten t

to the v o cal exp ert. The fron tal exp ert deviates the least from a Normal

deviation. In practice this means a real dra wbac k, b ecause if the normalit y

h yp othesis is satis�ed, this generally leads to substan tial simpli�cations.

Ho w ev er, since the observ ed deviations of Normalit y are not to o imp ortan t,

and taking in to accoun t that the classical t- and F-tests are robust with

resp ect to deviations from Normalit y , w e are nev ertheless going to p erform

t- and F-tests, but with the imp ortan t restriction that the results of these

tests will ha v e to b e analyzed with the utmost care. In other w ords, w e

will accept the results obtained b y t- and F-tests if and only if they ha v e

a signi�cance lev el whic h is far a w a y from the critical v alue (0 : 05 for the

95% con�dence in terv al).

Analysis of v ariance

The results obtained b y the Lev ene test are giv en in T able 3.3. The H

0

h yp othesis is that there are no di�erences in the v ariances of the di�eren t

p opulations. As w e can see b y the signi�cance of 0 : 000 for the v o cal and

the pro�le exp erts and of 0 : 003 for the fron tal exp ert, this H

0

h yp othesis

is strongly rejected for all exp erts. Since the rejection is so strong, w e do

accept the results of this Lev ene test and conclude that all exp erts ha v e
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Figure 3.7: Normal Q-Q plots for clien ts and imp ostors, rank ed p er exp ert.
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Detrended Normal Q-Q Plot of PROFILE

For CLAIM= client

Observed Value

1.00.98.96.94.92.90.88.86.84.82

D
ev

 fr
om

 N
or

m
al

1.0

.5

0.0

-.5

-1.0

-1.5

-2.0

-2.5

Detrended Normal Q-Q Plot of PROFILE

For CLAIM= impostor

Observed Value

1.0.8.6.4.20.0-.2

D
ev

 fr
om

 N
or

m
al

1.0

.5

0.0

-.5

-1.0

-1.5

-2.0

-2.5

Detrended Normal Q-Q Plot of FRONTAL

For CLAIM= client

Observed Value

1.11.0.9.8.7.6

D
ev

 fr
om

 N
or

m
al

.4

.2

-.0

-.2

-.4

-.6

Detrended Normal Q-Q Plot of FRONTAL

For CLAIM= impostor

Observed Value

1.0.8.6.4.20.0-.2

D
ev

 fr
om

 N
or

m
al

.2

0.0

-.2

-.4

-.6

-.8

-1.0

-1.2

Detrended Normal Q-Q Plot of VOCAL

For CLAIM= client

Observed Value

1.021.00.98.96.94.92.90.88.86.84

D
ev

 fr
om

 N
or

m
al

.3

.2

.1

-.0

-.1

-.2

-.3

Detrended Normal Q-Q Plot of VOCAL

For CLAIM= impostor

Observed Value

1.0.8.6.4.20.0-.2

D
ev

 fr
om

 N
or

m
al

.5

0.0

-.5

-1.0

-1.5

-2.0

-2.5

Figure 3.8: Detrended Normal Q-Q plots for clien ts and imp ostors, rank ed

p er exp ert.
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distribution, and rank ed p er exp ert.
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signi�can t di�eren t v ariances for b oth p opulations.

T able 3.3: Results for the Lev ene test for equalit y of v ariances.

P opulation F-Statistic Signi�cance

Pro�le 33.125 .000

F ron tal 9.062 .003

V o cal 28.284 .000

T o con�rm the results of this analysis, w e can ha v e a lo ok at a b ox-plot

represen tation

2

of the di�eren t exp erts, presen ted in Figure 3.10. F rom

these represen tations it follo ws that for eac h exp ert the v ariance of the

clien t p opulation is indeed signi�can tly smaller than the v ariance of the

imp ostor p opulation.

Since an ANO V A for analyzing the di�erences b et w een the means of the

p opulations can strictly sp eaking only b e used with Normal distributions

and equal v ariances, w e do ha v e a problem here. F ortunately , since w e ha v e

only t w o di�eren t p opulations, w e can also use an indep enden t samples t-

test, whic h can b e calculated as w ell for equal v ariances (in this case the t-

test is in an exact form) as for unequal v ariances (this time the t-test is in an

approac hed form). This means that w e will calculate the di�erence of means

hereafter, using an indep enden t samples t-test with une qual v ariances.

Analysis of means

The results of the indep enden t samples t-test with unequal v ariances are

giv en in T able 3.4. The H

0

h yp othesis is that there are no di�erences

b et w een the means of the di�eren t p opulations. As w e can see b y the sig-

ni�cance of 0 : 000, this H

0

h yp othesis is strongly rejected for all exp erts.

Since the rejection is so strong, w e do accept the results of this t-test and

2

The \b o x" in the b o x-plot is delimited at the b ottom b y the 25th and at the top b y

the 75th p ercen tile. The heigh t of the b o x th us giv es an idea of the v ariance. The blac k

line in the middle of the b o x represen ts the median (50th p ercen tile), whic h is a robust

estimation of the mean. The whisk ers underneath and on top of the b o x resp ectiv ely

sho w the lo w est and the highest v alues, with the exception of outliers (represen ted b y a

circle) and extreme v alues (represen ted b y an asterisk). An outlier is de�ned b y a v alue

whic h is situated 1.5 times the thic kness of the b o x outside the b o x, and an extr eme

value is de�ned b y a v alue whic h is situated 3 times the thic kness of the b o x outside the

b o x [162 ].
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Figure 3.10: Bo x-plots giving for eac h exp ert an idea of the means and

v ariances for the clien t and imp ostor scores.
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conclude that all exp erts ha v e signi�can t di�eren t means for b oth p opula-

tions.

T able 3.4: Results for the indep enden t samples t-test with unequal v ari-

ances for detecting di�erences in means.

Exp ert t-Statistic df Signi�cance

Pro�le -29.398 372.665 0.000

F ron tal -18.855 40.275 0.000

V o cal -38.198 61.642 0.000

T o con�rm the results of this analysis, w e can again ha v e a lo ok at the

b o x-plot represen tation of the di�eren t exp erts, presen ted in Figure 3.10.

In these represen tations it can b e seen that for eac h exp ert the median of

the clien t p opulation is indeed signi�can tly higher than the median of the

imp ostor p opulation. And since the median is a robust estimation of the

mean, the same conclusions are v alid for the mean.

Analysis of correlation

Another imp ortan t statistical analysis is the calculation of the correlation

that exists b et w een the di�eren t exp erts. A p opular w a y of seeing the

imp ortance of this is to sa y that the more the errors the di�eren t exp erts

mak e are de-correlated, the b etter our fusion could get since the amoun t

of new information in tro duced b y eac h exp ert will tend to b e larger. The

correlation matrix is represen ted in T able 3.5. As could b e exp ected from

the div ersit y of the exp erts w e are using, the correlation is v ery lo w.

T able 3.5: Correlation matrix for our three exp erts.

Correlation Pro�le F ron tal V o cal

Pro�le 1.000 0.011 -0.043

F ron tal 0.011 1.000 0.256

V o cal -0.043 0.256 1.000

This correlation can also b e visualized b y taking the exp erts t w o-b y-t w o
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and plotting the observ ed results for eac h p opulation. These matrix scatter

plots are sho wn in Figure 3.11, and the fact that all the distributions ha v e

shap es in the form of a cloud indicates that the correlation is v ery lo w.

Figure 3.11: Visual represen tation of the correlation of the di�eren t exp erts

tak en t w o-b y-t w o.

A direct conclusion from this correlation analysis is that a Principal Com-

p onen t Analysis (PCA) is not useful here, b ecause of the lo w correlation

b et w een the di�eren t exp erts. Another reason is ob viously the fact that w e

only ha v e used three exp erts, so there is no real need for p erforming a data

reduction b y means of PCA.

Linear discriminan t analysis

T o examine the discriminatory p o w er and the complemen tarit y of the three

exp erts at the same time, w e ha v e p erformed a linear discriminan t analy-

sis [114 , 162 ]. The results of this linear discriminan t analysis are sho wn in

T able 3.6.

