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ABSTRACT OF THE DISSERTATION 

 

Changes in the Hemodynamic Stresses Occurring During 

the Enlargement of Abdominal Aortic Aneurysms 

 

by 

 

Anne-Virginie Salsac 

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering) 

University of California, San Diego, 2005 

Professor Juan C. Lasheras, Chair 

Professor Jean-Marc Chomaz, co-Chair 

 

This research seeks to improve the understanding of the mechanisms accounting for 

the growth of abdominal aortic aneurysms (AAA), by quantifying the role that 

mechanical stimuli play in the disease processes. In recent years, the development of 

vascular diseases has been associated with the formation of disturbed patterns of wall 

shear stresses (WSS) and gradients of wall shear stresses (GWSS). They have been 

shown to affect the wall structural integrity, primarily via the changes induced on the 

morphology and functions of the endothelial cells (EC) and circulating blood cells.  

Particle Image Velocimetry measurements of the pulsatile blood flow have been 

performed in aneurysm models, while changing systematically their geometric 

parameters. The parametric study shows that the flow separates from the wall even at 

early stages of the disease (dilatation ≤ 50%).  A large vortex ring forms in symmetric 

aneurysms, followed by internal shear layers. Two regions with distinct patterns of WSS 

have been identified: a region of flow detachment, with low oscillatory WSS, and a 



 

xxii 

downstream region of flow reattachment, where large negative WSS and sustained 

GWSS are produced as a result of the impact of the vortex ring. 

The loss of symmetry in the models engenders a helical flow pattern due to the non-

symmetric vortex shedding. The dominant vortex, whose strength increases with the 

asymmetry parameter, is shed from the most bulged wall (anterior). It results in the 

formation of a large recirculating region, where ECs are subjected to quasi-steady 

reversed WSS of low magnitude, while the posterior wall is exposed to quasi-healthy 

WSS. GWSS are generated at the necks and around the point of impact of the vortex. 

Lagrangian tracking of blood cells inside the different models of aneurysms shows a 

dramatic increase in the cell residence time as the aneurysm grows. While recirculating, 

cells experience high shear stresses close to the walls and inside the shear layers, which 

may lead to cell activation. The vortical structure of the flow also convects the cells 

towards the wall, increasing the probability for cell deposition and ipso facto for the 

formation of an intraluminal thrombus. 
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RESUME DE LA THESE 

 

Evolution des Contraintes Hémodynamiques lors de  

la Croissance des Anévrismes Aortiques Abdominaux 

 

par 

 

Anne-Virginie Salsac 

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering) 

University of California, San Diego, 2005 

Professeur Juan C. Lasheras, Directeur de thèse 

Professeur Jean-Marc Chomaz, co-Directeur de thèse 

 

Cette étude a pour but d’améliorer la compréhension des mécanismes responsables de 

la croissance des anévrismes aortiques abdominaux (AAA) et plus particulièrement de 

quantifier les effets des stimuli mécaniques sur la maladie. Des études récentes ont 

associé la plupart des maladies cardiovasculaires à des changements des contraintes 

pariétales et de leurs gradients. Toute modification des contraintes hémodynamiques 

influe l’intégrité structurelle de la paroi, à cause des changements induits sur la 

morphologie et les fonctions des cellules endothéliales et des cellules sanguines en 

circulation. 

Des mesures PIV (Particle Image Velocimetry) de l’écoulement pulsé ont été 

réalisées dans des modèles d’anévrismes, dont les paramètres géométriques ont été 

changés systématiquement. Les résultats de l’étude paramétrique montrent que 

l’écoulement décolle de la paroi même aux stades très précoces de la maladie (dilatation 

≥ 30%).  Un large anneau de vorticité est formé dans les modèles symétriques 
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d’anévrismes, suivi de couches de mélange. Deux régions distinctes peuvent être 

identifiées : une zone de décollement caractérisée par de faibles contraintes oscillantes, et 

une région distale de réattachement, où de larges contraintes pariétales négatives et des 

gradients entretenus apparaissent en réponse à l’impact de l’anneau tourbillonnaire sur la 

paroi. 

La perte de symétrie des modèles engendre un écoulement hélicoïdal. Le tourbillon 

qui domine l’écoulement se détache de la paroi à la courbure maximale (paroi 

antérieure). Il conduit à la formation d’une zone de recirculation, où les cellules 

endothéliales sont soumises à des contraintes pariétales négatives et quasi-permanentes 

avec de très faibles amplitudes, alors que la paroi postérieure est exposée à des 

contraintes proches de celles d’une aorte saine. Des gradients de contraintes sont générés 

aux cous de l’anévrisme, ainsi qu’au point d’impact du tourbillon. 

Un suivi Lagrangien de cellules sanguines à l’intérieur des différents modèles 

d’anévrisme montre que l’élargissement de l’anévrisme conduit à une augmentation du 

temps de résidence des cellules. Lors de leur recirculation, les cellules sont 

périodiquement soumises à de larges contraintes près de la paroi et dans les couches de 

mélange, ce qui peut conduire à l’activation des cellules. La structure tourbillonnaire de 

l’écoulement convecte les cellules vers la paroi, ce qui augmente la probabilité de dépôt 

des cellules sur la paroi et par conséquent de formation d’un thrombus endoluminal. 
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Chapter 1 
 
General introduction 

 

 

 

 

An aneurysm is a permanent abnormal bulging of a vessel. Although aneurysms can 

occur in any type of blood vessels, the great majority of them form in arteries, in only a 

few restricted localizations. Aneurysms commonly develop along the circle of Willis in 

the brain and in the abdominal and thoracic portions of the aorta. Intracranial aneurysms 

tend to be saccular in shape or “berry-like”, whereas abdominal (Figure 1.1) and thoracic 

ones are typically fusiform, many thoracic aneurysms being dissecting1. Such a 

difference in shape indicates that the pathogenesis is likely to be different for each type 

of aneurysms. 

An abdominal aortic aneurysm (AAA) is a spindle-shaped dilatation of the infrarenal 

abdominal aorta that lies between the renal bifurcation and the iliac branches (Figure 

1.2). About one fifth of large abdominal aneurysms are not limited to just the aorta, but 

have extended to one or both of the common iliac arteries (Armon et al. 1998). A 

localized aortic dilatation is clinically considered an aneurysm, when its maximal 

diameter is greater than 1.5 times the healthy diameter (Johnston et al. 1991).  

