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Sujet de la thèse :
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Contents

Introduction 5

I BEC, double wells and magnetic microtraps

Introduction 11

1 Bose-Einstein condensation 13
1.1 The non interacting Bose gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 The interacting Bose gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Bose-Einstein condensates in elongated traps . . . . . . . . . . . . . . . . . . . . 20
1.4 Interference of two Bose-Einstein condensates . . . . . . . . . . . . . . . . . . . . 27

2 Double well physics 31
2.1 The static double well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 The dynamic double well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Magnetic micro traps 43
3.1 Magnetic trapping of neutral atoms . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 The Ioffe-Pritchard trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Wire traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Surface effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Random magnetic potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

II A double well created by nanofabricated wires

Introduction 67

4 Static magnetic double well potentials 69
4.1 Realizing the two modes model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 A 1D double well based on magnetic micro traps . . . . . . . . . . . . . . . . . . 73
4.3 Stability of the double well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Experimental setup 79
5.1 A single layer atom chip for Bose-Einstein condensation . . . . . . . . . . . . . . 79
5.2 A double layer atom chip for realizing a magnetic double well . . . . . . . . . . . 84
5.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Experimental results 101



6.1 Bose-Einstein condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Study of random magnetic potentials . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 Experiments in a magnetic double well . . . . . . . . . . . . . . . . . . . . . . . . 108

III A double well realized by adiabatic dressed potentials

Introduction 113

7 Adiabatic dressed double well potentials 115
7.1 Atoms in rapidly oscillating magnetic fields . . . . . . . . . . . . . . . . . . . . . 115
7.2 Realizing a double well geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3 Stability of the double well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Experimental setup 131
8.1 A hybrid macroscopic-microscopic atom chip . . . . . . . . . . . . . . . . . . . . 131
8.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9 Experimental results 141
9.1 Bose-Einstein condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.2 Dynamic splitting of a BEC in an RF induced double well potential . . . . . . . 144
9.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Annex: publications
Observations of density fluctuations in an elongated Bose gas: ideal gas and quasi

condensate regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Realizing a stable magnetic double-well potential on an atom chip . . . . . . . . . . . 163
Atom chips in the real world: the effects of wire corrugation . . . . . . . . . . . . . . . 163
The role of wire imperfections in micro magnetic traps for atoms . . . . . . . . . . . . 163
Matter wave interferometry in a double well on an atom chip . . . . . . . . . . . . . . 163
Bose-Einstein condensation in a simple microtrap . . . . . . . . . . . . . . . . . . . . . 163
A Bose-Einstein condensate in a microtrap . . . . . . . . . . . . . . . . . . . . . . . . 163

References 165



Introduction

T
his year, the world’s scientific community is celebrating the ”Year of Albert Einstein”,
referring to the centennial of three of his most famous publications in 1905; his work on
special relativity [1], about the Brownian motion [2] and on quantum theory [3]. Since

then, quantum phenomena have become experimentally accessible in almost any physical system.
Fundamental questions like the interpretation problem [4], the question of decoherence and the
measurement process can now be addressed experimentally and are still the driving force behind
research carried out today. Furthermore, quantum effects have become the building blocks
for applied sciences and technology, most prominent examples being the laser as a coherent
photon source, along with many many effect in solid state systems, which build the basis for
our microelectronics. The enormous success of the laser and coherent optics in general has
stimulated research towards similar applications in other well controlled quantum systems. In
close ”Anlehnung” to coherent optics with photons, the field of atom optics has developed. At
its heart, based on Einsteins work of 1924/25 [5, 6, 7], the Bose-Einstein condensate (BEC) as
coherent matter wave source .

The specific properties of neutral atoms make them a promising candidate for manipulation
on the quantum level. Their weak coupling to the (uncontrolled) environment on the one hand
allows for long lifetimes of the quantum state and therefore the storage and manipulation of
information in external or internal atomic states. On the other hand, a rich toolbox for atom
manipulation has been developed, ranging from laser cooling, over various sorts of conservative
atom traps to evaporative cooling. The combination of these methods has enabled Bose-Einstein
condensation in 1995. Different to photons, the inter atomic interaction plays an important role
in the properties of the quantum state and can be manipulated at will by the use of Feshbach
resonances. This high degree of control has enabled the use of atoms as a test scenario for other
quantum systems, such as solid states or quantum liquids. The still growing field of cold atom
research addresses ...QIPC und IFM.

In contrast to photons, atoms do carry significant mass, making the quantum system ex-
tremely sensitive to gravity, accelerations and rotations. Interferometers based external (mo-
tional) atomic states therefore....

Controlling external atomic quantum states and transporting atomic wave packets presents
a major scientific challenge, as the system has to be manipulated on its intrinsic length scale,
which is often below microns. Two approaches have demonstrated to provide sufficiently precise
control on this level:

Optical potential based on the DC or AC Starck effect are able to create potential variations
on the scale of their wavelength, either using focussed laser beams or optical interference patterns,
making direct use of the coherent nature of the photon source. (geniale Experimente, schwer zu
kontrollieren, adressability, die beiden, die schon geklappt haben.)

Magnetic micro potentials created by current carrying, microfabricated wires on atom chips
allow for potential variations on the scale of their structure size. Sub-micron fabrication-...
(Fussnote, das hier was neues kommt!)

This thesis was carried out as a joined project (”cotutelle de thèse”) at the Institut d’Optique



in Orsay and the Physikalisches Institut in Heidelberg. Thanks to the direction of my two
supervisors, C. Westbrook and J. Schmiedmayer, I had the opportunity to work on the two
probably most promising approaches towards the experimental implementation of a quantum
beam splitter on an atom chip.

When I started my thesis on October 2002, the first generation of chip experiments in
Orsay was almost built up. From an existing surface magneto optical trap (MOT) a magnetic
trap provided by a current carrying chip wire was loaded and Bose-Einstein condensation was
achieved in May 2003. As almost any other group working with atom chips, we encountered the
phenomenon of fragmentation; a cold atom cloud or BEC breaking up into lumps when brought
close to the trapping structure. A careful study of the underlying magnetic trapping potential
could explain this effect by current deviations in the chip wire due to fabrication defects. In order
to create a stable magnetic double well to realize tunnelling and splitting of Bose condensates,
the experimental setup was modified considerably in the beginning of 2004. The vacuum system
was rebuild to fit into a multi layer magnetic field shielding. A new generation of atom chips was
designed, employing a hybrid ”sandwich” technology and including different methods of micro
fabrication (optical lithographie followed by electroplating and direct electron beam lithographie
followed by lift off). This chip carries large pattern submicron structures, involves patterned
silicon etching, mechanical polishing and intra chip bonding. It’s design, fabrication, loading
with Bose condensed atoms and preliminary experiments constitute the main part of my thesis
work in Orsay and will be described in the second part of this manuscript.

The experiments carried out in Heidelberg were performed with a conceptually similar setup,
which was fully operational the time I joined the group. Only few electronic components had
to be added and minor changes to the optical system were made to allow for imaging along the
desired direction. Due to the simplicity of the beamsplitter concept used here, experimental
results as coherent splitting of a BEC on an atom chip could be obtained in only 7 month time.
Working out this concept, it’s implementation and first experiments with split condensates
constitute the main part of my thesis work in Heidelberg and will be described in the third part
of this manuscript.

I. first list item Corresponding text.

II. Second list item Corresponding second text.

And a few nice words to close.
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Chapter 1

Bose-Einstein condensation

This chapter briefly reviews the theory of Bose-Einstein condensation in dilute gasses. Starting
with the non-interacting Bose-gas, we describe the quantum phase transition and identify its
critical temperature Tc in the hydrodynamic limit and in a realistic finite size system. Atom-
atom interactions are taken into account by introducing a mean field approach, leading to the
well known Gross-Pittaevskii equation. We apply the Thomas-Fermi approximation, which well
describes the condensate wave function in an isotropic 3D system.

Magnetic micro traps formed on atom chips, as will be discussed in this manuscript, give
rise to very elongated trapping geometries, where the Thomas-Fermi description fails in the
transverse directions (Thomas-Fermi 1D regime). We describe the effect of trap anisotropy on
the character of the BEC phase transition and the shape of the spatial wave function. Longitu-
dinal phase fluctuations giving rise to a reduced coherence length, shorter than the condensate
extension, are briefly resumed.

Considering two spatially separated Bose-Einstein condensates as sources of uniform phase,
we describe interference phenomena that arise when the condensates are released from their traps
and overlap. It is pointed out, that the observation of matter wave interference is not sufficient
to unambiguously identify (phase) coherence between the sources, as even pure number states
give rise to interference effects. We briefly resume the process of phase diffusion, which describes
the loss of phase information in a coherent state due to number fluctuations, directly based on
the uncertainty principle.

To demonstrate, that magnetic microchip traps are well suited to address fundamental topics
discussed in this chapter, some points are illustrated with (preliminary) images of ongoing work,
performed on the Orsay or the Heidelberg experiment, which will not be discussed in detail in
this manuscript.

1.1 The non interacting Bose gas

We consider neutral atoms trapped in an external 3D harmonic potential:

Vtrap =
m

2
(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)

(1.1)

where m is the atomic mass and ωi the trap oscillation frequencies in the three spacial directions
i = {x, y, z}. Assuming an ideal (non interacting) gas, the many-particle Hamiltonian can be
written as the sum of single-particle Hamiltonians with the well known eigenenergies:

εnx,ny ,nz =
∑

i=x,y,z

(
ni +

1
2

)
~ωi, (1.2)
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with {nx, ny, nz} non negative integers. The N particle ground state of non interacting bosons in
a harmonic potential is the product state φ0(r1, ..., rN ) = Πiφ0(ri) of the single particle ground
states

φ0(r) =
(mωho

π~

)3/4
exp

−m
2~

 ∑
i=x,y,z

ωii
2

 , (1.3)

where ωho = (ωxωyωz)1/3 is the geometrical mean of the harmonic trap oscillation frequencies.
The atomic density distribution is n(r) = N |φ0(r)|2, the spacial extension of the ground state
wave function is independent of N and derives from the width of the gaussian distribution (1.3):

aho =

√
~

mωho
. (1.4)

The size of the ground state wave function aho fixes an important length scale of the system;
it is usually of the order of aho ≈ 0, 1 − 1µm. At finite temperature, only a certain fraction
of the atoms populate the ground state, the others being thermally distributed among exited
states. The size of the thermal cloud is usually much larger than aho. Assuming a harmonic
trapping potential like (1.1) and a classical Boltzmann distribution, we obtain a gaussian width
of Rtherm = aho(kBT/~ωho)1/2 for the thermal cloud, which largely exceeds the ground state
size, as kBT � ~ωho. Therefore the onset of Bose-Einstein condensation can be identified by a
build up of a sharp peak in the central region of the density distribution [8,9].

For strongly anisotropic (e.g. cigar shaped) traps, like wire traps, a description in cylindrical
coordinates is convenient. We define an axial coordinate z and a radial coordinate ρ =

√
x2 + y2

with corresponding trap frequencies ω‖ = ωz and ω⊥ = ωx = ωy. The ratio < = ω⊥/ω‖ describes
the anisotropy of the trap. We can rewrite (1.3):

φ0(r) =
<1/4

π3/4a
3/2
⊥

exp
(
− 1

2a⊥
(ρ2 + <z2)

)
(1.5)

with a⊥ =
√

~/(mω⊥). An anisotropic trap provides another characteristic signature of Bose-
Einstein condensation based on the momentum distribution: The Fourier transform of wave
function (1.5) gives φ̃0(p) ∝ exp[−a⊥(p2

⊥+<−1p2
z)/2~2]. From this one can calculate the average

axial and radial width. Their ratio √
〈p2

z〉/〈p2
⊥〉 =

√
< (1.6)

is fixed by the asymmetry < of the trap. Thus the shape of an expanding BEC reflects the trap
anisotropy whereas a thermal component will expand isotropically [8,10,11]. For a quantitative
analysis of the shape of an expanding condensate, the effect of interactions has to be taken into
account [12,13,14].

1.1.1 Critical temperature and condensate fraction

In the grand-canonical ensemble, the total number of particles for a given temperature T is

N =
∑

nx,ny ,nz

1
eβ(εnx,ny,nz−µ) − 1

, (1.7)

where β = 1/(kBT ), kB being the Boltzmann constant and µ the chemical potential. The
corresponding total energy is

E =
∑

nx,ny ,nz

εnx,ny ,nz

eβ(εnx,ny,nz−µ) − 1
. (1.8)
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Below a certain temperature Tc, the population of the lowest state becomes important, corre-
sponding to the onset of Bose-Einstein condensation. In the following, we will therefore consider
N0, the number of atoms in the lowest energy Eigenstate ε000. When the chemical potential
approaches the ground state energy

µ→ µc =
3
2

~ω̄, (1.9)

with ω̄ = (ωx + ωy + ωz)/3 the arithmetic mean trapping frequency, this number N0 becomes
macroscopic (on the order of N). For large total number of atoms N , the energy difference of
neighboring energy eigenstates vanishes and we can replace the sum in equation (1.7):

N −N0 =
∫ ∞

0

dnxdnydnz

eβ~(ωxnx+ωyny+ωznz) − 1
, (1.10)

or, equivalently, integrate over the density of states ρ(ε):

N −N0 =
∫ ∞

0

ρ(ε)dε
eβρ − 1

. (1.11)

This integration gives

N −N0 = ζ(3)
(
kBT

~ωho

)3

(1.12)

with ζ(x) the Riemann Zeta function. By imposing N0 → 0 we can find the critical temperature
for Bose-Einstein condensation:

Tc =
~ωho

kB

(
N

ζ(3)

)1/3

= 0, 94
~ωho

kB
N1/3. (1.13)

For this kind of system, the adequate thermodynamic limit is N → ∞, ωho → 0 with Nω3
ho

constant, well defining the above critical temperature. With equation (1.10) and T < Tc we
obtain the condensate fraction in the thermodynamic limit:

N0

N
= 1−

(
T

Tc

)3

. (1.14)

The system can be cooled, remaining in the normal gaseous phase, down to a temperature Tc

which satisfies the condition n(0)λ3
dB = ζ(3/2) ≈ 2, 61. Here λdB = [2π~2/(mkBT )]1/2 is the

deBroglie wavelength and n(0) the density at the trap center.

Critical temperature shift due to finite size effects

The thermodynamic limit N →∞, ωho → 0 with constant Nω3
ho, which was used to obtain ex-

pression (1.13) becomes incorrect for Bose condensates with small number of atoms (104− 105),
as they are typical for atom chip experiments. For small atom numbers, no abrupt thermody-
namical phase transition occurs. Still, the transition takes place on a very narrow temperature
region and the term of a (now slightly shifted) critical temperature still is meaningful. The shift
in Tc following [15,16,17,18] is:

δTc

Tc
= − ω̄ζ(2)

2ωho(ζ(3))2/3
N−1/3 ≈ −0, 73

ω̄

ωho
N−1/3. (1.15)

In anisotropic traps, the ratio of arithmetic to geometric mean ω̄/ωho = (<+ 2)/(3<1/3) can be
large. Figure (1.1) compares the number of condensed atoms in the thermodynamical limit to
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0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

T/T
c,therm.lim.

N
0/N

Figure 1.1: Condensate fraction N0/N for T < Tc in the thermodynamic limit (solid line) and
taking into account finite size effects (dotted line) and interactions (dash dotted line) for typical
experimental parameters (104 atoms in an anisotropic trap of < = 100).

a calculation for typical experimental parameters with 104 atoms in a highly anisotropic cigar
shaped trap (< = 100).

So far, the properties of an ideal gas in three dimensional (though anisotropic) traps have been
discussed. Fundamentally different behavior can be observed for systems in reduced dimensions
(1D, 2D), when kBT is smaller than the oscillator energies ~ωx,y,z in one or two directions. Due
to their intrinsic elongated shape, chip traps are well suited to study 1D systems. In 1D, Bose-
Einstein condensation does not occur in an ideal gas due to the logarithmic divergence of the
integral (1.11); the critical temperature tends to zero in the thermodynamic limit. Nevertheless,
one can obtain a large occupation of the lowest single particle state at finite particle number
and finite temperature T1D [17]:

kBT1D = ~ω1D
N

ln(2N)
, (1.16)

with ω1D ≡ ω‖. For well chosen trap parameters, a two-step condensation at two distinct
temperatures T1D < T3D is predicted. In a first step, the radial degrees of freedom freeze out at
T < T3D and in a second step at T < T1D also the axial ground state becomes macroscopically
populated (see also section 1.3.1).

The above discussion describes the properties of an ideal Bose gas. Two particle interactions
will strongly modify the nature of phase transitions in reduced dimensions [19] as will be discussed
in section 1.3.
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1.2 The interacting Bose gas

Bose condensed atoms do accumulate in the ground state of the trapping potential, so that the
local density would increase to infinity, when adding more and more atoms. For interacting
atoms, a repulsive interaction will limit the density in the trap center, whereas an attractive
interaction will lead to a collapse of the condensate once exceeding a critical particle number [20].

The Hamiltonian for interacting particles in an external trapping potential Vtrap in second
quantization is

Ĥ =
∫
dr Ψ̂†(r)

(
− ~2

2m
∇2 + Vtrap

)
Ψ̂(r)

+
1
2

∫
dr dr′ Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂†(r′)Ψ̂†(r).

(1.17)

Here, Ψ̂(r) and Ψ̂†(r) are the bosonic creation and annihilation operators and V (r − r′) is the
interaction potential for two atoms located at positions r and r′.

1.2.1 The Gross-Pittaevskii equation

In 1947, Bogoliubov formed the basis of a mean field theory for dilute gasses by decomposing
the field operator Ψ̂ to a complex wave function Φ(r, t) describing the condensate wave function
and the so called depletion Ψ̂′, describing the non condensed fraction [21]:

Ψ̂(r, t) = Φ(r, t) + Ψ̂′(r, t). (1.18)

Assuming a macroscopic population of the ground state, Φ(r, t) is now a complex number and
the condensate density distribution is given by n0(r, t) = |Φ(r, t)|2. Combining the ansatz (1.18)
and the Hamiltonian (1.17) and using the Heisenberg equation, we obtain

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂, Ĥ

]
=
[
−~2∇2

2m
+ Vtrap(r)

+
∫
dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂†(r′, t)

]
Ψ̂(r, t)

(1.19)

In first approximation, we will set Φ for Ψ̂. This is is justified since in Bose-Einstein condensates,
the condensate fraction can easily be above 90 % (in contrast to ≈ 10 % in 4He superfluid).

For ultracold atoms, scattering only occurs in the symmetric s-wave channel. Therefore,
the atomic interaction can be described by a contact interaction with a delta function pseudo
potential gδ3(r− r′) where g is a coupling constant, derived from the s-wave scattering length a:

g =
4π~2a

m
. (1.20)

Together with (1.19) we obtain the Gross-Pittaevskii equation for the condensate wave function:

i~
∂

∂t
Φ(r, t) =

(
−~2∇2

2m
+ Vtrap(r) + g|Φ(r, t)|2

)
Φ(r, t). (1.21)

which is valid, once the s-wave scattering length is much smaller then the inter particle sepa-
ration. To obtain the ground state of this approximation, we write Φ(r, t) = φ(r) exp(−iµt/~),
φ being real and normalized to the total particle number

∫
φ2dr = N0 = N . By this the

Gross-Pittaevskii equation (1.21) becomes(
−~2∇2

2m
+ Vtrap(r) + g|Φ(r, t)|2

)
φ(r) = µφ(r), (1.22)
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a Schrödinger equation with a nonlinear interaction term, which is proportional to the local
density n(r) = |φ2(r)|. In the absence of interactions (g = 0), (1.22) reduces to the usual
Schrödinger equation for a single particle.

1.2.2 The Thomas-Fermi approximation

As mentioned above, the Gross-Pittaevskii equation (1.22) can be applied, when the mean
density n is much smaller than the number of atoms in a cube of volume a3 (scattering length),
or the so called gas parameter a3n� 1, which is clearly the case for all experimental conditions
considered in this manuscript. Such a system is called dilute or weakly interacting, a term which
has to be used with precaution: scaling equation (1.22) to natural units (lengths measured in
aho, densities in a−3

ho and energies in ~ωho), we obtain(
−∇̃2︸︷︷︸
Ekin

+r̃2 + 8π
Na

aho
φ̃2(r̃)︸ ︷︷ ︸

Eint

)
φ̃(r̃) = 2µ̃φ̃(r̃). (1.23)

Written in this way, it becomes clear, that the atomic interactions and the kinetic energy scale
as

Eint

Ekin
∝
Na

aho
. (1.24)

In our experiments, this ratio varies between 50 and 5000, showing that we are in a dilute
system, but in most cases, interactions determine the wave function properties. The term weakly
interacting has historical significance, as it compares gaseous systems to quantum liquids like
4He, which are referred to as strongly interacting.

As the interaction energy dominates over the kinetic energy in many configurations, one can
simply neglect the (first) kinetic term in equation (1.22) and this way obtain the Thomas-Fermi
approximation for φ(r):

n(r) = |φ2(r)| = µ− Vtrap(r)
g

(1.25)

for µ > Vtrap(r) and n = 0 elsewhere. For a harmonic trap, this approximation gives a density
distribution of the shape of an inverted parabola with a maximal density

n(0) =
µ

g
(1.26)

at the center of the trap. The size of the condensate is described by the Thomas-Fermi radii:

R⊥ =

√
2µ
mω2

⊥
(1.27)

R‖ =

√
2µ
mω2

‖
. (1.28)

For rather isotropic traps, one can use a single Thomas-Fermi radius R, based on the geometric
mean ωho of the trap frequencies. Together with the normalization of the wave function to
density, we can calculate the chemical potential to

µ =
~ωho

2

(
15Na
aho

)2/5

. (1.29)

Inserting expression (1.29) into the expression for the Thomas-Fermi radius (1.28), we obtain

R = aho(15N)1/5

(
a

aho

)1/5

� aho, (1.30)
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which means, as (a/aho) � N−1, that interactions increase the size of the condensate compared
to the non interacting case, where the condensate extension is ≈ aho (see equation (1.3)). The
Thomas-Fermi approximation is valid, when ~ωx,y,z � ng. In strongly anisotropic (cigar shaped)
traps, this may well be the case in the longitudinal direction, whereas in the transverse direction,
the confinement may be so strong, that the kinetic energy term may not be neglected. In this
scenario, no simple solution for the Gross-Pittaevskii equation can be found, the condensate
shape may deviate significantly from the parabolic shape as discussed in section 1.3.2.

Critical temperature shift due to interactions

As described by equation (1.26), in an interacting Bose gas, repulsive interactions decrease the
density n(0) at the trap center (see also figure (1.4)). As Bose condensations universally takes
place at fixed phase space density n(0)λdB ' 2, 61, this effect has an influence on the critical
temperature [22]:

δTc

Tc
= −1, 3

a

aho
N1/6. (1.31)

Unlike the shift in Tc due to finite size (1.15), the effect of interactions does not depend on the
shape of the trap as long as it stays three dimensional. Figure (1.1) illustrates the effect of
interactions on the critical temperature for typical experimental conditions.
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Figure 1.2: Phase transition regimes for an ideal Bose gas. For high atom numbers and isotropic
traps, the usual phase transition to BEC takes place in 3D (lower right region). For more
elongated systems, condensation occurs first at T3D in the two transverse direction and at a
lower T1D in the longitudinal direction (two-step-condensation, central region). For extremely
anisotropic traps end very low atom number, the transverse degrees of freedom freeze out even
for a thermal sample, before any Bose condensation takes place (upper left region).

1.3 Bose-Einstein condensates in elongated traps

As mentioned in (1.5) and (1.6), most realizations of Bose-Einstein condensates in magnetic
traps posses an axial symmetry, giving rise to an elongated, cigar shape of the cloud. The
strength of the anisotropy is expressed in the aspect ratio of the trap < = ω⊥/ω‖. In magnetic
traps formed by current carrying wires, this aspect ratio can easily reach values above 100,
fundamentally altering the physical properties and energy scales of the system in the longitudinal
and the transverse directions [23]. The above introduced Thomas-Fermi approximation may
not be applicable to all three spatial directions, the shape of the wave function gets modified
compared to an isotropic 3D system [24]. Elementary excitations of the system may become of
1D character, giving rise to a non-uniform phase in the longitudinal direction of the condensate,
reducing its coherence length to below the extension of the cloud [25,26,27,28].

Knowledge about the shape of the condensate wave function (e.g. an overlap with a neigh-
boring wave function in a double well) as well as the coherence properties of the condensate
are fundamental for the realization of tunnel coupling or interferometry in double wells and will
therefore be discussed in the following sections.

1.3.1 Bose-Einstein condensation in 1D

Identifying the 1D regime

Cold atomic samples or Bose condensates in very elongated geometries are often referred to as
being in the 1D regime. To avoid ambiguity, we clarify the criteria for an ideal and an interacting
gas:

The ideal gas in 1D An ideal gas is considered to be in the 1D regime, once its transverse
degrees of freedom are frozen out, but not the longitudinal motion of the particles: kBT �
~ω⊥ and kBT � ~ω‖. The particles are in the transverse (single particle) ground state,
but populate many longitudinal modes. This regime could be named thermodynamic 1D
regime.
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The interacting gas in 1D The same criterion can be applied to a thermal gas of interacting
particles. For a Bose condensate, not the temperature T predominantly defines the energy
of the system, but the chemical potential µ. Consequently, the criterium for a condensate
to be in the 1D regime is µ � ~ω⊥. The degrees of freedom in the transverse and in
the longitudinal direction are decoupled in the 1D regime. The transverse shape deviates
significantly from the 3D Thomas-Fermi profile (see section 1.3.2), whereas the longitudinal
shape is hardly modified. Therefore, this regime is referred to as the Thomas-Fermi 1D
regime or the 1D mean field regime.

A formal criterion to identify the dimensionality of an interacting system has been introduced
by Menotti and Stringari in [29]. It is based in the parameter χ = N<a/a⊥, where N is the
atom number, a the s-wave scattering length, a⊥ the size of the transverse single particle ground
state and < the aspect ratio of the trap. For χ � 1, the condensate is well described by a 3D
theory, for χ� 1 it is in the 1D regime.

Most experiments presented in this manuscript are at the 1D-3D crossover, where the chem-
ical potential µ is comparable to the transverse ground state energy ~ω⊥ (1-3 kHz·h), and χ ≈ 1.

The phase transition of an ideal gas in 1D

As discussed in section 1.1.1, Bose-Einstein condensation of a non-interacting gas does not
occur in an ideal 1D trapping geometry. It has been shown by [17], that a macroscopic oc-
cupation of the ground state, which in many respects resembles the BEC phase transition, is
nevertheless possible due to the finite size of the trap. As seen in (1.16), the critical tem-
perature T1D for this phenomenon gets shifted to lower values compared to the 3D system:
kBT3D > kBT1D ' N~ω‖/ ln(2N) (see also figure (1.1)). As the degrees of freedom of a 1D
condensate are decoupled, a 2-step-condensation is predicted: in a first step, at T < T3D, the
transverse degrees of freedom freeze out, where in a second step at T < T1D also the longitudinal
ground state gets macroscopically populated. This happens preferably at high aspect ratios <
and low atom numbers, as can be seen in figure (1.2). Two-step-condensation has been observed
very recently in our experiments in Orsay (see figure (1.3)) and is currently under investigation.

The phase transition of an interacting gas in 1D

For the interacting 1D Bose gas, the critical temperature Tc gets shifted according to (1.31).
At this temperature, density fluctuations are suppressed, whereas the longitudinal phase still
fluctuates, until a homogeneous phase establishes at an even lower temperature Tφ. This effect
is described in more detail in section 1.3.3.

1.3.2 The shape of the condensate wave function

We will now concentrate on the transverse shape of the condensate wave function in a very elon-
gated trap. We assume the longitudinal and the transverse degrees of freedom to be decoupled
and restrict the analysis to the 2D transverse plane [30]. The condensate wave function can be
determined by minimizing the energy functional

E = 〈ψ|
3∑

i=1

Hi|ψ〉+
g

2

∫
|ψ|4d3r, (1.32)
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where ψ is the condensate wave function, normalized to
∫
|ψ|2d3r = N , N being the total

number of (condensed) atoms and

Hi = − ~2

2m
∂2

∂x2
i

+
1
2
mω2

i x
2
i , (1.33)

where i denotes the spatial coordinates {x, y, z}.
Neglecting the (second) term in equation (1.32), describing the interactions, leads to the

(single particle) ideal gas solution (1.3), which is of gaussian shape. Neglecting the (first) therm
in equation (1.32), describing the kinetic energy, leads to the Thomas-Fermi approximation (see
section 1.2.2) and to a parabola shaped wave function. At the 1D-3D crossover (µ ≈ ~ω⊥), both
terms contribute comparably to the total energy of the system, giving rise to an intermediate
behavior of the wave function concerning size and shape. The exact shape of the wave function
(within the limitations of the mean field approach) can only be found by a numerical integration
of the Gross-Pittaevskii equation.

The Zubarev-Kim Hamiltonian

An analytical approach to this problem has been proposed by Zubarev and Kim [24]: they
introduce the vector γ = γi, i = {x, y, z} with 0 ≤ γi < 1 in order to adjust the contributions
of interaction and kinetic term “by hand”. The modified Hamiltonian is

H̃i =
~ωi

2
√
γi +

1
2
mω2

i (1− γi)x2
i . (1.34)

This Hamiltonian systematically underestimates the total energy of the system:

Hi − H̃i = − ~2

2m
∂2

∂x2
i

+
1
2
mω2

i γix
2
i −

~ωi

2
√
γi, (1.35)

where for all ψ, 〈ψ|Hi−H̃i|ψ〉 ≥ 0 where 0 identifies the“correct”γi that well describes the ground
state of the system. Therefore, by minimizing expression (1.35), the γi that optimally describes
the system at the 1D-3D crossover can be determined. For typical experimental parameters
(N=1× 104, ω‖/2π = 10Hz, ω⊥/2π = 2kHz), one finds γ⊥ = 0, 69 and γ‖ = 1, 8× 10−4.

Once the optimized values for γ have been found, the physical quantities of the system can
be derived in close analogy to the Thomas-Fermi approximation:

µ =
3∑

i=1

~ωi

2
√
γi + µ̃TF, (1.36)

and
n(r) = ñTF(r) (1.37)

where µ̃TF and ñTF are the results, obtained by the Thomas-Fermi approximation (see (1.25)
and (1.26)) with modified oscillation frequencies ω̃i = ωi

√
1− γi. The density profile obtained

by the Zubarev-Kim approach is therefore also of parabola shape.
Figure (1.4) compares the transverse shape of the condensate, obtained by a numerical

integration of the Gross-Pittaevskii equation to different analytical models: it becomes obvious,
that a single particle description (dotted line) fails to reproduce the wave function. The result of
the Thomas-Fermi approximation (dashed line) describes well the peak density and the central
region of the condensate, but underestimates its extension at the edges. The Zubarev-Kim
approach reflects the width of the condensate more properly, but poorly describes the central
region. In conclusion, Bose-Einstein condensates at the 1D-3D crossover are not sufficiently
described by analytical expressions yet, systems that critically depend on the exact shape of the
wave form (e.g. tunnel coupling experiments) have to be simulated numerically.
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Figure 1.5: Longitudinal phase fluctuations in a quasi-condensate convert into (random) in-
terference fringes in (20 ms) time-of-flight absorption imaging [25] (preliminary data from the
Heidelberg experiment). Compare also section 9.2.1.

1.3.3 Longitudinal phase fluctuations

For interacting Bose condensates in elongated traps, not only the shape of the wave function is
modified, but also the phase transition itself is affected by interactions and geometry. Where
the ideal gas goes through a two-step-condensation when cooled down (see figure 1.2), the
interacting gas establishes uniform longitudinal density and longitudinal uniform phase at two
distinct temperatures Tc ' T3D (compare (1.13) and (1.31)) and Tφ with Tc > Tφ. Although no
phase transition in the strict sense of the word occurs in very elongated systems, cold atomic
samples of temperature Tφ < T < Tc are referred to as quasi-condensates.

The suppression of density fluctuations close to Tc and the effect of interactions thereon has
been studied very recently in the experiment in Orsay [REF, LINK TO OUTLOOK]. Longitu-
dinal phase fluctuations have been observed in the Heidelberg experiments and have a direct
impact on the interference experiments presented in this manuscript. Their theory will be there-
fore briefly resumed in the following.

The correlation function for quasi-condensates

Phase fluctuations are elementary excitations of the system and have been described by Bogoli-
ubov theory in terms of quasi-particles uν and vν of wavelength ν and energy εν [21]. They obey
a set of coupled linear Schrödinger equations(

−~2

m
∇2 + V (r) + gn0 − µ

)
f+

ν = ενf
−
ν , (1.38)(

−~2

m
∇2 + V (r) + 3gn0 − µ

)
f−ν = ενf

+
ν , (1.39)

where f±ν = uν ± vν . For εν > ~ω⊥ these excitations are 3D, for εν < ~ω⊥ they are of 1D
character. 3D excitations do usually not affect the overall coherence of the system as they
damp out rapidly for temperatures below Tc. Low lying longitudinal modes with wavelength
comparable to the spatial extension of the condensate in contrast can be easily populated, giving
rise to excitations of 1D character even in elongated, but not strictly 1D systems [25,26,27,28].
as they are considered in this manuscript.

To characterize longitudinal phase fluctuations, we will analyze the first order correlation
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function for the phase state Ψ̂ =
√
neiφ [31]:

ρ(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉 (1.40)

=
√
n(r⊥, z)n(r′⊥, z

′)e
−∆2φ(z,z′)

2 , (1.41)

where ∆2φ(z, z′) = 〈[φ(z) − φ(z′)]2〉 only depends on the longitudinal coordinates z and z′, as
the fluctuations are 1D. The spatial correlation function C(s) is defined as the integrated single
particle correlation function in coordinate space

C(s) =
∫
d3rρ(r +

suz

2
, r′ − suz

2
) (1.42)

and with q = suz as

P (p) =
(

1
2π~

)3 ∫
d3qC(q)e−ip·q/~ (1.43)

in momentum space. By integrating over the transverse momenta px and py, one obtains the
longitudinal momentum distribution

P (pz) =
1

2π~

∫
dsC(s)eipzs/~. (1.44)

The longitudinal momentum distribution P (pz) is therefore the Fourier transform of the corre-
lation function C(s).

Up to now, no complete analytical expression for C(s) or P (pz) has been found, describing the
entire quasi-condensate in a trap. Still, it has been show that the system can be well described by
a local density approach, considering separate regions of the condensate individually [32,26,33].
Consequently, the coherence properties only depend on the integrated (n1D(z) =

∫
dx dy n(r))

local density n1D(z) and on temperature T . Following [27,33], we introduce the coherence length
Lφ(z) as

Lφ(z) =
~2n1D(z)
mkBT

. (1.45)

By doing so, we directly obtain the transition temperature Tφ, for which the coherence length
Lφ is equal to the extension of the quasi-condensate L and full longitudinal phase coherence is
established:

kBTφ =
15
32
N(~ω‖)2

µ
. (1.46)

The coherence length (1.45) can be rewritten as Lφ = LTφ/T . The phase fluctuations depend
linearly on distance:

∆φ2(z, z′) ' T

Tφ

|z − z′|
L

. (1.47)

For T � Tφ and applying the local density approach, the spatial correlation function can be
written

C(s) =
∫
dz n1D(z) exp

(
Tn1D(0)s

2Tφn1D(z)L

)
(1.48)

in coordinate space and

P (pz) '
n1D(0)
2πpφ

∫
dz

(
n1D(z)
n1D(0)

)2

(
n1D(z)
n1D(0)

)2 (
pz

pφ

)2
+ 1

4

, (1.49)
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where pφ = ~/Lφ. The momentum distribution is of Lorentzian shape of width ∆pφ = 0, 64pφ.
The width of the distribution in momentum space is therefore a direct measure for the coher-
ence length in an elongated quasi-condensate, this has been probed by velocity selective Bragg
spectroscopy in experiments in Orsay [28,27].

In time-of-flight expansion, in-trap phase fluctuations transform into density modulations
that can be directly observed in absorption imaging [25, 34]. These fluctuations can be under-
stood as matter wave interference originating from an extended coherent source with (arbitrary)
fluctuating spatial phase, in analogy to speckle patterns in coherent optics. Such interference
fringes have first been observed in experiments in Hannover, where quasi-condesates were re-
leased from magnetic traps of aspect ratios < = 25−50. High contrast interference has also been
observed in the Heidelberg experiment with high aspect ratio traps (< > 200) and are currently
under investigation (see figure (1.5)).
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1.4 Interference of two Bose-Einstein condensates

Dilute Bose-Einstein condensates behave in many aspects like coherent radiation fields; releasing
mater waves from spatially separated sources gives rise to interference phenomena. Matter wave
interference allows studies ranging from fundamental properties of (de-)coherence to the effects
of many particle interactions on the quantum system. Due to their rest mass, coherent atomic
systems are extremely sensitive to gravity, accelerations or rotations, qualifying the system for
metrology based on matter wave interferometry.

In this section, we resume the theory describing interference of two spatially separated Bose-
Einstein condensates of individual, but uniform phase. Multiple realizations as created in peri-
odic optical lattices [35,36] are not discussed.

