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expériences exceptionnelles sur les inégalités de Bell. Je le remercie donc de
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travail au laboratoire, et je le remercie de m’avoir communiqué en continu
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mes journées. Je la remercie aussi de l’excellent “leverpostej” (pâté de foie
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The quest for certainty blocks
the search for meaning.

Uncertainty is the very condition
to impel man to unfold his powers.

La quête de la certitude fait obstacle
à la quête du sens.

L’incertitude est la condition même
qui pousse l’homme à découvrir ses pouvoirs.
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Resumé

Dans ce travail de thèse nous avons étudié les propriétés d’un gaz dilué
d’atomes froids, piégés à l’aide d’un potentiel magnétique.

Pour un tel gaz, la physique essentielle des interactions peut être décrite
sous la forme des collisions interatomiques. Il existe deux catégories de col-
lisions : les collisions élastiques et les collisions inélastiques. Par définition,
les collisions élastiques ne changent pas l’état interne des atomes, tandis que
les collisions inélastiques peuvent changer l’état des atomes de sorte qu’ils
ne soient plus confinés par le champ magnétique de piégeage.

Nous avons étudié en particulier un gaz d’atomes ultrafroid au voisi-
nage de la condensation de Bose-Einstein. Un condensat de Bose-Einstein
d’atomes en phase gazeuse, obtenu dans un piège magnétique, consiste en
une accumulation macroscopique d’atomes dans le niveau fondamental du
potentiel de piégeage. Cet état de la matière est décrit par une seule fonc-
tion d’onde macroscopique et se forme si la température de l’échantillon est
suffisamment basse et la densité suffisamment élevée.

Pour un gaz d’atomes à une température au voisinage de celle où se pro-
duit la condensation de Bose-Einstein, les collisions élastiques sont entière-
ment caractérisées par un seul paramètre appelé “la longueur de diffusion
dans l’onde s”, dénoté en général par la lettre a. La section efficace des colli-
sions élastiques ne dépend que de ce paramètre. De plus, pour un échantillon
dilué, l’effet des interactions se décrit entièrement à l’aide de ce paramètre.
En effet, le vrai potentiel qui décrit l’interaction entre deux atomes est très
complexe, mais ceci peut être remplacé par un pseudo-potentiel très simple,
qui ne dépend que de la longueur de diffusion et la densité de l’échantillon.

Nous utilisons l’atome d’hélium dans l’état 23S1, appelé hélium mé-
tastable, dans notre expérience. La durée de vie de l’état métastable est
très longue (environ 9000 s), et ne limite en rien son utilisation dans nos ex-
périences. Pour un tel échantillon, les collisions inélastiques les plus impor-
tantes sont les collisions ionisantes dites Penning. Pour les densités atomique
obtenues, les collisions entre deux ou trois atomes d’hélium métastable sont
responsables d’un flux d’ions produit par le nuage d’atomes. Ces deux pro-
cessus d’ionisation sont caractérisés par les constantes de collisions, dénotées
par β et L pour les collisions à deux ou trois corps, respectivement.

Pour décrire et interpréter le comportement d’un gaz d’hélium métastable,
il est donc utile, voire nécessaire, de connâıtre non seulement la longueur de
diffusion mais également ces constantes de collisions. Le travail de thèse
présenté ici consiste en partie à mesurer ces paramètres afin de permettre
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une compréhension plus profonde du comportement d’un gaz d’hélium mé-
tastable.

Une autre partie du travail présenté a consisté en une étude de la pro-
duction des ions en tant qu’outil pour observer le nuage atomique. Plus
précisément, la production continue d’ions provenant d’un nuage atomique
piégé permet de sonder, et ceci d’une manière non-invasive, les propriétés de
l’échantillon, en particulier la densité ; le taux de collision à deux ou trois
corps en dépendent. Utilisant une galette de micro-cannaux, nous pouvons
enregistrer le flux d’ions produit et en extraire l’information sur le nuage.
En particulier, nous pouvons déterminer, à partir du flux d’ions, le seuil de
la condensation de Bose-Einstein, c’est à dire le moment où commencent à
s’accumuler les atomes dans l’état d’énergie le plus bas. Plus concrètement,
au seuil de la condensation, le taux d’ions augmente très soudainement en
raison d’une augmentation forte de densité. Ceci est illustré dans la figure
1, où la rupture de pente, indiquée par la flèche, correspond au seuil de la
condensation. Cette indication du seuil se rélève un outil important nous
ayant permis de mesurer la longueur de diffusion. De même, si nous con-
naissons les constantes de collisions, nous pouvons traduire le signal d’ions
en une densité de sorte que nous puissions suivre en temps réel la densité de
l’échantillon, ce qui est une motivation forte pour déterminer ces constantes.

Dans la suite nous allons présenter de manière très brève les principaux
résultats obtenus lors de ce travail de thèse.
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Figure 1: Taux d’ions pendant la formation (et décroissance) d’un condensat.
La flèche indique une rupture de pente dans le signal d’ions, ce qui nous
signale le seuil de la condensation.
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Détermination des constantes de collisions

Pour déterminer les constantes de collisions, nous utilisons un condensat de
Bose-Einstein. Le taux d’ions Φ normalisé par le nombre d’atomes N en
fonction de la densité au centre n0 s’écrit:

ΓBEC =
Φ
N

=
1
τi

+ C1 β n0 + C2 Ln
2
0. (1)

Dans cette expression, τi est la durée de vie limitée par de collisions ion-
isantes avec le gaz résiduel, C1 et C2 sont des facteurs numériques connus,
et β et L sont les constantes de collisions à deux et trois corps.

Pour déterminer β et L, nous avons mesuré le taux d’ions pour un grand
nombre de nuages ayant des densités différentes. Pour ce faire, nous en-
registrons avec la galette de micro-cannaux le taux d’ions suivi par une
technique de Temps-de-Vol (TdV). Le TdV se fait en coupant le potentiel
de piégeage et laissant s’étendre le nuage. Ce dernier tombe sous l’effet de
la gravité sur la même galette de micro-cannaux, qui est aussi capable de
détecter les atomes neutres métastable du fait de leur grande énergie in-
terne. Le TdV nous donne l’énergie du condensat, ce que nous appelons le
potentiel chimique, denoté par µ. La densité au centre du nuage est reliée à
cette énergie :

n0 =
m

4π~2
× µ

a

Grâce à cette relation nous obtenons la densité. Cependant, la valeur de
la longueur de diffusion étant encore mal connu, nous deduisons la densité
paramétrisée en terme de cette dernière. Les données sont montrées dans la
figure 2.

En ajustant les données qui consistent en ΓBEC en fonction de la den-
sité, utilisant l’équation 1, nous déduisons les constantes de collisions β et
L. Comme la densité dépend de a, β et L, eux aussi, dépendront de ce
paramètre. Nous obtenons donc : β(a) et L(a).

Mesure de la longueur de diffusion

Pour attribuer des valeurs absolues aux constantes de collisions, la longueur
de diffusion est indispensable. Pour avancer, l’idée de base consiste à chercher
“une troisième équation”. En effet, nous avons déjà les deux équations β(a)
et L(a), mais 3 inconnus : β, L et a. La dernière équation manquante peut
être obtenue de la manière suivante : pour un nuage exactement au seuil
de la condensation, le taux d’ions peut être exprimé non pas en fonction
de la densité mais en fonction de la température et des constantes de col-
lisions. Ceci est dû à une relation entre nombre d’atomes et température,
uniquement valable au seuil de la condensation :

Nc = 1.202
(
kBTc

~ω

)3

, (2)
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Figure 2: Taux d’ions normalisé en fonction de la densité pic. La courbe
en trait continu est un ajustement utilisant l’équation 1 et nous permet
d’extraire les constantes de collisions.

où ω = (ω‖ω2
⊥)1/3 est la moyenne des fréquence d’oscillation du piège. Nous

obtenons l’expression suivante pour le taux d’ions au seuil (modèle du gaz
idéal) :

Φc = (
ωc

ω
)3 ×

[
1
τi

1.20 +
β(a)
λ3

c

0.33 +
L(a)
λ6

c

0.22
]
. (3)

Dans cette expression nous avons défini : ωc ≡ kBTc/~ et λc ≡ λ(Tc) =
h/
√

2πmkBT .
Expérimentalement, grâce à l’augmentation forte dans le signal d’ions au

seuil de la condensation, nous pouvons identifier, et en conséquence produire,
un nuage au seuil de condensation. Nous enregistrons le taux d’ions, et par
la technique de Temps-de-Vol, nous obtenons également la température du
nuage.

Les résultats sont montrés dans la figure 3. Toutes les données montrées
représentent des nuages au seuil de condensation selon l’indication du taux
d’ions. Cependant, nous jugeons, à partir d’une analyse plus sophistiquée
basée sur le signaux de TdV, que les données indiquées en gris ne correspon-
dent pas exactement à des tels nuages, et en conséquence elles ne sont pas
incluses dans l’analyse finale. Pour obtenir la longueur de diffusion, nous
ajustons ces données avec l’équation 3 (en réalité, nous prenons plutôt une
expression plus complexe qui inclue les interactions entre atomes dans le
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Figure 3: La longueur de diffusion est obtenue en ajustant ces données (en
incluant uniquement les points noirs) avec l’équation 3. L’ajustement donne
11.3 nm (la courbe en trait continu). Les barres d’erreurs sont obtenues
en ajustant separemment les points en dessous et au-dessus 2 µK (cette
fois incluant les points gris). Ces deux ajustements sont indiqués en trait
pointillé et trait tireté, respectivement.

gaz). Le seul paramètre libre dans l’ajustement est la longueur de diffusion.
Nous obtenons

a = 11.3+2.5
−1.0 nm

Les barres d’erreur sont également indiquées dans la figure 3. Elles sont
obtenues en ajustant la partie des données correspondant à des tempéra-
tures faibles et élevées separemment afin de tenir en compte d’une légère
erreur non expliquée, qui se traduit par une valeur ajustée de la longueur de
diffusion plus élevée pour de températures faibles que pour de températures
plus élevées. A cela nous avons ajouté quadratiquement la petite erreur
provenant de l’incertitude sur les mesures des constantes de collisions. Fi-
nalement, nous obtenons aussi les constantes de collisions :
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β = 0.9+2.0
−0.8 × 10−14 cm3/s

L = 2.5+5.3
−1.7 × 10−27 cm6/s

La valeur de la longueur de diffusion ainsi que les constantes des collisions
se montrent en bon accord avec les estimations theoriques.

Conclusion

La détermination des constantes de collisions ainsi que la longueur de dif-
fusion ouvre la porte d’études complexes basées sur un gaz d’hélium mé-
tastable. Entre autre, il est possible d’étudier la dynamique de formation
d’un condensat, utilisant le signal d’ions : connaissant les constantes de
collisions, la densité peut être déduite de ce signal. Ceci donne donc un
moyen de suivre en temps réel l’évolution de la densité durant la forma-
tion, contrairement aux expériences habituelles, où la mesure de densité est
destructive.

Le signal d’ions n’est pas le seul avantage d’hélium métastable. L’énergie
interne des atomes neutres permet aussi en principe de les détecter un par
un avec la galette de micro-cannaux. Notre prochaine expérience profite
de cela : en faisant tomber un nuage froid et en détectant l’intervalle de
temps entre l’arrivée de chaque atome, nous pouvons déduire les fonctions
de corrélation temporelles des atomes du nuage - pas seulement pour un
nuage thermique ou un condensat de Bose-Einstein, mais aussi pour un
nuage ayant une température et densité qui le place entre ces deux régimes
distincts. Les functions de correlation des atomes appartenant à un nuage
entre ces deux régimes n’ont pas été étudiées d’une manière directe – c’est à
dire en observant les atomes un par un – jusqu’à présent, et c’est vers cette
étude que s’oriente désormais notre recherche expérimentale.



Introduction and outline of
Ph.D. thesis

If this thesis had been written around 1995, where the first Bose-Einstein
condensate (BEC) of a dilute atomic gas was experimentally observed [1, 2],
the introduction should necessarily have contained a solid motivation for
choosing to do experiments with ultracold atoms. Nonetheless, the explosion
of the domain of cold atoms during the last decade entirely proves not only
the richness but also the importance of the field, and shows that the modern
physics society indeed find a general interest therein. For instance, the list of
different elements having been condensed continue to get longer every year:
today, Bose-Einstein condensation has been observed for all alkali atoms
[1, 2, 3, 4, 5, 6], hydrogen [7], metastable helium [8, 9] and ytterbium [10]!
The possibility of condensing yet other species are currently being tested,
of particular interest from our point of view is metastable neon [11, 12, 13].
However, among other things, the short intrinsic lifetime of the metastable
state being only 14.7 seconds [11] makes it a serious challenge.

Instead of listing the various motivations behind cold atoms physics, let
us therefore simply try to place the field in a context of general modern
physics and see in which direction it tends to evolve. Today, no universal
model describing the entirety of all observable phenomena has been devel-
oped. Depending on the energy or size of the system, one particular model
is always better than another, because systems of different size behave qual-
itatively very different, at least according to our way of perceiving them.
For very large scale systems, general relativity is essential, while particle
physics is related to extremely small, high-energy systems. It is somewhere
in the wide range between these extremes, we can find systems, which are
neither microscopic nor macroscopic, or, if one prefer, both. Three im-
portant examples are superfluidity, superconductivity and lasing. All three
phenomena have one point in common: each of them involves a macroscopic
occupation of one single quantum state, exactly as BEC of an atomic dilute
gas1[14, 15, 16]. In addition to the intrinsic interest in obtaining experimen-
tally this new state of matter, one of the advantages of BEC2 are the weak

1Note that lasing is different in the sense that it is a state which is not in thermody-
namical equilibrium.

2In the following the word BEC is used only for dilute atomic gasses even though rigor-
ously speaking, superfluidity, superconductivity and lasing are all different manifestations
of Bose-Einstein condensation.
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interactions between particles. In a laser field interactions are absent3, and
in the superfluid or superconducting phase, they are too dominant to be
modelled in a relatively simple way. For a BEC however, the interactions
are weak enough to treat them using perturbation theory; this was indeed
one of the initial motivations for studying BEC physics. It is therefore in-
teresting and somewhat paradoxical to realize that today, the interest in
BEC physics is shifted towards engineering and even deliberate increasing
the interactions in the systems, in order to go beyond the validity of the
perturbative regime. Here, phenomena as quantum depletion [17] can be
observed, where atoms are pushed out of the BEC state because of strong
interactions, or other deviations from the predictions following a perturba-
tive approach. The strength of the interactions is related to the scattering
length of the atoms, and this “constant” can in some cases be engineered
by applying magnetic field: this is the Feshbach resonance [18]. By using a
Feshbach resonance, the interaction can also be increased in order to con-
vert the ultra-cold atoms into ultra-cold molecules [19, 20, 21, 22, 23] and
these molecules can even form a molecular BEC [24, 25, 26]! Another way
to create and even trap ultracold molecules is via photoassociation of cold
atoms (see Ref. [27] and references therein), and in analogy with the above
schemes, this could be referred to as “optical Feshbach resonances”.

It is also possible to apply the magnetic Feshbach resonance in such a way
that the molecules formed are extremely loosely bound, and become similar
to cooper pairs of electrons in a metal. The BEC of these molecules is there-
fore in many aspects equivalent to a BCS (Bardeen-Cooper-Schrieffer) state
in a metal and as the atoms forming the molecules can be fermions, this
pushes the analogy even further [28, 29, 30, 31]. As the BEC of atoms is a
superfluid state, the BEC of loosely bound molecules bear resemblance to a
super conducting state. The full understanding and experimental realization
of a true BCS state of molecules is one of the topics which attracts great
interest at the moment. Finally, not only degenerate gases of either bosons
or fermions have been observed. Experiments investigating the simultaneous
existence of a Bose-Einstein condensate and a gas of fermions are being per-
formed, and the mutual interactions have been studied [32, 33]. These stud-
ies open the door towards the exploitation of Feshbach resonances between
bosons and fermions, and all the exciting physics which follows therefrom.

The spirit behind

In 2001, six years after the first rubidium condensate was obtained, the first
BEC of metastable atoms was observed. It was metastable helium (helium
in the 23S1 state) and it happened a cold winter night in our group in

3Note that this is not true if the photons propagate in non-linear media. In this case,
the Schrödinger equation becomes non-linear, and the system will behave as if the photons
interact.
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Orsay4 [8]. Very shortly afterwards, the group of Michèle Leduc and Claude
Cohen-Tannoudji at Ecole Normale Supérieure also succeeded in condensing
metastable helium [9].

I joined the metastable helium experiment in Orsay just a few months
after the first BEC was obtained, and our first project was to study the
formation of the condensate. Metastable atoms present an advantage com-
pared to ground state atoms for studying the formation processes, because
they offer a non-destructive monitoring tool, in the form of a continuous
ionization signal. In fact, in a sample of metastable atoms, ionizing colli-
sions between an atom from the background gas and a trapped metastable
helium atom can take place: under a collision, the internal energy of the he-
lium atom can be transferred to the background atom, which ionizes. The
helium atom decays to the ground state. Therefore, a trapped cloud of he-
lium atoms creates continuously a flux of ions, which can be detected with
a micro-channel plate. The ionization rate will here depend on the number
of trapped helium atoms and the background pressure. Even though the
ionization signal is high enough to be easily detectable, the loss of atoms
due to ionization is small and does not destroy the cloud, as we will show
later. If the sample becomes very dense, collisions between two or even three
helium atoms become dominant. The rate of these collisions will depend on
the density of the sample. In this case, the ionization rate is a probe of the
sample-density. Our idea was to study the density evolution of the cloud
during BEC formation using this ion signal as measurement tool.

The traditional way of studying the density evolution during BEC for-
mation is based on the technique called Time-Of-Flight. Here, the velocity
distribution of the cloud is measured by switching off the potential which
confines the atoms, let the cloud expand, and then make an image. From the
velocity distribution, the density distribution can be traced back. However,
by switching off the trap potential, the atoms are lost. Therefore, to measure
an evolution of the density, the experiment must be repeated many times,
under exactly the same conditions. This requires a very stable experiment!
Therefore, the non-destructive monitoring via the ionization rate seemed to
be a very good solution.

As it happens very often in research, the solution of a first problem gives
rise to the next and so it continues. This was definitely the case for the work
performed during these past three years. The problem was that to exploit
the ion rate in a quantitative way, the 2- and 3- body rate constants for
the ionizing collisions were necessary. Theoretically, only estimates for these
constants existed, and we therefore decided to measure them. Unfortunately,
to do this, we need a way to measure the density of the sample. As we
will see later, we could only obtain the density parameterized by the s-wave
scattering length a. Consequently, the 2- and 3-body rate constants obtained
were also a function of a.

4To be honest, I don’t know if it was cold, I had not joined the experiment yet, and I
was probably sleeping. But I sounds more poetic like that, and I know that it was winter!
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However, as the scattering length for metastable helium was not very
precisely known, these results could not be exploited quantitatively. We
had three “unknowns”: the two rate constants and the scattering length,
but only two “equations” - one for each rate constant! A third equation was
therefore needed to obtain the absolute values for the rate constants and the
scattering length. Fortunately, there was a way to obtain this third equa-
tion: as we will explain later, for clouds exactly at the Bose-Einstein phase
transition point, the ion rate can be written in terms of the temperature
(together with the rate constants and the scattering length). Because we
could identify threshold using the ion rate (this will be discussed in chapter
3), we could measure the ionization rate as a function of temperature exactly
at this point, and we could consequently establish this third – and missing
– equation. And thereby obtain rate constants and the scattering length.

In this way, one of the main result of this thesis became the measurement
of the scattering length, even though we never actually decided that it should
be so! However, from my point of view, the true result is not the scattering
length, but it is rather to be found in the way we had to go to obtain this
result: all the physics encountered and used along the way is definitely not
only interesting, but also very subtle.

Outline of the thesis

This thesis is meant to guide the reader through the different measurement
done along the way, including all the interesting physics which has been
necessary to understand on the way in order to obtain the most precise
value of the scattering length.

As the reader will soon discover, in this manuscript it will happens that
the interpretation of some results require data obtained later in the thesis,
and sometimes it even happens that we must use a sort of iterative procedure
to extract the desired information. This makes it very difficult to write a
manuscript which remains coherent all the way through. I have tried to
order the results in a way which is essentially chronological. However, in
order not to interrupt certain discussions before their natural end, I have
sometimes been obliged to use information, which only became available at
a later stage.

The manuscript is divided into five chapters. The subject of the first
chapter is a general introduction to collisions. Elastic collisions are discussed
in order to give a definition of the scattering length and a motivation for
why it is an important parameter in cold atom physics. Inelastic collisions,
in particular ionizing collisions, are the backbone of all measurement here
described. Chapter 2 describes the experiment. It is meant to provide the
minimum knowledge required in order to understand the technical details
discussed in this thesis, and allow the reader to place the experiments here
described in their true surroundings. If the reader is interested in more ex-
perimental details, much better discussions can be found in Ph.D. of former
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students [34, 35, 36, 37]. Chapter 3 presents the ionization signal, and shows
how it can be used to extract information about the sample. In particular,
it shows how this signal, provided one knows the ionization rate constants,
can be use to monitor non-perturbatively the density of the sample. This
leads directly to chapter 4, which describes our measurement of these rate
constants. They are given in terms of the scattering length, but in chapter
5 we present a measurement of this constant, which also allows us to deduce
the absolute values of the rate constants. Finally the manuscript contains
seven appendices. They generally contain details, longer calculations or ad-
ditional illustrations which could be omitted in the main text. The content
of the last appendix is different: it contains the articles related to the results
obtained during the last three years.

A part of the results contained in this thesis have been obtained in collab-
oration with O. Sirjean with whom I was working during the first 2 years of
my Ph.D. In particular, the preliminary study of the ionization rate discussed
in chapter 3 as well as the measurements of the rate constants parameter-
ized by the scattering length described discussed in chapter 4. These results
are therefore also discussed in his thesis [37], even though his approach is
somewhat different. I would like to mention that results here presented also
“belong” to J. Gomes and R. Hoppeler, who have also been participating in
these experiments.





C H A P T E R 1

Elastic and inelastic collisions

After studying a particular subject for a while, physicists often get so ab-
sorbed in it that they start to develop a language which is specific to this
domain. For instance, in BEC physics, one will often hear the words “good
collisions” and “bad collisions”. While an ordinary person would think that
all collisions are bad - collisions between two freight trains for instance -
a BEC physicist will immediately know what a good collision is, namely
an elastic collision which allows an effective cooling of a sample of trapped
atoms. On the other hand, a bad collision is an inelastic collision, which
will make one lose atoms without decreasing the temperature. One of the
main results presented in this thesis is a measurement of a parameter which
describes the good collision: the s-wave scattering length, denoted by a. To
complicate the story, the measurements are obtained via bad (inelastic) col-
lisions, which consequently become good collisions, at least for us! Hang on,
the goal of this chapter is to clarify these concepts...

In the first part of this chapter, we will give a general definition of the
s-wave scattering length. This parameter does not only describe the elastic
collision properties, but dictates the cold gas behavior in a large variety of
physical phenomena, and some examples will be given. We then discuss
generally how the scattering length can be obtained from theory and from
experiments. We then turn to the specific case of metastable helium, giving
a state of the art: we will discuss the current precision of the existing cal-
culations and measurement of the scattering length of metastable helium.
As mentioned above, our way of obtaining the scattering length is very un-
usual compared to previous measurements: it is indirectly obtained from
the inelastic collisions through measurements of the ionizing rate constants.
Therefore the second part of the chapter is devoted to inelastic collisions in
a sample of metastable helium, giving the necessary background for under-
standing the measurements reported in this thesis.
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1.1 Elastic collisions and scattering theory

The s-wave scattering length is a parameter which is defined in the frame-
work of quantum scattering theory. This subject is often encountered in the
literature, and for a simple and short introduction, I personally recommend
[38]. A more general reference is [39], and a nice discussion of quantum
scattering with a focus on BEC physics can be found in [40, 41]. This is
an extremely rich domain of physics, and it would be impossible to give a
complete description. Here, we will summarize some of the main ideas.

We will study the case of an elastic collision between two identical par-
ticles, denoted 1 and 2, each of mass M . The particles interact through a
potential V (r1 − r2). The corresponding Hamiltonian is

Ĥ =
p̂2
1

2M
+

p̂2
2

2M
+ V (r̂1 − r̂2). (1.1)

Defining the center of mass operators R̂CM = (r̂1+ r̂2)/2 and P̂CM = p̂1+ p̂2

and the relative variables r̂ = r̂1 − r̂2 and p̂ = (p̂1 − p̂2)/2 the Hamiltonian
can be written as

Ĥ =
P̂ 2

CM

4M
+
p̂2

M
+ V (r̂). (1.2)

Of course, we can always choose a coordinate system where the total mo-
mentum of the particles is zero. In such a coordinate system, the dynamics
of the collision can be uniquely given by the position and momentum of
a fictive particle of mass µ = M/2 moving in a potential V (r̂), with an
energy E = ~2k2/2µ. This simplifies the following discussion. However,
the meaning of the position coordinate r̂ must be kept in mind for future
interpretations: it is the relative distance between the two particles.

1.1.1 Partial waves and the cross section

In quantum mechanics, we need to describe the fictive particle in terms of
a time-dependent wave packet. We write the time-dependent wave packet
as an expansion on a basis of stationary states. These stationary states are
solutions to the equation(

p̂2

2µ
+ V (r̂)

)
ψk(r) = Ekψk(r), (1.3)

each with eigenvalues Ek = ~2k2/2µ. In the asymptotic limit the solution
can be written as a superposition of an incident plane wave (with momentum
k) and a scattered spherical wave with an amplitude f(k, θ):

ψk(r) ∼ eik·r + f(k, θ)
eikr

r
. (1.4)

The amplitude of the scattered spherical wave f(k, θ) is related to the cross
section by:



1.1 Elastic collisions and scattering theory 25

σ(k) =
∫
|f(k, θ)|2 dΩ, (1.5)

where dΩ indicates the solid angle. For kr � 1, we can use the partial
wave expansion to express the incident plane wave as a sum of incoming
and outgoing spherical waves [40]:

eik·r ∼
1

2ikr

∞∑
l=0

(2l + 1)Pl(cos θ)
(
(−1)l+1e−ikr + eikr

)
, (1.6)

where Pl(cos θ) are the Legendre polynomials. Inserting this expression in
Eq. 1.4 gives (spherical potential)

ψk(r) ∼
1

2ikr

∞∑
l=0

(2l + 1)Pl(cos θ)
(
(−1)l+1e−ikr + e2iδleikr

)
, (1.7)

where we have defined a phase shift δl by

f(k, θ) =
1

2ik

∞∑
l=0

(2l + 1)Pl(cos θ)(e2iδl − 1). (1.8)

Using the fact that the Legendre polynomials are orthogonal and normalized
to 2/(2l + 1), we obtain the cross section which was defined in Eq. 1.5

σ(k) =
∞∑
l=0

σl(k), (1.9)

with σl(k) the partial cross section

σl(k) =
4π
k2

(2l + 1) sin2 δl(k). (1.10)

The cross section has now been expressed in terms of a sum of phase shifts.
It is interesting to note that the total cross section is obtained by by sum-
ming incoherently over the different partial cross sections, i.e. interference
between different terms is absent due to the orthogonality of the Legendre
polynomials.

The expression for the cross section given by Eq. 1.10, is valid for distin-
guishable particles. When the particles are identical, the symmetry of the
wave function given in Eq. 1.7 has to be considered: for bosons, it must be
symmetric while for fermions antisymmetric. This leads to a modification
of the expression of the cross section, as explained in [40]. Taking this into
account, the cross sections for indistinguishable particles becomes:
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σl =
∞∑

l even

8π
k2

(2l + 1) sin2 δl(k) for bosons, (1.11)

and

σl =
∞∑

l odd

4π
k2

(2l + 1) sin2 δl(k) for fermions. (1.12)

Note that for bosons, we only sum over l even, while for fermions, we sum
over l odd: this is because the symmetry of the wavefunction is given by
(−1)l. In the following we will always consider the case of bosons.

To determine the cross section form Eq. 1.11, we must determine the
phase shift δl(k). We separate the wavefunction into a radial and angular
part:

ψk(r) =
∞∑
l=0

l∑
m=−l

Y m
l (θ, φ)

u k,l(r)
r

, (1.13)

where the Y m
l (θ, φ)’s are the common eigenvectors of L̂2 and L̂z (L̂ being the

angular momentum operator). Using this expansion for the wavefunction in
Eq. 1.3, we can obtain a radial equation1:

u′′k,l(r) +
(
k2 − l(l + 1)

r2
− 2µV (r)

~2

)
u k,l(r) = 0. (1.14)

Now according to Eq. 1.7, the asymptotic form of the radial part of the wave
function, for a given l, can be written as

u k,l(r) ∝ (−1)l+1e−ikr + e2iδl(k)eikr. (1.15)

By solving the radial equation for a particular potential (in general numeri-
cally), and imposing the asymptotic form given in 1.15, the phase shift, and
consequently the cross section can be obtained.

1.1.2 Ultracold collisions

When one is considering ultracold2 collisions (k → 0), the expression for
the cross section becomes very simple as we will show in the following.
In general, the solution to the radial equation can be written as a linear
combination of spherical Bessel and Neumann functions. Consequently, also
the phase shift can be expressed in terms of these functions, and by using
their properties, it can by shown that [39, 42]

δl(k) ∝ k2l+1 for k → 0. (1.16)

1The equation is valid when u k,l(r)/r stays finite when r → 0.
2We shall clarify the meaning of “ultracold” later.
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Figure 1.1: The effective potential (defined in the text) corresponding to
the different partial waves for bosons. Due to symmetry considerations,
only even l partial waves contribute. For energies lower than the potential
corresponding to l = 2 (which is the case for the energy E), only the potential
for l = 0 contribute to the interaction, because for the other l values, a
centrifugal barrier hinder the close approach of the two particles.

This means that at very low energies, for every partial cross section:

σl(k) ∝ sin2 δl(k)/k2 → k4l → 0 for k → 0. (1.17)

This is true for all partial waves with l 6= 0. At very low energies, only
the cross section corresponding to l = 0 (the s-wave) survives and tends to
a constant value, which we will give later. To understand physically why
the cross section vanishes for all partial waves corresponding to l 6= 0, we
consider the potential for each partial wave separately. We define a new
potential V l

eff(r) which includes both the real potential and the centrifugal
barrier from the radial equation (Eq. 1.14):

V l
eff(r) = V (r) +

~2

2µ
l(l + 1)
r2

, (1.18)

where for long distances, V (r) is the van der Waals potential which to lowest
order in r6 is [43]

V l
eff(r) =

l(l + 1)
m

~2

r2
− C6

r6
, (1.19)

where C6 is a parameter which depends on the nature of the atomic species.
The approximate form of the effective potentials for bosons for different
values of l is shown in Fig. 1.1. Note that for increasing values of l, the
barrier in the potential due to the centrifugal term becomes increasingly
high. If the kinetic energy E is lower than the barrier, the particles will be
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r

V(r)

a

a b

Figure 1.2: The black solid line shows the interaction potential, while the
gray solid line is the wavefunction for the scattering state. This state de-
scribes the two incoming particles having an energy just above the disso-
ciation limit. Figure a is a zoom of b: in a we show the behavior of the
wavefunction for short and intermediate values of r, while in b we show
the large r behavior. For short distances, the wavefunction oscillates very
rapidly (high energy region), while for intermediate distances, it tends to
a straight line. This lines is actually the first lobe of the long-period sine
function shown in b (free-particle behavior). This long period sine function
is phase shifted from the origin due to the interaction potential. The scat-
tering length a is defined as the zero energy crossing of the tangent to the
first lobe of the long period sine function. This corresponds also to the phase
shift of the sine function.

reflected, and they will never enter the region where the interaction takes
place. If the collision is ultra cold, the energy E is so low that only the s-wave
(l = 0) will penetrate into the region where the interaction takes place. This
is the case for the energy shown in the figure, and in this case, the collision
is completely characterized by a quantity called the s-wave scattering length
a, which we will now define.

Let us consider the wave function corresponding to two very cold atoms
entering in collision. As the atoms are very cold, the kinetic energy is ex-
tremely low, and the total energy of the two atoms is just above the disso-
ciation limit of the corresponding molecular state. The state is called the
diffusion state (or scattering state). The scattering length has a geometric
interpretation in terms of the wave function of this state, which is shown in
Fig. 1.2. In the inner parts of the potential a, the wave function oscillates
rapidly, as this is the high energy region. At very long distances, the wave-
function becomes a sine wave with an extremely long period, as shown in
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the zoom in Fig. 1.2, b. In intermediate regions, the wave function tends
toward a straight line, which we can write as U k,0 = A× (r− a), where a is
the zero intersection of this line. By definition, this is the scattering length.
To obtain an expression for the scattering length, we therefore rewrite the
radial wavefunction given in Eq. 1.15 with l = 0:

u k,0(r) ∝ −e−ikr + e2iδ0(k)eikr (1.20)
= 2i eiδ0 sin (kr + δ0)
= 2i eiδ0 [sin (kr) cos (δ0) + sin (δ0) cos (kr)].

When kr � 1, we can approximate sin (kr) ' kr and cos(kr) ' 1, and we
obtain:

u k,0(r) ∝ 2i eiδ0 [kr cos (δ0) + sin (δ0)] (1.21)
= 2i eiδ0 cos (δ0)[kr + tan (δ0)].

We can therefore now define the s-wave scattering length a

a = − lim
k→0

tan[δ0(k)]
k

. (1.22)

Therefore, the effect of the interaction between the atoms is to displace the
straight line describing the wave function by a distance a from the origin.
As the line describing the wavefunction actually is the first lobe of a sine
function with a very long period, the effect of the potential can also be in-
terpreted as a phase shift of the partial wave corresponding to l = 0 by an
amount a. The figure shows the case of a repulsive potential, where the
wave function is shifted away from the origin relative to the non-interacting
case, and the scattering length becomes consequently positive. For an at-
tractive potential, the wave function is shifted towards the origin, and a is
consequently negative.

The physically interesting parameter is the cross section given by Eq. 1.11,
and in the s-wave limit we can write it in terms of a:

lim
k→0

σ0(k) = 8π
sin2 [δ0(k)]

k2
(1.23)

' 8πa2, (1.24)

where in the last step we have approximated the sine with a tangent.
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l 2 4 6
rl
0 (nm) 3.2 2.4 1.9

V l
eff(rl

0)/kB (mK) 42.6 251 841

Table 1.1: The position and height of the potential barrier for He∗ corre-
sponding to the potential shown in Fig. 1.1.

Finally it should be mentioned that it is possible to be in the s-wave limit
even when k is finite (but small). It can be shown that the cross section can
be written as3[41]

σ(k) =
8πa2

1 + k2a2
. (1.25)

In the next section we will estimate the temperature requirements for the
different regimes discussed above in the case for metastable helium.

Helium

We consider the 23S1 metastable state of helium, see Appendix A. By
differentiation of the potential given in Eq. 1.18 with V (r) given by Eq. 1.19
we can calculate the position of the potential barrier rl

0 (the position where
the potential is maximum), and the barrier height. We use C6 ∼ 3.12 ×
10−22 J nm6 [34]. The barrier height and position are given for l = 2, 4, 6 in
table 1.1. It is interesting to note that the s-wave regime is already reached
at 42.6 mK. The depth of the trap potential that we use for the He∗ atoms
(chapter 2) is only a few millikelvin, so only atoms colder than this value
are confined. Consequently, for collisions between trapped atoms, the s-wave
approximation will always be valid.

On the other hand, we are not necessarily in the regime where the cross
section is independent of energy. In fact, this is true only when k2a2 � 1.
Using E = ~2k2/2µ = kBT , µ = mHe/2 and a = 12 nm, we can write

k2a2 =
kB T a

2mHe

~2
∼ 1× T(mK). (1.26)

Therefore, in order to have k2a2 < 0.1, the temperature must be less than
100 µK. If the temperature is higher, we must use Eq. 1.25 rather than
Eq. 1.23 for the cross section.

3A more accurate expression is given by σ(k) = 8πa2

(1−k2are)+k2a2 where re is the“effective

range” of the potential, also discussed in [41].
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atom H He 23Na 87Rb
a(nm) 0.06 ∼ 12 3.45 5.6

Table 1.2: Scattering length for atoms commonly used for BEC. All values
are given for the triplet state, see [45].

1.1.3 The role of the s-wave scattering length

The reason why the scattering length is so important for us is that in a
Bose-Einstein condensate, or a thermal cloud near the BEC phase transi-
tion, the collisions are ultra cold: only s-wave scattering takes place, and
the scattering length a becomes a key parameter. In this limit, the inter-
action potential between atoms in a dilute (but too dense to be ideal) gas
becomes very simple: in the mean field approach (see Ref. [17]), the atomic
interaction potential can be described uniquely by the scattering length and
the density n(r)

Vint(r) =
4π ~2 a

m
n(r) ≡ Un(r) (1.27)

Therefore, the behavior of the sample can be predicted from the density
alone, if the scattering length is known. Let us give some brief examples:

Evaporative cooling

Bose-Einstein condensation was realized in dilute gases only after the devel-
opment of evaporative cooling. This cooling scheme consists of continuously
ejecting the hottest atoms - with a rate which allows the sample to relax
back to equilibrium, or to“thermalize”. In this way, a BEC can be achieved4.
An effective cooling requires a rapid thermalization which in turn requires a
high elastic collision rate - a parameter which increases with the scattering
length squared5. To be more precise, the essential quantity is the ratio be-
tween elastic and inelastic collisions – elastic collisions are necessary for the
thermalization, while inelastic collisions destroy the sample. This is, by the
way, why elastic collisions are called “good collisions” and inelastic collisions
are called “bad collisions”! Therefore, the scattering length plays a key role
in the feasibility of reaching BEC! This is also partly why it took consider-
ably more time to make a hydrogen condensate compared to the “standard”
alkali BEC: the scattering length of hydrogen is much lower than the BEC
alkali atoms as shown in table 1.2

4This will be discussed more in detail in chapter 2.
5This is true for the zero energy cross section. For higher temperatures, it is possible to

enter regimes where the cross section is independent of a, or will depend on the effective
range of the potential, see [41, 44].
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BEC with a negative scattering length

Not only the magnitude but also the sign of the scattering length is impor-
tant. Positive scattering length gives rise to an repulsive mean field potential
(see Eq. 1.27), whereas a negative scattering length gives rise to an attractive
mean field potential6. Theoretically, it can be shown that in a homogeneous
system, a condensate with a negative scattering length is unstable and can-
not exist [3, 46, 47]. This is because the condensate contracts in order to
minimize the energy of the system, until all atoms are lost due to an increase
in inelastic collisions: the condensate is said to “implode”. However, if the
condensate is confined in a harmonic potential, such that its size is smaller
than a given critical value, it can become stable because the kinetic energy,
which is present to balance the trap potential, introduces an energy barrier
towards collapse. One can therefore define a critical atom number, below
which the condensate is stable, and above which it implodes. An example
is the Bose-Einstein condensate of 7Li with a = −1.5 nm, for which the
theoretical critical atom number has been experimentally verified [46].

Shift of the critical temperature

The Bose-Einstein phase transition temperature given in the famous Ein-
stein paper [16], is calculated for an ideal gas. Due to interactions between
atoms, this critical temperature is shifted. For a weakly interacting, homo-
geneous gas of fixed volume7, the critical temperature is increased compared
to the ideal gas case. The shift depends on the scattering length and is
to lowest order proportional to a, for theory, see Refs. [48, 49, 50, 51, 52,
53, 54, 55, 56, 57], and for experiments, see Refs. [58, 59] and references
therein. This shift can be thought of as due to density fluctuations (critical
fluctuations) which create small “high-density regions”, accelerating the for-
mation of the condensate8. These fluctuations are enhanced by interactions
which again depends on a. In a homogeneous gas, this displacement of the
critical temperature is only present beyond the mean field approximation,
as discussed for instance in Ref. [60].

For a gas trapped by a harmonic potential there is an additional contri-
bution to the shift on the critical temperature, which is even present within
the mean field approximation. For a gas in a harmonic potential, the vol-
ume is not fixed, only the number of particles. The shift of the critical
temperature arises because the atoms repel each other, and consequently
the peak density is lowered. In order to fulfil the phase transition require-
ment nλ3

dB = g3/2(1), the critical temperature is lowered. The higher a
is, the more the atoms interacts, and the more is the transition tempera-

6Note that the true 2-particle potential is always attractive, it is only the mean field
potential arising from elastic collisions which can be either attractive or repulsive

7Particles in a box, for instance.
8This is far from being a rigorous argument, but only an intuitive way to think about

it.
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ture lowered. This shift dominates over the increase in critical temperature
discussed above such that the overall shift is downwards.

Hydrodynamic regime

The most common way to observe a condensate is to let it expand for a
while and then image it. It is often a very good approximation to assume
that the cloud expands freely (ballistic expansion) after the switch-off of
the trap. However, if strong interactions are present, this approximation is
no longer valid, and collisions during the first milliseconds of the expansion
must be taken into account. When this is the case, the gas is said to be in
the hydrodynamic regime. This is the case when the rate of elastic collisions
is much larger than the oscillation frequencies of the harmonic potential
which traps the atoms (chapter 2). As the elastic collision rate is given by
8πa2nv̄, with n the density and v̄ the mean relative velocity, the value of
a determines whether a gas is hydrodynamic or “collision-less” for a given
density and trap geometry. As we shall see later, the large scattering length
for He∗ requires that we take into account hydrodynamic effects when we
interpret the shape of the expanded cloud.

Many more effects depend on the interactions and therefore on a and it
would be impossible to mention all of them here!

1.1.4 How to measure the scattering length

In order to calculate a, the whole atom-atom interaction potential must be
known, not only the long range part described by the C6 coefficient defined
in Eq. 1.19, but also the inner part9. Except for hydrogen, the potentials are
not known accurately enough to deduce a precise value of a. Therefore the
scattering length is in general determined experimentally. We will briefly
discuss the different approaches, with special attention to their precision.

BEC measurements

In principle, it is straightforward to deduce the scattering length from mea-
surements of the atom number and the width of an expanded BEC (using
time-of-flight signals, which will be introduced in chapter 2). This is because
for a BEC, the kinetic energy is negligible compared to interaction energy,
and the expansion of the BEC arises from the latter alone, which depends
only on a and the atom number N . More precisely, the width of the TOF
signal is proportional to (aN)1/5. By measuring the width as a function of
atom number, the scattering length can be obtained. However, uncertainties
on the measurements of the atom number, typically at least 10% for the al-
kali gases, lead to a large uncertainty on a. For He∗ the uncertainty become

9Except for the so-called purely long range potentials, where the inner part is not
required to calculate a.
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even worse, as we will discuss in later chapters. Therefore, the scattering
length is usually obtained from spectroscopic measurements. However, for
He∗ no spectroscopic measurement of the scattering length exists yet, and
this is the reason why a large part of this thesis work is sacrificed to the
measurement of the scattering length10. Even though our measurement of
a is not done via spectroscopy such measurements for He∗ are in progress in
the group directed by Michèle Leduc and Claude Cohen-Tannoudji in “Ecole
Normale Supérieure” in Paris [62]. As they use spectroscopy, it is therefore
of general interest to briefly explain the main principles.

Spectroscopy of colliding pairs of atoms

We will summarize the main ideas concerning this topic. For a more com-
plete discussion the reader can consult Refs. [62, 63, 64] and references given
therein.

Before discussing the specific ways to do this kind of spectroscopy, let
us first set the stage. The potential curves for the interaction between two
colliding atoms are given in Fig. 1.3. The interaction between two atoms at
large relative distance r both in the ground state (S+S) is described by the
long range potential varying as 1/r6 at long distances. If one of the atoms is
optically excited to a P state, the interaction potential is modified and varies
as 1/r3 (S+P potential). This means that the upper S+P molecular curve
corresponds to an electronically excited level, while the lower S+S curve
is the ground state with respect to electronic excitation. For each of the
two curves, in addition to the unbound scattering state, several molecular
bound states exist, corresponding to different vibrational levels. With this
figure in mind we will now define two types of spectroscopy: one which is
based on “light-assisted collisions” and one based on photoassociation creat-
ing molecules. In both case, as we will see below, the signature of a certain
transition taking place will be a trap loss of atoms. The laser frequencies for
maximum loss rates then corresponds to the particular transition energies.

i) Light-assisted collisions

This method is based on the fact that a pair of ground state unbound atoms
(the S+S scattering state) can absorb a laser photon and make a transition
to the S+P scattering state (also an unbound state). Assume that the two
S+S atoms initially are approaching each other with almost zero energy.
Now one of the atoms is excited by a laser to the S+P scattering state,
and the potential is therefore changed from 1/r6 to 1/r3. Consequently
the atoms experience an increased acceleration towards each other. When
the atom pair decays back to the S+S state, the atoms have gained kinetic
energy. If initially the atoms were trapped, it is possible that they have

10Note however that photoassociation of cold He∗ has been performed earlier, but pri-
marily the S+P potential has been determined [61].
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Figure 1.3: The potential curves for the interaction between two atoms as
a function of the separation distance between the atoms. The lower curve
describes the interaction between two atoms in the electronic ground state
(S+S), while for the upper curve, one of the atoms are in an excited level
(S+P). The width of the S+S state is given by kBT , where T is the temper-
ature of the atoms. Inside each of the potential curves, several vibrational
bound states exist. An example of photoassociation is the 2-photon Ra-
man spectroscopy (discussed in the text): a laser induce transitions from
the scattering state in the S+S potential to a bound state in the S+P po-
tential (arrow denoted by a). Now applying a second laser, detuned by an
amount corresponding to the energy difference between the scattering S+S
state and the first bound state in the same potential (b) transitions to this
bound state will take place, and atom losses will be observed. The detun-
ing corresponding to maximum losses gives the energy level of the bound
state, and consequently a. The figure is taken from Ref. [62] with the kind
permission of the author.

gained enough kinetic energy to escape from the trapping potential. A loss
of atoms could then be the signature of a transition between the S+S and
S+P curves shown in Fig. 1.3.

ii) Photoassociation

The second method is based on photon-induced transitions from the S+S
scattering state to a bound molecular state. The method relies on the fact
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that even though the atoms are trapped by the external potential, a molecule
is not necessarily trapped by the same potential. Consequently, a transition
to a molecular state results in a loss of atoms. If it is the S+S potential
which is probed (this is the case when searching for the scattering length),
then transitions to molecular bound state in this potential are performed.
This is generally done by making a two-photon transition from the unbound
S+S state via a virtual level to the bound state in the same potential.