When w e compare the results of the linear discriminan t analysis with those

obtained b y the individual mo dalities, it is clear that com bining the three

exp erts do es lead to far b etter p erformances, ev en if the com bination is done

using a simple linear classi�er. This indicates that the di�eren t exp erts do
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T able 3.6: Results of the linear discriminan t analysis (LD A).

Metho d FRR (%) F AR (%) TER (%)

(37 tests) (1332 tests) (1369 tests)

LD A 0.0 [0.0,9.4] 5.4 [4.3,6.7] 5.3 [4.2,6.6]

ha v e enough discriminatory p o w er and are su�cien tly complemen tary to

mak e it w orth while to in v estigate the com bination problem in more detail.

Analysis of extreme v alues

Another imp ortan t p oin t in descriptiv e statistics is the analysis and the

handling of extreme v alues. Normally sp eaking, extreme v alues should b e

discarded from the calculation of c haracteristic statistical measures suc h

as means or v ariances. In our w ork ho w ev er w e will not do that, since

these extreme v alues can con tain in teresting information as will b e sho wn

hereafter.

Indeed, in Figure 3.10 it can b e seen that the pro�le exp ert presen ts a large

n um b er of extreme v alues (represen ted b y asterisks) for imp ostor accesses.

These extreme v alues can also b e observ ed in Figure 3.11, where they form

v ery sp eci�c alignmen ts in the four sub-plots where the scores of the pro�le

exp ert are plotted against one of the axis.

One of the p ossible explanations for this phenomenon, taking in to accoun t

the exp erimen tal proto col, is that the pro�le of one the clien ts is v ery

di�eren t from the pro�les of all other clien ts. After analyzing the scores of

the pro�le exp ert it turned out that, when claiming the iden tit y of clien t

n um b er eigh t, 22 out of the 36 other clien ts obtained a score equal to

zero! This phenomenon is represen ted under form of matrix scatter plots

in Figure 3.12.

In order to understand this phenomenon, it is in teresting to ha v e a lo ok

at some t ypical pro�le images of clien t n um b er eigh t. Suc h images are

presen ted in Figure 3.13.

F rom these pro�le images, it is easy to see that the c hin of this sp eci�c clien t

is v ery pronounced, whic h mak es it a v ery p ersonal c haracteristic. There-

fore few pro�les of other clien ts of the database will presen t go o d results

when b eing matc hed against this t ypical pro�le, whic h ob viously leads to

v ery go o d imp ostor rejection p erformances. This observ ation suggests that,
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Figure 3.12: Matrix plots represen ting the scores for all 37 p ersons claiming

the iden tit y of clien t n um b er eigh t (i.e. one clien t access and 36 imp ostor

accesses).

Figure 3.13: T ypical pro�le images of clien t n um b er eigh t.
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in some sp eci�c cases, a p ersonalize d appr o ach based for instance on sp e-

ci�c c haracteristics of certain p ersons, migh t impro v e system p erformance

substan tially . This is an in teresting observ ation, esp ecially when seen in

the ligh t of the actual e�orts to come to r obust metho ds, in whic h extreme

v alues, suc h as the ones w e ha v e b een considering here, are v ery lik ely to

b e excluded!

In this w ork w e did ho w ev er not use suc h a p ersonalized approac h, since

the c hosen application do es not pro vide enough training data. This will

also b ecome ob vious in section 8.3.2, where it will b e sho wn that the v ali-

dation proto col whic h is presen ted there, do es not supp ort a p ersonalized

approac h. Finally one can add that in some applications it is not alw a ys

p ossible to use a p ersonalized approac h. This is for instance the case in the

�eld of mine dete ction , where the sp eci�c c haracteristics of a certain t yp e

of (buried) mine can c hange dramatically as a function of a large n um b er

of parameters related to the burying conditions.

3.5 Commen ts

In this c hapter w e ha v e analyzed the p erformances of three biometric ex-

p erts (fron tal, pro�le and v oice) using the prop osed proto col on the M2VTS

m ulti-mo dal database. F urthermore, the b eha vior of these exp erts has b een

statistically analyzed. This analysis did lead to the follo wing observ ations:

1. The normalit y h yp otheses for underlying probabilit y distributions for

the di�eren t p opulations in v olv ed, are not satis�ed. The deviations

from normalit y are ho w ev er not v ery large.

2. The three exp erts do sho w go o d discriminatory p o w er.

3. The v ariances of the di�eren t p opulations are not the same.

4. The three exp erts are complemen tary .

5. There is evidence that com bining the three exp erts impro v es the p er-

formances on to a lev el that is b etter than those of the b est exp ert.

6. There is evidence that suggests that a p ersonalized approac h could

(further) impro v e system p erformance.





Chapter 4

Data fusion concepts

4.1 In tro duction

This c hapter starts b y giving a general o v erview of the di�eren t p ossible

lev els on whic h data can b e fused. After ha ving restricted data fusion

to decision fusion for this application, sev eral arc hitectures for our fusion

mo dule are presen ted, from whic h the parallel arc hitecture is c hosen. Fi-

nally , the decision fusion problem using sev eral biometric exp ert opinions

in parallel, is transformed in to a particular classi�c ation problem. The

adv an tage of this form ulation is that it allo ws to fall bac k immediately

on a broad class of solution tec hniques coming from the �eld of P attern

Recognition, whic h will b e exp erimen ted and commen ted in part t w o of

this w ork [2 , 19 , 24 , 25 , 27 , 29 , 32 , 45 , 47 , 48 , 49 , 56 , 61 , 70, 71 , 75 , 84 , 97,

98 , 99 , 100 , 101 , 103 , 109 , 144 , 145 , 157 , 164 , 170 , 172 , 181 , 187 ].

4.2 T axonom y of data fusion lev els

Data fusion in the broad sense can b e p erformed at di�eren t hierarc hical

lev els or pro cessing stages. A v ery commonly encoun tered taxonom y of data

fusion in the broad sense is giv en b y the follo wing three-stage hierarc h y [46 ]:

Data fusion Data fusion in the strict sense is the pro cess of com bining

directly the data streams of ra w measuremen ts coming out of the

di�eren t sensors. These measuremen ts could for instance b e the grey

v alues of the pixels generated b y sev eral cameras lo oking in di�eren t

parts of the sp ectrum at the same scene;

51
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F eature fusion F eature fusion is the pro cess of com bining features ex-

tracted from the ra w measuremen ts. T ypical v o cal features, related

to the problem of sp eak er recognition, could for instance b e the cep-

stral co e�cien ts calculated for di�eren t frequency-bands in a m ulti-

band approac h [10 ]. Examples of visual features, link ed with iden tit y

v eri�cation, could b e the distance b et w een the ey es and the mouth in

a facial image or the distance b et w een the ey es and the nose tip in a

pro�le image.

Decision fusion Decision fusion is the pro cess of com bining partial soft

(for instance a con tin uous score b et w een 0 and 1) or hard (0 for

a reject and 1 for an acceptance) decisions, giv en b y the di�eren t

exp erts. In this case the term exp ert is appropriate, since eac h single

mo dule uses exp ert kno wledge to transform the information carried

b y the measured data in to a decision.

This three-lev el hierarc h y has b ecome fairly accepted, although it sta ys a

matter of sub jectiv e c hoice. One could add an additional dimensionalit y

to the fusion pro cess, represen ting temp or al fusion. T emp oral fusion can

b e de�ned as fusion of data acquired o v er a p erio d of time. But since

this kind of fusion can o ccur at an y of the three lev els discussed ab o v e,

temp oral fusion can b e view ed as orthogonal to the presen ted three-lev el

categorization. One could also add sp atial or sp e ctr al fusion, whic h are

terms that app ear in the literature, but these t w o pro cesses are essen tially

examples of data or feature fusion rather than new categories in themselv es.

