

Amplification Raman pour liaisons opto-hyperfréquences

Kafing KEÏTA

Laboratoire Charles Fabry de l'Institut d'Optique, **Manolia**, CNRS/IO/UPS Thales Research & Technology-France

progression

- introduction: l'optique hyperfréquence
- 1. l'amplification Raman, modèle
- 2. le bruit
 - i. émission spontanée amplifiée
 - ii. transfert du bruit de la pompe
- 3. mesures expérimentales de gain et d'ASE
- 4. réduction du bruit
 - i. modèle classique
 - ii. modèle quantique

progression

- introduction: l'optique hyperfréquence
- 1. l'amplification Raman, modèle
- 2. le bruit
 - i. émission spontanée amplifiée
 - ii. transfert du bruit de la pompe
- 3. mesures expérimentales de gain et d'ASE
- 4. réduction du bruit
 - i. modèle classique
 - ii. modèle quantique

intérêts d'une liaison micro-onde analogique sur fibre optique

- > légèreté, compacité
- > faibles pertes optiques
- > faible dispersion
- > pas d'interférence
- électromagnétique

> bénéficie des progrès matériels des télécommunications numériques

> distribution de signaux à des antennes lointaines
> antennes réseaux actives
> acheminement de signaux à bord de bateaux, d'avions

<u>une ligne analogique modulée sur fibre</u> <u>optique pour la transmission hyperfréquence</u>

une ligne analogique modulée sur fibre optique pour la transmission hyperfréquence

 $G = \frac{P_{RF,out}}{P_{RF,in}} = \frac{P_{mod}^2}{P_{RF,in}} \cdot T_{opt}^2 \cdot \frac{P_{RF,out}}{P_{od}^2}$

conversion *electro-optique*

conversion opto-electronique

Institut d'Optique

THALES

opto-electronique

electro-optique

origines des pertes de la ligne

solutions: 1- EDFAs.
ASE, largeur de bande
2- SOAs
ASE, processus nonlinéaires
3- amplificateurs Raman
large bande passante

Q: l'amplificateur Raman a-t-il *de meilleures caractéristiques de bruit* que les EDFAs?

progression

- introduction: l'optique hyperfréquence
- 1. l'amplification Raman, modèle
- 2. le bruit
 - i. émission spontanée amplifiée
 - ii. transfert du bruit de la pompe
- 3. mesures expérimentales de gain et d'ASE
- 4. réduction du bruit
 - i. modèle classique
 - ii. modèle quantique

diffusion Raman stimulée

- > diffusion inélastique de la lumière par les phonons optiques
- > le *milieu*, détermine v_{Stokes} et Δv_{R} .
- ▶ spontané et peut être stimulé

⇒<u>amplification Raman stimulée</u>

•milieu Raman: fibre monomode

•équations de propagation:

$$\begin{cases} \frac{dN_P}{dz} = -kN_P(N_S+1) - \alpha_P N_P\\ \frac{dN_S}{dz} = \pm kN_P(N_S+1) \mp \alpha_S N_S \end{cases}$$

principale source de bruit:
 Émission Spontanée Amplifiée (ASE)

diffusion Raman stimulée

- > diffusion inélastique de la lumière par les phonons optiques
- > le *milieu*, détermine v_{Stokes} et Δv_{R} .
- ▶ spontané et peut être stimulé

⇒<u>amplification Raman stimulée</u>

•milieu Raman: fibre monomode

•équations de propagation:

$$\begin{cases} \frac{dN_P}{dz} = -kN_P(N_S + 1) - \alpha_P N_P \\ \frac{dN_S}{dz} = \pm kN_P(N_S + 1) \mp \alpha_S N_S \end{cases}$$

diffusion Raman stimulée

- > diffusion inélastique de la lumière par les phonons optiques
- > le *milieu*, détermine v_{Stokes} et Δv_{R} .
- ▶ spontané et peut être stimulé

⇒<u>amplification Raman stimulée</u>

•milieu Raman: fibre monomode

•équations de propagation:

$$\begin{cases} \frac{dN_P}{dz} = -kN_P(N_S + 1) - \alpha_P N_P \\ \frac{dN_S}{dz} = \pm kN_P(N_S + X) \mp \alpha_S N_S \end{cases}$$

