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from West Gate of Moria Inscription

Electronic excitations, caused for example by irradiation with electrons, light or mod-
ern photon sources (synchrotron, ultra-fast lasers), are key quantities for the study of
materials, ranging from solids to atoms, from surface to nanoscale systems. An accurate
understanding and prediction of the interaction of radiation and matter can even favor
remarkable technological breakthroughs, like new functionalities for bulk systems (e.g. in
optoelectronics) or, in the long term, in biological applications (“bottom-up” assembling
or molecular machines1).

Experimental techniques measuring electronic excitations have seen rapid progress
(high spatial resolution, short measurement time, low temperature), which continuously
requires and stimulates a more precise theoretical description. The joint use of theory
and computer simulation has in fact, over the last decades, permitted to achieve big
improvements in the description of optical properties of both finite and infinite systems.

The problem of calculating electronic excitations is strongly related to the challeng-
ing problem of electron correlation. The energy gap of a bulk material, for example,
crucially depends on electron correlation. Correlation prevents the ground and excited
states many-body wave function ϕ of a system to be simply a symmetrized product of in-
dependent single-particle orbitals φi. Methods that aim at calculating the many-electron
wave function (and hence at calculating, from first principles, the electron correlation)
are the Configuration Interaction method [6–8], the Coupled Electron Pair Approxima-
tion [9–11] and Coupled Cluster method [9, 10, 12, 13], and, more recently, the Quantum
Monte Carlo [14–19]. These methods can yield results of very high accuracy. However,
unless seriously approximated, they are restricted to systems of a few electrons, due to an
unfavorable scaling with system size, or due to size-consistency problems [20, 21]. In this
thesis, instead, we will exclusively follow methods which do not require the knowledge of
the many-body wave function of the system, being density-based (Time-independent and

1“Scientists have discovered how to use a single plastic molecule to drive a tiny machine. One frequency
of light causes the molecule to contract and another causes it to expand, making it move a board down
and up repeatedly” [1]. For details on molecular machines set in action by light, see Ref.s [2–5].

1



Introduction

Dependent Density Functional Theory (TD)DFT, chapters 2 and 4) or Green function-
based (many body perturbation theory MBPT, chapter 3). The approximations involved
in these theories (regarding the exchange-correlation potential or the self-energy) are
essentially an “ansatz” for the electron correlation.

The theoretical description of electronic excitations in the framework of many-body
perturbation theory (chapter 3) has undergone a rapid development since new approaches
and the increase of computer power have made numerical calculations feasible for real
systems. Within many-body perturbation theory one can calculate with a good precision
charged excitations (i.e. electron addition and removal energies), using e.g. Hedin’s
GW approximation [22] for the electron self-energy. In the same framework, neutral
excitations (e.g. optical and energy-loss spectra) are also well described today through
the solution of the Bethe-Salpeter equation (BSE). An optical absorption experiment
creates an interacting electron-hole pair, the exciton. Good agreement between theory
and experiment can only be achieved taking into account the electron-hole interaction,
especially if the system is a semiconductor or an insulator (small-gap semiconductors and
metals, instead, screen this electron-hole interaction, and the resulting contribution can
therefore be negligible). The Bethe-Salpeter couples indeed the electron and the hole,
and it has been very successful for the calculation of absorption spectra of a large variety
of systems: insulators, semiconductors, atoms, clusters, surfaces or polymers. However,
the intrinsic two-particle nature of the Bethe-Salpeter equation makes the calculations
very cumbersome, since a four-point equation (due to the propagation of two particles)
has to be solved. Therefore, in spite of the excellent results obtained with the BSE
for moderately simple systems, the efficient description of electron-hole excited states
in realistic materials is still considered to be an unsolved problem in condensed matter
theory.

A quite different approach, the time-dependent density-functional theory (TDDFT,
chapter 4) might be an advantageous alternative to the BSE formalism because, as in
the case of the very successful static density-functional theory (DFT), this theory relies
on the (now time-dependent) electron density n(r, t) instead of the one-particle Green
function, the propagator G(r, t, r′, t′). Two-point response functions are involved in the
formalism instead of the four-point ones required in the BSE approach. However, the
time-dependent exchange-correlation (xc) potential vxc[n](r, t) is unknown, as well as its
density variations. In the framework of linear response, the quantity to be described is
the xc kernel fxc[n](r, t, r′, t′) = δvxc[n](r, t)/δn(r′, t′). A widely used approximation is
the adiabatic local-density approximation (ALDA) which defines a short-ranged xc-kernel
as the functional derivative with respect to the density of the xc-potential in the static
local-density approximation. Unfortunately, this approximation turned out not to be
a systematically good approximation, and in general yields a rather bad description of
optical properties of infinite systems.

Up to three years ago, at the beginning of this thesis work, the application of TDDFT,
to the description of absorption spectra of solids (in practice done almost exclusively

2
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within the adiabatic local density approximation), was therefore considered to be a failure.
In this thesis, instead, we show that the time dependent density functional theory

could become the method to calculate the absorption spectrum of solids, including the
excitonic effects, and obtaining results of the same precision as the Bethe-Salpeter method.

A general theoretical background is provided in Part I, in which we link the macro-
scopic measured quantities to the microscopic response of the system to an external
perturbation. We also remind that the response function equations in time dependent
density functional theory and in the Bethe-Salpeter framework have the same structure
and can be described by the same type of equation

S = S0 + S0KS.

The kernel K of this Dyson-like screening equation, that links the response function
S0, of a system of independent (Kohn-Sham or quasi-) particles, to the full response S,
is composed of two terms: 1) a bare Coulomb interaction, which is the same in both
approaches. Its role will be investigated in chapter 6; 2) the exchange-correlation (in TD-
DFT) or electron-hole (in BSE) contribution, which is, instead, different in time depen-
dent density functional theory and Bethe-Salpeter. The importance of this contribution
will be analyzed in chapter 7, showing, in particular, that very simple approximations
can lead to satisfying spectra for both semiconductors and insulators. In chapter 8 we
combine the knowledge gained from BSE, with the advantages of TDDFT, in order to ob-
tain exchange-correlation kernels, to be used in time dependent density functional theory.
They are fully ab initio, and parameter-free, and they are able to describe the optical spec-
tra of solids. The results are in fact extremely promising. We show the optical absorption
of bulk semiconductors (chapter 9) and insulators (chapter 10) in good agreement with
the experiments, almost indistinguishable from those of the BSE approach. This is, to
our opinion, an important step towards the solution of the long-standing problem of how
to calculate ab initio realistic absorption spectra of materials, without solving the BSE.

The conclusions, with a brief summary of the main topics addressed in this work, end
the thesis.

3





Part I

Background

5





Chapter 1

Dielectric and optical properties in
solids

I never satisfy myself until I can make a
mechanical model of a thing. If I can make a
mechanical model I can understand it. As long as
I cannot make a mechanical model all the way
through I cannot understand; and that is why I
cannot get the electromagnetic theory.

Sir William Thomson, Lord Kelvin

The aim of this chapter is to establish a relation between the microscopic and macro-
scopic description of the interaction between a material and the electro-magnetic field
[23]. In microscopic terms, we use concepts like the excitation of an electron as a con-
sequence of the absorption of a photon, or like the creation of an electron-hole pair,
etc. From a macroscopic point of view we talk in terms of Maxwell’s equations to define
macroscopic quantities like absorption, light scattering, reflectivity, that are measurable
by spectroscopy experiments. The importance of this relation is therefore clear: on one
hand, the knowledge of the band structure of a solid, and more in particular of electronic
excited states, is crucial to describe and predict results of experiments; on the other hand,
optical properties of solids provide a very efficient tool for studying band structure, ex-
citons, but also for detecting defects and impurities, or lattice vibrations. The central
quantity that makes the link is the frequency-dependent dielectric function ε(ω) (and
conductivity σ).

7



Chapter 1

1.1 Complex dielectric function and complex con-

ductivity

In the presence of matter, Maxwell’s equations are [24–26]

∇× H =
1

c

∂D

∂t
+

4π

c
jext

∇× E = −1

c

∂B

∂t
∇ · D = 4πρext

∇ · B = 0

(1.1)

where E and H are the electric and magnetic fields, D is the electric displacement, B is
the magnetic induction, ρext is the external charge (or free charge) density and jext the
external current density. By combining the first and the third of the Eq. (1.1) we have
the continuity equation

∂ρext

∂t
+∇ · jext = 0

which takes into account the conservation of the charge. The complex dielectric function
and complex conductivity are introduced once the constitutive equations

D = D [E,H]

B = B [E,H]

j = j [E,H]

are specified. When non-linear effects are neglected we can write linear relations for the
constitutive equations. So let’s define the complex tensors ε,µ, σ through

D(r, t) =

∫
dr′
∫
dt′ε(r, r′, t− t′)E(r′, t′) (1.2)

B(r, t) =

∫
dr′
∫
dt′µ(r, r′, t− t′)H(r′, t′)

j(r, t) =

∫
dr′
∫
dt′σ(r, r′, t− t′)E(r′, t′).

These equations define the complex quantities ε,µ,σ. The latter are in general tensors,
but from now on, this fact will be ignored.1 In frequency domain the equations read:

D(ω) = ε(ω)E(ω)

B(ω) = µ(ω)H(ω)

j(ω) = σ(ω)E(ω)

(1.3)

1This is however correct for an isotropic medium or a crystal having cubic symmetry.
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Dielectric and optical properties in solids

where ε, µ and σ are the dielectric tensor, the permeability tensor and the conductivity
of the medium, respectively. Since all the vectors D(r, t), B(r, t), H(r, t) E(r, t), j(r, t) are
real, we also have the important relations:

ε(−ω) = ε∗(ω)

µ(−ω) = µ∗(ω)

σ(−ω) = σ∗(ω).

We can also relate the electric and magnetic fields E and B with their derived fields
D and H, by the polarisation P and the magnetisation M, via

D = E + 4πP
H = B− 4πM.

(1.4)

The quantities P and M can be (linearly) related to the macroscopic fields via the

P = χeE

M = χmH
(1.5)

where χe and χm are the (electric) susceptibility and (magnetic) permeability of the
medium, respectively. From Eq.s (1.3), (1.4) and (1.5) we have

ε = 1 + 4πχe

µ = 1 + 4πχm.
(1.6)

For non magnetic media one can set µ = 1, χm = 0.
When the external sources are zero, the Maxwell’s equations in frequency domain read

∇× H(ω) = −iω
c

D(ω)

∇× E(ω) =
iω

c
B(ω)

∇ · D(ω) = 0

∇ · B(ω) = 0.

(1.7)

Now from the first of Eq. (1.7) and the first of Eq. (1.3) we have

∇× H(ω) = −iωε(ω)

c
E(ω) (1.8)

which is also equal to (using Eq.s (1.5) and (1.6))

∇× H(ω) = −iω
c

E(ω)− iω4π

c
P(ω)

9
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or

∇× H(ω) = −iω
c

E(ω) +
4π

c
jind(ω)

where the induced current density has been introduced. From the Ohm’s law (Eq. (1.3))

ε = 1 +
4πiσ

ω
(1.9)

which shows the link between the dielectric function ε and the conductivity σ of a material.

1.2 Complex refraction index and absorption coeffi-

cient

Without external sources, Maxwell’s equations yield

∇×∇× E = −1

c

∂

∂t
(∇× B)

∇ (∇ · E)−∇2E = −1

c

∂

∂t

(
µ

c

∂D

∂t

)

∇2E =
µε

c2
∂2E

∂t2
. (1.10)

The general solution of Eq. (1.10) is

E = E0e
i(K·r−ωt)

with

|K|2 =
ω2

c2
µε.

If we suppose that the propagation vector is in x̂ direction,

K =
ω

c

√
µεx̂

and

E(x, t) = E0e
i ω

c
x
√

µεe−iωt.

For the wave propagation in vacuum (σ = 0, µ = ε = 1)

E(x, t) = E0e
iω(x

c
−t)

10



Dielectric and optical properties in solids

which represents the plane wave solution.
The solution of (1.10) inside a medium of finite conductivity is the damped wave2

E(x, t) = E0e
iω
c

xN e−iωt (1.11)

where the complex refractive index

N =
√
ε = ν + iκ (1.12)

has been introduced. The real and the imaginary part of N are the refraction index
and the extinction coefficient, respectively, and they are related to the real ε1 and the
imaginary part ε2 of ε, as

ε1 = ν2 − κ2

ε2 = 2νκ

ν and κ being not independent, since ε1 and ε2 are related by the Kramers Kronig relations
(see Appendix A). Eq. (1.11) becomes

E(x, t) = E0e
i ω

c
νxe−

ω
c
κxe−iωt

so we can define the optical skin depth δ as the distance where the amplitude of the
field is reduced by 1/e, and the absorption coefficient α as the inverse distance where the
intensity3 of the field is reduced by 1/e:

δ =
c

ωκ
(1.13)

α =
2ωκ

c
=
ωε2

νc
(1.14)

the latter giving a linear relation between the absorption coefficient and the imaginary
part of the dielectric function. All these quantities are, in the most general case, frequency
dependent.

In experiments concerning optical properties of solids often the normal incidence re-
flectivity is involved. Following Fig. 1.I, one can see an incident beam which impinges
normally at the surface of a solid, with an amplitude given by Ei, and a reflected beam,
with the same frequency but an amplitude Er < Ei. So in the vacuum the wave is:

Ez = Eie
i(ωx

c
−ωt) + Ere

−i(ωx
c

+ωt) x < 0,

where we imagine the beam polarised along z; inside the solid, one can see the transmitted
wave

Ez = Ete
i(kx−ωt) x > 0.

2I.e. the amplitude of the wave exponentially decays over a characteristic distance δ (see text above).
3The intensity of an electromagnetic field is proportional to |E(x)|2, i.e. I(x) = I0e

−2 ω
c κx.
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Figure 1.I: Schematic diagram of incident, reflected and transmitted electromagnetic wave at the surface.

Imposing the boundary condition to the tangential component of the electric field4

Ez(x→ 0+) = Ez(x→ 0−)

we have
Ei + Er = Et.

The second boundary condition has to be applied to the tangential component of the
magnetic field Hy:

−∂xEz =
iωµ

c
Hy

ω

c
(Ei − Er) = kEt =

ω

c
NEt ⇒ Ei − Er = NEt.

We define the normal incidence reflectivity R as

R =

∣∣∣∣Er

Ei

∣∣∣∣2 < 1

4Let n̂ be a normal (unit) vector to the surface separating the two materials. We have, for the normal
components, the two relations: (D2 − D1) · n̂ = 4πρs and (B2 − B1) · n̂ = 0; while for the tangential
components: n̂× (E2−E1) = 0 and n̂× (H2−H1) = 4π

c js, with ρs and js the surface density and surface
current respectively [26].

12
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which becomes

R =

∣∣∣∣(1− ν)2 + κ2

(1 + ν)2 + κ2

∣∣∣∣ < 1.

The knowledge of the optical constants implies hence the knowledge of the reflectivity,
which can be compared, e.g., with the experiment. But the opposite procedure is more
interesting, because we can measure the reflectivity, and then deduce the optical con-
stants. Since there are two optical constants involved (ν and κ), we need two reflectivity
experiments or just one experiment, but in a very large frequency range, in order to
exploit the Kramers-Kronig relation between ν and κ.

Another measurable quantity, useful in the description of a surface, is the surface
impedance Z defined as

Z =
4π

c

E(0)

B(0)

which can also be related to the optical refractive index N by Z = 4π
cN .

Today, one frequently applied technique to probe the optical properties of a sample is
the optical ellipsometry. Ellipsometry deals with measurements of polarised light under-
going oblique reflection (or transmission) from a sample surface. The quantities measured
are the ellipsometric angles ϕ and δ related to the complex ratio of Fresnel reflection (or
refraction) coefficient Rp and Rn for light polarised parallel (p-component) and normal
(n-component) to the plane of incidence

ζ =
Rp

Rn

= tgϕ eiδ

characterizing the different changes in amplitude and phase. Ellipsometry experiments
[27–29] can be carried out at multiple frequency (spectroscopic ellipsometry) and also
at different angles of incidence (variable angle spectroscopic ellipsometry, V.A.S.E). In
Fig. 1.II a schematic example of reflection ellipsometry is reported. Knowing the ratio ζ
and the incidence angle θ the complex dielectric function is

ε = sin2 θ + sin2 θ tan2 θ

(
1− ζ

1 + ζ

)2

. (1.15)

1.3 Electron Energy Loss

1.3.1 Fundamental relations

Given an external charge density ρext(r, t), that we can write in Fourier space as ρext(k, ω),
one can obtain the external potential Vext(k, ω) via the Poisson equation, where only the

13
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Figure 1.II: Schematic representation of a reflection ellipsometry experiment.

electrostatic nature of the charge is taken into account:

k2Vext(k, ω) = 4πρext(k, ω). (1.16)

There can also be an induced density ρind(k, ω) as the response of the system to an
external perturbation Vext(k, ω). ρind(k, ω) is linked to the external potential by the
response function χ.5 In the linear response formalism (see Appendix A),

ρind(k, ω) = χ(k, ω)Vext(k, ω). (1.17)

The induced potential Vind(k, ω) is then

k2Vind(k, ω) = 4πρind(k, ω) (1.18)

. The sum of the induced potential and the external potential constitutes the total or
“effective potential” acting on the system.

k2Vtot(k, ω) = 4π [ρind(k, ω) + ρext(k, ω)] . (1.19)

5Eq. (1.17) is not rigorously general. If the system were not homogeneous, in fact, one should have
ρind(k, ω) =

∫
dk′χ(k,k′, ω)Vext(k′, ω).

14
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From (1.16) and (1.17), the latter is

k2Vtot(k, ω) = 4π

[
k2

4π
Vext(k, ω) + χ(k, ω)Vext(k, ω)

]
and

Vtot(k, ω) =

[
1 +

4π

k2
χ(k, ω)

]
Vext(k, ω) = ε−1(k, ω)Vext(k, ω)

where we have defined
Vtot(k, ω) = ε−1(k, ω)Vext(k, ω). (1.20)

The quantity χ is called polarizability of the system and ε is the dielectric function of the
system. The relation between the external charge and the total potential acting on the
system is given by

Vtot(k, ω) =
4π

k2
ε−1(k, ω)ρext(k, ω). (1.21)

1.3.2 Energy loss by a fast charged particle

Let’s specify the external perturbation ρext. The charge density of a particle (e−) moving
with velocity v is

ρext(r, t) = eδ(r− vt).

In Fourier space it becomes

ρext(k, ω) =
e

(2π)4

∫
dr

∫
dt e−ik·r eiωtδ(r− vt)

=
e

(2π)4

∫
dt eiωt e−ik·vt =

e

(2π)3
δ(ω − k · v) (1.22)

where we have used the convention

f(r) =

∫
dk eik·rf̃(k) f̃(k) =

1

(2π)3

∫
dr e−ik·rf(r)

f(t) =

∫
dω e−iωtf̃(ω) f̃(ω) =

1

2π

∫
dt eiωtf(t)

and the relations ∫
drf(r)δ(r− a) = f(a) ;

1

2π

∫
dt eiωt = δ(ω).

From Eq.s (1.21) and (1.22) we have

Vtot(k, ω) =
4π

k2
ε−1(k, ω)ρext(k, ω)

=
e

2π2k2
ε−1(k, ω)δ(ω − k · v). (1.23)
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Now we make the important assumption that the probe, the fast electron, could be
treated classically, in order, on one hand, to justify the previous classical derivation for
the induced potential (by the Poisson equation), and, then, to simply derive the total
electric field Etot as

Etot(r, t) = −∇rVtot(r, t)

Etot(k, ω) = −ikVtot(k, ω)

Etot(k, ω) = − ie

2π2k2
ε−1(k, ω)δ(ω − k · v)k. (1.24)

The energy lost by the electron in unit time is

dW

dt
=

∫
dr j · Etot (1.25)

where the current density is j = −evδ(r − vt). In order to use Eq. (1.25), we also need
Eq. (1.24) in real space

Etot(r, t) =

∫
dk

∫
dω ei(k·r−ωt)Etot(k, ω)

so

dW

dt
=

∫
dr evδ(r− vt)

∫
dk

∫
dω ei(k·r−ωt) ie

2πk2
k ε−1(k, ω)δ(ω − k · v)

=
ie2

2π

∫
dk

∫
dω v · k 1

k2
ei(v·k−ω)tε−1(k, ω)δ(ω − k · v) (1.26)

and
dW

dt
= − e

2

π2

∫
dk

k2
=
{

ω

ε(k, ω)

}
(1.27)

which is the electron energy loss rate per unit time, with ω = v ·k. The function −={ε−1}
is therefore called the loss function. In order to derive Eq. (1.27) from Eq. (1.26):∫ ∞

−∞
ωε−1(ω)dω =

∫ 0

−∞
ωε−1(ω)dω +

∫ ∞

0

ωε−1(ω)dω

= −
∫ ∞

0

ωε−1(−ω)dω +

∫ ∞

0

ωε−1(ω)dω

= −
∫ ∞

0

ω
[
ε−1(ω)−

(
ε−1
)∗

(ω)
]
dω =

∫ ∞

0

ω =
{
ε−1(ω)

} 1

2i

where we have used ε−1(−ω) = (ε−1)
∗
(ω).
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1.4 Microscopic-Macroscopic connection

The Hamiltonian H0 of a N-electrons system, when subject to an electro-magnetic per-
turbation, changes its kinetic term according to

∑
j

1

2
p2

j −→
∑

j

1

2

(
pj −

A(rj, t)

c

)2

where pj −A(rj, t)/c can be viewed as a generalized velocity v [30] and A is the vector
potential of the electro-magnetic field in the Coulomb gauge (∇ · A = 0 and scalar
potential φ = 0). Neglecting the non-linear effects in 1

c
, the perturbed Hamiltonian

becomes H = H0 +H1, where the radiation perturbative field is

H1 = −1

c

∑
j

A(rj, t) · pj.

This term can be treated within the well known time-dependent perturbation theory, in
order to find the transition probability (per unit time), which gives rise to the absorption
of the incoming radiation:

Pi→f = 2π |〈f |A(rj, t) · pi|i〉|2 δ(Ef − Ei − ω)

where the initial and final states |i >, |f > and {Ei} are eigenfunctions and eigenvalues
of the many-body Hamiltonian H0, respectively. If now, one specifies the perturbation A

A(r, t) = A0êe
i(q·r−ωt) + c.c.

with ê = polarisation vector and q = wave vector of the radiation, the transition proba-
bility becomes

Pi→f = 2π

(
A0

c

)2

|ê ·Mif |2δ(Ef − Ei − ω) (1.28)

and Mif =< f |eiq·rp|i >.
The absorption coefficient is defined as the energy absorbed in the unit time in the

unit volume divided by the flux of energy

α(ω) =
ωW (ω)

u(c/ν)

where c/ν is the speed of the light in the matter, the average energy density u is

u =
ν2A2

0ω
2

2πc2
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and the number of transition per unit time per unit volume W (ω) is given by the sum of
(1.28) over all possible transitions. Hence α(ω) becomes

α =
4π2

νωc

∑
i,f

|ê ·Mif |2δ(Ef − Ei − ω).

In a single particle picture, and if the system is a solid, the many-body level i can be
substituted by a double index v,k, band and wave vector indices (the latter contained
in the first Brillouin zone). Moreover, since the wavelength q of light is very small
(∼ 5 · 10−2nm−1) the transmitted momentum can usually be neglected. Therefore we are
going to consider only vertical transitions, i.e. from an occupied state v,k to an empty
state c,k, and, in order to better exploit the translational invariance of an infinite solid,
we work in reciprocal space. We can therefore obtain the imaginary part of the complex
dielectric function, ε2, from (1.14)6

ε2 = 2
4π2

Ω
lim
q→0

1

q2

∑
v,c,k

∣∣〈c k + q|eiq·r|v k
〉∣∣2 δ(εc k+q − εv k − ω). (1.29)

The expression of the real part ε1(ω) can be obtained via the Kramers-Kronig relations
(see Appendix A).

The important Eq. (1.29) permits us to write a connection between the macroscopic
optical constants (absorption index, refractivity, etc.) and the microscopic structure of
the material, namely the band structure for a solid. More complicated relations are
obtained when the single particle approximation is dropped.

1.5 Electronic Spectra

We have seen the importance of the dielectric function ε both for absorption coefficient
(last paragraph) and for electron energy loss function (Par. 1.3). In particular we have
seen the connection between the microscopic point of view (band structure, levels of en-
ergy, etc.) and the macroscopic one (relying on the Maxwell’s equations). Eq. (1.29), for
example, which is a macroscopic function, is an average (i.e. a spatial integral) carried
on microscopic quantities like wave functions. The dielectric function is, in fact, in the
most general case, a frequency (or time) dependent matrix ε(r, r′, ω), as it stems out
from (1.2), which is called microscopic dielectric function, and some macroscopic aver-
age has to be taken in order to obtain, e.g. an absorption spectrum. When the system
to deal with is a solid, it is more convenient to write the microscopic dielectric func-
tion in Fourier space, as εGG′(q, ω), with the wave vector q contained in the Brillouin
zone and G= reciprocal lattice vector. In order to make a comparison with an optical

6Here the relation pl = limq→0[H, eiqrl ]/q has been used, with l = x, y, z.
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absorption measure, we need to define a macroscopic dielectric function εM . The con-
nection between a microscopic and macroscopic dielectric function necessarily involves an
average operation. In Eq. (1.29), this average had implicitly been taken into account as
ε′M(ω) ∼ limq→0

∫
drdr′eiq·(r−r′)ε(r, r′, ω). However the “total” electric field E is related

to the external “applied” field D, via E = ε−1D, and the correct and physically meaningful
average is therefore to be taken on ε−1. Hence, following the works of Adler and Wiser
[31, 32], the macroscopic dielectric function is given by

εM(ω) ≡ lim
q→0

1[
ε−1(q, ω)

]
G=G′=0

, (1.30)

which is, in the most general case, a tensor of rank one.
The physical meanings of all these definitions will be clarified throughout the thesis;

here we want only to introduce the formalism. Following Par.s (1.1) and (1.3), the
imaginary part of εM or of 1/εM then, determine the measured absorption (Abs) and
Electron Energy Loss Spectra (EELS) for vanishing momentum transfer,7 through the
quantities

Abs = ={εM} ; EELS = −=
{

1

εM

}
.

As pointed out above, the average implicitly used in (1.29) in order to obtain a macro-
scopic function is not the one defined in (1.30), but, in Fourier space,

ε′M(ω) = lim
q→0

ε(q, ω)G=G′=0. (1.31)

The important difference with (1.30) will be clarified in Chap. 6.

1.5.1 Alternative formulation for the spectra

It will be very useful in the following, to have a unified description of Absorption and
EELS, at vanishing momentum transfer. To do so, first of all, we have to introduce
the microscopic polarizability χ̃G,G′(q, ω) which is related to the microscopic dielectric
function, via (see also the first of Eq.s (1.6))

ε = 1− vχ̃. (1.32)

In fact, when the system is not polarizable, χ̃ = 0 and the total field assumes the same
value of the external applied field, E = ε−1D = D. A crucial point now is to make a more
consistent comparison between the Absorption and EELS. To this purpose, we define two
more microscopic functions, namely the function χ that yields ε−1 = 1 + vχ, and the

7The vanishing momentum transfer is, for the electron energy loss spectroscopy, only one particular
case in a wide range of possibilities. See Chap. 6 and Appendix D for further discussion.
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function χ̄ for which εM = 1−vχ̄G=G′=0(q, ω). In this way both spectra can be described
by a generalized spectrum Z(ω) where only the long range part (G = 0) of the coulomb
potential v0(q) appears

Z(ω) ≡ −=
{

lim
q→0

v0(q)SG=G′=0(q, ω)
}
. (1.33)

In this equation, the matrix S stands for the modified polarisation function χ̄ in the case
of absorption and the microscopic response function χ for EELS. In order to find the link
between χ̄ and χ̃, we recall the analytical inversion of the microscopic dielectric function
leading to εM (for details of the derivation, see Appendix B). χ, on the other hand, can be
found by comparing its definition ε−1 = 1+vχ with ε−1 = (1−vχ̃)−1 = 1+vχ̃(1−vχ̃)−1.

One finds hence that χ̄ and χ are obtained by solving a Dyson-like screening equation
in terms of the bare coulomb potential and the irreducible polarisation function χ̃, defined
in (1.32), as: {

χ̄ = χ̃+ χ̃v̄χ̄
χ = χ̃+ χ̃vχ.

(1.34)

Here v̄ represents the Coulomb term without the long range component v0

v̄ =

{
vG G 6= 0
0 G = 0

(1.35)

and its role will be elucidated more in detail in Par. 6.1.
We have seen that if the system is not polarizable (χ̃ = 0), the total potential has the

same value as the external potential. In case of independent particles, χ̃ is approximated
by a function called independent-particle polarizability χ0. This is the Random Phase
Approximation (RPA) for χ̃ and it will be better defined and discussed in Chap. 3. The
formula (1.29) instead describes an RPA spectrum where the macroscopic average is
performed on ε = 1− vχ0, i.e. the approximation (1.31), instead8 of the correct average
(1.30). The consequences of this will be clarified throughout the thesis.

However, in order to obtain qualitative and quantitative agreement with experiments,
one often has to go beyond the independent-particle approximation for χ̃, e.g. through
the Bethe-Salpeter or the Time Dependent Density Functional Theory. This will be the
main subject of the thesis, and will be discussed in Chap.s 3 and 4, respectively.

But first, the ground state configuration of the system has to be calculated. For
crystals, a widely used method to obtain ground state properties and an approximated
band structure is represented by the density functional theory, briefly described in the
next chapter.

8This approximation is also called independent-particle Random Phase Approximation [33], for reasons
we will soon discuss.
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Density Functional Theory

I have yet to see any problem, however
complicated, which, when you looked at it in the
right way, did not become still more complicated.

Poul Anderson

2.1 The many-body problem

The fundamental problem of condensed matter physics is the determination of the eigen-
states of the Hamiltonian

H
(
{r,p}; {R,P}

)
=

N∑
i=1

p2
i

2m
+

M∑
I=1

P2
I

2MI

+
∑
i<j

e2

|ri − rj|
−

−
∑
i<j

ZIe
2

|ri −RI |
+
∑
I<J

ZIZJe
2

|RI −RJ |

that governs the evolution of any system composed by electrons (represented by coordi-
nates ri and momenta pi, with mass m) and atomic nuclei (represented by coordinates
RI and momenta PI , with mass MI and atomic number ZI). For the huge number of
interactions involved, this problem is enormously complex. It is possible, however, to
introduce a hierarchy of approximations, due to the different scales of energy occurring.
The first approximation allows us to separate the motion of the electrons from that of
the nuclei, because electrons are so much faster than ions (three order of magnitude of
difference), that they can be considered to be in their ground state for each ionic con-
figuration. We can translate this sentence in the quantum mechanics language by the
Born-Oppenheimer (also called adiabatic) approximation [34].
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2.1.1 The Born-Oppenheimer approximation

The original eigenvalues equation

(Te + TI + Vee + VIe + VII) Ψ̃ (r,R) = EtotΨ̃ (r,R)

(where we have substituted all the sums in the Hamiltonian with the symbols T for
kinetic energy and V for the potential energy) with r = {ri} electronic coordinates and
R = {RI} ionic coordinates, can be separated in two coupled equations[

Te + Vee + VIe

]
ϕR(r) = ERϕR(r)[

TI + VII + ER

]
Φ(R) = EtotΦ(R)

for the two eigenfunctions ϕR(r) e Φ(R), for electrons and ions respectively; we observe
that the ionic potential parametrically occurs in the equation for the electrons (ions
considered frozen) and that the presence of electrons also occurs in the equation for ions
via the adiabatic term ER, which represents a sort of electronic glue for the lattice.
To obtain this separation we rewrite the Hamiltonian:

H =

[
−
∑

I

~2

2MI

· ∂2

∂RI

+ VII ({RI})

]
+

[
−
∑

i

~2

2m
· ∂

2

∂ri

+

+
1

2

∑
i6=j

e2

|ri − rj|
+ VIe ({ri,RI})

]
=

= HI ({RI}) +H ′ ({ri,RI}) .

