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a mon grand-pere,
pour son immense générosité,
et les merveilleux souvenirs qu’il m’a laissés.






a ma mere et 3 mon pere.






Nous ne vivons que pour découvrir la beauté.
Tout le reste n’est qu’une forme d’attente.
Khalil Gibran 1883-1931






Je ne me demande méme pas si, aux yeux de I’Eglise, je
passe pour un croyant, & mes yeur un croyant est simple-
ment celui qui croit en certaines valeurs — que je résumerais
en une seule : la dignité de l’étre humain. Le reste n’est
que mythologies, ou espérances.

Amin Maalouf (Les Identités meurtriéres)






Moi, Hassan fils de Mohamed le peseur, moi, Jean-Léon de
M¢édicis, circoncis de la main d’un barbier et baptisé de la
main d’un pape, on me nomme aujourd’hui I’Africain, mais
d’Afrique ne suis, ni d’Europe, ni d’Arabie. On m’appelle
aussi le Grenadin, le Fassi, le Zayyati, mais je ne viens
d’aucun pays, d’aucune cité, d’aucune tribu. Je suis fils de
la route, ma patrie est caravane, et ma vie la plus inatten-
due des traversées.

Mes poignets ont connu tour a tour les caresses de la soie
et les injures de la laine, l'or des princes et les chaines des
esclaves. Mes doigts ont écarté mille voiles, mes lévres ont
fait rougir mille vierges, mes yeuz ont vu agoniser des villes
et mourir des empires.

De ma bouche, tu entendras ’arabe, le turc, le castillan,
le berbere, I’hébreu, le latin et litalien vulgaire, car toutes
les langues, toutes les priéres m’appartiennent. Mais je
n’appartiens 4 aucune. Je ne suis qu’a Dieu et a la terre,
et c’est 4 eux qu’un jour prochain je reviendrai.

Et tu resteras aprés moi, mon fils. Et tu porteras mon
souwvenir. Et tu liras mes livres. Et tu reverras alors cette
scene : ton pére, habillé en Napolitain sur cette galée qui
le raméne vers la céte africaine, en train de griffonner,
comme un marchand qui dresse son bilan au bout d’un long
périple.

Mais n’est-ce pas un peu ce que je fais : qu’ai-je gagné,
qu’ai-je perdu, que dire au Créancier supréme ? Il m’a
prété quarante années, que j’ai dispersées au gré des voy-
ages : ma sagesse a vécu a4 Rome, ma passion au Caire,
mon angoisse & Feés, et 4 Grenade vit encore mon inno-
cence.

Amin Maalouf (Léon I’Africain)






— Dowe ce li ha, gli occhi, il mare?

— Perché ce l’ha, vero?

- Si.

— E dove cavolo sono?

- Le nawvi.

— Le navi cosa?

— Le navi sono gli occhi del mare.

Rimane di stucco, Bartleboom. Questa non gli era
proprio venuta in mente.

- Ma ce n’é¢ o centinaia di navi...

— Ha centinaia di occhi, lui. Non vorrete mica che
se la sbrighi con due.

Effettivamente. Con tutto il lavoro che ha. E grande
com’é. C’¢ del buon senso, in tutto quello.

- 5%, ma allora, scusa...

- Mmmmbh.

— E i naufraghi? Le tempeste, i tifoni, tutte quelle
cose li... Perché mai dovrebbe ingoiarsi quelle navi,
se sono i suoi occhi?

Ha laria perfino un po’ spazientita, Dood, quando si
gira verso Bartleboom e dice

— Ma voi... voi non li chiudete mai gli occhi?

Alessandro Baricco (Oceano Mare)
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Présentation générale

Cette these étudie trois probléemes émanant de deux grands sujets de 'op-
tique : les matériaux non linéaires et les matériaux & bandes interdites de photons
(BIP) connus aussi sous le nom de cristaux photoniques. Un intérét particulier
est accordé & la formulation des probléemes mathématiques et & leur analyse
rigoureuse. L’importance fondamentale de ces deux sujets de 1’optique est in-
contestable. Ils présentent des sources potentielles de solutions technologiques
applicables & des domaines industriels tels que les télécommunications, le calcul
ou le stockage de données.

Tous les milieux optiques sont non linéaires. Cependant, les effets non liné-
aires sont en général tellement faibles qu’il est quasiment impossible de les ob-
server sans le recours & des impulsions laser de haute intensité. La modélisation
mathématique de 'optique non linéaire dans les couches minces est plus com-
plexe que celle de 'optique linéaire étudiée dans la littérature par plusieurs
auteurs [14, 15, 16, 3, 4]. Dans le cas non linéaire, la propagation des ondes
électromagnétiques obéit au systeme d’équations de Maxwell non linéaires, d’ou
la nécessité de I’étude des EDP non linéaires. Il faut noter aussi que 'ampli-
tude de ’onde incidente, qui ne joue aucun role dans le cas linéaire, acquiert
de 'importance dans le cas non linéaire. Par ailleurs, comme les propriétés des
matériaux non linéaires sont généralement caractérisées par des tenseurs, les
modeles vectoriels deviennent inévitables dans les situations générales.

L’objectif du Chapitre 2 est ’étude de la théorie électromagnétique de la
diffraction par des couches minces non linéaires dans le cadre de 'approxima-
tion de la pompe non déplétée. Depuis son apparition au début des années
1960, un progres rapide et continu a été réalisé dans le domaine de ’optique
non linéaire. Une des innombrables applications importantes des phénomeénes
de optique non linéaire est une méthode permettant d’obtenir des émissions
cohérentes & des longueurs d’onde plus courtes que celles des lasers disponibles,
a travers le procédé de la génération de la seconde harmonique.

Notre motivation principale dans le Chapitre 2 est de donner une formulation
rigoureuse de l'effet des couches minces de matériaux non linéaires dans ’ap-
proximation de la pompe non déplétée. Dans cette approximation, les équations
de Maxwell sont réduites & un systeme d’équations de Helmholtz couplées qui
sont vérifiées par le champ fondamental et par la seconde harmonique. Nous
déduisons de facon rigoureuse des formules asymptotiques pour les champs bi-
dimensionnels de ’onde fondamentale et de la seconde harmonique associées a
la couche mince de matériau non linéaire. Notre approche est basée sur les tech-
niques de potentiel de couche & travers les formules de représentation intégrale
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des champs permettant de se passer de 'utilisation (et de son adaptation & notre
contexte) du résultat de régularité hautement non trivial de Li et Vogelius [50].

Notre intérét pour de telles formules asymptotiques est dii au fait qu’elles
fournissent des outils tres puissants pour la résolution de problemes d’optimisa-
tion [12, 51, 55]. Dans [67, 7, 5, 3], des développements asymptotiques de ce type
pour des inclusions électromagnétiques (de matériau linéaire) de petit diametre
ont déja été explicités. Cependant, ces développements sont par nature totale-
ment différents de ceux trouvés dans ce chapitre. La dégénérescence des courbes
associées a la couche mince rend compliquée une dérivation rigoureuse, basée
sur les potentiels de couche, des perturbations de premier ordre des champs
fondamental et de seconde harmonique.

Les Chapitres 3 et 4 sont consacrés & la modélisation mathématique des
cristaux photoniques.

Les cristaux photoniques sont des structures périodiques composées de ma-
tériaux diélectriques congues afin de présenter des propriétés intéressantes, telles
que des gaps dans leurs spectres, pour la propagation des ondes électromagnéti-
ques classiques. En d’autres termes, les ondes électromagnétiques monochroma-
tiques de certaines fréquences ne peuvent pas exister dans de telles structures.
Les milieux avec des bandes interdites ont plusieurs applications potentielles, par
exemple, dans les communications optiques, les filtres, les lasers et les micro-
ondes. Voir [37, 38, 60, 47] pour une introduction aux cristaux photoniques. Le
phénomene de bandes interdites de photons peut étre réalisé dans des matériaux
structurés périodiquement ayant une périodicité de ’ordre de la longeur d’onde
optique. Avec un choix adéquat de la structure du cristal photonique, de la
dimension de la cellule fondamentale et des matériaux diélectriques compo-
sant le cristal, les ondes électromagnétiques dans certaines bandes de fréquence
peuvent étre bannies du cristal [69]. Alors que les conditions nécessaires pour
I’existence de bandes interdites dans le cas général ne sont pas connues, Figotin
et Kuchment ont donné un exemple de milieux périodiques & haut contraste
d’indice o les bandes interdites existent et peuvent étre caractérisées [34, 35].
D’autres structures & bandes interdites ont été trouvées a travers des approches
numériques ou par la physique expérimentale. Voir [24, 22, 25, 9, 28].

Dans le but de réaliser des lasers, des filtres, des fibres ou des guides d’ondes,
il est nécessaire d’avoir des modes autorisés dans le gap. Ces modes sont obte-
nus en introduisant des défauts localisés a la périodicité et correspondent & des
valeurs propres isolées de multiplicité finie & 'intérieur du gap. La fréquence du
mode de défaut dépend fortement de la nature du défaut. Figotin et Klein ont
prouvé rigoureusement que l’introduction de défaut & la structure périodique,
c’est-a-dire une perturbation & support compact, peut créer des modes de défaut,
qui sont des ondes stationnaires & décroissance exponentielle loin de la pertur-
bation dont la fréquence se situe dans le gap [30, 31, 29]. Voir aussi Ammari
et Santosa [6] et Kuchment et Ong [48] pour les preuves d’existence de modes,
exponentiellement localisés, guidés par un défaut linéaire dans les cristaux pho-
toniques.

Les modes de défaut aussi bien que les modes guidés associés respectivement
a des défauts compacts et linéaires sont calculés par une technique dite de la
supercell. Cette technique consiste en la restriction des calculs & un domaine
borné englobant le défaut et contenant assez de cellules du cristal photonique
de référence avec des conditions aux limites périodiques sur le bord du domaine.
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Les conditions aux limites sur la supercell sont, en principe, sans importance si
le mode est suffisamment confiné. Comme on veut déterminer uniquement les
modes de défaut ou les modes guidés situés dans le gap, sans encombrement
de calcul et de mémoire dii a la détermination de toutes les valeurs propres
associées a la supercell situées dans le spectre continu, on formule le probleme
comme étant celui de la détermination des valeurs propres les plus proches de
la fréquence centrale du gap.

La méthode de la supercell montre un tres bon accord avec les résultats
expérimentaux et semble d’une trés grande précision. Cependant, les études
analytiques et les preuves rigoureuses de la convergence de cette technique font
largement défaut.

Dans le Chapitre 3, nous démontrons la convergence de cette méthode nu-
mérique et quantifions sa précision. Bien qu’on puisse obtenir des résultats
analogues pour le cas des équations de Maxwell, nous n’étudions que les cas
des ondes électromagnétiques polarisées TM et TE dans les cristaux photo-
niques bidimensionnels. Des résultats d’expériences numériques sont présentés
afin d’illustrer les principaux résultats de convergence.

Les fibres optiques photoniques constituent le theme central du dernier cha-
pitre.

Les fibres optiques trouvent aujourd’hui de grands domaines d’application
tels que les télécommunications, les capteurs, la spectroscopie et la médecine
[17]. Les fibres optiques ordinaires guident la lumiére par réflexion interne to-
tale ce qui nécessite un indice de réfraction dans le coeur plus grand que celui
de l'enveloppe. Ce mécanisme physique a été découvert et exploité technolo-
giquement depuis plusieurs années. Cependant, dans la derniere décennie, la
recherche dans la conception de nouveaux matériaux a donné la possibilité de
localiser et de contrdler la lumiere dans les cavités et les guides d’onde par U'effet
des bandes interdites de photons.

Dans [46], Knight et ses collegues décrivent un type de fibres optiques tota-
lement différent, dont le coeur posseéde un indice de réfraction inférieur & celui
du milieu environnant ce qui anéanti la possibilité de réflexion interne totale.
Ce mécanisme permet d’acheminer la lumiere dans de I’air retardant ainsi 1’ap-
parition des effets non linéaires.

Le coeur de la nouvelle fibre est principalement un défaut entouré par une
structure périodique de trous d’air allant le long de la fibre. La lumiére, expulsée
de la structure périodique entourant le cceur, ne peut que se propager le long
du défaut. La nouvelle fibre opere effectivement par 1’effet de bande interdite.
Nous appellerons de telles structures des fibres optiques photoniques (FOP).

Dans le Chapitre 4, nous modélisons la propagation des ondes électroma-
gnétiques dans les fibres optiques photoniques. Nous donnons un cadre ma-
thématique permettant de comprendre leurs propriétés inhabituelles comparées
aux fibres optiques classiques opérant par le mécanisme de réflexion totale et
nous développons des outils théoriques pour la modélisation de ces fibres op-
tiques photoniques. Nous étudions leurs propriétés de dispersion et vérifions le
confinement exponentiel des modes guidés. Enfin, nous illustrons les principaux
résultats par des exemples numériques.

Les trois chapitres de ce document sont autonomes et peuvent étre lus
indépendamment.






Chapter 1

Introduction

This thesis addresses three problems in two areas of optical science: nonlinear
materials and photonic band gap structures, also known as photonic crystals.
Particular emphasis is put on the formulation of the mathematical problems
and their rigorous analysis. The fundamental importance of these two areas
of optics is clear. They provide enabling technology potentially applicable to
numerous industries, including communication, computing, and data storage.

All optical media are nonlinear. However, the nonlinearity is generally so
weak that is impossible to observe without the use of high intensity laser beams.
Mathematical modeling of nonlinear optics in thin layers is more difficult than
that of linear optics studied in the literature by many authors [14, 15, 16, 3, 4].
In the nonlinear case, the electromagnetic wave propagation is now governed
by the system of nonlinear Maxwell’s equations, i.e., nonlinear PDEs need to
be studied. Also, the amplitude of the incident wave, which has no role in
the linear case, plays an important role in the nonlinear case. Furthermore,
since nonlinear material properties are usually characterized by tensors, vectorial
models become inevitable in the general situation.

The purpose of Chapter 2 is to study the electromagnetic theory of diffraction
from nonlinear thin layers in the undepleted-pump approximation. Since its
birth in the early 1960s, rapid and continuous progress has been made in the
field of nonlinear optics. One of the many important applications of nonlinear
optical phenomena is a method for obtaining coherent radiation at a wavelength
shorter than that of available lasers, through the process of second-harmonic
generation (SHG).

Our main aim in Chapter 2 is to rigorously derive the effect of thin lay-
ers of nonlinear material in the undepleted-pump approximation. In this ap-
proximation, the nonlinear Maxwell equations reduce to two coupled Helmholtz
equations for the fundamental and the second-harmonic fields. We rigorously de-
rive asymptotic formulas for two-dimensional fundamental and second-harmonic
fields associated with thin layers of nonlinear materials. Our approach is based
on layer potential techniques through integral representation formulas of the
fields, avoiding the use (and the adaptation to our context) of the highly-nontri-
vial regularity results of Li and Vogelius [50].

Our interest in such asymptotic formulas owes to the fact that they pro-
vide extremely powerful tools to solve optimization problems [12, 51, 55]. In
[67,7, 5, 3], asymptotic expansions of this kind for electromagnetic inclusions (of

5



6 CHAPTER 1. INTRODUCTION

linear material) of small diameter have been already derived. However, they are
by nature completely different from those derived in this chapter. The degen-
eracy of the curves associated with the thin layer complicates a mathematically
rigorous derivation, based on layer potentials, of the leading-order perturbations
in the fundamental and second-harmonic fields.

Chapters 3 and 4 are devoted to mathematical modeling of photonic crystals.

Photonic crystals are periodic structures composed of dielectric materials
and designed to exhibit interesting properties, such as spectral band gaps, in the
propagation of classical electromagnetic waves. In other words, monochromatic
electromagnetic waves of certain frequencies do not exist in these structures.
Medium with band gaps have many potential applications, for example, in op-
tical communications, filters, lasers, and microwaves. See [37, 38, 60, 47] for an
introduction to photonic crystals. The photonic band gap (PBG) effect may be
achieved in periodically structured materials having a periodicity on the scale of
the optical wavelength. By appropriate choice of the crystal structure, the di-
mensions of the periodic lattice, and the properties of the component materials,
propagation of electromagnetic waves in certain frequency bands (the photonic
band gaps) may be forbidden within the crystal [69]. While necessary conditions
under which band gaps exist in general are not known, Figotin and Kuchment
have produced an example of high-contrast periodic medium where band gaps
exist and can be characterized [34, 35]. Other band gap structures have been
found through computational and physical experiments. See [24, 22, 25, 9, 28].

In order to fabricate lasers, filters, fibers, or waveguides, allowed modes
are required in the band gaps. These modes are obtained by creating local-
ized defects in the periodicity and correspond to isolated eigenvalues with finite
multiplicity inside the gaps. The defect mode frequency strongly depends on
the defect nature. Figotin and Klein rigorously proved that when a defect is
introduced into the periodic structure, i.e., a perturbation with compact sup-
port, it is possible to create a defect mode, which is an exponentially confined
standing wave whose frequency lies in the band gap [30, 31, 29]. See also Am-
mari and Santosa [6] and Kuchment and Ong [48] for the issue of existence of
exponentially confined modes guided by line defects in photonic crystals.

The defect modes as well as the guided modes associated with compact
and line defects, respectively, are computed via the supercell technique. This
technique consists in restricting the computations on a domain surrounding the
defect with sufficient bulk crystal with periodic conditions on its boundary. The
boundary conditions on the supercell are, in principle, irrelevant if the mode is
sufficiently confined. Since one would like to compute only the defect or the
guided modes in the band gap, without the waste of computation and memory
of finding all the eigenvalues associated with the supercell belonging to the
continuous spectrum, one states the problem as one of finding the eigenvalues
and eigenvectors closest to the mid-gap frequency.

The supercell method shows very good concordance with experimental re-
sults and seems to be very accurate. However, analytic studies and rigorous
proofs of convergence of this technique are essentially absent.

In Chapter 3 we address some of the basic issues of the supercell method,
prove the convergence of this numerical technique, and quantify its accuracy.
Although one can obtain analogous results for the case of full Maxwell equations,
we only address the cases of transverse electric (TE) and transverse magnetic



(TM) polarized electromagnetic waves in two-dimensional photonic structures.
Results of numerical experiments are given to illustrate our main findings.

The central topic of Chapter 4 is photonic crystal fibers.

Optical fibers know today a wide use in areas covering telecommunications,
sensor technologies, spectroscopy, and medicine [17].

Ordinary optical fibers guide light by total internal reflection, which relies
on the refractive index of the central core being greater than that of the sur-
rounding cladding. This physical mechanism has been known and exploited
technologically for many years. However, within the past decade the research
in new purpose-built materials has opened up the possibilities of localizing and
controlling light in cavities and waveguides by the photonic band gap effect
(PBG).

In [46], Knight and colleagues describe a fundamentally different type of
optical fiber, one that has a core with a lower refractive index than the cladding
and so rules out the possibility of internal reflection. Instead, light is guided by
a mechanism which allows it to be piped through air.

The core of the new fiber is essentially a defect surrounded by a periodic
array of air holes running along the entire length of the fiber. The defect acts
like the core of an optical fiber. Light, which is expelled from the periodic
structure surrounding the core, can only propagate along it. The new fiber
operates truly by the photonic band gap effect. We refer to such a structure as
a photonic crystal fiber (PCF).

In Chapter 4 we model the propagation of electromagnetic waves in pho-
tonic crystal fibers. We give a mathematical framework for understanding their
very unusual properties compared with the conventional fibers, attributed to
an operation of the well-known mechanism of total reflection, and develop the-
oretical tools for the modeling of these photonic crystal fibers. We study their
dispersion properties and verify the exponential confinement of guided modes.
We illustrate the main findings of the investigation in numerical examples.

The three chapters of this manuscript are self-contained and can be read
independently.






Chapter 2

Second-harmonic
generation in the
undepleted-pump
approximation

2.1 Introduction

In this chapter, we study the electromagnetic theory of diffraction from nonlinear
thin layers in the undepleted-pump approximation. Since its birth in the early
1960s, rapid and continuous andvances have been made in the field of nonlinear
optics. One of the many important applications of nonlinear optical phenomena
is a method for obtaining coherent radiation at a wavelength shorter than that
of available lasers, through the process of second-harmonic generation (SHG).

All optical media are nonlinear. However, the nonlinearity is generally so
weak that it is impossible to be observed without the use of high intensity
laser beams. Mathematical modeling of nonlinear optics in thin layers is more
difficult than that of linear optics studied in the literature by many authors
[14, 15, 16, 3, 4]. In the nonlinear case, the electromagnetic wave propagation
is now governed by the system of nonlinear Maxwell’s equations, i.e., nonlinear
PDEs need to be studied. Also, the amplitude of the incident wave, which has
no role in the linear case, plays an important role in the nonlinear case. Further,
since nonlinear material properties are usually characterized by tensors, vectorial
models become inevitable in the general situation.

The main aim of this chapter is to rigorously derive the effect of thin layers of
nonlinear material in the undepleted-pump approximation. In this approxima-
tion, the nonlinear Maxwell equations reduce to two coupled Helmholtz equa-
tions for the fundamental and the second-harmonic fields. We derive asymp-
totic formulas for two-dimensional fundamental and second-harmonic fields as-
sociated with thin layers of nonlinear materials. Our approach is based on
layer potential techniques through integral representation formulas of the fields,
avoiding the use (and the adaptation to our context) of the highly-nontrivial
regularity results of Li and Vogelius [50]. See for a similar approach Beretta

9
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and Francini [14].

Our interest in such asymptotic formulas owes to the fact that they pro-
vide extremely powerful tools to solve optimization problems [12, 51, 55]. In
[67,7, 5, 3], asymptotic expansions of this kind for electromagnetic inclusions (of
linear material) of small diameter have been already derived. However, they are
by nature completely different from those derived in this chapter. The degen-
eracy of the curves associated with the thin layer complicates a mathematically
rigorous derivation, based on layer potentials, of the leading-order perturbations
in the fundamental and second-harmonic fields.

This chapter is organized in the following way. In Section 2.2 we formulate
the problem and state our main results. Section 2.3 is devoted to the proof of
existence and uniqueness of the fundamental and second-harmonic fields that
are solution of two coupled Helmholtz equations. In Section 2.4 we review some
well-known properties of the layer potentials and prove some useful identities.
In Sections 2.5 and 2.6 we give an integral representation of the fundamental
field and prove a regularity result necessary to show existence of the second-
harmonic field. In Section 2.7 we provide a rigorous derivation of the leading-
order perturbation term in its asymptotic expansion due to the nonlinear thin
layer. Our aim in Sections 2.8 and 2.9 is to provide a rigorous derivation of
leading-order term in the asymptotic expansion of the second-harmonic field.

2.2 Problem formulation

We start from the following Maxwell’s equations, which are the general laws
governing electromagnetic fields interacting with (nonmagnetic) matter

VxE= —%H, (2.2.1)

V x H = “(E + 47P), (2.2.2)
C

where c is the speed of light, w is the angular frequency, E and H are the electric
and magnetic fields, respectively, and P is the polarization.
These two Maxwell equations combine into

2
VxVxE—(Z—Z(E+47rP):O.

It is obvious that we need the information on the relationship between P and E
to proceed further. This is where the optical nonlinearities are introduced. In
general, the nonlinear responses are orders of magnitude smaller than the linear
response and the displacement vector of a medium can be expanded according
to the power of the applied electric field E. The case of most general interest,
which is the subject of the investigations described later in the chapter, is the
second-harmonic generation (SHG). In this case we have

47P = (e — 1)E + x? (z,w) : EE,

where € is the dielectric coefficient, and x(?) is the second-order nonlinear sus-
ceptibility tensor of third rank, i.e., x(?) : EE is a vector whose jth component

is E;l:l Xﬁc)l : EkEl
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For simplicity, we assume that the nonlinear polarization term P contains
only the sum-frequency generation of the second-harmonic from the fundamen-
tal frequency and ignore all other x(?) phenomena such as difference-frequency
generation, optical rectification, or cascaded nonlinear effects, as is consistent
with the undepleted-pump approximation. Thus the polarization P at the fun-
damental frequency w; = w and the second-harmonic frequency ws = 2w may
be written as

471'P(.’E,Ld1) = (6(.’1»',(411) - ]-)E(x;wl)a

and
4P (z,w2) = (e(z,w2) — 1)E(z,wa) + X (2,ws2) : B(z,w1)E(z,w).