Conceptually, there are two ways to realize a pair of spatially separated condensates: creation
of distinct condensates from already separated thermal clouds or dynamic splitting of a single
condensate into two. For the latter case, given an initial phase coherent source, one expects
to observe interference with a fixed relative phase of the two condensates after the splitting.
Surprisingly, interference was observed even for separately created sources, where no global
phase was established [37].

The theory for phase locked sources as well as for independently created sources will be
treated in the following. We close by a short description of the phase diffusion process, which
describes the loss of “phase memory” of initially phase locked clouds due to number fluctuations,
directly related to the uncertainty principle.

1.4.1 Phase locked sources

For a weakly interacting Bose condensate, the description can be carried out in close analogy to
(phase-)coherent electromagnetic waves. We assume two spatially separated (not overlapping)
wave packets described by the single particle wave function ψ1(r, t) and ψ2(r, t). We furthermore
assume a coherent state:

ψ(r, t) =
√
N1ψ1(r, t) +

√
N2ψ2(r, t), (1.50)

where N1 and N2 denote the expectation values for particle number of the two clouds. Analogous
to intensity in electromagnetic radiation, the atomic density at any point is given by the square
of the wave function:

n(r, t) = |ψ(r, t)|2 = |
√
N1ψ1(r, t) +

√
N2ψ2(r, t)|2 (1.51)

= N1|ψ1(r, t)|2 +N2|ψ2(r, t)|2 + 2
√
N1N2Re[ψ1(r, t)ψ∗2(r, t)], (1.52)

where Re[...] denotes the real part. The last term of this expression gives rise to interference
due to the spatial dependence of the phases of the two wave functions of the individual clouds.

We assume the initial clouds to be of gaussian shape of width R0 when released from their
individual traps, centered at r = ±d/2. The traps are switched of at t = 0, the effect of external
potentials and interactions after switch-off are neglected:

ψ1 =
eiφ1

(πR2
t )3/4

exp
[
−(r− d/2)2(1 + i~t/mR2

0)
2R2

t

]
(1.53)

and

ψ1 =
eiφ1

(πR2
t )3/4

exp
[
−(r− d/2)2(1 + i~t/mR2

0)
2R2

t

]
. (1.54)

Here φ1 and φ2 are the initial phases of the two condensates, Rt the width of the wave packet
at time t given by

R2
t = R2

0 +
(

~t
mR0

)2

. (1.55)
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The interference term in equation (1.51) thus varies as

2
√
N1N2Re[ψ1(r, t)ψ∗2(r, t)] ∝ A cos

(
~
m

r · d
R2

0R
2
t

t+ φ1 − φ2

)
. (1.56)

Here, the prefactor A varies slowly with the spatial coordinates. Planes of constant phase are
therefore perpendicular to the vector connecting the two centers of the clouds. The positions
of fringe maxima and minima depend on φ1 and φ2 and directly allow a measurement of the
differential phase (φ1 − φ2). The fringe spacing is given by

∆z = 2π
mR2

tR
2
0

~td
. (1.57)

For sufficiently large expansion times, the size of the initial cloud R0 can be neglected against
the size of the expanded cloud and the width is given by Rt ' ~t/mR0. Therefore, the fringe
spacing is given by

∆z ' ht

md
(1.58)

which is the the de Broglie wavelength associated with a particle that has travelled the distance
d between the sources in the expansion time t.

As pointed out by [38], the observation of interference fringes does not provide evidence for
phase coherence of the two clouds, since interference effects occur even if the two sources are
completely decoupled (or created separately) before they overlap. This will be presented in the
following section.

1.4.2 Independent sources

We now consider an initial state in which the number of particles N1 and N2 in each source
cloud is fixed. The corresponding state vector is

|N1, N2〉 =
1√

N1!N2!
(a†1)

N2(a†2)
N2 |0〉, (1.59)

which is referred to as a Fock state. As above, we calculate the particle density at a position r:

n(r) = N1|ψ1(r, t)|2 +N2|ψ2(r, t)|2. (1.60)

A comparison with (1.51) clearly shows no “mixed term” and no obvious interference in this
expression. This is due to the fact, that, according to the usual interpretation of quantum
mechanics, the expectation value of an operator gives an average value for a physical quantity.
However, a Fock state may show interference effects in a“one-shot”experiment, as the are usually
performed in BEC experiments, based on destructive measurement techniques. Furthermore,
many particles are involved in experiments with Bose-Einstein condensates, showing interference
effects, where the single particle would not interfere. A famous example of this is the Hanbury
Brown and Twiss experiment [39,39] which has been performed with electromagnetic radiation
and very recently with cold atomic samples and Bose condensates [Cite ORSAY He*].

In these systems, interferences often can be found by looking at the two-particle correlation
function, which gives the amplitude for destroying particles at points r and r′ and then creating
them again at the same points:

〈N1, N2, t|ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|N1, N2, t〉 = (1.61)

[N1|ψ1(r, t)|2 +N2|ψ2(r, t)|2][N1|ψ1(r′, t)|2 +N2|ψ2(r′, t)|2] (1.62)

−N1|ψ1(r, t)|2|ψ1(r′, t)|2 −N2|ψ2(r, t)|2|ψ2(r′, t)|2 (1.63)
+ 2N1N2Re[ψ∗1(r

′, t)ψ1(r, t)ψ∗2(r, t)ψ2(r′, t)]. (1.64)
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The correlation found by Hanbury Brown and Twiss is expressed in the last term (1.64), demon-
strating that coherence between sources is not imperative for interference effects. We assume
two identical wave packets with different (arbitrary) phases φ1(r, t) and φ2(r, t):

ψ1(r, t) = ψ0e
iφ1(r,t) (1.65)

and
ψ2(r, t) = ψ0e

iφ2(r,t). (1.66)

The two-particle correlation function (1.61) then becomes

〈N1, N2, t|ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|N1, N2, t〉 = (1.67)

N(N − 1)|ψ0|4 + 2N1N2|ψ0|4 cos[∆(r, t)−∆(r′, t)], (1.68)

with N = N1 + N2 and ∆(r, t) = φ1(r, t) − φ2(r, t). This expression clearly gives rise to
interference fringes, which can not be discriminated from the signature (1.56) of coherent sources
in a single realization of the experiment. However, as the relative phase of independent sources
is arbitrary in successive realizations of the same experiment, the measured differential phase
∆(r, t) will be randomly distributed between 0 and 2π for many repetitions of an interference
experiment. In contrast, for two coherent sources originating from the same condensate, the
differential phase φ1−φ2 is fixed, giving rise to a constant differential phase in multiple repetitions
of an interference experiment. Therefore, the width of the distribution of the relative phase is a
measure for the coherence of the sources (for a more quantitative discussion, see section 2.2.3).
The experimental challenge consists in splitting the condensate without destroying the phase
relation between the two halves.

1.4.3 Phase diffusion

Even though two completely separate condensates can have a fixed relative phase if coherently
split, this “phase memory” gets lost (and reappears in a revival) on a specific timescale tD due
to the fundamental process of phase diffusion: In a technically perfect experiment, the number
of atoms in each well fluctuates due to the uncertainty principle [40]. Assuming Poissonian
noise, these fluctuations are on the order of

√
N , where N is the total number of atoms. As

interactions contribute to the total energy in each cloud, fluctuations in atom number lead to
corresponding fluctuations in the evolution of the differential phase, washing out the phase in
repeated realizations of the experiment [41,42]. The exact timescale of this process is an ongoing
issue of discussion, for Poissonian number fluctuations in a completely decoupled 3D double well
we find [41,43]:

TD ' 5h
√
N

2µ
(1.69)

where µ is the BEC chemical potential. As discussed in [44], fluctuations in atom number become
sub-Poissonian for strongly interacting clouds; a non-negligible tunnel coupling between the wave
packets leads to complex phase dynamics, possibly counteracting the phase diffusion [45]. The
role of dimensionality of the system has not been considered so far.

All authors agree, that the timescale for phase diffusion is approximately two orders of
magnitude above the oscillation period in a single well. Experimental observation of phase
diffusion in Bose-Einstein condensates is therefore a major technological challenge, as not only
the splitting has to be performed in a coherent fashion, but the coherence has to be “kept alive”
for a long time, unaffected by technical fluctuations and noise. Due to high trap frequencies,
chip-based magnetic double wells as presented in this manuscript are well suited to address this
problem. Here, phase diffusion times may be reduced to a few tens of milliseconds, which may
be within the reach of current experiments.





Chapter 2

Double well physics

This chapter resumes the theory of Bose-Einstein condensates in double well potentials. The
strong (nonlinear) influence of interactions enriches the bosonic system compared to e.g. su-
perconducting tunnel junctions. The macroscopic condensate wave function allows for direct
observation of tunnel currents, the phase information is easily accessible through interference
experiments. This topic has therefore attracted an enormous amount of attention in the recent
literature, which is vast and partly controversial.

The chapter is divided into two sections, aiming to develop some theoretical background to
the experimental implementations of double wells, described in part 2 and 3 of the manuscript.

Section 2.1 describes the static double well. A mean field two modes model is used to derive
dynamics of the non-interacting and the interacting Bose gas for different regimes. Where it is
relevant for the design and understanding of the experimental implementation, we go beyond the
two modes model and briefly discuss instabilities and phase fluctuations due to nonlinear coupling
to (additional) energetically low lying modes. Parameter constrains found in this analysis are
closely related to the actual realization of a double well potential based on nano-fabricated wires
presented in part 2.

Section 2.2 describes the Bose condensate in a dynamic double well and tries to understand
the splitting process, as it will be experimentally demonstrated in part 3. Here, a quantum
phase model is implied to describe the internal dynamics throughout the splitting process and
the unavoidable breakdown of adiabaticity due to the (exponentially) vanishing tunnel coupling.

2.1 The static double well

2.1.1 The two modes model, tunnel coupling

We will first concentrate on the non-interacting Bose gas in a symmetric double well, as schemat-
ically illustrated in figure (2.1). For a very high potential barrier, the two wells are completely
isolated, their equally spaced (single particle) eigenstates of energy ~∆ are these of an harmonic
oscillator of trap frequency ω0: ~∆ = ~ω0 [46]. For a low potential barrier, the two lowest
lying (symmetric and antisymmetric) states of the system are delocalized over both wells, their
energy difference ~δ describes the tunnel coupling. We will restrict our analysis to the situation,
where ∆ � δ and only the symmetric and the antisymmetric state are necessary to characterize
the system. This two modes model has been widely discussed in the literature, as it allows for
analytic expressions of the system dynamics [47,44,48,49,50,51]. In general it is fairly realistic
when the symmetric and the antisymmetric state are well separated from higher modes, it has
limited validity in the case of a a very low potential barrier (when it is not allowed to neglect
higher excitation modes) and in the case of strong atom-atom interactions. We introduce a
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trap

Figure 2.1: Schematic representation of the double well level structure: levels below the potential
barrier are (almost) twofold degenerate, their energy difference characterizes the tunnel coupling.
To avoid excitations due to tunnelling dynamics, it is favorable to design the double well such
as ~∆ ' 10~δ (two modes tunnelling).

generic double well potential
Vtrap(r) =

mω0

8r20

(
r2 − r20

)2 (2.1)

where±r0 denotes the positions of the potential minima, ω0 is the single well oscillation frequency
and mω2

0r
2
0/8 is the barrier height. Both double well schemes presented in part 2 and part 3

this manuscript can be well approximated by expression (2.1) within a few percent.
We now fix the on-well oscillation frequency ω0 and thereby the extension of the single particle

wave function a0 =
√

~/mω0 and only vary the trap separation r0 to modify the tunnel coupling.
The Hamiltonian describing the non interacting system is H0 = p2/(2m) + Vtrap(r). For bound
states below the potential barrier, the obtained eigenenergies are doublets with vanishing energy
difference for larger trap separations (r0 � a0). We will now focus on the two lowest lying states:
the ground state |Φsym.〉 of the double well (2.1) is delocalized over both wells and symmetric,
|Φantis.〉 is equally delocalized but antisymmetric. The completely left (right) localized state
|Φleft〉 (|Φright〉) can be constructed as

|Φleft〉 =
1√
2

(|Φsym.〉+ |Φantis.〉) (2.2)

|Φright〉 =
1√
2

(|Φsym.〉 − |Φantis.〉) . (2.3)

These states are no proper eigenstates of the hamiltonian: The system prepared in the (left)
localized state |Φleft〉 will evolve into the (right) localized state |Φright〉 and back with a fre-
quency δ, defined by the energy difference ~δ between the eigenstates |Φsym.〉 and |Φantis.〉 (Rabi
oscillations). The tunnel coupling can be easily calculated:

~δ = 〈Φantis.|H0|Φantis.〉 − 〈Φsym.|H0|Φsym.〉 = −2〈Φleft|H0|Φright〉. (2.4)

The simplest approach to this consists in identifying |ψleft〉 and |ψright〉 with the single particle
ground state of an harmonic oscillator potential with trap frequency ω0, neglecting the tunnel
coupling [47]. By doing so, one obtains

δ ' r20ω
2
0

a2
0

exp
(
−r

2
0

a2
0

)
. (2.5)

A more complex variational approach [52] of WKB type based in the generic double well poten-
tial (2.1) gives

δ ' 4√
π

r0ω0

a0
exp

(
−2r20

3a2
0

)
. (2.6)
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For both expressions, we find an exponential decay of the tunnel coupling δ (for fixed ground
state size a0) with the double well separation r0. To have a significant tunnel coupling, one has
to prepare a double well spacing on the order of only a few times the wave function extension.

To avoid excitations in a tunnel experiment, one is aiming for a small tunnel coupling ~δ
compared to the level separation ~∆ to the third lowest lying state. We will assume excita-
tions sufficiently suppressed and the two modes model to be valid, when δ ' ω0/10. Using
expression (2.6) to describe the tunnel coupling, this fixes the ratio r0/a0 to 2,45.

2.1.2 The bosonic weak link Josephson junction

To take into account atom-atom interactions in the Bose condensate, the above Hamiltonian has
to be extended to the Gross-Pittaevskii equation (1.21):

i~
∂

∂t
Ψ(r, t) =

(
−~2∇2

2m
+ Vtrap(r) + g|Ψ(r, t)|2

)
Ψ(r, t). (2.7)

where V (r)trap is the (not necessarily symmetric) double well potential. We assume a weakly
coupled system, leading to a low atomic density in the region of the potential barrier between
the wells. The nonlinear interaction term can therefore be neglected in this region and we
can make a product ansatz to separate spatial and temporal evolution (nonlinear two-mode
approximation [50]):

Ψ(r, t) = ψleft(t)Φleft(r) + ψright(t)Φright(r) (2.8)

where Φleft(r) and Φright(r) are the left and right localized states as constructed in (2.2) and (2.3).
The

ψi(t) =
√
Nie

iθit, i = {left,right} (2.9)

describe the time development of the atom number distribution Nleft and Nright, where Nleft +
Nright = |ψleft|2 + |ψright|2 = N is the total number of atoms. By injecting this ansatz into the
Gross-Pittaevskii equation (2.7) we obtain a set of coupled differential equations [47,50]:

i~
∂

∂t
ψleft =

(
E0

left + UleftNleft

)
ψleft −Kψright (2.10)

i~
∂

∂t
ψright =

(
E0

right + UrightNright

)
ψright −Kψleft. (2.11)

Effects of damping and finite temperature are ignored. E0
i is the energy of the left (right)

localized state in absence of interactions:

E0
i =

∫ [
~2

2m
|∇Φi|2 + |Φi|2V

]
dr; i = {left,right}. (2.12)

UiNi describes the nonlinear interaction energy:

Ui = g

∫
|Φi|4 dr; i = {left,right}. (2.13)

K is the coupling energy

K = −
∫ [

~2

2m
(∇Φleft∇Φright) + ΦleftV Φright

]
dr; i = {left,right}. (2.14)

We introduce the atom number population difference z(t) as:

z(t) =
Nleft(t)−Nright(t)

N
≡
|Φleft|2 − |Φright|2

N
, z(t) ∈ [−1, 1] (2.15)
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and the relative phase φ(t) as

φ(t) = θleft − θright, φ(t) ∈ [0, 2π]. (2.16)

After additionally rescaling the time t → 2K
~ t to a dimensionless quantity, we can express

equations (2.10) and (2.11) using (2.15) and (2.16):

ż(t) = −
√

1− z2(t) sinφ(t) (2.17)

and
φ̇(t) = ∆E + Λz(t) +

z(t)√
1− z2(t)

cosφ(t). (2.18)

These two equations completely describe the dynamics of the coupled system. The right hand
side of (2.18) describes the chemical potential difference through ∆µ = −~φ̇. Different regimes
of stable solutions of (2.18) and (2.17) are identified by the dimensionless parameters ∆E and
Λ and will be discussed in the following:

∆E =
(E0

left − E0
right)

2K
+
Uleft − Uright

4K
N (2.19)

Λ =
UN

2K
, with U ≡

Uleft + Uright

2
(2.20)

where ∆E takes into account a potential asymmetry of the double well and Λ describes the
strength of the (nonlinear) interaction energy, both compared to the coupling energy. The total
(rescaled) energy of the system can be expressed entirely with the new generalized coordinates
z(t), φ(t) and the parameters ∆E, Λ:

H =
Λz2

2
+ ∆Ez −

√
1− z2 cosφ. (2.21)

The coordinates z(t) and φ(t) can be identified with classical conjugated variables for momentum
and position:

ż = −∂H
∂φ

and φ̇ =
∂H

∂z
. (2.22)

Starting from (2.18) and (2.17), the description of the bosonic weak link Josephson junction
can be fully mapped to the mechanical analogon of a momentum shortened pendulum [53] in
contrast to a rigid pendulum in the case of superconducting Josephson junctions [54].

To analyze different regimes for the bosonic weak link Josephson junction, we will concentrate
in the symmetric double well where E0

left = E0
right and Uleft = Uright ≡ U . Consequently, ∆E = 0

and we obtain the simplified equations of motion

ż(t) = −
√

1− z2(t) sinφ(t) (2.23)

φ̇(t) = Λz(t) +
z(t)√

1− z2(t)
cosφ(t). (2.24)

Already the symmetric double well, in the absence of damping or finite temperature effects, gives
rise to a rich scenery of stable modes: five different regimes are usually identified in the literature,
characterized by the time averages 〈z〉 and 〈φ〉 of the system coordinates [53]. Some of these
modes do only exist due to the momentum dependence of the pendulum length, expressed in
the

√
1− z2 term in (2.21). These modes do not occur in superconducting Josephson junctions,

they have not yet been experimentally observed [55] in the bosonic system.
Here we will only discuss three main regimes, identified by the ratio Λ of interaction energy to

coupling energy, a more refined analysis, taking into account damping and double well imbalances
can be found in [53].
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Figure 2.2: Double well population imbalance z(t) as a function of dimensionless time 2Kt (in
units of ~). The initial conditions are z(0) = 0, 6 and φ(0) = π. Λ takes the values (a) 0,1; (b)
1,1; (c) 1,111; (d) 1,2; (e) 1,25 and (f) 1,3. Further descriptions in the text. Figure from [50].

The Rabi regime

For Λ < 1 or, equivalently, δ > µ, the effect of interactions can be neglected in the description
of the tunnel dynamics: the equations (2.23) and (2.24) describe sinusoidal Rabi oscillations
between the two traps with a frequency ωR = δ = (2/~)K. These oscillations are equivalent to
the single particle dynamics, their amplitude corresponds to the initially prepared population
imbalance, that causes the evolution (see figure (2.2a)). The time average of the population
imbalance vanishes (〈z〉 = 0), the time average 〈φ〉 of the relative phase can be either 〈φ〉 = 0
(zero-phase modes) or 〈φ〉 = π (π-phase-modes).

The Josephson regime

For 1 < Λ < Λc, interactions become more important in the system dynamics. Small amplitude
(plasma) oscillations mainly get shifted to higher oscillation frequencies [55]:

ωJosephson =
√

2UNK/~ + δ2Rabi (2.25)

independent of the initial conditions of the system. For large amplitude oscillations, higher
harmonics mix to the sinusoidal oscillations (see figure (2.2b)). The period of such oscillations
increases and undergoes a critical slowing down (see figure (2.2c)) with a logarithmic divergence
at z(0) = zc or Λ = Λc with

Λc =
1 +

√
1− z(0)2 cosφ(0)
z(0)2/2

, (2.26)

zc =
2
Λ

√
Λ− 1. (2.27)
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Figure 2.3: Elongated quasi 1D Bose-Einstein condensates are coupled via tunnel coupling δ
along their entire length. Longitudinal phase fluctuations lead to combined phase dynamics in
the transverse and the longitudinal direction.

These effects occur for both, zero-phase-modes and π-phase-modes.

Macroscopic quantum self trapping

For Λ > Λc or z(0) > zc, an initially prepared population imbalance becomes trapped, the system
undergoes (small amplitude) number oscillations around this imbalance (see figure (2.2d)), which
relaxes to equilibrium on a very long timescale [56]. Several versions of this macroscopic quantum
self trapping exist, which are again characterized by the time average 〈φ〉: running-phase modes
of self trapped systems occur directly for Λ > Λc [55], for even stronger interactions, the self
trapped system makes a transition to a π-phase-mode (see figure (2.2f)).

2.1.3 Beyond the two modes model: phase fluctuations and instabilities

So far, the description of the two modes model and the tunnel dynamics has been completely
one-dimensional. As this manuscript mainly deals with very elongated condensates transversally
coupled along their entire length (see figure (2.3)), the coupling is essentially one dimensional:
It has been verified numerically, that the two transverse degrees of freedom are well decoupled,
the two modes model is not affected by the second transverse spatial dimension.

In contrast, taking into account the third, longitudinal direction necessarily violates the two
modes assumption, as longitudinal modes are of low energy and can not be neglected in the
dynamics (~ω‖ � ~δ � ~ω⊥). We will briefly resume the influence of longitudinal modes on the
tunnel dynamics.

Relative phase fluctuations in coupled elongated condensates

At non-zero temperature, thermally excited longitudinal phase fluctuations may be present in the
elongated (quasi) condensates, as described in section 1.3. These fluctuations tend to reduce the
phase coherence between the condensates, washing out the signal in an interference experiment
as presented in part 3 of the manuscript. In contrast, a tunnel coupling between the condensates
locally favors identical phase; interference may be observed, even when the phase fluctuates along
the cloud. At thermal equilibrium, the correlation function of relative phase fluctuations for two
coupled 1D gasses has been found as [57]

〈∆θ(z)∆θ(z′)〉 =
kBT

2n1D~

√
m

~δ
exp

[
−2
√
m~δ|z − z′|

~

]
(2.28)
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Figure 2.4: Phase diagram for the fluctuations of the relative phase between two condensates.
Phase fluctuations are reduced by tunnel coupling for temperatures below ~n1D

√
~δ/m/kB.

where n1D is the 1D longitudinal density. Phase fluctuations are small when

kBT � n1D~
√

~δ
m
. (2.29)

As schematic phase diagram of the system is shown in figure (2.4): for temperatures above
~n1D

√
g1Dn1D/m/kB, no quasi condensate exists; below ~2n1D/LmkB phase fluctuations are

suppressed. Here, g1D = 2~ω⊥a is the one-dimensional coupling constant. For temperatures
larger than ~n1D

√
~δ/m/kB, each condensate has individual longitudinal phase fluctuations.

The above description reflects a “steady state” picture, where phase dynamics are assumed to
be slow. In the case of significant tunnel coupling (e.g. Rabi/Josephson oscillations) or a rapid
variation thereof (e.g. dynamic splitting of a condensate), the time phase evolution in the
longitudinal direction has to be compared to the transverse time scale. In the case of dynamic
splitting, the longitudinal phase evolves independently in both condensates, once the tunnel
coupling is negligible. For a fixed position z along the condensate, we find

〈[θ(0)− θ(t)]2〉 =
kBT

2~2

√
mg1D
n1D

t. (2.30)

For experiments as presented in part 3 of this manuscript, the time to completely wash out a
relative phase information along the split condensates is on the order of 1 − 3 ms. A reduction
of fringe contrast on this timescale has indeed been observed in interference experiments in
Heidelberg (see section 9.2.4)

Modulational instabilities in coupled elongated condensates

Even at zero temperature, longitudinal modes get excited due to the nonlinearity in the tunnel
coupling. It has been shown [58] that the uniform Josephson mode, where all atoms simultane-
ously oscillate between the two wells (independent of their longitudinal position), is unstable and
decays to modes of non-zero longitudinal momentum. The timescale of this decay can be esti-
mated by linearizing the equations of motion (2.23) and (2.24) in the weakly coupled Josephson
regime where ~δ � n1Dg1D:

Γ = 0, 122 Θ2
osc

√
~δn1Dg1D/~ = 0, 122 Θ2

osc ωJosephson/2. (2.31)

Depending on their amplitude Θosc, only few uniform Josephson oscillations can be observed
(see figure (2.5)) before energy is transferred to longitudinal modes of long wave vectors k. As
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Figure 2.5: Amplitude of the uniform Josephson mode. Due to nonlinear coupling to longitudinal
modes, the uniform Josephson mode decays and re-appears in a damped revival in a homogeneous
1D system (solid line). The mode can be stabilized by restricting the longitudinal size of the
system (dashed line). Image from [58].

discussed in [58], the uniform mode reappears in a damped revival. The longitudinal mode,
which will receive most of the energy is of wave vector

kmax = 0.97

√
m~δ
~

Θosc. (2.32)

Excitation of longitudinal modes may therefore be suppressed by reducing the longitudinal size
L of the system and thereby introducing a frequency cutoff at 2π/L. For

L <
h√

m~δΘosc

(2.33)

stable Josephson oscillation can be observed (see figure (2.5)). In a harmonic trapping geometry,
this corresponds to a longitudinal trap frequency of

ω‖ > αΘosc

√
~δn1Dg1D/~ = αΘoscωJosephson/2, (2.34)

where α is a numerical factor close to unity. This imposes strong constrains on the actual choice
of parameters, when implementing an experiment aiming for the observation of the uniform
Josephson mode, as will be discussed in part 2 of this manuscript.
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2.2 The dynamic double well

We will now focus on the dynamics of a Bose-Einstein condensate trapped in a double well
potential with a dynamically rising barrier. This Problem has caused some controversy in the
recent literature [41, 42, 44]: in [41], Javanainan and Wilkens analyzed the condensate splitting
in two steps: first, the potential barrier is raised slowly (adiabatic with respect to the Josephson
plasma frequency) and then suddenly is increased to infinity (and then the system is probably
left alone to evolve for an additional time). There has been a debate [42] on the timescale,
on which the system looses its ”phase memory” in the second stage (see section 1.4.3). The
crucial point in the discussion are the number and phase fluctuations of the ground state of the
system [44], which have been determined numerically. This two-step scheme circumvents the
problem of the unavoidable breakdown of adiabaticity [59] when dynamically splitting a BEC
by rising a potential barrier. In the following we will briefly describe a continuous splitting of
the condensate.

2.2.1 The quantum phase model

As pointed out in [60], a two modes mean field theory as presented in section 2.1.2 is well suited
to describe the “Josephson-related” effects in a static double well, it fails to describe the “number
squeezing effects” necessary to understand the dynamic evolution of the quantum phase. The
dynamic splitting of a condensate is therefore described in a more appropriate quantum phase
two modes model in [59] and will be resumed in the following.

We assume a Bose-Einstein condensate of zero temperature in a symmetric, tunable double
well potential Vtrap(r, t). The second quantization Hamilton for bosons interacting with a δ
pseudo potential (compare section 1.2.1) is given by

Ĥ(t) =
∫
dr Ψ̂†(r, t)

(
− ~2

2m
∂2

∂r2
+ Vtrap(r, t)

)
Ψ̂(r, t) +

g

2

∫
dr Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t),

(2.35)
where Ψ̂ is the bosonic field operator and g = 4π~2a/m the interparticle interaction strength.
The two modes ansatz reads

Ψ̂(r, t) = Φ1(r, t)â1 + Φ2(r, t)â2 (2.36)

where Φ1,2(r, t) = Φleft,right(r, t) as constructed in (2.2) and (2.3). The operator â†1,2 (â1,2) creates
(destroys) a particle in the mode 1,2 respectively.

As shown by Menotti and Stringari in [29], the internal and external dynamics described
by (2.35) can be decoupled [61]. The timescale of external dynamics τz is given by the trap
oscillation frequency ω0 as τz = 2π/ωz. If the potential barrier is raised on a timescale ∆t� τz,
the process is adiabatic which respect to the external dynamics and excitations are suppressed.
The timescale of internal dynamics τr is given by the phase coherence revival time (1.69) and
is beyond the reach of current experiments. We will therefore consider τz � ∆t � τr and
concentrate on the breakdown of adiabaticity with respect to the internal phase dynamics.

Injecting the two modes ansatz (2.36) into (2.35), one obtains

Ĥ =
Ec

4
(â†1â

†
1â1â1 + â†2â

†
2â2â2 −

Ej

N
(â†1â2 + â†2â1). (2.37)

The operator N̂ = n̂1 + n̂2 = â†1â2 + â†2â1 describes the total number of atoms and commutes
with Ĥ. The quantity Ej is the Josephson coupling energy which can be identified with the
coupling term NK used in the mean field description (compare (2.14)):

Ej = −N
∫ [

~2

2m
∂Φ∗

1(r, t)
∂r

∂Φ2(r, t)
∂r

+ Φ∗
1(r, t)Vtrap(r, t)Φ2(r, t)

]
dr. (2.38)
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Ec describes the one-site energy (or charge energy) in analogy to the nonlinear interaction term
U in (2.13):

Ec = 2g
∫
dr |Φ1(r, t)|2 = 2g

∫
dr |Φ2(r, t)|2. (2.39)

We will use the Bargmann representation for phase states [48] to describe a general state of our
two modes Hilbert space:

|Φ〉 =
∫ +π

−π

dφ

2π
Ψ(φ, t)|φ〉, (2.40)

where φ is the relative phase between the two modes, and

|φ〉 =
N/2∑

n=−N/2

einφ

√
n!
|n〉 (2.41)

are non-normalized vectors, written for the relative number of atoms n. In this representation,
the action of any operator on |Φ〉 can be represented in terms of differential operators acting on
the associated phase amplitude Ψ(φ, t) [62].

For the Josephson regime, where Ej � NEc, the dynamical equation for the 2π periodic
phase amplitude Ψ(φ, t) is

i~
∂Ψ(φ, t)
∂t

= −Ec

2
∂2Ψ(φ, t)
∂φ2

− Ej cos(φ)Ψ(φ, t). (2.42)

2.2.2 Breakdown of adiabaticity

Before making an ansatz for Ψ(φ, t), we will first discuss the relevant timescale in the dynamic
splitting process. In experiments presented in part 3 of this manuscript (and also in [43]),
the splitting is performed by moving the double well potential minima apart in space: d(t) =
dstart + dendt/∆t where dstart and dend are initial and final well separations and ∆t the total
ramp time. Following equation (2.6), it is reasonable to assume that the Josephson coupling
Ej decays exponentially with time: Ej(t) = Ej(0)e−t/τ , where the effective ramping time τ =

∆t~/
√

2m(V0 − µ)d2
end depends on the initial barrier height V0 and the chemical potential µ.

This of course holds only for well separated wells. In the two modes approximation, the one-
site energy Ec remains approximately constant during the dynamics. During the beginning of
the splitting, when the chemical potential is close to the potential barrier, the process remains
adiabatic, as the strong tunnel coupling allows the system to adapt to the change of the double
well potential rather rapidly. The adiabaticity will break down only at large separation of the
two condensates, deep in the tunnelling regime.

In reference [59], a time dependent variational phase amplitude

Ψ(φ, t) =
1

(2πσφ(t))1/4
exp

(
− φ2

4σ2
φ(t)

+ i
δ(t)
2
φ2

)
, (2.43)

of Gaussian shape and width σφ(t) � 2π is chosen. Injecting this ansatz into (2.42) one obtains
an differential equation of motion for the width of the phase amplitude:

σ̈φ =
E2

c

4~2

1
σ3

φ

− EcEj(t)
~2

σφe
−σ2

φ/2. (2.44)

We now linearize and seek a solution for (2.44) of the form σφ(t) = σφ,ad(t) + ε(t). If ε(t) starts
to make a significant correction, we assume σφ to vary rapidly with time and adiabaticity to
break down. This happens at a time tad for which

4
√
EcEj(0)/~2τetad/2τ ' 1. (2.45)
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With Ej(t) = Ej(0)e−t/τ and the Josephson frequency ωJosephson(t) =
√
EcEj(t)/~ one can

rewrite (2.45) to
1

ωJosephson(tad)
' 4τ (2.46)

or as explicit expression for tad:

tad ' 2τ ln (4ωJosephson(0)τ) . (2.47)

Equation (2.46) has a straightforward physical meaning: Initially, the system is in the ground
state, we assume Ej(0) � Ec; the phase dispersion is small: σ2

φ(0) = 1/2
√
Ec/Ej(0) � 1. By

ramping the two wells, Ej(t) decreases with a timescale τ . As long as ωJosephson(t) � 1/τ , the
system adjusts itself in such a way, that it stays in the ground state. After the time tad, the
frequency ωJosephson(t) is on the order if 1/τ and it becomes impossible for the system to adjust
to the ground state, the evolution becomes non-adiabatic.

2.2.3 Phase diffusion

After passing the point of non-adiabaticity in the splitting process, the phase dispersion σφ

increases rapidly until it becomes of the order 1 at the dephasing time tD. We recall, that
in a single shot experiment, a well defined phase will still be measured. However, in multiple
repetitions, the measured phases will differ, with a mean-square fluctuation of σφ. The width
of phase dispersion can directly be measured as a reduction of contrast by a factor e−σφ/2 when
summing up many interference images.

The dephasing time tD is estimated in reference [59] and always found to be tD � tad. This
estimate is too complex to be discussed in this manuscript, the evolution of the phase dispersion
depends delicately on the “history” of the splitting process. We find it interesting to note, that
stopping the splitting process after having passed the point of non-adiabaticity “freezes” the
actual relative phase and leads to a slow phase diffusion during the hold time. Stopping before
adiabaticity breakdown leads to a rapid broadening of the phase distribution, comparable to an
infinitely continuing splitting.

The estimated timescales for phase diffusion in recent literature [42,63,59] still presents large
discrepancies, the issue of phase diffusion in a double well can not be considered closed.





Chapter 3

Magnetic micro traps

3.1 Magnetic trapping of neutral atoms

The interaction of an atomic spin S and an associated magnetic moment µ = −gFµBS/~ with
an external magnetic field B is described by the well known Zeeman Hamiltonian [64]:

HZ = −µ ·B =
gFµB

~
S ·B, (3.1)

where gF is the Landé g-factor of the atomic hyperfine state F (for 87Rb gF=1 = −1/2 and
gF=2 = 1/2) and µB the Bohr magneton. In an adiabatic system (see below) this Hamiltonian
gives rise to magnetic quantum numbers mF = {−F, ..., F} with the corresponding eigenenergies

EmF = mF gFµB|B|. (3.2)

In an inhomogeneous external magnetic field B = B(r), atomic states that are aligned anti-
parallel with the external field (mF gF > 0) get attracted by regions of weak local magnetic field
(low field seekers). States that are aligned parallel to the external magnetic field get attracted
by regions of strong magnetic field (high field seekers). States of mF = 0 are not affected by
(static) external magnetic fields. Neutral atoms can therefore be trapped in local (3D) maxima
or minima of an appropriately designed magnetic field. According to the Maxwells equations,
the creation of a 3D magnetic field maximum in free space is impossible [65]. In contrast, the
creation of a 3D magnetic field minimum in free space is possible and forms the basis of almost
any magnetic trapping geometry [66]. It is interesting to note, that trapped low field seeking
states are usually not in the ground state of the system; the trapped state is therefore meta-stable
and suffers from losses due to inelastic (spin-flipping) two- or three-body collisions.

3.1.1 Adiabaticity

For the above discussion to hold, we have to impose, that the atom moves sufficiently slowly in
the external magnetic field, so that the atomic spin can adiabatically follow the direction of the
external quantization axis. In a classical picture, the angle θ between the spin and the external
field has to vary slowly with respect to the Lamor frequency ωL = mF gFµB|B|/~:

dθ

dt
< ωL. (3.3)

Adiabaticity can only be guaranteed, when there is always a well defined quantization axis, jus-
tifying the quantum number mF . Regions of very small or vanishing field give rise to (Majorana)
spin-flip transitions to different (possibly untrapped) states and have to be avoided in the design
of stable atom traps [67,68,69].
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3.1.2 Orders of magnitudes

To hold neutral atoms against gravity and to compensate the gravitational force, a magnetic
field gradient

B′
grav =

mg

mF gFµB
(3.4)

is necessary. For 87Rb in the double stretched F = mF = 2 state, this gradient corresponds
to 15,3 G/cm. The depth of the magnetic trap directly determines the temperature of atoms,
that may be captured: again for 87Rb, a trap depth of 1 G corresponds to a thermal energy of
67µK. To directly trap rubidium atoms at room temperature, a magnetic field of 450T would
be necessary, which is beyond the reach of current experiments. In contrast, atoms that were
pe-cooled by laser cooling (e.g. for 87Rb to Doppler temperature T = 143µK) can easily be
captured in magnetic traps of a few G depth.