(2.1)

As a consequence of this partial separation of variables, we can factorize the full wave
function corresponding to the equation for the Hamiltonian (2.1)

Ψ̃ (r,R) ≡ ϕ (r,R) Φ (R) (2.2)

with ϕ (r,R) solution of

H ′ ({ri,RI})ϕ (r,R) = ERϕ (r,R) (2.3)

i.e. the Schrödinger equation for a system of interacting electrons in the external field VIe

generated by the ions frozen in the position {RI}.
If we now apply the operator (2.1) to (2.2), we obtain:

HΨ̃ = ϕ (r,R)HI ({RI}) Φ (R) + Φ (R)H ′ ({ri,RI})ϕ (r,R) +

+
∑

I

[
∂Φ (R)

∂RI

· ∂ϕ (r,R)

∂RI

− ~2

2M
· ∂

2ϕ (r,R)

∂R2
I

Φ (R)

]
= EtotΨ̃. (2.4)
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The separation would be concluded if we could neglect the last line in Eq. (2.4). In fact,
without the last line, Eq. (2.4) would lead to (2.3) for electrons and to[

TI + VII + ER

]
Φ(R) = EtotΦ(R) (2.5)

for the nuclei. Now we want to verify how (and when) we can neglect the last line of

(2.4). The expectation value
〈
Ψ̃|H|Ψ̃

〉
using the first term of the last line of (2.4) leads

to integrals such as:∫
dRΦ∗ (R)

∂Φ (R)

∂R
·
∫
drϕ∗ (r,R)

∂ϕ (r,R)

∂R
+ c.c.

that are proportional to∫
dr

(
ϕ∗ (r,R)

∂ϕ (r,R)

∂R
+ ϕ (r,R)

∂ϕ∗ (r,R)

∂R

)
=

∂

∂R

∫
dr |ϕ|2 =

∂N

∂R
;

this term is zero if the number of electrons does not change with respect to the variation of
position of nuclei.1 The conservation of N is not trivial. In metal→ superconductor phase
transition, for example, electrons couple themselves building Cooper couples, which are
bosons; and this is exactly due to the interaction between electrons and lattice vibrations.
For what concerns the second term of the last line of (2.4) we can imagine, as a first
approximation, that the electrons belong to the atoms instead of being totally delocalized
over the entire system. So

ϕ(r,R) = ϕ(r−R)

and then
∂2ϕ

∂R2
=
∂2ϕ

∂r2

In this case the expectation value is∫
drϕ∗ (r,R)

(
− ~2

2M

)
∂2ϕ (r,R)

∂R2
=

m

M

∫
drϕ∗ (r,R)

(
− ~2

2M

)
∂2ϕ (r,R)

∂r2

i.e. m/M times the electronic kinetic energy, which is a negligible contribution to the
total energy.

1If one wanted also to calculate the non-diagonal matrix elements of the many body Hamilto-
nian 〈Ψ1|H|Ψ2〉, between two different states Ψ1,Ψ2, another term would appear, proportional to
ϕ∗1(r,R)∂ϕ2(r,R)

∂R which leads to electronic transitions induced by the ionic motion (electron-phonon
interaction). However, the energy separation between two electronic states ϕ1 and ϕ2 is in general much
larger than the energies involved in the ionic motion, so that these off-diagonal terms can be neglected
[35].
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A further approximation, frequently used in condensed matter theory, is to assume, not
only the adiabatic separation between electrons and nuclei, but also that the motion of
the ions could be treated classically, substituting Eq. (2.5) with

MR̈I = −∂VII

∂RI

− ∂ER

∂RI

.

This approximation is intuitively justified by the fact that the De Broglie wave length
associated to nuclei is much smaller than the inter-atomic distances, but a more rigorous
demonstration is given by the Hellmann-Feynman theorem [36–38].

2.1.2 The electronic problem

Even when one accepts the separation of electron and ionic degrees of freedom, one is still
left with the solution of Eq. (2.3), which is still a formidable task, that requires in many
cases serious approximations. An important class of approximations reduces the problem
to the study of a Hamiltonian of non interacting particles like

H0 =
∑

i

Hi

so that the wave function of the system can be separated

ϕ (r1, r2, .., rN , t) = φ1 (r1, t) · ·φN (rN , t)

and

i~
∂φi

∂t
= Hiφi.

This reduction, of the original Hamiltonian to an independent-particle one, occurs as
follows (from now on, since only the electrons will be considered explicitly, we substitute
∂2

∂r2
i
→ ∇2

i ). From the initial Hamiltonian

H =
∑

i

− ~2

2m
∇2

i + Vext(ri) +
1

2

∑
i6=j

vij(|ri − rj|)

of interacting electrons subject to an external potential Vext, one chooses an auxiliary
one-body potential Vi so that

H =

(∑
i

− ~2

2m
∇2

i + Vext(ri) + Vi

)
+

(
1

2

∑
i6=j

vij(|ri − rj|)− Vi

)
= H0 +Hres

For a convenient choice of Vi, the term Hres is small and can be treated as a perturbation.
It is easy to recognize in this procedure the well known mean-field approach.2

2This procedure is very important not only for electron structure problems, but for most of the
many-body problems, both classical and quantistic.
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In the case of electrons in their ground state, this mean-field method can be refor-
mulated in a variational scheme: one searches for the minimum of a certain quantity
(typically the total energy) expressed in terms of functions. In this category we have
Hartree [39], Hartree-Fock [40] and Density Functional Theory (DFT) techniques. But
while Hartree single particle solutions (later improved by Fock to take into account the
correct symmetry of fermions) represent approximated solutions, the DFT [41, 42] allows
us to reduce the initial problem to an exact non-interacting particles problem, with an
evident conceptual advantage. Approximations occur later, in the determination of the
exchange-correlation potential, as we will discuss later in the chapter.

2.2 The Hohenberg and Kohn theorem

Since an important part of the thesis is dedicated to the generalization of DFT to TDDFT,
it is worthwhile to present the fundaments of DFT [41, 43–45] in detail, following the
original formulation of Hohenberg and Kohn [41] and the more recent work of Dreizler
and Gross [44].

From now on, and throughout the thesis, we will use the atomic units.3 Thus the
electron density n will coincide with the charge density ρ.

Let H be the Hamiltonian of a system of N interacting electrons:

H = T +W + V

T =
∑

i

−1

2
∇2

i ; W =
∑

i

Vext(ri) ; V =
1

2

∑
i6=j

vij(|ri − rj|)

which represent the kinetic term, the interaction with an external field (usually repre-
sented by the nuclei potential) and electron-electron interaction respectively. The fol-
lowing theorem establishes exact results for the ground state of an interacting-electrons
system.

Theorem of Hohenberg and Kohn

a) The ground state expectation value of any physical observable of a many-electrons
system is a unique functional of the electron density n(r)

〈ϕ0|O|ϕ0〉 = O
[
n
]

with |ϕ0〉 many-body ground state wave function.
b) In particular the total energy defines a universal functional which has a minimum, the

3~ = m = e2 = 1 ; ε0 = 1/4π.

25



Chapter 2

ground state energy E0, corresponding to the ground state density n0.

EVext [n] = 〈ϕ|T +W + V |ϕ〉 = 〈ϕ|T + V |ϕ〉+

∫
drVext(r)n(r) =

= FHK [n] +

∫
drVext(r)n(r)

with FHK [n] = 〈ϕ|T + V |ϕ〉 universal functional4 because it does not depend on the
external potential, and

min
ϕ∈Ψ

〈ϕ|T +W + V |ϕ〉 = 〈ϕ0|H|ϕ0〉 = min
n∈N

EVext

[
n
]

where Ψ represents the space of the ground state wave functions and N the ensemble of
all electron densities.

Before giving a demonstration (close to the original) of the HK theorem, formulated
for a system with a non-degenerate ground state, we want to observe that the derivation is
restricted to all those densities that can be realized for some external potential; this class
of densities is called v-representable5 ensemble. A lot of extensions (degenerated ground
state [55], N-representable functionals [44, 53], bosons [56], spin-polarised systems [57, 58],
superconductors [59, 60], relativistic systems [61–63], etc.) of the theorem are available
in literature.

Demonstration of the theorem

When the Schrödinger equation leads to a non-degenerated ground state for a N-electron
system,

H|ϕ0〉 = E0|ϕ0〉

defines the relation C : W → Ψ between the ensemble W , constituted by all external
potentials, and Ψ, constituted by all possible ground state wave functions. The relation C

4The universal functional FHK can also be seen as a “free-energy HK functional” in the (functional)
Legendre-transformation picture, common in thermodynamics [46]. This point of view, presented in
Ref.s [47–49], is important not only for an intuitive introduction to the DFT, but also to derive some
properties of FHK as properties of the Legendre transformations, or to infer efficient numerical schemes
for solving the DFT problem in practice [50]. Besides, this free-energy HK functional is also the classical
analogue of the FHK in the “classical” version [51] of the Hohenberg-Kohn-Mermin theorem [52] for finite
temperature gran-canonical ensembles.

5Up to the seventies, it was known that given a density field, it is always possible to find, solving
the inverse problem of the Schrödinger equation, the corresponding potential. Levy [53] showed in
1982 that there is a wider class of densities that do not correspond, in the ground state, to a unique
external potential. This class is called N-representable ensemble, because it is a set of densities obtained
from some antisymmetric N -particle wave function Ψ(x1, ..., xN ) (not necessarily the ground state of
any Hamiltonian); this set of course contains the v-representable ensemble. For the N representability
problem, see Ref. [54].
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is surjective by construction.6 At the same time we can build the ground state electronic
densities by

n(r) = 〈ϕ0|n̂(r)|ϕ0〉

which defines a new relation, still surjective, D : Ψ → N . If the two mappings C and D
were also injective, they would be biunivocals too. This would permit us to define a full
invertible relation between N and W :

(D ◦ C) : W → N ; (D ◦ C)−1 : N → W

and to associate to any charge density n(r), one and only one external potential Vext(r).
So, once T , V and n(r) are known, we can determine the Hamiltonian and the expectation
value of each observable in the ground state, i.e.

〈ϕ0|O|ϕ0〉 = O
[
n
]

concluding the demonstration of the first part of the theorem.
Now we have got to show that both C and D are injective and we can do that by

following a reductio ad absurdum. So let’s assume that two different external potentials
lead to the same ground state wave function:

(T +W1 + V ) |ϕ0〉 = E0
1 |ϕ0〉

(T +W2 + V ) |ϕ0〉 = E0
2 |ϕ0〉.

Subtracting one equation from the other, we obtain ⇒ (W1−W2)|ϕ0〉 = (E0
1−E0

2)|ϕ0〉,
which means that W1 = W2 + constant, which contradicts our initial hypothesis (W1 6=
W2). So C is injective, and also biunivocal. For what concerns D, we assume that two
different ground state wave functions lead to the same ground state density. Since C
is injective two different wave functions imply two different external potentials, i.e. two
different Hamiltonians (T and V are given) H1 and H2 with:

H1 = H2 +W1 −W2

We can then write

〈ϕ0
1|H1|ϕ0

1〉 = 〈ϕ0
1|H2|ϕ0

1〉+ 〈ϕ0
1|W1 −W2|ϕ0

1〉
〈ϕ0

2|H1|ϕ0
2〉 = 〈ϕ0

2|H2|ϕ0
2〉+ 〈ϕ0

2|W1 −W2|ϕ0
2〉.

(2.6)

Since 〈ϕ0
1|W1 −W2|ϕ0

1〉 =
∫
drn(r)(Vext,1 − Vext,2) = 〈ϕ0

2|W1 −W2|ϕ0
2〉, subtracting the

first of (2.6) from the second, we have

〈ϕ0
1|H1|ϕ0

1〉 − 〈ϕ0
2|H1|ϕ0

2〉 = 〈ϕ0
1|H2|ϕ0

1〉 − 〈ϕ0
2|H2|ϕ0

2〉. (2.7)

6In fact, given T and V , there is not any element of Ψ not corresponding to an element of W .
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ΨW ΝΨ

C:W D:Ψ NΨ
ΨW ΝΨ

Figure 2.I: A graphical illustration of the HK theorem. One shows that the two relations are injective,
so biunivocal, then fully invertible.

Now the Ritz variational principle says that{
〈ϕ0

1|H1|ϕ0
1〉 − 〈ϕ0

2|H1|ϕ0
2〉 < 0

〈ϕ0
1|H2|ϕ0

1〉 − 〈ϕ0
2|H2|ϕ0

2〉 > 0
(2.8)

because |ϕ0
1〉 is the ground state of H1 and |ϕ0

2〉 is the ground state of H2 by hypothesis.
Clearly (2.7) and (2.8) are in contrast, so the function D is injective, too.
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It is now easy to show the second part of the theorem. We take O = H and build

EVext [n] = 〈ϕ|H|ϕ〉 = 〈ϕ|T +W + V |ϕ〉

which is unique. For the Ritz principle

min
ϕ∈Ψ

〈ϕ|H|ϕ〉 = 〈ϕ0|H|ϕ0〉 = E0

then
min
n∈N

EVext [n] = E0 = EVext [n0] ; n0 = 〈ϕ0|n̂(r)|ϕ0〉.

Observations:

• The HK theorem shows the existence of a universal functional without determining
it. We should know, at least for one system, the general solution, i.e. for any
density.

• The request of minimizing the functional of the density could be a convenient ap-
proach, from a computational point of view. However, since the functionals are not
known, and in particular approximations for T [n] lead to big errors, the theory has
been reformulated in order to find an efficient scheme for applications, like a self-
consistent scheme, similar to the Hartree or Hartree-Fock methods, which involve
single particle orbitals.

In fact, the initial scepticism about the practical usefulness of DFT disappeared when
Kohn and Sham introduced what would be later called the Kohn and Sham equations,
and when it turned out that a very simple approximation they proposed, namely the local
density approximation (see Par. 2.4), could already yield very good results.

2.3 The Kohn Sham method

Kohn and Sham [42] considered a system of non-interacting particles (without requiring
any physical meaning) whose density would be the same as that of the associated interact-
ing particle system. So, given a (real) system of N interacting electrons with Hamiltonian
H = T +W + V , let’s consider an auxiliary system of N non-interacting electrons with
Hamiltonian H ′ = T ′ +W ′ and the same density as the interacting system.7,8 Here W ′,
the KS potential, represents an effective or total (and local) potential for the single elec-
trons and, we can anticipate, it is composed of three parts: the external potential, the

7We assume that the v-representable interacting density is also v-representable non-interacting.
8It is clear that if this system exists, it is also unique, because of the HK theorem.
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Hartree potential and the so-called exchange-correlation potential. The latter is an un-
known functional of the density, containing all the exchange (effects due to the fermion
nature of the electrons) and correlation effects. We assume for the discussion that this
auxiliary system exists (we will come back later on this point) and that the ground state
is not degenerate. We have in this case the following scheme, called Kohn-Sham (KS)
scheme, which permits one to accurately approximate the kinetic energy of the electrons,
and to simplify the identification of simple and efficient shapes for the remaining density
functional. Since

n(r) = n′(r) =
occ.∑

i

|φi(r)|2

where the φi are the single particle orbitals of the non-interacting system, we obtain the
N exact single-particle equations (KS equations):[

−1

2
· ∇2

i + Vtot(r)

]
φi(r) = εiφi(r) (2.9)

where

Vtot(r) = Vext(r) +

∫
dr′v(r, r′)n(r′) + Vxc ([n], r) . (2.10)

Vtot(r) represents the effective single particle potential, which we mentioned above, con-
taining all the many-body effects, and VH(r) =

∫
dr′v(r, r′)n(r′) is the Hartree potential.

The KS scheme is obtained as follows.
The HK functional of the real system is

E[n] = F [n] +

∫
drVext(r)n(r) (2.11)

while that of the auxiliary system is

E ′[n] = T ′[n] +

∫
drVtot(r)n(r) (2.12)

with

T ′[n] =
occ.∑

i

〈φi| −
1

2
∇2

i |φi〉. (2.13)

Adding and subtracting in (2.11) the quantity

T ′[n] +
1

2

∫
dr

∫
dr′v(r, r′)n(r)n(r′),

the HK functional becomes

E[n] = T ′[n] +

∫
drVext(r)n(r) +

1

2

∫
dr

∫
dr′v(r, r′)n(r)n(r′) + Exc[n] (2.14)
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with

Exc[n] = T [n] + V [n]− 1

2

∫
dr

∫
dr′v(r, r′)n(r)n(r′)− T ′[n] (2.15)

which represents the exchange-correlation energy. If we impose the stationarity condition
(δE[n] = 0):

δT ′[n] +

∫
drδn(r)

[
Vext(r) +

∫
dr′v(r, r′)n(r′) +

δExc[n]

δn(r)

]
= 0,

and use, from (2.12)

δT ′[n] = −
∫
drVtot(r)δn(r),

we find directly Eq. (2.10) where δExc[n]
δn(r)

= Vxc is the exchange-correlation potential. The

central equation of the scheme is Eq. (2.14) where:

• The first term is the kinetic energy of the auxiliary system of non-interacting elec-
trons.

• The second is the “exact” interaction energy with the external field.

• The third (with v(r, r′) = 1/|r− r′|) is the electrostatic classical energy associated
to a charge distribution and it is usually called Hartree energy .

• The last term contains the exchange and correlation effects for the electrons. The
accuracy of DFT calculations depends on the choice of the approximation for this
unknown term (and hence for Vxc), which takes, by definition, into account all the
effects beyond the Hartree theory.

Before talking about approximations for Vxc, let’s have another look at the main point
of the KS scheme: the problem of the existence of an auxiliary non-interacting-particle
system associated to the interacting system. One can reformulate the request asking if
it is possible to find, given a density field n0(r), a non-interacting representation of the
system. We can observe that, if the functional derivative of E ′[n] is well defined in n0,
it is possible to find the minimum of the functional with the normalization condition for
the number of particles (Lagrange multipliers method)

E ′[n]− µ

(∫
drn(r)−N

)
= T ′[n] +

∫
dr (Vtot(r)− µ)n(r) + µN.

The functional derivative at n(r) = n0(r) leads to the Euler-Lagrange equation

δT ′[n]

δn(r)

∣∣∣∣
n0(r)

+ Vtot(r)− µ = 0
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which is satisfied by the total potential

Vtot(r) =
δT ′[n]

δn(r)

∣∣∣∣
n0(r)

+ µ. (2.16)

We can conclude that a non-interacting representation of n0(r) exists if δT ′[n]
δn(r)

is well

defined in n0(r), and that it is given by the total potential (2.16). So the problem has
moved to the study of the differentiability of T ′[n]. It is possible to show [64, 65] that
T ′[n] has a well defined functional derivative for all v-representable densities.9

As a consequence, for these densities, the KS scheme is applicable.

2.4 Local Density Approximation (LDA)

The first and simplest approximation for the exchange-correlation energy is represented
by the local density approximation (LDA) [42]. The LDA assumes that the functional
dependence of Exc, on the density, can be approximated by a local relation, i.e:

ELDA
xc [n] u

∫
n(r)εheg

xc (n(r))dr (2.17)

where εheg
xc (n) is the exchange-correlation energy per electron in a homogeneous electron

gas of density n. The εxc(n) is known exactly in the high-density limit, and can be
accurately computed at any density, using Quantum Monte Carlo simulations [66–68]
(so, without free parameters). Eq. (2.17) is, by construction, exact for the homogeneous
electron gas and we can expect it to work well for systems where the density has small
spatial variations,10 or where the electron-electron interaction is well-screened.
The domain of applicability of LDA has been unexpectedly found to go much beyond the
nearly-free electron gas and accurate results can be obtained for inhomogeneous systems
like atoms or molecules. The problem now is to understand why this simple approximation
works. In order to answer this question, we can give a formally equivalent way to write
the exchange-correlation energy :

Exc[n] =
1

2

∫
drn(r)

∫
dr′

nxc(r, r
′ − r)

|r− r′|
(2.18)

where nxc(r, r
′ − r) is the exchange-correlation hole that is defined in terms of the pair

correlation function g(r, r′, λ) for a system of density n(r) but with the reduced electron

9In reality the Englisch and Englisch [64, 65] demonstration regards a wider set of densities, the class
of ensemble v-representable, the class of densities obtainable via a statistical treating of pure states in
terms of density matrix.

10The adimensional quantity δn
|n|4/3 can be taken as a measure of the inhomogeneity of the system.
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interaction
λ

|r− r′|
:

nxc(r, r
′ − r) = n(r′)

∫ 1

0

[g(r, r′, λ)− 1] dλ.

The exchange-correlation hole is normalized to -1:∫
nxc(r, r

′ − r)dr′ = −1, (2.19)

i.e. the depletion in charge around the electron corresponds to exactly one unit of charge.
Given the isotropic character of the Coulomb interaction, the exchange-correlation energy
depends only on the spherical average of nxc(r, r

′−r) for a given r. In fact, if we represent
the exchange-correlation hole as an expansion in spherical harmonics

nxc(r, r
′ − r) =

∞∑
l=0

l∑
m=−l

ρlm(r, |r′ − r|)Ym
l (Ω)

we have

Exc = 1
2

∫
drn(r)

∫ ∞

0

dR ·R2 1

R
·
∞∑
l=0

l∑
m=−l

ρlm(r, R)

∫
dΩ · Ym

l (Ω)

= 1
2

∫
drn(r)

∫ ∞

0

dR ·R · ρ00(r, R)

where |r− r′| = R, and the property
∫
dΩ · Ym

l (Ω) = δl,0δm,0 has been used.
It has been proved [69] that LDA satisfies the sum-rule (2.19) for the exchange-correlation
hole and reproduces rather well the spherical average of the hole even if the exact hole
is not so well reproduced. These results can explain why the LDA works so remarkably
well.

2.5 Beyond LDA

One improvement with respect to LDA, which is very often implemented is the local spin
density approximation (LSDA) [70], motivated in part by the fact that the exchange-
correlation hole is very different for electrons with parallel and anti-parallel spins.

The next step is to allow εxc to depend not only on the local densities, but also on
the variation of the densities, by adding gradient corrections. However, it was found that
such corrections do not necessarily improve the LDA results. The reason was given to
the missing fulfilling of sum rules for the exchange-correlation hole [69]. A more general
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approach, the generalized gradient approximation (GGA), developed by Perdew and co-
workers [71–73], was constructed to fulfill the sum rule for the exchange-correlation hole,
with a consequent improvement in the results.

Recently, efforts have been done to go even beyond the GGA functionals. One pos-
sibility is to construct fully non-local density functional (examples and discussions can
be found in Ref.s [74, 75] and references therein), but this goal seems quite ambitious,
leading to functionals that are at present rather useless for practical purpose; a more prac-
tical way is to construct density functionals, casting additional semi-local informations
(in some cases the self-interaction problem, i.e. the fact that an approximate exchange
term does not correctly cancel the self-interaction of electrons in the Hartree term, can be
eliminated; see Ref.s [76, 77]) like in meta-GGA [78–80] functionals. Another possibility
is represented by hybrid Hartree-Fock/DFT models (based on a linear combination of HF
exchange and DFT exchange-correlation contribution), the most popular implementation
being represented by the so-called B3LYP [81].

2.6 Excited States in DFT

It is interesting to note that the first HK theorem implies that the ground state electronic
density determines (within an additive constant) the external potential. This latter de-
termines the Hamiltonian, so one can establish a connection between the ground state
density and any excited state

|φi〉 = |φi[n]〉.

Thus any expectation value with respect to an excited state, in particular an excited state
energy, can be considered as a functional of the ground state density. So DFT can, in
principle, be used to calculate excitation energies. The problem now is to find a practical
scheme for determining the excited states.

The one-particle KS eigenvalues have been used as (quasi-)particle energies and their
differences interpreted as photoemission gaps or optical excitations energies without any
formal justification. In fact the KS eigenvalues enter in (2.9) as Lagrange multipliers (nor-
malization condition) and their physical meaning is very ambiguous. The interpretation
of KS eigenvalues appears to be much more complicated in DFT than that of eigenvalues
in the traditional schemes of quantum chemistry. In Hartree-Fock theory, e.g., the Koop-
mans’ theorem [82] gives a clear meaning to the eigenvalues of the HF single electron
equations:

εHF
i = E(f1, .., fi, .., fn)− E(f1, .., fi − 1, .., fn) (2.20)

where εHF
i is a HF eigenvalue and E(f1, .., fn) the total energy of a system of N =

f1 + ..+ fn electrons.
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I.e., neglecting relaxations effects11 (conditio sine qua non), the energy required to remove
an electron from the orbital i (ionization energy) is εHF

i , eigenvalue of the ith orbital of
the HF solution. In DFT this correspondence between KS eigenvalues and excitation
energies is not valid. However the eigenvalue of the highest occupied state, in an “exact”
DFT scheme, gives the exact work function for a metal, or the ionization energy for a
finite system [83, 84]. For all the other KS eigenvalues we can only write

εi(f1, .., fn) =
∂E

∂fi

which means that

E(f1, .., fi, .., fn)− E(f1, .., fi − 1, .., fn) =

∫ 1

0

df · εi(f1, .., fi + f − 1, .., fn)

rather different from Eq. (2.20). Although the previous observations are well known, the
KS eigenvalues have been used to discuss the spectra of solids, molecules and atoms,
giving rise to the well known band-gap problem. In LDA, e.g., the predicted band-gap
is typically 30-50% (or even 100%) smaller than the band-gap observed in direct plus
inverse photoemission experiments (Tab. 2.1).

DFT HF Exp.
Ge 0.5a 4.3b 1.0b

C 5.6c 15.0c 7.3c

Si 2.6c 9.4c 3.4c

Ne 21.2c 25.1c 21.4c

Ar 8.3c 18.5c 14.3c

Kr 6.8c 16.4c 11.6c

LiF 10.0d 22.4e 14.9d

MgO 4.2d 18.0f 7.6d

Table 2.1: Comparison of calculated
(DFT,HF) minimum direct band-
gaps (expressed in eV) with exper-
iment. References are the following:
a[85], b[86], c[87], d[88], e[89], f [90].

On the contrary, the correlation (totally) missing in the Hartree-Fock theory is re-
sponsible for the large overestimation of the band-gap energy, as reported in Tab. 2.1.

2.6.1 ∆SCF

The simplest DFT scheme for the computation of electron removal energies has been the
evaluation of the total energy difference between the final state (excited state) and initial
state (ground state). This method is called ∆ Self-Consistent-Field method (∆SCF) . It
is based on the idea that DFT should be valid for the lowest state of a given symmetry

11The removal of an electron from an orbital i does not imply the relaxation of the other orbitals to a
new equilibrium configuration.
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and a given number of electrons. So ∆SCF energies are calculated by simply performing
two DFT calculations, one with the ground state and the other with an excited state
configuration, taking, at the end, the energy difference. When applicable12 this method
has permitted a quite good estimation of excitation energies of atoms and molecules [91–
93]. A crucial point for the success of the ∆SCF is represented by the fact that the
electrons are localized, and consequently, by the Hartree relaxation effects (see Ref. [94]
and discussions therein). In infinite systems, when one deals with Bloch states for the
electrons, these effects are lost [95], and ∆SCF does not yield useful results.

2.7 Electronic Spectra in KS-DFT

In spite of these difficulties, a first investigation of electronic spectra, within the (static)
DFT is useful, and the meaning and limits will be clarified throughout the thesis.

Once the DFT-KS band structure,13 schematically represented in Fig. 2.II with one
valence and one conduction band, has been found by solving (2.9), we can write down
the KS independent-particle polarizability χ0, (see also Appendix A) that we have firstly
defined in Par. 1.5.1, as a sum over independent transitions

χ0 = 2
∑
v,c

|< φc|eiq·r|φv >|
2

ω − (εc − εv) + iη
(2.21)

with φi, εi KS eigenfunctions and eigenvalues, respectively.14

The connection with some measurable quantity is done via the dielectric function

ε = 1− vχ0, (2.22)

whose imaginary part (neglecting the subtleties of the correct macroscopic average, see
previous chapter) permits one to describe the absorption spectrum

Abs = ={ε} = ={1− vχ0} = −v=
{
χ0
}
, (2.23)

and the imaginary part of the inverse ε−1 describes the electron energy loss spectrum
(EELS)

EELS = −=
{

1

ε

}
= −v=

{
χ0

1− vχ0

}
.

Eq. (2.23) corresponds to Eq. (1.29) (where the wavefunctions and eigenvalues have been
specified as the KS ones), i.e. a Random Phase approximation of the irreducible polar-
izability χ̃, but using the approximation (1.31) instead of (1.30) to get the macroscopic

12This approach is formally exact for the first ionization potential, or, more generally, for the lowest
excited state of a given symmetry.

13Let’s restrict the target of the paragraph to solids only.
14Any single-particle picture can be used here to find φi, εi, like, e.g., Hartree or Hartree-Fock theory.
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Figure 2.II: Independent transitions. The energy of the photon ω is given by the conservation of energy.

measurable quantity (optical absorption spectrum). For the absorption spectrum we have,
more explicitly

Abs = ={ε} ∝
∑
v,c

∣∣< φc|eiq·r|φv >
∣∣2 δ (ω − (εc − εv)) (2.24)

which is nothing but the one-electron approximation of Fermi’s golden rule (sum over all
independent transitions times the delta function, representing the conservation of energy).

Despite its (low) level of sophistication, this approximation15 can be used for a qual-
itative, and sometimes quantitative, description of electronic spectra. The description
of EELS in graphite or silicon, are examples where this method can be in quite good
agreement with the experimental results [96, 97].

However, with the exception of few cases, the one-electron KS level can not be sat-
isfactory for the description of electronic spectra. In Fig. 2.III the absorption spectrum
of bulk silicon is taken as example, showing that the application of (2.24) does not lead
(continuous curve) to satisfactory results, if compared to the experiment [98] (dots). The
fact to have used an average operation like (1.31) instead of the correct (1.30), to ob-
tain the macroscopic function, is not, in this case, responsible for the missing agreement
between the experimental and calculated spectra. In order to use the (1.30), we should

15It is also called independent-particle Random Phase Approximation [33], for reasons we will soon
discuss.
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Figure 2.III: Absorption spectrum of solid silicon. Continuous line: Eq. (2.24) used. Dashed line:
Eq.s (2.25) and (1.30) used.

define the KS independent-particle polarizability χ0 as

χ0(G;G′, ω) = 2
∑
vc

〈
v|e−iG·r|c

〉 〈
c|eiG′·r′|v

〉
ω − (εc − εv) + iη

(2.25)

and, via ε = 1− vχ0, have used (1.30). The difference with (2.23), however, is very small
for solid silicon, as it is shown by the dashed curve in Fig. 2.III.

In order to have a more realistic description of the spectra, several aspects have to
be considered and included in the theory: the aim of next chapters is to introduce more
appropriate theories (Bethe-Salpeter equation and Time Dependent Density Functional
Theory) for the description of electronic spectra, well beyond the Eq. (2.24), and leading
to better results than that in Fig. 2.III.
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2.8 DFT in solids

The crystal has become the main target system of this thesis. When dealing with solids
some further details have to be specified, namely the use of periodic boundary condi-
tions,16 the use of a basis development for the wavefunctions, and the use of pseudo-
potentials.

• A (ideal) solid is invariant under translations, so one can apply periodic boundary
conditions to one unit cell and predict the properties of the whole crystal. Now
the quantum numbers to deal with also include the wave vector k, called crystal
momentum.

• The one-particle wavefunctions φi have to be expanded in a basis. The simplest
(and the most convenient for periodic systems) representation is given by plane
waves

φnk(r) =
1√
Ωcell

eik·r
∑
G

cnk(G)eiG·r = eik·runk(r) (2.26)

where unk(r) has the same periodicity as the crystal. The vector k lies in the first BZ,
while G is a reciprocal lattice vector. In order for the calculation to be numerically
feasible we need to truncate this expansion, one criterion being represented, for
example, by the convergence of the total energy. This convergence can be achieved
by gradually increasing the cutoff energy Ecutoff

1

2
|k + G|2 ≤ Ecutoff

to include more and more plane waves. The number of plane waves Npw scales as
Npw ∝ Ωcell(Ecutoff )

3/2, with the volume of the cell Ωcell, and the cutoff.