In this w ork, w e will limit ourselv es to the use and the discussion of de cision

fusion tec hniques. W e will consider that all exp erts output their lo cal

decisions b y generating scores in the in terv al [0,1]. These scores are a

measure of their resp ectiv e b elief of the acceptabilit y of the iden tit y claim:

the higher the score, the higher the b elief that the iden tit y claim is gen uine.

This w a y of doing, has the great adv an tage to separate the design of the

sp ecialized exp erts (whic h is ob viously v ery application dep enden t), from

the fusion problem. This allo ws for dev eloping generic decision fusion rules,

whic h are application indep enden t. The only thing w e need to supp ose is

that there exist go o d exp erts for the application w e are studying. Another

reason w e did c ho ose for a decision fusion rather than for a feature fusion

approac h, is that this c hoice decreases the dimensionalit y of the problem.

This reduction in dimensionalit y is b eni�cial, since it comes along with

a reduction in the n um b er of training examples needed for training the

di�eren t p ossible fusion mo dules.
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4.3 Decision fusion arc hitectures

Com bining the partial decisions from the d di�eren t exp erts in a decision

fusion strategy without considering the temp oral fusion asp ect, could b e

done using one of the t w o follo wing basic arc hitectures [46 ]:

Serial suite As sho wn in Figure 4.1, a serial exp ert arc hitecture consists of

a set of d exp erts whose decisions are com bined in series or tandem.

This arc hitecture is for instance w ell-suited to deal with situations

where the di�eren t exp erts do not use a binary f accept, reject g , but

rather a ternary f accept, reject, undecided g decision sc heme. If in

the latter case, the curren t exp ert can not decide, he hands the infor-

mation he has on to the next exp ert in the sequence. F or this serial

scenario to b e e�ectiv e, the next exp ert in line ob viously needs to b e

designed as a real exp ert in dealing with the cases that can not b e

solv ed b y the previous exp ert. This arc hitecture is th us particularly

w ell-suited to com bine the decisions from exp erts whic h ha v e v arying

ranges of e�ectiv eness and to mo del sequen tial decision re�ning from

one sensor to the next. This is not the case in our problem.

P arallel suite As sho wn in Figure 4.2, a p ar al lel exp ert arc hitecture con-

sists of a set of d exp erts that are in terrogated in parallel. The deci-

sions deriv ed from these exp erts are com bined in parallel b y the fusion

mo dule. This arc hitecture is particularly w ell-suited to com bine the

decisions or scores from exp erts that are capable of op erating sim ul-

taneously and indep enden tly of one another. This is the case in our

problem.

Next to the t w o fairly simple arc hitectures presen ted ab o v e, one can also

imagine more complicated com binations of these t w o basic sc hemes, suc h

as parallel-serial or serial-parallel arc hitectures. These com binations are

more complex than the previous t w o and fall outside the scop e of this

w ork. Another p ossible extension of arc hitectures presen ted so far, is the

in tro duction of some kind of generalized feed-bac k mec hanism. In this

case, the idea is to p ostp one the decision un til for instance a new set of

measuremen ts has b een tak en. The basic idea b ehind this tec hnique can

b e illustrated b y the follo wing example: if a v o cal exp ert is undecided in

a ternary decision sc heme, the automatic v eri�cation system could prompt

the user under test to more sp eec h instances, un til the v o cal exp ert has

enough information to mak e his decision. This extension also falls outside

the scop e of this thesis.
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Our c hoice b et w een one of either basic arc hitectures w as not only based

up on the descriptions presen ted ab o v e, but also on the results of the im-

p ortan t researc h presen ted in [166 ]. In this pap er, Visw anathan et Al. ha v e

compared the serial and the parallel distributed decision fusion mec hanisms.

Their conclusions are:

1. F or certain noise distributions, the parallel structure is not sup erior

to the serial sc heme. F or additiv e white Gaussian noise (A W GN) and

t w o sensors for instance, it can b e sho wn that the serial fusion sc heme

p erforms b etter than the parallel one. Ho w ev er, with thr e e or mor e

sensors, the p erformance is essen tially the same.

2. As a dra wbac k, an y serial net w ork is vulnerable to link failures.

3. Considering the complexit y of the serial sc heme and the results from

the(limited) comparativ e study , the c hoice seems to fa v or the parallel

fusion for the distributed decision fusion problem.

The results of this study are a con�rmation of the conclusions of the researc h

presen ted in [149 ].

T aking in to accoun t the descriptions of the basic arc hitectures and the

results of the t w o studies men tioned ab o v e, w e do opt for a parallel decision

fusion sc heme in the case of our application.

Expert 2 Expert dExpert 1

Figure 4.1: A t ypical serial m ulti-exp ert decision fusion arc hitecture.

4.4 P arallel decision fusion as a particular classi-

�cation problem

In a v eri�cation system with d exp erts in parallel, the decision fusion mo d-

ule using a binary decision sc heme has to realize a mapping from the uni-

tary h yp ercub e of I R

d

in to the set f rejected ; accepted g . A classi�er ha ving
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Expert 1

Expert 2

Expert d

Figure 4.2: A t ypical parallel m ulti-exp ert decision fusion arc hitecture.

a d -dimensional input v ector and t w o classes f rejected g ; f accepted g is c har-

acterized b y suc h a mapping. The multi-exp ert fusion mo dule can therefore

b e considered as a multi-dimensional classi�er. This particular classi�ca-

tion case will b e our standard fusion approac h, since it allo ws to fall bac k

immediately on to tec hniques a v ailable in the v ast �eld of P attern Recogni-

tion.

4.5 Commen ts

In this c hapter w e ha v e presen ted di�eren t asp ects of data fusion tec hniques.

F or all these asp ects, w e had to mak e motiv ated c hoices to come to the

data fusion solution whic h suits b est our application. These c hoices are

commen ted hereafter:

1. A �rst c hoice that w e had to mak e w as that of the lev el at whic h the

fusion w as going to tak e place. W e ha v e opted for the de cision fusion

lev el b ecause of t w o main reasons:

(a) This w a y of doing, has the great adv an tage to separate the design

of the sp ecialized exp erts whic h is ob viously v ery application

dep enden t, from the fusion problem. This allo ws for dev eloping

generic decision fusion rules, whic h are application indep enden t.

(b) This c hoice decreases the dimensionalit y of the problem.
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2. A second c hoice w as the one in v olving the arc hitecture of the fusion

mo dule. W e ha v e opted for a p ar al lel decision fusion structure for the

follo wing reasons:

(a) The parallel arc hitecture is particularly w ell-suited to com bine

decisions or scores from exp erts that are capable of op erating

sim ultaneously and indep enden tly of one another.

(b) In a situation where at least three sensors are com bined (as is the

case in our application), it has b een sho wn that the p erformances

in noisy conditions of the parallel arc hitecture are not w orse than

those of a serial structure.

(c) The parallel structure is less vulnerable than the serial one.

(d) The parallel structure is less complex than the serial one.

3. Finally w e decided to implemen t the parallel decision fusion strategy

as a particular classi�cation problem, to b e capable of reusing directly

the metho ds of the �eld of P attern Recognition.
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Chapter 5

In tro duction to part t w o

5.1 Goal

The goal of this c hapter is to justify the use of b oth parametric and non-

parametric metho ds as paradigms in this second part of the thesis. A �rst

justi�cation can immediately b e found in the fact that these t w o t yp es of

metho ds represen t in fact the t w o p ossible approac hes to statistical infer-

ence [169 ]:

1. the particular (parametric) inference, whic h aims to create simple

statistical metho ds of inference that can b e used for solving real-life

problems, and

2. the general (non-parametric) inference, whic h aims to �nd one single

induction metho d for an y problem of statistical inference.

A more detailed study of adv an tages and dra wbac ks of these t w o approac hes

is giv en in the next section.