Determination of the scattering length

These were the principles. How is it possible to extract the scattering length
from these kind of experiments? Let us again separate the case of light-
assisted collisions and photoassociation.

i) Light-assisted collisions: probing directly the wave function of
the scattering state

The idea is based on the fact that a transition between the two scattering
states S+S and S+P occurs only if the overlap between the wavefunctions of
the two states is non-zero. This means that the transition strength is modu-
lated by the spatial variations of the diffusion state for the potential (S+S),
in particular by its nodal points, where the transition probability is zero.
The transition is driven by a narrow linewidth laser light at a frequency
ωL. The resonant frequency for the transition depends on the interparti-
cle distance r (see Fig. 1.3). If the long range part of the S+P potential
(given by the C3 coefficient) in addition to the asymptotic part of the S+S
potential is known, the interparticle distance corresponding to a transition
can be determined by the laser frequency ωL. By measuring the transition
strength as a function of laser frequency, the nodal points can be obtained
as a function of position. From the nodal points, the overall phase shift of
the wavefunction can be determined and from there the scattering length is
obtained.

ii) Photoassociation: probing the energy level of the last bound
state of the molecular potential

The scattering length for a given potential can also be deduced from mea-
surements of the energy of the last vibrational bound state of the molecular
potential: the energy difference ∆E between this level and the asymptote
of the potential is directly related to the scattering length through [65, 66]:

|a| = ~√
2m∆E

This formula is valid when the scattering length is large (a � re, re the
effective range of the potential). For helium, this formula turns out to be
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a good approximation because the scattering length is relatively large com-
pared to the range of the potential11. For other species such as rubidium,
to calculate the scattering length, a more sophisticated model, also taking
into account details concerning the inner part of the potential, is used.

The position of this energy level can be measured by Raman spec-
troscopy: a two-photon transition from the scattering state to the last bound
state of the S+S potential (through a virtual level in the vicinity of the S+P
potential). The relative detuning of the two photons corresponding to max-
imum losses (molecules are formed and usually lost) gives the transition
energy. From there, the position of the last bound state, and consequently
the scattering length, is obtained (illustrated in Fig. 1.3).

Frustrated photoassociation

A refinement of this method, known as frustrated photoassociation, deserves
to be mentioned [67]. In this method, a decrease of atom losses signals the
transition. The method consists of applying a first laser with a constant
frequency, resonant with the transition between the scattering state of the
S+S potential and a chosen bound state in the S+P potential. This creates
molecules and consequently induces atom losses as discussed above. Then
a frequency sweep with a second laser is performed. The frequency of this
laser is swept through values corresponding to the transition energy between
the chosen state in the S+P potential, and a bound state in the S+S po-
tential. When this laser is exactly at resonance with the transition, due
to the appearance of a dark state, the molecule formation rate drops and
consequently the atom losses decrease (see for instance [64] and references
therein for a more rigorous explanation).

This short overview is far from exhaustive. In the methods described above,
the signature of the transition is based on atom losses. An alternative
method is to use a probe laser to excite the scattering state to higher excited
states, which can undergo either auto- or photo ionization. The resulting
molecular ions can be detected and indicates that the transitions take place.
These techniques will not be explained here, but a discussion can be found
in Ref. [63] and references therein.

1.1.5 The scattering length of metastable helium: state of
the art

The photoassociative methods have been performed to obtain the potential
curves for most atoms used commonly for BEC: Li, Na, Rb and Cs, and from
there the different scattering lengths have been deduced (for nice overviews

11Even though the approximation is good for helium, an even more precise way to obtain
the scattering length is to use the measurements of the energy level to correct the already
known form of the potential. From the corrected potential, the scattering length can be
obtained. This is what the ENS group plans to do.
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see Refs. [62, 64]). For hydrogen, the scattering length can be calculated
due to the simplicity of the atom. However no spectroscopic measurements
for He∗ has until now given the scattering length. This does not mean that
the scattering length is completely unknown: in this section we will give an
overview of how precise the current theoretical and experimental estimates
are.

Theory

Two metastable helium atoms in the 23S1 state, each of spin 1, can inter-
act via 3 different potentials according to the total spin of the two atoms.
The 3 potentials12 are denoted by 1Σ+

g , 3Σ+
u and 5Σ+

g and corresponds to a
total spin of 0, 1, or 2, respectively13. The total spin depends on the rela-
tive orientation of the individual spins of the two atoms: in an unpolarized
sample, the total spin can be 0, 1 and 2, while in a polarized sample, all
the spins are aligned, and the total spin is necessarily 2. In the magnetic
trap (see chapter 2), the spin is polarized, and consequently, the interac-
tion is always described by 5Σ+

g potential. Therefore, the scattering length
governing the physics in our magnetically trapped sample corresponds to
this potential. The difficulty in calculating a precise value of a springs out
of the fact that for this potential, the last vibrational bound state is very
close to the dissociation limit. This means that the scattering length is ex-
tremely sensitive to the potential well depth: if the well depth is slightly
decreased, the last bound level approaches rapidly the potential asymptote
so that a → ∞ (∆E ∝ 1/a2). If it is decreased further, this last level just
becomes unbound (∆E becomes very small and negative), and a jumps to a
large negative value. The total decrease required to make this level unbound
is very small, and consequently, even a small uncertainty in the calculated
well depth corresponds to a very high uncertainty on a. The variation of the
scattering length as a function of the well depth in Kelvin is illustrated in
Fig. 1.4. The solid vertical line at ∼ 1488 K gives the well depth for which
the last bound state (assuming a higher well depth) just becomes unbound.

The first precise calculation of this potential was done by J. Stärk and W.
Meyer in 1994 [68]. They found that the well supports 15 bound vibrational
states, and they claim and uncertainty of 1 % on the potential depth. Their
central value for the well depth is 1505 K, indicated by the dashed lines
in Fig. 1.4. The grey bands indicate their uncertainty. Even though the
uncertainty on the potential is only 1 % this leads to huge variations on a
as shown in Fig. 1.4: a varies between 4 and 60 nm around a central value
of 8 nm! In 2000, V. Venturi and I. B. Whittingham published a refined
calculation of a. It is based on the potential from J. Stärk and W. Meyer, but
the connection between the inner and outer part of the potential is better.

12The same notation is often used to indicate the molecular state.
13For long distances between the atoms, the potentials become equivalent and tend

toward the −C6/r6 potential (the S+S potential shown above).
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Figure 1.4: Variation of a in Bohr radius units (a0 = 0.053 nm.) according
to variations in the potential. The dashed lines indicate the well depth and
corresponding value for the scattering length obtained in Ref. [68], and the
gray bands corresponds to the claimed uncertainty of 1 % of the potential.
The figure is again from Ref. [62].

They give the same central value for a, but reduce the error-bars confining a
to the interval between 5 and 25 nm [69]. In 2002, F. X. Gadéa, T. Leininger
and A. S. Dickinson published new calculations of the potential [70]. In their
abstract they state that “...there are certainly 15 vibrational levels and that
the dissociation energy is most probably 1045.2 ± 1 cm−1...”. Their final
value of a is 15.4 nm, but they stress that this is only an upper limit.
Before starting the experiments described in this thesis, these values for the
scattering length were the most precise theoretical estimates available. After
our determination of a described in this thesis, a second paper from A. S.
Dickinson et al. was published and gave an improved result: a should be
between 8.0 and 12.2 nm [71], the most probable value being the upper limit.
This is to our knowledge the most precise theoretical value published, and
as we will see in this thesis, it turns out to be consistent with our results.
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Experiments

In 2001, a Bose-Einstein condensate of He∗ was almost simultaneously pro-
duced for the first time in the ENS group and in our group. Using these con-
densates, a measurement of the scattering length was estimated. Our group
published a = 20±10 nm [8], while the ENS group published a = 16±8 nm
[9]. In both cases, the large uncertainty was due to difficulties in direct
measurements of the atom number in the condensate.

As mentioned above, spectroscopic measurements of the scattering length
are already underway in the ENS group in Paris and a precision of less than a
nm is expected. The ENS group is implementing an off-resonant two-photon
Raman transitions to determine the position of the last bound state, and
from there deduce a. They are also exploring the 2-photon scheme based
on frustrated photoassociation. One-photon transitions to the upper S+P
state have been successfully implemented [72, 62].
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Figure 1.5: Estimates for the scattering length. The first value comes from
J. Stärk and W. Meyer, the second from V. Venturi and I. B. Whittingham.
The next two experimental values come from BEC measurements (our group
and ENS), followed by a theoretical value from F. X. Gadea et al. (2002).
The most precise theoretical value is published two years later (2004), and
comes from this same group. The first measurement in 2004 is from our
group, and will be discussed in detail in this thesis. The last indicated
measurement comes from the group of W. Vassen: |a| = 10± 5 nm [73].

A summary of the different values for a, theory and experiment, is given in
Fig. 1.5. To the values discussed in this section, one experimental value is
added: a = 11.3+2.5

−1.0 nm. This is one of the main results of this Ph.D. thesis.
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It is a new and quite atypical measurement of a, and it is the most precise
value to date. Our measurement of a is based on the ion signals from a BEC
and a thermal cloud. These ions are produced in inelastic collisions (“bad
collisions”), which will be discussed in the next section. In chapter 5, we will
explain how these ion rates lead to a measurement of the scattering length.

1.2 Inelastic collisions

If an excited particle A* collides with particle B, the latter can be ionized
if its ionization energy is less than the excitation energy of A:

A∗ +B → A+B+ + e−

This reaction is an example of an inelastic collision, because the internal
state of the atom is modified. For He∗ the internal excitation energy is 19.8
eV. This is several times higher than the ionization energy for a collision
with another He∗ atom (4.77 eV), and also higher the ionization energies
for collisions with the dominant background molecules, H2O (12.5 eV) and
H2 (15.5 eV) [74]. In the experiments described in this thesis, we detect the
ions produced by these collision using a micro-channel plate (see chapter 2)
to use the ion signal to infer the properties of the trapped cloud.

These ionizing collisions are called Penning collisions14, and occur when
the particles entering in the collision get sufficiently close to each other,
provided that the energy requirement is fulfilled. Therefore, in a trapped
dense sample of He∗, the rate of ionizing collisions increases with the density.
The Penning collisions are essential in the work performed in this thesis,
and we will in the following provide an overview of the collisions as well as
their dependence on the sample density. A more detailed description of the
Penning collisions in He∗ systems figures several times in literature, see for
instance [34, 37, 76, 77].

Each time a He∗ atom is ionized, it is lost from the trap. Penning col-
lisions therefore induce atom losses. We will also explain why these atom
losses turn out to be lower than one might expect, and therefore do not
prevent the formation of a dense sample of atoms or a Bose-Einstein con-
densate.

1.2.1 Penning collisions

A Penning collision can occur both between a trapped He∗ atom and a
background molecules, and between two or more trapped He∗ atoms. Both
types of collisions are present, but depending on the density of the sample,
not the same reactions will dominate. We will below consider each of the
collisions separately.

14The name is given after the Dutch physicist F.M. Penning who already suggested this
process in 1927 [75].
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He∗ + X

When the density of the sample is sufficiently low, collisions between trapped
atoms become rare and the collisions with the background gas dominate15.
This is the case for our magnetically trapped sample, before we start the
rf-evaporation (see chapter 2). A collision with a background molecule can
be written as16:

He∗(23S1) + X →
{

He(11S0) + X+ + e−

HeX+ + e−,
(1.28)

where X represents a background gas molecules (H2O, H2). Each of the two
reactions yield an ion, and in both cases one He∗ atom is lost from the trap
(neither the created ground state He atom nor the molecular ion is confined
in the trap). The subsequent local density loss is given by17

dn(r)
dt

]
ion

= −α× n(r)× n′(r). (1.29)

The density of the trapped sample of He∗ is denoted n(r) while n′(r) is the
density of the background gas. We define α as the ionizing rate constant
for background collisions. With this definition, the density loss is due to
ionizing collisions alone, and not other inelastic processes (indicated by the
subscript ion in the equation). As α and n′(r) are constants, we can rewrite
Eq. 1.29 as:

dn(r)
dt

]
ion

= −n(r)
τi

. (1.30)

The quantity τi is in fact the background limited lifetime of the sample
due to ionizing collisions18, and n(r) the local density. The total loss rate is
obtained by integrating the density loss over the spatial extent of the sample

dN

dt

]
ion

= − 1
τi

∫
n(r)dr = −N

τi
. (1.31)

This loss rate is independent of the density of the sample. As one ion
is created for one atom lost, the ionization rate arising from this kind of
collisions is simply given by

Φ =
N

τi
. (1.32)

15For a typical background pressure of ' 10−11 mbar, this is true when the average
density of the cloud is below 〈n〉 < 108 cm−3).

16This collision is sometimes called a “one-body” collision because only one atom from
the trapped sample participates.

17One could also imagine that the collisions result in a heating and a subsequent addi-
tional density loss. However, as secondary collisions (collisions with decay products from
the first reaction) are negligible, so is the heating (see Refs. [13, 37]).

18Note that the total density loss (not only due to ionizing collisions as above) would

be written as dn(r)
dt

= −n(r)
τ

, with τ the total lifetime of the sample.
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He∗ + He∗

When the density of the sample is increased, collisions between two He∗

atoms become probable. Also in this type of Penning collision, two reactions
can take place: either one He∗ decays to the ground state, transferring its
internal energy to the other He∗ atom which is consequently ionized, or a
molecular ion is formed [78]:

He∗(23S1) + He∗(23S1) →
{

He(11S0) + He+ + e−

He+
2 + e− .

(1.33)

Here, the collision rate depends on the He∗ density squared and therefore
the density loss is given by

dn(r)
dt

]
ion

= −β n(r)2, (1.34)

where we have defined the two-body ionization rate constant β. The ioniza-
tion rate can be written again by integrating and by noting that two atoms
are lost for each ion created

Φ =
1
2
β

∫
n(r)2dr, (1.35)

This can be written in a simpler notation by defining a “density-weighted
average” as19

〈X(r)〉 =
∫
X(r)n(r)dr∫
n(r)dr

=
∫
X(r)n(r)dr

N
.

We get

Φ =
1
2
β〈n(r)〉N. (1.36)

He∗ + He∗ + He∗

When the density gets very high (above 1012 cm−3), three-body collisions
start to contribute to the loss processes20. This happens in the end of the
rf-evaporation, in the vicinity of the Bose-Einstein condensation. The three-
body collision can be written as [79]:

He∗ + He∗ + He∗ → He∗2 +He∗(∼ 400 µK)
↪→ He+ + He(1S) + e−.

(1.37)

The collision produces an excited molecule (He2*) and a hot He∗ atom21.
The He2* molecule is supposed to decay very fast, giving a ground state He

19Note that the brackets defined contain a dimension – they replace a volume.
20The contribution from two-body and three-body processes becomes equal for a density

of ∼ 1013 cm−3

21The acquired energy of this atom corresponds to the binding energy of the He2*
molecule, i.e. ∼ ~2/2ma2.
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atom, and an ion, which we can detect. Again we write the density loss due
to this process:

dn(r)
dt

]
ion

= −Ln(r)3, (1.38)

where we now have defined the three-body ionizing rate constant L. In this
process, three atoms are lost for each ion created, so the ionization rate
becomes

Φ =
1
3
L

∫
n(r)3dr =

1
3
L〈n(r)3〉 =

1
3
L〈n(r)2〉N. (1.39)

The total ionization rate

Finally, the total ionization rate is obtained by summing the contributions
due to background, two- and three-body collisions:

Φ =
N

τi
+

1
2
β〈n(r)〉N +

1
3
L〈n(r)2〉N. (1.40)

In this thesis, we will most often use the normalized ionization rate, which
we denote by Γ

Γ =
1
τi

+
1
2
β〈n(r)〉+

1
3
L〈n(r)2〉, (1.41)

because a graph of the normalized ionization rate as a function of density
can be written in a way which has an obvious geometrical interpretation: if
it is a straight line, the dominating collisions are two-body processes, while
a three-body dominance gives a parabola.

In chapter 3 we will give some examples on how we can exploit the ion
signal arising from the Penning collision to obtain information about the
sample, and in chapter 4, we will present measurements of the two- and
three-body rate constants β and L in a pure BEC. In the same chapter, we
will also present measurements of ionization rates in a cold thermal cloud.

For later use, we will therefore in the following list the explicit expressions
for the ionization rate in these two cases by using the fact that the density
distribution in the two cases are well-known.

1.2.2 Ionization rates in a thermal cloud

The density distribution for a thermal cloud far from BEC threshold can
be described by a Gaussian function. In this case, 〈n(r)2〉 = 8/(3

√
3)〈n(r)〉2

and the ionization rate can be written as

ΓTh =
1
τi

+
1
2
β 〈n〉+

1
3

8
3
√

3
L 〈n〉2. (1.42)

This expression for the ionization rate will be used in chapter 4 to fit the
measured ionization rate as a function of density22.

22One could also choose to write the ionization rate in terms of the peak density as we
will do for the BEC (see below). For a Gaussian distribution, we have 〈n(r)〉 = 1

2
√

2
n0
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1.2.3 Ionization rates in a Bose-Einstein condensate

In our measurements using a pure BEC, we will not measure directly the
density, but the chemical potential. From this chemical potential, the peak
density, n0, can be deduced. We will therefore write the ionization rate
as a function of n0 instead of average density as we did for the thermal
cloud. In our case, the pure condensate is well described by the Thomas-
Fermi distribution, corresponding to an inverted parabola [17]. Using this
distribution, the relations between the density weighted average values and
peak density n0 can be obtained:

〈n(r)〉 =
4
7
n0 and 〈n(r)2〉 =

8
21
n2

0. (1.43)

Substituting into Eq. 1.40, and writing the ionization rate per atom Γ, we
obtain

ΓBEC =
1
τi

+
1
2

4
7
β′ n0 +

1
3

8
21
L′ n2

0. (1.44)

Importantly, note that we have added a prime to the rate constants. The
reason is that the rate constants given in Eq. 1.40 are defined for a thermal
cloud and due to quantum statistics, they are different for a Bose-Einstein
condensate. However, the rate constants for a BEC is related in a simple
way to the rate constants in a thermal cloud:

β′ =
1
2!
β and L′ =

1
3!
L.

so we can rewrite Eq. 1.44 as

ΓBEC =
Φ
N

=
1
τi

+
1
2!

1
2

4
7
β n0 +

1
3!

1
3

8
21
Ln2

0. (1.45)

“Quantum reduction factors”

The added factors (“quantum reduction factors”) arise from the fact that
in a BEC, the particles are all in the same energy level, while in a thermal
cloud, the particles are spread over different energy levels. In both cases
the wavefunction must be symmetric, as the He∗ atoms are bosons. For
N Bose-Einstein condensed atoms entering in a collision (in the mean field
approximation) the wavefunction is

|ΨBEC〉 =

N︷ ︸︸ ︷
|φi〉|φi〉....|φi〉, (1.46)

where the ground state of the many-body wavefunction is denoted by |φi〉.
This wavefunction is symmetric with respect to exchange of particles. How-
ever, for a thermal cloud with the different energy levels denoted by i, j, k...,
the simple product wavefunction is not symmetric as it should be:

and 〈n(r)2〉 = 3
√

3
8

n2
0, and the ionization rate is then ΓTh = 1

τi
+ 1

2
1

2
√

2
β n0 + 1

3
3
√

3
8

L n2
0.
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|ΨTh〉 =

N︷ ︸︸ ︷
|φi〉|φj〉...|φk〉 . (1.47)

The correctly symmetrized wavefunction is:

|ΨTh〉 =
1√
N !

N ! terms︷ ︸︸ ︷
{|φi〉|φj〉...|φk〉+ ...+ |φj〉|φk〉...|φi〉} . (1.48)

Now the probability P of having a collision between N particles can be
written as |〈Ψfinal|V |Ψinitial〉|2, with |Ψinitial〉 the N particle wavefunction
and V the particle interaction. For a N -body collision in a BEC we have

PBEC ∝ |〈Ψfinal|V |φi〉|φi〉...|φi〉|2, (1.49)

while for a N -body collision in a thermal cloud

PTh ∝
1
N !
|〈Ψfinal|V |

N ! terms︷ ︸︸ ︷
φi〉|φj〉...|φk〉+ ...+ |φj〉|φk〉...|φi〉 |2. (1.50)

If we assume that the matrix elements of V for the different states are equal
so that 〈Ψfinal|V |φi〉|φj〉...|φk〉 = 〈Ψfinal|V |φi〉|φi〉...|φi〉, then

PTh ∝
1
N !
|N !× PBEC|2 = N !× PBEC. (1.51)

Thus the collision probability is reduced for a BEC with respect to a thermal
cloud by a factor of N !. This is the reason why we must insert 1/2! and
1/3! in Eq. 1.44 if we keep the rate constants as they are defined for thermal
cloud.

Further corrections to this expression turn out to be necessary. These
corrections arise from the fact that not all the atoms are part of the con-
densate wavefunction: this is due to the so-called quantum depletion arising
from interactions between the atoms. Also the fact that the condensate
is not at zero temperature results in the fact that some of the atoms are
outside the condensate. However, in order to understand these corrections,
more background knowledge of the experiment is needed, which will be given
in chapter 2. These corrections will therefore first be discussed in chapter
4, where we will use Eq. 1.44 to fit experimental data to obtain the rate
constants.

1.2.4 Ionizing rate constants: predictions

So far we have not given any orders of magnitude for the ionization rates,
because in addition to the density dependence, it also depends on which
kind of trap we use: if the atoms are confined in a MOT, they are not spin
polarized (see chapter 2) while in the magnetic trap, they are. This changes
dramatically the ionization rates, as we will explain in the following.
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The Penning collision arises to first order from an electrostatic interac-
tion. In this kind of interaction, the total spin must be conserved. This is
impossible in a two-body Penning ionization between spin polarized atoms.
Consider the spin of the initial and final particles

He∗(23S1) + He∗(23S1) → He(11S0) + He+ + e−.
1 + 1 → 0 + 1

2 + 1
2

In general, the total spin of the initial state can be 0,1 or 2, while that of
the final state can be 0 or 1. If the He∗ atoms are spin polarized, the total
initial spin is necessarily 2, a value which is impossible to reach for the final
total spin. The interaction is therefore forbidden.

This is true when one consider only the electrostatic interaction, but
another type of interaction is possible. The atoms can interact via their
magnetic moment associated with their spin (spin-dipole interaction). This
interaction can couple states having a different total spin, giving rise to
a non-zero ionization rate. The interaction is very weak compared to the
electrostatic one, however, and is only non-negligible whenever the latter is
forbidden. It has been predicted theoretically, that the ratio of the two types
of interactions is around 105 [79, 80], reducing the ionization rate constant
for a polarized sample with the same factor. Let us give some orders of
magnitudes for the rate constants. In general, the rate constants depend on
the magnetic field, but below 100 Gauss (which is the case for the magnetic
trap in which the BEC is produced, see chapter 2), they are field independent
[79, 80, 81]. Moreover, the rate constants depend on temperature, but below
approximately 10 mK they are approximately constant23. The two-body
ionizing rate constant βnon−pol corresponding to non-polarized atoms has
been estimated theoretically to be ' 5 × 10−10 cm3/s at zero temperature
[82]. Its value has also been measured at temperatures around 1 mK [83, 84,
85, 86, 87], and agrees approximately with the theoretical estimations. The
two-body rate constant for a polarized sample is about 105 times weaker,
thus we expect β ' 5 × 10−15 cm3/s in the magnetic trap. The three-
body rate constant L is estimated theoretically to be ' 4× 10−27cm6/s (for
a ∼ 12 nm) for a spin polarized sample for low temperatures and magnetic
fields [88].

Note that it is due to this suppression of Penning collision that it is at
all possible to achieve BEC. In a non-polarized sample with a density of
' 1012 cm−3, the ionizing lifetime of the sample is only 2 ms, much shorter
than the duration of the experimental cooling sequence. In a polarized
sample, the lifetime for the same density becomes background limited, and
for typical background pressures, it is around 100 s, three times longer than
the average duration of the cooling sequence. In this case, the sample is
sufficiently stable to reach BEC.

23Above 10 mK, the dominant loss process is no longer ionizing collisions, but spin
relaxation [79].



48 Chap 1 - Elastic and inelastic collisions

Chapter summary and outlook

In this chapter, we have discussed elastic collisions and provided the reader
with a definition of the s-wave scattering length. At the low temperatures
realized in our experiment, most physical properties can be predicted by
the scattering length alone. In addition, as we will see in chapter 4, if
we know the scattering length, we have a precise way of measuring the
density for a BEC, namely via the chemical potential. This is why the
scattering length is an extremely useful parameter to know. In this chapter
we have presented the existing values, theoretical as well as experimental,
for the scattering length. Moreover, we mention the fundamental reason
why it is so difficult to calculate this constant: the last bound level in the
two-atom potential is very close to the dissociation limit. Therefore the
scattering length is very sensitive to even minor changes in the two-atom
potential, and a small uncertainty in this calculated potential leads to a
huge uncertainty in the scattering length. Therefore, the best way to obtain
this parameter is through experiments – and this is one of the motivation
behind the measurements described in this thesis.

A large part of this thesis work is related to the measurement of the
ionizing rate constants. Therefore, the ionizing processes are also discussed
in detail in this chapter, and should give the theoretical background for
understanding these experiments. Also our measurement of the scattering
length presented in chapter 5 is based on these inelastic collisions, even
though this must still appear paradoxical at this stage of the reading. Some
insight into the experiment itself is necessary to clarify how this can be true
– and will allow one to place the work performed in this thesis in a larger
context. The goal of the next chapter is therefore to provide the reader with
this insight.



C H A P T E R 2

A Bose-Einstein condensate
of metastable helium

The nature of the physicist exhibits a peculiar desire of wanting to go to a
lot of bother, the sole recompense being the personal satisfaction gained in
reaching the goal1. One might think that this was also the case when physi-
cists first attacked the problem of Bose-Einstein condensation of metastable
helium. It had already been proven that Bose-Einstein Condensation was
experimentally possible, and not only for one atomic species, but for all of
H, Li, Na and Rb. This time, however, the recompense went far beyond
personal satisfaction. As we will see in this thesis, the BEC of He∗ offers a
new and very useful tool for the physicist: thanks to the internal energy of
the atoms, one can use a micro-channel plate for detection of a cloud of neu-
tral atoms. Moreover, due to a continuous production of ions in the cloud,
one can use the same micro-channel plate to monitor the sample without
disturbing the natural evolution of the cloud.

In this chapter, we will first give an ultrashort introduction to the physics
describing the Bose-Einstein condensation, and introduce some concepts
needed later on. However, this chapter is primarily devoted to an overview
of the different steps required to produce and characterize a Bose-Einstein
condensate. It will be far from exhaustive, but it should at least give the
necessary background for understanding the experiments presented in this
thesis. If the reader desires more details on the apparatus, this can be found
in Refs. [34, 35, 36, 37]. We will in this chapter concentrate on the detection
of atoms as well as ions with a micro-channel plate, which is of particular
importance for these experiments. A very careful study of the micro-channel
plate was performed by O. Sirjean, and a more complete description can be
found in Ref. [37].

1This is, by the way, the reason why a lot of physicists are mountaineers in their spare
time.
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2.1 Bose-Einstein condensation

Many excellent review articles, Ph.D. theses and even books about Bose-
Einstein condensation already exist (see for instance [17, 45, 89, 90]). In
this section, we will just remind the reader some concepts which will be
needed in later chapters.

Bose-Einstein condensation is the macroscopic occupation of a single
quantum state. For the typical Bose-Einstein condensates in the gas phase,
the single quantum level is the ground state of the external trapping poten-
tial (neglecting at the moment atomic interactions). The starting point is
therefore this potential, which is a harmonic potential, experimentally re-
alized by using magnetic fields, as discussed below. This potential can be
written as

Vext(~r) =
1
2
mω2

x x
2 +

1
2
mω2

y y
2 +

1
2
mω2

z z
2,

where ωx, ωy and ωz are the trap oscillation frequencies. The ground state of
N non-interacting bosons in this potential can be written as the product ofN
identical wavefunctions, each solution to the time-independent Schrödinger
equation: (

−~2∇2

2m
+ Vext(~r)

)
φ(~r) = Eφ(~r), (2.1)

i.e. each described by a Gaussian function, which is the ground state corre-
sponding to a harmonic oscillator potential. Because of interaction between
atoms, the Schrödinger equation is modified. These interactions introduce
a non-linear term as expressed in the Gross-Pitaevskii equation (see for in-
stance [17]): (

−~2∇2

2m
+ Vext(~r) + Uφ2(~r)

)
φ(~r) = µφ(~r). (2.2)

The atomic interactions is proportional to the particle density, and the
strength of the interactions described by U = 4π~2a

m , with a the s-wave
scattering length discussed in detail in chapter 1. Note that if a is negative,
the potential is attractive, and if a is positive, it is repulsive. The energy µ
is the chemical potential. Even though we include interactions (as long as
they do not become too strong), we can still write the total wavefunction
as a product of the N individual wavefunctions. This is the mean field ap-
proximation. To determine the single particle wavefunction, we must solve
Eq. 2.2. Very often in the experiments however, the kinetic energy is neg-
ligible compared to the interaction energy. In that case Eq. 2.2 has a very
simple solution:

φ(~r) =

√
µ− Vext(~r)

U
, (2.3)
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for µ > Vext and φ(~r) = 0 outside. The density is obtained from n(~r) =
φ2(~r), i.e. it has the shape of an inverted parabola. This is the Thomas-
Fermi approximation. By requiring N =

∫
n(~r)d~r, we can obtain a relation

between chemical potential and atom number:

µ =
~ω̄
2

(
15Na
σ

)2/5

,

where ω̄ = (ω2
xω

2
yω

2
z)

1/3 and σ = (~/mω̄)1/2. The peak density n0 is the
maximum density (the density at ~r = 0) and can also be obtained from the
chemical potential:

n0 =
µ

U
=

m

4π~
× µ

a
.

We will use these relations extensively in chapter 4 to obtain the atom
number and peak density from measurements of the chemical potential for
the condensate.

2.2 Experimental apparatus

Let us start with an overview of the setup used for making our Bose-Einstein
condensate. It is shown in Fig. 2.1. The setup can be separated into four
main parts:

• The source (A): an atomic beam of helium atoms is generated, and the
atoms are excited to the 23S1 metastable state (defined in Appendix
A).

• The transverse collimation of the atomic beam (B): it consists of two
pairs of retro-reflected laser beams, resonant with the 23S1 → 23P2

transition.

• The Zeeman Slower (C): the longitudinal velocity of the atoms is de-
creased giving a slow atomic beam.

• The ultrahigh vacuum chamber (D): the atoms are collected in a
magneto-optical trap before being transferred to a magnetic trap for
further cooling. It is also here that the detection of the cold atomic
clouds with a micro-channel plate takes place.

In the following we will go more into detail with the description of these four
zones.
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Figure 2.1: The experimental apparatus for producing a BEC of He∗. The
different parts are described in the text.
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2.2.1 The source zone

The ground state helium atoms come out of a bottle attached to the extreme
left of the setup in Fig. 2.1 A, and enter the first zone of the vacuum system.
This part of the vacuum system is pumped by a diffusion pump (3000 `/s)2,
which is the first pump indicated in Fig. 2.1. The pressure obtained is around
10−7 mbar when the atomic beam is switched off, and increases to around
2×10−4 mbar, when the experiment is running. When the bottle is opened,
the ground state helium atoms are guided through a narrow opening in a
copper block (1a in the figure). The copper block is cooled by liquid nitrogen,
in order to decrease the initial velocity of the atoms. The smooth operation
of the experiment is extremely dependent on this cooling process – a small
increase (5-10 %) of the temperature of the copper block makes it impossible
to obtain a Bose-Einstein condensate. For instance, the temperature of the
block is increased if the nitrogen flow is hindered by the presence of small
nitrogen crystals, stuck in the thin pipes. Having passed the block, the atoms
explode into the vacuum, forming a supersonic atomic beam [91, 92]. The
excitation to the metastable state happens between a needle held at a voltage
of around 3 kV and a skimmer, which is grounded (1a in the figure). The
needle is situated parallel to the beam before the copper block. The needle
is separated from the copper block by boron nitrite, which in addition to its
high thermal conductance isolates electrically, assuring that the discharge
happens between the needle and the skimmer, and not between the needle
and the copper. The excitation efficiency is of the order of one atom excited
out of 104 atoms remaining in the ground state. When the experiment is
running smoothly, the initial flux of the beam produced is ' 1012 atoms/s
and the longitudinal velocity is of the order of 1200 m/s. The divergence of
the beam is ' 40 mrad [34].

2.2.2 Transverse collimation of the atom beam

After leaving the source, the atoms enter the transverse collimation region B.
The vacuum here is also maintained by a diffusion pump. Due to the small
size of the opening in the skimmer, the conductance between the source
and the transverse collimation region is small, and a differential pressure is
established: the vacuum in the collimation zone is maintained at 10−7 mbar,
even when the atomic beam is on. The transverse collimation consists of two
pairs of retro-reflected laser beams perpendicular to the propagation of the
atomic beam (Ox and Oz in Fig. 2.1). As indicated in the figure, a second
pair of windows situated next to the first one is present. It was designed
to apply the transverse collimation a second time, but it turns out not to
be necessary. The laser beams are resonant with the 23S1–23P2 transition,
and by using curved wave fronts, interaction with atoms from a broader
velocity range [93, 94, 95] is possible. The beams have an elongated profile,

2This is the efficiency for helium, while for nitrogen, it is 2400 `/s [34].
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the longest side parallel with the beam, in order to increase the interaction
time. The effect of the transverse collimation is twofold. First, it decreases
the divergence of the atomic beam, which is essential because the Zeeman
slowing requires a long propagation (3 meters) of the beam. Second, it
eliminates a large fraction of the ground state atoms in the beam: as the
collimation only affects the atoms in the metastable state, only these atoms
are collimated. By subsequently passing the beam through a small pinhole
(4 mm), a large fraction of the ground state atoms are filtered away. To
avoid a perturbation of the experiments in the ultrahigh vacuum chamber
due to the continuous atomic beam, a mechanical shutter is situated before
the pinhole, in order to cut off the atomic beam once a sufficient number of
atoms has been collected in our trap.

After the transverse collimation, the beam contains ' 2× 1011 atoms/s
and the divergence is reduced to about 2 mrad. This produces an increase of
the atomic beam intensity after propagation in the Zeeman of approximately
a factor of 70 [36].

2.2.3 Zeeman Slowing of the atomic beam

The next part of the experiment is the Zeeman Slower C. This part is sepa-
rated from the source and transverse collimation vacuum system by a valve,
which is closed when the experiment is not running. The vacuum in the
Zeeman Slower is maintained by two turbo molecular pumps, 1c and 2c,
with pumping speeds of 250 `/s and 50 `/s, respectively. A diaphragm is
situated near the second turbo molecular pump, in order to eliminate as
many as possible of the remaining ground state atoms3. The small diameter
of the inner tube of the Zeeman Slower (43 mm) in combination with the
diaphragm leads to a low conductance and hence a differential vacuum: it is
3× 10−8 mbar immediately after the valve and decreases along the Zeeman
Slower to the ultrahigh vacuum chamber, where the pressure is less than
10−10 mbar.

The Zeeman Slower has become a standard tool in cold atom experiments
[96]. A counter-propagation laser beam combined with a longitudinally de-
creasing magnetic field slow the atomic beam down due to the simultaneous
presence of the Zeeman and Doppler effect. Result: the He∗ atoms are slowed
down from 1200 m/s to around 100 m/s, and the beam flux is reduced to
∼ 5×109 atoms/s. As the beam has diverged during the propagation due to
spontaneous emission (the beam diameter is increased from few millimeters
to around 4 cm), the profile of the beam is larger than the capture area of the
magneto-optical trap (see later in this chapter), limiting the loading rate. In
addition, because of geometric limitations, there is a gap between the end

3Even when using the pinhole, far from all ground state atoms are eliminated. On
arrival at the vacuum chamber, the beam still contains 150 times more ground state
atoms than metastable atoms. As they are not loaded into the trap, they will contribute
to the background pressure before they are pumped away.
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of the Zeeman Slower and the center of the trapping region, which also de-
creases the loading rate. We measure a loading rate of the magneto-optical
trap of ∼ 5× 108 atoms/s.

A remarkable thing about our Zeeman Slower is it length – it is almost
three meters long, much longer than the typical Zeeman Slowers used in
rubidium experiments, for instance. The reason follows from the expression
of the length, which can be written as [34]:

L =
mv2

~kΓ
∝ kBTinit

~kΓ
. (2.4)

For He∗, both the linewidth of the transition and the wave number k = 2π/λ
is small compared to rubidium, making the required length of the Zeeman
Slower larger. Note that this length does not depend on the atom mass, but
only of the properties of the atomic transition.

2.2.4 The ultrahigh vacuum chamber

The heart of the experiment is the ultrahigh vacuum (UHV) chamber (D in
Fig. 2.2), which is a large metallic chamber. Most often BEC experiments are
done in small glass cells, because it represents several advantages compared
to a large metallic chamber. For instance, as the volume is smaller (and
glass can be cleaner), it is easier to reach a low pressure. In addition to this,
the small size of a glass cell allows the coils used for generating trapping
magnetic fields to be placed very close to the atoms. Consequently, it is
easier to create stronger fields with lower currents. Finally, no eddy currents
can be induced in the glass which generates perturbing stray fields. In our
case however, practical considerations prevent us from using a glass cell:
we use a micro-channel plate (section 2.4), which requires connections to
electronics outside the vacuum and a large space (the micro-channel plate
is in our case situated 5 cm below the trapping region). Moreover, since
glass is a non-conducting material, the inner surfaces of the cell can become
polarized, perturbing the electric fields applied to the micro-channel plate.
Consequently, the glass cell is not a possible choice, and one must instead
deal with the difficulties arising from the use of a large metallic vacuum
chamber.

The volume of the chamber is 8 `, and the material used is stainless steel.
The geometry has been chosen in order to bring the exit of Zeeman Slower
as close as possible to the center of the trapping region, without blocking
the optical path of the laser beams used for the magneto-optical trap. In
order to minimize the distance between the magnet coils used for trapping
the atoms (section 2.3) and the atomic cloud, re-entrant flanges are used, as
shown in Fig. 2.2. Shortening this distance minimizes the current necessary
to generate the desired fields. Despite the re-entrant flanges, the current
still needs to be quite high (240 A), and to obtain an efficient cooling, the
coils are made of hollow wires, inside which water flows under pressure. An



56 Chap 2 - A Bose-Einstein condensate of metastable helium

alternative solution would be to bring the coils closer to the trapping zone
by placing them inside the vacuum system, but when working at UHV, the
less one puts inside the chamber (especially something which needs water
cooling), the better it is.

The chamber is pumped by a turbo molecular pump (500 `/s) with a high
compression ratio for hydrogen and helium (5×106 and 5×107, respectively).
The pressure obtained with the turbo molecular pumps alone is around
10−10 mbar, which is not sufficiently low. Therefore the pressure is further
decreased by using titanium sublimation [34]. After sublimation the pressure
reaches∼ 10−11 mbar4, corresponding to a lifetime of a magnetically trapped
cloud of approximately 100 s.

2.3 Towards cold clouds and Bose-Einstein con-
densates

After this overview of the main parts of the setup, we can now turn to
the production of cold clouds and condensates. We will describe briefly
the sequence step by step: the magneto-optical trap, the magnetic trap,
radio-frequency evaporation and how we detect the atomic cloud and ions
produced.

2.3.1 The magneto-optical trap: millikelvin regime

We load the atoms from the slow beam directly into magneto-optical trap
(MOT). This type of trap was first proposed by J. Dalibard and later ex-
perimentally realized [97]. It consists of 3 pairs of red-detuned, circular
polarized, counter-propagating laser beams (σ+ and σ−) and magnetic field
gradients. By Doppler and Zeeman shifts, the atoms are both confined to
the trap center and cooled down. When polarization gradient cooling is ne-
glected, the theoretical lower temperature limit T for atoms trapped in a
MOT is [98]:

T = TD

(
1 +

2I
Isat

+
(

2∆
Γ

)2
)

Γ
2|∆|

, (2.5)

with I the the intensity and ∆ the detuning of the MOT beams relative
to the atomic transition. The constant Γ is the natural linewidth, TD the
Doppler temperature and Isat the saturation intensity. Appendix A gives
these values for He∗. For the MOT beams that we use, I

Isat
' 25. Equation

2.5 allows one to deduce the optimal detuning ∆opt corresponding to the
lowest temperature:

∆opt =
Γ
2

√
1 +

2I
Isat

. (2.6)

4The given pressure is an estimate – it is too low to obtain a precise measurement.
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Figure 2.2: The UVH chamber where the BEC of He∗ is produced. The
diagram is approximately drawn to scale. The Zeeman Slower is situated
behind the chamber, perpendicular to the projection of the chamber shown
in the figure.

This gives ∆opt = 3.6 Γ. Although this minimizes the temperature, the
most important quantity for us is the atom number, and the detuning plays a
critical role for atom losses. In a MOT, the He∗ atoms are not spin polarized,
and therefore the two-body Penning collisions are allowed (chapter 1). In
addition, laser light near resonance tends to increase further the collision
rate. This is because the interaction between two atoms is stronger, when a
non-negligible fraction of atoms is excited to a P state [76, 77, 86, 87, 99]. To
minimize this effect, the MOT laser light is detuned more than corresponding
to the optimal detuning given in Eq. 2.6. This reduces the number of atoms
in the P state and thereby the destructive Penning collisions. The optimal
detuning turns out to be 25 Γ [34]. Detuning the laser light decreases the
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trapping strength of the MOT, and to compensate this, the gradient of the
magnetic field is increased. When the gradient reaches 50 G/cm, the atom
number saturates at a value of 5 × 108 atoms. The rms width of the cloud
is 2 mm, the peak density is n0 ∼ 4 × 108 atoms/cm3 and the measured
temperature is around 1 mK.

2.3.2 Optical molasses and transfer to magnetic trap

The minimum temperature reached in a MOT is limited by the presence of
the laser light, which heats the sample through spontaneous emission. The
next step in the cooling process is therefore to trap the atoms without use
of laser light, namely in a purely magnetic trap. Here the confinement is
provided by the interaction between the magnetic moment of the atoms and
an external magnetic field. To obtain a good transfer to the magnetic trap,
the temperature needs to be lowered further before this transfer is done.
This is achieved by using a 3-D optical molasses: the magnetic fields are
switched off, and the former MOT beams constitute the optical molasses.
Without the magnetic field present during the MOT, the cloud becomes
sensitive to residual stray magnetic fields. These fields are compensated by
using small additional magnetic coils. The result of the optical molasses is a
cloud containing approximately 4×108 atoms with a measured temperature
of 300 µK. This is higher than what is expected – the reason might be that
the sample is too dense to reach the expected Doppler temperature.

To optimize the transfer, the size of the cloud should be kept constant
during the transfer [34]. This is done by matching the magnetic trap cur-
vature to the initial size of the cloud so that the latter neither expands nor
contract in the new trap. Therefore the magnetic trap must be in a “non-
compressed” configuration (discussed below). Another important thing is
that for He∗ in the 23S1 level, only the mJ = 1 level is a trapping state (mJ

is the projection of J on the quantization axis). In the MOT, the atoms
consist of an equal mixture of mJ = −1, mJ = 0 and mJ = 1. In order
not to lose two thirds of the atoms, an optical pumping pulse is applied to
pump all atoms into mJ = 1. This is done by applying a retro-reflected, σ+

polarized laser beam 30 µs [34]. Once all the atoms are in the mJ = 1 level,
the sample is said to be spin polarized. In general we manage to transfer
close to 100 % of the atoms in the MOT into the magnetic trap.

2.3.3 The magnetic trap: towards the microkelvin regime

In the following we will explain the principles of magnetic trapping, and give
some characteristics of the trap that we use for metastable helium.