• Since the core electrons are very localized close to the nuclei, 1) they do not take part
in chemical bonds; 2) the corresponding wave functions are very difficult to expand
in plane waves. Thus it would be great to get rid of core electrons and represent their
influence on valence electrons by an effective (“pseudo”) potential, which reproduces
the same valence eigenvalues and scattering properties of the atom. This is exactly
the idea of the pseudo-potential method, largely used throughout this thesis, with
the double advantage to decrease the cutoff energy (we need relatively few plane
waves for valence electrons) and to deal with a reduced number of electrons (only
the valence ones). Concerning the theory, we refer to the rich literature.17

16For an introductory course on solid state physics, see, e.g., Ref.s [23, 99–101].
17The original concepts are dated 1934 [102] and 1959 [103]. See also [104] (and references therein) for

a review of the method.
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2.9 Technical details of the ground state calculations

in this thesis

All the ground state calculations have been performed using two plane-waves codes: the
first, local code18 (CP-LSI) has been used only for the ground state calculation of beryl-
lium (Chap. 6), whereas the Abinit code [106] has been used for all other ground state
calculations. We have used Troullier-Martins [107] pseudo-potentials19 for silicon, carbon
and argon, and Hamann pseudo-potential [109] for the beryllium. The ground state cut-
offs are the following: 20 Hartrees for silicon, 30 Hartrees for silicon carbide, 30 Hartrees
for argon and 25 Hartrees for beryllium. The Brillouin zone has been sampled using 256
Monkhorst-Pack [110] k-points (corresponding to 10 special k-points in the irreducible
Brillouin zone) for all the systems, except the beryllium atom, for which only the Γ point
(0,0,0) has been used.

18For details about the codes, see Ref. [105]
19Downloaded from [108].
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Green functions approach

Thinking in terms of one
Is easily done -
One room, one bed, one chair,
One person there,
Makes perfect sense; one set
Of wishes can be met,
One coffin filled.
But counting up to two
Is harder to do;
For one must be denied
Before it’s tried.

Philip Larkin

The fact that an interacting system can be mapped onto a non-interacting one, easier
to handle, has made the DFT approach very useful, and successfully applied to a wide
range of materials, at least for what concerns ground-state properties.

However, in order to describe the electronic excited-state properties of materials, one
has to go beyond the static DFT, as it is witnessed by Tab. 2.1 for the excitation energies
or by Fig. 2.III for the absorption spectrum. This is the aim of the Green functions theory
and of Time Dependent DFT (TDDFT). In this chapter we introduce the former, while
the next chapter will be centered on TDDFT.

The Green function method has been successfully applied in the last three decades,
to describe one-particle and two-particle excitations, and still represents a very powerful
tool to deal with excitation energies (and today even ground-state total energy) like
quasi-particle energies, absorption spectra, collective excitations.
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3.1 Quasi-particle formulation

We have seen that, in the DFT-KS scheme, the response of a system of interacting
electrons, of Hamiltonian

H =
N∑

i=1

[
−1

2
∇2

i + Vext(ri)

]
+

N∑
i<j

1

|ri − rj|
(3.1)

to an external potential Vext is that of independent particles responding to an “effective”
potential.

A similar, though much older, idea is that the long-range, and relatively strong,
Coulomb forces could screen the individual electrons, with a surrounding charge cloud of
the other electrons. This leads us to the concept of quasi-particle,1 i.e. an electron plus
its screening cloud. Thus, the response of strongly interacting particles, can be described
in terms of weakly interacting quasi-particles (Fig. 3.I). The latter interact via a screened

Figure 3.I: An interacting particles system can be mapped onto a non-interacting particles system (DFT-
KS theory) or onto a weakly interacting particles (quasi-particles) system (Green functions).

1Primarily due to Landau [111–113]. See also [114, 115]
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rather than the bare Coulomb potential. This scheme has also the two advantages of (1)
to better represent the electrons in a many-body framework,2 and (2) to permit one to
use a perturbative expansion, with respect to the quasi-particle interaction, which has
given to this approach the name “Many Body Perturbation Theory” (MBPT).3

Quasi-particles states are not eigenstates of the N-electrons Hamiltonian (3.1), there-
fore their lifetimes are not infinite. Moreover, the screening can lead to an “effective mass”
different from that of the bare particle. All the differences between quasi-particles and
bare particles4 can be contained in a non-local, non-hermitian, energy-dependent opera-
tor Σ, the self-energy, which contains all the many-body exchange and correlation effects.
In this MBPT theory, the quasi-particle energies and wavefunctions are determined by
solving the Schrödinger-like equation[

−1

2
∇2 + Vext(r) + VH(r)

]
Ψi(r, ω) +

∫
dr′Σ(r, r′, ω)Ψi(r

′, ω) = Ei(ω)Ψi(r, ω) (3.2)

for ω = Ei(ω), called quasi-particle equation, where VH(r) is the Hartree potential and
Vext(r) is the usual external potential (e.g. the ions potential). In a solid, the index i
can represent the usual couple k, n, wave vector and band index. One can recognize the
similarity of the latter with Eq. (2.9) of the KS-DFT, to which it is led by the substitution5

Σ(r, r′, Ei) = Vxc[n](r)δ(r− r′). (3.3)

3.1.1 Green functions

The expectation value (on the ground state |N〉) of any single-particle operator is deter-
mined by the knowledge of the time ordered single-particle Green function [133]

G(1, 2) = −i
〈
N |T

[
ψ(1)ψ†(2)

]
|N
〉

=

{
−i
〈
N |ψ(1)ψ†(2)|N

〉
t1 > t2

i
〈
N |ψ†(2)ψ(1)|N

〉
t1 < t2

(3.4)

2When the many-body interaction is switched on, talking about quasi-particles makes more sense
than talking about bare particles.

3Technical details about MBPT can be found in [116–120], whereas interesting discussions on the
breakdowns of the theory are in [121–123]. However the approach briefly mentioned in this chapter is
more based on the Schwinger’s functional approach [22, 118, 119, 124–132].

4The bare particles, as defined in the following, are however subject to the Hartree potential.
5Also the Hartree and Hartree-Fock equations resemble the quasi-particle equation. In particular

Eq. (3.2) is seen as an extension of the Hartree-Fock, in which the self-energy Σ is the bare exchange
term, whereas it is here an exchange and correlation term. However, while Hartree and Hartree-Fock
obey Koopmans’ theorem and can therefore be actually considered as approximations of Eq. (3.2), the
eigenvalues of the DFT-KS are, of course, not meant to be measurable quasi-particle energies. DFT-KS
(exact theory) should be therefore called a “starting point” rather than an “approximation” to (3.2).
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with ψ† and ψ representing the creation and annihilation field operators, and where the
five coordinates (ri, σi = ±1

2
, ti) of the i-th electron are represented by the symbol (i). By

inserting a complete set of (N-1) and (N+1) particles state in (3.4) and taking the Fourier
transform in time, it can be seen that G has poles at the electron addition and removal
energies. Among the observables described by single-particle operator, there are the
density, the quasi-particle energies and lifetimes, or even the total energy of the system.6

The Green function G(1, 2) is also called propagator since it describes the probability
amplitude for the propagation of an electron from position r2 at time t2 to the position
r1 at time t1. If t1 < t2, the same G(1, 2) describes the propagation of a hole.

The many-body Hamiltonian (3.1) becomes, in second quantization framework, H =
T +W + V where

T = −1

2

∫
drψ†(r)∇2ψ(r)

W =

∫
drψ†(r)Vext(r)ψ(r)

V =
1

2

∫
drdr′ψ†(r)ψ†(r′)v(r− r′)ψ(r′)ψ(r).

From the Heisenberg equation of motion for the field operator

i
∂ψ

∂t
= [ψ,H]

we can derive the equation of motion of the Green function[
i
∂

∂t1
−H0(1)

]
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1, 2) (3.5)

with

H0(1) = −1

2
∇2

1 + Vext(1) + VH(1)

and where the self-energy Σ has been implicitly introduced (it is related to the two-particle
Green functions G2).
It is also useful to introduce the “mass operator” M via[

i
∂

∂t1
+

1

2
∇2

1 − Vext(1)

]
G(1, 2)−

∫
d3M(1, 3)G(3, 2) = δ(1, 2), (3.6)

which includes the whole many-body interaction (Hartree potential included).

6For the ground state energy, one needs to calculate the potential energy, which involves a two-particle
operator. It could seem necessary to use the two-particle creation and annihilation field operators, i.e.
a two-particle Green functions. However it is possible to demonstrate [133, 134] that even the potential
energy (if it is restricted to two-body forces) can be written in terms of one-particle Green functions.
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The condition Σ = 0 defines an equation similar to (3.5) for the non-interacting (it
still contains the Hartree potential) Green function G0[

i
∂

∂t1
−H0(1)

]
G0(1, 2) = δ(1, 2). (3.7)

From Eq.s (3.5) and (3.7), we have

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) (3.8)

which represents the Dyson [135, 136] equation for the Green function.

Spectral Function and connection with experiments

As we can see, comparing Eq.s (3.2) and (3.5), the Green function represents the formal
solution (the “resolvent”)7 of Eq. (3.2). This directly leads to a spectral representation

G(r, r′, ω) =
∑

i

Ψi(r, ω)Ψ∗
i (r

′, ω)

ω − Ei(ω)

for the Green function in the space and in frequency domain, where, of course, {Ψi, Ei}
are the solutions of Eq. (3.2).

The imaginary part of the Green function is called spectral function

A(r, r′, ω) = − 1

π
={G(r, r′, ω)}

which is closely connected to direct and inverse photoemission spectra. In fact, if we look
at the non-interacting Green function

G0(r, r′, ω) =
∑

i

φi(r)φ
∗
i (r

′)

ω − εi
,

i labelling the non-interacting states, its spectral function is a series of δ-functions at the
eigenvalues of the Hamiltonian of non-interacting electrons (e.g. Hartree eigenvalues, if
(3.7) is used), as schematically represented in Fig. 3.II. Now, from Dyson equation (3.8),
we have for a diagonal element of the spectral function of the full Green function,

A(ω) =
1

π

∑
i

={Σ(ω)}
|ω − εi −<{Σ(ω)}|2 + |={Σ(ω)}|2

(3.9)

7Given (z − L)|u >= |f >, with L differential operator, the Green function is the inverse operator
of the associated homogeneous equation, i.e. G(z) = (z − L)−1. For the mathematical properties of the
resolvent, see Ref.s [137–140].
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Figure 3.II: Schematic representation of the
spectral function. The position of the quasi-
particle peak represents the quasi-particle
energy, while its width (at half maximum)
is the inverse quasi-particle lifetime. On the
left the independent-particle spectral func-
tion (a delta function) is shown.

A
(ω

)

Γ

ε+∆ωE=ε

using Ei = εi +<{Σ}+ i={Σ}. The shape of the spectral function can be, within quasi-
particle approximation,8

A(ω) ≈ Γ

(ω − ε−∆ω)2 + Γ2
=

Γ

(ω − E)2 + Γ2

as reported in Fig. 3.II. The quasi-particle position is at the excitation energy ω = E =
ε + ∆ω, i.e. shifted with respect to the non-interacting eigenvalue, by a contribution
<{Σ}. The width of the peak (it is no longer a delta function, as for the non-interacting
case, but a Lorentzian) represents the inverse lifetime of the corresponding quasi-particle.

Experimentally, direct and inverse photoemission measurements offer a method for the
approximate determination of the spectral function and hence, when the quasi-particle
approximation holds, of the electronic energy levels, both occupied and empty [141].
Based on the photo-electric effect, the direct photoemission concerns a monochromatic
radiation (a photon) of energy hν that impinges on the sample. The system of electrons
absorbs the energy and a photo-electron is emitted with energy EK given by, following
Fig. 3.III

EK = hν + Ei

where Ei is the quasi-particle energy of the level i, calculated with respect to the vacuum
level. In the inverse photoemission experiment, an electron impinging on the system can
lose its energy and be captured by the system, via the emission of a photon of energy
hν. The latter equation still holds. The energy levels of a molecule or the band structure

8If the spectral function is much different from a Lorentzian function, it is not possible to speak about
quasi-particles anymore.
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Figure 3.III: a) Direct photoemission experiment. Investigation of occupied quasi-particle states. b)
Inverse photo-emission experiment. Investigation of empty quasi-particle states.

of a solid can hence be calculated by determining the eigenvalues of the quasi-particle
Eq. (3.2), once an expression for the self-energy has been found.

3.1.2 Hedin’s pentagon

A systematic way to approximate the self-energy Σ was proposed by Hedin in 1965 [142]
and then detailed in 1969 [22]. This scheme consists of five (one is the Dyson equation
(3.8) for the Green function) coupled integral equations

Σ(1, 2) = i

∫
d(34)G(1, 3)Γ(3, 2, 4)W (4, 1+) (3.10)

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) (3.11)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4567)

δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3) (3.12)

W (1, 2) = v(1, 2) +

∫
d(34)v(1, 3)P̃ (3, 4)W (4, 2) (3.13)
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P̃ (1, 2) = −i
∫
d(34)G(1, 3)G(4, 1+)Γ(3, 4, 2) (3.14)

to be solved iteratively. Here 1+ = (r1, σ1, t1 + δ) where δ is a positive infinitesimal. The
equations involve G, Σ, the irreducible polarizability P̃

P̃ (1, 2) =
δn(1)

δU(2)
=

δn(1)

δ (Vext(2) + VH(2))
,

the screened Coulomb interaction W , the vertex function

Γ(1, 2, 3) = −δG
−1(1, 2)

δU(3)
= δ(1, 2)δ(1, 3) +

δΣ(1, 2)

δU(3)
,

and the independent-particle Green function G0. Defined the time-ordered dielectric
function as

ε(1, 2) = δ(1, 2)−
∫
d3v(1, 3)P̃ (3, 2), (3.15)

the screening equation (3.13) becomes W = ε−1v, linking the screened to the bare
Coulomb interaction.

Σ

G

ΓP

W

G=G 0
+G 0 Σ G

Γ=
1+

(δ
Σ/

δG
)G

G
Γ

P = GGΓ

W
 = v + vPW

Σ = GWΓ

In order to solve Eq.s (3.10-3.14), one possi-
ble strategy could be to start from the top of the
pentagon, with Σ = 0, and obtain in the order:
the Green function G (at this step the Hartree
independent-particle G0), the vertex function (only
a delta function), the polarizability (at this step it
is the independent-particle polarizability P 0 or Ran-
dom Phase Approximation (RPA) polarizability9),
the screening (which corresponds to the RPA screen-
ing WRPA = W 0), and the self-energy Σ = iG0W 0

which now has been updated. In principle this pro-
cess should continue until self-consistency is reached.
But in practice, a full self-consistent resolution of the Hedin’s equations has never been
pursued.

Instead, real calculations usually stop once obtained the Σ = G0W 0 (i.e. after one
round), or search for the self-consistency of a reduced set of equations, short-cutting the
vertex function. These approximations are called non-self-consistent and self-consistent
GW approximations (GWA), respectively.

9This is a definition of the Random Phase Approximation for the polarizability, i.e. the P = −iG0G0

shape. The connection with the original diagrammatic bubble expansion [114, 115], or even with lin-
earized time dependent Hartree [143] is done via the formal use of a product of two one-particle Green
functions. From now on, and throughout the thesis, the RPA polarizability will be considered of the
form P = −iG0G0.
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3.1.3 Real calculations and GWA

Standard GWA

The GW approximation (GWA) consists, hence, in short-cutting the Hedin’s pentagon,
avoiding the calculation of the vertex function Γ set to a delta function

ΓGWA(1, 2, 3) = δ(1, 2)δ(1, 3).

In practical calculations, one needs a starting point for the independent-particle Green
function G0 that is more realistic than the Hartree one. A good choice can be represented
by the solution of the KS equations.10 Once G0 has been obtained, the (independent-
particle) polarizability P 0, the (RPA) screening W 0 and the self-energy ΣGW become

P 0(1, 2) = −iG0(1, 2)G0(2, 1+)

W 0(1, 2) = v(1, 2) +

∫
d(34)v(1+, 3)P 0(3, 4)W 0(4, 2)

Σ(1, 2) = iG0(1, 2)W 0(1+, 2).

(3.16)

This self-energy ΣGW = G0W 0 can be used to calculate the quasi-particle energies, via
the quasi-particle equation (3.2). The similarity of (2.9) and (3.2) suggests to treat the
difference of the self-energy and the KS potential as a perturbation. In fact it has turned
out that the quasi-particle wavefunctions and the KS-LDA ones are similar, at least for
many simple bulk materials.11 This leads, in first order, to the quasi-particle energies:

Ei
⇑

= εi +
〈
φLDA

i

∣∣Σ(Ei
⇑

)− V LDA
xc

∣∣φLDA
i

〉
where the εi represent the KS eigenvalues. One can see that the quasi-particle energies
appear also as argument of the self-energy. What is usually done, in this so called “stan-
dard GW approximation”, is to expand (with Taylor) at the first order the Σ(Ei), around
εi

〈Σ(Ei)〉 = 〈Σ(εi)〉+ (Ei − εi)

〈
∂Σ(ω)

∂ω

∣∣∣∣
ω=εi

〉
+O

[
(Ei − εi)

2]
in order to find the GW corrections (to first order) with respect to the KS energies

Ei − εi =
〈Σ(εi)〉 − 〈Vxc〉

1−
〈

∂Σ(ω)
∂ω

∣∣∣
ω=εi

〉 = Zi [〈Σ(εi)〉 − 〈Vxc〉] (3.17)

10Caution: the DFT-LDA wavefunctions are eigenstates of a system of independent particles, but
where exchange and correlation effects are partially (i.e. within the local density approximation) taken
into account by the V LDA

xc . While in the definition of G0, by (3.7), all these effects (Σ = 0) are zero.
So, if DFT-LDA wavefunctions are used to build the independent-particle Green function, for example
the spectral function A(ω) has to be rewritten as A(ω) = 1

π

∑
i

={Σ(ω)}
|ω−εi−<{Σ(ω)−V xc

i }|2+|={Σ(ω)}|2 , as a
consequence of the fact that G = G0 + G0(Σ− V LDA

xc )G should replace Eq. (3.8).
11E.g. in silicon

〈
φLDA|ΨQP

〉
> 0.999. For details and discussions, see Ref.s [144, 145].
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which also defines a renormalization factor Zi.
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Figure 3.IV: Minimum band-gap energies for several solid materials. The references (as exponent, calcu-
lated first, experiment later) are the following: a[146], b[147], c[148], d[149], e[150], f [151], g[152], h[153],
i[154].

The standard GW approximation here described [155, 156], represents a valid tool
to obtain accurate results for excitation energies [144, 145, 148, 157–159], quasi-particle
band-gaps of solids, as one can see in Fig. 3.IV, and quasi-particle lifetimes [160–167]. It
is therefore worthwhile to summarize the principal steps of the method:

1. DFT ground-state calculation (e.g. LDA) and construction of G0.

2. Calculation of P 0, W 0 and ΣGW , using Eq.s (3.16).

3. Calculation of the quasi-particle energies/correction using Eq. (3.17).12

The GW approximation in its practical implementations coincides, hence, with a first
iteration of Hedin’s pentagon, together with a number of choices and approximations.

12Or, less frequently, using [168] Eq. (3.2).
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Plasmon-pole model

Another approximation that is often used concerns W . In the calculation of W = ε−1v,
the inverse dielectric function is a frequency dependent matrix. The so called plasmon-pole
model [145, 169–171] consists in substituting the frequency dependence of the imaginary
part of every element of the matrix with just a narrow Lorentzian peak, which is related
to the plasmon excitations of the system, since −={ε−1} is the loss function. Using the
Kramers-Kronig relations, the resulting dielectric function is, then, in reciprocal space,

ε−1
G,G′ = δGG′ +

Ω2
GG′(q)

ω2 − ω̄2
GG′(q)

where Ω and ω̄ are parameters giving the strength and the position of the poles, re-
spectively. They can be obtained, for example, using the static screening and sum rules
[144] or fitted to a full calculation along the imaginary energy axis (we use the latter
option). The effects of this approximation have been discussed in Ref. [172]. For the
results contained in this thesis, we always have made use of this approximation for all
GW calculations.

Self-consistent GWA

In order to go beyond the first order expression (3.17), another possibility to calculate
the quasi-particle energies but also the quasi-particle wavefunction is to perform a self-
consistent resolution of the set of Eq.s (3.16) plus the Dyson equation for the Green
function.

Σ

G

ΓP

W

G=G 0
+G 0 Σ G

Γ=
1+

(δ
Σ/

δG
)G

G
Γ

P = GGΓ

W
 = v + vPW

Σ = GWΓ

P = GG

This coincides with a short-circuit of the Hedin’s pentagon,
as shown in the scheme, but it is of course, computation-
ally much more cumbersome than the “standard” not self-
consistent GWA.

Some examples of self-consistent GW calculations can
be found in Ref.s [173, 174] for semi-conductors,13 but, in
these works, the results turned out to be worse than those
of the non self-consistent calculations, at least concerning
the quasi-particle energies (often the quasi-particle gap is
overestimated) or the spectra. Improvements due to the
self-consistency can be found, instead, for the description

of total energies [178–180]. This is partially explained with the fulfilling of certain sum
rules [129, 181–183] (conservation of number of particles, conservation of the total mo-
mentum) by the self-consistent GW scheme, which are instead not fulfilled by the non
self-consistent GWA. Then, why does the latter work better than the self-consistent GWA

13Previous self-consistent GW calculations, on the homogeneous electron gas, have also been performed,
see [175–177].
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for the description of the quasi-particle gap? This has been attributed to the cancellation
between the GW self-consistency and the vertex correction (that are both neglected in the
standard GW) [173, 184, 185]. More recently, the band-gap problem in semiconductors
has been revisited by Ku and Eguiluz [186], who show that an all-electron self consis-
tent GW calculation can lead, contrary to the previous lore, to a good estimation of the
quasi-particle gap and also infer about quasi-particle lifetime. However these results still
have to be confirmed, especially because the inclusion of the core-electron worsens the
convergence of the GW calculations [187]. Most people working in the field of GW still
claim that a non-self-consistent GW calculation is a suitable approach for determining
quasi-particle energies, at least in simple bulk systems. This is also the approach we have
adopted in this thesis.

3.2 Response functions

In Par. (3.1.2) we have briefly introduced the polarizability P̃ and the dielectric function
ε. In the spirit of linear response (see Appendix A) we can better clarify all these concepts.

The reducible response function P is defined [22] as

P (1, 2) =
δn(1)

δVext(2)
= −iδG(1, 1+)

δVext(2)
(3.18)

and represents the variation of the induced density upon a variation of the external field
Vext. The irreducible polarizability P̃ is, instead, defined as

P̃ (1, 2) =
δn(1)

δU(2)
= −i δG(1, 1+)

δ [Vext(2) + VH(2)]
(3.19)

i.e. the variation of the induced density with respect to a variation of a (classical) total
potential, here given by the external plus the Hartree potential. The inverse dielectric
function ε−1 is

ε−1(1, 2) =
δU(1)

δVext(2)
= δ(1, 2) +

∫
d3v(1, 3)

δn(3)

δVext(2)
=

= δ(1, 2) +

∫
d3v(1, 3)P (3, 2)

(3.20)

and it is also related to the polarizability P̃ via Eq. (3.15). Eq.s (3.20) and (3.15) are
very important equations because of their role to connect the dielectric function (that is,
in its retarded version, related to macroscopic measurable quantities, see Chap. 1) with
the polarizability P̃ , ingredient of Hedin’s equations. The relation between P and P̃ is
given by the retarded version of Eq.s (1.34). Putting, in fact, the second of (1.34) into
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(3.20) we have

ε−1 = 1 + v
(
1− P̃ v

)−1

P̃ = 1 +
(
v−1 − P̃

)−1

P̃ =

= 1 +
(
1− vP̃

)−1

vP̃ =
(
1− vP̃

)−1 (
1− vP̃

)
+
(
1− vP̃

)−1

vP̃ =

=
(
1− vP̃

)−1 (
1− vP̃ + vP̃+

)
=
(
1− vP̃

)−1

and then (3.15).
As mentioned above, we should remember that all the quantities we have defined up

to now are time ordered. To make a direct comparison with the retarded functions of the
linear response theory we have the relations

<{χR(ω)} = <{PT (ω)}
= {χR(ω)} = sign(ω) ={PT (ω)}

(3.21)

where the suffixes �T and �R stand for time-ordered and retarded, respectively. As one
can see, if only the ω > 0 part of the response function is considered, the retarded and
time ordered response functions have the same value.

Spectra in GWA

We have seen in Fig. 3.IV that the standard GWA scheme led to important improvements
concerning the band-gap energies of a large variety of semi-conductors and insulators. One
could think to use the same level of approximation to infer even on neutral excitations
spectra, like the absorption spectrum.
The substitution of DFT (e.g. LDA) eigenvalues with the quasi-particle energies Ei into
(2.25) directly leads to the “GW-RPA polarizability”

χ0
GW (G;G′, ω) = 2

∑
i,j

〈
φi|e−iG·r|φj

〉 〈
φj|eiG′·r′|φi

〉
ω − (Ej − Ei) + iη

. (3.22)

In spite of the improvements achieved by the GWA, concerning the energy levels and pho-
toemission spectra, the use of (3.22) for neutral excitations spectra often leads to poor
results. In Ref.s [33, 188] some examples concerning semiconductors are reported. Gen-
erally the calculated spectrum shows a blue-shift with respect to the RPA one (also with
respect to experiment), and the line-shape is not systematically improved. An example,
the absorption spectrum of solid silicon, is shown in Fig. 3.V, where the GW-RPA curve
has been added to the previous Fig. 2.III. This failure can be easily explained: in GWA,
self-consistent or not, we describe excitations that change the number of particle of the
system, adding or removing an electron (or a hole). This also explains the good results
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for the description of energy levels, quasi-particle gaps, photoemission spectra. But ab-
sorption, reflectivity or fluorescence spectroscopies involve neutral excitations, with the
number of electrons of the system which remains constant. An absorption experiment
for example, removes an electron from an occupied level, leaving a hole, putting it in
an empty level, of higher energy, thus describing a two-particle excitation. The GWA
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Figure 3.V: Absorption Spectrum of solid silicon. DFT-LDA, RPA and GW-RPA results compared to
the experiment [189].

cannot properly describe this mechanism because of its definition of the polarizability
(3.16), which excludes any possible interaction between the electron (whose propagation
is described by G(1, 2)) and the hole (described by G(2, 1+)). The inclusion of the ver-
tex function Γ(1, 2, 3) as follows from Hedin’s equations (3.13), is then crucial for the
description of two-particle excitations.

This is the aim (and the success) of the Bethe-Salpeter14 equation (BSE).

14The original work can be found in Ref. [190].
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3.3 Bethe-Salpeter Equation

Processes involving two-particle excitations are normally described (implicitly or explic-
itly) via a two-particle Green function

G(1, 2, 3, 4) = (−i)2
〈
N
∣∣T [ψ(1)ψ(3)ψ†(4)ψ†(2)

]∣∣N〉 .
We can now introduce a 4-point (reducible) polarizability L

L(1, 2, 3, 4) = L0(1, 2, 3, 4)−G(1, 2, 3, 4)

where the independent-electron-hole polarizability

L0(1, 2, 3, 4) = iG(1, 3)G(4, 2)

describes the propagation of a hole and an electron separately.
The function L (and L̄ defined in analogy to (1.34)) also satisfies a Dyson equation, known
as Bethe-Salpeter equation (BSE)

L(1, 2, 3, 4) = L0(1, 2, 3, 4) +

∫
d(5678) L0(1, 2, 5, 6)K(5, 6, 7, 8)L(7, 8, 3, 4)

L̄(1, 2, 3, 4) = L0(1, 2, 3, 4) +

∫
d(5678) L0(1, 2, 5, 6)K̄(5, 6, 7, 8)L̄(7, 8, 3, 4)

(3.23)

where the kernels K and K̄ are

K(5, 6, 7, 8) = δ(5, 6)δ(7, 8)v(5, 7) + iΞ(5, 6, 7, 8)

K̄(5, 6, 7, 8) = δ(5, 6)δ(7, 8)v̄(5, 7) + iΞ(5, 6, 7, 8)
(3.24)

and Ξ is defined as

Ξ(1, 2, 3, 4) =
δΣ(1, 3)

δG(2, 4)
.

The connection with the irreducible polarizability passes through the 4-point extension
of (1.34) (having defined the 4-point extension of the Coulomb potential v(1, 2, 3, 4) =
δ(1, 2)δ(3, 4)v(1, 3))

L̄(1, 2, 3, 4) = L̃(1, 2, 3, 4) +

∫
d(5678) L̃(1, 2, 3, 4)v̄(5, 6, 7, 8)L̄(7, 8, 3, 4)

L(1, 2, 3, 4) = L̃(1, 2, 3, 4) +

∫
d(5678) L̃(1, 2, 3, 4)v(5, 6, 7, 8)L(7, 8, 3, 4),

(3.25)

which, combined with

L̃(1, 2, 3, 4) = L0(1, 2, 3, 4) + i

∫
d(5678) L0(1, 2, 5, 6)Ξ(5, 6, 7, 8)L̃(7, 8, 3, 4) (3.26)
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give (3.23).15

In order to calculate the absorption spectrum, we need a two-point contraction of
the resulting polarizability, and the limit of vanishing momentum transfer to obtain the
macroscopic dielectric function

εM(ω) = 1− lim
q→0

v(q)

∫
drdr′ eiq·(r−r′)L̄(r, r, r′, r′, ω) (3.27)

whose imaginary part gives the absorption spectrum. The electron energy loss spectrum
for vanishing momentum transfer is instead given, if in the latter, L̄ is substituted by L.

As stated in (3.24), the kernel K is composed of two terms: the 4-point Coulomb
interaction, also called electron-hole exchange,16 and the variation of the self-energy upon
the variation of the Green function. Let’s now specify a shape for the self-energy, taking
e.g. the GWA self-energy Σ = iG(1, 2)W (2, 1). This directly leads to

K(1, 2, 3, 4) = δ(1, 2)δ(3, 4)v̄(1, 3)− δ(1, 3)δ(2, 4)W (1, 2) (3.28)

where in the derivation of the self-energy we have omitted the term iG(1, 2) δW (1,2)
δG(3,4)

, i.e.

the variation of the screening due to the excitation.17

Intrinsic two-particle character of the BSE

IfW were zero in (3.28), only the Coulomb term would appear in (3.24) and then in (3.23),
i.e. it would be possible to find a two-point representation of the the formula contracting
the indices. But, because of the presence of Ξ, the BSE can be never written in a 2-point
framework (in (3.28), the arguments of the delta functions multiplying W (1, 2) prevents
any contraction of indices), even if the GWA is used for the self-energy. This demonstrates
the intrinsic two-particle character of the BSE.

3.3.1 Effective two-particle equations

The four time variables, implicitly contained in a 4-point polarizability, can be reduced to
just one, considering the propagation and the interaction of the two particles, the electron
and the hole, as simultaneous and instantaneous,18 and considering the translational

15The relation between (3.26) and the 2-point polarizability occurring in Hedin’s equations can be
obtained multiplying (3.12) by a pair of Green functions −GG, and using (3.14). This operation gives a
4-point polarizability 4P̃ , related to L̃ via L̃ = − 4P̃ .

16In spite of the name, whose meaning will be clarified in Par. 6.1, this term is related to the Hartree
potential, and not to Fock exchange.

17This term is supposed to be small [191–193].
18This corresponds to (t2 = t+1 ; t4 = t+3 ) and W (1, 2) = W (r1, r2)δ(t1 − t2).
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invariance in time. Thus, thanks to a Fourier transform, we have

L(1, 2, 3, 4) −→ L(1, 2, 3, 4|ω)

L̄(1, 2, 3, 4) −→ L̄(1, 2, 3, 4|ω)

where i only indicates (from now on) the spatial and spin variables, but not the time
anymore. This is also the function L̄ occurring in Eq. (3.27) For simplicity, the frequency-
dependence will not be specified, if not necessary. Given the Eq. (3.23) for the L̄ (or L in
case of EELS), one needs to invert a 4-point function, at each frequency, which is a very
demanding task.

It is possible to exploit the two-particle nature of the BSE, mapping the problem
onto an effective two-particle equation, where the basis set is represented by pairs of
single-particle φ’s, i.e. by transitions, trusting that only a small number of transitions
will contribute to the description of each part of the spectrum. In this paragraph we have
essentially followed the scheme described in Ref. [194, 195].

The first step is to change basis and define the polarizability in the transition space,
via

L(n1n2)(n3n4) =

∫
dr1dr2dr3dr4L(1, 2, 3, 4)φn1(r1)φ

∗
n2

(r2)φ
∗
n3

(r3)φn4(r4) (3.29)

where the index n now includes the band and wave vector index. Eq. (3.23) becomes

L̄(n1n2)(n3n4) = L0
(n1n2)(n3n4) + L0

(n1n2)(n5n6)K(n5n6)(n7n8)L̄(n7n8)(n3n4) (3.30)

with a diagonal expression for L0, if the φ’s are the KS wavefunctions19 used to construct
L0,

L0
(n1n2)(n3n4) =

(fn2 − fn1) δn1,n3δn2,n4

En2 − En1 − ω − iη
.