5.2 P arametric or non-parametric metho ds?

In the w ell-studied area of decision fusion, the basic problem is to com bine

the decisions made b y a n um b er of distributed exp erts [147 ]. A t ypical

fusion rule in this case is in the form of a Ba y esian rule [37 , 163 ] or a

Neyman-P earson test [53 , 165 ]. Suc h rule can b e deriv ed b oth in the case

of indep enden t and correlated individual decisions. In either case, some

kno wledge of the underlying probabilit y densities is needed for an accu-

rate implemen tation of the test, under a parametric form. F urthermore,

59



60 CHAPTER 5. INTR ODUCTION TO P AR T TW O

these expressions for the probabilit y densities m ust b e in a con v enien t form

to ensure reasonable computational sp eeds. If b oth these conditions are

ful�lled together, then parametric metho ds, suc h as the ones presen ted in

c hapter 6, are the b est c hoice. If on the other hand either the underlying

probabilit y distributions are not kno wn, or the Ba y esian test is to o di�cult

to implemen t, then non-parametric metho ds based on the a v ailabilit y of

training samples, suc h as the ones presen ted in c hapter 7, migh t b e used.

The empirical data set, whic h is �nite, can only result in an appro ximate

implemen tation of the optimal fusion rule. The degree of appro ximation

b et w een a fusion rule that can b e obtained if the underlying probabilities

are kno wn and its empirical implemen tation based on a �nite sample, de-

p ends on the sample size. In this con text it is w orth men tioning V apnik's

result that it is easier - in an information theoretic sense - to estimate a

classi�er directly from data than estimating a distribution [169 ]. F urther-

more Rao has sho wn that, under some smo othness conditions, the optimal

fusion rules deriv ed for kno wn distributions can b e implemen ted with an

arbitrary lev el of con�dence, giv en a su�cien tly large training sample [146 ].

These observ ations do justify the use of the non-parametric metho ds from

c hapter 7, whic h do not estimate distributions, but are just sample based.

Are there then an y justi�cations for the use of parametric metho ds? Gen-

erally , parametric metho ds are preceded b y a mo del v eri�cation step where

the assumed distributions are tested, using for example, Kolmogoro v-

Smirno v t yp e tests. The results from this t yp e of test, assuming Normal

distributions, ha v e b een presen ted in section 3.4.3. And, although the Nor-

malit y h yp othesis is - sensu stricto - not ful�lled, w e ha v e sho wn that the

deviations from this Normalit y h yp othesis are not to o imp ortan t, so that

it is at least in teresting to see ho w parametric metho ds, assuming Normal

distributions, do p erform. This has led to the Ba y esian approac h, explained

in detail in the next c hapter. The main advantage of the Ba y esian approac h

is that it leads to the optimal classi�er, in the sense that it implemen ts the

lo w est Ba y es risk [37 , 163 ]. There are ho w ev er a n um b er of problems with

this approac h. The most imp ortan t problem is that the probabilit y densit y

functions (p dfs) ha v e to b e estimated correctly . This usually implies the

selection of the structure (class of functions) for the appro ximator and the

optimization of the free parameters to b est �t the p df. This optimization is

p erformed on a training set. According to Occam's razor principle (whic h

pleads for preferring the simplest h yp othesis that �ts the data [121 ]), the

plasticit y of the appro ximator has to b e c hosen carefully . F or highly plastic

appro ximators, quite general p dfs ma y b e approac hed, but an imp ortan t
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(often imp ossible to obtain) n um b er of samples is needed for p erforming

the training. F urthermore, the training set should b e represen tativ e (whic h

in general do es not corresp ond to the equal a priori probabilit y h yp othesis)

and o v er-training has to b e a v oided to reac h go o d generalization [23 ]. On

the other hand, b y using an appro ximator with limited plasticit y (few

parameters, regularization tec hniques, etc.), few er examples are needed

but more a priori kno wledge is implicitly enco ded b y limiting the p ossible

solutions. This also means that p o or prior kno wledge will lead to bad

results. In practice, the b est compromise should b e searc hed, but the true

decision rules can most of the time not b e implemen ted and the theoretical

minimal Ba y es risk remains an unac hiev able lo w er b ound. This has as a

consequence that in the �eld of pattern recognition and related disciplines,

it is common practice to see that other, non-Ba y esian, metho ds are b eing

used. Ho w ev er, sometimes it is p ossible to justify some of those approac hes

in the ligh t of the general Ba y esian approac h, whic h has the adv an tage

of expliciting the underlying conditions/constrain ts. This will b e done in

c hapter 6, where w e will supp ose that the probabilit y distributions in v olv ed

are (1) simple Gaussian distributions, or (2) mem b ers of the exp onen tial

family with equal disp ersion parameters (the logistic regression mo del).

5.3 Commen ts

According to these considerations, it is absolutely w orth while to in v estigate

b oth parametric and non-parametric tec hniques as paradigms for solving

our particular classi�cation problem.



Chapter 6

P arametric metho ds

6.1 In tro duction

In this c hapter, a trivial but original metho d is presen ted �rst of all: the

monotone multi-line ar (or pie c e-wise line ar) classi�er [179 , 180 ]. The main

purp ose of this metho d is to b e simple . Unfortunately the p erformances of

this simple classi�er are only go o d if some user-de�ned parameters ( � and

�) are correctly set. Ho w ev er, this parameter setting problem is a v ery

delicate one, since it is application dep enden t and since it needs enough

training data. This lac k of robustness is mainly due to the fact that (v alu-

able) information with resp ect to the probabilit y densit y functions of the

di�eren t p opulations is thro wn a w a y . Therefore in a fairly early stage of

this w ork it has b een decided to stop dev eloping this simple metho d and to

fall bac k instead on the less original, but more fundamen tal statistical de-

cision theory , b y using so-called p ar ametric tec hniques. In this parametric

class, classi�ers based on the general Ba y esian decision theory (Maxim um

a-p osteriori Probabilit y and Maxim um Lik eliho o d) and on a simpli�ed v er-

sion of it (the Naiv e Ba y esian classi�er, whic h has b een applied in the case

of simple Gaussians and in the case of a logistic regression mo del), ha v e

b een studied [177 ]. F urthermore exp erimen ts ha v e also b een done using

Linear and Quadratic classi�ers. Neural net w orks form a sp ecial case of

the parametric family , since the n um b er of parameters to b e estimated can

b e v ery large. Therefore neural net w orks are sometimes classi�ed as semi-

parametric parameters. Still w e will presen t neural net w orks in this c hapter

on parametric tec hniques, b y means of its most p opular represen tativ e: the

Multi-La y er p erceptron. All of the aforemen tioned metho ds are presen ted

in more detail in the follo wing sections.

62
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6.2 A simple classi�er: the m ulti-linear classi�er

T o solv e the decision fusion problem explained in the previous c hapter,

the �rst fusion mo dule that w e ha v e studied, w as dev elop ed on a v ery

simple basis. The main idea b ehind this �rst classi�er w as to approac h the

b oundary (supp ose d to b e monotonic) whic h separates the t w o p opulations

b y a n um b er of monotone h yp er-planes. W e called this classi�er monotone

multi-line ar classi�er or pie c e-wise line ar classi�er in reference to the use

of sev eral h yp er-planes, eac h one building a monotone linear classi�er. In

this particular classi�er, the score giv en b y eac h exp ert is assumed to b e a

monotone measure of iden tit y correctness. F ormally this prop ert y can b e

stated as: giv en the t w o scores s

1

� s

2

, if accept is the b est decision for

s

1

, then accept is the b est decision for s

2

, and if r ej ect is the b est decision

for s

2

, then r ej ect is the b est decision for s

1

. A detailed description of the

dev elopmen t and the c haracteristics of this monotone m ulti-linear classi�er

can b e found in app endix A. A short summary presen ting the results and

including the main conclusions is giv en hereafter.

