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tivité à des conférences variées. Ces quelques mots sont bien faibles pour
exprimer toute ma reconnaissance.

Je remercie l’ensemble de l’équipe théorie du LSI, ceux qui restent, ceux
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Notations

Here are some notations useful for the understanding of the manuscript.

r space index
t time index
σ spin index
1 index standing for position, time and spin (r1, t1, σ1)
k Brillouin zone point
G reciprocal lattice vector
q momentum transfer (i.e. difference between two k-points)
T [...] Wick’s time-ordering operator
Ŝ time evolution operator
ψ(r) annihilation field operator in Schrödinger picture
ψ†(r) creation field operator in Schrödinger picture
ψ̂(1) annihilation field operator in Heisenberg picture
ψ̂†(1) creation field operator in Heisenberg picture
Ψ(r1, . . . , rN ),
|N〉,
or |N, 0〉 ground-state wavefunction of the N particle system
|N, i〉 wavefunctions labeled i of the N particle system
EN,i energy corresponding to wavefunction |N, i〉
εi ionization or affinity energy (difference of total energies)
φi(r) one-particle wavefunction corresponding to state i
εi energy of state i corresponding to wavefunction φi(r)
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U(1)
or vext(r, t) external potential
V (1) = U(1) + vh(1) total classical potential
G(1, 2) one-particle Green’s function
A(1, 2) spectral function

of the one-particle Green’s function
G0(1, 2) non-interacting one-particle Green’s function
GKS Kohn-Sham one-particle Green’s function
G2(1, 2; 1′, 2′) two-particle Green’s function
L(1, 2; , 1′, 2′) four point polarizability
v(1, 2) = 1

|r1−r2|δ(t1 − t2) Coulomb interaction
W (1, 2) screened Coulomb interaction W = v + vχv
Σ(1, 2) self-energy
Σx Fock operator

or bare exchange self-energy
Σc = Σ − Σx correlation part of the self-energy
Γ̃(1, 2; 3) irreducible vertex function
χ(1, 2) = δρ(1)/δU(2) reducible polarizability
χ̃(1, 2) = δρ(1)/δV (2) irreducible polarizability
χ0(1, 2) = −iG(1, 2)G(2, 1) RPA irreducible polarizability
ε−1(1, 2) = δV (1)/δU(2) inverse testcharge-testcharge dielectric function
Ξ(1, 2; 3, 4) kernel of the Bethe-Salpeter equation
ρ(r) ground-state electronic density
vh(r) =

∫
dr′v(r − r′)ρ(r′) Hartree potential

vxc(r) = δExc/δρ(r) exchange-correlation potential
fxc(r, r′, t − t′) exchange-correlation kernel
χKS(1, 2) non-interacting response function
= −iGKS(1, 2)GKS(2, 1) of the Kohn-Sham system



Feynman diagrams

Here are some Feynman diagrams useful for the understanding of the manuscript.

Feynman diagram Symbol Meaning

G0 or GKS non interacting fermion

G interacting fermion

v Coulomb interaction

W screened Coulomb interaction

Σ Σ self-energy

2G

G2(1, 2; 3, 4) two-particle Green’s function



xii FEYNMAN DIAGRAMS

Feynman diagram Symbol Meaning

L
L(1, 2; 3, 4) 4-point polarizability

L
L(1, 2; 1, 2)

or χ
2-point polarizability

χ−1
0 inverse independent particle polarizability

fxc TDDFT kernel



Introduction

Electronic structure of crystals is a polymorphic name that covers a wide
range of properties of electrons in periodic solids. For instance, it can refer
to the probability to find an electron at space point r, in other words, to the
electronic density. It can refer to the energy needed to extract an electron of
the material, the ionization energy, or alternatively, the energetic gain when
an electron is added to the system, the electron affinity. It can also stand
for the response of the electrons of the solid to an external perturbation (a
photon or a fast electron). All these properties characterize the electronic
structure of the solid. They describe indeed different aspects. Some of them
are ground-state properties, others correspond to excited states. Some of
them conserve the number of particles, others do not.

As a consequence, the properties that are generically called “electronic
structure” are measured with distinct experimental setups, e.g. direct and
inverse photoemission, optical absorption, electron energy-loss... And anal-
ogously, the theoretical description and prediction of these properties re-
quire distinct frameworks. This thesis work will handle the issue of the
electronic structure of the cuprous oxide, Cu2O. Therefore, different theo-
retical methods will be used and results will be compared to a wide range
of experimental techniques.

The present manuscript contains different parts, which may seem at first
sight independent. It is therefore instructive to draw here quickly, what has
been the historical development of this work, from the original project to
the final achievements.

Three years ago, I started this thesis work with the purpose to describe
theoretically the electronic structure of copper oxides, begining with the
simplest one Cu2O, going to the antiferromagnetic CuO, and possibly to
the CuO2 planes of high Tc superconducting cuprates. The cuprous oxide,
Cu2O, with its closed electronic d shell was thought as a starting point to
initiate the study of the Cu–O bonding in the different oxides. Cu2O is also
interesting because spectacular excitonic series have been measured in its
optical absorption or reflectivity spectra during the sixties [1–3].

However, it has been quickly clear that the usual electronic structure
methods, as density-functional theory (DFT) or even the state-of-the-art
GW approximation of the many-body perturbation theory (MBPT), were
unable to give a proper description of Cu2O. Comparison with existing pho-
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toemission or optical measurements were surprisingly bad. This unexpected
failure changed the aims of my thesis, which turned into the analysis and
the cure of the shortcomings of the theoretical methods applied to Cu2O. I
have been motivated to develop a number of theoretical and technical tools
that, as I hope, will also be useful in future studies of other materials.

The failure of the state-of-the-art GW approximation could come from
two distinct reasons: either the current implementation of the method that
worked well with simpler materials uses further assumptions, that are not
anymore valid with the complex oxide Cu2O; or the GW approximation
itself is not enough to account for the electronic structure of Cu2O.

In order to check which hypothesis was the right one, I had first to iden-
tify, analyse and avoid all further approximations used in a standard GW ,
as it has most often been performed for 20 years. This part required some
code and method development in order to remove the technical approxi-
mations that were used to make calculations easier, in our code or in most
existing codes. This is what part II of this manuscript is concerned with. Of
course, the implementation of new pieces of code had to be checked on sim-
ple textbook examples, before being applied to copper oxide. That is why
part II provides many results on bulk silicon and solid argon. This method-
ological part aims at removing the single plasmon-pole approximation that
models the dynamical behavior of the screened Coulomb interaction W in
GW . It has also the purpose of going beyond the usual perturbative evalu-
ation of GW and to perform real self-consistent calculations within GW or
within simpler approximations. The application of these developments to
cuprous oxide are postponed to part IV, where all results concerning Cu2O
are gathered.

Alternatively, if the failure of the GW approximation were really a
breakdown of the first-order perturbation theory in W (the coupling con-
stant of the perturbation procedure), one would have to include further
correcting terms to improve the results: these terms are commonly called
“vertex corrections”. Due to their complexity, there is no unique method
in literature to approximate them. Having in mind the purpose of apply-
ing vertex corrections to cuprous oxide, I had, first of all, the general task
to define a proper scheme to do that, and to provide meaningful approxi-
mations to it. The basic idea was to start from the earlier developments
made in our group concerning the comparison between time-dependent DFT
(TDDFT) and MBPT [4–6] in order to simplify the otherwise untractable
task of calculating vertex corrections. Deep insight in the respective role
of the two theories was required and the study finally ended with theo-
retical achievements that went farther than the initial project. Part III
exposes first the advances made in the understanding of the link between
TDDFT and MBPT with a new simple equation that derives the crucial,
but unfortunately unknown, kernel of TDDFT from the central quantity
of MBPT, the self-energy. Second, part III shows how the same kind of
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ideas can be used in the other direction (namely, use TDDFT in order to
progress within MBPT), to make the calculation of vertex corrections eas-
ier. These developments were applied in practice to simple materials: once
again bulk silicon and solid argon. In fact, even though the derived vertex
correction are “simpler”, the calculations remain orders of magnitude more
complicated than the usual GW ones. It is still out of reach to apply these
developments to cuprous oxide at present. Nevertheless, this derivation and
study of vertex corrections allowed me to draw the general conclusion that
strong cancellations between vertex corrections occur.

The last part of the present work (part IV) presents all my results con-
cerning Cu2O, from ground-state DFT studies to new self-consistent GW
results, and also from theoretical data to experimental measurements. This
part starts with a standard electronic structure study, first DFT geomet-
rical structure, Kohn-Sham band structure and characterization of the or-
bitals, then standard perturbative GW evaluation of the quasiparticle band
structure. As said earlier, this study unexpectedly fails, in particular, for
the band gap and the optical threshold. That is why the methods de-
velopped in the previous parts are indeed needed in the study of Cu2O.
Moreover, existing valence band photoemission experiments did not allow
one to detect some of the states found in our and previous bandstructure
calculations. However, the experiments were performed on polycrystalline
samples and therefore yielded spectra resulting from an integration over
the whole Brillouin zone. This was the motivation to apply for beamtime
at the synchrotron Elettra in Trieste, Italy together with my collabora-
tors (theoreticians and experimentalists). The purpose was to obtain pre-
cise angle-resolved photoemission spectra of the valence states of Cu2O.
This means k-point resolved information. After a one-week experimental
shift at Elettra, an important part of the present work was to compare our
state-of-the-art measurements to the theoretical data, taking into account
the experimental aspects, as photoemission cross-sections, evaluation of the
causes of experimental uncertainties... Indeed, it turned out that a care-
ful comparison of state-of-the-art experimental and theoretical approaches
could remove all existing or seeming contradictions, within the remaining
uncertainty of the respective approaches. This is a significant part of the
present study of the electronic structure of Cu2O. This part ends with the
calculation of energy-loss and optical absorption spectra of cuprous oxide,
the latter being now also in good agreement with experiment.

The theories and methods used throughout this text are extensively
described in the first part of the manuscript. It seemed important to me to
provide an accurate account for the theoretical background, because most
of the present work deals with improvements of existing methods, or going
beyond some piece of the theory. In order to explain the achievements, one
first needs to have clearly in mind the existing grounds. Let me then open
this text with the part concerning the theoretical background my work is
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based on.



Part I

Theoretical background





Chapter 1

Presentation of the
tremendous problem of
electrons in solids

The description of interacting electrons in solids is a formidable task. The
problem is not to find the equation of motion of the electrons: it has been
known for decades. It is the famous non-relativistic Schrödinger equation
for the electrons of mass me and the nuclei of mass MI :

H =
∑

i

−�
2∇2

i

2me

+
∑

I

−�
2∇2

I

2MI

+
1

2

∑
i�=j

e2

|ri − rj|

−
∑
iI

ZIe
2

|ri −RI | +
1

2

∑
I �=J

ZIZJe2

|RI −Rj| , (1.1)

where the index i runs over electrons and I runs over nuclei. These are just
the kinetic terms of nuclei and electrons, plus the instantaneous Coulomb
interaction between all pairs of bodies. The problem is “simply” to solve the
previous equation. The solution would require in principle to diagonalize
this equation in order to obtain the energies and the wavefunctions Ψ.
However, the wavefunctions are functions of all electronic variables and all
nuclear variables Ψ(r1, . . . , rN ,R1, . . . ,RM). It is known that the problem
of two interacting particles in an arbitrary external potential can not be
solved analytically in quantum mechanics, what about the problem of N +
M interacting bodies, with N and M of the order of the Avogadro number
∼ 1023 for a macroscopic solid?

The only hope to evaluate the solutions of the Schrödinger equation (1.1)
is first to simplify the tremendous Schrödinger equation, and then to ap-
proach the problem with a different philosophy. This will be briefly outlined
in the following.

Atomic units (� = e2 = me = 1) will be used from now on, and trough-
out the whole manuscript. Therefore, energies are evaluated in Hartree,
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lengths in Bohr radius, masses in electron mass etc.

1.1 Electronic Hamiltonian in solids within

Born-Oppenheimer approximation

A first harmless approximation is made in almost all studies of the static
properties of solids. The so-called Born-Oppenheimer approximation (or
adiabatic approximation) is based on the observation that the masses of
nuclei and electrons are orders of magnitude different (MI � 1). It is
therefore sensible to decouple the fast dynamics of the electronic systems
and the slow motion of the nuclei (due to their large mass). The nuclei
can hence be thought as fixed during the motion of the electronic degrees
of freedom. The nuclear variables are thus considered as parameters of the
electronic equation,

HBO =
∑

i

−∇2
i

2
+

1

2

∑
i�=j

1

|ri − rj| −
∑
iI

ZI

|ri − RI | . (1.2)

This Hamiltonian can be written using the second quantization framework
(see, e.g., chapters 2 and 3 of reference [7]):

HBO =

∫
drψ†(r)h(r)ψ(r)+

1

2

∫
drdr′ψ†(r)ψ†(r′)

1

|r− r′|ψ(r′)ψ(r), (1.3)

where the one-body Hamiltonian h(r) contains the kinetic energy, plus the
nuclear potential acting on the electrons and where ψ† and ψ are the so-
called creation and annihilation field operators of the second quantization
in Schrödinger picture. The equation is now an equation of the electronic
degrees of freedom only. One can further notice that the knowledge of the
full Ψ(r1, . . . , rN) is actually not needed to determine the total energy of
the electronic system. Instead, the knowledge of the two-particle density
matrix

ρ2(r1, r2, r
′
1, r

′
2) = 〈N |ψ†(r1)ψ

†(r2)ψ(r′1)ψ(r′2)|N〉 (1.4)

=
N(N − 1)

2

∫
dr3 . . . drNdr′3 . . . dr′NΨ∗(r1, r2, r3, . . . , rN)

×Ψ(r′1, r
′
2, r

′
3, . . . , r

′
N), (1.5)

with |N〉 standing for the N electron ground-state wavefunction, is clearly
sufficient to evaluate 〈N |HBO|N〉. This can be understood by the fact that
the Coulomb interaction involves bodies only two by two and h involves the
electrons one by one. One can think of giving up with the calculation of the
full wavefunction and prefering to deal with the “integrated” variable ρ2,
which only depends on 4 space variables. Integrated variable means that
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the operator has been obtained from the full N variable wavefunction by
integrating all space variable, but a few. Here for the two-particle density
matrix all but two have been integrated.

1.2 Wavefunction methods or “integrated”

variable methods

The purpose of quantum mechanical calculations is to predict the expecta-
tion values of observables. In other words, they primarily aim at calculating
and interpreting what experiments can measure. Of course, the knowledge
of wavefunctions permits one to answer all questions probed by any exper-
iment.

The quantum chemistry methods generally deal directly with the wave-
functions. For instance, the Hartree-Fock approximation gives the varia-
tionally best wavefunction, which can be written as a single Slater determi-
nant. Furthermore, as the Slater determinants form a basis on the Hilbert
space of the wavefunctions, it is reasonable to look for the true wavefunc-
tions as a linear combinations of Slater determinants (maybe millions of
them): this is the configuration interaction method. Also the variational
Monte-Carlo method is based on the optimization of the wavefuntions [8].
Unfortunately, all these methods, though systematic, suffer from an ex-
ploding computational time with the number of electrons treated (generally
∼ N4−6). Fortunately, the number of electrons is low in quantum chemistry
applications.

On the contrary, the application of the Schrödinger equation (1.2) to
solids quickly meets the problem of the large number of electrons and the
wavefunction methods can only be implemented for restricted basis sets
(gaussians...) for practical reasons. Fortunately, as said earlier, the knowl-
edge of the whole wavefunction is not necessary, as one is interested in
certain observables. For instance, one wants to evaluate the equilibrium
lattice parameter of a crystal, the ionization energy, the electron affinity of
a solid, or the dielectric properties... One can therefore abandon the idea
of describing precisely all the electrons of the system, and just concentrate
on the way to calculate the observable without having to follow all single
electrons. The previous paragraph showed that the ground-state energy
(and therefore the lattice parameter) can be obtained via the “integrated
variable”, the two-particle density matrix. We will see in the following chap-
ters that this information can be also obtained in principle thanks to the
ground-state electronic density ρ(r), or to the one-particle Green’s function
G(rt, r′t′), which is a kind of dynamical density matrix. These quantities
are even more “integrated”, since they depend on only one or two space-
time variables. For instance, if one wanted to evaluate the ionization energy
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k i k f

hν hν

Figure 1.1: Schematic geometry of an X-ray diffraction experiment. ki and
kf are the momentum of the incoming and scattered photon. The energy
hν of the photon is conserved.

of a solid, one would need the Green’s function; the ground-state electronic
density would not be sufficient here.

It is therefore crucial to know which experiment one has to describe in
order to use the minimum consistent theory (i.e. to use the cheapest basic
variable). The following sections depict the types of experiments this thesis
is dealing with, and sketch their link to the variable, theory has to build on
in each case.

1.3 Structural experiments

X-ray diffraction has been for almost a century the tool of choice to deter-
mine the structure of periodic systems. In this elastic process (i.e. with
no energy loss), X-ray photons are scattered by the electrons of the crystal
under study, as depicted on figure 1.1. If the wavelength of the impinging
beam is of the order of the lattice periodicity of the crystal, this allows a
direct mapping of the reciprocal space of the solid.

The intensity of the scattered beam Is is proportional to the square of
the Fourier transform of the electronic density (see chapter 10 of reference
[9])

Is(∆k) ∝
∣∣∣∣
∫

ρ(r)e−i∆k.r

∣∣∣∣
2

, (1.6)

where ∆k = kf − ki is the change of momentum of the photons, when
diffracted by the sample. As the sample is periodic, this Fourier trans-
form is non-vanishing only for ∆k equal to reciprocal lattice vectors (see
appendixA). This is the famous Bragg law. Of course, once the reciprocal
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Figure 1.2: Theoretical total energy curve of a crystal as a function of
the lattice parameter (here, silicon within local density approximation, see
following).

lattice is known, so is the direct lattice. Extinctions of Bragg peaks give also
access to the position of atoms inside the unit cell due to extinction rules
(tabulated in crystallographic tables). In simple solids, all equilibrium lat-
tice parameters and equilibrium atomic positions can be determined thanks
to X-ray diffraction.

Equilibrium structural properties can be directly compared with theo-
retical predictions (disregarding the zero-point motion of the nuclei). The
equilibrium parameters are those for which the total energy of the system is
the lowest. For instance, figure 1.2 depicts the calculated change of energy
of a crystal, when the lattice parameter is varied. The theoretical value
of the lattice parameter corresponds to the minimum of the total energy
curve.

If a stress is applied on the sample, experiments can furthermore mea-
sure the lattice parameter as a function of pressure. Therefore, it allows a
direct determination of the elastic constants of the solid under study. For
instance, the measured Young modulus B0 can be compared with the one
obtained by fitting an equation of state on a theoretical curve like the one
of figure 1.2. The equation of state of Murnaghan [10]

E(V ) =
B0V

B′
0(B

′
0 − 1)

[
B′

0

(
1 − V0

V

)
+

(
V0

V

)B′
0

− 1

]
+ E0, (1.7)
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which has 4 parameters (the energy and the volume at the minimun, E0

and V0, the Young modulus B0, and its pressure derivative B′
0) is widely

used to extract the elastic constant and higher order derivatives from total
energy curves.

An other type of diffraction, Low Energy Electron Diffraction (LEED),
is widely used to determine the characteristics of a periodic surface. In
fact, the impinging electrons are sensitive to the electrostatic forces arising
from the electronic density and the nuclei of the sample. The mechanism
of the experiment is similar to the X-ray diffraction, except that the slow
electrons (10-1000 eV kinetic energy) have a short mean free path of a few
Å inside the sample. This experiment is therefore sensitive only to the first
layers of the material surface. LEED allows one essentially to measure the
periodicity of a surface, whereas X-ray diffraction is rather sensitive to the
periodicity of the bulk material.

The structural experiments are well described in terms of functional
of the ground-state density or of the one-particle Green’s function. These
statements are not trivial at all and will be discussed in chapter 2 for the
Green’s function and in chapter 4 for the ground-state density.

1.4 Photoemission and inverse

photoemission experiments

Direct and inverse photoemissions permit a direct measurement of the band
structure. The photoelectric effect, first explained in 1905 by A.Einstein,
is the process of extracting an electron by means of an impinging photon
with an energy greater than the binding energy of the electron. It is indeed
a mapping of the occupied states of a solid as a function of the binding
energy. If the experiment is furthermore angle-resolved, it allows also one
to discriminate between different k-points of the Brillouin zone of the solid.

Indeed, as depicted in figure 1.3, during a photoelectric process, a photon
of a given energy ω impinges on the sample, extracts an electron, whose
kinetic energy Ekin is measured. Once the electron is removed (it is sent
above the vacuum level Evac = µ + φ, where µ is the Fermi level and φ is
the work function of the interface between the solid and vacuum), the solid
remains in some excited state labeled i for a while, with a hole somewhere
in the valence states. If the solid used to contain N electrons before the
absorption of the photon, it only contains N − 1 of them at the end of the
process. Let EN−1,i be the energy of the final state of the solid and EN,0

the energy of the initial state. The conservation of the energy yields the
following equation:

ω + EN,0 = (Ekin + φ) + EN−1,i. (1.8)
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E vac
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µ
φ

E kin

Figure 1.3: Schematic photoemission experiment. An impinging photon of
energy ω extracts an electron of the solid. The photoelectron kinetic energy
Ekin is then measured. The difference between the vacuum level Evac and
the Fermi level µ is the work function of the interface φ.

The definition of the energy of an occupied electronic state i is precisely
the binding energy

εi = EN,0 − EN−1,i. (1.9)

Therefore, with the measurement of ω and Ekin, photoemission can deter-
mine the occupied state energy up to the constant φ:

εi = (Ekin + φ) − ω. (1.10)

If the sample is a monocrystal and the electron detector has a finite accep-
tance angle, one can also use momentum conservation law. The k depen-
dence of the states, i.e. the band structure, can hence be determined.

One should note that the final N − 1 electron excited state has a finite
lifetime, because it has a hole in the occupied states. Indeed, the excitation
remains coherent during some time, but after a while, electrons of higher
energy tend to fall into the hole, because the situation is unstable. Intu-
itively, the deeper is the hole, the shorter the lifetime. The upper limit is
reached by the edge of the top of the valence states, whose electronic lifetime
is in principle infinite. But of course, there are many other causes for the
damping of excitations: phonons, defects... The effect of the finiteness of
the lifetime is to broaden the photoemission spectra due to the Heisenberg
relation

∆ε∆t ∼ 1. (1.11)

This shows that the smaller the lifetime, the larger the uncertainty on the
initial state energy.

An inverse photoemission experiment is simply the opposite process.
This allows a mapping of the empty states as a function of the energy
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and of the k-point of the solid. Here an extra electron is injected with
energy Ekin into the solid initially in the ground-state |N, 0〉, it goes down
the surface potential barrier φ and arrives in some eigenstate of the solid,
with emission of a photon of energy ω. The system of electrons ends in
an N + 1 particle excited state labeled i. As in the direct case, the energy
conservation law permits to evaluate the affinity energy of the empty states.

Finally, direct and inverse photoemission experiments are the most di-
rect experimental way to measure the band structure of crystals. Theoreti-
cally, they require to be described with a framework that allows the number
of electrons to vary. Therefore, the description in terms of the ground-state
density is not possible here (in contrast with the case of structural proper-
ties). Instead, the one-particle Green’s function is perfectly suited for that
purpose (see chapter 2).

1.5 Optical measurements and energy-loss

experiments

Optical absorption or reflectivity measurements are another type of spec-
troscopy that provides insight into the electronic structure of the solid under
study. The impinging photon is a low-energy photon (a few eV, i.e. optical
range or near ultra-violet). It is either absorbed, transmitted or reflected.
In a one-particle picture, when it is absorbed, an electron from an occupied
state gains the energy of the photon and is thus sent into the conduction
bands. During this process, the excited electron keeps the same momentum
(the transition is vertical), since the momentum carried by an optical pho-
ton is negligible. Beyond the independent-particle picture, this phenomenon
is not so simple, since strong relaxations occur during the excitation of the
electrons: (i) the excited electron interacts with its image (the hole it cre-
ated, when leaving the occupied state); (ii) the other electrons react and
give rise to screening.

The most remarkable feature in this type of spectroscopy is the creation
of relatively localized electron-hole pairs, called excitons. If the interac-
tion between the hole and the electron is strong enough in an absorption
spectrum, bound excitons can be noticed inside the photoemission band
gap. Due to the attractive nature of the Coulomb interaction between the
electron and the hole, the absorption threshold is lowered below the band
gap.

Optical experiments give access to the macroscopic optical constants
that appear in the Maxwell equations in media [9], where a complex index
N = n + ik is introduced for the solution of the wave equation for the
electric field:

E(z) = E0e
iω/cNz , (1.12)
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where z is the direction perpendicular to the surface of the sample. The
intensity in the medium is then

I(z) = I0e
−2ωkz/c. (1.13)

The absorption coefficient α is therefore

α(ω) =
2ωk(ω)

c
. (1.14)

One can make the link to the macroscopic dielectric function ε and polar-
izability χ

ε = N2 (1.15)

1/ε = 1 + vχ, (1.16)

where v is the Coulomb potential. We will see in the following chapters that
the polarizability is indeed the response of the density to a variation of the
external potential. The description of this will be in particular accessible
to the integrated variables, the time-dependent electronic density and the
two-particle Green’s function (see chapters 3 and 4).

Another type of experiment will be considered in this thesis: the energy-
loss experiments. In the case of a transmission experiment, a highly ener-
getic particle (∼ 10 keV) is sent through a thin slab of the material . The
particle undergoes an energy-loss by passing through the sample: this ex-
periment is sensitive to inelastic diffusion of particles. Now, the momentum
transfer is not necessarily zero, as the momentum carried by the impinging
particle is not negligible anylonger. The position of the detector with re-
spect to the source imposes a given momentum transfer q. This experiment
is called Electron Energy-Loss Spectroscopy (EELS) when the impinging
particle is an electron, or Inelastic X-ray Scattering Spectroscopy (IXSS)
when the impinging particle is an X-ray photon.

It is shown in chapter 7 of reference [9], that the energy-loss experiments
measure the imaginary part of the inverse longitudinal dielectric function:

−Im ε−1 =
Im ε

|ε|2 . (1.17)

This means that the energy-loss spectra show large structures when the
dielectric function is small. In particular, when Re ε = 0, the system un-
dergoes plasmon oscillations: a small external perturbation creates large
charge oscillations in the sample. This type of spectroscopy is also theo-
retically accessible to the time-dependent density and to the two-particle
Green’s function, as it can be related to the density response function χ.





Chapter 2

Approach to the Many-Body
Problem by means of Green’s
functions

2.1 Introduction of Green’s functions

The purpose of many-body theory is of course not to find the full solu-
tion of the many-body Hamiltonian, i.e. to calculate all the N particle
wavefunctions Ψ(r1, . . . , rN); but to provide reliable answers on the few
quantities of interest for a human being. This is exactly the spirit of the
Green’s function theory. The one-particle Green’s function can be viewed
as a dynamical one-particle density matrix. The usual static density ma-
trix is an object arising from integration of N − 2 space variables of the
N particle wavefunction. The information contained in a Green’s function
are much less than the knowledge contained in the full wavefunction, but
it still provides the very quantities one usually needs, let us say, the ones
measured by experimentalists. As shown in Fetter and Walecka’s book [11],
the one-particle Green’s function gives

• the expectation value of any single-particle operator in the ground-
state of the system,

• the ground-state energy of the system,

• the single-particle excitation spectrum of the system.

Here follows the definition of the time-ordered one-particle equilibrium
Green’s function G. If |N〉 stands for the normalized wavefunction of the
ground-state of the many-body Hamiltonian, it reads

iG(1, 2) = 〈N |T
[
ψ̂(1)ψ̂†(2)

]
|N〉 (2.1)

=

{ 〈N |ψ̂(1)ψ̂†(2)|N〉 if t1 > t2
−〈N |ψ̂†(2)ψ̂(1)|N〉 if t1 < t2

. (2.2)
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The ψ̂ and ψ̂† operators are annihilation and creation field operators within
Heisenberg picture (they contain the whole time dependence). Index 1 is
shorthand for position, time and spin variables (r1, t1, σ1). T stands for the
Wick time-ordering operator, which has the effect of ordering the operator
with largest time on the left. This is a practical trick that allows one to
use the Feynman diagram technique and moreover that permits to treat
electrons and holes on the same footing.

By looking at definition (2.2), a physically intuitive interpretation of the
time-ordered Green’s function can be emphasized. When t1 is larger than
t2, the Green’s function describes the probability to find an electron in r1

with spin σ1 at time t1, when an electron was added in r2 with spin σ2 at
time t2 to the system in its ground-state. Instead, when t1 is smaller than
t2, the Green’s function describes the probability to find a hole in r2 with
spin σ2 at time t2, when an electron was previously removed in r1 with spin
σ1 at time t1.

As claimed few lines before, the expectation value of a single-particle
operator J can be easily evaluated provided the knowledge of the Green’s
function G. In the second-quantization framework, a single-particle opera-
tor J that depends on one time index is written J with

J =

∫
d12δ(t2 − t1)ψ̂

†(1)J(1, 2)ψ̂(2). (2.3)

The ground-state expectation value is then given by

〈N |J |N〉 =

∫
d12J(1, 2)δ(t2 − t1)〈N |ψ̂†(1)ψ̂(2)|N〉

= −
∫

d12δ(t2 − t+1 )J(1, 2)〈N |T [ψ̂(2)ψ̂†(1)]|N〉, (2.4)

where t+1 stands for t1 + δ, with δ an infinitesimal positive real number.
This has been chosen in order to introduce the time-ordering operator and
to recognize the definition of the Green’s function (2.2) in the previous line:

〈N |J |N〉 = −i

∫
d12δ(t2 − t+1 )J(1, 2)G(2, 1). (2.5)

The previous formula shows how the Green’s function allows one to calculate
the ground-state expectation value of any single-particle operator.

Moreover, the Galitskii-Migdal formula [12] gives the ground-state en-
ergy as a function of the one-particle Green’s function only:

E = − i

2

∑
σ1σ2

δσ1σ2

∫
dr1 lim

r2→r1

lim
t2→t+1

[
i

∂

∂t1
+ h0(r1)

]
G(1, 2), (2.6)

where h0 = −∇2/2 + vext is the one particle Hamiltonian. The one-particle
excitation spectrum carried by the Green’s function will be made obvious
in the next section.
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I would like to finally stress that the one-particle Green’s function, how-
ever powerful, is not the answer to every question on the system. For in-
stance, optical absorption can not be described in terms of the one-particle
Green’s function. Optical absorption is a low energy excitation of the sys-
tem: the impinging photon excites an electron into a low-lying empty state
(in a one-particle picture). Then, the motion of the excited electron can
not be decoupled from the other ones, or in other words, from the hole
created in the occupied states. This phenomenon requires one to describe
fully the motion of the electron and the hole: it can not be described by the
one-particle Green’s function. Instead, the two-particle Green’s function is
needed, whose definition is

i2G2(1, 2; 1′, 2′) = 〈N |T
[
ψ̂(1)ψ̂(2)ψ̂†(2′)ψ̂†(1′)

]
|N〉. (2.7)

For completeness, one should notice that it is possible to define causal
and advanced Green’s functions, instead of the time-ordered one we are
considering here. It is also possible to extend the definition of Green’s
function to the situation where the temperature is finite, or in presence of a
time-dependent external potential [11]. We have so far implicitly considered
the zero temperature equilibrium Green’s functions.

From now on, the spin variables will be disregarded.

2.2 Lehmann representation and physical

interpretation

The so-called Lehmann representation of the Green’s function permits one
to get insight into its physical meaning. It shows that the Green’s function
is closely related to the single-particle excitation energies of the system,
by introducing excited states with N − 1 or N + 1 particles between the
two creation-annihilation field operators of equation (2.2). As time is ho-
mogenous in absence of any time-dependent external potential, the Green’s
function depends only on the difference τ = t1 − t2:

iG(r1, r2, τ) = θ(τ)
∑

i

〈N |ψ̂(1)|N + 1, i〉〈N + 1, i|ψ̂†(2)|N〉

− θ(−τ)
∑

i

〈N |ψ̂†(2)|N − 1, i〉〈N − 1, i|ψ̂(1)|N〉, (2.8)

where we have introduced the closure relation in the Fock space {|N, i〉}.
Due to the creation or annihilation operators, only states with N + 1 par-
ticles if τ > 0 or with N − 1 particles if τ < 0 have survived. The index i
runs over all states of a given particle number. The time dependence of the
matrix elements can be put into evidence by introducing the Schrödinger
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picture:
ψ̂(1) = eiH t1ψ(r1)e

−iH t1 . (2.9)

Hence, this gives

iG(r1, r2, τ) = θ(τ)
∑

i

〈N |ψ(r1)|N + 1, i〉

× 〈N + 1, i|ψ†(r2)|N〉ei(EN−EN+1,i)τ

− θ(−τ)
∑

i

〈N |ψ†(r2)|N − 1, i〉

× 〈N − 1, i|ψ(r1)|N〉e−i(EN−EN−1,i)τ . (2.10)

The previous line contains total energy differences, that can be inter-
preted as excitation energies. Indeed, for positive times, εi = EN+1,i − EN

represents the excitation energy of a system previously in its ground-state
that, due to the addition of an electron, is now in the excited state i of N +1
particles. Alternatively, for negative times, εi = EN − EN−1,i represents a
removal excitation energy, or a hole energy.

The minimum energy needed to add an electron εc = EN+1,0 − EN,0 is
called the energy of the lowest conduction state, as all other possible N +1-
particle states are energytically higher. Alternatively, the minimum energy
required to remove an electron is εv = EN,0 −EN−1,0 is called the energy of
the highest valence state. If the system under consideration is a metal, the
energy εc = εv is the chemical potential µ, or in other words, the energy
cost of the addition εaddition or removal εremoval of a particle in the system.
Instead, if the system is insulating, the band gap Eg is defined as the energy
difference between conduction and valence states, i.e., Eg = εc− εv , and the
chemical potential lies somewhere inside the gap. The definition of the band
gap of insulators can also be recast in terms of total energies [13]:

Eg = EN+1,0 + EN−1,0 − 2EN,0. (2.11)

The inequality εremoval ≤ µ ≤ εaddition holds for all materials. Previous
definitions may be summarized by

if εi > µ, εi = EN+1,i − EN (2.12a)

if εi < µ, εi = EN − EN−1,i. (2.12b)

Consequently, the so-called Lehmann amplitudes fi(r) can be defined:

fi(r) =

{ 〈N |ψ(r)|N + 1, i〉 if εi > µ
〈N − 1, i|ψ(r)|N〉 if εi < µ

. (2.13)

The expression of the Green’s function in real space, real time, is then
recast as

iG(r1, r2, τ) =
∑

i

[θ(τ)θ(εi − µ) − θ(−τ)θ(µ − εi)]

× fi(r1)f
∗
i (r2)e

−iεiτ . (2.14)
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µ

band gap

Figure 2.1: In the complex plane, the Green’s function has poles (crosses)
only along the real axis. As there is no allowed energy within the band gap,
the Green’s function has no pole there. The poles are located above the
real axis for frequencies lower than the chemical potential µ, and below for
frequencies greater than µ.

The Fourier transform (using the convention of equation (A.21a) ) can
be performed analytically if the definition of the time integral is enforced
by adding or substracting a small imaginary part η in the argument of the
exponentials. When τ is positive, i.e., for addition energies, we have to add
a small η:

lim
τ→+∞

ei(ω−ε+iη)τ = 0. (2.15)

Reversely, a small η has to be subtracted for removal energies. Finally, the
Lehmann representation of the Green’s function in frequency space reads

G(r1, r2, ω) =
∑

i

fi(r1)f
∗
i (r2)

ω − εi + iη sign(εi − µ)
. (2.16)

The polar structure of the frequency Green’s function depicted on figure 2.1
is made obvious thanks to this representation. The poles lie along the real
axis on excitation energies: infinitesimally below the axis for frequencies
greater than µ, above for frequencies smaller than µ.

2.3 Definition of the spectral function

When looking at the Lehmann representation of G, it is tempting to apply
the relation

lim
η→0+

1

x + iη
= P

1

x
− iπδ(x) (2.17)
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to equation (2.16) to extract e.g. the imaginary part of G:

Im G(r1, r2, ω) = πsign(µ − εi)
∑

i

fi(r1)f
∗
i (r2)δ(ω − εi). (2.18)

The sign of Im G is a general property of the Green’s functions: it is positive
for negative frequencies, and negative for positive frequencies.

Let us now define the so-called spectral function A:

A(r1, r2, ω) =
1

π
sign(µ − ω)ImG(r1, r2, ω) (2.19)

=
∑

i

fi(r1)f
∗
i (r2)δ(ω − εi). (2.20)

The spectral function A is a positive function of ω. Moreover, A is sufficient
to give back the full G (real part and imaginary part) thanks to the relation

G(r, r′, ω) =

∫ µ

−∞
dω′ A(r, r′, ω′)

ω − ω′ − iη
+

∫ ∞

µ

dω′ A(r, r′, ω′)
ω − ω′ + iη

. (2.21)

This is nothing else but a Cauchy relation in the domain of analyticity of G.
This shows in particular that the spectral function carries the same quantity
of information as the Green’s function. It may be of numerical interest to
deal with a real function of ω that is positive by definition, instead of the
complex function G (see chapter 7).

Moreover, the spectral function can be of practical interest, as it yields
the expectation values of some observables. First, there is a sum-rule on
the spectral function:∫ ∞

−∞
dωA(r1, r2, ω) = δ(r1 − r2), (2.22)

since∑
i

fi(r1)f
∗
i (r2) =

∑
i

〈N |ψ†(r2)|N − 1, i〉〈N − 1, i|ψ(r1)|N〉

+
∑

i

〈N |ψ(r1)|N + 1, i〉〈N + 1, i|ψ†(r2)|N〉

= 〈N | [ψ(r1), ψ
†(r2)

]
+
|N〉

= δ(r1 − r2), (2.23)

where we used the definition of Lehmann amplitudes, the completeness
of sets {|N − 1, i} and {|N + 1, i}, and the anticommutation rule of field
operators.

Second, the spectral function directly yields the ground-state density∫ µ

−∞
dωA(r1, r1, ω) = ρ(r1), (2.24)
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since, using the same steps as previously,∫ µ

−∞
dωA(r1, r1, ω) = 〈N |ψ†(r1)ψ(r1)|N〉. (2.25)

Third, the spectral function gives the total energy of the system if in-
troduced in the Galitskii-Migdal formula (equation 2.6). And finally, the
following section will show how it permits one to calculate the spectra of
photoemission experiments.

2.4 Spectral function and photoemission

In order to appreciate the physics contained in the spectral function, it
is interesting to demonstrate the link between the spectral function and
the photoemission spectra. In a photoemission experiment, the detector
measures electrons that are extracted from a solid due to an incident photon.
The photocurrent is given by Fermi’s golden rule:

Jk(ω) =
∑

i

|〈N − 1, i;k|∆|N〉|2δ(Ek − εi − ω), (2.26)

where ∆ is the dipole transition operator in second quantization form, |N−
1, i;k〉 is the excited state i of the solid with N − 1 electrons plus one
photoelectron with momentum k, and Ek is the energy of the photoelectron
(kinetic energy plus vacuum level). The photocurrent is measured as a
function of the incident energy ω and of the momentum k of the extracted
electron (in an angle-resolved photoemission experiment).

This section shows how the photocurrent Jk(ω) can be evaluated via
the spectral function A in the sudden approximation [14]. The sudden
approximation precisely states that

|N − 1, i;k〉 = c†k|N − 1, i〉, (2.27)

where c†k is the creation operator of the state k. This means that the
photoelectron in the state k has no influence on the N − 1 particle state
of the solid. It should be a good approximation if the state k is an almost
free electron state.

Let us expand ∆ operator in a complete set of single-particle wavefunc-
tions φm:

∆ =
∑
lm

∆lmc†l cm. (2.28)

The preceding equation can be used to evaluate

〈N − 1, i|
∑
lm

∆lmckc
†
l cm|N〉 =

∑
lm

∆lm〈N − 1, i|ckc†l cm|N〉

=
∑
m

∆km〈N − 1, i|cm|N〉. (2.29)
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To obtain the last line, one has moved ck to the right using the commutation
rules ckclc

†
m = δklcm + c†l cmck. One has also assumed that the ground-state

has no component on the state k ck|N〉 ≈ 0, as the state k is a very high
energy state.

Let us now introduce the matrix elements of the spectral function on
the same set of one-particle states used previously and suppose furthermore
that this particular set of φm makes A diagonal, Amn = δmn〈m|A|m〉. One
hence gets

Jk(ω) =
∑
im

∆km〈N |c†m|N − 1, i〉〈N − 1, i|cm|N〉δ(Ek − εi − ω)

=
∑
m

|∆km|2Amm(Ek − ω). (2.30)

The photocurrent is therefore given by a sum of matrix elements of
the spectral function. In order to directly calculate what is measured, one
should also take into account dipole transition matrix elements ∆km, be-
tween occupied states m of the solid and high energy levels k. In practical
applications, the effect of the transition matrix elements is often disre-
garded.

2.5 Dyson equation and self-energy

Starting from the equation of motion for the Heisenberg creation and an-
nihilation field operators ψ̂ and ψ̂† (see references [15] or [7]), a hierarchy
of equations of motion for the Green’s function can be derived. The one-
particle Green’s function depends on the two-particle one:[

i
∂

∂t1
− h(r1)

]
G(1, 2) + i

∫
d3v(1, 3)G2(1, 3

+; 2, 3++) = δ(1, 2), (2.31)

the two-particle one on the three-particle one, and so on... This system
of equations is then as complex as the original problem of the 1023 elec-
trons. We have not gained anything yet by reformulating the many-particle
problem in terms of Green’s function.