Eq. (3.30) can be formally solved giving

L(n1n2)(n3n4) =

[
1

1− L0K

]
L0 = ΠL0 (3.31)

with

Π(n1n2)(n3n4) = [(Em2 − Em1 − ω) δm1,m3δm2,m4 ×

× (fm1 − fm2)K(m1m2)(m3m4)

]−1

(n1n2)(n3n4)
(Em2 − Em1 − ω) ,

19In reality, the {φ} can be any complete set of eigenfunctions and we chose it such that the function
L0

(n1n2)(n3n4)
is diagonal.
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having used [
δij −

1

bi
aij

]−1

αβ

=

[
1

bi
(biδij − aij)

]−1

αβ

= (biδij − aij)
−1
αβ bβ.

We can define the two-particle Hamiltonian or excitonic Hamiltonian

H2p
(n1n2)(n3n4) = (En2 − En1) δn1,n3δn2,n4 + (fn1 − fn2)K(n1n2)(n3n4) (3.32)

which permits one to rewrite Eq. (3.31) as

L̄(n1n2)(n3n4) =
[
H2p − I ω

]−1

(n1n2)(n3n4)
(fn3 − fn4) . (3.33)

The structure of the excitonic Hamiltonian is quite complicated; it is schematically rep-
resented by a triangular block matrix

H2p
(n1n2)(n3n4) =

(
A B
0 D

)
or, specifying A,B and D,

H2p
(n1n2)(n3n4) =



(n3n4)→
(n1n2)↓ {v′c′} {c′v′} {v′ṽ′} {c′c̃′}

{vc} H2p,reso
(vc)(v′c′) K(vc)(c′v′) K(vc)(v′ṽ′) K(vc)(c′c̃′)

{cv} −[K(vc)(v′c′)]
∗ −[H2p,reso

(cv)(c′v′)]
∗ −K(cv)(v′ṽ′) −K(cv)(c′c̃′)

{vṽ} 0 0 (Eṽ−Ev)δvv′δṽṽ′ 0

{cc̃} 0 0 0 (Ec̃−Ec)δcc′δc̃c̃′


.

Here, we have omitted the index k, associated to each vertical transition vk → ck. The
occupied KS states are indicated by the indices v, v′, ṽ, ṽ′, while the empty states by
c, c′, c̃, c̃′. The presence of the factor (fn4 − fn3) in (3.33) means that only the {n3, n4} =
{v′, c′} or {n3, n4} = {c′, v′} components of the inverse matrix M−1

M−1
(n1n2)(n3n4) =

[
H2p − Iω

]−1

(n1n2)(n3n4)

will contribute, i.e. only the first column of M.20 Thus, since we are interested only in
[A − Iω], we reduce the two-particle Hamiltonian only to the interesting part, defining
the H2p,exc

H2p,exc =

 H2p,reso
(vc)(v′c′) Kcoupling

(vc)(c′v′)

−
[
Kcoupling

(vc)(c′v′)

]∗
−
[
H2p,reso

(vc)(v′c′)

]∗
 (3.34)

20Because M = [H2p − Iω] is a upper triangular block matrix.
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where the matrix H2p,reso only involve positive frequency transitions, and it is called
resonant term

H2p,reso
(vc)(v′c′) = (Ec − Ev) δv,v′δc,c′ +K(vc)(v′c′). (3.35)

One can see that if all the lifetime effects are neglected, the H2p,reso is a Hermitian
matrix. The fourth term, involving negative frequency transitions is called anti-resonant
term, while the out of diagonal blocks mix positive and negative frequency transitions,
so they are called coupling terms.

We have not yet solved the problem of inverting a matrix at each frequency. For
this purpose, let us define the important spectral representation of the inverse excitonic
Hamiltonian [

H2p,exc − Iω
]−1

(n1n2)(n3n4)
=
∑
λ,λ′

A
(n1n2)
λ S−1

λλ′ A
∗(n3n4)
λ′

Eexc
λ − ω

(3.36)

that is valid for a general non-Hermitian matrix defined by

H2p,exc
(n1n2)(n3n4)A

(n3n4)
λ = Eexc

λ A
(n1n2)
λ (3.37)

and solved by diagonalization. The overlap matrix S is given by

Sλλ′ =
∑
n1n2

A
∗(n1n2)
λ A

(n1n2)
λ′

and differs from the identity because of the non-orthogonality of eigenstates of a non-
Hermitian matrix, like H2p,exc.

If, due to the approximation chosen for the self-energy, the H2p,reso is an Hermitian
matrix (that also means that Kcoupling is symmetric), the excitonic eigenvalues Eexc

λ are
real, and the corresponding excitation has an infinite lifetime.

The advantage of the spectral representation of the excitonic Hamiltonian is clear.
The problem of inverting a matrix at each frequency has been mapped onto the problem
of diagonalizing that matrix, once for all. The results of the diagonalization, {Aλ} and
{Eλ}, are used to build the polarizability function in the transition framework

L̄(n1n2)(n3n4) =
∑
λ,λ′

A
(n1n2)
λ S−1

λλ′ A
∗(n3n4)
λ′

Eexc
λ − ω

(3.38)

which, once transformed in real space, can be put into Eq. (3.27) and give

εM(ω) = 1− lim
q→0

v0(q)
∑
λλ′

 ∑
(n1n2)

〈
n1|e−iq·r|n2

〉 A
(n1n2)
λ

Eexc
λ − ω − iη

×

×S−1
λλ′

∑
(n3n4)

〈
n4|eiq·r′|n3

〉
A
∗(n3n4)
λ (fn4 − fn3)

 .
(3.39)
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If we now consider only the resonant part of the excitonic Hamiltonian, i.e., the part which
mixes only positive frequency transitions, the eigenstates Aλ are mutually orthogonal if
H2p,reso is Hermitian and, in this case a simple formula holds

εM(ω) = 1− lim
q→0

v0(q)
∑

λ

∣∣∣∑(n1n2) 〈n1|e−iq·r|n2〉A(n1n2)
λ

∣∣∣2
Eexc

λ − ω − iη
. (3.40)

The use of (3.40) turned out to be a very good approximation, especially for the ab-
sorption spectra of semiconductors. Neglecting the coupling means neglecting the mixing
between positive frequency and negative frequency transitions [196, 197]. This is in gen-
eral no problem for the absorption spectrum, which involves the imaginary part of the
dielectric function. Instead, for all quantities involving the real part of the dielectric ma-
trix, like EELS, transitions at positive and negative frequency are naturally mixed, by the
Kramers Kronig transformation, and the coupling term has turned out to be sometimes
very important. An example of EELS for silicon is reported in Ref. [198].

3.3.2 Ingredients and approximations

In this paragraph we want to report the ingredients of the BSE method. The resonant
part of the excitonic Hamiltonian (3.35)

Hreso
(vck)(v′c′k′) = (Eck − Evk) δvv′δcc′δkk′ + 2vv′c′k′

vck −W v′c′k′

vck (3.41)

is composed of three parts: a diagonal part concerning the quasi-particle energies (calcu-
lated in the GW approximation)

Hdiag
(vck)(v′c′k′) = (Eck − Evk) δvv′δcc′δkk′ (3.42)

where all the indices have been specified (even the k point); the second and the third
part are the electron-hole exchange and the screened electron-hole interaction part, given
respectively by

Hexch
(vck)(v′c′k′) = 2vv′c′k′

vck) =

∫
dr

∫
dr′φ∗ck(r)φvk(r)

2

|r− r′|
φc′k′(r

′)φ∗v′k′(r
′) (3.43)

and

Hscr
(vck)(v′c′k′) =−

∫
dr

∫
dr′
∫
dr1φ

∗
ck(r)φc′k′(r)ε

−1(r, r1)
1

|r1 − r′|
φvk(r

′)φ∗v′k′(r
′) =

= W v′c′k′

vck =−
∫
dr

∫
dr′φ∗ck(r)φc′k′(r)W (r, r′)φvk(r

′)φ∗v′k′(r
′)

(3.44)
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where we have summed up the spin21 and only a static screening has been used ε−1(q, ω =
0). This further approximation has been implemented in the light of results [200, 201],
showing that dynamical effects in the screening are partially compensated by those of the
Green function, at least in simple semiconductors, so suggesting to neglect them both.
In practice we evaluate (3.43) and (3.44) in momentum space, as

Hexch
(vck)(v′c′k′) = 2

4π

Ω

∑
G 6=0

1

|G|2
〈
ck
∣∣eiG·r∣∣ vk〉 〈v′k′ ∣∣e−iG·r∣∣ c′k′〉 (3.45)

Hscr
(vck)(v′c′k′) = −4π

Ω

∑
GG′

ε−1
GG′(q)

|q + G|2
〈
ck
∣∣∣ei(q+G)·r

∣∣∣ c′k′〉〈v′k′ ∣∣∣e−i(q+G′)·r′
∣∣∣ vk〉 δk−k′,q.

(3.46)
Before concluding this chapter, it is worth summarizing the steps of the method and

the approximations that we use in the determination of optical spectra in BSE. We will
follow Fig. 3.VI:

• First, one has to perform a ground state calculation, in order to find the KS eigen-
values {εi} and wavefunctions {φi}.
Approximations: use of pseudo-potentials and LDA for the exchange-correlation poten-
tial.

• Second, the calculation of the dielectric function is performed, once we have obtained
the independent-particle polarizability χ0.
Approximations: dielectric matrix calculated within the RPA.

• Third, the standard GWA is applied to find the quasi-particle energies Ei.
Approximations: use of the GW approximation where Σ = iG0W 0. Plasmon-pole model
applied to the frequency dependence of ε−1.

• Fourth, the screening W and the independent-quasi-particle polarizability22 P 0 are
calculated.
Approximations: The static limit is taken for W . The LDA wavefunctions are used to
build P 0.

• Finally, the BSE calculation is performed, using P 0 and K = v̄ −W 0.
Approximations: only the resonant part of the excitonic Hamiltonian is considered.

21The spin structure of the BSE would deserve a wide paragraph on its own [199]. Here we only
consider that (1) the spin-orbit interaction in the system is negligible (so that the single particle states
can be labelled by spin-up or spin-down states), (2) only the spin-singlet class of solution is taken into
account.

22If one uses Eq. (3.35) the calculation of P 0 is not strictly necessary, because the quasi-particle
energies are contained in the diagonal part of that equation. However, P 0 gives, for ω > 0, the GW-RPA
spectrum, which is very useful, in comparing with the BSE result, to infer about the excitonic effects.
Also, W (ω = 0) might have already been calculated in the previous step.
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BSE
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Figure 3.VI: Scheme for the determination of Optical Spectra in BSE.
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Despite the number (and the level) of approximations occurring (“we are far from a
full self-consistence resolution of the Hedin’s equation”), the BSE method has achieved
very good results.

Hanke and Sham [191] have managed to explain the absorption spectrum of silicon
using the BSE together with a semi-empirical band structure. See also Ref.s [172, 202–
205], to cite some of the first applications of modern ab initio BSE approach.

In Fig. 3.VII we show the results of the absorption spectrum of bulk silicon calculated
with RPA, GW-RPA, BSE, compared with the experiment. The BSE result is in good
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Figure 3.VII: Absorption Spectrum for bulk silicon. RPA, GW-RPA and BSE results compared to the
experiment [189].

agreement with the experiment; in particular, the relative strength of the two peaks, now
is correct. If we look at the results of Fig. 3.VII, we understand why the BSE is considered
the final point of a three-steps procedure: first, the RPA spectrum can be obtained, using
DFT-LDA eigenvalues and eigenfunctions (dashed curve); second, the GW corrections
are calculated and the GW-RPA spectrum is built using LDA wavefunctions, but quasi-
particle energies23 (double-dot dashed curve); finally the BSE is applied, using again
LDA wavefunctions and quasi-particle energies. The effect of the second step has been

23LDA energies + GW corrections
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to shift (almost rigidly) the RPA spectrum towards higher energy, though without any
improvement in the line-shape. The red-shift of the RPA has become the blue-shift of
the GW-RPA, with respect to experiment. The very crucial step, the third one, moves
(red-shift) the GW-RPA peaks in the right position and improves the line-shape of the
spectrum (full line). Let us summarize the mathematical expression of the polarizability
at the three stages (schematically):

DFT-LDA ⇒ χRPA
0 = G0(εi)G

0(εi)

GW-RPA ⇒ P0 = G0(Ei)G
0(Ei)

BSE ⇒ P̃ = P0 + P0WP̃ = (1− P0W )−1P0

We recognize that in both DFT-LDA and GW-RPA cases, the polarizability is given by
the propagation of the electron and the hole separately (product of two one-particle Green
functions), whereas in BSE the propagation of the two particles is correlated by the term
(1− P0W )−1, which is nothing but the vertex term Γ, as follows from (3.12) and (3.14).
This vertex term is responsible for excitonic effects, i.e. for the electron-hole interaction,
giving rise to the two-particle character of the BSE.

Despite its three-step algorithm, the physics of the BSE picture is quite clear, and it is
also easy to recognize the level of approximations occurring at each stage. Moreover the
results one can achieve, within BSE, are remarkable, in a large variety of systems, like
bulk semiconductors [202–207] or insulators [204, 208, 209], surfaces [210, 211], atoms
[212], molecules [172], clusters [213], or even polymers [214–216]; and not only for the
optical spectrum, but also, e.g. for the EELS [198, 217]. However, because of its 4-
point character, the BSE calculations are necessarily cumbersome. The bottleneck of
the calculation can be identify either in the construction of the (Nv ×Nc ×Nk)

2 matrix
element of the H2p

(vck)(v′c′k′), or in the diagonalization of the matrix itself, which involves

a scaling of (Nv × Nc × Nk)
3, where Nv, Nc, Nk are the numbers of valence bands, of

conduction bands, and of k-points used to sample the Brillouin zone, respectively.
It is also important to point out that the algorithm shown here to describe the solution

of the Bethe-Salpeter equation, is neither the only possible one, nor the the most efficient.
Several approaches, in fact, have been recently proposed, to have a numerically more
efficient resolution, by a group [218–220] in the United States or by a group [211, 221] in
Jena. Still, the calculations remain cumbersome, and far from applicable to systems of
interest in material science, like defects, multi-wall nanotubes or quantum dots.

The heaviness of calculations is, of course, an important point, sufficient to justify the
search for alternative approaches. The most promising is the Time Dependent Density
Functional Theory, object of next chapter.
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Time Dependent DFT
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4.1 The problem

The Hohenberg-Kohn-Sham theory we saw in Chap. 2 is a time-independent theory. It
is therefore not generally applicable to problems involving time-dependent fields, thus
excluding the calculation of optical properties, electronic spectra, photo-chemistry, etc.
The first extension of DFT, in order to deal with time-dependent external fields, was
pursued by Peuckert [222] and Zangwill and Soven [223]. In particular, Zangwill and
Soven, firstly applied the adiabatic Local Density Approximation for the calculation of
“static polarizabilities, total photo-absorption cross sections, and selected partial photo-
absorption cross sections of the rare gases which yield results in good agreement with
experiment” [223]. A rigorous formal justification of the approach suggested by this
work came only later, when a generalization of the basic formalism of DFT to the time-
dependent case has been given by Runge, Gross and Kohn [224, 225]. In the work of Runge
and Gross a theory similar to the Hohenberg-Kohn-Sham theory has been developed for
time-dependent potentials. Several reviews of the foundation of TDDFT can be found in
Ref.s [226–229]. For a comparison with the MBPT approach, see also Ref. [94].

TDDFT: 1st theorem ...

Suppose to have an N-electrons system, described by the Schrödinger equation:

H(t)ϕ(t) = i
∂

∂t
ϕ(t)
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with H(t) = T + V + W (t) = −1
2

∑
i=1

∇2
i +

∑
i<j

1

|ri − rj|
+
∑
i=1

Vext(ri, t) sum of the ki-

netic energy, Coulomb potential and external (time-dependent) potential. The latter has
to be expandable in a Taylor series around t0, so that Vext(r, t0) = Vext(r). Runge and
Gross showed that the densities n(r, t) and n′(r, t) evolving from the common initial state
ϕ(t0) = ϕ0, under the influence of two external potential Vext(r, t) and V

′
ext(r, t), both Tay-

lor expandable around t0, are always different provided that the external potentials differ
by more than a purely time-dependent function c(t). This is the time-dependent analogue
of the first H&K theorem. As a consequence, the time-dependent density uniquely deter-
mines the external potential (up to a purely time-dependent function c(t)). On the other
hand the potential determines the time-dependent wave function, unique functional of
the density up to a purely time-dependent phase:

ϕ(t) = e−iα(t)ϕ[n, ϕ0](t).

So for an operator Ô(t), which is a function of time but not of any derivative or integral
operators on t, this phase factor cancels out when taking the expectation value, which is
hence a unique functional of the density:

〈ϕ(t)| Ô(t) |ϕ(t)〉 = O[n](t).

... and 2nd one

The analogue of the second H&K theorem, where the Rayleigh-Ritz minimum principle is
used for the total energy, is given in the time-dependent theory by the stationary principle
of the Hamiltonian action integral, as no minimum energy principle is available. We know,
in fact, that in quantum mechanics the time-dependent Schrödinger equation, with the
initial condition ϕ(t0) = ϕ0 corresponds to a stationary (not necessarily minimum) point
of the quantum mechanical action integral1

A =

∫ t1

t0

dt 〈ϕ(t)| i ∂
∂t
−H(t) |ϕ(t)〉 .

A is a functional of the density and has a stationary point at the correct time-dependent

density. This density can hence be obtained solving the Euler equations
δA[n]

δn(r, t)
= 0 with

the appropriate initial conditions. Now exactly as we did for the time-independent case,
we can write the functional A as:

A[n] = B[n]−
∫ t1

t0

dt

∫
drn(r, t)Vext(r, t) (4.1)

1This should not leave one surprised. Even in classical mechanics the equations of motion (the
trajectory) of a material are given by solving the stationary principle for the Hamiltonian or Lagrangian
(thus giving the Hamilton equations or Lagrange equations respectively); whereas the static equilibrium
position is given by minimizing the potential energy.
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with the universal2 functional B[n] given by

B[n] =

∫ t1

t0

dt 〈ϕ(t)| i ∂
∂t
− T − V |ϕ(t)〉 .

As for the time-independent DFT one can define a Kohn-Sham scheme by introducing a
non-interacting system with exactly the same density n(r, t). Once the v-representability
of the time-dependent densities is proven [230], we can apply the stationary condition to
Eq. (4.1) under the condition n(r, t) =

∑
i |φi(r, t)|2, in order to obtain the time-dependent

Kohn-Sham equations: [
−1

2
∇2 + Vtot(r, t)

]
φi(r, t) = i

∂

∂t
φi(r, t) (4.2)

where

Vtot(r, t) = Vext(r, t) +

∫
v(r, r′)n(r′, t)dr′ + Vxc(r, t) (4.3)

analogous to Eq. (2.9) and Eq. (2.10) respectively.
Up to here we have presented the very basic formalism, only taking into account

the quantum nature of electrons. As for the time-independent case, generalizations are
required, in order to treat coupling of nuclear and electronic motion or to deal with
magnetic fields and time-dependent electromagnetic fields.3

4.2 TD Density Response Functional Theory

The solutions of Eq. (4.2) are the Kohn-Sham orbitals which yield the true charge density.
This means that any property which depends only on the density, can be exactly obtained
(in principle) by the Kohn-Sham formalism. Here we are interested in excitations energies
and polarizabilities within linear response (although TDDFT can, of course, also describe
non-linear response) which leads to some simplifications.

The linear response theory (see Appendix A) can be applied here to study the effect
of a small perturbation Vext(r, t) on the system. In the linear approximation the induced
charge density is related to the external potential

nind(r, t) =

∫
dr′dt′χ(r, r′, t− t′)Vext(r

′, t′) (4.4)

via the response function χ(r, r′, t − t′) which is called full polarizability. The analogy
with the function P defined by (3.19) is evident, the difference being represented by the
fact that P is a time-ordered function, whereas χ is a retarded function (see Par. 3.2).

2It is however ϕ0-dependent.
3It is crucial, for example, to deal with superconductors [231].
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The function χ is non-zero only for t > t′ because of the causality condition. In the
(TD)KS-scheme it is also possible to describe the response of the system (i.e. in terms of
induced charge density) to an effective total4 potential Vtot, given by Eq. (4.3), via the

nind(r, t) =

∫
dr′dtχ0(r, r′, t− t′)Vtot(r

′, t′) (4.5)

where the independent-particle polarizability χ0 is the linear response of the fictitious
Kohn-Sham system (non-interacting one), and has the well known form (see Eq. 2.25 and
Appendix A)

χ0 (r, r′, ω) =
∑
vc

(fv − fc)φ
∗
v(r)φc(r)φ

∗
c(r

′)φv(r
′)

ω − (εc − εv) + iη
, (4.6)

directly translated in frequency domain.5 Here fv and fc are Fermi occupation numbers,
εc and εv are KS eigenvalues, and the sums run over all KS orbitals (continuum states
included). The two response functions χ and χ0 are related by Eq. (4.3), giving

χ =
δn

δVext

=
δn

δVtot

δVtot

δVext

= χ0

[
δVext

δVext

+
δVH

δVext

+
δVxc

δVext

]
=

= χ0

[
1 +

δVH

δn

δn

δVext

+
δVext

δn

δn

δVext

]
= χ0 + χ0 (v + fxc)χ

or, more explicitly,

χ(r, r′, ω) = χ0(r, r′, ω)+

+

∫∫
dr′′dr′′′

[
χ0(r, r′′, ω)

(
v(r′′, r′′′) + fxc(r

′′, r′′′, ω)

)
χ(r′′′, r′, ω)

]
. (4.7)

The fact that the variation of the Hartree and exchange-correlation potentials appear
in determining the response function, derives from the fact that the total perturbation
acting on the system is calculated self-consistently.

Here the quantity

fxc(r, r
′, t, t′) =

δVxc([n]r, t)

δn(r′, t′)

has been introduced. It is called exchange-correlation kernel and takes into account all
dynamical exchange and correlation effects to linear order in the perturbing potential. A

4It is important to notice that the total potential Vtot defined here also contains the exchange-
correlation contribution, whereas the (classical) total potential U defined by (3.19) does not.

5The pure imaginary part iη has been inserted to make the Fourier transform feasible. This damping
factor is also used for a Lorentzian broadening of χ0. Its sign distinguishes between time-ordered and
retarded response.
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formally exact representation of the exchange-correlation kernel is the inversion of (4.7),
supposing that the inverse of χ0 and χ exist,

fxc(r, ω) = χ−1
0 (r, r′, ω)− χ−1(r, r′, ω)− 1

|r− r′|
. (4.8)

4.3 Adiabatic Local Density Approximation

Of course, the exact time dependent exchange-correlation potential and kernel are un-
known and realistic calculations rely on some approximations. A widely used approxi-
mations is the adiabatic local density approximation (ALDA), in which fxc is taken as
the (ω-independent, i.e. adiabatic) functional derivative of the static LDA exchange-
correlation potential (described in Par. 2.4)

fALDA
xc (r, r′) = δ(r− r′)

∂V LDA
xc (n(r), r)

∂n(r)
. (4.9)

This approximation is chosen on top of the approximation chosen for the static potential
Vxc to determine the ground state, and hence to determine χ0. In principle the exchange-
correlation kernel should always be the functional derivative of an exchange-correlation
potential, if one wants the sum rules to be fulfilled (see also Par. 4.5).

The local adiabatic approximation (ALDA) has proven to be quite successful in ap-
plications to finite systems, such as molecules and clusters up to several hundred atoms
in size. However, the ALDA results obtained for spectra appear to be less systematically
satisfactory than those generally obtained using the LDA for ground state calculations.
For example, the ALDA description of the photo-absorption spectrum of small cluster
can be satisfactory or even very good (Na4 [232], benzene [233]) or rather bad (SiH4

[232]). The Rydberg series is not reproduced by the local adiabatic approximation (see
Par. 4.4), and the ALDA systematically fails in the description of absorption spectra of
solids (see Par. 4.5 and Ref.s [94, 234]). An example is shown in Fig. 4.I, where the ALDA
calculation of solid silicon is compared to the RPA, GW-RPA and BSE calculations. The
experiment is also reported [98].

4.4 Excited States in TDDFT

We have seen that, in static DFT, the interpretation of one-particle eigenvalues as quasi-
particle energies, is not formally justified and it leads to the well known band-gap problem.
Much better results can be obtained using the ∆SCF-DFT scheme, even if it is restricted
to finite systems.

In the Green function approach, the standard GW approximation led to a great im-
provement of the description of quasi-particle energies, both for occupied and empty levels
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Figure 4.I: Absorption spectrum of solid silicon. ALDA, RPA, GW-RPA and BSE calculations are
compared with the experiment.

(see Fig. 3.IV), and the BSE yields a good description of neutral excitations spectra, like
absorption and electron energy loss spectra.

Also the time-dependent density functional theory permits one to calculate the excited
states energies of a many-body system [235, 236]. In fact, in Eq. (4.7), rewritten as[

1− χ0(v + fxc)
]
χ = Aχ = χ0 (4.10)

one can observe that the χ has poles at the true excitation energies Ωj = (EN
j − EN

0 ),
where EN

0 is the ground state energy and EN
j an (jth) excited state energy of a N -particle

system, as we have discussed in Appendix A. The χ0 (right part of Eq. (4.10)), instead,
has poles at the one-particle excitation energies (εi−εj) (KS eigenvalue differences) which
are different of the true excitation energies. The relation (4.10), then, holds only if the
operator A(ω) is not invertible in those frequencies where ω = Ωj. This is because
zeroes of A(ω) must cancel the singularities of χ. Therefore, the problem of finding the
excitation energies of aN -particle system, reduces to find those frequencies for which A(ω)
is not invertible, which are exactly ω = Ωj. The application of TDDFT (in describing
excitations of finite systems) are quite promising [232, 233, 235, 237–243], but they often
require to go beyond the ALDA.

In Par. 4.3 we have mentioned the fact that the ALDA description of excited energies
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completely misses the description of Rydberg states. This is due to the incorrect asymp-
totic behavior of the adiabatic local density exchange-correlation potential, which decays
exponentially instead of the correct 1/r. Other problems, related to the use of the local
density (or even gradient corrected) approximations, already show up in the one-particle
properties, for example (i) the fact that negative atomic ions are not bound, or (ii) that
the ionization potentials are too small.

Several attempts have been proposed to overcome these problems, like to correct the
tail of the LDA exchange-correlation potential [244], or, within the optimized effective
potential (OEP) scheme [235, 245–248] handling the exchange part of the potential exactly
(which again yields the correct asymptotic behavior), and the correlation part in LDA
or GGA. Concerning solids, only more recently the community has tried to go beyond
ALDA, within TDDFT.

Before comparing TDDFT to the BSE approach, it is useful to realize what a TDDFT
calculations means in practice, for the case of a solid and for a finite system.

4.5 Electronic Spectra in TDDFT - Application to

solids

In Fourier space6, the independent-particle polarizability (4.6) is written as

χ0(q,G,G′, ω) =
2

Ω

∑
v,c,k

(fc,k+q − fv,k)

〈
v,k|e−i(q+G)·r|c,k + q

〉 〈
c,k + q|ei(q+G′)·r′|v,k

〉
ω − (εc,k+q − εv,k) + iη

χ0(q,G,G′, ω) =
2

Nk

∑
v,c,k

(fc,k+q − fv,k)ρ̃vck(q,G) ρ̃∗vck(q,G
′)

ω − (εc,k+q − εv,k) + iη
(4.11)

where the one-particle states are Bloch wave functions, labeled by wave vector k and
band index v(c).7 The sum over spins is responsible for the factor 2. The response
function is normalized with the volume Ω of the system which reads Ω = Ωcell · Nk,
i.e. number of k-points times the volume of the unit cell. The polarisation matrices
ρ̃vck(q,G) =

〈
v,k|e−i(q+G)·r|c,k + q

〉
have also been introduced to simplify the successive

comparison with the Green functions theory.
As we have described in Chap. 1, in order to connect the macroscopic (measurable)

optical quantities and the microscopic electronic structure, we need to define a dielectric
function ε. In the linear approximation, the effective potential Vtot is related to the
external potential Vext via

Vtot(r, ω) =

∫
dr′ε−1(r, r′, ω)Vext(r

′, ω) (4.12)

6The most natural to deal with bulk systems, having a translational periodicity.
7v (or c) stands for valence (or conduction) band index if the system is a semiconductor or an insulator.
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where the inverse dielectric function ε−1 acts as a screening for the external potential.
From the latter and the Eq.s (4.3) and (4.4) one can easily find the connection between
the dielectric function and the polarizability. However, the portion of screening that has
to be included in the ε−1, depends on the probe (different probes will be “screened” by
different parts of the response function). We have to read that in two steps8:

1 The external perturbation Vext produces an induced charge density in the system
nind = χ Vext with χ as response function. When Vext can be considered to be
classical, χ Vext depends only on the nature of the system (in our case, a gas of
interacting electrons, so χ = (1− χ0v − χ0fxc)

−1χ0).

2 The induced charge creates a screening, described by ε−1 which depends on the
nature of the perturbation to be screened. If the probe is a test-particle, it has
no exchange-correlations effects with the responding electron gas. On the contrary
an electron (test-electron) “feels” not only an induced classical potential vnind, but
also an induced exchange-correlation potential Vxc = fxcnind. Therefore

ε−1
TP = 1 + v χ (4.13)

ε−1
TE = 1 + v χ+ fxcχ (4.14)

for the test-particle and test-electron cases, respectively.

In this thesis, we need the test-particle dielectric matrix, hence in reciprocal space,

ε−1
G,G′(q, ω) = δG,G′ + vG(q) χG,G′(q, ω). (4.15)

Following Par. 1.5, the macroscopic dielectric function can then be calculated as

εM(ω) ≡ lim
q→0

1[
ε−1(q, ω)

]
G=G′=0

.

and Absorption and Electron Energy Loss Spectra from

Abs = ={εM} ; EELS = −=
{

1

εM

}
.

We can now summarize the steps leading9 to the determination of an optical spectrum
in TDDFT.

8For further discussions see [145, 249–251].
9This clearly is just the approach adopted in this thesis. For a real space and real time approach, see

[233, 237, 239, 252–254] and references therein.
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Summary: optical spectra in 4 steps

1) A ground state calculation is usually done in the DFT framework, where a
reasonable exchange-correlation potential Vxc has been chosen, e.g. the V LDA

xc . This
first step permits one to obtain the ground state electronic structure in terms of the
(ground state) wavefunctions φi and eigenvalues εi.

Approximations involved: Vxc([n], r) ≈ V LDA
xc (n(r)) and pseudo-potentials.

2) The Independent-Particle polarizability χ0 can be built using wavefunctions
and eigenvalues obtained in the previous step, via the χ0 ∼

∑
vc

φv φc φc φv

ω−(εc−εv)
.

Approximations involved: None, except the linear response framework.

3) The full polarizability χ can be obtained then, if an expression for the exchange-
correlation kernel fxc exists. χ = (1− χ0v − χ0fxc)

−1χ0.

Approximations involved: in fxc. The simplest choice, namely the Random Phase Ap-
proximation (RPA), is to put the kernel to zero fRPA

xc = 0. The ALDA fALDA
xc =

δ(r − r′)∂V LDA
xc (n(r),r)

∂n(r)
is another possibility. In this thesis, more successful kernel have

been developed.

4) The dielectric function, calculated as ε−1 = 1 + vχ, permits one to obtain both
absorption and EELS via the macroscopic function εM = 1/ε−1

00 .

Approximations involved: None.

Before concluding this paragraph, two remarks are necessary.
1st observation: the crucial step of the previous summary is clearly the third one.

In Eq. (4.7) two terms have to be included. The first, and known, term is the Coulomb
potential and its importance will be described in the next chapter. The second term, the
unknown fxc, is the key of TDDFT, and its goal is to reproduce all the quasi-particle and
excitonic effects, which are not contained in the RPA (which is the starting point, since
fRPA

xc = 0). The exchange-correlation kernel will be extensively analyzed in the following
chapters.

2nd observation: the TDDFT scheme we have used here, the most convenient to deal
with solids,10 is based on the linear response framework (which is not a limit of TDDFT),
it works in the Fourier space and in frequency domain. Another difference with respect to
real-space real-time TDDFT, where one lets the density n(r) evolve according to Vext(r, t),
maintaining the self-consistency between n(r) and Vext(r, t), is that here it is quite natural
to decouple the ground state calculation from that one of the response. Mathematically,
that means that not necessarily fxc = ∂Vxc

∂n
. On one hand, this constitutes an advantage

because one can calculate the ground state using a reasonable Vxc, e.g. the LDA one11

10It has also successfully used for finite systems, using the super-cells method.
11LDA wavefunctions can be safely used in solids [255].

