
HAL Id: tel-00005751
https://pastel.hal.science/tel-00005751

Submitted on 30 Jul 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Notion of representative volume element for
heterogeneous materials: statistical and numerical

approach
Toufik Kanit

To cite this version:
Toufik Kanit. Notion of representative volume element for heterogeneous materials: statistical and
numerical approach. Mechanics [physics.med-ph]. École Nationale Supérieure des Mines de Paris,
2003. English. �NNT : �. �tel-00005751�

https://pastel.hal.science/tel-00005751
https://hal.archives-ouvertes.fr


ECOLE DES MINES
DE PARIS

Collège Doctoral

N
�

attribué par la bibliothèque�
__

�
__

�
__

�
__

�
__

�
__

�
__

�
__

�
__

�
__

�

THESE

Pour obtenir le grade de
Docteur de l’Ecole Nationale Supérieure des Mines de Paris

Spécialité Mécanique Numérique

Présentée et soutenue publiquement par

Toufik KANIT

le 12 mai 2003

Notion de Volume Elémentaire Représentatif pour les Matériaux
Hétérogènes : Approche Statistique et Numérique

Directeurs de thèse : Dominique JEULIN
Samuel FOREST

Jury

M. P. PILVIN Rapporteur Université de Bretagne-Sud IUP-LG2M, France
M. K. SAB Rapporteur Ecole Nationale des Ponts et Chaussées, France
M. M. OSTOJA-STARZEWSKI Examinateur Mc-Gill University, Montreal, Canada
M. S. SINGLETON Examinateur Unilever, Grande Bretagne
M. M. REED Invité Unilever, Grande Bretagne
Mme V. MOUNOURY Invitée Ecole des Mines de Paris, France
M. D. JEULIN Examinateur ISTASE-Université Jean Monnet, France
M. S. FOREST Examinateur Ecole des Mines de Paris, France

Centre des Matériaux P.M. FOURT de l’Ecole des Mines de Paris,
B.P. 87, 91003 EVRY Cedex

—————————–



ECOLE DES MINES
DE PARIS

Doctoral College

N
�

given by the library�
__

�
__

�
__

�
__

�
__

�
__

�
__

�
__

�
__

�
__

�

PhD THESIS

To obtain the grade of
Doctor of Ecole Nationale Supérieure des Mines de Paris

Speciality Computational Mechanics

Presented by

Toufik KANIT

the May 12th, 2003

Notion of Representative Volume Element for Heterogeneous
Materials : Statistical and Numerical Approach

PhD Advisors : Dominique JEULIN
Samuel FOREST

Jury

M. P. PILVIN Referee Université de Bretagne-Sud IUP-LG2M, France
M. K. SAB Referee Ecole Nationale des Ponts et Chaussées, France
M. M. OSTOJA-STARZEWSKI Examinator Mc-Gill University, Montreal, Canada
M. S. SINGLETON Examinator Unilever, United Kingdom
M. M. REED Invited member Unilever, United Kingdom
Mme V. MOUNOURY Invited member Ecole des Mines de Paris, France
M. D. JEULIN Examinator ISTASE - Université Jean Monnet, France
M. S. FOREST Examinator Ecole des Mines de Paris, France

Centre des Matériaux P.M. FOURT de l’Ecole des Mines de Paris,
B.P. 87, 91003 EVRY Cedex

—————————–



i

Remerciements
Je souhaiterais d’abord remercier chaleureusement Monsieur Jean-Pierre Trottier, Di-

recteur du Centre des Matériaux de l’Ecole des Mines de Paris, pour m’avoir accepté dans
son laboratoire et pour la confiance qu’il a su me témoigner.

Je voudrais exprimer ma gratitude à Monsieur Karam Sab et à Monsieur Philipe Pilvin
pour avoir accepté de rapporter sur le manuscrit, leur présence parmi les membres de jury
m’a fait un grand plaisir.

Je tiens également à remercier Monsieur Martin Ostoja-Starzewski pour avoir présidé
le jury de soutenance et pour l’intérêt qu’il a porté à ce travail et pour ces remarques perti-
nentes.

Special thanks are due to Mr. Scott Singleton and Mr. Mattew Reed of Unilever for the
very stimulating scientific and industrial atmosphere during my PhD, and for accepting to
take part in the jury.

Je ne saurais exprimer ma reconnaissance à mes chers encadreurs : Monsieur Do-
minique Jeulin, Monsieur Samuel Forest et Madame Valérie Mounoury qui m’ont sup-
porté et suivi tout au long de ces trois années de recherche, ainsi qu’à notre chef de groupe
Georges Cailletaud.

Un grand merci à Franck N’Guyen qui a encadré la partie analyse d’images des travaux
de ma thèse, pour notamment son esprit chaleureux et sa grande patience, merci infiniment
Franck!

Je remercie également toutes les personnes que j’ai côtoyées : Francçoise, Sylvain,
Thierry, Andrei, Kamel, Farida, Asmahana, Fouad, Fabrice, Olivier, ainsi que tous les
chercheurs, enseignants et administratif, et notamment Frédéric Feyel, Stéphane Quilici
et Isabelle Galliet.

Je réserve un remerciement tout spécial à ma femme Radia qui m’a supporté tout au
long des derniers moments et je lui transmets tout l’amour du monde.



ii

Résumé

Le Volume Elémentaire Représentatif (VER) joue un rôle important dans la mécanique
et la physique des milieux hétérogènes aléatoires dans le but de déterminer leurs propriétés
effectives. Une définition quantitative de la taille du VER est proposée dans ce travail en
utilisant une approche numérique et statistique. La taille du VER peut être associée à une
précision donnée sur l’estimation de la propriété macroscopique recherchée et à un nom-
bre de réalisations d’un volume donné � de la microstructure. Cette taille dépend de la
propriété morphologique ou physique étudiée, du contraste dans les propriétés des constitu-
ants et de leur fraction volumique. La méthodologie est développée sur une microstructure
aléatoire bi-phasée spécifique, à savoir les mosaïques de Voronoï en ��� . Elle est appliquée
ensuite à un matériau bi-phasé issu de l’industrie agro-alimentaire. Des simulations par la
méthode des éléments finis à grand nombre de degrés de liberté sur des volumes de tailles
différentes sont faites dans le cas de l’élasticité linéaire et la conductivité thermique. Les
volumes sont simulés avec différentes conditions aux limites : déformations homogènes au
contour, contraintes homogènes au contour et des conditions aux limites périodiques. Les
propriétés effectives peuvent être déterminées sur des gros volumes et un faible nombre de
réalisations. D’autre part, il est possible d’utiliser des petits volumes à condition d’avoir
un nombre suffisant de réalisations. Un biais dans l’estimation des propriétés effectives a
été remarqué pour les volumes qui sont trop faibles quelles que soient les conditions aux
limites. La variance des propriétés apparentes pour chaque taille de volume est utilisée pour
définir la précision de l’estimation. La notion-clé de portée intégrale est introduite pour
relier l’erreur de l’estimation à la définition de la taille du VER. Pour une précision et un
nombre de réalisations donnés, il est possible de donner une taille minimale des volumes à
utiliser pour le calcul des propriétés effectives. Les résultats peuvent être aussi utilisés pour
trouver le nombre minimal de réalisations à considérer pour une taille donnée de volume
pour estimer la propriété effective avec une précision donnée. Les tailles du VER trou-
vées pour les modules élastiques, la conductivité thermique et la fraction volumique sont
comparées. Une comparaison générale des propriétés élastiques et thermiques est présen-
tée pour trois types de microstructures, les mosaïques de Voronoï, un exemple de matériau
issu de l’industrie agro-alimentaire et un autre modèle booléen de microstructures à base
de prismes hexagonaux. Ce travail peut être vu comme une introduction aux approches de
design de microstructures qui ont des propriétés macroscopiques souhaitées. L’objectif est
d’explorer des morphologies nouvelles succeptibles de conduire à des propriétés de rigidité
ou conductivité exceptionnelles, ou toute autre propriété à contrôler.



iii

Abstract

The Representative Volume Element (RVE) plays a central role in the mechanics and
physics of random heterogeneous materials with a view to predicting their effective prop-
erties. A quantitative definition of its size is proposed in this work using a numerical and
statistical approach. A RVE size can be associated with a given precision of the estima-
tion of the wanted overall property and the number of realizations of a given volume �
of microstructure that one is able to consider. It is shown to depend on the investigated
morphological or physical property, the contrast in the properties of the constituents, and
their volume fractions. The methodology is developed on a specific random microstructure,
namely a two–phase three–dimensional Voronoï mosaic and applied to a real two-phase
heterogeneous material from food industry. Large scale finite element simulations of vol-
umes of different sizes are performed in the case of linear elasticity (thermal conductivity
respectively), using parallel computing. The volumes are subjected to homogeneous strain
(gradient of temperature respectively), stress (heat flux respectively) at the boundary or pe-
riodic boundary conditions. The effective properties can be determined for large volumes
and a small number of realizations. Conversely, smaller volumes can be used providing that
a sufficient number of realizations is considered. A bias in the estimation of the effective
properties is observed for too small volumes for all types of boundary conditions. The vari-
ance of computed apparent properties for each volume size is used to define the precision of
the estimation. The key–notion of integral range is introduced to relate this error estimation
and the definition of the RVE size. For given precision and number of realizations, one is
able to provide a minimal volume size for the computation of effective properties. The re-
sults can also be used to predict the minimal number of realizations that must be considered
for a given volume size in order to estimate the effective property for a given precision.
The RVE sizes found for elastic and thermal properties, but also for a geometrical property
like volume fraction, are compared. A general comparison of the elastic and thermal prop-
erties of three different microstructures is given, Voronoï mosaics, real material from food
industry and another virtual model, a boolean model of hexagonal prismatic rods and plates.
Computation homogenization technique is used to predict the effective properties from ���
confocal images of real samples. An analysis of the percolation strain fields in deformed
samples is proposed to select stiffer or higher conductive products. The present work can
be regarded as a first step towards a computational approach of the design of microstruc-
tures for wanted overall properties. The aim is to explore new morphologies that can lead to
unexpected properties like outstanding stiffness or conductivity, or controlled compliance.
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Introduction

The mechanical behavior of multi-phase materials is of considerable economic
importance. A better understanding of the mechanics of multi-phase materials will
allow these materials to be used in an optimal manner. The objective of the me-
chanics of heterogeneous materials is to estimate the macroscopic properties of an
equivalent homogeneous material. In the case of the random materials, the evalu-
ation of these properties from the properties of the constituents has reached a high
level of precision. One of the first systematic works in this domain are due to Hill
(Hill, 1952).

Important progress in the way of substituting a homogenized medium to a het-
erogeneous material was made with the mathematical theory of homogenization
(Beran, 1968), (Sanchez-Palencia, 1974), (Bensoussan et al., 1978) and (Sanchez-
Palencia, 1980). Since these pioneering studies, the method has been extended to
plastic materials (Suquet, 1983) and (Bouchitte and Suquet, 1991). Some of the
arguments developed for homogenization were general and found applications in
other fields. These works spawned a large body of numerical studies (Bourgat,
1977), (Marigo et al., 1987), (Bendsoe and Kikuchi, 1988), (Devries et al., 1989)
and (Guedes and Kikuchi, 1990) which were developed independently from earlier
micromechanical studies. Several theoretical formulae have been proposed that are
relevant for interpenetrating phases in heterogeneous media. For example, effective
medium theories (Hashin, 1983) were developed to extend exact results for dilute
inclusions to higher volume fractions. Certain microstructures were shown (Mil-
ton, 1984) to have properties that coincide with exact theoretical results, but the
proposed microstructures are physically very unusual. A different class of theories
is rigorously based on realistic microstructural information. These are the classic
variational bounds (Milton and Phan-Thien, 1982), which only provide an upper
bound for porous media, and the recent expansions of Torquato (Torquato, 1998).
The microstructural information needed to evaluate the results is quite difficult to
obtain, so in practice the bounds and expansions are evaluated only up to third-
order. Even with limited information, the upper bounds and expansions are thought
to give good predictions for dispersions (Torquato, 1991), (Torquato, 1998). The
accuracy of these theories is difficult to determine for a real double-percolating het-
erogeneous medium. This uncertainty has limited the application of these results.
However, effective medium theories are commonly used, and the rigorous theories
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are attractive because of their relative simplicity. Modeling a composite and esti-
mating numerically its macroscopic properties is a complex procedure. This could
be avoided if accurate analytical structure-property relations could be theoretically
or empirically obtained. Many studies have focused on this problem (Hashin, 1983).
In general the results are reasonable for a particular class of composites or porous
media. The self-consistent (or effective medium) method of Hill (Hill, 1965) and
Budiansky (Budiansky, 1965) and its generalization by Christensen and Lo (Chris-
tensen and Lo, 1979) is one of the most common for particulate media (Hashin,
1983).

Further techniques for bounding overall properties are elaborated then in (Paul,
1960), (Hashin and Shtrikman, 1963), (Hill, 1963), (Walpole, 1966), (Kröner,
1972), (Kröner, 1977), (Willis, 1981), (Willis and Talbot, 1989), (Nemat-Nasser
and Hori, 1993). Such bounds depend only on the relative volume fractions and do
not reflect any particular geometry. When one phase is a dispersion of ellipsoidal
inclusions, a much more direct approach is available. This is the self-consistent
method of Hershey (Hershey, 1954) and (Kröner, 1958). Originally proposed for
aggregates of crystals, it has been reviewed and elaborated by Hill (Hill, 1965).
More precise bounds (second order and third order) were developed later. Third
order bounds, in the case of random media, were obtained in the general case by
Beran (Beran, 1968) and for models of random function (Jeulin, 1998), and later
for two-phase materials by Miller (Miller, 1969), Milton (Milton, 1982) and Jeulin
(Jeulin and Savary, 1997). On the other hand more theories were developed for the
linear properties of random materials like the systematic theory of Kröner (Kröner,
1980) and in many other works (Torquato and Stell, 1983), (Torquato and Lado,
1986), (Torquato, 1991) and (Sab, 1992). Other alternative to direct property pre-
diction has been the development of analytical rigorous bounds (reviewed by Willis
(Willis, 1981), Hashin (Hashin, 1983) and Torquato (Torquato, 1991). There is a
whole hierarchy of these bounds, each set tighter than the next, but depending on
higher order correlation functions of the microstructure. The original Hashin and
Shtrikman (Hashin and Shtrikman, 1963) bounds that have been widely used by
experimentalists implicitly depend on the two-point correlation function of the mi-
crostructure, although the only quantities appearing in the formulae are the individ-
ual properties of each phase and their volume fraction. To go beyond these bounds
to higher-order, more restrictive bounds, it is necessary that detailed information be
known about the composite in the form of three-point or higher statistical correla-
tion functions (Beran and Molyneux, 1966); (Milton and Phan-Thien, 1982), which
do appear explicitly in the relevant formulae. Evaluation of even the three-point
function is a formidable task, so use of these bounds has in the past been restricted
to composites with spherical inclusions. It is now possible to evaluate the bounds
for non-particulate composites (Roberts and Teubner, 1995), and it is interesting
to compare the results with experimental and numerical data. If the properties of
each phase are not too dissimilar the bounds are quite restrictive and can be used
for predictive purposes (Hashin and Shtrikman, 1963). Sometimes experimental
properties closely follow one or the other of the bounds, so that the upper or lower
bound often provides a reasonable prediction of the actual property even when the
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phases have very different properties (Torquato, 1991); (Roberts and Knackstedt,
1995).

Computational homogenization is a practical tool to estimate effective proper-
ties from simulations on samples of heterogeneous materials. Important works were
made for the effective mechanical moduli in different cases of boundary conditions
(uniform static, kinematic and mixed loading). Especially in (Huet, 1990) and (Haz-
anov and Huet, 1994), where it is shown that overall properties given by mixed
boundary conditions are between the static and kinematic ones. In the nonlinear be-
havior, an example of study of the size effects on the intragranular behavior, is given
in (Quilici et al., 1998), by the simulation of torsion in multicrystals. Other stud-
ies in the homogenization of polycrystalline aggregates are given in (Forest et al.,
2000), (Barbe et al., 2001a), (Barbe et al., 2001b) and in (Gusev, 1997) for the case
of periodic media. Some works developed numerical methods based on models of
random structures. Ghosh (Ghosh and Moorthey, 1995) developed a finite element
method based on the Voronoï cells. The homogenization of heterogeneous media in
which the constituents were fluids is also studied, an example being given in (Ter-
ada et al., 1998).

Computational homogenization requires a proper determination of the typical
size of a socalled Representative Volume Element (RVE). From such a volume we
can determine the overall macroscopic properties of the heterogeneous material.
Two different definitions of the RVE are used in the mechanics of heterogeneous
materials. The first one can be derived from the principle that in order to char-
acterize the macroscopic constitutive response of a composite, one must know the
statistical nature of the microstructure of actual composites. This principle leads to
the conclusion that the RVE for which an effective constitutive theory could apply is
one that is sufficiently large to be statistically representative of the composite, that
is, to effectively include a sampling of all microstructural heterogeneities that occur
in the composite. This is generally the principle adopted, and it leads to the fact that
the RVE must include a large number of the composite microheterogeneities (grains,
inclusions, voids, fibers, etc.). The response of the RVE must be independent of the
boundary conditions, and its size is given for a specific effective property. A more
accurate definition of the RVE, which is used later in this work, is based on a sta-
tistical definition : the RVE must ensure a given accuracy to the estimated property
obtained by spatial averaging of the stress, the strain, or the energy fields in a given
domain. Another definition of the RVE is given by Drugan and Willis in (Drugan
and Willis, 1996) : It is the smallest material volume element of the composite for
which the usual spatially constant (overall modulus) macroscopic constitutive rep-
resentation is a sufficiently accurate model to represent mean constitutive response.
They studied the smallest volume size for a two-phase composite with an isotropic
matrix and isotropic spherical inclusions by comparing the local and the nonlocal
parts of effective constitutive equations. They mentioned that, with a maximum er-
ror of

���
of the overall modulus, the RVE size is twice the inclusion diameter at

most for any reinforcement concentration level, for many sets of matrix and inclu-
sion moduli characterizing large classes of structural composites. In contrast to the
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large RVE sizes deduced from the statistical principle given in the first definition,
the estimates of RVE size for the definition adopted in (Drugan and Willis, 1996)
are much smaller. In the present work we show that this definition is not sufficient.
The overall moduli obtained by averaging over small domains inside a composite,
using a sufficient number of realizations for each of the studied boundary condi-
tions, is not the same, in general, as that obtained by a sufficiently large size of the
RVE.

In many practical cases, knowledge of microscopic fields, such as stress fields,
strain fields, thermal fields, within mesoscale structural components are desired.
However, difficulties arise in the numerical simulation of such problems, which has
irregular fine scale heterogeneous microstructure. This is due to the fact that the
spatial discretization mesh size must be smaller than the intrinsic micromechanical
length scales for reasonable accuracy. This gives rise to large memory requirements
to store the numerical systems. Alternatively, the use of smaller volumes of het-
erogeneous material must be compensated by averaging over several realizations of
the microstructure to get the same accuracy, provided no bias is introduced in the
estimation by some edge effect generated from the boundary conditions. This is
illustrated at several places in this work.

Direct numerical computations using the finite element method have been de-
veloped for heterogeneous media with periodic microstructures (Adams and Doner,
1967), (Needleman, 1972) and opened the way to several studies. Recently, efforts
have been made to study composites with more complex morphologies (Brocken-
borough et al., 1991), (Moulinec and Suquet, 1995) and (Moulinec and Suquet,
1997). There now exist large-scale computational methods for calculating the prop-
erties of composites given a digital representation of their microstructure; for exam-
ple permeability in (Adler et al., 1990) and (Bentz and Martys, 1994), conductivity
in (Adler et al., 1992) and (Roberts and Teubner, 1995) and elastic moduli (Gar-
boczi and Day, 1995); (Poutet et al., 1996); (Meille and Garboczi, 2001).

For particular materials it may be possible to simulate microstructure forma-
tion from first principles. Generally this relies on the detailed knowledge of the
physics and chemistry of the system, with accurate modeling of each material re-
quiring a significant amount of research. Three-dimensional models have also been
directly reconstructed from samples by combining digitized serial sections obtained
by scanning electron microscopy (Kwiecien et al., 1990), or using the relatively new
technique of X-ray microtomography (Flannery et al., 1987). In the absence of so-
phisticated experimental facilities for microstructure imaging, another alternative is
to employ a statistical model of the microstructure. This method is named statistical
reconstruction since the statistical properties of the model are matched to those of
a two-dimensional image (Quiblier, 1984); (Adler et al., 1992); (Bentz and Mar-
tys, 1994); (Roberts, 1997). Statistical reconstruction is a promising approach of
producting three-dimensional models, but there remain outstanding theoretical and
numerical questions regarding its application. The simulation of finite size hetero-
geneous material samples provides only apparent properties that do not necessary
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coincide with the wanted effective ones.

In (Huet, 1990), Huet showed that the apparent modulus tensor of a sub-volume
of the material body subject to boundary tractions associated with a uniform stress
tensor or boundary displacements associated with a uniform strain tensor on the
boundary of the sub-volume overestimates or underestimates the effective modu-
lus tensor, respectively. These two types of apparent moduli depend on the size of
sub-volumes. They approach the effective moduli as the sub-volume size increases.
Similar results have been reported by other authors, (Nemat-Nasser and Hori, 1993)
and (Pecullan et al., 1998). Huet used then the above concept to define the mini-
mum RVE size (Hazanov and Huet, 1994), without giving a quantitative estimate.
Similar problems were studied by Ostoja-Starzewski in (Ostoja-Starzewski, 1993),
(Ostoja-Starzewski, 1996) and (Ostoja-Starzewski, 1998).

The present work aims at studying the representativity of the measurements ob-
tained from a limited domain of the random linear elastic two-phase heterogeneous
material (the hard phase is named � � , the soft one is � � ), and to precise the sta-
tistical definition of the Representative Volume Element. These measurements of
the specimen concern the morphology (volume fraction), and the effective physical
properties (elastic moduli and thermal conductivity). In this work, the notion of in-
tegral range is associated with the notion of the RVE. To define it, we use the curves
of variance of the volume fraction, the elastic moduli : bulk modulus � and shear
modulus � and the thermal conductivity � obtained in windows of increasing sizes.
This is applied to a model of random medium, the Voronoï mosaics (Matheron,
1968), (Miller, 1969), (Jeulin, 1987) and (Jeulin, 1991). The Voronoï mosaic model
is a good candidate to generate random media, for geometrical considerations, since
it provides planar boundaries separating grains. To generate such microstructures,
an original method is used with numerous extensions of the classical model (Decker
and Jeulin, 2000). Its main advantages, as compared to standard procedures, is to be
able to generate textures with a very large number of grains, at a low computational
cost.

The theoretical and numerical results of this work are applied to a two-phase
material from food industry. Applying a material science approach to the charac-
terization of material of the food industry requires consideration of its constituents
on a microstructural level. Any change in this material formulation or processing
parameters gives rise to different microstructures, which in turn dictate both the me-
chanical and sensory properties. Hence, via materials science, relationships may be
established between the microstructure of this material, and physical properties or
the sensory attributes. These data may then be used as a predictive tool for the de-
velopment of new microstructures that satisfy predetermined sensory criteria. This
work (especially chapter 2) is part of a wider study that aims at linking physical
properties of a given material to its microstructure.

In the first chapter, after a brief reminder on the homogenization theory and
of the covariance of random media, to introduce the notion of integral range, we
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present the principle of construction of the Voronoï mosaics, and some numerical
parameters used later in the finite element method to simulate the elastic and ther-
mal behavior of a two-phase material based on the Voronoï mosaic. We mainly
study the effect of the contrast and of the mesh density on the results of the homog-
enization.

From the curves of variance of the apparent properties, the volume fraction, the
elastic moduli and the thermal conductivity, the values of the integral ranges are de-
termined. A statistical approach is used to determine the size of the RVE. It consists
in using a sufficient number of realizations on smaller volumes, and to avoid the
bias of apparent properties observed in windows with a too small size.

In the second chapter, a more detailed application of the numerical and statistical
approach is proposed for a real heterogeneous material. ��� real images are obtained
from confocal microscopy and directly simulated by the finite element method to
estimate the effective linear elastic properties and the effective thermal conductiv-
ity. The mixture of the heterogeneous material is considered as a two-phase linear
elastic material, with a hard and highly conductive phase � � with volume fraction
around ��� � , and another soft phase and less conductive named � � with volume
fraction ��� � . Two different microstructures of this material have been studied that
have equal volume fractions and different morphologies with three different sam-
ples of each type. The direct computation of elastic matrices of each sample shows
some anisotropy in these matrices because of the insufficient size of these samples.

That is why we applied our approach, developed in the first chapter and in (Kanit
et al., 2003a), (Kanit et al., 2002), to estimate sizes for the RVE of the real material.
One sample of each type of the material is studied. With the help of values of the
integral ranges found with the numerical simulations we give the necessary sizes
of the RVE for each sample and for each physical property. All the Huet’s results,
concerning relationships existing between the apparent physical properties obtained
on smaller samples than the RVE and the effective properties of the heterogeneous
material (Huet, 1990), (Huet, 1991), will be tested with two different methods of
decomposition into smaller volumes : regular and random in the case of our real
material and Voronoï mosaics.

An introduction to percolation phenomena in microstructures is given. Two
types of percolation phenomena are studied, the geometrical percolation and the
mechanical percolation of the local strain fields to try to explain the different be-
haviors observed in the studied real microstructures.

In the last chapter we proposed another model of virtual microstructures. This
model is constructed with hexagonal prismatic rods and plates with volume frac-
tions around ��� � for the hard phase represented by hexagons. Direct computations
of elastic moduli of these microstructures allow us to say that the used sizes are rep-
resentative. A comparison between the three heterogeneous microstructures models
is given as general conclusion. This illustrates the concept of design of microstruc-
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tures using computational homogenization tools.
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I.1 Introduction

One important goal of the mechanics and physics of heterogeneous materials
is to derive their effective properties from the knowledge of the constitutive laws
and spatial distribution of their components. Homogenization methods have been
designed for this purpose. They have reached a high level of sophistication and
efficiency, especially in the case of linear properties such as thermal conductivity
or elasticity. They can be found in reference extended papers and textbooks like
(Willis, 1981; Sanchez-Palencia and Zaoui, 1987; Nemat-Nasser and Hori, 1993)
or, more recently, (Suquet, 1997; Ponte Castañeda and Suquet, 1998; Bornert et al.,
2001), (Besson et al., 2001), (Jeulin and Ostoja-Starzewski, 2002), where exten-
sions to nonlinear properties are also proposed.