Principles of magnetic trapping

The principle of magnetic trapping is based on the interaction between the
permanent magnetic moment of an atom µ with an external magnetic field
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B(x). The interaction energy can by written as U(x) = −µ ·B(x) = ~ωL,
where we have defined the Larmor frequency ωL, the frequency of the pre-
cession of the magnetic moment of the atom around the magnetic field. For
an atomic level having a total angular momentum J, the magnetic moment
can be written as µ = −gJ

µB
~ J, with gJ the Landé factor and µB the

Bohr magneton. If the Larmor frequency is large compared to the rate of
change of the external magnetic field, the magnetic moment will adiabati-
cally follow the external field. The magnetic moment is then always parallel
to the direction the external field, and in this case the interaction potential
simplifies to

U(x) = gJ
µB

~
mJ B(x), (2.7)

where B(x) is the modulus of the magnetic field B(x). The adiabatic
condition is always fulfilled for the parameters we use in our experiment.
If the external field is harmonic, atoms with gJ mJ > 0 will experience a
minimum in the potential, around which they can be trapped. For He∗

(23S1), gJ = +2, so only the mJ = 1 level is a trapping state. When gJ is
positive, µ and B(x) are anti-parallel. The potentials are shown in Fig. 2.3.

m  = +1J

m  = -1J

m  = 0J

µ

B

U(x)

x

Figure 2.3: Potentials created by the interaction of the magnetic moment of
an atom with an external magnetic field of harmonic shape. If the magnetic
moment of the atom is parallel to the external field (mJ = −1), the potential
has a maximum, and no trapping force exists. If the magnetic moment
is anti-parallel to the field (mJ = 1), the atoms can be trapped in the
minimum of the potential. If the magnetic moment is perpendicular to the
field (mJ = 0), the atom is insensitive to this field.
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Characteristics of the magnetic trap

The trap configuration used in our experiment is the Ioffe-Pritchard clover-
leaf trap [100]. This choice is partly based on geometry considerations: as
it is preferable to avoid having magnetic coils in the vacuum chamber, the
cloverleaf trap combined with re-entrant flanges allows one to bring the coils
close to the atoms. Also, the Ioffe-Pritchard configuration posses a non-zero
field minimum, in order to avoid non-adiabatic transitions to non-trapping
states [101]. Twelve coils are used to generate the fields required for the

Compensation
of bias field

Dipole
(curvature B'')

Quadrupole
(gradient B')

x

z

y

Figure 2.4: Coils in the Ioffe-Pritchard configuration used to create the
magnetic trapping potential. The pair of four elliptic coils create a gradient
and confine the atoms in the transverse direction while the pair of small
circular coils creates a harmonic dipole potential with a given curvature in
the axial direction. The large circular coils is used to compensate the bias
field and consequently compress the trap, see text.

trapping potential as shown in Fig. 2.4. A pair of four small elliptic coils
creates a quadrupole field (gradient B′) which traps the atoms in the trans-
verse plane (x, y). A pair of coils with the current running in the same
direction, adds a confining potential in the axial direction (z). These coils
are separated by more than in the Helmholtz configuration, and create a
harmonic dipole field with a curvature B′′. The value of this field at the
trap center is called the bias field and is denoted by B0. To be able to
adjust this bias field, a second pair of coils is added, this time in Helmholtz
configuration and with the current running in the opposite direction relative
to the dipole coils. This gives rise to a field which is uniform in the axial
direction, allowing one to reduce or almost cancel the bias field. As we will
see below, the value of the bias field also influences the radial confinement
of the atoms: by reducing the bias field, we can compress the trap.

The total magnetic field can be written in terms of the bias field B0, the
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gradient B′ of the dipole field and the curvature B′′ of the quadrupole field.
Neglecting terms higher than second order in x, y, and z, the magnetic field
B(x, y, z) in the vicinity of the trap center can be written as

B(x, y, z) '

 0
0
B0

+B′

 x
−y
0

+B′′

 −xz
−yz

z2 − 1
2(x2 + y2)

 . (2.8)

where B0 is the sum of the field contribution from the compensation coils
and the other coils. The atom-field coupling depends on the modulus of
B(x, y, z) which is

B(x, y, z) '

√(
B0 +B′′

(
z2 − x2 + y2

2

))2

+B′2(x2 + y2) . (2.9)

The exploration of the different regimes

One can define two working regimes for the Ioffe-Pritchard trap, depending

on the size (temperature) of the cloud. If z �
√

B0
B′′ and

√
x2 + y2 �

B0
B′ , which corresponds to the requirement5 kBT � 2µBB0, a second order
development of the expression 2.9 is a good approximation:

B(x, y, z) ' B0 +

(
B′2

2B0
− B′′

2

)
(x2 + y2) +B′′z2 . (2.10)

The field is therefore harmonic in the three dimensions with an axial curva-
ture B′′ and a radial curvature equal to

(
B′2

2B0
− B′′

2

)
. Therefore, by decreas-

ing the bias field, the radial curvature can be increased. This approximation
is valid for low temperatures or high bias field. The other regime corresponds
to high temperatures and low bias fields. In this limit, the trap potential
becomes linear in the radial directions (with a gradient B′) and harmonic in
the axial direction with a curvature B′′. The trap is said to be semi-linear.

5We write the energy in one direction as kBT ∼ 2µBB′′〈z2〉. Now for the approximation
to be valid 〈z2〉 �

√
B0/B′′, and it follows that kBT � 2µBB.
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Figure 2.5: Profile of the magnetic field as a function of radial (x) and axial
(y) directions. The left column shows the characteristics of an uncompressed
trap, while the right column corresponds to a compressed trap (see text).
The uncompressed trap remains harmonic for all directions independent of
the temperature of the cloud. A compressed trap becomes semi-linear in the
radial directions if the cloud explores a large zone (top graph in the right
column), while the central zone explored by a cold cloud remains harmonic
(second graph in the same column). In the axial direction, the potential is
always harmonic (bottom graphs).
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The two regimes are both explored during the cooling sequence. Not only
does the temperature of the cloud change, but the magnetic fields (B0, B′

and B′′) are deliberately varied in order to optimize the performance of the
trap during the different steps in the cooling process. In order to optimize
the loading, the currents in the trap coils will be chosen such that the trap
potential allows the cloud to conserve its size given by the optical molasses.
Later in the cooling process, to make the evaporative cooling efficient (see
later), the trap will be compressed, by lowering the bias field, in order to
increase the elastic collision rate. As the atoms are still relatively hot, they
will be exploring a semi-linear trap. Evaporative cooling then decreases
the temperature of and consequently the size of the cloud, and the atoms
will finally be confined to the purely harmonic region. The magnetic field
corresponding to the different regimes are shown in Fig. 2.5. In the left
column, the graphs show an uncompressed trap, which is always harmonic
independent of the temperature in both the radial and axial direction. In the
right column, the trap is compressed by lowering the bias field: the graph at
the top shows the behavior of the magnetic field in the transverse direction
relatively far from the origin, corresponding to the region explored by a hot
cloud. The second graph is a zoom on the central region of the trap. In this
zone, explored by a cold cloud, the trap is harmonic. In the axial direction
the potential remains harmonic for all temperatures, even for a compressed
cloud. To give some numbers, let us divide the cooling sequence into parts
according to the characteristics of the magnetic trap:

• During loading from the optical molasses: B′ ∼ 85 G/cm and B′′ ∼
25 G/cm2. The current in the compensation coils is zero, leaving the
bias field high: B0 ∼ 190 G. The temperature of the cloud is around 1
mK, such that kB T

2µB B0
∼ 0, 01, and we are then in the regime described

by Eq. 2.10, namely an anisotropic harmonic potential with a radial
curvature of 7 G/cm2 and an axial curvature of 25 G/cm2.

• Compression of the trap: This is done by decreasing the bias field B0.
According to Eq. 2.10, this increases the curvatures in the radial plane.
A typical value of the bias field after compression is 300 mG. As the
compensation coils are not perfectly Helmholtz, the axial curvature is
also slightly modified. After compression, the bottom of the trap is
then very anisotropic, with a radial curvature of 12000 G/cm2 and an
axial curvature of 20 G/cm2. The atoms, however, explore a much
wider zone of the trap: as the bias field has decreased without any
decrease in the temperature of the cloud, kB T

2µB B0
∼ 25, and the atoms

feel a semi-linear trapping potential with a gradient of 85 G/cm and a
radial curvature of 20 G/cm2 (see Fig. 2.5). Note that the semi-linear
potential is steeper than the corresponding harmonic potential, and
this enhances favorably the elastic collision rate in the beginning of
the evaporation.
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• After evaporation the temperature has decreased down to ∼ 1 µK
and kB T

2µB B0
∼ 0.02. Consequently, the atoms now only explore the

harmonic zone of the trapping potential (12000 G/cm2 and an axial
curvature of 20 G/cm2).

Finally we will relate the magnetic fields to the trapping potential experi-
enced by the atoms in the harmonic regime. To do this we define the trap
oscillation frequencies ωx, ωy and ωz

U(~r) =
1
2
mω2

x x
2 +

1
2
mω2

y y
2 +

1
2
mω2

z z
2,

By comparing Eq. 2.7 and Eq. 2.10, we see that the oscillation frequencies
are related to the magnetic field in the following way:

ωx,y ≡ ω⊥ =

√
4µB

m

(
B′2

2B0
− B′′

2

)
∼

√
4µB

m

B′2

2B0
, (2.11)

and

ωz ≡ ω‖ =

√
4µB

m
B′′, (2.12)

with B′ ' 85 G/cm and B′′ ' 20 G/cm2. A bias field of B0 = 360 mG gives
ω⊥/2π ' 1200 Hz and ω‖/2π ' 50 Hz. Experimentally, it is hard to obtain
precise values of the oscillation frequencies, because direct measurement of
B′ and B′′ in the trap center is impossible. However, measurements by
parametric heating of the cloud is possible: when the trapping magnetic
field is modulated with a frequency two times higher than the trap oscillation
frequency, a pronounced heating of the cloud is observed [37]. In our case we
have two ways of observing a heating: either by an atom loss observed in the
Time-Of-Flight signal, or by a sudden decrease in the ion signal (this signal
is discussed in chapter 3). The frequencies measured in this way agrees with
the ones calculated using approximate values of the magnetic fields.

The trap oscillation frequencies are important because they determine
the density of the sample, which governs the collisions, in particular the
elastic collisions, responsible for an efficient evaporative cooling, as we will
see below.

2.3.4 Radio-frequency evaporative cooling

Once the atoms are trapped in a magnetic trap, they can be cooled further
by evaporative cooling. The basic idea is to eliminate atoms with an energy
larger than a certain limit and let the sample restore thermal equilibrium via
elastic collisions (“good collisions”). The procedure is repeated, decreasing
progressively the energy limit, above which atoms are ejected. The restora-
tion of thermal equilibrium is called thermalization, and the more it happens
fast, the more efficient is the cooling.
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In practice, the ejection of atoms are achieved using a radio-frequency
(rf) field which transfers high-energy atoms to non-trapped or anti-trapped
states. The principle is shown in Fig. 2.6. An rf-field of frequency νrf driving
the transitions is applied to the sample. Atoms with an energy greater than
or equal to Elimit will be resonant with the transition towards mJ = 0 or
mJ = −1 and therefore ejected from the trap. This provides a selection
of the atoms based on their energy. When Elimit is progressively decreased
(this is called forced evaporation), the average energy per atom decreases,
and the sample can be cooled down until a pure BEC is reached. In general,

x

mJ = +1

mJ  = 0

mJ  = -1

hνRF

hνRF

Elimit

U(x)

Figure 2.6: The principles of evaporative cooling. The trapped state cor-
responds to mJ = 1, mJ = 0 is a non-trapping state and mJ = −1 is
an anti-trapping state. Atoms with an energy higher than Elimit will be
resonant with the applied radio-frequency field, and transferred to non- or
anti-trapping states, and consequently ejected from the trap.

the BEC will fast decay to a thermal cloud due to heating of the sample.
However, the rf-frequency can be kept constant at the final value, in order
to continuously eject the hot atoms. This is called an rf-shield, and it allows
one to keep a pure BEC. On the other hand, if the rf-frequency is decreased
beyond the energy of the condensate, all the atoms will be abruptly ejected.
It is therefore important to know exactly at which rf-frequency a pure BEC
is formed: to do we observe either the cloud or the ions produced by the
cloud. The cloud can be observed by switching off the trapping potential
and let the entire cloud fall on our detector: the shape of the cloud tells us
if we have reached a pure BEC (see section 2.5), and we can therefore see
at which rf-frequency this happens. We can also identify the rf-frequency
corresponding to a pure BEC from the ionization rate: the ionization rate
drops abruptly to zero when this rf-frequency is reached. This is because
in that case, the rf knife expels all atoms, and without atoms in the trap,
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no ions are produced. How we in practice observe the atomic cloud and the
ions is the subject of the next section.

2.4 Electronic detection of atoms and ions

The fact that the helium atoms are in a metastable state with a large ex-
citation energy opens the door for an electronic detection scheme using a
micro-channel plate (MCP). The internal energy of one He∗ atom is large
enough to eject an electron from a surface, depending on the material of
this latter. By amplifying this electron signal, using the same principle as
in a photo multiplier, one can detect the atoms one by one. In addition
to the neutral metastable atoms, the ions created by collisions can also be
detected with an MCP: with electric fields, the ions can be accelerated and
thereby gaining enough kinetic energy to eject electrons from the surface.
To distinguish between atoms and ions, we can add a metallic grid above
the MCP. The voltage of this grid can be varied: if we put a positive voltage
we repel all positive ions, and the signal is due to neutral metastable atoms
alone6. If we put a negative voltage we detect both atoms and ions.

In all experiment described in this thesis, we use an MCP for the de-
tection of atoms and ions. As mentioned at the beginning of this chapter,
a detailed discussion of our micro-channel plate (MCP) can be found in
[37]. For non French reading people, more general articles about the topic
exist, see for instance [102, 103, 104]. In this section, we will give a brief
overview of how our MCP works, and discuss the detection efficiency as well
as eventual saturation problems.

2.4.1 The micro-channel plate: working principle

The principle of the detector is illustrated in Fig. 2.7. The upper surface
is held at -2 kV, the lower surface at 0 kV. The first electrons created in
the entrance of the channel therefore experience an acceleration along the
propagation inside the channel, and the probability for emission of secondary
electrons increases progressively. At the exit of the channel a measurable
current is generated. A micro-channel plate consists of a thin glass plate with
a very large number of microscopic channels, which are slightly tilted relative
to the surface normal direction. Therefore, a particle arriving perpendicular
to the surface of the MCP, will hit the internal surface of the channel, and
an electron can be ejected. Each of the channels works individually as an
electron multiplier, as illustrated in Fig. 2.8, where one single channel is
shown. The surface of each micro-channel is coated such that the probability
of emission of secondary electrons becomes close to one. The two outer
surfaces of the MCP are metal-coated in order to connect electrically the
different channels. Since the channels are semi-conducting, a current will

6Even though we put a positively biased grid, we do not detect the electrons, due to
the MCP voltage of −2 kV.
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Figure 2.7: Illustration of the micro-channel plate. When a He∗ atom falls
on the micro-channel plate (MCP), the internal energy of the atom can be
transferred to the surface of the detector, where an electron consequently is
ejected. This electron is multiplied inside a micro-channel, and at the exit
of the channel, enough electrons are present to create a measurable current.

then circulate between the two surfaces of the MCP. This current, called the
“strip current” will depend on the voltage applied, and the resistance of the
MCP (≈ 100 MΩ). In practice, to increase the gain, the MCP used in our
experiments is composed of two superposed micro-channel plates (a 2-stage
MCP, see the technical documentation [105]). The working principle is the
same, but due to the higher gain, the detection efficiency is increased.

2.4.2 Atoms and ions: two different regimes

As mentioned in the end of section 2.3.4, we can observe the entire atomic
cloud by switching off the trap potential and let the cloud fall on the de-
tector. We will call this a Time-Of-Flight (TOF) signal. When we record a
TOF signal, the metastable atoms from the entire cloud arrives almost si-
multaneously (within ∼ 10 ms) on the MCP. For instance, a BEC containing
105 atoms creates a maximum flux as high as 107 atoms/s. The flux of ions
produced by collisions in the cloud being held trapped, is much lower than
the atom flux corresponding to a TOF signal. For the most dense clouds,
the ionization rate reaches maximum 3×105 ions/s. To adapt the detection
to the flux, we will use the MCP in two different modes:

Atom detection

As the flux is very high precautions must be taken to avoid saturation. In
this context saturation means that the signal from the micro-channel plate
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Figure 2.8: One separate channel from the MCP. The channel is for sim-
plicity shown horizontally, but in the MCP, all the channel are only slightly
tilted relative to vertical. An ion or atom entering a channel, is multiplied
due to the special coating of the inner surface of the channel, and at the exit
of the channel, enough electrons are present to be easily detected. As indi-
cated, a voltage difference is applied between the input and output surface.
This accelerates the electrons inside the channel, and increases the gain.

is no longer directly proportional to the number of incident particles. In
order not to saturate the MCP, the voltage applied is limited to a value,
for which the detector works in a low-gain regime. In practice, we apply
1.75 kV. In this regime, each channel can multiply simultaneously several
particles, avoiding saturation even for a high flux of atoms. Using an signal-
integrator, we obtain a continuous current coming from the MCP, with an
amplitude proportional to the incident flux. We say that the detector works
in analogue mode.

Ion detection

To detect the ions, we will increase the applied MCP voltage in order to run
the detector in the high-gain regime. A typical voltage applied is 2.1 kV.
With this voltage, each ion creates an avalanche of electrons, giving rise a
single current pulse coming out from the MCP. The pulses are peaked and
relatively narrow, and by using a discriminator we can in principle obtain a
discrete signal for each ion detected. We then use a “National Instrument
counting card” to register the counts and obtain the ionization rate. The
detector is used in counting mode.

Experimentally, we can change between the two regimes by using an elec-
tronic switch, in order to switch the signal from the fast amplifier (required
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for the counting mode) connected to the counting card, to the slower am-
plifier used in the analogue mode. We can perform the switch fast, but this
generally not necessary: the ions which we detect come from a trapped cloud
and the atoms from a cloud which has undergone a given Time-Of-Flight.
This means that we have got all the time during the Time-Of-Flight, to
switch from one amplifier to another; for a cold cloud this time is 100 ms.

2.4.3 Detection efficiency

Assuming that we do not saturate the detector, the number of incident parti-
cles can be determined from the signal. In analogue mode, the relationship
between signal and incident flux depends on the gain, while in counting
mode, the pulse height is without importance, as long as it remains higher
than the discriminator level. In both modes, the detection efficiency depends
on the quantum efficiency of the MCP and geometrical considerations. First
we consider the geometrical limitations, which are identical for both atoms
and ions. It arises from two contributions: the open (active) surface of
the micro-channel plate corresponding to the entrance of channels, and the
shielding by the two metallic grid used to manipulate the ions. In numbers,
the open surface is 60 % of the total MCP surface. The geometric trans-
mission of each grid is approximately 0.84 and the total transmission of the
grids is therefore 0.842 ' 0.7. Consequently, the efficiency is intrinsically
equal to or less than 0.6× 0.7 = 0.42 (taking into account the open surface
and the two grids). Two assumptions have been made: for the ion detec-
tion, we have assumed that the ions are not guided through the openings in
metallic grid due to the stronger electric fields behind the grids created by
the MCP. This could actually increase the transmission above the one given
by the geometric area. In addition, both for ion and atom detection, even
the coefficient taking into account the open area of the MCP itself could
be overestimated. One could imagine that electrons generated by atoms or
ions falling on the dead area of the MCP are guided along the surface to
the active area, and then could be detected. This would also increase the
coefficient above the one corresponding to the open surface alone.

However, as we do not have any good estimate for the probability for
those processes, we will in the following assume that the 0.42 is the correct
factor, for atoms as well as ions. In addition to this factor, we have the
quantum efficiency for the detection to take into account. This is different
for atoms and ions, so we treat the two cases separately below.

Ion detection efficiency

To determine the overall ion detection efficiency, we write the detected ion-
ization rate Idet as a function of the real ionization rate Ireal:

Idet = 0.42× εion × Ireal ≡ α× Ireal
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We have assumed that due to the negative voltage applied to the metallic
grids positioned above the MCP all ions arrive on the MCP7. The quantum
efficiency for the ion detection is denoted εion. It has been experimentally
shown that for an applied MCP voltage above 2 kV, every ion entering
a micro-channel ejects at least one electron [103, 106], implying that the
quantum efficiency is close to one. Therefore at low temperatures, the total
detection efficiency is expected to be limited only by the open area of the
MCP (metallic grid and open surface), and should therefore be close to 0.42.
At this stage, we do not have a good estimate for the uncertainty on the ion
detection efficiency, but in chapter 5, based on measurements presented in
later chapters, we will be able to give a strict lower limit for this quantity.

The various saturation mechanisms are described in [37]. We will here
only give a number: for the ion detection in counting regime, the saturation
limit of the MCP has been estimated to ' 2×105 ions/s. This value is lower
than the ionization rate produced by our most dense clouds. Consequently,
when absolute ionization rate measurements are needed, we only produce
clouds which are sufficiently dilute so that their ionization rate becomes
inferior to the saturation limit.

Atom detection efficiency

In analogue mode, the relationship between the detected signal and incident
flux depends on the gain (which again depends on the MCP voltage). In
order to relate the analogue MCP signal Vout to the atom flux initially
created by the cloud F we write:

Vout = 0.42× β(T )× εatom ×GeR× F

β(T ) takes into account the fact that only a limited fraction of the initially
created atoms arrive on the MCP. When the temperature of the cloud is low
(BEC or vicinity), β(T ) is equal to one. The quantum efficiency, εatom - the
probability that an electron is ejected when a He∗ atom touches the internal
surface of a micro-channel - is not very well known, but it is estimated to be
close to one [86]. The gain G is the average number of secondary electrons
per electron initially ejected, which is estimated to be 5× 104 for an applied
MCP voltage of 1.75 kV, and 2 × 105 for 1.85 kV [37]. The charge of the
electron is denoted by e and R is the resistance of the amplifier used, which
is 6.8 MΩ. In total, for 1.75 kV we have Vout = Finc × 2.3 × 10−8 V s while
for 1.85 kV Vout = Finc×9.2×10−8 V s. In most of our experiments we have
used 1.75 kV.

The saturation limit in the analogue detection mode for a MCP voltage
of 1.75 kV is estimated to be around 107 atoms/s [37]. This corresponds
to the maximal flux for our largest BEC, and we can therefore assume that

7Tests show that this is the case when the cloud is sufficiently cold, i.e. below 500 µK
[37]
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the detector always works below the saturation limit when we are using it
in the analogue mode.

Resolution

The MCP used for the experiments described in this thesis gives the arrival
time for the incident particles, but is not position resolved. In analogue
mode, the time resolution is limited by the RC filter of the integrator, which
is 0.4 ms. For a high temporal resolution, the detector must be used in
counting mode. Here the time resolution is given by the precision of our
National Instruments counting card. The card counts the separation time
between the two particles in multiples of 50 ns, so in principle we could use
50-ns bins, which would therefore be the time resolution. However, as our
flux is low (in 50 ns we expect much less than one count in average), we
need to increase the bin size, in in order to obtain a good signal-to-noise
ratio. Typically, we choose a bin size of ∼ 5 ms, which is therefore our time
resolution.

2.5 Time-Of-Flight signals

Having discussed the MCP, we will now give some more details on how the
TOF signal is recorded. To observe the cloud after a completed sequence,
we switch off the magnetic fields. Now if the cloud is hot (millikelvin) it
explodes symmetrically in space due to the kinetic energy of the atoms, and
only a fraction corresponding to the solid angle of the MCP is detected.
In this thesis however, the clouds observed will generally be very cold (mi-
crokelvin), and gravity governs the evolution: the cloud expands little and
all the atoms arrive on the MCP (see Appendix C for details). We will
therefore concentrate on cold clouds.

The TOF signal is observed on an oscilloscope. Examples of TOF signals
are shown in Fig. 2.9. The gray curve is the experimental signal, and the
black curve is a gaussian fit. The amplitude is given in arbitrary units. The
TOF signals are plotted as a function of arrival time of the atoms. The fall
of 5 cm takes around 100 ms when the atoms have zero initial velocity, which
is the case in the TOF signals shown. The first TOF signal corresponds to a
typical cold thermal cloud, far from the BEC threshold. It is well described
by a Gaussian function, indicating that the Maxwell-Boltzmann distribution
is valid [107]. The second TOF signal shows a cloud which is cooled past
BEC threshold. The narrow central peak indicates the presence of a BEC,
while the broad wings with a Gaussian shape indicates that thermal atoms,
i.e. atoms which are not in the condensate wavefunction, are present. In the
last TOF signal, almost all the atoms are in the condensate wavefunction,
and no thermal wings can be discerned.
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Figure 2.9: Example of three recorded TOF signals (gray curves), corre-
sponding to clouds released at different moments during the evaporative
cooling. The first one is released relatively early in the cooling sequence,
and the TOF signal shows a thermal cloud. The second TOF signal con-
tains both a macroscopic fraction in the condensate wavefunction and ther-
mal atoms. Both of these TOF signals are accompanied by a Gaussian fit
to the wings9 (black curves). In the last TOF signal, an almost pure BEC
is shown.
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To interpret a TOF signal – to characterize it qualitatively (thermal
cloud, cloud at BEC threshold or pure BEC) and quantitatively (atom num-
ber, temperature or chemical potential) a fit must be done. The fit function
depends on the nature of the cloud. If it is purely thermal, a Gaussian func-
tion works well, while for a cloud near threshold, a Bose function must be
used. For a pure BEC, a Thomas-Fermi profile is chosen. The fit functions
used for the data analysis presented in this thesis are described in Appendix
C, and the fitting procedure for thermal clouds will be discussed in chapter
5.

When we say that we let the atoms fall on the micro-channel plate in
order to record the TOF signal, things seem very simple. It is not. A strange
behavior of the magnetic fields during cut-off of the trap in addition to stray
magnetic fields during the Time-Of-Flight complicate the detection process.
The result is that it becomes very difficult to deduce directly the number of
atoms in the cloud from the TOF signal. We will now explain why this is
so.

2.5.1 Population transfer between magnetic levels

In section 2.4 we mentioned that for a very cold cloud (BEC or vicinity) all
the atoms arrive on the MCP. This was based on temperature considerations
alone. When a hot cloud is released from the trap, it explodes symmetrically,
and only a fraction corresponding to the solid angle is detected by the MCP
(∼ 0.5 %). In this case the gravity is negligible compared to the thermal
energy. For a very cold cloud, it is the opposite: gravity dominates the
evolution, and all the atoms fall like snow on a day with no wind onto the
MCP. This is only valid so far as the atoms are not influenced by magnetic
fields during the Time-Of-Flight. However, stray magnetic fields due to
eddy currents induced by the trap switch-off are present during the Time-
Of-Flight, and this makes it very improbable that magnetic field sensitive
atoms arrive on the MCP. Nevertheless, we observe an almost unperturbed
TOF signal on the MCP. The reason is the following: during the switch-off
of the trap, the bias field changes in an uncontrolled way from a positive
value to a high negative value, see Fig. 2.10. When it passes through zero,
non-adiabatic transitions from the trapping state mJ = 1 towards the mJ =
0 level take place. Now the atoms transferred to the mJ = 0 level are
insensitive to the stray magnetic field, and fall unperturbed on the MCP. It
is therefore essentially mJ = 0 atoms that we observe. For a nice discussion
of this phenomena, see [36]. We can verify that this is the case by applying
an additional magnetic gradient, stronger than the stray field, along the
vertical direction. This is realized by adding a magnetic coil above the
atoms. This field will accelerate mJ = 1 atoms towards the MCP. The
signal on the MCP with and without this additional gradient is shown in
Fig. 2.11. We see that the initial TOF signal (gray curve) is not modified
when we apply a gradient (black curve), indicating that these atoms are
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Figure 2.10: The evolution of the bias field after trap switch-off. The origin
corresponds to the switch-off of the magnetic trap. The bias field decreases
very abruptly, passing through zero. This induces non-adiabatic transitions
to the mJ = 0 level. The atoms transferred to this state constitutes the TOF
signal. The measurements of the field shown in the figure where performed
by A. Robert, and experimental details can be found in her thesis [36].

insensitive to magnetic fields. In contrast, a second peak is present when
we apply the gradient. This peak is very narrow and corresponds to the
mJ = 1 atoms which are accelerated towards the MCP, and which therefore
arrive earlier than the mJ = 0 atoms. We can also observe mJ = −1 atoms
by adding a coil below the atoms. However, the fraction transferred to this
state turns out to be negligible.

Distortion of signal due to the presence of mJ = 1 atoms

Even though the mJ = 1 atoms are mainly directed away from the MCP, a
small part of them will arrive together with the mJ = 0 atoms on the detec-
tor and be present in the TOF signal. Since the trajectories of these mJ = 1
atoms are perturbed by the stray field, the TOF signal will be slightly dis-
torted. In order to avoid this effect, we apply a horizontal magnetic gradient
in order to push away atoms from the MCP. In this way, the TOF signal
consists of the mJ = 0 atoms alone. In Fig. 2.12 we show two examples
of TOF signal corresponding to a thermal cloud and their fit: one in the
absence of the applied magnetic gradient (gray curve), and one where it is
present (black curve). The fit is clearly very bad in the first case, because
of the distortion of the signal due to mJ = 1 atoms. In the latter case, the
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Figure 2.11: TOF signals in presence (black curve, a) and in absence (gray
curve, b) of an applied external magnetic gradient. The black curve corre-
sponds to atoms in the mJ = 1 level, while the gray curve is mJ = 0 atoms.
Note that the TOF signal for the mJ = 0 atoms is unchanged when the
gradient is applied.

fit is much better. The efficiency of the gradients on the mJ = 1 atoms
depends on the temperature of the cloud: the colder it is, the more easily
we manage to push away mJ = 1 atoms from the detector, and more easily
is the TOF signal “purified”. In general, this procedure is possible for clouds
with a temperature below 5µK. In order to obtain reliable fits, we always
apply a gradient during the fall of the atoms.

Unknown transfer fraction

If the uncontrolled transfer between the mJ = 1 and mJ = 0 level were not
present, we would never have observed an unperturbed TOF signal on the
MCP. At the same time, this transfer also has an inconvenience: we do not
know very well the fraction of atoms which are transferred from mJ = 1
to mJ = 0. Consequently, the amplitude of the detected TOF signal does
not correspond to the number of atoms initially present in the trap, making
atom number measurement very hard. To use the amplitude of the detected
TOF signal to deduce the atom number, one must know the “correction
factor”F , which gives the ratio between the true atom number and the de-
tected atom number: F = [N(mJ = 1) + N(mJ = 0)]/N(mJ = 0). In the
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Figure 2.12: Two TOF signals, each corresponding to a cloud at 4 µK.
In the gray curve, no magnetic gradient is applied, and the TOF signal is
consequently perturbed by mJ = 1 atoms, whose trajectories are disturbed
by stray fields. In the black curve, a gradient pushes away these atoms, and
the TOF signal (corresponding to mJ = 0 atoms alone) is unperturbed.

first published paper about the He∗ BEC from our group [8], the scatter-
ing length was measured based on the expansion of TOF signals from pure
BEC, as explained in chapter 1. They first deduced F for a cloud at the
transition point: at this point, the atom number can be deduced directly
from the temperature alone (and the trap oscillation frequencies) which can
be measured reliably10. This gives the true atom number, corresponding to
the atoms initially trapped. The detected atom number is obtained from
the amplitude of the fit. The correction factor F obtained was then used
to deduce the atom number in a pure BEC. The scattering length was ex-
tracted: a = 20 ± 10 nm. In chapter 5 we deduce a different value for the
scattering length: a = 11.3+2.5

−1.0 nm. We also show that F it is not the same
for a BEC and a thermal cloud, but differs almost by a factor of two. This
explains why the first measurement of the scattering length (assuming F
to be the same for a BEC and a thermal cloud) is almost a factor of two
different from the value, which we now believe is the correct one.

2.5.2 Controlled population transfer via Raman transitions

An alternative, and more direct method to obtain a better estimation of
the atom number, is to make a controlled transition of all the atoms to the
mJ = 0 level, without switching off the trap. This should be possible using
Raman transitions [108, 109], where it should be possible to transfer 100 %

10This will be discussed in detail in chapter 5.
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of all the atoms to the mJ = 0 level, without switching off the trap. We
have indeed implemented such a Raman transition scheme during my thesis
work, and a detailed discussion of our results will be presented in the Ph.D.
thesis of J. Gomes. Briefly, we observed Rabi oscillations between the two
states, at the correct oscillation frequency, given the laser intensities. Also
the arrival time of the TOF signal corresponding to the Raman-transferred
atoms was as we expected from our timing of the sequence. However, even
though we managed to empty the trap (we observed only the Raman signal
while the initial TOF signal was absent), the amplitude of this signal was
smaller than what we expected. We therefore think that we have an atom
loss during the transfer, that we do not yet understand. We believe that in
the near future we will understand this loss process and be able to exploit
Raman transitions as a controlled way of coupling the atoms out of the trap.

A controlled switch-off using an optical dipole trap

A second way to control the outcoupling of atoms from the trap is the use of
a so-called optical dipole trap. In this type of trap, the atoms are confined
in a focused off-resonant laser beam, due to an interaction between their
electric dipole moment and electric field of the light. The advantages of the
dipole trap is that the trap switch-off being simply the switch-off of the laser
beam, would not give rise to stray magnetic fields.

In a dipole trap, atoms can be trapped in all mJ levels. The ideal
solution would be to use the mJ = 0 level. In this case, all atoms would
arrive unperturbed on the MCP. However, for atoms in the mJ = 0 level,
Penning ionizations would not be suppressed and give rise to high losses.
Therefore, a better solution would be still to use the mJ = 1 level. In this
case, however, other small stray fields present during the fall of the atoms,
would in need to be compensated, in order not to perturb the trajectory of
the atoms.

Chapter conclusion and outlook

In this section, we have showed how we produce and manipulate a Bose-
Einstein condensate of He∗. In particular, we have showed how we can
identify degeneracy using the TOF signal. One advantage among others
of metastable helium is that we have a second observational tool: the ion
signal. Like the TOF signal, the ionization rate can give us information
about the state of the cloud, but the advantage of the ionization rate is that
is “non-destructive”. How the ion signal can be used is the topic of the next
chapter.
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Ionization rate as a
monitoring tool

During collisions between trapped He∗ atoms, the internal energy of one
atom can be transferred to another. The latter is thereby ionized and lost
from the trap. These collisions are the Penning collisions, and were discussed
in chapter 1. The ions are lost from the trap, but can be detected with the
micro-channel plate. The resulting ion signal gives information about the
collisions in the sample, and consequently about the density. This way
of monitoring does not destroy the sample, making the ionization rate a
powerful tool. In this chapter we will demonstrate how we can exploit the ion
signal, either accompanied with Time-Of-Flight (TOF) signals or alone, in
order to extract information about the behavior of the sample. In particular,
the ionization rate can be used to follow in real-time the evolution of the
atom cloud while it is cooled beyond the phase transition, and therefore gives
insight into the formation and decay process of a Bose-Einstein condensate.

3.1 Dynamics of the cold atomic cloud

The ion signal can be optimally exploited only when an unambiguous map-
ping between the instantaneous value of the ionization rate and the density
is accessible. A prerequisite for this mapping are the ionizing rate constants
corresponding to the dominating collision processes. This is the subject of
chapter 4. There, we obtain values for the rate constants, which will allow
one to interpret the ion signal directly as a density. Here, we will concen-
trate on the direct measurable quantity, the ion signal itself, and we will
investigate its behavior during the formation and decay of the condensate.
In order to understand qualitatively the behavior of the ion signal, we will
compare it with corresponding TOF signals at different instants during the
formation and decay processes.

We first record an ion signal which we would like to investigate. The goal
is then to obtain a series of corresponding TOF signals for different instants
during the evolution of the ionization rate, overcoming the difficulty that the
TOF technique is destructive. This means that each TOF signal necessarily
comes from an independent experimental run, but if we require that the
ionization rate produced by each cloud is identical to the ionization rate
which we are investigating up to the switch-off time, we can consider all the
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different TOF signals as being part of one single sequence. In this way, the
ionization rate is used via post-selection of data to overcome experimental
problems in the sense of repeatability. This way of exploiting the ionization
rate will be used in the study of the formation and decay discussed below.

3.1.1 Formation of the Bose-Einstein condensate

We will in the following give a particular example of an ionization rate
and the corresponding TOF signals during the formation. The ionization
rate during the whole formation and decay is recorded in one single run, as
shown in Fig. 3.1 1a. The last evaporation ramp starts at time zero and
the pure BEC is formed two seconds later. The sequence has been repeated
six times, and for each run, the trap has been switched off at different
instants. The vertical dashed lines indicate at which moment the trap has
been released, and the corresponding TOF signals with their Gaussian fit
has been shown in 2a-2f in Fig. 3.1. As discussed above, each TOF signal
shown has an ionization rate which, until the time where the trap is released,
is identical to the one-run ionization rate shown in 1a. To give the reader
some experimental details: to obtain a series of six TOF signals all having
the same initial ionization rate, at least 100 ion rates were acquired. This
gives an idea of the fluctuations in the ionization rate.

The TOF signals enable us to determine the state of the cloud. The first
two TOF signals (2a, 2b) show a typical thermal cloud, well fitted by the
Gaussian function. The corresponding ionization rate is slowly increasing.
After this, there is a break in the slope in the ionization rate, and it starts
to increase more rapidly. This corresponds to an increase in the density.
Looking at the first TOF signal recorded immediately after the break in
the ionization rate (2c), one observes for the first time a double structure,
indicating the presence of a condensed part. The cloud can no longer be
fitted by a simple Gaussian. It is therefore reasonable to suppose that the
break in the slope signals the onset of BEC. This is a very important feature,
which we will develop further in section 3.2, and use extensively in chapter
5. Following the TOF signals, we see that the condensed parts progressively
grows larger (2d and 2e) and that a pure BEC is finally obtained (2f). Note
that a pure BEC does not correspond to the maximum ionization rate (and
therefore, maximum density) as one could expect. The reason is that during
the very last part of evaporation (between 1.8 and 2.0 s in the figure) the
density is strongly increasing and consequently the losses due to collisions
increase. Therefore, the density decreases during the last 200 ms before a
pure BEC is reached.
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Figure 3.1: In 1a we show the ion signal. The vertical dashed lines show the
switch-off time of the trap. In 2a-2f the TOF signals as a function of time
(in ms) are shown. The black curves in 2a-2f are Gaussian fits.
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In order to compare the ion signal with a theoretical model, the (so far
unknown) inelastic rate constants are needed. However, a qualitative model
can reproduce the characteristic shape of the observed ion signal such as the
break in the slope at the critical point and the final decrease in the signal
before BEC is reached, without knowledge of the rate constants. A model
for the ionization rate has been developed by O. Sirjean, and is described in
[37].

It should be noted that in this kind of experiment, the time scales for the
formation is dictated by the choice of the final evaporation ramp. The two
seconds it takes from the onset of BEC until a pure BEC is formed is not
universal, but related to the rate of change of the rf-frequency. In order to
study the universal time scales for bosonic stimulation, the experiment must
be independent of the characteristics of the evaporation ramp. This can be
done by cooling a cloud to a temperature very near the critical temperature,
and then suddenly apply a short rf pulse, which quenches it below the critical
point. The time scales for relaxation towards BEC is then independent of
evaporation ramp. Such an experiment has been first performed in the group
of W. Ketterle [110] and later by J. Walraven [111].

Let us also mention the formation experiment performed in the group
of Hänsch [112]. Here, the cloud is continuously cooled through phase tran-
sition, and the growth time therefore depends on the evaporation ramp,
as in our case. Finally, another formation experiment, similar to the Hän-
sch experiment, is under progress in the laboratory next door to the He∗

laboratory, under the responsibility of P. Bouyer and A. Aspect. In this ex-
periment, the goal is to study not only the dynamics of the density, but also
the coherence properties of the condensate during the formation process.

The advantage of all these formation experiments is that they measure di-
rectly the density, while the inconvenient is that the detection is destructive.
We hope that once we have established an unambiguous relation between
the ionization rate and the density, we will have an ideal setup to monitor
the dynamics of cold atomic clouds.

3.1.2 Decay of the Bose-Einstein condensate

We also study the decay of the condensate by comparing ionization rate with
TOF signals. In Fig. 3.2 we show the ionization rate and corresponding TOF
signals as before. Two different ion signals are shown (black and gray curve),
corresponding to two types of decay:

• Gray Curve: After formation of the BEC, the rf-field is kept on at
the final value of the evaporation frequency. This acts as an rf-shield,
expelling hot atoms and thus preventing heating of the cloud. In this
way the cloud remains a pure BEC, as indicated by the corresponding
TOF signals shown above the ionization rate. As we lose atoms due
to the rf-knife, the size of the BEC decreases.
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Figure 3.2: The ionization rate accompanied with TOF signals. We here
concentrate on the decay of the BEC. The gray ionization rate shows a
decay in presence of an rf-knife, and the corresponding TOF signals shown
above indicate the that BEC stays pure. The black curve is in absence of the
rf knife, and the TOF signals below show the appearance of thermal wings.

• Black Curve: The other type of decay corresponds to the situation
where we have switched off the rf field after formation, and let the cloud
evolve freely. This corresponds to the black ionization rate shown in
Fig. 3.2, with the TOF signals shown below. In the absence of an rf-
shield, the ionization rate decays much faster. Since the total number
of atoms must be higher than in the case where atoms are expelled
by the rf-field1, the faster decrease in ionization rate is attributed to
a loss in density (and not in atom number) resulting from heating.
This is confirmed by the TOF signals, which reveals the appearance
of thermal wings.

The heating rate of the sample in the absence of an rf-field can be deter-
mined by fitting the thermal wings of the TOF signals. From these fits the
temperature, deduced from the width of the TOF signals, as a function of
time is found. This is shown in Fig. 3.3, where the time scale is the same as
in Fig. 3.2. We see that the sample heats 1.2 µK in 2.5 s, a heating rate of

1Assuming that the trap is deep enough to keep the heated atoms trapped.
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Figure 3.3: The temperature as a function of time for the decaying sample
in the absence of an rf-shield. The time scale is the same as in Fig. 3.2. The
temperature is extracted from a fit of the wings of the TOF signal. For each
of the different times observed, four measurements have been performed,
each one of them being plotted in the graph.

' 0.5 µK/s. For each different time, four separate measurements have been
made, as indicated in the figure. All the measurements were selected on the
basis of identical initial conditions, as determined by the ionization rate.

We have not studied the processes causing the heating, but we suspect
them to several. In particular, heating can be caused by elastic collisions
between hot He∗ atoms which are created in Penning collisions and the cold,
trapped atoms (elastic, secondary collisions, see Ref. [13]). Also collisions
with hot background gas atoms, and fluctuations in the magnetic field are
examples of phenomena causing heating of the sample.

Another interesting source of heating has been studied in the group of
G. Birkl and W. Ertmer. The fact that the collision rate is highest in
high-density regions of the atomic cloud, leads to a heating: the largest
atom loss happens in the high density region, where the atoms are cold-
est. Therefore cold atoms are dominantly lost, which therefore leads to an
“anti-evaporation”. This mechanism is studied in Ref. [113] in the case of
metastable neon, and accounts for the heating observed in these experi-
ments. This mechanism might equally well explain the heating observed in
our sample of metastable helium.
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The heating rate measured in the metastable helium group in ENS is
much larger than ours: they measure ' 20 µK/s [62]! However, this heat-
ing rate is measured for a sample with a density one order of magnitude
higher than in our case. This increases the rate of secondary collisions, and
consequently the heating rate. We have not investigated this quantitatively,
however.

3.1.3 Atom number dynamics and heating
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Figure 3.4: Evolution of the atom number, obtained from fits to the TOF
signals. The circles give the atom number for the BEC, while the crosses
give the total atom number (BEC and thermal cloud). The time scale is the
same as in Fig. 3.2, where a pure BEC is formed at t = 2. The increase in
the total atom number between t = 2 and t = 3 should not be taken literally,
as discussed in the text.

The fits of the TOF signal shown in Fig. 3.1 and 3.2 give us the atom
number during the formation and decay. For the decay, we use the TOF
signals corresponding to the situation where the rf-shield is absent. This
atom number is plotted in Fig. 3.4. The time scale is again the same as in
the other figures, i.e. t = 2 s corresponds to a pure BEC. The crosses give
the total atom number (thermal cloud and BEC), while the circles are for
the BEC alone. The atom number is deduced directly from the amplitude of
the TOF signal, and the fact that only a fraction of the atoms are detected is
not taken into account. The atom number shown is therefore smaller than
what is in reality. We see that up to t = 2 s the total number decreases
(hot atoms are expelled by the rf-field), while the number of atoms in the
condensate increases. After a pure BEC is reached, the condensate heats
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(rf-field absent), and atoms are transferred to the thermal cloud. Therefore
the number of atoms in the BEC part decreases. Strangely, the total atom
number seems to be increasing, but of course, this increase cannot be real.
It must be related to the fact that the detection efficiency is higher for a
thermal cloud than for a BEC. This means that if atoms are transferred
from a BEC to a thermal cloud without losing atoms, it would look as if the
atom number increases. As explained in chapter 2, we detect only atoms
which are transferred from the trapped mJ = 1 level to the field-insensitive
mJ = 0 level during trap switch-off. It is possible that this transition occurs
with higher probability for a cloud which is more spread out in space, i.e. a
thermal cloud, than for a pure BEC. In chapter 5, we show that the fraction
of detected atoms compared to the “true” number of atoms is around two
times higher for a thermal cloud, than for a pure BEC, agreeing with this
hypothesis.

