
HAL Id: tel-00136630
https://pastel.hal.science/tel-00136630

Submitted on 14 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Weakly Relational Numerical Abstract Domains
Antoine Miné

To cite this version:
Antoine Miné. Weakly Relational Numerical Abstract Domains. Software Engineering [cs.SE]. Ecole
Polytechnique X, 2004. English. �NNT : �. �tel-00136630�

https://pastel.hal.science/tel-00136630
https://hal.archives-ouvertes.fr

THÈSE
présentée à

l’ÉCOLE POLYTECHNIQUE

pour l’obtention du titre de

DOCTEUR DE L’ÉCOLE POLYTECHNIQUE
EN INFORMATIQUE

Antoine MINÉ

6 décembre 2004

Domaines numériques abstraits
faiblement relationnels

Weakly Relational Numerical Abstract Domains

Président: Chris Hankin

Professeur, Imperial College, Londres

Rapporteurs: Roberto Giacobazzi

Professeur, Università degli Studi di Verona

Helmut Seidl

Professeur, Technische Universität München

Directeur de thèse: Patrick Cousot

Professeur, École Normale Supérieure, Paris

École Normale Supérieure
Département d’Informatique

c© Antoine Miné, 2004–2005.

Cette recherche a été conduite à l’École Normale Supérieure (Paris) durant un contrat
d’allocation couplée (normalien) de l’Université Paris IX Dauphine. Cette recherche a été
financée en partie par les projets Daedalus (projet européen IST-1999-20527 du pro-
gramme FP5) et Astrée (projet français RNTL).

Les opinions présentées dans ce document sont celles propres de son auteur et ne reflètent en
aucun cas celles de l’École Polytechnique, de l’Université Paris IX Dauphine ou de l’École
Normale Supérieure (Paris).

RÉSUMÉ iii

Résumé

Le sujet de cette thèse est le développement de méthodes pour l’analyse auto-
matique des programmes informatiques. Une des applications majeures est la
conception d’outils pour prévoir les erreurs de programmation avant qu’elles
ne se produisent, ce qui est crucial à l’heure où des tâches critiques et com-
plexes sont confiées à des ordinateurs. Nous nous plaçons dans le cadre de
l’interprétation abstraite, qui est une théorie de l’approximation sûre des sé-
mantiques de programmes, et nous nous intéressons en particulier aux do-
maines numérique abstraits, spécialisés dans la découverte automatique des
propriétés des variables numériques d’un programme.

Dans cette thèse, nous introduisons plusieurs nouveaux domaines numériques
abstraits et, en particulier, le domaine des zones (permettant de découvrir des
invariants de la forme X − Y ≤ c), des zones de congruence (X ≡ Y + a [b])
et des octogones (±X ± Y ≤ c). Ces domaines sont basés sur les concepts
existants de graphe de potentiel, de matrice de différences bornées et sur l’al-
gorithmique des plus courts chemins. Ils sont intermédiaires, en terme de pré-
cision et de coût, entre les domaines non relationnels (tel celui des intervalles),
très peu précis, et les domaines relationnels classiques (tel celui des polyèdres),
très coûteux. Nous les nommons « faiblement relationnels ». Nous présentons
également des méthodes permettant d’appliquer les domaines relationnels à
l’analyse de nombres à virgule flottante, jusqu’à présent uniquement réalisable
par des domaines non relationnels, donc peu précis. Enfin, nous présentons des
méthodes symboliques génériques dites de « linéarisation » et de « propaga-
tion de constantes symboliques » permettant d’améliorer la précision de tout
domaine numérique, pour un surcoût réduit.

Les méthodes introduites dans cette thèse ont été intégrées à Astrée, un
analyseur spécialisé dans la vérification de logiciels avioniques embarqués cri-
tiques, et se sont révélées indispensables pour prouver l’absence d’erreurs à
l’exécution dans certains logiciels de commande de vol électrique des avions
Airbus A340 et A380. Ces résultats expérimentaux viennent justifier l’intérêt
de nos méthodes pour des cadres d’applications réelles.

Antoine Miné Weakly Relational Numerical Abstract Domains

iv RÉSUMÉ

Domaines numériques abstraits faiblement relationnels Antoine Miné

ABSTRACT v

Abstract

The goal of this thesis is to design techniques related to the automatic anal-
ysis of computer programs. One major application is the creation of tools to
discover bugs before they actually happen, an important goal in a time when
critical yet complex tasks are performed by computers. We will work in the Ab-
stract Interpretation framework, a theory of sound approximations of program
semantics. We will focus, in particular, on numerical abstract domains that
specialise in the automatic discovery of properties of the numerical variables
of programs.

In this thesis, we introduce new numerical abstract domains: the zone abstract
domain (that can discover invariants of the form X − Y ≤ c), the zone con-
gruence domain (X ≡ Y + a [b]), and the octagon domain (±X ± Y ≤ c),
among others. These domains rely on the classical notions of potential graphs,
difference bound matrices, and algorithms for the shortest-path closure com-
putation. They are in-between, in terms of cost and precision, between non-
relational domains (such as the interval domain), that are very imprecise, and
classical relational domains (such as the polyhedron domain), that are very
costly. We will call them“weakly relational”. We also introduce some methods
to apply relational domains to the analysis of floating-point numbers, which
was previously only possible using imprecise, non-relational, domains. Finally,
we introduce the so-called “linearisation” and “symbolic constant propagation”
generic symbolic methods to enhance the precision of any numerical domain,
for only a slight increase in cost.

The techniques presented in this thesis have been integrated within Astrée,
an analyser for critical embedded avionic software, and were instrumental in
proving the absence of run-time errors in fly-by-wire softwares used in Airbus
A340 and A380 planes. Experimental results show the usability of our methods
in the context of real-life applications.

Antoine Miné Weakly Relational Numerical Abstract Domains

vi ABSTRACT

Domaines numériques abstraits faiblement relationnels Antoine Miné

ACKNOWLEDGMENTS vii

Acknowledgments

First of all, I would like to thank
deeply my Professor and Ph.D. adviser,

Patrick Cousot. He introduced me to the field of
program semantics through the rewarding and enlight-

ening way of Abstract Interpretation, and then, allowed me
to join his team in the search for better abstractions. He man-

aged to protect my autonomy while supporting my work. Patrick has
always had the most respect for his students, considering them as his peer re-

searchers. ‹ I would like to thank Chris Hankin, Roberto Giacobazzi, and Helmut
Seidl for accepting to be in my jury and for their helpful comments on my work. ‹
During my thesis, I had the rare opportunity to work on a thrilling group project.
Astrée was at the same time a practical experiment and a theory-stressing chal-
lenge. It funnelled my passion for programming in a way supplementing my the-
oretical research. Its astounding and repeated successes strengthened my faith in
times of disillusionment. I would like to thank all the members of the “magic team”
for sharing this experience with me: Bruno Blanchet, Patrick Cousot, Radhia
Cousot, Jérôme Feret, Laurent Mauborgne, David Monniaux, and Xavier Rival.
Additional acknowledgments go to Bruno and Patrick for their proof-reading of this
thesis. ‹ The Astrée project would not have been possible without the support
and trust from Famantanantsoa Randimbivololona and Jean Souyris at Airbus. I
am glad they actually did buy us the promised dinner. ‹ I also thank the bakers at

the “Boulange Vème”, the official sandwich supplier for the “magic team”. ‹ I
shall not forget to thank my estimated co-workers and friends from Rad-

hia’s “sister team”: Charles Hymans, Francesco Logozzo, Damien
Massé, and Élodie-Jane Sims. ‹ A well-balanced life can-

not include only work and I found also much support
during my “off-line” time. This is why I would

like to thank my parents and all my sis-
ters: Judith, Garance, and Manuèle.

›„„„›

Antoine Miné Weakly Relational Numerical Abstract Domains

viii ACKNOWLEDGMENTS

Domaines numériques abstraits faiblement relationnels Antoine Miné

CONTENTS ix

Contents

Title Page . i
Résumé . iii
Abstract . v
Acknowledgments . vii
Table of Contents . ix

1 Introduction 1
1.1 Motivation . 1
1.2 Key Concepts . 1
1.3 Overview of the Thesis . 3
1.4 Our Contribution . 4

2 Abstract Interpretation of Numerical Properties 5
2.1 General Definitions . 6
2.2 Abstract Interpretation Primer . 8

2.2.1 Galois Connection Based Abstract Interpretation 8
2.2.2 Concretisation-Based Abstract Interpretation 11
2.2.3 Partial Galois Connections . 12
2.2.4 Fixpoint Computation . 14
2.2.5 Chaotic Iterations . 17
2.2.6 Reduced Product . 19
2.2.7 Related Work in Abstract Interpretation Theory 21

2.3 The Simple Language . 21
2.3.1 Language Syntax . 21
2.3.2 Concrete Semantics . 23
2.3.3 A Note on Missing Features . 27

2.4 Discovering Properties of Numerical Variables 28
2.4.1 Numerical Abstract Domains . 28
2.4.2 Abstract Interpretor . 29
2.4.3 Fall-Back Transfer Functions . 30
2.4.4 Non-Relational Abstract Domains . 31

Antoine Miné Weakly Relational Numerical Abstract Domains

x CONTENTS

2.4.5 Overview of Existing Numerical Abstract Domains 36

2.4.6 The Interval Abstract Domain . 39

2.4.7 The Polyhedron Abstract Domain . 42

2.5 The Need for Relational Domains . 43

2.6 Other Applications of Numerical Abstract Domains 46

3 The Zone Abstract Domain 49

3.1 Introduction . 49

3.2 Constraints and Their Representation . 51

3.2.1 Constraints . 51

3.2.2 Representations . 51

3.2.3 Lattice Structure . 54

3.3 Canonical Representation . 55

3.3.1 Emptiness Testing . 56

3.3.2 Closure Operator . 56

3.3.3 Closure Algorithms . 60

3.3.4 Incremental Closure . 63

3.4 Set-Theoretic Operators . 65

3.4.1 Equality Testing . 65

3.4.2 Inclusion Testing . 66

3.4.3 Union Abstraction . 66

3.4.4 Intersection Abstraction . 70

3.5 Conversion Operators . 70

3.5.1 Conversion Between Zones and Intervals 70

3.5.2 Conversion Between Zones and Polyhedra 71

3.6 Transfer Functions . 73

3.6.1 Forget Operators . 73

3.6.2 Assignment Transfer Functions . 77

3.6.3 Test Transfer Functions . 81

3.6.4 Backwards Assignment Transfer Functions 85

3.7 Extrapolation Operators . 86

3.7.1 Widenings . 86

3.7.2 Interactions between the Closure and our Widenings 90

3.7.3 Narrowings . 92

3.8 Cost Considerations . 94

3.8.1 Ways to close . 94

3.8.2 Hollow Representation . 95

3.9 Conclusion . 96

Domaines numériques abstraits faiblement relationnels Antoine Miné

CONTENTS xi

4 The Octagon Abstract Domain 97
4.1 Introduction . 97
4.2 Modified Representation . 98

4.2.1 Octagonal Constraints Encoding . 99
4.2.2 Coherence . 100
4.2.3 Lattice Structure . 100

4.3 Modified Closure Algorithms . 101
4.3.1 Emptiness Testing . 101
4.3.2 Strong Closure . 102
4.3.3 Floyd–Warshall Algorithm for Strong Closure 106
4.3.4 Incremental Strong Closure Algorithm 108
4.3.5 Integer Case . 109

4.4 Operators and Transfer Functions . 114
4.4.1 Adapted Set-Theoretic Operators . 115
4.4.2 Adapted Forget Operator . 115
4.4.3 Adapted Conversion Operators . 118
4.4.4 Adapted Transfer Functions . 120
4.4.5 Adapted Extrapolation Operators . 124

4.5 Alternate Octagon Encodings . 125
4.5.1 Efficient Representation . 125
4.5.2 Adapted Hollow Form . 126

4.6 Analysis Examples . 128
4.6.1 Decreasing Loop . 128
4.6.2 Absolute Value . 129
4.6.3 Rate Limiter . 130

4.7 Related Works and Extensions . 131
4.8 Conclusion . 133

5 A Family of Zone-Like Abstract Domains 135
5.1 Introduction . 135
5.2 Constraint Matrices . 137

5.2.1 Representing Constraints . 137
5.2.2 Previous Work on Closed Half-Rings 139
5.2.3 Acceptable Bases . 140
5.2.4 Adapted Closure Algorithm . 143
5.2.5 Galois Connection . 145

5.3 Operators and Transfer Functions . 146
5.3.1 Set-Theoretic Operators . 146
5.3.2 Forget and Projection Operators . 147
5.3.3 Transfer Functions . 151

Antoine Miné Weakly Relational Numerical Abstract Domains

xii CONTENTS

5.3.4 Extrapolation Operators . 154
5.4 Instance Examples . 155

5.4.1 Translated Equalities . 155
5.4.2 Retrieving the Zone Domain . 158
5.4.3 Zones With Strict Constraints . 159
5.4.4 Integer Congruences . 160
5.4.5 Rational Congruences . 166
5.4.6 Unacceptable Bases . 170

5.5 Conclusion . 170

6 Symbolic Enhancement Methods 173
6.1 Introduction . 174
6.2 Linearisation . 176

6.2.1 Interval Linear Forms . 176
6.2.2 Interval Linear Form Operators . 177
6.2.3 From Expressions to Interval Linear Forms 180
6.2.4 Multiplication Strategies . 182
6.2.5 From Expressions to Quasi-Linear Forms 185
6.2.6 Extending Numerical Expressions . 186

6.3 Symbolic Constant Propagation . 188
6.3.1 Motivation . 188
6.3.2 Symbolic Constant Propagation Domain 189
6.3.3 Interaction With a Numerical Abstract Domain 194
6.3.4 Substitution Strategies . 195
6.3.5 Cost Considerations . 198
6.3.6 Interval Linear Form Propagation Domain 199
6.3.7 Comparison with Relational Abstract Domains 200

6.4 Conclusion . 200

7 Analysis of Machine-Integer and Floating-Point Variables 203
7.1 Introduction . 203
7.2 Modeling Machine-Integers . 205

7.2.1 Modified Syntax and Concrete Semantics 206
7.2.2 Adapted Abstract Semantics . 207
7.2.3 Analysis Example . 210

7.3 Using Machine-Integers in the Abstract . 211
7.3.1 Using Regular Arithmetics . 211
7.3.2 Using Saturated Arithmetics . 212

7.4 Modeling IEEE 754 Floating-Point Numbers 214
7.4.1 IEEE 754 Representation . 215

Domaines numériques abstraits faiblement relationnels Antoine Miné

CONTENTS xiii

7.4.2 IEEE 754 Computation Model . 216
7.4.3 Linearising Floating-Point Expressions 221
7.4.4 Analysis Example . 226

7.5 Using Floating-Point Numbers in the Abstract 227
7.5.1 Floating-Point Interval Analysis . 227
7.5.2 Floating-Point Linearisation . 229
7.5.3 Floating-Point Zones and Octagons 230
7.5.4 Convergence Acceleration . 232

7.6 Conclusion . 234

8 Application to the Astrée Static Analyser 237
8.1 Introduction . 237
8.2 Presentation of Astrée . 238

8.2.1 Scope of the Analyser . 238
8.2.2 History of the Analyser . 241
8.2.3 Design by Refinement . 241

8.3 Brief Description . 243
8.3.1 Implementation . 243
8.3.2 Analysis Steps . 243
8.3.3 Abstract Domains . 244
8.3.4 Partitioning Techniques . 247

8.4 Integrating the Octagon Abstract Domain 249
8.4.1 Implementation Choices . 249
8.4.2 Octagon Packing . 250
8.4.3 Analysis Results . 254

8.5 Integrating the Symbolic Constant Propagation 256
8.5.1 Implementation Choices . 256
8.5.2 Analysis Results . 257

8.6 Extrapolation Operators . 258
8.7 Conclusion . 260

9 Conclusion 261

A Lengthy Proofs 265
A.1 Proof of Thm. 4.3.4: Strong Closure Algorithm for Octagons 265
A.2 Proof of Thm. 5.2.1: Closure Algorithm for Constraint Matrices 271

Bibliography . 279
List of Figures . 291
List of Definitions . 293

Antoine Miné Weakly Relational Numerical Abstract Domains

xiv CONTENTS

List of Theorems . 297
List of Examples . 299
Index . 301
Index of Symbols . 303

Domaines numériques abstraits faiblement relationnels Antoine Miné

Chapter 1: Introduction 1

Chapter 1

Introduction

1.1 Motivation

Since the birth of computer science, writing correct programs has always been considered a
great challenge. Generally, much more time and effort is needed to hunt down and eliminate
bugs, that is, unintentional programming errors, than to actually write programs. As we
rely more and more on software, the consequences of a bug are more and more dramatic,
causing great financial and even human losses. Moreover, software complexity seems to
follow Moore’s law and grow exponentially with time, making them harder and harder to
debug. Two extreme examples are the overflow bug that caused the failure of the Ariane
5 launcher in 1996 [ea96] and the cumulated imprecision errors in a Patriot missile defense
that caused it to miss its Scud missile target, resulting in 28 people being killed in 1992
[Ske92].

In order to ensure the correctness of programs, one massively used technique is testing.
As only a few sample program behaviors can actually be observed, testing methods easily
leave bugs. Also, testing does not seem to catch up with the software complexity explosion:
it becomes more and more costly while giving worse and worse results. Formal methods,
on the other hand, try to address these problems by providing mathematically sound tech-
niques that guarantee a full coverage of all program behaviors while relying on symbolic
— as opposed to explicit — representations to achieve efficiency. In this thesis, we wish
to contribute to the field of formal methods used in the verification of the correctness of
programs.

1.2 Key Concepts

Program Semantics. Semantics is the branch of computer science devoted to associat-
ing a mathematical meaning to computer programs, thus allowing formal reasoning about

Antoine Miné Weakly Relational Numerical Abstract Domains

2 Chapter 1: Introduction

programs and their properties. Formal methods grounded on program semantics should be
distinguished from purely empirical or statistical methods.

Static Analysis. Static Analysis is devoted to the conception of analysers, that is, pro-
grams able to discover properties of programs at compile-time. Unlike testing, debugging,
and profiling, static analysers do not need to actually run the analysed program; they can
reason about infinite sets of unbounded computations in arbitrary contexts at once. More-
over, a static analyser should preferably always terminate and its computation time should
be more or less predictable. By Rice’s theorem [Ric53], any property on the outcome of
a program that is not always true for all programs or false for all programs — and this
includes every single interesting property — is undecidable, so, a perfect static analyser
cannot exist. All static analysers will thus make approximations, one way or another. A
sound static analyser is one for which approximations do not compromise the truth of its
result: it can output either a definite “yes” — meaning that the property is indeed true
regardless of approximations — or “I don’t know” — meaning that the approximations
prevent the analyser from issuing a definite answer.

Abstract Interpretation. Abstract Interpretation [CC77, CC92b] is a general theory of
the approximations of program semantics. It allows, among other applications, designing
static analyses that are sound by construction. A core concept is that of abstract domain,
that is, a class of properties together with a set of operators to manipulate them allowing, in
conjunction with the abstract interpretation framework, the design of a static analyser for
this class of properties. Each abstract domain embeds some sort of approximation. There
does not exist a single, all-purpose, abstract domain: abstract domains must be chosen
depending on the properties that need to be inferred, but also the language constructs that
are used in the analysed program and the amount of computing resources available for the
static analysis. However, an abstract domain is not tied to one particular program but to
a whole class of programs as it generally embeds an infinite set of properties.

Advantages Over Other Formal Methods. Unlike other formal methods for reason-
ing on programs, once an abstract domain is designed, the static analysis performs fully
automatically and directly on the source code. This is to be compared to model-checking
that requires the user to construct by hand a — generally finite — model for each new pro-
gram to be analysed and theorem-proving that often requires much user assistance during
the proof generation.

Numerical Properties. The focus of this thesis is the numerical properties of the vari-
ables of a program. Such properties allow answering questions of the form: “Can there be
a division by zero ?”, “Can this computation exceed the digit capacity of the computer ?”,

Domaines numériques abstraits faiblement relationnels Antoine Miné

1.3 – Overview of the Thesis 3

“Can this array index exceed the array bounds ?”. They have quite a lot of applications in
program verification and optimisation. All numerical properties, except the simplest ones,
are undecidable.

Weakly Relational Numerical Abstract Domains. Numerical abstract domains fo-
cus on the properties of the numerical program variables. Relational domains are able to
express relationships between variables, that is, arithmetic properties involving several vari-
ables at a time, such as “X=Y+Z”. Classical relational domains are more precise but also
much more costly than non-relational ones. The subject of this thesis is the introduction
of new relational numerical abstract domains that are in-between, in terms of precision
and cost, between existing non-relational and relational domains. As each introduced do-
main can be seen as the restriction, with respect to the expressed properties, of an existing
relational domain, we call them weakly relational. The algorithms underlying these new
domains are, however, quite different and allow a reduced time and memory consumption.

1.3 Overview of the Thesis

This thesis is organised as follows. Chap. 2 recalls the formal framework of Abstract Inter-
pretation and its application to the design of static analyses for the numerical properties
of programs. The construction of a generic static analyser, parametrised by a numerical
abstract domain, for a simple programming language called Simple is presented. It will
serve throughout the thesis to illustrate our newly introduced abstract domains. Chap. 3
then introduces our first weakly relational abstract domain: the domain of zones that al-
lows discovering invariants of the form ±X ≤ c and X − Y ≤ c, where X and Y are
program variables and c is any constant in Z, Q, or R. Then, Chap. 4 presents the octagon
abstract domain that extends the zone abstract domain to discover invariants of the form
±X ± Y ≤ c. Chap. 5 proposes another generalisation of the zone abstract domain that
allows representing invariants of the form X − Y ∈ S where S lives in a non-relational
abstraction. We will present several instances of this abstract domain family. One of
particular interest is the zone congruence domain that can infer invariants of the form
X ≡ Y + c [d]. Another example is the strict zone domain that can infer invariants of the
form X − Y < c. Chap. 6 presents two generic techniques that can be applied to improve
the precision of all numerical abstract domains: linearisation widens their scope by easily
allowing a support for non-linear expression manipulations while symbolic constant prop-
agation improves their robustness against simple program transformations. The last two
chapters focus on the static analysis of real-life programming languages. Chap. 7 explains
how to adapt numerical abstract domains to the analysis of machine-integers and floating-
point numbers, which behave quite differently from the perfect mathematical numbers in Z

and R that we use in our Simple language for simplicity. It also explains how to implement

Antoine Miné Weakly Relational Numerical Abstract Domains

4 Chapter 1: Introduction

abstract domains efficiently using machine-integers and floating-point numbers. Chap. 8
presents our experiments with the octagon abstract domain of Chap. 4 and the techniques
of Chaps. 6 and 7 in the Astrée static analyser for real-life embedded critical avionic
software.

1.4 Our Contribution

Our main goal during this research was to provide static analysis tools that are both firmly
grounded mathematically and of practical interest. More precisely, our contribution can be
conceived in three layered levels:

› Firstly, we give theoretical results: mathematical definitions, algorithms, and theo-
rems, presented with their proof.

› Secondly, most of these results have been implemented in small academic analysers
and tested on small program fragments written in small illustrative languages in the
spirit of our Simple language. Throughout this thesis, we will illustrate the introduced
techniques by such sample analyses. Moreover, an academic analyser for the octagon
domain of Chap. 4 is available on-line [Minb] — see also Fig. 4.5 at the end of Chap. 4.

› Finally, a part of the theoretical work has been implemented in an industrial-strength,
freely available, library [Mina] and incorporated into the Astrée static analyser
[Asta]. The Astrée analyser, developed at the École Normale Supérieure, is used
daily by industrial end-users to prove the absence of run-time errors in real-life critical
embedded softwares for Airbus [Air] planes, written in the C programming language
and featuring much numerical computation.

Some of the results described in Chaps. 3 to 7 have been the subject of publications
in workshops and symposiums [Min01a, Min01b, Min02, Min04] and are presented here
with many extensions, as well as complete proofs. We also co-wrote two papers [BCC+02,
BCC+03] discussing the implementation of and experimentation with Astrée. Only the
part of the work on the Astrée static analyser relevant to this thesis is described in
Chap. 8.

Domaines numériques abstraits faiblement relationnels Antoine Miné

Chapter 2: Abstract Interpretation of Numerical Properties 5

Chapter 2

Abstract Interpretation of Numerical
Properties

L’interprétation abstraite est une théorie générale de la construction et la
preuve de correction d’approximations de sémantiques de programmes. Nous
rappelons ses principes de base et son application à la conception d’analyseurs
statiques pour l’inférence des propriétés des variables numériques d’un pro-
gramme.
Ensuite, nous présentons la syntaxe et la sémantique formelle d’un petit lan-
gage, nommé Simple, qui illustre la conception par interprétation abstraite d’un
analyseur statique, paramétré par un domaine abstrait numérique. Quelques
exemples de domaines numériques abstraits classiques sont également rappe-
lés. Ce langage et cet analyseur seront utilisés dans les chapitres suivants pour
illustrer les propriétés des nouveaux domaines numériques abstraits introduits
par cette thèse.

Abstract Interpretation is a general framework for the construction and sound-
ness proof of approximated semantics of programs. We recall here its core
features and its applications to the design of static analysers for the automatic
inference of the properties of the numerical variables of a program.
We then present a very small programming language, called Simple, together
with its syntax and formal semantics, and exemplify the abstract interpretation
framework by designing a small static analyser parametrised by a numerical
abstract domain. We also recall some classical numerical abstract domains.
This language and this analyser will be used throughout the following chapters
to exemplify the new numerical abstract domains introduced in this thesis.

Antoine Miné Weakly Relational Numerical Abstract Domains

6 Chapter 2: Abstract Interpretation of Numerical Properties

2.1 General Definitions

Definitions, Properties. We will use the symbols
def

= and
def

⇐⇒ to introduce new
objects: the left object is defined to be equal or equivalent to the formula on the right.
These should not be confused with the = and ⇐⇒ symbols that describe equality or
equivalence properties on already defined objects.

Orders. A partially ordered set (or poset) (D,⊑) is a non-empty set D together with a
partial order ⊑, that is, a binary relation that is reflexive, transitive, and anti-symmetric.
A reflexive, transitive, but not necessarily anti-symmetric relation is called a preorder and
can be turned into a poset by identifying elements in D such that both a ⊑ b and b ⊑ a.
When they exist, the greatest lower bound (or glb) of a set D ⊆ D will be denoted by

d
D,

and its least upper bound (or lub) will be denoted by
⊔

D. We will denote by ⊥ the least
element and ⊤ the greatest element, if they exist. A poset with a least element will be called
a pointed poset, and denoted by (D,⊑,⊥). Note that any poset can be transformed into a
pointed poset by adding a new element that is smaller than everyone. A cpo is a poset that
is complete, that is, every increasing chain of elements (Xi)i∈I , i ≤ j =⇒ Xi ⊑ Xj (where
the ordinal I may be greater than ω) has a least upper bound,

⊔

i∈I Xi, which is called the
limit of the chain. Note that a cpo is always pointed as the least element can be defined
by ⊥

def
=

⊔

∅.

Lattices. A lattice (D,⊑,⊔,⊓) is a poset where each pair of elements a, b ∈ D has a least
upper bound, denoted by a ⊔ b, and a greatest lower bound, denoted by a ⊓ b. A lattice is
said to be complete if any set D ⊆ D has a least upper bound. A complete lattice is always
a cpo; it has both a least element ⊥

def

=
⊔

∅ and a greatest element ⊤
def

=
⊔

D; also, each
set D ⊆ D has a greatest lower bound

d
D

def
=

⊔

{ X ∈ D | ∀Y ∈ D, X ⊑ Y }. In this
case, it is denoted by (D,⊑,⊔,⊓,⊥,⊤). An important example of complete lattice is the
power-set (P(S),⊆,∪,∩, ∅, S) of any set S.

Structure Lifting. If (D,⊑,⊔,⊓,⊥,⊤) is a complete lattice (resp. poset, cpo, lattice)
and S is a set, then (S → D, ⊑̇, ⊔̇, ⊓̇, ⊥̇, ⊤̇) is also a complete lattice (resp. poset, cpo,
lattice) if we define the dotted operators by point-wise lifting :

Definition 2.1.1. Point-wise lifting.

(S → D, ⊑̇, ⊔̇, ⊓̇, ⊥̇, ⊤̇)

X ⊑̇ Y
def

⇐⇒ ∀s ∈ S, X(s) ⊑ Y (s)

(˙⊔ X)(s)
def
=

⊔

{X(s) |X ∈ X } ⊥̇(s)
def
= ⊥

(
ḋ

X)(s)
def
=

d
{X(s) |X ∈ X } ⊤̇(s)

def
= ⊤

„

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.1 – General Definitions 7

Applications. We will sometimes use the lambda notation for applications: λX.expr is
the function that maps X to the value of the expression expr where X is a free variable.
We will sometimes use the explicit notation [X1 7→ expr 1, . . . , Xn 7→ exprn] to denote the
application that associates the value of expr i to Xi. We will also denote by f [X 7→ expr] the
application equal to f , except that it maps X to the value of expr instead of f(X). Finally,
we denote by Id the identity application: Id

def

= λX.X. An application F ∈ D1 → D2

between two posets (D1,⊑1) and (D2,⊑2) is said to be monotonic if X ⊑1 Y =⇒ F (X) ⊑2

F (Y). It is said to be strict if F (⊥1) = ⊥2. An operator F ∈ D → D, that is, a
function from a poset D to the same poset, is said to be extensive if ∀X, X ⊑ F (X). A
monotonic application F ∈ D1 → D2 that preserves the existing limits of increasing chains
(Xi)i∈I , i.e., F (

⊔

1{Xi | i ∈ I }) =
⊔

2{F (Xi) | i ∈ I } whenever
⊔

1{Xi | i ∈ I } exists, is
said to be continuous. If F preserves existing least upper bounds (resp. greatest lower
bounds), i.e., F (

⊔

1 D) =
⊔

2 { F (X) | X ∈ D }, it is said to be a complete ⊔−morphism
(resp. ⊓−morphism). Note that complete ⊔−morphisms and complete ⊓−morphisms are
always monotonic. If F is an operator and i is an ordinal, we will denote by F i(X) F ’s
i−th iterate on X which is defined by transfinite induction as F 0(X)

def

= X, Fα+1(X)
def

=
F (Fα(X)), and F β(X)

def

=
⊔

α<β Fα(X) when β is a limit ordinal.

Fixpoints. A fixpoint of an operator F is an element X such that F (X) = X. We denote
by lfpX F the least fixpoint of F that is greater than X, if it exists, and by gfpX F the
greatest fixpoint of F smaller than X. We also denote by lfp F and gfp F the least and
greatest fixpoints of F , if they exist: lfp F

def
= lfp⊥ F and gfp F

def
= gfp⊤ F . A pre-fixpoint

X is such that F (X) ⊒ X, and a post-fixpoint X is such that F (X) ⊑ X. In particular, ⊥
is a pre-fixpoint for all operators, and ⊤ is a post-fixpoint for all operators. We now recall
two fundamental theorems about fixpoints of operators in ordered structures:

Theorem 2.1.1. Tarskian fixpoints.

The set of fixpoints of a monotonic operator F in a complete lattice is a complete lattice.
Moreover, lfpX F =

d
{ F ’s post-fixpoints larger than X }.

Dually, gfpX F =
⊔

{ F ’s pre-fixpoints smaller than X }.

„

Proof. By Tarski in [Tar55]. ”

Theorem 2.1.2. Kleenian fixpoints.

1. If F is a monotonic operator in a cpo and X is a pre-fixpoint for F ,
then F i(X) is stationary at some ordinal ε and lfpX F = F ε(X).

2. If, moreover, F is continuous, then lfpX F = F ω(X).
„

Antoine Miné Weakly Relational Numerical Abstract Domains

8 Chapter 2: Abstract Interpretation of Numerical Properties

Proof. Found in [Cou78, § 2.5.2.0.2, § 2.7.0.1]. ”

2.2 Abstract Interpretation Primer

A core principle in the Abstract Interpretation theory is that all kinds of semantics can
be expressed as fixpoints of monotonic operators in partially ordered structures, would it
be operational, denotational, rule-based, axiomatic, based on rewriting systems, transition
systems, abstract machines, etc. Having all semantics formalised in a unified framework
allows comparing them more easily. Beside comparing already existing semantics, Abstract
Interpretation allows building new semantics by applying abstractions to existing ones.
Abstractions are themselves first-class citizens that can be manipulated and composed at
will.

A key property of the semantics designed by abstraction is that they are guaranteed
to be sound, by construction. Thus, a sound and fully automatic static analyser can be
designed by starting from the non-computable formal semantics of a programming language,
and composing abstractions until the resulting semantics is computable.

2.2.1 Galois Connection Based Abstract Interpretation

Galois Connections. Let D
♭ and D

♯ be two posets1 used as semantic domains. A Galois
connection, as introduced by Cousot and Cousot in [CC77], between D

♭ and D
♯ is a function

pair (α, γ) such that:

Definition 2.2.1. Galois connection.

1. α : D
♭ → D

♯,

2. γ : D
♯ → D

♭,

3. ∀X♭, X♯, α(X♭) ⊑♯ X♯ ⇐⇒ X♭ ⊑♭ γ(X♯).
„

This is often pictured as follows:

D
♭
−−→←−−

α

γ
D

♯ .

An important consequence of Def. 2.2.1 is that both α and γ are monotonic [CC92a,
§ 4.2.2]. Also, we have (α◦γ)(X♯) ⊑♯ X♯ and X♭ ⊑♭ (γ◦α)(X♭). The fact that α(X♭) ⊑♯ X♯,

1From now on, a poset (Dx,⊑x) will only be refereed to as D
x when there is no ambiguity, that is,

when there is only one partial order of interest on D
x. The same also holds for cpo, lattices, and complete

lattice: the same superscript x as the one of the set D
x is used when talking about its order ⊑x, lub ⊔x,

glb ⊓x, least element ⊥x, and greatest element ⊤x, when they exist.

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.2 – Abstract Interpretation Primer 9

or equivalently that X♭ ⊑♭ γ(X♯), will formalise the fact that X♯ is a sound approximation
(or sound abstraction) of X♭. D

♭ will be called the concrete domain; D
♯ will be called the

abstract domain; α will be called the abstraction function; γ will be called the concretisation
function. Moreover, α(X♭) will be the best abstraction for X♭.

Galois Insertions. If the concretisation γ is one-to-one or, equivalently, α is onto, or
α ◦ γ = Id , then (α, γ) is called a Galois insertion and pictured as follows:

D♭
−−→−→←−−−−

α

γ
D

♯ .

Designing an abstract domain linked to the concrete one through a Galois insertion
corresponds to choosing, as abstract elements, a subset of the concrete ones and, as the
abstract order, the order induced by the concrete domain. If we impose only the existence
of a general Galois connection, then one concrete element can be represented by several,
possibly incomparable, abstract elements.

Canonical Abstractions and Concretisations. Sometimes, it is not necessary to de-
fine both the concretisation and the abstraction functions in a Galois connection as the
missing function can be synthesised in a canonical way. We can use the following theorem:

Theorem 2.2.1. Canonical α, γ.

1. If D
♭ has lubs for arbitrary sets and α : D

♭ → D
♯ is a complete ⊔−morphism, then

there exists a unique concretisation γ that forms a Galois connection D
♭
−−−→←−−−

α

γ
D

♯.
This γ is defined as:

γ(X)
def
=

⊔♭ { Y | α(Y) ⊑♯ X } .

2. Likewise, if D
♯ has glbs for arbitrary sets and γ : D

♯ → D
♭ is a complete

⊓−morphism, then there exists a unique α that forms a Galois connection D
♭
−−−→←−−−

α

γ

D
♯. It is defined as:

α(X)
def

=
d♯ { Y | X ⊑♭ γ(Y) } .

„

Proof. See [CC92a, § 4.2.2]. ”

Operator Abstractions. Let F ♭ be an operator on a concrete domain. An operator F ♯

on the abstract domain will be said to be a sound abstraction for F ♭ with respect to a
Galois connection D

♭
−−→←−−

α

γ
D

♯ if and only if ∀X, F ♯(X) ⊒♯ (α ◦F ♭ ◦ γ)(X) or, equivalently,

∀X, (γ ◦ F ♯)(X) ⊒♭ (F ♭ ◦ γ)(X). Given F ♭, the best abstraction F ♯ for F ♭ is defined to

Antoine Miné Weakly Relational Numerical Abstract Domains

10 Chapter 2: Abstract Interpretation of Numerical Properties

be exactly F ♯ def

= α ◦ F ♭ ◦ γ. When γ ◦ F ♯ = F ♭ ◦ γ, the operator F ♯ is said to be
an exact abstraction for F ♭. Exact abstractions seldom exist because it is quite rare that
the result of a concrete operator F ♭ is exactly representable in the abstract domain, even
when its argument is. However, if the Galois connection is a Galois insertion and an exact
abstraction for F ♭ exists, then it is unique and it corresponds to the best abstraction for
F ♭.

Note that all these definitions and properties apply to n−ary operators as well.
Given a monotonic concrete operator F ♭

1 and a concrete operator F ♭
2 , with correspond-

ing sound abstractions F ♯
1 and F ♯

2 , the composition F ♯
1 ◦ F ♯

2 is a sound abstraction of the
concrete composition F ♭

1 ◦ F ♭
2 . Also, the composition of exact abstractions of — not nec-

essarily monotonic — operators is an exact abstraction of the composition. However, the
composition of the best abstractions of two operators is seldom the best abstraction of the
composition of the operators. So, when designing the abstraction of a complex function by
composing abstractions of small functions, the chosen “granularity” can greatly affect the
quality of an analysis.

Given two Galois connections D
♭
−−−→←−−−

α1

γ1

D
♯
1 and D

♭
−−−→←−−−

α2

γ2

D
♯
2 from the same concrete

domain D
♭, we will say that D

♯
1 is a more precise abstraction than D

♯
2 if and only if

γ1(D
♯
1) ⊇ γ2(D

♯
2), that is, if D

♯
1 can represent exactly more concrete elements than D

♯
2.

When this is the case, every best abstraction in D
♯
1 of a monotonic operator F ♭ is more

precise than the corresponding best abstraction in D
♯
2, which is stated as follows:

Theorem 2.2.2. Relative precision of abstract domains.

If γ1(D
♯
1) ⊇ γ2(D

♯
2) and F ♭ : D

♭ → D
♭ is monotonic, then:

γ1(X
♯
1) ⊑

♭ γ2(X
♯
2) =⇒ γ1((α1 ◦ F ♭ ◦ γ1)(X

♯
1)) ⊑

♭ γ2((α2 ◦ F ♭ ◦ γ2)(X
♯
2)) .

„

Proof.

We first prove that X♭
1 ⊑

♭ X♭
2 =⇒ (γ1 ◦α1)(X

♭
1) ⊑

♭ (γ2 ◦α2)(X
♭
2) (1). By Galois connec-

tion properties, (γ2◦α2)(X
♭
2) ⊒

♭ X♭
2. Using the hypothesis, this gives (γ2◦α2)(X

♭
2) ⊒

♭ X♭
1.

Now, by applying the monotonic γ1 ◦ α1, we get (γ1 ◦ α1 ◦ γ2 ◦ α2)(X
♭
2) ⊒

♭ (γ1 ◦ α1)(X
♭
1).

Because (γ2◦α2)(X
♭
2) ∈ γ2(D

♯
2), we also have (γ2◦α2)(X

♭
2) ∈ γ1(D

♯
1), so there exists some

Y ♯
1 such that (γ2 ◦α2)(X

♭
2) = γ1(Y

♯
1). By property of Galois connections γ1 ◦α1 ◦ γ1 = γ1,

so (γ1 ◦ α1 ◦ γ2 ◦ α2)(X
♭
2) = (γ1 ◦ α1 ◦ γ1)(Y

♯
1) = γ1(Y

♯
1) = (γ2 ◦ α2)(X

♭
2) and we have

actually proved that (γ2 ◦ α2)(X
♭
2) ⊒

♭ (γ1 ◦ α1)(X
♭
1).

If we now define X♭
1

def
= (F ♭ ◦ γ1)(X

♯
1) and X♭

2
def
= (F ♭ ◦ γ2)(X

♯
2), then the hypothesis

and the monotonicity of F ♭ imply that X♭
1 ⊑

♭ X♭
2 and we can apply (1) to get the desired

result.
”

Thus, a Galois connection is sufficient to fully characterise the maximal precision of

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.2 – Abstract Interpretation Primer 11

an abstract domain: it hints on how much precision is lost, at least, by computing in the
abstract world D

♯ instead of the concrete world D
♭. More precision may be lost when

choosing operator abstractions that are not best ones.

The Category of Galois Connections. A main property of Galois connections is that
they can be composed. Given three posets, D

♭, D
♮, and D

♯ linked by Galois connections
as follows:

D
♭
−−−→←−−−

α1

γ1

D
♮

D
♮
−−−→←−−−

α2

γ2

D
♯

then, (α2 ◦ α1, γ1 ◦ γ2) is also a Galois connection:

D
♭
−−−−−→←−−−−−

α2◦α1

γ1◦γ2

D
♯ .

Hence, posets linked by Galois connections form a category. Moreover, the notion of sound,
best, and exact abstractions of operators is transitive with respect to chained Galois con-
nections, which allows a design based on successive abstractions.

We have seen — and we will see more shortly — properties of operator abstractions
that are only true when they abstract monotonic concrete operators. In fact, as Galois
connections compose, it is sufficient to relate abstract operators to monotonic concrete
ones through a chain of Galois connections. Generally, all the semantic operators defined
on the most concrete domain are monotonic while their successive abstractions are not.

2.2.2 Concretisation-Based Abstract Interpretation

Imposing the existence of a Galois connection between the concrete and the abstract do-
mains is sometimes too strong a requirement and we will see several abstraction examples
for which no α function exists (see Sects. 2.4.6 and 2.4.7). In [CC92b], Cousot and Cousot
explain how to relax the Galois connection framework in order to work only with a concreti-
sation operator γ — or, dually, only an abstraction operator α; however, concretisation-
based abstract interpretation is much more used in practice.

Concretisations. Let D
♭ and D

♯ be two posets. A concretisation is simply a monotonic
function γ : D

♯ → D♭. X♯ is said to be an abstraction for X♭ if γ(X♯) ⊒♭ X♭. Note that,
if there is no simple way to compare two abstract elements, we can always fall back to the
“coarse” partial order defined by X♯ ⊑♯ Y ♯ def

⇐⇒ X♯ = Y ♯ which makes every γ function
automatically monotonic.

Operator Abstractions Revisited. The abstract operator F ♯ is said to be a sound
abstraction for the concrete operator F ♭ if and only if ∀X♯, (γ ◦F ♯)(X♯) ⊒♭ (F ♭ ◦γ)(X♯). It

Antoine Miné Weakly Relational Numerical Abstract Domains

12 Chapter 2: Abstract Interpretation of Numerical Properties

is an exact abstraction if, moreover, γ◦F ♯ = F ♭◦γ. Note that sound and exact abstractions
compose as in the Galois connection case.

Because there is no α function, there is no notion of a best abstraction for a concrete
element and we cannot define the best abstraction for an operator as we did in the Galois
connection case. If the concrete domain D

♭ has arbitrary glbs, an alternate definition could
be that F ♯ is an optimal abstraction of F ♭ if and only if (γ◦F ♯)(X♯) =

d♭ { γ(Y ♯) | γ(Y ♯) ⊒♭

(F ♭ ◦ γ)(X♯) }. Such an F ♯ does not always exist and, when it exists, might not be unique.
Also, this is only a characterisation while, in the Galois connection case, F ♯ could be derived
automatically from the definitions of α, γ, and F ♭ as α◦F ♭◦γ. Another consequence is that
there is no easy way of telling whether one abstraction is more precise than another just
by comparing the set of concrete elements that can be exactly represented in the abstract
posets.

2.2.3 Partial Galois Connections

There exists concretisation-based abstractions that“almost”enjoy a Galois connection prop-
erty and for which we would like to have a unequivocal definition of the best abstraction
of an operator. One solution, proposed by Cousot and Cousot in [CC92b], is to enrich
the abstract domain with new elements or, on the contrary, to deprive it of some. We
propose here a new alternative, which consists in requiring best abstractions only for a set
of concrete transfer functions.

Galois Connections Revisited. Let D
♭ and D

♯ be two posets. Let F be a set of
concrete operators of arbitrary arity. We define the notion of F−partial Galois connection
as follows:

Definition 2.2.2. Partial Galois connection.

The pair (α, γ) is an F−partial Galois connection if and only if:

1. α : D
♭ ⇀ D

♯ is a monotonic partial function, and

2. γ : D
♯ → D

♭ is a monotonic total function, and

3. ∀F ♭ ∈ F , X♯
1 . . . , X♯

n ∈ D
♯, where n is the arity of F ♭, α(F ♭(γ(X♯

1), . . . , γ(X♯
n)))

exists, and

4. ∀X♭, X♯ such that α(X♭) is defined, α(X♭) ⊑♯ X♯ ⇐⇒ X♭ ⊑♭ γ(X♯).

„

We will use the same notation D
♭
−−→←−−

α

γ
D

♯ for partial Galois connections as for regular
Galois connections and precise separately the concrete operator set F .

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.2 – Abstract Interpretation Primer 13

The concretisation-based framework can be retrieved by choosing F
def

= ∅. In order
to retrieve a full Galois connection, it is sufficient to put every constant function in F .
Another interesting case is when Id ∈ F . It means that α ◦ γ is always defined, that is,
every abstract element has a best — i.e., smallest for ⊑♯ — abstract representation. In
particular, when Id ∈ F and α ◦ γ = Id , we have a partial Galois insertion.

Operator Abstractions Revisited. Due to our definition, each operator F ♭ ∈ F has a
best abstraction F ♯ def

= α ◦ F ♭ ◦ γ. As the partial Galois connection framework is strictly
stronger than the concretisation one, we can still use the definition of a sound abstraction
for any operator F ♭ as being an operator F ♯ such that ∀X, (γ ◦ F ♯)(X) ⊒♭ (F ♭ ◦ γ)(X),
and an exact abstraction if γ ◦ F ♯ = F ♭ ◦ γ. As in the Galois connection case, abstractions
and exact abstractions compose, but not best abstractions.

Finally, given two F−partial Galois connection D
♭
−−−→←−−−

α1

γ1

D
♯
1 and D

♭
−−−→←−−−

α2

γ2

D
♯
2 from

the same concrete domain D
♭, the precision of the two abstract domains with respect to

all functions in F can be compared by merely comparing γ1(D
♯
1) and γ2(D

♯
2): Thm. 2.2.2

applies for every function F ♭ ∈ F .

Canonical Abstractions α. Recall that Thm. 2.2.1 states that when D
♯ has glbs for

arbitrary sets and γ is a complete ⊓−morphism, there exists a canonical α. In order to
derive from γ a canonical partial α such that D

♭
−−→←−−

α

γ
D

♯ forms a partial Galois connection,
it is only necessary for a few glbs to exist and be preserved by γ:

Theorem 2.2.3. Canonical partial α.

If for each F ♭ ∈ F and X♯
1, . . . , X♯

n ∈ D
♯ (where n is the arity of F)

X♯ def

=
d♯ { Y ♯ | F ♭(γ(X♯

1), . . . , γ(X♯
n)) ⊑♭ γ(Y ♯) }

is well-defined and moreover

γ(X♯) =
d♭ { γ(Y ♯) | F ♭(γ(X♯

1), . . . , γ(X♯
n)) ⊑♭ γ(Y ♯) }

then the partial function defined by:

α(X♭)
def

=
d♯ { Y ♯ | X♭ ⊑♭ γ(Y ♯) }

forms with γ a F−partial Galois connection.

„

Proof. Almost identical to that of Thm. 2.2.1. ”

An interesting remark is that, if α is defined this way, then the best abstraction for
every F ♭ ∈ F will be F ♯(X♯)

def

= (α ◦ F ♭ ◦ γ)(X♯) =
d♯ { Y ♯ | (F ♭ ◦ γ)(X♯) ⊑♭ γ(Y ♯) }

Antoine Miné Weakly Relational Numerical Abstract Domains

14 Chapter 2: Abstract Interpretation of Numerical Properties

and so we have (γ ◦ F ♯)(X♯) =
d♭ { γ(Y ♯) | (F ♭ ◦ γ)(X♯) ⊑♭ γ(Y ♯) } which was precisely

our loose characterisation of an optimal abstraction in the concretisation-based framework.
However, F ♯ is now uniquely defined because a choice of an abstract element among others
with the same concretisation is done by α.

Composing Partial Galois Connections. Let us assume that we have a F1−partial
Galois connection D

♭
−−−→←−−−

α1

γ1

D
♮ and a F2−partial Galois connection D

♮
−−−→←−−−

α2

γ2

D
♯. In

order for D
♭
−−−−−→←−−−−−

α2◦α1

γ1◦γ2

D
♯ to still be a F1−partial Galois connection it is sufficient to have

F2 ⊇ { α1 ◦ F ♭ ◦ γ1 | F ♭ ∈ F1 }.

2.2.4 Fixpoint Computation

Fixpoint Transfer. Let us first consider the case of an abstract and a concrete domain
linked by a Galois connection. Given a monotonic F ♭ on the concrete domain and a mono-
tonic abstraction F ♯ of F ♭, we can compare the fixpoints of these operators using one of
the following two theorems:

Theorem 2.2.4. Tarskian fixpoint transfer.

If D
♭ and D

♯ are complete lattices, then lfpγ(X) F ♭ ⊑♭ γ(lfpX F ♯).

„

Proof. See Thm. 2 in [Cou02]. ”

Theorem 2.2.5. Kleenian fixpoint transfer.

1. If D
♭ and D

♯ are cpos and γ is continuous, then lfpγ(X) F ♭ ⊑♭ γ(lfpX F ♯).

2. If, moreover, F ♯ is exact, then lfpγ(X) F ♭ = γ(lfpX F ♯).
„

Proof. This is similar to Thms. 1 and 3 in [Cou02]. ”

Exact Fixpoint Computation. We now suppose that we have designed an abstract
domain where all elements are computer-representable and all the operator abstractions we
need are computable. We still need a practical way to compute fixpoints in the abstract
domain.

When the abstract domain does not have any infinite chain of elements in strictly
increasing order, then Kleene’s theorem (Thm. 2.1.2) gives a constructive way to compute
the least fixpoint abstraction:

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.2 – Abstract Interpretation Primer 15

Theorem 2.2.6. Kleenian iterations in domains with no infinite increasing chain.

If F ♯ is monotonic and D
♯ has no infinite strictly increasing chain,

then the Kleene iterations X♯
i+1

def
= F ♯(X♯

i) converge in finite time towards lfpX♯
0

F ♯.

„

Proof. Consequence of Thm. 2.1.2 (the ordinal ε being finite). ”

The simplest case where Thm. 2.2.6 applies is when the abstract domain D
♯ is finite,

such as the sign domain — see Fig. 2.9 and [CC76]. A more complex case is when D
♯ is

infinite but satisfies the so-called ascending chain condition, such as the constant domain
— see Fig. 2.9 and [Kil73].

When dealing with domains containing infinite increasing chains, one cannot guarantee
the termination of the iterations except in rare cases. Two notable exceptions are presented
in [SW04] and [RCK04b]: the authors introduce non-standard iteration schemes as well as
sufficient conditions on the abstract functions for the iterates to converge in finite time
within, respectively, the interval domain and the domain of varieties.

Approximate Fixpoint Computation. A more general way of dealing with domains
with infinite increasing chains is the so-called widening ▽♯ operator introduced by Cousot
and Cousot in [CC76].

Definition 2.2.3. Widening.

An abstract binary operator ▽♯ is a widening if and only if:

1. ∀X♯, Y ♯ ∈ D
♯, (X♯ ▽♯ Y ♯) ⊒♯ X♯, Y ♯, and

2. for every chain (X♯
i)i∈N, the increasing chain (Y ♯

i)i∈N defined by

Y ♯
0

def
= X♯

0

Y ♯
i+1

def

= Y ♯
i ▽♯ X♯

i+1

is stable after a finite time, i.e., ∃i < ω, Y ♯
i+1 = Y ♯

i .

„

The widening operator allows computing, in finite time, an over-approximation of a
Kleenian fixpoint, thanks to the following theorem:

Theorem 2.2.7. Fixpoint approximation with widening.

If F ♭ is a monotonic operator in a complete lattice, F ♯ is an abstraction of F ♭, and γ(X♯)
is a pre-fixpoint for F ♭, then the chain (Y ♯

i)i∈N defined by:

Antoine Miné Weakly Relational Numerical Abstract Domains

16 Chapter 2: Abstract Interpretation of Numerical Properties

Y ♯
0

def

= X♯

Y ♯
i+1

def

= Y ♯
i ▽♯ F ♯(Y ♯

i)

reaches an iterate Y ♯
n such that F ♯(Y ♯

n) ⊑♯ Y ♯
n in finite time; moreover, we have γ(Y ♯

n) ⊒♭

lfpγ(X♯) F ♭.

„

Proof. See, for instance, Prop. 33 in [CC92c]. ”

Generally, one iterates from some X♯ such that γ(X♯) = ⊥♭ to get an abstraction of
lfp F ♭ (as ⊥♭ is always a pre-fixpoint for F ♭).

Note that unlike F ♭, F ♯ need not be monotonic. On the other hand, the output of
the iterations with widening is generally not a monotonic function of X♯, even when F ♯ is
monotonic, while lfpX♭ F ♭ is monotonic in X♭. It is perfectly safe to approximate nested
limits of monotonic operators by nested iterations with widening. Also, unlike Thms. 2.2.4–
2.2.6, we do not require to have a Galois connection: iterations with widening work in
the partial Galois connection and the concretisation-based frameworks. When using a
widening, there is no longer a way to ensure that we compute the best possible abstraction
of a fixpoint.

It is always possible to refine the fixpoint over-approximation Y ♯ by applying the F ♯

operator some more without widening: while γ((F ♯)k(Y ♯)) ⊑♭ γ(Y ♯), (F ♯)k(Y ♯) is a better
fixpoint over-approximation than Y ♯. An even better idea would be to iterate a sound
counterpart of F ♭(γ(Y ♯)) ⊓♭ γ(Y ♯) which decreases more rapidly while still being a sound
approximation of the same least fixpoint. Unfortunately, none of these techniques are
guaranteed to terminate as D

♯ can have infinite strictly decreasing chains. In [CC76],
Cousot and Cousot propose a so-called narrowing operator △♯ to drive decreasing iterations
to a stable point in finite time:

Definition 2.2.4. Narrowing.

An abstract binary operator △♯ is a narrowing if and only if:

1. ∀X♯, Y ♯ ∈ D
♯, (X♯ ⊓♯ Y ♯) ⊑♯ (X♯ △♯ Y ♯) ⊑♯ X♯, and

2. for every chain (X♯
i)i∈N, the chain (Y ♯

i)i∈N defined by:

Y ♯
0

def
= X♯

0

Y ♯
i+1

def
= Y ♯

i △♯ X♯
i+1

is ultimately stationary after a finite time, i.e., ∃i < ω, Y ♯
i+1 = Y ♯

i .

„

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.2 – Abstract Interpretation Primer 17

Thanks to the following theorem, one can refine an approximate fixpoint using decreas-
ing iterations with narrowing that are guaranteed to terminate, even when the domain has
infinite decreasing chains:

Theorem 2.2.8. Fixpoint refinement with narrowing.

If F ♭ is a monotonic operator on a complete lattice, F ♯ is an abstraction of F ♭, and Y ♯

is such that γ(Y ♯) ⊒♭ lfpγ(X♯) F ♭, then the chain (Z♯
i)i∈N defined by:

Z♯
0

def
= Y ♯

Z♯
i+1

def
= Z♯

i △♯ F ♯(Z♯
i)

reaches in finite time a stable iterate Z♯
n, that is Z♯

n+1 = Z♯
n; moreover, we have γ(Z♯

n) ⊒♭

lfpγ(X♯) F ♭.

„

Proof. See, for instance, Prop. 34 in [CC92c]. ”

Informally, widenings and narrowings are responsible for the inductive part of the seman-
tics computation. Hence, they embed a great deal of the analysis intelligence. Widenings
and narrowings can still be useful in domains with no strictly infinite ascending or descend-
ing chains; they can be designed to trade precision for efficiency and compute a fixpoint
abstraction with much fewer steps than the classical iteration à la Kleene presented in
Def. 2.2.6. As discovered by Cousot and Cousot in [CC92c], more precision can always be
obtained by using ad-hoc widening and narrowing operators on an abstract domain with in-
finite chains than by further abstracting this domain into a domain verifying the ascending
chain condition. However, the widening and narrowing operators must be tailored toward
the inductive properties one wishes to discover.

2.2.5 Chaotic Iterations

Frequently, the concrete domain is the point-wise lifting L → D
♭ of an ordered structure

D
♭ to a finite set of labels L — such as, the set of syntactic program points — and the

semantic function F ♭ can be decomposed as several monotonic components F ♭
1 , . . . , F

♭
n ∈

(L → D
♭) → D

♭, with n = |L|. The least fixpoint of F ♭ can be seen as the least solution
of the following equation system:

X♭
1 = F ♭

1(X
♭
1, . . . , X

♭
n)

...
X♭

n = F ♭
n(X♭

1, . . . , X
♭
n)

Antoine Miné Weakly Relational Numerical Abstract Domains

18 Chapter 2: Abstract Interpretation of Numerical Properties

Given a sound counterpart F ♯
i ∈ (L → D

♯) → D
♯ for each F ♭

i , we wish to compute an
abstraction of the solution of the concrete equations. Chaotic iterations with widening is
a technique proposed in [Cou78, § 4.1.2] that extends the iterations with widening seen in
Thm. 2.2.7. The main idea is to choose a set of widening points W ⊆ L and an unbounded
sequence of components (Li)i∈N, Li ∈ L that is fair — i.e., each element from L appears
infinitely often in the sequence — and compute the following sequence of abstract vectors:

Definition 2.2.5. Chaotic iterations with widening.

X♯ i+1
k

def
=

X♯ i
k if k 6= Li or F ♯

k(X
♯ i
1 , . . . , X♯ i

n) ⊑♯ X♯ i
k

X♯ i
k ▽♯ F ♯

k(X
♯ i
1 , . . . , X♯ i

n) otherwise if k ∈ W

X♯ i
k ∪♯ F ♯

k(X
♯ i
1 , . . . , X♯ i

n) otherwise

„

An important notion is that of dependency graph, which is a directed graph with nodes
in L and an arc between nodes i and j whenever F ♯

j actually depends upon X♯
i . Cycles in

the dependency graph incur feed-back, and so, special conditions must be ensured to get
the convergence of the abstract computation, i.e., each cycle must be broken by a widening
application ▽♯. On other nodes, it is safe to use any abstraction ∪♯ of the concrete lub
operator ⊔♭ instead. We have the following theorem:

Theorem 2.2.9. Chaotic iterations with widening.

If each dependency cycle between the F ♯
i has a node in W, (Li)i∈N is a fair sequence,

and (γ(X♯ 0
0), . . . , γ(X♯ 0

n)) is a pre-fixpoint for F ♭, then the chaotic iterations converge in
finite time towards an over-approximation of the least solution of the concrete equation
system larger than (γ(X♯ 0

0), . . . , γ(X♯ 0
n)).

„

Proof. See [Cou78, § 4.1.2.0.6]. ”

The precise choice of W and (Li)i∈N is a parameter of the analysis that influences both
the convergence speed and the precision of the obtained result. Note that the chaotic
iteration scheme is much more flexible than plain iterations with widening presented in
Thm. 2.2.7 that would require the use of a global widening on L → D

♭ as well as the
complete recomputation of all components of F ♭ at each iteration step. The choice of the
W and (Li)i∈N parameters has been extensively studied by Bourdoncle in [Bou93b].

It is also possible to perform decreasing iterations with narrowing to refine the computed
abstract solution. As for the widening sequence, the narrowing operator △♯ needs only to be

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.2 – Abstract Interpretation Primer 19

applied at selected points that break equation dependencies and, elsewhere, we can safely
use any abstraction ∩♯ of the concrete glb ⊓♭ instead.

Definition 2.2.6. Chaotic iterations with narrowing.

Y ♯ i+1
k

def

=

Y ♯ i
k if k 6= Li

Y ♯ i
k △♯ F ♯

k(Y
♯ i
1 , . . . , Y ♯ i

n) otherwise if k ∈ W

Y ♯ i
k ∩♯ F ♯

k(Y
♯ i
1 , . . . , Y ♯ i

n) otherwise

„

Theorem 2.2.10. Chaotic iterations with narrowing.

If each dependency cycle between the F ♯
i has a node in W, (Li)i∈N is a fair sequence,

and (Y ♯ 0
0 , . . . , Y ♯ 0

n) is an abstraction of a solution of the concrete equation system, then
the chaotic iterations converge in finite time towards a better abstraction of the same
concrete solution.

„

Proof. See [Cou78, § 4.1.2.0.17]. ”

2.2.6 Reduced Product

Given a concrete domain D
♭ and two abstract domains D

♯
1 and D

♯
2 linked to D

♭ through
monotonic concretisations γ1 : D

♯
1 → D

♭ and γ2 : D
♯
2 → D

♭, we can consider the product
domain D

♯
1 × D

♯
2, ordered by the component-wise comparison ⊑♯

1×2 defined by:

(X♯
1, X

♯
2) ⊑

♯
1×2 (Y ♯

1 , Y ♯
2)

def

⇐⇒ X♯
1 ⊑

♯
1 Y ♯

1 and X♯
2 ⊑

♯
2 Y ♯

2

and with concretisation γ1×2 defined by:

γ1×2(X
♯
1, X

♯
2)

def

= γ1(X
♯
1) ⊓

♭ γ2(X
♯
2)

which is obviously monotonic for ⊑♯
1×2.

Abstracting Operators. If F ♯
1 and F ♯

2 are sound abstractions in D
♯
1 and D

♯
2 for an

operator F ♭ in D
♭, then the product operator F ♯

1×2 defined component-wise by:

F ♯
1×2(X

♯
1, X

♯
2)

def
= (F ♯

1(X
♯
1), F

♯
2(X

♯
2))

is a sound abstraction for F ♭ in D
♯
1 × D

♯
2 and, if both F ♯

1 and F ♯
2 are exact, then it is also

exact.

