

Étude de matériaux polymères, organiques et organo-minéraux, dopés par des colorants organiques – Application à la réalisation de sources laser intégrées.

Hélène Goudket

Sous la direction de **Michael Canva** Équipe Matériaux pour l'Optique Intégrée et Capteurs Laboratoire Charles Fabry de l'Institut d'Optique

Contexte Scientifique

1967 : premier laser solide à base de polymère dopé Dans les années 1980, nouveaux matériaux polymères de bonne qualité optique permirent le développement de sources laser à colorants solides

Échantillons massifs

Échantillons en couches minces

Échantillons en guide ruban *(gravure RIE)*

Objectifs

Plan de l'exposé

1. Description des matériaux

- a. Colorants et matrices
- b. Dépôt des échantillons
 - 2. Paramètres étudiés
 - a. Caractérisations matériaux (Spectres Photostabilité)
 - b. Étude système Application aux lasers intégrés
 - 3. Corrélation Caractérisations-Performances
 - a. Position de l'émission
 - b. Absorption et efficacité laser
 - c. Photostabilité et durée de vie laser
 - 4. Accordabilité laser
 - a. DFB dynamique
 - b. DFB statique
 - 5. Conclusions et perspectives

Plan de l'exposé

1. Description des matériaux

- a. Colorants et matrices
- b. Dépôt des échantillons
 - 2. Paramètres étudiés
 - a. Caractérisations matériaux (Spectres Photostabilité)
 - b. Étude système Application aux lasers intégrés
 - 3. Corrélation Caractérisations-Performances
 - a. Position de l'émission
 - b. Absorption et efficacité laser
 - c. Photostabilité et durée de vie laser
 - 4. Accordabilité laser
 - a. DFB dynamique
 - b. DFB statique
 - 5. Conclusions et perspectives

Description des colorants

absorption et fluorescence dans le visible - modes de vibration sur des grandes plages de longueurs d'onde - doubles liaisons conjuguées H,C. CH Ӊ҈С C^{≰O}OH Rhodamine B **`**CH en solution d'ethanol H_5C_2 C_2H_5 80 -565 nm 543 nm Fluorescence (u. a.) $H_{5}C_{2}^{\prime}$ C,H H₅C₆O Absorption (cm⁻¹ OC₆H₅ Rhodamine B 60 H₅C₆O (RhB) OC₆H 40 -H CH НÇ 20^{-1} ĊН ӉÇ O O H₃C CH. -СҢ H_c-0 CHӉĊ ӉС ĊH **`**CH, 400 550 450 500 600 650 700 ЦC F СЦ F Longueur d'onde (nm) Pyrrométhène 597 Pérylène Red (PM597) (Péry Red)

Dopage en matrice solide

Dopage par système hôte-invité

- Colorants = invités (concentration 10⁻² 10⁻³ mol/L)
- Matrices = hôtes (polymères organiques ou organo-minéraux)

Pas de greffage covalent des colorants sur les matrices

Matrices plastiques

Matrices plastiques

Nom	Masse molaire moyenne (g/mol)	n	T _g (°C)
PMMA15	15.000	150	100
PMMA120	120.000	1200	114
PMMA350	350.000	3500	122
PVK	1739.2	9	200

T_q = Température de transition vitreuse

- $T>T_g$: mou et flexible (comme du caoutchouc) $T<T_g$: dur et cassant (comme du verre)
 - chaînes linéaires
 - état vitreux

(MMA)_n

PVK

Variation de rigidité

Matrices sol-gels

Matrices sol-gels R-(triethoxysilane)

Nom	Groupement R	
MTEOS	CH ₃ -	
VTEOS	СН ₂ =СН -	
PhiTEOS	С ₆ Н ₅ -	
TCPTEOS	HS-C=N-(CH ₂) ₃ -	

- R non hydrolysable
- réseau tridimensionnel
- propriétés du verre

Variation de rigidité et composition

Frédéric Chaput, Jean-Pierre Boilot, PMC, URA D-1254, École Polytechnique

Dépôt des couches minces

Substrats 25x25 mm²

- Verre

- Silice

Buntha Ea-Kim, LCFIO, UMR 8501

Contrôle de l'épaisseur

- viscosité de la solution
- vitesse de rotation

Couples colorants-matrices

14 couples colorant-matrice étudiés

- 6 colorants dopés dans 2 matrices sol-gels
 - 4 matrices plastiques

	TCPTEOS	PhiTEOS	PMMA15	PMMA120	PMMA350	PVK
RhB	•		H	•	•	
Rh6G	0	Δ				
PM597	Ο		M	8	٠	•
DCM				×		
Péry Red				B		

Indice de réfraction trop faible pour former une couche guidante

Non solubles dans les sols

Nous avons aussi étudié des mélanges de RhB et Péry Red dopés dans du PMMA120

Plan de l'exposé

Analyses spectrales linéaires

Influence de l'environnement et des conditions de dépôt Étude du vieillissement des matériaux

Absorption résiduelle

Spectre pris dans l'épaisseur, mais propagation longitudinale de l'ordre du cm Extrapolation de l'absorption sous le seuil de détection du spectromètre