Assume that the depletion of energy from the pump waves (at the fundamen-
tal frequency w;) may be neglected. Then, using the above expression of the
undepleted-pump nonlinear polarization, we can decompose the Maxwell equa-
tions (2.2.1)-(2.2.2) into two sets of coupled partial differential equations at the
fundamental and second-harmonic frequencies.

Suppose that all fields are invariant in the z3 direction. In the linear case,
in transverse electric (TE) polarization the electric field is transversal to the
(21, x2)-plane, and in transverse magnetic (TM) polarization the magnetic field
is transversal to the (z1,z2)-plane. In the nonlinear case, however, the polar-
ization is determined by group symmetry properties of x(?) = (Xslzj)l)i ji=1- In
this work, we assume that the electromagnetic fields are TE polarized at the
fundamental frequency w; and TM polarized at the second-harmonic frequency
ws. This polarization assumption is known to support a large class of nonlinear
optical materials, for example, crystals with cubic symmetry structures. See
[61].

Therefore,

H(z,w1) = u(z1, 72,w1)753,
E(z,w2) = v(x1, 72, w2)Ts3.

Define for the sake of simplicity
Ej =€(.’L’1,$2,UJJ'), j=1,2,

Wj .
K,j:?] €5, 3/”\3]’20, _721,2.

At the fundamental frequency wy, the system (2.2.1)-(2.2.2) can be simplified
to

1
K1
We deduce the expression of the electric field at the fundamental frequency w;

c
E(z,w1) = iwlelvx}l(w’wl)

C
= iwr€q (awzua _6z1u30)'
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Hence the second-harmonic field satisfies

Anw?
A+r)v = —=52 3 xwwn) (Bl w); (Ble,w)):
7,1=1,2,3
— Z leazjuaz,u,
j,l=1,2

where xji = (—1)7+! (167 /e2)x$) (, w»).
Then (u,v) satisfies in the nonlinear material the following two coupled
Helmholtz equations

1
A\ (—2Vu> +u = 0, (2.2.3)
k1
Av+ kv = Z X 10z, 0z, u. (2.2.4)
J.l=1,2

Let us now specify the geometry of the problem. Let  be a bounded C3-
domain in R?. Let 7(z) and v(z) denote a unit tangential and a unit (exterior to
Q) normal field to 9. For a function f defined on R?\ 82, we denote [f(z)]sa =

fl+ — f|- where f|; = lims o+ f(z + 0v(2)) and f|- =lims o+ f(z — dv(z)),
if the limits exist.
We consider a layer of nonlinear material of the form

Os5 = {x+nu(az) tx €0, € (0,6)},

where the thickness, § > 0, is a small parameter. Let Q% = QUO;, Q% = R? \Q_g

y(x)

— u
—
00,
o0 Q5 ko, k)

Figure 2.1: The dielectric medium.

Throughout this chapter we suppose that the susceptibility tensor is of the
form

le($+77y):)~(jl($;g)7 z€edN,0<n<d,
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where ¥;; € L®(0s) are independent of , and define

ki forxz e,
k(z) =< ko forz e Oy,
ko for z € Qf,

where ki, ka2, ko are positive constants. We also introduce a function k'(z) de-
fined analogously with positive constants ki, k}, ky. We assume in all what
follows that ke # ki, ko # ko, kb # ki, and kb # k).

By 09, for 1 € (0,6), we denote
o, = {:1:+771/(;c) (X € 89},

with the convention 9y = 9. We denote by p(z) the curvature at the point
xz € 0N If ds denotes the surface measure on 0f2 then the corresponding surface
measure on 0, is related to ds at the point x € 0Q through the relation
dsy(z +nv(z)) = (1 +np(z)) ds(z).

Consider an incident plane wave given by ur(z) = Ure*"* where k; € R? is
the wave-vector with |kr| = ko and Ur € R is a positive constant. Then (u,v)
is solution of the following problem

( 1
V. qu +u = 0,
Av + klzv = Z leawjuaaHUIOJa
J,1=1,2
lim RV4 |.CL'| <6(u UI) lko(’u uI)) = 0,
|z =+ O|z|
Ov
A/ R 'kl = 0
[ ol e VI (5Iw| ' °U> ’
(2.2.5)
where I, is the characteristic function of Os.
The equations (2.2.5) may alternatively be formulated as follows
((Au+kiu=0 in Q,
Au+k3u =0 in Oy,
Au+kju =0 in Qf,
 [ulaq = [ulsa; =0, (2.2.6)

1oul _[Llou]
k20v]aq  [K2OV]sg,

=0, uniformly in

x
x|’
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and

Av + kllzv =0 in Q,
Av + k';2v = Z X100z, U0z u in Oy,

J,1=1,2
r
Av+ kv =0 in Qf,

[U]BQ = [U]QQJ =0,

o)™ 150, =
| 50 ov | 50, ’

lim +/|z]
|z|—00

— ik

o
9|

=0, uniformly in —

(2.2.7)

In the remainder of this chapter U shall always refer to the solution of

(( AU+ EU=0 inQ,
AU+ KU =0 inR\Q,
[U]agzoa

where the function k(y) is given by

. k1 fory € Q,
k(y) = -
ko foryeR°\Q.

A
E20v]s
lim +/|x| O —ur) _ iko(U —ur)| =0, uniformly in

(2.2.8)

z
|’

Before giving a precise formulation of the main results of this chapter we
need to introduce some additional notation. By G, we denote the fundamental

solution of the following transmission problem

[ A,G(z,y) + k3G (z,y) = 0, (y) fory e R\ Q,
AyG(w7y) + k%G(lL’,y) = 51‘(:’/) fOI‘ y € Q ]
|:]~€2G(IL‘, )] =0 ondQ,

o

]:0 on 0},

Olyl

lim /|y| ‘QG(x,y) —ikoG(z,y)| =0, uniformly in Y

ly|
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We will also need the function G’ that is the solution to
( AyGl(xay) + (k(l))QGl(xay) =6,(y) forye R \ﬁ )
A,G'(2,y) + (k)*G' (z,y) = 8, (y) fory e Q,
[G'(z,))]=0 onoN,
oG (z,-)

[2659] g g0,

!
lim +/|y| ‘M —ikyG'(z,y)| =0, uniformly in i,
{ ly[=o0 Ayl lyl

where the function &’(y) is defined analogously to &(y).
Define the symmetric matrix A(z),z € 99, by

A has eigenvectors 7(z) and v(z),

. . . kO 2
th 1 ding t ) =1
e eigenvalue corresponding to 7(z) is ( k‘z) (2.2.9)

k
the eigenvalue corresponding to v(z) is 1 — (—=)2.
0
It is clear that A is positive definite if kg > k2, and negative definite if kg < ko.

We also need the matrix A'(z),z € 99, defined by

A’ has eigenvectors 7(z) and v(z),
the eigenvalue corresponding to 7(z) is 1, (2.2.10)

k
the eigenvalue corresponding to v(z) is (k_2)2
0
The main achievement of this chapter consists in the following asymptotic
formulas concerning the perturbation, v — U, and the second-harmonic field v,
enhanced by the thin layer of nonlinear material Os in the undepleted-pump
approximation.

Theorem 2.2.1 Letu andv be the solutions to (2.2.6) and (2.2.7), respectively,
and let A and A" be the matrices defined by (2.2.9) and (2.2.10), respectively.
Then, for x € R? \ Q bounded away from 0%, the following pointwise expansions
hold:

u(l’) = U(.’E) +4 VyG(.Z‘,y) . .AVU(y) dS(y) + 0(5) 7 (2-2-11)
o0 + +
and
v(z) =6 G'(z,
(@) ; o C@v)|
(fol le(y,ﬁ) dﬁ) (A’VU(y) +>j (A'VU(y) +)l ds(y) (2.2.12)
+0(d) ,

where the remainder terms o(d) are independent of x.
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This result generalizes those of E. Beretta, E. Francini, and M. Vogelius in
[15] and of E. Beretta and E. Francini in [14] to the case of a thin layer of
nonlinear material. Its main particularity is the fact that it is based on integral
equations and layer potentials rather than variational techniques avoiding the
use (and the adaptation to our context) of the highly-nontrivial regularity results
of Li and Vogelius [50].

It is worth noticing that from the nature of our derivations it follows that
we cannot expect the remainder terms in (2.2.11) and (2.2.12) to be uniform in
R? \ 99). Rather, these terms are uniform at fixed distance away from 9, but
the estimates (2.2.11) and (2.2.12) degenerate as z approaches 9. Indeed, the
transmission problem for U and the first order correction

up = VyG(;c,y)
o0

- AVU (y)
+

ds(y)
+

are not posed on the same domain — the transmission problem for U is posed on
the whole R?, but the one for u; is naturally posed on R? \ 9Q. This significantly
complicates our derivation of the expansions (2.2.11) and (2.2.12) and makes
our analysis nontrivial.

2.3 Well-posedness

In this section, we will prove existence and uniqueness of the fundamental field
u. Even though these results are classical we give their proof for the reader’s
convenience. The proof of existence and uniqueness of the second-harmonic field
v is exactly the same as for the fundamental field u since, as will be shown later
in Corollary 2.6.1, 3= ;_; 5 Xj10z;u0,u belongs to L*(Os).

We start by formulating the problem (2.2.6) in a bounded domain. Consider
the disc Bg centered at the origin with radius R large enough to have Q C Bg
and denote by Sg its boundary. The scattered field u — u; satisfy in R2 \ Bg
the Helmholtz equation

Alu—ur) +ki(u—ur) =0,

together with the (outgoing) radiation condition

i (2= i) 0.

r—-+oo

Taking the Fourier series (u™ — u})(r) with respect to the angular variable
0, where (r, ) are the polar coordinates, we get

n2

1
(u™ —u})"(r) + ;(u" —ul) (r) + (k5 — T—z)(u" —u})(r) =0 forr > R.
Therefore
(" —up)(r) = AgHV (kor) + BoH (kor) ,

where A,, and B,, are constants, and H, T(ll) and H, 7(12) denote the Hankel functions
of the first and the second kind, respectively. However, only Y (kor) satisfies
the above radiation condition. Thus,

(u—ur)(r,0) = Z A H®Y (kor)e™®  forr > R and 6 € [0,27) .
nezZ
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O(u —uy)
ov

Using this Fourier expansion we can express the trace of (u—uy) and
on Sg as follows
(u—u)(R,0) = AHW (koR)e™
NEL

O(u —uy) (R.0)

o =Y AnkoHV' (ko R)e™

neZ

from which we readily get that
_ n H’I(Ll)l
(M) (R)ZkoW(u—uﬂn(R)-
ov M (koR)
Let Cg be the mapping defined by
Cr: H'/?(Sg) - H7'Y?(Sg)

. HY (koR) ..,
f=,czfme™ — Cr(f 0———— e
<z TLXG:Z HY (koR)

The proof of uniqueness of a solution to (2.2.6) relies on the following im-
portant properties of the so-called Dirichlet-to-Neumann map Cg. We refer to
Appendix A.2 for a proof.

Lemma 2.3.1 The mapping Cg defines a bounded operator from H'Y/?(Sg) into

H~'/2(Sg). Furthermore, we have

S| Crwu>0 YueHY?(Sg),u#0, (2.3.13)
Sr

R [ Crwu<0 VYue HY*SR). (2.3.14)
Sr

Now we can formulate (2.2.6) in the bounded domain By using the Dirichlet-
to-Neumann map Cg. Introduce the following transmission problem

( Au+Fkiu=0 in Q,
Au+ k2u=0 in Oy,
Au+kju=0 in Q5 N Bg,

{ [u]sq = [u]oa, =0, (2.3.15)
1ol _[1aw]
R20v]sg K20v]sg,
0
{ 8_1: =Cgr(u)+g  on Sg,
6UI
where g := B Cr(ur) on Sg.

Lemma 2.3.2 To each solution u to the problem (2.2.6) corresponds one and
only one solution u® to the problem (2.3.15) that is its restriction to Bg.
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Proof. Let u be a solution to (2.2.6). Since (u — ur) satisfies the Helmholtz
equation A(u —ur) + ki (u—us) = 0 in R? \ Bg and the radiation condition, it
immediately follows that

O(u —uy)

e =Cgr(u—uy) on Sg,

which is equivalent to

0
8—1: =Cgr(u)+g on Sg.

The restriction of u to Bg is then a solution to (2.2.6).
Conversely, let u? be a solution to (2.3.15). Let f = u'|g,. It is well known
from the potential theory that the following exterior problem

Au + ku® =0 in R? \ Bg,
ut=f-u on Sk , (2.3.16)
. u® . . T
lim +/|z| | 5= —ikou®| =0 uniformly in —,
has a unique solution u°. Define u by
Ui in BR y
u= _
u®+ur in R?\ By,
It is easy to check that u satisfies (2.2.6). O

We are now ready to prove the well-posedness of the problem (2.3.15). We
introduce the bilinear form a(u,w) on H!(Bg) x H'(Bg) by

1 1

a(u,w) = — Vu -V — / UW — Cr(u)w . (2.3.17)
Br k Bgr kO Sr

We can immediately see that a function u € H!'(Bg) is a weak solution to

(2.3.15) if and only if it is a solution to the variational problem

1
a(u,w) = ﬁ/s gw Yw € H'(Bg). (2.3.18)
0 R

The following lemma gives a classical existence and uniqueness result that
can be found in [57]. We give its proof for reader’s convenience.

Proposition 2.3.1 There exists a unique weak solution to the problem (2.8.15)
m .H-1 (BR) .

Proof.  Since k*(z) is bounded away from 0 and oo, there exists a constant
C > 0 such that

Ra(u,u) > C |Vul? —/ [ul® . (2.3.19)
Br Bgr

It is also obvious that the bilinear form a is bounded. Since the embedding of
H(Bg) into L?(Bg) is compact, the Fredholm alternative holds and existence
will follow from uniqueness.
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In order to prove the uniqueness, suppose that there exists u € H'(Bg)
satisfying
a(u,w) =0 Yw € H'(Bg) .

Therefore

Sa(u,u) =0=S Cr(u)u ,
Sr

and thus, using (2.3.13), we deduce that u belongs to H (Bgr) and satisfies

%VU -Vw —/ uw =0 ,Yw € H' (BR) . (2.3.20)
Bgr k Br

This means that u is a weak solution to

1

VEVU—FU:O inBR,

u = on Sg,

ou

— =0 onSg.

ov B
Finally, since k? is piecewise constant in Bg, the unique continuation theorem
for the Helmholtz equation applies to ensure the uniqueness of a solution. The
proof of the proposition is complete. O

2.4 Preliminary results

Let us first review some well-known properties of the layer potentials for the
Helmholtz equation and prove some useful identities.

Let k > 0 be a given constant and let I'y, and T’y be the fundamental (out-
going) solutions of A + k2 and A, respectively, which are defined by

1 ,
Du(a) = —3H(Klal), @€ B2,

1
To(z) = glog(|x|), r € R?,

for z # 0.

Let 7 > 0 be small enough. We define the slightly modified single layer
potential Sf and double layer potential D} for a density ¢ € L*(09) by the
following

Sko(x) = /6 Tule =y =)+ 1)) ). 5 F,

Diplo) = [ FEEZIZID (1 4 p())ptr) () . 7 € B2\ 00,

We also define the operators K}, its L?-adjoint (K})*, and M} by

OTk(z —y + n(v(z) —v(y)))

k _
Kyel@) = |, ()

(1 +npy))e(y) dsy) , = €0,
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Ok (z —y +n(v(z) —v(y))

(K})*p(z) = ., v (@) (I+np()ey)ds(y) , x €09,
k = 82 62 T — v\xr) — v
o) = [ (5 * s ) T~ v+ 100 — v0)
(1 +np(y))p(y) ds(y) ,
for x € 00

Finally, we introduce the following notations for 1,6 > 0 small enough and
x € 0N

Sk se(@) = Skp(x +6v(z)), =€k,

and
D} s¢(x) = DEp(z + dv(z)), = €R>\ Qs .

The functions Sﬁap and Dlgcp are in fact the single and double layer potentials
of the density ¢(y + nv(y)) = ¢(y) on the curve 0,.
We recall the following classical result.

Lemma 2.4.1 For any k > 0, the function T'y, — 'y is continuous.
Proof. From
A(Ty, —To) + k*(Tx — To) = —k*To ,

and since T is in L (R?), we deduce by applying classical results on elliptic
regularity [27] and the Sobolev embedding theorem [2] that 'y, — T'g is a contin-
uous function. ]

From the properties of SJ and D, see [19], we can obtain that

6(6:957:0&(:6) = (%IJF (Kﬁ)*> o(@), ae z€dQ, (24.21)
(Df;ﬂo)i(w) = <:F%I+ Kﬁ) o(z), ae x €0, (2.4.22)

for ¢ € L?(0N), where

5 (z) == hl—iﬂo v(z) - Vu(z £ hv(z)) ,

and

ug(z) = hl_i)n_:ou(x + hv(z)) .

From standard potential theory, we also have the following results.

Lemma 2.4.2 Suppose 0N is C2. For n > 0 small enough, the following oper-

ators
Sk, 1 L*(09) - H'(09)

K\ (KR* : L*(0Q) — H'(09) ,
MY, (8,85 )+, (Dy )+ = L2(89) = L*(8Q)

are bounded.
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We can prove that the following expansions hold. See Appendix A.3 for the
proof.

Lemma 2.4.3 For any n > 0 small enough and for any ¢ € L*(09), we have
Sisp(x) = Sgop(@) + 8 (Kip(z) + (Kg) (@) + Sgo(pp)(2)) +0(6%)
(K§) p(2) = (Kg)*o(x) + 8 (Mg o(z) + (K§)* (pe) () +O(8%) ,
where O(62) is in H*(0Q) in the first equation and in L>(0R) in the second one.

The following lemma is of importance to us. We refer the reader to Appendix
A 4 for its proof.

Lemma 2.4.4 There exists €5 > 0 satisfying ;irrtl) es = 0 such that for any
—
@ € L?(09Q) and s = 0,1, the following estimates hold:

1S 50 — S§ ol m=+1(50) < esllella (o) »

155 s — S5oellm+1(80) < eslleller(on) >

Ha(sg,é‘f’) _ 9(S509)+ < &sllell (o0
v v  Nueo0) 7
Ha(sﬁa‘ﬂ)— _ 8(550"0)‘ < esllpllms a0
ov O aeon) ~

The estimates for s = 1 hold under the assumption that O is of class C3.
The following result on the spectral radius of K} is also of use to us.

Lemma 2.4.5 For any X satisfying |\ > 1 and any k > 0, the operator I +
(KX)* defined from L?(8Q) into L*(89) is invertible.

Proof. It has been proved by Kellog in [44] that when |A| > %, the operator
Al + (KD)* is invertible on L?(9Q). Lemma 2.4.1 shows that (KF)* — (K9)* is
compact on L2(8Q). Therefore the Fredholm alternative holds. It remains then
to prove the injectivity of AT + (K¥)*. Let us suppose that we have € L*(09Q)
satisfying

(AT + (K5)*) 9 =0.
Define u on R? by u(z) = SFe(z). It is clear that u satisfies the Helmholtz equa-

tion in R? \ 0, together with the radiation condition as |z| — +o0c. Moreover,
it can be easily seen that

uy =u_ on Iy, (2.4.23)

1 1
T Aay(u)_ =7 /\8,,(u)+ =¢ ondy,. (2.4.24)

-1 1_

Consequently
1)
%/ dwiu = % C‘/ 0, (u)_u
o9, —3—A Joaq,
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Applying Lemma A.A.1.2, we obtain that u = 0 in 7. From the expression of
0, (u)+ we finally conclude that ¢ = 0 which ends the proof. O

2.5 Representation formula for the fundamental
field

In this section, we state and prove a representation formula of the solution of
(2.2.6) which will be the main tool for deriving the asymptotic expansions of
the fundamental and second-harmonic fields. A similar representation formula
for the transmission problem for the harmonic equation was found in [39, 40].
See also [3].

By X and Y let us denote

X :=L*(00)?*, Y :=H"0Q) x L*(09).

The following theorem is of particular importance to us for establishing our
representation formula.

Theorem 2.5.1 Suppose kZ,k3 are not Dirichlet eigenvalues for —A on Q.
There exists dg > 0 such that, for 0 < & < &, for each (f1, f2,91,92) € Y2,
there exists a unique solution ® = (1, 2,12, o) € X2 to the system of integral
equations

( Sthr — Stiws — Siave = fi,
1 0(SEhe)- 1 O(SEea)s 1 O(Sfaun) _
ki v k3 v 2 o Y
\ ok k . (2.5.25)
So5P2 + S5tz — S50 = g1,
1 0(SE5e2) | 1 0(S§5ve)- 1 A(S§Sp0)+
\ k2 Ov k2 ov [ o =92

on 0N.

To prove this theorem, we need some preliminary results. First, define the
operator T from X2 into Y2 by T(®) = (f1, f2,91,92) where (fi, f2,91,92) is
given as in (2.5.25), and let the operator Ty from X2 into Y2 be given by
To(®) = (f1, f2, 91, g2) where

( 5(1)6,20@1 - 5(1)6,20902 = fi,
10(S5hp1)- 1 (SEhwe)+ ;
< k? ov k2 ov 0
5(159,25% - Sg%wo =g,
i6(5§,%¢2)7 3 ia(sg,%woh _
\ k2 v k2 v -9

on O0N.
Then the following lemma holds.
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Lemma 2.5.1 The operator Ty : X2 = Y2 is invertible.

Proof. Let us solve the equation To(®) = (fi1, f2,91,92). Since the two first
equations are decoupled from the two last ones, we start by solving the system

5(1)6,20901 - S(])c,zo‘P2 =h
1 0SShe)- 1 0(S5he)e o O of.
k? v k3  Ov T2

Since k2 is not a Dirichlet eigenvalue of —A in (2, the operator S('ffo : L2(090) —
H1(89) is invertible and so we have

& -1
Y1 = P2 + (50720) fl -

Substituting this into the second equation, we get

(g 1) O () Yoo =t gy (=5 (1)) (k) " 4

where A is given by

1
Since |A| > 3 for any positive constants ki # ko, applying Lemma 2.4.5 yields

that AT + (K(’]“Q) : L2(092) — L2(09) is invertible. We can then express ¢, in

terms of (f1, f2), and the expression of ¢; follows immediately.

On the other hand, it is well-known that for § small enough, k3 is not a
Dirichlet eigenvalue of —A in Q U Os. See, for example, [43]. We can then
express analogously (2, @) in terms of (g1, g2). O

Lemma 2.5.2 The operator T — Ty : X2 = Y2 is compact.
Proof. Let ® = (¢1,¢2,%2,00) € X2, then (T — Tp)® is given by
(S(])c,lo - 5(136,20) $1— S§,20¢2

1 (S8 = SEe) 1 astay,

k2 ov K v
ko ko k2

So.5P2 — (56,5 - 55,5) ¥o

1 oSt 1 0 (S8~ SEe)

k2 Ov k2 Ov

T -To)® =

Since Ty, — I, is smooth, we can easily see that S¥ — Sk : [2(8Q) — H'(09)

o(Sk O(Skz
is a compact operator, and so is ( a"’yn)i _ A g;")i s L2(09) — L*(09). Tt
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is also clear, since the layer potential of a curve is smooth away from its curve,

oSk, 0Sk; 9 )
that 56“76,5(’5“,0 : L2(092) — H'Y(99Q) and 61/7 ’6—1/7 : L#(002) — L*(09) are
compact operators which ends the proof. O

Now we are ready to prove Theorem 2.5.1.
Proof of Theorem 2.5.1. Since Ty is invertible and T — Ty is compact, the
Fredholm alternative holds and existence follows from uniqueness.