Antoine Miné Weakly Relational Numerical Abstract Domains

20 Chapter 2: Abstract Interpretation of Numerical Properties

We now suppose that we have (partial) Galois connections D
♭
−−−→←−−−

α1

γ1

D
♯
1 and D

♭
−−−→←−−−

α2

γ2

D
♯
2 that allow defining a concept of best abstraction. Then the function α1×2 defined

component-wise by:

α1×2(X)
def

= (α1(X), α2(X))

allows forming a Galois connection D
♭
−−−−−→←−−−−−

α1×2

γ1×2

D
♯
1×2. The function ρ

def
= α1×2 ◦ γ1×2 that

computes the best representation of an abstract pair is of particular interest as it allows
propagating information between the two abstract domains to refine both abstract elements
at once. If (Y ♯

1 , Y ♯
2) = ρ(X♯

1, X
♯
2), we can have γ1(Y

♯
1) ⊏♭ γ1(X

♯
1) or γ2(Y

♯
2) ⊏♭ γ2(X

♯
2) or

even both. We call ρ a reduction; it is a lower closure operator in D
♯
1×2. An application of

the reduction is to replace F ♯
1×2 with G♯

1×2
def
= ρ ◦ F ♯

1×2 ◦ ρ. G♯
1×2 may not be as precise as

the best abstraction for F in D
♯
1×2 — even if F ♯

1 and F ♯
2 are best abstractions — but it is

more precise than F ♯
1×2.

Partial Reductions. Sometimes, ρ is not easily computable, or does not exist due to the
lack of proper abstraction functions. Still, we can use the idea of applying some reduction
ρ′ after each abstract operator application F ♯

1×2 in D
♯
1 × D

♯
2: F ♯

1×2 operates independently
on its two components while ρ′ propagates information between them. Any ρ′ such that if
(Y ♯

1 , Y ♯
2) = ρ′(X♯

1, X
♯
2) then Y ♯

1 ⊑♯
1 X♯

1, Y ♯
2 ⊑♯

2 X♯
2 but γ1(Y

♯
1) ⊓♭ γ2(Y

♯
2) = γ1(X

♯
1) ⊓

♭ γ2(X
♯
2)

will do. Such an operator will be called a partial reduction because it may not transfer
all available information between the two abstract domains, but is a compromise between
precision and cost. The benefit of the partially reduced product of abstract domains is that
no abstract transfer function needs to be redefined: all existing transfer functions on the
base domains can be reused and it is sufficient to define a single partial reduction function
ρ′ to be assured to get more precise results than separate analyses on D

♯
1 and D

♯
2.

Extrapolation Operators. Suppose that one — or both — base abstract domain has
strictly increasing infinite chains, then so does the product domain D

♯
1 × D

♯
2 and we

need to define a widening. An acceptable widening ▽1×2 can be constructed by apply-
ing, component-wise, ▽1 on the D

♯
1 component and ▽2 on the D

♯
2 component — if D

♯
1 or D

♯
2

has no strictly infinite increasing chain and no widening, we can use any union abstraction
∪♯

i instead. An important remark is that it is dangerous to apply our partial reduction ρ′

to the iterates: only the sequence X i+1 def

= X i ▽1×2 Y i is guaranteed to converge and the
sequence X i+1 def

= ρ′(X i) ▽1×2 Y i may not. One solution is not to apply any reduction at
all on the widened iterates X i. Another solution is to define a new widening directly on
D

♯
1 × D

♯
2; we are then free to introduce any reduction technique internally as long as we

prove that widened sequences converge. A narrowing on D
♯
1 × D

♯
2 can also be defined the

same way.

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.3 – The Simple Language 21

2.2.7 Related Work in Abstract Interpretation Theory

Other Presentations of Abstract Interpretation. In this thesis, we have chosen a
presentation of Abstract Interpretation based on (partial) Galois connections, but other
equivalent presentations exist that are based on Moore families or upper closure operators.
Also, in some cases, it is possible to define a computational order for fixpoint iterations
that is distinct from the abstract partial order ⊑♯ used in the Galois connection (so-called
approximation order). Finally, some frameworks are weak enough to accommodate for the
existence of preorders instead of partial orders in the concrete and abstract domains. A
comprehensive description of these frameworks, from the weakest to the strongest, can be
found in [CC92b]. However, no framework is presented to allow the automatic derivation
— or even the existence — of best operator abstractions unless there is a Galois connection,
which motivated the introduction of partial Galois connections in this thesis.

Other Static Analysis Frameworks. There exists many different frameworks for static
analysis, such as, data-flow analysis [MJ81], model-checking [CGP00], predicate transform-
ers [Man92], typing [Car97], set-constraint-based analysis [Rey69], to cite only a few. It
seems that all of them can be formalised in terms of Abstract Interpretation, meaning that
the concepts presented in this thesis might be applicable to these frameworks, or, at least,
be used in combination with analyses developed in these frameworks.

2.3 The Simple Language

We now present a small language, called Simple, that will be used to exemplify our work in
the following four chapters. It is a simple procedure-less, pointer-less sequential language
with only statically allocated variables and no recursion. There is also only one data-type:
scalar numbers in I, where I may be chosen to be the set of integers Z, rationals Q, or reals
R. As I is at least countable and the language contains loops, it is Turing-complete, and
so, no interesting property is decidable by Rice’s theorem [Ric53].

2.3.1 Language Syntax

The syntax of our language is depicted in Fig 2.1. A program is simply an instruction
block, that is, a semi-colon ; separated list of instructions. Each instruction in the block is
preceded and followed by a unique syntactic label denoted by a circled number ① · · · ⑩ ∈ L.
The instruction set comprises assignments ←, if conditionals, and while loops. Note that
loops have an extra syntactic label ❶ · · · ❿ ∈ L between the while keyword and the boolean
condition; it is reached upon entering the loop and after each loop iteration, just before
the boolean condition is tested. To lighten the notations in our code examples, we will not
always put all syntactic labels, but only those of interest.

Antoine Miné Weakly Relational Numerical Abstract Domains

22 Chapter 2: Abstract Interpretation of Numerical Properties

expr ::= X X ∈ V
| [a, b] a ∈ I ∪ {−∞}, b ∈ I ∪ {+∞}, a ≤ b
| ¨ expr
| expr ¦ expr ¦ ∈ {´,¨,ˆ, ˜}

test ::= expr ⊲⊳ expr ⊲⊳ ∈ {˛,¸,ˇ,¯}
| not test
| test and test
| test or test

inst ::= X ← expr X ∈ V
| if test { block } else { block }

| while ❶ test { block } ❶ ∈ L

block ::= ① inst ; ② · · · inst ⑩ ① · · · ⑩ ∈ L

L is a finite set of labels.
V is a finite set of variables.
I is either Z, Q, or R.

Figure 2.1: Syntax of a Simple program.

Numerical expressions expr contain variables X, constants [a, b], and the classical arith-
metic operators ´, ¨, ˆ, and ˜. Note that constants are in fact intervals with constant —
possibly infinite — bounds and denote a new random choice of a number in the interval
each time the expression is evaluated. This provides a useful notion of non-determinism
without much notation burden; it will be most helpful in Chap. 7 to model rounding
errors when considering programs that compute using floating-point numbers. Classical
constants are a special case of interval and we will often denote by c the interval [c, c],
c ∈ I. All intervals are non-strict: each bound is included in the interval, except when
the bound is infinite. We will say that an expression is interval linear if it has the form
[a, b] ´ ([a1, b1] ˆX1) ´ · · · ´ ([am, bm] ˆXm) and linear if it is interval linear and all co-
efficients are singletons: a = b and, for every i, ai = bi. Finally, it will be said that the
expression is quasi-linear if all but the constant coefficient [a, b] are singletons, that is, for
every i, ai = bi. Note that, due to the associativity of the semantics of the ´ operator, we
do not need to explicitly specify an evaluation order using extra parentheses.

Conditionals and loops use boolean expressions test that can be constructed by compar-
ing two numerical expressions and using the boolean not, and, and or operators. Note that

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.3 – The Simple Language 23

J expr K : (V → I) → P(I)

J X Kρ def
= { ρ(X) }

J [a, b] Kρ def
= { x ∈ I | a ≤ x ≤ b }

J¨expr Kρ def
= { −x | x ∈ J expr Kρ }

J expr 1 ¦ expr 2 Kρ def

= { x ¦ y | x ∈ J expr 1 Kρ, y ∈ J expr 2 Kρ } ¦ ∈ {´,¨,ˆ}
J expr 1 ˜ expr 2 Kρ def

= { adj (x/y) | x ∈ J expr 1 Kρ, y ∈ J expr 2 Kρ, y 6= 0 }

where adj : R → I is defined as follows:

adj (x)
def
=

max { y ∈ Z | y ≤ x } if I = Z and x ≥ 0
min { y ∈ Z | y ≥ x } if I = Z and x ≤ 0
x if I 6= Z

Figure 2.2: Semantics of numerical expressions.

the greater than operators ˘ and ˙ would be redundant, and so, they are not present in
the syntax. Also note that all syntactic arithmetic and comparison operators are denoted
by bold symbols to differentiate them from the corresponding mathematical operators on
numbers.

For a given program, we denote by L the finite set of its labels and by V the finite set
of its variables.

2.3.2 Concrete Semantics

The concrete semantics of a program will be the most precise mathematical expression of
its behavior. All the other semantics we will derive for the same program, including the
result of computable static analyses, will be abstractions of this most concrete semantics,
linked to it by a succession of partial Galois connections. This means, in particular, that
all these semantics will be correct only with respect to the concrete semantics presented
here.

Numerical Expression Semantics. We call concrete environment any function ρ :
V → I mapping each program variable to its actual value. The semantics of a numerical
expression expr is a function J expr K that maps an environment ρ to the set, in P(I), of
all possible values computed by the expression in the given environment. It is presented in
Fig. 2.2. This set may contain several elements because of the non-determinism embedded
in expressions. Note that divisions by zero are undefined, that is, return no result. When
the divisor or the dividend is negative, the result of the division is obtained using the

Antoine Miné Weakly Relational Numerical Abstract Domains

24 Chapter 2: Abstract Interpretation of Numerical Properties

J test K : (V → I) → P({T,F})

J expr 1 ⊲⊳ expr 2 Kρ def
= { T if ∃v1 ∈ J expr 1 Kρ, v2 ∈ J expr 2 Kρ, v1 ⊲⊳ v2 } ∪

{ F if ∃v1 ∈ J expr 1 Kρ, v2 ∈ J expr 2 Kρ, v1 6⊲⊳ v2 }
⊲⊳ ∈ {˛,¸,ˇ,¯}

J test1 and test2 Kρ def

= { t1 ∧ t2 | t1 ∈ J test1 Kρ, t2 ∈ J test2 Kρ }

J test1 or test2 Kρ def

= { t1 ∨ t2 | t1 ∈ J test1 Kρ, t2 ∈ J test2 Kρ }

J not test Kρ def
= { ¬t | t ∈ J test Kρ }

Figure 2.3: Semantics of boolean expressions.

{| · |} : P(V → I) → P(V → I)

{|X ← expr |}R
def
= { ρ[X 7→ v] | ρ ∈ R, v ∈ J expr Kρ }

{|X → expr |}R
def
= { ρ | ∃v ∈ J expr Kρ, ρ[X 7→ v] ∈ R }

{| test ? |}R
def

= { ρ | ρ ∈ R, T ∈ J test Kρ }

Figure 2.4: Transfer functions.

“rule of signs”: (−a)/b = a/(−b) = −(a/b) and (−a)/(−b) = a/b. Also, when I = Z, the
adj function rounds the possibly non-integer result of the division towards an integer by
truncation, as it is common in computer languages — such as the C programming language.
Because of undefined results, J expr Kρ may be empty.

Boolean Expression Semantics. The semantics of tests and boolean expressions is
similar to the semantics of numerical expressions, except that instead of a set of numbers,
it outputs a set of boolean values in B

def

= {T,F}. It is described in Fig. 2.3. In B, T
means “true”, F means “false”, and we define the operators ∧, ∨, and ¬ to be respectively
the boolean “and”, “or”, and “not” operators.

Transfer Functions. The two basic instructions in our programming language are as-
signments and tests. To this, we add a backward assignment that is not used directly in
our concrete semantics but can be quite useful once abstracted: one classical application is
to refine a static analysis by performing combined forward and backward passes [CC92a,
§ 6]; another one is to backtrack from a user-specified program behavior to its origin, such

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.3 – The Simple Language 25

as in Bourdoncle’s abstract debugging [Bou93a]. The semantics of our three instructions
is defined by transfer functions that map sets of environments to sets of environments.
They are presented in Fig. 2.4: assignment transfer functions {|X ← expr |} return environ-
ments where one variable has changed its value, backward assignments transfer functions
{|X → expr |} return the set of environments that can lead to the specified set of environ-
ments by an assignment, and test transfer functions {| test ? |} filter out environments that
do not verify a boolean expression. These definitions deserve a few remarks:

› {| not (test) ? |}R ⊆ R\{| test ? |}R but these sets may not be equal because the former
does not contain environments that lead to undefined expressions, while the later may
contain some of them.

› The transfer function for a backward assignment is simply the inverse relation of that
of the corresponding forward assignment. We will say that an assignment X ← expr is
invertible if and only if there exists some expression expr ′ such that {|X → expr ′ |} =
{|X ← expr |}, which intuitively means that the value of X is not irremediably lost
by the assignment. For instance, X ← X ´ 1 is invertible while X ← Y is not.

› These transfer functions are complete ∪−morphisms (because the expression seman-
tics J · K is), and so, are monotonic.

Transition System. We present the semantics of our programming language by the
mean of a transition system, that is, a relation → between states, as it is customary in
the operational semantics world. A state of the program is a pair (label,environment) in
S

def
= L × (V → I). The transition system →∈ S × S is defined using our transfer

functions by the rule system pictured in Fig. 2.5. It embeds the effect of elementary
program actions on states. In effect, this definition simply adds control flow information,
while the semantics of environments is fully embedded within transfer functions. Also, we
define the initial states I to be the states with arbitrary environment, but as label the first
label ① ∈ L of the program: I

def
= { (① , ρ) | ρ ∈ (V → I) }.

Reachability Semantics. Given a program, we seek to find out the possible values of
all variables at each program point and disregard other information. This is a reachability
problem with respect to the initial state set I and the transition relation →. Our concrete
semantic domain is the complete lattice of the powerset of states: D

c def
= (P(L × (V →

I)), ⊆, ∪, ∩, ∅, L × (V → I)). The concrete semantics is defined by:

lfp F c where F c(S)
def

= I ∪ { s′ | ∃s ∈ S, s → s′ } .

Antoine Miné Weakly Relational Numerical Abstract Domains

26 Chapter 2: Abstract Interpretation of Numerical Properties

① X ← expr ② ρ′ ∈ {|X ← expr |}{ρ}

(① , ρ) → (② , ρ′)

① if test { ② · · · ③ } else { ④ · · · ⑤ } ⑥ ρ′ ∈ {| test ? |}{ρ}

(① , ρ) → (② , ρ′)

① if test { ② · · · ③ } else { ④ · · · ⑤ } ⑥ ρ′ ∈ {| (not test) ? |}{ρ}

(① , ρ) → (④ , ρ′)

① if test { ② · · · ③ } else { ④ · · · ⑤ } ⑥

(③ , ρ) → (⑥ , ρ) (⑤ , ρ) → (⑥ , ρ)

① while ❷ test { ③ · · · ④ } ⑤

(① , ρ) → (❷ , ρ) (④ , ρ) → (❷ , ρ)

① while ❷ test { ③ · · · ④ } ⑤ ρ′ ∈ {| test ? |}{ρ}

(❷ , ρ) → (③ , ρ′)

① while ❷ test { ③ · · · ④ } ⑤ ρ′ ∈ {| (not test) ? |}{ρ}

(❷ , ρ) → (⑤ , ρ′)

Figure 2.5: Small-step transition system → of a Simple program.

Equation System. Note that D
c is isomorphic to the point-wise lifting to L of the

powerset of environments: D
c ≈ D

c′ def

= (L → P(V → I), ∪̇, ∩̇, λl.∅, λl.(V → I)). In
this form, it becomes apparent that our concrete semantics is a flow-sensitive invariant
semantics : to each program point it associates the strongest property of states that is
verified each time the control flow of the program reaches this particular program point.
Also, it allows rewriting the semantics lfp F c as an equation system in (Xl)l∈L, derived from
the syntax of a program as presented in Fig. 2.6. If we consider the vector (X0

l)l∈L such
that X0

① = P(V → I) for the first label ① of the program and X0
l = ∅ for all other labels

l ∈ L, then the system has a unique least solution greater than (X0
l)l∈L and it corresponds

exactly to lfp F c: each Xl in the solution is the strongest invariant holding at program
point l. Note that the equation system is cyclic due to the while construct. We will now
work on the equation system and compute solution abstractions using the chaotic iteration
scheme of Sect. 2.2.5.

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.3 – The Simple Language 27

① V ← expr ②

X② = {|V ← expr |}X①

① if (test) { ② · · · ③ } else { ④ · · · ⑤ } ⑥

X② = {| test ? |}X①

X④ = {| (not test) ? |}X①

X⑥ = X③ ∪ X⑤

① while ❷ (test) { ③ · · · ④ } ⑤

X③ = {| test ? |}X❷

X⑤ = {| (not test) ? |}X❷

X❷ = X① ∪ X④

Figure 2.6: Equation system equivalent to the semantics of Fig. 2.5.

A Note About Errors. Note that a state may have no successor by →, meaning that
the program halts. This is the case, for instance, if the program reaches its last label, in
which case the program successfully terminates. However, a statement involving a division
by zero also halts the program. For the sake of simplicity, we have not introduced any error
state so there is no distinction between correct program termination and run-time errors.

Discussion. Many kinds of semantics have been designed to discuss about program prop-
erties, some of which are more precise than the reachability semantics proposed here. For
instance, in [Cou02], Cousot starts from a trace semantics and constructs the reachability
semantics by abstracting the trace semantics. A trace semantics would allow us to discuss
about many other properties, such as liveness properties, but it is not our purpose here. One
can always imagine even more precise semantics (that allow discussing about the timing,
energy consumption, or security aspects of a program, for instance). A reachability seman-
tics is sufficient to describe invariants accurately; also, it is concise and intuitive enough to
be proposed directly without the bother of deriving it from a lower-level semantics.

2.3.3 A Note on Missing Features

Our Simple language has been carefully chosen to demonstrate fully the analysis of nu-
merical properties of variables and to compare easily existing and new numerical abstract
domains, while simplifying the presentation by not considering other aspects of program-
ming languages. Most of the extra features needed for the analysis of real-life program-
ming languages, such as procedures, recursion, dynamic memory allocation, complex data-

Antoine Miné Weakly Relational Numerical Abstract Domains

28 Chapter 2: Abstract Interpretation of Numerical Properties

structures, and parallelism are quite orthogonal to the way we analyse numerical properties
of variables. They will not be discussed in this thesis. However, one important feature of
real-life programs that will be discussed in much details is that they do not manipulate
perfect integers, reals, and rationals, but imperfect machine-integers and floating-point
numbers with limited range and precision. From now on, and up to Chap. 6, included, we
will discuss the abstraction of perfect numbers while Chap. 7 will be entirely devoted to
adapting our techniques to machine-integers and floating-point numbers.

2.4 Discovering Properties of Numerical Variables

We now turn to the design of a static analyser for the automatic discovery of the numerical
properties of program variables in our Simple language. As this problem is not decidable,
we seek decidable approximations that are sound with respect to the concrete semantics
proposed earlier, using the Abstract Interpretation framework.

2.4.1 Numerical Abstract Domains

In order to compute semantic over-approximations, we need a computer-representable ab-
stract version of the concrete domain D

c and computable abstractions of the semantic
functions we used in the previous section. A numerical abstract domain will be defined by
a choice, for every finite variable set V , of:

Definition 2.4.1. Numerical abstract domain.

1. a set D
♯ whose elements are computer-representable,

2. a partial order ⊑♯ on D
♯ together with an effective algorithm to compare abstract

elements,

3. a partial Galois connection P(V 7→ I) −−−→←−−−
α

γ
D

♯,

4. a smallest ⊥♯ and greatest elements ⊤♯ such that γ(⊥♯) = ∅ and γ(⊤♯) = (V 7→ I),

5. effective algorithms to compute sound abstractions {|X ← expr |}♯, {|X → expr |}♯,
and {| expr ⊲⊳ expr ? |}♯ of our transfer functions,

6. effective algorithms to compute sound abstractions ∪♯ and ∩♯ of ∪ and ∩,

7. effective widening algorithms ▽♯, if D
♯ has strictly increasing infinite chains,

8. effective narrowing algorithms △♯, if D
♯ has strictly decreasing infinite chains.

„

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.4 – Discovering Properties of Numerical Variables 29

Whenever possible and practicable, we would like the operator abstractions to be best
abstractions, that is, when best abstractions exist, are computable, and also not too costly.

Note that whenever D
♯ has a lattice structure, we can choose ∪♯ to be ⊔♯, but this is

not mandatory. For instance, if ⊔♯ is costly to compute, it is worth defining a custom ∪♯

operator with an adequate cost versus precision trade-off. The converse may also be true:
we will see in the next chapter an abstract domain featuring a ∪♯ operator that is more
costly but also more precise than ⊔♯ to abstract the union ∪. Often γ is a — possibly
non-complete — ⊓−morphism; in that case, we can define ∩♯ to be ⊓♯ and this intersection
abstraction is exact.

2.4.2 Abstract Interpretor

An effective static analyser is obtained by applying the chaotic iterations of Sect. 2.2.5.
The concrete transfer functions and ∪ operators are simply replaced with their abstract
versions, and we start the chaotic iteration from the abstract environment (X♯ 0

l)l∈L such
that X♯ 0

① = ⊤♯ for the first label ① of the program and X♯ 0
l = ⊥♯ for all other labels. The

only loops in the dependency graph of the equation system of Fig. 2.6 are due to the while
operators. As set of widening points W to break the dependency cycles, we take all the
special labels ❶ · · · ❿ ∈ L introduced between each while keyword and the subsequent loop
condition. It is a sufficient set of widening points as, if we remove the dependency edges
④ → ❷ — using the loop labelling of Fig. 2.6 — for all loops, we get a directed acyclic
sub-graph. Following Bourdoncle in [Bou93b], we choose, as iteration ordering (Li)i∈N, any
topological order in this acyclic dependency sub-graph and try to stabilise the innermost
loops first, in a “recursive” way.

This construction is reminiscent from the abstract interpretor presented by Cousot and
Cousot as early as in 1976 [CC76], except that the interval domain is replaced with an
arbitrary numerical abstract domain. A modern, detailed, and modular presentation of
such an abstract interpretor can be found in [Cou99].

Non-Atomic Tests. In the design of numerical abstract domains we only require an
abstract transfer function for atomic tests, that is, tests of the form (expr ⊲⊳ expr ?),
⊲⊳ ∈ {˛,¸,ˇ,¯}, however, the analysed program may use more complex tests. We now
fill this gap by proposing an abstract domain independent way to synthesise such transfer
functions. A first step is to transform our test into an equivalent test that does not use the
negation not operator. This is done by “pushing” the not operators into the and and or

operators using the De-Morgan laws and reversing the comparison operators:

Antoine Miné Weakly Relational Numerical Abstract Domains

30 Chapter 2: Abstract Interpretation of Numerical Properties

not(test1 and test2) → (not test1) or (not test2)
not(test1 or test2) → (not test1) and (not test2)
not(not test) → test
not(expr 1 ¯ expr 2) → expr 2 ˇ expr 1

not(expr 1 ˇ expr 2) → expr 2 ¯ expr 1

not(expr 1 ˛ expr 2) → expr 1 ¸ expr 2

not(expr 1 ¸ expr 2) → expr 1 ˛ expr 2

Then, the transfer function for this not-free test is computed by structural induction
using the already available ∪♯ and ∩♯ operators, and {| expr ⊲⊳ expr ? |}♯ for the base case:

{| (test1 and test2) ? |}♯X♯ def

= {| test1 ? |}♯X♯ ∩♯ {| test2 ? |}♯X♯

{| (test1 or test2) ? |}♯X♯ def

= {| test1 ? |}♯X♯ ∪♯ {| test2 ? |}♯X♯

Backward Assignment Transfer Function Usage. For the sake of conciseness, we do
not detail here how the backward assignment transfer functions can be used in an abstract
interpretor to refine its result or focus the analysis on user-supplied properties, and instead
refer the reader to [CC92a, Bou93a]. Yet, we will take care to include a backward assignment
abstract transfer function with the numerical abstract domains introduced in this thesis so
that the interested reader can plug them into backward-aware abstract interpretors.

2.4.3 Fall-Back Transfer Functions

Sometimes, too few transfer functions are provided for an abstract domain with respect
to the analysed language constructs. For instance, the polyhedron domain presented in
[CH78], including its recent implementations [Jea, PPL], only focuses on transfer functions
for linear expressions with singleton coefficients, while our language allows non-linear ex-
pressions and interval coefficients. Provided an abstract forget operator is defined, it is
always possible to complete the definition using the generic fall-back transfer functions and
operators presented here. These are very coarse, but also quite fast.

Abstracting Assignments. Let us define the additional forget transfer function the
following way:

{|X ← ? |}R
def
= { ρ[X 7→ v] | ρ ∈ R, v ∈ I } .

It can be equivalently defined in a “backwards” way as:

{|X ← ? |}R
def
= { ρ | ∃v ∈ I, ρ[X 7→ v] ∈ R } .

If a sound counterpart {|X ← ? |}♯ for {|X ← ? |} is given, then we can define coarse
generic assignment and backward assignment transfer functions as follows:

{|X ← expr |}♯ def

= {|X ← ? |}♯

{|X → expr |}♯ def
= {|X ← ? |}♯

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.4 – Discovering Properties of Numerical Variables 31

Note that, in very last resort, {|X ← ? |}♯X♯ can be defined to be ⊤♯.

Abstracting Tests. As {| test ? |}R ⊆ R, the identity {| test ? |}♯X♯ def
= X♯ is always a

sound abstraction for tests.

Abstracting Unions and Intersections. Finally, a sound choice for ∪♯ is to always
return ⊤♯ while a sound choice for ∩♯ is to return either argument.

Another solution is to perform the missing abstract transfer function or operator in an
alternate abstract domain which implements it. In this case, we also need sound conversion
operators — possibly incurring a loss of precision — between the two abstract domains.

2.4.4 Non-Relational Abstract Domains

A non-relational domain is an abstract domain that abstracts each variable independently,
and so, is not able to discover relationships between variables. We present here a systematic
way to construct non-relational numerical abstract domains from smaller bricks that is
greatly inspired from Cousot’s design of a generic abstract interpretor in [Cou99]. Not
only will it simplify the presentation of subsequent non-relational domains — such as the
interval domain of Sect. 2.4.6 — but it will also pave the way towards a similar parametric
construct for a new class of relational domains, introduced in Chap. 5. The basic building
brick is a non-relational basis that expresses how to abstract one variable and has abstract
counterparts for arithmetic operators instead of abstract counterparts for complex transfer
functions.

Definition 2.4.2. Non-relational basis.

1. A basis is a poset (B,⊑♯
B
) together with

2. a partial Galois connection (P(I),⊆) −−−−→←−−−−
αB

γB

(B,⊑♯
B
), and

3. a least ⊥♯
B

and greatest element ⊤♯
B

such that γB(⊥♯
B
) = ∅ and γB(⊤♯

B
) = I, and

4. algorithms to compute sound abstractions of ∪♯
B

and ∩♯
B

of ∪ and ∩, and

5. algorithms to compute sound (forward) abstractions of all the arithmetics operators:

[a, b]♯ ∈ B such that γB([a, b]♯) ⊇ [a, b]

¨♯ : B → B such that γB(¨♯X♯) ⊇ { −x | x ∈ γ(X♯) }

¦
♯ : B

2 → B such that γB(X♯
¦

♯ Y ♯) ⊇ { x ¦ y | x ∈ γ(X♯), y ∈ γ(Y ♯) }
¦ ∈ {´,¨,ˆ, ˜}

Antoine Miné Weakly Relational Numerical Abstract Domains

32 Chapter 2: Abstract Interpretation of Numerical Properties

6. algorithms to compute sound backward abstractions of all the arithmetics operators
that, given some arguments and a target result, try to refine all the arguments while
keeping the coverage of the result:

←−
¨ ♯ : B

2 → B such that

γB(X♯) ⊇ γB(
←−
¨ ♯(X♯, R♯)) ⊇ { x ∈ γB(X♯) | − x ∈ γB(R♯) }

←−
¦

♯ : B
3 → B

2 such that
(U ♯, V ♯) = ←−

¦
♯(X♯, Y ♯, R♯) =⇒

γB(X♯) ⊇ γB(U ♯) ⊇ { x ∈ γB(X♯) | ∃y ∈ γB(Y ♯), x ¦ y ∈ γB(R♯) }
γB(Y ♯) ⊇ γB(V ♯) ⊇ { y ∈ γB(Y ♯) | ∃x ∈ γB(X♯), x ¦ y ∈ γB(R♯) }

¦ ∈ {´,¨,ˆ, ˜}

7. algorithms to compute sound backward abstractions for the comparison operators that,
given two arguments, refine their value by supposing that the comparison is true:

←−
⊲⊳

♯ : B
2 → B

2 such that
(U ♯, V ♯) = ←−

⊲⊳
♯(X♯, Y ♯) =⇒

γB(X♯) ⊇ γB(U ♯) ⊇ { x ∈ γB(X♯) | ∃y ∈ γB(Y ♯), x ⊲⊳ y }
γB(Y ♯) ⊇ γB(V ♯) ⊇ { y ∈ γB(Y ♯) | ∃x ∈ γB(X♯), x ⊲⊳ y }

⊲⊳ ∈ {˛,¸,ˇ,¯}

8. algorithms to compute widenings ▽
♯
B

(resp. narrowings △
♯
B
) if B contains strictly

increasing (resp. decreasing) infinite chains.
„

Thanks to a (partial) Galois connection, it may be possible to derive best forward and
backward abstractions mechanically — for this matter, each backward abstraction of a
binary operator may be considered as two distinct abstract operators in B, each output
being optimised independently from the other one.

Domain Lifting. The non-relational domain D
♯ derived from the basis B is the point-

wise lifting of B to V : D
♯ def

= V → B. Thus, if B is a cpo, lattice, or complete lattice, so
is D

♯. The partial Galois connection P(V → I) −−→←−−
α

γ
D

♯ is derived from the basis partial
Galois connection as follows:

γ(R♯)
def
= { ρ ∈ (V → I) | ∀X ∈ V , ρ(X) ∈ γB(R♯(X)) }

α(R)
def
= λX.αB({ ρ(X) | ρ ∈ R })

Fall-Back Operators. Any forward operator can be soundly — but poorly — abstracted
by an operator always returning ⊤♯

B
, if we are not interested in the precise analysis of

expressions using this operator. Likewise, backward operators can be soundly abstracted

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.4 – Discovering Properties of Numerical Variables 33

J expr K♯ : (V → B) → B

JV K♯X♯ def
= X♯(V) V ∈ V

J [a, b] K♯X♯ def
= [a, b]♯

J¨expr K♯X♯ def
= ¨♯(J expr K♯X♯)

J expr 1 ¦ expr 2 K♯X♯ def

= (J expr 1 K♯X♯) ¦
♯ (J expr 2 K♯X♯) ¦ ∈ {´,¨,ˆ, ˜}

Figure 2.7: Non-relational abstract semantics of numerical expressions.

by returning their arguments unchanged, that is, performing no refinement at all. Finally,
∪♯

B
can be abstracted by ⊤♯

B
, while ∩♯

B
can be abstracted by returning any of its arguments.

There is, however, a simple way to derive rather precise backward arithmetic operators from
the forward ones, as follows:

›
←−
¨ ♯(X♯, R♯)

def
= X♯ ∩♯

B
(¨♯R♯)

›
←−
´ ♯(X♯, Y ♯, R♯)

def

= (X♯ ∩♯
B

(R♯ ¨♯ Y ♯), Y ♯ ∩♯
B

(R♯ ¨♯ X♯))

›
←−
¨ ♯(X♯, Y ♯, R♯)

def
= (X♯ ∩♯

B
(Y ♯ ´♯ R♯), Y ♯ ∩♯

B
(X♯ ¨♯ R♯))

›
←−
ˆ ♯(X♯, Y ♯, R♯)

def
= (X♯ ∩♯

B
(R♯ ˜♯ Y ♯), Y ♯ ∩♯

B
(R♯ ˜♯ X♯))

›
←−
˜ ♯(X♯, Y ♯, R♯)

def

= (X♯ ∩♯
B

(Y ♯ ˆ♯ adj ♯(R♯)), Y ♯ ∩♯
B

((X♯ ˜♯ adj ♯(R♯)) ∪♯
B

[0, 0]♯))

where adj ♯(X♯)
def

=

{

X♯ ´♯ [−1, 1]♯ if I = Z

X♯ if I 6= Z

The division is a bit complex. First, as divisions by zero are silently ignored, the
refinement of the dividend must contain 0 whenever Y ♯ contains it. Then, because of the
truncation adj when I = Z, ρ(R) ∈ JX ˜Y Kρ does not implies ρ(X) ∈ JRˆY Kρ. However,
we do have ρ(X) ∈ J (R ´ [−1, 1]) ˆ Y Kρ, and so, we use the adj ♯ function to add a ±1
correction term to R♯ in the abstract.

Abstract Operators and Transfer Functions on D
♯. On D

♯, the definitions of ⊑♯,
∩♯, ∪♯, ▽♯, △♯, ⊥♯, and ⊤♯ are derived by lifting point-wisely those on B, which also provides
us with effective algorithms.

Using the forward abstract arithmetic operators, we can derive the abstract semantics
J expr K♯X♯ of an expression expr by structural induction, as presented in Fig. 2.7. It bears
a striking resemblance to the concrete semantics of expressions of Fig. 2.2. The forward
abstract assignment is then simply defined by: {|V ← expr |}♯X♯ def

= X♯ [V 7→ J expr K♯X♯].

Antoine Miné Weakly Relational Numerical Abstract Domains

34 Chapter 2: Abstract Interpretation of Numerical Properties

¯

¡¡
¡¡

¡¡
¡

<<
<<

<<
<

´
[2, 20]

¥¥
¥¥

¥¥
¥

::
::

::
:

Z
[3, 5]

KS

X
[0, 10]

Y
[2, 10]

®¶

¯

¤¤
¤¤

¤¤
¤

;;
;;

;;
;

´
[2, 5]

¨̈
¨̈

¨̈
¨

77
77

77
7

Z
[3, 5]

X
[0,3]

Y
[2,5]

Figure 2.8: Non-relational abstraction for the test X´Y ¯Z, exemplified on the interval
abstract domain (see Sect. 2.4.6). The intervals for X and Y , respectively [0, 10] and
[2, 10], are refined to [0, 3] and [2, 5].

Abstracting a test (expr 1 ⊲⊳ expr 2 ?), ⊲⊳ ∈ {˛,¸,ˇ,¯}, is a little more complex. We
must first evaluate expr 1 and expr 2 by induction, as for the forward assignment, but also
remember for each expression node the evaluation of the corresponding sub-expression.
When fed with the abstract values J expr 1 K♯X♯ and J expr 2 K♯X♯, the backward test ←−

⊲⊳
♯

operator returns refined values by taking test filtering into account. These new values
should then be propagated back, in a top-down way. At each node, we feed the operator
arguments computed in the first, bottom-up, pass and the refined result obtained by the
current top-down pass to the backward arithmetics operator to obtain refined arguments,
enabling the refinement of deeper sub-expressions. At the end of this process, the leaves
contain over-approximations of the values of the expression variables after the test. This is
exemplified in Fig. 2.8 using the interval abstract domain that will be recalled in Sect. 2.4.6.
To gain more precision, Granger proposes to perform local iterations [Gra92], that is, to
perform the bottom-up and top-down passes several times, using the refined environment
of one pass as the input of the next pass. This allows propagating information between
expression leaves, which is especially useful when a variable appears several times in the
test. Finally, when abstracting complex tests by combining our atomic test abstractions
with the ∪♯ and ∩♯ operators, as presented in Sect. 2.4.2, it is worth iterating over the whole
test abstraction instead of iterating separately on each atomic test, so that information can
flow from one atomic test to the other.2

Abstracting a backward assignment V → expr can be done using the same principle,
but with subtle differences. First, in the bottom-up forward evaluation pass, we need the

2The local iteration technique is not limited to non-relational abstract domains; it can indeed be refor-
mulated as follows: {| test ? |}♯

is replaced with ({| test ? |}♯
)n for some n. Alternatively, a fixpoint iteration

with narrowing △♯ can be used.

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.4 – Discovering Properties of Numerical Variables 35

values of the variables before the assignment while we are provided with an environment
X♯ valid after the assignment. In most static analyses, backward assignments are only used
to refine the result of a previous forward analysis meaning that an over-approximation Y ♯

of the environment before the assignment is generally available. If it is not available, we
can always perform the bottom-up evaluation using Y ♯ def

= X♯[V 7→ ⊤♯
B
]; it is a valid over-

approximation of the environments before the assignment as only the value of V may have
been altered by the assignment. Then, to initiate the top-down pass, we refine the root
abstract element by intersecting it with X♯(V). The output of one pass is the environment
Y ♯ refined with the information at the leaves. Finally, if we are to perform local iterations,
we can use the output Y ♯ of one refinement pass to perform the evaluation in the next pass,
but we should always intersect the root with the same value X♯(V).

An often overlooked fact is that backward versions ←−
¦

♯ of the arithmetic operators are
not only needed to design backward assignment transfer functions, but also precise test
abstract functions.

Precision of the Transfer Functions. Our transfer functions are not able to exploit
the aliasing of variables in an expression, that is, the fact that one variable may appear at
several places. One crude example is the abstract evaluation of the expression V ¨V leading
to { x−y | x, y ∈ γ♯

B
(X♯(V)) } which is strictly larger than the correct answer {0} whenever

γ♯
B
(X♯(V)) is not a singleton. Likewise, a non-relational abstract domain may not be able

to discover that the expression X ¸X is always false. Sometimes, local iterations can help
to propagate information between two expression leaves containing the same variable but it
is not always sufficient; for instance, it does not help in the two preceding examples. As a
conclusion, the constructed transfer functions are not optimal even when the basic forward
and backward operators on B are. We will present in Chap. 6 a so-called linearisation
technique to help with this precision problem.

Coalescent Domain Lifting. Note that we can replace the point-wise lifting with a
coalescent point-wise lifting D

♯ def

= (V → B\{⊥♯
B
}) ∪ {⊥⊥♯} that merges all function having

a ⊥♯
B

component into a single ⊥⊥♯ element, as they all abstract the empty environment ∅.
If γB is one-to-one, this ensures that the γ concretisation derived on D

♯ is also one-to-
one. In practice, this shortcuts abstract computations over non-reachable execution paths,
and so, improves both the efficiency and the precision of the analyser. As this alternate
construction is conceptually similar but adds much notation burden, we do not expose it
here in more details.

Cartesian Galois Connection. A way to characterise the inherent loss of precision due
to the choice of being non-relational is to present the Cartesian Galois connection that

Antoine Miné Weakly Relational Numerical Abstract Domains

36 Chapter 2: Abstract Interpretation of Numerical Properties

constructs the most precise non-relational abstraction of sets of environments:

Definition 2.4.3. Cartesian galois connection.

The function pair (αCart , γCart) defined as follows:

αCart(R)
def
= λX.{ x ∈ I | ∃ρ ∈ R, x = ρ(X) }

γCart(R♯)
def
= { ρ ∈ (V → I) | ∀X ∈ V , ρ(X) ∈ R♯(X) }

forms a Galois connection: P(V → I) −−−−−→←−−−−−
αCart

γCart

(V → P(I)) .

„

Any non-relational numerical abstract domain defined by a partial Galois connection
P(V → I) −−→←−−

α

γ
D

♯ is such that α = α ◦ γCart ◦ αCart , meaning that we can never retrieve
more precise results than those of the Cartesian abstraction.

2.4.5 Overview of Existing Numerical Abstract Domains

There exists a wide variety of numerical abstract domains which differ in expressive power
and computational complexity. Fig. 2.9 presents a comprehensive “zoo” of classical numer-
ical abstract domains. These domains can be classified according to several characteristics:

› the numerical expressions allowed: single variables, linear, modulo, or multiplicative
expressions; there can also be a restriction on the allowed constant coefficients;

› how many variables can appear at once in a relation: only one (non-relational), or
any number (relational);

› whether they use equality or inequality predicates — most domains that can represent
non-strict inequalities also have a version that can represent strict inequalities.

The following two sub-sections present in more details the interval and the polyhedron
domains that are quite important for our purpose. They represent two extremes in the
cost versus precision trade-off spectrum: the non-relational and fast interval domain at one
end, and the fully relational but costly polyhedron domain at the other end. Until the late
90’s, there was no other domain able to discuss about numerical inequalities. We wish, in
this thesis, to fill the gap between these two domains and allow a finer cost versus precision
trade-off, so, the interval and polyhedron domains are a natural choice for comparison.
Moreover, the interval transfer functions will be used internally in the relational abstract
domains introduced in the following chapters.

Fig. 2.10 presents three numerical abstract domains that are introduced in this thesis:
zones (Chap. 3), octagons (Chap. 4), and zone congruences (Chap. 5). Note that they are

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.4 – Discovering Properties of Numerical Variables 37

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

Constant Propagation
Xi = ci

[Kil73]

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄

☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎

✆✁✆✁✆✁✆✁✆✝✁✝✁✝✁✝✁✝

Signs
Xi ≥ 0, Xi ≤ 0

[CC76]

�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎

Intervals
Xi ∈ [ai, bi]

[CC76]

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

Simple Congruences
Xi ≡ ai [bi]

[Gra89, Gra97]

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

Interval Congruences
Xi ∈ αi[ai, bi]

[Mas93]

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

Power Analysis

Xi ∈ αaiZ+bi
i , α

[ai,bi]
i , etc.

[Mas01]

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄

☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎

Linear Equalities
∑

i αijXi = βj

[Kar76]

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

Linear Congruences
∑

i αijXi ≡ βj [γj]
[Gra91]

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

Trapezoidal Congruences
Xi =

∑

j λjαij + βj

[Mas92]

�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂

Polyhedra
∑

i αijXi ≤ βj

[CH78]

�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎

Ellipsoids
αX2 + βY 2 + γXY ≤ δ

[Fer04b]

Varieties

Pi(~X) = 0, Pi ∈ R[V]
[RCK04a]

Figure 2.9: The “zoo” of existing numerical abstract domains. The first two rows present
non-relational domains while the last two rows present relational domains.

Antoine Miné Weakly Relational Numerical Abstract Domains

38 Chapter 2: Abstract Interpretation of Numerical Properties

�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

Zones
Xi − Xj ≤ cij

[Min01a]

�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎

Octagons
±Xi ± Xj ≤ cij

[Min01b]

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

Zone Congruences
Xi ≡ Xj + αij [βij]

[Min02]

Figure 2.10: Numerical abstract domains introduced in this thesis.

�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂

TVPLI
αijXi + βijXj ≤ cij

[SKH02]

�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎

Octahedra
∑

i εijXi ≤ βj, εij ∈ {−1, 0, 1}, Xi ≥ 0
[CC04]

Figure 2.11: Other recent numerical abstract domains.

restrictions of the polyhedron and trapezoidal congruence relational abstract domains, and
so, we will call them weakly relational domains. In particular, the polyhedron domain is
strictly more expressive than the octagon domain, which is strictly more expressive than
the zone domain, which is strictly more expressive than the interval domain: Fig. 2.12
presents a comparison of the sets obtained by abstracting the same concrete set using
these four domains. Finally, our work on the octagon domain has inspired two orthogonal
extensions depicted in Fig. 2.11: the Two Variables Per Inequalities (TVPLI) abstract
domain proposed by Simon, King, and Howe [SKH02] and the octahedra domain proposed
by Clarisó and Cortadella [CC04] — note that the difference between TVPLI and polyhedra,
and between octagons and octahedra, are only visible when there are at least three variables,
which explains why the planar drawings in Figs. 2.9–2.11 seem similar.

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.4 – Discovering Properties of Numerical Variables 39

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄

☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎

✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆

✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝

✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞

✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟

Zones

Octagons Polyhedra

Intervals

Figure 2.12: Comparing non-relational, weakly relational, and fully relational domains.

2.4.6 The Interval Abstract Domain

The interval abstract domain D
Int is based on the classical concept of interval arithmetics,

introduced in the 60’s by R. E. Moore [Moo66], and since then widely used in scientific
computing. It was adapted to the needs of Abstract Interpretation by Cousot and Cousot
in [CC76]. As we restate the interval abstract domain within the generic non-relational
construction of Sect. 2.4.4, it is only necessary to present here the interval basis B

Int .

Interval Basis B
Int . Let B

Int be the set of empty and non-empty intervals with bounds in
I, where I ∈ {Z, Q, R}: B

Int def
= {⊥Int

B
} ∪ { [a, b] | a ∈ I ∪ {−∞}, b ∈ I ∪ {+∞}, a ≤ b }.

Finite bounds are inclusive but infinite bounds are strict. In particular, B
Int contains

[−∞, +∞] which denotes the whole set I, and the singletons [a, a] when a ∈ I. The empty
interval is denoted by ⊥Int

B
.

Interval Basis Structure. The partial order ⊑Int
B

is defined as [a, b] ⊑Int
B

[a′, b′]
def

⇐⇒
a ≥ a′ and b ≤ b′, and ⊥Int

B
is the smallest element. The basis concretisation γInt

B
is defined

as γInt
B

([a, b])
def

= { x ∈ I | a ≤ x ≤ b } and γInt
B

(⊥Int
B

)
def

= ∅. Note that γInt
B

is a
one-to-one ⊓−complete morphism. When I is Z or R, B

Int is a complete lattice and, by
Thm. 2.2.1, a canonical αInt

B
exists. In all cases, we define αInt

B
as: αInt

B
(∅) = ⊥Int

B
and

αInt
B

(S)
def

= [min S, max S]. When I = Q the lattice is not complete and sets such as
{ x | x2 < 2 } are not defined for αInt

B
.

Antoine Miné Weakly Relational Numerical Abstract Domains

40 Chapter 2: Abstract Interpretation of Numerical Properties

Interval Basis Operators. We define all the required operators for a basis the following
way:

› The best ∪Int
B

and ∩Int
B

operators are exactly ⊔Int
B

and ⊓Int
B

:

X♯ ∪Int
B

Y ♯ def

=

[min(a, a′), max(b, b′)] if X♯ = [a, b] and Y ♯ = [a′, b′]
X♯ if Y ♯ = ⊥Int

B

Y ♯ if X♯ = ⊥Int
B

X♯ ∩Int
B

Y ♯ def
=

[max(a, a′), min(b, b′)] if X♯ = [a, b], Y ♯ = [a′, b′],
and max(a, a′) ≤ min(b, b′)

⊥Int
B

otherwise

Note that ⊓Int
B

is exact, but ⊔Int
B

is not.

› The best forward operators are the classical interval arithmetic ones. Whenever one
argument is ⊥Int

B
, the result is ⊥Int

B
; elsewhere we get:

[a, b]Int def

= [a, b]

[a, b]´Int [a′, b′]
def
= [a + a′, b + b′]

[a, b]¨Int [a′, b′]
def
= [a − b′, b − a′]

[a, b]ˆInt [a′, b′]
def

= [min (a × a′, a × b′, b × a′, b × b′),
max (a × a′, a × b′, b × a′, b × b′)]

[a, b] ˜Int [a′, b′]
def
= [adj (min (a/a′, a/b′, b/a′, b/b′)),

adj (max (a/a′, a/b′, b/a′, b/b′))]
when 0 ≤ a′

X ˜Int Y
def

= (X ˜Int (Y ∩Int
B

[0, +∞])) ∪Int
B

((¨IntX) ˜Int ((¨IntY) ∩Int
B

[0, +∞]))
otherwise

+ and − should be extended to +∞ and −∞ the standard way — as the left bound
is never +∞ and the right bound is never −∞, there is no undefined case.

× is extended to +∞ and −∞ the usual way, except that we consider that +∞×0
def

=
−∞× 0

def

= 0.

/ is extended to +∞ and −∞ by stating that ∀x > 0, x/0
def

= +∞, ∀x < 0, x/
0

def

= −∞, and ∀x, x/ + ∞
def

= 0, but also 0/0
def

= 0, so that x/y = x × (1/y) in all

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.4 – Discovering Properties of Numerical Variables 41

cases. The abstract division is quite complex. First, we must split the dividend into
a positive part and a negative part to correctly handle dividend intervals that cross
zero. Then, we must use the adj truncation function introduced in Fig. 2.2 to get
sound integer bounds when I = Z. The function adj is straightforwardly extended to
±∞ by stating that adj (+∞)

def

= +∞ and adj (−∞)
def

= −∞.

By density, these operators are exact when I = Q or I = R, except when dividing by
an interval containing 0 as the resulting concrete set is not convex. The situation is
similar when I = Z except that ˆInt is no longer exact: indeed, the multiplication
enforces congruence properties that cannot be exactly represented by intervals.

› As backward arithmetic operators, we choose the generic ones derived, as in
Sect. 2.4.4, from the forward ones.

› We now present the backward tests. Whenever one argument is ⊥Int
B

, the result is
(⊥Int

B
,⊥Int

B
); elsewhere we get:

˛Int([a, b], [a′, b′])
def
= ([a, b] ∩Int

B
[a′, b′], [a, b] ∩Int

B
[a′, b′])

¯Int([a, b], [a′, b′])
def

= ([a, b] ∩Int
B

[−∞, b′], [a′, b′] ∩Int
B

[a, +∞])

ˇInt([a, b], [a′, b′])
def

=
{

¯Int([a, b], [a′, b′]) when I ∈ {Q, R}
([a, b] ∩Int

B
[−∞, b′ − 1], [a′, b′] ∩Int

B
[a + 1, +∞]) when I = Z

¸Int([a, b], [a′, b′])
def
= ˇInt([a, b], [a′, b′]) ∪Int

B2 ˇInt([a′, b′], [a, b])

where ∪Int
B2 preforms a component-wise union ∪Int

B
on two pairs of elements in B.

› As widening and narrowing, we recall the original ones proposed by Cousot and
Cousot in [CC76]:

[a, b] ▽Int
B

[a′, b′]
def

=

[{

a if a ≤ a′

−∞ otherwise
,

{

b if b ≥ b′

+∞ otherwise

]

[a, b] △Int
B

[a′, b′]
def

=

[{

a′ if a = −∞
a otherwise

,

{

b′ if b = +∞
b otherwise

]

⊥Int
B

▽Int
B

X
def

= X ▽Int
B

⊥Int
B

def

= X

Antoine Miné Weakly Relational Numerical Abstract Domains

42 Chapter 2: Abstract Interpretation of Numerical Properties

Figure 2.13: A strictly increasing infinite set of polyhedra whose limit is a disk.

⊥Int
B

△Int
B

X
def
= X △Int

B
⊥Int

B

def
= ⊥Int

B

2.4.7 The Polyhedron Abstract Domain

The polyhedron domain, introduced in [CH78] by Cousot and Halbwachs, allows manipu-
lating conjunctions of linear inequalities or, equivalently, bounded and unbounded closed
polyhedra in In.

Representations. Internally, two dual representations can be used:

› a matrix / vector couple of constraint coefficients M ∈ Im×n, ~B ∈ Im with concreti-
sation:

γPoly(< M, ~B >)
def

= { ~X ∈ In | M ~X ≥ ~B }

› a frame, that is, a set of vertices V = (~V1, . . . , ~Vk) and a set of rays R = (~R1, . . . , ~Rl)
in In with concretisation:

γPoly(< V,R >)
def

=

{

k
∑

i=1

λi
~Vi +

l
∑

i=1

µi
~Ri | λi ≥ 0, µi ≥ 0,

k
∑

i=1

λi = 1

}

.

There is no bound on the size of either representation, but experiments show that the
polyhedron abstract domain has a time and memory cost exponential in the number of
program variables in practice.

Lattice. There may be several different constraint or frame representations for a poly-
hedron; we will thus consider the set D

Poly of all polyhedra by not distinguishing these
representations. The intersection of two polyhedra can be exactly represented as a poly-
hedron, while the union must be over-approximated by the convex hull. These operators
embed D

Poly with a lattice structure. Unlike D
Int , the D

Poly lattice is not complete. Con-
sider, for instance, the infinite sequence of planar polygons with an increasing number of

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.5 – The Need for Relational Domains 43

edges in Fig. 2.13: each polygon includes all the preceding ones, and the limit is a disc that
cannot be represented with a finite set of edges.

Transfer Functions and Operators. Transfer functions are provided for assignments,
backward assignments, and tests of linear forms only, and these are exact. It is fairly easy
to extend them to the case of quasi-linear forms, that is, linear forms where the constant
coefficient can be an interval. However, no work seems devoted to the design of transfer
functions for generic expressions, or even generic interval linear forms; we will present a
partial solution to this problem in Chap. 6. Some transfer functions and operators — such as
linear tests and intersections — are straightforward on the constraint representation while
others — such as linear assignments and convex hulls — are more easily described using
the frame representation. An algorithm, due originally to Chernikova and enhanced by Le
Verge in [LV92], allows passing from one representation to the other one while minimising
the number of constraints or vertices and rays. It has a worst-case exponential time and
memory cost, simply because the size of a minimised representation is, at worse, exponential
in the size of the minimised dual representation. Modern implementations such as the
NewPolka library [Jea] and the Parma Polyhedra Library [PPL] dynamically choose
the most useful representation and rely on Chernikova’s algorithm to switch representations
when needed. We do not present here these algorithms as they are quite complex but refer
instead the reader to these libraries’ documentation for more information.

Case I = Z. All algorithms used in the polyhedron domain rely on I being a field, so they
only work when I ∈ {Q, R}. Problems related to the integer solutions of linear inequalities
are known to be much more difficult than in Q and R — the simple satisfiability problem
“jumps” from polynomial to NP-complete complexity. Operations that are quite simple and
linear in Q and R are no longer linear on Z; for instance, expressing the projection on the
variable X of the set S = { (X,Y) ∈ Z2 | X = 2 × Y } require the use of a congruence
relation: X ≡ 0 [2].

A customary solution in abstract interpretation is to use rational polyhedra to represent
sets of points with integer coordinates. We keep all algorithms as if we had I = Q and
only change the concretisation of polyhedron P into: γPoly(P) ∩ Zn. All transfer functions
and operators are still sound, but no longer exact. For instance, the projection on X of
the preceding set S would be Z. In certain cases, we even lose optimality. This actually
amounts to abstracting integers into rationals by forgetting their “integerness”.

2.5 The Need for Relational Domains

We present here a few programs that cannot be analysed precisely enough with non-
relational domains and motivate the search for low-cost relational domains.

Antoine Miné Weakly Relational Numerical Abstract Domains

44 Chapter 2: Abstract Interpretation of Numerical Properties

Obviously, when the desired property is not representable in a non-relational domain,
we need a more powerful domain:

Example 2.5.1. Property not representable in a non-relational domain.

In the following code:

① X ← [0, 10];
② if X ¯Y { Y ← X }

③

The polyhedron domain is able to prove that, at ③ , Y ≤ X but the interval domain is
only able to prove that Y ≤ 10.

„

Even when the property is exactly representable in a non-relational domain, some in-
termediate computations may not:

Example 2.5.2. Computation not possible in a non-relational domain.

Consider the following code:

① X ← [0, 10];
② Y ← [0, 10];
③ S ← X ¨ Y ;

④ if 2¯S { ⑤ Y ← Y ´ 2 }

⑥

We always have Y ∈ [0, 10] at ⑥ . The polyhedron domain is able to discover this invariant
because it is able to combine the information S = X − Y and S ≥ 2 at ⑤ to infer that
Y ≤ X − 2, that is Y ≤ 8. As the interval domain “forgets” that S = X − Y , its upper
bound for Y at ⑤ is 10 instead of 8, so, it infers that Y ∈ [0, 12] at ⑥ .

„

Recall that, for each loop, we have added a syntactic label ❶ · · · ❿ ∈ L between the
while keyword and the subsequent loop condition. Any invariant discovered at this label
will be called a loop invariant as it is true before each loop iteration. In order to discover
a given invariant after the execution of the loop, it is generally necessary to find a loop
invariant of a more complex form:

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.5 – The Need for Relational Domains 45

Example 2.5.3. Loop invariant not representable in a non-relational domain.

Suppose that we want to infer that Y = 10 at the end of the execution of the following
program:

① X ← 10;
② Y ← 0;
③ while ❹ X ¸ 0 { X ← X ¨ 1; Y ← Y ´ 1 }

⑤

Even though the required invariant has an interval form, the interval domain will fail to
find it and discover the imprecise result Y ≥ 0 instead. In order to discover that Y = 10
at ⑤ , we must first infer the loop invariant X +Y = 10 at ❹ . Combining this information
with the fact that the loop ends when X = 0, we can infer that Y = 10 at ⑤ . Relational
domains such as the polyhedron domain, or the octagon domain presented in Chap. 4,
are able of such a reasoning.

„

Our last example motivating the use of relational abstract domains is the analysis of
programs where some variables are left unspecified:

Example 2.5.4. Symbolic invariant not representable in a non-relational domain.

Consider the following code:

① X ← 0;
② while X ¯N {

③ if X ˇ 0 or N ˇX { ④ fail };

⑤ X ← X ´ 1
⑥ }

Our goal is to prove that the control point ④ that triggers the failure of the program is
never reached. The interval domain will be able to prove this assertion provided that
N is a constant.3 A relational domain such as the polyhedron, or the zone domain of
Chap. 3, will be able to prove this assertion without knowing the exact value of N .

„

This ability of relational domains to discover symbolic invariants allows them to analyse
programs in a modular way. For instance, a procedure such as Ex. 2.5.4 may be analysed
out of its context. Moreover, a function can be abstracted as an invariant relating its output
value to the values of its arguments. As our Simple language does not provide procedures,
we will not insist on this aspect in this thesis and refer the reader to a survey [CC02] by
Cousot and Cousot on the topic of modular static analysis.

3The discovery of the invariant 0 ≤ X ≤ N , when N is a constant, in the interval domain requires the
use of a narrowing to refine the invariant 0 ≤ X discovered by iterations with widening solely.

Antoine Miné Weakly Relational Numerical Abstract Domains

46 Chapter 2: Abstract Interpretation of Numerical Properties

2.6 Other Applications of Numerical Abstract Do-

mains

Even though we focus in this thesis on the discovery of properties of numerical program
variables, numerical abstract domains can be applied to other kinds of analysis.

Many non-uniform static analyses start by designing a non-standard instrumented se-
mantics that introduces numerical quantities (or, equivalently, perform an automatic pro-
gram re-writing that introduces numerical instrumentation variables) and then perform a
numerical analysis on them. More complex analyses can perform reductions between sev-
eral abstract domains, some of which are numerical. In some complex analyses, the set
of numerical instrumentation variables is created dynamically by some kind of structural
abstract domain that drives the numerical analysis.

In all these cases, the used numerical abstract domain is only a parameter of the analysis.
The cost versus precision trade-off of the analysis is directly affected by the choice of
the plugged numerical abstract domain. Interesting non-uniform properties can only be
obtained if the chosen numerical abstract domain is relational. Thus, such analyses will
directly benefit from the new domains introduced in the present thesis.

Pointer Analysis. There exists quite a lot of static analyses devoted to the analysis of
pointers but few allow distinguishing the different instances of pointers in recursive data-
structures. Such non-uniform analyses often tag these instances using a numerical scheme.
In his seminal paper, [Deu94], Deutsch proposes a non-uniform pointer aliasing analysis
that abstracts sets of access paths using counters. His framework is parametric in the
numerical abstract domain chosen to abstract counter values. This allows discovering, for
instance, properties of the form x → nexti = y → nextj =⇒ i ≥ 0 ∧ i = j + 1, using the
set of counters {i, j}, meaning that y aliases the tail of the linked list x.

In order to analyse correctly loop-based manipulations of recursive structures or arrays,
Venet proposes in [Ven02] a time-stamp scheme that relates each memory block to the value
of the loop counters at its creation date. His framework is also parametric in a numerical
abstract domain.

Quantitative Shape Analysis. Another noteworthy work is that of Rugina who pro-
poses, in [Rug04], an analysis proving the correctness of the re-balancing algorithm used
after an insertion in an AVL-tree. His method involves abstracting non-local numerical
heap properties, such as the difference between the depth of the two sub-trees of a node.
Even though his example only requires relational invariants of the simple form x = y + c,
the methodology may be applied to more complex problems requiring richer numerical
constraints.

Domaines numériques abstraits faiblement relationnels Antoine Miné

2.6 – Other Applications of Numerical Abstract Domains 47

String Cleanness. In the C programming language, character strings are represented by
pointers to zero-terminated character buffers. Because strings live in user-allocated buffers
the size of which is not explicitly available, most string manipulation functions in the C
library and user code are not safe. Static string cleanness checking, introduced by Dor
in [DRS01], aims at proving statically that a program does not perform erroneous string
manipulation. In order to do this, strings are abstracted using a few numerical values
encoding the size of the allocated buffers, the position of the terminating zero, and pointer
offsets. Hence string cleanness is reduced to a purely numerical analysis problem.

π−calculus Analysis. In [Fer04a], Feret applies a technique similar to Venet’s pointer
time-stamping [Ven02] to discover properties of mobile programs written in the π−calculus.
In particular, different instances of the same process can be distinguished using numerical
values whose relationship are analysed using relational numerical abstract domains to infer
non-uniform properties.

Parametric Predicate Abstraction. The idea of predicate abstraction is to consider,
as abstract domain, a small set of logical predicates that focus on a complex property
to be proved. In [Cou03], Cousot proposes to merge this idea with the use of numerical
abstract domains to construct infinite families of predicates. As an example, the predicate
∀(V1, . . . , Vn, X, Y, Z, T) ∈ γ(X♯), ∀i ∈ [X,Y], ∀j ∈ [Z, T], a[i] ≤ a[j] parametric in the
numerical abstract element X♯ allows proving that the bubble sort indeed sorts an array,
provided the chosen numerical abstract domain for X♯ is sufficiently precise — this works
for the octagon abstract domain presented in Chap. 4. More examples are also proposed
in [Ce03].

Termination Analysis. Abstract Interpretation is not limited to safety properties and
reachability analyses. For instance, termination is a liveness property that can be proved
using a numerical abstract domain by synthesising a ranking function, that is, a positive
function that strictly decreases at each program step. Colón and Sipma propose in [CS01]
a method based on the polyhedron abstract domain to synthesise non-trivial linear ranking
functions.

Antoine Miné Weakly Relational Numerical Abstract Domains

48 Chapter 2: Abstract Interpretation of Numerical Properties

Domaines numériques abstraits faiblement relationnels Antoine Miné

Chapter 3: The Zone Abstract Domain 49

Chapter 3

The Zone Abstract Domain

Ce chapitre présente le domaine abstrait des zones. Ce domaine permet de
représenter et de manipuler des invariants de la forme X −Y ≤ c et ±X ≤ c.
Il repose sur une structure de données déjà connue, les matrices de différences
bornées (DBMs), étendue considérablement pour les besoins de l’interprétation
abstraite. En particulier, nous proposons de nombreuses fonctions de transfert
ainsi que des opérateurs d’élargissement et de rétrécissement. Grâce à une
représentation compacte à base de matrices et une algorithmique basée sur des
calculs de plus-court chemins, nous obtenons un coût O(n2) en mémoire et
O(n3) (au pire) en temps.