On the one hand, rigorous bounds for the macroscopic linear properties of com-
posites are available. They include the well–known Voigt and Reuss bounds that
take only the volume fraction of the components into account. Hashin and Shtrik-
man’s bounds incorporate the notion of isotropic distribution of phases (Hashin and
Shtrikman, 1963). Third order bounds, in the case of random media, were obtained
in the general case by (Beran, 1968), and later for two-phase materials by (Miller,
1969) and (Milton, 1982). The incorporation of more and more statistical informa-
tion on the distribution of heterogeneities in random materials leads to a hierarchy
of bounds, as suggested by the systematic theory of (Kröner, 1980), and also in
(Torquato and Stell, 1983; Torquato and Lado, 1986; Torquato, 1991). Note that
some of these bounds are optimal in the sense that specific morphologies can be
designed that give exactly the value of the bound as effective property.

On the other hand, direct estimations of the wanted effective properties can be
proposed. The Mori–Tanaka model for instance favors one phase as a matrix. In
contrast, the self–consistent scheme, presented by (Beran, 1968) for thermal con-
ductivity and by (Hershey, 1954) and (Kröner, 1958) for linear polycrystals, refers
to a disordered distribution of phases. A geometrical construction given by (Milton,
1985) for two-phase composites is obtained by a multiscale stacking of spheres of
every phase with the appropriate volume fractions; for this disordered morphology,
and for the estimations of the self-consistent model, the role of every component is
symmetric.

In all these theories, the proposed estimations are given for random compos-
ite media with an infinite extension, and can therefore be denoted as asymptotic
estimates. A different way to solve homogenization problems is to use numeri-
cal techniques and simulations on samples of the microstructure. In that case, the
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notion of Representative Volume Element (RVE) is of paramount importance. The
RVE is usually regarded as a volume � of heterogeneous material that is sufficiently
large to be statistically representative of the composite, i.e., to effectively include a
sampling of all microstructural heterogeneities that occur in the composite. This is
generally the principle adopted, and it leads to the fact that the RVE must include
a large number of the composite micro-heterogeneities (grains, inclusions, voids,
fibers, etc.). It must however remain small enough to be considered as a volume
element of continuum mechanics. Several types of boundary conditions can be pre-
scribed on � to impose a given mean strain or mean stress to the material element.
As a matter of fact, the response of the RVE must be independent of the type of
boundary conditions, as proved by (Sab, 1992). This also pleads for a rather large
size of RVE.

Another definition of the RVE was recently proposed by (Drugan and Willis,
1996) : “It is the smallest material volume element of the composite for which the
usual spatially constant (overall modulus) macroscopic constitutive representation
is a sufficiently accurate model to represent mean constitutive response”. This ap-
proach uses the solution of the homogenization for an infinite medium, and does
not consider statistical fluctuations of the effective properties over finite domains.
In contrast to the large RVE sizes expected from the previous definitions, the esti-
mates of RVE size found by (Drugan and Willis, 1996) turn out to be much smaller
(a small number of fibers for disordered fiber composite for instance).

Numerical techniques can help determining a critical size of volume � and
choosing among the previous conflicting definitions. Monte–Carlo simulations
were used by (Gusev, 1997) to generate independent realizations of disordered dis-
tributions of spheres in a matrix. A few dozen of spheres were necessary to obtain
small scatter in the averaged property. In (Forest et al., 2000), the stress–strain
curves of polycrystalline wires in torsion were simulated as a function of the num-
ber of grains within the cross–section : about 30 grains in the cross–section were
necessary to reach stationary responses. Other examples of convergence of overall
properties as the unit cell size is increased can be found in (Povirk, 1994; Terada
et al., 1998). In (Zeman and Sejnoha, 2001), the numerical simulations are com-
bined with the use of statistical information like the two–point probability. In
(Roberts and Garboczi, 2000), the finite element method is used to estimate the
elastic properties for various models of porous ceramics. Statistical fluctuation is
briefly investigated but not related to estimations of RVE sizes. Examples of mi-
crostructural dependence of Young’s modulus and Poisson’s ratio, computed via the
finite element method, can be found in (Roberts and Garboczi, 1999), (Roberts and
Garboczi, 2000), (Roberts and Garboczi, 2001), (Meille and Garboczi, 2001) and
(Roberts and Garboczi, 2002).

For microstructures with a high contrast of properties, the bounds are too far
apart to give a useful estimate of the effective properties. On the other hand, es-
timates like the self-consistent model can give a fair prediction but correspond to
a very specific morphology of the components. For these reasons, we have to use
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a numerical method. In the present work, computational homogenization methods
are used to determine the effective properties of heterogeneous materials.

In some experiments but also in many simulations, large size volumes � can-
not be handled, so that one has to work with apparent moduli obtained on volumes
smaller than the RVE. This situation has been extensively studied by (Huet, 1990),
(Huet, 1991) and (Hazanov and Huet, 1994). Bounding relations between appar-
ent and effective properties are derived for several types of strain, stress or mixed
boundary conditions.

The aim of the present chapter is to propose and illustrate a more quantitative
definition of the RVE, which is based on statistical arguments : the RVE must en-
sure a given accuracy of the estimated property obtained by spatial averaging of the
stress, the strain, or the energy fields in a given domain � . Alternatively, the use of
smaller volumes � must be compensated by averaging over several realizations of
the microstructure to get the same accuracy, provided no bias is introduced in the
estimation by some edge effects generated by the boundary conditions. It will ap-
pear that the overall moduli obtained by averaging over small domains of composite
material, using a sufficient number of realizations for each of the studied boundary
conditions, is not the same, in general, as that obtained by a sufficiently large RVE.
Note that, in general, the size of a RVE depends on the investigated morphological
or physical property. For the same microstructure, it will be shown that the RVE
size differs if thermal or elastic properties are considered. It makes sense also to
define the notion of RVE for a morphological property like volume fraction. Again,
it will appear that the corresponding size is different from that found for a physical
property. The key–notion that will be used for a precise definition of the RVE is the
integral range classically used in mathematical morphology and recalled in section
I.3.2 in this chapter. The notion of integral range has already been used for the ho-
mogenization, by simulations, of the elastic properties of two-dimensional random
composites, but without explicit reference to the notion of RVE in (Cailletaud et al.,
1994).

The example of microstructure chosen in this chapter to illustrate the method-
ology of determination of RVE is a three–dimensional two–phase Voronoï mosaics.
Three–dimensional Voronoï cells are simple representations of grains in a polycrys-
tals and have been used in the past to study the elastoplastic behavior of polycrystals
in (Forest et al., 2000; Barbe et al., 2001a) and (Barbe et al., 2001b). Here only two
phases are considered with a high contrast of properties to enhance the variability
of apparent properties on small volumes. Because of the high value of contrast in
properties, large volume sizes � must be investigated. The numerical simulations
are performed using the finite element method. This means that it will be necessary
to use gigantic meshes with a huge amount of degrees of freedom (

�����������
). The

resolution is possible only by means of parallel computing (see appendix 	 ).

The representativity of the measurements obtained from limited domains of the
random two-phase heterogeneous material, is investigated. These measurements of
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the specimen concern the morphology (volume fraction � ), and the following ef-
fective physical properties : elastic moduli (shear modulus � and bulk modulus � )
and thermal conductivity � . The variances of the apparent volume fraction, elastic
moduli and thermal conductivity are obtained in windows of increasing sizes. In
all this work, the hard phase (resp. highly conductive) is labeled � , with volume
fraction � � . The soft one (resp. less conductive) is called 	 , with volume fraction

� � .
The chapter is organized as follows. The second section recalls the main defini-

tions, boundary conditions and notations of the whole chapter for the determination
of effective elastic and thermal properties. A brief statistical description of het-
erogeneous materials is provided in section I.3 focusing on covariance and integral
range. The case of Voronoï mosaics is introduced in section I.3.3. The numerical
tools necessary for the Monte–Carlo simulations follow in section I.4 with special
attention to the meshing of Voronoï polyhedra, mesh size and parallel computing
techniques. The effective properties for this type of microstructure are obtained in
section I.5 for volume fraction, elasticity and thermal conductivity. The stress is
led on the study of dispersion (variance) as a function of volume size and on the
determination of corresponding integral ranges. A quantitative definition of RVE
size based on the notion of integral range is introduced in section

� � 	 . The different
RVE sizes found for the different properties are compared. Their dependence on
volume fraction and contrast of properties is also addressed.

I.2 Effective Linear Properties

The elements and notations of homogenization theory necessary for the numerical
determination of effective properties carried out in section I.5 are presented below
for linear elasticity and for thermal conductivity. Special attention is focussed on
boundary conditions to be prescribed on volume elements and to the definition of
effective and apparent properties. More details and the proofs of the given results
can be found in the textbooks and reference articles mentioned at the beginning of
the introduction.

I.2.1 Linear Elasticity

A volume element � made of heterogeneous material is considered. Conditions
are prescribed at its boundary � � in order to estimate its overall properties.

a) Boundary Conditions

In this work, three types of boundary conditions to be prescribed on individual
volume element � are considered :

� Kinematic uniform boundary conditions (KUBC) : the displacement � is im-
posed at point � belonging to the boundary � � such that :

� ��� � � � 	
� ��� � (I.1)



6
Chapter I. QUANTITATIVE ESTIMATION OF REPRESENTATIVE VOLUME ELEMENT SIZE FOR

RANDOM MATERIALS : APPLICATION TO VORONOI MOSAICS

� � is a symmetrical second–rank tensor that does not depend on � . This im-
plies that :

��� ������ ��
�
P
� � � � � � � (I.2)

The symbol �� means equals by definition to.

The macroscopic stress tensor is then defined by the spatial average :

� �	�� ��
 ��� � �
�

�
P

 � � � (I.3)

� Static uniform boundary conditions (SUBC) : the traction vector is prescribed
at the boundary : 
 � ��
 � � � ��
 	
� ��� � (I.4)� � is a symmetrical second–rank tensor independent of � . The vector normal
to � � at � is denoted by



. This implies that :

��
 � ���� ��
�
P

 � � � � � � (I.5)

The macroscopic strain tensor is then defined as the spatial average :

� ���� ��� ��� � �
�

�
P
� � � � (I.6)

� Periodicity conditions (PERIODIC) : the displacement field over the entire
volume � takes the form

� ��� � � � ��� 	
� � � (I.7)

where the fluctuation � is periodic. It takes the same values at two homolo-
gous points on opposite faces of � . The traction vector 
 � ��
 takes opposite
values at two homologous points on opposite faces of � .

When the constitutive behavior of the components is described by linear elas-
ticity, each micromechanical problem (KUBC, SUBC and PERIODIC) admits a
single solution, up to a rigid body motion for problem SUBC and a translation for
PERIODIC. Accordingly, there exists a four–rank concentration tensor field ��� � such

that : � ��� � � ��� � � � � ��� � � 	
� � � � �"! 	
� � (I.8)

for the KUBC problem, and a four–rank concentration tensor field # � � such that :


 �$� � � ��# � � � � ��� � � 	
� � � �%�"! 	 � � (I.9)

for the SUBC problem. From the equations (I.3) and (I.6), the concentration tensors
satisfy : � � � � � � � # � � � ��&� � (I.10)

& � � is the fourth-rank identity tensor operating on symmetric second-rank tensors.
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b) Apparent and Effective Moduli

Let �� � � � � and �� � � � � be the four–rank tensor fields of elastic moduli and compliances

in the volume � of heterogeneous material :

 � � � � ���� � � � ��� � � � � ��� � � � � � ���� � � � � � 
 � � � � 	
� � � (I.11)

For the KUBC problem, one has then :
� � � ��
 ��� � � �� � � � � � � � ��� � � �� � � � � � � � � � � � � � 8 :<:� � � � (I.12)

and for the SUBC problem :

� � � ��� ��� � � �� � � # � � � � � � � � �� � � # � � � � � � ��� � � 8 :<:� � � � (I.13)

which defines unambiguously apparent moduli
� � � 8�:;:� and apparent compliances

� � � 8�:<:� for a given volume � . The relations show that the apparent properties are

not given in general by a simple law of mixtures, but involve a more complex aver-
aging process.

A definition of apparent moduli based on strain energy � is also possible :

� �� ��
 � � � � � � ��� � �	�� � � � � � � � � � � � � �

 �	�� � � � � � � � � � (I.14)

for the KUBC problem, and :

� � ��
 � � � � � � ��
 � �	�� � � 
 � � � � � � � # � �

 �	�� � � # � � � � � � (I.15)

for the SUBC problem. The exponent � denotes transposition. This leads to the
following definition of apparent moduli :

� � � 8�:<:� � � � � �

 ���� � � � � � �
� � � � 8�:;:� � � # � �


 �	�� � � # � � � (I.16)

The symmetry of the apparent moduli is clear in these formula. However, the
application of so–called Hill–Mandel lemma shows that both definitions are in fact
equivalent ((Sanchez-Palencia and Zaoui, 1987)).

For sufficiently large volumes � , the apparent moduli do not depend any more
on the type of boundary conditions and coincide with the wanted effective properties
of the medium ((Sab, 1992)) :

� � � 8�:<:� ��� � � 8 :<: T��� � � � � ����� ��� � � ����� T�� (I.17)

For intermediate volumes � , one simply has the following bounding inequations
((Huet, 1990)) :

� � � 8 :<: T��� � � � � ����� � � � � 8�:;:� (I.18)

The inequalities must be understood in the sense of quadratic forms. In the
computations presented in section b), it will be checked that these relations hold.
The periodic estimation for a given volume � also lies between � � � 8�:<: T��� and

� � � 8 :<:� .
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c) Elementary Problems on � for Isotropic Effective Properties

Specific boundary value problems are defined in this sub-section that will be used
for the determination of isotropic effective elastic properties in section b). These are
special cases of the previous KUBC, SUBC and PERIODIC boundary conditions,
for which specific values of � � and

� � are chosen.

In the case of KUBC and PERIODIC boundary conditions prescribed to a given
volume � , one takes :

� ��� �
��
�

�+ � �
� �+ �
� � �+

���
� � � �
	 �

��
� � �� ��� � �
� � �

���
� (I.19)

An “apparent bulk modulus" � 8 :<: and an “apparent shear modulus" � 8 :<: can be
defined as :

� 8�:<: ��
� � � ��� � � ��
 � � � � ��� � �
����
 ����� ��
 � � (I.20)

� 8 :<: �� � � � ��	 � � ��
 � � � � �
	 � ��� ��� � (I.21)

In the case of SUBC boundary conditions, one takes :

� � � �
��
� � � �
� � �
� � �

���
� � � 	 �

��
� � � �
� � �
� � �

���
� (I.22)

In this case an “apparent bulk modulus" � 8�:<: and an “apparent shear modulus"
� 8�:<: can also be defined as :

�
� 8�:<: �� � � � �
� � � � ��� � ��� � � � ��
 ����� ��� ��� (I.23)

�
� 8�:<: �� � � � � 	 � � � � 	 � ��� � � � 	 ��� ��� � (I.24)

The physical meaning of these quantities is actually that of bulk and shear mod-
uli only when the response of volume � is isotropic, which is generally not the case.
The problem of the determination of isotropic apparent moduli from simulations on
small volumes is discussed in subsection b).

I.2.2 Thermal Conductivity

For the thermal problem, the temperature, its gradient and the heat flux vector
are denoted by � ��� � and � respectively. The heat flux vector and the temperature
gradient are related by Fourier’s law, that reads :

� � ��� � (I.25)

in the isotropic case. The scalar � is the thermal conductivity coefficient of the con-
sidered phase.

A volume � of heterogeneous material is considered again. Three types of
boundary conditions are used in the study of the effective thermal conductivity :
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� Uniform gradient of temperature at the boundary (UGT) :

� ��� � � 	
� ��� � (I.26)

� is a constant vector independent of � . This implies that :

� � � � � �
�

�
P � � � � ��� (I.27)

The macroscopic flux vector is defined by the spatial average :

� �� � � � � �
�

�
P � � � (I.28)

� Uniform heat flux at the boundary (UHF) :

� � 
 � � � � 	
� � � � (I.29)
�

is a constant vector independent on � . This implies that :

� � � � �
�

�
P � � � � � (I.30)

The macroscopic temperature gradient is given by the spatial average :

� �� � � � � � �
�

�
P � � � � (I.31)

� Periodic boundary conditions (PERIODIC) : the temperature field takes the
form

� ��� � � ��� 	
� � � (I.32)

The fluctuation temperature � is periodic.

Concentration tensors � � and # � exist such that :

� � � � � ��� � � � � � � � and � � � � � # � � � � � � (I.33)

for the problems UGT and UHF respectively. Apparent conductivity tensors can be
defined as : �

� 8�:;:� � � ��� ���
� and

�
� 8�:;: T��� � � �

� # � � (I.34)

Apparent conductivities coincide with the wanted effective properties for suffi-
ciently large volumes � .

In the case of isotropic effective properties, as considered in sub-section c), the
following test temperature gradient and flux will be prescribed :

� 	 � � � � � � 
 and
� 	 � � � � � � 
 (I.35)

They are used respectively to define the following “apparent conductivities” :

� 8�:<: � �
�

trace � � �
� � 8�:<: T�� � �
�

trace � � � � (I.36)



10
Chapter I. QUANTITATIVE ESTIMATION OF REPRESENTATIVE VOLUME ELEMENT SIZE FOR

RANDOM MATERIALS : APPLICATION TO VORONOI MOSAICS

I.3 Statistical Description of Random Heterogeneous Media

Models of random media may be useful at two different levels : to provide a de-
scription of the heterogeneous structure, and to predict some macroscopic properties
of materials. In this part, basic morphological tools that are available to quantita-
tively characterize the geometry of random media ar introduced. They can be easily
obtained from the analysis of images of the microstructure. They are illustrated
in the last sub-section by an estimation of the integral range for a Voronoï mosaic
model.

I.3.1 Reminder on the Covariance of a Random Set

To describe the geometrical dispersion, the state of two points � � and � � with
the separation

�
can be tested, without considering what happens between the two

points ((Matheron, 1971; Jeulin, 1981; Serra, 1982; Coster and Chermant, 1989;
Jeulin, 2001)). The morphological approach based on the covariance is, in general,
suitable to study the dispersion.

The covariogram ����� � � � is the measure � ��� of the intersection of the set �
(surface in 	�� , volume in ��� ) and of the translated set of � by � � , � T
	 .

We have :

����� � � � ��� ��� ����
�� T
	 � � �
� ��� � � ��� � � � � � (I.37)

� ��� � is defined as :

� ��� � �
�
� if � ���
� else

(I.38)

Properties of the Covariogram

� For
� � � , we have :

����� � � � ��� ��� ����
�� T
� � ��� ��� ��� � (I.39)

� For a bounded set � :

����� ����� � � � ����� � � � � � for
� ��� (I.40)

� is the largest distance between two points in � in the direction of
�

.

� The integral of the covariogram is given by :
�

��� ����� � � � �
� � ��� ��� ��� � � � (I.41)
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The probabilistic version of the covariogram for a stationary set � is the covari-
ance function, noted � ��� � � � . The covariance function is the probability for the
two points � and � � � to be in the set � :

� ��� � � � � ��� � ��� � � � � � ��� (I.42)

If � is defined in � + :

� ��� � � � � � P ��� � � � (I.43)

� P is the volume fraction of � in � � + . One has also :

� ��� � � � ��� ��� � � � � � � ��� � � � (I.44)

and : 	�

�
	���� � ��� � � � � � � P ��� � � � (I.45)

The covariance presents an asymptotic theoretical value equals to the square of
the volume fraction of � .

If this limit is reached before :

��� � (I.46)

for example, for a value :

� ��� (I.47)

the points of the structure with a distance larger than � are not correlated ((Math-
eron, 1971; Jeulin, 1981; Serra, 1982; Jeulin, 2001)). This distance is the range of
the covariance. We can estimate the covariance from images (like plane sections)
inside a mask, by means of the geometrical covariogram (two examples are given
in figure I.1). The covariance is characteristic of the size and of the arrangement of
connected objects building the set � . In figure I.1a the range is close to :

� � � � � ��� (I.48)

while in figure I.1b it is close to :

� � � ��� ��� (I.49)

The range for the coarse microstructure � � being larger than for the fine mi-
crostructure � � . In addition, from the measurement of the covariance in two orthog-
onal directions given in figure I.1, it can be seen that the microstructure is isotropic.
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Figure I.1 : Microstructures (with the same volume fraction and different morphologies)
and their covariances in horizontal and vertical directions; the image size is

���������	�����������
.

The asymptotic value is equal to the square of the volume fraction (of the white phase); for
the fine (a) and coarse (b) microstructures (material from food industry, (Colworth, 2000)).
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I.3.2 Notion of Integral Range

It is possible to define a range which gives information on the domain size of the
structure for which the parameters measured in this volume have a good statistical
representativity. This range is called the integral range ((Matheron, 1971; Matheron,
1975; Matheron, 1989; Lantuéjoul, 1991; Cailletaud et al., 1994; Jeulin, 2001)) .
The definition of the integral range in the space ��� is :

� � � �
� ��� � � � � � ��� � � � �

�
�
� � � ��� � � � � � ��� � � � � � �
� (I.50)

This notion is very useful to predict the variability of properties of a material as
a function of the geometry of parts. For instance, the variance � �S � � �P � of the local
volume fraction � �P :

�
�P � � ��� ��� 
 � �

� ��� � � � (I.51)

of a sample with volume � in an infinite domain, for a microstructure with the
covariance � ��� � � � is given by ((Matheron, 1971)) :

� �S � �
�P � � �

� �
�
P
�
P � � ��� � � � � � � � � � � � � � (I.52)

For a large specimen :

��� � � (I.53)

� �S � � � can be expressed as a function of the integral range in the space � � , � � ,
by :

� �S � � � � � � � � � � � �
� (I.54)

Therefore, the specimen � is statistically equivalent to :

��� �
� � (I.55)

uncorrelated samples. From the variance, it is easy to work out the confidence in-
terval of the average of the volume fraction � ( �
	 	�� S � � � ) as a function of the
volume � and of the integral range. This gives the relative precision of the estima-
tion. Conversely, the volume � to be used to get a given precision is obtained as a
function of � and of � � .

This is the reason for interpreting � � as the scale of the phenomenon, � being
the scale of observation. The integral range � � is a good measure of the notion
of scale. It is a convenient measurement of the size of a RVE of a stationary and
ergodic random structure.
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I.3.3 Case of the Voronoï Mosaics

The previous notions of mathematical morphology can be illustrated in the case
of the microstructure considered in the numerical simulations of this work, namely
three-dimensional Voronoï mosaics.

To generate such microstructures, an original method is proposed, with numer-
ous extensions of the classical model ((Decker and Jeulin, 2000)). Its main advan-
tage, as compared to standard procedures, is to generate textures with very large
numbers of grains, at a low computational cost.

First pick points � � ��� � � � � � in space at random according to a Poisson pro-
cess of density � points per unit volume. Next subdivide space into cells (crystals)� � � � � � � � � by the rule : ��� contains all points in space closer to ��� than to any��� ������
	 � . In the cell model ��� is a convex polyhedron because it is the intersec-
tion of several half-spaces (points closer to ��� than to ��
 form a half-space). ���
will be called the center of ��� . This builds a Voronoï tessellation of space ((Gilbert,
1962)).

In practice ��� represents the location of the original seed crystal from which ���
grew. One assumes :

� the seeds for all crystals start growing at the same instant;

� seeds grow at the same rate in all directions;

� seeds remain fixed in space without pushing apart as they grow into contact
(see figure I.2a).

Coloring every cell � of the tessellation at random generates a random Voronoï
mosaic. In what follows, the colors will in fact correspond to the physical proper-
ties of the components of a random composite. To study two-phase materials, two
colors are used.

Note that it is possible to superimpose a constraint of periodicity at the boundary
of the volume in the generation of the Voronoï mosaic ((Decker and Jeulin, 2000;
Forest et al., 2000)). In the simulations of this work with periodic boundary condi-
tions, such periodic Voronoï mosaics are used.

In the case of the Voronoï mosaic model, the covariance � � � � of the composite
and covariogram ��� � � of the random cell � are related by the following equation
((Jeulin, 1981)) :

� � � � � � � � � � � ��� � �
��� � � � � � (I.56)

From the definition of the integral range (equation (I.50)) :

� + � �
� � � � � �

�
� � � � � � � � � �
� � �

���
��� � �
��� � �

�
�
(I.57)
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(a) (b)

(c)
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z

(d)

Figure I.2 : Voronoï mosaic model and finite element computations : (a) random dis-
tribution of 8000 grains in space; (b) image of the same microstructure with two phases
distributed randomly among the grains for a given volume fraction of phase

�
, with the su-

perimposed finite element mesh; (c) sub-division of the microstructure into 32 sub-domains
for parallel computing; (f) example of computation of the effective shear modulus with
KUBC boundary conditions (von Mises equivalent strain distribution for prescribed mean
strain �
���*� �����

).
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Finally, one obtains :

� + �
� � � � �� � � � (I.58)

� ��� � is the mathematical expectation of property � . The value of the integral
range in the case of the Voronoï mosaic model is deduced from the variance of the
volume of the random cell � given by (Gilbert, 1962) :

� + � � � � � � (I.59)

I.4 Numerical Tools for the Homogenization

The finite element method is chosen for the computations presented in this work.
This requires meshing techniques for microstructures. They are described in the
first subsection. The question of mesh refinement is also discussed here. The last
sub-section presents the parallel computing tools that are necessary to handle large
enough meshes.

I.4.1 Finite Element Meshing of Microstructures

a) Free Mesh and Multi-Phase Elements

Two types of meshes were used and compared in the case of the Voronoï mosaic :
the multi-phase element technique and free meshing with tetrahedral elements. Fig-
ure I.3 shows them in the case of an aggregate of 20 Voronoï cells. In the multi–
phase element technique, an image of the microstructure is used to attribute the
proper phase property to each integration point ( 	 � � � ) of a regular mesh, according
to the color of the underlying voxel. The figure I.3a shows an example of regu-
lar mesh with linear 8–node elements and 8 integration points per finite element.
The main drawback of this simple technique is that in the same finite element two
different phases can be present. The element edges do not necessarily follow the
interfaces of grains in the microstructure. Such meshes have been used extensively
in ((Lippmann et al., 1997)) and ((Barbe et al., 2001a)). The second type is the
free meshing technique with tetrahedral elements (see figure I.3b, and ((Thompson
et al., 1999))). The faces of all Voronoï cells are meshed using two–dimensional
Delaunay triangles. After that, the individual cell volumes are meshed with tetrahe-
dral elements with the constraint that they are built on the 	�� meshes of the faces.
Accordingly, all integration points of one element belong to the same phase. This
technique usually leads to larger numbers of elements. Both methods are compared
in ((Lippmann et al., 1997)) for inclusion–matrix microstructures. Note that (Ghosh
and Moorthey, 1995) developed a finite element method based on Voronoï cells.