Let ® = (¢1,p2,92,00) € X2 satisfy T® = 0. Consider the function u
defined as follows

Sglcpl(m) z €N,
u(zr) = S(’,“Qcpz(m) + S§2¢2(w) z € Os,
S(’;Ocpo(a:) x € Q5.
This function satisfies the equations in (2.2.6) with the incident field u; = 0.
Moreover,
2
[0 e = H [ g
Qs 61/ + k2 Qs 61/ _
kg 2 21,12 kg ou| _
= 13 - — — ds
B, (o k) a3 5]
_ kg 2 20,12 k(%/ Ou| _
= k%/(95(|vu| —k2|u|)ay+k% - 6V_uds’
— k_g \vj 2 k2 2 @ \vj 2 _ k2 2
= 5| (Vu?=KlP) d+ 5 [ (IVul® - kul®) d.
kZ Os kl Q
Thus
(\‘s/ Ou uwds = 0.
80 ov +

Since v satisfies the radiation condition, using Lemma A.A.1.2 we deduce that
u =0 in Qf. Then, u satisfies the Helmholtz equation in Os with u = % =0
on 0Q5. By the unique continuation theorem, we conclude that u = 0 in Oy
and in the same way we get v =0 in Q.

Now let us define @ by

i(z) = SFpo(z) for z € R

Then 4 is a solution to A + k@ = 0 in QF with zero Dirichlet boundary
condition. Since k2 is not a Dirichlet eigenvalue for —A on (2, there exists
8o > 0 such that, for 0 < § < &y, k3 is not a Dirichlet eigenvalue for —A on Qf,
and for such 4, we have necessarily @ = 0 in Q4. From the jump of the normal
derivative, we obtain

_ou
Wo—ay

6”‘ =0 on 9.

+_$—
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Consider now the function ¢ defined by
#(x) == Sg2pa(x) + SPpa(z)  for x € B2,

which satisfies the Helmholtz equation on QUOsU2§ together with the radiation
condition. Since ¥(z) = 0 on 9y, it follows by Lemma A.A.1.2 that ¢ = 0 in
Q¢. We also notice that & = 0 on 9. Since k3 is not a Dirichlet eigenvalue for
~AonQ,5=0inQ, and so o =0 in R2. Then, we get

_ 0@+ _00®)- _
2= =5 = o =0 on00.
_ 0@y _9(0)- _
’(ﬁg = o — o = on 696
Define 4(z) = S¥ ¢y () in R2. Tt is already proved that ¢(z) = 0 and
a(So p1)-, \ _
o @=0

k1
on 0f). We deduce by Lemma A.A.1.2 that 3(5087<P1)+(x) = 0 on 09Q. It then
follows that g
_O(Se 1)+ 0(Seter)-
L= ov B ov
This ends the proof of the theorem. O

=0 on 9.

At this point we have all the necessary ingredients to state and prove the
following representation formula.

Theorem 2.5.2 Suppose k%, k2 are not Dirichlet eigenvalues for —A on Q.
There exists 6o > 0 such that for 0 < § < do, if u is the solution of the problem
(2.2.6) and ® = (o1, p2,%2,00) € X2 is the unique solution of

( Sg30¢1 - 5(116,20902 - Sé“,%wz =0,

1 0(Sgopr)- 1 O(SEhwa)+ 1 O(Sshye)

K} ov k3  ov k2 ov 7
Sozsp2 + S5v2 — S50 = ur(z + 0v(x)),

1 0(Sg5wpe) | 1 O(Sg5¢e)- 1 (Si5e0)+ 1 By

B o TR o R v Rayetov@)
(2.5.26)
where © € 0N), then u can be represented as
Sk oy (x) forz e,
u(z) =4 S¥20p,(x) + S§2¢2(x) for x € Oy (2.5.27)
ur + Sfpo() , for x € QF .

Proof. In fact, the function defined as in (2.5.27) clearly satisfies the Helmholtz
equations, the transmission conditions and the radiation condition in (2.2.6). O
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2.6 Regularity result

In order to rigorously derive the asymptotic expansions of the fundamental
and the second-harmonic fields v and v, we will need to prove a more refined
regularity result for the solution ® in X2 of the system of integral equations
(2.5.26).

Lemma 2.6.1 Let ® be the solution in X2 of the system of integral equations
(2.5.26), then @ € (C1(60))".

Proof. From (2.5.26), we have
Ssiotz + (Soh — So)er

1 6S§’20w2 1 ko * k1\*
2o i (K8 = &))@

—Spapn + (5(1{% - 5‘1;3) @o + ur(x + dv(x))

Tod =

1 8569’26902 1 ko \* ko \* 1 Our
_E ov +k_g((K6 ) _(K6 ) ))¢0+k—35($+5y($))

Since 0N is C? we can deduce from the right-hand side of the previous iden-

tity that To® € (C*(090) x 61(89))2. Another immediate consequence of the
regularity of 91 is that the following operators

Sko o CHON) - C2(89)
A+ (KEo)* = C'(09) - €' (89),

with [\ > 1 and k > 0, are invertible with bounded inverse. The proof can be
found, for example, in [44].
From the expression of (Tp)~! in the proof of Lemma 2.5.1 we can then de-

duce that ® € (Cl(aﬂ))4. O

As a direct consequence of the previous lemma and the following integral
representation for u in Og:

u(z) = S5*p2(x) + S5 ¢ha(x)
the following regularity result holds.

Corollary 2.6.1 Let u be the solution to the problem (2.2.6). Then Vu €
L>(Os).

This result is important to us for establishing the well-posedness of problem
(2.2.7). Estimates with uniform bounds will be proved later when looking for
the main term of the second harmonic field.

Corollary 2.6.2 Let ® be the solution in X? of the system (2.5.26), then ® €
(' (99))".
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With this higher regularity for ®, we can define higher-order derivatives of
the single layer potential. The following lemma holds.

Lemma 2.6.2 Letp € H'(09Q). Then the first and second order normal deriva-
tives of the single layer potential exist and are continuous from H'(0)) into
HY(09Q) and L*(09Q), respectively. In particular, we have

d(Sk
S6se = Stov+ 5% +0(3) ,
14
65{} 5P 6(S§o<ﬂ)+ 52(S§OSD)+
ov o ov +9 ov? +0(9),
A(Sk ) _
Styp = Skyp+ 620 o),
14
9S50 A(Sksp)—  O%(Skop)-
Ov - Ov ul ov? +0(9),

where o(6) is in H'(OQ) in the first and third equations and in L2(0Q) in the
Temaining ones.

2.7 Asymptotic expansion of the fundamental
field

Given sufficient regularity of 02, we establish in this section the asymptotic
formula (2.2.11) for the fundamental field u. We first introduce some notations.
Define the operators ()5, Rs and W; from X into Y by

Oslos) (Sg,locp_sgw kif a(sglojgo)_ _ % a(sf’;(iwn) |
R = (st = stoe s st -t

1o (S8 = (S50 + (Sk30)- - <S§,%w))> ,
Wile,0) = <S§f0¢+s§,%w,éa(5§0f)*+%6(§f’¢)>,
Wolp,v) = (Sé?oso+s§?0¢,kiga(5§"f)++ki%3(sf°f)),

and the function U{ on 69 by

Ul (z) = (uI(m + (), %%(a@ + 51/(3:))) .

The following lemma holds.
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Lemma 2.7.1 Let ® = (p1, 2,12, 00) € X? be the unique solution of (2.5.26),
then (p1,90) and (p2,12) are solutions of the following equations

Qs(1,90) = UJ— Rs(2,¢2) ,

1 0(Sk ) (2.7.28)
Ws(p2,92) = ((5(1)9})801), F% .
i

In order to expand ® with respect to the thickness §, we need to prove a stability
result when & goes to 0, provided 0f2 is sufficiently regular.

Proposition 2.7.1 The operators Qs and W5 converge uniformly to Qo and
Wy respectively. Moreover, assuming 0 of class C3, Qo and Wy are invertible
from X into Y and from (H*(09Q))? into H?(0) x H*(09).

Proof. The uniform convergence is a consequence of Lemmas 2.4.3 and 2.4.4.
Let us prove the invertibility of QQg. We write Qg as

_ k1 . ck1 ia(‘s(l)c,l(]('p)— _ia(S(IJc,IO )+
Qo(p, ) = (So,oﬂo So,o 7k% o k% o

+ ( — (55% — So o),

_1.3((S5% — Ss)¥)+
k? ov ’

where the first operator is invertible and the second one is compact. The Fred-
holm alternative holds. It remains then to prove the injectivity of QQg. Let
(p,9) € X be satisfying Qq(¢,1) = 0. We define u in R? by

{ Si o(x) for z € Q,

u@ = _
Selt(z) for z € R%\ Q.

In a similar way as for Theorem 2.5.1, we prove that

S 6W”U$:0,
9] 61/

from which we get that, since u satisfies the outgoing radiation condition, u = 0
in R2 \ Q and so, by the unique continuation theorem, we obtain that u = 0 in
R?. Since k3 is not a Dirichlet eigenvalue for —A on €, it follows that Sgo¢ = 0
in R? and from the jump of its normal derivative on 9, we can deduce that
1 = 0. We prove in a similar way that Sglgo =0in R? and then from the jump
of its normal derivative, we get ¢ = 0. The invertibility of ()¢ is then proved.

To prove that Wy is invertible, let us suppose that we have (p,%) € X and
(f,9) € Y satisying

Se2p + Sex = f,

Lokl 10k _
k2 ov k2 Ov -7
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Then we deduce from the first equation, since k3 is not a Dirichlet eigenvalue
of —A on , that

ko \—
v+ =(S50) 'r.
Inserting this into the second equation together with the expression of the jump
of the normal derivative of the single layer potential, we obtain

1
o =kig— (—5 + (K(l)cfo)*)(s(l)ﬁfo)ilf)a

which gives us the expression of ¢ and proves the invertibility of Wy.
The invertibility of Qo and Wy from (H'(852))? into H2(09Q) x H'(0Q) can
be proved in the same way. O

Proposition 2.7.2 Suppose that OQ is of class C3. Let ® = (p1,p2,%2,00) €
X2 be the unique solution of (2.5.26), then there exists a constant C > 0 such
that

1@ 150y < C -

Proof. Since W; converges uniformly to Wy and since Wy is invertible from
(H'(0%2))? into H2(09Q) x H'(00), then in view of (2.7.28) it can be seen that
there exist two constants C, C; > 0 such that

A(Sk 1)
(stum, 2502

< Clleilla aay -

I(p2, ¥2)lla1 a0z < Ch

H2(8Q) x H1(89)

Combining the facts that Q5 converges to (Jo uniformly together with the fact
that Qo is invertible, we show that there exist constants C', C] > 0 and &5 small
such that for § small enough, we have from Lemma 2.4.3 that

||(@17¢0)||(H1(BQ))2 < C{ ||U}s - R6(¢2’¢2)||H2(89)><H1(8Q)
< Cr+esllenllaan) -

Here €5 — 0 as § — 0. It then follows that ¢; and ¢g are bounded in H(0)
which also implies that @2 and 12 are bounded in H'(99). O

Proposition 2.7.3 Let ®° = (¢?,¢5,43,¢3) € X2 be the unique solution of

(2.5.96), then (o1, ¢8) and (gh3) converge to (¢4, 8) and (g, 4S) respec-
tively in (H'(0Q))? where (3,0, p3,13) are the unique solutions to the decou-
pled systems of integral equations

QO(SO(I)aLpg) = U? )
and

1 O(SkL 9
Wo(g9,v3) = <(5§,b¢?),g%yl : (2.7.29)
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Proof. Recalling that ¢$ and 3 are bounded in H'(852), we have
U7 — Rs(3,43) = Up

uniformly in H2(0Q) x H'(89). Since Qs converges uniformly to Qq, (¢¢,¢3)
converges to (¢9,¢3) in (H'(00))2. It follows that, since Wj converges uni-
formly to Wy, (¢3,49) converges to (¢9,49) in (H'(8Q))? which ends the proof
of the proposition. O

It is worth noticing that the limit (¢}, ¢3) represents the solution of the
problem without the thin coating. In fact, if we define U by

S 9(x) forz e,
U(z) := ko o — (2.7.30)
0lvo(z) +ur(z) forzeR*\Q,

then U is the unique solution to the problem (2.2.8).
The following proposition is a direct consequence of Lemmas 2.4.3 and 2.6.2.

Proposition 2.7.4 The following expansions hold.

Qs(p,9) = Qolp,¥) —Q1(¥) +0(8%), V,v € H'(99) (2.7.31)
Rs(p,9) = ORi(p, ) +0(8), Ve,v€H (09), (2.7.32)

where the remainder terms O(6?) and o(d) are in H'(0Q) x L?(09), and

ko ko
Ried) = (8(5‘52"0)++8(5‘5‘;¢)‘, (2789

k3

L[ O(She)s | O(SEu) | 0°Sih(p + )
(p gou ++p (()9,(,)/ + 0’37.2 +k§S(])C,20(90+¢)) )

3(S5%¢)
Qi) = <g++ + S5%(p) + (Dg%¢) + (2.7.34)

1 A(S5ue)+  0%(Sp%w)
(- pm -  _ sthe +

O(Soppe)+ , ADiie)
ov or? ’

ov Ov

Proof. Since, for ¢ € H'(09), Sk satisfies the Helmholtz equation in R2 \
then

0*(Stop)t _  O(S§op)x  9*(S§ov)
ov? =7f ov or?

and equation (2.7.32) follows immediately from Lemma 2.6.2. Here we have
expressed the Laplacian in the local coordinates

a2
o2 TP T o
Applying Lemma 2.4.3, we obtain (2.7.31) for (p,) € (L2(89))? with

- kQS(’)“’Oap on 01},

on 09. (2.7.35)

Qi) = (sz (KB + SEo(ow), ,3—3<M5°¢ ; (K&)*(pw))) .
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It remains then to prove that for 1 € H'(81) this expression is identical to the
one defined in (2.7.34).
In view of identities (2.4.21) and (2.4.22), it is easy to see that

o(Sk
Kb+ iy = 2000 j;j’fp)*

On the other hand, by using the local coordinates (2.7.35) it follows that

(SEhe)s  0(SEyp)

+ (D§,0¢)+ .

MEy+ (KD (pp) = —p—o2 S — k3 (580)
L O(SEaop)e  ODfng)
Ov ov
as desired. The proof is complete. O

Proposition 2.7.5 Let (90}’6,90(1)’6) € X be defined as

s 0 0 0
Lo Ley._ [P1 = %1 Yo~ Po
((pl »Po ) - ( 5 ’ 5 ) -

Then, for 6 — 0, (cpi’é,go(l)’a) converges in X to the pair (©1°,pg") which sat-
isfies

Qo1 ¢0°) = Up(x) + Q1(¢)) — Z(¢Y) , (2.7.36)
where
du 1 Ou 1 8%u
Vi) = (G- r @)~ s g @ @), aeon,
0 0
(BASee) - 1 0(SEhe) - 1 285N(9)

Proof. Since (¢3,43) converges to (¢9,%9) and (9, ¢]) converges to (9, ©3)
in H'(89), the following equation holds.

Qo1 00°) = Up(x) + Qu(¢l) — Ri (3, 43) + o(1)

where o(1) is in Y. We can then state that (go}’é, cp(l)’a) converges to (o1, cp(l)’o)
that is a solution of

Qo1 90°) = Up(z) + Q1(¢]) — Ru(¢3,43) -

From equation (2.7.29), we see that

Sea(es +49) = Senel
ASopeh)+ | OSan¥d)- _ k3 O(Saiet)-
ov v Ok v ’

which gives
Ri(¢5,99) = Z(¢Y) -
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The proposition is then proved. O

Finally, the following proposition provides the expansion of (¢9,¢3) as &
goes to zero.

Proposition 2.7.6 The following expansions hold.
o] = A+ +0(0),
0d = 9)+ g +0(d),
where o(d) is bounded in L2(0Q) by C6, C being a positive constant.

Proof of formula (2.2.11) in Theorem 2.2.1. From the representation
formula and the expansion of (¢1, o) we can write

u(z) = U(z) + dur (z) + 0(9) ,

where
- { Sk 10 () for z € Q,
u(r) = —
S5° w0 () + D (x) + S5° (pef) () for z € R \ Q0.
Consider now the unique solution to the following problem
( Aw; + k2w, =0 for 2 € Q,
Awy + k3w, =0 for x € R\ Q,
) [wi]ae = (Dg%@0)+ + So% (00) on 99,
Lowm] _ 10(SHeed)s 1008 o
k2 Ov |5 K2 v kK Ov ’
\ w; satisfies the (outgoing) radiation condition.
(2.7.37)
The function w; can be expressed using the Green’s function G as follows
- — B_G Dko 0 Gko 0 | ds
wi(z) = o OV (z,y)| (Dooo)+ + Soi0(peo) | ds(y)

80 k(Z) ov kg ov

ko 0 ko 0
n k2(Glz,y))s (iﬁ(so,o(p%)h ia(Do,o‘Po)> ds(y).

On the other hand, we can see that
0 forx € 1,
wi(z) = ko 0 i 0 -
Dq°pp(x) + Sp° (ppp)(z) forz e R2\ Q,

since this last function satisfies all the conditions in (2.7.37). We also introduce
the function ws defined on R? by

wa(2) Sk 10 () forz e N,
2(z) = _
S0 (x) forz e R2\ Q.
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Since (1%, py°) satisfies the system (2.7.36), we can express wy using G as
follows

oG

w@) = | Gy

dur | 9(Sok¥d) k3 (S10%?)
(—’+°’8+”+S§?0(pwo> + (Dled) - 2P ) )

Ov k2 Ov
1 Our 1 0%ur 1 8(Sgo<ﬂo)
2 —_— _— R —_—

+ 80 ko(G(Z’,y))+ (k(Q)p 31/ (m) + k(Q) 87’2 ( ) + ur + k p 61/
+_ 10 (Sgo‘Po) (S ) 6(Sgoo(p‘Po)) _ B(Dg 0900)

k2 or? 0,090 kg v kg ov

1 8(S§0<,01) 1 625(,;10(901) —
_EI’ o k2 92 - 50,0(%) ds(y).

Since

we conclude that

ww = @8 [ |[Feng(Fw)

(m-w) [ BG e G| s

which ends the proof of the first asymptotic expansion in Theorem 2.2.1. O

2.8 Representation formula for the second-har-
monic field

In this section, we derive a representation formula for the solution of (2.2.7).
The formula is essentially the same as for the fundamental field. However, we
give its proof in order to make sure that the assumptions ks # kg and ky # ky
do not play any role in the proof of Theorem 2.5.2.

The following holds.

Theorem 2.8.1 Suppose k(l) s k;z are not Dirichlet eigenvalues for —A on Q.
Then, there exists o > 0 such that, for 0 < § < &, for each (fi, f2,91,92) € Y2,
there exists a unique solution ® = (@1, P2, d}Q, Po) € X2 to the system of mtegml
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equations
' 53,10951 - S(])c,zo‘f?? - 5(1;720&2 = fi,
(Shnpr)-  O(Shppa)s  O(Ssav)
a - = f27
v o v (2.8.38)
Sa582 + Syt — Sy5%0 = g1,
O(SE532)  O(Syxaha)—  O(SEado)+
+ — = gs.
. ov Oov ov

The proof of this theorem is basically the same as the one of Theorem 2.5.1.
First, we define the operator T’ from X?2 into Y? by T'(®) = (f1, f2,91,92)
where (f1, f2,91,92) is given as in (2.8.38), and the operator T} from X? into
Y? by
Ky - k)
So0P1 — Sg0P2
k) - Ky -
3(50,20801)7 _ 8(50,20902)+
ov Ov
Sy3tha — S350
Ky 7 k)
O(S5v2)—  0(S55%0)+
ov ov
Then the following lemma holds.

Lemma 2.8.1 The operator T} : X? — Y? is invertible.

Proof. Let us solve the equation T§(®) = (f1, f2,91,92). Since the two first
equations are decoupled from the two last ones, we start by solving the following
system of integral equations

Ky - ok
So0#1 — Sp0P2 = f1,

A(SorP1)-  (SoaP2)t
d 9 = f
124 v

Since klf is not a Dirichlet eigenvalue of —A in , the operator S{f}o : L2(0Q) —
H'(09) is invertible and we have

N N k! -1
P1= P2+ (S()?g) fi-
Substituting this into the second equation, we readily get
N 1 1\ ¥ s\ —1
P2=—f2+ (—5 + (KSZ) ) (S(l)gfo) fi.

The expression of ¢; follows immediately. Analogously, we can easily express
(2, 0) in terms of (g1, g2). 0
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Lemma 2.8.2 The operator T' — T4 : X? — Y? is compact.

Proof. The proof is exactly the same as the one of Lemma 2.5.2. O

Proof of Theorem 2.8.1. Since T} is invertible and 7" — T} is compact,
the Fredholm alternative holds and existence will follow from uniqueness.

Let & = (@1, P2, Y0, P0) € X2 satisfy T'® = 0. Consider the function v
defined by

551951(.17) forz € Q,
o(@) = S2Ga(x) + Sy2ha(z) for z € O, (2.8.39)
5§6S50 for z € Qf.

This function satisfies the equations in (2.2.7) where the source term

Z Xj10z,;u0 u = 0.

7l=1,2

Moreover, we can easily prove in a similar way as for the fundamental field u

that
ov

x —

Ry o, ayv ds =0,
from which we obtain, by using Lemma A.A.1.2, that v = 0 in 2, since v satis-
fies the outgoing radiation condition. Thus, v satisfies the Helmholtz equation
in Qs with v = Ov/0v = 0 on 9Qs. By the unique continuation theorem, we
deduce that v = 0 in Oy and in the same way, we get v =0 in Q.

Then, as for Theorem 2.5.1, there exists do > 0 such that, for 0 < § < &g, kg2
is not a Dirichlet eigenvalue for —A on Qf, and, for such &, we have necessarily
S§6¢0 =0 in Q%. From the jump of the normal derivative of S(’jf] Po on 0N, we
immediately deduce that ¢y = 0.

Then we can easily find that S{j’z@(x) + S;IQ'(ZQ = 0 in Qf. The jump of
the normal derivative of this function on 84 gives ¢, = 0. Since k122 is not
a Dirichlet eigenvalue for —A on 2, we arrive at S(’f;cﬁg (z) + Sflzvﬁg =0in Q.
From the jump of itls normal derivative on 02, we arrive at @5 = 0.

Finally, since Sg @1 has a null trace on 92, we obtain from Lemma A.A.1.2

that Sg Ilgél =0in R? \  and from the jump of its normal derivative on 92, we
deduce that ¢; = 0. The uniqueness of ® is then proved which ends the proof
of the theorem. O

Theorem 2.8.2 Suppose (k§)?, (kb)? are not Dirichlet eigenvalues for —A on
Q. Let V be the unique solution of

AV + k;V = Z Xj10z,;u0zulo, in R?