We introduce the zone abstract domain that is able to represent and manipulate
invariants of the form X − Y ≤ c and ±X ≤ c. We use previous works on a
data-structure called Difference Bound Matrices (DBMs) but considerably ex-
tend it to cope with Abstract Interpretation needs. In particular, we introduce
many transfer functions, as well as widening and narrowing operators. Thanks
to algorithms based on shortest-path closure and a compact matrix representa-
tion, we achieve a O(n2) memory cost and a O(n3) worse-case time cost.

3.1 Introduction

We are interested in this chapter in the automatic discovery of constraints of the form
X − Y ≤ c and ±X ≤ c, where X and Y are program variables and c is a constant. Such
constraints are quite important as they frequently appear in loop invariants — see Fig. 3.1.
Also, this type of constraints enjoys specific graph-based algorithms that are much more
efficient than full linear programming, and so, we can build an abstract domain that is
between, in terms of both cost and precision, the interval and the polyhedron domains.

Antoine Miné Weakly Relational Numerical Abstract Domains

50 Chapter 3: The Zone Abstract Domain

X ← 1;
while ❶ X ¯N {

...

X ← X ´ 1
}

Figure 3.1: Typical loop example. The strongest loop invariant at ❶ is 1 ≤ X ≤ N + 1,
which is a zone constraint.

Previous Works on Difference Bound Matrices. The Difference Bound Matrix (or
DBM) data-structure used in this chapter is borrowed from the work on model checking
of timed automata [Yov98] and timed petri nets [MB83]. The algorithms we present to
compute a canonical representation of DBMs, using the notion of shortest-path closure,
as well as the intersection, inclusion, and equality tests have already been used for a long
time; they are described, for instance, in [Yov98]. However, most algorithms needed by
[Yov98] and [MB83] are not useful for Abstract Interpretation while many — such as: union
abstractions, general assignment and test transfer functions, widenings, etc. — are missing.
As the classical approach to model-checking is to first abstract by hand a problem into a
computable model, and then compute on the model exactly, previous works on DBMs only
focus on designing exact operators. Our approach is different as we only require soundness
for our operators: each abstract operator application can result in some loss of precision.
This is necessary if we are to abstract complex operators and transfer functions that have
no exact counterpart on DBMs. It also gives us the flexibility to design several abstract
versions of the same operator with different cost versus precision trade-offs.

Difference Bound Matrices Applied to Abstract Interpretation. The idea of using
Difference Bound Matrices to design an abstract domain is not new. The possibility is
suggested in the Ph. D. works of Bagnara [Bag97, Chap. 5] and Jeannet [Jea00, § 2.4.3];
a widening is even suggested. An actual use of DBMs in an analysis based on abstract
interpretation is due to Shaman, Kolodner, and Sagiv, in [SKS00]. The authors only add
to the classical DBM operators a widening and an approximated union. Compared to
these previous works, ours is much more comprehensive. We propose abstract transfer
functions for all assignments, tests, and backward assignments, not only those that can be
abstracted exactly. We also examine carefully the interaction between the shortest-path
closure algorithm on DBMs and the design of operators and transfer functions. It allows us
to prove new best approximation results, but also expose flaws in previous works — such
as the incorrect use of shortest-path closure on iterations with widening.

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.2 – Constraints and Their Representation 51

3.2 Constraints and Their Representation

Let V
def
= {V1, · · · , Vn} be the finite set of program variables and let I be the numeric set

they live in, I ∈ {Z, Q, R}. We will often assimilate an environment ρ ∈ (V → I) to a point
in In.

3.2.1 Constraints

Potential Constraints. A potential constraint is a constraint of the form Vi − Vj ≤ c,
with c ∈ I. The term potential comes from the fact that solutions of conjunctions of
potential constraints are defined up to a constant:

Theorem 3.2.1. Solutions of potential constraints conjunctions.

If (v1, . . . , vn) ∈ In is a solution of a conjunction of potential constraints,
then ∀c ∈ I, (v1 + c, . . . , vn + c) is also a solution of the same conjunction of potential
constraints.

„

Proof. Easy. ”

The set of points in In that satisfy a given conjunction of potential constraints will
be called a potential set. We will denote by Pot the set of all potential sets for a fixed
dimension n.

Zone Constraints. An interesting consequence of Thm. 3.2.1 is that if a conjunction of
potential constraints is satisfiable, then it has a solution for which V1 = 0. This allows the
reduction of the satisfiability problem of a conjunction of constraints of the form Vi−Vj ≤ c,
Vi ≤ c, and Vi ≥ c to the satisfiability of a conjunction of potential constraints. One simply
adds a new synthetic variable V0 and encode the constraints Vi ≤ c and Vi ≥ c respectively
as Vi − V0 ≤ c and V0 − Vi ≤ −c. Constraints of the form Vi − Vj ≤ c, Vi ≤ c, or Vi ≥ c,
that include both potential and interval constraints, will be called zone constraints. The
set of points in In that satisfy a conjunction of zone constraints will be called a zone, and
we will denote by Zone the set of zones.

3.2.2 Representations

Potential Graphs. A conjunction of potential constraints can be represented by a di-
rected, weighted graph G with nodes in V and weights in I, which is called a potential graph.
For each ordered pair of variables (Vi, Vj) ∈ V2, there will be an arc from Vj to Vi with
weight c if the constraint Vi − Vj ≤ c is in the constraint conjunction. We can assume,

Antoine Miné Weakly Relational Numerical Abstract Domains

52 Chapter 3: The Zone Abstract Domain

without loss of generality, that there is at most one arc from any given node to any other
given node as if two constraints with the same left member appear in the conjunction, the
one with the largest right coefficient is obviously redundant.

We will call path in G a sequence of nodes, denoted by 〈Vi1 , . . . , Vim〉, such that there is
an arc from each Vik to Vik+1

. The path is said to be simple if its internal nodes Vi2 , . . . , Vim−1

are pairwise distinct, and different from Vi1 and Vim . A cycle is a path 〈Vi1 , . . . , Vim〉 such
that Vim = Vi1 . Note that a simple path may be a cycle, in which case it is called a simple
cycle.

Difference Bound Matrices. Let I
def

= I ∪ {+∞} be the extension of I to +∞. The
order ≤ is extended by stating that ∀c ∈ I, c ≤ +∞ — the extension of other operators
to I will be presented when needed. An equivalent representation of potential constraint
conjunctions is by the mean of a Difference Bound Matrix, or DBM for short. A DBM m is
a n×n square matrix with elements in I. The element at line i, column j, where 1 ≤ i ≤ n,
1 ≤ j ≤ n, denoted by mij, equals c if there is a constraint of the form Vj − Vi ≤ c in our
constraint conjunction, and +∞ otherwise. We will denote by DBM the set of all DBMs.
The potential set described by a DBM m is given by the following concretisation function:

Definition 3.2.1. Potential set concretisation γPot of a DBM.

γPot(m)
def

= { (v1, . . . , vn) ∈ In | ∀i, j, vj − vi ≤ mij } .

Pot
def

= { γPot(m) | m ∈ DBM } .

„

Each DBM m can be seen as the adjacency matrix of a potential graph. It will be
denoted in the following by G(m). Indeed, DBMs and potential graphs are just two dif-
ferent notations for the same objects. These notations are complementary: some theorems
and algorithms will be best described using the matrix notation, while others will use
graph-related terms, such as paths and cycles. The choice of a pointer-based hollow graph
representation or a full matrix representation for actual implementation is completely or-
thogonal; it will be discussed in Sect. 3.8.2. In the following, we will often present examples
using the graph notation even when the corresponding algorithms are presented using the
matrix notation, as constraints graphs are much easier to read.

Zone Constraints Representation. Using the encoding in terms of potential con-
straints presented in the previous section, a conjunction of zone constraints will be rep-
resented as either a potential graph with an extra vertex V0 that denotes the constant 0 or,
equivalently, as a (n + 1) × (n + 1) DBM where the first line and column encode interval
constraints. We will number lines and columns of DBMs representing zones from 0 to n, so

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.2 – Constraints and Their Representation 53

(a)

V1 ≤ 4
−V1 ≤ −1

V2 ≤ 3
−V2 ≤ −1

V1 − V2 ≤ 1

(b)

j
V0 V1 V2

V0 +∞ 4 3
i V1 −1 +∞ +∞

V2 −1 1 +∞

(c)

GFED@ABCV0
4

 3
ÃÃ@

@@
@@

@@
@@

GFED@ABCV1

−1

>>~~~~~~~~~ GFED@ABCV2

−1
jj

1
oo

(d)

V2

V0

V1

(e)
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄

☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎

✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆
✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆

✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝
✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝

V2

V1

Figure 3.2: A zone constraint conjunction (a); the corresponding DBM m (b) and poten-
tial graph G(m) (c); the potential set concretisation γPot(m) (d) and zone concretisation
γZone(m) (e).

that line or column i still corresponds to variable Vi, possibly V0. The zone concretisation
of a DBM, that is, the zone it represents, is defined by:

Definition 3.2.2. Zone concretisation γZone of a DBM.

γZone(m)
def

= { (v1, . . . , vn) ∈ In | (0, v1, . . . , vn) ∈ γPot(m) } .

Zone
def

= { γZone(m) | m ∈ DBM } .

„

It is the intersection of the concretisation γPot(m) of the DBM as a potential set with
the hyperplane V0 = 0. Fig. 3.2 gives an example of a zone, its graph representation, and
the corresponding DBM.

In this chapter, we are interested in manipulating zones and not potential sets which
are less expressive. As there is an isomorphism between the set of zones in In and the set
of potential sets in In+1, most properties are uniformly true on Zone and Pot , but they

Antoine Miné Weakly Relational Numerical Abstract Domains

54 Chapter 3: The Zone Abstract Domain

are easier to state and prove on potential sets which are more orthogonal. Also, we will
see, in the next chapters, other domains constructed from DBMs for which properties also
stem from properties of potential sets. This explains why we will often present properties
on potential sets first, and later extend them to zones.

3.2.3 Lattice Structure

Matrix Ordering. Let us consider the total order ≤ on I, extended to I by ∀x, x ≤ +∞.
Its point-wise extension to matrices gives a partial order on DBM denoted by ⊑DBM. In-
tuitively, m ⊑DBM n means that each constraint in m is tighter than the correspond-
ing constraint in n. The set DBM has a natural greatest element ⊤DBM, defined as
∀i, j, ⊤DBM

ij
def

= +∞. However it has no smallest element, thus, we enrich DBM with
a new smallest element denoted by ⊥DBM. From now on, DBM will refer to this pointed
domain and bold letters will refer to matrix elements in DBM, that is, any element but
⊥DBM. DBM now forms a lattice:

Theorem 3.2.2. DBM lattice.

The set (DBM,⊑DBM,⊔DBM,⊓DBM,⊥DBM,⊤DBM) where:

m ⊑DBM n
def

⇐⇒ ∀i, j, mij ≤ nij ⊥DBM ⊑DBM X♯

(m ⊔DBM n)ij
def
= max(mij,nij) ⊥DBM ⊔DBM X♯ def

= X♯ ⊔DBM ⊥DBM def
= X♯

(m ⊓DBM n)ij
def
= min(mij,nij) ⊥DBM ⊓DBM X♯ def

= X♯ ⊓DBM ⊥DBM def
= ⊥DBM

(⊤DBM)ij
def
= +∞

is a lattice. Moreover, if I ∈ {Z, R}, then this lattice is complete.

„

Partial Galois Connection. If we extend γPot and γZone naturally by stating that
γPot(⊥DBM)

def

= γZone(⊥DBM)
def

= ∅, we obtain complete ⊓−morphisms — which are, thus,
monotonic. Applying Thm. 2.2.3, we can deduce abstraction functions:

Definition 3.2.3. Zone and potential set abstractions.

› αPot(R)
def

=

{

⊥DBM if R = ∅

m where mij
def
= min { ρ(Vj) − ρ(Vi) | ρ ∈ R } if R 6= ∅

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.3 – Canonical Representation 55

(a)

j
V1 V2 V3

V1 +∞ 4 3
i V2 −1 +∞ +∞

V3 −1 1 +∞

(b)

j
V1 V2 V3

V1 0 5 3
i V2 −1 +∞ +∞

V3 −1 1 +∞

(c)

j
V1 V2 V3

V1 0 4 3
i V2 −1 0 +∞

V3 −1 1 0

Figure 3.3: Three different DBMs with the same potential set concretisation as in Fig. 3.2.
Remark that (a) and (b) are not even comparable with respect to ⊑DBM. Their closure is
presented in (c).

› αZone(R)
def
=

⊥DBM if R = ∅

m where mij
def
=

0 when i = j = 0
min { ρ(Vj) | ρ ∈ R } when i = 0
min { −ρ(Vi) | ρ ∈ R } when j = 0
min { ρ(Vj) − ρ(Vi) | ρ ∈ R } when i, j 6= 0

if R 6= ∅

„

P(V → I) −−−−→←−−−−
αPot

γPot

DBM and P(V → I) −−−−−→←−−−−−
αZone

γZone

DBM form partial Galois connections.

We will see, in Sect. 3.5.2, that αZone is defined for any — bounded or unbounded —
convex polyhedron, which ensures that the Galois connections are partial with respect to
all transfer functions involving interval linear forms, at least. If I ∈ {Z, R}, then αPot and
αZone are total and we obtain regular Galois connections. If I = Q, then some abstract
transfer functions involving non-linear expressions, such as (X ˆ X ¯ 2 ?), have no best
abstractions.

3.3 Canonical Representation

One must not confuse a set in Zone (resp. Pot) with a representation of such a set in DBM.
In particular, γZone is not injective, meaning that a zone can have several distinct DBM
representations. These representations need not even be comparable in the abstract, as
exemplified by Fig 3.3.

Antoine Miné Weakly Relational Numerical Abstract Domains

56 Chapter 3: The Zone Abstract Domain

Thankfully, (αZone , γZone) is a Id−partial Galois connection, meaning that each zone
has a canonical abstract representation that is minimal for ⊑DBM.

3.3.1 Emptiness Testing

We first consider the simpler case of determining whether γZone(m) (resp. γPot(m)) is
empty, that is, whether a conjunction of constraints in matrix form is satisfiable.

A core result that dates back to [Bel58] is that the satisfiability of a conjunction of
potential constraints — and hence of zone constraints — can be tested by examining the
simple cycles of the associated potential graph:

Theorem 3.3.1. Satisfiability of a conjunction of constraints.

1. γPot(m) = ∅ ⇐⇒ G(m) has a cycle with a strictly negative total weight.

2. A graph has a cycle with a strictly negative total weight if and only if it has a simple
cycle with a strictly negative total weight.

3. γZone(m) = ∅ ⇐⇒ γPot(m) = ∅.
„

Proof. See, for instance, [CLR90, § 25.5] and [Pra77]. ”

The problem of checking for the weight of simple cycles can be reduced to the problem of
shortest path from an node, that is, the weight of the path with minimal weight, originating
from a given node. Indeed, the weight of the shortest path from a node belonging to a
simple cycle with a strictly negative weight is unbounded and tends to −∞ as it is always
possible to prepend this cycle to a path once more to decrease its total weight. The idea
is to add yet another node, V∞, in the graph, as well as an arc with weight 0 from V∞ to
every other node in the graph. This makes every node accessible from V∞, so, we only need
to check the shortest path from V∞ to decide whether the original graph has a simple cycle
with a strictly negative weight.

The problem of determining the shortest path from a node has been well-studied and
classical textbooks — such as [CLR90, § 25.5] — provide a profusion of algorithms. One
of the simplest and most famous is due to Bellman and Ford, and runs in O(n × s + n2),
where n is the number of nodes and s is the number of arcs in the graph. We do not insist
on such techniques as we are about to provide an algorithm that will provide the emptiness
information as a side-effect of solving a more complex problem.

3.3.2 Closure Operator

Whenever γZone(m), or equivalently γPot(m), is not empty, the potential graph G(m) has a
shortest-path closure — or, more concisely, closure — that we will denote by G(m)∗. This

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.3 – Canonical Representation 57

shortest-path closure graph may be defined by its adjacency matrix m∗: G(m)∗ = G(m∗),
where m∗ is defined as follows:

Definition 3.3.1. Shortest-path closure.

m∗
ii

def
= 0

m∗
ij

def

= min
1≤m

〈i=i1,i2,...,im=j〉

m−1
∑

k=1

mikik+1
if i 6= j

where the min and + operators are extended to I as usual:
min(x, +∞)

def

= min(+∞, x)
def

= x and x + (+∞)
def

= (+∞) + x
def

= +∞ .

„

Existence of m∗. We have supposed that γZone(m) 6= ∅ and so, by Thm. 3.3.1, m has
no cycle with strictly negative total weight. This means that, in the definition of m∗, we
need to consider only simple paths as one can only increase the total weight of a path by
inserting cycles. As there are only a finite number of simple paths from i to j, each mij is
well-defined.

Propagating Constraints. Computing the closure of a DBM can be seen as propagating
adjacent constraints. First note that Vi−Vj ≤ c and Vj−Vk ≤ d implies Vi−Vk ≤ c+d. We
now consider any path 〈i = i1, i2, . . . , im = j〉 from Vi to Vj. By summing the constraints
Vik+1

−Vik ≤ mik ik+1
, we deduce that any point (v1, . . . , vn) ∈ γPot(m) will satisfy vj −vi ≤

∑

k mik ik+1
. We will call any constraint obtained by summing several adjacent constraints

over a path in m an implicit constraint by opposition to constraints that appear explicitly
in m. What the closure ∗ does is to refine m by making all implicit constraints explicit.
Additionally, all diagonal elements are replaced with 0, which is safe as they correspond to
constraints of the form Vi − Vi ≤ 0 and these are always true.

An immediate consequence of this reasoning is that the closure operator ∗ preserves the
concretisation:

Theorem 3.3.2. Soundness of the closure ∗.

1. γPot(m∗) = γPot(m) .

2. γZone(m∗) = γZone(m) .
„

Saturation. A very useful property of the constraint conjunction associated to m∗ is that
it is saturated, that is, each constraint actually “touches” the set defined by the conjunction.
We will see that many interesting properties are a consequence of this one.

Antoine Miné Weakly Relational Numerical Abstract Domains

58 Chapter 3: The Zone Abstract Domain

Theorem 3.3.3. Saturation of closed DBMs.

1. ∀i, j, if m∗
ij < +∞, then ∃(v1, . . . , vn) ∈ γPot(m) such that vj − vi = m∗

ij .

2. ∀i, j, if m∗
ij = +∞, then ∀M < +∞, ∃(v1, . . . , vn) ∈ γPot(m)

such that vj − vi ≥ M .
„

Proof.

1. Set a pair (i0, j0) such that m∗
i0j0

< +∞.

If i0 = j0, any (v1, . . . , vn) ∈ γPot(m) will be such that vj0 − vi0 = 0 = m∗
i0j0

.

Let us now consider the more complex case when i0 6= j0.

We denote by m′ the matrix equal to m∗ except for m′
j0i0

= −m∗
i0j0

. We first prove
that γPot(m′) = γPot(m) ∩ { (v1, . . . , vn) | vj0 − vi0 = m∗

i0j0
}.

› By Thm. 3.3.2, γPot(m∗) = γPot(m) 6= ∅, so, by Thm. 3.3.1, there is no simple
cycle in m∗ with strictly negative weight. In particular, m∗

i0j0
+ m∗

j0i0
≥ 0, so,

m′
j0i0

= −m∗
i0j0

≤ m∗
j0i0

.

This means that ∀i, j, m′
ij ≤ m∗

ij, so, γPot(m′) ⊆ γPot(m∗) = γPot(m).

› If (v1, . . . , vn) ∈ γPot(m′), then −m′
j0i0

≤ vj0 − vi0 ≤ m′
i0j0

. This means m∗
i0j0

≤
vj0 − vi0 ≤ m∗

i0j0
.

We just proved that γPot(m′) ⊆ γPot(m) ∩ { (v1, . . . , vn) | vj0 − vi0 = m∗
i0j0

}.

› If (v1, . . . , vn) is in γPot(m) ∩ { (v1, . . . , vn) | vj0 − vi0 = m∗
i0j0

} then, by
Thm. 3.3.2, ∀i, j, vj − vi ≤ m∗

ij and vi0 − vj0 ≤ −m∗
i0j0

= m′
j0i0

. So,
∀i, j, vj − vi ≤ m′

ij.

Now suppose that γPot(m′) is empty. Then there exists a simple cycle in G(m′) with
strictly negative weight. Either one of the two cases bellow occur, both leading to a
contradiction.

› If the new arc from j0 to i0 is not in this cycle, then we conclude that this cycle
also exists in G(m) and that γPot(m) is empty, which is false.

› If this cycle contains the arc from j0 to i0, since the cycle is simple, the arc
cannot appear more than once and we can assume the cycle has the following
form: 〈i0, i1, . . . , iN−1 = j0, iN = i0〉. With this notation, we have:

N−2
∑

i=0

m′
ikik+1

+ m′
j0i0

< 0,

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.3 – Canonical Representation 59

so
N−2
∑

i=0

m∗
ikik+1

< m∗
i0j0

and 〈i0, . . . , iN−1 = j0〉 is a path in G(m∗) from i0 to j0 with weight strictly
smaller than m∗

i0j0
. As each m∗

ikik+1
is such that ik 6= ik+1, it can be replaced

with the total weight along a path from ik to ik+1 in G(m). By gluing these
together, we construct a path from i0 to j0 in G(m) with total weight strictly
smaller than m∗

i0j0
, which contradicts the fact that m∗ is closed.

We just proved that γPot(m) ∩ { (v1, . . . , vn) | vj0 − vi0 = m∗
i0j0

} 6= ∅ which proves
the saturation property.

2. Set a pair (i0, j0) such that m∗
i0j0

= +∞ and M ∈ I. We denote by m′ the DBM
equal to m∗ except that m′

j0i0
= min(m∗

j0i0
,−M). We can prove the same way as

for the first point that γPot(m′) = γPot(m) ∩ { (v1, . . . , vn) | vj0 − vi0 ≥ M } and
γPot(m′) 6= ∅.

”

Best Representation. We are now ready to prove that ∗ allows computing, among all
the DBM representations for γPot(m) and γZone(m), the best, that is, the smallest for
our abstract ordering ⊑DBM, provided that m has no simple cycle with a strictly negative
weight:

Theorem 3.3.4. Best abstraction of potential sets and zones.

1. m∗ = (αPot ◦ γPot)(m) = inf⊑DBM { n ∈ DBM | γPot(m) = γPot(n) } .

2. m∗ = (αZone ◦ γZone)(m) = inf⊑DBM { n ∈ DBM | γZone(m) = γZone(n) } .

„

Proof.

1. (αPot ◦ γPot)(m) = inf⊑DBM { n ∈ DBM | γPot(m) = γPot(n) } is a direct consequence
of choosing for αPot in Def. 3.2.3 the canonical abstraction associated to γPot . We
now prove that m∗ = inf⊑DBM { n ∈ DBM | γPot(m) = γPot(n) }. In order to do
this, we first recall that, by Thm. 3.3.2, γPot(m∗) = γPot(m). Finally, we prove that
γPot(n) = γPot(m∗) =⇒ m∗ ⊑DBM n. Suppose that γPot(n) = γPot(m∗) but m∗ 6⊑DBM

n. It means that for some i and j, m∗
ij > nij. We now use the saturation property

— Thm. 3.3.3 — to construct (v1, . . . , vn) ∈ γPot(m) such that vj − vi ≥ M for some
M such that n∗

ij < M ≤ m∗
ij. This point cannot satisfy the constraint vj − vi ≤ nij,

and so, is not in γPot(n), which contradicts our hypothesis γPot(n) = γPot(m).

Antoine Miné Weakly Relational Numerical Abstract Domains

60 Chapter 3: The Zone Abstract Domain

2. The proof is similar to that of the first point.
”

An immediate consequence is that ∗ is a normal form, that is (m∗)∗ = m∗. Thus, we
will say that m is closed if and only if m∗ = m. Another consequence is that m∗ ⊑DBM m.
As an illustration, Fig. 3.3 presents two DBMs (a) and (b) together with their common
closure (c).

3.3.3 Closure Algorithms

As for the problem of determining the shortest path from a node, mentioned in Sect. 3.3.1,
the problem of determining the shortest-path closure graph has been widely studied and
there exists several algorithms.

Floyd–Warshall Algorithm. The Floyd–Warshall algorithm [CLR90, § 26.2] computes
m∗ in cubic time by performing local transformations: for each node Vk, it checks for all
pairs (Vi, Vj) whether it would be shorter to pass through Vk instead of taking the direct
arc from Vi to Vj:

Definition 3.3.2. Floyd–Warshall algorithm.

m0 def

= m

mk
ij

def

= min(mk−1
ij , mk−1

ik + mk−1
kj) ∀ 1 ≤ i, j, k ≤ n

m∗
ij

def

=

{

mn
ij if i 6= j

0 if i = j

„

Def. 3.3.2 is fitted for DBMs representing potential sets where lines and columns are
numbered from 1 to n. In order to adapt it to DBMs representing zones, whose lines and
columns are numbered from 0 to n, one simply starts from m−1 def

= m instead of m0 def

= m
and applies the iterative steps for all 0 ≤ i, j, k ≤ n.

A nice property of this algorithm is that it solves both problems of determining whether
a graph has a simple cycle with strictly negative weight and computing its shortest-path
closure when this is not the case:

Theorem 3.3.5. Floyd–Warshall algorithm properties.

1. m has a cycle with strictly negative weight if and only if ∃i, mn
ii < 0.

2. If ∀i, mn
ii ≥ 0, then m∗ is the shortest-path closure of Def. 3.3.1.

„

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.3 – Canonical Representation 61

Proof.

The proof can be found, for instance, in [CLR90, § 26.2]. Nevertheless, we chose to include
it here to pave the way towards the more complex proofs involved in the Floyd–Warshall
algorithm extensions presented in Chaps. 4 and 5.
The algorithm invariant to prove is the following:

∀i, j, k, min
〈i=i1,i2,...,im=j〉

m−1
∑

l=1

milil+1
≤ mk

ij ≤ min
〈i=i1,i2,...,im=j〉

simple paths such that
il≤k for 1<l<m

m−1
∑

l=1

milil+1
.

The first inequality is obvious, and we prove the second one by induction on k:

› This is obviously true for k = 0 because, on the one hand there is only one simple
path from i to j with internal nodes lower than 0, which is 〈i, j〉, and, on the other
hand, m0 = m.

› Suppose the property is true for all k′ ≤ k. When k′ = k + 1, consider a simple
path 〈i = i1, i2, . . . , im = j〉 from i to j passing only through internal nodes such that
il ≤ k + 1. One of the following occurs:

‹ either il ≤ k for all 1 < l < m, so, mk+1
ij ≤ mk

ij ≤
∑m−1

l=1 milil+1

‹ or their exists a unique o between 1 and m such that io = k + 1, and we can
decompose the path into two sub-paths 〈i = i1, . . . , io = k + 1〉 and 〈k + 1 =
io, . . . , im = j〉 with internal nodes only smaller than k: mk+1

ij ≤ mk
i (k+1) +

mk
(k+1) j ≤

∑o−1
l=1 milil+1

+
∑m−1

l=o milil+1
=

∑m−1
l=1 milil+1

.

The first inequality when k = n states that if ∃i, mn
ii < 0, then there is a cycle passing

through i that has a strictly negative weight. Conversely, if there is a cycle with strictly
negative weight, then, by Thm. 3.3.1.2, there is also a simple cycle with strictly negative
weight and the second inequality guarantees that ∃i, mn

ii < 0.
If there is no such cycle, the minimum weight on the set of paths from i to j is the
minimum weight on the set of simple paths from i to j, so, by applying our induction
hypothesis for k = n, we get:

min
〈i=i1,i2,...,im=j〉

m−1
∑

l=1

milil+1
= mn

ij = min
〈i=i1,i2,...,im=j〉

simple path

m−1
∑

l=1

milil+1

which concludes the proof.
”

In order to check whether m has a cycle with strictly negative weight, it is sufficient
to check for trivial cycles 〈i, i〉 in mn, that is, diagonal elements mn

ii of mn such that

Antoine Miné Weakly Relational Numerical Abstract Domains

62 Chapter 3: The Zone Abstract Domain

mn
ii < 0. In practice, it can be worth checking the diagonal elements of all the intermediate

matrices mk: sometimes, an infeasible cycle is detected quite early, saving subsequent
useless computations.

Other nice properties of the Floyd–Warshall algorithm are its ease of implementation
and its interpretation as local constraints propagation that will allow us to generalise it to
other types of constraints in the following two chapters.

In-Place Implementation. A naive implementation of Def. 3.3.2 would make use of n
temporary matrices, m1 to mn, which is a waste of memory. A first optimisation is to
remark that only two matrices are needed at a given time to implement Def. 3.3.2 as mk+1

is defined using solely mk: we need only keeping the currently computed DBM as well as
the one computed in the last pass. In fact, we can do even better: we can update the matrix
in-place without any extra storage requirement, as proposed by the following algorithm:

Definition 3.3.3. In-place Floyd–Warshall algorithm.

for k = 1 to n
for i = 1 to n

for j = 1 to n
mij ← min(mij, mik + mkj)

for i = 1 to n
if mii < 0 return ⊥DBM else mii ← 0

return m

„

The intermediate matrices computed by this algorithm may be quite different from that
of Def. 3.3.2, but the result can be proved to be equal — see [CLR90, § 26.2], for instance.
Although Def. 3.3.3 is much nicer from an implementation point of view, we will keep
reasoning using the original version of Def. 3.3.2 because it is much simpler to describe
mathematically.

Johnson Algorithm. Another famous algorithm is the Johnson algorithm which com-
putes the shortest-path closure in O(n× s+n2 log n) time, where n is the number of nodes
and s is the number of arcs in the graph. It is based on the Bellman–Ford algorithm and
is much more complicated to implement, but it is more efficient than the Floyd–Warshall
algorithm when there are only few arcs. Experimental results show that DBMs are often
very full which means that the complexity benefit is thin in practice. Thus, we will stick
to the Floyd–Warshall algorithm and refer the reader to [CLR90, § 26.3] for a presentation
of the alternate Johnson algorithm.

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.3 – Canonical Representation 63

Extending the Closure Operator ∗. A natural way to extend the definition of the
closure ∗ as a total operator in DBM is to state that (⊥DBM)∗

def
= ⊥DBM and m∗ def

= ⊥DBM

whenever γ(m) = ∅. This way, the closure operator ∗ implements αPot◦γPot or, equivalently,
αZone ◦ γZone in all cases.

3.3.4 Incremental Closure

We propose here an incremental version of the Floyd–Warshall algorithm that is able to
compute the closure of an “almost closed” matrix. It can be used after a local modification
on a closed matrix that resulted in the matrix being no longer closed: it will be faster than
a full closure application.

We first propose a local characterisation of closed matrices:

Theorem 3.3.6. Local characterisation of closed matrices.

m is closed ⇐⇒ ∀i, j, k, mij ≤ mik + mkj and ∀i, mii = 0 .

„

Proof.

The direction ∀i, j, m∗
ij = mij =⇒ ∀i, j, k, mij ≤ mik + mkj and ∀i, mii = 0 is easy.

For all i 6= j, we use the path 〈i, k, j〉 in the definition of the closure of Def. 3.3.1 to get
mij = m∗

ij ≤ mik + mkj. For all i we have, by definition, mii = 0 = m∗
ii.

For the other direction, suppose that ∀i, j, k, mij ≤ mik + mkj and ∀i, mii = 0.
Given i and j, we prove that mij = m∗

ij. If i = j, we know that m∗
ii = 0, so mii = m∗

ii. If
i 6= j, we already know that m∗

ij ≤ mij and we can use an induction on l to prove that:

∀i, j, ∀l ≥ 1, ∀〈i = i1, . . . , il = j〉, mij ≤
l−1
∑

k=1

mikik+1

so that ∀i 6= j, mij ≤ m∗
ij.

Here is a proof by induction of this statement:

› If l = 2, then the property is obvious.

› If l > 2 and the path is 〈i = i1, . . . , il−1, il = j〉, then we use the induction hypothesis
to get:

mi il−1
≤

l−2
∑

k=1

mikik+1

and the fact that mij ≤ mi il−1
+ mil−1 j.

”

Antoine Miné Weakly Relational Numerical Abstract Domains

64 Chapter 3: The Zone Abstract Domain

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄
✄✁✄✁✄✁✄

☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎
☎✁☎✁☎✁☎

1 n

1

c

n

c

6= m∗

m∗

Figure 3.4: A matrix n equal to m∗ except for the last n − c lines and columns.

Suppose now that m is a closed DBM representing a potential set, that is, with lines
and columns numbered from 1 to n. Suppose also that n equals m = m∗ except for the
last n − c lines and columns: ∀ 1 ≤ i, j ≤ c, nij = mij, which is sketched in Fig. 3.4.
From a constraint point of view, this means that we may have altered only constraints
that contain at least a variable in Vc+1, . . . , Vn. The following algorithm, inspired from the
Floyd–Warshall algorithm, computes n∗ in time proportional to n3 − c3:

Definition 3.3.4. Incremental Floyd–Warshall algorithm.

n0 def

= n

nk
ij

def

=

{

nk−1
ij if i ≤ c, j ≤ c, and k ≤ c

min(nk−1
ij , nk−1

ik + nk−1
kj) otherwise

n∗
ij

def
=

{

nn
ij if i 6= j

0 if i = j

„

In the first c iterations, the algorithm only updates the last n − c lines and columns
of n. The last n − c iterations update the whole matrix, as the regular Floyd–Warshall
algorithm does.

Theorem 3.3.7. Incremental Closure.

n∗ as computed by the incremental Floyd–Warshall algorithm of Def. 3.3.4 is equal to n∗

as computed by the vanilla Floyd–Warshall algorithm of Def. 3.3.2.

„

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.4 – Set-Theoretic Operators 65

Proof.

By local closure property — Thm. 3.3.6 — we have mij ≤ mik + mkj, and so, ∀i, j, k ≤
c, nij ≤ nik + nkj. Thus, the c first steps of the regular Floyd–Warshall algorithm do
not modify nk

ij whenever i, j ≤ c. The incremental closure simply uses this information
to avoid useless computation.
”

By virtually reordering the variables, it is straightforward to design an incremental
closure algorithm that works when the n− c modified lines and columns are not necessarily
at the end of the matrix. We will denote by Inc∗

i1,...,in−c
(m) the application of the preceding

algorithm to the lines and columns numbered i1, . . . , in−c. A very common case is when
only one line and the corresponding column have been changed; in this case the algorithm
runs in quadratic time O(n2). It is important to remark that Inc∗

i1,i2
is not equivalent

to Inc∗
i1
◦ Inc∗

i2
: our incremental closure algorithm must treat all the modified lines and

columns at once. Note also that an in-place version of the incremental closure algorithm
in the spirit of Def. 3.3.3, easier to implement but harder to reason about, can be easily
designed.

3.4 Set-Theoretic Operators

We now propose abstract operators on DBM that correspond to set-theoretic operators on
Pot and Zone, including ∪♯ and ∩♯ that are necessary to define an abstract domain.

3.4.1 Equality Testing

We are able to compare two DBMs m1 and m2 using the ⊑DBM order, but this does not
always allow comparing two potential sets or zones as our γ operators are not injective.
The following theorem uses the “normal form”property of the closure to solve this problem:

Theorem 3.4.1. Equality testing.

1. m∗
1 = m∗

2 ⇐⇒ γPot(m1) = γPot(m2) .

2. m∗
1 = m∗

2 ⇐⇒ γZone(m1) = γZone(m2) .
„

Proof.

1. The =⇒ part is a consequence of Thm. 3.3.2. To prove the ⇐= part, we first apply
αPot to get (αPot ◦ γPot)(m1) = (αPot ◦ γZone)(m2), and then use the fact that ∀m ∈
DBM, m∗ = (αPot ◦ γPot)(m) proved by Thm. 3.3.4.

Antoine Miné Weakly Relational Numerical Abstract Domains

66 Chapter 3: The Zone Abstract Domain

2. This is a consequence of the first point and the fact that γZone(m1) = γZone(m2) ⇐⇒
γPot(m1) = γPot(m2).

”

Testing for equality is done point-wisely, and so, has a quadratic cost, not counting the
cubic cost of the closure operator.

3.4.2 Inclusion Testing

The situation is similar when testing inclusion: m ⊑DBM n =⇒ γPot(m) ⊆ γPot(n) but the
converse does not hold in general. As for equality testing, we will need to compute matrix
closures first. However, it is not necessary to close the right argument:

Theorem 3.4.2. Inclusion testing.

1. m∗
1 ⊑

DBM m2 ⇐⇒ γPot(m1) ⊆ γPot(m2) .

2. m∗
1 ⊑

DBM m2 ⇐⇒ γZone(m1) ⊆ γZone(m2) .

„

Proof.

1. The =⇒ part is a consequence of Thm. 3.3.2 and the monotonicity of γPot . To prove
the ⇐= part, we first apply the monotonic αPot to get (αPot ◦γPot)(m1) ⊑

DBM (αPot ◦
γPot)(m2), and then use the fact that ∀m ∈ DBM, m∗ = (αPot ◦ γPot)(m), proved
by Thm. 3.3.4, to get m∗

1 ⊑DBM m∗
2. We conclude by remarking that m∗

2 ⊑DBM m2

always holds.

2. This is a consequence of the first point and the fact that γZone(m1) ⊆ γZone(m2) ⇐⇒
γPot(m1) ⊆ γPot(m2).

”

3.4.3 Union Abstraction

The union ∪ of two zones (resp. potential sets) may not be a zone. Indeed, zones are convex
sets, which is not a property preserved by union. By monotonicity of γZone , m⊔DBM n gives
a sound abstraction of γZone(m) ∪ γZone(n). A less obvious fact is that the precision of
this operator greatly depends on which DBM argument is used among all DBMs that
represent the same zone. In particular, the best abstraction for the union is only reached
when the arguments are closed DBMs, as illustrated in Fig. 3.5. Thus, we define our union
abstractions as follows:

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.4 – Set-Theoretic Operators 67

m =

GFED@ABCY
3

¼¼GFED@ABCX

2
88

5 //GFED@ABCZ

n =

GFED@ABCY
2

¼¼GFED@ABCX

3
88

GFED@ABCZ

(m ⊔DBM n)∗=

GFED@ABCY
3

¼¼GFED@ABCX

3
88

6 //GFED@ABCZ

m∗ ⊔DBM n∗ =
(m∗ ⊔DBM n∗)∗ =

GFED@ABCY
3

¼¼GFED@ABCX

3
88

5 //GFED@ABCZ

Figure 3.5: Least upper bounds of zones based on ⊔DBM. DBMs should be closed for best
precision. This also ensures that the result is closed.

Definition 3.4.1. Union abstractions.

m ∪Pot n
def
= (m∗) ⊔DBM (n∗) .

m ∪Zone n
def
= (m∗) ⊔DBM (n∗) .

„

Theorem 3.4.3. Properties of the union abstractions.

1. γPot(m ∪Pot n) = inf⊆{ S ∈ Pot | S ⊇ γPot(m) ∪ γPot(n) } . (best abstraction)

2. γZone(m ∪Zone n) = inf⊆{ S ∈ Zone | S ⊇ γZone(m) ∪ γZone(n) } . (best abstraction)

3. m ∪Pot n and m ∪Zone n are closed.
„

Proof.

1. We first prove m ∪Pot n = inf⊑DBM{ o | γPot(o) ⊇ γPot(m) ∪ γPot(n) }, which is a
stronger result.

Whenever γPot(m) = ∅ (resp. γPot(n) = ∅), m∗ = ⊥DBM and the property is obvious.

We now suppose that γPot(m), γPot(n) 6= ∅. By Thm. 3.3.2 and the monotonicity of
γPot , we get that m ∪Pot n effectively over-approximates γPot(m) ∪ γPot(n) because
γPot(m) ∪ γPot(n) = γPot(m∗) ∪ γPot(n∗) ⊆ γPot(m∗ ⊔DBM n∗) = γPot(m ∪Pot n).

We now suppose that γPot(o) ⊇ γPot(m) ∪ γPot(n) and prove that m ∪Pot n ⊑DBM o.
Set two indexes i0 and j0 such that m∗

i0j0
, n∗

i0j0
< +∞. Using the saturation property

Antoine Miné Weakly Relational Numerical Abstract Domains

68 Chapter 3: The Zone Abstract Domain

of the closure (Thm. 3.3.3) we can find two points vm ∈ γPot(m) and vn ∈ γPot(n) such
that vm

j0
−vm

i0
= m∗

i0j0
and vn

j0
−vn

i0
= n∗

i0j0
. As these two elements are also in γPot(o), we

have vm
j0
−vm

i0
≤ oi0j0 and vn

j0
−vn

i0
≤ oi0j0 , which means that oi0j0 ≥ max(m∗

i0j0
,n∗

i0j0
) =

(m ∪Pot n)i0j0 . Whenever m∗
i0j0

= +∞ or n∗
i0j0

= +∞, the same reasoning allows
proving that oi0j0 ≥ M for every M , that is, oi0j0 = +∞ = (m ∪Pot n)i0j0 .

Because γPot is a complete ⊓−morphism, m∪Potn = inf⊑DBM{ o | γPot(o) ⊇ γPot(m)∪
γPot(n) } implies γPot(m ∪Pot n) = inf⊆{ S ∈ Pot | S ⊇ γPot(m) ∪ γPot(n) }.

2. This is a consequence of the first point and the isomorphism between Pot and Zone.

3. This is a consequence of m ∪Pot n = inf⊑DBM{ o | γPot(o) ⊇ γPot(m) ∪ γPot(n) },
proved in the first point, and Thm. 3.3.4.

”

Related Work. No abstract union operator for DBMs is used in the model-checking
community as it is not exact. The idea of taking point-wise maximums of upper bounds
of constraints has already been proposed by Balasundram and Kennedy in [BK89]. Even
though the authors are well-aware of the necessity to consider matrix arguments with the
tightest possible constraints to achieve optimal precision, they fail to present an algorithmic
way to construct such arguments, that is, our closure. The present abstract union operator
seems to have been introduced in its complete form for the first time by Shaman, Kolodner,
and Sagiv in [SKS00]. However, the authors perform an explicit closure on the result: they
did not remark that this is useless, as explained by Thm. 3.4.3.3.

Disjunctive Completion. Unions appear very frequently in a static analysis: each time
we encounter a control-flow join after a conditional or loop iteration. As our abstract union
is not exact, this can lead to a severe precision loss in the analysis result. One solution to
this problem is the disjunctive completion construction, proposed by Cousot and Cousot in
[CC92b], which can enrich any abstract domain into a distributive abstract domain, that
is, one that can represent disjunctions exactly. The idea is to consider, as new abstract
elements, sets of abstract values; such a set represents the union of the concretisations of
the elements. However, this is a theoretical construction and we still need to design efficient
data-structures and algorithms. This must be done on a domain-per-domain basis and we
now focus on the related work on the disjunctive completion for zones.

In the world of model-checking of timed-automata [Yov98], it is customary to represent
an abstract environment as a finite set of DBMs to represent exactly both conjunctions and
disjunctions of constraints of the form X − Y ≤ c. This has several drawbacks:

› The number of DBMs in each abstract set can grow very quickly. In particular,
intersecting two sets of m DBMs results in a set containing m2 DBMs.

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.4 – Set-Theoretic Operators 69

m =

GFED@ABCY
2

¼¼GFED@ABCX

3
88

6 //GFED@ABCZ

n =

GFED@ABCY
3

¼¼GFED@ABCX

2
88

7 //GFED@ABCZ

m∗ ⊓DBM n∗ =

GFED@ABCY
2

¼¼GFED@ABCX

2
88

5 //GFED@ABCZ

(m ⊓DBM n)∗ =
(m∗ ⊓DBM n∗)∗ =

GFED@ABCY
2

¼¼GFED@ABCX

2
88

4 //GFED@ABCZ

Figure 3.6: Intersection of zones based on ⊓DBM. The arguments do not need to be closed,
but the result is seldom closed.

› Many DBM sets can represent the same domain. Equality and inclusion testing
become very costly.

To address these problems, several alternate data structures have been proposed. Two
examples are Clock Difference Diagrams , introduced by Larsen, Weise, Wang, and Pearson
[LWYP99] and Difference Decision Diagrams , introduced by Møller, Lichtenberg, Ander-
sen, and Hulgaard in [MLAH99]. These tree-like data-structures resemble classical Binary
Decision Diagrams, introduced by Bryant in [Bry86] to compactly represent boolean func-
tions: each tree node is labelled by a potential constraint and its outgoing arcs represent
different satisfiability choices for this constraint. Thanks to the sharing of isomorphic sub-
trees, much memory is saved. Despite the lack of canonical form for both data structures,
inclusion, equality, and emptiness testing algorithms are proposed.

Adapting these data-structures to the needs of abstract interpretation is surely possible.
There is already some work by Bagnara, Hill, and Zaffanella on the design of widening
operators for disjunctive completions of abstract domains [BHZ03]. However, much work
still needs to be done. A fundamental problem is that this disjunctive completion is costly
due to its high precision. In order to be of practical use, the disjunctive completion of zones
should be provided with operators able to abstract away information with a parametric
cost versus precision trade-off. In the Astrée static analyser, whenever a more precise
treatment of unions was required, we relied on partitioning techniques instead of disjunctive
completion methods, as explained in Sect. 8.3.4.

Antoine Miné Weakly Relational Numerical Abstract Domains

70 Chapter 3: The Zone Abstract Domain

3.4.4 Intersection Abstraction

The intersection of two zones (resp. potential sets) is always a zone. The ⊓DBM operator
always computes a DBM representing the exact intersection of two zones, even when the
DBM arguments are not closed, as shown in Fig. 3.6, so, we define ∩Pot and ∩Zone as ⊓DBM:

Definition 3.4.2. Intersection abstractions.

m ∩Pot n
def

= m ⊓DBM n .

m ∩Zone n
def

= m ⊓DBM n .

„

Theorem 3.4.4. Properties of the abstract intersections.

1. γPot(m ∩Pot n) = γPot(m) ∩ γPot(n) . (exact abstraction)

2. γZone(m ∩Zone n) = γZone(m) ∩ γZone(n) . (exact abstraction)
„

Proof. This is a consequence of the fact that γZone and γPot are complete ⊓−morphisms.
”

The intersection ⊓DBM has been used for a long time in the model-checking community
[LLPY97, MB83]. It is important to remark that the result of an intersection is seldom
closed, even when the arguments are, as demonstrated in Fig. 3.6.

3.5 Conversion Operators

Our presentation of a static analyser for the numerical properties of Simple programs in
Sect. 2.4.2 is parametrised by a single numerical abstract domain. In practice, however,
it can be useful to use several abstract domains and switch dynamically between them to
adjust the cost versus precision trade-off. We propose here operators that allow converting
between the zone, interval, and polyhedron domains.

3.5.1 Conversion Between Zones and Intervals

From Intervals to Zones. Given an interval environment X♯ : V → B
Int , constructing

a DBM m such that γZone(m) = γInt(X♯) is straightforward:

Zone(X♯)
def

=

⊥DBM if ∃Vi, X♯(Vi) = ⊥Int
B

m where

m0i
def

= max (γInt
B

(X♯(Vi)))

mi0
def

= −min (γInt
B

(X♯(Vi)))

mij
def

= +∞ if i, j 6= 0

otherwise

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.5 – Conversion Operators 71

Note that this is an exact abstraction.

From Zones to Intervals. We first define a projection operator πi(m) that is able to
determine the maximum and minimum taken by the variable Vi in γZone(m). In order to
do this, we need to compute the closure of m:

Definition 3.5.1. Projection operator πi.

πi(m)
def

=

{

⊥Int
B

if m∗ = ⊥DBM

[−m∗
i0, m∗

0i] if m∗ 6= ⊥DBM

„

Theorem 3.5.1. Projection operator properties.

γInt(πi(m)) = { v ∈ I | ∃(v1, . . . , vn) ∈ γZone(m), vi = v } .

„

Proof. This is an easy consequence of the saturation property of Thm. 3.3.3. ”

Note that [−mi0, m0i] is a sound over-approximation of γInt(πi(m)), even when m is
not closed, but it may not be exact in this case.

Given a zone represented by a DBM m, we can compute its best abstraction as an
interval domain element as follows:

Int(m)
def

= λVi.πi(m) .

As the projection requires computing m’s closure, this operator has a cubic worst-case time
cost.

Galois Connection. Note that we have a Galois connection between DBMs representing

zones and intervals: DBM −−−−−→←−−−−−
Int

Zone
D

Int . In fact, Int = αInt ◦ γZone and Zone = αZone ◦ γInt .

Even though αInt and αZone are only partial functions when I = Q, this Galois connection
is total.

3.5.2 Conversion Between Zones and Polyhedra

From Zones to Polyhedra. Recall that a polyhedron can be internally represented as
a conjunction of linear inequality constraints. As zone constraints are only special cases of
linear inequality constraints, converting a DBM m into a polyhedron representing exactly
γZone(m) is straightforward. We will denote by Poly(m) the resulting polyhedron.

Antoine Miné Weakly Relational Numerical Abstract Domains

72 Chapter 3: The Zone Abstract Domain

From Polyhedra to Zones. Converting a non-empty polyhedron P in Rn or Qn into
a zone is more subtle. Surprisingly, the frame representation of P is more handy here.
Consider a finite set V of vertices and a finite set R of rays describing P . We denote
respectively by vi and ri the i−th coordinate of a vertex v ∈ V and a ray r ∈ R, starting
from i = 1. We generate zone constraints using the following procedure:

› for every i ≥ 1: if there is a ray r ∈ R such that ri > 0, we set m0i = +∞,
otherwise, we set m0i = max { vi | v ∈ V };

› for every i ≥ 1: if there is a ray r ∈ R such that ri < 0, we set mi0 = +∞,
otherwise, we set mi0 = −min { vi | v ∈ V };

› for every i, j ≥ 1, i 6= j:
if there is a ray r ∈ R such that ri > rj, we set mij = +∞,
otherwise, we set mij = max { vj − vi | v ∈ V };

› we set mii = 0 for all i ≥ 0.

This procedure returns a DBM representing the smallest zone including the polyhedron
in O(n2× (|R|+ |V |)) time. The frame representation for P does not need to be minimised,
however, it improves the conversion time if it is as there are fewer vertices and rays to
consider. We will denote by Zone(P) the resulting DBM. It is always closed.

The case I = Z is a little more subtle. Recall that the polyhedron domain in Z uses
the same representation — and algorithms — as the rational polyhedron domain, but with
an altered semantics: only the points with integer coordinates inside rational polyhedra
are considered; γPoly

Q (P) is replaced with γPoly
Q (P) ∩ Zn. Thus, the above algorithm would

generate a DBM with non-integer elements. We argue that it is safe to round each mij

to ⌊mij⌋; we may miss points in γPoly
Q (P) but not points in γPoly

Q (P) ∩ Zn. The rounded

matrix might not be closed. For instance, if n = 1 and γPoly
Q (P) = {(0.5)}, then the DBM

will be

m =
V0 V1

V0 0 ⌊−0.5⌋
V1 ⌊0.5⌋ 0

=
V0 V1

V0 0 −1
V1 0 0

and m∗ = ⊥DBM 6= m: the conversion has discovered that γPoly
Q (P)∩Zn = ∅. Finally, unlike

what happened in the Rn and Qn cases, our procedure does not always return the smallest
zone that encompasses γPoly

Q (P) ∩ Zn. Indeed, the ⌊·⌋ operator enforces some “integerness”
constraints on Zone(P) that were not present in the original polyhedron representation,
but it does not enforce all of them and we may still get points that are in γPoly

Q (P) but not

in γPoly
Q (P) ∩ Zn.

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.6 – Transfer Functions 73

Galois Connection. As for the conversion from and to the interval domain, there is a

total Galois connection between polyhedra and DBMs representing zones: D
Poly

−−−−−→←−−−−−
Zone

Poly

DBM. As a matter of fact, Poly = αPoly ◦ γZone and Zone = αZone ◦ γPoly , even though
αPoly is partial. We can deduce from this that (αZone , γZone) is a partial Galois connection
with respect to transfer functions involving linear expressions.

3.6 Transfer Functions

We now present our transfer functions for the zone abstract domain. Whenever possible,
we will propose several versions with different cost versus precision trade-offs. Also, some
transfer functions have a less costly version whenever the argument is closed, or whenever
we do not require the result to be closed. As all our transfer functions are strict in DBM,
we simplify our presentation by considering only the case where the argument is a matrix,
and not ⊥DBM.

Related Work. In [SKS00], Shaham, Kolodner, and Sagiv only propose abstract assign-
ment and test transfer functions for simple expressions that lead to exact abstractions. We
recall these, but also propose more generic ones. We also explicit the relationship between
the closure operator and the precision of our abstract transfer functions, which seems to
be quite a novelty. Finally, our definitions are somewhat related to the “linearisation”
technique that will be introduced later, in Chap. 6.

3.6.1 Forget Operators

Recall that the forget operator {|Vf ← ? |} of Sect. 2.4.3 corresponds to a non-deterministic
assignment into a variable and is quite useful as a fall-back assignment transfer function.
A first idea to implement an abstract forget operator is to simply remove all constraints
involving Vf :

Definition 3.6.1. Forget operator on zones {|Vf ← ? |}Zone.

({|Vf ← ? |}Zone(m))ij
def

=

mij if i 6= f and j 6= f
0 if i = j = f
+∞ otherwise

„

This always gives us a valid over-approximation of the forget operator and, whenever
the argument is a closed matrix, it is indeed exact:

Antoine Miné Weakly Relational Numerical Abstract Domains

74 Chapter 3: The Zone Abstract Domain

m
def
=

GFED@ABCX
2 //GFED@ABCY

3
²²GFED@ABCZ

1

OO

GFED@ABCT

{|X ← ? |}Zone(m) =

GFED@ABCX GFED@ABCY

3
²²GFED@ABCZ GFED@ABCT

{|X ← ? |}Zone(m∗) =

GFED@ABCX GFED@ABCY

3
²²GFED@ABCZ

3

>>~~~~~~~~~
6 //GFED@ABCT

{|X ← ? |}Zone

alt (m) =

GFED@ABCX GFED@ABCY

3
²²GFED@ABCZ

3

>>~~~~~~~~~ GFED@ABCT

Figure 3.7: Forget operators on zones. Note that γZone({|X ← ? |}Zone(m∗)) =
γZone({|X ← ? |}Zone

alt (m)) (γZone({|X ← ? |}Zone(m)).

Theorem 3.6.1. Soundness and exactness of {|Vf ← ? |}Zone.

1. γZone({|Vf ← ? |}Zone(m)) ⊇ { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γZone(m) } .

2. γZone({|Vf ← ? |}Zone(m∗)) = { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γZone(m) } .

3. {|Vf ← ? |}Zone(m) is closed whenever m is.
„

Proof.

1. We will prove that γPot({|Vf ← ? |}Zone(m)) ⊇ { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈
γPot(m) } which implies the desired property because γZone(m) ⊆ γZone(n) ⇐⇒
γPot(m) ⊆ γPot(n).

Let us take t ∈ I and ~v = (v1, . . . , vn) ∈ γPot(m). We want to prove that ~v ′ def

=
(v1, . . . , vf−1, t, vf+1, . . . , vn) ∈ γPot({|Vf ← ? |}Zone(m)); that is to say, if we denote

by v′
k the k−th coordinates of ~v ′: ∀i, j, v′

j − v′
i ≤ ({|Vf ← ? |}Zone(m))ij.

› If i, j 6= f , we have v′
j − v′

i = vj − vi ≤ mij = ({|Vf ← ? |}Zone(m))ij.

› If i = f or j = f but not both, then v′
j − v′

i ≤ +∞ = ({|Vf ← ? |}Zone(m))ij.

› Finally, if i = j = f , v′
j − v′

i = 0 = ({|Vf ← ? |}Zone(m))ij.

2. First, the property is obvious if m∗ = ⊥DBM, that is, γZone(m) = ∅, so, we will only
consider the case where m∗ 6= ⊥DBM. By the first point, γZone({|Vf ← ? |}Zone(m∗)) ⊇

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.6 – Transfer Functions 75

{ ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γZone(m∗) } = { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈
γZone(m) }, so, we only need to prove the converse inclusion. As for the first point,
we will prove instead that γPot({|Vf ← ? |}Zone(m∗)) ⊆ { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈
γPot(m) }, which is indeed sufficient.

Let us take ~v = (v1, . . . , vn) ∈ γPot({|Vf ← ? |}Zone(m∗)). We want to prove that there
exists a t such that ~v ′ = (v1, . . . , vf−1, t, vf+1, . . . , vn) ∈ γPot(m).

Let us first prove that maxj 6=f (vj −m∗
fj) ≤ mini6=f (vi +m∗

if). Suppose that this is not
the case, then there exists two indexes i 6= f and j 6= f such that vj −m∗

fj > vi +m∗
if .

By the local characterisation of the closure, Thm. 3.3.6, we have m∗
ij ≤ m∗

if + m∗
fj

and we get vj − vi > m∗
if + m∗

fj ≥ m∗
ij. This is absurd because ~v ∈ γPot({|Vf ←

? |}Zone(m∗)) implies vj − vi ≤ ({|Vf ← ? |}Zone(m∗))ij = m∗
ij for every i, j 6= f .

So there exists at least a t ∈ I such that:

max
j 6=f

(vj − m∗
fj) ≤ t ≤ min

i6=f
(vi + m∗

if) .

We now prove that any such t is a good choice, that is to say, ~v ′ ∈ γPot(m). We will
denote by v′

k the k−th coordinates of ~v ′.

› For all i 6= f and j 6= f , v′
j − v′

i = vj − vi ≤ ({|Vf ← ? |}Zone(m∗))ij = m∗
ij.

› If i = f but j 6= f , then, we have t ≥ maxj 6=f (vj − m∗
fj), and so, t ≥ vj − m∗

fj,
which implies v′

j − v′
i = vj − t ≤ m∗

ij.

› Similarly, when j = f and i 6= f , v′
j − v′

i = t− vi ≤ m∗
ij because t ≤ mini6=f (vi +

m∗
if).

› As m∗
ff = 0, ~v ′ satisfies the constraint t − t ≤ m∗

ff .

3. Suppose that m is closed and let us denote {|Vf ← ? |}Zone(m) by n. We use the local
definition of closure: by Thm. 3.3.6 it is sufficient to prove that ∀i, j, k, nij ≤ nik +nkj

and ∀i, nii = 0.

› We have easily ∀i, nii = 0. When i = f , this is enforced by the definition of
{|Vf ← ? |}Zone , while, when i 6= f , we have nii = mii = 0 because m is itself
closed.

› Set three variables i, j, and k. If all of i, j, and k are different from f , then
nij = mij ≤ mik+mkj = nik+nkj. If i = j = k = f , then nij = nik+nkj = 0. In
all other cases, at least one of nik and nkj is +∞, and so, nij ≤ nik +nkj = +∞.

”

Whenever the argument is not closed, the result may not be exact. The intuitive reason
is that, by forgetting constraints involving Vf , we also forget some implicit constraints on

Antoine Miné Weakly Relational Numerical Abstract Domains

76 Chapter 3: The Zone Abstract Domain

unmodified variables as we break all former paths passing through Vf . If the argument is
closed, however, all implicit constraints have been made explicit and this problem does not
occur. This is exemplified in Fig. 3.7. Unfortunately, if we are to close the argument of the
forget operator, its attractive linear cost becomes a less attractive cubic cost in the worst
case.

It turns out that, unlike what happens for the union, not all the implicit constraints
discovered by the closure are needed to get an exact operator. Only the information near
Vf needs to be taken into account. Using this remark, we introduce the following quadratic
time alternate forget operator:

Definition 3.6.2. Alternate forget operator on zones {|Vf ← ? |}Zone

alt .

({|Vf ← ? |}Zone

alt (m))ij
def
=

min(mij,mif + mfj) if i 6= f and j 6= f
mff if i = j = f
+∞ otherwise

„

This operator is exact, even when the argument is not a closed DBM. In that case, of
course, the result will not be closed.

Theorem 3.6.2. Exactness of {|Vf ← ? |}Zone

alt .

γZone({|Vf ← ? |}Zone

alt (m)) = { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γZone(m) } .

„

Proof.

We prove that ({|Vf ← ? |}Zone

alt (m))∗ = {|Vf ← ? |}Zone(m∗) which implies the desired
property because of Thm. 3.6.1.2.

Firstly, we consider the case m∗ 6= ⊥DBM. Let us consider a pair (i, j).

› If i = j, then ({|Vf ← ? |}Zone

alt (m))∗ij = ({|Vf ← ? |}Zone(m∗))ij = 0 because both
matrices are closed.

› If i = f or j = f , then {|Vf ← ? |}Zone(m∗)ij = +∞. On the other hand, there is no

path from i to j in G({|Vf ← ? |}Zone

alt (m)), so, ({|Vf ← ? |}Zone

alt (m))∗ij is also +∞.

› Suppose now that i 6= f , j 6= f , and i 6= j. We have ({|Vf ← ? |}Zone(m∗))ij = m∗
ij.

Let π be a path from i to j in G({|Vf ← ? |}Zone

alt (m)). Let us construct a path π′ from
i to j in G(m) as follows: we replace every arc (il, il+1) in π such that il, il+1 6= f and
({|Vf ← ? |}Zone

alt (m))ilil+1
= milf+mfil+1

with the sub-path 〈il, f, il+1〉. Then, the total

weight of π′ is exactly the same as π. This proves that m∗
ij ≤ ({|Vf ← ? |}Zone

alt (m))∗ij.

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.6 – Transfer Functions 77

Conversely, let π be a path in G(m) from i to j. We derive a path π′ in G({|Vf ←

? |}Zone

alt (m)) as follows: while there is a sub-path of the form 〈x, f, . . . , f, y〉 with x, y 6=
f in π, we replace it with 〈x, y〉. As m∗ 6= ⊥DBM, mff ≥ 0, and so, π′ has a weight

that is smaller than or equal to that of π, which implies ({|Vf ← ? |}Zone

alt (m))∗ij ≤ m∗
ij.

We now consider the case m∗ = ⊥DBM. There exists a simple cycle π in m with strictly
negative total weight. We now construct a cycle π′ in {|Vf ← ? |}Zone

alt (m) with strictly

negative weight; this will prove that ({|Vf ← ? |}Zone

alt (m))∗ = ⊥DBM = {|Vf ← ? |}Zone(m∗).
The cycle π′ is derived from π as follows: while there is a sub-path of the form 〈x, f, y〉 in
π, we replace it with 〈x, y〉. The resulting cycle π′ is either 〈f, f〉, or a cycle not passing
through f . In either case, its total weight in {|Vf ← ? |}Zone

alt (m) is smaller than or equal
to that of π in m.
”

The use of this alternate forget operator is also exemplified in Fig. 3.7.