6.2.1 Decision fusion as a particular classi�cation problem

As w as explained in section 4.4, this m ulti-exp ert fusion mo dule can b e

designed as a m ulti-dimensional classi�er, ho w ev er with some p ar adigm

sp eci�c constrain ts (see also Figure 6.1):

Monotonicit y The monotonicit y h yp othesis of the scores as form ulated

ab o v e, induces a monotonicit y constrain t for the separation b order

b et w een the t w o p opulations, and th us also for our m ulti-linear clas-

si�er. F ormally this constrain t can b e stated as follo ws: giv en the

t w o sets of scores ( s

1

1

; s

1

2

; : : : ; s

1

d

) and ( s

2

1

; s

2

2

; : : : ; s

2

d

) suc h that 8 i :

s

1

i

� s

2

i

, if the decision for ( s

1

1

; s

1

2

; : : : ; s

1

d

) is accept , then the decision

for ( s

2

1

; s

2

2

; : : : ; s

2

d

) is accept , and if the decision for ( s

2

1

; s

2

2

; : : : ; s

2

d

) is

r ej ect , then the decision for ( s

1

1

; s

1

2

; : : : ; s

1

d

) is r ej ect .

Scarcit y of training data In an op erational v eri�cation system, large

amoun ts of imp ostor accesses can b e sim ulated with the recordings of

other p ersons. In most applications, clien t accesses ho w ev er are scarce

since clien ts w ould not accept p erforming long training sessions. This

scarcit y of clien t training data has led us to appro ximate the p ossibly

c omplex separation b oundary b et w een the t w o p opulations, b y a set

of simple linear segmen ts.
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T unable F AR/FRR trade-o� As describ ed in section 2.6, an y of the

t w o errors, F AR and FRR, can b e reduced as close to zero as desired,

with the dra wbac k of increasing the other one. In certain applica-

tions securit y is preferred (F AR small), in others clien t comfort (FRR

small). A user-de�nable parameter to tune the F AR/FRR trade-o�

is therefore desired in the dev elopmen t of a classi�er. In this m ulti-

linear classi�er, this trade-o� role will b e pla y ed b y a parameter �

whic h will b e de�ned hereafter.

In the next section w e presen t a classi�er (fusion mo dule) designed to tak e

in to accoun t the constrain ts men tioned ab o v e.

reject

accept

score2

score1

impostor access

client access

1

2

3

Figure 6.1: P articular classi�cation problem: (1) monotonicit y , (2) scarcit y

of clien t accesses for training, (3) tunable F AR/FRR trade-o�.

6.2.2 Principle

The classi�er dev elop ed for this fusion mo dule realizes a mapping from

the unitary h yp ercub e of I R

d

, d b eing the n um b er of exp erts, in to f 0 ; 1 g

or f rejected ; accepted g . The principle of a m ulti-linear classi�er is to use

h yp er-planes in I R

d

, c hosen so that e ach pair consisting of a clien t example

C

1

and an imp ostor example C

2

is su�ciently discriminated. The classi�er

training consists of a sup ervised phase in whic h the di�eren t h yp er-planes

are determined in order to optimally separate pairs of p oin ts of either class.
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The regions generated b y these h yp er-planes are lab eled with the class

iden ti�er (accept, reject). A t testing, eac h data p oin t from the test set is

simply giv en the class lab el of the region it is b elonging to.

6.2.3 T raining

Giv en examples of the t w o classes, the goal is to �nd h yp er-planes separat-

ing optimally all pairs of p oin ts of either class and to lab el the generated

regions with the corresp onding class iden ti�er. The training of the m ulti-

linear classi�er consists of three steps:

First step Reduction of training samples using the monotonicit y h yp oth-

esis;

Second step Determination of the set of h yp er-planes that realizes the

optimal separation;

Third step Class attribution to the generated regions using the Logical

Analysis of Data (LAD) metho d..

As an initial step, the training data can b e cut do wn using the monotonicit y

constrain t. As a result of this data reduction, only the data p oin ts situated

along the separation surface of the t w o classes are main tained. The aim of

the training phase is to determine a set of S h yp er-planes maximizing the

global discrimination b et w een the clien t and imp ostor examples. As dis-

cussed in [117 ], when more than one separator is in v olv ed, it is more natural

to consider the discrimination b et w een the set of pairs of clien t/imp ostor

p oin ts instead of reasoning on the discrimination b et w een the t w o sets of

clien t and imp ostor p oin ts.

Th us, our goal is to �nd h yp er-planes maximizing the global pairwise dis-

crimination, whic h w e call �. This parameter can b e set b y the user, and

it will ha v e an inuence on the n um b er of h yp er-planes that will b e gener-

ated. A reference v alue for � is giv en b y �

0

de�ned as half of the minimal

Euclidean distance b et w een a pair of clien t/imp ostor p oin ts. This reference

v alue is nothing else than the discrimination one w ould obtain using a sin-

gle h yp er-plane cutting orthogonally and at the middle, the segmen t whic h

links the minimal distan t pair of clien t/imp ostor p oin ts. Clearly , the bigger

the required � is, the more h yp er-planes will b e necessary to ac hiev e the

discrimination.

Another user-de�nable parameter is � , whic h dictates the bias these h yp er-

planes sho w to w ards one of either classes. This bias is ac hiev ed b y w eigh ting
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di�eren tly the distances b et w een a particular h yp er-plane and data p oin ts

coming from one or the other class. The default v alue of � is 1, whic h is the

v alue that in tro duces no bias at all. V alues of � greater than one in tro duce

a bias to w ards the clien t protot yp es and v alues of � smaller than one giv e

a bias to w ards the imp ostor protot yp es.

Figure 6.2 sho ws the set of h yp er-planes resulting from the application of

the metho d cited ab o v e on a syn thetic data set for � = 1 and � = �

0

.
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Figure 6.2: Set of h yp er-planes generated for � = 1 and � = �

0

.

In practice, the set of h yp er-planes is determined in t w o phases. First, an

incremen tal pro cedure in tro duces them one b y one. A t eac h iteration, the

h yp er-planes previously in tro duced are �xed and the new one is adjusted

in order to separate the pairs with the p o orest discrimination. This phase

terminates when ev ery pair is su�cien tly discriminated. Second, a global

p ost-optimization tends to increase the global discrimination of eac h pair

without adding new h yp er-planes. The resulting set of S h yp er-planes after

training induces a partition of the d dimensional space. Eac h region of this

partition is then co ded b y a w ord of S bits, indicating its mem b ership to

eac h h yp er-plane. Afterw ards the lab el of one of either classes is attributed

to eac h region, using the Logical Analysis of Data (LAD) [30 ].
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T able 6.1: V eri�cation results for the individual exp erts.

Exp ert Mean v alue

FRR (%) F AR (%) TSR (%)

V o cal 29.5 0.0 85.6

Pro�le 11.1 30.6 79.2

F ron tal 5.0 7.8 93.6

6.2.4 T esting

During testing the mem b ership of eac h data p oin t w.r.t. the set of h yp er-

planes is calculated and eac h data p oin t receiv es simply the class lab el of

the region of the h yp er-space it is lying in.

6.2.5 Results

The tests ha v e b een carried out using the M2VTS database [137 ] and the

same test proto col as the one sp eci�ed in [55 ]. This proto col is the v ery �rst

one that has b een dev elop ed in the M2VTS pro ject team and it is not the

same as the one w e ha v e used in the remainder of this w ork. Ho w ev er, due

to the bad results of this simple metho d, this is of no practical imp ortance

since w e are not going to use the results of this metho d for comparison or

an y other further purp oses. In this sp eci�c proto col, w e ha v e used three

shots for training purp oses (one shot has b een left out for test purp oses),

eac h shot con taining 36 p ersons (one p erson has b een left out for imp ostor

tests). Eac h test set con tains 36 clien t and 36 imp ostor accesses. Sev eral

tests ha v e b een p erformed for di�eren t v alues for � and �. F or eac h setting

of � and � �v e di�eren t exp eriments ha v e b een carried out using di�eren t

shots and p ersons. The obtained v eri�cation results are the means o v er

these �v e exp erimen ts and are expressed in terms of FRR, F AR and TSR

(in %).

T able 6.1 sho ws the v eri�cation results for the individual exp erts where the

decision has b een tak en with a threshold �xed to ac hiev e EER on train-

ing data. The v eri�cation results after fusion are giv en in T ables 6.2, 6.3

and 6.4.