For illustration, an example of tensile test is computed in linear elasticity with
mixed boundary conditions (traction load is prescribed on one face, the opposite one
is fixed and all the other faces are free of forces). Phases 1 and 2 were randomly
distributed among the 20 grains of figure I.3 according to a volume fraction of ��� �

of hard phase � � . The contrast in Young’s modulus is :
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Figure I.3 : Two meshes of the same microstructure (20 Voronoï cells) with approxima-
tively the same number of integration points ( � � ��� ) and the same number of degrees of free-
dom ( � ��������� ) : (a) multi-phase elements (

� � � �"! � � ��� and
$ � %�� � ��������� ), (b) free meshing

(
�&� � � $ � � ��� and

$ � �)( � ��� ����� ).
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� � �
� �� � �

	 � ���
	 � � � ��� (I.60)

and the Poisson ratio is :

� � � �
�
� (I.61)

and :

� � � �
��� � (I.62)

The obtained average stress and strain are found to be identical for both meshes.
However slight differences exist for the local fields. The local distributions of von
Mises stress are compared in figure I.4. The local differences are also explained
by the insufficient mesh density used in each case. As a result, and for the sake
of simplicity, the multi-phase element technique is used in the sequel. Quadratic
bricks with reduced integration (20 nodes and 8 integration points per element) are
used in all following simulations, contrary to the simple previous test. Since only
��� simulations are presented, the number of degrees of freedom in one brick is 60
(the number of nodes multiplied by the three components of displacement at each
node). For a large regular cubic grid made of twenty–node bricks, the number of
nodes is approximately equal to four times the number of bricks. The total number
of degrees of freedom is then three times the number of nodes.

b) Determination of the Mesh Density

The effect of the mesh density (average number of finite elements used to mesh
one Voronoï cell) is studied. Three microstructures of � ����� grains are used for three
different volume fractions ( � 	 � ��� , ���

�
� � and

� 	 � ��� of phase � � ). The material
properties are the same as in the previous sub-section. Tensile tests are simulated.
The number of cells and the geometry of the microstructure is unchanged but dif-
ferent mesh resolutions are used. The number of finite elements was changed from
� � 	�� to � � ��� � (the corresponding number of degrees of freedom was changed from
	 � � � � to � � � � 	�� � ). The results given in figure I.5 show the convergence of the ap-
parent Young’s modulus as a function of the number of degrees of freedom. This
figure also shows that one must use about

� � quadratic elements to mesh one grain,
for the variation of the overall effective elastic response to be smaller than � � . In
the sequel, about � � finite elements per grain were retained as mesh density, which
corresponds to a precision better than

� �
in the results. It has been checked also

that this mesh density is sufficient to get a precision better than 1% on the statistical
fluctuations and variance of the results when many realizations are considered.
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Figure I.4 : Distribution of von Mises equivalent stress (MPa) for mean tensile deformation
� +,+ � �����

in -/. direction : (a) multi-phase elements, (b) free mesh.
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Figure I.5 : Effect of mesh size and of the volume fraction of hard phase ( 0�� �H0 ) on the
value of apparent Young’s modulus.

I.4.2 Parallel Computing

In order to characterize the size of the RVE, one must be able to carry out com-
putations with a very large amount of finite elements. For that purpose, we have
chosen to resort to parallel computation.

The retained method is the FETI solver (Finite Element Tearing and Intercon-
necting method, (Farhat and Roux, 1994), (Feyel et al., 1997), (Feyel, 1998)), which
is a dual sub-division method well–known for its numerical scalability. Subdivision
means the process of dividing a large finite element mesh into sub-domains. The
large algebraic system is replaced by a succession of smaller ones related to the
sub-domains and to the interface between the sub-domains. The numerical scalabil-
ity of FETI allows us to solve problems with a large number of sub-domains. The
individual problems on sub-domains are computed simultaneously on different pro-
cessors. For a good speed-up, sub-division must give the same amount of work to
all processors which must have the same velocity. The aim of the interface problem
is to ensure continuity of displacement at the interface between sub-domains. FETI
is called dual method because the interface problem is posed in terms of forces that
glue the sub-domains. This interface problem is solved iteratively by a conjugate
gradient method.

The large contrast of properties considered in this work can lead to ill–
conditioned matrices. This numerical difficulty is solved by using a conjugate gra-
dient algorithm with a preconditionning procedure. Unfortunately, the precondi-
tionning is less efficient for an increasing number of sub-domains.
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A cluster of 32 PC under Linux was available for the computations of this work.
The largest volume computed in this work, in the case of linear elasticity, is a cube
with :

�
���

�
���

�
� � � � � � � 	 (I.63)

quadratic bricks for the mesh of about ������� Voronoï cells (i.e. about 14 elements per
cell). This corresponds to almost 1,4 million of degrees of freedom. This mesh and
the distribution of the two phases are shown in figure I.2b. The mesh is decomposed
into 32 sub-domains (see figure I.2c). The resolution of the linear elastic problem
is done in one single increment, using a multi–frontal solver. About 850 Mo RAM
memory are necessary for each processor, so that the whole resolution requires more
than 27 Go memory. The entire computation time for one resolution (reading of the
mesh, parallel resolution, writing of the output files) is about 1 hour and 30 minutes.
An example of result is shown in the case of a shear test with KUBC conditions in
figure I.2 d.

I.5 Determination of Morphological and Effective Physical
Properties of a Two-Phase Voronoï Mosaic

Three types of overall properties are studied in this part for a large range of vol-
ume sizes � and a large number of realizations

�
of the random microstructures.

The first one is a geometrical property, namely the overall volume fraction � 8�:<: .
The motivation for studying this simple property lies on the fact that the integral
range is known in the case of the Voronoï mosaic (see equation (I.59)). This a good
test for the random generation procedure of the microstructure. Furthermore, this
illustrates in a simple way the methodology proposed in this work. The investigated
physical properties are the elastic moduli (bulk modulus � and shear modulus � ),
and the thermal conductivity � .

For each property, the dispersion of the results when increasing volume � is re-
ported in section II.5.1. The integral ranges are then identified in sub-section II.5.2.
The link between these results and the notion of RVE is postponed to section II.5.3.

The convention is made that the mean volume of one Voronoï cell is fixed equal
to 1 and kept constant. So, a volume V contains

� � � Voronoï cells. The results
will be given as a function of volume � , which is also equivalent to a number of
cells :

� � � (I.64)

As a result, an increasing volume means an increasing number of grains.
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I.5.1 Study of the Average Properties

a) Volume Fraction

Consider a microstructure in which there is a given number of Voronoï cells, with
a given probability :

� � � � (I.65)

and :

� � � � � � (I.66)

for the random attribution of the two phases � and 	 . When working with domains
of finite size, estimations of � � or � � are obtained for each realization. So, the ob-
tained volume fraction found for a given realization of the Voronoï mosaic in a finite
volume � will differ from � � . The number of cells in a volume � is chosen to obey
to a Poisson distribution with mean value

� � � . It means that in a microstructure
with

�
grains, there may not be enough grains to regard it as a representative do-

main from the point of view of volume fraction of phase � .

Many realizations of ��� Voronoï mosaic were simulated for increasing volume
sizes. The mean volume fraction and its dispersion found for a given volume �
(or equivalently mean number of grains

�
) are given in figure I.6, as a function

of � . It can be seen that the mean volume fraction does not depend on volume
size. The mean volume fraction for phase � found for small volumes coincides with
that found for large ones, provided that a sufficient number of realizations of small
volumes are considered. However, the variance decreases with increasing volume
size. This study was carried out for the following target mean volume fractions :

� � � � � � � � � � ��� � (I.67)

The number of realizations considered for each volume size are given in table
I.1. This number is chosen so that the obtained mean value and variance do not
vary any longer up to a given precision (less than 0.5% here).

As a result, the overall volume fraction of a phase in a heterogeneous material
can be determined either by a few number of measurements on large volumes, or
by many realizations for small volumes of material. We investigate in the two next
subsections whether this reasoning can be extended to physical properties.
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Figure I.6 : Mean value and intervals of confidence for volume fraction 02� ( �65 (results
from simulations).

Size of the domain (V) 

6 2500
10 1653
15 1488
37 1238
50 1200
100 1152
125 1020
200 277
285 118
500 35
1000 25
2000 12
2500 14
4000 12
4500 15
8000 13
10000 13
12000 11
14000 10

Table I.1 : Number of realizations 
 used for all considered domain sizes.
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b) Elastic Moduli

In this sub-section, the Voronoï mosaic is considered as a two–phase linear elastic
material. The chosen mechanical properties of the phases are

� � � � � � � � � � � � � � � 	 � ��� � ��� � � � � � 	������ � ��� � ��� 	 � ��� � (I.68)

� � � � � � � � � � � � � � � 	 � � ��� � � ��� � � � � � � ��� � � � ��� � (I.69)

So the chosen contrast in the Young’s modulus is :

� � �
� �� � � � ��� (I.70)

Note that the contrast in shear modulus � is very high, whereas the contrast in
bulk modulus � is weaker :

� 	 � � 	�� � 	 � (I.71)

and :

� � � �
(I.72)

The same microstructures used in the previous study for the volume fraction (in
the cases of � � � ��� � and � � � � � � � � ��� � ) are simulated and are introduced
in the finite element method for various boundary conditions. The objective of this
part is to estimate the apparent mechanical properties (the bulk modulus � 8�:<: and
the shear modulus � 8�:<: ), as a function of the size of the domain � .

Isotropy of Mean Apparent Moduli

If a small volume element � of a given composite material is considered, it will
not a priori exhibit an isotropic behavior. Even if the microstructure is expected
to be macroscopically isotropic, the tensor of apparent moduli obtained for a finite
domain � is generally not isotropic. We show here however that the mean value
of a sufficient number of realizations is isotropic. For that purpose, microstructures
of volume � with an average number of 200 Voronoï cells are considered. The
anisotropic matrix of the apparent mechanical properties relating mean stress and
strain tensors is computed for each realization. Six computations are necessary for
each realization to find the 21 apparent elastic coefficients, using here kinematic
uniform boundary conditions KUBC. The mean value of the matrix of overall me-
chanical properties is given below.
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From averaging over 10 different realizations, the obtained matrix is (compo-
nents in MPa) :

� � 8�:;:� ��� �

���������
�

	���� � ��� � ��� � � 	 ���� � � � � � ��� � � � ���� � ��� � 	���� � � � �
� � � � � � � �
	 � � � � � � �
� � � � � � � 	

����������
�

(I.73)

after 30 and 60 different realizations the matrix becomes :

� � 8�:;:+ � � �

���������
�

	���� � � 	 � � 	 � � 	 �� 	 � � � � � � 	�� � 	 �� 	 � � 	�� ��� � � � 	 �

� � � � 	�� � �
	 	 	 � � 	 � �
� �

� � � � 	 �

����������
�

(I.74)

� � 8�:;:� � � �

���������
�

	�� � � ��� � ��� � 	 � ���� � 	 � � � ��� � 	 � ���� � ��� � 	�� � 	 � � 	
	 	 � � ��� � �
� � � � � � 	 �
� � 	 � � � ���

� ��������
�

(I.75)

The last matrix shows the structure of an isotropic elasticity matrix with bulk
and shear moduli equal to :

� 8 :<: � � 	 � � � ��� (I.76)

and :

� � � ��� � ��� (I.77)

To estimate these effective values, it is not necessary to compute the whole
matrix (6 tests on each volume). Instead, for the boundary conditions KUBC for
instance, the two deformations � � � and � � 	 defined by equation (I.19) can be im-
posed successively to each realization with volume � . For each realization, two
values � 8 :<: and � 8 :<: are obtained (see equations (I.20) and (I.21)). The mean values
� � 8 :<: � � 8 :<: � over all realizations provide the wanted estimation (associated with the
given volume � ) of the isotropic effective linear properties. This is the procedure
adopted in what follows.
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Estimation of the Apparent Elastic Moduli

The numerical simulations based on the finite element method are carried out
for three different boundary conditions: kinematic uniform boundary conditions
(KUBC), static uniform boundary conditions (SUBC) and the periodic boundary
conditions (PERIODIC). The studied volume fraction of hard phase is � � ��� � .
The number of realizations for each volume is given in table I.1. Figure I.7 gives
the obtained mean values and variances of the apparent moduli � 8 :<: and � 8�:<: as a
function of the volume size (or equivalently the number of Voronoï cells). It shows
that the dispersion of the results decreases when the size of the domain increases
for all boundary conditions. As opposite to the case of volume fraction previously
studied, the obtained mean values depend on the volume size, but also on the type
of boundary conditions. For each modulus, the three values converge towards the
same limit for large volumes � , which is the wanted effective modulus. The values

� ����� and � ����� found for large volume sizes are reported in table I.2 and compared
to the Voigt-Reuss and Hashin–Shtrikman bounds. The self–consistent model (SC),
also given in table I.2, provides a fair estimate in most cases, except for the volume
fraction � � � � � , where it underestimates the moduli. This is due to the fact that
the SC model does not properly reproduce the percolation threshold of the mosaic
model (which is close to 50%).

Property Simulation Upper B. Lower B. HS+ HS- SC�
( 0H� ��� ( G �
� � �*�*� �&� �

) 433 676 27 534 39 435�
( 0H� ��� ( G � � � � � � �&� � �

) 398 673 3 529 6 404�
( 0H� ������G �
� � � � � �&� �

) 193 485 17 338 28 147
7 ( 0H� ��� ( G �
� � � � � �&� �

) 1198 1583 947 1318 955 1194
7 ( 0H� ��� ( G �
� � � � � �&� � �

) 743 1471 133 1019 135 737
7 ( 0H� ������G �
� � � � � �&� �

) 833 1250 694 976 699 770
C ( 0H� ��� ( G C � � C � � �&� �

) 1.346 1.715 0.079 1.498 0.180 1.363

Table I.2 : Values of numerical results, bounds of Voigt-Reuss or Wiener (upper and lower
bounds), Hashin-Shtrikman’s bounds (HS+, HS-) and self–consistent estimate (SC) for elas-
tic and thermal properties studied in this work. The elastic moduli are given in @ � 0�� J , the
thermal conductivity in @ � � ��� J

.

It can be noticed that the mean value given by the periodic boundary condi-
tions varies slightly as a function of the size of the domain, as compared to the
other boundary conditions. Figure I.7 gives the corresponding confidence intervals� � � 	���� � ��� 	 ��� � , where � is one of the apparent moduli, � its mean value and
� �
� its variance.

Finally, an important bias is found in the mean value given by all boundary
conditions for small volume sizes, the value being different from the effective one
obtained for large specimens. For small volumes, the average moduli obtained by
simulations depend on the boundary conditions : KUBC produces results close to
the upper Voigt bound, while SUBC gives results close to the lower Reuss bound.
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Figure I.7 : Mean values and intervals of confidence on the mean value for the bulk modulus
7�8�:<: (a) and (b) for the shear modulus

� 8�:<: , as a function of domain size ( 0 � �I( �65 ). Three
different types of boundary conditions are considered. For clarity, the errorbars are slightly
shifted around each studied domain size.
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This bias is well–known ((Huet, 1990; Sab, 1992; Ostoja-Starzewski, 1998)). It
must be taken into account for the definition of the RVE. The result is that the mean
value computed on small specimens cannot represent the effective response for the
composite material even using the periodic boundary conditions and a sufficient
number of realizations. It appears also that for sufficiently large sizes, here around :

� � � � (I.78)

the mean value obtained with the periodic boundary conditions practically does not
depend on the size of simulations.

c) Thermal Conductivity

Different thermal conductivities are now attributed to the phases of the Voronoï
mosaic in order to predict the effective one. The same microstructures used in the
study of the RVE for the volume fraction and elasticity ( � � � � � ), are simulated
to determine the apparent thermal properties. The aim of this part is to estimate the
apparent thermal conductivity � 8�:<: of the homogeneous equivalent medium, as a
function of the size of the domain. The chosen thermal conductivities of the phases
are

� � � � � � � � � 	 ����� W/mK � � � � 	 ��� W/mK � (I.79)

generating a contrast :

� 	 � � �
� � � � ��� (I.80)

The numerical results are obtained for three boundary conditions : uniform tem-
perature gradient at the boundary (UGT), uniform heat flux at the boundary (UHF)
and periodic boundary conditions (PERIODIC). Figure I.8 gives the mean apparent
conductivities and associated variances as a function of the domain size. It shows
that the dispersion of results decreases when the size of the volume increases. The
mean value given by the periodic boundary conditions does not vary very much,
as compared to the other boundary conditions. The three mean values converge
towards the effective thermal conductivity :

� ����� � � � � � � ��� � � (I.81)

which is compared to Wiener’s and Hashin–Shtrikman’s bounds in table I.2. It can
be noticed also that the self-consistent model (SC) gives a very good estimate (see
table I.2). For small volume elements, the average thermal conductivity obtained
by simulations depends on the boundary conditions : UGT gives results close to the
upper Wiener bound ��� � � � � ��� , and UHF produces results close to the lower Wiener
bound ��� � � � � � T :
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.

� � � � � � ��� � � � � � � � � � � (I.82)

� � � � � � � T �
� � � �

� � � � � � � � � (I.83)

The self-consistent model gives the overall thermal conductivity � ����� as the so-
lution of the equation ((Beran, 1968)) :

� � � � �����

� � � 	 � ����� � � � � � � � �����

� � � 	 � ����� � � � � (I.84)

We have to notice that, as for the apparent elastic moduli, volumes larger than
� � � � ��� � 	�� � enable us to get an unbiased estimation of � ����� .

I.5.2 Fluctuation of Effective Properties and Determination of the Integral
Ranges

a) Volume Fraction

In this section, we come back to the variance of the volume fraction for the
Voronoï mosaic, which is given by equation (I.54). In the three-dimensional case, it
becomes :

� �S � � � � � � � � � � � +
� (I.85)
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where � is the true volume fraction, � + is the integral range in ��� for the Voronoï
mosaic, and V is the volume of the field containing

�
cells in average. With the

convention that the average volume of one cell is one, the conditions
� � � can

be substituted in equation (I.85). Figure I.9 is then used to identify � + from the
simulations presented in section a).

Table I.3 gives the integral range � + estimated from figure I.9. It is close to
the result given by the semi–analytical calculations deduced from ((Gilbert, 1962),
equation (I.59)), with a larger experimental error for the case � � � � � .

b) Elastic Moduli

As recalled in section I.3.2, the effective properties are defined from spatial av-
erages of fields � ��� � over a volume � . We will have to consider now fluctuations
of the average values over different realizations of the random composite material
inside the volume � .

In geostatistics, it is well known that for an ergodic stationary random function
� ��� � , one can compute the variance � �

� � � � of its average value
�

� � � � over the
volume � (Matheron, 1971), (Matheron, 1989), (Lantuéjoul, 1991) :

� �
� � � � � � �

�
� +

� (I.86)

where � �
� is the point variance of � ��� � and � + is the integral range of the random

function � ��� � . This is a generalization to any random function � ��� � of the notion
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Property Integral Range W + Coefficient �

0H� ���65 ����� (�� � ����� � � 1.
0H�I( �65 ����� � ��� �����9� ! 1.
0H� %��65 ����� ( ( � ����� ( � 1.
7 ( 0 �I( �65 G �/� � ���*� �&� �

) KUBC � ��� � � � ����� ! � ����� � %�� �����)���
7 ( 0 �I( �65 G �/� � ���*� �&� �

) SUBC
��� � $ ( � ����� � � ����%������ ����� ! !

7 ( 0 �I( �65 G �/� � ���*� �&� �
) PERIODIC

����� � ��� �����9� � ��� (�� ��� ����� �)(�
( 02�I( �65 G � � � � � � �&� �

) KUBC
��� � $ � � ����� ! $ ����% % � � ����� ! %�

( 02�I( �65 G �/� � ���*� �&� �
) SUBC

��� � � ��� ����� � $ ��� (�� ��� �����)$ $
�

( 02�I( �65 G �/� � ���*� �&� �
) PERIODIC

��� � � � � ����� �)% ��� ( $ � � ����� � �
7 ( 0 �I( �65 G �/� � ���*� �&� � �

) PERIODIC
����$ ����� �����9� ( ����%�� ��� ����� � ��

( 02�I( �65 G �/� � ���*� �&� � �
) PERIODIC � ���)% ( � �����9��� ��� � $ � � ����� � �

7 ( 0 � ���65 G �/� � ���*� �&� �
) PERIODIC

����� � %�� �����)��� ��� �)( ��� �����9�&�
�

( 02� ���65 G �/� � ���*� �&� �
) PERIODIC

����$ �)( � �����9��$ ����� �)%�� ����� � $
C ( 0H�I( �65	G C � � C � � �&� �

) UGT � � � � ��� ��� � � � ����� ( ��� ����� � �
C ( 0H�I( �65	G C�� � CF��� �&� �

) UHF � ��� � $�� ��� ! � ( ����% (�� � ����� � �
C ( 0H�I( �65	G C�� � CF��� �&� �

) PERIODIC �
��$���%�� ��� � � � ����� � � � �����9� �

Table I.3 : Values of the integral range W + and of the coefficient � for different properties
and different boundary conditions, identified from the simulation results.

introduced for the volume fraction in section I.3.2.

The scaling law (I.86) is valid for an additive combination of the variable � over
the region of interest � , when its size is such that :

� ��� + (I.87)

and when � + is finite.

For an infinite integral range, � can be replaced in many cases by ��� , with :

� �� � (I.88)

in relation I.86) ((Lantuéjoul, 1991)).

As the composition of elastic moduli in the change of scale is not additive in
general, relation (I.86) cannot be applied. Instead we propose to test a power law
(called “model” in what follows) according to the relation :

� �
� � � � � � �

�

	 � +
��
 � (I.89)

A similar relation was proposed and tested by (Cailletaud et al., 1994). In the
case of a two-phase material with elastic property � � for phase � and � � for phase
	 , the point variance � �

� of the random variable � is given by :

� �
� � � � � � � � � � � � � � � � (I.90)
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The relation (I.89) becomes :

� �
� � � � � � � � � � � � � � � � � � �

	 � +
� 
 � (I.91)

For the elastic properties (I.68) and (I.69) chosen in this work, the equation
(I.90) yields :

� �� � � ����� 	 � � � ��� � � (I.92)

and :

� �	 � ������� � � ��� ��� � � (I.93)

Equation (I.89) can be written as :

� � � � � �
� � � � � � � � � � � � � � ��� � � � � � �

� � � � � � � � � + � � (I.94)

Our data were fit to relation (I.94) for the elastic moduli � 8�:;: and � 8 :<: and dif-
ferent boundary conditions. The found parameters � + and � are given in table I.3.
The quality of the model can be seen in figure I.10, where the variances of simu-
lated results and the model are compared for all considered boundary conditions.
The power law is especially well-suited for PERIODIC boundary conditions.

It is clear, from the coefficients given in table I.3, that the proposed scaling law
in relation (I.89) can be accepted for our simulations. The value of the integral range
depends on the boundary conditions. It is of the order of the integral range of the
volume fraction for periodic and SUBC conditions. The largest integral range of the
elastic moduli is found for the periodic boundary conditions and the coefficient �
is close to (but generally smaller than) � . It means that the variance decreases more
slowly with the volume than the variance of the volume fraction in all cases. Note
that the value of the coefficient � found by (Cailletaud et al., 1994) is also close
to � for a 	�� random mosaic. Another conclusion is that larger domains (or more
realizations) must be used to estimate the elastic moduli with a given precision, for
SUBC than for KUBC boundary conditions. This will be illustrated later.

I.5.3 Effect of the Volume Fraction and Contrast on the Integral Ranges

The apparent properties and integral ranges obtained for elasticity depend on the
volume fraction of phases. A second volume fraction :

� � � � � � � � � � � (I.95)
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Figure I.10 : Variances of the apparent elastic moduli ������� and ������� for different boundary
conditions : simulations and model.
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is investigated here in addition to the previous one � � � � � � . These microstruc-
tures are also simulated and introduced in the finite element software with the same
mechanical properties, given by (II.21) and (II.22). The objective is to study the
effect of the volume fraction on the integral ranges of the apparent bulk and shear
moduli � 8 :<: and � 8 :<: . The numerical simulations using the finite element method
were performed in this case only for the PERIODIC boundary conditions. The mean
values and variances are given in figure I.11 as a function of the domain size. The
mean value varies slowly as a function of the size of the domain. Again, an impor-
tant bias in the mean value for small sizes of specimens is observed. For domain
sizes larger than :

� � � � � � � 	�� � (I.96)

The mean values are almost constant, and coincide with the effective properties.
This size is larger than for � � ��� � (where � � � � according to figure I.7). The
values of the integral ranges and of the coefficient � , obtained by identification of
the power law model (equation (I.89)) from the numerical results, are given in the
table I.3. It can be noticed that the values of the integral ranges and those of the
coefficient � obtained in the case of � � � � � are larger than those obtained in the
case of � � ��� � , for a given contrast of properties. The coefficients � remains
close to � for all investigated volume fractions.

Another important source of fluctuations of apparent moduli of finite domains
is the contrast of properties � � � � � � � . So far, only the case � � � ��� has been
investigated. Let us now consider a contrast � � � ����� (

� � keeping its value 2500
MPa), for � � ��� � . The objective is to study the effect of the contrast on the
integral ranges of the effective elastic properties. The numerical simulations are
performed for PERIODIC boundary conditions. Results are shown in figure I.12. A
bias in the mean value in this case is observed when :

� � � � � � � 	�� � (I.97)

(as in the case of a contrast � � � ��� ). The values of the integral ranges and of the
coefficient � , obtained by fitting the numerical results, using the model (equation
(I.89)), are given in table I.3. The values of the integral ranges obtained in the
case of � � � � ����� � � � ��� � � are much larger than those obtained in the case of
� � � � ��� � � � ��� � � . The values of the coefficient � remain close to � .

Thermal Conductivity

The power law model proposed in the case of elastic properties (equation (I.89))
can be used also for apparent thermal properties. The point variance � �	 is :

� �	 � � � � � � � � � � � � � � � � � � 	 	 � � � ��� � � � � (I.98)
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Figure I.13 : Variances of apparent thermal conductivity C 8�:<: for different boundary con-
ditions 0H�I( �65 .

The values of the integral ranges and of the coefficient � identified from the
simulations are given in table I.3 for different boundary conditions. They are found
to depend on the type of boundary conditions. The largest integral range for the
thermal conductivity is obtained for the periodic boundary conditions and the co-
efficient � is close to � . These parameters are larger than for the case of elasticity.
Figure I.13 shows the quality of the model. The power law is especially well-suited
for periodic boundary conditions.

I.6 Determination of the Size of the Representative Volume Ele-
ment

When considering a material as a realization of a random set or of a random
function, we will show that the idea that there exists one single possible minimal
RVE size must be abandoned. Instead, the size of a RVE can be defined for a given
physical property, a given contrast and, above all, a given precision in the estima-
tion of the effective properties and given number of realizations that one is ready to
generate. This is explicited later for the three situations encountered in the previous
sections.