Pertes de propagation dues à structure en couche mince estimées: 0.1 - 1 cm⁻¹ $\lambda > \lambda_c$ (longueur d'onde de coupure) \Rightarrow absorption résiduelle négligeable

Le Duff A.-C. et al. Applied Optics **39**, *p. 947 (2000)* Pertes par absorption extrapolées à λ Définition de λ_c

Absorption résiduelle

Spectre pris dans l'épaisseur, mais propagation longitudinale de l'ordre du cm Extrapolation de l'absorption sous le seuil de détection du spectromètre

Pertes de propagation dues à structure en couche mince estimées: 0.1 - 1 cm⁻¹ $\lambda > \lambda_c$ (longueur d'onde de coupure) \Rightarrow absorption résiduelle négligeable

Le Duff A.-C. et al. Applied Optics **39**, *p.* 947 (2000)

Pertes par absorption extrapolées à λ Définition de λ_c

Photostabilité – principe

Mécanisme de dégradation à 1 photon

Probabilité 1/B de se désexciter de manière irréversible dans un état inactif pour l'application

Sous éclairement continu, la population de colorants à l'état actif diminue au cours du temps par dégradation irréversible dans un état blanchi

> Évaluation du nombre moyen B de cycles excitation-désexcitation (paramètre microscopique)

Photostabilité – montage

Application laser – montage

RhB/TCPTEOS Épaisseur 2.3 µm

Spectre d'émission

610 620 630 640 650 660 Longueur d'onde (nm) Points expérimentaux
Ajustement linéaire

Rendement

≈ 1.8% Seuil ≈ 22 µJ

Densité d'énergie accumulée (J.cm⁻²)

Durée de vie

densité d'énergie accumulée à 50% de l'émission initiale

Plan de l'exposé

Position de l'émission laser

Absorption et laser

Pertes de propagation

Mesures de pertes de propagation à λ_L

Sens de propagation

 $I(z)=I_0e^{-az}$

L'intensité diffusée proportionnelle à l'intensité qui se propage dans la couche mince ⇒ atténuation de la lumière au cours de sa propagation

Pertes – rigidité de la matrice

Influence du Tg sur le coefficient d'atténuation

Buntha Ea-Kim, LCFIO Nhung Tran, VAST, Vietnam Rigidité de la matrice augmente → Pertes de propagation augmentent

Durée de vie et photostabilité

Sur la droite, même
 mécanisme de dégradation
 ⇒ dégradation à 1 photon

 Sous la droite, performances < en régime impulsionnel

TCPTEOSPMMA350RhB••Rh6G••PM597•·DCM··

PhiTEOS

 mauvaise conductivité thermique ?

 dommages à la matrice dûs aux fortes puissances crêtes ?

Pas de thermodégradation en couches minces ≠ massifs Photostabilité ⇔ prévoir durée de vie laser

Durée de vie et photostabilité

Plan de l'exposé

Rétroaction distribuée (DFB)

Périodicité dans le matériau

Relation de Bragg : $\lambda_{Lm} = N \lambda_m = 2N \Lambda/m$

Ordre m = 2

DFB dynamique – montage

DFB dynamique – résultats

RhB/TCPTEOS Épaisseur 2.3 µm

Largeur des pics DFB inférieure à résolution du spectromètre

DFB statique

Plan de l'exposé

1. Description des matériaux a. Colorants et matrices b. Dépôt des échantillons 2. Paramètres étudiés a. Caractérisations matériaux (Spectres – Photostabilité) b. Étude système - Application aux lasers intégrés 3. Corrélation Caractérisations-Performances a. Position de l'émission b. Absorption et efficacité laser c. Photostabilité et durée de vie laser 4. Accordabilité laser a. DFB dynamique b. DFB statique 5. Conclusions et perspectives

Conclusions

14 couples colorant-matrices déposés en couches minces Rhodamines, Pyrrométhènes, Pérylènes et Azobenzènes Polymères organiques et hybrides sol-gels

par effet de rétroaction distribuée dynamique et statique

Perspectives

- Choix de matériaux en fonction de l'application visée
- Étude de Pérylènes en photostabilité et durée de vie car en couches minces, pas de thermodégradation
- Utilisation de réseaux DFB statiques de différents pas pour analyser les pertes de propagation des matériaux à différentes longueurs d'onde
- Fabrication d'un ensemble de lasers DFB en guides ruban gravés par RIE dans une couche mince déposé sur un substrat gravé d'un réseau en éventail
 mesures simultanées des performances laser à différentes longueurs d'onde

Yann Lechantre	Gilles Colas	Éric Bourillot	Jean-Yves Clotaire
Cyril Bazin	Antony Machu	Gérard Roger	Emmanuel Maillart
Jorge Reyes	Alain Bellemain	Vincent Rachet	Florence Grappin
Nathalie Bassil	Sylvie Yiou	Alain Aide	Pierre Lecaruyer
Anne-Claire Le Duff	Et à tous	les oubliés	Alexandre Beelen

Étude de matériaux polymères, organiques et organo-minéraux, dopés par des colorants organiques – Application à la réalisation de sources laser intégrées.

point de sortie

Hélène Goudket

039