3.2 Ionization rate as indicator of the phase tran-
sition

The series of TOF signals in Fig. 3.1 indicates that the break in the slope
in the ionization rate coincides with the appearance of a double structure in
the TOF signal. This gives an experimental indication that the break in the
slope corresponds to the Bose-Einstein phase transition. If this is true, the
ionization rate gives a new signature of the onset of BEC. We will use this
feature in the measurements of the scattering length presented in chapter 5.
There, we will need to produce clouds exactly at BEC threshold. The reason
is that for a cloud exactly at BEC threshold, the density can be deduced
directly from the temperature, which can be reliably measured.

As we want to use the ionization rate as an indicator of threshold, let us
first see if this can be justified theoretically.

3.2.1 A definition of the phase transition

Let us discuss briefly what is actually meant by the BEC threshold point.
This point corresponds to the point where the temperature of the gas reaches
its critical value, Tc, defined according to:

n0λ
3(Tc) = 2.612, (3.1)

where n0 is the peak density of the cloud, and λ(Tc) = h/
√

(2πmkBTc).
In the ideal gas model, this temperature has a clear physical meaning: the
condensed fraction is zero for all temperatures higher than Tc, and for tem-
peratures below, it is given by:

Nc

N
= 1−

(
T

Tc

)3

(3.2)
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Figure 3.5: The fraction of atoms in the condensate as a function of tem-
perature in units of Tc. The curve is valid only for an ideal gas.

This distribution is shown in Fig. 3.5, and the phase transition corre-
sponds to the discontinuity in the curve. Does this point correspond to the
break in the slope in the ionization rate? Let us first see if this is the case us-
ing an extremely simple (definitely too simple!) model. We assume that: i)
the temperature decreases linearly at all time, ii) no atom losses are present,
iii) the number of atoms in the BEC varies according to Eq. 3.2, and the
atom number in the thermal cloud is constant until Tc and then decreases
linearly, and finally iv) the density in the BEC varies as N2/5

c (see chapter 4,
section 4.3), and the density in the thermal cloud varies as (T/Tc)−3/2 (ac-
cording to a Gaussian distribution). We then calculate the ionization rate,
and also here we make a crude approximation: we do not take into account
collisions between thermal cloud and BEC, so we take the ionization rate as
the sum of ions produced by the BEC and the thermal cloud. We use the
theoretical estimates for the rate constants given in chapter 1, section 1.2.4.
The obtained ionization rate is shown in Fig. 3.6, where the thin solid line
gives the BEC contribution, the dashed line gives the thermal cloud distri-
bution, and the thick solid line gives the total ionization rate. The inset
shows the evolution of the atom number for the BEC (solid line) and for the
thermal cloud (dashed line). The units on the horizontal axis is temperature
in units of Tc. What is important is that at the critical temperature, the
ionization rate exhibits a break in the slope. Therefore, this naive model
supports the idea that the break in the slope is the phase transition point.

The above model is of course far too simple to give any quantitative
information – it is just meant to give a first intuition for why threshold
should correspond to the break in the slope in the ionization rate. A much
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Figure 3.6: A VERY simple model giving the evolution of the ionization rate
for the BEC (thin solid line), for the thermal cloud (dashed line) and for
both (thick solid line). The inset shows the evolution of the atom number
for a BEC (solid line) and for a thermal cloud (dashed line). The horizontal
axis is given in temperature normalized by Tc both for the main graph and
the inset. We assume that the temperature decreases linearly with time.

better model has been developed by O. Sirjean and can be found in chapter
4 in his thesis [37]. This model also assumes a linear decrease in temper-
ature, but it takes into account losses due to inelastic processes, collisions
between condensate and thermal cloud, and instead of using a simple Gaus-
sian distribution for the thermal cloud, it uses the correct Bose function,
which contains a term arising from interactions. The model neglects, how-
ever, atomic interactions between BEC and thermal cloud. The ionization
rate obtained from this model is shown in Fig. 3.7. The break in the slope,
defined from the derivatives (maximum curvature, or mathematically, where
the 3rd derivative is zero, see later in this chapter), coincides with Tc, as
it is defined for the ideal gas. Again, this is a confirmation of our above
hypothesis.

Interactions and finite size

Both in the very simple and the more realistic model, we have used the ideal
gas value for the critical temperature. We have shown that the break in the
slope in the ionization rate corresponds to this temperature. In reality, Tc

is shifted because of interactions and finite size effects, and the definition of
BEC threshold becomes more subtle. For instance, the clear discontinuity
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Figure 3.7: Ion rate (solid line) calculated using a model developed by O.
Sirjean [37]. This model is more realistic than the one discussed above, see
text. The vertical dashed line indicates Tc, and also the point of break in
the slope in the ionization rate (3rd derivative is zero).

in the curve describing the condensed fraction (Fig. 3.5) is smeared out.
Therefore it also becomes more difficult to locate the threshold point on the
ionization rate.

We do not at the moment have a sophisticated model which takes this
into account, and it is definitely worth studying more in detail. It would be
interesting to know if, in such a model, the break in the slope in the ionization
rate corresponds exactly to this – modified – critical temperature. However,
we expect the correction to be small and without consequences for the result
(the scattering length) obtained from an analysis based on the assumption.
Nonetheless, in chapter 5, we will investigate the influence on the scattering
length of an eventual shift in the critical point relative to the break in the
slope in the ionization rate.

3.2.2 Establishing a “threshold curve”

In the following we will assume that the break in the slope in the ionization
rate does correspond to threshold.

We will use this experimentally later, and we therefore look for a simple
way to implement it. To do so, we will here establish an empirical relation
between the ionization rate at BEC threshold and the corresponding fre-
quency of the rf-ramp. With this relation, we will be able to switch off the
trap when the cloud is exactly at BEC threshold.
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Figure 3.8: Variation of the ionization rate as the atomic cloud is evapora-
tively cooled through the phase transition for various initial densities (gray
curves). The rf-frequency at t = 0 is 2 MHz, and decreases monotonically
until a pure BEC is formed (at 1 MHz). At the BEC transition, a sudden
increase of the ionization rate occurs, indicated by the crosses.

To establish this relation, we record different ion rates corresponding to
clouds cooled through phase transition. To explore transition points corre-
sponding to different ion rates (or equivalently, different densities), we vary
the atom number of the sample. This is done by adjusting the parameters
of the rf ramp. Our evaporation ramp is separated into 4 linear ramps, each
with a different rate of frequency change, in a way that the overall shape
of the rf change rate is exponential as a function of time. To modify the
atom number we adapt the first 3 parts of the evaporation ramp (we never
change the parameters of the 4th part of the ramp). The more rapidly we
cool initially, the more atoms we lose. To give some numbers: if we divide
the duration each time step in the first 3 evaporation ramps by a factor of
two, the final atom number is generally also divided by a factor of two.

An example of a series of ion rates are shown in Fig. 3.8, the gray curves.
For each curve, the break in the slope in the ionization rate is indicated by
a cross. This point identified as the point where the second derivative of the
curve has a global maximum and where the third derivative is zero. The
“raw” ionization rate is not smooth enough to obtain precisely the deriva-
tives, so we first fit the ionization rate, and then differentiate the fit. The
fit function used is a high order polynomial (12 terms). An example of such
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a fit is shown in Fig. 3.9 together with its second and third derivatives. The
time for BEC threshold is indicated by the gray vertical line, which cor-
responds to the point, where the third derivative is zero. These threshold
points, indicated by the crosses in Fig. 3.8, now give the time corresponding
to the threshold point for different ion rates. Note that the points are ob-
tained for a particular final evaporation ramp and a given bias field. If these
parameters are changed, the transition points will be displaced accordingly.
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Figure 3.9: The black solid line shows a 12-order polynomial fit of the ion-
ization rate (gray curve). The short-dashed line is the 2nd derivative of the
ionization rate while the long-dashed line is the 3rd derivative. The global
maximum of the 2nd derivative (or equivalently the zero crossing of the
3rd derivative) indicates the break in the slope in the ionization rate, and
therefore the onset of BEC)

As this way of determining the BEC onset is essential to the work pre-
sented in chapter 5, we have repeated the experiment in order to increase the
number of threshold points in Fig. 3.8. These data are shown in Fig. 3.10.
As the time is directly related to the evaporation frequency (the frequency
of the ramp decreases by 400kHz/s), we have substituted the increasing
time scale by a decreasing frequency. The reason for doing this substitution
is purely practical: in the experiment, we control the switch-off frequency
and not the switch-off time. The points are then fitted by an exponential
function, and thereby we establish in this way an empirical relation which
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gives us the time of the onset of BEC for different ion rates2. We will in
the following call this curve the “threshold curve”. With this curve, for the
particular evaporation ramp, we can know at which evaporation frequency
we must switch off the trap, in order to observe a cloud at BEC threshold.
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Figure 3.10: Each point corresponds to the break in the slope of the ioniza-
tion rate, and is here plotted as a function of the (switch-off) rf-frequency.
Note that the frequency scale is reversed. The solid line corresponds to a fit
of these points, and constitutes our empirical relation called the threshold
curve.

3.2.3 Fluctuations of the bias field

The dispersion of the points in Fig. 3.10 is mainly related to fluctuations in
the bias field. A shift in the bias field gives rise to a shift in the transition
point. Intuitively, this can be understood as explained in the following. We
first define a parameter: η = (hν − 2µBB0)/kBT . Here, B0 is the bias field
(the value of the magnetic field at the trap minimum), T is the tempera-
ture and ν is the frequency of the rf field responsible for the evaporative
cooling. Therefore, η gives the ratio of the trap depth (determined by the
rf-frequency) to temperature. During the evaporation, we expect η to be
approximately constant. Now, by writing the condition for condensation
ηkBTc = (hνC − 2µBB0), where Tc is the critical temperature, we define νc

as the rf-frequency at the transition point. If η is constant, a fluctuation

2There is no fundamental physics behind the choice of an exponential function, but it
is chosen simply for empirical reasons.
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in the bias field B0 shifts νc accordingly: ∆νc = 2µB∆B0/h. A shift in B0

would then displace the points horizontally in Fig. 3.10. To be rigorous, it is
more complicated than so, because when the bias field fluctuates so does the
density and therefore the transition point, but the above reasoning explains
qualitatively why we see a significant dispersion in the transition points in
Fig. 3.10.

In order to minimize this dispersion for the points in Fig. 3.10 we sta-
bilized the bias field actively during the acquisition of these data: this was
done by continuously monitoring the TOF signal corresponding to each ion-
ization rate in Fig. 3.10. As seen in the figure, we cool the sample further
down than necessary (i.e. far beyond the critical point). Actually, each time
we continue the rf evaporation down to 1 MHz. The reason for doing that is
that if the bias field corresponds to the desired value, a pure BEC is formed
at this rf-frequency. Now if the cloud observed in the TOF signal starts to
show thermal wings, we know that the bias field has decreased, and if the
signal suddenly disappears, we know that the bias field has increased. If
this happens, we compensate shot-to-shot for the changes by adapting the
current in the coils, to bring the bias field back to its initial value, in order
to observe a TOF signal showing a pure BEC. A change in the bias field (the
total bias field is ' 300 mG) of more than 20 mG (or 25 kHz) is immediately
revealed by the TOF signal, and can consequently be compensated. In this
way we can limit the fluctuations of the points on the threshold curve to
be less than ±25 kHz, which corresponds to the dispersion of the points in
Fig. 3.8. The threshold curve will be fully exploited in chapter 5, to obtain a
cloud exactly at BEC threshold. The appealing thing about a cloud exactly
at threshold is that the atom number can be deduced from the temperature.
In our setup, even though we cannot measure the atom number precisely,
we can measure the temperature. If we can be sure that we are at BEC
threshold, the atom number of the cloud can then be deduced.

Chapter summary and outlook

In this chapter we have discussed qualitatively the dynamics of the cloud
during formation and decay. This was done by observing the ionization
rate assisted by the TOF signals. Of course, the ideal formation experiment
consists of using a single one-shot ion signal during formation, and then
translate this signal to the physically important parameter, the density. To
do this, the rate constants for the ionizing collisions defined in chapter 1,
are needed. The measurement of the rate constants will be our next step,
and therefore the subject of the next chapter. However, due to difficulties in
direct density measurements, the rate constants will first be given in terms
of the scattering length, as we will explain in the next chapter. In chapter 5,
by using the threshold curve discussed above, direct density measurements
are no longer required, and the absolute values of the rate constants as well
as the scattering length can be obtained.





C H A P T E R 4

The ionizing rate constants

The ionization rate is a unique measurement tool, available only to clouds of
metastable atoms. It is definitely worth trying to render it more quantita-
tive by relating it to the density of the sample. The density is the important
physical parameter, which we can compare with theory or measurements
from other independent experiments. This motivates a measurement of the
rate constants for different inelastic collisions present in the sample. If,
however, we can show that only one type of density-dependent collision is
present (i.e. for instance only two- or three-body processes) at the densities
where we are performing our measurements, the translation between ioniza-
tion rate and density simplifies. In this case, even though the particular rate
constant is unknown, the value of the density within a multiplicative factor
can be obtained from the ionization rate. This is unfortunately not the case.
As we will show experimentally in this chapter, both two- and three-body
collisions are present at the densities in the vicinity of Bose-Einstein con-
densation. Therefore, in order to translate the ionization rate to a density
during BEC experiments, knowledge of the rate constants are unfortunately
required. Until the beginning of our experiments, the rate constants had
never been measured, and theoretically, only estimates were available (see
chapter 1). Therefore we will measure these constants, and this is the main
subject of the chapter. We will measure not only the ionization rates in a
pure BEC, but also in a cold thermal cloud relatively far away from degen-
eracy. Measurements of ionizations rate from clouds at BEC threshold will
be discussed later: chapter 5 is entirely dedicated to this subject.

4.1 Strategy

The “usual” way to determine rate constants corresponding to different loss
processes is to record the number of atoms as a function of time for a decay-
ing sample. From this decay curve, the rate constants describing the losses
can be deduced. In this case, each measurement of the atom number con-
stituting the decay curve is destructive. Recording a decay curve therefore
requires a very high stability of the experiment. For our purposes, another
inconvenient of this method is that we need the rate constants corresponding
to ionizing losses, and not the rate constants corresponding to all loss pro-
cesses. The problem is that one cannot distinguish ionizing and non-ionizing
losses using this method. If non-ionizing collisions are present, losses due
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to these processes will equally well be contained in the decay curve, and
therefore in the deduced rate constants. To overcome the requirement of
stability and to obtain the ionizing rate constants, we will use a different
method. Remember the expression for the normalized ionization rate in a
pure BEC, which was given in Eq. 1.45 in chapter 1:

ΓBEC =
Φ
N

=
1
τi

+ κ2
1
2

4
7
β n0 + κ3

1
3

8
21
Ln2

0. (4.1)

Recall also that β and L are the two- and three-body rate constants, τi the
ionizing lifetime. We have also defined κ2 and κ3 which are given by 1

2! and
1
3! for a pure BEC in the ideal gas approximation1. Therefore, by recording
the ionization rate and corresponding density, for a large number of different
densities, and fitting with Eq. 4.1, the rate constants can then be extracted.
Each measurement of ionization rate versus density will be independent of
the others, overcoming stability requirement. Moreover, as we here detect
the ions and not a loss rate, the rate constants will arise from ionizing losses
alone. Finally, also the form of the curve (linear or parabola), will give
us useful information: it will inform us about the relative importance of
contributions due to one- two- and three-body processes.

The measurements of ionization rate as a function of density can in
principle be performed using a dense thermal cloud as well as a condensate,
in order to deduce the rate constants. Nonetheless, as discussed in chapter
2 section 2.5.1, we are in general not able to measure correctly the density,
because we only observe atoms which are transferred to the mJ = 0 level.
Except in the case of a pure BEC. Here, the density can be obtained from
the chemical potential (defined in chapter 2), which can be deduced directly
from the width of a TOF signal. As this width can be measured correctly,
so can the chemical potential. In general, for a thermal cloud, the density
and width of the TOF signal are independent, and we cannot use the same
trick to measure the density. Therefore, we have chosen to use a pure BEC
to perform the above discussed measurements of the rate constants. Instead
of measuring ionization rate and density, we then measure ionization rate
and chemical potential, and from the latter, we deduce the density.

The only problem left is that the relation between chemical potential and
density contains the scattering length, which was not very precisely known
at the present time2. To begin, the strategy is therefore to determine the
density, and thus the rate constants, as a function of the scattering length.

4.2 Corrections to the ionization rate

As mentioned above, for a BEC, κ2 and κ3 are given by 1
2! and 1

3! . Even
for a pure BEC (i.e. at zero temperature) is this only true within the mean

1By definition of the rate constants, κ2 = κ3 = 1 in a thermal cloud.
2The rate constant measurements here presented will later allow us to deduce the

scattering length, see chapter 5.
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field approximation. Beyond this approximation, quantum depletion must
be considered and modifies these factors. In addition, our BEC is not truly
pure; a small thermal fraction is often present. This also modifies κ2 and
κ3 due to the presence of atoms in excited levels. To obtain precise values
for the rate constants, these effects must be taken into account. This is the
subject of this section.

4.2.1 Quantum depletion

Quantum depletion describes the fact that due to the interactions between
the atoms in the sample, even at zero temperature, a certain fraction of the
atoms are not in the condensate, see for instance Ref. [17]. The number of
atoms outside the condensate at zero temperature Nout is given by

Nout

N
=

5
√
π

8

√
n0a3 (4.2)

with a the s-wave scattering length and n0 the peak density. As long as mean
field theory is valid (i.e. n0a

3 � 1), quantum depletion is negligible. For
metastable helium, the scattering length is large compared to other species
used for BEC, as discussed in chapter 1. Consequently, the parameter n0a

3

is relatively large, and corrections due to quantum depletion will have a
non-negligible influence on the values deduced for the rate constants.

Instead of changing the earlier given expressions for the ionization rate
as a function of density, we will modify the factors κ2 and κ3 in order to
account for these effects:

κ2 → κ2 × (1 + ε2) and κ3 → κ3 × (1 + ε3) (4.3)

In the case of a homogeneous gas, the first order (in n0a
3) correction to the

three-body rate has been calculated by G. Shlyapnikov [114]:

ε2 =
1
3
× 64√

π

√
n0a3 and ε3 =

64√
π

√
n0a3 (4.4)

For a harmonic potential, this correction must be modified. It has been
calculated by O. Sirjean [37] and it becomes:

ε2 '
1
3
× 0.515× 64√

π

√
n0a3 and ε3 ' 0.644× 64√

π

√
n0a3 (4.5)

These expressions are valid as long as the condensate is described by a
Thomas-Fermi distribution – the corrections depend only on the density
distribution. In the case of our largest condensates, we have ε3 ∼ 0.2 and ε2
about 3 times smaller.
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4.2.2 Thermal excitation

The above corrections are valid for zero temperature. In reality, the temper-
ature is not exactly zero. To be rigorous, when we speak about a pure BEC,
we should rather say a quasi-pure BEC, because a small thermal fraction
could be present. When the thermal fraction is less than about 10 %, it
is not distinguishable in the TOF signal, even though it is present. In the
above analysis, we have neglected the collisions between the condensate and
the small thermal fraction. This introduces yet another correction, which
again can be incorporated in κ2 and κ3. For example, for the three-body
process, the correction ∆th

3 modifies ε3 such that it becomes

ε3 =
64√
π

√
n0a3 × (0.644 + ∆th

3 ). (4.6)

Using the Bogoliubov energy spectrum for the thermal cloud, ∆th
3 can be

estimated [37]. Its value depends on the thermal fraction (µ/kBT ). For a
thermal fraction of 10%, µ/kBT ∼ 1.1, and the correction for the three-
body process is ∆th

3 ∼ 0.21, three times weaker than the correction due
to quantum depletion. The two-body correction, ∆th

2 , is even weaker, and
is neglected in the analysis. It is interesting to note that even though the
thermal excitation results in a larger fraction of atoms outside the condensate
than does quantum depletion, the influence of the latter on κ2 and κ3 is
much larger. Physically this is related to the spatial overlap of the excited
atoms with the remaining condensate: thermally excited atoms are located
as wings on the BEC and have only a small overlap with atoms in the BEC,
while atoms being in excited levels due to quantum depletion have a larger
overlap with the BEC.

The above corrections to κ2 and κ3 discussed here will be used for the
data analysis given in section 4.5.

4.3 Density measurements

The density is as mentioned in the beginning of the chapter obtained from
the TOF signal recorded on the MCP. As discussed several times, we cannot
extract directly a reliable atom number or density from the TOF signal, so
instead we extract the chemical potential, from which the peak density and
atom number are deduced:

n0 =
m

4π~2
× µ

a
, (4.7)

and

N =
1
15

(
~
mω

)1/2( 2
~ω

)5/2

× µ5/2

a
(4.8)

The oscillation frequencies, entering through ω̄ = (ω2
⊥ω‖)

1/3, are measured
using the methods described in chapter 2. The above formulas also contain
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the scattering length a, which we do not know. In the following, we will
therefore give peak density and atom number parameterized by a.

4.3.1 The chemical potential

Some words justifying why the measured chemical potential gives the total
number of atoms initially trapped, and not only the number of atoms falling
on the MCP. First we must remember the reason why we cannot measure
the atom number: only a certain fraction of the atoms are transferred to
the magnetic field insensitive mJ = 0 level and fall on the detector. This
means that the amplitude of the TOF signal does not correspond to the
initial number of trapped atoms. Fortunately, the width of the TOF signal
is independent of this transfer fraction. This is because of the following: in
the trap, each atom has an interaction energy which reflects the mean field
energy created by the presence of all the other atoms. After release of the
trap, this energy is converted to kinetic energy, and the expansion of every
single atom reflects the initial sample energy due to the presence of all the
atoms. Therefore the expansion on the cloud will be independent of the
number of atoms observed on the MCP. The amount of expansion is given
by the width of the TOF signal. From this width, one can then determine
the initial energy, and consequently the chemical potential, corresponding
to the initial number of trapped atoms. The density deduced from Eq. 4.7
therefore gives the true atom number, and not only the number of atoms
observed on the MCP.

4.3.2 A subtle factor of two

Some care must be taken when we determine the chemical potential from the
width of the TOF signal. What we measure is an initial energy (arising from
interactions) which is converted to kinetic energy during the beginning of the
expansion3. Two regimes exist: if all the atoms are extracted, we measure
the total internal energy of the sample, which is given by Einternal = 1

2µN
(µ/2 per atom). In the other regime, if very few atoms are extracted from
the cloud, the energy for each of these atoms is by definition the chemical
potential µ: it is the energy it takes to add an atom to the system. In this
case, the total energy converted is given by Einteraction = µN . Importantly,
note that N in both cases is the total number of atoms initially trapped.

The difference corresponding to the factor of two can be understood in-
tuitively in the following way: when we extract one atom, its energy includes
the interaction between itself and the remaining N − 1 ' N atoms. This
is correct as far as we extract only a small fraction of the atoms. If we
count the interaction in the same way, while we extract all the atoms, each
interaction would be counted twice: when atom 1 interacts with atom 2,

3The time for the conversion is approximately given by the inverse of the radial oscil-
lation frequency ' 1/1200 Hz ' 1ms.
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and when atom 2 interacts with atom 1. Therefore, in order not to count
the energy twice, we must multiply with a factor of 1

2 .
Note that the above results apply to a homogeneous gas. For a BEC

in the Thomas-Fermi approximation, which is our case, the two regimes
corresponds to Einternal = 2

7µN and Einteraction = 4
7µN , respectively [17].

Free initial expansion of all atoms

Which formula should be used in our case? As we only extract a small frac-
tion of atoms (about 10%), one could think that the interaction energy is
given by Eint = 4

7µN (our BEC is described in the Thomas-Fermi approxi-
mation). This is the case in an experiment performed in the group of W. D.
Phillips, where a small fraction of the atoms is extracted by transfer to an
non-trapping state by Raman transition [115]. There, the remaining atoms
stay trapped.

In our case the situation is different. Simultaneously with the transfer of
a fraction of atoms to the non-trapping state, the trap potential is switched
off, meaning that all the atoms, both mJ = 0 and mJ = 1, are released. In
general, stray magnetic field due to eddy current will perturb the trajectories
of the atoms in the mJ = 1 state, but in the very beginning of the expansion
both mJ = 0 and mJ = 1 atoms expand freely together. The reason is that
during the first ms of the expansion, the bias field decreases dramatically (the
modulus increases) due to imperfections in the switch-off of the magnetic
coils, see chapter 2 and [36]. This increase in the modulus of the bias field
causes a dramatic relaxation of the radial oscillation frequencies (see chapter
2), and as a result, also the mJ = 1 atoms will expand nearly freely. The
duration of the presence of the high bias field corresponds approximately to
the time it takes for the interaction energy to be converted to kinetic energy,
which is about 1 ms. Once the interaction energy is converted to kinetic
energy, the energy of the atoms in the mJ = 0 state is no longer influenced
by the behavior of the atoms in the mJ = 1 state, even though these atoms
at later times during the expansion are perturbed by stray field and do not
arrive on the MCP. As all the atoms expand together, the energy measured
is then Einternal = 2

7µN , even though only a small fraction is transferred to
the mJ = 0 state. Note that the above conclusions are true only as long
as the interaction between the different magnetic sub-states are the same:
the scattering length corresponding to a collision between one atom in the
mJ = 0 state and the other one in the mJ = 1 state must be approximately
the same as the scattering length for a collision between two atoms in the
mJ = 0 state. This is a reasonable assumption according to Ref. [116].

4.4 Experimental realization

The experiment is performed in the following way: during the last rf-evaporation
ramp, we record the ionization rate until we have a pure BEC. The cloud is
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then released from the trap, and the TOF signal is recorded. The very last
value of the recorded ionization rate then corresponds to the cloud observed
in the TOF signal. This is illustrated in Fig. 4.1, where an example of an
ionization rate cooled until a time t1 and the corresponding TOF signal are
shown.

Ion Signal Time Of Flight

2 s2 s
t1 + 0.1 st1 + 0.1 st1 + 0.1 st1 + 0.1 st1 + 0.1 st1t1t1t1t

Figure 4.1: The ion signal recorded during the last seconds of the rf-ramp.
At time t1 the atoms are released from the trap, and they arrive 0.1 s later
on the MCP, and the TOF signal is recorded. In this way, the density
corresponding to the ionization rate recorded at t1 can be deduced.

To obtain a better precision for the rate constant, we must explore a
large range of densities. Therefore, the above procedure is then repeated for
many clouds of different densities. The most dense samples are obtained by
switching off the trap immediately after a pure BEC is reached. To decrease
the density and still keep a pure BEC, we must lose atoms without any
heating of the cloud. This is done by holding the atoms in the trap for a
certain delay, with the rf-field kept on at the final value, which is around 50
KHz above the bottom of the trap. In practice, the rf-field is always switched
off 100 ms before the trap is switched off, independent of the delay time, in
order to measure the final ionization rate in the absence of the rf-field: this
prevents an eventual perturbation of the ion rate.
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4.4.1 Measurements of the ionization rate

The detected ionization rates in this experiment are around 3× 104 counts
per second, which is too low to be measured using the analog mode of our
detector. Instead we use the high-gain counting mode. It has been checked
that the detection process stays linear, both for the electronics as well as
the detector itself, for detected ion rates up to 2 × 105, see chapter 2. We
will therefore only produce samples for which the detected ionization rate
do not exceed this value.

To obtain the real ionization rate, the ion detection efficiency must be
known4. For a very cold cloud or a BEC, we can write the detected ionization
rate as a function of the real ionization rate as Idetected = α× Ireal, where α
is a constant, expected to be around 0.42 (see chapter 2). The uncertainty
of α will be obtained in chapter 5, but must at the present moment be
considered unknown. We will therefore not include it in the uncertainty on
the rate constants given in this chapter. Anyway, it is not before chapter 5
that we will be able to give the absolute values of the rate constants, and
there the uncertainty on α will definitely be included in the final uncertainty
on the rate constants.

4.4.2 Selection of pure Bose-Einstein condensates

In order to apply Eqs. 4.8 and 4.7, the cloud must be a pure BEC (i.e. a
negligible thermal fraction). We use the following procedure to ensure that
this is the case: first, we fit the TOF signal with an inverted parabola5

over the whole non-zero range, and we obtain a chemical potential which
we will denote by µtotal. We then fit again, this time excluding the wings
of the TOF signal. In practice, we here include the central 90 % of the full
Thomas-Fermi width obtained in the first fit. Thereby we obtain another
chemical potential µcenter. Now, if the TOF signal does not contain thermal
wings, the obtained two chemical potential should be identical. Therefore,
we only retain data for which 0.9 < µcenter/µtotal < 1.1. We can estimate
the maximum thermal fraction that this procedure would accept. We do
this by using an approximate fit function, which includes both a condensate
and a thermal component, and which takes into account the influence of the
mean field created by condensate on the thermal cloud, but not the effect
of the thermal cloud on the condensate. We find that the above criterion
rejects clouds with a thermal fraction larger than6 15%. In the following,
when the thermal fraction is smaller than this value, we will refer to the

4In chapter 5 we will show that the results here obtained can be exploited quantitatively,
even without knowing the absolute value of this efficiency, but for the present purpose,
which is to deduce the rate constants, it must be known.

5This is the Thomas-Fermi function, see chapter 2.
6This number is not very precise: in addition to the uncertainty due to the fit function,

which is only approximate, the fact that we here use the deduced amplitude of the thermal
cloud requires knowledge of the fraction of atoms transferred to the mJ = 0 state, which
we can only estimate.
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Figure 4.2: Chemical potential µ vs N
2/5
d , obtained for pure BEC. Note

that Nd is the detected atom number, and therefore at least a factor of ten
too small (to be discussed later in this chapter). The graph is linear in
accordance with Eq. 4.8. This confirms that the detection in analog mode
stays linear at least up to a detected atom of 2× 104, and that we are able
to exclude BECs containing a non-negligible thermal fraction

condensate as a pure BEC, even though, rigourously speaking, we ought to
call it a quasi-pure BEC. Thermal fractions smaller than 15% cannot be
reliably detected in our experiment.

In contrast to the ion signal, the flux from the TOF signal is very high,
around 107 atoms/s. In order to avoid saturation, the TOF signal is recorded
in low-gain analogue mode. Therefore we lower the MCP gain at the mo-
ment of release of the atoms. To verify that we do not saturate the MCP
while recording a TOF signal in this low gain mode, we graph the chem-
ical potential as a function of the detected atom number to the power of
2/5. By detected atom number we mean the atom number deduced from
the amplitude of the TOF signal, in contrast to the number deduced from
the chemical potential. The graph of µ as a function of N2/5

d corresponds
to Eq. 4.8 inverted. The result is shown in Fig. 4.2, and we observe a linear
dependence. This indicates that the measurements of the chemical potential
behaves as expected and that the detector does not saturate, even for the
highest measured densities7. The small dispersion in the data in Fig. 4.2 also
indicates that our procedure indeed allows us to select pure condensates, as

7Note that an eventual saturation would not influence the measurement of the chemical
potential, as it is obtained from the base of an inverted parabola. The directly deduced
atom number, obtained from the amplitude of the TOF signal, would. Therefore, a satu-
ration would distort the straight line at high densities.
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Eq. 4.8 is only valid when no thermal component is present.

4.5 Analysis of the results

We can now plot the ionization rate produced in the BEC as a function of
peak density. This is done in Fig. 4.3. As the latest theoretical estimate
for the scattering length is a = 12+0

−4 nm (see Ref. [71] and chapter 1), we
use this value to calculate the density. The two different symbols in the
graph, black points and gray crosses, correspond to two different bias fields
used during the data acquisition, and therefore two different longitudinal
oscillation frequencies. For the black points ω⊥/2π = 1200± 50 and for the
crosses ω⊥/2π = 1800± 50 Hz. In both cases, ω‖/2π = 47± 3 Hz.
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Figure 4.3: Ion rate vs peak density for pure BEC. The density is calculated
using the chemical potential and a = 12 nm. The gray crosses correspond to
data obtained with ω⊥/2π = 1800 while for the black point ω⊥/2π = 1200.
The solid line is a linear fit (neglects 3-body processes), while the dashed
line is a parabola (neglects 2-body processes). None of the fits are very good,
indicating that both 2- and 3- body processes must be included.

The solid line is a fit which only takes into account background and two-
body processes. This fit is linear in n0 according to Eq. 4.1. The fit is clearly
very bad (we obtain a normalized χ2 ∼ 1.4), at least if we require that the
curve intercepts the vertical axis at a non-zero value, i.e. a positive ionization
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lifetime. We must conclude that at BEC densities (for the used oscillation
frequencies), three-body processes are present and cannot be neglected. The
dotted line takes only background and three-body processes into account.
Again the fit does not describe the data very well (χ2 ∼ 1.2). This is our
first important result: at densities in the range [10 − 50] × 1012 cm−3 (see
the scale of Fig. 4.3) both 2- and 3-body collisions are important! As both
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Figure 4.4: Same data as in the preceding figure, but the fit includes both
2- and 3-body collisions.

types of collisions are important, the translation from ionization rate to
density is not a simple scaling, but requires the absolute value of the rate
constants corresponding to both processes. To obtain the rate constants,
we therefore fit the data presented in Fig. 4.3 again, but this time allowing
for the presence of both 2- and 3-body collisions. The new fit is shown
in Fig. 4.4, and this time it seems to describe very well the data (now we
obtain a normalized χ2 ∼ 0.9). The fit includes the corrections to κ2 and κ3

discussed above, which modifies the values of the rate constants, as we will
discuss below. On the scale of the figure, the modification to the shape of
the fit due to these corrections is invisible.

4.5.1 The obtained rate constants and their uncertainty

The obtained rate constants are shown in table 4.1. The error-bars are
given in terms of the minimum and maximum values for each rate constant
still compatible with a reasonable fit: they are obtained by considering the
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rate constant best fit min max
β12/10−14cm3s−1 1.1 0.2 2.0
L12/10−27cm6s−1 2.9 1.2 4.7

Table 4.1: The rate constants obtained from the fit in Fig. 4.4. The range
between the min and max gives the possible range for which the fit is still
acceptable (see text), and is thus an estimation of the uncertainty on the
rate constants. All rate constants are deduced assuming a = 12 nm, as
indicated by their subscript. Note that the min and max value do not take
into account the uncertainty due to the ion detection efficiency.

quality of the fit as we minimize (maximize) one of the rate constants. We
take the minimum and maximum values as being those just before the fit
no longer is acceptable. Quantitatively, this corresponds to a reduced χ2

value8 of 1.1. For example, to calculate the minimum value of β, we leave
L as a free parameter, and minimize β until χ2 = 1.1 This way of esti-
mating the uncertainty results in error-bars on β and L which are highly
correlated, because the decrease in β can be compensated by an increase
in L. Therefore the minimum value of β is only possible by simultaneously
taking the maximum value of L, decreasing the overall variation of the curve
in Eq. 4.1. The curve using the minimum value for β and maximum value
for L is shown in Fig. 4.5, solid line, while maximum β and minimum L
corresponds to the dashed line. As we have calculated the rate constants for
a given value of a, we have completely omitted the uncertainty due to this
parameter. Nor do the minimum and maximum values take into account
the systematic uncertainty on the ion detection efficiency. In chapter 5 we
will estimate this uncertainty and include it in the error-bars of the rate
constants (results presented later in this thesis are necessary to obtain this
uncertainty). In chapter 5 we will also obtain the scattering length, allowing
us to give the absolute values of the rate constants.

4.5.2 Dependence on the scattering length

Above we calculated the rate constants for a = 12 nm, but we can equally
well deduce them for any value of a: we calculate the density as a function
of a, and by repeating the fitting procedure we then deduce the rate con-
stants for a range of possible values of a (8-16 nm). The results are shown
in Fig. 4.6, black points. Now by fitting these points, we obtain the rate
constants as a function of a. The fits are also shown in the figure as solid
lines through the points, and the empirical fit functions giving the parame-
terization of the rate constants in terms of a are given in table 4.2. These
empirical functions are valid in the range between 8 and 16 nm. Finally, the
gray bands illustrate the error-bars of the rate constants, obtained as the

8χ2 per degree of freedom, normally denoted by χ2
ν even though we here call it χ2
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Figure 4.5: The same data as in Fig. 4.3 and 4.4. The curves illustrates the
error-bars: when using the minimum value for β and maximum value for L,
one obtains the solid line, while maximum β and minimum L corresponds
to the dashed line.

minimum and maximum values described above.

Comparison with theory

A theoretical estimate of β as a function of a can be extracted from a graph
in Ref. [116], and corresponds to the dashed line in Fig. 4.6 a. Taking into
account the error-bars on the experimental data, we see a good agreement
with theory.

For L there exists an approximate analytical expression given by L ∼
11.7~a4/m [88]. This curve is indicated by a dashed line in Fig. 4.6 b.

βa ' β12 ×
(

a
12

)2 × (1 + 0.13a−12
12

)
La ' L12 ×

(
a
12

)3 × (1− 0.28a−12
12

)
Table 4.2: Parameterization of the rate constants in terms of the scattering
length in nm.
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Figure 4.6: The rate constants as a function of the scattering length. The
black points corresponds to the data obtained with a BEC, and the solid
line is a fit of these points. The gray band illustrates the error-bar on the
measurements. The dashed lines give the theoretical values.

Again we observe that within the error-bars, our measurements agree with
the theoretical prediction. Especially for a scattering length between 8 and
11 nm, we notice an excellent agreement between data and theory.
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4.6 Measurements in a cold thermal cloud

All data presented in this chapter have so far been obtained using a BEC.
The reason is purely practical: we could measure the density by measuring
the chemical potential. It is tempting to do the same kind of measurements
with a thermal cloud - the rate constants should be the same, as long as
the temperature of the cloud remains sufficiently low9. Of course, with a
thermal cloud we cannot obtain the density using a chemical potential as we
did for a BEC. Instead, we will use the unreliable, directly measured atom
number, but then correct it by multiplying it with a given correction factor
F . In a first time we will obtain this factor from independent measurements
using a BEC: it will be the ratio between the atom number deduced by the
chemical potential (the “true” atom number Ntrue) and the atom number
obtained by fitting the amplitude of the TOF signal (the measured atom
number Nmeas). This gives us a correction factor, which we will then use for
the thermal clouds: we use it to multiply the atom number obtained from
the amplitude of the TOF signals for the thermal clouds. Note that this
amounts to assuming that this correction factor is the same for a BEC and
a thermal cloud – and this will result in a disagreement between ionization
rates in a BEC and a thermal cloud. Borrowing some of the results pre-
sented in chapter 5 will allow us to understand the source of disagreement
and make the results coherent.

Recall Eq. 1.42 giving the ionization rate for thermal cloud deduced in
chapter 1:

ΓTh =
1
τi

+
1
2
β 〈n〉+

1
3

8
3
√

3
L 〈n〉2. (4.9)

In the BEC measurements, we replaced the average density by peak density,
because this was the quantity deduced from the chemical potential. Here,
this is no longer the case, so for simplicity, we keep the average density.

4.6.1 A naive correction factor: disagreement

To obtain a first (naive) value of the correction factor, we record a series of
TOF signals corresponding to a pure BEC using exactly the same conditions
as we will use for the experiments with a thermal cloud, in particular, we
use the same voltage on the MCP. This is important, as the correction factor
not only takes into account the fraction of atoms being transferred to the
detectable state, but also an eventual default in the absolute calibration
of the MCP in analogue mode. The correction factor F = Ntrue/Nmeas is
shown in Fig. 4.7, where we have used a = 12 nm to calculate the true atom
number Ntrue using the chemical potential. We have plotted it as a function
of the chemical potential. The average value turns out to be ' 22.

9Above 500 µK, the rate constant become temperature dependent, see [79].
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Figure 4.7: The correction factor Ntrue/Nmeas obtained in a pure BEC. This
is the ratio between the true atom number deduced by the chemical potential
(with a = 12 nm) and the measured atom number obtained from the ampli-
tude of the TOF signal. The factor is plotted as a function of the chemical
potential. These measurements are independent of the measurements in the
thermal cloud.

We can now do the measurements of ionization rates versus density for a
thermal cloud. The principle of the experiment is exactly the same as for a
pure BEC, except that we must interrupt the evaporative cooling before the
BEC threshold is reached. In general, we stop the rf-ramp around 1500 kHz
and impose a delay without rf-shield, varying between 0 and 10 seconds,
depending on the sample density desired: a delay decreases progressively the
density. The temperature of the clouds varies between 2 and 5 µK. Fitting
the amplitude of the TOF signals with a Gaussian function (assuming that
we are far away from BEC threshold) and multiplying with the correction
factor, we extract the density. For the obtained temperatures and densities,
the phase space densities for the clouds varies between 0.1 and 0.8. We now
plot the results: normalized ionization rate Γ as a function of the density.
This is shown in Fig. 4.8, a. We have also plotted the theoretical curves
from Eq. 4.9 using the rate constants which we obtained with a BEC. These
are given as a function of the scattering length, and we have chosen to
show three curves corresponding to a = 20, a = 15 and a = 10. From earlier
measurements [8, 9] we know that a should be inside this range. Nonetheless
we see that none of these curves agrees with the data. We also note a large
dispersion of the data.

We suspect that the reason for this disagreement arises because the cor-



4.6 Measurements in a cold thermal cloud 111

rection factor for a thermal cloud is different than for a BEC. If for example
we assume that the detection efficiency is 1.5 higher for thermal atoms (this
means that the correction factor is lower for a thermal cloud, so that thermal
atoms are more efficiently transferred to the detectable level), we see that
the data are compatible with a theoretical curve when the scattering length
is somewhere between 10 and 15 nm, as shown in Fig. 4.8 b. Physically, the
reason why the transfer fraction is different between a BEC and a thermal
cloud might be the following: the magnetic field which is present during
switch-off of the trap and which governs the transfer of atoms towards the
detectable state, might be varying spatially. As the spatial extend of the
thermal cloud is different from the BEC, the transfer could be different.
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Figure 4.8: The normalized ionization rate as a function of density for a
thermal cloud. In a we have assumed the same correction factor for the
thermal cloud as obtained with a BEC, while in b we assume the correction
factor is 1.5 times higher. In b we have indicated the temperature of each
cloud with colors: light gray corresponds to high temperature, while for dark
points the temperature is low.

Even when changing the correction factor, the data in Fig. 4.8 do not
agree with the shape of the curve, and the large dispersion resists. We
suspect that the transfer fraction varies with temperature, and consequently
F will do. This is possible, because the spatial extent of a thermal cloud
depends on its temperature. To investigate this we indicate the temperature
corresponding to each data point. This is shown in the data in Fig. 4.8 b,
where light gray corresponds to high temperatures, and dark gray to low
temperatures. We see a clear systematic variation with temperature, which
confirms the above hypothesis.
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4.6.2 A better way to obtain the atom number

In the next chapter we will present a method to determine the true atom
number for a thermal cloud at BEC threshold. This is possible by using
thermodynamical relations valid for clouds exactly a BEC threshold. It will
allow us to obtain not only the rate constants and the scattering length, but
also a more reliable correction factor F . In order to conclude this section
about measurements in a cold, thermal cloud at this stage, we will use this
factor, even though the reader must wait until the next chapter, to see how
this factor is obtained experimentally. As suspected, F turns out to depend
on temperature, as we will see below. We will also show that using this new
F as a function of temperature will not only decrease the dispersion, but
also make the theoretical curve agree with the data.

To obtain the new correction factor, we fit TOF signal obtained at BEC
threshold, and we obtain the temperature Tc of these clouds. How this is
done is discussed in detail in chapter 5. From the temperature of these
clouds, we can calculate the true atom number, which we denote Nc (indi-
cating that the cloud is at the critical point):

Nc = 1.202
(
kBTc

~ω

)3

(4.10)

where ω = (ω‖ω2
⊥)1/3 is the geometric average of the trap oscillation frequen-

cies. We also extract an atom number from the fit (the amplitude) giving
us the measured atom number Nmeas. We then extract F = Nc/Nmeas. We
plot this factor in Fig. 4.9 as a function of temperature (gray crosses). Only
data for clouds being at BEC threshold according to their ionization rate
(the final value is on the threshold curve, see chapter 3) are shown: in order
to use Eq. 5.3, the data must indeed be at threshold. For comparison, we
also show the correction factor for pure BEC (open circles). This is the same
data as given in Fig. 4.7, but the scale of the axis is compressed.

