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ABSTRACT

Dynamic Bayesian Networks
for Speaker Verification
by
Eduardo Sanchez Soto
Doctor, Speciality in Signal and Image
Ecole Nationale Supérieure des Télécomunications, PARIS

Professor Gérard CHOLLET, Chair
Associate Professor Marc SIGELLE

This thesis is concerned with the statistical modeling of speech signal applied to Speaker Verification using
Bayesian Networks. The main idea of this work is to use Bayesian Networks as a mathematical tool to
model pertinent speech features keeping its relations. It combines theoretical and experimental work on
Speaker Verification.

The performance of state-of-the-art speech processing systems is still far from that of humans. The
difference between systems and humans is the quantity of information and the relationships between the
sources of information used to make decisions. From speech signal, the mood, emotive state and identity
present in spectral and prosodic features can be combined to improve performances. A single statistical
framework that keeps the conditional dependence and independence relations between those variables is
difficult to attain. To some degree this is caused by the lack of good statistical models. Therefore, in this
work the use of Bayesian Networks as a tool for modeling the available information and their independence
and dependence relationships is proposed for Speaker Verification.

The first part of this thesis reviews the main modules of a SV systems, the possible sources of informa-
tion in the speech signal as well as the basic concepts of graphical models, specially their representation.
Directed Acyclic Graphs receive particular attention because they are the main probabilistic tools used
in this work. Hidden Markov Models and their variants are studied from the point of view of Dynamic
Bayesian Networks.

The second part of this thesis deals with Modeling in the proposed SV systems. A new approach to the
problems associated with SV is proposed. The problem of inference and learning (parameters and struc-
ture) in BN are presented. It is described how to learn the relations of conditional independence among the
variables directly from the data in order to obtain a structure. The Speaker Verification system developed
here uses learning techniques to retrieve the conditional independencies between the sources of information.
These relations are then used in order to build an adapted Bayesian Network. Even if the variables space
is fully observable, the structure space, the search algorithm and the measurement score were considered.
The technique used works in a limited structure space. In particular, a new model adaptation technique
for Speaker Identification has been proposed. This adaptation is based on a measure between Conditional
Probability Distributions for discrete variables, as well as, on regression matrix for continuous variables
used to model the relationships conditional dependencies of this approach based on Bayesian Networks. In
a large data base for the Speaker Verification task, the results have confirmed the potential of use Bayesian
Networks approach.
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Chapter 1

Résume Etendu

1.1 Présentation du Probleme

Le but des systemes de Vérification du Locuteur (VL) est de confirmer I’identité proclamée en utilisant de
I’information disponible provenant du locuteur. Fondamentalement, la parole est un des moyens les plus
employés par les humains pour communiquer. Par conséquent, c’est une source primordiale de renseigne-
ments. De plus, dans certaines applications, la parole est la seule source d’information disponible ; comme
c’est le cas par exemple dans un appel téléphonique. Quelques secondes de parole constituent une quantité
trés importante d’information. La plus importante parmi ces informations est le message. Mais, en plus
de ce message, une autre information tres caractéristique est également présente dans le signal acoustique :
I’identité du Locuteur.

La performance des systemes réels de VL est encore loin de celle des humains. Un probléme majeur
dans les systemes de VL est de trouver 1’ensemble de caractéristiques qui représentent le mieux chacun
des Locuteurs. Une différence fondamentale entre les systemes de VL et les humains est la quantité et la
qualité de I’information utilisée ainsi que la relation entre les sources d’information employées pour pren-
dre des décisions. Le message et I’identité du Locuteur sont codés dans plusieurs niveaux d’abstraction.
Chaque personne a une voix différente, une maniere et un rythme différents de parler, une tonalité de voix
différente, quelques mots préférés, etc. Du niveau acoustique au niveau linguistique et paralinguistique, la
parole aide a communiquer certaines intentions qui sont codées et exprimées dans une phrase. Pour une
méme phrase, le signal de parole associé a un locuteur particulier est unique. Au niveau acoustique, par
exemple, le spectre pourrait aider quelqu’un ou un systeéme de VL a identifier son interlocuteur. Mais pour
cette tiche, les humains n’emploient pas que le spectre ou 1’information acoustique dans une communica-
tion normale et emploient habituellement toute I’information disponible : la tonalité de la voix, les mots
utilisées, etc. Ils emploient également des données prosodiques, aussi bien que des caractéristiques segmen-
tales et suprasegmentales comme 1’intonation, 1’accent, la fréquence fondamentale (et la facon de parler).
Cependant, n’importe laquelle de ces informations n’est pas en soi suffisante pour faire une distinction entre
deux personnes différentes. Toutes ces données doivent donc étre utilisées pour caractériser 1’identité d’un
Locuteur.

En plus de ces différences, quelques problemes dus a 1’exploitation du systeéme dans des conditions
réelles peuvent étre identifiés. Les conditions de prise de son, au niveau du matériel et de 1’environnement
acoustique, doivent étre prises en considération afin de concevoir un systéme robuste. L’environnement est
un probleme difficile a gérer pour le bon fonctionnement des systemes de VL. En plus de I’information
provenant de la parole, le signal contient alors également le bruit de 1’environnement. En outre, la parole
est modifiée par le canal de communication avant d’arriver au récepteur final. Le signal acoustique contient,
en plus des informations propres au Locuteur, des caractéristiques de la voie de transmission. Toutes ces
dégradations du signal rendent le probleme plus complexe.
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En pratique, la différence entre les environnements d’apprentissage et de test pose un autre probleme.
Cette dissimilitude est un probléme proche du probleme du manque de données. En effet, ces deux prob-
lemes sont reliés entre eux car le fait que tous les environnements possibles ne sont pas représentés dans
la phase d’apprentissage équivaut a un manque de données. Les échantillons de parole obtenus a partir de
chaque Locuteur ne vont jamais représenter toutes les conditions potentielles d’utilisation. Il est peu réal-
iste de pouvoir obtenir des échantillons provenant de tous les environnements possibles, de tous les états
d’acquisition des signaux et de tous les canaux de transmission.

Comme obstacle supplémentaire pour les systeémes de VL, nous pouvons mentionner le fait bien connu
du changement de la voix des humains avec le temps. En général, I’application de systeme de VL dans
de vraies conditions doit prendre en compte toutes les différences possibles entre les échantillons utilisés
pour I’apprentissage et les données utilisées pour le test, étant donné que ces différences sont source de
complications et de problemes.

Pour surmonter toutes ces difficultés, les développements actuels dans les systemes de VL emploient
plusieurs techniques qui compensent ces différences afin d’obtenir de meilleurs résultats a partir de systemes
plus robustes. Fondamentalement, on distingue trois techniques. La premiere, appelée technique de nor-
malisation, essaie de rendre I’information utilisée indépendante des conditions d’utilisation. La deuxieme,
la techniques d’adaptation, essaie d’adapter la connaissance acquise de chaque Locuteur aux nouvelles
conditions d’environnement et d’utilisation. Et finalement, la derniere technique consiste a employer une
connaissance a priori pour équilibrer le manque de données dans la nouvelle information.

Dans ce travail, nous nous adressons a certains de ces problémes en utilisant deux approches différentes
qui refletent nos contributions. D’abord, pour améliorer les performances des systemes de VL nous pro-
posons d’employer un systeéme basé sur des Réseaux Bayesiens (RBs) afin de combiner plusieurs sources
d’information. Ce systeme permet d’intégrer I’information provenant de différentes sources dans un cadre
statistique simple qui garde les relations conditionnelles de dépendance et d’indépendance entre toutes ces
données. En second lieu, pour rendre le systeme plus robuste aux différentes conditions de I’utilisation,
nous suggérons d’employer des techniques d’adaptation utilisant une connaissance a priori. Enfin, nous
proposons une technique pour adapter les RBs basée sur certaines caractéristiques mathématiques des rela-
tions d’indépendance conditionnelles de ce type de modeles.

1.2 Systemes de Vérification du Locuteur

Les systemes de SV se divisent en deux phases différentes. La premiere est la phase d’apprentissage et la
seconde est celle de test. Dans la phase d’apprentissage, le modele d’un Locuteur est produit en se servant
de quelques phrases prononcées par celui-ci. Dans la phase de test, les modeles produits dans les premieres
phases sont employés pour vérifier I’identité proclamée pour un échantillon de parole. Un systeme automa-
tique représentatif de Vérification de Locuteur (VAL) se compose de quatre modules principaux comme cela
est représenté sur la Figure F.1 Le premier module est chargé de 1’obtention et de la numérisation du signal
acoustique. Cette tache est réalisée par filtrage et en employant un convertisseur analogique numérique.

Le deuxieme module, celui d’extraction de parametres, est consacré a I’obtention d’informations con-
venables pour la VL. La parole est le résultat de différentes transformations qui ont lieu a différents niveaux
(sémantique, linguistique, articulatoire et acoustique). A chacun de ces niveaux, nous pouvons obtenir
des informations a propos d’un Locuteur donné. Habituellement, pour extraire ces informations, le signal
acoustique est d’abord divisé en intervalles (généralement entre 10 et 30 ms) appelés trames. Dans la plu-
part des systemes réels, I’information spectrale est employée ainsi que sa dynamique qui est représentée par
la premiére et la deuxieéme dérivée (appelées coefficients A et AA). En plus des caractéristiques spectrales
de la parole, d’autres informations peuvent étre obtenues comme la fréquence fondamentale, qui est un
exemple d’information prosodique.
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——— Parametres
Signal —> Paramétrisation
de la Parole
Modélisation Score acceptation
Normalisation —— ou
Décision rejet

Identité Proclamée Modeles

Modele du Locuteur,
Modele du M onde

Figure F. 1.1: Modules principaux d’un systéme de vérification automatique du Locuteur. Notre travail a
porté sur les modules représentés dans des doubles carrés.

Le troisieme module, modélisation, est un des plus importants dans les systemes de VL. L’approche
statistique est de nos jours la plus utilisée. Ces modeles sont basés principalement sur les Modeles de
Markov Cachés (MMC), les Modeles de Mélange de Gaussiennes (MMG). Dans ce travail, nous proposons
I’utilisation de réseaux bayesiens (RB) qui estiment la fonction de densité de probabilité d’un ensemble de
variables.

Afin d’obtenir de bons modeles, il faut employer la quantité nécessaire de signaux de parole reflétant
les circonstances prévues d’utilisation. Si cette contrainte n’est pas satisfaite, des techniques d’adaptation
peuvent étre utilisées pour surmonter le probleme. Les techniques d’adaptation proposées pour les RB
sont une des contributions de ce travail et elles seront abordées ultérieurement. Quand il n’y a pas as-
sez d’échantillons de parole d’un locuteur donné, le modele peut étre obtenu en adaptant un bon modele
générique. Cette adaptation est faite en utilisant des techniques bayesiennes comme celle du maximum a
posteriori (MAP) [Mokbel, 2001; i(Gauvain and Iee|, [1994] ou celle de la régression linéaire du maximum
de vraisemblance (MLLR).

Le dernier module de la chaine d’un systéme de VL est la décision. Dans les modeles statistiques, les
scores sont basés sur le calcul de vraisemblance. Le probleme de décision dans un systeéme de VL peut étre
vu comme un probléme de classification a deux classes. La premiere classe correspond au locuteur S et
la deuxiéme classe correspond a un état appelé le non-locuteur S. En utilisant la théorie de classification
bayesienne on peut justifier I’utilisation du rapport de vraisemblance, ou le logarithme de ce rapport pour
prendre la décision finale :

S(z) = log % > log(seuil) = constant.

La décision est prise en comparant le rapport de vraisemblance a un seuil. Cette regle est basée sur les
vraies fonctions de densité de probabilité. Or, dans une application réelle ces vraies fonctions ne sont pas
connues. Les fonctions calculées dépendent des conditions d’utilisation réelles, de la phrase prononcée et
également de chaque Locuteur. Par conséquent, les valeurs obtenues doivent étre normalisées. La premiere
technique de normalisation est congue pour compenser la longueur de la phrase. Pour le score S(z) d’une
phrase = de longueur 7', le score normalisé S (x)est:

Gon L o P(z|S)
S(x) = T 1 gip(ﬂ?)'



18 1. RESUME ETENDU

La variabilité des scores peut venir d’autres sources que de la longueur de la phrase comme par exemple
du canal de transmission. D’autres techniques de normalisation sont alors employées pour ajuster le score
étant donné ces autres sources de fluctuation.

Performance des systemes de VL

Etant donné qu’un systéme de SV doit vérifier I’identité proclamée d’un locuteur donné, deux types d’erreurs
peuvent étre commis. La premiére erreur est d’accepter un imposteur, appelée fausse acceptation (FA). La
deuxieme erreur est de rejeter un client, appelée faux rejet (FR). Ces erreurs sont exprimées par les taux de
FA et de FR qui sont évalués respectivement par :

FAR = \#,FA ,
#acces imposteur

F

FRR = # IR

#acces client”

Les performances des systemes de VL sont représentées par des courbes de Différence de Détection
d’Error (DET). Les deux erreurs possibles d’un systeme de VL sont tracées dans la courbe en fonction
du seuil de décision utilisé. Si les scores des clients et des imposteurs suivent une distribution normale la
courbe doit étre une ligne.

40 -

20 40
False Alarm probability (in %)

Figure F. 1.2: Exemple d’une courbe DET.

1.3 Sources d’Information pour La Vérification du Locuteur

Pour détailler la chaine de traitement d’un systeme de VL, nous commencons par décrire la paramétrisa-
tion de la parole et I’obtention des sources d’information a partir du signal acoustique. Dans un signal
de parole, on peut trouver beaucoup d’information en plus du message, comme des informations sur le
Locuteur et son identité. Dans la plupart des systemes de VL, seule I’information spectrale est prise en
compte. Généralement, la prosodie et les caractéristiques suprasegmental, comme 1’intonation, 1’accent ou
la fréquence fondamentale ne sont pas pris en compte. Un systeme plus robuste devraient employer toutes
ces données qui caractérisent un Locuteur. La difficulté qui se présente ici est de savoir comment combiner
efficacement ces données. Dans nos travaux, il est proposé de le faire au moyen de RB.

Résiduel de I’analyse en Prédiction Linéaire

Chez les humains, la parole est produite par des organes dont 1’anatomie et le contréle moteur est spécifique
a chacun des Locuteurs. L’air traverse la glotte, les cordes vocales et le larynx. Par conséquent le signal
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d’excitation qui en résulte caractérise le Locuteur et peut étre une source supplémentaire d’information.
L’analyse en Prédiction linéaire (PL) fournit une méthode pour séparer I’information du conduit vocal et
celle issue de I’excitation. Le résiduel de la PL [[Thévenaz,11993;[Faiindez-Zanuy and Rodriguez-Porcheron,
1998] est particulierement plat, et I’effet de filtrage du conduit vocal peut étre enlevé en créant un filtre
inverse. Ce filtre est obtenu en utilisant les coefficients de PL calculés avec la fonction d’autocorrélation et
I’algorithme de Yule- Walker :

résiduel(n) = G( s(n) — §(n)) Vn,
ol, G est un facteur de gain, s(n) les échantillons de parole et §(n) les échantillons obtenus avec
I’analyse PL. La Figure ci-dessous montre un signal voisé typique ayant une structure périodique carac-

téristique en haut et au dessus le signal résiduel correspondant. On peut voir que la structure périodique de
la parole est représentée comme un train d’impulsions avec une fréquence constante dans le résiduel de PL.

0.02

0.01

-0.01

-0.02

~0.03 I I I I I I I
0 50 100 150 200 250 300 350 400

0.01

0.005

-0.005

_0.01 I I I I I I I
0 50 100 150 200 250 300 350 400

Figure F. 1.3: Exemple d’un signal voisé en haut et le résiduel correspondant en dessous.

Information prosodique

La prosodie est une autre caractéristique tres importante de la parole. Quand on parle d’information
prosodique, on désigne en fait des caractéristiques de la parole dont le support n’est pas qu’un segment
phonétique simple, mais une plus grande unité, comme un mot ou une phrase entiere. La prosodie est une
caractéristique qui renseigne sur la structure linguistique de la parole. La fréquence fondamentale est une
des informations prosodiques les plus utilisées.

La fréquence fondamentale, ou pitch, d’un son périodique est une composante sinusoidale qui a la méme
période que le signal original. La fréquence fondamentale n’est pas la hauteur tonale pergue et subjective
d’un son complexe. La fréquence fondamentale est une caractéristique du signal qui a une relation directe
avec les mouvements de la glotte. Parmi plusieurs méthodes, celle de 1’autocorrélation est 'une des plus
simples et des plus rapides a effectuer pour mesurer le pitch. Un exemple d’un signal de parole et du pitch
correspondant est donné dans la Figure ci-dessous.

Information Spectral

En général, la source d’information la plus utilisée et la plus fiable en traitement de la parole est le spectre,
représenté au moyen des coefficients cepstraux du signal. Ces coefficients sont obtenus a partir du mod-
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Figure F. 1.4: Signal de Parole et le pitch correspondant.

ule des coefficients de la Transformée de Fourier Discrete (TFD) du signal s(n) sur lequel on applique
successivement une fonction logarithme et une TFD inverse.

Une propriété importante des coefficients cepstraux est que le cepstre d’un signal filtré linéairement est
égal a la somme du cepstre du signal d’entrée et du cepstre du filtre linéaire. De plus, si le filtre linéaire
est également considéré comme invariant dans le temps, le cepstre du signal d’entrée peut étre retrouvé
par soustraction de la moyenne temporelle du cepstre du signal de sortie. Cette propriété est couramment
employée pour éliminer les effets du canal de transmission. Une autre propriété fondamentale de 1’analyse
cepstrale est la décorrélation entre les coefficients issus de I’analyse. Cette propriété est tres appréciable
pour un systeme de VL et c’est principalement pour cette raison que 1’analyse cepstrale est couramment
employées.

1.4 Modéeles Graphiques

Dans la section précédente, nous avons décrit différentes sources d’information que 1’on peut obtenir a par-
tir du signal de parole. A partir d’une combinaison appropriée de ces informations, il convient de construire
un modéle qui rende le systeme de VL plus robuste. Les modeles graphiques sont un outil trés puissant
pour combiner différentes variables tout en préservant leurs dépendances conditionnelles. Dans cette sec-
tion, nous nous attacherons a décrire et a définir de maniere précise les modeles graphiques.

A T’origine, ce type de modeles a été développé indépendamment dans plusieurs domaines scientifiques
distincts. En physique statistique, par exemple, leur origine peut étre trouvée dans le travail de Gibbs [IGibbs,
1902]. Dans ce domaine, I’objectif initial était d’étudier un grand systéme de particules interagissant les
unes avec les autres. Habituellement, on suppose que les particules agissent simplement avec les particules
voisines. Pour modéliser les relations entre voisins dans un tel systeéme, Gibbs a développé un modele
graphique particulier appelé distribution de Gibbs et défini par :

1 —%;(x)

p(z) = Z_Te )

ol, T est la température du systéme, F(x) 1’énergie totale du systeme dans I’état x, et Zr est une
constante de normalisation. La distribution de Gibbs correspond a ce que 1’on désigne comme un modele
graphique non dirigé car il n’y a aucune relation de hiérarchie entre voisins.
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Les modeles graphiques ont été également développés dans le domaine de la génétique. Contrairement
aux modeles non dirigés, les modeles congus par les généticiens comme Wright [[Wright, [1921] établissent
une hiérarchie bien définie de relations entre les variables.

Wright a utilisé les modeles graphiques pour étudier les propriétés d’héridité des especes. Notamment,
il a introduit la notion de graphe pour modéliser les relations directes et unidirectionnelles entre variables.
Ces relations sont représentées symboliquement par des fleches se déplacant du parent a I’enfant. C’est
probablement de ce domaine que provient la notation utilisée pour désigner les variables et leurs relations
dans les modeles graphiques dirigés.

Ces idées d’analyse de chemin ont été reprises plus tard dans le domaine de 1’économie et des sciences
sociales [[Wold, [1960; Blalock, [1971]] notamment dans les travaux de Bartlett [Bartlett, [1935] qui décrit la
notion d’interaction au sein d’une table de contingences.

Modeles Dirigés

La théorie des graphes est une partie de la théorie des ensembles qui traite des relations binaires d’un
ensemble dénombrable avec lui-méme. Un graphe G est dirigé si tous les arcs représentés sont dirigés.
S’il existe une fleche ou arc qui pointe du nceud X; vers le nceud X5, X; est appelé le parent de X; et X
I’enfant ou le fils de X;. L’ensemble des parents de X; est noté Pa(X;). Par exemple, dans la Figure ci-
dessous le neeud a est le parent du neeud b et I’ensemble des parents de d est Pa(d) = {a, b, c}.

Figure F. 1.5: Exemple d’un graphe dirigé illustrant les relations parents-enfants.

Graphe Acyclique Dirigé

On appelle cycle tout chemin d’au moins deux nceuds reliés entre eux par des fleches et pour lequel le
premier et le dernier nceud sont identiques. Une classe trés importante de graphes dirigés est la classe des
graphes ne présentant aucun cycle. On appelle Graphes Acycliques Dirigés (GAD) de tels graphes. Les
GAD sont la base des modeles probabilistes appelés Réseaux Bayesiens.

Graphe Moral

Le graphe moral G™ d’un graphe dirigé G est défini comme le graphe non dirigé avec les mémes nceuds
que G ol deux nceuds X; et X; sont reliés dans G™ si et seulement si X; et X; ont un enfants en commun
dans G. Dans la pratique, le graphe moral est obtenu a partir du graphe original par "mariage" des parents
ayant un enfant en commun et par suppression des fleches. On construit ainsi un graphe non dirigé a partir
d’un graphe non dirigé.
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Graphe Triangulé

Dans un graphe non dirigé, la terminologie est différente de celle employée pour les graphes dirigés. Ainsi,
les liens entre les nceuds sont appelés arcs au lieu de fleches, et on désigne par le terme de boucle un chemin
fermé qui correspond a un cycle dans un graphe dirigé. On appelle corde d’une boucle tout arc qui joint
deux nceuds non voisins de cette boucle et qui n’est donc pas lui-méme un arc de cette boucle. Un graphe
triangulé est défini comme un graphe non dirigé qui a une corde dans chaque boucle de longueurn > 4. La
Figure suivante donne un exemple de graphe triangulé. La boucle {c, a,d, b} a une corde {a, b} qui rend
cette boucle de longueur inférieure a 4.

Figure F. 1.6: Exemple de graphe triangulé. La corde {a,b} change le cycle {c,a,b,d} en deux cycles de
longueur 3.

Les concepts que nous venons d’introduire et le langage employé nous sont utiles pour décrire de
maniere rigoureuse les techniques qui sont présentées dans les prochains sections.

1.5 Réseaux Bayesiens

Les modeles graphiques sont des outils théoriques trés puissants. Rappelons cependant que 1’objectif
recherché dans ce travail est de modéliser la parole a 1’aide de réseaux bayesiens (RB). Un RB est un
modele graphique qui représente les indépendances conditionnelles entre un ensemble de variables aléa-
toires [Pearl, [198&]. Plus précisément, un RB est un couple (G, DPC) constitué par une structure G et un
ensemble de distributions de probabilités conditionnelles. G est un graphe acyclique dirigé (GAD) et un
ensemble de distributions de probabilité conditionnelles D PC' caractérisant de fagon quantitative chaque
nceud de G. Pour illustrer de maniere simple notre propos, considérons trois variables aléatoires A, B et
C. D’apres la théorie des probabilités, leur probabilité jointe s’écrit comme le produit des probabilités
conditionnelles suivantes :

P(A,B,C)=P(A) P(B|A) P(C|A, B).
Si A est indépendante de B, I’équation précédente peut étre écrite comme suit :
P(A,B,C) = P(A) P(B) P(C|A, B). (1.1)

L’équation précédente peut étre représentée par un graphe comme cela est illustré dans la Figure suiv-
ante. Chaque nceud correspond a une variable. Chaque fleche représente une dépendance entre les variables
et est associée a la densité de probalité du fils sachant le parent. Un RB est juste une maniere graphique de
représenter les indépendances conditionnelles entre plusieurs variables. La structure reflete la factorisation
de la distribution jointe.

Pour un ensemble de variables données X = {X1,..., Xn}, les relations d’indépendance condition-
nelle induisent une factorisation de la fonction de distribution jointe P(X) exprimée comme suit :

N
P(X) = [ P(xilPa(X0)),

i=1
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Figure F. 1.7: Représentation graphique de I’équation 1 avec des Réseaux Bayesiens.

Indépendance Conditionnelle

Soit un chemin orienté constitué d’une suite des noeuds { X, . . ., X; } tel qu’un nceud donné X, et le suivant
X1 sont reliés par une fleche (avec k € [¢;§ — 1]). Soit X un nceud arbitraire avec k € [i + 1;4]. On
appelle nceud non-descendant, par rapport a X, tout nceud X, tel que m < k.

Chacune des variables est conditionnellement indépendante de ses non-descendants étant donnés ses
parents.

Un concept fondamental pour les modeles dirigés est la d-séparation, ou d signifie “direct”. Ce con-
cept est trés important pour la représentation des RBs. On dit que I’ensemble de variables C' d-sépare les
ensembles de variables A et B si pour chaque chemin entre A et B, il existe une variable d telle que :

(i) sid ¢ C, alors d n’a que des fleches convergentes vers elle ou,
(i) sid € C, alors d a au moins une fleche divergente.

Deux ensembles de variables A et B disjoints sont conditionnellement indépendants si et seulement si
il existe un ensemble C' (éventuellement vide) qui d-sépare A et B.

Graphes équivalents

Un probléme proche de celui de I’apprentissage de la structure est celui de savoir si deux structures sont dif-
férentes. Deux modeles graphiques sont équivalents s’ils représentent le méme ensemble d’indépendances
conditionnelles [[Verma and Pearl, [1991]]. Dans une graphe dirigé, la méme fonction de probabilité condi-
tionnelle peut étre représentée avec plusieurs graphes. Afin de définir I’équivalence entre deux RBs, il faut
en premier lieu définir la notion de V-structure. Considérons trois nceuds {a, b, ¢} d’un RB. IIs forment
une structure aux fleches convergentes, si a et ¢ sont reliés par la fleche qui va de a vers c et b et ¢ par la
fleche qui va de b vers ¢ comme cela est illustré dans la Figure F.7 plus haut. En raison de sa forme générale-
ment en V, on appelle alors V -structure ce type de structure. On dit que deux RBs sont équivalents si les
deux graphes ont la méme structure non dirigée et les mémes V -structures.

1.5.1 Réprésentation des lois de probabilités a I’aide de RB

On considere trois types de distribution de données qui peuvent étre réprésentés par des RB : la loi Multi-
nomiale, la loi Multinormale et une distribution plus générale construite avec un modele de mélange de
gaussiennes (MMG). Dans un RB multinomial, toutes les variables {x;} sont discretes et la fonction de
probabilité conditionnelle associée a chaque variable {x;} est une fonction multinomiale. Ce type de fonc-
tions de probabilité est défini de maniére numérique ou paramétrique a I’aide des Tableaux de Probabilité
Conditionnelle (TPC). Ces tableaux indiquent les probabilités pour chacune des combinaisons possible
des valeurs prises par les variables. Par exemple, les parametres (TPC) pour le graphe de la Figure E.7
pourraient étre ceux indiqués dans les tableaux suivants en supposant que toutes les variables sont binaires
X ={x,a}:
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a|b | p(clab)
a | p(a) b | p(b) 0|0 0.25
0| 0.25 0] 0.2 0|1 0.50
11075 1] 038 1|0 0.75
1)1 0.50

RB Multinormal

Dans un RB gaussien ou normal, toutes les variables sont modélisées par une distribution normale N (x; i1, o).
Ce genre de RB s’appellent également Réseau Gaussien (RG) [[Shachter and Kenley, [1989] laissant 1”appelation
RB pour des réseaux de variables discretes. La loi de distribution normale est donnée par I’équation suiv-
ante :

1 1 Ty —1
In(@) o~ N (250, %) = —————exp 2 @0 = (@=n)
() » N (5, %) T

oll 44 est le vecteur moyen de dimension d, ¥ est la matrice de covariance, || le déterminant de ¥ et
(x— )7 estla transposée de (z— ). La fonction de densité pour chaque facteur dans I’équation précédente
est définie par un produit des fonctions de probabilité conditionnelle [[Shachter and Kenley, [1989] comme
suit :

i1
F@ilPa(i)) « N(@; i+ (Big (@5 — 1), va),
j=1

ol f3; ; est le coefficient de régression entre x; et ses parents ;.

RB et Modele de Mélange de Gaussiennes

Un modele de mélange de gaussiennes (MMG) est défini comme une combinaison pondérée de densités
gaussiennes. La densité conditionnelle pour un vecteur x représenté par un mélange de M composantes est
définie par A = {w, p, X} telle que :

M
plald) = Y wifn (@),

M
ou, Z w; = let0 < w; <1 Vi. La méme distribution de probabilité peut étre représentée a I’aide
i=1
d’un RB comme cela est illustré dans la Figure suivante.

A=ua; €[1,M]

O e

Figure F. 1.8: Réprésentation d’'un MMG avec un RB.

Dans la Figure E.8, le premier nceud A, représente une variable discréte avec M états qui vérifie
Sa Pla=a;)=1et0 < P(A=a).
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Le deuxieme nceud B représente une variable qui suit une distribution gaussienne conditionnée a la
valeur prise par la premiére variable A = a;. Avec les indépendances conditionnelles réprésentées dans la
structure, la probabilité conditionnelle s’écrit selon I’équation indiquée dans la méme Figure. Cette méme
structure représente un MMG avec les parametres suivants :

p(A = a;) = w,
p(B = blA = a;) = N(b; i, 35).

1.5.2 Réseaux Bayesiens Dynamiques

Le temps est une des variables les plus importantes dans presque tous les événements li€s a des processus
réels. L’évolution des variables dans le temps peut également étre représentée avec des Réseaux Bayesiens
Dynamiques (RBD). Les RBD permettent de décrire un systeéme qui change ou évolue avec le temps en
utilisant le formalisme des RBs. Les RBDs sont définis en tant que cas particulier des RBs. Tous les nceuds,
arcs et probabilités qui forment un RBD ont les mémes interprétations statistiques que pour un systeme basé
sur un RB classique. Les états d’un RBD satisfont les conditions markoviennes.

Un RBD se compose de fonctions de distribution de probabilité pour la séquence des variables cachées
H = {hg,...,hp_1} etdes variables observées O = {0y, ...,0r_1}, ou T est’indice temporel. Si toutes
les variables cachées et observées sont intégrées au sein d’une méme variable X = {h, o}, la sémantique
d’un RBD peut étre définie en déroulant un RB jusqu’a ce qu’ayant finisse avec toutes les tranches de temps
Figure F.9. La distribution résultante de cette modélisation peut étre écrite comme suit :

T N
P(zir) = [ ] Plai®)|Pa(z:(1))),

t=14=1

ou N est le nombre de variables dans chacune de tranches de temps.

Un des exemples les plus représentatifs de ce type de modeles est celui des Modeles de Markov Cachés
(Hidden Markov Models, HMM). La particularité d’un HMM par rapport 2 un RBD est que, dans un HMM,
I’espace d’état se compose d’une seule variable aléatoire X; alors que dans un RBD les états cachés sont
représentés a travers un ensemble de variables aléatoires X, ..., X;.

<
@

Figure F. 1.9: Un HMM représenté en tant qu’un RBD.

Dans cette section, nous avons présenté les principes des RBs et des RBD qui laissent déja présen-
tir la possibilité de combiner les différents sources d’information au sein d’un unique modele statistique.
Les prochaines sections présenteront les problemes de base auquel on est confrontés dans les modeles
graphiques, a savoir I’inférence et ’apprentissage. Nous développeront le concept de modélisation dans la
chaine d’un systeme de VL.
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1.6 Inférence dans les RB

L’absence de fleches dans les RBs indique des indépendances conditionnelles qui peuvent étre exploitées
pour développer de meilleurs algorithmes de calcul des probabilités marginales et conditionnelles. Il y a
deux problemes de recherches principaux dans le raisonnement probabiliste utilisant des RB. Le premier
probleme est 1I’étude de I’inférence [[Murphy, 2002]. L’inférence dans un RB implique, dans une struc-
ture connue, le calcul de la probabilité marginale a posteriori de quelques variables sachant la valeur des
variables observées. Le deuxieéme probleme est celui de 1’apprentissage de la structure qui représente les
indépendances conditionnelles entre les variables.

Cette section est consacrée aux techniques d’inférence basiques [[Murphy, 2002]. Le probleme abordé
consiste a savoir comment évoluent les probabilités conditionnelles d’une ou plusieurs variables X dans un
réseaux sachant la valeur des variables observées Y = y. Plus précisément, nous cherchons la probabilité
P(X|Y =y),ouY = y est I’observation, couramment appelée évidence. Ces techniques sont importantes
car elles servent de base pour le calcul des parametres d’un réseau avec des variables non observées ap-
pelées variables cachées.

La maniere la plus simple d’évaluer la probabilité cherchée est de marginaliser la fonction de probabilité
jointe. Cependant, ce procédé est inefficace car quelques calculs peuvent étre faits plusieurs fois. Une des
techniques les plus directes est appelé élimination de variables. Supposons qu’on souhaite calculer la
probabilité d’une variable aléatoire x;. L’élimination de variables consiste alors a établir un ordre dans
les variables de telle fagcon que x; soit la derniere. A chacune des étapes, on élimine une des variables
distinctes de x; en combinant tous les facteurs ou elle est présente et en la marginalisant. Le résultat
final est un potentiel qui est proportionnel a la probabilité cherchée. Par exemple, le graphe de la Figure
ci-dessous réprésent la probabilité jointe suivante :

Figure F. 1.10: RB utilisé pour illustrer la techniques Elimination de Variables pour le calcul de Iinférence.

P(A, B,C, D) = P(A) P(B|A) P(C|A) P(D|A, B).

Pour illustrer cette technique, on calcule la probabilité de la variable A. P(A) peut étre alors évaluée
en marginalisant la probabilité jointe par rapport aux variables { B, C, D} comme suit :

P(A) = Y P(AB,CD) (1.2)
B,C,D

> P(A) P(B|A) P(D|A,B) P(C|A).
B,C,D

Sur cette derniere équation, on remarque que les facteurs de la probabilité jointe ne dépendent que d’un
nombre limité de variables et par conséquent la marginalisation peut étre réécrite de la maniére suivante :

P(A)=P(A) Y P(B|A) Y P(DIA,B) > P(C|A).
B D C
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En général, un facteur de la forme ) . P(X|Y) est égal a I’unité mais ce n’est pas toujours le cas. Par
exemple, deés que la variable X est observée et qu’elle prend une valeur, alors la somme est différente de
I’unité.

Passage de Messages en Polyarbres

L’élimination de variable est une technique qui réduit le nombre d’opérations nécessaires pour calculer la
probabilité cherchée. Cependant, elle demande encore beaucoup des calculs. Il existe d’autres techniques
plus efficaces qui tirent avantage des indépendances conditionnelles existant dans une structure en forme
d’arbre [Pearl, [1988]. Méme si, dans des applications réelles, les problemes n’induisent pas toujours une
structure en forme d’arbre, les techniques appliquées a ce type de graphes sont la base pour des structures
plus générales.

Le passage de message dans un polyarbre (une structure en arbre ou plusieurs racines sont permis) est
une technique qui s’appuie sur la structure d’arbre du réseau et sur la d-séparation entre ses variables. En
effet, dans un polyarbre, chaque nceud d-sépare ses descendants de ses non-descendants. De la méme fagon,
chaque variable est d-séparée de ses freres conditionnellement a ses parents et aussi a chacun des parents
de ses fils conditionnellement a ses fils.

Dans un polyarbre, il n’y a qu’un seul chemin entre deux variables. Chacun des nceuds coupe alors la
structure en deux polyarbres completement séparés. De la méme fagon, on coupe 1’évidence en deux. On
distingue alors d’une part 1’évidence qui arrive a travers les parents du nceuds en question et d’autre part
celle qui arrive par I’intermédiaire de ses fils. Etant donné que ce méme nceud d-sépare les deux structures
mentionnées, la probabilité conditionnelle cherchée est proportionnelle au produit des deux probabilités,
chacune liée a une de ces structure. Ces termes qui sont appelés \ et 7 peuvent étre vues comme des mes-
sages envoyés par chacune des structures au nceud qui les sépareﬂ. Du fait de la d-séparation, ces messages
peuvent étre décomposés en parties correspondant a chaque variable connectée au nceud en question. Dans
le réseau, chaque variable regoit un message de chacun de ses parentes et de chacun de ses fils. Une fois
que tous les messages ont été regus, la variable peut envoyer, elle aussi, un message a ses voisins. A la fin
de ce processus, toutes les variable ont recues I’information provenant de I’évidence.

Arbre de Jonction

Lorsque la structure originale du réseau n’est pas un arbre, une des techniques les plus utilisées consiste
a transformer la structure initiale pour obtenir un arbre non dirigé. Une fois que le modele graphique non
dirigé est obtenu, des calculs d’inférence sont réalisés en utilisant le formalisme des graphes non dirigés.
En général, le graphe final est un arbre constitué de cliques. On rappelle qu'une clique est un sous-graphe
completement connecté.