The inuence of � is sho wn in T able 6.2. F or v alues of � greater than

one w e observ e an increase of the FRR, as could b e exp ected. By using
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T able 6.2: V eri�cation results after fusion as a function of � only .

� � Mean v alue

FRR (%) F AR (%) TSR (%)

0.80 1 : 00 � �

0

22.2 0.0 88.9

0.85 1 : 00 � �

0

18.9 0.0 90.5

0.90 1 : 00 � �

0

13.9 0.0 93.0

0.95 1 : 00 � �

0

27.8 0.0 86.0

1.00 1 : 00 � �

0

28.4 0.0 85.8

1.10 1 : 00 � �

0

30.0 0.0 85.0

T able 6.3: V eri�cation results after fusion as a function of � only .

� � Mean v alue

FRR (%) F AR (%) TSR (%)

1.00 2 : 00 � �

0

35.4 0.0 82.6

1.00 1 : 00 � �

0

28.4 0.0 85.8

1.00 0 : 67 � �

0

20.5 0.0 89.7

1.00 0 : 50 � �

0

18.9 0.0 90.5

1.00 0 : 40 � �

0

32.8 0.0 83.6

1.00 0 : 25 � �

0

30.0 0.0 85.0

v alues of � smaller than one w e �rst see as exp ected a decrease of the FRR,

but when � reac hes the v alue of 0.85, the FRR starts increasing again.

Normally when the h yp er-planes lean more and more to w ards the imp ostor

protot yp es, w e w ould exp ect a further decrease of the FRR and a gradual

increase of the F AR. The fact that this do esn't happ en can b e explained

b y the follo wing observ ations:

� a c hange in � not only mo di�es the p osition, but also the n um b er of

h yp er-planes;

� due to the use of the monotonicit y propriet y for reducing the n um b er

of data p oin ts in the training phase, the information related to the

probabilit y densities of b oth p opulations is lost. Also, some of the
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T able 6.4: V eri�cation results after fusion as a function of b oth � and �.

� � Mean v alue

FRR (%) F AR (%) TSR (%)

0.85 0 : 67 � �

0

7.3 0.0 96.3

0.85 0 : 50 � �

0

10.6 0.0 94.7

0.90 0 : 67 � �

0

6.7 0.0 96.6

0.95 0 : 67 � �

0

5.6 0.0 97.2

0.95 0 : 50 � �

0

10.6 0.0 94.7

remaining data p oin ts migh t not b e represen tativ e of the rest of the

p opulation (there could b e outliers);

� this metho d is v ery sensitiv e to the problem of o v er-training, as it is

based only on the b order b et w een the t w o p opulations. This means

that the generalization capabilit y of this metho d on unseen data is

v ery bad;

� the imp ostor and/or clien t protot yp es determined during the training

are not really represen tativ e for the clien t and/or imp ostor accesses

made during testing;

� the monotonicit y h yp othesis is not really v alid.

The inuence of � is sho wn in T able 6.3. W e could exp ect an increase in

p erformance when the n um b er of h yp er-planes b ecomes larger, since the

LAD metho d seems to get more information for lab eling the di�eren t sec-

tions of the partition of the h yp er-space. But as the n um b er of h yp er-planes

increases, the n um b er of sections in that partition also increases and since

in this metho d w e are using only v ery few training data, the p opulation of

these sections will b e getting sparse v ery rapidly . This phenomenon is in

our opinion at the basis of what w e observ e in T able 6.3. When � increases,

the FRR also increases and when � decreases the FRR decreases un til a

certain p oin t (0 : 50 � �

0

) from where on the FRR starts increasing again.

This last phenomenon can b e explained b y the fact that when � gets to

small, the corresp onding h yp er-plane(s) don't ha v e to b e \v ery go o d" (the

stop criterion for eac h iteration is reac hed so oner), whic h ob viously will

lead to more errors.
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The com bined inuence of � and � is sho wn in T able 6.4. These results

indicate that this metho d can ha v e go o d p erformances. Indeed, the b est

results of the m ulti-linear classi�er outp erform those of the b est individual

exp ert. The main problem with this is the fact that these \b est results" are

obtained for sp eci�c v alues of the parameters � and � and unfortunately

there is no easy w a y of kno wing a priori whic h v alues to giv e to these

parameters for optimizing the classi�er in a certain application.

Analyzing the results obtained after fusion , one can see that the F AR is

in our case alw a ys equal to zero. This could indicate that the generated

h yp er-planes are lying to o close to the clien t protot yp es.

6.2.6 P artial conclusions and future w ork

As sho wn ab o v e, this simple metho d p erforms w ell, only if the user-de�ned

parameters � and � ha v e b een correctly set. But �nding these c orr e ct

settings is a v ery delicate problem, since it is application dep enden t and

it requires enough represen tativ e training data to b e a v ailable. One of the

main reasons for this lac k of robustness, is without an y doubt the fact that

the monotonicit y prop ert y is used for thro wing a w a y v aluable data p oin ts.

This means that w e mak e no use at all of the information whic h is a v ailable

in the training data with resp ect to the probabilit y densities of the di�e-

ren t p opulations. Indeed, the determination of the optimal h yp er-planes is

completely based on the training data (empirical risk minimization), whic h

can cause problems in the generalization phase. T aking this in to accoun t,

a p ossibilit y to impro v e the results of this metho d could b e to use Supp ort

V ector Mac hines (SVMs), whic h minimize the structur al risk [168 , 169 ].

Another p ossible impro v emen t of this metho d could b e to le arn the user-

de�ned parameters, for instance b y means of a genetic algorithm . Ho w-

ev er, this has not b een done, since the original purp ose for dev eloping this

metho d w as to design a v ery simple metho d.

Since the results of this v ery �rst fusion mo dule are only relativ ely go o d

when the user-de�ned parameters are correctly set, w e decided to stop the

dev elopmen t of this classi�er, and to use for our further w ork metho ds

whic h do tak e in to accoun t the a v ailable probabilit y densit y information.

This c hange of approac h has th us led to the use of three classes of metho ds

whic h are going to b e presen ted hereafter: parametric, semi-parametric and

non-parametric metho ds. The �rst class to b e highligh ted is the one of the

parametric tec hniques.
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6.3 A statistical framew ork for decision fusion

In this section, some elemen tary notions of statistic al decision theory will

b e highligh ted. More detailed information can b e found in references suc h

as [5, 6, 14 , 15 , 49 , 56 , 59 , 61 , 85 , 86 , 91 , 94 , 95, 104 , 106 , 107 , 110 , 118 ,

121 , 128 , 164 , 167 ]. In the references cited ab o v e, the statistical decision

theory has b een explicitly or implicitly divided in to t w o di�eren t sub�elds,

whic h will b e dealt with separately in what follo ws. The �rst sub�eld is

the Bayesian decision theory and the second one is the Neyman-Pe arson

theory . The Ba y esian decision theory itself can then again b e sub divided

in to t w o di�eren t approac hes, whic h will also b e explained hereafter. The

�rst Ba y esian approac h is the minimization of the err or pr ob ability and the

second one is the minimization of the Bayes risk .

Although in the next sections a complete o v erview of all sub divisions of the

statistical decision theory will b e giv en, in this w ork w e only exp erimen ted

the Ba y esian strategy of minimizing the probabilit y of error. W e did neither

exp erimen t the more general strategy of minimizing the Ba y es risk, nor

the Neyman-P earson approac h. The reason of this c hoice is that w e did

not w an t to bias the results of this w ork b y sp ecifying di�eren t costs or

constrain ts for the di�eren t class error probabilities.

6.3.1 Ba y esian decision theory

In this section only a brief o v erview of the most imp ortan t results of the

Ba y esian decision theory will b e giv en in the sp eci�c case of a t w o-class

problem [177 ]. These t w o classes are denoted b y C

1

for Clients and C

2

for

Imp ostors , or b y C

i

; i = 1 ; 2 if the expressions are v alid for b oth classes.