Gl=1,2

with the outgoing radiation condition, and let Vo = Vl]sq, Vs = Vlsqs, Vo =
ov oV

o |aQ and Vg = E|395'
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Then, there exists o > 0 such that for 0 < § < do, if v 1s the solution of the
problem (2.2.7) and ® = ($1, P2,v2, Po) € X2 is the unique solution of

r 5(1)6,110851 - 5(%0952 - Sf,%lzz ="V,
O(S¢1)- _ O(Soaga)e  Sssds) _
- - — Y0
g e o (2.8.40)
50,25952 + 55,25% - 55,%</~70 =-Vs,
OSosp) | ASssdn) - ASise0) _
L v v ov Rk
then v can be represented as
S(I)ﬂ’lgbl(a:) forxz e,
v(@) =< V(z)+ S @a(x) + SE4ha(z)  forz € Oy, (2.8.41)
S;E’gbo (z) for x € Qf .

Proof. Recalling Corollary 2.6.1, we can express explicitly V' by setting
V@) = [ Tu@=1) 3 xeus)0uu) (28.42)
é Jl=1,2

Then it is clear that the function defined as in (2.8.41) satisfies the Helmholtz
equations, the transmission conditions and the radiation condition in (2.2.6).0

2.9 Asymptotic expansion of the second-harmo-
nic field

We proceed as for the fundamental field u. We first define the operators Qs, Rs
and Wy from X into Y by

- : L O(ShE)- OS5y

- Ky - k 0,0 3,0
Qs(p,9) = (SO,OSO - 55,% ) v - v ’
Rs(p,d) = ((Sé“is So0)® + (S35 — S52)0,

0 ' ] . [
5, ((5050) = (S50)+ + (S339) - <S§z¢))) :

o , L O(SERP) . O(Sid)

o ky kb 0,0P)+ 5,0
Wé (‘P: ¢) = (SO,O()O + 55,01/}: v + v )
o b ok - O(Sen@)r  O(Sehd)-
Wo(@,%) = | So® + Sop¥, v + o )
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and the function V9 on 89 by
% = (‘/5 _V03‘/:SI_V(;> .

The following proposition holds.

Proposition 2.9.1 Let & = (@;,@2,1;2,950) € X? be the unique solution of
(2.8.40), then (p1,P0) and (Pa2,102) are solutions of the following equations

Qs(@1,P0) = —V5— Rs(@2,12) , (2.9.43)
. . . B(SE B
Ws(P2,12) = ((Sg,lo@); (Oé%l)) - Vo, Vy) - (2.9.44)

In order to expand ®, we need to prove its stability when § goes to 0.

Proposition 2.9.2 Let u be the solution to problem (2.2.6). Then, for § small
enough, there exists a constant C' > 0 independent of § and 0 < n < § such that

lu(z +nv(2)) = U(@)lleroe) < €9,

Ou(z +nv(z)) k3 O(U)+
ov B kK2 ov v
Proof. From the regularity of 012, we can deduce, analogously to what was done
in Proposition 2.7.1, that (9, ¢8) and (¢9,%9) belong to (C1(82))%. Lemmas
2.4.4 and 2.6.2 are also true when replacing the spaces L?(0f2) and H'(0)) by
C%(090) and C'(09), respectively. See, for example, [19]. Then, it follows that

Ws = Wo + 0(5) (2.9.45)

where O(d) is unform from C' x C! into C' x C°. From (2.7.28) and (2.7.29), we
get

< (9.

€o(89Q)

IA

ez — ‘PgHCO(aQ) ¢d,

H¢2 - ¢(2]||c0(89)

for some constant C' > 0. It then follows that

IA

cé,

u@+nr(z) = S§er+ S5
= S§u(ed +¢9) + 0(9)
= Uz)+00),

where O(6) is in C1(9Q). We also have

Oulz +mu(z) _ Stner  OSpyv
ov o ov ov
A(SEHe+  O(Sehul) -
= o + o + 0(9)

k2 v
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where O(d) is in C°(0€). The proposition is then proved. O

Now we give an expansion for the source term defined for z + nv € Oy
(x € 0 and 0 < 5 < §) by

I(z) = Z X 10z, u(x) 0z, u(x).

J)1=1,2

First, we recall our assumption on the susceptibility tensor

ij(x-i-ﬂl/):)?jz(w,g), z€ed),0<n<d,

where x;; are independent of §. We define then Il on 0Q by
1
@)= Y ([ xate0)db) uboput o).
J\l=1,2 0
where w? is given by

u0(@) = G @r(a) + 2N E @wlo).

The next proposition is a direct consequence of the expansion of the funda-
mental field u.

Proposition 2.9.3 The following expansion holds.

Oz u(x + ()0, u(z + nv(z)) = w?(w)w? (z) + O(9) ,
where x € 0Q, 0 < n < J, and O(J) is in CO(00).
Now, we give expansions of the function V defined by (2.8.42).
Proposition 2.9.4 There exists e — 0 as § — 0 such that

Vo — 883 ol a0y < €50,
a(sk=11,)
5 ——2 "7 ||, < )
||Vo 4 EY ||L ) = &0,
Vs = Vollarany < €56,
Vs — Vo — Mol 200y < €56 -

Proof. Recall that
Viz) = /05 S:,clzl'[(x) dy forzxe Oy,
to obtain that for z € 919,
Vige) = [ ST+ mvta)

= 0S50 (2)
)

+ /0 6(5{,“%0 — S5z + nw(x)) dy + St ( /0 (@ + () — To(z)) Ch) '
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But II is uniformly bounded in L?(Os). Therefore, as an application of Lemma
2.4.4, the argument of the integral in the second term can be bounded in H* ()
by &5 and the second term is bounded by des. Concerning the third term, we
notice that

)
[ (e + ) ~ Mae) ay

[
=3 [ xaa + nwl@)o., e + ()0 uto + (@)
il
- ([ o) @) wbput )
)
- 31(@ + ()
%/0 Xl n

(6‘zju(w + v (2))0y, u(z + nu(z)) — wJO- (z)w) (x)) dy.

Therefore, it follows from Proposition 2.9.3 that

<Cs,
L2(8%)

5
/0 (I(z + nv(z)) — Ho(z)) dy

for some constant C. Hence, the third term in the previous expression of V; is
bounded in H'(9Q) by Cé2. The first inequality is then proved. The second
inequality can be proved in exactly the same way.

Now we turn to the last two inequalities

J k! k!
Va(z) — Vo(z) = / (8% — S4)TI(z + mu(z)) dy

5, , o /
- / (85 — SE Tz + (=) dy + / (S5, — S¥OTI(w + qu(x)) dy.

Since II(z + nv(z)) is bounded in L?(8R), it follows that the arguments of each
integral is bounded in H'(8Q) by &5 and V5 — Vj is bounded by ée5. Thus

5108k oSk
! R 74 — 76 7,0
Vita) = Vi) = [ (520 - S )it + )

ko !
_ / ? (0S5 8(Sk)+
0 81/ 61/

5 ro(sk) oSk
+/0 ( (67];7) - 6Z’O>H($+77V($))d’)

+ /06 (H(m +u(z)) - Hg(m)) dy + 0Ty (z).

)H(x (@) dy

Again, since II(z + nv(x)) is bounded in L?(81), the argument of the first and
second integrals are bounded in L?(0f2) by &5 while we have already proved that
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the last integral is bounded in L2(89) by C42%. This proves the last inequality
in the proposition. O

Next, we state and prove the following convergence result for .

Proposition 2.9.5 Let ° = (cpl,ch,z/JQ,apO) € X2 be the unique solution of

(2.8.40). Then (%, %) and (T %) converge in X to (¢, 58) and (@5, 43),
respectively, where

Qo(¢1,@5) = —(0,1Io) ,

L . 8(5’k1 @) , 6(5 o) (2.9.46)
Wa(gh, 38) = (sthet, ZA ) — (st T80 )

v
Proof. The proof is very similar to the one of Proposition 2.7.3. From Propo-
sitions 2.9.4 and (2.7.28) it follows that

=0 %3 70
o (5. 2)], < e, * 5, )-
576 9 llz> (a0 9 [l L>(a0)
On the other hand, (2.9.44) yields
S8 8 @
"Wé(ﬁ,ﬁ) <Ci+Cy :
66 5 L2(59)

where C1, C} and C}, a.re some positive constants independent of § and 5. It is

then easy to see that (’01 ('02 % and ¥ are bounded in L?(0R). Therefore

PR 5
@
m 2, (22 98| —
Hm R‘5< 573 ) =0
and (2.9.46) is straightforward. O

Now we can give an expansion of the second-harmonic field away from the
thin layer of nonlinear material Oj.

Theorem 2.9.1 Let v be the solution to problem (2.2.7). Then, the following
expansion holds uniformly in H} (R? \ 0Q):

v(z) = dvo(z) + 0(9) , (2.9.47)
where vy s given by

Sk1~1( ) forxeQ,
vo(x) = (2.9.48)
S(’f(’(p(l)( ) forzeR2\Q.

Proof. From the representation formula (2.8.41), we have
Sgllcﬁl(x) forz e Q,
v(z) = )
S§°¢0(x) for x € Qf .
Recalling (2.9.46) we immediately obtain (2.9.47). O

The proof of the asymptotic expansion (2.2.12) is now immediate.



Chapter 3

Convergence of the
supercell method for defect
modes calculations in
photonic crystals

3.1 Introduction

Photonic crystals are periodic structures composed of dielectric materials and
designed to exhibit interesting properties, such as spectral band gaps, in the
propagation of classical electromagnetic waves. In other words, monochromatic
electromagnetic waves of certain frequencies do not exist in these structures.
Media with band gaps have many potential applications, for example, in optical
communications, filters, lasers, and microwaves. See [37, 38, 60, 47] for an
introduction to photonic crystals. While necessary conditions under which band
gaps exist in general are not known, Figotin and Kuchment have produced an
example of high-contrast periodic medium where band gaps exist and can be
characterized [34, 35]. Other band gap structures have been found through
computational and physical experiments. See [24, 22, 25, 9, 28].

In order to achieve lasers, filters, fibers, or waveguides, allowed modes are re-
quired in the band gaps. These modes are obtained by creating localized defects
in the periodicity and correspond to isolated eigenvalues with finite multiplicity
inside the gaps. The defect mode frequency strongly depends on the defect na-
ture. Figotin and Klein rigorously proved that when a defect is introduced into
the periodic structure, i.e., a perturbation with compact support, it is possible
to create a defect mode, which is an exponentially confined standing wave whose
frequency lies in the band gap [30, 31, 29]. See also Ammari and Santosa [6]
and Kuchment and Ong [48] for the issue of existence of exponentially confined
modes guided by line defects in photonic crystals.

The defect modes as well as the guided modes associated with compact and
line defects, respectively, are computed via the supercell technique. This tech-
nique consists in restricting the computation on a domain surrounding the defect
with sufficient bulk crystal, called the supercell, with periodic conditions on its

41
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boundary. The boundary conditions on the supercell are, in principle, irrelevant
if the mode is sufficiently confined. Since one would like to compute only the
defect or the guided modes in the band gap, without the waste of computation
and memory of finding all the eigenvalues associated with the supercell belong-
ing to the continuous spectrum, one states the problem as one of finding the
eigenvalues and eigenvectors closest to the mid-gap frequency.

The supercell method demonstrates very good concordance with experimen-
tal results and seems to be very accurate. However, analytic studies and rigorous
proofs of convergence of this technique are essentially absent.

In this chapter we address some of the basic issues of the supercell method
and prove the convergence of this technique. Although one can obtain analo-
gous results for the case of full Maxwell equations, we only address the cases
of transverse electric (TE) and transverse magnetic (TM) polarized electromag-
netic waves in two-dimensional photonic structures.

The outline of this chapter is as follows. In the next section we review
some basic facts on the spectra of periodic elliptic operators, emphasizing the
Floquet-Bloch theory. We then describe in Section 3.3 the supercell method and
investigate its mathematical foundations in the TM case. Section 3.4 is devoted
to the TE case. Finally in Section 3.5 the results of numerical experiments are
presented to illustrate our main findings.

3.2 Notation and preliminary results

Consider a photonic crystal characterized by its dielectric permittivity e, that
is a real valued, piecewise constant and periodic function belonging to the set
{ep € L®(R2/Z?) : 0 < &1 < &p < &2 a.e.} where &1 and ¢, are constants.
The magnetic permeability is supposed constant and equal to unity in all this
chapter.

We assume that the crystal is periodic with period [0, 1]?, i.e., that ep(z +
n) = ep(z) for almost all z € R? and all n € Z2.

The propagation of electromagnetic waves is governed by the Maxwell’s equa-
tions. It is common to reduce these equations in a 2-D medium to two sets of
scalar equations in the transverse magnetic (TM) and the transverse electric
(TE) cases. Each one can be solved by solving a scalar partial differential equa-
tion and the other scalar functions follow immediately from that solution.

These equations are the Helmholtz equation:

Au+ w’epu =0, (3.2.1)

for the TM polarization, and the acoustic equation:

1
V- —Vu+w’u=0, (3.2.2)
€p

for the TE polarization.

We now recall some well-known results on the spectrum of the TM and
TE operators in a periodic medium. Since we deal with a partial differential
equation with periodic coefficients, it is natural to use a Floquet transform and
apply the Floquet-Bloch theory.
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Firstly, we briefly present the Floquet-Bloch theory applied to the TM and
TE operators in periodic media. More details can be found in [47] where P.
Kuchment presents a survey on mathematics of photonic crystals.

Let A(z, D) denote the TM or TE operator on L?(R?) in a periodic medium
characterized by ¢p, where D = —iV. This operator is invariant with respect to
the discrete group of translations Z2 acting on R2. It is then natural to apply
the Fourier transform on Z2, which to a sufficiently decaying function h(n) on
7.2 assigns the Fourier series

h(e) = 3" h(j)e€d

JjEZ?

where ¢ € R?. However, since we deal with functions defined on R?, we use the
Floquet transform.

Consider a function v defined on R?, sufficiently decaying at infinity. We
can then define its Floquet transform by

Fo(z,6) = Y v(@—j)e I =v(z—-) . (3.2.3)

jez2

It is easy to check that Fuv(-,&) is £-quasi-periodic with respect to the first
variable, that is:

(Fu)(x +n, &) = (Fo)(z,)e*™ , Ve eR: nelZ?.

Moreover, it is periodic with respect to the variable &, called quasi-momentum,
with period lattice [0,2x]%. It is then sufficient to know the function Fv for
(z,€) €Y x B, where Y = [0, 1[2 and B = [—7,7[? (called in the literature the
first Brillouin zone), to recover it on R? x R2.

It turns out that the Floquet transform commutes with partial differential
operators with periodic coefficients. In particular, we notice that

F(A(z,D)u) = A(z,D)(Fu) .

The Floquet transform allows us to represent a function on L?(R?) as a
continuous sum of quasi-periodic functions. In fact, the Floquet theory defines
an isometric mapping between L*(R*) and L*(B,L{(R?)), L7(R*) being the
space of &-quasi-periodic L2- functions. The inverse of the Floquet transform is
given by the following formula:

(F o) (x) = % /B oz, £)dE (3.2.4)

for any v in L*(B, L}(R?)).

The isometric character of the Floquet transform, together with its commu-
tation properties on partial differential operators with periodic coefficients make
it very useful to study spectral problems. Indeed, the spectral problem for the
operator A(z, D) becomes a family of spectral problems for operators A¢(z, D)
(having formally the same expression but with domains depending on £), act-
ing on functions defined on a bounded set (the period lattice of the photonic
crystal), with &-quasi-periodicity.
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An alternative version to the Floquet transform is the transform & defined
as

du(z, &) = Z vz — f)e” @) = =T Fy (g, €) .
JEZ?
The function ®v is periodic with respect to z and (—=z)-quasi-periodic with
respect to £ with 27r-quasi-period:

{ Puv(z +n,&) = Pov(z,§) , n€z?, (3.2.5)

dv(z, &+ () = e 2Pu(x,&), (€ 2nZ2.

With this transform, we deal now with functions defined on a fixed space
L?(B,L?(R? /Z?)), while the operator A(x, D) is splitted into a sum of operators
A(z, D — £), depending on &:

P(A(z.D)u)(z,8) = Az, D — §)(Pu)(z, ) -

The transform @ is still an isometric mapping between L?*(R?) and L?(B,
L?(R? /Z?%)), and its inverse transform is:

(& Lo)(z) = % /B ¢ €0 (, €)dE .

Let ¥ be the spectrum of A(z, D) on L?(R?) and X¢ the spectrum of A(z, D—
€) on L%(R?/Z?), then we can deduce immediately the following identity:

T = UgenZt . (3.2.6)

Now, with these tools, we are in the position to explore the spectrum of the
TM and TE operators in periodic media.
In the case of the TE polarization, the operator we are studying is:

A(z,D) = -V - Eiv.
1%

After the transform &, we get the following spectral problem:

~(Va =€) - —(Vo —i€)v(z,€) = w?o(z,6) , w(-,€) € L*(R*/Z%) . (3.2.7)

1

€p
We remark that A(z,D — &) is an elliptic self-adjoint operator on L?(R?/Z?)
with compact resolvent. It follows that its spectrum is discrete with countably
many positive eigenvalues denoted A, (£) and ordered increasingly. It is easy to
prove the continuity of A, (£) on £ € B. Finally, defining the intervals I,, by

I, = [rgleig An(6), max An(E)]

we deduce the spectrum of the TE operator:
Y1 = UnenIn -

We then see clearly the band structure of the spectrum since it is a union of
the intervals formed by the values of each eigenvalue when the quasimomentum
varies in the Brillouin zone. In fact, if two successive intervals are disjoint, which
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means that the maximal value of an eigenvalue is smaller than the minimal value
of the following one, then there is a gap in the spectrum X g and no propagation
is possible for TE waves at the corresponding frequencies. This makes all the
interest of photonic crystals.

Here, we introduce the following assumption.

Assumption : In all what follows, we assume that the spectra the TM and
TE operators are absolutely continuous.

A. Morame proved this assumption for Maxwell operator in [53] in the case
of C'* periodic coefficients and for Schrodinger operator in the case of C'*
periodic metric. This assumption means that the eigenvalus A,(£) can not
be constant on a subset of B of positive measure. Numerical simulations and
physical experiments agree with this assumption which we believe is true.

Another important property of photonic crystals is a consequence of the
characterization of the decay of functions in L?(IR?) in terms of the smoothness
of their Floquet transform in the same spirit as the Paley-Wiener theorem.
Suppose that the spectrum contains some gaps, that is Y7 # RT and let w
be a frequency lying in a band gap. Let G}, be the Green’s function of the TE
operator defined by

1
V- E—VGp(w;w,y) +WGp(wim,y) =6(z—y), zeR. (3.2.8)
p

It has been established in [21, 13] that, for £, measurable, in L>, bounded and
away from 0, the Floquet transform of G, is analytic with respect to w in a
complex neighborhood of the real axis. In view of Paley-Wiener-type theorems,
the analyticity of FG}, is the key ingredient of the proof of the following result
[32, 33, 29, 31].

Lemma 3.2.1 There exist two positive constants C1 and Cy depending only on
wi > 0 such that for any w? € LT,

|Gp(w;z,y)| < Cre it Drn)le—yl g |z —y| = +o0 . (3.2.9)

Remark 3.2.1 The behaviour of the Green’s function at infinity is the essential
feature of PBG materials: it explains why localized defects in photonic crystals
may act as perfect cavities, when the frequency lies in a band gap. Electromag-
netic waves can be represented in terms of G, and thus inherit the exponential
decay property.

In the case of the TM polarization, the operator we are studying is:
1
A(z,D) =—-—A..
€p
Taking the transform &, we get the following spectral problem:

- (Va = i) (Va = i€)0(2,6) = 0(w,8) , 0(,) € PR /27) . (3:2.10)

p

The difference with the TE case is that this operator is elliptic, self-adjoint with
compact resolvent on the weighted space L*(R?,ep(z) dr).
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The results are therefore the same as for the TE case, and we get a spectrum
with band structure:

Y™ = Unenln ,

where (I,)nen are defined in the same way as for the TE case.

Analogous properties to the TE case hold. In particular, Lemma 3.2.1 holds
with the Green’s function associated with the TM polarization.

From now on and until otherwise mentioned, we deal with TM-polarized
electromagnetic waves. We consider a background medium characterized by its
dielectric permittivity ep.

First, we introduce some simplified notations.

Definition 3.2.1 We define the operator Ay by

Ap = —iA , on L*(R?),
€p

and denote by X, its spectrum.
For £ € [0,2n[* we define AS on L*(R? /Z?) by

45 = _Si(vz —i€) - (Vg — if) ,

P
and denote by Eg its spectrum.

We create a perturbation of the background medium by modifying its di-
electric permittivity into € as follows:

e(z) = ep(x) — (de)xa(2) , (3.2.11)

where (J¢) is a real constant and 2 is a bounded domain in R?.
The perturbation of the dielectric permittivity induces a modification of the
TM operator into

A=A, (3.2.12)
g

and, consequently, the spectrum ¥ of A is different from the spectrum X, of
Ap. However, it has been proved that the perturbation of the TM operator is
relatively compact and therefore it keeps unchanged the essential spectrum of
Ap. See [30]. Since the spectrum X, is purely continuous, the perturbation will
result in the addition of eigenvalues of finite multiplicity to X.

The following theorem from [30] is of importance to us.

Theorem 3.2.1 Suppose that the spectrum X, of the operator A, has a gap
and suppose that the defect (Q,(d€)) has created an isolated eigenvalue w? in
the gap. Let u be an associated eigenvector. Then, there exist two constants Cy

and Cs, depending only on the distance of w? to the spectrum ¥, such that

||U||L2(Bm) < Cle—Czd'iSt(w,Q)||u||L2(Q) , Vze R2 ’

where By is the ball of center x and radius one.
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Proof. The eigenmode v is solution of the following equation:
Au+w?e(z)u =0. (3.2.13)

It is easy then to see that u is solution of the following integral equation:

u(z) = (56)0.)2/9Gp(w;x,y)u(y) dy . (3.2.14)

The proof of the theorem is then a direct consequence of the exponential decay
of the Green’s function in Lemma 3.2.1. O

Remark 3.2.2 This theorem has very important consequences. It explains why
we can confine electromagnetic waves in defects or guide them along a defect.
The use of dielectric material that has very low loss and the exponential de-
crease of the electromagnetic field away from the defect ensures a very efficient
confinement with o cladding of few periods of the photonic crystal.

3.3 The supercell method

We start this section by giving a mathematical description of the supercell
method.

3.3.1 Definitions and preliminary results

We consider the background and perturbed media introduced in the previous
section with their corresponding TM operators and spectra. Since the perturbed
medium is not periodic, the Floquet’s theory does not apply.

To recover a periodic medium, we define an artificial medium in the following
way. Without loss of generalization, we can suppose that the defect support Q
is centered at 0. For N € N large enough to have Q €] — N, N[2, we define the
(2N)-periodic L*®-function € by:

en(z) =e(x), Vz€]-N,N[?, (3.3.15)
en(z+2Nj)=en(z), VreR® VjeN. e
Definition 3.3.1 We define the operator Ax on L*(R?) by:
1
Ay =——A, (3.3.16)

EN

and let X n be its spectrum.
For £ € By = [~ 5%, 5 [2, we define the operator Ay, on L*(R?/2NZ?) by:

A= (Ve (V—it),
EN

and denote by E?\r its spectrum.
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The function ey defines a photonic crystal formed by the defect repeated
with a 2N-period inside the original photonic crystal. It is therefore obvious
that the spectrum Y.y is an absolutely continuous spectrum. The question is:
what does it happen when N goes to infinity?

A natural answer is that since the repeated defects will be away from each
other, they will not interact and, in the neighborhood of one defect, the operator
will see almost an infinite crystal. We expect then a kind of convergence of ¥
to the spectrum ¥ corresponding to one defect in the infinite photonic crystal.
So for N large enough, after taking the Floquet transform in the supercell and
computing the spectrum, we will find a spectrum divided into wide bands very
close to those corresponding to the background medium and very narrow bands
(almost a horizontal line when plotted against the quasi-momentum) that should
correspond to the defect modes of the perturbed crystal. This is what will be
proved in the following subsections.