The first thing we notice is that the correction factor is different for a
BEC and a thermal cloud. This explains why the data for thermal clouds
presented in Fig. 4.8 do not agree with the theory, when one simply applied
the same correction factor as for the BEC. One also notice that for the
thermal cloud, F increases linearly with temperature between 5 and 15 µK.
A fit gives F(T ) = 3.1 + 3.8T (µK). Reporting this relation to our data for
the thermal clouds, we can now correct the measured atom number to obtain
the true atom number10. The result is shown in Fig. 4.10 b. For comparison,
the data where the correction factor is assumed to be constant (the same
as for the BEC), is shown in a. The two theoretical curves correspond to
a = 11 nm (solid line) and a = 12 nm (dashed line). Two things to notice:
first, the data seem to agree with the form of the theoretical curve for a
scattering length between 11 and 12 nm, and second, the large dispersion

10This relies on the assumption the clouds at Tc behaves as thermal clouds away from
threshold.
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Figure 4.9: The correction factor F for clouds at BEC threshold as a function
of temperature

is eliminated. Points corresponding to the highest densities do still not fall
on the curve. This has an explanation: when we fitted the TOF signals, we
used a Gaussian function, which is only valid far away from BEC threshold.
This is not necessarily the case for the most dense clouds shown at the curve.
We can confirm this by observing the Gaussian fits for these clouds. Two
examples are shown in Fig. 4.11, the dotted lines. These fits are obviously
very bad. The Gaussian function is not peaked enough to describe the data,
and therefore the density deduced from the fit will be too low. Also the atom
number will be estimated too low, and thus the ionization rate per atom too
high. Consequently, fitting with a Gaussian will tend to displace the data
towards densities, which are lower than in reality, and towards normalized
ion rates, which are too high, exactly as we observe in Fig. 4.10.

In the vicinity of BEC threshold, the Gaussian function should be re-
placed by a Bose function. We therefore try to fit with a Bose function
with the chemical potential fixed to its threshold value11: µ = µc. These
fits are also shown in Fig. 4.11 as solid lines. But the Bose function does
not fit any better. We conclude that we are too near the threshold to use a
Gaussian function, but not close enough to impose the chemical potential to
the threshold value. However, the poor quality of the Gaussian fit explains
why the high-density data points in Fig. 4.11 b, do not lie on the theoretical
curve.

In conclusion, due to the measurements at the BEC threshold, we have

11This function is only valid at BEC threshold, see chapter 5.
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Figure 4.10: Ion rate as a function of average density for a thermal cloud.
The density is obtained by fitting the cloud with a Gaussian function. In a)
we have used the correction factor obtained with a BEC, while in b) we have
used the correction factor obtained for a thermal cloud at BEC threshold.
The solid and dashed curves in both graphs give the ion rates for a = 10 and
a = 11 nm respectively, using the rate constants determined in this chapter.

managed to deduce the correction factor which seems to be valid for a ther-
mal cloud in general. Due to this factor, we now understand the ionization
rate data not only for a pure BEC, but also for a thermal cloud, at least in
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Figure 4.11: Two examples of TOF signals and their fit corresponding to
the highest density data in Fig. 4.10, a). The dashed curve is the Gaussian
fit, which we use to deduce the density. The Gaussian fit is very poor, which
explains why the data deviate from the curve in Fig. 4.10, a). The solid line
is the Bose fit, which does not fit well the TOF signal either. The cloud is
too close to threshold to be described by a Gaussian, but too far away to
be a Bose function with a chemical potential corresponding to the threshold
value.

a given range of temperatures.

Chapter summary and outlook

We have presented our BEC measurements of the two- and three-body ion-
izing rate constants parameterized by the scattering length. The parame-
terization was necessary because we obtained the density of the BEC from
measurements of the chemical potential – and these two quantities are re-
lated via the scattering length. The obtained rate constants agree with
theory for all realistic values of the scattering length. We have also mea-
sured ionization rates in cold thermal clouds, and the results are consistent
with the measurements for a pure BEC for a scattering length between 11
and 12 nm. In the next chapter we deduce the scattering length, and see
that it is indeed in this interval.
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A measurement of the s-wave
scattering length

In chapter 4 we obtained empirical expressions for the rate constants β and
L in terms of the scattering length a. In this chapter, we will combine these
results with independent measurements of the ionization rate. Together,
these measurements will allow us to deduce a, and thus to give the absolute
value for the rate constants. The independent ionization rate measurements
are obtained with a cloud exactly at the BEC phase transition point1. We
exploit the fact that for a cloud at this point, the density is related to the
critical temperature. Therefore, at the critical point, density measurements
can be replaced by temperature measurements. The reason why this is useful
is that the temperature can be obtained from the width of the TOF signal, in
the same way as the chemical potential for a BEC. The temperature however,
in contrast to the chemical potential, gives the density independent of the
scattering length2. In addition, as we have shown in chapter 3, we can locate
the transition point by following the ion signal. We can therefore obtain
measurements of the ionization rate at the transition point as a function of
critical temperature. The data obtained are then fitted with the theoretical
expression for the ionization rate, using a, which enters the expression via
the rate constants β(a) and L(a), as a fit parameter. In this way, the value
of a can be determined.

5.1 Ionization rates at Bose-Einstein phase tran-
sition

We will start by deriving an expression for the ionization rate as function of
the temperature for a cloud at BEC threshold. If we in a first time neglect
atomic interactions, the density of the cloud can be written in terms of a

Bose function defined by gα(x) =
∞∑
i=1

xi

iα [17]:

n(r) =
1

λ3(T )
g3/2

[
exp

(
− 1
kBT

V (r)− µ

)]
, (5.1)

1The term “BEC threshold” or just “threshold” as well as “critical point” will in the
following also be used to indicate the BEC phase transition.

2This is not exactly true: a small dependence on the scattering is present, but will not
affect our final result, as we will discuss below.
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where T is the temperature of the cloud, kB is the Boltzmann constant, λ(T )
is the thermal de Broglie wavelength defined by λ(T ) = h/

√
2πmkBT , V (r)

is the harmonic trapping potential, and µ is the chemical potential. At BEC
threshold, µ = 0 when we neglect the interactions and zero point energy of
the harmonic potential. Therefore, the critical density can be written as

nc(r) =
1

λ3(Tc)
g3/2

[
exp

(
− 1
kBTc

V (r)
)]

(5.2)

which depends only on the critical temperature Tc and the trapping poten-
tial. Also the total atom number depends only on Tc:

Nc = g3(1)
(
kBTc

~ω

)3

, (5.3)

where ω = (ω‖ω2
⊥)1/3 is the geometric average of the trap oscillation frequen-

cies. Now recall the expression for the ionization rate discussed in chapter
1:

Φ =
N

τi
+

1
2
β

∫
n2dr +

1
3
L

∫
n3dr. (5.4)

Now if we insert the above expressions for the critical density and atom num-
ber in this expression, the ionization rate at threshold Φc can be deduced:

Φc = (
ωc

ω
)3 ×

[
1
τi

1.20 +
β(a)
λ3

c

0.33 +
L(a)
λ6

c

0.22
]
. (5.5)

Here, ωc ≡ kBTc/~ and λc ≡ λ(Tc). The numerical values appear in the cal-
culations of the integrals of the Bose functions and are therefore independent
of any parameters of the cloud.

Equation 5.5 gives us the ionization rate as a function of the critical
temperature, and the rate constants are given in terms of the scattering
length. By measuring Φc as a function of Tc, and fitting these data using
Eq. 5.5, the scattering length can be obtained. This will be our strategy.

5.1.1 Ion detection efficiency

An advantage of this approach is that the value of a will be independent
of the absolute ion detection efficiency α, which is not very well known.
This can be understood in the following way: the detected ionization rate
Φc,det must be modified according to the efficiency so that Φc = Φc,det/α.
Now remember that the ionizing lifetime and the rate constants also were
obtained by ionization rate measurements. This means that they were also
corrected according to a detection efficiency α′: τi = α′τdet, β = βdet/α

′ and
L = Ldet/α

′. Inserting these expressions into Eq. 5.5, we get

Φc,det/α = (
ωc

ω
)3 ×

[
1
α′τi

1.20 +
βdet(a)/α′

λ3
c

0.33 +
Ldet(a)/α′

λ6
c

0.22
]
. (5.6)
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It is now clear that if the detection efficiency has not changed since the
earlier measurement, then α = α′, and Eq. 5.6 becomes independent of the
detection efficiency. We expect this to be the case, and we will later show
that we can confirm this experimentally.

5.1.2 Including the interactions and zero point energy

Equation 5.5 is an approximation in the sense that it does not take into
account the atomic interactions and zero point energy3. In this section we
will show that for our experimental parameters, these terms play a major
role. We will therefore derive an expression for the ionization rate as a
function of critical temperature, which takes the interactions into account.
In this section, we will only outline how the calculations are done, a more
complete derivation is given in Appendix B.

In the mean field approach, which includes the atomic interactions, the
following expression for the density is obtained [17]:

n(r) =
1

λ3(T )
g3/2

[
exp

(
− 1
kBT

(V (r) + 2U n(r)− µ)
)]

(5.7)

In addition to the parameters defined above, U = 4π~2a/m is the interaction
constant. This includes a term in the density which depends on a. Therefore,
the interactions introduce a dependence on a, in addition to the dependence
via the rate constants. However, adding these a-dependent terms to the
ionization rate given in 5.5, will not change the strategy discussed above.

As before, the ionization rate at the phase transition is derived from
Eq. 5.4, now using Eq. 5.7 for the density. As the density now includes a
term proportional to the density itself, no analytic expression can be derived,
but a first order perturbation calculation is possible. The approach is similar
to the one used in Ref. [51]. The calculations in this reference are for a fixed
atom number: in our calculations, we fix the temperature instead of the atom
number. We use the chemical potential of a gas in a harmonic potential at
the BEC transition, valid to lowest order in a and for large atom numbers
[51]:

µc/kBTc =
3
2
ω̃

ωc
+ 4g3/2(1)

a

λc
. (5.8)

We have used the notation ω̃ = (2ω⊥ + ω‖)/3 which is the arithmetic mean
of the oscillation frequencies. The first term takes into account zero point
energy while the second term arises from the interactions. When this chem-
ical potential is inserted into Eq. 5.7, we obtain an expression for the critical
density as a function of the critical temperature. We then make a first order
expansion of the small terms due to interactions and the zero point energy

3The effect of the zero point energy is often referred to as finite size effects. This can
be understood from the following: in the thermodynamical limit, the density n = N/V is
constant for N →∞. As the volume varies as 1/ω̄3, then ω̄ → 0 if we want the density to
remain constant. If ω̄ = 0, the zero point energy goes to zero in this limit.
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of the potential. With this first order expression for the density, one can
write the integrals in Eq. 5.4 in terms of integrals of Bose functions, which
can be solved numerically. We finally obtain the critical ionization rate:

Φc = (ωc
ω )3× [ 1

τi
(1.20 + 2.48 ω̃

ωc
+ 12.35 a

λc
)

+β(a)
λ3
c

(0.33 + 1.81 ω̃
ωc

+ 6.75 a
λc

)

+L(a)
λ6
c

(0.22 + 2.21 ω̃
ωc

+ 6.50 a
λc

)
] (5.9)

The terms proportional to a/λc account for the atomic interactions, while
the corrections proportional to ω̃/ωc take into account the effect of finite
sample size. For the typical parameters of our experiment (Tc ∼ 2 µK and
a = 12 nm) we have a/λc ' ω̃/ωc ' 0.02. This means that for the term
due to background collisions, the zero point correction is of the order of
0.02 × 2.48/1.20 ∼ 4% and for interactions it is 0.02 × 12.35/1.20 ∼ 20%.
For the 2-body process, the corrections are 11% and 40%, respectively, while
for 3-body process, they are 20% and 60%.

Since these first order corrections are very large, in particular those due
to interactions, we need to estimate the second order corrections. This is also
done in Appendix B. We use an approach similar to Ref. [117], and we find
that the second order corrections due to interactions are relatively small: for
one-body collisions, the second order contribution is typically −4% of the
ideal gas result, while for two- and three-body collisions, the corrections are
1.8% and −3%, respectively. As shown in Appendix B, also higher order
corrections to zero point effects are small. In the analysis of our data these
corrections turn out to be negligible, and it is therefore sufficient to use the
first order approximation only.

We will later in this chapter use Eq. 5.9 to fit our data. This equation
contains 3 parameters, β, L and a, but due to the parameterization of the
rate constants in terms of a, can we do a simple one-parameter fit. This
will give us a, and then, by substituting this a in the expression for the rate
constants, they can also be deduced.

5.2 Experimental realization

The setup is the same as the one used to measure the collision constants
described in chapter 4, and the experimental realization is similar: we record
an ionization rate during a given time, and then we switch off the trap and
record the TOF signal. Again, the last value of the measured ionization rate
corresponds to the cloud observed in the TOF signal. The main difference is
that we switch off the trap when the cloud is at the transition point instead
of cooling it down until a pure BEC is obtained.

To identify the transition point, we use the break in the slope in the
ionization rate. In chapter 3 we established a curve relating the break in the
slope in the ionization rate (i.e. the threshold point) with the frequency of
the rf-ramp (see Fig. 3.10 in chapter 3). This curve will allow us to switch off
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the trap very close at the rf-frequency corresponding to the transition point.
In this way, the last observed ionization rate and the corresponding TOF
signal, will correspond to a cloud at BEC threshold. From the TOF signal,
we get the critical temperature of the cloud. This procedure is illustrated
in Fig. 5.1, where the ionization rate and the corresponding TOF signal are
shown.

When we take the data, the experiment cycles continuously with a se-
quence lasting around 25 seconds. The ionization rate is fairly reproducible
from run to run, but it fluctuates on a longer time scale4: after 3-4 runs,
the ionization rate makes a jump which can be as large as 100.000 counts/s
(see Fig. 5.1, a for comparison). The instabilities arise mainly from the
fluctuations in the initial atom number in the magnetic trap, which we do
not yet control very well. When the ionization rate changes, so does the rf-
frequency corresponding to the transition point, according to the threshold
curve. Consequently, when the ionization rate jumps, we must change the
rf-ramp such that the cloud again is released when the ionization rate is on
the threshold curve. In principle, the adaptation of the rf-ramps could be
done real-time, by monitoring the initial value of the ionization rate, and
accordingly change the interruption frequency during the run. It turns out
to be simpler to chose in advance the interruption frequency, and take data
until the ionization rate jumps. When it happens, we change the rf-ramp,
and discard the last run, which did not produce a cloud at the transition
point.

Another difference compared to the experiment in chapter 4, is the tem-
perature of the cloud. In chapter 4, we used a pure BEC, while we here use
a thermal cloud with a temperature around 2 µK. Remember that we must
push the atoms in the mJ = ±1 state away from the MCP with magnetic
gradients, in order to obtain a clean TOF signal. The higher the temper-
ature is, the more kinetic energy the atoms have, and the more difficult it
is to push away the mJ = ±1 atoms. Therefore, we increase the current in
the coil which generates the horizontal magnetic gradient which pushes the
atoms. In addition, to ensure that the mJ = ±1 atoms do not arrive on the
MCP, we add a supplementary coil generating a vertical gradient. In this
configuration, the atoms are pushed diagonally away from the MCP, and
this turns out to be more effective.

A last difference between the pure BEC and the Tc measurements con-
cerns the stabilization of the bias field. For the BEC experiments, after each
run we observed the TOF signal corresponding to a pure BEC. From the
signal, we could immediately identify a change of the bias field of 25 kHz or
larger, by observing either thermal wings or a violent decrease in the signal.
The TOF signal therefore allows us to continuously adapt the bias. With a
thermal cloud, this is not possible, because the the form of the TOF signal
is not considerably modified when the bias field fluctuates. Consequently

4It behaves like the Danish weather: the probability of the weather to be the same as
the day before is 90 %, and still, the weather changes very often!
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Figure 5.1: In a we show an example of an ionization rate (gray curve).
We use the threshold curve (black curve) to locate the threshold point. In
the subsequent experimental run, we cut the trap at this point. The corre-
sponding ionization rate is shown in black. The final value of the ionization
rate Φc is the critical ionization rate. In b we show the TOF signal corre-
sponding to the critical point. The fit of this TOF signal gives us the critical
temperature Tc of the cloud.

we cannot adapt the bias field from run to run. Instead, in every third run,
we continue the evaporation down to 1 MHz. Here, a pure BEC should be
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formed if the bias field has not derived. We can then adapt the bias field
according to the above procedure. As a result, in this experiment, we only
verify the bias field every third run, and consequently, fluctuations in the
bias field are larger than in the BEC measurement. As explained in chapter
3, fluctuations in the bias field give rise to small fluctuations in the ioniza-
tion rate5, and therefore, according to the threshold curve, in the transition
point as a function of rf-frequency. Consequently, in a large fraction of our
runs, the evaporation is not interrupted at the threshold curve. After fin-
ishing the data acquisition, we discard all runs for which the interruption
frequency was further than ±25 kHz away from the threshold curve. In
general, we often need to discard about 80 % of the data!

To explore a large range of critical temperatures and ion rates, the size of
the cloud is varied. This is done by modifying the speed (the rate of change
of the rf-frequency) of the first 15-20 seconds of the evaporation ramp. Note
that the final part is never changed. The atom number left after these 15-
20 seconds depends strongly on the speed of the ramp. If it is high, few
atoms are left, while if it is low, more atoms will be left. We exploit this to
adapt the evaporation ramp in order to obtain – as far as the uncontrolled
fluctuations allow – the desired atom number.

5.3 Data analysis: the analysis

The starting point is the data set consisting of ionization rates and their
corresponding TOF signals for clouds at the BEC transition point. These
data have been selected by requiring the final ionization rate to be on the
threshold curve, as explained in section 5.2. The following data analysis
can be divided into three main parts: i) first we need to determine the
ionization rate at the transition point from the recorded ion signal, ii) then
we determine the temperature from the TOF signal, iii) and finally we verify
by using the TOF signal if a cloud is at the transition point. If this is not
the case, it should not be included in the analysis. Of course, in the ideal
case, if the ionization rate is on the threshold curve, the cloud ought to
be at threshold. However, a slight derivation of the bias field shifts the
threshold curve relative to the one we recorded with the correct bias field,
and therefore use for switching off the trap. Consequently it will happen
that even though the ionization rate is on the initially recorded ionization
rate, the cloud is not exactly at threshold. Therefore we also use the TOF
signals for verification, and this point is the crux of the data analysis.

5.3.1 The ionization rate

As explained in section 5.1, the analysis relies on the fact that the ion detec-
tion efficiency has not changed since the measurements of the rate constants

5These small fluctuations are present in addition to the large jumps in the ionization
rate discussed above.
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Figure 5.2: The gray points (points and crosses) correspond to the data
presented in chapter 4, and the black points are measurements discussed in
section 5.3 obtained 1 year later. The absolute scale for the peak density
was obtained by choosing a = 12 nm. Importantly, note that that the two
different series of data are well superposed. This means that the detection
efficiency has not changed between the two acquisition periods.

performed 1 year earlier. One could imagine that due to extensive use, the
properties of the surface might have changed or other similar degradations.
If this has changed the detection efficiency, the measured ionization rate
must be scaled accordingly. To verify if it is unchanged, we repeat first the
measurement of ionization rate as a function of density for a pure BEC, pre-
sented in chapter 4, section 4.5. In Fig. 5.2, we plot the new measurement
(black points) in addition to the measurements obtained 1 year earlier (gray
points). We see that the two data sets are superposed, indicating that the
detection efficiency has not changed.

The remaining analysis of the ionization rate is straightforward. To
obtain the ionization rate at threshold, we take the average value of the
last 5 points of the recorded ionization rate, in order to obtain less noise.
This corresponds to averaging over the last 25 ms before the switch-off of the
magnetic trap. We can do this because the cloud does not evolve significantly
during 25 ms: assuming that the temperature decreases 2 µK per second (see
section 5.6.1), 25 ms corresponds to a temperature change around 0.05µK,
which is much smaller than the estimated temperature uncertainty. The
ion detection is shot noise limited, so for a typical ionization rate of 100 ×
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103 counts/s, the noise is
√

100× 103 × 0.025/0.025 = 2000 counts/s ' 2%.
The error-bars arising from this contribution turn out to be approximately
the size of the data points, and are therefore omitted in the following graphs.

5.3.2 Time-Of-Flight signal

To obtain the temperature, we fit the TOF signals. The function used for fit-
ting is discussed in Appendix C. Briefly, it is obtained by combining Eq. 5.7
with the chemical potential fixed to the threshold value (Eq. 5.8) and per-
forming a first order development of terms arising from atomic interactions.
This gives a density distribution which describes the initial atomic density
(i.e the density of the atoms in the trap). To obtain the fit function for
the atoms arriving on the MCP, we have to modify the density distribution
according to the expansion of the cloud. We assume that the cloud expands
ballistically, i.e. no influence from collisions during the expansion, and we
obtain thereby the fit function for the atoms arriving on the MCP. Later on
we will refer to this as the Bose fit, even though this term rigorously is more
general.

When we do the fit, each point in the TOF signal is weighted by an
estimated uncertainty. A detailed derivation of this uncertainty is given in
Appendix E. In summary, to estimate this uncertainty, we chose a set of
TOF spectra which appeared to show no systematic deviation from their fits.
The noise as a function of amplitude of the measured TOF signal was then
estimated as the standard deviation between this TOF signal and the fit. We
then established a relation between noise and amplitude, and this relation
is used in the fitting procedure. As shown in Appendix E, we observed that
this noise varies as the square root of the amplitude of the signal, indicating
that also the atom detection is shot noise limited. When we fit, we exclude
the central part of the TOF signal (it is given zero weight in the fit). The
excluded window corresponds to half of the rms width of the TOF signal.
The reason why we exclude the center of the TOF signal is to avoid the high
density region, where the approximations used for deducing the fit function
might no longer be valid.

The temperatures obtained from the fit are as mentioned obtained as-
suming a purely ballistic expansion of the cloud. This is an approximation,
because we know that collisions are present and influence the first ms of the
expansion of the cloud. When this is the case, the gas is in the hydrodynamic
regime6. Instead of modifying the fit function in order to account for the
collisions, we can maintain the fit function corresponding to a ballistic ex-
pansion, and simply modify the temperature obtained according to a scaling
factor. This factor can be obtained as the solution to a set of differential
equations, following the approach of by P. Pedri et al. [118]. How this is
done in practice is discussed in Appendix D. For a temperature of 2 µK,
the correction is ' 0.1 µK.

6The opposite regime is referred to as the collisionless regime.
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Since we use a fit function which takes into account interactions (Ap-
pendix C), the deduced temperature will also depend on the scattering
length a. Fortunately, the changes on temperature are very small, when
a is varied inside the range corresponding to realistic values. As shown
in Appendix D, also the hydrodynamic correction depends slightly on the
scattering length a. But as before, this dependence is quite weak, and the
corresponding error introduced on a is very small. We will discuss these two
errors when we list the uncertainties on a below.

Identification of transition point using the TOF signal

To improve our data selection, we will now use the second available criterion
based on the TOF signal. The main point to realize is the following: since
the Bose function, as defined in Appendix C, only is valid for a cloud exactly
at BEC threshold, the quality of this fit will indicate how close the cloud
is at the transition point. On the other hand, a Gaussian function is only
valid for a cloud far away from quantum degeneracy. Consequently, if the
cloud is at the transition point, a Gaussian function will not fit the data
well. In Fig. 5.3 we show an example of a TOF signal corresponding to
a cloud at BEC transition (gray curve). The solid black line is the Bose
fit, while the dashed line is a Gaussian fit. In the example shown, a large
window indicated by the vertical lines (corresponding to the rms width of
the TOF signal) is excluded from both fits. The fact that the Bose function
reproduces the central part of the TOF signal, even though it is given zero
weight in the fit, confirms that the Bose function is the correct fit function,
and therefore that the cloud is at the transition point. This conclusion is
further supported by the fact that the Gaussian fit is very poor.

To render this criterion more quantitative, we will describe the fit in
terms of a χ2 value7. The value of χ2 depends on the weight given to
the different data points in the fit, which is inversely proportional to the
uncertainty of the given points. This uncertainty is estimated in Appendix
E. As this uncertainty is only approximate, the absolute values of χ2 are
somewhat arbitrary. Still, the χ2 values can be used to classify the fits
relative to each other, and can therefore be used to exclude the poorest
fits. Because of the arbitrariness of the χ2 values, we normalize all values
according to the best of all our fits. We will use these χ2 values in the
analysis below, in particular, we will show how we can eliminate “outliers”
by rejecting fits having a χ2 higher than 2. A collection of fits and their χ2

value is given in Appendix F.
In addition to a high χ2 value, the fact that the Bose function is not

the correct fit function can be revealed by the following procedure: we fit
the TOF signal using the Bose function, excluding a window centered on

7We will in the following always use the reduced χ2, which is the χ2 per degree of
freedom. For simplicity, we will denote it by χ2, even though it is often denoted by χ2

ν in
literature. For a mathematical definition of the χ2, see Appendix E.
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Figure 5.3: A typical TOF signal (gray curve), fitted by the Bose function,
see text, (solid line) and by a Gaussian function (dotted line). For both fits,
we have excluded the central region indicated by the vertical lines (in this
example it is the rms size of the cloud).

the TOF signal. The width of this window is now varied, starting from 0
(we fit the entire TOF signal) and increased successively out the rms size of
the cloud. The fits will then give us the temperature as a function of the
size of the excluded window. Now if the fit function is the correct one, the
temperature should be independent on the size of the window: the correct
fit function should be able to reproduce the whole TOF signal, even when
a part of it is excluded from the fit. To illustrate this in practice, we show
in Fig. 5.4 two TOF signals: 1a shows a cloud that we expect to be at BEC
threshold ( χ2 ' 1 for the Bose fit) and 2a shows a cloud which is not at
threshold (χ2 ' 3.6). The TOF signals and their Bose fit are shown to the
left, and the temperature obtained from the fit as a function of the size of
the hole is shown to the right. The hole size σ is normalized to the rms width
of the TOF signal σ0. We see that for the low χ2 fit, the variation in the
fitted temperature as the excluded window is increased is very small (a few
percent), while for the large χ2 fit, it is as high as 15%. In the example in
Fig. 5.4, the temperature is decreasing, indicating that the cloud is above Tc.
This can be understood in the following way: a cloud before Tc will be wider
than a cloud at Tc. When we fit to the whole range, the procedure will tend
to give a wide fit, and thus a relatively high temperature. When the center
is excluded, only the wings will be considered, allowing the fit to be more
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Figure 5.4: Two examples of TOF signals fitted by the Bose function, see
text. In 1a we show a fit with a χ2 = 3.6 , while in 2a, χ2 = 1.0. This
is a general feature in our fits; when we qualitatively estimate that a fit is
bad, the χ2 is also high. Evolution of the temperature obtained by the two
fits, as the excluded window is successively increased is shown in 1b and 2b
respectively. The flat curve in 2b confirms the quality of the fit, while the
decrease of temperature in 1b indicates that we are not at BEC threshold.

peaked than the real TOF signal as is the case in the figure. This will give a
lower temperature so the temperature appears to decrease as the exclusion
window increases. In the same way, an increasing temperature indicates a
cloud cooled beyond Tc: the fit excluding the center will be wider than the
actual TOF signal, and the deduced temperature will be higher than when
fitting to the total range. Our idea was to investigate the effect of discarding
all fit for which the temperature varies more than 10 %. In practice, not
very surprisingly, this criterion corresponds (almost) exactly to requiring χ2
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to be below 2, and we will therefore only apply this latter criterion.
Even though this temperature variation turns out to be redundant what

data selection is concerned, it gives us information about the uncertainty on
the temperature: it gives us an estimate of the uncertainty in temperature
due to the fitting procedure. For this purpose we consider the fits corre-
sponding to excluded windows ranging between 0 and the half of the rms
size (instead of the entire rms size) of the TOF signal8. If we consider only
fits with χ2 below 2 (the data which we include in the final analysis), the
temperature variation is ∼ 5 %. This is our best estimate for the uncertainty
on the temperature measurements9.

In our approach the main principle of the data selection using TOF
signals is the following: we fit with the Bose function, of which the chemical
potential is fixed to the value at threshold, and then estimate if the fit is good
or not. One could imagine another approach: we could fit the cloud with the
temperature and the chemical potential as free variables, and then discard
TOF signals for which the obtained chemical potential is different from the
one corresponding to BEC threshold. Unfortunately, the temperature and
chemical potential are not “orthogonal” variable in the fit function, in the
sense that a variation in one, can be compensated by a variation in the
other one. This gives rise to a very large uncertainty in the fitted value of
these two parameters: the uncertainty in the chemical potential turn out to
be about 100% of its value, which makes it useless as an indicator of BEC
threshold. We therefore think that it is a better solution to fix the chemical
potential to the value at BEC threshold, and then consider the quality of
the fit, as we have done above.

5.4 Data analysis: the data

In the preceding section we have described the analysis: how we obtain the
ionization rate and the temperature, and how we can define, by using the
TOF signals, another criterion in addition to the ionization rate, to tell if
a cloud is at threshold or not. In this section, we will finally present the
data10.

We will first consider the data points corresponding to all our data,
selected only according to their ionization rate being on the threshold curve,
i.e. a selection using the TOF signal has not yet been done. The critical
ionization rate as a function of critical temperature for these data is plotted
in Fig. 5.5, a. For comparison, we also show the theoretical curves (Eq. 5.9)

8When the excluded window approaches rms size, the quality of the fit starts to de-
crease.

9This assumes that we use the correct scattering length in the fit function, see section
5.5.1.

10This, and the preceding section title, were inspired by the name of the chapters “Nom
de pays: le nom” and “Nom de pays: le pays” in “A la recherche du temps perdu” written
by Marcel Proust. The two chapters are written in 1892-1895 and 1897, respectively.
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Figure 5.5: Ion rate as a function of critical temperature. The dotted, solid,
and dashed line correspond to the theoretical curves for 14, 12 and 10 nm.
In a the data are selected only by imposing a criterion on the ionization
rate (yet no requirements on the TOF signal), while in b the gray points
correspond to TOF signals where the χ2 is larger than two.

corresponding to a = 10, 12 and 14 nm. The large separation of the three
curves for the relatively small change in a underlines the sensitivity in the
determination of a using this method. We observe that a large fraction of the
data points falls between 10 and 14 nm. Looking at the data we observe that
points at high temperatures show a tendency to fall near the 10 nm curve,
while points at low temperatures fall near the 14 nm curve. We suspect that
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this is due to the fact that even though the ionization rate indicates that
the cloud is at BEC threshold, this is not exactly the case.

We then apply the second criterion for BEC threshold, related to the
χ2 value for the TOF signals. The black points in Fig. 5.5 b correspond to
fits having a χ2 value below 2, while for the gray points, this value is above
2. The black points considered alone show indeed a decreased dispersion.
The 4 outlying gray points around Tc = 3 µK, all have a χ2 larger than 3,
indicating that they are very far away from threshold.

Even when we eliminate data having a χ2 larger than 2, some dispersion
in the points remains. If we try to decrease further the cut-off value of χ2

below 2, we essentially decrease the number of points without decreasing
the dispersion. The remaining scatter in the data is larger than what can
be accounted for by our estimates of the uncertainties in the ionization rate
or temperature measurements. We therefore assume that is must be related
to the fact that we are not exactly at condensation threshold, even though
neither the ionization rate nor the fitting procedure reveals so.

5.5 Determination of the scattering length

Since we believe that points with a χ2 higher than 2 do not correspond
to clouds at BEC threshold, we exclude these points when we determine
the scattering length. We fit the ionization rate as a function of Tc for the
remaining points, using Eq. 5.9 given by

Φc = (ωc
ω )3× [ 1

τi
(1.20 + 2.48 ω̃

ωc
+ 12.35 a

λc
)

+β(a)
λ3
c

(0.33 + 1.81 ω̃
ωc

+ 6.75 a
λc

)

+L(a)
λ6
c

(0.22 + 2.21 ω̃
ωc

+ 6.50 a
λc

)
]

with a the fit parameter. All the points are given equal weight in the fit.
Figure 5.6 shows the obtained fit (solid line). We obtain

a = 11.3 nm.

This result is compatible with all earlier measurements as well as theory
according to the discussion in chapter 1.

5.5.1 Uncertainty

Of course an experimental result is useless unaccompanied with its uncer-
tainty. We believe that the main uncertainty of the scattering length does
not comes from the uncertainty of the measurement of ionization rate and
temperature, which can be measured very well11. We believe that the dom-
inant uncertainty comes from the fact that a part of the clouds are not

11The uncertainty for the ionization rate and temperature is 2 and 5 %, respectively,
see section 5.3.
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Figure 5.6: The scattering length is obtained by fitting the black points (χ2

less than 2), using Eq. 5.9. The fit gives 11.3 nm (solid line). The error-bars
are estimated by fitting separately the data having a Tc below and above
2 µK (including the gray points). These fits are also shown (dotted and
dashed line, respectively).

exactly released at the BEC threshold, even though neither ionization rate
nor TOF signal indicates that this is the case. It could be, for instance,
that the break in the slope does not correspond exactly to BEC threshold,
as we will discuss below. The resulting uncertainty on the scattering length
is very difficult to estimate. As already mentioned, the trend in low tem-
perature data to be above the fit and high temperature data to be below
(see Fig. 5.6) arises probably from clouds not being exactly at BEC thresh-
old. Therefore, we will estimate the resulting uncertainty on the scattering
length by considering this trend in the data: we fit the data (including gray
points) separately for Tc below and above 2 µK. We find a = 13.8 nm for
the low temperature data and a = 10.4 nm for the high temperature data.
The two fits are shown in Fig. 5.6, dotted and dashed line, respectively.
Therefore, as we do not know if it is the low- or high temperature data or
somewhere between which are “correct”, the value of the scattering length
could be somewhere between a = 13.8 nm and a = 10.4 nm. This is the
main uncertainty.

Of course, other sources to uncertainty are present. In particular, the
uncertainty on the rate constants contribute to the uncertainty on a, as
well as the fact that the determination of the temperature actually depends
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on a itself. We will in the following discuss these two sources, which turn
out to be smaller than the error-bars estimated above. The uncertainty on
the rate constants gives rise to an uncertainty on a of 0.5 nm, while the
uncertainty due to the temperature determination turns out to be negligible
(< 0.1 nm). Later, to obtain the total uncertainty on the scattering length,
we will add quadratically the contribution arising from the rate constants to
the uncertainty obtained from considering the high-low temperature trend
in the data.

Uncertainties from the rate constants

First let us consider the contributions from the rate constants β and L.
Fortunately, the uncertainties in β and L are highly correlated as discussed
in chapter 4, and therefore their contribution to the uncertainty on a turns
out to be small. To visualize this error, we show how the curve for a = 11.3
nm (which is obtained using the central value for the rate constants) is
displaced according to the uncertainties on the rate constants. This is done
in Fig. 5.7. The dashed line corresponds to using the upper limit of the
value for the rate constant L and the lower limit for β, while the gray
line is the opposite: lower limit for L and upper limit for β. To estimate
quantitatively the influence on the scattering length, we first parameterize
the extreme values of β and L in terms of a: for each a, we determine the
upper and lower limit of the rate constant, in order to deduce them as a
function of a. With these functions, we can then perform a fit to obtain
a in the two extreme cases. In the first case (upper limit for β and lower
limit for L) we obtain a = 11.1 nm, while in the opposite case, we obtain
a = 11.6 nm. The uncertainty on a due to the uncertainty on β and L
is thus 0.5 nm: this is much smaller than the errors-bars estimated above,
but to be rigorous, we will add it quadratically to the error-bars estimated
above, in order to obtain the total error-bars on the scattering length.

Uncertainty arising from the temperature determination

Our second source of uncertainty arises from the fact that the fit function
depends on a itself. Therefore the temperature deduced from the fit will
depend on the a used in the fit function, as discussed in Appendix C. In
addition, the correction due to the hydrodynamic expansion depends on a.
This is discussed in detail in Appendix D. We must therefore choose a value
of a to obtain the temperature, before plotting our data. In the analysis
above we have chosen a = 12 nm.

Nonetheless, the final value of a deduced from fitting the ionization rate
depends only very weakly on the choice of a used in the analysis, in the
case of a ranging between a = 10 nm and a = 14 nm, as we will show now.
To do so, we will perform the analysis of the TOF signals again, now using,
both for the initial fit function, and for the hydrodynamic corrections a = 10
nm. We then repeat the procedure, using a = 14 nm. We show the results
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Figure 5.7: Displacement of the curve corresponding to 11.3 nm (solid line),
due to the uncertainty of the rate constants. The dashed curve corresponds
to taking the upper limit for L and lower limit for β, both deduced for
a = 11.3 nm. The gray curve is the contrary: L minimum and β maximum.

in Fig. 5.8. Only points having a χ2 less than 2 are shown. Gray points
correspond to a = 14 nm, and black points to a = 10 nm. The physical
reason why the gray points are shifted to the left, while black points are
shifted to the right is the following: the higher a is, the lower the fitted
temperature is, because for a high a, the expansion is expected to be due to
interactions rather than thermal energy. Also the hydrodynamic correction
is larger for a large a, because a higher elastic collision rate is expected in
the first ms of the expansion – giving rise to a larger hydrodynamic effect.
As the hydrodynamic corrections decrease the temperature, the points are
displaced to the left. If we now fit the gray points, we obtain a = 11.7 nm,
and for the black points we obtain a = 11.1 nm. The uncertainty due to this
effect is smaller than these two limits however; by iteration, we conclude that
a must be between 11 and 12 nm, and inside this interval, the corrections
are nearly the same (the difference between using a = 11 and a = 12 nm
changes the final value of a around 0.1 nm - and by further iteration this
can be brought as small as desired). Therefore, this uncertainty is negligible
compared to the errors-bars estimated above.

5.5.2 Final value for the scattering length

To obtain the final value for the uncertainty on a, we add in quadrature the
non-negligible sources of uncertainty: the one estimated from the high-low
temperature trend in the data and the error from the rate constants. We
obtain
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Figure 5.8: Both the fit function and hydrodynamic corrections depend on
the scattering length. In earlier analysis we have always taken a = 12
nm. In this figure we show the influence on the data points of this choice
of scattering length: black points are obtained when a = 10 nm, and gray
points correspond to 14 nm. To investigate the influence on the final deduced
value of a, we fit the black and the gray points separately, and we obtain
a = 11.1 and a = 11.7 nm (solid and dashed line, respectively).

a = 11.3+2.5
−1.0 nm

This is our final result for the scattering length. It is important to re-
member that this value, including the error-bars, rely on the assumption
that the BEC threshold corresponds to the break in the slope in the ioniza-
tion rate (see chapter 3). In the following, we will assume that the threshold
is not exactly the break in the slope, and study the consequences on the
scattering length.

5.6 If phase transition is shifted relative to the
break in the slope

All our experimental tests confirm that the break in the slope indeed cor-
responds to the BEC threshold. Nevertheless, as discussed in chapter 3,
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section 3.2.1, it has never been rigorously shown, using a model including
interactions, that this is the case. Near BEC threshold, interactions start to
play a role, and might result in a slight displacement of the threshold point
relative to the break in the slope. In the following we will therefore assume
that the threshold is not exactly at the break in the slope, and try to make
some simple estimates on how this would influence our deduced value of the
scattering length. To avoid confusion: in this section we will assume that
all the clouds are released exactly at the break in the slope - what we will
investigate is what happens if the break in the slope is not the threshold
point.

5.6.1 If it were before the break in slope

Let us start by assuming that the BEC threshold is actually slightly before
the break in the slope in the ionization rate. Before threshold, the ionization
rate increases very slowly, and we will assume that it stays constant. The
temperature, on the other hand, continues to drop, but we can estimate the
cooling rate dT/dt. Our strategy is then to say that if the true threshold is
shifted a time tshift to the left of the break in the slope, then all the cloud
are released too late, and the obtained temperatures are therefore too low:
they are exactly tshift × dT/dt too low. If the temperatures are too low, the
deduced scattering length will also be too low. This is what we want to
quantify in the following. First we need to estimate the cooling rate. To
do so, we compare two different experimental runs, each with identical ion
rates, but we have switched off the magnetic trap at different times (at t
and t+ ∆t). In each case, we record the subsequent TOF signal and obtain
the temperatures T1 and T2. This was done for three different ion rates,
indicated by A, B and C in Fig. 5.9. The cooling rate is shown in the inset
in the figure for each of the three pairs of ion rates. The cooling rate obtained
is between 2 and 3 µK/s.

The data used to deduce the cooling rate correspond to relatively di-
lute clouds (the ionization rate is between 5 × 103 and 30 × 103 counts/s).
In order to verify that the cooling rate is approximately the same also at
higher densities, we can use the data obtained at Tc, presented earlier in this
chapter. First, recall the parameter η describing the evaporative cooling:

η = h(νrf (t)− ν0)/kBT (t), (5.10)

with νrf (t) the rf-frequency during the cooling, and ν0 the bias field. This
parameter was already used in chapter 4. We expect η to be constant during
the evaporative cooling, at least up to the transition point12. The bias field,
except small fluctuations, also remains constant. From the expression for η,
the cooling rate can be found (assuming thermal equilibrium):

12This is the case for the rubidium experiments in our group, see for instance [60].
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Figure 5.9: Pairs of ionization rate curves (black and gray) having identical
initial ion rates. These curves are used to estimate the cooling rate prior
to threshold. In one case (gray curve) the trap was switched off a short
time ∆t after the other (black curve). For each of the two curves, the TOF
signal obtained after the switch-off yields the corresponding temperatures
T1 and T2, respectively, from which we obtain the cooling rate: dT/dt =
(T2 − T1/∆t). The inset shows this obtained cooling rate.

dT
dt

=
h

ηkB

dνrf

dt
. (5.11)

The rate of change of frequency of the rf-ramp, dνrf

dt , is an experimental
adjustable parameter. In all our experiments, it is imposed to 400 kHz/s
in the vicinity of Tc. We will in the following deduce η from our data, and
therefrom we can obtain the cooling rate. We will use our data at Tc: for each
cloud, we know the frequency of the rf-ramp νrf from the switch-off time of
the ionization rate, and the temperature from the TOF signal. The bias field
ν0 is known to be approximately 950 kHz. Therefore, we can calculate a value
for η for each cloud at Tc. The result is shown in Fig. 5.10, where we plot η as
a function of temperature. First note the large dispersion in the data. In the
plot, we have included all the data being at the threshold curve. Excluding
data with χ2 > 2 does not decrease significantly the dispersion. Instead, we
attribute the dispersion to bias field fluctuations, which influences directly η
as seen from Eq. 5.10. We note that in particular for low temperatures, the
dispersion is large, consistent with bias field fluctuations: the absolute values
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of such fluctuations are independent of temperature, but a cold cloud is more
sensitive to the bias field. Consequently, we use only the high temperature
data (above 2 µK) to estimate η. We obtain an average value of ∼ 9, which
according to Eq. 5.11 gives a cooling rate of ∼ 2 µK/s. This value agrees
with the estimate obtained using data in Fig. 5.9. Finally note that the data
are grouped together in separate, parallel decaying curves as illustrated in
Fig. 5.10 a by a dashed line. This is nothing fundamental, but related to the
way the experiment is done: for each chosen switch-off rf-frequency νrf , a
series of data is recorded before changing the frequency to a new value. For
νrf constant, η varies inversely with the temperature, as seen in Eq. 5.10.
As the density varies from run to run, so does the critical temperature. This
explains why the data in Fig. 5.10 resemble a set of 1/T curves.

12
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4

3.02.52.01.51.0

TC (µK)

η

Figure 5.10: The parameter η as a function of temperature. The data are
the same as those used to deduce the scattering length (obtained at BEC
threshold). The dispersion at low temperatures is due to fluctuations in the
bias field. The dashed line is an eye guide line, see text for explanation.

Using this cooling rate, we can calculate the expected temperature change
for our data points in Fig. 5.6 assuming that the real transition point is not
at our threshold curve, but at a time tshift before. The measured tempera-
ture is changed by an amount δT = tshift× 2 µK. This shifts all our data in
Fig. 5.6 horizontally to the right, and thus the value of a obtained by fitting
is decreased. Now for each value of tshift, we calculate the scattering length
that we would obtain, if the threshold were displaced by this amount. The
result is shown in Fig. 5.11. The gray region indicates values of a which are
allowed by the earlier announced lower limit (a = 10.3 nm). It is seen that
a stays above this lower limit, as long as tshift does not become greater than
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Figure 5.11: We show the value which would be obtained for a if the real
transition points were not situated at the threshold curve but a time tshift

before. The shaded gray area includes the values for a which are compatible
with the lower error-bar.

According to our experimental data, it must be considered unlikely, that
the break in the slope is more than 60 ms away from the threshold point: in
chapter 3 we compared a sequence of TOF signals with the ionization rate. In
particular, we used the double structure in the TOF signal in order to locate
the threshold point on the ionization rate – and it happened to correspond
to the break in the slope in the ionization rate. What is important to note
is that none of the TOF signals being released on threshold curve showed
any indication of double structure. As we have investigated several TOF
signals even closer than 60 ms to the break in the slope, and none of them
contained a condensed part, we conclude that the uncertainty is below 60
ms, and therefore that a remains inside the earlier stated error-bars.

A question arises: is this an independent source of uncertainty, different
from the others estimated above? If this is the case, even though this uncer-
tainty contribution does not exceed the stated error-bar on a, it should be
added to this one, enlarging the lower error-bar on a. We believe, however,
that the high-low temperature trend in the data (see Fig. 5.6) actually is
related to the fact that we do not identify perfectly well the threshold point.
In this case, the error-bars estimated by fitting separately the high temper-
ature and low temperature region take automatically this uncertainty into
account, and it should therefore not be added to the given error-bars. In
fact, we could initially have estimated our error-bars the other way around:
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given the uncertainty in the break in slope, we get a minimum value for
a (from Fig. 5.11), which we will take as our lower error-bar. The result,
of course, is the same, as it should be, if our understanding of the sources
to uncertainty is correct. We therefore keep our stated error-bars on the
scattering length.