3.6.2 Assignment Transfer Functions

Simple and Exact Cases. We first focus on the simpler case of assignments of the form
Vi ← [a, b] or Vi ← Vj ´ [a, b]. These kinds of assignment can be exactly modeled in the
zone domain.

Definition 3.6.3. Abstraction of simple assignments.

Invertible assignments:

› ({|Vj0 ← Vj0 ´ [a, b] |}Zone

exact(m))ij
def

=

mij − a if i = j0, j 6= j0

mij + b if i 6= j0, j = j0

mij otherwise

Non-invertible assignments (j0 6= i0):

› ({|Vj0 ← [a, b] |}Zone

exact(m))ij
def

=

−a if i = j0, j = 0
b if i = 0, j = j0

({|Vj0 ← ? |}Zone(m∗))ij otherwise

› ({|Vj0 ← Vi0 ´ [a, b] |}Zone

exact(m))ij
def

=

−a if i = j0, j = i0
b if i = i0, j = j0

({|Vj0 ← ? |}Zone(m∗))ij otherwise

„

Note that non-invertible assignments make use of the forget operator {|Vj0 ← ? |}Zone .
Thus, in order to get an exact abstraction, we should either close the matrix argument

Antoine Miné Weakly Relational Numerical Abstract Domains

78 Chapter 3: The Zone Abstract Domain

or use the quadratic {|Vj0 ← ? |}Zone

alt alternate version of the forget operator. Also, the

result of a non-invertible assignment is generally not closed. However, as {|Vj0 ← ? |}Zone

preserves the closure, if we use a closed argument, the closure of the result can be obtained
by performing the incremental closure of Def. 3.3.4 on the line and column j0. This is
not possible if we choose to use {|Vj0 ← ? |}Zone

alt on a non-closed matrix argument. These
remarks lead us to a quadratic algorithm that always returns the exact abstraction but also
preserves the closure:

› if m is closed, return Inc∗
j0

({|Vj0 ← expr |}Zone

exact(m));

› if m is not closed, return {|Vj0 ← expr |}Zone

alt (m) computed using the alternate forget
operator instead of the regular one.

The invertible assignment transfer function is much simpler: the constant time version
presented in Def. 3.6.3 is always exact. Also, the result is closed whenever the argument
is:

Theorem 3.6.3. {|Vj0 ← Vj0 ´ [a, b] |}Zone

exact preserves the closure.

If m is closed, then so is {|Vj0 ← Vj0 ´ [a, b] |}Zone

exact(m).

„

Proof.

Suppose that m is closed and denote by n the result {|Vj0 ← Vj0 ´ [a, b] |}Zone

exact(m).
We will use the local characterisation of the closure, Thm. 3.3.6. ∀i, nii = 0 because
∀i, nii = mii and m is closed. Let us consider i, j, k, we now prove that nij ≤ nik + nkj:

› If i, j, k 6= j0, then nij = mij ≤ mik + mkj = nik + nkj.

› Suppose that i = j0 but j, k 6= j0, then nij = mij − a ≤ mik + mkj − a = nik + nkj.

› Likewise, if j = j0 but i, k 6= j0, then nij = mij + b ≤ mik + mkj + b = nik + nkj.

› Suppose that k = j0 but i, j 6= j0, then nij = mij ≤ mij −a+b ≤ mik +mkj −a+b =
nik + nkj because a ≤ b. The situation is similar if i = j = j0 and k 6= j0.

› Finally, the cases where k = j0 and either i = j0 or j = j0 or both are obvious because
nj0j0 = mj0j0 = 0.

”

In order to deal with assignments that cannot be exactly modeled in the zone domain,
we propose several definitions, in increasing order of precision and cost. Also, more precise
versions only work for limited forms of assigned expressions.

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.6 – Transfer Functions 79

Interval-Based Assignment. A coarse method is to perform the assignment Vi ← expr
as in the interval domain: we first extract an interval abstract environment; then, we
evaluate expr using the interval abstract arithmetic operators, as described in Sect. 2.4.6;
finally, we force the resulting interval back into the zone domain. Using the conversion
operator defined in Sect. 3.5.1, this can be formalised as:

{|Vi ← expr |}Zone

nonrel(m)
def

= {|Vi ← (J expr KInt(Int(m))) |}Zone

exact(m) .

In order to extract precise interval information, m should be in closed form. Depending
on whether the argument is closed and whether we wish the result to be closed, the total
cost varies from linear to cubic, plus the cost of the interval computation which is linear in
the size of the expression expr .

The low precision of this transfer function comes from two facts. Firstly, we do not
infer any relational information of the form Vi − Vj. Secondly, we do not use the existing
relational information when computing the bounds of expr .

Deriving Relational Constraints. Our idea here is to solve the first cause of precision
loss in the interval-based assignment, while not handling the second one. We still use the
interval domain to compute bounds of expressions using only the information available in
Int(m). However, we compute the bounds of expr ¨ Vj for all i 6= j to infer constraints of
the form Vi − Vj. For instance, in the assignment X ← Y ´ Z, we would infer relations
such as min Z ≤ X −Y ≤ max Z and min Y ≤ X −Z ≤ max Y . In order to get that much
precision, it is important to simplify formally each expr ¨ Vj before evaluating it in the
interval domain: the precision improvement with respect to the interval-based assignment
lies in the fact that the bounds for expr¨Vj may be tighter than J expr KInt(Int(m))¨πj(m)
that one would get by merely closing the result of the interval-based assignment. In our
running example, (Y ´ Z) ¨ Y has been replaced with Z which gives a big precision
improvement when min Y 6= max Y : we get, for instance, X − Y ≤ max Z instead of
X − Y ≤ max Y − min Y + max Z.

We now propose a full formal definition of this idea, including the simplification step,
but only for the simpler yet useful case of assignments of interval linear forms: Vj0 ←
[a0, b0]´˝k([ak, bk]ˆVk). This is not a strong limitation as we will see, in Sect. 6.2.3, how
to abstract an arbitrary expression into an interval linear form.

Definition 3.6.4. Abstraction of interval linear form assignments.

Let e
def

= [a0, b0]´˝k([ak, bk]ˆ Vk). We define:

({|Vj0 ← e |}Zone

rel (m))ij
def

=

max(J e KInt(Int(m))) if i = 0 and j = j0

−min(J e KInt(Int(m))) if i = j0 and j = 0
max(J e a Vi KInt(Int(m))) if i 6= 0, j0 and j = j0

−min(J e a Vj KInt(Int(m))) if i = j0 and j 6= 0, j0

mij otherwise

Antoine Miné Weakly Relational Numerical Abstract Domains

80 Chapter 3: The Zone Abstract Domain

where the interval linear form e a Vi is defined as:1

e a Vi
def
= [a0, b0]´

(

˝k 6=i([ak, bk]ˆ Vk)
)

´ ([ai − 1, bi − 1]ˆ Vi) .

„

This assignment definition is more precise than the interval-based one at the cost of more
expression evaluations in the interval domain. It is not the best abstraction as we still do
not use the relational information in the zone when computing bounds for each expr ¨ Vj.
For the sake of efficiency, a practical implementation would avoid evaluating, in the interval
domain, 2n interval linear forms that are almost similar. For each i, it is possible to compute
J expr a Vi KInt(Int(m)) using only J expr KInt(Int(m)) and πi(m), however, many different
cases have to be considered because of the possible +∞ coefficients, so, we do not present
this optimisation here. It suffices to say that a careful implementation of this assignment
operator leads to a cost similar to the interval-based assignment presented in the preceding
paragraph: cubic if the argument is not closed, quadratic if the argument is closed and we
wish the result to be closed, using the incremental closure Inc∗

j0
, and linear if the argument

is closed but the result needs not be closed.

Polyhedron-Based Assignment. One can consider using temporarily the polyhedron
abstract domain to perform the assignment transfer function, and convert the result back
into a zone. This gives, using the conversion operators defined in Sect. 3.5.2:

{|Vi ← expr |}Zone

poly (m)
def

= (Zone ◦ {|Vi ← expr |}Poly ◦ Poly)(m) .

This will work only when expr is a linear or a quasi-linear form — that is, of the form
[a0, b0]´˝k(akˆVk) — as no polyhedron assignment is defined for other expression forms.
Whenever I 6= Z, the conversion to a polyhedron and the polyhedron assignment are exact
while the conversion to a zone is a best abstraction, so, we get the best abstract assignment
in the zone domain. We will see, in Sect. 6.2.5, a generic way to abstract an arbitrary
expression into a quasi-linear form, which greatly enlarges the scope of this definition.

The high precision reached by {|Vi ← expr |}Zone

poly calls for a great cost: because of the
way our conversion operators work, the polyhedron assignment transfer function is fed with
a constraint representation and we require its output in frame representation, which means
that at least one representation conversion will occur, incurring an exponential cost at
worse — consider, for instance, translating the box ∀i ≤ n, Vi ∈ [0, 1] by the assignment
V1 ← V1 + 1, which requires computing a frame representation containing 2n vertices.
It is not known to the author whether there exists an algorithm to achieve best linear
assignments for a smaller cost, without using the polyhedron domain.

1The a operator used here is a special case of the ` , a , b , and m operators we will introduce in
Sect. 6.2.2 to manipulate interval linear forms.

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.6 – Transfer Functions 81

Argument

0 ≤ Y ≤ 10
0 ≤ Z ≤ 10
0 ≤ Y − Z ≤ 10

⇓ X ← Y − Z

−10 ≤ X ≤ 10
−20 ≤ X − Y ≤ 10
−20 ≤ X − Z ≤ 10

−10 ≤ X ≤ 10
−10 ≤ X − Y ≤ 0
−10 ≤ X − Z ≤ 10

0 ≤ X ≤ 10
−10 ≤ X − Y ≤ 0
−10 ≤ X − Z ≤ 10

Interval-based Def. 3.6.4 Polyhedron-based
(best)

Figure 3.8: Constraints on the variable X derived after the assignment X ← Y −Z using
three different assignment transfer functions. Non-optimal bounds are shown in boldface.

This idea behind {|Vi ← expr |}Zone

poly can be carried further by considering any abstract
domain that has an exact abstraction for assignments of a certain kind, a practical algorithm
to compute the smallest zone encompassing an element in the domain, and the ability to
represent zones exactly.

In our implementation, we chose to use Def. 3.6.3 when applicable, Def. 3.6.4 if we
assign an interval linear form, and the interval-based assignment as a last resort. As the
cost of the polyhedron-based assignment nullifies the gain in time obtained by choosing the
zone domain instead of the polyhedron domain, we do not use it in actual static analy-
ses; however, it is useful to perform regression tests and experimental studies of precision
losses incurred when using non-optimal abstractions. Fig. 3.8 presents a comparison of our
three definitions on a complex assignment example. We have closed the three results and
presented only the constraints on the variable X to allow an easier comparison.

3.6.3 Test Transfer Functions

Preprocessing. In an attempt to simplify our definitions, we first show how the analysis
of any test can be reduced to the case (expr ¯ 0 ?). Consider a generic test: (expr 1 ⊲⊳

expr 2 ?). A first step is to group the expressions on the left side as follows: (expr 1¨expr 2 ⊲⊳

0 ?). Whenever ⊲⊳ is not ¯ we perform one of the following:

Antoine Miné Weakly Relational Numerical Abstract Domains

82 Chapter 3: The Zone Abstract Domain

› If ⊲⊳ is ˛, our test will be abstracted as:

{| expr 1 ¨ expr 2¯ 0 ? |}Zone(m) ∩Zone {| expr 2 ¨ expr 1¯ 0 ? |}Zone(m) .

› If ⊲⊳ is ˇ and I = Z, then we can use the test:

{| expr 1 ¨ expr 2 ´ 1¯ 0 ? |}Zone(m) .

› If ⊲⊳ is ˇ and I 6= Z, as we have no way represent exactly strict inequalities,2 we relax
it as a regular inequality:

{| expr 1 ¨ expr 2¯ 0 ? |}Zone(m) .

› If ⊲⊳ is ¸ and I = Z, we combine two inequalities:

{| expr 1 ¨ expr 2 ´ 1¯ 0 ? |}Zone(m) ∪Zone {| expr 2 ¨ expr 1 ´ 1¯ 0 ? |}Zone(m) .

› If ⊲⊳ is ¸ and I 6= Z, there is no better abstraction than the identity.

In order to abstract tests {| expr ¯ 0 ? |}, we use similar ideas as for assignments.

Simple and Exact Cases. If the test has the shape of a zone constraint, it can be
modeled exactly by simply adding the constraint to the DBM:

Definition 3.6.5. Abstraction of simple tests.

1. ({|Vj0 ´ [a, b]¯ 0 ? |}Zone

exact(m))ij
def

=

{

min(mij, −a) if i = 0, j = j0

mij otherwise

2. ({|Vj0 ¨ Vi0 ´ [a, b]¯ 0 ? |}Zone

exact(m))ij
def
=

{

min(mij, −a) if i = i0, j = j0

mij otherwise

„

Note that the argument matrix does not need to be closed. However, if this is the case,
the result, which is generally not closed, can be closed using the quadratic-cost incremental
closure Inc∗

j0
.

2Note that, in Sect. 5.4.3, we will extend the zone abstract domain to include strict inequalities.

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.6 – Transfer Functions 83

Interval-Based Abstraction. When expr has an arbitrary form, it is always possible
to fall back to the interval domain abstract test:

{| expr ¯ 0 ? |}Zone

nonrel(m)
def
= (Zone ◦ {| expr ¯ 0 ? |}Int ◦ Int)(m) ∩Zone m .

Because tests only filter out environments, it is safe to keep all the constraints of the ar-
gument DBM in the result, hence the intersection with m in our formula. This is quite
fortunate because (Zone ◦ {| expr ¯ 0 ? |}Int ◦ Int)(m) does not contain any relational con-
straint by itself. As a conclusion, we do not infer new relational constraints but at least we
keep all those that were valid before the test.

Because of the conversion to intervals, it is necessary for the argument m to be in
closed form to achieve maximal accuracy. Unlike what happened for assignments, one pass
of incremental closure is not sufficient to get a closed result as more than one line and
column may be modified. If the argument is not closed or we wish the result to be closed,
this gives a total cubic cost — in the number of variables |V| — plus the cost of the interval
transfer function, without much room for optimisation.

Deriving New Relational Constraints. In order to derive some new relational con-
straints, we can remark that expr ¯ 0 implies Vj − Vi¯Vj ¨ Vi ¨ expr . Whenever Vi or Vj

appears in expr , there is a possibility that Vj ¨ Vi ¨ expr might be simplified and, once
evaluated in the interval domain, may give a more precise upper bound for Vj −Vi than the
interval-based test. In the case of interval linear forms, using the a operator introduced
in the preceding section, we can define:

Definition 3.6.6. Interval linear form testing.

Let expr
def
= [a0, b0]´˝k([ak, bk]ˆ Vk), we define:

({| expr ¯ 0 ? |}Zone

rel (m))ij
def
= min(mij,nij)

where n is defined by:

nij
def
=

max(JVj a expr KInt(Int(m))) if i = 0 and j 6= 0
max(J aVi a expr KInt(Int(m))) if i 6= 0 and j = 0
max(JVj a Vi a expr KInt(Int(m))) if i 6= 0 and j 6= 0
0 if i = j = 0

„

A clever implementation would evaluate J expr KInt(Int(m)) only once and derive all
other constraints by applying correcting terms — care must be taken when dealing with
+∞ bounds. Thus, deriving the constraints has a quadratic cost, plus the cost of an
interval test transfer function. As for the interval-based test, the argument must be closed
for maximum accuracy in Int(m), but the result is not guaranteed to be closed.

Antoine Miné Weakly Relational Numerical Abstract Domains

84 Chapter 3: The Zone Abstract Domain

Argument

5 ≤ X ≤ 25
0 ≤ Y ≤ 10
0 ≤ Z ≤ 10
0 ≤ X − Y ≤ 20
−5 ≤ X − Z ≤ 25
−10 ≤ Y − Z ≤ 10

⇓ X ¯Y ¨ Z ?

5 ≤ X ≤ 10
5 ≤ Y ≤ 10
0 ≤ Z ≤ 5
0 ≤ X − Y ≤ 5
0 ≤ X − Z ≤ 10
0 ≤ Y − Z ≤ 10

5 ≤ X ≤ 10
5 ≤ Y ≤ 10
0 ≤ Z ≤ 5
X − Y = 0
0 ≤ X − Z ≤ 10
0 ≤ Y − Z ≤ 10

5 ≤ X ≤ 10
5 ≤ Y ≤ 10
Z = 0
X − Y = 0
5 ≤ X − Z ≤ 10
5 ≤ Y − Z ≤ 10

Interval-based Def. 3.6.6 Polyhedron-based
(best)

Figure 3.9: Constraints derived after the test (X ¯Y ¨Z ?) using our three test transfer
functions. Non-optimal bounds are shown in boldface.

Polyhedron-Based Test. As for the assignment, whenever expr has a quasi-linear form,
the best abstraction can be computed at great cost by switching momentarily to the poly-
hedron abstract domain:

{| expr ¯ 0 ? |}Zone

poly (m)
def
= (Zone ◦ {| expr ¯ 0 ? |}Poly ◦ Poly)(m) .

This has an exponential worst-case cost so, as for the polyhedron-based assignment, we will
refrain from using it in practice; it is presented it here merely for the sake of completion.
It is useful to compare, on theoretical examples, the preceding two methods with the best
possible abstraction. Such an example is provided by Fig. 3.9. Note that Def. 3.6.6 is not
guaranteed to be always at least as precise as the interval-based solution — even though
this is the case on the example of Fig. 3.9 — so, it can be worth to actually compute both
and return their intersection.

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.6 – Transfer Functions 85

3.6.4 Backwards Assignment Transfer Functions

Simple and Exact Cases. The backward assignments that can be modeled exactly are
similar to the exact assignments of Def. 3.6.3:

Definition 3.6.7. Abstraction of simple backward assignments.

Invertible assignments:

› ({|Vj0 → Vj0 ´ [a, b] |}Zone

exact(m))ij
def
=

mij + b if i = j0, j 6= j0

mij − a if i 6= j0, j = j0

mij otherwise

Non-invertible assignments (j0 6= i0):

› if m∗
0j0

≥ a and m∗
j00 ≥ −b, then

({|Vj0 → [a, b] |}Zone

exact(m))ij
def
=

min(m∗
ij,m

∗
j0j + b) if i = 0, j 6= 0, j0

min(m∗
ij,m

∗
ij0

− a) if j = 0, i 6= 0, j0

+∞ if i = j0 or j = j0

m∗
ij otherwise

otherwise, {|Vj0 → [a, b] |}Zone

exact(m)
def

= ⊥DBM

› if m∗
i0j0

≥ a and m∗
j0i0

≥ −b, then

({|Vj0 → Vi0 ´ [a, b] |}Zone

exact(m))ij
def
=

min(m∗
ij,m

∗
j0j + b) if i = i0, j 6= i0, j0

min(m∗
ij,m

∗
ij0

− a) if j = i0, i 6= i0, j0

+∞ if i = j0 or j = j0

m∗
ij otherwise

otherwise, {|Vj0 → Vi0 ´ [a, b] |}Zone

exact(m)
def
= ⊥DBM

„

The definition in the invertible case Vj0 → Vj0 ´ [a, b] is exactly equivalent to Vj0 ←
Vj0 ´ [−b,−a], so, it shares equivalent properties: it does not require a closed argument,
but it preserves the closure.

The non-invertible case Vj0 → Vi0 ´ [a, b] corresponds to substituting Vj0 with the as-
signed expressions in all the constraints in m. This generates new constraints that refine all
the constraints related to Vi0 but remove all information about Vj0 . Also, we may discover a
trivially unsatisfiable constraint and return ⊥DBM directly. This requires a closed argument
to achieve maximal precision. Provided the argument is closed, all elements unrelated to
Vi0 or Vj0 are left intact, so, the result can be closed in quadratic time using the incremental
closure Inc∗

i0,j0
. The non-invertible case Vj0 → [a, b] is similar except that we replace the

index i0 with 0.

Antoine Miné Weakly Relational Numerical Abstract Domains

86 Chapter 3: The Zone Abstract Domain

Interval-Based Backward Assignment. As for tests, we can use the interval backward
assignment to discover interval information, but we need a way to recover some relational
information as well. The idea is to keep in m all the constraints that are not invalidated by
the backward assignment. Thus, we combine the interval transfer function together with
the generic fall-back backward assignment which simply forgets the value of the assigned
variable:

{|Vi → expr |}Zone

nonrel(m)
def

=

(Zone ◦ {|Vi → expr |}Int ◦ Int)(m) ∩Zone {|Vi ← ? |}Zone(m∗) .

Polyhedron-Based Backward Assignment. As for the other two transfer functions,
whenever expr is quasi-linear, the best abstraction can be computed with exponential worst-
case cost using the polyhedron abstract domain:

{|Vi → expr |}Zone

poly (m)
def
= (Zone ◦ {|Vi → expr |}Poly ◦ Poly)(m) .

Deriving New Relational Constraints. In the assignment and test transfer functions
for interval linear forms, we were able to refine the interval-based transfer function by
inferring some new relational constraints, for a linear or quadratic extra cost. This idea
can be adapted to backward assignment, but with a cubic cost instead. Given the backward
assignment Vi → expr on m, we can derive for each variable Vj 6= Vi two interval linear
constraints by substitution: expr ¨ Vj ≤ mji and Vj ¨ expr ≤ mij. We can then apply
Def. 3.6.6 to derive an upper and lower bound for each Vk−Vl by evaluating, in the interval
domain, simplified versions of Vk ¨ Vl ¨ expr ´ Vj ´mji and Vk ¨ Vl ´ expr ¨ Vj ´mij.
As there is no obvious way to choose specific j, k, l among all possible triplets, we need to
generate a cubic number of constraints.

3.7 Extrapolation Operators

As the zone domain has both strictly increasing and strictly decreasing infinite chains,
widening and narrowing operators are required for the chaotic abstract iterations to con-
verge within finite time.

3.7.1 Widenings

Simple Widening. The main idea of the standard widenings on intervals ▽Int and poly-
hedra ▽Poly is to remove the unstable constraints, and keep only the stable ones. A similar
widening on zones can be defined point-wisely as follows:

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.7 – Extrapolation Operators 87

Definition 3.7.1. Standard widening ▽Zone
std on zones.

(m ▽Zone
std n)ij

def

=

{

mij if mij ≥ nij

+∞ otherwise

„

Proof. This is a special case of Def. 3.7.2, presented shortly. ”

Example 3.7.1. Using the standard zone widening.

Consider the following Simple program that iterates from 0 to N :

X ← 0;
N ← [0, +∞];
while ❶ X ˇN {

② X ← X ´ 1
③ }

④

We now present the zones computed by the chaotic iterations, with widening at point
❶ . For each iteration i, the abstract value corresponding to only one label l is changed;
we denote it by X i

l and ignore unmodified components. For the sake of concision, we
omit unimportant program labels, and do not show the iterations involving these omitted
labels as they can be reconstructed easily:

iteration i label l zone X i
l

0 ❶ X = 0 ∧ 0 ≤ N ∧ X − N ≤ 0
1 ② X = 0 ∧ 1 ≤ N ∧ X − N ≤ −1
2 ③ X = 1 ∧ 1 ≤ N ∧ X − N ≤ 0
3 ❶ ▽ 0 ≤ X ∧ 0 ≤ N ∧ X − N ≤ 0
4 ② 0 ≤ X ∧ 1 ≤ N ∧ X − N ≤ −1
5 ③ 1 ≤ X ∧ 1 ≤ N ∧ X − N ≤ 0
6 ❶ ▽ 0 ≤ X ∧ 0 ≤ N ∧ X − N ≤ 0
7 ④ 0 ≤ X ∧ 0 ≤ N ∧ X − N = 0

Of particular interest is the sequence X0
❶ ⊏DBM X3

❶ = X6
❶ that is able to infer the

loop invariant X ≤ N after two iterations with widening. Combined with the loop exit
condition X ≥ N , this allows proving that, at the end of the program, X = N .

„

Antoine Miné Weakly Relational Numerical Abstract Domains

88 Chapter 3: The Zone Abstract Domain

Enhanced Widenings. More generally, any widening on initial segments, that is, inter-
vals of the form [−∞, a], a ∈ I, gives rise to a widening on zones by point-wise extension.
For instance, [CC92c, § 8] proposes to improve the standard interval widening in order to
infer sign information: if an interval not containing 0 is not stable, we first try to see if
0 is a stable bound instead of deciding it should be set to ±∞. A further generalisation,
presented in [CC92c] and widely used in [BCC+02], is to design a widening parametric in
a finite set T ⊆ I of thresholds the stability of which should be tested before bailing out.
This adapts nicely to a family of zone widenings parameterised by T:

Definition 3.7.2. Widening with thresholds ▽Zone
th on zones.

(m ▽Zone
th n)ij

def

=

{

mij if mij ≥ nij

min { x ∈ T ∪ {+∞} | x ≥ nij } otherwise

„

Proof.

We prove that the two requirements of Def. 2.2.3 are satisfied:

› m,n ⊑DBM m ▽Zone
th n is quite obvious.

› Consider a sequence (mk)k∈N defined by mk+1 def

= mk ▽Zone
th nk. We can prove by

induction on k that, for each matrix position (i, j), mk
ij can only take values in the set

T∪ {+∞,m0
ij}, which is finite. As a consequence, mk can only take a value within a

finite set of matrices and, as it is an increasing sequence, it must be stable after some
finite k.

”

The sign-aware widening is a special instance of the widening with thresholds where
T = {0}, while T = ∅ corresponds to the standard widening. The height of our widening,
that is, the maximal length of an increasing sequence, is n2 × |T + 1|: the worst case
corresponds to stabilising to ⊤DBM after having tested each threshold for each of the n2

elements in turn.

Example 3.7.2. Using the widening with thresholds.

Consider the following Simple program that non-deterministically increments X and Y

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.7 – Extrapolation Operators 89

for an unbounded amount of time while ensuring that X ≤ Y + 10:

X ← 5;
Y ← 0;
while ❶ rand {

if rand { Y ← Y ´ 1 };

② if rand {

X ← X ´ 1;
if Y ´ 10ˇX { X ← Y ´ 10 }

③ }

④ }

The keyword rand in this program corresponds to a non-deterministic choice; it can be
effectively implemented as the boolean expression [0, 1]˛ 0 and the rand keyword is only
provided to increase the program readability.
The chaotic iterations with widening at ❶ , using ▽Zone

th with T = {10}, are:

iteration i label l zone X i
l

0 ❶ X = 5 ∧ Y = 0 ∧ X − Y = 5
1 ② X = 5 ∧ 0 ≤ Y ≤ 1 ∧ 4 ≤ X − Y ≤ 5
2 ③ X = 6 ∧ 0 ≤ Y ≤ 1 ∧ 5 ≤ X − Y ≤ 6
3 ④ 5 ≤ X ≤ 6 ∧ 0 ≤ Y ≤ 1 ∧ 4 ≤ X − Y ≤ 6
4 ❶ ▽ 5 ≤ X ≤ 10 ∧ 0 ≤ Y ≤ 10 ∧ −10 ≤ X − Y ≤ 10
5 ② 5 ≤ X ≤ 10 ∧ 0 ≤ Y ≤ 11 ∧ −11 ≤ X − Y ≤ 10
6 ③ 6 ≤ X ≤ 11 ∧ 0 ≤ Y ≤ 11 ∧ −10 ≤ X − Y ≤ 10
7 ④ 5 ≤ X ≤ 11 ∧ 0 ≤ Y ≤ 11 ∧ −11 ≤ X − Y ≤ 10
8 ❶ ▽ 5 ≤ X ∧ 0 ≤ Y ∧ X − Y ≤ 10
9 ② 5 ≤ X ∧ 0 ≤ Y ∧ X − Y ≤ 10
10 ③ 6 ≤ X ∧ 0 ≤ Y ∧ X − Y ≤ 10
11 ④ 5 ≤ X ∧ 0 ≤ Y ∧ X − Y ≤ 10
12 ❶ ▽ 5 ≤ X ∧ 0 ≤ Y ∧ X − Y ≤ 10

At iteration 4, the standard widening would lose all information about X − Y while the
widening with thresholds gives an opportunity for X − Y ≤ 10 to stabilise, which is
successful as X12

❶ = X8
❶ . Hence, it is able to prove that X − Y ≤ 10 is indeed a valid

loop invariant.

Note that it is not necessary to have exactly 10 in T if one simply wants to prove that
X − Y is bounded but not interested in the precise bound. Any constraint X − Y ≤ n
is stable provided that n ≥ 10, so, if T contains an element greater than 10, then the

Antoine Miné Weakly Relational Numerical Abstract Domains

90 Chapter 3: The Zone Abstract Domain

following loop invariant will be found: X − Y ≤ min(T ∩ [10, +∞[).

„

Related Work. In [SKS00], Shaham, Kolodner, and Sagiv proposed the following widen-
ing for DBMs representing potential sets:

(m ▽
Zone

[SKS00]
n)ij

def
=

{

mij if mij = nij

+∞ otherwise

which resembles our standard widening ▽Zone
std but is less precise unless m ⊑DBM n. There

is no reason for m ⊑DBM n to hold: n is obtained from m by applying abstract transfer
functions that need not be extensive nor monotonic. Moreover, [SKS00] insists on manip-
ulating only closed matrices. This means that the widening sequence mi+1

def

= mi ▽ ni is
effectively replaced with mi+1

def
= (mi ▽ ni)

∗ which is incorrect as we will see shortly.

3.7.2 Interactions between the Closure and our Widenings

Most operators and transfer functions we presented can be used on closed or non-closed
DBMs, generally at the cost of the some precision loss when the arguments are not closed.
The widenings presented in the preceding section differ in that the sequence mi+1

def

=
(m∗

i) ▽Zone ni may not converge in finite time even though mi+1
def
= mi ▽Zone ni always

does.
An intuitive explanation for this problem is that the proof of termination for the se-

quence mi relies on replacing more and more matrix coefficients with +∞, while the closure
tends to reduce the number of +∞ coefficients. We now give a practical example where the
termination of the iterations with widening is jeopardised by incorrect closure applications.

Example 3.7.3. Incorrect widening usage on zones.

Consider the matrices m0 and ni defined in Fig. 3.10. Then, the infinite sequence mi+1
def
=

(m∗
i) ▽Zone

std ni is strictly increasing. This sequence corresponds to the analysis of the
following program:

X ← 0;
Y ← [−1, 1];
while ❶ rand {

if X = Y {

if rand { Y ← X ´ [−1, 1] }

else { X ← Y ´ [−1, 1] }

}

② }

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.7 – Extrapolation Operators 91

m0
def

=

?>=<89:;0

1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä 0

··GFED@ABCY

1
33

1 // GFED@ABCX

0

__?????????

1

hh

ni
def

=

?>=<89:;0

i+1
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
Ä i+1

··GFED@ABCY

i+1
33

1 // GFED@ABCX

i+1

__?????????

1

hh

m2i =

?>=<89:;0

2i+1
§§

2i

³³GFED@ABCY

2i+1
00

1 // GFED@ABCX

2i

ff

1

hh

m2i+1 =

?>=<89:;0

2i+1
§§

2i+2

³³GFED@ABCY

2i+1
00

1 // GFED@ABCX

2i+2

ff

1

hh

Figure 3.10: Example of infinite increasing chain defined by mi+1
def

= (m∗
i) ▽Zone

std ni.

where mi corresponds to the chaotic iterations with widening at ❶ while ni is the abstract
element derived from mi at ② . If, however, we use the iteration sequence mi+1

def

=
mi ▽

Zone
std ni, then, after two iterations, we find the stable loop invariant −1 ≤ X−Y ≤ 1.

„

Intuitively, a DBM representing a zone can be seen as the reduced product, as defined
in Sect. 2.2.6, of a quadratic number of abstract domains, each one of them focusing on
the bounds of a single variable X or expression X − Y . With this in mind, our closure
∗ can be seen as a global n2−way reduction between all these abstract elements while
our widenings ▽Zone are component-wise extensions of classical interval widenings. The
unfortunate interaction between the closure and our widenings is then only an illustration
of the danger of performing a reduction after a component-wise widening on the reduced
product of abstract domains.

Remark, however, that closing the right argument is not a problem as the sequence
mi+1

def

= mi ▽Zone (n∗
i) always converges in finite time. This amounts to using a widening

▽′, defined by m▽′ n
def
= m▽ (n∗) which does not satisfy the requirement n ⊑DBM m▽′ n.

Fortunately, although Thm. 2.2.9 does not apply directly, it is still safe to use chaotic
iterations in this case, provided that the termination condition mi+1 ⊑DBM mi is replaced
with γZone(mi+1) ⊆ γZone(mi), that is, by Thm. 3.4.2, m∗

i+1 ⊑DBM mi. It should be

noted, however, that widenings are generally non-monotonic, and so, the sequence mi+1
def

=
mi ▽Zone (n∗

i) may not converge towards a more precise limit than mi+1
def

= mi ▽Zone ni.

Antoine Miné Weakly Relational Numerical Abstract Domains

92 Chapter 3: The Zone Abstract Domain

Future Work. It is possible in all our transfer functions and operators to safely replace
any argument m with another DBM m′ such that γZone(m′) = γZone(m), except when it
comes to our widenings. Their convergence indeed relies on information encoded in the
specific choice of a set of zone constraints and are no longer available when considering
only the zone it represents by γZone . This is unlike the standard widening on polyhedra,
introduced in [CH78] and then refined in [Hal79] and [BHRZ03], which is insensible to the
chosen polyhedron representation. An interesting future work would be to try and design
such a semantical widening on zones.

3.7.3 Narrowings

As for the widening, any narrowing on initial segments gives rise to a narrowing on the zone
domain by point-wise extension. We present here a “standard” narrowing which is based
on the standard narrowing △Int on intervals; it refines only constraints involving +∞:

Definition 3.7.3. Standard narrowing △Zone
std on zones.

(m △Zone
std n)ij

def
=

{

nij if mij = +∞
mij otherwise

„

Proof.

We prove that the two requirements of Def. 2.2.4 are satisfied:

› We obviously have m ⊓DBM n ⊑DBM m △Zone
std n ⊑DBM m.

› Consider a sequence defined by mk+1 def

= mk △Zone
std nk. Consider the set Sk of

matrix positions (i, j) such that mk
ij = +∞. A consequence of Def. 3.7.3 is that Sk

is decreasing for ⊆. So, there exists some k such that Sk = Sk+1. For such a k,
whenever mk

ij = +∞, we also have mk+1
ij = +∞. If mk

ij 6= +∞, then by Def. 3.7.3

we have mk+1
ij = mk

ij. We thus have proved that mk+1 = mk for this k.

”

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.7 – Extrapolation Operators 93

Example 3.7.4. Using the standard narrowing.

Consider the following Simple program that can increment X at most eleven times:

X ← 0;
I ← 0;
while ❶ I ¯ 10 {

② if rand { X ← X ´ 1 };

I ← I ´ 1
③ }

④

which gives the following iterations using the standard widening and narrowing at ❶ :

iteration i label l zone X i
l

0 ❶ X = 0 ∧ I = 0 ∧ I − X = 0
1 ② X = 0 ∧ I = 0 ∧ I − X = 0
2 ③ 0 ≤ X ≤ 1 ∧ I = 1 ∧ 0 ≤ I − X ≤ 1
3 ❶ ▽ 0 ≤ X ∧ 0 ≤ I ∧ 0 ≤ I − X
4 ② 0 ≤ X ≤ 10 ∧ 0 ≤ I ≤ 10 ∧ 0 ≤ I − X ≤ 10
5 ③ 0 ≤ X ≤ 11 ∧ 1 ≤ I ≤ 11 ∧ 0 ≤ I − X ≤ 11
6 ❶ ▽ 0 ≤ X ∧ 0 ≤ I ∧ 0 ≤ I − X
7 ❶ △ 0 ≤ X ≤ 11 ∧ 0 ≤ I ≤ 11 ∧ 0 ≤ I − X ≤ 11
8 ② 0 ≤ X ≤ 10 ∧ 0 ≤ I ≤ 10 ∧ 0 ≤ I − X ≤ 10
9 ③ 0 ≤ X ≤ 11 ∧ 1 ≤ I ≤ 11 ∧ 0 ≤ I − X ≤ 11
10 ❶ △ 0 ≤ X ≤ 11 ∧ 0 ≤ I ≤ 11 ∧ 0 ≤ I − X ≤ 11
11 ④ 0 ≤ X ≤ 11 ∧ I = 11 ∧ 0 ≤ I − X ≤ 11

Of particular interest are the increasing iterations with widening X0
❶ ⊏DBM X3

❶ = X6
❶ ,

followed by the decreasing iterations with narrowing X6
❶ ⊐DBM X7

❶ = X10
❶ . The iterations

with widening are able to prove that X ≤ I is a loop invariant. One narrowing application
is enough to recover the invariants I ≤ 11 and X ≤ 11 which cannot be inferred with
the standard widening solely. This invariants allows proving that, at the end of the loop,
I = 11 and X ≤ 11.
In the interval domain, we would still find the loop invariant I ≤ 11 and the invariant
I = 11 at ④ . However, as the upper bound on X is recovered after narrowing the upper
bound of I and using the relational invariant X ≤ I, the interval domain would not find
any upper bound on X despite the use of a narrowing.
Note that the invariant I ≤ 11 can be inferred using the widening with thresholds of
Def. 3.7.2 provided that 11 ∈ T. The narrowing method is more satisfying as it does not
necessitate a priori knowledge of the invariant to be found. Unlike Ex. 3.7.2, the value 11
to put in T does not appear syntactically in the program source. Conversely, the precise

Antoine Miné Weakly Relational Numerical Abstract Domains

94 Chapter 3: The Zone Abstract Domain

invariant X − Y ≤ 10 on Ex. 3.7.2 cannot be found using the standard widening and
narrowing because the test Y ´ 10ˇX that ensures that X does not grow too much is
not executed at each loop iteration, a condition sine qua non for the narrowing to refine
a loop invariant — a discussion on the subject can be found in [BCC+02, § 6.4].

„

Unlike what happened for our widenings, the sequence mk+1
def
= (m∗

k) △Zone
std nk will

always converge. However, △Zone
std is hardly monotonic in its left argument, so, unlike many

operators on zones, the result may be less precise if the left argument is closed.

3.8 Cost Considerations

3.8.1 Ways to close

Our most costly algorithm on DBMs is the closure with its cubic cost. As many oper-
ators require their arguments to be closed for best precision, the closure appears to be
the bottleneck of any static analysis based on the zone abstract domain. Fortunately, the
algorithm is sufficiently simple and regular to be optimised automatically by compilers. It
is also well-fitted for low-level parallelisation using the SIMD instruction sets of modern
processors and can be worth the effort of writing hand-optimised assembly code.

An orthogonal way to optimise the analysis cost without compromising the precision is
to avoid using the cubic closure algorithm and use instead, whenever possible, incremental
closures or algorithms that preserve the closure. Ideally, we would like to know, when
computing an abstract function, whether its result will be fed to an abstract function
requiring a closed argument or not. In the later case, we can choose the version of the
algorithm that does not preserve the closure as it is generally cheaper. Consider, for
instance, a sequence of m tests of the form Vi¨Vj ¯ c on a closed argument and whose result
should be in closed form. Using an incremental closure at each step would cost O(m× n2)
while using only one full closure at the end of the sequence would cost O(m + n3), which
is lighter if m is sufficiently large.

If the complete sequence of abstract functions to be called is known in advance — such
as in abstract compilation as opposed to abstract interpretation — a global optimisation
pass can select the optimal version for each function to minimise the overall cost. In the
context of the abstract interpretation of Simple programs, we have experimented with two
simple strategies: always choose the closure-preserving version of our transfer functions,
and always choose the non-preserving one. The former gives somewhat better results.
Experience shows that calls to abstract functions that do not need a closed argument are
rather isolated — for instance, long sequences of tests without any control-flow join do not
happen frequently and abstract intersections are rare.

Domaines numériques abstraits faiblement relationnels Antoine Miné

3.8 – Cost Considerations 95

3.8.2 Hollow Representation

Whenever memory is a concern, one can think of using a sparse matrix representation
where the +∞ elements are left implicit instead of full matrices that have a fixed quadratic
memory cost. Equivalently, we can use a graph-oriented representation using pairs of
pointers and (finite) weights for arcs. However, such representations are only effective
when there are lots of +∞ elements as they impose an overhead on each represented
matrix element — or graph arc. In their [LLPY97] article, Larsen, Larsson, Pettersson,
and Yi propose an algorithm to remove redundant constraints and maximise the number
of +∞ elements. We now briefly recall their algorithm.

Computing the Hollow Representation. Let m be a DBM. We first need to compute
its closure m∗. A constraint m∗

ij is called redundant if and only if there exists some k such
that m∗

ij = m∗
ik +m∗

kj. It seems that any such m∗
ij can be safely replaced with +∞ because

the precise constraint still exists implicitly in the matrix and can be recovered by a closure
application. Consider, however, the case where m∗

ij = m∗
ik + m∗

kj and the cycle 〈i, k, j〉
has a total weight of 0. One can prove, using the local characterisation of the closure,
Thm. 3.3.6, that we have m∗

ij + m∗
ji = m∗

ik + m∗
ki = m∗

jk + m∗
kj = 0, and so:

m∗
ij = m∗

ik + m∗
kj m∗

ji = m∗
jk + m∗

ki

m∗
ki = m∗

kj + m∗
ji m∗

ik = m∗
ij + m∗

jk

m∗
jk = m∗

ji + m∗
ik m∗

kj = m∗
ki + m∗

ij

so, our naive approach would remove all the constraints between i, j, and k at once, and
lose information. The solution proposed by [LLPY97] is to:

› First, determine equivalence classes for variables that appear on a cycle with a zero
total weight. By Thm. 3.3.6, two variables Vi and Vj are in the same equivalence class
if and only if m∗

ij = −m∗
ji. We denote by p(i) the smallest index of all the variables

in the same equivalence class as Vi.

› Then, construct a matrix from m∗ as follows:

‹ keep the element at line p(i), column p(j) if there does not exist k 6= i, j such
that m∗

p(i) p(j) = m∗
p(i) p(k) + m∗

p(k) p(j);

‹ for each equivalence class (i1, . . . , im) where i1 < i2 < · · · < im, keep all the
elements at position (ik, ik+1) and the element at position (im, i1);

‹ set all other elements to +∞.

We call the resulting matrix the hollow representation of m and denote it by
Hollow(m).

Antoine Miné Weakly Relational Numerical Abstract Domains

96 Chapter 3: The Zone Abstract Domain

The hollow representation is not unique as it depends upon an ordering among variables.
However, it is a representation for γZone that has as many +∞ as possible:

Theorem 3.8.1. Properties of the hollow representation.

1. (Hollow(m))∗ = m∗ .
As a consequence γZone(Hollow(m)) = γZone(m) and γPot(Hollow(m)) = γPot(m).

2. If o∗ = m∗, then o has a smaller or equal number of +∞ elements than Hollow(m).

3. Hollow(m) can be computed in cubic time.
„

Proof. Done in [LLPY97]. ”

Space Versus Time Trade-Off. We have seen in Sect. 3.8.1 that, except for the widen-
ing iterates, it is best to keep the matrices in closed form for precision and time efficiency
purposes. This requirement is in conflict with the use of a hollow representation. Also, us-
ing a sparse matrix data-structure, which is mandatory to actually benefit from the space
improvement of hollow representations, may incur an extra time cost on all algorithms.
Thus, a trade-off between space and time must be chosen.

A lazy approach, such as the ones used in memory swapping can be devised: all com-
putations are done using a full and closed matrix representation but, when memory runs
low, some DBMs among those not used recently are transformed into sparse and hollow
DBMs. Whenever needed, these“swapped-out”DBMs are restored into their full and closed
DBM representation. Special care must be taken for DBMs used in widenings: in order to
prevent the sequence from diverging, an iterate should never be replaced with a different
DBM representing the same zone. In particular, it cannot be closed or put in hollow form
— which requires closing. A simple solution is to mark such DBMs as “unswappable”.

3.9 Conclusion

We have presented, in this chapter, a fully-featured relational numerical abstract domain
for invariants of the form X − Y ≤ c and ±X ≤ c, called the zone abstract domain. It is
based on a matrix representation with a memory cost quadratic in the number of variables,
and algorithms based on shortest-path closure, so that it features a cubic worst-case time
cost per abstract operation. Thus, it is, in terms of precision and cost, strictly between the
interval and the polyhedron domains. Even though the zone abstract domain can be used
“as is”, it can also be seen as a step towards the design of the strictly more precise octagon
abstract domain that is presented in the next chapter.

Domaines numériques abstraits faiblement relationnels Antoine Miné

Chapter 4: The Octagon Abstract Domain 97

Chapter 4

The Octagon Abstract Domain

Le domaine abstrait des octogones est une extension du domaine des zones qui
permet de représenter et de manipuler des invariants de la forme ±X ±Y ≤ c
sans augmentation du coût asymptotique en temps et en mémoire. Un gros
travail est nécessaire pour adapter l’algorithme de plus-court chemin utilisé
dans le domaine des zones. Les autres algorithmes s’adaptent plus aisément.

The octagon abstract domain is an extension of the zone domain that can
represent and manipulate invariants of the form ±X±Y ≤ c without increasing
the asymptotic memory and time cost. Much work is needed to adapt the
shortest-path closure algorithm used in the zone domain, but then, all other
algorithms adapt more easily.

4.1 Introduction

In this chapter, we extend the zone abstract domain to infer constraints of the form ±X ±
Y ≤ c while keeping a quadratic memory cost and a cubic worst-case time cost per abstract
operation. Constraints of the form X+Y ∈ [a, b] are an interesting addition to the potential
constraints X − Y ≤ c. They allow representing, for instance, properties such as mutual
exclusion ¬(X∧Y), encoded as X ≥ 0 ∧ Y ≥ 0 ∧ X+Y ≤ 1, but also, numerical properties
on absolute values such as |X| ≤ Y + 1, encoded as X − Y ≤ 1 ∧ −X − Y ≤ 1.

Previous Work. Much work has been done to extend the shortest-path closure sat-
isfiability algorithm for potential constraints proposed initially by Bellmann [Bel58]. A
natural question is whether graph-based algorithms can apply to richer constraint forms.
For instance, the works of Shostak [Sho81] and Nelson [Nel78] present algorithms to test

Antoine Miné Weakly Relational Numerical Abstract Domains

98 Chapter 4: The Octagon Abstract Domain

the satisfiability of conjunctions of constraints of the form αX + βY ≤ c in R and Q. In
[JMSY94] and [HS97], Jaffar, Maher, Stuckey, Yap, and Harvey focus on constraints with
unit coefficients: ±X ± Y ≤ c; they also treat the more complex case of integers. These
works focus on satisfiability and do not study the more complex problem of manipulating
constraint conjunctions.

In [BK89], Balasundaram and Kennedy propose to use constraint of the form ±X ±
Y ≤ c to represent data access patterns in arrays in order to perform automatic loop
parallelisation. The authors present an intersection and a union algorithms, which are
unfortunately a little flawed — see Sect. 4.4.1 — and a transfer function to derive the
bounds in nested loops of a simple form, which is too specific for our purpose.

Our Contribution. As [JMSY94, HS97, BK89], we focus on unit constraints involving
two variables, ±X ± Y ≤ c, in Z, Q, and R, but propose a full abstract domain. Our
construction mimics that of the zone domain presented in the previous chapter. In particu-
lar, we first introduce a representation, then provide a normal form and state a saturation
property that is used to guarantee the precision of the subsequently introduced operators
and transfer functions.

4.2 Modified Representation

We call octagonal constraint any constraint of the form ±Vi±Vj ≤ c. Octagonal constraints
include potential constraints Vi − Vj ≤ c. Also, interval constraints Vi ≤ a, Vj ≥ b, can be
encoded respectively as Vi +Vi ≤ 2a and −Vj −Vj ≤ −2b, so, octagonal constraints include
all the zone constraints.

The set of points that satisfy a conjunction of octagonal constraints will be called an
octagon. We denote by Oct the set of all octagons for a given set of variables V . The
name “octagon” comes from the fact that, in two dimensions, the set of points satisfying
a conjunction of octagonal constraints is a planar convex polyhedron with at most eight
sides. More generally, in dimension n, an octagon has at most 2n2 faces. Note that the
exact same sets are refereed in [BK89] as simple sections by Balasundaram and Kennedy.

An important idea of the previous chapter, introduced in Sect. 3.2.1, was to use the
Difference Bound Matrix (DBM) representation for conjunction of potential constraints
and encode zone constraints as potential constraints using an additional variable V0 with
a special meaning. We use a similar idea here and also encode octagonal constraints as
potential constraints to benefit from the nice properties of DBMs and legacy algorithms.

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.2 – Modified Representation 99

(a)

V1 + V2 ≤ 3
V2 − V1 ≤ 3
V1 − V2 ≤ 3
−V1 − V2 ≤ −3
2V2 ≤ 2
−2V2 ≤ 8

(b)

ONMLHIJKV +
1

3 //

3
²²

ONMLHIJKV +
2

oo

3
²²8yyONMLHIJKV −

1

OO

3
//

2
99

ONMLHIJKV −
2

oo

OO

(c) �✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄✁✄✁✄✁✄

☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✁☎✁☎✁☎

✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✁✆✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝✁✝

✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞
✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞✁✞

✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟
✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟✁✟

✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠
✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠✁✠

✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡
✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡✁✡

☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛
☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛✁☛

☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞
☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞✁☞

V1

V2

Figure 4.1: A conjunction of octagonal constraints (a), its encoding as a potential graph
on V ′ (b), and the octagon it defines by γOct (c).

4.2.1 Octagonal Constraints Encoding

Given a set of variables V = {V1, . . . , Vn}, we introduce the set V ′ def
= {V ′

1 , . . . , V
′
2n}

containing twice as many variables. Each variable in Vi ∈ V has both a positive form
V ′

2i−1, also denoted by V +
i , and a negative form V ′

2i, also denoted by V −
i , in V ′. We will

encode octagonal constraints in V as potential constraints in V ′. Intuitively, in a potential
constraint, V +

i will represent Vi while V −
i will represent −Vi. More formally:

Definition 4.2.1. Encoding octagonal constraints as potential constraints.

The constraint is represented as
Vi − Vj ≤ c (i 6= j) V ′

2i−1 − V ′
2j−1 ≤ c and V ′

2j − V ′
2i ≤ c

Vi + Vj ≤ c (i 6= j) V ′
2i−1 − V ′

2j ≤ c and V ′
2j−1 − V ′

2i ≤ c
−Vi − Vj ≤ c (i 6= j) V ′

2i − V ′
2j−1 ≤ c and V ′

2j − V ′
2i−1 ≤ c

Vi ≤ c V ′
2i−1 − V ′

2i ≤ 2c
Vi ≥ c V ′

2i − V ′
2i−1 ≤ −2c

„

Thus, a conjunction of octagonal constraints in V can be represented as a DBM of
dimension 2n, that is, a 2n × 2n matrix with elements in I = I ∪ {+∞} or, equivalently,
a potential graph with nodes in V ′ and weights in I. As for DBMs representing potential
sets, we number the lines and columns from 1 to 2n, and the line or column i corresponds
to the variable V ′

i , that is V⌈i/2⌉. Our encoding is exemplified in Fig. 4.1.

Concretisation. Given a DBM m of dimension 2n, we can define formally the octagon
in P(In) described by m as follows:

Antoine Miné Weakly Relational Numerical Abstract Domains

100 Chapter 4: The Octagon Abstract Domain

Definition 4.2.2. Octagon concretisation γOct of a DBM.

γOct(m)
def

= { (v1, . . . , vn) ∈ In | (v1,−v1, . . . , vn,−vn) ∈ γPot(m) } .

Oct
def
= { γOct(m) | m ∈ DBM } .

„

As for γZone defined in Def. 3.2.2, γOct combines the semantics of potential constraints,
expressed using γPot , with constraints inherent to our encoding, that is, ∀i ≥ 1, V ′

2i−1 =
−V ′

2i. If we denote by Π the plane { ~v ′ ∈ I2n | v′
2i−1 = −v′

2i }, there is a bijection between
γPot(m) ∩ Π and γOct(m).

4.2.2 Coherence

Note that in Def. 4.2.1 some octagonal constraints have two different encodings as potential
constraints in V ′, and so, are defined by two elements in the DBM representation. We will
say that a DBM is coherent if each constraint in such a related pair is equivalent to the
other one. More formally:

Definition 4.2.3. Coherent DBMs and the · operator.

m ∈ DBM is coherent
def

⇐⇒ ∀i, j, mij = m ı

where the · operator on indexes is defined as: ı
def
=

{

i + 1 if i is odd
i − 1 if i is even

„

Intuitively, the · operator corresponds to switching between the positive and the negative
form of a variable. Obviously, ı = i. Also, the · operator can be easily implemented using
the xor bit-wise exclusive or operator as ı − 1 = (i − 1) xor 1.

4.2.3 Lattice Structure

From now on in this chapter, we will only work with coherent DBMs. We denote
by cDBM the set of coherent DBMs enriched with a bottom element ⊥DBM. The ex-
act lattice construction of Thm. 3.2.2 can be restricted to cDBM because ⊔DBM and
⊓DBM preserve the coherence, and ⊤DBM is itself coherent. We thus obtain a lattice
(cDBM,⊑DBM,⊔DBM,⊓DBM,⊥DBM,⊤DBM). Moreover, when I = Z or I = R, this lattice is
complete. Finally, γOct , extended to cDBM by γOct(⊥DBM) = ∅, is a complete ⊓−morphism
— and, thus, it is monotonic.

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.3 – Modified Closure Algorithms 101

Partial Galois Connection. By Thm. 2.2.3, we can define a canonical partial αOct and

get a partial Galois connection P(V → I) −−−−→←−−−−
αOct

γOct

cDBM:

› αOct(R)
def
= ⊥DBM if R = ∅,

›
(

αOct(R)
)

ij

def
=

min { ρ(Vl) − ρ(Vk) | ρ ∈ R } when i = 2k − 1, j = 2l − 1
or i = 2l, j = 2k

min { ρ(Vl) + ρ(Vk) | ρ ∈ R } when i = 2k, j = 2l − 1
min { −ρ(Vl) − ρ(Vk) | ρ ∈ R } when i = 2k − 1, j = 2l

if R 6= ∅.

As for the zone abstract domain, the Galois connection is partial for all transfer functions
involving only interval linear forms, at least. Moreover, if I ∈ {Z, R}, then αOct is total
and we obtain a regular Galois connection.

4.3 Modified Closure Algorithms

As γOct is not injective, we are interested in finding a canonical representation of octagons
as coherent DBMs. This is always possible because (αOct , γOct) is Id−partial: ∀m ∈
cDBM, (αOct ◦ γOct)(m) always exist. We will see, however, that the actual computation
of this canonical form is a little more complex than it was for potential sets and zones.

4.3.1 Emptiness Testing

We first focus on the problem of determining the satisfiability of a conjunction of octagonal
constraints when I is Q or R. Thanks to the following theorem, it can be reduced to the
satisfiability of potential constraints, a problem already solved in the previous chapter:

Theorem 4.3.1. Satisfiability of a conjunction of octagonal constraints.

When I ∈ {Q, R}, γOct(m) = ∅ ⇐⇒ γPot(m) = ∅.

„

Proof.

If γPot(m) = ∅ then, obviously, γOct(m) = ∅ by Def. 4.2.2.
We now suppose that γPot(m) 6= ∅ and prove that γOct(m) 6= ∅ as well. Take ~v ′ =
(v′

1, . . . , v
′
2n) ∈ γPot(m). We have ∀i, j, v′

j − v′
i ≤ mij. By coherence of m, this implies

∀i, j, v′
ı − v′

 ≤ m ı = mij, which means that ~w ′ def
= (−v′

2,−v′
1, . . . ,−v′

2n,−v′
2n−1) ∈

γPot(m) as well. As γPot(m) is defined by an intersection of half-spaces, it is convex, so,
the point ~z ′ def

= (~v ′ + ~w ′)/2 is also in γPot(m). Moreover, the coordinates z′i of ~z ′ verify:

Antoine Miné Weakly Relational Numerical Abstract Domains

102 Chapter 4: The Octagon Abstract Domain

ONMLHIJKV +
1

ONMLHIJKV −
2

4
²²ONMLHIJKV −

1

2

OO

ONMLHIJKV +
2

ONMLHIJKV +
1

ONMLHIJKV −
2

4
²²

3oo

ONMLHIJKV −
1

2

OO

3
// ONMLHIJKV +

2

Figure 4.2: Two different closed potential graphs that represent the same octagon: V1 ≤
1 ∧ V2 ≤ 2.

∀i, z′2i = (v′
2i − v′

2i−1)/2 = −z′2i−1. By Def. 4.2.2, this means that (z1, z3, . . . , z2n−1) ∈
γOct(m).

When I = Z, this proof does not hold because ~z ′ may not be in γPot(m) whenever some
v′

2i − v′
2i−1 is not even.

”

Using Thm. 4.3.1 in conjunction with Thm. 3.3.1, γOct(m) = ∅ is equivalent to the
existence of a cycle — or equivalently a simple cycle — with strictly negative total weight,
and can be tested using the Bellman–Ford algorithm, for instance. Note that this theorem
is not true when I = Z; the integer case will be discussed in more details in Sect. 4.3.5.

4.3.2 Strong Closure

Let us now consider a DBM m such that γOct(m) 6= ∅. We saw in the previous chap-
ter that m’s shortest-path closure m∗ exists and is the canonical representation for
γPot(m) and γZone(m). It is easy to see that, if m is coherent, so is m∗. However,
γPot(m) = γPot(n) =⇒ γOct(m) = γOct(n), but the converse is not true, so, m∗ may
not be m’s canonical representation for γOct(m). Indeed, Fig. 4.2 presents two closed
DBMs representing the same octagon, but different potential sets.

Intuition. Recall that, on the one hand, the local characterisation of the closure expresses
that m is closed if and only if ∀i, j, mij ≤ mik + mkj and, on the other hand, the Floyd–

Warshall closure algorithm performs steps of the form mk
ij

def

= min(mk−1
ij , mk−1

ik + mk−1
kj).

Hence, we can see the Floyd–Warshall algorithm as performing local constraint propagations
of the form:

{

V ′
i − V ′

k ≤ c
V ′

k − V ′
j ≤ d

=⇒ V ′
i − V ′

j ≤ c + d

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.3 – Modified Closure Algorithms 103

until no further propagation can be done. Our idea is to add a second form of local
constraint propagation:

{

V ′
ı − V ′

i ≤ c
V ′

j − V ′
 ≤ d

=⇒ V ′
j − V ′

i ≤ (c + d)/2

that is, replacing mij with min(mij, (mi ı + mj)/2). This second transformation is valid
because we are interested only in points such that V ′

i = −V ′
ı . On V , it corresponds

to adding two unary constraints ±2Vi ≤ c and ±2Vj ≤ d to derive a binary constraint
±Vj ± Vi ≤ (c + d)/2. However, the second transformation works on pairs of edges that do
not form a path in the potential graph, and so, cannot be reduced to the first transformation.

Formalisation. A DBM in R or Q that is stable by our two local transformations will
be said to be strongly closed, which is formalised as:

Definition 4.3.1. Strong closure.

A coherent DBM m in R or Q is said to be strongly closed if and only if:

∀i, j, k, mij ≤ mik + mkj

∀i, j, mij ≤ (mi ı + mj)/2
∀i, mii = 0

„

Note that strong closure implies regular closure.
As for the emptiness test of Thm. 4.3.1, we restrict ourselves to the case where I 6= Z.

Indeed, our definition of strong closure uses of a division by 2 which is ill-defined on integers.
The precise treatment of the case I = Z is postponed to Sect. 4.3.5.

Saturation. As closed DBMs, strongly closed DBMs enjoy a saturation property, that
is, every octagonal constraint in a strongly closed DBM actually “touches” the octagon:

Theorem 4.3.2. Saturation of strongly closed DBMs.

If I ∈ {Q, R} and m is strongly closed, then:

1. ∀i, j, if mij < +∞, then ∃(v1, . . . , vn) ∈ γOct(m) such that v′
j − v′

i = mij.

2. ∀i, j, if mij = +∞, then ∀M < +∞, ∃(v1, . . . , vn) ∈ γOct(m)
such that v′

j − v′
i ≥ M.

where the v′
k are derived from the vk by v′

2k−1
def
= vk and v′

2k
def
= −vk.

„

Antoine Miné Weakly Relational Numerical Abstract Domains

104 Chapter 4: The Octagon Abstract Domain

Proof.

1. Set a pair (i0, j0) such that mi0j0 < +∞.

The case i0 = j0 is easy: as m is strongly closed, we have mi0j0 = 0 and any point
(v1, . . . , vn) ∈ γOct(m) 6= ∅ is such that v′

i0
− v′

i0
≤ 0.

We now consider the much more complex case i0 6= j0. We denote by m′ the matrix
equal to m except that m′

j0i0

def
= m′

ı0 0

def
= −mi0j0 . It is a coherent DBM.

Let us define S as S
def

= { (v1, . . . , vn) ∈ γOct(m) | v′
j0
− v′

i0
= mi0j0 } where the v′

k

are derived from the vk by stating that v′
2k−1

def
= vk and v′

2k
def
= −vk. We first prove

that γOct(m′) = S.

› As γOct(m) 6= ∅, there is no cycle with strictly negative weight in m, so, mj0i0 ≥
−mi0j0 = m′

j0i0
and, similarly m ı0 0 ≥ −m0 ı0 = m′

ı0 0
. This means that

m′ ⊑DBM m, and so, γOct(m′) ⊆ γOct(m).

› Consider (v1, . . . , vn) ∈ γOct(m′). Then, −m′
j0i0

≤ v′
j0
− v′

i0
≤ m′

i0j0
, which, by

definition of m′, implies v′
j0
− v′

i0
= mi0j0 . Together with the preceding point,

this implies γOct(m′) ⊆ S

› Conversely, if (v1, . . . , vn) ∈ S, then it is easy to see that ∀i, j, v′
j − v′

i ≤ m′
ij.

To prove the desired property, it is now sufficient to check that γOct(m′) is not empty,
that is, that m′ has no simple cycle with a strictly negative total weight. Suppose
that there exists such a simple cycle 〈i = k1, . . . , kl = i〉. We distinguish several cases
that all lead to an absurdity:

› If neither of the two modified arcs — from j0 to i0 and from ı0 to 0 — are
in this strictly negative cycle, this cycle also exists in G(m) and γOct(m) = ∅,
which is not true.