Here comes the fundamental idea of many-body perturbation theory:
if one is interested in one-particle properties, one only needs to know the
one-particle Green’s function. As a consequence, let us try to find good
approximations that allows one to express the two-particle Green’s function
in terms of one-particle ones. The same holds if one is interested in the
two-particle Green’s function (e.g. to calculate absorption spectra): one
has to find approximations to get rid of the three-particle Green’s function.
Many-body perturbation theory provides a scheme to systematically find
approximations for the higher-number of particle Green’s functions in terms
of the lower ones.
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It is indeed possible (see next chapter) to reformulate the two-particle
Green’s function in terms of a formal operator Σ called self-energy that
accounts for all two-particle effects:∫

d3Σ(1, 3)G(3, 2) = −i

∫
d3v(1, 3)G2(1, 3

+; 2, 3++). (2.32)

This definition can be introduced in equation (2.31) and yields the so-
called Dyson equation:[

i
∂

∂t1
− h(r1)

]
G(1, 2) −

∫
d3Σ(1, 3)G(3, 2) = δ(1, 2). (2.33)

The purpose of many-body perturbation theory is then to find suitable
approximations for the operator Σ as a function of the one-particle Green’s
function only.

In order to gain some insight on the role of the self-energy, let us show
that it plays the role of a potential acting on the Lehmann amplitudes of
the Green’s function. If one introduces the Lehmann representation of the
one-particle Green’s function G in equation (2.33) after a Fourier transform
into frequency space, one gets the following expression:∫

dr3 {[ω − h(r3)]δ(r1 − r3) − Σ(r1, r3, ω)}
∑

i

fi(r3)f
∗
i (r2)

ω − εi ± iη
= 0. (2.34)

If one supposes following reference [14] that state i is non-degenerate and
that Σ has no pole in ω = εi, the limit ω → εi retains only state i in the
sum over states:∫

dr3 {[εi − h(r1)]δ(r1 − r3) − Σ(r1, r3, εi)} fi(r3)f
∗
i (r2) = 0. (2.35)

After dividing by f ∗
i (r2), this yields the equation∫

dr3 [h(r1)δ(r1 − r3) + Σ(r1, r3, εi)] fi(r3) = εifi(r1), (2.36)

which points out the meaning of the self-energy. The self-energy acts as a
potential in the Schrödinger-like equation of motion of the Lehmann am-
plitudes and energies. Therefore, for an energy εi lower than the chem-
ical potential, the self-energy has to describe the motion of the object
〈N − 1, i|ψ(r1)|N〉, which is a removal amplitude. For εi higher than µ,
it is same but for electron additions. This proves that the behavior of the
“potential” Σ has to be different for full or empty states. In particular, the
exact asymptotic behavior of Σ is different for holes and for electrons (see
section 2.8).
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Σ= +

Figure 2.2: Feynman diagram representation of the Dyson equation.

2.6 Non-interacting and interacting

Green’s functions

All the previous developments apply also to non-interacting fermions, for
which the formulas are much simpler. The equation of motion of the non-
interacting Green’s function G0 is merely[

i
∂

∂t1
− h(r1)

]
G0(1, 2) = δ(1, 2). (2.37)

This proves that the non-interacting Green’s function is formally the func-
tional inverse of the operator (ω − h) in frequency space. This is the usual
definition of a Green’s function in other fields of physics. Such an interpre-
tation of G−1

0 allows one to rewrite the Dyson equation (2.33) as[
G−1

0 (1, 3) − Σ(1, 3)
]
G(3, 2) = δ(1, 2), (2.38)

or, symbolically,
G = G0 + G0ΣG. (2.39)

The self-energy can now be viewed as the connection between the non-
interacting system, whose Green’s function is G0, and the interacting one
with G. All the effects beyond non-interacting particles are included in
Σ. The Dyson equation can be represented alternatively using Feynman
diagrams (figure 2.2). The meaning of the different symbols is provided in
page xi. The utility of the Feynman diagram technique will be made clear
in section 2.8, when looking for approximations to the self-energy.

Concerning the spectral functions, the non-interacting system has a sim-
ple expression for A

A(r, r′, ω) =
∑

i

φi(r)φ
∗
i (r

′)δ(ω − εi), (2.40)

where φi are the independent-particle wavefunctions and εi the correspond-
ing energies. Therefore, the matrix element Aii(ω) = 〈i|A(ω)|i〉 is a simple
δ-peak located at εi, the non-interacting excitation energy (the solid line of
figure 2.3).
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Figure 2.3: Matrix elements of the spectral functions of interacting (dashed
line) and non-interacting (solid line) electron systems.

2.7 Quasiparticles and spectral functions

To interpret more easily the interacting spectral function, let us assume that
both Σ and G are diagonal in the basis of one-particle wavefunctions (this
assumption is in most cases harmless [14]). Then, from equation (2.38), one
can write

〈i|A(ω)|i〉 =
1

π
Im

{
1

(ω − εi) − Σii(ω)

}
. (2.41)

The resulting spectral function is depicted in figure 2.3 with a dashed line.
The main peak or quasiparticle peak has moved to Ei, which is called the
quasiparticle energy,

Ei = εi + ReΣii(Ei). (2.42)

The width of the quasiparticle peak is given by Im Σii(Ei) and can be in-
terpreted as the inverse of the lifetime of the excitation i. When the energy
of the excitation goes farther from Fermi level, the quasiparticle peak gets
broader and the lifetime shorter. For instance, this means that an electron
added in a high empty state will quickly fall into a lower energy state. This
is easily interpreted: an electron excited in a high empty state will not stay
there a long time, since it has many possibilities to decay into a lower empty
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state. An electron added in the first empty state will have nowhere else to
fly away and the corresponding excitation will have an infinite life time.

An interacting spectral function may have some extra peaks that cannot
be interpreted as one-particle excitations (i.e. quasiparticles). The situation
is then very far from the non-interacting particle case. These additional
features in the spectral function are called satellites. If one Taylor expands
Σii(ω) around Ei, one can express the integral under the quasiparticle peak
as

Zi =
1

1 − ∂Σii(ω)/∂ω|ω=Ei

, (2.43)

called the renormalization factor. The Zi factor is generally far from 1.
The lower it is, the more correlated the system. If the spectral function had
only one-peak, as in an independent particle approximation, the correlation
would be low and Zi would be equal to 1. The larger Zi, the more important
are the satellites with respect to the well-defined one-particle excitation (i.e.
the quasiparticle peak).

It has been instructive to study in detail the different features of the
spectral function to understand what is the influence of the many-body
effects. In particular, one can note that, even when one is interested in one-
particle properties (as e.g. in photoemission), the collective behavior of the
fermion system may be important through quasiparticle energies, lifetime
effects and satellites.

2.8 Hartree-Fock self-energy

Let us now approximate the self-energy using the Feynman diagram tech-
nique. We consider the equation of motion for the one-particle Green’s
function as a function of the two-particle Green’s function (equation (2.31)).
The left-hand side of figure 2.4 depicts the representation of the two-particle
Green’s function G2 as the scattering of two particles. The simplest scat-
tering process one can think about is the process involving two independent
particles. Two particles enter the right-hand side of G2, two particles go out
the left-hand side of G2. In between, one has two possibilities in the case of
non-interacting particles: either the two particles have followed their way
straightforwardly, or they have exchanged (as the particles are undistin-
guishable in quantum mechanics). The two possibilities are drawn on the
right-hand side of figure 2.4. The plus and minus signs are due to Wick’s
theorem.

If one uses this expression of G2 inside the integral
∫

d3v(1, 3)G2(1, 3; 2, 3)
that appears in the equation of motion of G, one obtains the equality rep-
resented in figure 2.5. In this particular case, it is now obvious that an
operator Σ can be found, such that the equation (2.32) is valid. The corre-
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Figure 2.4: Feynman diagram representation of the approximation of the
two particle Green’s function that gives rise to the Hartree-Fock self-energy.

3
3
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Figure 2.5: Feynman diagram representation of the integral∫
d3v(1, 3)G2(1, 3; 2, 3), where the labels 1,2,3 have been explicitly

written.

sponding Σ would be

Σ(1, 2) = −iδ(1, 2)

∫
d3v(1, 3)G(3, 3+) + iv(1, 2)G(1, 2+), (2.44)

where the first term is the so-called Hartree potential vh,

vh(1, 2) = δ(1, 2)

∫
d3v(1, 3)ρ(3), (2.45)

and the second term is the so-called exchange operator or Fock self-energy
,

Σx(1, 2) = iv(1+, 2)G(1, 2), (2.46)

where the sign + for times has been moved in a consistent way, since the
Coulomb interaction v is instantaneous. The Fock self-energy is displayed
in figure 2.6.

The famous Hartree-Fock (HF) approximation to the self-energy has
come out in a natural way by using the simplest Feynman diagrams. As
the Hartree term is local, it is usually put inside the one-particle Hamil-
tonian h(1) and, as a consequence, the self-energy generally designates the
remainder Σ−vh. This convention will be used throughout this manuscript.
According to this definition, the self-energy accounts exactly for what is
called exchange-correlation or, in simple words, for all electron-electron in-
teraction effects beyond Hartree.
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Σ =

Figure 2.6: Feynman diagram representation of the Fock self-energy, which
is the only other first-order contribution in term of bare Coulomb interac-
tion, except the Hartree term.

In frequency space, the Fock self-energy becomes

Σx(r1, r2, ω) =
i

2π

∫
dτG(r1, r2, τ)v(r1, r2)δ(τ + η)eiωτ , (2.47)

where η is a small positive quantity.
Using equation (2.14) to evaluate G that contains θ step functions, the

Dirac function retains only contributions from negative times, i.e. from
removal excitations. All the terms ei(εi−ω)η go to 1, when the parameter η is
allowed to go to zero: there is no frequency dependence anymore. The Fock
self-energy is static and therefore, there is no difference between Lehmann
amplitudes and one-particle wavefunctions. All these simplifications yield
the well-known expression for the Fock operator:

Σx(r1, r2) = −
∑
i occ

φi(r1)φ
∗
i (r2)v(r1, r2). (2.48)

This non-local operator could have been obtained by minimizing the ground-
state total energy in the space of single Slater determinant wavefunctions
(see chapter 7 of reference [7]). The so-called Hartree-Fock approximation
is therefore the variationally best single particle picture for the many-body
wavefunction. In particular, the Fock term enforces the correct antisym-
metric behavior of the fermionic wavefunction.

The study of solids will be the subject of choice of this thesis, in par-
ticular bulk silicon, solid argon, and cuprous oxide. These are three very
different materials: silicon is highly polarizable, with delocalized valence
electrons; argon is an molecular solid, with very weak interactions between
atoms; and cuprous oxide is a complicated transition metal oxide, with lo-
calized d electrons, which are usually complicated for electronic structure
calculations.

Table 2.1 shows how the Hartree-Fock approximation performs for these
solids. The general trend is that the band gap (calculated as a difference
of eigenvalues) is largely overestimated (from 125 % for slightly polarizable
materials, as a rare-gaz solid, to 300 % for highly polarizable solids, as
silicon). As a consequence, there is a great need to include other terms
in the self-energy operator, to produce realistic results for the band gap.
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Concerning the calculation of structural parameters, the HF approximation
gives reliable results, not too far from experimental data. In general, HF
has been shown to bind too weakly, i.e. the resulting lattice parameters
are usually slightly too large. This statement is true for the solids under
study. All terms beyond the HF approximation will account for the so-called
correlation.

Moreover, the Hartree-Fock approximation yields a potential that has
the correct leading term for the asymptotic behavior for finite systems.
When one is far from the charge density, |r − r′| can be approximated by
a constant R on the range of variations of φi(r

′). The Hartree potential
applied to a state j gives

〈φj|VH|φj〉 =

∫
dr|φj(r)|2

∫
dr′

ρ(r′)
|r − r′|

∼ 1

R

∫
dr|φj(r)|2

∫
dr′ρ(r′)

∼ N

R
, (2.49)

Table 2.1: Theoretical and experimental lattice parameter, bulk modulus
and direct gap of bulk silicon, solid argon, and cuprous oxide evaluated
within Hartree-Fock approximation.

Si Ar Cu2O
HF Expt. HF Expt. HF Expt.

lattice parameter (a.u.) 10.39a 10.263b — — 8.38c 8.068b

bulk modulus (GPa) 107a 99b — — 100c 112d

direct band gap (eV) 9.00e 3.40f 17.93g 14.20h 9.7,c 9.84i 2.17j

aReference [16]
bReference [17]
cReference [18]
dReference [19]
eReference [20]
fReference [21]
gReference [22]
hReference [23]
iReference [24]
jReference [1]
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and the Fock term gives

〈φj|Σx|φj〉 = −
∑
iocc

∫
dr

∫
dr′φ∗

j(r)
φi(r)φ

∗
i (r

′)
|r− r′| φj(r

′)

∼ − 1

R

∑
iocc

∫
drφ∗

j(r)φi(r)

∫
dr′φ∗

i (r
′)φj(r

′)

∼
{ −1/R if εj < µ

0 if εj > µ
. (2.50)

Therefore, for an occupied state j, the asymptotic behavior of the Hartree-
Fock potential is ∼ N−1

R
. It describes the situation, when one has removed

away an electron to an N electron system. As the removed electron is in-
finitely far from its origin, its interaction is purely classical: electrostatics
theory states that the electron experiences the Coulomb potential created
by the N − 1 remaining electrons (Gauss theorem).

On the contrary, for an empty state j, the asymptotic behavior of the
Hartree-Fock potential is ∼ N

R
. It describes the situation, when one is

adding an electron to an N electron system. This is consistent with the
meaning we have given to the Lehmann amplitudes. When the extra elec-
tron is far away, it experiences just the classical Coulomb potential of the
N electrons of the system.

The Hartree-Fock approximation gives therefore a reliable leading term
for the asymptotic behavior of the potential to describe electron addition
or removal processes.



Chapter 3

Hedin’s equations,
Bethe-Salpeter equation, and
GW approximations

We have seen in the previous chapter, how useful the Green’s function can
be to evaluate the observables of an interacting system of fermions. Unfortu-
nately, the equation of motion of the one-particle Green’s function depends
on the two-particle one. The two-particle one depends on the three-particle
one, and so on... We assumed that the equations can be decoupled thanks
to a self-energy operator. In this chapter, we show that this assumption
is indeed justified and we provide a way to derive, in principle, the exact
self-energy and some approximations to it.

3.1 Green’s functions in presence of an

external perturbation

In order to decouple the hierarchy of equations for the Green’s functions, one
can use the Schwinger derivative technique. To achieve that goal, one needs
to introduce a small time-dependent external potential U(r1, r2, t), that will
be made vanish at the end of the derivation. This fictitious potential is
introduced only to allow the evaluation of the derivative with respect to
this potential.

In presence of the potential, the former definition (equation (2.1)) of the
one-particle Green’s function becomes

iG(1, 2) =
〈N |T

[
Ŝψ̂(1)ψ̂†(2)

]
|N〉

〈N |T [Ŝ]|N〉 , (3.1)

where the creation field operator ψ̂† and annihilation field operator ψ̂ are ex-
actly the same as the ones in equation (2.1). However, as a time-dependent
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external potential was added, ψ̂ and ψ̂† are now in the so-called interaction
picture: they still contain the time-dependence of the equilibrium Hamil-
tonian, while the time-dependence due to the additional potential is fully
contained in the time evolution operator Ŝ. The formal expression of Ŝ in
the interaction picture is (see references [7, 15])

T [Ŝ] = T

[
exp

(
−i

∫ +∞

−∞
dt

∫
dr1dr2ψ̂

†(r1t
+)U(r1, r2, t)ψ̂(r2t)

)]
. (3.2)

Note that imposing U = 0 leads back to the definition of the usual equilib-
rium Green’s function. The entire U dependence of this generalized Green’s
function lies in the time evolution operator Ŝ. Therefore, the first-order
variation of δG(1, 2) with respect to δU(r3, r4, t3) (variation of a product)
reads

iδG(1, 2) =
〈N |T

[
δŜψ̂(1)ψ̂†(2)

]
|N〉

〈N |T [Ŝ]|N〉 − iG(1, 2)
〈N |T [δŜ]|N〉
〈N |T [Ŝ]|N〉 (3.3)

and the variation δŜ can be evaluated as

T [δŜ] = −iT

[
Ŝ

∫ +∞

−∞
dt

∫
dr3dr4ψ̂

†(r3t
+)δU(r3, r4, t)ψ̂(r4t)

]
. (3.4)

The previous line was obtained from the differentiation of the exponential
of equation (3.2), by observing that the product of operators ψ̂†ψ̂ does com-
mute with others two-field operator products inside a time-ordered product
T .

When the equation (3.4) is inserted inside the expression 3.3, each δŜ
adds two field operators. One can hence recognize a two-particle Green’s
function and a one-particle one:

δG(1, 2) = −
∫ +∞

−∞
dt

∫
dr3dr4δU(r3, r4, t)

[
G2(1, r4t; 2, r3t

+)

−G(1, 2)G(r4t, r3t
+)

]
. (3.5)

Finally, we obtain the final formula of the Schwinger derivative tech-
nique, which is also valid for t3 
= t+:

δG(1, 2)

δU(3, 4)
= −G2(1, 4; 2, 3) + G(1, 2)G(4, 3). (3.6)

This equation is obviously of great practical interest: it allows one to get
rid of the two-particle Green’s function, while retaining only the terms
dependent on one-particle Green’s functions.
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For instance, if one uses this equation with a local U(3)δ(3, 4), the equa-
tion of motion of the one-particle Green’s function (2.31) immediately be-
comes[

i
∂

∂t1
− h(r1)

]
G(1, 2) + i

∫
d3v(1, 3)G(3, 3+)G(1, 2)

− i

∫
d3v(1+, 3)

δG(1, 2)

δU(3)
= δ(1, 2) (3.7)

or, after introducing
∫

d5G−1(4, 5)G(5, 2) = δ(4, 2),

[
i

∂

∂t1
− h(r1) + i

∫
d3v(1, 3)G(3, 3+)

]
G(1, 2)

− i

[∫
d345v(1+, 3)

δG(1, 4)

δU(3)
G−1(4, 5)

]
G(5, 2) = δ(1, 2). (3.8)

As −iG(3, 3+) is the electronic density, −i
∫

d3v(1, 3)G(3, 3+) is nothing
else but the Hartree potential. The last member of the previous equation
provides the definition of the self-energy operator:

Σ(1, 2) = i

∫
d345v(1+, 3)

δG(1, 4)

δU(3)
G−1(4, 2), (3.9)

or, using the relation (B.3),

Σ(1, 2) = −i

∫
d345v(1+, 3)G(1, 4)

δG−1(4, 2)

δU(3)
, (3.10)

that accounts for all the many-body effects beyond the Hartree term. We
know that the one-particle Green’s function furthermore satisfies the Dyson
equation (2.38) introduced in the previous chapter. The next step is to find
a way to properly evaluate this definition of the self-energy and to design
efficient approximations to it.

3.2 Hedin’s equations

In 1965, L.Hedin proposed a set of coupled equations that yields the exact
self-energy [25]. These equations are based on two fundamental quantities
G, the exact Green’s function and W , the dynamical screened Coulomb
interaction. In contrast with the usual many-body perturbation theory
developed during the 50’s [11], where the basic quantities were the non-
interacting Green’s function G0 and the bare Coulomb interaction v, Hedin’s
scheme provides directly a set of equations in terms of G and W . Develop-
ments in terms of v are known to fail: for instance, the second order term
in v for the correlation energy of an homogenous electron gas is infinite
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[7]. The idea of using an interaction, namely W , weaker than v as coupling
constant of the perturbative expansion was already introduced by Hubbard
[26]. The screened Coulomb interaction is intuitively smaller than the bare
one, as the interaction between two electrons being part of a system is re-
duced by the dielectric constant of the medium or, in other words, by the
screening due to all the other electrons of the system.

Of course, it is possible to establish the link between conventional per-
turbation theory and Hedin’s. First, perform the summation on the class
of the so-called ring diagrams or RPA diagrams. This will substitute ev-
erywhere in the equations v for W . Second, achieve the self-consistency
in G. This will substitute everywhere in the equations G0 for G. Hedin’s
equations have the advantage of directly providing expressions that use G
and W .

Hedin’s derivation starts by introducing the local classical potential V

V (1) = U(1) − i

∫
d2v(1, 2)G(2, 2+), (3.11)

which is the sum of the external perturbation U and the Hartree potential,
in order to replace all references to U with expressions involving V .

Let us insert the chain rule (B.4) via V in the definition of the self-energy
of equation (3.10):

Σ(1, 2) = −i

∫
d345v(1+, 3)

δG−1(1, 4)

δV (5)

δV (5)

δU(3)
G(4, 2), (3.12)

where the following definitions can be introduced:

ε−1(1, 2) =
δV (1)

δU(2)
(3.13)

is the time-ordered inverse dielectric function, and

Γ̃(1, 2; 3) = −δG−1(1, 2)

δV (3)
(3.14)

is the irreducible vertex function. “Irreducible” refers to the fact that the
differentiation is performed with respect to V and not to U .

At this point, one can introduce W , the dynamical screened Coulomb
interaction, which plays the role of the coupling constant of the perturbative
approach. W is defined by

W (1, 2) =

∫
d3v(1, 3)ε−1(3, 2). (3.15)

According to the previous definitions, Σ finally reads

Σ(1, 2) = i

∫
d34G(1, 4)W (3, 1+)Γ̃(4, 2; 3). (3.16)
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It still remains to provide some tractable expressions for Γ̃ and ε−1.
Using the Dyson equation G−1 = G−1

0 −V −Σ, equation (3.14) is worked
out in the following way

Γ̃(1, 2; 3)= δ(1, 2)δ(1, 3) +
δΣ(1, 2)

δV (3)
(3.17)

= δ(1, 2)δ(1, 3) +

∫
d45

δΣ(1, 2)

δG(4, 5)

G(4, 5)

δV (3)

= δ(1, 2)δ(1, 3) +

∫
d4567

δΣ(1, 2)

δG(4, 5)

×G(4, 6)G(7, 5)Γ̃(6, 7; 3). (3.18)

First, the chain rule (B.4) via δG was used. Second, the derivative of the
inverse (B.3) was introduced. Finally, one could recognize the expression
of the irreducible vertex −δG−1/δV in the right-hand side of the equation.
This is a closed integral equation for the 3-point vertex function, with a
4-point kernel δΣ/δG.

Concerning ε−1, let us use the definition of V :

ε−1(1, 2) =
δ
(
U − i

∫
d3v(1, 3)G(3, 3+)

)
δU(2)

= δ(1, 2) +

∫
d3v(1, 3)χ(3, 2), (3.19)

where

χ(1, 2) = −i
δG(1, 1+)

δU(2)
(3.20)

is the reducible polarizability of the system. “Reducible” means that the
variations G(1, 1+) are sensitive to the bare external potential U . One can
alternatively define an irreducible polarizability

χ̃(1, 2) = −i
δG(1, 1+)

δV (2)
. (3.21)

The link between the two polarizabilities is made by using once more the
chain rule and the relation (3.19):

χ(1, 2) = −i

∫
d3

G(1, 1+)

V (3)

δV (3)

δU(2)

= χ̃(1, 2) +

∫
d34χ̃(1, 3)v(3, 4)χ(4, 2). (3.22)

The remaining quantity, that has still to be determined, is χ̃. It can be
obtained as a function of G and Γ̃ by using relation (B.3):

χ̃(1, 2) = i

∫
d34G(1, 3)

δG−1(3, 4)

δV (2)
G(4, 1)

= −i

∫
d34G(1, 3)G(4, 1)Γ̃(3, 4; 2). (3.23)
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Figure 3.1: Symbolical representation of the practical solution of the Hedin’s
equation. This representation is probably due to V.Olevano [27].

At the present time, all introduced quantities are properly defined and
the limit of vanishing external potential U can be safely performed. Let us
gather Hedin’s set of five equations of five variables:

G(1, 2) = G0(1, 2) +

∫
d34G0(1, 3)Σ(3, 4)G(4, 2) (3.24a)

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
d4567

δΣ(1, 2)

δG(4, 5)

×G(4, 6)G(7, 5)Γ̃(6, 7; 3) (3.24b)

χ̃(1, 2) = −i

∫
d34G(2, 3)G(4, 2)Γ̃(3, 4; 1) (3.24c)

W (1, 2) = v(1, 2) +

∫
d34v(1, 3)χ̃(3, 4)W (4, 2) (3.24d)

Σ(1, 2) = i

∫
d34G(1, 4)W (3, 1+)Γ̃(4, 2; 3) (3.24e)

Only the definition of W was worked out to avoid the introduction of the
intermediate quantities ε−1 and χ.

In his original paper, Hedin mentioned that these equations can be
viewed as an iterative solution of the many-body problem, but he stressed
that they would be interesting if only very few iterations were actually
needed. Initiate with some hypothesis on Σ and G, evaluate Γ̃, then χ̃.
Calculate W and then Σ. Now one knows an improved Green’s function G
and one can start again the same procedure, with the new Σ and G. This
procedure can be represented by the pentagon in figure 3.1, where each sum-
mit symbolizes an unknown variable and each edge one of the five Hedin
equations. The exact solution can be obtained in principle upon completion
of numerous cycles of the pentagon.
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=Σ

Figure 3.2: Feynman diagram representation of the GW self-energy, which
is the only first-order contribution in terms of screened Coulomb interaction.

=χ~

Figure 3.3: Feynman diagram representation of the first-order irreducible
polarizability.

3.3 GW approximation

Using W instead of v as basic interaction line is motivated by the hope
that the perturbation theory will converge faster with respect to powers
of W , than with respect to the powers of v. Having this hope in mind,
Hedin proposed to retain only first-order contributions in W [25], or in
other words, to perform one single cycle of the pentagon. This yields the
so-called GW approximation that consists in initiating the iterative scheme
with Σ = 0 in the vertex equation:

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3). (3.25)

This provides indeed a first-order expansion in terms of W of the scheme,
as depicted with the Feynman diagrams in figures 3.2 and 3.3. The symbols
used in Feynman diagrams can be found on page xi.

On one hand, the resulting self-energy is just

Σ(1, 2) = iG(1, 2)W (2, 1+). (3.26a)

The form of equation (3.26a) gives the name to the approximation. On the
other hand, the irreducible polarizability simply reads

χ̃(1, 2) = −iG(1, 2)G(2, 1) = χ0(1, 2), (3.26b)

which is the definition of the independent particle polarizability χ0.
This approximation is justified only if one expects the sum of the higher-

order terms in W to be small with respect to the first-order ones of equa-
tions (3.26a) and (3.26b). Symbolically, the second order term for the self-
energy can be written as GWGWG. For instance, it is well known that the
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effect of the higher-order terms in the polarizability is drastic on optical
properties (as it will be discussed in the following).

In conclusion, there is no fundamental evidence that assesses the rel-
evance of this approximation. However, many calculations using this ap-
proximation were performed successfully, and made this method the state-
of-the-art for the evaluation of band structures [28, 29].

3.4 Static screened exchange and COHSEX

approximation

In order to simplify, and to gain physical insight into the GW approxi-
mation, let us make some further approximations. We suppose that the
screened Coulomb interaction is static

W (r1, r2, τ) =
1

2π
W (r1, r2, ω = 0)δ(τ). (3.27)

Therefore, equation (3.26a) becomes

Σ(r1, r2, ω) =
i

2π

∫
dτG(r1, r2, τ)W (r2, r1, ω = 0)δ(τ + η)eiωτ . (3.28)

Analogously to the Hartree-Fock derivation, this integral retains only con-
tributions from occupied states. Finally, one obtains a statically screened
exchange approximation for the self-energy:

ΣSEX(r1, r2) = −
∑

i

θ(µ − εi)fi(r1)f
∗
i (r2)W (r2, r1, ω = 0). (3.29)

Equation (3.29) is identical to expression (2.48), except that the bare Coulomb
interaction was replaced by the statically screened one. This static approx-
imation for the self-energy should be an improvement with respect to the
Hartree-Fock approach, as it includes the decrease of the exchange interac-
tion due to the polarizability of the medium.

The assumption (3.27) on W is quite drastic. Let us make a slightly
different approximation, proposed by L.Hedin [25] in 1965, that gives rise to
additional static terms in the self-energy. Whereas the bare Coulomb part v
of W is strictly speaking instantaneous, the polarizable part Wp = W−v has
a certain width in the time structure. This is implemented in equation (3.28)
by removing the small η parameter in the polarizable part of W :

Σ(r1, r2, ω) =
i

2π

∫
dτG(r1, r2, τ) [v(r2, r1)δ(τ + η)

+ Wp(r2, r1, ω = 0)δ(τ)] eiωτ . (3.30)
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This assumption still makes Wp a sharp peak, but now it is not able
to retain only occupied states, as in the case of exchange (first term of
equation (3.30)). Introducing the expression of the Green’s function (equa-
tion (2.14)) and using the relation δ(τ)θ(τ) = δ(τ)θ(−τ) = 1

2
δ(τ), one gets

Σ(r1, r2) = −
∑

i

θ(µ − εi)fi(r1)f
∗
i (r2)v(r2, r1)

−1

2

∑
i

θ(µ − εi)fi(r1)f
∗
i (r2)Wp(r2, r1)

+
1

2

∑
i

θ(εi − µ)fi(r1)f
∗
i (r2)Wp(r2, r1)

= −
∑

i

θ(µ − εi)fi(r1)f
∗
i (r2)W (r2, r1)

+
1

2

∑
i

fi(r1)f
∗
i (r2)Wp(r2, r1). (3.31)

To obtain the last line, we added and removed 1
2

∑
i θ(µ−εi)fi(r1)f

∗
i (r2)Wp(r2, r1).

The equation (3.31) now exhibits the same self-energy contribution ΣSEX as
previously. The remaining contribution ΣCOH is just a sum over all the
states of Lehmann amplitudes, that reduces to a δ(r1, r2) function, due to
the completeness of fi’s. The term

ΣCOH(r1, r2) =
1

2
δ(r1 − r2)Wp(r2, r1, ω = 0) (3.32)

is known as the Coulomb hole contribution to the self-energy. This term is
static, and moreover local in space.

This static approximation to the full GW self-energy elucidates the
meaning of the different contributions with more understandable pictures.
One can think of the screened exchange operator as the usual Fock operator
weakened by the presence of the other electrons, that screen the interac-
tion. In a non-polarizable material, the screening would tend to 1 and the
resulting screened exchange would just be the bare exchange.

The Coulomb hole term ΣCOH can be viewed in a totally classical picture
[25], once one has assumed that the added or removed particle is just a
point charge. Let us evaluate the classical potential felt by a point charge
±δ(r− r0) (that can represent a hole or an electron according to the sign),
via the polarization of the medium surrounding it. The scheme of the
interactions is given in figure 3.4

In any place of the material, this addition or removal of a charge leads
to a variation of the Coulomb potential:

δVext(r
′) =

∫
drv(r′, r) (±δ(r − r0)) . (3.33a)
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Figure 3.4: Evaluation of the potential felt by a point charge introduced at
r0 in a polarizable medium, which induces a potential δVext, which, on its
turn, creates induced charges δρind. The latter finally act on the introduced
charge. The straight arrows labeled E represent the interaction due to the
electric field. The wiggly line represents the polarizability.

As the material is polarizable, a change of the potential at any point r′

gives rise to variation of charge in r′′:

δρind(r
′′) =

∫
dr′χ(r′′, r′)δVext(r

′). (3.33b)

On its turn turn, this change in the charge density in all possible r′′ creates
an induced potential in r, via

δVind(r
′′′) =

∫
dr′′v(r′′′, r′′)δρind(r

′′). (3.33c)

If the equations (3.33) are combined, one obtains the classical potential felt
by an small variation of the density on itself, via the polarizability of the
medium:

δVind(r
′′′) =

∫
drdr′dr′′v(r′′′, r′′)χ(r′′, r′)v(r′, r) (±δ(r − r0)) , (3.34)

where vχv is Wp. Finally, the energy consumed to adiabatically build the
charge distribution ±δ(r) in a polarizable medium is given by

Eind =

∫ 1

0

αdα

∫
dr′′′ (±δ(r′′′ − r0)) δVind(r

′′′) =
1

2
Wp(r0, r0). (3.35)

The 1/2 factor accounts for the adiabatic building up of the charge density.
Since there are two occurrences of ± in δVind and in Eind, the sign of this
energy is always positive, both for holes and for electrons. It is compliant
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with the classical intuition, that the polarization tends to oppose to the
causes that have created it. As the probability to find the electron or
hole labelled i in r0 is |φi(r0)|2, the energy corresponding to this charge
distribution is nothing else but

1

2

∫
dr0Wp(r0, r0)|φi(r0)|2 = 〈i|ΣCOH|i〉. (3.36)

This energy is exactly what we called the Coulomb hole self-energy.
The COHSEX approximation to the self-energy is of physical interest,

but it is still approximative. For instance, we considered only an instan-
taneous polarization of the medium by the classical charge. In reality we
do know that the polarizability χ is a frequency dependent function! We
also considered the added hole or electron as a point charge ±δ(r−r0) with
no spatial extension weighted by the probability to find the particle there.
This is a crude approximation to the quantum mechanical formalism.

This physics of the response of the medium to the addition of an extra-
particle is also contained in the GW approximation, with even less assump-
tions. But they are more difficult to analyze in the full GW expression.

3.5 Bethe-Salpeter equation for the

polarizability

It is interesting to know also the two-particle Green’s function G2. For in-
stance, in an absorption experiment, two particles are involved: an electron
and a hole. It is obvious that describing the two particles in terms of two
independent particles would neglect the mutual attraction of the hole and
the electron. This approximation would disregard all the excitonic effects.
Therefore, to draw a realistic description of optical absorption phenomena,
the calculation of G2 is really required (to be precise a contracted G2 is
needed).

Let us introduce the quantity L defined in terms of G2:

iL(1, 2; 1′, 2′) = −G2(1, 2; 1′, 2′) + G(1, 1′)G(2, 2′). (3.37)

L describes the coupled motion of an electron and a hole minus the motion
of the two independent particles. L is called the 4-point polarizability,
because, when it is contracted, it gives back the usual 2-point polarizability
(this will be made clear in the following). According to equation (3.6), L
can be written as the derivative of the one-particle Green’s function G(1, 1′)
with respect to a nonlocal external potential U(2′, 2):

L(1, 2; 1′, 2′) = −i
δG(1, 1′)
δU(2′, 2)

. (3.38)
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Ξ LL +=

Figure 3.5: Feynman diagram representation of the 4-point Bethe-Salpeter
equation. The 4-point polarizability is drawn as a circle and the 4-point
Bethe-Salpeter kernel as a square.

Using the same functional tricks (chain rules, derivative of inverse...) as
in the derivation of Hedin’s equations, we can get a closed integral equa-
tion for L, namely the Bethe-Salpeter equation. First, we introduce the
derivative of G−1:

L(1, 2; 1′, 2′) = i

∫
d34G(1, 3)G(4, 1′)

δG−1(3, 4)

δU(2′, 2)
. (3.39)

Second, we use the Dyson equation (2.38) to get rid of G−1:

L(1, 2; 1′, 2′) = i

∫
d34G(1, 3)G(4, 1′)

× δ

δU(2′, 2)

[
G−1

0 (3, 4) − U(3, 4) − vh(3)δ(3, 4) − Σ(3, 4)
]
. (3.40)

As G0 does not depend on U , this gives

L(1, 2; 1′, 2′) = L0(1, 2; 1′, 2′) +

∫
d3456L0(1, 4; 1′, 3)

δ

δG(5, 6)
[vh(3)δ(3, 4) + Σ(3, 4)]

δG(5, 6)

δU(2′, 2)
, (3.41)

where L0(1, 2; 1′, 2′) = −iG(1, 2′)G(2, 1′) is the noninteracting L, and the
chain rule via G(5, 6) was used. Finally, if Ξ stands for the Bethe-Salpeter
kernel,

Ξ(3, 6; 4, 5) = i
δ [vh(3)δ(3, 4) + Σ(3, 4)]

δG(5, 6)
, (3.42)

the final result is the Bethe-Salpeter equation

L(1, 2; 1′, 2′) = L0(1, 2; 1′, 2′)

+

∫
d3456L0(1, 4; 1′, 3)Ξ(3, 6; 4, 5)L(5, 2; 6, 2′). (3.43)

This is a Dyson-like equation for the 4-point polarizability L. The kernel
Ξ links the noninteracting L0 to the true L. This is strictly analogous
to the role of the self-energy Σ that links G0 to G. The Bethe-Salpeter
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equation can be drawn using the Feynman diagrams technique as depicted
in figure 3.5.

The knowledge of the complete L(1, 2; 1′, 2′) is actually not necessary to
describe optical absorption experiments. In fact, they are sensitive to the
reducible polarizability χ

χ(1, 2) = −i
δG(1, 1+)

δU(2, 2)
= L(1, 2; 1, 2). (3.44)

Only the two-point function L(1, 2; 1, 2) is then required to account for ab-
sorption phenomena. Unfortunately, there is no closed equation within the
Green’s function framework for this two-point quantity. In practice, we
need to solve the four-point Bethe-Salpeter equation and then to contract
into the two-point polarizability. The solution of the Bethe-Salpeter equa-
tion gives much more information than needed for that purpose. One of
the topics of the thesis is to circumvent this limitation (chapter 9)

3.6 Approximations to the kernel of the

Bethe-Salpeter equation

In practical applications, the kernel of the Bethe-Salpeter equation has to
be specified. As it depends on the self-energy Σ, one can immediately try
to use the same approximation as the ones we used for Σ.

The complete neglect of Σ yields the so-called time-dependent Hartree
approximation or, for historical reasons, the Random Phase Approximation
(RPA). The self-energy Σ in Ξ now depends only on the electronic density
(i.e. the diagonal of G), which adds a δ(5, 6) function in equation (3.43). In
this particular case, due to the two δ functions, the Bethe-Salpeter equation
reduces to a closed Dyson-like equation for χ:

χ(1, 2) = χ0(1, 2) +

∫
d34χ0(1, 3)v(3, 4)χ(4, 2). (3.45)

The Coulomb interaction v comes out from the differentiation of the Hartree
potential vh with respect to ρ. This 2-point equation is depicted on fig-
ure 3.7, where the role of the δ functions can be graphically seen (note the
contraction of the indexes of L).

Due to the interaction v, even when we are interested in the macroscopic
dielectric constant εM(q → 0) only, we need to consider χ0 as a full matrix
[31, 32]. In the plane-wave basis set, the macroscopic dielectric constant
reads

εM(q → 0) = 1/(δG=0G′=0 + vG=0χG=0G′=0). (3.46)

In order to calculate χG=0G′=0, the calculation of the full matrix χ0 GG′ is
required according to equation (3.45). The term v in the time-dependent
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Figure 3.6: Optical absorption spectrum of bulk silicon calculated within
time-dependent Hartree (constructed with an LDA χ0, dashed line), time-
dependent HF (dotted line), and time-dependent screened HF (full line)
approximations of the Bethe-Salpeter kernel compared to the experimental
curve (full circles) of reference [30]. A broadening of 0.1 eV has been used
for all theoretical curves.

=L L+

Figure 3.7: Feynman diagram representation of the Bethe-Salpeter equation
within the time-dependent Hartree approximation (or RPA). It is now a 2-
point equation, as the indexes can be contracted, such that one can get a
closed equation for L(1, 2; 1, 2) = χ(1, 2).

Hartree approximation gives rise to the so-called crystal local-field effects.
This effects account for the inhomogeneity in space of the material: in fact,
in real space the response function does depend on r and r′, and not simply
on r − r′.

The performance of the time-dependent Hartree approximation for the
calculation of optical absorption experiments is shown in figure 3.6. Note
that the noninteracting polarizability χ0 used to calculate the time-dependent
Hartree spectrum of the figure is not the Hartree one, but the DFT-LDA
one (see next chapters). Therefore, the curve depicted here is not, strictly
speaking, the time-dependent Hartree one. Indeed, the true time-dependent
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Hartree curve should be even in worse agreement with the experiment.

If the self-energy is now set equal to the exchange self-energy Σ(1, 2) =
iG(1, 2)v(1+, 2), the derivative with respect to G can be easily performed
and yields two δ functions:

L(1, 2; 1′, 2′) = L0(1, 2; 1′, 2′) +

∫
d3456L0(1, 4; 1′, 3)

× [δ(3, 4)δ(5, 6)v(3, 5)− δ(3, 5)δ(4, 6)v(3, 4)]L(5, 2; 6, 2′). (3.47)

The indexes of the second v are in such an order hat it is impossible to write
directly an equation for χ. This approximation is called time-dependent
Hartree-Fock. It is not used in pratice for semiconductors, because the
attraction between the hole and the electron carried by the second term of
Ξ is too large. The solution of this equation would give bound excitons in all
materials, as one can see in figure 3.6. For silicon, the calculated spectrum
becomes one single sharp peak at too high energies (even if it is below
the Hartree-Fock band gap). This is due to the fact that the Coulomb
interaction between the hole and the electron should be screened by the
other electrons of the system and that the Hartree-Fock approximation
gives a very bad L0 with a too large band gap (see table 2.1).