5.6.2 If it were after the break in slope

If the real transition point is located after the break in the slope, we must
have interrupted the cooling too early. In this case, the temperatures ob-
tained are overestimated, and the points in Fig. 5.6 are located more to the
left, than they should be. This would lead to an overestimated value of
a. Unfortunately, the simple temperature evolution assumed above is only
a good approximation before threshold. After threshold, the temperature
evolution becomes more complicated, and in addition, the ionization rate
increases steeply, and this change cannot be neglected, as we did before.
Instead, we estimate the consequences of a displaced threshold point exper-
imentally. We have recorded a series of data (ion rates and TOF signals) for
clouds cooled past the threshold curve. The ion rates are shown in Fig. 5.12
a. In b we show the ionization rate as a function of Tc for these points13.
Also the fit (solid line) of the ionization rate as a function of Tc is shown, and
we obtain a = 14.7 nm. This is quite far from our value a = 11.3 nm, but
the fit of the TOF signals clearly indicate that threshold is passed: the fits
using the Bose function, which is only valid at BEC threshold, is very bad.
This indicates that we are indeed very far from threshold. Two of these TOF
signals are shown in Fig. 5.12 c and d, and the clouds clearly show a narrow
part indicating the presence of a condensed part. As expected the χ2 values
for the two fit are high (∼ 4). This confirms that the threshold can not be as
far away from the threshold curve as in the example in Fig. 5.12 a, and that
the a = 14.7 nm is certainly excluded. If we note that the data points in
Fig. 5.12 a, are recorded around 250 ms after the threshold curve, and that
this gives a = 14.7 nm, we estimate that a varies (14.7−11.3)/200 ∼ 0.02 nm
per ms of displacement between break in the slope and the true threshold14.
We have a temporal precision of the sequence of the TOF signals of at least
100 ms (see Fig. 3.1 in chapter 3). Therefore the uncertainty on the thresh-
old is less 100 ms, and the corresponding uncertainty is maximum 2 nm.
This is included in the upper error-bar on a (2.5 nm), estimated from the
low temperature trend in the data.

13It should be noted that this temperature would only correspond to Tc if the clouds
were at BEC threshold, and not after threshold, as we believe they are.

14Note that this is a very crude way of estimating it. However, if the threshold is actually
after the break in the slope, the data that we analyze are before the threshold point, and
assuming that the temperature, and therefore that a varies linearly with time, is not that
wrong!
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Figure 5.12: a) A series of ion rates where the trap is switched off after
threshold, according to the threshold curve. The final value of the ionization
rate as a function of the temperature, obtained by fitting the TOF signal
with the Bose function is shown in b). A fit of these data gives a = 14.7 nm
(solid line). Finally, two typical TOF signal corresponding to these ion rates
and their fit with a threshold Bose function are shown. In both cases, the
TOF signal show a narrow peak, which is not present in the Bose fit.

Before and after at the same time?

The reader might now ask him or herself why the data at low and high tem-
peratures do not exhibit the same tendency, as seen in Fig. 5.6. The tem-
peratures for low temperature data seem to be underestimated (the points
lie left for fit curve). According to the discussion above, this could mean
that the cloud is cooled past transition, and therefore that the true thresh-
old point is located before the break in the slope. For the high temperature
data it would be the opposite: the real threshold should be located after the
break in the slope. How is this simultaneously possible? The reason might
be related to the fact that for high temperature (high density and therefore
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high ionization rate) the break in the slope in less abrupt (see for instance
Fig. 5.12 a). One could imagine that for high temperatures, the threshold
is not exactly the inflection point (where the threshold curve crosses the
ionization rate in the figure) but somewhat later where the ionization rate
starts to increase more steeply. For low temperature data on the contrary,
the ionization rate changes more abruptly and the break in the slope is very
neat. The reason why the threshold could be slightly before this break in
the slope, is if some kind of delay between the threshold (the sharp increase
in density) and the increase in the ionization rate. This cannot be explained
by the time it takes for the ions to arrive to the micro-channel plate (less
than a millisecond), but something else that we have not yet thought about.

5.7 The 23 of June 2003

The data presented in section 5.4 correspond to five days of data acquisition.
Strangely, the trend for low temperature points to be below the fit curve and
for high temperature points to be above is much more pronounced for one
of the five days, namely the data acquired the 23 of June. The points cor-
responding to this day is indicated with black in Fig. 5.13 a, while the four
other days are indicated with gray. It turns out that many of the fits (but
not all) from the 23 of June, give a high χ2, between 2 and 3. Therefore,
if the data from this day is separated from the other data, we see a clear
reduction in the dispersion of the remaining points. As before, we reject
data having a χ2 higher than 2, and as before the dispersion of the remain-
ing points decreases. But now, in contrast to earlier, decreasing successively
the cut-off value of χ2 even further (to 1.5, 1.2 and 1, respectively), reduces
successively the dispersion, until only a few points remain. This is shown
in Fig. 5.13 b. To be sure that we really decrease the dispersion and not
only the number of remaining points, we quantify the decreased dispersion
as follows: we define a χ2

ion rate corresponding to the fit of the ionization rate
as a function of Tc. The subscript is given to avoid confusion with the χ2 for
the fits of the TOF signals. We normalize it with the value corresponding
to the fit of the data set including TOF signals having a χ2 below two. We
obtain

Cut-off χ2 for TOF 2 1.5 1.2 1.0
Obtained χ2

ion rate 1 0.8 0.3 0.1

The values for χ2
ion rate decrease indeed when the cut-off value of χ2 is re-

duced, indicating that the quality of fit increases due to a decreased dis-
persion of the points. This is in contrast to the case where we keep the
data from the 23 of June: here we saw a reduction in the dispersion of the
points when we chose the χ2 to be less than 2, but a further decreasing
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of this value only decreased the number of data points, not the dispersion
(χ2

ion rate stayed approximately constant). Consequently, we conclude that
the 23 of June data represent some clouds which are not at BEC threshold,
even though nor ion rate nor the corresponding χ2 indicate this.

A dilemma is born: is it correct to reject data from the analysis (here the
23 of June), because they behave strangely compared to the remaining data?
This is a profound question, but fortunately, we do not need to answer it
here: the value of the scattering length varies very little according to what
we do. Including the 23 of June in the analysis gives a = 11.3 nm, while we
now obtain a varying between 11.5 and 11.3 nm, for a cut-off value of χ2

ranging between 1 and 1.5.

5.8 New inelastic collision constants

In chapter 4 we gave the collision constants β and L in terms of the scattering
length, because at that stage, we only had a very unprecise value for this
constant. Now that we have deduced a much more accurate value of a, we
can refit the data for pure BEC presented in chapter 4, using a = 11.3 nm.
We obtain15

β = 0.9+2.0
−0.8 × 10−14 cm3/s

L = 2.5+5.3
−1.7 × 10−27 cm6/s

5.8.1 Modified error-bars

The quoted error-bars are significantly increased compared to those given
in chapter 4. The reason is that we have included two contributions, which
were not present in the earlier error-bars. The first additional contribution
come from the uncertainty on a. Earlier, as the rate constants were given
in terms of a, no uncertainty due to this parameter was to be taken into
account. The uncertainty entering via a is now obtained by taking the
minimum and maximum values for β and L corresponding to the upper and
lower limits for a i.e. a = 13.8 and a = 10.3 nm, respectively. The obtained
values are shown in table 5.1. The error-bars on β and L corresponding
to this contribution are highly correlated: if we take for instance the upper
bound for β corresponding to the maximum value of a, the minimum value
of L must of course be taken for the same value of a, and not the overall
minimum value. So taking into account these correlations, this part of the
uncertainty would in practice be smaller than the error-bars stated.

The second supplementary contribution to the uncertainty comes from an
eventual systematic error on the ion detection efficiency. We did not take it

15We have assumed the same detection efficiency as before, that is, 0.42.
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Figure 5.13: The series of data from the 23 of June turns out to behave
differently compared to the other data. In a, the black points correspond to
data acquired the 23 June, and shows a systematic trend compared to the
rest of the points. Excluding these data, the remaining data (gray points)
show a decreased dispersion. When these points are fitted (black curve),
we get a = 11.5 nm (solid line). In b we have completely omitted data
from the 23 of June. Now by imposing a criterion on the χ2 value for
these points, we can decrease further the dispersion. The large gray circles
correspond to χ2<1.5, smaller gray circles to χ2

ν < 1.2 and black points to
χ2

ν < 1. The black curve is present to guide the eye, and corresponds again
to a = 11.5 nm.
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a[nm] β/10−14 βmax/10−14 βmin/10−14 L/10−27 Lmax/10−27 Lmin/10−27

11.3 0.9 1.7 0.2 2.5 4.0 1.0
10.3 0.8 1.4 0.1 1.9 3.1 0.79
13.3 1.3 2.4 0.3 3.9 6.2 1.5

Table 5.1: The rate constant β is given in cm3/s while L is given in cm6/s.
Note that the uncertainty due to the ion detection efficiency is not included
in the maximum and minimum value.

into account to obtain the error-bars in chapter 4, because we did not have
a good estimate of this uncertainty. But now that we have the absolute
value for the rate constant, we can obtain a rigorous lower limit on the
detection efficiency. To do this, we use a series of independent measurements
of the atom number as a function of time for a decaying pure BEC. The
experimental data are shown in Fig. 5.14. Now using the values for the rate
constants, we can calculate the theoretical decay curve, corresponding to
the losses from the ionizing collisions described by the rate constants. It
is important to note that this theoretical curve does only include ionizing
loss processes. Note also that as the rate constants depend on the assumed
ion quantum detection efficiency, εion, so does the theoretical curve. The
central value of the rate constants above have been given assuming εion = 1
(corresponding to a total ion detection efficiency α of 0.42) and the decay
curve using these rate constants is indicated in Fig. 5.14, solid line. We
have also plotted the theoretical curves corresponding to lower efficiencies:
εion = 0.6, 0.5 and 0.4 (long-dashed, dotted and gray curve, respectively).
Now the crucial point is that the data points are only allowed to be lower
than the theoretical curve. This just requires that other losses than those due
to ionizing collisions are present. Therefore the theoretical curve can never
be below the experimental data: this would mean that we lose less atoms
than what is expected from the rate of ionizing collisions alone. Therefore
the absolute lower limit compatible with the data is εion = 0.4. According
to literature [103, 106], the most probable value for εion is 1, and we must
therefore suppose that other losses are present, in order to explain why the
experimental data are below the theoretical curve in Fig. 5.14. This is a
reasonable assumption, because in order to keep the BEC pure, we apply
during the decay an rf-field, to continuously eject hot atoms. Also non-
ionizing inelastic collisions like spin-relaxation could be present and induce
losses. Believing in the presence of other losses, we have used εion = 1 to
obtain the rate constants given above. We have nevertheless included in the
error-bars the fact that εion can be as low as 0.4, which must be considered a
very conservative estimate. Note that this adds an asymmetric contribution
to the error-bars on the rate constants.

Remember that this contribution to the error-bars of the rate constants
does not contribute to the uncertainty of the scattering length. This is
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Figure 5.14: Normalized atom number as a function of time for a decay-
ing pure BEC. The atom number is obtained from the chemical potential,
using a = 11.3 nm. Black points corresponds to experimental data. An
rf-shield is present to prevent heating. The curves show the decay (theory)
corresponding to ionizing losses alone (losses due to the rf-shield or other
inelastic processes are not included). The rate constants used in all curves
are for a = 11.3 nm, but the assumed ion detection efficiency (εion) varies:
we give it for εion = 1 (corresponding to a total efficiency of 0.42), and for
εion = 0.6, 0.5 and 0.4. As none of the theoretical curves can be below the
data points (see text), the rigorously lower limit for εion is 0.4. Finally note
that the values for εion are given assuming that the intrinsic limitation in de-
tection efficiency is 0.42 – this is, the total ion detection efficiency assumed
for the theoretical curves is the product 0.42× εion. If the value 0.42 turns
out to be wrong (see chapter 2), the values of εion indicated on the curves
must be modified accordingly.

because an eventual systematic error in the assumed ion detection efficiency
also would be present for our measurement of the ionization rate leading to
a, and cancels out, as explained earlier in this chapter.

Finally, using the graph 4.6 in chapter 4, we can compare the exper-
imental values with the theoretical estimates for the rate constants for
a = 11.3 nm. We find that our value of β is about 30% smaller than
the theoretical one (but still within the experimental error-bars), while our
value of L is 15% smaller than predicted by the theory.
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5.8.2 Suppression of Penning collisions

In sounds amazing that it is possible to reach densities allowing BEC with a
cloud of metastable atoms: one should think that ionizing collisions destroy
the sample much faster than the duration of the evaporative cooling, which
is generally more than half a minute! Fortunately, as discussed in chapter 1,
due to the spin polarization in the magnetic trap, these inelastic collisions
are forbidden. The prediction of this suppression encouraged the attempt
to Bose-Einstein condense metastable helium, even though nobody knew in
advance if it would be possible.

Now that we have obtained the value for the 2-body ionizing rate con-
stant β, it is hard to resist the temptation of giving our experimental result
for the suppression factor Fsupp. We will use the value for the rate con-
stant βnon−pol obtained in the group of W. Vassen [86]. They measured
βnon−pol = 1.3(2) × 10−10 cm−3/s (in the absence of light). Therefore we
obtain

Fsupp =
β

βnon−pol
=

0.9× 10−14

1.3× 10−10
∼ 7× 10−5. (5.12)

Including the dominating error-bars on β, we obtain a suppression factor in
the range between [6 − 15] × 10−5. This value agrees with the estimates of
Refs. [79, 80], which announce a suppression of five orders of magnitude.

5.9 Atomic interactions – an outlook

We have exploited the data at the critical point in order to extract the
scattering length for metastable helium, because this constant was not very
well known before these experiments. It is nonetheless interesting to note
that if we have had the scattering length in advance, we could still have
extracted important information from our data: the shift of the critical
temperature due to the interactions [48, 49, 50, 51, 52, 53, 54, 55, 56, 57].
This is an exciting question, which has only been investigated experimentally
a few times [58, 59]. Recall the critical ionization rate, which was given in
Eq. 5.9

Φc = (ωc
ω )3× [ 1

τi
(1.20 + 2.48 ω̃

ωc
+ 12.35 a

λc
)

+β(a)
λ3
c

(0.33 + 1.81 ω̃
ωc

+ 6.75 a
λc

)

+L(a)
λ6
c

(0.22 + 2.21 ω̃
ωc

+ 6.50 a
λc

)
]

The terms proportional to a/λc account for the atomic interactions, and
these terms shift significantly the ionization rate as shown in Fig. 5.15,
where we show the ionization rate including interaction (solid line) and the
ideal gas case (dashed line). In our analysis, we accounted for interactions
using the perturbation theory discussed in Appendix B. Consequently, the
deduced value of a relies on the validity of this theory. Now if an independent
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measurement of a becomes available, the same kind of data can be used to
probe the atomic interactions: if we imagine a is now known in the expression
for the ionization rate, we could leave the constants multiplying the terms
proportional to a/λc as free parameters in our fit. The obtained constants
would give information of the importance of the interactions in the sample.
Of course, if an independent measurement of a gives exactly 11.3 nm, then we
would re-obtain the values corresponding to the coefficients used in the above
expression. Of course, in addition to a precise, independent measurement of
a, we would need to understand and eliminate the source to the dispersion
of the points in Fig. 5.15, in order to use the ionization rate as a probe for
atomic interactions.
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Figure 5.15: The same data as presented in Fig. 5.5 and 5.6. The dashed
line corresponds to the ideal gas, while the solid line takes into account
interactions. Both lines correspond to 11.3 nm.

Chapter summary

We have in this chapter deduced a new value for the scattering length, and
we have given our best estimate for the error-bars on this measure. The
result has permitted us to deduce the absolute value of the rate constants,
which we in chapter 4 only could give in terms of the scattering length.

The measurement of the scattering length is 11.3 nm. This is almost a
factor of two different from the first measure obtained in our group, though
inside the error-bars: a = 20 ± 10. There, the detection efficiency was
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supposed to be the same for a thermal cloud and a BEC, even though we
now know, that it typically differs a factor of two. This explains why the
obtained value for the scattering length was too high.

As discussed in the introduction, photoassociation experiments are under
progress in the ENS group. A spectroscopic measurement of the scattering
length would provide the ultimate control of our result, and we hope that
they will soon succeed in obtaining their result.
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Of course the ionizing rate constants and the s-wave scattering length for
metastable helium are not among the quantities considered as fundamental
constants of nature – and they do not have an intrinsic interest as does the
gravitational acceleration or the fine structure constant. However, it is cer-
tain that in order to make quantum degenerate metastable helium a good
candidate for studying fundamental processes, these constants are essential
in the interpretation of the experimental results. And I hope that this thesis
has convinced the reader that metastable helium is a unique and very ad-
vantageous system for investigating various physical phenomena. Therefore
the amount of time spent on the measurements of these important constants
should be justified. Also from a purely theoretical point of view, the mea-
surement of these constants might be justified: both the rate constants, the
scattering length and the suppression factor for Penning collision have been
calculated, and by comparison with the experimental values, the validity of
the theoretical models can be tested.

Several exciting experiments using metastable helium are in prepara-
tion, and I hope they will profit from the work here presented – in the
preparation as well as in the understanding of the data. For instance, in
Amsterdam, a new experiment using both fermionic 3He∗ and bosonic 4He∗

is being prepared [119]. As the s-wave collisions between identical fermions
are suppressed, sympathetic cooling using 4He∗ can be used to cool down the
3He∗ atoms. Therefore, the magnitude of the 3He∗ ↔4 He∗ scattering length
(3−4a) becomes crucial for the efficiency of the cooling process. It is there-
fore interesting to note that this scattering length can be deduced from the
4He∗ scattering length (4−4a) by a mass scaling approach [71]. In particular,
the behavior of 3−4a as a function of 4−4a shows the position of a resonance
centered around a44 = 9.4 nm: if 4−4a is below this value, 3−4a is large and
positive, if 4−4a is above this value, 3−4a is large and negative. According to
our measurement of 4−4a, 3−4a should therefore be large and negative! Quot-
ing Ref. [119]: “For a conservative estimate, 9 < 4−4a (nm) < 13, we find
that 3−4a < −25 nm or 3−4a > 133 nm”. This means that for all realistic
values of 4−4a, the modulus of 3−4a is large making the corresponding cross
section for elastic collisions large. Sympathetic cooling should therefore be
effective!

What is a bit more subtle is to predict with certainty the sign of 3−4a
given our error-bars on 4−4a. Why is the sign important? If the quantum
degenerate regime is reached simultaneously for 3He∗ and 4He∗ (i.e. a Fermi
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sea for 3He∗ and a Bose-Einstein condensate for 4He∗) the sign will tell
us whether the two components will separate because of mutual repulsion
(3−4a positive) [120, 121] or stabilize each other in the mixture via attractive
interactions (3−4a negative). Our lower error-bar on 4−4a corresponds to
10.3 nm. For this value, 3−4a remains negative – as it will, as long as 4−4a
remains above 9.4 nm. Does that mean that we can rigourously exclude that
3−4a is positive – and thereby assure the stability of the 3He∗-4He∗ mixture?
Well, this will all depend on the definition of our error-bar. Personally, I
think we cannot, and I think my colleagues agree with me. We had to make
some estimates to obtain the uncertainty, and it is therefore hard to tell if
our error-bars correspond to one- or two sigma values. Anyway, as always
in experimental physics, the chance that the true value is outside the given
error-bars exists – and of course I would be happy to see an independent
measurement from the group at Ecole Normale Supérieure which confirms
our result.

As pointed out in the introduction, the engineering of the scattering
length via Feshbach resonances is a field occupying a central position in
atomic and condensed matter physics. In particular, the creation of bosons
(molecules, loosely bound molecules or even Cooper-pairs) from two fermionic
atoms is in focus at the moment. These studies can be situated in a larger
context: liquid 4He was the first manifestation of Bose-Einstein condensa-
tion, and later a superfluid state of 3He was observed. Interpretation: two
3He fermions form a Cooper pair, a boson, which can then condense. In
2001, the first Bose-Einstein condensate of 4He∗ in the gas phase was ob-
served. Would it not be fabulous, if a gaseous Bose-Einstein condensate
of 3He∗ via the creation of Cooper pairs using a Feshbach resonance could
be made? Of course, ground state helium is fundamentally different from
the metastable helium atom, so the above analogy should not be taken too
literally. Also, the increase of Penning collisions in a sample which is not
perfectly polarized might render the Feshbach resonances difficult to exploit.
I find the idea is sweet, however!

From mercury lamps to metastable helium

New experiments are underway in our laboratory. Again experiments ex-
ploiting the metastability of the atoms. However, this time it is not the
monitoring tool being the ionization rate which we used extensively through-
out this thesis, but the fact that also the neutral atoms can be efficiently
detected one by one using the micro-channel plate. What we want to do
is an atom version of the famous photon correlation experiment performed
by R. Hanbury-Brown and R. Q. Twiss, published in Nature in 1956 [122].
They measured the temporal second order correlation function for thermal
photons generated by a mercury lamp, and they observed a bunching of the
photons, i.e. a bump in the correlation function for short times. This effect is
a consequence of the Bose-Einstein distribution, which is valid for a thermal
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distribution. Laser photons on the other hand are described by a Poisson
distribution, which means that the photons are statistically independent:
the correlation function is flat for all times [123].

With metastable helium, we can detect the atom one by one in the same
way as photons can be detected with a photomultiplier in photon counting
mode. Moreover, with the same setup, we can obtain both the atom analogy
to thermal light and a laser light: a thermal cloud and a Bose-Einstein con-
densate, respectively. And the photomultiplier is the micro-channel plate.
We want to measure the two-body atom correlation function both for ther-
mal and Bose-condensed atoms. A pioneering experiment was performed in
1996 by M. Yasuda and F. Shimizu [124]. In a heroic experiment, they man-
aged to measure the two-body correlation function for thermal metastable
neon, but as they did not have a Bose-Einstein condensate, they could not
investigate this regime. With our setup, we hope to be able to obtain not
only the correlation function for a thermal cloud and a Bose-Einstein con-
densate, but also to investigate the extremely interesting cross-over between
these regimes.

In the quest for a good signal-to-noise ratio for these measurements,
we have installed a new micro-channel plate detector. The new one, in
contrast to the one used in the experiments discussed in this thesis, has
a spatial resolution. It might appear strange that we need a good spatial
resolution – after all, what we want to measure is the temporal correlations.
However, the coherence area corresponding to the coherence volume of the
cloud is smaller than the extent of the detector. This means that if we
try to correlate all atoms falling on the micro-channel plate, most of them
will necessarily be uncorrelated, and will tend to wash out the contrast
of the bump in the correlation signal. With a spatially resolved micro-
channel plate, we can deduce the correlation function pixel by pixel, and
thereby be sure only to correlate atoms being inside the coherence volume.
Afterwards, we can average over all pixels, and obtain a good signal-to-noise
ratio. Finally, a position-sensitive detector could also allow one to observe
the spatial 2-body correlation function. A beautiful experiment investigating
spatial correlations was performed in the group of Eric Cornell and Carl
Wieman [125]. Studying 3-body loss rates in rubidium, they could obtain
the 3-body spatial correlation function. By using a spatially resolved micro-
channel plate, one could measure it in a more direct way, and in addition,
obtain the 2-body correlation function.

Of course, in reality, it is hard to obtain a micro-channel plate which
has the desired temporal as well as spatial resolution, which can be put in
vacuum, which can be baked out, which is compatible with low dead-time
electronics and so on. It will necessarily be a compromise. The micro-
channel plate we have chosen is hopefully the best one available for our
purposes, and even though we cannot expect a perfect signal-to-noise ratio,
calculations show that good results should be expected (these calculations
are the subject of the thesis of my colleague J. Gomes.)
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The new micro-channel plate has been installed recently, and is currently
being tested by the next generation of Ph.D. students: R. Hoppeler, M.
Schellekens and A. Perrin, assisted by the permanent members of the helium
group. I hope they will soon succeed with this difficult experiment, and I
wish them all the best luck.



A P P E N D I X A

The helium atom

All experiments performed in this thesis use 4He in the metastable 23S1

state. The atom is a spin-one boson without nuclear spin, and consequently
without hyperfine splitting. The lifetime of the metastable state is ∼ 9000
seconds.

The energy diagram for 4He is shown in Fig. A.1. The optical transition
used for the transverse molasses, the Zeeman slowing of the atomic beam,
and for the magneto-optical trap (see chapter 2), is based on the transition
between the 23S1 level and the 23P2 level. For optical pumping, we use
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Figure A.1: Energy diagram for 4He.
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Parameter Notation Value Unit
Mass m 6.7× 10−27 kg

Wavelength of 23S1 - 23P2 λ 1.083 µm
Width 23S1 - 23P2 Γ 1.6× 106 × 2π rad/s
Saturation intensity Isat 0,16 mW/cm2

Doppler temperture (1D) TDop 38 µK
Recoil temperature Trec 4 µK

Ionization energy of the 11S0 state Eion 24.6 eV
Excitation energy from 11S0 to 23S1 Eexc 19.8 eV

Table A.1: Parameters concerning helium and the atomic transition used to
manipulate helium in the metastable 23S1 state.

the transition between the 23S1 level and the 23P1 level. Both transitions
correspond to 1.08 µm (infrared), and are quasi-closed: only a negligible
fraction of the atoms decays from the excited levels to the 11S0 level [35].

Another optical transition (from the 23S1 level to the 33PJ level, with
a transition energy of 389 nm, see Fig. A.1) is also available and has been
implemented experimentally [126], but is not used in our experiments.

The characteristics of the 4He atom and the different parameters de-
scribing the 23S1 → 23P2 transition used for optical manipulation is given
in table A.1.
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The ion rate at phase
transition

In chapter 1 we showed explicitly how the ionization rate could be written in
terms of the sample density. However, as discussed in chapter 2, we cannot
measure directly the density of our cloud, because not all the atoms arrive
on the micro-channel plate. Fortunately, there is a way to obtain the density
for a cloud exactly at BEC threshold point: this is the main idea of chapter
5. For a cloud at this point, the density is related to the critical temperature
Tc of the sample and the well-known oscillation frequencies. Therefore, at
the threshold point, we can write an expression for the ionization rate, not
as a function of density, but as a function of Tc. In chapter 5 we will use this
expression to fit the data corresponding to the simultaneous measurements
of ionization rate and critical temperature, in order to obtain the scattering
length. In that chapter, we have already deduced the simple ideal gas ex-
pression for ionization rate as a function of Tc. Nonetheless, to achieve the
desired precision on our final result, i.e. the scattering length, corrections
arising from atomic interactions and finite size effects must be taken into
account. This is the goal of the Appendix. In chapter 5, we will use this
expression to fit the data corresponding to the simultaneous measurements
of ionization rate and critical temperature in order to obtain the scattering
length.

We will start by deducing the ionization rate limiting ourselves to first
order effects. As we will see, the corrections turn out to be non-negligible.
As these first order corrections are large, we also investigate second orders
effects, but they turn out to be negligible for our purposes.

B.1 Interactions and zero point energy: 1st order
calculations

In the mean field approach, above BEC threshold, the density is given by
[17]:

n(T, µ, r) =
1

λ3(T )
g3/2

[
exp

(
− 1
kBT

(V (r) + 2U n(T, µ, r)− µ)
)]

(B.1)

with T the temperature of the cloud, kB the Boltzmann constant, λ(T ) =
h/
√

2πmkBT the thermal de Broglie wavelength, V (r) = (mω2
⊥r⊥

2+mω2
‖r‖

2)/2
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the trapping potential, U = 4π~2a/m the interaction constant1, µ the chem-

ical potential and gα(x) =
∞∑

ρ=1

xρ

ρα . By definition of the BEC threshold we

have
λ3

cn(Tc, µc,0) ≡ λ3
cnc,0 = g3/2(1), (B.2)

where we have used the notation λc = λ(Tc). This expression relates the
density to temperature for a gas at BEC threshold. By replacing the density
in this expression with Eq. B.1 and imposing r = 0 and T = Tc, we obtain
an expression for the chemical potential at Tc:

µc = 2Unc,0 + V (0) = 2Unc,0 +
3
2

~ω̃. (B.3)

We have here used the notation ω̃ = (2ω⊥ + ω‖)/3, which is the arithmetic
mean of the oscillation frequencies. Reinserting this chemical potential in
Eq. B.1, we get an expression for the critical density n(Tc, µc, r) ≡ nc(r):

λ3
cnc(r) = g3/2

[
exp

(
− 1
kBTc

(V (r) + 2U(nc(r)− nc,0)−
3
2

~ω̃)
)]

≡ g3/2

[
Ae−ε

]
. (B.4)

We have defined A = e−V (r)/kBTc , and the small parameter ε = (2U(nc(r)−
nc,0)− 3

2~ω̃)/(kBTc). We then use that

g3/2[Ae
−ε] =

∞∑
ρ=1

Aρe−ρε

ρ3/2
'

∞∑
ρ=1

Aρ(1− ρε)
ρ3/2

= g3/2(A)− εg1/2(A).

This allows us to write

nc(r)λ3
c = g3/2(A)− εg1/2(A)

= g3/2(A)−
[
(2U(nc(r)− nc,0)−

3
2

~ω̃)/(kBTc)
]
g1/2(A)

= g3/2(A) +
[
(ζ(3/2)g1/2(A)− g3/2(A)g1/2(A)

] 4a
λc

+ g1/2(A)
3
2
ω̃

ωc
.

In the last step we used that g3/2(1) = ζ(3/2), and we have defined ωc =
kBTc/~. In the same way we find

n2
cλ

6
c = g3/2(A)

[
g3/2(A) + 3g1/2(A)

ω̃

ωc
+
(
ζ(3/2)− g3/2(A)

)
g3/2(A)

8a
λc

]
n3

cλ
9
c = g2

3/2(A)
[
g3/2(A) +

9
2
g1/2(A)

ω̃

ωc
+
(
ζ(3/2)− g3/2(A)

)
g3/2(A)

12a
λc

]
.

1Note that this constant often is called g, but to avoid confusion with gravity in Ap-
pendix C, we use U .
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Note that these expressions include terms proportional to a/λc, which are
the first order terms due to interactions, and terms proportional to ω̃/ωc,
which are first order due to the zero point energy. The ionization rate at
condensation threshold Φc is given by (see chapter 5)

Φc =
1
τi

∫
ncdr +

1
2
β

∫
n2

cdr +
1
3
L

∫
n3

cdr. (B.5)

We will now calculate the integrals over the density, using the expressions
obtained above. To do this, we define the dimensionless constants

Iαβ... =

∞∫
0

x2gα(e−x2
)gβ(e−x2

)...dx. (B.6)

Writing the integral on this form, and making the substitution

4π
λ3

c

(
2kBTc

mω

)3/2

=
4√
π

(
kBTc

~ω

)3

=
4√
π

(ωc

ω

)3
, (B.7)

where ω = (ω2
⊥ω‖)

1/3, we can write the integrals as follows:

∫
ncdr =

4√
π

(ωc

ω

)3
×
[
I 3

2
+

3
2
ω̃

ωc
I 1

2
+
[
ζ(3/2)I 1

2
− I 1

2
3
2

] 4a
λc

]
,

∫
n2

cdr =
1
λ3

c

4√
π

(ωc

ω

)3
×
[
I 3

2
3
2

+ 3
ω̃

ωc
I 1

2
3
2

+
[
ζ(3/2)I 1

2
3
2
− I 1

2
3
2

3
2

] 8a
λc

]
,

and

∫
n3

cdr =
1
λ6

c

4√
π

(ωc

ω

)3
×
[
I 3

2
3
2

3
2

+
9
2
ω̃

ωc
I 1

2
3
2

3
2

+
[
ζ(3/2)I 1

2
3
2

3
2
− I 1

2
3
2

3
2

3
2

] 12a
λc

]
.

We evaluate the integral of the type defined in Eq. B.6 and get the ionization
rate by adding the three contributions:

Φc = (
ωc

ω
)3× [ 1

τi
(1.20 + 2.48 ω̃

ωc
+ 12.35 a

λc
)

+ β
λ3
c
(0.33 + 1.81 ω̃

ωc
+ 6.75 a

λc
)

+ L
λ6
c
(0.22 + 2.21 ω̃

ωc
+ 6.50 a

λc
)
]
.
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This expression includes first order corrections due to atomic interactions
(terms proportional to a

λc
) and zero point energy (terms proportional to

ω̃
ωc

). For typical parameters such as a = 12 nm and Tc = 2 µK, a/λc ∼
ω̃/ωc ∼ 0.02. For these parameters, corrections due to the zero point energy
constitute 4%, 10% and 20% of the ideal gas result, for one- two- and three-
body collisions, respectively. For the corrections due to interactions, the
numbers are higher: 20%, 40% and 60 %, respectively. These contributions
are large and are therefore kept in the theoretical expression used to fit the
ionization rate as a function of Tc, in order to deduce a, as explained in
chapter 5.

B.2 Interactions: 2nd order contributions

As the first order corrections due to interactions are high, we must calculate
the second order to see if it can be neglected or not. In the calculation of the
ionization rate given above, we have used Eq. B.1 for the density, with the
interaction constant U and the chemical potential µ only being to first order
in a/λc. An expression for the density taking into account higher orders in
a/λc is given in Ref. [117]. Including up to second order, this expression
reads:

n(r) =
1
λc

∑
i

Zi

i3/2
− 2a
λc

∑
ij

(i+ j)Zi+j

(ij)3/2
+ 8

(
a

λc

)2∑
ijk

(i+ j + k)

×Zi+j+k

[
1

(ij)3/2k1/2
+

1
(i+ k)(j + k)(ijk)1/2

]}
, (B.8)

where the indices in the sums all run from 1 to infinity. The fugacity Z is
given by

Z = exp {−βV (r)}Z̄,

with

Z̄ = exp {−βµ̄c}.

Here, µ̄c is given by a second order expansion in terms of a/λ [117]:

µ̄c =

[
µ(1)

c

a

λc
+ µ(2)

c

(
a

λc

)2
]
kBTc, (B.9)

where

µ̄(1)
c = 4ζ(3/2) = 4g3/2(1) ' 10.45,

and
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µ̄(2)
c = 32π

[
ln

32π2a

λ
+ C1 − 72π2R

]
,

with

C1 ' −0.54410,

and

R = 0.001920(2).

As before, we calculate
∫
n(r)dr,

∫
n(r)2dr and

∫
n(r)3dr, now using Eq. B.8.

The spatial dependent part of Z can be integrated, and making the same
substitution as in Eq. B.7, we obtain expressions which depends only on Z̄:

∫
ncdr =

4√
π

(ωc

ω

)3
×

∑
i

Z̄i

i3
− 2

∑
ij

Z̄i+j

(ij)3/2(i+ j)1/2

a

λc

+8
∑
ijk

Z̄i+j+k

(i+ j + k)1/2

[
1

(ij)3/2k1/2
+

1
(i+ k)(j + k)(ijk)1/2

](
a

λc

)2
 ,

∫
n2

cdr =
1
λ3

c

4√
π

(ωc

ω

)3
×

∑
ij

Z̄i+j

[ij(i+ j)]3/2

−4
∑
ijk

(i+ j)Z̄i+j+k

[ijk(i+ j + k)]3/2

a

λc
+ 4

∑
ijkl

Z̄i+j+k+l

√
ijk[l(i+ j + k + l)]3/2[

4(i+ j + k)
(

1
ij

+
1

(i+ k)(j + k)

)
+

(i+ j)(k + l)
ijk

](
a

λc

)2
}
,

and

∫
n3

cdr =
1
λ6

c

4√
π

(ωc

ω

)3
×

∑
ijk

Z̄i+j+k

[ijk(i+ j + k)]3/2

−6
∑
ijkl

(i+ j)Z̄i+j+k+l

[ijkl(i+ j + k + l)]3/2

a

λc
+ 12

∑
ijklm

Z̄i+j+k+l+m

√
ijk[lm(i+ j + k + l +m)]3/2[

2(i+ j + k)
(

1
ij

+
1

(i+ k)(j + k)

)
+

(i+ j)(k + l)
ijk

](
a

λc

)2
}
.

We now make a second order expansion of Z̄:
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Z̄q = e−qβµ̄c ≈ 1 + qβµ̄c +
q2

2
β2µ̄c

2.

Keeping terms up to second order in a/λc, we can write

Z̄q ≈ 1 + q

[
µ(1)

c

a

λc
+ µ(2)

c

(
a

λc

)2
]

+
q2

2

[
µ(1)

c

a

λc
+ µ(2)

c

(
a

λc

)2
]2

≈ 1 + q

[
µ(1)

c

a

λc
+ µ(2)

c

(
a

λc

)2
]

+
q2

2

[
µ(1)

c

a

λc

]2

.

We insert this expansion for Z̄q in the expressions for the integrals, and
again we neglect all terms of order higher than (a/λc)2. The above sums
is then written as product between physical constants and purely geometric
sums. The latter can be evaluated using the Euler-Maclaurin summation
formula [127]. We also use that

g2(Z̄) = ζ(2) + µ̄c − ln µ̄c,

g3(Z̄) = ζ(3) + ζ(2)µ̄c +
3
4
µ̄c

2 − µ̄c
2

2
ln µ̄c.

Finally we can write the three contributions as (note that the contribution
corresponding

∫
ncdr = Nc has already been evaluated in Ref. [117]):

∫
ncdr =

4√
π

(ωc

ω

)3
[
0.53 + 5.47

a

λc
+ (0.73µ̄(2)

c − 42.779)
(
a

λc

)2
]

∫
n2

cdr =
1
λ3

c

4√
π

(ωc

ω

)3
[
0.295 + 5.96

a

λc
+ (1.07µ̄(2)

c + 20.18)
(
a

λc

)2
]

∫
n3

cdr =
1
λ6

c

4√
π

(ωc

ω

)3
×

[
0.286 + 8.65

a

λc
+ (1.95µ̄(2)

c − 7.62)
(
a

λc

)2
]
.

Inserting these expressions in Eq. B.5 we obtain (for clarity, we seperate the
terms corresponding to background, 2- and 3-body collisions):

Φbackground
c =

1
τi

(ωc

ω

)3
[
1.20 + 12.35

a

λc
+ (1.65µ̄(2)

c − 96.54)
(
a

λc

)2
]
,

Φ2−body
c =

β

λ3
c

(ωc

ω

)3
[
0.33 + 6.75

a

λc
+ (1.21µ̄(2)

c + 22.77)
(
a

λc

)2
]
,
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and

Φ3−body
c =

L

λ6
c

(ωc

ω

)3
×

[
0.22 + 6.50

a

λc
+ (1.47µ̄(2)

c − 5.73)
(
a

λc

)2
]
.

For typical parameters (a/λ ' 0.02), we have µ̄(2)
c ' −6.56, and the second

order contributions become −4%, 1.8% and −3% of the ideal gas result,
for one- two- and three-body processes, respectively. These corrections are
small, both compared to first order contributions and in absolute value, and
it is therefore reasonable to neglect them in the analysis given in chapter 5.

B.3 Zero point energy: all higher order contribu-
tions

It turns out that it is simpler to include all higher order terms in the evalua-
tion of effects due to the zero point energy, instead of considering the second
order terms alone. We use the result of M. Naraschewski and R. J. Glauber
[128] together with [89]. The exact density for a harmonically trapped ideal
gas is given by:

n(r) =
1

π3/2σxσyσz

∞∑
ρ=1

Z̄ρ
exp

[
−
(

x2

σ2
x

tanh τxρ
2 + y2

σ2
y

tanh τyρ
2 + z2

σ2
z

tanh τzρ
2

)]
√

(1− e−2τxρ)(1− e−2τyρ)(1− e−2τzρ)
,

(B.10)
where τi = ~ωi/kBT and σi =

√
~/mωi. Note that we have modified the

definition of Z̄. It now reads:

Z̄ = exp
{
β

(
µ− 3

2
~ω̃
)}

,

with ω̃ = (2ω⊥ + ω‖)/3 defined as before. Note that we recover Eq. B.1 by
making the following approximations: tanh τiρ

2 → τiρ
2 and (1 − e−2τiρ) →

2τiρ. The density corresponding to the atoms in the excited states nexc(r)
is

nexc(r) = n(r)− n0(r), (B.11)

with n0(r) the ground state density given by:

n0(r) =
1

π3/2σ2
xσ

2
yσ

2
z

exp
[
−
(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

)]
. (B.12)

To deduce the density at BEC threshold, we will use the reasoning based
on “saturation of excited states”. As we will see below, there exists an
upper limit for the density of atoms in the excited states nmax

exc (r), and the
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threshold is defined as the point, where the total density becomes equal to
this density. First, we use Eq. B.11 together with Eq. B.10 and Eq. B.12 to
write the density corresponding to the excited states:

nexc(r) =
1

π3/2σxσyσz

∞∑
ρ=1

Z̄ρ(
exp

[
−
(

x2

σ2
x

tanh τxρ
2 + y2

σ2
y

tanh τyρ
2 + z2

σ2
z

tanh τzρ
2

)]
√

(1− e−2τxρ)(1− e−2τyρ)(1− e−2τzρ)

− exp
[
−
(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

)]
).

An upper bound is given by

nexc(r) < nexc(r, Z̄ = 1) ≡ nmax
exc (r). (B.13)

By definition of BEC threshold we can then write

nc(r) = nmax
exc (r) =

1
π3/2σxσyσz

∞∑
ρ=1

(
exp

[
−
(

x2

σ2
x

tanh τxρ
2 + y2

σ2
y

tanh τyρ
2 + z2

σ2
z

tanh τzρ
2

)]
√

(1− e−2τxρ)(1− e−2τyρ)(1− e−2τzρ)

− exp
[
−
(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

)]
).

Using this expression, we calculate numerically2
∫
n(r)dr,

∫
n(r)2dr and∫

n(r)3dr and obtain the correction due to the finite size effects.

Obtained numerical results

From the numerical calculation, we obtain the corrections for finite size
which includes all orders. Therefrom, we can obtain the result corresponding
to all orders higher than 1, which we denote by l 2nd+. From section B.1,
we have the first order correction due to finite size (l 1st). We can now give
the correction Cfinite size ≡ l 2nd+

l 1st for background, 2- and 3-body collisions:

• 1-body collisions: Cfinite size ∼ 0.05

• 2-body collisions: Cfinite size ∼ 0.4

• 3-body collisions: Cfinite size ∼ 0.5

Even though the higher order corrections for 2- and 3-body collisions are
relatively large compared to first order, neglecting them in the theoretical
expression for the ionization rate does not change our final result in chapter
5. As mentioned, we use the expression for the ionization rate to obtain the
s-wave scattering length for He∗: including the higher order terms due to
finite size effects in the expression for the ion rate only modifies a with 0.02
nm. Our experimental uncertainty on the scattering length turns out to be
of the order of nm – and consequently, the uncertainty due to higher order
finite size effects is negligible.

2Analytical expressions for the integrals can also be written, but the precision obtained
by numerical evaluation is sufficient for our purpose.
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Fit functions for
Time-Of-Flight signals

The Time-Of-Flight signal recorded with the micro-channel plate, gives the
atom flux as a function of arrival time of the atoms. The shape of this signal
indicates qualitatively the state of the cloud:

• a Gaussian shape indicates a cold cloud still far from degeneracy,

• a more peaked shape indicates that the cloud approaches Bose-Einstein
condensation threshold,

• the appearance of a double structure indicates that the cloud is cooled
beyond threshold,

• and finally, an inverted parabolic shape corresponds to a (quasi) pure
Bose-Einstein condensate.

To be more quantitative, we make a fit of the TOF signals with the theo-
retical expressions corresponding to the different types of clouds. From the
width of the fit, the temperature (for a thermal cloud), or chemical potential
(for a Bose-Einstein condensate), is obtained. From the amplitude of the
signal, we can in principle deduce the atom number of the cloud1.

This Appendix is intended to give the theoretical expressions for the
Time-Of-Flight signals, which we use in this thesis. For conciseness we
will list all of them, even though the expressions corresponding to an ideal
thermal cloud has been discussed in Ref. [34], and the non-interacting cloud
at BEC threshold as well as the pure BEC are given in Ref. [37]. We will
here take a step further and add to the list the expression for a cloud at
BEC threshold including interactions. This expression is needed in the data
analysis in chapter 5.