› Suppose now that the strictly negative cycle contains only one of these two
modified arcs say, the arc from j0 to i0. It contains this arc only once, as the
cycle is simple. By adequately shifting the indexes of the cycle, we can assume
the existence of a strictly negative cycle of the form: 〈k1 = j0, k2 = i0, k3, . . . ,
kl = j0〉, where 〈k2 = i0, k3, . . . , kl = j0〉 is a valid path in G(m). This path is
such that

l−1
∑

x=2

mkxkx+1
< −m′

j0i0
= mi0j0

that is, there is a path in m from i0 to j0 with a weight strictly smaller than
mi0j0 , which is absurd because, m being strongly closed, it is also closed.

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.3 – Modified Closure Algorithms 105

› Finally, suppose that the two modified arcs are in this cycle. Each one of them
can appear only once, so, we can — without loss of generality — rewrite the
cycle as: 〈k1 = 0 , . . . , ka = j0, ka+1 = i0, . . . , kb = ı0 , kb+1 = 0 〉, where the
sub-paths 〈k1 = 0 , . . . , ka = j0〉 and 〈ka+1 = i0, . . . , kb = ı0 〉 are in G(m). We
then have:

(

a−1
∑

x=1

mkxkx+1

)

+ m′
j0i0

+

b−1
∑

x=a+1

mkxkx+1

 + m′
ı0 0

< 0 .

Because m is strongly closed, it is also closed, and we have:

m0 j0 ≤
a−1
∑

x=1

mkxkx+1
and mi0 ı0 ≤

b−1
∑

x=a+1

mkxkx+1

which combines with the preceding inequality to give:

m0 j0 + m′
j0i0

+ mi0 ı0 + m′
ı0 0

< 0

that is:
mi0j0 > (m0 j0 + mi0 ı0)/2

which contradicts the fact that m is strongly closed.

2. Set a pair (i0, j0) such that mij = +∞ and M ∈ I. We denote by m′ the DBM equal

to m except that m′
j0i0

def
= m′

ı0 0

def
= min(mj0i0 ,−M). We can prove the same way

as in the first point that γOct(m′) = { (v1, . . . , vn) ∈ γOct(m) | v′
j0
− v′

i0
≥ M } and

γOct(m′) 6= ∅.
”

This strong closure property will be used pervasively in our subsequent proofs: it pro-
vides a strong link between octagons and their representations.

Best Representation. A first consequence of the saturation property is that, if
γOct(m) 6= ∅, then there is a unique strongly closed DBM that has the same concreti-
sation as γOct(m). We denote by m• this DBM. By extending • to a full function from
cDBM to cDBM by stating that m• = ⊥DBM whenever γOct(m) = ∅, we obtain the normal
form we seek:

Theorem 4.3.3. Best abstraction of octagons.

If I ∈ {Q, R},
then m• = (αOct ◦ γOct)(m) = inf⊑DBM { n ∈ DBM | γOct(m) = γOct(n) } .

„

Proof. This is an easy consequence of Thm. 4.3.2. ”

Antoine Miné Weakly Relational Numerical Abstract Domains

106 Chapter 4: The Octagon Abstract Domain

4.3.3 Floyd–Warshall Algorithm for Strong Closure

We now present a modified version of the Floyd–Warshall algorithm that uses our two local
transformations to compute m• in cubic time:

Definition 4.3.2. Floyd–Warshall algorithm for strong closure.

(m•)ij
def

=

0 if i = j

mn
ij if i 6= j

where mk def
=

m if k = 0

S(C2k−1(mk−1)) if 1 ≤ k ≤ n

and (S(n))ij
def
= min(nij, (ni ı + n j)/2)

and
(

Ck(n)
)

ij

def
= min (nij, nik + nkj, nik + nkj,

nik + nkk + nkj, nik + nkk + nkj) .

„

As the classical Floyd–Warshall algorithm, this algorithm performs n steps. Each step
computes a new matrix in quadratic time. However, each step now uses two passes: a S
pass and a Ck pass. We recognise in S our second local transformation. Ck looks like
an inflated version of the classical Floyd–Warshall local transformation: we try and see if
a shorter way to go from i to j is to pass through k, but we also try passing through k,
and through k and then k, and finally through k and then k. This increase in complexity
as well as the interleaving of S and Ck passes is very important to ensure that the local
characterisation of the strong closure is verified for more and more elements, that is, to
ensure that what is enforced by a pass is not destroyed later. Unfortunately, there does not
seem to exist a simple and intuitive reason for the exact formulas of Def. 4.3.2: this should
be considered as a technicality required for the proof of the following Thm. 4.3.4.

Not only does this algorithm compute the strong closure m• of any DBM m that
represents a non-empty octagon, but it can also be used to determine whether a DBM
represents an empty octagon:

Theorem 4.3.4. Properties of the Floyd–Warshall algorithm for strong closure.

1. γOct(m) = ∅ ⇐⇒ ∃i, mn
ii < 0, where mn is defined as in Def. 4.3.2.

2. If γOct(m) 6= ∅ then m• computed by Def. 4.3.2 is the strong closure as defined by
Def. 4.3.1 and Thm. 4.3.3.

„

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.3 – Modified Closure Algorithms 107

Proof.

As the full proof is quite complex, it is postponed to the appendix, in Sect. A.1, and we
give here only a proof sketch.
The first, and easiest, property steams from the fact that each coefficient in the strong
closure of the matrix is smaller than the corresponding one in the classical closure and
that a strictly negative diagonal coefficient in the classical closure is equivalent to the
octagon emptiness. To prove the second property, we need to prove that ∀i, m•

ii = 0,
∀i, j, m•

ij ≤ (m•
i ı + m•

j)/2, and ∀i, j, k, m•
ij ≤ m•

ik + m•
kj. The first two properties

are easy. The third is quite complex: we prove by induction on o that ∀ 1 ≤ k ≤
o, ∀i, j, mo

ij ≤ mo
i (2k−1) + mo

(2k−1) j and mo
ij ≤ mo

i (2k) + mo
(2k) j. This requires proving

that, not only each application of Ck makes the property true for one more line and
column k, but also that S applications do not destroy the induction hypothesis.
”

In-Place Version. Finally, it should be noted that it is possible to modify the argument
matrix in-place, as we did for the vanilla Floyd–Warshall algorithm in Def. 3.3.3:

Definition 4.3.3. In-place Floyd–Warshall algorithm for strong closure.

for k = 1 to n {

for i = 1 to 2n
for j = 1 to 2n

mij ← min (mij, mi (2k−1) + m(2k−1) j, mi (2k) + m(2k) j,
mi (2k−1) + m(2k−1) (2k) + m(2k) j,
mi (2k) + m(2k) (2k−1) + m(2k−1) j)

for i = 1 to 2n
for j = 1 to 2n

mij ← min(mij, (mi ı + m j)/2)
}

for i = 1 to 2n
if mii < 0 return ⊥DBM else mii ← 0

return m

„

The computed intermediate matrices are slightly different, but the overall result is
the same. Def. 4.3.3 is easier to implement than Def. 4.3.2 but harder to express as a
mathematical formula.

Antoine Miné Weakly Relational Numerical Abstract Domains

108 Chapter 4: The Octagon Abstract Domain

4.3.4 Incremental Strong Closure Algorithm

As for the classical Floyd–Warshall algorithm, our modified Floyd–Warshall algorithm fea-
tures an incremental version that is quite useful to quickly compute the strong closure of
an almost strongly closed matrix. Suppose that m is strongly closed and that nij = mij

when i, j ≤ 2c. From a constraint point of view, this means that we may only have al-
tered constraints that contain at least one variable in Vc+1, . . . , Vn. We use the following
algorithm:

Definition 4.3.4. Incremental Floyd–Warshall algorithm for strong closure.

(n•)ij
def

=

0 if i = j

nn
ij if i 6= j

where nk def

=

n if k = 0

S ′2k−1(C ′2k−1(nk−1)) if 1 ≤ k ≤ n

and
(

S ′k(n)
)

ij

def
=

{

nij if i, j, k ≤ 2c
min(nij, (ni ı + n j)/2) otherwise

and
(

C ′k(n)
)

ij

def
=

nij if i, j, k ≤ 2c
min (nij, nik + nkj, nik + nkj,

nik + nkk + nkj, nik + nkk + nkj)

otherwise

„

Theorem 4.3.5. Incremental strong closure properties.

n• as computed by the incremental strong closure algorithm of Def. 4.3.4 is equal to n•

as computed by the vanilla strong closure algorithm of Def. 4.3.2.

„

Proof.

Because nij equals mij when i, j ≤ 2c and m is strongly closed, Def. 4.3.1 gives ∀i, j, k ≤
2c:

› nij ≤ nik + nkj,

› nij ≤ nik + nkj because k ≤ 2c,

› nkj ≤ nkk + nkj, so, nij ≤ nik + nkj ≤ nik + nkk + nkj,

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.3 – Modified Closure Algorithms 109

GFED@ABCV +
1

0

²²

GFED@ABCV −
2

0

²²

3oo

GFED@ABCV +
2

−3

>>}}}}}}}}}}}}}}}}} GFED@ABCV −
13

oo
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�
�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂

✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄
✄✁✄✁✄✁✄✁✄

☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎
☎✁☎✁☎✁☎✁☎✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆

✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆
✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆

✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝
✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝
✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝

V2

2V2 ≥ 3

V1

V2 − V1 ≤ 0 V1 + V2 ≤ 3

(a) (b)

Figure 4.3: A potential graph G(m) in Z with no strictly negative cycle (a) and the
corresponding octagon (b) γOct(m) = {(3

2
, 3

2
)} which is empty in Z2.

› likewise nij ≤ nik + nkk + nkj,

› finally, ı, ≤ 2c, so, nij ≤ (ni ı + nj)/2.

The incremental closure algorithm simply uses this knowledge to avoid some useless
computation in the first c steps of the strong closure algorithm.
”

As the sub-matrix from indexes (1, 1) to (2c, 2c) is left unmodified for the first c itera-
tions, we have a time cost proportional to n3 − c3. By virtually exchanging columns and
lines, this algorithm extends to the case where the n−c pairs of modified lines and columns
are anywhere in the matrix, not necessarily at the end. We will denote by Inc•

i1,...,in−c
(n)

the result of the algorithm when the modified lines and columns correspond to variables Vi1

to Vin−c . Finally, note that an in-place version of this incremental algorithm, in the spirit
of Def. 4.3.3, may be easily designed.

4.3.5 Integer Case

Whenever I = Z, the emptiness test of Thm. 4.3.1 no longer works, that is, γPot(m) =
∅ =⇒ γOct(m) = ∅ but the converse is not true. Indeed, a conjunction of integer octagonal
constraints may have only non-integer solutions, as exemplified in Fig. 4.3, which was not
possible for potential or zone constraints. As a consequence, Thms. 4.3.2, 4.3.3, 4.3.4, and
4.3.5 are no longer true. In [JMSY94], Jaffar et al. propose to consider constraint conjunc-
tions that are not only closed by transitivity — that is, the addition of two constraints —
but also by tightening, a new operation that allows deriving the constraint x ≤ ⌊c/2⌋ from
the constraint 2x ≤ c. They prove that constraint systems closed by transitivity and tight-
ening are satisfiable if and only if no trivially unsatisfiable constraint 0 < 0 appears in the

Antoine Miné Weakly Relational Numerical Abstract Domains

110 Chapter 4: The Octagon Abstract Domain

system. Later, in [HS97], Harvey and Stuckey propose a practical algorithm to maintain
the tightened transitive closure of a constraint system when new constraints are added.

Even though [JMSY94, HS97] are only interested in checking satisfiability and not
constructing abstract domains, their ideas can be of use. As for the preceding section,
what we need is a way to compute αOct ◦ γOct , that is, a normal form with the saturation
property.

Strong Closure with Tightening. We first restate the notion of tightened transitive
closure from [JMSY94, HS97] using our encoding of constraint conjunctions as DBMs:

Definition 4.3.5. Tight closure.

A coherent DBM m in Z is said to be tightly closed if and only if:

∀i, j, k, mij ≤ mik + mkj

∀i, j, mij ≤ (mi ı + mj)/2
∀i, mi ı is even
∀i, mii = 0

„

This simply amounts to stating that m is strongly closed with the extra requirement
that elements mi ı , encoding unary constraints of the form ±2Vk ≤ c, are even.

Harvey and Stuckey’s Algorithm. Unlike our modified Floyd–Warshall algorithm that
is able to compute at once the strong closure of a DBM, or the incremental version that
can recover the strong closure after all constraints concerning one or more variable(s) have
been changed, the algorithm proposed by Harvey and Stuckey in [HS97] can recover the
tight closure only if one constraint has changed. We now present this algorithm adapted to
our DBM notation. Suppose that the coherent DBM m is equal to a tightly closed DBM,
except for the element at position (i0j0) — and, by coherence, the element at position
(0 ı0). Moreover, suppose that, if i0 = 0 , then the changed element mi0j0 is even. The
incremental tight closure on m with respect to the position (i0, j0) is denoted by IncT

i0j0
(m)

and defined as follows:

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.3 – Modified Closure Algorithms 111

Definition 4.3.6. Incremental tight closure algorithm from [HS97].
(

IncT
i0j0

(m)
)

ij

def

= min (m′
ij, (m′

i ı + m′
j)/2)

where

m′
ij

def
=

min (mij, mii0 + mi0j0 + mj0j, mi 0 + m0 ı0 + m ı0 j) if i 6=

min (mij, 2(mi0j0 + mi 0 + (m ı0 i0/2)),
2(mi0j0 + mii0 + (mj0 0 /2)),
2⌊(mii0 + mi0j0 + mj0 ı)/2⌋)

if i =

„

In IncT
i0j0

, we first propagate the new constraint mi0j0 to obtain new unary and bi-
nary constraints in m′. Note that the terms 2(mi0j0 + mi 0 + (m ı0 i0/2)) and 2(mi0j0 +
mii0 + (mj0 0 /2)) correspond respectively to the sum along the paths 〈i, 0 , ı0 , i0, j0, ı〉
and 〈i, i0, j0, 0 , ı0 , ı〉. We use tightening for the third derived unary constraint: m′

i ı ≤
2⌊(mii0 + mi0j0 + mj0 ı)/2⌋. In m′, all the derived matrix coefficients corresponding to
unary constraints are even. Finally, the new unary constraints are combined to derive new
binary constraints: (IncT

i0j0
(m))ij ≤ (m′

i ı +m′
j)/2. Whenever the result of a division by 2

is not fed to the floor operator ⌊·⌋, this means that the division cannot produce half-integers.

We now prove that this algorithm indeed allows testing for emptiness, and finding a
saturated DBM when I = Z:

Theorem 4.3.6. Incremental tight closure properties.

Let m be a coherent tightly closed DBM, and n a coherent DBM equal to m except at
positions (i0, j0) and (0 , ı0), then:

1. γOct(n) = ∅ ⇐⇒ ∃i, (IncT
i0j0

(n))ii < 0.

2. If γOct(n) 6= ∅, then IncT
i0j0

(n), with diagonal elements set to 0, is tightly closed.

„

Proof.

1. This is a restatement of Thm. 2 from [JMSY94], also recalled as Thm. 1 in [HS97].

2. This is a restatement of Thm. 2 from [HS97].
”

Theorem 4.3.7. Saturation property.

If m is tightly closed, then:

1. ∀i, j, if mij < +∞, then ∃(v1, . . . , vn) ∈ γOct(m) such that v′
j − v′

i = mij.

Antoine Miné Weakly Relational Numerical Abstract Domains

112 Chapter 4: The Octagon Abstract Domain

2. ∀i, j, if mij = +∞, then ∀M < +∞, ∃(v1, . . . , vn) ∈ γOct(m)
such that v′

j − v′
i ≥ M.

where the v′
k are derived from the vk by v′

2k−1
def

= vk and v′
2k

def

= −vk.

„

Proof.

1. Set a pair (i0, j0). Let us consider a DBM n equal to m except that nj0i0
def

= n ı0 0
def

=
−mi0j0 . We can prove as in Thm. 4.3.2 that γOct(n) = { (v1, . . . , vn) ∈ γOct(m) | v′

j0
−

v′
i0

= mi0j0 }, and so, proving the desired property reduces to proving that γOct(n) 6=
∅.

Suppose that γOct(n) = ∅. As m is tightly closed, n can be tightly closed by one
application of the incremental tight closure algorithm, at position (j0, i0). We will
denote by n′′ the matrix IncT

j0i0
(n), and by n′ the intermediate matrix computed in

Def. 4.3.6. By Thm. 4.3.6.1, we have ∃i, n′′
ii < 0. Several cases can occur, each one

of them leading to an absurdity:

› Suppose that n′′
ii = n′

ii. This means that min(nii, nij0 +nj0i0 +ni0i, ni ı0 +n ı0 0 +
n0 i) < 0. Thus, one of the three following cases occurs: either 0 > nii = mii,
0 > nij0 + nj0i0 + ni0i = mij0 − mi0j0 + mi0i, or 0 > ni ı0 + n ı0 0 + n0 i =
mi ı0 − m0 ı0 + m0 i. Each inequality contradicts the fact that m is closed.

› If n′′
ii = (n′

i ı + n′
ı i)/2, there are many cases depending on the value of n′

i ı and
n′

ı i.

Suppose that no tightening is used to derive n′
i ı nor n′

ı i, that is, n′
i ı ∈

{ni ı , 2(nj0i0 + ni ı0 + (n0 j0/2)), 2(nj0i0 + nij0 + (ni0 ı0 /2)), nij0 + nj0i0 + ni0 ı}
and n′

ı i ∈ {n ı i, 2(nj0i0 + n ı ı0 + (n0 j0/2)), 2(nj0i0 + n ıj0 + (ni0 ı0 /2)), n ıj0 +
nj0i0 + ni0i}. This can be rewritten as: n′

i ı ∈ {ni ı , ni ı0 + n ı0 0 + n0 j0 + nj0i0 +
ni0 ı , nij0 +nj0i0 +ni0 ı0 +n ı0 0 +n0 ı , nij0 +nj0i0 +ni0 ı} and n′

ı i ∈ {n ı i, n ı ı0 +
n ı0 0 +n0 j0 +nj0i0 +ni0i, n ı j0 +nj0i0 +ni0 ı0 +n ı0 0 +n0 i, n ıj0 +nj0i0 +ni0i}.
Then, n′

i ı + n′
ı i can be expressed as the sum along a cycle in m that passes

exactly zero times, once, or twice through nj0i0 = −mi0j0 . If it does not pass
through nj0i0 , then we have a cycle in m with a strictly negative weight, which
is absurd because γOct(m) 6= ∅. If it passes once, then mi0j0 is strictly greater
than the sum along a path from i0 to j0 in m, which is also absurd because m is
closed. If it passes twice, then 2mi0j0 is strictly greater than the sum along two
paths from i0 to j0 in m, which is only possible if mi0j0 is strictly greater than
the sum along at least one of them, which is also absurd.

Suppose now that nij0+ nj0i0+ ni0 ı = 2k+1 is odd and, by tightening, n′
i ı = 2k,

but no tightening is involved in the computation of n′
ı i. Suppose, in our first

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.3 – Modified Closure Algorithms 113

sub-case, that n′
ı i = n ı i. Then, we have (nij0+ nj0i0+ ni0 ı− 1)+ n ı i < 0, that

is, mi0j0+ 1 > mi0 ı+ m ı i+ mij0 . As mi0j0 ≤ mi0 ı+ m ı i+ mij0 by closure of
m, we must have mi0j0 = mi0 ı+ m ı i+ mij0 . By hypothesis, 2k + 1 = mij0−
mi0j0+ mi0 ı , and so, m ı i = −2k − 1. This is absurd: by tightness of m, m ı i

cannot be odd. Our second sub-case is n′
ı i 6= n ı i. Then, n′

i ı + n′
ı i can be

expressed as the sum minus one along a cycle in n that passes exactly twice
through nj0i0 = −mi0j0 . Thus, 2mi0j0 + 1 is strictly greater than the sum along
two paths from i0 to j0. Moreover, this sum along the two paths is odd, and
so, the weight of the these two paths cannot be the same and 2mi0j0 is strictly
greater than twice the weight of the path with smallest weight. We thus have
proved that mi0j0 is strictly greater than the weight of a path from i0 to j0 in
m, which is absurd. The situation where tightening is used for n′

ı i but not for
n′

i ı is similar.

For our last case, we suppose that tightening is used in both n′
i ı and n′

ı i, that is,
n′

i ı = 2k and n′
ı i = 2l where nij0+ nj0i0+ ni0 ı = 2k + 1 and n ıj0+ nj0i0+ ni0i =

2l + 1. This means, in particular, that mi0j0 = mij0+ mi0 ı− (2k + 1) = m ıj0+
mi0i− (2l +1), that is, mij0 +mi0 ı and m ıj0 +mi0i are either both odd, or both
even. Our hypothesis n′

i ı + n′
ı i < 0 can be rewritten as: 2mi0j0 + 2 > mij0+

mi0 ı+ m ı j0+ mi0i. As, by closure, 2mi0j0 ≤ mij0+ mi0 ı+ m ıj0+ mi0i and mij0+
mi0 ı+ m ı j0+ mi0i is even, we have 2mi0j0 = mij0+ mi0 ı+ m ıj0+ mi0i. If we had
mi0i+mij0 6= mi0 ı +m ı j0 , we would have mi0j0 > min(mi0i+mij0 , mi0 ı +m ıj0),
which is absurd because m is closed. We can now suppose that mi0i + mij0 =
mi0 ı + m ı j0 . This implies that mi0j0 = mi0i + mij0 = mi0 ı + m ıj0 . On the one
hand, (2k+1) = mij0−mi0j0 +mi0 ı = mi0 ı −mi0i. On the other hand, (2l+1) =
m ı j0 − mi0j0 + mi0i = mi0i − mi0 ı . So, k = −l and n′

i ı + n′
ı i = 2(k + l) = 0,

which is in contradiction with n′
i ı + n′

ı i < 0.

2. The second point can be proved almost as the first one, except that n is constructed
by changing m’s elements (j0, i0) and (ı0 , 0) into nj0i0

def

= n ı0 0
def

= min(mj0i0 ,−M).
We can then prove that γOct(n) = { (v1, . . . , vn) ∈ γOct(m) | v′

j0
− v′

i0
≥ M } and

γOct(n) 6= ∅.
”

Cost Considerations. The incremental tight closure algorithm has a O(n2) cost. In
order to get the tight closure of an arbitrary DBM m, we must start from ⊤DBM and add
all the constraints mij one by one and perform an incremental tight closure IncT

ij after each
addition. This leads to a O(n4) total cost while our strong closure algorithm had a O(n3)
cost. It is not known to the author whether a better cost than O(n4) can be achieved.
Nothing is less certain as many equation systems are strictly more difficult to solve on

Antoine Miné Weakly Relational Numerical Abstract Domains

114 Chapter 4: The Octagon Abstract Domain

integers than on rationals or reals.

If time cost is a concern, one may consider using the strong closure algorithm where the
S pass has been changed into:

(S(n))ij
def
= min(nij, ⌊(ni ı + nj)/2⌋)

or, better, into:

(S(n))ij
def
=

{

min(nij, ⌊ni ı/2⌋ + ⌊nj/2⌋) if i 6=
2⌊nij/2⌋ if i =

which is more precise and ensures that unary constraints are tight. The two resulting strong
closure algorithms indeed return DBMs m• in Z, such that γOct(m•) = γOct(m), which are
much smaller than m with respect to ⊑DBM. However, they do not return the smallest one
as none of the modified S functions preserve the transitive closure property enforced by the
C steps. As a consequence, the saturation property is not verified. This will affect most of
the operators and transfer functions that will be presented in the following: our inclusion
and equality tests will become incomplete — they can fail to detect that γOct(m) ⊆ γOct(n)
or γOct(m) = γOct(m) — and our abstractions for the union and the forget operators —
among others — will not be the best ones. They will remain sound in every situation, but
they will not be as precise as they might be: this loosely amounts to abstracting integers
as rationals by forgetting their “integerness property”, something which is commonly done
in the polyhedron abstract domain.1 Whether to choose the strong closure or the tight
closure when I = Z is just another cost versus precision trade-off.

In practice, we have chosen to gain time and use the strong closure; we have yet to find
a real-life example where the tight closure is needed to prove a meaningful invariant. In
the following, we will focus on properties of strongly closed matrices on Q and R, and leave
implicit the fact that most of these properties are also true for tightened matrices on Z.

4.4 Operators and Transfer Functions

We now present our operators and transfer functions for the octagon domain. Except for
the transfer functions that use the polyhedron domain internally, the most time-consuming
operation they use is a call to the strong closure algorithm to get the normal form of their
arguments, and so, they are cubic in the worst case.

1More precisely, we use some but not all properties of integers when rounding our matrix coefficients
while the polyhedron domain uses none. As a consequence, some constraints derived by the octagon domain
might be more precise when working on integers than if we used the polyhedron domain.

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.4 – Operators and Transfer Functions 115

4.4.1 Adapted Set-Theoretic Operators

The situation is very similar to what happened in the zone abstract domain except that
we must use the strong closure instead of the regular closure to get complete tests and a
best union abstraction. As before, the intersection does not need strongly closed arguments
but does not preserve the strong closure, while this is exactly the converse for the union
abstraction:

Definition 4.4.1. Set-theoretic operators on octagons.

m ∩Oct n
def

= m ⊓DBM n .

m ∪Oct n
def

= (m•) ⊔DBM (n•) .

„

Theorem 4.4.1. Properties of set-theoretic operators on octagons.

1. γOct(m ∩Oct n) = γOct(m) ∩ γOct(n) . (exact abstraction)

2. γOct(m ∪Oct n) = inf⊆{ S ∈ Oct | S ⊇ γOct(m) ∪ γOct(n) } . (best abstraction)

3. m ∪Oct n is strongly closed.

4. m• = n• ⇐⇒ γOct(m) = γOct(n) .

5. m• ⊑DBM n ⇐⇒ γOct(m) ⊆ γOct(n) .
„

Proof. Thanks to the saturation property of Thm. 4.3.2, the proofs are very similar to
that of Thms. 3.4.1, 3.4.2, and 3.4.1 for the zone abstract domain. ”

Comparison with Previous Work. The idea of computing the point-wise minimum
and maximum of upper bounds to compute, respectively, the union and intersection of
octagons is already present in the work of Balasundaram and Kennedy [BK89]. Although
the authors remark that the bounds should be the tightest possible for the union to be
precise while the result of an intersection may have loose bounds, they do not propose any
way to actually “tighten” them. Our main contribution in this respect is the introduction
of the strong closure algorithm to enforce tight bounds and achieve practical best precision
results.

4.4.2 Adapted Forget Operator

A straightforward adaptation of our first forget operator on zones — Def. 3.6.1 — to oc-
tagons is to put +∞ elements in the two lines and columns corresponding to the constraints
containing the variable to forget:

Antoine Miné Weakly Relational Numerical Abstract Domains

116 Chapter 4: The Octagon Abstract Domain

Definition 4.4.2. Forget operator on octagons {|Vf ← ? |}Oct .

({|Vf ← ? |}Oct(m))ij
def

=

mij if i 6= 2f − 1, 2f and j 6= 2f − 1, 2f
0 if i = j = 2f − 1 or i = j = 2f
+∞ otherwise

„

Note that this operator can be derived from the zone forget operator as follows:

{|Vf ← ? |}Oct = {|V ′
2f−1 ← ? |}Zone ◦ {|V ′

2f ← ? |}Zone .

This operator is always sound. However, it is exact only when the argument is strongly
closed. Otherwise, it can lose definitively some implicit constraints. Moreover, this operator
preserves the strong closure:

Theorem 4.4.2. Soundness and exactness of {|Vf ← ? |}Oct .

1. γOct({|Vf ← ? |}Oct(m)) ⊇ { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γOct(m) } .

2. γOct({|Vf ← ? |}Oct(m•)) = { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γOct(m) } .

3. {|Vf ← ? |}Oct(m) is strongly closed whenever m is.
„

Proof.

1. We have actually proved in Thm. 3.6.1.1 that γPot({|Vf ← ? |}Zone(m)) ⊇ { ~v ′ ∈
I2n | ∃t ∈ I, ~v ′[V ′

f 7→ t] ∈ γPot(m) }. Using this with the fact that {|Vf ←

? |}Oct = {|V ′
2f−1 ← ? |}Zone ◦ {|V ′

2f ← ? |}Zone , we get γPot({|Vf ← ? |}Oct(m)) ⊇ { ~v ′ ∈
I2n | ∃t, t′ ∈ I, ~v ′[V ′

2f−1 7→ t, V ′
2f 7→ t′] ∈ γPot(m) } (1).

Let us take ~v = (v1, . . . , vn) ∈ In such that for some t ∈ I, ~v[Vf 7→ t] ∈ γOct(m). Let

us denote ~v ′ def
= (v1,−v1, . . . , vn,−vn). By definition of γOct , we have that ~v ′[V ′

2f−1 7→

t, V ′
2f 7→ −t] ∈ γPot(m). By (1), this implies that ~v ′ ∈ γPot({|Vf ← ? |}Oct(m)), so,

~v ∈ γOct({|Vf ← ? |}Oct(m)).

2. Firstly, the property is obvious if m• = ⊥DBM, that is, γOct(m) = ∅, so, we will
consider only the case where m• 6= ⊥DBM. By the first point and the fact that
γOct(m•) = γOct(m), we get the first part of the equality: γOct({|Vf ← ? |}Oct(m•)) ⊇
{ ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γOct(m•) } = { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γOct(m) }.

For the converse inequality, let us take ~v = (v1, . . . , vn) ∈ γOct({|Vf ← ? |}Oct(m•)).
We want to prove that there exists a t such that ~v[Vf 7→ t] ∈ γOct(m). As in
Thm. 3.6.1, we first prove that

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.4 – Operators and Transfer Functions 117

max { v′
j − m•

(2f−1) j, −m•
(2f−1) (2f)/2 | j 6= 2f − 1, 2f } ≤

min { m•
i (2f−1) + v′

i, m•
(2f) (2f−1)/2 | i 6= 2f − 1, 2f }

where, as usual, v′
2i−1

def

= vi and v′
2i

def

= −vi.

Suppose that this is not true; this can only be for one of the following reasons, each
one of them leading to an absurdity:

› Either ∃i, j 6= 2f − 1, 2f such that v′
j − m•

(2f−1) j > m•
i (2f−1) + v′

i, which means
that v′

j − v′
i > m•

i (2f−1) + m•
(2f−1) j ≥ m•

ij by closure of m•. This contradicts the

fact that v′
j − v′

i ≤ ({|Vf ← ? |}Oct(m•))ij = m•
ij when i, j 6= 2f − 1, 2f .

› Either ∃j 6= 2f − 1, 2f such that v′
j − m•

(2f−1) j > m•
(2f) (2f−1)/2, which means

that 2v′
j > m•

(2f) (2f−1) + 2m•
(2f−1) j = m•

 (2f) + m•
(2f) (2f−1) + m•

(2f−1) j ≥ m•
j by

closure of m•. This is also impossible.

› The situation would be similar if we had ∃i 6= 2f−1, 2f such that m•
i (2f−1)+v′

i >
−m•

(2f−1) (2f)/2.

› The last possibility is to have −m•
(2f−1) (2f)/2 > m•

(2f) (2f−1)/2, which would

imply m•
(2f) (2f−1) + m•

(2f−1) (2f) < 0, and so, γOct(m) = ∅, which contradicts our
hypothesis.

So, there exists at least one t ∈ I such that:

maxj 6=2f−1,2f (v′
j − m•

(2f−1) j) ≤ t ≤ mini 6=2f−1,2f (v′
i + m•

i (2f−1))

−m•
(2f−1) (2f)/2 ≤ t ≤ m•

(2f) (2f−1)/2

We now prove that any such a t is a good choice, i.e., ~v[Vf 7→ t] ∈ γOct(m). We will
denote (v1,−v1, . . . , vf−1,−vf−1, t,−t, vf+1,−vf+1, . . . , vn,−vn) by ~w ′, and by w′

k its
k−th coordinate. We only need to prove that ∀i, j, w′

j − w′
i ≤ m•

ij:

› If i 6= 2f − 1, 2f and j 6= 2f − 1, 2f , then w′
j − w′

i = v′
j − v′

i ≤ ({|Vf ←

? |}Oct(m•))ij = m•
ij.

› If i = j = 2f − 1 or i = j = 2f , then w′
j − w′

i = 0 = m•
ij.

› If i = 2f − 1 and j 6= 2f − 1, 2f , w′
j − w′

i = v′
j − t ≤ m•

ij because t ≥
maxj 6=2f−1,2f (v′

j − m•
(2f−1) j).

› If j = 2f − 1 and i 6= 2f − 1, 2f , w′
j − w′

i = t − v′
i ≤ m•

ij because t ≤
mini6=2f−1,2f (v′

i + m•
i (2f−1)).

› If i = 2f and j 6= 2f − 1, 2f , w′
j − w′

i = v′
j + t ≤ m•

 (2f−1) = m•
ij using the case

where j = 2f − 1 and the coherence.

Antoine Miné Weakly Relational Numerical Abstract Domains

118 Chapter 4: The Octagon Abstract Domain

› If j = 2f and i 6= 2f − 1, 2f , w′
j −w′

i = −t− v′
i ≤ m•

(2f−1) ı = m•
ij using the case

where i = 2f − 1 and the coherence.

› When j = ı = 2f − 1, w′
j − w′

i = 2t ≤ m•
(2f) (2f−1) by definition of t. The case

i = = 2f − 1 is similar.

3. Suppose that m is strongly closed and let us denote by m′ the matrix {|Vf ←

? |}Oct(m). Then, m is also closed and, by Thm. 3.6.1.3, we deduce that m′ is closed.
To prove its strong closure, we only have to prove that ∀i, j, m′

ij ≤ (m′
i ı + m′

j)/2:

› If i 6= 2f −1, 2f and j 6= 2f −1, 2f , then m′
ij = mij, m′

i ı = mi ı and m′
j = mj,

so, the property is a consequence of m being strongly closed.

› If i = 2f − 1 or i = 2f or j = 2f − 1 or j = 2f , then at least one of m′
i ı and

m′
j is +∞, so (m′

i ı + m′
j)/2 = +∞ ≥ m′

ij.
”

We do not present here any alternate forget operator, such as the one that was proposed
on zones in Def. 3.6.2, that is exact even when the argument matrix is not strongly closed.
We will simply remark that the straightforward definition:

{|V ′
2f−1 ← ? |}Zone

alt ◦ {|V ′
2f ← ? |}Zone

alt

gives an upper approximation of the forget operator that is not always exact. Designing
an exact alternate forget operator on octagons would thus require some more work.

4.4.3 Adapted Conversion Operators

Conversions from intervals to octagons and from octagons to polyhedra are both straight-
forward and exact. Thus, we focus here only on the conversions from octagons to intervals
and from polyhedra to octagons, which differ only slightly from the corresponding operators
introduced in Sect. 3.5.2 on the zone abstract domain.

From Octagons to Intervals. A straightforward application of the saturation property
of the strong normal form is the ability to easily project an octagon m along a variable Vi

to get an interval, denoted by πi(m) and defined as follows:

Definition 4.4.3. Projection operator πi.

πi(m)
def

=

{

⊥Int
B

if m• = ⊥DBM

[−m•
(2i−1) (2i)/2, m•

(2i) (2i−1)/2] if m• 6= ⊥DBM

is such that γInt(πi(m)) = { v ∈ I | ∃(v1, . . . , vn) ∈ γOct(m), vi = v } .

„

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.4 – Operators and Transfer Functions 119

As in Sect. 3.5.2, an interval abstract domain element is obtained by projecting each
variable independently. If we do not use the strong normal form of m in each πi, we get
sound intervals that are not as tight as possible; otherwise, we get the best abstraction
Int(m) of an octagon m in the interval abstract domain.

From Polyhedra to Octagons. Given a polyhedron in its frame representation (V, R),
that is, a set of vertices V and rays R in In, we can find the smallest octagon enclosing this
polyhedron by generating a set of octagonal constraints as follows:

› for every i: if there is a ray r ∈ R such that ri > 0, we set m(2i) (2i−1) = +∞,
otherwise, we set m(2i) (2i−1) = 2 max { vi | v ∈ V };

› for every i: if there is a ray r ∈ R such that ri < 0, we set m(2i−1) (2i) = +∞,
otherwise, we set m(2i−1) (2i) = −2 min { vi | v ∈ V };

› for every i 6= j:
if there is a ray r ∈ R such that ri > rj, we set m(2i−1) (2j−1) = m(2j) (2i) = +∞,
otherwise, we set m(2i−1) (2j−1) = m(2j) (2i) = max { vj − vi | v ∈ V };

› for every i 6= j:
if there is a ray r ∈ R such that ri > −rj, we set m(2i−1) (2j) = +∞,
otherwise, we set m(2i−1) (2j) = max { −vj − vi | v ∈ V };

› for every i 6= j:
if there is a ray r ∈ R such that −ri > rj, we set m(2i) (2j−1) = +∞,
otherwise, we set m(2i) (2j−1) = max { vj + vi | v ∈ V };

› we set mii = 0 for all i.

The result is, by construction, a coherent DBM. It is also strongly closed as all inferred
octagonal constraints saturate the initial polyhedron, and so, the resulting octagon.

In the following, we will denote by Oct both operators that convert from an interval or
polyhedron abstract element into a coherent DBM representing an octagon — which one is
actually considered will depend on the context. Likewise, we will denote by Int and Poly
the operators that convert octagons into intervals and polyhedra. As for the zone abstract
domain, we have the following full Galois connections:

D
Poly

−−−−−−−−−−−→←−−−−−−−−−−−
αOct◦γPoly=Oct

αPoly◦γOct=Poly
cDBM −−−−−−−−−−→←−−−−−−−−−−

αInt◦γOct=Int

αOct◦γInt=Oct
D

Int .

This proves, in particular, that (αOct , γOct) is a partial Galois connection with respect
to all transfer functions involving linear expressions, at least, when I = Q. When I = Z or
I = R, we already saw that the Galois connection is total.

Antoine Miné Weakly Relational Numerical Abstract Domains

120 Chapter 4: The Octagon Abstract Domain

4.4.4 Adapted Transfer Functions

We adapt here all the ideas presented in Sect. 3.6 to design several abstract transfer func-
tions for the octagon domain, with different cost versus precision trade-offs. In particu-
lar, we suppose that generic tests have been pre-processed into tests of the simpler form
(expr ¯ 0 ?), as in Sect. 3.6.3, but using our octagon union and intersection operators
instead of the zone ones.

Exact Abstractions. The class of assignments and tests that can be exactly modeled in
the octagon domain is slightly larger than for the zone domain. We propose the following
straightforward definitions that resemble Defs. 3.6.3, 3.6.5, and 3.6.7:

Definition 4.4.4. Exact octagonal transfer functions.

We suppose that i0 6= j0. We define the following exact assignment transfer functions:

› ({|Vj0 ← [a, b] |}Oct

exact(m))ij
def
=

−2a if i = 2j0 − 1, j = 2j0

2b if i = 2j0, j = 2j0 − 1

({|Vj0 ← ? |}Oct(m•))ij otherwise

› ({|Vj0 ← Vj0 ´ [a, b] |}Oct

exact(m))ij
def

=

mij − a if i = 2j0 − 1, j 6= 2j0 − 1, 2j0

or j = 2j0, i 6= 2j0 − 1, 2j0

mij + b if i 6= 2j0 − 1, 2j0, j = 2j0 − 1
or j 6= 2j0 − 1, 2j0, i = 2j0

mij − 2a if i = 2j0 − 1, j = 2j0

mij + 2b if i = 2j0, j = 2j0 − 1
mij otherwise

› ({|Vj0 ← Vi0 ´ [a, b] |}Oct

exact(m))ij
def

=

−a if i = 2j0 − 1, j = 2i0 − 1
or i = 2i0, j = 2j0

b if i = 2i0 − 1, j = 2j0 − 1
or i = 2j0, j = 2i0

({|Vj0 ← ? |}Oct(m•))ij otherwise

› ({|Vj0 ← ¨Vj0 |}
Oct

exact(m))ij
def
=

m ı j if i ∈ {2j0 − 1, 2j0} and j /∈ {2j0 − 1, 2j0}
mi if i /∈ {2j0 − 1, 2j0} and j ∈ {2j0 − 1, 2j0}
m ı if i ∈ {2j0 − 1, 2j0} and j ∈ {2j0 − 1, 2j0}
mij if i /∈ {2j0 − 1, 2j0} and j /∈ {2j0 − 1, 2j0}

› {|Vj0 ← ¨Vi0 |}
Oct

exact(m)
def

= ({|Vj0 ← ¨Vj0 |}
Oct

exact ◦ {|Vj0 ← Vi0 |}
Oct

exact)(m)

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.4 – Operators and Transfer Functions 121

› {|Vj0 ← ¨Vj0 ´ [a, b] |}Oct

exact(m)
def

=

({|Vj0 ← Vj0 ´ [a, b] |}Oct

exact ◦ {|Vj0 ← ¨Vj0 |}
Oct

exact)(m)

› {|Vj0 ← ¨Vi0 ´ [a, b] |}Oct

exact(m)
def

=

({|Vj0 ← Vj0 ´ [a, b] |}Oct

exact ◦ {|Vj0 ← ¨Vi0 |}
Oct

exact)(m)

The invertible cases Vj0 ← Vj0´[a, b] and Vj0 ← ¨Vj0´[a, b] do not require strongly closed
matrix arguments but preserve the strong closure. Other, non-invertible, cases require a
strong closure computation due to the embedded forget operator; the result can be strongly
closed by merely performing the incremental strong closure Inc•

j0
.

We define the following exact tests transfer functions:

› ({|Vj0 ´ [a, b]¯ 0 ? |}Oct

exact(m))ij
def

=

{

min(mij,−2a) if i = 2j0, j = 2j0 − 1
mij otherwise

› ({| ¨ Vj0 ´ [a, b]¯ 0 ? |}Oct

exact(m))ij
def

=

{

min(mij,−2a) if i = 2j0 − 1, j = 2j0

mij otherwise

› ({|Vj0 ¨Vi0 ´ [a, b]¯ 0 ? |}Oct

exact(m))ij
def
=

min(mij,−a) if i = 2i0 − 1, j = 2j0 − 1
or i = 2j0, j = 2i0

mij otherwise

› ({|Vj0 ´ Vi0 ´ [a, b]¯ 0 ? |}Oct

exact(m))ij
def

=

min(mij,−a) if i = 2i0, j = 2j0 − 1
or i = 2j0, j = 2i0 − 1

mij otherwise

› ({| ¨ Vj0 ¨ Vi0 ´ [a, b]¯ 0 ? |}Oct

exact(m))ij
def
=

min(mij,−a) if i = 2i0 − 1, j = 2j0

or i = 2j0 − 1, j = 2i0
mij otherwise

Test transfer functions do not require a strongly closed argument. If, however, the argu-
ment is strongly closed, the result can be made strongly closed by applying the incremental
strong closure Inc•

j0
.

We define the following exact backward assignment transfer functions:

› {|Vj0 → Vj0 ´ [a, b] |}Oct

exact(m)
def
= {|Vj0 ← Vj0 ´ [−b,−a] |}Oct

exact(m)

› {|Vj0 → ¨Vj0 ´ [a, b] |}Oct

exact(m)
def
= {|Vj0 ← ¨Vj0 ´ [a, b] |}Oct

exact(m)

Antoine Miné Weakly Relational Numerical Abstract Domains

122 Chapter 4: The Octagon Abstract Domain

› if m•
(2j0) (2j0−1) ≥ 2a and m•

(2j0−1) (2j0) ≥ −2b, then

({|Vj0 → [a, b] |}Oct

exact(m))ij
def
=

min (m•
ij, 2(m•

i (2j0−1) − a), 2(m•
i (2j0) + b)) if i = , i /∈ {2j0 − 1, 2j0}

+∞ if i ∈ {2j0 − 1, 2j0}
or j ∈ {2j0 − 1, 2j0}

m•
ij otherwise

otherwise, {|Vj0 → [a, b] |}Oct

exact(m) = ⊥DBM

› if m•
(2i0−1) (2j0−1) ≥ a and m•

(2j0−1) (2i0−1) ≥ −b, then

({|Vj0 → Vi0 ´ [a, b] |}Oct

exact(m))ij
def
=

min (m•
ij, m•

(2j0−1) j + b) if i = 2i0 − 1, j /∈ {2i0 − 1, 2j0 − 1, 2i0, 2j0}

min (m•
ij, m•

i (2j0) + b) if j = 2i0, i /∈ {2i0 − 1, 2j0 − 1, 2i0, 2j0}

min (m•
ij, m•

(2j0) j − a) if i = 2i0, j /∈ {2i0 − 1, 2j0 − 1, 2i0, 2j0}

min (m•
ij, m•

i (2j0−1) − a) if j = 2i0 − 1, i /∈ {2i0 − 1, 2j0 − 1, 2i0, 2j0}

min (m•
ij, m•

(2j0) (2j0−1) − 2a) if i = 2i0, j = 2i0 − 1

min (m•
ij, m•

(2j0−1) (2j0) + 2b) if i = 2i0 − 1, j = 2i0
+∞ if i ∈ {2j0 − 1, 2j0} or j ∈ {2j0 − 1, 2j0}
m•

ij otherwise

otherwise, {|Vj0 → Vi0 ´ [a, b] |}Oct

exact(m) = ⊥DBM

› {|Vj0 → ¨Vi0 ´ [a, b] |}Oct

exact(m)
def
= ({|Vj0 → Vi0 |}

Oct

exact ◦ {|Vj0 → ¨Vj0 ´ [a, b] |}Oct

exact)(m)

The invertible backward assignments, Vj0 → Vj0 ´ [a, b] and Vj0 → ¨Vj0 ´ [a, b] do not
require strongly closed arguments but preserve the strong closure. Other, non-invertible,
cases require a strongly closed argument but, as they only modify constraints involving
the variables Vi0 and Vj0, the 2−variable incremental strong closure Inc•

i0,j0
is sufficient

to recover the strong closure of the result.

„

Abstractions Based on Intervals and Polyhedra. As for the zone domain, we can
always revert to existing interval or polyhedron transfer functions by using the conversion
operators presented in the preceding section:

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.4 – Operators and Transfer Functions 123

Definition 4.4.5. Interval-based octagonal transfer functions.

1. {|Vi ← expr |}Oct

nonrel(m)
def
= {|Vi ← (J expr KInt(Int(m))) |}Oct

exact(m) .

2. {| expr ¯ 0 ? |}Oct

nonrel(m)
def

= (Oct ◦ {| expr ¯ 0 ? |}Int ◦ Int)(m) ∩Oct m .

3. {|Vi → expr |}Oct

nonrel(m)
def
= (Oct ◦{|Vi → expr |}Int ◦ Int)(m) ∩Oct {|Vi ← ? |}Oct(m•) .

„

Definition 4.4.6. Polyhedron-based octagonal transfer functions.

1. {|Vi ← expr |}Oct

poly(m)
def

= (Oct ◦ {|Vi ← expr |}Poly ◦ Poly)(m) .

2. {| expr ¯ 0 ? |}Oct

poly(m)
def
= (Oct ◦ {| expr ¯ 0 ? |}Poly ◦ Poly)(m) .

3. {|Vi → expr |}Oct

poly(m)
def

= (Oct ◦ {|Vi → expr |}Poly ◦ Poly)(m) .

„

These operators have the same advantages and disadvantages as the zone domain ones:
the interval-based abstractions are fast but coarse while the polyhedron-based ones are
precise — they are, in fact, best abstractions — but very costly. Also, the polyhedron-
based abstractions are defined only when the involved expressions are linear or quasi-linear
while the interval domain can abstract expressions of arbitrary form. This last problem
can be partially solved using the methods that will be presented in Sect. 6.2.5 to abstract
an arbitrary expression into a quasi-linear form, at the cost of losing the best abstraction
property.

Deriving New Constraints. When assigning or testing an interval linear form that
cannot be exactly abstracted, we can synthesise new relational constraints to increase the
precision of the interval-based abstractions using a technique similar to the one we used
in the zone domain. For a linear or quadratic cost, we can derive constraints of the form
±Vi ± Vj ≤ c for all Vi and Vj by computing an upper bound of an appropriate interval
linear expression in the interval domain, as we did in Defs. 3.6.4 and 3.6.6:

Definition 4.4.7. More precise octagon transfer functions.

Let expr
def

= [a0, b0]´˝k([ak, bk]ˆ Vk). We define:

Antoine Miné Weakly Relational Numerical Abstract Domains

124 Chapter 4: The Octagon Abstract Domain

› ({|Vj0 ← expr |}Oct

rel (m))ij
def

=

2 max (J expr KInt(Int(m))) if i = 2j0 and j = 2j0 − 1
2 max (J a expr KInt(Int(m))) if i = 2j0 − 1 and j = 2j0

max (J expr a Vi0 KInt(Int(m))) if i = 2i0 − 1, j = 2j0 − 1, and i0 6= j0

or i = 2j0, j = 2i0, and i0 6= j0

max (J expr ` Vi0 KInt(Int(m))) if i = 2i0, j = 2j0 − 1, and i0 6= j0

or i = 2j0, j = 2i0 − 1, and i0 6= j0

max (J Vi0
a expr KInt(Int(m))) if i = 2j0 − 1, j = 2i0 − 1, and i0 6= j0

or i = 2i0, j = 2j0, and i0 6= j0

max (J a expr a Vi0 KInt(Int(m))) if i = 2i0 − 1, j = 2j0, and i0 6= j0

or i = 2j0 − 1, j = 2i0, and i0 6= j0

mij otherwise

› ({| expr ¯ 0 ? |}Oct

rel (m))ij
def

= min(mij,

2 max (JVj0
a expr KInt(Int(m))) if ∃j0, i = 2j0, j = 2j0 − 1

2 max (J aVj0
a expr KInt(Int(m))) if ∃j0, i = 2j0 − 1, j = 2j0

max (J Vj0
a Vi0

a expr KInt(Int(m))) if ∃i0 6= j0, i = 2i0 − 1, j = 2j0 − 1
or ∃i0 6= j0, i = 2j0, j = 2i0

max (J Vj0
` Vi0

a expr KInt(Int(m))) if ∃i0 6= j0, i = 2i0, j = 2j0 − 1
max (J aVj0

a Vi0
a expr KInt(Int(m))) if ∃i0 6= j0, i = 2i0 − 1, j = 2j0

The addition ` and subtraction a operators on interval linear forms are defined by
respectively adding or subtracting the interval coefficients corresponding to the same vari-
able. A formal definition will be presented in Sect. 6.2.2.

„

We restrict ourselves to interval linear forms so that some simplification can be easily
performed using the ` and a operators. This is not such a big restriction as we will see
in Sect. 6.2.3 how an arbitrary expression can be abstracted into an interval linear form.
Also, the same technique can be used for backward assignments of interval linear forms;
however, this result in a cubic-cost algorithm which is less attractive than the linear-cost
assignment and the quadratic-cost test.

4.4.5 Adapted Extrapolation Operators

Any widening or narrowing in the zone abstract domain that preserves the coherence is,
respectively, a valid widening or narrowing in the octagon abstract domain. We can simply

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.5 – Alternate Octagon Encodings 125

define:
{

▽Oct def
= ▽Zone

△Oct def
= △Zone

and refer the reader to Sect. 3.7 for some possible definitions of ▽Zone and △Zone to provide,
for instance, a standard widening ▽Oct

std and narrowing △Oct
std .

There is, however, a little subtlety concerning the widening with thresholds ▽Zone
th pro-

posed in Def. 3.7.2. As unary constraints Vi ≤ a and −Vj ≤ b are now encoded as
Vi + Vi ≤ 2a and −Vj − Vj ≤ 2b, we should check for the stability of values in 2T and
not in T for matrix elements that represent such constraints if we wish to get a behavior
similar to that of the zone domain. Hence, the following modified definition:

Definition 4.4.8. Widening with thresholds ▽Oct
th .

(m ▽Oct
th n)ij

def
=

mij if mij ≥ nij

min { x | x ∈ T ∪ {+∞}, x ≥ nij } otherwise when i 6=
min { 2x | x ∈ T ∪ {+∞}, 2x ≥ nij } otherwise when i =

„

Finally, we stress the fact that one should restrain from closing strongly the left argu-
ment of the widening as the sequence mi+1

def
= (m•

i)▽
Oct ni may not converge in finite time,

even though the sequence mi+1
def
= mi▽

Octni always does. The example of non-terminating
analysis presented in the zone domain, in Ex. 3.7.3, is also valid in the octagon domain. It
is not a problem, however, to strongly close the right argument of our widenings, or either
or both argument(s) of the standard narrowing. But, due to the non-monotonicity of the
widening and narrowing operators, there is no guarantee that closing any argument will
result in a gain of precision, unlike what happens for all the other operators and transfer
functions.

4.5 Alternate Octagon Encodings

4.5.1 Efficient Representation

In the octagon abstract domain, we only manipulate coherent DBMs. From an implemen-
tation point-of-view, coherent DBMs are redundant and waste precious memory. In our
implementation [Mina], we chose to actually store only the lower left part of the DBM,
that is, elements at line i, column j such that i ≥ j or i = , as pictured in Fig. 4.4. Other
elements can be recovered by coherence, using the fact that mij = m ı . The elements are
stored into a flat array in left-to-right, top-down, row-major ordering. Note that this layout
uses 2n(n + 1) elements — instead of 4n2 for a straightforward redundant DBM storage —
while, in theory, 2n2 elements suffice. By coherence, mii = m ı ı , so, every other element on

Antoine Miné Weakly Relational Numerical Abstract Domains

126 Chapter 4: The Octagon Abstract Domain

j

1 2 3 4 · · · 2n − 2 2n − 1

1 1 2

2 3 4

i 3 5 6 7 8

4 9 10 11 12
...

...
...

...
...

. . .

2n − 2 · · · · · · · · · · · · · · · · · · 2n2

2n − 1 · · · · · · · · · · · · · · · · · · 2n(n + 1)

Figure 4.4: Efficient memory representation of a coherent DBM. For each of the 2n(n+1)
matrix elements actually present in memory, we give its index in a flat array with left-to-
right, top-down, row-major ordering. All absent elements can be recovered by coherence.

the diagonal is redundant. They are kept in our representation to avoid “holes”. This also
permits to easily access elements: mij, for i ≥ j or i = , is stored at position j + ⌊i2/2⌋
in the flat array.

4.5.2 Adapted Hollow Form

In Sect. 3.8.2, we explained how the “hollow” representation of DBMs proposed by Larsen,
Larsson, Pettersson, and Yi in [LLPY97] can be useful when memory consumption is an
issue: an algorithm is provided to set to +∞ the maximal number of elements of a DBM
without changing its zone concretisation γZone . This method can also be applied directly
to DBMs representing octagons; however it is not optimal. Indeed, a DBM representing an
octagon has a little more redundancy than a DBM representing a zone. Firstly, coherence
ensures that half the elements can be safely ignored. Secondly, we can choose as hollow
DBM a matrix that has the same strong closure than that of the original matrix, which
is less restrictive than imposing that they have the same closure, as many distinct closed
matrices may have the same strong closure. In practice, whenever m•

ij = (m•
i ı + m•

j)/2
and i 6= , the value of m•

ij can be forgotten as it will be restored by a strong closure
application.

We propose the following algorithm that extends the one presented in Sect. 3.8.2:

1. Firstly, apply the algorithm Hollow presented in Sect. 3.8.2 on a strongly closed DBM

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.5 – Alternate Octagon Encodings 127

m. We call m′ the resulting matrix.

2. Then, set to +∞ elements at positions (i, j) such that m′
ij = (m′

i ı + m′
j)/2 when

j 6= ı. We call m′′ the obtained matrix.

3. Finally, set to +∞ elements in m′′ at position (i, j) such that ⌊i/2⌋ < ⌊j/2⌋ or i = j.
We denote by Hollow •(m) the result of this algorithm.

Theorem 4.5.1. Properties of the hollow representation.

1. m• can be retrieved from Hollow •(m).

2. Hollow •(m) can be computed in cubic time.
„

Proof.

1. We prove that each step of Hollow • can be reverted:

› m′′ can be reconstructed from Hollow •(m) by coherence:

m′′
ij

def
=

(Hollow •(m))ij if ⌊i/2⌋ ≥ ⌊j/2⌋ and i 6= j
(Hollow •(m)) ı if ⌊i/2⌋ < ⌊j/2⌋
0 if i = j

› Because our algorithm ensures that ∀i, m′
i ı = m′′

i ı , m′ can be reconstructed
from m′′ by setting:

m′
ij

def

= min(m′′
ij, (m′′

i ı + m′′
j)/2) .

› Thm. 3.8.1 states that γPot(Hollow(m∗)) = γPot(m). If we apply this theorem
to m•, we get γPot(Hollow((m•)∗)) = γPot(m•), and so, γOct(Hollow((m•)∗)) =
γOct(m•). As strongly closed matrices are also closed, this implies
γOct(Hollow(m•)) = γOct(m), and so, (Hollow(m•))• = m•. Thus, by applying
the strong closure to the matrix m′, we get m• back.

2. The computation of Hollow •(m) is not very different from that of Hollow(m), which
can be done in cubic time according to Thm. 3.8.1.3. We only change the closure
requirement into a strong closure requirement and perform two quadratic time addi-
tional steps, hence, the cost remains cubic.

”

It is not obvious whether Hollow • returns a DBM with as many +∞ coefficients as
possible. However, in practice, it performs quite well and is an improvement over using
Hollow on DBMs representing octagons.

Antoine Miné Weakly Relational Numerical Abstract Domains

128 Chapter 4: The Octagon Abstract Domain

4.6 Analysis Examples

All the examples presented in the previous chapter that were in the scope of the zone
abstract domain can also be precisely analysed in the octagon abstract domain. We present
here new examples that require the inference of relational invariants of the form c ≤ X+Y ≤
d, and so, cannot be precisely analysed in the zone abstract domain.

4.6.1 Decreasing Loop

In the following example, the loop counter I is decremented at each iteration while the
index X is incremented:

Example 4.6.1. Decreasing loop.

I ← 16;
X ← 1;
while ❶ 0ˇ I {

② X ← X ´ 1;
I ← I ¨ 1

③ }

④

„

The iterates are as follows:

iteration i label l octagon X i
l

0 ❶ I = 16 ∧ X = 1 ∧ I + X = 17 ∧ I − X = 15
1 ② I = 16 ∧ X = 1 ∧ I + X = 17 ∧ I − X = 15
2 ③ I = 15 ∧ X = 2 ∧ I + X = 17 ∧ I − X = 13
3 ❶ ▽ I ≤ 16 ∧ 1 ≤ X ∧ I + X = 17 ∧ I − X ≤ 15
4 ② 1 ≤ I ≤ 16 ∧ 1 ≤ X ≤ 16 ∧ I + X = 17

∧ − 15 ≤ I − X ≤ 15
5 ③ 0 ≤ I ≤ 15 ∧ 2 ≤ X ≤ 17 ∧ I + X = 17

∧ − 17 ≤ I − X ≤ 13
6 ❶ ▽ I ≤ 16 ∧ 1 ≤ X ∧ I + X = 17 ∧ I − X ≤ 15
7 ❶ △ 0 ≤ I ≤ 16 ∧ 1 ≤ X ≤ 17 ∧ I + X = 17

∧ − 17 ≤ I − X ≤ 15
8 ④ I = 0 ∧ X = 17 ∧ I + X = 17 ∧ I − X = −17

We are able to discover the relational loop invariant I + X = 17 at ❶ . Moreover,

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.6 – Analysis Examples 129

iterations with widening and narrowing are able to prove that, at the end of the loop,
I = 0. Thus, we can conclude that X = 17 holds at ④ .

Thanks to its ability to exactly represent the negation of variables, the octagon abstract
domain is able to abstract precisely loops that mix increasing and decreasing counters,
which is not possible using the plain zone abstract domain.

4.6.2 Absolute Value

Consider the following code that computes the absolute value Y of X before testing whether
it is smaller than 69:

Example 4.6.2. Absolute value analysis.

X ← [−100, 100];
① Y ← X;

② if Y ¯ 0 { ③ Y ← ¨Y ④ } else { ⑤ };

⑥ if Y ¯ 69 { ⑦ · · · }

„

The interval domain is able to prove easily that, at ⑦ , Y ≤ 69, however, it is not able to
deduce any bound on X. The octagon domain, however, can discover that X ∈ [−69, 69] at
⑦ because it is able to keep the relationship between X and Y . The iterates are as follows:

iteration i label l octagon X i
l

0 ① −100 ≤ X ≤ 100
1 ② −100 ≤ X ≤ 100 ∧ −100 ≤ Y ≤ 100

∧ X − Y = 0 ∧ −200 ≤ X + Y ≤ 200
2 ③ −100 ≤ X ≤ 0 ∧ −100 ≤ Y ≤ 0

∧ X − Y = 0 ∧ −200 ≤ X + Y ≤ 0
3 ④ −100 ≤ X ≤ 0 ∧ 0 ≤ Y ≤ 100

∧ − 200 ≤ X − Y ≤ 0 ∧ X + Y = 0
4 ⑤ 0 ≤ X ≤ 100 ∧ 0 ≤ Y ≤ 100

∧ X − Y = 0 ∧ 0 ≤ X + Y ≤ 200
5 ⑥ −100 ≤ X ≤ 100 ∧ 0 ≤ Y ≤ 100

∧ − 200 ≤ X − Y ≤ 0 ∧ 0 ≤ X + Y ≤ 200
6 ⑦ −69 ≤ X ≤ 69 ∧ 0 ≤ Y ≤ 69

∧ − 138 ≤ X − Y ≤ 0 ∧ 0 ≤ X + Y ≤ 138

Intuitively, one may think that the most precise bounds for X can only be discovered
by an abstract domain able to represent the constraint Y = |X|. In fact, this intuition is

Antoine Miné Weakly Relational Numerical Abstract Domains

130 Chapter 4: The Octagon Abstract Domain

false and the octagon domain, which cannot represent such a non-linear and non-convex
constraint, finds the most precise bounds for X. The important point is that, at ⑥ , we
are able to infer the information −Y ≤ X ≤ Y that will be combined by closure with the
information Y ≤ 69 at ⑦ . This analysis works equally well if we modify the 100 and 69
constants. As this analysis requires the manipulation of bounds on X + Y , it cannot be
performed accurately using the zone abstract domain.

4.6.3 Rate Limiter

Consider the following code implementing a rate limiter:

Example 4.6.3. Rate limiter analysis.

Y ← 0;
while ❶ rand {

X ← [−128, 128];
D ← [0, 16];
S ← Y ;

② R ← X ¨ S;
Y ← X;

if R¯¨D { ③ Y ← S ¨D ④ } else

if D¯R { ⑤ Y ← S ´D ⑥ }

⑦ }

„

At each loop iteration, a new value for the entry X is fetched within [−128, 128] and
a new maximum rate D is chosen in [0, 16]. The program then computes an output Y
that tries to follow X but is compelled to change slowly: the difference between Y and its
value in the preceding iteration is bounded, in absolute value, by the current value of D.
The S state variable is used to remember the value of Y at the last iteration while R is a
temporary variable used to avoid computing the difference X ¨ S twice.