Let X b e a random observ ation coming from one of either classes. In the

most general case X will b e a m ulti-dimensional feature v ector constructed

b y the concatenation of all feature v ectors

~

M

k

, giv en to all k exp erts k =

1 ; : : : ; n . The decision problem is to classify correctly eac h observ ation in

its resp ectiv e class. Let P ( X ; C

i

) b e the join t probabilit y distribution of

X and C

i

. If w e supp ose that this join t probabilit y distribution is kno wn,

then the connected marginal and conditional probabilities can b e deriv ed

from it. T o measure the p erformance of a classi�er w e de�ne a loss function

l

j i

, whic h giv es the cost of classifying a class i observ ation in to a class j

ev en t. Using this general loss function and applying the de�nition of the

c onditional loss R f C

i

j X g for classifying observ ation X in to a class i ev en t
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found in [56 ] to our t w o-class problem, w e obtain:

R f C

i

j X g =

2

X

j =1

l

j i

:P ( C

j

j X ) (6.1)

where P ( C

j

j X ) is the a p osteriori probabilit y of deciding C

j

, giv en X . This

conditional loss can then b e used to de�ne the exp e cte d loss L , also called

the Bayes risk as follo ws:

L =

Z

R f C ( X ) j X g :p ( X ) :dX (6.2)

where C ( X ) represen ts the decision of the classi�er. This decision function

C ( X ) dep ends on the classi�er design and it can b e easily seen that the

exp ected loss L will b e minimized if the classi�er is designed suc h that for

eac h X w e ha v e the follo wing:

C ( X ) = C

i

suc h that R f C ( X ) j X g = min

i

R f C

i

j X g : (6.3)

Minimizing the probabilit y of error

In our application w e ha v e opted for the zero-one loss function de�ned b y:

l

j i

=

�

0 if i = j

1 if i 6= j

(6.4)

whic h assigns no loss to correct classi�cation and a unit loss to an y error,

regardless of the class. With this t yp e of loss function the exp ected loss

L is equal to the err or pr ob ability of classi�c ation and the conditional loss

b ecomes:

R f C

i

j X g =

X

i 6= j

P ( C

j

j X ) ; (6.5)

and since w e ob viously ha v e that

X

i

P ( C

i

j X ) = 1 (6.6)

w e can rewrite the conditional loss as follo ws:

R f C

i

j X g = 1 � P ( C

i

j X ) : (6.7)



6.3. A ST A TISTICAL FRAMEW ORK F OR DECISION FUSION 73

Under these assumptions, the optimal classi�er, de�ned as the one that

ac hiev es minim um exp ected loss L , is the classi�er that implemen ts the

follo wing decision rule:

C ( X ) = C

i

if P ( C

i

j X ) = max

j

P ( C

j

j X ) : (6.8)

Stated otherwise, this means that the optimal classi�er (whic h ac hiev es

the minim um err or pr ob ability of classi�c ation ) implemen ts the maximum

a p osteriori (MAP) decision rule. The minim um error rate ac hiev ed b y this

optimal classi�er is then called the Bayes risk . Using Ba y es rule, the a

p osteriori probabilit y P ( C

i

j X ) can b e rewritten as:

P ( C

i

j X ) =

P ( X j C

i

) :P ( C

i

)

P ( X )

(6.9)

where P ( C

i

) and P ( X ) are the a priori probabilities of C

i

and X resp ec-

tiv ely , and P ( X j C

i

) is the conditional probabilit y of X , giv en C

i

. Since

P ( X ) do es not dep end on the class index, the MAP decision only dep ends

on the n umerator of the righ t-hand side of the previous equation.

MAP = max

i

P ( C

i

j X ) (6.10)

MAP = max

i

P ( X j C

i

) :P ( C

i

) (6.11)

By assuming that the a priori probabilities are equal for b oth classes (this

is a strong assumption, whic h is going to b e discussed in section 6.3.6), the

MAP decision rule reduces to a maxim um conditional probabilit y (MCP)

rule. P ( X j C

i

) is often called the likeliho o d of X giv en C

i

and a decision

that maximizes P ( X j C

i

) is hence also called a maximum likeliho o d (ML)

decision.

MCP = ML = max

i

P ( X j C

i

) (6.12)

It is in teresting to see that implemen ting b oth these MAP and ML rules in

our t w o-class application can b e done b y a so-called lik eliho o d ratio test.

Indeed, rewriting the MAP decision rule, w e can easily obtain the follo wing

lik eliho o d ratio decision rule:

l ( X )

4

=

P ( X j C

1

)

P ( X j C

2

)

cl ient

>

<

impostor

P ( C

2

)

P ( C

1

)

(6.13)
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In the case of the ML decision rule where w e supp ose that the t w o classes

ha v e the same a priori probabilit y , the lik eliho o d ratio decision rule simpli-

�es to:

l ( X ) =

cl ient

>

<

impostor

1

(6.14)

F rom the ab o v e equations, it can b e directly observ ed that the only thing

that c hanges b et w een the MAP and the ML decision rule, presen ted under

the form of a lik eliho o d ratio test, is the threshold.

Minimizing the Ba y es risk

It can b e sho wn that in the case a di�eren t loss-function l

j i

is c hosen (one

whic h assigns for instance a di�eren t cost to either t yp e of error F A and

FR), one still obtains a lik eliho o d ratio test in whic h the only thing that

is c hanged is the threshold, this of course to b e able to tak e in to accoun t

the v arious costs. In [164 ], it is sho wn that the general MAP rule that

minimizes the Bayes risk, c orr esp onding to the sp e ci�e d loss-function , is

giv en b y the follo wing lik eliho o d ratio test:

l ( X ) =

cl ient

>

<

impostor

P ( C

2

) : ( l

12

� l

22

)

P ( C

1

) : ( l

21

� l

11

)

(6.15)

where

l

11

= cost of correctly accepting a clien t ;

l

22

= cost of correctly rejecting an imp ostor ;

l

12

= cost of wrongly accepting an imp ostor = F A ;

l

21

= cost of wrongly rejecting a clien t = FR :

6.3.2 Neyman-P earson theory

In man y ph ysical situations it is di�cult to assign realistic costs l

j i

or a

priori probabilities. If this is the case, then the Ba y esian decision theory

can not b e used as suc h. A simple pro cedure to b ypass this di�cult y is

to w ork directly with the conditional probabilities and with the t w o error

rates F AR and FRR. As explained in some detail previously , one can not

minimize b oth error rates at the same time. An ob vious criterion is then

to constrain one of the error rates and to minimize the other one. This is
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exactly what is done in the Neyman-P earson theory . In what precedes it

w as sho wn that when one seeks to minimize the probabilit y of error or the

more general Ba y es risk, one is led to a lik eliho o d ratio test. Here it will b e

sho wn that applying the Neyman-P earson theory also leads to a lik eliho o d

ratio test.

The Neyman-P earson criterion �xes one of the class error probabilities, sa y

F AR, to satisfy:

F AR =

Z

C

1

P ( X j C

2

) :dX = � (6.16)

where the in tegral is calculated o v er the area where the claim is accepted

and � is some predetermined small n um b er, and seeks to minimize the

other class error probabilit y:

FRR =

Z

C

2

P ( X j C

1

) :dX (6.17)

where the in tegral is this time calculated o v er the area where the claim is

rejected.