Figure 3.1: Ioffe-Pritchard trapping configuration (a) schematically and (b) picture of an imple-
mentation in Amsterdam [70].
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3.2 The Ioffe-Pritchard trap

3.2.1 The magnetic field configuration

As mentioned above, for stable trapping of weak field seeking neutral atoms, a three dimensional,
but non-zero magnetic field minimum has to designed. Such a magnetic field geometry is today
referred to as the Ioffe-Pritchard trap, following a proposal of Pritchard from 1983. In [66] a linear
(2D) magnetic quadrupole field to confine atoms in two (transverse) direction is combined with a
homogeneous longitudinal field which has a slight superimposed trapping curvature (“magnetic
bottle”). A similar configuration has already been used in 1962 by Ioffe and coworkers to
magnetically confine plasmas [71]. Today, a huge zoology of trapping configurations, all based
on the same principle, are in use (see [72] for a review).

The most common realization of the Ioffe-Pritchard trap is schematically depicted in fig-
ure (3.1a): the transverse confinement is provided by currents running through so-called Ioffe-
bars, creating a linear quadrupole field in the transverse plane:

Bbars =

 B′x
−B′y

0

 , (3.5)

where B′ is the gradient in the transverse direction. The longitudinal confinement is provided by
two pinch coils which carry equal current in the same sense and are separated by more than their
diameter. This gives rise to a magnetic field minimum Boffset on the symmetry axis (between
the coils), the field created writes

Bpinch =
1
2

 −B′′xz
−B′′yz

2Boffset +B′′(z2 − 1
2(x2 + y2))

 , (3.6)

where B′′ is the curvature of the longitudinal trapping field. The longitudinal offset field in
the center of the trap is rather large, unnecessarily reducing the trap depth. To reduce the
offset field to the so-called Ioffe field B0 (see next section), two compensation coils in Helmholtz
configuration create a homogeneous field in opposite direction. The total magnetic field of the
Ioffe-Pritchard trap is

BI.P.(r) = B0

0
0
1

+B′

 x
−y
0

+
B′′

2

 −xz
−yz

z2 − 1
2(x2 + y2)

 . (3.7)

The movement of an atom is this trapping field is characterized by the transverse and the
longitudinal (harmonic) oscillation frequencies ω⊥ and ω‖:

ω⊥ =

√
mF gFµBB′2

mB0
and ω‖ =

√
mF gFµBB′′

m
. (3.8)

In most cases, ω⊥ � ω‖. The harmonic approximation is very good in the longitudinal direction,
in the transverse direction, hot atoms experience the linear region of the trapping potential, once
r =

√
x2 + y2 > B0/B

′.

3.2.2 Majorana losses in a trap

As described above, the movement of the trapped atom in the external potential has to be slow
with respect to the Lamor frequency, in order to suppress non adiabatic spin flips. We define
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the adiabaticity parameter α as:

α ≡ ωL

ω⊥
=
mF gFµBB0

~ω⊥
. (3.9)

The rate for non-adiabatic spin flips γ has been estimated [69] to

γ = 4πω⊥e−2α. (3.10)

To obtain a desired lifetime τ = 1/γ in a specific trap of frequency ω⊥, a minimum Ioffe field
B0 of

B0 ≥
~ω⊥

2mF gFµB
ln(4πω⊥τ) (3.11)

has to be chosen. For a trap of ω⊥ = 2π × 1 kHz and a (e.g. background gas limited) lifetime
of 100 s, the necessary Ioffe field to suppress spin flips is of the order milligauss. In practice, as
technical noise of frequencies up to 500 kHz drives unwanted transitions, a Ioffe field of B0 ' 1 G
(effectuating a frequency cutoff at 700 kHz) is often used in experiments.

3.2.3 Orders of magnitudes

To efficiently cool atoms to quantum degeneracy, a high elastic collision rate and therefore a high
atomic density is necessary. Therefore, the magnetic trap has to provide strong confinement. A
figure of merit is the mean harmonic oscillator trap frequency ωho = (ω2

⊥ω‖)
1/3, which has to be

on the order of 2π × 100 Hz. To realize this in a Ioffe-Pritchard trap, based on (macroscopic)
coils and rods, high currents are necessary. As an example, figure (3.1b) shows a Ioffe-Pritchard
trap realized in Amsterdam [70]. Using coils carrying 400A this setup reaches ωho = 2π×170 Hz
(ω⊥ = 2π × 485 Hz and ω‖ = 2π × 22 Hz). The total power dissipated in the coils is 5,4 kW.
The next chapter will show, how much stronger confinement can be reached using wire traps,
carrying only a few Amperes current and dissipating around 1 W of power.
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Figure 3.2: Schematic operation principle of the side wire guide. A circular magnetic field
created by a current carrying wire is superimposed to a homogeneous (external) bias field. The
two fields chancel on a line of distance h from the wire (picture from [73])
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3.3 Wire traps

In 1995 it has been proposed [74, 75] to use magnetic field created by current carrying wires
directly under vacuum to create strongly confining magnetic traps and complex trapping geome-
tries. Soon afterwards, first experiments were carried out using freestanding macroscopic wire
structures [76, 77, 78, 79]. These wire structures were miniaturized and integrated to complex
patterns using techniques from microelectronics and chip fabrication. It was shown, that Bose-
Einstein condensates can be created very efficiently on such atom chips [80,81,82].

In the following section, we will mainly concentrate on the most basic element of atom chip
based wire traps, the so called side wire guide.

3.3.1 The side wire guide

Consider an infinitely thin, infinitely long straight wire, carrying a current I (see figure (3.3.1)).
This current creates a circular magnetic field Bwire with |Bwire| = µ0I/(2πr) at a distance r
around the wire. To this circular field we now superimpose a homogeneous magnetic bias field
Bbias (e.g. created by large, external coils) perpendicular to the wire. The two fields will cancel
at a distance

h =
µ0

2π
I

|Bbias|
(3.12)

from the wire, creating a two dimensional magnetic minimum of vanishing magnetic field in
the plane transverse to the wire; trapped atoms are confined on a line (guide) along the wire
(see figure (3.2)). Around the zero, the magnetic field can be well approximated by a linear
quadrupole:

Bx = B′(y − h) and By = B′x (3.13)

with a gradient

B′ =
|Bbias|
h

=
2π
µ0

B2
bias

I
. (3.14)

This field is identical (to first order) to the corresponding field (3.5) created by the Ioffe bars in
a standard Ioffe-Pritchard trap. We will see in the following, that the gradients created by wire
traps can be orders of magnitiudes lager than in conventional macroscopic setups.

Finite size effects

As can be easily seen from (3.14), the gradient (and thus the confinement of the atoms) can
be increased by reducing the distance h to the wire. Any physical implementation of this
scheme involves wires of finite (non-zero) dimensions. When the distance of the atoms to the
wire becomes on the order of the wire dimensions, these have to be taken into account, when
calculating the magnetic fields.

We assume a wire of rectangular cross section (see figure (3.4)) of width W and height U .
We will calculate the field on the (O, y)-axis, where the magnetic field created by the wire only
has a component in the perpendicular x direction. By integrating the Biot-Savart law over the
spatial extension of the wire one obtains:

Bx =
µ0

2π
I

WU

[
(U + 2y) arctan

(
W

U + 2y

)
− (U − 2y) arctan

(
W

U − 2y

)
+
W

2

(
1 +

8Uy
W 2 + (U − 2y)2

)]
. (3.15)
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Figure 3.3: Effect of finite wire dimensions on magnetic field (left) and field gradient (right) in
a wire trap. A wire of W = 2µm width and U = 1µm height carries a current of I = 100 mA.
The solid line indicates the result for an infinitely thin wire, the dotted line is the complete finite
size result. The dashed line indicates the approximation of a flat wire.

In the case of a flat wire (W � U), this expression can be developed to first order in W/y:

Bx =
µ0I

πW
arctan

(
W

2y

)
. (3.16)

Figure (3.3) compares the magnetic field calculated for an infinitely thin wire to the exact
expression (3.15) and the simplified expression for a flat wire (3.16). As can be seen in the
figure, the flat wire approximation is already very good for W = 2U . Finite size effects have to
be taken into account, once the distance between wire and atoms is about 2-3 times the wire
width: while the field of an infinitely thin wire diverges at small distances, the field of a finite
size wire saturates and reaches a value of

Bsat =
µ0

2π
I

WU

[
2U arctan

(
W

2U

)
+W log

(
1 +

4U2

W

)]
' µ0I

2W
(3.17)

at the surface of the wire, the last expression is for a flat wire. As can be seen in figure (3.3),
also the magnetic field gradient saturates, when h ' W . The maximum gradient that can be
created with a (flat) wire carrying a current I is therefore

B′
max '

µ0

2π
I

W 2
. (3.18)

We will now analyze, how the wire dimensions determine the maximum current I that can be
send through the wire.

Critical wire currents

The maximum current in a wire is determined by the dissipation of ohmic heat generated in the
conductor. It may vary significantly, depending on the actual realization of the wire trap. In the
following, we will describe a model which is valid for both the Heidelberg and the Orsay atom
chip experiment presented in this manuscript. Figure (3.4) schematically shows the physical
system: a gold wire of rectangular cross section (width W and heigth U) is fabricated on an
atom chip carrier substrate (Si). To electrically isolate the wire from the (semiconducting)
silicon, the substrate is covered by a thin (200-500 nm) insolation layer of silicon oxide (SiO2).
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Figure 3.4: Schematic representation of heat transport from the gold wire to the Si chip substrate
at fixed temperature.

The substrate is in good thermal contact with a heat sink, we can assume it at constant (room)
temperature T0 = 293 K. At all times t > 0, the wire is in thermal equilibrium with the heat
sink: T (t < 0) = T0. At t = 0 we turn on a current I. Due to the non-zero resistance ρ of the
wire, its temperature increases as

T (t) = T0 +
j2ρ0U

κ− αρ0j2U

(
1− e−t/τ

)
with τ =

UC

κ− αρ0j2U
, (3.19)

where j is the current density, ρ = ρ0(1 + α(T − T0)) the wire resistance and C the gold heat
capacity. κ describes the heat conductance from the gold through the insolation layer into the
heat sink. It has been measured for the Heidelberg setup [83] to κ = 3, 5× 106 W/Km2 [84].

If τ < 0 the wire temperature diverges with time, which leads to the destruction of the
wire. The condition τ > 0 directly leads to a definition of the critical current density jcrit =√
κ/(αρ0U) or the total critical current

Icrit =

√
κUW 2

αρ0
. (3.20)

For ρ0 = 2, 2× 10−8 Ωm, α = 3, 8× 10−3 K−1 and C = 2, 5× 106 J/Km3 and a U = W = 1µm
square cross section wire, the critical current is Icrit ' 200 mA.

Scaling laws

As seen in the last section, the maximum current is determined exclusively by material parame-
ters and the wire dimensions. Combining equation (3.20) and (3.18), we obtain the maximum
gradient for a wire trap located at a distance h = W

B′
max =

µ0

π

√
κ

αρ0

U1/2

W
. (3.21)

For a square cross section wire (W = U) the gradient scales as B′ ∝ 1/
√
W . This indicates, that

by reducing the structure size and using smaller wires, simultaneously reducing the wire current,
the confinement of the atoms can be increased. This motivates ongoing efforts on miniaturizing
trapping structures on atom chips.

The 1µm square cross section wire carrying 200 mA current will produce a gradient of ∼
107 G/cm, which is orders of magnitudes higher than what can be obtained with macroscopic
systems (e.g. a transverse gradient of 350 G/cm in the setup shown in figure (3.1)).

It is interesting to note, that in principle also the transverse oscillation frequency is fixed by
the wire geometry: as can be seen in equation (3.8), ω⊥ ∝ B′/

√
B0. As the Ioffe field B0 has to
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Figure 3.5: Schematic representation of the H shape wire structure used in the Orsay setup and
the Z shape structure used in the Heidelberg experiments. The description carried out for the
H structure can be applied to the Z shaped system by replacing IH → I/2.

be chosen according to equation (3.11) in order to suppress spin flip losses, only depending on
the trap frequency and the desired lifetime in the trap, the wire geometry fixes the maximum
trap frequency. The 1µm at maximum current and minimal Ioffe field (to hold the atoms for
1 h) will create trap frequencies on the order MHz. As we will see in section 3.4, technical
and fundamental effects will prevent such high trap frequencies, as surface effects perturb the
magnetic trap, when brought very close to the wire.

3.3.2 A Ioffe-Pritchard trap with wires

To provide trapping in all three spatial dimensions and avoid spin flip losses due to vanishing
magnetic field at the trap minimum, an appropriate longitudinal trapping field has to be designed
for the side wire guide. Analogous to the Ioffe-Pritchard configuration, this could be done by
additional pinch and compensation coils. It is also possible and more convenient to use magnetic
fields created by additional wired to create the longitudinal confinement. The most simple and
most commonly used technique is to bend the trapping wire to a Z-shape, as indicated in
figure (3.5). Here, the longitudinal confinement is provided by the same current, that (together
with the external bias field Bbias) also realized the trapping in the transverse plane [85].

In experiments presented in this manuscript, the Z-shaped configuration will be used as well
as an H-shaped wire structure, which allows for independent control of the transverse and the
longitudinal confinement. The following description will focus on the latter H-shape structure,
expressions for trapping position and trap frequencies can be transferred to the Z-shape case by
replacing the current IH in the “input leads” of the H by IZ = IH/2 (see figure (3.5)).

We assume the input leads of the H-structure carrying identical current IH in the same
direction, as indicated in figure (3.5). We will concentrate on the additional magnetic fields
created by these currents on the line of vanishing field of the side guide (x = 0, y = h). Around
the origin (|z| � L) and for h � L, the two lead wires create a field along z with a non-zero
minimum at z = 0, replacing the pinch coils in a standard Ioffe-Prichard configuration. In
contrast to the macroscopic setup, the field created at the minimum is rather small. Usually,
external coils producing an homogeneous magnetic field B0.z along z are used to increase the
field at the minimum position to B0.

The field produced by the currents in the input leads of the H-structure is (to first order) a
linear quadrupole field in the (O, y, z) plane, with primary axes turned by π/4:

By = B′
Hz

Bz = B′
Hy

}
where B′

H =
µ0

π

IH
L2
. (3.22)
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Usually, the gradient B′
H is much smaller than the transverse gradient B′, we define B′

H/B
′ =

h2/L2 ≡ α. The combined (linearized) fields created by the wire currents I and IH and the
homogeneous external fields Bbias and B0,z writes:

Bx = B′(y − h)
By = B′x+B′

Hz (3.23)
Bz = B′

Hy +B0,z.

By symmetry, the minimum of the combined magnetic field is located on the (x = z = 0) line,
where the quadratic field norm writes

|B|2 = B′2(y − h)2 + (B′
Hy +B0,z)2. (3.24)

The trap distance from the wire gets slightly reduced under the influence of the additional
longitudinal fields:

ymin = h−
B′2

Hh+B′
HB0,z

B′2 +B′2
H

. (3.25)

The additional fields do also slightly turn the principal axes of the new 3D trap with respect
to {ex, ez} [86]: by calculating the Hesse matrix to determine the trap frequencies, we find
off-diagonal elements. Diagonalizing this matrix gives new principal axes {e′x, e′z}, obtained by
rotating {ex, ez} by the angle α = B′

H/B
′ = h2/L2, as defined introduced. The trap frequencies,

defined as

ωi =

√
mF gFµB

m

∂2B

∂i2
with i = {x′, y, z′} (3.26)

can be determined from the magnetic field curvatures along the new principal axes. In the
transverse direction, we recover the result of the side wire guide (zero order term):

∂2B

∂x′2
=
∂2B

∂y2
=

B′2

B0,z
=

4π2B4
bias

µ2
0I

2B0,z
(3.27)

In the longitudinal direction we find

∂2B

∂z′2
= 6

B′2
H

Bbias
=

3µ2
0I

2
H

2π2BbiasL4
(3.28)

The longitudinal trap frequency is usually much below the transverse frequencies giving rise to
highly anisotropic traps. The trap aspect ratio is found to < = ω⊥/ω‖ =

√
Bbias/(6B0,zα2). In

experiments presented in this manuscript, aspect rations between 10 and 400 were realized.
The above discussion draws a simplified picture of the properties of a magnetic trap created

by a current carrying H-shape structure; often, only first order dependencies are carried out,
valid in the restricted region close to the trap minimum. A more thorough description of the
magnetic field configuration discussed here can be found in [73,87].

3.3.3 Complex geometries

The freedom to design almost arbitrary wire patterns using lithographical techniques from micro
electronics allows for the construction of increasingly complex magnetic trapping potentials, far
beyond what can be realized with conventional macroscopic trapping schemes. Miniaturizing
these structure leads to potential variations on the size of the trapped wave function and is
therefore especially suited for the realization of atom optical elements. Consequently, there
exists a vast numbers of proposals for wire geometries in the context of coherent manipulation
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of Bose-Einstein, see for recent reviews. In the following, we will briefly mention some of the
concepts and refer to the dedicated literature.

Already the building block of magnetic micro traps, the side wire guide, offers many possibil-
ities: by modifying or discarding the longitudinal confinement, ultra cold atoms can be released
into a magnetic guide in a controlled fashion [88]. In the simple scheme presented in section 3.3.1
(a straight wire and an external magnetic bias field) the necessity of an external field reduces
the flexibility of the setup. This can be overcome by using schemes involving two wires and a
vertical bias field [89, 90], or completely integrated patterns where also the “external” bias field
is (now locally) produced by neighboring wires [91,92]. The transport of ultra cold atoms along
curved guides has been experimentally demonstrated in [93,89].

The need for a more controlled transport of coherent ensembles along guides has led to
the development of conveyor belt structures [94, 95] which allow to separate the region where
the Bose condensate is created from the region where the experiment is performed or from a
detection facility.

Many schemes for the implementation of matter wave beam splitters and interferometers have
been suggested [96, 97, 92]. Due to technical and fundamental problems (loss channels, surface
effects, lack of adiabaticity), none of its implementations has so far succeeded to coherently
manipulate a Bose-Einstein condensate.

Magnetic micro traps provides by atom chips are well suited for the integration and combi-
nation with other than magnetic potentials acting on the atoms: static electric fields have been
used to implement a conveyor belt transport scheme. A Mach-Zehnder interferometer of the
Bragg type has been performed in a magnetic side wire guide, the mirrors directly mounted on
the chip [98]. Standing wave optical potentials using the chip as a mirror have been successfully
loaded with Bose condensates in the Heidelberg group.

In part 3 of this manuscript we will demonstrate how atom optical elements can be cre-
ated by a combination of static (trapping) fields and oscillating magnetic fields [99, 100]. The
arising adiabatic potentials have numerous advantages [Schneewittchen] over the purely static
configuration and allowed for the coherent splitting of a Bose-Einstein condensate on an atom
chip [101].

In addition to creation and manipulation of matter waves, there is an ongoing effort to
also integrate the detection on the atom chip. Especially high finesse cavity seem promising
candidates for even single atom detection and a possible achievement of the strong coupling
regime.



3.4 Surface effects 53

10
-1

10
0

10
1

10
2

10
 -2

10
 -1

10
0

10
1

10
2

trap distance to surfaceè         [µm]

a
to

m
 l
o

s
s
 r

a
te

  
[s -

1 ]

Figure 3.6: Atom loss rate due to thermally excited current in the atom chip. The solid line
indicates the loss rate for a gold half space. The dotted line corresponds to a thin gold layer
of 5µm, the dotted line is for a square cross section gold wire of 700 nm width. The atoms are
assumed at rest at the bottom of a magnetic trap of B0 = 1G.

3.4 Surface effects

In section 3.3.1 we described, how the magnetic field gradient and hence the confinement of
atoms in a magnetic wire trap can be increased by using smaller wires and bringing the trap
closer to the trapping structure. This miniaturization is limited by malicious surface effects,
which will be briefly discussed in the following.

3.4.1 Johnson Noise

We recall, that the atom chip and the trapping wire itself are assumed to be at room temperature
T ' 300 K. Conducting materials at non-zero temperature radiate an electromagnetic field,
created by the Brownian motion of the electrons (Johnson noise). As at least the trapping wire
itself consists of conducting material, this electromagnetic field can drive spin-flip transitions to
untrapped states and hence cause atom loss in wire traps in the vicinity of the surface. Additional
malicious effects as parametric heating of the atoms or surface induced decoherence may also be
present. They are described in detail in the work of Henkel and coworkers [102,103,104,105,106];
here we will exclusively consider loss processes.

The rate, at which an initially trapped atom in the state |mt〉 undergoes a transition to an
untrapped state |mu〉 can be found [103] as:

Γt→u =
1
~2

∑
α,β

〈mt|µα|mu〉〈mu|µβ|mt〉Sα,β(ωt,u), (3.29)

where α, β are elements of the Zeeman subspace, Sα,β(ωt,u) the power spectral density of electro-
magnetic noise at the frequency ωt,u, which denotes the difference in Lamor frequency between
the states |mt〉 and |mu〉. The calculation of the power spectral density is complex and strongly
depends on the actual experimental implementation. For a metallic half space [103] finds:

Sα,β =
µ2

0

(16π)2
kBT

ρh

(
1 +

2h3

3δ3

)−1

sα,β, (3.30)

where ρ is the metals resistance, T its temperature and δ the skin depth, defined as δ =√
2ρ/(µ0ωt,u). Figure 3.6 shows the atom loss rate in a trap at different distances from a
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metallic half space. This prediction has been verified experimentally in [107] using metallic
bulks of different materials. In chip experiments, the atom chip is composed of several (conduct-
ing and nonconducting) materials, multiple layers may introduce shielding effects [106], finite
wire dimensions have to be considered [104]. Also the extended theory has been well verified
experimentally in [108,106]. Figure 3.6 also shows the atomic loss rate above a thin gold film of
5µm heights, which is a typical height for wires in chip experiments, and for square cross section
gold wires of 700 nm width, as used in experiments presented in part 2 of the manuscript. It
becomes obvious, that for large atom-wire separations (h > 1µm), the half space assumption
overestimates the loss rate compared to realistic systems. Once, the distance becomes compa-
rable to the structure size, the atoms “see” more and more conducting material, around 1µm
distance, the loss rate is comparable to a bulk model and presents a significant obstacle for the
miniaturization of wire structures [105].

3.4.2 Technical noise

The expressions (3.29) and (3.30) and more refined considerations in the above literature allow
us to calculate the trap losses for a given spectral density of noise. The origin of this noise
may by fundamental, as the Johnson noise due to thermally excited currents in the conducting
materials; it may as well be technical, e.g. noise on the current sources providing the currents
in the trapping wires. The power spectral density of noise on a current SI directly translates
into magnetic field noise of power spectrum SB with

SB(ω) =
( µ0

2πh

)2
SI(ω). (3.31)

Reference [73] shows, that for a shot-noise limited current supply, the technical noise exceeds the
fundamental effect for atom-wire distances above 100µm. For smaller distances, fundamental
surface effects are dominant. Still it is a significant technical effort to reduce the technical
fluctuations to a limit, where fundamental effects become observable [108].



3.5 Random magnetic potentials 55

3.5 Random magnetic potentials

In essentially all realizations of magnetic wire traps that achieved Bose-Einstein condensation (or
atom clouds of sufficiently low temperatures), an unexpected phenomenon occurred: cold atomic
clouds break up into pieces when brought close to the trapping structure [109, 88, 110, 111, 73].
Extensive experimental studies could attribute this effect (also referred to as fragmentation)
to a random static magnetic field component Bz along the direction of the wire, introducing a
certain potential roughness and causing the atom cloud to fragment, once kBT < mF gFµBBz

(µ < mF gFµBBz for Bose condensates).
It was suspected, that corrugation of the trapping wire edges [112] (surface) or bulk impurities

might lead to a slight deviation of the current flow within the wire, creating additional magnetic
field components in the trapping potential.

The experimental proof of this theory for at least one specific realization of a magnetic
wire trap represents a major result of this manuscript and will be described in detail in part
2 [113]. Here, we will resume the theory, that allows to link geometrical deformations of the wire,
characterized by a spectrum of edge (surface) noise, to the resulting magnetic trapping potential
and the roughness therein. The following sections are resumed excerpts of the articles [92, 114]
which can be found in completeness in annexe 1.

3.5.1 Magnetic field roughness due to distorted current flow

In this section, we present a general calculation of the additional magnetic field created by
distortions in the current flow creating the trapping potential. By j we denote the current
density that characterizes the distortion in the current flow. The total current density J is equal
to the sum of j and the undisturbed flow j0 ez (axes defined in figure (3.7)). As the longitudinal
potential experienced by the atoms is proportional to the z component of the magnetic field, we
restrict our calculation to this component. We thus have to determine the x and y components
of the vector potential A from which the magnetic field derives. In the following, we consider
the Fourier transform of all the quantities of interest along the z axis which we define by

Al,k(x, y) =
1√

2π L

∫
Al(x, y, z) e−i k z dz , (3.32)

where l stands for x or y and L is the length of the wire.
The vector potential satisfies a Poisson equation with a source term proportional to the

current density in the wire. Thus the Fourier component Al,k satisfies:(
∂

∂x2
+

∂

∂y2

)
Al,k − k2Al,k = −µ0 jl,k . (3.33)

where jl is one component of the current density j. In the following, we use cylindrical coordinates
defined by x = r cos(ϕ) and y = r sin(ϕ). Outside the wire, the right hand side of equation (3.33)
is zero. The solution of this 2D heat equation without source term can be expanded in a basis
of functions with a given ”angular momentum” n. The radial dependence of the solution is
therefore a linear combination of modified Bessel functions of the first kind In and of the second
kind Kn. Thus expanding Al,k on this basis, we obtain the following linear combination for the
vector potential

Al,k(r, ϕ) =
n=∞∑

n=−∞
cln(k) ei n ϕ Kn(k r) . (3.34)

The cln(k) coefficients are imposed by equation (3.33), and can be determined using the Green
function of the 2D heat equation [115]. We obtain

cln(k) = −µ0

2π

∫∫
In(k r) e−i n ϕ jl,k(ϕ, r) r dr dϕ . (3.35)
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Figure 3.7: Schematic representation of wire corrugation. (a) Definition of axes. (b) Deviations
of the wire height from the nominal value U are denoted by fS . (c) Fluctuations of the left
(right) wire edge are denoted by fl (fr) and considered to be independent of x.

Taking the curl of the vector potential and using the relations K ′
n = −(Kn−1 + Kn+1)/2 and

2nKn(u)/u = −Kn−1 + Kn+1, we obtain the z component of the magnetic field from equa-
tion (3.34)

Bz,k = −k
2

∞∑
n=−∞

[cyn−1(k) + cyn+1(k)]Kn(k r)ei n ϕ

−i k
2

∞∑
n=−∞

[cxn−1(k)− cxn+1(k)]Kn(k r)ei n ϕ .

(3.36)

This expression is valid only for r larger than r0, the radius of the cylinder that just encloses the
wire. At a given distance x from the wire, we expect that only fluctuations with wavelengths
larger or comparable to x contribute to the magnetic field, since fluctuations with shorter wave-
lengths average to zero. Therefore we can simplify expression (3.36) assuming we calculate the
magnetic field above the center of the wire (y = 0) for x much larger than r0. The argument of In
in equation (3.35) is very small in the domain of integration and we can make the approximation
In(k r) ' (k r)n/(2n n!). This shows that the cln coefficients decrease rapidly with n. Keeping
only the dominant term of the series in equation (3.36), we obtain

Bz,k(x) ' −
cy0(k)
k

×
[
k2K1(k x)

]
. (3.37)

We will see in the next section that the first factor of this expression, characterizing the distortion
flow, is proportional to the power spectral density of the wire corrugation. The second factor
peaks at k ' 1.3/x justifying the expansion. Fluctuations with a wavelength much smaller or
much larger than 1/x are filtered out and do not contribute. As we approach the wire, more
and more terms have to be added in the series of equation (3.36) to compute the magnetic
field. We emphasize that the expressions derived in equations (3.36) and (3.37) are general
for any distorted current flow that may arise from bulk inhomogeneities or edge and surface
corrugations.

3.5.2 Current flow in a corrugated wire

We will now analyze the distortion of the current flow due to wire edge and surface corrugations
in order to determine the associated cln coefficients of equation (3.37). The wire is assumed to
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have a rectangular cross section of width W and height U as shown in figure (3.7).
We will first concentrate on the effect of corrugations of the wire edges, i.e. the borders

perpendicular to the substrate (model equivalent to [112]). The function fr/l that describes the
deviation of the right (respectively left) wire edge from ±W/2 is assumed to depend only on
z [116].

Conservation of charge and Ohm’s law give ∇J = 0 and J = −χ∇V where χ is the electrical
conductivity and V the electrostatic potential. We will make the approximation that χ is uniform
inside the wire (and thereby exclude the effect of bulk impurities from the analysis). In this
case, V satisfies the Laplace equation ∇2V = 0. As we are interested in deviations from the
mean current density j0 = I/(U W ), we introduce the electric potential v = V − j0 z/χ which is
equal to zero in the absence of deviations. From what we have said above, v only depends on y
and z and satisfies the 2D Laplace equation. The boundary conditions for the current density
on the wire edge require the current to be parallel to the wire edge. Thus v satisfies

dfr/l

dz
(z)×

[
j0 − χ

∂v

∂z
(y = ±W/2 + fr/l, z)

]
= −χ∂v

∂y
(y = ±W/2 + fr/l, z). (3.38)

In the following we assume the amplitude of fr/l to be small enough so we can make an expansion
to first order in fr/l of both terms. We then obtain a linear relation between v(±W/2, z) and
fr/l(z) which in Fourier space can be written as

i k j0 fr/l,k = −χ ∂vk

∂y
(y = ±W/2) . (3.39)

The potential v satisfies the 2D Laplace equation, so the k component vk(y) is a linear combi-
nation of e+k y and e−k y. The two coefficients are imposed by the two boundary conditions of
equation (3.39). To complete the calculation of these two coefficients, we introduce the sym-
metric component f+ = (fr + fl)/2 and antisymmetric component f− = (fr − fl)/2 of the wire
edge fluctuations. Going back to the current density, we obtain

jy,k = i k j0

(
cosh(k y)

cosh(kW/2)
f+

k +
sinh(k y)

sinh(kW/2)
f−k

)
. (3.40)

We note that the symmetric part (first term) of the current deviation is maximal near the wire
edges for components with a wave vector large compared to 1/W . On the other hand, the
components with a small wave vector are constant over the width of the wire.

A similar analysis may be performed to calculate the effect of surface corrugation on the
current distribution in the trapping wire. Here, fS denotes the fluctuations of the height of the
wire from its mean value U (see figure (3.7)). This calculation is slightly more complex, as it
involves a 3D Laplace equation and a 2D fourier decomposition (fS → fSk,m

) into wave vectors
k and m along the directions z and y. The calculation is carried out in [114] in annexe 1, here
we just give the result:

jxk,m
(x, y) = 2ikfSk,m

j0

√
π

W

∞∑
p=0

(
γm,p

sinh(νpx)
sinh(νpU)

sin((2p+ 1)πy/W )
)

(3.41)

jyk,m
(x, y) =2ikfSk,m

j0

√
π

W

∞∑
p=0

(
γm,p

cosh(νpx)
sinh(νpU)

(2p+ 1)π
νpW

cos((2p+ 1)πy/W )
)
. (3.42)

The Fourier components jlk , which allow for the calculation of the disturbed magnetic field
following equations (3.35) and (3.36), are obtained by summing equation (3.41) and (3.42) for
m = 1, . . . ,∞.
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3.5.3 Consequences for magnetic wire traps

In this section, we combine the results of the two previous sections to compute the z com-
ponent of the rough magnetic field in the specific case of a flat rectangular wire (U � W ).
This simplification enables us to obtain analytical results for a system that is widely used in
experiments [117,111,118,80,119,81].

We perform the calculation on the x axis for x > W/2 (and y = 0). Since the wire is
considered flat, we replace the volume current density j by a surface current density σ =

∫
j dx.

Then we can rewrite the cln coefficients of equation (3.35) as

cln(k)=−µ0

2π
(−i)n

∫ W/2

0
dyIn(ky)[σl,k(y) + (−1)nσl,k(−y)] . (3.43)

Effect of wire edge corrugation

In the case of a flat wire, the distorted current has no component along x. The associated
magnetic field is thus given by the first sum in equation (3.36). For ϕ = 0 and using Kn(kr) =
K−n(kr) and cy−n = (−1)ncyn (see equation (3.43)), we obtain:

Bz,k = −k
∞∑

n=0

(cy2n(k) + cy2n+2(k))K2n+1(kr). (3.44)

Since only coefficients cyn with even n contribute, we see from equation (3.43) that only the
symmetric part of the current density contributes to the magnetic field fluctuations. This is
expected from simple symmetry arguments. For the cy2n coefficients we find:

cy2n = (−1)n+1 µ0 I

πW
i k f+

k

∫ W/2

0
I2n(k y)

cosh(k y)
cosh(kW/2)

dy. (3.45)

The sum over the angular momenta n in equation (3.44) converges rapidly with n if x � W .
More precisely, the dominant term proportional to K1(k x) gives the correct result within 10 %
as soon as x > 1.5W . As x approaches x = W/2, more and more terms contribute.

We now derive the response function of the magnetic field to the wire edge fluctuation
for x > W/2 which we define as R(k, x) = |Bz,k/f

+
k |

2. It is shown in figure (3.8). As already
mentioned in the previous section, far away from the wire (x�W ), only wave vectors k � 1/W
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Figure 3.9: Magnetic field fluctuations 〈B2
z 〉 as a function of the (normalized) distance to the

wire. (left) The effect of edge corrugation saturates for small distances, as the distance to
the edges saturates very close to the wire surface. (right) The effect of wire surface roughness
becomes dominant for x ' 0, 1W and increases for smaller distances. (both) The solid line
indicates the analytical result for x > W and a numerical calculation for x < W . The dotted
lines are the 1/x5 scaling laws (3.47) and (3.48).

are relevant. We then can approximate the integral in equation (3.45) by expanding the integrand
to zeroth order in k y. Keeping the dominant term in the series that defines the magnetic field,
we obtain the following expression for the response function

R(k, x) ' (µ0I)2

4π2x4
(k x)4K2

1 (k x) . (3.46)

For a given height x, as k increases, this function increases from zero as k2, peaks at k = 1.3/x
and then decays exponentially. This behavior can be understood as follows: at low wave vectors,
the angle between the direction of the distorted current flow and the z axis tends to zero, thus
the contribution of these components becomes negligible. At high wave vectors, fluctuations
with a wave length much shorter than the distance to the wire will average out.

Assuming a white power spectrum of the wire edge corrugations with a spectral density
J+

e , we can integrate the equation (3.46) over the entire spectral range [120]. We then find the
following scaling law for the rms fluctuations of Bz with the atom-wire distance x:

〈B2
z 〉 = J+

e

(µ0I)2

x5
× 0.044 . (3.47)

The numerical factor has been found by a numerical integration of equation (3.46). Figure (3.9)
shows that this expression is valid within 10% as soon as x > 2W . For smaller distances x, the
fluctuations of magnetic field increase more slowly and tend to a constant [121].

Effect of wire surface corrugation

A comparable analysis is carried out in [114] to take into account the contribution of top surface
corrugation fS to the trapping potential roughness. We find a comparable scaling law:

〈B2
z 〉 = Js

W

U2

π

6
(µ0I)2

x5
× 0.044, (3.48)

where Js is the 2-dimensional spectral density of fS . Figure (3.9) compares this expression with
a numerical calculation [114].
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Orders of magnitudes, scaling laws

Comparing edge and surface corrugation, we see that for large distances, both effects scale in
the same way (see equations (3.47) and (3.48)). However, at small distances from the wire, the
amplitude of the magnetic field roughness produced by surface corrugation does not saturate.
Thus, we expect surface roughness to become the dominant source of magnetic field fluctuations
at small distances from the wire [122].

The scaling laws (3.47) and (3.48) are of major importance as they impose strong constrains in
the use of micro traps. As mentioned in section 3.3.1, high magnetic field gradients are achieved
with small wires and small atom wire separations. However, as the distance to the wire decreases,
the roughness in the magnetic trapping potential increases according to the above scaling laws.
Imposing a maximum potential roughness ∆Bmax tolerable in an experiment therefore directly
determines the maximal transverse gradient accessible with a specific realization of a micro wire.