8

diffusion Raman stimulée

Institut d'Optique

progression

introduction: l'optique hyperfréquence

- 1. l'amplification Raman, modèle
- 2. le bruit
 - i. émission spontanée amplifiée
 - ii. transfert du bruit de la pompe
- 3. mesures expérimentales de gain et d'ASE
- 4. réduction du bruit
 - i. modèle classique
 - ii. modèle quantique

le bruit en amplification Raman, l'ASE

en co-propageant,

$$\begin{cases} \frac{dN_P}{dz} = -kN_P(N_S + 1) - \alpha_P N_P \\ \frac{dN_S}{dz} = +kN_P(N_S + 1) - \alpha_S N_S \end{cases}$$

$$P_{ASE/out} = \int_{\Delta v_R} h v N_{ASE/out}(v) dv$$

THALES

le bruit en amplification Raman, l'ASE

fibre	pertes (dB.km ⁻¹)	aire effective (µm²)	fibre	pertes (dB.km ⁻¹)	aire effective (µm²)
SMF28	0,19	80,0	DCF Lucent	0,49	20,1
NZ-DSF Alcatel	0,20	65	HNLF Fitel- Photonics Lab.	0,8	12,6
NZ-DSF Corning	0,25	55,4	HNLF-DSF Sumitomo	0,51	10,7
DSF Corning	0,25	51,2	PCF	40	2,9
DFF	0,225	20,8	PM-PCF	1,3	? <10

<u>caractéristiques de</u> <u>quelques fibres</u> <u>@ 1550nm</u>

THALES

le bruit en amplification Raman, l'ASE

fibre	pertes (dB.km ⁻¹)	aire effective (µm²)	fibre	pertes (dB.km ⁻¹)	aire effective (µm²)
SMF28	0,19	80,0	DCF Lucent	0,49	20,1
NZ-DSF Alcatel	0,20	65	HNLF Fitel- Photonics Lab.	0,8	12,6
NZ-DSF Corning	0,25	55,4	HNLF-DSF Sumitomo	0,51	10,7
DSF Corning	0,25	51,2	PCF	40	2,9
DFF	0,225	20,8	PM-PCF	1,3	? <10

progression

introduction: l'optique hyperfréquence

- 1. l'amplification Raman, modèle
- 2. le bruit
 - i. émission spontanée amplifiée
 - ii. transfert du bruit de la pompe
- 3. mesures expérimentales de gain et d'ASE
- 4. réduction du bruit
 - i. modèle classique
 - ii. modèle quantique

$$RIN(z,v) = \frac{\Delta v * W(z,v)}{\pi \langle P(z,t) \rangle^2}$$

 Δv : largeur spectrale de la mesure W(z,v): densité spectrale de puissance $\langle P(z,t) \rangle$: puissance moyenne

$$\rho = \frac{RIN_{s}(z, v)}{RIN_{p}(z, v)}$$

principe du calcul

» définition des ondes

14

principe du calcul

» définition des ondes

14

principe du calcul

» définition des ondes

» équation de propagation du bruit

$$\frac{da_{b}(z,v_{s})}{dz} = \pm i \frac{4\pi^{2}}{n\lambda} \chi_{eff}^{(3)}(\omega_{p},-\omega_{p},\omega_{s})A_{s}(z)j_{p}'(z,v_{s})\exp[i\Delta k_{\pm}^{(1)}z]$$

$$\pm \frac{(2\pi)^{\frac{3}{2}}}{n\lambda} \chi_{eff}^{(3)}(\omega_{p},-\omega_{p},\omega_{s})\int_{-\infty}^{+\infty} dv_{s}'j_{p}'(z,v_{s}-v_{s}')a_{b}(z,v_{s}')\exp[i\Delta k_{\pm}^{(2)}z] \mp \frac{\alpha_{s}}{2}a_{b}(z,v_{s})$$
amplification Raman du bruit
$$pertes de propagation$$
désaccords :
$$\Delta k_{\pm}^{(1)} = \left(\frac{1}{v_{p}} \mp \frac{1}{v_{s}}\right)v_{s} \quad \text{et} \quad \Delta k_{\pm}^{(2)} = \left(\frac{1}{v_{p}} \mp \frac{1}{v_{s}}\right)(v_{s}-v_{s}')$$

v_x, vitesses de groupe

FWM pompe/signal

pompe monochromatique modulée en amplitude, $E_P(0,t) = A_P(0) \left| 1 + \frac{m}{2} \sin(\Omega t + \Phi) \right|$