In order to minimize equation (6.17), sub ject to the constrain t (6.16), the

follo wing quan tit y should b e minimized:

FRR + �: (F AR � � ) (6.18)

where � is a L agr ange multiplier . Doing this, it can b e sho wn (see for

instance [164 ]) that implemen ting the Neyman-P earson criterion leads to

the follo wing decision rule:

l ( X ) =

cl ient

>

<

impostor

�

(6.19)

The only problem left no w is to determine the threshold � . T o satisfy the

constrain t (6.16), w e c ho ose � so that F AR = � . If w e no w denote the

densit y of the lik eliho o d ratio l ( X ) when the p erson under test is in realit y

an imp ostor as P ( l ( X ) j C

2

), then w e require the follo wing:

F AR =

Z

1

�

P ( l ( X ) j C

2

) :dl ( X ) = �: (6.20)

Solving equation (6.20) for � , pro vides the threshold. Although equa-

tion (6.20) ma y sometimes b e di�cult to solv e in applications, the phi-

losoph y of the Neyman-P earson metho d is quite sound, since one often

wishes to form ulate the decision rule in terms of the desired class error

probabilities.
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6.3.3 Application of Ba y esian decision theory to decision

fusion

In a m ulti-exp ert decision fusion con text, eac h exp ert k has access to a fea-

ture v ector

~

M

k

. Ideally , as explained in section 6.3.1, the decision should b e

based on P ( C

i

j X ) or, b y expliciting X , on P ( C

i

j

~

M

1

;

~

M

2

; : : : ;

~

M

n

), taking

in to accoun t the loss function. Ho w ev er, this usually implies the direct use

of the feature v ectors

~

M

k

, whic h migh t b e undesirable or in some practical

cases ev en imp ossible. The direct use of these feature v ectors means that

w e completely den y the p ertinence and usefulness of the a v ailable exp erts.

Ev en if the theory obtained in section 6.3.1 states that the optimal classi�-

cation should b e based on P ( C

i

j

~

M

1

;

~

M

2

; : : : ;

~

M

n

), this theory sa ys nothing

on ho w to obtain the b est estimate of these probabilities.

A brute force approac h, in whic h one tries to estimate directly the ab o v e

probabilities using for instance Multi La y er P erceptrons (MLPs), migh t b e

app ealing b ecause it could lead to the optim um decision and it do es not

rely on an y of the h yp otheses that w e will in tro duce in the next sections.

Ho w ev er, if one w ould do that, this w ould only result in estimates of the

real probabilities and these estimates could b e so bad that they w ould b e

useless, b ecause the corresp onding MAP or ML decision w ould b e far a w a y

from the desired optim um decision. Sev eral reasons ma y hinder a go o d

estimation of the underlying probabilities:

� First of all, large multi-mo dal databases are extremely rare and v ery

exp ensiv e. It is more realistic to lo ok for a large database for eac h

sep ar ate mo dalit y .

� F urthermore, the b est estimation of the desired probabilities ma y b e

obtained b y making a go o d usage of the a v ailable databases and the

a priori kno wledge, and b y limiting the parameter space b y making

appropriate assumptions. This a priori kno wledge has to b e in tro-

duced in to the system b y (h uman) exp erts. This migh t b e easier at

the lev el of eac h mo dalit y (mono-mo dal exp erts are needed) than at

the fusion lev el. In most cases the in tro duction of this a priori kno wl-

edge has b een done, either explicitly or implicitly , b y the designer of

the a v ailable mono-mo dal exp erts.

Go o d exp erts mak e an e�cien t use of the a v ailable databases and a priori

kno wledge. The di�eren t mono-mo dal exp erts could then b e designed and

tuned adapting their complexit y (and th us their p erformance [57 ]) to the

size of the resp ectiv e mono-mo dal databases. In our opinion these kinds of
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exp erts should th us b e used as they are and they should not b e replaced b y

some kind of a pseudo-optimal probabilit y densit y function estimator (suc h

as an MLP) whic h denies their p ertinence and exp ertise. Therefore our

ob jectiv e will b e to mak e the b est decision, based on the output (scalar)

sc or es s

k

; k = 1 ; : : : ; n of the a v ailable exp erts, and not on their input

fe atur e ve ctors . Starting from this p oin t, sev eral approac hes to estimate

P ( C

i

j s

1

; s

2

; : : : ; s

n

) will b e presen ted in the next sections.

6.3.4 The naiv e Ba y es classi�er

F ormalization

In tro ducing the indep endence h yp othesis transforms the general Ba y esian

approac h presen ted ab o v e in to the so-called naive Bayes classi�er [119 ,

121 ]. This h yp othesis is acceptable when lo oking at the results of the cor-

relation analysis presen ted in section 3.4.3. If w e supp ose that the di�eren t

exp erts are indep enden t, then the scores of these exp erts are indep enden t

giv en either class. In our particular case, using the scores that are pro vided

b y the d exp erts ( s

1

; s

2

; : : : ; s

d

), and denoting the t w o classes b y C

1

and

C

2

for clien ts and imp ostors resp ectiv ely , this can b e formalized b y the

follo wing t w o sp eci�c h yp otheses:

h 1 : P ( s

1

; s

2

; : : : ; s

d

j C

1

) =

d

Y

k =1

P ( s

k

j C

1

) (6.21)

h 2 : P ( s

1

; s

2

; : : : ; s

d

j C

2

) =

d

Y

k =1

P ( s

k

j C

2

) (6.22)

Under these t w o h yp otheses, w e sho w in app endix E that

P ( C

1

j s

1

; s

2 ;:::

; s

d

) =

1

1 + exp

h

�

n �

P

d

k =1

x

k

�

+ x

0

o i

(6.23)

where

x

k

= l n

P ( s

k

j C

1

)

P ( s

k

j C

2

)

(6.24)

x

0

= l n

P ( C

1

)

P ( C

2

)

(6.25)
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and s

k

is the scalar score giv en b y the k � th exp ert.

The in terest of obtaining the mathematical expressions presen ted in equa-

tions (6.23), (6.24), and (6.25) is that in some sp eci�c cases they can b e

reduced to v ery simple expressions. This will b e sho wn in section 6.3.5.

6.3.5 Applications of the naiv e Ba y es classi�er

Simple Gaussian distributions

In this section, w e will particularize the general approac h of the naiv e Ba y es

classi�er under the h yp othesis that all mono-v ariate conditional probabili-

ties P ( s

j

j C

i

) are Gaussian. The only parameters to estimate are the mean

and the v ariance of the mono-v ariate Gaussian distributions. Those param-

eters are estimated using the training data set. Note that no m ulti-mo dal

database is needed to do this. Then the m ulti-v ariate conditional proba-

bilit y P ( s

1

; s

2

; : : : ; s

d

j C

i

) ma y b e computed. Under the indep endence h y-

p otheses w e made in section 6.3.4 it is a pro duct of Gaussian distributions,

whic h is also a Gaussian with a diagonal co v ariance matrix. In the next sec-

tion, w e will sho w that if the Gaussian distributions ha v e the same v ariance

for the clien t and the imp ostor classes, then the a p osteriori probabilit y is

a logistic function.

Figure 6.3 sho ws the mo deled normal clien t and imp ostor distributions in

our application, when using the v o cal exp ert only . It can b e seen that there

exists an o v erlap b et w een the t w o distributions, whic h will b e resp onsible

for the classi�cation errors. This is again sho wn in Figure 6.4 for the pro�le

and v o cal exp erts. This Figure clearly illustrates that the fusion of (w ell-

c hosen) exp erts or mo dalities ma y signi�can tly reduce the classi�cation

errors. The o v erlap indeed still exists, but it has b ecome smaller.

If furthermore the a priori probabilities are equal, the ML decision rule

from equation (6.12) ma y b e used. The results obtained in our sp eci�c

application using the three exp erts and the approac h explained ab o v e, are

sho wn in T able 6.5. Note that in our case, the equal prior h yp othesis

is questionable. Indeed, the a priori probabilities are (for the test set)

equal to 1 = 37 and 36 = 37 for resp ectiv ely clien ts and imp ostors. Using these

n um b ers in the MAP decision rule from equation (6.11) it can b e observ ed in

T able 6.5 that c hanging the ML rule in to a MAP rule leads to a decrease in

the F AR and an increase in the FRR. This w as exp ected. Indeed, since the

a priori probabilit y of an imp ostor is m uc h higher than the one for a clien t,

the ma jor tendency will b e to reject the claim (whic h is w ell adapted to

imp ostors, hence the decrease in F AR), but whic h is not so go o d for clien ts






























































































































































































