More precisely, as mentioned in section 3.3.1, the maximum current in a micro wire is limited
by heat dissipation: Imax = ξWU1/2 [83]. To analyze the scaling of the system, we consider the
trap center at a distance comparable to the wire width x ' W and a wire height U small and
constant. For a given fabrication technology, we expect the wire roughness to be independent of
the wire dimensionsW and U and we assume white noise spectral densities Je and JS for the edge
and top surface corrugations [120]. Using the above expressions for x and I and equations (3.47)
and (3.48), we obtain the following scaling laws:

〈B2
edge〉 =

Jeµ
2
0ξ

2U

W 3
(3.49)

〈B2
surf〉 =

π

6
JSµ

2
0ξ

2

W 2U
(3.50)

for the magnetic field fluctuations induced by the edge and the surface roughness respectively.
Imposing magnetic field fluctuations smaller than ∆Bmax determines a minimal wire width

Wmin and the maximal transverse gradient B′
max. If the potential roughness is dominated by

effects due to wire edge corrugation, we find:

Wmin =
(
Jeµ

2
0ξ

2U × 0.044
∆B2

max

)1/3

(3.51)

B′
max =

1
2π

(
µ0ξ

√
U∆B2

max

Je × 0.044

)1/3

. (3.52)

For a potential roughness dominated by effects due to wire top surface corrugation, we find:

Wmin =
(
π

6
JSµ

2
0ξ

2 × 0.044
∆B2

maxU

)1/2

(3.53)

B′
max =

1
2π

(
U∆Bmax

JS
π
6 × 0.044

)1/2

. (3.54)

As will be described in part 2 of the manuscript, a micro wire fabricated by electroplating
presents an edge roughness of Je ' 0.1µm3. Neglecting top surface roughness, for a wire of
U = 5µm height, a typical ξ = 3 × 107 A.m−3/2 and imposing a maximal potential roughness
of ∆Bmax = 1mG, the wire width is limited to Wmin ' 700µm, the maximal gradient will be
limited to B′

max ' 2000 G/cm.
To draw full benefit from magnetic micro traps and the miniaturization approach, the prob-

lem of potential roughness has to be overcome; the fabrication quality of micro wires becomes
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a key point for the feasibility of many experiments (see part 2). A reduction of wire edge cor-
rugation by two orders of magnitudes (compared to the above example) has been achieved in
the Orsay setup by using state-of-the-art direct electron beam lithography, as will be described
in part 2 of the manuscript. Even smaller wire roughness has been reported by the Heidelberg
group [122].





Part II

A double well created by
nanofabricated wires
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Chapter 4

Static magnetic double well
potentials

4.1 Realizing the two modes model

In this section we briefly review some basic constrains on the design of the double well potential.
As outlined in section 2.1.1, one is aiming to realize the two modes model, where the tunnel
dynamics is governed by the two lowest lying (symmetric and antisymmetric) delocalized states,
separated by the energy ~δ (see figure (2.1)). To avoid excitations of higher modes, we impose
~δ � ~ω0 where ω0 denotes the trap frequency for one individual well and ~ω0 approximately
is the energy distance to the third level of the double well (see section 4.2 for a more complete
analysis of the two modes model in the presented system). Excitations are assumed to be
suppressed for δ ' ω0/10.

In a physical implementation of the system, the timescales of the tunnel dynamics have to
match the technical constrains imposed by the experimental setup. For an order of magnitudes
estimation, we assume a Bose-Einstein condensate to have a limited lifetime of 100 ms. To
observe several oscillations of a tunnel dynamic, we need a tunnel coupling on the order δ/(2π) '
10 ms. As the two modes model imposes δ ' ω0/10, it immediately becomes apparent, that
trapping frequencies of the order ω0/(2π) ' 1 kHz will be necessary. Using the expression (2.6),
we find r0/a0 ' 2, 45, where 2r0 describes the double well separation and a0 is the extension of
the (single particle) wave function a0 =

√
~/(mω0) in a harmonic trap of frequency ω0. As in a

trap of ω0/(2π) ' 1 kHz this extension is a0 ' 350 nm, the required double well separation is on
the order microns.

In conclusion, a realistic approach to realize tunnelling in a double well potential necessitates
high trapping frequencies (order kHz) and potential variations on small spatial length scales
(order microns). These may be provided by optical traps in standing wave [55] or tightly
focussed [43] geometries, or by using magnetic wire traps. As will be presented in the following,
in static magnetic traps based on current carrying wires, the size of the wires has to be on
the order of the double well separation. Therefore we have chosen to use nanofabricated wires
(700 nm width) on an atom chip to implement a magnetic double well potential in order to study
tunnelling dynamics in the Rabi and in the Josephson regime.

4.1.1 Accessing the Rabi regime

As outlined in sections 2.1.1 and 2.1.2, the Rabi regime describes the single particle tunnelling
dynamics, when the influence of atom-atom interactions can be neglected. This regime is of
particular interest, as it enables the construction of atom-optical elements as beam splitters
and interferometers based on tunnel coupling: we assume a double well system, in which the
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Figure 4.1: Schematic representation of a Michelson-type interferometer based or Rabi tun-
nelling. Two π/2 pulses are implemented by controlling the tunnel coupling, the phase accumu-
lated in the sequence can be read out as a population difference in the two wells.

height of the potential barrier can be modified at will, in particular, the tunnel coupling can
be switched between zero and ~δ. In the absence of tunnel coupling, we prepare a wave packet
|Φleft〉 localized e.g. in the left well. Turning on the coupling for a time τπ/2 = π/(2δ) realizes
a π/2 pulse (beam splitter pulse), preparing the wave packet in a (coherent) superposition
α|Φleft〉+α∗|Φright〉 with α = (1− i)/2. A second π/2 pulse implements an interferometer of the
Michelson type (see figure (4.1)) and allows for a precise measurement of the phase of the wave
functions, accumulated throughout the sequence.

The Rabi regime in 3D

To obtain tunnelling in the Rabi regime, the interaction energy has to be small compared to all
other energy scales, e.g. the kinetic energy of the harmonic oscillator ground state. Following
equation 1.24, we find the condition to neglect interactions writes

aho � Na, (4.1)

where aho is the extension of the wave function associated with the geometric mean of the
trapping frequencies ωho = (ωxωyωz)1/3 and a the s-wave scattering length. Assuming a 87Rb
Bose-Einstein condensate with a very small number of atoms N = 1000, we obtain a maximum
mean trapping frequency ωho/(2π) ' 5 Hz. A Rabi tunnelling in the two modes model would
have a tunnelling period of 2 s. We therefore believe it to be impossible to reach the Rabi regime
in a 3D geometry with today accessible experimental setups.

The Rabi regime in 1D

In contrast, the influence of interactions on the tunnelling dynamics can be massively reduced
when going to reduced dimensions. In a 1D configuration, where tunnelling takes place in one
of the transverse directions, the interaction energy ng has to be small compared only to the
kinetic energy ~ω0 of the transverse harmonic oscillator ground state, where ω0 can be very
high. With g = 4π~2a/m and n ' n1D/a

2
⊥, the condition to be in the 1D Rabi regime writes

n1Da � 1/(4π), the axial distance between the atoms has to be large compared to the s-wave
scattering length. For 87Rb atoms this translates to the condition n1D � 10µm−1. In an
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Figure 4.2: Different regimes of tunnelling dynamics in an elongated double well of ω0/(2π) =
3 kHz as presented in this manuscript. The solid line indicates the condition N<a/a0 � 1
which identifies the Thomas-Fermi 1D regime [29]. The dotted line corresponds to Λ = 1
and separates the Rabi and The Josephson tunnelling regime. Within the Josephson regime,
number oscillations of reduced amplitude can be observed for 1 < Λ < Λc. The dashed line
indicated Λc = 5, 5 corresponding to z(0) = 0, 6 and φ(0) = π. These oscillations are unstable
for too high trap anisotropy (left of the dotted vertical line). The light shaded area indicates
the parameter space that should in principle be accessible with our device. Random magnetic
potentials currently restrict the system to the dark shaded area.

experiment with 3000 atoms confined in a (boxlike) potential, the tunnel coupling has to be
constant to a few percent over a distance of more than 300µm. This seems feasible but still
represents a significant technical challenge as will be described in the following.

As outlined in section 4.1, a transverse trapping frequency of ω0/(2π) ' 1 kHz is desirable.
Using the condition χ = N<a/a⊥ � 1 to identify the 1D regime [29], we find a high trap aspect
ratio < � 50, which imposes a maximum longitudinal trapping frequency of ω‖ � 20 Hz.

4.1.2 Accessing the Josephson regime

If we relax the condition on the influence of interactions to µ� ~ω0 � ~δ, the system enters the
Josephson regime. Experimentally, this is much easier to realize, as less anisotropic condensates
can be used and stable tunnelling has to be realized over a smaller spatial region. However, as
µ� ~δ, Λ > 1 (compare section 2.1.2) large amplitude oscillations in double well population are
rapidly suppressed (macroscopic quantum self trapping). Oscillations of small amplitude may
be observed for a narrow parameter regime 1 < Λ < Λc with Λc defined as in (2.26) [55].

Different regimes of phase dynamics may be realized even in the“locked”system [55,50]. They
may be read out by analyzing matter wave interference fringes or by Bragg spectroscopy [123].

Figure (4.2) shows different regimes for a trap of ω0/(2π) = 3 kHz, as experimentally realized
with the wire pattern presented in section XYZ. We have assumed an initial population imbalance
of z(0) = 0, 6 (φ(0) = π) which leads to Λc = 5, 5. The light shaded parameter area may in
principle be investigated with our device. However, random magnetic potentials as described
in 3.5 do cause the atom cloud to fragment, leading to high local longitudinal trapping frequencies
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Figure 4.3: Schematic representation of the two wire beamsplitter/double well scheme proposed
by [96]: for a small external bias field, two trap minima form an a vertical line (left). They
merge at the coalescence point located at a distance d from the surface for Bbias = Bc (center)
and horizontally split for larger bias field (right).

and a reduction of the parameter region as indicated by the dark shaded region.

Avoiding dynamic instabilities

In very elongated geometries, the uniform Josephson mode is unstable and decays to modes
of non-zero longitudinal momentum as outlined in section 2.1.3 [58]. This can be partially
suppressed by reducing the longitudinal size of the system and thereby the number of accessible
modes. Almost total suppression is possible when choosing

ω‖ '
z(0)
2
ωJosephson, (4.2)

where z(0) is the initial population imbalance. As δ ' ω0/10 < ωJosephson < ω0, it becomes obvi-
ous, that low aspect ratio traps are favorable for the suppression of dynamic instabilities. This is
in conflict to the above discussion, where high aspect ratios where found to enable observation of
number oscillations in the Rabi and Josephson regime. An experimental implementation aiming
to observe both regimes in an elongated geometry will therefore comprise a compromise between
both effects, dynamical instabilities will always be present.

The vertical dotted line in figure (4.2) indicates the longitudinal trapping frequency, from
which on instabilities are suppressed (right of the line) in a trap of ω0/(2π) = 3 kHz and z(0) =
0, 6. For simplicity, we have assumed ωJosephson ' ω0/10.
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Figure 4.4: Tilting the double well: a small magnetic field b splits the double to a radius
r0 =

√
A/b, rotating this field by θ rotates the double well by −θ/2. A field b orthogonal to the

chip surface rotates the double well to 45◦ which allows for horizontal splitting, when the chip
is mounted under the same angle as in the Orsay setup.

4.2 A 1D double well based on magnetic micro traps

Starting from the side wire guide (compare section 3.3.1), the most simple configuration to create
a double well is to use two parallel wires [96]. Indeed, it has been shown, that in a planar wire
configuration, the number of necessary wires is equal to or larger than the number of potential
minima [124].

4.2.1 A two wire geometry

We assume two parallel wires separated by 2d, carrying an equal current I as indicated in
figure (4.3). For an external bias field Bbias < Bc two quadrupole traps are formed on a vertical
line between the two wires. For Bbias = Bc, the two quadrupoles coalesce to form a field of
hexapole shape with a single potential minimum at a distance d from the wire surface. For
Bbias > Bc the hexapole again splits vertically into two quadrupole traps. As in most atom chip
experiments the chip surface is mounted horizontally, the horizontal splitting is favorable, as
both wells are equally effected by gravity.

For the theoretical description of the system, it is convenient to consider the situation Bbias =
Bc and add a small additional homogeneous field b to describe the splitting of the hexapole.
Around the hexapole minimum, the magnetic field writes

Bx = A(y2 − x2) and By = 2Axy (4.3)

where we have positioned the reference system at the coalescence point and

A =
µ0I

2πd3
(4.4)

describes the strength of the hexapole field in analogy to the gradient describing the strength
of a quadrupole field. The critical bias field Bc to superimpose both quadrupole traps at the
coalescence point is

Bc =
µ0I

2πd
= Ad2. (4.5)

Adding a small homogeneous field b to Bc will split the hexapole into two quadrupole traps
separated (to first order) by

r0 =

√
b

A
. (4.6)

If the field b makes an angle θ with the horizontal x axis, the two trap minima will be located
on a line which makes an angle −θ/2 with the x axis. By rotating the external field b, the
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minima of the double well can be rotated on a circle of radius r0 (see figure (4.4)). Applying e.g.
a field orthogonal to the chip surface will create a double well tilted by 45◦, which is especially
convenient in the Orsay experiment, where the atom chip is mounted under an angle of 45◦

(compare section XYZ). In the following we assume a reference system rotated by the angle
−θ/2, so that the new x′ axis contains both trap minima.

To prevent Majorana spin flip losses at the potential minima, we superimpose a homogeneous
longitudinal (“Ioffe”) field B0. In the harmonic approximation and using the new defined axes
{x′, y′} the 2D double well potential writes

V (x′, y′) =
mω2

0

4
y′2 +

mω2
0

4x′20
x′2y′2 +

mω2
0

8x′20

(
x′2 − x′20

)2
, (4.7)

where x′0 = r0 =
√
b/A is the position of the trap minima and

ω0 =
√

4mF gFµBAb

mB0
(4.8)

the trap frequency at the individual wells. On the x′ axis (y′ = 0) we recover the generic double
well potential (2.1).

To verify for the two modes model, we have numerically calculated the single particle tunnel
coupling ~δ for the potential (4.7) and compared to the energy separation to the next lowest
lying state for different ratios r0/a0 where a0 =

√
~/(mω0) denotes the size of the single particle

ground state. As indicated in figure (4.5), we find a ratio of r0/a0 = 2, 65 to verify ω2,0 = 10δ
and therefore guarantees for tunnelling in the two mode approximation.

The two wire configuration therefore seems in principle well suited for the realization of
a tunnelling experiment in an elongated geometry. In practice, this setup is very sensitive to
noise in the currents and magnetic fields: as an example we will analyze fluctuations in the trap
distance due to instabilities in the external field b effectuating the splitting. From (4.6), (4.7)
and (4.8) we derive

δr0
r0

=
1
2
δb

b
=

1
2
d2

r20

δb

Bc
. (4.9)

This illustrates, that stability can be increased using small wire separations (comparable to the
desired double well separation) and large external fields Bc. The smallest wires we could create
within our collaboration with the LPN were of 500 nm square cross section, separated by 2.5µm.
To obtain a tunnel frequency of δ/(2π) = 100 Hz within the two modes model, a trap separation
of 2r0 = 520 nm has to be realized. To create the hexapole trap, an external field of 16G is
necessary, a small field of 183 mG will split the trap to the desired separation. A magnetic field
fluctuation of 2mG causes a change of the tunnelling frequency of 10%. This means, that a total
external magnetic field of about 16 G will have to be controlled on the level of 2 mG (neglecting
possible fluctuations of the wire current). We believe a magnetic field homogeneity and stability
of 10−4 over the entire coupling region (200-500µm) to be out of reach for our experimental
setup, even using passive or active magnetic shielding.

4.2.2 A five wire geometry

To circumvent these stability problems, we decided to use a system, where the magnetic fields
forming the hexapole trap are entirely generated by current carrying chip wires. The final
splitting into the double well potential is still performed by adding a small homogeneous external
field b, which now only has to be stable on the percent level.

In analogy to the self-sustaining three wire traps [91], consisting of a main side guide wire
and two parallel wires, replacing the external bias field, we developed a five wire geometry to
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Figure 4.5: Bohr frequency between the (symmetric) single particle ground state of the double
well and the first two nearest lying states. The dashed vertical line indicates r0/a0 = 2, 65,
where ω2,0 = 10ω1,0 = 10 δ.
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Figure 4.6: Five wire configuration to realize a stable hexapole magnetic field (left). Equal
current in all wires create a single trap directly above the central wire. Additional contacts on
the wires in series allows for individual control of the currents in outer two branches and the
central wire (right). By des-equilibrating these currents, the hexapole can be moved on a circle
of radius

√
3d (left). The splitting can be either performed by an additional external field b or

by increasing the central wire current.

create a stable hexapole field. As the same current will be used in all five wires, a high level of
noise rejection can be obtained. By using sufficiently long wires, this stability can be realized
along the entire coupling region, only limited by the precision of the lithographic fabrication
process.

The five wire structure can be understood as two close-by three wire traps, where the two
central wires were merged into one in order to approach the two wells. We find it interesting
to note, that a hexapole magnetic field can not we created by less than five wires in a planar
geometry [124]. As the wire system will be symmetric, only two distances d and D completely
determine the pattern, as indicated in figure (4.6). We are now interested to find the distances,
where the same current I in all wires creates a single trap of hexapole shape. For symmetry
reasons, this trap will be located on the y axis, along this axis the magnetic field writes

Bx =
µ0I

2π

(
2y

D2 + y2
− 2y
d2 + y2

+
1
y

)
. (4.10)
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This field has a double zero, which indicates the hexapole configuration for D = 3d. The height
of the hexapole trap above the central wire will be y0 =

√
3d. The position of this coalescence

point is exclusively fixed by the wire pattern, it does not depend on the current in the wires.
A development of the magnetic field around the hexapole position gives

Bx = A′(x2 − y2) (4.11)
By = −2A′xy (4.12)

where A′ = (1/2
√

3)A and A defined as in (4.4). Apart from the factor 1/2
√

3, the five wire
configuration with wire separations d (2d for the wires of equal current) and 3d creates an
identical magnetic field as two wires separated by 2d together with an external magnetic field
Bbias = Bc. The potential around the hexapole configurations is well described by (4.7), the
two modes model is equally valid for r0/a0 = 2.65. However, the problem of magnetic field
fluctuations is transferred to stability constrains on the wire current and the precision of the
lithographic process. Using actively stabilized current drivers, it is relatively easy to obtain a
current stability of δI/I < 10−4. The quality of the micro fabricated wires still represents an
issue as already outlined in section 3.5.

The splitting of the magnetic hexapole into a double well is realized analogous to the two
wire system by adding a small homogeneous field b. As the above example illustrates, a field
stability of 1 % over the coupling region is sufficient to allow for stable tunnelling, which we
believe to be feasible in our experimental setup.

In our experimental realization of the five wire scheme, it is possible to also individually
control the currents in the wires, as indicated in figure (4.6). By Ileft (Iright) we denote the
current in the left (right) outer two wires, Icenter is the current in the central wire. By des-
equilibrating the currents in the outer wires, it is possible to move the coalescence point on a
circle of radius

√
3d:

sin θ = − 2√
3
Iright − Ileft
Iright + Ileft

. (4.13)

The current in the central wire has to be adapted accordingly, to realize the hexapole configu-
ration at Icenter = Ic. For Icenter > Ic, the two wells will be located on a line tangential to the
circle of radius

√
3d as depicted in figure (4.6). Consequently, by controlling the currents in the

wires individually, the double well can be realized under an arbitrary angle without the need of
any external fields. Of course, using different currents in the wires reduces the noise rejection
of the setup. Whether an external field b or three separate currents are easier to stabilize, will
have to be decided experimentally.
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Figure 4.7: Stability diagram for the magnetic double well based on a five wire geometry. The
shaded area represents the parameter sets for wire separation d and double well separation r0
for which stable tunnelling is possible, assuming random ambient magnetic field fluctuations of
1 mG. Details on the different delimiting processes are given in the text. The dashed vertical
line indicates our device at d = 2, 5µm.

4.3 Stability of the double well

We will now perform a stability analysis of the five wire double well configuration, in order to
determine the appropriate size of the setup. The system is characterized by the wire separation
d, the wire current I, a small homogeneous field b effectuating the double well splitting 2r0 and
the longitudinal (“Ioffe”) field B0 which suppresses Majorana spin flip losses at the trap minima.

We assume equal and noise-free current I in all five wires, creating a non-fluctuating magnetic
hexapole field at a distance

√
3d from the chip surface. To analyze the scaling of the system, we

will relate the wire current to the wire separation: as the trap distance from the wires is on the
order of the wire separation, we will use square cross section wires of width (and heights) W ,
where W = (1/5) d, to be able to neglect finite size effects. These wires can carry a maximum
current Icrit =

√
κ/(αρ0)W 3/2 = ξd3/2 limited by heat dissipation to the chip substrate (compare

equation (3.20)). Based on test measurements we choose ξ = 1, 8 · 106 Am−3/2, which is in
agreement with the value measured by the Heidelberg group [83]. The strength of the hexapole
field created by the five wire geometry is thus only determined by the wire separation: A =
(µ0ξ)/(2

√
3πd3/2).

The splitting of the hexapole into the double well trap is performed by a small homogeneous
magnetic field b in arbitrary direction, realizing a well separation of 2r0 = 2

√
b/A. To guarantee

tunnelling dynamics in the two modes approximation, we will add a longitudinal field B0, so
that r0/a0 = 2.65. This longitudinal field is therefore related to the double well separation. For
technical reasons, we will limit this field to 100 G.

Consequently, the system is totally determined by the wire separation d and the double well
separation 2r0. We will now analyze the effects of fluctuations in the fields B0 and b on the
tunnel coupling. The wire current is assumed to be stable at the 10−4 level.

Two major effects might degrade the measured signal in a tunnel experiment:

• Fluctuations in tunnel coupling: Noise on the additional external magnetic fields B0 and
b or random magnetic field components might alter the tunnel coupling (e.g. modify the
trap separation). This effect will degrade the signal of an experiment, which reads out
relative population in the two wells (e.g. Rabi or Josephson oscillations). As criterion for
the feasibility of a tunnel experiment, we will tolerate a modification of the tunnel coupling
up to 10 %.
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• Tilting of the double well: Noise on the additional external magnetic field b or random
magnetic field components will modify the position of the static trap and in result tilt the
double well. A height difference h of the two wells induces a potential energy difference
mgh, which leads to a corresponding (arbitrary) evolution of the differential phase. This
effect will degrade the signal of an experiment, which reads out the relative phase of the
two condensates. As criterion for the feasibility of a tunnel experiment, we will tolerate
differential energy shift of 10 % of the tunnel coupling (mgh = 0.1 δ).

We will first concentrate on variations of the tunnel coupling ∆δ due to fluctuations in the
longitudinal (B0) or transverse (b) field. From the numerical calculations performed to check
for the two modes assumption (figure (4.5)), we obtain the dependencies:

∆δ
δ

= −2, 40
∆r0
r0

− 2, 18
∆ω0

ω0
(4.14)

= −4, 27
∆b
b

+ 1, 09
∆B0

B0
. (4.15)

If we impose ∆δ/δ = 0.1 on the stability on the tunnel coupling, the stability of ∆b/b and
∆B0/B0 has to be on the same level which is easy to achieve with an experimental setup designed
for he creation of Bose-Einstein condensates. Still, random additional magnetic fields due to an
electromagnetic environment may be problematic. We assume, that some experimental effort has
been employed (e.g. passive or active shielding) to reduce these fluctuations to approximately
1 mG. As can be seen from equation (4.15), mainly noise ∆b in the transverse direction has an
influence on the tunnel coupling, as usually B0 � b. Only considering this leading term, we
obtain

∆δ
δ
' −4, 27

√
3π
µ0ξ

d3/2

r20
∆b. (4.16)

Thus imposing ∆δ/δ = 0.1 and ∆b = 1mG restricts the double well separation r0 to the domain
above the solid line in figure (4.7).

We now focus on the calculation of the fluctuations of the gravitational energy shift between
the two wells. Transverse magnetic field fluctuations ∆b lead to fluctuations ∆h = ∆b/(Ar0) of
the height difference between the wells. The associated fluctuations of the gravitational energy
difference have to be small compared to the tunnel coupling so that the phase difference between
the wells is not significantly modified throughout one oscillation in the double well. The ratio
of these two energies is

mg∆h
~δ

' 2, 37
√

3πm2

µ0ξ~2
r0d

3/2∆b. (4.17)

Again, fixing this ratio to 0,1 and assuming ∆b = 1 mG restricts the accessible double well
splittings to the parameter region below the dashed line in figure (4.7).

For each double well separation 2r0, the longitudinal field B0 has to be adapted to ensure
r0/a0 = 2, 65. As for small wire structures the trap frequencies increase, the longitudinal field
has to increase accordingly. For technical reasons, we limit this field to 100 G, which restricts
the domain of accessible parameter sets for d and r0 to the region below the dash-dotted line
in figure (4.7). In contrast, for very small double well separations, the trap frequencies are low
and therefore also the longitudinal field is reduced. The condition to suppress Majorana losses
(mF gFµBB0 > 10~ω0) restricts the double well separations to the region above the dotted line.

As can be directly seen from figure (4.7), the wire separation d has to be below 5µm to
ensure stable tunnelling in the two modes approximation, even with a noise rejecting five wire
configuration.
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Experimental setup

Intro, read Jerome, Christine, Collaboration, Dominique , Gian-Carlo

5.1 A single layer atom chip for Bose-Einstein condensation

The first chip generation, as it will be described in the following, was designed to create a
Bose-Einstein condensate in a simple, single chamber experimental setup. With this chip, we
obtained condensation in March 2003 and performed an in-depth study on random magnetic
potentials created by current deviations in the chip wires, as will be presented in chapter 6 of
this manuscript. We will start by resuming the design considerations for a single layer atom
chip and describe the different fabrication steps.

5.1.1 Design considerations

In a simple single chamber setup, as employed in the Orsay experiment, the atom chip fulfills
many purposes throughout the creation of a Bose-Einstein condensate:

• The surface of the atom chip serves as a mirror in a reflection magneto optical trap (MOT)
for the atoms in the first stage of optical cooling. Furthermore, the imaging beam is re-
flected on the chip surface. This surface therefore has to be of optical quality for light of
a wavelength of 780 nm. Large wavelength corrugation has to be avoided in order not to
deform the image of the atomic cloud. As coherent light is used for the imaging, scattering
on edges or relief on the chip structure will lead to interference effects and therefore regions
of vanishing probe beam intensity.

• In the surface magneto optical trap, the atoms are located about 10 mm from the chip
surface. In order to approach the atoms in a controlled fashion, the MOT is transferred
to a distance of about 2 mm with the help of a U shaped wire structure [125] on the atom
chip. As this structure has to create important magnetic field gradients (10-20 G/cm) far
from the wire, a significant current has to be employed (≈ 5A). The size of the structure
has to match the capturing area of the MOT and is therefore of several millimeters.

• The optically pre-cooled atoms are recaptured in a magnetic wire trap based on a Z shaped
wire, as described in 3.3.1. The position of this trap has to be matched to the position
of the atoms after the pre-cooling, additionally, this trap has to be sufficiently deep to
capture the atoms at around T ' 100µK. This again necessitates high currents in the Z
shaped structure (≈ 2 A). However, in a phase of compression, the atoms will be brought
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Figure 5.1: Design layout of the first generation atom chip. Note that all wires are connected
among each other.

closer to the wire, in order to increase the atomic density and the elastic collision rate.
As outlined in 3.3.1, the confinement of a magnetic trap is limited by the finite size of the
wire. Therefore, a small wire structure is preferable.

• In a highly integrated setup, a limited number of vacuum connections to contact the atom
chip is available. In our setup, all necessary wire currents have to be created using 8
contacts.

In conclusion, the first atom chip generation was designed to allow for high wire currents in
comparably large structures. Still, a low wire aspect ratio (ideally square cross section) would
be preferable in order to reduce finite size effects and allow for highly compressed traps. We
therefore decided to use electroplating as basic fabrication technique, as it enables the creation
of rather high wires (≈ 10µm, compared to ≈ 1µm for evaporation).

The choice for the employed materials was motivated by the need of high wire currents. As
outlined in section 3.3.1, the maximum current in a wire is determined by the dissipation of
ohmic heat to the chip support.

For the chip carrier substrate we chose a single crystal silicon wafer of 250µm thickness.
Silicon is an excellent thermal conductor (K=1,46×104 WK−1m−2) and a standard material in
microchip fabrication. As silicon is a semiconductor, the substrate has to be covered with an
insulation layer before the chip wires can be fabricated. This is usually done by oxidizing the
substrate at high temperature and thereby creating a layer of insulating SiO2. As silicon oxide is
a bad thermal conductor (K=6,5×108 WK−1m−2), this layer has to be kept as thin as possible.
We found a layer of 200 nm sufficient to suppress current leaks to the substrate. The chip wires
are fabricated in gold, which has low ohmic resistance (ρ0 = 2, 2×10−8 Ωm) and can conveniently
be used in thermal evaporation as in electroplating.

5.1.2 Wire pattern

Figure 5.1 shows the wire pattern of the first generation of atom chips used in our setup. It
contains a large U shaped wire of 400µm width and a central region of 2400µm length. With a
height of ≈ 5µm it should be able to carry up to 25 A continuous current. In experiments, we
used up to 5 A without observing any heating or degradation of the wire.

Close-by, we fabricated a Z shaped wire of 50µm width and 2840µm length in the central
region, the current is brought to this wire by connection leads of 200µm thickness. This wire
can theoretically carry 4 A continuous current and was used up to 3A in the experiment. The
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Figure 5.2: Fabrication steps of the first generation single layer atom chip. The different
processes are explained in the text.

first Bose-Einstein condensate achieved with the setup was created in a magnetic trap provided
by this wire. This magnetic trap and the wire itself have been investigated in great detail in
order to understand the origins of random potential roughness, as will be presented in chapter
6 of this manuscript. A second Z shaped wire with the same dimensions was used as a radio
frequency (RF) antenna in evaporative cooling.

Between the two Z wires, a grid of 38 parallel wires of 10µm width, separated by 50µm was
fabricated to create an array of parallel traps. These wires were never used in an experiment.

All the wires in the central region of the atom chip are connected to contact pads of 3 mm×
3 mm size at the side of the chip. A ribbon of copper wires of the same size will be mechanically
clamped on the pads to link the chip wires to the vacuum feedthrough as will be described in 5.3.

5.1.3 Fabrication

The basic techniques used for the fabrication of the atom chip are optical lithography and
electroplating. Optical lithography allows for the creation of structure sizes of ≈ 2µm over a
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large spatial surface (several cm2). The resolution is limited by the wavelength of the (UV) light
used for the process (≈ 400 nm). Electroplating allows for the creation of high wire structures
(≈ 10µm) in reasonable time.

Mask preparation

A mask for optical lithography consists of a thin glass plate carrying a chrome layer which
absorbs the UV light in the exposure of the photoresist. The chrome layer is patterned to carry
a negative image of the design to be fabricated. This first “parent” lithography is performed
in dedicated electron beam writers. Electron beam writes obtain a very high spatial resolution
(≈ 10 nm) over a reduced field of view (20µm×20µm for the JEOL), to cover larger spatial
regions, the sample is displaced mechanically with interferometric precision. In this way, the
high resolution of the electron beam can be transferred to a total area of up to 10 cm×10 cm.
Depending on the surface of the pattern negative, the fabrication of a mask takes up to 20 h. The
mask for the first atom chip generation was generated by a JEOL JBX 5D2U with a resolution
of 20 nm.

Substrate preparation

As a chip carrier substrate we chose single crystal silicon wafers, which are semiconductors.
Therefore, currents might leak from the wires into the substrate, if the wires were directly
fabricated on the silicon. To ensure electrical insulation, we thermally oxidize the waver to
create a layer of (non-conducting) SiO2. The wafer is heated to 950◦ C under continuous flux of
H2 and O2 in a dedicated oven. Within 1 h, a layer of 200 nm is created, which is sufficient to
ensure electrical insulation.

Before starting the actual lithographic process, we create a thin gold layer on the entire
substrate, which serves as a “seed” for the electroplating (see figure (5.2a)): a thin Ti layer
(200 ) is evaporated on the entire substrate, followed by a 200 nm layer of Au. The Ti layer is
necessary, as the gold does not stick very well on the SiO2 and tends to peel off in the absence of
a Ti contact layer. As Ti and Au have comparable thermal properties, this layer does not affect
the heat dissipation from the wire. Both layers are deposited by thermal evaporation under
vacuum.

Optical lithography

In the process of optical lithography, the prepared wafer is covered with a photoresist (AZ4562),
spinned to the substrate (4000 rpm) and cured for 3 min at 120◦ C. These values are optimized
to obtain a maximum thickness of the resist (limiting the height of the wires) of 6,2µm. The
wire pattern is transferred to the photoresist by illuminating it through the mask for 120 s with
UV light (see figure (5.2b)). The resist is developed (AZ400K, diluted 1:3, 60 s), washing away
the exposed regions and allowing direct excess to the seed gold layer (figure (5.2c)).

Electroplating

The electroplating is performed in a bath of gold-cyanide solution (PurAGold 402), which is
temperature stabilized to 40◦ C and kept under constant circulation. The chip is mechanically
fixed to a non-conducting mount and contacted with a single, capton-isolated wire. The part
of the seed layer, which has become accessible in the lithographic process defines the chip wires
and acts as a cathode in the electroplating. For convenience, the pattern has been designed to
provide a single closed circuit, all wires are connected among each other.

The thickness of the deposited gold layer calculates to h = 1, 05 j t using Faradys law, where
j is the current density and t the time of deposition. As the surface of the wire pattern is
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≈1,5 cm2, we chose a current of 4 mA to fill the gaps in the photoresist up to 6µm within 40 min
(see figure (5.2c)). The speed of deposition depends delicately on the concentration of dissolved
gold, the deposition process has to be monitored carefully to avoid the wire height to exceed
the photoresist thickness (figure (5.2d)). Lower currents lead to a more uniform growth of wires
over the region of the chip.

After the deposition of gold is finished, the photoresist is washed away by the help of ultra-
sound in a acetone bath. At this point, all wires are still connected by he seed layers of Au and
Ti (figure (5.2e)). The gold seed layer is dissolved in a solution of potassium iodide-iodine for
about 60 s which also reduced the gold wires by ≈ 200 nm. To finish, the Ti contact layer is
etched away by dry reactive ion etching (DRIE) (figure (5.2f)).

The chip mirror

To fabricate a mirror of sufficient optical quality on the atom chip, we use a planarizing resin
(BCB, Cyclotene 3022) to level the wire relief of ≈ 6µm. When cured in the absence of oxygen
(400◦ C for 2 h under continuous flux of N2 and Ar), the resin is UHV compatible. The BCB
manages to planarize small scale variations (≈ 1µm) of the underlying chip structure and locally
creates a smooth surface of good optical quality (figure (5.2g)). However, large surface structures
(e.g. connection pads, the 400µm U shape structure), create plateaus, that can not be levelled
entirely by the resin. Consequently, the surface reproduced the underlying pattern in a washed
out fashion, as indicated in figure (5.2g)).

To allow for electrical contact, the connection pads are uncovered from BCB by reactive ion
etching, the central region of the chip being shielded from the (directional) ions by a silicon plate
of appropriate size (figure (5.2h)). A thin layer (200 ) of gold is evaporated onto the BCB in the
central chip region to realize the mirror for 780 nm (figure (5.2i)).

The waviness of the chip mirror significantly perturbs the wave front of the MOT beams,
creating regions of low intensity close to the surface and hence a reduced capturing of atoms from
background gas. The quality if the images taken with a reflected probe beam is less affected, as
the imaged object is small compared to the wavelength of corrugations in the mirror.
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5.2 A double layer atom chip for realizing a magnetic double
well

The second generation of atom chip was designed to realize a magnetic double well potential
for Bose-Einstein condensates, as described in chapter 4 of the manuscript. The fabrication
started in November 2004 and took about 5 month. This chip is currently under vacuum and
first measurements performed are outlined in section 6.3.

5.2.1 Design considerations

The design of the second chip generation was in many respects influenced by the experiences
made with its precursor: the transfer of optically pre-cooled atoms from a reflection MOT to
the atom chip with the help of a U shaped wire structure worked satisfactory with the chosen
currents and dimensions. Efficient loading of the magnetic trap created by a Z shaped wire
structure could be performed, a significant compression of the magnetic trap allowed for efficient
evaporative cooling within only 4 s [87].

However, some severe disadvantages showed up in the first design. The central part of
the Z shaped wire was designed rather long to capture a large number of atoms far from the
surface. When the magnetic trap was compressed and brought close to the trapping wire, the
longitudinal trap frequency was reduced to a few Hz, imposing a limit on the elastic collision
rate and creating difficulties concerning adiabaticity. We therefore decided to replace the Z
shape structure by an H geometry as shown in figure XYZ and described in section 3.3.2. By
the use of three independent, floating power supplies, the currents in the central part of the H
structure and in the connection leads can be controlled individually, allowing for independent
control of the transverse and the longitudinal trapping frequency. The payoff for this flexibility
is the consumption of 4 (out of 8) connections on the atom chip.

Cold atom clouds were observed to fragment in the vicinity of the trapping wire. We at-
tributed this to disturbed currents, meandering within the wire [126] and creating random
additional magnetic field components. Within this assumption, reducing the dimensions of the
wire would reduce the amplitude of the current fluctuations and consequently create a smoother
potential. We therefore decided to fabricate square cross section wires for the next chip genera-
tion.

The low quality of the gold mirror on the atom chip created regions of reduced light intensity
within the intersection area of the MOT beams and strongly reduced the number of pre-cooled
atoms. To increase the surface quality and especially level large wavelength corrugation still
present in the BCB layer, we learned how to mechanically polish the hardened BCB to sub-
lambda quality.