The output Y is bounded by the range of X, that is, Y ∈ [−128, 128]. To prove this,
suppose that Y ∈ [−128, 128] at ② . One of the three following cases may occur at ⑦ in the
same loop iteration:

› If −D < R < D, then Y = X.

› If R ≤ −D, then Y = S −D. As R = X −S, we have X −S ≤ −D, so, S −D ≥ X.
Finally, X ≤ Y ≤ S, so, Y ∈ [−128, 128].

› If R ≥ D, then Y = S + D. As R = X − S, we have X − S ≥ D, so, S + D ≤ X.
Finally, S ≤ Y ≤ X, so, Y ∈ [−128, 128].

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.7 – Related Works and Extensions 131

Interval Analysis. The interval analysis is not able to keep any relation between R,
X, and S. As a consequence, the tests R¯¨D and R˙D do not refine the bounds for
S ¨D nor S ´D. The analysis behaves exactly as if these tests were ignored, that is, as
if Y were non-deterministically incremented or decremented by D at each loop iteration.
An abstract semantics using the interval transfer functions but exact fixpoint computation
without widening would find that, at ❶ , Y is unbounded, so, a fortiori, no computable
loop abstraction using widenings can find finite bounds for Y .

Octagonal Analysis. In order to find the most precise bounds for Y , that is Y ∈
[−128, 128], one needs to represent exactly the constraint R = X ¨ S, which is not possi-
ble in the octagon domain. Nevertheless, the non-exact abstract assignment of Def. 4.4.7
is smart enough to derive the constraint R + S ∈ [−128, 128]. Suppose that, at a given
abstract loop iteration, Y ∈ [−M, M] at ❶ . Then, at ② , we also have S ∈ [−M, M] and
the following computation occurs:

› At ③ , the test implies R + D ≤ 0, which implies −R ≥ 0 and S = (S + R) −
R ≥ S + R ≥ −128, so, S ∈ [−128,M]. At ④ , Y − S ∈ [−16, 0], which gives
Y = (Y − S) + S ∈ [−144,M].

› At ⑤ , the test implies R − D ≥ 0, which implies −R ≤ 0 and S = (S + R) − R ≤
S +R ≤ 128, so, S ∈ [M, 128]. At ⑥ , Y −S ∈ [0, 16], which gives Y = (Y −S)+S ∈
[−M, 144].

› At ⑦ , by union, we get Y ∈ [−max(M, 144), max(M, 144)].

Thus, the iteration is stable if and only if M ≥ 144. As a consequence, a static analysis
using the widening with thresholds will find as bound for Y the smallest threshold greater
than 144. Even though this result is not optimal, we are still able to derive finite bounds
for Y provided our widening has sufficiently many threshold steps.

4.7 Related Works and Extensions

It seems that at the time we published some early results on the zone and octagon domains
[Min00, Min01a, Min01b], the search for numerical abstract domains with a precision versus
cost trade-off between that of the interval and the polyhedron domains became of particular
interest to the static analysis research community. We present here two recent extensions
to the octagon abstract domain of particular interest.

Two Variables Per Linear Inequality Abstract Domain. In [SKH02], Simon, King,
and Howe present an abstract domain for invariants containing constraints of the form

Antoine Miné Weakly Relational Numerical Abstract Domains

132 Chapter 4: The Octagon Abstract Domain

αX + βY ≤ c, that is, octagonal constraints refined to allow arbitrary coefficients instead
of unit ones. An abstract element is conceived as a map that stores a planar polyhedron for
each unordered pair of distinct variables. This domain is called Two Variables Per Linear
Inequality (TVPLI, for short).

Several efficient satisfiability algorithms for such constraint conjunctions have been pro-
posed in the late 70’s: one is from Nelson [Nel78] and the other one, inspired from Bellman’s
satisfiability algorithm for potential constraints [Bel58], is from Shostak [Sho81]. Following
our methodology, the authors choose in [SKH02] to derive a normal form algorithm from
Nelson’s satisfiability algorithm, which is then used to construct best abstractions for the
union and projection operators, as well as an inclusion test. Also, the authors propose to
use any polyhedron widening point-wisely on each planar polyhedron.

As for polyhedra, the algorithms are complete only for rationals and reals. Integers can
be abstracted as rationals with a little precision degradation. Indeed, even the satisfiability
problem for conjunctions of TVPLI constraints on integers is known to be NP-complete.

The TVPLI domain is much more precise than our octagon domain, but it also has a
greater cost. The most costly operation is, as expected, the closure that is used pervasively
and performs in O(k2n3 log n(log k + log n)), where n is the number of variables and k is
the maximum number of inequalities over all variable pairs. As for the polyhedron domain,
there is no upper bound to the size of an abstract element, and so, no theoretical time
cost bound can be given. More experiments are needed to determine the scope of this new
abstract domain.

Octahedra Abstract Domain. In [CC04], Clarisó and Cortadella introduce another,
orthogonal, extension to the octagon abstract domain allowing any number of variables in
each inequality while keeping unit coefficients:

∑

i εiVi ≤ c, εi ∈ {−1, 0, 1}. They name it
the octahedra abstract domain, meaning “octagons with more dimensions”. The authors
are only interested in inferring delays, so, they designed the octahedra abstract domain to
abstract sets of positive variables only, but it can be adapted to abstract variables that can
be positive or negative.

Unlike what happens for zone, octagonal, and TVPLI constraints, no complete satisfi-
ability algorithm seems to have been discovered for such constraints — except, of course,
the generic ones used in linear programming. The authors rely on a propagation algorithm
that saturates a constraint set by adding the sum of two constraints if it has only unit co-
efficients. This does not give a full normal form, and so, the derived inclusion and equality
tests are sound but incomplete — they can return either a definitive “yes” or “I don’t know”
— and there is no best abstraction result. However, the authors introduce a very clever
representation for octahedra that compactly encodes a conjunction of constraints using
a tree-like structure with maximal sharing that resembles the Binary Decision Diagrams
introduced by Bryant in [Bry86] to represent boolean functions.

Domaines numériques abstraits faiblement relationnels Antoine Miné

4.8 – Conclusion 133

Figure 4.5: On-line octagon sample analyser.

The octahedra abstract domain has been successfully applied to the problem of au-
tomatically generating timing constraints for asynchronous circuits where it exhibited a
precision comparable to that of the polyhedron abstract domain, more time consumption,
but much less memory consumption — which is a positive result as, in this application,
memory was the limiting factor.

4.8 Conclusion

We have presented, in this chapter, an extension to the zone abstract domain that is able
to discover invariants of the form ±X ± Y ≤ c for a similar asymptotic cost: a O(n2)
memory cost and a O(n3) time cost per abstract operation in the worst case. When I = Q

and I = R, we have provided as much best abstract transfer functions and operators as
possible. When I = Z the choice is given to either lose a little precision, or retain best
operators and transfer functions and have a O(n4) worst-case time cost.

Antoine Miné Weakly Relational Numerical Abstract Domains

134 Chapter 4: The Octagon Abstract Domain

The octagon abstract domain presented here has been implemented as a robust and fast
library in the C programming language — an OCaml binding is also available. This library
is publicly available on the WEB [Mina]. An academic analyser using the octagon domain
is included within the library. It can be queried on-line [Minb] using the WEB-interface
pictured in Fig. 4.5. The library has also been used in the Astrée industrial-strength
static analyser. Chap. 8 will present its integration within Astrée and give experimental
results on the analysis of real-life programs that show the practical usefulness of the octagon
domain.

Future Work. Our work on the octagon domain may be extended in several directions.
In particular, we left in our presentation a few dark corners that should be elucidated. One
issue is the closure algorithm for integer octagonal constraints. Unlike the integer zone
constraints and the rational and real octagonal constraints, which enjoy Floyd–Warshall-
related cubic algorithms, the only closure algorithm for integer octagonal constraints we are
aware of has a O(n4) cost — see Sect. 4.3.5. Determining the exact complexity of the closure
problem for integer octagonal constraints is interesting from a theoretic point-of-view, even
though, from a practical point-of-view, we can safely use an incomplete closure if we do not
mind a small precision loss. The next points are common to the octagon domain and the
zone domain of the previous chapter. Firstly, we only presented widening and narrowing
operators that are point-wise extensions of those on the interval domain and we may ask
ourselves whether there exists other ways to construct them. In particular, it would be
quite interesting if we could design a widening operator that is insensible to the chosen
DBM representation of a zone or an octagon, so that it is possible to close the iterates —
see Sect. 3.7.2. Secondly, we designed inexact transfer functions on interval linear forms
that are able to derive new relational constraints but only use non-relational information
— see Def. 4.4.7. New transfer functions that are, in terms of precision and cost, between
these transfer functions and the costly polyhedron-based ones would be welcome. One may
investigate whether best linear assignments and tests can be computed using a less costly
technique than switching temporarily into the polyhedron domain. Finally, we may wish
to extend the expressiveness of the octagon domain and infer invariants of a more complex
form while keeping a cost that is much smaller than that of the polyhedron domain. We
cited two newly developed abstract domains that are in-between, in terms of precision
and cost, the octagon and the polyhedron domains: the octahedra domain by Clarisó and
Cortadella and the TVPLI domain by Simon, King, and Howe. Such domains seem very
promising but are works in progress: they still need a few operators and transfer functions
before the whole Def. 2.4.1 is implemented and they can be “plugged” into static analysers
such as Astrée. Only experimentation — such as our work with Astrée, related in
Chap. 8 — will tell us which abstract domain is best for a given application.

Domaines numériques abstraits faiblement relationnels Antoine Miné

Chapter 5: A Family of Zone-Like Abstract Domains 135

Chapter 5

A Family of Zone-Like Abstract
Domains

Nous nous intéressons maintenant à une autre extension du domaine des zones
permettant de représenter et de manipuler des invariants de la forme X −Y ∈
B où B vit dans une base non relationnelle B. Des hypothèses suffisantes
sur B sont présentées pour construire une notion de clôture par plus-courts
chemins, dont nos fonctions de transfert et opérateurs abstraits découlent. Nous
donnons quelques exemples de bases valides B qui permettent la construction
de nouveaux domaines numériques abstraits faiblement relationnels tels que,
par exemple, un domaine pour les contraintes de zone strictes X − Y < c et
un autre pour les contraintes de congruence X ≡ Y + c [d].

We turn to another, orthogonal, extension of zones, that allows representing
and manipulating invariants of the form X−Y ∈ B where B lives in a suitable
non-relational basis B. We present sufficient hypotheses on B that permit the
existence of a shortest-path closure notion, from which our abstract operators
and transfer functions are derived. We also give suitable examples of accept-
able bases B that permit the construction of new weakly relational numerical
abstract domains, such as a domain for strict zone constraints X −Y < c and
another for congruence constraints X ≡ Y + c [d].

5.1 Introduction

We are interested, in this chapter, in generalising the zone abstract domain, that was
presented in Chap. 3 and manipulated conjunctions of constraints of the form X − Y ≤ c,
to different forms of constraints while keeping its lightweight cubic worst-case time cost

Antoine Miné Weakly Relational Numerical Abstract Domains

136 Chapter 5: A Family of Zone-Like Abstract Domains

per abstract operation. Recall that this cost comes from our ability to compute a normal
form that enjoys a saturation property, using a mere shortest-path closure computation.
A natural question is whether it is possible to apply such algorithms to other types of
constraints. We already discussed in Chap. 4 some extensions that consists in generalising
the left-hand side of constraints: octagonal constraints (±X±Y ≤ c) but also Two Variables
Per Linear Inequality (αX + βY ≤ c, [SKH02]) and octahedra constraints (

∑

i εiVi ≤ c,
εi ∈ {−1, 0, 1}, [CC04]). In this chapter, we propose to try and extend the right-hand
side of constraints instead: given an abstraction B of P(I), where I is a numerical set
that can be Z, Q, or R, we propose a generic way to construct an abstract domain for
conjunctions of constraints of the form X − Y ∈ γB(B), B ∈ B. Adapting the closure is a
lot of work and we will need restrictive hypotheses on the algebraic structure of the basis B.
The subsequent construction of the abstract domain is then straightforward. We provide
several bases examples B that motivate our construction. We retrieve the zone abstract
domain in Sect. 5.4.2, but also extend it to allow both non-strict X − Y ≤ c and strict
X − Y < c constraints in Sect. 5.4.3. We will also present new domains for congruence
relations X ≡ Y + a [b]; either integer congruences, in Sect. 5.4.4, or rational congruences,
in Sect. 5.4.5.

Related Work. We have already seen several examples of closure-based satisfiability
algorithms for conjunctions of constraints of the form X−Y ≤ c [Bel58], ±X±Y ≤ c [HS97],
and αX + βY ≤ c [Nel78, Sho81] that can be converted into normalisation algorithms. In
[TCR94], Toman, Chomicki, and Rogers propose a normalisation procedure for conjunctions
of constraints of the form X ≡ Y + c [d] and present derived equality, inclusion, and
emptiness testing, as well as intersection and projection operators. Unfortunately, their
algorithm has a O(n4) time cost. We will see that, by propagating constraints using the
same pattern as in the Floyd–Warshall shortest-path closure algorithm, the normalisation
can be performed with a better, cubic, worst-case time cost.

Methods purely based on constraint propagation following a simple transitive closure
scheme become quickly incomplete when we consider more complex constraint forms. For
instance, the satisfiability problem for constraints of the form X − Y ∈ (aZ + b) ∩ [x, y]
is undecidable [TCR94]. In his Ph. D. thesis, Bagnara [Bag97, Chap. 5.7] proposes to use
the family of constraints X − Y ∈ B where B lives in a subset B of P(R), but without
any restrictive hypotheses on B, and so, without our completeness and best abstraction
results. Also, it is quite customary in the field of Constraint Logic Programming (CLP) to
manipulate complex constraints using such incomplete propagation methods. Incomplete-
ness is not an issue for CLP as only a finite universe is tested for satisfiability. Constraint
propagation is merely performed for efficiency purposes but each input point will be ul-
timately checked against each initial and inferred constraint, resulting in a complete and
terminating algorithm.

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.2 – Constraint Matrices 137

When it comes to abstract interpretation, even though we manipulate potentially infinite
sets, the completeness of the constraint propagation in our domain X − Y ∈ B, B ∈ B is
not required to get a sound abstraction. It matters, however, for precision purposes. A
complete closure enjoying saturation ensures full equality, inclusion, and emptiness tests —
instead of incomplete tests that can return either a definitive “yes” or “I don’t know”— and
best or even exact abstractions for union, projection, assignments of the form X ← Y ´C,
and tests of the form (X ¨ Y ∈ C ?) whenever C can be exactly represented in B. We will
see that obtaining sound constructions is quite easy while giving these precision guarantees
is much harder.

5.2 Constraint Matrices

5.2.1 Representing Constraints

Recall that a basis B, defined as in Sect. 2.4.4, is an abstraction of P(I), where I ∈ {Z, Q, R},
suitable to build non-relational abstract domains in a generic way. Given a basis B, we
wish now to lift it to a weakly relational abstract domain able to represent and manipulate
conjunctions of constraints of the form Vi − Vj ∈ C and Vi ∈ C where the C’s are subsets
of I representable in B.

Constraint Matrix. Let V
def

= {V1, · · · , Vn} be the finite set of program variables. A
constraint matrix m is a (n + 1)× (n + 1) matrix with elements in B. We denote by Weak
the set of such constraint matrices. As for zones, we use the first row and column of the
matrix to encode unary constraints; intuitively, this amounts to adding a phantom variable
V0 /∈ V that is considered to be always equal to zero, and encode unary constraints Vi ∈ C
as Vi − V0 ∈ C. Whenever there is no information about Vj − Vi, we can safely set mij to

⊤♯
B

as γB(⊤♯
B
) = I. Unlike what happened for the zone domain, we do not need to define a

special +∞ element that represents “no constraint”. A constraint matrix m represents the
following set of points in In:

Definition 5.2.1. Constraint matrix concretisation γWeak of a DBM.

γWeak(m)
def
= { (v1, . . . , vn) ∈ In | ∀i, j ≥ 1, vj − vi ∈ γB(mij) and

∀i ≥ 1, vi ∈ γB(m0i), −vi ∈ γB(mi0) } .

„

Alternatively, we can picture m as a constraint graph, that is, a directed complete graph
where nodes are variables in V ∪{V0} and each arc is labelled with an element in B. Thus,
we will follow the graph terminology of paths and cycles as in the preceding chapters.

Antoine Miné Weakly Relational Numerical Abstract Domains

138 Chapter 5: A Family of Zone-Like Abstract Domains

Partial Order. We can define the following partial order ⊑Weak on Weak as the point-
wise extension to matrices of the order ⊑♯

B
on B:

Definition 5.2.2. ⊑Weak order.

m ⊑Weak n
def

⇐⇒ ∀i, j, mij ⊑
♯
B

nij

(⊥Weak)ij
def

= ⊥♯
B

(⊤Weak)ij
def

= ⊤♯
B

„

Obviously, γWeak is monotonic for ⊑Weak : m ⊑Weak n =⇒ γWeak(m) ⊆ γWeak(n). We
also have γWeak(⊥Weak) = ∅ while γWeak(⊤Weak) = In.

Coherence. Given two variables Vi and Vj, two elements in m give direct information
on Vj − Vi: mij and mji. Similarly, mi0 and m0i both give some information about the
acceptable values of Vi. In the following we impose a coherence condition stating that each
element in such a pair gives the same amount of information as the other one:

Definition 5.2.3. Coherence constraint matrix.

m is coherent ⇐⇒ ∀i, j, γB(mij) = { −x | x ∈ γB(mji) } .

„

From now on, all our constraint matrices will be coherent. This implicitly requires that
B has an exact counterpart for the unary minus operator so that { −x | x ∈ γB(mji) } is
exactly representable as an abstract basis element.

Constraint Propagation. Constraints are not independent. For instance:

Vj − Vk ∈ C and Vk − Vi ∈ D =⇒ Vj − Vi ∈ { c + d | c ∈ C, d ∈ D } .

If ´♯ is a sound abstraction in B for the ´ operator, then we have:

Vj − Vk ∈ γB(mkj) and Vk − Vi ∈ γB(mik) =⇒ Vj − Vi ∈ γB(mik ´♯ mkj) .

If we suppose moreover that ∩♯
B

is a sound abstraction for ∩, then we can replace mij

with mij ∩♯
B

(mik ´♯ mkj) for all i, j, k without changing γWeak(m). More generally, given
a path 〈i = i1, . . . , im = j〉 from i to j we can derive the implicit constraint Vj − Vi ∈
γB(mi1i2 ´

♯ · · · ´♯ mim−1im) to refine mij. Thus, we can perform constraint propagation
in the abstract to replace a matrix with a smaller matrix representing the same set. Of
course, if we wish this abstract constraint propagation to be as precise as in P(I), the basis
operators ∩♯

B
and ´♯ need to be exact abstractions. We saw that, in the zone domain, it

is possible to gather all implicit constraints in cubic time to get an emptiness test, and a

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.2 – Constraint Matrices 139

normal form enjoying constraint saturation. We will present sufficient conditions on B so
that such a normal form exists and is computable by a slightly modified Floyd–Warshall
algorithm.

5.2.2 Previous Work on Closed Half-Rings

We recall here the notion of closed half-ring presented, for instance, in [AHU74] and [CLR90,
§ 26], that provides a well-known framework for generalising the notion of shortest-path
closure and Floyd–Warshall algorithm:

Definition 5.2.4. Closed half-ring.

A closed half-ring is a set C together with:

1. an operator ⊕ that is associative: a⊕(b⊕c) = (a⊕b)⊕c, commutative: a⊕b = b⊕a,
and idempotent: a ⊕ a = a, and

2. an operator ¯ that is associative, such that

3. ¯ distributes ⊕: a¯ (b⊕ c) = (a¯ b)⊕ (a¯ c) and (a⊕ b)¯ c = (a¯ c)⊕ (b¯ c), and

4. ⊕ has a neutral element 0: 0 ⊕ a = a ⊕ 0 = a, such that 0 ¯ a = a ¯ 0 = 0, and

5. ¯ has a neutral element 1: 1 ¯ a = a ¯ 1 = a, and

6. given a countable set of elements (ai)i∈N, the infinite sum
⊕

i ai exists, and ¯ dis-
tributes infinite sums.

„

Properties. A core property of closed half-rings is that a notion of shortest-path closure
exists. Given a matrix m with elements in C, we can define its closure m⋆ by:

m⋆
ij

def
=

⊕

m≥1, 〈i=i1,...,im=j〉

(

m−1
⊙

k=1

mikik+1

)

.

According to [CLR90, § 26.4], m⋆ can be computed by the following algorithm derived from
the Floyd–Warshall algorithm:

m0
ij

def
=

{

mij if i 6= j
(1 ⊕ mij) if i = j

mk+1
ij

def

= mk
ij ⊕ (mk

ik ¯ (mk
kk)

∗ ¯ mk
kj) ∀ 0 ≤ i, j, k ≤ n

m⋆ def
= mn+1

Antoine Miné Weakly Relational Numerical Abstract Domains

140 Chapter 5: A Family of Zone-Like Abstract Domains

where c∗ for c ∈ C is defined as follows:

c∗ = 1 ⊕ c ⊕ (c ¯ c) ⊕ (c ¯ c ¯ c) ⊕ · · ·

Examples. The numerical set I
def
= I ∪ {+∞} we have used in the zone and the octagon

domains is almost a closed half-ring. In order for the sum ⊕ of arbitrary sets to be defined,
we need to take I ∈ {Z, R} and add a −∞ element as well as a +∞ element:

C
def
= I ∪ {+∞,−∞}

⊕
def
= min 0

def
= +∞

¯
def
= + 1

def
= 0

m⋆ corresponds to a slightly modified shortest-path closure where −∞ coefficients appear
whenever there exists a cycle with a strictly negative total weight.

Another classical example is the boolean half-ring:

C
def
= {T,F}

⊕
def
= ∨ 0

def
= F

¯
def
= ∧ 1

def
= T

A matrix m in the boolean half-ring effectively encodes a relation between elements of V.
Its closure m⋆ corresponds to the transitive closure of the relation.

Bases as Closed Half-Rings. Given a basis B, we would like to compute the shortest-
path closure using the operators ¯

def
= ´♯ and ⊕

def
= ∩♯

B
so that it corresponds to making

explicit all implicit constraints. The neutral element for ∩♯
B

must be such that γB(0) = I.
Unfortunately, by Def. 5.2.4.4, ∀a, 0 ¯ a = 0 which implies 0´♯ ⊥♯

B
= 0, and so, our basis

must abstract { a + b | a ∈ I, b ∈ ∅ } = ∅ by I which is not natural. As encountering ⊥♯
B

while combining constraints corresponds to discovering an infeasible path in the matrix, ⊥♯
B

should be absorbing — i.e., 0´♯ ⊥♯
B

= ⊥♯
B

— so that the contradiction appears explicitly
in the closed matrix. As a consequence, the kind of closure computed by closed half-
rings does not correspond to the constraint propagation we seek. Moreover, the theory of
closed half-rings can only help us in the propagation of adjacent constraints but does not
guarantee that such propagations are sufficient to get the tightest possible bounds — recall
that the octagon abstract domain required the combination of non-adjacent constraints, as
well as tightening in the integer case. As a consequence, we will need to adapt the algebraic
structure a little bit for our purposes.

5.2.3 Acceptable Bases

We introduce the concept of acceptable basis, that is, sets B such that:

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.2 – Constraint Matrices 141

Definition 5.2.5. Acceptable basis.

An acceptable basis B is a basis in the sense of Def. 2.4.2 such that:

1. Arbitrary sets B ⊆ B have an exact abstract intersection ∩♯
B
B:

γB(∩♯
B
B) =

⋂

{ γB(b) | b ∈ B } .

Note that ∩♯
B

may be different from the optional greatest lower bound, denoted by ⊓♯
B
.

2. ´♯ is exact: γB(X♯ ´♯ Y ♯) = { x + y | x ∈ γB(X♯), y ∈ γB(Y ♯) } .

3. ¨♯ is exact: γB(¨♯X♯) = { −x | x ∈ γB(X♯) } .

4. Singletons are abstracted exactly: γB([a, a]♯) = {a} .

5. Given a finite set B ⊆ B,

γB

(

⋂♯
B

B
)

= ∅ =⇒ ∃b, b′ ∈ B, γB(b ∩♯
B

b′) = ∅ .

6. Given an arbitrary set B ⊆ B,

γB

(

⋂♯
B

B
)

6= ∅ =⇒ ∀b ∈ B, γB

(

⋂♯
B
{ b´♯ b′ | b′ ∈ B }

)

= γB

(

b´♯
(

⋂♯
B

B
))

.

„

As this definition is quite complex, it deserves some comments:

› First of all, remark that γB may not be injective. We introduce the following equiv-
alence relation ≃:

X♯ ≃ Y ♯ def

⇐⇒ γB(X♯) = γB(Y ♯) .

› The exactness of ¨♯ in Def. 5.2.5.3 allows redefining the coherence as follows:

m is coherent ⇐⇒ ∀i, j, mij ≃ ¨
♯ mji .

› Defs. 5.2.5.1–2 state the existence of exact abstractions ∩♯
B

and ´♯ for ∩ and ´. This
ensures that constraint propagation in the abstract is as precise as in the concrete:

γB(mij ∩♯
B

(mik ´
♯ mkj)) = γB(mij) ∩ { x + y | x ∈ γB(mik), y ∈ γB(mkj) } .

Antoine Miné Weakly Relational Numerical Abstract Domains

142 Chapter 5: A Family of Zone-Like Abstract Domains

› Def. 5.2.5.1 requires that the abstract intersection of arbitrary many elements exists
so that we can actually define the shortest path from i to j as an intersection over
the infinite set of paths from i to j:

⋂♯

B

m≥1, 〈i=i1,...,im=j〉

(mi1i2 ´
♯ · · ·´♯ mim−1im) .

As this requirement is quite strong, we also propose the following, relaxed yet suffi-
cient, alternate definition of an acceptable basis:

Definition 5.2.6. Acceptable basis revisited.

In Def. 5.2.5, point 1 can be weakened into: for each finite set C ⊆ B and for each
finite or infinite subset D of { c1´♯ · · ·´♯ cm | m ≥ 1, c1, . . . , cm ∈ C }, ∩♯

B
D exists

and is such that: γB(∩♯
B
D) =

⋂

{ γB(d) | d ∈ D }.

„

By taking C = {mij | ∀i, j }, Def. 5.2.6 implies the existence of the intersection of
sums of constraints along paths, for arbitrary sets of paths in m.

› Def. 5.2.5.4 ensures that [0, 0]♯ exists and corresponds to {0}. It is a neutral element
for ´♯, up to γB. It will also be necessary for our saturation proof in Thm. 5.2.1 to
consider the exact abstraction of arbitrary singletons.

› Def. 5.2.5.6 replaces the distributivity of ¯ over infinite sums ⊕ with a weaker version
which is compatible with ∀X♯ ∈ B, ⊥♯

B
´♯ X♯ ≃ ⊥♯

B
. Indeed, one may find, for

instance, B ⊆ B such that
⋂♯

B
B ≃ ⊥♯

B
but

⋂♯
B
{ b ´♯ ⊤♯

B
| b ∈ B } 6≃ ⊥♯

B
. In this

case
(

⋂♯
B

B
)

´♯ ⊤♯
B
≃ ⊥♯

B
6≃

⋂♯
B
{ b´♯ ⊤♯

B
| b ∈ B }, so, ∩♯

B
cannot distribute ´♯ up

to γB.

› Finally, remark that hypotheses Defs. 5.2.5.5–6 are very strong. Arbitrary subsets of
P(I) are not likely to verify them. Sect. 5.4 will present a few acceptable bases as
well as bases that form classical non-relational domains but are not acceptable.

Some hypotheses that do not seem to be relevant here will in fact be crucial in the
proof of the theorems related to the closure. Unfortunately, they do not always have a
very intuitive meaning: they should be considered as mandatory technicalities. As these
hypotheses were stated specifically in order for our proofs to work out, they are sufficient
but certainly not necessary conditions; it is probably possible to trade some hypotheses for
new ones, at the expense of non-trivial changes in our proofs.

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.2 – Constraint Matrices 143

5.2.4 Adapted Closure Algorithm

Our closure algorithm is exactly the Floyd–Warshall algorithm used in Def. 3.3.2 for zones,
starting from column and line number 0, except that we have redefined the meaning of
min, +, and 0 as ∩♯

B
, ´♯, and [0, 0]♯. It is much simpler than the algorithm presented in

Sect. 5.2.2 for regular closed half-rings. We will denote its result on the matrix m by m⋆:

Definition 5.2.7. Floyd–Warshall algorithm for constraint matrices ⋆.

m0 def
= m

mk+1
ij

def

= mk
ij ∩♯

B
(mk

ik ´
♯ mk

kj) ∀ 0 ≤ i, j, k ≤ n

m⋆

ij
def

=

{

mn+1
ij if i 6= j

[0, 0]♯ if i = j

„

We retrieve the classical emptiness test, using the diagonal elements of mn+1, as well as
the closure, normal form, and saturation properties of m⋆. They are but a little complicated
by the possible non-injectivity of γB:

Theorem 5.2.1. Properties of the Floyd–Warshall algorithm for constraint ma-
trices.

1. γWeak(m⋆) = γWeak(m) .

2. γWeak(m) = ∅ ⇐⇒ ∃i, 0 /∈ γB(mn+1
ii) .

3. If γWeak(m⋆) 6= ∅, then:

› m⋆ is coherent,

› m⋆ is the transitive closure of m, up to γB:

∀i, j, m⋆

ij ≃
⋂♯

B

〈i=i1,...,im=j〉

mi1i2 ´
♯ · · ·´♯ mim−1im

› all constraints in m⋆ saturate γWeak(m):

∀i, j, ∀c ∈ γB(m⋆

ij),
∃~v ∈ In+1 such that v0 = 0, (v1, . . . , vn) ∈ γWeak(m), and vj − vi = c

› m⋆ is a normal form, up to γB:

∀i, j, γB(m⋆

ij) = inf⊆ { γB(nij) | γWeak(m) = γWeak(n) }

Antoine Miné Weakly Relational Numerical Abstract Domains

144 Chapter 5: A Family of Zone-Like Abstract Domains

› the closure has the following local characterisation:

m = m⋆ ⇐⇒

{

∀i, j, k, γB(mij) ⊆ γB(mik ´♯ mkj)
∀i, γB(mii) = {0}

„

Proof.

The proof is quite complex, and so, it is postponed to the appendix, in Sect. A.2, and
we only give here a proof sketch.

The proof is similar to that of the classical Floyd–Warshall algorithm for potential con-
straints — Thm. 3.3.5. We prove, by induction on k, that, for all i, j:

γB(mk
ij) ⊇

⋂

〈i=i1,...,im=j〉

γB(mi1i2 ´
♯ · · ·´♯ mim−1im)

γB(mk
ij) ⊆

⋂

〈i = i1, . . . , im = j〉

simple path such that

∀1 < l < m, il < k

γB(mi1i2 ´
♯ · · ·´♯ mim−1im)

Thanks to the exactness of ´♯, each γB(mi1i2 ´
♯ · · ·´♯ mim−1im) is well-defined indepen-

dently from any evaluation order, although mi1i2´
♯ · · ·´♯ mim−1im may depend upon the

chosen evaluation order. Then, we prove that, when k = n, these upper and lower bounds
are indeed equal. This requires the distributivity property Def. 5.2.5.6. The requirement
that singletons are exactly representable is used when proving the saturation property
by induction on the matrix size n. Finally, Def. 5.2.5.5 is used to prove the emptiness
test.

”

Incremental Closure. Thanks to the local characterisation of closed constraint matrices,
it is possible to derive, as for zones — see Def. 3.3.4 — and octagons — see Def. 4.3.4 — an
incremental version of the modified Floyd–Warshall algorithm. If m is closed and n equals
m except for the last n − c lines and columns, we can compute the closure n⋆ of n using
the following algorithm.

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.2 – Constraint Matrices 145

Definition 5.2.8. Incremental Floyd–Warshall algorithm for constraint matrices.

n0 def
= n

nk+1
ij

def
=

{

nk
ij if 0 ≤ i, j, k ≤ c

nk
ij ∩♯

B
(nk

ik ´
♯ nk

kj) otherwise

n⋆

ij
def
=

{

nn+1
ij if i 6= j

[0, 0]♯ if i = j

„

By virtually reordering the variables, this algorithm can be extended to the case where
only lines and columns at indexes i1 to in−c have been modified. We denote by Inc⋆

i1,...,in−c
(n)

the resulting matrix. It is computed in time proportional to (n + 1)3 − (c + 1)3.

Extending the Normal Form. The transitive closure and local closure characterisation
properties of Thm. 5.2.1.3 are only valid when γWeak(m) 6= ∅. However, the saturation and
normal form properties can be extended to all constraint matrices by slightly modifying
the definition of the closure ⋆ of matrices representing an empty set:

m⋆ def
= ⊥Weak if ∃i, 0 /∈ γB(mn+1

ii) in Def. 5.2.7 .

In-Place Implementation. It is possible to design an in-place version of the closure
and incremental closure algorithms, in the spirit of Def. 3.3.3. Such algorithms would be
easier to implement, but harder to reason about.

5.2.5 Galois Connection

We required, in Def. 5.2.5, γB to be a complete ∩♯
B
−morphism so that we can compute an

exact abstraction of the shortest-path closure by the Floyd–Warshall algorithm of Def. 5.2.7.
However, ∩♯

B
may be distinct from ⊓♯

B
and compute an exact abstraction of the concrete

intersection ∩ that is not the smallest one with respect the abstract order on B. This can
happen when γB is not injective.

If we suppose, moreover, that γB is a complete ⊓♯
B
−morphism, then, by Thm. 2.2.1,

there exists a canonical abstraction αB from P(I) to B

αB(X)
def
=

d♯
B
{ Y | X ⊑♯

B
γB(Y) }

such that (αB, γB) is a Galois connection. αB can then be “lifted” to form an abstraction
function from P(In) to Weak as follows:

(

αWeak(S)
)

ij

def

= αB ({ vj − vi | v0 = 0, (v1, . . . , vn) ∈ S }) .

Antoine Miné Weakly Relational Numerical Abstract Domains

146 Chapter 5: A Family of Zone-Like Abstract Domains

αWeak ◦γWeak is then a normalisation function on Weak . As seen in Thm. 5.2.1.3, ⋆ is also
a kind of normalisation, but only “up to γB”, that is:

∀i, j,
(

(αWeak ◦ γWeak)(m)
)

ij
≃ m⋆

ij .

When γB is a not complete ⊓♯
B
−morphism — because Def. 5.2.6 is used instead of

Def. 5.2.5 or ⊓♯
B

is distinct from ∩♯
B

— we only have a partial Galois connection and a best
abstract representation αWeak◦γWeak may not exist for all constraint matrices. Nevertheless,
m⋆ is still well-defined and gives a best abstract representation “up to γB”.

5.3 Operators and Transfer Functions

Once a normal form operator ⋆ enjoying the saturation property has been defined, there is
not much work to do to adapt the zone abstract domain transfer functions and operators to
construct a fully-featured weakly relational abstract domain Weak . Their time complexity
is dominated by that of the modified closure algorithm that sometimes must be performed
on their arguments, and so, their complexity is cubic in the worst case.

5.3.1 Set-Theoretic Operators

We must use our modified closure to get complete inclusion and equality tests. A best
union abstraction ∪Weak can also be constructed using our closure operator provided that
the basis B has a best union abstraction ∪♯

B
; moreover, ∪Weak preserves the closure up to

γB.

Definition 5.3.1. Set-theoretic operators on constraint matrices.

(m ∩Weak n)ij
def
= mij ∩

♯
B

nij .

(m ∪Weak n)ij
def

= (m⋆

ij) ∪
♯
B

(n⋆

ij) .

„

Theorem 5.3.1. Properties of set-theoretic operators on constraint matrices.

1. γWeak(m ∩Weak n) = γWeak(m) ∩ γWeak(n) . (exact ∩ abstraction)

2. γWeak(m ∪Weak n) ⊇ γWeak(m) ∪ γWeak(n) . (∪ abstraction)

3. γWeak(m ∪Weak n) = inf⊆{ γWeak(o) | γWeak(o) ⊇ γWeak(m) ∪ γWeak(n) }
if ∪♯

B
is the best abstraction for ∪. (best ∪ abstraction)

4. ∀i, j, (m ∪Weak n)⋆

ij ≃ (m ∪Weak n)ij

if ∪♯
B

is the best abstraction for ∪. (∪Weak preserves the closure)

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.3 – Operators and Transfer Functions 147

5. γWeak(m) = γWeak(n) ⇐⇒ ∀i, j, m⋆

ij ≃ n⋆

ij . (equality testing)

6. γWeak(m) ⊆ γWeak(n) ⇐⇒ ∀i, j, γB(m⋆

ij) ⊆ γB(nij) . (inclusion testing)
„

Proof.

1. This is an easy consequence of the exactness of ∩♯
B
: γB(X♯∩♯

B
Y ♯) = γB(X♯)∩γB(X♯).

2. This is an easy consequence of the fact that ∪♯
B

is a sound abstraction for ∪: γB(X♯∪♯
B

Y ♯) ⊇ γB(X♯) ∪ γB(Y ♯) and the fact that γWeak(m⋆) = γWeak(m).

3. By the preceding point, γWeak(m∪Weak n) ⊇ inf⊆ { γWeak(o) | γWeak(o) ⊇ γWeak(m)∪
γWeak(n) }. For the converse inequality, suppose that o is such that γWeak(o) ⊇
γWeak(m) ∪ γWeak(n). We prove that, for all i and j, γB(oij) ⊇ γB(m⋆

ij ∪♯
B

n⋆

ij)

which implies the desired result. Because ∪♯
B

is the best abstraction for ∪, γB(X♯ ∪♯
B

Y ♯) = inf⊆ { S ∈ γ♯
B
(B) | S ⊇ γB(X♯) ∪ γB(Y ♯) }, and so, it is sufficient to prove

that γB(oij) ⊇ γB(m⋆

ij) ∪ γB(n⋆

ij). Consider c ∈ γB(m⋆

ij) ∪ γB(n⋆

ij). Either

c ∈ γB(m⋆

ij) or c ∈ γB(n⋆

ij). We consider only the case c ∈ γB(m⋆

ij) as the other case
is symmetric. By the saturation property of Thm. 5.2.1.3, we have (v0, , . . . , vn) such
that v0 = 0, (v1, . . . , vn) ∈ γWeak(m) and vj − vi = c. By definition of o, we also have
(v1, . . . , vn) ∈ γWeak(o), so vj − vi ∈ γB(oij), and so, c ∈ γB(oij) which concludes the
proof.

4. Obviously, for all i and j, γB((m ∪Weak n)⋆

ij) ⊆ γB((m ∪Weak n)ij).

To prove the converse inequality, recall that we have proved in the preceding point
that ∀i, j, γB(oij) ⊇ γB(m⋆

ij ∪
♯
B

n⋆

ij) whenever γWeak(o) ⊇ γWeak(m)∪ γWeak(n). The

desired result is obtained by choosing o
def
= (m ∪Weak n)⋆.

5. This is an easy consequence of the normal form property of Thm. 5.2.1.3.

6. Using the normal form property of Thm. 5.2.1.3, we have ∀i, j, γB(m⋆

ij) ⊆

γB(n⋆

ij) ⇐⇒ γWeak(m) ⊆ γWeak(n). We conclude by remarking that, on the one

hand ∀i, j, γB(m⋆

ij) ⊆ γB(nij) =⇒ γWeak(m) ⊆ γWeak(n) and on the other hand, as

∀i, j, γB(n⋆

ij) ⊆ γB(nij), ∀i, j, γB(m⋆

ij) ⊆ γB(n⋆

ij) =⇒ γB(m⋆

ij) ⊆ γB(nij).
”

5.3.2 Forget and Projection Operators

Forget Operators. The non-deterministic assignment {|Vf ← ? |}Weak simply amounts
to forgetting the row and column associated to the variable Vf . If the matrix argument is
closed, then we have an exact abstract transfer function and the resulting matrix is closed.

Antoine Miné Weakly Relational Numerical Abstract Domains

148 Chapter 5: A Family of Zone-Like Abstract Domains

If the matrix argument is not closed, we may lose precision. We propose also an alternate
forget operator {|Vf ← ? |}Weak

alt that does not require a closed argument, but has a quadratic
cost instead of a linear one. These operators are inspired from the forget operators on the
zone abstract domain presented in Defs. 3.6.1 and 3.6.2. The main difference is that we
take care not to replace elements mij such that γB(mij) = ∅ with ⊤♯

B
as this could destroy

the information that γWeak(m) = ∅. The resulting operators are naturally strict:

Definition 5.3.2. Forget operators on constraint matrices.

1. ({|Vf ← ? |}Weak(m))ij
def
=

mij if i 6= f and j 6= f
mij if i = j = f

mij otherwise if mij ≃ ⊥♯
B

⊤♯
B

otherwise

2. ({|Vf ← ? |}Weak

alt (m))ij
def

=

mij ∩
♯
B

(mif ´♯ mfj) if i 6= f , j 6= f
mij if i = j = f

mij otherwise if mij ≃ ⊥♯
B

⊤♯
B

otherwise
„

Theorem 5.3.2. Soundness and exactness of {|Vf ← ? |}Weak and {|Vf ← ? |}Weak

alt .

1. γWeak({|Vf ← ? |}Weak(m)) ⊇ { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γWeak(m) } .

2. γWeak({|Vf ← ? |}Weak(m⋆)) = { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γWeak(m) } .

3. γWeak({|Vf ← ? |}Weak

alt (m)) = { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γWeak(m) } .

4. {|Vf ← ? |}Weak(m) is closed whenever m is.
„

Proof.

1. The property is obvious if there is some element in m representing ∅ as such ele-
ments are preserved in {|Vf ← ? |}Weak(m), which gives γWeak({|Vf ← ? |}Weak(m)) =
γWeak(m) = ∅. We now consider the case where ∀i, j, γB(mij) 6= ∅.

Let us take t ∈ I and ~v = (v1, . . . , vn) ∈ γWeak(m). We want to prove that ~v ′ =
(v1, . . . , vf−1, t, vf+1, . . . , vn) ∈ γWeak({|Vf ← ? |}Weak(m)), that is to say, if we denote

by v′
k the k−th coordinates of ~v ′ and state that v0

def

= v′
0

def

= 0, ∀i, j ≥ 0, v′
j − v′

i ∈

γB

(

({|Vf ← ? |}Weak(m))ij

)

.

› If i, j 6= f , we have v′
j − v′

i = vj − vi ∈ γB(mij) = γB

(

({|Vf ← ? |}Weak(m))ij

)

.

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.3 – Operators and Transfer Functions 149

› If i = j = f , we also have v′
j −v′

i = vj −vi = 0 and mij = ({|Vf ← ? |}Weak(m))ij.

› If i = f or j = f but not both, then v′
j − v′

i ∈ I = γB

(

({|Vf ← ? |}Weak(m))ij

)

.

2. By the first point, γWeak({|Vf ← ? |}Weak(m⋆)) ⊇ { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈
γWeak(m⋆) } = { ~v ∈ In | ∃t ∈ I, ~v[Vf 7→ t] ∈ γWeak(m) }, so, we only need to prove
the converse inclusion. The case when m⋆ = ⊥Weak is obvious, so we will consider
only the case m⋆ 6= ⊥Weak , which implies ∀i, j, γB(m⋆

ij) 6= ∅.

Let us take ~v = (v1, . . . , vn) ∈ γWeak({|Vf ← ? |}Weak(m⋆)). We want to prove that
there exists a t such that ~v ′ = (v1, . . . , vf−1, t, vf+1, . . . , vn) ∈ γWeak(m).

Let us first prove that, provided that v0
def

= 0, we have:

⋂♯

B
i6=f

([vi, vi]
♯ ´♯ m⋆

if) 6≃ ⊥♯
B

.

Suppose that this is not the case, then, by Def. 5.2.5.5, there exists two abstract
elements X♯ = [vi, vi]

♯ ´♯ m⋆

if and Y ♯ = [vj, vj]
♯ ´♯ m⋆

jf , with i, j 6= f , in this big

intersection such that X♯ ∩♯
B

Y ♯ 6≃ ⊥♯
B
. By exactness of ∩♯

B
, [c, c]♯, ¨♯, and ´♯, this

gives:
{ vi + a | a ∈ γB(m⋆

if) } ∩ { vj + b | b ∈ γB(m⋆

jf) } = ∅

that is:
vj − vi /∈ γB(m⋆

if ¨
♯ m⋆

jf)

which is absurd because:

vj − vi ∈ γB

(

({|Vf ← ? |}Weak(m⋆))ij

)

= γB(m⋆

ij) (by definition of {|Vf ← ? |}Weak)

⊆ γB(m⋆

if ´
♯ m⋆

fj) (by local closure)

= γB(m⋆

if ¨
♯ m⋆

jf) (by coherence)

So, there exists at least one t in γB

⋂♯

B
i6=f

([vi, vi]
♯ ´♯ m⋆

if)

.

We now prove that any such t is a good choice, that is to say, ~v ′ ∈ γWeak(m). We
will denote by v′

k the k−th coordinate of ~v ′ and state that v′
0

def
= 0.

› For all i 6= f and j 6= f , v′
j − v′

i = vj − vi ∈ γB

(

({|Vf ← ? |}Weak(m⋆))ij

)

=

γB(m⋆

ij).

Antoine Miné Weakly Relational Numerical Abstract Domains

150 Chapter 5: A Family of Zone-Like Abstract Domains

› This equalities also holds when i = j = f , as v′
j − v′

i = vj − vi = 0 and

({|Vf ← ? |}Weak(m⋆))ff = m⋆

ff .

› If i = f but j 6= f , then, we have t ∈ γB([vj, vj]
♯ ´♯ m⋆

jf), and so, v′
i − v′

j =

t − vj ∈ γB(m⋆

ji).

› The case j = f and i 6= f is similar, by coherence.

3. We prove that ∀i, j, ({|Vf ← ? |}Weak

alt (m))⋆

ij 6≃ {|Vf ← ? |}Weak(m⋆)ij which implies
the desired property.

The proof is similar to that of Thm. 3.6.2: any path between two elements distinct
from f in {|Vf ← ? |}Weak

alt (m) can be transformed into a path in m with an equal or
smaller total weight, and the other way round.

4. Suppose that m is closed and let us denote {|Vf ← ? |}Weak(m) by n.

Whenever m = ⊥Weak , by strictness, we also have n = ⊥Weak .

We now consider the case m 6= ⊥Weak , which implies ∀i, j, γB(mij) 6= ∅ because m is
closed. We use the local characterisation of the closure: by Thm. 5.2.1.3 it is sufficient
to prove that ∀i, j, k, γB(nij) ⊆ γB(nik ´♯ nkj) and ∀i, γB(nii) = {0}.

Set three variables i, j, and k. If all of i, j, and k are distinct from f , then γB(nij) =
γB(mij) ⊆ γB(mik ´♯ mkj) = γB(nik ´♯ nkj). If i = j = k = f , then γB(nij) =
γB(nik´♯ nkj) = {0}. In all other cases, at least one of γB(nik) and γB(nkj) is I while
none are ∅, and so, γB(nij) ⊆ γB(nik ´♯ nkj) = I.

As we have ∀i, nii = mii, γ(nii) = {0} is a consequence of the closure of m.
”

Projection Operator. In order to extract the information about a single variable Vi, it
is sufficient to look at the first line of the closure m⋆ of m:

Theorem 5.3.3. Projection operator.

γB(m⋆

0i) = { v ∈ I | ∃(v1, . . . , vn) ∈ γWeak(m), vi = v } .

„

Proof. This is an easy consequence of the saturation property of Thm. 5.2.1.3. ”

Thus, the top row of m⋆, (m⋆

01, . . . ,m
⋆

0n), can be seen as an abstract element in the non-
relational abstract domain derived from B. We call NonRel the conversion operator from
Weak into the non-relational abstract domain constructed on B; it is a best abstraction.

Conversely, a non-relational abstract element can be converted into a constraint matrix
containing ⊤♯

B
elements everywhere except on the top row and, by coherence, the leftmost

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.3 – Operators and Transfer Functions 151

column. We denote by Weak(X♯) the constraint matrix derived from the non-relational
element X♯. This conversion is exact.

5.3.3 Transfer Functions

We use the very same ideas that we used in the zone abstract domain to defined several
abstract transfer functions on our weakly relational domains Weak .

Simple Cases. Recall that, in the zone abstract domain, assignments and backward
assignments of the form X ← Y ´ [a, b] and X ← [a, b], as well as tests of the form X ¨
Y ¯ [a, b] and X ¯ [a, b] could be modeled exactly. In a weakly relational abstract domain
based on a basis B, we can only abstract exactly assignments and backward assignments
of the form X ← Y ´ C and X ← C and tests of the form X ¨ Y ∈ C and X ∈ C,
whenever C ⊆ I is exactly representable in B, i.e., ∃C♯ ∈ B, γB(C♯) = C. For instance,
singletons are guaranteed to be exactly representable in B, so, X ← Y ´ [a, a] has an exact
abstract counterpart, but X ← Y ´ [a, b] when b 6= a may not be exactly representable.
If C is not exactly representable, we can still take any C♯ ∈ B that over-approximates C,
that is γB(C♯) ⊇ C, to get a sound but not exact abstract transfer function. Note that
we have taken the liberty to enrich the syntax of expressions with constant sets C that
may not be intervals and to replace the comparison operators in tests by the ∈ predicate
so that expressions match more closely the expressiveness of the base B. The following
abstract transfer functions for such simple tests, assignments, and backward assignments
are adapted from Defs. 3.6.3, 3.6.5, and 3.6.7 as follows:

Definition 5.3.3. Simple transfer functions for constraint matrices.

We suppose that i0 6= j0 and γB(C♯) ⊇ C. We can defined the following transfer func-
tions:

› ({|Vj0 ← Vj0 ´ C |}Weak

simple(m))ij
def

=

mij ¨♯ C♯ if i = j0, j 6= j0

mij ´♯ C♯ if i 6= j0, j = j0

mij otherwise

› ({|Vj0 ← C |}Weak

simple(m))ij
def

=

¨♯ C♯ if i = j0, j = 0
C♯ if i = 0, j = j0

({|Vj0 ← ? |}Weak(m⋆)ij otherwise

› ({|Vj0 ← Vi0 ´ C |}Weak

simple(m))ij
def
=

¨♯ C♯ if i = j0, j = i0
C♯ if i = i0, j = j0

({|Vj0 ← ? |}Weak(m⋆)ij otherwise

Antoine Miné Weakly Relational Numerical Abstract Domains

152 Chapter 5: A Family of Zone-Like Abstract Domains

› {|Vj0 ∈ C ? |}Weak

simple(m))ij
def

=

mij ∩
♯
B

(¨♯ C♯) if i = j0, j = 0

mij ∩
♯
B

C♯ if i = 0, j = j0

mij otherwise

› {|Vj0 ¨ Vi0 ∈ C ? |}Weak

simple(m))ij
def

=

mij ∩
♯
B

(¨♯ C♯) if i = j0, j = i0

mij ∩
♯
B

C♯ if i = i0, j = j0

mij otherwise

› ({|Vj0 → Vj0 ´ C |}Weak

simple(m))ij
def
=

mij ´♯ C♯ if i = j0, j 6= j0

mij ¨♯ C♯ if i 6= j0, j = j0

mij otherwise

› if γB(m⋆

0j0 ∩
♯
B

C♯) 6= ∅, then

({|Vj0 → C |}Weak

simple(m))ij
def

=

m⋆

ij ∩
♯
B

(m⋆

j0j ´
♯ C♯) if i = 0, j 6= 0, j0

m⋆

ij ∩
♯
B

(m⋆

ij0 ¨
♯ C♯) if j = 0, i 6= 0, j0

⊤♯
B

if i = j0 or j = j0

m⋆

ij otherwise

otherwise, {|Vj0 → C |}Weak

simple(m)
def
= ⊥Weak

› if γB(m⋆

i0j0 ∩
♯
B

C♯) 6= ∅, then

({|Vj0 → Vi0 ´ C |}Weak

simple(m))ij
def

=

m⋆

ij ∩
♯
B

(m⋆

j0j ´
♯ C♯) if i = i0, j 6= i0, j0

m⋆

ij ∩
♯
B

(m⋆

ij0 ¨
♯ C♯) if j = i0, i 6= i0, j0

⊤♯
B

if i = j0 or j = j0

m⋆

ij otherwise

otherwise, {|Vj0 → Vi0 ´ C |}Weak

simple(m)
def

= ⊥Weak

Whenever γB(C♯) = C, these transfer functions are exact.

„

Reverting to Non-Relational Abstractions. Whenever the assignment, backward
assignment, or test is of a more complex form, we can always fall back to transfer functions
on the non-relational domain NonRel constructed over the same basis B. Special care must

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.3 – Operators and Transfer Functions 153

be taken in the test and backward assignment transfer functions to keep as much relational
information as possible.

Definition 5.3.4. Non-relational transfer functions.

› {|Vi ← expr |}Weak

nonrel(m)
def
= {|Vi ← (J expr KNonRel(NonRel(m))) |}Weak

simple(m)

› {| expr ∈ C ? |}Weak

nonrel(m)
def
= (Weak ◦ {| expr ∈ C ? |}NonRel ◦ NonRel)(m) ∩Weak m

› {|Vi → expr |}Weak

nonrel(m)
def

=

(Weak ◦ {|Vi → expr |}NonRel ◦ NonRel)(m) ∩Weak {|Vi ← ? |}Weak(m⋆)

Where J expr KNonRel , {| expr ∈ C ? |}NonRel , and {|Vi → expr |}NonRel live in the non-
relational domain based on B — see Sect. 2.4.4 — and NonRel and Weak are the con-
version operators described in Sect. 5.3.2.

„

More Precise Abstractions for Interval Linear Forms. The non-relational transfer
functions merely merge inferred non-relational information with the subset of known rela-
tional information that is not invalidated by the operation. When assigning or testing an
interval linear form that cannot be exactly abstracted, we can synthesise new relational
constraints to increase the precision of the non-relational transfer functions, for a linear or
quadratic cost, using a technique similar to the one that was used for the zone domain in
Defs. 3.6.4 and 3.6.6: we derive an abstract basis element for each expression of the form
Vi − Vj using the non-relational expression evaluation operator J expr KNonRel . After an as-
signment Vj ← expr , we know that Vj −Vi = expr −Vi, and so, we can derive the constraint
Vj − Vi ∈ γB(J expr ¨ Vi KNonRel(NonRel(m))) after simplification of expr ¨ Vi. After a test
expr ∈ C ?, we know that Vj − Vi = (Vj − Vi − expr) + expr ∈ (Vj − Vi − expr) + C, and so,
we can derive the constraint Vj − Vi ∈ γB(J Vj ¨ Vi ¨ expr KNonRel(NonRel(m))) + C after
simplification of Vj ¨ Vi ¨ expr . This gives the following definitions:

Definition 5.3.5. Weakly relational transfer functions.

› ({|Vj0 ← expr |}Weak

rel (m))ij
def
=

J expr KNonRel(NonRel(m)) if i = 0 and j = j0

J a expr KNonRel(NonRel(m)) if i = j0 and j = 0

J expr a Vi KNonRel(NonRel(m)) if i 6= 0 and j = j0

J Vj a expr KNonRel(NonRel(m)) if i = j0 and j 6= 0

mij otherwise

Antoine Miné Weakly Relational Numerical Abstract Domains

154 Chapter 5: A Family of Zone-Like Abstract Domains

› ({| expr ∈ C ? |}Weak

rel (m))ij
def

= mij ∩♯
B

C♯ ´♯ J Vj a expr KNonRel(NonRel(m)) if i = 0 and j 6= 0

C♯ ´♯ J aVi a expr KNonRel(NonRel(m)) if i 6= 0 and j = 0

C♯ ´♯ J Vj a Vi a expr KNonRel(NonRel(m)) if i 6= 0 and j 6= 0

[0, 0]♯ if i = j = 0

where γB(C♯) ⊇ C and the addition ` and subtraction a operators on interval linear
forms are defined by respectively adding and subtracting the interval coefficients corre-
sponding to the same variable. A formal definition will be presented in Sect. 6.2.2.

„

Whenever the expression is not of interval linear form, it is still possible to apply
Def. 5.3.5 if we take care to first use the technique that will be presented in Sect. 6.2.3
to abstract expressions into interval linear forms.

Finally, note that backward assignments of interval linear forms, Vi → expr , can be
analysed by substituting expr for Vi in every constraint within m, and then applying
Def. 5.3.5 to each such constraint. This gives a cubic-time algorithm.

5.3.4 Extrapolation Operators

Weak has strictly increasing (resp. decreasing) infinite chains for ⊑Weak whenever the basis
B has. In this case there exists a widening ▽B (resp. narrowing △B) on B that can be
extended point-wisely on Weak :

(m ▽Weak n)ij
def

= mij ▽B nij

(m △Weak n)ij
def

= mij △B nij

Stabilisation, in finite time, of increasing iterations with widening — resp. decreasing
iterations with narrowing — is only guaranteed automatically for sequences of the form
X i+1 def

= X i ▽Weak Y i — resp. X i+1 def

= X i △Weak Y i. If the iterates are closed before being
fed as left argument to the extrapolation operator, such as in X i+1 def

= (X i)⋆ ▽Weak Y i,
then the iterates may or may not converge in finite time. We have seen, for instance, in
the zone domain, that the standard interval widening results in non-terminating sequences
while the standard interval narrowing still terminates.

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.4 – Instance Examples 155

5.4 Instance Examples

In this section, we give several examples of acceptable bases to illustrate our generic rela-
tional abstract domain family. We will retrieve existing abstract domains, such as the zone
domain, but also construct new ones, such as the congruence domain.

5.4.1 Translated Equalities

Let us take I ∈ {Z, Q, R}. By Def. 5.2.5.4, an acceptable basis must contain all singletons
in I. The simplest such basis is the constant basis B

Cst . It is derived from the constant
propagation technique introduced by Kildall in [Kil73] and subsequently restated in the
abstract interpretation framework by Cousot and Cousot in [CC77]. It is presented here
using our own notations:

Definition 5.4.1. Constant basis B
Cst .

1. B
Cst def

= I ∪ {⊥Cst
B

,⊤Cst
B

}.

2. The order ⊑Cst
B

is a flat one: ∀c ∈ I, ⊥Cst
B

⊑Cst
B

c ⊑Cst
B

⊤Cst
B

.

3. The (αCst
B

, γCst
B

) function pair defined as follows forms a Galois connection:

γCst
B

(X♯)
def
=

{c} if X♯ = c ∈ I

∅ if X♯ = ⊥Cst
B

I if X♯ = ⊤Cst
B

αCst
B

(R)
def
=

c if R = {c}

⊥Cst
B

if R = ∅

⊤Cst
B

if |R| > 1

4. The best ∪Cst
B

and ∩Cst
B

operators are exactly ⊔Cst
B

and ⊓Cst
B

defined as follows:

› X♯ ∪Cst
B

Y ♯ def

=

⊥Cst
B

if X♯ = ⊥Cst
B

and Y ♯ = ⊥Cst
B

X♯ if X♯ = Y ♯ or Y ♯ = ⊥♯
B

Y ♯ if X♯ = Y ♯ or X♯ = ⊥♯
B

⊤Cst
B

otherwise

› X♯ ∩Cst
B

Y ♯ def
=

⊤Cst
B

if X♯ = ⊤Cst
B

and Y ♯ = ⊤Cst
B

X♯ if X♯ = Y ♯ or Y ♯ = ⊤♯
B

Y ♯ if X♯ = Y ♯ or X♯ = ⊤♯
B

⊥Cst
B

otherwise

Antoine Miné Weakly Relational Numerical Abstract Domains

156 Chapter 5: A Family of Zone-Like Abstract Domains

5. The best forward arithmetic operators can be defined as follows:

› [a, b]Cst def

=

a if a = b

⊤Cst
B

if a 6= b

› X♯ ´Cst Y ♯ def

=

⊥Cst
B

if X♯ = ⊥Cst
B

or Y ♯ = ⊥Cst
B

⊤Cst
B

otherwise if X♯ = ⊤Cst
B

or Y ♯ = ⊤Cst
B

X♯ + Y ♯ if X♯ ∈ I and Y ♯ ∈ I

› X♯ ¨Cst Y ♯ def

=

⊥Cst
B

if X♯ = ⊥Cst
B

or Y ♯ = ⊥Cst
B

⊤Cst
B

otherwise if X♯ = ⊤Cst
B

or Y ♯ = ⊤Cst
B

X♯ − Y ♯ if X♯ ∈ I and Y ♯ ∈ I

› X♯ ˆCst Y ♯ def
=

⊥Cst
B

if X♯ = ⊥Cst
B

or Y ♯ = ⊥Cst
B

0 otherwise if X♯ = 0 or Y ♯ = 0

⊤Cst
B

otherwise if X♯ = ⊤Cst
B

or Y ♯ = ⊤Cst
B

X♯ × Y ♯ if X♯ ∈ I \ {0} and Y ♯ ∈ I \ {0}

› X♯ ˜Cst Y ♯ def
=

⊥Cst
B

if X♯ = ⊥Cst
B

or Y ♯ ∈ {0,⊥Cst
B

}

0 otherwise if X♯ = 0

⊤Cst
B

otherwise if X♯ = ⊤Cst
B

or Y ♯ = ⊤Cst
B

adj (X♯/Y ♯) if X♯ ∈ I \ {0} and Y ♯ ∈ I \ {0}

6. As backward arithmetic operators, we choose the generic ones derived, as in
Sect. 2.4.4, from the forward ones.

7. We now present the backward tests:

›
←−
˛Cst(X♯, Y ♯)

def
= (X♯ ∩Cst

B
Y ♯, X♯ ∩Cst

B
Y ♯)

›
←−
¯Cst(X♯, Y ♯)

def
=

(⊥Cst
B

,⊥Cst
B

) if X♯ = ⊥Cst
B

or Y ♯ = ⊥Cst
B

(⊥Cst
B

,⊥Cst
B

) if X♯ ∈ I, Y ♯ ∈ I, and X♯ > Y ♯

(X♯, Y ♯) otherwise

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.4 – Instance Examples 157

›
←−
ˇCst(X♯, Y ♯)

def
=

(⊥Cst
B

,⊥Cst
B

) if X♯ = ⊥Cst
B

or Y ♯ = ⊥Cst
B

(⊥Cst
B

,⊥Cst
B

) if X♯ ∈ I, Y ♯ ∈ I, and X♯ ≥ Y ♯

(X♯, Y ♯) otherwise

›
←−
¸Cst(X♯, Y ♯)

def

=

(⊥Cst
B

,⊥Cst
B

) if X♯ = ⊥Cst
B

or Y ♯ = ⊥Cst
B

(⊥Cst
B

,⊥Cst
B

) if X♯ ∈ I, Y ♯ ∈ I, and X♯ = Y ♯

(X♯, Y ♯) otherwise

8. B
Cst is of finite height, so, it does not need a widening nor a narrowing.

„

When plugged into the generic non-relational abstract domain construction of
Sect. 2.4.4, B

Cst leads to a constant propagation domain à la Kildall. We now state that
B

Cst is acceptable for our generic relational domain construction:

Theorem 5.4.1. Acceptability of the constant basis.