La premiere étape de conversion d’un graphe dirigé en un graphe non dirigé est la moralisation. Comme
cela a été mentionné avant, la moralisation dans un RB est le processus qui consiste a "marier" les parents
ayant un enfant commun et ensuite a supprimer les directions des fleches pour obtenir un graphe non dirigé.
Si besoin, la deuxieme étape de construction d’un arbre de jonction est la triangulation. Une fois qu’un
graphe est triangulé, il est possible d’arranger les cliques du graphe dans une structure qu’on appelle arbre
de jonction. Dans un arbre de jonction, si un nceud appartient a deux cliques quelconques de 1’arbre, alors
il appartient également a toutes les cliques qui se trouvent sur le chemin entre ces deux cliques. Cette pro-
priété permet de calculer I’inférence en se basant sur des calculs locaux.

Une fois que I’arbre de jonction est construit, un potentiel est attribué a chacune des cliques. Pour
chaque clique, ce potentiel est en relation directe avec les probabilités conditionnelles des variables de

I\ et 7 sont équivalents aux « et 8 dans un HMM.
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celle-ci. Ces potentiels jouent un role similaire a celui des messages dans 1’algorithme de passage de mes-
sages dans un polyarbre décrit dans la section précedente. Les potentiels sont actualisés au cours d’étapes
dites de propagation. Dans un premier temps, chaque clique collecte les messages en provenance des cliques
voisines et puis elle distribue a son tours son prope message. Si I’initialisation est correcte, ces deux étapes
permettent de trouver un équilibre dans I’arbre.

Etant donnée la complexité des méthodes exactes d’inférence dans les RB avec beaucoup de variables,
il est nécessaire d’avoir recours a des algorithmes de calcul approché. Une premiere technique de calcul,
nommée "Loopy Belief Propagation”, utilise des techniques exactes comme le passage de message en pol-
yarbres dans des réseaux dont la structure comporte des cycles. Les autres techniques considérées sont plus
rigoureuses et se basent sur des méthodes d’échantillonnage comme celle de Gibbs.

1.7 Apprentissage des Réseaux Bayesiens

L’apprentissage de RBs consiste a obtenir automatiquement la structure et/ou les parametres a partir de
I’information contenues dans les données disponibles. On distingue quatre variantes de ce probleme :

e structure connue et base de données complete

e structure connue et données manquantes ou cachées

e structure inconnue et base de données complete

e structure inconnue et données manquantes ou cachées

La liste des problemes ci-dessus est présentée dans un ordre croissant de difficulté.

L’ apprentissage des parametres d’un réseau dont on connait la structure est réalisée en utilisant des tech-
niques classiques comme le maximum de vraisemblance (Maximum Likelihood, ML). Par contre, deés que
la base de données est incomplete, la meilleure option est 1’algorithme Expectation Maximization (EM).
Cet algorithme utilise dans une premiere étape des techniques d’inférence pour calculer les parametres
manquants du réseau. Dans la deuxieme étape, il effectue une maximisation de tous les parametres. Ces
deux étapes sont répétées de facon itérative jusqu’a la convergence.

Le probleme de 1’apprentissage de la structure est plus complexe que celui de I’apprentissage des
parametres. On peut distinguer deux approches bien différentes. La premiere ajoute ou enleve des fleches
dans la structure en fonction des résultats d’une recherche des indépendances conditionnelles entre les
variables. Ce type d’algorithme, comme celui appelé PC [[Pearl, [1988&], est initialisé avec un réseau com-
pletement connecté et au fur et a mesure qu’il trouve des indépendances, les fleches adéquates sont enlevées.

La deuxiéme approche mesure la qualité d’un réseau donné et choisit la structure qui donne le meilleur
score. Cette technique nous confronte cependant a deux problemes. En premier lieu, il faut déterminer une
fonction qui mesure la qualité du réseau en fonction des données. La vraisemblance est un bon candidat,
mais elle privilegie les structures ayant un grand nombre de connections ; ¢’est-a-dire qu’elle privilegie les
réseaux avec plus de parametres car la vraisemblance augmente avec le nombre de parametres. Alors, a la
valeur de la vraisemblance, peut étre ajouté un facteur qui pénalise la complexité du réseau. Un exemple de
fonction qui remplit ce role est le score BIC (Bayesian Information Criterion). Ce facteur supplémentaire
est fonction du nombre de parametres du réseau et de la quantité de données disponibles. Le deuxieme
probléeme dans ce type d’approche est de choisir la structure qui sera évaluée. On peut penser a évaluer
toutes les structures possibles pour un réseau. Mais cette démarche n’est pas envisageable car le nombre
de structures croit exponentiellement avec le nombre de variables. Par exemple, avec trois variables, il y
a 25 structures possibles ; avec 5 variables, il y en a 29281. Le colt de calcul devient alors rapidement
prohibitif. Il faut remarquer que parmi toutes les structures possibles, plusieurs sont équivalentes du point
de vue Markovien et le probleme pourrait donc étre simplifié. Mais, méme avec cette réduction, il reste



1.8. ADAPTATION DES MODELES 29

beaucoup de structures a évaluer. Pour surmonter ce probléme, une réduction de 1’espace de recherche
peut étre effectuée, notamment en introduisant des connaissances a priori. Une maniere tres répandue de
réduire I’espace est d’introduire un ordre sur les variables concernées. Cet ordre, appelé ordre ancestral,
indique les relations de filiation et de hiérarchie entre les variables. Un autre avantage a 1’utilisation d’un
tel ordre est qu’il permet d’éviter les cycles. Par exemple, les algorithmes de recherche de structure de type
glouton s’initialisent a partir d’un réseau de départ spécifié puis ils construisent des structures voisines.
Une structure voisine d’une structure donnée est une structure ot une fleche a été soit ajoutée, soit changée
d’orientation, ou soit enlevée. Pour chacune de ces structures, le score est ensuite calculé et on choisit
comme structure de départ de I’itération suivante celle qui a le meilleur score.

1.8 Adaptation des modeles

Dans la chaine du systéme de VL que 1’on est en train de détailler, la modélisation a I’aide de RB peut poser,
en pratique, des probleémes comme n’importe quelle autre modélisation. Une maniere courante d’obtenir
des modeles robustes est d’adapter les modeles utilisés. Ici, on entend par adaptation, le processus ou la
technique par lesquels on réduit I’influence respective du manque de données disponibles et des différences
entre les environnements d’apprentissage et de test.

Dans le domaine de la VL, il y a deux approches principales pour faire 1’adaptation. La plus impor-
tante et celle qui donne les meilleurs résultats est I’adaptation Bayesienne (Maximum A Posteriori, MAP).
Dans cette méthode, le modele adapté est calculé en maximisant la probabilité a posteriori des parametres
conditionnellement aux données d’apprentissage disponibles. On utilise une loi a priori sur les parametres
du modele. Cet a priori qui reflete les connaissances du modele dont on dispose, est une des données
les plus importantes dans cette technique. La loi a priori peut étre choisie soit de maniére empirique ou
en se basant sur 1’expérience ou les données disponibles, soit pour des convenances mathématiques. Les
parametres de la loi a priori, appelés hyper-parametres, sont calculés soit de maniere empirique a partir des
connaissances de la vraie distribution, soit avec un ensemble de données représentatif de cette distribution.
Dans le domaine de la VL, le deuxiéme choix est préférable. Les parameétres du modele adapté sont en
général une combinaison des parametres de la loi a priori et de la distribution des données d’apprentissage.
Par exemple, dans un MMG, la moyenne de chacune des composantes est la combinaison de la moyenne de
la composante a priori correspondante et de la moyenne calculée avec les données d’apprentissage. Cette
combinaison est pondérée par des facteurs qui donnent plus ou moins d’importance a la gaussienne initiale
ou a celle dépendant des données d’apprentissage. Dans le cas extréme, 1’adaptation ne se fait que pour les
composantes pour lesquelles on dispose de données.

La deuxieme approche consiste a effectuer une transformation linéaire sur les parametres du modele
original pour obtenir le modele adapté. Si les parametres de régression utilisés pour 1’adaptation sont es-
timés avec le maximum de vraisemblance (ML), cette technique est appelée MLLR (Maximum Likelihood
Linear Regression). Dans cette approche, la quantité de données disponible joue un rdle trés important. S’il
y a treés peu de données, une seule transformation est estimée pour tous les parametres. Au fur et a mesure
que la quantité de données augmente, il est alors possible de prendre en compte plusieurs transformations,
chacune s’appliquant a un ensemble de parametres déterminé.

1.8.1 Adpatation de Réseaux Bayesiens

En matiere d’adaptation des RB, notre approche est basée sur la technique Bayesiennes pour laquelle on
adapte les parametres qui déterminent les relations d’indépendance conditionnelle entre deux variables.
Deux configurations distinctes de dépendance conditionnelle ont été étudiées. Elles dépendent du type de
variables concerné et nous amene a distinguer les relations entre deux variables discretes et celles entre
deux variables continues. Dans le cas de variables discretes, pour des raisons mathématiques, on choisit
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d’utiliser une distribution de Dirichlet comme loi a priori. Si chacun de parametres d’un Tableaux de
Probabilité Conditionnelle (TPC) est définit comme suit :

Oijr. = P(x; = j|Pa(z;) = k),

et la distribution de Dirichlet est :
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Apres les calculs d’optimisation, les parametres des tableaux de probabilités adaptés sont estimés
comme une combinaison linéaire des parametres des tableaux de la distribution a priori et du comptage
des configurations dans les données d’apprentissage.

Dans le cas de variables continues, la loi a priori choisie est une distribution Normale-Wishart, définit
comme suit :
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Les parametres de la matrice de régression qui modélise les relations d’indépendance conditionnelle
sont optimisés et le résultat est le suivant :
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et 7 est un parametre de la distribution Normale-Wishart. Le parametre optimal obtenu est, une fois de
plus, une combinaison linéaire entre les parametres de la distribution gaussienne a priori et de ceux estimés
a partir des données d’apprentissage.
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1.9 Vérification du Locuteur a I’aide de Réseaux Bayesiens

Les sources d’information choisies pour construire le systtme de VL sont les coefficients cepstraux, le
résiduel de I’analyse en PL (qui modélise la source de production de la parole) et enfin le pitch et 1’énergie
(en ce qui concerne la prosodie). Une fois que les parametres du signal acoustique ont été correctement
établis, la deuxieme étape consiste a déterminer les relations d’indépendance conditionnelle entre ces
parametres. On utilise deux algorithmes différents pour retrouver ces relations. Le premier algorithme,
inspiré de 1’algorithme K2 [Cooper and Herskovits, [1992] utilise une recherche de structure de type glou-
ton avec un ordre préétabli et une fonction de score BIC. Le deuxieme algorithme, quant a lui, emploie
une mesure de qualité basée sur I’approche MDL (pour Minimum Description Length) [Sigelle, 2003] et
n’utilise que des variables discretes.

E
SLPCC
Fy
. F E MF
RLPCC SLPCC 0 RMFCC

Figure F. 1.11: Structures qui réprésentent 1’énergie (E), le pitch (Fy), le spectre (SLPCC) et la source de
production (RLPCC) obtenus avec les algorithmes K2 a gauche et MDL a droite.

Les structures obtenues ont une interprétation physique assez intéressante. Comme la premiere ap-
proche n’utilise que des variables continues, la structure reflete 1’aspect de production de la parole. Une
relation directe entre I’énergie et le fréquence fondamentale est trouvé ainsi qu’entre le spectre et le résiduel
de I’analyse en PL. Par contre la structure obtenue avec des variables discretes reflete une relation des zones
de I’espace acoustique obténue en quantifiant les variables continues.

Une fois trouvés les relations d’indépendance conditionnelle, on a décidé de modéliser chacune de vari-
ables avec un MMG. Maintenant chacune des sources d’information est modélisée avec deux variables, une
variable discrete qui représente les poids dans le mélange et une variables continue qui représente une dis-
tribution gaussienne. Ce choix nous a permis de spécifier deux types de relation entre les variables et d’en
envisager une autre. On peut, soit relier les variables discretes, soit les variables continues, soit toutes les
deux. Si le premier choix est utilisé une dépendance est établie entre les variables qui décident les gaussi-
ennes utilisées pour modéliser chacune des observations. Le deuxieéme choix met en relation de dépendance
les variables continues directement entre elles. Trés peu d’influence de la structure sur les résultats a été
trouvé, spécialement avec une relation entre les variables discretes, voir Figure F.12.

Dans les résultats mentionnés, seule une adaptation classique des gaussiennes a été utilisée. Dans les
techniques d’adaptation proposées dans le cas de relations entre variables discretes, on peut faire deux re-
marques. D’une part, chacun des tableaux de probabilités est une matrice stochastique et, d’autre part,
I’adaptation est faite en combinant des colonnes de ces matrices. Comme les matrices sont stochastiques,
alors chaque colonne est une distribution de probabilités. En modifiant les valeurs de ces distributions, on
modifie également les relations d’indépendance entre les variables concernées. Si, de plus, on peut mesurer
une distance entre ces deux distributions de probabilité, on peut également mesurer les variations des in-
dépendances entre les variables.

Dans nos expériences, on propose de réaliser 1’adaptation en utilisant ce type de mesure comme facteur
de pondération dans la combinaison des modeles. Les premiers résultats ont été obtenus avec des variables
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Figure F. 1.12: Courbes DET pour les systéemes basés sur les structures obtenues avec les algorithmes K2
et MDL.

discretes. Chacune de ces variables a été discrétisée en utilisant une quantification vectorielle. Les résultats
montrent de fagon tres claire I’influence de la distance entre les distributions de probabilités qu’on utilise
(Kullback-Leiber, Aitchison et une valeur fixe), Figure F.13.
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Figure F. 1.13: Courbes DET pour les systemes basés sur les structures obtenues avec les algorithmes K2
et MDL.
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Les dernieres expériences réalisées au cours de notre travail appliquent 1’adaptation pour des RB dont
les variables sont modélisées a 1’aide de MMG. D’abord, si les dépendences sont mis entre les variables
discretes on a des structures comme celles montrés dans la Figure suivante.

1 i \ i \
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Figure F. 1.14: Structures avec des dépendances entre les variables discretes.

Les résultats obtenues avec ces structures et un facteur d’adaptation p;;, fixé sont montrées dans la
Figure F.15. Pour cet expérience on a utilisé 8 composants pour slpcc et mfce, 3 pour fy et 2 pour e.

Les coefficients sipcc et m fcc ont été normalisés avec une Gaussianisation de la distribution des variables
[[Pelecanos and Sridharan, 2001].
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Figure F. 1.15: Courbes DET pour les systemes K2 et MDL avec des relations discrétes adaptés.
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Et finalement, si les dépendances sont mis entre les variables continuous on a des structures comme
celles montrés dans la Figure suivante.
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Figure F. 1.16: Structures avec des dépendances entre les variables discretes.

Pour cet expérience on a utilisé 8 composants pour sipcc et mfce, 5 pour fo et 4 pour e. Les coeffi-
cients slpcec et mfcc ont été centrés est réduites. Les résultats obtenues avec ces structures et un facteur
d’adaptation p;j, fixé sont montrées dans la Figure F.17.
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Figure F. 1.17: Courbes DET pour les systemes K2 et MDL avec des relations continuous adaptés.

Ces résultats ne montrent pas de grands changements par rapport a 1’adaptation dans le cas discret. En
revanche, dans le domaine continue, 1’adaptation des relations permet d’améliorer les résultats.
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1.10 Conclusions

Au cours de ce travail de theése, nous avons proposé de tirer parti du formalisme des réseaux bayesiens pour
réaliser un systeme de VL. Nous avons proposé les RB comme un outil de modélisation des dépendances
entre les attributs du signal de parole. Nous avons également développé une nouvelle approche pour com-
biner ces différentes caractéristiques porteuses d’information sur I’identité d’un locuteur. La combinaison
des informations spectrales et prosodiques est effectuée au niveau des données et non au niveau des scores.
Les dépendences apprises nous ont conduit a I’obtention des structures qui refletent les realtions physyques
entre ces attributs.

Une nouvelle technique d’adaptation pour la VL a aussi été présentée. Dans le systeme que nous pro-
posons, I’adaptation des TPCs et des matrices de régression d’un Réseau Bayesien est faite par combinaison
de leurs valeurs respectives dans les modeles du monde et dans les données d’apprentissage. Les résultats
montrent que les performances du systéme issu de cette adaptation sont meilleures que celles d’un systeme
ou seules les moyennes des gaussiennes sont adaptées.

A T’issue de nos recherches, 1’intérét d’employer les Réseaux Bayesiens dans les systemes de VL est
clairement montré. Les résultats obtenus sont encourageants dans le cadre de la VL méme s’ils ne sont
pas comparables aux performances des systemes qui représent 1’état de ’art. En effect, nous nous sommes
intéressés prioritairement a I’étude du potential des RB comme un outil statistique pour modéliser plus
fidelement les signal de parole.

Les modeles ainsi obtenues sont susceptibles de fournir de meilleures performances, dans des condi-
tiones d’apprentissage plus optimales. Par conséquent, une poursuite des travaux de recherches dans ce
domaine nous semble particulierement judicieux et pertinent dans I’objectif de I’amélioration des perfor-
mances des systemes de VL.
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Chapter 1

General Introduction

Speech Processing (SP) is a field with many applications. Analysis, Synthesis, Coding and Recognition are
the basic areas of SP. Speech Recognition can be divided into three main sub-areas: Language Identifica-
tion, Speech Recognition and Speaker Recognition (SR). Likewise SR can itself be divided into Speaker
Identification (SI) and Speaker Verification (SV). In SI there is no a priori claimed identity and we would
like to find out this identify among a group of persons. Then, the answer in such a task is the speaker’s
identity or the group to whom the speaker belongs. Or, in the open-set case the output could be that the
speaker is unknown to the system because the actual speaker has no model since he/she comes from an
unknown speaker group. SV systems, the main topic of this work, verifies, accept or reject, the identity
claimed by a given speaker using the available information. This information, in most of the cases, is just
the speech signal, as is the case in a telephone call. Such a system has to deal with two different events.
The first occurs when the speech corresponds to the claimed identity. The second event occurs when the
claimed identity does not correspond to the observed speech. In the first case the person who speaks is
called a client and in the second cases is called an impostor. Therefore, the system can just accept a person,
because it decides that he/she is a client, or reject him/her because it decides that he/she is an impostor.

Performance of actual SV systems is still different from that of humans. The first difficulty in a real
application is to deal with non-cooperative speakers. If the speaker does not collaborate the signal quality
could be degraded. In addition the system has to be prepared to confront some unexpected circumstances.
Unlike of non-cooperative speaker, the speakers who want to be identified can be imposed to speak a de-
fined sequence of words, for example a password. This utterance or flow of words can be defined each
time that the speaker uses the system (a random sequence) or can be fixed before the utilization of the
system. This constraint is used to class SV systems into text dependent and text-independent. Our work
is addressed to text-independent SV system. The second complication in real applications lies in dealing
with non-controlled scenarios. The system has to deal with different background noises and/or different
communication channels. SV systems have to be prepared to come across with those difficulties. These
constraints are reflected in all the processing steps before making the final decision.

An important problem in SV is to find the right feature set. One difference between systems and humans
is the amount of used information. Speech is the most natural and commonly manner used by humans to
communicate to each other. Consequently it is a really rich source of information. Just a few seconds of
speech convey a very large amount of information. The most important one among those informations is the
message. Speech serves as a medium in carrying essentially the main or most important ideas that someone
is trying to tell to someone else. But, in addition to that message another very much important characteristic
information is also present into the speech signal. This important characteristic is the identity of the speaker.

The message as well as the identity of the speaker are coded in several levels of abstraction. Every
person has a different voice, a different way of speak, a different rhythm of speaking, a different tone of
voice, some favorite words, etc. From acoustic to linguistic and paralinguistic levels speech helps to coding
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certain intentions expressed into the utterance which can be unique to a special, and unique speaker.

In the acoustical level the spectrum could help someone or the system to identify his/her interlocutor
(in the case of humans), but humans do not just use acoustical information in a normal communication.
Usually each person uses all the information mentioned in the last paragraph to identify a person. They
use prosodic data, as well as segmental and suprasegmental characteristics like intonation, accent, pitch and
manner to talk. However, each of those informations may not in itself be enough to discriminate between
two different persons. The relationship made between the sources of information used to make decisions is
another difference between humans and systems.

In addition to those differences, between systems and humans, some realistic problems due to system
operation can be identified. The environment is a problem for the good performance of SV systems. In the
acoustical signal not only the information about the speaker is found. The speech is modified in its way
prior to reach the final receptor. In addition to the proper and useful information the signal contains noise
from the environment and has distortions due to the communication channel which make the problem more
complex. In order to attain a robust system the environmental and acquisition conditions have to be taken
into account.

The problem found in the dissimilarity in the environment condition is close to the problem of lack of
data in each specific condition. These problems are related to each other because of the lack of available
data which can represent all the possible environments. The speech samples obtained from each speaker
will never reflect all the potential utilization conditions. It is unrealistic to thinking on having samples from
all possible sound environments, all signal acquisition conditions and all transmission channels.

Finally, as an extra obstacle for the SV systems we mention the well-known fact that humans’ voice
change with time. In general, in a SV system real application all the variations between the samples used to
model a speaker and the data obtained for the test are source of errors.

To overcome all those difficulties the state of the art systems and research in SV use several techniques
to compensate those differences in order to obtain more robust results. Basically, there are three such
techniques. The first ones, called normalization techniques, try to make the used information independent of
the employment conditions. The adaptation techniques, in other hand, try to adapt the knowledge acquired
from each speaker to the new environment and utilization conditions. And finally, techniques which use
some a priori knowledge to balance the lack of date in the new information.

1.1 Main Contributions

In this work we try to solve some of those problems. Two different approaches, which reflect our contribu-
tion, are presented mainly in two parts.

First, given that speech is a rich signal with several characteristics, we propose to combine in a base
level several measurements, or source of information, of this signal to improve the performance of SV sys-
tems. The combination will be done at the features level because we think that it is the best way to maintain
the specific relations between those source of information. We propose to use Bayesian Networks to inte-
grate the information received from multiple measurements in a single statistical framework that keeps the
conditional dependence and independence relations between all those data. To develop a SV system based
on Bayesian Networks, first a study of the conditional relationships of those variables was performed. The
optimal structures obtained define the first part of the SV system and the first contribution of this work.

Second, given the problems faced in a real application we propose to use adaptation techniques in our
SV system. To make the system more robust to conditions of utilization we suggest to include some a
priori knowledge based on a MAP approach. Therefore, we propose a technique to adapt BNs given the
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the mathematical conditional independence relations of these models. Two types of relations were studied:
between discrete and continuous variables. We developed two different techniques based on those type of
variables.

1.2 Overview of the structure of the thesis

This work is divided in three parts. The first deals with the basics of SV systems and graphical models.
First a brief description of SV systems is made. In a third Chapter the possible sources of information about
a speaker are explored and tested.

The fourth Chapter deals with graphical models. Their utilization in other fields is presented. Formal
definitions about graphical models are given. Directed Acyclic Graphs, BNs, receive particular attention
as they are the tools used as the main probabilistic model in this work. Hidden Markov Models and their
variants are studied in Chapter five as particular cases of of Dynamic Bayesian Networks.

In the second part the problems of inference, parameters and structure learning are presented. In this
part the first results are presented. The obtained structures issue of a learning phase are studied and tested.

Adaptation techniques are discussed in the last Chapter. In particular, a new adaptation technique for
Bayesian Networks is proposed. This adaptation is based on a distance between Conditional Probability
Distributions and regression matrix used to model the conditional dependencies among all concerned vari-
ables. The document ends with some conclusions and perspectives of this work.

At the beginning of this document you can find a summary in French and at the end a small report about
our participation to the NIST’s evaluation as a part of the ELISA consortium.
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Part I

Principles of Speaker Verification and
Graphical Models
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Chapter 2

Speaker Verification Systems

SV systems ([[Bimbot et all, 2004]) have two different phases. The first phase consists in training and
the second in testing. In the training phase a model of a specific person is generated making use of some
utterances. In the test phase the models generated in the training phases are used to verify the claimed
identity of a speech sample. A representative Automatic Speaker Verification (ASV) system is composed
of four main modules. Figure 21l shows the units in which the system could be divided. The first one,
which it is not described because it is out of the scope of this work, is devoted to obtaining and digitizing
of speech signal. This task is achieved by filtering and using an analog to digital converter (A/D).

Features
Speech Speech
data Parameterization
Modeling Scoring accepted
Normalization — or
Decision rejected
Claimed Identity Mo@

Speaker model,
World model

Figure 2.1: Main modules of a Speaker Verification System. The modules in double squares are the ones
where we work in this thesis.

2.1 Speech Parameterization

The second module, speech parameterization also called Feature Extraction (this is the main topic of Chap-
ter @), is devoted to capturing the pertinent information from the speech signal for a specific application, in
our case speaker verification. Speech is a rich and complicated signal resulting of different transformations
that take place at different levels. According to the stages of oral communication four principal levels can
be enumerated: semantic, linguistic, articulatory and acoustic. In each one of those levels we can obtain
information about a specific speaker. For example: gender, language spoken, stress, accentuation, rythm
and intonation. All of them introduce variations in the characteristics of the acoustic signal because this
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signal is the result of a combination of learned habits and anatomical differences inherent in the vocal tract.
Therefore, these differences can be used as discriminating information in order to differentiate between
speakers. However, they need to be measured. To extract that pertinent information usually the acoustical
signal is first divided into intervals (frequently between 10 and 30 ms.) called frames. Each one of those
frames is then mapped to a selected multidimensional feature space. In most of the actual ASV systems the
spectral information is used. Cepstral coefficients as well as the dynamic information represented in the first
and second derivative (called A and AA coefficients) are also used. In addition to spectral characteristics
of speech some other information like pitch, which is an example of prosodic information can be employed
in a SV system.

2.2 Modeling

The second unit, modeling and pattern matching, is a central module in all ASV systems. There are two dif-
ferent approaches for modeling: template models and stochastic models. The first one is based on template
models, which were used in the beginning of the SV system and particularly for text dependent applica-
tions. The basic idea behind the template models is to measure a distance between two templates, one is the
model for the frames of the speaker and the other is obtained from the frames of the uttered speech. Some
examples of this kind of techniques are Dynamic Time Warping (DTW) and Vector Quantization (VQ). The
second one, stochastic models, assums the observations as random vectors with a probability density func-
tion that depends on a specific speaker. Stochastic models are based principally on Hidden Markov Models
(HMM), Gaussian Mixture Models (GMM) or, as is proposed in this work, on Bayesian Networks (BN)
(main subject of ChapterBl) which estimate the probability density function and can be used to compute the
probability of observations generated by a certain probability density function. In this case the similarity
measure is the likelihood of the feature vectors obtained from the uttered speech given the speaker model.
Let 6 be the parameters of the model for the system and x the feature vector. Considering T" observations
of x the likelihood function for a GMM is computed as follows:

T

p(@10) = [[ p(=(t)16), @.1)

t=1

where the independence hypothesis of observations is assumed.

The choice of the actual form of the model and of the likelihood density function is affected by the
conditions of use. In a system without constraints in the text of the utterance a GMM will be preferred.
Otherwise, in a text-dependent system a HMM will be chosen because it allows to model the dynamic of
features. Concerning BN one can say that they give more flexibility for modeling some extra relations
between the features and, therefore, introduce more complexity and degrees of freedom to the models as it
will be seen in part II of this work.

In general, if the system is text-independent the state-of-the-art systems use GMM as the modeling
function for the distribution of characteristic vectors. The mixture of M density probabilities can then be
written as follows:

M
p(z|0) = Zwip(fﬂi;uiazi)a (2.2)
i—1

where w; are the weights, which verify the constraint Zf‘il w; = 1, p; is the mean and ¥; the co-
variance matrix for each gaussian density that is written as follows for each component ¢ € [1, M] of the

mixture:
e " m——C L) 2.3)
(2m)-#|5)3
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In general, the covariance matrix 3 has all elements differents of zero, that is, it is a full covariance
matrix. In practice, the diagonal matrix is preferred because of computation reasons. In a diagonal matrix
the inversion is just the inverse of the diagonal elements. Then inversion of a full matrix is not required.

Just to finish with this section artificial neural networks (ANN) [[Prasanna et all,2004] as well as Support
Vector Machines (SVM) [[Wan_and Campbell, 2000] should be mentioned as examples of discrimination-
based learning procedures for SV.

2.2.1 Adaptation

In order to obtain consistent models, it is necessary first to use speech signals that reflect the expected
circumstances of utilization, and second to use an adequate quantity of speech samples. If these two con-
straints are not satisfied adaptation techniques can be employed to overcome the problem. Adaptation in
general and the proposed techniques for BN are the topic of Chapter Bl When not enough speech signal are
available a satisfactory speaker model can be obtained by adapting a good generic model using Bayesian
Adaptation Technique as Maximum A Posteriori (MAP) [Mokbel, 2001; (Gauvain and Lee, [1994]. A good
generic model means a model trained by employing enough data which represent the circumstances of uti-
lization. For example, using just men speech if it is known that just men speech will be tested again a
specific men model, using speech recorded in cell phones is if known that user will use cell phone.

In general, the equation employed to update the parameters of the model in adaptation techniques can
be derived from the MAP approach by using some constraints in the prior distribution. This constraint is
expressly chosen in such a way that the likelihood and the posterior distribution belong to the same family.
Consequently the prior distribution is the conjugate of the desired posterior distribution. For example, for
a gaussian distribution where the searched parameter is only the mean the searched distribution is also a
gaussian distribution.

2.3 Decision

The last module in the SV system chain is the score and decision unit. As it was already presented the score
is based on a distance for template models and on likelihood for stochastic model. The decision problem
in a SV system can be seen as a problem of classification in two classes. The first class corresponds to
the speaker S and the second class corresponds to a state called non-speaker S. These classes have prior

probabilities P(Sl and P(S) and conditional probability density of the observations = given the classes
P(z|S) and P(z|S). Using Bayes rule the a posteriori probability can be computed as follow:

P(z|S) P(S)

P(Sla) = =5,

24

where, P(z) = P(x|S) P(S) + P(z|S) P(S). Figure 22 shows an example of impostor and client
likelihood distribution. Therefore, the decision can be made on the basis of the a posteriori probabilities.
Thus, the hypothesis S, the actual speaker correspond to the claimed identity is selected if P(S|z) >
P(S|x). This choice is justified because a minimum error is attained with this procedure. The same
equation can be written in the following form:

P(z|S) P(S) > P(z|S) P(S). 2.5)
and then:
P(z]S) < P(S)
P(z|5) P(S)’
P@S) - ihreshold, (2.6)

3
8
Rl
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The decision is based on the likelihood ratio, the left side of the equation. Usually the logarithm is
computed in both sides to obtain the log likelihood ratio, also known as the speaker score, which is the most
common decision rule used in SV systems:

Score(x) = log —= > log(threshold) = constant. 2.7

3
C)
=2

threshold

Impostor Distribution
P(a]3)

Client Distribution

1.4F P(x5) 7

1.2

Figure 2.2: Client and impostor probability density functions. The line in the middle represents the decision
threshold. FA and FR represent the false acceptance and false reject errors areas.

2.3.1 Universal Background Model

The non-Speaker model S in the state of the art systems is modeled by a single speaker independent back-
ground model, also called the world model. This model is trained to represent the speaker independent
distribution of speech parameters. Normally, the world model is trained to represents the conditions, speech
type and quality and enviroment, encountered in the test phase. For example, if in the test phase there are
not cross gender tests, two world models will be trained, one for males and other for women, one model
for each subpopulation. Subpopulations can also be classified by the type of hanset. Then, one wold model
could be created for men using one special type of handset. All those differences should be taken into
account to choose the data, which should be enough and well balanced.

2.3.2 Speaker model

The final speaker model S is in general obtained from the world model by adaptation. The basic idea of this
approach is to adapt the well learned parameters of the world model, using adaptation, to finally obtaine
the speaker’s model. For example, if the MAP approach is used, the speaker’s model is obtained using the
world model as a priori. Then new prameters are obteained using the EM [[Dempster et all, [1997], where
the E step compute the sufficient statistics of the speaker’s data. Unlike the M step, the new parameters are
computed by combaining the a priori, the wold model, parameters with these new sufficients statistics using
a mixing coefficient (see Chapter [§).

2.4 Normalization

The decision in a SV system is made by comparing the log-likelihood ratio to a threshold as it was already
in the previous section. But, this rule is based in the true probability density functions. In real application
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those true functions are unknown. The computed functions depends on the real utilization conditions, the
utterance and also on each speaker. Therefore the obtained speaker score has to be normalized. The first
and basic technique is to normalize given the utterance length. If the score is designed by S(x), where x is
the utterance, and 7T’ is the number of observations in that utterance, the normalized score is:

S) = 750,

= l log w 2.8)
T~ P(z]9)

Score variability can come from other sources. Then, some other normalization techniques are used to
adjust the score. Utilization conditions are not always the same, noise and communication channel, for ex-
ample can change each time the system is used. Even, variability comes from the speaker himself. Models
quality as well as the phonetic content are some of those mentioned causes.

Techniques for normalization are based on the work of [I[Liand Porter, [I988]. The authors showed that
a variance is present on the client as well as on the impostor scores in the speaker verification test phase.
Thus, the main idea of normalization is to modify the impostor scores generated by the SV system in the
following form. If Sy(x) denote the score for the model with parameters 6, the normalized score for that
model is expressed in the next equation:
g So(x) — peo
Sp(w) = ———, (2.9)
g6
where oy, the variance and pg, the mean are the normalization parameters. Those parameters are com-
puted as a function of the characteristic to be normalized.

2.4.1 Normalization Parameters Computed in Training Phase

Znorm [Liand Porter, [198&] normalization technique computes an impostor distribution given a model and
several impostor utterances. As it can be seen this technique works in the learning phase. Then, in the test
phase non extra time is needed. From the impostor utterances the parameters, p and o for normalizing are
computed. As well as Znorm the Hnorm [[Reynolds, [199€] also works in the training phase, but Hnorm
gives handset-dependent distributions. This technique aims to normalize the variability that comes from a
different handset utilization. Utterances employed should come from a given and unique handset. In the
test phase the set of used normalization parameters is the one that corresponds to the test utterance.

2.4.2 Normalization Parameters Computed in Test Phase

Unlike above techniques, Tnorm [|[Auckenthaler ez all, 2000] uses impostor models instead of impostor
utterances. At the test phase, a set of impostor models is used for scoring the input utterance in order
to estimate an impostor score distribution and the set of normalizing parameters. The advantage of this
technique in comparation to the Znorm and Hnorm is that the same utterance is used. Then, in this form a
utterance mismatch is exclud.

2.4.3 Generating the data to Compute the Normalization Parameters

A problem in the previous techniques is the available data to generate the models and also the data to test
the available models. Dnorm [Ben_ et all, 2002)] propose to generate those data from a generic client model
using a Monte Carlo based method. In this case, the final score is given by the following equation:

~ - S@ (33)

So(x) = K120,0) (2.10)

where 6 represent the client model, @ the generic model and KL2 the symmetric Kullback-Leiber dis-
tance between both models. The principal advantage of this technique is that it does not need extra data to
normalize the scores.
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2.5 Performance

As a SV system has to verify the claimed identity of a given speaker, two kinds of errors can be made as
it is already been said in previous paragraphs. The first error is to accept an impostor, and is called false
acceptance (FA), or, the second, rejects a client, called false reject (FR). These errors are expressed through
the FA rates and FR rates respectively given by:

FA
FAR = _ItA% @.11)
# impostor acces
F
FRR — — TEs 2.12)

# client acces

Those rates are used to measure the performance of a SV system. A combination of both measures
called a decision cost function (DCF) can be obtained. This measure is defined as follows:

DCF = Cost(FR) P(client) FRR + Cost(FAR) P(impostor) F AR, (2.13)

where the two probabilities are the prior probabilities of observe a client or an impostor, and the Cost
function measure the importance given to each event. A particular case, called half total error rate (HTER)
is obtained when both prior probabilities P(client) and P (impostor) are fixed to 0.5 and the cost functions

to 1:
FAR+ FRR

2

Another typical parameter used to measure the performance of a SV system is the Equal Error Rate
(EER) where both errors are equal.

HTER = (2.14)

The performances of SV systems are usually represented by Detection Error Tradeoff (DET) curves. A
DET curve represents performances of detection tasks and is a standard in speaker and language recognition
evaluations. In a DET curve, the two possible errors of a SV system are plotted (False Acceptance or False
Alarm and False Rejection or Miss Detection) one on each axis as a function of decision threshold used.
As it is seen in Figure 22l changes in the threshold value causes changes on the error areas FA and FR. The
DET curve is generated by computing the Verification score for different threshold values. An important
propriety of a DET curve, given its log normal scales, is that it should be a line if the scores of clients and
impostors access follow a normal distribution. An example of a DET curve is shown in Figure

40 -

Miss probabiliy (in %)

i i
5 20 40
False Alarm probabiliy (in %)

Figure 2.3: Example of a DET curve.
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2.6 Conclusions

This Chapter was presented as a guide for this work. The basic modules (signal parameterization, modeling,
decision and performance measure) forming a SV system have been briefly presented in this first chapter.
Typical problems on a real SV system application were reviewed.

The next Chapter will detail the speech signal parameterization. Special emphasis on possible extra
source of information obtained from the acoustical signal will be placed.



50

2. SPEAKER VERIFICATION SYSTEMS




51

Chapter 3

Sources of Information for Speaker
Verification

The speech signal carries a lot of information besides the message. Information about the speaker is present
such as mood, emotive state and in particular his/her identity. Listening to somebody, it can be said if the
person is a woman or a man, young or old, with a voice disorder, worried, scared, happy or not, speak-
ing Spanish, English, German or an other language, etc. SR (Speaker Recognition) systems should use
all features which capture the characteristics of the speaker in order to differentiate them from others. In
this search for individual discriminant features some information could be lost. Many authors discard the
prosody in speaker verification, but it is known that it carries a lot of information about the speaker identity.
The suprasegmental characteristics, like intonation, accent or pitch are very important in a normal com-
munication, specially the pitch that appears like an important factor in speaker recognition [[Carey et all,
199€6]. However the pitch information in itself is not enough to discriminate between two different persons.
Therefore knowledge comming from other sources, and not just the spectral or pitch, must be used. One
example of these information, which is not often taken in account, is that which comes from the source of
excitation in speech production.

In this chapter we present some possible sources of information obtained directly from the acoustical
signal. We start with an overview of linear prediction (LP) analysis introducing the residual signal. Then,
we present the pitch as an example of prosodic information. Then a presentation of spectral characteristics
of speech is made. We finish with some results obtained using this information.

3.1 LP Analysis

The LP (Linear Prediction) Analysis [Goldberg and Riek, 2000] has become a sucsessful because of the
adequacy between the proposed model and the human voice emission process in the human being. Another
very important characteristic of this technique is that it has a very low computation cost. The composite
spectrum effects of radiation and vocal tract is assumed to be represented by a time-varying digital filter,

see Figure @I).

In this figure, S(z) is the output signal issued from the filter H(z) with the input U(z). The filter
function has the following form :

q
1+ Zblzil
_ =1
P
1— Z akz_k
k=1

H(z) _ B() 3.1)



52 3. SOURCES OF INFORMATION FOR SPEAKER VERIFICATION

U(z) ——>{ H(z) —> S(2)

Figure 3.1: Signal Generator Modul.

where ay, and b; are the digital filter coefficients. The denominator A(z) is a polynomial expression
in z~! called the inverse filter whose first term is one and the composed elements are negatives. The
parameters (p, ¢) define the number of poles and zeros of the filter. It could be imposed ¢ = 0 to obtain a
filter with only poles. Then, a designed output S(z) imposes some changes in the input signal U(z) and the
ay, coefficients. Therefore the equation of this filter can be written as follows:

1 1
H(z) = = ) 32
(2) m A0 (32)
1— Z akz_k
k=1
Finally, the input signal could be computed from the wished output signal in the following form :
U(z) = H '(2)S(2) = A(2)S(2). (3.3)
From equation (33) and the inverse transform Z ~! the equation in the time domain is written as :
P
u(n) = s(n) — Zaks(n — k) Vn, 3.4
k=1

This equation highlights the prediction property that permits to obtain the values of s(n) from a linear
combination of the p last samples given the minimization criterion of the input signal u(n) energy. More-
over it can be seen that the filter is an unstable filter since it has an output even if at the entrance the signal
is null. The LP analysis is performed to determine the predictor coefficients ay, which represents the vocal
tract model of the speaker, directly from the speech signal.

Computing (Developing) the energy (E) shows in the next expression :

E = i u?(n) = i (s(n) — iak s(n — k‘))g,
n=-—0o0 n=-—oo k=1
= i (52(n) + (z”: ar s(n — kz))2 —2s(n) zp: ar s(n — k)) (3.5)
n=—o00 k=1 k=1

and minimizing this energy given the p filter coefficients a; the searched solution is obtained as follows :

P
> _ar(k —1i) = ¢(i) Vi € [1,p], (3.6)
k=1

where ¢(i) is the autocorrelation function of a real signal with finite energy :

(o)
¢(i)= > s(n)s(n—1i)Vi. (3.7)



3.2. INFORMATION FROM THE SOURCE OF EXCITATION 53

It is not possible to use the autocorrelation function ¢(i) in practice because of the limited number of
available samples at a given time. This problem can be solved in two different ways. In both options it is
just considered a small part of s(n), with a window of finite length. The first choice is called the autocor-
relation technique and admits the distortion effects caused by the convolution between the window and the
signal. The second option, called the covariance technique, uses the signal energy E instead of only the
signal s(n) to reduce the mentioned distortion effect.

The input signal x(n) used in the autocorrelation techniques is the weighted version of the original one
s(n) using the window weights w(n) :

{ x(n) = w(n)s(n) VYn € [0,N]
xz(n) =0 Vn ¢ [0, N[

Using this new signal z:(n) the autocorrelation (B7) function becomes :

N—-1 N—-1
R(i) = Z z(n)z(n —i) = Z w(n)s(n)w(n —i)s(n —1i), Vie[l,p], (3.8)

3.2 Information from the Source of Excitation

Human speech is produced by vocal organs like the vocal cords, the larynx etc. The most important fact
here is that all those organs are specific to the speaker. When someone speaks, the air flow is forced through
the glottis between the vocal cords and the larynx to the three main cavities of the vocal tract. Therefore the
excitation signal produced has the speaker’s mark and can be an extra information about the speaker. The
Linear Prediction (LP) analysis provides a method for separating the vocal tract information from excitation.

3.2.1 Residual

The LP residual [[Thévenaz, [1993; [Faiindez-Zanuy and Rodriguez-Porcheron, [1998] is spectrally flat, be-
cause the vocal tract shape is removed by creating an inverse filter A(z). This filter is obtained using the
LP coefficients obtained, in our case, by solving the Yule - Walker equation. Actually the predicted residual
is the excitation signal normalized by the prediction gain G as reflected in the next equation that is derived
from equation (B4) :

i(n) = é( s(n) — i aps(n — k)) Vn, (3.9)
k=1

where G is given by the expression :

G=[6(0) = arp(k). (3.10)
k=1

As an example Figure (82) shows a typical voiced signal with a good periodic structure at the top and
its residual signal computed using the equation (3.9) at the bottom. It can be seen that the periodic structure
of speech is represented by periodic pulses in the LP residual of voiced speech.

3.3 Prosodic Information

As it was already said prosodic information is another source of information. Prosody has to do with speech
features whose domain is not a single phonetic segment, but larger units of more than one segment, pos-
sibly whole sentences or even longer utterances. This is the classical definition of prosody and from it, it
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Figure 3.2: Example of a voiced signal (top) and its residual signal (bottom).

can be said that prosodic phenomena are supra-segmental. They appear to be like features which structure
the speech flow. They are perceived as stress, accentuation, rythm and intonation. These characteristics are
well adapted for speech segmentation and for SV (Speaker Verification) given that they are features that
characterize the speaker all along the speech.

In order to make a classification of prosodic features it is necessary to take into account four mani-
festation levels according to the stages of oral communication. From the intention level, linguistic and
paralinguistic, the prosody is seen as an element that could help coding certain intentions expressed in the
utterance. Linguistic expressions use only language signs but prosody means can help on communicate
linguistic distinctions, relating different linguistic elements or defining transitions between words. On the
other hand, paralinguistic expressions use non-verbal vocalizations like interjection-like expressions as well
as expressions that make the utterance sounds urgent, worried, etc. In the articulation level, prosody features
are modifications of articulatory movements which are observed only with sophisticated machinery. The
most important level in this work is the acoustic level. The acoustic realizations of prosody can be observed
and quantified using acoustic signal analysis. The main acoustic parameters are the fundamental frequency,
intensity and duration. The last level is the perceptual level. Here, the prosodic information carried by the
acoustic signal is decoded by the ear and brain obtaining linguistic and paralinguistic informations.

Hereafter, a study of the fundamental frequency (f() is given because it is one of the speech character-
istics used to model the speaker in our work.

3.3.1 Fundamental Frequency

The fundamental frequency, or pitch, of a periodic sound is that sinusoidal component of the sound which
has the same period as the periodic sound [[Moore, [1982]. But in this work the fundamental frequency is not
the perceived, subjective tonal quality of a complex sound. The pitch is a property of voiced speech which
has a closed relation with the glottis movements. The organ opens and closes in a particular fashion, giving
(imparting) a periodic character to the excitation. The pitch period, called T} is the time span between two
openings of the glottis, and the fundamental frequency is the reciprocal of the pitch period, 1/T = fo.

The physical limitations of the human vocal cords restrict the pitch range to frequencies between 50 and
300 Hz. Men generally have lower pitch frequencies and women and children have the higher part of that
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Figure 3.3: Example of a voiced speech signal.

range. As already said, pitch is an important prosodic characteristic that carries paralinguistic informations
by the rise and the fall of the frequency.

Estimation of pitch entails a big difficulty on account of the quasi-periodic nature of voiced excitation.
Not only detection of the slowly variation of the excitation waveform is a problem, also the time point
chosen for period measurement could change the measure. The vibration of the vocal chords can even
be quite non periodic and harmonics or sub harmonics of the fundamental frequency can appear more
prominent than those of the actual pitch frequency.

3.3.2 Autocorrelation Pitch Estimation

In this section will be discussed one of the most popular and fastest approach for pitch computation
[Goldberg and Riekl, 2000]. This technique tries to locate the periodicity in the time domain using the
correlation function which measures the degree of similarity between two signals. Actually, the autocor-
relation function measures the similarity between the signal and its shifted version. The maxima of the
autocorrelation function takes place at the moments that the shift coincide with the pitch period of the orig-
inal signal.

As already mentioned (section 3.2), in real conditions it can just be computed the short time autocorre-
lation function :

N—-1
R(i) = s(n)s(n — i), (3.11)

Figure@3) depicts a segment of 60 ms of a voiced speech signal sampled at 8 kH z, and Figure (B4)
displays the autocorrelation of the same segment.

From the autocorrelation function it can be seen that the second maximum is about the sample number
38. Then the pitch period is also about 40 samples. This lag of 38 samples corresponds to a pitch period
of Ty = 4.75 ms and a pitch frequency of 210 Hz. A local maximum also appears at a lag of 76 samples.
This value shows the good match when the shift is twice the pitch period. The maximum value for the
autocorrelation function is always at lag 0 since the match between the signal and the non shifted signal,
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Figure 3.4: Autocorrelation function of a voiced speech segment.

itself, is maximum. This value R(7) is the computed energy when ¢ = 0 in the equation (EIT).

Since speech is not a pure periodic signal, and vocal tract resonances produce some other maxima, pitch
computation directly from the autocorrelation signal can results in multiple local maxima. The suppression
of local maxima could be made using the method which consists on center clipping the signal before com-
puting the autocorrelation function. Amplitude values of the original signal under a fixed positive value C',
and above the negative value —C';, will be zero for the center clipped signal. The rest of the signal is equal
to the original minus or plus the fixed value C,. Figure (3] shows a diagram of a center-clipped speech
signal obtained from the signal in the figure (33)). The autocorrelation function of the clipped waveform is
in Figure @8). A signal plus its pitch frequency is depicted in Figure B

3.4 Spectral Information

In general the most employed source of information in speech processing is the cepstrum which is derived
from the spectrum of the signal. The cepstrum is defined as the inverse discrete Fourier transform of the log
of the magnitude of the discrete Fourier transform of the input signal s(n). The discrete Fourier transform
(DFT) is the most used transform in the speech domain. The DFT is a Fourier representation of a sequence
of samples of limited length. The DFT and the inverse (IDFT) are defined as :

N-1 .
S(k) = s(n)e I Wk
n=0
| Nl
— 2W"kn
s(n) = N kz_o S(k)e’ ,

and the cepstrum is expressed in the next equation that uses the Fast Fourier Transform as a fast algo-
rithm to compute the DFT :

Cepstrum(d) = IFFT(log, |FFT(s(n))])), (3.12)

The index d is called the quefrency of the cepstrum signal. A value in d corresponds to a periodic com-
ponent in the signal with frequency 1/d.
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Figure 3.8: Example of spectrum.

Figure @8} depicts the log magnitude spectrum and Figure (B9) displays the corresponding cepstrum
for the speech signal in Figure (33)).

3.4.1 Properties of the cepstrum

An important property is the linear effects of the obtained cepstrum values when the signal is passed through
a linear time invariant filter. The cepstrum of the filtered signal is equal to the sum of the cepstrum of the
original signal and the cepstrum of the linear filter. Then, if the linear filter is considered time invariant
and the longterm spectrum of the speech is considered to be flat, the cepstrum from the input signal can be
obtained by the subtraction of the time average from the output cepstrum. For this operation it is assumed
that the input signal is long enough such that the input signal energy is distributed over the entire range of
the spectrum. This property is used to eliminate the communication channel (the linear filter) effects in the
original signal. But the most important property of cepstral analysis is the uncorrelated relation between
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Figure 3.9: Example of cepstrum.

the cepstral coefficients.

3.4.2 Mel Cepstrum

Theory of human audition is essential in the spectral analysis. It is known that human inner ear, basilar
membrane, works like a spectrum analyzer with a resolution that is characterized by critical bands that does
not follows a linear scale. Those critical bands define a subjective criterion of the content in frequency of
a given signal, that is, a bandwidth at which that subjective response is significantly different. A measure of
those critical bands establish two different scales: Bark and Mel. Both, Bark and Mel are units based on the
perceptual frequency that increase logarithmically with frequency as is shown in the next equation for the

Mel scale:
1000
M=——Iog|1+ L ,
log 2 1000
where, M is in Mel units and the frequency f in Hertz.
This nonlinear frequency perception scale has given place to a model that takes into account the subjec-

tive frequency perception in humans. One approach to attain this scale is using a filter bank. The filters are
spaced in the nonlinear, for example the Mel scale.

If the power coefficients of the spectrum at the output of the bank filter is S (k)fork=1,2,...,K and
K such filters, the Mel-frequency cepstrum é(n) is:

é(n):i(logg(k)) cos [n (k;—%) % n=1,2..,1L

k=1

where L is the number of cesptrum coefficients.

3.4.3 Temporal Spectral Information

The cepstral information can be improved introducing temporal information of cepstrum. This extra in-
formation is obtained in the first and second derivatives of cepstral coefficients. To introduce the temporal
variable in the cepstral analysis a ¢ coefficients is added to the notation. Then, a cepstral coefficient ¢(n)
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at time ¢ will be ¢!(n). In general the ¢ factor refers to the frame instead of the time instance. The time
cepstral derivative is approximated as follows:

0 dct(m) 5
— Jw — —Jjwm
T [log |S(exp ,t)” g 9 exp

m=—0oQ

Given that the cepstral coefficients are a discrete time representation using just a first or second order
difference results in a noisy derivative. Then, a better option is to approximated the derivative inside the sum
inB.13by a orthogonal polynomial fit over a finite length window as is showed in the following equation:

dct(m)
ot

P
=Act(m) =~ Z ke R (m),
k=—P

where p is a normalization constant and (2P+1) is the number of frames used to compute the derivative.

3.5 Contribution of Source of Information in Speaker Verification

Throughout this section the proposed source of information will be tested. State-of-the-art SV systems are
based on GMM models using MAP adaptation (see section Z2ZTland chapteiff). Then we will start model-
ing the different sources of information with GMM.

First, the database will be described as well as the specific parameters obtained from the speech signal.
The SV system evaluation have been done in the context of NIST 2004 speaker recognition evaluation
[NIST’s 2004 Speaker Recognition Evaluation, 2004](for more details about our work in relation to the
NIST’s evaluation see Appendix A). From the 28 different combinations of training/test conditions we had
worked on the core test. The core test consists of 1 side conversation for training and also 1 side conversation
to test. Each conversation side consists of the last five minutes of a six minute conversation.

3.6 Database

The data, Mixer Corpus, is taken from the conversational speech data collected in the Mixer Project using
the Linguistic Data Consortium [[Switchboard Corpora LD, 2004; (Campdell et all,2004] new "Fishboard"
platform. This database is a designed speech corpus collection for speaker recognition evaluations in a text-
independent and channel-independent conditions. The data is mostly conversational telephone speech in
English but there are also some speech in languages other than English, like Arabic, Russian, Spanish and
Mandarin, normally spoken by bilingual subjects. When the non-English language is pared the speaker use
it to communicate. Each speaker is asked to send the transmission and handset type for each call as well
as the subject personal identification number. A topic, one for day, is proposed to the speakers, who did
not know each other, but the speakers can change the topic during the conversation. Each conversation is
not echo canceled and the silence intervals were not excised in the original database. The data have an
automatic speech recognition (ASR) transcription with a Word error rate (WER) of about 20-30%. for the
other languages the English recognizer was run on. The database is divided into training data (about 246
male target speakers and 370 female target speakers), and test data (about 11507 test segments for male and
14717 for female). All speakers participating in up to 25 calls of at least 6 minutes duration. All presented
test have been done in the male database only.

Since there are not enough training data for each speaker, adaptation methods are applied to compute
every Target Speaker Model. For this purpose, the system starts from an universal model (UBM) which is
then adapted to the client speaker. UBM models have been created using part of the 1999, 2000 and 2001
cellular evaluation datasets. This database is similar to the database already described, but each conversa-
tion is echo canceled in the original database and there are just English conversations. The training data for
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a speaker consist in about two minutes of speech, excerpted from a single conversation. Actual duration is,
however, constrained to lie within the range of 110 to 130 seconds. Each test segment is extracted from a
one minute excerpt of a single conversation and is the concatenation of all speech from the subject speaker
during the excerpt. The duration of the test segment therefore varies, depending on how much the speaker
spoke. Therefore, the effective speech duration lies between 15 and 45 seconds.

3.7 Speech Parameters

On account of their relevance, their relative easy computation and independence, the cepstral, the residual
signal, the pitch and the energy of the signal have been chosen as the main variables to build the speakers
models.

The training and test parameter vectors consist of a set of four types of parameters present all the 10 ms
over a 20 ms window. The first vector is a 24-dimensional Linear Prediction Cepstral Coefficients obtained
as follow: 12-dimensional LPCC plus adding their first derivatives (A) yielding the SLPCC (Signal Lin-
ear Prediction Cepstral Coefficients) with a channel normalization with Cepstral Mean Subtraction and
Reduction or using Feature Warping ([[Pelecanos and Sridharan, 2001]). Similarly, the LP residual signal is
represented using Mel Frequency Cepstral Coefficients in a 24-dimensional vector yielding the RM FCC
or using LPCC yielding the RLPCC, both with Cepstral Mean Subtraction and Reduction. And finally the
frame pitch F{y and the frame energy F.

Performance of the systems are shown using DET (Detection Error Tradeoff) curves. The decision score
is directly based on the log-likelihood ratio between the target speaker and the UBM over all the frames
without any kind of normalization.

3.8 Source of Information with GMM

The first set of experiments in this chapter examines the performance of a GMM system adapted using
Maximum A Posteriori (MAP) techniques with the four variables described above, SLPCC, RMFCC,
Fp and F as input. The goal of these experiments is to investigate the recognition performance as a function
of different number of components in the mixture and of different information variables used as an input
for the system.

In this section four experiments were devised :
For the first case (Experiment I) a single GMM was trained and tested with the RM FCC' coefficients
without the A part. In the second case (Experiment II) the GMM was trained and tested with all the
RM FCC coefficients (including A). A third part (Experiment III) uses the F|y coefficients. The fourth
part (Experiment IV) uses the energy E. The fifth (Experiment V) uses the SLPCC coefficients includ-
ing the A coefficients and the last experiment (Experiment VI) uses the four variables concatenated in a
single vector.

3.8.1 Experiment I

For the first experience, the system uses the RM F'CC coefficients without the A coefficients, the results
are shown in Figure BI0l The experiments were done with 8, 16, 32, 64 and 128 gaussian components in
the mixture. The figure shows the performance of the system as a function of the number of components in

the mixture. Table Bl gives the ined EER scores. ) )
The results shown 1n figure are unusual because normally increasing the number of components

always decrease the EER score. To explain those results we should remember the structure of the residual
signal and also think about the quality of the speech signal. The quality of the speech in a normal
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Figure 3.10: Experiment I, DET curves for GMM system using RM FCC' coefficients without A.

Table 3.1: Experiment I, EER scores for the GMM with RM F'CC without A as a function of number of
gaussians.

| [ 8 [ 16 [ 32 [ 64 [ 128 ]
[score || 37.75 | 37.23 | 36.11 [ 3791 | 37.97 |

cellphone call is not really good. Then, the residual signal is almost noise and just a important periodic form
is stand out. Increasing the number of components to model this signal could just increase the gaussians
used to model the presented noise in the residual.

3.8.2 Experiment II

For the second experiment the A coefficients from the RM FCC coefficients were used. Figure BI1]and
table B2 depict the results.

Miss probability (in %)

20 -

40
False Alarm probability (in %)

_Figure 3.11: Experiment I, DET curves for GMMs with RM EFCC.
From the obtained DET curves in Experiment I and this one Experiment II, it can be seen the good

effect brought by the A coefficients as well as the gain in the false alarm detection. However this perfor-
mance gain goes in a direct relationship together with the increase in the computation time and input vector
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Table 3.2: Experiment 11, EER scores for the GMM with RM FCC.

| [ 8 [ 16 [ 32 [ 64 [ 178 )
[score || 37.89 | 38.27 | 36.76 | 36.44 | 36.96 |

size. Once again, the structure of the residual signal can help to explain the results. Then the extra gaussian

components are best employed modeling the dynamics carry in the A coefficients. This effects is also seen
in the gain obtained in false alarm detection score.

3.8.3 Experiment I1I

In this part the pitch Fyy contribution in itself is studied. Results are shown in Figure and Table

40 -
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20 40
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Figure 3.12: Experiment II, DET curves for GMMs with Fy.

Table 3.3: Experiment I, EER scores for the GMM with Fj.

| [ 8 [ 16 [ 32 [ 64 [ 128 ]
[score || 37.64 [ 38.71 | 39.02 [ 39.02 [ 39.12 |

Those results show that pitch is an important source of information. Also, it should be remarked that
not only the voiced parts of speech were used. The unvoiced parts of the speech signal were modeled using
a random noise with a Gaussian distribution. Then, in this way the unvoiced parts will represent an state
which will be represented by a Gaussian.
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3.8.4 Experiment IV

In this part the energy F contribution in itself is studied. Results are shown in Figure and Table B4
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Figure 3.13: Experiment II, DET curves for GMMs with E.

Table 3.4: Experiment II, EER scores for the GMM with E.

| 8 [ 16 [ 32 [ 64 [ 128 |
[score || 44.55 | 44.55 | 44.93 | 44.92 | 45.07 |

These results only show that energy by itself has no enough information to differentiate between two
speakers but still there is some information. Then, energy could be combined with other sources of infor-
mation.

3.8.5 Experiment V

In the third experiment of this first part the vector SLPCC was employed as input. Again, a GMM system
was used and tested with different number of components (8, 16, 32, 64 and 128). Figure B.14land table B3
show the results.

Table 3.5: Experiment III, EER scores for the GMM with SLPCC.

| 8 [ 16 [ 32 | 64 | 128 ]
[score || 3142 | 29.34 | 27.95 | 27.81 | 27.11 |

These results show the importance of spectral information. Using only 8 components in the GMM the
score is better than the score obtained in any result presented until now. This result is also well explained
taken into account the quality of the signal.
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Figure 3.14: Experiment Ill, DET curves for GMMs with SLPCC.

3.8.6 Experiment VI

A last experiment was performed using a single input vector composed of all variables, SLPCC, RM FCC,
Fpy and FE, that is, all the information is combined in a single vector. It should be remembered, that pitch
component in the final vector for unvoiced parts is represented by a random noise with zero mean. This

time the mixtures were composed of 4, 8, 16, 32, 64 and 128 gaussians. Figure B.13 and table 3.6 show the
results.

32
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Figure 3.15: Experiment IV, DET curves for GMMs with all variables.

Table 3.6: Experiment IV, EER scores for the GMM with all variables { SLPCC, RMFCC, F, and E}.

| [ 8 [ 16 [ 32 [ 64 | 128 ]
[score || 42.59 | 33.30 | 31.82 | 29.47 | 28.52 |

This vector combines all the variables in a base level but it does also mix the information. All the variables
are in the same vector space and each characteristic is not well modeled. From the last results, all shown in
table B.@ a conclusion is that to build a single vector with all the information is not the best option in order
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to increase the performance. Therefore another way for combining those variables should be investigated.

Table 3.7: Experiment I, II, ITI and IV, EER scores for the GMMs.

| [ 8 T 16 T 32 1 64 T 128 ]
ExpIRMFCC-A [ 37.75 13723 ] 36.11 [ 3791 | 37.97
Exp I RMFCC 37.89 | 38.27 | 36.76 | 36.44 | 36.96
Exp IIT Pitch 37.64 | 3871 | 39.02 [ 39.02 | 39.12
Exp III Energy 4455 1445514493 1 4492 | 45.07
Exp I SLPCC 31.42 1 29.34 1 27.95 | 27.81 | 27.11
Exp IV All 42.59 | 33.30 [ 31.82 | 29.47 | 28.52

3.9 Conclusions

In this chapter the spectral (cepstral), prosodic and residual information obtained from an acoustical speech
signal were presented. At present it is know how to select those variables but it is not known how to in-
tegrate of all of them in a well suitable model. By presenting those possible source of information, this
chapter laid a reason to try to combine them in such a form that a SV system becomes more robust. This
possible combination also gives a foundation of subsequent analyses.

Obtained results can not be easily compared to results at the state of the art. Our best results presented
using the cepstral information (SLPCC') and a GMM for modeling are far of the state of the art of about
15%. This difference comes from the front-end process, the number of Gaussian components used (state
of the art systems use 2048 gaussian components), the quantity of speech signal used to build the world
model (the state of the art systems uses about 15-20 hours of speech and we use only four) and also from
the normalization technique employed (we do not use any kind of normalization). In fact, we are interested
meanly into the potential of BN like an statistical tool to model speech signals.

In the upcoming chapters graphical models are described. They offer the possibility to combine different
variables preserving their conditional dependencies. We start with an introduction to Graphical models is
given.
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Chapter 4

Graphical Models Concepts

4.1 Introduction to Graphical Models

One of the charms of studying Bayesian networks consists in the curious range of things to which they
apply! [Gilled, 2002]

4.1.1 Origin of Graphical Models

Originally graphical models where developed in several areas of science. For example, in statistical physics
its origin can be found in the work of Gibbs [[Gibbs, [1902]. In this area the objective was to study a large
system of mutually interacting particles, for example the atoms of a gas or solid. Total energy of the system
is composed by an external potential plus a potential due to interactions between groups of particles. These
interactions depends on the position and state of each particle. Usually it is assumed that just particles at
sites close to each other, the neighbors, interact. An undirected graph was used to model the relationship
between the neighbors in the system using the Gibbsian distribution

plx)=—e T | 4.1

where T is the system temperature, F(x) is the total energy when the system is in the state z;, and Zr
is a normalizing constant.

Another origin of graphical models can be found in genetics. Wright in [[Wright, [1921] used it for
studying heritable properties of natural species in his so-called path analysis. Graphical models were used
to model direct relationships with arrows moving from parent to child. These ideas of path analysis were
later taken in economics and social sciences [[Wold, [196(]; Blalockl, [1971].

The Work of Bartlett [Bartlett, [1935], the notion of interaction in a three-way contingency table, is the
third origin of graphical models. At first sight, this work is not related to graphical models but the notion of
interaction is identical in a formal way to the same notion used in statistical physics.

4.1.2 Bayesian Networks in others fields

Bayesian Networks (BN) are used in many scientific fields, in many ways and for many things because of
its attractive formalism for representing uncertain knowledge. Examples include the use of BN in biology,
engineering, sound processing, bioinformatics, speech processing, etc.
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Medical, Biology, Management, Filtering

A curious example can be found in [lensen, [1996] (pp. 36-37). It comes from the field of veterinary
science. Here, one wants to know if a cow is pregnant. A BN is used to model the relationships between
the variables : blood test, urine test and scanning. Another example in the biological field is described
in [Stetter et all, 2003]. In this paper, the authors try to understand the regulatory genetic network, the
interactions between proteins and gnome, by means of BN. By learning the network structure they attempt
to observe the relationship between genes groups. Those relationships can be the underlying cause of a
specific global gene-expression pattern. For example, an observed gene expression pattern could be the
evidence of a fault in a global control function. A very interesting work is presented in [[Robles et all,
2004]. BNs are used to combine classifiers for protein research. At a first level, a set of specialized
classifiers called the component classifiers, give each one a prediction. At a second level the BN combines
all those predictions to give a final predicted class. In [[Acid e all, 2004] an emergency medical services
is modeled with a BN. The management of health services is the goal of this paper. BNs serve to model
the relationship between some variables like : financing, date of admission, cause of admission, pathology
and date of discharge. Four different algorithms were used to learn the independence relations among the
variables. Then, those structures were tested with some records issues of the same data base. The obtained
results show that the best structures recovered by the learning algorithms do not obtain the best results in the
test part. The data stored in local database, also known as Web databases are the objective of [[Calado et all,
2004]. BN are used to model the structured queries derived from an initial user input. The events : queries,
keywords and documents, which are not independent, are the variables in the BN. Given that documents
and queries are composed of keywords the problem of document retrieval can be seen as a probability
computation of documents given the query. [[Andersen et all, 2004] shows how to use a DBN for filtering.
In this paper the problem of fault detection in a water-tank system is studied. A DBN is built assuming
a Markovian stationary system and using Kalman Filtering. The variables present in the structure are for
example the indications of measurement failures, pressure, flow and pipe resistance.

Speech Processing

BN have also been used in speech processing and related fields. In [[Eernandez and Picard, 2003] an exam-
ple of classification of driver’s speech under stress is given. This work tries to model speech in the context
of stress for improving the robustness of speech recognizers. In the field of sound processing the paper
[Kashino and Murase, [1999] uses BN for auditory scene analysis, which means recognizing many acous-
tic events occurring simultaneously. In this paper the sound source identification with the music stream
information is defined as the estimation of the posterior probabilities of sound sources when each note
is observed. In [Dielmann and Renals, 2004] Dynamic BNs (DBNs) are used to segment meetings into
a sequence of meeting actions. The audio actions utilized in this paper are five : monologue, dialogue,
note taking, presentation and presentation at the white-board. Those actions are the hidden variables in the
model. The inputs or observed variables are obtained from a microphone array and from an single micro-
phone for each speaker. The baseline system is an Hidden Markov Model (HMM), where hidden variables
represent the meeting actions and the observed variables are the merged vector obtained from the micro-
phone array and the single microphones. DBNs are used to represent each actions as an individual hidden
variable with only one or two observed vectors (one from the microphone array and other from the single
microphones).

Audio Visual Speech Recognition (SR) systems are also built using BN. In [[Nefian e all, 2002] both in-
formation flows are modeled by a coupled HMM, one HMM for each modality. The relationships between
both modalities are given by edges which joint the hidden states in both HMMs. In [[Gowdy et all, 2004] a
more complex model based in a SR system [Bilmes et all, 2001] is used. That model is extended to incor-
porate the visual flow of information in such a way that the final model takes into account the asynchrony
between the visual and audio modalities. In this model the signal to noise ratio (SNR) is taken into account
given more or less importance to the audio flow using an exponent. A very close paper [Hershey et all,
2004] talks about Graphical Models for Speech detection and enhancement. This paper is close to the pre-
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viously refereed paper since the authors propose the utilization of both audio and visual informations in a
single model. The proposed system fuses audio and video by learning the dependencies between the speech
signal and the location of lips during speech.

Speech Recognition

One can speak about two different approaches in SR. On the one hand the explicit models represent all the
underlying variables and control mechanisms. That means, there are variables for representing words,
phonemes, occurrence of phonemes, transitions, etc. The interactions between those variables are ex-
pressed, for example, in the structure of a graphical model. On the other hand, implicit models, use only a
single variable to embed all the control variables and variables which represent words, phones etc.

A classical example of an implicit model is an HMM. The hidden variable in this model represent all the
lack of knowledge about the underlying variables in the speech production process. A little more complex
model is an auto-regressive model. In [[Wellekens, [1987)] the author talks about a model where the ob-
servations are joined by an arc by defining a new emission probability which takes the correlation between
successive features vector. In almost the same way the paper [[Kenny ez all,[1990] proposes to model the cor-
relation between successive frames. In [Bilmes, [1999; 2003] Buried Markov Models (BMM) are presented.
A cross-observation dependencies are added between observation elements to increase both accuracy and
discrimination. HMM?2 [Weber et all, 2002] models observations in a single time slice with a fixed length
HMM. Each hidden state in the main chain "generates" a secondary HMM. For example, if the observations
contains spectral information the secondary HMM works in the frequency dimension of speech. Another
model which tries to represent the dynamics in the frequency domain is treated in [[Daondi ez all, 2003;
2000]. DBN are used to model the dependencies between the speech bands, allowing "communication"
between bands. Even if in this last work hidden variables models represent frequency information they still
keep too much information about the speech production process in a few variables.

The model described in [Zweig, 1998] is an example of explicit model. In this work the author proposes
to use hidden context variables which represent articulatory variables. In [Stephenson ef all, 200(] the
state of the articulators are included using some extra variables. A special characteristics in this system
is that the articulators variables are observed in the training step and hidden in the test step. Another
approach is to use the pitch as an auxiliary information [IStephenson et all, 2001] with similar conditional
independencies between observations and extra variables. Gender is a supplementary variable used with
BN [Markov and Nakamura, 2003]. In this paper a hybrid system is proposed. First a BN is used to add the
gender and pitch variables to the spectral vector. Once a hidden state is computed with BN, a HMM is used
in a separate step.

Speaker Identification

DBNs are used in Speaker Recognition in [Sang er all, 2003]. The relationships between the variables is
that represented in a coupled HMM and specially in multi-band systems. This topology is chosen because
the system is tested in a text-dependent context. In [[Arcienega and Drygajld, 2002)] spectral information is
used with pitch and voicing status.

4.2 Graph Theory

Universal applicability of graphical models is due to a number of factors. Firstly and most important
graphs can visually represent the scientific content of a given model and facilitate communication between
researchers and statisticians. Another factor is that these models are naturally modular so that complex
problems can be described and handled by a combination of simple elements. And a very important reason
is that graphical models are natural data structures for modern digital computers.
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Graph Theory [Lauritzen, [1996; [Castillo et all, 1997] is just a part of the set theory that works with
binary relationships between a countably set and itself. Graph Theory has a rich and specialized framework
because of its use in large application fields like physics, economics, telecommunications, chemistry, psy-
chology, etc.

A set is a collection of well defined objects. If the set contains a nonnegative integer number of elements
is said to be a finite set. Let S be a finite set, consider all the couples (X;, X;) formed with the elements
of S, then the set formed by all the couples (X, X;) is called the cross-product set noted by S x S. Now
consider the set S and the associated product set .S x .S, and suppose that some couples have the property
A while the others have the property —A. This property A makes a partition into two parts. If the set S x S
is divided according to the property A and if a difference is made between both parts a graph is realized.
An example of graph is a binary image where the property, color of pixels (black or white) could be used
to build the graph. Another example is a line drawn in a sheet. Let the set S = {a, b, ¢, d} and the subset
B = {(a,b),(a,d), (b,b), (b,c), (b,d), (c,c),(d,a),(d,b), (d,c),(d,d)} of S x S be a graph of S. This
graph can be depicted as is shown in Figure

d . b
a
a b c d
a b ¢ d
a [0]1 01
b b blof1 |11
¢ ¢ c |ojof|1]o0
d d d[1]1 1]

Figure 4.1: Four different ways to represent a graph. The first uses a grid. The second employs edges and
arrows. The third uses coupled points and the last representation is done with an adjacency matrix.

From Figure E] the last representation is called the adjacency matrix of a simple graph. The matrix
with rows and columns labeled by graph vertices has a 1 or 0 in position (4, j) according to whether X; and
X are adjacent or not. For a simple graph where the couple (X, X;) is not present, the adjacency matrix
must have Os on the diagonal. The adjacency matrix associated to an undirected graph is symmetric.

Then, for the representation of a graph G it is necessary just a set S = { X1, X»,..., X,,}, a collection
of vertices that will be represented by nodes or vertices in the graph, and a set of edges L = {L, ;|X; and
X are connected } a subset of the set S x .S of ordered pairs of distinct vertices represented by arrows or
edges in the graph. Therefore, a graph G is entirely defined by the couple {S, L}.

A basic feature of a graph is its visual representation. Edges E € L with both L; ; and L;; in L are
called undirected edges, whereas an edge L; ; with its opposite L;; not in L is called directed edges. A
line joining X; to X represents an undirected edge, whereas an arrow from X; pointing to X; is used to
represents a directed edge L; ; with L; ; ¢ L, see Figure ).

If the graph has only undirected edges it is an undirected graph and if it has only directed edges the
graph is said to be a directed graph. A graph can be a mixture of a directed and an undirected graph, called
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a mixed graph, but those graphs are out of the scope of this thesis, then they will just be mentioned in some
special cases.

4.2.1 Undirected Graphs

The order that defines the edges in an undirected graph has no importance. The undirected graph in Figure
2 is completely defined by the couple (S, L), where S is the set of vertices and L the edge set :

Figure 4.2: Example of an undirected graph {S, L}.

S ={a,b,c,d}, 4.2)

L={Lay,Lva,Lac,Lea,La,d, La,as Ley, Lv,c, Le,dy La,c, Lv,d, Lap}- 4.3)

If there is a line between X; and X;, X; and X are said to be adjacent or neighbors. If there is no line
between X; and X, i.e. X; # X, then X; and X are said to be non-adjacent. The set of neighbors of a
vertex X; is denoted as Ne(X;) and Ne(A) = Ux,eaNe(X;) \ A denotes the collection of neighbors of
vertices in subset A that are not themselves elements of A.

An undirected graph is said to be a complete graph if there is an edge between all pairs of vertices in
the graph. For example, the graph in Figure @2is complete because all the nodes in the graph are joined by
edges.

If a set A is a subset of the vertex set S, A C S, this set induces a subgraph G4 = {A, L4}, where
the edge set Ly = L N (A x A) is obtained from the initial graph G by keeping just the edges with both
endpoints in A.