As described in section 4.3, the creation of a stable magnetic double well potential based on
a five wire structure necessitates the fabrication of sub-micron chip wires (≈ 500 nm). In such
a double well, the atoms will be located a few microns above the trapping wires and will be
extremely sensitive to random magnetic potentials. Consequently, the wire quality has to be
improved by several orders of magnitudes compared to the first generation atom chip. These
strong constrains are impossible to meet with fabrication techniques based on optical lithography
and electroplating. We therefore decided to use direct electron beam lithography and gold
evaporation to create the small wire structures. As this technique resembles in many aspects
the procedure for the creation of optical masks, it should be possible to obtain a comparable
resolution (≈ 10 nm) over a sufficiently large area.

In a first attempt, we tried to use a fabrication similar to the first chip generation to create the
large wire structures and additionally fabricate the small wires directly in the planarizing BCB
layer. This approach was not successful for two reasons: in the first place, BCB turned out to
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be a very bad thermal conductor (K=3,24×1010 WK−1m−2). As the thickness of the BCB layer
could not be controlled entirely in the mechanical polishing, we usually ended up with several
microns of BCB, entirely isolating the small wires from the chip substrate. Due to lack of heat
dissipation, the necessary continuous currents (20 mA) could not be send without destroying the
structure. Secondly, as will be described in the following, the fabrication of a complete atom
chip involves more than 30 different steps. Some of these procedures are extremely delicate
and depend on the performance of the employed machines, the purity of involved materials and
demand certain skills in handling and manipulation. The probability to successfully complete
all steps diminishes with their number and in our case lead to a loss rate of over 80%.

To circumvent these problems, we decided to realize the two different spatial scales by two
different techniques of fabrication on separate chips. As in this approach, the small wires were
directly implemented on separate, thin (90µm) Si wafers, the problem of heat dissipation could
be easily overcome. By separating the two main fabrication processed, many samples could be
produced in parallel and only the successful ones were assembled to a double layer atom chip.

In the following, we describe the fabrication of the two individual chip layers and how they
are joined. As the decision for separate fabrication was taken in the middle of the process, some
inconsistencies will show up in the design, e.g. the interconnection of the two layers is somehow
improvised.

5.2.2 Fabrication of the large structure carrier chip

As mentioned above, one of the aims in the second atom chip generation was to fabricate
real square cross section wires with comparable total cross section (15µm×15µm instead of
50µm×5µm). As even higher wires would create an even more wavy optical mirror, we decided
to integrate the wires into the silicon wafer by fabricating them into especially etched groves.

Substrate preparation

To etch groves of a designed pattern into the silicon wafer, a first lithographical process becomes
necessary. We therefore oxide the Si wafer at 950◦ C under O2-H2 flux over night (10 h), to create
a thick layer of SiO2, which will be used as an effective mask in the Si etching process. To pattern
the SiO2, we apply a negative photoresist (AZ5214) to the sample (spinning 4000 rpm for 30 s,
cure for 60 s at 125◦ C) (figure (5.3a)). The design is transferred to the resist by illuminating
it by UV light through a negative mask (6 s) (figure (5.3b)). The photoresist is cures again at
125◦ C for 45 s and then is entirely exposed (without mask) to UV light for another 20 s (“flood”).
The development is done in AZ726Nif (30 s), washing away the resist, where it has NOT been
exposed to UV light. This slightly more complex procedure allows for “negative” lithography,
where the mask carries a pattern identical to the one produced in the pattern (not inverted). As
usually the surface of the structure to be produced is much smaller than the untouched surface,
this saves a lot of time in the fabrication of the mask. Secondly, it allows for an alignment of
successive lithographic processes by the help of alignment marks, as necessary in the current
example.

After the optical lithography, the SiO2 layer has become accessible on the regions of the wire
pattern as indicated in figure (5.3c). Using the photoresist as a mask, we locally remove the
SiO2 by directive ion etching (≈ 4 min) (figure (5.3d)). Afterwards, the resist is removed in an
acetone bath with the help of ultrasound. We thereby have created a mask of SiO2, carrying
the wire pattern, directly on the Si for the following wet etching process (figure (5.3e)).

The etching of the silicone is performed in a temperature stabilized (80◦ C) bath of TMAH,
which is held under rapid rotation by a magnetic beater to avoid the accumulation of bubbles on
the sample, which lead to inhomogeneous etching. The Si etching follows the (1,1,0) and (1,0,0)
surfaces of the crystalline structure, thus creating groves under an angle of 55 ◦ as depicted in
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Figure 5.3: Fabrication steps to etch the wire pattern into the Si carrier substrate. Details can
be found in the text.

figure (5.3f). The process is rather rapid (1,4µm/10 min), depending on TMAH concentration
and purity, and has to be monitored carefully.

After the desired depth of 15µm has been achieved, the SiO2 mask is removed in a HF
solution (20 s) and one ends up with a pure, now patterned Si wafer (figure (5.3g)). This wafer
is oxided again at 950◦ C (2 h) to create a closed layer of SiO2 for electrical insulation of the wires
(figure (5.3h)), which will now be fabricated in the groves in a second step of optical lithography.

Optical lithography

For the second step optical lithography, we apply a negative photoresist (AZnLof 2070) to the
sample (spin at 4000 rpm for 20 s, cure at 100◦ C for 60 s) [127]. We use a special mask positioner
to align the pattern for the second lithography with the pattern already present in the substrate
to a precision of ±2µm (figure (5.4a)). Alignment crosses in the patterns can be seen in figure
XYZ. The pattern is transferred to the photoresist by a 34 s pulse of UV light. After development,
the SiO2 insulation layer has become accessible at the surface of the wire pattern (figure (5.4b)).

From here on, the fabrication process proceeds as in the first generation atom chip: a contact
layer of Ti (200 ) followed by a gold seed layer (200 nm) is evaporated to the substrate, unwanted
Ti/Au is removed by lift-off in an acetone bath (figure (5.4c,d)).

In the second generation wire design, not all wire structures are connected among each other
(see figure XYZ), e.g. the connection leads to the small wires have no contact to the H/U shaped
structure. To generate a single cathode for the electroplating process, all wires are connected in
the region of the contact pads by wire bonding (25µm gold wire).
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Figure 5.4: Fabrication steps for the large wire structures, based on optical lithography and
electroplating. A closed surface is created by a mechanically polished polymer resin. Details can
be found in the text.

Electroplating

The electroplating is carried out in the same bath of gold-cyanide as described in 5.1. As no
photoresist of a thickness above 6µm cold be found, the gold is allowed to grow freely starting
from the seed layer (compare figures (5.2d) and (5.4d)). Even for wires of 15µm height, the gold
was found to grow sufficiently straight to create almost quadratic wire cross sections. However,
the “free” electroplating process appears to be more sensitive to inhomogeneities in the electric
field lines of the cathode, the gold preferably deposits at the wire edges, giving rise to slightly
“hollow” wire profiles. This could be partially avoided by a very slow deposition process (2 mA
deposition current, 2 h 30 deposition time).

After the groves in the Si substrate have been filled up with gold wires of appropriate height,
the bonding wires were removed mechanically under a binocular microscope(figure (5.4e)).

The planarization layer

To create a closed, flat surface for further fabrication steps, we applied a layer of BCB planarizing
resin. As in the first atom chip generation, the hard cured resin reproduced large features of
the underlying structure. To remove this waviness, we decided to mechanically polish the BCB
layer. In first attempts it showed, that the resin adheres only weakly to the SiO2 layer of the
chip substrate and easily comes off, when exposed to mechanical stress. This can be overcome
by removing the SiO2 layer by reactive ion etching before applying the BCB (figure (5.4f)).
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Figure 5.5: Fabrication steps of the five wire structure, based on direct electron beam lithography
and gold evaporation. Details can be found in the text.

The polishing was performed using a semi-automatic machine (PRESI P123), applying suc-
cessive steps using different abrasive materials (e.g. AlO3 spheres of 2µm, 0,7µm and 0,3µm
diameter). In this way, several microns of BCB were removed, creating a surface of optical
quality, with no corrugation caused by the underlying structure (figure (5.4h)). However, the
thickness of the remaining BCB layer was hard to control, the final surface had a slight curvature
due to uneven transport of abrasive material to the central region of the atom chip. Although
improved, the adherence to the Si substrate was not perfect, the sample loss rate in the polishing
procedure was about 50 %.

After polishing the BCB, it was removed from the chip contact pads using reactive ion etching
as described in section 5.1.3 (see also figure (5.2h)).

5.2.3 Fabrication of the five wire chip

After several futile attempts to fabricate the five wire structure directly on the BCB layer (in-
sufficient heat dissipation, insufficient flatness, BCB deforms under the influence of the electron
beam in lithography), we decided to build a double layer chip and fabricate the sub-micron
structures on a separate waver.

Substrate preparation

As described in section 3.3.1, the confinement (namely the gradient) of a magnetic trap is
inversely proportional to its distance from the wire (see equation (3.14)). As placing a second
substrate on top of the large wire structures necessarily imposes a lower limit on this distance,
we chose a very thin (80µm-100µm) Si wafer (1 inch diameter) as carrier for the second chip
layer. As described above, this substrate was oxidized to create a 200 nm insulation layer of
SiO2. We spin a layer of PMMA (50 g/L), a resist that is developed when exposed to an electron
beam, to the substrate (2000 rpm for 33 s, cure at 150◦ C for 10 min). The so prepared sample
(see figure (5.5a)) is then inserted into the beam writer for electron beam lithography. For the
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following precesses (namely the cleaving of the wafer) it is necessary to align the wire pattern
with the crystal axis of the Si, indicated on the waver by a small notch.

Electron beam lithography

As a beam writer, we used a LEICA EBFG5000 series, which was installed in a prototype
version at the LPN. Due to improved control of the electron beam (higher energy, self align-
ment, active electromagnetic shielding of the whole beam writer lab), this machine can write a
200µm×200µm field of view with a resolution of 2 nm (figure (5.5b)). The sample is mechani-
cally displaced under interferometric control to the same precision, in total, wafers up to 15 cm
diameter can be treated. The LEICA uses auto focussing to optimize the size of the electron
beam, whenever starting a new writing field. This auto focus can compensate for 2µm difference
of level over the whole surface of the sample. That means, that height variations (e.g. due to
edge effects when depositing the photoresist have to be below this value. As we are using the
thickest possible layer of resist (800 nm) this turned out to be problematic, creating a sample
loss rate of 40 %.

Gold evaporation

After successfully writing the pattern (25 min), the resin is developed (MIKB, 75 s) and cleaned
in isopropanol. The SiO2 has now become accessible, where the wire pattern has been written
(figure (5.5c)). The wires themselves are now fabricated by (gold) evaporation.

The sample is therefore placed in a multi evaporation vacuum vessel. To improve adherence
to the SiO2 and remove remaining bits of resist, the substrate was exposed for 20 s to a beam
of accelerated ions (a short step of reactive ion etching (20 s) has the same effect). Then, a
mediating layer of Ti (50 ) was evaporated to the substrate, followed by a gold layer of 700 nm
thickness, monitored by a quartz oscillating crystal (4 /s). The temperature of the electrofused
gold had to be controlled by hand to avoid boiling and bubbles in the gaseous jet to the substrate.
The gold deposition turned out a very delicate step in the fabrication, the loss rate was 50%.

The redundant gold layers are washed away by lift off in heated (80◦ C) trichlor ethylen,
leaving behind the gold five wire structure (figure (5.5d,e)).

The chip mirror

To electrically isolate the five wire structure from the gold mirror, the substrate is entirely covered
with a 800 nm layer of SiO2, deposited by plasma enhanced chemical vapor deposition (PECVD)
(figure (5.5f) and (5.6a)). To regain access to the contact pads, a Si wafer of appropriate size is
positioned to cover the central region of the chip, the accessible SiO2 is removed by reactive ion
etching (15 min) (figure (5.6b,c)).

To protect the contact pads during the evaporation of the gold mirror, we employ another
step of optical lithography: photoresist (AZ5214) is applied to the substrate (spin at 4000 rpm
for 33 s, cure at 125◦ C for 60 s), the contact pads are covered by small pieces of Si, the uncovered
surface is exposed to UV light for 15 s, the photoresist is developed (MIF726, 30 s). The contact
pads are now covered with photoresist (figure (5.6d-f)).

The gold mirror is fabricated identical to the gold wires: an adherence layer of Ti (50 ) is
evaporated under vacuum, followed by 200 nm of gold (figure (5.6g)). The gold deposited on the
photoresist is removed by lift off in an acetone bath, allowing access to the gold contact pads of
the five wire structure below the mirror (figure (5.6h)).
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Figure 5.6: Fabrication steps for the gold mirror on the five wire structure. Details can be found
in the text.

5.2.4 Merging the two chip layers

For the substrate, carrying the five wire structure, to fit onto the large structures chip, it has to
be cut to the correct size. As the pattern of the small wires has been aligned with the crystal
axes of the Si, this can be done by cleaving. We therefore scratch the surface of the wafer along
the contact pads with a sapphire needle in a dedicated machine (“scriber”). The chip is than
cleaved along this line with the help of two glass plates, which help to avoid local stress (loss
rate 33 %) (figure (5.7a)).

During the fabrication of the large structure chip, alignment crosses where necessary to
correctly superimpose the patterns in successive steps of lithography. Identical crosses were
fabricated on the five wire chip, to help in the alignment of the two chip layers: the large
structure carrier chip was fixed to a microscope with a digitally controlled x − y translation
stage, the position of the alignment crosses was determined with the help of the microscope
reticle. The small structures chip was manually positioned to align with the stored coordinates.
An alignment accuracy better than 50µm in both directions could be obtained (figure (5.7b)).

To connect the two chip layers, small drops of UHV compatible glue (Epotek H77, 15 %) are
applied to the side of the smaller substrate. Positioning the glue between the layers had shown
to create mechanical stress during the curing (60 min at 150◦ C), resulting in a deformation of
the thin wafer.

The electrical contact between both chips is realized by gold wire bonding (25µm), the
connection pads of the five wire structure were designed to face the contact pads of the carrier
structure (figure (5.7c)). Several bonding wires (up to 5) are used to reduce the resistance of
the interconnection. Figure (5.8) shows a photograph of the final, assembled double layer atom
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Figure 5.7: Merging of the large structure carrier chip and the small five wire structure chip,
which is cleaved to size. The positioning is performed by the help of alignment crosses on
both layers, small drops of UHV compatible glue hold the small chip in position. The electric
interconnection of both layers is realized by bonding the small structure chip to the connection
pads of the carrier substrate.

chip, which is currently in use.
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Figure 5.8: (a) photograph of the assembled double layer atom chip. One identifies the 8 large
connection pads in the carrier structure as well as the smaller interconnection pads on the five
wire chip. On the chip (mirror) surface, a faint H shape structure, which realizes the connections
to the five wires in the central region. Alignment crosses, used to superpose both layers, can also
be seen. (b) and (d) front and side view photographs of the atom chip under vacuum, mounted
upside down under 45 ◦, to allow atoms to fall freely under the influence of gravity. (c) atom chip
mount without chip. One identifies the massive copper heat sink triangle, the two connection
ribbons and the single dispenser Rb source.

5.3 Experimental setup

ALL DESCRIBED IN DETAIL::: SO SIMPLE wegen toller atom chips

5.3.1 Chip mount

To hold the atom chip in position within the vacuum system and to provide the electrical
contacts, a dedicated mount has to be fabricated. The employed materials have to be compatible
with 10−11 mBar pressures, UHV compatibility has to be anticipated in the mechanical design
(e.g. avoiding cavities and hard to evacuate areas). As no active cooling is foreseen in our setup,
heat dissipation becomes a major design constrain. The mount has to fit into a (relatively small)
stainless steel standard vacuum cube of 7 cm side length, which provides six CF-35 connection
flanges.
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Figure 5.9: Schematic drawing of the atom chip mount, holding the chip upside down under
45 ◦ in the vacuum chamber. A stainless steel CF-35-CF-16 adaptor flange forms the basis, all
other mechanical parts are fabricated out of copper to optimize heat dissipation from the chip.
Electrical contact is realized by lithographically patterned copper ribbons, clamped to the chip
and connected to a UHV 10 pin vacuum feedthrough. A single dispenser serves as a pulsed
source for thermal Rb atoms.

Mechanical mount

The chip mount is constructed on a CF-35-CF-16 adaptor flange, where the CF-16 side carries
a standard 10 pin UHV current feedthrough. The mount itself consists of a massive copper
triangle, which holds the atom chip under 45 ◦ in the vacuum vessel as schematically depicted in
figure XYZ. Copper was chosen for its adventurous properties such as excellent heat dissipation,
UHV compatibility and easy machinability. In a worst case scenario, a total heat of 20 W was
assumed to be produced by the atom chip. The mount was designed sufficiently massive to enable
a thermal conductivity of 1W/K to the vacuum vessel, acting as a heat sink. We therefore expect
the temperature of the mount not to increase by more than 20◦ C during constant operation.
In practice, the dissipated heat is much below 20 W, additionally, the setup is never in constant
operation, the duty cycle is about 33%. Consequently, no degradation of vacuum due to the
operation of the atom chip could ever be observed.

Electrical contacts

The electrical connection between the UHV feedthrough pins and the atom chip is provided
by a copper ribbon, which was fabricated onto a Kapton band using standard techniques for
the creation of flexible electrical circuits. The dimensions of the copper wires were matched
the dimensions of the contact pads of the atom chip. The connection between the feedthrough
pins and the copper wires were realized using commercially available UHV luster terminals. To
contact the chip, the ribbon was bent to a zigzag shape, which creates a spring-like behavior.
The ribbon is then mechanically clamped to the contact pads by two horizontal copper bars (see
figure CXYX), realizing an electrical contact of R < 100 mΩ.
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Rb Dispenser

As indicated in figure CXYZ, the atom chip mount also carries the Rb dispenser, which acts a the
only (pulsed) source of thermal Rb atoms in our setup. The dispenser is held in position by two
3 mm copper wires, electrical contact is provided by clamping the dispenser into a corresponding
slit in the wires. As for the copper-ribbon, the copper wires are fixed to the feedtrough pins
using luster terminals. To avoid a degradation of the chip surface, the dispenser is mounted
slightly below the level of the atom chip, so that the connecting copper bar shadows the chip
mirror from atoms directly cast by the dispenser.

The dispenser itself is a commercially available model (SAES Getters), containing absorbed
Rb, which is desorbed when exceeding a threshold temperature of 450◦ C. To activate the dis-
penser, it is heated by ohmic heat when sending a current, the threshold value is 2,4 A [128,129].
In the experiment, the dispenser is contiguously held at a temperature slightly below threshold
by a continues current of 2 A, a pulse of Rb atoms is created by increasing the dispenser current
to 8A for about 3 s. After operation, the dispenser quickly cools down to below threshold within
≈ 100 ms.

5.3.2 Vacuum system

As described above, the extreme confinement that can be realized with magnetic micro traps
allows for efficient evaporative cooling and to reach the BEC quantum phase transition within
only a few seconds. This implicates a relaxation of lifetime constrains for trapped cold atom,
consequently Bose condensates can be created in much simpler systems [80]. Following this
approach, our apparatus consists of a single chamber vacuum vessel, based on a standard UHV
stainless steel cube of 7 cm side length. This cube provides six CF-35 connection ports on the
cube surfaces.

Three of these six ports carry UHV optical view ports, anti-reflection coated for 780 nm
light. A fourth port carries the above described chip mount. The two remaining openings are
connected to vacuum pumps: a CF-35-CF-150 adaptor flange allows the connection to a Ti
sublimation pump (Varian TSP cartridge filament source with cryopanel, 500 L/s (N2), reduced
to ≈ 80 L/s by the adaptor flange). A second output port is connected to a standard CF-35
4-way cross, which carries another optical view port and connects to a 40 L/s ion pump (Varian
VacIon Plus 40 Diode, pump speed (N2) reduced to ≈ 20 L/s by the cross). An additional
T-piece connects a cold cathode vacuum gauge and allows for the docking of an additional pre-
pump station (roughing pump and turbo molecular pump) for the first evacuation stage after
breaking of vacuum.

Operating only with an ion pump and a Ti sublimation pump, the setup presents a “closed
system,” where vacuum will only degrade very slowly in case of power failure. No moving parts
are present, avoiding vibrations during the experimental cycle.

The vacuum quality in this setup without operating the Rb dispenser is ≈ 2 × 10−11 mbar,
which is also the lower limit of the vacuum gauge. A 3 s pulse of the Rb dispenser degrades the
vacuum by one order of magnitude. As the total volume of the vessel is approximately 1 L and
the overall pump speed is about 100 L/s, the vacuum recovers to the 10−11 mbar level within
less than 2 s.

5.3.3 External Magnetic fields

The homogeneous bias field

As described in section 3.3.1, the basic magnetic wire trap is based on the combination of a
circular magnetic field created by the atom chip wire and an external, homogeneous bias field,
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Figure 5.10: Design drawing (to scale) of the vacuum system. A stainless steel cube of 7 cm side
length holds the atom chip, it is pumped by a Ti sublimation pump and a ion getter pump. A
cold cathode ion gauge allows to monitor the vacuum pressure, which is on the 10−11 mbar level.

usually orientated orthogonal to the wire and parallel to the chip surface (compare figure (3.2)).
An additional longitudinal “Ioffe” field is necessary to suppress Majorana spin flip losses.

As in our setup, the atom chip is mounted under 45 ◦, the external bias field has to be tilted
accordingly. As a single pair of coils under this angle would be difficult to combine with the
four laser beams entering the vacuum chamber, the bias field is created by two orthogonal pair
of coils (“horizontal” and “vertical”) in Helmholtz configuration. These coils are rectangular
and of pyramidal shape, their internal diameter is 7 cm, corresponding to the side length of
the stainless steel cube, their external diameter is 10,2 cm. The pyramidal shape enables us to
accommodate three pairs of coils in a cube of less than 11 cm around the experimental chamber
(see figure XYZ). There pairs of coils are made of Kapton isolated 1 mm copper wire, each
has 136 windings. which allows the creation of 12 G/A homogeneous field at the position of
the atoms. The total field is limited to 48 G due to the limitation to 3A of the used power
supplies (HighFinesse BCS 12 V/3 A, response time 100µs). Each coil has a resistance of about
1 Ω, so the total dissipated power is below 10 W, which makes active cooling unnecessary. The
inductance of each coil is around 1 mH, it should therefore be possible to turn of the magnetic
field within 100µs. However, Eddy currents in the stainless steel chamber lead to a decay of the
magnetic field in ≈ 3 ms. In most experiments, the external fields are therefore not switched,
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Figure 5.11: Left: design drawing of the coil system surrounding the stainless steel cube. Three
pairs of orthogonal, pyramidally shaped Helmholtz coils can be used to create a homogeneous
magnetic field in arbitrary spatial direction. Right: photograph of the experimental setup
(without magnetic field shielding). One identifies the Ti sublimation pump (upper edge) and
the ion getter pump (left edge). Two massive, water cooled MOT coils surround the central
cube. The two achromatic doublets, transporting the image of the atomic cloud in a confocal
telescope configuration can be identified in the center of the picture.

imaging is performed in presence of the homogeneous external field.

The longitudinal Ioffe field

Whereas the coils creating the external bias field are connected in series, the third pair of coils
(“longitudinal”) allows for independent control of the currents in each coil with the help of two
individual power supplies (home-built current stabilized 2 A sources). These coils can therefore
create a homogeneous longitudinal field as well as a superimposed magnetic field gradient, which
can be used to translate the magnetic trap along the wire. As lower fields are necessary in this
direction, the equally pyramidally shaped coils have slightly less windings (55), which allows for
5 G/A homogeneous magnetic field.

The MOT quadrupole field

For the operation of a magneto optical trap, a quadrupole field with a typical gradient of 15 G/cm
has to be generated. This may be provided by a pair of coils in anti-Helmholtz configuration. To
reduce the necessary currents, we have approached this pair of coils as close as possible to the
stainless steel cube, the outer dimensions of the rectangular MOT coils are ≈ 12, 5 cm. These
coils consist of 200 windings of 2mm isolated copper wire, 9 A are employed, provided by a
switching power supply (Delta electronics ES-15-010, 15 V/10A). The total power dissipated in
these coils is ≈ 90 W. To evacuate the generated heat, massive water cooled copper blocks were
clamped to the coils, which reduced the overall heating of the system to less than 10◦ C.

5.3.4 Laser System

In a simple single chamber setup as employed in our setup, the requirements regarding the
optical laser system are relaxed: as the capturing area in a reflection MOT is reduced in the
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Figure 5.12: 87Rb levels used for laser cooling, optical pumping and absorption detection in the
Orsay setup. The individual components are described in the text.

presence of the surface, rather small beam diameters can be used, necessitating only small laser
power. We were able to work with a simple optical setup, based on only two main lasers (one
of which in an master-slave configuration), which occupies about 1m2 on an optical table. The
laser system has been described in detail in [87] and [73], only its main features will be briefly
resumed in the following.

The master-slave cooling laser

As a master laser we use a Sanyo DL-7140-201 (70 mW) diode, centered at 781 nm and with a
spectral width of ≈ 10 MHz. As this width is too large to efficiently laser cool 87Rb atoms, the
laser diode is employed in a Littrow extended cavity setup, narrowing it to ≈ 1, 5 MHz [130,131].
The laser is frequency stabilized to the 2-3 crossover of the F = 2 ↔ F ′ = 2/F ′ = 3 transition
of the D2 line of 87Rb in Doppler free absorption spectroscopy (780,02 nm). The feedback is
based on FM spectroscopy, modulating the atomic transition via Zeemann effect with the help
of a small coil around the absorption cell. This technique avoids frequency sidebands, that arise
when directly modulating the laser frequency.

Stabilized in this way, the master laser implements a frequency standard, detuned by -
133 MHz with respect to the F = 2 ↔ F ′ = 3 cooling transition. This laser light is injected
into an acusto optical modulator (AOM) in double pass configuration, which allows the shift the
optical frequency between +138 MHz and +232MHz without moving the beam in space. This
light is now injected into a slave laser, based on the same Sanyo diode but without external
cavity. The hence amplified laser light passes another AOM at -73 MHz, which serves as a rapid
switch and shifts the total laser detuning to between -69 MHz and +25 MHz with respect to the
F = 2 ↔ F ′ = 3 transition. After the AOM, the laser power is ≈ 50 mW, this light is divided
as follows to serve different purposes in the experiment:

Optical cooling For laser cooling the atoms, 45 mW are extracted, the beam size is enlarged to
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16 mm diameter. With the help of polarizing beam splitter cubes, the light is distributed
among four branches, which are prepared to the correct circular polarization and injected
into the vacuum chamber to realize the magneto optical trap. The laser detuning in this
stage is typically ≈ 15 MHz.

Imaging About 1mW is extracted from the slave laser beam, which is enlarged to 1 cm diameter
and attenuated to 1/10 Isat, where Isat is the saturation intensity of the atomic transition
(1,6 mW/cm2). The beam is superimposed with a MOT beam and reflected on the atom
chip mirror before reaching the camera, creating a double image of the atomic cloud (see
next section). As the frequency of the light emitted by the slave laser can be adjusted
over a large range (-65 MHz to +25 MHz), we are able to compensate for an occasional
Zeeman shift of the atomic resonance in the presence of magnetic fields. This is especially
convenient in magnetic micro trap experiments: as the trap is formed by a combination of
an inhomogeneous magnetic field created by the current carrying wire and an homogeneous
external bias field, the trap can be extinguished by simply switching off the wire current.
As such a chip wire has negligible inductance, this can be done very rapidly (50µs in
our case, limited by the Highfinesse power supplies). By imaging in the presence of the
homogeneous external field, problems due to coil inductances and Eddy currents can be
overcome.

Optical pumping The remaining power if the slave laser light (3 mW) is injected into another
AOM, which shifts the light frequency to be resonant with the F = 2 ↔ F ′ = 2 transition.
Provided the correct polarization, a short light pulse on this transition allows to polarize
the atomic sample by optical pumping and thereby enhance the capturing efficiency of the
magnetic trap.

All three beam path are controlled by individual mechanical shutters.

The repump laser

To close the optical cooling cycle we have to re-inject atoms that decay to the F = 1 hyperfine
state. In our setup this is implementing by shining in light at the F = 1 ↔ F ′ = 2 transition
of the D1 line (794,76 nm). For this we use a Mitsubishi MI641140N laser diode (30 mW) of
≈ 10 MHz spectral width. The advantage of the D1 F = 1 ↔ F ′ = 2 transition over the
corresponding D2 line is the enhanced level spacing (≈ 800 MHz compared to ≈ 80 MHz), which
can be easily resolved even with a spectrally broad laser diode, avoiding the need for an extended
cavity solution. The laser is stabilized to the atomic line by FM spectroscopy, identical to the
cooling master laser. The repumping light is superimposed to a MOT beam (anti-parallel to the
optical pumping beam) and is only controlled by a mechanical shutter.

5.3.5 Atom detection

We used standard (destructive) absorption imaging to detect trapped atoms in situ or after
being released in time of flight expansion [132]. As the region around the central stainless steel
vacuum cube is hard to access, we transport the image of the atom cloud with the help of a
confocal telescope. This telescope consists of two achromatic doublets of a focal length of 63 mm
and 38mm diameter, it works at the diffraction limit, the numerical aperture is 0,3, allowing for
a resolution of 3µm.

A third simple plano convex lens of 60 mm focal length is used to focus the image of the atomic
cloud onto the surface of a CCD camera chip. By varying the distances between the telescope
and this lens as well as between the lens and the camera, we can adjust the magnification of our
optical system, we usually work with a magnification ×3.
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The camera is a Princeton Instruments ST138 with a Kodak chip of 512×768 pixels, each
of which is 9µm×9µm in size. The quantum efficiency at 780 nm is 45%, each pixel can bin
up to 850000 electrons, the electronic noise of the 12 bit a/d converter is 10 electrons. We have
removed the glass vacuum window of the (initially evacuated) camera to avoid fringes due to
multiple reflections between window and the CCD chip.

5.3.6 Experimental Control

Up to now, almost any cold atom or BEC experiment relies on a destructive read-out technique;
extracting information about the state of the system destroys the specific sample. An experi-
ment therefore has to be repeated many times in order to accumulate statistics or investigate
dependencies on experimental parameters. A major experimental task in design of such a setup
is to verify the repeatability of the cycle, in order to realize the same conditions in every run.

The creation of a Bose-Einstein condensate is a complex procedure and involves many steps
taking place on different timescales: very short optical pulses have to be controlled on the µs
level, magnetic fields have to be switched in ms, the loading of a magneto optical trap can
take tens of seconds. To pilot all stages of the cycle with the required precision and ensure
repeatability, a sophisticated, computer based electronic control system becomes necessary.

In our setup, we employ a home-built “sequencer”, realized by the group electronics engineer
A. Villing. This sequencer consists of a motherboard, which implements an independent, external
8 MHz clock and manages the dialog with the control computer. Up to eight signal output
cards, carrying TTL, analog level or analog ramp channels can be added to the motherboard,
synchronizing to the same clock and using individual on-board memory. The jitter between
different cards is below 5µs.

The experimental sequence is programmed on the control computer using a script language,
developed by J. Esteve and D. Stevens, a more detailed description can be found in [73]. Often
used experimental parameters can be easily manipulated in a graphical interface, the readout
(namely the camera signals) is processed immediately after a successful cycle, directly providing
a low level analysis of the run.

In each experimental cycle, the sequence is written from the control computer to the moth-
erboard and from there distributed to the different cards. Once the programming finished, the
main board awaits a start trigger, once the trigger received, the sequence is written out to the
different channels, completely independent of the control computer. This independence from the
(uncontrolled) real-time behavior of the computer (which e.g. shows up in ±10 ms fluctuations
in the programming time) allows us to obtain a synchronized signal precision of 10µs over the
entire experimental cycle of ≈ 25 s.





Chapter 6

Experimental results

6.1 Bose-Einstein condensation

Since the first realizations in 1995 [8,133,10], Bose-Einstein condensates have attracted enormous
interest in the physics community; today more than 80 research groups have realized BEC
all over the world. The exceptional properties (e.g. phase coherence) of Bose condensates
have lead to numerous proposals to (among many others) employ this “state of matter” as
coherent source in the field of atom optics, in close analogy to coherent optics with photons.
Due to their hight flexibility in the design of trapping and manipulation geometries, atom chips
seem promising candidates for the implementation of atom optical elements [134, 135, 85]. In
consequence, the standard procedures for the creation of Bose-Einstein condensates have been
adapted and combined with the atom chip approach.

The first realization of BEC on atom chips has been achieved by groups by J. Reichel [80]
and C. Zimmermann [81] in 2001. Their approach showed, that taking benefit from the strong
confinement of magnetic wire traps, the experimental setups could be significantly simplified,
remedying the need for double MOT systems or Zeeman slowers. Other groups have since than
realized Bose condensates on atom chips, either following the simplified scheme or combining
atom chips with conventional BEC technology [108,82,98,88,118,136,137].

Our group achieved Bose-Einstein condensation in 2003 following the scheme of [80]. A
detailed description of the setup as well as the experimental sequence can be found in the theses
of C. Aussibal [87] and J. Estève [73].

The procedure for the creation of a Bose condensate on an atom chip mainly follows the
well travelled path of conventional setups (based on magnetic traps): pre-cooling of atoms in
a magneto optical trap, additional cooling through optical molasses, spin polarization of the
atomic sample by optical pumping, transfer to a non-dissipative magnetic trap, evaporative
cooling. However, some stages have to be modified to comply with the atom chip approach: the
presence of the atom chip is usually hard to combine with the extensive optical access needed for
a conventional 6-beam MOT. This problem has been overcome by the so-called surface reflection
MOT, where two incoming beams are replaced by beams that were reflected on the chip surface,
acting as a mirror. This enables the creation of a MOT of reduced capturing area in the vicinity
of the chip wire structures. The transfer of atoms captured in a magneto optical trap to the
magnetic micro traps (of extremely small capturing area) is a crucial phase of the experiment
and is often done with the help of an intermediate MOT stage, where magnetic fields are created
by large wire structures on the chip, which are by construction well aligned with the magnetic
trapping fields.

Once transferred to the magnetic trap, the atoms can be efficiently (and rapidly) cooled to
quantum degeneracy. Due to the reduced capturing capacities of the reflection MOT and the
magnetic micro trap, atom chip experiments usually work with comparably low atom numbers
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in the condensate (103-105) but allow for high experimental repetition rates (≈ 10 s/cycle).
In the following, we will briefly resume the experimental sequence for the creation of a Bose-

Einstein condensate in our setup, more detailed descriptions can be found in [87,73].

6.1.1 Magneto optical surface traps

The pulsed atom source

As described in section 5.3.1, we use a single, pulsed dispenser as a source for thermal Rb atoms.
The dispenser is operated by ohmic heat, it is activated, once the threshold current of 2,4A is
exceeded. The filament is held at a temperature near threshold by running a continuous current
of 2 A, it is pulsed by increasing the current to 8A for a time of 3,6 s. The pulse creates a
Rb vapor which loads a magneto optical trap but degrades the vacuum quality by at least one
order of magnitude. As the lifetime of atom trapped in a magnetic trap depends on the quality
of the background pressure, vacuum has to recover before the atoms can be transferred. We
therefore hold the atoms in the MOT for 12 s before the transfer. As during this hold time, the
number of atoms in the MOT decays, a compromise between transferred atom number (favoring
a short hold time) and magnetic trap lifetime (favoring a long hold time) has to be found. A
dispenser pulse time of 3,6 s and a hold time of 12 s allow for the transfer of 3×106 atoms to the
magnetic trap, which then has a lifetime of τ > 10 s. Both values are optimized to reach Bose
condensation of 1× 104 atoms within 4 s of evaporative cooling.

When running the experiment continuously, the average vacuum pressure is slightly above
the value which is obtained without operating the dispenser. To guarantee for stable experi-
mental conditions, we have implemented an experimental background cycle, which continuously
simulates an experiment, involving the dispenser pulse and all operations on elements, that ex-
perience temperature changes (coils, wire currents). A self-adjusting dead time at the end of
the experimental sequence guarantees constant total duration of the cycle, even when changing
timings within the sequence. In this way, stable experimental conditions can be obtained, the
system takes about 10-20 cycles to reach the stationary regime concerning vacuum pressure and
temperatures when turned on.

Reflection MOT with external quadrupole field

As described above, the technique of laser cooling [ZITATE], relying on the combination of a
quadrupole magnetic field and six orthogonally intersecting laser beams, can be combined with
atom chips, when using the chip surface as a mirror in a reflection surface MOT. Here, two of the
originally six beams are replaced by reflections on the chip surface, which makes a 45 ◦ angle with
the two incoming and the two reflected beams. Although having become a standard technology,
the surface MOT still crucially depends on the quality of the chip mirror. We managed to largely
improve the flatness of the gold mirror in the second atom chip generation, which immediately
increased the performance and stability of the surface MOT. Still the capturing efficiency is
reduced compared to conventional setups due to inhomogeneities in the reflected beam intensity
and a reduced capturing area owing to the presence of the atom chip.

In most atom chip experiments, the substrate is mounted upside-down to allow the atoms
to fall freely under the influence of gravity, when released from a trap. To allow for the use of
standard UHV vacuum components and horizontal and vertical laser beams (with respect to the
surface of the optical table), the chip is mounted upside-down under 45 ◦ in our setup, as can be
seen in figure (5.8). The four MOT beams necessary for the surface MOT are simply injected
into the vacuum cube by standard anti-reflection coated view ports.