B
Cst is an acceptable basis for Def. 5.2.5.

„

Proof.

All properties of Def. 5.2.5 are obvious, except Defs. 5.2.5.5–6 that we now prove.

1. Suppose that γCst
B

(

⋂Cst
B

B
)

= ∅. This means that
⋂Cst

B
B = ⊥Cst

B
. We prove that

∃b, b′ ∈ B, b ∩Cst
B

b′ = ⊥Cst
B

. If ⊥Cst
B

∈ B, we simply take b = b′ = ⊥Cst
B

. Otherwise,
there exists b, b′ ∈ B ∩ I such that b 6= b′.

2. Suppose that γCst
B

(

⋂Cst
B

B
)

6= ∅. Then either
⋂Cst

B
B ∈ ⊤Cst

B
or

⋂Cst
B

B ∈ I. In the first

case, B = {⊤Cst
B

} and in the other case, either B = {⊤Cst
B

, c} or B = {c} with c ∈ I.
Whenever B is a singleton, the distributivity is trivial. Whenever B = {⊤Cst

B
, c}, if

moreover b′ 6= ⊥Cst
B

, then (⊤Cst
B

∩Cst
B

c) ´Cst b′ = c ´Cst b′ = (c ´Cst b′) ∩Cst
B ⊤Cst

B
=

(c ´Cst b′) ∩Cst
B (⊤Cst

B
´Cst b′) and, if b′ = ⊥Cst

B
, then (⊤Cst

B
∩Cst

B
c) ´Cst b′ = (c ´Cst

b′) ∩Cst
B (⊤Cst

B ´Cst b′) = ⊥Cst
B

.

”

When applying our weakly relational generic construction, we obtain an abstract domain
that can infer relations of the form X = Y + c and X = c, c ∈ I.

Antoine Miné Weakly Relational Numerical Abstract Domains

158 Chapter 5: A Family of Zone-Like Abstract Domains

Discussion. This domain is not very expressive, yet it is sufficient to prove interesting
properties. For instance, the quantitative shape analysis of Rugina [Rug04] only requires
such numerical relational invariants — combined with non-relational invariants and a shape
analysis — to prove the correctness of the re-balancing algorithm performed after each
insertion in an AVL tree.

A drawback of this domain is its high cost regarded to the obtained precision. One the
one hand, it has the same cubic worst-case time cost per abstract operation and quadratic
memory cost as the zone domain which is strictly more expressive. On the other hand,
there exists quasi-linear algorithms — such as the union–find algorithm — to manipulate
conjunctions of constraints of the form X = Y . Intuitively, the manipulation of conjunc-
tions of constraints of the form X = Y + c should have a complexity strictly included
between these bounds, and so, we postulate for the existence of better representations and
algorithms for this abstract domain.

5.4.2 Retrieving the Zone Domain

In order to retrieve the zone abstract domain, we need to express constraints of the form
Vj − Vi ≤ c, c ∈ I, as Vj − Vi ∈ γB(B) for some B in B. A natural idea is to take, as
basis B, the set of initial segments :] −∞, c], c ∈ I. Unfortunately, this does not form an
acceptable basis as it is not stable under the unary minus operator. The smallest superset
of the set of initial segments that is stable by opposite is the interval abstract domain B

Int

described in details in Sect. 2.4.6. We now prove that B
Int is indeed acceptable for our

generic relational domain construction:

Theorem 5.4.2. Acceptability of the interval basis.

1. B
Int is an acceptable basis for Def. 5.2.5 when I = Z or I = R.

2. B
Int is an acceptable basis for Def. 5.2.6 when I = Q.

„

Proof.

All properties of Def. 5.2.5 are obvious, except Defs. 5.2.5.5–6, as well as Def. 5.2.6 when
I = Q, that we now prove.

1. Suppose that B ⊆ B
Int is a finite set such that γInt

B

(

⋂Int
B

B
)

= ∅. This means that
⋂Int

B
B = ⊥Int

B
. We prove that ∃b, b′ ∈ B, b ∩Int

B
b′ = ⊥Int

B
. If ⊥Int

B
∈ B, we simply

take b = b′ = ⊥Int
B

. Otherwise, as B has at least one element, and all elements are
non-empty intervals, we can consider:

m
def

= max { a | [a, b] ∈ B } ∈ I ∪ {−∞}

M
def
= min { b | [a, b] ∈ B } ∈ I ∪ {+∞}

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.4 – Instance Examples 159

⋂Int
B

B = ⊥Int
B

implies m > M . As B is finite, there is some b, b′ ∈ B such that
min b = m and max b′ = M . As min b > max b′, we have b ∩Int

B
b′ = ⊥Int

B
.

2. Suppose that γInt
B

(

⋂Int
B

B
)

6= ∅. Then ⊥Int
B

/∈ B. Suppose that b′ = [a, b] 6= ⊥Int
B

,

then (
⋂Int

B
B) ´Int [a′, b′] = [max { a | [a, b] ∈ B } + a′, min { b | [a, b] ∈ B } + b′] =

[max { a + a′ | [a, b] ∈ B }, min { b + b′ | [a, b] ∈ B }] =
⋂Int

B
{ b´Int [a′, b′] | b ∈ B }.

If, however, b′ = ⊥Int
B

, then obviously (
⋂Int

B
B) ´Int ⊥Int

B
=

⋂Int
B

{ b ´Int ⊥Int
B

| b ∈
B } = ⊥Int

B
.

3. Let us consider a finite set C of intervals with rational bounds. Denominators ap-
pearing in sums of arbitrary many elements in C are bounded by the least common
multiple of all denominators appearing in C, which is a finite number. Given a finite
or infinite subset D of { c1 ´Int · · · ´Int cm | m ≥ 1, c1, . . . , cm ∈ C }, ∩Int

B
D is thus

well-defined.
”

When instancing our relational domain family with the B
Int basis, we get the same

expressive power as the zone abstract domain of Chap. 3 and similar operators and transfer
functions. However, the representation is a little more redundant here as each matrix
element stores both an upper bound and a lower bound instead of a single upper bound.

5.4.3 Zones With Strict Constraints

We propose here to extend the zone domain to consider strict as well as non-strict in-
equalities. This will give us our first interesting and new application of the generic domain
construction introduced in the chapter.

In order to do this, we first need to extend the interval basis B
Int to consider strict

inequalities. We denote by B
XInt the basis containing all intervals in P(I) where each

bound may be independently included or excluded — except infinite bounds which are
always excluded. The operators and transfer functions on B

XInt are quite long and boring
due to the numerous cases to consider, yet, they are straightforward to derive from those
on B

Int described in Sect. 2.4.6, and so, we will not present them here. As the case I = Z

reduces to standard integer intervals, we consider only the cases I = R and I = Q.

Theorem 5.4.3. Acceptability of the extended interval basis.

1. B
XInt is an acceptable basis for Def. 5.2.5 when I = R.

2. B
XInt is an acceptable basis for Def. 5.2.6 when I = Q.

„

Proof.

All properties of Def. 5.2.5 are obvious, except maybe Defs. 5.2.5.5–6 that we prove now.

Antoine Miné Weakly Relational Numerical Abstract Domains

160 Chapter 5: A Family of Zone-Like Abstract Domains

1. Suppose that B ⊆ B
XInt is a finite set such that γXInt

B

(

⋂XInt
B

B
)

= ∅. This means

that
⋂XInt

B
B = ⊥XInt

B
. We prove that ∃b, b′ ∈ B, b ∩XInt

B
b′ = ⊥XInt

B
. If ⊥XInt

B
∈ B, we

simply take b = b′ = ⊥XInt
B

. Otherwise, we consider, as in Thm. 5.4.2.1, the maximum
m of all lower bounds and the minimum M of all upper bounds. There exists two
intervals b

def

= ‚m,x ‚ and b′
def

= ‚ y, M ‚ in B, where we use the ‚ symbol instead of
] or [when we do not know whether the bound is strict or not. Whenever m > M ,
[m,x]∩XInt

B
[y, M] = ⊥XInt

B
, so, a fortiori, b∩XInt

B
b′ = ⊥XInt

B
. Whenever m = M , there

exists either a b such that b =]m,x ‚ or a b′ such that b′ = ‚ y, M [in B. In both cases,
we get b ∩XInt

B
b′ = ⊥XInt

B
.

2. For the limited distributivity of ´XInt over ∩XInt
B

, we reason independently on the
value of each bound of the result, and on the bound strictness. The distributivity
of the values of bounds is a consequence of the distributivity in ∩Int

B
that we proved

in Thm. 5.4.2.2. If a bound of b is strict, then the corresponding bounds of both
b´XInt

(

⋂XInt
B

B
)

and
⋂XInt

B
{ b´XInt b′ | b′ ∈ B } are strict. If the lower bound of b

is non-strict, then the lower bound for b´XInt
(

⋂XInt
B

B
)

is strict if and only if there

exists at least one interval b′ ∈ B such that min b′ = max { min b′′ | b′′ ∈ B } and
b′ has a strict lower bound, which is equivalent to having a strict lower bound for
⋂XInt

B
{ b´XInt b′ | b′ ∈ B }. A similar argument applies to the upper bound.

”

When instancing our abstract domain family with B
XInt , we obtain a relational abstract

domain that can infer constraints of the form ±X ≤ c and X − Y ≤ c, but also ±X < c
and X − Y < c.

Application. Because B
XInt is able to describe exactly the interval]0, +∞[, the weakly

relational domain constructed on B
XInt can exactly model strict comparisons such as X ˇY .

5.4.4 Integer Congruences

In [TCR94], Toman, Chomicki, and Rogers propose to represent conjunctions of constraints
of the form X ≡ Y + a [b] using “periodicity graphs” resembling our constraint graphs. We
propose here to retrieve such constraint systems using our parametric construction.

We first present the integer congruence basis denoted by B
Cong and inspired from

[Gra89]. But before, we recall and extend the classical arithmetic notions of divisor, greatest
common divisor, and lowest common multiple:

Theorem 5.4.4. Arithmetic lattice.

Let us denote by N∗ the set of strictly positive integers.

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.4 – Instance Examples 161

Then (N∗ ∪ {∞}, /, 1,∞,∨,∧) where:

x/y
def

⇐⇒ y = ∞ or ∃k ∈ N∗, y = kx (x divides y)
∧

A
def

= max/ { x | ∀a ∈ A, x/a } (greatest common divisor)
∨

A
def

= min/ { x | ∀a ∈ A, a/x } (least common multiple)

is a complete, fully distributive, lattice.

„

Proof.

1. / is obviously a partial order and it is easy to see that ∀a, 1/a/∞. Moreover, there
exists an isomorphism between N∗ and the set of countable sequences in N with
a finite number of non-zero elements: x ∈ N∗ is assimilated to the only sequence
α(x) = (α1, . . . , αn, . . .) such that x =

∏

i p
αi
i where pi denotes the i−th prime number.

By this isomorphism, / is corresponds to the point-wise extension of the ≤ order.
The least upper bound and greatest lower bound of two sequences are respectively
the point-wise maximum and minimum, and so, we have a lattice in N∗. We now
prove that the lattice is indeed complete if we add the element ∞. Note that we have
chosen to complete N∗ with an element named ∞ and not 0 so that a/b =⇒ a ≤ b,
which seems more natural.

Given a finite or infinite subset A of N∗, the point-wise minimum of sequences is
always defined, and so,

∧

A exists. If we now consider a subset A of N∗ ∪ {∞}, then
∧

A =
∧

(A \ {∞}) and, in particular,
∧

{∞} =
∧

∅ = ∞. Thus, ∧ is defined for
arbitrary subsets of N∗ ∪ {∞}.

In order to prove that
∨

A always exists, we consider three cases. If ∞ ∈ A, then
∨

A = ∞. If A is infinite, it is also unbounded for /, and we also have
∨

A = ∞. If
∞ /∈ A and A is finite, then, by isomorphism, the point-wise maximum of sequences
is well-defined and so is

∨

A.

2. We now prove that a ∨ (
∧

B) =
∧

{ a ∨ b | b ∈ B }. As ∀x, ∞∨ x = ∞, if a = ∞,
we have a ∨ (

∧

B) =
∧

{ a ∨ b | b ∈ B } = ∞. Suppose now that a 6= ∞. Suppose
moreover that |B| > 1 as the property is obvious when |B| ≤ 1. Then B contains
at least one non-∞ element. If we denote by B′ the set B \ {∞}, then we have:
a ∨ (

∧

B) = a ∨ (
∧

B′) and
∧

{ a ∨ b | b ∈ B } =
∧

{ a ∨ b | b ∈ B′ }. Now that
we only consider finite elements, we can use the isomorphism between N∗ and the set
of countable integer sequences with a finite number of non-zero elements. As the ∧
and ∨ operators correspond, respectively, to the point-wise minimum and maximum
on such sequences, the distributivity follows from the fact that max(x, min Y) =
min { max(x, y) | y ∈ Y }.

Antoine Miné Weakly Relational Numerical Abstract Domains

162 Chapter 5: A Family of Zone-Like Abstract Domains

3. We now prove that a ∧ (
∨

B) =
∨

{ a ∧ b | b ∈ B }.

If a = ∞, then a ∧ (
∨

B) =
∨

{ a ∧ b | b ∈ B } =
∨

B.

We now suppose that a 6= ∞. If ∞ ∈ B, then a ∧ (
∨

B) = a. On the one hand,
∀b, (a ∧ b)/a, so, (

∨

{ a ∧ b | b ∈ B })/a. On the other hand, a ∧ ∞ = a, so,
a ∈ { a∧ b | b ∈ B } and a/(

∨

{ a∧ b | b ∈ B }). Thus, we have
∨

{ a∧ b | b ∈ B } =
a = a ∧ (

∨

B).

Suppose now that a 6= ∞ and ∞ /∈ B. We can still have
∨

B = ∞, so, we cannot
apply our isomorphism by prime factor decomposition to

∨

B. Instead, we apply it
to all finite subsets B′ ⊆ B, as no ∞ can appear in

∨

B′ nor in
∨

{ a ∧ b | b ∈ B′ }.
Given that min(x, max Y) = max { min(x, y) | y ∈ Y }, by our isomorphism, we get
a∧ (

∨

B′) =
∨

{ a∧ b | b ∈ B′ }. This set increases with B′, but, as a∧ (
∨

B) 6= ∞, it
cannot increase indefinitely. Thus, there exists some finite subset B′ ⊆ B such that
a ∧ (

∨

B′) = a ∧ (
∨

B) and
∨

{ a ∧ b | b ∈ B′ } =
∨

{ a ∧ b | b ∈ B }, which proves
the statement.

”

The congruence relation ≡, for x, x′ ∈ Z and y ∈ N∗ ∪ {∞}, is defined formally as:

x ≡ x′ [y]
def

⇐⇒ x = x′ or (x 6= x′ and y/|x − x′|)

so that x ≡ x′ [∞] simply means x = x′.

Using these notions, B
Cong can be now defined as:

Definition 5.4.2. Integer congruence basis B
Cong .

1. B
Cong def

= {⊥Cong
B

} ∪ { aZ + b | a ∈ N∗ ∪ {∞}, b ∈ Z }.

2. The preorder ⊑Cong
B

is defined as:

(aZ + b) ⊑Cong
B

(a′Z + b′)
def

⇐⇒ a′/a and b ≡ b′ [a′] .

This preorder is made into a partial order by ordering equivalent elements, that is,
elements (aZ + b) and (a′Z + b′) such that a = a′ and b ≡ b′ [a′], the following way:

(aZ + b) ⊑Cong
B

(aZ + b′)
def

⇐⇒ |b| < |b′| or (|b| = |b′| and b > 0).

The greatest element for this (pre)order is ⊤Cong
B

def

= (1Z + 0).

3. The function pair (αCong
B

, γCong
B

) defined as follows:

γCong
B

(X♯)
def
=

∅ if X♯ = ⊥Cong
B

{ b } if X♯ = (∞Z + b)
{ ak + b | k ∈ Z } if X♯ = (aZ + b), a ∈ N∗

αCong
B

(R)
def
=

⊔Cong
B

{ (∞Z + b) | b ∈ R }

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.4 – Instance Examples 163

forms a Galois connection. Note that γCong
B

is not injective.

4. The best ∪Cong
B

and ∩Cong
B

operators, up to γB, can be defined as follows for non-⊥Cong
B

elements:

(aZ + b) ∪Cong
B

(a′Z + b′)
def
= (a ∧ a′ ∧ |b − b′|)Z + b

(aZ + b) ∩Cong
B

(a′Z + b′)
def

=

{

(a ∨ a′)Z + b′′ if b ≡ b′ [a ∧ a′]

⊥Cong
B

otherwise,

where b′′ is defined as:

k is such that b − b′ = k(a ∧ a′)
u, u′ are such that au + a′u′ = a ∧ a′

b′′ is such that b′′ = b − kau = b′ + ka′u′

Note that the existence of u and u′ when a, a′ 6= ∞ is guaranteed by Bézout’s theorem.
If a = ∞ or a′ = ∞, we can take b′′ = b′ = b.

The operators ⊔Cong
B

and ⊓Cong
B

are equivalent to ∪Cong
B

and ∩Cong
B

, except that we must
take care to choose the right element among all those with the same concretisation
γCong

B
. As a consequence of Thm. 5.4.4, B

Cong is a complete lattice.

5. We recall here only the [a, b]Cong , ´Cong , and ¨Cong operators, and reefer the reader
to [Gra89] for the definition of other operators:

[a, b]Cong def
=

{

(∞Z + a) if a = b
(1Z + 0) if a 6= b

(aZ + b)´Cong (a′Z + b′)
def
= (a ∧ a′)Z + (b + b′)

¨Cong(aZ + b)
def

= aZ + (−b)

6. B
Cong has no strictly increasing infinite chain, and so, it does not require a widening.

It has, however, strictly decreasing infinite chains. A simple narrowing, inspired from
the one on intervals, is to refine only elements that are ⊤Cong

B
:

X♯
△

Cong
B

Y ♯ def

=

{

Y ♯ if X♯ = (1Z + b)
X♯ otherwise

„

Antoine Miné Weakly Relational Numerical Abstract Domains

164 Chapter 5: A Family of Zone-Like Abstract Domains

When applying the congruence basis B
Cong to the non-relational abstract domain con-

struction of Sect. 2.4.4, we obtain Granger’s simple congruence domain [Gra89]. Moreover,
B

Cong is acceptable for our generic relational domain construction:

Theorem 5.4.5. Acceptability of the simple congruence basis.

B
Cong is an acceptable basis for Def. 5.2.5.

„

Proof.

We now prove that the requirements of Def. 5.2.5 hold.

1. γCong(∞Z + b) = {b}, so, singletons can be represented exactly. The exactness of
∩Cong

B
, ´Cong , and ¨Cong follows from classical arithmetic properties.

2. In order to prove that
⋂Cong

B
B = ⊥Cong

B
=⇒ ∃x, x′ ∈ B, x ∩Cong

B
x′ = ⊥Cong

B
, it

is sufficient to prove that, if x ∩Cong
B

x′, x ∩Cong
B

x′′, and x′ ∩Cong
B

x′′ 6= ⊥Cong
B

, then
x ∩Cong

B
x′ ∩Cong

B
x′′ 6= ⊥Cong

B
. We consider several cases:

› We cannot have any of x, x′, x′′ be ⊥Cong
B

.

› Suppose that x = (∞Z+b), then x∩Cong
B

x′ = x∩Cong
B

x′′ = x, so, x∩Cong
B

x′∩Cong
B

x′′ = x 6= ⊥Cong
B

. The cases where x′ = (∞Z + b) or x′′ = (∞Z + b) are similar.

› Suppose that x = (aZ+ b), x′ = (a′Z+ b′), and x′′ = (a′′Z+ b′′) where a, a′, a′′ 6=
∞. If we denote x′ ∩Cong

B
x′′ by a∗Z + b∗, then b∗ ≡ b′ [a′] and b∗ ≡ b′′ [a′′].

Moreover, as x ∩Cong
B

x′ 6= ⊥Cong
B

, b ≡ b′ [a ∧ a′] and, likewise, b ≡ b′′ [a ∧ a′′], so,
b∗ ≡ b′ [a ∧ a′] and b∗ ≡ b′′ [a ∧ a′′]. We deduce that b∗ ≡ b [(a ∧ a′) ∨ (a ∧ a′′)].
By distributivity, (a ∧ a′) ∨ (a ∧ a′′) = a ∧ (a′ ∨ a′′) = a ∧ a∗, so, b∗ ≡ b [a ∧ a∗],
which proves that x ∩Cong

B
(x′ ∩Cong

B
x′′) 6= ⊥Cong

B
.

3. We suppose that
⋂Cong

B
B 6= ⊥Cong

B
and prove that

⋂Cong
B

{ x ´Cong x′ | x ∈ B } =
(

⋂Cong
B

B
)

´Cong x′. The case x′ = ⊥Cong
B

is obvious, so, we now consider the case x′ =

(a′Z+b′). On the one hand,
(

⋂Cong
B

B
)

´Cong x′ = ((
∨

(aZ+b)∈B a)∧a′)Z+(x+b′) where

x is such that ∀(aZ + b) ∈ B, x ≡ b [a]. On the other hand,
⋂Cong

B
{ x´Cong x′ | x ∈

B } = (
∨

(aZ+b)∈B(a∧ a′))Z + y where y is such that ∀(aZ + b) ∈ B, y ≡ b + b′ [a∧ a′].
Firstly, by distributivity of ∨ over ∧, we have ((

∨

(aZ+b)∈B a)∧a′) = (
∨

(aZ+b)∈B(a∧a′)).
Then, ∀(aZ + b) ∈ B, as x ≡ b [a], we also have x ≡ b [a ∧ a′], so, x + b′ ≡ b + b′ ≡

y [a ∧ a′], and so, x + b′ ≡ y
[(

∨

(aZ+b)∈B a
)

∧ a′
]

, which proves the equality.

”

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.4 – Instance Examples 165

Applications. When instancing our abstract domain family with B
Cong , we obtain a

relational numerical abstract domain that can infer invariants of the form X ≡ a [b] and
X ≡ Y + a [b]. We will call this domain the zone congruence domain. We now give a few
example analyses:

Example 5.4.1. Assignment in the zone congruence domain.

Consider the following sequence of assignments:

① X ← [0, 10];
② Y ← [0, 10];
③ Z ← (4ˆX)´ Y ´ 3

Because the zone congruence domain is not able to represent intervals, the assignments
at ① and ② will simply infer the information X ∈ Z and Y ∈ Z. If we take care to use
the interval linear form assignment transfer function {|V ← expr |}Weak

rel of Def. 5.3.5 at
③ , then we will be able to discover the relational invariant:

Z − Y ∈ J (4ˆX)´ 3 KNonRel(X♯)

that is Z ≡ Y + 3 [4].

„

Example 5.4.2. One-dimensional random walk.

Our second example is the following program that simulates eleven steps of a one-
dimensional random walk:

X ← 0;
I ← 0;
while ❶ I ¸ 11 {

if rand { X ← X ´ 1 }

else { X ← X ¨ 1 };

I ← I ´ 1
② }

③

As for Ex. 2.5.3, to get a precise value for X at ③ , it is important to infer a relational
loop invariant between X and I at ❶ , that is X ≡ I [2]. The following analysis is able
to prove that X is odd after the loop:

iteration i label l abstract element X i
l

0 ❶ X = 0 ∧ I = 0 ∧ X − I = 0
1 ② X ≡ 1[2] ∧ I = 1 ∧ X − I ≡ 0 [2]
2 ❶ ▽ X − I ≡ 0 [2]

Antoine Miné Weakly Relational Numerical Abstract Domains

166 Chapter 5: A Family of Zone-Like Abstract Domains

iteration i label l abstract element X i
l

3 ② X − I ≡ 0 [2]
4 ❶ ▽ X − I ≡ 0 [2]
5 ③ X − I ≡ 0 [2] ∧ I = 11 ∧ X ≡ 1 [2]

„

Finally, an important application of congruence invariants in real-life programming lan-
guages is the analysis of pointer alignment. Indeed, at the machine level, pointers are
generally assimilated to integers and the load and store instructions may require these
pointers to be a multiple of some machine word size n — e.g., n = 4 when dereferencing
a plain integer on a 32-bit architecture. Pointers are often manipulated in a relative way:
a new pointer q is constructed by displacing an existing pointer p by a given offset; hence
the need for relational congruence information of the form q − p ∈ nZ meaning that q is
well-aligned if p is.

Related Work. In their presentation of periodicity graphs, in [TCR94], Toman,
Chomicki, and Rogers provide an emptiness test, a conjunction, and a projection oper-
ators, but no union or transfer functions as they are only interested in the satisfiability
problem for Datalog queries and not abstract interpretation of programs. Also, they pro-
pose a normalisation algorithm based on the same local constraint propagation as ours, that
is, replacing mij with mij ∩♯

B
(mik´♯ mkj). However, the sequence of triplets i, j, k used is

different from the sequence imposed by our Floyd–Warshall algorithm. As a consequence,
the algorithm proposed in [TCR94] exhibits a O(n4) worse-case time cost while we have
given a, much better, cubic time complexity bound.

5.4.5 Rational Congruences

In [Gra97], Granger proposes an extension of the non-relational congruence analysis by
considering sets of rationals of the form aZ+ b, where a, b ∈ Q, called rational congruences.
We recall here the basis B

RCong of rational congruences but, first, we need to extend some
notions of integer arithmetics to rational numbers:

Theorem 5.4.6. Rational lattice.

Let us denote by Q+ the set of positive or null rationals.
Then (Q+ ∪ {∞}, /,∨,∧) where:

p/q
def

⇐⇒ p = 0 or q = ∞ or ∃k ∈ N∗, q = kp (p divides q)
∧

A
def

= max/ { x | ∀a ∈ A, x/a } (greatest common divisor)
∨

A
def
= min/ { x | ∀a ∈ A, a/x } (least common multiple)

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.4 – Instance Examples 167

is a complete, fully distributive, lattice.

Moreover, when their arguments are neither 0 nor ∞, the binary ∧ and ∨ operators can
be defined using the classical integer least common multiple and greatest common divisor
as follows:

a

b
∧

c

d
def

=
ad ∧ bc

bd
and

a

b
∨

c

d
def

=
ad ∨ bc

bd
.

„

Proof.

1. The situation is quite similar to that of Thm. 5.4.4 except that the set of strictly
positive rationals Q+∗ is isomorphic to countable sequences in Z with a finite number
of non-zero elements: strictly positive rationals are obtained by allowing negative
as well as positive exponents of prime numbers. The /, ∧, and ∨ operators still
correspond to the point-wise ≤, minimum, and maximum operators, and so, we have
a lattice structure on Q+∗. We now prove that the lattice is complete thanks to the
addition of two special elements: 0 and ∞.

Whenever 0 ∈ A, we have
∧

A = 0. Moreover,
∧

A =
∧

(A \ {∞}), so, we can now
consider only sets A that do not contain 0 nor ∞. Two cases arise. If the set of
denominators of reduced fractions appearing in A is bounded, then the problem is
similar to that of computing the greatest common divisor of a set of integers. If this
set is unbounded, then

∧

A = 0.

We can prove that
∨

A is always defined by duality: it is sufficient in the preceding
proof to exchange 0 and ∞, and replace “denominator” with “numerator”.

2. We now prove that a ∨ (
∧

A) =
∧

{ a ∨ a′ | a′ ∈ A }. The cases a = ∞ and
a = 0 are obvious because ∞ ∨ a′ = ∞ and 0 ∨ a′ = a′, so, we now suppose that
a /∈ {0,∞}. If 0 ∈ A, then a ∨ (

∧

A) = a ∨ 0 = a; moreover, a ∈ { a ∨ a′ | a′ ∈ A }
which implies

∧

{ a ∨ a′ | a′ ∈ A } = a. As the ∞ element can be safely removed
from A without changing

∧

A nor
∧

{ a ∨ a′ | a′ ∈ A }, we can now consider that
A does not contain 0 nor ∞. For every finite subset A′ ⊆ A, we can apply our
isomorphism and the fact that max(x, min Y) = min { max(x, y) | y ∈ Y } to get
a ∨ (

∧

A′) =
∧

{ a ∨ a′ | a′ ∈ A′ }. We now consider an increasing sequence of finite
subsets A′

i of A. Then, a ∨ (
∧

A′
i) is a sequence both decreasing for / and bounded

by a. We now remark that all decreasing and bounded sequences of integers with
only a finite number of non-zero elements are finite. This means that for some finite
i, a ∨ (

∧

A′
i) = a ∨ (

∧

A) and
∧

{ a ∨ a′ | a′ ∈ Ai } =
∧

{ a ∨ a′ | a′ ∈ A } which
concludes the proof.

The proof that a ∧ (
∨

A) =
∨

{ a ∧ a′ | a′ ∈ A } would be quite similar by duality.

Antoine Miné Weakly Relational Numerical Abstract Domains

168 Chapter 5: A Family of Zone-Like Abstract Domains

3. The alternate formulas for the binary ∧ and ∨ operators are extracted from [Gra97].
”

Then, the rational congruence basis is constructed similarly to the integer congruence
basis:

Definition 5.4.3. Rational congruence basis B
RCong .

1. B
RCong def

= {⊥RCong
B

} ∪ { aZ + b | a ∈ Q+ ∪ {∞}, b ∈ Q }.

2. The congruence relation ≡, for x, x′ ∈ Q and y ∈ Q+ ∪ {∞} is defined formally as:

x ≡ x′ [y]
def

⇐⇒ x = x′ or (x 6= x′ and y/|x − x′|) .

In particular, ∀x, x′, x ≡ x′ [0] and x ≡ x′ [∞] ⇐⇒ x = x′.

3. The preorder ⊑RCong
B

is defined as:

(aZ + b) ⊑RCong
B

(a′Z + b′)
def

⇐⇒ a′/a and b ≡ b′ [a′] .

This preorder is made into a partial order by stating that, if b ≡ b′ [a], then (aZ +

b) ⊑RCong
B

(aZ + b′)
def

⇐⇒ |b| < |b′| or (|b| = |b′| and b > 0).

4. The (αRCong
B

, γRCong
B

) function pair defined as follows forms a partial Galois connec-
tion:

γRCong
B

(X♯)
def

=

∅ if X♯ = ⊥RCong
B

{ b } if X♯ = (∞Z + b)
Q if X♯ = (0Z + b)
{ ak + b | k ∈ Z } if X♯ = (aZ + b), a ∈ Q+∗

αRCong
B

(R)
def

=
⊔RCong

B
{ (∞Z + b) | b ∈ R }

Note that Q is represented by (0Z + b) and singletons by (∞Z + b): the bigger a is
in (aZ + b), the more distance there is between its points. As before, γRCong

B
is not

injective.

5. The best ∪RCong
B

and ∩RCong
B

operators, up to γRCong
B

, are defined by the following
equations, naturally extended to ⊥RCong

B
:

(aZ + b) ∪RCong
B

(a′Z + b′)
def

= (a ∧ a′ ∧ |b − b′|)Z + b

(aZ + b) ∩RCong
B

(a′Z + b′)
def

=

{

(a ∨ a′)Z + b′′ if b ≡ b′ [a ∧ a′],

⊥RCong
B

otherwise,

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.4 – Instance Examples 169

where b′′ is such that b′′ ≡ b [a ∨ a′] and b′′ ≡ b′ [a ∨ a′].

When a, a′ /∈ {0,∞}, such a b′′ can be computed using Bézout’s theorem on the nu-
merators of the fractions a and a′ put to the same denominator.

The operators ⊔RCong
B

and ⊓RCong
B

are equivalent to ∪RCong
B

and ∩RCong
B

, except that
we must take care to choose the right element among all those with the same concreti-
sation γRCong

B
. An important consequence of Thm. 5.4.6 is that B

Cong is a complete
lattice.

6. We recall here only the [a, b]RCong , ´RCong , and ¨RCong operators and refer the reader
to [Gra97] for a more exhaustive presentation of the non-relational domain of rational
congruences:

[a, b]RCong def

=

{

(∞Z + a) if a = b
(0Z + 0) if a 6= b

(aZ + b)´RCong (a′Z + b′)
def

= (a ∧ a′)Z + (b + b′)

¨RCong(aZ + b)
def
= aZ + (−b)

7. B
RCong has strictly increasing and decreasing infinite chains. We recall here Granger’s

simple widening which amounts to setting to Q unstable unions. We also use the same
narrowing as for integer congruences:

X♯ ▽
RCong
B

Y ♯ def
=

{

X♯ if Y ♯ ⊑RCong
B

X♯

(0Z + 0) otherwise

X♯ △
RCong
B

Y ♯ def

=

{

Y ♯ if X♯ = (0Z + b)
X♯ otherwise

„

When applying the congruence basis B
RCong to the non-relational abstract domain

construction of Sect. 2.4.4, we obtain Granger’s rational congruence domain described in
[Gra97]. As B

RCong is also an acceptable basis, we can use it as a parameter to our generic
weakly relational domain construction:

Theorem 5.4.7. Acceptability of the rational congruence basis.

B
RCong is an acceptable basis for Def. 5.2.5.

„

Antoine Miné Weakly Relational Numerical Abstract Domains

170 Chapter 5: A Family of Zone-Like Abstract Domains

Proof.

1. As a consequence of Def. 5.4.3, B
RCong is a complete lattice that can represent each

singleton {b} as (∞Z + b) and enjoys exact abstractions ∩RCong
B

, ´RCong , and ¨RCong .

2. The proof of Defs. 5.2.5.5–6 in the integer congruence case, in Thm. 5.4.5, only
relied on the definition of ´Cong and on the distributivity of the lattice (N∗ ∪
{∞}, /, 1,∞,∨,∧). As ´RCong is defined the same way and the lattice (Q+ ∪
{∞}, /, 0,∞,∨,∧) is also distributive, the very same proof holds here.

”

We then obtain a domain that is able to infer constraints of the form X − Y ∈ aZ + b,
where a, b ∈ Q.

5.4.6 Unacceptable Bases

Many classical bases that are used in non-relational abstract domains are not acceptable
bases. This does not always mean that no relational domain for invariants of the form
X − Y ∈ γ(C♯), C♯ ∈ B can be constructed with a cubic worst-case time cost per abstract
operation, but merely that the generic construction presented here does not apply.

Sign Basis. The sign basis B
Sign = { ∅,] − ∞, 0], [0, +∞], {0}, I } is not acceptable

because it cannot abstract singletons exactly. However, invariants of the form X ≤ Y can
be discovered using the more precise interval basis.

Combined Intervals and Congruences. The reduced product of the interval and inte-
ger congruence bases is a basis that can represent subsets of Z of the form [a, b] × c + d.
This basis does not satisfy Def. 5.2.5.5. Consider, for instance, the following three sets
representable in the basis: {1, 2}, {2, 3}, and {1, 3}; their intersection is empty while no
two of them have an empty intersection. Our construction does not work on this basis,
which does not come much as a surprise as the satisfiability problem for conjunctions con-
taining constraints of the form X ≡ Y + a [b], X + c < Y , and l ≤ X ≤ h is known to be
NP-complete if all the c are non-negative and undecidable if we allow negative values for c
[TCR94].

5.5 Conclusion

We have proposed, in this chapter, a generalisation of the zone abstract domain: constraints
of the form X−Y ≤ c are replaced with constraints of the form X−Y ∈ C, where C lives in
a generic non-relational abstract basis which is a parameter of our generic construction. All
the zone abstract domain algorithms adapt quite nicely and we obtain a similar quadratic

Domaines numériques abstraits faiblement relationnels Antoine Miné

5.5 – Conclusion 171

memory consumption per abstract element and cubic worst-case time cost per abstract
operation. Unfortunately, the restrictive hypotheses required on the non-relational basis
parameter limit the scope of this domain family.

The primary goal of this research was to try and adapt the zone abstract domain to
integer congruences, X ≡ Y + a [b], and we were quite successful in this respect. Some
variations presented here, such as the abstract domain of strict zones or, to a lesser extent,
the abstract domain of rational congruence zones, may also be of interest. However, it is
unlikely that this construction will spawn many more interesting instances that those ones.

Future Work. The difficult part in the design of our family of weakly relational domains
was to find sufficient algebraic conditions so that a low-cost constraint propagation scheme,
such as the Floyd–Warshall shortest-path closure, can be used to find a normal form with a
saturation property — and this was also quite difficult for the octagon domain of Chap. 4.
From a theoretical point of view, it is interesting to see how far we can stretch such algo-
rithms by providing stronger or alternate algebraic framework for constraints of the form
X − Y ∈ C and maybe generalise further these forms of constraint. For instance, the
so-called R2−approximations, introduced — without any normal form or saturation result
— by Bagnara in is Ph.D [Bag97, § 5.7] correspond to conjunctions of constraints of the
form (Vi, Vj) ∈ S, were each S lives in a relational abstract domain for two variables. This
form of constraints generalises our family of constraints X −Y ∈ C, but also the octagonal
constraints ±X ± Y ≤ c, and two variables per linear inequality constraints αX + βY ≤ c.
Each one of these three instances enjoys a different closure-based normal form and it would
be most useful to try and unify them in a more general framework.

Antoine Miné Weakly Relational Numerical Abstract Domains

172 Chapter 5: A Family of Zone-Like Abstract Domains

Domaines numériques abstraits faiblement relationnels Antoine Miné

Chapter 6: Symbolic Enhancement Methods 173

Chapter 6

Symbolic Enhancement Methods

Ce chapitre présente deux techniques pouvant être utilisées pour améliorer la
précision de tout domaine numérique abstrait. Nous proposons d’abord un algo-
rithme, dit de linéarisation, capable d’abstraire une expression quelconque en
une forme linéaire avec coefficients intervalles, ou une forme quasi-linéaire,
et ainsi étendre l’utilité des fonctions de transfert abstraites des domaines
des zones, des octogones, et de notre famille de domaines faiblement relation-
nels. Ensuite, nous proposons une méthode, dite de propagation de constantes
symboliques, pour rendre nos analyses insensibles aux transformations de pro-
grammes relativement simples. Ces méthodes permettent également d’améliorer
la précision des domaines non relationnels, tel que le domaine des intervalles.
Nous proposons enfin quelques stratégies permettant d’ajuster finement ces
techniques.

This chapter presents two techniques that can be used to improve the precision
of any numerical abstract domain. Firstly, we propose a so-called linearisa-
tion algorithm able to abstract arbitrary expressions into interval linear forms,
or quasi-linear forms, and extend the scope of the zone, octagon, and weakly
relational abstract transfer functions based on interval linear forms. Secondly,
we propose a so-called symbolic constant propagation mechanism to make our
analyses more robust against simple program transformations. These meth-
ods are also useful to improve the precision of non-relational abstract domains,
such as the interval domain. Finally, we present a few strategies to help tuning
these techniques.

Antoine Miné Weakly Relational Numerical Abstract Domains

174 Chapter 6: Symbolic Enhancement Methods

6.1 Introduction

The design of abstract transfer functions for the whole set of numerical and boolean ex-
pressions allowed by a realistic programming language is not an easy task, especially for
relational abstract domains. Generally, abstract domain designers only bother designing
precise transfer functions for expressions that match more or less the form of invariants
expressible exactly in their domain. The zone and octagon abstract domains we designed
in Chaps. 3 and 4, as well as the zone-like domains of Chap. 5, perform a little better in this
respect: we proposed exact abstract transfer functions for expressions involving at most
two variables and unit coefficients, but also rather precise abstractions when considering
arbitrary interval linear forms. However, we have no way to abstract generic expressions
— except by momentarily switching into an abstract domain enjoying the desired transfer
function.

Our purpose here is to widen the scope of the abstract transfer functions for interval lin-
ear forms and let them abstract arbitrary expressions. Our solution is quite simple: we first
abstract the expression into an interval linear form, performing a simple expression simpli-
fication on-the-fly, and then apply an existing interval linear form transfer function. We
also propose a symbolic constant propagation technique that allows enhancing the simplifi-
cation feature of this linearisation to gain even more precision. These techniques are quite
generic: we will show how they can improve the precision of relational abstract domains
featuring interval linear form transfer functions, such as the zone and octagon domains,
or quasi-linear form transfer functions, such as the polyhedron abstract domain, but also
non-relational abstract domains, such as the interval domain. We will see, however, that
the improvements vary greatly from example to example as there does not exist a best
way to perform the linearisation and the symbolic constant propagation. These techniques
depend upon strategies, some of which will be proposed in the chapter.

Previous Work on Affine Arithmetics. In the scientific computation community,
much work has been done to try and improve the precision of interval arithmetics. In par-
ticular, affine arithmetics, a technique reminiscent of Hansen’s generalised interval arith-
metics [Han75], has been introduced by Vińıcius, Andrade, Comba, and Stolfi in [VACS94]
to refine interval arithmetics by taking into account existing correlations between computed
quantities. In affine arithmetics, symbolic expressions of the form e = x0 +

∑

i xiεi are ma-
nipulated, where the xi ∈ R are constants and the εi are synthetic variables, ranging in
[−1, 1]: e represents to the set { x0 +

∑

i xiεi | εi ∈ [−1, 1] }. The set of affine forms forms a
linear space: one can add two affine forms, or multiply one by a constant. The affine form
corresponding to an expression is constructed as follows. To each variable Xi is associated
a synthetic variable εi. If Xi has range [ai, bi], then the expression Xi can be modeled as
the affine form (ai + bi)/2 + ((bi − ai)/2)εi. A new synthetic variable is introduced for
each non-singleton interval appearing in an expression, as these choices are uncorrelated.

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.1 – Introduction 175

Also, each non-linear operation, such as the multiplication of two affine forms, introduces
some over-approximation in the form a non-deterministic interval, and thus requires the
introduction of a new εi variable.

The benefit of affine arithmetics comes from the fact that all occurrences of the same
variable Xi use the same εi, allowing some simplification to take place. For instance,
X ¨ (0.5ˆX) when X ∈ [0, 10] will give back the precise interval [0, 5] using affine arith-
metics, instead of [0, 10]¨ [0, 5] = [−5, 10] for regular interval arithmetics. Although affine
arithmetics could be used locally to compute a better abstract expression evaluation than
J expr KInt in the interval domain, it would be tricky to use in relational domains because
it does not express a function of the program variables, but a function of some synthetic
variables εi. Remark also that the affine arithmetics community focuses only on abstracting
expressions and does not consider the problem of control flow joins or loops. In particular,
a program with loops may generate an arbitrary large number of synthetic variables — each
new execution of a non-deterministic choice at a given program point being independent
from its other executions, it requires a new synthetic variable — which prevents us from
manipulating affine forms globally.

Our “linearisation” technique, presented in the first part of the chapter, is related to
affine arithmetics in its principle: we use a symbolic form to allow basic algebraic simpli-
fications. However, our symbolic forms are of a different nature. In particular, they are
expressed directly using the program variables so that they can be fed directly to relational
abstract domains as well as non-relational ones.

Previous Work on Symbolic Constant Propagation. Constant propagation, as pro-
posed by Kildall in [Kil73] and recalled formally in Sect. 5.4.1, has been used for more than
thirty years in the field of optimising compilers: whenever a program expression is proved
constant by static analysis, it enables the compiler to evaluate it at compile-time, thus
saving execution time at run-time. The second part of this chapter will be devoted to
a kind of constant propagation technique based on similar principles, but using symbolic
expressions, to improve the amount of simplification performed by the linearisation. Our
goal here is not time consumption, but analysis precision. Indeed, numerical abstract do-
mains are very sensitive to even the simplest program transformations, such as breaking
assignments using intermediate variables; our symbolic constant propagation tries to undo
such transformations by gluing bits of expressions together in the hope of making abstract
domains more robust.

A somewhat related approach is that of Colby. In his Ph. D. thesis [Col96], Colby pushes
this idea very far by proposing a language of transfer relations that allows propagating, com-
bining, and simplifying, in a fully symbolic way, any sequence of transfer functions before
actually executing the combination in an abstract domain. Our symbolic propagation tech-
nique is much more modest as we only propagate numerical expression trees, which are

Antoine Miné Weakly Relational Numerical Abstract Domains

176 Chapter 6: Symbolic Enhancement Methods

side-effect free and do not contain any control-flow join. Unlike [Col96], we do not han-
dle disjunction symbolically, which limits the combinatorial explosion of symbolic transfer
relations and suppresses the need for symbolic invariant generation. A fundamental differ-
ence is that our symbolic domain has tight interactions with a numerical abstract domain
which performs most of the semantics job, including loop invariant generation using itera-
tions with widening and narrowing. The symbolic domain is only here to help an existing
analysis based on a numerical abstract domain. Thus, while Colby’s framework statically
transforms the abstract equation system to be solved by the analyser, our framework per-
forms this transformation on-the-fly to benefit from the information dynamically inferred
by the analyser.

6.2 Linearisation

We will call “linearisation” the sound abstraction of an arbitrary expression into an interval
linear form or a quasi-linear form.

6.2.1 Interval Linear Forms

Given a finite set of variables V
def
= {V1, . . . , Vn} with values in I, where I ∈ {Z, Q, R}, we

consider interval linear forms, that is, symbolic expressions l of the form:

l
def
= [a0, b0]´ ([a1, b1]ˆ V1)´ · · ·´ ([an, bn]ˆ Vn)

where the [ai, bi] are bounded or unbounded intervals in I: ai ∈ I ∪ {−∞}, bi ∈ I ∪ {+∞},
and ai ≤ bi. We will also use the following more compact notation:

l = i´
n

˝
k=1

ik ˆ Vk

where i and all ik denote intervals. Recall that, as the semantics of ´ and ˆ enjoy the
standard associativity and distributivity properties of + and ×, the evaluation order of our
interval linear form is irrelevant.

Semantics of Interval Linear Forms. Interval linear forms are just a subset of the
expressions available in our Simple programming language. Using the semantics of Def. 2.2,
an interval linear form can be seen as a function that maps a concrete environment ρ : V → I

to a set of values in P(I):

J l Kρ =

{

c0 +
n

∑

k=1

(ck × ρ(Vk)) | ci ∈ [ai, bi]

}

.

Note that, when I ∈ {R, Q}, J l Kρ is an interval, by density. However, when I = Z, J l Kρ
may contain “holes”.

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.2 – Linearisation 177

Partial Ordering. It is possible to compare interval linear forms, as well as Simple

language expressions, using the point-wise extension to the set of environments V → I of
the ⊆ order in P(I): e1 ⊑ e2

def

⇐⇒ ∀ρ, J e1 Kρ ⊆ J e2 Kρ. However, this order is a little too
restrictive. We will define later some operators that are only sound with respect to a set of
environments R, so, we define an ordering family ⊑R as follows:

e1 ⊑R e2
def

⇐⇒ ∀ρ ∈ R, J e1 Kρ ⊆ J e2 Kρ .

Obviously, if R ⊆ R′, then e1 ⊑R′ e2 =⇒ e1 ⊑R e2, and ⊑P(V→I) is equivalent to the plain
point-wise ordering. We will denote by =R the associated equality relation.

We now suppose that we are given an abstract domain D
♯ with concretisation γ :

D
♯ → P(V → I). Given an abstract element X♯ ∈ D

♯, we can safely replace any abstract
assignment transfer function {|V ← e1 |}

♯X♯ with {|V ← e2 |}
♯X♯ whenever e1 ⊑γ(X♯) e2:

over-approximating the set of possible values of expr for each environment in γ(X♯) leads to
over-approximating, in the concrete, the set of environments after the assignment, which is
sound. This is particularly useful if there exists an efficient and precise abstract assignment
for e2 on D

♯ while there is none for e1. Likewise, test transfer functions {| e1 ⊲⊳ 0 ? |}♯X♯

can be safely replaced with {| e2 ⊲⊳ 0 ? |}♯X♯: all environments in γ(X♯) that pass the
test (e1 ⊲⊳ 0 ?) will also pass the test (e2 ⊲⊳ 0 ?) in the concrete world. The case of
backward assignments is a little more subtle: in order to safely replace {|V → e1 |}

♯X♯ with
{|V → e2 |}

♯X♯, e2 needs to over-approximate the value of e1 on environments before the
assignment, that is e1 ⊑{|V → e1 |}(γ(X♯)) e2. One sufficient condition would be e1 ⊑γ({|V → e1 |}

♯X♯)

e2. Another condition, which is more restrictive but does not require the knowledge of
{|V → e1 |}

♯, is e1 ⊑γ({|V ← ? |}♯X♯) e2. Remark that backward assignments are generally used
in a backward pass to refine the result of a preceding forward analysis pass, and so, an
abstraction of the environments before the assignment may be already available. In the
following, we will use {|V ← ? |}♯X♯ and leave implicit the fact that it can be replaced by
any such abstract element.

6.2.2 Interval Linear Form Operators

Linear Operators. Using the interval abstract operators ´Int , ¨Int , and ˆInt defined in
Sect. 2.4.6, as well as a slightly modified interval division ˜Int

alt , we can define the symbolic
addition ` and subtraction a of two linear forms, as well as the multiplication b and
division m of a linear form by a constant interval:

Definition 6.2.1. Interval linear form linear operators.

1. (i´˝n
k=1 ik ˆ Vk) ` (i′ ´˝n

k=1 i′k ˆ Vk)
def
= (i´Int i′)´˝n

k=1(ik ´
Int i′k)ˆ Vk

2. (i´˝n
k=1 ik ˆ Vk) a (i′ ´˝n

k=1 i′k ˆ Vk)
def

= (i¨Int i′)´˝n
k=1(ik ¨

Int i′k)ˆ Vk

Antoine Miné Weakly Relational Numerical Abstract Domains

178 Chapter 6: Symbolic Enhancement Methods

3. i b (i′ ´˝n
k=1 i′k ˆ Vk)

def

= (iˆInt i′)´˝n
k=1(iˆ

Int i′k)ˆ Vk

4. (i´˝n
k=1 ik ˆ Vk) m i′

def

= (i ˜Int
alt i′)´˝n

k=1(ik ˜
Int
alt i′)ˆ Vk

where the alternate division ˜Int
alt is defined to be ˜Int when I ∈ {Q, R }, and as follows

when I = Z:

› [a, b] ˜Int
alt [a′, b′]

def
= [⌊min (a/a′, a/b′, b/a′, b/b′)⌋,

⌈max (a/a′, a/b′, b/a′, b/b′)⌉] when 0 ≤ a′

› X ˜Int
alt Y

def
= (X ˜Int

alt (Y ∩Int
B

[0, +∞])) ∪Int
B

((¨IntX) ˜Int
alt ((¨IntY) ∩Int

B
[0, +∞])) otherwise

„

Recall that, in the original integer interval division, the bounds were rounded towards 0
using the adj function to match the concrete semantics. Here, however, we need to use an
alternate division operator ˜Int

alt that rounds lower bounds towards −∞ and upper bounds
towards +∞ to get a sound m operator in Z, as explained in the proof of Thm. 6.2.1.

The interval linear form operators of Def. 6.2.1 are exact when I ∈ {R, Q }, but, when
I = Z, the multiplication and division operators can result in some loss of precision:

Theorem 6.2.1. Interval linear form linear operators soundness.

Let us take two interval linear forms l1, l2 and an interval i. We have:

› l1 ´ l2 =P(V→I) l1 ` l2

› l1 ¨ l2 =P(V→I) l1 a l2

› iˆ l2 =P(V→I) i b l2 when I ∈ {R, Q }
iˆ l2 ⊑P(V→I) i b l2 when I = Z

› l1 ˜ i =P(V→I) l1 m i when I ∈ {R, Q }
l1 ˜ i ⊑P(V→I) l1 m i when I = Z

„

Proof.

The exactness results when I ∈ {Q, R} come from two facts. Firstly, the classical al-
gebraic properties of the ´, ¨, ˆ, ˜ operators, such as associativity and distributivity.
And, secondly, the exactness of the corresponding interval abstractions ´Int , ¨Int , ˆInt ,
and ˜Int .

When I = Z, the associativity and distributivity of ´, ¨, and ˆ are still valid, and
´Int and ¨Int are still exact, hence the exactness of ` and a . However, as ˆInt is
sound but not exact, so is b . Finally, the soundness of m comes from the fact that,

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.2 – Linearisation 179

given any three intervals i, j, k, we have (i ´ j) ˜ k ⊑P(V→I) (i ˜Int
alt k) ´Int (j ˜Int

alt k)
and (i ˆ j) ˜Int

alt k ⊑P(V→I) (i ˜Int
alt k) ˆInt j. These two properties are a consequence

of the following inequalities applied to interval bounds: ∀x, y ∈ R, ⌊x⌋ + ⌊y⌋ ≤ ⌊x +
y⌋ ≤ adj (x + y) ≤ ⌈x + y⌉ ≤ ⌈x⌉ + ⌈y⌉ and ∀x ∈ Z, y ∈ R, ⌈xy⌉ ≤ x max(⌊y⌋, ⌈y⌉),
⌊xy⌋ ≥ x min(⌊y⌋, ⌈y⌉). Note that these properties are not true if we replace ˜Int

alt by ˜Int

— consider, in the first property, i = j = [1, 1] and k = [2, 2].
”

When I = Z, the fact that the division and multiplication are not exact can lead to much
precision degradation. Consider, for instance, (X m 2) b 2 that evaluates to the interval
linear form [0, 2] ˆ X while one might expect X ´ [−1, 1] — due to truncation, dividing
by two and multiplying the result by two will decrement any positive odd number and
increment any negative odd number. In this example, we have composed the inexact — yet
optimal by themselves — operators X m 2 = [0, 1]ˆX and ([0, 1]ˆX) b 2 = [0, 2]ˆX, and
got a very imprecise result. The problem is that the intermediate computation X m 2 forces
its result to have only integer interval bounds. A solution to this problem is to perform
all computations using interval linear forms with real or rational interval coefficients, even
when I = Z. In order to be sound, it is necessary to translate our integer expressions into
expressions on reals by making the division-induced truncation explicit:

l m Z [a, b]
def
= (l m [a, b]) ` [−1 + 1/ min(|a|, |b|), 1 − 1/ min(|a|, |b|)] .

For instance, (X m 2)b 2 in Z can be abstracted into ((X m 2)` [−0.5, 0.5])b 2 in R, which
evaluates to X ´ [−1, 1]. Similar techniques will be studied in more details later for the
implementation of the floor operator, in Sect. 6.2.6, and the abstraction of floating-point
computations with rounding, in Sect. 7.4.

Intervalisation. In order to deal with non-linear features of expressions, we must in-
troduce some kind of approximation. We present here an “intervalisation” operator ι that
flattens an arbitrary interval linear form l into a single interval. In order to compute such
an interval, the intervalisation operator requires some knowledge about the range of all the
variables. We thus suppose that we have an abstract element R♯ in some abstract domain
D

♯, as well as an abstract projection operator πi : D
♯ → B

Int , for each variable Vi ∈ V ,
such that:

πi(R
♯) ⊇ { v | ∃(v1, . . . , vn) ∈ γ(R♯), v = vi } .

Such an operator was indeed provided for the zone — Sect. 3.5.1 — and octagon —
Sect. 4.4.3 — abstract domains. If D

♯ is the interval abstract domain, then πi(R
♯) is

simply the i−th component of the interval vector R♯. The intervalisation operator ι(l)R♯,
that takes as argument an interval linear form l and an abstract element R♯, is defined as
follows:

Antoine Miné Weakly Relational Numerical Abstract Domains

180 Chapter 6: Symbolic Enhancement Methods

Definition 6.2.2. Interval linear form intervalisation ι.

ι

(

i´
n

˝
k=1

ik ˆ Vk

)

R♯ def
= i ´Int

n

˝Int

k=1

(ik ˆ
Int πk(R

♯)) .

„

Theorem 6.2.2. Intervalisation soundness.

The intervalisation is sound: ∀l, R♯, l ⊑γ(R♯) ι(l)R♯.

„

Proof. This is a consequence of the soundness of the ´Int and ˆInt operators, as well as
the soundness of each πi. ”

Generally, ι is not exact as it performs a non-relational abstraction before evaluating the
interval linear form. Consider, for instance, the linear form l

def

= X ¨ Y and the abstract
element R♯ such that γ(R♯) = { (x, x) | 0 ≤ x ≤ 1 }. We have J l Kρ = {0} for all ρ ∈ γ(R♯)
while ι(l)R♯ = [0, 1] ¨Int [0, 1] = [−1, 1] ⊃ {0}. If we denote by Int(R♯)

def
= λi.πi(R

♯) the
conversion from D

♯ to the interval abstract domain, then ι(l)R♯ is really a synonym for
J l KInt(Int(R♯)).

6.2.3 From Expressions to Interval Linear Forms

We now present a method to abstract an arbitrary expression into an interval linear form.
Given an expression expr and an abstract environment R♯, the linearisation L expr MR♯ is
defined inductively as follows:

Definition 6.2.3. Linearisation L expr MR♯.

We first consider the linear cases:

› L Vi MR♯ def
= [1, 1]ˆ Vi

› L [a, b] MR♯ def
= [a, b]

› L¨e MR♯ def

= a L e MR♯

› L e1 ´ e2 MR♯ def

= L e1 MR♯ ` L e2 MR♯

› L e1 ¨ e2 MR♯ def
= L e1 MR♯ a L e2 MR♯

› L e1 ˆ e2 MR♯ def

= [a, b] b L e2 MR♯ when L e1 MR♯ = [a, b]

› L e1 ˆ e2 MR♯ def

= [a, b] b L e1 MR♯ when L e2 MR♯ = [a, b]

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.2 – Linearisation 181

› L e1 ˜ e2 MR♯ def

= L e1 MR♯ m [a, b] when L e2 MR♯ = [a, b]

In the non-linear multiplication and division cases, one of the argument is flattened into
an interval using the ι function so as to fall back into a linear case:

› L e1 ˆ e2 MR♯ def

= ι(L e1 MR♯)R♯ b L e2 MR♯ or

L e1 ˆ e2 MR♯ def

= L e1 MR♯ b ι(L e2 MR♯)R♯

(these two choices will be discussed in the following section)

› L e1 ˜ e2 MR♯ def

= L e1 MR♯ m ι(L e2 MR♯)R♯

„

The following theorem proves that the linearised expression indeed over-approximates
the behavior of the original expression:

Theorem 6.2.3. Soundness of the linearisation.

∀ expr , R♯, expr ⊑γ(R♯) L expr MR♯ .

„

Proof.

The proof is easy by structural induction on expr . We need to use the soundness of the
` , a , b , m , and ι operators, but also the monotonicity of ´, ¨, ˆ, and ˜ with respect
to ⊑P(V→I) for both their arguments.

Let us consider, as an example, the case expr = e1´e2. By induction hypothesis, we have
e1 ⊑γ(R♯) L e1 MR♯ and e2 ⊑γ(R♯) L e2 MR♯. By monotonicity of ´, we have e1 ´ e2 ⊑γ(R♯)

L e1 MR♯ ´ L e2 MR♯. By soundness of ` , L e1 MR♯ ´ L e2 MR♯ ⊑γ(R♯) L e1 MR♯ ` L e2 MR♯ =
L e1 ´ e2 MR♯.

”

When performing the linearisation, we can only obtain soundness results as, in general,
there is no best interval linear form, for ⊑γ(R♯), that abstracts an expression. Moreover,
L expr MR♯ is not monotonic in its expr argument. Consider, for instance, the two expressions
X ˜ X and [1, 1], and some abstract element R♯ such that πX(R♯) = [1, +∞]. Then,
L X ˜X MR♯ = [0, 1]ˆX 6⊑γ(R♯) [1, 1] = L [1, 1] MR♯ even though X ˜X ⊑γ(R♯) [1, 1].

Applications. One of the nice properties enjoyed by interval linear forms is our ability
to define rather precise yet efficient abstract transfer functions for such expressions in our
zone, octagon, and zone-like family of abstract domains. Even though they are not optimal,
they allow deriving new relational constraints. Given an arbitrary expression expr , we can

Antoine Miné Weakly Relational Numerical Abstract Domains

182 Chapter 6: Symbolic Enhancement Methods

use the following sound abstract transfer functions:

{|V ← expr |}♯
linR♯ def

= {|V ← L expr MR♯ |}♯
relR

♯

{|V → expr |}♯
linR♯ def

= {|V → L expr M({|V →? |}R♯) |}♯
relR

♯

{| expr ⊲⊳ 0 ? |}♯
linR♯ def

= {| L expr MR♯
⊲⊳ 0 ? |}♯

relR
♯

where some definitions for {| · |}♯
rel are presented in Def. 3.6.4, 3.6.6, 4.4.7, and 5.3.5 for the

zone and octagon abstract domains, as well as our zone-like family of relational domains.
Recall that, up to now, our only option when considering non interval linear expressions on
these domains was to use the poor {| · |}♯

nonrel transfer functions implemented as a conversion
to the interval domain, followed by an interval abstract transfer function, and a conversion
back to our relational domain.

We can also apply our linearisation to non-relational domains to improve their preci-
sion. Indeed, as a side effect, the linearisation procedure is able to simplify symbolically
expressions. For instance L X ¨ (0.5 ˆ X) MR♯ gives 0.5 ˆ X. Suppose that X ∈ [0, 1] in
the interval abstract domain. We will get, without linearisation, JX ¨ (0.5 ˆ X) KInt =
[0, 1] ¨Int (0.5 ˆInt [0, 1]) = [0, 1] ¨Int [0, 0.5] = [−0.5, 1] while we get, using linearisation,
J 0.5ˆX KInt = [0, 0.5] which is much more precise. By the exactness of the ` , a , b , and
m operators when I ∈ {R, Q } and the fact that ι mimics an interval abstract evaluation,
we can see that {|V ← L expr MR♯ |}IntR♯ will always be more precise than {|V ← expr |}IntR♯.
This is not always the case when I = Z, especially when a division forces us to use ˜Int

alt

instead of ˜Int . Moreover, it is difficult to compare formally the precision of the test and
backward assignment transfer functions with and without linearisation. In doubt, we can
always compute both and take their intersection as the result.

It is important to remark that the numerical abstract domain and our linearisation
technique interact one with another to improve the analysis in a dynamic way: the abstract
domain provides interval information to the linearisation that, in turn, refines the abstract
transfer functions on-the-fly, yielding more precise invariants that will feed the linearisation
with tighter bounds in the following of the analysis, etc. We already saw that the interval
information was useful in the intervalisation part of the linearisation; we will see shortly
that it can also be used to drive a linearisation strategy in non-linear cases.