                                                 
1 A dissecting aneurysm occurs when blood gets through a lengthwise tear between 

layers off the wall of an artery. 
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Figure 1.1: Abdominal aortic aneurysm 

Aneurysms tend to grow asymptomatically, which explains why AAAs are rarely 

detected at early stages. Three out of four AAAs show no symptoms at the time they are 

diagnosed (Szilagyi 1982; Pokrovskii 2003). In some instances, large aneurysms may put 

pressure on vertebral bodies, causing lumbar pain (Sterpetti et al. 1988). The presence of 

a blood clot inside the AAA, also called endoluminal thrombus, may lead to emboli, 

when fractions of it break off and become lodged downstream in a smaller vessel. 

Otherwise, physicians must rely on non-invasive imaging techniques such as ultrasound, 

computed tomography (CT), or magnetic resonance imaging (MRI) to accurately 

determine the presence and extent of the aneurysmal disease (Figure 1.3).  

 

(a)  (b)  

Figure 1.2: (a) Anatomy of the abdominal trunk, (b) Abdominal aortic aneurysm 

Thoracic aorta 

Abdominal aorta 

Abdominal aortic 
aneurysm 
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Similarly to other vascular diseases, the rate of incidence of AAAs has increased over 

the last decades, which partly reflects the rise in the population life expectancy, but 

probably also the improvements made in diagnostic tools (Reilly & Tilson 1989; Best, 

Price & Fowkes 2003). It is estimated that 2-3% of the population over age 50 have an 

occult abdominal aortic aneurysm (Collin & Radcliffe 1988; Bonamigo & Siqueira 2003) 

and 200,000 new aneurysms are diagnosed each year in the United States. The incidence 

in males increases after age 55 with a peak in the seventh decade. In females, the 

incidence begins to rise at a later age (greater than age 70) with a continuous increase 

until the time of death (Bengtsson et al. 1996). The current male to female ratio for death 

from AAA has been reported to be as high as 11:1 between ages 60 an 64, and narrows to 

3:1 between ages 85 and 90 (Collin & Radcliffe 1988).  

 

 
Figure 1.3: Spiral computed tomography (CT) with 3-D reconstruction showing an 
abdominal aneurysm originating below the renal arteries 

Once formed, an aneurysm typically continues to enlarge progressively and at some 

point may rupture causing life-threatening bleeding. The overall mortality rate for 

ruptured AAA is 60-80%, which drops to 30-65% if the patient reaches a hospital alive 

(Ingoldby et al. 1986; Samy, Whyte & MacBain 1994; Basnyat et al. 1999; Singh et al. 

2001). AAAs are responsible for 15,000 deaths annually in the United States, 

representing the 13th leading cause of death in the country (Reilly & Tilson 1989). But 
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misdiagnosed ruptured aneurysms are probably responsible for many additional cases of 

sudden death in older persons.  

No accurate technique exists to date to either predict the aneurysmal expansion rate 

or its critical size or shape at the point of rupture. Treatment of AAA is decided on the 

basis of several factors, including size, expansion rates, natural history data and operative 

morbidity and mortality rates (Stringfellow, Lawrence & Stringfellow 1987; Hughes & 

Fontenelle 2000). It is widely recognized that increase in size leads to a higher risk of 

rupture (Law, Morris & Wald 1994; Englund et al. 1998). The average annual rupture 

rate of an aneurysm measuring < 4 cm is 0%, 1% when 4.5 cm, 11% when 5.5 cm and 

26% when 6.5 cm (Green 2002). Although the likelihood for a small size aneurysm to 

rupture is very small, Darling (1970) proved that it can happen. Treatment is currently 

recommended for AAAs exceeding 5 cm in maximal diameter (Taylor & Porter 1985; 

Prisant & Mondy 2004) or having an enlargement rate greater than 0.5 cm in six months 

(Treska & Certik 1999), leaving the management of small AAAs (< 5 cm diameter) in an 

area of continuing controversy.  

 

A. Changes in the wall composition involved in the formation, 

enlargement and rupture of AAAs 

Except the capillaries, which are only one cell thick, all the vessel walls are 

composed of 3 layers (or “tunica”), the adventitia, the media and the intima (Figure 1.4). 

The thickness and proportion of components of each layer vary depending on the 

function of the vessel, arteries having thicker, more muscular and elastic walls than veins. 

In the case of arteries, (i) the adventitia, the outermost layer, is largely composed of 

ground matter, collagen bundles, some elastin fibers, autonomic nerves and small blood 

vessels (or “vasa vasorum”) that irrigate the adventitia. In the thoracic aorta, small 

branches of the vasa vasorum extend into the tunica media, but in the abdominal aorta, 
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the media only relies on diffusion processes to receive oxygen and nutrients from the 

lumen. (ii) The media is composed primarily of waves of smooth muscle cells (SMC) 

intermixed with elastin sheets, embedded in an extra-cellular matrix. It accounts for most 

of the strength and elasticity of the arterial wall and for the dynamic-recoil property of 

the wall. During systole, the elastic walls stretch to accommodate the volume of blood 

ejected from the heart, then recoil acting as a second subsidiary pump. (iii) The intima is 

composed of a lining mono-cell layer of multifunctional vascular endothelial cells (EC) 

that sits on a basal lamina and a very thin layer of connective tissue. 

 

 
Figure 1.4: Wall composition of an arterial wall (Johansen 1982) 

Smooth muscle cells and endothelial cells are the main cellular components of the 

arterial wall. The SMC play an important role in the development and maintenance of the 

arterial wall structure. They are the main source of collagen, elastin and other extra-

cellular matrix components, such as proteoglycans, whose function includes regulation of 

cell adhesion, migration and proliferation. Endothelial cells at the interface between the 

blood flow and the wall act as a permeable barrier blocking the passage to large 
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molecules. They also detect and signal vascular injury and regulate the structure and 

function of the smooth muscle cells by producing vasoactive substances (NO, 

prostacyclin, etc.). The actuation of the contractile tone of the muscle cells is achieved by 

EC sensing the mechanical forces (pressure and shear stresses) acting on them, a process 

known as “mechanotransduction”.  