A subset is complete if it induces a complete subgraph. From this definition it can be said that all
vertices joined by an edge make a complete subgraph. A complete subgraph which is maximal, that is the
subgraph is not a subset of any other subset (C), is called a cligue. In Figure 3 the graph defined by the
subset S, = {a,b} is a clique given that both vertices are joined by an edge and S, ; is not contained
in any other subgraph. The subgraph S. 4 = {c,d} can not be a clique because the vertices {c, d} are
contained in the complete subgraph defined by the vertices S, ¢.q = {a, ¢, d}.

A path of length n from X; to X is a sequence X; = Xy, ..., X;, = X of distinct vertices such that
Ly_1 € Lforallk =1,...,n. If there is a path from X; to X it is said that X; leads to X;, X; — X;.
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Figure 4.3: Undirected graph with two cliques. The first formed by the vertices {a,b} and the second by
{a,c,d}.

If both X; — X; and X; ~» X it is said that X; and X; are connected.

A subset C' C S is said to be an (X;, X;)—separator if all paths from X; to X; intersect C. Thus, in a
undirected graph, C'is a (X;, X ;) —separator if and only if :

(Xils\c # [Xjls\c- 4.4

The subset C'is said to separate A from B if it is an (X;, X;)—separator for every X; € Aand X; € B.

An n—cycle is a path of length n with the modification that X; = X, that means, the path begins and
ends in the same vertex.

There are two types of undirected graphs. A graph with at least one path between all couple of vertex
is called a connected graph. A tree is also a connected, undirected graph but without cycles. It has a unique
path between any two vertices.

4.2.2 Directed Graphs

As already defined, a graph G is a directed graph if all edges in the graph are directed. The undirected
version G of a graph G is the undirected graph obtained from G by substituting lines for arrows. At the
opposite, obtaining a directed graph G from an undirected graph G' can be done by a given order relation
in the vertex set S. But this order has to takes into account all the vertices in .S. If this condition is not hold
a mixed graph is obtained.

If there exists an arrow from X; pointing towards X, X; is said to be a parent of X; and this vertex
a child of X;. The set of parents of X; is noted as Pa(X;) and the set of children of X; as Ch(X;). For
example, in Figure @4), vertex a is the parent of vertex b.

In the same way than for undirected graphs, where a line between X; and X, and between X; and X
defines two adjacent vertices or neighbors, in a directed graph two vertices are adjacent vertices or neigh-
bors if there is an arrow between these vertices. Conversely, X; and X are said to be non-adjacent if there
is no arrow that joins both vertices. The set of neighbors of a vertex X; is denoted as Ne(X;).

The expressions Pa(A) = Ux,caPa(X;)\A, Ch(A) = Ux,caCh(X;)\A,and Ne(A) = Ux,caNe(X;)\
A denote respectively the collection of parents, children, and neighbors of vertices in A that are not them-
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Figure 4.4: Example of an directed graph.

selves elements of subset A C S.

The boundary of a subset of vertices A, Bd(A), is the set of vertices in .S\ A that are parents or neigh-
bors to vertices in A, then Bd(A) = Pa(A) U Ne(A).

The vertices X; such that X; ~ X and X; ~» X are the ancestors of X;, An(X};), and the descen-
dants De(X;) of X; are the vertices X ;. The non-descendants are Nd(X;) = S\ (De(X;) U{X;}).

A chain of length n from X; to X is a sequence X; = Xy, ..., X, = X; of distinct vertices such that
X1 is a parent of X}, or X, is a parent of X;_; forallk =1,... n.

An n—cycle can have place in a directed graph. An n—cycle is said to be directed if it contains an
arrow. A very important class of directed graph is that where there are no cycles. This type of graph, called
Directed Acyclic Graphs (D AG's), is the base graph for the probabilistic models called Bayesian Networks.

A directed graph G is called connected if its G* graph is a connected graph. A rooted tree is the directed
acyclic graph obtained from a tree by choosing a vertex as root and directing all edges away from this root.
A forest is an undirected graph where all connected components are trees.

In a chain graph the vertex set .S can be partitioned into numbered subsets, forming a dependence chain
S =S5(1)U---US(T) such that all edges between vertices in the same subset are undirected and all edges
between different subsets are directed, pointing from the set with lowest number to the one with highest
number. Such graphs are characterized by having no directed cycles and connected components forming a
partition of the graph into chain components. A graph is a chain graph if and only if its connected compo-
nents induce undirected subgraphs. The chain components are most easily found by removing all arrows
before taking connected components. An undirected graph is a special case of a chain graph. A directed
acyclic graph is a chain graph with all chain components consisting of one vertex.

For a chain graph G we define its moral graph G™ as the undirected graph with the same vertices set
but X; and X adjacent in G™ if and only if either X; — X; or X; — X; or if exists X, X; in the same
chain component such that X; — X and X; — X;. If no edge have to be added to form the moral graph,
the chain graph is said to be perfect.

In the special case of a directed, acyclic graph the moral graph is obtained from the original graph by
"marrying parents" with a common child and subsequently deleting directions on all arrows.
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A chain component C' is said to be terminal if none of the vertices in C' have children. A chain graph
has always at least one terminal chain component. A terminal component with only one vertex is a terminal
vertex.

4.3 Triangulated Graphs

It is a special class of undirected graphs which has many applications in many fields. But in this work the
most important application lies in the decomposable graphs which will be defined in the next section.

A chord is an edge that joins two vertices in a cycle and that does not belong to the cycle. A triangulated
graph is defined as an undirected graph that has a chord in every cycle of length n > 4. For example, Figure
shows a triangulated graph. The edge L, 5 is a chord for the cycle {a, ¢, b, d}. Unlike the graph in Fig-
ure L3 the graph in Figure E.fis not a triangulated graph because the cycle of length equal to 4 {a, b, ¢, d}
has no a chord.

Figure 4.5: Example of Triangulated Graph. The dashed edge L, is a chord for the cycle {a, c,b, d}.

Figure 4.6: Example of a non Triangulated Graph. The cycle {a,b, ¢, d} has no chord.

It is easy to see that a non triangulated graph can becomes a triangulated graph by a process of adding
chords. For example in the graph in Figure Bl a chord L, 4 makes the graph a triangulated graph, and
the cord Ly . could also be a solution. This fact shows that the triangulation process can give different
topologies in the final structure because a cycle can be broken in many ways.

4.4 Graph Decomposition

A triple (A, B, C) of disjoint subsets of the vertex set .S of an undirected graph G is said to form a decom-
position of G if S = AU B U C and the two conditions below hold :
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(i) C separates A from B;
(i) Cis a complete subgraph of V.

If the graph G verifies those conditions it is said that the sets (A, B, C') decomposes G in components
G 4Uc and Gpc. In this definition the empty sets are allowed. If the sets (A, B, C) are not empty the
decomposition is called proper.

A decomposable graph is one that can be successively decomposed into its cliques. And finally, an
undirected graph is said to be decomposable if it is complete, or if there exists a proper decomposition
(A, B, C) into decomposable subgraphs G 4 and G gyc-

Then from this definition it can be stated that a graph G is decomposable and that G is triangulated are
equivalent expressions. And even, an undirected graph is decomposable if and only if it is triangulated.

4.5 Hypergraphs

A hypergraph is a collection H of subsets of a finite set H, which is the base set. The elements of H are
called hyperedges. In most cases the base set will be the union of hyperedges. A set of complete subsets of
a graph G, the cliques C'(G) of a graph is a classic hypergraph denoted the clique hypergraph.

One can build a graph by putting together vertices with a characteristic in common. Let G be a graph
G = (S,L)andaset C = {C1,Cs,...C,,} obtained from X such that X = C1UC2U- - -UC,,. The graph
G’ = (C, L") is called the conglomerated graph of G if all the edges in L' verify L; ; € L' = C; NC; # (.

If a conglomerated graph associated to an undirected graph G has all the edges that joint the conglom-
erates with a common vertex the graph is called a junction graph.

For example, the original graph at the left of Figure 7 has an associated junction graph represented at
the right of Figure 771

Figure 4.7: A junction graph (at the right) associated to the original graph in the left

A decomposable hypergraph H is a hypergraph which can be obtained by direct joins of hypergraphs
that have less hyperedges. And a tree with hyperedges H as vertices of the tree is called a junction tree in
‘H if it it is hold that for any two hyperedges a and b in H and any h on the unique path between a and b
aUbC h.

Using the same example, the graph at the left side of Figure B a junction tree can be obtained from
the that graph like the one depicted in Figure EE8l
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Figure 4.8: Example of junction tree.

In Figure lets take b in the conglomerate in the bottom left side and b in the bottom middle side.
The only path that joins those conglomerates passe by the one in the top of the figure, and this one has also
the vertex b.

4.6 Conclusions

This Chapter was intended to provide a sight about Graphical Models, its utilization, some basic concepts
and language that will be useful to develop the techniques presented in the next. Their origin was presented
at the beginning and some examples of applications in different areas in the following sections. It was
show how Graphical models can be applied to problems in administration, biology, queries in the Internet,
and particularly in the speech signal processing area. Specially some application of Bayesian Networks in
speech recognition as well as in speaker recognition were presented as a first approach to advance the work
present in the next Chapters.

Concepts and definition given in this Chapter will help us on the understanding and interpreting of graph
presented on next Chapters, which will have as main subject Bayesian Networks. Graphical representations
of random variables will be briefly summarized.
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Part 11

Modeling with Bayesian Networks:
Inference, Learning and Adaptation
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Chapter 5

Bayesian Networks

A Bayesian Network (BN) [Pearl, [1988; (Castillo et all, [1997; lensen, [1996] is a graphical model represent-
ing conditional independencies between a set of random variables. A BN is a couple (G, C P Ds) formed by
one structure, the graph G, which is a Directed Acyclic Graph (DAG) and a set of Conditional Probability
Distributions (C' P D), one for each node with parents in the network. For nodes without parents it has just
to be specified their prior probability. Consider three variables A, B, and C'. From basic probability theory
the joint probability can be written as a product of conditional probabilities :

P(A,B,C) = P(A) P(B|A) P(C|A, B). (5.1)

Assume that variable B be independent from A. Taking into account this conditional independence the
same equation is written as :

P(A,B,C) = P(A) P(B) P(C|A, B). (5.2)

A BN is just a graphical way to represent the conditional independencies found in the variables relation-
ships and reflected in the factorization of a joint distribution. For example, the graph in Figure B2l where
the variable C' has two converging arrows is used to represent the factorization in equation

A directed edge from A to B represents the conditional independence of B given A in the factorization
of the joint distribution. Those dependence relations induce a factorization in the joint distribution function

expressed as follows for a set of variables X = {X1,..., Xy }:
N
P(X) = [[ P(Xi| Pa(X3)), (5.3)
i=1

The semantics of a BN is really easy. Each variable is conditionally independent from its non-descendents
given its parents. It has to be noticed that a joint distribution can be factorized in many ways, then there are
also many BN consistent with a particular joint distribution.

Figure 5.1: Associated graph to the equation 2.2
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Figure 5.2: Two equivalent Graphs.

5.1 Conditional independence

The d-separation [Pearl, [1988)], where d is for direct, is an important concept for the representation on BN.
It is said that C d-separates A and B if along every undirected path between both set of vertex, or variables
in this case, A and B, there is a vertex D such that :

(1) D has converging arrows and neither D nor its descendents are in C, or
(i) D does not have converging arrows and D is in C.

Two disjoint set of variables A and B are conditionally independent given a set C' if an only if C' d-
separates A and B, where d is for direct.

The absence of edges in BN implies conditional independencies that can be exploited to obtain better
algorithms for computing marginal and conditional probabilities. There are two main research problems in
probabilistic reasoning using BN : learning and inference [[Murphy, 2002]. BN inference involves comput-
ing the posterior marginal probability distribution of some query nodes, and computing the most probable
explanation given the values of some observed nodes once the structure is known. The second problem,
that will be treated in the third chapter is structure learning.

5.2 Equivalent Graphs

Two graphical models are equivalent if they represent the same set of conditional independencies. The
graphical models based on undirected graphs are not redundant because two different graphs always rep-
resent two different set of conditional relationships. However, with directed graphs the same conditional
probability function can be represented with several graphs.

In order to define the equivalence between two BNss first a V -structure has to be defined. A V-structure
is formed by three vertices {a, b, c} in a BN. Those vertices are connected forming a structure with con-
verging arrows, such as in Figure Bl where a and c are connected by edges that go from a to ¢ and from b
to c.

Two BNs are equivalent [[Verma and Pearl, [1991]] if :
1. both G" (the undirected version) are the same and,
2. they share the same V-structures.

For example, in Figure B2 the probability density function for the graph at the left side is :

P(A,B,C) = P(A) P(B|A) P(C|A, B), 54
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and for the graph at the right side the probability density function is :
P(A,B,C) = P(B) P(A|B) P(C|A, B). (5.5)
Using the Bayes rule the next equation is obtained :
P(B) P(A|B) = P(4) P(B|4), (5.6)

then, both graphs are equivalent.

5.3 Multinomial BN

In a multinomial BN all the variables {X;} are discrete. Thus, the conditional probability function associ-
ated to each variable {X;} is a multinomial probability function. This type of probability function can be
defined either in a numerical or parametric way. The numbers or parameters are given in a table (Condi-
tional Probability Table CPT) for each possible combination of values taken by the variables.

For example, if all the variables are binary X = {x, -z}, the parameters (CPT) for the graph in Figure
Bl could be those specified in the next tables :

a b
a|b| p(ca,bd)
a | pla) b | p(b) 00 0.25
01025 0] 0.2 011 0.50
1] 0.75 1] 038 110 0.75
c 111 0.50

5.4 Multinormal BN

In a gaussian or normal BN all the variables are modeled by a normal distribution N'(x; i, 32). This kind
of BN are also called Gaussian Networks (GN) [Shachter and Kenley, [1989] leaving the name BN for net-
works with discrete variables. The normal distribution is given by the equation and repeated here:

In(x) ~ N(w; %) = exp™ FemW = @mn) 5.7

CORIE

where y is the d-dimensional mean vector, X is the associated d X d covariance matrix,
nant of ¥ and (z — u)7 is the transpose of (x — p).

Y| the determi-

The density function for each factor in equation of the BN is defined by a product of conditional
probability functions [[Shachter and Kenley, [1989] as :

i—1
f@ilPa(zi)) ~ N(@; pi + Zﬁi,j(xj — H5); Vi), (5.8)
j=1

where j3; ; is the regression coefficient of ;; and Pa(z;). N (z; i, v) is a univariate normal distribution.
Given this form, a value of zero for any 3; ; parameter implies that there are not an arc from X to X;. The
parameters of this model are as follows. p; is the unconditional mean value of X;, v; is its the conditional
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variance given its the parents:

Vi = 5i — Sipa, Spa, LipPa; (5.9)

where the conditional variance of x; given Pa(x;). X; is the non conditional covariance, ¥;p,, the
covariance between z; and Pa(z;) and X p,, the variance of Pa(z;). Therefore §; ; measures the relation
between x; and Pa(x;). For example, if just two continuous variables are used in a BN, figure

a

b
Figure 5.3: Two continuous variables used dnas le example of normal distribution with BN.

If {a, b} are both continuous variables:

fa NN(a;Nm 1/Va)a
fb NN(b7 Hb, 1/Vb)a

then, the density function is the linear-regression model written in the following equation:

_ 1 1(a—pa\* 1 1 (b= (puy + Bapla — pa) )
f(a’b)_\/T—yanp_Q( o ) mexp—§( ” ) , (5.10)

where (3, , measure the relation between both variables.

5.5 BN and GMM

Mixture Models are a type of density models which comprise a number of components. These components
are combined to provide a multimodal density. A Gaussian Mixture Model (GMM) is defined as a combina-
tion of gaussian densities. A Gaussian density in a d-dimensional space, characterized by its mean 1 € R
and a d X d covariance matrix X, is defined in equation &7l and repeated here :

1
(2m) 3|z}
The conditional density for a vector x given a M components GMM is defined by A = {w, u, %, } :

eXp*%(x*u)TE”(x*u) .

In(@) ~ N(w;p, %) =

M
pa|A) = w;fa (), 5.11)
=1

M
whereZwi =land 0 < w; <1 Vi.
i=1

The mixing parameter w; corresponds to the prior probability that = was generated by the component ;.

Now, Figure B4l represents a BN with two vertices. The first vertex A, represents a M states discrete
variable which verifies ) |, P(A = a;) = 1 and 0 < P(A = a;) < 1. The second vertex B represents a
variable which follows a gaussian distribution conditioned to the value taken by the first variable A = a;.
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A=aq; € [I,M}

Q B ~ N(p,0?)

Figure 5.4: GMM represented with a BN.

Using the conditional independencies reflected in the structure, the conditional probability can be written
as:

P(A, B) = P(A)P(B|A), (5.12)

and the conditional density for a vector b is written as :

M
p(B=b)=3 p(B=0A=a)p(A=a). (5.13)
i=1
where :
p(A = ai) = w;,
{ p(B = b|A = a;) = N(b; pi, %) (5.14)

5.6 Dynamic Bayesian Networks

Time is a very important variable in almost all the events in the real life. The time evolution of variables
is a field generally known as time series analysis. Dynamic Bayesian Networks (DBNs) describe a system
that is changing or evolving in time using the formalism of BN. This kind of representation allows to model
(predict, filter, smooth, update, monitor) systems which depend on time.

Usually, unlike temporal models which just give an idea about changes in the variables values in DBN,
dynamics is related to systems which change not just the values of variables over time, but also the depen-
dence between those variables. Hence, temporal models would be a sub-class of dynamic ones. If every
time slice of a temporal model corresponds to one particular state of a system, and if the movement between
the slices reflects a change in the state instead of time, that model is classified as a dynamic model. Then,
even if the concerned systems are called dynamic in reality they are temporal all along this work. That is,
relations between variables are the same along the time.

5.6.1 Definition

DBNS are defined as special case of singly connected BN specifically aimed at time series modeling. All
vertices, edges and probabilities that form static interpretation of a system are identical to a BN. Also, the
states of a system described as a DBN satisfy the Markovian condition; the state of a system at time ¢
knowing its full evolution until time 7" depends only on its immediate past. Then, generally, in DBN states
of a system at time ¢ may depend on states at time ¢ — 1 and possibly on current states of some other nodes
in the time slice.
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A DBN consists of probability distribution function on the sequence of 7" hidden H = {hq, ..., hr_1}
and T observed variables O = {og,...,0r_1}, where T is the time index. If all the hidden and observed
variables are in the same variables set X = {H, O}, the semantics of a DBN can be defined by "unrolling"
a BN until having 7" time slices. The resulting joint distribution can be written as

()| Pa(xi(t))), (5.15)

||zz

T
Peer) =111

where N is the number of variables for each time slice. Note that parents of x;(¢) can be into the present
slice or into the past slice.

5.6.2 Hidden Markov Models as DBN

Hidden Markov Models (HMM) are an example of a graphical model where exact inference is tractable.
The difference between a DBN and a HMM is that in a HMM the state space consists of a single random

variable X; and in a DBN hidden states are represented in terms of a set of random variables X1, ..., Xr.
1 T2 3 xrT
| TT _____ _)T
U1 Y2 Y3 yr

Figure 5.5: A HMM represented as a DBN.

A HMM is a graphical model in form of a chain, see Figure In this model, the sequence of multi-
nomial state nodes x; is assumed to verify the Markov property. The conditional probability of a node z;,
given its immediate predecessor z;_; is independent of all other previous variables. Also, in this model, the
state chain is supposed to be homogeneous, that is, the matrix of transition probability, A = P(x;|z;—1), is
invariant across time. It is also necessary to know the prior probability distribution 7 = P(z1) for the initial
state 1. And finally, for the observed nodes Y; time invariant emission probability law B = P(y;|z;) is
also given.

In HMM the output nodes are treated as evidence and the state nodes as hidden nodes for training. Usu-
ally, the Expectation-Maximization (EM) [[Dempster et all, [1997] algorithm is used to update parameters
A = {A, B, r}. In the first step an inference algorithm computes the conditional probabilities P(z;|{y;})
and P(xz;,x;—1|{y;}). In the second step the parameters \ are updated via weighted maximum likelihood
with the weights obtained in the first step using the the conditional probabilities.

Now, it can be seen, that exact inference in HMM is tractable, because the cliques size is small (equal
to 2) . The moralization and triangulation step are not necessary for HMM.
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5.6.3 Factorial Hidden Markov Models

It could be thought that HMMSs are limited in structure. May be, some additional structural assumptions
about the state space and the transition probabilities can be helpful in some problems. That is the reason
why structured versions of HMM have been studied recently. For example the coupled HMM that will be
used in the next chapter. Another example is the factorial HMM [IGhahramani and Jordan, [1997)], Figure

B4

MU o
> @ _—-—-—- >
Ve e o
————— >
3353) $g3) a:és) th?)
n Y2 Ys yr

Figure 5.6: A Factorial HMM represented as a graphical model.
The system is composed of a set of M chains. Each variable xgm) is the hidden state at the time slice ¢
and in the chain m € M. In this model there are M state transition matrix A™, one for each chain. The total
state space in this model can be seen as the Cartesian product of the state space in each individual chain.
The overall transition probability for the system by taking the product across the intra-chain transition
probabilities is :

M
P(wilrim) = [[ A™P@™ ™), (5.16)
m=1
The Factorial HMM is a model for systems in which hidden states are realized from an uncoupled set
of dynamical systems and with an only available observation.

Inference in such model is not complex. First, after the moralization and triangulation the undirected
graph for M = 2 is shown in Figure 571 The advantage of this model is that it represents a large effective
state space with a much smaller number of parameters than a single HMM.

Cliques in this model are of size equal to three. Thus time complexity of exact inference is most higher
than inference in a simple HMM. If the number of chains increases the complexity is also augmented.
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Figure 5.7: A Factorial HMM after moralization and triangulation with M = 2.

5.6.4 Coupled HMM

In the coupled HMM [Brand, [199€] the hidden variables in each HMM interact locally with their neighbors
and each hidden variable has its own observed variable, as shown in Figure B8l for a coupled HMM with two
chains. This models have several applications. For example, using two HMMs, one of them can represents
the visual flow and the second one the audio flow in audio visual speech recognition [[Nefian er all, 2002].
Another example is the Multi-band Speech Recognition [[Daoudi et all, 2003]. Each HMM represents the
temporal dynamics of the selected band and the relation between the hidden states represents the frequency
dynamics.

5.7 Conclusions

In this Chapter we presented the principles of Bayesian Networks and Dynamic Bayesian Networks. Con-
ditional independence and equivalence between graphs concepts were also presented. It has described
Multinomial and Multinormal distributions representation using Bayesian Networks. This representation
introduce the statistical analysis researched in the all this work. This Chapter let already see how different
source of information can be combined in a unique statistical model.

Next Chapters will present the basic problems found in Graphical Models, that is inference and learning.
They develop the concept of modeling in the module of our SV system.
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Figure 5.8: A Coupled HMM with two main HMMs.
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Chapter 6

Inference

In this chapter the inference problem [Murphy, 2007] is treated. It is wanted to know how the conditional
probabilities of one or several variables X in the network changes given that some others Y = y has been
observed, that is, we search for the next probability P(X|Y = y). Some exact as well as approached tech-
niques will be described. This chapter is important because it gives the bases used for parameter learning
with hidden variables.

As mentioned above, evidence, i.e. knowledge about the state of one or several variables, would modify
the probability of other variables in the network. Doing probabilistic inference consists in computing the
probability of each state of a variable when we know the state taken by some other variables, that is, the
actualization of the probability of variables as a function of evidence. This process is called marginaliza-
tion in classic probability. Actually the problem of inference is not just a theoric problem. Let’s take the
example of DFT computation. The FFT transformation is just a faster way to compute the DFT who takes
advantage of symmetric properties of DFT. As well as FFT, inference techniques in BN take advantages
of conditional independencies and structure topology in order to compute the probability of each state in
a tractable and faster way. The first works [[Pear], [1988; [Kim and Pearl, [1983] about this problem propose
some mechanisms of inference in graphical models that work in tree or forest structures. Some time later
[Lauritzen and Spiegelhalter, [1988] a method of inference propagation was proposed which works in DAGs
without the restriction of tree structures. This method is based on an associated structure called a clique
tree or junction tree (section EE3)).

6.1 Exact Inference

The simplest way to solve the problem of propagation is summing out all the variables in the network from
the joint probability distribution as it was mentioned above. However, this procedure is inefficient since
some computations are made several times. Another reason to reject this procedure is the necessary mem-
ory space which could be huge. For example, if all the variables are binary (z, —x), 2™ locations is the
necessary memory space for a network with n variables. Then, it can be seen that bigger network needs
much more memory.

6.2 Variable Elimination

The idea here is to establish an order in which the query variable z; is the last in it. At each step, one of
the variables will be eliminated combining all the factors where it is present and summing out. After this
step one variable of those is eliminated and the whole function does not depend anymore on it. At the end,
a potential is obtained which is proportional to the searched posterior probability.
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D
Figure 6.1: BN for the variable elimination example.

For example, consider the BN in Figure &l The joint probability distribution is :
P(A, B,C,D) = P(A) P(B|A) P(C|A) P(D|A, B). (6.1)

The probability P(A) can be computed summing out the variables B, C, D. This equation can be
written as follows:

P(A) = > P(A,B,C,D)
B,C,D
= P(A) Y P(B|A) ) P(D|A,B) > P(C|A). (6.2)
B D C

Of course each term ) P(X|Y) is equal to 1 for all Y, but this is not always the case. For example,
if X takes a value, that is, if X is observed the sum is just over the observed state of the variable. In this
equation is already reflected the computational reduction effect obtained with the only clever position of
sums. In this way the computational work is minimized because the variables at the right side are marginal-
ized and then the final term depends only on one variable.

This way of doing inference shows already the message passing concept. The last term in equation
@2) P(C|A) after been summed out ) P(C|A) depends only on variable A. Later this result will be
marginalized in the sum over A. This process could be seen as a message passed from the term ), P(C|A)
to the term ) , P(A). In this process a structure is discovered and shown in Figure In this Figure
the structure obtained given the order in equation (&.2)) is presented. The messages Y x_.y represent the
marginal of term in X that goes to the term in Y.

6.3 Message Passing in Polytrees

Algorithms used for tree structures are the base for more general and real structures, even if BNs issue of
problems in the real life have not always this form. The local conditioning algorithm [IDied, [199€] is an
example. If the structure is already a tree the inference can be implemented in a message passing procedure
as is described in this section.

Between two different nodes in a polytree there is only one path. This important property imply that
each node separates the polytree in two disconnected polytrees. One of them contain its parents and all the
other nodes connected through its parent. The other polytree contains the children and the nodes connected
to it through its children. Therefore the evidence E=e is propagated to each node X either by its parents or
by its children in such a way that it can be separated into two disjoint sets:



6.3. MESSAGE PASSING IN POLYTREES 91

TD—»A B

YTooa ZB P(B|A)

TB—»A

Figure 6.2: Message passing in the structure obtained with a given order.

— et Uec
E=ey Uey,
t e =
exNey =0,

where e} is used to specify the evidence arriving through the parents of X and ey specify that arriving

through its children.

Figure 6.3: Message Passing in Polytree Structures.

Then, from Bayes rule, the probability of variable X given the evidence E = e is written as follows:

P(X[E=e) = P(Xley,ey)
= L Plehex|X) P(X). 6.3)

P(e;r(a ex)

Given that X d-separates e} from e in a polytree structure the previous equation can be written as:

P(X[E=¢) = mP(e}lX)P(eBEIX)
1
- P P(ex|X) P(e}, X)

= a P(ex|X) P(ex, X),

P(X)

(6.4)
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where o = 1/P(e¥,ey) is a normalization constant. From equation 6.4l we can define two terms. The
first one, which takes into account the evidence that comes through the children of X is defined as follows:

AX) = P(ex|X), (6.5)
and the second, which takes into account the evidence that comes through the parents of X is:
m(X) = P(e%, X). (6.6)
Therefore, the conditional probability of X given the evidence can be written in the following form:
P(X|E=e) = a \(X) n(X). (6.7)
To compute A\(X) and 7(X) we consider the structure present in Figure (€3), where the N parents of

X are designated by U = {Uy,...,Un} and its M children by Y = {Y7,..., Y }. Consequently the
evidence ey and e} can be decomposed into:

e} = {e$1 Xa"'7e$NX}a (68)
e)_( - {e)_( Yo 7e)_( YM}a (69)

where, e y. is the evidence in the sub polytree with root Y; and ea  1s the evidence in the sub poly-
tree with leaf Uj.

Using those definitions, the value of A(X) is computed as follows:

AX) = Plex|X),

= Plexy, - exy, |X)

Since each e y. is independent of ey Y, given X for ¢ # j in a polytree, then, the last equation can be
written as follows:

AX) = Plexy,[X)... Plexy, |X)
M

HP(e;( v, 1 %).

=1

Defining the message received by X from each one of its children Y; as P(ey y.|X) = Ay;(X) it can
be written the next equation:

M
AX) =] (X) (6.10)
=1
The term 7(X) is computed as follows:
©(X) = P(X,e%)
= Y P(X,U=ue})
U=u
= Y P(X|U=u,e}) P(U=u,e}) (6.11)
U=u

Given that the parents of X have no common ancestors, because of the polytree structure, its parents
and its ancestors are d-separated.Therefore, the second term in equation [e.IT] can be written as follows:
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P(U=u,e}) = P(ul,e'glx,...,uN,eﬁNX)
= P(ul,eax) P(uN,e;}NX)
N
= HP(ui,eJ&L_X)
i=1

Defining P(u;, e'&i ) = mx (u;) the message send by each u; to X, it can be written the next equation:

N
PU=ue}) =[] mx(u) (6.12)
=1

Finally, the value of (X)) is computed as follows using the equations (&1} and @I2):

N
(X)) =Y P(X|U=ue}) [[mx(u). 6.13)
U=u =1
Using this last equation (&13) and equation (&I0) equationB7 can be rewritten in the following form:

M
P(X|E=e) = o [[ \v.(X) | D P(X|U=nu,e}) []mx(u) (6.14)

i=1 U=u =1

Once the variable X has received the messages from its parents and children it can send its own mes-
sages to them. Given the equivalence in the structure for all the nodes in the networks the computation of
those messages are all in the same relative relation to the query variable, is just a notation formalism, see
figure &4

Figure 6.4: Message Passing in Tree Structures. m computation procedure.

Let’s take the arc X'Y; and variable Y}, in figure[&dl Evidence arriving to Y} is divided into exy, and

e}y_. The second term e}y, can be decomposed into several sets. In one hand the evidence which comes
J J



94 6. INFERENCE

from variable X and all the nodes above it e;r(. In the other hand the evidence e’y i which comes from the
children of X, the siblings Y}, of Y}, where k # j.

+ o+ -
xy;, = {exs U €x Yk}
-y

Using the d-separation X divide e} from {J,_.; exy, and also the subsets (J,_., €y, itself. Finally
the contribution of X to the node Y} can be written as :

v, (X) = P(X.ehy)

= H P(Xve;r(’e;(yk)
k#j
(6.15)

Given that X d-separate e, and e} next equation is obtained, where all the siblings of Y; have been
taken into account:

my,(X) = P(X,el) [] Plexy, |X)
ki

(X)) [] i (X) (6.16)
k#j

X

Figure 6.5: Contribution of parents of X to computation of w. Each variable {U;,V1,...,V,} send a
message to X

To finish, let us compute the message sent by X to one of its parents U;, thatis A\x (U;) = P(ey;, x|Ui).
See Figure @3l where V represents the set {Vi,Va,...,V,} of ancestors of X which are different of U;.
Then, the evidence ej_(yj is:

— _ - + + +
ey, x = eXUeV1XUeV2XU-~-UeVpX

exUel y 6.17)

Then, the searched probability is computed as follows:

Ax (Us) P(ey, xIUi)

= ZZP(@},G{?X,X,V:VWZ')
X V=v

DD PlexIV=v,ed 5, X,U)P(X|V =v,ei x, Ui)P(ey .,V =v|U)),
X V=v
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From d-separation it is known that X separates e from nodes above it. Also, it is known that the
parents of X are marginally independents. Then, we can write the last equation in the following form:

Ax(Ui) =3 Plex|X)P(X|V =v)P(ey x,V =v|U)), (6.18)
X V=v

The last term can be written as follows because of the marginal independence between the parents of
X:

P(eé,'X,V: viU;)) = P(e"tX,V:v),

p
- HP(GJVFZ x+01)
=1

p
= []rmx. (6.19)
=1
Then, we obtain finally the next equation:
p
Ax(Ui) =D MX) Do PXIV=v,U0) [[rx(w)] - (6.20)
X V=v =1

Before finishing with this section some practical comments are given. As it can be seen the procedures
are recursive. 7(X) is computed from 7 (u;), Ty; (X) from 7(X) and Ay, (X).

Another point is how to take into account the evidence in this procedure, the initial conditions. For a
node U without parents, e;; = 0, then 7(X) = P(u).

For a terminal node Y, A(X) is needed . If any information is available for this node, the same value is
given for all y;, for example A(y) = 1. If a value of Y is known, for example yo, a positive value is assigned
to it and O to the other values of Y, that is :

>\(y0) =1
AMy) = 0 YV y#uyo

6.4 Junction Tree

The junction tree algorithm works with an undirected graphical model which is obtained from a directed
graphical model. Once the undirected graphical model is obtained, inference calculations are done with the
formalism of undirected graphs. In general, the final graph is a tree formed of cliques.

The first step that converts the directed graph into an undirected graph is moralization. As mentioned
before (section L.2.2)) moralization in a BN is just the process of "marrying parents” with a common child
and subsequently deleting directions on all arrows to obtain an undirected graph, (Figure [6.6)).

To understand moralization it has to be noticed that parents are correlated given their children and that
in both the directed and undirected cases, the joint probability distribution is obtained as a product of local
functions. Then, moralization is the way to preserve such correlation in graphical representation. Without
moralization the problem is that these correlated variables do not always appear together within a clique.
Therefore, a moral graph represents the probability distribution on the original directed graph within the
undirected formalism.
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%

Figure 6.6: Junction tree Construction. Left side the original graph G. Right side the moral graph G™.

The second step, if necessary, in the junction tree construction is triangulation. This process takes a
moral graph as input and gives an undirected graph with (or not) extra edges, see section 23]

Once a graph is triangulated it is possible to arrange the cliques (section EE2Z.T)) of the graph into a struc-
ture known as junction tree (Figure[87). A junction tree verifies the running intersection property, that
is, if a node appears in any two cliques in the tree, it appears also in all the cliques that lie on the path
between the two cliques. This property allows inference to be based on local computation because local
consistency implies global consistency.

Figure 6.7: Junction tree obtained from the graph in Figure The square node represents the separator
and the oval nodes the cliques.

A potential ¢, is a function on the set of configurations of a clique which associates a positive real
number to each configuration. The configuration of cliques is the possible values taken for all of the nodes
in the clique. Then, the probabilistic computation performed on the junction tree involves marginalizing
and rescaling the clique potential in order to achieve local consistency between neighboring cliques. This
computation uses also the separator potential ¢s. A separator is a set that joints the common variables
between the cliques that it separates.

Once the junction tree is build, the procedure [[Huang and Darwichd, 1994] for making inferences has
several steps. The first step is Initialization. A potential is assigned to each clique ¢.,. This clique potential
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depends on the variables potential in that clique in such a way that the final joint distribution verifies :
[Tex
H bs,

J

P(U)

6.21)

This joint distribution is associated with an inconsistent junction tree. Generally separator potentials are
initialized to the one ¢g, «— 1. The variables potential ¢x, are assigned only to one clique, the one which
includes its parents.

Then, the second step is Propagation, in which the local computations called message passing are
done. The message passing process rearranges the junction tree potentials in such a way that the junction
tree becomes locally consistent, and then globally consistent.

The message passing between two neighboring cliques C'x and Cy separated by the separator Sx y is
performed as follows. A message passing from C'x to Cy occurs in two steps. The first, called Projection,
assigns a new potential to Sy y, saving first the old one :

old

s ¢s.
b5 — > bx. (6.22)
X\S

then, the second step is Absorption in which a new potential is assigned to Y using both the new and
the old potentials :

by — ¢y ﬁfd. (6.23)
S

Given a junction tree with n cliques, the global propagation starts by choosing a clique, and then, per-
forming 2(n — 1) message passing. First in the Collect-Phase each clique passes its message to the selected
clique, starting from the farthest one. In the Distribute-Phase the selected clique passes its message to the
other cliques.

6.5 Approximate Inference

Given the intractability of exact inference methods in large and multi-connected BN it is important to con-
sider approximate inference algorithms . In general exact methods present some problems. For example,
some of them are not applicable to all types of structures and, when the number of nodes and complexity
grow methods of general validity become very inefficient. This is not surprising since it has been demon-
strated that the exact propagation task is NP-hard [Cooper, [1989]. For that reason, and from a practical
point of view, exact propagation methods can be very restrictive and even inefficient in situations for which
the type of structure of the network requires a large memory and a lot of computational power. Approxi-
mated methods are also NP-hard [[Dagum and Iaby, 93], but the problems that can be treated with are more
extended.

A first approach to approximate inference is to apply the exact inference techniques to general graphs.
But, most of the approximated inference methods are based on sampling techniques using Monte Carlo
techniques which provide approximate answers whose accuracy depends on the number of samples gen-
erated. The problem of this kind of techniques is to obtain those samples from a probability distribution
which is hard to handle. To overcome this problem different process have been proposed in the literature.
Methods based on importance sampling [[Henrion, [1988], on stratified simulation [Buckaert, [1994] and also
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on Markov Chains [[Pearl, [1987H]. In general, the Monte Carlo algorithms just use the available local infor-
mation for simulating the value of a given variable.