6.2.4 Multiplication Strategies

Def. 6.2.3 is completely deterministic except in the case of a multiplication e1 ˆ e2 when
neither L e1 MR♯ nor L e2 MR♯ is a simple interval. Indeed, when multiplying two interval
linear forms not reduced to an interval, we have the choice of intervalising either the first
argument or the second one, and this choice may greatly influence the overall linearised
result. We now propose a few motivated strategies to choose which argument to intervalise.

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.2 – Linearisation 183

All-Cases Strategy. A first strategy is to always try both choices and make Def. 6.2.3
return a set of interval linear forms that all over-approximate the given expression, instead
of a single one. Then, the abstract transfer function can be evaluated independently on
each returned interval linear form and, finally, the intersection ∩♯ in D

♯ of all the computed
abstract elements is returned. This strategy has a cost which is exponential in the number of
multiplications in the original expression, in the worst case, and so, may not be practical.
We now propose deterministic strategies that always select one interval linear form. Of
course, one can always construct a compound strategy by intersecting the abstract elements
yielded by a few carefully selected deterministic strategies.

Interval-Size Local Strategy. A simple local strategy is to evaluates both ι(L e1 MR♯)R♯

and ι(L e2 MR♯)R♯ and choose to intervalise the expression ei leading to the smallest interval
amplitude max(ι(L ei MR♯)R♯) − (min ι(L ei MR♯)R♯). For instance, consider the assignment
X ← Y ˆ Z in the zone abstract domain where Y ∈ [0, 1] and Z ∈ [0, 100]. If we
intervalise Y , we can infer the invariant 0 ≤ X ≤ Z while, if we intervalise Z, we get
0 ≤ X ≤ 100, which is less precise. The extreme case holds when the amplitude of one
interval is zero, meaning that the sub-expression is, semantically, a constant. Consider, for
instance e

def

= Y ˆ e′ where R♯ implies that Y = 10; even though the expression Y is not
syntactically a constant, it is reasonable to linearise e as [10, 10] b L e′ MR♯.

Relative-Size Local Strategy. We will see, in the following chapter, that floating-point
computations incur some rounding, and so, expressions that would evaluate to a single
value v if computed with reals turn out to evaluate to an interval [v(1 − ε), v(1 + ε)] with
a small relative error ε. Consider, for instance, the following expression eˆ ([0.9, 1.1]ˆX)
where the expression e ranges in [0, 1] and X = 100. The expression [0.9, 1.1] ˆ X
corresponds to X, up to a relative non-deterministic rounding error of amplitude 0.2.
It seems reasonable to intervalise [0.9, 1.1] ˆ X that still represents a constant value,
rather than the complex expression e, even though the former has an amplitude of
20. Unfortunately, the preceding strategy will not give the expected result. A solu-
tion, proposed by J. Feret,1 is to compare the relative amplitude (max(ι(L ei MR♯)R♯) −
min(ι(L ei MR♯)R♯))/(|max(ι(L ei MR♯)R♯)|+ |min(ι(L ei MR♯)R♯)|) instead of the absolute am-
plitude max(ι(L ei MR♯)R♯) − min(ι(L ei MR♯)R♯).

Simplification-Driven Global Strategy. A nice property of the linearisation is that it
automatically performs simplification. In order to give the linearisation more opportunity to
simplify statements in an expression expr , we prefer to keep in symbolic form multiplication
arguments containing variables that also appear in other sub-expressions of expr . Consider,
for instance, the assignment Z ← X ¨ (Y ˆ X) where Y ∈ [0, 1] and X ∈ [0, 0.5]. We

1Private communication during the Astrée project. Unpublished.

Antoine Miné Weakly Relational Numerical Abstract Domains

184 Chapter 6: Symbolic Enhancement Methods

may prefer to intervalise Y in Y ˆ X to get Z ← [0, 1] ˆ X instead of intervalising X
to get Z ← X ´ [0, 0.5] ˆ Y even though ι(Y)R♯ is larger than ι(X)R♯. Indeed, in the
interval domain, we would get Z ∈ [0, 0.5] in the first case instead of Z ∈ [0, 1] for the
second case. Moreover, in the zone abstract domain, the assignment Z ← [0, 1] ˆ X can
be modeled precisely — by inferring the constraint 0 ≤ Z ≤ X — while the assignment
Z ← X ´ [0, 0.5]ˆ Y cannot — because three distinct variables are involved.

Homogeneity Global Strategy. We now provide a refinement of the preceding strategy
to deal with the following common example:

Example 6.2.1. Linear interpolation computation.

Consider the complex assignment at line ④ in the following code fragment:

① X ← [0, 1];
② Y ← [0, 10];
③ Z ← [0, 20];
④ T ← X ˆ Y ¨X ˆ Z ´ Z

As both X and Z appear in several branches of the expression, the previous strategy does
not provide any criterion for the linearisation of X ˆ Z. By rewriting the assignment as
T ← X ˆY ´ (1¨X)ˆZ it becomes clear that we are computing a linear interpolation
between variables Y and Z. We now explain why X should be linearised. If we choose
to intervalise X, we get T ← [0, 1] ˆ Y ´ [0, 1] ˆ Z and we are able to prove in the
interval domain that, after the assignment, minY + min Z ≤ T ≤ max Y + max Z.
For instance, we are able to prove that a linear combination of two positive numbers
is always positive. If, however, we intervalise Y and Z, we get the assignment T ←
[min Y −max Z, max Y −min Z]ˆX ´Z, that is, T ← [−20, 10]ˆX ´Z, and we have
lost too much information to be able to prove that T is always positive.
On the original expression, T ← X ˆ Y ¨ X ˆ Z ´ Z, the previous strategy does not
provide any criterion for the linearisation of X ˆ Z. Worse, on the second expression,
T ← X ˆ Y ´ (1 ¨ X) ˆ Z, the previous strategy will insist on intervalising Y and Z
to keep the variable X that appears in two sub-expressions. Our solution is to try and
intervalise a set of variables, as small as possible, that makes the expression homogenate,
meaning that all monomials have the same degree after developing. This strategy will
successfully choose to intervalise X. Moreover, it will still work in more complex cases,
such as the following linear interpolation with re-normalisation:

T ← (((X ¨ a)ˆ Y) ˜ (b¨ a)) ¨ (((X ¨ a)ˆ Z)/ ˜ (b¨ a)) ´ Z

where X ∈ [a, b]. A final example is the following bi-linear interpolation that requires
the intervalisation of two variables, X and X ′, to get an homogenate expression:

T ← X ˆX ′ ˆ A ´ (1¨X)ˆX ′ ˆB ´
X ˆ (1¨X ′)ˆ C ´ (1¨X)ˆ (1¨X ′)ˆD

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.2 – Linearisation 185

where X, X ′ ∈ [0, 1] are the interpolation coordinates.

„

6.2.5 From Expressions to Quasi-Linear Forms

When considering abstract transfer functions in the polyhedron domain, interval linear
forms are still too generic to be modeled explicitly: we only have transfer functions for
quasi-linear forms, that is, interval linear forms [a0, b0]´˝k akˆVk where only the constant
coefficient [a0, b0] is allowed to be a non-singleton interval.

We now present an operator µ(l)R♯ that can be used to abstract an interval linear form
l into a quasi-linear form in a given abstract environment R♯:

Definition 6.2.4. µ operator for removing non-singleton coefficients.

We define the µ operator as follows:

µ

(

[a, b]´
n

˝
k=1

[ak, bk]ˆ Vk

)

R♯ def
=

(

[a, b]´Int
n

˝Int

k=1

([(ak − bk)/2, (bk − ak)/2]ˆInt πk(R
♯))

)

´

n

˝
k=1

[(ak + bk)/2, (ak + bk)/2]ˆ Vk

with the convention that ∀a ∈ I ∪ {+∞,−∞}, a + (+∞)
def
= (−∞) + a

def
= 0 when

computing ak+bk. However, (+∞)−(−∞)
def

= (+∞) and (−∞)−(+∞)
def

= (−∞) when
computing bk − ak and ak − kk. When considering interval linear forms in Z, (ak − bk)/2
should be rounded towards −∞, (bk − ak)/2 towards +∞, and (ak + bk)/2 either way.

„

This operation is implemented by “distributing” the weight bk − ak of each variable
coefficient into the constant component of the interval linear form. It returns a sound
quasi-linear form:

Theorem 6.2.4. Soundness of the µ operator.

µ(l)R♯ soundly over-approximates l: ∀l, R♯, l ⊑γ(R♯) µ(l)R♯.

„

Proof.

This is a consequence of [a, b] ˆ Vk ⊑P(V→I) ([(a + b)/2, (a + b)/2] ˆ Vk) ´ ([(a −
b)/2, (b−a)/2]ˆVk) ⊑γ(R♯) ([(a+b)/2, (a+b)/2]ˆVk) ´ ([(a−b)/2, (b−a)/2]ˆπk(R

♯)).

Antoine Miné Weakly Relational Numerical Abstract Domains

186 Chapter 6: Symbolic Enhancement Methods

Whenever one bound of an interval variable coefficient is infinite, our adapted + and −
operators transfer all the weight into the constant coefficient and cancel out the variable
coefficient.
”

The converse inequality does not hold in general as µ loses some relational information.
Consider, for instance, the expression l

def

= [0, 1]ˆ V where V ranges in [0, 1]. If ρ maps V
to 0, then J l Kρ = {0} while Jµ(l)R♯ Kρ = J [0.5, 0.5]ˆV ´ [−0.5, 0.5] Kρ = [−0.5, 0.5] ⊃ {0}.

Application. In order to design an abstract transfer function for arbitrary expressions in
the polyhedron domain, we first abstract the expression into an interval linear form using
L · M, and then abstract further the interval linear form into a quasi-linear form using µ. For
instance, {|V ← expr |}Poly

lin R♯ can be implemented as:

{|V ← µ(L expr MR♯)R♯ |}Poly

exact R♯ .

Note that, even though the polyhedron domain is more precise than the octagon domain,
because µ induces some extra abstraction for expressions, the overall analysis result may
be actually more precise with octagons than with polyhedra.

6.2.6 Extending Numerical Expressions

Our Simple language syntax is quite limited; a realistic programming language will include
many more constructs and, in particular, more operators in numerical expressions. In a
non-relational domain, it is sufficient to add a forward and a backward abstract operator
for each new concrete numerical operator introduced. For relational domains, however, the
abstract transfer functions must be totally redesigned with each new concrete operator as
transfer functions act globally on expressions. We explain here how the linearisation tech-
nique allows extending easily our transfer functions compositionally in relational abstract
domains, using interval abstractions locally.

Generic Extensions. Suppose that we have a fully featured abstract domain D
♯, and

then add a new k−ary numerical operator F : Ik → P(I). We have already seen two generic
ways to extend D

♯. The first, quite imprecise, solution is to use the generic fall-back transfer
functions of Sect. 2.4.3 whenever an expression uses F . A second, more precise, solution
is to use an abstract domain that allows F in its abstract transfer functions. For instance,

if F has a forward F Int and a backward
←−
F Int abstraction in the interval domain, we can

design abstract transfer functions for expressions containing F , as explained in Sect. 2.4.4.
Then, for expressions containing F in the octagon domain, we can use the interval-based
abstractions of Def. 4.4.5.

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.2 – Linearisation 187

We now propose a linearisation-based abstraction technique. We only need a forward
abstraction F Int of F in the interval abstract domain. The linearisation of Def. 6.2.3 is
then extended as follows:

L F (. . . , ei, . . .) MR♯ def
= F Int(. . . , ι(L ei MR♯)R♯, . . .) .

By feeding this linearised expression to an interval linear form transfer function, we can ob-
tain more precise results than when using the interval-based transfer function. One reason
is that F Int is fed with ι(L ei MR♯)R♯ intervals which can be smaller than J ei KInt(Int(R♯))
because of the simplifications performed by our linearisation in each L ei M. Another reason
is that expression parts that do not use the F operator may be linearised as non-trivial
interval linear forms that a relational domain D

♯ can exploit. However, we lose any re-
lationship between the different arguments of F , and between F ’s arguments and all the
other expression parts.

The floor Operator. As an example, we propose to extend our Simple language with
the floor numerical operator. The syntax and concrete semantics are extended as follows:

expr ::= floor (expr)

J floor (expr) Kρ def

= { ⌊x⌋ | x ∈ J expr Kρ }

As λx.⌊x⌋ is monotonic, the best abstraction in the interval domain is simply:

floorInt ([a, b])
def
= [⌊a⌋, ⌊b⌋]

which can be used directly to linearise any expression containing the floor operator as
follows:

(1) L floor (e) MR♯ def

= floorInt (ι(L e1 MR♯)R♯) .

Another, non-generic, way to linearise the floor operator, due to D. Monniaux,2 is
based on the fact that x − 1 < ⌊x⌋ ≤ x. Def. 6.2.3 is extended as follows:

(2) L floor (e) MR♯ def

= L e MR♯ ` [−1, 0] .

The benefit of (2) is that it keeps its argument in symbolic form instead of intervalising it,
which can lead in some cases to a more precise analysis.

2Private communication during the Astrée project. Unpublished.

Antoine Miné Weakly Relational Numerical Abstract Domains

188 Chapter 6: Symbolic Enhancement Methods

Example 6.2.2. Modulo computation.

Consider the following assignment, in R:

Y ← X ¨ (M ¨m)ˆ (floor ((X ¨m) ˜ (M ¨m)))

where M and m are constants. It computes a value in [m,M] equal to X modulo M ¨m
and put it into Y .
Suppose that X ∈ [0, 100], m = 10, and M = 20, then, in the interval domain without
linearisation, we assign to Y the interval:

[0, 100]¨Int (10ˆInt floorInt ([−10, 90] ˜Int 10))
= [0, 100]¨Int (10ˆInt floorInt ([−1, 9]))
= [0, 100]¨Int (10ˆ [−1, 9])
= [−90, 110]

which is not very precise. Using the interval domain with linearisation and (1), we would
get exactly the same result. However, using (2), we linearise the expression as:

X ¨ ((X ¨ 10) ˜ 10´ [−1, 0])ˆ 10 = X ¨ (X ¨ 10´ [−10, 0]) = [10, 20]

which is the exact range of Y .

„

6.3 Symbolic Constant Propagation

6.3.1 Motivation

As seen in the preceding section, the automatic symbolic simplification implied by our
linearisation procedure turns out to be quite an interesting feature. It enables us to gain
some precision on complex, linear and non-linear, expressions without the burden of using
an abstract domain able to manipulate these kinds of expressions directly. Our linearisation,
however, is very sensitive to even the simplest program transformations. Consider, for
instance, the statement V ← X ¨ (0.5 ˆ X) which is linearised into V ← 0.5 ˆ X. If
this statement is broken into two assignments Y ← 0.5 ˆ X; V ← X ¨ Y , using Y as
intermediate variable, no simplification in X ¨ Y can occur. The classical solution to this
problem is to use an abstract domain that is able to represent the information Y = 0.5ˆX,
and has transfer functions able to use this information in the assignment V ← X¨Y . This
would imply using the polyhedron abstract domain.

We propose here a much lighter solution to make our linearisation, and so, the interval,
zone, and octagon domains, robust against such simple program transformations.

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.3 – Symbolic Constant Propagation 189

6.3.2 Symbolic Constant Propagation Domain

The gist of our method is a modification of the well-known constant propagation domain,
D

Cst , proposed by Kildall [Kil73] and recalled in Def. 5.4.1. However, instead of a constant
in I, we associate to each variable a symbolic information, that is, an expression tree.

Expressions. We first define a structure on the set of expression trees B
Symb , enriched

with a least and greatest elements:

Definition 6.3.1. Symbolic basis B
Symb.

1. The symbolic basis B
Symb contains:

› all syntactic numerical expressions expr of our Simple language as described in
Fig. 2.1: they are formed over variables V ∈ V, constant intervals [a, b] where
a ∈ I∪{−∞}, b ∈ I∪{+∞}, and a ≤ b, and the arithmetic operators ´, ¨, ˆ,
and ˜,

› a bottom element ⊥Symb
B

representing “no value”,

› and a top element ⊤Symb
B

representing “any value”.

2. As for the constant basis B
Cst , we use a flat ordering:

∀X♯ ∈ B
Symb , ⊥Symb

B
⊑Symb

B
X♯ ⊑Symb

B
⊤Symb

B
.

The least upper bound ⊔Symb
B

and the greatest lower bound ⊓Symb
B

are defined easily —
see Def. 5.4.1.4.

3. Each element X♯ ∈ B
Symb represents a function that associates to each environment

V → I a set of values in P(I):

γSymb
B

(X♯)
def

=

λρ.∅ if X♯ = ⊥Symb
B

λρ.I if X♯ = ⊤Symb
B

λρ.JX♯ Kρ otherwise

γSymb
B

is obviously monotonic, however it is not a ⊓−morphism and there is generally
no best abstraction for an arbitrary function (V → I) → P(I).

„

We now present two utility functions on symbolic expressions. Firstly, the occurrence
function occ : B

Symb → P(V) that returns the set of variables appearing in an expression
and can be defined by structural induction as follows:

Antoine Miné Weakly Relational Numerical Abstract Domains

190 Chapter 6: Symbolic Enhancement Methods

Definition 6.3.2. Variable occurrence function occ .

occ (⊥Symb
B

)
def
= ∅ occ (⊤Symb

B
)

def
= ∅

occ (V)
def

= {V } occ ([a, b])
def

= ∅

occ (¨expr)
def

= occ (expr) occ (expr 1 ¦ expr 2)
def

= occ (expr 1) ∪ occ (expr 2)

„

Secondly, the substitution function subst (e1, V, e2) : (BSymb ×V ×B
Symb) → B

Symb that
substitutes all occurrences of a variable V in an expression e1 with the expression e2 and
can be defined by structural induction as follows:

Definition 6.3.3. Substitution function subst .

The following substitution rules should be tried, in order:

subst (·, ·, ⊥Symb
B

)
def

= ⊥Symb
B

subst (⊥Symb
B

, ·, ·)
def

= ⊥Symb
B

subst (⊤Symb
B

, ·, ·)
def
= ⊤Symb

B

subst (expr , V, ⊤Symb
B

)
def

=

⊤Symb
B

if V ∈ occ (expr)

expr otherwise

subst ([a, b], V, expr)
def

= [a, b]

subst (V, W, expr)
def

=

{

expr if V = W
V otherwise

subst (¨expr 1, V, expr)
def

= ¨subst (expr 1, V, expr)

subst (expr 1 ¦ expr 2, V, expr)
def

= subst (expr 1, V, expr) ¦ subst (expr 2, V, expr)

„

Note that the bottom element ⊥Symb
B

is always absorbing while the top element ⊤Symb
B

is absorbing only when the expression expr contains the substituted variable V or is ⊤Symb
B

itself.

Abstract Environments. We are now ready to define the symbolic constant propagation
abstract domain D

Symb as the set of abstract environments that associate an expression tree
— or ⊥Symb

B
or ⊤Symb

B
— to each variable:

Definition 6.3.4. Symbolic constant abstract domain D
Symb.

1. D
Symb is the set of functions ρ♯ ∈ V → B

Symb without cyclic dependency, that
is, there does not exist pair-wise distinct variables V1, . . . , Vm ∈ V, such that V2 ∈
occ (ρ♯(V1)), . . . , Vm ∈ occ (ρ♯(Vm−1)), and V1 ∈ occ (ρ♯(Vm)).

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.3 – Symbolic Constant Propagation 191

2. ⊑Symb is the point-wise extension to V of the flat order ⊑Symb
B

.

3. The meaning of an abstract environment ρ♯ : V → B
Symb is:

γSymb(ρ♯)
def
= { ρ = (v1, . . . , vn) ∈ In | ∀i, vi ∈ (γSymb

B
(ρ♯(vi)))(ρ) }

which is a monotonic concretisation, but not a ⊓−morphism. There is no best ab-
straction, so, we are in the concretisation-based framework of Sect. 2.2.2.

„

Given an abstract environment ρ♯, we can derive the following set R(ρ♯) of rewriting
rules :

R(ρ♯)
def

= { expr → subst (expr , Vi, ρ♯(Vi)) | ∀expr and i such that ρ♯(Vi) 6= ⊤Symb
B

} .

Thanks to the non-cyclicity condition of Def. 6.3.4.1, this rewriting system terminates on
any expression expr . Moreover, it is locally confluent as subst (subst (subst (expr , V1, e1),
V2, e2), V1, e1) = subst (subst (subst (expr , V2, e2), V1, e1), V2, e2) and, as a consequence,
it is strongly normalising: all sequences starting from an expression expr terminate on the
same expression, which will be denoted by subst ∗(expr , ρ♯). If there is some Vi such that
ρ♯(Vi) = ⊥Symb

B
, then all sequences terminate on ⊥Symb

B
due to the absorbing property of

⊥Symb
B

on subst . We obtain ⊤Symb
B

only if the original argument was ⊤Symb
B

. Otherwise,
we get an expression were all occurring variables Vi ∈ occ (subst ∗(expr , ρ♯)) are such that
ρ♯(Vi) = ⊤Symb

B
.

We now present the fundamental property of substitutions that will allow us to perform
symbolic constant propagation on arbitrary expressions. Given an environment ρ♯ ∈ D

Symb

and an expression expr , any subst (expr , Vi, ρ♯(Vi)) over-approximates expr with respect to
⊑γSymb(ρ♯), using our ordering on expressions defined in Def. 6.2.1:

Theorem 6.3.1. Substitution soundness.

∀expr , ρ♯, Vi, expr ⊑γSymb(ρ♯) subst (expr , Vi, ρ♯(Vi)) .

„

Proof. This is an easy consequence of the definition of γSymb — Def. 6.3.4.3 — and the
inductive nature of the definition of J expr K — Def. 2.2. ”

Note that the converse inequality does not hold in general. Consider, for instance,
the expression expr

def

= X ¨ X and the environment ρ♯ def

= [X 7→ [0, 1]]. Then,
subst (expr , X, [0, 1]) = [0, 1] ¨ [0, 1] which is strictly less precise than X ¨ X. There
is, however, no loss of precision if ρ♯(Vi) is deterministic, that is, always evaluates to a
singleton: ∀ρ ∈ γSymb(ρ♯), |J ρ♯(Vi) Kρ| ≤ 1. This is the case whenever ρ♯(Vi) is not ⊤Symb

B

and has no interval leaf [a, b] such that a 6= b.

Antoine Miné Weakly Relational Numerical Abstract Domains

192 Chapter 6: Symbolic Enhancement Methods

A consequence of Thm. 6.3.1 is that it is sound to replace, in any environment ρ♯, the
value associated to a variable Vi by subst (ρ♯(Vi), Vj, ρ♯(Vj)), for any Vj:

γSymb(ρ♯) ⊆ γSymb([Vi 7→ subst (ρ♯(Vi), Vj, ρ♯(Vj))]) .

Set-Theoretic Operators. We propose the following union and intersection abstrac-
tions:

Definition 6.3.5. Abstract union and intersection of symbolic environments.

(ρ♯
1 ∪

Symb ρ♯
2)(Vk)

def
=

ρ♯
2(Vk) if ∃l, ρ♯

1(Vl) = ⊥Symb
B

ρ♯
1(Vk) if ∃l, ρ♯

2(Vl) = ⊥Symb
B

ρ♯
1(Vk) ⊔

Symb
B

ρ♯
2(Vk) otherwise

ρ♯
1 ∩

Symb ρ♯
2

def

= ρ♯
1

„

The union abstraction effectively forgets the symbolic information for a variable if the
expressions associated to this variable in the two arguments are not syntactically equal,
except when it detects an inconsistency ⊥Symb

B
in which case the other argument is returned

unchanged. For the intersection abstraction, we simply choose the left argument. We could
have chosen the right one as well. However, it is important to pick all the information in
the same environment argument if we want the non-cyclicity property of Def. 6.3.4.1 to
hold on the result. Trying to refine ∩Symb so that it associates ρ♯

1(Vk)⊓
Symb
B

ρ♯
2(Vk) to Vk, for

instance, is incorrect. For the following non-cyclic arguments: ρ♯
1

def

= [X 7→ Y, Y 7→ ⊤Symb
B

]

and ρ♯
2

def

= [X 7→ ⊤Symb
B

, Y 7→ X], this would return the cyclic result (ρ♯
1 ∩

Symb ρ♯
2) = [X 7→

Y, Y 7→ X]. There is no such problem for the union as dependencies between variables can
only be kept or removed, never added.

As our order is the point-wise extension of a flat one, D
Symb has a finite height and

there is no need for a widening nor a narrowing operator.

Transfer Functions. The main effect of an assignment Vi ← expr is to replace the
symbolic value for Vi with expr in ρ♯. There are, however, two subtle points:

› First, we must take care to invalidate all the symbolic expressions in ρ♯ where Vi

occurs as they are no longer true after Vi has been modified. A straightforward
solution would be to replace with ⊤Symb

B
any expression where Vi appears. A more

precise option is to substitute Vi in these expressions with its symbolic value ρ♯(Vi)
as known before the assignment. Thanks to this, an assignment such as Y ← Z in

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.3 – Symbolic Constant Propagation 193

the abstract environment [X 7→ Y ´ 1, Y 7→ Z ˆ 2] will result in the environment
[X 7→ (Z ˆ 2)´ 1, Y 7→ Z] instead of [X 7→ ⊤Symb

B
, Y 7→ Z].

› Another problem is that we cannot associate expr to Vi if Vi occurs in expr , as in the
assignment Vi ← Vi ´ 1. Our solution is also to substitute Vi with its symbolic value
as known before the assignment in expr and associate the resulting expression to Vi in
the new abstract environment. Thus, the assignment X ← X ´ 1 in the environment
[X 7→ Y ´ 2, Z 7→ X ˆ 2] will return the environment [X 7→ (Y ´ 2) ´ 1, Z 7→
(Y ´ 2)ˆ 2].

This gives the following assignment transfer function:

Definition 6.3.6. Assignment transfer function.

({|Vi ← expr |}Symbρ♯)(Vk)
def

=

subst (expr , Vi, ρ♯(Vi)) if k = i

subst (ρ♯(Vk), Vi, ρ♯(Vi)) if k 6= i

„

The forget operator{|Vi ← ? |}Symb can be implemented using the same principles:

Definition 6.3.7. Forget transfer function.

({|Vi ← ? |}Symbρ♯)(Vk)
def
=

⊤Symb
B

if k = i

subst (ρ♯(Vk), Vi, ρ♯(Vi)) if k 6= i

„

As remarked before, a backward assignment X → expr in a constraint system sim-
ply amounts to substituting X with expr in each constraint. Unfortunately, carefree
substitution can lead to cyclic dependencies in an abstract environment, which breaks
Def. 6.3.4.1. Consider, for instance, the environment ρ♯ def

= [Y 7→ X ´ 1] and the
backward assignment X → Y that leads, by substitution, to the invalid environment
[Y 7→ subst (X´ 1, X, Y)] = [Y 7→ Y ´ 1]. In equation-based relational abstract domains,
a satisfiability procedure exists to determine whether such equation systems correspond to
an empty environment set and, when they do not, which cyclic equations can be safely re-
moved. Such procedures for generic expressions either do not exist, or are very costly. As a
consequence, we choose to abstract backward assignments as the forget operator, following
the generic fall-back definitions of Sect. 2.4.3:

{|Vi → expr |}Symbρ♯ def

= {|Vi ← ? |}Symbρ♯ .

Abstracting tests precisely is also quite problematic for several reasons. Firstly, only
equations of the form X = expr can be introduced. Some tests, such as X ¯Y cannot be

Antoine Miné Weakly Relational Numerical Abstract Domains

194 Chapter 6: Symbolic Enhancement Methods

converted into this form while others, such as X ˛Y , lead to several possible environments
— should we associate X to Y , or Y to X ? Then, as for backward assignments, adding an
arbitrary binding X 7→ expr may introduce cyclicity. As a consequence, we abstract tests
as the identity, following Sect. 2.4.3:

{| test ? |}Symbρ♯ def

= ρ♯ .

Summary. In effect, the symbolic constant abstract domain D
Symb collects the syntactic

expressions assigned to all variables, at each program point, and propagates them almost
unchanged until they are invalidated by new assignments. The only operation applied to
abstract elements is the substitution that allows gluing one syntactic expression at the
leafs of another one to avoid too much precision degradation. There is very little seman-
tics embedded within this domain: it treats all mathematical operators as uninterpreted
symbols.

6.3.3 Interaction With a Numerical Abstract Domain

The symbolic domain D
Symb is not of much use by itself to discover numerical invariants —

indeed, there is no proper test abstraction and the union is very imprecise. It is designed
to be used in tandem with a regular numerical abstract domain D

♯: the symbolic domain
gathers assignment information, which is then used to refine on-the-fly the linearisation
procedure used in D

♯. Given D
♯, we now construct an analysis on the product domain

D
♯ × D

Symb .

Abstract Operators. Following the construction on the regular product of abstract do-
mains, presented in Sect. 2.2.6, all our operators, such as the union, intersection, widening,
etc., will operate component-wise on element pairs in D

♯ × D
Symb . For instance, we define

the product union as follows:

(R♯
1, ρ

♯
1) ∪

♯×Symb (R♯
2, ρ

♯
2)

def
= (R♯

1 ∪
♯ R♯

2, ρ♯
1 ∪

Symb ρ♯
2) .

To gain a little more precision, we can also, as in the coalescent product construction,
exploit the fact that one element represents the empty environment set, in a limited form
of reduction:

(R♯
1, ρ

♯
1) ∪

♯×Symb (R♯
2, ρ

♯
2)

def
=

(R♯
1, ρ

♯
1) if R♯

2 = ⊥♯ or ∃l, ρ♯
2(Vl) = ⊥Symb

B

(R♯
2, ρ

♯
2) if R♯

1 = ⊥♯ or ∃l, ρ♯
1(Vl) = ⊥Symb

B

(R♯
1 ∪

♯ R♯
2, ρ♯

1 ∪
Symb ρ♯

2) otherwise

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.3 – Symbolic Constant Propagation 195

As there is no widening — resp. narrowing — on the symbolic domain, we define the
widening — resp. narrowing — on the product D

♯ × D
Symb using the symbolic union —

resp. intersection:

(R♯
1, ρ

♯
1) ▽

♯×Symb (R♯
2, ρ

♯
2)

def
= (R♯

1 ▽
♯ R♯

2, ρ♯
1 ∪

Symb ρ♯
2) .

Abstract Transfer Functions. Given an abstract element (R♯, ρ♯), it represents the
concrete element γ♯(R♯) ∩ γSymb(ρ♯). Thanks to Thm. 6.3.1, we can safely abstract any
expression in this set of concrete environments by applying any sequence of substitutions
present in ρ♯. Then, the resulting expression can be safely linearised, thanks to Thm. 6.2.3.
We thus define the transfer function on D

♯×D
Symb by refining the D

♯ component as follows:

{|V ← expr |}♯×Symb(R♯, ρ♯)
def

= ({|V ← L expr ′ MR♯ |}♯R♯, {|V ← expr |}Symbρ♯)

{|V → expr |}♯×Symb(R♯, ρ♯)
def
= ({|V → L expr ′′ M({|V ← ? |}♯R♯) |}♯R♯, {|V ← ? |}Symbρ♯)

{| expr ⊲⊳ 0 ? |}♯×Symb(R♯, ρ♯)
def
= ({| L expr ′ MR♯

⊲⊳ 0 ? |}♯R♯, ρ♯)

where expr ′ is derived from expr by arbitrary many substitutions of the form
subst (·, Vi, ρ♯(Vi)), for any sequence of Vi’s. For the backward assignment transfer func-
tion, expr ′′ is equally derived from expr by substitution, but using a symbolic constant
environment valid before the assignment, such as {|V ← ? |}Symbρ♯. However, an important
question remains: which substitution(s) should we perform to achieve the maximum pre-
cision ? There is unfortunately no simple answer to this question and we will provide, in
Sect. 6.3.4, a few strategies with associated examples.

Relationship with the Reduced Product. The technique presented here is different
from the reduced product presented in Sect. 2.2.6. In the reduced product, transfer functions
are not changed and information transfer occurs only, by reduction, on abstract elements
in-between transfer function applications while, here, we modify the transfer functions on
the D

♯ component to use information discovered by the symbolic domain D
Symb . Note,

however, that our framework also allows information transfer by reduction. For instance, if
the numerical domain D

♯ is able to prove that some code is unreachable, we may discard the
symbolic information as well. Information flows both ways, thus, the combination of the
symbolic and numeric domains is dynamic: it is more precise than an analysis pass using
solely D

Symb followed by a numerical analysis in D
♯ using the inferred symbolic information.

6.3.4 Substitution Strategies

Any sequence of substitutions extracted from a symbolic constant abstract environment is
sound, but some sequences give more precise results than others. In particular, sometimes,

Antoine Miné Weakly Relational Numerical Abstract Domains

196 Chapter 6: Symbolic Enhancement Methods

the best precision can only be achieved with no substitution at all. We now present here a
few motivated strategies to help choosing which substitutions to perform.

Avoid Substituting Variable-Free Expressions. There is one case were we know that
substitution is not useful: when occ (ρ♯(Vi)) = ∅, which means that the symbolic expression
associated to Vi is a constant one. Firstly, this information is generally already available in
the numerical abstract domain D

♯ which is often at least as precise as the interval domain.
We now show that such propagations can be, in fact, harmful. Suppose, for instance, that
ρ♯ = [X 7→ [0, 10]] and we wish to abstract the assignment Y ← X ¨ 0.5 ˆ X in the
interval domain. Linearisation without substitution gives Y ∈ [0, 5], while substitution
gives Y ← [0, 10] ¨ 0.5 ˆ [0, 10], that is, Y ∈ [−5, 10], which is much less precise. One
solution to this problem is to prohibit substituting a variable with an expression where no
variable occurs. This avoids losing correlations due to vanishing multiple occurrences of
the same variable in the expression.

Avoid Substitution-Induced Precision Losses. We now propose another, more ag-
gressive, strategy which consists in prohibiting the substitution of a variable with a non-
deterministic expression, that is, an expression ρ♯(Vi) which may evaluate to several values
in some environment: ∃ρ ∈ γSymb(ρ♯), |J ρ♯(Vi) Kρ| > 1. This ensures that the substitution
does not result in any loss of precision. It is sufficient to prohibit substituting variables with
expressions that contain a non-singleton interval, which is a superset of all non-deterministic
expressions. Both this strategy and the previous one work on the preceding example. How-
ever, their effect is difficult to compare in general.

Avoid Introducing Non-Linearity. Even if we take care to perform only substitutions
that do not lose precision, performing more substitutions does not always enable more
simplification in the linearisation. Consider, for instance, the following code fragment:

① Y ← U ˆ V ;

X ← Y ´ 1;
② Z ← X ¨ Y

analysed in the interval domain. Suppose, moreover, that U, V ∈ [0, 10] at ① . At ② , the
symbolic abstract environment is ρ♯ = [X 7→ Y ´ 1, Y 7→ U ˆ V]. If we take care to
substitute only X with Y ´ 1 in X ¨ Y , the subsequent linearised assignment becomes
Z ← 1, which is optimal. If we perform all possible substitutions, we get a non-linear
expression U ˆ V ´ 1¨ U ˆ V that will be linearised as [−10, 10]ˆ V ´ 1, if we choose to
intervalise U , and [−10, 10]ˆU ´ 1, if we choose V . Both will store the interval [−99, 101]
in Z, which is as imprecise as the plain or linearised interval abstraction without symbolic
constant propagation.

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.3 – Symbolic Constant Propagation 197

A solution would be to prohibit substitutions that introduce non-linear terms as they
would introduce a loss of precision in the subsequent linearisation. Unfortunately, this
strategy does not always work, as demonstrated by the following example.

Example 6.3.1. Linear interpolation computation revisited.

Consider the following revisited version of the linear interpolation example of Ex. 6.2.1,
to be analysed in the interval domain:

① X ← [0, 1];
② Y ← [0, 10];
③ Z ← [0, 20];
④ U ← X ˆ Y ;

⑤ V ← ¨(X ˆ Z);
⑥ T ← U ´ V ´ Z

The proposed strategy will pass the assignment T ← U ´ V ´ Z to our linearisation
procedure unmodified as U and V are non-linear. The interval for T will be [min Y +
min Z − max Z, max Y + max Z − min Z], that is, [−20, 30], and we will not be able to
prove that T is positive. However, if we substitute both U and V with their symbolic value
at ⑥ , we retrieve the linear interpolation formula T ← X ˆY ¨X ˆZ ´Z of Sect. 6.2.4
that allows us, after linearisation, to prove that T is positive. The substituted expression
is less linear than the original one but it has more correlations as some variables appear
several times.

„

As a conclusion, we have two conflicting strategies: we can either disable substitutions to
limit the non-linearity of expressions, or allow them in the hope of discovering correlations
that can be exploited by a multiplication strategy during the linearisation.

Relational Domain Specificities. Finally, even linear substitutions may result in such
an increase of the expression complexity that the numerical abstract domain cannot handle
it precisely. Consider the following code fragment:

① Y ← U ´ V ;

② X ← Y ´ 5

analysed in the octagon abstract domain. Substituting U ´ V for Y in the assignment
X ← Y ´ 5 gives the perfectly linear assignment X ← U ´ V ´ 5. Unfortunately, without
any information on U and V , such an assignment results in no information on X, while the
original one infers the octagonal constraint X − Y = 5. We could provide more complex
examples where an assignment becomes exactly representable in a given domain after a
specific sequence of substitutions, no more, no less.

Antoine Miné Weakly Relational Numerical Abstract Domains

198 Chapter 6: Symbolic Enhancement Methods

Multiple Strategies. In general, the problem of deciding where to stop substituting
seems inextricable. A brute force strategy would be to try the whole set of possible sub-
stitutions, which is finite but huge, and take the intersection of all results. This is costly.
In our implementation embedded within the Astrée static analyser, we chose to take the
intersection of two special substitutions: firstly, subst ∗(expr , ρ♯) which is the normal form
obtained by applying all possible substitutions, and secondly, the original expression expr ,
in order to guarantee that we obtain results at least as precise as if we used linearisation
without propagation. Arguably, this is a somewhat simplistic solution and we believe that
there is much room for improvement, however, we will see, in Chap. 8, that the proposed
technique is empirically quite successful. We now propose a full example using this strategy:

Example 6.3.2. Absolute value computation.

Consider the following code fragment that stores in Y the absolute value of X:

X ← [−10, 20];
Y ← X;

① if Y ¯ 0 { ② Y ← ¨X }

③

We would like to infer that, at ② , X ≤ 0, so that Y ← ¨X assigns a positive value to Y .
A way to derive this information without resorting to a relational domain is to replace,
in the test Y ¯ 0, the variable Y with X, which is possible because we have the symbolic
information ρ♯ = [Y 7→ X] at ① . However, this is not sufficient to prove that Y ≥ 0 at
③ . We also need to infer that Y ≥ 0 when the implicit empty else branch is taken, that
is, when the test condition Y ¯ 0 is false. In order to derive this information, it is crucial
that we do not replace Y with X in the test transfer function for not(Y ¯ 0). Using the
proposed strategy, involving the intersection of tests after the identity substitution and
after the full substitution, the interval abstract domain will be able to prove that, at ③ ,
Y ∈ [0, 20].

„

6.3.5 Cost Considerations

The most expensive operation in our symbolic propagation abstract domain is the assign-
ment transfer function which must perform n substitutions at each assignment — where n
is the number of program variables. Most of the time, however, we perform substitutions
subst (ρ♯(Vk), Vi, expr) in expressions ρ♯(Vk) where Vi does not occur, still, the expressions
must be traversed fully to discover this fact. In our implementation, we chose to store,
together with ρ♯, a map V → P(V) that associates to each variable Vi the set of variables
Vk such that Vi occurs in ρ♯(Vk). In practice, the cost of maintaining this map is largely

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.3 – Symbolic Constant Propagation 199

compensated by the fact that many useless calls to subst are avoided, and we achieve an
effective sub-linear cost.

Another remark is that the same relatively small set of expression trees appears very
frequently during an analysis. The use of tabulation techniques to store frequent calls
to subst and subst ∗ resulted in a large speed-up. As tabulation techniques require fast
structural equality tests for the arguments of functions, we also implemented a hash-consing
technique to construct the expression trees so that structurally equal trees are allocated at
equal memory addresses. Hash-consing has also a good impact on memory consumption as
it enforces the sharing of structurally equivalent sub-expressions.

Finally, in a few exceptional cases, we obtained very large expressions due to long se-
quences of assignments without any control flow join. Our solution was to set a bound on
the depth of expressions allowed in abstract environments ρ♯ and abstract larger expres-
sions by ⊤Symb

B
. Please note that this is just an optimisation trick and that the analysis

termination is guaranteed without imposing a bound on the size of expressions: the fact
that D

Symb has a finite height is sufficient. Another solution will be presented in Sect. 6.3.6.
It is to be noted that such large expression trees appear very rarely as programs generally
contain control flow joins, due to if or while constructs, which tend to fill abstract envi-
ronments with ⊤Symb

B
values and avoid uninterrupted sequences of substitutions within the

same expression.

6.3.6 Interval Linear Form Propagation Domain

A variation on our symbolic constant domain construction can be conceived by storing
linearised expressions instead of full expression trees. Elements in D

Symb′ thus associate to
each variable an interval linear form. One benefit is that the size of our abstract environ-
ments is bounded by O(n2), where n is the number of program variables, independently
from the program size, while expression trees could grow arbitrarily long in the symbolic
propagation domain — the bound was only determined by the number of abstract transfer
functions executed by the analyser, which grows with the size of the analysed program.
Also, the linearisation time cost is greatly reduced: it now only depends upon the size of
the argument expressions while, in the symbolic propagation domain, it depended upon
the size of the expressions after substitution, which incurs an exponential blow-up in the
worst case. Different instances of the same variable are now linearised once and for all.

Unfortunately, this can have a negative impact on precision. As the whole expanded
expression tree is not available, some of our global strategies for linearising multiplications
cannot be applied to their full extend. Consider, for instance, the revisited linear interpola-
tion example of Ex. 6.3.1. In the assignment U ← XˆY , at ④ , we have to choose whether
to intervalise X or Y as we cannot associate to U a non-linear expression. Unfortunately,
only when U is used in the assignment T ← U ´ V ´ Z at ⑥ do we know that X should
have been intervalised to be able to prove that T is positive, but it is too late!

Antoine Miné Weakly Relational Numerical Abstract Domains

200 Chapter 6: Symbolic Enhancement Methods

A compromise to achieve the best of symbolic constant and interval linear form prop-
agations is to set up a maximum bound on the size of expressions stored in the symbolic
constant domain and, if this bound is reached for some expression, store the linearised
expression instead to gain space at the expense of some precision loss.

6.3.7 Comparison with Relational Abstract Domains

The symbolic propagation technique performs well on the interval domain. In effect, it com-
pensates for the lack of relationship between variables. However, our symbolic propagation
is quite different from genuine relational numerical abstract domains. Unlike relational
domains that store equations, our propagation domain stores rewriting rules. As tests are
expressed naturally in equational form, we cannot abstract them precisely in our propaga-
tion domain. Moreover, as equations can be reversed, combined, and simplified, relational
domains are able to infer new constraints and detect inconsistencies, which is impossible
in a symbolic domain where the only allowed operation is the application of substitution
rewriting rules. As a consequence, the symbolic propagation domain cannot discover in-
variants that are not syntactically present in the program — or, more precisely, composed
of syntactic expression trees glued together — while relational domains can. Propagating
symbolic expressions of some kind is far less precise than using a relational domain for the
same kind of expressions. However, it is much less costly and its cost does not grow when
considering more complex expression classes.

6.4 Conclusion

We have proposed, in this chapter, two techniques, called linearisation and symbolic con-
stant propagation, that can be combined together to improve the precision of many numer-
ical abstract domains. In particular, we are able to compensate for the lack of non-linear
transfer functions in the polyhedron and octagon domains, and we are able to compensate
for a weak or inexistent level of relationality in the octagon and interval domains. These
techniques are quite fragile as they rely on program features that are more syntactic than
semantic: they must be driven by strategies adapted to the analysed program. However,
these techniques are very lightweight. We found out that, in many cases, it is easier and
faster to design a couple of linearisation and symbolic propagation strategies to solve a
local loss of precision in some program, while keeping the interval abstract domain, than to
develop a robust relational abstract domain able to represent the required local property.
As the linearisation and the constant propagation only slow down the underlying abstract
domain by a constant factor, the solution of adding new strategies while keeping the interval
domain results in an analysis that is much faster than if we added new relational domains.
Practical results obtained within the Astrée static analyser confirm these statements, as

Domaines numériques abstraits faiblement relationnels Antoine Miné

6.4 – Conclusion 201

we will see in Chap. 8.

Future Work. Because the precision gain strongly depends upon the multiplication strat-
egy used in our linearisation and the propagation strategy used in the symbolic constant
domain, a natural extension of our work is to try and design new such strategies, adapted
to different practical cases. We are currently pursuing this goal within the Astrée static
analyser as new kinds of precision losses are uncovered. A more challenging task is to find
theoretical results that guarantee the precision of some strategies. For instance, one may
expect a symbolic constant propagation strategy to make a static analysis immune to a
specific class of program transformations.

Antoine Miné Weakly Relational Numerical Abstract Domains

202 Chapter 6: Symbolic Enhancement Methods

Domaines numériques abstraits faiblement relationnels Antoine Miné

Chapter 7: Analysis of Machine-Integer and Floating-Point Variables 203

Chapter 7

Analysis of Machine-Integer and
Floating-Point Variables

Les domaines numériques abstraits présentés précédemment font l’hypothèse
que l’on travaille sur des nombres “parfaits” : entiers, rationnels, réels. En
réalité, les programmes manipulent des entiers machine et des flottants qui
ont une précision limitée. Dans ce chapitre, nous présentons la sémantique de
ces nombres “imparfaits” et nous expliquons comment adapter les domaines nu-
mériques abstraits à leur analyse. De plus, nous présentons des méthodes pour
l’implantation correcte de nos domaines abstraits dans le cas où l’analyseur
utilise lui aussi des entiers machine et des flottants.

The numerical abstract domains presented so far are adapted to the analysis of
“perfect” mathematical numbers: integers, rationals, reals. Real-life programs,
however, use machine-integers and floating-point numbers that have only a
limited precision. In this chapter, we present the semantics of these “imperfect”
numbers and explain how to adapt numerical abstract domains in order to
analyse them. We also explain how to implement soundly our abstract domains
in an analyser that uses machine-integers and floating-point numbers.

7.1 Introduction

The Simple programming language presented in Chap. 2 manipulates perfect mathematical
numbers living in Z, Q, or R. This model was chosen for its simplicity. Real-life program-
ming languages, however, generally manipulate limited, finite representations of numbers
with imperfect operators that do not behave as the mathematical ones when the computa-

Antoine Miné Weakly Relational Numerical Abstract Domains

204 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

tion escapes the scope of the chosen representation. For instance, integer numbers are often
represented using a fixed number of bits and the operators “wrap around” when there is an
overflow: the correct mathematical result is thus computed only up to a modulo. When it
comes to representing real or rational numbers, the limited number of bits available incurs
some rounding and the computed result is correct only up to a small rounding error ε.
Finally, some operations are simply invalid and may halt the computer.

We also supposed, in the preceding chapters, that we could compute exactly all ab-
stract transfer functions using perfect numbers while, in practice, our analyser may be
implemented using machine-integers and floating-point numbers as well — possibly with a
different bit-size or semantics than that of the analysed program. Thus, there are four pos-
sibilities depending on whether the concrete semantics uses perfect or imperfect numbers
and whether the abstract implementation uses perfect or imperfect numbers. Up to now,
we only know how to abstract perfect concrete numbers using perfect numbers in the ab-
stract. Applying directly our formulas in any of the three other cases would give in unsound
results. Real-life machine-integer and floating-point computations are more difficult to ab-
stract than perfect numbers in Z, Q, R, mainly because the corresponding operators lack all
the classical mathematical properties assumed when designing numerical abstract domains.
Designing algorithms for computing sound transfer functions using machine-integers and
floating-point numbers is equally tricky. Implementing, with imperfect numbers, abstract
transfer functions that are sound with respect to the semantics of imperfect concrete num-
bers is even more difficult as both soundness problems tend to cumulate and not cancel
each other.

Previous Works on Floating-Point Analysis. Much work is dedicated to the analysis
of the precision of floating-point computations, that is, determining the maximal difference
between a perfect computation on reals and its actual floating-point implementation, as
well as the origins of this imprecision. For instance, the CESTACT method, described
in [Vig96], is widely used but also much debated as it is based on probabilistic models
of rounding error distributions and cannot give sound answers. Sound analyses based on
abstract interpretation include a method, described in [AABB+03], that uses the interval
domain to bound error terms, as well as a much more advanced method, proposed by
Goubault and Martel in [Gou01, Mar02b], able to relate error terms within relational,
possibly non-linear, abstract domains.

In a sense our problem is simpler because we are only interested in determining the
computed floating-point values, not the drift between a perfect and an imperfect model of
computation. However, it seems that much less work is devoted to our problem. Sound
interval abstraction of floating-point expressions is an integral part of interval arithmetics
[Moo66] and can be adapted straightforwardly to obtain a full interval abstract domain —
see, for instance, [GGP+01] — however, there does not seem to be any work concerning

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.2 – Modeling Machine-Integers 205

relational abstract domains for floating-point variables. The work of Goubault and Martel
is not well-suited for our purpose as only synthetic error terms are related, not program
variables, and tests cannot be abstracted precisely.

Our Contribution. The novelty of our approach is to slice the problem into two parts.
Firstly, we express and abstract the concrete machine-integer and floating-point semantics
using perfect mathematical integers and reals. For machine-integers, it is sufficient to per-
form a conservative overflow detection using an instrumented integer arithmetics to know
whether the expression behaves as in Z; if it does, we can apply our classical transfer func-
tions; if it does not, we fall back to a sound but maybe coarse non-relational abstraction.
For floating-point numbers, we rely on an adaptation of the linearisation technique, pro-
posed in the previous chapter, extended to take into account the rounding introduced by
each operator. As abstracted expressions are expressed using interval linear forms on real
numbers R, we can safely feed them to the interval, zone, and octagon domains presented
in the preceding chapters. Secondly, we explain how to use machine-integers and floating-
point numbers in the abstract to improve the efficiency. Combining these two steps results
in abstract domains using floating-point numbers to abstract floating-point numbers — or
machine-integers to abstract machine-integers. The intermediate abstract semantics can be
seen as a conceptual tool allowing an easy design and much simplified soundness proofs; it
is not meant to be implemented. An important feature of this technique is that it works
equally well on non-relational and relational numerical abstract domains.

The first two sections present these two successive steps for the semantics of machine-
integers while the following two sections focus on floating-point numbers.

7.2 Modeling Machine-Integers

Real-life programming languages do not generally manipulate unbounded mathematical
integers in Z but use, instead, several integer types which differ in the finite range that they
can represent. Unsigned integers of bit-size b, where b is generally 8, 16, 32, or 64, allows
representing all integers in the range [0, 2b − 1]. There are several conventions to represent
signed integers; the most widespread is two’s complement representation that can represent
numbers in the range [−2b−1, 2b−1−1] with a bit-size of b, but the C programming language
norm also permits the use of one’s complement and unsigned with a sign bit representations.

These integer types share a common semantic property: all arithmetic operators behave
as the mathematical ones in Z as long as the exact result fits in the representable range.
If it does not, we have an overflow. In case of an overflow, the result is implementation-
specific and has the ability to halt the computer with a run-time error; however, in most
cases, it simply computes the only value in the representable range [m,M] equal to the
result modulo M − m.

Antoine Miné Weakly Relational Numerical Abstract Domains

206 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

expr i ::= X X ∈ Vi

| [a, b]i a, b ∈ Z

| ¨i expr i

| expr i ¦i expr i ¦ ∈ {´,¨,ˆ, ˜}
| casti (expr i′)

test ::= expr i ⊲⊳ expr i ⊲⊳ ∈ {˛,¸,ˇ,¯}
| · · ·

inst ::= X ← expr i X ∈ Vi

| · · ·

i ∈ I is an integer format.
Each Vi, i ∈ I, is a finite set of variables.

Figure 7.1: Simple language syntax adapted to machine-integers.

7.2.1 Modified Syntax and Concrete Semantics

Adapted Syntax. We propose to modify our Simple language so that it manipulates
machine-integers instead of numbers in Z. We first denote by I the finite set of integer
types. Each integer type i ∈ I is characterised solely by the lower bound mi and the
upper bound Mi of the range of integers it can represent. The modifications to our Simple

language syntax are shown in Fig. 7.1: each expression, operator, and variable now has a
type i ∈ I and the syntax imposes simple typing rules. We also add a cast operator to
allow converting from one integer type to another.

Adapted Concrete Semantics. The adapted concrete semantics of numerical expres-
sions J · Kmi , presented in Fig. 7.2, differs from the original semantics of Fig. 2.2 on two
points. Firstly, an environment now associates to each variable V ∈ Vi of type i ∈ I only
machine-integers that are valid for the type i, i.e., within [mi,Mi]. Secondly, we apply the
checki function after each operator to put the computed set of integers back into [mi,Mi].
In order to account for all possible implementations of machine-integer arithmetics, our
semantics considers that the result of a computation that does not fit in the proper interval
range may be anything in that range or a run-time error. Consistently with the original
Simple language semantics, run-time errors due to divisions by zero or overflows silently
halt the program; they are not reported by the static analysis which outputs invariants
that are true for error-free computation traces only. Note that the semantics of the division

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.2 – Modeling Machine-Integers 207

J expr i Kmi : (
∏

k∈I Vk → [mk, Mk]) → P([mi, Mi])

J X Kmi(ρ)
def
= { ρ(X) }

J [a, b]i Kmi(ρ)
def
= checki ({ x ∈ Z | a ≤ x ≤ b })

J casti (ei′) Kmi(ρ)
def
= checki (J ei′ Kmi(ρ))

J¨i ei Kmi(ρ)
def

= checki ({ −x | x ∈ J ei Kmi(ρ) })

J ei ¦i e′i Kmi(ρ)
def

= checki ({ x ¦ y | x ∈ J ei Kmi(ρ), y ∈ J e′i Kmi(ρ) })
¦ ∈ {´,¨,ˆ}

J ei ˜i e′i Kmi(ρ)
def

= checki ({ adj (x/y) | x ∈ J ei Kmi(ρ), y ∈ J e′i Kmi(ρ), y 6= 0 })

were checki : P(Z) → P([mi,Mi]) is defined as follows:

checki (S)
def
=

{

S if S ⊆ [mi,Mi]
[mi,Mi] otherwise

Figure 7.2: Concrete semantics of numerical expressions adapted to machine-integers.

˜ involves truncation using the adj operator as in the original Simple language semantics
of Fig. 2.2. The semantics of boolean expressions as well as all our concrete transfer func-
tions are almost unchanged and not presented here: they simply use our new semantics for
numerical expressions J · Kmi instead of J · K.

Scope of the Semantics. Our semantics is adapted to programs that do not use precise
knowledge of the behavior of overflowing integers: even though it is perfectly sound in
the event of an overflow, each overflow results in a precision loss. However, as each single
analysis will be able to discover the numerical properties that are valid in a wide range of
machine-integer implementations at once, this semantics is very well-suited to the efficient
analysis of portable programs. In order to analyse programs that perform overflows on
purpose, one would need to refine our semantics by using a specific overflow policy, such as
computation modulo M−m. For the sake of conciseness, we will not discuss these alternate
semantics nor their abstractions in this thesis.

7.2.2 Adapted Abstract Semantics

We now present a simple way to adapt numerical abstract domains designed for Z into
domains abstracting machine-integers.

Antoine Miné Weakly Relational Numerical Abstract Domains

208 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

Interval Domain. We first adapt the interval abstract domain by defining a new abstract
semantics for numerical expressions J · KInt

mi , as shown in Fig. 7.3: we reuse the original inter-
val arithmetics operators ¦

Int presented in Sect. 2.4.6 and feed their output to the abstract
counterpart checkInt

i of checki. As both interval bounds for a variable or expression of
type i are always within [mi, Mi], we no longer require the special elements +∞ and −∞.
Note also that J · KInt

mi not only outputs an interval abstract element that over-approximates
the possible values of the expression, but also a flag in B

def

= {T,F} — where T denotes
“true” and F denotes “false” — telling whether or not an overflow could have occurred
somewhere during the expression evaluation. When no overflow occurs, we can ignore the
check functions, and so, the machine-integer semantics J · Kmi is equal to the perfect integer
semantics J · K. This is formalised as follows:

Theorem 7.2.1. Soundness of adapted intervals.

Suppose that J expr KInt
mi (R

♯) = (X♯, O) and ρ ∈ γInt(R♯), then:

› J expr Kmi(ρ) ⊆ γInt
B

(X♯).

› If O = F, then no overflow occurs in J expr Kmi(ρ) and J expr Kmi(ρ) = J expr K(ρ).

„

Thanks to the first point of Thm. 7.2.1, we can easily derive an interval abstract assign-
ment transfer function from J expr KInt

mi , as in Sect. 2.4.4:

{|V ← expr |}Int

mi (X
♯)

def

= X♯ [V 7→ fst(J expr KInt
mi (X

♯))]

where the fst function simply returns the first element of a pair. The overflow information
is not used here but will be important in the generic adaptation of abstract domains. For
the sake of conciseness, we do not present here the backward assignment and test trans-
fer functions which resemble the generic non-relational ones. The union and intersection
operators are defined as in the integer interval domain D

Int . As the machine-integer in-
terval domain has no infinite increasing nor decreasing chain, no widening or narrowing is
required, in theory. However, the lattice height is quite huge, so, we strongly recommend
using extrapolation operators to achieve fast analyses. Any widening and narrowing in D

Int

— such as ▽Int
B

and △Int
B

defined in Sect. 2.4.6 — will do if we take care to replace +∞
with Mi and −∞ with mi.

Generic Domains. In order to adapt a generic numerical abstract domain D
♯ to

machine-integers, we use the second point of Thm. 7.2.1: in the absence of overflow, the
semantics of a machine-integer expression is the same as if it was evaluated using the regu-
lar integer arithmetics for which D

♯ was designed. In the event of an overflow, we fall back
to an interval-based abstraction, using the sound interval returned by J expr KInt

mi . We now

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.2 – Modeling Machine-Integers 209

suppose that we have a conversion operator Int from D
♯ to D

Int and define our modified
transfer functions on D

♯ as follows:

Definition 7.2.1. Generic machine-integer abstract transfer functions.

Let us denote by ([a, b], O) the value of J expr KInt
mi (Int(R♯)), and by ([a′, b′], O′) the value

of J expr KInt
mi (Int({|V ← ? |}♯R♯)). We can define the following machine-integer transfer

functions:

{|V ← expr |}♯
mi(R

♯)
def
=

{

{|V ← expr |}♯R♯ if O = F

{|V ← [a, b] |}♯R♯ otherwise

{|V → expr |}♯
mi(R

♯)
def

=

{

{|V → expr |}♯R♯ if O′ = F

{|V → [a′, b′] |}♯R♯ otherwise

{| expr ⊲⊳ 0 ? |}♯
mi(R

♯)
def

=

{

{| expr ⊲⊳ 0 ? |}♯R♯ if O = F

{| [a, b] ⊲⊳ 0 ? |}♯R♯ otherwise

„

Note that, when it comes to backward assignments, we need to test for overflows
when evaluating the expression in environments before the assignments, which are over-
approximated here by {|V ← ? |}♯R♯. This technique can be applied to all abstract domains,
even relational ones, such as, for instance, the octagon domain presented in Chap. 4. Also,
the linearisation and constant propagation techniques of Chap. 6 can be applied to abstract
the expression expr whenever there is no overflow.

Application to the Detection of Run-Time Errors. Even though errors do not
appear explicitly in our semantics, we can still use the derived static analysis to detect
run-time errors as follows:

› In a first step, we perform our static analysis to infer the maximal range of each
variable v ∈ V at each program point l ∈ L as an abstract interval environment
X♯ : L → (V → D

Int).

› In a second step, for each operator at each program point l, we check the following
pre-conditions that imply the absence of overflow and division by zero:

‹ for each sub-expression ei ¦i e′i, we check that:

fst(J ei KInt
mi (X

♯)(l)) ¦
Int fst(J e′i KInt

mi (X
♯)(l)) ⊆ [mi,Mi]

‹ for each sub-expression ¨i ei, we check that:

¨Int(fst(J ei KInt
mi (X

♯)(l))) ⊆ [mi,Mi]

Antoine Miné Weakly Relational Numerical Abstract Domains

210 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

‹ for each sub-expression casti (ei′), we check that:

fst(J ei′ KInt
mi (X

♯)(l)) ⊆ [mi,Mi]

‹ for each sub-expression ei ˜i e′i, we check that 0 /∈ fst(J e′i KInt
mi (X

♯)(l)).

The fact that only interval information are used in our second step must not mislead us
into thinking that an interval analysis is always sufficient: Exs. 2.5.2, 2.5.3, 2.5.4, 4.6.2,
and 4.6.3, as well as Sect. 2.5, give examples where a relational domain is needed to infer
good variable bounds. Note also that there was no need to enrich the concrete and abstract
semantics with a special “error” state or “undefined” value. Such enrichment would free us
from performing a second step but would result in more complex abstract transfer functions.
Moreover, run-time errors should not be propagated because we are only interested in the
location of errors, and not in the code unreachable after an error occurred.

7.2.3 Analysis Example

As an illustration, we restate the simple loop analysis of Ex. 3.7.1 in the zone abstract
domain, but using machine-integers of type i corresponding to the range [0, 255] instead of
perfect integers.

Example 7.2.1. Machine-integer loop analysis.

Consider the following Simple program that iterates from 0 to N :

X ← 0;
N ← [0, 255];
while ❶ X ˇN {

② X ← X ´i 1
③ }

④

We get the following iteration sequence:

iteration i label l zone X i
l

0 ❶ X = 0 ∧ 0 ≤ N ≤ 255 ∧ −255 ≤ X − N ≤ 0
1 ② X = 0 ∧ 1 ≤ N ≤ 255 ∧ −255 ≤ X − N ≤ −1
2 ③ X = 1 ∧ 1 ≤ N ≤ 255 ∧ −254 ≤ X − N ≤ 0
3 ❶ ▽ 0 ≤ X ∧ 0 ≤ N ≤ 255 ∧ −255 ≤ X − N ≤ 0
4 ② 0 ≤ X ≤ 254 ∧ 1 ≤ N ≤ 255 ∧ −255 ≤ X − N ≤ −1
5 ③ 1 ≤ X ≤ 255 ∧ 1 ≤ N ≤ 255 ∧ −254 ≤ X − N ≤ 0
6 ❶ ▽ 0 ≤ X ∧ 0 ≤ N ