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Abstract

We propose a type system MLF that generalizes ML with first-class polymorphism as
in System F. Expressions may contain second-order type annotations. Every typable
expression admits a principal type, which however depends on type annotations. Prin-
cipal types capture all other types that can be obtained by implicit type instantiation
and they can be inferred.

All expressions of ML are well-typed without any annotations. All expressions of
System F can be mechanically encoded into MLF by dropping all type abstractions
and type applications, and injecting type annotations of lambda-abstractions into MLF

types. Moreover, only parameters of lambda-abstractions that are used polymorphically
need to remain annotated.

Keywords:

Type Inference, First-Class Polymorphism, Second-Order Polymorphism, System F,
ML, Type Annotations.

Résumé

Nous nous intéressons à une extension de ML avec polymorphisme de première
classe, à la manière du Système F. Cette extension, nommée MLF, utilise les annota-
tions de types d’ordre supérieur données explicitement dans le programme pour inférer
de manière principale le type le plus général. Toute expression admet ainsi un type
principal, qui dépend des annotations présentes initialement dans le programme.

Toute expression de ML est typable dans MLF sans annotation supplémentaire. Les
expressions du Système F sont encodées de manière systématique dans MLF en suppri-
mant les abstractions et les applications de types, et en traduisant les annotations de
types dans le langage de types de MLF. De plus, les paramètres de lambda-abstractions
qui ne sont pas utilisés de manière polymorphe n’ont pas besoin d’être annotés.

Mots Clefs

Inférence de types, Polymorphisme de première classe, Polymorphisme d’ordre deux,
Système F, ML, Annotations de type

3



4

4



CONTENTS 5

Contents

Abstract / Résumé 3

Introduction 11

Conventions 33

I Types 35

1 Types, prefixes, and relations under prefixes 37

1.1 Syntax of types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.2 Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.3 Occurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.3.1 Skeletons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.3.2 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.3.3 Free type variables and unbound type variables . . . . . . . . . . 41

1.3.4 Renamings and substitutions . . . . . . . . . . . . . . . . . . . . 42

1.4 Relations under prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.5 Type equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.5.1 Rearrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1.5.2 Occurrences and equivalence . . . . . . . . . . . . . . . . . . . . . 50

1.5.3 Canonical forms for types . . . . . . . . . . . . . . . . . . . . . . 51

1.6 The abstraction relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.7 The instance relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 Properties of relations under prefixes 63

2.1 Projections and instantiation . . . . . . . . . . . . . . . . . . . . . . . . 65

2.2 Canonical representatives and bounds in a prefix . . . . . . . . . . . . . 69

5



6 CONTENTS

2.3 Restricted and thrifty derivations . . . . . . . . . . . . . . . . . . . . . . 69

2.4 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.5 Local abstraction and instance rules . . . . . . . . . . . . . . . . . . . . 77

2.5.1 Context-based rules . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.5.2 Alternative abstraction and alternative instance . . . . . . . . . . 80

2.6 Atomic instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.6.2 Equivalence between relations . . . . . . . . . . . . . . . . . . . . 85

2.7 Equivalence vs instantiation . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.7.1 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.7.2 Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.7.3 Abstraction is well-founded . . . . . . . . . . . . . . . . . . . . . 97

2.8 Confluence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3 Relations between prefixes 101

3.1 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2 Prefix instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 Domains of prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4 Rules for prefix equivalence, abstraction, and instance . . . . . . . . . . 104

3.5 Splitting prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.6 Prefixes and Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4 Unification 119

4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2 Auxiliary algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 Unification algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 Soundness of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.5 Termination of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6 Completeness of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 131

II The programming language 139

5 Syntax and semantics 143

5.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Static semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.1 ML as a subset of MLF . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.2 Examples of typings . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3 Syntax-directed presentation . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4 Dynamic semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6



CONTENTS 7

6 Type Safety 151
6.1 Standard Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.1.1 Renaming and substitutions . . . . . . . . . . . . . . . . . . . . . 151

6.1.2 Strengthening and weakening typing judgments . . . . . . . . . . 152
6.1.3 Substitutivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 Equivalence between the syntax-directed system and the original system 155

6.3 Type safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Type inference 163

7.1 Type inference algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Soundness of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.3 Completeness of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4 Decidability of type inference . . . . . . . . . . . . . . . . . . . . . . . . 168

8 Type annotations 171
8.1 MLF without type annotations . . . . . . . . . . . . . . . . . . . . . . . 171

8.2 Introduction to type annotations . . . . . . . . . . . . . . . . . . . . . . 174

8.3 Annotation primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

III Expressiveness of MLF 177

9 Encoding System F into MLF 181
9.1 Definition of System F . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.2 Encoding types and typing environments . . . . . . . . . . . . . . . . . . 182

9.3 Encoding expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

10 Shallow MLF 187

10.1 Definition and characterization . . . . . . . . . . . . . . . . . . . . . . . 187

10.2 Expressiveness of Shallow MLF . . . . . . . . . . . . . . . . . . . . . . . 190
10.3 Comparison with System F . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10.3.2 Preliminary results about System F . . . . . . . . . . . . . . . . 192
10.3.3 Encoding shallow types into System F . . . . . . . . . . . . . . . 194

10.3.4 Encoding Shallow F into System F . . . . . . . . . . . . . . . . . 197

10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

11 Language extensions 203

11.1 Tuples, Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

11.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
11.3 Propagating type annotations . . . . . . . . . . . . . . . . . . . . . . . . 206

7



8 CONTENTS

12 MLF in practice 209
12.1 Some standard encodings . . . . . . . . . . . . . . . . . . . . . . . . . . 209
12.2 Existential Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
12.3 When are annotations needed ? . . . . . . . . . . . . . . . . . . . . . . . 211
12.4 A detailed example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
12.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Conclusion 217

Bibliography 223

IV Appendix 229

A Proofs (Technical details) 231

Indexes 319

Index of rules 319

Index of notations 322

8



CONTENTS 9

Acknowledgments

Ma propre expérience, quoique limitée, m’incite à croire que mener à bien une thèse
reste moins difficile qu’élever un bébé. Cependant, ceci ne révèle rien de la difficulté
à diriger une thèse. Je tiens à remercier chaleureusement Didier Rémy pour avoir
accepté le rôle de directeur de thèse qu’il a exercé avec une attention et une patience
exemplaires. Parmi une multitude d’autres enseignements, il m’a montré l’importance
de prendre du recul en recadrant le travail en cours, même inachevé, dans un contexte
plus large. J’ai pu bénéficier avec joie de sa connaissance pointue de TEX , incarnée
notamment dans le très utile WhizzyTEX .

Je remercie tout particulièrement Benjamin Pierce et Jacques Garrigue, rappor-
teurs, pour l’attention particulière qu’ils ont portée à mon travail, ainsi que les nom-
breuses heures de décalage horaire qu’ils ont dû subir pour participer à la soutenance.
Leurs suggestions furent particulièrement bienvenues et me seront profitables à l’avenir.
Merci également aux autres membres du jury pour l’intérêt qu’ils ont manifesté envers
ma thèse : Roberto Di Cosmo, Claude Kirchner, et Dale Miller. Je remercie au passage
Roberto pour son intervention salvatrice sur mon ordinateur portable, réalisée grâce à
Demolinux.

Merci à tous les membres de ma famille pour leur soutien inépuisable : mes parents,
mes beaux-parents, mon épouse, et à sa manière, mais tout aussi inépuisable, Pierre-
Gilles.

Merci à Vincent Simonet pour ses multiples compétences, notamment sa relecture
minutieuse et sa maîtrise de TeX. J’ai aussi apprécié l’aide linguistique apportée par
James Leifer.

Tous les membres du projet Cristal, passés et présents, se caractérisent par une
disponibilité exceptionnelle. Merci en particulier à Xavier Leroy qui prend toujours
le temps de partager ses vastes connaissances alors même que sa nouvelle fonction de
directeur de projet ne lui laisse que peu de temps.

Je remercie Jean-Jacques Lévy pour avoir su présenter la recherche en informa-
tique de manière motivante, ainsi que pour les sorties piscine. Maxence Guesdon étant
complice, je le remercie également.

9



10 CONTENTS

10



Introduction 11

Introduction

In 1965, Gordon Moore made an observation which has since become famous: the num-
ber of transistors per integrated circuit grows exponentially. This singular phenomenon
has been maintained for forty years. As a consequence, computers are more and more
powerful and fast, allowing more and more programmers to write ever larger and more
complex programs. A less pleasant consequence is that the number of ill-written pro-
grams follows the same curve. Fortunately, research on programming languages brings
solutions to help the programmer in keeping his mental health. One of the most effi-
cient technique is static typechecking. Static typechecking can be viewed as a validation
done by the compiler that guarantees that the program will not perform illegal oper-
ations, that is, will not crash. For instance, it ensures that every data structure will
be manipulated only by suitable functions. We usually say that “well-typed programs
do not go wrong”. Moreover, in practice, a large proportion of errors is automatically
detected by typechecking, and this considerably accelerates program development.

In order to typecheck a program, a compiler may require explicit type information in
the source program itself, as is the case in C or Java, where each variable and function
declaration needs to be annotated with types. This is acceptable when the types are
simple. However, in order to get more expressiveness power and to be able to typecheck
more complex programs, it is necessary to introduce a richer syntax for types. This is
the case for example with higher-order functional languages, such as ML [DM82]. Then
smart compilers perform type inference (also called type reconstruction) in order to find
by themselves the type annotations. In the case of ML, the type inference algorithm
is complete, which means that no type annotation is needed in the program, and all
the information may be inferred by the typechecker (i.e. by the compiler). It is still
possible, though, to write explicit type annotations for documentation purposes.

Types provide an approximation of programs and the typechecker may reject well-
behaved programs it cannot type. Such a limitation can be encountered in monomor-
phically typed systems, where each function can only be used with one single type. In
that case, a given function cannot be applied to two data structures with incompatible
types. For example, the function List.length, which returns the number of elements
of the list it is applied to, could only be used with lists of integers, and another function

11



12 Introduction

should be defined to operate on lists of strings. However, both functions have the same
code, but only their types are different. This useless duplication of code can be avoided
thanks to more expressive type systems. Indeed, many solutions have been proposed in
order to typecheck functions applied to arguments of incompatible types. They include
type systems based on subtyping, intersection types, and parametric polymorphism. We
immediately discard the solution used in C or Java which consists in casting the type
of expressions to void* or Object in order to put them in a general-purpose structure.
When taking an element out of the structure, some unsafe operation, such as a cast
from Object to a given class or from void* to a given pointer type, is needed. In the
worst case it breaks type safety and well-typed programs do not necessarily behave
well; in the best case dynamic typechecks are performed at run-time. In both cases,
some type errors are only detected at run-time, which is not satisfying in our opinion.
We describe quickly the other solutions mentioned above.

Subtyping allows some information in types [Car88, Mit83, Pot98b] to be forgotten.
For example, integers and floating point numbers are usually of incomparable
types, but both can be viewed as members of the more general type “number”.
A list of integers can then be viewed as a list of numbers, or even as an un-
specified list, forgetting the type information about the content of the list. To
pursue the example given above, the function List.length can then be applied to
any unspecified list, including, by subtyping, lists of integers and lists of strings.
Extensions of ML with subtyping that allow for type inference have been de-
signed [OSW99, Pot98a]. They remain to be tested on large-scale developments.
One step towards integration within a large-scale framework is Flow Caml [Sim03],
an information flow analyzer for the Caml language based on subtyping.

Intersection types enumerate precisely the different types a given value can have,
and may be viewed as a refinement of subtyping [CDC78, CDCS79, Sal82, Pot80,
Pie91]. For instance, List.length can be given an intersection type that states
that it is both a function accepting lists of integers and a function accepting
lists of strings. Intersection types are in some way as expressive as programs
themselves [CC90]. In particular, a program is typable with intersection types
if and only if it terminates [Pot80]. Some restrictions based on ranks have been
proposed to integrate intersection types within a programming language with type
inference [KW99, Jim00]. However, such restrictions interfere with modularity: a
value cannot always be passed as an argument if the rank of its type is too high.
Indeed, the type of the function being applied needs to be of a higher rank, which
might be forbidden. Hence, although intersection types enjoy useful properties,
they are too expressive and must be limited in practice.

12
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Parametric polymorphism, which we simply call polymorphism, allows quantifica-
tion over some type variables in types. Then any polymorphic expression may
have an infinite number of types. For example, List.length is a function ac-
cepting lists of α, whatever α is. We develop our presentation of parametric
polymorphism hereafter.

These solutions provide a way to use a single function with different types, that
is, to apply a single function to data structures with incompatible types. They all
help to avoid unnecessary duplication of code, and therefore contribute to keeping the
program concise. In the ML language, the third solution, parametric polymorphism, is
used. More precisely, the ML typechecker is able to infer polymorphic types for named
functions. In particular all functions defined at top-level are assigned a polymorphic
type if possible. This feature greatly contributes to ML’s conciseness and expressive-
ness. Moreover, even though the cost for type inference is exponential in theory, it
appears to be very efficient in practice. The success of ML suggests that parametric
polymorphism is an expressive feature that applies well to large scale programs.

Second class polymorphism

Polymorphism in ML is second-class only: as mentioned above, only named values
may have a polymorphic type, that is, only values bound with a let construct. As
a consequence, it is not possible for the argument of a function to be used with a
polymorphic type. For instance, let id be the identity function, that is, λ(x) x. Its
type in ML is polymorphic and equal to ∀ (α) α → α, which we write σid. Then
(λ(x) x x) id (1) is not typable in ML, whereas let x = id in x x (2) is. Indeed,
typing the body of the function λ(x) x x would require x to have a polymorphic type,
e.g. σid. However, x is not bound by a let but by a λ. Hence, its type is monomorphic
in ML, and the typing of (1) fails. On the contrary, x is first bound by a let construct
in (2), and then the body x x is typed. In ML, this allows us to infer a polymorphic
type for x, namely σid, which suffices to typecheck (2). This example illustrates why
polymorphism in ML is second-class only; that is, because it is not allowed in λ-
abstractions. It also shows that the let construct may, in some situations, circumvent
this limitation. However, there are some situations where let-polymorphism a la ML
is not enough.

Motivation

We detail our motivation for this thesis whose contribution is a programming language
named MLF. Our starting point is ML.

13



14 Introduction

Actually, ML is surprisingly powerful in defining, handling, and iterating over com-
plex data structures. Indeed, data structures are usually typed using parametric type
constructors such as built-in types or user-defined datatypes. The type parameter
represents the type of values to be found in the structure. As an example, a list
of elements with type α is given the parametric type α list in OCaml [LDG+02].
Then the associated constructors such as the empty list, the cons operator, or user-
defined constructors are automatically given a polymorphic type with outer quantifi-
cation. For example, the empty list is given the type ∀ (α) α list. Most functions
defined on these data structures, such as iterators, are also given polymorphic types
with outer quantification. For instance, List.fold is given the polymorphic type
∀ (α, β) β list → (α→ β → α) → α→ α.

As long as the data structure is known to the programmer, ML is perfectly suitable,
and outer-polymorphism makes it possible to take many instances of the data structure
and fill them with values of different types. Indeed, one can use the constructors for
lists to build lists of integers, lists of arrays, or more generally, lists of α, whatever α is.
No coercion of explicit type information is needed in the program. This is not true in
some programming languages such as C or Java. Noticeably, the introduction of type
parameters has been studied in the case of Java [BOSW98].

However, as soon as more abstraction is needed, ML is no longer sufficient. Indeed,
assume the data structure is not known to the programmer: he wishes to write a
function taking an unknown data structure as an argument, as well as an iterator over
this data structure. Then the ML type system requires the data structure and the
iterator to be monomorphic. It is no longer possible to explore the data structure using
incompatible instances of the iterator.

As an example, consider a program that takes a list as an input data structure and
only manipulates that list through the function List.fold ls. Such a program can
always take the following form:

λ(ls)
let fold = List.fold ls in

a2

where ls does not occur free in a2. In order to offer more flexibility, the programmer
may leave the underlying implementation of the data structure abstract. Then this piece
of code would become a function expecting only an iterator: λ(fold) a2. Consequently,
it would be possible to use this function with different data structures such as lists,
balanced trees, hashtables, etc. Unfortunately, such a function is not typable in ML as
soon as its argument is used polymorphically. Observe that this requires only traversing
the data structure using two incompatible instances of fold. In Chapter 12, we develop
a similar example using a prototype implementation of MLF. Another related example

14
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is given Section 11.1 (page 203); it shows that the encoding of pairs in System F is not
correct in ML.

First-class polymorphism (also called second-order polymorphism) makes it possible
to typecheck such examples; we describe it more precisely in the next section. Then
the argument fold can be given the polymorphic type ∀ (α) (α → β → α) → α → α),
where β stands for the type of elements of the data structure.

As a summary, abstraction over data structures is not possible in core-ML (although
some implementations allows it at the module level). More generally, ML is usually not
suitable to handle values with hidden type information:

As a first example, consider existential types, which can be used to encapsulate a
value and hide part of the type information; that is, part of the structure of the value
is hidden to the outside world. For instance, consider a server that receives tasks to be
done asynchronously, queues them in a list, and may then execute them sequentially.
The list contains tasks waiting to be executed: its type is task list. Now, how is the
type task defined? In ML a task is usually only a computation waiting to be triggered,
that is, a function of type unit → unit. However, it is often more convenient to
describe a task as a pair of a function and an argument to be passed to the function.
Then a task is a pair (f, a) whose type is an existential type: ∃α.(α → unit) × α.
Using this form of encapsulation, it is possible to put pairs of incompatible types
into the task list. Existentials are not available in core-ML, but in some extension
to the language [LO94a]. However, some explicit type information is needed both for
encapsulation and opening, which will be improved with MLF. Existential types can
also be encoded quite elegantly using first-class polymorphism.

As a second example, objects are also a form of encapsulation. Since objects may
contain any data structure, possibly hidden to the outside world, its interface (meth-
ods) must provide tools to copy, transform, or iterate over itself. Hence, polymorphic
functions are usually needed in the interface. Take for example a class dlist imple-
menting double-linked lists. Since the type of the list elements, say α, is only a type
parameter of the class, the methods1 rev, car, cdr are monomorphic. Their types are,
respectively, α dlist, α, and α dlist. However, a method such as fold must be poly-
morphic: its type is ∀ (β) (β → α→ β) → β → β. Such a type cannot be expressed in
ML because first-class polymorphism is missing. In OCaml, a special extension to the
language is required to provide polymorphic methods in objects [GR99].

Encoding monads, as done by Peyton Jones and Shields [JS04] also needs first-class
polymorphism. Indeed, a monad type, which we write α m, is usually parametric over
some type variable α, and the functions of the monad interface must be polymorphic.
For instance, return and bind are given the polymorphic types ∀ (α) α → (α m) and

1Following the tradition, rev, car and cdr are, respectively, the functions which reverses a list,
returns the first element, and returns the list without the first element.

15



16 Introduction

∀ (α, β) α m → (α → β m) → β m. Then functions taking a monad as an argument
usually require second-order polymorphism.

As another example, non-uniform recursive types [Oka98] are also known to make
use of polymorphic recursion. Two cases can be identified.

• The first one corresponds to finite types: take for instance the datatype definition
type α T = None | Some of α × (int T ). A function defined over this datatype
certainly needs to be defined for the types α T and int T . If polymorphic
recursion is not available, it is still possible to define twice the same function:
the first one is defined over the type int T , and the second one over α T . This
example shows how duplication of code may circumvent the limitations of the
type system.

• The second case corresponds to infinite types: take for instance the following
definition type α T = None | Some of α list T . A recursive function defined
over such a datatype needs to be polymorphic. In this case, it is not possible to
duplicate the code to circumvent the limitations of the type system.

All the examples above only require rank-2 polymorphism. However Peyton Jones
and Shields [JS04] give an example that illustrates how a rank-3 polymorphic type may
be needed by defining a recursive map function over a nested datatype: the recursive
map function is decomposed into a recursive fixpoint operator and a non-recursive map
function. Although this separation is quite artificial, it shows that rank-3 types are
likely to appear in programs using polymorphic functions as soon as more abstraction is
introduced. Indeed, adding an extra level of abstraction, such as the explicit separation
mentioned here, immediately increases the rank of the types being involved.

As a conclusion of this section, we have seen that although outer polymorphism a la
ML is usually enough to create and handle parametric data structures, some extension
to the type system is needed as soon as one wishes to express more abstraction over data
structures, encapsulation of values, or non-uniform datatypes. Indeed, in all these cases
the lack of first-class polymorphism in ML prevents the typing of the corresponding
programs.

First-class polymorphism

In a type system with first-class polymorphism, any variable may have a polymorphic
type, including λ-bound variables. In the 1970’s, Girard [Gir72] and Reynolds [Rey74]
independently designed such a type system, called System F. Since full type inference is
undecidable for System F [Wel94], some explicit type information is needed in order to
typecheck expressions. As a consequence, System F is usually defined in Church style,
where expressions have sufficient type information so that the typing derivation can be
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constructed. Three kinds of type information are found in System F expressions: type
abstractions, type annotations, and type applications. Type abstractions are abstrac-
tions over type variables, and written Λ(α) a. They indicate that the expression a is
polymorphic in α. The type variable being abstracted (α in our example) is meant to
appear in type annotations or type applications. Type annotations are types used to
annotate λ-bound variables. For example, the identity is written Λ(α) λ(x : α) x (3) in
System F. A type abstraction is used to indicate that this function is polymorphic. The
type annotation on x links the abstract type variable α to the type of x. In System F,
the expression (3) has type ∀α · α → α.2 Intuitively, a polymorphic value represents
an infinite number of types. Choosing one of these types (or a subset of these types)
is called instantiation. In System F, instantiation is explicit via a type application. To
pursue the example, instantiating the identity so that it can be applied to integers is
done by writing id [int]. Type applications explicitly indicate how a polymorphic value
is instantiated. The type argument (here int) is meant to replace the abstracted type
variable (here α) in the body of the type abstraction, leading to the type int → int.

There is a great difference between programming in ML and programming in Sys-
tem F: while the former benefits from full type inference, so that no type is needed in
the source program, the latter needs all the type information described above. However,
System F is more expressive than ML since polymorphism is first class. In order to
merge the two systems, a first approach may consist in performing a sufficient amount
of type inference in System F, so that usual programs would need very little type an-
notations. Taking F<: as a basis, Cardelli has experimented such a solution [Car93]. It
has lead to local type inference [PT98], recently improved to colored local type infer-
ence [OZZ01]. Both of these type systems succeed in merging subtyping with fist-class
polymorphism, while providing a reasonable amount of type inference. However, both
fail to type all unannotated ML programs. Besides, although local type inference seems
satisfactory enough in practice, it suffers from intrinsic limitations that are believed
hard to fix [HP99]. We compare this approach with ours at the end of the introduction.

A second approach consists of extending ML with higher-order types, so that all
ML programs are typable without any annotations and System F can be encoded into
the extended language [LO94b, Rém94, OL96, GR99]. However, the existing solutions
are still limited in expressiveness and the amount of necessary type declarations keeps
first-class polymorphism uneasy to use. More precisely, these solutions embed first-
class polymorphism into ML monotypes using type constructors. This is called boxed
polymorphism. Here, a polymorphic value may have either a polymorphic type, as in
ML, or a boxed polymorphic type. Explicit coercions are needed to transform a poly-
morphic type into a boxed one. Conversely, whereas a polymorphic type is implicitly

2Note that we use two notations: a first one is ∀ (α) σ for polymorphic types of ML, which we also

use for types of MLF; the second one is ∀α · t for polymorphic types of System F.
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instantiated in ML, an explicit coercion is needed as well to transform a boxed type into
a polymorphic type. The amount of explicit type information differ from one system
to another. For example, in Poly-ML [GR99] the coercion from boxed types to poly-
morphic types is a simple mark that does not depend on the types being coerced (the
construct 〈·〉). However, an explicit type annotation is required for coercing a poly-
morphic type to a boxed type. Although Poly-ML has been used to add polymorphic
methods to OCaml, it is probably not suitable yet for providing user-friendly first-class
polymorphism. In summary, existing solutions are in general uneasy to use due to the
required amount of type information in programs. Indeed, explicit type information is
needed both when a polymorphic value is boxed and when it is unboxed. Below, we
compare these proposals with MLF.

In this document, we follow the second approach: our goal is to type all ML pro-
grams without any type annotation, and to type all expressions of System F using type
annotations if necessary. We build on the work done in Poly-ML, and we aim at the
elimination of all coercions between unboxed polymorphic types and boxed polymor-
phic types. However, we do not expect to guess polymorphism, so that explicit type
annotations are still required in some cases in order to typecheck expressions of Sys-
tem F. In summary, MLF programs contain some type annotations, but no coercion,
no type abstraction, and no type application.

Type inference

The ML language benefits from full type inference, while System F does not. Let
us study more precisely what this means. In core-ML, programs consist of untyped
lambda-expressions and a let construct. Notice that, by construction, they do not
contain any type annotation. Not all the writable programs are valid ML programs:
only some of them are typable, according to a set of typing rules. Fortunately, there
exists a type inference algorithm, which finds whether a given program is typable or
not. Moreover, this algorithm is complete, that is, it always terminates by telling if
the given program is typable or not. In summary, the type inference problem in ML
consists of finding whether a given program is typable according to the ML typing
rules. It is remarkable that, by definition, the given programs do not contain any type
information.

A similar approach for System F is called Curry style System F: programs are
unannotated lambda-terms, that is, pure-lambda terms without any type information.
Then typing rules are defined on pure lambda-terms, and a type inference problem
consists of finding whether there exists a typing derivation using Curry style System F
typing rules. Unfortunately, type inference in Curry style System F is undecidable in
general [Wel94]. This means that it is impossible to design a complete algorithm which
finds whether a given program is typable or not. This is probably why programs are
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usually defined in a Church style, that is, with a lot of type information. Additionally,
typing rules are defined on fully annotated programs. Hence, defining type inference
as we did for ML would be meaningless: since all the necessary type information is
already present in programs, it is straightforward to write a type inference algorithm
that simply checks if the given program is typable. In that sense, we have a complete
type inference algorithm for Church style System F. It should be noticed that whereas
a Church style System F program has the same structure as its typing derivation, a
Curry style System F program may have many typing derivations.

Since full type inference is undecidable in Curry style System F, it is impossible
to reconstruct all type abstractions, type applications and type annotations. Besides,
reconstructing type annotations when only type abstractions and the location of type
applications are indicated is undecidable as well [Pfe93]. In MLF, we aim at the elimina-
tion of type abstractions and type applications, but not all annotated lambdas. Hence,
an MLF program is an ML program that might still contain some type annotations.
As seen above, an annotated System F program corresponds exactly to its expected
typing derivation, thus type inference is straightforward in Church style System F. On
the contrary, an annotated MLF program still requires some type inference: first, type
annotations are not required on all λ-bound variables, thus it remains to infer the types
of unannotated λ-bound variables, as it is the case in ML; second, type abstractions
and type applications are not explicit, thus it remains to infer both the places where
polymorphism is introduced and the places where polymorphism is instantiated. We see
that the type inference problem over annotated MLF programs is a priori not straight-
forward, and certainly more difficult than type inference problems over fully annotated
System F programs. In this document, we consider only such type inference problems.
In particular, we do not study type inference problems over MLF without type annota-
tions (that is, pure lambda-terms considered as MLF programs). Nevertheless, a short
discussion about the decidability of such problems is addressed while comparing MLF

and System F.
In summary, our ambition is to infer types for all ML programs and to infer type

abstractions and type applications for all System F programs. However, our goal is not
to guess type annotations, thus programs that need but lack type annotations must be
immediately rejected. This is why, unlike ML, the static semantics of an MLF program
take type annotations into account.

Principal types

In ML, type inference relies on the following property: all the possible types of a pro-
gram are instances of a single type, called its principal type. It is worth comparing
what principal types are in the different flavors of System F. As seen above, a Church
style System F program admits at most one type, which can be considered as a (trivial)
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principal type. Conversely, a Curry style System F program may admit many incom-
parable types. To see this, consider the expression λ(x) x x. Then taking σid for the
type of x (and adding the necessary type application) makes the expression typable
with type σid → σid. However, taking ∀α · α for the type of x leads to the type
(∀α · α) → (∀α · α). These two types are incomparable. Furthermore, there is no type
that is both a valid type for λ(x) x x and more general than these two types. Indeed,
Curry style System F does not have principal types.

In MLF, any typable expression admits a principal type: all the possible types of a
program are instances of a single type. Note that this holds for annotated programs.
Like type inference, the problem of principal types is a priori not straightforward in
annotated MLF, while it is trivial in fully annotated System F. In this document, we
consider only the problem of principal types for annotated MLF programs, and we do
not consider the problem of principal types for MLF without type annotations. As a
consequence, the principal type of every typable expression depends on the explicit type
annotations. It should be clear from the above discussion that this is not a limitation
due to the design of MLF, but it is only a consequence of our ambitions.

To sum up, we consider the questions of type inference and principal types for
annotated MLF programs. Whereas these problems are trivial in fully annotated Sys-
tem F, they are not in MLF since we aim at the inference of type abstractions and
type applications. More precisely, the principal type of an expression must capture
all possible type abstractions and type applications through an appropriate instance
relation, as well as an appropriate syntax for types. Let us consider an example.
We assume choose is an expression of type ∀α · α → α → α (it can be defined as
λ(x) λ(y) if true then x else y). Let us apply choose to the identity id: adding
the omitted type abstractions and type applications, we get (at least) two typings for
choose id in Church style System F:

choose [∀β · β → β] id : (∀β · β → β) → (∀β · β → β)
Λ(β) choose [β → β] (id [β]) : ∀β · (β → β) → (β → β)

The first typing is obtained by keeping the identity fully polymorphic. Then choose id

is a function expecting an argument that must be as polymorphic as the identity. The
second typing is obtained by first instantiating the identity to β → β. Then choose id

is a function expecting a monomorphic argument of type β → β.
In MLF, we have to give a principal type to choose id that can capture both types

by instantiation. We note that both types have the same structure t → t. Actually, it
is straightforward to check that all the types of choose id in System F have the form
∀ ᾱ · t→ t for some type variables ᾱ and some type t instance of ∀α ·α→ α (including
∀α · α→ α itself). In MLF, we capture this by writing ∀ (α≥ σid) α→ α for the type
of choose id. The notation (α≥σid) binds α to any instance of the identity σid. Such
a binding is called a flexible binding. By analogy, we write ∀ (α = σid) α → α for the
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type σid → σid. The binding (α=σid) is a rigid binding. As suggested by the notation,
the instance relation of MLF allows the bound of α in ∀ (α≥σid) to be updated by any
instance of σid , but does not allow the bound of α in ∀ (α = σid) to be instantiated.
This new syntax for types, along with an appropriate instance relation, actually suffices
to capture all implicit type abstractions and type applications; that is, we get principal
types in MLF by just following the intuition behind the notation ∀ (α ≥ σ) σ ′, which
means “the type σ′ where α is any instance of σ”. In short, MLF provides richer
types with constraints on the bounds of variables that allow the instantiation of these
variables to be delayed until we have the necessary information to instantiate them.

Compositional type inference

A principal typing [Jim96] is a typing judgment that somehow represents all possible
typing judgments of the expression. In particular, it must represent all possible typing
environments that allow the typing of the expression. We parenthetically observe that
MLF does not have principal typings, nor do System F or ML [Wel02]. As a counter
example, in System F, ML, and MLF, there is no way to provide a typing of x x (under
a typing environment binding x) that represents all its typings.

Let us have a closer look at λ(x) x x. This expression is not typable in ML. Besides,
it is not typable in MLF as such because it would require guessing the polymorphic
type of x. Actually, a type annotation, e.g. (x : σid) is necessary to typecheck the
expression, and the expression λ(x : σid) x x, which we call auto, is typable in MLF.
Now, we consider a variant: instead of returning only x x, we return a pair composed
of x x and x; that is, we consider the expression λ(x) (x x, x). It is not typable in
MLF either, for the reason given above, and a type annotation is needed. In MLF, we
allow any subexpression to be annotated, thus the expressions λ(x) ((x : σid) x, x) (1)
and λ(x) (x x, (x : σid)) (2) are well-formed. Furthermore, annotations on λ-bound
variables, which are the only kind of type annotations in System F, are syntactic sugar
in MLF: λ(x : σid) (x x, x) is expanded into λ(x) let x = (x : σid) in (x x, x) (3). In
those three examples (1), (2), and (3), a type annotation (x : σid) is given, thus there is
no need to guess the polymorphic type of x. However, although (1) and (3) are typable
in MLF, we reject (2) in order to keep type inference compositional. Let us explain
why. The typing of (2) requires the typing of (x x) (4) and the typing of (x : σid) (5).
Additionally, the initial typing environment does not provide any information about
the type of x. Hence, if the type inference algorithm first tries to type expression (5), it
“learns” that the type of x is σid. Then using this information, we expect it to succeed
in typing (4). However, if the algorithm first tries to type expression (4), it can only
fail because it cannot guess the polymorphic type of x. A solution to this problem
would be to use backtracking in the type inference algorithm. Note, however, that
the type information (x : σid) may be located in an arbitrarily “deep” subexpression.
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In such a situation, type inference is not only expansive but also counter-intuitive to
the programmer. To avoid this in MLF, we have designed the type system so that the
expression (2) is not typable. In other words, the specification is kept compositional.
Let us explain how the typing rules of MLF allow for the typing of (1) but reject the
typing of (2).

Considering the ML typing rules, the typing rule for λ-abstractions is restricted so
that type inference is possible. Indeed, the typing of λ(x) a only allows a monotype
(that is, a non-polymorphic type) to be assigned to x. We use the same technique in
MLF: λ-abstractions can only introduce monotypes in the typing environment. How-
ever, the typing of (1) obviously requires x to have a polymorphic type. The trick is
to assign a type variable to x, say α, and to bind α to a polymorphic type in a prefix.
Thus, a λ-bound variable such as x is given a monotype α that represents a polymor-
phic type via the prefix. A fundamental property of the prefix is that its bindings are
“abstracted”, that is, hidden from the typing rules. To pursue the example, we say that
the type variable α is an abstraction of the polymorphic type σid. In order to use x as
a polymorphic expression, it is first necessary to reveal its polymorphism, which can
only be done with an explicit type annotation. Of course, the type annotation on x
must correspond to the binding of α in the prefix.

All typing rules of MLF are stated under a prefix. Then type variables can represent
polytypes by putting the corresponding binding into the prefix. However, the informa-
tion stored in the prefix cannot be used for typing the expression: an explicit type
annotation is necessary to reveal the polymorphic type associated to a type variable.
Note, however, that there is no need to reveal the type of an expression that is not used
polymorphically. A related key feature of MLF is that type variables can always be im-
plicitly instantiated by polymorphic types. This can be illustrated by the application
(λ(x) x id) auto (λ(x : σid) x x). This expression is typable in MLF as such, that is
without any type application nor any type annotation—except, of course, in the defi-
nition of auto itself. The type of x is polymorphic (it is the type of auto), but x itself
is not used polymorphically. Thus, the type of x can be kept abstract so that no rev-
elation (no type annotation) is needed. In fact, a generalization of this example is the
app function λ(f) λ(x) f x, whose MLF principal type is ∀ (α, β) (α→ β) → α→ β. It
is remarkable that whenever a1 a2 is typable in MLF, so is app a1 a2, without any type
annotation nor any type application. This includes, of course, cases where a1 expects a
polymorphic value as argument, such as in app auto id. We find such examples quite
important in practice, since they model iterators (e.g. app) applied to polymorphic
functions (e.g. auto) over structures holding polymorphic values (e.g. id).

To conclude, the typing rules of MLF define a compositional specification. The
technique is to enrich typing judgments with a prefix that binds type variables to poly-
types, and to allow only explicit type annotations to reveal the polytype associated to
a type variable. Conversely, it is possible to implicitly abstract a polytype by a type
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variable. This is formalized in MLF by a relation under prefix called abstraction. Thus,
MLF enjoys three relations on types: the equivalence, abstraction, and instance rela-
tions. Actually the instance relation includes the abstraction relation, which includes
the equivalence relation. The inverse of the abstraction relation is the revelation re-
lation, which is used by type annotations to reveal the polytype abstracted by a type
variable. The abstraction and revelation relations play a key role in type inference by
setting a clear distinction between explicit and inferred type information, which is the
essence of MLF.

Variants of MLF

All ML programs are typable in MLF as such. Besides, all System F programs can
be encoded into MLF by dropping type abstractions and type applications. Thus,
MLF seems to be expressive enough. However, subject reduction does not hold in
MLF for a simple notion of reduction (non local computation of annotations would be
required during reduction). Thus, we introduce an intermediate variant MLF

? where
type annotations are replaced by a place holder for revelation, called an oracle. For
example, using the symbol ? in place of polytypes, λ(x : ?) x x belongs to MLF

? since
λ(x : σid) x x belongs to MLF. Since type annotations are replaced by oracles, the
reduction rules can be expressed in a simple way that does not need heavy computation
on type annotations. Subject reduction and progress are proved for MLF

?. Then type
soundness follows for MLF

? and, indirectly, for MLF.
In fact, we abstract the presentation of MLF

? over a collection of primitives so that
MLF can then be embedded into MLF

? by treating type-annotations as an appropriate
choice of primitives and disallowing annotation place holders in source terms. Thus,
although our practical interest is the system MLF, most of the technical developments
are pursued in MLF

?.

Related works

Our work is related to all other works that aim at some form of type inference in
the presence of first-class polymorphism. The closest of them is unquestionably Poly-
ML [GR99], which is itself related to several other works:

Encapsulated polymorphism

Some previous proposals [Rém94, OL96] encapsulate first-class polymorphic values
within datatypes. In these frameworks, a program must contain preliminary type defi-
nitions for all polymorphic types that are embedded in the program. For instance, the
following program defines two flavors of auto and applies them to id:
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type sid = Sid of ∀α. α → α
let id = Sid (λ(x) x)
let auto1 x = match x with Sid x’ → x’ x’

let auto2 x = match x with Sid x’ → x’ x

(auto1 id, auto2 id)

Notice the difference between auto1 and auto2: the former returns the unboxed identity;
the latter returns the boxed identity.

We see that the type sid is used both as a constructor in the creation of the
polymorphic value id (second line) and as a destructor in the lambda-abstraction (third
and fourth lines). In practice, some syntactic sugar allows auto1 to be defined as follows:

let auto1 (Sid x) = x x

Poly-ML is an improvement over these proposals that let the coercion from mono-
types to polytypes be a simple mark, independent of the type being coerced. Then
polymorphic types do not need to be defined (bound to a constructor) before they are
used, although it is still possible to do so. Noticeably, Poly-ML subsumes first-class
polymorphism by datatype encapsulation.

The above example can now be written as follows:

let id = [λ(x) → x : ∀α. α → α]
let auto1 (x:∀α. α → α) = 〈x〉 〈x〉
let auto2 (x:∀α. α → α) = 〈x〉 x

(auto1 id, auto2 id)

The explicit creation of a polymorphic value is still required at the first line. However,
using a known polymorphic value (second and third lines) is easier since the coercion
from the embedded value x to a polymorphic value is simply written 〈x〉. Notice how
abstracting over a polymorphic value requires explicit type information but using it
only requires the mark.

Still, Poly-ML is not yet fully satisfying since the explicit type information necessary
to build a polymorphic value (at the first line) is utterly redundant: can a programmer
accept to write down a type that is already inferred by the typechecker?

Odersky and Läufer’s proposal [OL96] is two-folded: the first mechanism is de-
scribed above; a second mechanism simultaneously allows a form of predicative quan-
tification. This implies that the above example can also be written as follows:

let id = λ(x) x
let auto (x:∀α. α → α) = x x

auto id
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This is also the way this program is written in MLF. However, this form of quantifica-
tion is predicative in Odersky and Läufer’s proposal [OL96], whereas it is impredicative
in MLF. This makes a huge difference between the two systems: although both of them
typecheck the expression λ(x : σ) a for any type scheme σ, encapsulation is required to
pass this function as a value in their proposal, and for example store it in a list. In MLF,
this function can be passed as any other value, without any form of explicit encapsu-
lation. As another example, in Odersky and Läufer’s system, if f a typechecks, then
it is not always the case that app f a does. Hence, this restricted form of predicative
polymorphism breaks compositionality. Noticeably, the encoding of System F given by
Odersky and Läufer does not use annotated λ-abstractions at all, but only polymorphic
datatypes. Actually, predicative quantification and polymorphic datatypes are two in-
dependent features that can only lead to a non-uniform programming style, as far as
first-class polymorphism is concerned.

MLF subsumes all of these proposals: type annotations are only required on some
lambda-abstractions, and no form of explicit coercion between polymorphic types and
embedded polytypes is ever needed. Additionally, MLF is an unpredicative type system
and the encoding of System F into MLF is a straightforward local mapping of expres-
sions which removes type abstractions and type applications. On the contrary, encod-
ings based on polymorphic datatypes analyze the whole program, that is, the whole
typing derivation; the transformation is not local and the inserted type definitions can
be quite involved (cf. lifting of types in Odersky and Läufer’s proposal [OL96]).

The encoding of System F into Poly-ML does not need these type definitions; how-
ever each polymorphic value is embedded and thus requires an explicit type annota-
tion, like in let id = [fun x →x : ∀α. α→α]. As a consequence, the encoding of
a given System F expression can be larger than the original expression. In MLF, poly-
morphic values are implicitly created; that is, no explicit type annotation is required.
Besides, the encoding of System F always produces smaller expressions.

A further extension of Odersky and Läufer’s work is Peyton Jones and Shields’type
inference for arbitrary-rank types [JS04], which we discuss below.

Fragments of System F

Other approaches consider some fragments of System F and try to perform type recon-
struction. Rank-2 polymorphism allows for full type inference [KW94]. Interestingly,
this system, which Jim calls Λ2, types the same programs than I2, the rank-2 inter-
section types system [Jim95]. As already mentioned, these approaches are not com-
positional because of the rank limitation. Since first-class polymorphism is precisely
needed to introduce a higher level of abstraction, we think this fundamental limitation
is not acceptable in our opinion: only the abstractions over ML values are possible,
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which is then just not enough. Besides, the inference algorithm in Λ2 requires rewrit-
ing programs according to some non-intuitive reduction rules. Worse, this algorithm
can only be applied to full programs: it is not possible to typecheck library modules
independently. Noticeably, the algorithm given by Trevor Jim for I2 has better prop-
erties, including principal typings. However, the equivalence between I2 and Λ2 is also
shown by mean of rewriting techniques; thus, although a typing in I2 can be inferred
in a modular way, it does not give a modular typing in Λ2.

Our treatment of annotations as type-revealing primitives also resembles retyping
functions (functions whose type-erasure η-reduces to the identity) [Mit88]. However,
our annotations are explicit and cover only certain forms of retyping functions, and
conversely can do more. Type inference for System F modulo η-expansion is known to
be undecidable as well [Wel96].

Several people have considered partial type inference for System F [JWOG89,
Boe85, Pfe93, Sch98] and stated undecidability results for some particular variants. For
instance Boehm [Boe85] and Pfenning [Pfe93] consider programs of System F where
λ-abstractions can be unannotated, and only the locations of type applications are
given, not the actual type argument. They both show that type reconstruction in this
system is undecidable by encoding second-order unification. Both encodings manage to
introduce an unannotated λ-abstraction whose argument is used polymorphically. This
is precisely what we avoid in MLF: all polymorphic λ-abstraction must be annotated,
whereas type abstractions and type applications are inferred.

As another example, Schubert [Sch98] considers sequent decision problems in both
Curry style System F and Church style System F. Sequent decision problems in Curry
style System F mostly correspond to type inference in System F, as already studied by
Wells [Wel94], and are known to be undecidable. An interesting problem in Church style
System F consists in finding the typing environment Γ which makes a given program
M typable (the term M is fully annotated). Schubert proves that this problem is
undecidable in general by encoding a restricted form of second-order unification, which
is shown equivalent to the problem of termination for two-counters automata. We see
that although the program is fully annotated, the knowledge of the typing environment
is necessary to typecheck it in a decidable way. Fortunately, this is the approach we
have in MLF, just like in ML. On the contrary, systems with intersection types, and
more generally systems aiming at principal typings, have to infer both the type and
the typing environment.

Second-order unification

Second-order unification, although known to be undecidable, has been used to explore
the practical effectiveness of type inference for System F by Pfenning [Pfe88]. Despite
our opposite choice, that is not to support second-order unification, there are at least
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two comparisons to be made. Firstly, Pfenning’s work does not cover the language ML
per se, but only the λ-calculus, since let-bindings are expanded prior to type inference.
Indeed, ML is not the simply-typed λ-calculus and type inference in ML cannot, in
practice, be reduced to type inference in the simply-typed λ-calculus after expansion
of let-bindings. Secondly, one proposal seems to require annotations exactly where the
other can skip them: in Pfenning’s system [Pfe88], markers (but no type) annotations
must replace type-abstraction and type-application nodes; conversely, this information
is omitted in MLF, but instead, explicit type information must remain for some argu-
ments of λ-abstractions.

Our proposal is implicitly parameterized by the type instance relation and its corre-
sponding unification algorithm. Thus, most of the technical details can be encapsulated
within the instance relation. We would like to understand our notion of unification as a
particular case of second-order unification. One step in this direction would be to con-
sider a modular constraint-based presentation of second-order unification [DHKP96].
Flexible bounds might partly capture, within principal types, what constraint-based
algorithms capture as partially unresolved multi-sets of unification constraints. An-
other example of restricted unification within second-order terms is unification under
a mixed prefix [Mil92]. However, our notion of prefix and its role in abstracting poly-
types is quite different. In particular, mixed prefixes mention universal and existential
quantification, whereas MLF prefixes are universally quantified. Besides, MLF prefixes
associate a bound to each variable, whereas mixed prefixes are always unconstrained.

Actually, none of the above works did consider subtyping at all. This is a significant
difference with proposals based on local type inference [Car93, PT98, OZZ01] where
subtyping is a prerequisite. The addition of subtyping to our framework remains to be
explored.

Local type inference

The main difference between local type inference [PT98] and the approach we followed
in MLF is that the former avoids global unification and only matches types at applica-
tion nodes in the program: type information can only be propagated between adjacent
nodes. As a result, it provides a convenient way to handle subtyping and some form
of type inference in System F. The motivation for local type inference is mainly prac-
tical. As a consequence of this approach, there is no standard translation of System F
(except the identity), which could have illustrated how much annotation is required
in an automatic translation. Rather, the authors give some measurement of necessary
type annotations on real existing ML programs. Still, the local-inference programming
style always requires “top-level” definitions to be annotated and polymorphism must
be explicitly introduced. Not all ML programs are typable in these systems, even af-
ter decorating top-level definitions with type abstractions and type annotations: inner
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type annotations may also be needed. One difficulty arises from anonymous functions
as well as so-called hard-to-synthesize arguments [HP99]. As an example, the applica-
tion app f x may be untypable when f is polymorphic3. Principal types are ensured
by finding a “best argument” each time a polymorphic type is instantiated. If no best
argument can be found, the typechecker signals an error. Such errors do not exist in
ML nor MLF, where any typable expression has a principal type. It should be noticed
that finding a “best argument”, and thus inferring principal types in local type systems,
is made more difficult because of the presence of subtyping.

Colored local type inference [OZZ01] is presented as an improvement over local type
inference, although some terms typable in the latter are not typable in the former. It
enriches type inference by allowing partial type information to be propagated.

Beyond its treatment of subtyping, local type inference also brings the idea that
explicit type annotations can be propagated up and down the source tree according to
fixed well-defined rules, which, at least intuitively, could be understood as a prepro-
cessing of the source term. Such a mechanism is being used in the Glasgow Haskell
Compiler, and can also be added on top of MLF as well, as explained in Chapter 11.

Meanwhile, in Cambridge

Adapting ideas both from Odersky and Läufer’s work and local type inference, Peyton
Jones and Shields designed a type inference algorithm for arbitrary-rank types [JS04].
Their type system uses a restriction of Mitchell type containment relation [Mit88],
which is contravariant in the domain of arrow types and covariant in their codomain.
This is a first difference with MLF, in which the instance relation is always covariant
(including in the domain and codomain of arrow types). Let us look at an example
taken from Peyton Jones and Shields’paper [JS04].

We assume we are given some functions g, k1 and k2, with the following signature:

val g : ((∀β. β list → β list) → int) → int

val k1 : (∀α. α → α) → int

val k2 : (int list → int list) → int

By subsumption,

(∀α. α → α) → int

is less polymorphic than

(∀β. β list → β list) → int

3The problem disappears in the uncurrified form, but uncurrifying is not always possible, or it may
amount to introducing anonymous functions with an explicit type annotation.
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As a consequence, (g k1) is ill-typed in Peyton Jones and Shields’type system, whereas
(g k2) is well typed. In MLF, the type associated to g is ∀ (γ=∀ (β) β list → β list

) (γ → int) → int (1). Hence, both (g k1) and (g k2) would be ill-typed, because
MLF supports no form of contravariance.

However, the type system of MLF contains flexible bounds, which can help in this
very example. More precisely, the type of g shows that it is a function expecting an
argument x with type (∀β.β list → β list) → int. Hence, x must be a function
expecting an argument with type ∀β.β list → β list. Let h be a function with this
type. Then, g could be defined as follows:

let g (x:(∀β. β list → β list) → int) = x h

Actually, x is not used polymorphically, thus the following definition is also typable in
MLF:

let g2 x = x h

Besides, the principal type inferred for g2 is ∀ (γ ≥ ∀β.β list → β list) ∀ (δ) (α →
δ) → δ (2). Comparing (1) and (2), we see that the rigid binding for γ is replaced by
a flexible binding. Then, the type variable γ stands for ∀β.β list → β list or any
instance of it, including int list → int list. As a consequence, (g2 k2) typechecks
in MLF (and (g2 k1) is still not typable because the bound of γ cannot be instantiated
to ∀α.α→ α).

We see that although MLF does not enjoy any form of contravariance, it may still
typecheck some examples that, at first glance, seem to require contravariant subsump-
tion.

Another difference between Peyton Jones and Shields’type system and MLF is that
the former is predicative. Thus, as already mentioned above, compositionality is re-
stricted; data structures cannot hold polymorphic values; generic functions cannot be
applied to polymorphic values. We think this is a considerable limitation. As a simple
example, consider the expression [auto] (that is, auto in a singleton list).

Furthermore, this system borrows an idea from local type inference, namely inwards
propagation of type information, which is formalized in the type-system specification.
In MLF, propagation of type annotations may be performed beforehand, as a simple
purely-syntactic mechanism independently from the typing process. This leads to com-
parable features, such as the propagation of type information from interface files to
implementation files. However, this remains a side mechanism, which only plays a
minor role in MLF.

Still, Peyton Jones and Shields’s metatheory is much simpler than the one of MLF.
At the programmer’s level, though, it is not clear which one is simpler to use.
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Organization of the document

The expressiveness of MLF is based essentially on its type system, while its typing
rules are almost identical to those of ML. Such a combination of more expressive types
and ML semantics leads to an expressive second-order type system. Types are defined
and studied in Part I. Typing rules and dynamic semantics are defined and studied in
Part II. The expressiveness of MLF is considered in Part III.

Part I: Types Types are described in Chapter 1 as monotypes and polytypes. Mono-
types are monomorphic types, without quantifiers. Polytypes are polymorphic types,
and consist in a sequence of bindings, called a prefix, in front of a monotype. The
equivalence relation (≡) and instance relation (v) are then defined, as well as an inter-
mediate relation, the abstraction relation (@−). The two former relations can be viewed
as extensions of the ML corresponding relations. The abstraction relation, however,
has no counterpart in ML. It is a reversible relation, as equivalence, but only explicitly,
that is, thanks to type annotations in the source code. It is used to distinguish be-
tween inferred information on types and explicitly given information. Chapter 2 gathers
useful properties about types and relations between types. Some of these results are
direct extensions of ML properties to the more general framework of MLF. Some other
results have no counterpart in ML4, notably properties concerning the abstraction re-
lation. The three relations on types induce immediately the same relations on prefixes.
Prefixes extend the notion of substitution by allowing, intuitively, the substitution of
type variables by polytypes. Types and substitutions are at the heart of the ML type
system. Similarly, types and prefixes contain the expressive power of MLF. Chapter 3
focuses on prefixes. Like properties on types, properties on prefixes usually extend
known results about substitutions in ML, in a more general framework. The work done
on types and prefixes is then used in Chapter 4, where the unification algorithm is
stated, then shown correct and complete. As expected, the unification algorithm is
an extension of the ML unification algorithm that deals with polytypes, and returns a
prefix instead of a substitution.

Part II: The programming language As explained above, we define the language
MLF

?, which consists of the expressions of ML enriched with a construction called
an oracle. The difference between ML and MLF

? lies mainly in their respective type
system, not only in the oracle. The oracle is a simple mark on the expression that
explicitly allows the reversal of the abstraction relation. Oracles do not contribute to
the reduction of expressions, but they are silently propagated. The expressions and
dynamic semantics of MLF

? are given in Chapter 5, as well as the typing rules. The

4Actually, such results are trivial when stated in the framework of ML.
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typing rules of MLF
? are similar to those of ML: they are only enriched with an explicit

prefix, and make use of the richer type instance relation. In ML, all bounds of the
prefix are unconstrained, therefore the prefix is kept implicit. An additional typing
rule is necessary for the oracle; it allows only to reverse the abstraction relation. Then
exactly as in ML, a syntax-directed presentation of the typing rules is given. The goal
of a type system is to ensure safety, that is, well-typed programs do not go wrong.
Chapter 6 shows type safety for MLF

?. Type safety for MLF, which is defined as MLF
?

without oracles, follows. As suggested by their name, oracles cannot be guessed. More
precisely, oracles reverse the abstraction relation, which is safe (type safety is preserved),
but breaks type inference. Indeed, Chapter 7 gives a type inference algorithm which is
shown sound and complete for MLF, but not for MLF

?, where it is probably undecidable.
In summary, a richer language is introduced, namely MLF

? in order to show type safety
of MLF. However, MLF is the programming language that we wish to use, and which
provides type inference. Although the syntax of MLF and ML are the same, the type
system of the former is much richer than the type system of the latter. However, we
show in Chapter 8 that core-MLF and ML are equivalent, that is, the power available
in the type system of MLF is not used. Then we introduce explicit type annotations
as a set of primitives, which make use of the richer type system. We prove that type
safety still holds. A few examples show how type-annotations primitives can be used
to introduce first-class polymorphism. The type inference mechanism simply takes
advantage of the information given by type annotations present in the source code.
The expressiveness of MLF with type annotations is addressed in the third part.

Part III: Expressiveness of MLF As claimed so far, MLF is a language with first-
class polymorphism. We back up this statement by proposing an encoding of System F
into MLF. In Chapter 9, we prove that this encoding is sound, that is, every encoding of
an expression typable in System F is typable in MLF. Noticeably, the encoding simply
removes type abstractions and type applications, thus a given program is always smaller
in MLF than in System F. In Chapter 10, we address the converse question: Can MLF

be encoded in System F? We first consider a restriction of MLF, Shallow MLF, where
type annotations can only be types of System F. Then we show that System F can
be encoded in Shallow MLF. Conversely, we propose an interpretation of types of
Shallow MLF, and show that each typing in Shallow MLF corresponds to one or many
typings in System F. As a consequence, Shallow MLFand System F have the same set of
typable terms, up to type information. We use this equivalence between Shallow MLF

and System F to discuss the differences between MLF and System F. Next, considering
MLF as a basis for a real programming language, we look at some useful extensions
in Chapter 11. As a first example, references can be included in MLF. However, as
in ML, generalization has to be restricted, and we consider the well-known value-only
polymorphism restriction. A more usable proposal by Jacques Garrigue [Gar02] is also
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presented and discussed. As a second example, we show how type annotations can
be propagated from interface files to implementation files thanks to a straightforward
mechanism. Finally, Chapter 12 addresses MLF in practice. We show some examples
written in MLF and tested with our prototype.
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Conventions

In this document, we distinguish four kinds of formal results: lemmas, corollaries,
properties, and theorems. A lemma states a single result, which is usually used to
show other results. We sometimes gather several minor results in a single statement.
Each result is called a property, then. Properties are small results, usually used to
show lemmas. A corollary is always found directly after a result of which it is a direct
consequence. A theorem is a fundamental result of the thesis.

Proofs of formal results are given inline or they are moved to Appendix A. We give
proofs inline by default, and move them to appendix when they are basically similar
to already seen proofs, or when they are too long and of little interest. Additionally,
a very small number of straightforward results are not proven in this document; the
reader should be able to find the proof alone without any difficulty.

Statements with a short scope, such as intermediate results in proofs or construc-
tions introduced locally, are sometimes labelled with an underlined number like this (1).
Then they can be referred at like this (1). Here is a complete example:

Epimenides is a Cretan (2). Epimenides says: “All Cretans are liars.” (3).
From (2) and (3), we conclude that Epimenides cannot tell the truth (4),
that is, there is at least one Cretan that is not a liar. Then we know from (4)
that Epimenides is not this Cretan (5). As a consequence of (2) and (5),
there exist at least two Cretans.

We highly recommend to use Active-DVI 5 to read proofs since it provides eye candy
features that really eases the reading of such materials.

Inference rules are written in small capitals, such as, for example R-Trans. Some
derivable rules are also introduced. Their names always finish by a star, such as for
example Eq-Mono?. All the inference rules of the document are gathered in the index
of rules, page 319. Such rules are meant to build derivations, in the usual way. Unless
specified otherwise, the size of a derivation is the number of rules it uses.

5http://pauillac.inria.fr/advi/
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We bind an element to a name by using the symbol
M

=. For instance, we write

τ
M

= τ1 → τ2 to mean that, from now on, τ is τ1 → τ2. This is different from τ = τ1 → τ2,
which means that the already-defined object τ happens to be equal to τ1 → τ2.

Notation A sequence or a set is usually written x̄. For instance, ᾱ is a set of type
variables. We also use the letters I or J for unordered sets of type variables. An index
of all notations can be found page 322. We sometimes abbreviate “if and only if” into
“iff”.

Following the usual notations, applications of λ-terms associates to the left, and
the scope of the binding λ(x) extends as far to the right as possible. As for types, the
arrow → associates to the right, and the bindings ∀ (α) extends as far to the right as
possible.
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Chapter 1

Types, prefixes, and
relations under prefixes

As explained in the introduction, MLF uses a new syntax for types, which embeds
first-class quantification. In ML, monotypes are simple types without quantifiers and
polytypes (also called type schemes) consist of a list of quantified variables ∀ (ᾱ) followed
by a monotype, e.g. ∀ (α, β) α → β. In MLF too, we make the difference between
monotypes and polytypes. Monotypes are similar to monotypes of ML. Polytypes
are more elaborate than in ML: the list of quantified variables provides a bound for
each variable. For example, ∀ (α1 ≥ σ1, α2 = σ2) are valid bindings in MLF. A list of
variables with their bound is called a prefix. To pursue the example, (α1 ≥ σ1, α2 = σ2)
is a valid prefix in MLF. The first quantification, binding α1, is flexible: its bound
can be instantiated. The second quantification, binding α2, is rigid : its bound cannot
be instantiated. Intuitively, rigid bounds correspond to the type of arguments which
are required to be polymorphic, whereas flexible bounds correspond to the type of
expressions that happen to be polymorphic, but that are not constrained to be.

Types and prefixes are introduced in Sections 1.1 and 1.2, respectively. Then Sec-
tion 1.3 defines occurrences in a type, free variables, and substitutions.

The expressiveness of a type system lies in its relations between types. In MLF, we
have a hierarchy made of three relations on types: equivalence (≡), abstraction (@−),
and instance (v). All these relations are defined under prefix, which means that we
write (Q) σ1 v σ2 instead of simply σ1 v σ2. The given prefix Q provides a bound to
all free variables of σ1 and σ2. The equivalence, abstraction, and instance relations are
described in Sections 1.5, 1.6, and 1.7, respectively. Additionally, we show in Section 1.5,
that types have a unique canonical form, up to commutation of independent binders.
This means that we capture the equivalence relation in a notion of canonical form.

This first chapter establishes many results (properties, lemmas or corollaries), most
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of which are used throughout the document. Only a very few of these are “local” in the
sense they are not referenced at in other chapters.

One of the most important result is Corollary 1.5.10 (page 54), which characterizes
the equivalence under prefix. Property 1.5.6.i (page 51) states the equivalence between a
given type and its normal form; it is widely used throughout the thesis. A related result
is 1.5.6.iii (page 51), which shows that a substitution and the normal form operator
commute. Property 1.5.4.i (page 50) is also widely used; it states that equivalent
types have the same structure. A standard result is Property 1.7.2.iii (page 59), which
corresponds to the addition of unused hypotheses in the prefix of instance derivations.
Another standard result is Property 1.7.2.i (page 59); it shows that a renaming can be
applied to a whole instance derivation.

1.1 Syntax of types

The syntax of types is the following:

τ ::= α | gn τ1 .. τn Monotypes
σ ::= τ | ⊥ | ∀ (α≥ σ) σ | ∀ (α= σ) σ Polytypes

We distinguish between monotypes and polytypes. By default, “types” refers to the
more general form, i.e. to polytypes. The syntax of monotypes is parameterized by an
enumerable set of type variables α ∈ ϑ and a family of type symbols g ∈ G given with
their arity |g|. To avoid degenerate cases, we assume that G contains at least a symbol
of arity two (the infix arrow →) and a symbol of arity zero (e.g. unit). We write gn if
g is of arity n. As shown by the definition, a monotype is either a type variable in ϑ,
or a constructed type gn τ1 .. τn. An example of constructed type is (→) τ τ ′, which
we write τ → τ ′. As in ML, monotypes do not contain quantifiers.

Polytypes generalize ML type schemes. They are either a monotype τ , bottom
(written ⊥), or a binding quantified in front of a polytype, that is, ∀ (α≥σ) σ ′ or ∀ (α=σ)
σ′. Inner quantifiers as in System F cannot be written directly inside monotypes.
However, they can be simulated with types of the form ∀ (α = σ) σ ′, which stands,
intuitively, for the polytype σ′ where all occurrences of α would have been replaced
by the polytype σ. Noticeably, our notation contains additional meaningful sharing
information. Finally, the general form ∀ (α≥ σ) σ ′ intuitively stands for the collection
of all polytypes σ′ where α is an instance of σ. We say that α has a rigid bound in
(α= σ) and a flexible bound in (α≥ σ). Intuitively, the polytype ⊥ corresponds to the
ML scheme ∀α.α. More precisely, it is made equivalent to ∀ (α ≥⊥) α. Actually, ML
type schemes can be seen as polytypes of the form ∀ (α1 ≥ ⊥) . . . ∀ (αn ≥ ⊥) τ with
outer quantifiers. Indeed, a particular case of flexible bound is the unconstrained bound
(α≥⊥), which we abbreviate as (α).
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Notations Given a sequence α1, . . . αn of variables, we define the type ∇α1,...αn as
an abbreviation for α1 → . . . → αn → unit. We write τ̄ for tuples of types, and ᾱ # β̄
means that the sets ᾱ and β̄ are disjoint. For convenience, we write (α � σ) for either
(α= σ) or (α≥ σ). The symbol � acts as a meta-variable and two occurrences or more
of � in the same context mean that they stand for = or all stand for ≥. To allow
independent choices we use indices like in �1 and �2 for unrelated occurrences.

1.2 Prefixes

A polytype is a sequence of bindings, called a prefix, in front of a monotype. As
remarked in the introduction, the expressiveness of types essentially comes from the
expressiveness of prefixes. Indeed, the only difference between ML polytypes and MLF

polytypes lie in their bindings, that is, in their prefixes.

A prefix Q is a sequence of bindings (α1 �1 σ1) . . . (αn �n σn) where variables
α1, . . . αn are pairwise distinct and form the domain of Q, which we write dom(Q).
The order of bindings in a prefix is significant: bindings are meant to be read from left
to right; furthermore, we require the variables αj not to occur in σi whenever i ≤ j
(up to α-conversion of bound variables). As an example, (α ≥ ⊥, β = α → α) is well
formed, but (α = β → β, β ≥ ⊥) is not. A prefix is called unconstrained when it is of
the form (α1 ≥⊥, . . . αn ≥⊥). One can consider that in ML, the prefix is implicit and
unconstrained.

Notations Since α1, . . . αn are pairwise distinct, we can unambiguously write (α�σ) ∈
Q to mean that Q is of the form (Q1, α � σ,Q2).

We write ∇Q for ∇dom(Q), Q # Q′ for dom(Q) # dom(Q′), and ∀ (Q) σ for the
type ∀ (α1 �1 σ1) . . . ∀ (αn �n σn) σ.

1.3 Occurrences

In this section, we define a projection function which maps occurrences in the domain
of a given type to a type symbol such as ⊥, a type constructor, or a type variable. We
first introduce skeletons which are trees representing the projection function.

1.3.1 Skeletons

Definition 1.3.1 Skeletons are defined by the following grammar:

t ::= α | ⊥ | gn t1 .. tn
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Substitutions are defined on skeletons in the obvious way. Since skeletons do not
bind any variables, substitutions on skeletons are always capture-avoiding. The sub-
stitution of α by t′ is written [t′/α]. We write t[t′/α] for the skeleton t where α is
substituted by t′. Substitutions on skeletons are written Θ.

1.3.2 Projections

An occurrence is a sequence of natural numbers. We write ε for the empty sequence,
and kn for the sequence k, . . . , k of length n (and, in particular, k0 is ε). The projection
function maps pairs t/u composed of a skeleton t and an occurrence u to a type symbol,
that is, to an element of the set {⊥} ∪ ϑ ∪ G. It is defined inductively by the following
rules:

⊥/ε = ⊥ α/ε = α gn t1 .. tn/ε = g
i ∈ 1..n

gn t1 .. tn/iu = ti/u

We write t/ for the projection function u 7→ t/u. We note that the projection t/ is
isomorphic to t.

Definition 1.3.2 The projection of an MLF-type σ to a skeleton, written proj(σ), is
defined inductively as follows:

proj(τ) = τ proj(⊥) = ⊥ proj(∀ (α � σ) σ ′) = proj(σ′)[proj(σ)/α]

Given a prefix Q equal to (α1 �1 σ1, . . . αn �n σn), we define ΘQ as the idempotent
substitution on skeletons [proj(σ1)/α1] ◦ . . . ◦ [proj(σn)/αn] (it is the composition of n
elementary substitutions).

We write σ/ for the function proj(σ)/. We call occurrences of a polytype σ the domain
of the function σ/, which we abbreviate as dom(σ). Notice that dom(σ) is a set of
occurrences, while dom(Q) is a set of variables. We write σ · u/ to denote the function
u′ 7→ σ/uu′. Note that σ · ε/ is equal to the projection σ/.

Example 1.3.1 Occurrences ignore quantifiers and only retain the structure of types.

For instance, the polytypes σ1
M

= ∀ (α≥⊥) α→ α and σ2
M

= ∀ (β =⊥) ∀ (γ≥⊥) β → γ
have the same occurrences, that is, σ1/ = σ2/. Equivalently, proj(σ1) and proj(σ2) are
both equal to ⊥ → ⊥. More precisely, the domains of both σ1 and σ2 are equal to
{ε, 1, 2} and both σ1/ε and σ2/ε are equal to →. Additionally, σ1/1, σ1/2, σ2/1 and
σ2/2 are all equal to ⊥.

Properties 1.3.3 The following properties hold, for any prefix Q and types σ, σ1, σ2:
i) proj(∀ (Q) σ) is ΘQ(proj(σ)).
ii) If σ1/ = σ2/, then (∀ (Q) σ1)/ = (∀ (Q) σ2)/.
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Proof: Property i : It is shown by induction on the size of Q. If Q is ∅, then ΘQ is
the identity, and the result follows. Otherwise, Q is (α � σ′, Q′) and proj(∀ (Q) σ) is
proj(∀ (α � σ′) ∀ (Q′) σ) by notation, that is, proj(∀ (Q′) σ)[proj(σ′)/α] (6) by definition.
By induction hypothesis on Q′, proj(∀ (Q′) σ) is ΘQ′(proj(σ)). Hence by (6), proj(∀ (Q) σ)
is (ΘQ′(proj(σ′)))[proj(σ′)/α], that is, ([proj(σ′)/α]◦ΘQ′)(proj(σ′)). We get the expected
result by observing that [proj(σ′)/α] ◦ΘQ′ is ΘQ by definition. Property ii : We have by
hypothesis σ1/ = σ2/, that is, proj(σ1) = proj(σ2). Hence, ΘQ(proj(σ1)) = ΘQ(proj(σ2))
holds, which gives proj(∀ (Q) σ1) = proj(∀ (Q) σ2) by Property i. By definition, this
means that ∀ (Q) σ1/ = ∀ (Q) σ2/ holds.

1.3.3 Free type variables and unbound type variables

In ML, type variables that appear in a type are either bound or free. In MLF, the
set of free variables is only a subset of unbound variables. For example, consider the
type σ equal to ∀ (α= β → β) γ → γ. Since α is bound but not used, σ is considered
equivalent to γ → γ. Hence, γ is free in σ, while β is only unbound. We give the
two definitions for unbound variables and free variables. To ease the presentation, free
variables are defined using skeletons.

Definition 1.3.4 A type variable α is free in σ if there exists an occurrence u such
that σ/u is α. We write ftv(σ) the set of free type variables of σ. The set of unbound
type variables of σ, written utv(σ), is defined inductively as follows:

utv(α)
M

= {α} utv(gn τ1 .. τn)
M

=
⋃

i∈1..n

utv(τi) utv(⊥)
M

= ∅

utv(∀ (α � σ) σ′)
M

=
(
utv(σ′) − {α}

)
∪ utv(σ)

The definition of free variables is equivalent to the usual inductive definition. In par-
ticular, we have the usual properties ftv(α) = {α} (since α/ε = α), and ftv(τ1 → τ2) =
ftv(τ1)∪ ftv(τ2) (since (τ1 → τ2)/u = α holds if and only if u is of the form iv (a number
i followed by a path v) such that τi/v = α). Moreover, the given definition amounts
to considering that α is bound in σ′, but not in σ in the polytype ∀ (α � σ) σ ′. That
is, ftv(∀ (α � σ) σ′) is (ftv(σ′) − {α}) ∪ ftv(σ) if α is free in σ′, and ftv(σ′) otherwise.
Indeed, by definition, β is free in ∀ (α � σ) σ ′ if and only if there exists u such that
(proj(σ′)[proj(σ)/α])/u = β. We see that β is free in ∀ (α � σ) σ ′ if and only if β is
free in σ′ and is not α, or α is free in σ′ and β is free in σ. Additionally, we note
that utv(τ) = ftv(τ) for any monotype τ . Moreover, it is straightforward to check by
structural induction that ftv(σ) ⊆ utv(σ) holds for any σ.
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42 Types, prefixes, and relations under prefixes

By extension, the free variables of a set of types {σ1, . . . σn} is defined as the union⋃
i=1..n ftv(σi). Similarly, we write utv(σ1, . . . , σn) for the union

⋃
i=1..n utv(σi). A

polytype is closed if it has no unbound type variable. When utv(σ) ⊆ dom(Q), we also
say that σ is closed under prefix Q. We define utv(Q) as utv(∀ (Q) ⊥). When utv(Q)
is empty, that is, ∀ (Q) ⊥ is closed, we say that Q is a closed prefix.

α-conversion Polytypes are considered equal modulo α-conversion where ∀ (α�σ) σ ′

binds α in σ′, but not in σ. Let Q be (α1 �1 σ1, . . . αn �n σn). Note that the αi’s can
be renamed in the type ∀ (Q) σ, but not in the stand-alone prefix Q. For instance,
∀ (α≥⊥) α→ α is considered equal to ∀ (β ≥⊥) β → β, but (α≥⊥) and (β ≥⊥) are
distinct prefixes. We easily check that free variables and unbound variables are stable
under α-conversion.

1.3.4 Renamings and substitutions

Given a function f from type variables to monotypes (typically a renaming or a sub-
stitution, as defined next), we define the domain of f , written dom(f), as the set of
type variables α such that f(α) 6= α. The codomain of f , written codom(f), is the set
ftv(f(dom(f))), that is,

⋃
α∈dom(f) ftv(f(α)). Such functions are extended to types and

type schemes in the obvious way, by avoiding capture of bound variables. An idempo-
tent function f is such that f ◦ f = f , this amounts to having dom(f) # codom(f).
The composition f1 ◦ f2 is well-formed if we have codom(f1) # dom(f2). A function is
said invariant on ᾱ whenever dom(f) # ᾱ.

A renaming φ is an idempotent function mapping type variables to type variables
that is injective on the finite set dom(φ). Renamings are bijective from their domain to
their codomain, but are never bijective on ϑ (except the identity). A renaming φ is said
disjoint from ᾱ whenever ᾱ # dom(φ) ∪ codom(φ) holds. If φ is a renaming, we write
φ¬ for the inverse renaming, whose domain is codom(φ) and codomain is dom(φ). More
precisely, for every β in codom(φ), we define φ¬(β) as α such that φ(α) = β. We say
that φ is a renaming of a set ᾱ if φ is a renaming and if dom(φ) ⊆ ᾱ and codom(φ) # ᾱ
hold. For example, the swapping α 7→ β, β 7→ α is bijective on ϑ but is not a renaming.
The mapping α 7→ β is a renaming, though, and its inverse β 7→ α is a renaming too.
Note that φ¬ ◦ φ is not the identity, but is φ¬ (which is invariant on dom(φ), though).
Conversely, φ ◦ φ¬ is φ.

A substitution θ is an idempotent function mapping type variables to monotypes
such that dom(θ) is finite. Any renaming is also a substitution. We write id for the
identity on type variables, considered as a substitution.

Notation The capture-avoiding substitution of α by τ in σ is written σ[τ/α]. Given
a prefix Q equal to (αi �i σi)

i∈I , and a substitution θ, we define θ(Q) as (θ(αi) �i θ(σi))
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provided that θ restricted to dom(Q) is a renaming of dom(Q). In particular, if φ is a
renaming of dom(Q), then φ(Q) is a well-formed prefix. Note also that ∀ (φ(Q)) φ(τ)
is alpha-convertible to ∀ (Q) τ . Additionally, if θ is a substitution such that dom(Q) #
dom(θ) ∪ codom(θ) holds, then θ(Q) is the prefix (αi �i θ(σi))

i∈I .

Example 1.3.2 As already mentioned, types only allows quantifiers to be outermost,
or in the bound of other bindings. Therefore, the type ∀α · (∀β · (τ [β] → α)) → α of
System F cannot be written directly. (Here, τ [β] means a type τ in which the variable
β occurs.) However, it can be represented in MLF by the type ∀ (α) ∀ (β ′ = ∀ (β)
τ [β] → α) β ′ → α. In fact, all types of System F can easily be represented as polytypes
by recursively binding all occurrences of inner polymorphic types to fresh variables
beforehand (an encoding from System F into MLF is given in Section 9.2). In this
translation, auxiliary variables are used in a linear way. For instance, (∀α · τ) →
(∀α · τ) is translated into ∀ (α1 = ∀ (α) τ) ∀ (α2 = ∀ (α) τ) α1 → α2. Intuitively,
∀ (α′ = ∀ (α) τ) α′ → α′ could also represent the same System F type, more concisely.
However, this type is not equivalent to the previous one, but only an abstraction of it,
as explained further.

Graphs For illustration purposes, we represent types as graphs throughout this doc-
ument. More precisely, a type can be represented by two DAGs (Directed Acyclic
Graphs) sharing the same set of nodes. The nodes are labelled with either a type sym-
bol g, ⊥, or a type variable. The first DAG corresponds to the symbolic structure of a
type. The second DAG corresponds to its binding structure. For example, we consider
the type of the identity, σid, equal to ∀ (α≥⊥) α→ α. Its skeleton is ⊥ → ⊥. Such a
representation ignores that the left-hand side and the right-side of the arrow correspond
to the same variable α. In graphs, we make this information explicit by sharing the
two nodes, as shown below:

→

⊥

In this graph, we show explicitly that the left-hand child and the right-hand child of
the arrow are both the type variable α. The bottom node represents α, and is therefore
labelled by the bound of α, that is ⊥.

It remains to represent the binding structure of the type. We use dotted arrows and
dashed arrows to represent, respectively, flexible bindings and rigid bindings. To pursue
the above example, the node labelled by ⊥, which corresponds to the type variable α, is
bound at top-level. This binding is flexible, thus it is represented by a dotted arrow:
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44 Types, prefixes, and relations under prefixes

→

⊥

For the sake of comparison, the type ∀ (α ≥ ⊥, β = ⊥) α → β is represented by the
following graph, where α is represented by the left-hand node, and β by the right-hand
node.

→

⊥ ⊥

As another example, the representation of ∀ (α ≥ ⊥) ∀ (β = ∀ (γ ≥ ⊥) γ → α) β → α
is given below. The middle node represents β, it is rigid and bound at top-level, hence
the dashed arrow. The leftmost node is γ, it is bound at the level of β (that is, γ is
introduced syntactically in the bound of β) and it is flexible, hence the dotted arrow
from this node to the middle node representing β. The rightmost node is α, it is flexible
and bound at top-level.

→

→

⊥ ⊥

Although graphs are only a convenient representation of types, they may be used as a
basis for an implementation.

Types are meant to be instantiated implicitly as in ML along an instance relation
v. As explained in the introduction, we also consider an abstraction relation @− and
its inverse relation A− that is used by annotations to reveal a polymorphic type. In
Section 1.5, we first define an equivalence relation between types, which is the kernel
of both @− and v. In Section 1.6, we define the relation @−. The instance relation v,
which contains @−, is defined in Section 1.7. All these relations have common properties
captured by the notion of relations under prefix, as defined in the following section.
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1.4 Relations under prefix 45

1.4 Relations under prefix

The equivalence, abstraction, and instance relation of MLF, as well as auxiliary relations
introduced later in the thesis, are all relations under prefix. The prefix is meant to bind
all unbound variables of considered types. In the following definition, ♦ is meant to be
replaced by either ≡, @−, or v.

Definition 1.4.1 A relation under prefix ♦ is a relation on triples composed of a well-
formed prefix Q and two types σ1 and σ2 such that utv(σ1, σ2) ⊆ dom(Q). It is written
(Q) σ1 ♦ σ2.

By notation σ1 ♦ σ2 means (Q) σ1 ♦ σ2 for some unconstrained prefix Q such that
utv(σ1, σ2) ⊆ dom(Q).

The relations under prefix we consider in this document are all meant to be used
transitively. While some of these relations are transitive by definition (such as the
equivalence, abstraction, and instance relations), some other relations are first defined
non-transitively, and then extended with transitivity. Hence the following definition:

Definition 1.4.2 A relation under prefix ♦ is said transitive if and only if it satisfies
the following rule:

R-Trans

(Q) σ1 ♦ σ2 (Q) σ2 ♦ σ3

(Q) σ1 ♦ σ3

Given a relation ♦, we write ♦∗ for its transitive closure, that is, ♦∗ is the smallest
relation containing ♦ and satisfying Rule R-Trans.

Relations under prefix are also meant to operate under the leading prefix of a type.
For example, if σ1 ♦ σ2 holds, we expect ∀ (Q) σ1 ♦ ∀ (Q) σ2 to hold too. This can be
captured by a single rule:

R-Context-R

(Q,α � σ) σ1 ♦ σ2 α /∈ dom(Q)

(Q) ∀ (α � σ) σ1 ♦ ∀ (α � σ) σ2

Some rules can also operate on the bounds of the leading prefix. For example, if σ1 ♦ σ2

holds, we may have ∀ (α≥σ1) σ ♦ ∀ (α≥σ2) σ. A similar example could be given with
a rigid bound instead of a flexible bound. This is captured by the two following rules

R-Context-Flexible

(Q) σ1 ♦ σ2

(Q) ∀ (α≥ σ1) σ ♦ ∀ (α≥ σ2) σ

R-Context-Rigid

(Q) σ1 ♦ σ2

(Q) ∀ (α= σ1) σ ♦ ∀ (α= σ2) σ
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46 Types, prefixes, and relations under prefixes

Figure 1.1: Type equivalence under prefix

Eq-Refl

(Q) σ ≡ σ

Eq-Free

α /∈ ftv(σ1)

(Q) ∀ (α � σ) σ1 ≡ σ1

Eq-Comm

α1 /∈ ftv(σ2) α2 /∈ ftv(σ1) α1 6= α2

(Q) ∀ (α1 �1 σ1) ∀ (α2 �2 σ2) σ ≡ ∀ (α2 �2 σ2) ∀ (α1 �1 σ1) σ

Eq-Var

(Q) ∀ (α � σ) α ≡ σ

Eq-Mono

(α � σ0) ∈ Q (Q) σ0 ≡ τ0

(Q) τ ≡ τ [τ0/α]

Definition 1.4.3 A relation under prefix ♦ is said flexible-compliant iff it satisfies rules
R-Context-Flexible and R-Context-R. It is said rigid-compliant iff it satisfies
rules R-Context-Rigid and R-Context-R. It is said congruent iff it satisfies these
three rules.

When a relation is congruent, it satisfies the following rule, which stands for both
R-Context-Flexible and R-Context-Rigid, thanks to the meta-variable �.

R-Context-L

(Q) σ1 ♦ σ2

(Q) ∀ (α � σ1) σ ♦ ∀ (α � σ2) σ

The three following sections define the equivalence, abstraction, and instance rela-
tions, respectively. As expected, the equivalence is a congruent relation. The abstrac-
tion relation happens to be a rigid-compliant relation, and the instance relation is a
flexible-compliant relation.

1.5 Type equivalence

The order of quantifiers and some other syntactical notations are not always meaningful.
Such syntactic artifacts are captured by a notion of type equivalence. As expected, the
equivalence relation is symmetric, that is, if (Q) σ1 ≡ σ2 holds, then (Q) σ2 ≡ σ1 holds
too. Additionally, it is usually not possible to read information from the prefix, except
for monotypes. Thus, for instance (α= τ) α ≡ τ holds (read: under the prefix (α= τ),
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1.5 Type equivalence 47

the types α and τ are equivalent). This is not true when τ is replaced by a type scheme
σ.

Definition 1.5.1 (Equivalence) The equivalence under prefix ≡ is the smallest sym-
metric, transitive, and congruent relation under prefix that satisfies the rules of Fig-
ure 1.1.

Rule Eq-Comm allows the reordering of independent binders; Rule Eq-Free elim-
inates unused bound variables. Rule Eq-Mono allows the reading of the bound of a
variable from the prefix when it is (equivalent to) a monotype. An example of use of
Eq-Mono is (Q,α = τ0, Q

′) α → α ≡ τ0 → τ0. Rule Eq-Mono makes no difference
between ≥ and = whenever the bound is equivalent to a monotype. The restriction of
Rule Eq-Mono to the case where σ0 is equivalent to a monotype is required for the
well-formedness of the conclusion. Moreover, it also disallows (Q,α = σ0, Q

′) α ≡ σ0:
variables with polymorphic bounds must be treated abstractly and cannot be silently ex-
panded. In particular, we do not wish (Q) ∀ (α=σ0, α

′=σ0) α→ α′ ≡ ∀ (α=σ0) α→ α
to hold.

Rule Eq-Var expands into both ∀ (α= σ) α ≡ σ and ∀ (α≥ σ) α ≡ σ. The former
captures the intuition that ∀ (α=σ) σ ′ stands for σ′[σ/α], which however, is not always
well-formed. The latter may be surprising: it states that σ is an instance of ∀ (α≥σ) α,
and conversely. On the one hand, the interpretation of ∀ (α ≥ σ) α as the set of all α
where α is an instance of σ implies (intuitively) that σ itself is an instance of ∀ (α≥σ) α.
On the other hand, however, it is not immediate to consider ∀ (α ≥ σ) α, that is, the
set of all instance of σ, as an instance of σ. Actually, we could remove this second part
of the equivalence without changing the set of typable terms. However, it is harmless
and allows for a more uniform presentation.

Reasoning under prefixes makes it possible to break a polytype ∀ (Q) σ and “look
inside under prefix Q”. For instance, it follows from iterations of Rule R-Context-R

that (Q) σ ≡ σ′ suffices to show (∅) ∀ (Q) σ ≡ ∀ (Q) σ′.

Definition 1.5.1 mentions that ≡ is a symmetric relation. Therefore, in the proofs,
we implicitly assume that each rule defining equivalence is symmetric. Actually, it
suffices to consider only the symmetric variants of rules Eq-Var, Eq-Mono, and Eq-

Free. Indeed, the other rules are already symmetric by construction.

It is not necessary to bind explicitly a monotype, as in ∀ (α = τ) α → α. Indeed,
this type is equivalent to τ → τ . More generally, the following rule is derivable with
rules R-Context-R, R-Context-L, Eq-Mono, R-Trans, and Eq-Free:

Eq-Mono?

(Q) σ′ ≡ τ

(Q) ∀ (α � σ′) σ ≡ σ[τ/α]
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48 Types, prefixes, and relations under prefixes

Conversely, replacing Eq-Mono by Eq-Mono? would restrict the set of judgments.
Indeed, whereas Eq-Mono is derivable by Eq-Mono? under an empty prefix, it is not
the case under an arbitrary prefix. For a counter-example, (β, α = β → β) α ≡ β → β
holds by Eq-Mono, but it is not derivable if only Eq-Mono? is allowed and not
Eq-Mono.

In graphs, monotypes are nodes not binding any other node. Rules Eq-Mono and
Eq-Mono? state that such nodes can be equivalently duplicated. For example, the
following equivalence holds by Eq-Mono?:

∀ (α≥⊥) ∀ (β = α→ α) β → β ≡ ∀ (α≥⊥) (α→ α) → (α→ α)

This means that the two following graphs are considered equivalent:

→

→ →

⊥

→

→

⊥

All other equivalence rules, namely Eq-Refl, Eq-Free, Eq-Var, and Eq-Comm are
already captured by graphs.

The following rule is derivable with rules Eq-Free and Eq-Var:

Eq-Var?

(α � σ) ∈ Q

(Q0) ∀ (Q) α ≡ ∀ (Q) σ

1.5.1 Rearrangements

Normal forms will be unique, up to commutation of independent binders, that is, up to
Rule Eq-Comm. We define an equivalence relation that captures only such a reordering
of binders.

Definition 1.5.2 The relation ≈ is the smallest equivalence relation satisfying the
following rules:

σ1 ≈σ2

∀ (α � σ) σ1 ≈∀ (α � σ) σ2

σ1 ≈σ2

∀ (α � σ1) σ≈∀ (α � σ2) σ

α1 /∈ ftv(σ2) α2 /∈ ftv(σ1) α1 6= α2

∀ (α1 �1 σ1) ∀ (α2 �2 σ2) σ≈∀ (α2 �2 σ2) ∀ (α1 �1 σ1) σ
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1.5 Type equivalence 49

When σ1 ≈σ2 holds, we say that σ1 is a rearrangement of σ2. When ∀ (Q1) ⊥≈∀ (Q2) ⊥
holds, we say that Q1 is a rearrangement of Q2.

Note that the relation ∀ (Q1) ∇Q1
≈∀ (Q2) ∇Q1

mentions ∇Q1
(that is, a type mention-

ing all type variables of dom(Q1)) on both sides. Thus, it prevents implicit α-conversion
of the domain of Q1 between ∀ (Q1) ∇Q1

and ∀ (Q2) ∇Q1
.

Properties 1.5.3

i) If σ≈ τ , then σ = τ .
ii) If σ1 ≈σ2 holds and θ is a substitution, then θ(σ1)≈ θ(σ2) holds.
iii) If σ1 ≈σ2, then (Q) σ1 ≡ σ2 holds for any well-formed prefix Q such that we have

utv(σ1, σ2) ⊆ dom(Q)
iv) If Q′≈Q and (Q) σ1 ≡ σ2 hold, then (Q′) σ1 ≡ σ2.
v) If QQ′ is well-formed and (Q) σ1 ≡ σ2 holds, then (QQ′) σ1 ≡ σ2 holds.

Proof: Property i: It only states that any rearrangement of a monotype τ is τ itself.

Property ii: It is shown by induction on the derivation of σ1 ≈σ2.

Property iii: By definition ≈ is a binary relation. Let ≈̇ be the relation on triples defined
as (Q) σ1≈̇σ2 if and only if σ1 ≈σ2 holds and Q is well-formed. Then ≈̇ is the smallest
relation satisfying rules Eq-Refl, R-Trans, R-Context-R, R-Context-L, and Eq-

Comm (where ≡ is replaced by ≈̇). Consequently, ≈̇ is included in ≡. Therefore, if
σ1 ≈σ2 holds, then (Q) σ1 ≡ σ2 holds for any well-formed Q binding the variables of
utv(σ1, σ2).

Property iv : It is shown by induction on the derivation of (Q) σ1 ≡ σ2. Cases Eq-Refl,
Eq-Free, Eq-Comm, and Eq-Var are immediate. Cases R-Trans and R-Context-L

are by induction hypothesis. Case R-Context-R is by induction hypothesis, observing
that (Q,α � σ0) is a rearrangement of (Q′, α � σ0). As for Eq-Mono, σ1 is τ , σ2 is
τ [τ0/α], and the premises are (α � σ0) ∈ Q and (Q) σ0 ≡ τ0. By induction hypothesis,
we have (Q′) σ0 ≡ τ0 (1). Since Q′ is a rearrangement of Q, we have (α � σ′

0) ∈ Q′,
where σ′

0 is a rearrangement of σ0. Hence, (Q′) σ0 ≡ σ′
0 (2) holds by property iii.

Consequently, (Q′) σ′
0 ≡ τ0 holds by R-Trans, (1), and (2). Then (Q′) σ1 ≡ σ2 holds

by Rule Eq-Mono.

Property v : It is a subcase of the following, more general property:

If Q1Q2Q3 is well-formed, and if (Q1Q3) σ1 ≡ σ2 holds, then (Q1Q2Q3) σ1 ≡
σ2 holds.

It is shown by induction on the derivation of (Q1Q3) σ1 ≡ σ2.

49



50 Types, prefixes, and relations under prefixes

1.5.2 Occurrences and equivalence

Occurrences—and therefore free type variables—are stable under type equivalence:

Properties 1.5.4
i) If (QQ′) σ1 ≡ σ2 holds and Q is unconstrained, then ∀ (Q′) σ1/ = ∀ (Q′) σ2/.
ii) We have τ1 ≡ τ2 iff τ1 is τ2.
iii) If σ1 ≡ σ2 holds, then ftv(σ1) = ftv(σ2).

Proof: Property i: By definition of occurrences, it suffices to show that whenever (QQ′)
σ1 ≡ σ2 (1) holds, then proj(∀ (Q′) σ1) and proj(∀ (Q′) σ2) are equal. The proof is by
induction on the derivation of (1). Case R-Trans is by induction hypothesis. In Cases
Eq-Refl, Eq-Free, Eq-Comm, and Eq-Var, we have proj(σ1) = proj(σ2), thus we get
the expected result by Property 1.3.3.ii (page 40). Remaining cases are:

◦ Case R-Context-L: We have σ1 = ∀ (α � σ′
1) σ (2), σ2 = ∀ (α � σ′

2) σ (3), and
the premise is (QQ′) σ′

1 ≡ σ′
2. By α-conversion, we can freely assume that α is not in

dom(QQ′). We have proj(∀ (Q′) σ′
1) = proj(∀ (Q′) σ′

2) by induction hypothesis, that is,
ΘQ′(proj(σ′

1)) = ΘQ′(proj(σ′
2)) (4). Hence, we have the following, where i can be 1 or 2:

proj(∀ (Q′) σi) = proj(∀ (Q′) ∀ (α � σ′
i) σ) by (2) or (3)

= ΘQ′(proj(∀ (α � σ′
i) σ)) by Property 1.3.3.i (page 40)

= ΘQ′(proj(σ)[proj(σ′
i)/α]) by Definition 1.3.2

= ΘQ′(proj(σ))[ΘQ′ (proj(σ′
i))/α] (5)

Additionally, by (4), we get

ΘQ′(proj(σ))[ΘQ′ (proj(σ′
1))/α] = ΘQ′(proj(σ))[ΘQ′ (proj(σ′

2))/α] (6)

Hence, proj(∀ (Q′) σ1) = proj(∀ (Q′) σ2) holds by (5) and (6).

◦ Case R-Context-R: We have σ1 = ∀ (α � σ) σ′
1, σ2 = ∀ (α � σ) σ′

2, and the premise
is (QQ′, α � σ) σ′

1 ≡ σ′
2. By induction hypothesis, we get proj(∀ (Q′, α � σ) σ′

1) =
proj(∀ (Q′, α � σ) σ′

2), which is the expected result.

◦ Case Eq-Mono: We have σ1 = τ and σ2 = τ [τ0/α]. The premises are (QQ′) σ0 ≡
τ0 (7) and (α � σ0) ∈ QQ′. Necessarily, (α � σ0) is in Q′ (8) because Q is unconstrained
by hypothesis. By induction hypothesis and (7), we get proj(∀ (Q′) σ0) = proj(∀ (Q′) τ0),
which gives ΘQ′(proj(σ0)) = ΘQ′(proj(τ0)) (9) by Property 1.3.3.i (page 40). We have

proj(∀ (Q′) τ) = ΘQ′(τ) by Property 1.3.3.i (page 40)
= ΘQ′(τ [ΘQ′ (proj(σ0))/α]) by (8) and Definition 1.3.2
= ΘQ′(τ [ΘQ′ (proj(τ0))/α]) by (9)
= ΘQ′(τ [τ0/α]) by Definition 1.3.2
= proj(∀ (Q′) τ [τ0/α]) by Property 1.3.3.i (page 40)

This is the expected result
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Property ii: Assume τ ≡ τ ′. By definition, this means that we have (∅) τ ≡ τ ′. Hence,
by Property i, we have τ/ = τ ′/, that is proj(τ)/ = proj(τ ′)/. Hence, the skeletons proj(τ)
and proj(τ ′) are equal. Since by definition proj(τ) is τ and proj(τ ′) is τ ′, we have the
expected result, that is, τ = τ ′.

Property iii: It is a direct consequence of property i.

1.5.3 Canonical forms for types

In this section, we define a function nf that maps all equivalent types to the same
normal form, up to rearrangement.

Definition 1.5.5 We define the function nf(σ) inductively as follows:

nf(⊥)
M

= ⊥ nf(τ)
M

= τ nf(∀ (α � σ) σ′)
M

=





nf(σ) if nf(σ′) is α

nf(σ′)[τ/α] if nf(σ) is τ

nf(σ′) if α /∈ ftv(σ′)

∀ (α � nf(σ)) nf(σ′) otherwise

If nf(σ) = σ, we say that σ is in normal form.

We state here some useful properties about normal forms.

Properties 1.5.6 The following hold for any type σ and any substitution θ:

i) nf(σ) ≡ σ.
ii) ftv(σ) = ftv(nf(σ)).
iii) nf(θ(σ)) = θ(nf(σ)).
iv) nf(σ) is in normal form.

These properties are shown by induction on the number of universal quantifiers appear-
ing in σ. The full proof can be found in Appendix (page 231).

In MLF, we distinguish monotypes τ and polytypes σ. Actually, we also need to
spot monotypes up to equivalence, that is, polytypes that are equivalent to monotypes.
Similarly, we spot type variables up to equivalence, that is, polytypes that are equivalent
to type variables.

Definition 1.5.7 The set of polytypes σ such that nf(σ) = τ for some monotype τ
is written T . The set of polytypes σ such that nf(σ) = α for some type variable α is
written V.
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52 Types, prefixes, and relations under prefixes

By Rule Eq-Mono?, R-Trans, and Property 1.5.6.i, if σ is in T , we have ∀ (α=σ)
σ′ ≡ ∀ (α≥σ) σ′. This is the reason why, in the following, any binding (α � σ) where σ
is in T is considered both flexible and rigid. In other words, flexibility is not meaningful
for a bound in T . This is not surprising since monotypes cannot be instantiated anyway.

Definition 1.5.8 The substitution extracted from a prefix Q, written Q̂, is defined by:

∅̂
M

= id ̂(α � σ,Q′)
M

=

{
[nf(σ)/α] ◦ Q̂′ if σ ∈ T

Q̂′ otherwise

Notice that Q̂1Q2 = Q̂1 ◦ Q̂2 holds for any well-formed prefix Q1Q2. Besides, for
any σ and Q, we have (Q) σ ≡ Q̂(σ) by using Eq-Mono repeatedly. Note also that
the domain of Q̂ is the set of variables of dom(Q) whose bound is in T . Therefore,
dom(Q̂) ⊆ dom(Q) holds. This can be compared with the domain of ΘQ, which is
always dom(Q).

As expected, normal forms capture the equivalence relation, up to commutation and
alpha-conversion of binders. Since the equivalence relation is defined under a prefix, it
has to be taken into account when comparing normal forms. This is stated precisely
by the following lemma:

Lemma 1.5.9 If (Q) σ1 ≡ σ2 holds, then so does Q̂(nf(σ1))≈ Q̂(nf(σ2)).

Proof: by induction on the derivation of (Q) σ1 ≡ σ2.

◦ Case Eq-Refl: Immediate.

◦ Case R-Trans: By induction hypothesis and transitivity of the relation ≈.

◦ Case Eq-Free: We have σ2 = ∀ (α � σ) σ1 and α /∈ ftv(σ1). By definition, nf(σ2) is

nf(σ1), thus Q̂(nf(σ1)) is Q̂(nf(σ2)), and Q̂(nf(σ1))≈ Q̂(nf(σ2)) holds.

◦ Case Eq-Comm: We have σ1 ≈σ2 by hypothesis, thus Q̂(nf(σ1))≈ Q̂(nf(σ2)) holds
by Property 1.5.3.ii.

◦ Case Eq-Var: We have σ2 = ∀ (α � σ1) α. By definition, nf(σ2) is nf(σ1), thus we

have Q̂(nf(σ1)) = Q̂(nf(σ2)), which implies Q̂(nf(σ1))≈ Q̂(nf(σ2)).

◦ Case R-Context-R: We have σ1 = ∀ (α �σ) σ′
1 and σ2 = ∀ (α �σ) σ′

2. The premise
is (Q,α � σ) σ′

1 ≡ σ′
2 (1). By induction hypothesis and (1), we have the rearrangement

̂(Q,α � σ)(nf(σ′
1))≈

̂(Q,α � σ)(nf(σ′
2)) (2). Note that (Q,α � σ) is well-formed only if

α /∈ dom(Q), thus, α /∈ dom(Q̂) ∪ codom(Q̂) (3). We proceed by case analysis.

Subcase nf(σ) is τ : Let θ be [τ/α]. We have Q̂, α � σ = Q̂ ◦ θ, thus, by (2), Q̂ ◦

θ(nf(σ′
1))≈ Q̂◦θ(nf(σ′

2)). Since nf(∀ (α�σ) σ′
1) is by definition θ(nf(σ′

1)) and nf(∀ (α�σ)
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σ′
2) is θ(nf(σ′

2)), we have shown that Q̂(nf(σ1))≈ Q̂(nf(σ2)). In the following subcases,

we assume that nf(σ) is not a monotype τ , which implies Q̂, α � σ = Q̂ (4). Note also

that Q̂(α) = α (5) holds from (3). We have Q̂(nf(σ′
1))≈ Q̂(nf(σ′

2)) (6) from (4) and (2).

Subcase nf(σ′
1) is α: From (6) and (5), we have α≈ Q̂(nf(σ′

2)). By Property 1.5.3.i,

this gives Q̂(nf(σ′
2)) = α. Hence, nf(σ′

2) is α by (3). By definition, nf(σ1) and nf(σ2) are

nf(σ), thus Q̂(nf(σ1))≈ Q̂(nf(σ2)) holds by reflexivity.

Subcase nf(σ′
2) is α is similar.

Subcase α /∈ ftv(nf(σ′
1)): By (3), we get α /∈ ftv(Q̂(nf(σ′

1))). By (6) and Prop-

erty 1.5.4.iii, we get α /∈ ftv(Q̂(nf(σ′
2))). By (3), we get α /∈ ftv(nf(σ′

2)). Hence, nf(σ1) is
nf(σ′

1) and nf(σ2) is nf(σ′
2), thus we get the result by (6).

Subcase α /∈ ftv(nf(σ′
2)) is similar.

Otherwise, nf(σ) is not equal to a monotype τ , α ∈ ftv(nf(σ′
1)), α ∈ ftv(nf(σ′

2)),
nf(σ′

1) is not α, and nf(σ′
2) is not α. By definition nf(σ1) is ∀ (α�nf(σ)) nf(σ′

1) and nf(σ2)

is ∀ (α � nf(σ)) nf(σ′
2). From (6), we get ∀ (α � Q̂(σ)) Q̂(nf(σ′

1))≈∀ (α � Q̂(σ)) Q̂(nf(σ′
2)),

that is Q̂(nf(σ1))≈ Q̂(nf(σ2)).

◦ Case R-Context-L: We have σ1 = ∀ (α�σ′
1) σ and σ2 = ∀ (α�σ′

2) σ. The premise is

(Q) σ′
1 ≡ σ′

2. By induction hypothesis, we have Q̂(nf(σ′
1))≈ Q̂(nf(σ′

2)) (7). We proceed
by case analysis:

Subcase nf(σ) is α: Then nf(σ1) is nf(σ′
1) and nf(σ2) is nf(σ′

2), thus (7) is the
expected result.

Subcase α /∈ nf(σ): nf(σ1) is nf(σ) and nf(σ2) is nf(σ). Hence, Q̂(nf(σ1)) =

Q̂(nf(σ2)), which implies the expected result.

Subcase nf(σ′
1) is τ1: By induction hypothesis (7), nf(σ′

2) is a monotype τ2 such

that Q̂(τ1) = Q̂(τ2) (8) holds. By definition 1.5.5, nf(σ1) is nf(σ)[τ1/α] (9) and nf(σ2)
is nf(σ)[τ2/α] (10). Hence, we have:

Q̂(nf(σ1)) = Q̂(nf(σ)[τ1/α]) by (9)

= Q̂(nf(σ)[Q̂(τ1)/α])

= Q̂(nf(σ)[Q̂(τ2)/α]) by (8)

= Q̂(nf(σ)[τ2/α])

= Q̂(nf(σ2)) by (10)

This is the expected result.

Subcase nf(σ′
2) is τ2 is similar.

Otherwise, nf(σ1) is ∀ (α � nf(σ′
1)) nf(σ) and nf(σ2) is ∀ (α � nf(σ′

2)) nf(σ). Hence,

we have Q̂(nf(σ1))≈ Q̂(nf(σ2)) by (7).

◦ Case Eq-Mono: We have σ1 = τ , σ2 = τ [τ0/α], (α�σ0) ∈ Q (11), and (Q) σ0 ≡ τ0.

By induction hypothesis, we have Q̂(nf(σ0))≈ Q̂(τ0), which implies Q̂(nf(σ0)) = Q̂(τ0)
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by Property 1.5.3.i. Hence, nf(σ0) = τ ′ (12) such that Q̂(τ ′) = Q̂(τ0) (13). We have

Q̂(σ1) = Q̂(τ) = Q̂(τ [τ ′/α]) (14) by (11), by definition of Q̂, and by (12). We also have

Q̂(σ2) = Q̂(τ [τ0/α]) = Q̂(τ [τ ′/α]) (15) by (13). Hence, Q̂(σ1) = Q̂(σ2) holds from (14)

and (15), that is, Q̂(nf(σ1)) = Q̂(nf(σ2)) since nf(σ1) = nf(τ) = τ = σ1 and nf(σ2) = σ2.

The next corollary characterizes equivalence under prefix. It shows that the only
information that is used from the prefix Q is its associated substitution Q̂.

Corollary 1.5.10 We have (Q) σ1 ≡ σ2 iff Q̂(σ1) ≡ Q̂(σ2).

See proof in the Appendix (page 232).