73



Chapter 4

(steps 1 and 2 of the summary), then make the great effort modeling the fxc. This is the
way followed in this thesis.12 On the other hand caution must be taken, when fxc 6= ∂Vxc

∂n
,

because possible violation of sum-rules can occur. See for that [122, 123, 256].

4.6 Electronic Spectra in TDDFT - Finite systems

Finite systems are described through the usual (linear-) response function χ that relates
the induced density to the external applied field (either photon or electron), as Eq. (4.4).
We follow here the basic idea, firstly suggested by Zangwill and Soven, to find the dynamic
photo-response of a finite system.

If the variation of the external field, e.g. the photon wavelength in case of an electro-
magnetic perturbation, is much larger than the size of the system,13 we can consider the
response of the system as described by changes in the dipole moment p(t).
Taking the electric field as external perturbation, we can develop the dipole moment [257]

p(t) = α(ω)Ecos(ωt) +
1

2!
β(0)EE +

1

2!
β(2ω)EEcos(2ωt)+

+
1

3!
γ(ω)EEEcos(ωt) +

1

3!
γ(3ω)EEEcos(3ωt) + ... (4.16)

where only the time coupling between external perturbation and response function has
been taken into account.14 The linear dynamical polarizability α(ω) is a tensor of rank
one, while the non-linear hyper-polarizabilities β, γ, ... are higher order tensors.

If one neglects non-linear terms in Eq. (4.16) [257], the induced dipole moment be-
comes

p(ω) = α(ω)Ecos(ωt) (4.17)

while the external potential applied to the system can be chosen as

Vext =
1

2
zeE0

where E0 is the magnitude of the electric field along the direction ẑ. From Eq. (4.17) and
knowing that E = −∇Vext, we have

α(ω) = −p(ω)
1
2
eE0

.

12In principle, one can of course also decouple Vxc and fxc in a real space real time code by letting
only a part of the potential evolve in time.

13See Appendix D for a brief discussion of size effects in finite systems.
14This is justified for finite systems, like an atom or a molecule, but not for a solid where also a spatial

coupling occurs:
∫

dr′α(r, r′, ω)E(r′, ω).
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Since the definition of the dipole moment is p(ω) =
∫
dr z n(r, ω), the dynamical dipole-

polarizability α is

α(ω) = − 2

eE0

∫
drznind(r, ω)

= − 2

eE0

∫
drz

[∫
dr′χ(r, r′, ω)

1

2
eE0z′

]
= −

∫
drdr′zχ(r, r′, ω)z′

(4.18)

and whose imaginary part represents the (measurable) photo-absorption cross section
σ(ω)

σ(ω) =
4πω

c
={α(ω)} (4.19)

which is the function to compare with spectroscopy experiments.
Eq. (4.18) is nothing but a special (dipole) case of the more general dynamical polar-

izability

α(ω) = −
∫
drdr′Vext(r, ω)χ(r, r′, ω)Vext(r

′, ω). (4.20)

The first atomic applications of TDDFT are reviewed in [226, 231, 258].
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BSE & TDDFT:

from L’infinito, Giacomo Leopardi

BSE calculations generally yield good agreement between the calculated and exper-
imental absorption spectra for both finite and infinite systems, but the intrinsic two-
particle nature of the BSE makes the calculation very cumbersome. The alternative
approach is represented by TDDFT, whose two-point (density-propagation) character
can lead, in principle, to simpler calculations. The leading equations of the two methods
are

BSE ↔ 4L̄ = 4P 0 + 4P 0
(
4v̄ − 4W

)
4L̄

TDDFT ↔ χ̄ = χ0 + χ0
(
v̄ − fxc

)
χ̄

(5.1)

for what concerns absorption. The same can be done for EELS, provided that v̄ has
been substituted by v. Here we have put the top-left exponent 4� to explicitly indicate
a 4-point function.

In spite of its two-point character, the description of optical spectra of solids in TD-
DFT (often using ALDA) has been quite unsatisfying up to not long time ago. The
reason relies on the difficulty to find efficient approximations for the exchange-correlation
potential vxc and kernel fxc.

The main advantage of the BSE is the immediate physical meaning of each ingredient
of the theory. Be able to discern if an ingredient is essential or not, recognize where errors
possibly cancel, immediately leads to very efficient approximations within the BSE.

This is not so easy in TDDFT, where one has to deal only with fxc (or vxc). In fact, if
we look at Eq. (5.1), in order for the two approaches to give the same result, the TDDFT
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kernel fxc must: (1) correct the DFT Kohn-Sham energies (towards the quasi-particle
energies, contained in 4P 0; (2) simulate the excitonic effects, i.e. the W term in the BSE;
even though the two contribution partially cancel each other. This is, of course, a very
big task, and it will be the aim of next chapters.

Here, we want to show that, since the two equations (5.1) have the same structure,
it is possible to make a direct comparison between the two methods. To do so, we have
to extend the TDDFT to the 4-point formalism (it is not possible to find a two-point
expression for the BSE):

4χ̄ = 4χ0 + 4χ0
(
4v̄ + 4fxc

)
4χ̄

where
4v̄ = δ(12)δ(34)v̄(13) ; 4fxc = δ(12)δ(34)fxc(13) (5.2)

while in the BSE
4W = δ(13)δ(24)W (12). (5.3)

We can observe that, if the quasi-particle corrections are directly inserted1 into the
χ0, via a χ0

GW, obtained simply by replacing εi with the Ei in χ0, the equations in BSE
and TDDFT can be unified, leading to2

S = P 0 + P 0KS

with P 0 representing an independent-(quasi)particle polarizability and the kernel of the
Dyson equation composed of two terms K = v + Ξ. Two are then, besides P 0, the
ingredients to consider for the calculation of a spectrum:

• the Coulomb term v (for energy loss) or v̄ (for Absorption), which is common in
BSE and TDDFT

• the exchange-correlation (electron-hole) interaction Ξ, which instead distinguishes
BSE and TDDFT results

In next chapter we will discuss in detail the importance and the role of the first (common
to TDDFT and BSE) term; whereas Chap. 7 and the following will be centered on Ξ,
with several approximations proposed. In particular, in Chap. 8, a new fully ab initio,
parameter-free kernel will be described and implemented. It is based on the comparison
of BSE and TDDFT, and on its formulation in transitions space, where Eq.s (5.1) become
(following (3.33))

L̄(n1n2)(n3n4) =
[
H2p,reso

BSE − Iω
]−1

(n1n2)(n3n4)
(fn3 − fn4)

χ̄(n1n2)(n3n4) =
[
H2p,reso

TDDFT − Iω
]−1

(n1n2)(n3n4)
(fn3 − fn4) .

(5.4)

1This is a choice that has turned out to be successful.
2Again, in principle we have to distinguish between time-ordered and retarded response functions. In

practice we suppose to be at ω > 0.
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The 2-particle Hamiltonians (following Eq. (3.35)) are

HBSE
(vck)(v′c′k′) = (Eck − Evk) δvv′δcc′δkk′ + 2vv′c′k′

vck −W v′c′k′

vck (5.5)

for the BSE, with v given by (3.43) and W given by (3.44), and

HTDDFT
(vck)(v′c′k′) = (εck − εvk) δvv′δcc′δkk′ + 2vv′c′k′

vck + FTDDFT
(vck)(v′c′k′) (5.6)

with F given by

FTDDFT
(vck)(v′c′k′) = 2

∫
dr

∫
dr′φ∗ck(r)φvk(r)fxc(r, r

′, ω)φc′k′(r
′)φ∗v′k′(r

′). (5.7)

As one can see, the term containing the Coulomb interaction is common to BSE and TD-
DFT, whereas the exchange-correlation kernel (in TDDFT) and the screened interaction
(in BSE) have different nature.
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Chapter 6

Role of the Coulomb interaction vvv

There was things which he streched, but mainly he
told the truth.

from The Adventures of Huckleberry Finn, Mark Twain

In this chapter we address some fundamental questions related to the role of the
Hartree potential (or rather, its functional derivative, the Coulomb interaction v) in the
dielectric response of finite and infinite systems. We briefly review the most important
equations for both absorption and energy-loss using the formulation described in Par.1.5.1,
which puts into evidence the different components of the Hartree term and therefore
facilitates the comparison between the two neutral excitations spectra, for both finite
and infinite systems. In order to compare finite and infinite systems, we decided to
follow one possible path, namely to go from a periodic solid to isolated objects (atoms,
molecules or clusters) by increasing the “lattice parameter”. This path is easier to follow
than the alternative one, namely to increase the size of an isolated object up to the
bulk limit. Moreover, in this way, we can also address the performance of a solid-state
approach (reciprocal space with periodic boundary conditions, i.e. a super-cell technique)
to describe an isolated system.

Even though the formalism of TDDFT is used in this chapter, all discussions, results
and conclusions are also valid within BSE.

This chapter will be resumed in F. Sottile, V. Olevano, A. Rubio and L. Reining,
Importance of the coulombian term in absorption and electron energy-loss spectra: finite
versus infinite systems, in preparation.
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6.1 The local fields: v̄

Eq. (3.15) reads, in reciprocal space, and in its retarded version,

εG,G′(q, ω) = δG,G′ − vG(q)χ̃G,G′(q, ω). (6.1)

Now, if ε were diagonal in G,G′, then εM = limq→0
1

ε−1
00

= limq→0 ε00(q, ω) which is the

case of the homogeneous electron gas. But normally, the dielectric matrix is not diagonal
in G space, i.e. the microscopic dielectric function is position dependent and not only
distance dependent. The local field effects (LFE) translate exactly this behavior: all
elements in the matrix contribute to one element of the inverse matrix; LFE account for
inhomogeneities at the microscopic level and can be very important for both photon and
electron spectroscopies. As an approximation, one can of course define the macroscopic
dielectric function without local fields (NLF) as

εNLF
M = lim

q→0
ε00(q, ω) = lim

q→0
[1− v0(q)χ̃00(q, ω)] (6.2)

which is just the macroscopic average of the microscopic dielectric function. εNLF
M 6= εM ,

except for the homogeneous electron gas.
We have given, in Par. s 1.5 and 2.7, a definition for the absorption (and EELS) in the

framework of one-particle Fermi’s golden-rule and static DFT, respectively. From a direct
comparison between the Eq.s (6.2) and (1.31), one can see that the level of approximation
of (1.31) (or even (2.23)) is the Random Phase Approximation (putting i.e. χ̃ = χ0), but
neglecting the local field effects.

It is interesting and useful to remind that the term v̄, as defined via (1.35), can be
considered the responsible for the crystal local field effects.1 This is quite easy to see
within the RPA, i.e. putting fRPA

xc = 0 in the evaluation of the full polarizability (or
equivalently χ̃ = χ0 in the (6.1))

χRPA = (1− χ0v)−1χ0.

In this matrix expression, now, we want to neglect v̄, i.e. use only the G = 0 contribution
v0 instead of the total v. Since the matrix χ0v0 has only the first column different from
zero, so that the matrix B = 1 − χ0v0 has the following peculiar structure (first column
and main diagonal different from zero):

B =


1− v0χ

0
00 0

−v0χ
0
00 I

 .

1In the following we just talk about “local fields” when referring to the crystal local fields, i.e. we do
not include fxc in the local fields, although this is sometimes done in literature.
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The inverse dielectric matrix is

ε−1 = 1 + v
(
1− χ0v0

)−1
χ0

but, since we are only interested in the head of this matrix, we can directly write

ε−1
00 = 1 + v0

∑
G

(B)−1
0G χ

0
G0.

Because of the form of B, any element of the first line of B−1 vanishes, except the head

B−1
00 =

1

B00

=
1

1− v0χ0
00

.

The head of the dielectric matrix becomes hence

ε−1
00 = 1 + v0

χ0
00

1− v0χ0
00

=
1

1− v0χ0
00

and therefore

εM =
1

ε−1
00

= 1− v0χ
0
00 = εNLF

M .

This demonstrates that v̄ is indeed responsible for the local field effects.2

This result has general validity and can be applied even if fxc is taken into account.
It is, in fact, sufficient to consider χ = (1− χ̂v)−1χ̂, with χ̂ = (1− χ0fxc)

−1χ0.
We have said that the local fields take into account the microscopic inhomogeneities

of the system, but also the microscopic polarizability of the system itself is an important
factor. The system, in fact, can be highly inhomogeneous, but if locally the polarizability
is small, even the contribution of the local fields will be negligible. An example is shown
in Fig. 6.I. The RPA response (with and without local fields) of an atom of beryllium
(calculated in an fcc supercell) is reported in the upper panel of Fig. 6.I, showing an
important contribution of the local fields. As a comparison, in the inset of the same

2We can also observe that, starting from an independent-particle polarizability χ0, as defined in
Eq. (2.21), that is just a sum of independent transitions, if the matrix inversion of ε is properly carried out,
i.e. if LFE are included, the formerly independent transitions mix. In fact, the microscopic components
of the Coulomb interaction v̄ are part of the kernel of the Bethe-Salpeter equation (second of (3.23)).
Even if the screened Coulomb interaction W is set to zero, the presence of v̄ in the BSE prevents the
eigenvectors of the excitonic Hamiltonian (3.37) to be δ-functions. This implies, hence, that there is
a contribution due to the mixing of transitions in the calculation of the absorption spectrum (3.40).
It is clear that this term is a Hartree, and not an exchange contribution. However, if we look at the
diagonal part of (3.43) and (3.44), we have schematically, Hscr ∼

∫
|φc|2W |φv|2 for the screened Coulomb

interaction part of the Hamiltonian and Hexch ∼
∫

φcφ
∗
v v̄φvφ∗c for the electron-hole exchange part. The

name “electron-hole exchange” then, follows from the shape of the latter, which is similar to the exchange
term of the Hartree-Fock theory.
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figure, the response of the correspondent bulk system (clearly more homogeneous than
an isolated atoms in empty space), shows to which extent in this case the contribution of
local fields is negligible.3 However, in an atom of argon, whose RPA response is reported
in the lower panel of Fig. 6.I, the difference between the response with local fields and the
response without local fields is not enormous, even though the system (again an atom in
empty space) is as inhomogeneous as before. This is because the atom of argon is not as
polarizable as the beryllium one, and hence not capable of creating a strong microscopic
local field. Moreover in the argon solid, which is less homogeneous than the beryllium
solid, the local fields still have a not negligible contribution.

6.2 Absorption and EELS - Towards finite systems

We have seen in Par. 1.5 that εM determines the measured absorption (Abs) and Electron
Energy Loss Spectra (EELS) as:

Abs = ={εM} ; EELS = −=
{

1

εM

}
.

It is evident that EELS and absorption are very closely related quantities (they both
carry information about the electronic response of the system). At this point it is worth
reminding that EELS is traditionally associated to collective plasmon excitations whereas
particle-hole excitations (roughly proportional to the joint density-of-states) are thought
to build up the absorption spectra. This argument stems directly form the fact that in an
independent particle picture, the imaginary part of the microscopic dielectric function is
given by Eq. (2.21), showing that single particle excitations dominate absorption. Instead
the structure in EELS is mainly given by regions where both real and imaginary parts
are close to zero, that is the classical condition for a collective (plasmon) mode (Chap. 2).
Fig. 6.II schematically illustrates this behavior.

Following the formulation giving in Par. 1.5.1 for the absorption spectrum

Abs = −=
{

lim
q→0

v0(q)χ̄00(q, ω)

}
; χ̄ = χ̃+ χ̃v̄χ̄

and EELS

EELS = −=
{

lim
q→0

v0(q)χ00(q, ω)

}
; χ = χ̃+ χ̃vχ = χ̃+ χ̃(v0 + v̄)χ,

we can now elucidate the role of the Coulomb potential in the response function frame-
work: the term v̄vv is responsible for the local field effects, and the long range com-
ponent v0v0v0 is responsible for the difference between absorption and electron

3To be precise, the bulk beryllium shown here is the fcc phase, and not the equilibrium bcc one.
However, this does not influence the conclusions.
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Figure 6.I: Imaginary part of the macroscopic dielectric function, with and without local field effects.
Upper panel: atom of beryllium (unit cell parameter 48 a.u.). In the inset: the solid of beryllium. Lower
panel: atom of argon (unit cell parameter 45 a.u.). In the inset: the solid of argon. The legend is the
same for both panels.
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Figure 6.II: The absorption spectrum is given by the imaginary part of the (macroscopic) dielectric
function (continuous curve). To a peak of the absorption spectrum corresponds an anomalous dispersion
of the real part (dashed curve), i.e. the negative first derivative. The crossing of the real part ε1 with
the axis of frequency, leads to a peak in the loss function −={ 1

εM
} = ε2

ε2
1+ε2

2
(dot-dashed curve). This

collective excitation, called plasmon, can be excited using electron energy loss spectroscopy.

energy-loss. The latter, apparently subtle, difference is crucial for extended systems, as
we can see in Fig. 6.II and, for a more realistic case, Fig. 6.V, showing EELS (plasmon
peak at 16.8 eV) and absorption (at the range 3-5 eV) of bulk silicon. Since coming from
the solid, one knows that the optical and electron energy-loss spectra are very different,
one might expect that the same is true for finite systems. This is however not the case, as
can be immediately understood: we have shown that the difference comes entirely from
v0. Whenever this contribution is negligible, absorption and electron energy loss spectra
are equivalent.4

It is instructive to illustrate the previous discussion for the simplest case when LFE

4Since a finite system cannot explore infinite distances, one can expect that the long range term v0

does not have a big effect in a finite system.
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are neglected, i.e., v̄ = 0. In this case χ̄ = χ̃ and χ = χ̃ + χ̃v0χ, and the description of
absorption and EELS is then{

Abs=−v0={χ̄00}=−v0={χ̃00}
EELS=−v0={χ00}=−v0=

{
χ̃00

1− v0χ̃00

}
. (6.3)

Here it appears obvious that χ and χ̄ are fundamentally different (in χ, χ̃00 is screened,
but not in χ̄), and that this fact is entirely due to the apparently tiny difference of the
kernel in Eq. (1.34).

In order to make a comparison between absorption and EELS for both finite and infi-
nite systems, we apply those equations for the case of a solid where the lattice parameter
is increased, in order to go towards the limit of an isolated system. In doing this limit,
we exploit the fact that v0χ̃00 ∝ 1

Ω
where Ω is the volume of the unit cell of the lattice.

Thus the ratio between EELS and Abs given by Eq. (6.3) is

Abs

EELS
=

[
1 +

α

Ω
+

β

Ω2

]
(6.4)

which clearly shows how absorption and EELS tend to give the same spectrum in an
isolated system, when Ω →∞. Here α and β are functions of the frequency and depend
of course on the polarisation function χ̃.

Eq. (6.3) can be straightforwardly generalized to the case when all LFE are included
(see Appendix C for the derivation). This general case is obtained directly by replacing
χ̃ by χ̄ in Eq. (6.3), that is: {

Abs= −v0={χ̄00}
EELS=−v0=

{
χ̄00

1− v0χ̄00

}
. (6.5)

It is clear that the same limiting behavior (6.4) still holds.

6.2.1 A simple model: “one-pole model”

Here we derive the frequency dependence of the α and β functions, appearing in Eq. (6.4)
for the simplest case where only a single transition with frequency ω0 dominates the
response function. In this “one-pole model” the imaginary part of the dielectric function
is given by a delta function in energy, that is:

={ε} = ={1− v0χ̃00} =
v0A

Ω
[δ(ω − ω0) + δ(ω + ω0)] , (6.6)

and the corresponding real part is, by Kramers-Kronig

<{ε(ω)} = 1− 2v0A

πΩ

ω0

ω2 − ω2
0

. (6.7)
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From this we can evaluate the ration between EELS and absorption to be

Abs

EELS
=1− 1

Ω

(
4v0Aω0

π(ω2 − ω2
0)

)
+

1

Ω2

[
v2

0A
2

(
4

π2

ω2
0

(ω2− ω2
0)

2
+[δ(ω−ω0)+δ(ω+ω0)]

2

)]
. (6.8)

Comparing with Eq. (6.4) we can infer the frequency dependence of α(ω) and β(ω) for
this model. We note that from (6.7), <{ε} crosses the frequency axis when:

ω = ±
√
ω2

0 +
2v0Aω0

πΩ

this result shows how the plasmon peak corresponding to <{ε} = 0 moves towards the
absorption peak at ω0 as the cell volume Ω increases.

6.2.2 Importance of the limit q → 0

The electron energy loss, as defined up to now, has been limited to vanishing momentum
transfer. It is worth reminding that a momentum transfer, when an electron (a massive
particle) is involved, can be much greater than zero,5 so that the case in study here
(q → 0) is only one of a wide range of possibilities. However, we have limited ourselves
to this case for the EELS results shown here, in order to compare with absorption, for
which one assumes a vanishing momentum transfer q.6 Moreover, EELS is concerned
with the response of the system to an external moving electron charge and probes the
longitudinal response of the system for a finite transfer of momentum q. This is in contrast
with absorption where the transverse photon-field response is addressed. It is worth here
reminding that we are working with dipolar excitations. In fact, in the limit q → 0,
the optical absorption can be described in the longitudinal gauge as the response of the
system to a constant external E field, due to a potential linear in space. In this description,
some similarity with the EELS, which probes the response of the system to the dipolar
potential create by the moving charge is to be expected (there still is a subtle difference
between photon and electron spectroscopy, due to the polarisation of the photon).

Experimentally the limit q → 0 in EELS is very difficult to achieve, however if the
size of the system is much smaller than 2π/q, the response of the system can indeed be
described in the limit q → 0. When the dimension of the system is of the same order
of magnitude as 2π/q, then size effects appear, the limit q → 0 is not fulfilled and the
previous results are not applicable in this case.7 We refer to the Appendix D for further
discussions.

In the following hence, when referring to “absorption” and “EELS”, we simply mean
the imaginary part of εM and −1/εM , respectively.

5This is also true for X-rays, due to their high frequency, and it is used, for example, in Inelastic
X-rays scattering, e.g. [259].

6Correct in the optical range, and for the systems and precision considered here.
7One above all: absorption and energy-loss spectra start to deviate from each other, and the long-range

part of the electron-electron interaction is not negligible anymore.
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6.3 Absorption versus EELS: Numerical analysis

We will now show the numerical results that illustrate the analytical conclusions in the
previous section, and, on the other hand, remark some important results from a practical
point of view. We have performed numerical simulations of a fcc-periodic array of Be
atoms with an increasing lattice parameter in order to have atoms further apart from
each other, i.e. a periodic representation of an isolated system. We have used the stan-
dard super-cell plane-wave representation of the electronic wavefunction for the ground
state electronic structure and the Random Phase Approximation (RPA) for the response
function,8 i.e. χ̃ = χ0. Moreover, since we want to analyze the behavior of the system
going towards a finite system, we sample the Brillouin zone only with the Γ point.

In the two panels of Fig. 6.III we show those results for the fictitious solids formed by
Be atoms at various inter-atomic distances. We clearly see how the absorption and EELS
spectra become similar as the cell size increases, considering or not local field effects. In
particular for a cell with a lattice parameter of 55 a.u., both spectra are indistinguishable
(the intensity of all the spectra of Fig. 6.III has been scaled by the factor 1

Ω
, with Ω =

volume of the unit cell).

Another fact that emerges from the calculations shown in Fig. 6.III is that the absorp-
tion spectrum converges much faster, with cell size, than the EELS one. This could be
expected from the fact that the energy-loss spectrum is, by construction, more sensitive
to long-range effects, therefore larger sizes are needed in order to numerically being able
to eliminate interactions with neighbor cells. For a given cell-size the absolute error is
going to be smaller in a super-cell calculation of absorption than in EELS. This provides
us with a practical rule for computational purposes of spectra of finite-size structures.

This behavior is in perfect agreement with the analytical conclusions of Par. 6.2. We
can make the comparison between EELS and absorption more quantitative by plotting
the difference between the position of the first peak of both spectra as a function of cell
size. This analysis is presented in Fig. 6.IV together with the extrapolation to large cell-
volume of the analytical expression of equation (6.8). This extrapolation is done via a
simple fitting function

f(Ω) = a+
b

Ω

where f is the difference between the position of the peak of absorption and that of EELS;
Ω is the volume of the unit cell. The parameters of the extrapolation appear in the legend
and the fact that the asymptotic value a = −0.004 is very close to zero means a perfect
superposition of the peaks of absorption and EELS in the limit of infinitely distance
atoms, i.e, in the isolated atom limit. The good agreement of the fit gives further support
to the analysis presented in previous Par. 6.2.

8Inclusion of better exchange-correlation functionals will not modify the conclusions of the present
analysis.
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Figure 6.III: Absorption and EELS for several cell sizes: 20, 32, and 55 a.u. Upper panel: calculations
made neglecting local fields. Bottom panel: local field effects included. The legend is the same for both
panels.
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Figure 6.IV: Difference of the position of peaks of absorption and EELS as a function of the cell parameter.
The extrapolation is represented by the full line.

6.3.1 Case of silicon: an “adiabatic connection”

Now let’s have a look at a solid system. It is very useful to see the absorption and energy-
loss spectra (within RPA and with local fields) for a real system, like silicon, in the same
figure (Fig. 6.V). Following Eq. (1.33), the generalized spectrum Z(ω) defines EELS or
absorption depending if the long-range component v0 has been included or not:

Abs
EELS

}
= Z(ω) = −={v0(q → 0)S00(q → 0, ω)}

with

S(ω) =
(
1− χ0αv0 − χ0v̄

)−1
χ0.

If α = 1, Z(ω) = EELS, and if α = 0, Z(ω) = Abs. But we can also see in Fig. 6.V, how
the EELS turns into Abs when v0 is continuously (adiabatically) switched off. The case
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of the little negative portion of v0, leading to a good agreement with the experiment,9

corresponds to put an exchange-correlation kernel fxc = αv0 = − 0.2
4πq2 , that simulates

excitonic effects, and will be discussed in Chap. 7. This illustrative example shows very
well the action of the long-range component, and how its inclusion or exclusion can make
the big difference between absorption and electron energy loss spectra.

6.4 Concluding remarks

In this chapter we have analyzed some fundamental questions related to the calculations of
absorption and EELS spectra in finite and infinite systems. We have seen that the effects
of the macroscopic contribution to the self-consistent variation of the Hartree potential
turn out to be the key factor in determining the differences between absorption and EELS
for extended systems. Instead, when the wavelength of the perturbation is much larger
than the system size, the absorption and the electron energy loss spectra coincide. We
have also discussed the role of this long-range contribution in order to address related
questions of technical interest, demonstrating, in particular, that in a super-cell technique
for finite systems, it is more suitable to calculate absorption than EELS, in order to obtain
the same final result.

9In this case, a scissor operator (0.8 eV) has also been applied in order to reproduce the self-energy
contribution, and let the kernel take care only of the e-h contribution. See Chap. 7.
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role of Ξ

The sciences do not try to explain, they hardly
even try to interpret, they mainly make
models. By a model is meant a mathematical
construct which, with the addition of certain
verbal interpretations, describes observed
phenomena. The justification of such a
mathematical construct is solely and precisely
that it is expected to work.

John von Neumann

In this chapter we want to discuss about the second ingredient which plays an impor-
tant role in the description of optical spectra of solids, namely the exchange-correlation
kernel of TDDFT or, in the BSE, screened electron-hole interaction. We approximate this
interaction in various ways, and discuss in particular the results obtained for a local con-
tact potential. This, in fact, allows us to straightforwardly make the link to the TDDFT
approach, and to discuss the exchange-correlation kernel fxc that corresponds to the con-
tact exciton [261, 262]. Our main results, illustrated at the examples of bulk silicon and
argon, are that (i) the simple contact exciton model, used on top of an ab initio calculated
band-structure, yields reasonable absorption spectra; (ii) qualitatively extremely differ-
ent fxc can be derived approximatively from the same Bethe-Salpeter equation. These
kernels can however yield very similar spectra; (iii) a static fxc, both with or without a
long-range component, can create transitions in the quasi-particle gap. This is the first
time that TDDFT has been shown to be able to reproduce bound excitons.

This chapter is resumed in
• F. Sottile, K. Karlsson, L. Reining and F, Aryasetiawan Macroscopic and microscopic
components of exchange-correlation interactions, accepted by Phys. Rev. B.
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• S. Botti, F. Sottile, N. Vast, V. Olevano, H.-Ch. Weissker and L. Reining, G. Onida,
A. Rubio, R. W. Godby and R. Del Sole”, Long-range contribution to the exchange-
correlation kernel of time-dependent density functional theory, submitted to Phys. Rev.
B.

7.1 Introduction

The electronic structure of semiconductors and insulators is well described by reliable
ab inito methods [41, 42, 159, 263]. However, calculated optical properties adopting a
scheme using free quasi-particle transitions exhibit severe shortcomings compared to ex-
periment [33]. We have seen one example in Fig. 3.V, where both the Kohn-Sham and
the GW-corrected band structures were used to calculate the transitions giving rise to
the absorption spectrum of bulk silicon, neither of them leading to satisfactory agreement
with the experiment. The neglect of the electron-hole interaction leads to an overall dis-
agreement in the absorption strength as well as the complete failure to reproduce bound
excitons. In fact, the calculated optical spectra typically underestimate the absorption
strength at low energies and overestimate it at high energies. Early attempts to over-
come these failures by including two-particle effects were made successfully using the
effective-mass approximation [264] for bound excitons, and the solution of the Bethe-
Salpeter equation (BSE) in a tight-binding approximation [191, 265] for the continuum
spectra. Later the BSE has been solved on the basis of more realistic band-structures
[94, 172, 202–204, 206, 207, 266]. In these works, essentially the BSE is written as
an effective two-particle Schrödinger equation that contains the electron-hole interaction
(3.35). This is also the approach adopted in this thesis. The agreement with experiment
is greatly improved with respect to calculations in the Random Phase Approximation
(RPA), where the electron-hole Coulomb interaction is neglected. Again, bulk silicon
(shown in Fig. 3.VII) is a good illustration. Of course, the associated computational cost
is relatively large.

One might try to overcome this difficulty either by searching for good approximations
to the BSE that could make the calculations more efficient, or by adopting an alternative
scheme for the description of electron-hole excitations, that could avoid the two-particle
picture. In the next sections, we explore and relate both points of view. In particular, we
go back to the old contact exciton idea [261, 262, 267]. Ultra-short ranged interactions
like contact excitons seem at first sight not suitable for wide applications. However, the
contact exciton model has been successfully used for the description of continuum exciton
effects in a wide range of applications [261, 262, 268], and model calculations have also
shown that it is able to produce one bound state [268, 269].
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7.2 The contact exciton

As mentioned above, we will now consider the contact exciton approximation. It is
clear that restricting the range of W (r, r′) in Eq. (3.44) does not simplify the following
calculations significantly, since the size of the matrix W v′c′k′

vck is not decreased, contrary
to what happens when a localized basis is used (as e.g. in the work of Hanke and Sham,
Ref.s [191, 265]). In that case, the introduction of a contact interaction would of course
be very useful and straightforward. However, for the purpose of discussion we have
simulated the effect of a cutoff rc in W in a Bloch-transition-space code [172, 202, 203].
To do so, we have replaced W (r, r′) by (W0/4π)v(r− r′)Θ(rc − |r− r′|). This expression
is particularly easy to handle in a plane wave code, since its Fourier transform is simply
δG,G′(W0/Ω)v(G)(1−cos(rc|G|)), where Ω is the crystal volume. With the parametersW0

and rc we can tune the interaction strength and -radius, keeping in mind that we expect
an increase in W0 to partially cancel a decrease in rc. We have moreover introduced an
additional parameter β multiplying the bare electron-hole exchange interaction 2v̄v′c′k

vck

from (3.43). Although, as pointed out in the previous chapters, this term is (despite its
name “electron-hole exchange”) not due to exchange-correlation but to Hartree effects,
we found it useful to tune it by introducing β, for two main reasons: first, often the
contact exciton model is discussed by neglecting this term (i.e. β=0 instead of the full
expression with β=1); second, when we will make below the link to TDDFT all exchange-
correlation terms will take a form similar to this contribution, which makes it important
to investigate its effects from the beginning.