 Several factors may account for the much higher incidence of aneurysms in the 

abdominal aorta than in the thoracic segment (Best, Price & Fowkes 2003). The 

abdominal aorta is characterized by a smaller number of elastic lamellae in the medial 

layer than the thoracic aorta and therefore has a higher elastic modulus (Dobrin 1989; 

Nichols 1998 pp. 91-92). The pressure pulse is modified as it progresses along the aorta, 

as a result of the tapering of the aorta, stiffening of the aortic wall and presence of 

bifurcating branches, which leads to reflections of the pressure wave. Although the mean 

pressure decreases gradually, the pressure at peak systole largely increases as well as the 

temporal pressure gradient (McDonald 1974; Pedley 1979; MacSweeney 1993). The 

typically stiffer walls and higher systolic pressure of the infrarenal aorta may play a role 

in the pathogenesis of AAAs. Disruption of the elastin sheets has been thought to be the 

first step in the aneurysm formation. Aneurysm formation has been shown to occur after 

the sole induction of elastin failure in the tunicae media and adventitia (White & 

Mazzacco 1996). 

AAAs develop primarily in older people and in an elastic artery that has undergone 

structural changes. With aging, a generalized process of increasing arterial stiffness 

results from the progressive replacement of elastin by collagen in the walls of large 

arteries (O’Rourke 1990). Arterial-related stiffening further leads to an increase in 

arterial pressure (Izzo & Shykoff 2001). Over time, the iliac bifurcation evolves in shape 

(Sun et al. 1994) and the lumen cross-section area of the common iliac arteries tends to 

decrease substantially (Hardy-Stashin, Meyer & Kauffman 1980; Greenwald, Carter & 
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Berry 1990). Besides, the iliac arteries are prone to atherosclerosis (Shah, Scarton & 

Tsapogas 1978; Pedersen, Yoganathan & Lefebvre 1992), which further decreases the 

size of the iliac lumen. This results in a higher systolic pressure in the infrarenal aorta, 

increasing the potential for AAA formation. These mechanisms could explain the 

relationship found by Matsushita et al. (2000) between aortic calcification and 

atherosclerotic disease in patients with AAAs.  

 

 
Figure 1.5: Elastic diagram of normal (dark circle) and aneurysmal (open circle) aortic 
walls. Shift of the curves corresponding to aneurysmal walls (He & Roach 1994). 

Once the AAA is formed, it is characterized by profound changes in the aortic wall 

composition. Elastase activity and also collegenase later on in the disease process are 

increased within the aneurysm wall (Busuttil, Abou-Zamzam & Machkeder 1980; 

Busuttil et al. 1982; Carmo et al. 2002). The elastin-collagen ratio increases, further 

increasing the wall stiffness (Sumner, Hokanson & Strandness 1970; MacSweeney et al. 

1992; He & Roach 1994; Thubrikar et al. 2001) – see Figure 1.5. The marked stiffness 

leads to little oscillatory deformations of the walls. The lack of stimulation on the smooth 

muscle cells results in a reduction in the synthesis of connective tissues in the media or 

even in the possible apoptosis of the cells (López-Candales et al. 1997; Thompson, Lias 

& Curci 1997; Liao et al. 2000). The depletion in matrix proteins is partially 

compensated by synthesis mechanisms that take place in the adventitia (Ghorpade & 
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Baxter 1996).  The inflammatory response, indissociable of AAAs, is believed to play a 

key role in the structural degeneration of the elastic media. Inflammatory leukocytes 

infiltration into the wall and secrete proteolytic enzymes and effector molecules that 

destroy the matrix and affect its synthesis (Ghorpade & Baxter 1996).  

 

 
Figure 1.6: CT scan through an 8.5-cm AAA. The thrombus has filled most of the cavity, 
leaving a lumen with a diameter close to the size in a healthy vessel. (YourSurgery.com) 

The endoluminal thrombus that lines the lumen of later-stage aneurysms may also 

play an important role in the enlargement of AAAs, although it is still undetermined 

(Figure 1.6). A mural thrombus develops in 75% of the aneurysms with a maximum 

diameter greater than 4.5 cm (Harter et al. 1982). The solid fibrin structure, in which 

platelets, blood cells, proteins and debris are imbedded, obstructs part of the lumen, 

restoring in most cases the original lumen diameter. Although no consensus has been 

reached on the ability of the thrombus to transmit pressure to the wall, all the studies 

agree that the thrombus reduces the wall stress by its ability to sustain tensile loads, 

adding structural support to the wall (Mower, Quinones & Gambhir 1997; Inzoli et al. 

1993; Di Martino et al. 1998; Schurink et al. 2000; Mower & Quinones 2001; Thubrikar 

et al. 2003; Chaudhuri et al. 2004). Wang et al. (2001) have derived a two-parameter, 

large-strain, hyperelastic constitutive model, based on their uniaxial tensile testings. They 

have shown that the thrombus is made of three layers: the luminal layer, arranged in thick 

fibrin bundles, has the highest stiffness and strength. These fibers are respectively 
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partially and completely degenerated in the medial and abluminal layers. The thrombus is 

likely to act as a barrier to oxygen and nutrient diffusion to the intima and media layers 

(Vorp et al. 1998; Vorp et al. 2001), making the aneurysm wall prone to ischemia. Kazi 

et al. (2003) showed that the thrombus causes a marked reduction in wall thickness and 

more frequent signs of inflammation in the wall. Leukocytes that accumulate in the 

thrombus generate inflammatory enzymes (proteases) that further affect the wall 

structural integrity (Satta, Laara & Juvonen 1996; Adolf et al. 1997; Gacko & Głowiński 

1998; Fontaine et al. 2002; Wang et al. 2002). 

 

B. Pathogenesis of the abdominal aortic aneurysms 

Although the pathogenesis of AAAs is thought to be multi-factorial and 

predominantly degenerative, the exact mechanisms responsible for the etiology of AAAs 

are not established. Several risk factors have, however, been shown to play a role in the 

formation of the disease. Some of the risk factors, such as age and gender (Singh et al. 