The size of a RVE for an estimated property � can be related directly to the
precision of the mean value of the results of different realizations for each domain
size. So, theoretically, if the domain � is a RVE for the property � , the dispersion
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must vanish. In practice one must determine the size of the RVE for a given error � .
In the theory of samples, the absolute error � 8 
�� on the mean value obtained with

� independent realizations of volume � is deduced from the interval of confidence
by:

� 8 
�� � 	���� � � ��
�

(I.99)

Hence the relative error � ���	� 8 is :

�����	� 8 � � 8 
��
� � 	���� � � �

� �
�

(I.100)

The size of the RVE can now be defined as the volume for which for instance :

� � � � � � � 	�� � � 	 � � (I.101)

is necessary to estimate the mean property � with a relative error :

� ����� 8 � � � (I.102)

provided we know the function � � � � � .
Alternatively, we can decide to operate on smaller volumes (provided no bias is

introduced), and consider � realizations to obtain the same relative error. Equation
(I.100) gives :

� �
�
� �
� � � �

� � � ����	� 8
(I.103)

I.6.1 Volume Fraction

In the case of the volume fraction, the exact mean value � ����� � � is known. The
relative error is given as a function of the sampled volume � by:

�����	� 8 � � � � 	�� S � � �
� � 	

� � � � � � � +
� � (I.104)

which corresponds to the application of equation (I.99) for :

� � � � � � � 	�� � � 	 � � (I.105)

This is illustrated in figure I.14 in the case of a volume fraction � � ��� � . Us-
ing equation (I.104), the minimum domain size that is necessary to reach a given
precision are shown, for three different volume fractions, in table I.4.

The size of a RVE for the estimated volume fraction can be related directly to the
precision of the mean value of the results of different realizations for each domain
size. Figure I.14 shows three examples of this measurement: one obtains :
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and �
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realization :
it decreases when the size of the domain increases.

Volume Fraction
� �
� ��� ��� �����

�����
47000 11790 1880 470

���
20000 5050 800 200� ���
5240 1300 210 52

Table I.4 : RVE size for a given relative precision ������� � and �
���

realization of the
estimated volume fraction, for three different volume fractions.
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�
� P �
��� � ����� � �

� P �� � � � � � � (I.106)

and :

�
� P �� � � 	�������� (I.107)

for the relative precision � ���	� 8 � ���
, ��� ��� 8 � 	 � and ��� ��� 8 � � � of the mean value

of the volume fraction, respectively.

The size of the RVE can also be defined as the volume for which for instance :

� � � � � � � � 	�� � � 	 � � � (I.108)

are necessary to estimate the mean property with a confidence � ����� 8 � � � . Equation
(I.104) gives :

� �
� � � � � � � +

� � � ����	� 8
(I.109)

For � � ��� � one finds �
� P � � 	������ .

Conversely, the same equation also shows that one must use about � � � � � �
realizations to find the mean value with an error � ���	� 8 � � � for a fixed �

� P � � � � .

I.6.2 Elastic Moduli

In the case of effective elastic moduli, the exact mean value and variance for a
given domain size are a priori unknown. Using the equation (I.89), the absolute
error on the mean value can be evaluated as :

	���� � � � � 	 ���
� 	 � +

� 
 � (I.110)

where � stands here for � 8 :<: or � 8 :<: . The absolute error can be deduced from figure
I.10 that shows the power law model and the variances of simulations as a function
of domain size, for different boundary conditions.

The first important remark is that for the same absolute error, the periodic bound-
ary conditions require the largest domain size, compared to kinematic uniform
boundary conditions (KUBC) and static uniform boundary conditions (SUBC) for �
and � . This is due to higher fluctuations of apparent properties obtained with these
conditions. The kinematic uniform boundary conditions require a smaller domain
size than the static uniform boundary conditions for the same absolute error.

Using equation (I.99) in the case of the elastic moduli � 8 :<: and � 8�:<: , the absolute
error for the mean value is obtained with a sample of � realizations, � standing for
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� 8�:<: or � 8�:<: . Hence the number of realizations � necessary for the estimation of the
property with a given absolute error � 8 
�� and a volume � is:

� � � � �
�

� �8 
��
� �
�

	 � +
� 
 � (I.111)

One must insist on the fact that the absolute error corresponds to the estima-
tion of the mean apparent moduli which have been found to depend in general on
the domain size and do not necessarily coincide with the wanted effective property,
especially for small domain sizes. This corresponds to a bias of the estimation.
This bias is bounded by the difference of the estimations obtained using KUBC and
SUBC, since these boundary conditions can be shown to provide bounds of the the
effective properties ((Huet, 1990; Hazanov and Huet, 1994)).

From the available results of figure I.7, the smallest domain size for which the
bias can be neglected is :

� � � � ��� � 	�� � (I.112)

for � 8 :<: and � 8 :<: in the case of periodic boundary conditions. For the conditions
KUBC and SUBC, volumes larger than � ����� are necessary to obtained unbiased
mean values, i.e. mean apparent moduli that almost coincide with the wanted effec-
tive ones.

Using the equation (I.100), and for a volume � providing unbiased moduli, we
deduce the relative precision of the effective property � ����� (namely the effective
bulk modulus � ����� or the effective shear modulus � ����� ). Hence, the number � of
realizations that must be considered is deduced from equations (I.103) and (I.110).
This is illustrated in figure I.15 for � � ��� 8 � � � . For a given precision, the number
of realizations decreases when the domain size increases. The periodic boundary
conditions require the largest number of realizations, compared with other bound-
ary conditions.

Let us give two explicit examples of the use of equation (I.103) for two unbiased
volumes and periodic boundary conditions : � � � � and � � � 	 � . The minimal
numbers � of realizations to obtain the overall bulk modulus � ����� and shear modu-
lus � ����� , for a given precision � ���	� 8 , are given in table I.5.

Conversely, the minimum size of the RVE can be determined for a given � ���	� 8
and a given number � � � � of realizations. The results are shown on figure I.15.
When �����	� 8 � � � , it can be seen that one must take about �

� P � � � ��� � � (from the
result given by the periodic boundary conditions) for � 8�:<: and �

� P � � � � 	 � � for
� 8�:<: .

Using such sizes in a finite element code is rather prohibitive. One would pre-
fer smaller volumes. This requires however a sufficient number of realizations. By
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Relative Precision ��� ��� 8 � � 5 ������� 8 � � 5 ������� 8 � �)5 �����	� 8 � �&�65
Bulk Modulus (V=50) 700 175 28 7
Shear Modulus (V=50) 2500 625 100 25
Bulk Modulus (V=125) 400 100 16 4
Shear Modulus (V=125) 1300 325 52 13
Thermal Conductivity (V=50) 1950 490 80 20
Thermal Conductivity (V=125) 765 190 30 8

Table I.5 : Minimal number of realizations necessary to estimate the effective elastic moduli
and thermal conductivity with given relative precision, for given volumes �2� ����G�� � � (for
periodic boundary conditions, 0H�I( �65 , A*� �&� �

).

comparison between these results and those for volume fraction in table I.4, it turns
out that larger volumes are required to estimate the elastic moduli than to measure
the volume fraction with the same precision (over three times more). In the present
study, the shear modulus requires a larger number of realizations than the bulk mod-
ulus, for a given precision.

I.6.3 Thermal Conductivity

Similarly to the case of elastic properties, the absolute error on the mean value
of apparent conductivity is given by relation (I.110). For the same absolute error
on the mean value, the PERIODIC boundary conditions require the largest domain
size compared to the other boundary conditions. The UGT conditions give a smaller
domain size than the uniform heat flux for the same absolute error. The number of
realizations � for a given relative error � ���	� 8 on the effective conductivity � ����� is
deduced from equation (I.100). It is illustrated in figure I.16 for � � ��� 8 � � � . For
a given precision, the required number of realizations decreases when the volume
increases. The PERIODIC boundary conditions require the largest number of real-
izations, as compared to other boundary conditions. The size of the RVE, consid-
ered for instance as the volume requiring only � � � � realizations, for � � ��� 8 � � �
is about :

� � ��� �
� ��� � 	 � � (I.113)

obtained with PERIODIC boundary conditions.

One must again insist on the fact that the mean value of the apparent conductivity
depends on the domain size. Volumes larger than � � � ��� are necessary to obtain a
mean apparent conductivity which is not too far from the effective one � ����� , for
the conditions BUGT and BUHF. The smallest domain size giving an unbiased
mean value of apparent conductivity is about � � for PERIODIC conditions. Using
the equation (I.103) in the case of the effective thermal conductivity, the minimal
numbers � of realizations to evaluate the effective thermal conductivity with a given
precision �����	� 8 , are given in table I.5 for the fixed sizes � � � � � grains and � � � � 	 �
grains.
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I.7 Conclusions

The effective linear properties of random composites can be determined not only
by numerical simulations on large volume elements of heterogeneous material, but
also as mean values of apparent properties of rather small volumes, providing that a
sufficient number of realizations is considered. This is very important, since com-
putations on large volumes are usually prohibitive. This corresponds also to an
enlarged definition of Representative Volume Element. Its size �

� P � must be con-
sidered as a function of five parameters: the physical property � , the contrast of
properties � , the volume fractions of components, the wanted relative precision � ����� 8
for the estimation of the effective property and the number � of realizations of the
microstructure associated with computations that one is ready to carry out. It de-
pends also in fine on the special morphology of distribution of phases. Conversely,
one can also choose a volume �

� P � allowing as many numerical simulations as
necessary. The proposed methodology gives then the number of realizations that
are necessary to reach a given precision � ����� 8 (see for instance equation (I.111)).

However, the chosen volume �
� P � cannot be taken as small as one may wish,

because there exists in general a bias in the estimation of the effective proper-
ties. This bias is due to the type of boundary conditions. The mean appar-
ent properties computed on finite size domains do not coincide with the effec-
tive ones if the domain size is too small. In the case of linear elasticity for in-
stance, kinematic uniform boundary conditions overestimate the effective proper-
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ties, whereas static uniform boundary conditions underestimate them. For both
thermal conductivity and elasticity, the bias introduced by the periodic boundary
conditions is found to be much smaller than for the other boundary conditions. In
the case of Voronoï mosaics considered in this work, for domain sizes larger than

� � � � ��� � 	 � � (resp. � � ��� ��� � 	�� � ) for volume fraction � � � ��� � (resp.
� � � � � � ), the mean apparent property do not differ significantly from the ef-
fective one. However the dispersion of apparent properties obtained by periodicity
conditions is always found to be larger than for the other types of boundary con-
ditions. This means that more realizations are necessary (about 1700 for elasticity
with � � � � � ������� 8 � ��� � � � � ��� � � � � � � ��� ).

For the determination of RVE sizes of a given microstructure, the proposed
methodology can be summarized as follows :

� generate different realizations of the microstructure for 4 to 5 different volume
sizes � ;

� submit each microstructure to loading with for instance PERIODIC boundary
conditions and record the obtained apparent properties;

� compute mean value and variance of apparent property for the considered
volume sizes; check that the number of realizations was sufficient for each
volume (apply the sampling rule (I.99));

� identify the integral range � + and power � in model (I.110);

� set the wanted precision for the estimation of effective property � ����� 8 and a
number of realizations � ; use the model to deduce the final size �

� P � .

The notion of integral range plays the central role in the method. For additive
properties (like volume fraction or mass density), it is simply related to the variance
and domain size and does not depend on the effective property itself but only on
the morphology. For more complex physical properties like elasticity and thermal
conductivity, a power law model was proposed and identified. The generalized inte-
gral range � + is found to depend on the volume fraction, the contrast in properties,
and the type of boundary conditions. The model seems to fit better to the data in
the case of PERIODIC boundary conditions. This can be related to the fact that the
observed bias in the estimation of effective properties is less pronounced in the case
of periodic boundary conditions.

The case of three-dimensional Voronoï mosaics was studied in details, as an ex-
ample of random microstructures. This model is relevant for polycrystals but also
for two–phase materials in which both phases percolate. The fluctuations of appar-
ent moduli on small domains can be attributed to the percolation level of the hard
phase for the considered realization. This could explain the larger values found for
the integral range � + found for the volume fraction � � � � � � than for � � � ��� � .
This is synonymous of a larger dispersion of apparent moduli and finally to larger
RVE sizes. Similarly, the increase in the contrast of properties leads to an increase
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Figure I.17 : Effective thermal conductivity of Voronoï mosaics as function of the contrast
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conductivity is obtained by finite element simulations with periodic boundary conditions
on a volume �?� � � � and 
 � �&� � � realizations for each value of A . The mean value is
plotted.

of the integral range and of the RVE size. The RVE sizes found for different prop-
erties can be compared : the minimal domain size for a relative precision of � �
in the estimated property, � � � � realizations and for � � � ��� � � � � � � ��� are

� � 	������ � ��� � � � � ��� � � � � � 	 � � for effective volume fraction, thermal conductivity,
bulk modulus and shear modulus, respectively, in increasing order of volume size.
These results depend on the specific values chosen for the material parameters of
the components in the simulation, and do not have a general value. Note that the
self–consistent estimate is often advocated to be a good model for polycrystalline
microstructures. Indeed, a rather good agreement between the found effective prop-
erties of two–phase Voronoï mosaics and the self–consistent model can be seen in
table II.6. This is however not the exact solution (for elasticity nor thermal con-
ductivity) and the difference between numerical simulations and the self–consistent
estimate is found to increase with the contrast of properties, as can be seen in figure
I.17 for thermal properties. Another example of bi-continuous microstructure that
is not described properly by the self–consistent scheme can be found in (Roberts
and Garboczi, 1999), where computational homogenization methods are also used.

The procedure must now be applied to other microstructures and random mod-
els. It can also be applied to real three–dimensional images of heterogeneous ma-
terials obtained by tomography or confocal microscopy for instance ((Forest et al.,
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2002)). Good agreement has been obtained between experimental results and the
numerical estimation of the effective elastic and thermal properties of a two–phase
material from food industry ((Kanit et al., 2003b)). In particular, it is shown in this
forthcoming paper and in the next chapter that the methodology can be used to as-
sess the representativity of available ��� images. In such cases, it may be necessary
to estimate the properties using images smaller than the size of the deterministic
RVE. On the other hand, the advantage of the method is that it is applicable also
to nonlinear constitutive behaviors of the components (viscoplasticity, elastoplas-
ticity). An increased dependence of the integral range on the contrast of properties
may be expected in the nonlinear case, as a result of a higher heterogeneity of the
fields.
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II.1 Introduction

Applying a materials science approach to the characterization of composites of
food industry requires consideration of its constituents on a microstructural level.
Any change in the composite formulation or processing parameters gives rise to
different morphologies of microstructures, which in turn dictate both the mechan-
ical and sensory properties. Hence, via materials science, relationships may be
established between the microstructure of a composite, and either physical proper-
ties or the sensory attributes (Colworth, 2000). These data may then be used as a
predictive tool for the development of new composite microstructures that satisfy
predetermined sensory criteria.

Digital image-based modeling technique for the finite element method is largely
used in (Terada et al., 2000). It was developed by Hollister and Kikuchi (Hollis-
ter and Kikuchi, 1994) for a study of bone tissue as an example of computation
of real composite materials. This technique is utilized for evaluating both macro
and micro-mechanical behavior of composite materials that are given by 	�� im-
ages (Terada et al., 1997). The finite element model obtained in this process is the
direct representation of the scanned image using, for example, two-dimensional mi-
crographs of real composite materials along with image-processing software. Thus,
the homogenization analysis can reflect the effects of the original geometrical con-
figuration.

In this work we propose a detailed study of the effective physical properties
of a two-phase composite from food industry, regarding elastic properties : shear
modulus � ����� and bulk modulus � ����� and of the thermal conductivity � ����� . These
properties will be estimated by means of numerical simulations by the finite ele-
ment method, using directly real images of the material in ��� . The principle is to
transform the real images obtained by confocal microscopy, and that are multilevel
of gray into binary images. Two types of materials are studied to quantify the effect
of the morphology on the macroscopic physical properties : one material called � �
containing special additive, one material ��� without additive. The additive affects
only the morphology of the phases and not their behaviors. Both materials are made
of a hard phase � � and a soft phase � � with a high contrast in elastic and thermal
properties.

A strong difference in the effective properties is found experimentally for sam-
ples � � and ��� ; although the volume fractions of hard phase are the same in both
materials. It will be shown that our finite element computations are able to repro-
duce the experimental results, based on the knowledge of the actual morphology.
The last part is devoted to the study of geometrical and mechanical percolation ef-
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fects associated with both microstructures.

For confidentiality reasons, the physical nature of the phases cannot be given.
However, their mechanical and thermal properties are explicitly given in section
II.2.2.

After a general description of morphological and physical aspects of the mate-
rials, we study the mesh density effect on finite element computations. We try to
get an acceptable convergence in the computed apparent physical properties of the
heterogeneous material. Our study is in ��� , but a small comparison with the mesh
density in 	�� is also presented.

We begin with direct simulations on the set of all available microstructures, and
quantify the anisotropy existing in the apparent elastic matrices. The obtained re-
sults allow us to quantify the representativity of the sizes of the samples. For that
purpose, we apply some results of Huet (Huet, 1990), (Huet, 1991) and (Hazanov
and Huet, 1994) on the apparent properties obtained by samples of heterogeneous
material, smaller than the size of the RVE.

The statistical study proposed in chapter 1 and applied to the case of Voronoï
mosaics is applied here to the real microstructures. This enables us to find the nec-
essary sizes for the used samples and to compare them with experimental sizes to
quantify the representativity of samples.

We close this chapter by a quantitative study of the phenomenon of the geometri-
cal percolation on our real images. We present an example explaining phenomena of
strain localization bands, while studying the percolation in the field of local strains,
thus defining a notion of mechanical percolation.

II.2 Presentation of the Microstructures from Food Industry

II.2.1 Morphological Description

Experimental batches of our composite material are produced in ten blocks of
� ��� � which are then stored at � ��� � � (Bron et al., 1999). They are used for four-
point bending tests and confocal imaging.

Two different types of microstructures are presented and studied here. The first
one with additive ( � � ), the second one without additive ( ��� ). The additive only
changes the morphology of the microstructure, not the volume fraction of phases nor
the properties of the individual phases. Three samples of each microstructure ( � � �
� � � � � + , ��� � ��� � ��� + ) are available. The samples without additive contain fairly
round hard phase crystals while the samples with additive have more elongated hard
phase crystals. Examples of each type of microstructure are given in figure II.1. The
size of the images is 	 � � ��� � 	 � � ��� � ��� ��� . The shortest direction is called � � .
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(a)

(b)

Figure II.1 : Examples of studied microstructures obtained by confocal imaging in ��� , the
size of the image is � ��� � � ��� � � � ���

. The volume fraction of hard phase (in grey
color) is about ( �65 . (a) Sample with additive �MW and (b) sample without additive ��� .
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a) Segmentation

A difficult problem with the experimental micrographs is to differentiate the two
different phases. This operation called segmentation or threshold operation takes a
grey level image and transforms it into a binary image (each pixel is then or � or � ).
The dark noise in the matrix is eliminated by a morphological closure by a square
of size 2 pixels in every section; then the comparison of the grey level to a threshold
enables us to generate the binary images. The first layers of the studied ��� images
are given in figures II.3 and II.4.

b) Volume Fraction

The volume fraction of each phase was estimated using image analysis and stere-
ology. This method consists in placing a regular grid of points over a cross-section
image and recording the ratio of points landing over the hard phase by the total
number of points hitting the reference volume. The obtained volume fractions of
the introduced phases are given as the mean value of the area fractions on all the
sections. The figure II.2 shows the evolution of the area fraction of phase 1 (hard
phase named � � ) on all the sections (in the thickness direction � � of the corre-
sponding ��� images). In some specimens, important variations of the area fraction
are observed along the thickness. This is the consequence of the small size of im-
ages as compared to the microstructure (see figures II.3 and II.4). For most samples,
long range variations of � � occur in the thickness. The average values obtained by
image analysis are given in the table II.1.

Specimens �EW � �EW � �MW�+ ��� � ��� � ���1+
Average Volume Fraction of Phase 0 � (%) 66.76 68.64 72.43 73.01 75.19 69.05

Table II.1 : The volume fractions of phase 0 � in different specimens.

The global volume fractions of phase � � introduced in the processing of these
materials range from 65% to 75%, which is in agreement with the experimental val-
ues given in the table II.1.

c) Covariance and Covariogram

It is important to account for the presence of scales, size of heterogeneities, of the
components of a microstructure. The basic morphological tools for these aspects
are the covariance and covariance range � (Matheron, 1971), (Jeulin and Ostoja-
Starzewski, 2002). In addition, it is sometimes important to account for the mea-
surement of anisotropy of phase quantities.

Examples of experimental covariance of our real images are given in figure II.5
for material � � and figure II.6 for material ��� . Note that, in general the covari-
ance ranges ����� of samples ��� are larger than those for samples � � named �����
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(a)

(b)

Figure II.2 : Evolution of the area fraction of hard phase 0 � @ 5#J
in thickness direction, (a)

samples with additive �EW and (b) samples without additive ��� . An important variation is
observed in samples with additive �EW .
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(a)

(b)

(c)

Figure II.3 : Specimens �EW , confocal and thresholded images, (a) �EW#� , (b) �MW � , (c) �MW + .
The size of images is � ��� � � ���#���

. The hard phase is in dark color in confocal and
thresholded images.
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(a)

(b)

(c)

Figure II.4 : Specimens ��� , confocal and thresholded images, (a) ��� � , (b) ���1� , (c) ��� + .
The size of images is � ��� � � ���>���

. The hard phase is in dark color in confocal and
thresholded images.
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which means that the size of heterogeneities is more important in samples ��� than
in samples � � . This will have a major influence on the estimation of RVE size for
thermo-mechanical properties of the microstructures.

The covariances of the samples are given in figures II.5 and II.6. They are prac-
tically isotropic in two directions of observation ( � � , � �

) (horizontal, vertical),
and they reach their asymptotic value for a finite range, which measures the scale
of the microstructure.

A range (of hard phase � � ) close to :

� � � � � � ��� (II.1)

is observed in samples � � and :

����� � ��� ��� (II.2)

in samples ��� (see table II.2).

Specimens �EW � �EW�� �EW + ��� � ���1� ��� +
Covariance Range � (

���
) 15 14 22 30 26 38

Table II.2 : Range of the covariance of samples �EW and ��� . The values of � are obtained
from figures II.5 and II.6. The fairly round hard phase crystals in samples ��� give an
important range of covariance.

II.2.2 Physical properties

In all this work, the numerical simulations are made with these physical proper-
ties :

� � � � � � � � � 	 � ��� � ��� � � � ��� ����� � � � � � � � � � � � � � ��� � � ��� � � (II.3)

for the elastic moduli, and :

� � � � � � � � � 	 ����� ��� � � � � � � 	 � � ��� � � � (II.4)

for thermal conductivities.
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Figure II.5 : Covariance diagram and covariance range � of samples �EW , (a) �EW>� , (b) �EW �
and (c) �EW + .
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Figure II.6 : Covariance diagram and covariance range � of samples ��� , (a) ��� � , (b) ���1�
and (c) ��� + .
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a) Four-Point Bending Test

The mechanical test used for the determination of the effective mechanical prop-
erties of materials � � and ��� is a four-point bend test (figure II.7). The samples
used in those tests are 	 ��� � 	 ��� � 	 � � � bars, which are placed between two
pairs of steel rolls used as load applicators. The two upper rolls are immobile while
the two lower ones are able to apply a vertical displacement on the sample. The
different values of the load � and the displacement of the lower rolls � are the out-
put of this test. Two ways of interpreting this test and obtaining the Young modulus
are investigated : the Elastic Beam Model (EBM) and a finite element identifica-
tion. The results are that the best estimation is given by finite element identification
(El Ouarzazi et al., 2000).

Figure II.7 : The four-point bend test used to estimate the Young modulus. The force-
displacement curves obtained are interpreted using the elastic beam model.

The meaning of this chapter deals only with materials � � and ��� with volume
fraction � � close to ��� � .

b) Experimental Effective Physical Properties

Four-point bending tests were performed to determine experimentally the Young’s
modulus

�
of materials over a large range of the volume fractions of phases � � and

� � (Colworth, 2000). The results are reported in the figure II.8. Note that for all
volume fractions, � � is found to be significantly stiffer than ��� . This difference
can be explained by the role of morphology of phases in each material. The tests
were performed for a large interval of volume fractions, especially between

� � �

and ��� � of hard phase � � . The samples with additive � � give a higher value of
Young’s modulus by comparison with samples without additive ��� for the same
value of volume fraction, which can be explained by the role of more elongated
hard phase crystals in samples with additive.

The homogenization theory provides us with bounds for the physical properties
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(Voigt-Reuss, Hashin-Shtrikman). However, these bounds are not very useful due
to the huge contrast between the physical properties of two phases, for example in
our microstructures :

� � �
� �� � �

� ������� (II.5)

The self-consistent model gives a fairly good estimation (especially of Young’s
modulus

�
) for the specimens with additive � � and for intermediate volume frac-

tions, see figure II.8.

The Young’s moduli obtained with the Hashin-Shtrikman bounds for shear and
bulk moduli,

��� � � and
��� � T , are given by :

� � � � � � � � � � � � � �

� � � � � � � � � � (II.6)

� � � T � � � � � T � � � T
� � � � T � � � � T (II.7)

where : � � � � and � � � T (respectively � � � � and � � � T ) are the Hashin-Shtrikman’s
bounds for � (respectively � ).
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Figure II.8 : Experimental results compared to Hashin-Shtrikman’s bounds and self-
consistent model (SCM) for Young’s modulus. The bounds are very far apart and the self-
consistent model gives the same result for different morphologies.

II.3 Computational Tools

II.3.1 Meshing Microstructures

We have seen in the presentation of the studied microstructures that one needs to
use a direct method to estimate the effective physical properties, especially, because
on the one hand, the bounds (Voigt-Reuss’s absolute bounds, Hashin-Shtrikman’s
bounds) are widely separated and the direct analytical solutions (self-consistent
model for example) cannot be said a priori to be closer to one morphology than
to the other one on the other hand (figure II.8). For this reason and to give a de-
scription of RVE sizes in the case of real microstructures, we choose to use the
finite element method to compute the different apparent physical properties of our
microstructures. The obtained results will be then used in a statistical description to
relate the RVE sizes and the different parameters which influence it : that gives the
relative precision � ���	� 8 for the effective properties, the minimal number of realiza-
tions � , the contrast in the studied property � � , � 	 , � � and � 	 .

After obtaining the binary three-dimensional real images of the microstructures,
a finite element mesh is used to mesh these images. Using a parallelepipedic mesh
(to respect the parallelepipedic geometry of the samples), the VPOLY3D code at-
tributes to each integration point of the finite element mesh the corresponding posi-
tion in the ��� image (in phase � � or in phase � � ). This is the so-called multi-phase
element technique.
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The dimensions of the images are :

	 � � � 	 � � � ��� ��� � ����� � ����� ��� + (II.8)

These dimensions lead to the image size :

� � 	 � � � 	 � ����� � � � 	 � � � � � � � � � � (II.9)

which means that the used resolution is about : � � � � � � � � ��� + . The size of the
image in ��� (

� � 	 � � � 	 � ��� � � � � � � ) is imposed by our computation capacity.
The original images are given with a size of :

� � 	 � � � � 	 � � ��� � � 	 � � � � ��� � � � � � � (II.10)

This reduction to
� � 	 � � � 	 � ��� � � � � � � does not really change the morphol-

ogy of the microstructures.