1Note however that due to uncontrolled processes, the atom number obtained from the
fit does not correspond to the number of atoms contained in the trap (see chapter 2).
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C.1 Thermal cloud far from Bose-Einstein con-
densation threshold

Far from threshold, the velocity distribution of the atoms is a Maxwell-
Boltzmann distribution FMB [107]:

FMB(r,v, t = 0) = exp[−β(
1
2
mv2 + V (r))],

where β = 1/kBT and V (r) is the trapping potential before the trap is
switched off2. Using this distribution function, and assuming that the initial
cloud is a point source, the atom flux arriving on the MCP can be deduced
(see [34] for details):

dN

dt
(t) = N0

√
m

2πkBT

h+ 1
2gt

2

t2
exp

(
− m

2kBT

(
h− 1

2gt
2
)2

t2

)
×(

1− exp
(
− m

2kBT

R2
0

t2

))
. (C.1)

The initial atom number is denoted by N0, m is the atom mass, h is the
distance between the trap center and the MCP (5 cm in our case), g the
gravitational acceleration, kB the Boltzmann constant, and R0 is the radius
of the MCP. The origin of time corresponds to the switch-off time of the
trap potential. Rewriting this expression we obtain

dN

dt
(t) = g t

N0√
2π σx(t)

× t
2
0 + t2

2t2
×exp

(
− x2

0(t)
2σ2

x(t)

)
×

(
1− exp

(
−

R2
g

2σ2
x(t)

))
,

(C.2)
where we have defined the parameters t0, σx(t) and x0(t):

t0 =

√
2h
g

, σx(t) '
√
kBT

m
× t et x0(t) = h− 1

2
gt2. (C.3)

Two regimes exist: for high temperatures (kBT � mgh) gravity is neg-
ligible and the cloud explodes symmetrically. In this case only a fraction
corresponding to the solid angle of the MCP is detected, and the average
arrival time is given by the temperature. In the other limit (kBT � mgh)
gravity alone determines the average arrival time (∼ 100 ms). In this case,
all the atom arrive on the MCP, and we can assume that R0 is infinite, which
simplifies Eq. C.2. The temperature can be obtained from the width of the
Gaussian: ∆t =

√
kBT/mg2.

2We assume that the switch off is instantaneous, and that the distribution of the atoms
consequently do not change.
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C.2 At Bose-Einstein condensation threshold: with-
out interactions

In the vicinity of BEC threshold, the quantum nature of the particles be-
comes important, and the Maxwell-Boltzmann distribution is no longer
valid. Instead we use the Bose-Einstein distribution [107] for a non-interacting
gas:

FBE(r,v, t = 0) =
1

exp[−β(1
2mv

2 + V (r)− µ)]− 1
, (C.4)

where µ is the chemical potential. This can also be written as

FBE(r,v, t = 0) =
∞∑

ρ=1

exp[−ρβ(
1
2
mv2 + V (r)− µ)], (C.5)

where we have used the fact that

1
eα − 1

=
∞∑

ρ=1

e−ρα.

The corresponding flux is given by [37]:

dN

dt
(t) =

1
g3(z)

g t
N0√

2π σx(t)
× t

2
0 + t2

2t2

(
g5/2

[
z e

− x2
0(t)

2σ2
x(t)

]
− g5/2

[
z e

−x2
0(t)+R2

0
2σ2

x(t)

])
,

(C.6)

where the Bose function is defined by gα(x) =
∞∑

ρ=1

xρ

ρα and we have defined

the fugacity z = eβµ. For an ideal gas at BEC threshold, µ = 0 so z = 1.
The factor 1/g3(z) is a normalization factor obtained by requiring N =
1/(2π~2)×

∫
drdvFBE. For a typical temperature at threshold, the size of

the cloud is approximatively the size of the MCP or slightly larger, and in
general, we cannot neglect the finite size of the detector.

C.3 At Bose-Einstein condensation threshold: with
interactions

The main steps necessary to include the interactions bear resemblance to
the steps performed to include the interactions in the expression for the ion-
ization rate in Appendix B. Therefore we will not go into detail with these
steps, but only give the main ideas and the final result.

To take into account the interactions, we replace Eq. C.4 with:

FBE(r,v, t = 0) =
1

exp[−β(1
2mv

2 + V (r)− µ+ 2Un(r))]− 1
, (C.7)
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with U = 4π~a/m the interaction constant (a is the scattering length), n(r)
the density, and µ the chemical potential. By using the fact that

1
eα − 1

=
∞∑

ρ=1

e−ρα,

Eq. C.7 can be written as:

FBE(r,v, t = 0) =
∞∑

ρ=1

eβρ[mv2/2+V (r)]e−βρ[µ−2Un(r)]

'
∞∑

ρ=1

e−βρ[mv2/2+V (r)] (1 + βρ[µ− 2Un(r)]) . (C.8)

In the last step we have assumed that3 mv2/2+V (r) � µ−2Un(r). We then
replace n(r) with the non-interacting expression: n(0)(r) = 1

λ3(T )
g3/2

[
exp

(
−V (r)

kBT

)]
and the expression can now be written as

FBE(r,v, t = 0) =
∞∑

ρ=1

e−βρ[mv2/2+V (r)] (C.9)

+ βµ
∞∑

ρ=1

ρe−βρ[mv2/2+V (r)] − 2βU
λ3

∞∑
(ρ,ρ′)=1

ρ

ρ′3/2
e−βρmv2/2e−β(ρ+ρ′)V (r).

We have put FBE on a form which consist of three terms, the first two
being similar to the non-interacting case given in Eq. C.5. We then use the
fact that a distribution function of the form given in Eq. C.5 gives a flux
corresponding to Eq. C.6. By identifying the coefficients in the Eq. C.5 with
the coefficients in each of the first two term in Eq. C.9, we obtain the flux.
The only differences are

• In the first term in Eq. C.9, the chemical potential µ is not present in
the exponential. In the expression for the flux we must therefore set
z = 1.

• The second term in Eq. C.9 is multiplied with µβ, and so must the
corresponding term for the flux be. Also an additional ρ is present in
the sum, so the functions g5/2 become g3/2 in the expression for the
flux.

The last term is for the moment kept as a sum. The flux therefore becomes

3The first exponential in Eq. C.8 decays much faster than the second one. Consequently
for large values of ρ where the expansion would not be valid, the first exponential becomes
very close to zero and “kills” the terms in the sum.
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dN

dt
(t) = Cint × g t

N0√
2π σx(t)

× t20 + t2

2t2
(C.10)

×

(
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[
e
− x2

0(t)

2σ2
x(t)

]
− g5/2

[
e
−x2

0(t)+R2
0

2σ2
x(t)

]
+ µβ

{
g3/2

[
e
− x2

0(t)

2σ2
x(t)

]
− g3/2

[
e
−x2

0(t)+R2
0

2σ2
x(t)

]}

− 2β U
λ3

∞∑
ρ,ρ′=1

exp[−βmρ
2t2

(h− 1
2gt

2)]
[ρ′(ρ+ ρ′)]3/2

[
1− e−βmρR0/2t2

] ,

where the normalization constant now is given by

Cint =

g3(z) + µβg2(z)−
2β U
λ

∞∑
ρ,ρ′=1

1
ρ′3/2(ρ+ ρ′)3/2ρ1/2

−1

.

This expression remains valid as long as the absolute value of µ is small.
At BEC threshold µ is indeed small and can be replaced be the expression
µ = 3

2~ω̃+2Un(0) with ω̃ = (2ω⊥+ω‖)/3 (see Appendix B). The expression
given in Eq. C.10 is the function which we use as fit function when we analyze
the data corresponding to a cloud at threshold in chapter 5. The sum term
in the normalization constant can be evaluated numerically, while the last
sum term in Eq. C.10 is approximated by an analytical function.

Effect of the choice of scattering length on the temperature

Note that 2βU
λ3 in Eq. C.10 also can be written as 4a/λ. This means that the

fit function is slightly dependent on the scattering length a. Therefore one
must choose an initial value of a before fitting the TOF signals. The fact
that we do not know a prior to the analysis, results in an uncertainty on the
temperature and consequently on the final value of a. We will here study the
effect of the choice of scattering length on temperature; in chapter 5 we will
investigate the influence on the final value of a. In Fig. C.1 we show how the
temperature varies according to which a we use in the fit function: we show
the temperature deduced for the experimental points presented in chapter
5, for 3 different values of a (a = 10, a = 12 and a = 14 nm), as a function of
the temperature that we would obtain, if we did not include interactions in
the fit function. For small temperatures (small densities) the temperature
variations for different values of a are invisible on the scale of the graph, so
we have only plotted the experimental points corresponding to the highest
temperatures observed. In this way the estimates of the uncertainties from
these points also become an upper limit. Note that the temperatures shown
are not corrected for hydrodynamic effects (see Appendix D). The conclusion
is that including interactions modifies significantly the temperature, but the
variations inside the range of possible scattering lengths (a varying between
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Figure C.1: The temperatures deduced from the TOF signals using using
a Bose function including interactions as a function of the temperature ob-
tained with an ideal Bose function. As the interactions in the Bose function
depend on the scattering length, so does the obtained temperature. We show
the results for three different choices of scattering lengths. To reveal this
effect alone, the temperatures are not corrected due to the hydro dynamic
regime discussed in Appendix D. The dispersion in the points is due to
the uncertainty in the fitting procedure. Finally note that only the highest
temperatures data are shown. For lower temperatures, the difference arising
from using a = 10, a = 12 or a = 14 nm becomes invisible.

∼ 12 nm and ∼ 11 nm, are small, even for the highest temperatures, as seen
in the graph.

C.4 A pure Bose-Einstein condensate

For completeness, let us add the last fit function used during the analysis of
data presented in this thesis. It is the fit function that we use for the pure
Bose-Einstein condensates, presented in chapter 4. We use the Thomas-
Fermi distribution introduced in chapter 2 to describe the initial density in
the trap. The derivation of the flux arriving on the micro-channel plate is
given in Ref. [37]. Here, we will just state the final result:

dNBEC

dt
(t) =

15
16

g NBEC

√
m

2µ
max

[(
1−

(
g

2t

√
m

2µ
(t20 − t2)

)2
)
, 0

]2

×(
t2 + t20

2 t2
).
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By fitting the Time-Of-Flight signal corresponding to Bose-Einstein conden-
sates with this function, we can obtain the chemical potential µ (introduced
in chapter 2). From the chemical potential, the density of the cloud can be
obtained, as discussed – and fully exploited – in chapter 4.





A P P E N D I X D

The hydrodynamic expansion

As explained in chapter 5, our determination of the scattering length relies
partially on measurements of the temperature of clouds at Bose-Einstein
phase transition. The temperature is obtained by fitting the Time-Of-Flight
signal using the fit function described in Appendix C. However, this fit func-
tion is derived assuming a ballistic expansion of the cloud, i.e. no collisions
present during the expansion. We know, however, that at high densities,
these collisions play a role and modify slightly the expansion of the cloud –
the cloud is influenced by hydrodynamic effects.

This is the case for a cloud of He∗ at Bose-Einstein condensation thresh-
old (for our choice of trapping potentials). Therefore, collisions during the
first instants of the expansion must be taken into account: our gas is in
the hydrodynamic regime. This happens when the rate of elastic collisions
(∼ 104 per second for a threshold cloud with our parameters) is large com-
pared to the inverse of the characteristic time for the conversion of interac-
tion energy to kinetic energy, which happens during the initial expansion of
the cloud. This time is given by the radial trap oscillation frequency (around
1 kHz, see chapter 2). The temperatures obtained using the “ballistic” fit
function are therefore not exact. To correct for this, two possibilities exist:
either we could modify the fit functions in order to account for the collisions
during the expansion and obtain directly the correct temperature. Or, we
can keep the fit function from Appendix C, and then posteriorly correct the
obtained temperatures. As the hydrodynamic effect is only a small correc-
tion, the second solution turns out to be sufficiently precise, and easier to
implement. This is what we will do in this Appendix, following the approach
developed by P. Pedri et al. [118].

There is a subtle point however, similar to the one mentioned in Ap-
pendix C: the correction that we will apply to the temperature actually
depends on the scattering length a, which we do not have prior to the anal-
ysis – we only have a given range, inside which a is confined, estimated from
theory and earlier measurement. However, as we will show below, the tem-
perature correction varies little, when a is varied inside this possible range,
and even better, using an iterative procedure, we can render this variation
as small as desired. This will be discussed below.
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D.1 Corrections to the temperature

The value of the temperature T0 of the trapped cloud (i.e. before expansion)
can be extracted from the width of the TOF signal Rth(t), after an expansion
time t. To describe the expansion, it is usual to define a scaling parameter:

Ri(t) = bi(t)Ri(0)

with i = x, y, z. The width Ri(0) is the equilibrium width of the cloud in
the trap. The form of the scaling parameter is different for and ideal and
interacting gas, as we will now show1.

Ideal gas: a reminder

Let us see how the temperature is related to the width of the cloud for an
ideal gas. The scaling parameter is given by:

bi(t) =
√

1 + (ωit)2.

The initial size of the cloud is given by

Ri(0) =
√
kBT

mωi
,

and therefore

Ri(t) =
√

1 + (ωit)2 ×
√
kBT

mωi
=

√
kBT

m

(
1 +

1
(ωit)2

)
× t.

For relatively hot clouds (∼ 1 mK or above), the expansion time of the cloud
is ∼ 10 ms (or less), and we can neglect 1/(ωit)2. We then obtain:

Ri(t) =

√
kBT

m
× t

Therefore, for an ideal gas, the expansion is isotropic. This is because the
initial velocity distribution is isotropic, and remains isotropic after release
of the cloud.

Non-ideal gas

In a non-ideal gas it is more complicated. Due to collisions during the
expansion, the velocity distribution does not remain perfectly isotropic in
space, and the mean field energy during the expansion must be taken into
account.

1In the following discussion we will assume that we measure a spatial width (the com-
mon case in BEC physics), even though that in reality, using an MCP, we measure a
temporal width. How one can translate from spatial to temporal width is shown in [34].
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A model including these effects have been developed by P. Pedri et al.
[118], and is discussed in [60]. This is the approach that we will use, in
order to deduce the scaling factors describing the expansion of our clouds
at Bose-Einstein condensation threshold. In the following, we will briefly
summarizes the main ideas behind this model. The approach is based on
the Boltzmann equation

∂f

∂t
+

1
m

p · ∇rf −∇ (2Unth + Vext(r, t)) · ∇pf = Icoll[ f ]. (D.1)

The function f describes the phase space distribution evolving under the
action of three terms corresponding to a free expansion, the force F =
∇ (2Unth + Vext(r, t)) due to the interactions (U = 4π~2a/m and nth is
the density) and the trap potential, and the collision integral Icoll[ f ] which
describes thermalizing collisions. For the steady state solution in the trap
Icoll[ f ] = 0, while during expansion Icoll[ f ] 6= 0 and2 Vext = 0. To determine
f during the expansion, one assumes a scaling ansatz of the form

f(r,p, t) =
1∏

j bjθ
1/2
j

f0

({
xi

bi

}
,

{
1

θ
1/2
i

(
pi

m
− ḃi
bi
xi

)}
, t = 0

)
, (D.2)

where the presence of the dimensionless parameter θi allows it to include an
eventual deformation of the velocity distribution in addition to the defor-
mation in the density distribution expressed by bi. The function f0 is the
distribution function at equilibrium satisfying Icoll[ f0] = 0. The collision
integral during expansion is written as

Icoll[ f ] = −f − fle

T0

where T0 is the collision relaxation time (related to the average time between
the collisions, see below), and fle is the so-called local equilibrium distribu-
tion function [118]. This approximation is referred to as the relaxation time
approximation. Inserting Eq. D.2 in Eq. D.1 leads to a differential equation
on bi(t), θi(t), ∇rf0 and ∇pf0. Using the fact that f0 is the solution to
Eq. D.1 with Icoll = 0, we can obtain a set of differential equations the only
variables being bi(t) and θi(t) [118, 129]:

2Note that we have not included gravity in this potential. Instead, we later modify the
vertical z coordinate to account for the effect of gravity.
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d2b⊥
dτ2

= −χ

θ⊥
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− 1
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(∏
j bj

)
− θ⊥

b⊥
,

d2b‖

dτ2
= −λ2χ
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b‖
− 1
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= +

1
T

2
(
θ⊥ − θ‖

)
3θ̃
(∏

j bj

) , (D.3)

We have introduced the dimensionless time τ = ω⊥t and the dimension-
less collision relaxation time T = ω⊥T0. We have also used the nota-
tion θ̃ = (θ‖ + 2θ⊥)/3. The small parameter denoted χ is related to the
mean values of interaction energy and the kinetic energy at equilibrium:
χ = 〈Un〉0/(〈Un〉0 + 〈p2〉0/2m). Finally we have defined the aspect ratio of
the trap λ = ω‖/ω⊥. To predict the evolution of the cloud, we only need to
determine 2 parameters: χ and T0. For a classical gas, we have [130]:

1/T0 =
2
5
nclass(0)σelvth, (D.4)

with nclass(0) is the peak density corresponding to a Gaussian density dis-
tribution, vth =

√
8kBT/(mπ) and σel = 8πa2.

For our purposes, the cloud must be described by a Bose-Einstein dis-
tribution. We calculate numerically χ using Eq. C.9, Appendix C. The
parameter T0 is inferred from Eq. D.4 making 2 corrections: first, according
to Ref. [131] T0 should be multiplied with 1.66 to take into account the fact
that the density is not described by a Gaussian but a Bose function at the
critical point. Second, the expression for nclass should correspond to a Bose
function, which includes interactions (see Eq. B.4, Appendix B).

In practice, to correct the temperatures we solve numerically Eqs. D.3.
We impose an initial temperature, and we obtain the size of the cloud (via
b(t)). The temperature obtained is the correct hydrodynamic temperature
Ttrue corresponding to a give size of the cloud. This is repeated for many
temperatures, and we obtain the temperature as a function of the size of
the cloud. These results are independent of our Time-Of-Flight signals or
fit functions, they are just solutions to the Eqs. D.3. We then consider the
temperatures Tball as a function of width obtained from fits of our Time-Of-
Flight signals assuming ballistic expansion. By comparing Ttrue with Tball for
the same values of the size of the cloud, we can thereby obtain a correction
factor, which we can use to correct our temperatures
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D.2 Scattering length dependent corrections

Before giving the values of the correction, note that as mentioned the solu-
tion to the differential equations depends on the scattering length a through
σel (∝ a2) and χ, which is proportional to a/λT . To make our corrections
to the temperature, we have to give an initial estimate of a. To obtain this
estimate, make an approximate analysis of the data from chapter 5, without
taking into account the hydrodynamic expansion. This initial analysis con-
fines the scattering length in the interval between 10 and 14 nm. Knowing
that the hydrodynamic correction tends to lower the “ideal gas” tempera-
tures and consequently the obtained scattering length (see for explanation
chapter 5), we use a = 12 nm for the corrections applied the data presented
in chapter 5. This value for the scattering length is also the best theoretical
estimate available, see chapter 1.

Figure D.1 shows the “true” temperature Ttrue (calculated by including
hydrodynamic corrections), as a function of the temperature we get, when
we assume a purely ballistic expansion Tball (gray curve). As we deduce the
temperature from our TOF signal assuming ballistic expansion, we must
multiply the obtained temperature with a factor Ttrue/Tball to obtain the
correct temperature.

For comparison, we have shown not only the correction obtained for
a = 12 nm, but also the correction corresponding to a = 10 and a =
14 nm (gray curves as well), and as a guide line for the eye, we have also
added the non-interacting case, Ttrue = Tball (black curve). Even though the
correction is rather large (0.2 µK) for the most dense sample, it does not
vary much when a is varied in the interval between 10 and 14 nm, as seen in
Fig. D.1. The inset shows a zoom of the graph, corresponding our highest
observed temperatures: the highest temperatures corresponding to reliable
points (χ2 less than 2 for the TOF signal, see chapter 5) is around 2.7 µK.
This corresponds to the most dense sample, and thus to the largest correction
(∼ 10 %). Also the difference in the correction for different scattering lengths
is greatest for these points. This will therefore give us an upper limit for the
uncertainty in the correction, for a wrongly chosen value of the scattering
length: the difference between choosing a ∼ 12 nm and a ∼ 11 nm (our final
value for a) changes max the temperature about 0.02 µK. Therefore, the
resulting error on a arising from the fact that we must “know a in advance”
to do our corrections, is much smaller than the assumed error-bars due to
other effects.
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Figure D.1: The true temperature (Ttrue) as a function of the temperature
deduced from TOF signals assuming an ideal gas and ballistic expansion. To
guide the eye, the non-interacting case has been shown Ttrue = Tball (black
line). The inset is a zoom of the part corresponding to our highest measured
temperatures.



A P P E N D I X E

The noise in the
Time-Of-Flight signal

For the data analysis in chapter 5, we need to determine if a cloud is ex-
actly at Bose-Einstein condensation threshold. Our first criterion is based
on the ionization rate: the break in the slope indicates the transition point.
The second criterion is based on the quality of the fit of the Time-Of-Flight
signal: we use a fit function, which is only valid for a cloud at BEC thresh-
old, and the quality of the fit therefore tells how close the cloud is to the
threshold point. To quantify this second criterion, we introduced in chapter
5 a χ2 value for describing the fit. However, the χ2 value will depend on the
uncertainty attributed to the TOF signals. The subject of this Appendix is
to describe how this uncertainty is estimated.

We will in the following use the reduced χ2, which is defined by1:

χ2 =
1
m

∑
i

(di − f(ti))2/σ2
i .

Here, m is the number of degrees of freedom (the number of points in the
fit plus the number of variables), di is the experimental data point in the
TOF signal at a time ti, f(ti) is the value of the fit for that time, and σ is
the weight given to the particular data point. The summation is over all the
points in the fit.

The weight given to a particular data point is inversely proportional to
the uncertainty of the given point, which is related to the noise of the signal.
This noise depends on the amplitude of the signal. To evaluate the χ2 value,
we therefore need an estimate of the behavior of the noise as a function of
amplitude of the signal, as we will now deduce.

The easiest way to do this would be to record a constant signal dur-
ing a certain time, and deduce the noise as the standard deviation of the
signal from its average value. By repeating this procedure for many differ-
ent amplitudes of the signal, the noise as a function of amplitude could be
established. Now the problem is that we can not, with the atoms, keep a
stable, constant signal during the time necessary for estimating the noise.
Therefore we have chosen to use instead TOF signals, having intrinsically

1Note that for simplicity, we will denote it by χ2, even though it is often denoted by
χ2

ν .
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Figure E.1: In a) we show a typical TOF signal and its fit, used for es-
timating the noise as a function of amplitude. We divide the TOF signal
into intervals of 20 mV. Inside each interval, we obtain an average value for
the noise (standard deviation of fit relative to TOF signal), corresponding
to the central value of the amplitude. We then plot the noise squared as a
function of the amplitude of the TOF signal. As the noise depends on the
quality of the fits of the TOF signals using for the estimation, we have made
three different plots (i,ii and iii) corresponding to increasing quality of the
fits (see text).

varying amplitudes, and use the deviation from the fits as a way to obtain
the noise as a function of amplitude.
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In practice, we do the following: we take a TOF signal and its corre-
sponding fit, see Fig. E.1, a. The “raw”TOF signal (light gray in the figure)
has been averaged (dark gray curve) within intervals corresponding to the
bandwidth of the signal amplifier, which is 400 µs. We divide the TOF
signal into horizontal slices (indexed by j) as shown in the figure, each cor-
responding to a certain central amplitude, as illustrated by the dashed line
in the figure. In practice we choose 20 mV slices (for visibility the intervals
in the figure are much larger than 20 mV), such that we estimate the noise
for amplitudes corresponding to 0,10,30... mV. We then define the noise for
the j-th amplitude interval as the mean value for all the data points inside
this interval:

σ2
j =

1
N

N∑
i=1

(di − f(ti))
2, (E.1)

where each interval has N data points (indexed by i). The initial fit f has
been obtained by fitting the data assuming an equal weight for all the data
points.

To increase the precision, we do not only consider one TOF signal, but
a set of P different TOF signals. This means that the noise estimation for
each value of the amplitude is the mean value of P TOF signals. Indexing
the TOF signals by k, the mean value is then

< σ2
j >=

1
P

P∑
k=1

σ2
kj .

We use the series of TOF signals obtained at Tc presented in chapter 5. The
estimate of the noise will depend on the quality of the initial fit used in
Eq. E.1. To quantify this we define three sets of TOF signals:

• i) a set consisting of all our TOF signals (400 TOF signals),

• ii) a set corresponding to the 200 best fits according to an initial χ2

value,

• iii) a set corresponding to the 150 best fits2.

We then plot, for the three cases, the corresponding σ2, and we see that
in each case, the data are well described by a straight line, as shown in
Fig. E.1. The noise on these points (“the noise on the noise”) is evaluated
as the standard deviation defined by 1

P

√
< σ2

j > − < σj >2.
As expected, we see that the noise decreases when we choose a set of

TOF signals with a lower χ2 value, because the noise is indeed defined
relative to the deviation of the TOF fit function. The slopes of the curves

2These initial χ2 values are calculated giving equal weight to all points.
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corresponding to all TOF signals, the 200 best fits and the 150 best fits are
1.4, 1.3 and 1.2, respectively, with an offset varying between 4 and 10.

We assume that that best estimation of the noise corresponds to the one
using the best 150 fits. If we exclude more points, the estimation will be
based on too few points. This means that the estimation of the noise we
will use is then given by

σ2(mV2) = 4 mV2 + 1.16 mV ×A(mV), (E.2)

where A is the amplitude of the TOF signal. This will be the expression for
the noise used when we fit the data presented in chapter 5. For each TOF
we then obtain a χ2 value. These values range from 0.6 to 3. As the absolute
value of the χ2 depends on which set of TOF signals we used to obtain the
noise, the absolute value of χ2 is somewhat arbitrary. For our discussion
in chapter 5, we have therefore chosen to let the best fit have χ2 = 1 per
definition, and normalize the remaining χ2 values accordingly.
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Fitting the Time-Of-Flight
signals: examples

In the measurement of the ionization rate at Bose-Einstein condensation
threshold, chapter 5, the analysis strongly depended on our ability to fit
Time-Of-Flight signals. Not only to extract the temperature of the cloud,
but also to determine if a given TOF signal represent a cloud which is really
at threshold.

In chapter 5 we showed some examples of those fits, but only for some
particular temperatures and χ2 values. Moreover, as mentioned in Appendix
E, the absolute value of χ2 does not have a well-defined signification. There-
fore, in order to give the reader an intuition for the relation between the
quality of the fit and the χ2 value, several representative examples of fits
and their χ2 values are shown in this Appendix.

We classify the fits into four groups according to:

• Low χ2 and low temperature

• Low χ2 and high temperature

• High χ2 and low temperature

• High χ2 and high temperature

For each group, we show six different TOF signals. We have excluded the 23
of June (see chapter 5) from these four groups, because this day shows some
peculiar tendencies. Instead, we have added in the end of the appendix six
fits, all coming from the 23 of June.

It is interesting to investigate the distribution of χ2 values as a function
of temperature. This is shown in Fig. F.1. The crosses corresponds to all the
data, while the gray points corresponds to the 23 of June. In our analysis,
we have decided to exclude all fits having a χ2 above two. From Fig. F.1
we can see the temperature of the clouds excluded. As the high χ2 valued
fits correspond in general to higher temperatures than for the low χ2 fits,
we exclude essentially high temperature - and therefore high density clouds.
At the moment we do not have a good explanation for this.
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Figure F.1: χ2 as a function of temperature. The crosses corresponds to all
data, while the gray points is the 23 of June.
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Figure F.2: Time-Of-Flight signals and their fits corresponding to low χ2

values and low temperatures. The graphs are ordered after a rising χ2 value.
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Figure F.3: Low χ2 values and high temperatures. The TOF signals are
ordered after a rising χ2 value.
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Figure F.4: High χ2 values and low temperatures. The TOF signals are
ordered after a decreasing χ2 value.
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Figure F.5: High χ2 values and high temperatures. The TOF signals are
ordered after decreasing χ2 value.
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Figure F.6: All the data are from the 23 of June. High χ2 values and high
temperatures. The TOF signals are ordered after decreasing χ2.
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We have studied ionizing collisions in a BEC of metastable He. Measurements of the ion production
rate combined with measurements of the density and number of atoms for the same sample allow us to
estimate both the two- and three-body contributions to this rate. A comparison with the decay of the
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The observation of Bose-Einstein condensation (BEC)
of metastable helium (He in the 23S1 state, denoted He*)
[1,2] constituted a pleasant surprise for experimentalists
although the possibility had been predicted theoretically
[3]. Success hinged, among other things, on a strong
suppression of Penning ionization in the spin-polarized,
magnetically trapped gas. Too high a rate of ionization
would have prevented the accumulation of sufficient den-
sity to achieve evaporative cooling. The ionization rate is
not completely suppressed however, and when the atomic
density gets high enough, a magnetically trapped sample
of He* does produce a detectable flux of ions. As shown
in [1], this signal can even be used as a signature of
BEC. The observation of ions from the condensate opens
the possibility of monitoring in real time the growth
kinetics of a condensate [4]. This is an exciting prospect,
but to quantitatively interpret the ion rate, one needs the
contributions of two- and three-body collisions.

In this paper we use the unique features of metastable
atoms to detect, in a single realization, the ionization
rate, the density, and the atom number. This allows us
to extract two- and three-body rate constants without
relying on fits to nonexponential decay of the atom num-
ber, which require good experimental reproducibility [5–
7] and are difficult to interpret quantitatively [5]. After
estimating the ionization rate constants, a comparison
with the decay of the atom number reveals no evidence
for collisional avalanche processes. Thus, by contrast with
87Rb [8], He* seems to be a good candidate for studying
the ‘‘hydrodynamic’’ regime [9], as well as the effects of
quantum depletion, i.e., a departure from the Gross-
Pitaevskii wave function in the Bogoliubov theory, due
to atomic interactions [10]. Indeed in our analysis of the
three-body ionization process, quantum depletion makes
a substantial correction [11].

Much theoretical [3,12] and experimental [1,2,13,14]
work has already been devoted to estimating inelastic

decay rates in He*. The dominant two-body decay
mechanisms, called Penning ionization,

He� � He� !

�
He� � He�1S� � e�

He�2 � e�
(1)

are known to be suppressed by at least 3 orders of magni-
tude in a spin-polarized sample, but the total rate con-
stant has not yet been measured. The three-body reaction,

He� � He� � He� ! He�2 � He���1 mK�

,! He� � He�1S� � e� (2)

proceeds via three-body recombination followed by auto-
ionization of the excited molecule. Both reactions yield
one positive ion which is easily detected. We define colli-
sion rate constants according to the density loss in a
thermal cloud: dn

dt � � n
� � �n2 � Ln3 with n the local

density, � the (background gas limited) lifetime of the
sample, and � and L the two-body and three-body ioni-
zation rate constants defined for a thermal cloud [15]. The
theoretical estimates of the rate constants at 1 
K are
�� 2	 10�14 cm3 s�1 [3,12] and L� 10�26 cm6 s�1

[16], and the experimental upper limits were [1,2] � 

8:4	 10�14 cm3 s�1 and L 
 1:7	 10�26 cm6 s�1.

For a pure BEC, in the Thomas-Fermi regime with a
number of atoms N0, and a peak density n0, one can
calculate the expected ionization rate per trapped atom:

� �
ion rate

N0
�

1

�0
�

2

7
2�n0 �

8

63
3Ln

2
0: (3)

The numerical factors come from the integration over the
parabolic spatial profile and the fact that although two or
three atoms are lost in each type of collision, only one ion
is produced. The effective lifetime �0 � � is due to ioniz-
ing collisions with the background gas. The factors i
take into account the fact that the two- and three-particle
local correlation functions are smaller than those of a
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thermal cloud. For a dilute BEC 2 � 1=2! and 3 � 1=3!
[7,11]. Because the He* scattering length (a) is so large,
quantum depletion (�

����������
n0a3

p
� leads to significant correc-

tions [11] to the ’s as we discuss below.
Much of our setup has been described previously

[1,17,18]. Briefly, we trap up to 2	 108 atoms at 1 mK
in a Ioffe-Pritchard trap with a lifetime (�) of 90 s.We use
a ‘‘cloverleaf ’’ configuration [19] with a bias field B0 �
150 mG. The axial and radial oscillation frequencies in
the harmonic trapping potential are �k � 47� 3 Hz and
�? � 1800� 50 Hz, respectively [!=2� � ��k�2

?�
1=3 �

534 Hz]. A crucial feature of our setup is the detection
scheme, based on a two stage, single anode microchannel
plate detector (MCP) placed below the trapping region.
Two grids above the MCP allow us either to repel positive
ions and detect only the He* atoms, or to attract and
detect positive ions produced in the trapped cloud.

To detect the ion flux, the MCP is used in counting
mode: the anode pulses from each ion are amplified,
discriminated with a 600 ns dead time and processed by
a counter which records the time delay between succes-
sive events. Typical count rates around BEC transition are
between 102 and 105 s�1. We have checked that the cor-
relation function of the count rate is flat, indicating that
there is no double counting nor any significant time
correlation in the ion production. The dark count rate is
of order 1 s�1. By changing the sign of the grid voltage,
we have checked that while counting ions, the neutral
He* detection rate is negligible compared to the ion rate
(less than 5%) even when the radio frequency (rf) shield
is on. The intrinsic ion detection efficiency of the MCP for
2 keV He� ions is close to the open area ratio (60%) [20].
To estimate the total ion detection efficiency, we then
multiply by the geometric transmission of the two grids
�0:84�2. Based on Refs. [20,21], we assume this (0:42) is
an upper limit on our detection efficiency.

To find the values of N0 and n0 corresponding to the
measured ion rate, we use the MCP to observe the time-
of-flight (TOF) signal of the He* atoms released from the
rapidly switched off trap. The instantaneous count rate
can be as high as 106 s�1, and the MCP saturates when
used in counting mode. To avoid this problem, we lower
the MCP gain, and record the TOF signal in analog mode
with a time constant of 400 
s. Several tests were per-
formed to verify the linearity of the detector.

In a typical run, evaporative cooling takes place for
40 s, down to an rf-knife frequency about 50 kHz above
the minimum of the trapping potential. Near the end of
the ramp, the ion rate increases sharply, signaling the
appearance of a BEC (Fig. 4 in [1]). After reaching the
final value, the rf knife is held on at that frequency. This
constitutes an rf shield which eliminates hot atoms and
maintains a quasipure BEC for up to 15 s (see Fig. 3). By
quasipure we mean that we see no thermal wings in
signals such as shown in the inset of Fig. 1. From tests
of our fitting procedure, we estimate that the smallest

thermal fraction we can distinguish is about 20%, with a
temperature on the order of the chemical potential. Runs
with visible thermal wings were discarded.

To acquire the TOF signals corresponding to a given ion
rate, we turn off the rf shield, wait 50 ms, and then turn
off the magnetic trap and switch the MCP to analog
mode. To be sure that the rf has no influence on the ion
rate, we use only the number of ions observed during the
50 ms delay to get the rate. We fit the TOF signals to an
inverted parabola squared as expected for a pure BEC in
the Thomas-Fermi regime and for a TOF width (� 5 ms)
narrow compared to the mean arrival time (100 ms) [1].
Under these assumptions, the chemical potential 
 de-
pends only on the TOF width, the atomic mass, and the
acceleration of gravity [22], and thus can be measured
quite accurately. Figure 1 shows that 
 varies as expected
as N2=5

d with Nd the number of detected atoms in the
quasipure BEC. A fit on a log-log plot gives a slope of
0.39. Residuals from the linear fit do not show any system-
atic variation which is a good indication of the detection
linearity and of the proportionality between Nd and N0.

To determine the collision rate constants � and L, we
need an absolute calibration of the number of atoms and
the density. As discussed in Ref. [1], all the atoms are not
detected, and the direct calibration has a 50% uncertainty
which is responsible for the large uncertainty in the
scattering length a. In fact the measurement of the
chemical potential gives an accurate value for the product
n0a � 
m=4� �h2, and with the value of ! gives the
product N0a � �1=15�� �h=m!�1=2�2
= �h!�5=2 as well.
Therefore, in the hopes that the He* scattering length
will be measured more accurately in the future, we shall
express N0 and n0 in terms of a. In this paper, unless
stated otherwise, we suppose that a � 20 nm, and in our
conclusions we shall discuss how our results depend on a.

Figure 2 shows the ion rate per atom � versus the peak
density. The densest sample corresponds to N0 � 2	 105
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FIG. 1. Chemical potential versus number of detected atoms
to the power 2

5 and its linear fit. Data are for quasipure BEC. The
inset shows a typical TOF signal and its inverted parabola
squared fit.
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atoms and n0 � 2:5	 1013 cm�3. The corresponding
Thomas-Fermi radii are r? ’ 5 
m and rk ’ 200 
m.
The vertical intercept in Fig. 2 corresponds to ionizing
collisions with the background gas (1=�0). We have
independently estimated this rate using trapped thermal
clouds at 1 mK and 5 
K and found 1=�0 & 5	 10�3 s�1.
This value is negligible at the scale of the figure.

The curvature in Fig. 2 shows that three-body ionizing
collisions are significant. Before fitting the data to get �
and L, we must take into account several effects. First, for
three-body collisions, quantum depletion is important.
For T � 0, on the basis of Ref. [11], we obtain a multi-
plicative correction to the factor 3 of �1� �� �
�1� 23:2	

�����������
n0 a3

p
� [23]. At our highest density � ’

0:35. Two-body collisions are subject to an analogous
correction but approximately 3 times smaller. The fits in
Fig. 2 include the density dependence of 2;3, associated
with quantum depletion. The n3=20 dependence introduced
for two-body collisions is far too small to explain the
curvature in the data. The density dependence of 2;3 does
not improve the quality of the fit, but it significantly
reduces the value of the fitted value of L (by 30%).

In addition, the fact that the sample probably contains a
small thermal component means that collisions between
the condensed and the thermal parts must be taken into
account [6,11]. Assuming a 10% thermal population
( 

kBT

’ 1:5), we find 3 �
1
6 �1� �� �0�, with an addi-

tional correction �0 ’ 0:11 for the densest sample [24].
Taking into account all these corrections, and as-

suming an ion detection efficiency of 0.42, the fitted
values of the collision rate constants [15] are �20 �
2:9��2:0� 	 10�14 cm3 sec�1 and L20 � 1:2��0:7� 	
10�26 cm6 sec�1, where the subscripts refer to the as-
sumed value of a. These values are in good agreement
with the theoretical estimates. The error bars are esti-
mated as follows. We fix either � or L and use the other as

a fit parameter. We repeat this procedure for different
values of the fixed parameter and take the range over
which we can get a converging and physically reasonable
fit (i.e., no negative rate constants) as the uncertainty in
the fixed parameter. These error bars are highly corre-
lated since if � is increased, L must be decreased and vice
versa. The error bars do not include the uncertainty in the
absolute ion detection efficiency (see below).

Until now we have assumed a � 20 nm, but current
experiments give a range from 8 to 30 nm [1,2]. Using
Eq. (3) and our parametrization of n0 and N0 in terms
of a, one can see that, in the absence of quantum deple-
tion, the values of � and L extracted from our analysis
would be proportional to a2 and a3, respectively. Taking
quantum depletion into account, no simple analytical
dependence exists, but one can numerically evaluate �
and L vs a and fit the results to expansions with leading
terms in a2 and a3, respectively. The effect of quantum
depletion is negligible for � [�a � �20�

a
20�

2]. For L, we
find La � L20�

a
20�

3�1� 0:21 a�20
20 � with a in nm.

To test the consistency of our measurements, we plot
the decay of the atom number (Fig. 3). To acquire these
data, we held the BEC in the trap in the presence of the rf
shield for varying times. This study involves multiple
BEC realizations, which typically exhibit large fluctua-
tions in the initial atom number. We have been able to
reduce this noise by using the ion signal to select only
data corresponding to the same ion rate 500 ms after the
end of the ramp. This time corresponds to t � 0 in the
figure. We also plot the predicted decay curve (solid line)
corresponding to ionization only. This curve results from
a numerical integration of the atom loss due to ionization
processes, calculated from the fitted values �20 and L20.
The fact that the error bars on � and L are correlated
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duced from 
 , !, and a (here 20 nm). Data were taken for two
different bias fields corresponding to �? � 1800 Hz (crosses)
and �? � 1200 Hz (circles). The dashed line corresponds to the
best fit involving only two-body collisions. The solid line is a fit
to two- and three-body processes.
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leads to a small uncertainty on the solid curve that hap-
pens to be of the same order of magnitude as the typical
error bars on the data. The observed decay agrees fairly
well with the solid curve, and ionization apparently ac-
counts for most of the loss. If the ion detection efficiency
were actually lower than we assume, the predicted decay
would be faster than the observed decay which is un-
physical (assuming a � 20 nm). We conclude that our
estimate of the ion detection efficiency is reasonable and
does not lead to an additional uncertainty in � and L.

We also plot the curves obtained from the same analy-
sis but with scattering lengths of 10 and 30 nm, assuming
a detection efficiency of 0.42. The curve corresponding to
a � 30 nm lies below the data points. Based on our
analysis, this means that a � 30 nm is excluded. A scat-
tering length of 25 nm is the largest one consistent with
our data. In contrast, the decay predicted for an analysis
with a � 10 nm is slower than the observed decay. This
would mean that there are additional nonionizing losses
(contributing up to half of the total loss), and/or that we
have overestimated the ion detection efficiency by a factor
as large as 2. In the latter case, � and L should be multi-
plied by the same factor. This results for a � 10 nm in a
supplementary systematic uncertainty on � and L of a
factor as large as 2.

In the event that our upper limit on the ion detection
efficiency is too low, the rate constants � and L should be
reduced by a factor as large as 2.4 (� 0:42�1). In that
case, our data would not exclude a � 30 nm and nonion-
izing losses could significantly contribute to the total loss.

Even though the peak densities of our BEC are small
compared to those in alkalis, the elastic collision rate is
high because of the large scattering length, and one must
consider the possibility of collisional avalanches. For a �
20 nm our densest cloud has a mean free path of 7 
m
and using the definition of [8] the collisional opacity is
0:8. With Rb atoms this would result in much increased
loss due to avalanches [8]. Here we have to consider
secondary collisions leading to both ion production and
atom loss. However, for secondary ionization, mean free
paths are at least 2 orders of magnitude larger than rk.
Hence secondary ionization is unimportant. This conclu-
sion is supported by our observation of no correlation in
the time distribution of detected ions.

The good agreement between the data and the curve in
Fig. 3 indicates that losses due to nonionizing collisional
avalanches are not taking place either. This is in agree-
ment with data on elastic collisions with He�, He�2 , and
He�1S�, which have small cross sections [25]. Collisions
with hot He* atoms from the reaction of Eq. (2) are more
likely to play a role, but due to the higher velocity, the
elastic cross section for these atoms is smaller. In Rb the
situation is different because a d-wave resonance in-
creases the total cross section [8].

The theoretical analysis shows that quantum depletion
strongly affects the measured three-body rate constant.

One way to experimentally demonstrate this effect would
be to compare with similar measurements with thermal
clouds. Absolute calibration of ion and atom detection
efficiency should play no role in this comparison, if one
could prove that they are the same for both situations.
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Abstract
We discuss observations of the ion flux from a cloud of trapped 2 3S1
metastable helium atoms. Both Bose–Einstein condensates (BEC) and
thermal clouds were investigated. The ion flux is compared with
time-of-flight observations of the expanded cloud. We show data concerning
BEC formation and decay, as well as measurements of two- and three-body
ionization rate constants. We also discuss possible improvements and
extensions of our results.

Keywords: Cold atoms, Bose–Einstein condensate, metastable helium,
condensate formation, Penning collisions

1. Introduction

Metastable helium (He∗) has recently joined the list of atomic
species for which Bose–Einstein condensates (BEC) have been
realized [1, 2]. Its major feature is the 20 eV internal energy
of the metastable state. Although this metastability leads
to additional possible loss channels, it has been shown that
these are not a serious problem. Indeed, ionizing collisions
are a benefit because their low rate is nevertheless easily
detectable. Ion detection is thus a new, ‘non-destructive’ and
real-time observation tool for studies of the phenomenon of
BEC formation kinetics [3–7]. In this paper we will describe
our progress toward rendering the ion signal quantitative.

Several loss mechanisms are specific to the metastable
state. First, collisions with the background gas lead to Penning
ionization of the background gas:

X + He∗ → X+ + He + e−.

The positive ion X+ thus produced can be easily detected and
if this is the dominant ion production mechanism, as it is for a
dilute sample (for a density n � 1010 cm−3), the corresponding
flux is proportional to the number of trapped He∗ atoms. So for

1 Author to whom any correspondence should be addressed.
2 Permanent address: Departamento de Fisica, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal.

example we can easily measure the lifetime of a dilute, trapped
sample. This linearity no longer holds when the density of the
trapped cloud becomes high. Collisions between atoms in the
cloud must be taken into account. The relevant ionization
mechanisms involve both two-body processes:

He∗ + He∗ →
{

He+ + He(1S) + e−

He+
2 + e− (1)

and a three-body process:

He∗ + He∗ + He∗ → He∗
2 +He∗(∼1 mK)

↪→ He+ + He(1S) + e−.
(2)

When these processes are present, the ion flux is related to the
spatial integral of n2 and n3. At BEC densities, the two- and
three-body processes dominate the background gas ionization,
and so detecting the ion flux in this case amounts to monitoring
the atomic density.

In this paper, after a brief description of our experimental
set-up, we present observations, via the ion flux, of the
formation and the decay of a He* BEC. The observations are
mainly qualitative, but we discuss some of the requirements for
making them quantitative. We then discuss our measurements
of the two- and three-body ionization rate constants both in
a BEC [8] and in a thermal cloud. We discuss some of the
systematic errors in these measurements and conclude with
some ideas for avoiding these errors.
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Figure 1. Experimental set-up. The cold atoms are trapped in a
cloverleaf type magnetic trap. A special feature of our set-up is the
MCP placed below the trapping region. Two grids above the MCP
allow us either to repel positive ions and detect only the He∗ atoms
suddenly released from the trap (TOF measurements), or to attract
and detect the positive ions produced in the trapped cloud (ion rate
measurements).