The magnetic quadrupole field in the first 12 s phase of laser cooling is produced by massive,
water cooled coils in anti-Helmholtz configuration, positioned close to the stainless steel cube, as
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can be seen in figure (5.11). By mechanical alignment, the position of the quadrupole minimum
can be adjusted to to the intersection of the laser beams to a precision of ±3 mm. For fine tuning
(and to compensate the earth magnetic field), the center of the quadrupole is shifted by adding
a homogeneous external field, created by three orthogonal pairs of pyramidally shaped coils in
Helmholtz configuration (see figure (5.11)).

The first magneto optical trap, based on an external quadrupole field, contains about 5×105

atoms at a temperature of 150µK at the end of the 12 s hold time after the dispenser pulse.

Reflection MOT based on a U shaped wire

The magneto optical trap based on an external quadrupole magnetic field is located 1-2 mm
above the atom chip surface, the position with respect to the chip wires is not very well defined.
The magnetic trap created by such a wire has a small capturing area and limited to small
distances from the surface (<800µm). Direct loading of atoms from the surface MOT to the
magnetic trap is therefore extremely difficult and inefficient.

To overcome this problem, we follow a proposal of [80] which employs a second surface MOT
phase, where the magnetic quadrupole field is directly created by atom chip wires. The position
of such a trap can be controlled to high accuracy, it is by construction aligned with chip traps
created by different wires.

As described in [87] and [73], a quadrupole magnetic field can be created by the combined
fields of a U shaped current carrying chip wire and an external homogeneous bias field. The
so-called U-MOT will be centered between the wire connection leads, the trap height follows
equation (3.12).

Atoms can be transferred adiabatically from the magneto optical trap created by an external
quadrupole field to the U-MOT by simultaneously ramping the quadrupole field, the external
homogeneous field and the wire current.

However, the U-MOT turned out to be rather unstable, transferred atoms are lost within
100 ms. We attribute the effect to geometric deformations of the magnetic field created by
the wire structure, which is of quadrupole shape only in the close vicinity of the minimum
(d < 2 mm) and thus suffers from a reduced capturing area. The weak performance of the
U-MOT justifies the use of external coils and the first MOT phase to collect a large number of
atoms. The deficiencies of the U-MOT can be overcome by using an optimized (macroscopic
U wire geometry). It has been shown [125]. That a large number of atoms can be captured
in such a trap without the need for external quadrupole coils. However, this scheme employs
rather bulky structures carrying high currents (60A) and necessitate active cooling of the chip
mounting.

Despite the deficiencies in holding atoms trapped, the U-MOT has turned out to be efficient
to rapidly transport atoms close to the chip surface. After accumulating atoms in the “external”
MOT during the 12 s hold time, we transfer to the U-MOT by simultaneously ramping down the
external quadrupole field and ramping up the U wire current (4A) and the homogeneous bias
field (1,8 G) within 40ms. The atoms are approached to the surface by decreasing the current
(2,6 A) and increasing (and rotating) the bias field (3,2G) within 5ms, the frequency of the
cooling laser is detuned to -20 MHz. The external field is turned

We end up with ≈ 2× 107 atoms of a temperature of 140µK in the U-MOT at a distance of
700µm from the surface.

6.1.2 Optical molasses and optical pumping

To further reduce the temperature of the atomic sample before transfer to the magnetic trap, we
employ a phase of optical molasses [138,139,140,141]. In theory, efficient sub-Doppler cooling is
obtained in the absence of magnetic field and with strongly detuned, intensity attenuated lasers.
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As no rapid switching off of the homogeneous field (below 3 ms) is possible in our experiment, we
ramp down the the U-Wire current and the bias field within 3,8 mx. Simultaneously detuning
the laser to -65MHz already cools the atoms to 40µK, no further cooling could be obtained in
the absence of magnetic fields [87].

As described in section 3.1, we aim to magnetically trap atoms in the double stretched
|F = 2,mF = 2〉 state, which provides strongest confinement. To spin polarize the atomic
sample, we establish a homogeneous magnetic guiding field (in the same direction as the bias
field of the U-MOT) to define a magnetic quantization axis. We then shine in a short (50µs)
optical pumping pulse of σ+ polarized light, resonant with the F = 2 ↔ F ′ = 2 transition,
which successively drives the atoms into the |F = 2,mF = 2〉 dark state. In principle, this
technique allows to perfectly polarize the atomic cloud and we would expect to gain a factor of
5 in the transferred (to the magnetic trap) atom number [142]. However, as atoms expand freely
during the time needed to establish the guiding field (≈ 2 ms), a reduced fraction of atoms is
recaptured, scattered photons during the optical pumping additionally heat up the sample. We
therefore only could increase the number of transferred atoms by a factor of 2,5 by applying
optical pumping, the optimization of the procedure is described in detail in [87].

6.1.3 Magnetic trapping

To efficiently load atoms to a magnetic trap based on a Z shaped wire structure (compare
section 3.3.2), the position of the trap has to match the position of the atoms after the optical
pumping pulse. Additionally, the trap has to be sufficiently deep to hold the atoms of a specific
temperature T . Furthermore, the confinement has to math the spatial extension of the atom
cloud. Formally, perfect mode matching is achieved when the transfer to the magnetic trap
optimizes phase space density [132].

The potential depth is given by the external bias field as ∆Vtrap = mF gFµB|Bbias|. We
denote by η the ratio η = ∆Vtrap/(kBT ). A η ≈ 10 is sufficient to suppress thermal evaporation
from the trap [143]. This of course refers to the temperature of the atoms after loading to the
magnetic trap, which might have increased due to the gain of potential energy in presence of
the trapping potential and due to exitations/heating caused by imperfect mode matching.

The need for a deep magnetic trap far from the surface forces us to work at maximum current
in the Z shape structure; for a fixed trap distance, the potential depth is directly proportional to
the wire current (compare equation (3.12). In the second generation atom chip, the wire current
is limited to 3 A by thermal heating, the wire temperature increases by ≈ 40◦ C within 5 s under
maximum charge.

The wire current being fixed, we experimentally optimize the external bias field (orientation
and magnitude) to load a maximum number of atoms to the magnetic trap. In fact, the iterative
optimization process incudes also the parameters of the compressed U-MOT, which affect the
position of the atom cloud to be transferred, details can be found in [87, 73]. It has turned out
advantageous to load with a rather shallow trap (∆Vtrap ' kB × 520µK), far away from the
surface (550µm [144]), the parameter are 3 A wire current, 9 G bias field and 1 G longitudinal
Ioffe field.

Due to the limited depth, hot atoms get lost from the magnetic trap during the first 200 ms
after the transfer, which leads to a cooling of the trapped cloud (plain evaporation). After
these 200 ms, the gas comes to a (quasi) equilibrium, plain evaporation breaks down exponen-
tially [143], accidentally excited vibrational modes are damped out. We end up with 5 × 106

atoms at a temperature of 50µK, which corresponds to 25 % transfer efficiency from the U-MOT
and 10 % from the initial external quadrupole MOT.

In order to increase the elastical collision rate and allow for efficient evaporative cooling, we
adiabatically (1100 ms) compress the magnetic trap by increasing the external bias field to 35 G,
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which brings the atomic cloud to a distance of 50µm from the chip surface. This compressed
trap has a transverse oscillation frequency of ω⊥ ' 2π × 1, 5 kHz and a longitudinal oscillation
frequency of ω⊥ ' 2π × 17 Hz. During the compression, the temperature of the trapped atom
cloud increases to T ' 250µK.

6.1.4 Evaporative cooling

A rather serious problem was encountered in the compression phase of the magnetic trap: as
the atom temperature increases during compression, the thermal cloud has a typical radius
of ≈ 75µm, which exceeds the distance of the trap center from the surface of 50µm. Hot
atoms therefore collide with the atom chip during the compression and are expelled from the
trap. A small “surface induced” cooling [107] was observed, still this cooling was not efficient,
backscattered atoms from the surface are suspected to heat the remaining sample and create
additional losses. Reducing the compression resulted in an increased trap-surface separation but
did not provide sufficient elastical collision rate for the following phase of evaporative cooling.

This problem could be overcome by a more effective cooling of the atoms already during the
compression phase: we expose the atoms to a weak oscillating (RF) magnetic field, radiated by
the U shaped wire, which is used as an antenna. This RF field of frequency ω drives spin flip
transition to untrapped states, where the condition ~ω = gFµB|Btrap(r)|, effectively truncating
the potential depth [145]. We set the RF frequency to 5,5 MHz, fixing the trap depth to ∆Vtrap '
kB × 500µK during the entire compression. As the compression is performed relatively slow
(1100 ms), the temperature of the atomic cloud is held constant at ≈ 50µK by plain evaporation
without loosing too many atoms (1 × 106 in the final compressed trap). The corresponding
thermal radius of the compressed cloud is only ≈ 30µm, which is compatible with the surface
distance of 50µm.

To further cool the atomic cloud and increase phase space density, we employ forced evapo-
rative cooling, based on continuous lowering of the effective trapping potential depth by lowering
the frequency of the magnetic RF field, ideally keeping η constant. This is a standard technique
in Bose-Einstein condensation and is used identically in atom chip experiments as in conven-
tional setups. The ratio of final (Nf ) to initial (Ni) atom number in such an evaporative cooling
ramp, which reduces the temperature from Ti to Tf writes

Nf

Ni
=
(
Tf

Ti

)(η−2)/3

(6.1)

Once η > 3, one obtains a gain in phase space density [143]. For η ' 7, the elastical collision rate
increases rapidly troughout the evaporation ramp, the cooling accelerates and becomes increas-
ingly efficient. This regime is referred to as runaway regime (or runaway cooling). Although
Bose-Einstein condensation can be reached outside this regime, it is strongly favorable as it
potentiates faster cooling and higher atom numbers.

To realize a constant truncation parameter η, the frequency of the magnetic RF frequency has
to be lowered exponentially with time. In the experiment, we approximate the decay function
by 12 segments of linear frequency ramps. The duration of each segment is optimized by an
iterative procedure [146] which is described in detail in [87]. The final ramp has a total duration
of 3700 ms, it is deficted in figure XYZ.

6.1.5 Bose-Einstein condensation

Once the temperature of the atomic cloud falls below the critical temperature discussed in
section 1.1.1 and 1.31, the phenomenon of Bose-Einstein condensation occurs. As discussed in
section 1.1, it can be identified as a sharp parabolic peak (assuming the Thomas-Fermi regime) in
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the atomic density distribution in time-of-flight expansion [147], corresponding to a macroscopic
population of the vibrational ground state of the trapping potential. The theoretical value for the
critical temperature in the compressed trap is 290 nK, which can not be verified experimentally:
the strong homogeneous external magnetic bias field, present after switching off the wire trap,
introduces a large Zeemann shift of the atomic resonance, which is beyond the reachable detuning
for our imaging system [73,87]. To be able to perform absorption imaging of the atomic cloud, we
therefore decompress the magnetic trap be reducing the external bias field to 12 G (which can be
imaged with a 17 MHz laser detuning, compare figure (5.12)) before releasing the atoms from the
trap. Figure XYZ shows the onset of Bose-Einstein condensation in our system when reducing
the atomic temperature by lowering the frequency of the RF magnetic field. The properties of
the BEC have been studies in detail in the theses of C. Aussibal [87] and J. Estève [73], in situ
measurements of density fluctuations were published in [148], which can be found in the annexe.
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6.2 Study of random magnetic potentials
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6.3 Experiments in a magnetic double well



Part III

A double well realized by adiabatic
dressed potentials
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Introduction

T
he third part of this manuscript presents a novel and simple scheme to realize double well
potentials starting from elongated magnetic micro traps on atom chips. This scheme
is based on adiabatic dressed potentials (ADP) and has been introduced by [99, 100]

in order to realize two-dimensional traps; Atoms confined in a static (DC) magnetic trap are
dressed by means of a strong, rapidly oscillating (AC) magnetic field in the radio frequency
(RF) domain, which couples the atomic Zeeman sub-states. For strong coupling, the resulting
adiabatic potential presents avoided crossings, forming new potential minima for the initially
trapped Zeeman states and thereby considerably altering the geometry of the static magnetic
trap [149,150].

Depending on the shape of the initial magnetic trap and on the orientation, amplitude and
frequency of the alternating magnetic field, a rich scenery of trapping geometries can be realized,
including 1D and 2D traps and multiple versions thereof, aligned along their weakly or strongly
confining axis.

As the initial static trapping potential can be adiabatically deformed to the dressed potential,
this kind of trap can be loaded by simply adjusting the parameters of the magnetic RF field. The
transfer of Bose condensed atoms into the ADP with almost no loss or heating is experimentally
demonstrated for the first time in the experimental section of this manuscript.

Combining adiabatic dressed potentials with magnetic micro potentials formed on atom chips
has several major advantages: The strong confinement and resulting elevated trap frequencies
provided by these traps are maintained (and possibly enhanced) throughout the transfer to the
ADP. This is of interest for realizing reduced dimensions and experiments aiming for coherent
splitting and tunnelling, where timescales and adiabaticity are important issues. Twofold benefit
is drawn when integrating the source of the RF magnetic field on the atom chip itself: By
designing the wire pattern for static trap and RF source, precise control over relative position,
strength and direction of the static and oscillating magnetic fields is obtained. Furthermore,
the strong local magnetic near field created by the chip wires allows for large, unperturbed RF
amplitudes, which are difficult to realize with external sources.

Chapter X briefly reviews the theory of dressed states and adiabatic potentials. A more refined
analysis of the initial proposal [99] allows for a variety of trap configurations, among which
we will focus on the elongated double well. Its scaling and characteristic properties will be
examined for different parameter regimes. Stability requirements for tunnel experiments
will be discussed. It will be especially pointed out, that a stable double well based on this
scheme may be realized with almost any structure size on an atom chip.

II. Second list item Corresponding second text.





Chapter 7

Adiabatic dressed double well
potentials

Add a short intro here?

7.1 Atoms in rapidly oscillating magnetic fields

7.1.1 The Hamiltonian for a dynamic magnetic field

We consider atoms trapped in a static magnetic field Btrap(r) as described in chapter (???). We
superimpose an oscillating magnetic field BRF(r) cos(ωt) in the radio frequency domain. For
simplicity we will assume the RF field to be linearly polarized and homogenous over the size of
the magnetic static trap [151] (BRF(r) = BRF). The Hamiltonian describing the interaction of
the atomic magnetic moment S with the total magnetic field B(r, t) can be written:

H(r, t) =
gFµB

~
S ·B(r, t)

=
gFµB

~
S · [Btrap(r) + BRF cos(ωt)]

=
gFµB

~
SZ [Btrap(r) +BRF,Z(r) cos(ωt)] +

gFµB

~
SXBRF,X(r) cos(ωt).

(7.1)

The axis Z is determined by the local orientation of the static trapping field Btrap(r) at the
position r, X is a perpendicular axis so that BRF is in the X − Z plane (BRF = BRF,XeX +
BRF,ZeZ). SZ and SX are the projections of the total magnetic moment F on these axes. We
assume the static trapping field Btrap(r) to always be sufficiently strong to fully determine the
quantization axis Z and the magnetic moment of the atom to adiabatically follow the direction
imposed by the trapping field (see adiabaticity, chapter XYZ).

The RF field component BRF,Z(r) does not couple Zeeman states of the same hyperfine level,
as there are no π transitions with ∆mF = 0. The coupling is effectuated by the RF component
BRF,X(r) which is orientated perpendicular to the static magnetic trapping field. This field
can be decomposed to equal parts into σ+ and σ− circular polarized component, one of which
couples ∆mF = ±1 transitions. For a positive (negative) Landé factor gF , the σ+ (σ−) polarized
component couples the magnetic sub-states. It is pointed out, that strong coupling is obtained,
where the oscillating magnetic RF field is orientated perpendicular to the direction of the static
trapping field (therefore, the explicit spatial dependence of BRF,Z(r) and BRF,X(r) reappears in
the last line of (7.1)):

BRF,X(r) =
|Btrap(r)×BRF(r)|

|Btrap(r)|
. (7.2)
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As BRF,Z(r) does not introduce any coupling, it can be neglected in the following:

H(r, t) = ΩtrapSZ + 2ΩRFSX cos(ωt), (7.3)

where Ωtrap and ΩRF are the Rabi frequencies associated with the static trapping field |Btrap(r)|
and the oscillating magnetic field BRF,X(r) respectively:

~Ωtrap = gFµB|Btrap(r)|, ~ΩRF =
1
2
gFµBBRF,Z . (7.4)

The factor 1/2 in the definition of ΩRF takes into account the reduced coupling due to the fact,
that only the σ+ (σ−) circular component of BRF,Z is resonant.

7.1.2 The rotating wave approximation and dressed states

The Hamiltonian (7.3) can be well described in a rotating frame which turns around the quanti-
zation axis Z with the angular frequency ω of the oscillating magnetic field [152]. It is convenient
to define the operator

RZ(−ωt) = exp(iωtSZ/~) (7.5)

which implements a rotation by an angle −ωt around the Z axis. Be Ψ(t) a spinor in the
coordinate subspace of ψm(t) (−F ≤ m ≤ F ), a solution of the Hamiltonian (7.3) i~ ∂Ψ/∂t =
H(t)Ψ. Be also Φ(t) the spinor obtained by rotating Ψ(t) around Z by an angle −ωt:

Φ(t) = RZ(−ωt)Ψ(t). (7.6)

Φ then follows i~ ∂Φ/∂t = H ′(t)Φ, the Hamiltonian H ′(t) in the rotating frame can be calculated

H ′(t) = RZ(−ωt)H(t)R†
Z(−ωt) + i~

∂RZ

∂t
(−ωt)R†

Z(−ωt)
= RZ(−ωt)H(t)R†

Z(−ωt)− ωSZ

= −δSZ + 2Ω cos(ωt)RZ(−ωt)SXR
†
Z(−ωt)

= −δSZ + 2Ω cos(ωt) [SX cos(ωt)− SY sin(ωt)]
= −δSZ + ΩSX + ΩSX cos(2ωt)− ΩSY sin(2ωt).

(7.7)

We introduce δ the detuning between the RF frequency ω and the Rabi frequency Ωtrap at a
specific position r:

δ ≡ ω − Ωtrap. (7.8)

The last line of (7.7) contains two terms which are constant in the rotating frame and two terms
which oscillate with twice the resonance frequency. The rotating frame approximation now
consists in neglecting these far off resonance terms, which have almost no effect on the spinor.
In the case of a positive (negative) g factor, this corresponds to neglecting the non-resonant
σ− (σ+) polarization of the magnetic RF field. In the rotating frame we thereby obtain the
stationary Hamiltonian

Heff = −δSZ + ΩRFSX . (7.9)

The eigenstates of this Hamiltonian are called dressed states as the energy of the resonant
photon is included in the term δSZ . The term ΩRFSX describes the strength of the coupling.
The effective Hamiltonian can also be written as:

Heff =
√
δ2 + Ω2

RFSθ (7.10)

Sθ = SZ cos θ + SX sin θ = RY (θ)SZR
†
Y (θ) (7.11)

tan θ = −ΩRF/δ, 0 ≤ θ ≤ π, (7.12)
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which is the Hamiltonian of the atomic magnetic moment in an effective static magnetic field

Beff =
~

gFµB

√
δ2 + Ω2

RF (cos θeZ + sin θeX) . (7.13)

This effective magnetic field is in the plane spanned by Btrap(r) and BRF, it is tilted away from
the Z axis by the angle θ.

For a large (compared to ΩRF) negative detuning δ, the angle θ tends to zero and the
effective potential coincides with the static trapping potential. On resonance (δ = 0), the
effective magnetic field is aligned with the X axis (θ = π/2). For large positive detuning δ, the
angle θ equals π and the effective magnetic field is again aligned with the Z axis.

The dressed eigenstates |m′〉 in the rotating frame (r.f.) are simply obtained by rotations of
the unperturbed states |m〉 in the rest frame:

|m′〉r.f. = RY (θ)|m〉 (7.14)

with the corresponding eigenenergies [153]

εm′ = m′~
√
δ2 + Ω2

RF. (7.15)

In line with the effective magnetic potential, the dressed eigenstates coincide with their undressed
counterpart for large negative detunings. For large positive detunings, the dressed states are the
reversed undressed states.

7.1.3 Adiabaticity and Landau-Zener losses

The considerations above describe the effect of static and oscillating magnetic fields on an atom
located at a specific position r. An atom moving in the combined field configuration experiences
the effective field (7.13) which varies in space. In section (7.1.1) we have imposed adiabaticity
of the atomic magnetic moment with respect to the static trapping field Btrap(r). We will now
verify adiabaticity with respect to the effective magnetic field Beff(r) in the rotating frame. For
this, the projection of ∂|m′〉/∂t on the other dressed states |n′〉 has to be negligible compared
to the corresponding energy difference:∣∣∣∣〈n′| ∂∂t |m′〉

∣∣∣∣�√
δ2 + Ω2

RF, ∀ n 6= m. (7.16)

Using (7.14), the dressed state |m′〉 can be rewritten:

∂

∂t
|m′〉r.f. =

∂

∂t
(exp(iθSY /~)|m〉) (7.17)

= θ̇

(
−iSY

~

)
|m′〉r.f. (7.18)

= θ̇
S− − S+

2~
|m′〉r.f. (7.19)

The derivative ∂|m′〉/∂t can be expressed by the neighboring states |m′ ± 1〉r.f.. As |〈n|m′ ±
1〉r.f. ≤ 1 for n 6= m, the adiabaticity condition (7.16) can be written

|θ̇| �
√
δ2 + Ω2

RF. (7.20)

This condition is identical to the adiabaticity criterium for an atomic spin in a inhomogeneous
magnetic field (see XYZ), which can be transferred to the effective magnetic field Beff(r) in the
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rotating frame. If the above condition in not fulfilled, an atom in a specific dressed state might
undergo non-adiabatic transitions to other (possibly untrapped) dressed states. This will mainly
take place at the position of the avoided crossing, where the directional change of the effective
magnetic field is maximal. This situation is formally equivalent to the system described by
Landau [154] and Zener [155] for avoided crossings in adiabatic molecular potentials, apart the
fact, that in the RF system, all Zeeman sub-levels have to be considered. Still, as all Zeeman
states are energetically equidistant (see (7.15)), the problem can be reduced to a two-level
system [156]. The probability for a spin-flip Landau-Zener transition is

PL.Z. ' 4 exp
(
−π

2
Ωtrap

|δ̇|

)
, (7.21)

which is analogous to the expression for Majorana losses in a static magnetic trap (HIER MUSS
EIN VERWEIS HIN!!!). The adiabaticity criterion as well as the spin-flip loss mechanism in the
adiabatic dressed potential can be mapped to the case of a static magnetic potential. We will
therefore use the more common language of static traps wherever possible.

7.1.4 The effective adiabatic potential

If the adiabaticity criterion (7.20) is fulfilled, the local eigenenergies (7.15) of the dressed states
give rise to an effective adiabatic potential:

Vm′(r) = m′~
√
δ2 + Ω2

RF (7.22)

= m′

√√√√√√
[
~ω − gFµB|Btrap(r)|

]2
︸ ︷︷ ︸

resonance term

+
[
1
2
gFµBBRF,⊥(r)

]2

︸ ︷︷ ︸
coupling term

(7.23)

where BRF,⊥(r) is the component of the RF field perpendicular to the local static trapping field:

BRF,⊥(r) =
|Btrap(r)×BRF(r)|

|Btrap(r)|
. (7.24)

The first term below the square root in (7.23) contains the energy shift of the dressed system
due to the energy of the RF photon ~ω. This term will be referred to as resonance term, as in
many realizations of adiabatic potentials, new minima form where the RF resonantly couples
the undressed states of the static trapping potential: ~ω = gFµB|Btrap(rmin)|. The resonance
term only depends on the frequency ω of the oscillating magnetic field.

The second term in (7.23) describes the strength of the coupling of the RF field to the atom
in the initial static potential and will therefore be referred to as coupling term. In the case
of strong coupling, it causes level repulsion at the avoided crossings of the adiabatic potential.
The coupling term plays the role of a effective Ioffe field, as it suppresses spin-flip losses at the
resonance points and therefore allows for long lifetimes in the adiabatic potential.

The spatial dependence of the coupling term has been ignored so far in the literature [99,100].
In the following we will show that this is not permitted and that this spacial dependence allows
for the formation of a variety of trapping geometries, e.g. double wells.
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7.2 Realizing a double well geometry

In this section, basic trapping geometries that may be formed in adiabatic dressed potentials are
discussed on a general level. We will then concentrate on adiabatic potentials based on highly
elongated static magnetic traps formed on atom chips and how this system can be used to form a
double well potential. Where possible, analytic expressions for the relevant physical parameters
of the double well are derived. Based on these expressions, we investigate the feasibility of a
tunnel experiment in this system under realistic conditions. In contrast to the purely static
magnetic system analyzed in SecXYZ, such an experiments is found to be possible with almost
any structure size, using adiabatic dressed potentials.

7.2.1 Adiabatic potentials based on a Ioffe trap

To examine the general geometrical features of adiabatic potentials, we will analyze the effect
of an oscillating magnetic field on atoms in a magnetic trap of the Ioffe-Pritchard type:

Btrap(r) = B0

0
0
1

+B′

 x
−y
0

+
B′′

2

 −xz
−yz

z2 − 1
2(x2 + y2)

 . (7.25)

A possible anisotropy of the magnetic trap does not affect the following considerations; without
loss of generality one can set (B′)2/B0 = B′′. This describes an isotropic trap (ωx = ωy = ωz)
with the trap frequencies ωx,y,z/2π =

√
mF gFµB/m

√
B′′. The Ioffe field is aligned with the z

axis (see figure 7.1), it’s magnitude at the trap bottom is B0. It is convenient to redefine the
detuning δ of the RF magnetic field with respect to the Rabi frequency at the trap bottom:

δ = ω − gFµBB0

~
. (7.26)

The effect of gravity will be neglect in the following. As in section (7.1.1), the oscillating magnetic
field is supposed to be linear polarized and homogeneous over the size of the trap [151].

It will turn out, that the orientation of the RF field with respect to the magnetic field vectors
of the static magnetic trap is crucial for the geometry of the effective adiabatic potential. We
will thus analyze two limiting cases which allow to overview the range of possible topologies,
intermediated configurations can be easily derived afterwards.
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Figure 7.1: Normalized field vectors and equipotential lines of an isotropic Ioffe-Pritchard trap
in the (x, y, 0) plane (left) and the (x, 0, z) plane (right).
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An RF field aligned with the Ioffe field

Here we will analyze a configuration, where the linear polarized RF magnetic field is aligned
with the z axis (BRF = BRFez) and thereby is parallel to the Ioffe field at the trap center (see
figure (7.1, right). We will first concentrate on the case of positive detuning (~ω > gFµBB0),
which is easiest to understand.

The effective adiabatic potential (7.23) is the geometric mean of the resonance term and the
coupling term, which will now be analyzed separately.

The effect of the resonance term on the static magnetic potential can be seen schematically
in figure (7.2). Where the resonance condition ~ω = gFµB|Btrap(r)| is fulfilled, a new potential
minimum of zero magnetic field is formed. In the case of an isotropic static magnetic trap, this
means forcing the atoms into an iso-|Btrap| sphere of radius r. The steepness of the potential at
the minimum position corresponds to the gradient ∂|Btrap|/∂r of the original static potential at
the resonance position. For small positive RF detunings, the harmonic region of the initial trap
is sampled; for high positive detuning, the linear region of the static potential is explored.
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Figure 7.2: Schematic illustration of the resonance behavior of the adiabatic potential, neglecting
the coupling term. Left: two Zeeman sub-states in a semi-linear trap are coupled by a locally
resonant RF field. Right: new potential minima are formed at the resonance position by shifting
the initial potentials by the RF photon energy.

The coupling term 1
2gFµBBRF,⊥(r) vanishes, where BRF is parallel to Btrap(r) and has its

maximal value 1
2gFµBBRF where both fields are orthogonal. In the (x, y) plane the coupling is

zero at the trap center (0, 0) and then quickly increases to its maximal value as an atom moves
away from the center; the influence of the Ioffe field along z diminishes rapidly for increasing r
and the trapping field vectors are mainly in the (x, y) plane and thus perpendicular to the RF
field along z (see figure (7.1, left)). The RF coupling follows the rotational symmetry of the
Ioffe-Pritchard trap in the (x, y) plane (see figure (7.3, left)).

In the (x, z) or (y, z) plane, the rotational symmetry is of the static trapping field is broken
by the Ioffe field (see figure (7.3, right)), the coupling vanishes on the entire z axis and rapidly
increases to its maximal value for atoms moving away from x = y = 0.

As mentioned above, the overall adiabatic potential is the geometric mean of resonance
and coupling term and can be easiest described in the regime of large positive detuning. In
this regime, the position of the newly formed minima is almost completely determined by the
resonance condition, which will create a 3D trapping surface (sphere topology). The absolute
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Figure 7.3: Effect of an RF field parallel to the Ioffe field at the trap center (along z). Left: The
coupling in the (x, y) plane is zero at the trap center and tends to a constant elsewhere. Right:
The coupling in the (x, z) plane vanishes on the entire z axis.

value at the minimum position in contrast is determined by the coupling term at the specific
position, which varies in space from zero to its maximum value. Where the z axis intersects
the sphere of radius r, two overall minima of zero field [157] are formed, giving rise to a double
well configuration in 3D. As spin-flip losses are not suppressed at these minima, this trapping
configuration is not stable.

For small positive detuning, the system becomes slightly more complex: still the resonance
condition is forcing the atoms onto a sphere, which is now closer to the center of the initial
static trap. In this region, the coupling term varies strongly on the region of the newly formed
minima, counteracting the effect of the resonance condition and deforming the sphere. Still, two
spatially separated overall minima of vanishing field will form in the adiabatic potential. The
configuration BRF parallel to the direction of the Ioffe field is unstable once ~ω ≥ B0.

For negative detuning, the topology of the initial static trap is not changed fundamentally,
for RF frequencies close to resonance, the initially isotropic trap becomes slightly elongated
along the z direction.

An RF field perpendicular to the Ioffe field

We will now analyze a configuration, where the RF magnetic field is oriented perpendicular to
the Ioffe field at the trap center. Without loss of generality, we can assume the RF field aligned
with the x axis: BRF = BRFex. Again, first the most intuitive case of large positive detuning
will be described.

The effect of the resonance term in the effective adiabatic potential (7.23) is the same as in
the configuration described above, as only scalar properties of the static trapping potential come
into play. Again the resonance condition is forcing the atoms onto a closed sphere of radius r,
where ~ω = gFµB|Btrap(r)|.

In contrast, the contribution of the coupling term is fundamentally changed for an RF field
aligned perpendicular to the Ioffe field: It is maximal (and constant) in the entire (y, z) plane.
Consequently, the coupling is also maximal at the trap center in the (x, y) plane and vanishes for
x → ±∞, where the trapping field vector is parallel to the RF field. For realistic experimental
settings, the coupling term never completely vanishes, although care has to be taken to avoid
spin-flip losses.

As in the former scenario, the spherical symmetry imposed by the resonance condition,
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is broken by the coupling term, giving rise to a double well trapping geometry in 3D. The two
minima will be located on the x axis and are of non-zero field. Stable long term trapping of atoms
in this configuration is therefore possible. The precise effect of the RF amplitude and frequency
on the effective adiabatic double well potential will be discussed in detail in section (7.2.2).
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Figure 7.4: Effect of an RF field perpendicular to the Ioffe field at the trap center (along x).
Left: Spatially inhomogeneous coupling in the (x, y) plane (constant in the orthogonal (y, z)
plane). Right: The resulting effective adiabatic potential presents two minima of finite magnetic
field.

General remarks on topology

The two scenarios described above present limiting cases, both giving rise to a double well
trapping structure in 3D. The general behavior can be qualitatively described as follows.

As only the scalar potential of an atom in an external magnetic field appears in the resonance
condition, this term acts on the iso-|Btrap| lines of the static trap, which are closed 3D surfaces,
reflecting the symmetries of the initial trap.

The coupling however depends on the relative orientation of the field vectors. For any
configuration of a Ioffe-Pritchard trap (provided three orthogonal principal axes), this creates
regions of minimal or zero coupling, usually located on the axis of the RF field. In combination
with the resonance condition, this always leads to a double well configuration for positive RF
detuning. This configuration is unstable in the special case of an RF field exactly aligned with
the Ioffe field at the trap center.

This description is in contrast to the original proposal of [99, 100], where the spatial depen-
dence of the coupling term has been neglected. This has lead to to the impression, that trapping
of atoms on the entire iso-|Btrap| surface would lead to the formation of large “matter wave
bubbles”. We believe this to be impossible without considerable further effort to compensate
the spatial inhomogeneity of the coupling term.

Auxiliary forces acting on the atoms, like gravity, static or oscillating electric fields may
additionally modify the effective adiabatic potential, giving rise to a rich scenery of trapping
geometries: trapping on a 2D iso-|Btrap| surface under the influence of gravity has been demon-
strated in [149, 150]. Several RF sources with different spatial orientation can be used to form
complex trapping structures, depending on the relative phase, which may be additionally ad-
justed in time.

So far, the RF field has been considered as homogeneous over the trapping region. A well
designed spatial variation of the RF amplitude results in a corresponding variation of coupling
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strength and also allows for the design of complex trapping structures. A design for a guided
atom interferometer on a chip based on this concept will be presented in chapter [????]

7.2.2 Properties of the adiabatic potential double well

This section focuses on a more quantitative analysis of the stable double well configuration
introduced above, where the RF field is orientated perpendicular to the Ioffe field at the trap
bottom. The initial static magnetic trap shall be a very elongated chip trap orientated along
the z axis with a Ioffe field aligned along the same axis, as it is created by Z-shaped wire
traps. We assume a small number of Bose-condensed atoms, sampling the very bottom of the
trap. Numerical calculations and explicit experimental values are given for 87Rubidium in the
F = mF = 2 state.

As an atomic cloud trapped in a magnetic wire trap usually is of cigar shape, cylindrical
coordinates will be used:

Btrap(r) = Btrap(rφ, z) =

 B′r cosφ
−B′r sinφ
B0 + 1

2B
′′z2

 . (7.27)

For elongated traps with longitudinal trap frequencies of a few Hertz, the change in longitudinal
field ∆Bz = 1/2B′′z2 is on the order milligauss over the size of the cloud [158]. We will neglect
this term and consider the trap as invariant under translation along z, reducing the system
to the 2D transverse plane. The trapped atoms are assumed to be non interacting and in
the transverse single particle ground state (ideal 1D trap). Numerical results are obtained by
searching for stationary solutions of the 2D Schrödinger equation. The RF field is aligned along
the x axis: BRF = BRFex. The effective adiabatic potential writes [153]:

Veff(r, φ) = m′
F

√√√√[~ω − gFµB

√
B2

0 + (B′r)2
]2

+

[
1
2
gFµBBRF

√
B2

0 + (B′r sinφ)2

B2
0 + (B′r)2

]2

. (7.28)

The following analysis takes interest in the two primary physical quantities describing a double
well: the double well separation 2r0 and the oscillation frequency ω0/2π at the minimum position.
Analytical expressions for these quantities can not be derived directly from (7.28). Depending
on parameter regimes, useful approximations have to be made. We will explicitly treat two
different regimes, identified by the region of the initial static trap, which will be explored by the
adiabatic potential. These regimes allow for the realization of large trap separations (hundreds
of ground state sizes) and therefore completely isolated sites as well as for small separations
(on the order of the ground state size) where tunnel coupling can be important. For these
two regimes, simple analytic expressions for the physical quantities of interest could be found,
allowing for an analysis of the scaling and the robustness of the splitting and a comparison with
other schemes to realize a double well potential. However, these regimes do not entirely cover
the parameter space of the system and some realizations of the RF double well can only be
described numerically.

The linear regime: large positive RF detuning

We will first focus on the regime of large positive detuning ~ω � gFµBB0, as it has been
described qualitatively in the section above. In this case, the resonance condition forces the
atoms to a region far out of the initial semi-linear trap, mainly sampling its linear region. The
trapping potential can therefore be approximated as purely linear: |Btrap(r)| ' B′r. This
approximation is precise to better than 10%, once r ≥ 2, 2B0/B

′ (e.g. 22µm for a trap of
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Figure 7.5: Trap separation and oscillation frequency for the dressed adiabatic potential in
the linear regime for initial static traps of different gradient. Left: trap separation 2r0 for
B0 = BRF = 1 G, B′ = 500 (1000, 2000) G/cm (top to bottom). The dotted/solid line indicates
the analytical result of (7.29), the graph is solid from r0 > 2, 2B0/B

′ on. The dashed lines are
numerical results obtained directly from equation (7.28). Right: oscillation frequencies ω0/2π
for the same initial traps, analytic result of equation (7.32) and numerical calculation. Trap
frequencies of the initial static trap are ωtrap/2π = 2550 (1280, 640)Hz (top to bottom).

B0 = 1 G, B′ = 1000 G/cm). In this regime, the position of the minimum in the adiabatic
potential is completely determined be the coupling term:

r0 =
~ω

gFµBB′ . (7.29)

The trap separation increases linear with the RF frequency, the slope being determined by the
gradient of the static trap (see figure (7.5, left)). The effective magnetic field B0,eff at the
minimum position is given by the coupling term at r = r0, φ = 0 (using B′r0 � B0):

B0,eff =
1
2
BRF

√
B2

0

B2
0 + (B′r0)2

(7.30)

' 1
2
BRF

B0

B′r0
. (7.31)

The effective minimum trapping frequency is therefore:

ω0 =

√
mF gFµBB′2

mB0,eff
(7.32)

=

√
2~ω

gFµBBRF
ωtrap (7.33)

Depending on the ratio 2~ω/gFµBBRF, the trap frequency ωtrap of the initial trap can be main-
tained or even increased during the transfer to the adiabatic potential (see figure (7.5, right)).
As the trapping gradient stays constant, the effective magnetic field at the trap minimum is the
equivalent of the Ioffe field of the initial static trap. Though in principle, this Ioffe field could be
reduced at will in order to increase the oscillation frequency, this is often hindered by technical
problems: static traps with low Ioffe fields (e.g. below 0,5 G) are very sensitive to AC magnetic
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noise in the frequency domain of some some hundred MHz which induces spin flip losses. In
the case of an adiabatic potential, the system is insensitive to noise of frequencies below the RF
frequency, which can be several MHz. Therefore, adiabatic potentials in the linear regime may
be used to further increase the trapping frequency of the initial static trap.

The harmonic regime: RF frequency on resonance

If the RF frequency is close to resonance (~ω ≈ gFµBB0), the harmonic region of the initial
static potential close to the trap bottom is explored by the atoms. Therefore, a harmonic
approximation can be applied for the trapping potential:

|Btrap(r)| ' B0 +
(B′r)2

2B0
. (7.34)

This approximation is precise to better than 10 %, once r0 ≤ 1, 14B0/B
′ (e.g. 11µm for a trap

of B0 = 1G, B′ = 1000G/cm). In the following, much stronger constrains will be imposed on
r0, so we can consider (7.34) a very good approximation. The effective adiabatic potential along
the φ = 0 axis then writes:

Veff(r, φ) = m′
F

√√√√[~ω − gFµB

(
B0 +

(B′r)2

2B0

)]2

+

[
1
2
gFµBBRF

B0

B0 + (B′r)2

2B0

]2

. (7.35)

The minimum position and local trap frequency of this effective potential are harder to find, as
in the linear regime, as the spatial dependence of the coupling term has a strong influence on the
overall potential at the center of the initial static trap (see figure (7.4)). Analytic expressions for
the quantities of interest can in principle be derived from (7.35), but are too complex to allow
insight into the physical processes. The coupling term of (7.35) has the shape of a Lorenz curve
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Figure 7.6: Trap separation and oscillation frequency for the dressed adiabatic potential in
the harmonic regime for initial static traps of different gradient. Left: trap separation 2r0 for
B0 = BRF = 1 G, B′ = 500 (1000, 2000) G/cm (top to bottom). The dotted/solid line indicates
the analytical result of (7.40), the graph is solid from r0 > 0, 77B0/B

′ on. The dashed lines are
numerical results obtained directly from equation (7.28). Right: oscillation frequencies ω0/2π
for the same initial traps, analytic result of equation (7.42) and numerical calculation.

and is badly approximated by a finite polynomial. Still, we will apply a harmonic approximation
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and take care to well stay within the validity region of this approximation:

Veff(r, φ) = m′
F

√[
~ω − gFµB

(
B0 +

(B′r)2

2B0

)]2

+
[
1
2
gFµBBRF

(
1− (B′r)2

2B2
0

)]2

. (7.36)

This approximation is precise to better than 10%, once r0 ≤ 0, 77B0/B
′ (e.g. 7,7µm for a trap

of B0 = 1G, B′ = 1000G/cm). From (7.36), reasonably simple expressions for the minimum
position of the adiabatic potential can be derived:

r0 = ±
√

2
B0

B′

√√√√ 4~ωRF B0
gF µB

+B2
RF − 4B2

0

B2
RF + 4B2

0

. (7.37)

To obtain a splitting configuration, the numerator below the square root has to be positive:

1 <
~ωRF

gFµBB0
+
B2

RF

4B2
0

. (7.38)

To be well within the limits of the harmonic approximation for the coupling term, we furthermore
impose

1
2
≤

√√√√4~ωRF B0
gF µB

+B2
RF − 4B2

0

B2
RF + 4B2

0

. (7.39)

To satisfy the conditions (7.38) and (7.39), it is convenient to fix ~ωRF ≡ gFµBB0 andBRF < B0.
This corresponds to an RF frequency on resonance. By doing so, the richness of the system is
significantly reduced to make it accessible to analytic description. For technical reasons, it
may be advantageous not to work within these limits. Nevertheless, describing the system on
resonance has the advantage of allowing for simple expressions for the physical properties of
interest. Furthermore, the splitting process starts at BRF = 0, making the RF amplitude a
control parameter, which can be directly identified with b in the purely magnetic double well
system presented in chapter 2.

With the above conditions, the minimum position is

r0 = ±
√

2
B0

B′

√
B2

RF

B2
RF + 4B2

0

(7.40)

' ± 1√
2
BRF

B′

[
∓ 1

8
√

2
B3

RF

B2
0B

′ ± ...

]
. (7.41)

Especially for small RF amplitudes (BRF � B0), the linear approximation (7.41) is very accu-
rate. This shows, that the trap separation in the RF adiabatic double well increases linear with
the control parameter at the beginning of the splitting, in strong contrast to the square root
dependence (ZITE!) in the purely magnetic scheme.

The oscillation frequency ω0 at the minimum position is

ω0 =
1√
2
B′

B0

√
mF gFµBBRF

mB0

√
B2

RF + 4B2
0 (7.42)

' B′

B0

√
mF gFµB

m

√
BRF

[
+

1
16

B′

B3
0

√
mF gFµB

m
B

5/2
RF + ...

]
(7.43)

'
√
BRF

B0
ωtrap. (7.44)

Again, the leading term of the development (7.43) is already very precise for small RF amplitudes,
showing a square root dependence for the oscillation frequency on the control parameter, as it
is the case in the purely magnetic system (CITE!).
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7.2.3 Realizing the two-modes model

In this section, the feasibility of a tunnel experiment in a double well formed by adiabatic
potentials is examined. The following calculations are carried out for the 87Rubidium atom in
the F = mF = 2 state, we assume the RF frequency on resonance as described above. Based
on (7.41) and (7.43), the adiabatic potential in the direction of the double well (φ = 0) can be
approximated by the universal expression

V (r) =
mω2

0

8r20
(r2 − r20)

2 (7.45)

' 1
4
µBBRF

B′4

B2
0B

2
RF

(
r2 − 1

2
B2

RF

B′2

)2

. (7.46)

The approximation (7.46) is excellent for small RF amplitudes (small double well separations)
and close to the inner region of the double well. It fails in the linear region, far out of the trap
center, which is usually not explored by cold or Bose condensed atoms. The tunnel coupling
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Figure 7.7: Left: Tunnel coupling of the double well for different ratios of well separation 2r0
and ground state size a0 based on an initial static trap of B0=1G, B′=1000 G/cm. The analytic
expression (??) (dottes line) is compared to an numerical calculation (solid line). Right: Bohr
frequency between the ground state (i = 0) and the first two excited states of the double well
potential. For r0/a0 = 2.74, the Bohr frequency ω2,0 is ten times the tunnelling rate δ = ω1,0.

δ for a double well potential of the form (7.45) is given by (REF INSTANTON) (see chapter
XYZ). Figure (7.7, left) compares the analytic expression to a numerical 2D calculation of the
coupling for varying ratio r0/a0 of the trap separation to the size of the single particle ground
state. The analytical expression describes the tunnel coupling well within a factor of two. The
absolute values depend on gradient and trap separation, the relative behavior is universal. The
two curves cross at r0/a0 = 2, 6, within a region from r0/a0 = 2, 5− 2, 8 the description is precise
to better than 10 %.

As described in chapter XYZ, for tunnel experiments, one is interested to work in a regime,
where the two-modes approximation can be applied, in order to avoid excitations due to the
tunnel coupling. Numerical calculations show, that in the RF adiabatic system, a ratio r0/a0 =
2, 74 guaranties ω0 = 10δ, as can be seen in figure (7.7, right). This ratio is completely universal,
independent of gradient or double well separation [159]. A tunnelling configuration can therefore
always be realized in the RF adiabatic system, only limited by technical constrains, as will be
discussed in the following section.
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7.3 Stability of the double well

The former considerations where based on a generic static trap of the Ioffe-Pritchard type. We
will now concentrate on a concrete realization of a double well for tunnel experiments based on
a wire trap on an atom chip. As above, we consider the system to be invariant to translation
along the z axis, which is the axis along the trapping wire as well as the direction of the Ioffe
field B0 at the trap bottom. If the RF frequency is set on resonance, as described above, the
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Figure 7.8: Stability diagram for double wells of trap separation 2r0, created by a wire structure
of size d. The gray area represents the parameter region, in which noise and fluctuations do not
significantly affect the tunnelling dynamics. The region is limited from below (solid line) by the
effect of fluctuating RF amplitude (10 mG) and limited from above by external field noise (1
mG) tilting the double well (dotted line) and the constraint B0 < 100G (dashed line).

system is determined by three parameters: the gradient B′ of the initial static trap, the Ioffe field
B0 and the RF amplitude BRF. To analyze the scaling of the system, we introduce a structure
size d, give by the distance of the atomic cloud to the trapping wire. Furthermore, we assume
the trapping wire to also have a maximal width of d. As it has been shown in Part 1, section
XYZ, for a separation between atoms and wire equal to the wire width, the approximation
of an indefinitely thin wire can still be applied and finite size effects can be neglected. For
simplification, we will assume square cross section wires, in practice, it is favorable to use flat
wires of identical cross section for reasons of heat dissipation (see XYZ). The structure size
imposes a maximum current Ic in the trapping wire following the scaling law Ic = ξd3/2 [83].
With d being the distance of the cloud from the wire, also the homogeneous field constituting
the trap is determined, thereby fixing the static trap gradient: B′ = µ0Ic/(2πd2). For the
following analysis we chose ξ = 1, 8 · 106 Am−3/2. This allows for a direct comparison to the
purely magnetic double well scheme based on 5 wires, presented in part 2, chapter XYZ [92].

We are now free to choose a double well separation 2r0. As to first order, the splitting
distance is independent of the Ioffe field (see (7.41)), the trap separation fixes the RF amplitude
BRF. The Ioffe field B0 is then adapted to satisfy r0 = 2, 74 a0, in order to guaranty tunnelling
in the two modes approximation. For technical reasons, we limit the maximal Ioffe field to 100 G
(dotted line in figure (7.8)).

Choosing a structure size d and a trap separation 2r0 completely determines the system. We
will now analyze the influence of fluctuations and noise on the system. Two major effects might
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degrade the measured signal in a tunnel experiment:

• Fluctuations in tunnel coupling: Noise on the physical quantities determining the system
or random additional external magnetic field fluctuations might alter the tunnel coupling
(e.g. modify the trap separation). This effect will degrade the signal of an experiment,
which reads out relative population in the two wells (e.g. Rabi or Josephson oscillations).
As criterion for the feasibility of a tunnel experiment, we will tolerate a modification of
the tunnel coupling up to 10 % due to noise or fluctuations

• Tilting of the double well: Noise on the physical quantities determining the system or
random additional external magnetic field fluctuations will modify the position of the
static trap and in result tilt the double well. A height difference h of the two wells induces
a potential energy difference mgh, which leads to a corresponding (arbitrary) evolution
of the differential phase. This effect will degrade the signal of an experiment, which
reads out the relative phase of the two condensates. As criterion for the feasibility of a
tunnel experiment, we will tolerate differential energy shift of 10% of the tunnel coupling
(mgh = 0.1 δ) due to noise or fluctuations

We will first analyze the effect of noise on the physical quantities constituting the system: the
wire current, the external homogeneous magnetic field, the Ioffe field and the RF frequency and
amplitude. For a chosen set of structure size d and trap separation 2r0, the tunnel coupling is
derived from a 2D numerical simulation, as described above. This coupling is compared to the
one obtained, when one of the above quantities is modified.

We find the double well structure astonishingly stable against this kind of noise: a relative
stability of 1 % in all quantities is sufficient to allow stable tunnelling (in the limits described
above) for the entire parameter space depicted in figure (7.8). The most critical parameter is the
RF amplitude, a relative fluctuation of 1 % causes a fluctuation in tunnel coupling that saturates
at 8 % for large trap separations.

A relative stability of 1 % in the parameters generating the initial static trap can be easily
implemented in a BEC experiment; the achievement of a Bose condensate with a less stable
system seems not realistic. The stability of the static magnetic trap can be further improved by
using noise reducing wire geometries, where external fields and wire fields are generated by the
same current, as proposed in part 2 of this manuscript (see XYZ). RF frequencies can controlled
to the 10−6 level using standard laboratory equipment. The stability of RF amplitude rests an
issue: the control of low RF amplitudes has turned out to be non-trivial. We take this into
account by assuming an absolute noise of ∆BRF = 10 mG on the RF amplitude. For small RF
amplitudes (and consequently small trap separations) this fluctuation causes variations in the
tunnel coupling that exceed the 10 %. The solid line in figure (7.8) indicates the trap separations,
that are excluded from the parameter space because of this effect.

Under real experimental conditions, random magnetic field fluctuations independent of de-
liberately generated fields are present. We assume, that some experimental effort has been
undertaken to reduce these fluctuations (e.g. passive shielding). To analyze their effect, a ho-
mogeneous magnetic field of 1mG in an arbitrary spatial direction is added to the static field
configuration. It turns out, that field fluctuations along the direction of the Ioffe field or along
the direction of the homogeneous magnetic field (direction of the double well splitting) do not
affect the configuration significantly, as they are small compared to the fields deliberately pro-
duced in these directions. In contrast, a field orientated transversally to the direction of the
double well splitting causes a rotation of the double well. As initially, there is no magnetic field
in this direction, even a small fluctuation of 1mG creates a significant tilt, resulting in a shift
of the relative phase of the condensates, as described above. The effect is stronger for larger
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trap separations, excluding the region above the dotted curve in figure (7.8) from the parameter
space.

A stability diagram resuming the above analysis is shown in figure (7.8). The gray area
indicates the parameter region, in which a tunnel experiment can be performed. This area is
limited from above by the condition B0 < 100 G (dashed line) and the effect of a tilted double
well due to an auxiliary magnetic field noise of 1mG perpendicular to the splitting direction
(dotted line). It is limited from below by the effect of fluctuations in tunnel coupling due to
instabilities in the RF amplitude (solid line).

As can be easily concludes from this analysis, a tunnel experiment based on dressed adiabatic
potentials can be performed using structure sized from below 1µm up to 740µm. This is in strong
contrast to the result of the corresponding analysis of the purely magnetic double well created
by 5 wires, presented in chapter XYZ of part 2 of this manuscript. Here a tunnel experiment
could only be performed with structures around 5µm, applying the same constrains on stability,
the same scaling law for maximum wire current and the same level of ambient noise.

The enhanced noise resistance of the RF adiabatic double well can be attributed to fun-
damental differences in scaling of the physical properties of the double well (e.g. trap separa-
tion and frequency) with structure size, which will be discussed in comparison in [CONCLU-
SION/OUTLOOK].

It is pointed out, that the structure size d indicates the distance of the trapped atoms from
the trapping structure. Therefore tunnel experiments in adiabatic dressed potentials can be
performed far from the chip surface, avoiding deleterious effect like heating and fragmentation
described in part 1, chapter XYZ.



Chapter 8

Experimental setup

This chapter reviews the experimental setup employed by the Heidelberg group. We will focus
on the description of the atom chip concept, which differs in many respects from the Orsay
approach: it involves macroscopic (mechanically machined) structures as well as (lithographically
fabricated) microscopic wire patterns. The wires itself act as a mirror for the (optimized and
entirely chip-based) surface magneto optical trap.

The remaining setup is conceptually identical to the Orsay apparatus: a single chamber
vacuum system holds the atom chip, 87Rb atoms are loaded from a background gas created by
pulsed dispensers, the laser system is based on extended cavity diode lasers.

The setup has been thoroughly characterized and described in great detail in the PhD and
diploma theses [160,161,162,163] and publications [79,125,82,164] whereto we refer for further
information.

8.1 A hybrid macroscopic-microscopic atom chip

8.1.1 The Micro fabricated atom chip

The atom chips used in the Heidelberg setups are realized by S. Groht, a detailed description of
the procedure can be found in [165]. The fabrication is carried out at the Weizmann Institute
of Science, Israel (department of condensed matter physics) in collaboration with the group of
I. Bar-Joseph.

The Heidelberg atom chips follows a different approach in combining micro fabricated wires
for magnetic trapping with a reflecting (mirror) surface used in a surface magneto optical trap:
here, the (reflecting) top surface of the wires themselves is used to create the mirror. The wires
are defined by small (1-10µm) micro fabricated groves, the pattern is designed to cover the entire
chip surface with wires or grounded surfaces to minimize non-reflecting areas (see figure (8.2a)).

The fabrication process is based on optical lithography and direct gold evaporation, almost
analogous to the process for the design of the seed gold layer in the second generation atom chip
in Orsay (compare section 5.2.2): a 20 mm×25 mm Si wafer is thermally oxidized to create a
100 nm insulation layer of SiO2. A photoresist (AZ5214E) is applied to the wafer and the wire
pattern is transferred to the resist by shining UV light through a lithographic mask (created in
a dedicated beam writer as described in 5.1.3). After development, the photoresist only remains
on the small stripes, separating the wires. By thermal evaporation, a 50 nm Ti adhesion layer,
followed by a 1-2µm gold layer is deposited on the substrate. The gold evaporated onto the
photoresist is removed by lift off in an acetone bath, realizing the separations between the wires.

Gold evaporation creates a surface of excellent optical quality. As the wires are directly
fabricated on the (λ/100) flat single crystal wafer and by construction are of equal height, the
atom chip mirror does not suffer from large wavelength waviness as encountered in the Orsay
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Figure 8.1: Design drawing of the central region of the atom chip wire pattern. All structures
are 2µm high and created by gold evaporation. The grey areas indicate grounded gold surfaces,
current carrying structures are visualized by color. A detailed description and dimensions can
be found in the text.

experiment. Small shadows in the reflected beams due to non-reflecting gaps between the wires
were found to not disturb the functioning of the surface MOT significantly. However, light
scattered at wire edges degrades the quality of absorption images when using the chip surface
as a mirror.

Figure (8.1) shows the wire design in the central region of the atom chip. The magnetic
traps used in experiments described in chapter 9 are created be the 100µm (50µm) Z shape
wire depicted in dark (light) red. This wire is 2µm high, has a central length of 1850µm and
can carry up to 2 A (1,2A) continuously. A parallel L shaped 10µm wire (blue, connections
B-F) is used as an antenna for the RF induced double well potential. Four 20µm U shape wire
structures at the side of the RF antenna can be used to increase the longitudinal confinement
or create additional potentials based on electric fields [166].

The use of gold evaporation limits the height of the structures to 1-2µm (limited by the
thickness of the photoresist and the non-directive nature of the evaporation process) and con-
sequently limits the currents that can be employed. It is therefore hard to realize a magneto
optical trap based on a U shaped wire using this technique, capturing atoms in a magnetic wire
trap far from the chip surface is complicated. Therefore, to realize a U-MOT, simplify the trans-
fer of atoms towards the surface and perform a first stage of magnetic trapping and evaporative
cooling, macroscopic (copper) wire structures below the atom chip are employed.

8.1.2 Macroscopic wire structures

The underlying macroscopic wire structure has significantly evolved and improved throughout
different generations of atom chip experiments in Heidelberg, starting with simple bend silver
wires and ending up with optimized multi layer copper structures machined to 50µm precision.
This evolution is characterized in the theses [160, 161, 162, 163] and publications [79, 125, 82,
164]. Here we will briefly describe the system used in the actual experiments, depicted in
figure (8.2b+d).

Optimized U shape structure The U shape wire structure has been thoroughly optimized
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Figure 8.2: Photographs and design drawings of the macroscopic wire structures and the assem-
bled chip mounting. (a) chip mounting as described in 8.2.1. (b) design drawing of the copper
structures, the atom chip and the marcor carrier ceramic. (d) photograph of the elements with-
out chip. (c) computer simulation to optimize for homogeneous current flow in the central bar
of the U shape structure [167]. (e) photograph of the assembled system. One identifies the wire
bondings connecting the atom chip to gold-copper terminals as well as massive 5mm copper
rods, connecting the underlying macroscopic structures.

to create an unperturbed magnetic quadrupole field over a large spatial region (compare
section 6.1.1). The central U wire has therefore been extended to a bar of 21 mm length,
10 mm width and 0,7 mm height. To realize homogeneous current flow through the bar,
the connection leads are fabricated significantly thicker (3 mm×3 mm), so that resistances
become negligible (see figure (8.2c)). The structure can carry up to 60A (power supply:
HP 6011A) continuously and together with an external bias field realizes a quadrupole
field of sufficient gradient at a distance of 6-8 mm from the chip surface. The shape of
the magnetic field is only weakly deformed (over the size of the MOT beams d ' 24 mm)
compared to an “ideal” quadrupole field created by coils in anti Helmholtz configuration.

Extended H shape structure Above the U shape copper structure (isolated by a 50µm kap-
ton foil), an “extended H shape” structure is inserted (see figure (8.2b+d)). It consists of
an H structure with a central wire of 7 mm (compare section 3.3.2 for a discussion of the
created magnetic fields), two additional connection leads allow to realize a magnetic Z wire
trap with a central wire length of 3 mm. This structure can equally carry 60 A (power sup-
ply: HP 6551A) continuously and the created magnetic trap can be used to capture atoms
released from the the surface MOT after a phase of approach. When compressed, magnetic
traps created by the extended H structure provide sufficient confinement to apply efficient
evaporative cooling. The first Bose-Einstein condensates realized in the Heidelberg group
were achieved in wire traps based on such macroscopic structures [82,164].

To electrically isolate the U shape structure and the H shape structure from the (metallic) atom
chip mounting, both structures are embedded in an accordingly machined glass ceramic (marcor)
carrier (see figure (8.2b+d)), which provides sufficient thermal conductivity (1.5 WK−1m−1). To
obtain good thermal contact and heat dissipation, the mechanical contact between the copper
structures and the marcor ceramic were optimized, resulting in machining tolerances below
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50µm, which can be obtained with modern erosion machines and CNC lathes. The copper
elements where electrically contacted by bolting them to massive 5mm copper rods, on their part
connected to high power UHV feedthroughs in the CF-100 carrier flange of the chip mounting.
Again, mechanical contact was optimized to reduce contact resistances and to optimize heat
dissipation (see figure (8.2a+e)).

Additional holes in the marcor carrier hold gold-covered copper pins, which provide connec-
tion terminals for isolated wires connecting to a standard 35 pin UHV feedthrough. Electrical
connection to the chip is realized by bonding the chip contact pads to the gold-copper pins (see
figure (8.2e)).
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8.2 Experimental setup

8.2.1 Chip mount

The mechanical mounting of the atom chip setup is based on a CF-100 blind flange. A standard
35 pin feedthrough (2A per pin) has been welded into the flange together with six high power
copper feedthroughs (150 A, both Caburn MDC). A support bridge based on hollow stainless
steel tubes is equally welded to the flange, holding the copper head of the chip and providing
active water cooling of the entire mounting (see figure (8.2a)).

Onto the cooled bridge, an I shaped copper column is bolted. Two marcor spacers can move
along the central part of the column and hold long, straight 5 mm copper bars that connect
to the macroscopic wire structures. Contact to the high power feedthrough pins is realized by
massive copper clamps to reduce contact resistances.

The head of the mounting carries the U shaped and the H shaped wire structures as described
above. The atom chip itself is glued in place using UHV compatible epoxy (EpoTech 920).
Macroscopic structures and atom chip are mounted horizontally and upside down to allow atoms
to fall freely under the influence of gravity when released from the trap. The total length of the
mounting is 31 cm, all materials were checked for UHV compatibility in a separate test chamber.
Detailed engineering drawings and assembly guidelines can be found in [167].

8.2.2 Vacuum system

The vacuum system employed in the Heidelberg experiments is conceptually identical to the
one used in the Orsay setup (compare section 5.3): a single stainless steel chamber is pumped
by an Ti sublimation pump (Varian TSP cartridge filament source) and an ion getter pump
(Varian Starcell 500 L/s), commercially available Rb dispensers are used as a pulsed atom source
(see figure (8.3a)). The spatial dimensions are chosen slightly larger, optimizing for optical
access (e.g. allowing for absorption imaging along all three axes) at the cost of pumping speed,
consequently prolonging the experimental cycle to 45 s.

The central element of the vacuum system is a stainless steel (low magnetization 316LN steel)
octagon of 7 cm height and 20 cm diameter (see figure (8.3c)). It is connected to a standard CF-
100 5-way cross, leading to the pumps, a vacuum gauge and an inlet port to connect a turbo
molecular pump needed in bake out after breaking the vacuum. Optical access is provided by
anti reflection coated view ports, sealed to the chamber by HelicoFlex gaskets.

The pulsed Rb source is directly mounted to the main chamber: four high power copper
UHV feedthroughs are welded into a CF-35 blind flange. Two of these hold three RB dispensers
(SAES Getters) in parallel inside the vacuum. Outside the chamber, the feedthrough rods are
connected to water cooling to rapidly reduce the temperature of the dispensers after the loading
pulse. The two remaining feedthrough rods are connected by a copper bar on the vacuum side.
The current operating the dispensers is led through this bar, running in opposite direction to
compensate the created magnetic fields.

Without running the dispensers, a background pressure of ≈ 3× 10−11 mbar is obtained. In
operation, the dispensers are pulsed by sending up to 32A in a multi step procedure [163] for
27 s, which loads a magneto optical trap and allows vacuum to recover before transferring atoms
to a magnetic trap. After this time, the measured lifetime of atoms in a magnetic trap is ≈ 45 s,
which is sufficient to obtain a Bose-Einstein condensate and perform experiments.

8.2.3 External magnetic fields

As the magnetic quadrupole field necessary for the operation of a magneto optical surface trap
is provided by the macroscopic U shape wire structure (in combination with a homogeneous
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Figure 8.3: Design drawing and photographs of the vacuum system. (a) top and side view of
the entire system. (b) photograph taken from below the setup in operation conditions. One
identifies the coils creating the homogeneous external bias field, the central vacuum octagon
with chip mounting and the Rb dispensers (top left in the chamber). (c) photograph of the
vacuum octagon after bakeout. One identifies the high power feedthroughs (left) connecting to
the Rb dispensers.

external bias field), no dedicated anti Helmholtz coils are required. The setup is equipped with
three orthogonal pairs of rectangular coils (side length ≈ 34 cm) in Helmholtz configuration,
providing a homogeneous magnetic field (over the size of the atomic cloud) in each spatial
direction. There coils are wound (88 turns) of a massive 2 mm×10 mm copper wire, held together
by a special epoxy resin (Stycast 2850) with advantageous thermal properties (see figure (8.3b)).
These coils can carry up to 60 A continuously, creating a magnetic field of 120 G. As the used
power supplies (HP 6651A) can not switch off the coils sufficiently fast, dedicated switches are
utilized, which are matched to the coil impedances and extinguish the magnetic field within
100µs.

Three additional pairs of rectangular coils (side length 60 cm, 100 windings of a 1 mm cylin-
drical wire, power supplies HP 66312A) are used to continuously compensate the earth magnetic
field.

8.2.4 Laser System

The optimized optical access and the larger (reflecting) atom chip surface in the Heidelberg
experiment enables the use of larger beam diameters (d ' 24 mm) and consequently an enlarged
capturing area in the magneto optical trap. This however necessitates high laser power and a
more complex laser system compared to the Orsay setup: the two main frequencies of the optical
cooling cycle are amplified, either using a master-slave configuration as discussed in section 5.3.4
(repump transition), or using a commercial MOPA (master oscillator power amplifier) laser
system (cooling transition). The employed laser system has been studied and described in detail
in [167].
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Figure 8.4: 87Rb levels used for laser cooling, optical pumping and absorption detection in the
Heidelberg setup. The preparation of the individual frequencies is described in the text.

The MOPA laser system

A commercial laser system (Topica TA 100) is used to produce up to 450 mW usable laser power
for the D-2 cooling transition of 87Rb (λ ' 780, 02 nm) with a spectral width of ≈ 1, 2 MHz. A
small fraction of the master laser light is extracted to a Doppler-free absorption spectroscopy
setup. The laser frequency is feedback stabilized to the 1-3 spectroscopy crossover of the F =
2 ↔ F ′ = 1/F ′ = 3 transition using FM spectroscopy [168]. We thereby establish a frequency
standard which is detuned by -213 MHz with respect to the F = 2 ↔ F ′ = 3 cooling transition.
The so stabilized laser frequency is injected into the tapered amplifier crystal and intensified to
450 mW. It is distributed as follows:

Optical cooling About 90 % of the beam power are extracted and injected into an AOM in
double-pass configuration (2×96 MHz) to prepare the cooling light, -20 MHz detuned with
respect to the F = 2 ↔ F ′ = 3 transition. The beam is enlarged to d ' 24 mm and split
into four to be injected into the vacuum chamber.

Imaging Five per cent of the remaining beam power are injected into an AOM in double-
pass configuration (2×106 MHz) to be used in resonant absorption imaging. The beam is
spatially filtered using an optical fiber and directly applied to the atoms using an beam
expander. Three different expanders allow for the connection of imaging systems on all
three axes.

Optical pumping The remaining 5% if light intensity are injected into an AOM in single-
pass configuration, detuned to additional -55 MHz, to prepare light resonant with the
F = 2 ↔ F ′ = 2 transition, used for optical pumping (compare section 6.1.2).

In addition to fast switching performed by the AOMs, each beam is individually controlled by
mechanical shutters.
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The repump laser

Atoms that decay to the F = 1 ground state have to be re-injected into the cooling cycle. A
repump laser is therefore applied to the atoms, resonant with the F = 1 ↔ F ′ = 2 transition.
This optical frequency is provided by a home-built extended cavity laser in Littrow configura-
tion, stabilized to the 1-2 crossover (F = 1 ↔ F ′ = 1/F ′ = 2) in a Doppler-free absorption
spectroscopy, detuned by -79 MHz from resonance. This light is injected into a slave laser diode
(compare 5.3.4) and thereby amplified to ≈ 50 mW. An AOM in single-pass configuration tuned
to 79MHz compensates the detuning and serves as a fast switch. The beam is enlarged to
≈ 24 mm, split into two and overlapped with two MOT beams, entering the vecuum chamber
under 45 ◦.

8.2.5 Atom detection

Absorption imaging [132] is performed to detect trapped atoms in situ or in time of flight
expansion when released from the trap. Two different optical systems are employed to record
data presented in this manuscript:

Transverse imaging The first imaging system allows to take images orthogonal to the long
axis of the usually elongated atomic cloud in a wire trap, parallel to the chip surface. Two
monochromatic doublets (f1 = 100mm and f2 = 400mm) transport the image to the
camera and realize a magnification × 3,9, the measured resolution is 3,4µm [169]. The
camera is a background illuminated MicroMAX 1024BFT with a quantum efficiency of
70 % at 780 nm, the pixel size is 13µm×13µm. The camera is mounted on a motorized,
computer controlled translation stage, which allows for focussing with micron precision.

Longitudinal imaging To detect interference phenomena as presented in chapter 9 of this
manuscript, a new imaging system was constucted, allowing for absorption imaging along
the elongated axis of the atomic cloud. As initially no imaging system was foreseen in
this direction, the optical access is restricted, resulting in a rather long distance between
the atom cloud and the first lens (monochromatic doublet, f =150mm). A second lens
(monochromatic doublet, f =1200 mm) projects the picture onto the CCD camera chip
and realizes a magnification of × 9,3, according to the large pixel size of 20µm×20µm. The
obtained resolution is 5,7µm [170]. As a camera, we employ a Roper Scientific NTE/CCD-
1340/400 with 65 % quantum efficiency at 780 nm. The electronic readout of the camera is
relatively slow, limiting the time between the two pictures to 200-400 ms. This makes the
setup vulnerable to mechanical vibrations and drifts, great care has been taken to reduce
these effects (reduction of optical elements in the imaging beam path, rigid mechanical
support structure, pulsed operation of the CCD chip cooling fan).

8.2.6 Experimental control

As described in section 5.3.6, a sophisticated computer based electronic control system is nec-
essary to perform an experimental sequence of over 40 s with a temporal resolution on the
microsecond level in a reproducible fashion. The Heidelberg setup utilizes a commercial control
system (ADwin-Pro-System) which is conceptually identical to the sequencer employed in Orsay
(compare section 5.3.6): a stand-alone unit carries a motherboard which provides an independent
clock (50 kHz) and receives the experimental procedure via an opto-coupled local area network
(LAN) interface. This decouples the experimental control from the noisy computer environment.
The sequence is distributed to several input-output cards, 24 analog output, 32 digital output
and 8 analog input channels are available in total. The signals are written out simultaneously
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by all cards synchronized to the same clock, after the start trigger is received (which allows for
a synchronization with the 50 Hz frequency of the ac power net).

The user interface is programmed in MatLab and is fully graphical, allowing to see and
manipulate the entire sequence at once. A small local network gathers information from the
control computer and the various camera computers to provide a first real time analysis of the
experimental run. Parameters can be varied automatically, also multi dimensional parameter
scans are possible. The stability of the experimental setup (especially the laser system) allows
for uncontrolled operation over night, several days/nights of continuous data taking were per-
formed to obtain results presented in chapter 9 of this manuscript. A detailed description of the
programming as well as a characterization of the noise level of the experimental control system
can be found in [171].





Chapter 9

Experimental results

This chapter presents experiments performed in double wells potentials based on dressed adia-
batic potentials as introduced in chapter 7. All experiments are carried out with (pure) Bose-
Einstein condensates, for the first time accessing the coherence properties of this quantum state
in the context of magnetic micro traps on atom chips.

The creation of pre-cooled atomic samples in magnetic traps created by current carrying
macroscopic wire structures is outlined in section 9.1, more detailed descriptions can be found
in [163,162,172].

Section 9.2 describes the transfer of the cold atomic cloud to magnetic traps formed directly
on the atom chip and the achievement of Bose-Einstein condensation herein. By applying an
oscillating magnetic field in the radio frequency (RF) domain, Zeeman sub-states of the trapped
atoms are strongly coupled. The spatial dependence of this coupling creates new potential min-
ima in the “dressed” potential. Depending on frequency and amplitude of the RF magnetic field,
these minima form in the harmonic or the linear region of the initial static magnetic wire trap
(of Ioffe-Pritchard type) as described analytically and numerically in section 7.2.2. Both regimes
are investigated experimentally: in the linear regime, large double well trap separations (up to
80µm) can be directly observed in absorption imaging. For small distances in the harmonic
regime, information about the double well is inferred from matter wave interference patterns,
exploiting the property of the split condensates to posses a collective quantum phase.

We find, that atom-atom interactions significantly modify the interference patterns compared
to an ideal gas model and have to be included to correctly interpret the measurements. For both
splitting regimes we find excellent agreement between measurement and the theoretical models
for the dressed adiabatic double well potential.

Combining dressed adiabatic potentials with the atom chip approach draws direct benefit
from the high trap frequencies provided by wire traps and transfers adventurous properties to
the RF induced double well. As a consequence, the (adiabatic) splitting of a condensate can be
performed rapidly and on small spatial scales, rendering the process less vulnerable to technical
fluctuations.

Coherent splitting of a Bose-Einstein condensate is experimentally demonstrated using this
technique in a very simple wire geometry. We analyze the distribution of the measured relative
phase throughout the splitting process: a broadening of the phase distribution and a coinciding
loss of contrast on a timescale of ≈ 2, 5 ms is observed, which remains to be understood. A
deterministic evolution of the relative phase due to a residual imbalance in the double well
potential is observed. By adjusting this imbalance, the phase evolution can be accelerated or
reversed in direction.

The presented experiments aim to introduce dressed adiabatic potentials as a new tool for
micro chip based atom optics. Quite naturally, they raise many new questions, some of which
will be listed as an outlook in section 9.3.
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9.1 Bose-Einstein condensation

This section briefly outlines the experimental sequence which is employed to create a cloud of
ultra cold atoms or a Bose-Einstein condensate in a wire trap based on a macroscopic Z shape
structure below the atom chip. This procedure is independent of the actual design of the atom
chip wire patterns and has become a standard routine, which is used (in adapted versions) in all
four atom chip experiments in Heidelberg [164,82]. More detailed descriptions and a discussion
of the optimized parameters can be found in [163,162,172,167]. The loading of atoms to magnetic
wire traps formed on the atom chip and experiments therein are subject of section 9.2.