In addition to those methods, other methods have been proposed based on the idea of simplifying the
problem either by simplifying the structure [Kjaerulff, [1993] or by reducing the probability distribution
[Jensen and Andersen, [1990].

6.5.1 Loopy Belief Propagation (BLP)

This techniques follows basically the already mentioned techniques in polytrees. A first approach is to
create the associated junction tree and then apply the message passing technique on it. This way of pro-
ceed has the drawback of clique size. The most big the clique is the most the time consuming the method
becomes. A really interesting application of this technique is the error correcting codes found in "Turbo
Codes" [McEliece et all,[1998].

At the beginning [[Pearl, [198&] BLP was applied directly on graphs even if the structure was not a poly-
tree and has loops. A theoretical problem in this method is that some information can be taken into account
two or more times. A more developed BLP technique works directly on Markov Random Fields (MRF), and
specially on pairwise MRFs. Like in the junction tree, the potential defined on large sets of nodes increase
the computing time since to convert a general MRF to a pairwise one a conglomerate of nodes could be so
large.

An option to work with BNs as well as with MRFs is to pass through a Factor Graph [[Kschischang ez all,
2001]. In such a graph each node send a message to each factor node and each factor node send a different
message to each node.

6.5.2 Sampling Methods

The basic idea in all those techniques consists in generating N samples using the joint probability function
and the evidence. Then, those samples will be used to compute approximated probability values by using
the appearing frequency of events and the total size of samples.

In general, those approximative methods can be classified into two classes. In one hand the stochastic
simulation methods and in the other hand deterministic search methods. The way to produce the samples
from the joint probability density function is the basic difference between both methods. The firsts produce
samples from the joint probability function using some random mechanisms, while the seconds generate
the samples in a systematic way.

Basic Simulation Concepts

As it was said before, the basic idea is to produce a number N of samples from a probability density
function. Then, uses those samples to compute the frequency of each single event to obtain the searched
probabilities. The procedure is not complicated with the exception of the lack of knowledge of the joint
probability function. To solve this problem another function, which is easier to simulate, can be used to
generate the samples. Those samples must be weighted by another function that measures the similarity
between both functions.

Samples will be simulated from the probability density function p(z) which can be written as :

h(z)
= s(z) h(x), (6.24)

) = PDpa),
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where h(z) is the other density function that is easier to simulate and s(x) is a weighting function that
measure, the similarity between p(x) and h(zx). At the end the weights are normalized to finally compute
probability of the samples.

General methodology is as follows. consider a set of random variables X = {X, ..., X/} with a joint
probability density function p(z). Consider, also, the subset E be the evidence with values {e1,...,en}.
The posterior probability of Y a subset of X given F = e is computed from the next equation :

Pe(y)
plyle) = X pely), (6.25)
(le) = B9 o
where (0.0)
| p(y,e), ifyisconsistent with e,
pely) = { 0, otherwise. (6.26)

The values of p(y|e) are computed from the N samples of p(z) using a different probability density
function h(x) as seen before. Then, the probability p(y|e) is approximated with the sum of all the welghts
consistent with the events y and e. That is, given N samples 7/ = {z7],.. xM} forj = 1,..., N, the
posterior probability of Y is :

p(yle)  ——. (6.27)
D s(a)
j=1
The reached quality depends on the following factors. First, the function h(z) used to obtain the sam-
ples. Second, the method used to generate the samples from h(x). And last, the size of samples N.

A particular case is obtained when both distributions p(x) and h(z) can be written as:

p(x) = [ p(xilm) (6.28)
i=1
and
) =[] hlzilmi) (6.29)
where 7; is a subset of X. Then, the sample’s weight is computed just with the product of the weights
as:
_ @)
s(z) = h(x)
_ H p xz|7rz
h(w;|m;)
= H s(aq|ms) (6.30)
i=1

This simplification is well adapted to BN because they can be expressed in the way (&.28)), where as is
was already defined, 7; are the parents of x;.

From the last paragraphs it can be seen that all the methods consist of three components: a distribution
h(z) for simulation, a method for generating the samples from 4 (x), and a formula to compute the weights.
Existing methods differ from each other in one or several of those components.
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6.5.3 Rejection Sampling (logic sampling)

This method is due to [[Henrion, [1988]. The simulation proceeds in a forward way, that is, each variable
is generated only if its parents are already sampled. It uses an uninstantiated BN which in each simulation
assigns random values to all the variables including also the variables corresponding to observations. If the
sample matches the observed data, it is counted, otherwise it is rejected. At the end the belief distributions
are calculated by averaging the frequency of counted events. Each X is simulated using the associated
conditional probability function :

h(xz;|m;) = p(a;|m;), where i € {1,...,n}. (6.31)

In order to use this method an order for the variables has to be given. The variables are ordered in such
a way that the parents always precede their children. This order is called ancestral order. Once the parents
of X; have been simulated, that is, they have values assigned, X; can be simulated using h(z;|m;) which is
in this case p(z;|m;). Then the weights are computed as :

e(@
I pet@ilm) T we(ailm)

X1¢E X,eE

I pilm) TT pleilm)

XL¢E X,eE

s(x) =

=

8
~— |

where :

5(1‘):{ 1, ifz;, =, VX, €FE, (6.32)

0, otherwise.

If x; # e; for any X; € E, then, the weight is zero and the sample is rejected. As it can be seen the

draw samples are rejected when they contradict the evidence. Therefore, the method is very inefficient if

the evidence, because of a large number of samples, must be rejected and then the process can take more
time in order to generate the required N samples.

6.5.4 Likelihood Weighting

This method, due to [[Fung and Chang, [1990; Shachter and Peof, [199(0], avoids the inefficiency of rejection
sampling by generating only events which are consistent with the evidence. Where h(z;) is in this case :

pe(lﬂ”’/ﬂ'), lez ¢ E,
h(x;) =4 1, if X; € Eand z; = e;, (6.33)
0, otherwise.

Again an ancestral order is needed and the weights for the values taken by X are :

pe
_ H Pe(wi|mi) Pe(i|mi)
p(x;|m; 1
X, ¢E X,€E
= H pe(zi|mi)
X, eFE
= ] pleslm), (6.34)
X, eFE

where the last equality is due to that x; = e; when X; € E.
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6.5.5 Markov Chain Simulation

Unlike the previous methods, which generate each event independently, Markov chain methods generates
each event by making a random change to the preceding one. Therefore, it is important to see the network
as being in a particular state which specify a particular value for each variable. The next state is generated
by randomly sampling a value for one of the non evidence variables.

The theory of Markov chains is a well developed theory. A Markov chain is a series of random variables,
{X1, X5,...}, in which the influence of the values of { X1, Xo, ..., X, } on the distribution of { X, 11} is
mediated completely by the value of X, thatis :

P(zpyr|zy, 22, 20) = P(2ni1|T,) (6.35)

A Markov chain can be specified by giving the marginal distribution for X, the initial probabilities of
the various states, and the conditional distributions for X, 1 given the possible values for X,, called the
the transition probabilities for one state to follow another state.

In this method, the next state is generated by sampling one of the non-evidence variables X; conditioned
on the current values of the variables in the Markov blanket of X;. Monte Carlo Markov Chain (MCMC)
technique therefore obtain a sample by randomly search in the space of possible complete assignments, that
is, searching in the state space.

Since the sampling process settles into a "dynamic equilibrium" in which the long-run fraction of time
spent in each state is exactly proportional to its posterior probability the obtained samples from MCMC
are consistent estimates for the posterior probability. This important property is obtained from the specific
transition probability with which the process moves from one state to another, as defined by the conditional
distribution given the Markov blanket of the variable being sampled.

Let P(X — X') be the probability that the process makes a transition from state X to state X'. If the
Markov chain is run for ¢ steps, the probability that the system is in the state X is ¢ (z). Similarly, 71 (2")
is the probability of being in state =’ at time ¢ + 1. Given 7;(x), the probability 7;41 (z’) can be computed
by summing up all the states the system could be in at time ¢, from the probability of being in that state
times the probability of making the transition to x’.

mep (@) =Y m(x)P(X — X). (6.36)

The chain reaches its stationary distribution when 7, = 74 1. The stationary distribution 7, is defined
in the next equation :

m(@') = w(x)P(X - X') Va'. (6.37)
This equation expresses an equilibrium between the inflow and outflow of states. This property, the
detailed balance property, can be interpreted as an equal flow between any pair of states :

7(z)P(X — X') =m(2")P(X' — X) Va2 (6.38)
It can be shown that detailed balance property implies stationarity.

To justify this approach it has to be establish that MCMC which defines a transition probability in the
sampling step verify the detailed balance property with an stationary distribution equal to P(X|e). To do
that, the first step is to use a Gibbs sampler. Gibbs sampling starts with a random setting of states and
at each step of the sampling process the state variable is update stochastically according to its probability
distribution conditioned on all the other state variables. Let X; be the variable to be sampled with value x;
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in the current state, and X; with values x;, also in the current state, the remainder variables where i # 7.
When sampling a new value x, conditioned on all the other variables, the transition probability is expressed
in the next equation :

P(X — Xl) = P((xi,xj) — (xg,xj)) = P(mﬂxj,e) (639)

It can be proved that this equation, the Gibbs sampler, is in detailed balance with the true posterior
probability as follows :

T(x)P(X— > X') = P(x|e)P(x}|x;,e)
P(x;,x,]e)P([x;, €)
(
(

Plails;, € Px; ) P! x;, )
= P ZE”Xj,C)P(iL’HXj,e)
r(x)P(X' — X). (6.40)

In a BN, if a variable is independent of all other variables given its Markov Blanket, then the factor
P(z}|x;,e) can be reduced. An example of MCMC applied to BN is showed in [[Pearl, [1987h]. It consists
in using the known values for the evidential variables and then, simulate the remainders with the probability
functions conditioned to the others. A needed initial sample can be generated using one of the previous
described methods. Then, the simulation is done for all the other variables without any specific order using
the next theorem [[Pearl, [19871h] :

For Bayesian Networks the conditional probability function of one variable X;, conditioned to the
remainder variables is given by :

h(z:) = plxile \ @) o< p(ai|Pa(z:)) [] plx;|Palz))) (6.41)
X;eC;

where C; is the set of children of X; and X \ X; the variables of X which are not in X.

Once a sample is generated, it is used to produce the next one. It has to be noticed that only X, its
parents, its children and its children’s parents, the Markov Blanket, are used to compute h(X;). Also,
the values used for the variables not yet sampled are the previous ones. The Markov methods overcome
the rejection problem present in the previous techniques, but has a problem. Some convergence problems
appear when extreme probability values are present given that the consecutive samples are not independent.

6.5.6 Maxima Probability Search

This method unlike to the previous ones produces the samples in a deterministic way. The process is based
on building a tree. In this tree each branch is associated to a partial event {x%,..., x¢ }. At each step a
branch is chosen. If m = n, that is, if the event is complete, the branch is cut of and included in the final
simples. Otherwise, the tree is increased with so many branches as possible values can take the following
variable 2, 1. Thus, the original branch {x%,...,z¢ } is replaced by the branches {x%,... 2% 2,11}
for all the possible values of X, 1.

Some techniques which use this process have been proposed along the last decades. For example, [[Pearl,
19874; Henrion, [1991); IPoole, [1993; ISrinivas and Nayak, [1996]. All those techniques differ just in the cri-
terion used to choose the branches. One option is that used by [[Poolé, [1993] where the maxima probability
is the measure. The algorithm presented is an example of those techniques.

Given an ancestral order in the variables X = {X1,..., X,, }, the tree is started with so many branches
as possible values can take the first variable X;. Then, the probability for each branch is computed, and the
one with maximum probability is chosen. In the next step the selected branch is augmented with a sub-tree
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formed by the branches associated to the possible values of the second variable. This process continues
until finish with the last variable X,,. At this moment the branch with maximum probability corresponds to
the first sample. Using the described process, after couped the used branch, the second sample is generated
using the branch with the maxima probability among the unremoved branches.

6.6 Conclusions

This chapter was intended to provide with the necessary background about inference which can help the
reader to understand the process used into the remainder of this work. Principles and techniques for exact
as well as approximate inference were described in this chapter. Inference is a very important process in
BNs. It allows to compute the probability of hidden variables once some of the other have been instan-
tiated. From its definition it can be seen that inference is an essential procedure for parameter estimation
techniques which will be used in our SV system based on BNs.

Next chapter is dedicated to learning. The possible source of information obtained from the speech
will be related to each other using a graphical model. The structure of this model will be deduced using
techniques of structure learning which will be described in the next chapter. Parameters estimation will be
also addressed.
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Chapter 7

Learning in Bayesian Networks

After inference, learning is the second main problem in probabilistic reasoning with BN [[Heckerman ez all,
1995; IBunting, [199€; [Fisher and Len4, 11996; [Castillo et all, [1997)]. In this chapter the two components of
BNss, the structure and parameters learning is addressed. Learning BN from data consists in automatically
obtaining the structure and parameters from information in the available samples. It will be seen that struc-
ture learning is a much more difficult task. In general, there are four recognized variants of this problem.
They are related to the knowledge of the structure and also to the database. The used database to learn the
BN can be full observed or just partially observed.

Statistics is the basis on which BNs are founded for the development of learning algorithms. In the first
section structure learning techniques will be presented. These techniques are used to obtain the conditional
independencies in the graph directly from databases. Algorithms for learning BN from data can be grouped
into two categories. Network scoring and conditional independence test algorithms. The first one computes
a score that reflects the degree of match between the given structure and the data. The second looks into the
relationships between variables to build the structure.

In a second section we will address the parameters learning problem. Those parameters are the condi-
tional probability distributions that quantify the conditional dependences present in the graph. This problem
will be continue in the next chapter where the adaptation technique will be described.

7.1 Structure Learning

One way to obtain the probabilistic relationships among the variables is asking an expert who can gives a
possible good structure. However, that structure may not reflect all conditional independencies present in
the data. Another way to obtain the structure is with the chain rule, a set of conditional independencies and
any ordering on the variables. But, maybe the easiest way, or not, to proceed is to score all the possible
structures and takes the best one. The number of possible structures depends on the number n of variables
in a super-exponential way. Then, it is unrealistic to explore all of them for a high value of n. In [[Robinson,
1977] has been proved that the number of possible DAGs (section G(n) with n variables is given by
the next equation:

n

G(n) = z:(—l)""1 ( ? ) 21 =) G(n — 1), (7.1)

i=1

where G(0) = 1. Using this equation the values for a given n can be obtained. For example G(2) = 3,
G(3) = 25, G(4) = 543, G(5) = 29281 and so on. However, it happens that several of these are equivalent
since they represent equivalent independence statements, but is not the case if the causality is taken into
account. For example for n = 3, G(3) = 25 but there are just 11 different equivalence classes of networks
if the causality is absent.
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7.1.1 Structure Search

Independence or/and dependence test, like PC algorithm [Spirtes er all, [1993], and search and scoring al-
gorithms, like K2 [Cooper and Herskovits, [1992], are the two main approach for Structure learning. Most
of actual structure learning algorithms belong to the last approach which have two components. The first
one search for the structure in the full or limited structure space and the second one score the structure. In
the first step some constraints could be imposed to the structure space in order to reduce the possibilities,
or to impose some known restrictions. There are basically two options, trees as a basic structure or general
complex structures.

There are two different approaches to find the best structure. The first one, like MCMC, searches in all
the structure space and returns either the best one, or the best in a Markov equivalent way. Alternatively, it
can be started with a specific connected graph and then searches for independence relations in the data, and
puts in, takes away or reversing arcs to make modifications, re-tuning the parameters after each changing
in the structure. Given that the cycles are forbidden some algorithms assumes an order in the variables, an
ancestral order. Therefore, a node can have parents just among the nodes that comes earlier in this order.

The second component in search and scoring algorithms is the scoring. A first approach is to use the
likelihood function, but it privileges the fully connected graphs. Adding more parents to a node, and more
parameters to the model, cannot decrease the likelihood. To overcome this problem a penalizing factor is
added to the scoring function. This extra factor is intended to penalize complex structures. In general the
score function are decomposable. That is, the score is the product or the sum of the score of families in
the structure (node and its parents). This property let to re-compute just the contribution to the full score
that comes from the changed families. MAP or Minimum Description Length (MDL) approaches subtract
a penalty factor from the likelihood before comparing different structures. The Bayesian approach places a
joint prior over structures and parameters.

7.1.2 PC Algorithm

This algorithm belongs to the independence or/and dependence test class. The basic idea is to measure the
conditional independence between a pair of variables given a set of other variables. Then, those obtained
conditional independence are used to build the structure. In practice a full connected graph is used as ini-
tialization. After an independence is revealed the concerned arc is removed.

To test the conditional independence in the previous cited conditions the cross entropy (CE) can be
computed. The next equation define the CE for X and Y given Z:

_ . 2ol Io Pz, y|2)
CE(X.¥12) = S P(E) 3 Ploal) log (ras): (2)

where the probabilities are the maximum likelihood computed from the database.

As all algorithm, the obtained results depend on the quality of the database. All the conditional inde-
pendencies should be present in the data. The tested variables can be conform to some prior knowledge.
For example, an ancestral ordering, the existence of one or several edges or to some edge orientation.

7.1.3 Greedy Search Algorithm

This algorithm comes from the optimization area and it is also know as hill climbing. It works with all
possible structures. It starts with a given structure, where some knowledge about the relationship between
the variables is presented. From this first structure a set of them close to the first are defined. Those close
structures are the ones which are obtained putting some new edges, taking away or reversing some other
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edges in the original one.

Once the set of close structures is generated an score is assigned to each one. The algorithm is finish
when a maximum is reached, that is, when changes to the actual structure does not increase the score.

7.1.4 K2 Algorithm

K2 algorithm [Cooper and Herskovits, [1992)] belongs to the second class of methods. It starts with a struc-
ture, the simplest one, i.e. a graph without arcs. The searched structure space is restricted to an small
subset using some prior knowledge. This restriction is expressed in a relationship between the variables,
for example an ancestral order. Then, for each variable X; the set Pa(X;) is searched. The variables in
this set (Pa(X;)) are restricted to those variables with smaller order numbers than X; which still too large.
Therefore, instead of using all the possible variables, it is suggested to use a greedy heuristic algorithm
assuming that a node in the structure has no parents and incrementally adding parents with the preceding
restriction whose addition most increases the probability of the structure until no improvement is obtained,
a threshold or a maximum number of parents is reached.

Bayesian approach used in this work assumes a uniform prior over all possible network structures.
Let S be a data base of samples with m cases corresponding to instantiations of a set of variables X =
{X1,Xs,..., Xn}. If G is the structure, the problem is to compute the probability of that structure given
the data, that is, P(G|.S). To solve this problem some assumptions are done. The first one is the nature of
variables, they are supposed to be discrete. This first assumption let to write the next joint probability:

P(G,S) = /G P(S|G. Gy) (G, |G)dG,,

P

where G, is a conditional probability assignment over all variables and f is a conditional density function.

The second assumption establishes that cases occur independently. Then the conditional probability
function of data given the structure and conditional probability assignments is :

P(S|G,G,) = [[ P(CilG, Gy),

i=1

where C; represent the cases and P(C;|G, G,) is computed directly from the structure and the conditional
probability assignments.

The distribution of (G| @), even if other possibilities are mentioned, is assumed to be uniform.Finally,
the last assumption is that variables are fully observed. This last constraint can be overcome if some missing
data are present. A possibility is a standard method such as Gibbs sampling for dealing with those missing
values or just a inference technique.

Before pursuing let’s redefine some conventions. Each variable X; has an associated collection of val-
ues {x;(1),...,2;(p)} that it can take on, where the number of value p depends on . A set of variables
X which take the values {X_1 = 21, Xo = x2,..., Xy = xn} will be written as X = x. Given X its
parents are Pa(X;), k is the instantiation for the parents.

Define N;jj, to be the cases in S in which variable X; = j and the parents P(X;) are instantiated as k,
then:

p
Nij = ZNM.
k=1
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Given the four assumptions [Cooper and Herskovits, [1992] shows that the joint probability of data and
graph can be written as :

N g
N ! 7.3
( H]l_[l N +pz - 1 ! H . 73)
Finally, the conditional probability of the structure given the data is :
P(G,S)
P(G|S) = ——%—
©l9) = 35
__PG,)S5)
3" P(@G.S)
GeQ

where () is the possible family of structures. This algorithm permits to compare just two different struc-
tures. It is impractical to search over all the possible structures or compute max g P(G|S) if N starts to be
an important number. To solve this problem it is proposed to restrict the research to a small subset of () as
it was established in the last section.

7.1.5 Bayesian Information Criterion

By Bayes’ rule, the MAP model is the one that maximizes an structure G given the data S :

P(S|G)P(G)

P = 7.4
D (.4
where P(G) penalizes complex model and P(S) is a constant. The marginal likelihood is :
P(S|G) = / P(S|G, 0)P(6]G)do. 15)
0

This equation has the advantage to automatically penalizes more complex structures. This score function
can be approximated [Heckerman, [1998&] with a Laplace method, and finally it is obtained the BIC (Bayesian
Information Criterion) :

log P(S|G) ~ log P(S|G, 0) — g log M, (7.6)

where M is the number of samples, 0 is the ML estimate of the parameters and d is the dimension of the
model.

7.1.6 MDL Approach

A disadvantage of using an uniform prior is that the chosen model could be a complex one. Even if is
last model is just slightly better than another one less complex [[Lam_and Bacchus, [1994]. From empirical
and some theoretical results it is known that less complex models are often more accurate. The Minimum
Description Length (MDL) approach privilege simple model.

The basic idea in MDL is that the best model for a database is that one which minimizes the sum of two
term, both measured in bits. The first term is used to encode the length of the encoding of the model and
the second the length of the encoding of the data given the model. In this context it is useful to think about
a model as a mean of compressing data to any desired accuracy.
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To encode a BN with n nodes it is needed just to encode a list of the parents of each node and a set of
conditional probabilities for each node because this first list gives already a description of the nodes in the
network. For a node with k; parents it is needed k; log n bits to encode the list of its parents. The encoding,
the size of the conditional probability table, for a given node depends on the number of parents and the
number of possible values that the variables can take on. The total description length of the BN requires the
next quantity in bits :

z”: kilogn +d(s; — 1) H Sjs 7.7

i=1 jeF;

where d is the number of bits required to encode a probability, F; is the set of parents of node 7 and
s — 1 is due to the fact that probabilities of the instantiations of any variable sums to one.

Given the frequency of occurrence, or probability, of samples in the data a character code which gives
shorter codes to frequently occurring samples can be used to encode the data using the model. Given
those frequency the Huffman’s algorithm provides a method for generating optimal character codes. The
probabilities in a BN can be used to generate a Huffman code and then, usingthis code to measure the
encoding length of the data given the model. Let P = {ps,...p,,} a distribution over m possible events
{e1,...em}, where p; is the probability of e;,. Huffman’s algorithm gives to each e; a codeword of length
approximately equal to —logp;. For a sequence of IV events it can be expected to have IV p; occurrences of
e; and then the encoding of the sequence is :

~N pi log pi,

i=1

which is the optimal encoding. If the true values for P are unknown some approached values () =
{q1,.-.,qm} canbe used :

~NY pilog g (7:8)

i=1
In general, this quantity can be difficult to compute because of the number of events which should be
large. Instead, given that the encoding length of the data is a monotonically increasing function the cross
entropy between the distribution defined by the model and the true distribution is used. Let the Kullback

Leibler function be :
m

i=1 v

Until now, the problem is stil there, but using a decomposition of the events in terms of the BN structure
P(X;|Pa(X,)), the function C'(P, Q) is a monotonically decreasing function of :

> WX, Pa(Xy),

i=1:Pa(X;)#0

where

WO PaX)) = 3D POX Pa(x,) log (

X%,P(L(X%)

P(Xi)P(Pa(X;))

All the probabilities are computed from the data and then, this equation is used to compute the encoding
length of the data instead of equation [ZS)).

7.1.7 Tree-structures using a MDL Approach

A different approach to learn BN tree-structures using a MDL approach is described in [Sigelle, 2003]
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From equation :

P(S|G) = / P(S|G, 0)P(6]G)do, (7.9)
and from its limited expansion up to the second order one has the next equation:
P(S|G) ~ L(é)/e:c — L9y A0 - b)a0 ~ L)) P 2L (7.10)
- "o TN Ve A '

where d(QG) is the number of parameters specifying the model G. At the lowest order if N is the number
of observations the MDL equation is obtained :

L =1log P(S|G) ~ L(§) — d(QG) log N. (7.11)

Now, for a tree structure and in particular when all the nodes are independent it can be written :

log P(S|G) ~ Y {[> (N?) + %ngf] — (N +9°| - %)logN +(19°] - ) log v2r},  (7.12)
seEG  1€NS®

where (2° is the set of observable states at generic node s, and N is the observed number times of the

variable s is in the state <.

7.2 Parameters Learning

Once the structure is established the parameters are the only component to be computed in order to have
a complete BN. It is required to adjust the parameters of the BN in such a way that the CPDs describe the
data statistically. As before, the characteristics of the database are important.

7.2.1 Known Structure and Full Observability

Given that all the variables are observed, that is, completely observed the problem can be decomposed into
a series of terms. Given a set of samples © = {z(1),...,x(¢),...,2(T)} which have been draw indepen-
dently from a probability law p(x|@) the Maximum Likelihood approach can be used.

For the case of a multinormal distribution the parameters are written in the following form:
Oijr. = P(zi = j|Pa(zi) = k), (7.13)

where 6;;,, the actual parameter, represent the probability that the variable x; is in the state j and its
parents Pa(x;) in the state configuration k.

For a multinomial distribution the sufficient statistics are just counting of possible configurations in each
CPT. Then, if M samples are observed, this counting is computed as is represented in the next equation:

T
Niji. = Z l(fci(t):j,Pa(iEi (t)=k)"
t=1

Then, the log likelihood can be written as follows:

L = lognnﬂg}g’“,

t ijk

Z Z Niji log 0.

t ijk
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To optimize this equation the Lagrange multiplier enforced to ; 0ij) = 1 should be used to finally

obtain the optimal value :
5 Nijk

Gijk = T
Zj’ ij'k

If this law p(x|) follows a normal distribution A (1;, 2;) the optimal values {7, 3.} for a multivariate
normal distribution are [[Duda and Hart, [1973] :

(7.14)

P

The other parameters to be computed are now the relation of dependence between two normal variables.
This relation is expressed in a multivariate linear regression expression. The relationship between two such
variables is represented on the following equation :

plyke) = (@n) |5 expl- S (y — An)'S ! (y — Ax)] (1.15)

fory € R? and x € R*, where the regression matrix A € RF*4 and r is the precision matrix, the
inverse of the covariance matrix .

To optimize the value of A under the ML technique the gradient is used. Then, if the log likelihood is
expressed as follows :

__1 1 (1)1
£= =5 L loell = 3 30 ~ Ax())' =7 () = Ax(0),
its derivative is obtained using the following expression :

aiM(Ma +b)!C(Ma + b) = (C + C")(Ma + b)a’,

the derivative is :
A = 3 D2 - As)a(e)
= Yyt - A a(t)z(t).

t

An finally the optimal value for A is :

A=-—x"1 <Zy(t)x(t)t> (Zx(t):v(t)t> . (7.16)

t

This matrix depends only on the covariance between the variables.

7.2.2 Known Structure and Partial Observability

Unlike the fully observed case, the partial one can not be decomposed into a product of local terms because
of the hidden or missing variables. To overcome this problem the most employed techniques is the Expec-
tation Maximization (EM) algorithm ([[Dempster ez all, [1997] in general or [[Lauritzer, [1995] for graphical
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models).

The idea behind EM is to suppose first the possible parameters of the model, or BN in our case, and
then compute the probability for each samples. Using these probabilities, the parameters can be computed
in a second step. The first step is called Expectation, which computed the expected values of the log likeli-
hood of the completed data with respect to the posteriori over the hidden variables. The second step, called
Maximization, is where expected log likelihood is maximized with respect to the parameters to obtain more
refined values. Those two steps are repeated until convergence.

In the maximum likelihood estimation problem a density function p(x|©) depends on a set of parameters
6 which are unknown, for example the means, weight and variance for a GMM. The second element in this
problem is a sequence of observation of size N which are supposed to be drawn from that distribution,
X = {Xjy,..., Xy} If those data vectors are i.i.d. with a distribution p, therefore the density, or likelihood
of the parameters given the data, for the samples can be written as :

N
p(X|0) = [ [ p(x:]®), 7.17)
i=1

The likelihood is a function of the parameters ©® where the data are fixed. Now, for our problem, the
maximum likelihood computation, the parameters © which maximize that function are searched :

0= argm@a)lxp(X|@). (7.18)
For minimization complexity reasons usually the log likelihood is computed.

If X are the incomplete data and it is assumed that a complete data set is Z = {X, Y} with the following
joint density function :

p(z|©) = p(x,y[O) = p(y[x, ©) p(x|O). (7.19)

With this new density function the complete data likelihood can be defined as the probability p(X, Y|O).
Given that Y is random, unknown and follows an underlying distribution it can be treated as a random vari-
able.

The first step for the EM algorithm, the Expectation step, is to find the expected values of the log
likelihood of the complete data with respect to the unknown data Y given the observed data X and the
parameters O in the following way :

Q(©,0" ") = Ellog p(X, Y|©)|X, 0" 1], (7.20)

where ©'~! are the current parameters and © are the new parameters. It should be noticed that X
and O~ are both constants, O is the variable to be adjusted, and Y is a random variable which follows
a distribution written here as f(y|X,©%"!). Using this definition the expected value can be written as is
shown in the next equation :

Ellog p(X,Y|0)X,0" ] :/ log p(X,Y[©)f(yX, 0" ")dy, (7.21)
yeY

where T is the space of values that y can take on. From this equation it can be noticed that the results
is a constant function that depends just on © because the integral is over all possible values of y and X and
©'~1 are both constants.

The second step, the M step, is the maximization of the expected value issued of the first step, as is
show in the next equation :
o" = argmax Q(e,0m ). (7.22)
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The EM algorithm is an iterative algorithm, that is, both steps, the expectation and maximization are
repeated until a convergence criterion as reached. Each iteration guarantes that the likelihood will be in-
creased to converge to a local maximum.

One of the most popular modified version of this algorithm, the generalized EM, computes just a value
which increase Q(©?, ©'~1) instead of maximize it using a gradient ascent algorithm.

The EM algorithm for a multinomial distribution [Murphy, 2002] defines the expected complete data
log-likelihood as follows:
Q07 015%") = > E[Nyji] log 673, (7.23)
ijk
where E[N;j;] is equal to > P(x; = j, P(x;) = k|S, §). Where the probability P(z; = j, P(z;) =
k|S, ) is needed to solve the problem. This step is does in a general inference algorithm. If it is remembered
in the junction tree algorithm a tree of cliques is build. Each clique is composed of at least a family of
variables, that is, the variable and its parents. Then, doing inference in the junction tree the probability of a
family given the data S and the given parameters 6 is obtained. Then, the maximization step is defined in
the following equation:

Oij = argmaxQ (07, 07, (7.24)
ijk

and the solution is the known equation:

E[Nij]

Opif = —— I8 (7.25)
! Zj’ E[Nij’k]

7.3 Using Bayesian Networks in Speaker Verification

In this section it is proposed [Sdnchez-Soto er all, 2003; 20044] to integrate, or combine the information
(cepstral from the signal SLPCC, cepstral from the residual RM F'C'C, pitch Fjy and energy E) at a base
level. This information will be combined in a probabilistic framework with a system based on Bayesian
Networks (BNs). BNs allows the representation of the conditional independence relations among the pro-
posed variables which convey information about the speaker identity.

As we know, a BN (chapter B)) is a couple (G, CPDs) formed by one structure, the graph G, which
is a Directed Acyclic Graph (DAG) and a set of Conditional Probability Distributions (C' PD). In order to
combine the proposed variables a first step is to find the respective conditional independence relations.

Some of the techniques described in the previously sections will be employed with the development
database to search for the structure directly from the data, and in a second step those structures will be used
with all the data to compute the parameters of models based on those structures.

7.3.1 Structure Searching using Greedy Search and BIC

The structure search is started using the four vectors (SLPCC, RLPCC, Fy and F), and a greedy search
algorithm already described (section [Z)) using an a prior given by an order into the variables. The used
data comes from the database already described in section 3.8 The BN’s structures were learned using only
the data employed to learn the world model. The search has been performed with all the possible orders
and the BIC score like the quality measure [[Heckerman, [1998]. From this analysis a probabilistic network
structure which has a high posterior probability given the database is obtained. The resulting structure,
(Figure [ZT)), which is set to be speaker independent, gives the conditional independence relations for the
selected variables. This model will be called from now Model K2-I because the process of structure search
is based on the K2 algorithm (section [ZT.T)).
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Fo

RLPCC SLPCC

Figure 7.1: Model K2-1, Structure for the four variables (energy (E), pitch (Fy), signal SLPCC' and
residual RLPCC') issued from the greedy search algorithm with BIC quality measure.

From basic probability theory the joint probability for the four given variables
U={SLPCC,RLPCC, Fy, E}

can be written as follows:

P(U) = P(E) P(Fy|E) P(RLPCC|F,, E) P(SLPCC|F,, E, RLPCC). (7.26)

Now, taking into account the graph shows in Figure [L]] and its relations of conditional independence,
the previous equation can be written as a product of local terms. One term associated to each variable in the
network:

P(U) = P(E) P(Fy|E) P(RLPCC|Fy) P(SLPCC|Fp). (7.27)

7.3.2 Physical Interpretation

The conditional independence relations found between the four variables can have an interpretation from
the physical point of view. The relation between SLPCC, RLPCC' and F, is obtained from the two last
terms in [Z27%

P(RMFCC|Fy) P(SLPCC|Fy). (7.28)

These terms can be interpreted as a relation of conditional independence where RLPCC and SLPCC
are independent given the pitch Fy, RLPCC 1 SLPCC|F,. From the second term in .27 F;, depends
directly of E given this structure.

The physical interpretation of the relations between the variables gives the same relations found in the
equations obtained from the graph. For example, the voiced speech has more energy that the unvoiced
speech. It is evident that there exists a close relation between the speech energy and voicing of speech. This
fact is written in the term P(Fy|FE) in the equation [L2Z71 The source influences the spectral envelope due
to the filtering effect of the vocal tract. The pitch is correlated with the vibration of the vocal folds and the
vocal tract characteristics. Consequently, the source and the spectral envelope depend on pitch as it is seen
in the next two terms P(RM FCC|Fy) P(SLPCC|Fy) in the equation [L271 The relations obtained in
equation [Z.27] exhibit a causal, or production interaction between the variables.
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7.3.3 Equivalent Model

From a mathematical point of view it can be obtained an equivalent model. Using Bayes theorem :
P(E) P(Fy|E) = P(E) P(Fy|E), the equation (ZZ7) can be rewritten as follows:

P(U) = P(Fy)P(E|Fy)P(RLPCC|Fy)P(SLPCC|F). (7.29)

This new formulation corresponds to the graph shown on Figure This model will be called from
now Model K2-Ib.

Fy

RLPCC E SLPCC

Figure 7.2: Model K2-1Ib, Equivalent structure for the four variables (energy (E), pitch(Fy), signal
SLPCC and residual RLPCC) using the equality P(E)P(Fy|E) = P(E)P(Fy|E).

From equation the causal relations represented are not similar to that presented in [Z27] but the
probability density function is the same. Then the equation also represents the variables relation
present in the joint density. This structure has the advantage that pitch is the root node. Pitch is a feature
whose domain is longer than just one single phonetic segment. Then the independence relations found in
the equation (Z29) represent the conditional independence of SLPCC, RLPCC and F given F;. Recall
that Fj is a prosodic variable that takes into account different linguistic elements, by making boundaries
and defining transitions in speech signal as already seen.

7.4 Structure Searching using MDL

Although the number is structures in a given problem is a rapidly increasing function of the number of vari-
ables () until now only one structure has been obtained. For example, in our problem with four variables,
there are 543 possible structures. Therefore, it is possible to find a new structure that could better reflects
the conditional independencies presented in the data. In this section two new tree structures are proposed
to model the relationships between the four discretized variables using The Minimum Description Length
(MDL) approach.

MDL [Sigelle, 2003; IChickering and Heckerman, [1997; ICooper and Herskovits, [1992]] (section [ZT.7)
analysis was performed using discretized data in order to simplify the probabilistic scheme. Those data
were obtained using a Vector Quantization (VQ) technique over all variables in the development database.
The initialization was done using a k-means algorithm. SLPCC and RLPCC variables were discretized
using 32 values, E with two values and F{y with three values (one value corresponding to the unvoiced part).

The first obtained structure (Model MDL-I) is shown in Figure The conditional probability density
for the four variables issue of the structure is:

P(U) = P(SLPCC) P(RLPCC|SLPCC) P(Fy|SLPCC) P(E|SLPCC). (7.30)
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SLPCC

F E RLPCC

Figure 7.3: Model MDL-I, First structure issued of the MDL analysis.

7.4.1 Physical Interpretation

Thinking about the SLPCC coefficients computation it is easy to see that those coefficients contain a lot
of information. This quantity depends on the number of coefficients (p) used in the autocorrelation function
computation. In SLPCC coefficients it can be found the excitation and then also the pitch characteristics
since the LP model is not perfect.

An important fact to be remarked in this structure is the the relation between the energy and the cepstral
coefficients of the speech signal. The speech cepstral coefficients do not contains the first coefficient, the
energy. Then, normally such a relation between the energy and the cepstral coefficients, like it is represented
in the structure, should not be exist. But, it has to be remembered that a vector quantification was made
in order to obtain the structure. Once the samples have been quantified the obtained index corresponds to
some regions of the acoustical space. Therefore the relation founded is correct. This explanation can be
applied to the other relation presented in the structure. The obtained relation are between regions of the
acoustical space.

7.4.2 A Second Structure

The second structure (Model MDL-II) shows in figure [Z4lis equivalent to the first one from the mathemat-
ical point of view. The only difference is the causal relationship between the energy £ and the SLPCC
coefficients. The conditional probability density for the four variables given this structure is:

P(U) = P(E) P(SLPCC|E) P(Fy|SLPCC) P(RLPCC|SLPCC), (7.31)
E
SLPCC
RLPCC Fo

Figure 7.4: Model MDL-II, Second structure issued of the MDL analysis.
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7.5 Structures with GMMs

The relationship between the variables found in the previous section gives the conditional independencies
present in the structure. A good and robust way to represent each continuous variable is using GMMs. Then,
if all the variables in the model Model K2-1I depicted on FigurdZTl are represented with GMM (section B.3)
the model can be depicted as done in Figure where {E, Fy, SLPCC, RM FCC'} represent discrete
variables and {e, fo, slpcc, rm fcc} continuous variables.

Figure 7.5: Model K2-1 representation using GMMs for each variable.
From this last figure all the possible edges which can connect the variables in the model are evident.
Three possibilities occur:
1) First, the discrete variables which determine the used gaussian in each GMM can be joined with an

edge. That representation would express a relation between the discrete variables which define the gaussian
used to represent each variable, (Figure [L6).

Figure 7.6: Model K2-I with relations between the discrete variables. These variables determine the
gaussian used in each GMM.
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The associated joint probability density for the eight variables is as follows :

P(U) = P(E)P(e|E) P(Fy|E) P(folFo) P(SLPCC|Fy)
P(slpce| SLPCC) P(RMFCC|Fy) P(rmfcc| RMFCC). (7.32)
2) Second, if the edges are put between the continuous variables, Figure [ the relationships are set

between the observed values and not between the discrete variables which define the used gaussians. Then,
a direct relationship between the observations is done.

Figure 7.7: Model K2-1 with a relation between the continuous variables.

The joint probability density for the case where the edges are between the continuous variables can be
written as follows:

P(U) = P(E)P(e|E) P(Fo) P(fo|Fo,e) P(SLPCC)
P(slpcc| SLPCC, fo) P(RMFCC) P(rmfcc|RMFCC, fy). (7.33)

3) A third option could be to join both, the discrete and continuous variables, but this option has not
been studied because of the complexity and time consuming task.

7.6 Applications and Results

In this section the proposed procedure based on BNs to model the available information about the speaker

is used. The three structures (K2-I, MDL-I, MDL-II) are tested in the same conditions (same data, same ini-
tialization in the context of NIST 2004 speaker recognition evaluation [INIST’s 2004 Speaker Recognition Evaluation,
2004] for more details about our work in relation to this NIST’s evaluation see Appendix A). Results show

the structure influence in the final score. In this part the relation between the continuous variables is used.

Once the structures have been established, the parameters for the final Universal Background Model
(UBM) are learned. This model keeps all the information about the independence relations between the
variables. As well as for the GMM systems presented in previous section an adaptation of means was
performed. In this case a linear combination of mean values of the UBM m,,, and speaker model m , after
each EM step is used in all the model from now:

my = v, + (1 — v)ms, (7.34)

where v is equal to 0.75 for all the experiments.
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7.6.1 Using The Continuous Relations

This set of experiments use the four models obtained in the preceding section, Models K2-I, K2-Ib, MDL-I
and MDL2. Gaussian Mixtures (GM) were used to represent each variable. Then, for the model K2-I the
structure is presented in Figure L7l This structure is represented again in Figure and will be called
Model K2-I-¢, where c is for continuous. The Models K2-Ib (to do), MDL-I, MDL2 using GM for
representing each variable are depicted in Figures [L10 and will be called K2-Ib-¢, MDL-I-¢c, MDL—c
respectively.

Paaia
(e

i
SLPCCST.  pee —_ Jmifec

Figure = 7.8: Model K2-I-c representing the continuous relations for the eight variables
{E,e, Fy, fo, SLPCC, slpcc, RMFCC,rmfcc}.

Figure 7.9: Model MDL-I-c representing the continuous relations for the eight variables
{E,e, Fy, fo, SLPCC, slpcc, RMFCC,rmfcc}.
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Figure 7.10: Model MDL-II-c representing the continuous relations for the eight variables
{E,e, Fy, fo, SLPCC, slpcc, RMFCC,rmfcc}.

In the first experiences, the number of components in the M Gs to model the variables is as follows:
8 for the SLPCC, 8 for the RM FCC, 3 for F (one for unvoiced parts) and finally 2 forE. The LBG
[Linde ez all, [1980] algorithm was used to determine the initial setting for the Gaussian parameters. CPDs
were learned with EM [[Murphy, 2001; Bilmes and Zweig, 2002]].

Results with the three systems (Models K2-I-¢, MDL-I-¢c and MDL-II-c¢) are shown in Figure [ZTT] Table
[Tl shows the EER score for the three systems.

MDL-Il-c

40 -

Miss probability (in %)

20 -

i i i
10 20 40
False Alarm probability (in %)

Figure 7.11: Results obtained with the three structures using the continuous relations.

Those results show the influence of the structure (conditional independencies) in the final score. It can
be seen that results do not agree with the MDL results obtained in the structure research. After discretiza-
tion step the best structure using the MDL approach was MDL-I. Then, this results would not be normal.
To explain this result the key word is discretization. As it was already explained the obtained conditional
independencies using the MDL approach are between region of the acoustical space.
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Table 7.1: EER scores obtained with the three structures.

-I-c -I-c -II-c
[score || 3051 | 4521 | 31901 |

To verify the reason explained in the previous paragraph some experiments were done. In the first one
the variable E was eliminated of the MDL-I-¢ model. Figure shows the results, EER = 29.17.

MDL-I-c

40 -

Miss probability (in %)

20 -

MDL-I-c
without Energy

i i i
10 20 40
False Alarm probability (in %)

Figure 7.12: Results obtained to verify the influence of E in the MDL-I-c model.

The results obtained using this last structure shows that variable F has a bad influence into the structure
of model MDL-I-c. To measure the influence of the relation of F in the second experience the relation

between the E and SLPCC variables was eliminated of the MDL-I model. Figure where the EER =
29.07.

This last result shows that E' has a very limited contribution to the final score. A possible justification
to this fact is the few number of components in the mixture of gaussians used to represent the variable.

An important remark about BNs with continuous relations can be made comparing the obtained scores
with that obtained using only the SLPCC variable using the same number of components in the mixture
of gaussians. Figure [ T4 and Table [L2] show the results where it is seen that an improvement in the ERR is
obtained. Also a contribution to the false acceptance rate is remarked.

Table 7.2: EER scores obtained with BNs and SLPCC

-I-c -I-c -Il-c
[score | 3051 | 4521 [ 3101 [ 3142 |
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Miss probability (in %)

40 -

20 -

MDL-I-c
without edge
SLPCC - E

MDL-I-c
without Energy

20 40
False Alarm probability (in %)

Figure 7.13: Results obtained to verify the influence of edge SLPCC -> E in the MDL-I-c model.

Miss probability (in %)

20

MDL-Il-c

K2-I-c

20 40
False Alarm probability (in %)

Figure 7.14: Results obtained with BNs using the continuous relations and the Spectral information

SLPCC.
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7.6.2 Using the Discrete Relations

The same set of experiments was done using the relations between the discrete variables as is represented
in Figure [Z8 depicted again for clarity. This model will be called from now Model K2-I-d, d for discrete,
Figure [LT3 Now the models in Figure [ZTA1is called Model MDL-I-d.

Figure 7.15: Model K2-1-d with a relation between the discrete variables which determine the used gaus-
sian in each GMM.

Figure 7.16: Model MDL-1-d with a relation between the discrete variables which determine the used
gaussian in each GMM.

Results obtained with those structures are shown in Figure [LT71and Table [Z3.

Table 7.3: EER scores obtained with the three structures.

| [ K2-I-c [ MDL-I-c [ MDL-II-c |
[ score || 2748 | 26.64 [ 2827 |

Again, the difference between the structures is reflected in the scores. Now, the best score is obtained
with the structure of model MDL-I-d. The behavior shows by this structure agree with the MDL approach
used to learn the conditional independence in the model.

7.6.3 Using Dynamic Bayesian Networks

We know now that prosodic information has to do with features whose domain are more longer units that
just frames of 20 ms. Also, we know that prosodic features structure the flow of speech into the time. Then,
we think that uses some dynamics into this kind of features can help to improve the SV system performance.
In this experiment we uses just the spectral information SLPCC and Fyy where the pitch has an edge which
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40

20

Miss probability (in %)

i i i
5 10 20 40
False Alarm probability (in %)

Figure 7.17: Results obtained with the three structures (K2-1-c, MDL-I-c, MDL-1I-c) using the discrete
relations.

relate the variables into the time, figurdZI8 for this experience the tool kit GMTK [Bilmes and Zweig,
2002] was used. The upper index represent the time in each variable.

F} F2 ... F

o O O

SLpPCC' SLPCC? ... SLPCC!

Figure 7.18: Dynamc Bayesian Network modeling the prosodic information with a temporal edge.

Figures shows the results, EER = 26.41, with this dynamic structure. This result shows that dy-

namic can improve the performance the performance of using just SLPCC'. Using just The same variables
without the dynamic part the performances are almost the same.
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40+

SLPCC

BN

20 -
Dynamic BN

Miss probability (in %)

5 10 20 40
False Alarm probability (in %)

Figure 7.19: Experiment III, DET curves for System based on Dynamic BNs.

7.7 Conclusions

This chapter presents the techniques used in one of the basic contributions of this work. We have proposed
to use BN for SV as a statistical model to combine different aspects of speech keeping its relations of con-
ditional independencies. The structure used to combine those aspects were learned using the techniques of
structure learning presented in this chapter. The two basic approaches to learn the structure in a BN were
presented.

Parameters learning was the other aspect presented in this chapter. Principles and techniques for pa-
rameters learning were reviewed. The classic maximum likelihood approach as well as the Expectation
Maximization technique were presented. The latter uses, for Bayesian Networks, in the expectation step
the inference techniques developed in the previous chapter. This fact comes to justify the importance of the
last chapter.

With this chapter we started to show how to obtain the models used in the proposed SV system, but
there remains the adaptation of those models. This process is described in the next chapter where an a priori
is used to compute the parameters.
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Chapter 8
Models Adaptation

Adaptation is the process by which something, in this case a model, changes or is changed so that it can be
used in a different way or in different circumstances. From this point of view model adaptation techniques
are a way to reduce the problems of mismatch between the conditions in the training and test phases. A
particular case is the adaptation of generic model to an specific model when a small amount of adaptation
data is collected from this particular model. Here the initial conditions are observed in training the generic
model and the particular conditions are those observed in the collected adaptation data. In general, the
objective of model adaptation techniques is to adjust the parameters of a specific model using new data.

8.1 Classical Approaches

There are many kind of adaptation techniques but in general, from a classic classification, two main broad
approaches exist, namely direct and indirect adaptation. This classification is reestablished by [[Mokbel,
2001]] where a unified view is proposed.

Indirect model adaptation is a transformation-based technique. The parameters of the model, all or by
part, are transformed using a unique shared function, for example Maximum Likelihood linear regression
(MLLR) adaptation. The hyper parameters for this function are computed using the set of adaptation data
or new data. This technique is well adapted to the case when the available quantity of new data is small
given that each sub set of parameters is transformed simultaneously and in general, all the parameters are
transformed. Unlike indirect adaptation techniques direct ones do not use any functional transformation but
try to reestimate the new model parameters as is done in Maximum a posteriori (MAP) technique. There-
fore, just the parameters for which new data are available are locally adapted.

In the field of ASV several methods exist for models construction and in consequence several methods
for its adaptation. Some methods use statistical models like Hidden Markov Models (HMM) [Matsui and Furui,
1994] and Gaussian Mixture Models (GMM) [[Gauvain and Led, [1994], where either the variances, or the
means or both are adapted. Other techniques are Dynamic Time Warping (DTW)[INaik and Doddington,
1986] or Neural Networks [Mistretta and Farrell, [1998]. The first adaptation technique for ASV were pro-
posed by Reynolds [[Reynolds, [1997]. However, model adaptation remains a very important problem in
ASV systems.

8.1.1 Maximum Likelihood Linear Regression

At the begin this adaptation technique [[Leggetter and Woodland, [1995] was proposed for HMM where the
emission distribution is modeled using GMM and just the means are adapted. Consequently it can also be
applied to plain GMM since it can be modeled as a HMM with only one state. The new parameters for the
adapted model are computed by a linear combination of the parameters in the original model. For a GMM
with N components in a SV (Speaker Verification) context just the means (u;) are adapted and weights (w;)
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and variances (X;) are taken directly from the original model. Then, the new means /i; are computed in the
following way :

ity = A i + by,

where the matrix A and the vector b, the hyper parameters, are obtained by maximizing the likelihood of
the new data. This maximization can be done using a modified EM algorithm. This solution needs a matrix
inversion and that could be a problem because the small amount of data could gives an ill conditioned one.
Therefore in practical cases it might be better to uses the generalized EM algorithm. The update equations
for A and b are :

Q
B oQ
b; =b; + A_abi’ (8.2)

where ) is a learning rate and the partial derivatives are computed as follows :

0Q a ) xy — Ay — by
ob, = t:1p t (Ui>2 ) .

where p(i|z) is the posterior probability of data x; for a given gaussian 4, and o; is the diagonal of %;.

As a result of this algorithm the parameters of the new model are close to the parameters of the source
model. A problem issue of hyper parameters computation is generated when just a small amount of new data
is available. Now, with the same date the values for the matrix A of two times the observations dimension
d and the vector b of dimension d should be computed. To overcome this problem some parameters could
share the same hyper parameters.

8.1.2 Maximum a Posteriori

In the Bayesian approach [Gauvain and Leg, [1994] the parameters ¢ are assumed to be random variables
with a priori distribution po(6). Therefore, if the Bayes’ rule is employed the posterior probability of 6
given a set of observations X can be written in the following equation :

_ p(X]0)p(9)

Therefore, the calculated parameter 6 are those which maximize the posterior probability density of §:

0 = argmeaxp(9|X)
= argmax p(X|0) p(6). (8.5)

The obstacle at a first view is to specify a prior for p(6). In [[Gauvain and Lee, 1994] it is proposed to
a Dirichlet density for the weights of the mixture and a normal-Wishart density for the means and standard
deviations because their conjugate distributions are well adapted to the problem. For example, the Dirichlet
distribution is the conjugate of a multi-normal distribution which is ideal for the weights. Once again,
from experience is well known that just mean adaptation is important to achieve good performance. In
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[Gauvain and I e, [1994] the update equation for the means is obtained and expressed in the next equation :

T
a; i + Y pliled)w,
ﬂi = =1 3

T
a; + Zp(z|xt)
t=1

where 7' is the number of observations x; and 7 the index of Gaussians. The « value depends on the
Gaussian and is chosen by cross-validation.

A modified version of this update equation is proposed in [[Reynolds, 2000]. The difference between
both equations is just the « factor :

T

> plilze)z

>t=1

> plila)

t=1

fri = aipi + (1 — oy

Here « is computed as follows :

T

S plila)

t=1
T ’

> plil)

t=1

04,-:1—

where r is called relevance factor which is also computed by cross validation.

8.2 Bayesian Networks Adaptation

To be able to solve the parameters estimation some assumptions are made. The first is that the graph
structure (G) is known and fixed. It should be remembered that the graph in a BN is a directed Acyclic
Graph (DAG). The second assumption is that data are Identical Independently Distributed (i.i.d.), of which
T cases are observed:

x={z(1),...,z(t),...,z(T)}. (8.6)

And the most important assumption, at this moment, is that all variables are observed. This condition is
also known as complete observability.

By Bayesian theorem approach the unknown parameters, called 6, are treated as random variables. This
way of proceeding permits to write the next equation:

P(z]0) P(6)

P(Ol) = =5

8.7

Given that x are observed, the P(z) can be seen as a normalization constant. Then, the optimal param-
eter values 6 are obtained as follows:

6= argmeaxP(:c|9) P(9). (8.3)

In this equation the prior distribution characterizes the prior knowledge and statistics of parameters. In
general the choice of this distribution is a very important problem, which can be based on the experience,
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the data itself or on mathematical reasons. This last factor in some cases is the most important. In our case
the prior distribution is selected in such a way that the posterior distribution and the prior belong to the
same family. In our case, the prior distribution corresponds to the distribution in the world model. If this
condition is verified the prior distributions is called the conjugate distribution.

If x are i.i.d., as it is already said, the likelihood for all the observed cases is computed in the next form:

P(z]0) = [ P(z(®)10), (8.9)
t=1
and then: N
6= argmeaxHP(xiW) P(6). (8.10)
=1

If, as is supposed, we work with a complete observability database each Conditional Probability Density
(CPD), the parameters for the BN, can be trained independently from each other. Then, the log-likelihood
for a BN with NV different variables {x1, ..., 2n,..., N} and T observed cases is written in the next form:

T N
log P(z[0) = log [[[]P(x:(t)|Pa(x:(t)),6:)

t=1 1
N
= > log P(xi(t)|Pa(x;(t)), 6:)- (8.11)
t=1 1
T T2
I3 L

Figure 8.1: BN to represent the probability distribution on equation 811}

For example, if the structure is that one show in Figure Blthe probability of variables x = {z1, x2, x3, 74}
given the parameters 6 can be written in the following form:

P(Z|9) = P(Sﬂlwl) P(l’2|92> P(IL'3|1'2, 95) P(I)j’4|l‘1,l‘2, 94) (812)

Then, given the previous hypothesis, the parameters 6 can be learned from the four separated networks,
one for each variable with its parents, as is show in Figure

8.3 Parameters Estimation for Discrete BN

The first approach is to use Maximum Likelihood Estimation (MLE). For discrete variables each Condi-
tional Probability Table (CPT) is modeled as a multinomial distribution. For this distribution the parameters
are written in the following form:

Oijr. = P(zi = j|Pa(zi) = k), (8.13)
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T g T2 T T2

O O

T3 T4

Figure 8.2: Four Sub-graphs structures obtained from graph in Figure B for learning given that the
variables are all observed. The four CPD, one for each subgraph, can be learned just taking into account
the variables in the subgraph.

where 6;;1,, the actual parameter, represents the probability that the variable x; is in the state j and its
parents Pa(x;) in the state configuration k.

For a multinomial distribution the sufficient statistics are just counting of possible configurations in each
CPT. Then, if M samples are observed, this counting is computed as is represented in the next equation:

T
Nijk = Z L i (8)=5.Patas (£))=k)" 3.14)
t=1

Therefore, the last equation let us write the log likelihood as follows:

M N
o Nijk
£ = tog]TIT0:
m ijk
M N

>3 Nijlog O, (8.15)

m ijk

where, as it is known, the sum of all possible state j probabilities for a variable x; verify the constraint
> j 0;jr = 1. Then, the MLE optimization problem can be solved using the Lagrange multiplier and the
mentioned constraint.

But, MLE does not take advantage of available prior knowledge. Then, if some prior information is
available a Bayesian approach could be more suitable as is expressed in Equation

To obtain the posterior probability distribution with the wished form we should look for appropriate
a prior distribution, that is, the conjugate of a multinomial distribution. The solution in this case is the
Dirichlet distribution, which will be used as the a prior in the Bayesian approach. The Dirichlet distribution
has the form shown in the next equation:

aq,jkfl
eijk )

=

P(6la) = % (8.16)

1

i

where Z (o) is a constant. This constant is function of the Gamma function with parameters o

o0
I'(a)= / t* Lexptdt. (8.17)
0
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Then, for N observed variables © = {x1,..., &y, ..., 2N}, the likelihood can be evaluated as follows:
P((0:jx) H 050", (8.18)

and the prior distribution as a function of « values:

P(Oji|o) = (—

and finally, the posterior distribution is written as follows:

9;";,;‘“1, (8.19)

n:jz

N
POz, 0) = — [ o5 " (8.20)

Now, the problem is remained to an optimization problem where the optimal é\ijk parameters are the
unknown. This problem can be established as follows:

GMAP

ijk - argmax P( 1Jk|x aZ]k)

Oijk

ijk T ijr—1
argmj}z( H HUkJ (R (8.21)

where Z— has been eliminated because is a constant. Using the log likelihood instead of just the
likelihood the equation becomes:

ijktouje—1
HZIﬁAP*argmflz(logHHUkJ" ik (8.22)
0s =1

with the constraint given by the next equation:

N
Zoijk =1. (8.23)

Therefore, we can use the Lagrange multiplier to maximize the function. The Lagrange multiplier is
defined for this function as follows:

N N
L(Gijk7 A) = Z(Nijk + ik — 1) log(eijk) + )\(Z Gijk — 1). (8.24)

i=1 J=1
Taking the derivative for 6,y

OL  Nyg+app—1
0851 Oijk

=0, (8.25)

and for \:

N

oL

S :ZQW —1=0, (8.26)
j=1

we obtain the searched optimal value:
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IMAP  _ Niji + aijr — 1
ijk - N
> i1 N + aujie — 1
N N
> =1 Nijk Niji 21 Qiji — 1 ajjp — 1

_ " (8.27)
N N N N )
> =1 Nigr + g = 1375y Nige 32521 Nigke + e — 1305 cigre — 1

where:

N N
> j=1 Nijk D gk —1 ) 8.28)
Sl N +aige =1 350, Nk +age —1
N N
. le 1 Qi — 1
if pj, = Zj_l / ,thenl — p;p = Zj_l / and finally we can write the

N
E j 1Nijk+aijk -1
next equation:

Zévzl Nijr + oy — 1

052" = pir 71\],\7% + (1 - pm)—ﬁ”k L (8.29)
> =1 Nijk j=1 Qijk — 1

Then, the optimal value for the parameter of the model is a linear combination of the prior parameter

o5 and of the counting in the new data N;;;. From the coefficients, p;, and 1 — p;, used to weight the

prior parameters and the counting in the new data we can deduce an important remark. The more observa-

tions, Zjvzl Njji, there are, the more important the first coefficient is p; and then, the second coefficient

1 — p4x, which weights the prior information is negligible. In a similar way, the less observation there are,
the more importance to the prior o, is given.

The coefficients in the linear combination p;j, are function of ¢ and k. That is, there is a coefficient for
each value of the actual variable z; and for the values taken by its parents k. If we remember that a C PT
is a stochastic matrix, where each line corresponds to each value of the variable x; and each column to the
value of its parent, it is easy to see that such combinations is made between columns of stochastic matrix.
This fact will be used for look for a measure which can gives an idea of the difference between two different
models and then, to compute the p;; factor.

8.4 Using Adapted Discrete Relations in Speaker Verification

Each CPT for discrete variables,describes the interaction between a node and its immediate predecessors
[Sanchez-Soto et all, 2004H]. Specifically CPTs represent the relationships between parents and a child.
The child’s value depends on the combination of values taken by its parents. If the relation to be adapted
links two discrete variables a CPT adaptation can be done as it is just explained. Then, in this section we
explore this possibility with some experiences.

The combination of both models (UBM and model learned with available data of each speaker) is based
on a coefficient p;; computed the available information or as it was already introduced (83 equation[8220)
using a distance measure between vectors of both CPTs. A CPT is the transition matrix which has for ele-
ments real numbers in the closed interval [0, 1] and has entries in a discrete finite Field F such that the sum
of elements in each column/line equals to 1. Therefore, each column/line is a probability distribution for
the corresponding instantiation of the parents in the local conditional dependence represented in the CPT.
Each PDF in the CPT can be modified in order to change the relation between the variables or to modify
the relation of all the variables in the BN.

For example, if all the variables are binary X = {x, ~z}, the values t; ; = p(z = i|Pa(z) = j) in the
CPT for the term P(Fp|E) in (ZZ2) could be:
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Table 8.1: CPT for P(Fy|E).

| I Jo I —Jjo]
e 0457 0.35
—e || 0.55 | 0.65

In a SV system a model called World model or Universal Background Model (M,,) is learned using
a great quantity of data by hoping that the general characteristics of speakers can be well collected in the
parameters of this model. This quantity of information is then adapted using the data from each speaker
(si). In this way one obtains each final speaker model (Ms,). Then, models which depend directly on the
initial world model and the new data Dy, for each speaker are obtained as follows:

M,, = F(M,,, Ds,). (8.30)

In BN the proposed technique to adapt the C'PT's could be based on the fact that each CPT is a stochastic
matrix since verifies:

tiJ‘ >0Vi,j € B,

D tij=1, (8.31)

i€B

where B is the set of conditioning values by column. Each column of this matrix is a stochastic vector
which under certain conditions is a good approximation of the probability density function (pdf). Model
adaptation involves estimating the new vectors in the matrix with a transformation that includes vectors in
the world model and the speaker model.

Any modification to values in the pdf function implies necessarily modification to the dependencies
between the variables modeled by RB. Then, this function can be used to perform adaptation. In this case
the problem is brought back to a problem of comparison between two pdfs. On the basis of equation (830),
CPTs of the final model will be a function of the CPT of the world model and the CPT obtained for the
speaker before the adaptation:

CPT, = F(CPT,,,CPTy,), (8.32)

where CPT;i is the final model, C PT, is the world model and C'PT, the model before adaptation. The
adaptation using a combination of both initial CPTs is possible. A linear combination, that verifies the
conditions in (®31)), as we have already seen in equation [829 is:

CPT!, = pCPT,, + (1 — p)CPTs,, (8.33)

where p € [01]. The values for p could be fixed values as an approximation or can be also approximated
by obtaining a suitable distance between both pdf s.

In a first test (Experiment I) the structure Model K2-1I was used. A discretization of all variables was
achieved in order to simplify the probabilistic scheme. Variables SLPCC and RLPCC were discretized
using 32 values, F with two and F|y with three values (one value for unvoiced part). In a second experiment
the structures K2-I-d and MDL-I-d were also tested.

8.4.1 Experiment I

In this experiment the structure Model K2-I was used. A discretization of all the variables was achieved
first. These experiments were done in a part, only 600 test segments) of the NIST Speaker Verification
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database 2004. Each test segment is evaluated against 11 hypothesized speakers. A first test was made using
a fixed value p for all speakers and a discrete model. Then two different distances were employed with the
same discrete model. From (831)), the ¢; ; values are subject to a unit sum constraint like proportions in a
compositional data. Then, in Aitchinson geometric [lAitchison, [198€] structure of probability functions on
finite intervals (a, b), a distance can be defined for any two pdf, f and g like:

da(f,g) = [ﬁ zb: zb: (log % — log @ﬂ 1/2. (8.34)

== y 9(y)
where L € [a, b] is the interval’s length, this distance verifies 0 < d4(f,g) < 1.

The second used distance was the Kullback-Leibler symetric distance that is just dx (f, g) > 0, but in
the experiments it has never been bigger than 1 given that both pdf are close to each other :

b

dx(f,9) —;f( )1 50 (8.35)

where [a, ] is the interval’s length.

The performance of the system with these conditions is shown in the DET plot in Figure where it
can be seen the influence of p. The value for the fixed p is equal to 0.9. The Kullback-leibler distance shows
the best performance.

iy
i"-r-.._l_ fixed alpha
e
40 _'!L
%
/ distance A
9 .
:5 distance K
=
.é
o 20
o
s
8
= Al
T &
-
-
L
10 !
5 i i i i
5 10 20 40

False Alarm probability (in %)

Figure 8.3: DET Curves of the discrete system using a fixed p. p was obtained from Aitchinson distance d 4
and Kullback-Leibler symmetric distance dp.
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8.4.2 [Experiment II

In this part will be shown the results obtained adapting the discrete relations in the structures K2-I-d and
MDL-I-d. Results are present in the Figure B4 and table B2 depict the results.

E2/P3/S8,R8 Discrete

40

S—f-8 comp

Miss probability (in %)

20
0.99

10 20 40
False Alarm probability (in %)

Figure 8.4: Experiment II, DET curves for Discrete Relations Adapted in Structure K2 — I — d.

Table 8.2: Experiment II, DET curves for Discrete Relations Adapted in Structure K2 — I — d.

[p [ 00 [ 02 [ 05 [ 075099
[score || 36.68 [ 35.81 | 34.08 | 31.71 | 2748 |

Figures B3 and table B3] depict the results using the Kullback-Leiber and Variation Distance to adapt
the CPTs.

Table 8.3: Experiment II, DET curves for Discrete Relations Adapted in Structure K2 — I — d.

[ p 1 099 [ Kull | Vari |
[ score [[ 27.48 [ 31.61 | 33.09 |

Figures and table depict the obtained results with the structure MDL-I-d. As well as in the
previous experiments the discrete relations were adapted.
These results show that adapting the discrete relations do not contribute to improve the performance of

the SV system. The conditional Probability tables learned with the UBM are better representation of the
variable relations.
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Figure 8.5: Experiment II, DET curves for Discrete Relations Adapted in Structure K2 — I — d.

S8/P3,R8,E2 Discrete
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Figure 8.6: Experiment II, DET curves for Discrete Relations Adapted in Structure M DL — I — d.

Table 8.4: Experiment II, DET curves for Discrete Relations Adapted in Structure M DL — I — d.

[p [ 00 [ 02 ] 05 [ 075099
[score || 37.33 [ 35.64 | 33.78 | 3092 [ 26.64 |
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8.5 Parameters Estimation for Continuous BN

Now the parameter estimation for two continuous variables will be developed. First of all, the distribution
to model a continuous variable will be a normal distribution. Then, the relationship between two such
variables is represented on the graph (Figure [5.7).

p(ylz) «~ N(y; my+B(z—m,),r), (8.36)

Figure 8.7: Continuous BN (or Gaussian Network). Graphical representation of two continuous variables
related by a conditional independence.

fory € R% and € R, where the regression matrix B € R**? and r is the precision matrix, the
inverse of the covariance matrix X.

To use the Bayesian approach, in the same way that for the multinormal distribution, it should be found
the conjugate of a Gaussian distribution. We know that for a Gaussian the conjugate distribution is also a
Gaussian if only the mean is a variable. Otherwise, if the variance is also a variable the adequate distribution
is the normal-Wishart.

Then, for a Gaussian distribution where the relationship between two continuous variables is presented
the next equation can be written:

1/2

1
p(yla, my, mg, r,B) o [r|*/< exp fi(y —my — B(z —my))'r(y — my — Bz —my)), (8.37)

where m; is the mean of ¢ and B is the regression matrix that models the dependence between y and x.

The normal-Wishart distribution is defined as follows. Let a; for ¢ € [1,m] has a multivariate normal
distribution of dimension p with null mean and covariance matrix ¥, and X is the matrix of dimension
m X p. Then, the matrix X*X of dimension p x p follows a Wishart distribution with scale matrix 3 and
degree of freedom m. The joint prior for a precision matrix r is a Wishart distribution W (v, u) given by:

a—p
— -1
W(a,u) = C(a,r)|r|] 2 exp Ttr(ur), (8.38)

where, C(a,r) is a normalization constant, u a symmetric matrix, « > 1 a effective sample size
[DeGroot, [1970] and p is the dimensional of the space. Then the normal-Wishart distribution is the joint of
a Wishart and a normal distribution N (u, 7r) as follows:

a—p 1
(e 1m0 Bl g0 w) o 7 exp (g +B ) ) e{my +B(z—m) ) exp — 5 tr(ur).
(8.39)
Using both equations, equation837]as the likelihood and the normal-Wishart[839 as the prior distribu-
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tion, the posterior distribution can be written as follows:

a—p+41
p(me, my, v, Bly,z, 7, p,a,u) o< [r| 2

exp—5 (y = my — Bl = m))'r(y — m, — Bz —m,)

exp — 2 (m, + Blz —m,) — 1)'r(m,, + B = my) — p)

1
exp fitr(ur) (8.40)

The maximum a posteriori (MAP) of this function can be computed using the log of it. Then, we obtain
the next equation:

a—p+1 1

log p(ma, my, r,Bly, z, 7, , o, 1) o 5 |r| fi(yfmyfB(:cfmz))tr(yfmyfB(xfmz))
T

Ty + B(a ) — )'e(my + Ba —m.) — p)
1

—itr(ur) (8.41)

To maximize this equation the gradient technique can be employed. Therefore we compute the partial
derivative for B using the next fact:

0 t t
aM(Ma+ b)'C(Ma + b) = (C+ C")(Ma + b)a

After this computation, we have the next equation:

% log p(mg, my, 0, Bly, z, 7, p,c,u) = —r(B(my — ) +y — my)(my — 2)°
—71r(B(z — my) + my — p)(z —my)" =0.

If the equation is pre multiplied by (—r—!) we obtain the next equation where the total posterior proba-
bility for all the observed cases k is represented as follows:

Z(B(mzf:ck)erkfmy)( +TZ 2 —my) +my — p)(@F —my)t =0.
k

We can still arranging the equation:

ZB(mx —a®)(my —a*) + Xk:(y’“ —my)(mg —a*)" +

TZB —mg)( —mx)t+72k:(my—u)(x’“—mx)t=0-
and:

ZB - kt+¢ZBx’“—mx N z* —mg)t +

Z(y — my) (M +TZ my — —mg)" = 0.

k

since (A —B)! = (A" = B') = —1 (~A" + B") = —1 (B — A)* we have:

ZB +TZB —ma)(a* = ma)t —
EZ@ —m,)(@* = m,) _T§:M ) — )t = 0.

k
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if (A —B)(A—B)' = (B—A)(B—A)":

BY (2 — ma) (@ —my)t + r(a® — my)(@F —m,)") -
k
Z((yk - my)(xk —my)" + 7 — my)(xk —my)') =0,

then:

1+mB > (@ = ma)(ah —m,) =

k

D = my) (@ —me) 4 (= my) (@ —ma)").
k

Finally we obtain the optimal value for the regression matrix B which is:

= 1 t t -
B = m (;(?Jk - my)(xk —my) ) <Z(mk - mi)(xk — M) ) +

k
-1
-
1+7) (Z(M —my)(zF — mx)t> <Z($k —my)(zF - mx)t> , (8.42)
k k
where we can see that the coefficients, or weights sum one:
1 T

=1 8.43
1+7 + 1+7 ’ ( )

1
if3=-——,thenl — (3= T and finally we can write the next equation:
1+ 1+7

s
T

B = B <Z(yk - my)(xk - mz)t> (Z(xk - mx)(xk - mx)t> +

k k

(1-5) <Z(u —my)(a* — mx>t> (Z(x’“ —my) (¥ — m)t) . (844

k k

The last equation shows how the a priori information y present on the term (y — m,,) is combined with
the empirical information obtained from the samples y* and present on term (y* — m,,). Comparing this
equation with that [ZT@ obtained learning parameters for a known structure and full observability suing just
MLE. This equation can be seen as a generalization where the contribution of the a priori model and the
observed data is again function of their covariances.

This last developement consider the mean values of « and y, respectively m, and m,, as constant values.
In each EM step the m,, and m,, values are changed. Thus, it should be established a procedure to adapt the
three concerned values,m, m, and B, in this dependence, see equation Using the same procedure,
the already established posterior distribution, equation and the gradient technique, the optimal value
for the mean of z, m,, is obtained from the next equation :

I log p(mg, my, v, Bly, x, 7, u, o, u) = 0.

If the derivative of second order, where C is assumed symetric with respect to a is :

%(b —Ma)'C(b —Ma) = —2M'C(b — Ma),
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then, rearranged the log posteriori :

log p(ma, my, v, Bly, z, 7, p, @, w) o
a—p+1
azptly
1
—E(y —my — Bz — Bm,)'r(y — m, — Bz — Bm,,)

-z
—§(my + Bz — Bm, — p)'r(my + Bz — Bm, — )

1
- §tr(ur) (8.45)

its derivative with respect to m,, is expressed in the nex equation :

a 1ng(m:camyaraB|y7x7Tv /,L,Oé,ll) = _Bterx - Btr(y — My —BJ?)
My

—7B'rBm,, — 7B'r( — m, — Bz) = 0.
then, we can write this last equation in the following form:
(-1—7)BrB)m, =  B'r(y —m, — Bz)
B'r(u — m, — Bx)

After some mathematical manipulations the optimal value of the mean m,, for all the observed cases k
is as follows:

1 -1 k k
My = _1_TB ;(y —my —Ba") +
T -1 k
7177B zk:(,u—my—Ba: )s
where: )
T _ 4
—1-7 —1-7

Once the m,, value is adepted, the values for m, and B can be computed. The steps to obtaine the opti-
mal value of m,, is through the same manner of proceeding used in the previous part. Then, the rearranged
log posteriori is:

log p(ma, my, v, Bly, z, 7, j1, o, 1) o

a—p+1 i
2
5 (my — Bz~ me ~ By x(—my — B(x —m, B 'y))
—%(my +B(z —my —B ') r(my, +B(x —m, — B 'p))
—%tr(ur) (8.46)
If the derivative of second order, where C is assumed symetric with respect to b is :
%(b — Ma)'C(b — Ma) = —2C(b — Ma),

we obtaine the following equation:

—r(y —B(z —my)) +rm, +
Tr(—p + B(x — my)) + 7rmy, =0
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and finally the optimal value for m,, is expressed in the next equation:

my= = > (=Bt —my)
k
Ty 204 Bt - m)

where the addition of the coefficients is equal to:

1 n T
1+7 1+71

Finally, the process to adapt the BN is as follows. The serie of operations performed in each pair of
dependent variables has to start by adapting the mean value of the parent, in the previous equations defined
by m,. This value will be used to compute the mean value of the child, m,. Once both values have been
obtained the parameter which define the relation between both variables, B, will be computed in the next
step. For variables in between the roots and the final children, as soon as the values for a given pair of
dependent variables have been obtained the mean for the child will be used to start again the process in the
pair where this last variable is the parent. In a given structure, this procedure will starts by the root, in a
tree, or by the roots, in a polytree and will ends with the final children.

8.6 Using Adapted Continuous Relations in Speaker Verification

As it was done for the adapted CPTs, this section present some results for adapted continuous relations.
For the second set of tests (Experiment III) the three structures (Model K2-I-c, Model MDL-I-c, Model
MDL-II-¢) were used. The original variables were modeled by GMMs as was done in the previous section
3. SLPCC and RM FCC with 8 components, Fyy with five components and E with four components
in order to establish the influence of components number in each GMM. In all these experiments, we should
remember, the mean was adapted according to section [Z@ using a factor o = 0.75.

8.6.1 Experiment II1

Again the three structures already mentioned (Model K2-I-c, Model MDL-I-¢, Model MDL-II-c) were
used. Here the relationships between continuous variables were adapted.

Adaptation of CPD is made using fixed values (/3). In the Figures it can be seen the evolution of EER
score given that value. Special attention has to be paid to the values 0.0 and 1.0. The regression matrix used
in learning is that of the world model if 8 = 1.0 and is learned just with the speaker data if 5 = 0.0.

Results obtained with the structure MDL-I-c are presented in Figure [8.8] and Table The curves in
the graph cross each other, then the legends are useless. Notice that this structure is really dependent of the
adaptation factor (.

Table 8.5: EER scores obtained with the structure MDL-I-c

[ B [ 099 [075] 05 [ 02 [ 00 |
[MDL-Ic || 34.35 | 36.02 | 37.62 | 38.74 | 39.58 |
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Figure 8.8: Results obtained using the structure MDL-I-c in Figure[Z9

Results obtained with the structure MDL-II-¢ and the same protocol are presented in Figure and
Table B.A
Table 8.6: EER scores obtained with the structure MDL-II-c

[ B [O075] 05 [ 02 ]
[MDL-II-c || 30.85 | 30.8591 | 31.98 |

The most important in this graph is to notice the stability of this structure with respect to values of (8
and its influence in the F RR.
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Figure 8.9: Results obtained using the structure MDL-1I-c in Figure 710}

The same test was made using the structure K2-I-c¢ obtained from the K2 algorithm. Results also with
the same protocol are presented in Figure and Table
Table 8.7: EER scores obtained with the structure K2-I-c

[ B 099 [ 075 02 [ 00 |
(K20 || 3045 | 31.37 | 38.74 | 39.21 |

Again, the instability of this structure is reflected on the changes of values of 3.

8.7 Conclusions

This chapter presents a basic contribution of this work. In order to obtain a robust SV system models
adaptation should be done. This chapter presents the basic adaptation techniques used for models based on
GMM at the beginning and the proposed techniques for BN and the end. We first explained the adaptation
for multinomial distribution. Using a MAP technique we have computed the optimal parameters to combine
the a prior Dirichlet distribution and the new data. The final equation shows that the parameters are a linear
combination of the parameters represented in the Dirichlet distribution and the counting in the new data.

In the same way, we have obtained the optimal parameters for a multinormal distribution again with
a MAP adaptation. This time the a prior used was a normal-Wishart distribution. The parameters are a
combination of the prior distribution and the new data weighted by a parameter in the a prior distribution
which depends on the used quantity of data.
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Figure 8.10: Results obtained using the structure K2-1-c in Figure [Z3



146 8. MODELS ADAPTATION




147

Chapter 9

Conclusions and Perspectives

We have presented in this work an alternative to methods for Speaker Verification Systems based on
Bayesian Networks. The objective of this works were to study and to propose a solution to combine differ-
ent aspects of speech in a unique model. The effort was undertaken because there was a lack of resources
which can help to combine in a robust way different aspects of speech keeping its characteristics and rela-
tions.

Not only basic Bayesian Networks were used but procedures to learn the relations between the vari-
ables and new procedures to adapt these relations were developed. Graphical representations of conditional
independencies of different variables, such as energy and pitch, could not be easy modeled directly on a
Graphical Model. We thus propose to learn the structure directly from the available data. Even if the latter
was already an established technique in machine learning, but we diverted its usage and transformed it into
a technique for representing and learning the physical relations between the concerned variables. The ad-
vantages of these graphical representation was to give us an easy physical interpretation of obtained results.

Through out this work we mainly emphasized a graphical and practical approach to look for the rela-
tions between the variables in a physical level. We believe that much processes in speech production are
of a multivariate nature, where each variable have a relation or influence on each other. In the obtained
structures it is often difficult to distinguish a precise independence relation between the variables, but this
fact was due to the differents parameterized methods used. The most clear example is the structure obtained
using the MDL approach. The found relations are between different acoustical regions because of the vec-
torial quantification made to provide the samples.

We showed how to build the structure, expliciting a mixture of gaussians to model each variable in a
unique statistical model. The obtained results show that this approach can help to improve results obtained
just using spectral information. Configurations appears to be the most important factor in the final perfor-
mance. Each structure has shown a particular behavior even thought that all of them are using the same data
and same initialization. This is partly due to the reflected relationships among the variables. A close look
to those given relations was done to analize the results. A particular example was done to show the bad
influence of the relations between the energy and the spectral information in one of the proposed models.
Moreover, if care is not taken to measure the conditional independence relations the Bayesian Networks
approach losses all its benfits.

After having tested two different configurations, relation between discrete variables and relation be-
tween continuous variables, it can be said that continuous configurations appears to give the most important
performance. Even if the discrete relations have an influence into the used gaussians to model each varaible,
the observed variables provide with must more information. Then, model the relations between the obser-
vations, or continuous variables, gives most important results.
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Besides the purely analysis of the conditional relations between the variables, we tried to use prosodic
information. We known prosodic information and suprasegmental characteristics, like intonation, accent or
pitch are very important in a normal communication. Also, we know that its domain is not a single phonetic
segment, but larger units of more than one segment, possibly whole sentences or even longer utterances.
Then, we proposed Dynamic Bayesian Networks for representing the synchronical and dynamical proper-
ties of prosodic characteristics. Until now, the results are not conclusive because of the few experiments.

After having established the conditional independencies reflected in the structure of each Bayesian Net-
work, we proposed and developed a technique to adapt those dependence relationships. The techniques is
based on the Maximum a Posteriori (MAP) approach, where the a priori was obtained from a well trained
model, called the world model. Two schemes were discussed, using discrete variables and using conbtin-
uous variables. For discrete relation, a procedure based on a measure between the Conditional Probability
Tables (CPT), was proposed in addition to the found equation using MAP. This procedure takes advantage
of the structure of each CPT. Given that a CPT is a stochastic matrix, each one of their vector is a proba-
bility density function (pdf). Then, a measure between two different pdf can be used to combine and, then,
adapt a CPT. The obtained results, mainly using, a fixed weight to combine the CPTs shown that adaptation
of discrete relations does not improve the performances. Adaptation of continuous relations are based on
computing the values of a regression matrix. These values, as it is shown in the developed equation, depend
on the covariance between the corresponding variables. The obtained results, using fixed values for the
regression matrix, shows just a performance improuvement in a unique model.

This work demostrated that Bayesian Networks can be expected, if care is taken, to be a good approach
to model differents aspects of speech in order to develop better Speaker Verification Systems.

9.1 Perspectives

Some question were left unanswered. The most important aspect to be continued, is the dynamic modeling
of prosodic variables. We did not find an adequate approach to model the temporal relation between the
variables. Consequently, a challenging task can be foresee.This modeling can include also, the periodicity
of samples. We have not yet establish the searched relations between the acoustical variables and prosidic
ones which can explain an approach to a suprasegmental modeling.

Another important question is regarding the investigation of source of information in a speech signal.
It should be investigated the information in the residual signal. Maybe a better represented with another
parameterization can be obtained.

In the conditional realtionships observed in the structure of a Bayesian Network, some fruitful perspec-
tives are foreseen. A close study of conditional relations between each couple of variables could be done.
We think about the example found in the energy and spectral information relation described before. Energy,
modeled just with two gaussian components in a given structure, has not enough information to differentiate
two different persons.

We did not study yet, the influence of the structure on each speaker. Alternatively, a research about the
influence of the structure for each speaker should be done. Here we are talking about a structure adaptation.
Of course, we can not pass over the increasing inportance of data. Adapting the structure can be a task more
difficult because of the lack of data.

All the structures described have been tried but a combination of these structures could be explored in
the future. A combine of clasifiers can improve the results. The potential of Bayesian Networks to combine
variables in a single and unique statistical model. Given the obtained results, we think that a pursue of this
work should be done in a practical approach, as well as, in theoretical questions.
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Appendix A

NIST’s Speakers Secognition
Evaluation

Even if this part is presented in one appendix of this report, it was an important part, in time and effort, of the
all work carried out during the PhD. “NIST’s evaluation [INIST’s Speaker Recognition Evaluation, 2004] is
the internationally accepted standard for comparing speaker recognition technology and which forms the
benchmark for measuring progress in speaker recognition research using conventional telephone speech” [
The objective of these yearly evaluations is to stimulate the researcher to exploring new ideas, which will
be developed to be incorporated into new technologies, and, which will be finally tested in a well strict and
established protocol.

The Ecole Nationale Supéerieure des Télécommunications take part of the NIST” evaluation since 1998
as part of the ELISA consortium [[The ELISA Consortium, 2004]. This consortium was created by three
laboratories in France:

e Laboratoire d’Informatique d’Avignon (LIA),
http://www.lia.univ-avignon.fr/php/accueil.php

e Ecole Nationale Superiéure des Télécommunications (ENST),
http://www.tsi.enst.fr

o Institut de Recherche en Informatique et Systemes Aléatoires (IRISA),
http://www.irisa.fr/metiss/accueil.html

and then augmented by others laboratories, nowadays the next:

e Laboratoire de Communication Langagiere et Interaction Personne-Systeme (CLIPS),
http://www-clips.imag.fr/geod

e University of Balamand - Lebanon,
http://www.balamand.edu.lb

e Université de Fribourg, Documents, Image and Voice Analysis (DIVA) group,
http://diuf.unifr.ch/diva/siteDIVAO4/pages/home.xml

The Elisa consortium aims to facilitate the cooperation between the mentioned laboratories, mainly
within the NIST’s evaluation. The consortium organizes regular meetings, maintains a software platform
[Alizé: a free. open tool for speaker recognition, 2004] for speaker recognition and help his members to be
prepared for the international evaluation. The majority of the laboratories of the consortium take part jointly
in the NIST’s evaluations.

ITaken from Digital Signal Processing, January/April/July 2000
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During my PhD work, as part of the ELISA consortium and the ENST, we participated to the NIST’s
evaluation in 2003 and 2004 in a close collaboration with Rapha¢l BLOUET and Gérard CHOLLET at
the Signal and Images Department of the ENST and with Chafic MOKBEL at the University of Balamand
[Blouet et all, 2004]. My main contributions were in the secondary system year 2003 and primary and
tertiary systems year 2004.

A.1 NIST’s evaluation 2003

The year 2003 speaker recognition evaluation [INIST’s 2003 Speaker Recognition Evaluation, 2003] had
three main parts: one and two speakers detection and one speaker detection with extended data. In one
speaker detection the training data for a target speaker is two minutes of speech from that speaker obtained
from a single conversation. The test data is the only speech part of a single conversation obtained from one
minute of conversation, speech is within 15 and 45 seconds. The difference of one speaker detection and
two speakers detection tasks is that in the two speaker detection task the data, in training and test, contains
the speech of two speakers. The training data has three whole conversations with both sides of the conver-
sation summed together. The test data is a one minute segment from a single conversation with both sides
of the conversation summed together again. Finally, the one speaker detection with extended data has al-
most one hour of speech for training. The test data is composed by all one side single conversation segments.

At the ENST we decided to perform just the one speaker detection task because of the resources needed
to work with the two others tasks.

A.1.1 Primary system: ENST 1

The primary system is a segmental level linear combination of four GMM-based systems. Those systems
are differing in the features vectors (FBCC and LPCC) and in the post-processing steps (feature warping and
classical CMS). Speech segmentation is simply obtained with a GMM of K ¢ components, where K ¢ = 64.

In the test, block-level log-likelihood ratios followed by the T-norm in each system are calculated.
Decision score is then obtain in two steps. We firstly apply a class by class fusion of the four systems scores.
This permits to obtain K c scores that we linearly combine to compute the final decision score. Systems
fusion is obtained by applying logistic regression to each segmental scores. Class fusion is obtained by
applying linear discriminant analysis.

Features

This primary system used the next parameters based sur the MFCC and LPCC acoustic representation:

e MFCC.1 40-dimensional features obtained as follows: 20-dimensional Mel-Frequency Cepstral Co-
efficients (MFCC), augmented by their first derivatives and warped to (0,1)-Gaussian distributions
within 300-frames windows.

e MFCC.2 40-dimensional features obtained as follows: 20-dimensional Mel-Frequency Cepstral Co-
efficients (MFCC) with sliding cms, augmented by their first derivatives.

e LPCC.1 32-dimensional features obtained : 16-dimensional LP Cepstral Coefficients (LPCC, aug-
mented by their first derivatives and warped to (0,1)-Gaussian distributions within 300-frames win-
dows.

e LPCC.2 32-dimensional features obtained : 16-dimensional LP Cepstral Coefficients (LPCC), aug-
mented by their first derivatives and warped to (0,1)-Gaussian distributions within 300-frames win-
dows.
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Modeling and Test

Two gender-dependent world models with 512 Gaussian components were created using the 2001 cellular
development and evaluation datasets. The parameters of both world models were estimated using the EM
algorithm. The target speaker models were obtained from the world model by adapting only the means. A
total of 174 (100 female, 74 male) speaker models from the NIST-01 evaluation set served as cohort models
to calculate the T-norm. Results obtained with this system by gender and location, to shows the diversity of
the task, are shown in the next Figure [A]

ENST1: 2003, 1SP Detection - Complate Task by GENDER (all rials) ENST1: 2003, 1SP Detection - By CALL LOCATION (primary trials)

ges
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Figure A.1: Results obtained for the primary system, NIST 2003

A.1.2 Secondary system: ENST 2

The second system is based on Bayesian Networks (BN). We use BN in order to model the joint probability
function of four set of features extracted form the speech signal. We use frame’s energy (F£), pitch (Fy),
LPCC extracted from the speech (SLPCC') and from the LP-residual (RLPCC). Two GMM of 32 com-
ponents permit to respectively model the two LPCC vectors sets. Two GMM of 2 components permit to
model the pitch and the energy.

Features

A set of four types of parameters are extracted from the speech signal:

e SLPCC 24-dimensional LP Cepstral Coefficients obtained as follow: 12-dimensional LPCC, with
sliding CMS and augmented by their first derivatives.

e RLPCC 24-dimensional LP Cepstral Coefficients obtained as in SLPCC but extracted from the
LP-residual.

e [ the frame pitch.

e F the frame energy.

Modeling and test

Two gender-dependent world models were created using part of the 2001 cellular development and evalu-
ation datasets. Those data had been used with the K2 algorithm (section [ZT])) to find the beast structure
of the four variables. Issue of this analysis the conditional independence relations that define the network
structure were obtained. This structure was set to be speaker independent, see next figure
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Figure A.2: Structure of the Bayesian Network used for the Secondary system.

The final world model parameters of the Bayesian Network (32/32/2/2 Gaussian components for SLPCC,
RLPCC, Fy, E + conditional probability tables (CPT)) are then learned with the EM Algorithm using the
GMTK toolkit [Bilmes and Zweig, 2002]. The final speakers models were obtained from the world model
using two iterations of the EM algorithm. Just the means of the Gaussian were modified. CPTs from the
world models were used for the speakers models. In the test, the decision score is directly based on the
log-likelihood ratio without any kind of normalization. The results obtained with this system by gender and
duration, again to shows the diversity of the NIST’s evaluation, can be seen in the next figure A3

ENST2: 2003, 1SP Detection -~ Complete Task by GENDER (all trials) ENST2: 2003, 1SP Detection -- Duration by catagory (All Trials)
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Figure A.3: Results obtained for the primary system, NIST 2003

A.1.3 Tertiary system: ENST 3

This system used a tree-based MLLR + smoothing using MAP algorithm. It had been mainly developed at
the University of Balamand (Libanon), [Blouet et all,2004]. Training and test have been run at ENST.
Features

The same, already described, features used in the primary system MFCC.1 were used (see section A_LI)).

Modeling and Test

The speakers models were obtained by adapting the means of the gender correspondent world model using
a tree-based MLLR + smoothing using MAP algorithm. The world models were created using the same
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procedure as the primary system. The results are as follows figure [A.%

ENST3: 2003, 1SP Detection - Complate Task by GENDER (all rials) ENST3: 2003, 1SP Detection -- Transmission Type (Primary Trials)

Miss probabilty (in %)
o

Miss probabilty (in %)
o

02 - ; ; 02

o1 o1

0102 05 1 2 5 10 20 40 o102 05 1 2 5 10 20 40
False Alarm probability (in %) False Alarm probability (in %)

Figure A.4: Results obtained for the primary system, NIST 2003

A.2 NIST’s evaluation 2004

Unlike the evaluation 2003, the evaluation 2004 [NIST’s 2004 Speaker Recognition Evaluation, 2004] pro-
posed only a one speaker detection task with 28 different conditions. These conditions are function of the
available data for test and training. Training segments are continuous conversational speech without prior
removal of intervals of silence. The seven training conditions are as follows:

e a single channel conversation side containing approximately 10 seconds of speech.

e a single channel conversation side containing approximately 30 seconds of speech.

e asingle channel conversation side, of approximately 5 minutes total duration of speech and silence.
e three single channels conversation sides involving the same speaker.

e cight single channels conversation sides involving the same speaker.

e sixteen single channels conversation sides involving the same speaker.

e sixteen single channels conversation sides involving the same speaker.

e three summed-channel conversation, formed by sample-by-sample summing of the two sides of the
actual conversation.

The four test conditions are as follows:

e a single channel conversation side containing approximately 10 seconds of speech.

e a single channel conversation side containing approximately 30 seconds of speech.

e asingle channel conversation side, of approximately 5 minutes total duration of speech and silence.

e a single summed-channel conversation, formed by sample-by-sample summing of the two sides of
the actual conversation.

2
3

some files contains crosstalk
some files contains crosstalk
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An important characteristic of the database this years is the language spoken by the speakers. Most of
the data involves English, but some conversations involves also bi-lingual speakers speaking Arabic, Man-
darin, Russian and Spanish.

This year, the ENST has submitted results for the core test conditions (one-side-training-one-side-test)
with three systems and also results for one-side-training-10-seconds-test and one-side-training-30-seconds
with the primary system.

A.2.1 Primary system: ENST 1

This year the primary system was based on Bayesian Networks. The main difference between this system
and that one of the year 2003 is the proposed adaptation of the dependencies between the conditioned
variables (see section [R2).

Modeling and test

The system uses a similar structure, figure [A21 where this time the relationship between the variables was
established on the continuous variables. The set of parameters is the same used in the secondary system
year 2003 (see section [A.1.2).

The final world models parameters of the Bayesian Network use 16 Gaussian components for the
SLPCC and RLPCC(C variables, 3 Gaussian components for the Fjy and 2 for the E. To model the prob-
ability relation between the continuous variables a regression matrix is used, see section B4l The final
speakers models were obtained from the world model by adaptation of the Gaussian means and parameters
of the regression matrix, see section with a fixed value equal to 0.75 for all parameters. In the test, the
decision score is directly based on the log-likelihood ratio without any kind of normalization. The results
obtained with this system can be seen in the Figure The Figure[A_ shows the results obtained for the
one-side-training-10-seconds-test and one-side-training-30-seconds conditions.

ENST1: 2004, DET 1 (Al Trials) by gender (Tside Tside) ENST1: 2004, DET 8 (Accent by Target) side Tside)

— Al — ARABI

— Males — EnaLI
il — Femal 4 \ MANDA
o RUSSI
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Miss probabity (in %)
Miss probbilty (in %)

01 02 05 1 20 a0 010z 05 1 2 5 0 20 a0

2 0
False Alarm probability (in %) False Alarm probabilty (in %)

Figure A.5: Results obtained for the primary system, BIST 2004. The BET curve in the left shows the
results by gender (female, male and all). In the right side de BET curve shows the results by language.
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ENST1: 2004, DET 1 (Al Trials) by gender (1side-10sec)
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Figure A.6: Results obtained for the primary system, BIST 2004, 10 seconds and 30 seconds test conditions.
The BET curve in the left shows the results for the 10 seconds condition and the right BET curve shows the
results for 30 seconds condition.

A.2.2 Secondary system: ENST 2

The second system used a tree-based MLLE + smoothing using MAP algorithm, as the tertiary system in
the year 2003 (see section [ATJ3). It had been developed in collaboration with the University of Balamand
(Lebanon). In the test, the decision score is directly based on the log-likelihood ratio without any kind of
normalization. the results are shown in the next figure [A77k

ENST2: 2004, DET 1 (Al Trials) by gender (1side Tsidc) ENST2: 2004, DET 8 (Accent by Target) (Tside-Tsice)
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Figure A.7: Results obtained for the secondary system, NIST 2004. DET curve in the left shows the results
by gender (female, male and all). In the right side de DET curve shows the results by language.

A.2.3 Tertiary system: ENST 3

This third system is based on the ALIZE platform [[Alizé: a free. open tool for speaker recognition|, 2004]
and was part of the AGILE - ALIZE project. A sub-set of the primary system parameters were used and
three GMM systems of 32 components were created. The first one uses the frame’s voiced pitch values Fj.
The second uses the LPCC extracted from the speech SLPCC and the last system uses the LPCC from the
LP-residual analysis RLPCC. A fusion was made based on a simple normalized scores addition.

Modeling and test

Two gender-dependent world models were created for each feature (SLPCC, RLPCC, and Fy) using
part of the 2001 cellular development and evaluation datasets. The speakers models were obtained from the
world models by adaptation. The means adaptation of the gender correspondent world model were made
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by using MAP algorithm.

For all systems and given a test utterance, the decision score is the mean log-likelihood ratio between
the target speaker and the world model over all the frames. The results are shown in figure

ENST3: 2004, DET 1 (Al Trials) by gender (Tside 1side) ENST3: 2004, DET 8 (Accent by Target) Tside Tside)
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Figure A.8: Results obtained for the tertiary system, NIST 2004. DET curve in the left shows the results by
gender (female, male and all). In the right side de DET curve shows the results by language.

ALIZE is not responsible for these results. This experience was carried out, first as a part of the AGILE
- ALIZE project and second to verify in some way the potential of Bayesian Networks to combine different
sources of information. Those results can be explained thinking on the systems’ scores combination method,
just a simple mean, and on the variables used in each system.
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Abstract

One solution to improve the performance of Speaker Recogni-
tion (SR) systems could be the integration of different aspects
of the speech signal. Thus in this paper it is proposed to
integrate, or fuse, all these informations in a probabilistic
framework with a system based on Bayesian Networks (BNs)
where the structure is learned directly from the data. BNs
are a flexible and formal statistical framework that allows us
to represent the conditional independence relations among
different speech features that convey information about the
speaker identity. In this paper, prosodic variables (pitch and
energy), the linear prediction cepstral coefficients (LPCC)
from signal and LPCC from residual signal of linear prediction
analysis are used to represent each speaker.

This study is conducted on the NIST 2002 one speaker text-
independent data base. These experiments confirm the poten-
tialities of BN approach.

1. Introduction

Speech signal carries a lot of information besides the mes-
sage. Other information about the speaker is present such
as mood, emotive state and in particular his/her identity. SR
(Identification (SI) or Verification (SV)) systems should use
features which capture characteristics of the speaker in order
to differentiate them from others. In this search for individual
discriminant features some information could be lost. Many
authors discard prosodic information in speaker verification,
but it is known that they carry a lot of information about
the speaker identity. Therefore speaker information of other
sources must be used. The suprasegmental characteristics,
like intonation, accent or pitch are really important in a
normal communication, specially the pitch that appears like an
important factor in speaker recognition [1]. However the pitch
information in itself is not enough to discriminate between
two different persons. Therefore speaker information of other
sources must be used. For example, spectral information,
conveyed by cepstral coefficients, and knowledge, which is not
often taken in account, that comes from the source of excitation
in speech production.

The main idea, developed in this paper, is to retrieve
the conditional independencies directly from the data (linear
residual analysis from the source in speech production, the
spectral information from the vocal tract and prosody) in order
to build a BN, and by this mean integrate, in a probabilistic
way, all those informations.

This paper is organized as follows: Bayesian Networks are
first introduced in section 2, with some discussion about the in-
ference problem and algorithms. Section 3 reviews briefly some
ideas about structure and parameters learning in BNs. In section
4, the experiments, results and their probabilistic interpretation
are presented. Finally conclusions and perspectives are given in
section 5.

2. Bayesian Networks

A BN, or Bayesian Belief Network [2], represents a joint
probability distribution defined on a finite set of random
variables. It is a formal representation, based on probabil-
ity theory and graph theory, given by a Directed Acyclic
Graph (DAG) in which nodes represent random variables
and arcs represent conditional probabilistic dependencies
among those variables. An arc from Q to Y can also be inter-
preted as indicating that Q has a direct influence on Y, Figure 1.

In a DAG each edge points from one node, called parent, to
another, called child. In the same topology description, the node
X has a descendant node X; if this one is its child or is con-
nected to it through its children. In a BN, a conditional probabil-
ity distribution is associated with each node X that describes
the dependency between this node and its parents, each node
is conditionally independent from its non-descendants given its
parents. Those dependence relations induces a factorization in
the joint distribution function expressed as :

P(X1,...,Xn) = [[ P(Xi|Pa(X2)), ¢h)

i=1

where Pa(X;) is the set of X;’s parents.

2.1. Inference

There are two main research problems in probabilistic rea-
soning using Bayesian Networks: learning and inference [3].
Bayesian network inference involves computing the posterior
marginal probability distribution of some query nodes, and
computing the most probable explanation given the values of
some observed nodes once the structure is known.

A BN is a couple (G, CPDs) formed by one structure,
the graph G, and a set of Conditional Probability Distributions
(CPD), one for each node with parents in the network. For
nodes without parents we have just to specify their prior
probability. Evidence, i.e. knowledge about the state of one
variable, would modify the states of others variables in the
network. Doing probability inference consists in computing
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the probability of each state of a node when we know the
state taken by some other variables. There are three types of
evidence propagation, exact, approximated and symbolic. One
or another is used depending on the characteristics of the data
and the complexity of the structure. In order to make exact
inference it is necessary to talk about “belief propagation” [4]
and to take into account the relation of independence obtained
directly from the graph. The exact methods present some
problems. Some of them are not applicable to all the types
of structures. The methods of general validity become very
inefficient with certain structures when the number of nodes
and its complexity grow. This is not surprising since it has
been demonstrated that the exact propagation task is NP-hard
[5]. For that reason, and from a practical point of view, the
exact propagation methods can be very restrictive and even
inefficient in situations in which the type of structure of the
network requires a large memory and a lot of computational
power. With the second method, approximated values are
obtained using simulation methods as Monte Carlo and Gibbs
sampling [6]. The last method of propagation works directly
with symbolic parameters [7].

In general, if we have a set of variables X =
{X1,X2,...,Xn} and a set E, the evidence, with known val-
ues E = {e1,e2,...,enm}, where E C X, inference consists
in computing :

p ((E—;, 8)
p(e) ap(z;,e). )
The conditional dependence assumptions encoded by a BN
have the advantage of simplifying the conditional probabilities
computation. All this could be done in an equivalent tree struc-
ture when the original one is not a tree [8]. This structure is a
tree built of cliques that represent the local structures, and then
preserve the conditional probabilities. The first step in the junc-
tion tree construction consists in finding those cliques C;. Then
it is possible to compute their CPD. The CPDs of variables X;
are computed by marginalizing the cliques. In detail this pro-
cess works has follows:

plaile) =

1. moralization and triangulation (because the parents are
correlated given its children) of G to obtain an undi-
rected graph G'.

2. computation of cliques C of G,
3. assign each X; from X to one clique Cj,

4. for each C; € C define a potential ¥;(C;) =
HX,EA,' P(zi|Pa(x;)).

After those steps, the belief propagation method has to be
applied to the new graph (collecting and distribution steps).
That is, it must be updated the belief in each node when some
variables have been observed.

3. Learning

The other main problem in probabilistic reasoning using
Bayesian Networks is learning. Learning Bayesian Network
from data [9] [10] consists in automatically constructing the net-
work, structure and parameters, from information in data using
some learning algorithms. The Statistical base of BN let the
development of learning methods. We use these methods in or-
der to obtain the conditional independences in the graph struc-
ture and the conditional probability distributions that quantify

Y
Figure 1: Basic BN.

those dependences directly from databases. Therefore, depen-
dences, structure and conditional probability distributions can
be learned from data.

3.1. Structure

In the process of finding the best structure, even if the space of
variables is fully observable, some aspects must be considered.
Firstly concerning the structure space, should trees be a priority
or should more complex graphs be considered? The number
of possible structures depends on the number of variables n
in a super-exponential way. For example, with four variables
there are 543 possible DAGs. It is unrealistic to explore all of
them. For that reason, it has to be taken in consideration search
algorithms that gives the structures to be evaluated. There are
two different approaches to solve this problem, the first one,
like MCMC [11], searches in all the structure space and returns
either the best one, or the best in a Markov equivalent way.
The second approach starts with a specific connected graph and
then searches for independence relations in the data S, and puts
in or takes away arcs.

The K2 algorithm [12], used in this work, belongs to the
second approach. It starts with a structure, the simplest one,
i.e. a graph without arcs. It needs some prior knowledge and
a relationship between the variables. Then, for each variable
X; we look for the set Pa(X;). The variables in this set are
restricted to those variables with smaller order numbers than
X;.

In order to achieve learning, a scoring function must be
specified for measuring the network’s quality. The criterion, or
quality measure to select Pa(X;) is the last aspect to study in
the structure learning. Maximum likelihood could be an ad-
equate quality measure, but it privileges the fully connected
graph. This graph gets the highest likelihood because it has the
greatest number of parameters. Thus, to overcome this prob-
lem, a prior knowledge on the model can be used. By Bayes’
rule, the MAP model is the one that maximizes :

P(S|G)P(G)
P(s) 7

where P(G) penalizes complex model and P(.S) is a con-
stant. The marginal likelihood is :

P(@]S) = €)

P(SIG) = /0 P(S|G, 8)P(6]G)do, @

where S is the database. (4) as the advantage that automat-
ically penalizes more complex structures. This score function
can be approximated [13] with a Laplace method, and finally
get the BIC (Bayesian Information Criterion) :
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logP(S|G) = logP(S|G, 0) — ;logM7 5)

where M is the number of samples, @ is the ML estimate of
the parameters and d is the dimension of the model.

3.2. Parameters

Here, it is required to adjust the parameters of the BN in such
a way that the CPDs describe the data statistically. The param-
eters 0 and the model, B(6), defined for these parameters are
given. Also, the prior distribution over the models P(B(6))
and the space of parameters in these models P(6|B) can be
used. So, given some data S, it is wanted to estimate 6, such
that the posterior probability to be maximized is :

P(B|S) = B(B) /P(S’|07 B)P(6|B)db. 6)
P(S) Jo
Thus the maximum likelihood estimate of € is computed by
minimizing the cost function over the probability density func-
tion. We can make an optimization that relies on the gradient of
this function, or use an iterative procedure called Expectation -
Maximization (EM) [14] or a variant, Generalized EM , using a
gradient method in the M step.

4. Experiments and Results

In this section, experiments and results using our BN Speaker
Verification System (BNSVS) are detailed.

4.1. Database

The data are taken from the second release of the Cellular
Switchboard Corpus (Switchboard Cellular - Part 2) of the Lin-
guistic Data Consortium (LDC) [15]. Each conversation is echo
cancelled before use. The database is divided into training data
(about 400 target speakers), and test data (about 3500 test seg-
ments). The training data for a target speaker consist in about
two minutes of speech from that speaker, excerpted from a sin-
gle conversation. Actual duration is, however, constrained to lie
within the range of 110 to 130 seconds. Each test segment is
extracted from a 1 minute excerpt of a single conversation and
is the concatenation of all speech from the subject speaker dur-
ing the excerpt. The duration of the test segment therefore vary,
depending on how much the segment speaker spoke. So, the
effective speech duration lies between 15 and 45 seconds. Both
test and target speakers are of the same sex.

4.2. Modeling

The training and test parameter vectors consist of a set of
four types of parameters. The first vector is a 24-dimensional
LP Cepstral Coefficients obtained as follow : 12-dimensional
LPCC, with sliding CMS (Cepstral Mean Substraction) and
augmented with their first derivatives, SLPCC, for Signal
Linear Prediction Cepstral Coefficients. The second vector,
24-dimensional LP Cepstral Coefficients has been obtained
as before from the LP-residual signal RLPCC [16][17], and
finally the frame pitch Fp and the frame energy E.

Those data had been used with K2 algorithm to find the
best structure for our four variables. We have worked with all
the possible orders and used the BIC score [5]. From this analy-
sis we have obtained the conditional independence relations for

Fy

RLPCC SLPCC

Figure 2: Structure for the four variables (energy (E), pitch
(Fo), signal SLPCC and residual RLPCC) issued from the
K2 algorithm.

the multivariate Gaussian distribution that define the network
structure which is set to be speaker independent, Figure 2.

From basic probability theory the joint probability for the
four variables U = {E, Fo, RLPCC, SLPCC'} can be writ-
ten as:

P(U) = P(E)P(Fo|E)P(RLPCC|Fy, E)
P(SLPCC|Fy, E, RLPCC). )

Now, taking into account the graph of Figure 2 and its re-
lations of conditional independence, this equation becomes a
product of local terms :

P(U) = P(E)P(Fo|E)P(RLPCC|Fp)
P(SLPCC|F). (®)

The relation between SLPCC, RLPCC and Fp is
obtained from the term P(RLPCC|Fy)P(SLPCC|Fp). It
can be interpreted as a relation of conditional independence
where RLPC' and SLPC are independent given Fp, noted
RLPCC 1 SLPCC|F, or I(RLPCC,SLPCC|Fy). Also,
from the second term in (8) it can be seen that F depends
directly of E.

The physical interpretation of the relations between the
variables gives the same relations found in the equations
obtained from the graph. For example, the voiced speech has
more energy that the unvoiced speech. It is evident that the
speech energy depends directly from the speech voicing. This
fact is written in the term P(Fp|E). The source influences the
spectral envelope due to the filtering effect of the vocal tract.
The pitch is correlated with the vibration of the vocal folds
and the vocal tract characteristics. Consequently, the source
and the spectral envelope depends on pitch as it is seen in
P(RLPCC|F,)P(SLPCC|Fy).

The relations obtained in equation (8) exhibit the causal
interaction between the variables. Now, using Bayes theorem
: P(E)P(Fy|E) = P(E)P(Fo|FE), the equation (8) can be
rewritten as :

P(U) = P(Fo)P(E|Fo)P(RLPCC|Fp)
P(SLPCC|Fy). 9)
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Fy

RLPCC E SLPCC

Figure 3: Equivalent structure for the four variables (energy
(E), pitch(Fy), signal SLPCC' and residual RLPCC') using
the equality P(E)P(Fy|E) = P(E)P(F|E).

This new formulation corresponds to the graph shown on
Figure 3. In this equation the causal relations represented are
not similar to that presented in (8), but the probability density
function is the same. Then the equation (9) also represents the
variables relation. This structure has the advantage that pitch is
the root node. Pitch is a feature whose domain is longer than
just one single phonetic segment. Then the independence rela-
tions found in the equation (9) represent the conditional inde-
pendence of SLPCC, RLPCC and E given Fy. Where Fy is
a prosodic variable that relate different linguistic elements, by
making boundaries and defining transitions in speech signal.

Once the structure has been learned, the final Universal
Background Model (UBM) BN’s parameters are learned. Since
there are not enough training data for each speaker, adaptation
methods are applied to compute every Target Speaker Model.
For this purpose, the system starts from an universal model
(UBM) which is then adapted to the client speaker by three iter-
ations of the GEM algorithm and in this way we overcome the
problem. Two gender-dependent UBM have been created using
part of the 2001 cellular development and evaluation datasets
(this database is similar to the database already described).

4.3. Results

Each test segment is evaluated against 11 hypothesized speak-
ers. The decision score is directly based on the log-likelihood
ratio between the target speaker and the UBM over all the
frames without any kind of normalization. Figures 6 and 5
display the DET (Detection Error Tradeoff) curves that measure
the performance obtained with our system and the standard
technique Gaussian Mixture Models (GMM), that have become
the dominant approach for modeling multivariate densities
in text-independent speaker recognition. A DET curve is a
mean of representing performances on detection tasks and is an
standard in speaker and language recognition evaluations. In a
DET curve, error rates are plotted on both axes (False Alarm
and Miss Detection). It shows when a system fails to detect a
target or declare such a detection when the target is not present.

First experiment uses the vector SLPCC modelled by a
GMM with 64 mixtures. The results shown in the DET curve,
Figure 5, show a performance of 19.31 % at the Equal Error
Rate (EER). The same has been done with the RLPCC vector
obtaining a score of 24.34 %. Now combining all the variables

voiced unwvoiced

RLPCC E SLPCC RLPCC E SLPCC

Figure 4: Structure used in the second experiments.