To give a characterization of the convergence of the spectrum of the supercell,
we will use the Hausdorff distance denoted disty, that is a measure of the
resemblance of two (fixed) sets.

Definition 3.3.2 Let E and F' be two non empty subsets of a metric set. We
define the Hausdorff distance denoted disty; between E and F as

disty(E,F) =inf {d > 0; VY(z,y) € E x F, dist(z,F) < d and dist(y,E) < d} .

This means that if disty(E, F) = d, then any point of one of the two sets is
within distance d from some point of the other set.

Finally, we give in the following proposition an important result from the
spectral theory, see [58], that will be useful for the convergence results.

Proposition 3.3.1 Let A be a self-adjoint operator with a domain D(A) and
a spectrum o(A), then, for u € R:

(A = uD)e|l

dist(p,0(A)) = m
(o) = w0

(3.3.17)

3.3.2 Convergence of the “continuous spectrum”

Here we give a characterization of the convergence of the part corresponding to
the spectrum of the unperturbed crystal.

Theorem 3.3.1 For any wo > 0 and Ny € N, there exists C > 0, depending
only on wg, Ng and §2, such that
. 2 g C
max dist(w®,Xy) < — (3.3.18)

2 9
kn/N
w2€Uke[—N+1,N—1[2nN225+ ™/ ﬁ[O,wg] N

for any N > Ng and any £ € By
Proof. Letk € [-N+1,N—12nNN? and ¢ € By Let w? be in 575V 1[0, w).
Since £ + km/N € B, there exists ¢ € L?(R? /Z?) with unit norm such that

(V—z’(£+ ’%)) : (V—i(£+ %))¢+w2sp¢=o. (3.3.19)



3.3. THE SUPERCELL METHOD 49

Let ¢ be defined in L?(R?/2NZ?) as
b(x) = p(x)e "k (3.3.20)
We have ||¢|| L2(R2/2Nz72) = 4N 2 and it satisfies the following equation.
(V—if)-(V—if)d+wepd=0, (3.3.21)
which can be rewritten as follows
(V —i€) - (V —i€)p + w’ed = —xqa(de)w?s . (3.3.22)

Let C; be the minimal number of unit squares in which Q can be strictly in-
cluded. Since the LZ—norm of ¢ in a unit square is 1, we have:

||¢~’||L2(Q) <Ci.
Thus
IV —i&) - (V —~i€)¢~> + w?ed|| L2(r2/(23)22) - (e — 18]l L2(a)
11l 222/ 2v22) 1@l 22 (r2/2n22)
s

where Cy = |(d¢)|wiCh.

The operator —1(V —i¢) - (V —i€) is self-adjoint in (L*(R? /2NZ?),e(z)dz).
Then, from Proposition 3.3.1, the distance of w? to E?V is at most equal to the
following expression divided by the norm of ¢ in L?(R? /2NZ?). We have

/]_NaNP

2

Awin (void -2 e

3

=/ (V —ie)- (V — i) + e &
]—N,N[2 E

C . -
< vz l8llzame/onzs

Ca
min, ¢y n2 (@)

It follows from Proposition 3.3.1 that there exists an eigenvalue wg belonging

where C' =

to the spectrum Efv of the operator A?V such that

. c
|w2—w§|§ﬁ,

which ends the proof. O

Remark 3.3.1 This theorem tells us that card(E%, N[0,w3d]) for & € By will
grow at least as fast as N%ard(Zf,' N [0,wd]) for any & € B. So when we
use the supercell method to determine the defects modes, we are in front of a
dilemma. The larger is the size of the supercell, the better is the approximation
of the defect eigenvalues. But this will take much more time and require greater
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memory size because of the size of the computational domain and the growing
number of useless (in the sense that they do not correspond to the defect) eigen-
values. It is important then to determine the convergence rate of the eigenvalues
corresponding to the defect.

Since we know that the spectrum Xy = Ugeny, Ef\, is absolutely continuous,
we deduce that each connected component of (R? \ £n5) N, N[0,wo] has a width
smaller than sz_(,;

In practice, because of the growth of degeneracy of the eigenvalues located in
Y, with N, there will be almost no visible gap inside the bands of L but the
remark remains useful for the perturbation brought to the edges of the bands. In
particular, it is useful to check if a perturbation of the edges of a band in X, is
due to the presence of a defect eigenvalue in ¥ close to the band or not.

3.3.3 Convergence of the defect eigenvalues

Here we are concerned with the behaviour of the part of the spectrum Xy
that will give us an approximation of the defect modes (eigenvalues with finite
multiplicity in ¥). Let us first try to give a characterization of this part.

Definition 3.3.3 For n > 0, we define X} \ as the union of the connected
components of X that are at least n-distant ’from Yp-
We also define Xq as the set of the defect eigenvalues of the perturbed pho-
tonic crystal:
Y4=2\%,.

Finally, we introduce Egl N and X7 as
Eg’,?v ={w? e x5 : dist(w?, Zp) > 1} .
= {w] € Tq : dist(w3, =p) > 1} -
The following proposition holds.

Proposition 3.3.2 For every gap Ja,b[ in £, (0 < a < b) satisfying [a,b]NE =
0, there exists N1 € N such that, for N > N1, ¥y N [a,b] = 0.

Proof. Suppose that the proposition is false. Then for any Ny € N there
exists N > Ny and w3, €]a,b[NEy. This means that there exist {x € By and
¢n € L*(R? /2NZ?) with unit norm such that

(V —ién) - (V —ién)pn + wiendn =0 in L*(R*/2NZ?) . (3.3.23)

Now, we define ¢x in L2(R?) by
on(2) Z/QG(wfv;a:,y)e_iEN'%N(y) dy, (3.3.24)

where G(w?;z,y) is the Green’s kernel defined for w? ¢ ¥, by
AG(W*o,y) + wepG(w?a,y) = 8z —y) -

The following lemma is needed.
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Lemma 3.3.1 There exist Ng > 0 depending only on a, b and X,such that for
N > Ny, we have:

DN | =

lonlL2(rz) >

Proof. From the expression of ¢n we deduce:
(be)wihdn (z) = (56)W?V/ G Wiz, y)e N Yon(y) dy
Q

= [, Ghiz )8 +whep) (N Von () dy

-/, G(wir;7,y) (A + wive) (e *N Yon(y)) dy

- /(A+w?vep)G(wfv;w,y)e_’“'%zv(y)dy
RZ
-
R2

((v _iEn) - (V —itn) + w%e) o (y) dy

= e ¥V TN (z)
-,

Let us now prove that the L2—norm of the last term in ] — N, N[? converges
to 0. From the exponential decay of the Green’s function, we deduce that there
exist positive constants C; and Cs depending only on the distance of a and b to
¥, such that, for any w? €]a, b, we have [6]:

(G(w?v; T,y + 2NJ')€_"2N€”'J'> e BN Y (y)dy.
J€Z2j#0

Z |G(w2;w,y +Nj)| < Cre~ 2N | Yz €]-N,N[®, Vy € Q. (3.3.25)
JEZ2,j#0

It follows then, since ||¢n||L2q—n,n72) = 1, that for any 2 €] — N, N2, we have:

/ > (G(w?v; z,y + Nj)e"'Ng”"’) e"f”'%N(y)dy‘
Q

JEZ2,j#0

IA

Cre=CaN /Q 6w (v)] dy
Cre= =N Q)5 |6n || 20

Cre 2N Q| .

IAIA

We then deduce that:

J

(G(w?v; T,y + Nj)e"Ng”"') e ENVpN(y)dy

JEZ2,jF0 L3(]-N,N[?)

< |QZNCre N .
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Hence, recalling that |le™%~?¢x (z)||2—n,np) = 1, there exists No > 0 such
that for any N > Ny, we have:

énll L2z > llnllL2g-nnp) > = - (3.3.26)

N | =

Lemma 3.3.1 is then proved. O

We now turn to the proof of Proposition 3.3.2. We have

AN + wiedn

/Q(Am + wie)G(wi z,y)e SN Yon(y) dy

/Q (Be + wep) Gl 2 y)e S5 Vo (y) dy

—(5€)XQ($)wJ2V/ G(wi;m,y)e SN Yon(y) dy
Q
= xa(x)e “¥Tpn(z)
—xol) [ Ghian)(A, +wken)e o) b
xalo) [ Glhizn)(8, + ke o) d
= xa(z)e “¥ Ton(z)
—xa(z) /RZ(Ay + wiep)Gwiiz,y)e SN Vo (y) dy

+XQ(w)/ G(wk;z,y)e Ny
R2

((v _iEn) - (V — iEn) + w?ve) on(y) dy
= (R)Exale)

Jh(

Using estimate (3.3.25), we deduce the existence of positive constants C; and
(> depending only on the distance of a and b to ¥, such that

Gy + Nj)e—iﬁN'@*N”) on(y) d -
JEZ2,j#0

> Gwhia,y + Nj)e v NI < Cre@N (3.3.27)
JEZ2,j#0

for any z,y € 2. We then obtain that

/Q( > G(w?v;w,y+Nj)e_if”'(y+Nj))¢N(y)0?/‘

JEZ2,5#0

< Cre %N |lpn 2oy
< Cre N Q|7 .
This yields the following result:
|AdN + whedn|lame) < |(0e)|wh|Q|Cre= %N . (3.3.28)
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Lemma 3.3.1 yields the estimate
: |(d2)| b ] Cre 2N
minge)— N, N2 £(2)

from which we conclude that dist(]a, b[, ¥) = 0. This is a contradiction with the
assumption. The proof of the proposition is complete. O

dist(wi, X) <

Now we can prove the following result concerning the convergence to the
defect modes.

Theorem 3.3.2 Suppose that the perturbation has created defect eigenvalues.
Then, there exist ng > 0 and Ng € N such that for any n < n9 and N > Ny,

SN #0, VEEBy.

Moreover, for any wi > 0 and n < 1o, there exist two positive constants Cy
and Cy depending only on wg and 1 such that for any £ € By :

disty, (237’7\, N [0,wd], =1 N [o,wg]) < Cre=CaN. (3.3.29)
Proof. Let w3 be a defect eigenvalue in 4. It follows that there exists a
function v in L?(R?) with unit norm such that
Au+wieu=0 inR*. (3.3.30)
Let ¢ be in By. We define u¢ in L2(R? /2NZ?) by

ul(z) = D u(w + Nj)els N
JEZ2

Then for z €] — N, N[?, we have
((V —i€) - (V —i&) + w§EN> ut ()

= Z e @HND(A 4 W2en)u(z + Nj)

jez

= Z e (=+NI) (A +wie(z + Nj)) u(z + Nj)
jezz
Haad 3 N (e (o) = oo+ M) Julo + V)

JEZ?
= —()dxale) Y EEHDu 4 Nj).
JEZ2,j#0
On the other hand, for z € R?,
u(z) = 6(z —y)uly) dy

R2

[ 8+ )Gl u) d

. G(w3;7,9)(A + epwi)uly) dy

= (be)? / (W22, y)uly) .
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Therefore

((v —i€) - (V—if) + wgav) us(z)

= ~Gerubata) [ (

From (3.3.25), it follows that there exist two positive constants C; and Cs,
depending only on w3, such that

/Q( > G(wﬁ;x+Nj,y)e"§'(z+N"))U(y)dy‘ < Cle‘CZN/QW(y)Idy

JEZ2,j#0

Gz + Nj, y)ewwﬂ) u(y) .
JEZ2,j#0

IN

Cre= 2N |02 ||ul| p2(q)

|Q|%01€_C2N .

IN

Therefore

|

(V —i€) - (V —i&)ut (z) + wienub(z) < (6e)?wi|Q|Cre= 2N .

L2(]-N,N[?)
(3.3.31)
Since
ub(z) = u(x)e®® + Z u(x + Nj)e®@tN) 5 el — N, N[?,
JEZ2,j#0
. lu(@)e™*llLaq-nnp) =1,
and

IS @+ N CTND |12y ey < [QIFNCre %N |
JE€Z2,j#0

we deduce that for IV large enough,

lluf [l L2q-n vy =

DN | =

Thus, we conclude that
dist(wg, D) < Cre N,

for two positive constants Cy and Cs, depending only on w3.
It is clear that we can choose these constants such that

dist(w?, X&) < Cre~ 92N | 3.3.32
wdegi,%wg] ist(wg, Xx) < Cre ( )

uniformly for £ € By. Hence, any defect eigenvalue w3 € X4 is a limit point of
(%)
NeN

Let 7 > 0 be small enough to get X7 # (. Applying Proposition 3.3.2,

we may see that there exists Ny € N depending only on w? and n such that

Egl T N [0,wd] has at least as many connected components as card(E] N [0,w3])
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for N > Ny. To prove this, we take a neighborhood of £ N [0,w§] formed
by disjoint intervals and that are away from X, each one of them containing
exactly one defect eigenvalue. Then from Proposition 3.3.2, we deduce that for
N large enough, the edges of these intervals will be strictly distant from ¥n. On
the other hand, we have proved here that for N large enough, the intersection
of every interval with Ef\, is not empty. This means that 25"]\, is not empty
if we take n small enough and then let N be large enough. Bsf the same way,
(3.3.32) can be written as
. 2 y —CaN
g dist (w3, B3%) < Cre” N, (3.3.33)

uniformly for £ € Byr. The proof of the first part of the theorem is then done.

Now, let € € By and let w? € 5. There exists ¢ € L?(R?/2NZ?) with
unit norm such that 7

(V—if) - (V—i&)p+w’end =0.
Then, we define u in L?(R?) by

u(z) = / G(w?; 2, y)d(y)e Y dy .

Let us now find a lower bound for ||u|;2r2). We compute

Ge)u(@) = | Gz, (A+ws) (@) ) dy

R2

- | GW*z,y)(A+w) (dy)e ) dy

R2

= fa)e
— | GWz,y)e ©V((V —if) - (V —i€) + w’e) d(y) dy

R2

= pla)eiE
—eo [ (G(w2;x,y+Nj)e—i5'<y+Nj>)¢(y)dy.

JEZ2,j#0

Since there exist positive constants C; and Cs, depending only on n and w3,
such that

Z (G(w2;m,y+Nj)e"ﬁ'(?ﬁNJ'))‘ < Cie N Vv e]-N,N[®2,WyeQ,
JEZ2,570

(3.3.34)

for any w? € [0,w?] such that dist(w?,X,) > 7, we deduce that
/ (G(wz; T,y + Nj)e_i‘f'(y’LNj)) o(y) dy < NCye 9N |

@ jez2,j#0 L2(]-N.N[?)
(3.3.35)

where the constants C7 and C> are different from the previous ones but have the
same dependence. Recalling that ||¢||z2q—n,n2) = 1, we deduce the existence
of Ny > 0 such that

. (3.3.36)

N | =

gl z2r2) > |@llL2-n,ni2) >
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On the other hand,

@+au) = [ (A, +e26H 01000 d

xa@)d@le 6 — (6y(x) — (@) [ Gz )o)e < dy
Q
= xa(@)d(@)e " @) [ Glin ol d

= xo(z)p(x)e
—xa(z) /R? G(wz;x,y) (A +w2€p) ((ﬁ(y)e_’f'y) dy

+xa(z) /R2 GWw?;z,y) (A +we) (o(y)e V) dy
= xo(z)p(zx)e 7

~xal®) /R (A, +w?ep) Gw?sz,y)d(y)e €V dy

a@) [ G p)e € (V=€) (7 =i6) +47) 9(0) d

= Xo(z)(e)w? G(w"’;%y)e’f'%(y)( > Xﬂ(y—Nj)> dy

R jEL2,j#0
= xe@@)? [ Y (Gsmy+ Nie 0D) o) d
Q jez2,j#0
Therefore, it follows from (3.3.34) that
| Au(z) + weu(a)| < |(0e)|w3|QF Cre==N
for any z € . Consequently,
|Au + w?eul|L2r2) < |(0¢) |wd|Q|Cre= N . (3.3.37)
From (3.3.36), we readily get
dist(w?, %) < Cre~ 2N |

where C and (' are different from the previous ones but have the same depen-
dence.
Since dist(w?, £p) > 7, we easily arrive at

dist(w?, £7) < Cre” N |

which ends the proof of the theorem. O

An immediate consequence of this theorem is the following.

Corollary 3.3.1 Suppose that the perturbation has created defect eigenvalues.
Then, there exists ng > 0 and Ny € N such that EZ,N # 0 forn < ne and
N > Ng.

Moreover, there exists Ny € N depending only on 1 such that the number
of connected components of £ N [0,w?] is at least equal to card (L] N [0,w3))
and the width of each component decays exponentially with N.
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Proof. The proof follows immediately from the facts that each eigenvalue in
Eg’, W is continuous with respect to £, and

Yy = U&EB,»\/E%[ .
O

Remark 3.3.2 These results are very important in practice for determining the
defect modes of 2D-photonic crystals. Indeed, after identifying the background
continuous spectrum by computing numerically Eg for & € B, we have the gaps
and we can have constants C; and Cs depending on dist(w2, Y,) such that

|G(w2;x,y)| < Cre= 2N |

Then we compute E?V for some & € Byr, and from the eigenvalues that are not
located in ¥, we deduce an approzimation of the defect eigenvalues.

3.4 The TE polarization

In this section we deal with the TE polarization. The same results hold, but
the proofs are slightly different. This is a consequence of the dependence of the
domain of the acoustic operator on the inverse of the dielectric function. So

1 1
when we perturb ¢ into €, the operator —V.—V is transformed into —V.-V
€ €

P
and we see clearly that, in general, these operators do not have the same domain.
So the proofs have to be adjusted.

3.4.1 Definition and preliminary results

First we introduce some analogous notations to those in Definition 3.2.1.

Definition 3.4.1 Let Ay be the operator defined by
1
A, =-V.—V, onL*R?),
€p

and let ¥, denote its spectrum.
For £ € [0,2n[* we define AS on L*(R* /Z?) by

AS = —(V, —i€) - El(Vz —if) ,

P
and denote by Ef, its spectrum.

We perturb the background periodic medium on a bounded domain as done
in (3.2.11).

It has been proved that the perturbation is relatively compact and so does
not affect the essential spectrum of A,. Recalling our assumption on the ab-
solute continuity of the spectrum of Ay, we deduce that the perturbation will
result in the addition of eigenvalues of finite multiplicity to Y.

We define e, Ay, A§v> YN, and E?V in the same way as in Section 3.3.1. To
avoid the problem of the dependence of the domain on ¢, we introduce a new
operator that will have the same spectral properties as those of Ap.
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Definition 3.4.2 Let B, be the operator defined on L?(R*)? by

1
Bp:—E—VV' .
p

For £ € [0,2n[* we define BS on L*(R* /Z?)* by

By =~ (V—ig)(V —if) -

P
We also define By and Bf\, analogously as done for Ap.

The operator By, is a self-adjoint periodic differential operator on
(LQ(}R2 /Z%)? e, dr) .

However, since its kernel has infinite dimension it is not elliptic. Actually, the
kernel is the subspace of divergence free vectors. We can not apply the same
technique as for A, to prove that the spectrum of Bf, is a set of positive eigen-
values that accumulate at infinity and that the spectrum of B, is an absolutely
continuous spectrum with band structure located in Rt . It is however possible
to extend this operator into a larger elliptic self-adjoint operator that will co-
incide with B, on a subspace that is complementary with the kernel of B, (see
[47]). We can deduce then that the spectrum of By, in Rt \ {0} is absolutely
continuous and that 0 is an eigenvalue with infinite multiplicity. This technique
is used to prove the band structure of the Maxwell operator. Another way to
characterize the structure of the spectrum of B, is to relate it to the spectrum
of A,. This is given by the following theorem.

Theorem 3.4.1 For any & € [0,2n[2, the spectra of Bg, By, va, By and B
are Eg U {0}, =p, Ef\, U {0}, N, and X, respectively. Moreover,

(i) The operators BS and Bf\, have ezactly the same eigenvalues as Ag and
A?V respectively, except for 0 which is an eigenvalue of Ag and A%, of
multiplicity 1 and is not an eigenvalue of Af; and Afv when & # 0 while it
is an eigenvalue of Bf, and Bf\, for any & with infinite multiplicity.

(ii) The spectra of B, and By are absolutely continuous spectra in Rt \ {0}
and 0 is an eigenvalue of infinite multiplicity.

(iii) The operators A and B have the same absolutely continuous spectrum and
the eigenvalues have exactly the same multiplicity for A and B except for
0 that is an eigenvalue of B with infinite multiplicity.

Proof. Let £ € [0,2n[? and w? > 0. Suppose that either £ # 0 or w? # 0 and
that w? is in the spectrum of AS. Then there exists ¢ € L?(R?/Z?) such that
¢ #0 and
1
(V-1 - 6—(V—i§)¢+w2¢= 0.

P
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We can easily see that since ¢ and w? are not simultaneously equal to 0, (V —
1
i€)p #0. Let p = —(V —if)¢p € L*(R? /Z2)2. Then

€p

(V—i&)(V —if) -+ wepp =0,

which means that w? is an eigenvalue of Bf,. Moreover, if ¢; and ¢2 are two
linearly independent eigenvectors related to the same eigenvalue w? # 0, then
Y1 = i(V — &)1 and Py = é(v — &) ¢ are linearly independent.

We conclude that all the eigenvalues of Af) except for the eigenvalue 0 of Ag
argz eigenvalues of Bf,. We will see that 0 is an infinite multiplicity eigenvalue of
AY.

’ Conversely, let w? be an eigenvalue of BS and let ¢ € L?(R?/Z?)? be such
that ¥ # 0 and satisfies

(V —i€)(V i) -9 + weptp = 0.

Suppose that (V —i€) - ¢ = 0. Then, since 1) # 0, we have w? = 0. We also
obtain that V.(e~%21)) = 0, or equivalently, that there exists a € L?(R?/Z?)
such that

e =V x (ae™%7)

where V x a = (02a, —01a). It follows that

¢:an—z’(_£21 )a.

Hence, 0 is an eigenvalue of Bg with infinite multiplicity.
In the case where (V —i€) - #0, let ¢ = (V —i€) - € L?(R? /Z?). Then,

(V=i&) —(V-i€)p+uw’p=0,

1
e
which means that w? is an eigenvalue of Af,. We can also show that if ¢y and 1),
are two linearly independent eigenvectors of Bg related to the same eigenvalue
w? # 0, then ¢ = (V —i€) -4y and ¢ = (V —i&) - 92 are linearly independent.

The same proof holds for the operators Afv and va and for the eigenvalues
of A and B. O

As a consequence of the above theorem, we can recover the properties of
the spectra of A§V and Ayn by studying those of va and By to which we can
apply mainly the same technique as in the TM case since their domain does not
depend on €.

To this end we need to give an analogous result to Lemma 3.2.1 for the
operator B,. We define the resolvent R(z) = (B, — 2)~'.

Lemma 3.4.1 For any z ¢ ¥, and I > 0 we have
9 (V21/4) ,—m.|z—y| 2
Xz, 1 R(2) Xyl < E e e~V for all z,y € R® (3.4.38)

with

U
m. — , 3.4.39
42 42| + 1) ( )
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where || - || denotes the L?>-norm on R%, n = dist(2,%,), e = mingcp2ep(x),
and Xz, is the characteristic function of the cube {y = (y1,y2) € R? : |y1 —z1| <

% and |yz — z2| < %}

Proof. The proof is exactly the same as the one for the Helmholtz operator
which uses a Combes-Thomas argument and is given by A. Figotin and A. Klein
in [30, 31, 29].

Let B, denote the operators formally given by

B, =¢e""B,e™ ", acR?, (3.4.40)

as the closed densely defined operators (uniquely) introduced by the correspond-
ing quadratic forms defined on C} (R?) by

Bulif] = (V-(e4), 597 70) = (V)b s (V=a) ) - (3:441)
We also introduce the quadratic form 9, as
Qul] = Balu] ~ Bofy]
= @ gV (Vb )
(@, )
Since
(@ 5 )| < 5lal (0 ) + (Vo V) L Gad
we have

|Qal¥]] < lalBo[¢)] + lal(1 + [al)e= [[Y]*  for all ¢ € C3(R?) . (3.4.43)

Then we require |a| < 1 and use Theorem VI.3.9 in [43] to conclude that B,
is a closable sectorial form and define B, as the unique m-sectorial operator
associated with it. If in addition z ¢ ¥, and

A=2|(lal(1+ |a])e=" + |a|Bp)(Bp —2I) || < 1, (3.4.44)

we can conclude that z € 3, (the spectrum of B,) and

ARl (3.4.45)

|1R.(2) — Ro(2)l < T=Ap

where R, (z) = (B, — 2I)7L.
Since

A

2 ||(|a|(1 + la))e=!t + |a|z)(Bp — 2I) ™' + |a|||

2|al (((1 +la))ezt + |z)n t + 1)

IN

IN

2l ((25_1 e + 1) ,
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it is sufficient to take
n

al < , 3.4.46
la 2(2eZ" + |2 +1) ( )
to ensure A < 1. In fact, we take
la] <my = ———1 : (3.4.47)
42" + |z| +n)
so that we get A < 3. It follows that
4A 9
R <14+ -—— < —. 4.4
1R < (14 s ) ol < 3 (3.4.48)
Now, let 29,50 € R?, I > 0, and take
my
a=—"—(z¢ — .
|CL’0 _ yOl( 0 yO)
We have
IXz00Ro(2)Xyo,tll = [IXaoi€ " Ra(2)e” " Xyo,ll
e‘mflz"_yo‘||X$0,ze_a'($_$°)Ra(z)ea'(m_y(’)xyo,zﬂ
9
< _e—mz~|xo—yo|”Xwo’le—a'(z—wo)||m||xyo’le—a-(w—yo)||oo_
We also notice that
g 165020 g < v
and since m, < %, the theorem is proved. O

As a consequence, the matricial Green’s kernel of B, has a similar exponen-
tial decay as the Green’s kernel of A,. Let w? ¢ ¥,, we define the matricial
Green’s kernel K (w?;x,y) as the solution to

VV - K(w?z,y) + w?e, K (w2 2,y) = 0(z — y) ( (1] ? ) . (3.4.49)

Here we shall impose an outgoing radiation condition on V- K in order to ensure
uniqueness. As a direct consequence of the previous lemma, the following result
holds.

Corollary 3.4.1 There exist two positive constants C1 and C> depending only
on w3 > 0 such that for any w? € Ty,

|K (w5 2,y)] < Ce—Cadist(w? Zy) |z , for|z—y|—= +o0. (3.4.50)

Now we are ready to prove the analogous results to those concerning the TM
polarization.
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3.4.2 Convergence of the “continuous spectrum”

As done for the TM polarization, we give an estimate of the perturbation
brought to the continuous spectrum of A, by the supercell method.

Theorem 3.4.2 For any wg > 0 and Ny € N, there exists C > 0, depending
only on wg, Ny and 2, such that

. C
max dist(w?,3%,) < —
2 E+hm/N 2 PENT = N2
w?€Up o N41,N—1120n2Zp N[o,w3]

(3.4.51)

for any N > Ny and any £ € By .

Proof. Letk € [-N+1, N—12NN? and ¢ € By Let w? be in 57N 1[0, w2].
If w2 = 0, then necessarily £ = 0 and k£ = 0 and in that case we now that 0 € E?V.

Let us consider now w? # 0. From Theorem 3.4.1, we deduce that w? is in

the spectrum of BST™/.

Since £ + km/N € B, there exists ¢ € L?(R? /Z?)? with unit norm such that
: km . km 9
V—z(§+ﬁ) V—z(§+ﬁ) cp+wiepd=0. (3.4.52)

Let ¢ be defined in L?(R2/2NZ2)? as
$(z) = p(z)e "Th . (3.4.53)
We have ||q;|| L2®R2/2Nz2)2 = 4N 2 and it satisfies the following equation.
(V —i&)(V —if)- ¢+ w?epd =0, (3.4.54)
which can be written as
(V —i&)(V —if) - ¢ + w?ed = —xa(de)w?s . (3.4.55)
We prove then in the same way as done for the TM case that there exists an

eigenvalue wg belonging to the spectrum of Bf\,, that is Ef\, U {0}, satisfying

C
Since we considered w® # 0, for N large enough w? # 0 and then w € ¥4,
This means that c
dlst(wZ,Efv) S m .
The theorem is then proved. O

3.4.3 Convergence of the defect eigenvalues

Analogously to the TM polarization, we give a characterization of the part of
the spectrum Xy corresponding to the defect eigenvalues of . We use the
notations introduced in Definition 3.3.3. The following proposition holds.
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Proposition 3.4.1 For every gap |a,b] in X, (0 < a < b) satisfying |a,b[NE =
0, there exists Ny € N such that, for N > Ny, ¥ yN]a,b[= 0.

Proof. Suppose that the proposition is false. Then for any Ny € N there exists
N > Ng and w% €la,b[NEy. This means that w is in the spectrum of By.
Then there exist £y € By and ¢n € L?(R? /2NZ?)? with unit norm such that

(V —ién)(V —iéN) - on +wiendn =0, in L*(R*/2NZ??.  (3.4.56)
Now, define ¢ in L2(R?) as

én(z) = /QK (Wi @, y)e SN YN (y) dy - (3.4.57)

Using J)N, we prove in a similar way as for Proposition 3.3.2 that

IVV - ¢n + wiednllrzme)?

. < Cre N | (3.4.58)
loN L2 (R2)2

for some positive constants C; and Cs. Since w}z\, is away form 0 then
dist(wi,X) < Cre=N | (3.4.59)

which leads to a contradiction. O

Now we give the main result for the TE case about the convergence of the
eigenvalues of the supercell corresponding to the defect.

Theorem 3.4.3 Suppose that the perturbation has created defect eigenvalues.
Then, there exists ng > 0 and Ny € N such that for any n <ng and N > Ny,

SN #0, VEEBy.

Moreover, for any w§ > 0 and n < 1o, there exists two positive constants Cy
and Cy depending only on wg and 1 such that for any £ € By:

disty, (zggv N[0,wd], =1 N [o,wg]) < Ce=CaN (3.4.60)

Proof. Since we deal with a part of the spectrum that is away from 0, the
statements are exactly the same when considering the spectra related to Bj
instead of Ap. The proof becomes then similar to the one of Theorem 3.3.2. O

Note that the Corollary 3.3.1 holds for the TE polarization.

3.5 Numerical experiments

The numerical simulations presented in this section are computed with the MIT
Photonic-Bands (MPB) package [42]. We consider a 2-D photonic crystal in
which the dielectric permittivity takes the values of 1 and 12. The structure of
the crystal is shown in Figure 3.1 where the dark area corresponds to dielectric
permittivity 12.
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Figure 3.1: The periodic structure.
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Figure 3.2: TE-spectrum of the periodic structure.

We investigate only the TE polarization. We compute the TE-spectrum of
this structure for the first 8 bands. This is shown in Figure 3.2 where we notice
the presence of two gaps between the first and the second bands and between
the second and the third bands. The singularities of the last band come from the
fact that it crosses the following band which is not represented on the diagram.

Then we introduce a defect to this periodic structure by changing the dielec-
tric permittivity in one disc from 1 into 12. The corresponding 7x7 supercell is
represented in Figure 3.3. We compute the TE-spectrum in the supercell for a
fixed wave number and for different sizes of the supercell (3,5,7). The results
are shown in Figure 3.4. The horizontal dashed lines delimit the gaps of the
periodic medium.

We notice clearly the presence of two defect eigenvalues in the second gap.
The values of the defect frequencies and the relative difference with the 7x7
supercell results are shown in table 3.1.

The convergence of the continuous spectrum is in 1/N? but the multiplicative
constant depends on the dispersion of the band considered (the differential of the
frequency with respect to the wave vector). This explains why the convergence
in the first band (the most dispersive) is the lowest.
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Figure 3.4: TE-spectrum of the supercell.

In Figure 3.5 we plotted the defect frequencies against the wave number. In
the 3x3 supercell, the defect frequencies oscillate with an amplitude about 1%
while the oscillation is about 0.1% in the 5x5 supercell and about 0.05% in the
7x7 supercell.

Finally, in Figures 3.6-3.8 we represent the energy distribution and the mag-
netic field for the defect modes in the case of the 7x7 supercell.

3.6 Conclusion

We presented in this chapter a rigorous proof of the convergence of the super-
cell method. The convergence speed is related to the exponential decay of the

Supercell size 3x3 5x5 <7
Defect frequency 1 | 0.3574 0.3% | 0.3563 <00.3% | 0.3563
Defect frequency 2 | 0.3706 0.6% | 0.3687 0.05% | 0.3685

Table 3.1: Defect frequencies and relative difference with the 7x7 supercell.
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Figure 3.5: Dependence of the defect frequencies on the wave number.
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Figure 3.6: Energy distribution in the first defect mode.

Green’s function. If (w?,w}?) is a gap of the photonic crystal (w2, w? belong to
the spectrum), then it was proved that for w? € (w?,w?), the exponential decay
of the Green’s function is of the form

O(exp(—C'\/|w2 — w?||w? — Wi |z|)). (3.6.61)

It follows that the convergence of the defect eigenvalues will be slower when
they are closer to the edges of the gap. This is not an important problem since
these modes are useless. Actually, we are interested in the localization property
of the defect modes which is weak for such eigenvalues.

Finally, we remark that this method becomes very costly when looking for
defects lying over few bands. For example, if we look for a defect eigenvalue lying
in a gap between the fourth and the fifth band, when computing the spectrum
of the 5 x 5 supercell, every band will contribute with 52 eigenvalues and the
defect eigenvalue will be the 101%¢ eigenvalue which costs a lot of calculations.
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Figure 3.7: Energy distribution in the second defect mode.
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Figure 3.8: Magnetic field distribution in the first and second defect modes.

We believe that it should be possible to determine such eigenvalues in a faster

way with integral operator methods.






Chapter 4

Modeling photonic crystal
fibers

4.1 Introduction

Optical fibers are today finding wide use in areas covering telecommunications,
sensor technologies, spectroscopy, and medicine [17].

Ordinary optical fibers guide light by total internal reflection, which relies
on the refractive index of the central core being greater than that of the sur-
rounding cladding. This physical mechanism has been known and exploited
technologically for many years. However, within the past decade the research in
new purpose-built materials has opened up the possibilities of localizing and con-
trolling light in cavities and waveguides by a new physical mechanism, namely
the photonic band gap effect (PBG).

The PBG effect may be achieved in periodically structured materials having
a periodicity on the scale of the optical wavelength. Such periodic structures are
usually referred to as photonic crystals, or photonic band gap structures. By
appropriate choice of crystal structure, the dimensions of the periodic lattice,
and the properties of the component materials, propagation of electromagnetic
waves in certain frequency bands (the photonic band gaps) may be forbidden
within the crystal [69].

In [46], Knight and colleagues describe a fundamentally different type of
optical fiber, one that has a core with a lower refractive index than the cladding
and so rules out the possibility of internal reflection. Instead, light is guided by
a mechanism which allows it to be piped through air.

The core of the new fiber is essentially a defect surrounded by a periodic
array of air holes running along the entire length of the fiber. The defect acts
like the core of an optical fiber. Light, which is expelled from the periodic
structure surrounding the core, can only propagate along it. The new fiber
operates truly by the photonic band gap effect. We refer to such a structure as
a photonic crystal fiber (PCF).

In this chapter we model the propagation of electromagnetic waves in pho-
tonic crystal fibers. We give a mathematical framework for understanding their
very unusual properties compared with the conventional fibers, attributed to an
operation of the well-known mechanism of total reflection, and develop theoret-

69
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ical tools for the modeling of these photonic crystal fibers. We find conditions
under which guided modes exist, and the nature of such modes. We study their
dispersion properties and verify their exponential confinement. In particular,
we show that there exists a discrete set of these modes parameterized by a
wave-number parameter. We illustrate the main findings of the investigation in
numerical examples.

4.2 Problem statement

We consider a 2-D photonic crystal, that is a medium characterized by a dielec-
tric permittivity being periodic in two normal directions and invariant in the
third normal direction. More precisely, the dielectric permittivity is given by a
piecewise constant L and away from 0 function €, (z). This means that there
exist e_ and 4 positive constants such that:

0<e_<egp(@)<ey <00, ae zeR. (4.2.1)

The bounds e— and €4 are supposed to be reached. The function e, is assumed
to be independent of x3 and unit-periodic in the z3 = 0 plane:

Ep(.’L'l + ].,.’1:2) = EP(.TCl,.’L'g), EP(.TCl,.ZQ + ].) = EP(.'El,.CEQ) . (422)

To this perfect 2-D photonic crystal, we introduce a line defect which is
represented by a perturbation to the dielectric function (6¢)(z1,22). The per-
turbation is confined to the domain Q:

(0e)(w1,22) =0, z€Q°.
Then the medium with defect has the dielectric function
ep(21,2) = e(x1, x2) + (d¢)(z1,22) . (4.2.3)

Our goal is to find the guided modes in this structure, i.e., frequencies for
which there exist solutions to the time-harmonic Maxwell equations that are
propagating along the defect and the energy of which is confined to the defect
area.

4.3 Maxwell equations

The electromagnetic fields (E, H) satisfy the following time-harmonic Maxwell
equations:

(4.3.4)

VxH = —iwe(z)E,
VxE = iwH.

However, this system can be studied from two scalar equations. Actually,
the geometry of the medium and its dielectric function are independent of the
third space coordinate x3. Since we are looking for guided waves along the third
direction, we take E and H with fixed exponential variation in the coordinate x3
of the form e?#%3. This means that the electromagnetic field have the expression
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(Ee®#®s  He'B?3) where E and H only depend on (z1,z2). As we can see under
such assumption, the curl operator reduces to

OH;

——2 _igH,
0 o

V x (He#f?s) = ¢ifrs | j8H, — =22 | | (4.3.5)
or
oH, OH
0.%'1 8.’[52

Consequently, the harmonic Maxwell system is now decoupled in two inde-
pendent subsystems. The solutions to the first one:

. B 0H;
zw(é‘(x)—ﬁ El+0—a72 = 0,
, B 0H;
iw (E(.’L’) - E, — o 0, (4.3.6)
0Ey 0F;
CiwHL £ 22 YT
twis + 8181 61’2 0 ’

are called transverse electric (TE) and have the property E3 = 0. The solutions
to the second one:

_ OH, OH, B
zws(x)E3+§—a—w2 ) = 0,
. FEs
— 1-— H — =
iw < w252(x)) 1+ 2y 0, (4.3.7)
B 0Es
“ (1 wzs(x)) B or, 0,

are called transverse magnetic (TM) and have the property Hs = 0. In both
cases, solutions can be computed from a unique scalar function (resp. Hj or
E3) which satisfies one of the following equations:

1 .
V-inH3+w2H3 = 0,
E(.’L’) -z
() (4.3.8)
V- ~VE; +w?(x)Es = 0.
e(e) = %

The problem consists then in finding (w?, 8?,u) € R x Rt x L?(R?) such
that 82 < w?e_ and u is solution of

V- ~Vu+w?u=0, 4.3.9
i (4.3.9)
in the TE case and of
v. @ 7Vt wle(z)u =0, (4.3.10)
e(z) — 2

in the TM case.
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4.4 Periodic operators and Floquet theory

As we look into the equations (4.3.9) and (4.3.10), we notice that they are
partial differential equations with almost periodic coefficients. More precisely,
these are spectral problems of partial differential operators with coefficients
that are compactly supported perturbations of periodic functions. Let us then
consider the periodic operators.

For a? < e_, we define the unbounded operators AP and BP as

AP - [2(R?) — L2(R?)

u = APy=-V-. WVU , (4.4.11)
and
Br:L2(R%?) — L%*R?)
u +— DBPyu=-— ! £5(2) Vu (4.4.12)

ep(z)  ep(z) —a®

These are self-adjoint partial differential operators with periodic coefficients.
The self-adjointness character of B is seen in the weighted Sobolev space
L?(R? ep(z)d).

Let us start by considering AP. This is an acoustic operator. It is also the
operator governing the propagation of TE-polarized electromagnetic waves in a
2-D medium with a virtual dielectric permittivity e, — a®. Its spectrum has a
band structure depending on the parameter a and it is well known that such
operators can have band gaps, i.e., intervals of values of w that do not belong
to the spectrum of AP and so propagating waves at frequencies w can not exist
in the virtual 2-D photonic crystal with dielectric permittivity e, — a?.

The case of BP is slightly different. This is not an operator governing
the propagation of TM-polarized in some dielectric medium since it is not a
Helmholtz operator. However, it still has band-structure spectrum. Actually,
since it is elliptic and self-adjoint, when applying the Floquet transform we find
a collection of operators defined on the unit cell, depending continuously on the
dual variable and with point spectrum in the positive half-real axis accumulat-
ing at infinity. Then it is clear that the spectrum of BP has a band-structure.
The other question that we can ask is: Can it have gaps?

The answer is yes. First, we notice that when o = 0, Bf is a Helmholtz
operator. It is well known that for suitable periodic dielectric function e, the
Helmholtz operator

BY :I2(R?) — L*(R?)

u o Blu=-— (4.4.13)

L A,
ep(2)
can exhibit band gaps. It remains to prove the continuous dependence of the
spectrum of BY on a to conclude that, at least for o close to 0, B2 has gaps
in its spectrum. The continuity can be seen with the dependence on a of the
point spectrum of the Floquet transformed operators.

In what follows, we suppose that &, is such that AP or BP (depending on
which polarization is considered) has a gap for a? belonging to a non-empty
open subset of (0,e_).
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4.5 The Green’s kernel

Here we define the Green’s kernel for the operators AP and BE when they have
gaps.

4.5.1 The TE polarization

Let us suppose that for some a € (0,£_), the operator AP has gaps in its
spectrum. We denote by X, the spectrum of AP. Let w? be in Rt \ ,. We
can then define the Green’s kernel G, (w?;x,y) as the solution to

1
Vo ) s e YOy + W Galwiy) =6 —y) (4.5.14)

One of the main properties of the Green’s kernel is stated in the following
lemma.

Lemma 4.5.1 There exist positive constants C1 and Ca depending on o and
w§ such that for any w? €]0,wd[\Zq:

|Ga(w? z,y)| < CyeC2 distw? Ba)lz—y| | |z —y| = +o00. (4.5.15)

This explains why an incident wave with frequency lying in the gap is reflected
by the photonic crystal and decays exponentially inside it. It also gives a justi-
fication to the exponential localization of modes created by adding a compactly
supported defect in the crystal.

The exponential decay is obtained by using a Combes-Thomas [21] argument
to get the appropriate estimates on the resolvent. It is known however that the

radius of localization )

Cadist(w?,Xy)

is not optimal close to the spectrum. More precisely, let ]a,b[ be a gap of AR,
1.€.,

Ja,b[NX, =0 and a,b€X,,

then it has been proved that we have a decay estimate of the form:
e~ CVIw—allw?—blla—y|

This is obtained by a general operator-theoretic approach. The main idea con-
sists in using the Paley-Wiener theorems for the Floquet transform and the
exponential decay of functions for which the Floquet transform has analytic
dependence on the dual variable in a neighborhood of the real axis.

Another property of the Green’s function is its weak singularity when z = y.

Lemma 4.5.2 Let D be a bounded domain in which €, is constant. Then the

function

ep —a?
2m

is continuous for z,y in D when |z —y| — 0.

Ga(wz; T, y) - log |£E - y' (4516)
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Proof. We recall that
1
A (— log |z — y|> =40(z—vy) . (4.5.17)
21

Let us define K by

2
Ep —

K(z,y) = Go(w;2,y) — log |z —y] .

We remark that K satisfies the following Helmholtz equation:

AK(2,9) +w*(ep — o)) K (2,y) = —? %)

log |z —y| . (4.5.18)
27

Since log |z — y| is L;-integrable, we deduce that K, considered as a function of
y for a fixed =, is in H?(D) and is continuous when |z — y| — 0. O

4.5.2 The TM polarization

Again, the case of the TM polarization is not exactly similar to the TE polariza-
tion. Since the operator BP is not a Helmholtz operator, the Green’s kernel is
different from the one of By. We use the same notations as done in the previous
section calling ¥, the spectrum of BE and G4 (w?;z,y) the solution to

' % VGa(w?2,9) +w’ep(2)Ga(w’;z,y) = 8z —y) . (45.19)

Nevertheless, the analogous results to the ones cited in the previous section

hold. Actually, Lemma 4.5.1 relies on a Combes-Thomas argument [21] that
can still be used. We have just to modify the duality in L?(R?) defining it as

(w0) = [ u(e)7(0) 2p(o) dr

The analogous result to the one in Lemma 4.5.2 is that the function

2
Ep —
2mep

Go(w?z,y) — log |z — y| (4.5.20)

is continuous for z,y in D when |z —y| = 0.

4.6 An integral formulation of the photonic fiber
problem
Now we introduce a compactly supported perturbation to the dielectric function

of the medium which is transformed into £(z) defined in (4.2.3) and we look for
guided modes (w?, 32,u) € R x Rt x L2(R?) solutions of (4.3.9) or (4.3.10).
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4.6.1 The TE polarization

We consider here the TE polarization. Suppose that we have a guided mode.
This clearly means that u is an eigenfunction of A for the eigenvalue w? where

A, is the operator defined for o < e_ as

Ao L2(R?) — L*(R?) 1 .

It is then interesting to look for the spectral properties of the operator A, and
for a practical characterization of its eigenvalues when they exist. The following
proposition is a consequence of a classical result in spectral theory.

Proposition 4.6.1 For any o €]0,e_[, the operators AP and A, have the same
essential spectrum.

This is a consequence of the Weyl’s theorem since it can be proved that A, — AP
is a relatively compact perturbation of AP.

Then the spectrum of 4, lying in the gaps of AP will consist in eigenvalues of
finite multiplicity that can accumulate only at the edges of the gaps. Moreover,
A, has the same continuous spectrum as AP. An interesting question is: what
about the existence of eigenvalues of A, in the continuous spectrum? There
is no result for the moment answering whether such eigenvalues can appear or
not. In the case that such eigenvalues exist, the behaviour of the corresponding
eigenfunctions is not obvious. On one hand, they should be localized due to the
local character of the perturbation and on the other hand, it has enough energy
to propagate along the medium.

We suppose here that the guided mode we consider is such that w? € 5.

Recalling that €, and € are piecewise constant, we define the finite partitwion
(D;)ier of Q as the disjoint subdomains of Q in which ep, € and thus (de) are
constant. We also define II = U;c;0D;. We suppose that the curves D; N D_]
and D; N Q¢ are smooth.

The following proposition holds.

Proposition 4.6.2 The guided modes (w?, 3%,u) € Rt x Rt x L%(R?) satisfying
w2 € s are eractly the functions u satisfying

1
[—,326””] =0 s

and are solutions of the following integral equation:

3]

u@) = o [ mcgw;x,y)u(y)@ (46.22)
2., (d¢) 1 "
R P

where 3, u is the normal derivative of u on II and [f] represents the jump of f
across 11 in the v direction.
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Proof. Suppose that u satisfies the conditions above. It is clear then that u
satisfies (4.3.9) in Q°. Now let us consider u in a domain D;. Since ¢p, € and
(6¢) are constant in D;, we have:

! 2 2, _ &pl@) - 5—2
(mAz +w )Gg(w ;T,Y) = m(s(x -y) (4.6.23)
. (9@ .
- Y

for any z € Q\II and any y € R2. Tt follows that for any i € I and any z € D;,
we have:

! > _ 2 9@
(v g T = g
(de)(@) (6¢) \
_W4E($§ —mf—z /sz (ep jg_z)Gé(‘” ;@ y)uly) dy
2 ((56)(.'E) 2. (66) 1
—Ww E(:L-) — 5_2 /HGg(w ;may)[(ep 5_2)] (g— g_z)auu(y) dly
=0.

Then u solves equation (4.3.9) in R? \ II. Recalling the jump relation it satisfies,
we conclude that u solves (4.3.9) in R2.

Conversely, let us suppose that u solves equation (4.3.9). Then u satisfies
the jump relation

1
723,//&] =0
=
on II.
Moreover, we have:
uw) = [ (v V406 (i, )ul) d
R? ep(y) — 52 ©
1
- -/ S VG s (% 2,y) - Vuly) dy
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Denoting by £, e’ and (de)’ the values of p,, £ and (8¢) in D;, we get

W = % A %Gg(w%w,y)v-@wm
3 [, Cretnn 5&‘5)’5();_;2 o,uly)dl,
= w2/{)%%(w2;w,y)u(y)dy
+/1]G§(w2;x,y)[(6p((i€)g_§)] (E(y)l_ ) iy
which ends the proof. O

4.6.2 The TM polarization

Now we consider the TM polarization for which the results are mainly the same.
Suppose that we have a guided mode. Then u is an eigenfunction of B for the

eigenvalue w? where B, is the operator defined for a? < e_ as

B, : L*(R?) — L2%(R?)
1
u = Byu=--V- ;VU . (4.6.24)
e e(z)—a?

The counterpart of Proposition 4.6.1 is the following.

Proposition 4.6.3 For any o €]0,e_[, the operators BY, and B, have the same
essential spectrum.

We consider only guided modes for which w? g ¥ 5. The following proposi-
tion holds.

Proposition 4.6.4 The guided modes (w?, %,u) € Rt xRt x L(R?) satisfying
w? € X5 are exactly the functions u satisfying
€
a0,
and are solutions of the following integral equation:

wr) = o [ e ) d (1.6.25

(ep
_,_f)_Z/HGg(wQ;-T:y) [g(eééj)f,—z)] (-2

where J,u is the normal derivative of u on Il and [f] represents the jump of f
across 11 in the v direction.
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Proof. Suppose that v satisfies the conditions above. Then it is clear that u
satisfies (4.3.10) in Q°. Now let us consider w in a domain D;. Since &y, €, and
(d¢) are constant in D;, we have for any z € D; and any y € R?:

e(x) 2 2. _ (ep(x) — 5—2)5(;5) .
<m&v +w e(w))Gg(w ;T,Y) = @) = ﬁ—i)sp(x)(s( y) (4.6.26)
2€() (0¢)(x) 2
-z B

from which we deduce in a similar way as done in the TE case that u satisfies
equation (4.3.10) in Q \ II. Recalling the jump relation it satisfies, we deduce
that u satisfies (4.3.10) in R?.

Conversely, suppose that u solves equation (4.3.10). Then u satisfies the
jump relation

[(e — g)(?,,u] =0
on II.

Moreover, we have:
ww) = [ (V2 b)) Ga i) b

R2 €p - 5 @

= - [ 2 VG, W) Vel d
R2 Ep(y) — o2 “
2 [ Gy hsa ) b
R2 ¢

4 [ Gy (@i p)ul) 09)w)
+ [ Gs(W%z,y)V % () > Vu(y) dy
R2 e(y) — o=

w? o1 /i €l — %) (et = %)
B / (6e) 2
+ X 2 2 Gé(w 7may)81/u(y) ng
2 o G- B -5

+ [ Gpsa )W) dr
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and therefore

we) = #Y [ %Gg(w%w,y)u(y)@

i€l

B (d¢) .
o Z/am (€ — 8 (i - %)Gé(w 2, 9)0uuly) dy

i€l P

+w? /Q G (w*;2,y)u(y)(de)(y) dy

2 p(¥) 2
= /Qm%(w 2, )u(w) (05)(v) d

2
+%/HGg(w2;w,y)[

(ep — ﬁ)s] (e(y) - &)

The proposition is then proved. O

4.7 Preliminary results

We introduce in this section new integral operators that will be useful for finding
guided modes. We start by orienting the curves D; N.D; and D; N{2° and define
a normal vector v on each one.

Definition 4.7.1 We define the operator Ay, s for w?> ¢ X5 by

Aup:LA(Q) x LA(I) — L*(Q) x L*(T)
(U,QD) = Aw,ﬁ(ua‘p) = (U,¢) s

such that
o) = o [ G ) (@.7.27)
2 (d¢)
+/HGg(w 5T, Y) [Tg_z)]q?(y)dly , TEQ,
and

for some p € {+,—}, where for x € Il and f defined on a neighborhood of II,
(@) = lir(r)li flx +711y).
T—

In fact, the parameter p has just to take a fixed value + or — on each component
D;NDj and D; NQ°, 4, j in I. The following proposition holds.

Proposition 4.7.1 The operator A, g is compact.

Proof. Let (v,¢) = A, p(u,p). It is obvious that in each subdomain D;,
v solves a Helmholtz equation with an L? right hand side. It follows that v €
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[Lic; HX(D:) and ¢ € [[; ;; H/*(DiND;) x[;e; H/?(DiNQF). The compact-
ness of A, g is then a consequence of the compact embedding of [],., H*(D;)
in L2(Q) and of [[; je; H/*(Di N Dj) x [1;e; HY*(D; N Q) in L*(T0). O

Now we define the analogous operator that will be useful in the TM polar-
ization.

Definition 4.7.2 We define the operator B, g for w? & L5 by

B.p:L*(Q) x L*(I1) — L*(Q) x L*(T)
(u7(p) = BW,B(U7</7) = (U7¢) )

such that
_ 2 ep(de) 2.
vw) = [ TG ) (4.7.29)
B (de)
+—2/ Gs (W% z,y) L(Ep — 5_2)]<p(y) d,, ze€Q,
and

0(@) = — B i) e, (4.7.30)

for some p € {+,-}.
The following proposition holds.
Proposition 4.7.2 The operator B, s is compact.

The proof is exactly the same as for A, g.

4.8 Guided modes in the photonic fiber

Now we are going to give the main result of this chapter. Actually, we character-
ize the guided modes in the photonic fiber as a spectral problem on a compact
operator.

Theorem 4.8.1 The guided modes (w?, 32, u) in the TE-polarization satisfying
w? € X 4o are exactly the solutions to the following spectral problem:
w2

w

Au,p(u, ) = (u, ) (4.8.31)
for some ¢ € L?(R?).

Proof. Suppose that (w?, %, u) is a guided mode and that w? & ¥ 42. Then
o2

from Proposition 4.6.2, we have

Ay p(u, OHu) . (4.8.32)

—  —  __HH - -
o - o= 5
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Conversely, suppose that (u, ¢) is an eigenfunction of 4, g for the eigenvalue
1. Then, recalling Proposition 4.6.2, we need only to prove that

L__au]—o.

to establish that (w?,3%,u) is a guided mode.
From the equation satisfied by G s (w?;z,y) we deduce that for any x € II

and any y € Q \ II we have
1
[723,,6% (w?; w,y)] =0. (4.8.33)
€p — =5 @

It follows that

1 9 Ep — B_Z 1 5
,62 6,,Gg(w 3T,y | = @ OFGp (W z,y) . (4.8.34)
E - _ E w

Let us consider

Ol /Gﬁw L2,y [( (%) )]cp(y)dly.

E“——

From Lemma 4.5.2 we deduce that

26“/G,@ w’; 3,y [(Ep(5 )52 ]w(y)dly

e o7)
1 et — B (d€)
= 6'“( w2;,fL'7 S @ log |z — ) |:_ P} :| dl
/Hau y g (W5 z,y) — =5 log|z —y| =2 o(y)dl

2
1 el — B, (6¢)
+ 6‘,’,‘/ P9 loglz—y [7] p(y)dl, .
32 - 21 | | (Ep _ 5—2) Yy
The following identity is a classical result in the potential theory:

1 1 1
(9,‘,‘/ o log |z — yle(y) dl, = u§90($) +/ 2—35 log |z — yle(y)dly, . (4.8.35)
11 47 Im <7

Therefore
Euiw_zc‘?,’,‘/HGg(wz;a:,y) [&]tp(y)dly
= /Héaﬁc’yz(wz’;w,y)[%]w(y)dly
2R ]

We then deduce the expression of the jump we are looking for:

62
[ 8u] = [EP B“f] o
e— 2 N
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After making the necessary simplifications, we get

1 Ep — ﬁ—z et — % 1
——=0u| = « « oM — . 4.8.36
L_g_z ] [_B_]_ﬂ_ BT (4.8.36)
The second identity in A, g(u, ¢) = (u, ¢) gives the desired result. O

Here is the analogous result concerning the TM polarization.

Theorem 4.8.2 The guided modes (w?, 3%, u) in the TM-polarization satisfying
w? € 42 are exactly the solutions to the following spectral problem.
w2

w

Bw,g(u,cp) = (u790) > (4837)

for some ¢ € L?(R?).

Proof. If (w?,3%,u) is a guided mode and w? & ¥ 42, then from Proposition
)

4.6.4, we have clearly

1
Bw,ﬁ(uv 52 allll/u) = (ua

1
S — T 4.8.38
T S 0u) (48.38)

() — w2

Conversely, suppose that (u, ¢) is an eigenfunction of B, g for the eigenvalue
1. Recalling Proposition 4.6.4, we just have to prove that

3

E_F

From the equation satisfied by G s (w?;2,y) we deduce that for any z € II
and any y € Q \ II we have

[Eipﬁz@uGa(uﬂ;w,y)] =0. (4.8.39)
Ep — o2 @

As a consequence, we have

_B
[Lﬁz@uGﬁ(wz;w,y)] = [S(Ep “’2)] . 500G (W z,y) . (4.8.40)

€ w2 Ep(5_5_2) € — o

Using again the classical potential theory result mentioned in the previous proof,
we get

gt (d¢)
S04 | Gp (W, [ = ] dl
g | Gelhizy) - ) ply)diy
gh (de)
= [ oG e, [7] d
/neu—ﬁ s (W% 2,y) - o(y) dl
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We deduce the expression of the jump we are looking for:

|: 662 61/U:| = |:5(EP — %)] Eg 2 65’11/
€= 2 eple—%)leh -5
1e(ep — B—Z)] 1 [s(ep - 5—2)] [ (5¢) ]
+ _7% - a ‘-‘J2 2 b
<P2%@—%) 2lee-m)l) -5V

and therefore we get

B> B>
€ e(ep — Z5)] el(e” — Z5) ek
Zayu] :[ P o7 ] p(&" iz _ohu—y) . (4841
L—% e ) laneh e\ g Te) e US4

w2

The second identity in By, g(u, p) = (u, ) gives the desired result. O

In both cases, because of the exponential decay of the corresponding Green’s
function, it is clear that the guided modes are exponentially confined.

4.9 Gaps opening in ¥,: TE polarization

In this section we are interested in the existence of gaps in the spectrum of
the operator AP and especially in the asymptotic behaviour under some limit
conditions on a.

Our approach is inspired by the work of Hempel and Lienau in [41] where
almost all the results of this section can be found with weaker conditions on the
smoothness of what will be denoted the domain Q. We give here all the proofs
adapting them to our problem for the sake of clarity.

The structure of the 2D-photonic crystal considered here is simple, but the
results could be generalized to many other structures.

4.9.1 Medium description

For n = (ny,n2) € Z2 we define Qn = (n1,n1 + 1) X (n2,n2 +1). Let Q be a
connected open domain with smooth boundary such that Q¢ CC Q¢. We define

Qn=Q +n,

0 = Unez28n ,

Q;:Qn\ﬂ_n7
and

Q°=R2\Q.

Finally, 0D denotes the boundary of the domain D.
We consider the photonic crystal which dielectric permittivity is given by
ep(z) that satisfies

1 z €0°,
ep() —{ et1 z€q, (4.9.42)

where € is a positive constant.

This dielectric function represents a photonic fiber made of rods of dielectric
1+ € > 1 with section )¢ placed periodically in air or more generally in a
homogeneous dielectric medium with permittivity strictly lower than that of
the rods (after scaling, we come back to the problem with e, (z)).
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Ep =11

Figure 4.1: Section of the photonic fiber cladding.

4.9.2 The spectral problem

We are interested in the spectrum X, of the operator AP and more precisely
in the existence of gaps in X,. Our idea is the following: suppose that a? goes
to 1, then the coefficient of AP that takes the value 1 —a? < 1 in Q¢ and
€+1—a? ~ e > 0 will have a very high contrast. It can then be expected to
find gaps in the corresponding spectrum. Of course, this is very far from the
final proof, since we do not even know where these gaps will appear. It can for
example appear around values that diverge which will be useless since we look
for gaps around finite values of w?.
Our original spectral problem is then

p _

Since a2 = 17, we introduce the small positive parameter n =1 — o?. We also
define the operator A, as

A, =-V-(1+ %XQC)W : (4.9.44)

and the new spectral parameter A\ = (e + n)w?. It can be easily seen that

A, = (e+n)AD. )
Our new spectral problem consists now in finding gaps in the spectrum X,
of A, when 7 goes to 0.

4.9.3 Asymptotic behaviour of the spectrum

We introduce the quadratic form a,[u], also denoted a,[u,u], in the Hilbert
space L?(R?) defined by

afu] = / (14 Sxoo) |Vl do , (4.9.45)
R2 n

for u € D(a,) = H'(R?), the usual Sobolev space with the norm |lul; =
vl L2(r2)+[| V|| L2(r2)- Tt is obvious that this quadratic form is positive, densely
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defined and closed. It then defines a unique self-adjoint operator in L?(IR?) that

is A, since

(Apu,v) = ay[u,v], we€ D(4,), veDay). (4.9.46)

The operator /In is then uniquely determined by its quadratic form. This
allows us to study the limit of the quadratic form a,, in order to determine the
limiting spectrum of fln.

It is clear that the quadratic form a,, whose domain is independent of 7,
increases monotonically when 7 — 0. The monotone convergence theorem for
an increasing sequence of quadratic forms [62] yields a closed quadratic form ag
defined by

D(ag) = {u € H'(R?) ;sup a,[u] < oo} , (4.9.47)
7>0
and
aolu] = lim a,fu] =supaylu], u € D(ap). (4.9.48)
n—0+ n>0

Furthermore, this quadratic form defines a unique self-adjoint operator Ay which
satisfies

A, — Ay in the strong resolvent sense, 7 — 0" . (4.9.49)

This operator acts in a (possibly smaller) Hilbert space given by the closure of
D(ap) in L%*(R?), and we think of the resolvent of Ay as the zero operator on
the orthogonal complement of D(ag) in L*(R?).
We recall that A, converges to Ay in the strong resolvent sense if and only
if:
(A, + D71 = (Ao + D)7V f, VfeL*(R?). (4.9.50)

Now let us prove that Ag is the Dirichlet Laplacian on Q.

Lemma 4.9.1 Suppose u € H'(R?) is such that a,[u] < C for alln > 0 and
some positive constant C. Then u =0 a.e. in Q°.

Proof. Suppose that v € H'(R?) is such that for any > 0 and for some
positive constant C' we have a,[u] < C. It follows that

€

n/ |Vul?dr <C, VYnp>0. (4.9.51)
Qc

This implies that Vu = 0 a.e. in Q¢ which is connected and so u is constant in
Q¢. Since u € L?(R?), it follows that v = 0 a.e. in Q°. O

As a consequence, we have the following corollary.
Corollary 4.9.1 The domain of ag is the space
HY Q) = {u e H(R?); u(z) =0 a.e. in Q°}, (4.9.52)

which coincides with the classical space Hj () defined as the closure of C°(Q)
in the || -||1-norm provided Q is reqular, which we suppose (note that an exterior
cone condition is sufficient).
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This determines the self-adjoint operator Ag.

Corollary 4.9.2 The limiting operator Ay is the Dirichlet Laplacian in the
domain Q denoted —Aq with the domain given by the closure of H2() in
HLQ).

The following proposition holds.

Proposition 4.9.1 The operator A, converges to —Aq = @ (—Aq,) in the

nez?
strong resolvent sense.

It is clear that the operator —Agq, has compact resolvent and then its spec-
trum consists in a sequence of discrete eigenvalues of finite multiplicity. We
denote these (repeated) eigenvalues, ordered by min — max, as dy, k € N*, or

0<51562S"'S6k56k+13"': kJEN*, (4953)

where 8 — +00 as k — +o00. The spectrum of —Agq is then the set {d; , k €
N*}, each point in the spectrum being an eigenvalue of infinite multiplicity.

Determining the strong resolvent limit is however not sufficient to determine
the limit of the spectrum of An. Actually we need a norm resolvent convergence
to determine the uniform limit of any compactly supported part of the spectrum
of A,.

Let us now turn to the Floquet theory and look into the operator An as the
“direct integral” of the operators A;’,:

~ @ ~
A, = / Ay, (4.9.54)
0l

e(—m,m]?

where Ag denotes the operator V - (1 + %)V acting on L2(Qo), the subspace
of L*(Qo) with ~y-periodic boundary condition. We denote by a) its associated
quadratic form which domain is the space of y-periodic functions in H'(Qo).

It is obvious that each A} has compact resolvent. Let ()\ e)keNs be its
(finite multiplicity) eigenvalues ordered by the min —max, i.e., )\ﬂ’k <A b
We recall that the (continuous) spectrum of A, consists in the union of the
intervals corresponding to the range of each v — A] | when « varies in (-, )2,
i.e.,

Sy = Uken+{A] | v € (—m, 7]’} . (4.9.55)

Let us now introduce the Dirichlet and Neumann operators on (g, denoted
by /I(D) and fl(N) respectively, acting like —V - (1 %)V on L%(Qo) and their
respectlve associated quadratic forms a(D) and a(N) with domains HJ (Qo) and

HY(Qo), respectively.

As for fl” the operators A(D) and fl(N) have compact resolvent and we de-

note by )\(Dk) and )\( ) their respective ordered eigenvalues. From the min — max
principle, we deduce that

MY <X, <X, keN, ye(=ma?, n>0. (4.9.56)
It follows that
Spc | DA (4.9.57)

kEN*
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Again, we apply the monotone convergence theorem for quadratic forms to
the forms a7, as,N), and ag,D) and we obtain the limiting quadratic forms af, a(()N),

and a((]D) , respectively. The self-adjoint operators associated to these quadratic
forms are A, A((]N), and A(()D), respectively.

The operator A(()D) is a self-adjoint operator on H}(Qo) and A(()N) acts on the
subspace H} (Qo) @ 1¢, of the functions u = 4 +c € H*(Qo) where @ € Hj ()
and c € R is a constant.

The operators Ag, A(()N), and /L()D) are the strong resolvent limits of flg, A%N),

and A%D), respectively. We recall that these operators have compact resolvent
and then purely discrete spectrum. By a result of Kato [43] (c¢f. [Thm. VIII-
3.5]), compactness implies the convergence in the norm resolvent sense. Then
we have

fl], — A, in norm resolvent sense, 71— 0, (4.9.58)

for each v € (—m,7]?, and

AP AP AN — A(™ | in norm resolvent sense, 17— 0.
(4.9.59)

Let us denote by (vk)ren the eigenvalues of the operator A((]N) ordered by
the min — max principle.

O=vi<vn<wv3<--<vp<wvpg+1<---, keN . (4.9.60)
From equation (4.9.59) we deduce that
MY = v, n—=0,keN . (4.9.61)
(N)

We recall that the domain of the form limit a; ’ is the subspace of the functions

in H'(R?) that are constant in Qg \ Qo and then the operator A((]N) is not the
Neumann operator on . 3
The following proposition gives the operator limit of A).

Proposition 4.9.2 (i) The limit of the Dirichlet operator A,SD) is the Dirichlet
0 AP = —Aq,. M
perator Ay’ = —Aq,. Moreover,

M) w0, n—0, keN. (4.9.62)
(i) For any v € (—m, 7|2\ {(0,0)}, we have A] = fl(()D) = —Aq, and
AMp—=0, n—=0,keN, v#(0,0). (4.9.63)
(ii3) For vo = (0,0), we have AJ® = A((JN) and
)‘Z?k_)’/’“ n—0,keN. (4.9.64)
Proof. From (4.9.58) and (4.9.59) it follows that we only need to identify the

limiting operators that is equivalent to identifying the corresponding quadratic
forms.
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It is obvious that, since all the quadratic forms considered are defined by
the same expression

/ 1+ )|Vul? dr
Qo n

we only need to determine the form domains of the limiting quadratic forms.

Concerning fl(()D), it is clear that it is defined for the subspace of H}(Qo) of
the functions with null gradient in Qo \ Qo, which corresponds to H} (). We
deduce then that /I(()D) = —Aq,.

Now let us consider a} for v # 7o. The form domain of ag is the subspace of

y-periodic functions in H'(Qo) that are constant in Qg \ Qo. Since v # (0,0),
this constant is necessarily 0 and the form domain of aj is then H}(Qo). It
follows that for v # 7o, Aj = A((]D) =—Ag,-

Finally the form domain of aj° is the subspace of periodic functions in
H'(Qo) that are constant in Qg \ Qq or simply the subspace of functions in

H'(Qo) that are constant in Qg \ Qo, that is exactly the form domain of fl((]N).
O

Now we can state the following result on the convergence of the spectrum of
Ay

Theorem 4.9.1 The spectrum of AP, converges to Ugen+[€ vk, e 10k] as a —
1, in the sense that if [)‘n_,k7)‘:1_,k] is the k' band of the spectrum of AP, then

Aok =€, Arp—oe 0, n—0. (4.9.65)

The convergence of the spectrum of AR is uniform on any compact of R, i.e.,
for any compact I of Rt and any C > 0, there exists 0 < ap < 1 such that if
ag<a<l,
dista(Sa N1, | [ vk, e 0] NT) < C . (4.9.66)
kN

Here disty (E, F') denotes the Hausdorff distance between the subsets E and F.
Now we can see clearly the emergence of gaps in ¥, as a goes to 1.

Corollary 4.9.3 Suppose that for some k € N*, §; < vg41, then for any com-
pact I CC (e 10, e tvpy1), there exists ag > 0 such that for any ap < a < 1,

S.NI=0. (4.9.67)

4.9.4 Existence of gaps in the limiting spectrum

The existence of gaps in X, for a close enough to 1 is an obvious consequence
of the existence of k € N* such that § < vgy1. In a first step, let us prove that
the eigenvalues vy, and d;, are enlaced.

Proposition 4.9.3 The eigenvalues vy, and &, of the operators respective fI(()N)
and A(()D) enlace, i.e.,

0=v1 <01 S < I <--- < KO0 S Vpg1<Oppr <0 (4.9.68)
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Proof. Recalling the inclusion of the form domains D(a(()D)) C D(a(()N)), we
deduce immediately that for any k € N*,

Let us denote u,(cN) the eigenvector of A(()N) related to the eigenvalue vy.
We recall that v; = 0 and ugN) = 1¢g,- Let D,(CN) = Vect(ul(N))1gSk. From
the definition of D(a(()N)) there exist constants ¢, € R for [ > 2 such that
ul(N) = clugN)-l-ﬁl(D), where ﬂl(D) € Hj (). It is also obvious that the dimension
of ﬁ,gD) = Vect(ﬂ/l(D))QSlskJrl is k and that f),(cD) C D,(cji)l

Finally, since

ag” i) = a§V[d] < vigallalfe, . VA€ DY, (4.9.70)

we deduce that
619 S Vi+1 (4.9.71)
which ends the proof. O

Now we give a condition for the existence of gaps in f],, when 7 is sufficiently
small.

Proposition 4.9.4 Let (6x)r>0 be the eigenvalues of A(()D) ordered by the
min — max principle where formally 69 = —00. Suppose that for some k,m > 0,

Op_1 <O0p=--+= 6k+m < 6k+m+1 . (4972)

(i) If there exists an eigenvector ug € H}(Qo) corresponding to the eigenvalue
Or and satisfying

/ wo de #£ 0, (4.9.73)
Qo

then
v < 0 , 5k+m < Vgim41 - (4.9.74)

(i) If all functions u € ker(;l((]D) — O1) have zero mean value, then
Vg =0k, 0T Optm = Vetmal - (4.9.75)
To prove this proposition we need the following lemma.
Lemma 4.9.2 We have D(A(()N)) = Vect{lQO,D(A(()D))} and
AN = p-APp, (4.9.76)

where P is the projection on Hg(Qo) along Vect{1q,} and P*, the adjoint of
P, is the projection on Vect{1lg,}+ = {u € D(a(()N)) , fQo u(z) dr = 0} along
Hg(Qo)* ) )

This means that if u € D(A(()N)) then Pu € D(A(()D)) and

A(()N)u = P*/I(()D)Pu = fl(()D)u ;
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conversely, if u € Vect{1q,, H} (Q0)} is such that Pu € D(KL()D)), then necessar-
ily u € D(A(()N)) and ASN)u = P*A(()D)Pu. In particular, for any u € D(A(()D))
we have

ANy = APy = / AP ydr =0. (4.9.77)

Proof. Let u € D(A(()N)), and let ¢, be the real constant such that Pu =
u — cylg, € H}(Q). It is clear that Pu € D(A((,N)), moreover, for any
v € D(a(()N)) we have (A(()N)u,fu) = a(()N)[u,v] = a(()N)[Pu,v]. Recalling that
D(a(()D)) C D(a(()N)), we deduce (/L()N)u,w) = a((JD) [Pu,w] for any w € D(a(()N)).
This means that Pu € D(A((JN)) and that A(()N)u = A((JD) Pu.

Finally, from (ﬁ(()N)u, 1g,) = a(()N) [u,1g,] = 0 we deduce that

/ A(()N)udn =0,
Qo

and so /I(()N)u = P*fl(()N)u = P*A(()D)Pu.
Conversely, suppose that u € D(A((]D)). For any w = wp + clg, € D(a,
where wg € Hj () and ¢ € R, we have

o)

a(()N) [’U,, U}] = a(()N) [U, ’U}()] = a(()D) [U, U)()] = (A(()D)uaw0)
= (P*/I(()D)u,wo) +((1 - P*)A(()D)u,wo) = (P*/L()D)u,w) )

because (1 — P*) AP u € {-I&(Qo)L ar~1d P*A((JD)uF 15,
It follows that u € D(A(()N)) and ASN)u = P*A(()D)u. a

Proof of Proposition 4.9.4:
(i) We define K(ng) and Kéiv) as ker(A((]D) —0x) and ker(fi(()N) — dy) respectively.
We also define f{ng) ={ue K(ng) 5 Jo, wdr = 0}. We first prove that fcgf) =
K(N)
0
From Lemma 4.9.2 we have immediately
(D) (N)
P c k(M
Let us consider now u € K ékN). Then there exists v € D(A(()D)) and c € R

such that u = v + clg,. We have v = Pu. Since du = A(()N)u = P*/L()D)Pu, it
is clear that [, udv = 0. Moreover,

(AP — §0)0 = (AN = 64 (u — clg,) = cdilg, - (4.9.78)
Recalling the function ug of the hypothesis, we get
0 = (A7) = 6)uo,v) = (uo, (A = 6k)v) = by / uo d . (4.9.79)
Qo

Since [, uodr # 0 we have c =0 and sou = v € K(ng), As [o, ude =0, we
deduce that u € f(ng). This proves

N (D
KM c KD
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Now suppose that v = or dm = Vit+m+1, then the dimension of K (gkN)
is at least m + 1 while the dimension of f((ng) is m which is impossible since

N (D
KM = k).

(ii) Suppose now that all functions in K (ng) have 0 mean. Then K ‘ng) =

j((ng) C K (giv) and so the dimension of K(gkN) is at least m + 1. Consequently,
the inequalities in (4.9.74) can not be both strict.

4.10 Gaps opening in Y,: TM polarization

In the TM polarization we have exactly the same results replacing the Hilbert
space L%(R?, dr) by the weighted Hilbert space L*(R?,¢e,(z) dr).

Theorem 4.10.1 The spectrum of B2 converges to Ugenle vk, e '] as a —

1, in the sense that if [/\;’k,/\:’k] is the k' band of the spectrum of AP, then

Aok € v, A e, 0. (4.10.80)

The convergence of the spectrum of BE is uniform on any compact of Rt ie.,
for any compact I of R", there exists a positive constant C independent of n
such that
dista(Sa N1, | [ ve, e 0N T) < C . (4.10.81)
kEN

The eigenvalues (d;) and (v;) are exactly the same as those defined in the
previous section. This is because ep(z) = €+ 1 in Q and so the modification of
the Hilbert space does not change the limiting operators.

4.11 Numerical experiments

In this section, we consider only the TE polarization. The periodic structures
considered here are conformal to those in the previous section. The dielectric
permittivity takes the value 5 in the domain Q¢ and 1 otherwise. We give
numerical results for different shapes of the domain ). The numerical tool
used here is the MIT Photonic-Bands (MPB) package [42].

We compute the continuous spectrum of AP, for different values of o € [0, 1].
The 16 first bands are represented. The results are shown with the correspond-
ing periodic medium in the figures below. The dark regions correspond to a
dielectric permittivity 5.

All the structures shown here have no gaps for planar propagation, i.e. a = 0.
Figure 4.9 shows the bands of the structure with discs of radius 0.3 in the planar
propagation. These bands are computed on the boundary of the irreductible
Brillouin zone.

We notice clearly the appearance of one or more gaps in the spectra of each
structure when o2 approaches 1 (a? > 0.9). The bottom of the first gap goes to
the first eigenvalue of the Dirichlet-Laplacian in the domain Q¢ when a? — 1.
Actually, if fy is the limit of the bottom of the first gap and d3 is the first
eigenvalue of the Dirichlet-Laplacian in g, then

1
27Tf0 = ﬁdg ; (41182)



92 CHAPTER 4. PHOTONIC CRYSTAL FIBERS

5¢
af
& i
g 3F
g 5
z, r
e r
I ' ;
L |
1
[ ] L
0’ ““““““““““““ FEPETETE B P P P B
. 0.1 0.3 0.5 0.7 0.9
[ ] [ J CVZ

Figure 4.2: Spectrum of the structure with discs of radius 0.15.
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Figure 4.3: Spectrum of the structure with discs of radius 0.3.

where € is defined in the previous section and is equal to 4 in our case.

When the size of )¢ increases, the midgap defect decreases and the width
of the gap which corresponds to the interval (d1,12) (defined in the previous
section) increases.

When the gap is wider, the exponential decay of the electromagnetic energy
in the periodic structure is higher which allows the use of very few periods in
the cladding of the photonic fiber.

Next, we introduce a defect to the structure shown in Figure 4.3 and we
compute the spectrum for different values of a®. Two defects are investigated,
the first one called “negative” consists in removing one rod from the structure,
the second one called “positive” consists in increasing the radius of one rod in
the structure. The way we call the defect comes from the sign of (de). The
method used for determining the spectrum is the “supercell” method. The size
of the supercell is 5 or 7.

The parameter o takes values in [0.75,0.90] for the negative defect and in
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Figure 4.4: Spectrum of the structure with discs of radius 0.45.
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Figure 4.5: Spectrum of the structure with ellipses of axes 0.50 and 0.80.

[0.80,0.93] in the positive defect. When a? is too close to 1, the contrast between
the coefficients is too high (more than 50) which, added to the complexity of
the supercell, makes it impossible to get convergence to reliable results. For
such limits we need dedicated preconditioners. We find one defect state for each
case. The corresponding spectra are shown in Figures 4.10 and 4.11.

We notice that the defect frequency goes from the top to the bottom of the
gap when o? — 1 in the positive defect and from the bottom to the top of the
gap in the negative defect. When it is too close to the edge, the decay of the
electromagnetic energy away from the defect is very weak.

Figures 4.12-4.19 represent the energy distribution of the defect modes in
the supercell. The horizontal graduations represent the limits of unit cells.

Finally, we give in Tables 4.1-4.2 the percentage of the electromagnetic en-
ergy located in the defect region and the four closest dielectric rods.
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Figure 4.7: Spectrum of the structure with ellipses of axes 0.70 and 0.40.

4.12 Conclusion

We gave a rigorous proof for the origin of polarized guided modes in a photonic
fiber. For a parameter a and a defect frequency wq , the corresponding guided
mode will have the propagation constant 8 = auwq-

It is also important to notice that we can get gaps and guide electromagnetic
waves without any need to high dielectric contrast nor thin structures which is
hard to achieve. The dielectric perturbation in the core of the fiber can be either
positive or negative while the case of the classical fiber we can guide waves only
with positive defects.

The integral formulation of guided modes could be used to achieve numer-
ical tools for determining the defect frequencies in the fiber. This represents
an alternative to the supercell method that could have some advantages. Actu-
ally, the supercell method does not distinguish defect eigenvalues from regular
eigenvalues and computes all. But the degeneracy of the regular eigenvalues
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2

% of energy around the defect

a defect frequency
0.80 0.650 72.9
0.85 0.659 70.6
0.90 0.660 70.9
0.93 0.662 74.8

Table 4.1: Energy of positive defect modes located around the defect area.

grows as the square of the supercell size. This fact added to the growth of
the computational domain makes the method slow. In the integral formulation,
however, we have to compute an approximation of the Green’s function once for
every a value and then with this function we can determine the defect modes
for different defects.

2

% of energy around the defect

! defect frequency

0.75 0.617 87.7
0.80 0.639 92.9
0.85 0.656 95.1
0.90 0.685 64.0

Table 4.2: Energy of negative defect modes located around the defect area.
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Figure 4.9: Band spectrum of the structure with discs of radius 0.3 in the planar
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Figure 4.10: Spectrum of the structure with positive defect (Rger = 0.6).
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Figure 4.11: Spectrum of the structure with negative defect.
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Figure 4.12: Energy density of the positive defect mode (o = 0, 80).
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Figure 4.13: Energy density of the positive defect mode (a2 = 0, 85).
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Figure 4.14: Energy density of the positive defect mode (a? = 0, 90).
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Figure 4.16: Energy density of the negative defect mode (a? = 0, 75).
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Figure 4.17: Energy density of the negative defect mode (a? = 0, 80).
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Figure 4.18: Energy density of the negative defect mode (a? = 0, 85).
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Figure 4.19: Energy density of the negative defect mode (a? = 0,90).
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Chapter 5

Appendices

A.1 TUniqueness results

We recall the following important result from the theory of the Helmholtz equa-
tion.

Lemma A.A.1.1 Let Ry > 0, Bg = {z : || < R}, and Sg = {z : |2| = R}.
Let u satisfy the Helmholtz equation Au + ki = 0 for |z| > Ro. Assume,
furthermore that

li 2 &(z)=0.
pim . lu(z)|” ds(x)

Then, u = 0 for |z| > Ry.
Let W,22(R? \ ) denote the space of functions f € L2 (R? \ Q) such that

loc loc
hf e WHE(R2\ Q),Vh e CP(R?\ Q) .
The following uniqueness result holds.

Lemma A.A.1.2 Let Q2 be a bounded Lipschitz domain in R?. Let u €
WL2(R2 \ Q) satisfy

[ Au+Kku=0 mR\Q,

ou

— ik
6|;c| 1RoU

= O(|m|3/2) as |z| = +oo  uniformly in % ,

%/ E@dszo.
\ s Ov

Then, u =0 in R2 \ Q.

Proof. Let R > 0 be large enough to have @ C Bg. Multiplying Au + kju =0
by w and integrating by parts over Bg \ 2, we get

%/ E%ds:O,
Sr 81/

103
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0
since § / a2 ds = 0. Applying the Cauchy-Schwartz inequality to
a0 OV

we obtain

5 1/2
%/ E(—u —ik0u> ds| < (/ |u|2> (/
Sk ov Sk Sr

Then using the radiation condition yields

1/2
ou C
%/ | — —ikou | ds < = / ul? , All

for some positive constant C' independent of R. Finally, we obtain that

( /. |u|2) "

which gives by the Rellich’s Lemma that u = 0 in R? \ Bg. Hence, by the
unique continuation property for A + k2, we can conclude that u = 0 up to the
boundary 9f2. This finishes the proof. O

’

= Q

A.2 Proof of Lemma 2.3.1

Let f € H'/?(Sg) and (f") its Fourier series with respect to the angular vari-
able. Then
HY' (koR)

Crf)" =ky———
( Rf) 0 HT(LI) (kOR)

.
Using the following identity from [1]
nz""2H{M (2) + 2"HY' () = zn_leblfll(z)7
we get
Y HY (kR
A oR) _n o T lloR) oy
HS" (koR) (koR)*  koRHS" (koR)
It then follows that
(1472 2(Crf)" P < O+ n2) 2 72

which proves that Cg is a bounded operator from H'/2(Sg) into H~/?(Sg).
Next, let f € H'/?(Sg) and let u be the unique solution to the Helmholtz
equation Au+kZu = 0 in R?\ Bp satisfying u|s, = f together with the radiation

condition
m /|z|

|z]|—00

=0, uniformly in z

— lkou .
||

Ou
O|z|



A.3. PROOF OF LEMMA 2.4.3 105

For any R' > R, we have:

0 = / (Au + kju)a
Bgp/\Br

—/ |Vu|2+/ u|? — 6—“ﬁ+/ Oug
Br/\Br Bp/\Br sg OV R ov

0
Recalling that u|s, = f and 6—u| sk = Cr(f) and taking the imaginary part of
14

the above identity, we get

From the radiation condition, we obtain by using (A.1.1) that when R’ goes to
infinity,

S CR(f)7~k0/ lul? > 0.

Sr Spi

The second inequality (2.3.14) is a direct consequence of the explicit form of the
operator Cg and can be found, for example, in [56].

A.3 Proof of Lemma 2.4.3

In view of Lemma 2.4.1 it suffices to prove Lemma 2.4.3 for k = 0. We have

2183 sp(x) = /8Q log |z —y + 6(v(z) — v(y)|*(1 + dp(y))p(y) ds(y)

- /8 tog(la — 3l +#|u(z) — v(0)F + 25 < v(o) = vla).o —y >)
(14 6p(y))e(y) ds(y)
= 2158 p(x) + 21658 o () ()

v(z) —v(y),z — v(z) — v(y)|?
+/mlog(1+25<() Who-y> | pl) (y)|)

|z —y|? |z — y?
(1+p()p(y) ds(y) -

are bounded.

_ _ _ 2
Since 01 is of class C2, <v(z) —v(y),z -y > and |v(z) —v(y)|

|z —y[? |z —y/?
Therefore,

o(y) ds(y)

™

) <v(z)—viy),z—y>
Ssp(x) = 85 00(x) + 850 0(pe) (x) + = /8 . <2 E _(Z;)P !

+0(8%)
= 80.09(x) + 8500 (pp) (@) + 6(KQ)* p(x) + §Kgp(x) + O(67) .
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On the other hand,

(1+3dp)p(y) ds(y)

[ <) -y 4 dle) — v(y)) >
"o = [ =9+ 6@) — vy
L [ <YEhamy> <o) v

a0 |$ - ?/|2

< (o) ~vlg)z—y >
(1- 2= DI 1k 5p)ot) o) + O,

or equivalently,

(K9)*o(z) = (KQ)*o(x) + 6(K3)* (py) (z) — W8 [ <v(@)z—y>

™ Joa |z —y[*
) <v(z),x—y><v(y),z—y>
+2= »(y) ds(y)

T Jon |z —y[* )

+§/@Q < I/(SE),I/(Z‘) _V(y) >(P(y) ds(y) +O(52)

T |z —yl?

= (Kg)"p(z) + 6(Kg)" (pp)(2) + SMgp(z) + O(6%) -

o(y) ds(y)

A.4 Proof of Lemma 2.4.4

We start by proving the inequalities for s = 0. Since the normal derivative of

o(Sk
% exists and is bounded from L?(0f)) into L2(0), we have
v

156 50 — Sg0ellz200) < CdllellL2a0)

oSk Sk
for some C > 0. It remains then to show that ‘ 0% _ T000¥ goes

T or L2(60)
uniformly to 0 as § — 0. Once again, in view of Lemma 2.4.1 it suffices to prove
this result for k = 0. Denoting by § the Cauchy principal value, we compute

053 5 (z) — 055,0% (z) = / < 7(x),x —y >
or or  Jealz—yP+82+26 <v(z),x—y >

(1= 5pNpl) i) - § <TEZIZ00) )

:j{ <7(zx),r—Yy > (_25< v(z),x —y >(1 —ép(z)) — x67y|2 +O(52))

a0 |z —y|* + 62 |z —y|* + 6
e(y) ds(y)
_ 95 <t(z)z—y> |lz—yP? <vz),z-y>
s lz—yP  |z—yP+6* |z—y]>+6?
2 -
_?{99 <r(|i),_xy|—2y > |.7:—;|2+52(p(y) ds(y) + 02 7{39 <r(|z),_my|2y >0(1)
e(y) ds(y)-

(1 —3dp(x))p(y) ds(y)
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The two first integrals can be bounded by dl|¢||r2(sn) while the last one is
bounded by €5|¢ ()| 2 (s0) for & < d. This ends the proof of the first inequality.

Let us now prove the third inequality. We write

65(’]“,54,0 8(S§,O¢)+ _ <v(z),z —y+ov(z) >

v v _/BQ |$_y|2+52+25<V(x),x_y></7(y) ds(y)
- [ S0 ) - Lot
_ [ @y > A () <v@ir oy > e
B /aQ |z —y|? + &2 (1 20 |z — y|2 + 62 +0(6 )) wl(y) ds(y)
—/BQ %s@(y) ds(y) — %so(o:)
=3 S et B OX )

oo lt—ylP+0> |z —yf
<vi(z),r—y>+d (_ <viz),r—y>
sn |z —yl?+0° |z —y|* + 62

1) 1
+/BQ msé?(y) ds(y) — 590(3”) .

+4

Since the Poisson kernel [44]

/89 m«p(y) ds(y)

converges uniformly in L?(0f) as § — 0, the first integral is bounded by
|Cdp(z)|, the second integral is bounded by |Co(||¢l|z2(a0) + ©(z))], and the
last one is uniformly bounded by |esp(z)|. Here C is a positive constant inde-
pendent of x and es = 0 as § — 0.

The second and the last inequalities can be proved in a very similar way.
For the reader’s convenience we give here the proof for the second one, that is,

S§,590 - S?,o‘P = (Sz?,é - S(I)C,O)SO + (Sg,é - Sg,o)SO - (Sg,é - S(IJE,O)SO .

Using Lemma 2.4.3, the first and the third terms can be bounded uniformly
in H'(0Q) by esll¢llz2(s0). Then, in view of Lemma 2.4.1, we only need to
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investigate the second term for k = 0. We compute

2(S85 — 5%0) () = /B t0g (Ja — 3" ~ 25 < vly).w —y > +5)

(L+6p)ply) ds(y) — /BQ log (lz — y|> + 26 < v(z),z —y > +6%)p(y) ds(y)
=6 [ log (2 - o 26 <vlg)z —y > +P)pe(s) (o)
o0

<I/(£L'),£U—y>>
1 14+20——————— ds
# [ tog (1420 REZEZ Y oty) iy

< V(y),.’E -y >
_/89 log (1 - 25m)<ﬂ(y) ds(y)

_5 / log |z — y|* + 62)pp(y) ds(y)
o0

<v(z)+v(y),z—y>

+2 50 |z — y|2 + 62 o(y) ds(y) + O(6°)
2 0 <v(r)+v(y),z—y> ,
2 /m |z — y|? + 62 Iz — y|2 w(y) ds(y) + O(d7) -

The first integral converges uniformly to Sg o(pp) in H' (9Q) and the last integral
converges uniformly to % in H'(89). The proof is then complete.

For s = 1, we need to suppose that 0Q is C* or equivalently that p is C'.
For the first inequality, we need then to proof that

62S§5¢ S5 09 dyp
R <allgel -
or or 12(89) A7 || 12(50)
Zsk
0,6% . .
Let us then study the term 572 We rewrite this term as
T
D250 5
2 or? (2) =
O (5 + ) 08l =5 482428 < v(a), 2~y >)o) b(o)
01(z) Joc\ OT(2) ~ O7(y) ’
9 / 2 2 d¢(y)
+— log(lz —y|*+d* + 26 < v(x),z—y > ds
77 Joc g(lz -yl (), —y )aT(y) )
959,0(0:0)

The second term in the above identity converges uniformly to for

-
8, bounded in L?(dQ). It remains then to find the limit of the first term that
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we denote by 215. Direct computations give

5= [ (5t o) o

<7(x),x—y >
|z —y|?2 +82+20 <v(z),z—y>

- < T(.’L’),.CL' -y >
= ~0r@elo) /39 |z —y[2+ 6% +26 <v(z),z—y >#lv) &)

+(1— 5p($))/69 (376(33) * 876(31))

<7(x),x—y >
|z —y|2 +82+20 < v(z),z—y>

o(y) ds(y)-

In a similar way as done for s = 0, we show that the first term in the expression
of I; is uniformly bounded in L?(82), for ¢ in the unit ball of L?(91), by

<7T(x),r—y >
567(”[)(3;)}[ <7(z),z—y>

0 o=y ely) ds(y) -

We look now into the integral in the second term of Is which we denote by Js.
We have

J _ / p(x) <V(l’),$—y>
¢ = salz—y2+82+28 <v(z),z—y>

e(y) ds(y)

< 7(a),7(2) = 7(y) >
+f >

olz—y2+ 02+ 26 < v(z), wly) By)

_ <T($)a$_y><T(.€L‘)—T(y),x_y>
2/69 ey + @ +25 < v(@),z—y > 7V W)

<7(x),x —y > (p(x) <71(x),r —y >+ < 7(2),r(x) —V(Y) >)
50 (lz —y|> + 0% + 26 <v(z),z —y >)?
o(y) dy).

The last term is uniformly bounded in L?(99), for ¢ in the unit ball of L?(91),
by

+26

<7(x),z -y >p) <71(@),r—y >+ <7(2),v(2) —V(Y) >
ly) \x - 2/|2 |33 - 2/|2

0

o(y) ds(y) -

We prove then in a similar way as done for s = 0 that Js converges uniformly
in L2(09), for ¢ in the unit ball of L2(0Q) to Jy, given by

_ p(z) <v(z),z —y > <71(@),7(2) —7(y) >
foo = /89 |z —y|? o) dy) + 7{99 |z —yl?

<7(x)yx—y><7(x)—7(W),r—Yy>
|z — yl? |z — yl?

o) ds(y) -2 748 ) o) d(y).
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82 SO 2 SO
Therefore, it follows that :’2690 converges uniformly to 6:’20('0 in L2(69),

for ¢ in the unit ball of L2(91), since it can be easily checked that

8258,090
or?

(z)

o0

or |z —yl?

< 7(@),7(z) = 7(y) >
L

o — g o(y) ds(y)

_ <7(r),z—y><7(®)—T7(Y),r—Y>
21{99 |z — y|? [z —y|2 e(y) ds(y).

The proofs for the other inequalities essentially follow the same arguments.
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