2001; Bengtsson, Sonesson & Bergqvist 1996) or family history (Noorgard, Rais & 

Angquist 1984; Reilly & Tilson 1989; Salo et al. 1999) can be considered inevitable. We 

already discussed that AAAs are associated with aging processes and specificities to the 

male gender. The observed family occurrence of AAAs makes plausible the existence of 

a genetic link involved with the degeneration of the aortic wall and the development of 

AAAs, but no genetic factor has yet been discovered. Two rare hereditary disorders are 

known to promote the formation of aneurysms: Marfan’s and Ehlers-Danlos’ Syndromes 

(Wilmink et al. 2000). Marfan’s Syndrome causes an abnormal breakdown of the elastic 

fibers in the aortic wall. Ehlers-Danlos syndrome is the name given to a group of 

inherited disorders that involve a genetic defect in collagen and connective tissue 

structure and synthesis. But these diseases tend to be rather associated with thoracic 

aneurysms than with AAAs. 
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Similarly to other cardiovascular diseases such as atherosclerosis, other predisposing 

risk factors are high blood pressure (Treska & Certik 1999; Pokrovskii et al. 2003), 

smoking (UK trial 2000) and high cholesterol (Singh et al. 2001). Hypertension affects 

all parts of the cardiovascular system. Local cells, such as endothelial cells and smooth 

muscle cells that sense the level of the hemodynamic forces (pressure and shear stresses) 

and transduce the signals into vasomotor responses are directly affected by the increase 

in blood pressure. Hypertension has been shown to distend the aorta (Paivansalo et al. 

2000) and thicken the tunica media (Limas, Westrum & Limas 1980). As discussed in the 

previous section, the infrarenal aorta may be even more sensitive to hypertension than 

other vessels due to its higher inherent stiffness and the presence of the aortic bifurcation 

downstream of it. Cigarette smoking has been found to be the most important risk factor 

for the development (Reilly & Tilson 1986), expansion (MacSweeney et al. 1994) and 

rupture (UK trial 2000) of AAAs, aneurysms being 8 times more frequent in smokers 

than nonsmokers (Auerbach & Garfinkel 1980). Stefanadis et al. (1997 & 1998) showed 

that tobacco smoke leads to an active stiffening of the vessel due to its effect on the 

endothelial cells and sympathetic nerves resulting in an elevated muscular tone. 

AAAs have long been thought to be secondary to atherosclerotic degeneration of the 

abdominal aorta. However, this view has been challenged over the past 2 decades 

(Johansen 1982). Atherosclerosis neither explains the high levels of elastase, collagenase 

and antiproteases nor the extent of the inflammatory processes, hallmarks of AAAs. It is 

now believed that atherosclerosis may promote aneurysm formation but does not have a 

causal effect (Lee et al. 1997), since only 25% of AAA patients present atherosclerosis 

(Zarins & Glagov 1982). Among other effects, atherosclerosis may weaken the infrarenal 

wall itself by reducing the medial thickness and the number of elastin sheets (Zarins, Xu 

& Glagov et al. 2001) and change the pressure waveform when affecting the iliac arteries 

(see previous section). 
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C. Influence of the hemodynamic forces on the pathology of AAAs 

In recent years, understanding the etiology and progression of AAAs has become a 

multidisciplinary effort. The research on atherosclerosis has shown that the formation of 

regions of the vasculature presenting a complex morphology (such as bends, bifurcation, 

branches as well as sudden expansions and partial occlusions) and complex flow are the 

most important factors in the pathogenesis of the disease (Fox & Hugh 1966; Ku et al. 

1985; Yoshida et al. 1987; Glagov et al. 1988; Lei, Kleinsteuer & Truskey 1995; 

Pedersen et al. 1997; Malek, Alper & Izumo 1999). Numerous investigations have 

reported the atherogenic effects of altered shear stresses on the vessel walls. This study is 

therefore based upon the postulate that changes in the hemodynamic forces play a crucial 

role in the formation and enlargement of AAAs, initiating biochemical events in the 

arterial wall that may account for the development of the vascular disease. Endothelial 

cells, smooth muscle cells and circulating cells (e.g. platelets) have all been proven to 

react to hemodynamic forces. Changes in the mechanical forces acting on the cells have 

the potential to modify their metabolism and function, which can in turn induce profound 

modifications of the wall composition and integrity. 

 

1. Endothelial cells 

ECs have been found to be highly responsive to wall shear stresses (WSS) (Davies et 

al. 1984). Shear stress, rather than pressure or wall tension is the mechanical stimulus 

that plays the major role (Traub & Berk 1998)2. Perturbations from the baseline stress 

conditions alter the mechanisms of mechanotransduction, changing the cell shape 

(Helmlinger et al. 1991), regulatory functions (Dewey et al. 1981; Noris et al. 1995) and 

                                                 
2 It is essential to know that ECs primarily react to shear stresses rather than pressure 

variations, since the order of magnitude of the pressure variations (∆p ~ 1/2ρU2 ~ 102 

N/m2) is much greater than that of the shear stresses (WSS ~ 1 N/m2). 
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gene expression of the ECs (Topper et al. 1996; Fisher et al. 2001; García-Cardeña1 et al. 

2001; Blackman, García-Cardeña & Gimbrone 2002; Tzima et al. 2002; Warabi et al. 

2004). It has been shown that ECs not only sense WSS but can also differentiate among 

different types of stimuli (Helmlinger, Berk & Nerem 1995, García-Cardeña2 et al. 

2001). Almost all the studies, mentioned in this paragraph, have been conducted in vitro 

on endothelial cells cultured alone on a substrate. Therefore, these studies did not take 

into account the interaction with other types of cells. 

In regions of low and oscillating stresses, loss and desquamation of endothelial cells 

have been observed (Walpola, Gotlieb & Langille 1993). The cells become randomly 

oriented in all directions, when they align parallel to the main flow direction in a healthy 

vessel (Levesque & Nerem 1985) (Figure 1.7). Their more rounded shape increases the 

inter-cellular space and ipso facto, the permeability of the membrane (Helmlinger et al. 

1991). The absence or drastic reduction in WSS upregulate all the pathophysiologically 

relevant gene expressions of the endothelial cells. Low and oscillating shear stresses and 

static flow conditions have been shown to induce the endothelial gene expression of 

adhesion molecules (Chappell et al. 1998; Chiu et al. 2003), which, in turn, increases the 

leukocyte extravasation into the inflamed tissues. They increase the gene expression for 

platelet-derived growth factor (PDGF) (Kraiss et al. 1996), which acts as an important 

mitogen (i.e. induces mitosis) for smooth muscle cells leading to their proliferation and 

migration (Heldin & Westermark 1999). They also attenuate the EC gene expression of 

endothelial nitric oxide synthase (eNOS) (Chiu et al. 2003). One of the culprits in the 

pathogenesis of endothelial dysfunctions is the imbalance generated by low shear stress 

conditions between nitric oxide, a vasodilator, and angiotensin II, a vasoconstrictor. 