7.2.1 Technical details of the calculation of the spectra

The spectra have been obtained sampling the Brillouin zone with 256 shifted k-points
(silicon) and 256 special Monkhorst-Pack points (argon; this case corresponds to 10 k-
points in the irreducible Brillouin zone), and using 6 (3 valence and 3 conduction) bands.
The number of G vectors NG required by the BSE, GW-RPA and RPA calculations for
both silicon and argon is NG = 59. The NG requested for the contact exciton model
calculation is NG = 169 and NG = 411 for silicon and argon, respectively. On the
contrary, the long-range model in TDDFT turned out to require only 59 G-vectors, as
an RPA calculation. The self-energy shift for silicon (GW-RPA calculation) has been
obtained using the GW-corrections, calculated in the plasmon pole model approximation;
whereas for solid argon, a “scissor operator” (of 6.0 eV) has been applied, to simulate the
GW-corrections, and hence to reproduce the experimental quasi-particle gap.
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7.2.2 Bethe-Salpeter equation for variable interaction strength
and radius: results

We first look at the effect of a variable interaction radius on a continuum exciton. Fig. 7.I
shows results obtained for bulk silicon, in the two extreme limits: the continuous curve
is the result of our Bethe-Salpeter calculation (same as Fig. 3.VII), known to be in good
agreement with experiment [172, 202–204, 206], and significantly different from the GW-
RPA one (dot-double-dashed curve, same as Fig. 3.V), i.e. the result that is obtained when
W v′c′k′

vck is neglected in (3.41). Crystal local field effects are correctly included through β=1,
and, although screened, the electron-hole Coulomb interaction is naturally long-ranged,
asymptotically proportional to 1/r. The dashed curve has instead been obtained in the
limit rc → 0, i.e. the Fourier transform of W is simply taken to be (A/Ω)δG,G′ , where
A = 2πW0r

2
c has a finite value (A=30 in atomic units) since an increasingly strong W0

is supposed to compensate the vanishing rc. This result is surprisingly close to the full
BSE one, because the effect of all the long-range part of W has been incorporated in the
strong value of W0 and hence A. Consequently, also intermediate values of W0 and rc

can be used to produce similar results: the dot-dashed curve is an example for rc = 3.8
a.u. (which corresponds to half the next-neighbor distance in silicon), with W0 = 3.8,
whereas the dotted curve has been obtained with rc = 7.3 and W0 = 2.5 Up to here, the
parameter β was always set to 1, i.e. to its default value for the correct description of
local field effects. Playing with β it turns out that the effect of an increasing β can to a
certain extent be canceled by an increase in W0 (in fact, the contributions have opposite
sign): the double-dot-dashed curve shows the result for rc = 3.8,W0 = 4.4 and β = 2.

Next, let us look at a strongly bound exciton, taking solid argon as an example.1

The dots in Fig. 7.II represent the experimental absorption spectrum [270, 271], with
the clear spin-orbit splitted n = 1 bound exciton peak at 12.1 eV, and a weaker n = 2
peak at about 13.8 eV. The continuous curve in Fig. 7.II is the GW-RPA result, where
as above the electron-hole interaction is neglected but quasi-particle energies are used,
instead of Kohn-Sham eigenvalues: of course, there are no structures in the quasi-particle
gap. Instead, it is well known that the BSE using the full long-range W can reproduce
bound excitons (see e.g. [94, 204, 206, 209, 272]) both concerning peak positions and
intensities. It is now interesting to see whether reasonable results concerning the position
of the n = 1 peak, its oscillator strength, as well as the presence of the higher-order peaks,
can be obtained with a contact interaction W in the ab initio framework. The dashed,
dotted, dot-dashed and double-dot-dashed curves are the results of the contact exciton
obtained with A = 20, 50, 52, and 60, respectively. In fact a strong enough A succeeds to
split a peak out of the continuum. This peak moves to lower energies with increasing A,

1We will again look at solid argon in Chap. 10, including careful convergence tests, precise BSE
calculations and more precise analyses. For the qualitative discussions in the present chapter, these
details are not essential.
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Figure 7.I: Imaginary part of the macroscopic dielectric function for silicon. Continuous curve: solution of
the full BSE, Eq. (3.41), with (3.44). Dashed curve: contact exciton, strength of the contact interaction
A=30. Dot-dashed, dotted, and double-dot-dashed curves: Solution of the BSE with a model Coulomb
interaction of range rc and strength W0, and with an electron-hole exchange weighted by a factor β (see
text); rc = 3.8, 7.3 and 7.3; W0 = 3.8, 2.5 and 4.4; β = 1, 1, and 2, respectively. Dot-double-dashed
curve: GW-RPA, i.e. solution of Eq. (3.27) with W = 0.

and can in this way, with A = 52, be put on top of the experimental position. However,
the relative intensity of the continuum close to the onset (at 14.1 eV) is underestimated,
whereas a strong artificial peak appears at about 15.5 eV (not shown here). Moreover,
no additional peaks in the quasi-particle gap are found. The intensity can be changed
by changing β. For decreasing β (which corresponds to subtracting local field effects),
oscillator strength is transferred to lower energies within the continuum, but the n = 1
bound exciton peak looses intensity, and almost disappears for β = −1 and A=42.

The results of this subsection can be summarized as follows: a short-ranged but strong
electron-hole Coulomb interaction can simulate the effect of the true, screened long-ranged
one, to a certain extent: continuum exciton effects can be well reproduced, and one exciton
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Figure 7.II: Imaginary part of the macroscopic dielectric function for solid argon. Dots: experiment
[270, 271]. Continuous curve: GW-RPA, i.e. solution of Eq. (3.27) with W = 0. Dashed, dotted dot-
dashed and double-dot-dashed curves: contact exciton, whose interaction strength varies from A=20 to
60 (see legend).

can be created. However, the continuum is not well described, and no higher-order peaks of
the series are obtained, at least within the range of parameters explored here. Tuning the
electron-hole exchange contribution allows to tune intensities, but still, the description of
a whole series seems out of reach. Nevertheless, it is important to see that such a simple
model can in principle yield a bound exciton.

In the following, we will see how these findings can be used in the context of TDDFT.
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7.3 Links between the Bethe-Salpeter equation and

TDDFT

7.3.1 The contact exciton and the TDDFT kernel

Although derived in a different framework, the BSE and the TDDFT equations can be
written in a very similar way, as we have seen in Chap. 5 (Eq.s (5.4)), which suggests
that it is straightforward to exchange information between the two approaches. This is
of course not completely true in view of the fundamental difference between the matrices
W and fxc (Eq.s (3.44) and (5.7), respectively). It is hence not surprising to encounter
a number of seeming contradictions or at least ambiguities. The most obvious one is the
question whether fxc should be short- or long-ranged. The usefulness of a long-range
contribution in fxc has been suggested and/or confirmed by various authors [188, 273–
278], including calculations done in the framework of this thesis [188]. On the other
side, having strongly bound electron-hole pairs might suggest that one is dealing with
short-range effects. Let us take as the most striking example the contact exciton model.
Two approaches to the problem of finding the corresponding fxc are then possible. First,
in TDDFT one can obtain the macroscopic dielectric function from the same modified
response function χ̄ as in the BSE framework, through

={εM} = −v0(q)={χ̄00(q, ω)};

however, now χ̄(G,G′;q, ω) can be directly found from a two-point matrix screening
equation, analogous to that one for χ in Eq. (4.7):

χ̄ = χ0 + χ0(v̄ + fxc)χ̄. (7.1)

If fxc is supposed to have only a G = G′ = 0, i.e. the long-range, contribution, this
equation can be re-written as [275]

(εM(ω)− 1) = (εRPA
M (ω)− 1) + (εRPA

M (ω)− 1)
fxc

vG=0

(εM(ω)− 1), (7.2)

where εRPA
M (ω) is defined to be the RPA macroscopic dielectric function, i.e. εRPA

M = 1−vχ̄
using (7.1) when fxc is neglected. This, as already pointed out in Ref. [275], is equal to
the contact exciton Eq. (7) of Ref. [261, 262]

(εRPA
M − 1) =

(εRPA
M − 1)

1 + g(εRPA
M − 1)

when the scalar factor g in that work is identified to be g = −fxc/v(G = 0). In other
words, the short-range contact exciton approximation to the BSE seems to be equivalent
to the long-range-kernel approximation in TDDFT, since one obtains fxc = −g4π/q2.
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This latter approach is in fact known to yield a good description of continuum exciton
effects [273].

On the other hand, however, one could simply write down (in the here, as usual,
adopted static approximation for the electron-hole interaction) the exchange-correlation
contribution to the Bethe-Salpeter kernel in real space:

4W (r1, r2, r3, r4) = −δ(r1 − r3)δ(r2 − r4)W (r1, r2) (7.3)

and compare to the corresponding four-point expression for fxc:

4fxc(r1, r2, r3, r4) = 2δ(r1 − r2)δ(r3 − r4)fxc(r1, r3). (7.4)

If one replaces in (7.3) W (r1, r2) by the contact approximation W (r1, r2) = Aδ(r1−r2), it
is easily possible to choose the kernels 4W (r1, r2, r3, r4) and 4fxc(r1, r2, r3, r4) (and hence
the resulting spectra) to be equal, namely by postulating

f contact
xc (r1, r3) = −1

2
δ(r1 − r3)A : (7.5)

an ultra-short range kernel is found, in apparent contradiction to the above considerations
and to the finding of Ref. [275].

In order to reconcile the two contradictory - i.e. the short-range and the long-range -
fxc’s one has to realize that we are talking about effective kernels. I.e., we are performing
a certain number of mappings that allow one to obtain a desired final result (namely a
given spectrum), and that are not necessarily unique if the number of equations that have
to be fulfilled is inferior to the number of free parameters. The contact exciton problem
is a very good illustration for this point. First, of course, within the BSE framework the
true screened long-range Coulomb interaction is mapped upon a short-range function of
modified strength; this is just the starting point which is the same for both the derivation
of a long-range and of a short-range fxc. Once this starting point is fixed, the short-range
fxc (Eq. (7.5)) is in fact an exact solution of the problem, for any number of transitions
or part of the spectrum that is considered. Instead, when one (as it is often done in
the framework of the contact exciton) neglects microscopic components (the local field
effects), a new mapping has to be done. Now, the sole G = G′ = 0 element of fxc has to
reproduce the effect of the full Fourier transform of fxc, i.e. of AδGG′ , which is significant,
in particular since it is not decaying with increasing |G|. In order to have a non-negligible
effect with the sole head element of fxc, the latter must of course diverge as 1/q2 since
in (7.1) fxc is multiplied with χ0, that goes to zero as q2. fxc = −α/q2 should hence
yield an approximate, even though possibly very good (with respect to the contact-BSE
calculation), spectrum. In principle, it could even yield the correct spectrum (i.e. a
spectrum identical to that resulting from the corresponding contact-BSE calculation) if α
was chosen to be frequency-dependent: if only an absorption spectrum (i.e. 1/ε−1(0, 0, ω),
and not the whole matrix ε−1(G,G′, ω)) is asked for, one additional degree of freedom is
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in fact sufficient to allow for an exact solution of Eq. (7.2) with respect to fxc. Note that
an approximate quadratic dependence of α upon frequency is suggested by the formula
given in Ref. [261, 262], stemming from the energy factor between the matrix elements
of the velocity operator and those of the dipole operator.

In general, the “exact” kernel corresponding to a given W can of course not be derived
so easily, and an approximate mapping has anyway to be performed. The question is then
not so much to search for a kernel close to the “exact” one, but to work with a form of the
kernel that allows a relatively straightforward mapping, preferably with few parameters,
or parameters that can be determined from first principles. In this sense, a long-range
version of fxc has already proven to be successful [188, 273, 274], whereas a corresponding
breakthrough for a hypothetical short-range version has not yet been achieved. This adds
to the fact that of course a realistic W and the resulting fxc are of long range.

7.3.2 Continuum excitons: numerical results for different TD-
DFT kernels

Let us first confirm these discussions with numerical results for the case of a continuum
exciton, namely again in silicon. Fig. 7.III shows the standard result of a full BSE
calculation (continuous curve), and the result of a fit using the long-range kernel fxc =
−α/q2 with α = 0.2 (dotted curve), both known to be in good agreement with experiment
(dots).2 The dashed curve is now the result obtained for the ultra-short ranged fxc,
Eq. (7.5): it is, as it should be, identical to the contact exciton result (dashed curve of
Fig. 7.I), since it has been calculated using the same strength of the interaction A = 30.
Therefore, it is also in good agreement with the BSE and with experiment. An ultra-short
range kernel can hence yield very similar results to those of an ultra-long range one.

7.3.3 The TDDFT kernel and bound excitons

Up to now, the question of bound excitons in solids has never been addressed in the
framework of TDDFT, and could even seem to be out of reach. However, the situation
is far from desperate. First, the above discussions and results for the contact exciton
immediately tell us that already a simple, static, contact kernel must be able to produce
at least one bound exciton peak, since it will yield the same results as a contact BSE
calculation, which in turn yields a bound peak. Second, it is instructive to discuss how a
scalar fxc should look like in order to be able to produce bound excitons. To do so, we
take the imaginary part of the scalar equation

χ̄ = χ0 + χ0fxcχ̄ (7.6)

2This is the same result as the one shown in Fig. 6.V.
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Figure 7.III: Imaginary part of the macroscopic dielectric function for bulk silicon. Continuous curve:
BSE, i.e. solution of Eq. (3.41) with the full static RPA W . Dotted curve: TDDFT Result for
fxc = −0.2/q2. Dashed curve: TDDFT contact kernel, strength of the contact kernel A/2=15. Dots:
experiment [98].

(“scalar” means that only the head (G = G′ = 0) elements are treated for all matrices).
As above χ0 is supposed to be constructed using the quasi-particle band-structure and
may or may not already include v̄, i.e. crystal local field effects.3 Below the quasi-particle
gap, the imaginary part of χ0 is hence vanishing, whereas, if bound excitons are present,
at those frequencies the imaginary part of χ̄ does not vanish. Therefore, one obtains

={χ̄} = =
{
(1− χ0fxc)

−1
}
<{χ0} (7.7)

or

={χ̄} =
<{χ0}={fxc}

(1−<{χ0}<{fxc})2 + (<{χ0}={fxc})2
<{χ0}. (7.8)

3As a matter of fact, the Eq. (7.6) given above, does not contain the local fields, but a simple
substitution of χ0 with χ̂ = (1− χ0v)−1χ0 in (7.6) (and in the following), automatically permits one to
correctly take into account the local field effects.
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It is hence clear that sharp structures below the gap can show up when fxc has a small
or vanishing imaginary part, and when <{fxc} = 1/<{χ0}. This can be rewritten as

<{fxc} = − α

4π
v (7.9)

with

α =
4π

<{εRPA
M (ω0)} − 1

, (7.10)

where we have introduced the parameter α by analogy to Ref. [273]. Note that εRPA
M (ω0)

has to be taken at the frequency ω0 where the bound exciton occurs. For semiconductors
with very weakly bound excitons, i.e. close to the onset of the continuum, <{εRPA

M } is
big (typically bigger than 10) and α becomes inversely proportional to the screening, as
we have predicted in Ref. [188] for the continuum excitons. For insulators, the bound
exciton peaks can occur far in the quasi-particle gap, where <{εRPA

M } takes a value close
to the static one, which can be almost 1.0 as in the case of argon. As a consequence, α has
to be very large. Several features found above or below can immediately be understood
from these formula: (i) when local field effects are included, <{εRPA

M } becomes smaller,
i.e. closer to 1, and therefore α, i.e. the strength of the contact interaction, must be
increased in order to get the bound exciton; (ii) the size of an α able to create a strongly
bound exciton must be such that, if it is taken to be static, its effect on the continuum
must be dramatic. In other words, it is not very probable that such a scalar static fxc

can yield at the same time bound excitons and a good spectrum in the continuum. Due
to (i), this must be even worse when local field effects are included; (iii) <{χ0} being a
smooth and monotonic function below the gap, a static fxc will cross it only once along
the frequency axis. It is hence impossible to obtain more than one bound exciton peak.
In order to get a series of bound excitons a scalar fxc has hence to be oscillating around
<{χ0}. Bound exciton peaks will then occur at each crossing.

This suggests that one bound exciton can be created by a static, scalar, long-range
kernel. We will in the following show numerical results for solid argon. Fig. 7.IV contains
again the experimental result (dots) and also the best contact fit (dot-dashed curve, same
as dot-dashed curve of Fig. 7.II, since, as we have shown, for the contact exciton case BSE
and TDDFT results perfectly coincide4). The continuous curve is now obtained using fxc

from Eq. (7.9), choosing of course the position of the experimental peak for ω0, which
leads to α = 10. As predicted, the static long-range kernel is able to produce one bound

4Note that this is only true at convergence. In fact, since the contact kernel is constant in reciprocal
space, its head element alone, multiplied with χ0(q → 0) ∼ q2, does not have any effect. This is also the
reason for the frequently heard opinion that a short-range kernel would have a negligible effect. A large
number of G-vectors has to be included in the calculations, contrary to the case of fxc = −α/q2 where
G = 0 alone already yields results close to the converged ones. We have, in fact, carried out calculations
[188] neglecting all G 6= 0 terms, and obtained results (for silicon) that are indistinguishable from the
ones that are obtained using also the G 6= 0 components (of course, with the same α).

107



Chapter 7

11 12 13 14 15
0

5

10

15
exp
A=52 β=1
GW-RPA
α=−10

Figure 7.IV: Imaginary part of the macroscopic dielectric function for solid argon. Dots: experiment
[270, 271]. Dot-dashed curve: contact exciton, strength of the contact interaction A=52. Continuous
curve: TDDFT Result for fxc = −10/q2.

exciton peak. Its relative intensity, however, is now strongly overestimated, contrary to
the contact case.

This suggests that a mixing of short- and long-range contributions in a still static
model could be sufficient to obtain overall satisfying results.

It should be pointed out that building model fxc’s based on short- and long-range
Coulomb components is also suggested by several findings in the literature: first, vxc(r) =
−
∫
dr′ρ(r′)v(r−r′) and fxc(r, r

′) = −v(r−r′) yield exact results for the excitation energies
of an isolated electron in an external potential [94, 279], and fxc(r, r

′) = −vΘ(rcut −
|r − r′|) has been suggested for a model system of non-overlapping valence electrons
[94]. Further evidence is given for example by results obtained on bulk aluminum: an
RPA calculation of the dynamical structure factor [280] shows that for large momentum
transfer the results are considerably better when χ0 instead of the full RPA response
function χ = (1 − χ0v)−1χ0 is used, in other words, when the RPA kernel (i.e. the bare
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Coulomb interaction v) is neglected: this is equivalent to choosing fxc = −v.

7.4 Concluding remarks

The long-range Coulomb electron-hole interaction is the source of enormous complications
concerning the efficient and reliable ab initio calculation of absorption spectra. In this
chapter, we have therefore studied in detail the effects of its macroscopic and microscopic
components, on the absorption spectra of various bulk semiconductors and insulators. We
have used the insight gained in this way in order to propose models for a static exchange-
correlation kernel fxc, that yield promising results for continuum and bound excitons.
More in particular, we have seen a series of results suggesting that a simple model for the
exchange-correlation kernel as

fxc = − α

4π|r− r′|
+ γδ(r− r′)

i.e., a contact plus a long-range interaction, might give results qualitatively, and some-
times quantitatively, in agreement with experiments.

In the next chapter, we provide an ab initio parameter-free kernel for the TDDFT,
and we might therefore wonder whether models are still needed. However, even though,
in principle, less cumbersome than the BSE, the use of a complicated ab initio kernel
will always be more demanding than a RPA calculation, whereas model kernels proposed
in the present chapter do not add computational complexity with respect to the RPA.
Thus, the possibility to have a very simple model to verify a behavior, or also to rapidly
obtain preliminary results, is still to be considered very useful. Besides this, the contact
exciton model is used for applications [261, 262, 268], and so a “contact-TDDFT” could
be. Moreover it is not a priori excluded that it will eventually be possible to determine
the parameters without fitting to experiment.

The results are hence promising, in particular since we have shown for the first time
that TDDFT, even in a static approximation, can yield bound excitons in a solid.
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TDDFT: parameter-free
exchange-correlation kernel from the
BSE

The important thing in science is not so
much to obtain new facts as to discover
new ways of thinking about them.

Sir William Bragg

We have seen, in the previous chapter, several attempts to go beyond the ALDA in
practical calculations of solids, and how it is possible, to a certain extent, to improve
the description of an optical spectrum of a crystal, in the framework of TDDFT, with
respect to the RPA. Other examples can be found in literature. Ref.s [281, 282] contain
a many-body diagrammatic expansion for the exchange-correlation kernel and discuss
some fundamental questions, like the non-locality of fxc. Ref. [283] is situated in the
framework of current-density functional theory [284]. An effective long-range kernel is
proposed that improves the RPA and ALDA results for the optical spectra of various
bulk semiconductors, including silicon and diamond. In Ref. [285] an “exact exchange-
only” (EXX) kernel is derived as the first order term of an expansion in the framework
of the adiabatic-connection perturbation theory [286]. In Ref. [274] this kernel and the
EXX potential are used to calculate the optical absorption spectrum of bulk silicon and
again, the result is considerably improved with respect to the RPA. In Ref. [273] an
analytical expression for fxc is found from a comparison with MBPT, using the successful
approximations of the latter, namely the GW form for the self-energy and a static electron-
hole interaction in the BSE. Only the long-range limit (vanishing wave-vector q) of the
resulting fxc(q) is then explicitly studied, which is sufficient to demonstrate that a 1/q2

divergence of fxc can be able to reproduce excitonic effects in the optical spectra of bulk
silicon. This approximation was also used in Chap. 7 of this thesis.
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However, none of the above numerical calculations, included of course, the results
presented in Chap. 7, are truly ab initio: empirical parameters, corrections or cutoffs are
used in all cases to fit the results to experiment. In Ref. [283], material-dependent rigid
shifts of the spectra and an empirical prefactor to adjust intensity ratios are used. In
Ref. [274] finite, non negligible terms in the expression of the kernel are cut off to avoid
the otherwise occurring “collapse” of the resulting spectra, and to fit the result to the
experiment. Finally in Chap. 7 of this thesis, tuning the parameter(s) of the contact
exciton model is crucial to fit the experiment, and the 1/q2 divergence in fxc, as derived
in Ref. [273], also has to be varied, via a parameter α, in order to get agreement with
experiment, although for the case of simple semiconductors, the meaning of this parameter
can be elucidated [188].

Only one parameter-free calculation of the frequency-dependence of the long-range
contribution to fxc has been published so far for a bulk material (namely for silicon
and diamond) [275], but at the price of fully solving the BSE, which is of course not of
immediate practical interest.

A suggestion of how to obtain excitonic effects without solving the BSE, and without
using adjustable parameters, is given in Ref. [273]. However, it has never been shown
how well this approach would work in practice. In fact, its success is a priori far from
obvious, due to possible obstacles of principle (it relies on the invertibility of matrices) or
practice (treatment of double poles). In this chapter, instead, we show that the approach
originally proposed in Ref. [273], based on the comparison of TDDFT and BSE, exposed
in Chap. 5, is in fact one possible solution for the long-standing problem of calculating
parameter-free optical spectra, including excitonic effects, in the framework of TDDFT
and without solving the BSE. We generalize the kernel given in that reference to a class of
dynamical ones, and show that a static fxc, when it exists, is just one of many possibilities
which yield a good spectrum.

This chapter is resumed in F. Sottile, V. Olevano and L. Reining Parameter-free calcu-
lation of response functions in time-dependent density-functional theory, Phys. Rev. Lett.
91, 56402 (2003).

8.1 The theory

The key of the comparison between BSE and TDDFT (see also Chap. 5) is of course the
request to have the same spectrum with the two approaches. Since the optical spectrum is
described by the macroscopic dielectric function, the necessary and sufficient condition,
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in order to have the same spectrum, would be

εM
BSE(ω) = εM

TDDFT(ω) (8.1)

i.e., the same macroscopic dielectric function, given by (3.27). However, since the equa-
tions of the polarizability can be written in the 4-point formalism (or transition space,
here we recall Eq.s 5.4),

L̄(n1n2)(n3n4) =
[
H2p,reso

BSE − Iω
]−1

(n1n2)(n3n4)
(fn3 − fn4)

χ̄(n1n2)(n3n4) =
[
H2p,reso

TDDFT − Iω
]−1

(n1n2)(n3n4)
(fn3 − fn4) .,

(8.2)

it is much easier to give a stronger condition

L̄(1, 2, 3, 4) = χ̄(1, 2, 3, 4) (8.3)

i.e. the equality between the four-point response functions, or

L̄(n1n2)(n3n4) = χ̄(n1n2)(n3n4) (8.4)

the equality between the matrix elements in the transitions space.1 The latter (or
Eq. (8.3)) clearly is a sufficient condition (if it is true, Eq. (8.1) is true), but not a
necessary one. It might even be impossible to fulfill this equation exactly. In the next
paragraph we will come back to this point; for the moment we suppose that we can use
Eq. (8.4). From the latter then, (3.35) and (3.42),(3.43) and (3.44), we have

(εn2 − εn1) δn1n3δn2n4 +

[
2

∫
drdr′ Φ(n1n2, r)v̄(r− r′)Φ∗(n3n4, r

′)

+2

∫
drdr′Φ(n1n2, r)fxc(r, r

′, ω)Φ∗(n3n4, r
′)

]
=

(En2 − En1) δn1n3δn2n4 +

[
2

∫
drdr′ Φ(n1n2, r)v̄(r− r′)Φ∗(n3n4, r

′)

−
∫
drdr′Φ(n1n3, r)W (r, r′, 0)Φ∗(n2n4, r

′)

]
(8.5)

1We have implicitly supposed that the single particle wavefunctions are the same in both
BSE and TDDFT. In fact, even if Eq. (8.4) is fulfilled, in order to use the Eq. (3.27),
we need the real space (or Fourier space) polarizabilities, which are obtained via L(1234) =∑

n1n2n3n4
φ∗n1

(1)φn2(2)φ∗n3
(3)φn4(4)L(n1n2)(n3n4). If the φ’s (used in BSE and TDDFT) are not the

same, then, the spectra could be different.
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with Φ(n1n2, r) = φn1(r)φ
∗
n2

(r). Now, considering that the term involving the Coulomb
potential is equal for both cases, we can express a relation between the BSE and TDDFT
kernels in a more compact form

FTDDFT
(n1n2)(n3n4) = (En2 − En1 − εn2 + εn1) δn1n3δn2n4 + FBSE

(n1n2)(n3n4), (8.6)

once we have defined the transition space kernels FTDDFT
(n1n2)(n3n4) and FBSE

(n1n2)(n3n4)

FTDDFT
(n1n2)(n3n4) = 2

∫
drdr′Φ(n1n2, r)fxc(r, r

′, ω)Φ∗(n3n4, r
′)

FBSE
(n1n2)(n3n4) = −

∫
drdr′Φ(n1n3, r)W (r, r′, 0)Φ∗(n2n4, r

′).

(8.7)

The latter is equivalent to the W v′c′k′

vck (defined by (3.44)) if n1n2 = vk → ck and n3n4 =
v′k′ → c′k′. Let us stress, here, as discussed in Par. 7.3, that two different couples of
Φ’s are involved in the definition of the transition space kernels (8.7), depending if we
are in the TDDFT framework, or in BSE framework. This prevents fxc to be simply
equal to −W/2. Eq. (8.6) illustrates that, in order for TDDFT and BSE to give the
same spectra, the TDDFT kernel has to take into account the self-energy corrections
and the electron-hole interaction, described by W in BSE.2 We can observe that, if the
quasi-particle corrections are directly inserted into the χ0, via a χ0

GW, obtained simply
replacing εi by the Ei in χ0, Eq. (8.6) becomes

FTDDFT
(n1n2)(n3n4) = FBSE

(n1n3)(n2n4). (8.8)

We would like, now, to exploit the relation (8.6). In Ref. [273] this was done by
formally inverting the matrices Φ in Eq.s (8.7), leading to a static fxc = Φ−1FBSE(Φ∗)−1.
Here, instead, we immadiately write a symmetric version of (4.7), with respect to χ0

χ̄ =
(
1− χ0v̄ − χ0fxc

)−1
χ0 = χ0

(
χ0 − χ0v̄χ0 − χ0fxcχ

0
)−1

χ0

= χ0
(
χ0 − χ0v̄χ0 − T

)−1
χ0.

(8.9)

The term T can be explicitly written down (χ0 given by (4.11)3)

T (r, r′, ω) =

∫
dr1dr2 χ

0(r, r1)fxc(r1, r2, ω)χ0(r2, r
′) =

=

∫
dr1dr2

∑
n1n2
n3n4

Φ∗(n1n2, r)Φ(n1n2, r1)

ω − (εn2 − εn1) + iη
fxc(r1, r2, ω)

Φ∗(n3n4, r2)Φ(n3n4, r
′)

ω − (εn4 − εn3) + iη
=

=
∑
n1n2
n3n4

Φ∗(n1n2, r)

ω − (εn2 − εn1) + iη
FTDDFT

(n1n2)(n3n4)

Φ(n3n4, r
′)

ω − (εn4 − εn3) + iη
(8.10)

2This also stresses the fact that having KS eigenvalues different from the QP energies is not a problem
for neutral excitations spectra: this difference will be corrected by the kernel.

3Here we consider only the resonant part of χ0, with ρ̃(q = 0) = Φ, in real space.
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where the first of (8.7) has been used. If we use now (8.6), we obtain the searched relation

T (r, r′, ω) = T1 + T2 =
∑
n1n2

Φ∗(n1n2, r)Φ(n1n2, r
′)

[ω − (εn2 − εn1) + iη]2
[Eck − Evk − (εck − εvk)] +

∑
n1n2
n3n4

Φ∗(n1n2, r)

ω − (εn2 − εn1) + iη
FBSE

(n1n2)(n3n4)

Φ(n3n4, r
′)

ω − (εn4 − εn3) + iη
(8.11)

which is the key equation of this derivation of TDDFT from the BSE. Eq. (8.11) answers
to the question: What is the kernel to put into the TDDFT to obtain the same spectrum
of the BSE ?, if Eq. (8.4) can be fulfilled.

It is worth reminding that (1) only the resonant part of the response function, (2) a
static electron-hole interaction and (3) KS-LDA wavefunctions occur in our BSE calcu-
lation, which turned out to be reasonable approximations (see Chap. 3).

We can write the explicit form of T1 and T2, in reciprocal space, and for a vanishing
momentum transfer (vertical transitions from valence states vk to conduction states ck)

T1 (G,G′, ω) =
2

Nk

∑
vck

Φ∗(vck,G)Φ(vck,G′)

[ω − (εck − εvk) + iη]2
[Eck − Evk − (εck − εvk)] (8.12)

which is the trace of a diagonal matrix in the transition space framework, and

T2 (G,G′, ω) =
2

N2
k

∑
v c k
v′c′k′

Φ∗(vck,G)

ω − (εck − εvk) + iη
FBSE

(vck)(v′c′k′)

Φ(v′c′k′,G′)

ω − (εc′k′ − εv′k′) + iη
. (8.13)

Here the number of k-points Nk appears explicitly.4

This result, for the term T , is equal to Eq. (11) of Ref. [273], there are nevertheless
important differences: first of all, our derivation is now more general, since it does not pass
through an explicit inversion of the matrices Φ(vck,G). In order to fulfill the invertibility
condition, the matrix Φ has to have an equal number of transitions (Nt) and G-vectors
(NG). This is not easy to achieve, especially for system whose spectrum requires a lot of
transitions to be described, because it would also require a huge number of G-vectors for
the characterization of the spectrum. Moreover the invertibility condition (if it holds) also
implies fxc to be static, whereas our general derivation does not require a static kernel.

It is then, clear why the present derivation is not only more general than the one of
Ref. [273] (it does not require Φ to be invertible, it does not require a static kernel), but
it is also of more practical interest, because of the considerable freedom in the choice of
basis size (NG can be chosen much smaller than Nt).

4The prefactor of χ0 is the volume of the system, i.e. Ω = Ωcell × Nk, but Ωcell is included in the
definition of the Φ’s, see (4.11) and (2.26).
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8.1.1 When the assumption is wrong...

The theory, as developed up to now, relies on the assumption (8.4), i.e. the equality
between the 4-point polarizabilities (of BSE and TDDFT) has to be fulfilled. This (strong)
condition is not necessary to have εBSE

M = εTDDFT
M . On the contrary, there are cases

where it cannot be fulfilled. An example is reported in Ref. [273], taking plane waves as
wavefunctions.