As we have seen in the case of Voronoï mosaics, the results given by the finite
element method depend on the used mesh density. One must mesh sufficiently the
microstructures to avoid the errors coming from the mesh density. In our case, the
mesh density is the real volume of the microstructure (given in ��� + ) represented
by one finite element. To solve this problem, we need to use the parallel comput-
ing technique (see appendix B) instead a single workstation, on which we can only
compute about

�
������� degrees of freedom (d.o.f.). The

��� � �����
are the displacement

component at the nodes. For parallel computing, we have used up to � 	 PC to com-
pute about � � 	���� � ����� degrees of freedom.

Figure II.9 explains the methodology followed in our work. The ��� image of
the microstructure is meshed after the segmentation operation.

II.3.2 Mesh Density in ���

a) Global Convergence

Two examples of computations of Young’s modulus
�

in the direction � � � � with
mixed boundary conditions (see chapter 1) by finite element simulations from real
microstructures are given, using the following contrast in Young’s modulus :

� � �
� �� � � � ��� (II.11)

on the specimen � � � , and :
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Figure II.9 : Methodology of computation of microstructures : (a) the image of the
microstructure (

����� � ����� � �����
	
), ����
������ of hard phase ��� in grey color,

(b) the image of microstructure with the finite element mesh (with mesh density ������
	�������� �
� !#"$"&%'"(	)"&�
!
), the red phase is �*� , (c) the size of computation is about+ 
 +&� ��
 +&�,+.- 
0/�
 � 
 divided into

���
sub-domains for parallel computing and (d) example of

results of computation with imposed 132#24� +
in KUBC boundary conditions : the equiva-

lent strain 57698 given in equation (II.18).
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� � �
� �� � � � ����� (II.12)

on the specimen � � � , we keep :

� � � 	 � ��� � ��� (II.13)

� � � �
�
� (II.14)

� � � �
��� � (II.15)

We apply a displacement in direction � � � � on one face and keep the opposite
face with � � � � . The imposed displacement gives :

��� �,� � � � (II.16)

so, the apparent Young’s modulus in this direction is :

� � ����� � ��� �,� � (II.17)

The first parameter studied is the mesh density defined as volume of material
( ��� + ) represented by one finite element. The figure II.10 shows the results of
computations of Young’s modulus

�
as a function of the number of degrees of

freedom (
�����������

) used to mesh the two microstructures. Figures II.11, II.12, II.13,
II.14 and II.15 show an example of computation of Young’s modulus on the spec-
imen � � � in the direction � � � � for increasing mesh density (

����������� � � � � � � � � or
� � ��� � � � � � � � � � � ) using mixed boundary conditions. The maps of the equivalent
strain ( � �
	 given by equation (II.18)) are given and compared with the map of phases
(the phase in red is the hard one � � ). Note that we have large stresses in the hard
phase and large strains in the soft one.

� ��	 � � � � �,� � � ��,� � � �+,+ � 	 � � ��� � 	 � �� + � 	 � �+ � (II.18)
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(a)

(b)

Figure II.10 : Effect of the mesh density in finite element simulations (f.e.m.) on the global
convergence of the apparent Young’s modulus. The Hashin-Shtrikman’s bounds are (

� � � � ,� ! � � 0�� ) for the specimen (a) �EW � and (
� � � ! ,

��$ � 0�� ) for the specimen (b) �EW/� .
A � A�� represents the contrast in the Young’s moduli of the phases.
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The number of degrees of freedom (
� � ��� � �

) was changed from ��������� to � � � ������� .
The size of the microstructures is 	 � � � 	 � � � ��� � � � � � � � ����� ��� + . The num-
ber of finite elements was changed from

�
� ��� to ��� 	���� which means that the mesh

density was changed from
� � � ��� + � � � � � � � � to 	�� ��� + � � � � � � � � . First note that

the absolute bounds are very far apart and the direct estimation of the self-consistent
model overestimates the results for the two values of the contrast � � . The compu-
tations with a contrast � � � � ����� are more sensible than with � � � � ��� , but the
effect of the contrast becomes very slight for stronger contrasts. We accept an error
on the apparent Young’s modulus about

���
between a contrast � � � � ����� and the

real one : � � � � ������� .

As a result, we keep in all our computations on these microstructures a mesh
density of 	�� ��� + � � � � � � � � in elastic properties and thermal conductivity.
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Figure II.11 : Mesh and computation with
��� � �

elements (
� ��� 
��

d.o.f.), or� ��� ����� /element and map of equivalent strain 	 ��
 for a mean prescribed strain ��
�
 ���
.

b) Local Convergence

In our computations we need to compute the apparent physical properties. These
properties are given as average values of the local fields in the microstructure. So
the convergence shown in the figure II.10 is sufficient to validate our retained mesh
density to compute the apparent physical properties. Now if one looks at the mi-
croscopic level, which means that we compare some maps of local fields obtained
with different mesh densities, we see that we need more and more finite elements
to obtain a good convergence in the local fields. The problem stems from the type
of used finite elements. Our elements are multi-phase ones, which give a slow lo-
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Figure II.12 : Mesh and computation with
��
 ���

elements (
��� �����

d.o.f.), or��� � ����� /element and map of equivalent strain.
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Figure II.13 : Mesh and computation with � ����� elements ( ������� � d.o.f.), or��� � �
	 �
/element and map of equivalent strain.
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Figure II.14 : Mesh and computation with
� � � � �

elements (
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d.o.f.), or� �

 ����� /element and map of equivalent strain.
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Figure II.15 : Mesh and computation with ��� ����� elements (
+�+&� � +&�,+

d.o.f.), or��� �
	 �
/element and map of equivalent strain.



70
Chapter II. COMPUTATION OF THREE-DIMENSIONAL REAL MICROSTRUCTURES : EFFECTIVE

PROPERTIES AND REPRESENTATIVITY OF SAMPLES

cal convergence (figures II.11, II.12, II.13, II.14 and II.15). Figure II.16 shows the
corresponding sections of the maps of equivalent strain given in figures II.11, II.12,
II.13, II.14 and II.15.

As a result, the multi-phase elements are recommended for the macroscopic
study and free meshing of figure I.3 (chapter 1) for a microscopic approach.

In order to quantify the effect of the mesh density in ��� on the variation of
local fields, we have chosen to show the curve of displacement in the direction
� � � � on the right edge parallel to the � � � � direction in our microstructure. Figure
II.17 shows the curves of the displacement � � in the direction � � � � of the chosen
edge. The length of this edge is 	 � � ��� and the displacement � � is negative be-
cause we have a traction in the direction � � � � . One remarks the high sensitivity
of the curve of the displacement � � to the mesh density given in figure II.17 by
� � � � � � � � � + � � � 	 � 	 � � � � � � � � � . We have a larger difference in the soft phase than
in the hard one.

As a result, one can say that we need a higher mesh density when we compute
with a larger contrast in the properties of the constituents. With our maximal used
mesh density ( 	�� ��� + � � 	�� 	 � � � � � � � � � ) we have not yet a very good local conver-
gence. We have continued to study the effect of the mesh density on the local fields
in 	�� using the same first section of the microstructure used in this part.
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Figure II.16 : Local convergence as a function of mesh density in ��� case : (a) � � � �
elements, (b) �)( ��� elements, (c)

$ � � � elements, (d)
��$�� � �

elements and (e) � � �
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elements.
These maps are the first section of figures II.11 to II.15.
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Figure II.17 : Effect of mesh density on the local convergence in ��� .

II.3.3 Mesh Density in 	��
We have seen, in the study of the effect of the mesh density in ��� , that it is possi-

ble to obtain a good convergence in the macroscopic apparent properties. Regarding
the local fields, this objective is very difficult to reach when using the multi-phase
element technique for high contrasts of properties.

The computations in 	�� are very easy as compared to the ��� case. For this
reason, we can try to find the absolute convergence in the local fields.

Starting from the maximal mesh density which we have used in ��� (about
	�� � � + � � 	�� 	 � � � � � � � � � ) and with a section of the same used microstructure, we
will study the effect of the mesh density in 	�� on the macroscopic apparent prop-
erties and on the local fields. For this, a series of computations of apparent Young’s
modulus in the direction � � � � are performed and observed its variation as a func-
tion of the mesh density; we have looked at the displacement � � in the same direc-
tion of the right edge.

a) Global Convergence

The used section covers :

	 � � � 	 � � ��� � � 	 � ��� � � �
(II.19)
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The finite element mesh is designed according to the multi-phase element tech-
nique. The number of degrees of freedom (

� � ��� � �
) was changed from ���������

to 	 � ������� . The number of finite elements was changed from
� ����� to

�
������� .

So the mesh density in 	�� was changed from � 	 ��� � � � 	�� 	 � � � � � � � � � to
	 � � � � � 	 � 	 � � � � � � � � � . As a macroscopic property, we consider the average value
of the stress in the direction of the traction � � � � : ��� �,� � . Figure II.18 shows the
evolution of � � �,� � as a function of the mesh density. The variation of � � �,� �
is very sensitive to coarse meshes and one can obtain the absolute convergence at
about � � ������� �����������

.

If one tries to use this mesh density in ��� , ( � � ������� ��� � ����� corresponds to a mesh
density of � ��� � � � 	�� 	 � � � � � � � � � , in ��� this gives about � � ��� + � � 	�� 	 � � � � � � � � � ),
this requires about � � � ����� finite elements. With our code and using the parallel
computing, about

� �
PC are required to compute the microstructure.
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Figure II.18 : Convergence of results in ��� , average value of 
 ���,��� .

b) Local Convergence

In the mesh density studied in the case of ��� we have seen that it is very difficult
to obtain an absolute convergence in the local fields. Using the same technique of
meshing, the multi-phase element technique in 	�� , figures II.19 and II.20 show the
maps of equivalent strain � ��	 given in 	�� by :

� ��	 � � � � �,� � � ��,� � 	 � � ��� (II.20)
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Figure II.19 : Effect of mesh density in ��� . Maps of equivalent strain, (a) ������� elements,
(b) �	�
��� elements, (c) �
����� elements, (d) ��������� elements, (e) �����
��� elements and (f) ���������
elements. The computations are performed with mixed boundary conditions.
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Figure II.20 : Effect of mesh density in ��� . Maps of equivalent strain, (g)
��% $�� �

elements,
(h) �

� $�� �
elements, (i) � �"! � � elements and (j) ! � � � � elements.
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It is clear that one must use more and more finite elements to obtain an ab-
solute local convergence with the multi-phase element mesh technique. In or-
der to quantify this problem, we can say that the last three maps (figure II.20(h),
(i) and (j)) of the equivalent strain � ��	 are equivalent. The corresponding three
mesh densities are 	 ����� ��� � � � 	 � 	 � � � � � � � � � , � � ��� ��� � � � 	 � 	 � � � � � � � � � and
� � � � � � � � � 	�� 	 � � � � � � � � � .

If one would use this last mesh density : � � � � ��� � � � 	�� 	 � � � � � � � � � , which cor-
responds to a mesh density of about � � � � � � + � � 	�� 	 � � � � � � � � � in ��� , it would be
necessary to use about ��� 	������ finite elements to obtain the local convergence in
��� . To compute with this number of finite elements with our code, we would need
about 	 ��� PC in parallel computing.
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Figure II.21 : Convergence of results in ��� , displacement � � .

Figure II.21 gives the evolution of the displacement component � � on the right
edge of the computed section, for different mesh densities. The last two mesh den-
sities : � ��� ��� � 	�� 	 � � � � � � � � � � and ��������� � 	 � 	 � � � � � � � � � � which corresponds to� �
�
� ��� � � � 	�� 	 � � � � � � � � � and �

� ��� ��� � � � 	�� 	 � � � � � � � � � give the same evolution
of the displacement � � . One notices that the value of the displacement � � is more
sensitive in the soft phase � � ( �

� � � � � � ) than in the hard one � � ( � � � � �
� �

).
In the hard phase, the first used mesh density

� ����� � 	 � 	 � � � � � � � � � � , which cor-
responds to � 	 � ��� ��� � � � 	�� 	 � � � � � � � � � , gives already a correct evolution of the
displacement � � .



II.4. DETERMINATION OF APPARENT PHYSICAL PROPERTIES 77

II.4 Determination of Apparent Physical Properties

The elements and notations of homogenization theory necessary for the numerical
determination of apparent linear properties carried out for real microstructures are
presented in chapter 1 and in (Kanit et al., 2003a) for linear elasticity and for thermal
conductivity.

II.4.1 Direct Estimation of Properties on Whole Microstructures

In this sub-section, the real microstructures are considered as a two–phase linear
elastic material . The mechanical properties of the phases are :

� � � � � � � � � � � � � � � 	 � ��� � ��� � � � � � 	�� ��� � ��� � ��� 	 � ��� � (II.21)

� � � � � � � � � � � � � � � � � � � � ��� � � � � � � � � � � ��� � � � � 	 � ��� � (II.22)

So the contrast between different elastic properties is :

� � �
� �� � �

� ������� (II.23)

��� �
� �
� � � �

�
� (II.24)

� � � � �
� � � 	������ (II.25)

� 	 � � �
� � �

�
� � ��� (II.26)

Note that the contrast in shear modulus � 	 is very high whereas the contrast in
bulk modulus � � is smaller.

a) Apparent Elastic Properties

To study the mechanical anisotropy of our samples, we provide the apparent elas-
tic matrices. These matrices can be anisotropic if the size of the samples is not large
enough.

The apparent elastic matrix
� � � 8�:<: is related to the macroscopic strain tensor

(loading) � � and the average microscopic stress tensor ��
 � � by :

��
 � � � � � � 8 :<: � � � (II.27)
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To compute the apparent elastic coefficients � 8 :<:� 
 , we impose a loading strain
tensor � � and with the average local stress tensor ��
 � � we compute the coefficients� 8 :<:� 
 by the previous relation :

���������
�

��� �,� ���� �,� ���� +,+ ���� ��� ���� � + ���� + � �

����������
�
�

���������
�

� 8�:<:�,� � 8 :<:��� � 8�:<:� + � 8 :<:��� � 8�:<:� � � 8 :<:� �� 8 :<:�,� � 8�:<:� + � 8 :<:��� � 8�:<:� � � 8 :<:� �� 8�:<:+,+ � 8 :<:+ � � 8�:<:+ � � 8 :<:+ �� 8 :<:��� � 8�:<:� � � 8 :<:� �� 8�:<:� � � 8 :<:� �
� 8 :<:� �

����������
�

���������
�

� �,�� �,�� +,+
	 � ���
	 � � +
	 � + �

����������
�

(II.28)

To estimate all the coefficients of the apparent elastic matrix, we need to use six
different computations with six different macroscopic strain tensors. The values of
the macroscopic strain tensor (load) in each computation are given in the table II.3.

Loading Imposed Field
� �

�
�,� �*�,� � +,+ �
��� �*� + � + �
1

� � � � � �
2

� � � � � �
3

� � � � � �
4

� � � ����� � �
5

� � � � ����� �
6

� � � � � �����

Table II.3 : The six loading conditions used to compute the apparent elastic properties in
KUBC boundary conditions.

All the samples are simulated using the six different loading conditions with
KUBC boundary conditions.

We give the apparent elastic matrix of each sample : equations (II.29), (II.30)
and (II.31) for samples with additive � � and equations (II.33), (II.34) and (II.35)
for samples without additive ��� . The mean apparent moduli are given by equations
(II.36) and (II.32).

� � � � ��� �

���������
�

��� � 	 � � � � � � � � �
� � � 	 ��� � � �

� ����� �
� 	 �

��� � � �
����� 	

� � �

����������
�

(II.29)
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Figure II.22 : Direct numerical simulation of samples with additive ��� , example of com-
putation with 1 2#2 � + 
 in KUBC. The map of equivalent strain 5�6 8 is shown. The hard
phase � � is in grey color.
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Figure II.23 : Direct numerical simulation of samples without additive ��� , example of
computation with � �,�*� ���

in KUBC. The map of equivalent strain is shown.
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� � � � � L �

���������
�

� � � 	 � � 	 � � � � � �
� � ��� �

� � � � �
� � � � � � � 	

� ��� � 	����� �� � �

����������
�

(II.30)

� � � ��� � �

���������
�

� �
� ����� ��� � � �

� � 	 ����� � � � �
�
�

� � �
	 � � � �

	 	 � �
	 	 �

����������
�

(II.31)

� � � ����� �

���������
�

� � � 	 � � 	 � � � � �
� ��� 	 � � � � �

� � � � 	 � � 	
� � 	 	 �

�
� � �

� � �

����������
�

(II.32)

� � � ��� � �

���������
�

� ��� � �����
� � � � � 	 	��

� ����� ���
� � 	�� �

����� � � � � �
�

��� � � 	 �� � � ��
� �

����������
�

(II.33)

� � � ��� L �

���������
�

� � ��� � � � ��� � � � � � �
����� � ����� � � �

	 	 � � 	 � ���
� ��� � �

� � � 	
� � �

� ��������
�

(II.34)

� � � ��� � �

���������
�

� ��� � � � � ����� � � � �
����� � ���

�
� 	 � 	

��� � � 	 	 � 	 	�
� � � � ���� 	 ���� 	

����������
�

(II.35)
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� � � ����� �

���������
�

��� � � � � � �
�
� � � ���

� � � � ����� � ��� �
��� � 	 	 	 	 	 �� 	 � � �

�
� � �� � 	

� ��������
�

(II.36)

One can notice some anisotropy of the retained apparent elastic matrices com-
puted for each sample. The values of the apparent elastic coefficients are in general
not very different in dimensions � � � � and � � � � . In the thickness direction � � it
is not the case.

As a result, our samples exhibit a significant anisotropy in the thickness direc-
tion. Physically, the value along the thickness of the sample is smaller by compari-
son with the two other directions. The small thickness of the samples is responsible
for this anisotropy.

To quantify the anisotropy of these apparent elastic matrices, we give here the
anisotropic index � for each sample. In the case of a matrix with a cubic symmetry,
this index is given by :

� � 	 � ���

� �,� � � ��� (II.37)

In our case, we take :

� ��� � � 8�:<:��� � � 8�:<:� � � � 8�:<:� �
� (II.38)

� �,� � � 8�:<:�,� � � 8�:<:�,� � � 8�:<:+,+
� (II.39)

and :

� ��� � � 8�:<:��� � � 8�:<:� + � � 8�:<:+ �
� (II.40)

We can also look at the anisotropy in the plane ��� � � . The in-plane anisotropy
coefficient ���

�
is defined as :

���
� � 	 � 8�:<:���

� � ��,� � � 8�:;:��� (II.41)
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with :

� �
�

�,� � � 8 :<:�,� � � 8�:;:�,�
	 (II.42)

The values of the retained anisotropy index for each sample and for the mean
matrix of each type of microstructure are given in the table II.4.

Samples �EW � �EW � �MW + �EW�� ��� � ���1� ��� + �����
� ����% �"! ����% ��� ��� � ��$ �����9�&� ����% � � ����% � ! ����% $ $ ����% � $
� � � ����% � � ����% ( � ����% % � ����% � � ����% (�� ����% $ � ����% � ! ����% $ !

Table II.4 : The index of anisotropy of each sample and of the mean matrix of each type.

It appears that the rather small thickness of the samples introduces a bias in the
determination of effective properties of the materials. Which means that their size is
not representative. We use in the following a statistical approach (as it is proposed
in the case of Voronoï mosaics) to estimate the effective physical properties of these
microstructures, and the size of representative volumes of these materials.

b) Young’s Modulus and Thermal Conductivity

Mixed boundary conditions have been used to estimate the apparent Young’s mod-
ulus of the samples in direction � � � � (figure II.24). The simulations of Young’s
modulus on the whole sample is also given for the sample � � � . As shown in this
figure, the absolute bounds of Voigt-Reuss and those of Hashin-Shtrikman are very
far apart. The experimental results in the case of the sample � � � are not close to
the results of simulation on the whole sample, which can be explained by the non
representativity of the size of the simulated samples.

In figure II.25 (a), the self-consistent model gives an apparent Young’s modulus
larger than the one given by the simulations of the whole map. This difference can
be explained by the smaller size of the used sample or / and by the fact that this
model is not good for this type of heterogeneous materials.

For the thermal conductivity, we have the experimental value only for the case
of the material ��� . This value gives an error of � � by comparison with numerical
simulations.

II.4.2 Quantifying the Representativity of the Investigated Samples

In many practical cases, as in our real microstructures, the concept of a repre-
sentative volume element does not apply or cannot be used when the size of the
investigated samples is limited. Especially, the thickness of our studied samples
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Figure II.24 : Simulation results of Young’s modulus and comparison with the experimental
values.

is not large enough by comparison with the two other dimensions (see figure II.1).
Instead, using smaller sizes in this case is the only possible method to estimate the
effective physical properties of the material.

The following aspects are investigated :

� Relationships between experimental results obtained on the whole sample but
still smaller than the RVE, on the one hand, and on an appropriate set of
smaller volumes (named uniform or regular partitions) and a random one on
the other hand.

� Effect of the variation of the volume of the smaller specimens.

� Comparison between the results given by the absolute bounds on the one hand
and the results given by two limiting cases : where the size of the smaller
specimens goes to zero and where this size goes to that of the representative
volume element on the other hand.

� Effect of applied boundary conditions : mixed and kinematic uniform bound-
ary conditions (KUBC) to compute the Young’s modulus

� � �
in the direction

� � � � of the sample ��� � .
a) Effect of Partitions

Figure II.24 shows an example of computation of apparent Young’s modulus
� 8�:<:

for two samples of our studied microstructures : � � � and ��� � . The results of
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Figure II.25 : Mean values and intervals of confidence on the mean value for Young’s
modulus � 8 :<: (a) and thermal conductivity (b) as a function of the domain size for the
specimen �EW � .
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computations are given for the whole specimen with volume � � :

� � � � � 	 � � � 	 � � � ��� � ����� � ����� ��� + (II.43)

and for two uniform partitions of the whole microstructure : the first partition is
divided into

�
smaller samples with volume � � :

� � � �� � � � �
����� � � ��� + (II.44)

and the second one is divided into � � smaller samples with volume � + :

� + � �
��� � � � � � � � � � � � ��� + (II.45)

The computations of Young’s modulus are made with mixed boundary condi-
tions on the whole specimen and on each smaller sample. In the case of two par-
titions, the average value is shown on figure II.24. One can clearly notice the bias
existing when computing with smaller samples, in comparison with the obtained re-
sult on the whole specimen, even if the set of smaller samples builds a uniform par-
tition of the whole microstructure. This bias is the due to boundary conditions. As
an important result, one notes that the average value of the apparent Young’s moduli
computed with mixed boundary conditions and with a set of smaller samples, form-
ing a uniform partition of the whole specimen, underestimates the apparent Young’s
modulus computed on the whole specimen with the same boundary conditions.

We can quantify the error made when computing with different uniform parti-
tions : we have an error of � ���	� 8 � � � � using the first partition and � ���	� 8 � 	 � �
using the second one for sample � � � . This error increases when the number of
smaller samples increases. These remarks hold true when using a random partition
of the whole sample with the same number of smaller samples.

We have similar remarks when computing the apparent shear modulus, the ap-
parent bulk modulus and the apparent thermal conductivity in different uniform
boundary conditions with a random partition.

b) Sizes of Specimens

We have seen in the case of apparent Young’s modulus, using mixed bound-
ary conditions, that the error in computation with a set of smaller samples increases
when the number of smaller samples increases. This means that, this error increases
when the size of smaller samples decreases and the partition in this case underesti-
mates the results obtained on the whole specimen.



II.4. DETERMINATION OF APPARENT PHYSICAL PROPERTIES 87

In the case of apparent shear modulus � 8�:;: and the apparent bulk modulus � 8�:<:
(respectively the apparent thermal conductivity � 8�:<: ), the computation with a given
partition with the kinematic uniform boundary conditions KUBC (respectively the
uniform gradient of temperature at the boundaries UGT) overestimates the results
obtained on the whole specimen. The computation with the static uniform bound-
ary conditions SUBC (respectively the uniform heat flux at the boundaries UHF)
underestimates the results obtained on the whole specimen. In both cases of bound-
ary conditions, the error in computation increases when the size of smaller samples
decreases.

When the sample is equal or larger than the representative volume element, the
apparent properties coincide with the effective ones. In many cases, they are not the
same (Huet, 1990), (Huet, 1991), (Sab, 1992), (Hazanov and Huet, 1994), (Ostoja-
Starzewski, 1998) and (Jeulin and Ostoja-Starzewski, 2002).

c) Comparison with Absolute Bounds

The bounds of Voigt-Reuss (respectively Wiener’s bounds) are the absolute
bounds of the elastic moduli (respectively thermal conductivity). The partition into
smaller samples overestimates or underestimates the results obtained on a parti-
tioned sample. If the size of smaller samples goes to zero, the computation of
the elastic properties (respectively thermal conductivity) with kinematic uniform
boundary conditions KUBC (respectively UGT) gives the same results given by the
absolute upper bound, or Voigt bound (respectively upper Wiener bound). The com-
putation with static uniform boundary conditions SUBC (respectively UHF) gives
the same results given by the absolute lower bound, or Reuss bound (respectively
lower Wiener bound).

Now, if the partitioned specimen is a representative volume element, the results
obtained with computation of this specimen are the effective ones and they are the
same with both two types of uniform boundary conditions. Another case must be
noted : if the partitioned specimen is larger than the representative volume element,
and the partition into smaller volumes gives samples with sizes equal to the size of
the representative volume element, in this case only the results obtained by averag-
ing all the samples give the effective ones.

d) Influence of Boundary Conditions

Figure II.26 shows the results of computation of the apparent Young’s modulus� 8 :<:��� in the direction � � � � on the sample ��� � . The computations are made with
mixed boundary conditions on the whole sample and on each smaller volume of the
uniform partition into ��� smaller specimens. In each computation, the map of the
equivalent strain (equation (II.18)) is shown.

As we have seen in the results of computations on smaller specimens, the aver-
age value of all apparent Young’s moduli of smaller specimens differs from what is
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Figure II.26 : Application of mixed boundary conditions on sample
�����

: effect of a
regular distribution of volumes on local field of equivalent strain.
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obtained with computation on the whole specimen. In figure II.26 one can remark
this phenomenon clearly : the maps of the equivalent strain are not continuous be-
tween two neighboring sub-domains, which can be explained by the effect of the
boundaries. We can make the same comments in the case of a random partition.