RESULTS

Miss probability (in %)

20 40
False Alarm probability (in %)

Figure 5: DET curve for NIST 2002 evaluation data with
SLPCC, RLPCC and All using a GMM with 64 mixtures.

in a vector and using a GMM with 64 mixtures a 21.34 % score
is obtained.

The next set of experiments use two models. The first one
uses the structure in the Figure 2 and the set of parameters:
32 Gaussians for RLPCC and SLPCC bplus 2 for the pitch
Fp and energy E. CPDs were learned with GEM [18] [19].
This choice of gaussian numbers (parameters number) was
made taken into account the computation resources and time
requests to finish a task. K-means was used to determine the
initial setting for the Gaussian parameters. This system obtains
an EER of 24%, Figure 6. The results in the Figures 5 and 6
show that a GMM with a SLPCC vector perform better than
our first system. Given that our score is similar to that obtained
with the RLPCC vector the difference can come from the
independence relations obtained in the structure.

With the second structure shown in the Figure 4, a dis-
cretization of the continuous pitch Fp was made in order to bet-
ter modelize the voiced and unvoiced parts of speech. The pa-
rameters used for this model are : 2 values for the pitch (voiced
and unvoiced), 16 Gaussians for the RLPCC and SLPCC
and 2 Gaussians for the energy F. This system, shown in Figure
6 obtains an EER of 21.18% for male and 22.37% for female.
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RESULTS

male (1rst model)
40 -

female (1rst model)

20

Miss probability (in %)

male'(2nd model)

female (2nd model)

40

20
False Alarm probability (in %)

Figure 6: DET curve for NIST 2002 evaluation data using our
two Bayesian Network models: First Model as shown in Fig. 2
and Second Model as shown in Fig. 4.

5. Conclusions and Perspectives

In this paper, a system achieving Speaker Verification based on
BNs is presented. This system infers the Bayesian network
structure automatically from the data. Also, it uses the inde-
pendence relations obtained for integrating all the information
presented on the speech signal in a single probability distribu-
tion. It shows that BNs are a flexible mathematical tool that
can help to modelize information from different aspects of the
speech signal. The physical interpretation given to the equa-
tions describing the structure suggests that the learning algo-
rithms for BN are able to adequately infer the relations present
in data. The perspectives for this work are important because
of the flexibility of BNs. We expect further improvements from
different research algorithms in the network structure learning
and from the augmentation of parameters.
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Abstract

In this paper a new adaptation technique for Speaker
Verification of models built using Bayesian Networks is
presented. The adaptation problem of parameters of the
conditional probability tables (CPTs) is treated in a spe-
cific and new manner. A CPT transformation is made
given that these tables are Stochastic Matrices. Model
adaptation involves estimating the new vectors in the
matrix with a transformation that includes vectors in
the world model and the speaker model. The combina-
tion of both models is based on a value computed using
a measure of distance between vectors of both CPTs.
This speaker verification system has been tested using
the NIST 2002 data base. Results show that this adap-
tation method improves the verification performances.

1. Introduction

Nowadays, an interest in Biometric Techniques for
person identification is observed and Automatic Speaker
Verification (ASV) is an important part of this growing
field. This interest is justified by the persons wish of
using their voice to reach several services where it is
desirable to make their access safe. In the majority of
real systems the quantity of available data is a problem.
Complexity of data acquisition implies a problem for the
creation of each speaker model. Therefore adaptation
techniques are necessary and important in order to built
models that perform better.

The objective of adaptation techniques for models
creation is to adjust all the parameters of a specific
model using new data. Several methods exist for models
construction in the field of ASV and in consequence
several methods for its adaptation. Some methods use
statistical models like HMMs (Hidden Markov Models)
[1] and GMMs (Gaussian Mixture Models) [2], where
either the variances, or the means or both are adapted.
Other techniques are DTW (Dynamic Time Warping)[3]
or Neural Networks [4]. The first adaptation technique
for ASV were proposed by Reynolds [5] and Mokbel in
[6] has proposed a unified view. However, the models
adaptation is always a very important problem in the
systems of ASV. The suggested speech modeling with
Bayesian Networks is not the exception. To solve this
problem, a new technique of adaptation adapted to
these types of Networks is proposed.

This article is organized as follows: in section 2, a
short description of Bayesian Networks is made. Section
3 is dedicated to the adaptation methods and the presen-
tation of our proposal using the Bayesian Networks. In
section 4 experiments and results obtained are presented.
Finally, conclusions and perspectives are given in section
5.

2. Bayesian Networks

In this section basic aspects of Bayesian Networks (BN),
or Bayesian Belief Network [7], are presented. In the
simplest form a BN is a probabilistic representation of
the joint probability distribution defined on a finite set
of random variables. This representation is based on
probability theory and graph theory. A BN consists
firstly of the structure given by a Directed Acyclic
Graph (DAG).

The nodes in a DAG represent random variables
and arcs represent conditional probabilistic dependencies
among those variables. For example from the graph in
Figure 1 an arc from A to C can be interpreted as indi-
cating that A has a direct influence on C. Nodes have
relative names by its position and relation with others
nodes in the graph. Each edge points from one node,
called parent, to another, called child, for example in
the Figure 1 B is the parent of E. In the same topol-
ogy description, the node X; has a descendant node X;
if this one is its child or is connected to it through its
children. In the same graph, E is a descendant of both
A and B. In a BN, a Conditional Probability Distribu-
tion (CPD) is associated with each node X;. It describes
the dependency between this node and its parents. In
general, each node is conditionally independent from its
non-descendants given its parents. Those dependence re-
lations induces a factorization in the joint distribution
function expressed as :

P(X1,..., Xn) =[] P(Xi|Pa(X3)), (1)

i=1

where Pa(X;) is the set of X;’s parents. For the example
in the graph in Figure 1 the factorization is :

P(ABC D E) = P(A)P(B)P(C|A)
P(D|A)P(E|AB). )
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C D E

Figure 1: A basic Bayesian Network ezample.

Each Conditional Probability Distribution or Condi-
tional Probability Tables represented by a factor in (1)
describes the interaction between a node and its imme-
diate predecessors. This representation form the second
part of a BN. Specifically those CPTs represent the re-
lation between parents and child. The child’s value de-
pends on the parents’ values combination. For example,
if all the variables are binary X = {z,-z}, the values
t;; = p(x = i|Pa(z) = j) in the CPT for the term
P(D|A) in (2) could be :

Table 1: CPT pour P(D|A).

L[ a ] ~al]
d ][ 0.45 [ 0.35
=d || 0.55 | 0.65

2.1. Bayesian Network Construction

One main problem in probabilistic reasoning using
Bayesian Networks is learning. Learning Bayesian Net-
work from data comnsists in automatically building the
network structure and compute the parameters, from in-
formation in data.

2.2. Structure Learning

Some aspects must be considered in the process of
finding the best structure, even if the space of variables
is fully observable. The amount of possible structures
is very great. This quantity depend on the number of
variables IV, for example, if just four variables are taken
into account 543 DAGs are possibles. It is unrealistic
to explore all of them. For that reason, specific search
algorithms must be designed.

Two different approaches to solve the structure
learning problem exist. The first one searches in all the
structure space and the second starts with a specific
connected graph and then searches for independence
relations in the data S, and puts in or takes away
arcs. The initial graph can be place to put some prior
knowledge about the variables relation.

The algorithm used in this work, K2 [8], belongs to
the second approach. It uses a greedy search method to
construct the structure. It starts with the the simplest
structure, i.e. a graph without arcs. Given an ordering,
or prior knowledge about relationship between the vari-
ables, the set of variables considered as candidate for the
set of parents Pa(X;) for each variable X; are restricted
to those variables with smaller order numbers than X;.
All possible structures have to be scored to know which

one has the highest quality. Maximum likelihood could
be an adequate quality measure, but it privileges the fully
connected graph, because it has the greatest number of
parameters. Thus, a prior knowledge on the model can
be used to overcome this problem. The marginal like-
lihood can be approximated [9] with a Laplace method,
and finally get the BIC (Bayesian Information Criterion):

log P(S|G) =~ log P(S|G,0) — glog M, (3)

where S is the database, M is the number of samples, 6
is the estimate of the parameters and d is the dimension
(number of free parameters) of the model.

2.3. Parameters Learning

It is required to adjust the parameters in CPDs in such a
way that they describe the data statistically. The param-
eters 6 and the model, B(6), defined for these parameters
are given. Also, the prior distribution over the models
P(B(#)) and the space of parameters in these models
P(8|B) can be used. Therefore, given some data S, it is
wanted to estimate @, such that the posterior probability
to be maximized is :

P(BS) = %/GP(SIQ B)P(9|B)d6.  (4)

Thus the maximum likelihood estimate of 8 is computed
by minimizing the cost function over the probability den-
sity function. We can make an optimization that relies
on the gradient of this function, or use an iterative pro-
cedure like EM (Expectation - Maximization).

2.4. Bayesian Networks for Speaker Verification

Speech signal carries a lot of information besides the mes-
sage. Other information about the speaker is present
such as mood, emotive state and in particular his/her
identity. All those informations, including spectral and
prosodic, can be used in order to differentiate one speaker
from others. BN could be the way to combine all off them
[10, 11]. Conditional independencies can be retrieved di-
rectly from data in place to build a BN, and by this mean
integrate those characteristics, in a probabilistic way.

3. Models Adaptation

In a ASV system a model called World model or Uni-
versal Background Model (M,,) is learned using a great
quantity of data by hoping that the general characteris-
tics of speakers can be well collected in the parameters of
this model. This quantity of information is then adapted
by using the data from each speaker (s;). In this way
one obtains each final speaker model (Ms;). Then, mod-
els which depend directly on the initial world model and
the new data D are produced :

M,, = F(Mpn, D). (5)

Among the most used techniques are regression methods
like MLLR (Maximum Likelihood Linear Regression) and
the Bayesian estimate methods like MAP (Maximum A
Posteriori).
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3.1. Bayesian Network Adaptation

Knowing that BN are statistical models their parameters,
especially CPTs, can be adapted by using regression or
Bayesian methods. In this article we propose a CPTs
adaptation of a BN based on the fact that each CPT is
a stochastic matrix since verifies :

tij > 0Vi,j € B,

D otii=1, (6)

i€EB

where B is the set of possible variable values by column.
Each column of this matrix is a stochastic vector which
under certain conditions is a good approximation of the
probability density function (pdf).

Any modification to values in the pdf function implies
necessarily modification to the dependencies between the
variables modelled by RB. Then, this function can be
used to perform adaptation. In this case the problem is
brought back to a problem of comparison between two
pdfs. On the basis of equation (5), CPTs of the final
model will be a function of the CPT of the world model
and the CPT obtained for the speaker before the adap-
tation:

CPT,, = F(CPTn,CPTs,;), (7)

where CPTj, is the final model, CPT,, is the world
model and CPT,; the model before adaptation. The
adaptation using a combination of both initial CPTs is
possible. A linear combination, that verifies the condi-
tions in (6) is:

CPT,, = aCPTy + (1 — a)CPT,,, (8)

where a € [01]. The value « could be a fixed value or can
be obtained with a suitable distance computed between
both pdfs. Two possible cases can be considered, a fixed
« for all speakers or an «; adapted for each speaker s;.

4. Experiments and Results

In this section, experiments and results using our BN
Speaker Verification System (BNSVS) are detailed.

4.1. Database

The data are taken from the second release of the Cellu-
lar Switchboard Corpus (Switchboard Cellular - Part 2)
of the Linguistic Data Consortium. Each conversation is
echo cancelled before use. The database is divided into
training data (about 400 target speakers), and test data
(about 600 test segments). The training data for a target
speaker consist in about two minutes of speech from that
speaker, excerpted from a single conversation. Actual du-
ration is, however, constrained to lie within the range of
110 to 130 seconds. Each test segment is extracted from
a 1 minute excerpt of a single conversation and is the con-
catenation of all speech from the subject speaker during
the excerpt. The duration of the test segment therefore
vary, depending on how much the segment speaker spoke.
So, the effective speech duration lies between 15 and 45
seconds. Both test and target speakers are of the same
sex.

Fo

RLPCC SLPCC

Figure 2: Structure for the four variables (energy (E),
pitch (Fo), signal SLPCC and residual RLPCC') issued
from the K2 algorithm.

4.2. Parameters

The training and test parameter vectors consist of a set
of four types of parameters present all the 10 ms over a
20 ms window. The first vector is a 24-dimensional LP
Cepstral Coeflicients obtained as follow : 12-dimensional
LPCC (Linear Prediction Cepstral Coefficients), with
sliding CMS (Cepstral Mean Substraction) and aug-
mented with their first derivatives, SLPCC, for Signal
Linear Prediction Cepstral Coefficients. The second
vector, 24-dimensional LPCC has been obtained as
before from the LP-residual signal RLPCC [12], and
finally the frame pitch Fo and the frame energy E as
prosodic information are also used.

In a first test a discretization of all variables was
achieved in order to simplify the probabilistic scheme.
Variables SLPCC and RLPCC were discretized using
32 values, E with two and Fy with three values (one
value for unvoiced part). For the second set of tests the
original variables were modeled by GMMs. SLPCC and
RLPCC with 32 mixtures, Fy with three mixtures and
E with 2 mixtures.

4.3. Modeling

Parametrized data frames had been used with K2 algo-
rithm and BIC score to find the best structure for the
four variables. The structure obtained, Figure 2, is set
to be speaker independent. Taking into account the re-
lations of conditional independence issue from the graph
in Figure 2 and equation (1) the joint probability distri-
bution for the four variables becomes a product of local
terms :

P(U) = P(E)P(Fy|E)P(RLPCC|F)
P(SLPCC|Fy). 9)

The relation between SLPCC, RLPCC and Fj is ob-
tained from the term P(RLPCC|F,)P(SLPCC|F). It
can be interpreted as a relation of conditional indepen-
dence where RLPC and SLPC are independent given
Fp. Also, it can be seen that Fy depends directly on E.

4.4. Results

The decision score is directly based on the log-likelihood
ratio between the target speaker and the world model
over all the frames without any kind of normalization.
Each test segment is evaluated against 11 hypothesized
speakers. A first test was made using a fixed value «
for all speakers and a discrete model. Then two different



B.2. WORKSHOP ON BIOMETRICS ON THE INTERNET. VIGO 2004 167

xLL fixed alpha
) -L\\""-\_.L /
ﬁ.‘_ .
/ distance A
S )
.05 distance K
=
3
8 20
[<]
S
8 o
= 2
T &
-
ey —
10
5 i i i i
5 10 20 40

False Alarm probability (in %)

Figure 3: DET Curves of the discret system using a
fized o and o obtained from Aitchinson distance da and
Kullback-leibler simetric distance dx .

distances were employed with the same discrete model.
From (6), the ¢;; values are subject to a unit sum con-
straint like proportions in a compositional data. Then, in
Aitchinson geometric [13] structure of probability func-
tions on finite intervals (a,b), a distance can be defined
for any two pdf, f and g like:

da(f,g) = [i zbjij (log % ~log Mﬂ 7

oy 9(y)
(10)

where L € [a,b] is the interval’s length. The second used
distance was the Kullback-leibler simetric distance :

<(fr9) = 3 () log % (11)

The performance of the system with these conditions is
shown in the DET plot in Figure 3, where it can be seen
the influence of . The Kullback-leibler distance shows
the best performance.

In order to validate our system a comparison with a
classic Bayesian GMM adaptation techniques was made
in the second set of experiments. A single adaptation
coefficient for all means was used. Results in Figure 4
are obtained using the GMM modelisation for the four
continuous variables and CPTs for its relations. The per-
formance of three systems are compared in Figure 4. The
first system use a CPTs adaptation, the second a mean
adaptation and the third system shows the scores on-
tained employing means and CPTs adaptation.

From this DET curve is concluded that adaptation
of conditional independence relations in CPTs joined to
means adaptation perform better that just a mean or
CPT adaptation.

40

CPTs

20

/

CPTs and Means

Miss probability (in %)

5 i i i
5 10 20 40
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Figure 4: DET curves for adaptation of different combi-
nation of parametres. First curve shows CPT adaptation
with a fized . Second curve shows Bayesian means and
the third Bayesian means and CPTs adaptations.

5. Conclusions

In this paper, a new adaptation technique for Speaker
Verification based on BNs is presented. CPTs are intu-
itively viewed as probability density functions. A dis-
tance measure between two different CPTs is used to
compute a value that controls the combination of both
CPTs. The obtained results show that BNs are a flexible
mathematical tool that can help to modelize information
from different aspects of the speech signal and also sug-
gest several research lines concerning the used distance.
The perspectives for this work are important because of
the flexibility of BNs.
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Abstract

The aim of Automatic Speaker Verification (ASV)
is to detect whether a speech segment has been ut-
tered by the claimed identity or by an impostor. Our
contribution includes the distribution of BECARS ,
a free software based on Gaussian Mixture Models
(GMM) for Automatic Speaker Verification (ASV),
and the design of a new methodology to estimate the
decision score in an ASV system. BECARS in available at
http://www.tsi.enst.fr/~blouet/Becars/.
The main characteristic of this software is to allow the
use of several adaptation techniques including the most
common ones such as Maximum A Posteriori (MAP) and
Maximum Likelihood Linear Regression (MLLR). The
proposed method for score computation is based on the
use of a hierarchical Gaussian clusterization method that
we describe in details in this paper.

We introduce this work with a general summary of
Automatic Speaker Verification (ASV), followed by
a description of the adaptation technique available in
BECARS used in this work. We then present and evaluate
our score computation scheme before concluding the

paper.

1. Introduction

Given a speech segment Y = {Y,,---,Y x} and a hy-
pothesized (or claimed) identity X, the aim of Automatic
Speaker Verification is to determine whether Y has been
uttered by X or not. -

Automatic Speaker Verification is often formulated
as a classical hypothesis test between two hypotheses H x
and H g with:

Hx : Y hasbeen uttered by X
Hg : Y hasbeen uttered by another speaker

The optimal test to decide between these two hypotheses
is the likelihood ratio test:

>0 (1)

where 6 is the decision threshold.

tUniversity of Balamand
El-Koura,BP 100 Tripoli
Lebanon
{chafic.mokbel,hanna.greige } @balamand.edu.lb

This approach relies on the hypothesis of the
existence of both probability density functions px and
px on the whole observation space Y of frames Y,.

For a decade, the state of the art approach consists
in using Gaussian Mixture Models [9] to modelize both
probability density functions. Moreover, training of each
client model is mostly done by adaptation of pg param-
eters [10]. BECARS allows the use of several kinds of
adaptation criterions. In the next section, we describe the
one that we used for this work. More details on adapta-
tion techniques available in BECARS can be found in [2]
or in the software documentation.

2. Adaptation techniques for client models
determination

Hidden Markov Model (HMM) and GMM adaptation
techniques have largely been studied in the last decade.
In [6] a unified theoretical framework has been proposed
in which the two major classes of techniques, Maximum
A Posteriori (MAP) and transformation based adaptation
(like Maximum Likelihood Linear Regression (MLLR)),
appear as particular cases. Several adaptation techniques
have been derived within this framework and applied in
BECARS in order to determine client models.

Model adaptation can be seen as a particular case of
training where a small amount of uncontrolled data is
used to estimate new values for the parameters. In such
cases, the training must be controlled in order to ensure
that the estimated parameters are not specific to the
training data. In order to incorporate this idea, adaptation
is seen as a function with a variable degree of freedom
that transforms the values of the parameters. The degree
of freedom must be chosen as a function of the available
training data. In order to achieve this variable degree of
freedom, the general adaptation theory proposed in [6]
matches a binary tree with a GMM. As shown in Figure 1
(with a 4 Gaussian components GMM), each component
of the GMM stands for one leaf of the tree. From the
root of the tree to the leaves, different cuts can be defined
allowing different possible distribution classifications.
For every possible classification, a number of classes is
obtained. In each of these classes, an adaptation function
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may be associated.

In order to build the tree, Gaussian distributions are
grouped two by two up to the root. At each grouping step,
we chose the two closest distributions given the distance
d(-,-). The distance d(N7,N>) between two Gaussian
N7 and N5 is defined as the likelihood loss on the training
frames if NV; and N5 are replaced by a single distribution
N3. In the tree construction, N3 is associated with the
Ni and NV, parent node.

ajtag

DA
PARRARS

d(N1,N3) = log )

On equation 2, |X1| and |Xs| are the covariance matrices
of the two nodes and |X3] is the covariance matrix of an

equivalent node. «; and as are the training factors for
the two nodes respectively.

In order to perform adaptation, the standard EM
algorithm [3] is modified.

At the end of the E step, the weights associated with
Gaussian distributions forming the leaves of the tree
are propragated up to its root. Then, starting from the
root, the tree is processed and we stop at nodes whose
children have weights less than a predefined threshold.
This predefined threshold represents the minimal amount
of data necessary to perform the adaptation. This allows
the determination of a classification that is a function of
the amount of available data. This process is described
in the Figure 1.

At the M step of the EM algorithm, a regression function
is associated with every class of Gaussian distributions
and every dimension of the acoustic feature space. All the
Gaussian distributions in the class will have their mean
and variance adapted as following:

pi = am;+b;
o} = ajs; ©)

with:

e m; and s? respectively the mean and the variance
of the " prior distribution of the prior GMM,

e u; and o? respectively the mean and variance of
the adapted Gaussian distribution,

e q; and b;, parameters of the regression function.

General equations for the estimation of regression
parameters in the framework of the unified adaptation
theory are given in [6]. Here, we only consider the
case of one particular adaptation called MLLR_MAP
in BECARS . Equations 4 and 5 allow us to obtain
the regression coefficients and equation 6 presents
reestimation formulae obtained in this case. In equations

Weight
propagation

ns >0

nz >0 Given a threshold
0 : partition

N of the acoustic

\ ZS’ space

n; < @ or/and n, < €@

Figure 1: Description of the two steps that permit the de-
termination of the number of degrees of freedom used for
adaptation

4 and 5, J is the number of Gaussian distributions in the
g class, n; is the weight of the 4t distribution after
the E step, r0; is the a priori precision, m; the a priori
mean, §j; and y‘f are the first and second order moments
observed after the E step.

=}
I

J J
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7
j=1 Zj:l r0; - ny;

@

b, = i [10; -y - (7 — ag - my)] )

Yy [r0; - ny]

Equation 4 shows that the regression coefficient a,
is the solution of the second degree equation. As shown
in [6], this equation always has two solutions of oppo-
site sign. In order to smooth further the adaptation, an
empiric Maximum A Posteriori (MAP) is applied to the
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estimation of the mean :
w; = 0.8 (a;m; +b;) +0.2-m; (6)

3. Frame weighting using MMI

GMM modeling of speech frames represented by
their corresponding feature vectors does not take into
consideration the order of the frames. This means that
rearranging the speech signal frames will not affect their
likelihood computed using the GMM. Thus, the collec-
tion of frames from a speaker’s utterance available in a
test represents a sample from the speaker population of
frames. Moreover, the GMM-based Automatic Speaker
Verification system can be viewed as calculating the
expected value over this sample of a decision function.
In our case, this decision function corresponds to the log
likelihood ratio betwenn hypothesis Hx and H 5.

Let Y, be the feature vector representing a speech
frame extracted from a test speech utterance; Y, is sup-
posed to be the realization of a random multivariate vari-
able Y. Let lir(Y) be the log likelihood ratio function
considered as the main argument of the decision function;
a theoretical expected value of llr(Y) is given by:

LLR

E[llr(Y)]

A;W@MEK )

If we assume that the process underlying the production
of Y is ergodic, it is equivalent to estimating /{r(Y") over
the parameter space than estimating it with a time aver-
age. This explains why the score for a given utterance of
T frames is calculated as:

N
LLR = Y Ur(y,) ®)
t=1

However, a signal frame carries different informa-
tion about the underlying speech message such as the
speaker’s identity, prosody, the communication channel,
etc. Let us define the binary random variable Ig rep-
resenting the fact that a signal frame carries informa-
tion about the speaker identity. To illustrate this idea
we simply cite the obvious example of silence signal
frames which, in general, carry little information about
the speaker identity. Using this random variable, a better
estimation of the LLR may be derived from 7:

LLR = Ei[lir(Y)]
/'m@mmmﬂm@
Qy

R

/'m@mmm@: ©
Qy

Therefore, and even if the process of generating the
feature vectors is supposed to be ergodic, the average in

: Speech Communication Spcak.c.r
- |Production Channel Recognition|

Figure 2: View of the global chain of a speaker recogni-
tion system.

equation 9 is not equivalent to an average over time. The
choice of the sample for estimating the LLR value should
be done with care. An alternative consists in weighting
the instantaneous LLR measurement by a factor that de-
pends on the relevance of the corresponding frame re-
garding the characterization the speaker identity.

Several approaches exist in order to calculate these
weights. In the present work, we propose to perform a
vector quantization and to associate a weight with each
feature subspace defining a class. If C(Y') defines the
class of a feature vector Y, we approximate p(I5|Y)
in the equation 9 by a discrete distribution defined by
p(ILICY)).

In this paper and in order to determine parameters
of the discrete probability distribution {p(I5|C(Y))}, the
maximization of the Mean Mutual Information (MMI) is
used. To illustrate the principle of using the MMI crite-
rion, the complete chain of an Automatic Speaker Recog-
nition system is provided in Figure 2. A given speaker ut-
ters a speech signal which goes across a communication
channel to reach the ASV system that is used to deter-
mine the identity of the speaker. In this model, we sup-
pose that a communication channel is defined going from
the speech production module to the speaker recognition
module included. In the development phase, we add the
true speaker identity to the input of the ASV system and
we optimize {p(I;|C(Y))} to have the output identity as
close as possible to the one provided in the input. To sum-
marize, we want to obtain a maximum of the information
that has been put into the communication channel or to
maximizes the Mean Mutual Information. In the devel-
opement phase of our ASV system, we chose the weights
of the discrete probability distribution {p(Is|C(Y))} that
maximise this information. Figure 3 summarises the pro-
cess of the weights estimation.

4. Evaluation protocol and result

Evaluations related in this section are made using the
NIST 2003 data set [8].

Acoustic parametrisation consists in 20 mel cepstra
filter bank coefficients with their delta. Channel equali-
sation is performed through Feature Warping [7].

We use a 128 components GMM to model px and
px. For each speaker px is obtained by adaptation of
px following equation 6. px is trained using 2 hours
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° LLR,= lir,+Ir,
H H LLRg=lIr,
Speaker's
Identity

LLR,= lir +1Ir,

LLRs= Iir, u u w

{W,,W, } to have the output
identity as close as possible

to the one provided in input

LLR=W, x LLR, + W, x LLR,

Figure 3: Description of the MMI based score computa-
tion strategy.
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Figure 4: DET curves associated to the use or not of the
MMI criterion.

of speech uttered from 100 speakers of the NIST 1999
evaluation campaign. The discrete probability distribu-
tion {p(Is|C(Y))} is estimated using 500 test files and
50 speakers of the NIST 2003 evaluation data. In the re-
sults presented here, we used 32 differents classes. The
two Det curves [5] obtained with and whithout the use of
the frame weighting are plotted in Figure 4. Unless score
computation using the MMI approach performs slightly
better than the classic score computation strategy, both
systems have very close level of performance. We be-
lieve that this can be explained mostly by the lack of data
available to estimate the discrete probability distribution

{p(LIC(X))}-

5. Discussion and conclusion

As the proposed approach appears theoretically very
promising, results obtained on the NIST 2003 data set are
not as good as expected. However, we still believe that
this approach may improve ASV system robustness and
we will run further experiments using differents configu-
rations. The use of several strategies and criterion to es-
timate the discrete probability distribution {p(I;|C(Y))}
will also be investigated.
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Abstract. Our approach in text independent Speaker Verification (SV)
proposes to integrate different aspects of the speech signal which convey
information about the speaker’s identity using Graphical Models (GM).
Prosodic, spectral and source information obtained from the residue of
linear prediction analysis are modeled in a probabilistic framework with
a system based on Bayesian Networks (BN). The structure, or condi-
tional independencies between the variables, is learned directly from the
data using two different algorithms. In particular, the interpretation and
comparation of the structures is presented. Some experiments conducted
on the NIST 2003 one speaker text-independent data base have been
conducted to demonstrate the feasibility of this approach.

1 Introduction

The performance of speech processing systems in some cases is still far from that
of humans. At the decision step, a difference between those systems and humans
is in one hand the used information quantity and in the other hand the relation-
ships made between those informations. The spectral and prosodic aspects of
speech signal are an abundant source of knowledge, but a joint representation of
those aspects is until now a problem. The state-of-the-art SV systems use Gaus-
sian Mixture Models (GMM) [7] in order to represent the data distribution. All
the data are represented in a single space where no difference is made between
the data that comes from one source or another. To overcome this problem GM
can be used. GM are naturally modular and can represent in a visual way the
relations between different variables in a given problem. Particularly, a BN [6] is
a GM which represents in an optimal way conditional independencies between
a set of random variables. Then, various aspects of speech signal can be jointly
represented in a formal mathematical way using different variables which are
related in a BN.

The relationship among the variables can be defined by an expert using some
knowledge about the variables or by a learning technique that is applied directly
to the data. The first work done in automatic learning of the structure in a BN
[1] was able to obtain a simple tree structure from a database. Later an alternate
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approach [2] which works also with multiply-connected networks was proposed.
This technique is based on a Bayesian approach which assumes a prior uniform
distribution over all the structures. Another approach is based on the principle
of Minimal Description Length (MDL). From the Bayesian point of view the
MDL approach assumes a prior distribution over the models which is inversely
proportional to their encoding length.

However, finding the best structure, the conditional independencies which
best represent the present relationships into the database, is a research field
very important. Then we propose a technique to score the structure based on
the MDL principle and its comparation with another structure obtained using
other quality measure.

The organization of the paper is as follows. In section 2, we will first introduce
Bayesian Networks. Section 3 reviews briefly some ideas about structure learning
in BNs specially the proposed MDL technique, section 3.2. In section 4, we will
present the experiments, results and its probabilistic interpretation. Finally we
will give our conclusions in section 5.

2 Bayesian Networks

A BN [6] makes a representation of a joint probability distribution defined on
a finite set of random variables. The nodes in a Directed Acyclic Graph (DAG)
represent random variables and arcs represent conditional probabilistic depen-
dencies among those variables. Nodes have relative names by its position and
relation with others nodes in the graph. Each edge points from one node, called
parent, to another, called child.

In a BN, a Conditional Probability Distribution (CPD) is associated with
each node Xj;. It describes the dependency between this node and its parents. In
general, each node is conditionally independent from its non-descendants given
its parents. Those dependence relations induces a factorization in the joint dis-
tribution function expressed as :

N
P(Xy,...,Xn) = [[ P(Xi|Pa(Xy)), (1)

i=1

where Pa(X;) is the set of X;’s parents.

Each Conditional Probability Distribution or Conditional Probability Tables
represented by a factor in (1) describes the interaction between a node and its
immediate predecessors.

3 Structure Learning

Learning Bayesian Network from data consists in automatically building the
network structure and compute the parameters, from information in data. Some
aspects must be considered in the process of finding the best structure, even if
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the space of variables is fully observable. The amount of possible structures is
very large. This quantity depend on the number of variables in an exponential
way. To manage this problem two different approaches exists. One searches in all
the structure space and the other starts with a specific connected graph which
can be place to put some prior knowledge about the variables relation. Then
it searches for independence relations in the data S, putting in or taking away
arcs.

The algorithm used in this work, K2 [2], belongs to the second approach. It
uses a greedy search method to construct the structure. It starts with the sim-
plest structure, i.e. a graph without arcs. Given an ordering, or prior knowledge
about relationship between the variables, the nodes considered as candidate for
the set of parents Pa(X;) for each variable X; are restricted to those nodes with
smaller order numbers than X;. All possible structures have to be scored to know
which one has the highest quality.

3.1 Bayesian Information Criterion

Since a fully connected graph has the greatest number of parameters the maxi-
mum likelihood is not an adequate quality measure. Thus, a prior knowledge on
the model can be used to overcome this problem. Let G be the structure and
S the database or sequence of N samples for all the nodes of G. The posterior
probability of data is :

P(G|S) o< P(S|G)P(G), )
where P(QG) is the prior probability of structure. Now, the likelihood of data

obtained by integration on the possible values of parameters 8 is :

P(S|G) = / P(S|G,0)P(8|G)db. (3)

The marginal likelihood can be approximated [4] with a Laplace method, and
finally get the Bayesian Information Criterion (BIC) :

log P(S|G) = log P(S|G, ) — ;—ilogM, )

where M is the number of samples, f is the estimate of the parameters and d is
the dimension (number of free parameters) of the model.

3.2 MDL

MDL [8] is used for the encoding of the data given a model. From equation (3)

and from its limited expansion up to the second order one has :

) 1 ., Mo~ Lo Ly L
P(S|G) wL(é’)/ew— 30— A@ -0~ LO)51) > ===

()
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where d(G) is the number of parameters specifying the model G. At the
lowest order if N is the number of observations the MDL equation is obtained :

£ =log P(S|GQ) ~ L(6) — @ log N. (6)

Now, for a tree structure and in particular when all the nodes are indepen-
dents it can be written :

log P(SIG) ~ > {1 (Nis)+%long]—(N+.Qs|—%) log N+(|2°| 1) log vV2r},
SEG 1€
(M)

where (2° is the set of observable states at generic node s, and N/ is the
observed number of times of the variable s in the state .

3.3 Modelisation

The training and test parameter vectors consist of a set of four types of pa-
rameters. The first vector is a 24-dimensional LP Cepstral Coefficients obtained
as follow : 12-dimensional LPCC, with sliding CMS and augmented with their
first derivatives, SLPCC, for Signal Linear Prediction Cepstral Coefficients. The
second vector, 24-dimensional LP Cepstral Coefficients has been obtained as be-
fore from the LP-residual signal RLPCC, and finally the frame pitch Fy and
the frame energy E. A gender-dependent Universal Background Models (UBM)
have been created using part of the 2001 cellular development and evaluation
datasets (similar to the database described in section 4).

First, those data had been used with K2 algorithm to find the best struc-
ture for the four variables. It has worked with all the possible orders and used
the BIC score [4]. From this analysis we have obtained the conditional indepen-
dence relations that define the first network structure which is set to be speaker
independent, Figure 1.

E

Fy

RLPCC SLpPCC

Fig. 1. Structure for the four variables (energy, pitch, signal Ipcc and residual
Ipce) issue of the K2 algorithm with BIC (left) and issue of the MDL analysis

(right).
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From this graph we can write the joint probability distribution for these four
variables U = {E, Fy, RLPCC,SLPCC} as :

P(U) = P(E) P(Fy|E) P(RLPCC|F,) P(SLPCC|F). (8)

The terms P(RLPC|Fy)P(SLPC|Fp) can be interpreted as I(RLPC L
SLPC|Fp), that is, the RLPC and SLPC are independent given Fp. The second
term P(Fp|E) reflects the close relation between energy and voicing in speech.

In a second part the MDL algorithm was performed using discrete data in
order to simplify the probabilistic scheme. Those data were obtained using Vector
Quantization (VQ) of variables initialized with the k-means algorithm. SLPCC
and RLPCC variables were discretized using 32 values, FE with two values and Fp
with three values (one value corresponding to the unvoiced parts). The obtained
structure is shown in Figure 1. The conditional probability density for the four
variables given the structure is :

P(U) = P(SLPCC) P(E|SLPCC) P(Fy|SLPCC) P(E|SLPCC). (9)

Thinking about the SLPCC coefficients computation it is easy to see that
those coefficients contain a lot of information which depend on the p number
used in the autocorrelation function computation. In these coefficients one can
find the excitation, the energy and then also the pitch characteristics since the
LP model is not perfect.

Once the structure has been learned, the final world model uses a Gaussian
Mixture (GM) implemented with BN to represent each variable (32 Gaussians for
RLPCC and SLPCC, five for the pitch and two for the energy). The parameters
were then learned with EM [3]. LBG algorithm was used to determine the initial
setting. Target Speaker Models have been obtained by adaptation of the means
in the world model by three iterations of the EM algorithm initialized with the
world model.

4 Experiments and Results

The data are taken from the second release of the Cellular Switchboard Corpus
of the Linguistic Data Consortium (LDC) [5]. The experiments were done using
a half part of the male test database, 751 files. Each test file is tested against 11
speaker models. Then there are 8261 tests in total.

The decision score is directly based on the log-likelihood ratio between the
target speaker and the world model over all the frames without any kind of
normalization. The results in the Figure 2 show the influence of the structure
in the final results. The structure obtained with MDL perform better than the
structure obtained with K2 and BIC if the arcs between the continuous variables
that model the mixture of gaussians are used. With the discrete relations the
best performance is obtained with the K2 and BIC structure. The used relations
to relate the variables (discrete or continuous) does not affect to much to the
MDL structure, but it is not the case for the other structure which change in
more than 2%.
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Miss probabillty (in %)

5 40 5

10 20 10 20
False Alarm probabilty (in %) False Alarm probabilty (in %)

Fig. 2. Results obtained using the continuous relation (left) and discrete relation
(right).

5 Conclusions

In this paper, a system achieving SV based on BNs is presented. This system
infers the BN structure automatically from the data using two different quality
measure functions. The obtained structures are compared and used for integrate
all the information presented on the speech signal in a single probability distri-
bution. Results reflect the influence of conditional independencies used in each
model. Tt also shows that BNs are a flexible mathematical tool that can help
to model information from different aspects of the speech signal. The physical
interpretation given to the equations describing the structures suggests that the
learning algorithms for BN are able to adequately infer the relations present in
data.
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