Here we want to show another example in which Eq. (8.4) cannot be satisfied. Let’s
write down the diagonal matrix elements FTDDFT and FBSE for the resonant case (having
contracted the indices n1 → v,n2 → c)

FTDDFT,reso
(vc)(vc) = 2

∫
d(12)φv(1)φc(1)fxc(1, 2, ω)φv(2)φc(2) (8.14)

and

FBSE,reso
(vc)(vc) = −

∫
d(12)φv(1)φv(1)W (1, 2)φc(2)φc(2), (8.15)

and for the coupling case

FTDDFT,coupl
(vc)(cv) = 2

∫
d(12)φv(1)φc(1)fxc(1, 2, ω)φc(2)φv(2) (8.16)

and

FBSE,coupl
(vc)(cv) = −

∫
d(12)φv(1)φc(1)W (1, 2)φc(2)φv(2). (8.17)

Here we have considered the wavefunctions to be real for simplicity.
Let’s consider then, as first approach, the resonant part and the coupling part sepa-

rately. The two equalities (by which we can obtain an exchange-correlation kernel)

FTDDFT,reso
(vc)(vc) = FBSE,reso

(vc)(vc) (8.18)

and

FTDDFT,coupl
(vc)(cv) = FBSE,coupl

(vc)(cv) (8.19)

can be separately fulfilled and then a kernel could be found separately for the two cases.
In particular in the case of coupling an exchange-correlation kernel can be immediately
extrapolated from Eq. (8.19), i.e. fxc(r, r

′) = −1
2
W (r, r′).

Now, we want an exchange-correlation kernel which takes into account, the resonant,
the anti-resonant, and also the coupling contribution. To have this, both Eq.s (8.18) and
(8.19) have to be fulfilled, simultaneously. This leads to a contradiction. In fact, since in
our example the wavefunctions are real, we have

FTDDFT,reso
(vc)(vc) = FTDDFT,coupl

(vc)(cv) (8.20)
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and
FBSE,reso

(vc)(vc) 6= FBSE,coupl
(vc)(cv) . (8.21)

By virtue of (8.20) and (8.21), if the condition (8.18) is fulfilled, Eq. (8.19) cannot be
satisfied, and vice versa. In conclusion, this is an (particular) example where the initial
assumption

FTDDFT
(vc)(v′c′) = FBSE

(vc)(v′c′)

is wrong, leading to an internal contradiction. However, as we have mentioned before, a
separate fulfillment of the Eq.s (8.18) and (8.19) is still possible, giving, then, a suggestion
of how to overcome the problem. In other cases, it might not be possible to find a way
to avoid the problem. In fact, if we had chosen to work with (8.3) instead of (8.4), the
different indices in the δ-functions in (5.2) and (5.3), would have been a tough obstacle
even for an approximate fulfillment of the equality. In principle (8.3) and (8.4) should of
course be equivalent. In practice, however, (8.4) gives us some margin, due to the fact
that only a finite number of transitions has to be considered for the spectrum in each
energy range. Eq. (8.4) should hence be considered as an equation defining the parameters
FTDDFT

(n1n2),(n3n4), rather than matrix elements.

8.1.2 ...and when it is, instead, straightforward

There are instead cases where Eq. (8.8) is trivially satisfied. Let us consider, as first
example, the contact exciton model for the (resonant) electron-hole contribution to the
Bethe-Salpeter equation (see Chap. 7)

FBSE
(vc)(v′c′) = −

∫
drdr′φv(r)φ

∗
v′(r)Aδ(r− r′)φ∗c(r

′)φc′(r
′)

= −A
∫
drφv(r)φ

∗
v′(r)φ

∗
c(r)φc′(r)

= −A
∫
drφv(r)φ

∗
c(r)φ

∗
v′(r)φc′(r).

Since the transition space exchange-correlation kernel FTDDFT
(vc)(v′c′) is given by the first of

Eq.s (8.7), Eq. (8.8) reads

2

∫
drdr′φv(r)φ

∗
c(r)fxc(r, r

′, ω)φ∗v′(r
′)φc′(r

′) = −A
∫
drφv(r)φ

∗
c(r)φ

∗
v′(r)φc′(r)

which gives the equation (7.5)

f contact
xc (r, r′) = −1

2
δ(r− r′)A.

The contact exciton model hence constitutes a case in which the initial assumption is
fully satisfied, leading to a simple shape for the exchange-correlation kernel.

117



Chapter 8

Also a two-level model (where one has only one transition), or a model of N indepen-
dent transitions are cases where Eq. (8.8) can be perfectly fulfilled.

8.2 Technical analysis

In order to elucidate the validity of the above derivation, and also to make the link to the
derivation in Ref. [273], it is, besides calculating a few examples, crucial to analyze the
behavior of the different terms. We will do this, looking at the macroscopic dielectric func-
tion 1/ε−1

G=G′=0(q → 0, ω) of bulk silicon, that has been studied in previous publications
[273, 274, 283].

It is easier to understand some important relations using first a very coarse sampling
of the BZ. We therefore use only 2 special k-points in the irreducible BZ, and 6 (3 valence
and 3 conduction) bands for all calculations in the following illustrations, meant to show
the effects of Eq.s (8.12) and (8.13).

8.2.1 The term T1

The Fig. 8.I shows the result of a standard RPA calculation (i.e. T = 0 in Eq. (8.9);
dotted curve), a GW-RPA result (where the χ0

GW({Ei}) is used instead of χ0({εi}), but
still T is neglected: dashed curve), and the result of a BSE calculation (continuous curve).
The matrix dimension NG required to converge such calculations is NG = 59.

We have then obtained the absorption spectrum using χ0 plus the contribution T1.
The resulting curve (dots) yields results that are indistinguishable from the GW-RPA
ones. As a consequence, the contribution T1 correctly acts as an effective self-energy
shift. Such a shift of poles is far from trivial and could not be obtained by simpler
approximations, like the one discussed in Ref.s [188, 273]; see, for that, also Ref. [278].
It is, in fact, important to see that this self-energy shift is obtained in a very different
way using the two approaches (GW-RPA or using T1): in the case of GW-RPA, the
quasi-particle corrections are added to the DFT-LDA energies, with the consequent shifts
of the poles of χ0. This is not a big task, if the quasi-particle corrections are known.5

On the contrary, the action of the term T1 is not that simple, because the shifts appear
in a more complicated way in Eq. (8.12). Here the shift is obtained wiping out the
oscillator strengths of certain frequencies and strengthening those of other frequencies,
thus constituting a demanding effort. In particular a big spatial complexity is required to
have the oscillator strength in the right position. This behavior is illustrated in Fig. 8.II:
when the number of G-vectors increases, the line-shape of the spectrum improves, up
to achieve the convergence (coincidence with the GW-RPA spectrum), but only when
NG = 307. We remind that well converged spectra within RPA, GW-RPA and BSE

5Often this step is substituted by the simple application of a “scissor operator” [287], if the quasi-
particle corrections are quite constant in the considered transitions.
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Figure 8.I: RPA, GW-RPA and BSE results, represented by dotted, dashed and continuous curves,
respectively. Dots represent the insertion of T1 and boxes the whole kernel T1 + T2.

were obtained with only NG = 59, considerably less than 307, thus showing the intrinsic
difficulty to obtain the self-energy shift using the kernel T1.

This difficulty to obtain the self-energy shift using the term T1 is strongly related to
the initial assumption, namely to have the same matrix elements in TDDFT and BSE,
i.e. (so restricting Eq. (8.6) to the self-energy shift only):

FTDDFT
tt′ = (∆Et −∆εt)δtt′ (8.22)

having called t the transition n1n2. In order to fulfill Eq. (8.22), FTDDFT has to satisfy
the double condition

FTDDFT
tt =

∫
drdr′Φ(t, r)fxc(r, r

′, ω)Φ(t, r′) = (∆Et −∆εt)

FTDDFT
tt′ =

∫
drdr′Φ(t, r)fxc(r, r

′, ω)Φ(t′, r′) = 0, t′ 6= t.

(8.23)

The request for the matrix elements to satisfy both Eq.s (8.23) is troublesome; in partic-
ular, the more similar transitions there are, the more the relations (8.23) will be difficult
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to fulfill. If we increment the number of k-points Nk, for instance, the two relations
schematically read

FTDDFT
k,k = (∆Ek −∆εk)

FTDDFT
k,k+∆k = 0 ∀∆k 6= 0.

(8.24)

where k labels a transition in this case (we imagine that, in a realistic calculation, a lot of
k-points and a few bands are used, to describe an optical spectrum). If Nk is big enough,
∆k is small and the relation (8.24) becomes impossible to fulfill6 and, as a consequence,
the term T1 is unable to reproduce the GW-RPA spectrum. This occurs already, for
example, when 256 shifted k-points are used to sample the BZ of silicon, as reported in
Fig. 8.III.

We expect hence, the inclusion of the term T1 to be problematic, especially for realistic
calculations. Above all, however, it does not present any practical interest (it does not
avoid the calculation of the quasi-particle corrections). We have therefore decided, to
avoid this term in all future calculations: this can be done by simply using χ0

GW, instead
of χ0.

8.2.2 The term T2

If one also includes, in Eq. (8.9), the term T2, as given by (8.13), the spectrum is now
identical to the BSE result, as shown by boxes in Fig.8.I, i.e. the term T2 correctly
simulates the e-h interaction, represented by W in the BSE. The numbers of G-vectors
required for a well converged spectrum is NG = 113. As we can notice, the convergence
of the spectrum is achieved well before that of the term T1, so supporting the previous
decision to avoid the latter and, more important, justifying the hope that T2 will be useful
in practice.

8.2.3 The (¿useless?) kernel fxc

To further investigate T2, we study f e−h
xc (ω) = (χ0

GW(ω))
−1
T2(ω) (χ0

GW(ω))
−1

, i.e. the
kernel one should use in the canonical equation

χ̄ =
(
1− χ0

GWv̄ − χ0
GWfxc

)−1
χ0

GW.

This is, as it will turn out, a rather academic discussion, because the function to deal
with, in our approach, is not fxc, but T2 = χ0fxcχ

0.
The lower panel of Fig. 8.IV shows several results for q2<

{
f e−h

xc (q,G = G′ = 0, ω)
}

for vanishing momentum transfer q. Other wing and body elements (G 6= 0 ) behave
similarly, and are therefore not shown here. The different curves have been obtained by

6The function Φ’s are slowly varying functions, with respect to transitions.
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Figure 8.III: Behaviour of T1 with an increasing NG. In this case, i.e. using 256 shifted k-points, a
converged (shifted) spectrum is not achieved.

varying the dimension NG of the matrices χ0
GW and T2. If we use NG=1, the resulting

kernel (dotted line) has a very sharp pole-like frequency dependence. With increasing NG,
this feature moves to higher energy, leaving behind an essentially flat f e−h

xc . At NG = 169,
f e−h

xc is completely static in the optical range. In fact, only when NG approaches the
number of transitions Nt that are considered (288 in our example), the hypothesis of
invertibility of the matrices Φ, made in the derivation of a static kernel in Ref. [273], can
be valid. However, as explained above, using the present derivation this condition can
be dropped. In fact, the upper panel of Fig. 8.IV shows the spectra that are obtained
using NG=1, 113, 169 and 307. Besides the clearly wrong result obtained in the first
case, leading even to negative absorption, all other results are equally virtually perfect.
This set of results includes the one shown already in Fig. 8.I, which had been obtained
with NG=113, the result for NG=169 corresponding to a static kernel (note that the
static limit f e−h

xc (ω = 0) has been used to produce the absorption curve for this value),
and it is even true for NG=307. Now, NG > Nt, and χ0

GW has several eigenvalues close
to zero. This is because χ0 is a sum of products χ0(G,G′, ω) =

∑
t Φ∗

t (G)Φt(G
′)ft(ω),

where t = vk → ck is again the transition index. A sum of products of vectors cannot be
inverted if the dimension of the vectors is greater than the number of products. Therefore
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f e−h
xc is scattered and out of the vertical range (see the out of scale inset of Fig. 8.IV,

lower panel), but since this meaningless kernel is finally used in a multiplication with
χ0

GW, the result remains so surprisingly excellent.7 It is worth, therefore, also looking at
the inversion of χ0, from a numerical point of view. To do this, we plot the real part of
one element (the head) of the (χ0)−1 as a function of energy, in the optical range. We
expect then, that when NG is of the same order8 of Nt, invertibility problems occur and
the (χ0)−1 should be scattered out and meaningless. This is what happens, indeed, and
it is shown in Fig. 8.V. In the central panel of the figure, the case treated up to now
(32 total k-points, 6 bands, then Nt = 3 × 3 × 32 = 288 transitions) is shown, and the
result confirms our prediction, i.e. when NG approaches (229) the number of transitions
(288), the χ0 is not invertible anymore. In the upper panel a smaller case, where only
two bands are taken into account, is shown. Here the number of transitions is reduced to
32, and, in fact, the χ0 shows invertibility problem already when NG = 27. Finally in the
lower panel of Fig. 8.V, we show the case with the number of bands Nb is increased up to
8, which leads to Nt = 480 transitions. Also in this case, the first invertibility problems
occur when NG(387) approaches the number of transitions.9

Overall, the findings concerning T2 are very ensuring: everything happens consistently
with the derivation of the equations, and the results are perfect. Moreover, they are of
potential practical interest since, if one does not require explicitly the Φ’s to be invertible
and the kernel to be static, the basis size NG can be chosen to be much smaller than Nt

(basis size of the BSE). Finally the fact that not fxc, but fxc multiplied with χ0 is the key
quantity, clearly is the reason for stable results and an important hint for future research.

Nevertheless, before coming to real applications, a last important issue related to the
exchange-correlation kernel is:

Is the fxcfxcfxc kernel static, or dynamic ?

If the initial assumption (8.8) is perfectly fulfilled (the quasi-particle corrections are taken
into account in the independent-particle polarizability), since the BSE kernel W (r, r′) is
static, so the fxc kernel should also be static. There are nevertheless several important
remarks. The way we have followed to obtain the kernel can be summarized in three
steps: first, we have imposed the (8.8); second, we have obtained the term T2 from FBSE

via (8.13) (now T2 is dynamic); third, we have derived the exchange-correlation kernel via
fxc = (χ0)−1T2(χ

0)−1 (and we have seen that it can be static or dynamic) by considering

7This is of course only true when numerical errors due to the inversion of χ0
GW are avoided.

8We say “same order” instead of same number because, in reality, the number to deal with is the
number of independent transitions, which can be (much) less than the total number of transition Nt.

9These problems are of course only due to the fact that a limited number of bands, hence transitions,
is taken into account.
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the matrix χ0 to be invertible. Only the second step is straightforward, whereas the first
and the third steps require two conditions

C1) FTDDFT
(n1n2)(n3n4) = FBSE

(n1n2)(n3n4)

C2) χ0 invertible

to be fulfilled in order to have a static kernel. It can occur that these two conditions
cannot be both satisfied. Let’s see the illustrative example of silicon, sampled with 2
k-points. We have seen that, if the cutoff is too low (NG < 169) the matrix χ0 is
invertible; however the condition C1) cannot be considered to be an equation for matrix
elements of fxc, because fxc(q → 0,G,G′) has less degrees of freedom than N2

t equations
to be fulfilled. As pointed out above, (8.6) should rather be interpreted as a choice of
parameters. In fact, the resulting kernels are dynamic (see Fig. 8.IV, lower panel). If
we increase the number of G vectors up to NG = 169, the condition C1) is now fulfilled
and the matrix χ0 is still invertible. As a consequence, the resulting exchange-correlation
kernel is static (full curve in Fig. 8.IV, lower panel). Finally, if we now increase NG,
whether the condition C1) is satisfied or not, the condition C2) is not satisfied anymore,
because NG > Nt. Thus, in this model system, we have been able to find an intermediate
cutoff where both C1) and C2) are fulfilled. In realistic systems, it can happen that we
cannot achieve a perfect fulfillment of C1) before encountering invertibility problems in
χ0. In this case there are only two possibilities: either the parameters of the calculations
have to be changed, e.g. increasing the number of bands (as we have seen before, this can
permit one to increase a bit more the cutoff before having invertibility problems again;
however it cannot remedy to cases as the examples (8.20) and (8.21), where the condition
C1) is always wrong); or, more simply, one searches for a compromise, i.e. a reasonable
cutoff, for whom a converged spectrum is obtained, without taking care of fxc, because fxc

is never explicitly calculated nor used (but contained in the term T2). It is clear that, in
this case, the exchange-correlation kernel, if calculated via fxc = (χ0)−1T2(χ

0)−1, would
be dynamic. The results, carried out on realistic systems (semiconductors and insulators),
will largely justify this procedure, as we will soon verify, so showing that the important
function is not the kernel fxc, but the kernel combined with a response function.

8.3 The problems of χ0, cautions and tricks.

Before applying this kernel to realistic systems, we want to warn the reader about possible
problems that can occur when dealing with χ0 and its inversion.

First, one could think that the results in Fig. 8.IV suffer of numerical problems, in
particular when NG = 307. But it is not the case. In producing all those results, we
have carefully verified that the (double) precision used for the inversion is sufficient to
obtain a stable kernel and meaningful spectra. We have indeed verified that if single
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precision is used, the inversion does lead to numerical problems.10 In this case, the use of
Singular Value Decomposition (SVD) [288], in order to deal with the numerical inversion
of singular matrices, can be a solution.

The reason of non-invertibility of χ0 rely in its vanishing eigenvalues. As Mearns and
Kohn have shown [289], when the frequency range taken into account is above the first
resonance, which is always the case for the absorption spectrum, non trivial vanishing
eigenvalues occur (in the spectral decomposition of χ0), so that in certain frequencies
χ0 is not invertible and caution is in order. Moreover, as we have explained before, for
NG > Nt, χ

0 is not invertible for all frequencies. It is, therefore, clear that the fxc (not
the spectrum) displayed for the case NG = 307 is meaningless: χ0 is invertible in double
precision because, probably due to the very small numerical errors in the calculation
(in single precision) of χ0 itself, eigenvalues are close, but not identical, to zero. The
singularities (big numbers) in the inverse of χ0 are then correctly counterbalanced by the
zeros (small numbers) of the two χ0 multiplying on the left and on the right the inverted
matrix. This is the reason for the fact that the final correspondent spectrum is again
perfect.

However, two remarks are here necessary, to certify the numerical stability of our
results, despite the mentioned problems:

• Generalization of (8.9).
Instead of multiplying Eq. (8.9) times χ0, inside and outside the brackets, we can
use another, more general function X, which leads to

χ̄ = X
(
X − χ0v̄X − χ0fxcX

)−1
χ0 = X

(
X − χ0v̄X − T ′

)−1
χ0.

In order to extrapolate FTDDFT from T ′ (to be able to use Eq. (8.6)), X has to be

X(G,G′, ω) =
∑
vck

Φ∗(vck,G)Φ(vck,G′)f(vck, ω)

i.e., built up by the Φ matrices and by an arbitrary function f(vck, ω). It is easy
to recognize χ0 as a special case of X, with f(vck, ω) ∝ 1

ω−(εck−εvk)+iη
. We have

obtained preliminary results for different choices of f(vck, ω): they are identical to
the ones with X = χ0, so supporting the correctness of the results shown here. This
freedom in the choice of f(vck, ω) might be exploited in the future to build up an
X less singular than χ0 in the frequency domain of interest.

• Linear solver technique
The algorithm we have used to find the full polarizability χ̄ is perfectly stable,
avoiding any explicit inversion. In fact, we calculate T , never fxc, so that we do not
have to invert χ0. Moreover, since we are interested only in the head of χ̄, we also

10Which means, e.g., that (χ0)−1χ0 6= 1.
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avoid the inversion of (χ0 − χ0v̄χ0 − T ), by using a linear system solver technique.
This algorithm, explained in Appendix E, has the double advantage to be more
stable than an inversion, and to be much more convenient, from a computational
point of view.
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Absorption spectrum of
semiconductors

To electricity – so, for the present,
continuing to call it – we may not be
wrong in referring the various physical
appearances of light, heat and
magnetism; but far less shall be liable
to err in attributing to this strictly
spiritual principle the more important
phenomena of vitality, consciousness
and Thought.

from Eureka, Edgar Allan Poe.

In this chapter we apply the theory developed in Par. 8.1 to optical absorption spec-
tra of semiconductors. Since only poor results can be obtained within ALDA/RPA in
describing the optical spectra of the bulk silicon and silicon carbide (whereas the BSE
leads to a good agreement with the experiment, for both systems), the choice of these
two semiconductors is the perfect test to validate the kernel T2, proposed, but applied
only to a model system, in the previous chapter.

This chapter is resumed in F. Sottile, V. Olevano and L. Reining Parameter-free calcu-
lation of response functions in time-dependent density-functional theory, Phys. Rev. Lett.
91, 56402 (2003).
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9.1 Absorption spectra of Silicon ...

Once the ground-state has been obtained, the LDA-KS wavefunctions φi and eigenvalues
εi can be used to build the independent-particle polarizability χ0, according to (4.11).
The use of the polarizability

χ̄ =
(
1− χ0v̄

)−1
χ0 (9.1)

in
={εM} = − lim

q→0
v0(q)χ̄00(q, ω)

directly leads to the RPA spectrum. The local field effects are correctly included. The
RPA spectrum (same as Fig. 2.III) is represented by the double-dot dashed curve in
Fig. 9.I.

The inclusion of an exchange-correlation kernel (in the adiabatic local density approx-
imation) fALDA

xc , following (4.7) and (4.9) leads to the ALDA spectrum, represented by
the double-dash dotted curve in Fig. 9.I, same as Fig. 4.I.

As we have already seen, the results are very similar and both quite poor. The
electron-hole interaction, contained only in the “true” fxc, is missing in the RPA and
largely underestimated in ALDA [234, 290], thus leading to the (typical) underestimation
of absorption strength at low energy, and of its overestimation at high energies. Moreover,
of course, the self-energy shift is missing.

Following the three steps algorithm, described in Par. 3.3.2 and illustrated in Fig. 3.VI,
we can perform a BSE calculation, which includes the electron-hole interaction, passing
through the determination of quasi-particle corrections. All the approximations described
in Par. 3.3.2 are used here. The details of the calculations are the following: all the spectra
(RPA, ALDA, GW-RPA and BSE) have been obtained sampling the BZ with 256 shifted
k-points (see Appendix E.2), and using 6 (3 valence and 3 conduction ) bands. The
number of resulting transitions is Nt = NvNcNk = 3 × 3 × 256 = 2304. The number
of G-vectors required in all cases is NG = 59. In Fig. 9.I we show the GW-RPA (dot-
dashed curve) and the BSE spectrum (dashed curve). The former is only a (almost rigid)
shift of the RPA spectrum towards higher energies, whereas the BSE calculation includes
a description of the electron-hole interaction, which is, then, crucial, to obtain a good
agreement with the experiments.

It remains to check how the kernel that we have developed in Chap. 5, works out
in this realistic case. So, starting from Eq. (9.1), we add the term T2, as described1 in
Par. 8.1 and Eq. (8.13). The result (solid line) is practically coincident with the BSE
calculation!

To obtain this spectrum we have used NG = 307, which is bigger than the value used
for the RPA calculation (NG = 59), but significantly lower than the number of transi-
tions Nt = 2304, the dimension to deal with, in BSE calculations. With increasing Nt, our

1The self-energy corrections are automatically taken into account using a χ0
GW instead of χ0, hence

avoiding the contribution T1, as we have already mentioned.
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Figure 9.I: Imaginary part of the macroscopic dielectric function for solid silicon. Experiment from [98].

approach becomes more convenient, since the natural cutoff of the silicon wavefunctions
prevents the basis from being equal, or even proportional, to Nt. However,with increas-
ingly dense BZ sampling, one can find an increasing number of non-trivial eigenvalues of
χ0

GW close to zero, even for NG < Nt. It happens, in fact, in the present calculation of
silicon for NG = 387, which is considerably less than Nt = 2304 (see also the discussion
in Par. 8.3). An immediate consequence for the calculations using the denser k-point
sampling is the fact that, although we find an excellent spectrum, the kernel starts to
be scattered at relatively low NG, so that the limit of a completely static kernel is never
reached, as shown in Fig. 9.III.
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Figure 9.II: Imaginary part of the macroscopic dielectric function of SiC.

9.2 ... and of Silicon Carbide

The cubic SiC represents a severer test for the method. It is, in fact, a large-gap material
with half the dielectric constant of silicon (hence twice the electron-hole interaction) which
requires a considerably higher number of plane waves to describe the wavefunctions with
respect to silicon. One might hence suspect that, contrary to the case of silicon, a well-
converged spectrum cannot be obtained before NG passes some critical value leading to
absurd results.

In fact, we have found that also in the case of SiC, calculated with 3 valence and
3 conduction bands, and using 256 shifted k-points as in silicon, strong fluctuations in
χ

(0)−1
GW show up when NG is chosen to be bigger than 387. However, in that range a
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Figure 9.III: Kernel analysis of silicon. Upper panel: real part of q2f e−h
xc (ω) for three different values of

NG. In the lower panel the same curves are reported, with the addiction of the case NG = 387 where
the kernel starts to be scattered. The legend is the same for both panels.
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reasonably converged spectrum is already in very good agreement with the result of BSE
calculation, as one can see in Fig. 9.II. In this case the agreement between BSE (dashed
line) and experiment (dots [291]) is not perfect, but the one between BSE and TDDFT
(with our kernel T2, continuous line) is still excellent, hence correcting most of the error
of the GW-RPA result (dot-dashed line). The number of G-vectors required to achieve
the convergence is NG = 387, whereas for RPA (double dot-dashed line), GW-RPA and
BSE spectra the convergence was achieved with NG = 65.

As we have already mentioned, the calculation of a spectrum is much less critical, and
the results much more stable, than the calculation of fxc. This is once again confirmed
by the results of SiC. The TDDFT spectrum in Fig. 9.II (double-dash dotted line) is
calculated using NG = 531. It is very good, even though the correspondent kernel
fxc = (χ0

GW)
−1
T2 (χ0

GW)
−1

is totally meaningless (see Fig. 9.IV).

9.3 Concluding remarks

In conclusion, the application of the kernel proposed in Chap. 8 to semiconductors, is to be
considered extremely successful, leading to results which are almost indistinguishable from
the BSE results. Moreover, since the two systems tested, silicon and silicon carbide, have
a rather different band-gap energy (1.1 eV and 2.3 eV, for the experimental minimum gap,
respectively), and consequently, a rather different electron-hole interaction contribution,
it is reasonable to hope that the method will work out in a wide range of semiconductors.
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Bound excitons in TDDFT

Veniet tempus quo posteri nostri tam aperta nos
nescisse mirentur.

from Naturales Quaestiones, Seneca

Up to now, in literature, bound excitons in solids have never been obtained by any
attempt to calculate absorption spectra within TDDFT. Only in Chap. 7, we have shown,
for the first time, that the TDDFT can lead to the description of bound excitons in solids,
namely, in a static approximation and using the contact exciton model, for solid argon.

It seems obvious, now, in the light of the results of Chap. 9, to try to extend the
application of the kernel T2 to insulators, e.g. the solid argon tested in Chap. 7. How-
ever, before doing the same comparison (i.e. between BSE and TDDFT), made for the
semiconductors in the previous chapter, we have to generate our reference result, i.e. the
BSE result for solid argon.

This chapter will be resumed in F. Sottile, V. Olevano and L. Reining Bound excitons
in TDDFT, in preparation.

10.1 BSE result for solid argon

The absorption spectrum of the molecular crystal of argon consists (see Fig. 10.I) of a
strong excitonic peak at 12.1 eV, and a series of weaker peaks below the photoemission
gap, whose value is 14.1 eV [270, 271, 292]. Starting from the DFT-LDA ground state,
we have simulated the GW corrections to the DFT-LDA eigenvalues simply by applying
a scissor operator of 6.0 eV. The result is the dot-dashed curve (GW-RPA) shown in
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Fig. 10.I. We have then applied the BSE, obtaining the same results (BSE, continuous
curve) as V. Olevano [209], and compared them with the experiment (dots).1 The dotted
curve, instead, represents the ALDA result.
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Figure 10.I: Solid argon. Comparison between ALDA, GW-RPA, BSE results with experiment. The
calculations have all been performed using 256 shifted k-points and 6 (3 valence and 3 conduction)
bands. The experiment is in arbitrary units.

As one can see from Fig. 10.I, the effect of the electron-hole interaction is huge, leading
to a first strongly bound (2 eV) exciton. It is perfectly described by the BSE calculations.
Less accurate is the description of the series of peaks weakly bound at 13.5 ÷ 14 eV, at
least with the k-points sampling used here (256 shifted k-points). This point, however,
deserves a more detailed investigation.

1Note that the experimental result shows a spin-orbital split that is not contained in our calculation.
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10.1.1 k-points sampling

In the case of calculation of the absorption spectra of silicon and other semiconductors,
the use of shifted k-points (see Appendix E.2) has led to a big improvement with respect
to the use of the special Monkhorst-Pack k-points. As one can see from Fig. 10.II, in
the upper panel, the calculation (reasonably converged) of the absorption spectrum of
silicon (same curve as reported in Fig. 9.I) using 256 shifted k-points is much more
in agreement with the experiment, than the same calculation performed sampling the
BZ with 256 Monkhorst-Pack k-points, corresponding to only 10 (crystallographically
different) k-points in the irreducible BZ (dot-dashed curve). However it is important to
distinguish between the effect of the sampling on the band structure, and the effect of
the sampling on the characterization of the electron-hole interaction. The former can be
investigated looking at the GW-RPA results shown in Fig. 10.IV, for both silicon and
argon. The difference between the two samplings (10 k-points and 256 k-points) in silicon
is big, even using a quite large broadening,2 whereas the same difference for the argon
is less important: the broadening used for argon is only 0.07 eV (absolute Lorentzian).
A larger broadening, e.g. the same as the one used for silicon, has led to a very small
difference between the two samplings (inset of the lower panel of Fig. 10.IV). If now we
come back to Fig. 10.II we realize that the different sampling has also an effect on the
description of the electron-hole interaction: in particular, in silicon, the difference between
the spectra is still enforced, while in argon it is further reduced and, in the region of the
first excitonic peak, almost vanishing. This is reasonable: the series of bound peaks in
argon is in fact similar to the hydrogen-like series predicted by the Wannier-Mott exciton
model [293, 294] (although the first peak is rather Frenkel-like [295, 296]). Therefore
the n = 1 peak mixes a rather large portion of k-space, which allows a rough sampling,
whereas the higher order peaks only mix transitions close and closer to the Γ point. This
behavior is illustrated in Fig. 10.III. This implies that, in order to describe the first
excitonic peak of argon, not only few k-points are sufficient, but also the nature of the
sampling (if special or shifted k-points) is not so important.

Instead, 256 k-points are not enough to converge the spectrum of solid argon, for a
good description of the excitonic series starting from 13.5 eV. For this reason, we have
performed a calculation for the optical spectrum of argon, using 2048 shifted k-points
and only 4 (3 valence and 1 conduction) bands.3 The choice of a restricted number of
bands, dictated by computer-time reasons, turned out not to worsen the convergence of

2The broadening used for GW-RPA and BSE calculations of silicon is the following: absolute
Lorentzian broadening = 0.05 eV. In addition a relative Lorentzian and Gaussian broadening (1.5%)
have been applied (which corresponds to add about 0.15 eV).

3Passing from 256 to 2048 k-points had, as a consequence, the reduction of the DFT-LDA band-gap,
because we are sampling closer to the Γ point. In order to simulate the experimental photoemission gap,
we had hence to increase the “scissor” operator up to 6.4 eV (it was 6.0 eV for the case of 256 k-points).
It is important, however, to point out that the electron-hole binding energy is has not been influenced
by this shift.
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Figure 10.II: Imaginary part of macroscopic dielectric function of silicon (upper panel) and argon (lower
panel). Comparison between BSE calculations (two different samplings of the BZ) and experiment. The
legend is the same for both panels.
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Figure 10.III: In the Wannier-Mott exciton model, the eigenvectors Ak
λ of the excitonic Hamiltonian

(3.37) have the shape described [297, 298] by the continuous, dashed and dot-dashed curves, for n =
1, 2, 3, respectively. The number of k-points required for a given accuracy of the k-sampling (supposed
homogeneous) is clearly bigger for an higher n.

the spectrum below the onset. Of course, this choice prevents any inference about the
continuum, for which much more bands would be necessary.

The result is shown in Fig. 10.V, where both calculations (256 and 2048 shifted k-
points) are compared with the experiment. The position of the first peak is still well
described, but now, with the finer sampling, it has been possible to describe the n=2 and
n=3 peaks which are in good agreement with the experiment, both for position and their
relative intensity. Using the BSE, the description of the strong excitonic effects occurring
in the optical spectrum of solid argon is hence possible, and very successful.