A simple manner to take into account the polarizability of the system
is to choose the screened exchange approximation for the self-energy. The
resulting Bethe-Salpeter equation is identical to equation (3.47), but with
the statically screened Coulomb interaction W (ω = 0) instead of the sec-
ond bare Coulomb interaction v, if one also neglects the derivative δW/δG
(which is believed to be second-order in W ). The last approximation has for
long been considered as a harmless approximation [33, 34]. The equation
in the time-dependent screened Hartree-Fock approximation reads

L(1, 2; 1′, 2′) = L0(1, 2; 1′, 2′) +

∫
d3456L0(1, 4; 1′, 3) [δ(3, 4)δ(5, 6)v(3, 5)

−δ(3, 5)δ(4, 6)
1

2π
W (r3, r4, ω = 0)δ(t3 − t4)

]
L(5, 2; 6, 2′), (3.48)

which correspond of the Feynman diagram representation in figure 3.8. The
Feynman diagrams make obvious that the wiggly line, that represents W ,
prevents from contracting the indexes of L to get a 2-point equation for χ
(this limitation was already true within the time-dependent Hartree-Fock
approximation).

The solution of the previous equation is the method of choice used in
many practical ab initio applications [35]. It has been very successful for
clusters [36], surfaces [37], and solids [38, 39]. In particular, for silicon, the
almost perfect agreement between the time-dependent screened HF calcu-
lation and the experimental curve can be seen in figure 3.6. Note that the
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Figure 3.8: Feynman diagram representation of the Bethe-Salpeter equation
within the time-dependent screened HF approximation. The Bethe-Salpeter
kernel consists of two 2-point terms, but unfortunately, the contracted in-
dexes are not the same for v (horizontal interaction) and for W (vertical
interaction). The equation hence remains a 4-point one.

GW eigenvalues, which give a very good band gap, have been used to con-
struct L0 in equation (3.48). As a consequence, the calculation commonly
made is not strictly speaking a time-dependent screened HF calculation,
but, more precisely, a GW plus time-dependent screened HF calculation.

Note that, thanks to the δ(t3− t4) function, the equation (3.48) depends
on only one frequency. Some attempts were made to include further dynam-
ical effects in W and in the Green’s functions [40, 41]. The conclusions were
that the dynamical effects essentially cancel out. As a consequence, the cur-
rent recipe of using just a statically screened Hartree-Fock approximation
for the kernel of the Bethe-Salpeter equation turns out to be justified. In
particular, this method is successfully used for Cu2O in chapter 16.



Chapter 4

Approach to the Many-Body
Problem by means of the
electronic density

4.1 Ground-state density as a basic variable

The idea of density-functional theory (DFT) is basically the same as in
Green’s functions approach: in order to avoid to use the full N -particle
wavefunction, one considers instead an “integrated” variable. An integrated
variable means that it is obtained from the original many-body wavefunc-
tion, but all variables except one, in the case of the density, are averaged
out:

ρ(r) = N

∫
dr2 . . . drN |Ψ0(r, r2, . . . , rN)|2 , (4.1)

where Ψ0 is the ground-state wavefunction of the N -electron system. This
is the simplest integrated quantity one can think of. Integrating on the only
remaining variable yields N , the number of electrons.

The idea of using the ground-state density alone as a basic variable
comes from the early works on quantum mechanics (L.H.Thomas [42] and
E.Fermi [43]). The density can be intuitively felt as fundamental, since it
yields directly the main contributions to the energy of a system. For exam-
ple, the electrostatic part of the electron-electron interaction (the Hartree
energy EH) is readily obtained from the density,

EH =
1

2

∫
drdr′

ρ(r)ρ(r′)
|r − r′| , (4.2)

as well as, the energy due to an external potential vext,

Eext =

∫
drρ(r)vext(r), (4.3)
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and the kinetic energy of a noninteracting homogeneous electron gas by
means of the Thomas-Fermi formula.

But at this point, there are some open issues: neither the kinetic energy
can be written in terms of ρ in the general case , nor the electron-electron
interaction beyond the electrostatic term. The original paper of Hohenberg
and Kohn [44] in 1964 justified, on firm mathematical grounds, approaches
using the density only.

4.1.1 Hohenberg-Kohn theorems

The Hohenberg-Kohn theorems are mathematical proofs for the following
properties of a system of N -fermion interacting via a given potential v,
subjected to a static external potential vext(r):

• there is a one-to-one mapping up to a constant value between the
space of external potentials and the space of the ground-state densi-
ties:

vext ⇔ ρ; (4.4)

• the ground-state expectation value of any observable O is a functional
of the ground-state density only:

〈Ψ0|O|Ψ0〉 = O[ρ]; (4.5)

• there is a variational principle on the density: the ground-state energy
E0 has its global minimum for the true ground-state density ρ

E0[ρ] < E0[ρ̃], (4.6)

where ρ̃ is any trial ground-state density.

The proof of the previous statements can be found in the original Hohenberg-
Kohn’s paper [44] or in reviews about DFT (see e.g. reference [45]). The
proof is made ad absurdum. This means that it does not give a practical
expression for the one-to-one mapping between vext and ρ. It just states
the existence of the one-to-one mapping: “it could not be else”.

Looking at the many-body Hamiltonian of equation (1.2), it seems to be
necessary, for instance, to know the one-particle density matrix in order to
calculate the kinetic contribution to the energy. The power of DFT is that
the simpler quantity ρ can mathematically give access to all ground-state
properties of a system and in particular to the kinetic energy.

As the total energy is a functional of the density, it is possible extract
some parts that are obviously density-functionals. The remainder will be
still a density-functional:

E0[ρ] = 〈Ψ0|H|Ψ0〉
= 〈Ψ0|T + W |Ψ0〉 +

∫
drvext(r)ρ(r), (4.7)
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where T is the kinetic operator and W is the electron-electron interaction
operator. One is allowed to go on and split the W term into two pieces:
the Hartree part and a remainder Exc:

E0[ρ] = 〈Ψ0|T |Ψ0〉 +
1

2

∫
drdr′

ρ(r)ρ(r′)
|r − r′| +

∫
drvext(r)ρ(r) + Exc[ρ]. (4.8)

The purpose is to make the remainder as small as possible. This unknown
quantity Exc is called the exchange-correlation energy. The kinetic energy
is also a functional of the density, whose dependence with respect to the
density is unknown.

4.1.2 Kohn-Sham approach to DFT

In 1965, W.Kohn and L. J. Sham [46] proposed a method to evaluate the
main contribution to the kinetic energy. The aim is again to make the
unknown part of E0[ρ] as small as possible. They proposed to split the
kinetic contribution into to parts: the kinetic energy of a fictitious system
of noninteracting electrons that would experience an external potential vKS,
such that it has the same ground-state density as the interacting system;
and a remainder (the correlation part of the kinetic energy), which is recast
inside the unknown quantity Exc. In this approach, the ground-state energy
reads

E0[ρ] = −
N∑

i=1

∫
drφ∗

i (r)
∇2

r

2
φi(r)

+
1

2

∫
drdr′

ρ(r)ρ(r′)
|r − r′| +

∫
drvext(r)ρ(r) + Exc[ρ], (4.9)

where Exc differs from the definition( 4.8) of the previous section, because
it now contains the correlated part of the kinetic energy, and where φi(r)
are the wavefunctions of the noninteracting system.

This procedure has, of course, a drawback: the wavefunction concept is
re-introduced into the scheme. Fortunately, these wavefunctions φi(r) are
noninteracting, i.e. one-particle ones. They can hence be calculated in prac-
tice. The wavefunctions φi are themselves density-functionals. Therefore,
the Kohn-Sham technique remains within the DFT framework.

The Kohn-Sham potential vKS is obtained by the fact that the energy
is stationnary upon changes in the ground-state density of the true (or of
the fictitious) system. It reads

vKS(r) = vext(r) +

∫
dr′

ρ(r′)
|r − r′| + vxc[ρ](r), (4.10)
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where the second term is the usual Hartree potential and the last term is
the exchange-correlation potential defined by

vxc(r) =
δExc

δρ(r)
. (4.11)

Gathering these considerations, the Kohn-Sham procedure reduces to
solve an independent particle problem, with eigenfunctions φi and eigenval-
ues εi: (

−∇2

2
+ vKS(r)

)
φi(r) = εiφi(r). (4.12)

As the potential vKS is given by equation (4.10), the eigenfunctions have
the only required property: they yield the correct ground-state density

ρ(r) =
N∑

i=1

|φi(r)|2. (4.13)

Equations (4.10), (4.12), (4.13) form the set of closed equations of the Kohn-
Sham scheme. It remains just to devise sensible approximations to vxc.

4.1.3 Exchange-correlation potentials

The tiny part Exc that still remains unknown has to be approximated in a
convenient way. It has to be computationally cheap and give reliable results.
The first approximation already devised in 1965 by Kohn and Sham [46],
the Local Density Approximation (LDA), satisfies both requirements.

Local Density Approximation

One can write with no further assumption the exchange-correlation energy
under the form

Exc =

∫
drρ(r)εxc[ρ](r), (4.14)

with εxc[ρ](r) standing for the exchange-correlation energy density. This
quantity is still a functional of the ground-state density.

The Local Density Approximation (LDA) proposes to assume that, at
every point r of space, εxc[ρ](r) is just the exchange-correlation energy den-
sity of an homogeneous electron gas of the same density ρ(r). Since Ceperley
and Adler’s [47] pioneering Quantum Monte Carlo calculations, exact data
for εxc in an homogeneous electron gas are available. For practical purposes,
Quantum Monte Carlo results were interpolated [48, 49] in order to have
an analytic expression for εxc as a function of ρ(r).

Note that, in this local approximation, εxc is not only a functional of
the density ρ, it is, to be precise, a simple function of ρ(r):

Exc =

∫
drρ(r)εLDA

xc (ρ(r)). (4.15)
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This approximation has been applied successfully for 20 years [50]. It
has also been extended to the case of spin-polarized calculations (LSDA).

Gradient expansions beyond LDA

If the system under study were totally homogeneous, the LDA would be
exact, by definition. A natural way to attempt improvements on LDA is to
allow for a further dependence of εxc on the derivatives of the density, to
account for the inhomogeneity of the density. This is a gradient expansion
of the exchange-correlation energy with respect to the density.

In this kind of approximation, the dependence of εxc with respect to the
density remains local: εxc is a function of ρ(r), ∇ρ(r), ... The so-called
Generalized Gradient Approximation (GGA) of reference [51] has become
widely used, e.g. because it gives reliable results for molecules or for hydro-
gen bonds in water. Unfortunately, one cannot state that the GGA gives
systematic improvements with respect to the LDA. That is why I have
generally preferred the simpler LDA to the GGA in this thesis.

The Meta-GGA method [52] proposes to add a dependence on ∇2ρ(r),
and on τ(r) = 1/2

∑
i |∇φi(r)|2. τ depends explicitly on the Kohn-Sham

orbitals (which are themselves functionals of the density). The computa-
tional cost increases considerably as a consequence. This method is not
currently wide spread in the DFT community.

Other approximations for the exchange-correlation

Improved exchange-correlation energies can also be obtained by indirect
methods.

The adiabatic-connection fluctuation-dissipation theorem expresses the
exchange-correlation energy as an integral over a coupling constant λ that
scales the Coulomb interaction λ/|r−r′|. This method needs the calculation
of response functions for many different values of λ. It is very involved and
has been applied so far only to small systems [53].

Direct comparison with the Green’s function approach (described in
the previous chapters) can give access to expressions for the exchange-
correlation potential, via the so-called Sham-Schlüter equation [13]. This
procedure is described extensively in chapter 6.

4.2 Time-dependent density as the basic

variable

We have so far studied only systems subjected to a static external potential.
The ground-state density can then play the role of the basic variable, as
its knowledge is sufficient to recover the external potential, and hence the
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full Hamiltonian (provided that the two-body interaction is given). What
happens when a time-dependent external potential is applied? This will for
sure change the situation drastically, since there is no energy conservation,
and the system leaves its ground-state.

A time-dependent external potential is very often met in experiments,
for instance, in optical absorption. The theoretical description of optical
absorption requires to know how the electronic density of the system re-
sponds to a change of the external potential δU(r′t′). The observable of
interest in linear response regime is the causal response function χ defined
by

δρ(rt) =

∫ t

−∞
dt′

∫
dr′χ(r, r′, t − t′)δU(r′t′). (4.16)

Causal means that variations of ρ(rt) only depends on time t′ smaller than
t.

It seems natural to extend the static formalism of DFT to the dynamical
case. This was the implicit point of view of Zangwill and Soven [54], who
performed the first time-dependent density-functional calculation in 1980.
But there were no mathematical grounds to justify the use of the time-
dependent density-functional approach. The cornerstone was put by Runge
and Gross in 1984 [55].

4.2.1 Runge-Gross theorem and time-dependent
Kohn-Sham

Runge and Gross established in 1984 [55] (for a recent review, see refer-
ence [56]) a series of theorems, which are the dynamical equivalent of the
static Hohenberg-Kohn and Kohn-Sham theorems. Under some mild as-
sumptions, they proved that there is a one-to-one mapping between the
time-dependent external potentials (up to a purely time-dependent con-
stant) and the time-dependent densities.

The two requirements of this theorem are first a well-defined initial state
|Ψ(t0)〉 and second that the time-dependent external potential is Taylor-
expandable at the initial time t0. The first requirement is very important, as
one can start at the initial time t0 with an excited state, whose wavefunction
is not, strictly speaking, a density-functional. The second one excludes all
the adiabatic switching-on processes that are non-Taylor expandable.

Runge and Gross also showed the validity of the Kohn-Sham proce-
dure for time-dependent systems. The Kohn-Sham orbitals are now time-
dependent φi(rt) and obey a one-particle time-dependent Schrödinger equa-
tion:

i
∂

∂t
φi(rt) = HKS(r, t)φi(rt), (4.17)
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where the KS Hamiltonian is a direct extension of the static one

HKS(rt) = −∇2

2
+ vKS[n](rt). (4.18)

The wavefunctions φi(r, t) have the only property to yield the correct time-
dependent density

ρ(rt) =
∑

i

|φi(rt)|2. (4.19)

The time-dependent Kohn-Sham potential vKS[n](r, t) is the straightfor-
ward extension to time-dependent systems of the usual static Kohn-Sham.

Finally, whereas there is no minimum principle for systems subjected to
a time-dependent perturbation, there exists a quantum mechanical action
A, whose extrema describe the time evolution of the system between the
time t1 and the time t2:

A[Ψ] =

∫ t2

t1

dt〈Ψ(t)|i ∂

∂t
−H(t)|Ψ(t)〉. (4.20)

This expression for the action A does not satisfy the causality requirement.
Instead, A is symmetric with respect to the time arguments. This theoreti-
cal issue can be circumvented using the Keldysh contour technique [57, 58].

With this series of theorems, the use of only the time-dependent density
is justified, and a practical Kohn-Sham procedure to evaluate the main
contributions is established.

4.2.2 Linear-response regime

TDDFT is hence justified in particular for the linear-response regime [59],
which is very useful to compare with experimental data. Our purpose is to
calculate the causal response function χ, that links variations of the density
δρ to variations of the external potential δU , as said earlier,

δρ(rt) =

∫ t′

−∞
dt′

∫
dr′χ(r, r′, t − t′)δU(r′t′). (4.21)

As time is homogeneous, the response function depends only on the differ-
ence between times. Moreover, causality has been explicitly enforced here
thanks to the upper limit of the time integral. Note that this definition of χ
is equivalent to the one met in the Hedin’s equation of the previous chapter
(equation (3.22)), except for the fact that the response is now causal instead
of time-ordered.

The response function χ can alternatively be written as

χ(r, r′, t − t′) =
δρ(rt)

δU(r′t′)

∣∣∣∣
U=vext

, (4.22)
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where the derivative is evaluated at a vanishing perturbing potential δU .
Therefore, U reduces to the static external potential vext. This expression
can be worked out in order to introduce the Kohn-Sham response function
χKS, which is the response of the independent Kohn-Sham particles:

χKS(r, r′, t − t′) =
δρ(rt)

δvKS(r′t′)

∣∣∣∣
vKSstatic

. (4.23)

The time-dependent Kohn-Sham potential vKS has been introduced

vKS(rt) = U(rt) + vh(rt) + vxc(rt), (4.24)

where all these potentials are functional of the time-dependent density.
The chain rule via vKS can be used in equation (4.22)

χ(r, r′, t − t′) =

∫ t

−∞
dt′′

∫
dr′′

δρ(rt)

δvKS(r′′t′′)
δvKS(r′′t′′)
δU(r′t′)

=

∫ t

−∞
dt′′

∫
dr′′χKS(r, r′′, t − t′′)

× δ

δU(r′t′)
[U(r′′t′′) + vh(r

′′t′′) + vxc(r
′′t′′)]

= χKS(r, r′, t − t′)

+

∫ t

−∞
dt′′

∫ t′′

−∞
dt′′′

∫
dr′′

∫
dr′′′χKS(r, r′′, t − t′′)

× [v(r′′, r′′′, t′′ − t′′′) + fxc(r
′′, r′′′, t′′ − t′′′)]

×χ(r′′′, r′, t′′′ − t′). (4.25)

The last step was reached by using the chain rule via ρ(r′′′t′′′). Equa-
tion (4.25) is a Dyson-like equation for χ. The kernel of this integral equa-
tion is the quantity (v + fxc), where v is the usual Coulomb potential and
fxc is the so-called exchange-correlation kernel :

fxc(r, r
′, t − t′) =

δvxc(rt)

δρ(r′t′)
. (4.26)

This is the key quantity of linear response TDDFT.
The Kohn-Sham response function can be directly computed as a Fermi’s

golden rule (since the KS particles do not interact), or in a manner analo-
gous to the time-ordered response function, which will be described in the
next chapters. Therefore, once an approximation for fxc is chosen, all the
ingredients needed for χ are determined. Before moving to the topic of the
approximations to the exchange-correlation kernel, it would be valuable to
specify the equations of TDDFT for periodic solids, which are the subject
of interest of the present work.
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Using the definition of the Fourier transform of nonlocal but periodic
quantities given in AppendixA, one can transform the real space and time
equation (4.25) into an equation in reciprocal space and frequencies:

χGG′(q, ω) = χKSGG′(q, ω)

+
∑
G1G2

χKSGG1(q, ω) [vG1(q)δG1G2 + fxcG1G2(q, ω)]χG2G′(q, ω), (4.27)

where the vectors G are reciprocal lattice vectors and q belongs to the
first Brillouin zone. Note that integrals in space become sums over G in
the reciprocal space and convolutions of times become simple products in
frequency space. The response function χ can be obtained by inverting
equation (4.27):

χ(q, ω) = [1 − v(q)χKS(q, ω) − fxc(q, ω)χKS(q, ω)]−1 χKS(q, ω). (4.28)

As experiments usually measure macroscopic integrated quantities, they
are sensitive to the head of the matrix χGG′ (i.e. just to the element χ00).
A straightforward approximation is to consider this matrices as diagonal,
to get the more simple equation

χGG(q, ω) = χKSGG(q, ω)+χKSGG(q, ω) [vG(q) + fxcGG(q, ω)]χGG(q, ω).
(4.29)

This approximation simplifies a lot the problem, as only few matrix ele-
ments are needed instead of the full matrix and the matrix inversion is thus
avoided. This approximation is said to neglect the crystal local-field effects
for the following reason: assuming that χ is diagonal gives, in direct space,
the response function

δρ(rt) =

∫ t′

−∞
dt′

∫
dr′χ(r − r′, t − t′)δU(r′t′), (4.30)

which depends only on differences of r and r′. In other words, this means
that the system is assumed to be homogeneous. It neglects the hetero-
geneities due to the local structure of the crystal. Therefore, this approx-
imation performs better in systems where the electronic density is as ho-
mogeneous as possible and it fails completely in finite systems or in het-
erostructures [60, 61]. It also fails for localized states, as the semicore states
of transition metals [62].

4.2.3 Exchange-correlation kernels

The quest for efficient and reliable approximations for the exchange-correlation
kernel is 30 years younger than the one for the exchange-correlation poten-
tial. As a consequence, the variety of approximations is much smaller for
the kernel. Furthermore, their agreement with experimental data is very
different if they are compared to data for finite systems or for solids, or if
they are compared to energy-loss experiments or to optical absorption ones.
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Figure 4.1: Optical absorption spectrum of bulk silicon calculated within
RPA (dotted line), adiabatic LDA (dashed line), and using the α kernel of
reference [4] (full line), compared to the experimental curve (full circles) of
reference [30]. A broadening of 0.1 eV was applied on all theoretical curves.

Random-Phase Approximation

The simplest approximation for fxc is

fxc = 0. (4.31)

This is the Random-Phase Approximation (RPA) or time-dependent Hartree
approximation. This approximation was already met in the framework of
Green’s function, when the exchange-correlation part of the Bethe-Salpeter
kernel was fully neglected.

Figure 4.1 shows the comparison of the performance of the RPA with
respect to an optical absorption experiment for the case of bulk silicon.
As said earlier, the RPA gives a too small band gap and wrong oscillator
strengths, since excitonic effects are not present at all. This calculation
is equivalent to the time-dependent Hartree approximation of the previous
chapter.

Adiabatic Local Density Approximation

Increasing the degree of sophistication of the kernel, the next step is to
consider an LDA-like approximation. Within the local density approxima-
tion, the exchange-correlation potential at space point r depends only on
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the density at the same point r. Therefore, the kernel arising from the
differentiation of this potential at r with respect to the density at point r′

behaves like a function δ(r − r′).
Concerning the time behavior of the kernel, the LDA kernel should,

in principle, depend on all previous times before the time t, at which the
potential is evaluated. There should be non trivial memory effects. As
there is no clue of how to include these memory effects, one can add a
further approximation: the adiabatic approximation assumes that the kernel
depends only on the density at the present time. It has a δ(t− t′) behavior
and all memory effects are disregarded.

Finally, the expression of the adiabatic LDA (ALDA) kernel reads

fALDA
xc (r, r′, t − t′) =

dvLDA
xc (rt)

dρ(rt)
δ(r− r′)δ(t − t′). (4.32)

This approximation proved to be quite successful for finite systems (see
the review [35]). However in solid systems, the improvement of ALDA with
respect to RPA is very small in the optical range. Figure 4.1 shows the tiny
differences between RPA and ALDA calculations for bulk silicon. This has
been interpreted by the lack of the proper 1/q2 singularity in reciprocal
space, that the exact kernel should have [63], and that neither RPA nor
ALDA have.

Beyond ALDA

Going beyond LDA is even less straightforward than in the case of the
exchange-correlation potential, since the differentiation of a GGA poten-
tial does not yield the correct asymptotic behavior neither. Thus, gradient
expansions do not provide better results. As a consequence, the improve-
ments over LDA came in particular from comparison with Green’s function
framework [4, 64, 65].

The 1/q2 behavior in reciprocal space of the true kernel was for instance
identified by L.Reining et al. [4] by comparing the Bethe-Salpeter equation
and the TDDFT Dyson-like equation. An evidence of the importance of
the 1/q2 term in the kernel can be given by using a model kernel

fxcGG′(q, ω) = −δG0δ0G′
α

q2
, (4.33)

where α is an empirical parameter related to the inverse of the dielectric
constant. In order to reproduce the Bethe-Salpeter equation with this sim-
ple model kernel, one has to further apply some scissor operator in order to
transform the LDA eigenvalues into the GW ones.

The agreement of the optical absorption spectra using this kernel with a
proper value of α with experimental curves is assessed by figure 4.1, where
α = 0.2 has been used for silicon [66]. This way of connecting the Green’s
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function framework and TDDFT seems to be successful, either using di-
rect comparison or using time-dependent optimized effective potential tech-
niques. This is the topic of chapter (6).



Chapter 5

Practical implementation of
standard GW

The GW self-energy, which is a simple product in time according to equa-
tion (3.26a), becomes a convolution in the frequency domain. The evalua-
tion of

Σ(r, r′, ω) =
i

2π

∫
dω′eiω′ηG(r, r′, ω + ω′)W (r′, r, ω′) (5.1)

is a complicated task. The basic assumption is that the GW self-energy
is not computed self-consistently, but using noninteracting inputs (usually
Kohn-Sham wavefunctions and energies). This gives a simple expression for
the Green’s function. Then, one needs to calculate the screened Coulomb
interaction W within RPA and the convolution of G and W to get the
nonlocal energy-dependent self-energy.

The current chapter provides expressions and algorithms, as they are
used in the codes used in the present thesis [67, 68]. They are dedicated to
periodic systems, using the plane-wave basis set and pseudopotential. The
first step is addressed in the first section. The second one needs further
technical approximations to make it tractable in practice. This is described
in the second section.

5.1 Evaluation of W

5.1.1 Representation of ε−1

The evaluation of the screened Coulomb interaction W (r′, r, ω) requires the
evaluation of the inverse dielectric function ε−1(r′, r, ω). It is convenient to
represent this quantity on the plane-wave basis set. One therefore needs to
calculate the matrix

ε−1
GG′(q, ω) = δGG′ + v(q + G)χGG′(q, ω). (5.2)
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This equation is just equation (3.19) written on the plane-wave basis set.
The reducible polarizability is given by

χGG′(q, ω) =
∑
G′′

[δG1G2 − χ0G1G2(q, ω)v(q + G1)]
−1
GG′′ χ0G′′G′(q, ω),

(5.3)
where the equation (3.22) for χ has been inverted, and the RPA was intro-
duced χ̃ = χ0.

As a consequence, the only ingredient needed to achieve the calculation
of W is the RPA polarizability χ0.

5.1.2 RPA polarizability χ0

The definition of the RPA polarizability is the simple product of two Green’s
functions in real space and time (equation (3.26b)):

χ0(1, 2) = −iG(1, 2)G(2, 1). (5.4)

According to that definition, the simple product in time becomes a convo-
lution in frequency domain:

χ0(r1, r2, ω) = − 2i

2π

∫
dω′G(r1, r2, ω + ω′)G(r2, r1, ω

′), (5.5)

where the factor 2 accounts for spin degeneracy.
If one introduces the definition of the time-ordered Green’s function of

a non-interacting system (let us say the Kohn-Sham system), the Green’s
functions have single poles at each energy εkii:

χ0(r1, r2, ω) = − 2i

2π

∑
kiikjj

∫
dω′ φkii(r1)φ

∗
kii

(r2)

ω + ω′ − εkii + iη sign(εkii − µ)

× φkjj(r2)φ
∗
kjj(r1)

ω′ − εkjj + iη sign(εkjj − µ)
. (5.6)

This frequency integral can be performed analytically thanks to the residue
theorem, by closing the path of integration, either using an arc in the upper
plan or in the lower plan. The poles are located at

ω′ =

{
εkii − ω − iη sign(εkii − µ)
εkjj − iη sign(εkjj − µ).

(5.7)

Consequently, when the poles of the two Green’s functions are located in
the same half plane, the integral vanishes, since one can close the path in
the opposite half plane, where there is no pole. Therefore, the only terms
contributing are those for which one state is occupied and the other one is
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empty. This condition describes transitions from full states to empty ones,
and reversely:

χ0(r1, r2, ω) = 2
∑

kiikjj

φkii(r1)φ
∗
kjj(r1)φ

∗
kii

(r2)φkjj(r2)

×
[
θ(εkii − µ)θ(µ − εkjj)

ω − (εkii − εkjj) + iη
− θ(µ − εkii)θ(εkjj − µ)

ω − (εkii − εkjj) − iη

]
. (5.8)

We can remark that the location of the poles of the time-ordered χ0: for
positive transitions (when εi > εj), the poles are in the lower plane, for
negative transitions (when εi < εj), the poles are in the upper plane. If the
system under study has a band gap, χ0 has no poles in the energy interval
from minus the band gap to plus the band gap.

The remaining operation is the Fourier transform of the space variables
according to the definitions of AppendixA. This leads to introduce the
following matrix elements

ρ̃kiij(q + G) =

∫
drφ∗

kii
(r)e−i(q+G).rφkjj(r). (5.9)

It is very useful to spend some time discussing these matrix elements, since
they are recurrent in our derivations. The index kj has not been written
down explicitly, because it is imposed by the condition δ(q+ki −kj −G0),
with G0 a reciprocal lattice vector. The vector q is really the transfered
momentum when a transition from ki to kj occurs and the δ function ac-
counts for momentum conservation. The wavefunctions φkii(r) are Bloch
wavefunctions,

φkii(r) = eiki.rukii(r), (5.10)

where ukii(r) has the periodicity of the crystal. Introducing this definition
in equation (5.9) gives

ρ̃kiij(q + G) =

∫
dru∗

kii
(r)ukjj(r)e

−i(q+ki−kj).re−iG.r, (5.11)

which is non-zero only if q+ki−kj is equal to a reciprocal lattice vector G0,
since the functions u are periodic (see AppendixA). Finally, ρ̃kiij(q + G)
is just a Fourier coefficient

ρ̃kiij(q + G) =

∫
dru∗

kii
(r)ukjj(r)e

−i(G+G0).r, (5.12)

and this is exactly the expression computed in the codes [67, 68].
The final expression, as it used in practice, reads

χ0G1G2(q, ω) =
1

V

∑
kiij

(fkjj − fkii)

× ρ̃kiij(q + G1)ρ̃
∗
kiij

(q + G2)

ω − (εkii − εkjj) + iη sign(εkii − εkjj)
, (5.13)
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where fkii are the occupation numbers of state kii (value between 0 and
2). The value of ε−1 is hence obtained via matrix multiplications and in-
versions. Unfortunately, this calculation has to be done for each q vector
and all frequencies ω. This is rather cumbersome, since many frequencies
are needed: the function χ0(ω) is bad behaved, as all its poles lie close to
the real axis.

5.1.3 Plasmon-pole model

It has been proposed since the 60’s to model the dependence on ω of the
matrix ε−1

GG′(q, ω) by a single plasmon-pole model:

ε−1
GG′(q, ω) = δGG′ +

Ω2
GG′(q)

ω2 − (ω̃GG′(q) − iη)2
, (5.14)

where Ω2
GG′(q) and ω̃GG′ are the two parameters of the model. The small

η is here just to ensure the right time-ordering. This model allows us to
evaluate ε−1 everywhere in the complex plane, once the two parameters are
fit.

There are various ways to fit these parameters. To this purpose, two
constraints are needed. The ABINIT GW code [67, 69] chooses two fre-
quencies where the RPA ε−1 is actually computed: ω = 0 and ω ∼ iωp

(ωp is the classical plasmon frequency). These frequencies are convenient,
because the fit is more stable on the imaginary axis, far from the poles of
χ0. Alternatively, Hybertsen and Louie [70] chose to calculate ε−1 at ω = 0,
and to enforce the f -sum rule.

The use of a plasmon-pole model not only reduces the calculation of
ε−1(ω) (as only two frequencies are required), but also permits an analytic
calculation of the frequency integral in equation (5.1).

5.2 Evaluation of Σ

Once the screening is known, the self-energy can be evaluated. A direct
calculation of Σ(r, r′, ω) is still nowadays out of reach. Fortunately, the
purpose of a GW calculation is generally just to get a quasiparticle band
structure, which does not require the knowledge of the full spatial and
dynamical complexity of Σ.

5.2.1 First-order perturbation

If one remarks that the Kohn-Sham and the quasiparticle Hamiltonians
are very similar, except for the replacement of exchange-correlation poten-
tial vxc with the self-energy Σ, it is reasonable to consider Σ − vKS

xc as a
first-order perturbation to the full Kohn-Sham Hamiltonian, which contains
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large terms like the kinetic energy, the Hartree and the electron-ion terms.
In a first-order perturbation scheme, the eigenvalues are simply obtained
thanks to the evaluation of the diagonal matrix elements:

εGW
kjj = εKS

kjj + 〈φkjj|Σ(εGW
kjj ) − vKS

xc |φkjj〉. (5.15)

This equation shows clearly why the GW band structures are often referred
to as the “GW corrections” over LDA, GGA, HF band structures.

The gain of computational time is drastic using this first-order per-
turbation approach. To get one GW correction, one needs only one matrix
element, instead of calculating the N2

r terms of Σ(r, r′). This approximation
is justified when the GW wavefunctions are very close to the Kohn-Sham
wavefunctions. This is in practice well justified for simple materials, like
bulk silicon (see chapter 8).

5.2.2 Linearization of the energy dependence

A second simplification concerns the evaluation of Σ(εGW
kjj ) in equation (5.15),

which is in principle quite complicated, as Σ depends itself on the quasi-
particle energy. A very efficient approximation is to linearize the dynamical
behavior of Σ in the neighborhood of the Kohn-Sham eigenvalue:

Σ(εGW
kjj ) = Σ(εKS

kjj) +
(
εGW
kjj − εKS

kjj

) ∂Σ

∂ε

∣∣∣∣
εKS
kjj

. (5.16)

When this expansion is inserted in equation (5.15), we obtain

εGW
kjj = εKS

kjj + Z〈φkjj |Σ(εKS
kjj) − vKS

xc |φkjj〉, (5.17)

where

Z =
1

1 − ∂Σ
∂ε

∣∣
εKS
kjj

. (5.18)

Equation (5.17) finally relies only on Kohn-Sham inputs, but the derivative
of Σ is also needed.

The linearization of Σ works generally very well close to the band gap, as
depicted in figure 5.1. Farther from the Fermi level, in the plasmon region
(here ωp ∼ 16.7 eV), the poles of Σ make it non-linear as seen in the figure.
To get proper GW corrections for low- or high-energy bands it is necessary
to go beyond this simple approximation.

Making use of all these technical approximations, one can provide the
expression of Σx and Σc used in practice in the code.
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Figure 5.1: Performance of the linearization of Σ(ω) for the first conduction
band of bulk silicon.

5.2.3 Bare exchange part Σx

According to the expression of the plasmon-pole model in equation (5.14),
one can split ε−1 into two pieces: a δ function plus a non trivial part. The
δ function gives rise to the bare exchange contribution Σx to the GW self-
energy and, as a consequence, the remainder Σc accounts for the correlation.

Let us first deal with the bare exchange contribution of equation (5.1).
The dynamical part is easily treated, as the only frequency dependence
comes from the denominator of the Green’s function:∫

dω′eiω′η 1

ω + ω′ − εkii + iη′ sign(εkii − µ)
= 2πiθ(µ − εkii). (5.19)

The integration was performed via the residue theorem along a path en-
closing the upper half plane, thus retaining only the poles corresponding to
occupied states.

The matrix element of Σx hence reads

〈φkjj|Σx|φkjj〉 = −
∑
kii

θ(µ − εkii)

∫
drdr′φ∗

kjj(r)φkii(r)

× v(r − r′)φ∗
kii

(r′)φkjj(r
′), (5.20)

where the Fourier transform of v(r− r′) can be introduced

v(r − r′) =
1

V

∑
q,G

ei(q+G).r 4π

|q + G|2 e−i(q+G).r′. (5.21)
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This operation makes once more appear the matrix elements ρ̃kiij .
The implemented expression of Σx is

〈φkjj|Σx|φkjj〉 = −4π

V

∑
kii

θ(µ − εkii)

×
∑
G

ρ̃∗
kiij

(q + G)
1

|q + G|2 ρ̃kiij(q + G). (5.22)

The sum over q has been removed thanks to the δ(q + ki − kj − G0)
coming from the ρ̃kiij, as discussed earlier in section 5.1.2. The scaling of
the computational time of Σx is Nv.Nk.NG, where Nv is the number of
valence bands.

5.2.4 Correlation part Σc

The derivation of the correlation part Σc of the self-energy is analogous to
the one for Σx, except for the fact that a special care has to be taken to
evaluate the frequency integral. It reads

〈φkjj|Σc|φkjj〉 =
i

2πV

∑
kii

∑
GG′

ρ̃∗
kiij

(q + G)ρ̃kiij(q + G′)
4π

|q + G′|2∫
dω′ 1

ω + ω′ − εkii + iη sign(µ − εkii)

Ω2
GG′(q)

ω′2 − (ω̃GG′(q) − iη)2
eiω′η, (5.23)

where q is again constrained to be equal to the difference kj − ki, modulo
a G0 vector.

By closing the integration path thanks to an arc in the upper half plane,
one can apply the residue theorem, which yields for the integral over ω′:∫

dω′ 1

ω + ω′ − εkii + iη sign(µ − εkii)

1

ω′2 − (ω̃GG′(q) − iη)2
=

=
−2πi

2ω̃GG′(q)

[
θ(µ − εkii)

ω + ω̃GG′(q) − εkii − iη
+

θ(εkii − µ)

ω − ω̃GG′(q) − εkii + iη

]
.

(5.24)

The poles of Σc in this approximation are located, as imposed by the theory,
above the real axis, for ω < µ, and below, for ω > µ. The poles arising
from empty states are at ω̃ + εkii and those coming from occupied states
at −ω̃ + εkii. There are therefore no poles of Σc in an interval of width 2ω̃
around the Fermi level. The correlation part of the self-energy should be
well behaved in this region, as it can be noticed from figure 5.1.

Gathering equations (5.23) and (5.24) yields the final expression for Σc.
The evaluation of Σc scales as Nb.Nk.N

2
G, where Nb stands for the total

number of bands used in G. This is therefore the most cumbersome part in
the calculation of Σ.





Chapter 6

Connecting DFT and Green’s
function theory

The density-functional and the many-body perturbation approaches give
both, in principle, exact answers to the many-body problem. They have
both avantages and drawbacks.

On the one hand, MBPT provides systematic approximations for the
self-energy, but quite often, there is no piece of evidence whether the per-
turbation series converges, i.e. the second-order term is not always smaller
than the first-order one. Moreover, MBPT gives usually expressions that
are computationally expensive.

On the other hand, DFT and TDDFT approaches are synthetic and
elegant theories, that only need a “simple” exchange-correlation potential
and kernel as functional of the density to account for all the quantum be-
havior of electrons. However, DFT and TDDFT provide, following a direct
approach for closed systems, only certain informations on the N -electron
system: the ground-state properties and the neutral excitations. For in-
stance, ionization processes are not described in these frameworks. DFT
(respectively TDDFT) is finally just a mathematical proof of the existence
of a one-to-one mapping between ground-state properties (respectively neu-
tral excitations) and the density (respectively the time-dependent density);
there is a priori no clue how to find this mapping. Finally, there is no
systematic recipe how produce exchange-correlation potentials or kernels.

Since the early days of DFT, the idea of connecting MBPT and DFT
has been used [71]. The purpose has been to benefit both from the ability of
MBPT to design sensible approximations and from the simplicity of DFT.
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6.1 Exchange-correlation potentials derived

from MBPT

6.1.1 Sham-Schlüter equation

The idea of Sham-Schlüter equation is to use the fact that DFT and MBPT
give the same exact ground-state density, in order to find good approxima-
tions for the exchange-correlation potential from the suitable approxima-
tions for the self-energy [13, 72]. One should note that this operation is far
from trivial, as the self-energy is a nonlocal and energy-dependent operator.

Let us introduce the Kohn-Sham Green’s function GKS constructed from
Kohn-Sham wavefunctions and energies. The diagonal of GKS, as well as
the diagonal of the true Green’s function G, provide the true ground-state
density:

−iG(1, 1+) = −iGKS(1, 1
+). (6.1)

This relation can be inserted into the Dyson equation that makes the link
between the Kohn-Sham Green’s function and the exact one

G(1, 2) = GKS(1, 2)+

∫
d34GKS(1, 3) [Σ(3, 4) − vxc(3)δ(3, 4)]G(3, 2), (6.2)

to yield an equation for the unknown exchange-correlation potential∫
d34GKS(1, 3) [Σ(3, 4) − vxc(3)δ(3, 4)]G(3, 1+) = 0 (6.3)

or, in frequency domain (we are here in the framework of a static exter-
nal potential. Hence G and Σ depend only on time differences and vxc is
frequency independent),∫

dr3dr4dωeiωδGKS(r1, r3, ω) [Σ(r3, r4, ω)

−vxc(r3)δ(r3 − r4)] G(r3, r1, ω) = 0. (6.4)

This is the so-called Sham-Schlüter equation [13, 72]. This equation is not
of great practical interest, as it requires, in principle, the knowledge of the
exact Green’s function to determine vxc.

An approximated version of the Sham-Schlüter equation has been found
successful in determining reliable exchange-correlation potentials. In the
linearized version of equation (6.4), it is assumed that the difference between
G and GKS yields small effects. Hence, one simply replaces all occurrences
of G in equation (6.4) by GKS:∫

dr3dωχKS(r1, r3)vxc(r3)

= − i

2π

∫
dr3dr4dωeiωδGKS(r1, r3, ω)Σ[GKS](r3, r4, ω)GKS(r3, r1, ω) = 0.

(6.5)
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The functional dependence of Σ with respect to GKS instead of G has been
written explicitly and χKS = iGKSGKS has been introduced. This equation
has been applied by Godby et al. [73] using the GW approximation of the
self-energy, in order to study the Kohn-Sham potential and in particular
the band gap, with respect to the LDA result. It has been moreover shown
recently [74] that this linearized version of Sham-Schlüter provides poten-
tials with the exact asymptotic behavior (up to the second term), when
applied with the GW self-energy.

As a by-product, the linearized Sham-Schlüter equation conducts to the
same potential as the one provided by Optimized effective potential (OEP)
procedure.

6.1.2 Optimized effective potentials

The spirit of OEP is very close to the one of Sham-Schlüter equation: from
a nonlocal operator, how to find a local one that reproduces best certain
quantities calculated with the former? Indeed, both approaches yields the
same answer. Let us show how linearized Sham-Schlüter equation leads to
the most used OEP, namely exact-exchange [75]. The previous procedure
is applied to the nonlocal (but static) Fock operator Σx (see section 2.8).