Indeed, nitric oxide is a growth inhibitor and is anti-inflammatory and anti-thrombotic, 

while angiotensin II is a growth promoter and is pro-inflammatory (Emerson et al. 1999).  
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High shear stresses, on the contrary, increase the nitric oxide release, which tends to 

lead to a structural expansion of the vessel (Ben Driss et al. 1997). This phenomenon 

may be viewed as an attempt to restore the WSS back to their healthy level (Kamiya & 

Togawa 1980; Zarins et al. 1987). In the regions of transition to turbulence, the turnover 

of the endothelial cells increases drastically (Davies et al. 1986), which does not occur in 

regions of laminar oscillating flow, although they are both characterized by multi-

directional fluctuating patterns of shear stresses. The mechanisms initiating endothelial 

turnover in turbulent flow conditions remain therefore unexplained. 

 

 
Figure 1.7: Morphology of endothelial cells (a) before and (b) after applying shear stress 
(M. Sato) 

ECs are also sensitive to the spatial (Davies, Mundel & Barbee 1995) and temporal 

(Blackman, Thibault & Barbee 2000) gradients of wall shear stresses. High spatial 

gradient regions increase the division rate of the cells, which tend to migrate away from 

these regions by predominantly moving further downstream (DePaola et al. 1992). Cell 

loss is increased around the zone of high WSS gradients, which suggests that a cell 

proliferation-migration-loss cycle takes place in the vicinity of high gradient regions 

(Tardy et al. 1996). The endothelial cells expression has been shown to be modulated 

both by the magnitude of the spatial (Nagel et al. 1999) and temporal (Bao, Lu & 

Frangos 1999; Zhao et al. 2002) gradients of WSS. The latter also accelerate the 

remodeling (elongation/alignment) of the endothelial cells (Hsiai et al. 2002). 
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2. Smooth muscle cells 

Mechanical stimuli, such as strain and fluid shear stress, influence the function of the 

smooth muscle cells. Mechanical strain influences the SMC functions, regulating the 

synthesis of extra-cellular matrix components (Lee et al. 2001). WSS modify the cell 

morphology and organization of the cytoskeleton (Sterpetti1 et al. 1992; Cucina et al. 

1996). Contrary to the endothelial cells that align with the applied WSS, vascular smooth 

muscle cells arrange in the direction perpendicular to them (Lee et al. 2002; Chiu et al. 

2004). The existence of a physical link between ECs and SMCs has been demonstrated 

by Spagnoli et al. (1982), so it is plausible that the ECs and SMCs react symbiotically to 

shear stresses. 

In the case of endothelial injury and denudation, SMCs are directly exposed to blood 

flow. Wang & Tarbell (1995) showed that, in a healthy patient, SMCs may also 

experience some level of WSS as a result of the transmural flow. Although the interstitial 

flow is very small, the WSS induced can be of the order of 0.1 to 0.3 N/m2, which is still 

lower than the WSS experienced by the ECs. WSS modify the gene expression of the 

SMC (Papadaki1 et al. 1998) and stimulate the release of platelet-derived growth factor 

(Sterpetti2 et al. 1992), basic fibroblast growth factor (Rhoads, Eskin & McIntire 2000) 

and nitric oxide (Papadaki2 et al. 1998; Gosgnach et al. 2000).  

  

3. Circulating cells 

Hemodynamic forces also have an important effect on the functions of platelets and 

leukocytes (neutrophils, monocytes and lymphocytes), which are the primary cells 

involved in the mechanism of thrombosis. Thrombosis is mainly triggered in the case of 

vascular injury, when the subendothelial or medial layers of blood vessels are in direct 

contact with the blood, exposing collagen (extrinsic pathway of blood coagulation). But it 

has long been known that the process of thrombosis depends on blood flow conditions 
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and convective mass transfer. High shear stresses, very low shear stresses (such as in 

areas of flow recirculation or stagnation) and large gradients of shear stresses affect the 

rate and localization of platelet activation/accumulation (Dintenfass 1964; Grabowski 

1995). Activation refers to changes in the platelet functions triggered by chemical 

(thrombin, collagen, etc.) or mechanical stimuli (shear stresses). Upon activation, blood 

platelets undergo dramatic morphological and biochemical changes, resulting in shape 

change (extrusion of pseudopods), aggregation and granule secretion. 

Most of the investigations on thrombus formation have concentrated on the effects of 

the lumen obstruction (stenosis) by an atherosclerotic plaque on platelet adhesion and 

aggregation (Mailhac et al. 1994; Tsao et al. 1995; Wootton et al. 2001; Einav & 

Bluestein 2004; Bluestein et al. 2004, etc). Hence, the vast majority of flow studies on 

endothelial cells comprise (very) high shear stress conditions. High shear alone has been 

shown to directly induce platelet activation and aggregation in the case of vessels with 

intact endothelial cells (Moake et al. 1986; O’Brien 1990; Kroll et al. 1996; Andrews et 

al. 2001; Shankaran, Alexandridis & Neelamegham 2003). These shear-induced platelet 

activation and aggregation involve plasma von Willebrand factor (vWF) as the ligand 

binding platelets to platelets (intrinsic pathway of blood clotting). Chemical stimuli, such 

as adenosine diphosphate (ADP) (Ikeda et al. 1991) and Ca2+ (Chow et al. 1992) are 

necessary for shear-activation to occur and they can modulate the effects of the 

mechanical forces. Shear stress-activation and aggregation are a function of both the 

shear stress magnitude and the duration that platelets are subjected to the shear stresses 

(Hellums & Hardwick 1981; Kunov, Steinman & Ethier 1996; Jesty et al. 2003). Zhang 

et al. (2003) have shown that platelets are aggregated in response to a 10 N/m2 stress 

applied for periods about 10-20 s but minimally activated and rapid disaggregation 

follows the pulse of high shear (see also Wurzinger et al. 1985). Pulses longer than 20 s 

are required for irreversible aggregation. This suggests that, in vivo, high shear alone 
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may not be sufficient to induce platelet activation (Goldsmith 1974) or aggregation, even 

though shear-induced platelet aggregation has been found to be greater in response to 

pulsatile than steady stimulation (Sutera et al. 1988). 

Platelets aggregate, however, after a high stress pulse (2.5 s), when exposed to low 

shear stresses immediately after (Zhang et al. 2002). In vivo, aggregation is therefore 

possible when platelets are entrained into recirculation regions with low secondary flows 

after high shear stress stimulation (Purvis & Giorgio 1991). Stagnation point flows are, 

for example, ideal candidates to promote platelet adhesion and subsequent aggregation 

even upon intact endothelial monolayers (Reininger, Korndorfer & Wurzinger 1998; Lee, 

Chiu & Jen 1999; David, Thomas & Walker 2001). The convection patterns promote 

aggregation by bringing platelets in contact with the endothelial surface (Karino & 

Goldsmith 1984). In the low shear regions, platelet aggregation is mediated by fibrinogen 

(Ikeda et al. 1993). Slow recirculation or stagnation regions induce long residence times 

and promote cell-cell collisions (Huang & Hellum 1993; Stroud, Berger & Saloner 2000). 

Platelet may recirculate in the separated region long enough to become activated and 

form small aggregates. Recirculating regions may also contain higher platelet-activating 

substances, promoting thrombus formation (Folie & McIntire 1989).  

Platelet activation in regions of acute vascular injury is also regulated by the 

hemodynamic flow rate. The range of shear stress over which platelet adhesion and 

subsequent aggregation are observed is approximately 0.1 to 20 N/m2 (Kroll et al. 1996). 

In low flow conditions, upregulated platelet activity results from increased exposure time 

to subendothelium collagen (Bassiouny et al. 1998). At high shear stresses (> 3 N/m2), 

vWF acts as the ligand in the platelet thrombus production (Baumgartner, Turitto & 

Weiss 1980; Baumgartner, Tschopp & Meyer 1980).  

Furthermore, recent evidence shows that circulating leukocytes respond not only to 

humoral inflammatory mediators but also to fluid shear stress (Rosenson-Schloss, Vitolo 
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& Moghe 1999; Eriksson et al. 2000; Marschel & Schmid-Schoenbein 2002). Shear 

stresses may activate leukocytes by increasing the actin polymerization and aggregation 

rate (Okuyama et al. 1996; Hernandez et al. 2001). Circulating leukocytes activate in 

regions of quasi flow stasis, projecting pseudopodia and increasing the probability of 

adherence to the vessel wall (Lawrence et al. 1997; Moazzam et al. 1997). But Moazzam 

et al. (1997) proved that, upon restoration of flow, the shear stresses induce the retraction 

of the pseudopodia. In response to inflammatory stimuli (e.g. activated endothelial cells 

(EC)), leukocytes roll along the endothelium and firmly attach before migrating into the 

vessel wall. The activation of platelets has been shown to greatly affect the interaction 

between leukocytes and EC. Platelet activation enhances the expression of some adhesion 

molecules and the gene expression in leukocytes and endothelial cells (Forlow, McEver 

& Nollert 2000; Fukuda et al. 2000; Nomura et al. 2001). 

 

D. Hemodynamics in abdominal aortic aneurysms  

Owing to their effect on the endothelial cells, smooth muscle cells and circulating 

cells, the patterns of shear stresses in AAAs appear to be one of the most physiologically 

relevant parameters to characterize in order to improve the current understanding of the 

pathogenesis of the disease.  

Due to the complexity of measuring the flow inside an aneurysm, there has been no 

successful attempt at measuring the internal or wall shear stresses in vivo inside an 

abdominal aortic aneurysm. None of the current radiological imaging techniques (MRI, 

ultrasound, etc.) has a high enough spatial resolution to provide a reliable measurement 

of the velocity field, let alone of the shear stresses. 

Consequently, over the last decade, a fairly large number of studies have been 

conducted using in vitro models to investigate the hemodynamics in AAAs. These studies 

have been performed in both symmetric and non-symmetric idealized-shape models of 
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AAA. Many of the studies involve steady flows (Schrader et al. 1992; Budwig et al. 

1993; Peattie et al. 1994; Asbury et al. 1995; Bluestein et al. 1996; Peattie et al. 1996; 

etc.), which is not relevant to the problem at hand, since the flow is highly pulsatile in the 

aorta. Others (Yu 1999; Yu 2000; Yu & Zhao 2000) measured the velocity field in AAAs 

for unsteady flows, but used a sinusoidal waveform instead of a physiologically correct 

waveform, which strongly affects the characteristics of the flow. Finally, Taylor & 

Yamaguchi (1994) reproduced the flow waveform measured in the ascending aorta of the 

dog, which differs from the human aortic waveform. 

Fukushima, Matsuzawa & Homma (1989) were the first to investigate the pulsatile 

nature of the flow, reproducing the physiologically correct velocity waveform. They 

studied experimentally the influence of the geometry of the bulge in three axisymmetric 

models of AAA, in the range of mean Reynolds numbers 289 ≤ 〈Re 〉 ≤ 748 and 

Womersley numbers 4.07 ≤ α ≤ 10.6. They showed that the flow remained attached to the 

walls during the acceleration (systole), but detached at the onset of the deceleration 

(beginning of diastole), generating a large primary vortex, followed by a weaker 

secondary vortex, and a recirculation zone dominated by very low velocities. Although 

this study showed qualitatively the most significant hemodynamic changes occurring as a 

result of the bulging, it did not provide any measurement of the most physiologically 

relevant parameters, i.e. the internal and wall shear stresses. As far as the WSS are 

concerned, a numerical simulation of the idealized laminar flow inside the AAA was 

realized and showed that, with the exception of the distal area, where the WSS peaked to 

a value of 1.5 Pa, the aneurysm wall was characterized by low WSS. 

A similar qualitative study was conducted by Egelhoff et al. (1999) in four symmetric 

and one non-symmetric models of AAAs, but they did not perform measurements of the 

WSS either. Measuring the WSS experimentally is challenging, since it requires a precise 

measurement of the velocity at points very close to the wall, in order to assess the 
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velocity gradient at the wall. Yip & Yu (2001, 2002) published one set of Laser Doppler 

Anemometry measurements of WSS. However, they could not measure the spatial 

distribution of WSS, which is believed to be one of the most important factors leading to 

physiological changes. 

A few groups performed numerical studies of the velocity field and WSS in AAAs. 

However, most numerical studies have concentrated on the calculation of the wall 

stresses and have not modeled the flow inside the aneurysm (Raghavan & Vorp 2000; 

Raghavan et al. 2001; Stringfellow, Lawrence & Stringfellow 1987; Thubrikar, al-Soudi 

& Robicsek 2001, etc.). Di Martino et al. (2001) have been the first one to conduct a 

fluid-structure interaction study. Numerical calculations have difficulty in predicting 

correctly the flow separation as well as the transition to turbulence, which are the two 

important characteristics of the aneurysmal flow. Some studies studied non-realistic flow 

waveform (reproduced non-realistic geometries, such as Viswanath, Rodkiewicz & Zajac 

(1997) who modeled extremely large AAAs (6 cm ≤ D ≤ 14 cm) or Finol & Amon 

(2001), Finol & Amon1 (2002) and Finol & Amon2 (2002) who modeled a double 

aneurysm, made out of two consecutive expansions. Finol et al. (2003), however, 

completed a three-dimensional numerical simulation of the flow in a few AAA models 

increasing the asymmetry parameter. Although they showed the formation of detached 

regions and vortices in one of the non-symmetric models, they did not show their effect 

on the patterns of WSS, limiting their discussion to the peak systole, when the flow is 

still fully attached to the walls. 

 

E. Objectives of the study 

The above studies, both experimental and numerical, provide a good qualitative 

description of the flow in an AAA. However, no comprehensive quantitative study of the 
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evolution of the flow field as the AAA enlarges has been reported and, more importantly, 

there has been no accurate measurement of the changes in the mechanical stimuli on the 

endothelial cells and circulating blood cells during the growth of the aneurysm. The aim 

of this study is therefore to conduct precise measurements of the spatial and temporal 

changes in the wall shear stresses and internal shear stresses, which are respectively 

acting on the endothelial and circulating cells. The objective is to quantify their evolution 

during the progressive enlargement of AAAs.  

In the following, we will discuss the results of a parametric study, in which the flow 

characteristics were studied inside the aneurysm, while varying systematically the 

geometric parameters of the models. Quantitative measurements of the velocity field 

inside the AAA models are obtained using Particle Image Velocimetry (PIV), while 

reproducing a physiologically correct pulsatile flow waveform. The hemodynamic 

stresses are calculated both internally and at the walls from the measured velocity field. 

 

F. Structure of the dissertation 

Chapter 2 presents the experimental setup and method for the in-vitro hemodynamic 

study. Measurements of the spatial and temporal changes of the wall shear stresses 

resulting from the aneurysm growth are discussed in Chapters 3 and 4. The 

measurements have been conducted respectively in symmetric and non-symmetric 

models of abdominal aortic aneurysms. In order to validate the experimental 

measurements of the WSS, an analytical model of the flow inside a vessel (healthy aorta 

or AAA), based on the well-known Womersley solution, is also presented in Chapter 3. 

Chapter 5 describes the changes in shear stresses acting on circulating blood cells, and 

Lagrangian changes in the shear stresses acting on them are analyzed as a function of the 

AAA geometry. 
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Chapter 2 
 
Methods 

 

 

 

 

A. Experimental apparatus 

1. Aneurysm models 

The hemodynamics inside an aneurysm depends on the flow characteristics (cardiac 

output, blood pressure, cardiac rate) and on the geometry of the bulge. In order to 

characterize the changes in the hemodynamic forces as the aneurysm enlarges, we have 

conducted a parametric study, in which we have varied the size and symmetry parameters 

of the aneurysmal dilatation. The experimental study is based on the use of in vitro 

aneurysm models, all fusiform in shape. The models consist of an expansion blown in a 

straight tube. The effect of the lumbar curvature has been not considered in the present 

study (Ku & Zhu 1997). This limitation will be further discussed at the end of Chapter 3.  

Both symmetric and non-symmetric models have been considered. Incipient 

aneurysms tend to be symmetric in shape. But aneurysms with a maximum diameter 

greater than 4 cm typically expand non-symmetrically, because of the presence of the 

spinal column (Figure 2.1). 
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Figure 2.1: Sketches of a small (D < 4.5 cm) and later stage aneurysm 

The geometry of the models can be characterized by three parameters: the dilatation 

ratio (D/d), the aspect ratio (L/d) and the asymmetry parameter β = 2e/d, where D and L 

are respectively the maximum internal diameter and the length of the aneurysm, d the 

internal diameter of the parent vessel and e the eccentricity (see Figure 2.2 for the 

symmetric models and Figure 2.3 for the non-symmetric ones). The eccentricity is 

defined as the distance between the axis of symmetry of the parent vessel and the 

centerline at the maximum bulge diameter. The asymmetry parameter β ranges from zero 

for a symmetric aneurysm to one for a non-symmetric model with a flat posterior wall.  

 

 
Figure 2.2: Geometry of a symmetric aneurysm model. 

In the experiment, these three parameters have been systematically varied in order to 

study the effects of the aneurysm growth on the hemodynamic forces. Table 2.I 

summarizes the characteristics of the models considered in the study. The choice of an 
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idealized geometry for the models was made in order to control their shape with only 

three parameters. Although the models are not physiologically correct in shape, we hope 

that all the important physical processes can be observed and measured accurately. The 

models are supposed to be devoid of an endoluminal thrombus, since the largest diameter 

considered here is D = 4 cm, which is just below the critical size, above which an 

endoluminal thrombus has been clinically observed to develop (Harter et al. 1982). 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3: Geometry of the aneurysm models. L: left, R: right, P: posterior, A: anterior. 

The models are made out of glass and are therefore rigid. AAAs have been shown to 

become much stiffer as they expand, because of the degradation of the elastin fibers in 

the walls (see Chapter 1). Calcification of the walls further increases the wall stiffness 

over time. Physiologically, the compliance of the arteries is crucial for the shaping of the 

flow waveform. However, in the experiment, the pump reproduces directly the flow 
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waveform measured in the infrarenal abdominal aorta. Therefore, the rigidity of the 

models does not affect the actual waveform inside the aneurysm. 

 
   L/d 

 Models 2.9 3.9 5.2 

1.3 1 6 11 

1.5 2 7 12 

1.7 3 8 13 

1.9 4 9 14 

D/d 

2.1 5 10 15 
 

Models D/d L/d β 

16 2.3 4.5 0 

17 2.3 4.5 0.5 

18 2.3 4.5 1 
 

Table 2.I: Geometric parameters of the different models considered in the study. The first 
table indicates the values of the dilatation and aspect ratios for the 15 symmetric models 
considered in the first part of the study. The targeted aspect ratios were respectively 3, 4 
and 5, but due to the inherent difficulty of the process of fabrication of the glass models, 
the ratios came out slightly different.  The second table shows the 3 models considered in 
the study of the loss of symmetry. Larger dilatation and aspect ratios have been chosen, 
since the non-symmetry develops at later stages of the disease. 

 

2. Experimental setup 

Figure 2.4 schematically shows the experimental flow facility. The pulsatile flow is 

provided by a programmable piston pump (Sidac Engineering, Ontario, Canada). A 

micro-stepping motor (Compumotor Corporation, Cupertino, CA) controls the 

displacement of the piston on a rack inside a cylinder. The piston diameter is 6.3 cm and 

the cylinder contains a volume of 450 ml. Each time the piston reaches the end of the 

cylinder, a four-way spool valve (Numatics, Highlands, MI) reverses the inlet and outlet 

pathways, in order to always keep the flow in the same direction in the test section. 

The programmable piston pump reproduces the abdominal aortic flow. The chosen 

waveform is based on the measurements by Maier et al. (1989), conducted in a healthy 
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male patient at rest (Figure 2.5). Similarly to the results by Long et al. (2000), it 

comprises a quite large reversal of the flow in the diastole, which has been shown to be 

the case in a healthy person at rest by Holenstein & Ku (1988). Retrograde flow at this 

point of the cycle is thought to provide blood flow to the coronary arteries (McDonald 

1974; Caro et al. 1978). Other groups have, however, measured the abdominal aortic 

flow to have a very small reversal flow (Mills et al. 1970, Pedersen et al. 1993). For this 

study, we have elected the extreme case of a subsequent diastolic flow reversal. This 

choice should not affect greatly the key phenomena, which are the flow separation and 

the formation of a vortex. Flow separation is guaranteed to occur at the peak systole at 

the latest. Earlier flow separation will depend on the acceleration and on the geometric 

parameters of the model. 

 

 
Figure 2.4: Experimental setup 
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By using water as the perfusion fluid, we neglected the non-Newtonian behavior of 

blood in the experiments. In the case of non-Newtonian fluids, the viscosity coefficient 

can still be assumed constant in the high shear stress regions, but it is a function of the 

stress in the regions of low shear stress. For large vessels, larger than 1 mm in diameter 

(Nichols 1998), the regions of low shear stresses are confined to the core of the fluid. 

Most of this study focuses on the quantification of the shear stresses at the wall, where 

they are the highest. The quantification of the shear stresses on individual blood cells 

may need a small correction factor for the few cells launched in the core of the aneurysm. 

Nevertheless, we will see that these cells either leave the aneurysm very quickly without 

noticing the presence of the aneurysm or they are entrained into the recirculating region, 

where they are again in closer contact with the wall. Assuming blood as Newtonian 

should therefore be a valid hypothesis. 

 

 
Figure 2.5: The waveform delivered by the pulsatile pump reproduces the typical infra-
renal flow rate of a male patient at rest. The letters indicate the approximate times along 
the cardiac cycle when the measurements were made. 

The use of pure water was dictated by the pump, which is not powerful enough to 

deliver the aortic sub-renal flow rate. The fluid viscosity was then reduced by a factor of 

3.9, as compared to whole blood. In order to maintain a complete similarity, the 

aneurysm models were scaled down by a factor of 1.9 (d = 9 mm in the experiment). The 

goal was to keep both the Reynolds number, ratio of the convective inertial forces to the 



27 

 

viscous forces, and the Womersley number, ratio of the unsteady inertial forces to the 

viscous forces, identical to the physiological flow conditions. This complete similarity 

ensures that the Strouhal number remains constant as well, since it is proportional to 

α2/ Re , where νωd/2α = , d/νURe = , U  being a characteristic cross-averaged 

velocity, ω the pulsation frequency of the flow and ν the fluid kinematic viscosity. More 

specifically, the flow conditions used in this study correspond to a peak Reynolds number 

of 2700, a mean Reynolds number of 330 and a Womersley number of 10.7. With a same 

peak Reynolds number, the mean Reynolds number would have been higher if we had 

chosen to use a flow waveform without flow reversal (〈Re 〉 ~ 550). The measured 

quantities (velocity, vorticity, stresses) presented in the next sections have been 

converted into the physiological values.  

 

B. Particle Image Velocimetry 

Particle Image Velocimetry (PIV) measurements of the instantaneous velocity field 

have been conducted in a cross-section of the AAA. The PIV system (TSI Incorporated, 

St Paul, MN) is composed of two 50 mJ pulsed Nd:YAG lasers, a synchronizer and a 

CCD camera (Figure 2.4). The lasers produce short duration (6 ns), high-energy (12 mJ) 

pulses of light in the green band (532 nm). The energy is produced from a flashlight that 

can be fired at variable frequencies up to 10 Hz. The use of two lasers allows us to 

control very precisely the time between two pulses. Any pulse separation can be achieved 

from very short to long, while maintaining the full power in each laser. The light beam is 

converted into a light sheet using consecutively a cylindrical and a spherical lens. The 

laser sheet is 1 mm thick at the focal point. 

Optical access to the model is provided at two orthogonal locations, one for the laser 

sheet and the other for the CCD camera (630046 PIVCAM 10-30), which has a resolution 

of 1024×1024 pixels and a 8-bit dynamic range. The flow is seeded with 10 µm-diameter 
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lypocodium particles (Carolina Biological Supply Company, Burlington, NC), which are 

illuminated each time the lasers are fired. The AAA models are placed in a transparent 

box filled with water in order to limit optical deformations due to refractions. The light 

scattered by the tracer particles are recorded by the camera, which is synchronized with 

the lasers (TSI LaserpulseTM synchronizer). The displacements of the particles are 

obtained by locally cross-correlating sequential images recorded by the camera. The 

cross-correlation function for an image pair is calculated using fast Fourier transforms. 

The interrogation window is 64×64 pixels in size and a 50% overlapping is employed in 

both directions. The resolution varies from one experiment to the next, depending on the 

total size of the measurement window. It ranges between 0.4 mm for the zoom 

measurements to 1.8 mm for the larger aneurysm models. The few incorrect vectors have 

then been removed by hand and replaced with an interpolated vector. No post-processing 

smoothing or averaging function has been used. The velocity vectors are computed 

knowing the time interval between two pulses of the lasers. Validation of the measured 

velocity field will be discussed in Chapter 3, when comparing the measurements in a 

healthy vessel with the Womersley solution. 

 