To study the case of kinematic uniform boundary conditions KUBC, we apply
the value of the average strain tensor � � � � obtained in the computation given in
figure II.26 (with mixed boundary conditions) as a uniform strain tensor � � (equa-
tion (II.46)) at the boundary on the same microstructure (with KUBC boundary
conditions). The results of these computations are shown in figure II.27. Results of
computations on the whole sample and on a set of the same uniform partition are
given. The strain tensor found in the first computation (figure II.26) and applied to
the second one (figure II.27) is :

� � � � �
��
� � �

�
����� �

�
� ��� �

�
� � �

�
�
� ��� � � ����� �

�
� � �

�
�
� � � �

�
� � � � � � � � �

� �
� ��� � (II.46)

Also in this case of boundary conditions, the result obtained by computation on
the whole microstructure is not the same as the average value of the results obtained
on a set of smaller volumes. In this case, the computations on smaller volumes
overestimate the results on the whole sample. In figure II.27, we observe the dis-
continuity in the maps of the equivalent strain of smaller volumes, which can be
explained also by the effect of the boundaries.

e) Comparison with Huet’s Results

Our microstructures are a good example of studies of heterogeneous materials with
samples smaller than the representative volume element. This problem is largely
studied theoretically by Huet in several works, for instance in (Huet, 1990), (Huet,
1991) and (Hazanov and Huet, 1994). A reminder of his theories is given in the
appendix A.

In this part, we validate some results by comparison with Huet’s results given in
appendix A.

The first result of Huet compares the apparent properties obtained on a large
sample smaller than the representative volume element, using two different uniform
boundary conditions. In the figure II.25(b), we present the results of numerical
simulations on the whole sample � � � , of the apparent thermal conductivity using
two different uniform boundary conditions : the uniform gradient of temperature
at the boundary (UGT) and the uniform flux at the boundary (UHF). One can re-
mark clearly that the apparent thermal conductivity � 8 :<:� ��� computed with the UHF
boundary conditions is smaller than once computed with the UGT boundary condi-
tions � 8�:<:� � 
 :
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distribution of volumes on local field of equivalent strain (sample
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� 8�:;:� ��� � � 8 :<:� � 
 (II.47)

which satisfies the inequality (A.1) of the appendix A.

In the inequality (A.3), the apparent properties of a given sample smaller than
the representative volume element (computed with KUBC or SUBC boundary con-
ditions) are bounded on both sides by the average apparent properties computed on
a set of smaller specimens forming a uniform or a random partition of the given
sample.

In fact, this is true also in our microstructures. Especially, it is also true when
using mixed boundary conditions to compute Young’s modulus. In figure II.24,
although bounding theorems are not available for effective Young’s modulus, we
find numerically that the apparent Young’s modulus

� 8�:;:� computed on the whole
sample � � � is larger than the average value of Young’s moduli computed on sets of
two examples of uniform partitions into

�
specimens and into ��� specimens,

� 8�:<:�

and
� 8�:;:� � . In this example we have :

� 8�:;:� � � ����� � ��� � � 8�:<:� � � 	�� � ��� � � 8 :<:� � � �
� � ��� (II.48)

In the inequalities (II.48), the apparent Young’s modulus computed on the whole
sample � � � is bounded on one side by average value of Young’s moduli of its sets
of uniform partitions into

�
and into ��� smaller specimens.

Now, if the studied large sample has the size of the representative volume el-
ement, the computation on a set of smaller specimens obtained with a uniform or
random partition of this sample gives bounds on both sides of the wanted effective
properties.

This has an application in our real microstructure and in the case of Voronoï
mosaics. In the case of real microstructures, figure II.28 shows clearly this phe-
nomenon. The wanted effective properties are those given by the periodic boundary
conditions and to which the results given by the uniform boundary conditions con-
verge in the case of larger volumes. In this figure, the effective bulk modulus � �����
(respectively the effective shear modulus � ����� ) is bounded on one side by the aver-
age value of the apparent bulk moduli � 8�:<:� � ��� (respectively shear moduli � 8�:<:� � ��� )
computed on a set of smaller specimens with the KUBC boundary conditions.

For example, for a volume of the smaller specimens :

� � � 	�� � � ��� + (II.49)

we have :
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� ����� � ���
� � ��� � � 8�:<:� � ��� � ��� � � ��� (II.50)

for the bulk modulus and :

� ����� � �
� � � ��� � � 8 :<:� � ��� � �

��� � ��� (II.51)

for the shear modulus, which correspond to the inequality (A.5) of appendix 1.

The inequality (A.5) is also verified in the case of physical properties of Voronoï
mosaics. In the case of elastic properties, figure I.7 explains clearly this result. Tak-
ing an example of volume of smaller specimens : � � ����� ��� � 	 � � , the effective
bulk modulus given by periodic boundary conditions � ����� (respectively effective
shear modulus � ����� ) is bounded on both sides by the average value of apparent bulk
moduli (respectively apparent shear moduli) computed on a set of smaller volumes
with size equals to � � ����� ��� � 	�� � with KUBC boundary conditions � 8�:<:� � ��� (re-
spectively � 8�:<:� � ��� ) and SUBC boundary conditions � 8 :<:� � ��� (respectively � 8 :<:� � ��� ).
So, we have :

� 8 :<:� � ��� � � � � � � ��� � � ����� � � ����� � ��� � � 8 :<:� � ��� � � 	�� � � ��� (II.52)

for bulk modulus and :

� 8�:;:� � � � � 	 � � � ��� � � ����� � �
��� � ��� � � 8�:<:� � ��� � � � � � ��� (II.53)

for shear modulus.

For the thermal conductivity of Voronoï mosaics, figure I.8 gives similar results.
If we choose for the size of smaller specimens � � � ����� ��� � 	 � � we have :

� 8 :<:� ��� � �
�
� 	 � ��� � � � � ����� � � � � � � ��� � � � � 8 :<:� � 
 � � � � � � ��� � �

(II.54)

The fourth result of Huet given in the appendix 1 (inequalities (A.7) and (A.8))
is also verified in the real microstructures and in the Voronoï mosaics, in elastic
moduli and thermal conductivity.

In the sample � � � , the mean value of apparent bulk moduli � 8�:;:� � � � (respectively
apparent shear moduli � 8�:<:� � ��� ) of a set of smaller specimens with a volume � �
� 	������ ��� + computed in KUBC boundary conditions (figure II.28) is bounded on
both sides by the effective bulk modulus � ����� (respectively effective shear modulus

� ����� ) on one hand and the upper bound � P � ����� (respectively � P � ����� ) on the other
hand; so we have :
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� ����� � ���
� � ��� � � 8 :<:� � ��� � ��� � � ��� � � P � ����� � � � ��� � ��� (II.55)

and :

� ����� � �
� � � ��� � � 8�:<:� � ��� � �

��� � ��� � � P � ����� � ����� � ��� (II.56)

In the Voronoï mosaics (figure I.7), we have :

� ����� � � ����� � ��� � � 8 :<:� � ��� � � 	 � � � ��� � � P � ����� � � � ��� � ��� (II.57)

and :

� ����� � �
� � � ��� � � 8�:<:� � ��� � �

��� � ��� � � P � ����� � � � � � ��� (II.58)

this is from the one hand, from the other hand we have :

�
� ��� ��� ��� � � � ��� � � 8 :<:� � ��� � � � � � � ��� � � ����� � � ����� � ��� (II.59)

and :

�
� ��� �	� � 	�� � ��� � � 8 :<:� � ��� � 	 � � � ��� � � ����� � �

��� � ��� (II.60)

for a volume � � � ����� ��� � 	�� � of smaller volumes.

The theoretical proof for the validity of these results is largely studied by Huet
in (Huet, 1990) under the form of what he calls the partition theorem.

The results obtained theoretically by Huet and validated numerically in our work
are also valid for shapes other than the parallelepipedic one. The type of partition
is not important; one can use a random partition inside the uniform one but with a
sufficiently large number of specimens � ; this is well illustrated in figure II.28 for a
uniform and a random partition with KUBC and periodic boundary conditions.

The results obtained here are also valid for shapes other than the cubic or par-
allelepipedic one used in this work, and which is the most suitable for the testing
when applying the proposed method. In numerical simulations, use of other shapes
of specimens and of samples will be possible, provided the sample will be decom-
posable into specimens with shapes filling the space in the case of uniform partition.
A good example of numerical simulations with cubic specimens is given in (Zohdi
et al., 2001).
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II.5 Effective Properties and Representative Volume Element
Size

The overall physical properties are studied in this part for a large range of volume
sizes � and a large number of realizations � of small volumes taken in the whole
real microstructures. The investigated physical properties are the elastic moduli
(bulk modulus � and shear modulus � ) and the thermal conductivity � .

For each property, the dispersion of the results when increasing the volume �
and the integral ranges are reported in subsection (II.5.1).

II.5.1 Dispersions of Physical Properties

The microstructures presented in the introduction of this chapter (especially the
specimens � � � as an example with additive and ��� � as an example without addi-
tive, figures II.22 and II.23) are introduced in the finite element method for various
boundary conditions : the kinematic uniform boundary conditions KUBC (the uni-
form gradient of temperature UGT in the case of thermal conductivity) and periodic
boundary conditions (PERIODIC) with two different methods of decomposition
into smaller volumes : regular and random decompositions. The objective of this
part is to estimate the apparent physical properties (the bulk modulus � 8�:<: , the shear
modulus � 8 :<: , the Young’s modulus

� 8 :<: and the thermal conductivity � 8 :<: ), as a
function of the size of the domain � taken in these microstructures.

a) Elastic Properties

The numerical simulations based on the finite element method are carried out
for two different boundary conditions: kinematic uniform boundary conditions
(KUBC) and the periodic boundary conditions (PERIODIC) for bulk modulus �
and shear modulus � and mixed boundary conditions for Young’s modulus

�
. The

mixed boundary conditions used here to compute the apparent Young’s modulus are
such that one face of the microstructure is fixed, and a given displacement is pre-
scribed to the opposite face in the tensile direction. The studied specimens are � � �
(as an example with additive, figure II.22(b)) with volume fraction of hard phase

� � � � �
�
�
� �

and ��� � (as an example without additive, figure II.23(a)) with vol-
ume fraction of hard phase � � � ���

�
� � � . The number of fields (smaller volumes)

� for each volume � is given in table II.5. The number � is found by subdivision
of the global volume � ��� � 
 8 � of the microstructure :

� � � � 
 8 � � 	 � � � 	 � � � ��� � � � � � ����� ��� + (II.61)

by sub-domains � . For example, the number � of fields for the volume � �
� � � � � � � � 	 ��� + is : 3662 fields. They are obtained from regular and
random subdivisions of the whole microstructure.
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Figure II.28 : Mean values and intervals of confidence on the mean value for the bulk
modulus 798�:;: (a) and (b) for the shear modulus

� 8�:<: as a function of domain size for the
specimen �EW � . The upper and lower bounds are (1430, 2.65 MPa) for 7 and (660, 0.05
MPa) for

�
.
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Volume of the Domain V (
��� + ) Number of Fields 


512 3662
4096 458
13824 136
32768 58
117188 16
468750 4
1875000 (the whole microstructure) 1

Table II.5 : Number of fields 
 used for all considered domain sizes, regular and random
partitions.

Figures II.28 (a and b) and II.25 (a) give the obtained mean values and variances
of the apparent moduli � 8�:<: , � 8�:<: and

� 8�:<: as a function of the volume size V. It
shows that the dispersion of the results decreases when the size of the domain in-
creases for all used boundary conditions.

The obtained mean values generally depend on the volume size, but also on the
type of boundary conditions. For each modulus, the values converge towards the
same limit for large volumes � , which is the wanted effective modulus. The values

� ����� , � ����� and
� ����� found for large volume sizes are reported in table II.6 and com-

pared to the Voigt-Reuss (upper bound and lower bound) and Hashin–Shtrikman’s
bounds (HS+ and HS-). The self–consistent model (SC), also given in table II.6,
provides a fair estimate for specimen � � � . However, the self-consistent estimate
strongly overestimates the effective properties of specimen ��� � .

Property Simulation Upper Bound Lower Bound HS+ HS- SC�
( �EW � ) 345 660 0.05 514 0.11 371�
( ��� � ) 207 702 0.06 564 0.13 456

7 ( �EW � ) 634 1430 2.65 948 2.70 618
7 ( ��� � ) 334 1521 3.08 1058 3.14 791
C ( �MW�� ) 1.20 1.68 0.08 1.46 0.17 1.31
C ( ��� � ) 0.77 1.79 0.09 1.58 0.20 1.47

Table II.6 : Values of numerical results (simulated on domains with volume � � � �)( $ ���� + ), Voigt-Reuss or Wiener’s bounds (upper and lower bounds), Hashin-Shtrikman’s
bounds (HS+, HS-) and self–consistent estimate (SC) for elastic and thermal properties
for the specimens �EW1� and ��� � . The elastic moduli are given in @ � 0�� J , the thermal
conductivity in @ � � ��� J

. The experimental value of C for ���>� is
��� � � @ � � ��� J

.

It can be noticed that, as in the case of simulations of the Voronoï mosaics (Kanit
et al., 2003a) (and chapter � ), the mean value given by the periodic boundary con-
ditions varies only slightly as a function of the size of the domain, as compared to
the other boundary conditions. Figures II.25 and II.28 give the corresponding con-
fidence intervals

� ��� 	���� � ��� 	���� � , where � is one of the apparent moduli, �
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its mean value and � �
� its variance.

Again in the case of real microstructures, an important bias is found in the mean
value given by all boundary conditions (in this case it is just verified for kine-
matic uniform boundary conditions and periodic boundary conditions) for small
volume sizes, the value being different from the effective one obtained for large
samples. For small volumes, the average moduli obtained by simulations depend
on the boundary conditions : KUBC produce results close to the upper bound. The
result is that the mean value computed on small specimens cannot represent the
effective response for the composite material even using the periodic boundary con-
ditions and a sufficient number of realizations. It appears also that for sufficiently
large sizes, here around :

�
� � � ��� 	 � ��� + (II.62)

the mean value obtained with the periodic boundary conditions practically does not
depend on the size of simulations. Any more it is claimed, in several works ((Terada
et al., 2000), (Kouznetsova, 2002), (Kanit et al., 2003a)), that the periodic bound-
ary conditions provide the most reasonable estimates among the class of possible
boundary conditions for statistically homogeneous media. There is however no for-
mal proof for that.

Note finally that the results of numerical simulations give a good agreement with
the experimental results. Figure II.24 shows the case of Young’s modulus

� 8�:;: for
the specimens � � � and ��� � (the relative error is about � � � for the microstructure
with additive � � � and � �

for the microstructure without additive ��� � (Young’s
modulus) and � � (thermal conductivity) for the specimen ��� � ).
b) Thermal Conductivity

The effective thermal conductivity of real microstructures is studied here using
real thermal conductivities of phases. The same microstructures used in the study
of the RVE for elasticity (the specimens � � � with � � � ���

�
�
� �

and ��� � with
� � � ���

�
� � � ) are used to estimate the apparent thermal properties. The objective

is to estimate the apparent thermal conductivity � 8�:;: of the effective homogeneous
equivalent medium, as a function of the volume of the sub-domains. The real ther-
mal conductivities of the phases are

� � � � � � � � � 	 ����� W/mK � � � � 	 ��� W/mK � (II.63)

which gives a contrast :

� 	 � � �
� � � � ��� (II.64)
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The results of numerical simulations are obtained only for periodic boundary
conditions, and validated with computations on large volumes with homogeneous
boundary conditions : uniform temperature gradient at the boundary (UGT), uni-
form heat flux at the boundary (UHF). Figure II.25 (b) gives the obtained mean
values and variances of the apparent thermal conductivity � 8�:<: as a function of the
volume size. The value of � ����� found for large volume sizes is reported in table II.6
and compared to the Wiener and Hashin-Shtrikman bounds. The self-consistent
model gives a fair estimate for � � � but overestimates strongly ��� � .
II.5.2 Determination of the Integral Ranges

a) Elastic Moduli

As in the case of simulations of Voronoï mosaics, the effective properties are
defined from spatial averages of fields � ��� � over a volume � . The fluctuations of
the average values over different realizations of the real microstructures inside the
volume � are considered.

Using the scaling law, equation (I.89), for the elastic properties used in real
microstructures, from the equation (I.90), we have :

� �� � � � � � � � � � � � � � � � � � ������� � � � � � ��� � � (II.65)

� �	 � � � � � � � � � � � � � � � � � � � ��� ����� � � ��� � � (II.66)

in the case of the specimen � � � and :

� �� � � � � � � � � � � � � � � � � � � � ��� � � � � � ��� � � (II.67)

� �	 � � � � � � � � � � � � � � � � � � � � ������� � � ��� � � (II.68)

in the case of the specimen ��� � .
Our data were fit to relation (I.94) for the elastic moduli � 8�:;: and � 8�:<: in the

case of periodic boundary conditions and kinematic uniform boundary conditions
(KUBC) in the case of the specimen � � � . The found parameters � + (in this case
it is a volume of material in ��� + ) and � are given in table II.7. The quality of the
model can be seen in figure II.29 (a, b, c and d), where the variances of simulated
results and the model are compared for the periodic boundary conditions and kine-
matic uniform boundary conditions. The power law is also well-suited for periodic
boundary conditions in this case of real microstructures.
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Figure II.29 : Quality of the fit for the specimen �EW � in regular decomposition, (a) 7
for KUBC, (b) 7 for periodic, (c)

�
for KUBC, (d)

�
for periodic and (e) C for periodic

boundary conditions.

Physical Properties Integral Range W + in
��� + Coefficient ��

( �EW � ) � $ % � �&� ! ��� �"! ��� ��� � � ��
( ��� � ) � � � ! � � � � ��� ( ����� ����� ( �

7 ( �EW � ) � ��$���� ����� �����9� � � ��� � $ �
7 ( ��� � ) � � $���� �

% � ����%
�
� � ����� ( �

C ( �MW�� ) � � � � � ! �
� ����$ � �

� ����� � �
C ( ��� � ) ��� � � � ! $�� ����$ % $�� �����)$ �

Table II.7 : Values of the integral range W + and of the coefficient � for elastic moduli 7 and�
and thermal conductivity C in the case of periodic boundary conditions for the specimens

�EW � and ��� � .
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From the coefficients given in table II.7, we see that the proposed scaling law in
relation (I.89) can be accepted for our simulations also in the case of real microstruc-
tures. The value of the integral range is comparable to the size of the heterogeneities
in the microstructures defined as the covariance range (figures II.5 and II.6). The
largest integral range of the elastic moduli is found for the bulk modulus � in both
microstructures ( � � � and ��� � ). The specimen ��� � gives a larger integral range
than specimen � � � . The coefficient � is less than 1 for � , meaning that the vari-
ance of the elastic moduli decreases more slowly with the volume than the variance
of the volume fraction.

b) Thermal Conductivity

The power law model proposed in the case of elastic properties can be used also
for apparent thermal properties. The point variance � �	 is :

� �	 � � � � � � � � � � � � � � � � � � 	 � ��� � ��� � � � � (II.69)

in the specimen � � � and :

� �	 � � � � � � � � � � � � � � � � � � � � ��� � ��� � � � � (II.70)

for the specimen ��� � .
The values of the integral ranges � + and of the coefficient � identified from the

simulations are given in table II.7 for periodic boundary conditions. They are found
to depend on the type of boundary conditions. The largest integral range for the
thermal conductivity is obtained for the specimen ��� � (as for the elasticity) and the
coefficient � is lower than � . These integral ranges are larger than for the case of
elasticity. Figure II.29 (e) shows the quality of the model in the case of specimen
� � � .
II.5.3 Size of the Representative Volume Element

The real microstructures studied here can be considered as realizations of a ran-
dom set. Therefore, as in the case of Voronoï mosaics, the idea that there exists one
single possible minimal RVE size is not verified. It means that the size of a RVE
must be given for a specific physical or morphological property, a given contrast
in this property in different phases, and a given precision in the estimation of the
effective studied property for a given number of different realizations that one is
able to generate.

We recall that, in the theory of samples, the absolute error � 8 
�� on the mean
value of a studied property � , obtained with � independent (different) realizations
of volume � , is given as a function of the variance 	�� � � � � by :

� 8 
�� � 	���� � � ��
�

(II.71)
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which gives the relative error � ����� 8 by :

��� ��� 8 � � 8 
��
� � 	���� � � �

� �
�

(II.72)

For sufficiently large volumes, the size of the RVE can be defined as the volume
� � P � for which � � � realization is necessary and sufficient to estimate the mean
(effective) property � with a relative error � ���	� 8 � � � for instance, provided we
know the function � � � � � . On the other hand, we can estimate the effective prop-
erty using smaller volumes, and consider � different realizations to obtain the same
relative error ������� 8 . Equation (II.72) gives :

� �
�
� �
� � � �

� � � �� ��� 8
(II.73)

The exact mean value � and its variance for a given domain size are a priori
unknown in the case of effective elastic moduli and effective thermal conductivity.
The absolute error 	���� � � � on the mean value is given in equation (I.110) as :

	���� � � � � 	����
� 	 � +

� 
 � (II.74)

where � stands here for � 8 :<: , � 8�:<: or � 8�:;: .
As in the case of Voronoï mosaics, we can note that for both types of microstruc-

tures (specimens � � and ��� ) and for the same absolute error � 8 
�� , the periodic
boundary conditions require the largest domain size, compared to kinematic uni-
form boundary conditions (KUBC) (respectively UGT) and static uniform bound-
ary conditions (SUBC) (respectively UHF) for � and � (respectively � ). This is
due to higher fluctuations of apparent properties obtained with these conditions.
The kinematic uniform boundary conditions (respectively the uniform gradient of
temperature at the boundary) require a smaller domain size than the static uniform
boundary conditions (respectively uniform heat flux) for the same absolute error� 8 
�� .

The minimal number of different realizations � necessary and sufficient for the
estimation of the effective property � with a given absolute error � 8 
�� and a volume

� is :

� � � � �
�

� �8 
��
� �
�

	 � +
� 
 � (II.75)

The absolute error � 8 
�� corresponds to the estimation of the mean apparent mod-
uli � 8 :<: which have been found to depend in general on domain size and do not
necessarily coincide with the wanted effective property � ����� , especially for small
domain sizes and uniform boundary conditions (KUBC and SUBC) (UGT and UHF
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in thermal conductivity). This corresponds to a bias of the estimation. From the re-
sults of figures II.28 and II.25, the smallest domain size for which the bias can be
neglected is about :

�
� � � ��� 	 � ��� + (II.76)

(that represents a cube of 	 � � 	 � � 	 � ��� + ) for � 8�:;: , � 8�:;: and � 8�:<: in the case of
periodic boundary conditions for both types of microstructures (specimens � � � and
��� � ). For the uniform boundary conditions (KUBC and SUBC) (UGT and UHF
in thermal conductivity), we need large volumes (the whole volume of microstruc-
ture : 	 � � � 	 � � � ��� � � + at least) to obtain unbiased mean values, i.e. mean
apparent moduli � 8�:<: that almost coincide with the wanted effective ones � ����� .

Using equation (II.72), and for a volume � providing unbiased moduli ( � � �
� ��� 	 � ��� + at least), we deduce the relative precision � ���	� 8 of the effective property
� ����� (namely the effective bulk modulus � ����� , the effective shear modulus � ����� or
the effective thermal conductivity � ����� ). Hence, the minimal number � of fields
that must be considered is deduced from equations (II.73) and (II.74). This is illus-
trated in figures II.30 and II.31 ((a) for specimen � � � and (b) for specimen ��� � )
for �����	� 8 � � � in the case of periodic boundary conditions.

For a given precision � ����� 8 , the minimal number of necessary realizations de-
creases when the domain size increases for all the properties. The results are given
only in the case of periodic conditions, which require the largest number of fields,
compared with other boundary conditions. We give some interesting examples as
applications of equation (II.73) for two unbiased volumes and periodic boundary
conditions for all properties :

� � � �
� � � ��� 	 � ��� + (II.77)

and :

� � � � 	�� � � ��� + (II.78)

The minimal numbers � of fields to obtain the effective bulk modulus � ����� , the
effective shear modulus � ����� and the effective thermal conductivity � ����� , for a given
precision ������� 8 ( � � , 	 � ,

���
and � � � ), are given in table II.8 for the studied speci-

mens ( � � � and ��� � ).
On the other hand, one can define the minimum size of the RVE �

� P � for a
given ������� 8 and a given number � � � ��� of fields (for instance). The results are
shown in figure II.32. When � ����� 8 � � � , we give the values of �

� P � for both two
types of studied microstructures and for all the physical properties ( � , � and � ) in
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Figure II.30 : Number of fields (for bulk modulus 7 , shear modulus
�

and thermal conduc-
tivity C ) as a function of the domain size (for large domain size) for a given relative error
������� 8 �

� 5
: (a) for the specimen �EW � and (b) for the specimen ��� � .
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Figure II.31 : Number of fields (for bulk modulus 7 , shear modulus
�

and thermal conduc-
tivity C ) as a function of the domain size (for small domain size) for a given relative error
������� 8 � � 5

: (a) for the specimen �EW � and (b) for the specimen ��� � .
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Relative Precision � ���	� 8 �
� 5 ��� ��� 8 � � 5 ������� 8 � �)5 ������� 8 � �&�65

7 for �EW � ( � � � � � � �"! ��� + ) 7576 1894 300 75
7 for �EW � ( � �*� � �)( $ � ��� + ) 3163 790 126 30�

for �EW � ( ��� � � � � �"! ��� + J 6455 1613 258 64�
for �EW � ( �F�*� � �)( $ � ��� + J 3113 778 124 30

C for �EW � ( ���=� � � � �"! ��� + ) 22624 5656 900 226
C for �EW � ( � � � � �)( $ � ��� + ) 13112 3278 524 130
7 for ��� � ( �
� � � � � �"! ��� + ) 48386 12096 1935 480
7 for ��� � ( � �*� � �)( $ � ��� + ) 21853 5463 874 218�

for ��� � ( �
� � � � � �"! ��� + J 28033 7000 1121 280�
for ��� � ( � �*� � �)( $ � ��� + J 14674 3668 586 146

C for ��� � ( � � � � � � �"! ��� + J 38814 9700 1552 388
C for ��� � ( �F�*� � �)( $ � ��� + J 21287 5321 850 212

Table II.8 : Minimal number of fields necessary to estimate the effective elastic moduli
and thermal conductivity with given relative precision, for given volume � �=� � � � �"! ��� + ,
� � � � �)( $ � ��� + (for periodic boundary conditions).

Sample �EW1� Sample ��� �
�

� P �� � �&� � � �&� � �?�&� � ��� + �
� P �� � � ��� � � ��� � � ������� +

�
� P �	 � � � $ � � � $ �?� � $���� + �

� P �	 � � % � � � % � � � % � ��� +
�

� P �	 � � %�� � � %�� � � %�� ��� + �
� P �	 � ! � �

� ! � �
� ! � �

��� +

Table II.9 : The minimal size of the RVE �
� P � for different physical properties obtained

by the periodic boundary conditions. The results are given for 
 � �&� �
realizations and for

the precision � ���	� 8 � � 5
.
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the table II.9.

The computation of such sizes in a finite element code (with a mesh density
sufficiently large) is possible only when using a parallel computing. One would
compute on smaller volumes when using a simple workstation or PC. The last solu-
tion requires however a sufficient number of independent samples. As a comparison
between all these results, we remark that for the same relative precision � ���	� 8 and
number of fields � , the thermal conductivity � requires a volume larger than the vol-
ume required for the shear modulus � and the bulk modulus � although the contrast
in shear modulus � 	 is the largest one. This result is true in both specimens. One
must note also that the specimen without additive ��� � requires a volume larger than
the volume required by the specimen with additive � � � . This is due to the values
of the integral ranges � + and the covariance ranges � , and this result is true for � ,

� and � ( � � times for � , � 	 times for � and 	 times for � ).

II.6 Analysis of Local Fields : Localization and Percolation Phe-
nomena

The term percolation is used extensively in a great variety of situations and evokes
the notion of transport in a medium partially interconnected like a porous medium.
The concept of percolation used in this work was introduced firstly by the mathe-
maticians Broadbent and Hammersley in (Broadbent and Hammersley, 1957). The
mathematical description of the percolation is associated with the notion of perco-
lation threshold, or critical value of the volume fraction describing the connectivity.

This notion can be illustrated by a simple example : let’s imagine that one mixes
two powders, physically indiscernible except that one has a large electric conductiv-
ity and the other is insulating. Grains of powder are very small and fill in a compact
way a very big volume. We can consider the number of grains as infinite. It is
obvious that, if the amount of conductive powder is small, the whole behaves like
an insulator. The original character of the percolation resides in the fact that the
passage of a state to the other takes place suddenly for a precise value of the powder
conductor percentage in the mixture. This percentage marks the percolation thresh-
old.

The works of Shante and Kirkpatrick (Shante and Kirkpatrick, 1971) and those
of Kirkpatrick (Kirkpatrick, 1973) served as an introduction to the percolation to
the increasing number of physicists interested by the problem in the last decade.
These articles are relative to problems of threshold or conductivity, they remain ex-
tensively valid. More lately the book and magazine of Stauffer (Stauffer, 1985) and
(Stauffer, 1979), leaning on statistics, and the one of Essam and Bhatti (Essam and
Bhatti, 1985) and the works of Domb (Domb et al., 1980) brought points of com-
plementary view to those exposed in the previous works.

The interest that is currently drawn to the theory of the percolation is justified
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Figure II.32 : Number of fields as a function of the domain size for a given relative error
������� 8 �

� 5
: (a) for the specimen �EW/� and (b) for the specimen ��� � .
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by the fact that it is unifying concept (De Gennes, 1976) permitting to establish
ties between the physical phenomena in very different disorganized systems. Also,
there is an analogy between the problem of the permeability of a porous media and
the one of the passage of the electric current in the disorganized medium and with
geometrical percolation and once of the mechanical fields studied in this work.

Let us try now to characterize the percolation properties of the microstructures
studied in this chapter. To compare the percolation properties of two microstruc-
tures, one needs to specify the investigated property and to define a percolation
index. One tries to detect whether phase percolates “more” than the other in one
microstructure. A first proposal for such an index related to mechanical properties
is the matricity parameter introduced in (Dong and Schmauder, 1996), (Lele et al.,
1998) and (Schmauder et al., 1999)

The matricity of phase � in such an � -
�

two-phase composite was recently intro-
duced as an additional structural parameter and can be determined from a represen-
tative micrograph, which shows the different phases. The phases of the composite
are reduced to lines from an image analysis system by maintaining its topology
(Lele et al., 1998). The length of these skeleton lines in one phase, � � , is then re-
lated to the length of all skeleton lines in both phases, � � � ��� . This ratio is called
matricity of phase � :

� � � � �
� � � ��� (II.79)

By definition, � � � � � � and the sum of the matricities of all phases equals to
one :

� � � ��� � � (II.80)

Thus, � characterizes the degree of mutual interpenetration of the phases in
the composite. � � varies from a value close to � to a value close to � when the
microstructure changes from a microstructure with � -inclusions to a microstructure
with

�
-inclusions. The values � and � are obtained if the corresponding microstruc-

tures contain nicely separated inclusions with zero skeleton line length such as in the
case of spheres. However, a certain � -value can describe different microstructures
of a composite with a given volume fraction and with possibly different mechanical
behaviors. This matricity index can be shown however to be flawed.

A self-consistent matricity model has been developed to simulate the mechani-
cal behavior of an isotropic two-phase composite with coarse interpenetrating mi-
crostructure in (Lele et al., 1998). The model is an extension of a recently developed
self-consistent model for matrices with randomly distributed inclusions (Dong and
Schmauder, 1996). The model is applied to an Fe/Ag composite in (Lele et al.,
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1998) and to a W/Cu composites in (Schmauder et al., 1999).

The aim of the present section is to see whether the huge difference in the effec-
tive properties of materials � � and ��� can be attributed to the percolation behavior
of the hard phase within both mixtures.

A percolation index is first defined to characterize the rate of percolation of a
given field. Note that contrary to the initial naive view of percolation mainly based
on binary arguments (“percolate or not”), percolation can be seen as a continuous
process in the case of continuous systems, and not necessary a sudden one. With
the help of tools of image analysis and of the morphological processes of image
reconstruction, this notion is applied to geometrical percolation of the hard phase
investigated in this chapter, on the one hand, and to mechanical fields (strain) to
quantify strain localization phenomena on the other hand.

II.6.1 Percolation Index

The geometrical percolation in random structures can result in changes in the
macroscopic physical properties of the system near the corresponding percolation
threshold (Stauffer, 1985), (Deutscher et al., 1983), (Deutscher, 1987) and (Za-
llen, 1983). Since the physical properties are easily measured experimentally, the
percolation transition phenomena are easily studied by the changes in the physical
properties. We first define and quantify what is called here geometrical percolation.

For that purpose, we need the notion of ��� image re-construction. Let’s con-
sider the set

�
completely situated in another large set � (

��� � ). The geodesic
dilatation with size

�
of

�
in � is :

� �
�
� � � � � � ��� � � ��� � � � � � � (II.81)

� ��� � � � is the smallest distance between the point � and the set
�

. We define the
geodesic re-construction by successive geodesic dilatations with size

� � � � 	 � � �
of

�
in � , until the whole set � has been explored.

The volume fraction � : of percolating phase � in direction � � � � is defined by
the following procedure :

1. Determine the ��� re-construction of the first section � � � � 	 � � �
of the image

of phase � in direction � � � � . Call it � �: .

2. Determine the ��� re-construction of the last section � � � � 	 � 	�� � � � of the
image of phase � in direction � � � � � . Call it � T �: .

� � means that the successive geodesic dilatations are made in the negative
direction of � � � � .
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3. The percolating phase in � � � � direction is then defined as the intersection of
� �: and � T

�: , so :

� : � � �: 
 � T
�: (II.82)

It is clear, especially in the case of the heterogeneous materials like inclusions
in matrices, that the volume fraction of percolating phase � : is lower than or equal
to the volume fraction of phase � studied in the heterogeneous material. It enables
us to quantify the volume of phase that percolates and to compare it to the whole
volume of this phase. It is then possible to define a percolation index � � or perco-
lation ratio. The percolation index is the ratio between the volume fraction of the
percolating phase to the whole volume fraction in the microstructure of this phase,
equation (II.83) :

� � � � :
� (II.83)

It is always lower than or equal to 1. It is equal to 1 if the whole phase percolates,
and equal to zero if there is no percolation of this phase (physically it means that
this phase is a set of separated inclusions). Figures II.33 and II.34 illustrate the three
steps in the 	�� and ��� image re-construction.

II.6.2 Geometrical Percolation

In this part we study the phenomenon of geometrical percolation, and to quantify
it, the curves of the geometrical percolation ratio are represented in figures II.35,
II.36, II.38 and II.39. The previous definition of percolating phase � : substantiates
the notion of geometrical percolation. In particular, we will say there is a geomet-
rical percolation of phase � as soon as the volume fraction of percolating phase � :
does not vanish.

Because of the size of our microstructures, especially the small thickness with
respect to the � � � � axis, we have chosen to study the evolution of the geometrical
percolation ratio of each of the two present phases according to the number of sec-
tions in the plan ��� � � added in the thickness (the � � axis).

To each number of sections included in the ��� image we draw the geometrical
percolation ratio in the two directions of sections : � � � � and � � � � . One finds
these results in figures II.35 and II.36 for microstructureses � � and in figures II.38
and II.39 for microstructures ��� .

a) Samples With Additive �EW
The evolution of the geometrical percolation ratio � � , according to the thickness,

is given in figure II.35 for the phase � � and in figure II.36 for the phase � � for
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(a) (b)

(c) (d)

Figure II.33 : Example of ��� image re-construction. (a) Image of 0 �: , (b) image of 0 T �: ,
(c) image of 0 : and (d) image of the whole image (set

�
).
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(a) (b)

(c) (d)

Figure II.34 : Example of ��� image re-construction. (a) Image of 0 �: , (b) image of 0 T �: ,
(c) image of 0 : and (d) image of the whole image (set

�
).
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microstructures � � . For each phase, these figures show the variation of the per-
colation ratio following two directions � � � � and � � � � . The number of sections
added according to the thickness is equal to ��� sections for a length of ��� ��� .

One notices that for the phase � � , one finds cases where this phase does not per-
colate in the first section. It is the case for specimen � � � according to the direction
� � � � and the specimen � � � according to the direction � � � � (figure II.37). In the
four remaining : � � � and � � + following the direction � � � � and � � � and � � +
following the direction � � � � , the percolation following the two directions starts at
the first section. The largest percolation ratio on the first section is recorded for
the specimen � � + following the two directions � � � � and � � � � . While adding
sections according to the direction of the thickness, the percolation ratio increases
until it reaches the maximal value, that is � in any case, after a certain number of
sections. This evolution is relatively fast since one only reaches the maximal value
of the percolation ratio after about twenty sections (about one third of the whole
thickness). One can notice, in short, that in all these cases, the global percolation
ratio on the set of ��� image of each specimen is equal to � , meaning that all the
phase � � percolates in the two directions � � � � and � � � � . They are no isolated
inclusions of phase � � .

Figure II.36 presents the evolution of the geometrical percolation ratio for the
phase � � in samples � � . In this type of microstructure one finds only one case
where the geometrical percolation ratio is vanishing on the first section (sample
� � + ) with respect to the direction � � � � . All the other rates of percolation have a
non zero value on the first section. As in the case of the phase � � the evolution of the
geometrical percolation ratio is relatively fast. One reaches the maximal value after
about twenty sections (ie. � � ��� ). One also notice that all the rates of percolation
are equal to � on the totality of the image as for the phase � � . This allows us to say
that the phases � � and � � are interconnected or bi-percolated in all samples.

b) Samples Without Additive ���

Figures II.38 and II.39 present curves of the geometrical percolation ratio for the
phases � � and � � in the case of the microstructure ��� . On the first section one
doesn’t find any geometrical percolation in the case of specimen ��� + following the
two directions � � � � and � � � � (figure II.40), and in the case of the one of ��� � in
direction � � � � , for the phase � � . For the phase � � , specimen ��� � doesn’t present
a geometrical percolation in any direction in the first section, and it is also the case
for specimen ��� � in the direction � � � � .

One notices that there are cases where the geometrical percolation of the phase
� � increases only after a certain number of sections added. Specimen ��� + perco-
lates according to direction � � � � after

�
sections (about 	 ��� ) and after 10 sections

following � � � � (about
� � � ). Four sections are also necessary so that the sample

��� � percolates according to direction � � � � . It means, physically, that in these
cases the phase � � is only made of separate inclusions in the matrix (the phase � � )
according to the studied direction.
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Figure II.35 : Evolution of the geometrical percolation ratio 0 � of the hard phase 0 � for
samples with additive �MW . (a) In @ - � J

direction, (b) in @ -
. J
direction.
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Figure II.36 : Evolution of the geometrical percolation ratio 0 � of the soft phase 0E� for
samples with additive �EW . (a) In @ - � J

direction and (b) in @ -/. J
direction.
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(a) (b)

(c)

Figure II.37 : Evolution of the percolating phase of the hard phase 0 � for the sample �EW �
in @ -
. J

direction. (a) After � ���
( 0 � � ����%��

), (b) after
�&� ���

( 0 � � ����% � ) and (c) the
whole sample, after � �����

( 0 � � �
).
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It can be noted that in material ��� , the phase � � percolates more slowly than
the phase � � . This microstructure is also bi-percolated.

By comparison with microstructures of the type � � , the phase � � percolates
more slowly in type ��� (after about � � � � ) than for the type � � (only � � ��� are
necessary), which can be related to the fact that the size of the RVE of type ��� is
larger than the one of the type � � .

II.6.3 Mechanical Percolation

After having studied the phenomenon of the geometrical percolation in our mi-
crostructures, we consider the case of the percolation of the mechanical fields. The
objective is to study paths of high strain or high stress in a microstructure submit-
ted to a given load. The survey of strain paths can explain phenomena like strain
localization bands that exist in some deformed samples. Indeed, the strain bands
in a microstructure can be defined as paths of percolation of this variable in this
microstructure. For example, places of the microstructure where the value of the
local equivalent strain is larger than a fixed threshold.

We define the percolation of a mechanical field as follows : a value of me-
chanical variable ( � �
	 for instance) is attributed to each voxel of the microstructure
according to the results of a finite element computation. A threshold image is ob-
tained by selecting the domain where the variable is greater than a given threshold.
One studies then the geometrical percolation property of this domain. In particular
the percolation index can be computed in the same way as in the previous section.

To understand this phenomenon we used the microstructure � � � ( ��� � respec-
tively) and we submit it to an external loading of type

� �,� � � under KUBC bound-
ary conditions. The chosen local variable is the equivalent strain � �
	 . This local
variable strongly varies in the microstructure. One calls percolated phase in this
case, the set of Gauss integration points of the microstructure that have a value of
the equivalent strain larger than a fixed threshold, and one checks if this set perco-
lates or not.

Following two directions � � � � and � � � � , the figure II.41 shows the percola-
tion ratio of the calculated equivalent strain, above a given threshold. It is obvious
that one finds that the percolation ratio is equal to � for a threshold equals to � , be-
cause necessarily all the points have an equivalent strain superior or equal to zero.
When the value of the threshold increases, the percolation ratio decreases until � .

Figure II.42 (figure II.43 respectively) gives an example of the percolated do-
main of the equivalent strain of the examples mentioned before. The skeletons
present the domain of the microstructure with an equivalent strain superior to� �
	 � �

���
for the sample � � � and to � �
	 � �

� �
for the sample ��� � that is per-

colating geometrically following direction � � � � . If we look at the figure II.41,
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Figure II.38 : Evolution of the geometrical percolation ratio 0 � of the hard phase 0 � for
samples without additive ��� . (a) In @ - � J

direction, (b) in @ -
. J
direction.
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Figure II.39 : Evolution of the geometrical percolation ratio 0 � of the soft phase 0E� for
samples without additive ��� . (a) In @ - � J

direction and (b) in @ -/. J
direction.
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(a) (b)

(c)

Figure II.40 : Evolution of the percolating phase of the hard phase 0*� for the sample ��� +
in @ -
. J

direction. (a) After
$ ���

( 0 � � ��� � % ), (b) after
�&� ���

( 0 � � ����% � ) and (c) the
whole sample, after � �����

( 0 � � �
).
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Figure II.41 : Evolution of the strain field percolation ratio as a function of the equivalent
strain threshold. (a) Example of computation of the sample �MW#� with ���,� � �
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we find that the percolation ratio in the case of the sample � � � is equal to about
� � � �

�
�
�

for � �
	 � �
���

and � � � �
� � � for � �
	 � �

� �
for the sample ��� � in � � � �

direction. This is a rather small connected domain associated with strain localiza-
tion in the soft phase. This band of intense deformation can be seen also on the
strain map of figure II.42b (figure II.43b).
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Figure II.42 : Image of the percolated volume
�
� for the variable 	 � 
 for the computation

using the sample
��� �

. The imposed strain tensor (loading) is � 
�
 � �
. The percolation

is given in the direction ������� . (a) The whole sample, (b) map of 	 � 
 and (c) percolated
volume for 	 ��
 � �
	 �

(
�
�
� �
	 
 �

).
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Figure II.43 : Image of the percolated volume ��� for the variable ����� for the computation
using the sample

��� �
. The imposed strain tensor (loading) is �
	�	
� � . The percolation

is given in the direction ������� . (a) The whole sample, (b) map of ����� and (c) percolated
volume for � ��� � ����� ( ����� ��� ��� ).
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III.1 Introduction

For the economic and industrial reasons, the practical experiences are very costly.
To solve this problem and to understand better and control relations between the
morphology of microstructures and their physical properties, the recent studies in
this domain try to replace the real images of microstructures by simulated ones us-
ing tools of mathematical morphology and a image analysis. Simulated images are
easier to generate and to manipulate in the numerical simulations.

The aim of this chapter is to estimate the effective properties of new simulated
microstructures and to compare them with the previous real microstructures.

We have chosen boolean schemes of hexagonal rods and plates, as examples of
microstructures that we expect to be stiffer than the previous real samples.
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Figure III.1 : Geometry and dimensions of the used primary grains in hexagonal mi-
crostructures. The dimensions are given in pixels.

III.2 Morphological Construction

The generation of boolean scheme starts with the definition of the used primary
grain. In the studied microstructures here, one uses a hexagon as primary grain.
Two different types of geometry have been studied : one based on the hexagonal
plate (microstructures � ) and the other based on hexagonal rod (microstructure � ).
Two volume fractions of the hard phase, represented by hexagons, have also been
generated,

� � � of the hard phase (microstructures � � � and � � � ) and ��� � of the
hard phase (microstructures � ��� and � � � ). The geometry and the dimensions of
the used primary hexagons are shown in figure III.1.

The distributions of hexagons in the space are random. The position of each
hexagon in the space is defined completely by the knowledge of its three angles
that makes its axis with axes of the Euclidean reference � � , � �

and � � . Indeed,
generation of the random positions of hexagons in the space amounts to generate
the three random values of the components of the unit vector � , axis of the plates
and rods. Capacities of calculation require a size of the ��� image equals to a cube
of 	 � � � 	 � � � 	 � � pixels.

III.3 Finite Element Simulations

The same methodology as for the direct computations of the apparent elastic mod-
uli for the real microstructures is used here to find the apparent elastic moduli for
the Boolean models with hexagonal prismatic grains. Values of the elastic proper-
ties of the two phases used for the real microstructures are also the same used in this
case. The different apparent coefficients of the elasticity matrix are computed with
KUBC boundary conditions. Figures III.2, III.3, III.4 and III.5 show the nature of
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the generated microstructures and the map of the equivalent strain in a computation
where the imposed loading is

� �,� � � . The apparent elastic matrices are given by
equations (III.1), (III.2), (III.3) and (III.4).

� � � � � � �

���������
�

����� 	 � � 	 ��� � 	 �

� ��� 	���� � � �
� �

�
�

� �
	 ��� � 	

	 � � �
	 � �

� ��������
�

(III.1)

� � � ��� � �

���������
�

� � 	�� � �
� � �

�
� 	 �

��� ��� ��� � � � �
��� � � �

�
�� � 	 � 	

� � � 	� � 	

� ��������
�

(III.2)

� � � S � � �

���������
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��� � � 	

	�� � 	
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� ��������
�

(III.3)

� � � S�� � �

���������
�
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� ��� � �

��� 	 � �
� � � � � � �� �

� � �� 	 	 ����
�

����������
�

(III.4)

The apparent matrices of elasticity found are not anisotropic. While looking at
the table III.1, one finds that we can consider that the size of our microstructures is
representative.

Microstructure � ��� � ( � 0 ��� 0 ( �
Anisotropy index � ����� � ����% ( ����% � ����% (

Table III.1 : The index of anisotropy of each microstructure.
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Figure III.2 : Boolean model with
���65

of plate hexagons ( 0 ���
). (a) The first section in

plane
� . , (b) the ��� image, (c) finite element mesh and (d) map of equivalent strain � �
	

with loading � �,� � �
under KUBC boundary conditions.
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Figure III.3 : Boolean model with ( �65 of plate hexagons ( 0 ( � ). (a) The first section in
plane

� . , (b) the ��� image, (c) finite element mesh and (d) map of equivalent strain � �
	
with loading � �,��� �

under KUBC boundary conditions.
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Figure III.4 : Boolean model with
���65

of rod hexagons ( � ���
). (a) The first section in

plane
� . , (b) the ��� image, (c) finite element mesh and (d) map of equivalent strain � �
	

with loading ���,�*� �
under KUBC boundary conditions.
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Figure III.5 : Boolean model with ( �65 of rod hexagons ( � ( � ). (a) The first section in
plane

� . , (b) the ��� image, (c) finite element mesh and (d) map of equivalent strain � �
	
with loading � �,��� �

under KUBC boundary conditions.
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In the table III.2, one finds a comparison of values of the effective elastic prop-
erties of the simulated Boolean models and those of the real microstructures. Mi-
crostructures with hexagonal rod ( � � � and � ��� ) are more rigid than those with
hexagonal plate ( � � � and � ��� ). It can be explained by the fact that the hard phase
in the microstructures with rod hexagons is connected more that in the other case
because of the geometry of primary grains. The effect is more pronounced for

� � � � � � .

Microstructure � ��� � ( � 0 ��� 0 ( � �EW � ��� �� @ � 0�� J � � � ! ! % ��%�� ! � % �"! � � � (
7 @ � 0�� J ! ! % %���$ � � � (�� � $ �"! � �"!
�4@ � 0�� J $ � % � ��� � !6� � � �&�)% �)( $ �����

Table III.2 : Results of numerical simulations and comparison with samples of real mi-
crostructures.

III.4 Conclusions

This chapter contains only rough estimates of the effective properties, without any
statistical analysis, for the sake of brievety. Two important conclusions are noted :

� The effective elastic moduli given by hexagonal boolean microstructures are
higher than those given by the real materials. This is true for both types (with
and without additive).

� The boolean microstructures with rod hexagons are more rigid than with plate
hexagons.

This chapter is a step towards the optimization or the design of microstruc-
tures. Corresponding process conditions to obtain real microstructures close to these
Boolean schemes must be found for practical applications.
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GENERAL CONCLUSION

At the end of this work, one important message for the mechanics of hetero-
geneous media is to abandon the idea of the uniqueness of the size of the Rep-
resentative Volume Element. Even though a deterministic size of a RVE can be
defined as the volume size for which apparent moduli computed with KUBC and
SUBC boundary conditions coincide for a given precision, it is possible to consider
smaller volume sizes to estimate the effective properties. The fluctuations of appar-
ent properties from sample to sample are then compensated by the use of a sufficient
number of realizations of given size.

The effective properties found by this procedure are related directly to several
parameters. The average computed on a set of different samples depends on the
number of considered samples. This relation can be expressed by a relative preci-
sion. Therefore the effective property is related to a minimal number of samples
that must be considered to reach a given precision for the mean apparent property.
It is clear, as shown numerically, that the minimal number of samples used to have
a certain effective property with a given precision is larger when smaller sizes are
considered. When the size of samples increases, the required number of samples
decreases. The limit case is the deterministic size of the RVE for which one sample
is sufficient.

To characterize the dependence of the amplitude of the fluctuation of apparent
properties on volume size, we have introduced and extended the notion of integral
range. The integral range, from the physical view point, is related to the average
size of the heterogeneities existing in the studied heterogeneous medium. The sim-
plest case that permits us to understand the physical meaning of the integral range
is the case of a morphological property, for instance the volume fraction studied in
this work for Voronoï mosaics. The integral range in the case of volume fraction is
simply the average size of grains that are distributed randomly among the different
phases. Computations with different samples or different realizations leads to an
interval of apparent properties. This interval is related to the variance of the results.
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It decreases when the sample size increases. This dependence is approximated in
this work by a power law. The coefficient in this power law is in general equal to
� for additive properties like volume fraction and it is only slightly different from �
for the non-additive physical properties as the elastic moduli and the thermal con-
ductivity studied in this work.

The methodology followed to obtain the effective properties, presented and val-
idated in this work, requires the use of particular boundary conditions. Three types
of boundary conditions have been studied for the determination of effective elastic
properties : kinematic uniform boundary conditions KUBC, static uniform bound-
ary conditions SUBC and periodic boundary conditions PERIODIC. The three cor-
responding boundary conditions for the thermal conductivity are : uniform gradient
of temperature at the boundary UGT, uniform heat flux at the boundary UHF and pe-
riodic boundary conditions PERIODIC. The boundary conditions introduce a bias
in the estimation of effective properties. The average of apparent properties com-
puted on samples with constant volume are different for the three different boundary
conditions. This result is expected because one works with volumes smaller than
the deterministic RVE size. The necessary volume to have an average of the ap-
parent properties equal to the effective property is different for each boundary con-
ditions. According to the numerical simulations, the two boundary conditions that
use homogeneous fields at the boundary (KUBC and SUBCS) require a size equal
to that of the deterministic RVE per definition. All smallest volumes used for these
two boundary conditions give some biased averages. In the limit case of very small
volumes, the apparent properties coincide with the absolute bounds. The most inter-
esting case is the one of periodic boundary conditions, that gives apparent property
averages equal to the effective properties, even when using volumes smaller than
the deterministic representative volume. However, for too small volumes, periodic
boundary conditions also lead to biased effective properties. It must be noted also
that periodic boundary conditions lead in general to higher variances than for the
two other conditions. This requires a larger number of simulations to get a given
precision for the effective property. The conclusions drawn in the case of elasticity
and thermal conductivity are similar.

It is necessary to recall the effect of other parameters that can have an influence
on the estimation of the effective properties. The contrast between the properties
of constituents of the heterogeneous material acts directly on volumes and number
of necessary realizations to estimate the effective properties with a good precision.
Indeed, if the contrast is very important, it requires to increase volume sizes and the
number of realizations. The volume fractions of constituents also have an important
effect. Larger RVE sizes are found for volume fractions around

� � � in the case of
the studied microstructures.

This study was carried out on a model of random microstructures, that is the
Voronoï mosaics. An application of this approach was also made to the case of
real microstructures, using three-dimensional real images obtained by confocal mi-
croscopy. Our approach allows us to give the effective physical properties for the
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real microstructures, and also, what is again very important, to answer the question
of the representativity of the used samples. For that purpose, we took two types
of materials that have approximatively the same volume fractions of constituents
and with two different morphologies. The sizes of used samples are related to the
confocal imaging technique. The direct calculation of elastic matrices of the sam-
ples reveals an anisotropy in the elastic and thermal properties. It means that the
used sizes are not representative since macroscopic samples do not exhibit such
anisotropy. Smaller volumes are taken randomly or uniformly out of the available
samples for simulation, following the methodology explained for the Voronoï mo-
saics. One finds the same effect of boundary conditions and the bias found for
volumes with small sizes. The size of the deterministic RVE for these microstruc-
tures is found to be more important than the size of the used samples. Huet’s results
for the theory of homogenization with volumes smaller than the deterministic RVE
were verified here systematically. Verification is correct for uniform and also ran-
dom volume decomposition. The numerical simulations are able to distinguish the
stiffest microstructure out of the two investigated materials.