The equation (6.5) is recast into∫
dr3dωχKS(r1, r3)vxc(r3) =

= − i

2π

∑
i,j

∫
dr3dr4

∫
dωeiωδ φi(r1)φ

∗
i (r3)

ω − εi + iη sign(εi − µ)

× Σx(r3, r4)
φj(r4)φ

∗
j(r1)

ω − εj + iη sign(εi − µ)
. (6.6)

The right hand side has the same polar structure as χ0 and χKS, and then
the ω integral is easily performed, and gives the final expression for vxc:

vxc(r) =

∫
dr1

∑
i,j

(fi − fj)
φi(r1)φ

∗
j(r1)

εi − εj
〈φi|Σx|φj〉χ−1

KS(r1, r). (6.7)

This expression is precisely the result of Görling [75] and has been ap-
plied to a wide range of materials. Generally this potential gives band gaps
that are closer to the experimental ones than the LDA results [76].

6.2 Exchange-correlation kernels derived

from MBPT

The relative success of exchange-correlation potentials derived from MBPT
can consequently give the idea to look for exchange-correlation kernels in a
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similar manner. To my knowledge, at least three independent derivations
used the comparison of MBPT and TDDFT to get an explicit expression of
the time-dependent exchange-correlation kernel. These approaches are cru-
cial, since the ALDA kernel yields very poor results for absorption spectra
in solids, and no other effective kernel had led to significant improvements
in this context.

6.2.1 Time-dependent optimized effective potentials

In reference [77], Kim and Görling differentiated the OEP potential vxc of
equation 6.7 with respect to the time-dependent density in order get an
expression of the exchange-correlation kernel of TDDFT. The derivation
and the obtained formula (a whole page) is rather lengthy, and will not
be reproduced here. This paragraph just insists on the principle: a simple
differentiation.

Kim and Görling [78] applied the time-dependent OEP scheme using the
exchange self-energy: this is so-called the time-dependent exact-exchange
approach. They provided calculations of the imaginary part of the dielec-
tric function of silicon in pretty good agreement with absorption exper-
iments. But this success was not reached in a straightforward way: Kim
and Görling had to use a cut-off on the bare Coulomb interaction that arose
from the differentiation of the bare exchange operator. In this way, they
eliminated artificially some components of the Coulomb potential, else the
spectra “collapse”, as they say in reference [78]. In other words, they de-
creased somehow the Coulomb potential – this is a kind of screening! In
conclusion, their result is a piece of evidence that the bare exchange is a
too strong interaction, instead one should use a somehow screened Coulomb
interaction.

6.2.2 Direct comparison between BSE and TDDFT

The idea of Reining et al. [4], formalized and implemented in references [5, 6]
by Sottile et al., is to directly map matrix elements of the Bethe-Salpeter
equation onto matrix elements of the TDDFT linear-response equation.
The problem is that Bethe-Salpeter equation is a four-point equation, and
TDDFT Dyson equation is a two-point one.

To achieve the mapping, the first task is to write the equations in a
similar manner: let us write the TDDFT Dyson equation (4.25) in a four-
point way making use of Dirac δ functions:

4χ = 4χKS + 4χKS

(
4v + 4fxc

)
4χ, (6.8)

where one introduced a four-point Coulomb interaction and a four-point
kernel

4v(1, 2; 3, 4) + 4fxc(1, 2; 3, 4) = δ(1, 2)δ(3, 4)(v(1, 3) + fxc(1, 3)). (6.9)
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If the Kohn-Sham response function χKS are further replaced by χ0 that
use quasiparticle energies (and in principle quasiparticle wavefunctions),
this allows one to avoid the difficulties concerning the quasiparticle shift,
as it is already included at the χ0 level. The remaining kernel fxc just
accounts for the electron-hole interaction (as the W term in Bethe-Salpeter
equation).

The four-point Coulomb interaction arising from the TDDFT equation
can now be directly identified with the equivalent contribution in the Bethe-
Salpeter equation (3.43). On the other hand, the TDDFT kernel has to
be identified with the screened Coulomb interaction of the Bethe-Salpeter
equation:

δ(1, 2)δ(3, 4)fxc(1, 3) = −δ(1, 3)δ(2, 4)W (1, 2). (6.10)

One can see immediately that the previous equation will be problematic
because of the different δ functions: they do not contract the same indexes.
Fortunately, the purpose is not to find a hypothetical (and in general not
existing) TDDFT kernel that reproduces the Bethe-Salpeter results every-
where for the four-space indexes. No, the aim is practical: one wants a
TDDFT kernel that reproduces the Bethe-Salpeter spectra, and this only
in the energy region of interest. This is more easily expressed in the LDA
transition space [35]. The TDDFT kernel becomes

F (k′v′c′)
(kvc) (q, ω) =

∫
dr1dr3φk+qc(r1)φ

∗
kv(r1)fxc(r1, r3, ω)φ∗

k′+qc′(r3)φk′v′(r3)

(6.11)
and the Bethe-Salpeter kernel (just the problematic part W ) reads

W(k′v′c′)
(kvc) (q) =

∫
dr1dr2φkv′(r1)φ

∗
kv(r1)W (r1, r2, ω = 0)φ∗

k′+qc′(r2)φk+qc(r2).

(6.12)

The mapping of the two equations (TDDFT and Bethe-Salpeter) im-
poses the central equation of references [4–6]:

F (k′v′c′)
(kvc) (q, ω) = −W(k′v′c′)

(kvc) (q). (6.13)

Note that the mapping is not imposed for the four space indexes, but only
on the transitions of interest for the type of spectroscopy one is calculating.
This equation intends to yield meaningful results in the frequency region
studied, but outside the result is uncontrolled. Note also that F is hence a
static quantity. The equality is then introduced in a straightforward manner
into a symmetrized version of the linear-response TDDFT:

χ = χ0 (χ0 − χ0vχ0 − χ0fxcχ0)
−1 χ0, (6.14)
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with

(χ0fxcχ0)(r, r
′, ω) =

∑
(kvc)(k′v′c′)

(fk+qc − fkv)
φkv(r)φ

∗
k+qc(r)

ω − (εkv − εk+qc)

× F (k′v′c′)
(kvc) (q)(fk′+q′c′ − fk′v′)

φ∗
k′v′(r

′)φk′+qc′(r
′)

ω − (εk′v′ − εk′+q′c′)
. (6.15)

Now F appears explicitly and equation (6.13) can be used. This gives the
kernel used in practice by Sottile et al. [5, 6]. This procedure gave, for
the resonant only part (just positive transitions) and at q → 0, promising
results of the same quality as Bethe-Salpeter equation. The only drawback
was that the diagonal of F (kvc)

(kvc) , which has the effect of shifting the poles
in all the χ0’s, has been found to make the scheme unstable. Fortunately,
this diagonal part can be accounted for by directly shifting the pole in the
χ0 and setting this contribution to zero.

For the computational point of view, one still calculates the cumber-
some creation of the matrix W. But the next step of the usual solution of
the Bethe-Salpeter equation solution, the diagonalization, is then avoided,
instead one needs only matrix products.

6.2.3 Perturbative approach of the TDDFT/BSE

comparison

Another approach of the TDDFT/BSE comparison was proposed by Adragna
and co-workers [64], which surprisingly led to the same equations as the pre-
vious derivation. They imposed, as in the approach described above, the
equality between the reducible polarizabilities (i.e. without the Coulomb
contribution v) coming from the Bethe-Salpeter equation and from linear-
response TDDFT. This equality was then truncated to the same level of
approximation in both members, symbolically,

χ̃TDDFT = χ0 + χ0fxcχ0 + χ0fxcχ0fxcχ0 + . . . (6.16a)

χ̃BSE = χ0 + GGWGG + GGWGGWGG + . . . , (6.16b)

where again the quasiparticle shift had been already included in the χ0’s
(instead of the χKS’s in the TDDFT equation).

Marini et al. [79], for instance, used the first-order formula, that retains
only the first two terms of equations (6.16)

χ0 + χ0fxcχ0 = χ0 + GGWGG, (6.17)

which yields the following expression for the TDDFT kernel

fxc = χ−1
0 GGWGGχ−1

0 . (6.18)
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If further the expression of the Green’s function is made explicit, one recov-
ers exactly the final equation of the previous derivation of equation (6.15).
Consequently, Marini et al. [79] had the same success in describing optical
absorption. They applied their scheme moreover successfully to energy-
loss spectroscopies with non-vanishing momentum transfer q. Finally, they
showed that inclusion of the second-order kernel does not produce impor-
tant effects on the spectra.

The perturbative approach can be also understood in terms of Feynman
diagrams as proposed by Stubner, Tokatly and Pankratov [65, 80]. Their
derivation gives expressions for each order of the time-dependent exchange-
correlation kernel, that are equivalent to the previous functional approach.

In the theoretical developments part, I will show that all these indepen-
dent derivations are finally linked, thanks to a new general derivation.





Part II

Methodological developments





Chapter 7

GW with no plasmon-pole
model

There are several different ways of calculating the GW frequency integral,

Σ(ω) =
i

2π

∫
dω′eiω′δG(ω + ω′)W (ω′). (7.1)

The historical and most basic way of doing is to assume that the frequency
dependence of W can be mimicked by a single plasmon-pole, as it was
explained in chapter 5. This model was already used by L.Hedin in 1965
[25], or by Hybertsen and Louie in 1985 [81]. This approximation has been
both efficient and successful for 40 years, as it allows one to perform the
integral analytically and gives good results for the real part of the self-
energy. This method is implemented in ABINIT package [67].

However, if one is interested in the satellites of the spectral function A
or in quasiparticle lifetimes, the plasmon-pole model kills these many-body
features. Or, if one doubts that a single pole can represent a realistic ε−1(ω)
for the material under study, one may need to get rid of the model and to
calculate explicitly the integral of equation (7.1). There are several ways
of doing so, but all have advantages and drawbacks, because Σ(ω) has to
be evaluated in the vicinity to its poles. I investigated different methods:
analytic continuation, use of spectral functions, or contour integral.

Analytic continuation will not be described much here (see reference
[82]), because it is not realiable enough. This approach is tempting, as it
only requires to calculate W and Σ on imaginary axis, where these functions
have no poles. Then, Σ(iω) is extrapolated from the imaginary axis to the
real axis thanks to a model function, for instance a Padé approximant

P (z) =
a0 + a1z + . . . + aNzN

b0 + b1z + . . . + bMzM
. (7.2)

Once the parameters ai and bj of the model function are fit on the calculated
values of Σ(iω), this gives Σ(z) everywhere in the complex plane. I found
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that this method is accurate in the vicinity of the band gap, but farther it
is not true anymore. The Padé approximation can not account for Σ in the
region where the self-energy has many poles, since the model has only M
poles. Also, the imaginary part of Σ is highly sensitive to the fitting points,
used to calculate the parameters.

I then turned to a spectral function method used by Aryasetwian [83]
described in section 7.1. And finally the most precise, but also the most
cumbersome, method investigated here is the contour integral of passing
along the imaginary axis described in reference [82]. This is the topic of
section 7.2.

7.1 Method using spectral functions

7.1.1 Formula for the imaginary part of the

self-energy

Following Aryasetiawan and Gunnarson [28], spectral representations of
G and W can advantageously be used to derive a simple formula for the
imaginary part of the GW self-energy.

Let us first remind the properties of the spectral functions, that will be
useful in the following. The spectral representation of Wp = W − v is

Wp(r, r
′, ω) =

∫ 0

−∞
dω′ D(r, r′, ω′)

ω − ω′ − iη
+

∫ ∞

0

dω′ D(r, r′, ω′)
ω − ω′ + iη

, (7.3)

where D(r, r′, ω) is the spectral function of Wp. As Wp is an even function
of ω, D has to change its sign at zero frequency:

D(r, r′, ω) = −1

π
Im Wp(r, r

′, ω)sign(ω). (7.4)

According to this definition, D is positive for ω > 0, and negative elsewhere.
The spectral representation of G is

G(r, r′, ω) =

∫ µ

−∞
dω′ A(r, r′, ω′)

ω − ω′ − iη
+

∫ ∞

µ

dω′ A(r, r′, ω′)
ω − ω′ + iη

, (7.5)

where A(r, r′, ω) is the spectral function of G. As Im G(ω) changes its sign
at µ, the definition

A(r, r′, ω) = −1

π
Im G(r, r′, ω)sign(ω − µ) (7.6)

makes A(ω) positive everywhere.
After having extracted a large static part of the self-energy in equa-

tion (7.1), the Fock contribution, that comes from a v contribution and
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that accounts for bare exchange. The remainder that accounts for cor-
relation will be just a function to Wp, instead of W . Remembering that
integration paths can only be closed in the upper plane due to the eiω′η

factor, we introduce the two spectral functions to obtain four contributions
to Σc, the dynamical part of Σ. Two terms among the four ones vanish,
when the

∫
dω′ integral is performed, as they contain poles in only one half

plane (analogous to the derivation of χ0, see chapter 5). The two remaining
terms are called Σp

c and Σh
c , for reasons that will be made obvious in the

following.
Let us evaluate the imaginary part of Σh

c .

Σh
c (r, r

′, ω) =
i

2π

∫
dω′

∫ µ

−∞
dω1

A(r, r′, ω1)

ω + ω′ − ω1 − iη

∫ ∞

0

dω2
D(r′, r, ω2)

ω′ − ω2 + iη
(7.7)

The integral on ω′ is performed thanks to the residue theorem, using an
anticlockwise contour, in the upper half plane. The poles enclosed in the
path are ω′ = ω1 − ω + iη. These give

Σh
c (r, r

′, ω) = −
∫ µ

−∞
dω1

∫ ∞

0

dω2
A(r, r′, ω1)D(r′, r, ω2)

ω1 − ω − ω2 + 2iη
. (7.8)

The imaginary part of Σh
c could be evaluated thanks to the relation (2.17):

Im Σh
c (r, r

′, ω) = π

∫ µ

−∞
dω1

∫ ∞

0

dω2A(r, r′, ω1)D(r′, r, ω2)δ(ω1 − ω − ω2).

(7.9)
Furthermore, A(ω) is the spectral function of a non-interacting Green’s

function (in a non self-consistent GW approximation) and it can be written
as a sum of δ-peaks according to equation (2.40):

Im Σh
c (r, r

′, ω)= π
∑

i

∫ µ

−∞
dω1

∫ ∞

0

dω2φi(r)φ
∗
i (r

′)D(r′, r, ω2)

×δ(ω1 − ω − ω2)δ(ω1 − εi) (7.10)

= π
∑

i

∫ ∞

0

dω2φi(r)φ
∗
i (r

′)D(r′, r, ω2)

×δ(εi − ω − ω2)θ(µ − εi) (7.11)

= π
∑

i

φi(r)φ
∗
i (r

′)D(r′, r, εi − ω)θ(εi − ω)θ(µ − εi) (7.12)

= −
∑

i

φi(r)φ
∗
i (r

′)Im Wp(r
′, r, εi−ω)θ(µ−εi)θ(εi−ω). (7.13)

The last line used definition (7.4). This contribution to the self-energy is
non-vanishing only for ω lower than µ. Therefore it accounts only for the
hole part of Σc. Note that only hole states give rise to a contribution to
this part of the self-energy, that has a positive sign.
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In a similar manner, the particle part Σp
c of the imaginary part of the

self-energy can be derived:

Im Σp
c (r, r

′, ω) =
∑

i

φi(r)φ
∗
i (r

′)Im Wp(r
′, r, ω−εi)θ(ω−εi)θ(εi−µ), (7.14)

that vanishes for frequencies lower than µ. When non-zero, Im Σp
c is nega-

tive. Expressions of Σp
c and Σh

c are obviously coherent (same signs, same π
factors) with the expression of Aryasetwian [83].

For band structure calculations, one needs of course also the real part
of the self-energy. It can be recovered easily, using the definition of the
spectral function of Σc:

Σc(r, r
′, ω) =

∫ µ

−∞
dω′ Γ(r, r′, ω′)

ω − ω′ − iη
+

∫ ∞

µ

dω′ Γ(r, r′, ω′)
ω − ω′ + iη

(7.15)

where Γ(r, r′, ω), the spectral function of Σc, satisfies

Γ(r, r′, ω) = −1

π
Im Σc(r, r

′, ω)sign(ω − µ). (7.16)

7.1.2 Practical implementation

To carry out the calculation of 〈φkj|Σc(ω)|φkj〉, one needs a pretty good
evaluation of the dynamical behavior of the screened Coulomb interaction
W for real-valued frequencies. W function shows broad structures on the
real axis, such as plasmon peaks. Therefore, in the calculation, the time-
ordered ε−1(ω) was evaluated between 0 and 80 eV (this is an even func-
tion), on a regular grid with a 1 eV spacing. These parameters are a bit
overconverged with respect to reference [82].

Once the W function is known on a regular grid, we need an inter-
polation scheme to approximate the value of the function. Indeed, the
interpolation was not applied on W , but rather on ρ̃∗

kijWρ̃kij (the ρ̃kij were
defined in equation (5.9)). This allows us to decouple the calculation in two
steps.

• The first part to be computed is

Ck′ikj(ω
′) =

∑
GG′

ρ̃∗
kij(q + G)Im WGG′(q, ω′)ρ̃kij(q + G′), (7.17)

where, as usual, q = k−k′ modulo a G vector. It scales as Nk.Nb.N
2
G.Nω′ ,

where Nb is the number of bands and Nω′ is the number of frequencies
used to sample W . This is the costly part of the calculation.

• The second part to be computed is

Im Σh or p
kjj (ω) = ∓ 1

V

∑
k′i

Ck′ikj(|ω − εki|) (7.18)
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Figure 7.1: Real part of the correlation part of self-energy Σc(ω) for bulk
silicon bands 4 and 5 at Γ point for two values of η. The line with small
circles represent η = 0.01 eV and the full line is for η = 0.50 eV. The inset
provides a close-up of the band gap region (µ = 6.16 eV).

by means of a cubic spline interpolation in ω′ of each Ck′ikj(ω
′) co-

efficient. This step scales as Nb.Nk.Nω, where Nω is the number of
frequencies where the self-energy is evaluated. This part is very cheap
and allows us to plot Im Σ on a very dense grid, as required to perform
the next integration.

The final result is recovered, as said before, by using a Kramers-Kronig-like
transform. The numerical integration of Im Σ yields the full Σ function.

7.1.3 Results for Silicon

Unfortunately, the imaginary part of Σ is very sensitive to the iη parameter
used in the calculation of W (described in chapter 5). And, as the real
part of Σc is obtained from the imaginary part, the quasiparticle energies
themselves are strongly dependent on η parameter.

This shortcoming is shown in figure 7.1. Only two values of η are dis-
played for clarity, but varying η makes the curve goes continuously from
one to the other one. With a small η many more features can be seen in
the real part of Σc. They are hidden by a too large η. But on the contrary,
a too small η makes the band gap increase (region ω ∼ 5 − 10 eV of the
figure). Table 7.1 provides quasiparticle energies around the band gap. It
shows that the results strongly depend on η parameter. The limit η → 0
can not be taken, since η parameter is needed in the calculation of χ0 to
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hide the fact that one has used a finite sum over k-points, instead of an
integral. The last column of the table assesses this statement.

Quasiparticle band gap seem more reliable using a large value of η.
But, the absolute values of the energies are always far from the values
given by the plasmon-pole model. One can wonder whether this is due to
a systematic shift between the plasmon-pole model energies and the true
ones. The answer is no. The method employed in the next section will
show that the plasmon-pole model and the true integration should compare
pretty well in fact.

The instability of the present method is too large for practical appli-
cations. To make this method reliable enough, one should find a way to
take properly the limit η → 0, maybe using a tetrahedron integration in
the calculation of χ0 [83].

7.2 Method using contour integrals

7.2.1 Description of the method

The contour integral method [82] has been proposed to avoid as much as
possible to deal with quantities close to the real axis, where the poles of G
and W lie. The integral over real axis in equation (7.1) is transformed into
an integral over the contour depicted in figure 7.2, plus contributions of the
poles lying inside the contour:

Σc(ω) =
i

2π

⎡
⎣2πi

∑
zp∈ poles of G or W

lim
z→zp

G(z)Wp(z)(z − zp)

−
∫ +∞

−∞
d(iω′)G(ω + iω′)Wp(iω

′)
]

(7.19)

as the integral along the arcs used to close the path of integration vanishes.
Let us deal with the sum over poles. According to figure 7.2, no poles

of Wp are located inside the contour. On the contrary, some poles of G

Table 7.1: Silicon quasiparticle energies and band gap in eV at Γ point
for top valence band (Γ′

25v) and first conduction band (Γ15c), using the
plasmon-pole model (PPM) or using different values of η in the spectral
function method.

PPM η = 0.50 eV η = 0.25 eV η = 0.01 eV
Γ′

25v 5.59 5.99 6.01 5.68
Γ15c 8.74 9.04 9.00 9.39
Direct band gap 3.15 3.05 2.99 3.71
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Figure 7.2: Location of the poles of the Green’s function G (crosses) and of
the screened Coulomb interaction W (open circles) and path of the contour
integral (arrows) used in the method.

(located at energies ω′ = εi − ω) may enter the contour. For ω inside the
band gap, there is obviously no pole inside the contour. For ω smaller
than µ, the poles can enter in the upper-right quarter plane, only when
εi − ω > 0. These are poles from the occupied states, therefore µ > εi.
Finally the residues coming from poles in the upper-right quarter plane can
be written

∑
upper-right poles

. . . =
∑

i

θ(µ − εi)θ(εi − ω)Wp(εi − ω + iη), (7.20)

where η is a vanishing positive real that reminds to take properly the limit.
For ω larger than µ, an analogous derivation gives the final expression for
the contribution from the lower-left quarter plane:

∑
lower-left poles

. . . =
∑

i

θ(ω − εi)θ(εi − µ)Wp(εi − ω − iη). (7.21)

Since the time-ordered Wp is an even function of ω and an odd function
of the small iη (see first section of this chapter), the total contribution from
all poles is

∑
all poles

=
∑

i

[−θ(µ − εi)θ(εi − ω) + θ(ω − εi)θ(εi − µ)]Wp(|εi − ω| − iη).

(7.22)
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Concerning the remaining integral along imaginary axis, one can take
advantage of the symmetry Wp(−iω) = W ∗

p (iω) to get

∫
dω′ . . . = i

∫ +∞

−∞
dω′ ω − εi − iω′

(ω − εi)2 + ω′2Wp(iω
′)

= 2i

∫ +∞

0

dω′ ω − εi

(ω − εi)2 + ω′2Re Wp(iω
′), (7.23)

since the integral from −∞ to 0 yields the complex conjugate of the integral
from 0 to +∞.

The final result for Σ(ω) reads

Σ(r, r′, ω) =
1

π

∑
i

φi(r)φ
∗
i (r

′)
∫ +∞

0

dω′ ω − εi

(ω − εi)2 + ω′2Re Wp(r
′, r, iω′)

+
∑

i

φi(r)φ
∗
i (r

′) [θ(µ − εi)θ(εi − ω)

−θ(ω − εi)θ(εi − µ)] Wp(r
′, r, |εi − ω| − iη). (7.24)

It is interesting to note that this expression is compliant with the one
derived in the previous section. In fact, if one wants to retain only the imag-
inary part of Σ, one notes that the integral is real and thus, only poles give
contribution to the imaginary part. The θ functions in the pole contribu-
tion are indeed the same as the ones in the spectral function technique. The
derivation is therefore well established and now we have to check whether
it performs better in pratice than the previous method.

7.2.2 Practical implementation

The two parts of Σ in equation (7.24), the integral along the imaginary axis
and the sum over all poles, have to be evaluated.

First, concerning the integral, one has to find a reliable and efficient way
to calculate it. Some authors [82] have chosen a fully numerical approach.
Here, I preferred to take advantage on the possibility to perform some cal-
culations analytically. Indeed, the ω′ dependence of the integrand consists
of two parts: the one from the Green’s function, the one from the screened
Coulomb interaction. As ε−1(iω′) is numerically calculated in the step pre-
ceding the proper GW calculation, the dependence of W with respect to
ω′ is not known analytically, but one knows that along imaginary axis, W
is a smooth function of iω′. On the contrary, the ω′ dependence of G is
explicitly known to be

ω − εi

(ω − εi)2 + ω′2 . (7.25)

Let us precise the notations: W is known at frequencies iω0 < iω1 < . . . <
iωn where ω0 = 0. Let iΩl be equal to (iωl−1 + iωl)/2, with Ω0 = 0. It
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Figure 7.3: Reliability of the assumption on ε−1(iω) used in the algorithm.
The dashed line is a full calculation of Re ε−1 as a function of iω, given as a
reference. The full circles are the few frequencies calculated in practice for a
GW run. The full line is the extrapolation of the few calculated frequencies
used in the algorithm.

seems sensible to assume that it is constant around each iωl (to be precise,
on the interval [Ωl, Ωl+1]), since it is a very smooth function of iω′:

∫ +∞

0

dω′ε−1(iω′)
ω − εi

(ω − εi)2 + ω′2 =
∑

l

ε−1(iωl)

∫ Ωl+1

Ωl

dω′ ω − εi

(ω − εi)2 + ω′2 .

(7.26)
The performance of this model can be evaluated from figure 7.3, where the
behavior of ε−1 as a function of iω′ seems smooth enough to guaranty the
reliability of the approximation. This approximation sometimes overesti-
mates ε−1, sometimes underestimates it. As this scheme is used only inside
an integral over iω′, the errors should compensate pretty well.

Consequently, the integral can be performed analytically on each small
interval:∫ +∞

0

dω′ε−1(iω′)
ω − εi

(ω − εi)2 + ω′2 =
∑

l

ε−1(iωl)

∫ Ωl+1/(ω−εi)

Ωl/(ω−εi)

dx
1

1 + x2

=
∑

l

ε−1(iωl)

[
atan

(
Ωl+1

ω − εi

)

−atan

(
Ωl

ω − εi

)]
.(7.27)
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Is this semi-analytical procedure efficient? I chose non-equidistant iωl

with a finer sampling between 0 and i times the classical plasmon resonance
and a coarser sampling beyond. Table 7.2 provides the value of Σc for silicon
at the LDA fundamental gap (therefore there is no pole inside the contour),
for different discretization of the imaginary axis. The convergence of the
semi-analytical procedure is impressive: except the dummy values for 2
iωl, the result is converged within few meV, already with only 4 iωl. Note
that with this procedure the plasmon-pole model code and the new one
give absolute results in very good agreement, in contrast with the spectral
function method.

Second, concerning the evaluation of the pole contribution, one has to
evaluate ε−1(ω) close to the real axis, where its poles lie. Here, it is con-
venient to choose equidistant frequencies and to interpolate somehow the
calculated ε−1(ω) in order to evaluate ε−1(ω) where one needs it. In real-
ity, it is computationally convenient to interpolate the quantity ρ̃∗

kijε
−1ρ̃kij

instead of ε−1, as in the spectral function method. I first chose a linear
interpolation and then turn to cubic spline interpolation. The difference
between both interpolation modes in displayed on the left panel of fig-
ure 7.4. Although there are almost no differences between both schemes in
the region of interest for the quasiparticle energy (ε4 = 5.81 eV), they are
noticeable deviations where Σ is a fast varying function of ω. The linear
interpolation seems to slightly minimize the fast variations of Σ.

Now, comparison to the previous spectral function method confirms the
conclusions of the previous section. The spectral function method suffers
from the drastic dependence on η parameter. Looking at the region im-
portant for the quasiparticle energy, i.e. around 5.81 eV, one remarks a
very good agreement between the contour method and the spectral func-
tion method with a large η, however the curve for η = 0.01 eV is really
different (the scale of the figure is large!). On the contrary, for the regions
at ±20 eV, the large η calculation underestimates much the variations of Σ,
whereas the small η curve agrees more with the contour integration curve.

The overall scaling of the method is N2
G.Nb.Nk.Nωl

. Note that the main

Table 7.2: Evaluation of Σc at LDA energy for top valence Γ′
25v (band 4 at

Γ point) and bottom conduction X1c (band 5 at X point) of bulk silicon
with different discretization of the imaginary axis (ωl). Plasmon-pole model
(PPM) values are given as a comparison.

PPM 2 iωl 4 iωl 8 iωl 14 iωl

Γ′
25v 0.977 -1.165 0.964 0.958 0.959

X1c -3.494 -1.025 -3.488 -3.484 -3.481
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Figure 7.4: Left panel: Calculation of ReΣ(ω) for top valence band of bulk
silicon at Γ using two different interpolation schemes for the residues of
poles in equation (7.24). Right panel: Comparison of the spectral function
method for two values of η and the contour methods for the same state as
the left panel.

calculation is the evaluation of the vector-matrix-vector products∑
GG′

ρ̃∗
kij(q + G)WGG′(q, ωl)ρ̃kij(q + G′), (7.28)

that is calculated thanks to optimized BLAS libraries.

7.2.3 Results for bulk Silicon

This section provides fully converged data for band structure of bulk silicon.
ε−1 has been expanded in 113 plane-waves (∼ 4 Ha cut-off) and 35 bands
have been used. Wavefunctions and Σx have been expanded in 169 plane-
waves (∼ 5 Ha cut-off), the Green’s function has been calculated with 100
bands.

Figure 7.5 gives data for the real and imaginary part of Σ, which are di-
rectly comparable to the results published in references [84] and [82]. Con-
cerning the real part, the agreement is fairly good for all bands, except
that the present data have more fluctuations in the 30 eV region. This may
be due to the effect of the θ function in the sum over poles, that may in-
duce discontinuity when a pole enters the contour. A solution could be to
smoothen somehow the θ functions. The true solution would be to increase
the number of k-points, in order to go towards the situation where one has a
branch cut on the real axis, instead of isolated poles. These oscillations are
not observed in the two cited works, maybe because they use an analytic
continuation to get these pictures. The analytic continuation forces Σ(z)
into having only a few poles (according to e.g. the Padé approximant of
equation (7.2)) and thus could remove most of the oscillations due to poles
close to the real axis.
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Figure 7.5: Calculation of ReΣ(ω) (left panel) and Im Σ(ω) (right panel)
for the first eight bands of bulk silicon at Γ point.

The imaginary parts of Σ on the right panel of figure 7.5 are reasonable,
but not in perfect agreement with other published works [82, 84]. I did not
put much effort on that point, as I think it is related to the small η param-
eter issue. Since the integral over imaginary axis gives no contribution to
Im Σ, the only contribution comes from the imaginary part of the residues,
whose dependence with respect to η has been shown to be important. With
the contour, the η factor influences only the imaginary part of the GW
self-energy.

Finally, results for the band structure of bulk silicon are provided in
table 7.3. The absolute values with and without plasmon-pole model agree
very well. GW corrections give, as usual [82, 85], good quasiparticle en-
ergies compared to experimental data. The band gap is very close to the
experimental value.

Table 7.3: Absolute band energies (energy reference is the LDA top valence
band), band gaps and band width for bulk silicon in eV. Experimental data
from references [21] and [86] are provided.

LDA GW approximation Expt.
with PPM without PPM

Γ1v -11.99 -11.67 -11.98
Γ′

25v 0.00 -0.25 -0.26
Γ15c 2.53 2.94 2.93
X1c 0.62 1.02 1.03

Eg 0.48 1.13 1.15 1.17
Γ15c − Γ′

25v 2.53 3.19 3.19 3.05 - 3.40
Valence bandwidth 11.99 11.42 11.72 12.5 ± 0.6



Chapter 8

Self-consistent quasiparticle
calculations

8.1 Looking for a better starting point for

GW

The common paradigm to perform GW evaluation of the band structure
is to use elements (energies and wavefunctions) from a self-consistent DFT
calculations to construct G and W , and then calculate once Σ = iGW .
This procedure is not assessed by theoretical derivations of the Many-Body
Perturbation Theory, but grounded on practical experience accumulated on
model systems [25, 87] or on realistic systems [73, 81].

One may doubt that DFT within the usual approximations yields reli-
able inputs for a GW calculation. In particular, the well-known underesti-
mation of the band gap in DFT will generally provide a too large dielectric
constant and, as a consequence, a too strongly screened Coulomb inter-
action W . This underestimation of the band gap may be fixed easily by
performing a “poor man” self-consistent GW calculation: calculate the GW
eigenvalues and use them for a next GW calculation until the input and
output energies are equal.

On the contrary, if one has suspicion that the Kohn-Sham wavefunc-
tions are not adequate, there is no straightforward way to get rid of this
assumption. Even calculations, claimed as “self-consistent” as the work of
W.Ku and A.G.Eguiluz [88, 89], do not relax the equality of GW and
LDA wavefunctions. Indeed, the Green’s functions are always assumed to
be diagonal in the basis set of LDA wavefunctions in their work. That is
why S. Faleev and coworkers [90] propose a smart way to handle modified
self-energies in order to get proper wavefunctions. The problem is that the
true self-energy is non-hermitian, hence the left and right eigenvectors dif-
fer, and dynamic, hence the eigenvectors are energy-dependent. The idea
of reference [90] is to impose an hermitian and static self-energy by using
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the modified self-energy Σ̃

〈ki|Σ̃|kj〉 =
1

4
(〈ki|Σ(εkj)|kj〉 + 〈kj|Σ(εkj)|ki〉∗

+〈ki|Σ(εki)|kj〉 + 〈kj|Σ(εki)|ki〉∗) , (8.1)

where εi and |ki〉 are the self-consistent eigenvalues and eigenvectors of
the procedure. Note that Σ operator has the symmetries of the solid and
therefore, does not mix wavefunctions with different k indexes. This ob-
ject is, from the mathematical point of view, much simpler than the true
GW self-energy, but it still requires large calculations, since the full matrix
〈ki|Σ|kj〉 is needed. It still requires large sums over empty states. This is
the reason why this study considers also the use of a simpler approximation
for the self-energy, the COHSEX approximation, that is directly static and
hermitian and thus, avoids the modeling step of equation (8.1).

The idea of the present work is to implement both a self-consistent
COHSEX code and a self-consistent GW code, using the assumption of ref-
erence [90]. COHSEX will be used a starting point for a single subsequent
GW iteration. The purpose of the present chapter is to devise the prac-
tical method, apply the developed codes on simple materials, solid argon
and bulk silicon, and finally check their reliability against a “true” GW
calculation. The Hedin’s static COHSEX approximation [25, 91] is appeal-
ing. It is cheap, as it avoids the sum on empty states. It futher yields a
self-energy, which is directly hermitian. It contains most of the physical
effects carried by the GW self-energy: proper description of the Coulomb-
hole and screening of the exchange operator (see chapter 3). Moreover, it
has been tested on real materials [70] with relative success: COHSEX gives
band gaps that are slightly too large (∼ 10%). This chapter will proceed
essentially with these two approximations. It will occasionally consider the
bare and screened exchange approximations in addition.

8.2 Representation of quasiparticle

wavefunctions and Hamiltonian on a

restricted LDA basis set

In the present section, the term “quasiparticle wavefunctions” will stand
generically for any of the following wavefunctions: Hartree-Fock, screened
exchange, COHSEX or GW ones. In order to keep the calculations tractable
even for complex materials, the quasiparticle wavefunctions φQP

ki will be
expanded in the basis set of LDA wavefunctions φLDA

kj :

|φQP
ki 〉 =

∑
j

ckij |φLDA
kj 〉, (8.2)
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where projection coefficients ckij = 〈φLDA
kj |φQP

ki 〉 were introduced. In others
words, the quasiparticle wavefunctions are constrained to be linear combi-
nation of LDA wavefunctions.

This procedure requires to calculate and diagonalize the full matrix
〈ki|ΣQP|kj〉. Within quasiparticle approximation, the self-energy is her-
mitian: only one half of matrix is actually computed. Moreover, an hermi-
tian self-energy ensures that the eigenvalues are real and the eigenvectors
are orthonormalized. The matrix of ckij coefficients is, as a consequence, a
unitary matrix:

tc.c = 1 (8.3)

By iterating the process, the Hamiltonian is represented in the basis
set of the solution of previous iteration. By converging the calculation,
the quasiparticle Hamiltonian matrix tends to be diagonal. Its diagonal-
ization gives the set of coefficients c

(n)
kij that connects the new quasiparticle

wavefunction to the previous one:

|φQP(n)
ki 〉 =

∑
j

c
(n)
kij |φQP(n−1)

kj 〉. (8.4)

The final ckij coefficients are hence given by the matrix product c =
c(n).c(n−1) . . . c(1). As all the c(i) are unitary, so is c.

This scheme requires to evaluate 〈φQP(n)
ki |VH[ρQP (n)] + ΣQP (n)|φQP(n)

kj 〉,
which is performed via a direct calculation, and 〈φQP(n)

ki |h0|φQP(n)
kj 〉, which

is calculated thanks to a change of basis set:

〈φQP(n)
ki |h0|φQP(n)

kj 〉 =
∑
mn

c∗kimckjn〈φLDA
km |h0|φLDA

kn 〉 (8.5)

The last matrix is then obtained, for practical reasons, by removing 〈m|VH [ρLDA]+
Vxc|n〉 to the known LDA Hamiltonian represented on LDA wavefunctions
εkmδmn.

A natural question arises concerning this procedure: is the LDA basis set
well-suited for the representation of quasiparticle wavefunctions? Of course,
if one had used as many LDA states as the number of plane-waves used to
represent the LDA wavefunctions, one would have a complete basis set,
hence as justified as the basis of plane-waves. But for practical purposes,
one would like to use only few of them to make this scheme computationally
interesting. Is that truncation well-founded?

Let us address this issue by comparing the two basis sets (planes-waves
and LDA wavefunctions) in the case of a simpler approximation, the Hartree-
Fock approximation. Intuitively, Hartree-Fock approximation is expected
to be quite different from LDA approximation. Therefore, if a limited LDA
basis set is able to represent the HF wavefunctions, no problems should
appear for the representation of wavefunctions closer to the LDA start-
ing point, as the other quasiparticle wavefunctions are expected to be. The
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Figure 8.1: Projection of Hartree-Fock (after only one iteration) last valence
band (left panel) and first conduction band at k-point (-1/8, -3/8, 1/4) in
silicon (a logarithmic scale is used on vertical axis), in the LDA states.

practical reason for comparing HF only wavefunctions is that the calculation
of nonlocal operators in reciprocal space is prohibitive on the plane-wave
basis set, even for very simple materials. As exchange self-energy is a one-
index operator in reciprocal space, the scaling with respect to the number
of plane-waves NG is N3

G:

〈k + G|Σx|k + G′〉 = −4π

V

∑
k1G1

∑
iocc

φk1i(G1 − G)φ∗
k1i(G1 − G′)

|k1 − k + G1|2 . (8.6)

Calculation of the true GW or the COHSEX wavefunctions would have
scaled as N4

G, as it requires to handle the nondiagonal matrix ε−1
GG′.

The figures 8.1 and 8.2 show the projection of the HF wavefunction j
(after only one iteration) on the LDA state i at a given k-point:

|cij|2 = |〈φLDA
ki |φHF

kj 〉|2. (8.7)

The k-point was chosen to be as representative as possible. I chose therefore
a point with a large weight. As a consequence, the number of cij coefficient
that vanishes for symmetry reasons is the lowest. The difference between the
full self-consistent HF wavefunctions and the first iteration ones has been
tested to be rather small. Moreover, the issue here is just to assess or not
the flexibility of a restricted LDA basis set to represent other wavefunctions.
A logarithmic scale had to be used, as the projection decreases very fast
with the index of the LDA state. Calculations for silicon were performed
with 307 plane-waves (that corresponds to a 9 Ha cut-off), and for argon,
with 609 plane-waves (that corresponds to a 14 Ha cut-off).

The first statement is the large overlap between LDA wavefunction j and
HF wavefunction j: from 99.5 % for the last valence band of silicon to 98.3
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Figure 8.2: Projection of Hartree-Fock (after only one iteration) last valence
band (left panel) and second conduction band at k-point (-1/8, -3/8, 1/4)
in solid argon (a logarithmic scale is used on vertical axis), in the LDA
states.

% for the second conduction band of argon (look at the point designated by
an arrow, which is very close to 1 in figures 8.1 and 8.2). Second, to reach a
given accuracy (let us say we project only states that have a weight larger
than 5.10−4), the valence bands would need less bands than conduction
bands. Third, the LDA basis set seems to be a bit more adequate for argon
than for silicon. But the general conclusion that can be drawn from these
figures is the efficiency of a restricted LDA basis set.

To make even clearer the ability of the LDA basis set to represent other
wavefunctions, let us plot the corresponding wavefunctions in real space on
figure 8.3 for the worst case: the second conduction band of argon. The
figure shows how fast the restricted LDA basis set converges. Only 10 LDA
states for a basis set do not allow enough flexibility to represent the true HF
wavefunction. But with the increase of the number of basis set functions,
the representation becomes better and better. In practical applications, 30
LDA wavefunctions will be really sufficient. The number of matrix elements
to be computed will be 302, instead of 6092 for argon, if one would have used
the plane-wave basis set. This procedure will hence allow one to evaluate
self-energy operators, which are nonlocal in real and reciprocal space, as
the COHSEX one, or the GW one.

8.3 Testing the code against published data

At this point, it has been shown that the representation via a linear combi-
nation of LDA wavefunctions makes calculation of wavefunctions using non-
local self-energies feasible. The code I wrote is a modification from the GW
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Figure 8.3: Squared modulus of different representation or approximation of
the second conduction band at k-point (-1/8, -3/8, 1/4) in solid argon along
the (1 1 0) direction in real space. The grey circles symbolize the argon
atoms. LDA wavefunction is depicted with the large dots. HF wavefunc-
tion on plane-wave basis set is plotted with the full line, HF wavefunction’s
projection on the 10 first LDA bands with the dotted line, HF wavefunc-
tion’s projection on the 20 first LDA bands with the dot-dashed line, HF
wavefunction’s projection on the 50 first LDA bands with the dashed line
(hardly distinguishable from the solid line).

subroutines of the ABINIT package [67, 69]. It allows self-consistent calcu-
lations within the following approximations, namely Hartree-Fock, screened
HF, COHSEX, and full GW . The initialization is made using LDA inputs,
as in a usual GW calculation. Note that what is called “wavefunction” here,
should be strictly named pseudowavefunction, as all the calculations rely
on a pseudopotential scheme. Due to the pseudopotentials used, the effect
of the core on the valence is always taken into account via LDA interaction.
This may have some importance as pointed out by P.Rinke et al. [92] and
as discussed in chapter 13 for the study of Cu2O.