2. Set-up and experimental procedure

Our set-up has been described previously [1, 8, 9]. Briefly,
we trap up to 2 × 108 atoms at 1 mK in a Ioffe–Pritchard trap
with a lifetime (τ) of 90 s. We use a ‘cloverleaf’ configuration
(figure 1) [10] with a bias field B0 = 300 mG. The axial
and radial oscillation frequencies in the harmonic trapping
potential are typically ν‖ = 47±3 Hz and ν⊥ = 1200±50 Hz
respectively (ω/2π = (ν‖ν2⊥)1/3 = 408 Hz). In a typical
run, forced evaporative cooling takes place for 40 s and is
divided into four linear ramps. The last ramp lasts for 5 s and
the frequency decreases from 2000 kHz to a value between
1500 and 1000 kHz, depending on the condensed fraction
wanted. A frequency of 1000 kHz (which is about 50 kHz
above the minimum of the trapping potential) corresponds to
the formation of a pure condensate.

A special feature of our set-up is the detection scheme,
based on a two-stage, single-anode microchannel plate
detector (MCP) placed 5 cm below the trapping region
(figure 1). Two grids above the MCP allow us either to repel
positive ions and detect only the He* atoms, or to attract and
detect positive ions produced in the trapped cloud. To detect
the ion flux, the MCP is used in counting mode [8]: the anode
pulses from each ion are amplified, and processed by a counter
which records the time delay between successive events. We
can also use the MCP to record a time-of-flight (TOF) signal
of the atoms released from the trap. Because the width of the
TOF distribution is small (about 5 ms for a BEC) compared
with the mean arrival time (100 ms), all of the atoms hit the
detector with nearly the same final velocity of 1 m s−1. The
TOF spectra are then proportional to the spatial distribution
along the vertical direction, integrated over the two horizontal
directions. To record the TOF we use the MCP in analogue
mode to avoid saturation due to the very high instantaneous
flux [8].

3. Monitoring the evolution of a He∗ cloud

To monitor the evolution of an atomic cloud, one usually
releases the cloud and measures the TOF signal. Such a
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Figure 2. Single-shot measurements of the ion rate versus time and
the corresponding TOF signals. Forced evaporative cooling takes
place until t = 0 (only the last 2 s of the rf ramp are shown: from
1400 to 1000 kHz). The upper, lighter, ion curve corresponds to the
case where we keep an rf shield on during the decay, while the
lower, darker, decay curve is recorded without. The arrows indicate
the time the trap was switched off to record the TOF. The dark
curves superimposed on the TOF signals are Gaussian fits to the
wings of the TOF.

technique is destructive, and one must repeat the cooling
sequence for each measurement. The TOF signals are thus
subject to fluctuations in the initial number of atoms. In our
case, we have a supplementary signal: the ion rate. We can thus
minimize these fluctuations, by selecting runs having identical
ion rates from the time between the beginning of the last rf
ramp until release.

Another type of observation is possible, however. We
can use the evolution of the value of the ion rate, which is
obtained in a single run, independent of any initial fluctuations.
When the density is close to the density for BEC formation
(i.e. n � 1012 cm−3), two- and three-body collisions within the
cloud dominate the ion production. Thus the ion rate is related
to the density of the cloud via the two- and three-body rate
constants. Under some conditions (see appendix A) a record
of the ion rate followed by a TOF measurement at the end of the
formation of the BEC allows one to monitor the evolution of all
the parameters of the cloud. In such an observation, knowledge
of the two- and three-body rate constants is essential. This is
the aim of the experiments described in section 4.

3.1. Observation of condensate formation during the
evaporation ramp

Before trying to do a quantitative experiment on BEC
formation from of a non-equilibrium uncondensed cloud [3, 4],
we can explore qualitatively what happens during our standard
evaporation ramp. We show in figure 2 the evolution of the
ion rate from 2 s before the end of the rf ramp to 2.5 s after
it. In addition we show the TOF signals corresponding to
various times before the end of the ramp, selected using their
initial ion rate. Between times t = −2 and 0 s, the rf was
ramped down linearly from 1.4 to 1 MHz. At t = 0 a pure
condensate is formed. The comparison of the TOF and ion
data first shows that the appearance of a narrow structure in
the TOF spectrum corresponds, as closely as we can observe
it, to an abrupt change in the slope of the ion signal. Thus, not
only is the ion signal a reliable indicator of the presence of a
BEC, but also a precise measure of the time of its appearance.
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Figure 3. Same as in figure 2 except that we examine the decay of
the ion signal after t = 0. The upper TOF curves correspond to the
upper (lighter) ion decay curve (rf shield present). The lower TOF
curves correspond to the lower (darker) ion curve (without rf shield).
This shows that the rf shield is maintaining a quasi-pure BEC during
the decay, and that in the absence of an rf shield the condensate
rapidly heats up, causing the ion rate to drop even faster.

One’s first reaction in looking at the ion rate signal is to
assume that the higher the ion signal, the larger the BEC and the
smaller the thermal cloud. Figure 2 shows, however, that this is
not quite the case: the maximum in the ion signal arrives before
the achievement of a pure BEC. In fact, computing the value
of the ion signal is rather complex. First, as was discussed
in [11, 12], as well as below, the indistinguishability of the
atoms in the BEC renders the effective two- and three-body
collision rate constants smaller than in the thermal cloud by
factors of 1/2! and 1/3! respectively. Collisions between
condensed and non-condensed atoms must also be taken into
account [11] and the degree of overlap between the two clouds
must be calculated. Thus it might be conceivable that the ion
rate goes down when a BEC is formed. We show, however, in
appendix A that for a fixed total number of atoms, the ion rate
increases monotonically as a BEC becomes more and more
pure. The observation in figure 2 is explained by the fact that,
up until t = 0 in figure 2, the atoms are being evaporatively
cooled as well as undergoing ionizing collisions and thus
the total number of atoms must be decreasing. An explicit
calculation including the atom loss is given in appendix A and
agrees qualitatively with our observations.

3.2. Observing the decay of the condensate

Figure 3 shows a series of TOF spectra taken after the end of
the rf ramp. Two situations are shown. In one case (upper,
lighter ion curve) the rf knife was held on at the frequency
corresponding to the end of the ramp. In the other case (lower,
darker ion curve) the rf power was turned off completely at the
end of the ramp. The data show that the condensate remains
pure with the rf knife kept on. In the absence of the rf knife,
the ion rate decays much faster and one sees that the sample
rapidly acquires a thermal component. Since the total number
of trapped atoms in the presence of a knife must be smaller than
or equal to that in the absence of rf knife, we conclude that the
rapid decline in ion rate is due to a loss of sample density and
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Figure 4. Heating of the condensate in the absence of an rf shield.
The temperature increases from 1.1 to 2.2 µK in 1.5 s. The time
t = 0 is the same as in figures 2 and 3. For each different time, four
different TOFs have been acquired and fitted.
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Figure 5. The measured number of atoms as a function of time.
Crosses represent the total atom number, circles represent the
number of atoms in the condensed part. The data come from the fits
of the TOFs presented in figures 2 and 3 and correspond to the case
where the rf knife is absent. The time scale indicated is the same as
in figures 2 and 3. The increase in the total number after t = 0 is
spurious (see text).

not of the total number of atoms. This conclusion is confirmed
by a fit to the thermal wings, which reveals a heating as shown
in figure 4.

3.3. Measuring the total number of atoms

An attempt to measure the total number of atoms as a function
of time is shown in figure 5. Both the total number and the
condensed number as derived from fits to the TOF signals of
figures 2 and 3 are plotted. Surprisingly the total number of
atoms appears to increase between t = 0 and 1 s. There must be
a systematic error, which we can account for by recalling that in
our apparatus we only detect atoms which make non-adiabatic
transitions to the (field insensitive) m = 0 state during the
turn-off of the magnetic trap [1]. The fraction we observe is
of the order of 10%. It is quite possible that this non-adiabatic
transition does not occur with equal probability at every point
in the trap. Thus clouds with different spatial distributions may
be converted to the m = 0 state with different efficiencies. This
could explain why atoms in the thermal cloud are observed
with a higher efficiency than condensed atoms, as indicated in
figure 5.

We conclude that our measurements of the absolute
number of atoms contain uncontrolled systematic errors of the
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order of a factor of two. So, even if we know the ionization
rate constants, we cannot use the ion rate to study condensate
growth kinetics because we need the absolute value of the
initial number of atoms. It would also be useful to measure
the variation in the number of atoms during formation. Such a
study will have to wait for a more reliable method of releasing
the atoms from the trap (see conclusion). However, the
measurement of the ionization rate constants is a first step.
For a BEC, we can circumvent the systematic error on the
detection efficiency of the atoms to make a measurement of
the ionization rate constants. This has been described in [8]
and will be summarized in the following section. Afterwards,
we will investigate the effect of this systematic error on the
measurement for a thermal cloud.

4. Rate constants of ionizing collisions

The usual method of measuring the inelastic rate constants
relies on fits to a non-exponential decay of the number of
atoms. This method has some practical problems if the sample
heats during the measurement: the density changes which
complicates the fitting procedure. A way to avoid this heating
is to apply an rf shield, but this causes atom losses, which are
not due to collisions. What is even more inconvenient in our
case is that what is measured in this kind of experiment is a
decreasing atom number due to losses, which can be due to
ionizing as well as non-ionizing collisions. We want to relate
the ion rate to the density of the cloud, so what we need is
the rate constants for ionizing two- and three-body collisions.
We therefore use another method which consists of directly
observing the products of the collisions, namely the number of
ions, as a function of the density of the cloud.

As we have seen in section 3, there is a systematic error
on the measurement of the number of atoms and thus of the
density of the cloud. But we will see that we can circumvent
it in the case of the BEC. Let us then assume first that we are
able to measure the number of atoms accurately.

We use the MCP to detect both the ions and the TOF signal.
In a single run we record the ion rate during the last seconds
of the ramp until we switch off the magnetic trap and record
the TOF signal (to obtain the atom number N and the density).
The very last value of the ion rate recorded corresponds to
ions produced by the cloud observed with the TOF signal. We
repeat this sequence many times with different numbers of
atoms in the cloud. The way to vary this number is to keep
the atoms in the trap with an rf shield kept on. In this way we
reduce the atom number and keep the temperature of the cloud
constant. As explained in appendix A, the relation between ion
rate and density is quite complex in the case of the presence
of collisions between atoms in the condensed part and atoms
in the thermal part. We therefore only examine the case of a
pure BEC or a pure thermal cloud. In that case we can write
the ion rate per atom � as follows:

ion rate

N
= � = 1

τ ′ +
1

2
κ2β〈n〉 +

1

3
κ3L〈n2〉 (3)

where 〈n〉 = 1
N

∫
n2 dr and 〈n2〉 = 1

N

∫
n3 dr, n being the

local density. We have also introduced the two- and three-
body ionizing collision rate constants, β and L respectively,
defined according to their effect on the density loss in a thermal

gas3: ( dn
dt )ionization = − n

τ ′ −βn2 − Ln3. The effective lifetime
τ ′ � τ is due to ionizing collisions with the background gas.
The numerical factors come from the fact that although two
or three atoms are lost in each type of collision, only one ion
is produced. The factors κ2 and κ3 take into account the fact
that the two-and three-particle local correlation functions are
different depending on whether it is a BEC or a thermal cloud.
For the thermal cloud κ2 = κ3 = 1, while for a dilute BEC,
one has κ2 = 1/2! and κ3 = 1/3! [11, 12]. When the sample
is very dense, quantum depletion must be taken into account,
which modifies these factors [11]. A measurement of β and L
would allow us to test experimentally the theoretical values of
κ2 and κ3 [8].

4.1. Rate constants for a BEC

To determine the ionizing collision rate constants β and L ,
we need an absolute calibration of the number of atoms in
the condensate, N0, and the peak density, n0, in order to
calculate 〈n〉 and 〈n2〉. As discussed above, we do not have
a good calibration of these quantities. In the case of a BEC,
however, the measurement of the chemical potentialµobtained
by a fit of the TOF signal gives an accurate value for the
product n0a = µm/4πh̄2, a being the scattering length.
With the value of ω we also obtain the product N0a =
(1/15)(h̄/mω)1/2 (2µ/h̄ω)5/2. Experimentally we confirm
that µ ∝ N 2/5

d where Nd is the number of detected atoms [8].
This is a good indication that our detector is linear and that
the detection efficiency for a BEC is indeed independent of µ.
Assuming a value of the scattering length (a = 20 nm), we
therefore have an accurate measurement of n0 and N0. We have
measured the rate constants β and L for a condensate [8]. We
obtain by a fit to equation (3) (having corrected for the effect
of quantum depletion and the fact that the BEC also contains
a small thermal fraction) β = 2.9(±2.0)× 10−14 cm3 s−1 and
L = 1.2(±0.7) × 10−26 cm6 s−1. These values agree with
the theoretical estimates [13, 14]. The scattering length is not
well known [1, 2], so we have also given β and L for different
values of a [8].

4.2. Rate constants for a thermal cloud

To determine the rate constants for a thermal cloud we need,
as before, to determine the atom number and density. We
cannot use the same trick as in section 4.1 to avoid systematic
errors in the detection efficiency. If we want to use the above
experimental method for a thermal cloud we must rely on a
fit of the TOF to find the atom number and the temperature
T . In appendix B, we propose a method to determine the
rate constants which is independent of an absolute detection
efficiency, but at this stage we will concentrate on the same
technique as used for a BEC.

As we have shown above, the detection efficiency is ex-
pected to be different for a thermal cloud and we can investigate
the effect of this systematic error on these measurements. We
repeat the above described experiment, this time with a pure
thermal cloud. To begin with, we assume that the detection
efficiency is the same for a BEC and a thermal cloud. We

3 Collision rate constants are sometimes defined directly for a BEC (β ′ = β/2
and L ′ = L/6).
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Figure 6. Ion rate per trapped atom (�) in a thermal cloud versus
average density. The full curve corresponds to the value of β and L
deduced from the condensate measurements.
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Figure 7. Same as figure 6 but assuming a detection efficiency of
the thermal cloud a factor of 1.5 higher relative to the BEC. The data
have simply been rescaled along both axes; the full curve is the same
as in figure 6.

plot the ion rate per atom as a function of 〈n〉 in figure 6. We
can extrapolate the data to obtain the vertical intercept, which
corresponds to 1/τ ′. For densities corresponding to the mo-
ment of formation of BEC, the corresponding ion rate N/τ ′
is negligible compared with the total ionization rate, meaning
that we are dominated by two- and three-body processes (see
figures 2 and 5). To compare with the results obtained for the
BEC, we have also plotted the curve we would expect using
the above values of β and L . It is clear that the data do not
agree with this curve. Moreover, no possible pair of β and L
taken within their error bars (see [8]) can transform the curve
so that it agrees with the data. Nor can assuming a different
scattering length. What can make the curve agree with the
data is assuming a different detection efficiency for atoms in
the thermal cloud. If we assume for example that the detection
efficiency is a factor of 1.5 higher for a thermal cloud relative
to a BEC (which is consistent with figure 5), the curve agrees
better with the data as shown in figure 7.

The dispersion of the data points is quite large. This
dispersion can be understood by examining figure 8 in which
we have plotted the same data as in figure 6, but now indicating
the temperature corresponding to each different point on the
graph. There is a clear systematic variation with temperature.
One possible explanation is that the detection efficiency is
temperature dependent. This agrees with the above idea that
the efficiency depends on the spatial extent of the cloud which
is indeed related to the temperature. We do not know the form
of the detection efficiency as a function of temperature, but
comparing these data (indicating that cold atoms are better
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Figure 8. Same data as in figure 6 but with the different
temperatures indicated. The lighter circles correspond to the point
with higher temperatures (the maximum temperature is 5.5 µK), the
darker circles with lower temperatures (minimum temperature
1.8 µK).

detected) with the fact that a thermal cloud is better detected
than a BEC, leads us to conclude that there exists a certain
temperature giving a maximal detection efficiency. Therefore
the correction to the detection efficiency for thermal atoms is
not just a simple factor, but rather a function of temperature.
Without knowing this correction, we cannot use this method
to determine the collision constants for a thermal cloud. Still,
these results are a consistency check on the rate constants
measured using a BEC.

5. Conclusion

We have seen that the benefits of ion detection are twofold.
First, the ion rate can be used to select BECs with very similar
parameters out of a sample with large fluctuations. Second,
the ion rate itself can give information on the condensate on a
single-shot basis. Quantitatively, we still have some difficulties
interpreting the data due to systematic errors in the detection
calibration.

One way to overcome this problem is to release the atoms
from the trap by the mean of Raman transitions. It should
be possible to transfer close to 100% of the atoms into the
m = 0 state. This will eliminate the temperature dependence
of the detection efficiency and allow us to obtain more precise
measurements of β and L , both for the BEC by improving
the value of the scattering length and for the thermal cloud by
making the detection efficiency temperature independent.
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Appendix A. Predictions of the ion rate during the
formation of the BEC

The two- and three-body ion rates (I2b and I3b respectively) in
a sample containing both a BEC and a thermal cloud are given
by [11]:
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I2b = 1

2

β

2!

∫
dr [n2

0(r) + 4n0(r)nth (r) + 2n2
th(r)] (A.1)

I3b = 1

3

L

3!

∫
dr [n3

0(r) + 9n2
0(r)nth (r)

+ 18n0(r)n2
th(r) + 6n3

th(r)] (A.2)

where n0(r) is the local density of the BEC and nth(r) is the
local density of the thermal cloud. Here we have taken into
account the symmetrization factors, but neglected quantum
depletion.

Four parameters are needed to determine the densities of
the two clouds: N0, µ, Nth and Tth . In the Thomas–Fermi
approximation, however, the BEC density depends only on µ:

n0(r) = max

[
0,

µ − U (r)

g

]
(A.3)

with U (r) the harmonic trapping potential and g = 4πh̄2a/m
the interaction strength. The density of the thermal
cloud depends on two parameters. But, if thermodynamic
equilibrium is reached, taking into account the interactions
between the BEC and the thermal cloud (and neglecting the
interaction energy of the thermal cloud), we can write:

nth(r) = 1

λ3
d B

g3/2

(
exp

(
− 1

kB T
(U (r) + 2gn0(r) − µ)

))
(A.4)

where λd B is the thermal de Broglie wavelength and g3/2(x) =∑+∞
n=1

xn

n3/2 . In that case, given µ, nth only depends on one
additional parameter.

A.1. Comparison between the ion rates created by a thermal
cloud at T = TC and a pure BEC

Before trying to calculate the ion rate for any T , which requires
numerical calculation, let us first examine the ion rate created
by a thermal cloud at T = TC with a number of atoms N and
that created by a pure BEC (T = 0) with a number of atoms
ηN (η < 1).

In the case of two-body collisions, the ratio R2b of the ion
rates created by a pure BEC (I B EC ) and by a thermal cloud
(I th ) is related to the ratio of the peak densities. For three-body
collisions the ratio (R3b) is related to the square of that ratio.
Using the above equations we find:

(
n0

nth

)
= C0η

2/5N−1/10

(
σ

a

)3/5

(A.5)

R2b = I B EC
2b

I th
2b

= C2η
7/5N−1/10

(
σ

a

)3/5

(A.6)

R3b = I B EC
3b

I th
3b

= C3η
9/5N−2/10

(
σ

a

)6/5

(A.7)

where σ =
√

h̄
mω

. The numerical factors C0 � 0.78,
C2 � 1.05 and C3 � 0.49 are independent of the atom
considered and only assume that the cloud is trapped in a 3D
harmonic trap. The maximum ratios are reached in the case of
no loss (η = 1). Using the typical values of our experiment
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Figure A.1. Evolution of the ion rate with time. In (a) the total
number of atoms is constant. We show the different contributions to
the total ion rate (continuous curve) of the ion rate created by
two-body collisions (short dashed curve) and three-body collisions
(long dashed curve). In (b) the total number of atoms (dashed curve)
decreases due to ionizing collisions. Here the ion rate exhibits a
maximum before the formation of a pure BEC. For both graphs, the
initial number of atoms is 6 × 105 and a linear evolution of the
temperature between TC and 0 is imposed. The rates have been
calculated with the values of rate constants measured in [8].

(a � 20 nm, N � 4 × 105 and ω � 2π × 408 Hz), we find
( n0

nth
)max � 4, (R2b)max � 5 and (R3b)max � 12.
If the total number of atoms decreases during the

formation of the BEC, these ratios rapidly fall. For instance,
if the number of atoms decreases by a factor of 3.5 during the
last 750 ms of evaporation as shown in figure 5, we would
not have seen an increase of ionization rate but roughly the
same ion rate at t = −750 and 0 ms! This is an additional
evidence of the difference of neutral atom detection efficiency
for a thermal cloud and BEC (i.e. the total number of atoms
decreased by less than 3.5).

A.2. Evolution of the ion rate between T = TC and T = 0

Using equations (A.1) and (A.2), we have numerically
calculated the ion rates for all temperatures. If the cloud is at
thermodynamic equilibrium all the parameters of the cloud are
deduced from two parameters, for example the total number
of atoms and the temperature. To simulate a time evolution
of the ion rate we thus need a model for the variation of
these parameters. In this appendix we will assume a linear
evolution of the temperature between T = TC and 0 in 0.7 s.
This is of course a simplification, but given the linearity of the
evaporative cooling ramp, it is quite a good approximation.

In figure A.1(a) we show the evolution of the ion rates
assuming a constant total number of atoms. The ion rate
increases monotonically. We also see that the number of
ions produced and thus also the number of lost atoms is not
necessarily negligible compared with the total.

We can attempt to take into account these losses in our
model. In the experiments described in the text, the losses
are not only due to the ionizing collisions but also to the rf
knife. In addition, losses not only lead to a decrease in the
total number of atoms but also to a change in the temperature
because these collisions change the condensed fraction. Thus,
modelling the ion rate can be quite complicated. Here we wish
simply to illustrate the effect of loss, so we assume that losses
are only due to ionizing collisions, and we will neglect losses
due to the rf knife. Figure A.1(b) shows the results. The atom
number decreases by only 30% and the ion rate reaches a local
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maximum before the formation of the pure BEC, as in our
experiment. Extensions of our model to include losses due to
the rf knife would allow one to monitor all the parameters of
the cloud using the ion signal.

Appendix B. Proposed measurement of rate
constants independent of absolute neutral atom
detection efficiency

We will assume in this section that the absolute ion detection
efficiency is known, and that two- and three-body losses are
ionizing collisions [13]. The idea behind this method is that
two TOF signals separated by a given time can measure the
relative atom loss during this time, while the ion rate can
measure the absolute atom loss. These data allow one to extract
the rate constants without relying on an absolute calibration of
the neutral atom detection efficiency. The method works if
the neutral detection efficiency is unknown but independent of
temperature. Otherwise, we must also assume that the cloud
does not heat during the measurement or that we know the
variation of detection efficiency with temperature.

To simplify the discussion we will neglect three-body
reactions and assume that the sample does not heat during
the measurement. This will allow us to derive analytical
expressions, but the results are easily generalized to include
heating as well as three-body reactions. We can then write the
ion rate I (t) as:

I (t) = εN(t)

τ ′ +
βε

2Ve f f
N(t)2 (B.1)

with τ ′ the lifetime due to ionizing collisions, N(t) the absolute
atom number, Vef f defined by 〈n〉 = N/Ve f f and ε the ion
detection efficiency. We write Nd (t) = αN(t) where Nd (t)
is the number of atoms detected and α is the neutral atom
detection efficiency. Then

I (t) = εNd (t)

ατ ′ +
εβ

α22Ve f f
Nd (t)2. (B.2)

We can also write an equation for the atom number

dN (t)

dt
= − N(t)

τ
− β

Vef f
N(t)2 (B.3)

with τ the total lifetime of the sample that we can measure
independently at lowest density. The solution is:

N(t)

N(t0)
= 1(

1 + β

Vef f
N(t0)τ

)
e(t−t0)/τ − β

Vef f
N(t0)τ

. (B.4)

Substituting again Nd (t) = αN(t) we have:

Nd (t)

Nd (t0)
= 1(

1 + β

αVef f
Nd (t0)τ

)
e(t−t0)/τ − β

αVef f
Nd (t0)τ

. (B.5)

Thus we can measure an initial ion rate and the corresponding
detected atom number Nd(t0) by a TOF signal, let the system
evolve for a certain time and then again measure the ion rate
and the atom number Nd (t). With the evolution of the ion
rate, we can deduce ε/ατ ′ and εβ/α2Vef f from equation (B.1),
and from the evolution of the atom number we can deduce
β/αVef f using equation (B.5). With the value of Vef f and ε,
we can obtain the value β . We can also obtain the detection
efficiency α.

If we allow for three-body reactions, the method can still
be used but (B.4) is no longer analytical and must be integrated
numerically. If the sample heats during the measurement,
we only have to recalculate the volume Ve f f for each TOF
measurement.

The reason why we have not yet been able to apply this
method is, as indicated above, that the sample is heating so that
the detection efficiency changes during the measurement. As
we have not been able to measure the temperature dependence
of α(T ) the above equations cannot be solved. We hope to
render the detection efficiency temperature independent in the
near future by using Raman transitions as mentioned in the
conclusion.
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We report an experiment measuring simultaneously the temperature and the flux of ions produced by
a cloud of triplet metastable helium atoms at the Bose-Einstein critical temperature. The onset of
condensation is revealed by a sharp increase of the ion flux during evaporative cooling. Combining our
measurements with previous measurements of ionization in a pure Bose-Einstein condensate, we extract
an improved value of the scattering length a � 11:3�2:5

�1:0 nm. The analysis includes corrections that take
into account the effect of atomic interactions on the critical temperature, and thus an independent
measurement of the scattering length would allow a new test of these calculations.

DOI: 10.1103/PhysRevLett.93.090409 PACS numbers: 03.75.Hh, 34.50.–s, 67.65.+z

Understanding and testing the role of interparticle
interactions in dilute Bose-Einstein condensates (BEC)
is an exciting area of current research. Although mea-
surements of the interaction energy and the spectrum of
excitations of a BEC have confirmed the validity of the
Gross-Pitaevskii equation [1], there are still relatively few
quantitative tests of other aspects, such as the effect of
interactions on the value of the critical temperature (Tc)
or the condensed fraction [2,3]. The success in condens-
ing metastable helium atoms (He�) [4,5] was greeted with
interest in the community partly because the metastabil-
ity offers new detection strategies unavailable with other
species. To fully use these strategies, however, we are still
missing an accurate value of the s-wave scattering length
a, the atomic parameter which determines all elastic
scattering behavior at low energies. An accurate value of
a would also be useful to help clarify some puzzling
results concerning measurements of He� in the hydro-
dynamic regime, in which two different ways of measur-
ing the elastic scattering rate appeared to be in
contradiction [6]. Also, because He is a relatively simple
atom, theoretical predictions of a are already in a rather
narrow range [7,8] and these calculations should be tested.

A straightforward method to determine a is to use
ballistic expansion of a BEC to measure the chemical
potential for a known atom number. This was done in
Refs. [4,5], but the measurements were limited by the
calibration of the number of atoms. The reported values
for a are 20� 10 and 16� 8 nm, respectively. A recent
estimate, limited by similar effects, is a � 10� 5 nm
[9]. In this Letter, we report a new measurement of a
which makes extensive use of a unique feature of He�,
spontaneous Penning ionization within the sample.

We exploit two specific situations in which the absolute
atom number N is simply related to a and measured
quantities: (i) for a pure BEC, the number is deduced
directly from the chemical potential � and a, and
(ii) for a cloud at the BEC threshold, it is simply related
to Tc. Both � and Tc are accurately deduced from time of
flight (TOF) measurements. Comparison of ion rates from

a pure BEC of known chemical potential and from a cloud
at Tc allows us to extract a and the ionization rate con-
stants. The deduced value of a is independent of the
absolute ion detection efficiency, assuming that this effi-
ciency is the same in the two measurements. The ion
signal is also used in another novel way: since it provides
a real-time observation of the onset of BEC [10], we use it
to reliably produce a cloud at threshold.

A dense cloud of He� produces a steady flux of ions due
to various ionization processes. Density losses due
uniquely to ionizing collisions depend on the local den-
sity n according to �dn=dt�ionizing � ��n=�i� � n2 �
Ln3, with �i the lifetime due to ionizing collisions with
the background gas and  and L the 2-body and 3-body
ionization rate constants defined for a thermal cloud. The
total ion rate from a thermal cloud is given by

� �
N
�i

�
1

2

Z

n2dr�
1

3
L
Z

n3dr: (1)

The numerical factors reflect the fact that although two
(three) atoms are lost in 2-body (3-body) collisions, only
one ion is produced. Ionization measurements on a pure
BEC were reported in Ref. [11], and, as a was not pre-
cisely known,  and L were given in terms of a.

For a precise measurement of a, corrections due to
interactions must be taken into account. In the mean-field
approach, the density is given by [1]

n�r� �
1

�3�T�
g3=2

�
exp

�
�

1

kBT
�V�r� � 2gn�r� ��	

��
;

(2)

with ��T� the thermal de Broglie wavelength, T the tem-
perature kB the Boltzmann constant, V the trapping po-
tential g � 4� �h2a=m the interaction constant, � the
chemical potential, and g��x� �

P
1
i�1 x

i=i�.
The ion rate at the phase transition �c can be derived

from Eq. (2) by a first order perturbation theory similar to
Ref. [12] but with a fixed temperature rather than a fixed
atom number. We use the chemical potential of a gas in a
harmonic potential at the BEC transition:
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�c=kBTc �
3

2

~!
!c

� 4g3=2�1�
a
�c

: (3)

This gives

�c �

�
!c

!

�
3
�
1

�i

�
1:20� 2:48

~!
!c

� 12:35
a
�c

�

�


�3
c

�
0:33� 1:81

~!
!c

� 6:75
a
�c

�

�
L

�6
c

�
0:22� 2:21

~!
!c

� 6:50
a
�c

��
; (4)

with ~! � �2!? �!k�=3, ! � �!k!
2
?�

1=3, !c � kBTc= �h,
and �c � ��Tc�. The numerical values come from the
calculation of arithmetic series and are independent of
any parameters of the cloud. The terms proportional to
a=�c account for the atomic interactions, while the cor-
rections proportional to ~!=!c take into account the effect
of finite sample size. For the typical parameters (Tc 
2 �K and a � 12 nm) we have a=�c ’ ~!=!c ’ 0:02, cor-
responding to an interaction correction of 20%, 40%, and
60% in the three successive terms in Eq. (4). Even though
the first order corrections are large, we find, using an
approach similar to Ref. [13], that the second order cor-
rections are negligible: �4%, 1:8%, and �3%, respec-
tively. Note that finite size corrections are always smaller
than those due to interactions.

Our setup has been described in Ref. [11]. Briefly, we
trap up to 2� 108 atoms at 1 mK in an Ioffe-Pritchard
cloverleaf trap with �i estimated to be >500 s. In a
typical run, forced evaporation for 30 s cools a cloud to
a temperature near the phase transition. At this point, the
rf-knife frequency is decreasing at a rate of 400 kHz=s.
The axial and radial oscillation frequencies in the har-
monic trapping potential are !k=2� � 47� 3 Hz and
!?=2� � 1225� 20 Hz, respectively. A 2-stage, single
anode microchannel plate detector (MCP) is placed 5 cm
below the trapping region. Two grids above the MCP
allow us either to repel positive ions and detect only the
He� atoms or to attract and detect positive ions produced
in the trapped cloud. As explained in Ref. [11], to detect
the ion flux, the MCP is used in counting mode, whereas
we record the TOF signal at low gain (analog mode) to
avoid saturation. As explained in Ref. [4], the TOF signal
is due to atoms in the m � 0 state which are insensitive to
the magnetic field. However, atoms in magnetic field
sensitive states are still present, and their trajectories
are affected by uncontrolled residual fields. Therefore,
during the time of flight, we apply a magnetic gradient in
order to push these atoms away from the detector. The
ratio between the detected atoms in the m � 0 state and
the initial number of atoms in the cloud is not well known
[10], so we use the TOF only to get the temperature.

The crux of the experiment is to obtain a cloud of
atoms at the phase transition. To identify the BEC thresh-
old point, we monitor the ion signal. We have shown in

Ref. [10] that the onset of BEC is heralded by a sudden
increase of the ion rate associated with the increased
density of the condensate. More precisely, the BEC
threshold corresponds to the rapid change in slope of
the ion rate vs time or the maximum of the 2nd derivative
[14]. Figure 1 shows a series of such ionization rates
during evaporation through the BEC transition. From
these curves we can determine an empirical relation
between the time of the onset of condensation and the
ion rate preceding it. This relation stays valid only as long
as we keep the same evaporation ramp and bias field. We
will refer to this as the ‘‘threshold curve.’’ Because of
fluctuations of the bias field, we observe fluctuations of
the time of BEC onset from run to run. These correspond
to approximately �60 ms in time or �25 kHz in fre-
quency, a value which agrees with independent measure-
ments of the fluctuations of the bias field.

Having established this relation, we can interrupt an
evaporation sequence very close to the BEC threshold and
record the instantaneous ion rate as well as the corre-
sponding TOF signal. Only runs closer than �60 ms to
the threshold curve are used in the analysis.

We fit the associated TOF spectrum to determine the
temperature (Fig. 2). We use Eq. (2) together with �c

given in Eq. (3) for the initial atomic density and then
assume purely ballistic expansion of the cloud after the
switching off of the trap.We refer to this fit as the Bose fit.
The fits are weighted by an estimated uncertainty in each
point of the TOF curve. To make this estimate, we chose a
set of TOF spectra which appeared to show no systematic
deviation from their fits and used them to estimate the
amplitude of the noise. This noise varies as the square root
of the amplitude of the signal, indicating that we are
limited by the shot noise of the atom detection. Our
procedure is only an approximate indicator of the error
bars. The chi square per degree of freedom �2 for the fits
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FIG. 1. Variation of the ion rate as the atomic cloud is cooled
through the phase transition for various initial densities (gray
curves). The rf-knife frequency at t � 0 is 2 MHz. The sudden
increase of the ion rate (crosses) occurs at the BEC transition.
The solid line passing through the transition points constitutes
our empirical relation, named threshold curve.
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deduced in this way ranges from 0.8 to 3. We then exclude
a successively larger window (up to the rms of the TOF
signal) from the fit (see Fig. 2). For all runs, we observe a
variation of less than 5% and in most cases less than 3%
of the temperature as the excluded window is increased.

In Fig. 2, we show an example of a typical TOF spec-
trum where the wings are fitted by a Gaussian and the
Bose function described above. The ability of the Bose
function to reproduce the center of the distribution with-
out including it in the fit, unlike the Gaussian, confirms
that the cloud is indeed close to the BEC threshold. In the
following, we use the temperature given by the fit with an
excluded window of half the rms width of the TOF signal
in order to avoid the possibility of a small condensate
component or other high density effects distorting our
analysis.

Before plotting the ion rate as a function of the critical
temperature, we correct the observed temperature to ac-
count for the hydrodynamic expansion of the cloud (see
[2] and references therein). This is done in the spirit of
Ref. [15], which uses the Boltzmann equation approach to
take into account collisions during the expansion. The
collision rate in Ref. [15] is calculated using a Gaussian
density profile. We rather use the value calculated for an
ideal Bose gas [16], which we have adapted to take inter-
actions into account. This correction depends on the scat-
tering length but the effect on the final value of a is only
of order 0.3 nm for a ranging from 10 to 14 nm. We there-
fore simply assume a � 12 nm for this correction in the
following. Due to the additional anisotropy of the expand-
ing cloud in the horizontal (detector) plane, the fitting
function should be modified; but a simulation of this
effect shows that the correction to the temperature is
less than 0.1%.

Finally, we correct the detected ion rate �c;det to ac-
count for the detection efficiency � such that �c �
�c;det=�. It should be noted that the rate constants were

obtained by ion rate measurements [11]. This means that
they were also corrected:  � det=�0 and L � Ldet=�0.
Equation (4) shows that, as long as � � �0, the detection
efficiency cancels out and does not have any impact on the
determination of a. We have checked experimentally that
� � �0. To allow comparison with figures in earlier pub-
lications, all the figures have been corrected using the
same � as earlier, namely, � � 0:42 [10,11].

The results are plotted in Fig. 3. Curves corresponding
to the expected variation for three values of the scattering
length are also shown. We see that a large fraction of the
data falls between a � 10 and 14 nm. The points at the
highest temperatures, however, show a tendency to fall
near the theoretical curve for a � 10 nm, while those at
lower temperatures fall near a � 14 nm. To analyze this
tendency further, we examine the TOF fits more closely
using the �2 value as an indicator of the confidence level
of each measurement. A large �2 could mean that the
Bose function with � imposed to �c is not the right fit
function and, therefore, that the cloud is not sufficiently
close to Tc. As shown in Fig. 3, outliers tend to be
correlated with a large �2. Note, however, that the re-
maining scatter in the data is too large to be accounted for
by our a priori estimates of the uncertainties in our ion
rate or temperature measurements. We presume that it is
due to fluctuations in the determination of the BEC
threshold.

To determine the scattering length, we fit the black
points in Fig. 3 with a as a free parameter and using 
and L parametrized by a as in Ref. [11]. The fit gives (all
points are given equal weight) a � 11:3 nm. Our chief
estimated uncertainty stems from the fact that our data
show a systematic tendency to fall above the best fit at low
temperature and below it at high temperature. To estimate
this uncertainty, we fit the data (including gray points)
separately for Tc below and above 2 �K. We find a �
13:8 nm for the low temperature data and a � 10:4 nm
for the high temperature data. The uncertainties in the
measurements of  and L also contribute to the uncer-
tainty in Eq. (4) used for fitting. In fact, the uncertainties
in  and L are highly correlated [11] and their contribu-
tion to the uncertainty is less than 0.5 nm.

The error bars are obtained by summing quadratically
the sources of uncertainties. Our final result for the scat-
tering length is thus a � 11:3�2:5

�1:0 nm. This result may be
compared with the calculation in Ref. [8]. This work leads
to a � 8 nm using the potential curves of Ref. [17]. From
Ref. [8] one also finds that a 0.5% shift of the repulsive
part of that potential would bring the theoretical value
into agreement with our result. This 0.5% shift corre-
sponds to the estimated uncertainty in the potential of
Ref. [17]. Another theoretical treatment [7] gives a scat-
tering length between 8 and 12 nm, also consistent with
our results.

Our result also allows one to give values for the 2- and
3-body ionization rate constants. The error bars of
Ref. [11] are modified to take into account the uncertainty
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FIG. 2. Time of flight signal corresponding to a cloud re-
leased from the trap (at t � 0) when its ion rate is on the
threshold curve. Here we have fitted the data with an excluded
window indicated by the vertical lines (width equal to the rms
width of the TOF signal). A Gaussian function (dotted line)
does not describe the central part of the data well, while the
Bose function as defined in the text (solid line) does, indicating
that the cloud is close to threshold.
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of a. The uncertainty in the ion detection efficiency also
contributes to the uncertainty in the rate constants. As
discussed in Ref. [11], we will assume � � 0:42 to get the
central values of the rate constants.We will include a one-
sided contribution to the error bars to account for the
possibility, also discussed in [11], that � could be a factor
of 2 smaller. We finally get  � 0:9�1:7

�0:8 � 10�14 cm3=s
and L � 2:5�4:5

�1:7 � 10�27 cm6=s. The rate constants are in
good agreement with theoretical predictions [8,18].

As shown in Fig. 3, curves a and b, our value of a is
significantly shifted by the nonideal gas corrections of
Eq. (4). Thus, when an independent measurement of the
scattering length becomes available, our results can be
used as a test of these corrections [19]. Note, however,
that corrections to the critical temperature beyond mean-
field theory [20] are small when one parametrizes the
critical point in terms of an average density [13]. But an
examination of the critical density measured in a local
way, by imaging the ions from a cloud, for example, is
sensitive to critical fluctuation phenomena which go be-
yond mean-field theory similar to the homogenous case
[20]. Thus, refinements of the ionization measurements
described here promise to continue to provide new tests of
BEC physics.
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http://tel.ccsd.cnrs.fr.

[63] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Exper-
iments and theory in cold and ultracold collisions”, Rev. Mod. Phys.
71, 1 (1999).
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[118] P. Pedri, D. Guéry-Odelin, and S. Stringari, “Dynamics of a
classical gas including dissipative and mean-field effects”, Phys. Rev.
A 68, 043608 (2003).

[119] R. J. W. Stas, J. M. McNamara, W. Hogervorst, , and
W. Vassen, “Simultaneous Magneto-Optical Trapping of a Boson-
Fermion Mixture of Metastable Helium Atoms”, Phys. Rev. Lett. 93,
053001 (2004).

[120] K. Mølmer, “Bose Condensates and Fermi Gases at Zero Tempera-
ture”, Phys. Rev. Lett. 80, 1804 (1998).

[121] P. Capuzzi and E. S. Hernández, “Phase separation and response
of 3He-4He mixtures within a magnetic trap”, Phys. Rev. Lett. 66,
035602 (2002).

[122] R. Hanbury-Brown and R. Q. Twiss, Nature 177, 27 (1956).



BIBLIOGRAPHY 219

[123] L. Mandel and E. Wolf, Optical coherence and quantum optics
(Cambridge University Press, Cambridge, MA, 1990).

[124] M. Yasuda and F. Shimizu, “Observation of two-atom correlation of
an ultracold neon atomic beam”, Phys. Rev. Lett. 77, 3090 (1996).

[125] E. A. Burt, R. W. Ghrist, C. J. Myatt, M. J. Holland, E. A.
Cornell, and C. E. Wieman, “Coherence, correlations, and colli-
sions: What one learns about Bose-Einstein condensates from their
decay”, Phys. Rev. Lett. 79, 337 (1997).

[126] A. S. Tychkov, J. C. J. Koelemeij, T. Jeltes, W. Hogervorst,
and W. Vassen, “Two-color magneto-optical trap for metastable he-
lium”, Phys. Rev. A 69, 055401 (2004).

[127] M. R. Spiegel, Shaum’s outline series: Mathematical handbook of
formulas and tables (McGraw-Hill, United States of America, 1968).

[128] M. Naraschewski and R. J. Glauber, “Spatial coherence and den-
sity correlations of trapped Bose gases”, Phys. Rev. A 59, 4595 (1999).

[129] D. Guéry-Odelin, “Mean-field effects in a trapped gas”, Phys. Rev.
A 66, 033613 (2002).
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Résumé

Cette thèse présente des résultats obtenus par des méthodes originales sur les nuages d’atomes
ultra-froids au voisinage de la condensation de Bose-Einstein. Les atomes qui constituent les
nuages utilisés dans ces expériences sont particuliers du fait de leur métastabilité. Plus préci-
sément, ce sont des atomes d’hélium métastable. Grâce à l’énergie interne qu’ils possèdent, ces
atomes peuvent être détectés électroniquement de façon efficace par une galette de micro-canaux.
L’utilisation de l’hélium métastable pour l’étude de la dégénérescence quantique est également
particulière du fait de la présence de collisions ionisantes au sein de l’échantillon atomique. Les
ions He+ créés lors d’une collision inélastique peuvent être détectés “en temps réel”, ce qui
constitue un diagnostic nouveau et intéressant. En particulier, il est possible d’identifier très
précisément le seuil de condensation de Bose-Einstein, c’est-à-dire le moment où commencent à
s’accumuler les atomes dans l’état quantique fondamental. L’avantage d’utiliser le taux d’ions
comme outil d’observation est sa nature “non-invasive”. Contrairement à la technique d’observa-
tion habituelle qui exige que les atomes soient lâchés du piège pour permettre leur observation,
la mesure du taux d’ions produits par l’échantillon ne change en rien le comportement naturel
du nuage. En utilisant cette méthode de diagnostic originale, une mesure des paramètres colli-
sionnels régissant le comportement du nuage a été obtenue : constantes de collisions ionisantes
et longueur de diffusion de l’atome d’hélium métastable.

Mots-clés

Hélium métastable - Atomes froids - Condensation de Bose-Einstein - Seuil de condensa-

tion - Galette de micro-canaux - Collisions Penning - Collisions élastiques - Longueur

de diffusion.

Abstract

This thesis presents an experimental study of an atomic cloud in the vicinity of Bose-Einstein
condensation. The atoms used in our experiment are special in the sense that they are metastable
– we use metastable helium. The metastability opens the door for using new and original
detection methods. Due to their internal energy, the atoms can be detected electronically by
means of a micro-channel plate. The use of metastable helium is also interesting due of the
presence of ionizing collisions in the sample. The He+ ions produced in collisions between the
metastable atoms can be detected in real-time, and the ion signal constitutes an alternative
and useful diagnostic. In particular, this signal allows one to identify very precisely the Bose-
Einstein condensation threshold. One of the advantages of using this signal to probe the cloud,
is its “non-invasive” nature: observing the ions does not at all alter the natural evolution of the
cloud, in contrast to the ordinary detection technique which consists of releasing the atoms from
the trap and then imaging the cloud. In this thesis, by using the new diagnostics based on the
ion signal, we have measured some important parameters governing the collisions, and thereby
the behavior of the cloud: the ionizing rate constants and the scattering length.

Mots-clés

Metastable helium - Cold Atoms - Bose-Einstein condensation - Condensation threshold

- Micro-channel plate - Penning collisions - Elastic collisions - Scattering length.
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