9.1.1 Magneto optical surface trap

The integrated magneto optical surface trap based on a macroscopic U shape wire structure
(compare section 8.1.2) is loaded from a Rb background gas, created by pulsed dispensers. This
loading stage takes 22 s in total an can be divided into three steps: during the first 10 s, a current
of 35 A is send through the dispensers heating them up and causing the desorption of Rb atoms.
The current is then reduced to 25A for 7 s, where the U-MOT continues to load atoms but the
dispensers cool down to below threshold. They are completely turned off for another 5 s to allow
the vacuum quality to recover. During this time, the laser power is reduced by a factor of two
(30 mW to 15 mW per beam) to suppress losses from the MOT due to exited-state collisions [163].
More than 95 % of the atoms remain trapped during these 5 s pumping time. The detuning of
the cooling laser is permanently set to -20 MHz with respect to the F = 2 ↔ F ′ = 3 87Rb
transition (compare figure 8.4), the distance of the atoms from the surface is about 5mm.

The atoms are approached to the surface (2 mm) by increasing the external homogeneous bias
field (compare equation (3.12)), which simultaneously increases the gradient (equation (3.14)),
leading to a compression of the atomic cloud. Note, that the longitudinal (parallel to the U
wire central bar) gradient is by a factor 1/4 lower than in the transverse directions, leading to
an elongated shape of the MOT, well matched to the equally elongated shape of the magnetic
trap. The homogeneous magnetic fields in all three spacial directions are employed to adjust the
final position of the MOT and ”mode-match” to the magnetic trap (compare section 6.1.3). The
phase of approach takes 100 ms and can be performed without significant loss of atoms [173].

9.1.2 Optical molasses and optical pumping

After approaching and compressing the MOT, all magnetic fields are turned off (except the
ones permanently compensating the earth magnetic field) within 100µs (1µs for the U shape
wire). To perform sub-Doppler cooling in an optical molasses, the cooling laser is detuned to
-50 MHz in the same time [138, 139, 140, 141]. The atoms are allowed to expand for 10ms in
this configuration, reducing the temperature to 20µK, well below the Doppler temperature of
140µK.

To polarize the atomic sample to the |F = 2,mF = 2〉 trapping state, optical pumping
is performed: to establish a well defined magnetic quantization axis, the homogeneous external
bias field is ramped to 0,5 G, the atoms are illuminated by a 200µs pulse of sigma polarized light
resonant on the F = 2 ↔ F ′ = 2 transition (with repumper light on continuously) transferring
the atoms to the desired double stretched dark state. By employing optical pumping, the
number of atoms captured in the magnetic trap could be increased by a factor of ≈ 4 (compare
section 6.1.2), close to the theoretically expected value of 5 [142] .
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Figure 9.1: Phase space density throughout the first 10 s evaporative cooling phase in a magnetic
trap based on a macroscopic Z shape wire. The insets show atomic density distributions after
14 ms free expansion: the onset of Bose-Einstein condensation can be identified by the appear-
ance of a (anisotropic) density peak (b) in the isotropically expanding thermal gas component
(a).

9.1.3 BEC in a macroscopic Z wire trap

After cooling and optical pumping, the atoms are re-trapped in a shallow magnetic trap based on
the combined fields of a current carrying Z shape macroscopic copper wire and an homogeneous
external bias field. A current of 60 A in the structure and an external field of 28 G creates a trap
located 1,6 mm from the chip surface with trap frequencies ω⊥ = 2π×69 Hz and ω‖ = 2π×24 Hz,
the longitudinal (“Ioffe”) field at the trap bottom is 8,7 G. Up to 2 × 108 atoms are recaptured
in this trap, mode matching imperfections lead to an increase of temperature to 350µK.

The magnetic trap is compressed by linearly increasing the external bias field to 41 G and
simultaneously lowering the longitudinal field to ≈ 1 G within 1 s. The compressed trap provides
trapping frequencies of ω⊥ = 2π × 380 Hz and ω‖ = 2π × 32 Hz which is enough to apply radio
frequency evaporative cooling (compare section 6.1.4)

The oscillating RF magnetic field driving spin flip transitions to untrapped states is generated
by superimposing an oscillating current to the DC current in the macroscopic Z wire structure
with the help of a bias tee. The frequency of the RF field is lowered linearly starting from
20 MHz down to ≈ 1 MHz in 10 s, pre-cooling the sample and increasing phase space density (see
figure (9.1)). We typically obtain 3× 106 atoms at a temperature of 10µK after the pre-cooling
phase.

These atoms are now either transferred to different magnetic traps, created by current car-
rying micro wires on the atom chip (see next section) or directly cooled to quantum degeneracy
in the Z wire structure by a second RF cooling ramp. This ramp is generated by a different
function generator, which allows for precise control of the final frequency to a precision better
than 500 Hz. Starting at 2 MHz, the RF frequency is linearly reduced to a value a few kHz
above the resonance frequency at the trap bottom within 2 s. By carefully adjusting the final
ramp frequency, a Bose-Einstein condensate of 5 × 104 atoms can be obtained. Slightly higher
numbers can be reached in magnetic traps created on the atom chip, which provide significantly
higher trap frequencies and allow for more efficient evaporative cooling (compare next section).
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Figure 9.2: Schematic illustration of the atom chip wire pattern used in the dressed adiabatic
double well experiments. Two orthogonal optical systems allow for absorption imaging in the
transverse and in the longitudinal direction of the elongated atomic cloud (top view). The
position of the static magnetic trap can be adjusted to allow for a balanced double well potential
by rotating the external magnetic bias field (45 ◦ shown as an example) and by changing the
trapping wire (dc) current.

9.2 Dynamic splitting of a BEC in an RF induced double well
potential

9.2.1 BEC on the atom chip

To perform experiments in RF induced adiabatic double well potentials, a Bose-Einstein conden-
sate is created directly on the atom chip: 3×106 pre-cooled atoms of a temperature of 10µK are
prepared by evaporative cooling in the magnetic trap based on a current carrying macroscopic
Z wire structure below the chip, as described in the previous section. To simplify the following
transfer to the atom chip trap, a continuous current of 1 A can be send through a 100µm Z
shape wire on the atom chip throughout the 10 s pre-cooling phase. The atoms are loaded to
the chip trap by linearly increasing this current to 2A within 1 s and simultaneously turning off
the current in the Z wire copper structure. The external homogeneous bias field is lowered to
18,4 G, the longitudinal field is adjusted to maintain a trap bottom of ≈ 1 G in the same time.
This creates an elongated magnetic trap (< = 25) of trapping frequencies ω⊥ = 2π × 430 Hz
and ω‖ = 2π × 17 Hz, almost similar to the trap created by the macroscopic Z wire structure.
A second stage of evaporative cooling, consisting of a 2 s linear frequency ramp from 3 MHz
down to 600 − 800 kHz, cools the atoms to below the critical temperature, pure Bose-Einstein
condensates of up to 3× 104 atoms were used in the following experiments.

The above procedure can be easily modified to create BECs in different magnetic traps (more
or less confining, different aspect ratio) at different positions (e.g. by changing the wire current
or the external magnetic field in angle and magnitude) or based on different wires. On-chip Bose
condensates are routinely produced using wires of 100µm, 50µm and 10µm width, at distances
between 5µm and 400µm and aspect ratios between 10 and 500 have been realized [163,172].

To characterize the BEC, atom clouds are analyzed in time of flight absorption images,
taken along the transverse direction (see figure (9.2)). The onset of condensation can be easily
identified by the characteristic elongated density peak within the isotropically expanding thermal
background (compare inset in figure (9.1)). However, fluctuations of the longitudinal condensate
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Figure 9.3: The spatial orientation of the RF induced double well is determined by the relative
orientation of the static magnetic trapping field (of Ioffe-Pritchard type) and the oscillating
magnetic RF field; potential minima form where both fields are parallel, which results in vanish-
ing coupling of the atomic Zeeman states. A balanced double well potential, allowing for equal
splitting of the condensate, can be realized for several static trap positions between the trapping
wire and the RF antenna (see text for details).

phase lead to interference phenomena in expansion (compare section 1.3.3) and a (random)
modulation of the longitudinal BEC density profile (see figure (1.5)), slightly complicating the
analysis. On the other hand, the appearance of longitudinal interference fringes is an indicator
for a common (though fluctuating) phase and can be used to identify the phase transition. At
the atom-wire distances considered in the described experiments (≥ 80µm), magnetic potential
roughness due to wire corrugation (compare section 3.5) is completely negligible [122, 163] and
can not explain a (random) modulation of the BEC longitudinal density profile.

As a fluctuating longitudinal phase complicates an experiment aiming to study coherence in
a transversally split condensate, we tried to create less elongated condensates by increasing the
axial confinement. Additional currents (up to 700 mA) were send through 10µm U shape wire
structures on the atom chip (schematically depicted in figure (9.2)), increasing the longitudinal
confinement to 35Hz. In some experiments (see next sections), the magnetic trap was addition-
ally approached to the U wires by rotating the external bias field (see figure (9.2)), increasing
the effect. Qualitatively, a reduction of longitudinal interference fringes could be observed, in-
dicating a more homogeneous condensate phase. However, fluctuations could not be completely
suppressed and we believe them to be present in all experiments presented in the following.
A dedicated study on how aspect ratio and atom temperature affect the longitudinal phase is
underway and will be subject of the thesis of S. Hofferberth.

9.2.2 Exploring the linear splitting regime

The radio frequency source

To deform a single magnetic micro trap to a double well potential, the trapped atoms are
“dressed” by means of a strong, near resonant oscillating magnetic (RF) field as described in
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chapter 7. This RF field is applied using a 10µm chip wire, parallel and close to the 100µm
and 50µm Z shaped trapping wires, as an antenna (see figure (9.2)). The necessary RF signal is
produced by a standard programmable frequency generator (stanford research systems SRS345),
which provides linear (triggered) frequency ramps without phase discontinuities over the desired
frequency range between 100 kHz and 10MHz. The amplitude can be computer controlled via
an analog input channel of the frequency generator [174]. For fast switching of the RF and to
suppress RF noise close to resonance during the preparation of the Bose condensate, we employ
an RF switch (MiniCircuits XYZ) with XYTdBm subbression. The signal is amplified using a
simple XYWW solid state amplifier (Motorola XYZ) which can provide of to 100mA oscillating
current in the antenna wire. To avoid grounding problems, an 1:1 isolation transformer is used
to decouple the chip wire from the RF source.

To determine the RF intensity radiated by the 10µm antenna wire, the closed circuit (wire
in parallel with the transformer) has been characterized in the frequency range from 350 kHz
to 4MHz using a network analyzer. Although the circuit consists mainly of straight wires (the
inductance of the transformer is negligible in the frequency range of interest), the Smith diagram
reveals an (with frequency) increasing inductive behavior in addition to the pure ohmic dc
resistance. The impedance increases approximately linearly from 11,8Ω (for 350 kHz) to 88,6 Ω
(for 4MHz), allowing for a maximum oscillating current of 100 mA at the highest frequency,
realizing 1 G of oscillating magnetic field at a distance of 200µm from the wire.

The splitting procedure

Double well potentials with large trap separations, sampling the linear regime of the initial static
magnetic trap, are created using (final) RF frequencies of positive detuning, well above the Lamor
frequency of the atoms at the trap bottom as described in section 7.2.2. To adiabatically transfer
Bose-Einstein condensates into these traps, a static magnetic single well trap is deformed using a
two step RF amplitude-frequency ramp: we start with a fixed RF frequency of 500 kHz, realizing
a negative detuning of ω−gFµB|B0|/~ = −2π×250 kHz and linearly increase the RF amplitude
to an intermediate value (≈ 50 mA oscillating current) within 5ms. A numerical simulation of
the dressed adiabatic potential (taking into account finite sizes of the chip wires) shows, that
the single well trapping potential is not significantly deformed during this first amplitude ramp.
A small heating of the atomic cloud could be observed for ramps much faster than 5 ms, from
this value on, heating was suppressed.

In a second step, we increase the RF frequency by triggering a pre-programmed linear 20 ms
ramp to a variable final frequency between 1 MHz and 3,5MHz, effectuating the splitting to
rather large trap separations. Again, a much faster ramp speed resulted in heating of the
atomic sample (e.g. reduction of the condensate fraction), no significant heating is observed
from 20 ms on. Unfortunately, the SRS345 signal generator does not allow for a constant final
RF frequency after the triggered ramp, inhibiting hold time experiments, which would reveal
heating mechanisms in the dressed double well potential in the linear regime (see next section
for a lifetime heating/lifetime estimate in the harmonic regime).

Balancing the double well potential

As outlined in section 7.2.1, the spatial orientation of the RF induced double well crucially
depends in the relative orientation of the magnetic field vectors constituting the static magnetic
trap and the direction of the oscillating magnetic field (compare also section 7.3). Placing the
static magnetic trap directly below the trapping wire results in a tilt of the resulting double
well with respect to the (horizontal) chip surface, as indicated in figure (9.3). For gravity alone,
cold atoms would consequently accumulate in the lower well during the (adiabatic) splitting
process. However, two other processes affect the balancing of the double well potential: the
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Figure 9.4: Double well trap separations for different RF frequencies, exploring the linear
regime of three different static magnetic traps of different gradient (1019G/cm, 1282 G/cm and
2167 G/cm). The distances are directly obtained from in situ absorption images as shown in
figure (9.3). The error bars contain the statistical variance and a 6% uncertainty in the camera
calibration. The dotted lines represent the expected behavior for a purely linear magnetic trap
(based on equation (7.29). The solid lines are results of a numerical simulation of the adiabatic
double well potential, based on the magnetic fields of the actual wire geometry and the external
calibration of the RF amplitude.

quadrupole magnetic field created in a wire trap is not completely rotational symmetric around
the minimum, the gradient increases slightly in the direction towards the trapping wire. In a
double well, this results in a corresponding increase in trap frequency for the well closer to the
trapping wire. Additionally, the RF magnetic field is not fully homogeneous over the spatial
extension of the double well potential, resulting in an increased coupling for the well facing the
RF antenna, increasing the effective trap bottom.

By carefully adjusting the position of the static magnetic trap between the trapping wire
and the RF antenna (e.g. tilting the external magnetic bias field or varying the trapping wire
current) these three effects can be brought to cancel to zero, realizing a balanced double well
(which may be nevertheless tilted in space, see figure (9.3)).

To directly observe the transversally split elongated clouds, a new longitudinal imaging
system was installed (compare section 8.2.5). As it has to be combined with a pair of MOT
beams along this axis, several optical elements (e.g. beam splitter cubes) have to be employed,
degrading the optical resolution to ≈ 12µm compared to the theoretical diffraction limit of
the isolated optical system of 5,7µm. Therefore, double well splittings from 15µm on could
be directly resolved in in situ absorption images, as depicted in figure (9.4). By varying the
final frequency of the RF ramp, different double well trap separations can be obtained (compare
equation (7.29) and figure (7.5)). Experimentally, splittings up to 80µm could be realized. For
even larger separations, the static field vector of the wire trap becomes more and more parallel
to the orientation of the RF field vector (vanishing influence of the longitudinal “Ioffe” field B0),
resulting in a reduced RF coupling at the trap minimum. Such a reduction of coupling strength
leads to a reduction of level repulsion and enables spin flip transitions to different dressed Zeeman
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Figure 9.5: Bose-Einstein condensates released from double well potentials created in the har-
monic regime of the static magnetic trap give rise to matter wave interference patterns (b).
The interference fringe spacing contains information on the initial separation of the sources.
(a) shows measured fringe spacings for different amplitudes of the RF oscillating magnetic field
(realizing different double well separations). The error bars indicate the statistical variance of
the mean value and a 6% calibration uncertainty. The solid line indicates the fringe spacing
expected for non-interacting point sources located at the bottoms of the individual wells (the
double well separation being calculated numerically based on our experimental parameters).
The dashed line takes into account the effect of interactions on the wave function in the double
well and during the free expansion.

levels.
We find it interesting to note, that atoms undergoing spin flip transitions at the avoided cross-

ings are partially re-trapped in lower lying dressed states, which present a potential minimum at
the position of the initial static trap, centered between the double well (compare figure (7.2)).

To verify our theoretical models and the calibration of the RF amplitude, the double well
separation for different RF frequencies was investigated for three different realizations of a static
wire trap, providing three different gradients (1019G/cm, 1282 G/cm and 2167G/cm) at dif-
ferent balancing positions. Figure (9.4) compares the measured double well separations to the
model for the linear regime (equation (7.29), dashed line) and to a full numerical simulation
bases on our wire geometry (solid line). The excellent agreement to the complete model vali-
dates our RF amplitude calibration, all other quantities entering the model (wire currents and
magnetic fields) are known to the percent level from independent calibrations [163].

9.2.3 Exploring the harmonic splitting regime

Measuring trap separations

For the creation of a double well in the harmonic regime of the static magnetic trap, it is
convenient to work with on-resonant RF frequencies or small negative detunings and high RF
amplitudes. As outlined in section 7.2.2, the harmonic approximation for the static trapping
potential is valid up to double well separations r0 ≤ 1, 14B0/B

′. For typical wire traps realized
in our experiments (B0 ' 1 G, B′ ' 1000 G/cm) this distance is below 10µm and can therefore
not be resolved directly in our longitudinal imaging system; an indirect measurement of the
double well splitting has to be performed.

As the Bose-Einstein condensate remains in its degenerate quantum state (e.g. possesses a
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defined phase) throughout the splitting, releasing both clouds from the trap gives rise to matter
wave interference effects, as described in section 1.4 (see figure 9.5b). Neglecting atom-atom
interactions and the shape and spatial extension of the initial wave packets, the fringe spacing
∆z is characterized by

∆z ' ht

md
(9.1)

where t is the free expansion time and d the initial separation of the sources. Analyzing inter-
ference patterns therefore provides information on the initial double well splitting.

Balancing the double well potential

To realize RF induced double well potentials in the harmonic regime of the static magnetic trap,
a simple 15 ms linear RF amplitude ramp to variable final value is performed at a fixed frequency
of 500 kHz (detuning adjusted to −2π × 200 kHz). To achieve high (local) RF power, the static
magnetic trap, based on the 50µm Z shape wire (compare figure (9.2)) is positioned directly
below (80µm distance) the RF antenna wire, by rotating the external magnetic bias field to
45 ◦, giving rise to a almost perfect horizontal splitting.

The balancing of the so prepared double well poses a problem, as the two clouds can not
be directly resolved in the imaging system. An uneven balancing would in theory result in a
reduction of fringe contrast in the interference signal. However, technical problems (e.g. a small
tilt of the elongated atomic cloud with respect to the imaging probe beam, insufficient depth
of field) already reduce the contrast to ≈ 30 %, making this signal little reliable. The following
procedure is employed to nevertheless directly monitor the balancing of the double well potential:
the RF amplitude ramp is performed as described above to realize rather large trap separations.
The oscillating magnetic field is then rapidly ramped down to zero within 100µs. This ramp
is sufficiently fast with respect to the Lamor frequency (≈ 2π × 1 MHz), so that the atoms
adiabatically return to the “undressed” double stretched |F = 2,mF = 2〉 Zeeman trapping
state. However, this turnoff is fast compared to the external dynamics timescale, namely the
trap oscillation frequency of the atoms (≈ 2π× 1 kHz). Not having moved significantly in space
within 100µs, the two clouds find themselves at the positions of the (largely split) double well
minima, but experiencing the single well static magnetic trapping potential. They hence get
accelerated towards the trap center. After 300 − 400µs also the static trapping potential is
suddenly switched of (wire current and external fields). The clouds ballistically cross each other
and move apart with increasing expansion time, where they finally can be resolved individually
in longitudinal absorption imaging. Although this rather violent method destroys the Bose
condensate, counting atoms in both (now thermal) clouds allows for a fine tuning of the position
of the static magnetic trap and therefore a balancing of the double well potential, as described
in the previous section.

The splitting procedure

Once the balancing point is found, the experiment is carried out in the way described above:
the RF frequency is set to a continuous value of 500 kHz. Using the analog amplitude control of
the signal generator, the RF power is linearly increased to a variable final value within 15 ms,
realizing a double well in the harmonic regime of the static magnetic trap. After the ramp,
atoms are released from the trap by simultaneously turning off the oscillating magnetic field, all
static magnetic fields and the trapping wire current [175].

As the splitting is performed horizontally, both clouds are projected on top of each other in
transverse imaging (see figure (9.2)). Qualitative information about heating due to the splitting
process can be obtained by looking at longitudinal density profiles (here, the condensate fraction
is in the Thomas-Fermi regime and can be easily distinguished from the thermal background,
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which is hard in the longitudinal imaging). Amplitude ramps have been performed in a range
from 1 ms to 100 ms. From 3 ms on, no significant heating can be observed in the transverse
imaging. By holding the RF amplitude at a constant value after the ramp, the clouds are
maintained in the double well configuration. We observe a reduction of the (initially pure)
condensate fraction by 50 % within 500ms, which is equivalent to the heating rate in our static
magnetic traps, which we attribute to inelastic three body processes and parametric heating
induced by technical noise. Note that no RF shielding is employed in these experiments.

Measuring trap separations

As the split atom clouds are strongly confined in the transverse direction, the elongated shape
converts to a pancake shape in expansion (inversion of elipticity), leading to low atomic den-
sities in the longitudinal imaging (projecting transverse to the pancake surface), consequently
restricting the maximum expansion time to 14ms. Given the imaging resolution of ≈ 12µm and
applying equation (9.1), a maximum double well separation of 5,4µm can be detected by looking
at interference fringes. To realize a full splitting (with negligible tunnel coupling) of a BEC at
this distance, a high transverse confinement if the initial static trap (2π× 2, 1 kHz, measured by
parametric heating) at the balancing position was necessary, obtained by operating the 50µm
wire at its maximum current of 1,2 A.

Figure (9.5) compares the experimentally measured interference fringe spacings for different
RF amplitudes to the theoretical expectation (solid line) based on equation (9.1) and a numerical
simulation of the double well trap separation. As can be clearly seen, te simple model (neglecting
interactions and spatial shape of the wave packets) well describes the experimental results for
large RF amplitudes (small fringe spacings, large double well separations) but fails for small RF
amplitudes (larger fringe spacings, small double well separations.

A similar effect has been reported in the MIT experiments, where a Bose-Einstein con-
densate was (incoherently) split by means of a blue detuned focussed laser beam and brought
to interference for the first time [37]. A detailed study based on a numerical integration of
the Gross-Pittaevskii equation identified this mismatch as an effect of atom-atom interactions,
affecting the wave packets shape in the double well as well as during the first phase of expan-
sion [176]. This influence becomes increasingly important for small trap separations and not
entirely split condensates.

In the same spirit, we performed a numerical simulation of our system. Based on the the-
oretical model for the effective double well potential, the entire experimental sequence was
numerically simulated using the split step Fourier method [177]. To reduce the computational
effort, the simulation is performed in the 2D transverse plane, the (constant) longitudinal con-
finement is taken into account by adjusting the ground state energy in each computational step.
Figure (9.6) shows a typical result of the simulation for a double well separation of 3,42µm. In
this calculation, the double well is held constant for 1 ms for a possible mismatch of the initial
wave function to damp out and than is abruptly extinguished, allowing for a free expansion of
the atoms (3 ms).

Two effects alter the numerically obtained fringe spacings compared to the simple model
assuming non-interacting point sources localized at the double well potential minima: for small
trap separations and even more for still connected wave packets, the barycenters of the wave
functions are shifted inwards, resulting in a reduced “effective” trap separation (3,10µm instead
of 3,42µm in the shown example), giving rise to an increased fringe spacing. Additionally,
repulsive interactions lead to a broadening of the modulated wave packet in the “collision” phase
(1 − 2 ms) after releasing the clouds. Both effects contribute about equally to the effective
interference pattern (leading to a fringe separation of 5,24µm in the example instead of 4,03µm
expected from the simple model).
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Figure 9.6: Numerical simulation to investigate the influence of interactions on the interference
pattern (e.g. the fringe spacing). The in-trap ground state (after a 1 ms relaxation phase to damp
out a potential initial wave function mismatch) shows a slight asymmetry (c), the barycenters
slightly shifted inwards (indicated by dotted vertical lines) with respect to the minima of the
double well potential (at the peak positions of the wave function), leading to a reduced“effective”
double well splitting (and enlarged fringe spacing). The wave function is allowed to propagate
freely for 3 ms (a). Repulsive interactions in the “collision” phase do additionally affect the
interference pattern in the case of small double well distances (and consequently high densities).
The fringe spacing is determined by fitting a cosine function with a gaussian envelope (see text)
to the obtained probability distribution (b).

As the influence of interactions quickly breaks down in the expansion (as the atomic den-
sity reduces), the fringe spacing can be linearly extrapolated from 3 ms to the 14ms, relevant
for the interpretation of experimental data (instead of performing the entire time consuming
propagation, which was done once to validated the linear extrapolation).

For large trap separations, where the wave packets are well centered around the individual
trap minima and the atomic density is already significantly reduced in the (delayed) “collision”
phase, the numerical calculation reproduces the results obtained using equation (9.1) (compare
figure (9.5)).

The interference fringe spacings expected from the above numerical calculation, based on
our experimental parameters (wire current, magnetic fields, atom number) are depicted in fig-
ure (9.5). The extended model is in excellent agreement with the measured fringe spacings,
allowing us to infer the double well separation from the matter wave interference signal in the
following experiments.

We would like to point out, that the elongated Bose condensates used in these experiments are
at the 1D-3D crossover, where the chemical potential µ varies between 2, 5−6×~ω⊥ throughout
the splitting process (initial static trap parameters: 2 × 104 atoms, ω‖ = 2π × 35 Hz, ω⊥ =
2π × 2, 1 kHz). In the transverse direction, the Thomas-Fermi approximation is no longer valid
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and the shape of the wave function approaches the (single particle) gaussian form of the ideal
gas in a harmonic trap (compare section 1.3.2). However, neglecting atom-atom interactions
leads to an underestimate of the matter wave fringe spacing and a corresponding overestimate
of double well trap separation by almost a factor of two.

9.2.4 Coherent splitting of a Bose-Einstein condensate

As described in section 1.4, recombining two separate Bose-Einstein condensates gives rise to
interference phenomena for (phase coherent) sources originating from a single BEC as well as
for independently created sources (of arbitrary relative phase). For an adiabatic splitting as
performed in the above experiments, one would expect a well defined, reproducible relative
phase for each experimental realization. However, it has been shown to be extremely delicate
to maintain the phase coherence throughout the splitting process in various experimental ap-
proaches [37,178]. The transition from a single condensate to two entirely separated (but phase
coherent) clouds has been achieved recently, using optical potentials based on focussed red de-
tuned laser beams [43]. A coupled (coherent) system in a double well with adjustable barrier
height has been realized in [55] using combined optical potentials based on focussed lasers and
standing waves. The demonstration of coherent splitting in a purely magnetic scheme on an
atom chip represents a main result of this thesis [101].

Phase coherence

To test for phase coherence in the dynamic splitting of a Bose condensate in the RF in-
duced double well, we repeat the above experimental sequence many times: we perform the
RF amplitude ramp to a fixed finite value within 15ms, the trap is immediately switched
off after the ramp and the split clouds are allowed to expand freely for 14 ms time of flight.
Atomic density profiles obtained from images taken in longitudinal absorption imaging (see fig-
ure (9.7 left, insets)) are integrated along the direction of the fringes and fitted by a generic
function f(z) = G(z)[1 + C cos(∆φ + 2πz/∆z)], where G(z) describes a gaussian envelope, C
the fringe contrast, ∆φ the relative phase and ∆z the fringe spacing as analyzed above. Fig-
ure (9.7 right) shows relative phase and contrast in a polar plot (inset) and a histogram of the
measured relative phase for 40 realizations of the same experiment for two different final double
well trap separations (3,45µm and 3,85µm).

We clearly find a narrow distribution of the measured relative phase, indicating a coherent
splitting of the Bose condensate. The phase distributions is broadened for the larger splitting
(using the same duration of the RF ramp) to 28 ◦ compared to the small splitting (13 ◦) but is
still clearly non-random. Both splitting distances are above the critical value of 3,34µm, where
the in-well wave-function presents a zero between the individual wells [179]. As we are using a
constant RF amplitude ramp, the critical splitting distance is reached only at the very and of the
process (13 ms of the 15 ms ramp for the largest double well separations realized). The actual
separation takes place on a timescale of ≈ 0, 5 ms. We expect this to be fast with respect to any
tunnel dynamics and the coupling to break down immediately after passing the critical distance
(compare section 2.2 for a theoretical discussion of the dynamic splitting process). Therefore,
both situations shown in figure (9.7) present individual condensates, the phase relation is not
mediated by tunnel coupling.

The width of the relative phase distribution has been monitored throughout an entire split-
ting sequence as indicated in figure (9.8 bottom). We observe a continuous increase of phase
spread until the relative phase is almost random for the largest splitting distances. We also
observe a coinciding loss of contrast, both effects are not yet fully understood and under inves-
tigation: we are able to obtain narrower relative phase distributions for the large double well
trap separations by performing faster splitting ramps (to identical final value). The process of
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Figure 9.7: Left: a cosine function with gaussian envelope (see text) is fitted to integrated
atomic density profiles, obtained from absorption images of matter wave interference patterns
(inset). Information on fringe spacing, contrast and relative phase is extracted from each fit.
Right: relative phase and contrast for 40 repetitions of the experiment in a polar plot (inset).
A histogram of the measured relative phase shows a narrow phase distribution (13 ◦ and 28 ◦

respectively), indicating a coherent splitting process. The upper data set corresponds to a double
well separation of 3,45µm, the lower one to 3,85µm trap distance.

phase randomization and the disappearance of contrast seems to take place in a fixed timescale
of ≈ 2, 5 ms, independent of the final double well splitting. We would like to point out, that
the measured lifetime of the condensates in the double well is at least 500 ms (compare previous
section).

We believe longitudinal phase fluctuations in the elongated condensates to be the reason for
the vanishing phase signal [57]. They have been observed at any stage of the splitting process
in the transverse imaging. Once the splitting is complete and tunnel coupling suppressed, the
longitudinal phase evolves individually in each condensate with a specific timescale τ . For split-
ting times Γ � τ , the longitudinal phase modulation is essentially identical in both condensates,
giving rise to an identical relative phase in the transverse direction. As the longitudinal imaging
integrates the identical transverse interference patterns along the cloud, these patterns sum up
and allow for high contrast and a measurement of a well defined phase. For slower splittings
Γ ' τ , the longitudinal phase has evolved independently in each individual condensate, lead-
ing to a local relative phase, which varies along the condensates. This leads to a broadening
of the overall measured phase distribution and a loss of contrast in the individual longitudinal
absorption images, until the interference pattern completely vanishes for Γ � τ .

The “diffusion time” τ of the longitudinal phase can be calculated for the homogeneous 1D
system following equation 2.30. Not being totally in this regime and with some uncertainty on the
temperature, we estimate τ ' 1− 3 ms, which is consistent with our experimental observations.
However, a thorough investigation of this processes is under way, analyzing the influence of atom
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Figure 9.8: Top: evolution of the relative phase throughout the splitting process (15 ms constant
ramp time, increasing final splitting distance). The dashed vertical line indicates the critical
trap separation of 3,34µm from which on both condensates are fully separated. To affect the
phase evolution, the position of the static magnetic trap has been slightly changed, deliberately
introducing a double well imbalance (different trap positions are distinguished by color). The
error bars indicate the statistical variance of the mean of the measured relative phase. The
dashed colored lines show the result of a numerical simulation of the splitting process, where the
initial double well imbalance has been adjusted to fit the data. Bottom: width of the relative
phase distribution throughout the splitting as shown in figure (9.7) for two specific settings. The
data points correspond to the green curve in the upper plot. The solid (dashed) line indicates
the level, below which the measured phase distribution can be distinguished from a random
phase by one (three) sigma [180].

number, temperature and longitudinal confinement on the phase distribution. Additionally, a
direct interferometric way of monitoring the longitudinal phase is currently implemented. This
research will present a major part of the thesis of S. Hofferberth.

Phase evolution

Apart from the phase distribution broadening throughout the splitting process, we observe a
deterministic evolution of the (mean) relative phase as depicted in figure (9.8 top, green curve).
This is attributed to a small residual energy imbalance in the double well potential, leading to a
different evolution of the phases in the individual wells. To test this hypothesis, we deliberately
imbalance the double well by displacing the position of the static magnetic trap (by changing
the wire current in 10 mA steps). As can be seen from figure (9.8), the phase evolution can
be accelerated (red, yellow curves) or reversed in direction (blue curve). To compare with
the numerical simulations, we add an artificial imbalance to the dressed adiabatic double well
potential. This imbalance increases (linearly) during the splitting process leading to a quadratic
evolution of the relative phase in time. The dashed curves in figure (9.8) represent the result of
the numerical simulation, where only the initial double well imbalance has been adjusted to fit
the data.
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We note, that the evolution of the relative phase is sensitive to the experimental settings
below the percent level (e.g. 0,8% changes in wire current between the different curves). The
results shown in figure (9.8) represent several days of continuous data taking, significant technical
effort is employed to obtain sufficient long-time stability.
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9.3 Outlook

The experiments presented in section 9.2 realize RF induced double well potentials in the differ-
ent regimes of the underlying static magnetic trap, as theoretically described in chapter 7 of this
manuscript. We could show, that Bose-Einstein condensates can be split by adiabatically de-
forming a single magnetic wire trap to a dressed double well potential. This splitting turned out
to be rather insensitive to ramp timescales or technical fluctuations, heating or excitations could
be avoided almost completely. We could show, that the splitting process does not significantly
disturb the phase relation between the condensates and hence the splitting can be considered
coherent. We observe a deterministic evolution of the relative phase which could be controlled
by experimental parameters.

These experiments have to be considered as a proof of principles, arising many new questions
which necessitate careful study. We will briefly list a few of the topics to be addressed in the
following months, more long-term perspectives will be outlined in section XYZ.

Dynamics and stability of the splitting process The timings of the splitting sequences
have been adjusted to minimize heating and excitations, which we only could detect in a
qualitative way. For fast splitting ramps in the harmonic regime, an excitation of collec-
tive center of mass modes has been observed as a periodic modulation of fringe spacing.
However, the splitting process appears to be very robust, once adiabaticity with respect
to the external dynamics timescales (e.g. oscillation frequencies) is guaranteed [29]. Sur-
prisingly, stopping the splitting process turned out by far more delicate: Excitations were
observed when bringing the separation to a sudden halt, using linear amplitude ramps.
More elaborate ramp shapes are currently being investigated.

For the larger separations in the linear regime of the static trap, hold time experiments
were prohibited by technical limitations of the radio frequency source, a new dedicated RF
generator, based on a direct digital synthesizer (DDS) module is being designed.

Once the atoms can be held in static double well configuration, a thorough investigation
of heating processes becomes possible. If these processes are moderate or negligible (as we
expect from preliminary measurements), the creation of independent Bose condensates by
evaporative cooling in the double well potential can be envisaged. Reversing the splitting
process and establishing a tunnel coupling between initially separate BECs should lead to
the built up of a collective phase and allow for experiments complementary to the coherent
splitting.

The role of interactions Atom-atom interaction play a significant role in almost any stage of
the splitting experiment: the chemical potential sets the energy scale, on which a double
well imbalance is tolerable. Although being close to the 1D regime, the transverse shape
of the wave function is significantly modified by interactions compared to the ideal gas
(see section 1.3.2). As described in section 9.2.3, matter wave interference patterns are
likewise altered by interaction effects. The local chemical potential in each individual well
is predicted to influence the evolution of the relative phase of both condensates (compare
section 1.4.3). To reveal this effect, the splitting sequence has been performed with different
initial atom numbers, the data remains to be analyzed.

Dynamics of phase coherence As described in section 9.2.4, the distribution of the relative
phase broadens, the contrast diminishes and completely vanishes after ≈ 2, 5 ms in in-
terferometric experiments performed in the harmonic splitting regime. We attribute this
effect to the presence of longitudinal phase fluctuations in the elongated Bose-Einstein
condensates. The creation of more isotropic clouds seem an obvious next step but has
turned out to be complicated with the current atom chip wire layout (a new dedicated
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atom chip is currently being fabricated by S. Groht at the Weizmann Institute of Science
in israel) exclusively using magnetic fields. An additional “dimple” potential created by a
local static electric field [166] has shown to allow for low aspect ratio traps, however, the
combination with the RF induced double well remains problematic in the current design.

If longitudinal phase fluctuations were the reason for vanishing phase signal, the“diffusion”
time should scale in an appropriate way with temperature and atom number. However, a
precise measurement of atom number and temperature in the presence of phase fluctuations
is a research project in itself [27,28].

We have therefore chosen an alternative approach to directly monitor transverse and lon-
gitudinal relative phase at once, which is currently being implemented: using two RF
magnetic fields of orthogonal linear polarization and a relative phase of π/2, the creation
of a balanced vertically orientated double well potential is possible [181]. In an interfer-
ence experiment, this gives rise to horizontal fringe patterns, parallel to the chip surface,
which can be observed in both imaging systems. A fluctuation of the longitudinal phase
should be directly visible as a (transverse) displacement of the fringe pattern (in transverse
imaging).
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Université de Paris XI (2004).

[74] J. D. Weinstein and K. G. Libbrecht, Microscopic magnetic traps for neutral atoms, Phys.
Rev. A 52, 4004–9 (1995).

[75] J. Schmiedmayer, A wire trap for neutral atoms, Appl. Phys. B 60, 169 (1995).

[76] J. Fortagh, A. Grossmann, C. Zimmermann, and T. W. Hänsch, Miniaturized Wire Trap
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