As a consequence, we have the following characterization of normal forms:

nf(σ) is a rearrangement of nf(σ′) iff (Q) σ ≡ σ′ holds for any well-formed
prefix Q such that utv(σ, σ′) ⊆ dom(Q).

Next is a set of properties used throughout the thesis. For instance, Property i states
that equivalent types have equal normal form, up to rearrangement. Property v shows
that equivalence is preserved under substitution. Property vii shows that equivalent
monotypes are actually equal, up to the substitution extracted from the prefix. Prop-
erty viii will be used directly for showing the soundness of the unification algorithm. It
states that two types are equivalent (under a given prefix) if and only if their subparts
are equivalent.

Properties 1.5.11 For any polytypes σ, σ1, σ2, any well-formed prefix Q, and any
substitution θ, we have:

i) If σ1 ≡ σ2, then nf(σ1)≈ nf(σ2).
ii) σ is in T iff σ ≡ τ for some monotype τ
iii) σ is in V iff σ ≡ α for some type variable α
iv) θ(σ) is in T iff σ is in T .
v) If σ1 ≡ σ2, then θ(σ1) ≡ θ(σ2).
vi) If (Q) σ1 ≡ σ2, then Q̂(σ1)/ = Q̂(σ2)/.
vii) (Q) τ1 ≡ τ2 iff Q̂(τ1) = Q̂(τ2).
viii) (Q) g τ1 . . . τn ≡ g′ τ ′1 . . . τ

′
m holds if and only if g = g′, n = m and (Q) τi ≡ τ ′i

holds for all i in 1..n.
ix) If (Q) σ1 ≡ σ2 and α /∈ dom(Q̂) hold, then α ∈ ftv(σ1) iff α ∈ ftv(σ2).
x) If σ1 ∈ T and (Q) σ1 ≡ σ2 hold, then σ2 ∈ T .

These properties are shown using Lemma 1.5.9 or Corollary 1.5.10.
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Constructed forms

Types of the form ∀ (α�σ) α are equivalent to σ by Rule Eq-Var. However such types
hide their structure in the bound of α. We sometimes need to force the structure of a
type to be apparent. Hence, the following definition:

Definition 1.5.12 A type σ is in constructed form if and only if σ is ⊥, or σ is of the
form ∀ (Q) τ and τ /∈ dom(Q).

We note that every type τ is in constructed form. Moreover, every type admits a
constructed form: the function cf, defined below, maps every type to a constructed
form.

cf(⊥)
M

= ⊥ cf(τ)
M

= τ cf(∀ (α � σ) σ′)
M

=

{
cf(σ) if nf(σ′) is α

∀ (α � σ) cf(σ′) otherwise

Properties 1.5.13
i) For any type σ, we have cf(σ) ≡ σ.
ii) If σ is in constructed form, then cf(σ) is σ.

The equivalence under (a given) prefix is a symmetric operation. In other words,
it captures reversible transformations. Irreversible transformations are captured by
an instance relation v. Moreover, as explained in the introduction, we distinguish
a subrelation @− of v called abstraction. The inverse of abstraction is used by type
annotations to reveal the polymorphic type bound to a type variable in the prefix. In
contrast, inverse of instance relations would, in general, be unsound. Indeed, reversing
the instance relation is not sound in ML either.

1.6 The abstraction relation

Definition 1.6.1 (Abstraction) The abstraction relation @− is the smallest transitive
and rigid-compliant relation under prefix that satisfies the rules of Figure 1.2.

We write (Q) σ1 @− σ2, which is read “σ2 is an abstraction of σ1” or “σ1 is a revelation
of σ2” under prefix Q. The abstraction relation is a rigid-compliant relation under
prefix, which means that abstraction under flexible bounds is not allowed. Equivalence
is included in abstraction by Rule A-Equiv. Rule A-Hyp replaces a polytype σ1 by
a variable α1, provided α1 is rigidly bound to σ1 in Q. Note that Rule A-Hyp is not
reversible. In particular, (α1 = σ1) ∈ Q does not imply (Q) α1 @− σ1, unless σ1 is in
T . This asymmetry is essential, since uses of @− will be inferred, but uses of A− will
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56 Types, prefixes, and relations under prefixes

Figure 1.2: The abstraction relation

A-Equiv

(Q) σ1 ≡ σ2

(Q) σ1 @− σ2

A-Hyp

(α1 = σ1) ∈ Q

(Q) σ1 @− α1

not. When (Q) σ1 @− α1 holds, we say that the polytype σ1 is abstracted with α1.
This operation can also be seen as hiding the polymorphic type σ1 under the abstract
name α1. Conversely, (Q) α1 A− σ1 consists of revealing the polytype abstracted by the
name α1. An abstract polytype, i.e. a variable bound to a polytype in Q, can only be
manipulated by its name, i.e. abstractly. The polytype must be revealed explicitly (by
using the relation A−) before it can be further instantiated (along the relations @− or v).
(See also Examples 6.2.12 and 6.2.13 below.)

Example 1.6.3 The abstraction (α = σ) ∀ (α = σ) σ ′ @− σ′ is derivable: on the one
hand, (α=σ) σ @− α holds by A-Hyp, leading to (α=σ) ∀ (α=σ) σ ′ @− ∀ (α=α) σ′ by
R-Context-Rigid; on the other hand, (α=σ) ∀ (α=α) σ ′ ≡ σ′ holds by Eq-Mono?.
Hence, we conclude by A-Equiv and R-Trans.

The following rule is derivable by A-Hyp, R-Context-Rigid and Eq-Mono?:

A-Up?

α′ /∈ ftv(σ0)

∀ (α= ∀ (α′ = σ′) σ) σ0 @− ∀ (α′ = σ′) ∀ (α= σ) σ0

This rule can be represented with graphs as follows:

g

gα

gα′

@−

g

gα

gα′

The top level node is labelled with g, which is defined as σ0/ε. The two other
nodes are labelled with gα and gα′ , which are defined respectively as σ/ε and σ ′/ε. The
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symbolic structure of the type is not known in detail. However, we expect α to be free
in σ0 and α′ to be free in σ. This is represented by the doubled dashed lines.

Intuitively, only rigid bindings in Q are read (abstracted) in the derivation of (Q)
σ1 @− σ2, flexible bindings are simply ignored. Hence, if Q is unconstrained, it can be
replaced by any other well-formed prefix, as stated by the following property:

Lemma 1.6.2 If we have σ1 @− σ2, then (Q) σ1 @− σ2 holds whenever it is well-formed.

Proof: This lemma is a consequence of the following, more general statement, taking
Q′ = ∅.

If Q is unconstrained and (QQ′) σ1 @− σ2 holds, if dom(Q) ⊆ dom(Q′′) holds
and Q′′Q′ is well-formed, then (Q′′Q′) σ1 @− σ2 holds too.

It is shown by induction on the derivation of (QQ′) σ1 @− σ2. Cases R-Trans, R-

Context-R, and R-Context-Rigid are by induction hypothesis. Note that the rein-
forcement of the statement is necessary for the case R-Context-R.

◦ Case A-Equiv: By hypothesis (QQ′) σ1 ≡ σ2 holds. Let θ be Q̂ ◦ Q̂′. By Corol-

lary 1.5.10, we have θ(σ1) ≡ θ(σ2) (1) Since Q is unconstrained, Q̂ is the identity. Hence,

θ is Q̂′. As a consequence, Q̂′′Q′ is Q̂′′ ◦ θ (2). By Property 1.5.11.v and (1), we have

Q̂′′ ◦ θ(σ1) ≡ Q̂′′ ◦ θ(σ2). By Corollary 1.5.10 and (2), we get (Q′′Q′) σ1 ≡ σ2. Hence,
(Q′′Q′) σ1 @− σ2 holds by A-Equiv.

◦ Case A-Hyp: We have σ2 = α and (α = σ1) ∈ QQ′. Since Q is unconstrained, we
must have (α=σ1) ∈ Q′. Hence, (α=σ1) ∈ Q′′Q′, thus (Q′′Q′) σ1 @− α holds by A-Hyp.
This is the expected result.

The abstraction relation can only hide a polytype under its abstract name, but
cannot modify the structure of the polytype. This is why this relation is (explicitly)
reversible. In order to instantiate polytypes, as we do in ML, we need an irreversible
instance relation.

1.7 The instance relation

Definition 1.7.1 (Instance) The instance relation v is the smallest transitive and
flexible-compliant relation under prefix that satisfies the rules of Figure 1.3.

We write (Q) σ1 v σ2, which is read “σ2 is an instance of σ1” or “σ1 is more general
than σ2” under prefix Q.

It is a flexible-compliant relation under prefix, thus only flexible bindings may be
instantiated. Conversely, instantiation cannot occur under rigid bounds, except when
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58 Types, prefixes, and relations under prefixes

it is an abstraction, and we have to use I-Abstract then. Rule I-Bot means that ⊥
behaves as a least element for the instance relation. Rule I-Rigid mean that flexible
bounds can be changed into rigid bounds. An interesting rule is I-Hyp—the counter-
part of rule A-Hyp, which replaces a polytype σ1 by a variable α1, provided σ1 is a
flexible bound of α1 in Q.

Example 1.7.4 The instance relation (α≥ σ) ∀ (α≥ σ) σ ′ v σ′ holds. The derivation
follows the one of Example 1.6.3 but uses I-Hyp and R-Context-Flexible instead
of A-Hyp and R-Context-Rigid. More generally, the following rule is derivable:

I-Drop?

(QQ′Q′′) ∀ (Q′) σ v σ

Example 1.7.5 The relation1 (Q) ∀ (α≥ σ) ∀ (β ≥ σ ) α→ β v ∀ (α≥ σ) ∀ (β ≥ α )
α→ β follows by rules R-Context-R, R-Context-Flexible, and I-Hyp. The right
hand side is equivalent to ∀ (α≥ σ) α→ α by Eq-Mono?.

The following rules are derivable as well:

I-Equiv?

(Q) σ1 ≡ σ2

(Q) σ1 v σ2

I-Up?

α2 /∈ ftv(σ)

(Q) ∀ (α1 ≥ ∀ (α2 � σ2) σ1) σ v ∀ (α2 � σ2) ∀ (α1 ≥ σ1) σ

We represent I-Up? with graphs as follows:

g

gα

gα′

v

g

gα

gα′

We now state a few simple properties about abstraction and instantiation, using
the meta-symbol ♦.

1The single difference between the two types is highlighted.
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Figure 1.3: Type instance

I-Abstract

(Q) σ1 @− σ2

(Q) σ1 v σ2

I-Hyp

(α1 ≥ σ1) ∈ Q

(Q) σ1 v α1

I-Bot

(Q) ⊥ v σ
I-Rigid

(Q) ∀ (α≥ σ1) σ v ∀ (α= σ1) σ

Properties 1.7.2
i) Given a renaming φ of dom(Q), if (Q) σ1 ♦ σ2 holds, then we have a derivation

with the same size of (φ(Q)) φ(σ1) ♦ φ(σ2).
ii) If Q′≈Q and (Q) σ1 ♦ σ2 hold, then we have (Q′) σ1 ♦ σ2.
iii) If QQ′ is well-formed and (Q) σ1 ♦ σ2 holds, then we have (QQ′) σ1 ♦ σ2.

The proofs are by induction on the input derivation.

1.8 Examples

In this section, we consider two examples. The first one illustrates how the usual ML
instance relation is subsumed by the instance relation of MLF. The second example
considers a well-known isomorphism in System F, which is partially captured by our
instance relation.

Example 1.8.6 The relation v generalizes the instance relation of ML. For example,
the type ∀ (α) τ [α] is more general than ∀ (α, α′) τ [α→ α′], as shown by the following
derivation (valid under any prefix):

∀ (α) τ [α]
= ∀ (α≥⊥) τ [α] (1)
≡ ∀ (α′, α′′) ∀ (α≥⊥) τ [α] (2)
v ∀ (α′, α′′) ∀ (α≥ α′ → α′′) τ [α] (3)
≡ ∀ (α′, α′′) τ [α′ → α′′] (4)
= ∀ (α, α′) τ [α→ α′] (5)

(1) by notation; (2) by Eq-Free; (3) by R-Context-Flexible, since (α′, α′′) ⊥ v
α′ → α′′; (4) by Eq-Mono?; and (5) by renaming.

We represent this instance relation by the graphs below. The symbol g is the top
symbol of τ , that is, τ/ε. The node labelled with ⊥ in the left-hand graph repre-
sents α. The two nodes labelled with ⊥ in the right-hand graph represent α and α ′,
respectively.
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60 Types, prefixes, and relations under prefixes

g

⊥ v

g

→

⊥ ⊥

Note that another derivation is possible:

∀ (α) τ [α]
= ∀ (α≥⊥) τ [α] (6)
v ∀ (α≥ ∀ (α′, α′′) α′ → α′′) τ [α] (7)
v ∀ (α′, α′′) ∀ (α≥ α′ → α′′) τ [α] (8)
≡ ∀ (α′, α′′) τ [α′ → α′′] (9)
≡ ∀ (α, α′) τ [α→ α′] (10)

(6) by notation; (7) by R-Context-Flexible and I-Bot; (8) by I-Up?; (9) by Eq-

Mono?; and (10) by renaming.

Two instantiations are used (namely (7) and (8)). We represent them with the following
graphs:

g

⊥ v

g

→

⊥ ⊥

v

g

→

⊥ ⊥

Example 1.8.7 The instance relation of MLF covers an interesting case of type iso-
morphism [Cos95]. In System F, type ∀α · τ ′ → τ is isomorphic2 to τ ′ → ∀α · τ
whenever α is not free in τ ′. In MLF, the two corresponding polytypes are not equiva-
lent but in an instance relation. Precisely, ∀ (α′≥∀ (α) τ) τ ′ → α′ is more general than
∀ (α) τ ′ → τ , as shown by the following derivation:

∀ (α′ ≥ ∀ (α) τ) τ ′ → α′

v ∀ (α) ∀ (α′ ≥ τ) τ ′ → α′ by I-Up?

≡ ∀ (α) τ ′ → τ by Eq-Mono?

2That is, there exists a function ηβ-reducible to the identity that transforms one into the other,
and conversely.
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As a particular case, let σid
M

= ∀ (β) β → β; then ∀ (α, α′ ≥σid) α→ α′ is more general
than ∀ (α, β) α → β → β (the derivation closely follows the one of example 1.8.6). It
should be noticed that we encoded the System F type τ ′ → ∀α · τ by ∀ (α′ ≥ ∀ (α) τ)
τ ′ → α′. Another valid encoding would be ∀ (α′ = ∀ (α′ = ∀ (α) τ)) τ ′ → α. Then the
bound of α′ is rigid, and the derivation given above is not possible. In that case, the
types are not in an instance relation. However, as in System F, it is possible to write
a retyping function from one type to the other.

This example shows that MLF types and instance relation can capture part of this
isomorphism. This is actually a standard approach when addressing the problem of
type inference with first class polymorphism. For example, the intermediate language
Λ−

2 [KW94] forbids quantifiers at the right of arrows. This language is shown equivalent
to System F, thanks to the aforementioned isomorphism. As another example, taken
from Odersky and Läufer’s article [OL96] ∀α · int → α list is made a subtype of
int → ∀α · α list using an appropriate instance relation.

In summary, MLF partially captures the type isomorphism given above. It should
also be noted that, as opposed to type containment [Mit88], the instance relation cannot
express any form of contravariance.
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Chapter 2

Properties of relations under
prefixes

Instantiation in ML consists of applying a substitution: given a type scheme σ
M

= ∀ (ᾱ)
τ , its instances are of the form θ(τ) for a substitution θ whose domain is included in
ᾱ. This definition of ML instantiation implies some useful properties, which we expect
to hold in MLF too.

In Section 2.1, we establish a few properties based on the observation of the skele-
tons. In ML, a type σ and its instances have comparable structures, that is, comparable
skeletons. More precisely, the skeleton of the instance θ(τ) corresponds to the skeleton
of σ where quantified variables ᾱ are substituted by θ. Hence, the skeleton of θ(τ) is the
skeleton of σ, except on occurrences corresponding to quantified variables. In MLF, we
define a partial order 6/ on occurrences (or, equivalently, on skeletons) that captures
the idea that only quantified variables can be instantiated. This result is stated as Prop-
erty 2.1.3.ii, which concerns the instance relation. Conversely, the abstraction relation
is, intuitively, a reversible relation. Hence, we expect it to keep skeletons unchanged;
this is stated by Property 2.1.3.i. Another property of the ML instance relation con-
cerns free variables: if α is free in σ, then α is free in all instances of σ (and more
precisely, α appears at least at the same occurrences). Such a result also holds in MLF,
as stated by Lemma 2.1.4, which can be first read by taking Q1 = ∅. A straightforward
result in ML states that monotypes have no instances (except themselves). This is also
true in MLF, up to equivalence, as stated by Lemma 2.1.6.

In some implementations of ML, such as OCaml, some type variables become aliases
during unification. For example, the unification of α → α and β → β might create
an alias from α to β, which we write (α = β) (1). Then each time a type variable is
encountered, the implementation calls a function repr which finds its representative.
To pursue the example, the representative of α is β and the representative of β is β.
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Such a mechanism plays quite an important role in the efficiency of unification in ML.
However, it is seldom formalized. In MLF, the alias from α to β appears directly in
the prefix, in the form (1). In Section 2.2, we define the representative of a variable,
according to a given prefix, and establish a few properties. The representative of α in
Q is written Q[α], and the bound of the representative (which, intuitively, is the bound
meant for α), is written Q(α).

Section 2.3 provides different ways to transform derivations of equivalence, abstrac-
tion, or instance judgments, the goal being to force some invariants. A first set of
straightforward restrictions defines restricted derivations; another independent restric-
tion, which concerns only the context rule R-Context-R, defines thrifty derivations.
Property 2.3.3 shows that derivations that are restricted and thrifty are as expressive
as normal derivations. Such restrictions are useful to discard pathological cases, which
would shamelessly obfuscate some proofs.

In Section 2.4 we study contexts, which represent types with a hole [ ]. We use
them in Section 2.5 to define a set of rules that replaces context rules by explicit
contexts. More precisely, context rules such as R-Context-R, R-Context-Flexible

or R-Context-Rigid are removed, and all other rules mention explicitly a context C.
As expected, these new relations are as expressive as the original relations. Another
independent set of rules is introduced, that defines the relations @−ᾱ and vᾱ. These
relations are similar to @− and v, but seriously restrict rules A-Hyp and I-Hyp. In
order to preserve the expressiveness, we introduce new rules, namely A-Up’, A-Alias’,
I-Up’, and I-Alias’. The derivations with @−ᾱ and vᾱ make the transformations on
binders more explicit than with @− and v. More precisely, whereas the latter only
consider unification of binders (rules A-Hyp and I-Hyp), the former distinguish local
unification of binders (rules A-Alias’ and I-Alias’), extrusion of binders (rules A-Up’

and I-Up’), and unification of binders with the prefix (rules A-Hyp’ and I-Hyp’).

In Section 2.6, we define atomic relations. Atomic relations can decompose an
abstraction derivation or an instance derivation into a sequence of atomic and effective
transformations. We use atomic decomposition to show some confluence results; indeed,
once a derivation is decomposed into a sequence of transformations, confluence can be
proved by considering all possible pairs of transformations.

The main result of Section 2.7 is Property 2.7.7.i, which shows that the equivalence
relation is the symmetric kernel of the instance relation. This result is proved by
associating a three-variable polynomial to each type, and by showing that the instance
relation strictly decreases the polynomials if and only if it is irreversible (that is, when it
is not an equivalence). Polynomials are also used to show that the relation @− considered
as an order on types (under a given prefix) is well-founded. Such a result is used in
the following section to show confluence between @− and v. Indeed, the main result of
Section 2.8 is the Diamond Lemma (Lemma 2.8.4), which states the confluence of @−
and v under an unconstrained prefix.
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2.1 Projections and instantiation

Skeletons, projections and occurrences were defined formally in section 1.3. We have
seen that a skeleton is a tree composed of type variables, type constructors gn (such as
the arrow →), and ⊥. Intuitively, only the leaves labeled with ⊥ can be instantiated.
This is captured by the following definition, which introduces the notation 6/. Then,
we immediately show that this relation is actually a partial order on skeletons.

Definition 2.1.1 We define a relation on skeletons, written 6/, as follows: t1 6/ t2
holds if and only if dom(t1) ⊆ dom(t2) and for all u ∈ dom(t1), we have t1/u 6= t2/u
implies t1/u = ⊥.

The definition immediately applies to projections since they are isomorphic to skeletons
(see Section 1.3.2). By extension, we write σ1 6/ σ2 to mean σ1/ 6/ σ2/.

Properties 2.1.2

i) The relation 6/ is a partial order.
ii) If t1 6/ t2 holds, then for any substitution θ, we have θ(t1) 6/ θ(t2).
iii) If t1 6/ t2 holds, then for any skeleton t, we have t[t1/α] 6/ t[t2/α].

These properties are direct consequences of Definition 2.1.1.
See details in the Appendix (page 233).

As a consequence of Property 2.1.2.i, if we have σ1 6/ σ2 and σ2 6/ σ1, then
σ1/ = σ2/ (that is, proj(σ1) = proj(σ2)). However, this does not imply σ1 = σ2 in
general, as shown by example 1.3.1. Actually, it does not imply σ1 ≡ σ2 either, since
types contain more information than skeletons.

Projections, instantiation and free variables

Projections are stable under abstraction, but not (in general) under instantiation. This
is stated more precisely by the following lemma:

Properties 2.1.3

i) If (Q) σ1 @− σ2, then (∀ (Q) σ1)/ = (∀ (Q) σ2)/.
ii) If (Q) σ1 v σ2, then ∀ (Q) σ1 6/ ∀ (Q) σ2.

Proof: Property i : It is shown by induction on the derivation of (Q) σ1 @− σ2.

◦ Case A-Equiv: By Property 1.5.4.i (page 50).

◦ Case R-Trans: By induction hypothesis.
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◦ Case A-Hyp: By hypothesis, we have (α=σ1) ∈ Q and σ2 is α. We have ∀ (Q) σ2 =
∀ (Q) α ≡ ∀ (Q) σ1 by Eq-Var?. Consequently, ∀ (Q) σ1 ≡ ∀ (Q) σ2 holds. We get the
expected result by Property 1.5.4.i (page 50).

◦ Case R-Context-R: We have σ1 = ∀ (α � σ) σ′
1 and σ2 = ∀ (α � σ) σ′

2. Besides,
the premise is (Q,α � σ) σ′

1 @− σ′
2. Hence, by induction hypothesis, we have (∀ (Q,α � σ)

σ′
1)/ = (∀ (Q,α � σ) σ′

2)/, which is the expected result.

◦ Case R-Context-Rigid: Like for the case R-Context-L in the proof of Prop-
erty 1.5.4.i (page 50).

Property ii : It is shown by induction on the derivation of (Q) σ1 v σ2.

◦ Case I-Abstract: By Property i.

◦ Case R-Trans: By induction hypothesis and transitivity of 6/ (Property 2.1.2.i).

◦ Case I-Bot: We have σ = ⊥, thus (∀ (Q) σ1)/ = ⊥/. We get the expected result by
observing that ⊥ 6/ (∀ (Q) σ2) always holds.

◦ Case R-Context-Flexible: We have σ1 = ∀ (α ≥ σ′
1) σ (1) and σ2 = ∀ (α ≥ σ′

2)
σ (2). The premise is (Q) σ′

1 v σ′
2. By induction hypothesis, we know that (∀ (Q) σ′

1)/ 6

(∀ (Q) σ′
2)/, that is ΘQ(proj(σ′

1))/ 6 ΘQ(proj(σ′
2))/ (3) by Property 1.3.3.i (page 40).

We have

(∀ (Q) σ1)/ = (∀ (Q) ∀ (α≥ σ′
1) σ)/ from (1)

= ΘQ(proj(σ)[ proj(σ′
1)/α])/ by Property 1.3.3.i (page 40)

and Definition 1.3.2
= ΘQ(proj(σ))[ΘQ(proj(σ′

1))/α]/
6/ ΘQ(proj(σ))[ΘQ(proj(σ′

2))/α]/ by Property 2.1.2.iii and (3).
= ΘQ(proj(σ)[ proj(σ′

2)/α])/
= (∀ (Q) ∀ (α≥ σ′

2) σ)/ by Property 1.3.3.i (page 40)
and Definition 1.3.2

= (∀ (Q) σ2)/ from (2)

Finally, we have shown ∀ (Q) σ1/ 6/ ∀ (Q) σ2/, which is the expected result.

◦ Case I-Hyp is similar to case A-Hyp above.

◦ Case I-Rigid: ∀ (α≥ σ) σ′ and ∀ (α= σ) σ′ have the same projection.

Considering an instance (Q) σ1 v σ2, we need to track occurrences of variables bound
in Q but free in σ1. The following lemma states that, in general, such variables also
occur in σ2, at the same occurrence. We require (α � σ) to be in the prefix, because
the instance relation is only defined under a prefix that binds all free variables of the
judgment. Additionally, we require σ not to be equivalent to a monotype, otherwise it
could be equivalently substituted by Rule Eq-Mono, and the result would not hold.
As a counterexample, take (Q,α= τ) α v τ (where α cannot be free in τ).
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Lemma 2.1.4 Assume σ is not in T . If (Q,α � σ,Q1) σ1 ♦ σ2 and (∀ (Q1) σ1)/u = α
hold, then (∀ (Q1) σ2)/u = α. As a consequence, if α ∈ ftv(∀ (Q1) σ1), then α ∈
ftv(∀ (Q1) σ2).

The proof is by induction on the derivation. See the details in Appendix (page 234).

Monotypes

By Definition 1.5.7, a type σ is in T if its normal form has no quantifiers. Like in ML,
this means that monotypes cannot be instantiated. Monotypes play an important role
in MLF, since they can be inferred (like in ML), whereas polymorphic types can only
be propagated. Throughout the proofs, we need to characterize monotypes, variables,
or ⊥. Definition 1.5.7 uses normal forms. The following properties use projection.

Properties 2.1.5

i) σ ∈ T iff for all u ∈ dom(σ) we have σ/u 6= ⊥.
ii) We have σ/ε = α iff σ ≡ α.
iii) We have σ/ε = ⊥ iff σ ≡ ⊥.

See proof in the Appendix (page 235).

The following lemma is essential: it shows that any instance of a monotype τ is only
equivalent to τ , even under a prefix. In particular, assume σ is some polymorphic type
scheme. If we have (α= σ) α v σ′, then σ′ must be α (when put in normal form). In
other words, even if α is rigidly bound to a polytype σ in the prefix, there is no way to
take an instance of it other than α itself. This is also why we say that the information
(α = σ) is hidden in the prefix: we can propagate the variable α, bound to σ, but we
cannot use its polymorphism. Decidability of type inference relies on this result.

Lemma 2.1.6 If σ1 ∈ T and (Q) σ1 ♦ σ2 hold, then we have (Q) σ1 ≡ σ2.

Proof: By induction on the derivation of (Q) σ1 ♦ σ2.

◦ Case A-Equiv: By hypothesis, (Q) σ1 ≡ σ2 holds, which is the expected result.

◦ Case R-Trans By induction hypothesis, Property 1.5.11.x (page 54) and R-Trans.

◦ Case A-Hyp and I-Hyp: We have (Q) σ1 v α1 (that is, σ2 is α1), and the premise
is (α1 � σ1) ∈ Q (1). By hypothesis, σ1 ∈ T , thus σ1 ≡ τ (2) for some monotype τ by
Property 1.5.11.ii (page 54). By Property 1.5.3.v (page 49) and (2), we get (Q) σ1 ≡
τ (3). By (2), Eq-Mono, and (1), we get (Q) τ ≡ α1 (4). Hence, (Q) σ1 ≡ α1 holds
by R-Trans, (3), and (4). This is the expected result.
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◦ Case R-Context-R We have σ1 = ∀ (α � σ) σ′
1 and σ2 = ∀ (α � σ) σ′

2. The premise
is (Q,α � σ) σ′

1 ♦ σ′
2 (5). By hypothesis we have ∀ (α � σ) σ′

1 ∈ T . By Property 2.1.5.i,
we must have σ′

1 ∈ T . Hence (Q,α � σ) σ′
1 ≡ σ′

2 holds by induction hypothesis on (5).
Consequently, (Q) ∀ (α � σ) σ′

1 ≡ ∀ (α � σ) σ′
2 holds by R-Context-R and this is the

expected result.

◦ Case R-Context-Rigid and R-Context-Flexible: We have σ1 = ∀ (α � σ) σ0

and σ2 = ∀ (α � σ′) σ0. The premise is (Q) σ ♦ σ′ (6). If α /∈ ftv(σ0), then σ1 ≡ σ2 by
Eq-Free, which is the expected result. Otherwise, we necessarily have σ and σ0 in T by
Property 2.1.5.i. Hence, (Q) σ ≡ σ′ holds by induction hypothesis on (6). Consequently,
(Q) σ1 ≡ σ2 holds by R-Context-L.

◦ Case I-Bot implies σ1 = ⊥, which is a contradiction with the hypothesis σ1 ∈ T ,
by Property 2.1.5.i.

◦ Case I-Rigid: we have σ1 = ∀ (α ≥ σ) σ′ and σ2 = ∀ (α = σ) σ′. If α /∈ ftv(σ′),
then σ1 ≡ σ2. Otherwise, we necessarily have σ and σ′ in T by Property 2.1.5.i. Con-
sequently, σ ≡ τ for some monotype τ . Hence σ1 ≡ σ′[τ/α] (7) holds by Eq-Mono?

as well as σ′[τ/α] ≡ σ2 (8). We get the expected result by R-Trans, (7), (8), and by
Property 1.5.3.v (page 49).

Cycles

Types in MLF are not recursive, thus a type cannot be strictly included in itself. As a
consequence, an instance of a given polytype cannot be a strict subterm.

Properties 2.1.7
i) If σ · ε/ 6/ σ · u/, then u is ε.
ii) If we have either (Q) σ v α or (Q) α v σ and if α ∈ ftv(σ), then σ ≡ α.

Proof: Property i: We have σ · ε/ 6/ σ · u/. By definition, this implies σ/u 6/ σ/uu.

Hence uu, that is u2, is in dom(σ). By immediate induction, we show that ui is in
dom(σ) for all natural number i. By definition, dom(σ) is dom(proj(σ)), where proj(σ) is
a skeleton (that is, a tree). By construction, dom(proj(σ)) is a finite set of occurrences.
Hence, we necessarily have u = ε.

Property ii: By hypothesis, we have (Q) σ v α (1), or (Q) α v σ (2), and α ∈ ftv(σ),
that is, there exists u such that σ/u = α. If u is ε, then we get the expected result by
Property 2.1.5.ii. Otherwise, we have u 6= ε (3) and (∀ (Q) σ) ·u/ = (∀ (Q) α) · ε/ (4) by
definition of occurrences. If (1) holds, we get ∀ (Q) σ/ 6/ ∀ (Q) α/ by Property 2.1.3.ii.
Hence, we get (∀ (Q) σ) · ε/ 6/ (∀ (Q) σ) · u/ by (4), and we conclude by Property i
that u is ε. Otherwise, (2) holds, and we get (Q) α ≡ σ by Lemma 2.1.6. Hence,
∀ (Q) α/ = ∀ (Q) σ/ (5) holds by Property 1.5.4.i (page 50). By (5) and (4), we get
(∀ (Q) σ) · u/ = (∀ (Q) σ) · ε/. This leads to u = ε by Property i. In both cases, we have
u = ε, which is a contradiction with (3).
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2.2 Canonical representatives and bounds in a prefix

In the prefix (α ≥ ⊥, β = α), we can see β as an alias for α. The following definition
captures the intuition that α and β have the same representative:

Definition 2.2.1 Given a prefix Q and a type variable α in dom(Q), we define the
representative of α in Q, which we write Q[α], by the following induction:

(Q,α � σ,Q′)[α]
M

=

{
Q[β] if nf(σ) = β

α otherwise

The bound of Q[α] in Q is written Q(α). Note that if Q(α) is defined, it is not in V.

Intuitively, Q(α) is the “real” bound of α in Q, and Q[α] is a type variable equivalent

to α under Q whose bound is the “real” bound of α. As an example, taking Q
M

=
(α≥⊥, β = α), we have Q[α] = α, Q[β] = α, Q(α) = Q(β) = ⊥.

Properties 2.2.2 We have the following properties for any closed well-formed prefix
Q, and α, β in dom(Q):

i) (Q) α ≡ Q[α].
ii) If Q̂(α) = β, then we have Q[α] = β and Q(α) = Q(β) follows.
iii) If Q̂(α) /∈ V, then (Q) α ≡ Q(α) holds.
iv) We have Q(α) /∈ T iff Q̂(α) ∈ ϑ
v) If (Q) α ≡ β, then (Q) Q(α) ≡ Q(β).
vi) If (Q) α ♦ σ and Q(α) /∈ T hold, then nf(σ) ∈ ϑ and Q(nf(σ)) /∈ T .

See proof in the Appendix (page 235).

2.3 Restricted and thrifty derivations

We wish to put equivalence, abstraction, and instance derivations in canonical forms.
In this section, we introduce some syntactic restrictions on the derivations. We prove
that these restrictions do not actually reduce the expressiveness of relations.

Restricted derivations Some rules can be restricted by adding some side-conditions
that do not reduce the set of derivable judgments. Reasoning on restricted derivations
often simplifies proofs.

Lemma 2.3.1 Given a derivation of (Q) σ ♦ σ ′, there exists a derivation of the same
judgment such that the following hold:
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70 Properties of relations under prefixes

• In Rule I-Bot, nf(σ) is not ⊥ and σ /∈ V.

• In Rules R-Context-L, R-Context-Rigid, R-Context-Flexible, α is in
ftv(σ) and nf(σ) is not α.

• In Rule I-Rigid, α ∈ ftv(σ), σ1 is not in T , and nf(σ) is not α.

• In rules I-Hyp and A-Hyp, σ1 is not in T .

A derivation which follows those restrictions is called a restricted derivation.

The proof is by induction on the initial derivation. It should be simply remarked that
whenever a rule is not restricted, as described above, it can be freely replaced by an
equivalence. See proof in the Appendix (page 236).

Thrifty derivations Consider the following occurrence of the right-context rule. The
symbol ♦ stands for either ≡, @−, or v:

R-Context-R

(Q,α � σ) σ1 ♦ σ2

(Q) ∀ (α � σ) σ1 ♦ ∀ (α � σ) σ2

This occurrence is said to be squandering when either nf(σ1) or nf(σ2) is α, but not
both simultaneously. We will show in Lemma 2.3.3 that squandering occurrences of
R-Context-R can always be removed.

Definition 2.3.2 (Thrifty Derivations) A derivation with no squandering rules is
a thrifty derivation.

This means that, in a thrifty derivation each occurrence of Rule R-Context-R (such
as the one given above) nf(σ1) is α if and only if nf(σ2) is α.

Lemma 2.3.3 Any derivation can be rewritten into a thrifty restricted derivation.

The proof proceeds by rewriting derivations into thrifty derivations, and then by ob-
serving that restricted derivations are kept restricted. See the details of the proof in
the Appendix (page 238).

The following corollary characterizes abstraction. It states that if a type σ1 that
is not a variable can be instantiated to a variable α, then it means that σ1 has been
abstracted by α. This must be done in two steps: first, σ1 is instantiated to the bound
of α, then it is abstracted by A-Hyp or I-Hyp. As a consequence, we know that the
bound of α is an instance of σ1.
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Corollary 2.3.4 Assume (α � σ) ∈ Q and σ1 /∈ V. If (Q) σ1 ♦ α holds, then so does
(Q) σ1 ♦ σ. Besides, if ♦ is @−, then � is rigid.

See proof in the Appendix (page 242).

2.4 Contexts

An occurrence points to a location in the skeleton of a type: the projection function
cannot provide more information than skeletons do. However MLF types are richer than
skeletons, thus occurrences are not accurate enough. In order to point to a location in
a type more accurately, we define contexts, which have the same structure as types.

We first define generic contexts, which are the most general form of contexts with a
single hole. We also define special forms of generic contexts that are narrow contexts,
flexible contexts and rigid contexts. Finally, we define contexts with multiple holes.

Generic contexts Generic one-hole contexts are defined by the following grammar:

C ::= [ ] | ∀ (α � σ) C | ∀ (α � C) σ

A well-formed context does not bind the same variable twice. The prefix of a well-
formed context C, written C, is defined recursively by

[ ]
M

= ∅ ∀ (α � σ) C
M

= (α � σ)C ∀ (α � C) σ
M

= C

We write dom(C) for dom(C), and Ĉ for Ĉ. If C is well-formed, then C is well-formed.
For example, let C be the context

∀ (α≥⊥, β = ∀ (γ = α→ α) ∀ (δ ≥ [ ]) γ → δ) β → β

Then C is (α ≥⊥, γ = α → α), and Ĉ is [α → α/γ]. We can informally represent this
context by the graph below. The node labelled ⊥ corresponds to α, the node labelled
[ ] corresponds to δ. The former is flexible and bound at top-level; and the latter is
flexible and bound at β. The middle node labelled → represents β; it is rigid and bound
at top-level. The bottom node labelled → represents γ. It is a monotype, thus it is not
bound.
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→

→

→ [ ]

⊥

The next definition introduces the notion of a useful context and of equivalence
between contexts.

Definition 2.4.1

• A context C is said useless if, for all σ1 and σ2, C(σ1) ≡ C(σ2) holds. Otherwise,
it is said useful.

• Two contexts C1 and C2 are said ᾱ-equivalent if and only if C1(σ) ≡ C2(σ) holds
for any σ such that ftv(σ) ∩ (dom(C1) ∪ dom(C2)) ⊆ ᾱ.

• Two contexts C1 and C2 are said equivalent if and only if C1(σ) ≡ C2(σ) holds
for any σ.

For example, ∀ (α=[ ]) β → β is useless, whereas ∀ (α=[ ]) α→ β is useful. Additionally,
the contexts ∀ (α≥⊥, β ≥⊥) [ ] and ∀ (α≥⊥, γ ≥⊥) [ ] are α-equivalent, but are not
β- or γ-equivalent. Note that C1 equivalent to C2 means that C1 is ϑ-equivalent to C2.

We define next the level of a context C. It is intuitively the depth of the hole in C.
More precisely, it will be shown that a useless context has level 0 (and conversely), and
a context of the form ∀ (Q) [ ] has level 1 (and conversely). For example, a context such
as ∀ (α≥ [ ]) α→ α has level 2, and a context such as ∀ (α≥ ∀ (β ≥ [ ]) β → β) α→ α
has level 3.

Then we define the level-1 domain of a context C. It corresponds intuitively to the
type variables bound directly in front of the hole. For example, the level-1 domain of
∀ (α ≥ ⊥, β ≥ ∀ (γ = α → α, δ ≥ ⊥) [ ]) α → β is the set {γ, δ}. Indeed, the bindings
(γ = α → α, δ ≥⊥) are in front of the hole [ ]. They are, intuitively, at the same level
as the hole. Other bindings, such as (α ≥⊥) are not at the same level, thus α do not
appear in the level-1 domain.
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Definition 2.4.2

• The level of a context C, written level(C), is defined inductively as follows:

level([ ])
M

= 1 level(∀ (α � C) σ)
M

=





level(C) if σ ≡ α

0 if α /∈ ftv(σ)

0 if level(C) = 0

level(C) + 1 otherwise

level(∀ (α � σ) C)
M

= level(C)

• The level-1 domain of a context C, written dom1(C), is defined inductively as
follows:

dom1(C)
M

= ∅ if level(C) = 0 dom1(C)
M

= dom(C) if level(C) = 1

dom1(C)
M

= dom1(C
′) if level(C) > 1 and





C = ∀ (α � σ) C ′

or

C = ∀ (α � C ′) σ

Properties 2.4.3
i) If C is a useful context, then there exists u such that for any σ and u′ in dom(σ),

we have C(σ)/uu′ = σ/u′.
ii) If C is a useful context, and σ /∈ T , then C(σ) /∈ T .
iii) A context C is useful iff level(C) > 0.

See proof in the Appendix (page 242).

We introduce three restrictions of generic contexts, namely narrow, flexible, and
rigid contexts. Narrow contexts are intuitively contexts of the form ∀ (Q) [ ]. However,
thanks to rule Eq-Var, a context Cn such as ∀ (α ≥ ⊥, β ≥ ∀ (Q′) [ ]) β is equivalent
to ∀ (α ≥ ⊥, Q′) [ ]. Hence, a context such as Cn is also considered narrow. This is
captured by the following definition.

Narrow contexts Narrow contexts are a restriction of generic contexts defined by
the following grammar:

Cn ::= [ ] | ∀ (α � σ) Cn | ∀ (α � Cn) σ where nf(σ) = α

The following properties explain what a narrow context is.
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Properties 2.4.4
i) A prefix C is narrow iff level(C) = 1.
ii) If level(C) = 1, then C is equivalent to ∀ (C) [ ].
iii) If level(C) > 1, then there exists C ′ such that C is equivalent to C ′(∀ (α � ∀ (Q1)

[ ]) σ) and level(C ′) = level(C) − 1.
iv) If level(C) > 1, then there exists C ′ and Cn such that C is equivalent to C ′(Cn),

and level(Cn) = 1, dom1(C
′) = ∅, and dom1(C) = dom(Cn).

v) If C(σ) ∈ V, then level(C) 6 1.

These properties are shown by structural induction on the context C.
See details in Appendix (page 243).

Intuitively, instantiation occurs only at flexible occurrences, that is, only in flexible
bounds. It can also occur in the bound of α in ∀ (α= σ) α, because it is equivalent to
σ by Eq-Var. Flexible contexts, defined next, are contexts suitable for instantiation.

Flexible contexts Flexible contexts are a restriction of generic contexts defined by
the following grammar:

Cf ::= [ ] | ∀ (α � σ) Cf | ∀ (α≥ Cf ) σ | ∀ (α= Cf ) σ where nf(σ) = α

Similarly, abstraction occurs only at rigid occurrences, that is, only in rigid bounds.
Rigid contexts are contexts suitable for abstraction.

Rigid contexts Rigid contexts are a restriction of generic contexts defined by the
following grammar:

Cr ::= [ ] | ∀ (α � σ) Cr | ∀ (α= Cr) σ | ∀ (α≥ Cr) σ where nf(σ) = α

The following lemma shows that the normal form of a type C(σ1) is of the form
C ′(nf(Ĉ(σ1))) for some context C ′. Intuitively, C ′ is some sort of normal form of C,
which is partially captured by the statement that C ′ is ᾱ-equivalent to C (where the
interface ᾱ is the set of free variables of Ĉ(σ1)). For instance, take the following:

C
M

= ∀ (α≥⊥, β = α→ α, γ ≥ [ ]) β → γ σ1
M

= ∀ (δ ≥⊥) δ → β

σ
M

= C(σ1) = ∀ (α≥⊥, β = α→ α, γ ≥ ∀ (δ ≥⊥) δ → β) β → γ

We have Ĉ = [α → α/β]. Then the normal form of σ is ∀ (α ≥ ⊥, γ ≥ ∀ (δ ≥ ⊥) δ →
(α → α)) (α → α) → γ. Taking C ′ = ∀ (α ≥ ⊥, γ ≥ [ ]) (α → α) → γ, we have
nf(σ) = C ′(∀ (δ ≥⊥) δ → (α → α)), that is, nf(σ) = C ′(Ĉ(σ1)). Additionally, C ′ and
C are α-equivalent.
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Lemma 2.4.5 If C is a useful well-formed context, σ = C(σ1) and σ1 /∈ T , then there
exists C ′ such that

• C ′ is ftv(Ĉ(σ1))-equivalent to C

• dom(C ′) ⊆ dom(C)

• nf(σ) = C ′(nf(Ĉ(σ1)))

Proof: This is proved by induction on the number of quantifiers of the context C. By
hypothesis, σ1 /∈ T (1). Let ᾱ be ftv(Ĉ(σ1)) (2). We proceed by case analysis on the
structure of C.

◦ Case C is [ ]: Then σ is σ1 and taking C ′ = [ ] is appropriate.

◦ Case C is ∀ (α0 � σ0) C0 (3): Then σ is ∀ (α0 � σ0) C0(σ1) (4). Necessarily, C0 is
useful. By well-formedness of C, we must have α0 /∈ dom(C0) (5). We have α0 /∈ ᾱ by
(2) and well-formedness of (3).

Subcase C0(σ1) ≡ α0: By Property 1.5.11.ii (page 54), we have C0(σ1) ∈ T . By
Property 2.4.3.ii and (1), we have C0(σ1) /∈ T . This is a contradiction, which means
that this subcase cannot occur.

Subcase σ0 ∈ T : By Property 1.5.11.ii (page 54), we have σ0 ≡ τ0 for some mono-
type τ0. Let θ be [τ0/α0]. The normal form of σ is by definition θ(nf(C0(σ1))), from
(4). By Property 1.5.6.iii (page 51), we get nf(σ) = nf(θ(C0(σ1))), that is, nf(σ) =

nf(θ(C0)(θ(σ1))) (6) thanks to (5). Observing that the substitution Ĉ is θ ◦ Ĉ0 (7),

we get ftv(θ̂(C0)(θ(σ1))) = ftv(Ĉ(σ1)) = ᾱ. By induction hypothesis on θ(C0), there
exists a context C1 that is ᾱ-equivalent to θ(C0) (8) and such that nf(θ(C0)(θ(σ1))) =

C1(nf(θ̂(C0)(θ(σ1)))) (9) and dom(C1) ⊆ dom(θ(C0)), that is, dom(C1) ⊆ dom(C0) (10).

By (9), (6), and (7), nf(σ) is C1(nf(Ĉ(σ1))). Hence, θ(C0) is ᾱ-equivalent to ∀ (α0�σ0) C0,
that is, to C (11). By (8) and (11), C1 is ᾱ-equivalent to C. Finally, dom(C1) ⊆ dom(C)
by (10) and (3). This is the expected result.

Subcase α0 /∈ ftv(C0(σ1)) (12): Then nf(σ) is nf(C0(σ1)), thus we conclude directly
by induction hypothesis. Indeed, C is ∀ (α0 � σ0) C0 and is ᾱ-equivalent to C0 by (12).

Besides, dom(C0) ⊆ dom(C), and Ĉ0 = Ĉ.

Otherwise nf(σ) is ∀ (α0 � nf(σ0)) nf(C0(σ1)), and Ĉ = Ĉ0 (13). By induction

hypothesis, there exists C1, ᾱ-equivalent to C0, such that nf(C0(σ1)) = C1(nf(Ĉ0(σ1))).

By (13), we get nf(C0(σ1)) = C1(nf(Ĉ(σ1))). We get the expected result by taking
C ′ = ∀ (α0 � nf(σ0)) C1. Besides, C ′ is equivalent to ∀ (α0 �σ0) C1, which is ᾱ-equivalent
to ∀ (α0 �σ0) C0, that is C. Finally, dom(C ′) = {α0}∪dom(C1) and dom(C1) ⊆ dom(C0)
by induction hypothesis, thus dom(C ′) ⊆ {α0} ∪ dom(C0) = dom(C).

◦ Case C is ∀ (α0 � C0) σ0: then, σ is ∀ (α0 = C0(σ1)) σ0. We must have α0 ∈ ftv(σ0)

and C0 is useful (otherwise C would be useless). Moreover, Ĉ = Ĉ0 (14) by definition.
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76 Properties of relations under prefixes

Subcase nf(σ0) is α0: then, nf(σ) is nf(C0(σ1)) and we conclude directly by induction

hypothesis. Indeed, C is equivalent to C0, dom(C0) = dom(C), and Ĉ = Ĉ0 from (14).

Subcase C0(σ1) ∈ T is not possible by Property 2.4.3.ii.

Otherwise nf(σ) is ∀ (α0�nf(C0(σ1))) nf(σ0). By induction hypothesis, there exists

C1, ᾱ-equivalent to C0 such that nf(C0(σ1)) = C1(nf(Ĉ0(σ1))) (15) and dom(C1) ⊆

dom(C0) (16). Hence, by (15) and (14), we have nf(C0(σ1)) = C1(nf(Ĉ(σ1))). We
get the expected result by taking C ′ = ∀ (α0 � C1) nf(σ0). Besides, C ′ is equivalent to
∀ (α0 � C1) σ0, which is ᾱ-equivalent to ∀ (α0 � C0) σ0, that is, C. From (16), we get
dom(C1) ⊆ dom(C). Finally, dom(C ′) = dom(C1) ⊆ dom(C) holds. This is the expected
result.

Contexts with multiple holes Generic contexts with n holes Cn are defined by the
following grammar:

C0 ::= σ no hole

C1 ::= C

Cm+p ::= ∀ (α � Cm) Cp for m+ p > 1.

The notation C2(σ1, σ2) means that the first hole is filled with σ1 and the second hole
filled with σ2.

1 Note that the notion of useful context is more delicate: the “usefulness”
of the first hole might depend on what is put in the second hole. For instance, take
∀ (α= [ ]) [ ].

Matching contexts We say that two generic contexts C1 and C2 match on σ if there
exist σ1 and σ2 such that σ = C1(σ1) = C2(σ2). Two matching contexts C1 and C2 are
nested when there exists C3 such that C1 = C2(C3) or C2 = C1(C3). Otherwise, they
are said disjoint.

Lemma 2.4.6 Assume σ is in normal form. If C1 and C2 are disjoint and match on σ,
then there exist a two-hole context C2 such that C1 = C2([ ], σ2) and C2 = C2(σ1, [ ]).
Besides, if C1 is flexible (resp. rigid), then C2([ ], σ′2) is flexible (resp. rigid), for any
σ′2. A similar result holds for C2.

Proof: By induction on the structures of C1 and C2. By hypothesis, we have σ =
C1(σ1) = C2(σ2) (1), and C1 and C2 are not nested.

1We should explain formally how to assign a number to each hole. However, this would only
obfuscate the notations. Hence, we leave some harmless “artistic blur”, and assume that we have a way
to assign a different number to each hole in a context.
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2.5 Local abstraction and instance rules 77

◦ Case C1 = [ ] is not possible, since otherwise C1 and C2 are nested.

◦ Case C2 = [ ] is not possible either.

◦ Case C1 = ∀ (α�σ) C ′
1, C2 = ∀ (α′ �′σ′) C ′

2: Then (1) implies (α�σ) = (α′ �′σ′) and
C ′

1(σ1) = C ′
2(σ2). By induction hypothesis, there exists C2

a such that C ′
1 = C2

a([ ], σ2)
and C ′

2 = C2
a(σ1, [ ]). Hence taking C2 = ∀ (α � σ) C2

a([ ], [ ]) gives the expected result.
Besides, if C1 is flexible (resp. rigid), then C ′

1 is flexible (resp. rigid). By induction
hypothesis, C2

a([ ], σ′
2) is flexible (resp. rigid) for any σ′

2. Hence, C2([ ], σ′
2) is flexible

(resp. rigid). Similarly for C2(σ
′
1, [ ]).

◦ Case C1 = ∀ (α�σ) C ′
1, C2 = ∀ (α′ �′C ′

2) σ
′: Then (1) implies (α�σ) = (α′ �′C ′

2(σ2))
and σ′ = C ′

1(σ1). Let C2 be ∀ (α �C ′
2) C

′
1, where the first hole is in C ′

1, the second hole
in C ′

2. We have C1 = C2([ ], σ2) and C2 = C2(σ1, [ ]), which is the expected result.
Besides, if C1 is flexible (resp. rigid), then C ′

1 is flexible (resp. rigid). Hence, C2([ ], σ′
2)

is flexible (resp. rigid). If C2 is flexible (resp. rigid), then C ′
2 is flexible (resp. rigid) and

�′ is ≥ (resp =). The case where nf(σ′) is α′ and �′ is = (resp ≥) is not possible here,
because σ is in normal form by hypothesis. Hence, C2(σ′

1, [ ]) is flexible (resp. rigid).

◦ Case C1 = ∀ (α � C ′
1) σ, C2 = ∀ (α′ �′ σ′) C ′

2 is similar.

◦ Case C1 = ∀ (α � C ′
1) σ, C2 = ∀ (α′ �′ C ′

2) σ
′: Then (1) implies α = α′, � = �′,

σ = σ′, and C ′
1(σ1) = C ′

2(σ2). Thus, by induction hypothesis there exists C2
a such that

C ′
1 = C2

a([ ], σ2) and C ′
2 = C2

a(σ1, [ ]). Hence, taking C2 = ∀ (α�C2
a) σ gives the expected

result. Besides, if C1 is flexible (resp. rigid), then � is ≥ (resp. =) and C ′
1 is flexible

(resp. rigid). By induction hypothesis, C2
a([ ], σ′

2) is flexible (resp. rigid), for any σ′
2.

Hence, C2([ ], σ′
2) is flexible (resp. rigid) for any σ′

2. Similarly for C2(σ
′
1, [ ]).

Derivable context rules The following rules are derivable by induction on the con-
text. They can represent any sequence of context rules.

Eq-Context?

(QC) σ1 ≡ σ2

(Q) C(σ1) ≡ C(σ2)

A-Context?

(QCr) σ1 @− σ2

(Q) Cr(σ1) @− Cr(σ2)

I-Context?

(QCf ) σ1 v σ2

(Q) Cf (σ1) v Cf (σ2)

2.5 Local abstraction and instance rules

The rules defining abstraction and instance were given in Figure 1.2 and 1.3, in Sec-
tions 1.6 and 1.7. In order to show confluence results on abstraction and instantiation,
we need to put derivations in canonical forms. This amounts to lifting transitivity to
top-level, and to replacing some rules, such as A-Hyp by local rules. Besides, we wish
to get rid of context rules such as R-Context-R and R-Context-Rigid by using
contexts defined in the previous section.

We recall that R∗ is the transitive closure of R.
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78 Properties of relations under prefixes

2.5.1 Context-based rules

The following lemma states that transitivity can always be lifted to top-level.

Lemma 2.5.1 If we have a derivation of (Q) σ ♦ σ ′, then, there exists a tuple σ1 . . . σn

such that σ1 = σ, σn = σ′ and for all i < n we have a derivation of (Q) σi ♦ σi+1

which does not use Rule R-Trans.

Proof: By induction on the derivation of (Q) σ ♦ σ′. All cases are easy.

Abstraction

We wish to define a relation that has the same expressiveness as @− and that uses
contexts instead of context rules. We consider the relation @−C defined by the single
following rule:

Ac-Hyp

(α = σ1) ∈ QCr

(Q) Cr(σ1) @−C Cr(α)

Intuitively, @−C captures abstraction, but not equivalence. Hence, we define (≡|@−C) as
(≡) ∪ (@−C), that is:

(Q) σ1 (≡|@−C) σ2 if and only if (Q) σ1 ≡ σ2 or (Q) σ1 @−C σ2 holds.

As expected, the transitive closure of (≡|@−C) is equivalent to abstraction.

Lemma 2.5.2 The relations @− and (≡|@−C)∗ are equal.

Proof: We need to show that (≡|@−C)
∗

is included in @−, and conversely.

Directly: Rule Ac-Hyp is derivable with A-Hyp and A-Context?. Hence, @−C is in-

cluded in @−. Moreover, ≡ is included in @− and @− is transitive, thus (≡|@−C)∗ is included
in @−.

Conversely, we show that @− is included in (≡|@−C)
∗
. Thanks to Lemma 2.5.1, it suffices to

show that if we have a derivation of (Q) σ1 @− σ2 not using R-Trans, then (Q) σ1 ≡ σ2

or (Q) σ1 @−C σ2 is derivable. We assume we have a derivation of (Q) σ1 @− σ2 that does
not use R-Trans. All abstractions rules of this derivation have at most one premise.
Namely, the rules with one premise are context rules R-Context-R and R-Context-

Rigid. The topmost abstraction rule is either A-Equiv or A-Hyp. If it is A-Equiv,
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2.5 Local abstraction and instance rules 79

then (Q) σ1 ≡ σ2 is derivable, and this case is solved. Otherwise, we have a derivation
of the form

A-Hyp
(α= σ0) ∈ QQ′

(QQ′) σ0 @− α

...

(Q) σ1 @− σ2

By structural induction on this derivation, we can show that there exists a rigid context
Cr such that σ1 = Cr(σ0), σ2 = Cr(α), and Q′ = Cr. Hence, we have (α=σ0) ∈ QCr and
the derivation ends with (Q) Cr(σ0) @− Cr(α). Consequently, we have (Q) Cr(σ0) @−C

Cr(α) by Rule Ac-Hyp, that is, (Q) σ1 @−C σ2. This is the expected result.

Instance

As we have done for @−c, we define the relation vC in order to capture type instantiation
through context-based rules.

Ic-Bot

(Q) Cf (⊥) vC Cf (σ)

Ic-Hyp

(α≥ σ) ∈ QCf

(Q) Cf (σ) vC Cf (α)

Ic-Abstract

(QCf ) σ @−C σ′

(Q) Cf (σ) vC Cf (σ′)

Ic-Rigid

(Q) Cf (∀ (α≥ σ) σ′ vC Cf (∀ (α= σ) σ′)

The relation (≡|vC) is defined as (≡) ∪ (vC).

Lemma 2.5.3 The relations v and (≡|vC)∗ are equal.

Proof: We need to show that (≡|vC)∗ is included in v, and conversely.

Directly: rules Ic-Bot, Ic-Hyp, Ic-Rigid, and Ic-Abstract are derivable with I-

Context? and I-Bot, I-Hyp, I-Rigid, and I-Abstract, respectively. Hence, vC is
included in v. Moreover, ≡ is included in v and v is transitive, thus (≡|vC)

∗
is included

in v.

Conversely, we show that v is included in (≡|vC)∗. We assume that (Q) σ1 v σ2 (1)

holds. We have to show that (Q) σ1 (≡|vC)∗ σ2 is derivable. Like in the proof of
Lemma 2.5.2, we assume that the derivation of (1) does not use transitivity (thanks
to Lemma 2.5.1). Hence, the derivation of (1) is actually a sequence of context-rules
starting with a one-premise rule I-X, which can be either I-Abstract, I-Hyp, I-Bot

79



80 Properties of relations under prefixes

or I-Rigid. Hence, the derivation of (1) is of the form:

I-X
(QQ′) σ′

1 v σ′
2

...

(Q) σ1 v σ2

In the first case (I-Abstract), following the proof of Lemma 2.5.2, we have a sequence
of context rules (namely R-Context-Rigid or R-Context-R) starting with A-Hyp

or A-Equiv. If it starts with A-Equiv, then (Q) σ1 ≡ σ2 holds, and the result is shown.
Otherwise, and for other choices of I-X also, there exists a flexible context Cf such that
Cf = Q′, σ1 = Cf (σ′

1) and σ2 = Cf (σ′
2). Then we get the expected result by using rules

(respectively) Ic-Abstract, Ic-Hyp, Ic-Bot and Ic-Rigid, and using Lemma 2.5.2
for I-Abstract.

2.5.2 Alternative abstraction and alternative instance

Rules A-Hyp and Ac-Hyp are not local. Indeed, both rules replace a type σ by a
variable α, provided the binding (α=σ) is in the prefix. For example, ∀ (α=σ) ∀ (β=σ)
α→ β @− ∀ (α=σ) ∀ (β=α) α→ β is derivable, taking Cr = ∀ (α=σ) ∀ (β=[ ]) α→ β
in Ac-Hyp. In that case, the binding (α=σ) is next to the hole. However, the context
Cr can be of any level, which means that the information (α = σ) is propagated from
one subterm of the type to another arbitrarily distant subterm. We wish to force rigid
contexts to be of level 1 or 2 only. This gives more granularity to derivations, and
makes it possible to show some “local” invariants that would possibly be broken by
non-local rules.

In order to help the understanding of the following, we introduce the informal notion
of frozen binding: Given a derivation D ending with (Q) σ1 ♦ σ2, we call Q the frozen
prefix. Inside the derivation D we may find a sequent such as (QQ′) σ′1 ♦ σ′2. Whereas
the bindings of Q are frozen, the bindings of Q′, which were introduced by context
rules, are not.

Pursuing the analysis, we see that Rule A-Hyp can be used with three different
flavors:

1. Abstraction between types at the same level; e.g. the following is derivable (as
seen above): (Q) ∀ (α= σ) ∀ (β = σ) α→ β @− ∀ (α= σ) ∀ (β = α) α→ β.

2. Extrusion of a quantifier, as in A-Up?: (Q) ∀ (α = ∀ (β = σ) σ′) τ @− ∀ (β = σ)
∀ (α= σ′) τ , provided β /∈ ftv(τ).

3. Abstraction of a type found in the frozen prefix: (α = σ) ∀ (β = σ) β → β @−
∀ (β = α) β → β.
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2.5 Local abstraction and instance rules 81

We have already illustrated the extrusion of a quantifier by graphs page 58. The
abstraction between a type and the prefix can also be represented by the same graphs,
considering the top-level node in the prefix. The abstraction between types at the same
level can be captured by graphs as follows:

→

σ σ

v

→

σ

The same flavors, illustrated by similar examples, exist for I-Hyp. We now define
two relations @−ᾱ and vᾱ (frozen abstraction and frozen instance relations) that ex-
plicitly separate these different flavors. In order to keep track of frozen bindings, we
annotate the relation with a set of variables ᾱ that corresponds to variables introduced
in the prefix by context rules (that is, non-frozen variables). Hence, we consider the
following rule, which is meant to replace R-Context-R:

R-Context-R’

(Q,α � σ) σ1 ♦ᾱ∪{α} σ2

(Q) ∀ (α � σ) σ1 ♦ᾱ ∀ (α � σ) σ2

Definition 2.5.4 (Frozen abstraction and frozen instance) We define the rela-
tion @−ᾱ as the smallest transitive relation under prefix that satisfies the rules of fig-
ure 2.1 as well as rules R-Context-Rigid and R-Context-R’.

The relation vᾱ is the smallest transitive relation under prefix that satisfies the
rules of figure 2.2 as well as rules R-Context-Flexible and R-Context-R’.

Note that @−ᾱ is almost a rigid-compliant relation; the only difference lies in Rule
R-Context-R’, which is used instead of R-Context-R. Similarly, vᾱ is almost a
flexible-compliant relation, the difference being in Rule R-Context-R’.

The rules for @−ᾱ and vᾱ are similar to the rules defining @− and v, except A-

Hyp’ and I-Hyp’, which require the binding read in the prefix not to be in ᾱ (that
is, the binding must be frozen). In order to make local unification or extrusion of
binders possible, rules A-Alias’ and A-Up’ are added to the definition of @−ᾱ, and
rules I-Alias’ and I-Up’ are added to the definition of vᾱ. They are meant to be
used instead of A-Hyp or I-Hyp, when the binding read in the prefix is in ᾱ (that is,
not frozen). A judgment (Q) σ1 ♦ᾱ σ2 is well formed if and only if Q is well-formed,
and σ1 and σ2 are closed under Q. All derivations are implicitly well-formed. We note
that @−ᾱ is included in @−ᾱ∪β̄ for any sets of variables ᾱ and β̄. As expected, these new
relations are equivalent to the original ones:
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82 Properties of relations under prefixes

Figure 2.1: Frozen abstraction relation

A-Equiv’

(Q) σ1 ≡ σ2

(Q) σ1 @−ᾱ σ2

A-Hyp’

(α= σ) ∈ Q α /∈ ᾱ

(Q) σ @−ᾱ α

A-Up’

α1 /∈ ftv(σ′)

(Q) ∀ (α= ∀ (α1 = σ1) σ) σ′ @−ᾱ ∀ (α1 = σ1) ∀ (α= σ) σ′

A-Alias’

(Q) ∀ (α1 = σ1) ∀ (α2 = σ1) σ @−ᾱ ∀ (α1 = σ1) ∀ (α2 = α1) σ

Lemma 2.5.5 The relations @− and @−∅ are equal. The relations v and v∅ are equal.

See proof in the Appendix (page 244).

The following rule is derivable:

I-Equiv?’

(Q) σ1 ≡ σ2

(Q) σ1 vᾱ σ2

Some proofs are made easier by considering restricted derivations for @−ᾱ and vᾱ.
The following lemma introduces new restrictions for the new rules A-Up, A-Alias, . . .

Lemma 2.5.6 The restrictions stated in Lemma 2.3.1 are still applicable with vᾱ and
@−ᾱ, together with a few more restrictions:

• In rules A-Hyp’ and I-Hyp’, σ is not in T .

• In rules A-Up’ and I-Up’, α ∈ ftv(σ′), nf(σ′) is not α, α1 ∈ ftv(σ), nf(σ) is not
α1, and σ1 is not in T

• In rules A-Alias’ and I-Alias’, σ1 is not in T , and α1 and α2 are in ftv(σ)

Proof: Similar to the proof of Lemma 2.3.1, and we only need to consider the new rules
A-Hyp’, I-Hyp’, A-Up’, I-Up’, A-Alias’, and I-Alias’. We assume given a judgment
(Q) σ1 ♦ᾱ σ2 derived with such a rule. If the restrictions above do not hold, then it is
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2.6 Atomic instances 83

Figure 2.2: Frozen instance relation

I-Abstract’

(Q) σ1 @−ᾱ σ2

(Q) σ1 vᾱ σ2

I-Bot’

(Q) ⊥ vᾱ σ
I-Rigid’

(Q) ∀ (α≥ σ1) σ vᾱ ∀ (α= σ1) σ

I-Hyp’

(α≥ σ) ∈ Q α /∈ ᾱ

(Q) σ vᾱ α

I-Up’

α1 /∈ ftv(σ′)

(Q) ∀ (α≥ ∀ (α1 � σ1) σ) σ′ vᾱ ∀ (α1 � σ1) ∀ (α≥ σ) σ′

I-Alias’

(Q) ∀ (α1 ≥ σ1) ∀ (α2 ≥ σ1) σ vᾱ ∀ (α1 ≥ σ1) ∀ (α2 = α1) σ

easy to check that (Q) σ1 ≡ σ2 holds, and we conclude by Lemma 2.3.1, A-Equiv’ or
I-Equiv?’.

A derivation with vᾱ or @−ᾱ that keeps skeletons unchanged cannot instantiate ⊥,
but only replaces types by an alias (like A-Alias’), or extrudes binders (like A-Up’).
Since A-Up’ and A-Alias’ do not modify the set of free variables, only A-Hyp can
introduce new variables, which are necessarily frozen, that is, not in ᾱ. This is expressed
by the following lemma:

Lemma 2.5.7 If we have

(Q) σ1 ♦ᾱ σ2 ∀ (Q) σ1/ = ∀ (Q) σ2/ α ∈ ᾱ α ∈ ftv(Q̂(σ2))

Then we have α ∈ ftv(Q̂(σ1)).

The proof is by induction on the derivation of (Q) σ1 ♦ᾱ σ2.
See details in the Appendix (page 246).

2.6 Atomic instances

In this section, we define new relations, namely, v̇ and @̇−
ᾱ
, that have the same expres-

siveness as v and @− but ensure canonical derivations. Besides, these relations are not
transitive, so that all the steps of the instantiation are clearly separated. Furthermore,
each step is always irreversible, in the sense that it is not an equivalence. In other
words, all steps are useful.
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Figure 2.3: Strict instance

In all rules, Cf is a well-formed useful context.

S-Hyp

σ′ /∈ T

(α ≥ σ1) ∈ Q α /∈ dom(Cf ) (Q) σ1 ≡ Ĉf (σ′)

(Q) Cf (σ′) @̇ Cf (α)

S-Up

β ∈ ftv(σ′′) α ∈ ftv(σ′) σ′, σ′′ /∈ V σ /∈ T
α /∈ dom(QCfQ

′) ftv(σ) # dom(Q′)

(Q) Cf (∀ (β ≥ ∀ (Q′, α � σ) σ′) σ′′) @̇ Cf (∀ (α � σ) ∀ (β ≥ ∀ (Q′) σ′) σ′′)

S-Alias

α1 ∈ ftv(σ′) α2 ∈ ftv(σ′) dom(Q′) # ftv(σ1, σ2) σ1 /∈ T
σ1 ≡ σ2 σ = ∀ (α1 ≥ σ1, Q

′, α2 ≥ σ2) σ
′

(Q) Cf (σ) @̇ Cf (∀ (α1 ≥ σ1, Q
′, α2 = α1) σ

′)

S-Nil

ftv(σ) = ∅

(Q) Cf (⊥) @̇ Cf (σ)

S-Rigid

σ′ /∈ T α ∈ ftv(σ) σ /∈ V

(Q) Cf (∀ (α≥ σ′) σ) @̇ Cf (∀ (α= σ′) σ)

2.6.1 Definitions

The one-step strict instance relation @̇ is defined in Figure 2.3. The one-step abstraction
relation @̇−

ᾱ
is defined in Figure 2.4. These rules mention flexible and rigid contexts,

defined formally in section 2.4. The one-step instance relation v̇, which combines @̇

and @̇− is defined in Figure 2.5. The symbol R stands either for v̇ or @̇−
∅
. As usual,

we write σ1 R σ2 for (Q) σ1 R σ2, where Q is unconstrained and σ1 and σ2 are closed
under Q.

Definition 2.6.1 We define the relations (≡@̇−
∅
) and (≡v̇): (Q) σ1 (≡R) σ2 holds if

and only if (Q) σ1 ≡ σ2 or there exists σ′1 and σ′2 such that (Q) σ1 ≡ σ′1, (Q) σ′1 R σ′2
and (Q) σ′2 ≡ σ2.

As already mentioned, R∗ is the transitive closure of the relation R. Note that StSh-

Hyp is restricted to variables α not in ᾱ. The only rule introducing variables in ᾱ is
C-Abstract-F, which adds Cf .
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Figure 2.4: Strict Abstraction Relation

In all rules, Cr is a well-formed useful context.

StSh-Hyp

σ′ /∈ T

(α = σ1) ∈ Q α /∈ dom(Cr) α /∈ ᾱ (Q) σ1 ≡ Ĉr(σ
′)

(Q) Cr(σ
′) @̇−

ᾱ
Cr(α)

StSh-Up

β ∈ ftv(σ′′) α ∈ ftv(σ′) σ′, σ′′ /∈ V σ /∈ T
α /∈ dom(QCRQ

′) ftv(σ) # dom(Q′)

(Q) Cr(∀ (β = ∀ (Q′, α= σ) σ′) σ′′) @̇−
ᾱ
Cr(∀ (α= σ) ∀ (β = ∀ (Q′) σ′) σ′′)

StSh-Alias

α1 ∈ ftv(σ′) α2 ∈ ftv(σ′) dom(Q′) # ftv(σ1, σ2) σ1 /∈ T
σ = ∀ (α1 = σ1, Q

′, α2 = σ2) σ
′ σ1 ≡ σ2

(Q) Cr(σ) @̇−
ᾱ
Cr(∀ (α1 = σ1, Q

′, α2 = α1) σ
′)

Figure 2.5: Combined instance

C-Strict

(Q) σ1 @̇ σ2

(Q) σ1 v̇ σ2

C-Abstract-F

(QCf ) σ1 @̇−
Cf σ2 level(Cf ) > 1

(Q) Cf (σ1) v̇ Cf (σ2)

C-Abstract-R

(Q) σ1 @− σ2

(Q) σ1 v̇ σ2

2.6.2 Equivalence between relations

These new relations have the same expressiveness as the original relations, as stated by
the following lemma.

Properties 2.6.2

i) The relations (@−) and (≡@̇−
∅
)
∗

are equal.
ii) The relations (v) and (≡v̇)

∗
are equal.

See proof in the Appendix (page 247).

The relations @̇ and @̇−
ᾱ

can be seen as rewriting relations, under a given prefix.
Then (Q) σ1 @̇ σ2 corresponds to reducing the argument σ1 by @̇, and getting σ2 as a
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86 Properties of relations under prefixes

result. Similarly, the relation @̇−
ᾱ

is viewed as a rewriting relation. These (rewriting)
relations have a remarkable property: if they can reduce an argument σ, then they can
also reduce its normal form nf(σ). Besides, the results are equivalent. This is stated
below:

Properties 2.6.3 The following properties hold for R being @̇−
ᾱ

and @̇.
i) If (Q) σ1 R σ2 holds, then there exists σ′

2 such that (Q) nf(σ1) R σ′2 and (Q) σ2 ≡
σ′2 hold.

ii) If (Q) σ1 R σ2 holds, σ1 is in normal form, and σ′
1 ≈σ1, then there exists σ′

2 such
that (Q) σ′1 R σ′2 and (Q) σ2 ≡ σ′2 hold.

This is shown by considering each rule individually. In all cases, the projection of
the redex to its normal form leads to a similar redex, thanks to Lemma 2.4.5 (page 75).
See proof in the Appendix (page 250).

This result will be used in the proof of the main confluence result, namely the
Diamond Lemma (Lemma 2.8.4).

2.7 Equivalence vs instantiation

The key result of this section is Property 2.7.7.i, which shows that the equivalence
relation is the kernel of the instance relation. The second main result of this section
is Corollary 2.7.10, which shows that both the abstraction relation and its inverse the
revelation relation are stationary.

While occurrences describe only the symbolic structure of types, i.e. their skeleton,
we here use polynomials to describe their binding structure. The polynomial associated
to the binding structure of a type is called its weight. As expected, a type with no
binding structure, i.e. a monotype, weighs zero, as stated by Lemma 2.7.4. The converse
is also true.

We start by stating a few properties about polynomials, then we define weights, and
show some useful properties. Then we prove the main results, which are Property 2.7.7.i
and Corollary 2.7.10.

2.7.1 Polynomials

The set of three-variable polynomials in X,Y,Z, which we simply call “polynomials”, is
defined as Z[X][Y ][Z]. The addition + and multiplication × are, as expected, commu-
tative, thus, for instance X×Y equals Y ×X. It is well known [Bou59] that Z[X][Y ][Z]
is isomorphic to (Z[Y ][Z])[X]. In other words, any polynomial can be seen as a poly-
nomial in variable X, with coefficients in the ring Z[Y ][Z]. Similarly, Z[Y ][Z] can be
seen as polynomials in variable Y , with coefficients in the ring Z[Z].
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2.7 Equivalence vs instantiation 87

Given a total ordering 6 on a ring A , we define a total ordering on A [X] as
the lexicographic order on the sequence of coefficients, higher degrees coming first.
Formally, if P and Q are in A [X], we can always write them in the form pnX

n + . . .+
p1X + p0 and qnX

n + . . . + q1X + q0. (we can have pn = 0 if, for instance, the degree
of P is smaller than the degree of Q). Then P 6 Q if and only if (pn, . . . , p1, p0) 6

(qn, . . . , q1, q0), taking the lexicographic order over A n+1.
Using the usual total ordering on Z, we get a total ordering on Z[Z]. We use again

this ordering to build a total ordering on (Z[Z])[Y ]. This new ordering is used too to
build a total ordering on (Z[Z][Y ])[X].

Because of the above hierarchy, polynomial variables do not play equivalent roles,
with respect to the orderings. More precisely, X is prevailing over Y which is in turn
prevailing over Z.

Example The following sequence is an increasing sequence: Z, Z 2, Y , X, X + Y 3,
X2, Y 2X2, X3 + Z, X4.

Intuitively, each binder of a type will be associated a polynomial variable (X, Y ,
or Z). Whereas the abstraction relation only modifies Y and Z binders, irreversible
instantiations modify X binders. The following definition make it easier to talk about
the X variables of a given polynomial.

Definition 2.7.1 The X-degree of a polynomial P is its degree in the variable X,
where the coefficients are considered in the ring (Z[Z][Y ]). We write X ∈ P if the
X-degree of P is not 0. As a matter of fact, we have X ∈ P if and only if X appears
in the reduced form of P .

This definition is used in the first and fourth properties of the following. The other
results are straightfoward. We omit the proof.

Properties 2.7.2 We have the following properties for any P,Q and R in Z[X][Y ][Z]:
i) If X /∈ P and X /∈ P ′, then X /∈ P + P ′.
ii) If P > Q, then P +R > Q+R.
iii) If P > 0 and R > 0, then P ×R > 0.
iv) If we have P 6 Q 6 R and X /∈ R− P , then X /∈ R−Q and X /∈ Q− P .

The latter property can be intuitively interpreted as follows: consider three types σp,
σq and σr such that σp v σq (1) and σq v σr (2) hold (under some unspecified prefix).
We write P , Q and R for the polynomials associated to σp, σq and σr, respectively.
If some X binder is modified during the first instantiation (1) or during the second
one (2), which implies X ∈ Q − P or X ∈ R − Q, then X is to appear in R − P . In
other words, each transformation on some X binder during instantiation will remain
visible forever.
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88 Properties of relations under prefixes

2.7.2 Weight

If (Q) σ1 ≡ σ2 holds, then we have (Q) σ1 v σ2 and (Q) σ2 v σ1 by I-Equiv? and
symmetry of ≡. Conversely, we want to show that if both (Q) σ1 v σ2 and (Q) σ2 v
σ1 hold, then (Q) σ1 ≡ σ2 is derivable. As mentioned above, each type is given a
weight which reflects its binding structure. While weights are stable under equivalence,
they strictly decrease by irreversible instantiation and irreversible abstraction. In the
following paragraph, we give an illustrating example that should give the intuition
behind weights. The definitions or terms that we introduce there are not meant to be
formal and are not used further in the document.

Introduction to weights Weights are meant to give some information about the
binding structure of types. For example, take the following type, written σ (the type
being too large, we display it on several lines)

∀ (α≥ ⊥ )

∀ (β ≥ ∀ (β1 ≥ ⊥ ) ∀ (β2 = ⊥ ) β1 → β2)

∀ (γ = ∀ (γ1 ≥ ⊥ ) ∀ (γ2 = ⊥ ) γ1 → γ2)
α→ β → γ

Its binding structure depends only on the locations of ⊥. In the above example, ⊥
occurs five times. For illustration purposes, we give a number to each occurrence of ⊥:

∀ (α≥ ⊥1 )

∀ (β ≥ ∀ (β1 ≥ ⊥2 ) ∀ (β2 = ⊥3 ) β1 → β2)

∀ (γ = ∀ (γ1 ≥ ⊥4 ) ∀ (γ2 = ⊥5 ) γ1 → γ2)

α→ β → γ

We represent this type with the following graph:

→

⊥1 →

→ →

⊥2 ⊥3 ⊥4 ⊥5
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2.7 Equivalence vs instantiation 89

We consider all occurrences of ⊥ and (informally) associate a path to each occurrence.
In this context, a path is a word in the set {=,≥}, such as ≥≥ = ≥≥.

• ⊥1 appears inside a flexible context (see page 74) that is directly in the bound of
α, which is flexible. Hence, the path associated to ⊥1 is ≥.

• ⊥2 appears directly in the bound of β1, and β1 is in the bound of β. Both β and
β1 are flexible, thus the path associated to ⊥2 is written ≥≥.

• ⊥3 appears in the bound of β2, which is rigid, and β2 is in the bound of β, which
is flexible. Hence, the path associated to ⊥3 is ≥=.

• Similarly, the path associated to ⊥4 is =≥, and the path associated to ⊥5 is ==.

On graphs, we simply label flexible bindings with ≥ and rigid bindings with =.

→

⊥1 →

→ →

⊥2 ⊥3 ⊥4 ⊥5

≥

≥

=
≥

=

≥

=

We now show in detail how we compute the polynomial associated to this type. The
first step consists in associating a polynomial variable to each binding arrow. Then,
each path can be easily mapped to a monomial. The second step simply adds all the
monomials associated to the paths of occurrences of ⊥.

• Both ⊥1 and ⊥2 appear in flexible contexts (see page 74), that is, their path is of
the form ≥∗ (a sequence of ≥). Instantiation (v) is allowed in such contexts. We
will weight such contexts using the polynomial variable X. More precisely, the
weight associated to ≥ (that is, to the path of ⊥1) is X, and the weight associated
to ≥≥ (that is, to the path of ⊥2) is XX, that is X2.

• Both ⊥3 and ⊥5 appear in rigid contexts (see page 74), that is, their path is of the
form ≥∗=+ (a sequence of ≥ followed by a non-empty sequence of =). Abstraction
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90 Properties of relations under prefixes

(@−) is allowed in such contexts, but not instantiation. We will weight the rigid
part of such contexts using the polynomial variable Y . More precisely, the weight
associated to ≥= (that is, the path of ⊥3) is XY , and the weight associated to
== (that is, the weight of ⊥5) is Y Y , that is Y 2.

• Finally, the path associated to ⊥4 is =≥. The context of ⊥4 is of the form Cr(Cf ),
and neither abstraction nor instantiation is possible in such a context. We will
weight the non-flexible and non-rigid part of such contexts using the polynomial
variable Z. More precisely, the weight associated to =≥ (that is, the path of ⊥4)
is Y Z.

The total weight of σ is obtained by adding all the monomials computed for each
occurrence of ⊥. Thus, we get the polynomial X +X 2 +XY + Y 2 + Y Z.

We can also label each binder of the graph above with its corresponding weight.

→

⊥1 →

→ →

⊥2 ⊥3 ⊥4 ⊥5

X

X

Y
X

Y

Z

Y

In summary, we use polynomial variables to weigh the contexts in which ⊥ occurs.
The polynomial variable X is used for flexible contexts whose path is of the form ≥i, the
polynomial variable Y is used for rigid contexts whose path is of the form ≥i=j+1 and
the polynomial variable Z is used for contexts whose path if of the form ≥i =j+1 ≥�k.
This is summarized in Figure 2.6. We wish to define weight incrementally. Hence, we
assume given a “current” path that we incrementally extend. Assume the current path
is ≥i. It weighs X i, and its associated variable is X. If we add ≥ to this path, we
see that the weight is multiplied by X, which gives X i+1. If we add =, the weight
is multiplied by Y , which gives X iY . This is why we define the auxiliary operator ?
below, such that X ? ≥ is X and X ? = is Y . To continue, assume the current path
is ≥i=j+1. It weighs X iY j+1, and its associated variable is Y . If we add ≥ to this
path, the weight is multiplied by Z, which gives X iY j+1Z. If we add =, the weight
is multiplied by Y . Hence, we define Y ? ≥ as Z and Y ? = as Y . Similarly, if the
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2.7 Equivalence vs instantiation 91

Figure 2.6: Paths and weights

Path Associated polynomial variable

i times︷ ︸︸ ︷
≥ . . .≥︸ ︷︷ ︸

Xi

X

i times︷ ︸︸ ︷
≥ . . .≥︸ ︷︷ ︸

Xi

j + 1 times︷ ︸︸ ︷
= . . .=︸ ︷︷ ︸

Y j+1

Y

i times︷ ︸︸ ︷
≥ . . .≥︸ ︷︷ ︸

Xi

j + 1 times︷ ︸︸ ︷
= . . .=︸ ︷︷ ︸

Y j+1

k times︷ ︸︸ ︷
≥ �1 . . . �k︸ ︷︷ ︸

Zk+1

Z

current path is ≥i =j+1 ≥�k, the associated variable is Z. Adding X or Y to such a
path multiplies the weight by Z. Hence, Z ? ≥ and Z ? = are both equal to Z. This
should explain the following definition:

Definition 2.7.3 We define the auxiliary binary operator ? on the set {X,Y,Z} ×
{≥,=} as follows:

X ?≥ is X X ?= is Y Y ?≥ is Z Y ?= is Y Z ? � is Z

As seen above, the weight associated to each occurrence of ⊥ depends on the its
path, that is, on its context. The polynomial variables X, Y , and Z represent three
kinds of paths. This is why we define three functions wA for A in {X,Y,Z}, where
A represents intuitively the current path. Each wA maps types to polynomials in
Z[X][Y ][Z]. Here is the structural definition of wA:

wA(⊥)
M

= 1 wA(τ)
M

= 0

wA(∀ (α � σ) σ′)
M

=





wA(σ′) if α /∈ ftv(σ′)

wA(σ) if nf(σ′) = α

wA?�(σ) × (A ? �) +wA(σ′) otherwise

By default, the notation w(σ) means wX(σ). Note that wA(σ) > 0 for any A and σ,
that is, wA(σ) is in IN [X][Y ][Z].
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92 Properties of relations under prefixes

Examples One can check that σ, given above, does weigh X+X 2 +XY +Y 2 +Y Z.
As another example, the weight of ∀ (β=∀ (α≥⊥) α→ α) β → β is Z 2 and the weight
of the type of the identity ∀ (α ≥ ⊥) α → α is X. Note that ∀ (α ≥ ⊥) α → α and
∀ (α≥⊥) (α→ α) → (α→ α) have the same weight, whereas their structure (skeleton)
are different.

We have characterized monotypes by their normal form, or by their projection (as
in Property 2.1.5.i (page 67)). Another way is to use weights:

Lemma 2.7.4 We have wA(σ) = 0 iff σ ∈ T .

Proof: By Property 2.1.5.i (page 67), we only have to show that wA(σ) = 0 if and
only if there is no u such that σ/u = ⊥. The proof by structural induction on σ is
straightforward.

Understanding weight

Let’s have a look at the rules defining abstraction @− and instantiation v. We can
consider these rules as rewriting rules taking a type and returning an instantiated type.
Rules such as R-Context-R, R-Context-Flexible, . . . define the contexts in which
the rewriting can be applied. Some rules are not symmetric, and possibly not reversible,
namely the rules A-Hyp, I-Hyp, I-Rigid and I-Bot. Each time I-Bot is used (with
restrictions of Lemma 2.3.1), the domain of the projection of its argument grows: if
(Q) σ v σ′ holds by I-Bot and context rules, then the domain of σ is included in the
domain σ′. For example, consider ⊥ v α→ α: the domain grows from {ε} to {ε, 1, 2}.
However, rules A-Hyp, I-Hyp and I-Rigid keep the same projection (relative to a given
prefix). This is immediate for I-Rigid since projections ignore the kind of bounds. As
for A-Hyp (or, similarly, I-Hyp), consider this typical example:

(α= σ) ∀ (β = σ) β → α v ∀ (β = α) β → α

It can be derived by R-Context-Rigid and A-Hyp. The skeleton associated to
both sides (and under the prefix (α = σ)) is proj(σ) → proj(σ). Hence, in such an
example, the projection is kept unchanged. Binders, however, have been modified,
and weights are modified too. Indeed, the weight of ∀ (β = σ) β → α is Y × wY (σ),
while the weight of ∀ (β = α) β → α is 0. We see that weights and projections are
complementary: although projections are stable under A-Hyp, I-Hyp and I-Rigid,
these rules decrease weights. However, we do not have (Q) σ1 ≡ σ2 if and only if
w(σ1) = w(σ2) and ∀ (Q) σ1/ = ∀ (Q) σ2/. This result is true only if σ2 is known to be
an instance of σ1 under Q, as stated in Property 2.7.6.ii. As a counterexample, take

σ1
M

= ∀ (α≥⊥) ∀ (β ≥ σid) (α→ α) → β and σ2
M

= ∀ (α≥⊥) ∀ (β ≥ σid) β → (α→ α),
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2.7 Equivalence vs instantiation 93

to be taken under an empty prefix. We do have σ1/ = σ2/, more precisely both σ1 and
σ2 have the skeleton (⊥ → ⊥) → (⊥ → ⊥). Besides, w(σ1) and w(σ2) are both equal
to X + X2. However, σ1 and σ2 are not equivalent since they do not have the same
normal form up to rearrangement.

Like projections, weights are stable under equivalence:

Lemma 2.7.5 If (Q) σ1 ≡ σ2 holds, then wA(σ1) = wA(σ2).

Proof: By induction on the derivation of (Q) σ1 ≡ σ2. Case Eq-Refl is obvious. Cases
Eq-Comm, Eq-Var, and Eq-Free are immediate by definition of wA. In the case
Eq-Mono, both sides weigh 0. Cases R-Trans and R-Context-L are by induction
hypothesis. As for R-Context-R, we have σ1 = ∀ (α � σ) σ′

1, σ2 = ∀ (α � σ) σ′
2, and

the premise is (Q, ∀ (α � σ)) σ′
1 ≡ σ′

2 (1) We have to show that wA(∀ (α � σ) σ′
1) =

wA(∀ (α � σ) σ′
2). By induction hypothesis and (1), we have wA′(σ′

1) = wA′(σ′
2) (2), for

any A′ in {X,Y, Z}. We proceed by case analysis:

Subcase σ ∈ T : Then by Lemma 2.7.4 we have wA(σ) = 0, thus we have wA(∀ (α�σ)
σ′

1) = wA(σ′
1) and wA(∀ (α � σ) σ′

2) = wA(σ′
2), and the result follows from (2). We can

now consider σ not in T , that is α /∈ dom(Q̂, α � σ). Writing θ for Q̂, α � σ, we have
α /∈ dom(θ) (3).

Subcase α /∈ ftv(σ′
1): Then by Property 1.5.11.ix (page 54), (1), and (3), we have

α /∈ ftv(σ′
2). Hence, we have wA(∀ (α �σ) σ′

1) = wA(σ′
1), wA(∀ (α �σ) σ′

2) = wA(σ′
2), and

we conclude by (2).

Subcase α /∈ ftv(σ′
2): similar. We consider now that α ∈ ftv(σ′

1) and α ∈ ftv(σ′
2).

Subcase nf(σ′
1) = α: Then θ(α) = θ(nf(σ′

2)) holds from Lemma 1.5.9 and (1).
Hence, we get α = θ(nf(σ′

2)) (4) from (3). By well-formedness of (Q,α � σ), we have

α /∈ ftv(Q̂, α � σ), thus we have α /∈ codom(θ). Hence (4) gives nf(σ′
2) = α. Thus

wA(∀ (α � σ) σ′
1) = wA(σ) = wA(∀ (α � σ) σ′

2), which is the expected result.

Subcase nf(σ′
2) = α: similar.

Otherwise we have nf(σ′
1) 6= α, nf(σ′

2) 6= α, α ∈ ftv(σ′
1), and α ∈ ftv(σ′

2), hence by
definition we get wA(∀ (α � σ) σ′

1) = wA?�(σ)× (A ? �) +wA(σ′
1) and wA(∀ (α � σ) σ′

2) =
wA?�(σ) × (A ? �) + wA(σ′

2). They are equal by (2).

How to lose weight

Although weights are stable under equivalence, instantiation decreases weight and in-
creases the domain of projections.
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Properties 2.7.6 If (Q) σ1 @− σ2 holds, then the two following properties are true for
A = Y and A = X. If (Q) σ1 v σ2 holds, then the two following properties are true for
A = X.

i) If ∀ (Q) σ1/ = ∀ (Q) σ2/, then wA(σ1) > wA(σ2).
ii) If ∀ (Q) σ1/ = ∀ (Q) σ2/ and wA(σ1) = wA(σ2), then (Q) σ1 ≡ σ2 holds.

Proof: We prove both properties simultaneously. By Lemma 2.5.5, we have a derivation
of (Q) σ1 ♦ᾱ σ2 (1). By Lemma 2.5.6, the derivation is assumed restricted. We prove
both properties by induction on the derivation of (1).

◦ Case A-Equiv’: We have (Q) σ1 ≡ σ2. By Lemma 2.7.5, we have wA(σ1) = wA(σ2).
Hence, Properties i and ii hold.

◦ Case R-Trans The premises are (Q) σ1 ♦ᾱ σ′
1 (2) and (Q) σ′

1 ♦ᾱ σ2 (3). By
induction hypothesis on (2), if ∀ (Q) σ1/ = ∀ (Q) σ′

1/, then wA(σ1) > wA(σ′
1) (4). By

induction hypothesis on (3), if ∀ (Q) σ′
1/ = ∀ (Q) σ2/, then wA(σ′

1) > wA(σ2) (5).
By Property 2.1.3.ii (page 65), (2), and (3), we have ∀ (Q) σ1 6/ ∀ (Q) σ′

1 (6), and
∀ (Q) σ′

1 6/ ∀ (Q) σ2 (7). We prove Property i: Assume ∀ (Q) σ1/ = ∀ (Q) σ2/ holds.
Then we have ∀ (Q) σ2 6/ ∀ (Q) σ′

1 from (6) thus ∀ (Q) σ′
1/ = ∀ (Q) σ2/ = ∀ (Q) σ1/

holds by antisymmetry (Property 2.1.2.i (page 65)) and (7). As a consequence, we have
wA(σ1) > wA(σ′

1) (8) from (4) and wA(σ′
1) > wA(σ2) (9) from (5). Thus, we have

wA(σ1) > wA(σ2) by transitivity of > on polynomials. This proves Property i.

By induction hypothesis on (2), if ∀ (Q) σ1/ = ∀ (Q) σ′
1/, and wA(σ1) = wA(σ′

1), then
there exists a derivation of (Q) σ1 ≡ σ′

1 (10). By induction hypothesis on (3), if
∀ (Q) σ′

1/ = ∀ (Q) σ2/, and wA(σ′
1) = wA(σ2), then there exists a derivation of (Q)

σ′
1 ≡ σ2 (11). We prove Property ii: As seen above, if ∀ (Q) σ1/ = ∀ (Q) σ2/, then

∀ (Q) σ1/ = ∀ (Q) σ2/ = ∀ (Q) σ′
1/. Additionally, if wA(σ1) = wA(σ2), then (8) and (9)

imply wA(σ1) = wA(σ′
1) = wA(σ2), by antisymmetry of > on polynomials. Consequently,

we have a derivation of (Q) σ1 ≡ σ′
1 by (10) and a derivation of (Q) σ′

1 ≡ σ2 by (11).
Hence, we get a derivation of (Q) σ1 ≡ σ2 by R-Trans. This proves Property ii.

◦ Case A-Hyp’ and I-Hyp’: We have either (Q) σ1 v α1 (that is, σ2 is α1), with
(α1 ≥σ1) ∈ Q, or (Q) σ1 @− α1 with (α1 =σ1) ∈ Q. By Lemma 2.3.1, σ1 is not in T , thus
wA(σ1) 6= 0 by Lemma 2.7.4. Additionally, wA(σ2) = wA(α1) = 0 by definition. Hence,
wA(σ1) > wA(σ2), which proves Properties i and ii.

◦ Case A-Alias’ and I-Alias’: We have σ1 = ∀ (α1�σ) ∀ (α2�σ) σ′ and σ2 = ∀ (α1�σ)
∀ (α2 = α1) σ

′. By restrictions of Lemma 2.5.6, we have α1 ∈ ftv(σ′) and α2 ∈ ftv(σ′).
Besides, σ /∈ T (1). By definition we have wA(σ1) = wA(σ′)+2×B×wB(σ), where B is
A?�, and we have wA(σ2) = wA(σ′)+B×wB(σ). Hence, wA(σ1)−wA(σ2) = B×wB(σ),
which is strictly greater than 0 by Lemma 2.7.4 and (1). This implies wA(σ1) > wA(σ2)
by Property 2.7.2.ii (page 87), thus Properties i and ii hold.

◦ Case A-Up’ and I-Up’: We have σ1 = ∀ (α � ∀ (α′ �′ σ′) σ) σ′′ and σ2 = ∀ (α′ �′ σ′)
∀ (α � σ) σ′′. We have wA(σ1) = wA(σ′′) + B × (wB(σ) + C × wC(σ′)) (1), where B is
A?� and C is B?�′. Similarly, we have wA(σ2) = wA(σ′′)+D×wD(σ′)+B×wB(σ) (2)
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where D is A ? �′. If we are in the case A-Up’, then � and �′ are rigid, thus B is A? =,
that is Y (A is X or Y ), C is Y , and D is Y . If we are in the case I-Up’, then � is >,
A is X , thus B is X , C is X ? �′, and D is X ? �′. In both cases, C = D. Hence, we
have wA(σ2) = wA(σ′′) + C × wC(σ′) + B × wB(σ) (3) from (2). From (1) and (3), we
get wA(σ1) − wA(σ2) = C × wC(σ′) × (B − 1) (4). Since B is X or Y , we have B > 1,
that is, B − 1 > 0 (5). Since σ′ is not in T , we have wC(σ′) > 0 (6) by Lemma 2.7.4.
Hence wA(σ1) − wA(σ2) > 0 by Property 2.7.2.iii (page 87), (5), (6), and (4), that is,
wA(σ1) > wA(σ2). This proves Properties i and ii.

◦ Case R-Context-R We have (Q) σ1 ♦ᾱ σ2, with σ1 = ∀ (α�σ0) σ
′
1, σ2 = ∀ (α�σ0)

σ′
2, and the premise is (Q,α � σ0) σ

′
1 ♦ᾱ∪{α} σ′

2 (1). If ∀ (Q) σ1/ = ∀ (Q) σ2/, then by
notation ∀ (Q,α � σ0) σ

′
1/ = ∀ (Q,α � σ0) σ

′
2/, thus, by induction hypothesis, Property i,

and (1), we have wA(σ′
1) > wA(σ′

2) (2). We proceed by case analysis.

Subcase σ0 ∈ T : Then by definition we have wA(σ1) = wA(σ′
1) and wA(σ2) =

wA(σ′
2), thus (2) proves Property i. Additionally, if we have wA(σ1) = wA(σ2), then we

have wA(σ′
1) = wA(σ′

2), thus (Q,α � σ0) σ
′
1 ≡ σ′

2 holds by induction hypothesis and (1).
We get (Q) σ1 ≡ σ2 by R-Context-R, which proves Property ii. In the following, we
assume σ0 /∈ T (3).

Subcase nf(σ′
1) = α: Then we have (Q,α�σ0) σ

′
1 ≡ σ′

2 by Lemma 2.1.6 and (1). Thus
(Q) σ1 ≡ σ2 holds by R-Context-R, and we get the expected result by Lemma 2.7.5.
In the following, we assume that nf(σ′

1) is not α.

Subcase nf(σ′
2) = α and α ∈ ftv(σ′

1) (4): Then σ′
1 ≡ α by Property 2.1.7.ii (page 68)

and (1), and this is the previous subcase.

Subcase α ∈ ftv(σ′
1) and α /∈ ftv(σ′

2): This is not possible by Lemma 2.1.4 (page 67)
and (3).

Subcase α ∈ ftv(σ′
2) and α /∈ ftv(σ′

1) (5): This is not possible by Lemma 2.5.7
(page 83) and (3) (α is in ᾱ ∪ {α}). In the following, we assume that nf(σ′

2) is not α
(because such a case corresponds necessarily to subcases (4) or (5)).

Subcase α ∈ ftv(σ′
2) and α ∈ ftv(σ′

1): We assumed that nf(σ′
1) 6= α and nf(σ′

2) 6= α,
thus by definition, we have wA(σ1) = wB(σ0)×B+wA(σ′

1), where B is A? �. Similarly,
we have wA(σ2) = wB(σ0)×B+wA(σ′

2). Hence wA(σ1)−wA(σ2) = wA(σ′
1)−wA(σ′

2) (6)
which is greater or equal to 0 by (2). This proves Property i. If wA(σ1) = wA(σ2), then
(6) implies wA(σ′

1) = wA(σ′
2). Hence, by induction hypothesis and (1), there exists a

derivation of (Q,α � σ0) σ
′
1 ≡ σ′

2. We get (Q) σ1 ≡ σ2 by R-Context-R. This proves
Property ii.

◦ Case A-Context-L’ and I-Context-L’: We have (Q) σ1 ♦ σ2, with σ1 = ∀ (α�σ′
1)

σ0 and σ2 = ∀ (α � σ′
2) σ0. The premise is (Q) σ′

1 ♦ᾱ σ′
2 (1). Moreover, if ♦ᾱ is vᾱ,

then � is flexible; if ♦ᾱ is @−ᾱ, then � is rigid. By Lemma 2.5.6, we have nf(σ0) 6= α
and α ∈ ftv(σ0), that is, there exists u such that σ0/u = α (2). We prove Property i.
Assume ∀ (Q) σ1/ = ∀ (Q) σ2/ holds. Then by Property 1.3.3.i (page 40), we get
ΘQ(σ1) = ΘQ(σ2). Hence, we have ΘQ(σ1) ·u/ = ΘQ(σ2) ·u/, that is, ΘQ(σ′

1) = ΘQ(σ′
2)

by (2). By Property 1.3.3.i (page 40), this implies ∀ (Q) σ′
1/ = ∀ (Q) σ′

2/. Let B
be A ? �. By induction hypothesis and (1), we get wB(σ′

1) > wB(σ′
2) (3). We have
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96 Properties of relations under prefixes

wA(σ1) = wA(σ0) + wB(σ′
1) ×B. Similarly, wA(σ2) = wA(σ0) + wB(σ′

2) ×B. Hence we
have wA(σ1)−wA(σ2) = B×(wB(σ′

1)−wB(σ′
2)) (4), thus we get wA(σ1) > wA(σ2) from

(3). This proves Property i. If wA(σ1) = wA(σ2), then (4) implies wB(σ′
1) = wB(σ′

2),
thus (Q) σ′

1 ≡ σ′
2 is derivable by induction hypothesis and (1). Hence (Q) σ1 ≡ σ2 is

derivable by R-Context-L. This proves Property ii.

◦ Case I-Abstract’: By induction hypothesis.

◦ Case I-Bot’: We have σ1 = ⊥. Hence, (∀ (Q) σ1)/ε = ⊥. By Lemma 2.5.6, we have
σ2 /∈ V , and σ2 is not ⊥. Hence, σ2/ε is a type constructor g. By definition, we have
∀ (Q) σ1 </ ∀ (Q) σ2, which proves Properties i and ii.

◦ Case I-Rigid’: In this case, ♦ᾱ is vᾱ, and A is X . We have ∀ (Q) σ1/ = ∀ (Q)
σ2/ and σ1 is of the form ∀ (α ≥ σ) σ′, while σ2 is of the form ∀ (α = σ) σ′. By
Lemma 2.5.6, we have α ∈ ftv(σ′), nf(σ′) 6= α, and σ /∈ T (1). By definition, wX(σ1) is
wX (σ′)+X×wX (σ), while wX (σ2) equals wX(σ′)+Y ×wY (σ). We get w(σ1)−w(σ2) =
XwX(σ) − Y wY (σ). By (1) and Lemma 2.7.4, we get wX (σ) 6= 0. The X-degree of
XwX(σ) is at least 1, but the X-degree of Y wY (σ) is 0. Hence, XwX(σ)−Y wY (σ) > 0,
that is, w(σ1) > w(σ2). This proves Properties i and ii.

Then we can show that the equivalence relation is the symmetric kernel of the
instance relation.

Properties 2.7.7
i) If we have (Q) σ1 v σ2 and (Q) σ2 v σ1, then (Q) σ1 ≡ σ2 holds.
ii) If (Q) σ v ⊥ holds, then nf(σ) is ⊥.

Proof: Property i: By Property 2.1.3.ii (page 65), we get ∀ (Q) σ1/ 6/ ∀ (Q) σ2/ and
∀ (Q) σ2/ 6/ ∀ (Q) σ1/. Hence, by antisymmetry (Property 2.1.2.i (page 65)), we get
∀ (Q) σ1/ = ∀ (Q) σ2/. By Property 2.7.6.i, we get w(σ1) > w(σ2) and w(σ2) > w(σ1).
Hence, w(σ1) = w(σ2), thus, by Property 2.7.6.ii, there exists a derivation of (Q) σ1 ≡ σ2.

Property ii: By I-Bot, we have (Q) ⊥ v σ. By Property i, we get (Q) σ ≡ ⊥. By

Lemma 1.5.9, we get nf(Q̂(σ)) = ⊥. By Property 1.5.6.iii (page 51), this gives Q̂(nf(σ)) =
⊥. Hence, we must have nf(σ) = ⊥.

Weight watchers

As mentioned above, X corresponds intuitively to flexible contexts. Besides, the ab-
straction relation only occurs in rigid contexts. Thus, we expect “X-binders” to be kept
unchanged by abstraction. Conversely, if an instantiation does not modify “X-binders”,
we expect it to be a true abstraction. This last point is stated exactly in the following
lemma:
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Lemma 2.7.8 Assume Q̂(nf(σ2)) /∈ ϑ. Then we have (Q) σ1 v σ2, ∀ (Q) σ1/ = ∀ (Q)
σ2/, and X /∈ w(σ1) − w(σ2) if and only if (Q) σ1 @− σ2.

It is shown by induction on the derivation of (Q) σ1 v σ2 for the first implication and
by induction on the derivation of (Q) σ1 @− σ2 for the second.
See details in the Appendix (page 253).