To assess the reliability of the code, let us provide comparison with
previously published results in table 8.1. The agreement is pretty good.
In particular, the values for solid argon agree very well with the present
work, although a different basis set (gaussians) was used by S.Baroni et al.
[22, 94], and although the present calculations use an LDA pseudopoten-
tial. The value concerning silicon are systematically slightly smaller than
the ones from reference [70]. This could be due to different causes: different
pseudopotentials, different levels of convergence. Hybertsen and Louie cal-
culations were a pioneering work and maybe not converged within today’s
standards.
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8.4 Silicon and argon wavefunctions within

some historical approximations

It is now time to make use of the previous developments to carry out a
detailled study of wavefunctions within different approximations, namely
LDA, Hartree-Fock, screened Hartree-Fock and COHSEX. All these ap-
proximations have been previously defined in chapter 3.

Figure 8.4 shows the behavior of a valence wavefunction upon achieve-
ment of the self-consistency in a COHSEX calculation. The self-consistency
is reached very rapidly: the main part of the difference is gained after the
first step and after two steps, the wavefunction is indistinguishable with the
final result. The same statement holds for conduction states and also for
solid argon.

LDA and HF approximation should be considered as two extreme cases.
LDA is exact in the limit of homogeneous systems. On the contrary, HF
usually performs well for localized systems, like atoms. The common state-
ment is that LDA overbinds atoms, whereas HF underbinds them; LDA
gives too small band gaps, whereas HF yields band gaps much too large.
One would expect the true wavefunction to be in between LDA and HF
ones. Figure 8.5 provides self-consistent valence and conduction wavefunc-
tions of silicon at a particular k-point within approximations of increasing
complexity. Although the projection of both valence and conduction HF
states on LDA are greater than 98.3 %, the difference is easily noticed. The

Table 8.1: Comparison of theoretical band gaps (indirect gap or direct
one at Γ) in eV for silicon and argon from this work and from previously
published data, within the self-consistent HF approximation (SCF HF) or
within the perturbative COHSEX approximation (only one iteration start-
ing from LDA).

Silicon Argon
this work literature this work literature

Γ gap SCF HF 8.66 9.00a, 9.27b 17.97 17.93c

Ind. gap SCF HF 6.21 6.87b — —
Γ gap pert. COHSEX 3.52 3.85d 14.98 14.62e

Ind. gap pert. COHSEX 1.51 1.70f — —

aReference [16]
bReference [93]
cReference [22]
dReference [81]
eReference [94]
fReference [70]
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Figure 8.4: Squared modulus of the last valence band at k-point (-1/8, -3/8,
1/4) in silicon along the (1 1 1) direction in real space within the COHSEX
approximation. The grey circles symbolize the silicon atoms. The dotted
line is the LDA wavefunction, the dashed the wavefunction after the first
COHSEX iteration, the full the wavefunction after the second COHSEX
iteration, the square symbols represent the wavefunction after the sixth
COHSEX iteration.
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Figure 8.5: Squared modulus of the last valence band (left panel) and first
conduction band (right panel) at k-point (-1/8, -3/8, 1/4) in silicon along
the (1 1 1) direction within different approximations. The grey circles
symbolize the silicon atoms. The wavefunctions within LDA (dotted line),
HF (dot-dashed line), screened HF (dashed line), and COHSEX (full line)
are shown.

value of the scalar product only may not be sufficient to decide whether
wavefunctions are similar or not. Starting from HF wavefunctions, one can
add the screened part of the screened exchange self-energy of equation (3.29)
to get the screened Hartree-Fock wavefunction. Unexpectedly, these wave-
functions are really different from both LDA and HF ones. The quality
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Figure 8.6: Squared modulus of the last valence band (left panel) and second
conduction band (right panel) at k-point (-1/8, -3/8, 1/4) in argon along the
(1 1 0) direction within different approximations. The grey circles symbolize
the argon atoms. The wavefunctions within LDA (dotted line), HF (dot-
dashed line), screened HF (dashed line), and COHSEX (full line) are shown.
The inset shows a close-up of the peak region. HF and COHSEX are here
undistinguishable.

of these wavefunctions is doubtful, since screened HF yields furthermore
largely too small band gaps. If one further adds the Coulomb hole con-
tribution to the self-energy of equation (3.32), the wavefunctions that come
out lay in between LDA and HF ones. The Coulomb hole term has corrected
the effect of screened exchange contribution. From the presen results, the
full COHSEX approximation seems to provide the best wavefunctions of all
approximations tested in the present section.

Analysing the data for solid argon on figure 8.6 confirms perfectly the
previous conclusions: whereas all the other approximations give very sim-
ilar valence wavefunctions, the screened HF wavefunction is drastically in-
coherent; for the conduction band, COHSEX wavefunction is in the middle
between LDA and HF.

Therefore, the following conclusions can be drawn from the presented
data:

• the value of the scalar product between quasiparticle wavefunctions
and LDA ones may be not sufficient to evaluate the quality and the
similarity of the wavefunctions.

• one should not use a screened HF contribution to the self-energy alone.

• The use of screened exchange and Coulomb hole terms together pro-
vide very reasonable wavefunctions.
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8.5 Effect of self-consistency on operators

The change of the wavefunctions and of the energies may alter the Hamilto-
nian operator in several different ways. It is therefore interesting to evaluate
separately the effect of changing the wavefunctions and/or the energies on
the different parts of the Hamiltonian. Numerical results are provided in
table 8.2.

In a COHSEX calculation, the only effect due to the eigenvalues is
contained in the evaluation of W . Updating the energies from one cycle
to the other corrects the screening, which is usually overestimated in LDA.
The difference between the first and the second rows of table 8.2 for silicon
and argon is located only in ∆Σc. As expected, the effect is rather small
for silicon (0.27 eV), as the LDA band gap is not so wrong, and, on the
contrary, rather large for argon (1.09 eV), as the LDA band gap is 60 % of
the COHSEX value.

The effect of the wavefunctions may be experienced in two different
manners: a change in the expression of the operators or a change of the
states used for the evaluation of matrix elements. For instance, changing
the wavefunctions makes the exchange operator different, but not the kinetic
energy one. However, the kinetic energy matrix element is modified, since
the bra and ket used are not the LDA wavefunctions any longer.

The overall effect of the wavefunctions is rather small: the difference
between band gaps of the second and third rows for silicon and argon in
table 8.2 is about 0.2 eV. However, one can not conclude that the effect of
the wavefunction is small. Indeed, the different contributions to the band
gap are modified, but compensate each other. For instance, the contribu-
tion from Hartree Hamiltonian to the band gap of argon is reduced by 0.68
eV, when using the COHSEX wavefunctions instead of the LDA ones. But

Table 8.2: Different contributions in eV to the band gap at Γ within the
COHSEX approximation to the self-energy for silicon and argon using LDA
or COHSEX wavefunctions and energies. ∆Hh is the contribution due to
the Hartree Hamiltonian, ∆Σx the one due the exchange operator, ∆Σc the
one due to the correlation part of the COHSEX self-energy.

wavefunctions energies ∆Hh ∆Σx ∆Σc Band gap
φLDA εLDA 1.21 6.58 -4.26 3.52

Si φLDA εCS 1.21 6.58 -4.00 3.78
φCS εCS 1.09 7.08 -4.19 4.00
φLDA εLDA -0.97 19.03 -2.90 14.98

Ar φLDA εCS -0.97 19.03 -1.99 16.08
φCS εCS -1.65 19.56 -2.03 15.88
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Figure 8.7: Squared modulus of the last valence band (left panel) and second
conduction band (right panel) at k-point (-1/8, -3/8, 1/4) in silicon along
the (1 1 1) direction within different approximations. The grey circles
symbolize the silicon atoms. The wavefunctions within LDA (full line),
within HF (dot-dashed line), within COHSEX (full line), and within GW
using the method of reference [90] (full circles) are shown.

the contribution due to the exchange operator is increased by 0.52 eV in
the meantime. Therefore the total effect remains quite small, although the
details of the wavefunctions were crucial when evaluating each contribution
separately. The same statements hold for silicon. In particular, the ex-
change operator seems to be a very sensitive quantity with respect to the
wavefunctions.

8.6 Static COHSEX wavefunctions as an

evaluation of GW wavefunctions

In this chapter, the study of COHSEX wavefunctions have not been thought
a purpose on its own. The COHSEX wavefunctions have been considered
as a first step towards improved wavefunctions. Regarding the difficulty to
get the true GW wavefunctions for numerical and theoretical reasons, as
explained in the first section of this chapter, it could be sensible to use the
COHSEX wavefunctions as approximations to the GW ones. Is this really
justified in practical applications? I have addressed this issue by comparing
the COHSEX wavefunctions with the one obtained thanks to equation (8.1)
[90].

Figures 8.7 and 8.8 provides the squared modulus of the pseudo-wavefunctions
for the same states as previously in silicon and argon. This curves were ob-
tained after a single iteration, due to the relative complexity of the method
of reference [90]. But final conclusions can be drawn from this, as the first
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Figure 8.8: Squared modulus of the last valence band (upper left panel) and
the first (upper right panel) and second conduction bands (bottom panel)
at k-point (-1/8, -3/8, 1/4) in argon along the (1 1 0) direction within
different approximations. The grey circles symbolize the argon atoms. The
wavefunctions within LDA (full line), within HF (dot-dashed line), within
COHSEX (full line), and within GW using the method of reference [90] (full
circles) are shown. The inset shows a close-up of the peak region.

step always yields the main effect (see figure 8.4). The GW self-energy was
evaluated using only 30 states for the sum over states in G, since it was
explicitly checked that the wavefunctions converge much faster with respect
to that parameter than the energies.

The overall conclusion is that COHSEX does not seem to be a great
improvement with respect to LDA concerning the valence wavefunctions
for silicon and argon. In both case, LDA, COHSEX, and GW are rather
similar, but starting from LDA, COHSEX approximation goes in the wrong
direction. Looking at the second conduction band of argon, one could have
thought that HF wavefunctions were a very good approximation to the GW
ones. But, looking at the first conduction band of argon, one can see that
they largely differ. In all cases, for the conduction bands, COHSEX seems
to be a good approximation to GW wavefunctions, much better than the
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starting LDA wavefunctions...
The general conclusion of the present comparison is that, compared

to the GW wavefunctions using equation (8.1), COHSEX approximation is
not an improvement over LDA concerning valence bands (that were already
quite good in LDA), but it is for conduction bands.

8.7 Self-consistent GW band structure

Concerning the performance of the self-consistent GW scheme devised in
reference [90], the code written here is able to produce results using the
pseudopotential plus plane-waves method. It is interesting to perform such
a calculation, as it has been claimed recently [88, 89] that pseudopotentials
prevent from performing good self-consistent GW calculations.

Table 8.3 displays the results for the two materials studied so far. Note
that the perturbative GW results are slightly different from the usual ones,
since here I have used the recipe of reference [90], where the self-energy is
evaluated at the LDA energy and the Z factor of equation (5.17) is assumed
to be equal to 1. One can state that the energy self-consistency yields a
noticeable effect, in particular for argon. On the contrary, the change in
wavefunctions accounts for slight differences for the band gaps. The final
results is in pretty good agreement with respect to experiment, and further-
more in agreement with the LMTO results of Faleev and co-authors [90].
The self-consistent GW calculation using this constrained method seems
to provide nice band gap values, at least for the simple materials studied
here, and agrees pretty well with the all-electron results of reference [90]. In
part IV, this method will be applied on the more complex case of Cu2O.

Table 8.3: Selected features of the band structure of silicon and argon within
the perturbative GW , within an energy-only self-consistent GW , or within
the full self-consistent GW described by reference [90].

pert. GW energy scf GW full scf GW Expt.
Si Direct band gap 3.37 3.42 3.48 3.40

Γ′
25v → X1c 1.41 1.46 1.49 1.32

Ar Direct band gap 13.37 14.41 14.48 14.20





Part III

Theoretical developments





Chapter 9

Derivation of TDDFT kernels
from MBPT

Today’s situation with absorption spectra is that, on one hand, Bethe-
Salpeter equation is successful, but unfortunately cumbersome; and on the
other hand, TDDFT is in principle lighter, but unfortunately, no working
approximations are available.

The idea of using equality between some DFT and MBPT quantity
to extract information about exchange-correlation potential or kernel has
already been used a few times very recently, as shown in the introductive
chapter 6. For instance, Sham-Schlüter equation starts from the equality
of ground-state densities; Adragna et al. [64] begin with the equality of
polarizabilities. In this chapter, I will benefit, in the same spirit, of the
equality of time-dependent densities in order to derive an expression for the
exact exchange-correlation kernel and approximations to it. This will yield
a time-dependent Sham-Schlüter-like equation for the kernel. The issue of
time-ordering and causality is circumvented here by using response function
only for positive frequencies, where there is no difference.

9.1 Time-dependent Sham-Schlüter

condition

By definition of the one particle Green’s function, its diagonal yields the
exact time-dependent density of the N electron system:

−iG(1, 1+) =< N |ψ†(1)ψ(1)|N >= ρ(1). (9.1)

The time-dependent density is itself the key quantity of TDDFT and is
given exactly by TDDFT.

Here a special care concerning the time-ordering in G should be taken
as pointed out by R. vanLeeuwen [95]. His conclusions were that if the
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Keldysh contour trick is used for the time-ordering, no problem arises and
all equations remain identical.

Let us differentiate the previous equation with respect to the density
ρ(2) to make the exchange-correlation kernel appear in the following lines:

δ(1, 2) = i

∫
d34G(1, 3)G(4, 1)

δG−1(3, 4)

δρ(2)
, (9.2)

where the derivative of the inverse has been used (equation (B.3)). Now,
one uses a Dyson equation where the Kohn-Sham potential vKS has been
introduced (and consequently vxc is subtracted) to get rid of G−1:

G−1(1, 2) = G−1
0 (1, 2) − δ(1, 2)vKS(1) − Σ(1, 2) + δ(1, 2)vxc(1). (9.3)

G0 corresponds to the free-electron Green’s function, whose Hamiltonian
only contains the kinetic energy. The variation of vKS(1) with respect to the
density ρ(2) is, by definition, the inverse of the Kohn-Sham polarizability
χ−1

KS(1, 2). One obtains

δ(1, 2) =

∫
d3χ0(1, 3)χ−1

KS(3, 2) − i

∫
d34G(1, 3)G(4, 1)

δΣ(3, 4)

δρ(2)

−
∫

d3χ0(1, 3)fxc(3, 2), (9.4)

where one has used the definition of the RPA irreducible “polarizability”
χ0(1, 2) = −iG(1, 2)G(2, 1) (defined in chapter 3) and of the TDDFT kernel
fxc. Then, multiplied on the left by χ−1

0 , this provides the central equation
of this derivation:

fxc(1, 2) = χ−1
KS(1, 2) − χ−1

0 (1, 2)

− i

∫
d345χ−1

0 (1, 5)G(5, 3)G(4, 5)
δΣ(3, 4)

δρ(2)
. (9.5)

This kernel turns out to consist of two terms, namely f
(1)
xc and f

(2)
xc . The

first one
f (1)

xc (1, 2) = χ−1
KS(1, 2) − χ−1

0 (1, 2) (9.6)

accounts exactly for the difference between the non-interacting response
functions coming from both theories, TDDFT and many-body perturbation
theory. According to the Dyson-like equation (9.6), the role of this kernel
is to transform the polarizability computed with Kohn-Sham Green’s func-
tions into the one that uses the exact Green’s functions. It carries all the
one-quasiparticle effects.

The second part of the TDDFT kernel

f (2)
xc (1, 2) = −i

∫
d345χ−1

0 (1, 5)G(5, 3)G(4, 5)
δΣ(3, 4)

δρ(2)
. (9.7)
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accounts for all the remaining interactions. In particular, the significant
electron-hole interaction is present in an exact manner.

The key quantity of this approach is the derivative of Σ with respect to
the density. This unknown quantity satisfies an intricate integral equation,
which has to be approximated for practical applications.

9.2 Integral equation for δΣ/δρ

In usual applications, the self-energy Σ is expressed as a function of Green’s
function G, for instance in the Hartree-Fock, GW approximation, etc. One
can recover the expression of Σ as a function of G by using a chain rule via
G. This will lead to an integral equation equivalent to the diagrammatic
expansion of reference [80]. We provide here the derivation, not for solving
it in practice, since this equation is as cumbersome as the Bethe-Salpeter
equation, but it will be useful to design approximation to it.

First, let us forget that one only needs the variation of the self-energy
with respect to the density, by introducing the Green’s function thanks to
the chain rule:

δΣ(1, 2)

δρ(3)
=

∫
d45 Ξ(1, 5; 2, 4)

δG(4, 5)

δρ(3)
, (9.8)

where Ξ(1, 5; 2, 4) = δΣ(1, 2)/δG(4, 5) is the kernel of Bethe-Salpeter equa-
tion (defined in chapter 3).

One meets the same situation as in the previous derivation, one has
to evaluate variation of the Green’s function with respect to the density.
Therefore, one uses exactly the same tricks: replace δG/δρ by −G(δG−1/δρ)G
and then use Dyson equation to get rid of G−1. The resulting equation

δΣ(1, 2)

δρ(3)
=

∫
d4567 Ξ(1, 5; 2, 4)G(4, 6)G(7, 5)

×
[
δ(6, 7)χ−1

KS(6, 3) − δ(6, 7)fxc(6, 3) +
δΣ(6, 7)

δρ(3)

]
(9.9)

involves the exchange-correlation kernel and a new occurrence of δΣ/δρ.

According to equation (9.6), χ−1
KS − f

(1)
xc is simply χ−1

0 :

δΣ(1, 2)

δρ(3)
=

∫
d4567 Ξ(1, 5; 2, 4)G(4, 6)G(7, 5)

×
[
δ(6, 7)χ−1

0 (6, 3) − δ(6, 7)f (2)
xc (6, 3) +

δΣ(6, 7)

δρ(3)

]
(9.10)
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δΣ

δΣ
δρ

=
δρ

δρ

+ δΣ

-

Figure 9.1: Feynman diagram representation of the integral equation (9.11)
in the particular case, where Ξ = iW , as it is usually done when solving
Bethe-Salpeter equation.

that can be recast by using the definition 9.7 for f
(2)
xc

δΣ(1, 2)

δρ(3)
=

∫
d4567 Ξ(1, 5; 2, 4)G(4, 6)G(7, 5)

[
δ(6, 7)χ−1

0 (6, 3) +
δΣ(6, 7)

δρ(3)

+iδ(6, 7)

∫
d8910 χ−1

0 (6, 8)G(8, 9)G(10, 8)
δΣ(8, 10)

δρ(3)

]
(9.11)

This large integral equation has to be solved in order to get the exact
value of δΣ/δρ. This equation becomes clearer using Feynman diagrams
in figure 9.1. This equation is not very useful to get an exact value as it is
really intricate. But, for the practical point of view, it is very instructive for
finding the right approximation among the possible ones. This functional
derivation adds insight in the role of the different ingredients, with respect to
the purely diagrammatic expansion of reference [80], where their unknown
solution of the integral equation has no obvious interpretation.

To find a good approximation, one has to guess what is small, and what
is large in the previous equation. At first sight, one could be tempted to
decide that δΣ/δρ−fxc is small and disregard its second-order. However, by
investigating equation (9.10), it seems more sensible to assume that δΣ/δρ−
f

(2)
xc is small. Indeed, expressions of δΣ/δρ and of f

(2)
xc are very similar,

whereas f
(1)
xc has nothing to do with the derivative of Σ. Both δΣ/δρ and

f
(2)
xc accounts for the same physics: the electron hole-interaction, whereas

f
(1)
xc accounts for the quasiparticle shift. All these clues make that it is

reasonable to follow a perturbative approach using the coupling parameter
δΣ/δρ − f

(2)
xc .
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The zero-order kernel is obtained by neglecting all occurrences of δΣ/δρ−
f

(2)
xc . The equation (9.7) can be written as

−i

∫
d23G(1, 2)G(3, 1)

[
δΣ(2, 3)

δρ(4)
− δ(2, 3)f (2)

xc (2, 4)

]
= 0, (9.12)

which shows that the zero-order kernel is simply

f (2)
xc = 0. (9.13)

When the previous kernel is used in the usual linear-response TDDFT equa-
tion,

χ = χKS + χKS(v + fxc)χ, (9.14)

it merely yields the RPA:

χ = χ0 + χ0vχ. (9.15)

The following sections will give expressions for the first- and second-order
results.

9.3 First-order TDDFT kernel

Let me exemplify the previous developments with the first-order kernel.
According to equation (9.10), the first-order expression for δΣ/δρ − f

(2)
xc

yields

δΣ(1, 2)

δρ(3)
≈

∫
d456 Ξ(1, 5; 2, 4)G(4, 6)G(6, 5)χ−1

0 (6, 3). (9.16)

One has just neglected of δΣ/δρ − f
(2)
xc in the right-hand side of equa-

tion (9.10). Then, one can introduce this approximation in equation (9.7)
to get the expression of the kernel, dropping the indexes,

f (2)
xc ≈ −iχ−1

0 GGΞGGχ−1
0 . (9.17)

This approximation needs now an approximation for Ξ.

9.3.1 Link to TD-OEP: exact-exchange

This section is dedicated to the proof that the method described here per-
mits one to derive as a by-product the OEP kernels. In particular, the
exact-exchange kernel of reference [77] is obtained when one chooses the
Hartree-Fock approximation for the self-energy in equations (9.6) and (9.7)
and when a further linearization approximation is applied. OEP methods
refer only to Kohn-Sham quantities. The linearization step consequently
removes all occurrences of the true Green’s functions G.
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Consider separately the equations for f
(1)
xc and f

(2)
xc . The first one can be

rewritten thanks to the multiplication on the left by χKS and on the right
by χ0 as

χKSf
(1)
xc χ0 = −iGG + iGKSGKS, (9.18)

where the indexes are implicit throughout the derivations. Making use of
the Dyson equation that links GKS to G, one obtains the exact equation

χKSf
(1)
xc χ0 = −i [GKS + GKS(Σ − vxc)G]

× [GKS + GKS(Σ − vxc)G] + iGKSGKS. (9.19)

In order to avoid any reference to the true G and χ0, one can develop the pre-
vious equation to the first-order in (Σ−vxc), following the spirit of OEP pro-

cedures. f
(1)
xc is consequently a first-order quantity and χKSf

(1)
xc χKSf

(1)
xc χKS . . .

are higher-order quantities. Hence, the linearized equation finally reads

χKSf
(1)
xc χKS = −iGKS(Σ − vxc)GKSGKS − iGKSGKS(Σ − vxc)GKS (9.20)

When the self-energy Σ is simply the bare exchange operator and the
exchange-correlation vxc is the corresponding OEP exact-exchange oper-
ator, this equation gives a part of the kernel derived by Kim and Görling
[77]. By introducing the expression of the GKS and performing the fre-
quency integrals by means of the residue theorem, one obtains precisely
the terms H3

X and H4
X of reference [77]. This relation is demonstrated in

appendixC. This part approximatively accounts for the quasiparticle shift,
as it implies terms like (Σ − vxc). F. Sottile implemented the first-order

f
(1)
xc and found it rather unstable [5]. Dramatic numerical problems appear

as soon as the η factor in the denominator is too small or as soon as the
number of transitions is too large.

Now, let us apply the same method for the electron-hole term repre-
sented by f

(2)
xc . In the case of Σ equal to the exchange operator, the first-

order kernel of equation (9.17) reads

χ0f
(2)
xc χ0 = GGvGG. (9.21)

Following the linearization scheme, one can get rid of all references to G’s
by replacing them by GKS’s. The equation for f

(2)
xc finally reads

χKSf
(2)
xc χKS = GKSGKSvGKSGKS, (9.22)

and replacing the GKS and the χKS by their expressions and performing the
frequency integral with the residue theorem yield exactly the H1

X and H2
X

terms of reference [77].
All this derivation proves that time-dependent exact-exchange scheme

is nothing else but an approximation to the time-dependent Hartree-Fock
approximation, but expressed in the TDDFT formalism. If the kernel were
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=

Figure 9.2: Feynman diagram representation of the first-order TDDFT ker-
nel, using Ξ = W as in Bethe-Salpeter equation.

not the first-order one, but the true one, and one had not linearized, the
time-dependent densities arising from the time-dependent Hartree-Fock ap-
proximation to the self-energy and the one arising from the time-dependent
exact-exchange approximation to the TDDFT would give exactly the same
result. In that sense, time-dependent exact-exchange scheme is a rough ap-
proximation to time-dependent Hartree-Fock. It is well known that time-
dependent Hartree-Fock yields very bad response functions, as shown in
figure 3.6 for bulk silicon, with a too large band gap (the Hartree-Fock one)
and too strongly bound excitons. In conclusion, time-dependent exact-
exchange scheme is an approximation to a very rough approximation! Only
improbable cancellations of errors from OEP linearization and from time-
dependent Hartree-Fock could give realistic results for the response func-
tion. Instead Kim and Görling used an addition parameter to reduce the
Coulomb interaction and produced quality spectra: it is a kind of screening!

9.3.2 Link to more realistic approximations

If one prefers to use the common approximations of the Bethe-Salpeter
equation to approximate Ξ (Σ = iGW , neglect of δW/δG and W static),
one obtains

χ0f
(2)
xc χ0 = GGWGG. (9.23)

This equation is depicted in Feynman diagram representation in figure 9.2,
where the omitted indexes in the equation can be seen. This is the very
central equation of the work of Reining et al. [4] and Sottile et al. [6]. This
corresponds also to the first-order kernel of the works of Adragna et al. [64]
and of Tokatly et al. [65].

It has produced very good results in practical applications [5, 6, 79].
Figure 9.3 gives the example of bulk silicon calculated with the DP code
[68], using the subroutines of F. Sottile [5]. Concerning the technical pa-
rameters, I used the three highest valence bands and the three lowest con-
duction bands, a regular grid of 512 slightly shifted k-points in the full Bril-
louin zone, and an imaginary part in the energy denominators η = 0.1 eV.
As the figure shows, the TDLDA approach fails to reproduce the optical
absorption, since both the band gap and the oscillator strengths of the
main peaks are wrong. On the contrary, following our comparison between
TDDFT and Green’s functions, we have to evaluate the two contributions
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Figure 9.3: Optical absorption spectrum of bulk silicon calculated within
different approximations and compared to experimental data of Ref. [30].
The dashed line represents the TDLDA curve, the dot-dashed line the
TDDFT kernel using f

(1)
xc of the text only, the full line the full TDDFT

kernel of the text. The solution of the Bethe-Salpeter equation (crosses)
and the experimental curve (full circles) are given for comparison.

to the TDDFT kernel. The first term f
(1)
xc accounts for the one-quasiparticle

exchange-correlation effects. It transforms the KS response function χKS

into the GW independent quasiparticle χ0. The corresponding curve in fig-
ure 9.3 gives the correct band gap. At this level, electron-hole interaction
exchange-correlation effects are still absent, as it is evident in the remain-
ing blue shift of the spectrum and the underestimation in the oscillator
strength of the first excitonic peak. The second term f

(2)
xc accounts for the

two-particle exchange-correlation effects. If the same technical approxima-
tions as in Bethe-Salpeter equation are used (use of a static W , neglect
of the derivative of W with respect to G), the corresponding curve closely
reproduces the solution of Bethe-Salpeter equation.

The ability of the first-order kernel to reproduce the spectrum calculated
with the Bethe-Salpeter equation is impressive, although the contributions
included, or in other words the diagrams included, are not the same! This
consideration will become clearer, when studying the second-order kernel.

9.4 Second-order TDDFT kernels

The Bethe-Salpeter equation provides in principle the exact polarizability.
Provided that one uses Σ = iGW , neglects as usual δW/δG and that one
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Figure 9.4: Feynman diagram representation of χ̃ with the use of the Bethe-
Salpeter equation, with the common assumptions (W static, neglect of
δW/δG).
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Figure 9.5: Feynman diagram representation of χ̃ with the use of the first-
order TDDFT kernel.

supposes W static, the reducible polarizability arising from the solution of
Bethe-Salpeter looks like the diagrammatic expansion of figure 9.4. Under
the same technical assumptions, our TDDFT scheme with the full kernel is
also exact and should provide the same series of diagrams.

However, if one just uses the first order TDDFT kernel derived in the
previous section, one recovers the expansion of figure 9.5. The two series
corresponds only up to the second diagram. The second-order one is already
different: the TDDFT-derived expansion has χ−1

0 terms that contracts in-
dexes in between W interactions.

Let us show that the second order kernel does the job of replacing the
wrong second order diagram in the TDDFT-derived series by the Bethe-
Salpeter-derived one. This derivation is more easily seen using diagrams:
figure 9.6 displays the second-order approximation to the integral equation
plotted on figure 9.1.

The third term in figure 9.6 removes the “incorrect” third term in fig-
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+

-

δΣ
δρ

=

Figure 9.6: Feynman diagram representation of the derivative of Σ with
respect to ρ to the second-order.

Figure 9.7: Typical spurious Feynman diagram still present in the TDDFT
series, using the second-order kernel.

ure 9.5 and the second term in figure 9.6 adds the “correct” third term of
figure 9.4. The TDDFT and Bethe-Salpeter series correspond now up to
the fourth diagram. But, as there is still an approximation, there are still
spurious diagrams in the TDDFT expansion, like the one depicted in fig-
ure 9.7.

This development up to the second-order has been explicitly shown here
just to understand what is missing in a first-order kernel. It was shown in
reference [80] in an analytically solvable model system, that already the
first-order kernel yields very good results. This statement could have been
drawn for silicon by looking at the differences between solution of the Bethe-
Salpeter equation and the TDDFT result of figure 9.3: there are no differ-
ences! As a consequence, the second-order kernel should have almost no
effect on an absorption spectrum. A.Marini [79] performed calculation for
the first- and second-order for energy-loss spectra. His conclusion is also
that the first-order is already sufficient for realistic systems for that kind of
spectroscopy.
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This section illustrates the need for only first-order kernels, that allows
gain of computational time with respect the full solution of the Bethe-
Salpeter equation. If the second-order were also needed, there would be no
practical justification for using this technique instead of the diagonalization
of the Bethe-Salpeter equation.

In conclusion, this section provided a simple derivation for the exact
TDDFT kernel. It put into evidence the role of the quantity δΣ/δρ. It
allowed one to find approximations for the TDDFT kernel using a pertur-
bative expansion, which are in agreement with references [64, 65], or using
sensible approximations. Let us exemplify this last point. Consider the
following equation that is needed for f

(2)
xc (see equation (9.7)):

δΣ

δρ
= −WGG

δG−1

δρ
, (9.24)

where one has to find an approximation for δG−1/δρ to stop the expansion.
The approximation used in our paper [96] is to argue that there may exist
a local potential that gives the quasiparticle energies (supposing that all
wavefunctions are equal). In this particular case, δG−1/δρ can be written
simply −χ−1

0 . This is precisely equivalent to the first-order kernel derived
in this chapter!





Chapter 10

How to include vertex
corrections using
density-functional concept

Going beyond GW has been up to now problematic. The evaluation of
the vertex function Γ̃(1, 2; 3) is much involved, not only because it is a 3-
point function, but also it requires to solve a 4-point equation involving
the Bethe-Salpeter kernel Ξ(1, 2; 3, 4) (equation (3.18)). This is clearly the
bottleneck for any attempt to go farther than Σ = iGW .

Few works exist that evaluate the vertex corrections beyond GW using
approximate vertex in very simple models. E. Shirley [97] applied the single-
ladder diagram correction with respect to GW using RPA screening in
atoms. Y.Takada used some averaging technique to transform the 4-point
Bethe-Salpeter kernel into a 3-point one and evaluated it in the case of
an homogeneous electron gas [98]. R.Del Sole and coworkers [99] used the
LDA approximation to solve the vertex equation (3.18) for silicon. Mahan
and Sernelius did the same for the homogeneous electron gas few years
before [100]. F.Aryasetiawan and coauthors [101] calculated a sum on some
specific class of diagrams (the cumulant expansion) in the realistic case of
Na and Al. Very recently, Marini and Rubio studied the influence of vertex
corrections on lifetimes of single-particle excitations [102].

It is tempting to think that it is a waste to solve an equation with 4-point
quantities to get 3-point ones. The following study describes the proposition
made in my work with F. Sottile, VOlevano, R.Del Sole, and L.Reining
(reference [96]) to use theorems of TDDFT to simplify somehow the vertex
equation, to make it conserve its 3-point nature from the beginning to the
end.
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10.1 Density-functional concept

Consider the following equation, which is the definition of the self-energy
(equation (3.10)):

Σ(1, 2) = −i

∫
d34v(1+, 3)G(1, 4)

δG−1(4, 2)

δU(3)
. (10.1)

Σ is defined as a linear response to variations of a fictitious local external
potential U . Remember that U was just introduced to permit the use of
the Schwinger derivative trick (see chapter 3).

TDDFT is based on the fact that there exists a one-to-one mapping
between time-dependent external potentials and time-dependent densities
under certain assumptions. In Runge-Gross theorem [55], once the initial
state Ψ0 is fixed, the existence of a one-to-one mapping is proven, when the
potential U is Taylor-expandable around the initial state. As there is a one-
to-one relation between U and ρ, one can alternatively consider variations
with respect to U or variations with respect to ρ:

Σ(1, 2) = −i

∫
d345v(1+, 3)G(1, 4)

[
δG−1(4, 2)

δρ(5)

δρ(5)

δU(3)

]
. (10.2)

One can now use Dyson equation and differentiate with respect to ρ

δG−1(1, 2)

δρ(3)
= −δ(1, 2)

δU(1)

δρ(3)
− δ(1, 2)

δvh(1)

δρ(3)
− δΣ(1, 2)

δρ(3)

= −δ(1, 2)
[
χ−1(1, 3) + v(1, 3)

] − δΣ(1, 2)

δρ(3)
. (10.3)

This finally gives the expression of the self-energy

Σ(1, 2) = i

∫
d34v(1+, 3)G(1, 4)

[
δ(4, 2)δ(4, 3)

+

∫
d5

(
δ(4, 2)v(4, 5)χ(5, 3) +

δΣ(4, 2)

δρ(5)
χ(5, 3)

)]
, (10.4a)

where the polarizability χ(1, 2) = δG(1, 1+)/δU(2) can be worked out in
the same manner

χ(1, 2) = −iG(1, 2)G(2, 1) − i

∫
d345G(1, 3)G(4, 1)

×
[
δ(3, 4)v(3, 5) +

δΣ(3, 4)

δρ(5)

]
χ(5, 2). (10.4b)

One can identify in the polarizability equation the kernel f
(2)
xc defined in

the previous chapter in equation (9.7) and rewrite this equation as

χ(1, 2) = χ0(1, 2) +

∫
d34χ0(1, 3)

[
v(3, 4) + f (2)

xc (3, 4)
]
χ(4, 2), (10.5)
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or, introducing also f
(1)
xc ,

χ(1, 2) = χKS(1, 2)+

∫
d34χKS(1, 3)

[
v(3, 4) + f (1)

xc (3, 4) + f (2)
xc (3, 4)

]
χ(4, 2),

(10.6)
which is just the TDDFT equation within linear-response.

Concerning the other occurrence of δΣ/δρ in the self-energy equation,
one can not consider δΣ/δρ as negligible, as stated in the previous chapter:

it is more convenient to consider the difference δΣ/δρ − f
(2)
xc as small. The

definition of f
(2)
xc has been given in equation (9.7). To account for this state-

ment, one can add and substract the quantity f
(2)
xc χ in equation (10.4a) and

obtain

Σ(1, 2) = iW̃ (1+, 2)G(1, 2) + i

∫
d34v(1+, 3)G(1, 4)∆Γ(4, 2; 3), (10.7)

with the following definitions:

W̃ (1, 2) = δ(1, 2) +

∫
d3

[
v(1, 3) + f (2)

xc (1, 3)
]
χ(3, 2) (10.8)

is the testcharge-testelectron screened Coulomb interaction, and

∆Γ(1, 2; 3) =

∫
d4

[
δΣ(1, 2)

δρ(4)
− δ(1, 2)f (2)

xc (1, 4)

]
χ(4, 3) (10.9)

is the three-point part of the vertex function.
The modified screened Coulomb interaction W̃ just introduced has to

be considered as an improvement over the usual W . The polarizability χ,
used to construct it, is still the exact one (as in W ). But W̃ accounts also
for the 2-point part of the vertex contained in the equation of Σ. In physical
words, W being sensitive to 1 + vχ, feels classically the charge variations
of the quantum system (χ = δρ/δU). Exactly as a point charge (positive
or negative) added to the system of N electrons does. On the contrary,

W̃ is sensitive to 1 + [v + f
(2)
xc ]χ. This means that a charge, on which W̃

acts, is sensitive to charge variations also via exchange-correlation processes
(contained in f

(2)
xc ). The added charge does not experience anymore just

the classical electric field but also an exchange-correlation field with the
fermions of the quantum system. This is due to the quantum nature of the
extra-particle.

The introduced 3-point quantity ∆Γ can also be considered as an “im-
provement” over the bare vertex Γ̃. I mean that ∆Γ is a difference of two
quantities accounting for the same category of effect: the electron-hole in-
teraction. Therefore, ∆Γ is expected to be smaller than Γ̃. The complete
neglect or approximations made on ∆Γ should be less dramatic than made
on Γ̃. It is always sensible to make rough approximations on something
small, than doing the same on something large.
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In conclusion, it is helpful for practical applications to reformulate the
equation (10.4a) in order to emphasize W̃ and ∆Γ. Moreover, the link with
the usual GW approximation of Hedin’s equations is thus made obvious.

10.2 Practical applications: initiating with

Σ = vLDA
xc

For practical purposes, one has to choose a starting approximation for the
Σ operator of the right-hand sides of equations (10.4). A simple choice is to
approximate Σ by the LDA potential and consistently the Green’s functions
by the LDA ones. This is straightforward.

Concerning the derivative of Σ with respect to the density, a further as-
sumption has to be made to consider the dependence of vLDA

xc with respect
to the density. One will use the usual adiabatic assumption presented in
the introductive chapter on TDDFT (chapter 4). One considers that the
exchange-correlation kernel is “local in time” or in other words, exchange-
correlation has no memory. This gives an additional δ(t1−t2) in the deriva-
tive of vLDA

xc (1) with respect to ρ(2).
Consequently, the equation (10.4b) is nothing else but the usual equation

for the adiabatic LDA polarizability. As the self-energy is equal to a Kohn-
Sham potential vLDA

xc , there is no f
(1)
xc part in the kernel (to be used in

equation (10.6)), that would have mapped the Kohn-Sham polarizability
χKS onto the independent quasiparticle polarizability χ0.

The other equation of the scheme (equation (10.7)) gives the self-energy.
As the self-energy in ∆Γ is is equal to the Kohn-Sham potential = vLDA

xc , ∆Γ
vanishes. In W̃ (see equation (10.8)), a second occurrence of the adiabatic
LDA kernel accounts for the so-called vertex corrections. And finally, W̃
involves the testcharge-testelectron screening within adiabatic LDA. This
derivation of the adiabatic LDA vertex correction is compliant with Del Sole
et al. [99].

Table 10.1 presents the values of the direct band gap at Γ within differ-
ent approximations for two very different materials: bulk silicon shows a
strong screening and continuum excitons, and solid argon shows almost no
screening and strongly bound electron-hole pairs. The calculation param-

Table 10.1: Direct gap (in eV) at Γ in bulk silicon and solid argon, calcu-
lated using a local approximation (LDA) for the starting self-energy.

LDA GWRPA GWTC-TC GW̃ Expt.
Si 2.53 3.17 3.08 3.18 3.40
Ar 8.18 12.95 12.64 12.75 14.2
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eters are set to the minimum meaningful value, to remain consistent with
the more cumbersome calculations of the next section. In particular, the
number of bands used to evaluate the screening has been 17 for silicon and
16 for argon. This is sufficient to converge the energy difference (the band
gap), but not the absolute value. That is why this piece of information is
not displayed in the table. The screening matrix has been represented on
the basis set of 169 plane-waves for both material. This value is converged
with no doubt. A plasmon-pole model (described in chapter 5) has been
used to evaluate the dynamical behavior of the screening matrix. There-
fore, one had to calculate the screening matrix only at two frequencies along
the imaginary axis.

The table first shows the value of the band gap within the starting ap-
proximation, LDA. It underestimates largely the experimental values from
references [21, 23]. Therefore, the screening W will be overestimated. As
a reference, the table then provides the usual GW result, labeled GWRPA,
that neglects the two occurrences of fxc. It gives the usual results: the
silicon band gap is in agreement with the experimental value, whereas in
argon, it is 1.25 eV too small. If one further adds the contribution of the adi-
abatic LDA to the polarizability χ, one obtains the GWTC-TC column of the
table. This contribution slightly closes the band gap in both cases. When
the second occurrence of fxc is included to get the testcharge-testelectron
screening W̃ , it acts in the opposite direction. One finally obtains a band
gap value almost similar to the original GWRPA one. Generally, the effect
of the adiabatic LDA kernel is small. This may be due to the lack of the
proper long-range component of the true TDDFT kernel [4, 63]. Note that
the effect of this kernel was already small on absorption spectra of solids
(see figure 4.1). These findings are consistent with earlier work [99].

10.3 Practical applications: initiating with

Σ = ΣCOHSEX

Let us now turn to a more realistic approximation of the Σ and G of right-
hand side of equations (10.4). One will use the static COHSEX approxima-
tion of L.Hedin [25], for different reasons.

The first justification to use COHSEX inputs is that the derivative of
ΣCS with respect to G gives precisely the approximate kernel used in prac-
tical solutions of the Bethe-Salpeter equation: the static screened Coulomb
interaction iW0. Furthermore, Reining et al. have shown that, when in-
serted in equation (9.17), this approximation yields a TDDFT kernel that
presents the correct long-range behavior proportional to 1/q2 [4]. This long-
range contribution has been shown to be crucial to describe properly the
excitonic effect in optical absorption spectra, either for continuum excitons,
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as in silicon, or for bound excitons, as in argon. One has to check whether
this feature is also significant for vertex corrections on the band gap.

A second reason to use COHSEX inputs is that, according to the first
column of table 10.2, the band gap within COHSEX, though slightly overes-
timated, is pretty close to the true quasiparticle band gap, and in any case,
closer than the corresponding LDA value. As a consequence, the evaluation
of the G’s in right-hand side of equations (10.4), can be thought as more
realistic.

One will then proceed in the table with the same method as previously
with the LDA inputs, adding one-by-one corrections to standard GW . But,
difficulties arise due to the non local nature of COHSEX self-energy. First,
the COHSEX wavefunctions are assumed to be equal to the LDA ones
throughout the results and the COHSEX quasiparticle energies are the per-
turbative ones (not self-consistent), because the fully self-consistent code I
developped (see chapter 8) did not exist yet when I performed these ver-
tex calculations. Fortunately, the self-consistency does not change so much
eigenvectors and eigenfunctions with respect to the first perturbative step
for these materials. As COHSEX approximation is not a Kohn-Sham po-
tential, the f

(1)
xc of equation (10.6) is not zero now. In practice, since f

(1)
xc

exactly accounts for the quasiparticle shift, I directly used equation (10.5),

where the effect of f
(1)
xc is already taken into account via the χ0’s. Final

difficulty: as COHSEX approximation to the self-energy is non local, there
is a non vanishing ∆Γ, that accounts for the three-point nature of the ver-
tex function. I have to immediately warn that no calculations of the ∆Γ
contribution to the band gap have been done by us so far. Just Marini and
Rubio have included an analogous correction in the calculation of quasipar-
ticle lifetimes and found it rather significant for a large gap insulator [102].
The convergence parameters are all exactly equal to the ones used starting
from LDA inputs.

Under the previous assumptions, table 10.2 shows the effect of the two
occurrences of f

(2)
xc in equations (10.4) on the direct band gap of silicon and

argon, compared to the reference GWRPA calculation. As noticed with the
LDA inputs, the effect of using an improved polarizability χ, which includes
exchange-correlation via f

(2)
xc , is slight on the band gap (< 0.2 eV if one

Table 10.2: Direct gap (in eV) at Γ in bulk silicon and solid argon, cal-
culated using a non-local approximation (COHSEX) for the starting self-
energy.

COHSEX GWRPA GWTC-TC GW̃ Expt.
Si 3.64 3.30 3.18 3.32 3.40
Ar 14.85 14.00 14.16 14.76 14.2
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compares column GWTC-TC to the GWRPA). The account for the correct
long-range tail of the exchange-correlation kernel does not yield noticeable
improvement over the adiabatic LDA χ. In addition, the second kernel
f

(2)
xc in W̃ gives rise to the two-point part of the vertex function. Its effect

is to open the gap, slightly for silicon, where one recovers more or less the
initial GWRPA result, and noticeably for argon, where the final gap is 0.5 eV
larger than experiment. The subsequent contribution ∆Γ still needs to be
evaluated, but it can be considered as a higher-order contribution, since the
meaningful perturbation parameter has been shown to be δΣ/δρ − f

(2)
xc in

the previous chapter.
The band gap of simple materials results of the sum of different vertex

contributions that generally cancel out. The main effect for these simple
materials does not come from the vertex corrections, which are indeed rel-
atively small corrections, but from the different starting Green’s functions.
Starting from LDA Green’s function or from COHSEX Green’s function can
change the band gap up to 1 eV for argon. Finally, the self-consistency is
expected to have a greater impact on the band gap than vertex corrections.
This is indeed the case according to chapter 8. Because of the cancella-
tion of the vertex contributions, it is reasonable to hope that, in the case
of not highly correlated materials, the main corrections beyond the stan-
dard perturbative GW approach will be due to the self-consistency. This
is computationally simpler than to evaluate the vertex corrections and will
be carried out for Cu2O in chapter 14.

In conclusion, the present chapter provides a theoretical and practical
scheme to produce vertex corrections, beyond Hedin’s GW approximation.
The link with theorems of TDDFT has been proven useful to simplify the
expression of the vertex functions. Three contributions beyond GW have
been identified. First, there is the electron-hole interaction in the polariz-
ability. Second, there are two components (a local and a non-local one),
which express the property that the added particle (electron or hole) in a
photoemission experiment is not only a point charge, but also a quantum
object, subjected to exchange and correlation with the other electrons of
the system. In particular, GW expression includes a spurious self-screening
contribution, that has to be removed by the vertex corrections.





Part IV

Electronic excitations of Cu2O





Chapter 11

Presentation of Cu2O

The study of Cu–O bonding is nowadays an important issue for the under-
standing of cuprate high-Tc superconductors. These materials have planes
of CuO2, inside which the superconductivity occurs. Cu2O is a good candi-
date to start such a study, as its geometry is very simple. It has no magnetic
properties, except a rather small spin-orbit splitting of the band structure
(∼ 0.13 eV). And, in contrast with some other transition metal oxides, the
electronic correlation is expected to be relatively small, thanks to the closed
shell (d10 configuration, in a pure ionic model Cu+, O2−).

However, Cu2O is an original material to many respects: unusual linear
coordination of copper atoms, possible direct Cu-Cu bondings [103, 104],
and, historically important, several famous exciton series [1, 2, 9, 105].
These uncommon features have made the theoretical study tougher than
expected, but also more interesting.

11.1 Structure

Cuprous oxide, Cu2O, crystallizes in a simple cubic Bravais lattice, with
space group O4

h (or Pn3̄m, space group number 223) [17]. Inside the unit
cell, oxygen atoms are located on a body-centered-cubic sublattice, whereas
copper atoms form a face-centered-cubic lattice. If one chooses the origin on
an oxygen atom, copper atoms are at positions (1

4
, 1

4
, 1

4
), (1

4
, 3

4
, 3

4
), (3

4
, 1

4
, 3

4
),

and (3
4
, 3

4
, 1

4
). This gives two Cu2O formulas per unit cell. This structure

called cuprite is depicted on figure 11.1. X-ray diffraction gives a lattice
parameter a = 8.068 a.u. or 4.2696 Å [17].

Each oxygen atom is surrounded by a tetrahedron of copper atoms and
each copper atom is twofold coordinated with oxygen atoms. This material
is a unique occurrence of O–Cu–O linear geometry. This configuration is not
explained by simple ionic forces, which state that the O2−–O2− and Cu+–
Cu+ sublattices repell each other. The attractive interaction that stabilizes
the material suggests some direct Cu–Cu covalent-like bondings.
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Figure 11.1: Atomic structure of Cu2O. Large grey spheres represent copper
atoms, small dark spheres represent oxygen atoms.

11.2 Cu-Cu bonding

Direct Cu–Cu bonds would explain the unexpected stability of Cu2O within
the cuprite structure. Direct evidence of such an interaction is very difficult
to measure. Zuo et al. [103, 104] have first claimed to have measured it
experimentally. Using combined electron diffraction and X-ray diffraction
experiments, they deduced a maximum in the electron density difference
(density of the solid minus density of superimposed Cu+, O2− ions) right in
the unoccupied center of four neighboring copper atoms, corresponding in
figure 11.1 to the center of the faces of the cubic cell. They evaluated the
maximum of electron density difference to be ∼ 0.2 e Å−3 (that is compa-
rable to the maximum density difference between two silicon atoms in bulk
silicon). This maximum was interpreted by the authors as a direct proof of
Cu–Cu covalent bondings.

These conclusions were much debated in the electronic structure com-
munity. Other measurements were performed [106] that showed on the con-
trary a minimum of electron density in that empty tetrahedral site. Some
recent calculations within a “modified LDA” scheme [107], which artificially
lower the hybridization of LDA, tend to show that there might be a maxi-
mum of density here, but four times smaller that the one measured by Zuo
et al..

This issue is still much questionned. However, some conclusions can
be drawn from these studies. The total charge transfer from the copper
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atoms to the oxygen atoms is evaluated to be 1.01 by Zuo et al. (this
means a Cu+, O2− configuration). But, a simple ionic model of Cu+ would
deplete the charge from 4s1 and keep the 3d10 unchanged. Cu+ cathion
would have then a perfectly isotropic electron density. According to the
previous studies, some anisotropy can in fact be measured, which is the
proof for hybridization between 3d and 4s shells, especially between 3dz2

and 4s (due to symmetries). Zuo et al. measured a d hole on copper of
about 0.22 electron per atom. This would mean that conduction bands
have also some non-negligible d character.

In this context, state-of-the-art ab initio calculations of the electronic
structure are really necessary to judge the contradicting experimental data.

11.3 Exciton series

Cu2O is moreover famous and often cited in textbooks for two exciton
series arising from a dipole forbidden transition [9]. The early work of
Baumeister in the 60’s [1] already provided very accurate data concerning
the whole series: the green and the yellow series. The two series are just
separated by the spin-orbit splitting. The binding energy, the band gap
and the spin-orbit splitting have been evaluated and even refined later by
measurements at lower temperature (4.5 K) [105]: Eb = 0.139 eV, Eg =
2.1720 eV, and ∆SO = 0.1338 eV. A schematic picture of the band structure
of Cu2O around the band gap is provided in figure 11.2 [9].

As the transition from the last valence state to the first conduction state
at Γ is forbidden (Γ+

7 → Γ+
6 transition), the first peak of the correspond-

ing excitonic series can not be observed by single photon absorption. The
selection rule can be overcome in a two photon absorption experiment, as
in the work of Uihlein et al. [105]. All theses measurements confirms the
theoretical analysis of Elliott [108].

But, the story of the excitons of cuprous oxide does not stop here. Op-
tical reflectivity and absorption measurements performed at higher energy
[2, 3] proved the existence of at least two other excitonic series: the blue and
the blue-violet series, which comes from transitions respectively Γ+

7 → Γ−
8

and Γ+
8 → Γ−

8 . The figure 11.3 displays the measurement of Balkanski et
al. [2] and uses the peaks’ names introduced by Brahms [3]. The blue and
blue-violet excitons are respectively labelled EB and EBV . They are sep-
arated by the spin-orbit splitting of the last valence band and occur just
at the absorption threshold 2.59 and 2.72 eV. The binding energy of these
series seemed very low to experimentalists (Eo ≈ EB), therefore one can
assess the position of the second conduction band (Γ−

8 ): 2.59 eV above the
top valence band. Peaks E1, E2, and E3 are also suspected to be excitonic,
since their sharpness depends strongly on temperature.

The study of the optical spectra gave us very accurate experimental data
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Figure 11.2: Schematic representation of the band structure around the
band gap Eg. The top valence band at Γ is splitted into Γ+

7 and Γ+
8 due

to the spin-orbit splitting ∆SO. The transition from Γ+
7 to the bottom

conduction band Γ+
6 is dipole forbidden. On the contrary, the transition
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Figure 11.3: Imaginary part of the dielectric function of Cu2O, obtained by
reflectivity experiment [2] and further Kramers-Kronig transforms.

concerning the conduction band structure. Indeed, one precisely knows the
location of the two first conduction bands Γ+

6 and Γ−
8 with respect to the
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top valence band Γ+
7 . However, the interpretation of the spectra is not

yet known for sure. Experiments give hints on the nature of transitions
giving rise the additional peaks labelled A, B, C, and Ei, but no proof, no
certitude. These issues are typically the questions that can be answered by
ab initio calculations of the band structure and of the optical absorption
spectrum.





Chapter 12

DFT study of Cu2O

This chapter proposes to calculate the ground-state properties of Cu2O in
the DFT framework. The structural properties, like the equilibrium lattice
parameter a0 and the bulk modulus B0 can be reached this way. Follow-
ing the common practice, the Kohn-Sham band structure is also studied
and compared to photoemission spectroscopy experiment, although it has
been stressed in the introductive chapters, that Kohn-Sham eigenvalues and
eigenvectors have, strictly speaking, no physical meaning. Indeed, except
the usual band gap underestimation, Kohn-Sham band structure agrees
generally well with experimental data for simple materials.

The whole study is based on the plane-wave basis set using ABINIT
package [67, 69]. Therefore, the first task is to choose a core-valence par-
tition, and to generate suitable pseudopotentials. Some of the following
results are presented in reference [109].

12.1 Issue of semicore states of copper

The generation of pseudopotentials is not an harmless operation. First,
one has to define which states will be considered as frozen in the atomic
configuration, and consequently, will not participate to chemical bondings.
The second step is to choose a cut-off radius for each angular channel, be-
yond which the pseudo wavefunction is strictly equal to the all-electron
wavefunction. This supposes that the core region of the valence wavefunc-
tions (below the cut-off radius) is not important in order to describe the
properties under study. All the atomic calculations and pseudopotential
generations are made using the fhiPP code [110, 111].

The choice of the core-valence partition in oxygen offers no problem: the
core is obviously 1s2, and the valence 2s22p4. This has already been used
successfully at “Laboratoire des Solides Irradiés” in many previous studies
of oxides [62, 112].

On the contrary, the choice is not so straightforward concerning the
copper atoms. One can distinguish three groups of electrons in copper:
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the core electrons 1s22s22p6, the semicore electrons 3s23p6, and the valence
electrons 3d104s1. This splitting into three groups is based on energetic
arguments. Table 12.1 provides the calculated energies of the different levels
of the atom of copper within LDA. There are more than 800 eV between
the chosen core and the semicore states and there is an energetic separation
of about 65 eV between the semicore and the valence states. Table 12.1
also compares the measured binding energies in Cu2O and the calculated
atomic level of Cu. This is, of course, not directly comparable even for deep
states, as the crystal field is missing, and as LDA is known to be a crude
approximation for localized states. But, it can give an idea on how accurate
are the energy differences between electronic levels. The agreement is rather
clear.

Considering energetic arguments, it seems sensible to consider the semi-
core as frozen in the core, since they are more than 65 eV below the 3d
states. But, if one draws the all-electron atomic wavefunctions correspond-
ing to the 3s, 3p, and 3d levels as in figure 12.1, one finds that the maximum
of the three wavefunctions is located approximatively at the same radius
r ∼ 0.6 a.u.. The overlap between the different orbitals is therefore very
large and one can doubt that a separation in between 3s and 3p on one side
and 3d on the other side would be justified.

Since they are contradicting clues concerning the core-valence partition,
the study will be resumed with two different pseudopotentials: one consid-
ering the semicore as frozen in the core, the other one treating explicitly
the semicore as valence states. The second approach is expensive, because
one has to deal with 8 electrons more per copper atom, and one has to
describe the very localized states 3s and 3p using plane-waves! However,
the semicore has been shown to be necessary for further GW calculations
[114, 115].

The pseudopotentials of copper are generated on the configuration Cu+

3d104s0. Starting from the neutral configuration does not change much.

Table 12.1: Energy levels (eV) of Cu+ ion within LDA compared to the
XPS binding energy of Cu2O. The experimental data for 2p and 3p are
splitted due to the spin-orbit coupling.

Cu+ state εLDA
i XPS binding energya

1s 8842.1 —
2s 1068.8 1071.5
2p 924.9 931.7 - 951.6
3s 122.8 119.5
3p 80.75 75.3 - 75.3
3d 14.01 —

aReference [113]
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Figure 12.1: All-electron radial wavefunctions corresponding to levels 3s
(dotted line), 3p (dashed line), and 3d (full line) of the copper atom.

The pseudopotential scheme is Troullier and Martins [116] (unless otherwise
specified), and Kleinman-Bylander separable form is used [117]. For oxygen,
the cut-off radii are rcs = 1.6 a.u., rcp = 1.5 a.u. and the local component
is p. For copper without semicore, the cut-off radii are rcs = 1.19 a.u.,
rcp = 1.19 a.u. using Hamann type [118] and rcs = 2.08 a.u. (these values
come from Marini’s work [119]). The local component is s. For copper with
semicore, the cut-off radii are rcs = 0.80 a.u., rcp = 1.17 a.u. using Hamann
type [118] and rcs = 1.19 a.u.. The local component is p.

Figure 12.2 exemplifies how the pseudo wavefunctions account for the all-
electron wavefunctions. Above the cut-off radius, both coincide perfectly.
Below, the all-electron wavefunction representing e.g. the 3s state has two
zeros, whereas the pseudo wavefunction does not have any. It is therefore a
1s type wavefunction. In the same way, the 3p wavefunction is represented
by a 2p pseudo wavefunction, and the 3d by a 3d one.

12.2 DFT theoretical structure

A first test concerning the quality of the generated pseudopotential is to
address the issue of the geometrical structure. As mentionned earlier, the
inclusion of semicore states in valence is costly. The corresponding cut-off
energy is 80 Ha, whereas 40 Ha are sufficient to converge the calculations
that do not treat the semicore states. The k-point sampling is a Monkhorst-
Pack grid [120] 4 × 4 × 4. The LDA exchange-correlation potential used is
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Figure 12.2: All-electron (grey curves) and pseudo (black curves) radial
wavefunctions corresponding to levels 3s (dotted lines), 3p (dashed lines),
and 3d (full lines) of the copper atom. The radius where the all-electron
and pseudo wavefunctions actually match is also displayed.

Perdew-Wang [49], and the GGA one is PBE [51].

Figure 12.3 shows the total energy curves as a function of the volume for
the two pseudopotentials described in the previous section. The structural
parameters can be extracted by fitting a Murnaghan equation of state (see
equation (1.7)). The results are summarized in table 12.2. The difference
between the calculations with or without semicore states is huge. They
respectively underestimate the equilibrium lattice parameter by 2.4 % and
0.3 % with respect to the experimental value. The two bulk moduli are
overestimated with respect to neutron scattering experimental values [19].
Note that the calculation a priori dirtier with no explicit treatment of the
semicore states in the solid yields results in good agreement with experi-
ment. And that the better calculation with semicore states correctly treated
in the solid goes away from experiment. Such a discrepancy is more or less
the upper limit of the usual deviation of LDA with respect to experiment.

The difference between the LDA and GGA (GGA is defined in chap-
ter 4) total energy curves is displayed in figure 12.4. The corresponding
Murnaghan fit parameters are presented in table 12.2. Whereas LDA un-
derestimates the lattice parameter and overestimates the bulk modulus,
GGA yields opposite trends. This statement is usual.

The only modern DFT structural calculation found in the literature is
the work of Mart́ınez-Ruiz et al. [121], who carried out a study of Cu2O
using the FPLAPW method using GGA of reference [51]. This is an all-
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Figure 12.3: E(V) curve for Cu2O within LDA for calculations with semi-
core states fully taken into account (full circles) or semicore frozen in the
pseudopotential (crosses). A Murnaghan fit on the two curves (full lines)
has been applied to extract equilibrium lattice parameter and bulk modu-
lus. The energy reference has been changed in order to plot the two curves
on the same graph.

electron method. Therefore, one can think naively that it should be closer
to the calculation with semicore states than to the one without. Indeed,
their results are in very good agreement with my result with semicore: they
find a lattice parameter of 8.126 a.u. and a bulk modulus of 108 GPa, which
should be compared to the fourth column of table 12.2. This agreement is
really convincing: the use of a pseudopotential with semicore is able to
reproduce all-electron calculations, although the potential is modeled in

Table 12.2: Cuprous oxide structure parameters according to different
approximations and to experiment.

LDA GGA Expt.
semicore without with without with
a0 (a.u.) 8.041 7.877 8.276 8.122 8.068a

B0 (GPa) 136.1 147.7 103.3 110.7 112 ± 8b

B′
0 4.672 5.220 4.488 4.616 –

aReference [17]
bReference [19]
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Figure 12.4: E(V) curve for Cu2O within LDA (crosses) or GGA (circles)
for calculations with semicore states frozen in the pseudopotential. A Mur-
naghan fit on the two curves (full lines) has been applied to extract equilib-
rium lattice parameter and bulk modulus. The energy reference has been
changed in order to plot the two curves on the same graph.

the core region and the wavefunctions of the pseudopotential scheme show
no nodes. On the contrary, the pseudopotential that freezes the semicore is
clearly insufficient to reproduce the true LDA or GGA results, concerning
the structural properties.

12.3 Kohn-Sham band structure

12.3.1 Technical checks

Let us turn now to the analysis of the Kohn-Sham band structure. I insisted
in the introductive chapters on the fact that Kohn-Sham eigenvalues and
eigenvectors have no physical meaning. This section voluntary forgets this
warning, and tries to interpret Kohn-Sham eigenvalues and wavefunctions
as observable expectation values. This procedure is usually rather successful
in practical calculations.

First, consider the effect of the pseudopotential on the band structure in
figure 12.5 calculated at the experimental lattice parameter a0 = 8.068 a.u..
The maximum of the valence bands is set to the zero energy in all plots.
In contrast with what is observed concerning structural properties, calcu-
lations with or without the semicore states treated at the solid level agree
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Figure 12.5: Cu2O bandstructure within LDA with Cu3s, Cu3p semicore
states fully taken into account (solid line) and with semicore states frozen
in the pseudopotential (dotted line) at experimental lattice parameter.

pretty well. The band structure of valence states closely corresponds with
both pseudopotentials. For conduction states, the agreement is less strict,
but still remains reasonable. For instance, the band gap at Γ points opens
from 0.42 eV without semicore to 0.54 eV with semicore.

Second, consider the effect of the DFT exchange-correlation potential on
the band structure. Figure 12.6 provides the band structure at the exper-
imental lattice parameter using either LDA [49] or GGA [51]. The agree-
ment is once more convincing. Although GGA seemed better concerning the
structural parameters, LDA and GGA perform approximatively the same
for the band structure. GGA opens up the band gap at Γ of about 0.1 eV
with respect to LDA. The main differences are located in the bottom of the
valence bands at about -6 eV, corresponding to bands made essentially of Op
states (as one will see in the next paragraph). But the maximum difference
remains less than 0.2 eV. Conclusions are that the exchange-correlation po-
tential has a small impact on the band structure, provided the same lattice
parameter is used.

Let us turn now to the effect of the lattice parameter on the band
structure. The dependence of the LDA band structure with respect to
the lattice parameter can be noticed in figure 12.7, where the LDA band
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Figure 12.6: Cu2O bandstructure within LDA (full line) or GGA (dotted
line) using the valence Cu 3d4s at experimental lattice parameter.

structure has been calculated at experimental lattice parameter or at LDA
equilibrium lattice parameter. The effect of using the LDA equilibrium
lattice parameter instead of the experimental one is slight on the band
gap (+0.2 eV) and on the second conduction band (-0.2 eV). However, the
Cud band width is noticeably increased (+0.4 eV). The largest effect is
undergone by the Op states, which are lowered by 0.6 eV. A smaller lattice
parameter increases the coupling between Op and Cud states: this explains
why the Op states are lowered and the Cud band width is enlarged. In
conclusion, the dependence of the band structure on the lattice parameter
is not harmless. This suggests a significant electron-lattice coupling.

12.3.2 Symmetry analysis

After the previous technical assessements, one can analyse the wavefunc-
tions thanks to the symmetry point of view [122]. The symmetries at Γ
permit to determine the compatible origins of the states in the solid. In
pratice, I used subroutines written by N.Vast in the pwscf package [123].
Table 12.3 gives the possible characters of each group of states. For in-
stance, the bottom of the O2p bands have a certain Cus and Cud character,
whereas the upper O2p bands have some Cup component. The last valence
comes from hybridization between Cud, Cus and Op atomic states. There
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Figure 12.7: Cu2O bandstructure within LDA using the pseudopotential
with semicore states considered as valence ones at experimental lattice pa-
rameter a = 8.068 a.u. (solid line) and at LDA equilibrium lattice parameter
a = 7.877 a.u. (dotted line).

is some Cud character in the Γ′
25 conduction bands, therefore the Cud shell

is not closed, as it would be predicted by a simple ionic model (Cu+ and
O2−). This analysis permits to point out the particular behavior of the Γ1

band that is located in between the two groups of Op bands. This single
state does not seem to be present in photoemission experiments, where a
clear gap between O2p and Cu3d groups can be seen. These feature of
the band structure will be studied in details in the following. The symme-
try analysis confirms that the transition from the last valence band to the
first conduction band is forbidden, as atomic selection rules impose that
∆l = ±1. On the contrary, the transition from the top valence band to the
second conduction band is allowed for the same reason.

12.3.3 Projected and total densities-of-states

Now that the possible origins of the states is known thanks to the symmetry
analysis, one can determine the actual characters of the states via a fine
analysis of the wavefunctions by means of atomic projections. The projected
density-of-states depends on the type of atom, labeled “atom”, and on the
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angular momentum, labeled l. Their expression reads

PDOSatom l(ω) =
∑
kii

∑
m

∑
α∈atom

|〈θ(rc − |r− Rα|)Ylm(r− Rα)|φkii〉|2

× δ(ω − εkii), (12.1)

where α is an index on the sites occupied by atoms of type “atom”, and Ylm

are the usual spherical harmonics. The information provided by this quan-
tity is averaged over the whole Brillouin zone and summed over the bands,
due to the sum over k-points and states. Figure 12.8 displays the projec-
tions on Os, Op, Cus, Cup, and Cud, with a broadening of 0.25 eV for the
δ functions. One can now distinguish the nature of each region. The states
at -19.45 eV arise from the atomic O2s states. The two peaks at -7.30 eV
and 5.75 eV are mainly O2p states, with a non-negligible Cu 3d component.
The lower peak has also some Cus character. The numerous states between
-4.60 eV are essentially the Cu 3d states, with a certain quantity of O 2p
character close to the top valence states. They give rise to two main peaks
at -2.05 eV and -0.58eV, and two distinguishable shoulders at -2.9 eV and
-1.8 eV.

Concerning the bottom of the conduction bands, the character is quite
intricate. Whereas the first conduction band at Γ is clearly an hybridization
of Cu 3d and Cu4s, and the other conduction bands are either Cu 4s, or
Cu 4p, or O 2p.

Let us quantify this information for a single k-point. Consider table 12.4
that contains the atomic projections of the wavefunctions at Γ. These re-

Table 12.3: Analysis of the symmetry of the bands at Γ and compatible
atomic orbitals. The energies come from an LDA with semicore calculation.

Energy (eV) Degeneracy Symmetry Compatible orbitals
-7.29 3 Γ′

25 Op, Cus, Cud
-4.87 1 Γ1 Cus, Cud
-4.84 3 Γ15 Op, Cup
-2.98 2 Γ12 Cud
-2.87 3 Γ′

25 Op, Cus, Cud
-1.97 2 Γ12 Cud
-1.86 3 Γ′

25 Op, Cus, Cud
-1.70 3 Γ′

15 Cud
-1.52 3 Γ′

15 Cud
0.00 3 Γ′

25 Op, Cus, Cud
0.54 1 Γ1 Cus, Cud
1.23 2 Γ′

12 Cup
7.76 3 Γ′

25 Op, Cus, Cud
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Figure 12.8: Projected density of states of Cu2O. The projections on atomic
orbitals O2s, O2p, Cu3d, Cu4s, Cu4p, and the sum of them are displayed.

sults were obtained by N.Vast using pwscf code [123]. This table gives
data in agreement with the results of the symmetry analysis of table 12.3.
In particular, the bottom threefold degenerate Op state has a large Cud
component (30 %), whereas the top threefold degenerate Op state has no
Cud component. The Γ1 state in between the Op states is indeed a hy-
bridization of Cud, Cus components. The same statement is valid for the
first conduction band (also with symmetry Γ1). The top valence band is
clearly a hybridization between Cud and Op states.

To complete the analysis in terms of atomic orbitals, the Löwdin atomic
orbital technique (see e.g. reference [124]) permits one to get useful infor-
mation about the occupancy of the atomic orbitals. The knowledge of the
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occupancy of the d states is physically important, since it can be consid-
ered as a measure of the on-site correlation. This type of correlation is
maximum when the d shell is half occupied. For Cu2O, the Löwdin scheme
gives an occupancy of about 9.6 e for the Cu 3d states (from pwscf package).
This large value of the occupancy (close to the full shell) is a strong clue
that the on-site correlation due to the localized Cu3d electrons is not too
high. This is confirmed by LDA+U calculations [125] performed by N.Vast,
which show that varying largely the U parameter does not affect much the
band structure (Cu d width and band gap).

The total density-of-states can be compared with existing experiments.
The four main peaks correspond in a straightforward manner to the four
peaks A, B, C, D noticed by Ghijsen and co-workers [126], using photoe-
mission spectroscopy. Their experiment was performed on a polycrystalline
sample, therefore the k-point dependence is averaged out. For the HeII
ray of the helium lamp they used, the cross section of copper and oxygen
have more or less the same magnitude. Further, disregarding the transi-
tion matrix elements appearing in equation (2.30), their measurements are
directly comparable to the calculated total density-of-states. The compari-
son is made in figure 12.9. There is a qualitative agreement between theory
and experiment. Of course, one can play on the broadening parameter to
improve the agreement on the shape, but the position of the peaks will not
get improved. The maximum error in the peak position is for A and B: the
difference is about 0.70 eV.

Table 12.4: Analysis of the atomic character at Γ. The energies come from
an LDA with semicore calculation.

Energy Degeneracy Symmetry O2p Cu3d Cu4s
(eV) % % %
-7.29 3 Γ′

25 61 30 8
-4.87 1 Γ1 0 36 60
-4.84 3 Γ15 98 0 0
-2.98 2 Γ12 0 100 0
-2.87 3 Γ′

25 0 98 2
-1.97 2 Γ12 0 99 0
-1.86 3 Γ′

25 0 99 0
-1.70 3 Γ′

15 0 100 0
-1.52 3 Γ′

15 0 99 0
0.00 3 Γ′

25 20 68 12
0.54 1 Γ1 0 58 21
1.23 2 Γ′

12 0 0 0a

7.76 3 Γ′
25 16 4 70

aThis state is essentially Cu4p
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Figure 12.9: LDA density of states of Cu2O convoluted with a 0.20 eV
broadening compared to the photoemission spectrum of reference [126].

12.3.4 Band structure features and overview of
other works

There are several published band structures of Cu2O in literature. And
their predictions concerning the important features of the band structure
largely differ. The so far identified important features are the valence O2p
band width, the valence Cu 3d band width, the band gap between O2p and

Table 12.5: Review of published theoretical Cu2O band structures.

Source Approx. Basis Set Frozen Core Op Cud Cud–Op Direct Optical
up to level band width band width gap gap threshold

Kleinman [127] Slater X gaussians no 2.6 2.9 0.01 1.07 3.80
Robertson [128] empirical LCAO Cu3p 2.5 3.2 1.4 2.22 2.72
Ching [129] LDA gaussians Cu3p 2.9 3.1 0.8 0.78 3.2
Ruiz [18] HF gaussians no 5.2 9.1 0. 9.7 20.7
G-M [24] HF gaussians no 3.1 5.5 0. 9.84 11.04
Arnaud [130] LDA PAW Cu3p 2.42 3.39 0.04 0.49 1.16
M-R,[121] GGA FLAPW no 3.0 3.3 0. 0.4 1.3
this work LDA PW Cu 2p 2.44 3.44 -0.03 0.54 1.23
this work LDA PW Cu 3p 2.47 3.44 0.07 0.43 1.25
this work GGA PW Cu 2p 2.40 3.39 0.01 0.62 1.28
this work GGA PW Cu 3p 2.44 3.34 0.04 0.54 1.44
Expt. – – – ∼ 2.4a ∼ 3.8a ∼ 0.5a 2.17b 2.55c

aReference [126]
bReference [1]
cReference [2]
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Cu3d, the band gap at Γ, and the optical threshold (i.e. the position of the
second conduction band at Γ). Table 12.5 provides a detailled comparison
of all the theoretical band structures I could find in literature. The O2p
band width is evaluated at Γ and the Cu 3d band width between the last
valence band at Γ and the last Cu 3d at X point. I preferred to avoid to
refer to the dispersive Γ1 for the Cu 3d band with, as it is not sure that
experimental data could notice it.

Concerning the conduction bands, all DFT-based methods are in pretty
good agreement, with too small band gap and optical threshold. The
Hartree-Fock calculations yield, as usual, an unrealistically large band gap.
And the empirical method of Robertson [128] gives by construction almost
the experimental values.

For the Cud band width, all methods except HF give a slightly too small
value with respect to the experimental measurement. The Op band width
is also in quite good agreement with the experimental values. The point
where the methods differ largely is the presence or not of the Op–Cud gap.
All DFT calculations make it vanishing except the calculation of Ching et
al. [129] on a gaussian basis set. Also HF calculations are in deep troubles,
since the Op states are intricate with Cud states, instead of having a clear
separation. Finally, the empirical LCAO calculation of Robertson shows a
clear gap, as it is fit on non-angular resolved photoemission spectroscopy,
which shows a large gap [126]. But, a dispersive state like the Γ1 has few
chances to be detected by a measurement that integrates over the whole
Brillouin zone. Indeed, even my calculations that always have this disper-
sive state, show a clear gap in the density-of-states provided in figure 12.9.
The conclusion is at this point that one can not state whether there is a
dispersive state Γ1 in reality. The way to discover it is to perform a modern
angle-resolved photoemission spectroscopy experiment, which conserves the
k-point information. This has been done during this thesis work and will
be the subject of chapter 15.

Let us analyse the surprising result of Ching et al. which shows a clear
gap between Op and Cud, though the calculation should be analogous to
the other LDA calculations. The only difference is the basis set used: they
used a localized one, made of gaussians. In order to try to reproduce their
calculation, I perfomed with the kind help of S. Botti a calculation using a
localized basis set too. The SIESTA code [131, 132] is an ab initio LCAO
code, which should have the same advantages and drawbacks as the code
used by Ching and co-workers. In figure 12.10, the difference between the
usual plane-wave result from ABINIT is compared to the SIESTA result us-
ing an accurate “double-zeta-polarized” basis set. The comparison is very
convincing: just the O2p states have moved of few tenth of eV. In par-
ticular, the Γ1 remains as dispersive within both calculations. This does
not allow one to understand the unusual result of Ching and co-workers.
Also their optical threshold is quite weird. Therefore, the result of Ching
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Figure 12.10: Comparison of band structure along Γ - R direction calculated
with two different basis sets. ABINIT is a plane-wave code (full curve),
SIESTA is a LCAO code (open circles).

is problematic from different points of view. Maybe their basis set or their
convergence parameters were not sufficient (their calculation was made be-
fore 1988).

The band structure issue will be resumed in the next chapter concerning
GW calculations, as they will provide quasiparticle band structure, that one
is allowed to compare directly with experiment.

12.4 DFT charge density

DFT in principle yields the exact charge density. Of course, one used an
approximation either LDA or GGA for the exchange-correlation potential,
but it is still interesting to analyse the fondamental observable of DFT!

Figure 12.11 provides the plot of an isodensity surface. The shape of the
surface is almost spherical around each atom, which seems to show that the
Cu–O bonding is very ionic. An ionic bonding makes shells completely full,
and therefore yields spherical charge density. Here, one can remark that
the shape is not fully spherical, but a bit elongated along the Cu–O bonds.

In fact, to measure more precisely the ionicity of oxygen and copper, one
can turn to the Bader analysis technique [133], implemented in ABINIT
package. Within LDA, the charge affected at copper is 0.521 e and the
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Figure 12.11: Isodensity surface ρ = 0.1 e a.u.−3. The oxygen atoms form
the body centered sublattice. The other atoms are the copper ones.

charge on oxygen is -1.042 e. These values are very close to the ones (+0.51
e for Cu, -1.03 e for O) of reference [107]. This proves that the simple ionic
model Cu+ and O2− is rather far from the LDA values. Instead, Zuo et
al. [103] measured a charge +1.01 e on copper and -2.02 e on oxygen. The
LDA values are in clear contradiction with the measurements of Zuo. The
statement is not modified by the use of GGA instead of LDA [107].

Let us now turn to the analysis of ρ(r). Figure 12.12 depicts the charge
density along two lines: the diagonal of a face of the cubic cell and the
large diagonal of the cubic cell. The middle of direction ( 1 1 0) is precisely
the center of a tetrahedron of four copper atoms, the point where Zuo et
al. measured the debated local maximum of the charge density [103, 104],
which was a piece of evidence of direct Cu–Cu bondings, according to those
authors. On the contrary, at that point I find, within LDA, a minimum

of the charge density with a value of 0.011 e a.u.−3, i.e. 0.077 e Å
−3

. This

should be compared to the measurement of Zuo et al.: they found a 0.2 e Å
−3

difference between the solid on the superposition ions Cu+, O2−. The direc-
tion ( 1 1 1 ) shows the density along the Cu–O bondings. There is almost
no density in the empty site between the two oxygen atoms on the right
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Figure 12.12: LDA density cuts in ea.u.−3 along ( 1 1 0 ) and ( 1 1 1 )
directions. The small light grey circles represent oxygen atoms, the large
dark circle represents a copper atom.
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Figure 12.13: LDA density cuts in ea.u.−3 along a line between two neigh-
boring copper atoms. The large dark circles represent copper atoms.

hand side. (Note that the very small density present on the atoms is due
to the removal of core electrons in the pseudopotential scheme.)

Going on with the analysis of the charge density, one finds, according
to figure 12.13, that the density in the interstitial region is rather high in

between copper atoms. It is equal to 0.28 e Å
−3

in the middle of the Cu–Cu

line. A value of 0.2 e Å
−3

was already considered as a high one by experi-
mentalists. Therefore, the LDA charge density shows clearly the presence of
delocalized density around Cu atoms, not in the middle of Cu4 tetrahedron
as measured by Zuo and co-workers, but rather along the edges of the tetra-
hedron. Density along that Cu–Cu line can be understood by the presence
of a neighboring oxygen atom. Instead of direct Cu–Cu bonding, the LDA
result suggests reasonably bondings via the triangle Cu–O–Cu. For copper
atoms, with no neighboring oxygen, there is no delocalized density.

The conclusions of Zuo and co-authors are based on indirect statements.
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They have fit several parameters as the charge, and the following terms in
a multipolar expansion in order to recover the measurements of their com-
bined electron and X-ray diffraction experiment. Maybe there is no unicity
of the set of fitted parameters. and allowing noticeable charge density in the
earlier mentioned triangle could also explain the experimental data. From
these debated measurements, one can not draw a safe conclusion concerning
the reliability of the LDA predictions.



Chapter 13

Standard GW study of Cu2O

As usual, the interpretation of Kohn-Sham eigenvalues as physical band
structure yielded, in the previous chapter, valence bands that are rather
correct, and band gaps that are largely underestimated. To properly de-
scribe the band gaps in theory and in practice, one has to turn to the Green’s
function approach, in particular, to the successful GW approximation.

But immediately, a problematic issue appears: the semicore states,
whose effect on the band gap have been evaluated to be 0.1 eV in LDA,
have a drastic effect on the Cud energies within GW approximation.

13.1 Importance of semi-core states for the

GW Self-energy

Following the approach of the previous chapter, I performed both calcu-
lations with and without the semicore states considered as valence. The
approximation of considering the semicore states inside the pseudopoten-
tial is even cruder than for an LDA calculation: the action of the semicore
on the valence is evaluated implicitly (via the pseudopotential) as an LDA
interaction. In an LDA calculation, this remains compliant, but in a GW
one, the valence-valence interaction is treated with GW interaction and the
core-valence is treated with LDA. This is known to give some problems in
cadmium [114] and also in copper [115].

Table 13.1 shows an analysis of the difference between GW calculations
with and without the semicore states in valence. It shows that the last
valence and the first conduction bands, which have a large Cud character,
experience a strong shift upward of about 3 eV, when the semicore states
are treated in the core. The shift is so large that the top valence bands end
up above the second conduction band. Fortunately, this spurious shift is not
present anylonger in the calculation with explicit semicore states in valence.
A conclusion can be immediately drawn: the pseudopotential accounts very
poorly for the action of the semicore states on the localized valence states.
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Let us further analyse what prevents vxc from giving a correct evaluation
of the semicore-valence interaction. In order to have a reliable pseudopo-
tential for a GW calculation, two conditions have to be fulfilled:

• the GW corrections (i.e. Σ − vxc) arising from the valence states has
to be equivalent with and without the semicore.

• the GW corrections arising from the semicore and acting on the va-
lence states have to be zero or at least constant for all states.

The case of Cu2O satisfies none of the previous conditions.
The third column of table 13.1 gives the difference between Σ and vxc

for the calculation without the semicore. This has to be compared with the
GW corrections arising from the valence states in the calculation with the
explicit semicore displayed in the sixth column (Σval−vval

xc ). One can see that
GW corrections are of the same order of magnitude in both calculations, but
there is a noticeable discrepancy. This discrepancy is further not constant
among states. This finally yields an error of maximum 0.8 eV, for the energy
differences in the calculation without semicore states with respect to the
more complete calculation.

Now, consider how bad or how good is vxc to represent the effect of the
semicore on the valence states. First note the correlation between semicore
states and valence states Σsc vanishes, as shown by the seventh column of
the table. This is expected, since the correlation part of the self-energy
is a decreasing function of energy differences. The energetic separation
between the semicore states and the valence is rather large (∼ 70 eV). As
a consequence, one can consider for Σ just the exchange operator. The
difference between the effect of the semicore on the valence states within
Fock approximation and LDA is provided by the last column. If the LDA
exchange were good, this difference would be vanishing or maybe constant.
On the contrary, one can note that this value is really state dependent: the
localized states as the last valence band and the first conduction band show

Table 13.1: Band structure in eV at Γ at the LDA equilibrium lattice
parameter within LDA and GW , with and without semicore. The origin of
the energies has been set to the LDA top valence band. Selected components
of the Hamiltonian are also provided.

εLDA εGW Σ − vxc εLDA εGW Σval − vval
xc Σsc

c Σsc
x − vsc

xc

without semicore with semicore
Γ′

25: last VB 0.00 3.08 4.09 0.00 0.06 5.56 0.01 5.48
Γ1: 1st CB 0.46 4.32 5.07 0.57 1.46 6.31 0.01 5.11
Γ′

12: 2nd CB 1.22 1.45 0.29 1.20 1.61 0.96 0.00 0.47
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a large value (more than 5 eV), and quite delocalized states as the second
conduction band (that is mainly of Cu 4p nature) does not experience a
large error.

The conclusion drawn for Cu2O is totally compliant with earlier works
of Rohlfing [114] and Marini [115] for other materials: the effect of the
semicore states has to be taken into account fully at a GW level. To be
precise, only the bare exchange part of the self-energy is in fact necessary.
The Fock operator is sensitive to the density-matrix, not to the energies.
Therefore the spatial overlap between the semicore states and the valence
states (as displayed in figure 12.1) is the relevant criterium here to assess or
not the core-valence partition. All further GW calculations will treat the
semicore states as valence ones.

13.2 GW quasiparticle band structure

Once the semicore issue is fixed, one can provide GW band structure of
Cu2O according to the standard method explained in chapter 5. Remember
that the GW method is expected to give band gaps in very good agree-
ment with experiment, except in highly correlated materials, where other
methods, in particular the Dynamical Mean-Field Theory [134], are more
appropriate. Selected elements of the band structure of Cu2O are provided
in table 13.2. All calculations are made with a 4 × 4 × 4 regular grid to
represent the k-point integrations. The grid is either shifted or not in order
to include high-symmetry points or not. The parameters used to achieve
convergence of the screening calculation are 150 bands for the transition in
χ0, 5887 plane-waves to represent the wavefunctions φi and 485 plane-waves
to represent the ε−1

GG′ matrix. The parameters used to achieve convergence
of the self-energy calculation are 200 bands for the band sum in the Green’s

Table 13.2: GW band structure features of Cu2O, starting either from
an LDA or GGA calculation, and compared to the experimental values.
The band width of Cud, Op, the location of the dispersive Γ1v band, the
quasiparticle band gap (Γ′

25v → Γ1c), and the optical threshold (Γ′
25v →

Γ′
12c) are given.

Starting point LDA LDA GGA GGA Expt.
Correction – GW – GW
O2p band width 2.44 2.35 2.37 2.37 2.4
Γ′

25v → Γ1v -4.87 -5.07 -4.80 -5.52 –
Cud band width 3.44 3.57 3.39 3.79 3.8
Γ′

25v → Γ1c 0.55 1.34 0.61 1.30 2.17
Γ′

25v → Γ′
12c 1.23 1.51 1.28 1.00 2.55
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function, 12797 plane-waves for the wavefunctions, 12797 plane-waves for
the bare exchange operator, and 485 plane-waves for the correlation part.

Concerning the band gaps, GW corrections are for sure an improvement
over the LDA result. But, with 1.34 eV, it remains far from the experimental
value of 2.17 eV. A similar statement holds for the optical threshold (Γ′

25v →
Γ′

12c). Such a discrepancy between experiment and GW band structure is
not common. Concerning the band width, the GW corrections do not
change them much. They were in pretty good agreement with experiment
at the LDA level, and the GW calculation confirms this matter of facts.
Concerning the dispersive Γ1v band that closes the separation between O2p
and Cu3d, its position (line Γ′

25v → Γ1v of the table) moved of only 0.2 eV
from LDA to LDA+GW . GW calculations do assess the LDA calculations:
there is a state Γ1v according to state-of-the-art theoretical calculations.

A simple attempt to improve the accuracy of the calculation could be
to initiate the GW step with a GGA calculation. Although the LDA and
GGA band structures agree pretty well, it has been noticed in some se-
lected case that the exchange-correlation potential can have a large effect
on the wavefunctions [135]. Table 13.2 also gives GW band structure el-
ements starting from GGA. One can notice the very good agreement for
the Γ′

25v → Γ1c between the LDA+GW and the GGA+GW calculations.
Unfortunately, the GGA+GW approach gives a negative correction for the
optical threshold. The “corrected” result is even farther from the experi-
mental value than the simple Kohn-Sham value. The band gap is wrongly
predicted to be the Γ′

25v → Γ′
12c transition by GGA+GW , whereas they are

experimental evidence that the band gap is a dipole forbidden transition
(in contrary with Γ′

25v → Γ′
12c). In conclusion, the GW calculation starting

from GGA is even worse than starting from LDA.

13.3 Failure of GW approximation or

failure of additional assumptions?

The drastic failure of GW approximation with Cu2O is not something one is
used to. Cu2O is not a highly correlated material, where the photoemission
finds many satellite structures, like nickel. Here, the GW approximation
was thought to work it out. That is why a natural question arises: what
fails with the calculation? Is it a failure of the GW approximation itself or
is it one of the many approximations or assumptions used in a “standard”
GW calculation, as described in chapter 5.

This section intends to check carefully one by one all the approximations
used in the GW recipe: use of pseudowavefunctions for φi, use of a plasmon-
pole model for ε−1, Σ(ω) considered as a first-order perturbation over hLDA

and use of LDA inputs...
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Figure 13.1: Comparison of LDA band structures using either a plane-wave
plus pseudopotential scheme (solid line, this work) or the PAW method
(dashed line, B.Arnaud [130].

13.3.1 Reliability of pseudo eigenvalues and

eigenvectors

The pseudopotential method has been devised for being used in a DFT
scheme, where the same approximation is used for the core and for the
valence, and where the core region is not important for the properties under
study. GW calculations obviously contradict the first requirement. But for
Cu2O, the second requirement might be not fulfilled neither. It is right
that GW calculations based on the LDA pseudopotential have been very
successful for semiconductors, where the electrons are largely delocalized.
However in Cu2O, the band gap consists of localized states (mainly of Cud
nature), therefore, next to the core region.

The reliability of the band structure in the pseudopotential plus plane-
waves method at the LDA level has already been checked against the lo-
calized orbital method of the SIESTA package (see figure 12.10 in the pre-
vious chapter). B.Arnaud [130] has collaborated with me and provided an
LDA band structure of Cu2O using the projector augmented wave method
(PAW) [136]. PAW is an all-electron method, where the true wavefunctions
are constructed as plane-waves, plus projectors in the core region. The
comparison with the plane-wave band structure is displayed in figure 13.1.
The agreement is once more convincing. Regarding the two comparisons
with localized orbitals and PAW, one can be really confident on the LDA
band structure.
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Figure 13.2: Imaginary part of the dielectric function within RPA, from
two independent calculations: solid line, this work using a plane-wave basis
set and pseudopotentials and dashed line, from B.Arnaud [130] using the
PAW method. Both calculations have used the same parameters: a 8×8×8
slightly shifted k-point grid, 33 plane-waves for the εGG′ matrix, and 1935
plane-waves for the wavefunctions. 17 valence bands and 3 conduction
bands have been used. The imaginary iη parameter has been set to 0.14 eV.

But, what about the confidence on the wavefunctions? Are the pseu-
dowavefunctions well-suited to be used in a GW calculation? Unfortunately,
to my knowledge, there does not exist any all-electron GW calculation on
Cu2O. To try answer this, B.Arnaud performed to my request an RPA
calculation of the dielectric function, shown in figure 13.2. As explained in
chapter 5, the same kind of matrix elements ρ̃kiij(q + G) are needed in a
χ0 calculation and in a GW calculation. The solid curve used ρ̃kiij(q + G)
constructed from pseudowavefunctions, instead the dashed curve (PAW)
used the true all-electron wavefunctions to build the ρ̃kiij(q + G). As one
can note in the figure, the two curves agree very well, better than the error
typically induced by the pseudopotential.

Finally, both wavefunctions and energies of the pseudopotential are
seemingly reliable. Of course, it would have been better to compare GW
calculations with an all-electron method, but the agreement of the response
function in figure 13.2 is already a convincing clue, that the use of pseudo
wavefunctions is justified to calculate the ρ̃kiij(q + G), and therefore, the
self-energy.
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Figure 13.3: Different assumptions concerning the loss function −Im ε−1(ω)
of Cu2O for vanishing q. The dashed line is the plasmon-pole model. The
solid line that shows the fully dynamical loss function is given as a reference
but never used in a GW calculation. The frequencies where ε−1 is actually
computed in a GW calculation without plasmon-pole model are given by
the plus signs. The dotted line shows the performance of the spline inter-
polation scheme used in the code to evaluate ε−1 in between the calculated
frequencies.

13.3.2 Reliability of the plasmon-pole model

Looking at the loss function of Cu2O in figure 13.3, that I have calculated,
one can doubt that the plasmon-pole model gives an accurate description
of the dynamical behavior of −Im ε−1. The full RPA loss function is very
badly represented by the single δ peak of the plasmon-pole model. To check
the reliability of the model, I ran several calculations using the algorithms
implemented in chapter 7.

In the left panel of figure 13.4, the spectral function of the last valence
band and of the first conduction band at Γ are displayed. The spectral
function method of chapter 7 was applied with two different values for η
parameter in the denominator of χ0: a large value η = 2.3 eV and a small
value η = 0.25 eV. As already stated for silicon, the spectral function is
largely dependent to this parameter. First the position of the peak of the
first conduction band changes by 1.3 eV with the two η. Second the width
of the quasiparticle peak (i.e. the inverse of the lifetime) increases much
with large η. But, the overall shape of the spectral function seems rather
constant, in particular the feet of the spectral function are present below
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Figure 13.4: Spectral functions for different states of Cu2O using the spec-
tral function method of chapter 7 with different values of parameter η. The
left panel shows states in the vicinity of the band gap and the right panel
in the vicinity of the Op Cud gap.

the quasiparticle peak for valence states, and above the quasiparticle peak
for conduction states. It is also interesting to turn to deeper valence state.
In the right panel of figure 13.4, the spectral functions of the upper Op state
and the bottom Cud at R point are displayed. They were calculated under
the same conditions as the previous spectral functions. Same conclusions
concerning the position and the width of the quasiparticle peaks can be
drawn. Even for small η, the peaks are wider here, due to a smaller lifetime.
The overall shape, in particular the feet, is not affected by the instability
with respect to η.

In order to get precise quasiparticle energies, I use the contour integral
method of chapter 7. The corresponding results are provided in table 13.3.
The frequencies used to sample the dynamical behavior of ε−1 are the 20
regularly spaced frequencies displayed with crosses in figure 13.3 for the real
axis plus 10 exponentially spaced frequencies ranging from 0 eV to 125 eV

Table 13.3: LDA and GW band structure features of Cu2O using or not a
plasmon-pole model. The zero of energies is taken at the LDA top valence
band.

Band LDA plasmon-pole model contour integration
Γ1v -4.871 -5.073 -4.634
top O2p -4.839 -4.924 -4.803
bottom Cu3d -3.442 -3.335 -3.161
Γ′

25 0.000 0.059 0.051
Γ1c 0.545 1.438 1.400
Γ′

12 1.228 1.637 1.791
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for the imaginary axis. Here the agreement between calculations with and
without plasmon-pole model is impressive in the band gap region. They
coincide better than 0.05 eV in absolute energies. The differences increase
as one goes farther from the Fermi level, but remains less than 0.40 eV
for all bands. For instance, the order of the Γ1v and of the top O2p are
exchanged in the calculation with no plasmon-pole model, but it is still very
far from explaining the discrepancy between calculated band structures and
observed photoemission spectra.

One can conclude that the plasmon-pole model is accurate in the Fermi
level region, and reasonable farther. The change induced by the use of the
full ε−1 is orders of magnitude smaller than the change needed to explain
the failure of the standard GW approach.

13.3.3 Reliability of first-order perturbation
technique

As explained in chapter 5, a first-order perturbation technique via equa-
tion 5.15 is usually used with success in order to only get the GW band
structure, and not the wavefunctions. This approximation is very con-
venient as it allows one to calculate one single expectation value of the
self-energy 〈φki|Σ|φki〉, instead of a full matrix 〈φki|Σ|φkj〉 and then a di-
agonalization.

One can of course get rid of the first-order perturbation theory, and fully
calculate the Σ matrix, to check the accuracy of the assumption. This will
be computationally more demanding, but conceptually not a problem. I
modified the existing GW implementation in the ABINIT package in order
to calculate not only the diagonal term, but also the full Σ matrix.

The reliability of the first-order perturbation will be demonstrated for
the band gap at Γ in table 13.4. The Σ matrix of the full GW calculation has
been represented on the LDA states from the O2s to the 36th conduction
band (i.e. 64 states). The calculation of Σ at the most highly symmetric
point Γ was simplified by the numerous vanishing terms 〈φΓi|Σ|φΓj〉 due to
symmetry selection rules. The Σ matrix has been evaluated at the frequency
given by a first perturbative GW :

ΣΓij = 〈φΓi|Σ(εpert GW
Γl )|φΓj〉. (13.1)

and then diagonalize to obtain the εfull GW
Γl . The first column displays the

GW energy using just the diagonal element h0Γii +ΣΓii, whereas the second
column is the result of the full diagonalization of h0 + Σ (h0 is the Hartree
Hamiltonian). The results of the table confirm with no doubt, that the
first-order perturbation correctly evaluates the GW band structure. The
position of the bands around the band gap has moved by less than 0.01 eV
when changing the method.
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13.3.4 Reliability of LDA starting point

The only remaining possibility for the failure of the technical approxima-
tions used in the GW scheme is a failure of the LDA wavefunctions. As
introduced in chapter 5, the LDA and GW wavefunctions are assumed to be
the same from the beginning to the end of the calculation. This has been
assessed by Hybertsen and Louie [70], who claimed an overlap of 99.9 %
between LDA and GW wavefunctions for silicon. But for Cu2O, for d
electrons, there is no piece of evidence that this statement remains valid.
Maybe the LDA wavefunctions do not have the correct character... Maybe
the LDA wavefunctions are too delocalized... Maybe the LDA density does
not give the correct charge on the ions...

The previous section showed nevertheless that the diagonalization and
the perturbative GW yield identical results. This is a clue in the direc-
tion to the justification of the use of φLDA ≈ φGW . But, a change in the
wavefunctions at a k-point where the selection rules are not so important
than in Γ, can induce a change at Γ point via the density (therefore in the
Hartree potential), via the density matrix (therefore in the Fock operator),
and also via the screening (therefore in the correlation part).

To get rid of the uncertainty concerning the LDA starting point, one
has to use an other self-consistent scheme to initiate the GW calculation.
For instance, one can try to apply the approximations for the self-energy
described in chapter 8. This is the topic of the next chapter.

Table 13.4: GW band structure using or not the first-order perturbation
approach. (calculations done at the LDA equilibrium lattice parameter).

Band perturbative GW full GW
Γ′

25 8.898 8.894
Γ1c 10.455 10.463
Γ′

12 10.213 10.212



Chapter 14

Quasiparticle wavefunctions of
Cu2O

As stated in the previous chapter, the only ingredients one can doubt about
in a GW calculation on Cu2O are the starting LDA wavefunctions, hence
the starting LDA density also. The idea of the present chapter is to get
rid of the possibly unreliable LDA inputs by performing a self-consistent
calculation that would erase the influence of the starting point. The logical
way to go beyond LDA eigenvalues and eigenvectors is to implement the
MBPT approximations described in chapter 8.

14.1 Hartree-Fock wavefunctions

Self-consistent Hartree-Fock calculations on Cu2O are presented here just
as a test case. According to existing Hartree-Fock results [18, 24], the band
structure of Cu2O is badly predicted, with a huge band gap, and no true
separation between Cu3d and O2p states.

The present calculation is able to reproduce this matter of fact, even
using a restricted LDA wavefunction basis set. If the HF Hamiltonian
were considered to differ only to first-order perturbation with the LDA
Hamiltonian, the evaluated band gap value would have been 8.84 eV. This
should be compared with the fully self-consistent HF calculation performed
using 66 LDA bands to span the wavefunction space, which gives after
convergence (5 iterations) a band gap of 9.96 eV. This last result is in pretty
good agreement with the calculations presented in reference [24], that found
a 9.84 eV band gap, and that were using a different basis set (gaussians).
This shows that the wavefunction space spanned by only 66 LDA states is
already flexible enough to allow the wavefunctions to relax from LDA to
HF ones.

Moreover, when comparing figure 14.1 and references [18, 24], the agree-
ment of the band structures is striking. The bottom of the Op states is
located at about -9 eV, the top valence bands are dispersive, and the other



164 SECTION14.1

X Γ R
-10

-8

-6

-4

-2

0

2

4

6

8

10

12

ε 
 (

eV
)

Figure 14.1: Band structure of Cu2O within LDA (solid line) given as a
reference and within HF (open circles) along X–Γ-R direction.

Cu 3d bands are not dispersive at all and mixed with the top of the Op
states in the region 4-6 eV below the top valence. All these features are
consistent with the two cited references. The only less clear point is the
order of the three first conduction bands at Γ, which are found here very
close and in the wrong order, in contrast with absorption experiments (one
is dipole forbidden, the other not) and in contrast with the other HF cal-
culations. Note that the two other HF references strongly disagree among
them: the separation between these states is in one calculation about 1.5 eV
and in the other one about 7 eV. The convergence of the conduction bands
with a gaussian basis set may be problematic.

The conclusion of these calculation is clearly that the HF approxima-
tion is not reliable in Cu2O for the band gaps (as usual) and also for the
valence states. The calculated band structure has no hope to account for
the integrated density of states measured by the photoemission experiments
of Ghijsen et al. [126] (shown in figure 14.2). Besides this negative state-
ment, this proves that even for complicated material like Cu2O a restricted
LDA wavefunction basis set is versatile enough to represent the HF wave-
functions, which strongly differ from the LDA wavefunctions. As COHSEX
or GW wavefunctions are expected to be even closer to LDA ones, the
restricted LDA basis set is hence fully justified.
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Figure 14.2: Density of states of Cu2O within LDA (dashed line) given as
a reference and within HF (solid line), compared to experimental photoe-
mission data of reference [126] (large dots).

To achieve the described HF calculation, a technical point had to be
addressed. In addition to the scheme described in chapter 8, I had to damp
the oscillation of the electronic density in order to make the self-consistent
calculation converge. In fact, the HF density is really different from the LDA
density. The self-consistent procedure creates undamped oscillations in the
density, which prevents the calculation from converging. As a consequence,
an artificial damping has been added, by mixing the densities

ρ
(n)
in = αρ

(n−1)
out + (1 − α)ρ

(n−1)
in , (14.1)

where ρ
(n)
in designates the density used as an input for the n-th step and

ρ
(n−1)
out stands for the output density of the n − 1-th step. A value of α

lower than 0.6 has been found necessary to stabilize the calculation. It has
also been checked that another value of α reaches the same self-consistent
point. To show the large change of the electronic density, one considers
the Hartree energy, whose value is 329.743 Ha in HF and 317.769 Ha within
LDA.

14.2 Self-consistent GW

The present section is devoted to the evaluation of the self-consistent GW
“wavefunctions” and energies using the model self-energy proposed by Faleev,
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Kotani and van Schilfgaarde [90], using equation (8.1). This will be con-
sidered as the reference calculation to evaluate the quality of the further
approximation, static COHSEX, in the last section of the chapter.

In order to make the scheme tractable for the complex material Cu2O,
the number of bands used in G has been dramatically reduced with respect
to the standard GW number. Only 66 of them have been used instead of
the 200 usually used. Here, GW corrections are not converged in absolute
value: an almost rigid shift of 0.6-0.7 eV is experienced by the whole band
structure. Fortunately, the energy differences are much better converged.
Let us exemplify this with a standard GW calculation using either the re-
duced number of bands or the converged one. With only 66 bands, the band
gap value is 1.31 eV, and the optical threshold is 1.54 eV; with 200 bands,
the converged band gap is 1.34 eV, and the converged optical threshold is
1.51 eV. The eigenvalue differences are reliable up to about 0.05 eV, which
is clearly sufficient with respect to the size of the effects one will be looking
at.

In the method described in reference [90], the self-energy is at each step
evaluated at the energy of the previous step and the Z factor of the quasi-
particle equation

ε
(n)
kjj = ε

(n-1)
kjj + Z〈φkjj |Σ(ε

(n-1)
kjj ) − vKS

xc |φkjj〉 (14.2)

is systematically set to 1. There is no quasiparticle renormalization in this
model. This procedure gives after the first step larger GW corrections, since
they are not reduced by the Z factor. For instance, the band gap is 1.51 eV,
when the scheme is applied to the diagonal elements only, instead of 1.31 eV
in a usual GW calculation that does include the Z factor. Consequently,
as the band gap is noticeably larger, the effect of self-consistency is also
slightly larger. All this makes that the scheme applied only on the diagonal
(just the energies are updated, and not the wavefunctions) ends with a
larger band gap than an energy self-consistent GW procedure that would
include the Z factor. I have performed both calculations. The scheme of
reference [90] gives a final band gap of 1.80 eV as shown in table 14.1, when
applied using the energy update only. The energy only self-consistent GW
scheme would give a band gap of 1.61 eV. One finally recovers more or less
the 0.2 eV difference between a calculation with and without account for Z.

The procedure used seems to be rather stable. In fact, self-consistency
for the diagonal scheme (update of the energies only) has been achieved
starting from two very different starting points: either from the LDA ener-
gies (with a 0.54 eV band gap), or from the perturbative static COHSEX
energies (with a 1.88 eV band gap). After 5 self-consistent iterations, the
two calculations have ended to the same eigenvalues within 0.01 eV in ab-
solute position. This clue of stability is important, as the unicity of the
attractor in a self-consistent GW scheme is questioned and debated nowa-
days [137].
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Figure 14.3: Band structure of Cu2O within LDA (solid line) and one shoot
GW (closed diamonds) given as a reference and within self-consistent GW
(open circles) along X–Γ-R direction.

Concerning the band structure, the overall shape within self-consistent
GW is given in figure 14.3. Self-consistency does not affect the shape of the
band structure, just the band gap seems to have changed. Note in partic-
ular that the dispersive Γ1v remains unchanged in between O2p and Cu3d

Table 14.1: Band structure features within different approximations: stan-
dard GW using LDA inputs, model GW using self-consistent energies,
model GW using self-consistent energies and wavefunctions, and experi-
ment.

GLDAWLDA GW [εGW ] GW [φGW εGW ] Expt.a

Γ′
25v → Γ1v -5.07 -5.27 -5.28 –

top O2p -4.86 -4.84 -5.00 ∼ -5.5
bottom Cu3d -3.28 -3.07 -3.72 ∼ -3.8
Γ′

25v → Γ1c 1.34 1.80 1.97 2.17
Γ′

25v → Γ′
12c 1.51 2.21 2.27 2.55

aReferences [1, 3, 126]
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states. Some selected features are furthermore displayed in table 14.1. It
shows the effect of respectively the update of the energies and of the up-
date of the wavefunctions on the band structure. Some features like the
dispersive band Γ1v or the position of O 2p states are not sensitive to the
self-consistency. On the contrary, the band gap and the Cud band width
are noticeably affected by the change of the energies and of the wavefunc-
tions. The largest improvement on the band gap is due to the energy
self-consistency (0.5 eV opening), whereas the effect of the wavefunctions
is smaller (0.2 eV opening), but still in the right direction. The final band
gap is in reasonable agreement with respect to experiment. This correction
was not obvious as the LDA starting point and the standard GW were
so far away from the reality. The largest improvement on the Cu d band
width is clearly due to the self-consistent wavefunctions. The use of the self-
consistent GW energies reduced the band width, and at the opposite, the
wavefunctions enlarged it by 0.7 eV in the right direction. The agreement
for the Cud band width is finally rather good.

Table 14.2 allows one to elucidate the origin of the influence of the wave-
functions on the band structure. For the last valence bands Γ′

25v and the
second conduction band Γ′

12c, the effect of the change of wavefunctions is
rather small on the band structure (< 0.1 eV). Further, analysing the dif-
ferent contributions to εi shows that these states seem rather unsensitive
to the change in the wavefunctions. On the contrary, the behavior of Γ1v

and Γ1c states has to be pointed out. The overall effect of the modifica-
tion of the wavefunctions is moderate (maximum 0.2 eV), but each single
contribution experiences drastic changes. In particular, the change in the
Hartree Hamiltonian (up to 0.7 eV!) is compensated by a change in the
exchange operator expectation value (up to 1. eV!) in the opposite direc-
tion. The total effect remains bounded. It is further interesting to note

Table 14.2: Contribution to selected energies within model GW using self-
consistent energies or using self-consistent energies and wavefunctions. The
exhibited contributions to εi are the Hartree Hamiltonian Hh = −∇2/2 +
ve−i + vh, the exchange operator Σx, and the correlation part Σc

Approx. band Hh Σx Σc εi

Γ1v 19.86 -22.00 5.14 3.00
Γ′

25v 39.52 -38.03 6.77 8.27
GW [εGW ] Γ1c 38.76 -28.43 -0.26 10.07

Γ′
12c 19.45 -6.59 -2.39 10.47

Γ1v 20.44 -22.69 5.26 3.00
Γ′

25v 39.48 -37.81 6.62 8.28
GW [φGW εGW ] Γ1c 38.22 -27.41 -0.56 10.25

Γ′
12c 19.45 -6.47 -2.44 10.55



CHAPTER 14. QP WAVEFUNCTIONS OF CU2O 169

that these two wavefunctions do not change much (overlap ∼ 99.9 % with
LDA wavefunctions), whereas the other wavefunctions change a bit more
(∼ 99.5 % overlap). The drastic change of the expectation values can only
be explained by indirect causes. The two Γ1 states seem more sensitive to
the change of the other wavefunctions via the density for the Hartree po-
tential, or via the density matrix for the exchange operator. It is therefore
extremely important to update the Hartree potential in the self-consistent
scheme, else the drastic changes in Σx would not have any counterpart...

Now, turning to the analysis of the wavefunctions themselves will show
in particular that the GW self-energy reduces the hybridization between
Op and Cud with respect to LDA. Changing the potential from LDA to
self-consistent GW yields state-dependent effects. For instance, the wave-
functions of the two Γ1 states (the dispersive band in between O 2p and
Cu 3d states and the first conduction band) do not change within GW .
Their overlap with the corresponding LDA states is respectively 99.91 %
and 99.88 %. The contrary is true for the Γ′

25 states from the bottom of the
O2p and the top of the valence Cu 3d, that are hybridization of atomic Op
and Cud components. The hybridization level changes noticeably within
GW . Looking at figure 14.4, one can note that the top valence bands gain
much weight in the copper atoms’ region, and that, on the contrary, the
mainly Op bands lose some weight in these regions. The hybridization
between O2p and Cu3d within GW is smaller than within LDA. On the
contrary, the threefold degenerate top state within O2p region (symmetry
Γ15) that was almost purely Op in LDA do remain identical within GW :
the overlap is larger than 99.99 %!

In the Cu 3d region, the number of states is huge and the energetic sep-
aration is very small. As a consequence, the mixing of states is large. For
instance, at k-point (1/4, 1/4, 0), where the symmetry forbidden coupling
elements are few, the overlap between the LDA and the GW wavefunctions
is generally of the order of 95 % for the Cu 3d states. This is very low, as
illustrated for a not degenerate state on the left panel of figure 14.5. The dif-
ference between LDA and GW approximation for one single wavefunctions
is large. But, as the difference arises from mixing with the neighboring
states, the sum over all Cu 3d wavefunctions remains almost unchanged
(shown in the right panel of figure 14.5).

Finally, the electronic density is not changed much by replacing LDA
by self-consistent GW . This can be measured by the change in the Hartree
energy. Within LDA, it is equal to 317.769 Ha, whereas within GW , its
value is 318.088 Ha. A change of 0.1 % is very small compared to the change
within HF approximation (3.8 %). This shows in particular that there is no
hope to recover, thanks to the self-consistent GW , the debated experimental
result of Zuo et al. [103] concerning the charge density in the center of the
Cu4 tetrahedra mentioned in chapter 11.

To sum up these results, besides the particular issue of Cu2O, where the
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Figure 14.4: Sum of the squared modulus of the top three valence band
wavefunctions (left panel) and bottom three valence bands wavefunctions
in the Op region (right panel) at Γ point in Cu2O along (1 1 1) direction.
The small light grey circles symbolize the oxygen atoms. The large dark
grey circle symbolizes the copper atom. The wavefunctions within LDA
are displayed with the dashed line, the wavefunctions within GW with the
solid line.

( 1 1 1 ) direction ( 1 1 1 ) direction

Figure 14.5: Squared modulus of the valence band number 30 wavefunc-
tion (Cu 3d region) (left panel) and sum of all squared moduli of Cu 3d
valence wavefunctions (right panel) at k-point (1/4, 1/4, 0) in Cu2O along
(1 1 1) direction. The small light grey circles symbolize the oxygen atoms.
The large dark grey circle symbolizes the copper atom. The wavefunctions
within LDA are displayed with the dashed line, the wavefunctions within
GW with the solid line.

self-consistent GW improved the agreement with experimental data (this
topic will be continued in the next chapter, where the theoretical data will
be compared to new angle-resolved photoemission experiments), I would
like to stress on conclusions of general interest, which can be drawn from
the previous calculations on Cu2O:
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• the GW self-energy reduces the hybridization between Op and Cud,

• the model self-consistent GW has a unique attractor (at least when
energies only are updated),

• the effect of the wavefunctions on the band structure is the sum of
large compensating contributions (from Hartree and exchange parts),

• some states can remain unchanged, but yet be sensitive to the changes
in the other wavefunctions at other k-point (via the nonlocal opera-
tors).

14.3 Self-consistent COHSEX

Following the spirit of chapter 8, it is worthwhile to evaluate the COHSEX
wavefunctions and consider whether they are good approximation to the
true GW wavefunctions.

Figure 14.6 compares the quality of the wavefunctions within different
approximations, LDA, static COHSEX, and model GW for the critical
states. As usual, the wavefunctions are evaluated at a non-symmetric k-
point in order to allow more mixing. Looking at the Op states and the
three top valence states, the COHSEX and the GW wavefunctions seem to
agree rather well. The COHSEX approximation accounts pretty well for the
change in O2p-Cu 3d hybridization with respect to the LDA starting point.
However, when looking at the first conduction band, COHSEX overesti-
mates the change of the wavefunctions with respect to LDA. The general
conclusion concerning the wavefunctions is that COHSEX “corrects” the
LDA wavefunctions always in the good direction (thinking as GW as the
reference), generally agrees well with GW , but shows sometimes some over-
estimation of the effects.

Concerning the band structure, table 14.3 shows that self-consistent
COHSEX gives too large band gaps, as one was expecting following the
examples of silicon and argon of chapter 8. When a further GW step is
applied on top of the self-consistent COHSEX, the obtained band structure
is really reasonable. The valence states agree pretty well with the model
GW ones, and the band gaps are slightly overestimated (∼ +10 %), whereas
self-consistent GW ones were slightly underestimated (∼ −10 %).

As a conclusion, self-consistent COHSEX is a rather accurate approx-
imation to self-consistent GW . When one considers that the COHSEX
calculations are much faster than the GW ones (due to the absence of the
empty states in the COHSEX formula), the use of the simple COHSEX ap-
proximation as an evaluation of the GW wavefunctions seems justified. Al-
ternatively, COHSEX approximation can be thought as a first cheaper test
to the reliability of the LDA eigenfunctions and it can answer the question
whether a further cumbersome self-consistent GW should be performed.
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Figure 14.6: Sum of squared modulus of group of states at k-point (1/4, 1/4,
0) in Cu2O along (1 1 1) direction. The small light grey circles symbolize
the oxygen atoms. The large dark grey circle symbolizes the copper atom.
The wavefunctions within LDA are displayed with the dashed line, the
wavefunctions within GW with the solid line, the wavefunctions within
static COHSEX with the closed circles and the thin line. The upper left
panel shows the bottom three valence O2p states, the upper right panel
shows the upper three valence O2p states, the bottom left panel shows
the three last valence states, and the bottom right panel shows the first
conduction state.

Table 14.3: Band structure features within different approximations: stan-
dard GW using LDA inputs, self-consistent COHSEX, GW using COHSEX
inputs, model self-consistent GW , and experiment.

GLDAWLDA COHSEX COHSEX + GW scf GW Expt.
Γ′

25v → Γ1v -5.07 -5.39 -5.17 -5.28 –
top O2p -4.86 -5.39 -4.73 -5.00 ∼ -5.5
bottom Cu3d -3.28 -3.92 -3.79 -3.72 ∼ -3.8
Γ′

25v → Γ1c 1.34 2.87 2.58 1.97 2.17
Γ′

25v → Γ′
12c 1.51 3.00 2.71 2.27 2.55



Chapter 15

Angle-resolved photoemission
spectroscopy of Cu2O

At this point, the valence band structure of Cu2O is still not completely
established. All theoretical calculations (LDA, GGA, GW , self-consistent
GW ) found a largely dispersive state Γ1v in between the O2p and the
Cu 3d states. This state seems to be absent in the photoemission data of
Ghijsen and co-workers [126]. Unfortunately, their experimental setup was
not angle-resolved. It is possible that this single state has been averaged out
by the Brillouin zone integration of the measurement on a polycrystalline
sample.

This is one of the motivations for the measurement performed on a
single crystal first at LURE with an helium lamp (fixed photon energy,
21.2 eV or 40.8 eV), second at Elettra’s synchrotron, Trieste (tunable photon
energy). The experiment at LURE have been performed by M. Izquierdo
and F. Sirotti. The beam time at Elettra has been granted on APE beam
line of G.-C.Panaccione, and has been used by M. Izquierdo, N.Barrett,
and myself.

The angle resolution of the experiments gives access not only to the
density of states, but also to k-point resolved information, from which the
band structure can be inferred. Besides the energy conservation of equa-
tion (1.8), an angle-resolved photoemission on a monocrystal allows one to
keep track of the momentum of the photoelectron in the crystal [138]. The
momentum conservation

ki = kf , (15.1)

where ki means the momentum of the electron before and kf after extrac-
tion, is however not enough to evaluate ki. Note that the momentum of the
photon has not been taken into account, as it is vanishing in the ultraviolet
energy range one is interested in. In fact, an assumption on the behavior of
the photoelectron is needed to link kf to the measured kinetic energy. The
extracted electron of energy Ef is generally supposed to be a free electron,
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whose energy parabola starts at the bottom of the valence bands:

Ef = Ekin + φ =
k2

f

2
+ E0, (15.2)

where E0 denotes the binding energy of the valence states and φ is the work
function, which is a measure of the barrier potential upon the extraction of
an electron through the surface of the sample. This permits an estimation
of ki,

ki =
√

2(Ekin + φ − E0). (15.3)

Using this assumption, one will be able to measure the band structure of
Cu2O.

15.1 Experimental setup

Due to the very short mean free path of the photoelectrons in the solid in
the ultraviolet range (few Å), the photoemission spectroscopy is indeed a
surface technique. As one wants to get insight into the bulk material, the
sample under study should have a very clean surface, in order to reproduce
as much as possible the electronic structure of the bulk.

Our Cu2O sample has been cut along a (111) surface. The surface prepa-
ration has been performed with great care: annealing at 450◦C and sput-
tering by 800 eV argon ions in ultra-high vacuum (pressure < 10−10 torr).
The stability of the surface as a function of time has been very good.

Low energy electron diffraction (LEED) allowed one to evaluate the
quality of the surface using electrons of the same energy as the photoelec-
trons in the photoemission experiments. This permits one to probe the
same depth as the relevant one for photoemission. Figure 15.1 shows one of
the LEED images taken by M. Izquierdo at LURE at low electron energy
(E=15.9 eV). As the surface is perpendicular to (111), the LEED experi-
ment is looking at the cubic cell of Cu2O along the large diagonal of the
cube. That is why the image shows an order 3 symmetry: 3 small spots, 3
large spots. The LEED image is clear. The surface is believed to be qualita-
tively good. But, LEED is a diffraction method, and is therefore sensitive
to the average position of the atoms in the illuminated region. Disorder
around the mean position can not be excluded.

The oxidation of the surface is also a crucial parameter. To be sure
we were indeed measuring a Cu2O surface, some care had to be taken. As
shown in reference [139], a satellite at -15 eV appears in the photoemission
spectrum of Cu2O when the photon energy is at the resonance of the Cu 3p
states (around 76 eV). This feature is characteristic for Cu2O, as it is absent
for the other copper compounds, as Cu or CuO. A critical characterization
test was to check whether the sample shows this satellite. We therefore
compared in figure 15.2 the measured spectrum at 76 eV to the spectrum
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Figure 15.1: Low energy electron diffraction image of the Cu2O (111) sur-
face.
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Figure 15.2: Photoemission spectrum measured at Elettra with 76 eV pho-
tons (small dots), compared to the reference spectrum of Thuler et al. [139]
(large squares).

of Thuler and co-workers. The agreement is pretty good. Our sample does
not show any of the characteristic satellites of Cu nor CuO at 10.5, 11.9,
12.9, and 14.6 eV, according to reference [139]. The oxidation of the surface
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is believed close to the nominal Cu2O formula.
Experimental uncertainties arise from different factors. First, the tem-

perature causes a broadening of the measured spectra. All measurements
have been performed at room temperature kT ≈ 25 meV. At Elettra, low
temperature measurements have been tried. Unfortunately, the sample ex-
perienced drastic changes during cooling down and finally, only room tem-
perature measurements have been retained as reliable.

According to the empirical curve of reference [140], the mean free path
of photoelectrons in the perpendicular direction is about 5 Å in the 20-80 eV
energy range. The Heisenberg relation

∆kz∆z ∼ 1 (15.4)

permits one to evaluate the uncertainty in momentum along the z direction.
Its value is evaluated to ∆kz ∼ 0.2 Å−1. This should be compared to the
Γ-R length 1.27 Å−1 in Cu2O. This means that the uncertainty is slightly
larger than 15 % of the full Γ-R length. This big value should be kept in
mind. It could play a role when comparing experimental data to theoretical
ones: dispersive bands will be noticeably broadened by the experimental
uncertainty ∆kz.

There is also an uncertainty in directions x and y due to the finite angle
resolution ∼ 0.5◦. This accounts for an integration on a finite solid angle
around the measured direction. In the worst case at high photon energy
(80 eV), an integration angle of 0.5◦ yields an uncertainty of 3 % of the Γ-R
length. This cause of broadening is very small compared to the one due to
the finite mean free path of photoelectrons.

Preliminary measurements with helium lamp made at LURE by M. Izquierdo
showed that there is almost no dispersion of the bands of Cu2O when the
angle of the detector (i.e. when the k-point) is changed. This statement
has been quickly confirmed at Elettra. That is why we concentrated on
changing the photon energy, keeping the detector in normal incidence. As
the surface of the sample is (111), the measurement direction has been
Γ-R. The available photon energies allowed one to measure a line Γ-R-Γ,
changing the energy from 20 eV to 85 eV.

Modifying the photon energy not only changes the k-point measures ac-
cording to equation (15.3). It also changes the intensities of the lineshapes.
The cross sections of the different atomic orbitals depend strongly on the
energy of the incident photons. They have been calculated for the atoms
within the Hartree-Fock approximation, tabulated in reference [141], and
are provided here in table 15.1. Therefore, when one measures the Γ point
with 20 eV photons, the measured spectrum differs from the Γ point reached
with 85 eV photons. Moreover, according to the polarization of the incident
photons, the selection rules are not identical. Using vertical or horizontal
polarized photons will produce different spectra accounting for the same
k-point. Energy and polarization are parameters one can play with, in a
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synchrotron beam line. One can hope that changing the cross sections will
make different states appear, which can be particularly helpful when they
are so intricate, as in Cu2O.

Finally, it is also needed to explain the background present in the mea-
sured spectra, as in figure 15.2. In fact, extracted electrons may experience
energy losses after the interaction with the impinging photon. For instance,
an electron with a binding energy of 2 eV and hence initially high kinetic
energy can lose energy via some uncontrolled scattering process and finally
be measured by detector. As the electron has lost some energy before mea-
surement, it will be counted (wrongly) as an electron with a higher binding
energy. That is why even in a region where there is no state, as at -20 eV in
figure 15.2, the spectrum is not vanishing. Phenomenologically, the proba-
bility to measure secondary electrons is proportional to the number of states
of lower binding energy.

A.D. Shirley proposed an empirical scheme to remove the background
[142], in order to only retain primary electrons that have not experienced
any subsequent energy-loss. Let I(ω) be the spectrum as a function of ω,
the kinetic energy of the photoelectron. Let frequency ω0 stand for the
lowest measured energy, where there is no corresponding state in the solid.
Therefore, the corrected spectrum I ′(ω) should be equal to zero at frequency
ω0. According to Shirley’s formula, the spectrum with background removed
I ′(ω) reads

I ′(ω) = I(ω) − I(ω0)

(∫ +∞

ω

dω′I(ω′)/
∫ +∞

ω0

dω′I(ω′)
)

. (15.5)

The corrected spectrum is indeed zero at ω0 and the removed background
is proportional to the integral of the spectrum above the current frequency.
All electrons with higher kinetic contributes to the background at ω. This
procedure should be applied with care, as it might displace the position of
the peaks. But it is necessary if one wants to compare the shape or the
intensities of the experimental and theoretical spectra.

Table 15.1: Calculated cross section of atomic orbitals O 2p, Cu 4s, Cu 3d
as a function of the impinging photon from reference [141].

hν (eV) O2p Cu4s Cu3d
16.7 10.43 0.016 6.45
21.2 10.67 0.036 7.55
26.8 9.77 0.044 8.19
40.8 6.82 0.041 9.93
80 2.06 0.025 8.71
132 0.58 0.014 5.14
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Figure 15.3: Photoemission spectrum measured at Elettra with 30 eV pho-
tons (small dots), compared to calculated spectra within LDA using either
only one k-point (dashed line) or several k-points in the uncertainty range
∆kz (solid line).

15.2 Analysis of experimental results

against theoretical predictions

In order to compare theoretical results to experimental data, one has to
keep in mind the limitations exposed in the previous section. At present
we cannot predict theoretically the energy dependent experimental spectra,
since for this we would have to evaluate formula (2.30), including the tran-
sition matrix elements. If one uses a simple density-of-states to represent
the result of the photoemission process, the theoretical predictions are not
dependent on the photon energy, just on the scanned k-point via the band
structure. In fact, the only feature which can be compared directly is the
position of the states.

Let us exemplify the comparison between experiment and theory with
one particular spectrum at 30 eV. This spectra is particularly interesting be-
cause it corresponds to k-point (1/4, 1/4, 1/4) using equation (15.3), where
one has maximum chances to notice the dispersive state Γ1v in between Op
and Cud regions. Figure 15.3 shows the experimental curve measured at
Elettra and the LDA density-of-states corresponding to the single k-point
(1/4, 1/4, 1/4). The LDA density-of-states was constructed using gaus-
sians of 0.1 eV half width at half maximum. This is a rough estimate of the
energy resolution of the experiment, which is believed to give results with
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Figure 15.4: Photoemission spectrum measured at Elettra with 30 eV pho-
tons (small dots), compared to calculated spectra within LDA (dashed line)
or within self-consistent GW (solid line).

a 0.05 eV accuracy. But the comparison shows here that the experimen-
tal spectrum has structures much more broadened than the theory. Even
worse, theory shows that one should distinguish 4 groups of states in the Op
region (-9,-7 eV). Experiments only show two very large and smooth struc-
tures. An important cause for broadening is the uncertainty in k-point due
to the finite mean free path of the photoelectrons. In order to account for
that issue, figure 15.3 shows also a spectrum, which is the sum of 7 different
spectra around (1/4, 1/4, 1/4): from (0.2, 0.2, 0.2) to (0.3, 0.3, 0.3). This
integration has a slight effect on the localized states (consider e.g. the lower
Op band), but a significant one on the dispersive states. In particular, the
top valence states and the Γ1v band are somehow averaged out by this pro-
cedure. That could explain why the dispersion of the upper valence band
is hardly seen in experiments. It could be also a cause why one can not
see the dispersive Γ1v band. That could explain why the two states in the
middle of the Op region can not be distinguished, and why the spectrum in
this region has simply two smooth structures.

Now studying the location of the calculated density-of-states, LDA is
clearly insufficient to give a reliable account of the Cud region. The differ-
ence between the main Cud peak and the top valence is underestimated by
1 eV within LDA, and finally the whole Cud band width is largely under-
estimated. This is a call for improved theoretical calculations.

Figure 15.4 shows the comparison between LDA, self-consistent GW
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Figure 15.5: Photoemission spectrum measured at Elettra with 22 eV pho-
tons (small dots), compared to calculated spectra within LDA (dashed line)
or within self-consistent GW (solid line).

density-of-states averaged over the ∆k uncertainty, and the corresponding
experimental measurement. Self-consistent GW yields great improvements
over the LDA result. The location and the width of the Cu 3d states is now
in good agreement with respect to the experimental data. The Op states
are still slightly too low, but significantly improved. These calculations con-
firm the conclusion that the dispersive state Γ1v is still located in between
the Op–Cud gap, but the corresponding peak will be a large smooth peak,
difficult to find in the experimental curve.

Figures 15.5, 15.6 and 15.7 give the same information as the previous
figure, but for different photon energies, respectively, 22 eV, 46 eV, and
76 eV. These spectra correspond to k-points: (0.11, 0.11, 0.11), (0.50, 0.50,
0.50) and (0.16, 0.16, 0.16) in reciprocal lattice vector units. In all spectra,
self-consistent GW yields improvements over the LDA band structure. Note
that the figures for energies 22 eV and 76 eV account for very close k-points
(smaller than the ∆k), and the corresponding experimental spectra differ
noticeably. This confirms that there is no hope to account for the height of
the peaks with the simple theoretical density-of-states.

An other issue can be raised looking at the spectrum for 46 eV photons,
in figure 15.6. This spectrum corresponds to the high symmetry point R.
There, the dispersion of the bands is almost zero within ∆k. That is why
theory predicts thin peaks. However, experimental data are as broadened as
for the other k-point. It means that there is an additional cause for broad-
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Figure 15.6: Photoemission spectrum measured at Elettra with 46 eV pho-
tons (small dots), compared to calculated spectra within LDA (dashed line)
or within self-consistent GW (solid line).

ening. One can immediately remove the hypothesis of very short lifetimes
of the excited states due to electron-electron coupling, since also the top of
the valence band experiences a large broadening. Temperature accounts for
only 0.05 eV via the statistical standard deviation kT . An other cause for
the broadening of the structure may be the finite lifetime of excitations due
to a strong electron-phonon coupling. This possibility can be considered
as serious, as one has noted earlier in chapter 12 that the band structure
depends drastically on the lattice parameter. A last cause for broaden-
ing could be the disorder of the surface. Even the pretty LEED pictures
we got can not exclude this case. There is still some physical effect to be
understood, why the experimental data are not as accurate as expected.

Concerning the problem that the dispersive Γ1v state in between O2p
and Cu3d is not distinguished in the experimental data, theory gives an
additional explanation to that. Within LDA (and this statement is not
changed much within self-consistent GW ), this dispersive state has a strong
Cu4s character: the maximum is at the Γ point, where the Cu 4s character
has a weight of 60 %, the minimum is at the R point, where the state is
degenerated with other Cu 3d states and it has hence no Cu4s character
anymore. This Cu 4s character is important to interpret the experiments,
since as displayed in table 15.1, the Cu 4s can not be seen in photoemission
in the 20-80 eV energy range. This shows that the Γ1v state, being one half
Cu 4s, one half Cu 3d, has a cross section that is half of the purely Cu 3d
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Figure 15.7: Photoemission spectrum measured at Elettra with 76 eV pho-
tons (small dots), compared to calculated spectra within LDA (dashed line)
or within self-consistent GW (solid line).

states. This fact in addition to the dispersiveness of the state can explain the
fact that it is not present in any experimental measurement. Experiments
do not give the proof that this state does not exist, in contrast with our first
suspicion. The presence of this state in theory should not be held anymore
as a failure of the theoretical approach. This state can indeed be located
here.



Chapter 16

Calculation of neutral
excitations in Cu2O

The comparison of the calculated band structure with the valence state
photoemission data has been done in the previous chapter. However, one
has just few insights into the conduction band structure. The only avail-
able information are results from optical absorption [1, 3], which stated that
transition from the top valence band to the first conduction band is dipole
forbidden and the next one (from top valence band to second conduction
band) is allowed. Optical absorption, reflectivity and also energy-loss spec-
troscopy give thus important insights on the electronic structure of solids.
Unfortunately, these measurements yield data that are not interpretable in
a straightforward way.

In a photoemission spectrum, the position of a peak is as a first step sim-
ply interpreted as the energy of a state. In optical measurements instead,
the peaks are linked not directly to the states, but to transitions between
pairs of states. Moreover, the “straightforward” interpretation as transi-
tions can be prevented by the excitonic effects that may change drastically
the energies and lineshape of the spectra. Therefore ab initio calculations
of the optical or energy-loss spectra are a useful tool for interpretation, that
one also use in order to detect whether the underlying band structure cor-
responds to reality or not. In our case, the comparison with experimental
data may confirm whether the calculated band structure within the cum-
bersome self-consistent GW approach is indeed an improvement over LDA
or standard GW .

In this chapter, I will show the ab initio prediction of the energy-loss
and optical absorption spectra.

16.1 Energy-loss spectra

The present study of energy-loss spectroscopy in Cu2O is to be rather suc-
cinct, since there is no experimental data to compare with. I would just
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Figure 16.1: Energy-loss spectrum of Cu2O for vanishing momentum trans-
fer using energies and wavefunctions coming from the pseudopotential with
semicore or without semicore states, respectively.

like to address the issue of the effect of the semicore states on energy-loss
spectra, which is a debated topic [62, 109].

Figure 16.1 shows the energy-loss spectra of Cu2O using the two pseu-
dopotential schemes described earlier in chapter 12: including or not the
semicore 3s, 3p states of copper in the valence. The spectra are computed
at vanishing momentum transfer q → 0 using 216 slightly shifted k-points,
up to 166 bands, within RPA. The small shift used follows the recipe of ref-
erence [143]: one eighth of the spacing between k-points in some direction.
RPA is known to give in general a rather good evaluation of the energy-loss
spectra (see e.g. reference [62]. The figure shows that there is no impor-
tant effect of the semicore on the spectra in the 0-60 eV energy range. The
position of the peaks does not change at least up to 30 eV.

Two important conclusions can be drawn so far. First the eigenval-
ues and eigenvectors arising from the two pseudopotentials give very sim-
ilar transition energies and matrix elements ρ̃ij (remember that ρ̃ij is the
Fourier transform of φi(r)φ

∗
j(r)). Therefore, the presence of more nodes in

the core region of the wavefunctions corresponding to the pseudopotential
with semicore in valence does not affect the matrix elements. This point
has already been discussed in section 13.3.1 with the comparison with PAW
results. Second, the addition of the semicore states might have contributed
to the screening, hence changed the real part of the dielectric function,
and consequently, the loss function even at energies lower than the semi-
core threshold. This is indeed not the case: the real part of ε remains
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Figure 16.2: Real (upper panel) and imaginary (lower panel) part of the
dielectric function of Cu2O using the pseudopotential with semicore. The
solid curve shows the results when the contribution of the semicore to the
dielectric function is removed by eliminating transitions from these states
and the open circles, when the contribution of the semicore is fully included.

unchanged when the 3s and 3p states of copper are added. This is assessed
by figure 16.2. This means that the slight difference between the two curves
in figure 16.1 is only due to the different pseudowavefunctions.

Of course, the inclusion of the semicore will have effects for sure in the
region where they give contribution to the imaginary part of the dielectric
function, i.e. in the 70 eV region.

16.2 Optical absorption spectra

Optical spectra have been studied in detail during the sixties and the sev-
enties, because of the famous dipole forbidden excitonic series, that arises
from transitions from Γ′

25 to Γ′
1 [1, 105]. This series is still out of reach of

ab initio calculation, because the corresponding spectra has low intensity
and shows very thin structures: one would need an energetic resolution of
0.01 eV (compatible with the binding energy of the excitonic series). On
the contrary, it reasonable to address the issue of calculating the rest of the
optical spectrum between 2 and 8 eV, where experimental data are also nu-
merous [2, 3]. This part of the optical spectrum shows also several excitonic
series.



186 SECTION16.2

0 1 2 3 4 5 6 7 8
ω  (eV)

α
  (

ar
b.

 u
ni

ts
)

Expt.
LDA
GW
GW scf

E
B
, E

BV

A

E
1

C

Figure 16.3: Optical absorption spectra within RPA using different eigen-
values: LDA (dotted line), standard GW (dashed line) and self-consistent
GW of the previous chapter (solid line), compared to the experimental data
of reference [3] (filled circles).

One will concentrate in this section on the calculation of the absorption
coefficient α(ω) (defined in chapter 1), since this is the raw experimental
data. α does therefore not require any additional Kramers-Kronig transform
or assumption on the high frequency region. From the point of view of
calculations, α is easily obtained from the obtained values of Re ε and Im ε.

Let us first show that the inclusion of excitonic effects in mandatory to
calculate realistic absorption coefficient α(ω). Figure 16.3 shows the RPA
spectra using different approximations of the quasiparticle energies. In all
calculations of the present section, a regular 8×8×8 set of slightly shifted k-
points, the 7 upper valence bands and the 4 first conduction bands have been
included in the calculation. The η parameter in the energy denominator
has been set to 0.05 eV. As concluded earlier, all depicted schemes predict
correctly that the first transition is dipole forbidden, and therefore it is not
seen in the linear-response calculation displayed here. But, the LDA or the
standard perturbative GW energies give a largely underestimated optical
threshold compared to experiment. On the contrary, self-consistent GW
evaluates it to 2.2 eV: it is now only slightly underestimated. Within all
these approximations, it is impossible to recognize the experimental peaks
(A, E1, C following the notation of Brahms et al. [3]). This means that
either the quasiparticle energies are wrong, and/or the excitonic effects are
significant and can drastically change the lineshape.
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Figure 16.4: Optical absorption spectra within the usual practical scheme
for the solution of Bethe-Salpeter equation: first consider the RPA approx-
imation using standard GW energies (dashed line), then add the excitonic
effect by means of the static RPA W (calculated with LDA energies) in
the Bethe-Salpeter equation (solid line) and compare to experiment (filled
circles) [3].

As a reference, figure 16.4 shows what would be a solution of the Bethe-
Salpeter equation using the usual ingredients: use of perturbative GW en-
ergies and LDA wavefunctions, use of the LDA static RPA screening WLDA.
One can remark that the lineshape is changed with respect to the RPA
curve using standard GW energies (proof for important excitonic effects),
but the agreement with experiment is still poor.

Finally, figure 16.5 shows the most complete calculations I could perform
using the improved self-consistent GW energies, that gave a realistic optical
threshold. As noted earlier, the corresponding RPA curve (denoted GWscf)
is far from being comparable to experimental data. However, when the
excitonic effects are switched on, via the solution of the Bethe-Salpeter
equation, the correspondance between theoretical and experimental spectra
becomes obvious. If one uses, as it is most often done, the LDA screening,
excitonic peaks are damped: consider, in particular, peaks labeled A and
E1. This is understood by the overestimation of the screening within LDA,
due to the four times too small band gap.

If the screening is reduced by using the self-consistent WGW , that corre-
sponds to a 2 eV band gap, the excitonic peaks have a noticeable sharpness
in A and E1. The agreement with respect to experiment is now striking.
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Figure 16.5: Optical absorption spectra within an “improved” practical
scheme for the solution of Bethe-Salpeter equation: first start from the RPA
approximation using self-consistent GW energies (dotted line), then add the
excitonic effect by means of the W in the Bethe-Salpeter equation. W is
either calculated using LDA energies (dashed line) or using self-consistent
GW energies (solid line). Experiment [3] is displayed with filled circles.

Of course, there are some remaining discrepancies. The EB (and EBV, its
spin-orbit twin) cannot be identified: probably due to the too small number
of k-points in the Γ region. The shape of peak C is not perfect: maybe the
quasiparticle energies is that energy region are not so realiable.

In conclusion, nevertheless, the agreement between the self-consistent
GW plus Bethe-Salpeter equation and experimental data is a strong clue
that the underlying quasiparticle band structure is realistic. Moreover, the
subsequent static screening calculated with self-consistent GW energies pro-
vides the correct shape of the excitonic peaks. Therefore, the corresponding
index of Cu2O should be close to the experimental value. Note that all these
calculations have been performed with the use of LDA wavefunctions. The
self-consistent GW scheme also provides new wavefunctions. Though close
to the LDA wavefunctions, it would have been interesting to evaluate the
impact of the GW wavefunctions on the optical spectra. Unfortunately,
this would have been possible only for the small k-point set 4×4×4, which
yields not converged spectra.
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Figure 16.6: Imaginary part of the dielectric function of Cu2O within
RPA (dashed line) or within Bethe-Salpeter equation (solid line) using
self-consistent GW inputs. The transitions contributing to the excitonic
spectrum between the two vertical lines are displayed at their independent
quasiparticle transition energy (black dots).

16.3 Analysis of the excitonic spectrum

The solution of a Bethe-Salpeter equation using self-consistent GW inputs
has been shown to give a reliable representation of the absorption spectrum
of Cu2O. We can further make use of this to analyse this complex absorption
spectrum. It will be more straightforward to concentrate on the imaginary
part of the dielectric function Im ε, instead of α, in order to carry on the
analysis.

The analysis is dedicated to identify, which independent quasiparticle
transitions contribute to a given excitonic peak. In other words, it allows
one to know which peak from the RPA curve becomes the excitonic peak
under consideration. This representation is convenient, because the code
that solves the Bethe-Salpeter equation [144] is written in the transition
space [35, 38]. All quantities are expanded in the basis of the φv(r)φ

∗
c(r)

matrix elements (as e.g. in equation (6.11)). Therefore, the obtained solu-
tion of the Bethe-Salpeter equation is automatically decomposed in terms
of these transitions. The excitonic effects come from the mixing of the tran-
sitions. Instead, if the mixing is not allowed, one obtains the usual RPA
spectrum.

In figure 16.6, we consider the transitions that give rise to peak E1 using
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Figure 16.7: Imaginary part of the dielectric function of Cu2O within
RPA (dashed line) or within Bethe-Salpeter equation (solid line) using
self-consistent GW inputs. The transitions contributing to the excitonic
spectrum between the two vertical lines are displayed at their independent
quasiparticle transition energy (black dots).

the notations of Brahms et al. [3]. The independent transitions (black dots)
that are mixed to create the peak are located at about 0.12 eV above the
peak, in a region of width 0.10 eV. The nature of the exciton is similar to
the continuum exciton in silicon, with a low binding energy, and transitions
coming from a restricted energy area. The figure shows that the peak in
the RPA curve in the vicinity of the black dots is the one that gives rise
to the E1 excitonic peak. This peak can be qualified as “excitonic”, since
its shape and intensity changed drastically thanks to the excitonic term of
the Bethe-Salpeter equation. Nevertheless, this peak was already present
in the RPA curve.

On the contrary, if one now looks at peak labeled A in figure 16.7, one
states that the transitions giving rise to peak A do not create any peak in
the independent quasiparticle picture. The excitonic effect is drastic here.
It is similar to the case of bound excitons of rare gaz solids, for which a
continuum of independent transitions of low intensity can generate a sharp
peak within the band gap. The binding energy for the excitonic peak is
once more about 0.14 eV and the width of the contributing region is about
0.12 eV. According to calculations, it is not possible indeed to state that
the contributing transitions come from a given region of the Brillouin zone:
many k-points do contribute, and moreover, different bands contribute.
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Figure 16.8: Reflectivity spectrum of Cu2O within RPA using self-consistent
GW inputs. The dashed line uses only 7 valence bands and 4 conduction
bands, whereas the solid line uses 26 valence bands and 22 conduction
bands.

This conclusion contradicts the usual statement of experimentalists [3], who
claims that A peak arises from transition in the vicinity of the M high
symmetry point. Interestingly, the calculation shows that only the two top
valence bands contribute to that peak.

The previous analysis allowed one to established that some peaks in
the imaginary part are due to peaks in the RPA spectrum and that the
excitonic effect sharpened these features (peak E1). Some other peaks are
completely absent in the independent quasiparticle picture and are entirely
created by the excitonic effect (peak A).

Finally, the calculated spectra can be used to predict the outcome of
reflectivity experiments published in literature [2, 3]. Reflectivity spectra
are rather difficult to calculate, since they depend strongly on the real part
of ε and therefore, require much more bands for adequate convergence. Fig-
ure 16.8 illustrates this property: the converged reflectivity curve required
much more bands than the usual number of bands for absorption (7 valence
and 3 conduction bands). The intensity changed drastically, however the
location of the peaks, at least up to 6 eV, is rather meaningful even for
the low-convergence curve. This allows one to compare the results of the
Bethe-Salpeter equation obtained with few bands (for numerical reasons)
with experiment in figure 16.9. If one forgets about overall intensity due to
the small number of bands, the agreement in peak locations is once more
striking. Peaks A, E1, and C are present in the calculated curve and their
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Figure 16.9: Reflectivity spectrum of Cu2O within RPA (dashed line),
within Bethe-Salpeter (solid line) using self-consistent GW inputs. A few
bands have been used 7 valence bands and 4 conduction bands. Experiment
from reference [3] is given with filled dots.

position is accurate by 0.3 eV. This agreement assesses the underlying band
structure obtained from the model self-consistent GW method.



Conclusion

This work has led to various conclusions. Having originally the purpose
to correctly describe the electronic structure of Cu2O, it finally brought
progresses concerning different aspects of underlying theory, of technical
points, and, in general, of the physics of this material. Moreover, in order
to test the developments, I carried out a study of well known textbook
examples: bulk silicon and solid argon.

Technical developments

From the technical point of view, in order to assess and to improve the
existing results, I had to write parts of code, to go beyond the usually
applied approximations. As an outcome, a GW code without plasmon-pole
model for W , a self-consistent Hartree-Fock, COHSEX and GW code are
now available. I also implemented for test purposes a Hartree-Fock code
based on the plane-wave basis set (compared to the self-consistent Hartree-
Fock in a LDA basis, this is of course not efficient!). This part of my work
did not yield immediate breakthroughs in physics, since the algorithms
were inspired from existing works from other groups [82, 83, 90]. But,
the resulting codes were necessary for the study of Cu2O. Moreover, they
made available to our group and to colleagues within the NANOQUANTA
European network pieces of code that, I hope, will be useful in the future
for other applications. Indeed, some of the developments are already in
use by my collaborators. Furthermore, the pieces of code are based on the
GPL package ABINIT [67, 69]. I am thinking about delivering the new
subroutines to the whole community through this medium.

Theoretical developments

From the theoretical point of view, the original, ambitious purpose of this
thesis was to devise a elegant way to include vertex correction beyond the
GW approximation of the self-energy, in order to possibly apply them to
Cu2O. The idea was to link DFT (or TDDFT) to the Green’s function
formulation of the many-body problem, starting from the experience of
the group in Palaiseau [4–6]. This study yielded a new way to approach
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the problem of vertex corrections to the self-energy. Moreover, it led to
unexpected results concerning TDDFT exchange-correlation kernels.

In particular, I derived a Sham-Schlüter inspired equation for the time-
dependent kernel of TDDFT. The derivation allowed me to write a system-
atic expression for the kernel, and to shed light on the link between the ap-
proaches currently used for the derivation of TDDFT kernels: the mapping
technique of Palaiseau’s group [4, 6], the perturbative approach of Rome’s
group [64, 79], the time-dependent OEP framework by Kim and Görling
[77, 78], and the diagrammatic derivation of references [65, 80]. I discussed
in particular the striking example that, if time-dependent exact-exchange
were not linearized in the TD-OEP procedure, it would give exactly the
time-dependent Hartree-Fock result, which is a rough approximation for
optical spectra of solids.

The recipe elaborated in this thesis to include vertex corrections into the
self-energy starts from an opposite point of view. In fact, it uses the insights
given by the theorems of TDDFT in order to make the Hedin’s equations
more tractable in practice. These developments were first thought as an
approximation to the exact scheme: just considering the variations of the
self-energy with respect to the density, instead of the variations with respect
to the full Green’s function. But, it finally ended up with the conclusion
that, provided that the TDDFT theorems are fulfilled, the previous state-
ment is exact. The scheme has been applied to simple materials, but still
neglecting the small (to my opinion) but very cumbersome three-point part
of the vertex corrections. Cancellations of the vertex contributions were
pointed out.

Advances in the comprehension of physics

By means of the self-consistent quasiparticle scheme implemented in this
work, I showed that the GW or COHSEX wavefunctions can differ from
LDA ones more than what had been stated in previous works [70, 145].
Moreover, a small change in the wavefunctions can induce large changes in
the Hartree potential or in the exchange operator acting on a particular
state. However these variations mainly compensate, leading to an overall
small effect for silicon and argon. Nevertheless, they induce a significant
opening of the band gap for cuprous oxide.

This self-consistent GW scheme allowed us to predict theoretically the
electronic structure of Cu2O in reasonable agreement with respect to exper-
imental data. The major improvements are the correction of the band gap,
which was found to be unexpectedly 60 % of the experimental value within
the standard GW approximation, the correction of the first dipole allowed
transition, and an optical absorption spectrum in nice agreement with ex-
periments. Considering the complexity of the Cu2O optical spectrum due
to several excitonic series, the calculated spectrum is strikingly good. This
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last fact proves that the underlying band structure is rather reliable and
that the self-consistently evaluated screened Coulomb interaction W (that
screens the excitons) is also good.

The self-consistent GW approach also allowed to improve the compar-
ison with the newly performed angle-resolved photoemission experiments,
made by myself and my collaborators. The experiments confirmed that the
LDA describes the valence bands relatively well, except for a few features.
In particular, the LDA underestimates the band width of the Cud states.
This property is properly corrected within the self-consistent GW calcula-
tion. Concerning the Γ1v valence state, that is theoretically predicted to be
in between the Op and Cud states, it can not be revealed both in the ex-
isting [126, 146] and in the new experiments, although all LDA, COHSEX,
GW and self-consistent GW calculations found its presence. Actually my
calculations allowed me to show that this state, that is about half Cu 4s
and half Cu 3d, has a low photoemission cross section. For this reason, this
state is expected to be difficult or even impossible to distinguish in the
experimental spectra.

Open issues

Of course, there are open issues raised by the present work, which have no
clear answers yet.

The vertex correction scheme devised here avoids to address the prob-
lem of causality: TDDFT is a causal theory, whereas Green’s function
framework uses time-ordered quantities. Linking both theories may cause
some problems. The problem of causality was already given an answer by
R. vanLeeuwen [57, 95], using the Keldysh contour technique. It should
be verified in the scheme presented here, whether the Keldysh contour is
indeed needed and if yes, how? Nevertheless, the procedure derived in this
thesis is mainly intended for practical use. We do not have so far found
any case, where the causality/time-ordered difference creates problems in
practice, provided that the formulas are evaluated in a consistent way.

One may further wonder how important is the disregarded three-point
part of the vertex function ∆Γ. The evaluation of this function would need
much coding, and will lead for sure to very cumbersome calculations, even
for simple materials. This is out of reach at present. It would have been
also interesting to evaluate the impact of the vertex on the “less studied
features” of the Green’s functions: the satellites, the lifetimes, etc. Work
along these lines is planned.

Concerning the future of the written codes, as I now have a self-consistent
GW code in my toolbox, it is perfectly feasible to calculate the GW total
energy of a bulk material. This will lead to cumbersome calculations even
for simple materials, but within reach of the available computers. The GW
approximation is believed to yield very good total energies [87, 147] in ho-
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mogenous system. Moreover, it is tightly linked to the RPA total energy
[148], that is known to give account for the physically important van der
Waals interactions [149]. The self-consistent GW code uses the model of
reference [90], whose accuracy is not fully assessed yet. This calculation
could be a critical test for the model. It could be an important application
of the code developments I did.

For the electronic structure of Cu2O, one should still try to understand
the details of the experimental photoemission spectra. A way towards that
goal could be to calculate within simple approximations the theoretical
spectra which take into account the final states, instead of assuming a free
electron final state. This will produce spectra that depend on the photon
energy and will give cross sections more accurate than the ones calculated
with the atomic orbitals [141] within Hartree-Fock. This will allow one
to evaluate the momentum of the extracted electron before the interaction
with the photon more precisely than with the assumed free electron final
state. Besides this, a point of the experimental spectra that is not yet fully
understood is their surprisingly broadened peaks. This thesis proposes an
interpretation for that, either disorder at the surface of the sample or strong
electron-lattice coupling. Further calculations or measurements to assess
these possible hypothesis would be welcome.

As one could see, there are still a lot of additional calculations and
developments that could be made starting from the present manuscript. I
would have desired to do them all on my own, before the end of my thesis.
Of course, one should stop somewhere, but it is difficult to write down the
final point of this three year long study. I hope this work will be used as a
basis for future developments, for me or for my collaborators.

Palaiseau, 18th October 2005
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Appendix A

Fourier transforms

This chapter is not intended to be a extended review on Fourier transforms.
It will just provide useful relations for understanding the manuscripts, and
give as by-product, general solid-state results, as the Bloch theorem.

A.1 General definitions

The definition of the Fourier transform of a general function f is

f̃(ω) =

∫
dtf(t)e−iωt (A.1a)

and the reverse Fourier transform is

f(t) =
1

2π

∫
dωf̃(ω)eiωt. (A.1b)

Let us apply this general definition to the peculiar case of periodic func-
tions. Consider a function f of period T . From equation (A.1a),

f̃(ω) =

∫
dtf(t)e−iωt

=
∑
n∈Z

∫ T
2

+nT

−T
2

+nT

dtf(t)e−iωt

=

∫ T
2

−T
2

dtf(t)e−iωt
∑
n∈Z

e−inωT (A.2)

The last line arises from the variable change t′ = t − nT and from the
periodicity of f(t). The last sum is non zero, if and only if ωT is a multiple
of 2π. This defines discrete values

ωn =
2π

T
n, (A.3)
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the so-called reciprocal lattice, were Fourier coefficient are non-vanishing.
The Fourier transform of a periodic function is nothing but a Fourier series:

f̃(ωn) =

∫ T
2

−T
2

dtf(t)e−iωnt (A.4a)

and

f(t) =
1

T

∑
n∈Z

f̃(ωn)eiωnt. (A.4b)

Let us take the limit T → ∞, and recover the standard Fourier transform.
First, it is obvious that expression (A.4a) tends to equation (A.1a). Sec-
ond, when T increases, the distance between ωn vanishes and the sum in
equation (A.4b) tends to the integral (as it is a Riemann sum):

f(t) =
1

T

∫ +∞

−∞

dω

dω/dn
f̃(ω)eiωt. (A.5)

As dω/dn = 2π/T , this derivation yields exactly the original expression for
the reverse Fourier transform in equation (A.1b).

It is straightforwardly extended to three-dimensional periodic functions
with periods a1, a2, a3:

f(r) =
1

Ω

∑
G

f̃(G)eiG.r (A.6a)

and, reversely,

f̃(G) =

∫
Ω

drf(r)e−iG.r, (A.6b)

where Ω designates the unit cell (or its volume), and where G are vectors
of the so-called reciprocal lattice, spanned by b1, b2, b3:

G = n1b1 + n2b2 + n3b3, with {n1, n2, n3} ∈ Z
3. (A.7)

A.2 One-index functions of a crystal,

Born-von Karman conditions, and

Bloch theorem

A crystal has periodic structure, with a unit cell Ω repeated along 3 direc-
tions. Therefore, all observables of a crystal are invariant by application
of the same translations. Nevertheless, wavefunctions are not observable,
and, by consequence, are not periodic functions of a1, a2, a3.

Born-von Karman condition is an assumption on the boundary condition
experienced by functions in a crystal: all functions f(r) are considered as
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periodic in a large volume V = N1N2N3Ω. Ni designates the number of
unit cells contained in the large volume in the i direction. Therefore, the
Fourier transform f̃(K) of any of these functions is a Fourier series, where
K vector are restricted to

K =
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3, with {n1, n2, n3} ∈ Z

3. (A.8)

It is furthermore useful to decompose the vector K as a crystal reciprocal
lattice vector G plus a vector k that belongs to the first Brillouin zone.
Then,

f(r) =
1

V

∑
k,G

f̃(k + G)ei(k+G).r (A.9)

and reversely,

f̃(k + G) =

∫
V

drf(r)e−i(k+G).r. (A.10)

In particular, a wavefunction φ(r) that satisfies Born-Von Karman con-
ditions can be written as a sum of wavefunctions φk(r) with a definite k
momentum:

φ(r) =
∑
k

φk(r), (A.11)

where φk(r) simply reads

φk(r) =
∑
G

φ̃k(G)eiG.reik.r. (A.12)

Since G vectors are reciprocal lattice vectors, the function uk,

uk(r) =
∑
G

ck(G)eiG.r, (A.13)

has the periodicity of the unit cell. The coefficient ck are consistently defined
by

ck(G) =
1

V

∫
V

dr uk(r)e
−iG.r

=
1

Ω

∫
Ω

dr uk(r)e
−iG.r, (A.14)

where the periodicity of function uk has been used to reduce the volume of
the integral to a single unit cell.

As a consequence, the wavefunctions φk(r) are simply the product of a
phase factor eik.r and of a periodic function of the unit cell uk(r). This is
nothing else but the Bloch theorem.

As a by-product, one can notice that the number of k-points Nk allowed
in the first Brillouin zone is given by −Ni/2 < ni ≤ Ni/2 in equation (A.8).
The number of k-points is therefore equal to N1N2N3.
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A.3 Two-index periodic functions of a

crystal

The Fourier transform of a periodic two-index quantity should be expressed
as

f(r1, r2) =
1

V

∑
q1q2

∑
G1,G2

ei(q1+G1).r1 f̃(q1 +G1,q2 +G2)e
−i(q2+G2).r2, (A.15)

where q1 and q2 are restricted to the first Brillouin zone. But, thanks to
the translationaly invariance of the crystal, this can be simplified: let us
show that, indeed, only one q vector is needed. For any vector R of the
direct lattice, the equality

f(r1 + R, r2 + R) = f(r1, r2) (A.16)

holds and its Fourier transform reads∑
q1q2

∑
G1,G2

ei(q1+G1).(r1+R)f̃(q1 + G1,q2 + G2)e
−i(q2+G2).(r2+R)

=
∑
q1q2

∑
G1,G2

ei(q1+G1).r1 f̃(q1 + G1,q2 + G2)e
−i(q2+G2).r2 . (A.17)

By definition of a reciprocal lattice vector, eiG.R is equal to 1. Hence,
equation (A.17) becomes:∑

q1q2

(
ei(q1−q2).R − 1

)
×

∑
G1,G2

ei(q1+G1).r1 f̃(q1 + G1,q2 + G2)e
−i(q2+G2).r2 = 0. (A.18)

Then, for any direct lattice vector R,

ei(q1−q2).R = 1 (A.19)

means that q1−q2 is a reciprocal lattice vector. As q1 and q2 are restricted
to the first Brillouin zone, q1 − q2 = 0.

Finally, the expression of any two-index function of a crystal can be cast
as

f(r1, r2) =
1

V

∑
q

∑
G1,G2

ei(q+G1).r1 f̃G1,G2(q)e−i(q+G2).r2 (A.20a)

with

f̃G1,G2(q) =
1

V

∫
V

dr1dr2 e−i(q+G1).r1f(r1, r2)e
i(q+G2).r2. (A.20b)

This section provides all the tools needed to express the Fourier trans-
form of one-index periodic functions, as the electron density, the Fourier
transform of one-index non-periodic functions, as the mono-electronic wave-
functions, and the Fourier transform of two-index periodic functions, as the
response functions.
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A.4 Fourier transform convention

Throughout the text, we use the following convention for Fourier transform
with respect to time and space:

f̃(k, ω) =

∫
drdt f(r, t)e−i(k.r−ωt) (A.21a)

and the reverse Fourier transform is

f(r, t) =
1

(2π)4

∫
dkdω f̃(k, ω)ei(k.r−ωt). (A.21b)





Appendix B

Functional analysis

Here are some useful definitions of functional analysis (from reference [15]).
Definition of the inverse:∫

d3F (1, 3)F−1(3, 2) =

∫
d3F−1(1, 3)F (3, 2) = δ(1, 2). (B.1)

Derivative of the product:

δ(F (1)G(2))

δH(3)
=

δF (1)

δH(3)
G(2) + F (1)

δG(2)

δH(3)
(B.2)

Derivative of the inverse:

δF (1, 2)

δG(3)
= −

∫
d45F (1, 4)

δF−1(4, 5)

δG(3)
F (5, 2). (B.3)

Chain rule:

δF [G[H ]](1)

δH(2)
=

∫
d3

δF [G](1)

δG(3)

δG[H ](3)

δH(2)
. (B.4)





Appendix C

Link to time-dependent
exact-exchange

This appendix provides the detail of the calculation mentioned in chap-
ter 9, where the derived equations are claimed to yield precisely the same
expression as the exact-exchange kernel of Kim and Görling [77].

Introducing all indexes in equation (9.20) gives

∫
d24χKS(1, 2)f (1)

xc (2, 4)χKS(4, 6) =

= −iGKS(1, 6)

∫
d35GKS(6, 5)(Σx(5, 3) − vxc(5)δ(5, 3))GKS(5, 1)

− iGKS(6, 1)

∫
d24GKS(1, 2)(Σx(2, 4) − vxc(4)δ(2, 4))GKS(4, 6) (C.1)

and in equation (9.22)

∫
d24χKS(1, 2)f (2)

xc (2, 4)χKS(4, 6) =

=

∫
d23GKS(1, 2)GKS(3, 1)v(2, 3)GKS(2, 6)GKS(6, 3). (C.2)

For simplification, let us name T a
1 the first term of χKSf

(1)
xc χKS, T b

1 the

second one, and T2 = χKSf
(2)
xc χKS.

By introducing the expression of GKS

GKS(r1, r2, ω) =
∑

i

φi(r1)φ
∗
i (r2)

ω − εi − i sign(µ − εi)η
, (C.3)

where φi and εi are the Kohn-Sham wavefunctions and energies for index i
(that contains also the k-point information), into the definition T a

1 , T b
1 and

T2 will finally give the different parts of the TDEXX.
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C.1 Calculation of T2

Let us first deal with T2 that reads after Fourier transform into frequency
domain

T2(r1, r6, ω) =
1

(2π)2

∑
ijkl

φi(r1)φ
∗
j(r1)

∫
dω1

1

(ω + ω1 − εi)(ω1 − εj)

× 〈ik|v|jl〉φ∗
k(r6)φl(r6)

∫
dω2

1

(ω + ω2 − εk)(ω2 − εl)
, (C.4)

as the products in time space have become convolutions of frequencies. The
Coulomb integral

〈ik|v|jl〉 =

∫
dr2dr3φ

∗
i (r2)φk(r2)

1

|r1 − r2|φj(r3)φ
∗
l (r3) (C.5)

has been introduced. The ±η factors in the denominators are still here, but
not written, since they are unchanged with respect to the definition of GKS.

Now the frequency integrals are performed thanks to the residue theorem
on a path, either closed in the upper plane, or closed in the lower plane.
Contributions with all poles in the same half-plane are null, as used in the
derivation of χ0 in chapter 5. Finally,∫

dω1
1

(ω + ω1 − εi)(ω1 − εj)
= 2πi

fj − fi

ω − (εi − εj) + iη sign(fj − fi)
(C.6)

and hence

T2(r1, r6, ω) = −
∑
ijkl

(fj − fi)
φi(r1)φ

∗
j(r1)

ω − (εi − εj) + iη sign(fj − fi)

× 〈ik|v|jl〉(fl − fk)
φ∗

k(r6)φl(r6)

ω − (εk − εl) + iη sign(fl − fk)
. (C.7)

This expression for T2 is similar to the H1
X and H2

X terms of reference [77],
except that the small iη factors for antiresonant terms are opposite. In
fact, the present derivation gives time-ordered quantities, and the Kim and
Görling one ends with causal quantities. This difference is not felt the
imaginary part at positive frequencies.

C.2 Calculation of Ta
1 and T b

1

Let us now turn to T a
1 contribution to the TDDFT kernel. Σx is a static

approximation for the self-energy, hence in the frequency space, T a
1 reads

T a
1 (r1, r6, ω) = − i

2π

∑
ijk

∫
dω1

φi(r1)φ
∗
i (r6)

ω + ω1 − εi

× φj(r6)

ω1 − εj
〈j|Σx − vxc|k〉 φ∗

k(r1)

ω1 − εk
, (C.8)
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where the ±iη factors in the denominators were omitted for conciseness.
Performing the integration on ω1 thanks to residue theorem gives a

vanishing contribution if the i, j, k states are all occupied or all empty. If
i and j are occupied and k is empty, let us close the path of integration
in the lower half plane. The obtained poles are the εk − iη and yield the
residues:

−2πi
θ(µ − εi)θ(µ − εj)θ(εk − µ)

(ω − (εi − εk) − 2iη)(εk − εj)
. (C.9)

If i and k are occupied and j is empty, closing the path analogously in the
lower half plane retains the poles εj − iη and gives the residues:

−2πi
θ(µ − εi)θ(εj − µ)θ(µ − εk)

(ω − (εi − εj) − 2iη)(εj − εk)
. (C.10)

If j et k are occupied and i is empty, this gives poles on εi − ω − iη and
residues:

2πi
θ(µ − εi)θ(εj − µ)θ(εk − µ)

(ω − (εi − εj) − 2iη)(ω − (εi − εk) − 2iη)
. (C.11)

Now, there is 3 other terms for 2 empty states and 1 occupied. The path
of integration will be closed in the upper half plane, in order to retain only
the poles from occupied states. T a

1 finally gives rise to 6 terms. T b
1 will

account for 6 analogous terms. The sum of T a
1 and T b

1 if written extensively
is exactly the terms H3

X + H4
X of Kim and Görling, except once more that

the small iη factors are changed for antiresonant transitions.
This appendix showed that the first-order kernel, plus linearization of

the Green’s function G into GKS applied on the Fock self-energy gives pre-
cisely the time-dependent exact-exchange kernel of reference [77].
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