Percolation aspects of the hard and soft phase were also studied for the case of
the real microstructures as possible explanation in the difference in effective prop-
erties. Two types of percolation phenomena are presented here with qualitative and
quantitative view points : the geometrical percolation and the percolation of the
local fields of strains or stresses. The used methodology is the re-construction of
binary images of phases or local field values transformed into binary images, us-
ing a threshold operation with a suited value of the threshold. We have defined,
to quantify these phenomena, an index of percolation, that is the ratio between the
volume of the phase that percolates and the total volume fraction of this phase in
the whole heterogeneous material. For the geometrical percolation, one finds that
all the phases in the studied samples percolate with a ratio � ��� � in the two direc-
tions ( � � and � �

) of our sections. It is true for both phases. This allows us to say
that the two phases are interconnected or the material is bi-percolated. The index
of percolation is very sensitive to the thickness ( � � direction), about one third of
the thickness is sufficient to have the complete geometrical percolation at � ��� � . In
general, and always for the geometrical percolation, samples with additive percolate
more quickly than samples without additive; this can be explained by the shape of
the two phases in the two microstructures. It is true for both phases. The percolation
of strain fields can be related to the presence or not of bands of strain localization.
This phenomenon deserves further analysis.

A general comparison, concerning the elastic and thermal properties can be
drawn between three types of random two-phase materials. The first type is the
Voronoï mosaics, that are a model of virtual random distribution. The second type
is an example of real microstructures from food industry obtained by confocal mi-
croscopy. The last is another virtual model, a boolean model of hexagonal prisms.
Two different morphologies are studied : rod-like or plate-like hard phase inclu-
sions.
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The comparison is made in particular for the Young’s modulus and the ther-
mal conductivity, but can be generalized to other physical properties. The elastic
properties and the thermal conductivities of components of these heterogeneous
microstructures are the same in the three models. The volume fraction is also the
same, which means that the only difference between the three types of microstruc-
tures is the morphology of phases. Two volume fractions of the hard phase were
compared :

� � � and ��� � . Results of the comparison are given in figure IV.1.

Because of the strong contrast in properties of phases, the Hashin-Shtrikmann’s
upper and lower bounds are very far from each other. The self-consistent estimate
is given in an interval of volume fraction of the hard phase between

� ���
and � ��� � .

For virtual microstructures models, the self-consistent model underestimates the
effective elastic properties and gives a good estimation of the effective thermal con-
ductivity, and for the real microstructures, it overestimates these effective proper-
ties. This difference between the estimation of the self-consistent model and numer-
ical simulation results become more important for volume fractions close to

� � � .
One finds no direct relation between the relevance of the self-consistent estimate
and a specific morphology.

The two virtual microstructures (the Voronoï mosaics and the hexagonal mi-
crostructures) give higher effective properties than those given by the real mi-
crostructures. It is due to the more elongated shape of grains of the existing hard
phase in the virtual models by comparison to the real microstructures. The Voronoï
mosaics and the hexagonal microstructures give similar effective properties. A
higher stiffness for the hexagonal microstructures with rod-like hard phase is found
for volume fractions around

� � � .

The present work can be regarded as a first step towards a computational ap-
proach of the design of microstructures for wanted overall properties. The aim is to
explore new morphologies that can lead to unexpected properties like outstanding
stiffness or conductivity, or controlled compliance. Such systematic computations
can be a prelude for the experimental development of material processing in order
to obtain the wanted properties. As shown in this work, in the case of products
from food industry, the computation homogenization approach makes it possible to
explore new morphologies that are currently not investigated experimentally, and
possibly discover new products.
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Figure IV.1 : Comparison of effective physical properties of three types of random two-
phase elastic materials. (a) Effective Young’s modulus and (b) effective thermal conductiv-
ity.
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The practically important homogenization problem of heterogeneous elastic
bodies was first studied in (Huet, 1990) and (Huet, 1991) in the case of samples
smaller than the RVE.

It illustrates the relationships between apparent physical properties obtained on
a large specimen (not necessarily a RVE) and on a set of smaller ones obtained
as a uniform partition of the considered large specimen. It introduces hierarchies
between sets of specimens of different sizes, and the absolute bounds where the size
of specimens goes to zero, or to that of the RVE.
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A.1 First Result

The apparent moduli of a large specimen found by the SUBC boundary conditions
are smaller than the ones obtained by the KUBC boundary conditions (equation
(A.1)). The apparent compliance tensor of a large specimen found by the KUBC
boundary conditions is smaller than once obtained by the SUBC boundary condi-
tions (equation (A.2)).

� � � 8 :<:� � ��� � � � � 8�:<:� � ��� (A.1)

� � � 8 :<:� � ��� � � � � 8�:<:� � ��� (A.2)

where :

� � � 8�:<:� � ��� : the apparent modulus tensor of the body obtained with SUBC bound-
ary conditions.� � � 8�:<:� � ��� : the apparent modulus tensor of the body obtained with KUBC bound-

ary conditions.

� � � 8�:;:� � ��� : the apparent compliance tensor of the body obtained with KUBC
boundary conditions.

� � � 8�:;:� � � � : the apparent compliance tensor of the body obtained with SUBC
boundary conditions.

The inequalities hold in the sense of quadratic forms on the space of second
order symmetric tensors.

A.2 Second Result

If the used body (large specimen) does not have the size of the RVE, its ap-
parent properties (found in KUBC or SUBC boundary conditions) are bounded on
both sides by the results obtained on sets of smaller specimens forming a uniform
partition of this body (equations (A.3) and (A.4)) :

� � � 8�:<:� � ��� � � � � 8 :<:� � ��� � � � � 8 :<:� � ��� � � � � 8 :<:� � ��� (A.3)

� � � 8�:<:� � ��� � � � � 8�:;:� � ��� � � � � 8 :<:� � ��� � � � � 8 :<:� � ��� (A.4)
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where :

� � � 8�:<:� � ��� : the statistical mean value of apparent modulus tensor obtained with

SUBC boundary conditions on a partition of � .� � � 8�:<:� � ��� : the statistical mean value of apparent modulus tensor obtained with
KUBC boundary conditions on the set of smaller specimens.

� � � 8�:<:� � ��� : the statistical mean value of apparent compliance tensor obtained with
KUBC boundary conditions on the set of smaller specimens.

� � � 8�:<:� � ��� : the statistical mean value of apparent compliance tensor obtained with

SUBC boundary conditions on the set of smaller specimens.

A.3 Third Result

Take a representative volume element in the form of a parallelepiped (RVE). Saw
it into � parallelepipedic specimens with equal dimensions from one specimen to
the others. Perform a series of tests with KUBC on this set of specimens and take
the statistical average of the apparent moduli thus obtained. What is obtained is an
upper bound for the effective modulus of the considered heterogeneous material.

In addition, take another representative volume element of the same material,
with the same external shape and dimensions than the first one. Saw it into � par-
allelepipedic specimens of the same external shape and dimensions as for the first
one. Perform a series of tests with SUBC on this second set of specimens, and take
the statistical average of the apparent compliances thus obtained. The reciprocal of
this average is a lower bound for the effective modulus of the material under consid-
eration. In other words, the third result is the second one when the large specimen
used is a RVE (equations (A.5) and (A.6)). In this case, the effective properties
found with both KUBC and SUBC boundary conditions are the same.

That means :

� � � 8�:;:� � � � � � � � ����� � � � � 8�:<:� � ��� (A.5)

� � � 8 :<:� � � � � � � � ����� � � � � 8�:;:� � � � (A.6)

where :

� � � ����� : the effective modulus tensor of the representative volume element.

� � � ����� : the effective compliance tensor of the representative volume element.
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A.4 Fourth Result

This result explains the situation of apparent properties found on large specimen
(smaller than the RVE) and the set of its uniform partition on the one hand and the
corresponding effective properties on the other hand. In words, that means :

� The apparent elastic properties obtained using the KUBC boundary condi-
tions are bounded on both sides by the effective elastic properties (as lower
bound) on the one hand, and the corresponding absolute limit bound which is
Voigt’s bound (as upper bound), (equation (A.7)).

� The apparent elastic properties obtained using the SUBC boundary conditions
are bounded on both sides by the effective elastic properties (as upper bound)
on the one hand, and the corresponding absolute limit bound which is Reuss’s
bound (as lower bound), (equation (A.8)).

� � � ����� � � � � 8�:;:� � ��� � � � � P � �����
(A.7)

� � �
� � � ��� � � � � 8�:<:� � ��� � � � � ����� (A.8)

These results are especially useful when the effective properties are known and
when dealing with bodies with dimensions smaller than the representative volume.

A.5 Application to Numerical Simulations of Random Materials

The results obtained and proved theoretically by Huet in (Huet, 1990) and (Haz-
anov and Huet, 1994) are validated numerically in our work. The validation is good
in the case of Voronoï mosaïcs and real microstrcutures. These results are also valid
for shapes other than the parallelepipedic one. The type of partition is not impor-
tant; as we have seen in our work, one can use a random partition inside the uniform
one but with a sufficiently large number of specimens � . The different realizations
of the microstructure can be interpreted as parts of a large volume (in fact a rep-
resentative one where � is large enough) obtained by gluing the smaller volumes.
Huet’s theorems can then be applied in a straightforward manner, with KUBC or
SUBC boundary conditions used in the small volumes. The results of Huet are
also used in (Zohdi et al., 2001) to develop a method to decompose a large-scale
micromechanical simulations into a set of computationally smaller problems.
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This appendix presents the main numerical tools of parallel computing used in
this work (Farhat and Roux, 1991), (Roux, 1994), (Farhat and Roux, 1994), (Feyel
et al., 1997) and (Feyel, 1998).

B.1 Usual Algorithm Limitation

In the Newton algorithm, the step of evaluation of behavior laws is constituted of
two loops carrying on elements and points of integration. Its complexity is linear
according to the total number of integration points of the structure. It is easy to
distribute these calls of routine of integration between several machines, because
the treatment is local.
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This is not done in the present work because we worked only on linear elasticity.

B.2 Resolution of the Linear System

The linear system
� � � � � � has at least as many unknowns as the number of

degrees of freedom of the mesh of the structure. Two numerical method classes
permit to solve such systems : iterative methods and direct methods.

B.2.1 Iterative Methods

The most used algorithm in this case is the conjugate gradient. The cost of
storage is weak when one proceeds to the computations element by element. The
ratio of convergence depends of the conditioning of the matrix

� � . The numerical
convergence is not ensured necessarily.

B.2.2 Direct Methods

The direct methods are very robust. They have a high cost of computation and
more important storage than the iterative methods. The time required for the reso-
lution of a linear system with � degrees of freedom, having a front � , is, for the
frontal method :

��� � � � (B.1)

Let’s consider the mesh of a cube with �
+ elements with 	�� nodes. The number

of degrees of freedom is :

� � � � � � � � � � 	 � � � � � � � � � � � � � ��� �
+ (B.2)

The minimal front forehead is :

� � � � � � � � � � 	 ��� � � � � � ��� � � � � � � ��� �
� (B.3)

So :

��� �
�

(B.4)

The time of resolution increases as the seventh power of the decomposition, and
the necessary memory as the fifth power. Let’s consider a mesh two times thinner
in all the directions multiplies the cost of this phase therefore by a factor 	 � � � 	 � .
These methods are not used in parallel computing.
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B.3 Methods of Parallel Resolution of Linear Systems

B.3.1 Conjugate Gradient

In the system � � � � � , lines of the
� � matrix are distributed between all available

processors. Each processor will achieve the matrix - vector product for lines that it
possesses, a global sum operation on all processors permitting to construct � . One
supposes that the non-zero coefficients of each sub-matrix on each processor are, as
much that possible, on the diagonal of the complete matrix. Each processor needs
then of a limited part of the vector

�
.

a) Decomposition into Sub-domains

In the case of two processors, the sub-matrices block by processor are obtained
for example, naturally by a regrouping of elements in two sub-domains of the mesh.

The global domain � is the union of the non-connected sub-domains � � and � �
and of the interface � + . If the degrees of freedom are numbered according to this
decomposition (numbers � to � in � � , � � � to

�
in � � and

� � � to
�

in � + ), the
matrix of rigidity of � is decomposable by blocks under the form :

� � � � �
��
� � �,� � � � +

� � �,� � � +� � + � � + � +,+

���
� (B.5)

Matrices of rigidity associated to the � ��� � + union, and � ��� � + can be written
as the following way :

� � � � � �
� � �,� � � +� � + � �+,+�� (B.6)

and :

� � � � � �
� � �,� � � +� � + � �+,+�� (B.7)

Terms noted
� � �+,+ and

� � �+,+ are the contributions of each sub-domain to the rigid-
ity of interface and one has :

� � +,+ � � � �+,+ � � � �+,+ (B.8)

The calculation of the
� � � product on the two sub-domains takes place in two

steps :



146 Chapter B. PARALLEL COMPUTING

1. local computation on each sub-domain :

� � �
� �+ � � � � �,� � � +� � + � �+,+ � � � �� + � (B.9)

and :

� � �
� �+ � � � � �,� � � +� � + � �+,+ � � � �� + � (B.10)

2. assemblage of the product :

� �
��
� � �

� �
� �+ � � �+

� �
� (B.11)

The advantage of this decomposition is that if sub-domains are sufficiently large,
the first step is major. The second that requires the consignment of contributions � �+
of � � to � � and vice-versa, can be neglected. If sub-domains are reduced to only
one element, one recovers the classical conjugate gradient, where the product takes
place element by element, follow-up of an assembly. This type of method has been
used by Quilici and Débordes (Quilici and Débordes, 1996).

b) Limits of this Algorithm

Advantages of the method of the conjugate gradient, associated to a decomposi-
tion into sub-domains, are multiple. In particular, it is very easy to program since
it remains a method of classical conjugate gradient. Additional programming is re-
quired by the exchange of information to rebuild the product.

Its most serious drawback, that limits its use, is of numerical order. Indeed, for
good performances, in terms of convergence speed, the algorithm of the conjugate
gradient requires the use of preconditioners.

Unfortunately, the only preconditioners easily parallelisable rest on the incom-
plete factorizations of matrices of each sub-domain. It is not very efficient when the
number of sub-domains increases : the algorithm of the parallel conjugate gradient
doesn’t ensure the extensibility, its efficiency decreases quickly as the number of
sub-domains increases, that forbidden its use on the massively parallel calculators.
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B.3.2 Method of the Schur Complement

The method of the Schur complement gives a partial solution to the previous prob-
lem.

It means that it is partially possible to factorize, by the Gauss method, the matrix
� � . This matrix is similar to the matrix :

��
� � �,� � �

� � �,� �
� � �

���
� (B.12)

with :

� ��� +,+ � � + � � T���,� � � + � � + � � T���,� � � + (B.13)

� is also, symmetrical, definite and positive. It is called matrix of the Schur
complement. To solve the linear system :

� �

��
�
� �� �� +

���
� �

��
� � �

� �
� +

���
� (B.14)

amounts to the resolution of the system condensed to interfaces :

� � � + � � + (B.15)

with :

� + � � + � � � + � � � T���,� � � � � � + � � � T���,� � � (B.16)

In the case of many sub-domains, therefore with numerous interfaces, it is not
possible to construct explicitly and factorize � � since it would imply, for each degree
of freedom, to solve a local problem on each sub-domain. But the previous system
can be solved by a method of conjugate gradient that requires products only by � � .

Once the matrix � � is decomposed into two terms (contribution of each sub-
domain) � � and � � , the products � � � + (

� + is defined on the interface) is computed
on each sub-domain separately. An operation of sum is sufficient then on the two
sub-domains to rebuild the solution. For the first sub-domain for example, two steps
are necessary :

1. resolution of the local problem :
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� � �,� � � � � � � � + � + (B.17)

which gives :

� � �� + � (B.18)

2. calculation of the matrix product :

� � �,� � � +� � + � �+,+�� � � �� + � � �
�

� � � + � (B.19)

These two steps only require some local operations to each sub-domain, that one
can make therefore in parallel.

Advantages and Limits of the Method of the Schur Complement

The interest of this approach, that consists in solving by conjugate gradient only a
problem condensed to interfaces, is that its conditioning is distinctly better that the
one of the complete problem (Bj

�
rstad and Widlund, 1986). The speed of conver-

gence is increased therefore as much. This method proposes a parallelism to large
grains : the time of calculation (necessary to the resolution of the local equilibrium)
is larger than the one necessary to exchange messages. Let’s add the easiness of the
implantation.

There are other efficient preconditioners (Le Tallec, 1994). Their use permits
to arrange an optimal method, for which the speed of convergence only depends
on the number of sub-domains, and not on their stiffness. For a fixed number of
sub-domains this speed is independent of the number of elements that contains each
sub-domain.

B.4 The FETI Method

B.4.1 The Dual Schur Method

The FETI method (Finite Element Tearing and Interconnecting (Farhat and Roux,
1991)) is an extension of the dual Schur method, implementing the global mech-
anism of passage of information. The unknowns of the primal Schur method are
displacements of interface, those of dual method are the forces of interface. The
residual of the problem is then the jump of displacement to interfaces.

Indeed, to solve the global equilibrium of the structure, that means to invert the
linear system :
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� ��� � � (B.20)

is equivalent to solve the following problem :

� � � � � � � � ��� #����� �
� � (B.21)

as local equilibrium of each sub-domain ��� and :

�	
��
 � # � � � � � � (B.22)

as a continuity of the displacements at the interfaces.

The unknowns are the forces � � at the interfaces. The operators � # � �� �
are the

operators of local trace signed of each sub-domain (restriction at the interfaces).

The problem in condensed forces at the interfaces can, here again, be solved by
an iterative method of conjugate gradient. Each iteration yields then the local linear
system resolution :

� � � � � � � � ��� # � �� �
� � (B.23)

B.4.2 Coarse Grid Preconditioner

However, it can occur, because of the chosen decomposition, that these local sys-
tems are ill-posed. If one sub-domain doesn’t contain any portion of outside surface
of the global structure where displacement (conditions of Dirichlet) is prescribed,
the system is non-invertible.

In practice, it means that some insufficiently fixed sub-domains, loaded only
with conditions of Neumann (forces on interfaces), lead to undetermined rigid body
motions.

The inversion of such systems requires the calculation of the rigid modes. In-
deed, let a matrix � � be symmetrical and non-invertible :

� � �
� � �,� � ���� � � � �,��
 (B.24)

with :
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� 	 � � �,� � � � � � ��� � (B.25)

By change of basis associated to the Gauss factorization of � � , it comes :

� �
�� � � � � T���,� � 
 � � �,� � ���� � � � �,� 
 � � � � T���,� � ���

�
� 
 � � � �,� �

� � �,� � � � � � T���,� � ��� 

(B.26)

Such a transformation doesn’t change the rank of � � . Consequently, the rank of
the right member is equal to the rank of � � , and therefore :

� �,� � � � � � T���,� � ��� � � (B.27)

It proves that columns of the following matrix � � form a basis of the kernel of
� � :

� � �
� � � T���,� � ���� 
 (B.28)

With these properties, the system :

� � �,� � ���� � � � �,� 
 � � �� � 
 � ��� �� � 
 (B.29)

can be inverted, while using a pivot of Gauss associated to � �,� in the following
manner :

� � �� � 
 � � � T���,� �
� � 
 � � �� � 
 ��� � � (B.30)

It means that a solution is the sum of an element of the kernel and the pseudo-
solution obtained on the left by product by the pseudo-inverse matrix :

� � � �
� � T���,� �

� � 
 (B.31)
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In practice, the decomposition (B.24) is obtained by a complete symmetrical
pivot of the matrix during its factorization. The detection of null pivots allows to
construct � �,� and to calculate the columns of � � .

While using the previous relations, the system (B.21) and (B.22) can be re-
written, by using relations of continuity of � � :

� � � � �� � � � � � # �� �
� � ��� � � � � � � � � �� � � � � � # �� �

� � � � (B.32)

�	
��
 � # � � � �� � � # � � � �

�	
��
 � # � � � � � � � � �

�	
��
 � # � � � �� � � � (B.33)

The second equation of (B.32) imposes that the second member : � � ��# �� �
� is

in the image of
� � (or that it is orthogonal to the kernel, which is equivalent). The

last two equations form a hybrid system on � and � � , that one can summarize by :

���
� � �
� � � � � 
 � �� 
 � � �� 
 (B.34)

with :

�
���

�	
��
 � # � � � �� � � # � � � � � � � � � �	

��
 � # � � � � � � � (B.35)

This system is solved then by using a method of intented conjugate gradient. It
is a method of classical conjugate gradient with, in addition, the projection � � � of
the gradient � on the kernel of � � �

, in order to impose the constraint :

� � � � � �
(B.36)

This projection ensures that directions of research are in the kernel of � � �
, that

satisfy automatically the constraint (B.36) if � has been initialized correctly.

At convergence :

� � � � � (B.37)

the gradient � is in the image of � � �
and a vector � has been found, as :
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� �
�
� � � � � � � � � (B.38)

under the constraint (B.36). The solutions � and � satisfy the system (B.34) and
(B.35).

The only difficulty is the calculation of the operator of projection � � . It is about
finding a vector � such that :

� � � � � � � � � (B.39)

with :

� � � � � � � � (B.40)

one deduces therefore that :

� � ���� � � � � � � � � � � T�� � � �
(B.41)

This calculation only requires the product by � � and � � �
as well as the resolution

of the hollow linear system :

� � � � � � � � � � � � (B.42)

Its dimension is at most six times the number of sub-domains. The additional
computation cost is therefore small.

This system can be solved in two different ways :

1. by a second method of conjugate overlapped in the first. This approach is easy
to implement since it only requires products by � � � � � . It presents the draw-
back to require, at each iteration of this second level of conjugate gradient,
the communication network. In fact, this approach (two levels of overlapped
conjugate gradient) is only viable when the used computer architecture asso-
ciates processors, to the middle performances, to a very fast communication
network.

2. to collect the � � � � � matrix and to use a direct method of linear system resolu-
tion. This method presents the only drawback to be more delicate to imple-
ment. It has the advantage to be very fast and especially very robust : when
the global system

� � � � � to solve is ill-conditioned, the system “coarse
grid" is also and the classical numerical difficulties of convergence occur at
the time of the use of a type of iterative conjugate gradient solver.
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This projection has a very good convergence acceleration effect. Indeed, apply-
ing the projection amounts to calculate the constants � � by sub-domains, in order to
minimize the jump of the complete solution to interfaces.

The FETI method is therefore a method at two levels :

� A local level in each sub-domain, associated to matrices of rigidity
� � � .

� A global level coarse grid, associated to the operator of projection. Elements
of this grid are sub-domains, and the nodes are values of components of rigid
body movement � � .

The FETI method is numerically extensible : its speed of convergence doesn’t
depend on the number of sub-domains, contrary to the method of the primal Schur
complement. In practice, for the local problems with constant size (same num-
ber of elements), the time of resolution must remain constant if one increases the
number of sub-domains and the number of processors at the same time (provided
that the cost of calculation of the projection remains negligible). It is well-adapted
therefore to the massively parallel calculators. Nevertheless, when the number of
sub-domains becomes very large, the cost of calculation of the projection operator
becomes non-negligible.

B.4.3 Preconditionning of the FETI Method

The ideal is to calculate directly (by a supplementary local resolution) what is
the field of forces at the interfaces that conducted to the observed gradient. One
constructs an optimal Dirichlet preconditioner which is a priori the best one. Its
principal drawback is to be very expensive to calculate since it is necessary to invert
a linear system the size of which is that of the local system.

Another non-optimal preconditioner but economical to calculate has been pro-
posed by Farhat and Roux (Farhat and Roux, 1991). This preconditioner is a simple
product by the restricted rigidity matrix to interfaces :

� � �
	

����� � � 8 � � �
# � � � �� � # � � � 	

����� � � 8 � � �
� � ���� (B.43)

where
� � ���� denotes the rigidity of interface of the 	 � 	 sub-domain.

When the number of sub-domains is small (typically lower than �
�
), the Dirich-

let preconditioner is more efficient than the product by rigidity interfaces, but it
requires a considerable growth of the cost of the calculation (cost of the iteration
multiplied by two).
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B.4.4 Initial Reprojection

Let’s suppose that the matrix of rigidity, associated to the finite element problem,
doesn’t change. It is then possible, while preserving directions of descent between
two FETI’s iterations, to conjugate the gradient and the previous direction of de-
scent on directions calculated initialy. If the second local members � � � � � didn’t
change, one recovers the previous solution, without iteration.

In general, the second member evolved (modified outside loading), and one
doesn’t find our solution (the projected gradient is not sufficiently close to zero).
This reprojection on the previous descent directions can be seen as the application
of a preconditioner. The Newton-Raphson algorithm, used by a large number of
nonlinear finite element calculation codes, to a certain number of extensions that
differs by the way of calculating the tangent matrix of the problem. The quadratic
convergence (optimal convergence speed) is ensured only if the calculation of this
matrix is exact. This calculation is however expensive, and in certain cases it is
preferable to be satisfied with an approximate tangent matrix. The speed of conver-
gence is then slower, but the time of calculation is better because the cost of each
iteration is lower.

In the setting of the use of the FETI method, the modified Newton-Raphson
algorithm, in which one doesn’t reactualise the tangent matrix, is very interesting :
the tangent matrix of the linear system doesn’t change, and it is possible to apply the
initial preconditioner. This method can lead to a significant gain of the computation
time. In contrast when the tangent matrix changes during the calculation, it becomes
imperative to reactualize the matrix during the calculation, to preserve a good rate
of convergence. It is then possible, in the FETI method, to take in account this
reactualization while using a particular initial preconditioner, as Roux shows in the
case of nonlinear elasticity (Roux, 1994).

B.4.5 Gains of Memory

The FETI method, like all methods of domain decomposition, can give signifi-
cant gains of memory. The necessary memory for the resolution of

�
local linear

problems can become smaller than the necessary memory to the treatment of the
same problem on one processor. This effect is especially appreciable for three-
dimensional calculations, because of the reduction of the local problem front.

B.4.6 FETI Method and Computer Architecture

The FETI method being a method of domain partition, it seems natural to use it
on multiprocessors machines. Each processor will have the load of one or several
sub-domains. Two types of machines exist now :

� Shared - Memory : all processors can address the set of all the random-access
memory. Processors can exchange between them through the RAM. The pro-
gram can, in fact be unaffected by this structure of multiprocessor. As the
number of processors increases, conflicts of access become more frequent and



B.4. THE FETI METHOD 155

the system of management of the memory can become very complex, which
make the general performance drop.

� Distributed - Memory : each processor possesses its own memory and can
communicate with the other through a network of high performance commu-
nication. This approach assumes that communication time is low with respect
to the days of useful calculation. It is called the coarse-grained parallelism.
Problems of the access memory conflict don’t exist anymore, but now the
programmer must manage himself exchanges of messages while using the
dedicated bookstores (PVM or MPI, for example). A local network of work-
stations is well as a good example of such machines.

It is possible to use computers with shared memory as is well as with distributed
memory : to restrict each task to a zone memory data, disconnected of the one
allocated to the other tasks, is sufficient.
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