Note that “X-binders are kept unchanged” is expressed formally by X /∈ w(σ1) −
w(σ2).

2.7.3 Abstraction is well-founded

In this section we show that abstraction is well-founded, as stated formally by Corol-
lary 2.7.10. First, we show that the weight associated to a type σ is bounded by a
polynomial that depends only on the size of σ.

Preliminary definitions We associate to any type σ a one-variable polynomial P (σ)
defined as w(σ)(X,X,X). The depth of σ, written d(σ), is by definition the degree of
P (σ). The size of σ is written #σ and is by definition the size of the finite set dom(σ).
The cardinal of the set ftv(σ) is written nσ.

Properties 2.7.9 We have the following properties:
i) For any polytype σ, each coefficient in P (σ) is bounded by #σ − nσ.
ii) For any polytype σ, we have d(σ) 6 #σ.

The proof is by structural induction on σ. See details in the Appendix (page 256).

A weak ascending sequence of polytypes (σi)i∈IN is a sequence such that (Q) σi @−
σi+1 holds for all i > 0. A weak descending sequence is such that (Q) σi+1 @− σi (or,
equivalently, (Q) σi A− σi+1).

Corollary 2.7.10 Any weak ascending or weak descending sequence (σi)i∈IN is station-
ary, that is, there exists n such that (Q) σi ≡ σn holds for any i > n

Proof: By Property 2.1.3.i (page 65), we have σi/ = σi+1/ for any i. Hence, for any
i, we have σi/ = σ0/ and #σi = #σ0. Let wi be w(σi). If the sequence is ascending,
we have (Q) σi @− σi+1, thus wi > wi+1 holds by Property 2.7.6.i. If the sequence is
descending, we have wi 6 wi+1 for all i. Let Pi be the polynomial wi(X,X,X).

• We say that P is bounded by n, when each coefficient in P is bounded by n, and
the degree of P is bounded by n too. By Property 2.7.9.i, each coefficient in Pi

is bounded by #σi, that is, by #σ0. The degree of Pi is also bounded by #σ0 by
Property 2.7.9.ii. Hence, Pi is bounded by a constant #σ0. We note that Pi is in
IN [X ] (the coefficients of P cannot be negative).
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98 Properties of relations under prefixes

• The subset S of IN [X ] of polynomials P bounded by n is finite, for any n. Hence, the
increasing (or decreasing) sequence (Pi)i∈IN , which is included in S, is stationary.
Consequently, there exists a polynomial P and k such that for any i > k, we have
Pi = P .

• The set of polynomials w in IN [X ][Y ][Z] such that w(X,X,X) is P is finite too
(indeed, the equation nx +ny +nz = n, where n is given, admits a finite number of
solutions in IN 3.) Hence, the increasing (or decreasing) sequence (wi) is stationary.
Consequently, there exists n such that, by Property 2.7.6.i, (Q) σi ≡ σn holds for
i > n. This is the expected result.

In summary, any weak ascending sequence is finite, which also means that the
abstraction relation can be considered as a well-founded order (up to equivalence) on
the set of types. Such a result will be useful to show confluence of the abstraction
relation in Lemma 2.8.2.

2.8 Confluence

We wish to show two important confluence results. The first one is the confluence of
the abstraction relation (see Lemma 2.8.2). The second one is the commutation of
the abstraction relation and the instance relation, as stated in the Diamond Lemma
(Lemma 2.8.4). To begin with, we show some auxiliary confluence results on the atomic
relations defined in Section 2.6. The properties below are used only in Lemma 2.8.2
and (indirectly) in Lemma 2.8.4. These lemmas state the confluence of @− on the one
hand, and of @− and v on the other hand.

Properties 2.8.1

i) Assume σ1 is in normal form and Q is unconstrained. If we have (Q) σ1 @̇−
ᾱ
σ2

and (Q) σ1 @̇−
ᾱ
σ3, then there exists σ4 such that (Q) σ2 @− σ4 and (Q) σ3 @− σ4.

ii) The relation (≡@̇−
∅
) is weakly confluent under an unconstrained prefix.

iii) Assume σ1 is in normal form and Q is unconstrained. If we have (Q) σ1 @̇ σ2

and (Q) σ1 @̇− σ3, then there exist σ4 such that (Q) σ2 @̇− σ4 and (Q) σ3 @̇ σ4

holds.
iv) Assume Cf (σ1) is in normal form, level(Cf ) > 1, and Q is unconstrained. If we

have (QCf ) σ1 @̇−
dom(Cf )

σ2, and (Q) Cf (σ1) @̇−
ᾱ
σ3, then there exists σ4 such that

(Q) Cf (σ2) @̇−
ᾱ
σ4 and (Q) σ3 v̇ σ4 hold.

These results are shown by considering the critical pairs.
See the full proof in the Appendix (page 257).
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The following diagram illustrates the confluence of the abstraction relation (under
an unconstrained prefix).

σ1 σ2

σ3 σ4

@−

@−

@−

@−

This result is stated formally by the following lemma.

Lemma 2.8.2 (Confluence of the abstraction relation) If σ1 @− σ2 and σ1 @− σ3

hold, then there exists σ4 such that σ2 @− σ4 and σ3 @− σ4 hold.

Proof: By Property 2.6.2.i (page 85), the relations (≡@̇−
∅
)
∗

and @− are equivalent. Hence,

by hypothesis, we can derive both σ1 (≡@̇−
∅
)
∗
σ2 and σ1 (≡@̇−

∅
)
∗
σ3. By Property 2.8.1.ii,

(≡@̇−
∅
) is weakly confluent. Besides, by Corollary 2.7.10, (≡@̇−

∅
) is well-founded (up to

equivalence). Note that (≡@̇−
∅
) is defined up to equivalence. Hence, (≡@̇−

∅
)
∗

is confluent,

that is, there exists σ4 such that σ2 (≡@̇−
∅
)
∗
σ4 and σ3 (≡@̇−

∅
)
∗
σ4. We can equivalently

write σ2 @− σ4 and σ3 @− σ4. This is the expected result.

The instance relation v is not confluent. This is not surprising since the ML instance
relation, which is a subcase, is not: two incompatible instantiations of the same type
variable cannot be merged. However, abstraction and instance commute, as described
by the following diagram, to be taken under an unconstrained prefix.

σ1 σ2

σ3 σ4

@−

v

@−

v

Lemma 2.8.3 Assume Q is unconstrained. If we have (Q) σ1 (≡v̇) σ2 and (Q)

σ1 (≡@̇−
∅
) σ3, then there exists σ4 such that (Q) σ2 (≡@̇−

∅
) σ4 and (Q) σ3 (≡v̇) σ4

hold.

Proof: If (Q) σ1 ≡ σ2 or (Q) σ1 ≡ σ3 hold, we get the expected result by taking
(respectively) σ4 = σ3 or σ4 = σ2. Otherwise, we have by definition

(Q) σ1 ≡ σa
1 (1) (Q) σa

1 v̇ σ′
2 (Q) σ′

2 ≡ σ2 (Q) σ1 ≡ σb
1 (Q) σb

1 @̇−
ᾱ
σ′

3

(Q) σ′
3 ≡ σ3
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Let σ′
1 be nf(σ1). By Property 1.5.6.iv (page 51), σ′

1 is in normal form and by Prop-
erty 1.5.6.i (page 51), (Q) σ′

1 ≡ σ1 holds. Besides, by Property 1.5.11.i (page 54) and (1),
σ′

1 ≈ nf(σa
1 ) holds. By Property 2.6.3.i (page 86), there exists σ′′

2 such that (Q) σ′′
2 ≡ σ′

2

and (Q) σ′
1 v̇ σ′′

2 . Similarly, there exists σ′′
3 such that (Q) σ′′

3 ≡ σ′
3 and (Q) σ′

1 @̇−
ᾱ
σ′′

3 .
Hence, we have

(Q) σ1 ≡ σ′
1 (Q) σ′

1 v̇ σ′′
2 (2) (Q) σ′

1 @̇−
ᾱ
σ′′

3 (Q) σ′′
2 ≡ σ2 (Q) σ′′

3 ≡ σ3

We have three rules to derive (2):

◦ Case C-Strict: Then (Q) σ′
1 @̇ σ′′

2 holds. By Property 2.8.1.iii, there exists σ4 such

that (Q) σ′′
3 @̇ σ4 and (Q) σ′′

2 @̇−
ᾱ
σ4. Hence, (Q) σ3 (≡v̇) σ4 and (Q) σ2 (≡@̇−

∅
) σ4 hold,

which is the expected result.

◦ Case C-Abstract-F: Then by Property 2.8.1.iv, there exists σ4 such that (Q)

σ′′
2 @̇−

ᾱ
σ4 and (Q) σ′′

3 v̇ σ4. Hence, we get (Q) σ2 (≡@̇−
∅
) σ4 and (Q) σ3 (≡v̇) σ4, which

is the expected result.

◦ Case C-Abstract-R: then, (Q) σ1 @− σ2 and (Q) σ1 @− σ3, thus we conclude directly
by Lemma 2.8.2.

Lemma 2.8.4 (Diamond Lemma) If Q is unconstrained, (Q) σ1 v σ2 and (Q) σ1 @−
σ3 hold, then there exist σ4 such that (Q) σ2 @− σ4 and (Q) σ3 v σ4 hold.

Proof: By Property 2.6.2.i (page 85), the relation @− is equivalent to (≡@̇−
∅
)
∗

and the

relation v is equivalent to (≡v̇)
∗
. Lemma 2.8.3 states the strong confluence of (≡@̇−

∅
)

and (≡v̇), hence, there exist σ4 such that (Q) σ2 (≡@̇−
∅
)
∗
σ4 and (Q) σ3 (≡v̇) σ4. By

Properties 2.6.2.i (page 85) and 2.6.2.ii (page 85), this amounts to writing (Q) σ2 @− σ4

and (Q) σ3 v σ4.

The diamond lemma is stated under an unconstrained prefix. This restriction is
mandatory, as shown by the following counter-example. Take

σ1
M

= ∀ (α) α→ α Q
M

= (β = σ1) σ2
M

= int → int σ3
M

= α

Graphically, this gives

∀ (α) α→ α int → int

α ?

@−

v

@−

v

It is impossible to find any suitable σ4 which closes the diagram. Indeed, the only
instance of α are types equivalent to α, which cannot be abstractions of int → int.
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Chapter 3

Relations between prefixes

Prefixes play a crucial role in MLF. Whereas the solutions to a unification problem are
substitutions in ML, that is, mappings from type variables to monotypes, in MLF the
solutions to a unification problem are prefixes, that is, mappings from type variables
to types (possibly polytypes). Hence, prefixes can be seen as a generalization of the
notion of substitutions to polytypes.

In Section 3.1, we show how a prefix can express a monotype substitution, just as
in ML. A substitution θ1 is said more general than a substitution θ2 when there exists
θ such that θ2 = θ ◦ θ1. Conversely, we can say that θ2 is an instance of θ1. We expect
a similar instance relation on prefixes in MLF. More precisely, rules R-Context-

Rigid and R-Context-Flexible show that two types ∀ (Q) σ and ∀ (Q′) σ with the
same suffix can be in an instance relation, for any suffix σ. This suggests a notion of
inequality between prefixes alone. However, because prefixes are “open” this relation
must be defined relative to a set of variables that lists (a superset of) the free type
variables of σ, called an interface and written with letter I. Prefix relations are defined
in Section 3.2. Then we state a few results about prefixes and prefix instance. The
main result of this chapter is Lemma 3.6.4, which implies that if (Q) σ1 v σ2 (1) holds
and Q′ is an instance of Q, then (Q′) σ1 v σ2 (2) also holds. Such a result is used for
showing the soundness of the unification algorithm. Indeed, it shows that if an instance
relation (1) holds under a prefix Q, then it also holds (2) under the instantiation of its
prefix.

3.1 Substitutions

A monotype prefix is a prefix whose bounds are all in T . For example (α1 = τ1, . . . αn =
τn) is a monotype prefix, which embeds the substitution [τ1/α1] ◦ . . . ◦ [τn/αn] within
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type expressions1. Conversely, given an idempotent substitution θ, we write θ for the
corresponding monotype prefix. More precisely, θ is the prefix (α=θ(α))α∈dom(θ). Note
that since θ is idempotent, θ is automatically a well-formed prefix. As expected, we have
(Q) ∀ (θ) σ ≡ θ(σ) and (Qθ) σ ≡ θ(σ) (the former by Rule Eq-Mono? and the latter
by iteration of Rule Eq-Mono). The following rule is derivable using R-Context-R

and Eq-Mono?:
Pr-Subst?

(Qθ) σ1 ♦ σ2

(Q) θ(σ1) ♦ θ(σ2)

Note also that the substitution extracted from θ, that is θ̂, is equal to θ.

In Section 1.3.4 we defined the application of a substitution θ to a prefix Q. In
the particular case where Q is itself a substitution θ ′, we may wonder what is θ(Q).
The answer is expressed in Property 3.1.1.i below. The case where θ is a renaming
φ corresponds to Property 3.1.1.ii. Finally, Property 3.1.1.iii gives the substitution
extracted from θ(Q).

Properties 3.1.1 If we have dom(θ′) # dom(θ) ∪ codom(θ), then the following prop-
erties hold:

i) The prefix θ(θ′) is a monotype prefix corresponding to the substitution θ ◦ θ ′ re-
stricted to dom(θ′).

ii) The prefix φ(θ′) is a monotype prefix corresponding to the substitution φ◦ θ ′ ◦φ¬.

iii) For any prefix Q and renaming φ on dom(Q), we have φ̂(Q) = φ ◦ Q̂ ◦ φ¬.

Proof: Property i: By construction, θ(θ′) is a monotype prefix. The domain of θ(θ′) is
by definition dom(θ′), that is, dom(θ′). Let α be in dom(θ′). By definition, θ(θ′)(α) is
θ(θ′(α)), that is, θ ◦ θ′(α). Hence, θ(θ′) and θ ◦ θ′ are equal on dom(θ′).

Property ii: By definition, φ(θ′) is a monotype prefix whose associated substitution θ′′

is defined as follows: α ∈ dom(θ′′) if and only if there exists β ∈ dom(θ′) such that
φ(β) = α; then θ′′(α) is φ(θ′(β)) (1). Given any α, we have φ ◦ θ′ ◦ φ¬(α) = φ ◦ θ′(β),
where α is φ(β). If α ∈ dom(θ′′), then φ ◦ θ′(β) = θ′′(α) by (1). Otherwise, θ′′(α) is α
and β /∈ dom(θ′). Hence, θ′(β) = β, thus φ ◦ θ′(β) = φ(β) = α. In both cases, we have
φ ◦ θ′ ◦ φ¬(α) = θ′′(α). This holds for all α, therefore θ′′ is φ ◦ θ′ ◦ φ¬.

Property iii: By definition, φ̂(Q) is φ(Q̂). We get the expected result by Property ii.

1Actually, prefixes are slightly more precise than substitutions because they are kept as a sequence
of elementary substitutions rather than just their composition.
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3.2 Prefix instance

As explained above, we define an instance relation on prefixes, relative to a set of type
variables I, called an interface. For example, we expect the prefixes (β≥⊥, α=β → β)
and (γ ≥ ⊥, α = γ → γ) to be equivalent under the interface {α}, but not under the
interface {α, β} or {α, γ}. To ease the presentation, we introduce a new notation: We
write ΣI for the set of types whose unbound variables are in I.

Definition 3.2.1 (Prefix instance) Let Q and Q′ be closed well-formed prefixes,
and I be a set of variables such that I ⊆ dom(Q) ∩ dom(Q′) holds. A prefix Q′ is
an instance of a prefix Q under the interface I, and we write Q vI Q′, if and only if
∀ (Q) σ v ∀ (Q′) σ holds for all types σ in ΣI . We omit I in the notation when it is
equal to dom(Q). We define Q ≡I Q′ and Q @−I Q′ similarly.

Let Q be a well-formed closed prefix. Then ∅ ≡ Q holds, which means by notation
∅ ≡∅ Q. Conversely, Q ≡I ∅ holds if and only if I is empty. In particular, Q ≡ ∅ does
not hold if Q is not empty. Although the relation ≡I is symmetric, we see that the
relation ≡ (where the interface is left implicit) is not.

Example 3.2.8 For any σ, we can derive (∅) ∀ (α≥⊥) σ v ∀ (β) ∀ (α≥ β → β) σ by
Eq-Free, I-Nil, and context rules. More generally, if we have Q and Q′ unconstrained,
dom(θ) ⊆ dom(Q), and codom(θ) ⊆ dom(Q′), then we have Q v Q′θ. This covers the
instantiation of substitutions in ML, where free variables have the implicit bound ⊥,
just as in Q (which is unconstrained), and where free variables can be substituted by
any monotype.

Properties 3.2.2
i) We have Q1 ≡I Q2 iff Q1 vI Q2 and Q2 vI Q1.
ii) If Q1 ≈Q2, then Q1 ≡ Q2.

It is a direct consequence of Property 2.7.7.i (page 96). See Appendix (page 265).

Assume we have (Q) σ v α and σ is not a type variable. Then σ is instantiated to
a type variable bound in the prefix. The only way to do so is by either Rule A-Hyp

or Rule I-Hyp. This means that σ can be instantiated into the bound of α. This is
expressed formally by the following properties.

Properties 3.2.3
i) If we have (Q) σ @− α and σ /∈ V, then (Q) σ @− Q(α) holds.
ii) If we have (Q) σ v α and σ /∈ V, then (Q) σ v Q(α) holds.
iii) For all Q and α, (Q) Q(α) v α holds.

See proof in the Appendix (page 266).
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3.3 Domains of prefixes

As seen in Section 1.2, if Q is the prefix (α1 �1 σ1, . . . αn �nσn), then its domain dom(Q)
is the set {α1, . . . αn}. We need to capture the notion of useful domain of a prefix Q.

Definition 3.3.1 If I is a set of type variables, the domain of Q useful for I, written
dom(Q/I), is defined as follows:

α ∈ dom(Q/I) if and only if Q = (Q1, α � σ,Q2) and α ∈ ftv(∀ (Q2) ∇I)

We also write dom(Q/σ) instead of dom(Q/ ftv(σ)) and similarly dom(Q/σ1, σ2) instead
of dom(Q/ ftv(σ1) ∪ ftv(σ2)).

Intuitively, dom(Q/σ) is the domain of Q which is useful for σ. For example, if Q ′

corresponds to Q, where all bindings not in dom(Q/σ) have been removed, then we
have ∀ (Q) σ ≡ ∀ (Q′) σ by Eq-Free.

Properties 3.3.2
i) We have dom(Q/I ∪ J) = dom(Q/I) ∪ dom(Q/J).
ii) If Q≈Q′ holds, and ᾱ ⊆ dom(Q), then dom(Q/ᾱ) = dom(Q′/ᾱ).

See proof in the Appendix (page 268).

The notion of useful domain of a prefix can be viewed as an extension of the notion
of free variables. Indeed, in ML, all free variables have the bound ⊥, which means that
the implicit prefix Q is unconstrained. Then the domain of Q useful for a polytype σ,
i.e. dom(Q/σ), is exactly the set of free variables of σ. In MLF, however, a variable β
can be in dom(Q/σ) directly or indirectly. For a direct example, take ∀ (α≥⊥) α→ β
for σ, and (β ≥ ⊥) for Q. For an indirect example, take ∀ (α ≥ ⊥) α → γ for σ, and
(β ≥ ⊥, γ ≥ ∀ (δ) δ → β) for Q. In the indirect example, β is not free in σ, but γ is
free in σ and β is free in the bound of γ. We see that β is “indirectly” free in σ via
the prefix Q. This is captured by the notion of useful domain of the prefix, which is
therefore an extension of the notion of free variables.

3.4 Rules for prefix equivalence, abstraction, and instance

Prefix instance was defined in Definition 3.2.1. Below, we give a syntactic charac-
terization. Inference rules defining prefix equivalence, prefix abstraction, and prefix
instance are given in figures 3.1, 3.2, and 3.3. As in Section 1.7, we use the symbol

♦` as a meta-variable standing for ≡`, @−`, or v`. The notation Q♦I
` Q

′ implicitly
requires Q and Q′ to be closed well-formed prefixes such that I ⊆ dom(Q) ∩ dom(Q′).
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Figure 3.1: Prefix equivalence

PE-Refl

Q ≡I
` Q

PE-Trans

Q1 ≡I
` Q2 Q2 ≡I

` Q3

Q1 ≡I
` Q3

PE-Free

α /∈ dom(Q) α /∈ I

Q ≡I
` (Q,α � σ)

PE-Mono

(Q,α ≥ τ,Q0) ≡
I
` (Q,α= τ,Q0)

PE-Context-L

(Q) σ1 ≡ σ2

(Q,α � σ1, Q0) ≡
I
` (Q,α � σ2, Q0)

PE-Swap

σ /∈ T

(Q,α1 � σ, α2 = α1, Q0) ≡
I
` (Q,α2 � σ, α1 = α2, Q0)

PE-Comm

α1 /∈ ftv(σ2) α2 /∈ ftv(σ1)

(Q,α1 �1 σ1, α2 �2 σ2, Q0) ≡
I
` (Q,α2 �2 σ2, α1 �1 σ1, Q0)

Figure 3.2: Prefix Abstraction

PA-Equiv

Q1 ≡I
` Q2

Q1 @−I
` Q2

PA-Trans

Q1 @−I
` Q2

Q2 @−I
` Q3

Q1 @−I
` Q3

PA-Context-L

(Q) σ1 @− σ2

(Q,α= σ1, Q0) @−I
` (Q,α= σ2, Q0)

Unsurprisingly, these rules are similar to the rules defining equivalence, abstraction,
and instantiation of types, except for Rule PE-Swap, which corresponds to (implicit)
α-conversion between types.

We wish to show the equivalence between the relation vI
` and the relation vI . To

begin with, we check that vI
` is included in vI .

Lemma 3.4.1 If Q♦I
` Q

′ holds, then Q ♦I Q′.

Proof: We show by induction on the derivation of Q♦I
` Q

′ that for any σ such that
ftv(σ) ⊆ I , we have ∀ (Q) σ ♦ ∀ (Q′) σ. All cases are easy.
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Figure 3.3: Prefix instance

PI-Abstract

Q1 @−I
` Q2

Q1 vI
` Q2

PI-Trans

Q1 vI
` Q2

Q2 vI
` Q3

Q1 vI
` Q3

PI-Rigid

(Q,α ≥ σ1, Q0) v
I
` (Q,α= σ1, Q0)

PI-Context-L

(Q) σ1 v σ2

(Q,α≥ σ1, Q0) v
I
` (Q,α≥ σ2, Q0)

The following rule is derivable by PE-Context-L and Eq-Mono:

PE-Mono?

(Q) σ ≡ τ

(Q,α= σ,Q′) ≡` (Q,α= σ,Q′[τ/α])

We now prove some useful properties about prefix relations. For instance, Property i
below shows that the interface of a relation can always be shrinked. Notice also that
Q1 ♦

∅
` Q2 always holds, for any prefixes Q1 and Q2. Property ii simply states that

derivations are stable under renaming. Property iii shows that it is always possible to
append a non-interfering prefix Q to both sides of a derivation of Q1 ♦

I
` Q2. Property iv

shows that the equivalence between a prefix a renaming of this prefix can be derived.
Property v states if a sequence of binders is duplicated in a prefix (up to renaming),
both sequences can be merged by instantiation.

Properties 3.4.2
i) If Q1 ♦

I
` Q2 and J ⊆ I hold, then we have Q1 ♦

J
` Q2.

ii) If φ is a renaming of dom(Q) ∪ dom(Q′), and if there is a derivation of Q♦I
` Q

′

of size n, then we have a derivation of φ(Q)♦
φ(I)
` φ(Q′) of size n.

iii) If Q1 ♦
I
` Q2, Q # Q1, Q # Q2, and utv(Q) ⊆ I, then Q1Q♦

I∪dom(Q)
` Q2Q.

iv) If φ is a renaming of dom(Q) and Q a closed well-formed prefix, then we have
Q ≡` φ(Q)φ.

v) If φ is a renaming of domain dom(Q) such that Q1Qφ(Q)Q2 is a well-formed
closed prefix, then we can derive Q1Qφ(Q)Q2 v` Q1Qφ

¬Q2.

See proof in the Appendix (page 268).

As explained in the introduction of this chapter, the main result is Lemma 3.6.4
(page 114). A less general case is stated by the next lemma. Namely, if two types σ
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3.4 Rules for prefix equivalence, abstraction, and instance 107

and σ′ are equivalent under a prefix Q, and if Q′ is an instance of Q, then we expect
σ and σ′ to be equivalent under Q′ too. This statement is refined by providing the
interface I of the instance relation, as well as the set of free variables of σ and σ ′. We
recall that ΣI is the set of types whose unbound variables are in I.

Lemma 3.4.3 If we have Q1 ♦
I
` Q2, then for all σ and σ′ in ΣI such that (Q1) σ ≡ σ′

holds, we have (Q2) σ ≡ σ′.

Proof: By hypothesis, we have Q1 ♦
I
` Q2 (1), (Q1) σ ≡ σ′ (2), and ftv(σ) ∪ ftv(σ′) ⊆

I (3). We have to show that (Q2) σ ≡ σ′ (4) holds. We note that it suffices to show

that Q̂1 and Q̂2 are equal on I (5). Indeed, Corollary 1.5.10 and (2) imply Q̂1(σ) ≡

Q̂1(σ
′) (6). Additionally, (5), and (3) give Q̂1(σ) = Q̂2(σ) (7) and Q̂1(σ

′) = Q̂2(σ
′) (8).

By (6), (7), and (8), we get Q̂2(σ) ≡ Q̂2(σ
′), which implies (4) thanks to Corollary 1.5.10.

We prove either (4) or (5) according to which one is easier. The proof is by induction
on the derivation of (1).

◦ Case PE-Refl: Immediate.

◦ Case PE-Trans, PA-Trans, PI-Trans, PA-Equiv, and PI-Abstract: By in-
duction hypothesis.

◦ Case PE-Comm and PI-Rigid: Q̂1 is Q̂2, thus (5) holds.

◦ Case PE-Free: We haveQ2 = (Q1, α�σ). Hence, Q̂2 = Q̂1◦θ, where dom(θ) ⊆ {α}.

By hypothesis, α /∈ I . Hence, Q̂2 and Q̂1 are equal on I , and we have shown (5).

◦ Case PE-Mono: By definition, Q̂1 and Q̂2 are equal, thus we have (5).

◦ Case PE-Context-L, PA-Context-L and PI-Context-L: By hypothesis, we
have Q1 = (Qa, α � σ1, Qb) and Q2 = (Qa, α � σ2, Qb). Besides, (Qa) σ1 ♦ σ2 (9) holds.

Let θa be Q̂a and θb be Q̂b. If α /∈ dom(Q̂1), then, Q̂1 is θa◦θb, and Q̂2 is θa◦θ◦θb, where

dom(θ) ⊆ {α}. Hence, Q̂2 is θa ◦ θ ◦ θa ◦ θb, that is, θa ◦ θ ◦ Q̂1 (10). By (6), (10), and

Property 1.5.11.v, we get θa ◦θ◦ Q̂1(σ) ≡ θa ◦θ◦ Q̂1(σ
′), that is, Q̂2(σ) ≡ Q̂2(σ

′) by (10).

This implies (4) by Corollary 1.5.10. Otherwise, α ∈ dom(Q̂1), which means that σ1 ∈ T .
By Lemma 2.1.6 and (9), we get σ2 ∈ T and (Qa) σ1 ≡ σ2. By Lemmas 1.5.9 and 1.5.6.iii

(page 51), we get θa ◦ ̂(α � σ1) = θa ◦ ̂(α � σ2), thus Q̂1 = Q̂2 holds, that is (5).

◦ Case PE-Swap: We have Q1 = (Qa, α1 � σ, α2 = α1, Qb) (11) and Q2 = (Qa, α2 �

σ, α1 =α2, Qb). Let θa be Q̂a and θb be Q̂b. Let θ1 be ̂(α1 � σ) and θ2 be ̂(α2 � σ). Note
that the substitution [α2/α1] ◦ θ1 ◦ [α1/α2] is equal to the substitution θ2 ◦ [α2/α1] (12)
(consider the images of α1 and α2 for the two cases σ ∈ T and σ /∈ T ). Then using

these notations, Q̂1 is θa ◦ θ1 ◦ [α1/α2] ◦ θb (13) and Q̂2 is θa ◦ θ2 ◦ [α2/α1] ◦ θb (14).
By (6) and (13), we have θa ◦ θ1 ◦ [α1/α2] ◦ θb(σ) ≡ θa ◦ θ1 ◦ [α1/α2] ◦ θb(σ

′). Composing
by [α2/α1] (Property 1.5.11.v (page 54)), we get [α2/α1] ◦ θa ◦ θ1 ◦ [α1/α2] ◦ θb(σ) ≡
[α2/α1] ◦ θa ◦ θ1 ◦ [α1/α2] ◦ θb(σ

′) (15). By well-formedness of (11), we have α1 /∈
dom(θa) and α2 /∈ codom(θa). Hence, θa and [α2/α1] commute: from (15), we get
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θa ◦ [α2/α1] ◦ θ1 ◦ [α1/α2] ◦ θb(σ) ≡ θa ◦ [α2/α1] ◦ θ1 ◦ [α1/α2] ◦ θb(σ
′). By (12), we get

θa ◦ θ2 ◦ [α2/α1] ◦ θb(σ) ≡ θa ◦ θ2 ◦ [α2/α1] ◦ θb(σ
′). By (14), this is Q̂2(σ) ≡ Q̂2(σ

′). This
implies (4) by Corollary 1.5.10.

The instance relation on types v and the instance relation on prefixes are closely
related. In particular, if Q1 vI Q2 holds, and τ ∈ ΣI , we have by definition ∀ (Q1)
τ v ∀ (Q2) τ (1). Conversely, if (1) holds, we expect the prefix Q2 to be an instance
of the prefix Q1, under the interface ftv(τ), that is Q1 vftv(τ) Q2. Actually, we show

in the next lemma that Q1 v
ftv(τ)
` Q2 (2) holds, which implies Q1 vftv(τ) Q2 (3) by

Lemma 3.4.1. Showing (2) instead of (3) is more general, and is a key result used to
show the equality between vI

` and vI . In summary, we show in Lemma 3.4.4 that (1)
implies (2). The statement of the lemma is, however, a bit more involved.

First, the main hypothesis (Q) σ1 ♦ σ2 is more general than (1). Additionally,
the constructed form of σ1 is ∀ (Q1) τ1, which discards the case where nf(σ1) is ⊥.
Similarly, the constructed form of σ2 is ∀ (Q2) τ2.

The main conclusion is QQ1 ♦
dom(Q)∪I
` QQ2θ (4), which corresponds to (2) after

adding the prefix Q and a substitution θ. The role of the substitution θ is to map
variables of Q1 to variables of Q2. Indeed, by renaming, ∀ (Q1) τ1 and ∀ (Q2) τ2 might
use different variable names; we use the substitution θ to map names from ∀ (Q1) τ1 to
names of ∀ (Q2) τ2. The correctness of this mapping could be intuitively expressed by
the equality θ(τ1) = τ2 (5). Actually, (5) does not always hold, because the prefixes
Q and Q2 must be taken into account. Lemma 3.4.4 is more precise and provides the
correct result, that is, (QQ2) θ(τ1) ≡ τ2 (6). Note, though, that (5) implies (6). What
is more, θ is a substitution, but is not necessarily a renaming. For example, we have
(α) ∀ (β = α → α) β → β ≡ (α → α) → (α → α) by Eq-Mono. In such a case,
the left-hand prefix is (β = α → α), and the right-hand prefix is empty. Then θ is the
substitution [α→ α/β]; it is not a renaming.

The lemma considers the constructed forms of σ1 and σ2 (see page 55), in order to

avoid degenerate cases. A type such as σ1
M

= ∀ (α = ∀ (Q′
1) τ1) α hides its structure in

the bound of α. By Eq-Var, we have σ1 ≡ ∀ (Q′
1) τ1 (7). As mentioned above, the

substitution θ is used to link variables of dom(Q2) to variables of dom(Q1). If we do
not take the constructed form of σ1, Q1 would be a single binding (α= ∀ (Q′

1) τ1) (8).
However, because of the equivalence (7), the meaningful bindings are those of Q ′

1, but
not only (8). In other words, it is not possible to map variables of dom(Q2) to α only,
but it is possible to map them to dom(Q′

1). Taking the constructed form ensures that
the considered prefix is always the “meaningful” prefix.

Moreover, Lemma 3.4.4 assumes that we have nf(σ2) /∈ ϑ or Q(nf(σ2)) ∈ T . This
assumption is also necessary to discard degenerate cases. For instance, let σ be ∀ (Q) τ .
We have (α ≥ σ) σ v α by I-Hyp. Without the assumption above, it could be given
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3.4 Rules for prefix equivalence, abstraction, and instance 109

as input to the lemma. However, we cannot find a meaningful relation between the
prefix (α≥ σ,Q) and the prefix (α≥ σ), as required by (4). In such a case, we cannot
express (6) either.

Lemma 3.4.4 We assume we have nf(σ2) /∈ ϑ or Q(nf(σ2)) ∈ T . We assume cf(σ1)
and cf(σ2) have well-formed prefixes. If we have (Q) σ1 ♦ σ2 and nf(σ1) 6= ⊥, cf(σ1)
is ∀ (Q1) τ1, and Q1 # Q, then there exist an α-conversion ∀ (Q2) τ2 of cf(σ2) and a
substitution θ such that the following facts hold, writing I for dom(Q1/τ1).

(QQ2) θ(τ1) ≡ τ2 dom(θ) ⊆ I θ(I) ⊆ dom(Q) ∪ dom(Q2/τ2)

QQ1 ♦
dom(Q)∪I
` QQ2θ

The proof is by induction on the derivation of (Q) σ1 ♦ σ2.
See details in the Appendix (page 270).

As explained above, Lemma 3.4.4 is a main result for proving the equivalence be-
tween the relations vI and vI

` . Actually, a first corollary of Lemma 3.4.4 is Prop-
erty 3.4.5.i below. Then the expected equivalence (Property 3.4.5.ii) is a direct conse-
quence.

Properties 3.4.5 We have the following properties:
i) If (∅) ∀ (Q1) ∇I ♦ ∀ (Q2) ∇I , then Q1 ♦

I
` Q2.

ii) We have Q1 ♦I Q2 iff Q1 ♦
I
` Q2.

Proof: Property i: Assume that we have ∀ (Q1) ∇I ♦ ∀ (Q2) ∇I . By Lemma 3.4.4, there
exists a renaming φ and a substitution θ such that the following hold:

(φ(Q2)) θ(∇I) ≡ φ(∇I ) (1) J
M

= dom(Q1/I) (2) dom(θ) ⊆ J

θ(J) ⊆ dom(φ(Q2)/φ(I)) Q1 ♦
J
` φ(Q2)θ (3)

We have I ⊆ J (4) from (2). Hence, we have Q1 ♦
I
` φ(Q2)θ (5) by Property 3.4.2.i, (4)

and (3). By Property 1.5.11.vii (page 54) and (1), we have φ̂(Q2)◦θ(∇I ) = φ̂(Q2)◦φ(∇I).

This implies that φ̂(Q2) ◦ θ and φ̂(Q2) ◦ φ are the same substitution on I . Hence,

φ(Q2)(φ̂(Q2) ◦ θ) ≡I
` φ(Q2)(φ̂(Q2) ◦ φ) (6) holds by PE-Free. Moreover, φ(Q2)φ̂(Q2) ◦

φ ≡I
` φ(Q2)φ (7) holds by PE-Mono?. Besides, Q2 ≡` φ(Q2)φ (8) holds by Prop-

erty 3.4.2.iv. Additionally, we have φ(Q2)θ ≡I
` φ(Q2)φ̂(Q2) ◦ θ (9) by PE-Mono?.

By (5), (9), (6), (7), (8), and PE-Trans, we get Q1 ♦
I
` Q2. This is the expected result.

Property ii: Directly, we have Q1 ♦I Q2. Hence, ∀ (Q1) ∇I ♦ ∀ (Q2) ∇I holds by

definition. Hence by Property i, Q1 ♦
I
` Q2 holds. The converse is from Lemma 3.4.1.
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We have shown that ♦I and ♦I
` are the same relation. In the rest of the document,

we will use only the symbols ≡I , @−I , and vI to make the presentation lighter.

ML types as a particular case

The next lemma shows that under an unconstrained prefix the instance relation corre-
sponds to the instance relation of ML (in ML free variables are implicitly unconstrained
in the prefix). As explained in Section 1.1, ML types can be injected in MLF in the
form ∀ (α1 ≥⊥) . . . ∀ (αn ≥⊥) τ . Hence, in the framework of MLF, we call such types
ML types:

Definition 3.4.6 Polytypes of the form ∀ (Q) τ where Q is unconstrained are called
ML types.

Lemma 3.4.7 We assume Q unconstrained and that σ1 and σ2 are ML types, closed
under Q. Then (Q) σ1 v σ2 holds iff σ2 is an instance of σ1 in ML.

See proof in the Appendix (page 274).

Graphs representing ML types may only have binding arrows from nodes labelled
⊥ to the top-level node. Besides, these arrows must be flexible. Here is an example of
an ML type:

→

→

⊥ ⊥

This graph represents the type ∀ (α, β) (α → β) → α → β, that is, the type of
λ(f) λ(x) f x, which we also call app. More precisely, we have represented ∀ (α, β)
∀ (γ=α→ β) γ → γ, which is equivalent. The middle node represents γ, the left-hand
node is α and the right-hand node is β. The only bindings are from α and β to the
top-level node.
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Here is the type of a common function in ML:

→

→

→ → →

⊥

⊥

⊥

We have represented the type ∀ (α, β, γ) (α → β) → (β → γ) → α → γ, which is the
type of the (reversed) composition function λ(f) λ(g) λ(x) g (f x). (The type of the
normal composition function gives a more intricate graph.)

3.5 Splitting prefixes

In this section we present the split algorithm, which takes a prefix Q and a set
of variables ᾱ, and splits Q into two parts Q1 and Q2 such that the domain of Q1

is the domain of Q useful for ᾱ (see Definition 3.3.1). In order to show how the
split algorithm is used, the following short story talks about generalization, which
will be defined only in Chapter 5. This means that the following explanation is better
understood by readers familiar with ML generalization, but should not frighten the
others.

A short story of type generalization In ML, polymorphism is introduced by
generalization. More precisely, if an expression a has type σ and if α is not free in the
typing environment Γ, then the expression a can be given the type scheme ∀ (α) σ.
This is possible for any type variable α not free in Γ, that is, if α and β are not
free in Γ, a can be given the type ∀ (α) σ as well as ∀ (β) σ. As already mentioned
in Section 1.2, the prefix in ML is implicit and unconstrained. Hence, generalizing a
variable α consists mostly of taking α from the prefix and quantifying it in σ. The
prefix before generalization is (Q,α), and the prefix after generalization is simply Q.
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As for the type of a, it is σ before generalization, and ∀ (α) σ after. Note that in ML,
bindings in the prefix are mutually independent, which implies that the prefixes (α, β)
and (β, α) are equivalent.

In MLF, we follow the same idea for generalization: a binding is taken from the
prefix and quantified in front of the type of the expression. Whereas bindings are
unconstrained in ML, they are of the general form (α � σ) in MLF. Moreover, whereas
bindings are mutually independent in ML, they can depend on each other in MLF. For
instance, in the prefix Q = (α ≥ ⊥, β = ∀ (γ) γ → α), the binding for β depends on
α because α is free in the bound of β. In ML, we could only have (α ≥ ⊥, β ≥ ⊥),
which is equivalent to (β ≥ ⊥, α ≥ ⊥), as remarked above. In ML, if α is not free in
Γ, we can generalize it. Similarly, if β is not free in Γ, we can generalize it. In MLF,
however, things are not so direct. Under prefix Q, we can generalize β (if β is not free
in Γ), but we cannot generalize α directly because α is needed in the prefix, namely in
the bound of β. As a consequence, the only way to generalize α is first to generalize β
(if possible), then to generalize α. As a conclusion, generalization in MLF must follow
the dependencies of bindings. Therefore, when we wish to generalize as many variables
as possible (according to a given typing environment Γ), we have to split the prefix
Q in two parts. The first part contains all bindings of variables free in Γ, as well as
bindings they depend on. The second part contains all remaining bindings, that is, type
variables that do not appear in Γ, directly or indirectly. In this section, we describe
this operation, the split algorithm. Note that, as mentioned above, splitting is trivial
in ML since bindings do not depend on each other.

In the following definition, we write q
1

−→ (Q1, Q2) for the pair (Q1q,Q2) and

q
2

−→ (Q1, Q2) for the pair (Q1, Q2q).

Definition 3.5.1 The split algorithm takes a closed prefix Q and a set ᾱ included
in dom(Q) and returns a pair of prefixes, which we write Q↑ᾱ. It is defined inductively
as follows:

∅↑ᾱ = (∅, ∅) (Q,α � σ)↑ᾱ =

{
(α � σ)

1
−→ Q↑(ᾱ− α) ∪ ftv(σ) if α ∈ ᾱ

(α � σ)
2

−→ Q↑ᾱ if α /∈ ᾱ

It is obvious to check that this algorithm always terminates and never fails. The next
lemma shows its correctness.

Lemma 3.5.2 If Q↑ᾱ is the pair (Q1, Q2), then we have (i) Q1Q2 ≈Q, (ii) ᾱ ⊆
dom(Q1), and (iii) dom(Q1/ᾱ) = dom(Q1).

See proof in the Appendix (page 275).
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3.6 Prefixes and Instantiation

This section gathers technical results that will be used mostly for unification. A main
result is Lemma 3.6.4: it states that a judgment under a prefix Q still holds under all
instances of Q. In ML, a substitution θ can be applied to a whole typing derivation.
This can be viewed as instantiating all free type variables of the derivation. In par-
ticular, if σ2 is an instance of σ1 in ML, then θ(σ2) is an instance of θ(σ1). In MLF,
we state a more general result: typing derivations are stated under a given prefix, and
instantiating the whole derivation amounts to instantiating the prefix. Thus, if σ2 is an
instance of σ1 under prefix Q, then σ2 must be an instance of σ1 under any instance of
Q (including monotypes instances, which represent substitutions). Hence, Lemma 3.6.4
entails that typing judgments are stable under substitution.

The next property extends the interface of an instantiation. For example, it takes
a derivation of Q vI Q′ as an input, and provides a derivation of Q vJ Q′θ as an
output, with I ⊆ J . This result is used for showing the completeness of the unification
algorithm (to be found in Chapter 4).

Lemma 3.6.1 Assume we have Q ♦I Q′. Let J be dom(Q/I) and φ be a renaming
of dom(Q′), disjoint from I. Then there exists a substitution θ such that Q ♦J φ(Q′)θ
and dom(θ) ⊆ J − I hold.

Proof: By Definition 3.2.1, we have ∀ (Q) ∇I ♦ ∀ (Q′) ∇I . Alpha-converting the right-
hand side with the renaming φ, and observing that φ is disjoint from I , we get ∀ (Q) ∇I ♦
∀ (φ(Q′)) ∇I . Let J be dom(Q/I). By Lemma 3.4.4, there exists an alpha-conversion
∀ (Q′′) τ of ∀ (φ(Q′)) ∇I (1) and a substitution θ′ such that we have

(Q′′) θ′(∇I) ≡ τ (2) dom(θ′) ⊆ J θ′(J) ⊆ dom(Q′′/τ) Q ♦J Q′′θ′ (3)

From (1), there exists a renaming φ′ such that Q′′ = φ′(φ(Q′)), that is, Q′′ = φ′ ◦φ(Q′),
and τ = φ′(∇I) (4). Let θ′′ be the substitution defined as φ′ on I and as θ′ elsewhere (5).
From (2) and (4), we get (Q′′) θ′(∇I ) ≡ φ′(∇I ), hence by Property 1.5.11.vii (page 54),

we have Q̂′′ ◦ θ′(∇I ) = Q̂′′ ◦ φ′(∇I), that is, Q̂′′ ◦ θ′ and Q̂′′ ◦ φ′ are equal on I (6).

Therefore, we have Q̂′′ ◦θ′ = Q̂′′ ◦θ′′ from (5) and (6). Then from (3), we get Q ♦J Q′′θ′′

by PE-Mono?. Hence, ∀ (Q) ∇J ♦ ∀ (Q′′) θ′′(∇J ) (7) holds by Definition 3.2.1 and
Eq-Mono?. Let θ be φ′¬ ◦ θ′′ restricted to J . We note that ∀ (φ(Q′)) θ(∇J ) is an
alpha-conversion of ∀ (Q′′) θ′′(∇J ). Hence, ∀ (Q) ∇J ♦ ∀ (φ(Q′)θ) ∇J holds from (7).
By Property 3.4.5.i, we get Q ♦J φ(Q′)θ. Besides, dom(θ) ⊆ J and θ is invariant on I ,
thus dom(θ) ⊆ J − I . This is the expected result.

The next property is a variant: we also extend the interface of an instantiation
Q ♦I Q′, but the extended interface is the entire domain dom(Q) instead of dom(Q/I).
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Lemma 3.6.2 If we have Q ♦I Q′, then there exists a renaming φ on dom(Q′) disjoint
from I, a prefix Q0, a substitution θ and a prefix Q′

0 such that we have

Q ♦ φ(Q′)Q0 dom(Q0) # I φ(Q′)Q0 ≡I Q′ Q0 = θQ′
0

dom(Q′
0) # dom(Q/I)

See proof in the Appendix (page 275).

As claimed in the introduction of this chapter, one main result is Lemma 3.6.4,
to be found next page. The following properties are used directly in the proof of the
lemma.

Properties 3.6.3 Let ♦ be v or @−. We have the following properties:

i) If (Q,α � σ) σ1 ♦ σ2 holds and α /∈ ftv(σ1) ∪ ftv(σ2), then (Q) σ1 ♦ σ2 holds.
ii) If (Q,α≥ τ,Q0) σ1 ♦ σ2, then (Q,α= τ,Q0) σ1 ♦ σ2, and conversely.
iii) If (Q,α � σ, α′ = α,Q0) σ1 ♦ σ2, then (Q,α′ � σ, α= α′, Q0) σ1 ♦ σ2.
iv) Assume (Q) σ ≡ σ′. If (Q,α � σ,Q0) σ1 ♦ σ2, then (Q,α � σ′, Q0) σ1 ♦ σ2.
v) Assume (Q) σ @− σ′. If (Q,α = σ,Q0) σ1 ♦ σ2, then (Q,α= σ′, Q0) σ1 ♦ σ2.
vi) Assume (Q) σ v σ′. If (Q,α ≥ σ,Q0) σ1 ♦ σ2, then (Q,α≥ σ′, Q0) σ1 ♦ σ2.
vii) If (Q,α≥ σ,Q0) σ1 ♦ σ2, then (Q,α= σ,Q0) σ1 ♦ σ2.

See proof in the Appendix (page 276).

Lemma 3.6.4 Assume σ1 and σ2 are in ΣI . If Q1 ♦I Q2 and (Q1) σ1 ♦ σ2 hold, then
we have (Q2) σ1 ♦ σ2.

See proof in the Appendix (page 278).

The following properties are used to show the correctness of unification.

Properties 3.6.5 If we have

Q1 ♦I Q2 γ ∈ I dom(Q1/γ) ⊆ I σ1 /∈ V

then we have the following:

i) If (γ ≥ σ1) ∈ Q1 and (γ � σ2) ∈ Q2, then (Q2) σ1 v σ2.
ii) If (γ = σ1) ∈ Q1 and (γ � σ2) ∈ Q2, then (Q2) σ1 @− σ2.
iii) If (γ ≥ σ1) ∈ Q1, then (Q2) σ1 v Q2(γ)
iv) If (γ = σ1) ∈ Q1, then (Q2) σ1 @− Q2(γ)
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Proof: Property i: By hypothesis, (γ ≥ σ1) ∈ Q1. Hence, (Q1) σ1 v γ (1) holds by
I-Hyp, and we have ftv(σ1) ⊆ dom(Q1/γ). Since we have dom(Q1/γ) ⊆ I by hypothesis,
this gives ftv(σ1) ⊆ I . Lemma 3.6.4 and (1) gives (Q2) σ1 v γ. By Corollary 2.3.4, there
exists a derivation of (Q2) σ1 v σ2.

Property ii: It is similar, using A-Hyp instead of I-Hyp.

Properties iii and iv: Let (γ � σ2) be the binding of γ in Q2. By Property i or ii, we
have (Q2) σ1 ♦ σ2 (2). If σ2 /∈ ϑ, then Q2(γ) = σ2 by definition, thus (Q2) σ1 ♦ Q2(γ)
holds. Otherwise, σ2 ∈ ϑ, thus σ2 ≡ α and Q2[γ] = Q2[α] (3) by definition. Hence,
we have Q2(γ) = Q2(α) by definition and (3). Besides, (2) becomes (Q2) σ1 ♦ α. By
Property 3.2.3.i (page 103) or Property 3.2.3.ii (page 103), we get (Q2) σ1 ♦ Q2(α).
This is the expected result.

The following lemma is used to prove the completeness of unification.

Lemma 3.6.6 If we have (Q) σ1 v σ2 and (Q) σ2 v σ3 and (Q) σ1 @− σ3, then we
have both (Q) σ1 @− σ2 and (Q) σ2 @− σ3.

See proof in the Appendix (page 278).

The following lemma is used in the proof of Theorem 5, which states that System F
can be encoded into MLF.

Lemma 3.6.7 If ∀ (α) σ @− σ′ holds, then σ′ ≡ ∀ (α) σ′′ and σ @− σ′′.

See proof in the Appendix (page 279).

The following property is used only in the proof of Lemma 3.6.9.

Lemma 3.6.8 If ∀ (Q) α/u = ⊥ holds, then there exist Q1, Q2, β, σ, u1, and u2 such
that Q is (Q1, β � σ,Q2), u = u1u2, ∀ (Q2) α/u1 = β, and σ/u2 = ⊥.

See proof in the Appendix (page 280).

The following lemma is a key result for the soundness of the abstraction-check

algorithm (Def. 4.2.1), which is used by the unification algorithm.

Lemma 3.6.9 If we have the following:

σ2 ∈ ΣI σ2 /∈ V (Q) σ1 v σ2 Q vI Q′ (Q′) σ1 @− σ2

then, we also have (Q) σ1 @− σ2.
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See proof in the Appendix (page 280).

The following property is only used in Lemma 4.6.4, which shows that unification
in MLF implements usual first-order unification as a special case. Indeed, as said in the
introduction this Chapter, page 101, prefixes can be viewed as extended substitutions.
Then prefix instance corresponds to composing substitutions. More precisely, we say
that θ1 is more general than θ2, which we can write θ1 v θ2, whenever there exists θ
such that θ2 = θ ◦ θ1. The following property extends such a result to prefixes.

Lemma 3.6.10 If Q1 vI Q2 holds, then there exists a substitution θ such that Q̂2 and
θ ◦ Q̂1 are equal on I.

See proof in the Appendix (page 281).

The following lemma is used in showing subject reduction in MLF
?.

Lemma 3.6.11 If we have (∅) ∀ (Q1) τ11 → τ12 ♦ ∀ (Q2) τ21 → τ22 then, (∅) ∀ (Q1)
τ11 ♦ ∀ (Q2) τ21 and (∅) ∀ (Q1) τ12 ♦ ∀ (Q2) τ22 hold.

See proof in the Appendix (page 281).

Note that the above lemma is stated under an empty prefix (∅), and with any relation
♦ in {≡,@−,v}. One could wonder whether the result still holds under a well-formed
prefix Q. Actually, such a result is easy to prove for the relations ≡ and v. We do not
know if it holds for @−. Fortunately, we only use it with @− and under an empty prefix.

The following property is used only in the proof of the Recomposition Lemma
(Lemma 3.6.13).

Lemma 3.6.12 If we have Q v Q1Q2 and dom(Q) = dom(Q/I) and I ⊆ dom(Q1),

then dom(Q2/ dom(Q)) ⊆ dom(Q̂2) and Q̂2(dom(Q)) ⊆ dom(Q1).

See proof in the Appendix (page 281).

The recomposition lemma, to be found next, is a key result used to show the com-
pleteness of unification and, independently, of type inference. It states, basically, that
generalization can commute with the instantiation of the prefix. In ML, we would have
the following diagram, where Γ ` a : σ means that the expression a has type σ under
the typing environment Γ. We assume that α, β, and γ are not free in the typing
environment Γ.
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Γ ` a : α→ α Γ ` a : (β → γ) → (β → γ)

Γ ` a : ∀ (α) α→ α Γ ` a : ∀ (β, γ) (β → γ) → (β → γ)

Gen(α)

v (1)

Gen(β, γ)

v (2)

The arrow Gen(α) means that we generalize type variable α. Similarly, Gen(β, γ)
means that we generalize β and γ. The instantiation (1) consists, in ML, in applying the
substitution [β → γ/α] to the whole judgment. In MLF, it consists of instantiating the
implicit prefix (α) into (β, γ, α = β → γ) (by PE-Free, PI-Context-L, and I-Nil).
The instantiation (2) simply instantiates ∀ (α) α→ α into ∀ (β, γ) (β → γ) → (β → γ);
this is valid in ML and in MLF. Using the same notations as in the recomposition
lemma, we have the following diagram:

(Q1) Γ ` a : τ (Q2Q3) Γ ` a : τ

(Qa) Γ ` a : ∀ (Qb) τ (3) (Q2) Γ ` a : ∀ (Q3) τ (4)

Q1 ≈QaQb
Gen(Qb)

v

Gen(Q3)

v

Actually, the recomposition lemma does not mention typing judgments, but only
prefixes. This is due to the expressiveness of prefixes, which can capture most of the
type information of typing judgments. Indeed, a typing judgment such as (3) can be
equivalently written (Qa, γ ≥ ∀ (Qb) τ) Γ ` a : γ (5). Similarly, (4) can be written
(Q2, γ ≥ ∀ (Q3) τ) Γ ` a : γ (6). We see that all the interesting information is put in
the prefix. We now understand why the recomposition lemma does not mention typing
judgments but uses prefixes such as in (5) and (6) instead.

Lemma 3.6.13 (Recomposition lemma) If we have

Q1 vI∪J Q2Q3 (Qa, Qb) = Q1↑I I ⊆ dom(Q2) ftv(τ) ⊆ I ∪ J

then, for γ fresh (that is, γ not in dom(Q1) ∪ dom(Q2) ∪ dom(Q3)), we can derive
(Qa, γ ≥ ∀ (Qb) τ) v

I∪{γ} (Q2, γ ≥ ∀ (Q3) τ).

See proof in the Appendix (page 283).
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Chapter 4

Unification

The power of ML lies on its first-order unification algorithm, which enables type in-
ference with outer-polymorphism (or, polymorphism a la ML). In ML, every solvable
unification problem has a principal solution, which is a substitution. Such a solution
is always found by the algorithm if it exists: the ML unification algorithm is complete.
Conversely, unification of second-order polymorphic types is undecidable in general,
therefore any second-order unification algorithm cannot be sound and complete. In
MLF, types are second order, but unification remains first-order. Indeed, while second-
order unification usually requires “guessing” polymorphic types, the MLF abstraction
relation is designed to prevent implicit introduction of polymorphism. Hence, only
explicit type annotations can create new second-order polymorphic types, so that the
MLF unification algorithm does not have to guess second-order polymorphism. In this
chapter, we define unification of types, and give a sound and complete unification al-
gorithm.

The solution to a unification problem is not a substitution, as in ML, but a prefix.
As explained earlier, prefixes can be viewed as extended substitutions. In ML, we
usually consider that a unification problem consists in two types τ1 and τ2, and that
the solution is a single substitution θ that unifies τ1 and τ2. In a slightly different
presentation, we can consider that the unification problem consists in two types τ1 and
τ2, and a substitution θ (intuitively, the “current” substitution). Then a solution is a
substitution θ′, instance of θ, which unifies τ1 and τ2. This means that there exists θ′′

such that θ′ is θ′′ ◦ θ. Note that θ′′ is actually the unifier of θ(τ1) and θ(τ2). We have
a similar presentation in MLF: a unification problem consists in two types τ1 and τ2,
and a prefix Q. Then a solution is a prefix Q′, instance of Q, which unifies τ1 and τ2,
that is, such that (Q′) τ1 ≡ τ2 holds. This definition is given in Section 4.1, and we
also prove that it is an extension of ML unification.

As remarked in Section 3.1, monotype prefixes contain more information than sub-
stitutions. In particular, they contain the history of unification. More precisely, a
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monotype prefix corresponds to a composition of elementary substitutions. Take for
example the prefix, say Q, equal to (β≥⊥, γ=β, α=γ), which is a unifier for α→ γ and
γ → β. Its extracted substitution Q̂, which unifies the given types, is α 7→ β, γ 7→ β.
Whereas the substitution, alone, does not give much information, the prefix Q shows the
history: α has first been unified to γ, hence the binding (α=γ), then γ has been unified
to β, hence the binding (γ=β). In the usual implementation of ML unification, we find
a similar case: α would be an alias for γ, and γ would be an alias for β. An important
optimization consists of updating the links, in order to have α and γ aliases for β. Simi-
larly, in MLF, the prefix (β≥⊥, γ=β, α=β) is equivalent to Q by PE-Context-L and
Eq-Mono. We see that the optimization is not transparent in MLF and corresponds
to an equivalence between prefixes. This example illustrates that monotype prefixes
capture more information than substitutions, and are closer to the implementation.
Actually, monotype prefixes are very similar to multi-equations [Rém92], since they
provide the same information. However, MLF prefixes are richer than multi-equations
because a type variable can be bound to a polytype. This is also why an auxiliary
algorithm is needed, namely update, that updates the polytype bound of a variable
with another bound. This algorithm may rearrange elements of the prefix to satisfy
dependencies.

The auxiliary algorithms abstraction-check, merge and update are defined in
Section 4.2. Then the unification algorithm, called unify, is given in Section 4.3. As
unification remain first-order, the algorithm is very similar to the ML unification algo-
rithm, with only a few extra cases to handle polytype bounds. Soundness, termination,
and completeness of the unification algorithm are shown respectively in Sections 4.4,
4.5, and 4.6.

4.1 Definition

We first give a simple specification of the unifier of two types under a given initial
prefix. As explained above, the unifier is not a substitution, but rather a prefix.

Definition 4.1.1 (Unification) A prefix Q′ unifies τ1 and τ2 under Q if and only if
Q v Q′ and (Q′) τ1 ≡ τ2 hold.

Such a definition is an extension of ML unification, as shown by the following
lemma.

Lemma 4.1.2 Let θ be a substitution and Q an unconstrained prefix that binds vari-
ables of codom(θ). If Q′ unifies τ1 and τ2 under the prefix Qθ, then Q̂′ is a unifier of
τ1 and τ2 in ML.
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Figure 4.1: Abstraction-check algorithm

We assume that (Q) σ1 v σ2 holds. We define (Q) σ1 @−? σ2 as follows :

1. If proj(∀ (Q) σ1) and proj(∀ (Q) σ2) are not equal, then return false.

2. If Q̂(nf(σ1)) is a monotype, then return true.

3. If Q̂(nf(σ2)) is not in ϑ, then return true if and only if X /∈ w(σ1) − w(σ2).

4. If Q̂(nf(σ2)) is α, find (α= σ) in Q (if such a binding cannot be found, return
false), and return (Q) σ1 @−? σ.

Proof: Direct consequence of Property 1.5.11.vii (page 54).

4.2 Auxiliary algorithms

The unification algorithm uses three auxiliary algorithms: the abstraction-check

algorithm, the update algorithm, and the merge algorithm.
The abstraction-check algorithm checks that the operations performed on binders

are all safe. For example, it prevents the instantiation of σid in the type ∀ (α = σid)
α → α, which may occur for example when unifying this type with (int → int) →
(int → int). Indeed, the former type represents a function that expects a polymor-
phic argument and must not be instantiated. Interestingly, the check can be done a
posteriori, and need not be done each time a binder is moved.

Definition 4.2.1 The abstraction-check algorithm (Q) σ @−? σ′ is defined in Fig-
ure 4.1. It takes a prefix Q and two polytypes σ and σ ′ such that (Q) σ v σ′ holds and
tells if (Q) σ @− σ′ holds.

Lemma 4.2.2 Assume we have (Q) σ1 v σ2. Then (Q) σ1 @− σ2 iff (Q) σ1 @−? σ2

returns true.

Proof: The termination, completeness and soundness of the abstraction-check algo-
rithm are shown independently.

Termination There is only one place where the algorithm calls itself recursively. All
other steps immediately terminate. In that case, Q̂(nf(σ2)) is α and (α = σ) ∈ Q. By

definition of Q̂, we must have σ /∈ T . Hence, Q̂(nf(σ)) /∈ ϑ, and in this case the call to
(Q) σ1 @−? σ terminates immediately.
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Completeness Completeness is shown by induction on the recursive calls to the
abstraction-check algorithm. We assume (Q) σ1 @− σ2 holds. We show that (Q)
σ1 @−? σ2 returns true. By Lemmas 2.1.3.i (page 65) and 2.7.8, we have ∀ (Q) σ1/ =

∀ (Q) σ2/ (1) and X /∈ w(σ1) − w(σ2) (2) provided Q̂(nf(σ2)) /∈ V . From (1), we have
proj(∀ (Q) σ1) = proj(∀ (Q) σ2) (3).

• The first step does not return false thanks to (3).

• If (Q) σ1 ≡ τ holds, then Q̂(nf(σ1)) is a monotype Q̂(τ) by Lemma 1.5.9. Hence,
the second step returns true. We can now assume that (Q) σ1 ≡ τ does not hold
for any monotype τ . In particular, we can assume that σ1 /∈ V (4).

• If Q̂(nf(σ2)) is not in ϑ, then the algorithm returns true thanks to (2).

• Otherwise, Q̂(nf(σ2)) is α, thus (Q) σ1 @− α (5) holds by Property 1.5.6.i (page 51)
and Eq-Mono. Let (α�σ) be the binding of α in Q. By (4), (5) and Corollary 2.3.4,
we have a derivation of (Q) σ1 @− σ (6) and � is rigid. Hence, the algorithm finds
(α=σ) in Q and calls (Q) σ1 @−? σ. By induction hypothesis and (6), the algorithm
returns true. This is the expected result.

Soundness Soundness is shown by induction on the recursive calls to the algorithm.
We assume (Q) σ1 @−? σ2 returns true, and we must show that (Q) σ1 @− σ2 holds. By
hypothesis, (Q) σ1 v σ2 (7) holds.

• Since the first step does not return false, we must have proj(∀ (Q) σ1) = proj(∀ (Q)
σ2), that is, ∀ (Q) σ1/ = ∀ (Q) σ2/ (8).

• If the algorithm returns true at the second step, we must have Q̂(nf(σ1)) = τ for
some type τ . Hence, we have nf(σ1) = τ ′, which means σ1 ∈ T . By Lemma 2.1.6
and (7), we get (Q) σ1 ≡ σ2, which implies (Q) σ1 @− σ2 by A-Equiv.

• If the algorithm returns true at the third step, we must have Q̂(nf(σ2)) /∈ ϑ (9)
and X /∈ w(σ1) − w(σ2) (10). By (7), (8), (10) and (9) and by Lemma 2.7.8, we
have (Q) σ1 @− σ2. This is the expected result.

• Otherwise, the algorithm necessarily returns true at the recursive call of the fourth
step and Q̂(nf(σ2)) is α (11). Hence, (α = σ) ∈ Q and (Q) σ1 @−? σ returns true.
By induction hypothesis, we have (Q) σ1 @− σ. By A-Hyp, we have (Q) σ @− α, thus
(Q) σ1 @− α holds by R-Trans. Finally, (Q) σ @− σ2 holds by Lemmas 1.5.10, 1.5.6.i
(page 51), and (11).

The update algorithm replaces the bound of a prefix binding by a new one. It
reorders the bindings in the prefix if necessary to make the resulting prefix well-formed.
The condition α /∈ dom(Q/σ) ensures that there is no circular dependency, just like the
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Figure 4.2: Update algorithm

We assume α ∈ dom(Q), ftv(σ) ⊆ dom(Q) and α /∈ dom(Q/σ).
We define Q⇐ (α � σ) as follows :

1. let (Q1, Q2) be Q↑ ftv(σ) in

2. let (Qa
2, α �′ σ′, Qb

2) be Q2 in

3. If �′ is = and (Q) σ′ @−? σ is false, then fail.

4. return (Q1Q
a
2, α � σ,Qb

2).

occur-check in ML. The algorithm fails if a rigid bound is updated by a strict instance,
using the abstraction-check algorithm. This algorithm is defined in Figure 4.2.

For example, if Q is (α ≥ σid, β ≥ ⊥), then the update Q ⇐ (α = β → β) returns
the prefix (β≥⊥, α=β → β). Notice that the binders α and β have been reordered, so
that the resulting prefix is well-formed. As another example, if Q is (α = σid, β ≥⊥),
then the update Q ⇐ (α= β → β) fails because it tries to instantiate the rigid bound
σid to a strict instance β → β.

The following lemma will be used to show the equivalence between the unification
algorithm and a variant that reorders the bindings of the input prefix and removes
unused bindings.

Lemma 4.2.3 If Q1 ⇐ (α � σ) is well defined, and if Q2 is a rearrangement of Q1,
then Q2 ⇐ (α � σ) is a rearrangement of Q1 ⇐ (α � σ).

The following lemma states the completeness of the update algorithm.

Lemma 4.2.4 If we have

Q1 vI Q2 (α � σ) ∈ Q1 (Q1) σ v σ′ (Q1) σ @− σ′ if � is rigid
α /∈ dom(Q1/σ

′) ftv(σ′) ∪ {α} ⊆ I (Q2) σ
′ v α (Q2) σ

′ @− α if �′ is rigid

then, we have (Q1 ⇐ (α �′ σ′)) vI Q2, and the update is well-defined.

See proof in the Appendix (page 284).

This lemma states the soundness of the update algorithm.

Lemma 4.2.5 If we have (α �σ) ∈ Q, (Q) σ v σ ′ and (Q⇐ (α �σ′)) returns Q′, then
Q v Q′.

See proof in the Appendix (page 285).
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The merge algorithm unifies two type variables, which must have the same bound.
The resulting binding is flexible if and only if the two variables are flexible. Otherwise,
the new binding is rigid. This algorithm cannot fail.

Definition 4.2.6 The merge algorithm Q ⇐ α ∧ α′ takes two variables α and α′ and
a prefix Q such that Q is (Q0, α � σ,Q1, α

′ �′ σ,Q2) or Q is (Q0, α
′ �′ σ,Q1, α � σ,Q2)

and returns the prefix (Q0, α �′′ σ, α′ = α,Q1Q2) where �′′ is flexible if both � and �′

are flexible, and rigid otherwise.

The two following lemmas state the soundness and completeness of the merge algo-
rithm, respectively.

Lemma 4.2.7 If Q⇐ α ∧ α′ returns Q′, then Q v Q′ and (Q′) α ≡ α′.

See proof in the Appendix (page 285).

Lemma 4.2.8 If we have

Q1 vI Q2 α, α′ ∈ I (α � σ) ∈ Q1 (α′ �′ σ) ∈ Q1 (Q2) α ≡ α′

then (Q1 ⇐ α ∧ α′) vI Q2.

See proof in the Appendix (page 285).

4.3 Unification algorithm

The algorithm unify takes a prefix Q and two types τ and τ ′ and returns a prefix
that unifies τ and τ ′ under Q, as described in Theorem 1 (page 137), or fails. In
fact, the algorithm unify is recursively defined with an auxiliary unification algorithm
polyunify for polytypes: polyunify takes a prefix Q and two type schemes σ1 and σ2

not in V and returns a pair (Q′, σ′) such that Q v Q′ and (Q′) σ1 v σ′ and (Q′) σ2 v σ′

hold.
The algorithms unify and polyunify are described in Figures 4.3 and 4.4, respec-

tively. For the sake of comparison with ML, think of the input prefix Q as a substitution
given to unify and of the result prefix Q′ as an instance of Q (i.e. a substitution of
the form Q′′ ◦Q) that unifies τ and τ ′. Unification of polytypes essentially follows the
general structure of first-order unification of monotypes. The main differences are that
(i) the computation of the unifying substitution is replaced by the computation of a
unifying prefix, (ii) additional work must be performed when a variable bound to a
strict polytype (i.e. other than ⊥ and not equivalent to a monotype) is being unified:
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4.3 Unification algorithm 125

Figure 4.3: Unification algorithm (monotypes)

unify (Q, τ1, τ2)
— Proceeds by case analysis on (τ1, τ2) :

Case (α, α): return Q.

Case (g τ 1
1 .. τ

n
1 , g τ

1
2 .. τ

n
2 ):

• let Q0 be Q in
• let Qi be unify (Qi−1, τ i−1

1 , τ i−1
2 ) for i ∈ 1..n in

• return Qn.

Case (g1 τ
1
1 .. τ

p
1 , g2 τ

1
2 .. τ

q
2 ) with g1 6= g2: fail.

Case (α, τ) or (τ, α) with (α � σ) ∈ Q and σ ∈ V: return unify (Q, τ, nf(σ)).

Case (α, τ) or (τ, α) with (α � σ) ∈ Q, τ /∈ ϑ, and σ /∈ V:
• fail if α ∈ dom(Q/τ).
• let (Q′,_) be polyunify (Q,σ, τ) in
• return (Q′) ⇐ (α= τ)

Case (α1, α2) with (α1 �1 σ1) ∈ Q, (α2 �2 σ2) ∈ Q, α1 6= α2, and σ1, σ2 not in V:
• fail if α1 ∈ dom(Q/σ2) or α2 ∈ dom(Q/σ1).
• let (Q′, σ3) be polyunify (Q,σ1, σ2) in
• return (Q′) ⇐ (α1 �1 σ3) ⇐ (α2 �2 σ3) ⇐ α1 ∧ α2.

its bound must be further unified (last case of polyunify) and the prefix must then be
updated accordingly.

The following is a stability property: it shows that if a binding (α � σ) ∈ Q is
useless, regarding two types τ1 and τ2, (that is, α /∈ dom(Q/τ1, τ2)), then the unify

algorithm does not remove the binding, and does not use it either (it is still useless
after unification). Like all results about the unification algorithm, it is two-folded:
one statement concerns the unification of monotypes (unify); the other concerns the
unification of polytypes (polyunify). We recall that the notation dom(Q/τ1, τ2) means
dom(Q/τ1) ∪ dom(Q/τ2).

Properties 4.3.1 Assume (α � σ) ∈ Q.

i) If unify (Q, τ1, τ2) returns a prefix Q′, and if α /∈ dom(Q/τ1, τ2), then (α�σ) ∈ Q′

and α /∈ dom(Q′/τ1, τ2).
ii) If polyunify (Q,σ1, σ2) returns (Q′, σ3), and if α /∈ dom(Q/σ1, σ2), then (α�σ) ∈

Q′ and α /∈ dom(Q′/σ1, σ2, σ3).

See proof in the Appendix (page 286).
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126 Unification

Figure 4.4: Unification algorithm (polytypes)

polyunify (Q,σ1, σ2)
— Rewrite σ1 and σ2 in constructed form, and then:

Case (⊥, σ) or (σ,⊥): return (Q,σ)

Case (∀ (Q1) τ1,∀ (Q2) τ2) with Q1, Q2, and Q having disjoint domains (which
usually requires renaming σ1 and σ2)
• let Q0 be unify (QQ1Q2, τ1, τ2) in
• let (Q3, Q4) be Q0↑ dom(Q) in
• return (Q3,∀ (Q4) τ1)

The following property shows that the unify algorithm is stable under rearrange-
ment of the prefix, and under addition of new (unused) bindings.

Properties 4.3.2 Assume Q≈Q1Q2.
i) If ftv(τ, τ ′) ⊆ dom(Q1), then unify (Q1, τ, τ

′) returns Q′
1 if and only if unify

(Q, τ, τ ′) returns a rearrangement of Q′
1Q2.

ii) If ftv(σ, σ′) ⊆ dom(Q1), then polyunify (Q1, σ, σ
′) returns Q′

1 and σ′′ if and only
if polyunify (Q,σ, σ′) returns a rearrangement of Q′

1Q2 and a rearrangement of
σ′′.

See proof in the Appendix (page 286).

4.4 Soundness of the algorithm

In this section, we show the soundness of the unify and polyunify algorithms. More
precisely, we show that if unify returns a prefix, it is an instance of the initial prefix and
it does unify the types given in input. As for polyunify, it also returns two elements :
an instance of the initial prefix and a common instance of σ1 and σ2 under this prefix.
This means that polyunify returns the least upper bound of σ1 and σ2.

Lemma 4.4.1 (Soundness of the unification algorithm) These two results hold:
(i) If unify (Q, τ1, τ2) succeeds with Q′, then Q v Q′ and (Q′) τ1 ≡ τ2.
(ii) Assume σ1 /∈ V and σ2 /∈ V. If polyunify (Q,σ1, σ2) succeeds with (Q′, σ),

then Q v Q′, (Q′) σ1 v σ and (Q′) σ2 v σ hold.

Proof: By induction on the recursive calls to both algorithms. We show the result for
unify by case analysis on (τ1, τ2):

126



4.4 Soundness of the algorithm 127

◦ Case (α, α) is immediate.

◦ Case (g τ1
1 .. τn

1 , g τ
1
2 .. τn

2 ): Let Q0 be Q, and Qi be unify (Qi−1, τ i−1
1 , τ i−1

2 ) for
i ∈ 1..n. By definition, Q′ is Qn. By induction hypothesis, we have Q0 v Q1 . . . v
Qn−1 v Q′. Besides, (Qi) τ i−1

1 ≡ τ i−1
2 holds for i ∈ 1..n. Hence, by Lemma 3.4.3, we

get (Q′) τ i−1
1 ≡ τ i−1

2 . By Property 1.5.11.viii (page 54), this implies (Q′) τ1 ≡ τ2.

◦ Case (g1 . . . , g2 . . .) is not possible since the algorithm succeeds by hypothesis.

◦ Case (α, τ) or (τ, α) with (α � σ) ∈ Q and σ ∈ V : By induction hypothesis, unify
(Q, τ, nf(σ)) returns Q′ such that (Q′) τ ≡ nf(σ) (1) and Q v Q′. Moreover, we have
(Q) α ≡ nf(σ) by Eq-Mono, thus (Q′) α ≡ nf(σ) (2) holds by Lemma 3.6.4. Then
(Q′) τ ≡ α holds by R-Trans, (1), and (2). This is the expected result.

◦ Case (α, τ) or (τ, α): We have (α � σ) ∈ Q (3), τ /∈ V , and σ /∈ V . Let (Q0, σ
′) be

polyunify (Q, σ, τ). By induction hypothesis, we have Q v Q0 (4), (Q0) σ v σ′ (5) and
(Q0) τ v σ′. By Lemma 2.1.6, this gives (Q0) τ ≡ σ′ (6). Hence, (Q0) σ v τ (7) holds
by R-Trans, (5), and (6). We have α /∈ dom(Q/σ) by well-formedness of Q and (3).
Besides, α /∈ dom(Q/τ), otherwise the algorithm would fail on the first step. Hence, by
Property 4.3.1.i, (α�σ) ∈ Q0 (8) and α /∈ dom(Q0/τ) (9). Let Q′ be Q0 ⇐ (α=τ) (10).
This update is well-defined by (9) and succeeds by hypothesis (the algorithm succeeds).
By Lemma 4.2.5, (7) and (8), we get Q0 v Q′ (11). By PI-Trans, (4), and (11), we
get Q v Q′. As a consequence of (10), we have (α = τ) ∈ Q′. Hence, (Q′) α ≡ τ holds
by Eq-Mono.

◦ Case (α1, α2): We have (α1 �1 σ1) ∈ Q and (α2 �2 σ2) ∈ Q. Moreover, σ1 and σ2 are
not in V and α1 6= α2. Let (Q0, σ3) be polyunify (Q, σ1, σ2). By induction hypothesis,
we have Q v Q0 (12) and (Q0) σ1 v σ3 (13) as well as (Q0) σ2 v σ3 (14). We have
α1 /∈ dom(Q/σ1) and α1 /∈ dom(Q/σ2), otherwise the algorithm would fail on the first
step. Hence, by Property 4.3.1.i, (α1 �1 σ1) ∈ Q0 (15), α1 /∈ dom(Q0/σ3) (16) and
α2 /∈ dom(Q0/σ3) (17). Let Q1 be Q0 ⇐ (α1 �1 σ3), Q2 be Q1 ⇐ (α2 �2 σ3), and Q′ be
Q2 ⇐ α1 ∧ α2. The updates are well-defined by (16) and (17). By Lemma 4.2.5, (13)
and (15), we get Q0 v Q1 (18). By Lemma 3.6.4, (18), and (14), we get (Q1) σ2 v
σ3 (19). We show that (α2 �2 σ2) ∈ Q0 as we showed (15). thus (α2 �2 σ2) ∈ Q1 (20)
(the update does not modify the binding of α2). Hence, by Lemma 4.2.5, (19) and (20),
we get Q1 v Q2 (21). Finally, we have Q2 v Q′ (22) and (Q′) α1 ≡ α2 by Lemma 4.2.7.
By PI-Trans, (12), (18), (21), and (22), we get Q v Q′.

We show the result for polyunify by case analysis on the constructed forms of (σ1, σ2):

◦ Case (⊥, σ) or (σ,⊥): We return (Q, σ), thus the expected result holds by Prop-
erty 1.5.13.i (page 55), and by rules PE-Refl, Eq-Refl and I-Bot.

◦ Case ∀ (Q1) τ1, ∀ (Q2) τ2: Let Q0 = unify (QQ1Q2, τ1, τ2). By induction hy-
pothesis, Q0 is such that QQ1Q2 v Q0 (1) and (Q0) τ1 ≡ τ2 (2). Let (Q3, Q4) be
Q0↑ dom(Q) (3). The returned prefix is Q′ = Q3. By Lemma 3.5.2 and (3), Q0 is a rear-
rangement of Q3Q4 (4). Hence (1) gives QQ1Q2 vdom(Q) Q3Q4 (5) by Property 3.2.2.ii
(page 103) and Property 3.4.2.i (page 106). Since dom(Q1Q2) # dom(Q) by hypothesis
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and dom(Q4) # dom(Q) (6) by Lemma 3.5.2 and (3), we get Q v Q3 (7) by PE-Free

and (5). Additionally, ftv(σ1) ⊆ dom(Q), thus dom(Q4) # ftv(σ1) (8) holds by (6). We
have

σ1 ≡ ∀ (Q1) τ1 by Property 1.5.13.i (page 55)
(QQ1Q2) σ1 v τ1 by I-Drop?

(Q3Q4) σ1 v τ1 by Lemma 3.6.4 and (5)
(Q3) ∀ (Q4) σ1 v ∀ (Q4) τ1 by R-Context-R

(Q3) σ1 v ∀ (Q4) τ1 by (8) and Eq-Free.

Similarly, we can show that (Q3) σ2 v ∀ (Q4) τ2 holds. Moreover, by (2) and (4), we
have (Q3Q4) τ1 ≡ τ2, and we get (Q3) ∀ (Q4) τ1 ≡ ∀ (Q4) τ2 by R-Context-R. To sum
up, we have (7) as well as (Q3) σ1 v ∀ (Q4) τ1 and (Q3) σ2 v ∀ (Q4) τ1. This is the
expected result.

4.5 Termination of the algorithm

In order to make the proof of termination easier, we consider a variant of the unifica-
tion algorithm, composed of two sub-algorithms unify′ and polyunify′. The body of
polyunify′ is the body of polyunify, where the occurrence of unify is replaced by
unify′. The algorithm unify′ is given in Figure 4.5.

The differences between unify and unify′ are in the cases (α, τ) and (α1, α2): The
recursive call to polyunify is given a prefix Q1 in unify′, instead of Q in unify. The
prefix Q1 contains all the bindings of Q which do not depend on α (in the first case),
or on α1 or α2 (in the second case). Intuitively all the bindings that depends on α or
on α1 or α2 are useless during the unification of α and τ or of α1 and α2 (respectively).
In unify′, we explicitly remove such bindings, thus the recursive call to polyunify is
made with a “smaller” prefix. This helps to show termination. First, we show that
unify and unify′ are equivalent. Then we define sizes and weights associated to a
unification problem. Finally, we show that the algorithm unify′ calls itself recursively
with a strictly smaller weight, thus it terminates.

Lemma 4.5.1 The algorithms unify and unify′ are equivalent. More precisely, the
algorithm unify (Q, τ1, τ2) returns Q′ if and only if the algorithm unify′ (Q, τ1, τ2)
returns a rearrangement of Q′.

See proof in the Appendix (page 286).

Definition 4.5.2 We define dσe as the number of universal quantifiers appearing syn-
tactically in σ (considering ∀ (α1 �1 σ1, Q) σ as syntactic sugar for ∀ (α1 �1 σ1) ∀ (Q) σ.
Similarly, d(α1 �1 σ1, . . . αn �n σn)e is n+ dσ1e+ . . . dσne. We also define #τ as the size
of the set dom(τ).

128



4.5 Termination of the algorithm 129

Figure 4.5: Unification algorithm (variant)

unify′ (Q, τ1, τ2)
— Proceeds by case analysis on (τ1, τ2) :

Case (α, α) : return Q.

Case (g τ 1
1 .. τ

n
1 , g τ

1
2 .. τ

n
2 ) :

• let Q0 be Q in
• let Qi be unify′ (Qi−1, τ i−1

1 , τ i−1
2 ) for i ∈ 1..n in

• return Qn.

Case (g1 τ
1
1 .. τ

p
1 , g2 τ

1
2 .. τ

q
2 ) with g1 6= g2 : fail

Case (α, τ) or (τ, α) with (α � σ) ∈ Q and σ ∈ V :
• return unify′ (Q, τ, nf(σ)).

Case (α, τ) or (τ, α) with (α � σ) ∈ Q, τ /∈ ϑ, and σ /∈ V :
• fail if α ∈ dom(Q/τ).
• let I be {β ∈ dom(Q) | β 6= α and α /∈ dom(Q/β)}
• let (Q1, Q2) be Q↑I
• let (Q′

1,_) be polyunify′ (Q1, σ, τ).
• return Q′

1Q2 ⇐ (α= τ).

Case (α1, α2) with (α1 �1 σ1) ∈ Q, (α2 �2 σ2) ∈ Q, α1 6= α2, and σ1, σ2 not in V :
• fail if α1 ∈ dom(Q/σ2) or α2 ∈ dom(Q/σ1).
• let I be {β ∈ dom(Q) | β /∈ {α1, α2} and {α1, α2} # dom(Q/β)}
• let (Q1, Q2) be Q↑I
• let (Q′

1, σ3) be polyunify′ (Q1, σ1, σ2)
• return Q′

1Q2 ⇐ (α1 �1 σ3) ⇐ (α2 �2 σ3) ⇐ α1 ∧ α2

Note that we have #τ > 0 for any τ , while dτe = 0.

Properties 4.5.3

i) For any Q and τ , we have d∀ (Q) τe = dQe.
ii) For any prefix Q1Q2, we have dQ1Q2e = dQ1e + dQ2e.
iii) If Q≈Q′, then dQe = dQ′e.
iv) If unify′ (Q, τ1, τ2) returns Q′, then dQ′e 6 dQe.
v) If polyunify′ (Q,σ1, σ2) returns (Q′, σ3), then dQ′e+ dσ3e 6 dQe+ dσ1e+ dσ2e.

See proof in the Appendix (page 288).

Properties 4.5.3.iv and 4.5.3.v tell us an interesting story. Indeed, by definition,
dQe and dσe are the number of quantifiers appearing in Q and σ. Hence, the two
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aforementioned properties show that the number of quantifiers only decreases during
unification. This corroborates the intuition that we perform only first-order unification,
and that we never guess polymorphism, that is, we never introduce new quantifiers.

Weights

We associate a weight to each call to unify′ (Q, τ1, τ2) and polyunify′ (Q,σ1, σ2). A
weight is a triple in IN 3, with its natural lexicographic ordering.

Definition 4.5.4 The weight associated to unify′ (Q, τ1, τ2) is

(2 × dQe , #τ1 +#τ2 , card(dom(Q/τ1)) + card(dom(Q/τ2)))

The weight associated to polyunify′ (Q,σ1, σ2) is

(1 + 2 × (dQe + dσ1e + dσ2e) , 0 , 0)

Lemma 4.5.5 (Termination of unification) The unify algorithm always termina-
tes, either by failing or by returning a prefix.

Proof: By Lemma 4.5.1, unify (Q, τ1, τ2) terminates if and only if unify′ (Q, τ1, τ2) (1)
terminates. Hence, we show termination for unify′ and polyunify′. Actually, we show
that in the body of (1), all recursive calls to unify′ and polyunify′ have strictly smaller
weights than the weight of (1). Similarly, we show that in the body of polyunify′

(Q, σ1, σ2) (2), recursive calls to unify′ and polyunify′ have strictly smaller weights
than the weight of (2). Termination follows. We proceed by case analysis.

◦ Case (α, α) has no recursive call.

◦ Case (g τ1
1 .. τ

n
1 , g τ

1
2 .. τ

n
2 ): By Property 4.5.3.iv, dQie 6 dQe. Besides, #τ i

1 < #τ1
and #τ i

2 < #τ2. Hence, the weight of unify (Qi, τ i
1, τ

i
2) is strictly smaller than the

weight of (1).

◦ Case (g1 τ
1
1 .. τ

n
1 , g2 τ

1
2 .. τ

n
2 ): both calls fail.

◦ Case (α, τ) with (α = σ) ∈ Q and σ ∈ V : We call unify (Q, τ, nf(σ)) (3). By
hypothesis, we have σ ∈ V , which means that nf(σ) is a type variable β such that
dom(Q/α) = dom(Q/β) ∪ {α}. Hence, card(dom(Q/α)) = card(dom(Q/β)) + 1 (4).
The weight of (1) is the triple

(2 × dQe,#α+ #τ , card(dom(Q/α)) + card(dom(Q/τ)))

The weight of (3) is

(2 × dQe,#β+ #τ , card(dom(Q/β)) + card(dom(Q/τ)))
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By (4), and observing that #β = #α, this weight is equal to

(2 × dQe,#α+ #τ , card(dom(Q/α)) − 1 + card(dom(Q/τ)))

Hence, the weight of (3) is strictly smaller than the weight of (2).

◦ Case (α, τ): Let I be {β ∈ dom(Q) | β 6= α and α /∈ dom(Q/β)}. Let (Q1, Q2) be
Q↑I . There is a recursive call to polyunify′ (Q1, σ, τ) (5). By Lemmas 3.5.2 and 4.5.3.ii,
we have dQe = dQ1e + dQ2e (6) Besides, α ∈ dom(Q2), thus we have dQ2e > 1 + dσe.
This implies dQ1e + 1 + dσe 6 dQ1e + dQ2e, that is, dQ1e + 1 + dσe 6 dQe (7) by (6).
The first element of the weight of (1) is 2 × dQe. The first element of the weight of (5)
is w = 1 + 2 × (dQ1e + dσe + dτe), that is, w = 1 + 2 × (dQ1e + dσe). Hence, we have
w < 2 × (dQ1e + 1 + dσe). By (7), we get w < 2 × dQe. This implies that the weight
of (5) is strictly smaller than the weight of (1).

◦ Case (α1, α2): Let I be {β ∈ dom(Q) | β /∈ {α1, α2} and {α1, α2} # dom(Q/β)}
and (Q1, Q2) be Q↑I . There is a recursive call to polyunify (Q1, σ1, σ2) (8). By
Lemmas 3.5.2 and 4.5.3.ii, we have dQe = dQ1e+ dQ2e (9). Besides, α1, α2 ∈ dom(Q2),
thus dQ2e > 2+dσ1e+dσ2e (10). Hence, dQ1e+2+dσ1e+dσ2e 6 dQe (11) holds from (9)
and (10). The first element of the weight of (1) is 2×dQe. The first element of the weight
of (8) is w = 1 + 2 × (dQ1e + dσ1e + dσ2e). We have w < 2 × (dQ1e + 2 + dσ1e + dσ2e).
Hence, by (11), we get w < 2 × dQe. As a consequence, the weight of (8) is strictly
smaller than the weight of (1).

In polyunify′ (Q, σ1, σ2) (12), we call unify′ (QQ1Q2, τ1, τ2) (13). The first element
of the weight of (12) is 1 + 2 × (dQe + dσ1e + dσ2e), that is, by Property 4.5.3.i, 1 +
2 × (dQe + dQ1e + dQ2e). By Property 4.5.3.ii, the first element of the weight of (13) is
2 × (dQe + dQ1e + dQ2e). Hence, the weight of (13) is strictly smaller than the weight
of (12).

4.6 Completeness of the algorithm

In this section, we show that the unification algorithm is also complete: if the unification
problem admits a solution, then the algorithm finds a solution, which is equivalent or
better (that is, more general).

The following property is used in the proof of completeness.

Lemma 4.6.1 If σ1 and σ2 are not in V, and if polyunify (Q,σ1, σ2) returns (Q′, σ3),
then, σ3 is not in V.

See proof in the Appendix (page 288).

The intuitive specification of completeness is the following: if there is a solution to
a given unification problem (e.g. (Q2) τ1 ≡ τ2 below), then unification succeeds and
returns a better result (e.g. Q′

1 vI Q2 below).
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Lemma 4.6.2 (Completeness of unification) Let I be dom(Q1). We assume that
τ1, τ2, σ1, and σ2 are in ΣI . Furthermore, we assume that Q1 vI Q2 holds.

(i) If (Q2) τ1 ≡ τ2 holds, then unify (Q1, τ1, τ2) succeeds with Q′
1 and we have

Q′
1 vI Q2.

(ii) If σ1, σ2, and σ3 are not in V, and if we have (Q2) σ1 v σ3 and (Q2) σ2 v σ3,
then polyunify (Q1, σ1, σ2) succeeds with Q′

1 and σ′3 such that (Q′
1, γ ≥ σ′3) vI∪{γ}

(Q2, γ ≥ σ3)

Proof: We prove both properties simultaneously by induction on the recursive calls to
the algorithm.

The unify algorithm:

Let I be dom(Q1) (1). We have to show that the algorithm cannot fail, thanks to the
hypotheses (Q2) τ1 ≡ τ2 (2) and Q1 v Q2 (3), and that the returned prefix, Q′

1 is such
that Q′

1 vI Q2. We proceed by case analysis on (τ1, τ2).

◦ Case (α, α) is immediate.

◦ Case (g τ1
1 .. τn

1 , g τ
1
2 .. τn

2 ): We will shown this case by iteration (from 1 to n).
By Property 1.5.11.viii (page 54) applied to (2), we have (Q2) τ

i
1 ≡ τ i

2 for all i ∈ 1..n.
Let Q0 be Q1 and Qi be unify (Qi−1, τ i−1

1 , τ i−1
2 ). We have Q0 v Q2 by hypothesis.

We prove by (local) induction on i, that there exists a renaming φi on dom(Q2) disjoint
from I , and a prefix Qi

0 such that Qi v φi(Q2)Q
i
0 holds and dom(Qi

0) # I . This is
obviously true for i = 0, taking φ0 = id and Qi

0 = ∅. By (local) induction hypothesis,
we have Qi−1 v φi−1(Q2)Q

i−1
0 (4). By Property 3.4.2.iv (page 106), we have Q2 ≡

φi−1(Q2)φ
i−1, thus Q2 ≡I φi−1(Q2) holds by Property 3.4.2.i (page 106) and PE-Free.

Then Q2 ≡I φi−1(Q2)Q
i−1
0 (5) holds by PE-Free. We have (Q2) τ

i
1 ≡ τ i

2 (6), thus
(φi−1(Q2)Q

i−1
0 ) τ i

1 ≡ τ i
2 (7) holds by Lemma 3.6.4 applied to (5) and (6). Hence, by

induction hypothesis, (4), and (7), Qi is defined (that is, the algorithm succeeds) and
we have Qi vI φi−1(Q2)Q

i−1
0 . By Lemma 3.6.2 (page 114), there exists a renaming φ

disjoint from I and a prefix Q0 such that we have Qi v φ(φi−1(Q2)Q
i−1
0 )Q0. Taking

φi = φ ◦ φi−1 and Qi
0 = φ(Qi−1

0 )Q0 gives the expected result.

By (local) induction, the result holds for n, hence, we have

Q′
1 = Qn v φn(Q2)Q

n
0 ≡I Q2

Finally, we have Q′
1 vI Q2. This is the expected result.

◦ Case (g1 . . . , g2 . . .) with g1 6= g2: The algorithm fails. Indeed, according to
Property 1.5.11.viii, it is not possible to find Q2 such that (Q2) g1 . . . ≡ g2 . . ., thus
this case does not happen.

◦ Case (α, τ) or (τ, α) with (α � σ) ∈ Q1 and σ ∈ V : By hypothesis, (Q2) τ ≡ α (8)
holds. We have (Q1) α ≡ nf(σ) (9) by Eq-Mono. Moreover, ftv(nf(σ)) ⊆ dom(Q1)
holds, thus we have ftv(nf(σ)) ⊆ I from (1). Hence, by Lemma 3.6.4, (3), and (9), we get
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(Q2) α ≡ nf(σ) (10). Consequently, (Q2) τ ≡ nf(σ) holds by R-Trans, (10), and (8).
Hence, we get the result by induction hypothesis applied to unify (Q1, τ, nf(σ)).

◦ Case (α, τ) or (τ, α): We have (α � σ) ∈ Q1 (11), as well as τ /∈ ϑ (12) and
σ /∈ V (13). By hypothesis, (Q2) τ ≡ α (14) holds. In the first point, below, we
show that the algorithm cannot fail in the first step of the case (α, τ). In the second
point, we use the induction hypothesis and the completeness of the update algorithm
(Lemma 4.2.4) to show the result. The case where the binding is rigid might fail because
of the abstraction-check algorithm. It is not the case thanks to Lemma 3.6.9, as shown
below.

• If α ∈ dom(Q1/τ), then Q1 is of the form (Qa, α�σ,Qb) and α ∈ ftv(∀ (Qb) τ) (15).
Since τ /∈ ϑ, we have ∀ (Qb) τ /∈ V (16). We can derive (Q1) ∀ (Qb) τ v τ (17) by
I-Drop?. Hence, (Q2) ∀ (Qb) τ v τ holds by Lemma 3.6.4, (17), and (3). By (14),
we get (Q2) ∀ (Qb) τ v α (18). By Property 2.1.7.ii (page 68), (15), and (18), we
have ∀ (Qb) τ ≡ α, which is not possible by (16). Hence, α /∈ dom(Q1/τ) (19), and
the algorithm does not fail on the first step.

• From (14) and Corollary 1.5.10, we must have α ∈ dom(Q̂2). Hence, there exists
τ ′ and σ′ such that (α = σ′) ∈ Q2 (20) and nf(σ′) = τ ′. Then (Q2) α ≡ σ′ (21)
holds by Eq-Mono and Property 1.5.6.i. Note that (11) gives α ∈ I (22) and
dom(Q1/α) ⊆ I (23) by (1). By Property 3.6.5.i (page 114), (2), (22), (23),
(13), (11), and (20), we have (Q2) σ v σ′ (24), thus (Q2) σ v τ (25) holds
by R-Trans, (24), (21), and (14). We have (Q2) τ v τ (26) by Eq-Refl. By
induction hypothesis, (3), (13), (12), (25), and (26), polyunify (Q1, σ, τ) succeeds
with (Q′, σ3) (27) such that (Q′, γ ≥ σ3) vI∪{γ} (Q2, γ ≥ τ). By Property 3.4.2.i
(page 106) and PE-Free, we get Q′ vI Q2 (28). By Property 4.3.1.i (page 125)
and (19), we have (α � σ) ∈ Q′ (29) and α /∈ dom(Q′/τ) (30). By (14), A-

Equiv, and I-Abstract, we get (Q2) τ @− α (31) and (Q2) τ v α (32). The
Soundness Lemma (Lemma 4.4.1) applied to (27) give (Q′) τ v σ3 (33), (Q′) σ v
σ3 (34), and Q1 v Q′. By Lemma 2.1.6 and (33), we have (Q′) σ3 ≡ τ (35),
thus (Q′) σ v τ (36) holds by R-Trans, (35), and (34). If � is rigid, we can
derive (Q2) σ @− τ by Property 3.6.5.ii (page 114), thus (Q′) σ @− τ (37) holds by
Lemma 3.6.9, (28), (36), and (12). Let Q′

1 be Q′ ⇐ (α = τ). By Lemma 4.2.4
(page 123), (28), (29), (37), (36), (30), (32) and (31), Q′

1 is well defined and Q′
1 vI

Q2 holds. This is the expected result.

◦ Case (α1, α2): We have (α1 �1 σ1) ∈ Q1 (38), and (α2 �2 σ2) ∈ Q1 (39). By
hypothesis, (Q2) α1 ≡ α2 (40) holds, σ1, σ2 /∈ V (41). By well-formedness of (3), Q1 is
closed. Hence, (38) and (39) imply utv(σ1)∪utv(σ2) ⊆ dom(Q1), that is, σ1, σ2 ∈ ΣI (42)
by (1).

We show, in a first time, that the algorithm does not fail on its first step. Assume, by
a way of contradiction, that α2 ∈ dom(Q1/σ1) holds. Then Q1 is of the form (Qa, α2 �2

σ2, Qb) and α2 ∈ ftv(∀ (Qb) σ1) (43). From (41), we have ∀ (Qb) σ1 /∈ V (44). We can
derive (Q1) ∀ (Qb) σ1 v α1 by I-Drop?, and I-Hyp or A-Hyp. Hence, (Q2) ∀ (Qb) σ1 v
α1 holds by Lemma 3.6.4 and (3). With (40) and R-Trans, we get (Q2) ∀ (Qb) σ1 v

133



134 Unification

α2 (45). By Property 2.1.7.ii (page 68), (43), and (45), we have ∀ (Qb) σ1 ≡ α2, which
is not possible by (44). Hence, the hypothesis α2 ∈ dom(Q1/σ1) is not true. Similarly,
we can show α1 /∈ dom(Q1/σ2) (46). As a consequence, the algorithm does not fail on
the first step.

We now gather the necessary intermediate results to use the completeness of the update
algorithm (Lemma 4.2.4). This proof is quite similar to the case (α, τ) above. It is a
little more intricate, though, because both bounds are type schemes (not monotypes),
and so is their unifier. If �1 is rigid, we have (Q1) σ1 @− α1 (47) by A-Hyp, and
(Q1) σ1 v α1 (48) by I-Abstract. If �1 is flexible, we have (48) directly by I-Hyp.
By Lemma 3.6.4, (47), (48), and (3), we get (Q2) σ1 @− α1 (49) (when �1 is rigid), and
(Q2) σ1 v α1 (50). By Property 3.2.3.i, (49), and (41), we get (Q2) σ1 @− Q2(α1) (51)
(when �1 is rigid). By Property 3.2.3.ii, (50), and (41), we get (Q2) σ1 v Q2(α1) (52).
Similarly, we have (Q2) σ2 v Q2(α2) (53), and (Q2) σ2 @− Q2(α2) when �2 is rigid. By
Property 2.2.2.v (page 69) and (40), we have (Q2) Q2(α1) ≡ Q2(α2) (54). Let σ3 be
Q2(α1) (55). Note that by Definition 2.2.1, we have σ3 /∈ V (56). By (52) and (55),
we have (Q2) σ1 v σ3 (57). By (53), (55), and (54), we get (Q2) σ2 v σ3 (58).
By induction hypothesis, (3), (41), (56), (57), and (58), polyunify (Q1, σ1, σ2) succeeds
with (Q′, σ′

3) such that (Q′, γ≥σ′
3) v

I∪{γ} (Q2, γ≥σ3) holds. By Lemma 3.6.1 (page 113),
there exists a renaming φ disjoint from I ∪ {γ} and a substitution θ such that (Q′, γ ≥
σ′

3) v
J∪{γ} (φ(Q2), γ ≥ φ(σ3), θ) (59) holds, J is the domain dom(Q′/I ∪ ftv(σ′

3)) (60),
and dom(θ) ⊆ J − I (61). From (59), PE-Comm, and (61), we get (Q′, γ ≥ σ′

3) v
J∪{γ}

(φ(Q2)θ, γ ≥ φ(σ3)) (62). Let σ′′
3 be φ(σ3) (63) and Q′

2 be φ(Q2)θ (64) Then (62)
becomes (Q′, γ≥σ′

3) v
J∪{γ} (Q′

2, γ≥σ
′′
3 ) (65). We get Q′ vJ Q′

2 (66) by Property 3.4.2.i
(page 106) and PE-Free. By Lemma 4.6.1, we have σ′

3 /∈ V (67). By (60), we have
dom(Q′, γ ≥ σ′

3/γ) ⊆ J ∪ {γ} (68). We have (Q′
2) σ

′
3 v σ′′

3 (69) by Property 3.6.5.i
(page 114), (65), (68), (67). Additionally, Q2 ≡ φ(Q2)φ (70) holds by Property 3.4.2.iv

(page 106), which leads to Q2 ≡I φ(Q2)θ (71) by Property 3.4.2.i (page 106) and PE-

Free. From (71) and (64), we get Q2 ≡I Q′
2 (72). By soundness (Lemma 4.4.1), we

have (Q′) σ1 v σ′
3 (73). Hence, (Q′

2) σ1 v σ′
3 (74) holds by Lemma 3.6.4 and (66).

By (46) and Property 4.3.1.i (page 125), we have (α1 �1 σ1)∈ Q′ (75) as well as α1 /∈
dom(Q′/σ′

3) (76). By Property 3.2.3.iii (page 103) and (55), we get (Q′
2) σ

′′
3 v α1 (77).

By (77), (69), and R-Trans, we get (Q′
2) σ

′
3 v α1 (78).

We temporarily consider, in this paragraph, that �1 is rigid. Then (51) holds, that
is, (Q2) σ1 @− σ3. Then by (70) and Lemma 3.6.4, we get (Q′

2φ) σ1 @− σ3, thus we
get (Q′

2) φ(σ1) @− φ(σ3) by R-Context-R. Since φ is a renaming disjoint from I ,
and by (63) and (42), this gives (Q′

2) σ1 @− σ′′
3 (79) . By Lemma 3.6.6, (74), (69)

and (79), we get (Q′
2) σ1 @− σ′

3 (80) and (Q′
2) σ

′
3 @− σ′′

3 (81). By Lemma 3.6.9, (60),
(67), (73), (66), (80), we get (Q′) σ1 @− σ′

3 (82). (Q′) σ1 @− α1 holds by A-Hyp and (75).
Hence, (Q′

2) σ1 @− α1 (83) holds by Lemma 3.6.4 and (66). By Property 2.2.2.i (page 69),
we have (Q′

2) α1 ≡ Q′
2[α1] (84). Thus, we get (Q′

2) σ1 @− Q′
2[α1] (85) by R-Trans, (83),

and (84). By Corollary 2.3.4, (85) and (41), the bound of Q′
2[α1] is rigid. Hence,

(Q′
2) Q

′
2(α1) @− Q′

2[α1] holds by A-Hyp. That is, (Q′
2) σ

′′
3 @− α1 (86) by (63), (84), and

R-Trans. Then (Q′
2) σ

′
3 @− α1 (87) holds by (81), (86), and R-Trans.

We get back to the general case. We have ftv(σ′
3) ⊆ J (88) from (60). By hypothesis,
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we have α1 ∈ I , thus α1 ∈ J (89). Let Qa be Q′ ⇐ (α1 �1 σ
′
3), let Qb be Qa ⇐

(α2 �2 σ
′
3), and Q′

1 be Qb ⇐ α1 ∧ α2. By Lemma 4.2.4 (page 123), (66), (75), (73), (82),
(76), (88), (89), (78) and (87), Qa is well-defined and we have Qa vJ Q′

2. Similarly, Qb

is well-defined and we have Qb v
J Q′

2. By Property 3.4.2.i (page 106), we get Qb v
I Q′

2,
and by (72), we have Qb vI Q2. Then by Lemma 4.2.8 (page 124), we have Q′

1 vI Q2.
This is the expected result.

The polyunify algorithm:

By hypothesis, σ1, σ2, and σ3 are not in V , and we have (Q2) σ1 v σ3 (1) and (Q2) σ2 v
σ3 (2). Besides, Q1 vI Q2 (3) holds with I = dom(Q1). Hence, I ⊆ dom(Q2) (4). We
show that the algorithm does not fail and returns (Q′

1, σ
′
3) such that (Q′

1, γ≥σ
′
3) v

I∪{γ}

(Q2, γ ≥ σ3) holds. We proceed by case on (σ1, σ2).

◦ Case (⊥, σ) or (σ,⊥): Then we return (Q1, σ). We have (Q2) σ v σ3 (5) by (1)
or (2). By hypothesis, we have utv(σ) ⊆ dom(Q1), that is utv(σ) ⊆ I . Thus, we have
(Q1, γ≥σ) vI∪{γ} (Q2, γ≥σ) by Property 3.4.2.iii (page 106). Then (Q1, γ≥σ) vI∪{γ}

(Q2, γ ≥ σ3) holds by PI-Context-L, (5) and PI-Trans.

◦ Case (∀ (P1) τ1, ∀ (P2) τ2): By hypothesis, we have dom(Q1), dom(P1) and dom(P2)
disjoint. We have to gather the intermediate results necessary to use the Recomposition
Lemma (Lemma 3.6.13), which immediately gives the expected result, as shown below.

By Lemma 3.4.4, (1) and (2), there exist two substitutions θ1 and θ2 and two alpha-
conversions of σ3, which we write ∀ (P3) τ3 and ∀ (P4) τ4 , such that we have

Q2P1 vdom(Q2)∪I1 Q2P3θ1 (6) Q2P2 vdom(Q2)∪I2 Q2P4θ2

I1
M

= dom(P1/ ftv(τ1)) I2
M

= dom(P2/ ftv(τ2))

(Q2P3) θ1(τ1) ≡ τ3 (7) (Q2P4) θ2(τ2) ≡ τ4

By Lemma 3.6.2 (page 114) and (6), there exists a renaming φ1 on dom(Q2P3θ1), disjoint
from dom(Q2) ∪ I1, and a prefix Q0 such that we have Q2P1 v φ1(Q2P3θ1)Q0. Note
that φ1(τ1) is τ1. Since φ1 is disjoint from dom(Q2), we have Q2P1 v Q2φ1(P3θ1)Q0.
We define P ′

3 as φ1(P3), τ
′
3 as φ1(τ3), and θ′1 as the substitution extracted from φ1(θ1).

The last judgment can now be written Q2P1 v Q2P
′
3θ

′
1Q0 (8). By Property 1.7.2.i

(page 59) and (7), we get (Q2P
′
3) θ

′
1(τ1) ≡ τ ′3 (9). Similarly, there exists φ2 disjoint

from dom(Q2) ∪ I2 and Q′
0, and we define P ′

4 as φ2(P4), τ
′
4 as φ2(τ4) and θ′2 as the

substitution extracted from φ2(θ2), so that we have Q2P2 v Q2P
′
4θ

′
2Q

′
0 (10) and (Q2P

′
4)

θ′2(τ2) ≡ τ ′4 (11). By definition, ∀ (P4) τ4 is an alpha-conversion of ∀ (P3) τ3, thus there
exists a renaming ψ of dom(P3) such that P4 = ψ(P3) and τ4 = ψ(τ3) hold. Let ψ′ be
a renaming mapping dom(P ′

4) to fresh variables, (that is, outside dom(Q1) ∪ dom(Q2) ∪
dom(P ′

3)∪ dom(P1)∪ dom(P2) ∪ dom(θ′2Q
′
0)). Let φ be ψ′ ◦ φ2 ◦ψ ◦ φ¬1 , let P5 be ψ′(P ′

4)
and τ5 be ψ′(τ ′4). We have P5 = φ(P ′

3) as well as τ5 = φ(τ ′3) (12) Hence, ∀ (P5) τ5 is an
alpha-renaming of ∀ (P ′

3) τ
′
3. By Property 3.4.2.iv (page 106), we have Q2P

′
4 ≡ Q2P5ψ

′.
By Property 3.4.2.iii (page 106), it leads to Q2P

′
4θ

′
2Q

′
0 ≡ Q2P5ψ

′θ′2Q
′
0 (13). Let θ′′2 be

ψ′ ◦ θ′2 (14). By PI-Trans, (13), (10), and (14), we get Q2P2 v Q2P5θ
′′
2Q

′
0 (15). By
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Property 1.7.2.i (page 59) and (11), we get (Q2P5) θ
′′
2 (τ2) ≡ τ5 (16). By construction,

we have P ′
3 # P5.

By Property 3.4.2.iii (page 106) and (8), we get Q2P1P2 v Q2P
′
3θ

′
1Q0P2, which gives by

PE-Comm Q2P1P2 v Q2P2P
′
3θ

′
1Q0 (17). By Property 3.4.2.iii (page 106), (15), we get

Q2P2P
′
3θ

′
1Q0 v Q2P5θ

′′
2Q

′
0P

′
3θ

′
1Q0

which gives by PE-Comm

Q2P2P
′
3θ

′
1Q0 v Q2P

′
3P5θ

′
1θ

′′
2Q0Q

′
0 (18)

By PI-Trans, (17) and (18), we have

Q2P1P2 v Q2P
′
3P5θ

′
1θ

′′
2Q0Q

′
0 (19)

By Property 3.4.2.v (page 106), we get

Q2P
′
3P5θ

′
1θ

′′
2Q0Q

′
0 v Q2P

′
3φ

¬θ′1θ
′′
2Q0Q

′
0 (20)

Hence, by PI-Trans, (19), and (20), we have

Q2P1P2 v Q2P
′
3φ

¬θ′1θ
′′
2Q0Q

′
0 (21)

By Lemma 3.6.4, (16), and (20), we have (Q2P
′
3φ

¬θ′1θ
′′
2Q0Q

′
0) θ

′′
2 (τ2) ≡ τ5 (22). More-

over, we have

(Q2P
′
3φ

¬θ′1θ
′′
2Q0Q

′
0) τ1 ≡ θ′1(τ1) by Eq-Mono

≡(23) τ ′3 by (9)
= φ¬(τ5) by (12)
≡ τ5 by Eq-Mono

≡ θ′′2 (τ2) by (22)
≡ τ2 by Eq-Mono

In summary, we have shown that we have (Q2P
′
3φ

¬θ′1θ
′′
2Q0Q

′
0) τ1 ≡ τ2 (24). Ad-

ditionally, (Q2) ∀ (P ′
3φ

¬θ′1θ
′′
2Q0Q

′
0) τ1 ≡ ∀ (P ′

3φ
¬θ′1θ

′′
2Q0Q

′
0) τ

′
3 holds by (23) and R-

Context-R, that is, (Q2) ∀ (P ′
3φ

¬θ′1θ
′′
2Q0Q

′
0) τ1 ≡ σ3 (25). Similarly, we have (Q2)

∀ (P ′
3φ

¬θ′1θ
′′
2Q0Q

′
0) τ2 ≡ σ3. By Property 3.4.2.iii (page 106) and (3), we get Q1P1P2 v

Q2P1P2. Hence, we have Q1P1P2 v Q2P
′
3φ

¬θ′1θ
′′
2Q0Q

′
0 (26) from (21). Hence, by (26),

(24), and induction hypothesis, the call to unify (Q1P1P2, τ1, τ2) succeeds with Q0 such
that Q0 vdom(Q1P1P2) Q2P

′
3φ

¬θ′1θ
′′
2Q0Q

′
0 (27).

Let (Q3, Q4) be Q0↑ dom(Q1), that is, Q0↑I . By Lemma 3.6.13, (27), and (4), ftv(τ1) ⊆
I ∪ dom(P1), taking J = dom(P1P2), and by (25), we get (Q3, γ ≥ ∀ (Q4) τ1) vI∪{γ}

(Q2, γ ≥ σ3). The algorithm returns (Q3, ∀ (Q4) τ1), thus Q′
1 is Q3 and σ′

3 is ∀ (Q4) τ1.
Hence, we have shown that (Q′

1, γ ≥ σ′
3) v

I∪{γ} (Q2, γ ≥ σ3) holds. This is the expected
result.
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Corollary 4.6.3 Assume Q1 vI Q2 and τ1, τ2 are in ΣI . If (Q2) τ1 ≡ τ2 holds, then
unify (Q1, τ1, τ2) succeeds with Q′

1 such that Q′
1 vI Q2.

See proof in the Appendix (page 289).

Theorem 1 For any prefix Q and monotypes τ1 and τ2, unify (Q, τ1, τ2) returns the
smallest prefix (for the relation vdom(Q)) that unifies τ1 and τ2 under Q, or fails if there
exists no prefix Q′ that unifies τ1 and τ2 under Q.

This theorem is a direct consequence of the soundness of the unification algorithm
(Lemma 4.4.1), of its completeness (Lemma 4.6.2), and of its proof of termination
(Lemma 4.5.5). Indeed, given a unification problem, the unification algorithm either
fails or returns a prefix Q (termination). It it fails, the unification problem has no solu-
tion (completeness). Otherwise, Q is a solution to the unification problem (soundness)
and all other solutions are instances of Q (completeness).

First-order unification The next lemma shows that the unification algorithm for
MLF returns the same result as the unification algorithm for ML when the given unifi-
cation problem is actually an ML unification problem.

Lemma 4.6.4 Given two monotypes τ1 and τ2, and an unconstrained prefix Q such
that τ1 and τ2 are closed under Q, unify (Q, τ1, τ2) returns Q′ such that Q̂′ is the
principal unifier of τ1 and τ2, or fails if τ1 and τ2 cannot be unified.

Proof: Termination: By Lemma 4.5.5, we know that unify (Q, τ1, τ2) always terminates.

Soundness: If unify (Q, τ1, τ2) returns a prefix Q′, then by Lemma 4.4.1, we haveQ v Q′

and (Q′) τ1 ≡ τ2 (1). Let θ be Q̂′. By Property 1.5.11.vii (page 54) and (1), we have
θ(τ1) = θ(τ2). Hence, θ is a unifier of τ1 and τ2.

Completeness: Assume there exists a substitution θ such that θ(τ1) = θ(τ2). Then (θ)
τ1 ≡ τ2 (2) holds by Eq-Mono. Let I be ftv(σ1)∪ ftv(σ2). Let Q′′ be an unconstrained
prefix such that ftv(θ(I)) ⊆ dom(Q′′). Then Q vI Q′′θ (3) holds by PE-Free, PI-

Context-L, and I-Bot. By Corollary 4.6.3, (2), and (3), unify (Q, τ1, τ2) succeeds
and returns Q′ such that Q′ vI Q′′θ. By Lemma 3.6.10 (page 116), there exists θ′ such

that we have θ = θ′ ◦ Q̂′. This is the expected result.
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Part II

The programming language
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The expressiveness of types, which we studied in Part I, is richer than in ML:
types contain first-class polymorphism. In this part, we explain how to use such an
expressiveness of types in the framework of a programming language, MLF, and we show
that this language is safe, that is, well-typed programs do not go wrong. Type safety
in MLF is shown by the usual combination of progress, which states that a well-typed
expression is either a value or can be further reduced, and subject reduction, which
states that reduction preserves typings. Since MLF aims at being an extension of ML,
the syntax of MLF contains the syntax of ML, along with the same reduction rules.
Actually, MLF expressions are exactly ML expressions. Moreover, it will be shown in
Corollary 8.1.7 that MLF without type annotations has the same set of typable terms
as ML.

Fortunately, the power available in MLF polymorphic types can be introduced
thanks to type annotations, which are a set of primitives. Those primitives have no
dynamic cost: they behave just like the identity, but their given types make it possible
to introduce first-class polymorphism in programs. Of course, such primitives have
types that, in general, could not be expressed in ML. Their types need the expressive-
ness available in MLF. Since we are interested in showing subject reduction, we have
to associate a reduction rule to each type annotation. However, the reduction rules
associated to some type annotations would need a language of types even richer than
MLF types. In other words, it is not possible to associate a reduction rule to every
type annotation using the MLF types. Hence, we use a trick, called oracles. Oracles
are a simple mark put on an expression, which intuitively stands for a suitable type
annotation. Then reduction rules associated to type annotations are easily written
using oracles. The language made of MLF and oracles is called MLF

?. Although we
wish to prove type-safety in MLF, we have to show subject-reduction and progress in
MLF

? because type annotations create oracles by reduction. Note that, like type an-
notations, oracles have no dynamic cost: they just behave like the identity. Their role
is only static. Indeed, they are used in replacement of type annotations to allow the
introduction of first-class polymorphism. A key difference between oracles and type
annotations, or equivalently between MLF

? and MLF, is that type annotations contain
all the type information needed for type inference, whereas oracles do not contain type
information, but only indicate places where an annotation should be inserted. As a
consequence, type inference is possible in MLF. On the contrary, it is probably unde-
cidable in MLF

? , just as in System F, even though the undecidability of the latter does
not imply the undecidability of the former. See Part III and in particular Chapter 10
for a more detailed discussion about this issue.

This part is organized as follows: we define MLF and MLF
? in Chapter 5, and we

give their static and dynamic semantics. Type safety is shown for MLF
? in Chapter 6,

and type safety for MLF is a direct consequence. A type inference algorithm for MLF

is shown sound and complete in Chapter 7. Finally, type annotations are introduced
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as a set of primitives in Chapter 8. Type annotations can be viewed as a bridge
between MLF, which has type inference, and MLF

?, which has oracles needed for subject
reduction.
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Chapter 5

Syntax and semantics

This chapter introduces the syntax of MLF
?, which is the syntax of ML with oracles

(Section 5.1). Then its static semantics, that is, the typing rules of MLF
? are given in

Section 5.2. They are similar to ML typing rules, with the additional rule for oracles
that allows the reversal of the abstraction relation. This is called revelation. Since
implicit revelation would break type inference, oracles are not allowed in MLF, for
which we wish to build a type-inference algorithm. They will replaced by explicit type
annotations, as described in Chapter 8. Like in ML, we provide a syntax-directed
set of typing rules in Section 5.3. Whereas the syntax-directed presentation of ML
tries to keep judgments as instantiated as possible, we try to keep MLF

? judgments as
generalized as possible. Indeed, polymorphism has to be kept deeply in type structures,
in order to ensure principal types. Binders can always be extruded to outer levels
afterwards. Finally, Section 5.4 gives the dynamic semantics of MLF

?, which is identical
to that of ML. Oracles do not contribute to reduction. They are simply propagated to
indicate the locations that need to be annotated in reduced expressions .

We also consider a variant of MLF
?, called UMLF (unannotated MLF), where oracles

are all implicit. As expected MLF, MLF
?, and UMLFhave the same set of typable terms,

but full type inference is possible only in MLF.

5.1 Syntax

We assume given a countable set of variables, written with letter x, and a countable
set of constants c ∈ C. Every constant c has an arity |c|. A constant is either a
primitive f or a constructor C. The distinction between constructors and primitives
lies in their dynamic semantics: primitives (such as +) are reduced when fully applied,
while constructors (such as cons) represent data structures, and are only reduced by
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Figure 5.1: Expressions of MLF
?

a ::= x | c | λ(x) a | a a | let x = a in a Terms

| (a : ?) Oracles

c ::= f | C Constants

z ::= x | c Identifiers

other primitives (or pattern matching in a suitable extension of the language). We use
letter z to refer to identifiers, i.e. either variables x or constants c.

Expressions of MLF
?, written with letter a, are described in Figure 5.1. Expressions

are those of ML extended with oracles. An oracle, written (a : ?) is a place holder for
an implicit type annotation around the expression a. Equivalently, the oracles can be
replaced by explicit type annotations before type inference. Explicit annotations (a : σ),
which are described in Chapter 8, are actually syntactic sugar for applications (σ) a
where (σ) are constants. Some examples given in the introduction use the notation
λ(x : σ) a, which is not defined in Figure 5.1 because it is syntactic sugar for λ(x)
let x = (x : σ) in a. Similarly, λ(x : ?) a means λ(x) let x = (x : ?) in a.

The language MLF is the restriction of MLF
? to expressions that do not contain

oracles. Programmers are expected to write their programs in MLF, so that type
inference is possible. Reductions rules, however, may introduce oracles. More precisely,
oracles are only introduced by type annotation primitives. Hence, the language MLF

?

is only needed to show subject reduction for programs that contain type annotations.

5.2 Static semantics

Typing environments (or typing contexts), written with letter Γ, are lists of assertions
of the form z : σ that bind each identifier at most once. We write z : σ ∈ Γ to mean
that z is bound in Γ. We note that the order of assertions is not significant in Γ
since identifiers are bound at most once. We assume given an initial typing context Γ0

mapping constants to closed polytypes. A typing environment Γ extends Γ0 whenever
for all z : σ in Γ0, we have z : σ in Γ.

Typing judgments are of the form (Q) Γ ` a : σ. A tiny difference with ML is the
presence of the prefix Q that assigns bounds to type variables appearing free in Γ or σ.
By comparison, this prefix is left implicit in ML because all free type variables have
the same (implicit) bound ⊥. In MLF and MLF

?, we require σ and all polytypes of Γ
to be closed with respect to Q, that is, utv(Γ) ∪ utv(σ) ⊆ dom(Q).
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Figure 5.2: Typing rules for MLF and MLF
?

Var

z : σ ∈ Γ

(Q) Γ ` z : σ

App

(Q) Γ ` a1 : τ2 → τ1 (Q) Γ ` a2 : τ2

(Q) Γ ` a1 a2 : τ1

Fun

(Q) Γ, x : τ0 ` a : τ

(Q) Γ ` λ(x) a : τ0 → τ

Let

(Q) Γ ` a1 : σ
(Q) Γ, x : σ ` a2 : τ

(Q) Γ ` let x = a1 in a2 : τ

Gen

(Q,α � σ) Γ ` a : σ′ α /∈ ftv(Γ)

(Q) Γ ` a : ∀ (α � σ) σ′

Inst

(Q) Γ ` a : σ (Q) σ v σ′

(Q) Γ ` a : σ′

Oracle

(Q) Γ ` a : σ (Q) σ A− σ′

(Q) Γ ` (a : ?) : σ′

Typing rules The typing rules of MLF
? and MLF are described in Figure 5.2. They

correspond to the typing rules of ML modulo the richer types, the richer instance re-
lation, and the explicit binding of free type variables in judgments (in the prefix). In
addition, Rule Oracle allows for the revelation of polytypes, that is, the transfor-
mation of types along the inverse of the abstraction relation. (This rule would have
no effect in ML where abstraction is the same as equivalence.) As explained in the
introduction, we also consider UMLF, a variant of MLF

? where oracles are left implicit.
This amounts to replacing Rule Oracle by U-Oracle given below or, equivalently,
combine Oracle with Inst into U-Inst.

U-Oracle

(Q) Γ ` a : σ (Q) σ A− σ′

(Q) Γ ` a : σ′

U-Inst

(Q) Γ ` a : σ (Q) σ A−vA− σ′

(Q) Γ ` a : σ′

In Rule U-Inst, we have to allow revelation before and after instantiation because v
and A− do not commute in general, under an arbitrary prefix. However, A−vA−v happens
to be equal1 to A−vA−. Thus, Rule U-Inst never needs to be used twice on the same
expression.

As in ML, there is an important difference between rules Fun and Let: while
typechecking their bodies, a let-bound variable can be assigned a polytype, but a λ-
bound variable can only be assigned a monotype in Γ. Indeed, the latter must be
guessed while the former can be inferred from the type of the bound expression. This

1This statement is not shown in this document. It is proved under an unconstrained prefix using
the Diamond Lemma (Lemma 2.8.4).
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restriction is essential to enable type inference. Notice that a λ-bound variable can refer
to a polytype abstractly via a type variable α bound to a polytype σ in Q. However,
this will not make it possible to take different instances of σ while typing the body of
the abstraction, unless the polytype bound σ of α is first revealed by an oracle. Indeed,
the only possible instances of α under a prefix Q that contains the binding (α= σ) are
types equivalent to α under Q, as shown by Lemma 2.1.6. However, (Q) α ≡ σ does
not hold (see Property 1.5.11.x (page 54)). Thus, if x : α is in the typing context Γ,
the only way of typing x (modulo equivalence) is (Q) Γ ` x : α, whereas (Q) Γ ` x : σ
is not derivable. Conversely, (Q) Γ ` (x : ?) : σ is derivable, since (Q) α A− σ holds.
This prevents, for example, λ(x) x x from being typable in MLF—see Example 6.2.12.

5.2.1 ML as a subset of MLF

ML can be embedded into MLF by restricting all bounds in the prefix Q to be uncon-
strained. Rules Gen and Inst are then exactly those of ML, by Lemma 3.4.7. Hence,
any closed program typable in ML is also typable in MLF.

The converse will be shown in Section 8.1; that is, terms typable in MLF without
primitives are also typable in ML.

5.2.2 Examples of typings

In this section, we consider three examples of typings:

• The first one illustrates that the canonical typing in MLF (or principal typing) of
a term can be quite different from its typing in ML.

• The second example focuses on the role of rigid bindings in types: we introduce
two constants whose type differ only by one rigid binding. In the type of the first
constant, a single rigid binding is used. In the type of the second constant, the
same rigid binding is duplicated. We compare the typing of expressions using
either one of these constants.

• The third example considers the “app” property, which illustrates the composi-
tionality of MLF.

Example 5.2.9 This first example of typing illustrates the use of polytypes in typing
derivations: we consider the simple expression K ′ defined by λ(x) λ(y) y. Following
ML, one possible typing derivation is (recall that (α, β) stands for (α ≥⊥, β ≥⊥)):

Gen

Fun
(α, β) x : α, y : β ` y : β

Fun
(α, β) x : α ` λ(y) y : β → β

(α, β) ` K ′ : α→ (β → β)

` K ′ : ∀ (α, β) α→ (β → β)

146



5.2 Static semantics 147

There is, however, another typing derivation that infers a more general type for K ′ in
MLF (for conciseness we write Q for (α, β≥σid), and we recall that σid is ∀ (α) α→ α):

Inst

Gen

Fun
(Q, γ) x : α, y : γ ` y : γ

(Q, γ) x : α ` λ(y) y : γ → γ

(Q) x : α ` λ(y) y : σid (Q) σid v β
I-Hyp

Fun
(Q) x : α ` λ(y) y : β

Gen
(Q) ` K ′ : α→ β

` K ′ : ∀ (Q) α→ β

Notice that the polytype ∀ (Q) α → β is more general than ∀ (α, β) α → (β → β),
which follows from Example 1.8.7. Actually, this derivation gives the principal type of
K ′. Satisfyingly, this is also the type inferred by the type inference algorithm (given in
Chapter 7), and implemented in a prototype of MLF:

# let k’ = fun x y -> y ;;

val k’ : [’a] [’b > [’c] ’c -> ’c] ’a -> ’b

Here are graphs representing the type of K ′. The left-hand graph represents its
principal type in MLF, given above. The right-hand graph represents the type of K ′ in
ML, that is, ∀ (α, β) α→ β → β.

→

⊥

→

⊥

→

⊥

→

⊥

Example 5.2.10 This example emphasizes the role of the relation A− during typing.
Let f1 and f2 be two functions of respective types:

σ1
M

= ∀ (α= σid) ∀ (α′ = σid) α→ α′

σ2
M

= ∀ (α= σid) α→ α

The graphs representing these types are the following:
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→

→

⊥

→

⊥

→

→

⊥

Intuitively, f1 and f2 behave like the identity (they just return their argument). Let
us check that the expression a1 defined as λ(x) (f1 x) x, is typable but a2, defined as
λ(x) (f2 x) x, is not. In the former case, we can easily derive the following judgment,
where Q stands for (α= σid, α

′ = σid) and Γ is x : α:

App
(Q) Γ ` f1 : α→ α′ (Q) Γ ` x : α

(Q) Γ ` f1 x : α′ (1)

Hence (α = σid) Γ ` f1 x : ∀ (α′ = σid) α
′ holds by Rule Gen since α′ is not free

in the context. By Rule Eq-Var, we get ∀ (α′ = σid) α
′ ≡ σid (under any prefix).

Besides, we also have σid v α → α under any prefix that binds α. Consequently, we
get (α = σid) Γ ` f1 x : α → α by Rule Inst. Hence, ` λ(x) (f1 x) x : σ2 follows by
App and Gen. However, when f1 is replaced by f2, we can only derive (Q) Γ ` f2 x : α
instead of the judgment (1) and we cannot apply Rule Gen with α. Additionally, it
happens that σ1 @− σ2 is derivable (see for example Rule A-Alias’), thus (f2 : ?) can
be given the type σ1 so that λ(x) (f2 : ?) x x is typable.

We see that the expression a2 is not typable as such, but becomes typable with an
oracle. In this very example, the role of the oracle is to “transform” the function f2 into
f1. The function f2 can be viewed as the identity, that is, a silent function, whereas
f1 can be viewed as a type annotation. Hence, the oracle transforms a silent binding
let x = x in x x into an annotated binding let x = (x : σid) in x x.

Example 5.2.11 We recall that app is defined as λ(x) λ(y) x y. An interesting
property of MLF is that whenever an application a1 a2 is typable, then app a1 a2

is also typable, without any need for extra type annotations. Indeed, app has type
∀ (α, β) (α→ β) → α→ β (the typing derivation is similar to the one in ML). Besides,
since a1 a2 is typable, we must have a1 of type τ2 → τ1 and a2 of type τ2. Then by
instantiation, app can be given the type (τ2 → τ1) → τ2 → τ1, and app a1 a2 is easily
typed, then. It should be noted that, whereas only monotypes seem to be used, τ1 and
τ2 can actually be type variables bound to polytypes in the current prefix. We see that
although τ1 and τ2 can be aliases to polytypes, they are transparently propagated to
the type of app by implicit instantiation.
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Figure 5.3: Syntax-directed typing rules

VarO

z : σ ∈ Γ

(Q) Γ `
O

z : σ

FunO

α /∈ ftv(τ0)
(QQ′) Γ, x : τ0 `

O

a : σ dom(Q′) # ftv(Γ)

(Q) Γ `
O

λ(x) a : ∀ (Q′, α≥ σ) τ0 → α

AppO

(Q) Γ `
O

a1 : σ1 (Q) Γ `
O

a2 : σ2

(Q) σ1 v ∀ (Q′) τ2 → τ1 (Q) σ2 v ∀ (Q′) τ2

(Q) Γ `
O

a1 a2 : ∀ (Q′) τ1

LetO

(Q) Γ `
O

a1 : σ1

(Q) Γ, x : σ1 `
O

a2 : σ2

(Q) Γ `
O

let x = a1 in a2 : σ2

OracleO

(Q) Γ `
O

a : σ
(Q) σ v σ′′ (Q) σ′′ A− σ′

(Q) Γ `
O

(a : ?) : σ′

5.3 Syntax-directed presentation

As in ML, we can replace the typing rules of MLF
? by a set of equivalent syntax-directed

typing rules, which are given in Figure 5.3. Naively, a sequence of non-syntax-directed
typing rules Gen and Inst should be placed around any other rule. However, many of
these occurrences can be proved unnecessary by following an appropriate strategy. For
instance, in ML, judgments are maintained instantiated as much as possible and are
only generalized on the left-hand side of Rule Let. In MLF

?, this strategy would require
more occurrences of generalization. Instead, we prefer to maintain typing judgments
generalized as much as possible. Then it suffices to allow Rule Gen right after Rule
Fun and to allow Rule Inst right before Rule App (see rules FunO and AppO). Syntax-
directed rules are slightly less intuitive. However, they are much more convenient for
proving formal properties. In particular, induction on derivations can be replaced
by structural induction on terms. The equivalence between the syntax-directed and
original presentations of the typing rules is stated in section 6.2.

5.4 Dynamic semantics

The semantics of MLF
? is the standard call-by-value semantics of ML. Another choice,

such as e.g. call-by-name would satisfy the same essential properties, including type
safety. However, the discussion about imperative features such as references, to be
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found in Part III, assumes a call-by-value semantics. We present it as a small-step
reduction semantics. Values and call-by-value evaluation contexts are described below.

v ::= w | (w : ?)
w ::= λ(x) a

| f v1 . . . vn n < |f |
| C v1 . . . vn n ≤ |C|

E ::= [ ] | E a | v E | (E : ?) | let x = E in a

A value is either a function (λ(x) a), a partially applied primitive (f v1 . . . vn), or
a constructed value C v1 . . . vn. Additionally, it can be an annotated value, that is
(w : ?), where w is a non-annotated value. We distinguish two classes, v and w, in
order to forbid ((v : ?) : ?), which is not a value. Indeed, it can be reduced to (v : ?)
by Rule ??, to be found next. The reduction relation −→ is parameterized by a set of
δ-rules of the form (δ):

f v1 . . . vn −→ a when |f | = n (δ)
(λ(x) a) v −→ a[v/x] (βv)

let x = v in a −→ a[v/x] (βlet)
(v1 : ?) v2 −→ (v1 v2 : ?) (?)

((v : ?) : ?) −→ (v : ?) (??)

The main reduction is the β-reduction that takes two forms Rule (βv) and Rule (βlet).
Oracles are maintained during reduction, to which they do not contribute: they are
simply pushed out of applications by Rule (?). Moreover, two oracles do not have more
power than one single oracle, as stated by Rule (??). Finally, the reduction is the
smallest relation containing (δ), (βv), (βlet), (?), and (??) rules that is closed under
E-congruence:

E[a] −→ E[a′] if a −→ a′ (Context)

Note that the semantics of MLF is untyped. See Remark 9.3.1 on page 184 for more
discussion of this issue.
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Chapter 6

Type Safety

Type soundness of MLF
? is shown as usual by a combination of subject reduction, which

ensures that typings are preserved by reduction, and progress, which ensures that well-
typed programs that are not values can be further reduced. A few standard results
are shown first in Section 6.1. We show subject reduction and progress in the syntax-
directed system; hence, we need to prove the equivalence between the syntax-directed
system and the original one; this is done in Section 6.2. Type safety is shown for MLF

?

parameterized by a set of primitives and constructors. Of course, some assumptions
about the behavior and the types of primitives are required. These assumptions, as
well as subject reduction and progress, are addressed in Section 6.3.

6.1 Standard Properties

In this section, we give a few standard properties, which are similar to well known
properties in ML. A first one states that typing judgments can be renamed. Then we
show that the hypotheses gathered in the prefix can be instantiated (Rule Weaken)
and that the hypotheses of the typing environment can be replaced by more general
assumptions (Rule Strengthen). Finally, the Substitutivity Lemma is a key result
for showing subject-reduction.

6.1.1 Renaming and substitutions

Lemma 6.1.1 (Renaming of judgment) Given a derivation of the judgment (Q)
Γ ` a : σ and a renaming φ on type variables, the judgment (φ(Q)) φ(Γ) ` a : φ(σ)
admits a derivation of the same size.
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Proof: By induction on the derivation of (Q) Γ ` a : σ. All cases are easy.

6.1.2 Strengthening and weakening typing judgments

The instance relation between typing contexts (Q) Γ′ v Γ is an abbreviation for

∀z ∈ dom(Γ), we have z ∈ dom(Γ′) and (Q) Γ′(z) v Γ(z)

The next lemma states two standard properties of typing judgments, presented in the
form of rules Strengthen and Weaken, along with a variant Weaken?. In a judg-
ment (Q) Γ ` a : σ, the polytype σ can be weakened as described by Rule Inst.
Conversely, the context Γ can be strengthened, as described by Rule Strengthen. In
addition to weakening the type or strengthening the context, the whole judgment can
be instantiated. In ML, this is expressed by stability of typing judgments under substi-
tutions. In MLF, this is modeled by instantiating the prefix of the typing judgment, as
described by Rule Weaken. To see this, consider prefixes as a generalization of sub-
stitutions. An ML derivation Γ ` a : σ would be represented in MLF by (Q) Γ ` a : σ
where Q assigns unconstrained bounds to the type variables of ftv(Γ) ∪ ftv(σ). The
substitution lemma says that for any substitution θ, the derivation θ(Γ) ` a : θ(σ) (1)
is also valid. In MLF, applying Rule Weaken to (Q) Γ ` a : σ, we can first deduce
that the derivation (Q′, (α≥ θ(α))α∈Q) Γ ` a : σ holds where Q′ assigns unconstrained
bounds to ftv(θ(Q)). By notation, this is (Q′, θ) Γ ` a : σ. Then we can derive
(Q′) θ(Γ) ` a : θ(σ) (which represents the ML judgment (1)) using rules Strengthen,
Gen and Inst and the equivalences (Q′θ) Γ ≡ θ(Γ) and (Q′θ) σ ≡ θ(σ). In sum-
mary, the stability of typing judgments under substitution in ML is here expressed as
Rule Weaken, which allows the instantiation of the current prefix. Indeed, prefixes
are a generalization of substitutions, and prefix instance corresponds to substitution
composition. While Rule Weaken requires Q′ to be an instance of Q under interface
dom(Q), Rule Weaken? specifies an interface I which must only contain free variables
of Γ and σ; this version is not used further.

Lemma 6.1.2 The following rules are admissible:

Strengthen

(Q) Γ ` a : σ (Q) Γ′ v Γ

(Q) Γ′ ` a : σ

Weaken

(Q) Γ ` a : σ Q v Q′

(Q′) Γ ` a : σ

Weaken?

(Q) Γ ` a : σ ftv(Γ, σ) ⊆ I Q vI Q′

(Q′) Γ ` a : σ
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Proof: We prove Strengthen by induction on the derivation of (Q) Γ ` a : σ. Cases
App, Fun, Let, Inst and Oracle are by induction hypothesis.

◦ Case Var: We have (Q) Γ ` z : σ and z : σ is in Γ. By definition, z : σ′ is in Γ′,
with (Q) σ′ v σ. Hence, we have (Rule Var) (Q) Γ′ ` z : σ′ and we get the expected
result (Q) Γ′ ` z : σ by Rule Inst.

◦ Case Gen: The premises are (Q,α�σa) Γ ` a : σ′ (1) and α /∈ ftv(Γ). The conclusion
is (Q) Γ ` a : ∀ (α � σa) σ′. We have (Q) Γ′ v Γ by hypothesis. By well-formedness all
free type variables of Γ and Γ′ must be bound in Q, and α /∈ dom(Q) holds by hypothesis,
hence we have α /∈ ftv(Γ′). The result is by induction hypothesis on (1) and Rule Gen,
then.

We prove Weaken by induction on the derivation of (Q) Γ ` a : σ. Case Var is
immediate. Cases Fun, App, and Let are by induction hypothesis. Case Gen: The
premise is (Q,α�σ1) Γ ` a : σ2 (2) and α /∈ ftv(Γ). The conclusion is (Q) Γ ` a : ∀ (α�σ1)
σ2. By alpha-conversion, we can freely assume that α /∈ dom(Q′). By Property 3.4.2.iii
(page 106) and the hypothesis Q v Q′, we get (Q,α � σ1) v (Q′, α � σ1). By induction
hypothesis and (2), we get a derivation of (Q′, α � σ1) Γ ` a : σ2. By Rule Gen, we get
(Q′) Γ ` a : ∀ (α � σ1) σ2, which is the expected result. Cases Inst and Oracle are
direct consequences of Lemma 3.6.4.

Proof of Weaken?: The hypotheses are (Q) Γ ` a : σ (1), ftv(Γ) ⊆ I (2), ftv(σ) ⊆ I (3),
and Q vI Q′ (4). By Lemma 3.6.2 (page 114) and (4), there exists a renaming φ disjoint
from I and a prefix Q0 such that Q v φ(Q′)Q0 (5) and dom(Q0) # I (6) hold. Hence,
by Weaken, (5) and (1), we have (φ(Q′)Q0) Γ ` a : σ. By Rule Gen, (6) and (2), we get
(φ(Q′)) Γ ` a : ∀ (Q0) σ (7). By Eq-Free, (6) and (3), we get ∀ (Q0) σ ≡ σ (8). Hence,
(φ(Q′)) Γ ` a : σ (9) holds by Rule Inst, (7), and (8). The renaming φ is disjoint from
I , thus φ¬(Γ) = Γ and φ¬(σ) = σ hold by (2) and (3). By (9) and Lemma 6.1.1 applied
with the renaming φ¬, we get (Q′) Γ ` a : σ, which is the expected result.

Corollary 6.1.3 If QQ′ is well-formed and if (Q) Γ ` a : σ holds, then so does
(QQ′) Γ ` a : σ.

As a consequence, the following rule is admissible:

App?

(Q) Γ ` a1 : ∀ (Q′) τ2 → τ1 (Q) Γ ` a2 : ∀ (Q′) τ2

(Q) Γ ` a1 a2 : ∀ (Q′) τ1

Proof: Corollary 6.1.3 is a direct consequence of Rule Weaken, observing that Q ≡ QQ′

holds by PE-Free.
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App? is derivable: By alpha-conversion, we can assume that Q′ # Q and dom(Q′) #
ftv(Γ). By Corollary 6.1.3, we have (QQ′) Γ ` a1 : ∀ (Q′) τ2 → τ1 (1) as well as
(QQ′) Γ ` a2 : ∀ (Q′) τ2 (2). By Rule I-Drop?, we have (QQ′) ∀ (Q′) τ2 → τ1 v
τ2 → τ1 (3) as well as (QQ′) ∀ (Q′) τ2 v τ2 (4). Hence, (QQ′) Γ ` a1 : τ2 → τ1 and
(QQ′) Γ ` a2 : τ2 hold by Rule Inst, (1) and (3), as well as (2) and (4) respectively.
Then (QQ′) Γ ` a1 a2 : τ1 holds by App. Finally, (Q) Γ ` a1 a2 : ∀ (Q′) τ1 holds by
Rule Gen.

6.1.3 Substitutivity

Lemma 6.1.4, next, is a usual result in ML, which states that unused hypotheses can
be added to the typing environment.

Lemma 6.1.4 If Γ and Γ′ have disjoint domains, and if (Q) Γ ` a : σ holds, then so
does (Q) Γ,Γ′ ` a : σ.

See proof in the Appendix (page 289).

The substitutivity lemma is a key result for showing subject reduction.

Lemma 6.1.5 (Substitutivity) If we have (Q) Γ, x : σ ` a0 : σ0 and (Q) Γ ` a : σ,
then (Q) Γ ` a0[a/x] : σ0 holds.

Proof: We write θ for the substitution [a/x]. By hypothesis, (Q) Γ ` a : σ (1) holds.
The proof is by induction on the derivation of (Q) Γ, x : σ ` a0 : σ0. Cases App, Inst,
Gen and Oracle are by induction hypothesis.

◦ Case Fun: The premise is (Q) Γ, x : σ, y : τ0 ` a1 : τ (2) and the conclusion is
(Q) Γ, x : σ ` λ(y) a1 : τ0 → τ . The judgment (2) can as well be written (Q) Γ, y : τ0, x :
σ ` a1 : τ (3). By Lemma 6.1.4 and (1), we have (Q) Γ, y : τ0 ` a : σ (4). By induction
hypothesis, (3), and (4) we have (Q) Γ, y : τ0 ` θ(a1) : τ . Hence, by Rule Fun, we get
(Q) Γ ` θ(λ(y) a1) : τ0 → τ , which is the expected result.

◦ Case Var: we have (Q) Γ, x : σ ` z : σ0. If z is not x, then θ(z) is z, and we have
(Q) Γ ` θ(z) : σ0. Otherwise, we have z = x and σ0 = σ. By hypothesis, (Q) Γ ` x : σ
holds, that is, (Q) Γ ` a : σ.

◦ Case Let: we have (Q) Γ, x : σ ` let y = a1 in a2 : σ0, and the premises are
(Q) Γ, x : σ ` a1 : σy (5) and (Q) Γ, x : σ, y : σy ` a2 : σ0, which can also be
written (Q) Γ, y : σy , x : σ ` a2 : σ0 (6). Thanks to Lemma 6.1.4 and (1), we have
(Q) Γ, y : σy ` a : σ. By induction hypothesis applied once to (5) and once to (6), we get
(Q) Γ ` θ(a1) : σy and (Q) Γ, y : σy ` θ(a2) : σ0. Thus (Q) Γ ` let y = θ(a1) in θ(a2) :
σ0 holds by Rule Let. This is equivalent to (Q) Γ ` θ(let y = a1 in a2) : σ0, which is
the expected result.
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6.2 Equivalence between the syntax-directed system and

the original system

The equivalence between the syntax-directed (`O ) and original presentations (`) of the
typing rules is proved by showing the inclusion of `

O

in ` first. The inverse inclusion is
not so direct, and we start by proving the equivalence between ` and an intermediate
type system (`′), described below.

Lemma 6.2.1 The system `
O

is included in `, that is, if (Q) Γ `
O

a : σ is derivable,
then (Q) Γ ` a : σ is derivable.

See proof in the Appendix (page 289).

We introduce an auxiliary system `′ composed of the rules of `
O

plus rules Gen and
Inst.

Lemma 6.2.2 The system ` is included in `′.

Proof: Indeed, rules Var, Fun, App, Let, and Oracle can be derived using (respec-
tively) VarO, FunO and Inst, AppO, LetO, and OracleO. Hence, any derivation in the
system ` can be rewritten into a derivation into the system `′.

Lemma 6.2.3 The following rule is admissible:

Strengthen’

(Q) Γ `′ a : σ (Q) Γ′ v Γ

(Q) Γ′ `′ a : σ

The proof is similar to the proof of Rule Strengthen. The details can be found in
the Appendix (page 290).

It remains to be shown that `′ is included in `
O

. Intuitively, occurrences of Rule
Gen can be moved up (and absorbed on the way up), whereas occurrences of Rule
Inst can be moved down (and partially absorbed by Rule App).

Definition 6.2.4 The size of a typing derivation in the system `′ is the number of
rules it uses, ignoring the right premise in Rule LetO.

In the following properties, we show that the system `′ keeps judgments as gener-
alized as possible: Rule Gen can always be merged with other rules.
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Properties 6.2.5

i) If we have a derivation of (Q) Γ `′ a : σa ending with Rule Gen, then there exists
σ′a and a strictly smaller derivation of (Q) Γ `′ a : σ′a such that σa ≡ σ′a holds.

ii) If we have a derivation of (Q) Γ `′ a : σa, then there exists σ′
a such that we have

a derivation of (Q) Γ `′ a : σ′a not using Gen, and such that σa ≡ σ′a hold.
iii) If we have a derivation of (Q) Γ `′ a : σa not using Gen, then there exists σ′

a

such that (Q) Γ `
O

a : σ′a and (Q) σ′a v σa holds.

See proof in the Appendix (page 290).

Thanks to these properties, it is now possible to state the equivalence between the
syntax-directed system and the original system:

Lemma 6.2.6 (Syntax-Directed Typings) We have (Q) Γ ` a : σ iff there exists
σ′ such that (Q) Γ `O a : σ′ and (Q) σ′ v σ.

Proof: If there exists σ′ such that (Q) Γ `
O

a : σ′ and (Q) σ′ v σ (1) hold, then
(Q) Γ ` a : σ′ is derivable by Lemma 6.2.1, thus (Q) Γ ` a : σ is derivable by Rule Inst

and (1). Conversely, if (Q) Γ ` a : σ holds, then there exists a derivation of (Q) Γ `′ a : σ
by Lemma 6.2.2. We get the expected result by Lemmas 6.2.5.ii and 6.2.5.iii, then.

Example 6.2.12 As we claimed in the introduction, a λ-bound variable that is used
polymorphically must be annotated. Let us check that λ(x) x x is not typable in MLF

by means of contradiction. A syntax-directed type derivation of this expression would
be of the form:

FunO

AppO

VarO (Q) x : τ0 `
O

x : τ0 (Q) x : τ0 `
O

x : τ0 VarO

(Q) τ0 v ∀ (Q′) τ2 → τ1 (2) (Q) τ0 v ∀ (Q′) τ2 (1)

(Q) x : τ0 `
O

x x : ∀ (Q′) τ1

(Q) ∅ `
O

λ(x) x x : ∀ (α≥ ∀ (Q′) τ1) τ0 → α

By rules I-Drop?, (2), and (1), we get respectively (QQ′) τ0 v τ2 → τ1 and (QQ′)
τ0 v τ2. Then (QQ′) τ2 → τ1 ≡ τ2 follows by Lemma 2.1.6 and R-Trans. Thus, by
Property 1.5.11.vii, there exists a substitution θ such that θ(τ2) = θ(τ2 → τ1), that is,
θ(τ2) = θ(τ2) → θ(τ1), which is impossible.

This example shows the limit of type inference, which is actually the strength of our
system! We maintain principal types by rejecting examples where type inference would
need to guess second-order types.
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Example 6.2.13 Let us recover typability by introducing an oracle and building a
derivation for λ(x) (x : ?) x. Taking (α= σid) for Q and α for τ0, we obtain:

AppO

OracleO

VarO (Q) x : α `
O

x : α
(Q) α A− σid (3)

(Q) x : α `
O

(x : ?) : σid (Q) x : α `
O

x : α VarO

(Q) σid v α→ α

FunO

(Q) x : α `
O

(x : ?) x : α

`
O

λ(x) (x : ?) x : ∀ (α= σid) α→ α

The oracle plays a crucial role in (3)—the revelation of the type scheme σid that is the
bound of the type variable α used in the type of x. We have (Q) σid v α, indeed, but
the converse relation does not hold, so Rule Inst cannot be used here to replace α by
its bound σid. Chapter 8 shows how an explicit annotation (x : σid) can replace the
oracle (x : ?).

6.3 Type safety

Of course, type soundness cannot hold without some assumptions relating the static
semantics of constants described by the initial typing context Γ0 and their dynamic
semantics. To ease the presentation, we introduce a relation ⊆Γ between programs for
any typing environment Γ extending Γ0: we write a ⊆Γ a′ if and only if every typing
of a under Γ, i.e. every pair (Q,σ) such that (Q) Γ ` a : σ holds, is also a typing of a ′.
A relation R on programs preserves typings under Γ whenever it is a sub-relation of
⊆Γ. Then showing subject-reduction for a given reduction relation R under a typing
environment Γ amounts to showing that R preserve typings under Γ.

We now introduce the three hypotheses that the constants are required to validate.

Definition 6.3.1 (Hypotheses) We assume that the following properties hold for
constants.

(H0) (Arity) Each constant c ∈ dom(Γ0) has a closed type Γ0(c) of the form ∀ (Q)
τ1 → . . . τ|c| → τ and such that (∀ (Q) τ)/ε is not in {→,⊥} whenever c is a
constructor.

(H1) (Subject-Reduction) All δ-rules preserve typings. That is (δ) is a sub-relation
of ⊆Γ, for any Γ extending Γ0.

(H2) (Progress) Any expression a of the form f v1 . . . v|f |, such that (Q) Γ ` a : σ is
in the domain of (δ).
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The first hypothesis (H0) links the dynamic arity |c| of a constant c to its type. Intu-
itively, a constant of arity n must have a type with exactly n arrows, no more. The
second hypothesis (H1) simply states subject-reduction for each constant. The third
hypothesis (H2) is progress for primitives, that is, when a primitive f is applied to |f |
arguments, it must reduce to a value.

The language MLF
? is parameterized by a set of primitives and constants that satisfy

the hypotheses above. These hypotheses are sufficient to ensure type safety, which we
prove by a combination of subject-reduction, next, and progress. In MLF and MLF

?,
subject reduction holds only under Γ0 (actually, under any closed typing environment
extending Γ0). This means that reduction is only allowed at top-level, and not under
a λ-abstraction. As a counterexample, consider the expression λ(x) (x : ?) x. It is
typable in MLF

?. However, if we allowed reduction under λ-abstractions, we could use
Rule (?) to reduce the above expression to λ(x) (x x : ?), which is not typable in
MLF

?. It is typable in UMLF, though, adding an implicit oracle on the first occurrence
of x. We see that subject reduction does not hold under any context in MLF

?. This
is why subject reduction is stated only under under the initial typing environment Γ0

(which may contain any closed bindings, though). Conversely, subject reduction does
hold under any typing environment in UMLF. This means that partial reduction is
not possible in MLF because it would lose type information needed for type inference.
However, it is possible in UMLF where oracles are implicit. We formalize this by giving
two statements for subject reduction.

Theorem 2 (Subject reduction) Reduction preserves typings in UMLF, and pre-

serve typings under Γ0 in MLF?.

Proof: We must show that (−→) is a subrelation of (⊆Γ) in UMLF and a subrelation of

(⊆Γ0) in MLF
?. We proceed by case analysis on the different reduction rules. In each

case, by hypothesis, we have an expression a1 that reduces to a2 and a derivation of (Q)
Γ ` a1 : σ (1). We must show that (Q) Γ ` a2 : σ holds (2). By Lemma 6.2.6 and (1),
we have a derivation in the syntax-directed system, that is, we have (Q) Γ `

O

a1 : σ′ (3)
with (Q) σ′ v σ (4). It suffices to show that (Q) Γ ` a2 : σ′ (5) holds. Indeed, (2) then
holds by Inst and (4). We show either (2) or (5), depending which one is easier. We

note that the rules (?) and (??) make no sense in UMLF (indeed, since oracles can be
implicitly inserted, these reduction rules have no effect). Hence, we consider the cases

(?) and (??) only in MLF
?, which imply that the typing environment is Γ0.

◦ Case δ: The judgment (2) holds by hypothesis (H1).

◦ Case βlet: The reduction is let x = v in a −→ a[v/x], and we know by (3) that the
judgment (Q) Γ `

O

let x = v in a : σ′ holds. The derivation must end as follows:

(Q) Γ `
O

v : σ1 (Q) Γ, x : σ1 `
O

a : σ′

(Q) Γ `
O

let x = v in a : σ′
LetO
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Applying the Substitutivity Lemma (Lemma 6.1.5), we get (Q) Γ `
O

a[v/x] : σ′, which is
the expected result (5).

◦ Case βv : The reduction is (λ(x) a) v −→ a[v/x], and we know that the judgment
(Q) Γ `

O

(λ(x) a) v : σ′ holds. By definition of `
O

, there must exist Q1, Q2, τ , τ1, τ2, σ1,
σ2, and α such that this derivation is of the form:

FunO
(QQ1) Γ, x : τ `

O

a : σ1 (9) dom(Q1) ∩ Γ = ∅

(Q) Γ `
O

λ(x) a : ∀ (Q1, α≥ σ1) τ → α (Q) Γ `
O

v : σ2 (8)
(Q) ∀ (Q1, α≥ σ1) τ → α v ∀ (Q2) τ2 → τ1 (7) (Q) σ2 v ∀ (Q2) τ2 (6).

(Q) Γ `
O

(λ(x) a) v : ∀ (Q2) τ1
AppO

Here σ′ is ∀ (Q2) τ1. Let Q′
1 be the prefix (Q1, α ≥ σ1). Without lost of generality,

we can assume α /∈ dom(Q) (otherwise, we rename α). This implies Q′
1 # Q; besides

dom(Q′
1) # ftv(Γ) (10) since Γ must be closed under Q by well-formedness of (8). We can

also assume dom(Q′
1) = dom(Q′

1/τ → α) (11) (otherwise Q′
1 contains useless binders

that can be freely removed). We get a derivation of (QQ′
1) Γ, x : τ ` a : α (12) by

Corollary 6.1.3, Inst and I-Hyp applied to (9). From (7), we get (Q) ∀ (Q′
1) τ → α v

∀ (Q2) τ2 → τ1 (13). Applying Lemma 3.4.4 to (13), there exists a substitution θ and
an alpha-conversion of ∀ (Q2) τ2 → τ1, written ∀ (Q′

2) τ
′
2 → τ ′1 such that (QQ′

2) θ(τ →
α) ≡ τ ′2 → τ ′1 (14) and QQ′

1 vI QQ′
2θ (15), where I = dom(Q) ∪ dom(Q′

1/τ → α)
and dom(θ) ⊆ dom(Q′

1/τ → α) (16). Note that ftv(Γ) ⊆ dom(Q) (17) hold by well-
formedness of (8). From (15) and (11), we get QQ′

1 v QQ′
2θ (18). Hence, by Rule

Weaken, (12), and (18), we get (QQ′
2θ) Γ, x : τ ` a : α. By Strengthen, and

observing that (QQ′
2θ) σ0 ≡ θ(σ0) holds by Eq-Mono for any σ0, we get the judgment

(QQ′
2θ) θ(Γ), x : θ(τ) ` a : α. By Gen, we get (QQ′

2) θ(Γ), x : θ(τ) ` a : ∀ (θ) α. By Inst

and (QQ′
2) ∀ (θ) α ≡ θ(α), it leads to (QQ′

2) θ(Γ), x : θ(τ) ` a : θ(α) (19). From (14)
and Property 1.5.11.viii (page 54), we get (QQ′

2) θ(τ) ≡ τ ′2 and (QQ′
2) θ(α) ≡ τ ′1. Hence,

by Strengthen and Inst on (19), we get (QQ′
2) θ(Γ), x : τ ′2 ` a : τ ′1 (20). By (16)

and (10), we get dom(θ) # dom(Q). Hence, by (17), we get θ(Γ) = Γ. Then, from (20)
we have the judgment (QQ′

2) Γ, x : τ ′2 ` a : τ ′1 (21). From (6), we get (Q) σ2 v ∀ (Q′
2) τ

′
2

by alpha-conversion. Hence, (QQ′
2) σ2 v τ ′2 (22) holds by Property 1.7.2.iii (page 59)

and I-Drop?. From (8) and Corollary 6.1.3 (page 153), we get (QQ′
2) Γ ` v : σ2.

By Inst and (22), we get (QQ′
2) Γ ` v : τ ′2 (23). Hence, applying the Substitutivity

Lemma (Lemma 6.1.5) to (21) and (23), we get (QQ′
2) Γ ` a[v/x] : τ ′1 (24). Moreover,

we have dom(Q′
2) # ftv(Γ) from (17), so that applying Rule Gen to (24) leads to

(Q) Γ ` a[v/x] : ∀ (Q′
2) τ

′
1, that is, by alpha-conversion (Q) Γ ` a[v/x] : ∀ (Q2) τ1.

This is the expected result.

◦ Case (?): The reduction is (v1 : ?) v2 −→ (v1 v2 : ?) and a is (v1 : ?) v2. As explained

above, this case concerns only MLF
?; it cannot occur in UMLF. As a consequence, the

typing environment we consider is the initial typing environment Γ0. By hypothesis
(H0), Γ0 is closed, that is, ftv(Γ0) = ∅. Applying repeatedly Rule Gen to (1), we get
(∅) Γ0 ` (v1 : ?) v2 : ∀ (Q) σ. By Lemma 6.2.6, we have a derivation of (∅) Γ0 `

O

(v1 :
?) v2 : ∀ (Q′) τ1 such that ∀ (Q′) τ1 v ∀ (Q) σ (25). This derivation necessarily ends
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with the following rules:

AppO

OracleO

(∅) Γ0 `
O

v1 : σ1 (31)
σ1 v σ′′

1 (30) σ′
1 @− σ′′

1 (29)

(∅) Γ0 `
O

(v1 : ?) : σ′
1 (∅) Γ0 `

O

v2 : σ2 (28)
σ′

1 v ∀ (Q′) τ2 → τ1 (27) σ2 v ∀ (Q′) τ2 (26)

(∅) Γ0 `
O

(v1 : ?) v2 : ∀ (Q′) τ1

The relations between types, above, can be represented by the following diagram:

σ′
1 ∀ (Q′) τ2 → τ1

σ1 σ′′
1

v(30)
@−(29)

v(27)

Applying the Diamond Lemma (Lemma 2.8.4) to the above diagram, we know that there
exists σ3 such that the following holds:

σ′
1 ∀ (Q′) τ2 → τ1

σ1 σ′′
1 σ3

v(30)

@−

v(27)

@−(32)

v(33)

We can freely assume that σ3 is in normal form. By Property 2.1.3.ii (page 65) and (32),
we conclude that σ3 is of the form ∀ (Q3) τ

′
2 → τ ′1. By Lemma 3.6.11 and (32), ∀ (Q′)

τ2 @− ∀ (Q3) τ
′
2 (34) and ∀ (Q′) τ1 @− ∀ (Q3) τ

′
1 (35) hold. By Rule Inst, (31), (30),

and (33) we get (∅) Γ0 ` v1 : ∀ (Q3) τ
′
2 → τ ′1 (36). By Rule Inst, (28), (26), and (34),

we can derive (∅) Γ0 ` v2 : ∀ (Q3) τ
′
2 (37). Consequently, by Rule App?, (36) and (37),

(∅) Γ0 ` v1 v2 : ∀ (Q3) τ
′
1 holds. Finally, by Oracle and (35), we get (∅) Γ0 ` (v1 v2 :

?) : ∀ (Q′) τ1. By (25) and Inst, we get (∅) Γ0 ` (v1 v2 : ?) : ∀ (Q) σ, that is,
(∅) Γ0 ` a′ : ∀ (Q) σ. By Corollary 6.1.3 (page 153), we get (Q) Γ0 ` a′ : ∀ (Q) σ.
Besides, (Q) ∀ (Q) σ v σ holds by I-Drop?. Hence, (Q) Γ0 ` a′ : σ holds by Inst. This
is the expected result (2).

◦ Case (??): This case concerns only MLF
?, thus the typing environment is Γ0. We

have a derivation of (Q) Γ0 ` ((a0 : ?) : ?) : σ. As in the previous case (?), we have
(∅) Γ0 ` ((a0 : ?) : ?) : ∀ (Q) σ by Gen. By Lemma 6.2.6, we have a derivation of
(∅) Γ0 `

O

((a0 : ?) : ?) : σ0 (38), with σ0 v ∀ (Q) σ (39). The derivation of (38) is
necessarily of the form

OracleO

OracleO
(∅) Γ0 `

O

a0 : σ3 (40) (∅) σ3 v σ4 (∅) σ1 @− σ4

(∅) Γ0 `
O

(a0 : ?) : σ1 (∅) σ1 v σ2 (∅) σ0 @− σ2

(∅) Γ0 `
O

((a0 : ?) : ?) : σ0
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We can represent the relation between these polytypes by the solid arrows in the following
diagram:

σ0

σ1 σ2

σ3 σ4 σ5

v(41)
@−

v
@−(42)

v(43)
@−(44)

By the Diamond Lemma 2.8.4, there exists σ5 such that the relations represented by
the dotted arrows hold. By R-Trans, (41), and (43), we get σ3 v σ5 (45). By R-

Trans, (42), and (44), we get σ0 @− σ5 (46). Hence, by (40), OracleO, (45), and (46),
we get (∅) Γ0 `

O

(a0 : ?) : σ0. By Inst and (39), we get (∅) Γ0 ` (a0 : ?) : ∀ (Q) σ. By
Corollary 6.1.3 (page 153), Inst and I-Drop?, we can derive (Q) Γ0 ` (a0 : ?) : σ. This
is the expected result (2).

◦ Case Context: The hypothesis is a −→ a′. We know that (∅) Γ ` E[a] : σ′ holds.
We must show that (Q) Γ ` E[a′] : σ (2) also holds. The proof is immediate by structural
induction on E:

The second step in showing type safety consists of showing progress.

Theorem 3 (Progress) Any expression a such that we have (Q) Γ0 ` a : σ is a value
or can be further reduced.

Proof: We reason by induction on the structure of a.

◦ Case x: This is not possible, since Γ0 does not bind any variable.

◦ Case c: Then a is a value.

◦ Case λ(x) a: Then a is a value.

◦ Case let x = a1 in a2: Necessarily, a1 is typable in the typing environment Γ0. By
induction hypothesis, either a1 is a value or it can be further reduced. In either case, a
can be further reduced (by Rule βlet or by Rule Context).

◦ Case a1 a2 Necessarily, a1 and a2 are also well-typed in (Q),Γ0. Thus, by induction
hypothesis, either a1 can be further reduced (and so can a) or a1 is a value. We continue
with the second case. In turn, either a2 can be further reduced and so can a or it is also
a value. We continue with the second case and reason on the structure of a1:

Subcase (w : ?): then a can be reduced by (?).

Subcase λ(x) a′: then a can be reduced by βv .
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Subcase f v1 . . . vn with n < |f |: then either n + 1 < |f | and a is a value, or
n+ 1 = |f | and a can be reduced by hypothesis (H2) for constants.

Subcase C v1 . . . vn with n ≤ |C|: By Lemma 6.2.6, we have a typing derivation of
(Q) Γ0 `

O

a1 : σ. This derivation starts with VarO and uses AppO repeatedly, once for
each vi. Let σi be the type given to C v1 . . . vi in the ith Rule AppO. Let σ0 be Γ(C).
We show by induction on the number of rules AppO, that (∀ (Q) σi)/2

|C|−i is neither →,
nor ⊥.

• This result holds for i = 0 by hypothesis (H0).

• Assuming the result holds for i, we show it also holds for i+ 1: By Rule AppO, we
have (Q) σi v ∀ (Q′) τ2 → τ1 and σi+1 is ∀ (Q′) τ1. By Property 2.1.3.ii (page 65),
(∀ (QQ′) τ2 → τ1)/2

|C|−i is neither →, nor ⊥. Hence, (∀ (QQ′) τ1)/2
|C|−(i+1) is

neither →, nor ⊥, which is the expected result.

By induction, the result holds for all i ∈ 0..|C|. If n is |C|, then (∀ (Q) σn)/ε is neither →
nor ⊥ (1). Besides, Rule AppO is used to type a1 a2, which implies that (Q) σn v ∀ (Q′)
τ2 → τ1 (2) holds for some Q′, τ2 and τ1. We have a contradiction between (1), (2), and
Property 2.1.3.ii. Hence n cannot be |C|. Thus, a is a value.

◦ Case (a′ : ?): Necessarily, a′ is well-typed. By induction hypothesis, either a′ is a
value or it can be further reduced. In the latter case, a can be reduced by Rule Context.
In the former case, a′ is either a value of the form w, and a is a value, or it is a value v
of the form (w : ?). Then a can be reduced by (??).

Combining theorems 2 and 3 ensures that the reduction of well-typed programs
either proceeds forever or ends up with a value. This holds for programs in MLF

? but
also for programs in MLF, since MLF is a subset of MLF

?. Hence MLF is also sound.
However, MLF does not enjoy subject reduction, since reduction may create oracles.
Notice, however, that oracles can only be introduced by δ-rules.
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Chapter 7

Type inference

Type inference in MLF
? is probably as difficult as full type inference in System F,

because oracles do not provide any type information. Indeed, oracles only indicate
place-holders for type annotations. Fortunately, a program in MLF mentions type
annotations, which are primitives, instead of oracles. In this chapter, we give a type-
inference algorithm for MLF, which we show sound and complete. Interestingly, type
annotations are not considered here, because type annotations are primitives, and the
type of primitives is always known (from the initial typing environment Γ0). Hence,
the type inference algorithm does not guess any polymorphism, but simply propagates
known type information. This is why the algorithm is quite simple, and also why it is
complete.

7.1 Type inference algorithm

Figure 7.1 defines the type-inference algorithm WF for MLF. The algorithm follows the
algorithm W for ML [Mil78], with only two differences: first, the algorithm builds a
prefix Q instead of a substitution; second, all free type variables not in Γ are quantified
at each abstraction or application. Since free variables of Γ are in dom(Q), finding
quantified variables consists of splitting the current prefix according to dom(Q), as
described by Definition 3.5.1.

Definition 7.1.1 A pair (Q′, σ′) is an instance of a pair (Q,σ) under interface I if we
have (Q,α≥ σ) vI∪{α} (Q′, α≥ σ′) for any α not in dom(Q) ∪ dom(Q′).

A type inference problem is a triple (Q,Γ, a), where all free type variables in Γ are
bound in Q. A pair (Q′, σ) is a solution to this problem if Q v Q′ and (Q′) Γ ` a : σ
holds. A solution of a type inference problem (Q,Γ, a) is principal if all other solutions
are instances of the given one, under interface dom(Q).
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Figure 7.1: Algorithm WF

The algorithm infer (Q,Γ, a) is defined by cases on expression a :

Case x : return Q,Γ(x)

Case λ(x) a :

• let Q1 = (Q,α ≥⊥) with α /∈ dom(Q)
• let (Q2, σ) = infer (Q1, (Γ, x : α), a)
• let β /∈ dom(Q2) and (Q3, Q4) = Q2↑ dom(Q)
• return Q3,∀ (Q4, β ≥ σ) α→ β

Case a b :
• let (Q1, σa) = infer (Q,Γ, a)
• let (Q2, σb) = infer (Q1,Γ, b)
• let αa, αb, β /∈ dom(Q2)
• let Q3 = unify ((Q2, αa ≥ σa, αb ≥ σb, β ≥⊥), αa, αb → β)
• let (Q4, Q5) = Q3↑ dom(Q)
• return (Q4,∀ (Q5) β)

Case let x = a1 in a2 :
• let (Q1, σ1) = infer (Q,Γ, a1)
• return infer (Q1, (Γ, x : σ1), a2)

7.2 Soundness of the algorithm

Lemma 7.2.1 (Soundness of type inference) The algorithm WF is sound; that is,
for any Q, Γ, and a, if infer (Q,Γ, a) returns a pair (Q′, σ), then we have:

Q v Q′ (Q′) Γ ` a : σ

Proof: By structural induction on a.

◦ Case x: We have Q′ = Q and σ = Γ(x), thus the result is immediate by Rule Var.

◦ Case λ(x) a: Let Q1 be (Q,α ≥ ⊥) and (Q2, σ) be infer (Q1,Γ, x : α, a). By
induction hypothesis, we have Q1 v Q2 and (Q2) Γ, x : α ` a : σ (1). Let (Q3, Q4)
be Q2↑ dom(Q). We have Q2 ≡ Q3Q4 (2) by Lemma 3.5.2. Hence, by Weaken, (2),
and (1), we have (Q3Q4) Γ, x : α ` a : σ. By Rule FunO, we get (Q3) Γ ` λ(x) a :
∀ (Q4, β ≥ σ) α → β, which is the expected result. Moreover, we have Q ≡ Q1 v Q2 ≡
Q3Q4 ≡dom(Q1) Q3. Hence Q v Q3 holds.

◦ Case a b: Let (Q1, σa) be infer (Q,Γ, a) and (Q2, σb) be infer (Q1,Γ, b). By
induction hypothesis, we have Q v Q1 v Q2 (1) and (Q1) Γ ` a : σa (2) as well as
(Q2) Γ ` a : σb (3). Hence, by Weaken on (2) and (1), we have (Q2) Γ ` a : σa (4).
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Let Q0 be (Q2, αa ≥ σa, αb ≥ σb, β ≥ ⊥). By rules Weaken, Inst and I-Hyp applied
once to (3) and once to (4), we get (Q0) Γ ` a : αa (5) and (Q0) Γ ` b : αb (6). Let
Q3 be unify (Q0, αa, αb → β). By Lemma 4.4.1, we have Q0 v Q3 (7) and (Q3) αa ≡
αb → β (8). Let (Q4, Q5) be Q3↑ dom(Q). We have Q3 ≡ Q4Q5 (9) by Lemma 3.5.2.
By Weaken, (7), once on (5) and once on (6), we have (Q3) Γ ` a : αa (10) and (Q3)
Γ ` b : αb. By Inst applied to (8) and (10), we get (Q3) Γ ` a : αb → β (11). By Rule
App, we get (Q3) Γ ` a b : β. By Weaken applied to (9), we get (Q4Q5) Γ ` a b : β.
Since ftv(Γ) ⊆ dom(Q) ⊆ dom(Q4), we get by Rule Gen (Q4) Γ ` a b : ∀ (Q5) β, which is
the expected result. Moreover, we have Q v Q1 v Q2 ≡ Q0 v Q3 ≡ Q4Q5 ≡dom(Q) Q4.
Hence, Q v Q4 holds.

◦ Case let x = a1 in a2: Let (Q1, σ1) be infer (Q,Γ, a1). By induction hypothesis,
we have Q v Q1 (1) and (Q1) Γ ` a1 : σ1 (2). Let (Q2, σ2) be infer (Q1,Γ, x : σ1, a2).
By induction hypothesis, we have Q1 v Q2 (3) and (Q2) Γ, x : σ1 ` a2 : σ2 (4). By Rule
Weaken, (2), and (3), we have (Q2) Γ ` a1 : σ1 (5). Rule Let applies on (5) and (4)
and gives (Q2) Γ ` let x = a1 in a2 : σ2. Moreover, by PI-Trans on (1) and (3), we
have Q v Q2. This is the expected result.

7.3 Completeness of the algorithm

Lemma 7.3.1 (Completeness of type inference) The algorithm WF is complete,
that is, if there exists a solution to a type inference problem (Q,Γ, a), then the algorithm
infer (Q,Γ, a) succeeds and returns a principal solution.

Proof: Let I be dom(Q). By hypothesis and Lemma 6.2.6, we have a solution (Q2, σ2),
that is (Q2) Γ `

O

a : σ2and Q v Q2 (1) hold. Note that dom(Q) ⊆ dom(Q2) (2)
holds. We have to show that infer (Q,Γ, a) succeeds and returns (Q1, σ1) such that
(Q1, γ > σ1) vI∪{γ} (Q2, γ > σ2) (3). The proof is by induction on the structure of a.
We proceed by case analysis on the last rule of the derivation of (Q2) Γ `

O

a : σ2.

◦ Case Var: Then a is a variable x, σ2 is Γ(x) and infer (Q,Γ, a) succeeds and
returns (Q,Γ(x)). Hence, σ1 = σ2 and Q1 = Q. Then (3) holds by Property 3.4.2.iii
(page 106) and (1).

◦ Case Fun: Then a is λ(x) a′. By hypothesis, (Q2Q
′
2) Γ, x : τ0 `

O

a′ : σ′
2 (4) and

dom(Q′
2) ∩ ftv(Γ) = ∅ hold, and σ2 is ∀ (Q′

2, β ≥ σ′
2) τ0 → β (5). Let α be a fresh

type variable outside dom(Q2Q
′
2). We have (Q2Q

′
2, α = τ0) Γ, x : α `

O

a′ : σ′
2 (6)

by Corollary 6.1.3 (page 153), Strengthen, and (4). We can derive (Q,α ≥ ⊥) v
(Q2Q

′
2, α = τ0) (7) from (1) by Property 3.4.2.iii (page 106) and rules PE-Free, PI-

Context-L, and I-Nil. By induction hypothesis on (6) and (7), infer (Q,α > ⊥,Γ, x :
α, a′) succeeds with (Q′

1, σ
′
1) such that (Q′

1, γ ≥ σ′
1) v

I∪{α,γ} (Q2Q
′
2, α= τ0, γ ≥ σ′

2) (8)
holds. Let (Q3, Q4) be Q′

1↑ dom(Q). We note that the prefixes (Q3, (Q4, γ ≥ σ′
1)) and

(Q′
1, γ ≥ σ′

1)↑ dom(Q) are equal (9) by Definition 3.5.1 and since γ /∈ dom(Q). Remember
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that I is a shorthand for dom(Q). By Lemma 3.6.13 applied to (8), (9), and (2), and
taking τ = α→ γ, we get

(Q3, γ
′ ≥ ∀ (Q4, γ ≥ σ′

1) α→ γ) vI∪{γ′} (Q2, γ
′ ≥ ∀ (Q′

2, α= τ0, γ ≥ σ′
2) α→ γ) (10)

The algorithm returns (Q3, ∀ (Q4, γ ≥ σ′
1) α→ γ), that is, Q1 is Q3 and σ1 is ∀ (Q4, γ ≥

σ′
1) α → γ). Additionally, from (5), Eq-Mono? and α-conversion, σ2 is equivalent to

∀ (Q′
2, α= τ0, γ ≥ σ′

2) α→ γ. Then (10) is equivalent to

(Q1, γ
′ ≥ σ1) v

I∪{γ′} (Q2, γ
′ ≥ σ2)

This is the expected result.

◦ Case Let: We have a of the form let x = a1 in a2. By hypothesis, we have (Q2)
Γ `

O

a1 : σ0 and (Q2) Γ, x : σ0 `
O

a2 : σ2 (11). By induction hypothesis, infer (Q,Γ, a)
succeeds and returns (Q3, σ3) such that (Q3, γ≥σ3) vI∪{γ} (Q2, γ≥σ0). By Lemma 3.6.2
(page 114), there exists a renaming φ and a substitution θ both invariant on I ∪ {γ}, as
well as a prefix Q′

0 such that we have (Q3, γ ≥ σ3) v (φ(Q2, γ ≥ σ0)θQ
′
0) (12). Besides,

we have dom(Q′
0) # dom((Q3, γ ≥ σ3)/I ∪ {γ}), that is, dom(Q′

0) # γ ∪ dom(Q3/I ∪
ftv(σ3)) (13). By Property 3.4.2.i (page 106), (12), and PE-Free, Q3 v (φ(Q2, γ ≥
σ0)θQ

′
0) (14) holds. From (11), we get (Q2, γ≥σ0) Γ, x : σ0 ` a2 : σ2 by Corollary 6.1.3

(page 153). Hence, by Lemma 6.1.1, we get (φ(Q2, γ ≥ σ0)) φ(Γ, x : σ0) ` a2 : φ(σ2).
Since φ is disjoint from I , φ is invariant on Γ, thus this rewrites to (φ(Q2, γ ≥ σ0))
Γ, x : φ(σ0) ` a2 : φ(σ2). By Corollary 6.1.3 (page 153), we have (φ(Q2, γ ≥ σ0)θQ

′
0)

Γ, x : φ(σ0) ` a2 : φ(σ2) (15). We can derive (Q3, γ ≥ σ3) σ3 v γ (16) by I-Hyp.
From (12), (16), and Lemma 3.6.4, we get (φ(Q2), γ ≥ φ(σ0), θQ

′
0) σ3 v γ. By (13), we

have γ /∈ dom(Q′
0) and dom(Q′

0) # ftv(σ3). Hence, by R-Context-R and Eq-Free, we
get (φ(Q2), γ≥φ(σ0)), θ(σ3) v θ(γ). Observing that θ(γ) is γ and that γ /∈ ftv(θ(σ3)) (by
well-formedness of (12)), we get (φ(Q2)) θ(σ3) v φ(σ0) by R-Context-R, Eq-Free,
and Eq-Var. By Property 1.7.2.iii (page 59), we get (φ(Q2, γ ≥ σ0)θQ

′
0) θ(σ3) v φ(σ0).

By Eq-Mono, we get (φ(Q2, γ≥ σ0)θQ
′
0) σ3 v φ(σ0). By Strengthen on (15), we get

(φ(Q2, γ ≥ σ0)θQ
′
0) Γ, x : σ3 ` a2 : φ(σ2) (17). By induction hypothesis applied to (17)

and (14), infer (Q3,Γ, x : σ3, a2) succeeds with (Q′
1, σ1) such that (Q′

1, γ
′ ≥σ1) vI∪{γ′}

(φ(Q2, γ≥σ0)θQ
′
0, γ

′≥φ(σ2)) (18). We note that ftv(σ2) ∈ dom(Q2) by well-formedness
of (11). Hence, ftv(φ(σ2)) ∈ dom(φ(Q2)) (19). We have

(φ(Q2, γ ≥ σ0)θQ
′
0, γ

′ ≥ φ(σ2))
≡ (φ(Q2, γ

′ ≥ σ2, γ ≥ σ0)θQ
′
0) by (19) and Eq-Comm

≡I∪{γ′} (φ(Q2, γ
′ ≥ σ2)) by Eq-Free

≡I∪{γ′} (φ(Q2, γ
′ ≥ σ2))φ by Eq-Free

≡I∪{γ′} (Q2, γ
′ ≥ σ2) by Property 3.4.2.iv (page 106)

Hence, (φ(Q2, γ≥σ0)θQ
′
0, γ

′≥φ(σ2)) ≡I∪{γ′} (Q2, γ
′≥σ2) holds, and we get the expected

result from (18), that is,

(Q′
1, γ

′ ≥ σ1) v
I∪{γ′} (Q2, γ

′ ≥ σ2)
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◦ Case App: By hypothesis, we have

(Q2) Γ `
O

a1 : σa (20) (Q2) Γ `
O

a2 : σb (21) (Q2) σa v ∀ (Q3) τ2 → τ1 (22)

(Q2) σb v ∀ (Q3) τ2 (23) σ2 = ∀ (Q3) τ1

Let αa, αb, β be fresh variables. Let Ia be I ∪ {αa}, and Ib be I ∪ {αb}. By induc-
tion hypothesis, (20), and (1), infer (Q,Γ, a1) succeeds and returns (Qa, σ

′
a) such

that (Qa, αa ≥ σ′
a) vIa (Q2, αa ≥ σa) holds. By Lemma 3.6.2 (page 114), there ex-

ists a renaming φa and a substitution θa, both invariant on Ia, as well as Q′
0 such

that we have (Qa, αa ≥ σ′
a) v (φa(Q2, αa ≥ σa)θaQ

′
0) (24) holds. Moreover, we have

dom(Q′
0) # dom(Qa/I ∪ ftv(σ′

a)) (25). We have Qa v (φa(Q2, αa ≥ σa)θaQ
′
0) (26)

from (24) and PE-Free. Let I ′ be dom(Qa) (27). By Lemmas 6.1.1 and 6.1.3, and
by (21), we get (φa(Q2, αa ≥ σa)θaQ

′
0) Γ ` a2 : φa(σb) (28). Hence, by induction

hypothesis, (26) and (28), infer (Qa,Γ, a2) succeeds and returns (Qb, σ
′
b) such that

(Qb, αb ≥ σ′
b) vI′∪{αb} (φa(Q2, αa ≥ σa)θaQ

′
0, αb ≥ φa(σb)) (29) holds. Let φ′ be a

renaming of αa to a fresh variable α′
a (that is, not in the domain or in the free vari-

ables of Q1, Q2, φa, θa, Q′
0). Let θ′a be the substitution extracted from φ′(θa) and

Q′′
0 be φ′(Q′′

0). We remark from (21) that ftv(σb) ⊆ dom(Q2). Hence, ftv(φa(σb)) ⊆
dom(φa(Q2)) (30), thus αa /∈ ftv(φa(σb)). As a consequence, φ ◦ φa(σb) = φa(σb) (31).
By Property 3.4.2.iv (page 106) (using the renaming φ), and (31), we get (φa(Q2, αa ≥
σa)θaQ

′
0, αb ≥φa(σb)) ≡I′∪{αb} (φa(Q2, α

′
a ≥σa)θ′aQ

′′
0 , αb ≥φa(σb))φ (32). Additionally,

αa was chosen such that αa /∈ I ′ ∪ {αb} (33). Hence, by PE-Free, (32), and (33), we
get

(φa(Q2, αa ≥ σa)θaQ
′
0, αb ≥ φa(σb)) ≡

I′∪{αb} (φa(Q2, α
′
a ≥ σa)θ′aQ

′′
0 , αb ≥ φa(σb))

With (29) and PI-Trans, we get

(Qb, αb ≥ σ′
b) v

I′∪{αb} (φa(Q2, α
′
a ≥ σa)θ′aQ

′′
0 , αb ≥ φa(σb))

Observing that we have utv(σ′
a) ⊆ I ′ from (24) and (27), we get by Property 3.4.2.iii

(page 106)

(Qb, αb≥σ
′
b, αa≥σ

′
a, β≥⊥) vI′∪{αb,αa,β} (φa(Q2, α

′
a≥σa)θ′aQ

′′
0 , αb≥φa(σb), αa≥σ

′
a, β≥⊥)

By Property 3.4.2.i (page 106), we get

(Qb, αb≥σ
′
b, αa≥σ

′
a, β≥⊥) vI∪{αb,αa} (φa(Q2, α

′
a≥σa)θ′aQ

′′
0 , αb≥φa(σb), αa≥σ

′
a, β≥⊥)

Let Q4 be (Qb, αa ≥ σ′
a, αb ≥ σ′

b, β ≥ ⊥), J be I ∪ {αb, αa, β}, and P4 be (φa(Q2, α
′
a ≥

σa)θ′aQ
′′
0 , αb ≥ φa(σb), αa ≥ σ′

a, β ≥⊥). The above relation can be written

Q4 vJ P4 (34)

We have (Qa, αa ≥ σ′
a) σ′

a v αa, thus by Lemma 3.6.4 applied to (24), we can derive
(φa(Q2, αa ≥ σa)θaQ

′
0) σ

′
a v αa. Observing that αa /∈ ftv(σ′

a), we get (φa(Q2, α
′
a ≥

σa)θ′aQ
′′
0) σ′

a v α′
a by Property 1.7.2.i (page 59). Hence, we have

P4 v (φa(Q2, α
′
a ≥ σa)θ′aQ

′′
0 , αb ≥ φa(σb), αa = α′

a, β ≥⊥) (35)
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and we write P5 for the right-hand side. By PE-Swap and PE-Commut, using (30),
we get

P5 ≡ (φa(Q2), αa ≥ φa(σa), αb ≥ φa(σb), β ≥⊥, α′
a = αa, θ

′
aQ

′′
0) (36)

and we write P6 for the right-hand side. By Property 1.7.2.i (page 59) applied to (22)
and (23), we get (φa(Q2)) φa(σa) v φa(∀ (Q3) τ2 → τ1) and (φa(Q2)) φa(σb) v φa(∀ (Q3)
τ2). Hence, we can derive

P6 v (φa(Q2), αa ≥ φa(∀ (Q3) τ2 → τ1), αb ≥ φa(∀ (Q3) τ2), β ≥⊥, α′
a = αa, θ

′
aQ

′′
0) (37)

and we write P7 for the right-hand side. By PE-Free and I-Drop? (twice on φa(Q3)),
we can derive

P7 v (φa(Q2Q3), αa = φa(τ2 → τ1), αb = φa(τ2), β ≥⊥, α′
a = αa, θ

′
a) (38)

and we write P8 for the right-hand side. Finally, by Property 3.4.2.iv (page 106) and
I-Bot, we get

P8 vJ (Q2Q3, αa = τ2 → τ1, αb = τ2, β = τ1) (39)

Let Q6 be (Q2Q3, αa = τ2 → τ1, αb = τ2, β= τ1). By (34), (35), (36), (37), (38), and (39),
we get Q4 vJ Q6. Moreover, we have (Q6) αa ≡ αb → β by lemma 1.5.10.

By completeness of unification, (Lemma 4.6.2), unify (Q4) αa
.
= αb → β succeeds and

returns Q5 such that we have Q5 vJ Q6. Let (Q7, Q8) be Q5↑ dom(Q). By hypothesis,
I = dom(Q), and I ⊆ dom(Q2). By Lemma 3.6.13, we have a derivation of

(Q7, γ ≥ ∀ (Q8) β) vI∪{γ} (Q2, γ ≥ ∀ (Q3) τ1)

This is the expected result.

◦ Case Oracle cannot appear since type inference is only performed in MLF, not in
MLF

?.

7.4 Decidability of type inference

Lemma 7.4.1 The type inference algorithm always terminates, either by failing or by
returning a prefix and a type scheme.

Proof: By induction on the size of the expression being typed. All cases are straightfor-
ward, using Lemma 4.5.5 for the termination of unify.

Thanks to Lemmas 7.2.1 and 7.3.1, the type inference algorithm is proved sound
and complete. Additionally, the algorithm always terminates by Lemma 7.4.1. Hence,
the following theorem:

168



7.4 Decidability of type inference 169

Theorem 4 (Type inference) The set of solutions of a solvable type inference prob-

lem admits a principal solution. Given any type inference problem, the algorithm WF

either returns a principal solution or fails if no solution exists.
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Chapter 8

Type annotations

In this chapter, we restrict our attention to MLF, i.e. to expressions that do not contain
oracles. Since expressions of MLF are exactly those of ML, the only difference lies in the
richer types and typing rules. However, this is not sufficient to provide usable first-class
polymorphism, since MLF without type annotations and ML are equivalent, as shown
by the next section. The following sections introduce type annotations as primitives
and show how to use them to introduce polymorphism in MLF.

8.1 MLF without type annotations

In the following, we write vML for the ML generalized instance relation. It allows
instantiation of quantified variables with any monotype and immediate generalization
of freshly introduced variables. We define it as follows:

∀ (ᾱ) σ vML ∀ (β̄) σ[τ̄ /ᾱ] holds if and only if β̄ is disjoint from ftv(σ).

The following property is standard in ML:

Lemma 8.1.1 If we have ∀ (ᾱ) τ1 vML ∀ (β̄) τ2, then for any τ such that ftv(τ) # ᾱ
and ftv(τ) # β̄, we have ∀ (ᾱ) τ [τ1/γ] vML ∀ (β̄) τ [τ2/γ]

Proof: By definition, we have β̄ # ftv(τ1), and τ2 = τ1[τ̄ /ᾱ] (1). By hypothesis, we have
β̄ # ftv(τ), thus β̄ # ftv(τ [τ1/γ]). As a consequence, we have ∀ (ᾱ) τ [τ1/γ] vML ∀ (β̄)
τ [τ1/γ][τ̄ /ᾱ]. By hypothesis, we have ᾱ # ftv(τ) (2). We get the expected result by
observing that ∀ (β̄) τ [τ1/γ][τ̄ /ᾱ] is equal to ∀ (β̄) τ [τ2/γ] by (1) and (2).

Polytypes that do not contain rigid bindings are said to be flexible. Let flex be the
function defined on polytypes and prefixes that transforms every rigid binding into a
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flexible binding. For instance, flex (∀ (α= σ1, β ≥ σ2) σ) is ∀ (α≥ flex (σ1), β ≥ flex

(σ2)) flex (σ). We say that a derivation is flexible if it does not contain any rigid
bindings in types or in the prefix. A judgment is flexible if it has a flexible derivation.

Properties 8.1.2

i) If (Q) σ1 ≡ σ2, then (flex (Q)) flex (σ1) ≡ flex (σ2) is flexible.
ii) If (Q) σ1 @− σ2, then (flex (Q)) flex (σ1) v flex (σ2) is flexible.
iii) If (Q) σ1 v σ2, then (flex (Q)) flex (σ1) v flex (σ2) is flexible.

Proof: For each property, by induction on the derivation. Equivalence and Instance
cases are easy. As for the abstraction relation, the cases A-Hyp and R-Context-Rigid

are replaced by (respectively) I-Hyp and R-Context-Flexible. Finally, I-Rigid is
replaced by Eq-Refl and I-Equiv?.

We lift the function flex to typing environments and typing judgments in the natural
way. This operation is correct in the following sense:

Lemma 8.1.3 If (Q) Γ ` a : σ holds in MLF, then so does flex ((Q) Γ ` a : σ).

Proof: By induction on the derivation of (Q) Γ ` a : σ. Case Var is immediate. Cases
App, Fun and Let are by induction hypothesis. Case Inst is by Property 8.1.2.iii. Case
Gen: We have (Q) Γ ` a : ∀ (α � σ1) σ2, and the premise is (Q,α � σ1)` a : σ2, with
α /∈ ftv(Γ). Note that α /∈ ftv(flex (Γ)). By induction hypothesis, (flex (Q), α ≥ flex

(σ1)) flex (Γ) ` a : flex (σ2) holds. Hence, (flex (Q)) flex (Γ) ` a : ∀ (α ≥ flex

(σ1)) flex (σ2) holds by Gen. By definition, this means (flex (Q)) flex (Γ) ` a : flex
∀ (α � σ1) σ2. This is the expected result.

Definition 8.1.4 We define the ML approximation 〈〈σ〉〉 of an MLF flexible type σ as
follows:

〈〈⊥〉〉 = ∀ (α) α 〈〈τ〉〉 = τ
〈〈σ〉〉 = ∀ (Q) τ

〈〈∀ (α≥ σ) σ′〉〉 = ∀ (Q) 〈〈σ′〉〉[τ/α]

We extend 〈〈·〉〉 to prefixes by returning a pair of an unconstrained prefix and a sub-
stitution:

〈〈∅〉〉 = ∅, id
〈〈σ〉〉 = ∀ (Q1) τ1 〈〈Q′〉〉 = Q2, θ2

〈〈(α � σ,Q′)〉〉 = Q1Q2, [τ1/α] ◦ θ2
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Note that ML types are invariant by 〈〈·〉〉. Indeed, we have 〈〈∀ (ᾱ) τ〉〉 = ∀ (ᾱ) τ . Note
also that if 〈〈σ〉〉 is ∀ (Q) τ , then Q is unconstrained.

Properties 8.1.5
i) For any σ and any substitution θ, we have 〈〈θ(σ)〉〉 = θ(〈〈σ〉〉).
ii) The following implications hold:

〈〈Q〉〉 = Q′, θ

〈〈∀ (Q) σ〉〉 = ∀ (Q′) θ(〈〈σ〉〉)

〈〈Q1〉〉 = Q′
1, θ1 〈〈Q2〉〉 = Q′

2, θ2

〈〈Q1Q2〉〉 = Q′
1Q

′
2, θ1 ◦ θ2

iii) We have 〈〈σ〉〉/ = σ/ for any σ.
iv) If σ ≡ τ holds, then 〈〈σ〉〉 = ∀ (Q) τ with dom(Q) # ftv(τ).
v) If 〈〈Q〉〉 is (Q′, θ), then there exists θ′ such that θ is θ′ ◦ Q̂.
vi) If (Q) σ1 v σ2 is flexible, and 〈〈Q〉〉 = (Q′, θ), then θ(〈〈σ1〉〉) vML θ(〈〈σ2〉〉) holds.

See proof in the Appendix (page 293).

We lift 〈〈·〉〉 to typing environments in the obvious way.

Lemma 8.1.6 If we have a flexible derivation of (Q) Γ ` a : σ, then we have a
derivation of θ(〈〈Γ〉〉) ` a : θ(〈〈σ〉〉) in ML, where 〈〈Q〉〉 is Q′, θ.

Proof: By induction on the derivation. Case Var is immediate. Cases Fun, App, and
Let are by induction hypothesis. Case Inst is a direct consequence of Property 8.1.5.vi.
Case Gen: The premise is (Q,α � σ1) Γ ` a : σ2. Let ∀ (Q1) τ1 be 〈〈σ1〉〉, and θ1 be
[τ1/α]. We chose Q1 such that dom(Q1) # ftv(Γ) (1). By Property 8.1.5.ii, we have
〈〈(Q,α � σ1)〉〉 = Q′Q1, θ ◦ θ1. By induction hypothesis, we have θ ◦ θ1(〈〈Γ〉〉) `ML a : θ ◦
θ1(〈〈σ2〉〉). Since α /∈ ftv(Γ), we have θ1(〈〈Γ〉〉) = 〈〈Γ〉〉. Hence, θ(〈〈Γ〉〉) `ML a : θ◦θ1(〈〈σ2〉〉
holds. From (1), we get by Rule Gen of ML, θ(〈〈Γ〉〉) `ML a : ∀ (Q1) θ ◦ θ1(〈〈σ2〉〉). This
is θ(〈〈Γ〉〉) `ML a : θ(∀ (Q1) θ1(〈〈σ2〉〉)). This is the expected result, by observing that
〈〈∀ (α � σ1) σ2〉〉 is ∀ (Q1) θ1(〈〈σ2〉〉).

Corollary 8.1.7 If an expression a is typable under a flexible typing environment Γ in
MLF, then a is typable under 〈〈Γ〉〉 in ML.

Proof: Direct consequence of Lemmas 8.1.6 and 8.1.3.

The inverse inclusion has already been stated in Section 5.2.1. In the particular
case where the initial typing context Γ0 contains only ML types, a closed expression
can be typed in MLF under Γ0 if and only if it can be typed in ML under Γ0. This is
not true for MLF

? in which the expression λ(x) (x : ?) x is typable. Indeed, as shown
in Chapter 9, all terms of System F can be typed in MLF

?.

173



174 Type annotations

8.2 Introduction to type annotations

The following example, which describes a single annotation, should provide intuition
for the general case.

Example 8.2.14 Let f be a constant of type σ = ∀ (α=σid, α
′≥σid) α→ α′ with the

δ-reduction f v −→ (v : ?). Then the expression a defined as λ(x) (f x) x behaves like
λ(x) x x and is well-typed, of type ∀ (α=σid) α→ α. To see this, let Q and Γ stand for
(α=σid, α

′≥σid) and x : α. By rules Inst, Var, and App (Q) Γ ` f x : α′ holds; hence
by Rule Gen, we get (α = σid) Γ ` f x : ∀ (α′ ≥ σid) α

′ since α′ is not free in Γ. By
Rule Eq-Var, we have ∀ (α′ ≥ σid) α

′ ≡ σid (under any prefix); besides, σid v α→ α
holds under any prefix that binds α. Thus, we get (α= σid) Γ ` f x : α → α by Rule
Inst. The result follows by rules App, Fun, and Gen.

Observe that the static effect of f in f x is (i) to force the type of x to be abstracted
by a type variable α bound to σid in Q and (ii) to allow f x, that is x, to have the
type σid, exactly as the oracle (x : ?) would. Notice that the bound of α in σ is rigid:
the function f expects a value v that must have type σid, and not an instance of σid.
Conversely, the bound of α′ is flexible: the type of f v is σid but may also be any
instance of σid.

Note that a behaves as the auto-application function λ(x) x x (when applied to
the same value, reduction steps of the latter can be put in correspondence with major
reduction steps of the former), which is not typable (see Example 6.2.12).

8.3 Annotation primitives

Definition 8.3.1 We call annotations the denumerable collection of unary primitives
(∃ (Q) σ), defined for all prefixes Q and polytypes σ closed under Q. The initial typing
environment Γ0 contains these primitives with their associated type:

(∃ (Q) σ) : ∀ (Q) ∀ (α= σ) ∀ (β ≥ σ) α→ β ∈ Γ0

We may identify annotation primitives up to the equivalence of their types.

Besides, we write (a : ∃ (Q) σ) for the application (∃ (Q) σ) a. We also abbreviate
(∃ (Q) σ) as (σ) when all bounds in Q are unconstrained. Actually, replacing an anno-
tation (∃ (Q) σ) by (σ) preserves typability and, more precisely, preserves typings.

Note the difference between (∃ (Q) σ) and (∀ (Q) σ). The latter would require the
argument to have type ∀ (Q) σ while the former only requires the argument to have
type σ under some prefix Q′ to be determined from the context.
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Example 8.3.15 As seen in Example 6.2.12, λ(x) x x is not typable in MLF. We also
claimed that it would be typable with annotations. We give a typing derivation for
λ(x) let y = (x : σid) in y y. We write a for this expression and σa for ∀ (α = σid)
∀ (α′ ≥ σid) α→ α′.

Let

(α= σid) Γ, x : α ` (x : σid) : σid (2)
(α= σid) Γ, x : α, y : σid ` y y : σid (1)

Fun
(α= σid) Γ, x : α ` let y = (x : σid) in y y : σid

Gen
(α= σid) Γ ` a : ∀ (α′ ≥ σid) α→ α′

(∅) Γ ` a : σa

The judgment (1) can be easily derived, since y is known to have the polymorphic
type σid. The key point of this derivation is how we get the judgment (2). That is,
having x : α in the typing environment, and (α= σid) in the prefix, how can we derive
(Q) Γ ` (x : σid) : σid? Here is the derivation, writing Q for (α= σid):

App

Inst
(Q) Γ ` (σid) : ∀ (α1 = σid) ∀ (α2 = σid) α1 → α2

(Q) Γ ` (σid) : ∀ (α2 = σid) α→ α2 (Q) Γ ` x : α

(Q) Γ ` (x : σid) : σid

The instantiation simply shares α1 with α in the prefix (rules A-Hyp and R-Context-

Rigid).

While annotations have been introduced as primitives for simplicity of presentation,
they are obviously meant to be applied. Notice that the type of an annotation may be
instantiated before the annotation is applied. However, the annotation keeps exactly the
same “revealing power” after instantiation. This is described by the following technical
lemma (the reader may take ∅ for Q0 at first).

Lemma 8.3.2 We have (Q0) Γ ` (a : ∃ (Q) σ) : σ0 iff there exists a type ∀ (Q′) σ′1
such that (Q0) Γ ` a : ∀ (Q′) σ′1 holds together with the following relations:

Q0Q v Q0Q
′ (Q0Q

′) σ′1 A− σ (Q0) ∀ (Q′) σ v σ0

The prefix Q of the annotation ∃ (Q) σ may be instantiated into Q′. However, Q′

guards σ′1 A− σ in (Q0Q
′) σ′1 A− σ. In particular, the lemma would not hold with

(Q0) ∀ (Q′) σ′1 A− ∀ (Q′′) σ and (Q0) ∀ (Q′′) σ′1 v σ0. Lemma 8.3.2 has similarities with
Rule Annot of Poly-ML [GR99].
See proof in the Appendix (page 295).
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Corollary 8.3.3 The judgment (Q) Γ ` (a : ?) : σ0 holds iff there exists an annotation
(σ) such that (Q) Γ ` (a : σ) : σ0 holds.

See proof in the Appendix (page 296).

Hence, all expressions typable in MLF
? are typable in MLF as long as all annotation

primitives are in the initial typing context Γ0. Conversely, the annotation (∃ (Q) σ)
can be simulated by λ(x) (x : ?) in MLF

?, both statically and dynamically. Hence
annotation primitives are unnecessary in MLF

?.

Reduction of annotations The δ-reduction for annotations just replaces explicit
type information by oracles.

(v : ∃ (Q) σ) −→ (v : ?)

Lemma 8.3.4 (Soundness of type annotations) Type annotation primitives vali-
date the required hypotheses H0 (arity), H1 (subject-reduction), and H2 (progress).

See proof in the Appendix (page 296).

Syntactic sugar As mentioned earlier, λ(x : σ) a is syntactic sugar for λ(x) let x =
(x : σ) in a. The derived typing rule is:

Fun?

(Q) Γ, x : σ ` a : σ′ Q′ v Q

(Q) Γ ` λ(x : ∃ (Q′) σ) a : ∀ (α= σ) ∀ (α′ ≥ σ′) α→ α′

This rule is actually simpler than the derived annotation rule suggested by Lemma 8.3.2,
because instantiation is here left to each occurrence of the annotated program variable
x in a.

The derived reduction rule is (λ(x : ∃ (Q) σ) a) v
β?
−→ let x = (v : ∃ (Q) σ) in a.

Indeed, values must then be extended with expressions of the form λ(x : ∃ (Q) σ) a.
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Part III

Expressiveness of MLF
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We have already seen that all ML programs can be written in MLF without anno-
tations. In Chapter 9, we provide a straightforward compositional translation of terms
of System F into MLF. In Chapter 10, we then identify a subsystem of MLF, called
Shallow MLF, whose let-binding-free version is exactly the target of the encoding of
System F. We give an interpretation of types of Shallow MLF that allows every typing
in Shallow MLF to be transformed into one or many typings in System F. In Chapter 11
we consider some extensions of MLF, including references and propagation of type an-
notations. Finally, Chapter 12 takes a closer look at the MLF programming language
by giving some examples of programs that make use of first-class polymorphism.
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Chapter 9

Encoding System F into MLF

In this chapter, we prove that System F can be mechanically encoded into MLF with
type annotations primitives (which we simply call MLF). We show that the translation
is correct, that is, if a term typable is in System F, then its translation is typable in
MLF. This result illustrates the expressiveness of MLF: it shows that all System F
expressions are indeed available in MLF. Moreover, thanks to the results of Chapter 7,
we know that the translated terms contain all the needed type information to make
type inference possible. The last question concerns the conciseness of the translation,
and the usefulness of MLF: how many type annotations are needed? Actually, the
translation removes type abstraction and type application, hence only type annotations
on lambda-abstractions remain. Additionally, annotating with a monotype is useless
in MLF, hence some of these annotations are unnecessary. In summary, we see that
MLF requires strictly less type information than System F. Moreover, all ML programs
are typable without type annotations. Hence, we expect MLF to be really usable in
practice: it combines the conciseness of ML, and the second-order power of System F.

We first recall the definition of System F, then we give the translation of System F
environments, as well as the translation of System F expressions. Finally, we prove the
correctness of the translation.

9.1 Definition of System F

The types, terms, and typing contexts of system F are given below:

t ::= α | t→ t | ∀α · t Types
M ::= x |M M ′ | λ(x : t) M | Λ(α) M |M [t] Terms
A ::= ∅ | A, x : t | A,α Typing Contexts

Types are not divided into monotypes and polytypes, as in MLF, and are simply
polymorphic types: the ∀ quantifier can appear at any occurrence. Expressions are
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either variables such as x, applications M M ′, annotated abstractions λ(x : t) M , type
abstractions Λ(α) M , which explicitly bind the type variable α in the expression M ,
or type applications M [t], which explicitly instantiate the polymorphic type of M , say
∀ (α) t′, by using t, leading to t′[t/α]. Typing environments bind variables to types, and
bind free type variables. In System F, all type variables must be explicitly introduced.

The typing rules of System F are the following:

F-Var

x : t ∈ A

A ` x : t

F-App

A ` a1 : t2 → t1 A ` a2 : t2

A ` a1 a2 : t1

F-Tapp

A ` a : ∀α · t

A ` a [t′] : t[t′/α]

F-Fun

A, x : t ` a : t′

A ` λ(x : t) a : t→ t′

F-Tfun

A,α ` a : t α /∈ A

A ` Λ(α) a : ∀α · t

We see that polymorphism is explicitly introduced by type abstraction in Rule F-Tfun,
and that it is explicitly instantiated by type application in Rule F-Tapp.

9.2 Encoding types and typing environments

The translation of types of System F into MLF types uses auxiliary rigid bindings for
arrow types. This ensures that there are no inner polytypes left in the result of the
translation, which would otherwise be ill-formed. Quantifiers that are present in the
original types are translated to unconstrained bounds.

[[α]] = α [[∀α · t]] = ∀ (α) [[t]] [[t1 → t2]] = ∀ (α1 = [[t1]]) ∀ (α2 = [[t2]]) α1 → α2

In order to state the correspondence between typing judgments, we must also translate
typing contexts. The translation of A, written [[A]], returns a pair (Q) Γ of a prefix and
a typing context and is defined inductively as follows:

[[∅]] = () ∅
[[A]] = (Q) Γ

[[A, x : t]] = (Q) Γ, x : [[t]]

[[A]] = (Q) Γ α /∈ dom(Q)

[[A,α]] = (Q,α) Γ

The translation of types enjoys the following property:

Lemma 9.2.1 For any t and t′, we have [[t′[t/α]]] @− ∀ (α= [[t]]) [[t′]].

Proof: Let σ be [[t]]. We reason by structural induction on t′.

◦ Case t′ is α: The left-hand side is [[t]], that is σ, the right-hand side is ∀ (α = σ) α.
They are equivalent by Eq-Var. We conclude by A-Equiv.

182



9.3 Encoding expressions 183

◦ Case t′ is β and β 6= α: The left-hand side is β, the right-hand side is ∀ (α = σ) β.
They are equivalent by Eq-Free, and we conclude by A-Equiv.

◦ Case t′ is ∀β · t′′: By induction hypothesis, we have [[t′′[t/α]]] @− ∀ (α = σ) [[t′′]]. By
notation, this means (Q) [[t′′[t/α]]] @− ∀ (α= σ) [[t′′]], where Q is unconstrained and binds
free variables of the judgment. We can freely assume that Q is of the form (Q′, β ≥ ⊥)
(using Lemma 1.6.2 (page 57) if necessary). Hence, by R-Context-R, we get ∀ (β)
[[t′′[t/α]]] @− ∀ (β) ∀ (α = σ) [[t′′]] (1). By definition, the left-hand side is [[∀β · t′′[t/α]]],
i.e. [[t′[t/α]]]. The right-hand side is equivalent to ∀ (α=σ) ∀ (β) [[t′′]] by Eq-Comm, i.e.
∀ (α = σ) [[t′]] by definition of [[·]] and of t′. Hence, (1) gives [[t′[t/α]]] @− ∀ (α = σ) [[t′]],
which is the expected result.

◦ Case t′ is t1 → t2: By induction hypothesis, we have [[t1[t/α]]] @− ∀ (α= [[t]]) [[t1]] and
[[t2[t/α]]] @− ∀ (α=[[t]]) [[t2]]. which we write σ′

1 @− ∀ (α=σ) σ1 (2) and σ′
2 @− ∀ (α=σ) σ2 (3).

We only have to show that ∀ (α1 = σ′
1) ∀ (α2 = σ′

2) α1 → α2 @− ∀ (α = σ) ∀ (α1 = σ1)
∀ (α2 = σ2) α1 → α2 holds. This is shown by R-Context-Rigid, (2) and (3), and by
A-Up?.

9.3 Encoding expressions

The translation of System F terms into MLF terms forgets type abstractions and ap-
plications, and translates types inside term abstractions.

[[Λ(α) M ]] = [[M ]] [[M t]] = [[M ]] [[x]] = x [[M M ′]] = [[M ]] [[M ′]]

[[λ(x : t) M ]] = λ(x : [[t]]) [[M ]]

The soundness of this translation is stated by the following theorem:

Theorem 5 For any closed typing context A (that does not bind the same type variable
twice), term M , and type t of System F such that A ` M : t, there exists a derivation
(Q) Γ ` [[M ]] : σ such that (Q) Γ = [[A]] and [[t]] @− σ hold.

Proof: We reason by induction on the derivation of A `M : t. Let (Q) Γ be [[A]].

◦ Case F-Var: By hypothesis, we have x : t ∈ A. By definition of [[A]], we have
x : [[t]] ∈ Γ, and Γ is closed under Q. Hence, (Q) Γ ` x : [[t]] holds by Var. This is the
expected result.

◦ Case F-App: We have M = M1 M2 and the premises are A ` M1 : t2 → t1 and
A ` M2 : t2. By induction hypothesis, we have both (Q) Γ ` [[M1]] : σ (1) and (Q) Γ `
[[M2]] : σ2 (2) with [[t2 → t1]] @− σ (3) and [[t2]] @− σ2 (4). By definition of [[t2 → t1]], we
have ∀ (α2 = [[t2]], α1 = [[t1]]) α2 → α1 @− σ (5) from (3). By (4) and R-Context-Rigid,
we have ∀ (α2 = [[t2]], α1 = [[t1]]) α2 → α1 @− ∀ (α2 = σ2, α1 = [[t1]]) α2 → α1 (6). Thus
by Lemma 2.8.2, (5), and (6), there exists a type σ′ such that we have σ @− σ′ (7) and
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∀ (α2 =σ2, α1 =[[t1]]) α2 → α1 @− σ′ (8). We can freely assume that σ′ is in normal form.
By Property 2.1.3.ii (page 65), σ′ is of the form ∀ (Q′) τ2 → τ1 (9). By Inst, (1), (7),
and (9), we get (Q) Γ ` [[M1]] : ∀ (Q′) τ2 → τ1 (10). By Lemma 3.6.11, (8), and (9) we
have σ2 @− ∀ (Q′) τ2 (11) as well as [[t1]] @− ∀ (Q′) τ1 (12). Consequently, we can derive
(Q) Γ ` [[M2]] : ∀ (Q′) τ2 (13) by (11), (2), and Inst. Thus, (Q) Γ ` [[M1]] [[M2]] : ∀ (Q′)
τ1 holds by App?, (10), and (13). This and (12) are the expected result.

◦ Case F-Tapp: The premise is A ` M : ∀α · t′. By induction hypothesis, we have
(Q) Γ ` [[M ]] : σ (14) where [[∀α · t′]] @− σ (15). By definition, [[∀α · t′]] is ∀ (α) [[t′]],
thus (15) is ∀ (α) [[t′]] @− σ. By Lemma 3.6.7, this implies that σ is equivalent to ∀ (α)
σ0 (16) with [[t′]] @− σ0 (17). Let σ′ be ∀ (α= [[t]]) σ0. We have σ v σ′ (18) by (16), R-

Context-Flexible, and I-Bot. By Rule Inst, (14), and (18) gives (Q) Γ ` [[M ]] : σ′.
Furthermore, we have ∀ (α = [[t]]) [[t′]] @− σ′ (19) by (17) and R-Context-R. We note
that [[t′[t/α]]] @− ∀ (α = [[t]]) [[t′]] (20) holds by Lemma 9.2.1. Hence, by R-Trans, (20),
and (19), we get [[t′[t/α]]] @− σ′. This is the expected result.

◦ Case F-Fun: The premise is A, x : t ` a : t′. By induction, we have (Q) Γ, x :
[[t]] ` a : σ′, where [[t′]] @− σ′ (21). By Rule Fun?, we have (Q) Γ ` λ(x : [[t]]) a :
∀ (α= [[t]], α′ ≥σ′) α → α′. Let σ′′ be ∀ (α= [[t]], α′ =σ′) α → α′. By Rule Inst, we have
(Q) Γ ` a : σ′′. By (21), we have: ∀ (α= [[t]], α′ = [[t′]]) α→ α′ @− σ′′, i.e. [[t → t′]] @− σ′′.

◦ Case F-Tfun: The premise is A,α ` a : t By induction, we have (Q,α) Γ ` a : σ
with [[t]] @− σ (22). We have α /∈ Γ, since α /∈ A. By Rule Gen, we have (Q) Γ ` a :
∀ (α) σ. From (22), we have ∀ (α) [[t]] @− ∀ (α) σ. That is [[∀α · t]] @− ∀ (α) σ.

Noticeably, translated terms contain strictly fewer annotations than original terms;
this property that was not true in Poly-ML. In particular, all type Λ-abstractions
and type applications are dropped and only annotations of λ-bound variables remain.
Moreover, some of these annotations are still superfluous, since, for instance, removing
monotype annotations preserves typings in MLF.

Remark 9.3.1 System F can be viewed in Curry style, where terms are unannotated,
or in Church style, where terms come with sufficient type information so that full type
information can be uniquely reconstructed. In Church style, terms can be given a
typed semantics. For instance, type abstraction may stop the evaluation just like value
abstractions.

UMLF is somehow the Curry’s view. However, there is no exact Church style for
MLF: type abstractions, i.e. places where polymorphism is introduced, are left implicit,
and type applications, i.e. places where polymorphism is used, are inferred. Even terms
with fully annotated λ-abstractions can place type-abstraction and type application at
different occurrences.

There is thus no obvious typed semantics for MLF: if the semantics were given on
type derivations, one should then show some coherence property that the semantics is
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independent of the translation, and in particular on places where type-abstractions or
type-applications would be inserted.

Encoding Poly-ML

Although not stated formally, terms of Poly-ML [GR99] can be translated to terms of
System F. As a corollary of Theorem 5, terms typable in Poly-ML can also be typed in
MLF. note that all polymorphism-elimination annotations 〈·〉 that were mandatory in
Poly-ML are indeed removed in the translation.
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Chapter 10

Shallow MLF

We have seen in Chapter 9 that System F can be encoded in MLF by just erasing
type applications and type abstractions. Hence, the set of unannotated lambda-terms
typable in System F is included in the set of lambda-terms typable in MLF. Conversely,
we may wonder whether MLF is strictly more powerful than System F, that is, whether
there exists a term typable in MLF whose type erasure is a lambda-term that is not
typable in System F. As a first step, we identify a strict subset of MLFwhich is sufficient
to encode System F. In this chapter, we describe this subsystem, called Shallow MLF.

10.1 Definition and characterization

In the following, a type of System F is called a System F type. We also introduce a
subset of MLF types, called F-types, which are, intuitively, the translation of System F
types into MLF.

Definition 10.1.1 A type in normal form is an F-type if and only if all its flexible
bounds are unconstrained (that is, of the form (α ≥ ⊥)). A type is an F-type if and
only if its normal form is an F-type.

Types that are not F-types, e.g. ∀ (α≥ σ) τ (1), where σ is equivalent neither to a
monotype nor to ⊥, have been introduced to factor out choices during type inference.
Such types are indeed used in a derivation of let f = choose id in (f auto) (f succ).
However, they are never used in the encoding of System F. We wish to show that
restricting MLF derivations to use only F-types preserves the encoding of System F.
We do not show this result directly, but first consider a less restrictive subset of types,
called shallow types. Shallow types are a superset of F-types that also allow types
such as (1), except in rigid bounds. Indeed, a rigid bound corresponds intuitively to an
explicit type annotation in the source code. Then restricting rigid bounds to F-types
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amounts to restricting type annotations to F-types only. From a practical point of
view, this means that the type annotation primitives available to the programmer are
F-types only. Shallow types are still needed, however, because they are introduced by
the type inference algorithm e.g. in the typing of choose id).

Definition 10.1.2 Let a type in normal form be shallow if and only if all its rigid
bounds are F-types. A type is shallow if and only if its normal form is shallow. A
prefix Q is shallow if and only if ∀ (Q) ∇dom(Q) is shallow.

Since shallowness depends on the binding structure of types, it can be captured by
polynomials, as defined in Section 2.7.2. Actually, polynomial variables X, Y , and
Z correspond respectively to top-level flexible bindings, rigid bindings, and flexible
bindings under rigid bindings. Hence, we expect Z to correspond exactly to the bounds
that are unconstrained in shallow types. which leads to the following definition:

Definition 10.1.3 Let P and P ′ be polynomials in IN [X,Y,Z]. We write P 6Z P ′ if
and only if the maximal degree of variable Z in P is less than or equal to the maximal
degree of variable Z in P ′.

For example, we have X2Y Z 6Z Z2, XY 6Z Y , as well as 1 6Z 0. Note that 6Z is
defined with the maximal degree, hence we have some unusual properties. For instance
we have P1 + P2 6Z P ′ if and only if P1 6Z P ′ and P2 6Z P ′. Moreover, we have
P 6Z P1 + P2 if and only if P 6Z P1 or P 6Z P2.

The shallowness of a type σ can be tested by looking only at the degree of its weight
in variable Z (weights wA were defined page 91), as formalized by Property 10.1.4.ii
below. For example, the type ∀ (α≥σid, β=σid) α→ β is shallow, and its polynomial
is X2 + Y Z. Conversely, the type ∀ (β = ∀ (α≥ σid) α→ α) β → β is not shallow, and
its polynomial is Y Z2.

Properties 10.1.4
i) A type σ is an F-type iff wY (σ) 6Z Z.
ii) A type σ is shallow iff wX(σ) 6Z Z.
iii) For any σ, we have wX(σ) 6Z wY (σ).

Proof: Property i: By Property 1.5.6.i and Lemma 2.7.5, we have wY (σ) = wY (nf(σ)).
Moreover, by definition, a type is shallow if and only if its normal form is shallow. As a
consequence, it suffices to show that nf(σ) is an F-type if and only if wY (nf(σ)) 6Z Z.
To ease the presentation, we simply assume that σ is in normal form. We proceed by
case analysis on the form of σ.

◦ Case τ or ⊥: Then wY (σ) is 0 or 1, and wY (σ) 6Z Z holds.

◦ Case ∀ (α≥σ1) σ2: Then wY (σ) is wZ(σ1)×Z+wY (σ2) (1). If σ is an F-type, then,
by definition, σ1 is ⊥, and σ2 is an F-type. Hence, we have wZ(σ1) = 1 by definition and
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wY (σ2) 6Z Z (2) by induction hypothesis. This gives wZ(σ1) ×Z 6Z Z, which implies
wY (σ) 6Z Z by (1) and (2). Conversely, if wY (σ) 6Z Z holds, then from (1), we have
wZ(σ1) 6Z 1 and wY (σ2) 6Z Z. The former implies that wZ(σ1) is 0 or 1. Hence, σ1

is ⊥ (it cannot be a monotype τ because σ is in normal form). The latter implies, by
induction hypothesis, that σ2 is an F-type. Hence, σ, that is ∀ (α≥⊥) σ2, is an F-type.

◦ Case ∀ (α= σ1) σ2: Then wY (σ) is wY (σ1) × Y +wY (σ2). Hence, on the one hand,
we have wY (σ) 6Z Z if and only if wY (σ1) 6Z Z and wY (σ2) 6Z Z. On the other
hand, σ is an F-type if and only if σ1 and σ2 are F-types. We conclude by induction
hypothesis.

Property ii: By structural induction on σ. As in Property i, we assume that σ is in
normal form.

◦ Case τ or ⊥: Then wX (σ) is 0 or 1, and wX (σ) 6Z Z holds.

◦ Case ∀ (α≥ σ1) σ2: Then wX (σ) is wX(σ1)×X +wX(σ2). Hence, on the one hand,
we have wX(σ) 6Z Z if and only if wX (σ1) 6Z Z and wX(σ2) 6Z Z. On the other hand,
σ is shallow if and only if σ1 and σ2 are shallow. We conclude by induction hypothesis.

◦ Case ∀ (α=σ1) σ2: Then wX (σ) is wY (σ1)×Y +wX(σ2). Hence, we have wX(σ) 6Z

Z if and only if wY (σ1) 6Z Z and wX(σ2) 6Z Z. We conclude by induction hypothesis
and Property i.

Property iii: By structural induction on σ.

These properties provide a convenient way to characterize F-types and shallow
types. It remains to define Shallow MLF as a subset of MLF: Recall that MLF (with
type annotations) is a type system that allows all MLF-types as annotations and in
derivations. Additionally, MLF

? allows the guessing of type annotations thanks to Rule
Oracle.

Definition 10.1.5 (Shallow MLF) We define Shallow MLF as the subset of MLF

where type annotations are restricted to F-types and derivations can only mention
shallow types. Similarly, Shallow MLF

? is the subset of MLF
? where derivations can

only mention shallow types and Rule Oracle can only be used with F-types.

As mentioned earlier, restricting type annotations to F-types amounts to restricting
the type of the annotation primitive to a shallow type. Indeed, the type annotation
primitive (σ) (we assume σ is closed) has type ∀ (α1 = σ) ∀ (α2 = σ) α1 → α2. This
type is shallow if and only if σ is an F-type.

We have given an encoding of System F into MLF in Chapter 9. In the next section,
we show that this encoding is actually an encoding into Shallow MLF. That is, not
only the type annotations are F-types (which is obvious), but the typing derivations
themselves are actually shallow. This means that Shallow MLF, though it is a subset
of MLF, is sufficient to provide all the expressiveness of System F.
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190 Shallow MLF

10.2 Expressiveness of Shallow MLF

It is immediate to check that the translation of System F types are F-types. Hence,
the encoding of a term of System F gives a term whose type annotations are F types.
Besides, the encoding of a typing environment is a pair composed of a shallow typing
environment and an unconstrained prefix. As a consequence, we expect the typing
derivation of the encoding to be shallow. The main result of this section gives a stronger
result (it is not restricted to translations of System F terms): Lemma 10.2.3 states that
if a term is typable in MLF under a shallow typing environment and a shallow prefix,
then it is typable in Shallow MLF. The next lemma is a preliminary result which implies
that an abstraction of an F-type is also an F-type.

Lemma 10.2.1 If (Q) σ1 @− σ2 holds, then so does wY (σ2) 6Z wY (σ1).

See proof in the Appendix (page 296).

Our goal is to show that a shallow typable term admits a shallow derivation. Actu-
ally, the inference and unification algorithms are “shallow-stable”, that is, when given
shallow terms (resp. types), they return shallow derivations (resp. types). This implies
that the principal type of a shallow term is a shallow type. We formalize the above
result for the unification algorithm, after having stated two useful properties.

Properties 10.2.2
i) If Q is shallow, then ∀ (Q) τ is shallow.
ii) If Q is shallow and (Q1, Q2) = Q↑ᾱ, then Q1 and Q2 are shallow.
iii) If Q is shallow and Q′ = unify (Q, τ1, τ2), then Q′ is shallow.
iv) If Q, σ1, and σ2 are shallow, and (Q′, σ3) = polyunify (Q,σ1, σ2), then Q′ and

σ3 are shallow.

Proof: Properties i and ii are easily shown by structural induction on Q. We prove
properties iii and iv simultaneously by induction on the recursive calls to the algorithms.
All cases are easy, except the case unify (Q,α1, α2), where (α1 �1 σ1) and (α2 �2 σ2) are
in Q. In this case, we call polyunify as follows: (Q′, σ3) = polyunify (Q, σ1, σ2). By
induction hypothesis Q′ and σ3 are shallow. Besides, without loss of generality, Q′ is
of the form (Q1, α1 �1 σ1, Q2, α2 �2 σ2, Q3). We note that Q1, Q2, and Q3 are shallow.
We return Q′′ defined as (Q1, α1 � σ3, Q2, α2 = α1, Q3), where � is rigid if and only if
�1 or �2 is rigid. If � is flexible, then Q′′ is shallow by construction, and the case is
solved. Otherwise, � is rigid, which means that �1 or �2 is rigid. We show the result for
�1 rigid, the other case being similar. The update algorithm calls the abstraction-check
algorithm, which ensures that (Q′) σ1 @− σ3 holds. By hypothesis, (α1 = σ1) is in Q and
Q is shallow, thus σ1 must be an F-type. By Lemma 10.2.1 and Property 10.1.4.i, σ3 is
an F-type too. Hence, Q′′ is shallow.
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We can now state the main result of the section: a shallow term typable in MLF is
typable in Shallow MLF.

Lemma 10.2.3 If Q, Γ, and a are shallow, and (Q) Γ ` a : σ holds in MLF for some
σ, then there exists a shallow derivation of (Q) Γ ` a : σ ′ for some shallow type σ′.

Proof: By completeness of the type inference algorithm, we know that infer (Q,Γ, a)
succeeds. We show by induction on the recursive calls to infer that if Q, Γ, and a are
shallow, and Q′, σ is infer (Q,Γ, a), then Q′ and σ are shallow. All cases are easy, using
Property 10.2.2.iii for the application case.

As a conclusion, if a shallow term a is typable in MLF, under a shallow prefix and a
shallow typing environment, then it admits a derivation in Shallow MLF. In that case,
it is noticeable that the inference algorithm returns a shallow principal type. As a first
corollary, subject reduction holds in Shallow MLF since it holds in MLF. As a second
corollary, the encoding given for System F also holds in Shallow MLF. Hence we have
shown the inclusion System F ⊆ Shallow MLF (considering only type erasure of terms).
The next section covers the converse inclusion: is Shallow MLF included in System F?

10.3 Comparison with System F

10.3.1 Introduction

An immediate issue prevents Shallow MLF from being compared to System F: Let-
bindings. Usually, a let-binding let x = a1 in a2 in encoded as (λ(x) a2) a1. We
note that let-bindings do not increase expressiveness in MLF or MLF

?, since the above
encoding can always be used, inserting explicit type annotations or oracles if necessary.
For example, let σ be the type ∀ (α ≥ σid) α → α. Then the expression let x =
choose id in a can be encoded as (λ(x : σ) a) (choose id) in MLF, or as (λ(x : ?)
a) (choose id) in MLF

?. The same property is not true for Shallow MLF, since shallow-
types that are not F-types cannot be used as annotations. Indeed, the principal type
given to choose id, namely σ, is a shallow type but not a F-type. Hence, whereas
let x = choose id in a is in Shallow MLF, its natural encoding as a λ-abstraction is
not in Shallow MLF.1 Therefore, we also have to consider the restriction Shallow F of
Shallow MLF to programs without let-bindings. The encoding of System F into MLF

given in Section 9.1 is actually an encoding into Shallow F, by considering λ(x : σ)
a as syntactic sugar for λ(x) a[(x : σ)/x] instead of λ(x) let x = (x : σ) in a.

1This does not imply that the type erasure of the encoding is not in Shallow MLF. See the com-
parison between MLF and System F in Section 10.4 for more details about this issue.
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Similarly, λ(x : ?) a is syntactic sugar for λ(x) a[(x : ?)/x]. Hence, we have the inclusion
System F ⊆ Shallow F, considering only the type erasure of terms. We wish to show
the converse inclusion: the type erasure of terms typable in Shallow F, that is in
Shallow MLF without Let-binding, is included in the type erasure of terms typable in
System F.

10.3.2 Preliminary results about System F

Types of System F are written with letter t. We recall that types of Shallow MLF are
written σ in general, and τ when they are monotypes. We implicitly consider that a
monotype τ is in Shallow MLF as well as in System F. We define below the projection
of an F-type (which is a type in MLF) into a System F type: Given an F-type σ in
normal form, we define σ as its projection into an F-type:

⊥
M

= ∀α · α τ
M

= τ ∀ (α= σ) σ′
M

= σ′[σ/α] ∀ (α≥⊥) σ
M

= ∀α · σ

As for the general case, σ is nf(σ). As mentioned above, we consider that τ is in
System F, thus we have τ = τ .

Next, we formalize the instance relation of System F, which we write vF . We use it
to define the function fsub (t) as the set of all instances of t. The relation vF is defined
as follows:

∀ ᾱ · t vF ∀ β̄ · t[t̄/ᾱ] holds if and only if β̄ is disjoint from ftv(t).

We define fsub (t) as {t′ | t vF t′}.

We also extend the function proj() (defined page 40) to System F types. This
function takes a System F type and returns a skeleton.

proj(α)
M

= α proj(t1 → t2)
M

= proj(t1) → proj(t2) proj(∀α · t)
M

= proj(t)[⊥/α]

We write σ 6/ t for σ/ 6/ t/.

We can now state a few properties. In the following, we write S for a set of types
of System F. We define ∀α · S as the set {∀α · t | t ∈ S}, and fsub (S) is the set⋃

t∈S fsub (t). We use the letter θ for substitutions in System F. It should be clear from

the context if a given substitution θ is a substitution in System F or in Shallow MLF.
Substitutions are implicitly capture-avoiding. We note that [(∀β · β → β)/α] is a valid
substitution in System F. It is not the case in Shallow MLF or in MLF, where only
monotype substitutions are allowed. We write θ(S) for the set {θ(t) | t ∈ S}.
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Properties 10.3.1
i) We have ftv(σ) = ftv(σ).
ii) We have θ(fsub (S)) ⊆ fsub (θ(S)).
iii) We have ∀α · fsub (S) ⊆ fsub (∀α · S).
iv) If fsub (S1) = fsub (S2), then fsub (∀ ᾱ · S1) = fsub (∀ ᾱ · S2).
v) We have fsub (θ(t)) = fsub (θ(fsub (t))).

Proof: Property i: Straightforward structural induction on σ.

Property ii: Let t be in θ(fsub (S)). By definition, there exists t1 ∈ S and t2 such that
t1 vF t2 (1) and t = θ(t2). Then we get θ(t1) vF θ(t2) from (1), that is, θ(t1) vF t.
Hence, t ∈ fsub (θ(S)).

Property iii: Let t be in ∀α · fsub (S). By definition, t is of the form ∀α · t′ for some
System F type t′ and there exists t′′ in S such that t′′ vF t′ (1). Then ∀α · t′′ vF ∀α · t′

holds from (1), that is ∀α · t′′ vF t. Hence, t ∈ fsub (∀α · S).

Property iv: We have fsub (S1) ⊆ fsub (S2). Prefixing both sets with ∀α, we get the
inclusion ∀α · fsub (S1) ⊆ ∀α · fsub (S2). Applying fsub (), we get fsub (∀α · fsub (S1)) ⊆
fsub (∀α · fsub (S2)) (1). By Property iii, we have ∀α · fsub (S2) ⊆ fsub (∀α · S2). Hence,
we get fsub (∀α · fsub (S1)) ⊆ fsub (fsub (∀α · S2)) from (1). This happens to be equiva-
lent to fsub (∀α · fsub (S1)) ⊆ fsub (∀α · S2) (2). Additionally, we have S1 ⊆ fsub (S1),
thus fsub (∀α · S1) ⊆ fsub (∀α · fsub (S1)) holds. Then, fsub (∀α · S1) ⊆ fsub (∀α · S2)
holds from (2). By symmetry, we get fsub (∀α · S1) = fsub (∀α · S2).

Property v: We have t ∈ fsub (t). Hence, θ(t) is in the set θ(fsub (t)), which implies that
fsub (θ(t)) ⊆ fsub (θ(fsub (t))) (1) holds. Conversely, we show that fsub (θ(fsub (t))) ⊆
fsub (θ(t)) holds. Let t1 be in fsub (θ(fsub (t))). By definition, there exists t2 such that
t vF t2 (2) and θ(t2) vF t1 (3). Then θ(t) vF θ(t2) (4) holds from (2). Thus θ(t) vF t1
holds by (4) and (3). This means that t1 is in fsub (θ(t)). As a conclusion, we have
fsub (θ(fsub (t))) ⊆ fsub (θ(t)) (5). By (1) and (5), we get fsub (θ(t)) = fsub (θ(fsub (t))).

The next definition captures the idea that a set S depends only on a given set
of type variables. For example, given a type t, consider the set S defined as fsub (t).
Since S is generated only from t, it can depend only on the free variables of t. As a
consequence, if the type β → β is in S, and β is not free in t, this means that γ → γ
is also in S for any γ. Actually, we can even expect t′ → t′ to be in S, for any type
t′. This is captured by the following definition (think of ᾱ as the set of type variables
used to generate the set S):
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Definition 10.3.2 We say that a set of types S is ᾱ-stable if and only if for any
substitution θ invariant on ᾱ, we have θ(S) ⊆ S.

We note that if S is ᾱ-stable, then it is also (ᾱ∪ β̄)-stable. We defined Σᾱ page 103 as
the set of MLF-types whose unbound variables are included in ᾱ. We now define Σ¬

ᾱ

as the set of System F types whose free variables are disjoint from ᾱ. The notation
S1 =ᾱ S2, defined next, intuitively means that the sets S1 and S2 are equal, except for
some “uninteresting” types that mentions variables in ᾱ. Formally, we write S1 =ᾱ S2

if S1 ∩ Σ¬
ᾱ = S2 ∩ Σ¬

ᾱ holds. We write S1 ⊆ᾱ S2 if S1 ∩ Σ¬
ᾱ ⊆ S2 ∩ Σ¬

ᾱ holds. We note
that S1 =ᾱ S2 holds if and only if S1 ⊆ᾱ S2 and S1 ⊆ᾱ S2 hold. Additionally, S1 =∅ S2

means S1 = S2.

Properties 10.3.3

i) If S is ᾱ-stable, then fsub (S) is ᾱ-stable.
ii) The set fsub (t) is ftv(t)-stable.
iii) If S is ᾱ-stable and β̄-stable, then it is (ᾱ ∩ β̄)-stable.
iv) If S1 and S2 are ᾱ-stable, ᾱ # β̄, and S1 ⊆β̄ S2, then S1 ⊆ S2.
v) If S1 and S2 are ᾱ-stable, ᾱ # β̄, and S1 =β̄ S2, then S1 = S2.
vi) If we have S1 ⊆ᾱ∪{α} S2 for all α in an infinite set I, then S1 ⊆ᾱ S2 holds.
vii) If we have S1 =ᾱ∪{α} S2 for all α in an infinite set I, then S1 =ᾱ S2 holds.
viii) If we have S1 ⊆ᾱ S2, then fsub (S1) ⊆ᾱ fsub (S2) holds.
ix) If we have S1 =ᾱ S2, then fsub (S1) =ᾱ fsub (S2) holds.
x) If we have ᾱ # codom(θ) and S1 =ᾱ S2, then θ(S1) =ᾱ θ(S2).

See proof in the Appendix (page 297).

Thanks to these properties about sets of System F types, we are ready to introduce
the interpretation of Shallow MLF types as sets of System F types.

10.3.3 Encoding shallow types into System F

Shallow types are more expressive than types of System F. As an example, the principal
type given to the expression choose id, that is, ∀ (α ≥ σid) α → α has no direct
counterpart in System F. More precisely, the above expression can be annotated in
multiple ways, leading to multiple typings in System F. In particular, it can be typed
with σid → σid and also with (t→ t) → (t→ t) for any type t. This is the reason why
the encoding of a shallow type is not a single System F type, but rather a set of types.
Intuitively, the encoding of a type σ is the set of all instances of σ that are F-types.
Hence, the following definition:
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Definition 10.3.4 The interpretation of a shallow type σ, written ((σ)), is a set of
System F types defined inductively as follows:

((τ))
M

= fsub (τ) ((⊥))
M

= fsub (∀α · α) ((∀ (α = σ) σ′))
M

= fsub
(
((σ′))[σ/α]

)
(1)

((∀ (α≥ σ) σ′))
M

= fsub




ᾱ#ftv(σ,σ′)⋃

t∈((σ))

∀ ᾱ · ((σ′))[t/α]




We note that ((τ)) is fsub (τ), which is different from {τ} since it contains all types
equivalent to τ is System F. For instance, the type ∀α · τ is in fsub (τ) if α /∈ ftv(τ).
In (1), note that σ is an F-type since ∀ (α = σ) σ ′ is shallow. Hence, we substitute α
by σ in the set ((σ′)).

Example The interpretation of the polymorphic type σid is (after simplification)

fsub




ᾱ#{α}⋃

t

∀ ᾱ · t→ t


, which is exactly the set fsub (∀α · α→ α). Actually, we show

in Property 10.3.6.viii, below, that the interpretation of any F-type σ is the set of all
instances of σ in System F. Note also that we consider the union over all ᾱ disjoint
from {α}. This restriction is unnecessary, and we could as well consider variables ᾱ
containing α. However, since both definitions are equivalent, we chose the first one,
which makes some proofs easier. It will be shown in Property 10.3.6.ix that more
restrictions can be put on ᾱ without changing the definition.

Given two sets of substitutions S1 and S2, we write S1 � S2 for the set {θ1 ◦ θ2 |
θ1 ∈ S1, θ2 ∈ S2}. We also write S1 ◦ θ for S1 � {θ}.

Definition 10.3.5 The interpretation of a shallow prefix Q, written ((Q)), is a set of
substitutions of System F, defined inductively as follows:

((∅))
M

= {id} ((Q′, α= σ))
M

= ((Q′)) ◦ [σ/α]

((Q′, α≥ σ))
M

= ((Q′)) �

⋃

t∈((σ))

[nf(t)/α] (2)

In (2), we write nf(t) to mean the normal form of t in System F. We could equivalently
keep t unchanged, but taking the normal form eases some proofs. We note that ((Q1Q2))
is ((Q1)) � ((Q2)).

We now establish a number of properties that will be used to show the soundness of
the interpretation of shallow types, in Lemma 10.3.10. For instance, Property i shows
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that the interpretation of a type scheme is closed with respect to the instance relation
of System F.

Some results below require the argument σ to be in normal form. This requirement is
introduced in order to simplify the corresponding proof. Actually, all of these properties
are extended to type schemes not in normal forms, once the necessary results have been
shown.

Properties 10.3.6
i) We have fsub (((σ))) = ((σ)).
ii) If σ is in normal form and α /∈ ftv(σ), then ∀α · ((σ)) ⊆ ((σ)).
iii) If σ is in normal form, ((σ)) is ftv(σ)-stable.
iv) If t is not equivalent to α, then fsub (t[t′/α]) =α (fsub (t))[t′/α].
v) If θ is a substitution and the normal form of t is not in dom(θ), then we have

θ(fsub (t)) =dom(θ) fsub (θ(t)).
vi) For all t in ((σ)), we have σ 6/ t.
vii) If nf(σ) 6= α and nf(σ) 6= ⊥, we have fsub (((σ))[t/α]) =α ((σ))[t/α].
viii) If σ is an F-type in normal form, then ((σ)) = fsub (σ).

ix) If the sets S and S ′ are β̄-stable, then we have

ᾱ#β̄⋃

t∈S

∀ ᾱ·S′[t/α] =

ᾱ#β̄∪γ̄⋃

t∈S

∀ ᾱ·S′[t/α]

x) If θ is a monotype substitution, then we have θ(fsub (S)) =dom(θ) fsub (θ(S)).
xi) If θ is a monotype substitution and σ is in normal form, then θ(((σ))) =dom(θ)

((θ(σ))) holds.
xii) If σ1 ≡ σ2 holds, then we have ((σ1)) = ((σ2)).
xiii) If θ is in ((Q)), there exists a System F substitution θ ′ such that θ = θ′ ◦ Q̂(t).

See proof in the Appendix (page 299).

Some of the properties above require their argument to be in normal form. Thanks
to Property xii, this requirement can be discarded:

Properties 10.3.7

i) If α /∈ ftv(σ), then ∀α · ((σ)) ⊆ ((σ)).
ii) The set ((σ)) is ftv(σ)-stable.
iii) If σ is an F-type, then ((σ)) = fsub (σ).
iv) If θ is a monotype substitution, we have θ(((σ))) =dom(θ) ((θ(σ))).

Abstraction is a relation that hides information in the prefix. Its converse relation
is revelation, which exposes a type scheme bound to a variable in the prefix, and is
possible only by explicit type annotations. These two relations are at the heart of type
inference. However, the interpretation of shallow types is not designed for preserving
type inference, but only for comparing expressiveness of Shallow MLF and System F.
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Thus abstraction and revelation are ignored by the interpretation, as stated by the
following lemma:

Lemma 10.3.8 If we have a shallow derivation of (Q) σ1 @− σ2, then for all θ in ((Q)),
the sets fsub (θ(((σ1)))) and fsub (θ(((σ2)))) are equal.

See proof in the Appendix (page 310).

Note, however, that a corollary of this lemma is that the interpretation of shallow types
captures the equivalence relation (as well as the abstraction relation).

The next lemma shows that the interpretation of shallow types is consistent with
the instance relation: if σ2 is an instance of σ1 in Shallow MLF, then each type in
((σ2)) must be an instance (in System F) of a type in ((σ1)). Actually it amounts to
having ((σ2)) ⊆ ((σ1)). This holds for the instance relation under an empty prefix. The
following lemma takes the prefix into account thanks to a substitution θ.

Lemma 10.3.9 If we have a shallow derivation of (Q) σ1 ♦ σ2, then for all θ in ((Q)),
we have θ(((σ2))) ⊆ θ(((σ1))).

See proof in the Appendix (page 313).

10.3.4 Encoding Shallow F into System F

We consider the Curry-style version of System F, which we call implicit System F.
Expressions are expressions of the pure lambda-calculus, so that type applications,
type abstractions, and type annotations are all implicit. The typing rules of implicit
System F are the following:

IF-Var

x : t ∈ A

A `F x : t

IF-Fun

A, x : t `F a : t′

A `F λ(x) a : t→ t′

IF-App

A `F a1 : t2 → t1 A `F a2 : t2

A `F a1 a2 : t1

IF-Inst

A `F a : t t vF t′

A `F a : t′

IF-Gen

A `F a : t α /∈ ftv(A)

A `F a : ∀α · t

As expected, these rules correspond to the rules of System F, where type annotations
are removed on lambda-bound variables, type abstractions are type applications are
made implicit in rules IF-Gen and IF-Inst, respectively.

In order to prove that Shallow F and System F have the same expressiveness, we in-
troduce Shallow UMLFas Shallow F with implicit oracles and without type annotations.
The type erasure of an expression typable in Shallow F is typable in Shallow UMLF.
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Conversely, if an expression is typable in Shallow UMLF, it can be annotated in order
to be typable in Shallow F. We simply say that Shallow F and Shallow UMLF have
the same set of typable terms. We show in the following lemma that a term typable in
Shallow UMLF is also typable in implicit System F.

Lemma 10.3.10 Assume Γ is a type environment with monotypes only. If we have
a derivation of (Q) Γ ` a : σ in Shallow UMLF, then θ(Γ) `F a : θ(t) holds for all
System F substitutions θ, and System F type t such that θ ∈ ((Q)), and t ∈ ((σ)).

Proof: By induction on the shallow derivation of (Q) Γ ` a : σ. Let θ be in ((Q)) and t
be in ((σ)) (1).

◦ Case Var: By hypothesis, we have Γ(x) = τ . Hence, θ(Γ)(x) is θ(τ). Thus, we
can derive θ(Γ) `F a : θ(τ) (2) by IF-Var. Additionally, t is in ((τ)). Hence, t is in
fsub (τ), which means that t is equivalent to τ . Then θ(t) is equivalent to θ(τ). Thus,
θ(Γ) `F a : θ(t) holds from (2) by IF-Inst.

◦ Case App: The premises are (Q) Γ ` a1 : τ2 → τ1, (Q) Γ ` a2 : τ2, a is a1 a2, and σ
is τ1. By induction hypothesis, we have θ(Γ) `F a1 : θ(τ2 → τ1), as well as θ(Γ) `F a2 :
θ(τ2). By IF-App, we get θ(Γ) `F a : θ(τ1) (3). We note that ((τ1)) = fsub (τ1), hence,
t is equivalent to τ1 (from (1)). This implies θ(t) equivalent to θ(τ1). Then by IF-Inst

and (3), we get θ(Γ) `F a : θ(t).

◦ Case Fun: The premise is (Q) Γ, x : τ0 ` a′ : τ , a is λ(x) a′, and σ is τ0 → τ . We
note that ((τ0 → τ)) = fsub (τ0 → τ ), hence, t is equivalent to τ0 → τ (from (1)). Then
θ(t) is equivalent to θ(τ0 → τ). By induction hypothesis, we have θ(Γ, x : τ0) `F a′ : θ(τ).
By IF-Fun, we get θ(Γ) `F λ(x) a′ : θ(τ0) → θ(τ). By IF-Inst, we get θ(Γ) `F a : θ(t).

◦ Case Gen: The premise is (Q,α�σ1) Γ ` a : σ2 with α /∈ ftv(Γ), and σ is ∀ (α�σ1) σ2.
We consider two subcases:

Subcase σ is ∀ (α = σ1) σ2: By definition, we have ((σ)) = fsub
(
((σ2))[σ1/α]

)
.

From (1), there exists t2 in ((σ2)) such that t2[σ1/α] vF t holds. This implies the
inclusion θ(t2[σ1/α]) vF θ(t) (4). Let θ′ be θ ◦ [σ1/α]. We note that θ′ ∈ ((Q,α = σ1)).
By induction hypothesis, we have θ′(Γ) `F a : θ′(t2), that is, θ(Γ) `F a : θ(t2[σ1/α]).
By (4) and IF-Inst, we get θ(Γ) `F a : θ(t).

Subcase σ is ∀ (α≥ σ1) σ2: By definition, we have

((σ)) = fsub




ᾱ#ftv(σ1,σ2)⋃

t1∈((σ1))

∀ ᾱ · ((σ2))[t1/α]




Let J be ftv(σ1, σ2) ∪ ftv(θ(Γ)) ∪ dom(θ) ∪ codom(θ) (5). By Properties 10.3.7.ii and
10.3.6.ix, we get

((σ)) = fsub




ᾱ#J⋃

t1∈((σ1))

∀ ᾱ · ((σ2))[t1/α]




198



10.3 Comparison with System F 199

From (1), there exist t2 ∈ ((σ2)), t1 ∈ ((σ1)), and ᾱ disjoint from J such that ∀ ᾱ ·
t2[t1/α] vF t (6) holds. Let θ′ be θ ◦ [nf(t1)/α]. We note that θ′ ∈ ((Q,α ≥ σ1)). By
induction hypothesis, we have θ′(Γ) `F a : θ′(t2), that is, θ(Γ) `F a : θ(t2[nf(t1)/α]).
By (5) and IF-Gen, we get θ(Γ) `F a : ∀ ᾱ · θ(t2[nf(t1)/α]). By (5), this is equal to
θ(Γ) `F a : θ(∀ ᾱ · t2[nf(t1)/α]). By (6) and F-Inst, we get θ(Γ) `F a : θ(t).

◦ Case Inst: The premise is (Q) Γ ` a : σ′ and (Q) σ′ v σ holds. By Lemma 10.3.9,
we have θ(((σ))) ⊆ θ(((σ′))). Hence, we have θ(t) ∈ θ(((σ′))), that is, there exists t′ in ((σ′))
such that θ(t) = θ(t′). By induction hypothesis, we have a derivation of θ(Γ) `F a : θ(t′),
that is, θ(Γ) `F a : θ(t).

◦ Case Oracle: The premises are (Q) Γ ` a : σ′ and (Q) σ @− σ′. By Lemma 10.3.8,
we have fsub (θ(((σ)))) = fsub (θ(((σ′)))). We note that θ(t) is in fsub (θ(((σ)))). Hence,
θ(t) is in fsub (θ(((σ′)))), that is, there exists t′ in ((σ′)) such that θ(t′) vF θ(t) (7). By
induction hypothesis we have θ(Γ) `F a : θ(t′). By (7) and IF-Inst, we get θ(Γ) `F a :
θ(t).

Note that the above lemma makes sense since ((Q)) and ((σ)) are not empty by
construction.

In order to illustrate this result, we consider the expression a equal to choose id. In
MLF, a has the principal type ∀ (α≥σid) α→ α, which we write σ. The corresponding
derivation is the following: (for the sake of readability we only show a meaningful
excerpt of the derivation)

Gen

App

Inst

(α≥ σid) ∅ ` choose : ∀ (β) β → β → β
(α≥ σid) ∀ (β) β → β → β v α→ α→ α

(α≥ σid) ∅ ` choose : α→ α→ α

(α≥ σid) ∅ ` id : σid
(α≥ σid) σid v α

(α≥ σid) ∅ ` id : α
Inst

(α≥ σid) ∅ ` a : α→ α

(∅) ∅ ` a : ∀ (α≥ σid) α→ α

The above lemma states that for any System F type t in ((σ)), `F a : t holds (the
prefix is empty). We write idα for α→ α, and tid for ∀α ·idα. We give two derivations
corresponding to two choices of t, namely tid → tid and ∀α · idα → idα.

IF-App

IF-Inst

`F choose : ∀β · β → β → β
∀β · β → β → β vF tid → tid → tid

`F choose : tid → tid → tid `F id : tid

`F a : tid → tid
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200 Shallow MLF

IF-Inst

`F choose : ∀β · β → β → β
∀β · β → β → β vF idα → idα → idα

`F choose : idα → idα → idα (8)

IF-Inst

`F id : tid tid vF idα

`F id : idα (9)

IF-Gen

IF-App
(8) (9)

`F a : idα → idα

`F a : ∀α · idα → idα

In the first derivation, the substitution taken from ((α ≥ σid)) is [tid/α], while it is
[idα/α] in the second derivation.

As a conclusion, each term typable in Shallow UMLF is also typable in System F,
thus System F and Shallow F have the same set of typable terms. As a corollary, type
inference in Shallow UMLF is undecidable, and so is type inference in Shallow MLF

?.
However, this does not imply undecidability of type inference in MLF

?, even though the
converse would be surprising.

Since Shallow F and System-F have the same expressiveness, for every term a of
Shallow F there exists a term M of explicitly typed system F that has the same erasure
as a. However, there is no unicity of a.

The interpretation of shallow types in System F suggests a semantics for types.
However, the encoding ((σ)) of shallow types is disappointing: On the one hand, as
stated by Lemma 10.3.8, abstraction and revelation are not covered by the interpre-
tation. On the other hand, the strength of MLF lies in the way it propagates type
information via abstraction and revelation, which makes type inference possible. Thus,
the given encoding does not provide a semantics meaningful for type inference. Fix-
ing this amounts to finding an interpretation that makes the difference between e.g.
∀ (α = σid) α → α and ∀ (α = σid, β = σid) α → β. We are not aware of any such
semantics.

10.4 Discussion

Let us summarize the results shown above. This document studies MLF (with type
annotations) and MLF

? (with oracles), which have the same set of typable terms. We
wish to compare MLFand System F. We have already shown in Chapter 9 that System F
can be encoded in MLF. Hence, the set of typable terms of System F is included in
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the set of typable terms of MLF. We simply say that System F is included in MLF.
We do not show the converse inclusion, but rather consider a restriction of MLF, called
Shallow MLF. In Section 10.2, we have shown that a term is typable in Shallow MLF

if and only if it is shallow and typable in MLF. Thus, Shallow MLF can as well be
defined as MLF where type annotations are required to be types of System F only.
As a consequence, System F is included in Shallow MLF. More precisely, terms of
System F do not have the let construct, thus System F is included in Shallow F, which
is Shallow MLFwithout let. Conversely, we have shown in Section 10.3, that Shallow F
is included in System F. Hence, Shallow F and System F have the same set of typable
terms. This can be pictured by the following sequence of relations:

MLF = MLF
? ⊇ Shallow MLF⊇ Shallow F = System F

A remaining question is whether Shallow F is a strict subset of Shallow MLF (en-
coding let constructs as λ-abstractions). We conjecture that this is true.

More precisely, our candidate for discrimination is the term a0 given below. We first
introduce some notations that make the term a0 more readable. Given a number n, we
write n̄ for the church numeral n, that is, λ(f) λ(x) (f . . . (f x)) with f repeated n
times. We write S the successor function, that is, λ(n) λ(f) λ(x) f (n f x). We recall
that auto is λ(x) x x. Additionally, given two terms a and a′, the sequence a; a′ is
syntactic sugar for 0̄ a a′. Then the term a0 is defined as let x = a1 in a2 where a1 is
the function λ(f) f id and a2 is the sequence x auto ; (λ(y) x y ; y S) (λ(z) λ(z ′) z 2̄).

The term a0 is in Shallow MLF. However, we conjecture that a0 is not typable in
System F. The intuition is that the two occurrences of x have “incompatible types”
((∀α ·(α → α)) → t) → t for some type t and (N2 → N2) → N2 in System F where N is
the type ∀α · (α→ α) → α→ α of church numerals and N2 is N → N. In Shallow MLF,
x can be assigned the type (∀ (β, α≥ σid) α→ β) → β.

Furthermore, assuming that a is not in System F, we can build the term a′ equal
to 1̄ (λ(x) a2) a1, which is in MLF but not in Shallow MLF. Indeed, (λ(x) a2) a1

is typable in MLF (annotating x with the type given above), thus a′ is typable, as
shown in Example 5.2.11. However, a′ is not typable in Shallow MLF. Indeed, it would
otherwise be typable in Shallow F (it does not use let), and therefore it would be
typable in System F. This has been conjectured not to hold.

Still, MLF remains a second-order system and in that sense should not be signif-
icantly more expressive than System F. In particular, we conjecture that the term
(λ(y) y I ; y K) (λ(x) x x) that is typable in Fω but not in F [GR88] is not typable
in MLF either. Conversely, we do not know whether there exists a term of MLF that is
not typable in Fω.
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202 Shallow MLF

Notice however that the term a0 given above is typable in Fω. The hint is to encode
the type ∀ (β) ∀ (α′≥∀ (α) α→ α) (α′ → β) → β as ∀A·∀β ·((∀α·A α→ A α) → β) →
β and use Λ(γ) γ or Λ(γ) N for A to recover the types of the two occurrences of x. Then
a can be typed as follows in Fω: (λ(x : ∀A · ∀β · ((∀α · A α→ A α) → β) → β) a′2) a

′
1,

where, a′1 is Λ(A) Λ(β) λ(f : (∀α ·A α→ A α) → β) f (Λ(α) id[A α]) and a′2 is

Λ(α)
x [Λ(β) β] [idα] (λ(x : σid) x [idα] x[α]) ;
(λ(y : N2 → N2) x [Λ(α) N2] [N] y ; y S)

(λ(z : N2) λ(z′ : N) z 2̄)

This suggests that there may exist an encoding of MLF into Fω.
We can now enrich the above diagram with these conjectures:

Fω

(
MLF

MLF
?

)
⊃(10)

(
Shallow MLF

Shallow MLF
?

)
⊃(11) Shallow F = System F

⊂(12)
⊃(13)

The inclusion (11) corresponds to the encoding of System F, which is shallow (proved).
It is conjectured to be a strict inclusion. The inclusion (10) is by construction. It is
strict whenever (11) is strict. The inclusion (13) is by construction of Fω. It is known
to be a strict inclusion [GR88]. We expect the inclusion (12) to hold, as suggested by
the example above, however we are not able to give a systematic encoding of MLF into
Fω. This inclusion is also conjectured to be strict.

Reducing all let-bindings in a term of Shallow MLF produces a term in Shallow F.
Hence, terms of Shallow MLF are strongly normalizable. We conjecture that so are all
terms of MLF.
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Chapter 11

Language extensions

We have defined MLF as a core language made of the expressions of ML and type
annotations. We have shown that all programs in ML are still typable in MLF, without
any annotation. However, real ML programs often mention useful language extensions.
We show in this chapter how such extensions could be added to MLF.

Some constructs, such as tuples or records, are looked at in Section 11.1 and are
easily added to MLF. Interestingly, first-class polymorphism allows for a direct encoding
of some constructs (such as pairs), which is not always possible in ML. Imperative
features are considered in Section 11.2: References are known to misbehave in the
presence of ML-style polymorphism, thus this extension is more delicate and requires
some restrictions. More precisely, we consider the well known value restriction and a
more subtle variant, the relaxed value restriction. In Section 11.3, we consider a useful
feature that is not meaningful in ML because type annotations are not required for type
inference. This feature consists of mechanically propagating type annotations from top-
level to subexpressions. As an immediate application, it can be used to automatically
propagate type annotations from interface files to implementation files. For instance,
the type information given in the signature of a module can be automatically propagated
to each element and each subexpression of the module.

11.1 Tuples, Records

Because the language is parameterized by constants, which can be used either as con-
structors or primitive operations, the language can import foreign functions defined via
appropriate δ-rules. These could include primitive types (such as integers, strings, etc.)
and operations over them. Sums and products, as well as predefined datatypes, can
also be treated in this manner, but some (easy) extension is required to declare new
data-types within the language itself.
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As an example, the primitives that handle pairs have the same types as in ML:

(_,_) : ∀ (α, β) α→ β → α× β
fst : ∀ (α, β) α× β → α
snd : ∀ (α, β) α× β → β

The corresponding δ-rules are

fst (v1, v2) −→ v1

snd (v1, v2) −→ v2

We could also introduce pairs using the usual encoding of pairs in System F:

(_,_) = λ(x) λ(y) λ(f) f x y
fst = λ(p) p (λ(x) λ(y) x)
snd = λ(p) p (λ(x) λ(y) y)

However, as remarked by Fritz Henglein [Hen93], this encoding is not correct in
ML. Indeed, the type given to λ(p) (fst p, snd p) is then ∀α ·α×α→ α×α, whereas
it is ∀αβ · α× β → α× β when using the primitive pairs. This cannot be fixed in ML,
but it can in MLF, adding a type annotation to the argument of fst and snd:

fst = λ(p : ∃ (α, β) ∀ (γ) (α→ β → γ) → γ) p (λ(x) λ(y) x)
snd = λ(p : ∃ (α, β) ∀ (γ) (α→ β → γ) → γ) p (λ(x) λ(y) y)

Then the pairs encoded as functions and the primitive pairs have the same typing
behavior.

11.2 References

To give an account of references, the simplest modification of the dynamic semantics
is to use a global store (mapping store locations to values) and a small-step reduction
relation over store-expression pairs. This carries over to MLF without any difficulty.

Adapting the static semantics to ensure that store locations are always used at
the same type is more difficult. In ML, this can be done by restricting implicit let-
polymorphism to syntactic values [Wri95]. Hence, the type of a location, which must
be the type of the non-value expression creating the location, cannot be polymorphic.
This solution can be adapted to MLF as well.

Value restriction The value restriction consists of restricting Rule Gen to values
(non-expansive expressions) only:

Gen-vr

(Q,α � σ) Γ ` a : σ′ α /∈ ftv(Γ) a non-expansive

(Q) Γ ` a : ∀ (α � σ) σ′
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Then the type inference algorithm (page 164) is modified as follows:

Case a b :

• let (Q1, σa) = infer (Q,Γ, a)
• let (Q2, σb) = infer (Q1,Γ, b)
• let αa, αb, β /∈ dom(Q2)
• let Q3 = unify ((Q2, αa ≥ σa, αb ≥ σb, β ≥⊥), αa, αb → β) return (Q3, β)

We return Q3 whereas, in the previous version of the algorithm, Q3 is split in two
parts Q4 and Q5. Then Q4 is returned as the new prefix, and Q5 is generalized in front
of β.

However, this solution is likely to be very disappointing when applied to MLF, whose
machinery relies on type generalization and the use of polymorphic non-functional ex-
pressions (which cannot be η-expanded). As a first example, type annotations are
primitives that reveal polymorphism upon application. If the value-restriction holds,
a type annotation primitive does no longer reveal polymorphism, because generaliza-
tion is forbidden. Hence, the introduction of the value-restriction requires a dedicated
typing rule for type annotations. Fortunately, there is a simple relaxation of value-
only polymorphism that allows type variables to remain polymorphic in the type of
non-values, as long as they only occur covariantly [Gar02]. Since this extension was
designed for Poly-ML in the first place (even though it is more general), we expect this
solution to work well for MLF as well and to be sufficient in practice.

Relaxed value restriction Given a flat type t, we define ftv−(t) inductively as
follows:

ftv−(α) = ∅ ftv−(⊥) = ∅ ftv−(t1 → t2) = ftv(t1) ∪ ftv−(t2)

Given a type scheme σ, ftv−(σ) is by definition ftv−(proj(t)). We note that all free
variables of σ occurring at the left of an arrow are in ftv−(σ). This definition of
negative occurrences is not usual, since α is considered negative in (α→ β) → β, while
it is often considered positive in other type systems.

The relaxed value restriction consists of restricting Rule Gen as follows:

Gen-rvr

(Q,α � σ) Γ ` a : σ′ α /∈ ftv(Γ) a non-expansive or α /∈ ftv−(σ′)

(Q) Γ ` a : ∀ (α � σ) σ′

In order to implement this rule in the type inference algorithm, we need to modify
the split algorithm (defined page 112) according to the occurrence of variables. Hence
the following definition:
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Definition 11.2.1 The positive splitting of a closed prefix Q according to the set ᾱ
and the type scheme σ is written Q↑σᾱ and defined inductively as follows (we require
ᾱ ⊆ dom(Q)).:

∅↑σᾱ = (∅, ∅)

(Q,α � σ)↑τ ᾱ =

{
(α � σ)

1
−→ Q↑σ′

(ᾱ− α) ∪ ftv(σ) when α ∈ ᾱ or α ∈ ftv−(σ′)

(α � σ)
2

−→ Q↑∀ (α�σ)σ′

ᾱ otherwise

Then the type-inference algorithm is modified as follows:

Case a b :

• let (Q1, σa) = infer (Q,Γ, a)
• let (Q2, σb) = infer (Q1,Γ, b)
• let αa, αb, β /∈ dom(Q2)
• let Q3 = unify ((Q2, αa ≥ σa, αb ≥ σb, β ≥⊥), αa, αb → β)
• let (Q4, Q5) = Q↑β dom(Q)
• return (Q4,∀ (Q5) β)

The only difference is that variables that are generalized (namely Q5) are those
obtained from the positive splitting of Q, which takes the occurrence of the variables
into account.

This restriction has been implemented and seems to work well on a few significant
examples. It remains to find if it is usable in practice for larger programs.

11.3 Propagating type annotations

In MLF, type annotations are only needed on arguments of λ-abstractions that are
used polymorphically. However, for documentation purposes or for readability, it can
be useful to put extra type annotations. For instance, consider the following top-level
definition: let delta = λ(x : σid) x x. One could wish to give explicitly the type of
delta (the annotation σid → σid is syntactic sugar for ∀ (α= σid) ∀ (β = σid) α→ β):
let (delta : σid → σid) = λ(x : σid) x x (14). In this case, the two annotations are
obviously redundant. We would like to get rid of the second one (x : σid), which is
subsumed by the first one.

In a first time, we define some syntactic sugar to give meaning to the notation
let (x : σ) = a. Then we show how type annotations can be automatically propagated
in order to avoid useless redundancy.
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let-bound variables and λ-bound variables can be annotated, using the following
syntactic sugar (the first rule was already defined in Section 8.3):

λ(x : ∃ (Q) σ) a −→ λ(x) let x = (x : ∃ (Q) σ) in a
let (x : ∃ (Q) σ) = a in a′ −→ let x = (a : ∃ (Q) σ) in a′

let rec (x : ∃ (Q) σ) = a in a′ −→ let rec x =
let x = (x : ∃ (Q) σ) in
(a : ∃ (Q) σ) in a′

Next, we show how the outer type annotation in (14) can be propagated to the inner
λ-abstraction. More generally, we show how type annotations are propagated to inner
terms. Since flexible bindings and rigid bindings are quite different in nature, they are
propagated differently. The flexible domain and rigid domain of a prefix, defined next,
clearly separate those two kinds of bindings.

Definition 11.3.1 The flexible domain and the rigid domain of a prefix Q , written
dom>(Q) and dom=(Q) respectively, are defined as follows:

• α ∈ dom>(Q) if and only if (α≥ σ) ∈ Q or (α = σ′) ∈ Q and σ′ ∈ T .

• α ∈ dom=(Q) if and only if (α= σ) ∈ Q or (α ≥ σ′) ∈ Q and σ′ ∈ T .

We note that dom(Q) is the union of dom>(Q) and dom=(Q), and that dom(Q̂) is their
intersection. Indeed, as explained in Definition 1.5.7, bindings (α � σ) where σ ∈ T are
considered both flexible and rigid.

The rules given below syntactically propagate type annotations. To ease readability,
we do not keep the original type annotation in place but only show the propagation
mechanism. Actually, the outer type annotation is meant to be kept in place and
propagated.

(a1 a2 : ∃ (Q) σ) −→ (a1 : ∃ (α,Q) ∀ (α′ = σ) α→ α′) a2

(let x = a1 in a2 : ∃ (Q) σ) −→ let x = a1 in (a2 : ∃ (Q) σ)
(a1, a2 : ∃ (Q) ∀ (Q′) τ1 × τ2) −→ ((a1 : ∃ (Q) ∀ (Q′) τ1),

(a2 : ∃ (Q) ∀ (Q′) τ2))
(λ(x) a : ∃ (Q) ∀ (Q′) τ1 → τ2) −→ λ(x : ∃ (QQ1) ∀ (Q′

1) τ1)
(a : ∃ (QQ2) ∀ (Q′

2) τ2)
where

(Q1, Q
′
1)

M

= Q′↑ ftv(τ2) ∪ dom>(Q′)

(Q2, Q
′
2)

M

= Q′↑ ftv(τ1)

Hence, if the expression let (delta : σid → σid) = λ(x) x x is given in input, it
is first replaced by let delta = (λ(x) x x : ∀ (α = σid, β = σid) α → β). Then the
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type annotation is propagated as follows (writing type annotations in normal form):
let delta = (λ(x : σid) ((x : ∃ (α) α→ σid) x : σid) : ∀ (α=σid, β=σid) α→ β). The
type annotation (_ : σid) has been automatically propagated to the λ-bound variable
x. Note that the expression let (delta : ∃ (α) σid → α) = λ(x) x x is also typable by
syntactic propagation of type annotations.
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Chapter 12

MLF in practice

One of the main motivations for designing MLF was that the amount of explicit type
information required in some previous proposals was too big. Satisfyingly, the encoding
of System F is light, and we know that arguments of λ-abstractions that are not used
polymorphically need not be annotated.

12.1 Some standard encodings

Using the prototype, we were able to test a few simple examples such as the usual
encodings of Church integers, booleans, and tuples in System F. As expected, very few
type annotations are needed, and always at predictable places. Indeed, for arguments
that are known to have a polymorphic type (for example the polymorphic type encoding
integers), it is usually good practice to annotate them using an abbreviation: on the
one hand, such arguments are most of the time more “significant” than monomorphic
arguments; on the other hand, the inferred types will be much easier to read, thanks to
the abbreviation. Besides, although some functions abstract over polymorphic types,
they do not necessarily use their argument in a polymorphic way. As a result, a
substantial number of function definitions does not actually need the type annotation
that the programmer already provided for his own convenience.

In the following example, we define Church integers and some operations over them.1

# type Int = ∀α. (α → α) → (α → α)
type Int defined.

# let succ (n:Int) = fun f x → n f (f x)

val succ : ∀(β ≥ ∀α. (α → α) → α → α) Int → β

1The output is taken from the prototype, but slightly modified to make it more readable.
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# let add (n:Int) (m:Int) = n succ m

val add : ∀(β ≥ Int → Int) Int → β

Actually, both of these functions can be written without type annotations (indeed, they
are typable in ML). But then the inferred type, which is equivalent, is harder to read:

# let add n m = n succ m

val add : ∀(α ≥ ∀(γ ≥ ∀ x.(x → x) → x → x) Int → γ)
∀(δ) ∀(ε) (α → δ → ε) → δ → ε

Moreover, it sometimes happens that, although a function is typable without any type
annotation, the type annotation is mandatory in order to get the “correct” type (see
the example with pairs in Section 11.1). Indeed, the principal type of an expression
depends on the polymorphic type annotations.

Notice that in all of these cases, the annotation could be propagated from the
signature file to the implementation, using the technique described in Section 11.3.

We admit that these examples are only simple encodings that do not make strong
use of first-class polymorphism. Thus, it is not surprising that so few annotations
are actually needed. However, it would be possible to build more involved examples
by using these encodings with complex data structures. For example, it is possible to
store Church integers (which are polymorphic) in a hashtable without any need for type
annotations. The following piece of code typechecks in MLF with the value restriction.

let table = Hashtbl.create 10

Hashtbl.add table "one" (λ(f) λ(x) f x)

Hashtbl.add table "two" (λ(f) λ(x) f (f x))

add (Hashtbl.find table "one") (Hashtbl.find table "two")

The last line applies add, which requires its two arguments to be polymorphic of type
Int (Church integers). The type of table is monomorphic, namely α hashtable,
where α is a weak type variable. Still, α is bound to Int in the prefix. We see that
the type parameter of the type constructor hashtable is implicitly instantiated by (a
type variable standing for) a polymorphic type. This makes hashtables, or any data
structure, compositionnally usable, including with polymorphic values.

12.2 Existential Types

Another interesting example is the encoding of existentials. In System F, the existential
type ∃α.t is isomorphic to the polymorphic type ∀β · (∀α · t → β) → β. Then, an
existential value v with type ∃α.t is encoded as a function expecting a polymorphic
argument: let v′ = Λ(β) λ(x : ∀α · t→ β) x v.
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In order to open an existential v′, one must apply it to a polymorphic function, that
is, a function parametric over the type being abstracted: (we omit the type application)
v′ [..] (Λ(α) λ(x : α) (x, x)).

In MLF, the encoding of existentials gets a real benefit from type inference. Indeed,
while the creation of the existential itself requires a type annotation, the opening does
not require any type annotation. This is the best we can expect since the abstract type
given to the encapsulated value can only be defined by the programmer himself.

Let us consider a concrete example: we build an encapsulation for tasks, that is,
a pair of a function and its argument. Tasks can be put in a list and evaluated by a
server. The server opens each encapsulation and applies the function (second element
of the pair) to its argument (first element of the pair).

let encapsulate v = λ(f : ∀α. α × (α → unit) → β) f v

let create f arg = encapsulate (arg, f)

let serve box = box (λp (snd p) (fst p))

New tasks are easily created using create, put in any data structure such as a list,
and served using serve:

let taskList = (create f1 arg1) :: (create f2 arg2) :: ...

let server () = List.iter serve taskList

Notice that only a single type annotation is needed for the whole example.

12.3 When are annotations needed?

MLF motto is “annotate arguments that are used polymorphically”. This does not mean
that the argument is used twice. Indeed, in some examples, an annotation is required
on an argument which is only used once.

Consider the following example:

let auto (x : ∀α. α → α) = x x

let t z = auto z

t id

auto is defined as usual: it requires a polymorphic argument. Then, we define t that
expects a polymorphic argument z and applies auto to it. The argument z is not
annotated because it is not used polymorphically, but only passed through.

We consider a variant auto2 defined as follows:

let auto2 (z:∀α. unit → α → α) = (z ()) (z ())

: ∀(β = ∀α. unit → α → α) ∀(γ ≥ ∀α. α → α) β → γ
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Finally, we build t2 that, intuitively, takes the identity as an argument, builds a
λ-abstraction, and applies auto2 to the result.

let t2 y = auto2 (λ() y)

This expression is not typable in MLF. It is an example of a function which uses its
argument only once, but which requires an annotation. Indeed, annotating y with
∀ (α) α → α suffices to make the expression typable. In this example, the argument y

is used polymorphically in the sense that it is used to build a function which is required
to be polymorphic. On the contrary, in λz.auto z, the argument z is not used but only
passed through.

12.4 A detailed example

In the following example, we aim at writing some generic functions that can be used
with different kinds of data structures. For instance, we define the functions size, sum
and max that return, respectively, the number of elements of the given data structure,
the sum of all (integers) elements of the data structure, and the maximal element of
the structure. These functions are written only once, but are applied on two different
incompatible implementations. The first one is a list of integers, the second one is a
balanced binary tree. Both of these data structures are viewed abstractly, using their
associated iterator.

The following type definition corresponds to the type of iterators over type struc-
tures holding integers. Since such data structures are typically special instances of
graphs, we simply call this type graph.

type graph = ∀α. (int → α → α) → α → α

The first data structure we use is a list. The iterator over lists is easily defined as
follows2:

let rec list_iter list f accu =

if list = [] then accu

else list_iter (cdr list) f (f (car list) accu)

: ∀α. ∀β. α list → (α → β → β) → β → β

The second data structure is a balanced binary tree. We define a datatype for such
trees and the corresponding iterator.

2This full example is written as such in our prototype implementation of MLF; only the output is
slightly modified to make it easier to read.
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type tree = Empty | Node of tree * tree | Leaf of int

(* left-to-right traversal of the tree. *)

let rec (tree_iter: tree → graph) tree f accu =

begin match tree with

| Empty → accu

| Node (left, right) → tree_iter right f (tree_iter left f accu)

| Leaf x → f x accu

end

: tree → graph

The annotation on tree_iter could be omitted here. It makes the inferred type more
readable.

Next, we define a few generic functions that can be applied on any data structure,
using the iterator.

let size gr = gr (fun x n → n+1) 0 (* Number of elements. *)

let nodes gr = gr (fun x l → x::l) [] (* List of elements. *)

let sum gr = gr (fun x s → s+x) 0 (* Sum of all elements. *)

let last gr = gr (fun x a → x) 0 (* Last element, 0 if none. *)

let max gr = gr (fun x m → if x > m then x else m) 0

let min gr = gr (fun x m → if x < m then x else m) (last gr)

Since no type annotation is given, the inferred types may be quite large; for example:

val last : ∀(α ≥ ∀β. ∀(γ ≥ ∀δ. δ → β) β → γ) ∀ε. (α → int → ε) → ε

val max: ∀α. ((int → int → int) → int → α) → α

The following function converts a given graph (whose actual representation is unknown)
to a list, provided the given graph is quite small. The list is exported as another graph.

let convert (gr:graph) =

if size gr < 10 then list_iter (nodes gr)

else gr

: graph → graph

An annotation is required because the argument gr is used twice with incompatible
types; that is, gr is used polymorphically. The inferred type is also much easier to read
than the above types.

The next function (inefficiently) inserts an element in a balanced tree (usual ML
code).

213



214 MLF in practice

let rec insert tree x =

begin match tree with

| Empty → Leaf x

| Leaf y → Node (Leaf x, Leaf y)

| Node (left, right) →

if size (tree_iter left) <= size (tree_iter right)

then Node (insert left x, right)

else Node (left, insert right x)

end

: tree → int → tree

Next, we build a balanced tree with the values 1, .., 6.

let tree = insert Empty 1

let tree = insert tree 2

let tree = insert tree 3

let tree = insert tree 4

let tree = insert tree 5

let tree = insert tree 6

We define three different graphs. The first one is implemented by a balanced tree; the
second one is a conversion of it (and will actually be converted to a list); the third one
is implemented by a list.

let graph1 = tree_iter tree

let graph2 = convert graph1

let graph3 = list_iter [1; 2; 3; 4; 5; 6]

The function print_info below prints all kinds of information about a given graph,
including its size and all its nodes. It is a generic function: it does not depend on the
underlying implementation.

(* Tool function *)

let rec print_list l =

if l = [] then print "[]"

else (print_int (car l) ; print "; " ; print_list (cdr l))
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let print_info (gr:graph) =

begin

print "Size : " ; print_int (size gr) ; print "\n" ;

print "Sum : " ; print_int (sum gr) ; print "\n" ;

print "Last : " ; print_int (last gr) ; print "\n" ;

print "Max : " ; print_int (max gr) ; print "\n" ;

print "Min : " ; print_int (min gr) ; print "\n" ;

print "Nodes : " ; print_list (nodes gr) ; print "\n" ;

end

: graph → unit

This function is annotated because its argument gr is used polymorphically.
Finally, we call the generic function print_info with the three different graphs we

have defined. Two of them are actually implemented by lists and one of them by a
balanced tree.

print "Graph1 \n" ; print_info graph1 ;

print "Graph2 \n" ; print_info graph2 ;

print "Graph3 \n" ; print_info graph3 ;

The output we get is the following:

Graph1

Size : 6

Sum : 21

Last : 1

Max : 6

Min : 1

Nodes : 1; 4; 6; 2; 3; 5; []

Graph2

Size : 6

Sum : 21

Last : 5

Max : 6

Min : 1

Nodes : 5; 3; 2; 6; 4; 1; []
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Graph3

Size : 6

Sum : 21

Last : 6

Max : 6

Min : 1

Nodes : 6; 5; 4; 3; 2; 1; []

12.5 Discussion

In the above example, only two type annotations are mandatory, namely in convert

and print_info. Another one was provided for convenience in tree_iter. Writing
this sample code, it was always very clear when to put an annotation.

A different style would be to annotate generic functions such as size, nodes, etc.,
although they do not require any annotation. As a result, the inferred types would be
nicer, and the function print_info would not need an annotation.

More generally, the “generic functions” above can be viewed as library functions.
Then, their type would be provided in a signature file. As a consequence, user-defined
functions using this library would, in most cases, not need type annotations.
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Conclusion

We have presented MLF, which is an extension of ML with more expressive types that
embed first-class polymorphism. A sound and complete unification algorithm for these
types is provided; although they are second-order, unification is kept first-order. Indeed,
polymorphism is never guessed, but only silently propagated. It can be introduced, as
in ML, by the let construct, or by explicit type annotations. Then it is implicitly
instantiated, just as in ML.

The typing rules of MLF are the typing rules of ML, up to the richer types and
the richer instance relation. As a consequence, the type inference algorithm of MLF is
similar to the type inference of ML and basically relies on unification. As in ML, any
typable MLF program admits a principal type, that however depends on the explicit
type annotations. The similarity between MLF and ML imply that all ML programs
are typable in MLF as such. Furthermore, the richer types allow the introduction of
type annotations as primitives, for which we prove type safety. Using these primitives,
we show how to encode all System F programs by simply erasing type abstractions and
type applications.

Interestingly, all type annotations of a System F program are not necessary in
MLF: monotype annotations as well as annotations on variables that are not used
polymorphically can be inferred. For example, the app function, defined as λ(f) λ(x)
f x can be applied to any pair of arguments a1 and a2 such that a1 a2 is typable.
This is not true in System F where type applications are needed to specialize the
type of app. Similarly, the function λ(x) x id can be applied both to a function
expecting a monomorphic argument, such as List.map, and to a function expecting a
polymorphic argument, such as auto (defined as λ(x : σid) x x). No type application
or coercion is needed to choose between a monomorphic instance of the identity and
the “polymorphic” identity. This is not true in other type systems trying to merge ML
and first-class polymorphism, including Poly-ML.

In summary, MLF is an integration of ML and System F that combines the con-
venience of type inference as present in ML and the expressiveness of second-order
polymorphism. Type information is only required for arguments of functions that are
used polymorphically in their bodies. We think that this specification should be intu-
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itive to the user. Besides, it is modular, since annotations depend more on the behavior
of the code than on the context in which the code is placed; in particular, functions
that only carry polymorphism without using it can be left unannotated.

The obvious potential application of our work is to extend ML-like languages with
second-order polymorphism while keeping full type inference for a large subset of the
language, containing at least all ML programs.

Exploring the difference between MLF and System F, we have considered a restric-
tion of MLF called Shallow MLF. It is shown that Shallow MLF can be equivalently
viewed as MLF where type annotations are restricted to types of System F. All pro-
grams of ML and of System F are typable in Shallow MLF as well. This means that the
programmer does not need to understand MLF types to write Shallow MLF programs.
However, shallow types are still introduced by the type inference algorithm, e.g. the
typing of choose id introduces the type ∀ (α ≥ σid) α → α. Hence, the knowledge
of shallow types seems necessary to understand inferred types, in particular those ap-
pearing in error messages. Still, we have shown that Shallow MLF (without the let

construct) types the same set of terms than System F. More precisely, a typing of an
expression in Shallow MLF corresponds to one or more typings in System F. Thus, we
expect that it is possible to design a typechecker based on MLF that totally hides MLF

types: the programmer only sees System F types. However, although such a type-
checker is able to infer principal types for expressions, it cannot always display them.
This can also be problematic when writing interface files. Hence, whereas MLF types
are a priori not needed in source programs, they may still appear in interface files as
well as in messages of the typechecker.

Future work

MLF and Fω Since System F can be encoded into MLF, we may consider an ex-
tension of MLF with higher-order types, that is, with types of Fω. By keeping type
abstractions and type applications fully explicit for higher-order kinds, it should be
possible to perform type inference. As a consequence, we expect to be able to infer
type abstractions and type applications for the kind type in Fω. This remains to be
formalized.

An efficient implementation of unification The unification algorithm we give
is defined on “syntactic” types. Viewing the types as graphs, as described page 43,
it should be possible to design a more efficient unification algorithm. More precisely,
graphs and unification problems can be encoded as multi-equations, so that solving a
unification problems amounts to finding the solved form of a set of multi-equations.
Then the unification algorithm can be described as rewriting rules that keep the same
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set of solutions. From an implementation point of view, a unification algorithm on
graphs would proceed in two steps: a first step performs first-order unification, ignoring
binders; a second-step moves and merges binders. The second step fails if a rigid
binder is illegally moved. For instance, rewriting the type ∀ (α = σid) α → τ into
∀ (β) ∀ (α = β → β) α → τ amounts to moving the binder of β, which is not allowed
under rigid bindings. Indeed, the former type requires a polymorphic argument, with
type σid, whereas the latter can be applied to any monomorphic type. Therefore, such
an instantiation is not correct because it would allow us to apply auto, which expects a
polymorphic argument, to a monomorphic value such as succ (the successor function).
On graphs, it means that the following is not allowed:

→

→
τ

⊥

v

→

→
τ

⊥

Additionally, some well-formedness conditions imply that each node must appear
only under the node where it is bound. In “syntactic types”, it corresponds to the fact
that a type variable cannot be used outside its lexical scope. Thus, special care must
be taken while merging binders: in order to keep well-formedness, it may be necessary
to move binders not directly involved in the operation. Detecting which binders to
move may be a costly operation; this needs further investigation. To illustrate this, we
provide an example. The left-hand graph represents the type ∀ (α ≥ ∀ (β) ∀ (γ ≥ ∀ (δ)
β → δ) β → γ) ∀ (γ ′) α → γ′. The right-hand graph is similar, but nodes are labelled
with their corresponding variable name. The root node does not correspond to a type
variable, thus we call it ε.

ε

α γ′

γ

β

δ

→

→ ⊥

→

⊥

⊥
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We wish to unify γ and γ ′. The first step of the unification algorithm on graphs just
performs first-order unification on structures and leads to the following:

ε

α

γ

β

δ

This graph does not correspond to a syntactic type because γ is bound at two places.
Fortunately, the binding of γ and the binding of α are flexible, thus it is allowed to
move the binder of γ to the top-level node, which gives the following:

ε

α

γ

β

δ

Unfortunately, this graph is not well-formed either: it is not possible to write it as a
type. The reason is that β appears in the bound of γ but is bound at α. However, γ
is bound at ε, thus β is not in the scope of γ. As a consequence, the binder of β needs
to be moved to ε as follows:

ε

α

γ

β

δ

This graph represents the type ∀ (β) ∀ (γ ≥ ∀ (δ) β → δ) (β → γ) → γ, which is the
solution to the unification problem described above.
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This example illustrates that solving the unification of two nodes such as γ and γ ′

may have consequences on binders not directly related to γ or γ ′: in this example, it is
necessary to move the binder of β to build a well-formed graph. Whereas algorithms for
first-order unification are well-known and algorithms for merging binders seem straight-
forward, it remains to find an efficient algorithm to detect ill-formed graphs and to find
which binders to move. This is probably the most costly operation since moving a
single binder may transform arbitrarily many binders into illegal binders.

A semantics for MLF types The interpretation of shallow types as sets of System F
types sketched a semantics for MLF types. However, as mentioned then, the given
interpretation is not sound for the abstraction relation. Thus, it remains to find a
suitable semantics that captures the meaning of MLF types, including the meaning
of abstraction and revelation. Indeed, the relations @− and A− are fundamental for
type inference, and a semantics for types must be able to distinguish for example
∀ (α=σid) α→ α and ∀ (α=σid, β=σid) α→ β. A starting point for such a semantics
might be graph representations.
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Appendix A

Proofs (Technical details)

Felix qui potuit rerum cognescere causas — Virgile Géorgiques II, 489

Proof of Property 1.5.6

Property i: It is by induction on the number of universal quantifiers appearing in σ. If
σ has no universal quantifiers, then σ is ⊥ or τ , and we get the result by Rule Eq-Refl

since nf(σ) is σ itself. Otherwise, σ is ∀ (α � σ1) σ2, where σ1 and σ2 have strictly less
universal quantifiers than σ. We proceed by case analysis:

◦ Case nf(σ2) is α: Then nf(σ) is nf(σ1) (1), and σ2 ≡ α by induction hypothesis. By
Property 1.5.3.v (page 49), (α�σ1) σ2 ≡ α also holds. Hence, σ ≡ σ1 (2) holds by rules
R-Context-R and Eq-Var. By induction hypothesis on σ1, we have σ1 ≡ nf(σ1) (3),
therefore σ ≡ nf(σ1) holds by R-Trans, (2), and (3). By (1), we get σ ≡ nf(σ).

◦ Case α /∈ ftv(σ2): then, nf(σ) is nf(σ2) (4). We have σ ≡ σ2 by Eq-Free, thus
σ ≡ nf(σ2) holds by induction hypothesis and R-Trans. By (4), this means σ ≡ nf(σ).

◦ Case nf(σ1) is τ1: We have σ2 ≡ nf(σ2) by induction hypothesis on σ2, thus σ ≡
∀ (α�σ1) nf(σ2) (5) holds by R-Context-R and Property 1.5.3.v (page 49). Moreover,
we have σ1 ≡ τ1 by induction hypothesis on σ1, hence we have σ ≡ nf(σ2)[τ1/α] by Rule
Eq-Mono? on (5) and R-Trans. We conclude by observing that nf(σ) is nf(σ2)[τ1/α].
◦ Otherwise, nf(σ) is ∀ (α � nf(σ1)) nf(σ2). By induction hypothesis, σ1 ≡ nf(σ1)

and σ2 ≡ nf(σ2). Hence, (α � σ1) σ2 ≡ nf(σ2) holds by Property 1.5.3.v (page 49). We
conclude by rules R-Context-R, R-Context-R and R-Trans.
Property ii: It is a consequence of Properties i and 1.5.4.iii (page 50).
Property iii: It is shown by induction on the number of universal quantifiers appearing
in σ. If σ has no universal quantifiers, then σ is ⊥ or τ , and we get the expected result
since nf(σ) is σ itself and nf(θ(σ)) is θ(σ). Otherwise, σ is ∀ (α � σ1) σ2, where σ1 and
σ2 have strictly less universal quantifiers than σ. By alpha-conversion, we can assume
α /∈ dom(θ) ∪ codom(θ), thus θ(σ) = ∀ (α � θ(σ1)) θ(σ2). We proceed by case analysis:
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◦ Case nf(σ2) is α: By induction hypothesis, nf(θ(σ2)) is θ(nf(σ2)), that is α. Hence,
nf(θ(σ)), that is, nf(∀ (α � θ(σ1)) θ(σ2)), is by definition nf(θ(σ1)). By induction hy-
pothesis, nf(θ(σ1)) is θ(nf(σ1)), thus nf(θ(σ)) is θ(nf(σ1)), that is, θ(nf(σ)).

◦ Case nf(σ1) is τ1: Let θ′ be [τ1/α] and θ′′ be [θ(τ1)/α]; since α /∈ dom(θ)∪codom(θ),
we have θ ◦ θ′ = θ′′ ◦ θ (6). By induction hypothesis nf(θ(σ1)) is θ(τ1), thus nf(θ(σ))
is by definition θ′′(nf(θ(σ2))). By induction hypothesis, it is also θ ′′(θ(nf(σ2))), that is
θ ◦ θ′(nf(σ2)) by (6). We conclude by observing that θ ′(nf(σ2)) is nf(σ).

◦ Case α /∈ ftv(σ2): Since α /∈ codom(θ), we have α /∈ ftv(θ(σ2)). Hence, nf(θ(σ)) is
by definition nf(θ(σ2)) and we conclude directly by induction hypothesis.
◦ Otherwise, we know that nf(σ2) is not α, thus, by induction hypothesis, nf(θ(σ2))

is not α. Moreover, nf(σ1) is not a monotype τ1, thus, by induction hypothesis,
nf(θ(σ1)) is not a monotype. Additionally, α ∈ ftv(σ2), thus α ∈ ftv(θ(σ2)). Con-
sequently, nf(θ(σ)) is by definition ∀ (α�nf(θ(σ1))) nf(θ(σ2)). By induction hypothesis,
it is equal to ∀ (α � θ(nf(σ1))) θ(nf(σ2)), that is, θ(nf(σ)).
Property iv: It is shown by induction on the number of universal quantifiers appearing
in σ. If σ has no universal quantifiers, then σ is ⊥ or τ , and we get the expected result
since nf(σ) is σ itself. Otherwise, σ is ∀ (α � σ1) σ2, where σ1 and σ2 have strictly less
universal quantifiers than σ. We proceed by case analysis:

◦ Case nf(σ2) is α: then, nf(σ) is nf(σ1), which is in normal form by induction
hypothesis.

◦ Case nf(σ1) is τ1: let θ be [τ1/α]; by definition, nf(σ) is θ(nf(σ2)), that is, nf(θ(σ2))
by Property iii. Since nf(θ(σ2)) is in normal form by induction hypothesis, we conclude
that nf(σ) is normal form.

◦ Case α /∈ ftv(σ2): then, nf(σ) is nf(σ2), which is in normal form by induction
hypothesis.
◦ Otherwise, nf(σ) is ∀ (α � nf(σ1)) nf(σ2). We know that nf(σ2) is not α, that

nf(σ1) is not a monotype τ1, and that α ∈ ftv(σ2). By Property i, we have nf(σ2) ≡ σ2.
Hence, by Property 1.5.4.iii (page 50), we have α ∈ ftv(nf(σ2)). Additionally, by
induction hypothesis, nf(nf(σ1)) is nf(σ1) and nf(nf(σ2)) is nf(σ2). Hence, nf(nf(σ)) is
nf(∀ (α�nf(σ1)) nf(σ2)), that is by definition ∀ (α�nf(σ1)) nf(σ2), that is nf(σ). Hence,
nf(σ) is in normal form.

Proof of Corollary 1.5.10

Directly, if (∅) Q̂(σ1) ≡ Q̂(σ2) holds, then, by Property 1.5.3.v (page 49), we have

(Q) Q̂(σ1) ≡ Q̂(σ2). Since we have (Q) σ1 ≡ Q̂(σ1) and (Q) σ2 ≡ Q̂(σ2) by Eq-Mono,
we conclude directly using R-Trans twice. Conversely, if we have (Q) σ1 ≡ σ2, then by

Lemma 1.5.9 we know that nf(Q̂(σ1))≈ nf(Q̂(σ2)) holds. Hence, nf(Q̂(σ1)) ≡ nf(Q̂(σ2))
holds by Property 1.5.3.iii (page 49). We conclude by observing that Q̂(σ1) ≡ nf(Q̂(σ1))
and nf(Q̂(σ2)) ≡ Q̂(σ2) hold by Property 1.5.6.i (page 51).
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Proof of Property 2.1.2

Property i: Reflexivity: immediate Transitivity: Assume we have t1 6/ t2 (1) and
t2 6/ t3 (2). We have dom(t1) ⊆ dom(t2) ⊆ dom(t3), thus dom(t1) ⊆ dom(t3). Besides,
for all u ∈ dom(t1), if t1/u 6= t3/u, then either t1/u = t2/u, or t1/u 6= t2/u. In the
second case, we have t1/u = ⊥ by definition of (1), which is the expected result. In
the first case, we must have t2/u 6= t3/u, thus t2/u = ⊥ by definition of (2), and
t1/u = t2/u = ⊥ holds. Antisymmetry: Assume t1 6/ t2 (3) and t2 6/ t1 (4).
We have dom(t1) ⊆ dom(t2) and dom(t2) ⊆ dom(t1), thus dom(t1) = dom(t2) holds.
Besides, for any u in dom(t1), if we have t1/u 6= t2/u, then t1/u = ⊥ by definition
of (3). However, we then also have t2/u 6= t1/u, which implies t2/u = ⊥ by definition
of (4). Consequently, t1/u = ⊥ = t2/u, which is a contradiction. As a consequence,
t1/ = t2/, that is, t1 = t2.

Property ii: Assume we have t1 6/ t2 (1) By definition, we have dom(t1) ⊆ dom(t2) (2).
Let θ be a substitution. Note that dom(t) ⊆ dom(θ(t)) (3) holds for any t. Let u be
in dom(θ(t1)). Either u is in dom(t1), or u is of the form u1u2, with t1/u1 = α (4)
and θ(α)/u2 = t1/u. In the first case, we know that u is in dom(t2) from (2). Hence,
u is in dom(θ(t2)) by (3). In the second case, we know that u1 is in dom(t2) from (2),
and that t2/u1 is α by definition of (1) and by (4). Hence, u1u2 is in dom(θ(t2)).
Consequently, we have shown that dom(θ(t1)) ⊆ dom(θ(t2)) holds (5). Let u be such
that θ(t1)/u 6= θ(t2)/u (6). Either u is in dom(t1), or u is of the form u1u2, with
t1/u1 = α and θ(α)/u2 = t1/u. In the first case, u is in dom(t2) by (2), and t1/u 6= t2/u,
which implies t1/u = ⊥ by definition of (1). Hence, θ(t1)/u = ⊥, since ⊥ is not
substituted by θ. In the second case, t1/u1 = α, thus t2/u2 = α by definition of (1).
Hence, we have θ(t1)/u1u2 = θ(α)/u2 = θ(t2)/u1u2, that is θ(t1)/u = θ(t2)/u. This is
a contradiction with (6). Hence, this second case cannot occur. In summary, we have
shown that whenever θ(t1)/u 6= θ(t2)/u, then θ(t1)/u = ⊥. With (5), this implies that
we have θ(t1) 6/ θ(t2).

Property iii: We assume we have t1 6/ t2 (1) and a skeleton t. By definition, dom(t1) ⊆
dom(t2) (2) holds. Let t′1 be t[t1/α] and t′2 be t[t2/α]. Note that we have dom(τ) ⊆
dom(t1) and dom(t) ⊆ dom(t2) (3). We have to show that t′1 6/ t

′
2 holds. Let u be

in dom(t′1). Either u is in dom(t), or u is of the form u1u2 with t/u1 = α (4) and
t1/u2 = t′1/u. In the first case, u is in dom(t′2) by (3). In the second case, we have u2 ∈
dom(t1), hence u2 ∈ dom(t2) (5) by (2). Then u1u2 is in dom(t[t2/α]) by (4) and (5).
We have shown that dom(t′1) ⊆ dom(t′2) (6). Let u be such that t′1/u 6= t′2/u (7).
Either u is in dom(t), or u is of the form u1u2 with t/u1 = α and t1/u2 = t′1/u. In
the first case, we necessarily have t/u = α (otherwise, t′1/u = t/u = t′2/u). Hence,
t′1/u = t1/ε and t′2/u = t2/ε, thus we have t1/ε 6= t2/ε from (7), which implies t1/ε = ⊥
by definition of (1). This leads to t′1/u = ⊥. In the second case, we have t′1/u = t1/u2
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and t′2/u = t2/u2. Hence, t1/u2 6= t2/u2 holds from (7), which implies t1/u2 = ⊥ by
definition of (1). This leads to t′1/u = ⊥. In both cases, t′1/u = ⊥. With (6), this
implies that we have t′1 6/ t

′
2.

Proof of Lemma 2.1.4

By induction on the derivation of (Q,α � σ,Q1) σ1 ♦ σ2. By hypothesis, we have
(∀ (Q1) σ1)/u = α (1).

◦ Case A-Equiv: we have (Q,α � σ,Q1) σ1 ≡ σ2, thus (Q,α � σ) ∀ (Q1) σ1 ≡ ∀ (Q1)

σ2 (2) holds by Rule R-Context-R. Let θ be ̂(Q,α � σ). Since σ /∈ T , we have
α /∈ dom(θ). By well-formedness of (Q,α � σ), we have Q closed and α /∈ dom(Q), thus
α /∈ codom(θ) (3). By Corollary 1.5.10 applied to (2), we have θ(∀ (Q1) σ1) ≡ θ(∀ (Q1)
σ2). By Property 1.5.11.vi (page 54), we have θ(∀ (Q1) σ1)/ = θ(∀ (Q1) σ2)/ (4).
By (1), we have θ(∀ (Q1) σ1)/u = θ(α)/ε = α and θ(∀ (Q1) σ2)/u = α by (4), which
implies (∀ (Q1) σ2)/u = α, by (3).

◦ Case R-Trans: By induction hypothesis.

◦ Case R-Trans: By induction hypothesis.

◦ Case I-Hyp: we have (Q,α � σ,Q1) σ1 v β with (β �′ σ1) ∈ (Q,α � σ,Q1). If
(β �′ σ1) ∈ (Q,α � σ), necessarily ftv(σ1) # {α} ∪ dom(Q1) by well-formedness of
(Q,α � σ,Q1), thus ∀ (Q1) σ1 ≡ σ1 (by Eq-Free) and α /∈ ftv(∀ (Q1) σ1), which is a
contradiction with (1). Hence, β ∈ dom(Q1). Therefore, ∀ (Q1) σ1 ≡ ∀ (Q1) β by Eq-

Var?. Consequently, (∀ (Q1) β)/u = (∀ (Q1) σ1)/u = α by Property 1.5.4.i (page 50)
and (1).

◦ Case A-Hyp: similar to I-Hyp.

◦ Case R-Context-R: By induction hypothesis.

◦ Case R-Context-R: By induction hypothesis.

◦ Case R-Context-Flexible: We have (Q,α � σ,Q1) ∀ (β � σ1) σ0 ♦ ∀ (β � σ2) σ0

and the premise is (Q,α � σ,Q1) σ1 ♦ σ2 (5). Besides, (∀ (Q1) ∀ (β � σ1) σ0)/u = α by
hypothesis (1). By Property 1.3.3.i (page 40), we have ΘQ1

(proj(σ0)[proj(σ1)/α])/u =
α. If u is of the form u1u2 with σ0/u1 = β, then ΘQ1

(proj(σ1))/u2 = α, thus ∀ (Q1)
σ1/u2 = α by Property 1.3.3.i (page 40). Hence, by induction hypothesis on (5), we get
(∀ (Q1) σ2)/u2 = α, which implies (∀ (Q1) ∀ (β � σ2) σ0)/u1u2 = α by Property 1.3.3.i
(page 40). Otherwise, we have (∀ (Q1) ∀ (β � σ1) σ0)/u = (∀ (Q1) σ0)/u = (∀ (Q1)
∀ (β � σ2) σ0)/u, which is the expected result.

◦ Case R-Context-Rigid is similar to R-Context-Flexible.

◦ Case I-Abstract: By induction hypothesis.

◦ Case I-Bot cannot occur since (∀ (Q1) ⊥)/u = α is not possible.

◦ Case I-Rigid is immediate.
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Proof of Property 2.1.5

Property i: If there exists u ∈ dom(σ) such that σ/u = ⊥, then by Property 1.5.4.i
(page 50), σ is not equivalent to a type (no type τ is such that τ/u = ⊥). Hence, by
Property 1.5.11.ii (page 54), σ is not in T . Conversely, assume that σ is not equivalent
to a type. We have to show that there exists u such that σ/u = ⊥. The proof is
by induction on the structure of σ. If σ is ⊥, we get the result by taking u = ε.
Otherwise, σ is of the form ∀ (α � σ1) σ2. If both σ1 and σ2 are equivalent to types τ1
and τ2, then by Rule Eq-Mono, σ would be equivalent to a monotype τ2[τ/α], which
is not possible by hypothesis. Hence, σ1 or σ2 is not equivalent to a type. If σ2 is not
equivalent to a type, then by induction hypothesis, there exists u such that σ2/u = ⊥,
thus σ/u = ⊥. If σ2 is equivalent to a type, then necessarily σ1 is not and α ∈ dom(σ2)
(otherwise σ would be equivalent to σ2 by Rule Eq-Free). Hence, there exists u2

such that σ2/u2 = α. Furthermore, by induction hypothesis, there exists u1 such that
σ1/u1 = ⊥. Consequently, σ/u2u1 = ⊥.

Property ii: Directly, by Property 1.5.4.i (page 50). Conversely, we assume σ/ε is α.
Since α is of arity 0, we must have dom(σ) = {ε}. Hence, there is no u ∈ dom(σ) such
that σ/u = ⊥. By Property i, this implies σ ∈ T . Consequently, nf(σ) = τ such that
τ/ = σ/ = α/, by Properties 1.5.6.i (page 51) and 1.5.4.i (page 50). This implies τ = α
(τ and α are viewed as skeletons). Hence, nf(σ) = α, that is, σ ≡ α by Property 1.5.6.i
(page 51).

Property iii: It is shown by induction on the structure of σ. By hypothesis, we have
σ/ε = ⊥ (1). If σ is ⊥, the result is immediate. Otherwise, by Property i and (1), we
know that σ is not a type τ . If σ is ∀ (α � σ1) σ2, either σ2/ε = ⊥ and we conclude by
induction hypothesis and Eq-Free, either σ2/ε = α and σ1/ε = ⊥ (2). In the latter
case, we get σ1 ≡ ⊥ (3) by induction hypothesis on (2) and σ2 ≡ α (4) by Property ii,
thus we conclude that ∀ (α�σ1) σ2 ≡ ⊥ by R-Trans, R-Context-L, R-Context-R,
Eq-Var, (3), and (4). This is the expected result.

Proof of Property 2.2.2

Property i : It is shown by induction on the size of Q.

Property ii: We show by induction on the size of Q that Q[α] = β.

Property iii : It is shown by structural induction on Q. By hypothesis, we have Q̂(α) /∈

V (1). If Q is (Q′, β � σ), with β 6= α, then we have α ∈ dom(Q′), Q̂′(α) = Q̂(α),
and Q(α) = Q′(α), thus we get the result by induction hypothesis. If Q is (Q′, α � σ)
and nf(σ) = β, then we have β ∈ dom(Q′) by well-formedness and (Q) α ≡ β (2) by
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Property 1.5.6.i (page 51) and Eq-Mono. Additionally, we have Q[α] = Q′[β], thus

Q(α) = Q′(β) (3) holds. Moreover, we have Q̂(α) = Q̂′(β), hence Q̂′(β) /∈ V holds by
(1). By induction hypothesis, (Q′) β ≡ Q′(β) holds. Hence, we have (Q) β ≡ Q′(β) (4)
by Property 1.5.3.v (page 49). Finally, (Q) α ≡ Q(α) holds by (2), (4), and (3). This is
the expected result. In the last case, Q is (Q′, α � σ), and σ /∈ ϑ. Then Q[α] is α, thus
Q(α) is σ. Moreover, if σ /∈ T , then Q̂(α) is α, which is a contradiction. Consequently,
σ ∈ T , and Q̂(α) ≡ σ (5) by Definition 1.5.8 and Property 1.5.6.i (page 51). Hence,
by Eq-Mono and (5), we get (Q) α ≡ σ, that is, (Q) α ≡ Q(α).

Property iv: It is shown by induction on the size of Q. Necessarily, Q is of the form
(Q1, α � σ,Q2). By definition, Q[α] is Q1[β] if nf(σ) is β and α otherwise (1). In the

first case, Q(α) is Q1(β) by definition and Q̂(α) is Q̂1(β), hence we get the expected
result by induction hypothesis on Q1. In the second case, Q(α) is σ (2). Directly, we

have by hypothesis Q(α) /∈ T , thus (2) implies α /∈ dom(Q̂), that is, Q̂(α) = α, which
is the expected result. Conversely, we have by hypothesis Q(α) ∈ T , that is σ ∈ T .

Then Q̂(α) is Q̂1(nf(σ)) (3). By hypothesis (1), nf(σ) is not in ϑ, hence, neither is

Q̂1(nf(σ)). By (3), this implies Q̂(α) /∈ ϑ. This is the expected result.

Property v: By Property i, we have (Q) Q[α] ≡ Q[β] (1). If Q[α] is Q[β], then
Q(α) = Q(β) by definition, which gives the expected result by Eq-Refl. Otherwise,
by Corollary 1.5.10 and (1), we have Q̂(Q[α]) = Q̂(Q[β]). If Q̂(Q[α]) is a type variable
γ, then Q(Q[α]) = Q(γ) by Property ii, that is, Q(α) = Q(γ). Similarly, Q(β) = Q(γ),
thus Q(α) = Q(β) and the result holds by Eq-Refl. Otherwise, Q̂(Q[α]) /∈ ϑ and by
Property iii, we have (Q) Q[α] ≡ Q(Q[α]), that is, (Q) Q[α] ≡ Q(α) (2). Similarly,
(Q) Q[β] ≡ Q(β) (3). By (1), (2), and (3), we get (Q) Q(α) ≡ Q(β). This is the
expected result.

Property vi: By hypothesis, (Q) α ♦ σ (1) holds. By Lemma 2.1.6 on (1), we must have

(Q) σ ≡ α. By Lemma 1.5.9 and Property 1.5.6.iii (page 51), we have Q̂(nf(σ))≈ Q̂(α),
that is Q̂(nf(σ)) = Q̂(α) (2) since Q̂(α) is a monotype (does not have any quanti-
fier). By hypothesis, Q(α) /∈ T . Hence, by Property iv, we have Q̂(α) ∈ ϑ, that is,
Q̂(α) ∈ dom(Q) since Q is closed by well-formedness of (1). Hence, Q̂(nf(σ)) ∈ dom(Q)
holds from (2). Necessarily, nf(σ) is a type variable β such that Q̂(β) ∈ dom(Q). By
Property iv, we get Q(β) /∈ T .

Proof of Lemma 2.3.1

We first prove the two following results, namely (1) and (2):

For any σ, there exists a restricted derivation of σ ≡ nf(σ).
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If σa and σb are in normal forms, and if σa ≈σb holds, then there exists a
restricted derivation of σa ≡ σb.

Proof sketch of (1): Property 1.5.6.i states that σ ≡ nf(σ) holds. We have to show
that this derivation is, moreover, restricted. Actually, the proof of Property 1.5.6.i
(page 51) is still appropriate. Indeed, the proof of Property 1.5.6.i (page 51) does not
use R-Context-L, and builds only restricted derivations. �

Proof sketch of (2): The proof of σa ≡ σb only uses rules R-Context-R, R-Context-

L, and Eq-Comm. Every occurrence of Rule R-Context-L is necessarily restricted
since σa and σb are in normal form: for instance, if σa is ∀ (α � σ1) σ, we must have
α ∈ ftv(σ), nf(σ) 6= α, and nf(σ) 6= ⊥. �

We first prove the result for a derivation of (Q) σ1 ≡ σ2: By Lemma 1.5.9, we
have Q̂(nf(σ1))≈ Q̂(nf(σ2)). Hence, Q̂(nf(σ1)) ≡ Q̂(nf(σ2)) (3) holds and is restricted
by Result (2). By Property 1.5.6.iii (page 51), (3) can also be written nf(Q̂(σ1)) ≡
nf(Q̂(σ2)) (4). By Result (1), we have restricted derivations of Q̂(σ1) ≡ nf(Q̂(σ1)) (5)
and nf(Q̂(σ2)) ≡ Q̂(σ2) (6). Besides, (Q) σ1 ≡ Q̂(σ1) (7) holds by Eq-Mono and is
restricted. Similarly, (Q) Q̂(σ2) ≡ σ2 (8) is restricted. By Property 1.5.3.v (page 49),
R-Trans, (7), (5), (4), (6), and (8), we have a restricted derivation of (Q) σ1 ≡ σ2.
This is the expected result.

In summary, the following rule is admissible:

Equiv-R

(Q) σ1 ≡ σ2

(Q) σ1 ♦ σ2 (restricted)

Then we prove the result for an abstraction or instantiation derivation. The proof
is by induction on the derivation.

◦ Case I-Bot: We proceed by case analysis.
Subcase nf(σ) is ⊥: Then (Q) ⊥ ≡ σ holds by Property 1.5.6.i (page 51). We

conclude by Rule Equiv-R.
Subcase σ ∈ V: Then nf(σ) = α by definition. By Property 1.5.6.ii (page 51),

we have α ∈ ftv(σ). By well-formedness, we must have α ∈ dom(Q). Let α′ be Q[α].
We have (α′ �′ σ′) ∈ Q, σ′ /∈ V (9), and (Q) α ≡ α′ (10) by Property 2.2.2.i (page 69).
By Rule Equiv-R and (10), we have a restricted derivation of (Q) α ♦ α′ (11).
Moreover, if nf(σ′) is not ⊥, we have a restricted derivation of (Q) ⊥ v σ ′ (12) by
I-Nil and (9). If nf(σ′) is ⊥, (Q) ⊥ ≡ σ′ by Property 1.5.6.i (page 51), and (12) holds
by Equiv-R. In both cases, we have a restricted derivation of (12). If σ ′ is in T , then
(Q) σ′ v α′ (13) holds by Eq-Mono and I-Equiv?. Otherwise, (13) holds by I-Hyp.
In both cases, (13) is restricted. From (12), (13), (11) and R-Trans, we get a restricted
derivation of (Q) ⊥ v α This is the expected result.
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Otherwise, the judgment is already restricted.

◦ Case R-Context-Rigid and R-Context-Flexible: The premise is the judg-
ment (Q) σ1 ♦ σ2 (14) and the conclusion is (Q) ∀ (α � σ1) σ ♦ ∀ (α � σ2) σ. By
induction hypothesis, we have a restricted derivation of (14). If α /∈ ftv(σ), then
(Q) ∀ (α�σ1) σ ≡ ∀ (α�σ2) σ is derivable by Eq-Free and R-Trans, and we conclude
by Equiv-R. If nf(σ) is α, then (Q) ∀ (α � σ1) σ ≡ σ1 (15) holds by Property 1.5.6.i
(page 51), R-Context-R, and Eq-Var. Similarly, (Q) ∀ (α � σ2) σ ≡ σ2 (16) holds.
By Equiv-R, (15), (16), and (14), we have a restricted derivation of (Q) ∀ (α �σ1) σ ♦
∀ (α � σ2) σ. This is the expected result. If nf(σ) is ⊥, then (Q) ∀ (α � σ1) σ ≡ ⊥ and
(Q) ∀ (α �σ2) σ ≡ ⊥ hold. By R-Trans and Equiv-R, we have a restricted derivation
of (Q) ∀ (α � σ1) σ ♦ ∀ (α � σ2) σ. Otherwise, the judgment is restricted, and there
exists a restricted derivation of the premise (14). This is the expected result.

◦ Case R-Context-R: If (Q,α�σ) σ1 ≡ σ2 holds, then (Q) ∀ (α�σ) σ1 ≡ ∀ (α�σ) σ2

holds by R-Context-R, and we get the expected result by A-Equiv or I-Equiv?.

◦ Case I-Rigid: If α /∈ ftv(σ), then we can derive (Q) ∀ (α ≥ σ1) σ ≡ σ by Eq-

Free, as well as (Q) σ ≡ ∀ (α = σ1) σ. We conclude by Equiv-R. If σ1 is in T ,
then nf(σ1) is τ1 by definition and we have (Q) ∀ (α ≥ σ1) σ ≡ σ[τ1/α] by Eq-Mono,
as well as (Q) σ[τ1/α] ≡ ∀ (α = σ1) σ. We conclude by Equiv-R. If nf(σ) is α,
then (Q) ∀ (α ≥ σ1) σ ≡ σ1 by Property 1.5.6.i (page 51) and Eq-Var, as well as
(Q) σ1 ≡ ∀ (α= σ1) σ. We conclude by Equiv-R. Otherwise, the judgment is already
restricted.

◦ Case A-Hyp: We have (α1 = σ1) ∈ Q. If σ1 ∈ T , then (Q) σ1 ≡ τ1 (17) holds
for some monotype τ1 by Properties 1.5.11.ii (page 54) and 1.5.3.v (page 49). Hence,
(Q) α1 ≡ τ1 (18) holds by Eq-Mono. Finally, (Q) α1 ≡ σ1 by (18), (17), and
R-Trans. By Rule Equiv-R, we get the expected result (Q) σ1 @− α1.

◦ Case I-Hyp: similar.

◦ All other cases are by induction hypothesis.

Proof of Lemma 2.3.3

We first show the three following properties, then we show the lemma.

1. For any type σ, there exists a thrifty derivation of σ ≡ nf(σ).

2. Any equivalence derivation can be rewritten into a thrifty derivation.

3. Any derivation can be rewritten into a thrifty derivation.

Property 1 : It is by induction on the number of universal quantifiers appearing in σ. If
σ has no universal quantifiers, then σ is ⊥ or τ , and we get the result by Rule Eq-Refl
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since nf(σ) is σ itself. Otherwise, σ is ∀ (α � σ1) σ2 (1), where σ1 and σ2 have strictly
less universal quantifiers than σ. We proceed by case analysis:

◦ Case nf(σ2) is α: Then nf(σ) is nf(σ1), and σ2 ≡ α holds and is thrifty by induction
hypothesis. By Property 1.5.3.v (page 49), (α � σ1) σ2 ≡ α also holds, and is thrifty.
Hence, ∀ (α � σ1) σ2 ≡ ∀ (α � σ1) α (2) holds by R-Context-R. This equivalence is
thrifty since nf(σ2) and nf(α) are both α. We have ∀ (α � σ1) α ≡ σ1 by Eq-Var (3).
Since σ is ∀ (α�σ1) σ2 (from (1)), we get σ ≡ σ1 by R-Trans, (2) and (3). By induction
hypothesis we also have a thrifty derivation of σ1 ≡ nf(σ1), therefore σ ≡ nf(σ1) holds
by R-Trans and is thrifty. In the following, we assume nf(σ2) is not α.

◦ Case nf(σ1) is τ1 (4): We have a thrifty derivation of σ2 ≡ nf(σ2) by induction
hypothesis, thus we get a thrifty derivation of σ ≡ ∀ (α � σ1) nf(σ2) by R-Context-

R. Moreover, we have σ1 ≡ τ1 by induction hypothesis on (4), hence we have σ ≡
nf(σ2)[τ1/α] by Rule Eq-Mono? and R-Trans. This derivation is thrifty. We conclude
by observing that nf(σ) is nf(σ2)[τ1/α].

◦ Case α /∈ ftv(σ2): Then nf(σ) is nf(σ2), and σ ≡ σ2 by Eq-Free, thus we get a
thrifty derivation of σ ≡ nf(σ2) by induction hypothesis and R-Trans.

◦ Otherwise, nf(σ) is ∀ (α � nf(σ1)) nf(σ2). By induction hypothesis, σ1 ≡ nf(σ1)
and σ2 ≡ nf(σ2). Hence, (α � σ1) σ2 ≡ nf(σ2) holds by Property 1.5.3.v (page 49).
By rules R-Context-L, R-Context-R and R-Trans, we get a thrifty derivation of
σ ≡ nf(σ).

Property 2: By hypothesis, we have (Q) σ1 ≡ σ2. By Corollary 1.5.10, we have a

derivation of Q̂(σ1) ≡ Q̂(σ2) (1). Note that (Q) σ1 ≡ Q̂(σ1) (2) is thrifty since it only
uses Eq-Mono. Similarly, (Q) Q̂(σ2) ≡ σ2 (3) is thrifty. By Property 1.5.11.i (page 54)
applied to (1), we have nf(Q̂(σ1))≈ nf(Q̂(σ2)) (4). The derivation of (4) provides a
derivation of nf(Q̂(σ1)) ≡ nf(Q̂(σ2)) (5) by Property 1.5.3.iii (page 49). Besides, the
derivation of (5) is thrifty: indeed, each occurrence or Rule R-Context-R operates
on normal forms. By Property 1, we have a thrifty derivation of Q̂(σ1) ≡ nf(Q̂(σ1)) (6)
and nf(Q̂(σ2)) ≡ Q̂(σ2) (7). By R-Trans, (2), (6), (5), (7), and (3), we get a thrifty
derivation of (Q) σ1 ≡ σ2.

Before going on proving the remaining properties, we prove the following result,
which we refer to as Thrifty-Var.

Assume (α � σ) ∈ Q. If (Q) σ1 ♦ σ2 is thrifty, and (Q) σ2 ≡ α holds
but (Q) σ1 ≡ α does not hold, then there exists a thrifty derivation of
(Q) σ1 ♦ σ. Besides, if ♦ is @−, then � is rigid.

Proof: By induction on the derivation. None of the equivalence cases occur since
σ1 is not equivalent to α under Q, while σ2 is.
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◦ Case R-Trans The premises are (Q) σ1 ♦ σ′1 (1) and (Q) σ′1 ♦ σ2 (2). Besides,
both derivations are thrifty. If (Q) σ ′

1 ≡ α, we conclude directly by induction hypothesis
on (1). Otherwise, we know by induction hypothesis on (2) that we have a thrifty
derivation of (Q) σ′

1 ♦ σ (3). Hence, by R-Trans, (1), and (3), we have a thrifty
derivation of (Q) σ1 ♦ σ. Additionally, if ♦ is @−, then � is rigid.

◦ Case R-Context-R We have σ1 = ∀ (β �′ σ′) σ′1 (4) and σ2 = ∀ (β �′ σ′) σ′2. The
premise is (Q, β �′ σ′) σ′1 ♦ σ′2 (5) and is thrifty. By hypothesis, we have (Q) ∀ (β �′ σ′)
σ′2 ≡ α (6).

Subcase nf(σ′2) is β: By Eq-Var, R-Trans, and (6), we get (Q) σ ′ ≡ α (7).
Moreover, nf(σ′1) is not β (otherwise, we would have (Q) σ1 ≡ α by Property 1.5.6.i
(page 51), (7), (4), and Eq-Var). Hence, this occurrence of R-Context-R is squan-
dering, which is not possible by hypothesis.

Subcase β /∈ ftv(σ′2): We have nf(σ) 6= β (8) by Property 1.5.6.ii (page 51).
Since by hypothesis this occurrence of R-Context-R or R-Context-R is thrifty, we
must have nf(σ′1) 6= β (9). By Eq-Free, we have (Q) σ′

2 ≡ α. By induction hypothesis
on (5), we have a thrifty derivation of (Q, β �′ σ′) σ′1 ♦ σ (10). Besides, if ♦ is @−,
then � is rigid. By (10), R-Context-R, we get (Q) ∀ (β �′ σ′) σ′1 ♦ ∀ (β �′ σ′) σ (11).
This derivation is thrifty since nf(σ ′

1) 6= β (from (9)) and nf(σ) 6= β (from (8)). By
Eq-Free, we have (Q) ∀ (α �′ σ′) σ ≡ σ. Hence, (Q) ∀ (α �′ σ′) σ ♦ σ (12) holds by
A-Equiv and I-Abstract, and is thrifty. By R-Trans, (11), and (12), we have a
thrifty derivation of (Q) ∀ (β �′ σ′) σ′1 ♦ σ. This is the expected result.

Otherwise β ∈ ftv(σ′
2) (13) and nf(σ′2) is not β (14). We show that σ ∈

T . Let θ be Q̂. note that β /∈ dom(θ) ∪ codom(θ) by well-formedness of (5). By
Corollary 1.5.10 applied to (6), we have θ(∀ (β �′ σ′) σ′2) ≡ θ(α) (15). By (13), there
exists an occurrence u such that σ′

2/u = β (16). We cannot have σ′
2 ≡ β, because

of (14) and Property 1.5.11.i (page 54). By Property 2.1.5.ii (page 67), this implies
σ′2/ε 6= β. Hence, u is not ε in (16). As a consequence, σ ′

2/ε must be a type constructor
g. By Property 1.5.4.i (page 50) applied to (15), we have θ(α)/ε = g. Hence, α must
be in dom(θ), which means that σ ∈ T (17). By Property 1.5.11.ii (page 54), there
exists τ such that σ ≡ τ . In summary, (α � σ) ∈ Q, and σ ≡ τ (18) holds. We have
(Q) α ≡ τ (19) by Eq-Mono, thus (Q) α ≡ σ (20) holds by R-Trans (18), and
(19). By (6), (20), and R-Trans, we get (Q) σ2 ≡ σ. By Property 2, we have a thrifty
derivation of (Q) σ2 ≡ σ (21). By hypothesis, (Q) σ1 ♦ σ2 (22) is thrifty, hence
(Q) σ1 ♦ σ is thrifty by (22), (21), and R-Trans. Besides since σ ∈ T (from (17)),
the binding (α � σ) is considered flexible and rigid. This is the expected result.

◦ Case A-Hyp: We have (α1 = σ1) ∈ Q, and σ2 is α1. By hypothesis, (Q) α1 ≡
α (23).

Subcase α is α1: We have σ1 = σ and (Q) σ1 @− σ holds by Eq-Refl, and is
thrifty. Besides, ♦ is @− and � is rigid.
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Otherwise, σ1 cannot be in T (otherwise we would have (Q) σ1 ≡ α by (23)
and Eq-Mono). By Property 1.5.11.vii (page 54) and (23), we have Q̂(α1) = Q̂(α),
that is, α1 = Q̂(α). As a consequence, we must have α ∈ dom(Q̂), that is, σ ∈ T . Then
(Q) α ≡ σ (24) holds, thus (Q) α1 ≡ σ (25) holds by R-Trans, (23), and (24). By
Property 2, (25) is made thrifty. Hence, we get a thrifty derivation of (Q) α1 @− σ (26)
by A-Equiv. Additionally, (Q) σ1 @− α1 (27) holds by A-Hyp and is thrifty by
definition. Therefore, we get a thrifty derivation of (Q) σ1 @− σ by R-Trans, (27),
and (26).

◦ Case I-Hyp is similar.

◦ Case I-Bot: Since σ1 is ⊥, we can derive (Q) σ1 v σ by I-Bot, and it is thrifty.

◦ Case I-Abstract: By induction hypothesis.

◦ Case I-Rigid: We have σ1 = ∀ (α≥ σ′1) σ
′
2 and σ2 = ∀ (α= σ′1) σ

′
2. If α /∈ ftv(σ′2),

then σ1 ≡ σ2, which is a contradiction. Since (Q) σ2 ≡ α holds by hypothesis, we
must have σ2 ∈ T by Property 1.5.11.x (page 54). Hence, σ′2 ∈ T and σ′1 ∈ T by
Property 2.1.5.i (page 67). Then σ1 ≡ σ2 by Eq-Mono and R-Trans, which is a
contradiction. Hence, this case cannot occur.

◦ Case R-Context-Rigid and R-Context-Flexible: We have σ1 = ∀ (β �σ′1) σ0

and σ2 = ∀ (β � σ′2) σ0. The premise is (Q) σ′
1 ♦ σ′2 (28), and the conclusion is

(Q) σ1 ♦ σ2 (29). Moreover, by hypothesis, we have (Q) σ2 ≡ α (30), that is,
(Q) ∀ (β � σ′2) σ0 ≡ α (31) holds.

Subcase nf(σ0) is β: Then (Q) σ′2 ≡ α (32) holds by Eq-Var and (31).
Besides, (Q) σ′1 ≡ α does not hold (33) otherwise, we would have (Q) σ1 ≡ α. By
induction hypothesis on (28), (32), and (33), we have a thrifty derivation of (Q) σ ′

1 ♦ σ,
which gives (Q) ∀ (β � σ′

1) σ0 ♦ ∀ (β � σ) σ0 by R-Context-Rigid or R-Context-

Flexible. Then by Eq-Var, we get (Q) ∀ (β � σ ′
1) σ0 ♦ σ. Additionally, by induction

hypothesis on (28), if ♦ is @−, then � is rigid.
Subcase β /∈ ftv(σ0): Then (Q) σ1 ≡ σ2 holds by Eq-Free, which is a contra-

diction.
Otherwise, β ∈ ftv(σ0) and nf(σ0) is not β. Then σ0/ε must be a type con-

structor g. By Property 1.5.11.vi (page 54) and (31), we must have Q̂(α)/ε = g, which
implies α ∈ dom(Q̂), that is σ ∈ T (34). As a consequence, (Q) α ≡ σ (35) holds, thus
(Q) σ2 ≡ σ (36) holds by R-Trans, (30), and (35). By Property 2 and (36), there
exists a thrifty derivation of (Q) σ2 ≡ σ. By A-Equiv or I-Equiv?, (Q) σ2 ♦ σ (37)
holds and is thrifty. Then (Q) σ1 ♦ σ holds by R-Trans or R-Trans, (29) and (37),
and is thrifty. Since σ ∈ T (from (34)), the binding (α � σ) is flexible and rigid. �

Thanks to Thrifty-Var, we can prove remaining properties:
Property 3: We show that any derivation with exactly one squandering rule, used last,
can be made thrifty and keep the same conclusion. The result for any given derivation

241



242 Proofs (Technical details)

is immediate by induction on the number of squandering rule of the derivation. By
definition, there are two ways of being a squandering rule:

◦ First case: The conclusion is (Q) ∀ (α�σ) σ1 ♦ ∀ (α�σ) σ2, where nf(σ2) is α and
nf(σ1) is not α. The last rule used is X-Context-R, thus the premise is a derivation
of (Q,α �σ) σ1 ♦ σ2 (1), which is thrifty by hypothesis. By Property 1.5.6.i (page 51),
σ2 ≡ α (2) holds.

Subcase σ1 is not equivalent to α under (Q,α � σ): By thrifty-var and
(1), there exists a thrifty derivation of (Q,α � σ) σ1 ♦ σ. Hence, by X-Context-

R, we get a thrifty derivation of (Q) ∀ (α � σ) σ1 ♦ ∀ (α � σ) σ (3). Additionally,
(Q) ∀ (α � σ) σ ≡ σ (4) holds by Eq-Free, and (Q) σ ≡ ∀ (α � σ) α (5) by Eq-Var.
Finally, by R-Trans, (4), and (5), and (2), we get (Q) ∀ (α � σ) σ ≡ ∀ (α � σ) σ2 (6).
By Property 2, this equivalence can be made thrifty. Hence, by R-Trans, (3), and
(6), we have a thrifty derivation of (Q) ∀ (α �σ) σ1 ♦ ∀ (α �σ) σ2. This is the expected
result.

Subcase σ1 is equivalent to α under (Q,α � σ): By Lemma 2.1.6 and (1), we
get (Q,α � σ) σ2 ≡ α. Hence, (Q) ∀ (α � σ) σ1 ≡ ∀ (α � σ) σ2 holds by R-Context-R.
By Property 2, we have a thrifty derivation of (Q) ∀ (α � σ) σ1 ♦ ∀ (α � σ) σ2.

◦ Second case: The conclusion is (Q) ∀ (α � σ) σ1 ♦ ∀ (α � σ) σ2, where nf(σ2) is
not α and nf(σ1) is α. By Property 1.5.6.i (page 51), we have σ1 ≡ α. The premise is
a thrifty derivation of (Q,α �σ) σ1 ♦ σ2. By Lemma 2.1.6, we have (Q,α �σ) σ1 ≡ σ2.
Hence, (Q) ∀ (α � σ) σ1 ≡ ∀ (α � σ) σ2 holds by R-Context-R, and we conclude
directly by Property 2.

Lemma 2.3.3 (proof sketch): We use Property 3 and we prove that any thrifty derivation
is kept thrifty when using the rewriting rules suggested in the proof of Lemma 2.3.1.
As a matter of fact, none of them uses a right-context rule, thus no squandering rule
can be introduced. This means that the derivation is kept thrifty.

Proof of Corollary 2.3.4

By Property 3, we have a thrifty derivation of (Q) σ1 ♦ α (1). If (Q) σ1 ≡ α
does not hold, then we get the expected result by thrifty-var (to be found in the
preceding proof) and (1). Otherwise, we have (Q) σ1 ≡ α (2) and σ1 /∈ V. This implies
α ∈ dom(Q̂) by Corollary 1.5.10 and 1.5.4.i (page 50). Hence, σ ∈ T (3). Thus,
(Q) α ≡ σ (4) holds and (Q) σ1 ≡ σ follows by R-Trans, (2), and (4). Since σ ∈ T
(from (3)), the binding (α � σ) is flexible and rigid. This is the expected result.

Proof of Property 2.4.3

Property i : It is proved by structural induction on the context.

242



243

Property ii: It is a consequence of Properties i and 2.1.5.i.

Property iii : It is by structural induction on C. The cases [ ], and ∀ (α � C) σ when
α /∈ ftv(σ) are immediate. The cases level(C) = 0, ∀ (α � σ) C ′, and ∀ (α � C ′) σa

with σa ≡ α are by induction hypothesis. The last case is C = ∀ (α � C ′) σ, when
α ∈ ftv(σ) (1), σ /∈ V and level(C ′) 6= 0 (2). By definition of (1), there exists an
occurrence u such that σ/u = α. By induction hypothesis and (2), C ′ is useful. Let
β and γ be two fresh variables. By Property i, there exists u′ such that C ′(β)/u′ = β
and C ′(γ)/u′ = γ. Hence, we have C(β)/uu′ = β and C(γ)/uu′ = γ. By corollary
1.5.11.vi (page 54), we cannot have C(β) ≡ C(γ). Hence, C is useful.

Proof of Property 2.4.4

Property i: We prove by structural induction that for any narrow context Cn, we have
level(Cn) = 1 (straightforward). Conversely, we assume that level(C) = 1 (1) We prove
by structural induction on C that C is narrow. If C is [ ], then C is narrow. If C is
∀ (α � σ) C ′ (2), then level(C ′) = level(C) by definition of levels, thus level(C ′) = 1 by
(1). Hence, C ′ is narrow by induction hypothesis, which implies that C is narrow by (2).
If C is ∀ (α�C ′) σα, where σα ≡ α, then we have level(C ′) = level(C) by definition, thus
level(C ′) = 1 by (1). Hence, C ′ is narrow by induction hypothesis, which implies that
C is narrow too. If C is ∀ (α�C ′) σ and σ 6≡ α, then, either level(C ′) = 0, which implies
level(C) = 0 and this is a contradiction, or level(C ′) > 0 and level(C) = level(C ′) + 1,
thus level(C) > 1, which is a contradiction too. This case is not possible.

Property ii: If level(C) = 1, we know that C is narrow. We prove by structural induc-

tion on C that C is equivalent to ∀ (C) [ ].

◦ Case [ ]: immediate.

◦ Case ∀ (α � σ) C ′: By induction hypothesis C ′ is equivalent to ∀ (C ′) [ ]. Hence,
C is equivalent to ∀ (α � σ) ∀ (C ′) [ ], which is the expected result since ∀ (α � σ) C ′ is
(α � σ)C ′.

◦ Case ∀ (α �C ′) σα: We have C equivalent to C ′, and we get the expected result by
induction hypothesis and by observing that C is C ′.

Property iii: It is shown by induction on C:

◦ Case [ ] cannot occur since level(C) > 1.

◦ Case ∀ (α�C1) σα and σα ≡ α: Then level(C1) > 1 and C is equivalent to C1, thus
the result is by induction hypothesis.

◦ Case ∀ (α �C1) σ and σ 6≡ α: Then level(C1) = level(C) − 1. If level(C1) = 1, then
we get the expected result by Property ii, taking Q1 = C1. Otherwise, by induction
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hypothesis, C1 is equivalent to C ′
1(∀ (β � ∀ (Q1) [ ]) σ′), and we get the expected result

by taking C ′ = ∀ (α � C ′
1) σ.

◦ Case ∀ (α�σ) C1: We have level(C) = level(C1) > 1. We get the result by induction
hypothesis.

Property iv: If level(C) = 1, then we get the result by taking C ′ = [ ] and Cn = C.
Hence, we assume level(C) > 1, and we prove the result by structural induction on C:

◦ Case [ ]: Not possible since level(C) > 1.

◦ Case ∀ (α � σ) C ′: By induction hypothesis.

◦ Case ∀ (α�C ′) σα and σα ≡ α: We have level(C ′) = level(C), dom1(C
′) = dom1(C),

and C ′ is equivalent to C. Hence, we get the result by induction hypothesis.

◦ Case ∀ (α �C ′) σ and σ 6≡ α: We have level(C ′) = level(C)− 1. If level(C ′) = 1, we
get the expected result. Otherwise, we get the result by induction hypothesis.

Property v: It is shown by structural induction on C:

◦ Case [ ]: immediate.

◦ Case ∀ (α �σ′) C ′: Since C(σ) ∈ V, we must have C ′(σ) ∈ V, and we get the result
by induction hypothesis.

◦ Case ∀ (α�C ′) σα and σα ≡ α: Since C(σ) ≡ C ′(σ) by Eq-Var, we have C ′(σ) ∈ V,
and we get the result by induction hypothesis, observing that level(C) = level(C ′).

◦ Case ∀ (α � C ′) σ′ and σ′ 6≡ α: If level(C ′) = 0, or α /∈ ftv(σ′), then level(C) =
0, which is the expected result. Otherwise, α ∈ ftv(σ ′) and level(C ′) > 0. Hence,
level(C) = level(C ′) + 1 by definition. Thus we have level(C) > 1. We must show that
this case is not possible, that is, C(σ) cannot be in V. Indeed, we have α ∈ ftv(σ ′) and
σ′ 6≡ α, thus σ′/ε /∈ ϑ. Hence, ∀ (α � C ′(σ)) σ′/ε /∈ ϑ, which implies that C(σ) /∈ V by
Property 1.5.4.i (page 50).

Proof of Lemma 2.5.5

The relations @−ᾱ and vᾱ are included (respectively) in @− and v for any set ᾱ. Indeed,
the new set of rules defining (respectively) @−ᾱ and vᾱ is derivable from the old set of
rules defining (respectively) @− and v.

Conversely, we have to show that @− is included in @−∅. By Lemma 2.5.2 (page 78),
this amounts to showing that (≡|@−C)∗ is included in @−∅. Since @−∅ is transitive, it
suffices to show that (≡|@−C) is included in @−∅. Additionally, ≡ is included in @−∅ by
RuleA-Equiv’, thus we only need to prove the following property:

If (Q) σ1 @−C σ2 (1) holds, then (Q) σ1 @−∅ σ2 holds too.
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Necessarily, Ac-Hyp is used to derive (1). Hence, we have σ1 = Cr(σ0), σ2 = Cr(α),
and (α= σ0) ∈ QCr. If α ∈ dom(Q), then α is frozen in the derivation of (Q) σ1 @− σ2,
that is, α is not introduced in ᾱ by context rules. Hence, (Q) σ1 @−ᾱ σ2 holds, by
A-Hyp’ and context rules. Otherwise, α ∈ dom(Cr), which implies that the context
Cr is of the form Ca(∀ (α= σ0) Cb). In summary, we have:

σ1 = Ca(∀ (α= σ0) Cb(σ0)) (2) σ2 = Ca(∀ (α= σ0) Cb(α)) (Q) σ1 @−C σ2 (3)

We have to show that (Q) σ1 @−∅ σ2 holds too. In fact, it suffices to show that (QCa)
∀ (α = σ0) Cb(σ0) @−ᾱ (dom(Ca))∀ (α = σ0) Cb(α) (4) holds. Then context rules A-

Context-L’ and R-Context-R give the expected result. We show (4) by case on
the level of Cb.

◦ Case level(Cb) = 1: Then Cb is equivalent to ∀ (Cb) [ ] by Property 2.4.4.ii (page 74).
Hence, Cb(σ0) ≡ ∀ (Cb) σ0 (5) holds. Since (2) and (3) are well-formed, we must
have ftv(σ0) ⊆ dom(QCa), and ftv(σ0) # dom(Cb). Hence, ∀ (Cb) σ0 is equivalent
to σ0 (6) by Eq-Free. Similarly, we have ∀ (α = σ0) Cb(α) ≡ ∀ (α = σ0) α (7)
by Eq-Free, and ∀ (α = σ0) α ≡ σ0 (8) by Eq-var. Hence, R-Trans, (7), and
(8) give ∀ (α = σ0) Cb(α) ≡ σ0 (9). Consequently, by (5), (6), and (9), we have
(QCa) ∀ (α = σ0) Cb(σ0) ≡ ∀ (α = σ0) Cb(α), which implies the expected result (4) by
A-Equiv’.

◦ Case level(Cb) = 2: Then by Property 2.4.4.iii (page 74), Cb is equivalent to ∀ (Q1)
∀ (α′ = ∀ (Q2) [ ]) σ′, for some prefixes Q1, Q2. As above, we note that ftv(σ0) #
dom(Q1Q2), thus ∀ (α = σ0) Cb(σ0) ≡ ∀ (α = σ0) ∀ (α′ = σ0) ∀ (Q1) σ

′ (10) holds by
Eq-Free and Eq-Comm, and ∀ (α= σ0) Cb(α) ≡ ∀ (α= σ0) ∀ (α′ =α) ∀ (Q1) σ

′ (11).
Hence, by rules A-Alias’, A-Equiv’, (10), and (11), we derive (QCa) ∀ (α = σ0)
Cb(σ0) @−dom(Ca) ∀ (α= σ0) Cb(α). This is the expected result (4).

◦ Case level(Cb) > 1 (12): We prove the following result:

Given n > 0, for any rigid context Cr such that level(Cr) = n + 1, and σ0

such that ftv(σ0)∪{α} # dom(Cr), there exists a rigid context C ′
r such that

level(C ′
r) = n, Cr(σ0) @−∅ C ′

r(σ0) and Cr(α) ≡ C ′
r(α).

Proof: This is proved by structural induction on Cr.
Subcase [ ] is not possible since level(Cr) > 1.
Subcase ∀ (β � σ) C1: By induction hypothesis.
Subcase ∀ (β � C1) σ and σ ≡ β: Then Cr is equivalent to C1, and we get the

result by induction hypothesis.
Subcase ∀ (β = C1) σ and σ 6≡ β: If level(C1) > 1, then we get the result by

induction hypothesis. Otherwise, level(C1) = 2, thus, by Properties 2.4.4.iii (page 74)
and 2.4.4.ii (page 74), C1 is equivalent to ∀ (Q′

1) ∀ (β′=∀ (Q′
2) [ ]) σ1 for some prefixesQ′

1

and Q′
2. Besides, we have ftv(σ0) # dom(Q′

1Q
′
2) by hypothesis. This implies C1(σ0) ≡
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∀ (β′ = σ0) ∀ (Q1) σ1 by Eq-Free and Eq-Comm. Hence, C(σ0) ≡ ∀ (β = ∀ (β ′ = σ0)
∀ (Q1) σ1) σ. By A-Up’, we get C(σ0) @− [∅]∀ (β ′ = σ0) ∀ (β = ∀ (Q1) σ1) σ. Similarly,
C(α) ≡ ∀ (β ′ =α) ∀ (β= ∀ (Q1) σ1) σ. Hence, the context C ′

r = ∀ (β′ = [ ]) ∀ (β=σ1) σ
is of level n = 1 and is appropriate. �

Back to the main proof. By well-formedness of (2), we have ftv(σ)∪{α} # dom(Cb).
By (12), level(Cb) = n > 1, hence there exists a rigid context C ′

b of level n−1 such that
Cb(σ0) @−∅ C ′

b(σ0) and Cb(α) ≡ C ′
b(α). By immediate iteration, we build a sequence

Ci
b of rigid contexts, such that Cb(σ0) @−∅ Cn

b [σ0] (13) holds by R-Trans, Cb(α) ≡
Cn

b [α] (14) hold, and Cn
b is of level 1. Moreover, ∀ (α = σ0) C

n
b [σ0] @−ᾱ ∀ (α = σ0)

Cn
b [α] (15) holds by Eq-Comm and A-Alias’. Hence, by R-Trans, (13), (15), and

(14), we get ∀ (α= σ0) Cb(σ0) @−∅ ∀ (α= σ0) Cb(α), which is the expected result (4).

The proof of the equivalence between v and vᾱ is similar. A new proof for the case
I-Abstract is needed, though, since the induction hypothesis cannot be used (indeed,
@− is equal to @−∅, but not in general to @−ᾱ).

Proof of Lemma 2.5.7

By induction on the derivation of (Q) σ1 ♦ᾱ σ2.

◦ Case A-Equiv’: by Corollary 1.5.10 and Property 1.5.11.ix (page 54).

◦ Case R-Trans The premises are (Q) σ1 ♦ᾱ σ′1 (1) and (Q) σ′1 ♦ᾱ σ2 (2). We
have ∀ (Q) σ1/ 6/ ∀ (Q) σ′1/ (3) by Property 2.1.3.ii (page 65), and ∀ (Q) σ′1/ 6/

∀ (Q) σ2/ (4) Since ∀ (Q) σ1/ = ∀ (Q) σ2/ (by hypothesis), (3) become ∀ (Q) σ2/ 6/

∀ (Q) σ′1/ (5). By (4), (5) and antisymmetry of 6 (Property 2.1.2.i (page 65)), we get

∀ (Q) σ2/ = ∀ (Q) σ′1/. Similarly, ∀ (Q) σ1/ = ∀ (Q) σ′1/ (6) holds. If α ∈ ftv(Q̂(σ2))

and α ∈ ᾱ, then α ∈ ftv(Q̂(σ′1)) by induction hypothesis on (2), thus α ∈ ftv(Q̂(σ1))
by induction hypothesis on (1).

◦ Case R-Context-R’: We have σ1 = ∀ (β�σ) σ′1 and σ2 = ∀ (β�σ) σ′2. We choose β

fresh, that is, β /∈ dom(Q̂)∪ codom(Q̂). The premise is (Q, β �σ) σ′
1 ♦ᾱ∪{β} σ′2 (1). By

hypothesis, we have ∀ (Q) σ1/ = ∀ (Q) σ2/, that is, ∀ (Q, β � σ) σ′
1/ = ∀ (Q, β � σ) σ′2/.

Let α be in ᾱ and in ftv(Q̂(σ2)) (2). If α is in ftv(Q̂(σ′2)), then by induction hypothesis

on (1), α is in ftv(Q̂(σ′1)), thus α ∈ ftv(Q̂(σ1)). Otherwise, we have α /∈ ftv(Q̂(σ′2))

and (2), thus we necessarily have β ∈ ftv(σ ′
2) (3). and α ∈ ftv(Q̂(σ)) (4). Let θ′ be

Q̂, β � σ. We proceed by case analysis.
Subcase σ /∈ T : Then θ′ is Q̂ (5), thus we have β ∈ ftv(θ′(σ′2)) from (3), and

β is obviously in ᾱ ∪ {β}. By induction hypothesis and (1), we get β ∈ ftv(θ ′(σ′1)).

Consequently, β ∈ ftv(Q̂(σ′1)) (6) by (5), thus α ∈ ftv(Q̂(σ1)) by (6) and (4). This is
the expected result.
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Subcase σ ∈ T : Then σ ≡ τ (7) by Property 1.5.11.ii (page 54) and θ′ is
Q̂ ◦ [β = τ ] (8). We have α ∈ ftv(Q̂(τ)) from (4) and (7), thus α ∈ ftv(θ ′(σ′2)) by (8)
and (3). Hence, by induction hypothesis and (1), we have α ∈ ftv(θ ′(σ′1)). Consequently,

α ∈ ftv(Q̂(∀ (β � σ) σ′1)) by (8) and (7). This is the expected result.

◦ Case A-Context-L’ and I-Context-L’: We have σ1 = ∀ (β � σ′1) σ and σ2 =

∀ (β � σ′2) σ. The premise is (Q) σ′
1 ♦ᾱ σ′2 (1). We have α ∈ ftv(Q̂(σ2)) by hypothesis.

If α ∈ ftv(Q̂(σ)), then α ∈ ftv(Q̂(σ1)), which is the expected result. Otherwise, we
must have α ∈ ftv(Q̂(σ′2)) (2) and β ∈ ftv(σ) (3). By definition, there exists u such
that σ/u = β. By hypothesis, ∀ (Q) σ1/ = ∀ (Q) σ2/. Hence, ∀ (Q) σ1 · u/ = ∀ (Q)
σ2 · u/. By Property 1.3.3.i (page 40), this means ΘQ(σ1) · u/ = ΘQ(σ2) · u/, that is,
ΘQ(σ′1) · ε/ = ΘQ(σ′2) · ε/. By Property 1.3.3.i (page 40), we get ∀ (Q) σ′1/ = ∀ (Q) σ′2/.

By induction hypothesis,(1), and (2), we get α ∈ ftv(Q̂(σ′1)), thus α ∈ ftv(Q̂(σ1)) by
(3).

◦ Case I-Rigid’: Both sides have the same set of free variables.

◦ Case A-Hyp’ and I-Hyp’: Here σ2 is β, and β is not in ᾱ, hence there is no
α ∈ ftv(σ2) such that α is in ᾱ.

◦ Case A-Alias’ and I-Alias’: Both sides have the same set of free variables.

◦ Case A-Up’ and I-Up’: Both sides have the same set of free variables.

◦ Case I-Nil’: We have (Q) ⊥ v σ2 and ∀ (Q) ⊥/ = ∀ (Q) σ2/. Hence, σ2 is either
⊥, or a type variable. This is a contradiction with restrictions of Lemma 2.5.6. Hence,
this case does not happen.

Proof of Property 2.6.2

We are glad to prove each point.

Property i: it is easy to check that @̇−
ᾱ

is included in @− (indeed, rules StSh-Hyp, StSh-

Up and StSh-Alias are derivable with @−). Additionally, ≡ is included in @−, and @−

is transitive, thus (≡@̇−
∅
)
∗

is included in @−. Conversely, we show that @− is included in

(≡@̇−
∅
)
∗
.

As seen in Lemma 2.5.5, the relations @− and @−ᾱ are equivalent. Hence, it suffices

to show that @−ᾱ is included in (≡@̇−
∅
)
∗
. By Lemma 2.5.6, we can assume that the

given derivation is restricted. As we did in Lemma 2.5.1 (page 78), transitivity can be
lifted to top-level for @−ᾱ too, thus it suffices to show that @−ᾱ without transitivity is

included in (≡@̇−
∅
). More precisely, we prove that if we have a restricted derivation of

(Q) σ1 @−ᾱ σ2 without transitivity, then (Q) σ1 (≡@̇−
∅
) σ2 is derivable. As we did in the

proof of Lemma 2.5.2 (page 78), we can write the derivation of (Q) σ1 @−ᾱ σ2 in the
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form

A-X
. . .

(QQ′) σ′1 @−ᾱ σ′2
...

(Q) σ1 @−ᾱ σ2

Where, A-X is either A-Equiv, A-Up’, A-Hyp’ or A-Alias’, and the symbol
... rep-

resents a sequence of context rules. If A-X is A-Equiv, then (Q) σ1 ≡ σ2 holds,

thus (Q) σ1 (≡@̇−
∅
) σ2 holds by definition. Otherwise, as we did in the proof of

Lemma 2.5.2 (page 78), we can associate a rigid context Cr to the sequence of context

rules (
...), such that Q′ = Cr, σ1 = Cr(σ

′
1) and σ2 = Cr(σ

′
2). In summary, we have

(Q) Cr(σ
′
1) @−ᾱ Cr(σ

′
2), and we must show that (Q) Cr(σ

′
1) (≡@̇−

∅
) Cr(σ

′
2) holds.

◦ Case Rule A-X is A-Hyp’: Then we have (α= σ ′
1) ∈ Q (since α /∈ ᾱ) and σ′

2 = α.
Hence, (Q) Cr(σ

′
1) @̇−

ᾱ
Cr(σ

′
2) holds by Rule StSh-Hyp whenever σ′

1 /∈ T . If σ′1 ∈ T ,

then (Q) Cr(σ
′
1) ≡ Cr(α) is easily derivable by Eq-Mono, thus (Q) Cr(σ

′
1) (≡@̇−

∅
)

Cr(σ
′
2) holds.

◦ Case Rule A-X is A-Up’: Then we have σ ′
1 = ∀ (α = ∀ (α1 = σ1) σ) σ′ and

σ′2 = ∀ (α1 = σ1) ∀ (α = σ) σ′. Hence, (Q) σ1 @̇−
ᾱ
σ2 holds by Rule StSh-Up (all side

conditions obviously hold since Q′ is ∅ and the rule is restricted).

◦ Case Rule A-X is A-Alias’: Then we have σ ′
1 = ∀ (α1 = σ0) ∀ (α2 = σ0) σ and

σ′2 = ∀ (α1 = σ0) ∀ (α2 = α1) σ. Hence, (Q) Cr(σ
′
1) @̇−

ᾱ
Cr(σ

′
2) holds by StSh-Alias

(because the judgment is restricted, the side conditions hold).

We have shown that (Q) σ1 (≡@̇−
∅
) σ2 holds, thus @− is included in (≡@̇−

∅
)
∗
. Conse-

quently, @− and (≡@̇−
∅
)
∗

are equivalent. �

Property ii: We have @− included in v̇ by C-Abstract-R. Hence, @− is included in

(≡v̇)
∗

(1).
We introduce a derivable rule:

The following rule is derivable:

C-Abstract
(QQ′) σ1 @−dom(Q′) σ2 Q′ = Cf

(Q) Cf (σ1) (≡v̇)
∗
Cf (σ2)

Proof: We assume (QQ′) σ1 @−ᾱ σ2 (2) holds. If level(Cf ) = 0, then Cf is
useless by Property 2.4.3.iii (page 73), thus Cf (σ1) ≡ Cf (σ2) by definition, and (Q)
Cf (σ1) (≡v̇) Cf (σ2) holds. If level(Cf ) is 1, then Cf is narrow by Property 2.4.4.i
(page 74) thus Cf is also a rigid context. Hence, (Q) Cf (σ1) @−ᾱ Cf (σ2) holds by context

248



249

rules. Thus (Q) Cf (σ1) (≡v̇)
∗
Cf (σ2) holds by Lemma 2.5.5 and (1). Otherwise,

level(Cf ) > 1. By Lemma 2.5.5, Property i, and (2), we have (QQ′) σ1 (≡@̇−
∅
)
∗
σ2.

Since (≡v̇)
∗

is transitive, it suffices to show that if (QQ′) σa (≡@̇−
∅
) σb holds, then

(Q) Cf (σa) (≡v̇)
∗
Cf (σb) holds too. Additionally, since ≡ is included in (≡v̇), it

suffices to show that if (QQ′) σa @̇−
ᾱ
σb holds, then (Q) Cf (σa) (≡v̇)

∗
Cf (σb) holds

too. We get such a result by C-Abstract-F. �

The relation @̇ is included in v, as well as ≡ and @̇−
ᾱ
. Besides, v is a congruence

under flexible prefixes Cf . Hence, v̇ is included in v. Since v is transitive, v̇
∗

is also
included in v. Additionally, ≡ is included in v by I-Equiv?, thus (≡v̇)

∗
is included

in v.

Conversely, we show that v is included in (≡v̇)
∗
. By Lemma 2.5.5, it suffices to

show that vᾱ is included in (≡v̇)
∗
. As shown in Lemma 2.5.1 (page 78), transitivity

can be lifted at top-level, and the derivation is made restricted by Lemma 2.5.6; thus,
we only have to show that if we have a restricted derivation of (Q) σ1 vᾱ σ2, without
using transitivity, then (Q) σ1 (≡v̇)

∗
σ2 holds too. The derivation of (Q) σ1 vᾱ σ2 is

of the form

I-Context-X’

I-X
(QQ′) σ′1 vᾱ σ′2

...

(Q) σ1 vᾱ σ2

The context rules (represented by
...) are associated to a flexible context Cf such that

Cf = Q′, σ1 = Cf (σ′1) and σ2 = Cf (σ′2). The top Rule I-X is I-Abstract’, I-Bot’,
I-Hyp’, I-Rigid’, I-Up’, or I-Alias’.

◦ Case I-Abstract’: By hypothesis (QQ′) σ′1 @−dom(Q′) σ′2 holds. We have (Q)
σ1 (≡v̇)

∗
σ2 by C-Abstract. This is the expected result.

◦ Case I-Hyp’: By rules S-Hyp and C-Strict.

◦ Case I-Rigid’: By rules S-Rigid and C-Strict.

◦ Case I-Bot’: We have σ′
1 = ⊥. If σ′2 is closed, we conclude directly by S-Nil and

C-Strict. Otherwise, we consider ∀ (QQ′) σ′2, which is necessarily closed. We can
derive (Q) σ1 v̇ Cf (∀ (QQ′) σ′2) by S-Nil and C-Strict. By iteration of S-Hyp and
C-Strict, or A-Hyp and C-Abstract, we derive (Q) Cf (∀ (QQ′) σ′2) v̇

∗
Cf (σ′2).

Hence, (Q) σ1 v̇
∗
Cf (σ′2) holds by transitivity, that is (Q) σ1 v̇

∗
σ2.

◦ Case I-Up’: By S-Up and C-Strict.

◦ Case I-Alias’: By S-Alias and C-Strict.
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Proof of Property 2.6.3

Each point deserves its own proof.

Property i for R being @̇−
ᾱ
: By case on the rule used to derive (Q) σ1 @̇−

ᾱ
σ2.

◦ Case StSh-Hyp: By hypothesis, we have σ1 = Cr(σ
′
1), (α = σ′′1 ) ∈ Q (1), σ2 =

Cr(α) and (Q) Ĉr(σ
′
1) ≡ σ′′1 (2). Besides, σ′1 /∈ T and Cr is a useful well-formed

context by hypothesis. By Lemma 2.4.5 (page 75), there exists a context C ′
r, which is

ftv(Ĉr(σ
′
1))-equivalent to Cr, such that nf(σ1) = C ′

r(σf ) (3), where σf is nf(Ĉr(σ
′
1)).

Hence, σf ≡ Ĉr(σ
′
1) (4) by Property 1.5.6.i (page 51). Consequently, (2) and (4) lead

to (Q) σf ≡ σ′′1 (5). We have (Q) nf(σ1) @̇−
ᾱ
C ′

r(α) (6) by StSh-Hyp, (3), (1), and

(5). Besides, (Q) C ′
r(α) ≡ Cr(α) (7) holds since C ′

r and Cr are ftv(Ĉr(σ
′
1))-equivalent

and α /∈ dom(Cr) ∪ dom(C ′
r). We have the expected result, namely (6) and (7), taking

σ′2 = C ′
r(α).

◦ Case StSh-Up: By hypothesis, we have σ1 = Cr(∀ (β = ∀ (Q′, α0 = σ0) σ
′) σ′′),

and σ2 = Cr(∀ (α0 = σ0) ∀ (β = ∀ (Q′) σ′) σ′′) (8). along with a bunch of side-
conditions. Let σa be ∀ (β = ∀ (Q′, α0 = σ0) σ

′) σ′′. By hypothesis we have σ0 /∈ T ,
α0 ∈ ftv(σ′) and β ∈ ftv(σ′′), thus σa /∈ T by Property 2.1.5.i (page 67). Let θ be

Ĉr and ᾱ be ftv(θ(σa)). By hypothesis, Cr is a useful well-formed context, thus, by
Lemma 2.4.5 (page 75), there exists a context C ′

r, that is ᾱ-equivalent to Cr, such that
nf(σ1) = C ′

r(σ
′
1) (9), with σ′1 = nf(θ(σa))). Hence, by Property 1.5.6.iii (page 51), we

have σ′1 = θ(∀ (β= σ′′1 ) nf(σ′′)) (10), where σ′′1 is nf(∀ (Q′) ∀ (α0 = σ0) σ
′). We write θ′

for Q̂′. By definition of normal form σ′′
1 is ∀ (Q′′) ∀ (α0 = nf(σ0)) θ

′(nf(σ′)) (11), with
∀ (Q′′) θ′(nf(σ′)) = nf(∀ (Q′) σ′) (12). Combining (9), (10), and (11), nf(σ1) is (you
may take a deep breath) C ′

r(∀ (β = ∀ (θ(Q′′)) ∀ (α0 = θ(nf(σ0))) θθ
′(nf(σ′))) θ(nf(σ′′))).

In addition, all side conditions of StSh-Up are satisfied. Hence, StSh-Up can be
applied: (Q) nf(σ1) @̇−

ᾱ
C ′

r(∀ (α0 = θ(nf(σ0))) ∀ (β = ∀ (θ(Q′′)) θθ′(nf(σ′))) θ(nf(σ′′))).

Now, watchful readers expect a proof that C ′
r(∀ (α0 = θ(nf(σ0))) ∀ (β = ∀ (θ(Q′′))

θθ′(nf(σ′))) θ(nf(σ′′))) is equivalent to σ2. Let σ′2 be the former. We get σ′
2 ≡ C ′

r(∀ (α0=
θ(σ0)) ∀ (β=θ(∀ (Q′) σ′)) θ(σ′′)) from (12) and Property 1.5.6.i (page 51). As for σ2, we
use Eq-Mono and derive σ2 ≡ Cr(∀ (α0 = θ(σ0)) ∀ (β = θ(∀ (Q′) σ′)) θ(σ′′)) from (8).
Hence, σ2 ≡ Cr(σ3) and σ′2 ≡ C ′

r(σ3), where σ3 is ∀ (α0 = θ(σ0)) ∀ (β = θ(∀ (Q′) σ′))
θ(σ′′). We know that Cr and C ′

r are ᾱ-equivalent. Moreover, ftv(σ3) = ftv(θ(ftv(σa))) =
ᾱ, thus by definition of ᾱ-equivalence, we have Cr(σ3) ≡ C ′

r(σ3), which gives σ2 ≡ σ′2.
This is the expected result.

◦ Case StSh-Alias: We have σ1 = Cr(∀ (αa = σa) ∀ (Q′) ∀ (αb = σb) σ′) with
σa ≡ σb, and σ2 is Cr(∀ (αa = σa) ∀ (Q′) ∀ (αb = αa) σ

′). Let σ0 be ∀ (αa = σa) ∀ (Q′)

∀ (αb = σb) σ
′ (13). Let θ be Ĉr and ᾱ be ftv(θ(σ0)). By hypothesis, σa /∈ T and
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αa ∈ ftv(σ′), thus σ0 /∈ T by Property 2.1.5.i (page 67). Besides, Cr is a useful well-
formed context, thus by Lemma 2.4.5 (page 75), there exists a context C ′

r which is
ᾱ-equivalent to Cr such that nf(σ1) = C ′

r(nf(θ(σ0))). By Property 1.5.6.iii (page 51),
we have nf(σ1) = C ′

r(θ(nf(σ0))) (14).

Let θ′ be Q̂′. From (13), nf(σ0) is of the form ∀ (αa = nf(σa)) ∀ (Q′′) ∀ (αb = nf(σb))
θ′(nf(σ′)) (15). Consequently, from (14) and (15), nf(σ1) is C ′

r(∀ (αa = θ(nf(σa)))
∀ (θ(Q′′)) ∀ (αb = θ(nf(σb))) θθ

′(nf(σ′))) (16), besides, αa, αb ∈ ftv(θθ′(nf(σ′))) (17)
by Property 1.5.6.ii (page 51). By hypothesis σa /∈ T , hence θ(nf(σa)) /∈ T (18) by
property 1.5.11.iv (page 54). Moreover σa ≡ σb, thus nf(σa) ≡ nf(σb) by Property 1.5.6.i
(page 51) and R-Trans. This gives θ(nf(σa)) ≡ θ(nf(σb)) (19) by Property 1.5.11.v
(page 54). Consequently, from (16), (17), (18), (19), and StSh-Alias, we can derive
(Q) nf(σ1) @̇−

ᾱ
σ′2, where σ′2 is C ′

r(∀ (αa = θ(nf(σa))) ∀ (θ(Q′′)) ∀ (αb = αa) θθ
′(nf(σ′))).

It remains to be shown that σ2 ≡ σ′2 holds. We have σ2 ≡ Cr(∀ (αa = θ(nf(σa)))

∀ (θ(Q′′)) ∀ (αb =αa) θθ
′(nf(σ′))) using Eq-Mono* on Ĉr and Q̂′. Hence, σ2 ≡ Cr(σz)

and σ′2 is C ′
r(σz), where σz is ∀ (αa = θ(nf(σa))) ∀ (θ(Q′′)) ∀ (αb = αa) θθ

′(nf(σ′)). By
Property 1.5.4.i (page 50), we have ftv(σz) = θ(ftv(σ0)), thus we get ftv(σz) = ᾱ.
Hence, by definition of ᾱ-equivalence, we get Cr(σz) ≡ C ′

r(σz), which leads to σ2 ≡ σ′2.
This is the expected result.

Property ii for R being @̇−
ᾱ
: By hypothesis, σ1 ≈σ′1 (1) and (Q) σ1 @̇−

ᾱ
σ2 (2) hold.

We prove the result for a single commutation only, then we get the expected result
by immediate induction. We assume that (1) holds by a single commutation. More
precisely, let σr, σ

′
r and C be such that

σr = ∀ (γ = σa, β = σb) σc σ′r = ∀ (β = σb, γ = σa) σc σ1 = C(σr) (3)

σ′1 = C(σ′r) β /∈ ftv(σa) γ /∈ ftv(σb) (4).

Since σ1 is in normal form, we also know that γ, β ∈ ftv(σc). We prove the result by
case on the rule used to derive (2).

◦ Case StSh-Hyp: σ1 is of the form Cr(σ
′) and (α=σ0) ∈ Q with (Q) σ0 ≡ Ĉr(σ

′).

Since σ1 is in normal form, we have Ĉr = id. By (3), we have C(∀ (γ = σa, β = σb)
σc) = Cr(σ

′). By alpha-conversion, we can freely assume that γ /∈ ftv(σ0). We proceed
by case analysis on C and Cr.

Subcase C and Cr are disjoint: By Lemma 2.4.6 (page 76), there exists a
two-hole context C2 such that Cr = C2([ ],∀ (γ = σa, β = σb) σc) and C = C2(σ′, [ ]).
Besides, C ′

r = C2([ ],∀ (β = σb, γ = σa) σc) (5) is rigid. We have σ′
1 = C ′

r(σ
′). Let σ′2

be C ′
r(α) (6). Note also that σ2 is C2(α,∀ (γ = σa, β = σb) σc) (7). By StSh-Hyp, we

get (Q) σ′1 @̇−
ᾱ
σ′2, and σ′2 ≈σ2 by (6), (5), and (7). This is the expected result.

Subcase C is of the form Cr(C
′): We have σ′ = C ′(σr), (Q) σ0 ≡ C ′(σ′r), and

(Q) α ≡ α. We get the expected result by StSh-Hyp.
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Subcase Cr is of the form C(∀ (γ = C ′, β = σb) σc): immediate

Subcase Cr is of the form C(∀ (γ = σa, β = C ′) σc): immediate

Subcase Cr is of the form C(∀ (γ = σa, β = σb) C
′): immediate

Subcase Cr is of the form C(∀ (γ=σa) [ ]): We must have σ1 = C(∀ (γ=σa, β=
σb) σc) and (Q) σ0 ≡ ∀ (β = σb) σc. However, γ ∈ ftv(σc), thus γ ∈ ftv(∀ (β = σb) σc).
Hence, by Property 1.5.4.i (page 50), we must have γ ∈ ftv(σ0), which is a contradiction.
Hence this case cannot occur.

◦ Case StSh-Up: σ1 is of the form Cr(∀ (αb=∀ (Q′, αa=σ) σ′) σ′′), with σ /∈ T , αa ∈
ftv(σ′), σ′, σ′′ /∈ V (8), αa /∈ dom(QCrQ

′) (9), ftv(σ) # dom(Q′), αb ∈ ftv(σ′′) (10),
and σ2 is Cr(∀ (αa = σ) ∀ (αb = ∀ (Q′) σ′) σ′′). We have C(∀ (γ = σa, β = σb) σc) =
Cr(∀ (αb = ∀ (Q′, αa = σ) σ′) σ′′). We proceed by case on the form of C and Cr:

Subcase C and Cr are disjoint: immediate

Subcase C is Cr: We have γ = αb (11), σa = ∀ (Q′, αa = σ) σ′ and σ′′ =
∀ (β=σb) σc (12) Then σ′1 is Cr(∀ (β=σb, γ=∀ (Q′, αa=σ) σ′) σc). We have γ ∈ ftv(σc)
by (10), (11), (12) and (4). Besides, σc /∈ V by (12) and (8) and αa /∈ ftv(σc) by (12)
and (9). Hence, StSh-Up applies and gives (Q) σ ′

1 @̇−
ᾱ
Cr(∀ (β=σb, αa=σ, γ=∀ (Q′) σ′)

σc). We get the expected result by observing that Cr(∀ (β=σb, αa =σ, γ=∀ (Q′) σ′) σc)
is equivalent to σ2.

Subcase C is of the form Cr(C
′): immediate.

Subcase Cr is of the form C(C ′): immediate.

◦ Case StSh-Alias: all subcases are easy.

Property i for R being @̇: By case on the rule used to derive (Q) σ1 @̇ σ2. Cases S-

Hyp, S-Up and S-Alias are similar to cases StSh-Hyp, StSh-Up, and StSh-Alias

of Property i.

◦ Case S-Nil: We have σ1 = Cf (⊥), σ2 = Cf (σ) and σ is closed by hypothesis. By
Lemma 2.4.5 (page 75), there exists C ′

r, ∅-equivalent to Cr, such that nf(σ1) = C ′
r(⊥).

Consequently, nf(σ1) @̇ C ′
r(σ) holds by S-Nil. Additionally, we have Cr(σ) ≡ C ′

r(σ)
by definition of ∅-equivalence.

◦ Case S-Rigid: We have σ1 = Cf (∀ (α ≥ σ′) σ) and σ2 = Cf (∀ (α = σ′) σ). By
hypothesis, σ /∈ V, σ′ /∈ T (13) and α ∈ ftv(σ) (14). Let σ0 be ∀ (α ≥ σ′) σ, ᾱ

be ftv(θ(σ0)) and θ be Ĉr. By Property 2.1.5.i (page 67) applied to (13) and (14),
we have σ0 /∈ T . By Lemma 2.4.5 (page 75), there exists C ′

r, ᾱ-equivalent to Cr,
such that nf(σ1) = C ′

r(nf(θ(σ0))). Hence, by Property 1.5.6.iii (page 51), nf(σ1) is
C ′

r(θ(∀ (α ≥ nf(σ′)) nf(σ))), that is, C ′
r(∀ (α ≥ θ(nf(σ′))) θ(nf(σ))). By Rule S-Rigid,

we can derive (Q) nf(σ1) @̇ C ′
r(σ

′
0), where σ′0 is ∀ (α = θ(nf(σ′))) θ(nf(σ)). We note

that σ′0 is θ(nf(∀ (α= σ′) σ)). Consequently, σ2 ≡ Cr(σ
′
0) holds by by Property 1.5.6.i

(page 51) and by Rule Eq-Mono. We have ftv(σ′
0) = θ(ftv(σ0)) by Property 1.5.6.ii

(page 51), thus ftv(σ′0) = ᾱ. Hence, by definition of ᾱ-equivalence, Cr(σ
′
0) ≡ C ′

r(σ
′
0).
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Property ii for R being @̇: By case on the rule used to derive (Q) σ1 @̇ σ2. Cases S-

Hyp, S-Up and S-Alias are similar to cases StSh-Hyp, StSh-Up, and StSh-Alias

of Property ii.

◦ Case S-Nil: immediate.

◦ Case S-Rigid: immediate.

Proof of Lemma 2.7.8

Directly, we assume that we have

Q̂(nf(σ2)) /∈ ϑ (1) (Q) σ1 v σ2 (2) ∀ (Q) σ1/ = ∀ (Q) σ2/ (3)

X /∈ w(σ1) − w(σ2) (4)

By Lemma 2.5.5 and (2), we have a derivation of (Q) σ1 vᾱ σ2 (5). By Lemma 2.5.6,
this derivation is restricted. The proof is by induction on the derivation of (5).

◦ Case I-Abstract’: The premise is (Q) σ1 @−ᾱ σ2 and we conclude by Lemma 2.5.5.

◦ Case R-Trans: The premises are (Q) σ1 vᾱ σ′1 (6) and (Q) σ′1 vᾱ σ2 (7).
By hypothesis (3), ∀ (Q) σ1/ = ∀ (Q) σ2/ holds. Hence, ∀ (Q) σ1/ = ∀ (Q) σ′1/ =
∀ (Q) σ2/ (8) holds (see case R-Trans in the proof of Property 2.7.6.i (page 94) for
details). Besides, by Property 2.7.6.i (page 94), (6), and (7), we have w(σ1) > w(σ′1) >

w(σ2) (9). By Property 2.7.2.iv (page 87), (4), and (9), we get X /∈ w(σ1)−w(σ′1) (10)

and X /∈ w(σ′1)−w(σ2) (11). Now, by hypothesis (1), we have Q̂(nf(σ2)) /∈ ϑ. Assume

Q̂(nf(σ′1)) ∈ ϑ holds. By definition, this means that we have Q̂(nf(σ′1)) = α (12) for

some type variable α. If, by a way of contradiction, α ∈ dom(Q̂) holds, then, by well-
formedness of Q, we must have α /∈ codom(Q̂), which implies α /∈ Q̂(nf(σ′1)), and this is

a contradiction with (12). Consequently, we have α /∈ dom(Q̂) (13), that is, Q̂(α) = α.
Then (12) gives Q̂(nf(σ′1)) ≡ Q̂(α) (14) by Eq-Refl. By Corollary 1.5.10 and (14),
we get (Q) nf(σ′1) ≡ α. By Property 1.5.6.i and R-Trans, this gives (Q) σ′

1 ≡ α (15).
Hence, by Lemma 2.1.6, (7), and (15), we have (Q) σ′

1 ≡ σ2 (16). By R-Trans, (16),

and (15), we get (Q) σ2 ≡ α. Consequently, Q̂(nf(σ2)) ∈ ϑ holds by Corollary 1.5.10
and (13), which is a contradiction with (1). Hence, we have Q̂(nf(σ′1)) /∈ V (17). By
induction hypothesis, (6), (8), (10), and (17), we have (Q) σ1 @− σ′1 (18). By induction
hypothesis, (7), (8), (11), and (1), we have (Q) σ ′

1 @− σ2 (19). By R-Trans, (18), and
(19), we get (Q) σ1 @− σ2. This is the expected result.

◦ Case R-Context-R: We have σ1 = ∀ (α � σ) σ′1 and σ2 = ∀ (α � σ) σ′2. The
premise is (Q,α � σ) σ′

1 vᾱ∪{α} σ′2 (20). By hypothesis (3), we have ∀ (Q,α � σ) σ ′
1/ =

∀ (Q,α � σ) σ′2/ (21). Let θ′ be Q̂, α � σ and θ be Q̂. We proceed by case analysis.
Subcase σ ∈ T : We have σ ≡ τ by Property 1.5.11.ii (page 54). By definition,

we have w(σ1) = w(σ′1) and w(σ2) = w(σ′2). Hence, we get X /∈ w(σ′
1) − w(σ′2) (22)
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from (4). From (1), we have θ(nf(σ′
2)[α = τ ]) /∈ V, which can also be written

θ′(nf(σ′2)) /∈ V (23). By induction hypothesis, (20), (21), (22), and (23), we get
(Q,α � σ) σ′1 @− σ′2. We conclude by R-Context-R.

In the following, we assume σ /∈ T , which implies θ ′ = θ. Besides, if α ∈ ftv(σ′
2),

then α ∈ ftv(σ′1) by Lemma 2.5.7 (page 83), (20), and (21), and α /∈ codom(Q̂)).
Conversely, if α ∈ ftv(σ′

1), then α ∈ ftv(σ′2) by Lemma 2.1.4 (page 67). Hence, we know
that α ∈ ftv(σ′2) if and only if α ∈ ftv(σ′

1) (24).

Subcase nf(σ′1) = α: Then σ′2 ≡ α by Property 2.1.7.ii (page 68), (24), and
(20). Hence, σ1 ≡ σ ≡ σ2 holds by Eq-Var, and we have (Q) σ1 @− σ2 by A-Equiv.

Subcase nf(σ′2) = α: Then σ′1 ≡ α by Property 2.1.7.ii (page 68), and we also
have (Q) σ1 ≡ σ2. In the following, we assume that nf(σ ′

1) 6= α and nf(σ′2) 6= α (25)
hold.

Otherwise, let x be 1 if α ∈ ftv(σ′
1) and 0 otherwise. Let A be X ? �. We

have w(σ1) = x × A × wA(σ) + w(σ′1) and w(σ2) = x × A × wA(σ) + w(σ′2). Hence,
w(σ1) − w(σ2) = w(σ′1) − w(σ′2), thus X /∈ w(σ′1) − w(σ′2) (26) by (4). We have
θ(nf(σ2)) /∈ V from (1), and nf(σ′

2) is not α from (25). Thus we have θ(nf(σ ′
2)) /∈ V (27)

(otherwise, σ′2 would be equivalent to a type variable β, and ∀ (α � σ) σ ′
2 ≡ β would

also hold, which is a contradiction with (1)). By induction hypothesis, (20), (21), (26),
and (27), we get (Q,α � σ) σ′

1 @− σ′2. Then (Q) σ1 @− σ2 holds by R-Context-R. This
is the expected result.

◦ Case I-Context-L’: We have σ1 = ∀ (α ≥ σ′1) σ and σ2 = ∀ (α ≥ σ′2) σ. The
premise is (Q) σ′1 vᾱ σ′2. We have ∀ (Q) σ1/ = ∀ (Q) σ2/ (1) by hypothesis, and
nf(σ) 6= α, and α ∈ ftv(σ) (2) by Lemma 2.5.6. By Property 1.3.3.i (page 40), (1),
and (2), we get ∀ (Q) σ′

1/ = ∀ (Q) σ′2/ (3). We have w(σ1) = X × w(σ′1) + w(σ) and
w(σ2) = X×w(σ′2)+w(σ). Hence, w(σ1)−w(σ2) = X×(w(σ′1)−w(σ′2)). By hypothesis,
we have X /∈ w(σ1) − w(σ2). Consequently, we must have w(σ′

1) − w(σ′2) = 0, that is,
w(σ′1) = w(σ′2) (4). By Property 2.7.6.ii (page 94), (3), and (4), we get (Q) σ′

1 ≡ σ′2.
Hence, (Q) σ1 ≡ σ2 holds by R-Context-L, and (Q) σ1 @− σ2 holds by A-Equiv.

◦ Case I-Bot’: We have σ1 = ⊥. Hence, (∀ (Q) σ1)/ε = ⊥. By Lemma 2.5.6,
we have σ2 /∈ V, and σ2 is not ⊥. Hence, σ2/ε is a type constructor g. This is a
contradiction with the hypothesis ∀ (Q) σ1/ = ∀ (Q) σ2/. Hence, this case cannot
occur.

◦ Case I-Hyp’: We have (α1 ≥ σ1) ∈ Q, and σ2 is α1. By Lemma 2.5.6, we have
σ1 /∈ T , thus we have Q̂(nf(σ2)) = α1 ∈ V, which is a contradiction (by hypothesis).
Hence, this case cannot occur.

◦ Case I-Up’: We have σ1 = ∀ (α1≥∀ (α2�σ
′′) σ′) σ and σ2 = ∀ (α2�σ

′′) ∀ (α1≥σ
′) σ.

By hypothesis, we have X /∈ w(σ1) − w(σ2). By restrictions of Lemma 2.5.6, we have
α1 ∈ ftv(σ), nf(σ) 6= α1, α2 ∈ ftv(σ′), σ′′ /∈ T (5), and nf(σ′) 6= α2. Let A be
X ? �. We have w(σ1) = w(σ) + X × (w(σ′) + A × wA(σ′′)). We have w(σ2) =
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w(σ) + X × w(σ′) + A × wA(σ′′). Hence, w(σ1) − w(σ2) = A × wA(σ′′) × (X − 1).
By Lemma 2.7.4 (page 92) and (5), wA(σ′′) 6= 0, thus X ∈ w(σ1) − w(σ2), which is a
contradiction (by hypothesis). Hence, this case cannot occur.

◦ Case I-Alias’: We have σ1 = ∀ (α1≥σ
′) ∀ (α2≥σ

′) σ and σ2 = ∀ (α1≥σ
′) ∀ (α2 =

α1) σ. By restrictions of Lemma 2.5.6, we have α1 and α2 in ftv(σ), and σ′ /∈ T (6).
By definition, we have w(σ1) = w(σ) + 2 ×X ×w(σ′) and w(σ2) = w(σ) +X ×w(σ′).
Hence w(σ1) − w(σ2) = X × w(σ′). By Lemma 2.7.4 (page 92) and (6), this implies
X ∈ w(σ1) − w(σ2), which is a contradiction. Hence, this case cannot occur.

◦ Case I-Rigid’: We have σ1 = ∀ (α ≥ σ′) σ and σ2 = ∀ (α = σ′) σ. By restrictions
of Lemma 2.3.1, we have σ′ not in T (7), α ∈ ftv(σ), and nf(σ) 6= α. Hence, w(σ1) =
w(σ)+X ×w(σ′) and w(σ2) = w(σ)+Y ×wY (σ′). We get w(σ1)−w(σ2) = Xw(σ′)−
Y wY (σ′) (8). Since X /∈ Y wY (σ′), the X-degree of Y wY (σ′) is 0. Since w(σ′) is
not 0 by Lemma 2.7.4 (page 92) and (7), the X-degree of Xw(σ′) is not zero. Hence,
X ∈ Xw(σ′) − Y wY (σ′), that is, X ∈ w(σ1) − w(σ2) by (8). This is a contradiction.
Hence, this case cannot occur.

Conversely, we assume that (Q) σ1 @− σ2 holds. By Property 2.1.3.i, we have
∀ (Q) σ1/ = ∀ (Q) σ2/. By I-Abstract, we have (Q) σ1 v σ2. It remains only to
be shown that X /∈ w(σ1) − w(σ2) (1) holds. By Lemma 2.5.5 we have a derivation
of (Q) σ1 @−ᾱ σ2 (2). By Lemma 2.5.6, this derivation is restricted. We prove (1) by
induction on the derivation of (2).

◦ Case A-Equiv’: By Lemma 2.7.5 (page 93), we have wX(σ1) − wX(σ2) = 0.

◦ Case R-Trans: The premises are (Q) σ1 @−ᾱ σ′1 (3) and (Q) σ′1 @−ᾱ σ2 (4).

If Q̂(nf(σ′1)) is in V, then (Q) σ2 ≡ σ′1 holds by Lemma 2.1.6, thus Q̂(nf(σ2)) is

in V by Lemma 1.5.9, which is a contradiction. Hence, Q̂(nf(σ′1)) /∈ V, and we get
X /∈ wX(σ1)−wX(σ′1) by induction hypothesis on (3), as well as X /∈ wX(σ′1)−wX(σ2)
by induction hypothesis on (4). This gives X /∈ wX(σ1) −wX(σ2) by addition.

◦ Case A-Hyp’: We have (α= σ1) ∈ Q, and σ2 is α. By Lemma 2.5.6, σ1 /∈ T , that
is, α /∈ dom(Q̂). Hence, Q̂(σ2) = Q̂(α) = α. This is a contradiction. This case is not
possible.

◦ Case R-Context-R: We have σ1 = ∀ (α�σ) σ′1 and σ2 = ∀ (α�σ) σ′2. The premise
is (Q,α � σ) σ′1 @−ᾱ∪{α} σ′2 (5). We proceed by case analysis.

Subcase σ ∈ T : Then w(σ1) = w(σ′1) and w(σ2) = w(σ′2). By induction
hypothesis on (5), we get X /∈ w(σ′

1) − w(σ′2), that is X /∈ w(σ1) − w(σ2).
In the following, we assume that σ /∈ T . By Lemmas 2.5.7 (page 83) and 2.1.4

(page 67), we have α ∈ ftv(σ′1) if and only if α ∈ ftv(σ′
2) (6).

Subcase σ′2 ∈ V and α ∈ ftv(σ′2): Necessarily nf(σ′
2) = α. Besides, we have

α ∈ ftv(σ′1) from (6). Hence, σ′
1 ≡ α holds by Property 2.1.7.ii (page 68). Consequently,

σ1 ≡ σ2 and w(σ1) − w(σ2) = 0.
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Subcase σ′2 ∈ V and α /∈ ftv(σ′2): Then α /∈ ftv(σ′1) by (6). Hence, w(σ1) =
w(σ′1) (7) and w(σ2) = w(σ′2) (8). Besides, we have σ2 ≡ σ′2 by Eq-Free. Hence,

Q̂(nf(σ′2))≈ Q̂(nf(σ2)) holds by Lemma 1.5.9. This implies Q̂(nf(σ′2)) /∈ ϑ. We conclude
by induction hypothesis on (5), (7), and (8).

In the following, we assume that σ′
2 /∈ V.

Subcase σ′1 ≡ α: By Lemma 2.1.6 and (5), we get (Q,α � σ) σ′
1 ≡ σ′2, thus

(Q) σ1 ≡ σ2 holds by R-Context-R, and w(σ1)−w(σ2) = 0 by Lemma 2.7.5 (page 93).

Otherwise let x be 1 if α ∈ ftv(σ′
1) and 0 otherwise. Let A be X ? �. We

have w(σ1) = w(σ′1) + x × A × wA(σ) and w(σ2) = w(σ′2) + x × A × wA(σ). Hence,
w(σ1) − w(σ2) = w(σ′1) − w(σ′2) and we conclude directly by induction hypothesis on
(5).

◦ Case A-Context-L’: We have σ1 = ∀ (α = σ′1) σ and σ2 = ∀ (α = σ′2) σ. By
Lemma 2.5.6, we have α ∈ ftv(σ). By definition, we have w(σ1) = wY (σ′1) × Y + w(σ)
and w(σ2) = wY (σ′2) × Y + w(σ). Hence, w(σ1) − w(σ2) = (wY (σ′1) − wY (σ′2)) × Y ,
thus X /∈ w(σ1) − w(σ2).

◦ Case A-Alias’: We have σ1 = ∀ (α1 = σ) ∀ (α2 = σ) σ′, and α1 and α2 are in
ftv(σ′). Moreover, σ is not in T . We have w(σ1) = w(σ′)+2×Y ×wY (σ) and w(σ2) =
w(σ′) + Y × wY (σ). Hence, w(σ1) − w(σ2) = Y × wY (σ), thus X /∈ w(σ1) − w(σ2).

◦ Case A-Up’: We have σ1 = ∀ (α1 = ∀ (α2 = σ′′) σ′) σ and σ2 = ∀ (α2 = σ′′)
∀ (α1 = σ′) σ. Moreover, α1 ∈ ftv(σ), α2 ∈ ftv(σ′), nf(σ) is not α1, nf(σ′) is not
α2, and σ′′ is not in T . We have w(σ1) = w(σ) + Y × (wY (σ′) + Y × wY (σ′′)) and
w(σ2) = w(σ)+Y ×wY (σ′)+Y ×wY (σ′′). Hence, w(σ1)−w(σ2) = Y wY (σ′′)×(Y −1).
We see that X /∈ w(σ1) − w(σ2).

Proof of Property 2.7.9

Property i: It is shown by structural induction on σ.

◦ Case τ : We have P (σ) = 0 and #σ > nα, thus the result holds.

◦ Case ⊥: We have P (σ) = 1, #σ = 1, and σ is closed, thus the result holds.

◦ Case ∀ (α�σ1) σ2, with nf(σ2) = α: By definition we have P (σ) = P (σ1), nσ = nσ1
,

and #σ = #σ1, thus we get the result by induction hypothesis on σ1.

◦ Case ∀ (α�σ1) σ2, with α /∈ ftv(σ2): By definition we have P (σ) = P (σ2), nσ = nσ2
,

and #σ = #σ2, thus we get the result by induction hypothesis on σ2.

◦ Case ∀ (α � σ1) σ2 (other cases): By definition, P (σ) is P (σ2) + X × P (σ1). By
induction hypothesis, the coefficients of P (σ1) are bounded by #σ1 − nσ1

, and the
coefficients of P (σ2) are bounded by #σ2 − nσ2

. Hence, the coefficients of P (σ) are
bounded by #σ1 + #σ2 − nσ1

− nσ2
. Since ftv(σ) = ftv(σ1) ∪ ftv(σ2) − {α}, and

α ∈ ftv(σ2), we have nσ 6 nσ1
+ nσ2

− 1. Consequently, −nσ1
− nσ2

6 −nσ − 1 holds.
Hence, we have #σ1 + #σ2 − nσ1

− nσ2
6 #σ1 + #σ2 − nσ − 1, thus the coefficients
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of P (σ) are bounded by #σ1 + #σ2 − nσ − 1. Let kα be the number of occurrences
of α in σ2 (that is, the cardinal of the set of all u such that σ2/u = α). We have
#σ = #σ2 − kα + kα × #σ1. Hence, #σ = #σ2 + kα × (#σ1 − 1). Since α ∈ ftv(σ2),
we have kα > 1, thus #σ > #σ2 + #σ1 − 1 (1), that is #σ1 + #σ2 6 #σ + 1. Since
all the coefficients of P (σ) are bounded by #σ1 +#σ2 −nσ − 1, they are also bounded
by #σ − nσ, which is the expected result.

Property ii: It is shown by structural induction on σ. All cases are straightforward,
except the last one:

◦ Case ∀ (α � σ1) σ2, when σ2 6≡ α and α ∈ ftv(σ2). By definition, P (σ) = P (σ2) +
X × P (σ1), thus d(σ) = max(d(σ2), d(σ1) + 1). We have d(σ2) 6 #σ2 by induction
hypothesis as well as d(σ1) 6 #σ1. Hence, d(σ) 6 max(#σ2,#σ1 + 1) (2). Moreover,
as shown above (1), we have #σ > #σ2 + #σ1 − 1 (3). Additionally, we have #σ2 6

#σ2 + #σ1 − 1 (4). Since σ2 6≡ α, and α ∈ ftv(σ2), we must have #σ2 > 2 by
Property 2.1.5.ii (page 67). Hence, #σ1 +1 6 #σ1 +#σ2− 1 (5). As a consequence of
(4) and (5), we have max(#σ2,#σ1+1) 6 #σ2+#σ1−1, thus max(#σ2,#σ1+1) 6 #σ
holds by (3). Finally, we get d(σ) 6 #σ by (2).

Proof of Property 2.8.1

Property i: Intuitively, this proof is quite long because we have to consider many critical

pairs. Two rules can be used to derive (Q) σ1 @̇−
ᾱ
σ2, namely StSh-Up and StSh-

Alias (note that the prefix is unconstrained). Similarly, two rules can be used to derive
(Q) σ1 @̇−

ᾱ
σ3. By symmetry, this makes three cases to consider:

◦ Case StSh-Up and StSh-Up: We have

σ1 = Cr(∀ (β=∀ (Q1) ∀ (α=σa) σb) σc) (1) σ2 = Cr(∀ (α=σa) ∀ (β=∀ (Q1) σb) σc)

σ1 = C ′
r(∀ (β′ = ∀ (Q2) ∀ (α′ = σ′a) σ

′
b) σ

′
c) (2)

σ3 = C ′
r(∀ (α′ = σ′a) ∀ (β′ = ∀ (Q2) σ

′
b) σ

′
c)

Besides, the premises give the following hypotheses (3):

β ∈ ftv(σc) β′ ∈ ftv(σ′c) α ∈ ftv(σb) α′ ∈ ftv(σ′b) σb, σ
′
b, σc, σ

′
c /∈ V

σa, σ
′
a /∈ T α /∈ dom(QCrQ1) α′ /∈ dom(QCrQ2)

We proceed by case analysis on Cr and C ′
r.
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Subcase Cr = C ′
r: Then from (1) and (2), we get ∀ (Q2) ∀ (α′=σ′a) σ

′
b = ∀ (Q1)

∀ (α = σa) σb. If α is α′, we have σ3 = σ2, thus we get the result by taking σ4 = σ2.
Otherwise, with no loss of generality, we can freely assume that α ∈ dom(Q2). Hence,
we have σ1 of the form Cr(∀ (β = ∀ (Qa, α = σa, Qb, α

′ = σ′a) σ
′
b) σc), σ2 of the form

Cr(∀ (α= σa) ∀ (β = ∀ (QaQb, α
′ = σ′a) σ

′
b) σc, and σ3 of the form Cr(∀ (α′ = σ′a) ∀ (β =

∀ (Qa, α=σa, Qb) σ
′
b) σc. Then taking σ4 = Cr(∀ (α=σa, α

′=σ′a) ∀ (β=∀ (QaQb) σ
′
b) σc),

we can derive (Q) σ2 @̇−
ᾱ
σ4 (4) and (Q) σ3 @̇−

ᾱ
σ4 (5) by StSh-Up. The premises

of (4) and (5) are ensured by (3).

Subcase Cr and C ′
r disjoint: By Lemma 2.4.6 (page 76), there exists a two-

hole context C2 such that Cr = C2([ ],∀ (β′ = ∀ (Q2) ∀ (α′ = σ′a) σ
′
b) σ

′
c) and C ′

r =
C2(∀ (β = ∀ (Q1) ∀ (α = σa) σb) σc, [ ]). Then taking σ4 = C2(∀ (α = σa) ∀ (β = ∀ (Q1)
σb) σc,∀ (α′ = σ′a) ∀ (β′ = ∀ (Q2) σ

′
b) σ

′
c) gives the expected result.

Subcase Cr and C ′
r nested: without loss of generality, we can freely assume

that C ′
r is of the form Cr(C). Hence, we have

σ1 = Cr(∀ (β=∀ (Q1) ∀ (α=σa) σb) σc) (6) σ2 = Cr(∀ (α=σa) ∀ (β=∀ (Q1) σb) σc)

σ1 = Cr(C(∀ (β′ = ∀ (Q2) ∀ (α′ = σ′a) σ
′
b) σ

′
c)) (7)

σ3 = Cr(C(∀ (α′ = σ′a) ∀ (β′ = ∀ (Q2) σ
′
b) σ

′
c))

From (6) and (7), we get C(∀ (β ′ =∀ (Q2) ∀ (α′ =σ′a) σ
′
b) σ

′
c) = ∀ (β=∀ (Q1) ∀ (α=σa)

σb) σc. We have six choices for C:

• C is of the form ∀ (β= ∀ (Q1) ∀ (α= σa) σb) C
′. We get the expected solution by

taking σ4 = Cr(∀ (α= σa) ∀ (β = ∀ (Q1) σb) C
′(∀ (α′ = σ′a) ∀ (β′ = ∀ (Q2) σ

′
b) σ

′
c))

• C is of the form ∀ (β = ∀ (Q′) [ ]) σc and dom(Q′) ⊂ dom(Q1): Then σ′c is
∀ (Q′′) ∀ (α = σa) σb. We get the expected result by taking σ4 = Cr(∀ (α = σa)
∀ (β = ∀ (Q′) ∀ (α′ = σ′a) ∀ (β′ = ∀ (Q2) σ

′
b) ∀ (Q′′) σb) σc).

• C is of the form ∀ (β = ∀ (Q1) [ ]) σc: Then β′ is α. We get the expected result
by taking σ4 = Cr(∀ (α′ = σ′a) ∀ (α= ∀ (Q2) σ

′
b) ∀ (β = ∀ (Q1) σ

′
c) σc).

• C is of the form ∀ (β = ∀ (Qa) ∀ (γ = C ′) ∀ (Qb) ∀ (α = σa) σb) σc: We get the
expected solution by taking σ4 = Cr(∀ (α=σa) ∀ (β=∀ (Qa) ∀ (γ=C ′(∀ (α′ =σ′a)
∀ (β′ = ∀ (Q2) σ

′
b) σ

′
c)) ∀ (Qb) σb) σc)

• C is of the form ∀ (β = ∀ (Q1) ∀ (α=C ′) σb) σc: We get the expected solution by
taking σ4 = Cr(∀ (α= C ′(∀ (α′ = σ′a) ∀ (β′ = ∀ (Q2) σ

′
b) σ

′
c)) ∀ (β = ∀ (Q1) σb) σc)
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• C is of the form ∀ (β= ∀ (Q1) ∀ (α= σa) C
′) σc: We get the expected solution by

taking σ4 = Cr(∀ (α= σa) ∀ (β = ∀ (Q1) C
′(∀ (α′ = σ′a) ∀ (β′ = ∀ (Q2) σ

′
b) σ

′
c)) σc)

◦ Case StSh-Up and StSh-Alias: We have

σ1 = Cr(∀ (β = ∀ (Q1) ∀ (α= σa) σb) σc) σ1 = C ′
r(∀ (α1 = σ′1) ∀ (Q′) ∀ (α2 = σ′2) σ

′′
1 )

σ2 = Cr(∀ (α= σa) ∀ (β = ∀ (Q1) σb) σc) σ3 = C ′
r(∀ (α1 = σ′1) ∀ (Q′) ∀ (α2 =α1) σ

′′
1 )

and by hypothesis, σ′
1 ≡ σ′2. We proceed by case analysis on Cr and C ′

r.

Subcase Cr = C ′
r: then, β = α1, thus we have

σ1 = Cr(∀ (β = ∀ (Q1) ∀ (α= σa) σb) σc) σ1 = Cr(∀ (β = σ′1) ∀ (Q′) ∀ (α2 = σ′2) σ
′′
1)

σ2 = Cr(∀ (α = σa) ∀ (β = ∀ (Q1) σb) σc) σ3 = Cr(∀ (β = σ′1) ∀ (Q′) ∀ (α2 = β) σ′′1)

σ′1 = ∀ (Q1) ∀ (α= σa) σb σc = ∀ (Q′) ∀ (α2 = σ′2) σ
′′
1

Taking σ4 = Cr(∀ (α= σa) ∀ (β = ∀ (Q1) σb) ∀ (Q′) ∀ (α2 = β) σ′′1) is appropriate.

Subcase Cr and C ′
r are disjoint: by Lemma 2.4.6 (page 76), there exists a

two-hole context C2 such that Cr = C2([ ],∀ (α1 = σ′1) ∀ (Q′) ∀ (α2 = σ′2) σ
′′
1 ) and

C ′
r = C2(∀ (β = ∀ (Q1) ∀ (α = σa) σb) σc, [ ]). Then taking σ4 = C2(∀ (α = σa) ∀ (β =

∀ (Q1) σb) σc,∀ (α1 = σ′1) ∀ (Q′) ∀ (α2 = α1) σ
′′
1 ) is appropriate.

Subcase Cr is of the form C ′
r(C): we have

σ1 = C ′
r(C(∀ (β = ∀ (Q1) ∀ (α= σa) σb) σc))

σ1 = C ′
r(∀ (α1 = σ′1) ∀ (Q′) ∀ (α2 = σ′2) σ

′′
1 )

σ2 = C ′
r(C(∀ (α= σa) ∀ (β = ∀ (Q1) σb) σc))

σ3 = C ′
r(∀ (α1 = σ′1) ∀ (Q′) ∀ (α2 = α1) σ

′′
1 )

We have five choices for C:

• C = ∀ (α1 = C ′) ∀ (Q′) ∀ (α2 = σ′2) σ
′′
1 : we get the expected solution by taking

σ4 = C ′
r(∀ (α1 = C ′(∀ (α= σa) ∀ (β = ∀ (Q1) σb) σc)) ∀ (Q′) ∀ (α2 = α1) σ

′′
1 )

• C = ∀ (α1 = σ′1) ∀ (Qa) [ ] with α2 /∈ dom(Qa). We have ∀ (Qa) ∀ (β = ∀ (Q1)
∀ (α= σa) σb) σc = ∀ (Q′) ∀ (α2 = σ′2) σ

′′
1 .
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If β = α2, then taking σ4 = C ′
r(∀ (α=σa) ∀ (α1 =∀ (Q1) σb) ∀ (Q′) ∀ (α2 =α1) σc)

is appropriate.

Otherwise, β ∈ dom(Q′) and σc is of the form ∀ (Q2) ∀ (α2 =σ′2) σ
′′
1 . Then taking

σ4 = C ′
r(∀ (α1 = σ′1) ∀ (Qa) ∀ (α= σa) ∀ (β = ∀ (Q1) σb) ∀ (Q2) ∀ (α2 = α1) σ

′′
1) is

appropriate.

• C = ∀ (α1 = σ′1) ∀ (Qa) ∀ (γ = C ′) ∀ (Qb) ∀ (α2 = σ′2) σ
′′
1 : we get the expected

solution by taking σ4 = C ′
r(∀ (α1 = σ′1) ∀ (Qa) ∀ (γ = C ′(∀ (α= σa) ∀ (β = ∀ (Q1)

σb) σc)) ∀ (Qb) ∀ (α2 = α1) σ
′′
1)

• C = ∀ (α1 = σ′1) ∀ (Q′) ∀ (α2 = C ′) σ′′1 : we get the expected solution by taking
σ4 = C ′

r(∀ (α1 = C ′(∀ (α= σa) ∀ (β = ∀ (Q1) σb) σc)) ∀ (Q′) ∀ (α2 = α1) σ
′′
1 )

• C = ∀ (α1 = σ′1) ∀ (Q′) ∀ (α2 = σ′2) C
′: we get the expected solution by taking

σ4 = C ′
r(∀ (α1 = σ′1) ∀ (Q′) ∀ (α2 = α1) C

′(∀ (α= σa) ∀ (β = ∀ (Q1) σb) σc))

Subcase C ′
r is of the form Cr(C): we have

σ1 = Cr(∀ (β = ∀ (Q1) ∀ (α= σa) σb) σc) (8)

σ1 = Cr(C(∀ (α1 = σ′1) ∀ (Q′) ∀ (α2 = σ′2) σ
′′
1 )) (9)

σ2 = Cr(∀ (α= σa) ∀ (β = ∀ (Q1) σb) σc)

σ3 = Cr(C(∀ (α1 = σ′1) ∀ (Q′) ∀ (α2 = α1) σ
′′
1 ))

From (8) and (9), we get

C(∀ (α1 = σ′1) ∀ (Q′) ∀ (α2 = σ′1) σ
′′
1 )) = ∀ (β = ∀ (Q1) ∀ (α= σa) σb) σc

We have eight choices for C:

• C is of the form ∀ (β = ∀ (Q1) ∀ (α = σa) σb) C
′: we get the expected result by

taking σ4 = Cr(∀ (α=σa) ∀ (β=∀ (Q1) σb) C
′(∀ (α1 =σ′1) ∀ (Q′) ∀ (α2 =α1) σ

′′
1 )).

• C is of the form ∀ (β=∀ (Qa) [ ]) σc with dom(Qa) ⊂ dom(Q1) and α = α2: then,
Q1 = (Qa, α1 = σ′1, Q

′). We get the expected result by taking σ4 = Cr(∀ (α1 =
σ′1, α= α1) ∀ (β = ∀ (Qa, Q

′) σb) σc).

• C is of the form ∀ (β=∀ (Qa) [ ]) σc with dom(Qa) ⊂ dom(Q1) and α ∈ dom(Q′):
then, Q′ = (Qb, α= σa, Qc) We get the expected result by taking σ4 = Cr(∀ (α=
σa) ∀ (β = ∀ (Qa, α1 = σ′1, Qb, Qc, α2 = α1) σ

′′
1))).
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• C is of the form ∀ (β=∀ (Qa) [ ]) σc with dom(Qa) ⊂ dom(Q1) and α2 ∈ dom(Q1):
then, Q1 = (Qa, α1 = σ′1, Q

′, α2 = σ′2, Qb) We get the expected result by taking
σ4 = Cr(∀ (α= σa) ∀ (β = ∀ (Qa, α1 = σ′1, Q

′, α2 = α1, Qb) σb) σc).

• C is of the form ∀ (β=∀ (Q1) [ ]) σc (that is, α1 = α): we get the expected result
by taking σ4 = Cr(∀ (α1 = σ′1, α2 = α1) ∀ (β = ∀ (Q1, Q

′) σ′′1) σc).

• C is of the form ∀ (β = ∀ (Qa) ∀ (γ = C ′) ∀ (Qb) ∀ (α = σa) σb) σc: we get the
expected result by taking σ4 = Cr(∀ (α=σa) ∀ (β=∀ (Qa, γ=C ′(∀ (α1=σ

′
1, Q

′, α2=
α1) σ

′′
1), Qb) σb) σc).

• C is of the form ∀ (β = ∀ (Q1) ∀ (α = C ′) σb) σc: we get the expected result by
taking σ4 = Cr(∀ (α= C ′(∀ (α1 = σ′1, Q

′, α2 = α1) σ
′′
1)) ∀ (β = ∀ (Q1) σb) σc).

• C is of the form ∀ (β = ∀ (Q1) ∀ (α = σa) C
′) σc: we get the expected result by

taking σ4 = Cr(∀ (α= σa) ∀ (β = ∀ (Q1) C
′(∀ (α1 = σ′1, Q

′, α2 = α1) σ
′′
1 )) σc).

◦ Case StSh-Alias and StSh-Alias: we have

σ1 = Cr(∀ (α1 = σa, Q, α2 = σb) σ) σ2 = Cr(∀ (α1 = σa, Q, α2 = α1) σ)

σ1 = C ′
r(∀ (α′

1 = σ′a, Q
′, α′

2 = σ′b) σ
′) σ3 = C ′

r(∀ (α′
1 = σ′a, Q

′, α′
2 = α′

1) σ
′)

By hypothesis, we have σa ≡ σb and σ′a ≡ σ′b.

We proceed by case analysis on Cr and C ′
r.

Subcase Cr = C ′
r: then, α1 = α′

1. If α2 is α′
2, then σ2 = σ3 and we get the

result by taking σ4 = σ3. Otherwise, without loss of generality, we can assume that σ1

is of the form Cr(∀ (α1 = σa, Q, α2 = σb, Q1, α
′
2 = σ1) σ

′) We get the expected result by
taking σ4 = Cr(∀ (α1 = σa, Q, α2 = α1, Q1, α

′
2 = α1) σ

′)

Subcase Cr and C ′
r are disjoint: by Lemma 2.4.6 (page 76), there exists a

two-hole context C2 such that Cr = C2([ ],∀ (α′
1 = σ′a, Q, α

′
2 = σ′b) σ′) and C ′

r =
C2(∀ (α1 = σa, Q, α2 = σb) σ, [ ]). Then we get the expected result by taking σ4 =
C2(∀ (α1 = σa, Q, α2 = α1) σ,∀ (α′

1 = σ′a, Q, α
′
2 = α′

1) σ
′).

Subcase Cr and C ′
r are nested: without loss of generality, we can freely assume

that C ′
r is of the form Cr(C). Hence, we have

σ1 = Cr(∀ (α1 = σa, Q, α2 = σb) σ) (10) σ2 = Cr(∀ (α1 = σa, Q, α2 = α1) σ)

σ1 = Cr(C(∀ (α′
1 =σ′a, Q

′, α′
2 =σ′b) σ

′)) (11) σ3 = Cr(C(∀ (α′
1 =σ′a, Q

′, α′
2 =α′

1) σ
′))
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From (10) and (11), we get

∀ (α1 = σa, Q, α2 = σb) σ = C(∀ (α′
1 = σ′a, Q

′, α′
2 = σ′b) σ

′)

We have eight choices for C:

• C = ∀ (α1 = C ′, Q, α2 = σb) σ: Then we get the expected result by taking σ4 =
Cr(∀ (α1 = C ′(∀ (α′

1 = σ′a, Q
′, α′

2 = α′
1) σ

′), Q, α2 = α1) σ).

• C = ∀ (α1 =σa, Q1,∀ (γ=C ′), Q2, α2 =σb) σ: Then we get the expected result by
taking σ4 = Cr(∀ (α1=σa, Q1,∀ (γ=C ′(∀ (α′

1=σ′a, Q
′, α′

2=α′
1) σ

′)), Q2, α2=α1) σ.

• C = ∀ (α1 = σa, Q, α2 = C ′) σ: Then we get the expected result by taking σ4 =
Cr(∀ (α1 = C ′(∀ (α′

1 = σ′a, Q
′, α′

2 = α′
1) σ

′)Q,α2 = α1) σ.

• C = ∀ (α1 = σa, Q, α2 = σb) C ′: Then we get the expected result by taking
σ4 = Cr(∀ (α1 = σa, Q, α2 = α1) C

′(∀ (α′
1 = σ′a, Q

′, α′
2 = α′

1) σ
′)).

• C = ∀ (α1 = σa, Q1) [ ] with dom(Q1) ⊂ dom(Q) and α′
2 ∈ dom(Q): We have

Q = (Q1, α
′
1 = σ′a, Q

′, α′
2 = σ′b, Q2). Then we get the expected result by taking

σ4 = Cr(∀ (α1 = σa, Q1, α
′
1 = σ′a, Q

′, α′
2 = α′

1, Q2, α2 = α1) σ).

• C = ∀ (α1 = σa, Q1) [ ] with dom(Q1) ⊂ dom(Q) and α2 = α′
2: we have σ1 = σ′1

and Q = (Q1, α
′
1 = σ′a, Q

′). Then we get the expected result by taking σ4 =
Cr(∀ (α1 = σa, Q1, α

′
1 = α1, Q

′, α2 = α1) σ).

• C = ∀ (α1 = σa, Q1) [ ] with dom(Q1) ⊂ dom(Q) and α2 ∈ dom(Q′): we have
Q′ = (Qa, α2=σb, Qb). Then we get the expected result by taking σ4 = Cr(∀ (α1=
σa, Q1, α

′
1 = σ′a, Qa, α2 = α1, Qb, α

′
2 = α′

1) σ
′).

• C = ∀ (α1 = σa, Q) [ ] (that is, α2 = α′
1): we have σ1 = σ′1. Then we get the

expected result by taking σ4 = Cr(∀ (α1 = σa, Q, α
′
1 = α1, Q

′, α′
2 = α1) σ

′).

Property ii: By hypothesis, we have σ1, σ2 and σ3 such that (Q) σ1 (≡@̇−
∅
) σ2 and

(Q) σ2 (≡@̇−
∅
) σ3 hold. We have to show that there exists σ4 such that (Q) σ2 (≡@̇−

∅
)
∗
σ4

and (Q) σ3 (≡@̇−
∅
)
∗
σ4. By Property 2.6.2.i (page 85), the relations (≡@̇−

∅
)
∗

and @− are
equivalent, thus it suffices to show that there exists σ4 such that (Q) σ2 @− σ4 and
(Q) σ3 @− σ4. If (Q) σ1 ≡ σ2 or (Q) σ1 ≡ σ3 hold, then taking (respectively) σ4 = σ3 or
σ4 = σ2 gives the expected result. Otherwise, by definition, there exist σa

1 , σ′2, σ
b
1 and

σ′3 such that we have

(Q) σ1 ≡ σa
1 (1) (Q) σa

1 @̇−
∅
σ′2 (2) (Q) σ′2 ≡ σ2 (Q) σ1 ≡ σb

1

(Q) σb
1 @̇−

∅
σ′3 (Q) σ′3 ≡ σ3
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Figure A.1: Commutation

σ1 σa
1 σ′2 σ2

σb
1 σ′1 σ′′2

σ′3 σ′′3 σ4

σ3

≡

≡

≡

≡

≡

≡

@̇−
∅

@̇−
∅

≡

≡

@̇−
∅

@̇−
∅

@−

@−

Let σ′1 be nf(σ1). By Property 1.5.6.iv (page 51), σ′1 is in normal form, and by Prop-
erty 1.5.6.i (page 51), σ′1 ≡ σ1 holds.

We represent these relations by the solid arrows of figure A.1, to be read under
prefix Q. The dotted arrows correspond to relations shown below.

By Property 1.5.11.i (page 54) and (1), nf(σa
1)≈σ′1 holds. By (2), Properties 2.6.3.i

(page 86) and 2.6.3.ii (page 86), there exists σ′′2 such that (Q) σ′2 ≡ σ′′2 and (Q) σ′1 @̇−
∅
σ′′2 .

Similarly, there exists σ′′
3 such that (Q) σ′3 ≡ σ′′3 and (Q) σ′1 @̇−

∅
σ′′3 . Hence, we have

(Q) σ1 ≡ σ′1 (Q) σ′1 @̇−
∅
σ′′2 (Q) σ′′2 ≡ σ2 (Q) σ′1 @̇−

∅
σ′′3 (Q) σ′′3 ≡ σ3

By Property i, there exists σ4 such that (Q) σ′′2 @− σ4 and (Q) σ′′3 @− σ4. Consequently,
(Q) σ2 @− σ4 holds by A-Equiv and R-Trans. Similarly, (Q) σ3 @− σ4 holds. This is
the expected result.

Property iii: Intuitively, there are no critical pair in this configuration. By hypothesis,

we have (Q) σ1 @̇ σ2 (1) and (Q) σ1 @̇−
ᾱ
σ3 (2). All rules available to derive (1) are

of the form (Q) Cf (σ′1) @̇ Cf (σ′2), thus there exist a flexible context Cf and types
σ′1 and σ′2 such that we have σ1 = Cf (σ′1) (3) and σ2 = Cf (σ′2). Similarly, there
exist a rigid context Cr and types σ′′1 and σ′3 such that we have σ1 = Cr(σ

′′
1 ) (4)

and σ3 = Cr(σ
′
3). We proceed by case analysis on the pair (Cf , Cr). Since σ1 is

in normal form, Cf cannot be of the form ∀ (Q1, α = C ′
f ) σα and Cr cannot be of

the form ∀ (Q1, α ≥ C ′
r) σα, with nf(σα) = α. By (3) and (4), we must always have
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σ1 = Cf (σ′1) = Cr(σ
′′
1 ) (5). Additionally, Rule StSh-Hyp cannot be used to derive (2)

because the prefix is unconstrained.

◦ Case ∀ (Q1) [ ],∀ (Q1) [ ]: The rule used to derive (2) is either StSh-Up, or
StSh-Alias. In both cases σ1 is of the form Cr(∀ (α = σa) σb) (6). Hence, σ1

must be of the form ∀ (Q1) (∀ (α = σa) σb). If Rule S-Hyp is used to derive (1),

then σ1 must be of the form Cf (σ′), where (Q) ⊥ ≡ Ĉf (σ′) (because Q is uncon-
strained). By Property 1.5.11.vi (page 54), we must have σ′/ε = ⊥. Hence, σ′ ≡ ⊥
by Property 2.1.5.iii (page 67). Moreover, σ′ is in normal form since σ1 is in nor-
mal form. Hence, σ′ must be ⊥. In summary, σ1 is ∀ (Q1) ⊥, which is a contra-
diction with (6). Hence, Rule S-Hyp cannot be used. All other rules available to
derive (1) imply that σ1 is of the form Cf (∀ (α≥σa) σb). Consequently, we should have
∀ (Q1) ∀ (α ≥ σa) σb = ∀ (Q1) ∀ (α = σa) σb, which is a contradiction. Thus this case
cannot occur.

◦ Case (∀ (Q1, α≥C
′
f ) σ0,∀ (Q1, α≥σa) C

′
r): By (5), we must have σa = C ′

f (σ′1) and
σ0 = C ′

r(σ
′′
1 ). Hence, σ1 is ∀ (Q1, α ≥ C ′

f (σ′1)) C
′
r(σ

′′
1 ). We get the expected result by

taking σ4 = ∀ (Q1, α≥ C ′
f (σ′2)) C

′
r(σ

′
3).

◦ Case (∀ (Q1, α=σa) C
′
f ,∀ (Q1, α=C ′

r) σ0): By (5), we must have σa = C ′
r(σ

′′
1 ) and

σ0 = C ′
f (σ′1). Hence, σ1 is ∀ (Q1, α = C ′

r(σ
′′
1 )) C ′

f (σ′1). We get the expected result by
taking σ4 = ∀ (Q1, α= C ′

r(σ
′
3)) C

′
f (σ′2).

◦ Case ∀ (Q1) [ ],∀ (Q1) C
′
r (the case where C ′

r is [ ] has already been discarded):
By (5), we must have σ′

1 = C ′
r(σ

′′
1 ) (7). We consider the rule used to derive (1):

Subcase S-Hyp: Necessarily, σ1 is of the form ∀ (Q1) ⊥. This is a contradiction
with σ1 = ∀ (Q1) C

′
r(σ

′′
1 ) and C ′

r different from [ ].

Subcase S-Up: we have σ′
1 = ∀ (β ≥∀ (Q′, α � σ) σ′) σ′′. By (7), we must have

C ′
r = ∀ (β≥∀ (Q′, α�σ) σ′) C ′′

r and C ′′
r (σ′′1 ) = σ′′. We get the expected result by taking

σ4 = ∀ (Q1) ∀ (α � σ) ∀ (β ≥ ∀ (Q′) σ′) C ′′
r (σ′3).

Subcase S-Alias: We have σ′
1 = ∀ (α1≥σa, Q

′, α2≥σb) σ
′. If C ′

r is of the form
∀ (Q1, α = C ′′

r ) σ0 with α ∈ dom(Q′) or α2 ∈ dom(Q1), we get the expected result by
taking σ4 = ∀ (Q′

1, α = C ′′
r (σ′3)) σ

′
0, and Q′

1 and σ′0 are, respectively, Q1 and σ0, where
the binding (α2 ≥ σb) is replaced by (α2 = α1). Otherwise, C ′

r is of the form ∀ (Q2) [ ].
We proceed by case on the rule used to derive (2).

• Rule StSh-Up: we have σ′′
1 = ∀ (β = ∀ (Qa, α � σ) σ′) σ′′. Hence, by (7), we get

∀ (α1 ≥ σa, Q
′, α2 ≥ σb) σ

′ = ∀ (Q2, β = ∀ (Qa, α � σ) σ′) σ′′. Necessarily, β is in
dom(Q′) or α2 is in dom(Q2). In both cases, we get the expected result by taking
σ4 = ∀ (Q′

2, α � σ, β = ∀ (Qa) σ
′) σ′′2 and Q′

2 and σ′′2 are, respectively, Q2 and σ′′,
where the binding (α2 ≥ σb) is replaced by (α2 = α1).

• Rule StSh-Alias: We have σ′′
1 = ∀ (α′

1 = σ′a, Q
′′, α′

2 = σ′b) σ
′′. By (7), we get

∀ (α1 ≥ σa, Q
′, α2 ≥ σb) σ

′ = ∀ (Q2, α
′
1 = σ′a, Q

′′, α′
2 = σ′b) σ

′′. Necessarily, α2 is
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in dom(Q2) ∪ dom(Q′′) or α′
1 and α′

2 are in dom(Q′). In all cases, we get the
expected result by taking ∀ (Q′

2, α
′
1 = σ′a, Q

′′
2, α

′
2 =α′

1) σ
′′
2 and Q′

2, Q
′′
2 and σ′′2 are,

respectively, Q2, Q
′′ and σ′′, where the binding (α2≥σb) is replaced by (α2 =α1).

Subcase S-Nil: We have σ′
1 = ⊥. By (7), we must have ⊥ = C ′

r(σ
′′
1 ), which is

a contradiction, since C ′
r is not [ ].

Subcase S-Rigid: We have σ′
1 = ∀ (α≥σ′) σ. By (7), we must have C ′

r = ∀ (α≥
σ′) C ′′

r and C ′′
r (σ′′1 ) = σ. We get the expected result by taking σ4 = ∀ (α= σ′) C ′′

r (σ′3).

◦ Case ∀ (Q1) C
′
f ,∀ (Q1) [ ] (the case where C ′

f is [ ] has already been discarded):
By (5), we must have σ′′

1 = C ′
f (σ′1). We consider the rule used to derive (2):

Subcase StSh-Up: similar to S-Up above.
Subcase StSh-Alias: similar to S-Alias above.

Property iv: Intuitively, there are no critical pair in this configuration. By hypothesis,

we have (Q) Cf (σ1) @̇−
ᾱ
σ3 (1) and (QCf ) σ1 @̇−

ᾱ
σ2. From (1), we have Cf (σ1) =

Cr(σ
′
1) (2) for some Cr and σ′1, and σ3 is Cr(σ

′
3). We proceed by case analysis on the

pair (Cf , Cr):

◦ Case Cf and Cr are disjoint: By Lemma 2.4.6 (page 76) and (2), there exists a two-
hole context C2 such that Cf = C2([ ], σ′1) and Cr = C2(σ1, [ ]). Taking σ4 = C2(σ2, σ

′
3)

gives the expected result.

◦ Case Cr is of the form Cf (C ′) is not possible since level(Cf ) > 1.

◦ Case Cf is of the form Cr(C
′
f ): necessarily, level(Cr) = 1, that is, by Property 2.4.4.i

(page 74), Cr is of the form ∀ (Q1) [ ]. Besides, level(C ′
f ) > 1. The hypothesis (1) can

be written this way: (Q) ∀ (Q1) C
′
f (σ1) @̇−

ᾱ
∀ (Q1) σ

′
3 (3). Two rules can be used to

derive (3):
Subcase StSh-Up: Then C ′

f (σ1) = ∀ (β=∀ (Q′, α=σ) σ′) σ′′. Necessarily, C ′
f

is of the form ∀ (β = ∀ (Q′, α = σ) σ′) C ′′
f . Then we get the expected result by taking

σ4 = ∀ (Q1, α= σ, β = ∀ (Q′) σ′) C ′′
f (σ2)

Subcase StSh-Alias: Then C ′
f (σ1) = ∀ (α1 = σ,Q′, α2 = σ′) σ′′ with σ ≡ σ′,

and σ3 is ∀ (α1 = σ,Q′, α2 = α1) σ
′′. Necessarily, C ′

f is of the form ∀ (α1 = σ) ∀ (Q0)
∀ (α≥C ′′

f ) σ0, where α ∈ dom(Q′) or α2 ∈ dom(Q0). In both cases, we get the expected
result by taking σ4 = ∀ (Q) ∀ (α1=σ,Q

′
0, α≥C

′′
f (σ2)) σ

′
0 and Q′

0 and σ′0 are, respectively,
Q0 and σ0 where the binding (α2 = σ′) is replaced by (α2 = α1).

Proof of Property 3.2.2

Property i: Directly, if we have Q1 ≡I Q2, then, for any σ such that ftv(σ) ⊆ I, we
have ∀ (Q1) σ ≡ ∀ (Q2) σ, which implies ∀ (Q1) σ v ∀ (Q2) σ (1) by I-Equiv?, as
well as ∀ (Q2) σ v ∀ (Q1) σ (2). By definition, (1) implies Q1 vI Q2, and (2) implies
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Q2 vI Q1. Conversely, let σ be such that ftv(σ) ⊆ I. By hypothesis, Q1 vI Q2 and
Q2 vI Q1 hold, thus we have by definition ∀ (Q1) σ v ∀ (Q2) σ and ∀ (Q2) σ v ∀ (Q1) σ.
By Property 2.7.7.i (page 96), we have ∀ (Q1) σ ≡ ∀ (Q2) σ. Hence, by definition,
Q1 ≡I Q2 holds.

Property ii: By hypothesis, we have a derivation of ∀ (Q1) ⊥≈∀ (Q2) ⊥ (3). We show
by induction on the derivation of (3) that there exists a derivation of ∀ (Q1) σ≈∀ (Q2)
σ (4) for any σ. Actually, we get a derivation of (4) by replacing ⊥ by σ in the
derivation of (3). Then by Property 1.5.3.iii (page 49), we have ∀ (Q1) σ ≡ ∀ (Q2) σ.
Hence, by definition, Q1 ≡ Q2 holds.

Proof of Property 3.2.3

Property i: If (Q) α ≡ Q(α) holds, then we conclude by I-Equiv? and R-Trans.

From now on, we assume (Q) α ≡ Q(α) does not hold. This implies Q̂(α) ∈ V (1)
by Property 2.2.2.iii (page 69). By hypothesis, (Q) σ @− α holds. By Property 2.6.2.i

(page 85), we have a derivation of (Q) σ (≡@̇−
∅
)
∗
α. Assume we proved the following

property:

If we have (Q) σ1 (≡@̇−
∅
) σ2 and (Q) σ2 ≡ α, then we have either (Q) σ1 ≡

α, or (Q) σ1 @− Q(α).

Then we may conclude by induction on the size of (Q) σ (≡@̇−
∅
)
∗
α, Property 2.6.2.i

(page 85) and R-Trans. Therefore, it only remains to prove the property above. We

reason by case analysis. By hypothesis, we have (Q) σ2 ≡ α (2) and (Q) σ1 (≡@̇−
∅
) σ2.

If (Q) σ1 ≡ σ2 (3), then (Q) σ1 ≡ α holds by R-Trans, (3) and (2), and the result

is shown. Otherwise, by definition of (≡@̇−
∅
), there exist σ′1 and σ′2 such that (Q) σ1 ≡

σ′1 (4), (Q) σ′1 @̇−
ᾱ
σ′2 (5) and (Q) σ′2 ≡ σ2 (6) hold. We have (Q) σ′

2 ≡ α by R-Trans,

(6), and (2). Hence, we have Q̂(σ′2) ≡ Q̂(α) by Corollary 1.5.10. By (1), this means

Q̂(σ′2) ≡ β, where β = Q̂(α) (7). Hence, nf(Q̂(σ′2)) is β by Property 1.5.11.i (page 54).

We get Q̂(nf(σ′2)) = β by Property 1.5.6.iii (page 51), which implies nf(σ′
2) = γ (8)

for some variable γ such that Q̂(γ) = β (9). Three rules are available to derive (5):
However, rules StSh-Up and StSh-Alias cannot be used to derive (5), because the
side-conditions of these rules prevent σ ′

2 from being in V. Thus, Rule StSh-Hyp must
be used. Then σ′1 is Cr(σ

′) (10), σ′2 is Cr(α
′) (11), with (α′ = σ0) ∈ Q (12) and

(Q) σ0 ≡ Ĉr(σ
′) (13). Additionally, α′ /∈ dom(Cr) (14) and Cr is necessarily useful

(otherwise, we would have (Q) σ′
1 ≡ σ′2). We have (Q) Cr(σ

′) ≡ Cr(Ĉr(σ
′)) (15) by

Eq-Mono, R-Context-L, and R-Context-R. From (13), we get (Q) Cr(Ĉr(σ
′)) ≡

Cr(σ0) (16). By R-Trans, (10), (15), and (16), we get (Q) σ ′
1 ≡ Cr(σ0) (17). By

(14), we get α′ ∈ ftv(Cr(α
′)), that is α′ ∈ ftv(σ′2), which implies α′ ∈ ftv(nf(σ′2))
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by Property 1.5.6.ii (page 51). By (8), this means that α′ is γ. Consequently, σ0 =
Q(γ) (18) holds from (12). By Property 2.4.4.v (page 74), (8), and (11), we must have
level(Cr) 6 1, that is level(Cr) = 1 (19) since Cr is useful (Property 2.4.3.iii (page 73)).
We have dom(Cr) # ftv(σ0) (20) by well-formedness of (12). By (19) and (20), we get
(Q) Cr(σ0) ≡ σ0 (21) by Property 2.4.4.ii (page 74) and Eq-Free. Finally, this gives
(Q) σ1 ≡ Q(γ) by (4), (17), (21), (18), and R-Trans. We get (Q) σ1 @− Q(γ) (22) by
A-Equiv. By Property 2.2.2.ii (page 69) applied to (7) and (9), we have Q(α) = Q(β)
and Q(β) = Q(γ). Therefore, (22) gives (Q) σ1 @− Q(α), which is the expected result.

Property ii: If (Q) σ @− α holds, then Property i and I-Abstract give the expected
result. Hence, we assume (Q) σ @− α does not hold. This implies σ /∈ T by Lemma 2.1.6.
Furthermore, we also assume that (Q) α ≡ Q(α) does not hold (if it holds, we get the
result by I-Equiv? and R-Trans). This implies Q̂(α) ∈ V (1) by Property 2.2.2.iii
(page 69). By Property 2.6.2.ii (page 85), we have a derivation of (Q) σ (≡v̇)

∗
α.

Assume we proved the following property:

If we have (Q) σ1 (≡v̇) σ2 and (Q) σ2 ≡ α, then we have either (Q) σ1 ≡ α,
or (Q) σ1 v Q(α).

Then we conclude by induction on the size of (Q) σ (≡v̇)
∗
α, Property 2.6.2.ii (page 85)

and R-Trans. Therefore, it remains only to show the property above. We reason by
case analysis. By hypothesis, we have (Q) σ2 ≡ α (2) and (Q) σ1 (≡v̇) σ2. If
(Q) σ1 ≡ σ2 (3), then (Q) σ1 ≡ α holds by R-Trans, (3) and (2), and the result
is shown. Otherwise (4) there exist σ ′

1 and σ′2 such that (Q) σ1 ≡ σ′1 (5), (Q) σ′1 v̇
σ′2 (6) and (Q) σ′2 ≡ σ2 (7). We have (Q) σ′2 ≡ α (8) by R-Trans, (7), and (2).

Hence, we have Q̂(σ′2) ≡ Q̂(α) by Corollary 1.5.10. By (1), this means Q̂(σ′2) ≡ β,

where β = Q̂(α) (9). Hence, nf(Q̂(σ′2)) is β by Property 1.5.11.i (page 54). We get

Q̂(nf(σ′2)) = β by Property 1.5.6.iii (page 51), which implies nf(σ′
2) = γ (10) for some

variable γ such that Q̂(γ) = β (11) holds. Three rules are available to derive (6):

◦ Case C-Strict: Then we have (Q) σ′
1 @̇ σ′2 (12) and σ′2 ∈ V (13) (by (10)). Rules

S-Up, S-Alias, S-Rigid cannot be used to derive (12), because the side-conditions of
these rules prevent σ′

2 from being in V. If Rule S-Nil is used, then there exists a useful
context Cf and a closed type σ such that σ′

2 is Cf (σ). Since σ′2 ∈ V, this implies
σ ∈ V, which is a contradiction with ftv(σ) = ∅. Hence this rule cannot be used. Last,
Rule S-Hyp is used to derive (12), and σ ′

1 is Cf (σ′) (14), σ′2 is Cf (α′) (15), with

(α′ ≥ σ0) ∈ Q (16) and (Q) σ0 ≡ Ĉf (σ′) (17). Additionally, α′ /∈ dom(Cf ) (18),
and Cf is necessarily useful (otherwise, we would have (Q) σ ′

1 ≡ σ′2). We have (Q)

Cf (σ′) ≡ Cf (Ĉf (σ′)) (19) by Eq-Mono, R-Context-L, and R-Context-R. By

(17), we have (Q) Cf (Ĉf (σ′)) ≡ Cf (σ0) (20). By R-Trans, (14), (19), and (20), we
get (Q) σ′1 ≡ Cf (σ0) (21). By (18), we get α′ ∈ ftv(Cf (α′)), that is α′ ∈ ftv(σ′2), which
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implies α′ ∈ ftv(nf(σ′2)) by Property 1.5.6.ii (page 51). By (10), this means that α′ is
γ. Consequently, σ0 = Q(γ) (22). By Property 2.4.4.v (page 74), (13), and (15), we
must have level(Cf ) 6 1, that is level(Cf ) = 1 (23) since Cf is useful (Property 2.4.3.iii
(page 73)). We have dom(Cf ) # ftv(σ0) (24) by well-formedness of (16). By (23)
and (24), we get (Q) Cf (σ0) ≡ σ0 (25) by Property 2.4.4.ii (page 74) and Eq-Free.
Finally, this gives (Q) σ1 ≡ Q(γ) by (5), (21), (25), (22), and R-Trans. We get
(Q) σ1 v Q(γ) (26) by I-Equiv?. By Property 2.2.2.ii (page 69) applied to (9) and
(11), we have Q(α) = Q(β) and Q(β) = Q(γ). Therefore, (26) gives (Q) σ1 v Q(α),
which is the expected result.

◦ Case C-Abstract-F: We must have σ′
2 of the form Cf (σ0) with level(Cf ) > 1.

By (10), σ′2 ∈ V. By Property 2.4.4.v (page 74), this implies level(Cf ) 6 1, which is a
contradiction. Therefore, this case cannot occur.

◦ Case C-Abstract-R: Then by hypothesis, (Q) σ ′
1 @− σ′2 (27) holds, thus (Q)

σ1 @− α holds by R-Trans, A-Equiv and (5), (27) and (8). We assumed (in (4)), that
(Q) σ1 ≡ σ2 does not hold. This implies σ1 /∈ T by Lemma 2.1.6. Hence, (Q) σ1 @− Q(α)
by Property i, which gives (Q) σ1 v Q(α) by I-Abstract. This is the expected result.

Property iii: We have (Q) Q(α) v Q[α] by I-Hyp or A-Hyp and I-Abstract. We
conclude by Property 2.2.2.i (page 69).

Proof of Property 3.3.2

Property i : It is shown by observing that α ∈ ftv(∀ (Q2) ∇I∪J) is equivalent to α ∈
ftv(∀ (Q2) ∇I) ∪ ftv(∀ (Q2) ∇J).

Property ii : It suffices to show the result for a single commutation. Then the result
follows by immediate induction on the number of commutations. Hence, it suffices to
show that dom(Q1, α � σ, α′ �′ σ′, Q0/ᾱ) and dom(Q1, α

′ �′ σ′, α � σ,Q0/ᾱ) are equal
when α /∈ ftv(σ′) and α′ /∈ ftv(σ). We get the expected result by observing that α is
in ftv(∀ (α′ �′ σ′, Q0) ∇I) if and only if α is in ftv(∀ (Q0) ∇I), and similarly, α′ is in
ftv(∀ (α � σ,Q0) ∇I) if and only if α′ is in ftv(∀ (Q0) ∇I).

Proof of Property 3.4.2

Property i : It is shown by induction on the derivation of Q1 ♦
I
` Q2. All cases are easy.

Property ii: We say that α appears in a judgment Q1 ♦
I
` Q2 if α is in dom(Q1) ∪

dom(Q2). We say that α appears in a derivation when it appears in one of its judgments.

By hypothesis, we have a derivation of Q♦I
` Q

′ (1). We show that φ(Q)♦
φ(I)
` φ(Q′)

holds for a renaming φ such that codom(φ) is fresh, that is, disjoint from the set of type
variables appearing in the derivation of (1). All cases are easy. Then any renaming
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φ can be decomposed into φ1 ◦ φ2 such that φ2 is fresh, relatively to the derivation of

Q vI
` Q

′, and φ1 is fresh, relatively to the derivation of φ2(Q) v
φ2(I)
` φ2(Q

′).

Property iii: By hypothesis, we have a derivation of Q1 ♦
I
` Q2 (1). Let φ be a renaming

mapping the domain dom(Q)− I to fresh variables (that is, outside dom(QQ1Q2)). By

Property ii, we have a derivation of φ(Q1)♦
φ(I)
` φ(Q2) (2). Since dom(φ) # I, we have

φ(Q1)♦
I
` φ(Q2) (3) from (2). Besides, by hypothesis, we have dom(Q) # dom(Q1) ∪

dom(Q2) (4), hence φ is invariant on Q1 and Q2. Then (3) is written Q1 ♦
I
` Q2 (5).

The difference between (1) and (5) lies in the fact that intermediate variables (variables
introduced by PE-Free) are renamed by φ in (5), and therefore such variables are
outside dom(Q). By hypothesis utv(Q) ⊆ I, thus utv(Q) ⊆ dom(Q1) ∩ dom(Q2) (6)
by well-formedness of (5). Hence, by (4) and (6), Q1Q and Q2Q are well-formed
and closed. The proof is by induction on the derivation of (5). Case PE-Refl is
immediate. We show directly cases PE-Mono, PE-Swap, PE-Comm, PE-Context-

L, PA-Context-L, PI-Context-L and PI-Rigid by replacing Q0 by Q0Q. Cases
PA-Equiv and PI-Abstract are by induction hypothesis.

◦ Case PE-Free: We have Q2 = (Q1, α � σ), with α /∈ dom(Q1) and α /∈ I (7).
Thanks to the renaming φ, we know that α /∈ dom(Q). Besides, (7) and the hypothesis
utv(Q) ⊆ I imply that α /∈ utv(Q). Hence Q1Q ≡` (Q1, α � σ,Q) holds by PE-Free

and PE-Comm. This is the expected result.

◦ Case PE-Trans, PA-Trans and PI-Trans: We have Q1 ♦
I
` Q

′
1 and Q′

1 ♦
I
` Q2.

By induction hypothesis, we get Q1Q♦
I∪dom(Q)
` Q′

1Q and Q′
1Q♦

I∪dom(Q)
` Q2Q. By

PE-Trans, PA-Trans, or PI-Trans, we get Q1Q♦
I∪dom(Q)
` Q2Q.

Property iv: By hypothesis, Q is closed (1) and well-formed, and φ is a renaming
of dom(Q). This implies that φ is injective on dom(Q). Hence, φ(Q) is closed and
well-formed. Additionally, dom(φ) ⊆ dom(Q) holds by hypothesis, thus codom(φ) ⊆
dom(φ(Q)). As a consequence, φ(Q)φ is closed and well-formed. Let I be dom(Q) (2).
The proof is by induction on the size of the finite set dom(φ). If this set is empty, then
Q = φ(Q) and we get the result by PE-Refl. Otherwise, let (α � σ) be the leftmost
binding of Q such that α ∈ dom(φ). We can write Q in the form (Q1, α � σ,Q2), and
dom(Q1) # dom(φ) (3). Since Q is closed by (1), we have ftv(σ) ⊆ dom(Q1), hence
ftv(σ) # dom(φ) by (3). As a consequence, we have φ(σ) = σ (4). We write α′ for
φ(α) (5). Since φ is a renaming of dom(Q), we have dom(Q) # codom(φ), which
implies α′ /∈ dom(Q) (6). We have the following:

Q = (Q1, α � σ,Q2) by notation
≡I (Q1, α � σ, α′ = α,Q2) by PE-Free and (6)
≡I (Q1, α

′ � σ, α= α′, Q2) by PE-Swap

≡I (Q1, α
′ � σ, α= α′, Q2[α

′/α]) by PE-Mono?

≡I (Q1, α
′ � σ,Q2[α

′/α], α = α′) by PE-Comm
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Let Q′
1 be (Q1, α

′ � σ,Q2[α
′/α], α = α′). We have shown that Q ≡I Q′

1 (7) holds.
Applying the induction hypothesis to Q′

1 and on the renaming φ′ = φ| dom(φ)−α, we get
Q′

1 ≡ φ′(Q′
1)φ

′. This gives Q′
1 ≡ (Q1, α

′ � σ, φ′(Q2[α
′/α]), α = α′, φ′), that is, Q′

1 ≡
(Q1, α

′ � σ, φ(Q2), α=α′, φ′). Since (α=α′, φ′) is φ, we get Q′
1 ≡ (Q1, α

′ � σ, φ(Q2), φ).
Hence, Q′

1 ≡ φ((Q1, α � σ,Q2))φ holds by (4) and (5), that is, Q′
1 ≡ φ(Q)φ. By

Property i, we get Q′
1 ≡I φ(Q)φ (8). By PE-Trans, (7), and (8), we get Q ≡I φ(Q)φ,

that is, Q ≡ φ(Q)φ by notation and (2).

Property v: By induction on the size of dom(Q). If Q is empty, the result is by Eq-

Refl. Otherwise, Q is (α�σ,Q′) and φ is φ1◦φ
′ = φ′◦φ1 (1), where dom(φ′) = dom(Q′),

dom(φ1) = {α} and φ1(α) = α′. We have

Q1Qφ(Q)Q2

= (Q1, α � σ,Q′, α′ � σ, φ(Q′)Q2) by definition
v (Q1, α � σ,Q′, α′ = α, φ(Q′)Q2) by PI-Context-L and I-Hyp or

by PA-Context-L and A-Hyp

= (Q1, α � σ,Q′φ¬1φ(Q′)Q2) by definition of φ1

≡ (Q1, α � σ,Q′φ¬1φ
¬
1 (φ(Q′)Q2)) by PE-Mono?

= (Q1, α � σ,Q′φ¬1φ
′(Q′)Q2) since φ is φ1 ◦ φ

′ (from (1))

≡ (Q1, α � σ, φ¬1Q
′φ′(Q′)Q2) by PE-Comm

v (Q1, α � σ, φ¬1Q
′φ′¬Q2) by induction hypothesis

≡ (Q1, α � σ,Q′φ¬1φ
′¬Q2) by PE-Comm

= (Q1, α � σ,Q′φ¬Q2) since φ¬ is φ¬1 ◦ φ′¬ (from (1))

= Q1Qφ
¬Q2

This is the expected result.

Proof of Lemma 3.4.4

By Lemma 2.3.3 (page 70) and (Q) σ1 ♦ σ2, we have a derivation of (Q) σ1 ♦ σ2 (1)
which is thrifty and follows the restrictions of Lemma 2.3.1. The proof is by induction
on the derivation of (1).

◦ Case Eq-Refl: Taking θ = id gives the expected result.

◦ Case Eq-Free: We have two subcases:

Subcase σ1 is ∀ (α � σ) σ2: Then Q1 is (α � σ,Q2) and τ2 is τ1. We take
θ = id. Then (QQ2) θ(τ1) ≡ τ2 holds. Let I be dom(Q1/τ1), that is, dom(Q2/τ1) since
α /∈ ftv(∀ (Q2) τ1). This gives I = dom(Q2/τ2), and θ(I) ⊆ dom(Q2/τ2). Moreover,

QQ1 ≡
dom(Q)∪I
` QQ2θ holds by PE-Comm and PE-Free since α /∈ I and α is not free

in any bound of Q2.
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Subcase σ2 is ∀ (α � σ) σ1: similar.

◦ Case Eq-Comm: By taking θ = id and by PE-Comm.

◦ Case Eq-Var: We get the expected result by taking θ = id, and by observing that
cf(σ1) = cf(σ2).

◦ Case Eq-Mono: By hypothesis, (α�σ) ∈ Q and (Q) σ ≡ τ holds. Besides, σ2 and
σ1 are τ2 and τ1 respectively. Consequently, Q2 and Q1 are ∅. Taking θ = id gives the
expected result.

◦ Case R-Context-L, R-Context-Rigid, and R-Context-Flexible: We have
σ1 = ∀ (α�σ′1) σ and σ2 = ∀ (α�σ′2) σ. The premise is (Q) σ′

1 ♦ σ′2 (2). By hypothesis
(Lemma 2.3.1), α ∈ ftv(σ) and nf(σ) is not α. Hence, cf(σ1) is ∀ (α � σ′1) cf(σ) and
cf(σ2) is ∀ (α � σ′2) cf(σ), thus Q1 is (α � σ′1, Q

′) and Q2 is (α � σ′2, Q
′). Then we get

the expected result by taking θ = id and by rules PE-Context-L, PA-Context-L

or PI-Context-L, and (2).

◦ Case A-Equiv: By induction hypothesis and PA-Equiv.

◦ Case I-Hyp and A-Hyp: Then σ2 is α, with (α � σ) ∈ dom(Q). By restrictions of
Lemma 2.3.1, we must have σ /∈ T . Hence, Q(α) /∈ T , which is a contradiction since,
by hypothesis, nf(σ2) ∈ ϑ implies Q(nf(σ2)) ∈ T . Hence, these cases cannot occur.

◦ Case I-Abstract: By induction hypothesis, and by PI-Abstract.

◦ Case R-Trans: By hypothesis, we have (Q) σ1 ♦ σ′1 (3) and (Q) σ′1 ♦ σ2 (4).
Additionally, nf(σ2) ∈ ϑ implies Q(nf(σ2)) ∈ T (5). Besides, nf(σ1) 6= ⊥ (6) by
hypothesis. By Property 2.7.7.ii (page 96) and Property 1.5.6.i (page 51) applied to (3)
and (6), we get nf(σ′

1) 6= ⊥. By Properties 2.2.2.vi (page 69) and 1.5.6.i (page 51)
applied to (4) and (5), nf(σ′

1) ∈ ϑ implies Q(nf(σ′
1)) ∈ T . Let ∀ (Q1) τ1 be cf(σ1).

By induction hypothesis on (3), there exists an alpha-conversion of cf(σ ′
1), written

∀ (Q′
1) τ

′
1 and a substitution θ1 such that we have

(QQ′
1) θ1(τ1) ≡ τ ′1 (7) I1

M

= dom(Q1/τ1) (8) dom(θ1) ⊆ I1 (9)

θ1(I1) ⊆ dom(Q) ∪ dom(Q′
1/τ

′
1) (10) QQ1 ♦

dom(Q)∪I1
` QQ′

1θ1 (11)

From (9) and (8), we get dom(θ1) ⊆ dom(Q1) (12). By induction hypothesis and (4),
there exists an alpha-conversion of cf(σ2), written ∀ (Q2) τ2 and a substitution θ2 such
that we have

(QQ2) θ2(τ
′
1) ≡ τ2 (13) I2

M

= dom(Q′
1/τ

′
1) (14) dom(θ2) ⊆ I2 (15)

θ2(I2) ⊆ dom(Q) ∪ dom(Q2/τ2) (16) QQ′
1 ♦

dom(Q)∪I2
` QQ2θ2 (17)

271



272 Proofs (Technical details)

Let φ (18) be a renaming mapping dom(Q2) to fresh variables (that is, outside the
domain dom(QQ1) ∪ dom(Q′

1)). We have dom(φ) ⊆ dom(Q2) (19) and φ is a renam-
ing of dom(QQ2) (20). Let Q′

2 be φ(Q2) and τ ′2 be φ(τ2). We note that ∀ (Q′
2) τ

′
2

is an alpha-conversion of ∀ (Q2) τ2, that is, an alpha-conversion of cf(σ2). Let θ′2 be
φ ◦ θ2 restricted to I2. By definition, we have dom(θ′2) ⊆ I2 (21). By Property 1.7.2.i
(page 59) applied to (13), we get (Qφ(Q2)) φ(θ2(τ

′
1)) ≡ φ(τ2), that is, (QQ′

2) θ
′
2(τ

′
1) ≡

τ ′2 (22). The prefix QQ2 is a closed well-formed prefix (23). By Property 3.4.2.iv
(page 106), (20) and (23), we get QQ2 ≡ φ(QQ2)φ, that is, QQ2 ≡ Qφ(Q2)φ (24).
By well-formedness of (17), QQ2θ2 is well-formed. Hence, dom(θ2) # dom(QQ2)
holds (we simply write θ2 # QQ2 (25)). From (19) and (25), we get θ2 # φ (26).
From (15) and (14), we get dom(θ2) ⊆ dom(Q′

1). By definition of φ (18), this implies
dom(θ2) # codom(φ), thus θ2 # φ(Q2) (27) holds. Hence, from (25), (26), and (27),
we have θ2 # Qφ(Q2)φ (28). Additionally, codom(θ2) ⊆ dom(Q) ∪ dom(Q2) (29)
holds from (16). By Property 3.4.2.iii (page 106), (28), (25), (29), and (24), we
get QQ2θ2 ≡ Qφ(Q2)φθ2 (30). By PE-Free and (30), we get QQ2θ2 ≡dom(Q)∪I2

QQ′
2θ

′
2 (31). By PE-Trans, (17), and (31), we have QQ′

1 ♦
dom(Q)∪I2
` QQ′

2θ
′
2 (32).

Applying φ to (16), we get θ′2(I2) ⊆ dom(Q)∪ dom(Q′
2/τ

′
2) (33). By (21) and (14), we

get dom(θ′2) ⊆ dom(Q′
1). In summary, we have shown

(QQ′
2) θ

′
2(τ

′
1) ≡ τ ′2 (22) I2

M

= dom(Q′
1/τ

′
1) (14) dom(θ′2) ⊆ I2 (21)

θ′2(I2) ⊆ dom(Q) ∪ dom(Q′
2/τ

′
2) (33) QQ′

1 ♦
dom(Q)∪I2
` QQ′

2θ
′
2 (32)

Since (11) is well-formed, we have θ1 # QQ′
1 (34). By (14), we get I2 ⊆ dom(Q′

1).
Hence, dom(θ1) # dom(Q) ∪ I2 (35) holds by (34). Thus, by (21), is also gives
dom(θ1) # dom(θ′2) (36). By (12) and by definition of φ (18), we have dom(θ1) #
dom(Q′

2) (37). Hence, we have θ1 # QQ′
2θ

′
2 (38) from (34), (37), and (36). Addi-

tionally, codom(θ1) ⊆ dom(Q) ∪ dom(Q′
1/τ

′
1) holds by (10). Hence, by (14), we get

codom(θ1) ⊆ dom(Q) ∪ I2 (39). In summary, we have shown

θ1 # QQ′
1 (34) θ1 # QQ′

2θ
′
2 (38) codom(θ1) ⊆ dom(Q) ∪ I2 (39)

By Property 3.4.2.iii (page 106) and (32), we get the relation

QQ′
1θ1 ♦

dom(Q)∪I2∪dom(θ1)
` QQ′

2θ
′
2θ1

(40). Additionally, from (10), we have I1 ⊆ dom(Q′
1/τ

′
1) ∪ dom(θ1), that is, I1 ⊆

I2 ∪ dom(θ1). Hence, by Property 3.4.2.i (page 106) applied to (40), we get the re-

lation QQ′
1θ1 ♦

dom(Q)∪I1
` QQ′

2θ
′
2θ1 (41). Then, by transitivity, (11), and (41), we get

QQ1 ♦
dom(Q)∪I1
` QQ′

2θ
′
2θ1 (42). Let θ be θ′2◦θ1 restricted to I1, so that dom(θ) ⊆ I1 (43)
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holds. By Eq-Free and (42), we get QQ1 ♦
dom(Q)∪I1
` QQ′

2θ (44). We have

θ(I1) = θ′2 ◦ θ1(I1) by definition
⊆ θ′2(dom(Q) ∪ dom(Q′

1/τ
′
1)) by (10).

= dom(Q) ∪ θ′2(dom(Q′
1/τ

′
1)) since dom(θ′2) # dom(Q) by (21).

= dom(Q) ∪ θ′2(I2) by (14).
⊆ dom(Q) ∪ dom(Q′

2/τ
′
2) by (33).

Consequently, we have θ(I1) ⊆ dom(Q) ∪ dom(Q′
2/τ

′
2) (45).

We have ftv(τ1) ⊆ dom(Q)∪dom(Q1/τ1). Hence, ftv(θ1(τ1)) ⊆ dom(Q)∪θ1(I1), that
is, by (10), ftv(θ1(τ1)) ⊆ dom(Q) ∪ I2. Additionally, ftv(τ ′1) ⊆ dom(Q) ∪ dom(Q′

1/τ
′
1),

that is, ftv(τ ′1) ⊆ dom(Q) ∪ I2 by (14). Hence, from (7), (32) and Lemma 3.4.3, we get
(QQ′

2θ
′
2) θ1(τ1) ≡ τ ′1. By R-Context-R, we get (QQ′

2) θ
′
2(θ1(τ1)) ≡ θ′2(τ

′
1), that is,

(QQ′
2) θ(τ1) ≡ θ′2(τ

′
1). By R-Trans and (22), we get (QQ′

2) θ(τ1) ≡ τ ′2 (46).

We have the expected result, that is, (46), (8), (43), (45) and (44).

◦ Case I-Bot: We have σ1 = ⊥, thus nf(σ1) is ⊥ and this case is not possible by
hypothesis.

◦ Case I-Rigid: By taking θ = id and by PI-Rigid.

◦ Case R-Context-R: We have σ1 = ∀ (α�σ) σ′1 and σ2 = ∀ (α�σ) σ′2. The premise
is (Q,α � σ) σ′1 ♦ σ′2 (47). We proceed by case analysis:

Subcase nf(σ′1) = α and nf(σ′2) = α: Hence, cf(σ1) is cf(σ) and cf(σ2) is cf(σ),
thus we get the expected result by taking θ = id.

Subcase nf(σ′1) 6= α and nf(σ′2) = α is not possible since the derivation is
thrifty.

Subcase nf(σ′1) = α and nf(σ′2) 6= α is not possible since the derivation is
thrifty.

Otherwise nf(σ′1) 6= α and nf(σ′2) 6= α (48): By definition, cf(σ1) is ∀ (α �σ)
cf(σ′1) and cf(σ2) is ∀ (α � σ) cf(σ′2). If we have nf(σ′1) = ⊥, then nf(σ1) is ⊥, which is
not possible by hypothesis. Hence, nf(σ ′

1) 6= ⊥. If we have nf(σ′
2) ∈ dom(Q,α � σ), and

(Q,α � σ)(nf(σ′2)) /∈ T , then, either nf(σ′
2) ∈ dom(Q) (49) and Q(nf(σ′

2)) /∈ T (50), or
nf(σ′2) is α. The latter is not possible by (48). In the former case, we have nf(σ2) =
nf(σ′2), thus (49) and (50) give nf(σ2) ∈ dom(Q) and Q(nf(σ2)) /∈ T , which is not
possible by hypothesis. Hence, nf(σ ′

2) /∈ dom((Q,α � σ)), or (Q,α � σ)(nf(σ ′
2)) ∈ T .

We have cf(σ1) = ∀ (α � σ) ∀ (Q′
1) τ1. By induction hypothesis on (47), there exists an

alpha-conversion of cf(σ′
2) written ∀ (Q′

2) τ2 and a substitution θ such that

(Q,α � σ,Q′
2) θ(τ1) ≡ τ2 I

M

= dom(Q′
1/τ1) dom(θ) ⊆ I

θ(I) ⊆ dom(Q)∪{α}∪dom(Q′
2/τ2) (Q,α �σ,Q′

1)♦
dom(Q)∪{α}∪I
` (Q,α �σ,Q′

2)θ (51)
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Let Q1 be (α�σ,Q′
1) and Q2 be (α�σ,Q′

2). The constructed form of σ1 is ∀ (Q1) τ1

and ∀ (Q2) τ2 is an alpha-conversion of cf(σ2). By defining I ′
M

= dom(Q1/τ1), we have
I ⊆ I ′ ⊆ I ∪ {α} (52). We immediately have

(QQ2) θ(τ1) ≡ τ2 I ′
M

= dom(Q1/τ1) dom(θ) ⊆ I ′

θ(I ′) ⊆ dom(Q) ∪ dom(Q2/τ2) (QQ1)♦
dom(Q)∪I′

` (QQ2)θ (53)

We get (53) from (51) by using Property 3.4.2.i (page 106) and (52).

Proof of Lemma 3.4.7

Directly, (Q) σ1 v σ2 holds by hypothesis, and Q is unconstrained. Besides, σ1 and σ2

are ML types. We proceed by case analysis:

◦ Case nf(σ1) is ⊥: Then σ1 is necessarily of the form ∀ (Q1) α1, with α1 ∈ dom(Q1)
and Q1 is an unconstrained prefix. In ML, σ1 is written ∀ (ᾱ) ∀ (α) α, and we have
σ1 vML σ2, provided σ2 is an ML type.

◦ Case σ1 is in V: We have nf(σ1) = α. Necessarily, σ1 is of the form ∀ (ᾱ) α with
α /∈ ᾱ. By Lemma 2.1.6, (Q) σ2 ≡ α holds. Thus Q̂(α) is a rearrangement of Q̂(nf(σ2))
by Lemma 1.5.9. Observing that Q̂ = id, we get nf(σ2) = α. Hence, σ2 is of the form
∀ (β̄) α with α /∈ β̄. Consequently, σ1 and σ2 are equivalent in ML.

◦ Case σ2 is in V: We assume nf(σ1) is not ⊥ and σ1 is not in V. By Properties 2.1.5.ii
and 2.1.5.iii (page 67), σ1/ε is a type constructor g. Hence, (∀ (Q) σ1)/ε is g. Since
Q is unconstrained and σ2 ∈ V, we have (∀ (Q) σ2)/ε = ⊥. This is a contradiction by
Property 2.1.3.ii (page 65). Hence, this case cannot occur.

◦ Case σ2 is not in constructed form: Necessarily, σ2 is of the form ∀ (ᾱ) α, with
α ∈ ᾱ. Hence, σ2/ε is ⊥. By Property 2.1.3.ii (page 65), we must have σ1/ε = ⊥ or
σ1/ε = α with α ∈ dom(Q). In the first case, nf(σ1) is ⊥ by Property 2.1.5.iii (page 67)
and Property 1.5.11.i (page 54), thus this case has already been solved above. In the
second case, σ1 ≡ α by Property 2.1.5.ii (page 67), thus σ1 ∈ T by Property 1.5.11.x
(page 54) and (Q) σ1 ≡ σ2 holds by Lemma 2.1.6. Thus, Q̂(σ1) ≡ Q̂(σ2) holds by
Corollary 1.5.10. Observing that Q̂ is id, we get σ1 ≡ σ2, which is a contradiction with
Property 1.5.4.i (page 50).
◦ Otherwise: σ1 is of the (constructed) form ∀ (Q1) τ1, where Q1 is unconstrained.

Besides, σ2 is in constructed form too. By Lemma 3.4.4, there exists an alpha-
conversion of σ2, written ∀ (Q2) τ2, and a substitution θ such that (QQ2) θ(τ1) ≡ τ2
holds, with dom(θ) ⊆ dom(Q1). Observing that QQ2 is unconstrained, we get θ(τ1) =
τ2 by Property 1.5.11.vii (page 54). Let ᾱ be dom(Q1) and β̄ be dom(Q2). We can write
θ in the form [τ̄ /ᾱ]. Hence, σ2 is ∀ (β̄) τ1[τ̄ /ᾱ] (up to renaming) As a consequence, σ2

is an instance of σ1 in ML.
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Conversely, σ2 is by hypothesis an instance of σ1. This means that σ1 is ∀ (ᾱ) τ
and σ2 is ∀ (β̄) τ [τ̄ ′/ᾱ]. We can derive (Q) σ1 v σ2 by rules R-Context-Flexible,
I-Bot and Eq-Mono?.

Proof of Lemma 3.5.2

By induction on the size of Q. If Q is ∅, then necessarily ᾱ = ∅, and the algorithm
returns the pair (∅, ∅), which is correct. Otherwise, Q is of the form Q′q (1), where q
is (α � σ). We consider two cases:

◦ Case α /∈ ᾱ: Let (Q′
1, Q

′
2) be Q′↑ᾱ. By definition, we have Q1 = Q′

1 (2) and Q2 =
(Q′

2q) (3). By induction hypothesis, we have Q′
1Q

′
2 ≈Q

′ (4), ᾱ ⊆ dom(Q′
1) (5), as well

as dom(Q′
1/ᾱ) = dom(Q′

1) (6). Then Q′
1Q

′
2q≈Q′q holds from (4), (1), (2), and (3),

that is, Q1Q2 ≈Q (i). By (2), (5) and (6), we have ᾱ ⊆ dom(Q1) and dom(Q1/ᾱ) =
dom(Q1), which is the expected result (ii) and (iii).

◦ Case α ∈ ᾱ: Let β̄ be (ᾱ − α) ∪ ftv(σ). By definition 3.3.1 and (1), we have
dom(Q/ᾱ) = α ∪ dom(Q′/β̄) (7). Let (Q′

1, Q
′
2) be Q′↑β̄. By definition, we have

Q1 = Q′
1q (8) and Q2 = Q′

2 (9). By induction hypothesis, Q′
1Q

′
2 ≈Q′ (10), β̄ ⊆

dom(Q′
1) (11) and dom(Q′

1/β̄) = dom(Q′
1) (12). We have ftv(σ) ⊆ β̄. Hence, by (11),

ftv(σ) ⊆ dom(Q′
1), which implies ftv(σ) # dom(Q′

2). Hence, we have Q′
1qQ

′
2 ≈Q′

1Q
′
2q,

thus Q′
1qQ

′
2 ≈Q′q holds from (10), that is, Q1Q2 ≈Q (i) from (8) and (9). From (11),

we have ᾱ ⊆ dom(Q′
1) ∪ {α}, that is, ᾱ ⊆ dom(Q1) (ii). Finally, dom(Q/ᾱ) is

dom(Q′
1qQ

′
2/ᾱ) (13) by Property 3.3.2.ii (page 104) and (i). Besides, dom(Q′

1qQ
′
2/ᾱ)

is dom(Q′
1q/ᾱ) (14) since ᾱ # dom(Q′

2). Similarly, dom(Q′/β̄) is dom(Q′
1/β̄) (15).

Thus, we can prove the following sequence of equalities:

dom(Q1/ᾱ) = dom(Q′
1q/ᾱ) by (8)

= dom(Q′
1qQ

′
2/ᾱ) by (14)

= dom(Q/ᾱ) by (13)
= α ∪ dom(Q′/β̄) by (7)
= α ∪ dom(Q′

1/β̄) by (15)
= α ∪ dom(Q′

1) by (12)
= dom(Q1) by (8)

This is the expected result (iii).

Proof of Lemma 3.6.2

By hypothesis, we have Q ♦I Q′ (1). Let (Q1, Q
′
0) be Q↑I. By Lemma 3.5.2, Q1Q

′
0 (2)

is a rearrangement of Q, I ⊆ dom(Q1) (3) and dom(Q1/I) = dom(Q1) (4). We get
dom(Q/I) = dom(Q1) (5) from (4) and (2). From (2), we get dom(Q′

0) # dom(Q1),
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which implies dom(Q′
0) # dom(Q/I) (6) by (5) as well as dom(Q′

0) # I (7) by (3).
We have Q ≡I Q1 by (2), Property 3.2.2.ii (page 103), PE-Free, and (7). Thus
Q1 ♦I Q′ (8) holds from (1) and R-Trans. Moreover, dom(Q/I) # dom(Q′

0) holds
from (2) and (5). Let φ be a renaming of dom(Q′) disjoint from I such that dom(φ(Q′))∩
dom(Q1) = I and φ(Q′) # Q′

0 (9). By Lemma 3.6.1 (page 113) and (8), there exists
a substitution θ such that Q1 ♦J φ(Q′)θ (10) holds, where J is dom(Q1/I), that is
dom(Q1) (11) by (4). Additionally, we have dom(θ) ⊆ J − I, which implies dom(θ) #
I (12) and dom(θ) # dom(Q′

0) (13) by (11) and (2). We have Q1 ♦ φ(Q′)θ (14)
from (10) and (11). By Property 3.4.2.iii (page 106), (9), (13), and (14) we get Q1Q

′
0 ♦

φ(Q′)θQ′
0 (15). We define Q0 as θQ′

0 (16). Note that dom(Q0) # I (17) by (7)
and (12). From (15), (2), and (16), we get Q ♦ φ(Q′)Q0 (18). Finally, we have
Q′ ≡ φ(Q′)φ by Property 3.4.2.iv (page 106). Since φ is disjoint from I, we get

Q′ ≡I φ(Q′) (19) by PE-Free. Besides we have φ(Q′)Q0 ≡I φ(Q′) (20) by PE-

Free and (17). Hence, by PE-Trans, (19), and (20), we get Q′ ≡I φ(Q′)Q0 (21).
We have shown the expected results, namely, (18), (17), (21), (16), and (6).

Proof of Property 3.6.3

We prove each property independently.

Property i: By hypothesis, (Q,α � σ) σ1 ♦ σ2 holds. Hence, (Q) ∀ (α � σ) σ1 ♦
∀ (α � σ) σ2 holds by R-Context-R. We conclude by R-Trans and observing that
(Q) ∀ (α � σ) σ1 ≡ σ1 and (Q) ∀ (α � σ) σ2 ≡ σ2 hold by Eq-Free.

Property ii: We prove by induction that for any Q, Q0, σ1 and σ2, if (Q,α ≥ τ,Q0)
σ1 ♦ σ2 holds, then (Q,α = τ,Q0) σ1 ♦ σ2 holds too. Equivalence cases are discarded
since ♦ is @− or v. Cases R-Trans, R-Context-Rigid, R-Context-Flexible and
I-Abstract are by induction hypothesis. Cases I-Bot and I-Rigid do not read the
prefix, thus (Q,α= τ,Q0) σ1 v σ2 still holds.

◦ Case R-Context-R we have σ1 = ∀ (β�σ) σ′1 and σ2 = ∀ (β�σ) σ′2. By hypothesis,
(Q,α≥τ,Q0, β�σ) σ′1 ♦ σ′2 holds. By induction hypothesis, (Q,α=τ,Q0, β�σ) σ′1 ♦ σ′2
holds too. Hence, (Q,α= τ,Q0) σ1 ♦ σ2 holds by R-Context-R.

◦ Case A-Hyp: Then σ2 = β. If β is not α, the result is immediate. Otherwise,
(Q,α � τ,Q0) τ @− α holds by Eq-Mono.

◦ Case I-Hyp: similar.

Remark that we do not read the prefix, except in the last two cases. As a conse-
quence, we use the same proof structure for the next properties, and we only need to
show the result for cases A-Hyp and I-Hyp.

Property iii: We have (Q,α � σ, α′ = α,Q0) σ1 ♦ σ2.
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◦ Case A-Hyp: We have σ2 = β. If β is neither α nor α′, we get the result by
A-Hyp. If β is α, we have σ1 = σ, and (Q,α′ � σ, α=α′, Q0) σ1 @− α′ holds by A-Hyp,
thus (Q,α′ � σ, α = α′, Q0) σ1 @− α holds by R-Trans, Eq-Mono and A-Equiv. If β
is α′, we have σ1 = α, and (Q,α′ � σ, α= α′, Q0) σ1 @− α′ holds by Eq-Mono.

◦ Case I-Hyp: similar.

Property iv: We have (Q) σ ≡ σ′ (1) and (Q,α � σ,Q0) σ1 ♦ σ2. As explained above,
we only need to consider cases A-Hyp and I-Hyp. In both cases, σ2 is a variable β.

◦ Case A-Hyp: If β is not α, the result is by A-Hyp. Otherwise, we have σ1 = σ
and � is =. We have (Q,α�σ′, Q0) σ ≡ σ′ (2) from (1) and Property 1.5.3.v (page 49).
Additionally, (Q,α � σ′, Q0) σ

′ @− α (3) holds by A-Hyp. Hence, (Q,α � σ ′, Q0) σ @− α
holds by A-Equiv, R-Trans, (2), and (3).

◦ Case I-Hyp: similar.

Property v: We have (Q) σ @− σ′ (1) and (Q,α= σ,Q0) σ1 ♦ σ2.

◦ Case A-Hyp: We have σ2 = β. If β is not α, we get the result by A-Hyp.
Otherwise, σ1 is σ. By Property 1.7.2.iii (page 59), (Q,α = σ′, Q0) σ @− σ′ (2) holds
from (1). Hence, (Q,α= σ′, Q0) σ @− α holds by R-Trans, (2), and A-Hyp.

◦ Case I-Hyp: We have σ2 = β. We cannot have β = α, since the binding of α is
rigid. Thus, we get the result by I-Hyp.

Property vi: We have (Q) σ v σ′ (1) and (Q,α ≥ σ,Q0) σ1 ♦ σ2.

◦ Case A-Hyp: We have σ2 = β. We cannot have β = α, since the binding of α is
flexible. Thus, we get the result by A-Hyp.

◦ Case I-Hyp: We have σ2 = β. If β is not α, we get the result by I-Hyp. Otherwise,
σ1 is σ. By Property 1.7.2.iii (page 59) and (1), (Q,α≥σ′, Q0) σ v σ′ (2) holds. Hence,
(Q,α≥ σ′, Q0) σ v α holds by R-Trans, (2), and I-Hyp.

Property vii: We have (Q,α≥ σ,Q0) σ1 ♦ σ2.

◦ Case A-Hyp: We have σ2 = β. We cannot have β = α, since the binding of α is
flexible. Thus, we get the result by A-Hyp.

◦ Case I-Hyp: We have σ2 = β. If β is not α, we get the result by I-Hyp. Otherwise,
σ1 is σ. By A-Hyp, we can derive (Q,α = σ,Q0) σ1 @− α. Then by I-Abstract, we
get (Q,α= σ,Q0) σ1 v α. This is the expected result.
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Proof of Lemma 3.6.4

If ♦ is ≡, then we get the result by Lemma 3.4.3. Otherwise, ♦ is @− or v. The
proof is by induction on the derivation of Q1 ♦I Q2. Cases PE-Trans, PA-Trans,
PI-Trans, PA-Equiv, PI-Abstract are by induction hypothesis. Case PE-Refl is
immediate. Other cases are:

◦ Case PE-Free: If Q1 is (Q2, α�σ), we get the result by Property 3.6.3.i (page 114).
If Q2 is (Q1, α � σ), we get the result by Property 1.7.2.iii (page 59).

◦ Case PE-Mono: Direct consequence of Property 3.6.3.ii (page 114).

◦ Case PE-Context-L: Direct consequence of Property 3.6.3.iv (page 114).

◦ Case PE-Swap: Direct consequence of Property 3.6.3.iii (page 114).

◦ Case PE-Comm: Direct consequence of Property 1.7.2.ii (page 59).

◦ Case PA-Context-L: Direct consequence of Property 3.6.3.v (page 114).

◦ Case PI-Context-L: Direct consequence of Property 3.6.3.vi (page 114).

◦ Case PI-Rigid: Direct consequence of Property 3.6.3.vii (page 114).

Proof of Lemma 3.6.6

We have the hypotheses

(Q) σ1 v σ2 (1) (Q) σ2 v σ3 (2) (Q) σ1 @− σ3 (3)

We consider two cases:

◦ Case Q̂(nf(σ3)) /∈ V: Then we have Q̂(nf(σ2)) /∈ V by Lemmas 2.1.6, (2), and 1.5.9.
We have ∀ (Q) σ1/ 6/ ∀ (Q) σ2/ 6/ ∀ (Q) σ3/ by Property 2.1.3.ii (page 65), (1),
and (2). We have ∀ (Q) σ1/ = ∀ (Q) σ3/ by Property 2.1.3.i (page 65) and (3). Hence,
by antisymmetry (Property 2.1.2.i (page 65)), we get ∀ (Q) σ1/ = ∀ (Q) σ2/ = ∀ (Q)
σ3/. We have w(σ1) > w(σ2) > w(σ3) by Property 2.7.6.i (page 94), (1), and (2). We
have X /∈ w(σ1)−w(σ3) by Lemma 2.7.8 and (3), thus we get X /∈ w(σ1)−w(σ2) and
X /∈ w(σ2) − w(σ3) by Property 2.7.2.iv (page 87). Hence, by Lemma 2.7.8 and (1),
we get (Q) σ1 @− σ2. Similarly, by Lemma 2.7.8 and (2), we get (Q) σ2 @− σ3.

◦ Case Q̂(nf(σ3)) = α (4): Note that necessarily Q̂(α) = α (5) holds, because Q̂ is
idempotent. We consider two subcases.

Subcase σ2 ∈ V: Then (Q) σ2 ≡ σ3 (6) holds by Lemma 2.1.6, thus (Q) σ1 @−
σ2 holds by A-Equiv, R-Trans, (6) and (3). Besides, (Q) σ2 @− σ3 holds by A-Equiv

and (6).
Subcase nf(σ2) /∈ ϑ: Then we have σ2 /∈ V (7). If we have σ1 ∈ V, then

by (1), (2), and Lemma 2.1.6, we get (Q) σ1 ≡ σ2 and (Q) σ2 ≡ σ3, which leads
to the expected result by A-Equiv. Now, we assume σ1 /∈ V (8). From (2), we
get (Q) σ2 v Q̂(nf(σ3)) by Eq-Mono, Property 1.5.6.i (page 51), and I-Equiv?.
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Hence, we have (Q) σ2 v α (9) from (4). Let (α � σ) be the binding of α in Q (10).
We get by Corollary 2.3.4, (10), (7), and (9) (Q) σ2 v σ (11). From (4), we have
(Q) σ3 ≡ α (12) by Eq-Mono and Property 1.5.6.i. Hence, by (3) and R-Trans, we
get (Q) σ1 @− α (13). By Corollary 2.3.4, (10), (8), and (13), we get (Q) σ1 @− σ (14)
and � is rigid, that is, (α=σ) ∈ Q (15). We have Q̂(nf(σ)) /∈ V (16) by (15) and (5). In
summary, we have shown (Q) σ1 v σ2 from (1), (Q) σ2 v σ from (11), and (Q) σ1 @− σ
from (14). Hence, thanks to (16), we fall back in the first case. As a consequence, we
have (Q) σ1 @− σ2 (17) and (Q) σ2 @− σ (18).

By A-Hyp and (15), we get (Q) σ @− α (19). By R-Trans, (18), and (19), we get
(Q) σ2 @− α (20). By R-Trans, (20) and (12), we get (Q) σ2 @− σ3. With (17), this is
the expected result.

Proof of Lemma 3.6.7

By hypothesis, we have (Q) ∀ (α) σ @− σ ′, where Q is unconstrained and binds the free
variables of ∀ (α) σ and σ′. By Property 2.6.2.i (page 85), there exists a derivation of

(Q) ∀ (α) σ (≡@̇−
∅
)
∗
σ′. More precisely, there exist σ1, . . .σn, such that σ1 = ∀ (α) σ,

σn = σ′, and (Q) σi (≡@̇−
∅
) σi+1 for i ∈ [1..n[. We prove the following property (where

Q is unconstrained):

If we have σa ≡ ∀ (α) σ′a and (Q) σa (≡@̇−
∅
) σb, then there exists σ′

b such
that σb ≡ ∀ (α) σ′b and (Q,α) σ′a @− σ′b.

Proof: By hypothesis, we have σa ≡ ∀ (α) σ′a (1) and (Q) σa (≡@̇−
∅
) σb. By

definition, either σa ≡ σb (the result is immediate, then), or there exist σc and σd such
that we have

σa ≡ σc (2) (Q) σc @̇−
ᾱ
σd (3) σd ≡ σb (4).

Hence, we have σc ≡ ∀ (α) σ′a (5) by R-Trans, (1) and (2). We can choose α such that
α /∈ ftv(σb). If α /∈ ftv(σ′a), then σc ≡ σ′a, thus taking σ′b = σb is appropriate. Hence,
we assume that α ∈ ftv(σ′

a) (6). By Property 2.6.3.i (page 86) on (3), there exists
σ′d such that (Q) nf(σc) @̇−

ᾱ
σ′d (7) and σ′d ≡ σd (8). By Property 1.5.11.i (page 54)

on (5), nf(σc) is a rearrangement of nf(∀ (α) σ′
a). By Property 2.6.3.ii (page 86) applied

to (7), there exists σ′′
d such that we have (Q) nf(∀ (α) σ′

a) @̇−
ᾱ
σ′′d (9) and σ′′d ≡

σ′d (10). By R-Trans, (10), (8), and (4), we get σ ′′
d ≡ σb (11). If σ′a ≡ α, then

nf(∀ (α) σ′a) is ⊥. This is a contradiction with (9) since no rule can be used to derive
(Q) ⊥ @̇−

ᾱ
σ′′d (note that the prefix is unconstrained). Hence, σ ′

a is not equivalent to α.

From (6), we get nf(∀ (α) σ′
a) = ∀ (α) nf(σ′a). Hence, (Q) ∀ (α) nf(σ′

a) @̇−
ᾱ
σ′′d (12) holds

from (9). Moreover, (12) is derived by StSh-Up or StSh-Alias (indeed, the prefix is
unconstrained). Hence, ∀ (α) nf(σ′

a) is of the form Cr(σ0) and σ′′d is of the form Cr(σ
′
0).
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Necessarily, Cr is ∀ (α) C ′
r and C ′

r(σ0) = nf(σ′a) (13). The premises of StSh-Up or
StSh-Alias are independent of Cr and Q. Hence, (Q,α) C ′

r(σ0) @̇−
ᾱ
C ′

r(σ
′
0) (14) holds

too. Let σ′b be C ′
r(σ

′
0). Then σ′′d is ∀ (α) σ′b (15) and (14) gives (Q,α) C ′

r(σ0) @̇−
ᾱ
σ′b.

By Property 2.6.2.i (page 85), we get (Q,α) C ′
r(σ0) @− σ′b (16). From (16), (13),

and Property 1.5.6.i (page 51), we get (Q,α) σ′a @− σ′b. From (11) and (15), we get
σb ≡ ∀ (α) σ′b. This is the expected result. �

The lemma is then proved by induction on i.

Proof of Lemma 3.6.8

By induction on the size of Q. By hypothesis, Q is of the form (Q1, α � σa, Q2). If
σa/u is defined and is ⊥, then we get the expected result by taking β = α, u1 = ε,
and u2 = u. Otherwise, there exist v1 and v2 such that u = v1v2 and σa/v1 = β (1)
with β ∈ dom(Q1). Then ∀ (Q1) β/v2 = ⊥. By induction hypothesis, Q1 is of the
form (Q11, γ � σc, Q12), v2 is of the form w1w2 such that ∀ (Q12) β/w1 = γ (2) and
σc/w2 = ⊥ (3). Then Q is of the form (Q11, γ � σc, Q12, α � σa, Q2), u is of the form
v1w1w2 such that

∀ (Q12, α � σa, Q2) α/v1w1 = ∀ (Q12) σa/v1w1

= ∀ (Q12) β/w1 from (1)
= γ from (2)

Additionally, σc/w2 = ⊥ holds from (3). This is the expected result.

Proof of Lemma 3.6.9

By hypothesis, we have

σ2 ∈ ΣI (1) σ2 /∈ V (2) (Q) σ1 v σ2 (3) Q vI Q′ (4) (Q′) σ1 @− σ2 (5)

We first show that ∀ (Q) σ1/ = ∀ (Q) σ2/ holds. By Property 2.1.3.ii (page 65) applied
to (3), we have ∀ (Q) σ1 6/ ∀ (Q) σ2 (6). By Definition 3.2.1 (page 103), (4), and (1),
we get ∀ (Q) σ2 v ∀ (Q′) σ2 (7). By Property 2.1.3.ii (page 65) applied to (7), we
get ∀ (Q) σ2 6/ ∀ (Q′) σ2 (8). By Property 2.1.3.i (page 65) applied to (5), we get
∀ (Q′) σ1/ = ∀ (Q′) σ2/(9). Let u be an occurrence in dom(∀ (Q) σ1) such that
(∀ (Q) σ1)/u 6= (∀ (Q) σ2)/u. By definition of 6/ and (6), we have (∀ (Q) σ1)/u = ⊥
and (∀ (Q) σ2)/u = g (10), where g is not ⊥. Can u be in dom(σ1)? We would have
σ1/u = ⊥, thus ∀ (Q′) σ1/u = ⊥ (11). However, we have ∀ (Q′) σ2/u = g by (10)
and (8). This is a contradiction with (11) and (9). Consequently, u is not in dom(σ1),
which means that it is of the form u1u2 (12) with σ1/u1 = α (13) and ∀ (Q) α/u2 = ⊥.
By Lemma 3.6.8 (page 115), Q is of the form (Q1, β �σb, Q2) (14) and u2 is of the form

280



281

v1v2 (15) such that ∀ (Q2) α/v1 = β (16) and σb/v2 = ⊥ (17). Note that σb is not
in T by Property 2.1.5.i (page 67). We have (∀ (Q2) σ1/u1v1) = β by (13) and (16).
Thus, by Lemma 2.1.4 applied to (3), we get (∀ (Q2) σ2)/u1v1 = β (18). Hence,
(∀ (Q) σ2)/u = ⊥ holds from (12), (15), (18), (14), and (17). This is a contradiction
with (10). In summary, we have shown by way of contradiction that ∀ (Q) σ1/ = ∀ (Q)
σ2/ (19) holds. By Lemma 2.7.8, (2), and (5), we get X /∈ w(σ1) − w(σ2) (20). By
Lemma 2.7.8, (2), (3), (19), and (20), we get (Q) σ1 @− σ2.

Proof of Lemma 3.6.10

By hypothesis, Q1 vI Q2 holds. By Lemma 3.6.1 (page 113), there exists a renaming
φ on dom(Q2) and a substitution θ′ invariant on I such that J = dom(Q1/I) and

Q1 vJ φ(Q2)θ
′ (1) hold. We have (Q1) ∇I ≡ Q̂1(∇I) by Eq-Mono. By Lemma 3.6.4

and (1), we get (φ(Q2)θ
′) ∇I ≡ Q̂1(∇I). By Property 1.5.11.vii (page 54), we have

φ̂(Q2) ◦ θ
′(∇I) = φ̂(Q2) ◦ θ

′ ◦ Q̂1(∇I) (2). Let θ0 be φ̂(Q2) ◦ θ
′. Since θ′ is invariant

on I, (2) gives φ̂(Q2)(∇I) = θ0 ◦ Q̂1(I) (3). By Property 3.1.1.iii (page 102), we have

φ̂(Q2) = φ ◦ Q̂2 ◦ φ
¬. Hence, (3) becomes φ ◦ Q̂2 ◦ φ

¬(∇I) = θ0 ◦ Q̂1(I) (4). Since φ

is a renaming disjoint from I, we have φ¬(∇I) = ∇I . Hence (4) gives φ ◦ Q̂2(∇I) =

θ0 ◦ Q̂1(I). Applying φ¬, we get Q̂2(∇I) = φ¬ ◦ θ0 ◦ Q̂1(∇I). Let θ be φ¬ ◦ θ0. We get

Q̂2(∇I) = θ ◦ Q̂1(∇I), which implies that Q̂2 and θ ◦ Q̂1 are equal on I.

Proof of Lemma 3.6.11

First, notice that we can show the lemma for any alpha-conversion of ∀ (Q2) τ21 → τ22
(indeed, ∀ (Q2) τ21 and ∀ (Q2) τ22 can always be alpha-converted accordingly). Hence,
we can freely assume ∀ (Q2) τ21 → τ22 to be suitable for Lemma 3.4.4, thus we get a
substitution θ such that

(Q2) θ(τ11 → τ12) ≡ τ21 → τ22 (1) I = dom(Q1/τ11 → τ12) dom(θ) ⊆ I

Q1 ♦dom(Q)∪I Q2θ (2)

By Property 1.5.11.viii applied to (1), we get (Q2) θ(τ11) ≡ τ21 (3) and (Q2) θ(τ12) ≡
τ22. By (2) and Definition 3.2.1, we have ∀ (Q1) τ11 ♦ ∀ (Q2θ) τ11. By (3), this gives
∀ (Q1) τ11 ♦ ∀ (Q2) τ21. We show similarly that ∀ (Q1) τ12 ♦ ∀ (Q2) τ22 holds. This is
the expected result.

Proof of Lemma 3.6.12

We prove the first statement. By hypothesis Q v Q1Q2 (1), dom(Q) = dom(Q/I) (2),
I ⊆ dom(Q1) (3), and dom(Q1) # dom(Q2) (4) by well-formedness of Q1Q2. Thus
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I # dom(Q2) (5) holds from (3) and (4). Let α′ be in dom(Q2/ dom(Q)) (6). By Prop-
erty 3.3.2.i (page 104), we have dom(Q2/ dom(Q)) =

⋃
α∈dom(Q) dom(Q2/α). Hence,

from (6), there exists α ∈ dom(Q) (7) such that we have α′ ∈ dom(Q2/α) (8). Hence,
α is in dom(Q) ∩ dom(Q2). Therefore, Q is of the form (Qa, α �1 σ1, Qb) (9) and
Q2 of the form (Qa

2, α �2 σ2, Q
b
2) (10). Additionally, from (8), Qa

2 is of the form
(Qc

2, α
′ �3 σ3, Q

d
2) (11) and α′ ∈ ftv(∀ (Qd

2) σ2) (12). By we have α ∈ dom(Q/I)
from (2) and (7). By (9), this means that α ∈ ftv(∀ (Qb) ∇I) (13). We have the
following:

(Q) ∀ (Qb) ∇I v ∇I by I-Drop? and (9)
(Q1Q2) ∀ (Qb) ∇I v ∇I by Lemma 3.6.4 and (1)
(Q1Q

a
2, α �2 σ2, Q

b
2) ∀ (Qb) ∇I v ∇I by (10)

(Q1Q
a
2, α �2 σ2) ∀ (Qb

2Qb) ∇I v ∀ (Qb
2) ∇I by R-Context-R

(Q1Q
a
2, α �2 σ2) ∀ (Qb

2Qb) ∇I v ∇I by (5) and Eq-Free

Since we have α ∈ dom(Q2) and (5), we have α /∈ I, that is, α /∈ ftv(∇I). Hence, by
R-Context-R and Eq-Free, we get

(Q1Q
a
2) ∀ (α �2 σ2) ∀ (Qb

2Qb) ∇I v ∇I

(Q1Q
c
2, α

′ �3 σ3, Q
d
2) ∀ (α �2 σ2) ∀ (Qb

2Qb) ∇I v ∇I by (11)

We get (Q1Q
c
2, α

′ �3 σ3) ∀ (Qd
2) ∀ (α �2 σ2) ∀ (Qb

2Qb) ∇I v ∀ (Qd
2) ∇I by R-Context-

R. By (5) and Eq-Free, we get (Q1Q
c
2, α

′ �3 σ3) ∀ (Qd
2) ∀ (α �2 σ2) ∀ (Qb

2Qb) ∇I v
∇I (14). By (13), we have α ∈ ftv(∀ (Qb

2Qb) ∇I). Hence, by (12), α′ ∈ ftv(∀ (Qd
2) ∀ (α�2

σ2) ∀ (Qb
2Qb) ∇I) (15). Moreover, α′ /∈ I by (6) and (5). Hence, α′ /∈ ftv(∇I) (16).

By Lemma 2.1.4 (page 67) on (14), (15), and (16), we get σ3 ∈ T , which implies

α′ ∈ dom(Q̂2). This result holds for any α′ in dom(Q2/ dom(Q)), hence we have

dom(Q2/ dom(Q)) ⊆ dom(Q̂2).

We prove the second statement. Let α be in dom(Q) (1). We have to show that

ftv(Q̂2(α)) ⊆ dom(Q1). It suffices to show that ftv(Q̂2(α)) # dom(Q2) holds. By a way

of contradiction, assume that β ∈ ftv(Q̂2(α)) (2) and β ∈ dom(Q2). Then Q2 is of the

form (Qa, β � σ,Qb). By definition of Q̂2 (which is idempotent) and (2), we must have

β /∈ dom(Q̂2) (3). From (2), we have β ∈ ftv(Q̂b(α)). Hence, β ∈ ftv(∀ (Qb) Q̂b(α))
(since β /∈ dom(Qb)). This gives β ∈ ftv(∀ (Qb) α) (4) by Property 1.5.11.vi (page 54)

and by observing that ∀ (Qb) α ≡ ∀ (Qb) Q̂b(α) holds by Eq-Mono. Therefore,
from (4), we have β ∈ dom(Q2/α), which implies β ∈ dom(Q2/ dom(Q)) from (1).

The first property ensures that β ∈ dom(Q̂2), which is a contradiction with (3). We

have shown a contradiction, thus the hypothesis β ∈ ftv(Q̂2(α)) and β ∈ dom(Q2) was

wrong. As a consequence, we have Q̂2(dom(Q)) ⊆ dom(Q1).
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Proof of Lemma 3.6.13

By hypothesis, Q1 vI∪J Q2Q3 holds. By Lemma 3.6.1 (page 113), there exists a
renaming φ on dom(Q2Q3) and a substitution θ both invariant on I ∪ J such that
Q1 vK φ(Q2Q3)θ holds, and K = dom(Q1/I ∪ J) (1). Since ftv(τ) ⊆ I ∪ J , we
have θ(τ) = τ (2). Let Q′

2 be φ(Q2) and Q′
3 be φ(Q3). We have Q1 vK Q′

2Q
′
3θ (3).

Additionally, (Qa, Qb) is Q1↑I, thus by Lemma 3.5.2, we have I ⊆ dom(Qa) (4),
dom(Qa/I) = dom(Qa) (5), and QaQb ≈Q1 (6). Hence, (3) becomes QaQb vK

Q′
2Q

′
3θ (7). From (1) and Property 3.3.2.i (page 104), we have dom(Q1/I) ⊆ K (8).

From (5), (4), and (6), we get dom(Q1/I) = dom(Qa/I) = dom(Qa) (9). By (9) and (8),
we have dom(Qa) ⊆ K (10). By Property 3.4.2.i (page 106), PE-Free, (7) and (10)
we get Qa v Q′

2Q
′
3θ (11). Hence, we get (Qa, γ≥∀ (Qb) τ) v (Q′

2Q
′
3θ, γ≥∀ (Qb) τ) by

Property 3.4.2.iii (page 106). Let θ′ be Q̂′
3 ◦ θ. By Eq-Mono?, we get (Qa, γ ≥ ∀ (Qb)

τ) v (Q′
2Q

′
3θ, γ ≥ θ′(∀ (Qb) τ)) (12). We also have

(QaQb) ∀ (Qb) τ v τ by I-Drop?

(Q′
2Q

′
3θ) ∀ (Qb) τ v τ by Lemma 3.6.4 and (7)

(Q′
2) ∀ (Q′

3) θ(∀ (Qb) τ) v ∀ (Q′
3) θ(τ) by R-Context-R

(Q′
2) ∀ (Q′

3) θ
′(∀ (Qb) τ) v ∀ (Q′

3) θ
′(τ) by Eq-Mono?

Hence, (Q′
2) ∀ (Q′

3) θ
′(∀ (Qb) τ) v ∀ (Q′

3) θ
′(τ) (13) holds. We have I ⊆ dom(Q2)

by hypothesis, and φ disjoint from I, thus I ⊆ dom(Q′
2) (14). By Lemma 3.6.12

(page 116) applied to (11), (14) and (5), we get dom(Q′
3θ/ dom(Qa)) ⊆ dom(θ′) and

θ′(dom(Qa)) ⊆ dom(Q′
2) (15). Consider the instantiation (13). The free variables of

∀ (Qb) τ are in dom(Qa) (since QaQb ≈Q1). Hence, the free variables of θ′(∀ (Qb) τ) are
in θ′(dom(Qa)). By (15), they are in dom(Q′

2). In particular, they are not in dom(Q′
3)

(since Q′
2 # Q′

3 holds by well-formedness of (3)). Hence, ∀ (Q′
3) θ

′(∀ (Qb) τ) ≡ θ′(∀ (Qb)
τ) holds by Eq-Free. Consequently, (13) gives

(Q′
2) θ

′(∀ (Qb) τ) v ∀ (Q′
3) θ

′(τ) (16)

Additionally, we have

(Qa, γ ≥ ∀ (Qb) τ) v (Q′
2, γ ≥ θ′(∀ (Qb) τ), Q

′
3θ) by PE-Comm on (12).

(Qa, γ ≥ ∀ (Qb) τ) v (Q′
2, γ ≥ ∀ (Q′

3) θ
′(τ), Q′

3θ) by PI-Context-L

and (16).
(Qa, γ ≥ ∀ (Qb) τ) v (Q′

2, γ ≥ ∀ (Q′
3) θ(τ), Q

′
3θ) by Eq-Mono?.

(Qa, γ ≥ ∀ (Qb) τ) v (Q′
2, γ ≥ ∀ (Q′

3) τ,Q
′
3θ) by (2).

(Qa, γ ≥ ∀ (Qb) τ) v (φ(Q2), γ ≥ ∀ (φ(Q3)) τ,Q
′
3θ) by definition.

(Qa, γ ≥ ∀ (Qb) τ) v (φ(Q2), γ ≥ φ(∀ (Q3) τ), Q
′
3θ) by alpha-renaming.

(Qa, γ ≥ ∀ (Qb) τ) v (φ(Q2, γ ≥ ∀ (Q3) τ), Q
′
3θ)
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Then (Qa, γ≥∀ (Qb) τ) v
I∪{γ} (φ(Q2, γ≥∀ (Q3) τ)) (17) holds by PE-Free and Prop-

erty 3.4.2.i (page 106). By Property 3.4.2.iv (page 106), we have (Q2, γ ≥ ∀ (Q3) τ) ≡
(φ(Q2, γ ≥ ∀ (Q3) τ)φ), thus (Q2, γ ≥ ∀ (Q3) τ) ≡I∪{γ} (φ(Q2, γ ≥ ∀ (Q3) τ)) holds by

PE-Free and Property 3.4.2.i (page 106). With (17), we get (Qa, γ≥∀ (Qb) τ) v
I∪{γ}

(Q2, γ ≥ ∀ (Q3) τ). This is the expected result.

Proof of Lemma 4.2.4

By Lemma 3.6.1 (page 113), there exists a renaming φ on dom(Q2) and a substitution θ
invariant on I such that Q1 vJ φ(Q2)θ (1) holds, and J is dom(Q1/I). Let (Q3, Q4) be
Q1↑ ftv(σ′). By Lemma 3.5.2, we haveQ3Q4 ≈Q1 (2) and ftv(σ′) # dom(Q4) (3). Then
Q4 is (Q5, α � σ,Q6) and Q1 is a rearrangement of (Q3Q5, α � σ,Q6) by (2). From (3),
we have ftv(σ′) # dom(Q6) (4). Let Qa be Q3Q5 and Qb be Q6 (5). Then Q1 is a
rearrangement of (Qa, α � σ,Qb) (6). By hypothesis, if � is =, then (Q1) σ @− σ′ holds.
This implies that (Q1) σ @−? σ′ returns true, by Lemma 4.2.2. Hence, Q1 ⇐ (α �′ σ′) is
well-defined (that is, it does not fail on the fourth step). We write it Q′

1.
By definition, Q′

1 is (Qa, α �′ σ′, Qb) (7) and dom(Qb) # ftv(σ′) holds from (4)
and (5).

We have the following:

(Qa, α � σ,Qb) ∀ (Qb) ∇I v ∇I by I-Drop?.
(Q1) ∀ (Qb) ∇I v ∇I by (6)

and Property 1.7.2.ii
(φ(Q2)θ) ∀ (Qb) ∇I v ∇I by Lemma 3.6.4 on (1).

∀ (φ(Q2)θQb) ∇I v ∀ (φ(Q2)θ) ∇I by R-Context-R

∀ (φ(Q2)θQb) ∇I v ∀ (φ(Q2)) ∇I since dom(θ) # I.
∀ (φ(Q2)θQb) ∇I v ∀ (Q2) ∇I by alpha-conversion

Hence, ∀ (φ(Q2)θQb) ∇I v ∀ (Q2) ∇I (8) holds. By hypothesis, we have (Q2) σ
′ v

α (9) and (Q2) σ′ @− α (10) when �′ is rigid. We have Q2 ≡I φ(Q2)φ by Prop-

erty 3.4.2.iv (page 106). We get Q2 ≡I φ(Q2)θ (11) by PE-Free (twice). Hence, we
have (φ(Q2)θ) σ

′ v α (12) (and possibly (φ(Q2)θ) σ
′ @− α (13)) by Lemma 3.6.4, (9),

possibly (10), and (11). Then we have the following (we abbreviated R-Context-

Flexible and R-Context-Rigid into RC-Flexible and RC-Rigid, respectively):

(Qa, α � σ,Qb) ∀ (Q′
1) ∇I v ∀ (α �′ σ′, Qb) ∇I by I-Drop? and (7)

(Q1) ∀ (Q′
1) ∇I v ∀ (α �′ σ′, Qb) ∇I by (6)

(φ(Q2)θ) ∀ (Q′
1) ∇I v ∀ (α �′ σ′, Qb) ∇I by Lemma 3.6.4 and (1)

(φ(Q2)θ) ∀ (Q′
1) ∇I v ∀ (α �′ α,Qb) ∇I by RC-Flexible and (12)

or RC-Rigid and (13)
(φ(Q2)θ) ∀ (Q′

1) ∇I v ∀ (Qb) ∇I by Eq-Mono?

∀ (Q′
1) ∇I v ∀ (φ(Q2)θQb) ∇I by R-Context-R
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The left-hand side ∀ (Q′
1) ∇I is closed, thus ∀ (φ(Q2)θ) ∀ (Q′

1) ∇I and ∀ (Q′
1) ∇I

are equivalent by Eq-Free. This is why we get the last line by Eq-Free. Finally,
combining with (8), we get ∀ (Q′

1) ∇I v ∀ (Q2) ∇I , thus Property 3.4.5.i (page 109)
gives the expected result.

Proof of Lemma 4.2.5

By hypothesis, we have (Q) σ v σ′ (1). Let (Q1, Q2) be Q↑ ftv(σ′). By Lemma 3.5.2,
we have Q1Q2 ≈Q. By hypothesis, we have Q2 of the form (Qa

2, α � σ,Qb
2). If � is =,

then (Q) σ @−? σ′ returns true, thus we have (Q) σ @− σ′ (2) by Lemma 4.2.2 and (1).
Finally, the algorithm returns Q′ = (Q1Q

a
2, α � σ′, Qb

2). The prefix (Q1Q
a
2, α � σ,Qb

2)
is a rearrangement of Q. Besides, (Q1Q

a
2, α � σ,Qb

2) v Q′ holds by PA-Context-L

and (2) or PI-Context-L and (1). Hence, Q v Q′ holds, which is the expected result.

Proof of Lemma 4.2.7

By hypothesis, Q is of the form (Q0, α �σ,Q1, α
′ �′ σ,Q2), or (Q0, α

′ �′ σ,Q1, α �σ,Q2).
By well-formedness of Q, we must have ftv(σ) # dom(Q1). Hence, by Eq-Comm,
we get Q ≡ (Q0, α � σ, α′ �′ σ,Q1Q2) (1). If � and �′ are flexible, then �′′ is ≥ and
Q v (Q0, α �′′ σ, α′ �′′ σ,Q1Q2) (2) holds from (1) by PE-Refl. Otherwise, �′′ is =
and (2) holds from (1) and by Rule PI-Rigid (if necessary). Finally, Q v (Q0, α �′′

σ, α′ = α,Q1Q2) (3) holds from (2), by PI-Trans, PI-Context-L on the binding
(α′ ≥ σ), and I-Hyp when �′′ is flexible, or PA-Context-L on the binding (α′ = σ)
and A-Hyp when �′′ is rigid. Hence, Q v Q′ holds from (3). Additionally, (Q′) α ≡ α′

holds by Eq-Mono.

Proof of Lemma 4.2.8

Merging is only a particular case of Updating. More precisely, let �′′ be ≥ if both �
and �′ are ≥, and = otherwise. Let Qa be Q1 ⇐ (α �′′ σ), let Qb be Qa ⇐ (α �′′ σ),
and Qc be Qb ⇐ (α′ = α). We show that Qa, Qb, and Qc are well-defined (that is, the
updates do not fail) and that Qc is a rearrangement of Q ⇐ α ∧ α′. By hypothesis
and without loss of generality Q1 is of the form (Q4, α � σ,Q5, α

′ �′ σ,Q6) (1). By
well-formedness, we have α′ /∈ dom(Q1/σ), thus α′ /∈ dom(Qb/α). This implies that
Qb ⇐ (α′ = α) can be applied. Let (P1, P2) be Q1↑ ftv(σ). By Lemma 3.5.2, we have
P1P2 ≈Q1 and dom(P1) = dom(Q1/σ) (2). Besides, by well-formedness of (1), we must
have ftv(σ) ⊆ dom(Q4) (3). More precisely, we must have dom(Q1/σ) ⊆ dom(Q4) (4).
Hence dom(P1) ⊆ dom(Q4) (5) holds from (4) and (2). By Lemma 4.2.2, (Q) σ @−? σ
holds. Hence, the algorithm does not fail on its fourth step. Finally, it returns Qa,
which is a rearrangement of (Q4, α�

′′σ,Q5, α
′�′σ,Q6). Similarly, Qb is a rearrangement
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of (Q4, α �′′ σ,Q5, α
′ �′′ σ,Q6) (6). Since ftv(σ) ⊆ dom(Q4) (from (3)), Qb is also a

rearrangement of (Q4, α�
′′σ, α′�′′σ,Q5Q6). Then observing that (Qb) σ @− α holds when

�′′ is rigid, we see that Qb ⇐ (α′=α) is well-defined, that is, Qc is well-defined, and is a
rearrangement of (Q4, α�

′′ σ, α′ =α,Q4Q6), that is, a rearrangement of Q⇐ α∧α′ (7).
By Lemma 3.6.1 (page 113), there exists a renaming φ on dom(Q2) and a substitution
θ invariant on I such that Q1 vJ φ(Q2)θ (8) holds, and J is dom(Q1/I). Hence,
ftv(σ) ∪ {α} ⊆ J (9) holds from the hypothesis α, α′ ∈ I. We have (Q1) σ v α by
I-Hyp, thus (φ(Q2)θ) σ v α holds by Lemma 3.6.4 and (8). We have (Q2) α ≡ α′

by hypothesis, and Q2 ≡I φ(Q2)θ (10) is derivable by Property 3.4.2.iv (page 106)
and PE-Free (observing that φ and θ are invariant on I), thus (φ(Q2)θ) α ≡ α′ (11)
holds. Besides, if �′′ is =, then either � or �′ is =. In the first case, we have (Q1) σ @− α
by A-Hyp. In the second case, we have (Q1) σ @− α′ by A-Hyp. Then (φ(Q2)θ) σ @− α
or (φ(Q2)θ) σ @− α′ (12) holds by Lemma 3.6.4 and (8). By (12) and (11), we get
(φ(Q2)θ) σ @− α (13). Note that (Q1) σ @− σ (14) and (Q1) σ v σ (15) hold
by Eq-Refl, A-Equiv, and I-Equiv?. By Lemma 4.2.4 (page 123), (8), (1), (14),
(15), (9), and (13) we have Qa vJ φ(Q2)θ. Similarly, Qb vJ φ(Q2)θ is derivable. By
Property 3.4.2.i (page 106) and (10), we get Qb v

I Q2 (16). From (6), (Qb) σ v α′ (17)
holds by I-Hyp when �′′ is flexible, and (Qb) σ @− α′ (18) holds by A-Hyp when �′′ is
rigid. By well-formedness of Qb, we have α′ /∈ dom(Qb/α) (19). We have by hypothesis
α, α′ ∈ I (20) and (Q2) α ≡ α′ (21). By Lemma 4.2.4 (page 123), (16), (6), (17), (18),
(19), (20), (21), we get Qc v

I Q2. Hence, (Q1 ⇐ α ∧ α′) vI Q2 holds from (7).

Proof of Property 4.3.1

We prove both properties simultaneously, by induction on the recursive calls to unify

and polyunify.

Proof of Property 4.3.2

By induction on the recursive calls to unify. All cases are easy.

Proof of Lemma 4.5.1

We prove the result for unify′ and polyunify′ simultaneously, by induction on the
recursive calls. We get the result for polyunify′ by induction hypothesis and Prop-
erty 4.3.2.i (page 126). As for unify′, we proceed by case analysis on (τ1, τ2). Cases
(α, α) and (g1 . . . , g2 . . .) with g1 6= g2 are immediate (unify and unify′ return the
same result). Cases (g τ 1

1 . . . , g τ 1
2 . . .) and (α, τ) or (τ, α) with (α �σ) ∈ Q and σ ∈ V

are by induction hypothesis (unify and unify′ are identical).
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◦ Case (α, τ) or (τ, α) with (α � τ ′) ∈ Q: In this case, unify simply returns unify

(Q, τ, τ ′), while unify′ is more elaborate. We have to consider the two following sub-
cases:

Subcase α ∈ dom(Q/τ) (1): By Property 1.5.11.vii (page 54), we have Q̂(τ) =
Q̂(α) (2) if and only if (Q) τ ≡ α holds. If (2) does not hold, then unify′ fails. We
have to show that unify fails too. By a way of contradiction, assume unify succeeds
with a prefix Q′. Then by soundness (Lemma 4.4.1), we would have Q v Q′ (3) and
(Q′) α ≡ τ (4). From (1), Q is of the form (Qa, α � σ,Qb) and α ∈ ftv(∀ (Qb) τ) (5).
Hence, we can derive (Q) ∀ (Qb) τ v τ (6) by I-Drop?. By Lemma 3.6.4, (6), and (3),
we get (Q′) ∀ (Qb) τ v τ . From (4), we get (Q′) ∀ (Qb) τ v α (7) By Property 2.1.7.ii
(page 68), (7), and (5), we get ∀ (Qb) τ ≡ α. Hence, (6) gives (Q) α v τ . By
Lemma 2.1.6, it leads to (Q) α ≡ τ . This is a contradiction with the hypothesis
that (2) does not hold. Hence, unify cannot succeed, and this is the expected result.

Otherwise, (2) holds, and unify′ returns Q. From (2), we have (Q) α ≡ τ (8). We
have to show that unify returns a rearrangement of Q. From (1), Q is of the form
(Qa, α � σ,Qb) and α ∈ ftv(∀ (Qb) τ) (9). Hence, we can derive (Q) ∀ (Qb) τ v τ by
I-Drop?. From (8), we get (Q) ∀ (Qb) τ v α (10) By Property 2.1.7.ii (page 68), (10),
and (9), we get ∀ (Qb) τ ≡ α (11). This implies that either τ is α, or it is a variable
β such that β ∈ dom(Qb). In the first case, unify (Q, τ, α) returns Q, which is the
expected result. In the second case, Qb is of the form (Q1

b , β �b σb, Q
2
b). From (11)

and Eq-Var, we get ∀ (Q1
b) σb ≡ α. This implies σb ∈ V, that is, σb ≡ γ such that

γ ∈ dom(Q1
b).

Subcase α /∈ dom(Q/τ):

◦ Case (α, τ) or (τ, α) with (α � σ) ∈ Q (12): Both algorithms fail in the first
step, or both continue. Let I be {β ∈ dom(Q) | β 6= α and α /∈ dom(Q/β)} and
(Q1, Q2) be Q↑I. The algorithm unify′ calls polyunify′ (Q1, σ, τ) while unify calls
polyunify (Q,σ, τ). By Lemma 3.5.2, Q1Q2 is a rearrangement of Q, I ⊆ dom(Q1)
and dom(Q1/I) = dom(Q1). We have α /∈ dom(Q/σ) by well-formedness of Q and (12),
hence ftv(σ) ⊆ I. We have α /∈ dom(Q/τ) (otherwise both algorithms fail in the first
step), hence ftv(τ) ⊆ I. Thus, we have ftv(τ)∪ ftv(σ) ⊆ dom(Q1). By Property 4.3.2.ii
(page 126) and induction hypothesis, polyunify′ (Q1, σ, τ) returns Q′

1 if and only if
polyunify (Q,σ, τ) returns Q′, a rearrangement of Q′

1Q2. Then Q′
1Q2 ⇐ (α= τ) is a

rearrangement of Q′ ⇐ (α=τ) by Lemma 4.2.3 (page 123). This is the expected result.

◦ Case (α1, α2): Both algorithms fail if α1 ∈ dom(Q/σ2) or α2 ∈ dom(Q/σ1). Let
I be {β ∈ dom(Q) | β /∈ {α1, α2} and {α1, α2} # dom(Q/β)}. Let (Q1, Q2) be
Q↑I . The algorithm unify′ calls polyunify′ (Q1, σ1, σ2), while unify calls polyunify
(Q,σ1, σ2). By Lemma 3.5.2 and by definition of I, Q1Q2 is a rearrangement of Q,
and we have ftv(σ1) ∪ ftv(σ2) ⊆ dom(Q1). Hence, by Property 4.3.2.i (page 126) and
induction hypothesis, polyunify′ (Q1, σ1, σ2) returns (Q′

1, σ
′
3) if and only if polyunify

(Q,σ1, σ2) returns (Q′, σ3) such that Q′ is a rearrangement of Q′
1Q2 and σ3 is a rear-
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rangement of σ′3. Hence, Q′
1Q2 ⇐ (α1 �1 σ

′
3) ⇐ (α2 �2 σ

′
3) ⇐ α1∧α2 is a rearrangement

of Q′ ⇐ (α1 �1 σ3) ⇐ (α2 �2 σ3) ⇐ α1 ∧ α2. This is the expected result.

Proof of Property 4.5.3

Properties i, ii, and iii are immediate.

We show Properties iv and v simultaneously, by induction on the recursive calls to
unify′ and polyunify′. For unify′, we proceed by case on (τ1, τ2):

◦ Case (α, α): We return Q and we have dQe 6 dQe.

◦ Case (g τ 1
1 .. τ

n
1 , g τ

1
2 .. τ

n
2 ): by induction hypothesis.

◦ Case (g1 τ
1
1 .. τ

p
1 , g2 τ

1
2 .. τ

q
2 ) with g1 6= g2: is not possible since, by hypothesis, we

succeed.

◦ Case (α, τ) or (τ, α) with (α � σ) ∈ Q and σ ∈ V: By induction hypothesis.

◦ Case (α, τ) or (τ, α): We have (Q1, Q2) = Q↑I. By Lemmas 3.5.2 and ii, we get
dQe = dQ1e + dQ2e (1). Note that (α � σ) ∈ Q2. We have (Q′

1, σ
′) = polyunify′

(Q1, σ, τ). By induction hypothesis, dQ′
1e + dσ′e 6 dQ1e + dσe + dτe, that is, dQ′

1e +
dσ′e 6 dQ1e + dσe. Hence, we have dQ′

1e 6 dQ1e + dσe (2). Let Q′ be Q′
1Q2 ⇐

(α = τ). We note that dQ′e = dQ′
1e + dQ2e − dσe + dτe. Hence, by (2), we get

dQ′e 6 dQ1e + dσe + dQ2e − dσe, that is, dQ′e 6 dQ1e + dQ2e. By (1), this gives
dQ′e 6 dQe.

◦ Case (α1, α2): Similarly, dQe = dQ1e + dQ2e and by induction hypothesis, dQ′
1e +

dσ3e 6 dQ1e + dσ1e + dσ2e (3). Let Q′ be Q′
1Q2 ⇐ (α1 �1 σ3) ⇐ (α2 �2 σ3) ⇐ α1 ∧ α2.

We note that dQ′e = dQ′
1e + dQ2e − dσ1e − dσ2e + dσ3e. Hence, dQ′e 6 dQ1e + dQ2e

holds from (3), that is, dQ′e 6 dQe. This is the expected result.

For polyunify, we have σ1 = ∀ (Q1) τ1 and σ2 = ∀ (Q2) τ2. We compute Q0 =
unify (QQ1Q2, τ1, τ2) and (Q3, Q

′) = Q0↑ dom(Q). By Lemma 3.5.2, Q3Q
′≈Q0.

Hence, by Property ii, we get dQ0e = dQ3e + dQ′e (1). We have σ3 = ∀ (Q′) τ1, thus
dσ3e = dQ′e (2) by Property i. By induction hypothesis, we have dQ0e 6 dQQ1Q2e (3).
By (3), (1), (2), we get dQ3e + dσ3e 6 dQQ1Q2e. By Properties ii and i, we get
dQ3e + dσ3e 6 dQe + dσ1e + dσ2e. This is the expected result.

Proof of Lemma 4.6.1

In the cases (⊥, σ), or (σ,⊥), polyunify returns σ, which is σ1 or σ2, thus it is not in
V by hypothesis. In the last case, it returns ∀ (Q4) τ1, where the constructed form of
σ1 is ∀ (Q1) τ1. Since σ1 is not in V, we must have τ1 /∈ ϑ, thus ∀ (Q4) τ1 /∈ V.
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Proof of Corollary 4.6.3

By hypothesis, Q1 vI Q2 (1) holds. By Lemma 3.6.2 (page 114) on (1), there exists
a renaming φ disjoint from I and a prefix Q0 such that we have Q1 v φ(Q2)Q0 and
φ(Q2)Q0 ≡I Q2 (2). By Lemma 4.6.2, unify (Q1, τ1, τ2) succeeds with Q′

1 and we
have Q′

1 vdom(Q1) φ(Q2)Q0. By Property 3.4.2.i (page 106) and (2), we get Q′
1 vI Q2.

This is the expected result.

Proof of Lemma 6.1.4

This property is shown by induction on the the derivation of (Q) Γ ` a : σ. Case Var

is immediate. Cases App, Inst and Oracle are by induction hypothesis.

◦ Case Fun: The premise is (Q) Γ, x : τ0 ` a0 : τ and σ is τ0 → τ . By alpha-
conversion of the lambda-bound variable x, we can freely assume that x is not bound in
Γ′. Hence, by induction hypothesis, we have (Q) Γ, x : τ0,Γ

′ ` a0 : τ , which is identified
with (Q) Γ,Γ′, x : τ0 ` a0 : τ . Hence, by Rule Fun, we get (Q) Γ,Γ′ ` λ(x) a0 : τ0 → τ ,
which is the expected result.

◦ Case Let: We have (Q) Γ ` a1 : σ1 and (Q) Γ, x : σ1 ` a2 : σ. By induction
hypothesis, we have (Q) Γ,Γ′ ` a1 : σ1 and (Q) Γ, x : σ1,Γ

′ ` a2 : σ, which can be
written (Q) Γ,Γ′, x : σ1 ` a2 : σ. Hence, by Rule Let, we get the expected result.

◦ Case Gen: The premise is (Q,α�σa) Γ ` a : σ′ (1), and σ is ∀ (α�σa) σ
′. Besides,

α /∈ ftv(Γ). Let α′ be a fresh variable (that is, not in ftv(Γ,Γ′)). By Lemma 6.1.1 applied
to (1) with the renaming [α′/α], we get (Q,α′ �σa) Γ ` a : σ′[α′/α], and this derivation
has the same size as (1). Hence, by induction hypothesis, we have a derivation of
(Q,α′�σa) Γ,Γ′ ` a : σ′[α′/α]. Applying Gen, we get (Q) Γ,Γ′ ` a : ∀ (α′�σa) σ

′[α′/α],
that is (by alpha-conversion) (Q) Γ,Γ′ ` a : σ, which is the expected result.

Proof of Lemma 6.2.1

It suffices to show that each rule defining `O is derivable in `.

◦ Case VarO: This rule is identical to Rule Var.

◦ Case FunO: We choose α fresh, that is α /∈ dom(QQ′)∪ftv(Γ, τ0, σ). By hypothesis,
(QQ′) Γ, x : τ0 ` a : σ holds, and dom(Q′) # ftv(Γ). By Corollary 6.1.3 (page 153), we
get (QQ′, α≥ σ) Γ, x : τ0 ` a : σ. Hence, the following derivation:

(QQ′, α≥ σ) Γ, x : τ0 ` a : σ (QQ′, α≥ σ) σ v α
I-Hyp

(QQ′, α≥ σ) Γ, x : τ0 ` a : α

(QQ′, α≥ σ) Γ ` λ(x) a : τ0 → α

(Q) Γ ` λ(x) a : ∀ (Q′, α≥ σ) τ0 → α
Gen

Fun

Inst
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◦ Case AppO: We have already shown that App? is derivable. Then AppO can be
derived with Inst and App?.

◦ Case LetO We choose α fresh, and Q2 is an abbreviation for (Q,α ≥ σ2). By
hypothesis, we have (Q) Γ ` a1 : σ1 and (Q) Γ, x : σ1 ` a2 : σ2. By Corollary 6.1.3
(page 153), we get (Q2) Γ ` a1 : σ1 and (Q2) Γ, x : σ1 ` a2 : σ2. Then we have the
following derivation:

(Q2) Γ ` a1 : σ1

(Q2) Γ, x : σ1 ` a2 : σ2

(Q2) σ2 v α

(Q2) Γ, x : σ1 ` a2 : α
Inst

(Q2) Γ ` let x = a1 in a2 : α

(Q) Γ ` let x = a1 in a2 : σ2
Gen+Inst

Let

◦ Case OracleO is a combination of Oracle and Inst.

Proof of Lemma 6.2.3

By induction on the derivation of (Q) Γ `′ a : σ. Cases AppO, FunO, LetO, Inst and
OracleO are by induction hypothesis.

◦ Case VarO: We have (Q) Γ `′ z : σ and z : σ is in Γ. By definition, z : σ ′ is in Γ′,
with (Q) σ′ v σ. Hence, we have (Rule VarO) (Q) Γ′ `′ z : σ′ and we get the expected
result (Q) Γ′ `′ z : σ by Rule Inst.

◦ Case Gen: The premises are (Q,α � σa) Γ `′ a : σ′ (1) and α /∈ ftv(Γ). The
conclusion is (Q) Γ `′ a : ∀ (α � σa) σ

′. We have (Q) Γ′ v Γ. By well-formedness, all
free type variables of Γ′ must be bound in Q. Since α /∈ dom(Q), we have α /∈ ftv(Γ′).
The result is by induction hypothesis on (1) and Rule Gen, then.

Proof of Property 6.2.5

Property i: By hypothesis, we have a derivation ending with Gen. Its premise is
(Q,α � σ) Γ `′ a : σ′ (1) and its conclusion is (Q) Γ `′ a : ∀ (α � σ) σ′ (2). Besides,
α /∈ ftv(Γ) (3). We have to show that there exists a derivation of (Q) Γ `′ a : σ′′ (4),
with σ′′ ≡ ∀ (α � σ) σ′ (5), and the size of (4) must be strictly smaller than the size
of (2), or, equivalently, the size of (4) is smaller than or equal to the size of (1). The
proof is by induction on the size of the term, then on the size of the derivation, and
then by case on the penultimate rule (the last rule being, by hypothesis, Rule Gen).

◦ Case VarO: The premise of this penultimate rule is x : σ ′ ∈ Γ (6), and its
conclusion is (1), with a being x. We have α /∈ ftv(σ ′) by (3) and (6). Thus ∀ (α � σ)
σ′ ≡ σ′ (7) holds by Eq-Free. We have (Q) Γ `′ x : σ′ (8) by VarO, that is (4),
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taking σ′′ = σ′. As expected (5) holds by (7). Besides, the size of (8) is one, which is
equal to the size of (1).

◦ Case FunO: The premise is (Q,α � σ,Q′) Γ, x : τ0 `′ a0 : σ0 (9) and dom(Q′) #
ftv(Γ) (10). Besides, σ′ is ∀ (Q′, β ≥ σ0) τ0 → β (11). Hence, (1) is written (Q,α � σ)
Γ `′ λ(x) a0 : ∀ (Q′, β ≥ σ0) τ0 → β. By (3) and (10), we have dom(α � σ,Q′) # ftv(Γ).
Hence, by Rule FunO applied to (9), we get (Q) Γ `′ λ(x) a0 : ∀ (α � σ,Q′, β ≥ σ0)
τ0 → β (12). Taking σ′′ = ∀ (α � σ,Q′, β ≥ σ0) τ0 → β, we have shown (4) and (5),
using (11). Additionally, the size of (12) is the size of (1).

◦ Case AppO: The premises are (Q,α � σ) Γ `′ a1 : σ1 (13) and (Q,α � σ) Γ `′

a2 : σ2 (14). Moreover, we have (Q,α � σ) σ1 v ∀ (Q′) τ2 → τ1 (15) and (Q,α � σ)
σ2 v ∀ (Q′) τ2 (16). Besides, σ′ is ∀ (Q′) τ1. By (3), (13) and Rule Gen, we get
(Q) Γ `′ a1 : ∀ (α � σ) σ1 (17). Besides, the size of (17) is the size of (13) plus one. By
induction hypothesis, (Q) Γ `′ a1 : σ′1 (18) is derivable with σ′

1 ≡ ∀ (α � σ) σ1 (19).
Moreover, the size of (18) is strictly smaller than the size of (17), that is, smaller
than or equal to the size of (13). Similarly, (Q) Γ `′ a2 : σ′2 (20) is derivable with
σ′2 ≡ ∀ (α � σ) σ2 (21), and the size of (20) is smaller than or equal to the size
of (14). By (19), (15) and R-Context-R we get (Q) σ ′

1 v ∀ (α � σ,Q′) τ2 → τ1 (22).
Similarly, (21) and (16) give (Q) σ′

2 v ∀ (α�σ,Q′) τ2 (23). By (18), (20), (22), and (23),
and Rule AppO, we get (Q) Γ `′ a1 a2 : ∀ (α � σ,Q′) τ1 (24). This corresponds to (4).
Additionally, the size of (24) is one plus the size of (18) and the size of (20). Hence, it
is smaller than or equal to one plus the size of (13) plus the size of (14), that is, the
size of (1).

◦ Case Inst: The premises are (Q,α�σ) Γ `′ a : σ0 (25). and (Q,α�σ) σ0 v σ′ (26).
By Rule Gen, (Q) Γ `′ a : ∀ (α � σ) σ0 holds. By induction hypothesis, (Q) Γ `′ a :
σ′0 (27) holds, with σ′0 ≡ ∀ (α �σ) σ0 (28), and the size of (27) is smaller than or equal
to the size of (25). From (26), R-Context-R, and (28), we get (Q) σ ′

0 v ∀ (α � σ) σ′.
Hence, with (27) and Inst, this gives (Q) Γ `′ a : ∀ (α � σ) σ′ (29). Besides, the size
of (29) is smaller than or equal to one plus the size of (25). Hence, it is smaller than
or equal to the size of (1).

◦ Case OracleO is similar.

◦ Case Gen: The premise is (Q,α�σ, α1 �1 σ1) Γ `′ a : σ0 (30), and σ′ is ∀ (α1 �1 σ1)
σ0. By induction hypothesis, we have a derivation of (Q,α � σ) Γ `′ a : σ′0 (31) which
is smaller than or equal to the size of (30) and with σ ′

0 ≡ σ′ (32). By Rule Gen,
we get (Q) Γ `′ a : ∀ (α � σ) σ′0. By induction hypothesis, we have a derivation of
(Q) Γ `′ a : σ′′ (33), where σ′′ ≡ ∀ (α � σ) σ′0 (34), and the size of (33) is smaller than
or equal to the size of (31). We note that σ ′′ ≡ ∀ (α � σ) σ′ by (32) and (34). Besides,
the size of (33) is smaller than or equal to the size of (30). Thus, it is strictly smaller
than the size of (1).

◦ Case LetO: The premises are (Q,α�σ) Γ `′ a1 : σ1 (35) as well as (Q,α�σ) Γ, x :
σ1 `′ a2 : σ′ (36). By Gen and (35), we get (Q) Γ `′ a1 : ∀ (α � σ) σ1. By induction
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hypothesis, we have a derivation of (Q) Γ `′ a1 : σ′1 (37), with σ′1 ≡ ∀ (α � σ) σ1 (38).
Besides, the size of (37) is smaller than or equal to the size of (35). We note that
(Q,α � σ) ∀ (α � σ) σ1 v σ1 (39) is derivable by I-Drop?. From (39) and (38), we get
(Q,α�σ) σ′1 v σ1 (40). By Strengthen’, (36), and (40), we get (Q,α�σ) Γ, x : σ ′

1 `′

a2 : σ′ (41). Note that we have α /∈ ftv(σ) by well formedness of the prefix of (35).
Hence, we have α /∈ ftv(∀ (α�σ) σ1), which implies α /∈ ftv(σ′

1) (42) by Property 1.5.4.iii
(page 50) and (38). By Rule Gen, (42) and (41), we get (Q) Γ, x : σ ′

1 `′ a2 : ∀ (α � σ)
σ′ (43). By Rule LetO, (37) and (43), we get (Q) Γ `′ a : ∀ (α � σ) σ′ (44). The size
of (44) is one plus the size of (37) (remember that the right premise of LetO is not
counted). Hence, the size of (44) is smaller than or equal to one plus the size of (35).
Consequently, the size of (44) is smaller than or equal to the size of (1).

Property ii: By induction on the size of the term, then on the size of the derivation.
Case VarO is immediate. Cases FunO, AppO, Inst, and OracleO are by induction
hypothesis.

◦ Case LetO: The premises are (Q) Γ `′ a1 : σ1 and (Q) Γ, x : σ1 `′ a2 : σ2 (1). By
induction hypothesis, (Q) Γ `′ a1 : σ′1 (2) is derivable not using Gen, with σ ′

1 ≡ σ1.
By Strengthen’ and (1), we get (Q) Γ, x : σ ′

1 `′ a2 : σ2. By induction hypothesis (a2

is a subexpression of a), we have a derivation of (Q) Γ, x : σ ′
1 `′ a2 : σ′2 (3) not using

Gen and σ′2 ≡ σ2. By LetO, (2), and (3), we have a derivation of (Q) Γ `′ a : σ′2 not
using Gen, and σ′2 ≡ σ2. This is the expected result.

◦ Case Gen: By Property i, there exists a strictly smaller derivation not ending with
Gen of (Q) Γ `′ a : σ′′a with σ′′a ≡ σa (4). Hence, by induction hypothesis, we have
a derivation not using Gen of (Q) Γ `′ a : σ′a with σ′a ≡ σ′′a (5). By R-Trans, (5),
and (4), we have σ′a ≡ σa, which is the expected result.

Property iii: By induction on the size of the term and on the derivation.

◦ Case VarO is immediate.

◦ Case Inst: The premises are (Q) Γ `′ a : σ (1) and (Q) σ v σa (2). We get the
expected result by induction hypothesis on (1) and (2).

◦ Case Gen: By hypothesis, this case cannot occur.

◦ Case FunO: The premise is (QQ′) Γ, x : τ0 `O a : σ and dom(Q′) ∩ ftv(Γ) = ∅. By
induction hypothesis, we have a derivation of (QQ′) Γ, x : τ0 `O a : σ′ (not using Inst)
such that (QQ′) σ′ v σ (3). By Rule FunO, we have (Q) Γ `O λ(x) a : ∀ (Q′, α ≥ σ′)
τ0 → α, and we easily check that (Q) ∀ (Q′, α ≥ σ′) τ0 → α v ∀ (Q′, α ≥ σ) τ0 → α
holds by rules R-Context-R, R-Context-Flexible, and (3).

◦ Case OracleO and AppO: These rules already contains an occurrence of Inst by
construction. Thus, the we get the result by induction hypothesis.

◦ Case LetO The premises are (Q) Γ `′ a1 : σ1 and (Q) Γ, x : σ1 `′ a2 : σ2.
By induction hypothesis, we have a derivation of (Q) Γ `O a1 : σ′1 (4) such that
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(Q) σ′1 v σ1 holds. Hence, by Rule Strengthen, we have (Q) Γ, x : σ ′
1 `′ a2 : σ2 (5).

Note that a2 is a subterm of a, thus the induction hypothesis can be applied to (5).
Hence, by induction hypothesis, we have a derivation of (Q) Γ, x : σ ′

1 `
O

a2 : σ′2 with
(Q) σ′2 v σ2 (6). We conclude with Rule LetO, (4), and (6).

Proof of Property 8.1.5

Property i: It is shown by structural induction on σ.

Property ii: We prove the first rule by induction on the size of Q. If Q is ∅, 〈〈∅〉〉 is ∅, id,
and 〈〈σ〉〉 = ∀ (∅) id(〈〈σ〉〉) holds. Otherwise, Q is (α � σ0, Q

′). Let ∀ (Q1) τ1 be 〈〈σ0〉〉
and Q′

1, θ1 be 〈〈Q′〉〉. By induction hypothesis, 〈〈∀ (Q′) σ〉〉 = ∀ (Q′
1) θ1(〈〈σ〉〉). Hence,

by Definition 8.1.4, 〈〈∀ (Q) σ〉〉 is ∀ (Q1Q
′
1) θ1(〈〈σ〉〉)[τ1/α] (1). By definition, 〈〈Q〉〉 is

Q1Q
′
1, [τ1/α] ◦ θ1. Hence, (1) is the expected result.

The second rule is proved by induction on the size of Q1. If Q1 is ∅, the result is
immediate. Otherwise, Q1 is (α�σ,Q′

1). Let Q′′
1 , θ

′
1 be 〈〈Q′

1〉〉. By induction hypothesis,
〈〈Q′

1Q2〉〉 is Q′′
1Q

′
2, θ

′
1◦θ2. Let ∀ (Q) τ be 〈〈σ〉〉. By definition, 〈〈Q1Q2〉〉 is QQ′′

1Q
′
2, [τ/α]◦

θ′1 ◦ θ2. We get the expected result by observing that 〈〈Q1〉〉 is QQ′′
1, [τ/α] ◦ θ′1.

Property iii: It is shown by structural induction on σ.

Property iv: By hypothesis, we have σ ≡ τ . By Property 1.5.4.i (page 50), we have
σ/ = τ/. By Property iii, we have σ/ = 〈〈σ〉〉/. Hence, 〈〈σ〉〉/ = τ/. Moreover, 〈〈σ〉〉 is
necessarily of the form ∀ (ᾱ) τ ′. For any u in dom(〈〈σ〉〉), we have 〈〈σ〉〉/u = τ/u, hence
〈〈σ〉〉/u 6= ⊥, that is, ∀ (ᾱ) τ ′/u 6= ⊥ for any u in dom(∀ (ᾱ) τ ′). Hence, we must have
ᾱ # ftv(τ ′). Consequently, ∀ (ᾱ) τ ′/ = τ ′/, thus τ ′/ = τ/. This implies τ = τ ′. We
have shown that 〈〈σ〉〉 is ∀ (ᾱ) τ with ᾱ # ftv(τ).

Property v: It is shown by induction on the size of Q. If Q is ∅, the result is immediate.
Otherwise, Q is (Q′, α � σ). Let ∀ (Q1) τ1 be 〈〈σ〉〉, and Q′

1, θ1 be 〈〈Q′〉〉. By induction

hypothesis, θ1 is of the form θ′1◦Q̂
′. By definition, θ is [τ1/α]◦θ1, that is [τ1/α]◦θ′1 ◦Q̂

′.

If σ /∈ T , then Q̂ = Q̂′, and θ is [τ1/α] ◦ θ′1 ◦ Q̂. This is the expected result. Otherwise,

σ ≡ τ , and τ1 is τ by Property iv. Moreover, Q̂ is [τ/α] ◦ Q̂′. Then θ is [τ/α] ◦ θ′1 ◦ Q̂
′.

Consequently, θ is equivalent to [τ/α] ◦ θ ′1 ◦ [τ/α] ◦ Q̂′, that is, [τ/α] ◦ θ′1 ◦ Q̂. This is
the expected result.

Property vi: It is by induction on the derivation of (Q) σ1 v σ2. Cases R-Trans,
A-Hyp, . . . and I-Rigid are not possible since the derivation is flexible.

◦ Case Eq-Refl: immediate.

◦ Case R-Trans: By induction.
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◦ Case R-Trans: By induction.

◦ Case Eq-Free: This case corresponds to adding or removing useless binders in an
ML type scheme.

◦ Case Eq-Comm: This case corresponds to commuting binders in an ML type
scheme.

◦ Case Eq-Var: 〈〈∀ (α≥ σ) α〉〉 and 〈〈σ〉〉 are identical.

◦ Case R-Context-R: Let Qa be (Q,α≥ σ0). Let ∀ (Q0) τ0 be 〈〈σ0〉〉. Let Q′, θ be
〈〈Q〉〉, and let θ′ be [τ0/α]. The premise is (Qa) σ

′
1 v σ′2, and we have σ1 = ∀ (α≥σ0) σ

′
1,

as well as σ2 = ∀ (α≥σ0) σ
′
2. We have 〈〈Qa〉〉 = Q′Q0, θ◦θ

′ by Property ii. By induction
hypothesis, we have θ ◦ θ′(〈〈σ′1〉〉) vML θ ◦ θ

′(〈〈σ′2〉〉) (1). Hence, we have

θ(〈〈∀ (α≥ σ0) σ1〉〉) = θ(∀ (Q0) θ
′(〈〈σ1〉〉) by definition

= ∀ (Q0) θ ◦ θ
′(〈〈σ1〉〉)

vML ∀ (Q0) θ ◦ θ
′(〈〈σ2〉〉) by (1)

= θ(∀ (Q0) θ
′(〈〈σ2〉〉))

= θ(〈〈∀ (α≥ σ0) σ2〉〉) by definition

This is the expected result.

◦ Case R-Context-L: See R-Context-Flexible

◦ Case R-Context-Flexible: The premise is ∀ (Q) σ ′
1 v σ′2, and the conclusion is

∀ (Q) ∀ (α≥σ′1) σ v ∀ (α≥σ′2) σ. Let Q′θ be 〈〈Q〉〉. Let ∀ (Q1) τ1 be 〈〈σ′1〉〉 and ∀ (Q2) τ2
be 〈〈σ′2〉〉. Let θ1 be [τ1/α] and θ2 be [τ2/α]. We have 〈〈∀ (α≥ σ′

1) σ〉〉 = ∀ (Q1) θ1(〈〈σ〉〉)
and 〈〈∀ (α≥σ′2) σ〉〉 = ∀ (Q2) θ2(〈〈σ〉〉). By induction hypothesis, we have θ(〈〈σ ′

1〉〉) vML

θ(〈〈σ′2〉〉), that is, ∀ (Q1) θ(τ1) vML ∀ (Q2) θ(τ2). By Lemma 8.1.1 (page 171), we get
∀ (Q1) θ ◦ θ1(〈〈σ〉〉) vML ∀ (Q2) θ ◦ θ2(〈〈σ〉〉), which is the expected result.

◦ Case Eq-Mono: The premises are (α � σ0) ∈ Q and (Q) σ0 ≡ τ0. The conclusion
is (Q) τ ≡ τ [τ0/α]. We have Q̂(α) = Q̂(τ0) by definition. Let Q′, θ be 〈〈Q〉〉. We have
θ(α) = θ(τ0) by Property v. Hence, we have θ(τ) = θ(τ [τ0/α]). This is the expected
result.

◦ Case I-Hyp: We have (α1 ≥ σ1) ∈ Q and the conclusion is (Q) σ1 v α1. Let
∀ (Q1) τ1 be 〈〈σ1〉〉 and Q′, θ be 〈〈Q〉〉. By definition, θ(α1) = θ(τ1). Besides, θ(∀ (Q1) τ1)
is ∀ (Q1) θ(τ1) since Q1 is unconstrained, and ∀ (Q1) θ(τ1) vML θ(τ1) holds, that is,
∀ (Q1) θ(τ1) vML θ(α1). Thus we have the expected result θ(∀ (Q1) τ1) vML θ(α1).

◦ Case I-Bot: ∀ (α) α vML σ holds for any ML type σ.

This proves the property.
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Proof of Lemma 8.3.2

Let us name the conclusions (1) through (4) in order of appearance:

(Q0) Γ ` a : ∀ (Q′) σ′1 (1) Q0Q v Q0Q
′ (2) (Q0Q

′) σ′1 A− σ (3)

(Q0) ∀ (Q′) σ v σ0 (4)

We write Q′′ for (Q,α1 = σ, α0 = σ). By Lemma 6.2.6, it suffices to show the result for
(Q0) Γ `

O

(a : ∃ (Q) σ) : ∀ (Q1) τ0 (5) with (Q0) ∀ (Q1) τ0 v σ0 (6). The premises
of (5) are necessarily

(Q0) Γ `
O

a : σ1 (7) (Q0) σ1 v ∀ (Q1) τ1 (8)

(Q0) ∀ (Q′′) α1 → α0 v ∀ (Q1) τ1 → τ0 (9)

◦ Soundness Assume (1), (2), (3), and (4). Take (Q′, α1 = σ′1, α0 = σ) for Q1, α1

for τ1, and α0 for τ0. By Lemma 6.2.6 and (1), there exists σ1 such that (7) holds and
(Q0) σ1 v ∀ (Q′) σ′1 (10) holds. By Eq-Var?, we have (Q0) ∀ (Q1) τ1 ≡ ∀ (Q′) σ′1.
Hence, (10) gives (Q0) σ1 v ∀ (Q1) τ1 (8). We have (Q0Q) ∀ (Q′′) α1 → α0 v ∀ (α1 =σ)
∀ (α0 = σ) α1 → α0 (11) by I-Drop?. By (2) and Lemma 3.6.4 applied to (11), we get
(Q0Q

′) ∀ (Q′′) α1 → α0 v ∀ (α1 =σ) ∀ (α0 =σ) α1 → α0. Using I-Abstract with (3),
we get (Q0Q

′) ∀ (Q′′) α1 → α0 v ∀ (α1 = σ′1) ∀ (α0 = σ) α1 → α0. Hence, by R-

Context-R and Eq-Free, we get (Q0) ∀ (Q′′) α1 → α0 v ∀ (Q′) ∀ (α1=σ′1) ∀ (α0=σ)
α1 → α0, that is (Q0) ∀ (Q′′) α1 → α0 v ∀ (Q1) α1 → α0 (9). The premises (7), (8), (9)
are checked, thus Rule App applies and gives (Q0) Γ `O (a : ∃ (Q) σ) : ∀ (Q1) τ0 (5).
Finally, (Q0) ∀ (Q1) τ0 ≡ ∀ (Q′) σ holds by Eq-Var?, thus (Q0) ∀ (Q1) τ0 v σ0 (6)
holds by (4).
◦ Completeness For simplicity, we assume that dom(Q/ ftv(σ)) = dom(Q) (12),

that is, Q contains only useful bindings. By hypothesis, (5) and (6) hold, thus we
have the premises (7), (8), and (9). By Rule Inst, (7) and (8), we have (Q0) Γ `
a : ∀ (Q1) τ1 (13). By Lemma 3.4.4 applied to (9), there exists a prefix P1 such that
∀ (P1) τ

′
1 → τ ′0 is an alpha-conversion of ∀ (Q1) τ1 → τ0, and a substitution θ such that

(Q0P1) θ(α1 → α0) ≡ τ ′1 → τ ′0 (14) J = dom(Q′′/α1 → α0) (15) dom(θ) ⊆ J

Q0Q
′′ vdom(Q0)∪J Q0P1θ (16)

From (12) and (15), we get J = dom(Q′′). Hence, (16) becomes Q0Q
′′ v Q0P1θ (17).

By Property 3.4.2.i (page 106) and PE-Free, we get Q0Q v Q0P1θ, that is (2) by
taking Q′ = P1θ. By Property 1.5.11.viii (page 54) on (14), we get (Q0P1) θ(α1) ≡
τ ′1 (18) and (Q0P1) θ(α0) ≡ τ ′0 (19). By alpha-conversion, (13) becomes (Q0) Γ `
a : ∀ (P1) τ

′
1. From (18), and Inst, we get (Q0) Γ ` a : ∀ (P1) θ(α1), that is, (Q0)
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Γ ` a : ∀ (Q′) α1 (1) by taking σ′1 = α1. We have (Q0Q
′′) σ @− α1 by A-Hyp.

Hence, by Lemma 3.6.4 on (17), we get (Q0Q
′) σ @− α1, that is, (3). Similarly, we

can derive (Q0Q
′) σ @− α0. Hence, (Q0) ∀ (Q′) σ v ∀ (Q′) α0 (20) holds by R-

Context-R. We have (Q0) ∀ (Q′) α0 ≡ ∀ (P1) τ
′
0 from (19). By alpha-conversion, we

have (Q0) ∀ (Q′) α0 ≡ ∀ (Q1) τ0 (21). By R-Trans on (20), (21), and (6) we get
(Q0) ∀ (Q′) σ v σ0, that is, (4).

Proof of Corollary 8.3.3

Directly, we assume (Q0) Γ ` (a : ?) : σ0 holds. By Lemma 6.2.6, (Q0) Γ `
O

(a :
?) : σ′0 (1) holds with (Q0) σ

′
0 v σ0 (2). The judgment (1) must be derived by Rule

Oracle. Thus there must exists σ1 and σ2 such that we have

(Q0) Γ `
O

a : σ1 (3) (Q0) σ1 v σ2 (4) (Q0) σ2 A− σ′0 (5)

Let φ be a renaming of domain dom(Q0). Let Q be φ(Q0) and σ be φ(σ0). Let Q′ be
φ¬. Let σ′1 be φ(σ2) and σ be φ(σ′0). By Rule Inst, (3) and (4), we get (Q0) Γ ` a : σ2,
which gives by Eq-Mono? (Q0) Γ ` a : ∀ (Q′) σ′1 (6). We have Q0Q v Q0Q

′ (7)
by Property 3.4.2.v (page 106). From (5), we get (Q0Q

′) φ(σ′0) @− φ(σ2), that is,
(Q0Q

′) σ @− σ′1 (8). By (2), we have (Q0) ∀ (Q′) σ v σ0 (9). Hence, by (6), (7), (8), (9),
and by Lemma 8.3.2 we have (Q0) Γ ` (a : ∃ (Q) σ) : σ0. This is the expected result.

Conversely, by Lemma 8.3.2, there exists Q′ and σ′1 such that (Q0) Γ ` a : ∀ (Q′)
σ′1 (10) holds as well as (Q0Q

′) σ′1 A− σ (11) and (Q0) ∀ (Q′) σ v σ0 (12). By Rule
R-Context-R on (11), we get (Q0) ∀ (Q′) σ′1 A− ∀ (Q′) σ (13). Hence, by (10), (13)
and Rule Oracle, we get (Q0) Γ ` (a : ?) : ∀ (Q′) σ. We get the expected result by
Rule Inst and (12).

Proof of Lemma 8.3.4

Hypothesis H0 is easily checked. Hypothesis H1 is a direct consequence of Corol-
lary 8.3.3. Hypothesis H2: (v : ∃ (Q) σ) always reduces.

Proof of Lemma 10.2.1

By Lemmas 2.5.5 and 2.5.6, we have a restricted derivation of (Q) σ1 @−ᾱ σ2 (1). We
show wY (σ2) 6Z wY (σ1) by induction on the derivation of (1). Case A-Equiv’ is a
direct consequence of Lemma 2.7.5. Case R-Trans is by induction hypothesis.

◦ Case A-Context-L’: We have σ1 = ∀ (α = σ′1) σ, σ2 = ∀ (α = σ′2) σ, and the
premise is (Q) σ′1 @− σ′2. By induction hypothesis, we have wY (σ′2) 6Z wY (σ′1) (2).
By Lemma 2.5.6, we have nf(σ) 6= α, and α ∈ ftv(σ). Hence, by definition we have
wY (σ1) = Y × wY (σ′1) + wY (σ) and wY (σ2) = Y × wY (σ′2) + wY (σ). We conclude
by (2), then.
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◦ Case R-Context-R: We have σ1 = ∀ (α � σ) σ′1, σ2 = ∀ (α � σ) σ′2, and the
premise is (Q,α � σ) σ′

1 @−ᾱ∪{α} σ′2 (3). By induction hypothesis, we have wY (σ′2) 6Z

wY (σ′1) (4). We consider a four subcases:
Subcase σ ∈ T : Then wY (σ1) = wY (σ′1) and wY (σ2) = wY (σ′2). We conclude

by (4). In the following, we assume σ /∈ T . By (3), and Lemmas 2.5.7 (page 83)
and 2.1.4 (page 67), we have α ∈ ftv(σ′1) if and only if α ∈ ftv(σ′

2) (5).
Subcase nf(σ′1) = α: Then we have (Q,α � σ) σ′

1 ≡ σ′2 by Lemma 2.1.6, which
implies (Q) σ1 ≡ σ2. We conclude by Lemma 2.7.5.

Subcase α /∈ ftv(σ′1): Then α /∈ ftv(σ′2) by (5). Hence, we have wY (σ1) =
wY (σ′1) and wY (σ2) = wY (σ′2). We conclude by (4).

Subcase α ∈ ftv(σ′1): Then α ∈ ftv(σ′2) by (5). Either wY (σ2) is Y × wY (σ) +
wY (σ′2) or it is wY (σ) if nf(σ′2) = α. In both cases, we see that wY (σ2) =Z wY (σ) +
wY (σ′2). By (4), we have wY (σ2) 6Z wY (σ) + wY (σ′1), that is, wY (σ2) 6Z wY (σ1).

◦ Case A-Hyp’: We have σ2 = α, with (α = σ1) ∈ Q. We simply note that wY (σ2)
is wY (α), that is, 0.

◦ Case A-Alias’: We check that wY (σ1) =Z wY (σ2).

◦ Case A-Up’: We check that wY (σ1) =Z wY (σ2).

Proof of Property 10.3.3

Property i: Let S be an ᾱ-stable set. Let θ be a substitution invariant on ᾱ. By defini-
tion, we have θ(S) ⊆ S. This implies fsub (θ(S)) ⊆ fsub (S) (1). By Property 10.3.1.ii,
we have θ(fsub (S)) ⊆ fsub (θ(S)) (2). By (2) and (1), we get θ(fsub (S)) ⊆ fsub (S).
This means that fsub (S) is ᾱ-stable.

Property ii: This is a direct consequence of Property i, by observing that {t} is ftv(t)-
stable.

Property iii: By hypothesis, S is ᾱ-stable (1) and β̄-stable (2). Let θ be a substitution
invariant on ᾱ ∩ β̄ (3). We show by induction on the size of dom(θ) that θ(S) ⊆ S
holds. If dom(θ) = ∅, then result is immediate. Otherwise, θ can be decomposed into
[t/α] ◦ θ′, such that the size of dom(θ′) is the size of dom(θ) minus one. We have to
show [t/α] ◦ θ′(S) ⊆ S. By induction hypothesis, we have θ ′(S) ⊆ S. Hence, it suffices
to show that S[t/α] ⊆ S (4). If α /∈ ᾱ, the substitution [t/α] is invariant on ᾱ, thus (4)
holds by (1). Otherwise, α ∈ ᾱ. By hypothesis (3), we must have α /∈ ᾱ ∩ β̄. Hence,
we have α /∈ β̄. Then the substitution [t/α] is invariant on β̄. Thus (4) holds by (2).
In both cases, we have shown (4). Hence, by induction, we have θ(S) ⊆ S. This holds
for any θ invariant on ᾱ ∩ β̄, thus S is (ᾱ ∩ β̄)-stable.

Property iv: By hypothesis, S1 is ᾱ-stable (1) and S2 is ᾱ-stable (2). Let t1 be in S1. If
t1 ∈ Σ¬

β̄
, then t1 ∈ S1∩Σ¬

β̄
, thus t1 ∈ S2∩Σ¬

β̄
by hypothesis. Hence, t1 ∈ S2. Otherwise,
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t1 /∈ Σ¬
β̄
, which means that some free variables of t1 are in β̄. Let φ be a renaming of

domain β̄ mapping β̄ to fresh variables, that is, variables outside ᾱ ∪ β̄ ∪ ftv(t1). Since
we have β̄ # ᾱ by hypothesis, φ is invariant on ᾱ. Hence, φ(S1) ⊆ S1 holds by (1).
This implies φ(t1) ∈ S1. Besides, φ(t1) ∈ Σ¬

β̄
. Hence, as shown above, φ(t1) ∈ S2.

We note that φ¬ is a renaming invariant on ᾱ ∪ β̄ ∪ ftv(t1). Hence, φ¬(S2) ⊆ S2 holds
by (2). This implies φ¬ ◦ φ(t1) ∈ S2, that is, t1 ∈ S2. As a conclusion, we have shown
S1 ⊆ S2.

Property v: It is a direct consequence of Property iv.

Property vi: As a preliminary result, we show
⋃

α∈I

Σ¬
ᾱ∪{α} = Σ¬

ᾱ (1). Indeed, we have

Σ¬
ᾱ∪{α} ⊆ Σ¬

ᾱ for any α. Hence,
⋃

α∈I Σ¬
ᾱ∪{α} ⊆ Σ¬

ᾱ holds. Conversely, let t be in Σ¬
ᾱ.

The set ftv(t) is finite and the set I is infinite. Hence, there exists α ∈ I such that
α /∈ ftv(t). Then we have t ∈ Σ¬

ᾱ∪{α}, that is, t ∈
⋃

α∈I Σ¬
ᾱ∪{α}. As a conclusion, we

have shown (1).

We get back to the proof of the property. We have S1 ∩ Σ¬
ᾱ∪{α} ⊆ S2 ∩ Σ¬

ᾱ∪{α} for

all α in I. Hence, taking the union we get
⋃

α∈I

S1 ∩ Σ¬
ᾱ∪{α} ⊆

⋃

α∈I

S2 ∩ Σ¬
ᾱ∪{α}, that is,

S1 ∩

(⋃

α∈I

Σ¬
ᾱ∪{α}

)
⊆ S2 ∩

(⋃

α∈I

Σ¬
ᾱ∪{α}

)
. By (1), we get S1 ∩ Σ¬

ᾱ ⊆ S2 ∩ Σ¬
ᾱ, which

means S1 ⊆ᾱ S2.

Property vii: Direct consequence of Property vi.

Property viii: By hypothesis, we have S1 ⊆ᾱ S2 (1). We have to show fsub (S1) ⊆ᾱ

fsub (S2). Let t be in fsub (S1)∩Σ¬
ᾱ. By definition, we have ftv(t) # ᾱ, and there exists

t1 in S1 such that t1 vF t (2). Observing that ftv(t1) ⊆ ftv(t), we have ftv(t1) # ᾱ.
Hence, t1 ∈ S1 ∩ Σ¬

ᾱ. From (1), we get t1 ∈ S2. Hence, from (2), we have t ∈ fsub (S2).
This is the expected result.

Property ix: Direct consequence of Property viii.

Property x: If we have ᾱ # codom(θ) and S1 =ᾱ S2, then θ(S1) =ᾱ θ(S2). Let t be in
θ(S1) ∩ Σ¬

ᾱ. There exists t1 in S1 such that t = θ(t1). Since ᾱ # ftv(t), we must have
ᾱ # ftv(t1). Hence, t1 is in S1∩Σ¬

ᾱ, which implies t1 ∈ S2. Then θ(t1) ∈ θ(S2). We have
shown θ(S1) ⊆ᾱ θ(S2). By symmetry, we have θ(S2) ⊆ᾱ θ(S1), thus θ(S1) =ᾱ θ(S2)
holds.
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Proof of Property 10.3.6

Property i: In all cases ((σ)) is of the form fsub (S) for some set of types S, and we
simply note that fsub (fsub (S)) = fsub (S).

Property ii: By structural induction on σ.

◦ Case σ is τ : Then ((σ)) is fsub (τ). Let t be in ((σ)). We have τ vF t, which implies
that t is equivalent to τ . Hence, ftv(t) = ftv(τ), and ∀α · t is equivalent to t. As a
consequence, we have ∀α · t ∈ ((σ)), which is the expected result.

◦ Case σ is ⊥: Then ((σ)) is fsub (∀ (α) α). We immediately have ∀α · t ∈ ((σ)) for
any t. Hence, ∀α · ((σ)) ⊆ ((σ)).

◦ Case σ is ∀ (β = σ1) σ2: We can freely assume β 6= α. By definition, ((σ))
is fsub

(
((σ2))[σ1/β]

)
. Hence, ∀α · ((σ)) is ∀α · fsub

(
((σ2))[σ1/β]

)
. Thus, by Prop-

erty 10.3.1.iii, we have ∀α · ((σ)) ⊆ fsub
(
∀α · (((σ2))[σ1/β])

)
. By hypothesis, α /∈

ftv(σ) and σ is in normal form, hence α /∈ ftv(σ1). By Property 10.3.1.i, we get
α /∈ ftv(σ1), thus ∀α· and the substitution [σ1/β] commute, leading to ∀α · ((σ)) ⊆
fsub

(
(∀α · ((σ2)))[σ1/β]

)
. By induction hypothesis, we have ∀α · ((σ2)) ⊆ ((σ2)). Hence,

∀α · ((σ)) ⊆ fsub
(
((σ2))[σ1/β]

)
holds, that is, ∀α · ((σ)) ⊆ ((σ)).

◦ Case σ is ∀ (β ≥ σ1) σ2: We can freely assume β 6= α. By definition, ((σ)) is

fsub




ᾱ#ftv(σ1 ,σ2)⋃

t1∈((σ1))

∀ ᾱ · ((σ2))[t1/β]




Hence, we have

∀α · ((σ)) = ∀α · fsub
(⋃ᾱ#ftv(σ1,σ2)

t1∈((σ1)) ∀ ᾱ · ((σ2))[t1/β]
)

⊆ fsub
(⋃ᾱ#ftv(σ1,σ2)

t1∈((σ1)) ∀α · ∀ ᾱ · ((σ2))[t1/β]
)

by Prop. 10.3.1.iii

By hypothesis, α /∈ ftv(σ) and σ is in normal form. We simply note that α ∪ ᾱ #
ftv(σ1, σ2) holds for all ᾱ disjoint from ftv(σ1, σ2). Hence, we have

∀α · ((σ)) ⊆ fsub




ᾱ#ftv(σ1,σ2)⋃

t1∈((σ1))

∀ ᾱ · ((σ2))[t1/β]




That is, ∀α · ((σ)) ⊆ ((σ)).

Property iii: Let θ be a substitution invariant on ftv(σ). Let ᾱ be its domain. By Prop-
erty ii, we have ∀ ᾱ · ((σ)) ⊆ ((σ)). Hence, applying fsub (), we get fsub (∀ ᾱ · ((σ))) ⊆
fsub (((σ))). By Property i, this is fsub (∀ ᾱ · ((σ))) ⊆ ((σ)). We simply note that
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θ(((σ))) ⊆ fsub (∀ ᾱ · ((σ))). Hence, we have θ(((σ))) ⊆ ((σ)). This holds for all θ in-
variant on ftv(σ), thus ((σ)) is ftv(σ)-stable.

Property iv: Let t1 be in (fsub (t))[t′/α]. By definition, there exists t′1 such that
t vF t′1 (1) and t1 is t′1[t

′/α]. We note that t[t′/α] vF t′1[t
′/α] holds from (1),

that is, t[t′/α] vF t1. Hence, t1 is in fsub (t[t′/α]). We have shown (fsub (t))[t′/α] ⊆
fsub (t[t′/α]) (2).

Conversely, let t1 be in fsub (t[t′/α]) ∩Σ¬
α. This means that t[t′/α] vF t1 (3) holds

and α /∈ ftv(t1) (4). If α /∈ ftv(t), we have t1 ∈ fsub (t), thus we have t1[t
′/α] ∈

(fsub (t))[t′/α], that is, by (4), t1 ∈ (fsub (t))[t′/α] (5). From now on, we assume that
α ∈ ftv(t) (6). By hypothesis and alpha-conversion, t is of the form ∀ ᾱ · t0, with
{α} ∪ ftv(t′) # ᾱ (7), t0 6= α, and t0 is not a quantified type. Hence, t[t′/α] is equal
to ∀ ᾱ · (t0[t

′/α]), and t0[t
′/α] is not a quantified type. From (3), t1 is of the form

∀ β̄ · (t0[t
′/α])[t̄/ᾱ] (8), for some types t̄ and β̄ disjoint from ftv(t0[t

′/α]) (9). From (9)
and (6), we get β̄ # ftv(t′) (10). By alpha-conversion, we can freely assume that
α /∈ β̄ (11). Hence, we have β̄ # ftv(t0) from (9) and (11). Therefore, ∀ ᾱ · t0 vF

∀ β̄ · t0[t̄/ᾱ] holds (by definition of vF ). Let t2 be ∀ β̄ · t0[t̄/ᾱ]. We have shown t vF t2.
Additionally, α /∈ ftv(t̄) (12) holds from (4) and (8). We note that t1 = t2[t

′/α] holds
from (8), (11), (7), (12), and (10). Hence, we have shown that t1 is in (fsub (t))[t′/α].
In both cases, we have shown (5). This implies fsub (t[t′/α]) ∩ Σ¬

α ⊆ (fsub (t))[t′/α].
Thus, fsub (t[t′/α]) ⊆α (fsub (t))[t′/α] (13) holds.

From (2) and (13), we have fsub (t[t′/α]) =α (fsub (t))[t′/α].

Property v: By Property 10.3.1.ii, we have θ(fsub (t)) ⊆ fsub (θ(t)) (1). Conversely,
we show by induction on the size of dom(θ) that fsub (θ(t)) ⊆dom(θ) θ(fsub (t)). If
dom(θ) is empty, the result is immediate. Otherwise, we can write θ in the form
θ′ ◦ [t′/α], with α /∈ dom(θ′) and the size of dom(θ′) is strictly smaller than the size
of dom(θ). By hypothesis, the normal form of t is not in dom(θ). Hence, the normal
form of t is not α. By Property iv, we get fsub (t[t′/α]) =α (fsub (t))[t′/α] (2). Let t1
be in fsub (θ(t)) ∩ Σ¬

dom(θ) (3). We have t1 ∈ fsub (θ1(t[t
′/α])), and t1 ∈ Σ¬

dom(θ1).

By induction hypothesis, we get t1 ∈ θ1(fsub (t[t′/α])). Hence, there exists t′1 in
fsub (t[t′/α]) such that t1 = θ1(t

′
1). We note that α /∈ ftv(t1) holds from (3). It implies

α /∈ ftv(t′1). Hence, t′1 is in fsub (t[t′/α]) ∩ Σ¬
α. By (2), we get t′1 ∈ (fsub (t))[t′/α].

Hence, t1 is in θ1(fsub (t))[t′/α], that is, t1 ∈ θ(fsub (t)). In summary, we have shown
fsub (θ(t)) ⊆dom(θ) θ(fsub (t)). With (1), we get fsub (θ(t)) =dom(θ) θ(fsub (t)).

Property vi: First, we note that if t1 vF t2 holds, then we have t1 6/ t2 (1). Then we
proceed by structural induction on σ.

◦ Case σ is τ : Then ((σ)) is fsub (τ), thus t is equivalent to τ , and τ/ = t/ holds.
Hence, we have τ 6/ t.
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◦ Case σ is ⊥: Then σ 6/ t always holds.

◦ Case σ is ∀ (α1 = σ1) σ2: Then ((σ)) is fsub
(
((σ2))[σ1/α]

)
. Thanks to Remark (1)

above, it suffices to show the result for t in ((σ2))[σ1/α]. Hence, we assume t of the
form t2[σ1/α] for t2 ∈ ((σ2)). By induction hypothesis, we have σ2 6/ t2. Hence,
we have proj(σ2)[proj(σ1)/α] 6/ t2[proj(σ1)/α] by Property 2.1.2.ii. We note that
proj(σ2)[proj(σ1)/α] is proj(σ), and that proj(σ1) = proj(σ1). Hence, we get proj(σ) 6/

t2[proj(σ1)/α], that is, σ 6/ t, which is the expected result.

◦ Case σ is ∀ (α1 ≥ σ1) σ2: As above, it suffices to show the result for t in ∀ ᾱ ·
((σ2))[t1/α], with t1 ∈ ((σ1)), and ᾱ # ftv(σ1, σ2). Hence, t is of the form ∀ ᾱ ·
t2[t1/α], for t2 ∈ ((σ2)). By induction hypothesis, we have proj(σ2) 6/ proj(t2). By
Property 2.1.2.ii, we get proj(σ2)[proj(σ1)/α] 6/ proj(t2)[proj(σ1)/α] (2). By induc-
tion hypothesis, we have proj(σ1) 6/ proj(t1). Hence, by Property 2.1.2.iii, we get
proj(t2)[proj(σ1)/α] 6/ proj(t2)[proj(t1)/α] (3). By transitivity of 6/, (2), and (3), we
get proj(σ) 6/ proj(t2[t1/α]), that is, σ 6/ t2[t1/α]. It implies ∀ (ᾱ) σ 6/ ∀ ᾱ · t2[t1/α],
that is ∀ (ᾱ) σ 6/ t. Observing that ∀ (ᾱ) σ ≡ σ by Eq-Free, we get σ 6/ t by
Property 1.5.4.i.

Property vii: By hypothesis, nf(σ) is not ⊥. By Property 2.1.5.iii, it implies σ/ε 6= ⊥.
Hence, for all t′ in ((σ)), we have t′/ε = σ/ε (1) by Property vi. By hypothesis, nf(σ)
is not α, that is, σ/ε 6= α by Property 2.1.5.ii. Hence, t′/ε 6= α holds from (1),
which implies that t′ is not equivalent to α. As a consequence, fsub (t′[t/α]) =α

fsub (t′) [t/α] holds by Property iv. This holds for all t′ in ((σ)), thus fsub (((σ))[t/α]) =α

fsub (((σ))) [t/α]. We conclude by Property i, then.

Property viii: We show by structural induction on σ that ((σ)) = fsub (σ).

◦ Case σ is τ : Then we have ((σ)) = fsub (τ) and σ = τ , which gives ((σ)) = fsub (σ).

◦ Case σ is ⊥: Then we have ((σ)) = fsub (∀α · α) and σ = ∀α · α. Hence, ((σ)) =
fsub (σ).

◦ Case σ is ∀ (α = σ1) σ2: Then we have both ((σ)) = fsub
(
((σ2))[σ1/α]

)
(1) and

σ = σ2[σ1/α]. We note that σ2 is not α because σ is in normal form. Hence, we
have fsub (σ) =α fsub

(
σ2

)
[σ1/α] by Property iv. By induction hypothesis, we get

fsub (σ) =α ((σ2))[σ1/α] (2). Since σ is in normal form, nf(σ2) is neither α nor ⊥, hence
the relation fsub

(
((σ2))[σ1/α]

)
=α ((σ2))[σ1/α] (3) holds by Property vii. From (1), (2)

and (3), we get fsub (σ) =α ((σ)). This holds for any suitable choice of α, thus we get
fsub (σ) =∅ ((σ)) by Property 10.3.3.vii. That is fsub (σ) = ((σ)).

◦ Case σ is ∀ (α≥⊥) σ2: Then we have ((σ)) = fsub
(⋃ᾱ#ftv(σ2)

t∈((⊥)) ∀ ᾱ · ((σ2))[t/α]
)

(4)

and σ = ∀α · σ2 (5). We note that ((⊥)) is fsub (∀α · α) by definition. Hence, t ∈
((⊥)) holds for any t. Additionally, fsub (σ) is by definition the set of instances of σ.

From (5), it is the set
⋃ᾱ#ftv(σ2)

t ∀ ᾱ · fsub
(
σ2

)
[t/α]. By induction hypothesis, we get
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fsub (σ) =
⋃ᾱ#ftv(σ2)

t ∀ ᾱ · ((σ2))[t/α]. We see that fsub (fsub (σ)) = ((σ)) holds from (4),
that is, fsub (σ) = ((σ)).

Property ix: We obviously have

ᾱ#β̄∪γ̄⋃

t∈S

∀ ᾱ · S′[t/α] ⊆

ᾱ#β̄⋃

t∈S

∀ ᾱ · S′[t/α]. Hence, we only

have to show

ᾱ#β̄⋃

t∈S

∀ ᾱ · S′[t/α] ⊆

ᾱ#β̄∪γ̄⋃

t∈S

∀ ᾱ · S′[t/α]. Let t1 be in the left-hand term.

There exist ᾱ disjoint from β̄, t in S and t′ in S′ such that t1 = ∀ ᾱ · t′[t/α]. Let
φ be a renaming of domain ᾱ mapping its domain to fresh variables, that is, outside
ᾱ ∪ β̄ ∪ γ̄ ∪ ftv(t) ∪ ftv(t′) ∪ {α}. Let φ′ be φ restricted to ᾱ − {α}. We note that
φ and φ′ are invariant on β̄. Hence, φ(S) ⊆ S and φ′(S′) ⊆ S′ hold. We note that
∀φ(ᾱ)·φ′(t′)[φ(t)/α] is an alpha-conversion of t1. Additionally, φ(ᾱ) # β̄∪γ̄, φ′(t′) ∈ S′

and φ(t) ∈ S. Hence, we have t1 ∈

ᾱ#β̄∪γ̄⋃

t∈S

∀ ᾱ · S′[t/α], which is the expected result.

Property x: Thanks to Property 10.3.1.ii (page 193), it suffices to show the relation
fsub (θ(S)) ⊆dom(θ) θ(fsub (S)) (1). Let t be in fsub (θ(S))∩Σ¬

dom(θ) (2). By definition,

there exists t′ in S such that θ(t′) vF t (3). We can freely assume that t′ is in normal
form. We consider two cases.

◦ Case t′ ∈ dom(θ): Then θ(t′) is a monotype (by hypothesis), thus t and θ(t′) are
equivalent from (3). This implies that there exists t′′ equivalent to t′ such that t = θ(t′′).
Thus, we have t ∈ θ(fsub (S)).

◦ Otherwise we have t′ /∈ dom(θ), and t /∈ dom(θ) holds from (2). From (3) we have
t ∈ fsub (θ(t′)). By Property iv, we get t ∈ θ(fsub (t′)), which implies t ∈ θ(fsub (S)).

In both cases, we have t ∈ θ(fsub (S)). Hence, (1) is shown and fsub (θ(S)) =dom(θ)

θ(fsub (S)) holds.

Property xi: This is shown by structural induction on σ. Before all, we note that
θ(((σ))) ⊆ Σ¬

dom(θ) holds since θ is idempotent by convention. Hence, θ(((σ))) =dom(θ)

((θ(σ))) implies θ(((σ))) ⊆ ((θ(σ))). We will implicitly apply this result to the induction
hypothesis in some of the following cases.

◦ Case σ is τ : Then ((σ)) is fsub (τ), thus θ(((σ))) is fsub (θ(τ)), that is, ((θ(τ))).

◦ Case σ is ⊥: Then ((θ(σ))) is fsub (∀α · α), that is, ((⊥)). Hence, it remains to show
((⊥)) =dom(θ) θ(((⊥))) (1). We clearly have θ(((⊥))) ⊆ ((⊥)) (2). Conversely, let t be in
((⊥)) ∩ Σ¬

dom(θ). We have ftv(t) # dom(θ). Hence, θ(t) = t. Thus, t is in θ(((⊥))). We

have shown ((⊥)) ⊆dom(θ) θ(((⊥))) (3). From (2) and (3), we get (1).
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◦ Case σ is ∀ (α = σ1) σ2: We can freely consider α /∈ dom(θ) ∪ codom(θ). We have
((σ)) = fsub

(
((σ2))[σ1/α]

)
(4). Besides, θ(σ) is ∀ (α = θ(σ1)) θ(σ2), thus ((θ(σ))) is by

definition the set fsub
(
((θ(σ2)))[θ(σ1)/α]

)
(5). We have

θ(((σ))) = θ(fsub
(
((σ2))[σ1/α]

)
) from (4)

⊆ fsub
(
θ(((σ2))[σ1/α])

)
by Property 10.3.1.ii

= fsub
(
θ(((σ2)))[θ(σ1)/α]

)

= fsub
(
θ(((σ2)))[θ(σ1)/α]

)
since θ(σ1) = θ(σ1) (easy)

(6) θ(((σ))) ⊆ fsub
(
θ(((σ2)))[θ(σ1)/α]

)
as a summary

Additionally, we have

(7) θ(((σ2))) ⊆ ((θ(σ2)))
(8) θ(((σ2)))[θ(σ1)/α] ⊆ ((θ(σ2)))[θ(σ1)/α]

(9) fsub
(
θ(((σ2)))[θ(σ1)/α]

)
⊆ fsub

(
((θ(σ2)))[θ(σ1)/α]

)

We have (7) by induction hypothesis, (8) by applying [θ(σ1)/α] to (7), and (9) by
applying fsub () to (8). Combining (6), (9), and (5), we get θ(((σ))) ⊆ ((θ(σ))) (10).

Conversely, we show ((θ(σ))) ⊆dom(θ)∪{α} θ(((σ))). Since σ is in normal form,
nf(σ2) is neither α nor ⊥. Hence, nf(θ(σ2)) is neither α nor ⊥. Then by Prop-
erty vii and (5), we get ((θ(σ))) =α ((θ(σ2)))[θ(σ1)/α] (11). Let t be in ((θ(σ))) ∩
Σ¬

dom(θ)∪{α} (12). From (11), we have t ∈ ((θ(σ2)))[θ(σ1)/α]. Hence, there exists

t2 ∈ ((θ(σ2))) (13) such that t = t2[θ(σ1)/α] (14). By induction hypothesis, we
have ((θ(σ2))) =dom(θ) θ(((σ2))) (15). Since we have ftv(t) # dom(θ) from (12),
we get ftv(t2) # dom(θ) (16) by (14). From (13), (16), and (15), we have t2 ∈
θ(((σ2))). Hence, t is in θ(((σ2)))[θ(σ1)/α], that is, in θ(((σ2))[σ1/α]). This implies

t ∈ θ(fsub
(
((σ2))[σ1/α]

)
). Hence, we have t ∈ θ(((σ))). This holds for all t in ((θ(σ))) ∩

Σ¬
dom(θ)∪{α}, hence we have ((θ(σ))) ⊆dom(θ)∪{α} θ(((σ))) (17). By (10) and (17), we

have ((θ(σ))) =dom(θ)∪{α} θ(((σ))). This holds for any choice of α. Hence, by Prop-
erty 10.3.3.vii, we get ((θ(σ))) =dom(θ) θ(((σ))).

◦ Case σ is ∀ (α≥σ1) σ2: We can freely assume α # dom(θ)∪codom(θ). By definition,

we have ((σ)) = fsub




ᾱ#ftv(σ1 ,σ2)⋃

t1∈((σ1))

∀ ᾱ · ((σ2))[t1/α]


. Hence, the set θ(((σ))) is equal to

ᾱ#ftv(σ1,σ2)⋃

t1∈((σ1))

θ(fsub (∀ ᾱ · ((σ2))[t1/α])). Let J be ftv(σ1)∪ftv(σ2)∪{α}∪dom(θ)∪codom(θ).

By Property iii, ((σ1)) and ((σ2)) are J -stable. By Property ix, we have θ(((σ))) =
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ᾱ#J⋃

t1∈((σ1))

θ(fsub (∀ ᾱ · ((σ2))[t1/α])) (18). Additionally, θ(σ) is ∀ (α = θ(σ1)) θ(σ2), thus

((θ(σ))) is

ᾱ#ftv(σ1,σ2)⋃

t1∈((θ(σ1))))

fsub (∀ ᾱ · ((θ(σ2)))[t1/α]). By Property iii, ((θ(σ1))) and ((θ(σ2)))

are J -stable. By Property ix, ((θ(σ))) =

ᾱ#J⋃

t1∈((θ(σ1))))

fsub (∀ ᾱ · ((θ(σ2)))[t1/α]) (19) holds.

Let t1 be in ((σ1)) and ᾱ disjoint from J . We have the following:

(20) θ(fsub (∀ ᾱ · ((σ2))[t1/α])) ⊆ fsub (θ(∀ ᾱ · ((σ2))[t1/α]))
(21) ⊆ fsub (∀ ᾱ · θ(((σ2))[t1/α]))
(22) = fsub (∀ ᾱ · θ(((σ2)))[θ(t1)/α])
(23) θ(fsub (∀ ᾱ · ((σ2))[t1/α])) ⊆ fsub (∀ ᾱ · ((θ(σ2)))[θ(t1)/α]))

We have (20) by Property 10.3.1.ii, (21) by commutation of θ and ∀ ᾱ· since ᾱ # J , (22)
by propagating θ, and (23) since θ(((σ2))) ⊆ ((θ(σ2))) holds by induction hypothesis.
We have (23) for all t1 in ((σ1)) and ᾱ disjoint from J . Hence, taking the union, we get
by (18)

θ(((σ))) ⊆

ᾱ#J⋃

t1∈((σ1))

fsub (∀ ᾱ · ((θ(σ2)))[θ(t1)/α]))

Observing that the sets {θ(t1) | t1 ∈ ((σ1))} and {t1 | t1 ∈ θ(((σ1)))} are equal, we get

θ(((σ))) ⊆

ᾱ#J⋃

t1∈θ(((σ1)))

fsub (∀ ᾱ · ((θ(σ2)))[t1/α])) (24)

By induction hypothesis, we have θ(((σ1))) ⊆ ((θ(σ1))). Hence, by (24) and (19), we get
θ(((σ))) ⊆ ((θ(σ))) (25). Conversely, we show that ((θ(σ))) ⊆dom(θ)∪{α} θ(((σ))) holds.
Let t be in ((θ(σ)))∩Σ¬

dom(θ)∪{α} (26). From (19), there exists t1 ∈ ((θ(σ1))) (27), ᾱ # J ,

and t2 ∈ ((θ(σ2))) such that ∀ ᾱ · t2[t1/α] vF t (28). We have ftv(t) # dom(θ) (29)
from (26). Thus, ftv(t2) # dom(θ) holds from (28). Hence, by induction hypothesis,
we have t2 ∈ θ(((σ2))). Hence, there exists t′2 ∈ ((σ2)) such that t2 = θ(t′2). From (28),
we get t ∈ fsub (∀ ᾱ · θ(t′2)[t1/α]). If α /∈ ftv(t2), then (28) can as well be written
∀ ᾱ · t2[t

′
1/α] vF t for some t′1 in θ(((σ1))), and we have t ∈ fsub (∀ ᾱ · θ(t′2)[t

′
1/α]) (30).

Otherwise, we have α ∈ ftv(t2), thus (28) and (29) imply ftv(t1) # dom(θ). Hence, by
induction hypothesis and (27), we get t1 ∈ θ(((σ1))), that is, there exists t′1 ∈ θ(((σ1)))
(namely t′1 = t1), such that t ∈ fsub (∀ ᾱ · θ(t′2)[t

′
1/α]). We see that (30) holds in

both cases for some t′1 ∈ θ(((σ1))). Hence, there exists t′′1 in ((σ1)) such that t′1 =
θ(t′′1) and t ∈ fsub (∀ ᾱ · θ(t′2)[θ(t

′′
1)/α]), that is, t ∈ fsub (θ(∀ ᾱ · t′2[t

′′
1/α])). From (26)
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and Property x, we get t ∈ θ(fsub (∀ ᾱ · t′2[t
′′
1/α])). As a consequence, we have t ∈

ᾱ#J⋃

t′′
1
∈((σ1))

θ(fsub
(
∀ ᾱ · ((σ2))[t

′′
1/α]

)
, that is, t ∈ θ(((σ))). This holds for all t in ((θ(σ))) ∩

Σ¬
dom(θ)∪{α}, thus we have ((θ(σ))) ⊆dom(θ)∪{α} θ(((σ))) (31). From (25) and (31), we

get ((θ(σ))) =dom(θ)∪{α} θ(((σ))). This holds for any choice of α, thus Property 10.3.3.vii
gives ((θ(σ))) =dom(θ) θ(((σ))).

Property xii: First, we show that ((σ)) = ((nf(σ))). Then we show that if σ≈σ ′ holds
for σ and σ′ in normal form, then ((σ)) = ((σ′)) holds. We conclude by Property 1.5.11.i,
then.

First, we show by induction on the number of universal quantifiers of σ that ((σ)) =
((nf(σ))). We proceed by case analysis on the shape of σ.

◦ Case τ : We have nf(τ) = τ .

◦ Case ⊥: We have nf(⊥) = ⊥.

◦ Case ∀ (α= σ1) σ2: We consider five subcases:
Subcase nf(σ2) = α: We have nf(σ) = nf(σ1) and by definition ((σ)) is

fsub
(
((σ2))[σ1/α]

)
. By induction hypothesis, ((σ2)) = fsub (α). Hence, ((σ)) equals

fsub
(
σ1

)
, that is, fsub

(
nf(σ1)

)
(by definition). By Property viii, we get ((σ)) =

((nf(σ1))).
Subcase nf(σ2) = ⊥: Then, nf(σ) is ⊥ and by definition the interpretation ((σ))

is fsub
(
((σ2))[σ1/α]

)
. By induction hypothesis, ((σ2)) = fsub (∀β · β). Hence, ((σ)) =

fsub
(
(fsub (∀β · β))[σ1/α]

)
. By Property 10.3.1.v, we get ((σ)) = fsub

(
(∀β · β)[σ1/α]

)
,

that is, ((σ)) = fsub (∀β · β). Hence, ((σ)) = ((⊥)).
From now on, we assume that nf(σ2) is neither ⊥ nor α, so that ((σ)) is by definition

fsub
(
((σ2))[σ1/α]

)
. Then by Property vii, we have ((σ)) =α ((σ2))[σ1/α] (1).

Subcase α /∈ ftv(σ2): Then nf(σ) is nf(σ2). From (1), we have ((σ)) =α

((σ2))[σ1/α] (2). By Property iii, ((σ2)) is ftv(σ2)-stable. As a consequence, the in-
clusion ((σ2))[σ1/α] ⊆ ((σ2)) (3) holds. Conversely, if t is in ((σ2)) ∩ Σ¬

α, we have
α /∈ ftv(t), thus t[σ1/α] = t, which implies t ∈ ((σ2))[σ1/α]. As a consequence,
((σ2)) ∩ Σ¬

α ⊆ ((σ2))[σ1/α]. This is by definition ((σ2)) ⊆α ((σ2))[σ1/α] (4). By (3)
and (4), we get ((σ2)) =α ((σ2))[σ1/α] (5). By (2) and (5), we get ((σ)) =α ((σ2)) (6).
By Property iii, ((σ)) is ftv(σ)-stable, that is, ftv(σ2)-stable. Additionally, we recall that
α /∈ ftv(σ2). Hence, by Property 10.3.3.v and (6), we get ((σ)) = ((σ2)). By induction
hypothesis, we have ((σ)) = ((nf(σ2))), that is, ((σ)) = ((nf(σ))).

Subcase σ1 ∈ T : Let τ be nf(σ1). We have nf(σ) = nf(σ2)[τ/α] (7). From (1),
we have ((σ)) =α ((σ2))[σ1/α]. By induction hypothesis, we get the relation ((σ)) =α

((nf(σ2)))[τ/α] (8). By Property xi, we have ((nf(σ2)))[τ/α] =α ((nf(σ2)[τ/α])) (9).
By (7), (8), and (9), we get ((σ)) =α ((nf(σ))). This holds for any choice of α, thus we
get ((σ)) = ((nf(σ))) by Property 10.3.3.vii.
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Otherwise, nf(σ) is ∀ (α= nf(σ1)) nf(σ2), and ((σ)) is fsub
(
((σ2))[σ1/α]

)
, that

is, fsub
(
((σ2))[nf(σ1)/α]

)
. By definition, ((nf(σ))) is fsub

(
((nf(σ2)))[nf(σ1)/α]

)
. By

induction hypothesis, it is equal to fsub
(
((σ2))[nf(σ1)/α]

)
, that is, ((σ)).

◦ Case ∀ (α≥ σ1) σ2: By definition, ((σ)) is fsub




ᾱ#ftv(σ1,σ2)⋃

t∈((σ1))

∀ ᾱ · ((σ2))[t/α]


 (10).

We consider five subcases:
Subcase nf(σ2) = α: From (10) and induction hypothesis, the set ((σ)) is equal

to fsub




ᾱ#ftv(σ1,σ2)⋃

t∈((nf(σ1)))

∀ ᾱ · t


. This can also be written

((σ)) =
⋃

ᾱ#ftv(σ1 ,σ2)

fsub (∀ ᾱ · ((nf(σ1)))) (11).

We immediately have ((nf(σ1))) ⊆ ((σ)) (12), taking ᾱ = ∅. Conversely, we have
∀ ᾱ · ((σ1)) ⊆ ((nf(σ1))) by Property ii. Hence, fsub (∀ ᾱ · ((σ1))) ⊆ fsub (((nf(σ1)))) by
applying fsub (), that is, fsub (∀ ᾱ · ((σ1))) ⊆ ((nf(σ1))) by Property i. Taking the union
over ᾱ, and by (11), we get ((σ)) ⊆ ((nf(σ1))) (13). By (12) and (13), we get ((σ)) =
((nf(σ1))), which is the expected result.

Subcase nf(σ2) = ⊥: From (10) and induction hypothesis, we have ((σ)) equal

to fsub




ᾱ#ftv(σ1 ,σ2)⋃

t∈((nf(σ1)))

∀ ᾱ · ((⊥))[t/α]


. Observing that ((⊥)) is fsub (∀ (β) β), and taking

ᾱ = ∅, we have fsub (fsub (∀β · β) [t/α]) ⊆ ((σ)) Hence, by Property 10.3.1.v, we have
fsub ((∀β · β)[t/α]) ⊆ ((σ)), that is, fsub (∀β · β) ⊆ ((σ)), that is, ((⊥)) ⊆ ((σ)). Con-
versely, ((σ)) ⊆ ((⊥)) obviously holds, thus we have ((σ)) = ((⊥)), which is the expected
result.

Subcase α /∈ ftv(nf(σ2)): From (10) and induction hypothesis, we have ((σ))

equal to fsub




ᾱ#ftv(σ1 ,σ2)⋃

t∈((σ1))

∀ ᾱ · ((nf(σ2)))[t/α]


 (14). We have ∀α·((nf(σ2))) ⊆ ((nf(σ2)))

by Property ii. Hence, (∀α · ((nf(σ2))))[t/α] ⊆ ((nf(σ2)))[t/α] holds, that is, ∀α ·
((nf(σ2))) ⊆ ((nf(σ2)))[t/α]. Applying fsub, we get the inclusion fsub (∀α · ((nf(σ2)))) ⊆
fsub (((nf(σ2)))[t/α]). Observing that ((nf(σ2))) ⊆ fsub (∀α · ((nf(σ2)))) holds, we get
((nf(σ2))) ⊆ fsub (((nf(σ2)))[t/α]). Hence, we have ((nf(σ2))) ⊆ ((σ)), taking ᾱ = ∅
in (14). Conversely, ((nf(σ2))) is ftv(σ2)-stable by Property iii. Note that [t/α] is in-
variant on ftv(σ2). Hence, ((nf(σ2)))[t/α] ⊆ ((nf(σ2))). This gives ∀ ᾱ · ((nf(σ2)))[t/α] ⊆
((nf(σ2))) by Property ii. Hence, ((σ)) ⊆ ((nf(σ2))) holds by (14), taking the union over
t and ᾱ. We have shown ((σ)) = ((nf(σ2))), which is the expected result.
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Subcase σ1 ∈ T : Let τ be nf(σ1). From (10) and induction hypothesis, ((σ))

is equal to fsub




ᾱ#ftv(σ1 ,σ2)⋃

t∈((τ))

∀ ᾱ · ((nf(σ2)))[t/α]


 (15). We note that t ∈ ((τ)) implies

t equivalent to τ . Hence, ((σ)) is also equal to fsub




ᾱ#ftv(σ1,σ2)⋃
∀ ᾱ · ((nf(σ2)))[τ/α]


.

Taking ᾱ = ∅, we have ((nf(σ2)))[τ/α] ⊆ ((σ)). By Property xi, we get ((nf(σ2)[τ/α])) ⊆α

((σ)), that is ((nf(σ))) ⊆α ((σ)) (16). Conversely, by Property xi we have ((nf(σ2)))[t/α] ⊆
((nf(σ2)[t/α])), that is, ((nf(σ2)))[t/α] ⊆ ((nf(σ))). Hence, ∀ ᾱ · ((nf(σ2)))[t/α] ⊆ ∀ ᾱ ·
((nf(σ))). By Property ii, we get ∀ ᾱ · ((nf(σ2)))[t/α] ⊆ ((nf(σ))). Hence, the inclusion
fsub (∀ ᾱ · ((nf(σ2)))[t/α] ⊆ ((nf(σ)))). This holds for all ᾱ disjoint from ftv(σ1, σ2) and
all t in ((τ)), hence we get ((σ)) ⊆ ((nf(σ))) (17) from (15). From (16) and (17), we get
((σ)) =α ((nf(σ))). This holds for any choice of α, hence we have ((σ)) = ((nf(σ))) by
Property 10.3.3.vii.

Otherwise: By induction hypothesis applied to σ1 and σ2, and (10), the set

((σ)) is equal to fsub




ᾱ#ftv(σ1,σ2)⋃

t∈((nf(σ1)))

∀ ᾱ · ((nf(σ2)))[t/α]


. Hence ((σ)) = ((∀ (α ≥ nf(σ1))

nf(σ2))), that is ((σ)) = ((nf(σ))).

Then we have to show that if we have σ≈σ ′ for σ and σ′ in normal form, then
((σ)) = ((σ′)) holds. The proof is by induction on the derivation of σ≈σ ′. Three rules
define the relation ≈. Two of them are context rules. These cases are shown directly
by induction hypothesis. The third case is the commutation rule: by hypothesis we
have α1 /∈ ftv(σ2) and α2 /∈ ftv(σ1), and

∀ (α1 �1 σ1, α2 �2 σ2) σ≈∀ (α2 �2 σ2, α1 �1 σ1) σ

Let σa be the left-hand type, and σb be the right-hand type. The definitions to com-
pute the sets ((σa)) and ((σb)) depend on the symbols �1 and �2. In order to factor-
ize the four possible cases, we consider the following remark: Let σ ′ be a type and
σ′′ be an F-type. Let S be {σ′}. Then we note that fsub (((σ))[σ′/α]) can be writ-

ten fsub




ᾱ#ftv(σ,σ′)⋃

t∈S

∀ ᾱ · ((σ))[t/α]


. Hence, taking S1

M

= ((σ1)) if �1 is flexible and

S1
M

= {σ1} is �1 is rigid, ((σa)) is equal to

fsub




ᾱ#ftv(σa)∪{α1}⋃

t1∈S1

∀ ᾱ · ((∀ (α2 �2 σ2) σ))[t1/α1]



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Taking S2
M

= ((σ2)) if �2 is flexible and S2
M

= {σ2} if �2 is rigid, ((σa)) is then equal to

fsub




ᾱ#ftv(σa)∪{α1}⋃

t1∈S1

∀ ᾱ · fsub




β̄#ftv(σ2 ,σ)⋃

t2∈S2

∀ β̄ · ((σ))[t2/α2]


 [t1/α1]




Let J be ftv(σ1) ∪ ftv(σ2) ∪ ftv(σ). By Properties iii and ix, we get

fsub




ᾱ#J⋃

t1∈S1

∀ ᾱ · fsub




β̄#J⋃

t2∈S2

∀ β̄ · ((σ))[t2/α2]


 [t1/α1]




By notation, it is equal to

fsub




ᾱ#J⋃

t1∈S1

β̄#J⋃

t2∈S2

∀ ᾱ · fsub
(
∀ β̄ · ((σ))[t2/α2]

)
[t1/α1]




By Property 10.3.1.iii, we get

((σa)) ⊆ fsub




ᾱ#J⋃

t1∈S1

β̄#J⋃

t2∈S2

fsub
(
∀ ᾱ · ∀ β̄ · ((σ))[t2/α2]

)
[t1/α1]




By notation, and observing that fsub (fsub (S)) = fsub (S), we get

((σa)) ⊆ fsub




ᾱ#J⋃

t1∈S1

β̄#J⋃

t2∈S2

∀ ᾱ · ∀ β̄ · ((σ))[t2/α2][t1/α1]


 (18)

Let ᾱ and β̄ be disjoint from J . Let t1 and t2 be in S1 and S2, respectively. Let γ1 and
γ2 be fresh variables, that is, not in J ∪ ftv(t1) ∪ ftv(t2) ∪ ᾱ ∪ β̄ ∪ {α1} ∪ {α2}. Let t′1
be t1[γ2/α2] and t′2 be t2[γ1/α1]. We recall that S1 is either ((σ1)) or {σ1}. In the first
case, S1 is ftv(σ1)-stable by Property iii. By hypothesis, we have α2 /∈ ftv(σ1). Hence,
S1[γ2/α2] ⊆ S1, thus t′1 ∈ S1 (19). In the second case, t1 is σ1 and ftv(t1) = ftv(σ1)
by Property 10.3.1.i, hence t′1 = t1. In both cases, (19) holds. Similarly, t′2 ∈ S2 holds.
Additionally, we have {γ1, γ2} # J . Hence, we have {γ1, γ2}∪ᾱ # J . As a consequence,
we have

∀ γ1γ2ᾱβ̄ · ((σ))[t′1/α1][t
′
2/α2] ∈

ᾱ#J⋃

t1∈S1

β̄#J⋃

t2∈S2

∀ ᾱ · ∀ β̄ · ((σ))[t1/α1][t2/α2]

Applying fsub (), we get

fsub
(
∀ γ1γ2ᾱβ̄ · ((σ))[t′1/α1][t

′
2/α2]

)
⊆ fsub




ᾱ#J⋃

t1∈S1

β̄#J⋃

t2∈S2

∀ ᾱ · ∀ β̄ · ((σ))[t1/α1][t2/α2]



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Observing that we have ((σ))[t′1/α1][t
′
2/α2] = ((σ))[t′2/α2][t

′
1/α1], we get

fsub
(
∀ γ1γ2ᾱβ̄ · ((σ))[t′2/α2][t

′
1/α1]

)
⊆ fsub




ᾱ#J⋃

t1∈S1

β̄#J⋃

t2∈S2

∀ ᾱ · ∀ β̄ · ((σ))[t1/α1][t2/α2]




Additionally, we note that the type ∀ ᾱβ̄ · ((σ))[t2/α2][t1/α1] belongs to the set

fsub
(
∀ γ1γ2ᾱβ̄ · ((σ))[t′2/α2][t

′
1/α1]

)

Thus, we get

∀ ᾱβ̄ · ((σ))[t2/α2][t1/α1] ∈ fsub




ᾱ#J⋃

t1∈S1

β̄#J⋃

t2∈S2

∀ ᾱ · ∀ β̄ · ((σ))[t1/α1][t2/α2]




This holds for all t1 and t2 in S1 and S2, respectively, and for all ᾱ and β̄ disjoint from
J . Hence, taking the union over t1, t2, ᾱ and β̄, we get

fsub




ᾱ#J⋃

t1∈S1

β̄#J⋃

t2∈S2

∀ ᾱβ̄ · ((σ))[t2/α2][t1/α1]




⊆ fsub




ᾱ#J⋃

t1∈S1

β̄#J⋃

t2∈S2

∀ ᾱ · ∀ β̄ · ((σ))[t1/α1][t2/α2]




Applying fsub (), and by (18), we get

((σa)) ⊆ fsub




ᾱ#J⋃

t1∈S1

β̄#J⋃

t2∈S2

∀ ᾱ · ∀ β̄ · ((σ))[t1/α1][t2/α2]




By commutation of the union symbols, we get

((σa)) ⊆ fsub




β̄#J⋃

t2∈S2

ᾱ#J⋃

t1∈S1

∀ β̄ · ∀ ᾱ · ((σ))[t1/α1][t2/α2]




This can also be written

((σa)) ⊆ fsub




β̄#J⋃

t2∈S2

∀ β̄ ·
⋃

t1∈S1

((σ))[t1/α1][t2/α2]




309



310 Proofs (Technical details)

Observing that we have
⋃

t1∈S1

((σ))[t1/α1] ⊆ ((∀ (α1 �1 σ1) σ)), we get

((σa)) ⊆ fsub




β̄#J⋃

t2∈S2

∀ β̄ · ((∀ (α1 �1 σ1) σ))[t2/α2]




That is,

((σa)) ⊆ ((∀ (α2 �2 σ2) ∀ (α1 �1 σ1) σ))

Hence, we have shown ((σa)) ⊆ ((σb)). By symmetry, we immediately get ((σb)) ⊆ ((σa)).
Hence, ((σa)) = ((σb)), which is the expected result. Finally, we have shown that σ≈σ ′

implies ((σ)) = ((σ′)).

Property xiii: We prove the property by structural induction on Q. Let θ be in ((Q)).
We proceed by case analysis on the shape of Q.

◦ Case ∅: Immediate.

◦ Case (Q′, α � σ) with σ /∈ T : Then θ is equal to θ′ ◦ [t/α] for t being σ if � is
rigid, or t being in ((σ)) otherwise. By induction hypothesis, there exists θ ′′ such that

θ′ = θ′′ ◦ Q̂′. We get the expected result by observing that Q̂ = Q̂′.

◦ Case (Q′, α = σ) with σ ∈ T : Then θ is equal to θ′ ◦ [σ/α] for some θ′ in ((Q′)).

Let τ be nf(σ). By induction hypothesis, there exists θ ′′ such that θ′ = θ′′ ◦ Q̂′. Hence

θ = θ′′ ◦ Q̂′ ◦ [σ/α]. By definition, σ is τ , that is, τ . Hence, θ = θ ′′ ◦ Q̂′ ◦ [τ/α]. We

conclude by observing that Q̂ is Q̂′ ◦ [τ/α].

◦ Case (Q′, α ≥ σ) with σ ∈ T : Then θ is equal to θ′ ◦ [t/α] for some t in ((σ)), and
θ′ in ((Q′)). Let τ be nf(σ). By Property xii, we have t ∈ ((τ)), that is, t ∈ fsub (τ). As
a consequence, t is equivalent to τ . Thus, nf(t) is τ . By induction hypothesis, there

exists θ′′ such that θ′ = θ′′ ◦ Q̂′. Hence we have θ = θ′′ ◦ Q̂′ ◦ [τ/α]. We conclude by

observing that Q̂ is Q̂′ ◦ [τ/α].

Proof of Lemma 10.3.8

By induction on the derivation of (Q) σ1 @− σ2 (1). Let θ be in ((Q)). We proceed by
case analysis on the last rule in the derivation of (1).

◦ Case A-Equiv: By hypothesis, (Q) σ1 ≡ σ2 holds. By Corollary 1.5.10, we have
Q̂(σ1) ≡ Q̂(σ2). Hence, by Property 10.3.6.xii, we have ((Q̂(σ1))) = ((Q̂(σ2))). By
Property iv, we get Q̂(((σ1))) =

dom(Q̂)
Q̂(((σ2))) (2). Since Q̂ is idempotent, we have

Q̂(((σ1))) ∩ Σ¬
dom(Q̂)

= Q̂(((σ1))) as well as Q̂(((σ2))) ∩ Σ¬
dom(Q̂)

= Q̂(((σ2))). Hence,

from (2), we get Q̂(((σ1))) = Q̂(((σ2))) (3). By Property 10.3.6.xiii, we have θ = θ′ ◦ Q̂.
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Composing (3) by θ′, we get θ(((σ1))) = θ(((σ2))). This leads to fsub (θ(((σ1)))) =
fsub (θ(((σ2)))).

◦ Case R-Trans: By induction hypothesis.

◦ Case R-Context-Rigid: The premise is (Q) σ ′
1 @− σ′2 (4), σ1 is ∀ (α= σ′1) σ, and

σ2 is ∀ (α = σ′2) σ. Since σ1 and σ2 are shallow, σ′1 and σ′2 are F-types. Hence, we

have ((σ′1)) = fsub
(
σ′1

)
and ((σ′2)) = fsub

(
σ′2

)
by Property iii. By induction hypoth-

esis and (4), it gives fsub (θ(((σ′
1)))) = fsub (θ(((σ′2)))), that is, fsub

(
θ(fsub

(
σ′1

)
)
)

=

fsub
(
θ(fsub

(
σ′2

)
)
)
. By Property 10.3.1.v, we get fsub

(
θ(σ′1)

)
= fsub

(
θ(σ′2)

)
(5). In

particular, we have θ(σ′
1) ∈ fsub

(
θ(σ′1)

)
. Hence, by (5), we have θ(σ′

1) ∈ fsub
(
θ(σ′2)

)
,

which means that θ(σ′
2) vF θ(σ′1) (6) holds. Similarly, we show that θ(σ ′

1) vF θ(σ′2) (7)
holds. As a consequence of (6) and (7), θ(σ ′

1) and θ(σ′2) are equivalent (8) in System F.
Now, by definition, ((σ1)) is ((σ))[σ′1/α]. Hence, θ(((σ1))) is θ(((σ)))[θ(σ′

1)/α]. By (8), this
implies θ(((σ)))[θ(σ′

2)/α] ⊂ fsub (θ(((σ1)))), that is, θ(((σ2))) ⊂ fsub (θ(((σ1)))). Similarly,
we have θ(((σ1))) ⊂ fsub (θ(((σ2)))). As a result, θ(((σ1))) and θ(((σ2))) are equivalent in
System F. This implies fsub (θ(((σ1)))) = fsub (θ(((σ2)))).

◦ Case R-Context-R: The premise is (Q,α � σ) σ ′
1 @− σ′2, σ1 is ∀ (α � σ) σ′1, and σ2

is ∀ (α � σ) σ′2.

Subcase � is rigid: Then ((σ1)) is fsub (((σ′1))[σ/α]) and ((σ2)) is fsub (((σ′2))[σ/α]).
Let θ′ be θ ◦ [σ/α]. We note that θ′ is in ((Q,α=σ)). By induction hypothesis, we have

fsub
(
θ′(((σ′1)))

)
= fsub

(
θ′(((σ′2)))

)

Thus, by Property 10.3.1.v, we get the equality

fsub
(
θ(fsub

(
((σ′1))[σ/α]

)
)
)

= fsub
(
θ(fsub

(
((σ′2))[σ/α]

)
)
)

This is exactly fsub (θ(((σ1)))) = fsub (θ(((σ2)))).

Subcase � is flexible: By definition, we have

((σ1)) = fsub




ᾱ#ftv(σ,σ′

1
)⋃

t∈((σ))

∀ ᾱ · ((σ′1))[t/α]




((σ2)) = fsub




ᾱ#ftv(σ,σ′

2)⋃

t∈((σ))

∀ ᾱ · ((σ′2))[t/α]



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This leads to the following:

fsub (θ(((σ1)))) = fsub


θ


fsub




ᾱ#ftv(σ,σ′

1)⋃

t∈((σ))

∀ ᾱ · ((σ′1))[t/α]








fsub (θ(((σ2)))) = fsub


θ


fsub




ᾱ#ftv(σ,σ′

2
)⋃

t∈((σ))

∀ ᾱ · ((σ′2))[t/α]








By Property 10.3.1.v, we get

fsub (θ(((σ1)))) = fsub


θ




ᾱ#ftv(σ,σ′

1)⋃

t∈((σ))

∀ ᾱ · ((σ′1))[t/α]






and

fsub (θ(((σ2)))) = fsub


θ




ᾱ#ftv(σ,σ′

2
)⋃

t∈((σ))

∀ ᾱ · ((σ′2))[t/α]






This can also be written

fsub (θ(((σ1)))) =

ᾱ#ftv(σ,σ′

1
)⋃

t∈((σ))

fsub
(
θ
(
∀ ᾱ · ((σ′1))[t/α]

))

fsub (θ(((σ2)))) =

ᾱ#ftv(σ,σ′

2)⋃

t∈((σ))

fsub
(
θ
(
∀ ᾱ · ((σ′2))[t/α]

))

Let J be ftv(σ, σ′1, σ
′
2)∪dom(θ)∪codom(θ) (9). By Property ii, ((σ)) is ftv(σ, σ′2)-stable,

((σ′1)) is ftv(σ, σ′1)-stable, and ((σ′2)) is ftv(σ, σ′2)-stable. Hence, by Property 10.3.6.ix,
we get

fsub (θ(((σ1)))) =

ᾱ#J⋃

t∈((σ))

fsub
(
θ
(
∀ ᾱ · ((σ′1))[t/α]

))
(10)

fsub (θ(((σ2)))) =

ᾱ#J⋃

t∈((σ))

fsub
(
θ
(
∀ ᾱ · ((σ′2))[t/α]

))
(11)
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We have to show that these two sets are equal. Let t ∈ ((σ)) and ᾱ disjoint from J (12).
Let θ′ be θ ◦ [nf(t)/α] (13). We note that θ′ is in ((Q,α ≥ σ)). We have

(14) fsub (θ′(((σ′1)))) = fsub (θ′(((σ′2))))
(15) fsub (θ(((σ′1))[nf(t)/α])) = fsub (θ(((σ′

2))[nf(t)/α]))
(16) fsub (θ(((σ′1))[t/α])) = fsub (θ(((σ′

2))[t/α]))
(17) fsub (∀ ᾱ · θ(((σ′

1))[t/α])) = fsub (∀ ᾱ · θ(((σ′
2))[t/α]))

(18) fsub (θ(∀ ᾱ · ((σ′
1))[t/α])) = fsub (θ(∀ ᾱ · ((σ′

2))[t/α]))

Equality (14) holds by induction hypothesis. Equality (15) holds by (13) and (14).
Equality (16) holds by (15) by observing that t and nf(t) are equivalent, thus the set
fsub (θ(((σ′))[nf(t)/α])) is equal to fsub (θ(((σ ′))[t/α])) for σ′ being σ′1 or σ′2. Equal-
ity (17) holds by Property 10.3.1.iv and (16). Equality (18) holds by commutation of θ
and ∀ ᾱ·, thanks to (12) and (9). In summary, (18) holds for all t in ((σ)) and ᾱ disjoint
from J , hence we have fsub (θ(((σ1)))) = fsub (θ(((σ2)))) from (10) and (11).

◦ Case A-Hyp: We have (α = σ1) ∈ Q and σ2 is α. By definition, ((σ2)) is fsub (α).
Necessarily, Q is of the form (Q1, α=σ1, Q2). Hence, ((Q)) is ((Q1))� ((α=σ1))� ((Q2)).
This implies that θ is of the form θ1 ◦ θ

′ ◦ θ2 (19), with θ1 ∈ ((Q1)), θ2 ∈ ((Q2)), and θ′

is [σ1/α]. Hence, we have fsub (θ(((σ2)))) = fsub (θ(fsub (α))), that is, fsub (θ(((σ2)))) =
fsub (θ(α)) by Property 10.3.1.v. By (19), we get fsub (θ(((σ2)))) = fsub

(
θ1(σ1)

)
(20).

By Property iii, we have ((σ1)) = fsub
(
σ1

)
. Hence, fsub (θ(((σ1)))) = fsub

(
θ(fsub

(
σ1

)
)
)
.

By Property 10.3.1.v, fsub (θ(((σ1)))) is fsub
(
θ(σ1)

)
, that is, fsub

(
θ1(σ1)

)
. Then, we

get fsub (θ(((σ1)))) = fsub (θ(((σ2)))) by (20).

Proof of Lemma 10.3.9

By Lemma 2.3.3, we have a restricted thrifty derivation of (Q) σ1 ♦ σ2 (1). Let θ be
in ((Q)). We consider a first case that corresponds to equivalence, then we proceed by
case analysis on the last rule in the derivation of (1).

◦ Case (Q) σ1 ≡ σ2 holds: As in the proof of Lemma 10.3.8, we have θ(((σ1))) =
θ(((σ2))). This case being solved, we can freely consider that, in the following, (Q) σ1 ≡
σ2 does not hold.

◦ Case A-Equiv: See the above remark.

◦ Case I-Abstract: By induction hypothesis.

◦ Case R-Trans: By induction hypothesis.

◦ Case R-Context-R: The premise is (Q,α �σ) σ ′
1 ♦ σ′2 (2), σ1 is ∀ (α �σ) σ′1, and

σ2 is ∀ (α � σ) σ′2. We can freely consider α /∈ codom(θ). If nf(σ ′
1) is ⊥, then nf(σ1) is

⊥, thus ((σ1)) is ((⊥)) by Property 10.3.6.xii. In this case, θ(((σ2))) ⊆ θ(((σ1))) obviously
holds. If nf(σ′2) is ⊥, then nf(σ2) is ⊥, which implies nf(σ1) = ⊥ by Property 2.7.7.ii.
We solve this case as above. In the following, we consider nf(σ1) and nf(σ2) different
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from ⊥ (3). Since the derivation is thrifty, we have nf(σ ′
1) = α if and only if nf(σ′

2) = α.
We note that if nf(σ′

1) = α, then ((σ′1)) is fsub (α) by Properties 1.5.6.i and 10.3.6.xii.
Hence, in this case, ((σ1)) and ((σ2)) are equal, which solves this case. In the following,
we consider nf(σ1) and nf(σ2) different from α (4). Additionally, if nf(σ ′

1) is a type
variable β, then (Q,α � σ) σ′

1 ≡ σ′2 holds by Property 2.1.6, thus (Q) σ1 ≡ σ2 holds.
We have already proved such a case. In the following, we consider that nf(σ1) is not a
type variable (5). We consider two subcases.

Subcase � is rigid: By definition, ((σ1)) is the set fsub (((σ′
1))[σ/α]) (6) and

((σ2)) is the set fsub (((σ′
2))[σ/α]). Let θ′ be θ ◦ [σ/α]. We note that θ′ is in ((Q,α =

σ)). By induction hypothesis and (2), we have θ ′(((σ′2))) ⊆ θ′(((σ′1))) (7). By Prop-
erty 10.3.6.vii, (3), (4), and (6), we get ((σ1)) =α ((σ′1))[σ/α]. By Property 10.3.3.x,
we get θ(((σ1))) =α θ′(((σ′1))). Similarly, θ(((σ2))) =α θ′(((σ′2))). From (7), we get
θ(((σ2))) ⊆α θ(((σ1))). This holds for any choice of α not in codom(θ), thus, by Prop-
erty 10.3.3.vi, we get θ(((σ2))) ⊆ θ(((σ1))).

Subcase � is flexible: By definition, we have

((σ1)) = fsub




ᾱ#ftv(σ,σ′

1
)⋃

t∈((σ))

∀ ᾱ · ((σ′1))[t/α]




((σ2)) = fsub




ᾱ#ftv(σ,σ′

2)⋃

t∈((σ))

∀ ᾱ · ((σ′2))[t/α]




Let J be ftv(σ) ∪ ftv(σ′
1) ∪ ftv(σ′2) ∪ dom(θ) ∪ codom(θ). By Properties 10.3.7.ii

and 10.3.6.ix, we get

((σ1)) = fsub




ᾱ#J⋃

t∈((σ))

∀ ᾱ · ((σ′1))[t/α]


 (8)

((σ2)) = fsub




ᾱ#J⋃

t∈((σ))

∀ ᾱ · ((σ′2))[t/α]


 (9)

Let t2 be in θ(((σ2))). We note that ftv(t2) # dom(θ) (10) holds. By (9), there
exist t in ((σ)) and ᾱ disjoint from J such that t2 is in θ(fsub

(
∀ ᾱ · ((σ′2))[t/α]

)
). By

Property 10.3.1.ii, we have t2 in the set fsub
(
θ(∀ ᾱ · ((σ′2))[t/α])

)
. Since ᾱ is disjoint from

J , this set is equal to fsub
(
∀ ᾱ · θ ◦ [t/α](((σ′2)))

)
. This set is closed by equivalence in

System F (it is of the form fsub (S)), hence it is equal to fsub
(
∀ ᾱ · θ ◦ [nf(t)/α](((σ′

2)))
)
.

Let θ′ be θ◦[nf(t)/α]. We note that θ′ is in ((Q,α≥σ)). Hence, by induction hypothesis,
we have θ′(((s′2))) ⊆ θ′(((σ′1))). As a consequence, t2 is in fsub

(
∀ ᾱ · θ ◦ [nf(t)/α](((σ′

1)))
)
,
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that is, t in fsub
(
θ(∀ ᾱ · ((σ′1))[nf(t)/α])

)
. For any t1 in ∀ ᾱ · ((σ′1))[nf(t)/α], we have

t1/ε = σ′1/e by Property 10.3.6.vi, (3), and (4). In particular, (5) implies that the
normal form of t1 is not in the set dom(θ). By Property 10.3.6.v and (10), the type t2
is in the set θ(fsub

(
∀ ᾱ · ((σ′1))[nf(t)/α]

)
). Since t and nf(t) are equivalent, we also have

t2 in θ(fsub
(
∀ ᾱ · ((σ′1))[t/α]

)
). Hence, t2 is in

θ(fsub




ᾱ#J⋃

t∈((σ))

∀ ᾱ · ((σ′1))[t/α]


)

By (8), that is t2 ∈ θ(((σ1))) In summary, we have shown θ(((σ2))) ⊆ θ(((σ1))).

◦ Case R-Context-Rigid: The premise is (Q) σ ′
1 @− σ′2 (11), σ1 is ∀ (α = σ′1) σ,

and σ2 is ∀ (α = σ′2) σ. We can freely assume α /∈ codom(θ). By definition, ((σ1))

is fsub
(
((σ))[σ′1/α]

)
and ((σ2)) is fsub

(
((σ))[σ′2/α]

)
. By restrictions of Lemma 2.3.1,

we have nf(σ) 6= α and nf(σ) 6= ⊥, which imply ((σ1)) =α ((σ))[σ′1/α] and ((σ2)) =α

((σ))[σ′2/α] by Property 10.3.6.vii (page 196). By Property 10.3.3.x (page 194), we
get θ(((σ1))) =α θ(((σ))[σ′1/α]) and θ(((σ2))) =α θ(((σ))[σ′2/α]). This is equivalent
to θ(((σ1))) =α θ(((σ))[θ(σ′1)/α]) (12) and θ(((σ2))) =α θ(((σ))[θ(σ′2)/α]) (13). By
Lemma 10.3.8 (page 197) and (11), we have fsub (θ(((σ′

1)))) = fsub (θ(((σ′2)))). By Prop-
erty 10.3.7.iii (page 196), it gives

fsub
(
θ(fsub

(
σ′1

)
)
)

= fsub
(
θ(fsub

(
σ′2

)
)
)

By Property 10.3.1.v, we get fsub
(
θ(σ′1)

)
= fsub

(
θ(σ′2)

)
(14). In particular, we have

θ(σ′1) ∈ fsub
(
θ(σ′1)

)
. Hence, by (14), we have θ(σ′

1) ∈ fsub
(
θ(σ′2)

)
, which means that

θ(σ′2) vF θ(σ′1) (15) holds. Similarly, we show that θ(σ ′
1) vF θ(σ′2) (16) holds. As a

consequence of (15) and (16), θ(σ′
1) and θ(σ′2) are equivalent in System F. Observing

that σ′1 and σ′2 are in normal form by definition, we get θ(σ ′
1) = θ(σ′2). By (12) and (13),

it leads to θ(((σ1))) =α θ(((σ1))). This holds for any choice of α such that α /∈ codom(θ).
Hence, by Property 10.3.3.vii, we get θ(((σ1))) = θ(((σ2))).

◦ Case R-Context-Flexible: The premise is (Q) σ ′
1 v σ′2 (17), σ1 is ∀ (α ≥ σ′1)

σ, and σ2 is ∀ (α ≥ σ′2) σ. By induction hypothesis and (17), we get θ(((σ ′
2))) ⊆

θ(((σ′1))) (18). By definition, we have

((σ1)) = fsub




ᾱ#ftv(σ′

1 ,σ)⋃

t′
1
∈((σ′

1
))

∀ ᾱ · ((σ))[t′1/α]




((σ2)) = fsub




ᾱ#ftv(σ′

2 ,σ)⋃

t′
2
∈((σ′

2
))

∀ ᾱ · ((σ))[t′2/α]



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Let J be ftv(σ, σ′1, σ
′
2) ∪ dom(θ) ∪ codom(θ). By Properties 10.3.7.ii and 10.3.6.ix, we

get

((σ1)) = fsub




ᾱ#J⋃

t′
1
∈((σ′

1
))

∀ ᾱ · ((σ))[t′1/α]




((σ2)) = fsub




ᾱ#J⋃

t′
2
∈((σ′

2
))

∀ ᾱ · ((σ))[t′2/α]




Applying θ, we get

θ(((σ1))) = θ


fsub




ᾱ#J⋃

t′
1
∈((σ′

1
))

∀ ᾱ · ((σ))[t′1/α]






θ(((σ2))) = θ


fsub




ᾱ#J⋃

t′
2
∈((σ′

2
))

∀ ᾱ · ((σ))[t′2/α]






By restrictions of Lemma 2.3.1, we have α ∈ ftv(σ), and nf(σ) 6= α. As a consequence,
σ/ε is a type constructor g. Hence, for all t in ((σ)), for all ᾱ and all t′1 ∈ ((σ′1)),
∀ ᾱ · t[t′1/α]/ε = g. In particular, t /∈ dom(θ). By Property 10.3.6.v, we get

θ(((σ1))) =dom(θ) fsub




ᾱ#J⋃

t′
1
∈((σ′

1
))

θ(∀ ᾱ · ((σ))[t′1/α])




θ(((σ2))) =dom(θ) fsub




ᾱ#J⋃

t′
2
∈((σ′

2
))

θ(∀ ᾱ · ((σ))[t′2/α])




Hence, we have

θ(((σ1))) =dom(θ) fsub




ᾱ#J⋃

t′
1
∈((σ′

1
))

∀ ᾱ · θ(((σ)))[θ(t′1)/α]




θ(((σ2))) =dom(θ) fsub




ᾱ#J⋃

t′
2
∈((σ′

2
))

∀ ᾱ · θ(((σ)))[θ(t′2)/α]



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We note that the sets {θ(t′1) | t
′
1 ∈ ((σ′1))} and {t′1 | t′1 ∈ θ(((σ′1)))} are equal. Hence, we

have

θ(((σ1))) =dom(θ) fsub




ᾱ#J⋃

t′
1
∈θ(((σ′

1
)))

∀ ᾱ · θ(((σ)))[t′1/α]




θ(((σ2))) =dom(θ) fsub




ᾱ#J⋃

t′
2
∈θ(((σ′

2
)))

∀ ᾱ · θ(((σ)))[t′2/α]




By (18), we get θ(((σ2))) ⊆dom(θ) θ(((σ1))). We note that θ is idempotent, thus θ(((σi)))∩
Σ¬

dom(θ) = θ(((σi))) for σi being σ1 or σ2. Hence, θ(((σ2))) ⊆ θ(((σ1))) holds.

◦ Case A-Hyp: We have (α = σ1) ∈ Q and σ2 is α. By definition, ((σ2)) is fsub (α).
Necessarily, Q is of the form (Q1, α=σ1, Q2). Hence, ((Q)) is ((Q1))� ((α=σ1))� ((Q2)).
This implies that θ is of the form θ1◦[σ1/α]◦θ2, with θ1 ∈ ((Q1)) and θ2 ∈ ((Q2)). Hence,
all types in θ(((σ2))) are equivalent to θ1(σ1), that is, θ(σ1). This implies θ(((σ2))) ⊆
fsub

(
θ(σ1)

)
. By Property 10.3.1.v, we get θ(((σ2))) ⊆ fsub

(
θ(fsub

(
σ1

)
)
)
. By Prop-

erty 10.3.7.iii, we have θ(((σ2))) ⊆ fsub (θ(((σ1)))). The restrictions of Lemma 2.3.1
ensure that σ1 is not in T . Hence, nf(σ1) is not in dom(θ). As a consequence, we
have θ(((σ2))) ⊆dom(θ) θ(fsub (((σ1)))). By Property 10.3.6.i, we get θ(((σ2))) ⊆dom(θ)

θ(((σ1))). Observing that θ is idempotent, we get θ(((σ2))) ∩ Σ¬
dom(θ) = θ(((σ2))), thus

θ(((σ2))) ⊆dom(θ) θ(((σ1))).

◦ Case I-Hyp: We have (α ≥ σ1) ∈ Q and σ2 is α. By definition, ((σ2)) is fsub (α).
Necessarily, Q is of the form (Q1, α≥σ1, Q2). Hence, ((Q)) is ((Q1))� ((α≥σ1))� ((Q2)).
This implies that θ is of the form θ1 ◦ [t/α] ◦ θ2, with θ1 ∈ ((Q1)), θ2 ∈ ((Q2)), and
t ∈ ((σ1)). Hence, all types in θ(((σ2))) are equivalent to θ1(t), that is, θ(t). We
conclude as in the case A-Hyp.

◦ Case I-Bot: We have σ1 = ⊥, and observing that ((⊥)) is fsub (∀α · α), we have
θ(((σ2))) ⊆ θ((⊥)).

◦ Case I-Rigid: We have σ1 = ∀ (α ≥ σ) σ′, and σ2 = ∀ (α = σ) σ′. By definition,

((σ2)) is fsub (((σ′))[σ/α]), and ((σ1)) is fsub




ᾱ#ftv(σ,σ′)⋃

t∈((σ))

∀ ᾱ · ((σ′))[t/α]


 (19) By Prop-

erty 10.3.7.iii, we have σ ∈ ((σ)). Let t be σ. Taking ᾱ = ∅ in (19), we immediately
have fsub (((σ′))[t/α]) ⊆ ((σ1)), that is, ((σ2)) ⊆ ((σ1)). This implies θ(((σ2))) ⊆ θ(((σ1))).
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Indexes

Defined rules

Many inference rules are introduced in the document. They are listed in the following
table. Names of derived rules are followed by a star ? and can be found page 321.

Rule name Relation Page [fig] Rule name Relation Page [fig]

A-Alias’ @−ᾱ p.82 [2.1] A-Context-L’ @−ᾱ p.82 [2.1]

A-Context
? @− p.77 A-Equiv’ @−ᾱ p.82 [2.1]

A-Equiv @− p.56 [1.2] A-Hyp’ @−ᾱ p.82 [2.1]

A-Hyp @− p.56 [1.2] A-Up’ @−ᾱ p.82 [2.1]

A-Up
? @− p.56 Ac-Hyp @−C p.78

App
O `O p.149 [5.3] App ` p.145 [5.2]

C-Abstract-F v̇ p.85 [2.5] C-Abstract-R v̇ p.85 [2.5]

C-Strict v̇ p.85 [2.5] Eq-Comm ≡ p.46 [1.1]

Eq-Context
? ≡ p.77 Eq-Free ≡ p.46 [1.1]

Eq-Mono? ≡ p.47 Eq-Mono ≡ p.46 [1.1]

Eq-Refl ≡ p.46 [1.1] Eq-Var
? ≡ p.48

Eq-Var ≡ p.46 [1.1] FunO `O p.149 [5.3]

Fun
? ` p.176 Fun ` p.145 [5.2]

Gen ` p.145 [5.2] I-Abstract’ vᾱ p.83 [2.2]

I-Abstract v p.59 [1.3] I-Alias’ vᾱ p.83 [2.2]

I-Bot’ vᾱ p.83 [2.2] I-Bot v p.59 [1.3]

I-Context-L’ vᾱ p.83 [2.2] I-Context
? v p.77

continued. . . continued. . .
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Rule name Relation Page [fig] Rule name Relation Page [fig]

I-Drop? v p.58 I-Equiv? v p.58

I-Hyp’ vᾱ p.83 [2.2] I-Hyp v p.59 [1.3]

I-Rigid’ vᾱ p.83 [2.2] I-Rigid v p.59 [1.3]

I-Up’ vᾱ p.83 [2.2] I-Up
? v p.58

Ic-Abstract vC p.79 Ic-Bot vC p.79

Ic-Hyp vC p.79 Ic-Rigid vC p.79

Inst ` p.145 [5.2] Let
O `

O

p.149 [5.3]

Let ` p.145 [5.2] Oracle
O `O p.149 [5.3]

Oracle ` p.145 [5.2] PA-Context-L @−I
` p.105 [3.2]

PA-Equiv @−I
` p.105 [3.2] PA-Trans @−I

` p.105 [3.2]

PE-Comm ≡I
` p.105 [3.1] PE-Context-L ≡I

` p.105 [3.1]

PE-Free ≡I
` p.105 [3.1] PE-Mono? ≡I

` p.106

PE-Mono ≡I
` p.105 [3.1] PE-Refl ≡I

` p.105 [3.1]

PE-Swap ≡I
` p.105 [3.1] PE-Trans ≡I

` p.105 [3.1]

PI-Abstract vI
` p.106 [3.3] PI-Context-L vI

` p.106 [3.3]

PI-Rigid vI
` p.106 [3.3] PI-Trans vI

` p.106 [3.3]

Pr-Subst
? ♦ p.102 R-Context-Flexible ♦ p.46

R-Context-Rigid ♦ p.46 R-Context-L ♦ p.46

R-Context-R ♦ p.45 R-Trans ♦ p.45

S-Alias @̇ p.84 [2.3] S-Hyp @̇ p.84 [2.3]

S-Nil @̇ p.84 [2.3] S-Rigid @̇ p.84 [2.3]

S-Up @̇ p.84 [2.3] StSh-Alias @̇−
ᾱ

p.85 [2.4]

StSh-Hyp @̇−
ᾱ

p.85 [2.4] StSh-Up @̇−
ᾱ

p.85 [2.4]

Strengthen’ `′ p.155 –6.2.3 Strengthen ` p.152 –6.1.2

VarO `O p.149 –5.3 Var ` p.145 [5.2]

Weaken
? ` p.152 –6.1.2 Weaken ` p.152 6.1.2
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Derivable rules

Some of the rules in the previous table are actually derivable rules. We explicitly give
such rules here.

Name Rule Page

Eq-Mono?
(Q) σ′ ≡ τ

(Q) ∀ (α � σ′) σ ≡ σ[τ/α]
P.47

Eq-Var?
(α � σ) ∈ Q

(Q0) ∀ (Q) α ≡ ∀ (Q) σ
P.48

A-Up?
α′ /∈ ftv(σ0)

∀ (α= ∀ (α′ = σ′) σ) σ0 @− ∀ (α′ = σ′) ∀ (α= σ) σ0
P.56

I-Drop?

(QQ′Q′′) ∀ (Q′) σ v σ
P.58

I-Equiv?
(Q) σ1 ≡ σ2

(Q) σ1 v σ2
P.58

I-Up?
α2 /∈ ftv(σ)

(Q) ∀ (α1 ≥ ∀ (α2 � σ2) σ1) σ v ∀ (α2 � σ2) ∀ (α1 ≥ σ1) σ
P.58

Eq-Context?
(QC) σ1 ≡ σ2

(Q) C(σ1) ≡ C(σ2)
P.77

A-Context?
(QCr) σ1 @− σ2

(Q) Cr(σ1) @− Cr(σ2)
P.77

continued. . .
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Name Rule Page

I-Context?
(QCf ) σ1 v σ2

(Q) Cf (σ1) v Cf (σ2)
P.77

Pr-Subst?
(Qθ) σ1 ♦ σ2

(Q) θ(σ1) ♦ θ(σ2)
P.102

PE-Mono?
(Q) σ ≡ τ

(Q,α = σ,Q′) ≡` (Q,α= σ,Q′[τ/α])
P.106

Notations

The following table lists the symbols and notations used in this document. The left
column contains a symbol or a word. Then comes the page where it is defined. In most
cases, the third column provides the corresponding definition, or it simply reads the
symbol.

In a few cases, the prefix Q is supposed equal to (α1 �1 σ1, . . . αn �n σn) (1). We
explicitly refer to this definition, then.

Symbol Page Meaning

α, τ , σ 38 A type variable, a monotype, a polytype

ᾱ, τ̄ 39 A tuple of type variables, a tuple of mono-
types

Q1 # Q2 39 dom(Q1) # dom(Q2)

ᾱ # β̄ 39 ᾱ ∩ β̄ = ∅

φ disjoint from ᾱ 42 ᾱ # dom(φ) ∪ codom(φ)

#(σ) 97 The cardinal of dom(σ)

? 91 Binary operator on {X,Y,Z}

∀ (Q) σ 39 ∀ (α1 �1 σ1) . . . ∀ (αn �n σn) σ when Q is (1)

continued. . .
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Symbol Page Meaning

∀α · S 192 {∀α · t | t ∈ S}

v 57 The instance relation, figure 1.3

v̇ 85 See figure 2.5

@̇ 84 See figure 2.3

vI 103 Prefix instance relation

vI
` 106 See figure 3.3

vC 79

vF 192 The instance relation of System F.

vᾱ 83 See figure 2.2

@− 55 The abstraction relation, figure 1.2

@̇−
ᾱ

85 See figure 2.4

(Q) σ1 @−? σ2 121 The abstraction-check algorithm

@−I 103 Prefix abstraction relation

@−I
` 105 See figure 3.2

@−C 78

@−ᾱ 82 See figure 2.1

ε 40 The empty sequence

≈ 48 The rearrangement relation, Definition 1.5.2

S1 =ᾱ S2 194 S1 ∩ Σ¬
ᾱ = S2 ∩ Σ¬

ᾱ

≡ 47 The equivalence relation, figure 1.1

(≡@̇−
∅
), (≡v̇) 84 See Definition 2.6.1

(≡|vC) 79

(≡|@−C) 78

≡I 103 Prefix equivalence relation

≡I
` 105 See figure 3.1

�, �′, �1 39 Meta-variables standing for = or ≥, as in e.g.
(α1 �1 σ1, α2 �2 σ2)

T 51 The set {σ | ∃τ.nf(σ) = τ}

continued. . .
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Symbol Page Meaning

⊥ 38 “bottom”, equivalent to ∀ (α) α

φ 42 An idempotent renaming

φ¬ 42 The inverse renaming of φ

φ(Q) 42 (φ(α1) �1 φ(σ1) . . . φ(αn) �n φ(σn)) when Q
is (1)

♦ 45 Meta-variable standing for ≡, @−, or v, as in
e.g. (Q) σ1 ♦ σ2

Q ♦ Q′ 103 Q ♦dom(Q) Q′

σ · u/ 40 The function u′ 7→ σ/uu′

dσe 128 See Definition 4.5.2

σ′[σ/α] 42 The substitution [σ/α] applied to the type σ ′

σ/ 40 The function mapping occurrences in σ to
type symbols

σ/u 40 The type symbol at occurrence u in σ

σ 192 The projection of an F-type σ to a type of
System F.

[σ/α] 42 The capture-avoiding substitution of α by σ

ΣI 103 The set {σ | utv(σ) ⊆ I}

Σ¬
ᾱ 194 The set of System F types {t | ftv(σ) # ᾱ}

P 6 P ′ (polynomials) 86

6/ 65 A partial order on skeletons

S1 ⊆ᾱ S2 194 S1 ∩ Σ¬
ᾱ ⊆ S2 ∩ Σ¬

ᾱ

` 145 Typing judgments, see figure 5.2

`
O

149 Syntax-directed typing judgments, see fig-
ure 5.3

Θ 40 A substitution on skeletons

θ 42 An idempotent substitution

θ(S) 192 {θ(t) | t ∈ S}

θ(Q) 42

continued. . .
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Symbol Page Meaning

θ 102 The monotype prefix corresponding to θ

ΘQ 40 Assuming Q is (1), this is the substitution
[proj(σ1)/α1] ◦ .. ◦ [proj(σn)/αn]

[ ] 71 A hole (in contexts)

∇Q 39 ∇dom(Q)

∇α1,...αn 39 α1 → . . . → αn → unit

C 71 Generic contexts

C 71 The prefix corresponding to C

Ĉ 71 The extracted substitution Ĉ

Cn 76 Contexts with n holes

Cf 74 Flexible contexts

Cn 73 Narrow contexts

Cr 74 Rigid contexts

cf(σ) 55 The constructed form of σ

codom(f) 42 The set
⋃

α∈dom(f) ftv(f(α))

d(σ) 97 The degree of P (σ)

dom(Q) 39 The set {α1, . . . αn}

dom(σ) 40 The domain of σ/

dom(f) 42 The set {α | f(α) 6= α}

dom=(Q), dom>(Q) 207 Rigid domain of Q, flexible domain of Q

dom1(C) 73 The 1-level of context C

dom(C) 71 The domain dom(C)

dom(Q/I) 104 See Definition 3.3.1

dom(Q/σ1, . . . σi) 104 The domain dom(Q/ ftv(σ1) ∪ . . . ftv(σi))

dom(Q/σ) 104 The domain dom(Q/ ftv(σ))

fsub (S) 192
⋃

t∈S fsub (t)

fsub (t) 192 {t′ | t vF t′}

ftv(σ) 41 The set of free type variables of σ

continued. . .
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Symbol Page Meaning

ftv(σ1, σ2) 41 The set ftv(σ1) ∪ ftv(σ2)

g or gn 38 A type constructor, of arity n

I 101 An interface, that is, a set of type variables ᾱ

level(C) 73 The level of context C

nf(σ) 51 The normal form of σ

P (σ) 97 wX(σ)(X,X,X)

proj(σ) 40 The function mapping types to skeletons

Q 39 A prefix, e.g.(1)

Q↑ᾱ 112 The splitting of Q according to ᾱ

Q[α] 69 The representative of α in Q

Q(α) 69 The bound of Q[α] in Q

Q⇐ (α � σ) 123 Update algorithm, see figure 4.2

Q⇐ α1 ∧ α2 124 Merge algorithm, see Definition 4.2.6

Q̂ 52 The substitution extracted from Q

R∗ 34 The transitive closure of R

R 34 A meta-variable standing for a relation (de-
pending on the context)

S 192 A set of System F types.

t 39 A skeleton

utv(σ) 41 The set of unbound type variables of σ

ϑ 38 The set of type variables.

V 51 The set {σ | ∃α.nf(σ) = α}

wX(σ), wY (σ), wZ(σ) 91 Weights of σ (polynomials)

constructed form 55 See Definition 1.5.12

flexible binding 38 (α≥ σ)

f invariant on ᾱ 42 ᾱ # dom(f)

rigid binding 38 (α= σ)

unconstrained binding 38 (α≥⊥) also written (α)
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