10.2 TDDFT description of Argon

The issue of bound excitons in solids has been addressed in the framework of TDDFT in
Chap. 7, for the first time. Now we want to apply the kernel developed in Par. 8.1, and
more precisely the term T2 (the term T1 is contained in χ0

GW), in order to verify if the
description of bound excitons in solid is possible even by a fully ab initio parameter-free
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Figure 10.IV: Imaginary part of macroscopic dielectric function of both silicon (upper panel) and argon
(lower panel). Comparison between calculations (using two different samplings of the BZ) and experi-
ment. Inset of the lower panel: GW-RPA calculation of solid argon, using the same broadening as in the
silicon case. The legend is the same for both panels.
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Figure 10.V: Imaginary part of macroscopic dielectric function for solid argon. Two different samplings
of the BZ (256 and 2048 k-points) are compared with the experiment.

TDDFT approach, like the one proposed here.

We have then calculated the imaginary part of the macroscopic dielectric function in
TDDFT, via Eq. (8.9), for different values of NG, and compared the results with our
reference, i.e. the BSE calculations. We have first used 256 shifted k-points and 6 (3
valence and 3 conduction) bands, obtaining the results shown in Fig. 10.VI. Contrary to
the ALDA result in Fig. 10.I, our TDDFT approach creates a strong transition in the gap.
The description of the first peak is not bad, even though a small (about 0.3 eV) blue-shift
occurs, but the second peak, inside the gap, is not reproduced. Moreover, because of the
small broadening,4 large fluctuations (leading also to negative absorption) can be seen
in the spectrum. Nevertheless, the results shown are remarkable: the kernel T2 (8.13) is
able to describe bound excitons in solids, in a parameter-free approach within TDDFT.

However, we are not fully satisfied. The agreement between TDDFT and BSE was,
for semiconductors, much more impressive; a deeper analysis is, then, crucial to better

4We have used the same broadening as in the BSE calculation, i.e. 0.07 eV (Lorentzian).

143



Chapter 10

11 12 13 14 15 16 17
ω (eV)

-5

0

5

10

15

20

Im
 {

ε M
}

BSE
N

G
=229

N
G

=256

N
G

=307

Figure 10.VI: Imaginary part of the macroscopic dielectric function of argon. The TDDFT results (dif-
ferent cutoff NG) are compared with the BSE result. 256 shifted k-points.

understand the behavior of TDDFT calculation of optical spectra of insulators.

10.2.1 Diagonal contribution of T2: a problem.

In order to build the term T2, a small contribution comes from the particular case (vck) =
(v′c′k′), i.e. from the contribution that is diagonal in transitions. This contribution, that
we call T d

2 , is given by

T d
2 (G,G′, ω) =

2

N2
k

∑
vck

Φ∗(vck,G)FBSE
(vck)(vck)Φ(vck,G′)

[ω − (Eck − Evk) + iη]2
. (10.1)

The term T d
2 has exactly (except for the prefactor) the same shape as the term T1. We

have already seen that the latter is problematic and, that it should not to be taken
into account in realistic calculations. The same conclusion should hold for T d

2 . Let’s
investigate, then, the value of FBSE

(vck)(vck), for each transition vck. The results, shown in
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Fig. 10.VII, clearly demonstrate that the term FBSE
(vck)(vck) is, indeed, almost constant in

the transition space, with a value −0.76± 0.01 eV.
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Figure 10.VII: Value of FBSE
(vck)(vck) = W t

t per transition (Nt = 2304). 256 shifted k-points.

Its effects should only be to shift the spectrum (towards lower energies, by 0.76 eV).
Since its shape is that of T1, it could be responsible for the convergence difficulties shown
in Fig. 10.VI. To be sure of that, we have, firstly, calculated the optical spectrum of
argon subtracting from T2, the diagonal contribution T d

2 , thus leading to the dot-dashed
curve in Fig. 10.IX; second, we have simulated the missing diagonal contribution by a
rigid shift (given, of course, by the value of FBSE

(vck)(vck) = −0.76 eV (dashed curve in

Fig. 10.IX)). The agreement between BSE and TDDFT is now very good, both for
the first and second excitonic peak. This confirms again, that the diagonal contribution
T d

2 worsens (or even prevents) the convergence, exactly like the term T1 does. Another
more rigorous possibility, instead of putting a rigid shift, could be to insert the diagonal
contribution T d

2 directly in the χ0 matrix [299], as we have already done for the term T1.
χ0 would then become a χ0

GW,T d
2

matrix.

It is important to notice that the diagonal contribution T d
2 , at the contrary of T1,

vanishes for Nk → ∞, because of the prefactor 2
N2

k
. A calculation with an increased

number of k-points then, is crucial, not only to obtain better results to compare with the
experiment (we have seen that 256 k-points are not sufficient for a good description of
the spectrum), but also to verify the decreasing importance of T d

2 . This will be done in
the following.
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t per transition (Nt = 6144). 2048 shifted k-points.

10.2.2 Comparison with experiment

We use now 2048 shifted k-points and 4 (3 valence and 1 conduction) bands to calculate
the absorption spectrum, in TDDFT, first using the full term T2 (Fig. 10.X), for different
NG. Then, we have followed the procedure of the previous paragraph, replacing the
diagonal contribution T d

2 with a rigid shift (of an amount of 0.45 eV, extrapolated from
Fig. 10.VIII), whose result is shown in Fig. 10.XI. Even for 2048 shifted k-points,
when the whole T2 is used, its diagonal prevents the achievement of convergence with
the number of G-vectors NG. In this case, however, T d

2 is smaller and the spectrum
is qualitatively better than the one using 256 shifted k-points: in particular the second
bound peak is present, even though in a wrong position (the shift describing the missing
T d

2 , is now decreased, as expected, although the behavior of FBSE
(vck)(v′c′k′) when the number

of k-points Nk increases is not as 1/Nk, but slower 5). The agreement between BSE and
TDDFT becomes impressive, when the diagonal contribution T d

2 is separately treated (i.e.
subtracted from T2 and simulated by a simple rigid shift), with a difference of only 0.04
eV between BSE and TDDFT on the first peak.

5This is due to the fact that roughly W k′

k goes as 1/|k − k′|2, and, for k = k′, the divergence is
integrated over a small volume around zero.
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Figure 10.IX: Imaginary part of the macroscopic dielectric function of argon. The dot-dashed curve
represents the TDDFT results obtained subtracting the term T d

2 to the full T2, whereas in the dashed
curve this diagonal contribution has been simulated by a rigid shift of the spectrum (by a value of -0.76
eV). 256 shifted k-points.

10.3 Results of other groups

The same formula for the electron-hole contribution to the exchange-correlation kernel in
TDDFT (8.13) has been derived independently by a group in Rome [300, 301], following
a different approach. Although still based on a comparison between BSE and TDDFT,
in that work the kernel is developed in a perturbative series in terms of the screened
interaction W . The first order of this perturbative series coincides with our formula
(8.13). This is not a contradiction: we have already seen in Par. 8.1.1 that our initial
assumption (8.6) cannot always be fulfilled, and we have given counter examples. Instead,
for the examples given in Par. 8.1.2, where Eq. (8.6) can be exactly fulfilled, all the higher
(than the first) order, in the perturbation series of the approach followed in Rome, vanish.
In principle, the second order perturbation term [299] could be taken into account to
overcome the problems that arise when (8.6) cannot be fulfilled. However, it seems that
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Figure 10.X: Imaginary part of the macroscopic dielectric function of argon. The TDDFT results (various
cutoffs NG) are compared with the BSE result. The diagonal contribution T d

2 is included in T2. 2048
shifted k-points.

this is only partially true. For example, the description of a shift, i.e. what we have called
T d

2 (10.1), or a T1 (8.12), does not improve. The convergence of the perturbation series
is not simply due to the magnitude of some parameter,6 in fact, the case of the contact
exciton model (Par. 7.2) is an example where our initial assumption is perfectly fulfilled
(which means that all the perturbative orders higher than the first have to vanish) even
when the screened interaction W is not “small”.

More comparisons will have to be done to elucidate the links between the two ap-
proaches in detail. In any case, we have been informed by our colleagues that the ap-
plication of T2 (8.13) yields excellent results also for other systems, like LiF and SiO2,
which is an additional demonstration of the accuracy and the potentiality of the kernel
here proposed.

6It could be supposed, in fact, that such a perturbative series only converges rapidly if W is “small”.
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Figure 10.XI: Imaginary part of the macroscopic dielectric function of argon. The dot-dashed curve
represents the TDDFT results obtained subtracting the term T d

2 from the full T2, whereas in the dashed
curve this diagonal contribution has been simulated by a rigid shift of the spectrum (by a value of -0.45
eV). 2048 shifted k-points.

10.4 Concluding remarks

Analogously to what we have seen for semiconductors, even in the case of insulators the
application of the kernel T2 is extremely successful, leading to results which are almost
indistinguishable from the BSE ones, in their turn in good agreement with experimental
results. We are therefore confident that this method can be proposed as a general solution
for the calculation of excitonic effects in materials.
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Non senza fatiga si giunge al fine.

Toccata Nona of Girolamo Frescobaldi

In this thesis, we have dealt with the description of optical properties of materials,
with a particular interest in bulk materials.

The state-of-the-art of first principle calculations of optical absorption of solids has
been represented, up to recently, by the Bethe-Salpeter equation (BSE) approach. The
results one can achieve within BSE are in good agreement with experiments and, more-
over, the range of applicability of BSE goes well beyond the solids. Absorption spectra
of atoms, molecules, clusters or surfaces are usually well described by the Bethe-Salpeter
approach. The heaviness of the calculations involved, however, prevents a large-scale
application to more complex systems, that are the systems of great interest in material
science like, e.g., quantum dots, multi-wall nanotubes, biological molecules or defects in
solids.

The most prominent alternative to the Bethe-Salpeter approach is the Time Depen-
dent Density Functional Theory, which is density-based and, therefore, could in principle
lead to simpler calculations. A widely used approximation to the TDDFT is the adiabatic
local density approximation (ALDA). Despite its (partial) success in finite systems the
ALDA has led to poor results in the description of optical absorption of solids. The search
for an efficient description of optical spectra of solids in TDDFT has become, hence, one
of the major problems related to the optical response of a material.

In this thesis new inroads have been made in the comprehension of the optical response
of a material. Starting from a joint analysis of the BSE approach and the TDDFT
framework, it has been possible to calculate the optical spectra of solids, semiconductors
and insulators, with the inclusion of the excitonic effects, without solving the BSE but
obtaining results of the same precision.

To do so, we have derived, or re-derived in a more general way, the most relevant
formulas, and implemented them in existing computer codes.7 In order to increase the
efficiency and the stability of the calculations, the codes have also been optimized, and, in

7Details about local computer codes are in Ref. [105].
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particular, a linear solver technique has been implemented to avoid all matrix inversions.
A large number of calculations for a detailed analysis of the models used and for all
hypotheses made, had then to be performed. Finally we have illustrated our findings for
bulk silicon, silicon carbide, and solid argon.

More in detail, after the theoretical framework, presented in chapters 1-4,

• In chapter 5 we have recalled the fact that TDDFT and BSE have the same mathe-
matical structure, and that the response function in both approaches can be written
as

S = S0 + S0KS

whose solution gives the searched absorption or energy loss spectrum. The link
between the response of an independent particle (or quasi-particle) system S0 and
the full response S is given by the kernel K in this Dyson-like screening equation.
The kernel K contains the Coulomb interaction v, which is common to both TD-
DFT and BSE, and the exchange-correlation (in TDDFT) or electron-hole (BSE)
contribution, which is instead different in the two approaches.

• The role of the Coulomb potential v has been elucidated in chapter 6. We have
discussed its long-range component v0, which is responsible for the difference be-
tween the absorption and the electron energy loss spectra in solids. To further
illustrate this result, we have shown, analytically and numerically that, in the limit
of an isolated system, where the long-range component of the Coulomb interaction
is negligible, the absorption and the electron energy-loss (at vanishing momentum
transfer) spectra are the same. The microscopic components of the Coulomb inter-
action, instead, are responsible for the local field effects.

• We have then addressed the second term of the kernel K, namely the exchange-
correlation kernel fxc (in TDDFT). The study made in chapter 7 has allowed us to
show that simple static approximations for the exchange-correlation kernel fxc can
yield spectra of semiconductors and insulators in qualitative agreement with the
experiments.

• In chapter 8 we have generalized a previously proposed, but never tested, expression
for an exchange-correlation kernel fxc, within the time dependent density functional
theory framework, which is fully ab initio and parameter-free. We have also inves-
tigated the different contributions to the kernel and found out how and when the
generalized kernel χ0fxcχ

0 works in principle.

• In chapter 9 the kernel here developed is applied and tested for two semiconductors,
namely bulk silicon and silicon carbide, while
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• in chapter 10 the kernel is tested for an insulator, taking solid argon as an example.
In both semiconductors and insulators the results of the TDDFT (using the kernel
developed in chapter 8) and those of BSE are almost indistinguishable.

We have hence contributed to the solution of the long-standing problem of how to calculate
the absorption spectra of solids, in the framework of TDDFT, without solving the BSE.

To have dealt with this problem, has allowed us to address, answer or simply illustrate
several questions:

→ classical Coulomb (Hartree) contributions play an important role in electronic spec-
tra, and it is worthwhile to discuss their effects before addressing the problems
of exchange and correlation. Their short-range and long-range parts are crucial
for understanding the link between absorption and energy loss, and the transition
between finite and infinite systems.

→ satisfactory optical spectra of semiconductors and insulators can be obtained by us-
ing very simple models for the electron-hole interaction (in BSE) or for the exchange-
correlation kernel (in TDDFT); these models, of course, depend on parameters that
one has to adjust to fit the experiment. However the computational complexity of
these calculations is that of the RPA, and one might try to find ways to determine
these parameters from first principles;

→ to obtain an exchange-correlation kernel from the BSE is not straightforward. How-
ever, apart from some counter examples, discussed in chapter 8, in most cases an
approximate mapping from one theory (the BSE) to the other (the TDDFT) is pos-
sible. A first consequence of the existing difficulties is that the resulting fxc kernel
can suffer of convergence problem (requiring a lot of G-vectors or presenting strong
fluctuations in frequency). There can also be several possible approximate map-
pings: an example is reported in chapter 7 where two exchange-correlations kernels,
a long-range and an ultra short-range one, give similar (good) results. These two
kernels are derived starting from the same model (the contact exciton model) within
the BSE;

→ an important finding, following the discussions of chapter 8, is that the key quantity
of the theory is not the kernel fxc, but fxc multiplied by a response function;

→ finally, we are now able to obtain very good results for the optical spectra of solids,
well describing both the continuum and bound excitons, within a parameter-free
TDDFT framework.

Future Developments

The thesis focused on the description of optical spectra of solids, in the appealing frame-
work of TDDFT. However the concepts and approaches here developed have to be ex-
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tended in order to improve their applicability and “workability”. Concerning the latter,
we will have to search for the most convenient algorithm to numerically evaluate the pro-
posed expressions. We also plan to take advantage of the fact that, in our formulation,
k-points are simply summed over, instead of being the indices of matrices that have to
be inverted or diagonalized.

Concerning the applications, a short term perspective is to apply the method to the
description of the electron energy loss spectra, for which the resonant and anti-resonant
part of the response function have to be taken into account. We also plan to study finite
systems. Moreover the introduction of the spin degree of freedom could allow to enlarge
the target of our study, towards polarised systems, both finite and infinite, also subject
to magnetic fields.
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Appendix A

Linear Response Theory

A linear response function χ to an applied external field F is defined through the relation:

δ 〈p〉 = 〈p〉 − p0 = χF (A.1)

where p0 is the value of the operator p when F = 0.1 So δ 〈p〉 is the response of the
system to an applied field F , and χ is the response function, which is in the F → 0 limit,
independent of the applied field. More in detail, for any measurable property p(r, t):

δ 〈p(r, t)〉 =

∫
dr′
∫
dt′χ (r, r′; t− t′)F (r′, t′)

where the causality condition is used in the time integral.
The Fourier transform of χ is a complex function χ(ω) = χ1 + iχ2:

χ(ω) =

∫
dtχ(t)e−iωt

for a response function to a purely time-dependent applied field F (t) = F0 e
−iωt. The

causality condition implies that χ(ω) is analytic in the upper half plane of the complex
plane2, with precise relations between real and imaginary part of χ, namely the Kramers-
Kronig [302–304] relations:

χ1(ω) =
2

π
P

∫ ∞

0

dω′
ω′χ2(ω

′)

ω′2 − ω2
; χ2(ω) = −2ω

π
P

∫ ∞

0

dω′
χ1(ω

′)

ω′2 − ω2
.

If F (r, t) is the external perturbation, the corresponding term that has to be added to
the system’s Hamiltonian is

H1(t) =

∫
g(r)F (r, t)dr

1p can be, for example, the macroscopic magnetisation of a sample subject to a magnetic field (F ).
χ, the response function, plays then the role of the magnetic susceptibility.

2Or the lower half plane if, by convention, we let the field to oscillate as eiωt instead of e−iωt.
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where g(r) is the coupling variable between the perturbation and the system, and H1,
the perturbing contribution to the Hamiltonian, is expressed in the interaction picture.
Within this scheme it is possible to derive the linear response function in terms of ground
state quantities. First order time-dependent perturbation theory yields the Kubo formula
(see, e.g. Ref. [119]) for the response function:

χ (r, r′, t− t′) = −i 〈N | [g(r, t), g(r′, t′)] |N〉Θ(t− t′)

with |N〉 many-body ground state (|N〉 = ϕ0).

A.1 The full polarizability

An important example is given by an electronic system subject to an external potential
Vext, which causes an induced charge density nind as

nind (r, t) =

∫
dtdr′χ (r, r′, t− t′)Vext (r′, t′) (A.2)

where χ is called polarizability of the electronic system. Here the perturbative Hamilto-
nian is

H1(t) =

∫
n(r, t)Vext(r, t)dr

where the electron density n(r) represents the coupling variable. So the polarizability is

χ (r, r′, t− t′) = −i 〈N | [n(r, t), n(r′, t′)] |N〉Θ(t− t′). (A.3)

The analytical structure of the linear response function is very important. Let’s define
|jN〉 as the jth N-particle state. The Eq. (A.3) becomes (putting τ = t− t′)

χ (r, r′, τ) = −iΘ(τ)
∑

j

〈N |n(r, τ) |jN〉 〈jN |n(r, 0) |N〉+ c.c.

Now, according to the Dirac picture, we can use the time-evolution density operator
n(r, t) = eiH0tn(r, 0)e−iH0t in the linear response function in order to obtain:

χ (r, r′, τ) = −iΘ(τ)
∑

j

[
fj(r)f

∗
j (r′)ei(EN

0 −EN
j )τ − c.c.

]
where fj(r) = 〈N |n(r, 0) |jN〉 and EN

j is the energy of the jth N-particle excited state.
The Fourier transform of χ is to

χ (r, r′, ω) =
∑

j

[
fj(r)f

∗
j (r′)

ω − Ωj + iη
+

fj(r
′)f ∗j (r)

ω + Ωj + iη

]
(A.4)

where we can see that the polarizability of an electronic system has poles at Ωj = ±(EN
0 −

EN
j ), i.e. the excitation energies of the N-particle system. The first and the second term

of (A.4) are called resonant and anti-resonant term, respectively.
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A.2 The independent-particle polarizability

A frequently studied case, in condensed matter theory, is represented by an independent-
particle electronic system, subject to an external perturbation. This time the N-particle
state can be represented by the independent-particle state vector

|N〉 = |fk1 , fk2 , ..., fki
, ...〉 (A.5)

in the occupation numbers fki
formalism. Here all the quantum numbers are contained

in the label k and the independent-particle states are |k〉. The normalization rule for the
vector (A.5) is

〈fk1 , fk2 , ..., fki
, ...| a†ki

akj

∣∣fk1 , fk2 , ..., fkj
, ...
〉

= δkikj
fkj

(A.6)

where fk is the occupation number of the state k and a†k, ak are the creation and annihi-
lation operators, respectively.

In order to write the independent-particle polarizability, we observe that

n(r) = ψ†(r)ψ(r) (A.7)

with the field operator ψ(r) (annihilation field operator) related to ak by

ψ(r) =
occ∑
k

φk(r)ak

where φk are single-particle wave functions.
We can now calculate the analogous of Eq. (A.4), by specifying for the independent-
particle case the oscillator strengths fj(r) = 〈N |n(r, 0) |jN〉

fj(r) =
〈
N
∣∣ψ†(r)ψ(r)

∣∣ jN〉 =

〈
N

∣∣∣∣∣∑
k1k2

φ∗k1
(r)φk2(r)a

†
k1
ak2

∣∣∣∣∣N(−k+k′)

〉
where ak2

has to destroy the electron in k′ and a†k1
has to create an electron in k. The

same reasonment holds for fj(r
′). The independent-particle polarizability then becomes

χ0 (r, r′, ω) =
∑
kk′

fk (1− fk′)φ
∗
k(r)φk′(r)φ

∗
k′(r

′)φk(r
′)

ω − ωkk′ + iη
+ a.r.3 (A.8)

where ωkk′ = εk − εk′ is the energy difference of two single-particle levels and fk is the
occupation number of the kth single-particle orbital. As we can see, the independent
particle polarizability has poles at the independent-particle excitation energies. If the
anti-resonant term is explicitly taken into account, we have the well known result

χ0 (r, r′, ω) =
∑
kk′

(fk − fk′)φ
∗
k(r)φk′(r)φ

∗
k′(r

′)φk(r
′)

ω − ωkk′ + iη
. (A.9)

3anti-resonant term, as in Eq. (A.4).

159





Appendix B

Dyson-like screening equation for the
macroscopic dielectric function εM

Here we remind, following the lines of Ref.s [194, 305, 306], how one can put the local field
effects into evidence by performing analytically the inversion of the microscopic dielectric
matrix defined in Eq. (1.30). Thus, a general (NG)× (NG) matrix of the form

M =

(
m00 mT

a

mb m

)
, (B.1)

with m00 being a complex number and m a (NG − 1)× (NG − 1) matrix, has the inverse
formally given by

M−1 =
1

(m00 −mT
a m−1mb)

(
1 −mT

a m−1

−m−1mb m00m
−1

)
. (B.2)

If M is now the dielectric function ε = 1 − vχ̃ taken in its reciprocal space matrix
representation (G,G’), then

εM =
1

ε−1
00

=
[
ε00 − εT

a ε
−1εb

]
. (B.3)

In this equation, the quantities ε00, ε
T
a , εb and ε are formally given by

ε00 = 1− v0χ̃00, (B.4)[
εT

a

]
G

= v0χ̃0G, G 6= 0, (B.5)

[εb]G′ = vG′χ̃G′0, G′ 6= 0, (B.6)

[ε]GG′ = vGχ̃GG′ , G,G′ 6= 0 (B.7)

where v0 = vG=0.
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This yields the following general expression for the macroscopic dielectric function

εM = 1− v0χ̃00 −
∑

G,G′ 6=0

v0χ̃0Gε
−1
GG′vG′χ̃G′0. (B.8)

As our goal is to write this in a compact matrix form, now one defines a new function
ε̄GG′ such that

ε̄GG′ ≡ δG,G′ − v̄Gχ̃GG′ , (B.9)

with a modified Coulomb interaction (1.35)

v̄G≡
{

0,
vG,

G = 0
G 6= 0

, (B.10)

i.e. v̄ indicates that the G = 0 contribution of the bare Coulomb interaction is not
considered. In matrix notation this yields

ε̄GG′ =

(
1 0T

εb ε

)
. (B.11)

Then the inverse of ε̄ is given by, using Eq. (B.2 ),

ε̄−1
GG′ =

(
1 0T

−ε−1εb ε−1

)
. (B.12)

Thus Eq. (B.8) can be written as εM(ω) = 1− limq→0 [v0(q)χ̄G=G′=0(q,ω)] if in the latter,
χ̄ is defined as

χ̄GG′ ≡ χGG′ +
∑
K,K′

χGK ε̄
−1
KK′ v̄K′(q)χK′G′ . (B.13)

This gives the wanted matrix expression

χ̄ = χ+ χε̄−1v̄χ, (B.14)

and, together with ε̄−1 = (1− v̄χ)−1, the Dyson-like equation χ̄ = χ+χv̄χ̄ of Eq.s (1.34).
It is now relevant to compare this equation with the one that satisfies the response function
χ giving the inverse microscopic dielectric function ε−1 = 1+vχ, namely χ = χ̃+χ̃vχ. The
difference between the two Eq.s (1.34) leads to the difference between EELS (related to
ε−1) and absorption (related to εM). Formally the two equations are very much alike, but
there is a long-range term v0 appearing in the kernel of the Dyson-like screening equation
for χ, that is absent in the case of χ̃. See Chap. 6 for a discussion of the consequences of
this difference in finite and infinite systems.
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EELS versus Abs: LFE included

Here we show that Eq. (6.3) can also be derived when the local field effects are included.
Starting from the second of (1.34) we have

χ̃ = χ
(
1 + vχ

)−1

(C.1)

that substituted into the first of (1.34):

χ̄ = χ(1 + vχ)−1 + χ(1 + vχ)−1v̄χ̄

=
[
(1 + vχ)χ−1

]−1

(1 + v̄χ̄)

=
[
χ−1 + v

]−1

(1 + v̄χ̄) (C.2)

so [
χ−1 + v

]
χ̄ = (1 + v̄χ̄) → χ−1 + v = χ̄−1 + v̄ (C.3)

and
χ−1 = χ̄−1 + v̄ − v = χ̄−1 −∆v (C.4)

χ =
[
χ̄−1 −∆v

]−1

= χ̄
[
1−∆vχ̄

]−1

(C.5)

If we want to consider only the head, χ00 :

χ00 =
∑
G1

= χ̄0G1

[
(δGG′ −∆vGχ̄GG′)−1

]
G10

(C.6)

where

∆vG =

{
v0 G=0

0 else
. (C.7)

Inverting the matrix (δGG′ −∆vGχ̄GG′) we can write:

χ00 =
χ̄00

1− v0χ̄00

. (C.8)
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Size effects in finite systems

The optical response of finite systems normally depends on the size of the system. Here
we would like to briefly monitorize the development of collective effects in the simplest
structural model of a spherical metallic cluster, namely the jellium model, in which the
ionic background is smeared out to form a homogeneous distribution of positive charge
n+(n+ = n Θ(R − r), where the radius R is related to the homogeneous bulk electron
density 4

3
πR3 = n). Clusters of alkali elements turn out to be well described by this

model [307, 308].

To discuss the relation to EELS experi-
ments, it is useful to write down the en-
ergy loss probability P (ω) corresponding
to an electron with velocity |v| = v inter-
acting with an isolated sphere of dielec-
tric function ε(ω) at a distance b (impact
parameter). Integrating over the electron
trajectory and neglecting retardation ef-
fects in the induced potential, the final
result [309] is:

P (ω) =
4R

πv2

∑
l=1

l∑
m=0

2− δm0

(l +m)!(l −m)!
×

×
[
ωR

v

]2l

K2
m[ωb/v] ={γl(ω)}, (D.1)

where Km(x) is a the modified Bessel function and γl(ω) is the sphere surface response
given by:

γl(ω) =
l(1− ε(ω))

lε(ω) + l + 1
. (D.2)
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Eq. (D.1) takes into account the contribution of all the multipolar terms of the induced
potential created by the moving charge. Quantum mechanical effects are embodied in
ε(ω). The excitation frequencies are determined by the zeros of the denominator of γl.
For a simple metal (described by a Drude-like dielectric response ε(ω) = 1−ω2

p/ω
2) they

are given by the classical Mie multipolar plasmon frequencies ωl [310]

ωl = ωp

√
l

2l + 1
(D.3)

where l is the angular momentum quantum number and ωp is the plasma frequency related
to the “homogeneous” electron density n of the system by ωp = 4πne2/me.

The dipolar term, i.e. l = 1 which takes to the well known limit ω = ωp√
3
, is dominant1

only when the sphere radius is much smaller than the range of variation of the field
R << v/ω ∼ 2π/q or when the probe electron travels far away from the target b >> R
[309]. However, when the radius is of the order of v/ω (or bigger) many l-terms contribute:
the induced density piles up in a small region close to the probe; thus many multipolar
terms are needed in the expansion of the potential created by such a localized charge. In
this case, l = ∞ turns out to be the dominant term in the absorption spectra and the
main excitation frequency occurs at:

ω = ωp

√
l

2l + 1
=

ωp√
2
,

which is the result for a flat surface. In the usual case of large impact parameter, the
dipolar term becomes the dominant one in Eq. (D.1) and in this case the EELS and the
dipolar optical absorption (4.18) are proportional, as both are related to the imaginary
part of χ (Chap. 6).

Surface and volume plasmons as pure transverse and longitudinal excitations are not
well defined for small cluster sizes, and they can be excited by both electron and photons.
However as the size increases this distinction is relevant and the proper longitudinal
(EELS) and transverse (photon) external fields have to be included in the calculation of
the response.

This appendix illustrates and corroborates the general discussions made in Chap. 6.

1This is also the case of optical spectra of small metallic cluster [307] where the spectra is dominated
by a single excitation.
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Technical details

E.1 Linear system solver

A straightforward, but inconvenient way to obtain χ̄00, i.e.

χ̄00 =
[
χ0
(
χ0 − χ0v̄χ0 − T

)−1
χ0
]

00
(E.1)

would be to perform the inversion of A = (χ0 − χ0v̄χ0 − T ), followed by the double matrix
multiplication χ0A−1χ0. In this case, all the elements of χ̄ would be found, whereas we
are interested in the head only.

If only one element is required, namely the head, only the first line of the left χ0 and
first column of X = A−1χ0 are necessary. By virtue of the latter, we can solve the linear
system

AX = χ0 ⇒
∑
G′

AGG′XG′0 = χ0
G0 (E.2)

where X and χ0 are now column vectors. This permits us to find XG0. The final vector
product

∑
G χ

0
0GXG0 gives the searched χ̄00.

The advantage of the algorithm is clear, because no useless term has been calculated.
We have followed this idea also for the RPA case, where

χ̄ =
(
1− χ0v̄

)−1
χ0 (E.3)

is immediately transformed in the linear system problem(
1− χ0v̄

)
χ̄ = χ0 (E.4)

which leads directly to χ̄0G, and hence to the head χ̄00.
The resolution of the linear system turned out to be, not only much more efficient (no

useless information is calculated), but also more stable than an inversion, which is crucial
when the matrix to be inverted is χ0 or (χ0 − χ0v̄χ0 − T ) (see text, Par. 8.3).
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E.2 The k sampling of the Brillouin zone

In the calculation of electronic spectra of semiconductor or insulator crystals, several
occupied and unoccupied bands Nv and Nc are usually taken into account, as well as
several hundred k-points (Nk) for the first BZ’s sampling. The number of transitions
Nt = NvNcNk is involved in the determination of optical spectra, both in BSE and
in TDDFT (when electron spectroscopy is described, the number of unoccupied states
usually has to be increased, with a much bigger Nt, since often plasmons are measured
at higher energies that the interband transitions), and constitutes a strong bottleneck for
the calculation. It is, then, crucial to reduce as much as possible the number of k-points
used in the calculations. To do that, for almost all spectra of this thesis, we have used
shifted k-points [199, 205, 206]. The effect of shifting an uniform k-points set (usually
created starting from high symmetry BZ points), is to break any symmetry, in order to
achieve a maximum number of non-equivalent k-points and hence a better sampling. In
fact, let us take an fcc lattice as example, whose first BZ is sampled by 256 k-points
[311]. The number of crystallographically unequivalent points is only 10! Instead a little
(even random) shift (not along the high symmetry directions of the crystal) immediately
leads to 256 crystallographically unequivalent k-points, with a consequent better spectral
resolution.

Caution:

The effect of shifting the k-points can introduce a spurious anisotropy in systems which
experimentally present an isotropic response. In this thesis, only the limit q → 0 has been
considered for the electronic spectra, so, whenever shifted k-points are used, three different
directions of q contribute to the spectrum, namely the cartesian directions x̂, ŷ, ẑ. This
average is not necessary when the high symmetry k-points are used in a cubic crystal; in
this case, in fact, any (and only one) direction for q can be safely chosen.1 Of course,
if Nk → ∞, even when shifted k-points are used the effective drift goes to zero and no
spurious anisotropy occurs.

1This arbitrariness of course only holds if the system is isotropic.
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