En bref,

- ✓ configuration <u>contra-propageante</u> favorable
- ✓ transfert constant pour les **basses fréquences** (< 100 kHz)
- ✓ décroissance quadratique du transfert à <u>hautes fréquences</u>
- ✓ **pompe modulée**: excès de bruit basses fréquence \propto gain net
- ✓ **pompe spectre large**: pas d'excès de bruit BF

progression

- introduction: l'optique hyperfréquence
- 1. l'amplification Raman, modèle
- 2. le bruit
 - i. émission spontanée amplifiée
 - ii. transfert du bruit de la pompe
- 3. mesures expérimentales de gain et d'ASE
- 4. réduction du bruit
 - i. modèle classique
 - ii. modèle quantique

mesures expérimentales, montage

mesures expérimentales, montage

mesures expérimentales, montage

mesures expérimentales, résultats co/contra

L = 22,5 km SMF $P_P = 1700 \text{ mW}$ $P_S \text{in} = -20 \text{ dBm}$ G = 24,5 dB (net)

avantage au contra-propageant

mesures expérimentales, influence de la modulation RF

◆P_sin = -20 dBm
◆fréq. mod 20 GHz
◆ampl. mod 10 dBm

mesures expérimentales, influence de la modulation RF

 $P_{s}in = -20 \text{ dBm}$ $fréq. \mod 20 \text{ GHz}$ $ampl. \mod 10 \text{ dBm}$ $P_{p} = 1600 \text{ mW}$ L = 22,5 km SMF G = 21 dB (net)

mesures expérimentales, influence de la modulation RF

 $P_{s}in = -20 \text{ dBm}$ fréq. mod 20 GHz ampl. mod 10 dBm $P_{P} = 1600 \text{ mW}$ L = 22,5 km SMF G = 21 dB (net)

mesures expérimentales, RIN

mesures expérimentales, l'EDFA

mesures expérimentales, l'EDFA

progression

- introduction: l'optique hyperfréquence
- 1. l'amplification Raman, modèle
- 2. le bruit
 - i. émission spontanée amplifiée
 - ii. transfert du bruit de la pompe
- 3. mesures expérimentales de gain et d'ASE
- 4. réduction du bruit
 - i. modèle classique
 - ii. modèle quantique

réduction du bruit

» un milieu Raman, transition Ω_R » un signal, fréquence ω_S » 2 pompes, fréquences ω_{P1} et ω_{P2} » configuration contra-propageante » $\omega_{P_1} - \omega_{P_2} \ll \Delta \Omega_R$

$$G = \frac{4\pi^2}{n\lambda} \chi_{eff}^{(3)} \left[\left| E_{P_1} \right|^2 + \left| E_{P_2} \right|^2 \right]$$

réduction du bruit, modèle classique

modulation d'indice : $\Delta n = \delta n \cdot \exp[i(\underline{K}z - \Omega t)] + c.c.$

d'amplitude : $\delta n = \mathcal{A} \underline{E}_{P}^{*} \cdot \underline{E}_{S}$ de fréquence : $\Omega = \omega_{P} - \omega_{S}$ de vecteur d'onde : $\underline{K} = \underline{k}_{P} + \underline{k}_{S}$

réduction du bruit, modèle classique

suppression du gain Raman $|\omega_{P_1} - \omega_{P_2}| >> \Delta \Omega_R$

- à la fréquence $\omega_{S_1} : E_{D_1} \propto E_{P_1} (\delta n_1 + \delta n_2) \propto E_{P_1} (E_{P_1}^* E_{S_1} + E_{P_2}^* E_{S_2})$
- à la fréquence $\omega_{S_2} : E_{D_2} \propto E_{P_2} (\delta n_2 + \delta n_1) \propto E_{P_2} (E_{P_2}^* E_{S_2} + E_{P_1}^* E_{S_1})$ gain nul $\Rightarrow E_{P_2}^* E_{S_2} + E_{P_1}^* E_{S_1} = 0 \Rightarrow -\varphi_{P_{1/2}} + \varphi_{S_{1/2}} = \pi - \varphi_{P_{2/1}} + \varphi_{S_{2/1}}$

dans le cas où
$$\varphi_{S_1} = \varphi_{S_2}$$
 alors $\varphi_{P_1} - \varphi_{P_2} = \pi$

THALES

progression

- introduction: l'optique hyperfréquence
- 1. l'amplification Raman, modèle
- 2. le bruit
 - i. émission spontanée amplifiée
 - ii. transfert du bruit de la pompe
- 3. mesures expérimentales de gain et d'ASE
- 4. réduction du bruit
 - i. modèle classique
 - ii. modèle quantique

- transition Raman de l'état $\left|a\right\rangle$ vers l'état $\left|b\right\rangle$
- + 2 faisceaux pompe représentés par des états de Fock à $N_{L^{1/2}}\,photons$
- ondes Stokes représentées par des états de Fock à 0 ou 1 photon: $|0\rangle_{S^{1/2}}$ et $|1\rangle_{S^{1/2}}$

30

Institut d'Optique

- transition Raman de l'état $|a\rangle$ vers l'état $|b\rangle$
- + 2 faisceaux pompe représentés par des états de Fock à $N_{L^{1/2}}\,photons$
- ondes Stokes représentées par des états de Fock à 0 ou 1 photon: $|0\rangle_{S^{1/2}}$ et $|1\rangle_{S^{1/2}}$
- opérateurs champs électriques des ondes pompe et Stokes:

$$\underline{E}_{L_{i}}(\omega_{L_{i}}) = i\sqrt{\frac{4\pi}{L^{3}}} \frac{\omega_{L_{i}}}{n_{L_{i}}} \hat{e}_{L_{i}} \Big[q_{L_{i}} \exp(i\underline{k}_{L_{i}} \cdot \underline{r}) \exp(i\varphi_{L_{i}}) - q_{L_{i}}^{+} \exp(-i\underline{k}_{L_{i}} \cdot \underline{r}) \exp(-i\varphi_{L_{i}}) \Big]$$

$$\underline{E}_{S_{i}}(\omega_{S_{i}}) = i\sqrt{\frac{4\pi}{L^{3}}} \frac{\omega_{S_{i}}}{n_{S_{i}}} \hat{e}_{S_{i}} \Big[q_{S_{i}} \exp(i\underline{k}_{S_{i}} \cdot \underline{r}) - q_{S_{i}}^{+} \exp(-i\underline{k}_{S_{i}} \cdot \underline{r}) \Big]$$
action des opérateurs: $\langle N_{j} | q_{j} | N_{j} + 1 \rangle = \langle N_{j} + 1 | q_{j}^{+} | N_{j} \rangle = \left[\frac{\hbar(N_{j} + 1)}{2\omega_{j}} \right]^{\frac{1}{2}}, \quad j = L_{i}, S_{i}$

• état initial du système: $|i\rangle = |a\rangle |N_{L_1}\rangle |N_{L_2}\rangle |0\rangle_{S_1} |0\rangle_{S_2}$

• état final dégénéré: $|f_1\rangle = |b\rangle |N_{L_1} - 1\rangle |N_{L_2}\rangle |1\rangle_{S_1} |0\rangle_{S_2}$ et $|f_2\rangle = |b\rangle |N_{L_1}\rangle |N_{L_2} - 1\rangle |0\rangle_{S_1} |1\rangle_{S_2}$

• état initial du système: $|i\rangle = |a\rangle |N_{L_1}\rangle |N_{L_2}\rangle |0\rangle_{S_1} |0\rangle_{S_2}$

• état final dégénéré: $|f_1\rangle = |b\rangle |N_{L_1} - 1\rangle |N_{L_2}\rangle |1\rangle_{S_1} |0\rangle_{S_2}$ et $|f_2\rangle = |b\rangle |N_{L_1}\rangle |N_{L_2} - 1\rangle |0\rangle_{S_1} |1\rangle_{S_2}$

• probabilité d'effectuer la transition Raman de l'état $|a\rangle$ vers l'état $|b\rangle$

$$\begin{split} & \left[\frac{dp_{i \rightarrow \{|f_i\rangle\}}}{dt} \propto \left| K_{fi}^{(2)} \right|^2 \right] \\ & K_{fi}^{(2)} = \sum_n \left\{ \frac{\langle f | H' | g_{1n} \rangle \langle g_{1n} | H' | i \rangle}{E_f - E_{g_{1n}}} + \frac{\langle f | H' | g_{2n} \rangle \langle g_{2n} | H' | i \rangle}{E_f - E_{g_{2n}}} \right\} \\ & \searrow \underline{op\acute{e}rateur\ transition\ \grave{a}\ 2\ photons} \end{split}$$

 $H' = -\underline{E} \cdot \underline{P}$

• état initial du système: $|i\rangle = |a\rangle |N_{L_1}\rangle |N_{L_2}\rangle |0\rangle_{S_1} |0\rangle_{S_2}$

• état final dégénéré: $|f_1\rangle = |b\rangle |N_{L_1} - 1\rangle |N_{L_2}\rangle |1\rangle_{S_1} |0\rangle_{S_2}$ et $|f_2\rangle = |b\rangle |N_{L_1}\rangle |N_{L_2} - 1\rangle |0\rangle_{S_1} |1\rangle_{S_2}$

• probabilité d'effectuer la transition Raman de l'état $|a\rangle$ vers l'état $|b\rangle$

• états intermédiaires:

Institut d'Optique

$$|g_{1n}\rangle = |n\rangle|N_{L1} - 1\rangle|N_{L2}\rangle|0\rangle_{S1}|0\rangle_{S2}$$
$$|g_{1n}\rangle = |n\rangle|N_{L1}\rangle|N_{L2}\rangle|1\rangle_{S1}|0\rangle_{S2}$$

$$|g_{2n}\rangle = |n\rangle|N_{L1}\rangle|N_{L2} - 1\rangle|0\rangle_{S1}|0\rangle_{S2}$$
$$|g_{2n}\rangle = |n\rangle|N_{L1}\rangle|N_{L2}\rangle|0\rangle_{S1}|1\rangle_{S2}$$

THALES

pour des ondes pompes de fréquence voisines et dans le même état de polarisation

$$\frac{dp_{i \to \{|f_i\rangle\}}}{dt} \propto N_{L_1} + N_{L_2} + 2\sqrt{N_{L_1}N_{L_2}} \cos[\varphi_{L_1} - \varphi_{L_2}]$$

⇒ <u>minimale</u> lorsque les ondes pompes sont <u>en opposition de phase</u> ⇒ <u>nulle</u> si, de plus les ondes pompe sont <u>d'intensité égales</u>

> <u>SUPPRESSION DE L'ÉMISSION SPONTANÉE</u>

pour des ondes pompes de fréquence voisines et dans le même état de polarisation

$$\frac{dp_{i \to \{|f_i\rangle\}}}{dt} \propto N_{L_1} + N_{L_2} + 2\sqrt{N_{L_1}N_{L_2}} \cos[\varphi_{L_1} - \varphi_{L_2}]$$

⇒ <u>minimale</u> lorsque les ondes pompes sont <u>en opposition de phase</u> ⇒ <u>nulle</u> si, de plus les ondes pompe sont <u>d'intensité égales</u>

▶ <u>SUPPRESSION DE L'ÉMISSION SPONTANÉE</u>

Q: l'incidence de conditions approximatives?

pour des ondes pompes de fréquence voisines et dans le même état de polarisation

$$\frac{dp_{i \to \{|f_i\rangle\}}}{dt} \propto N_{L_1} + N_{L_2} + 2\sqrt{N_{L_1}N_{L_2}} \cos[\varphi_{L_1} - \varphi_{L_2}]$$

⇒ <u>minimale</u> lorsque les ondes pompes sont <u>en opposition de phase</u> ⇒ <u>nulle</u> si, de plus les ondes pompe sont <u>d'intensité égales</u>

conclusion

- ✓ amplification Raman + micro-ondes : bruit ☺ gain ☺
- amplificateur Raman à fibre : alternative aux EDFAs
- \checkmark identification des principales sources de bruit :
 - » ASE
 - » transfert de bruit de la pompe

 - $\left\{ \begin{array}{l} \text{atténuation en } \nu^2 \text{ pour } \nu > 100 \text{kHz} \\ \text{pas d'ajout de bruit en pompe large} \end{array} \right.$

✓ développement d'un modèle original de réduction du bruit d'émission spontanée

perspectives

 mesures électriques de RIN, à haute fréquence de bruit de phase

- → optimisation (laser(s) de pompe, fibre...)
- montage de suppression du bruit d'émission spontanée amplifiée, utilisation de PMF
- → étude en régime de saturation de l'ampli

sébastien maerten & co mathieu jacquemet merci... robert frey vincent reboud bertrand tout le personnel de l'institut d'optique marianne/jo'fab nadia boulay magali astic philippe delaye carole arnaud mr mme K. stéphanie molin antoine godard gilles pauliat antoine/maïté gérald roosen sébastien de rossi nicolas dubreuil xtof/mylène pierre lecaruyer jean-michel desvignes jean-pierre huignard daniel dolfi peg/alex guillaume maire sylvie lebrun frédéric guattari sylvie tonda marie-claire alima/haby/aminata ben mireille cuniot-ponsard sofiane bahbah evelin weidner philippe/lenaïck jean-michel jonathan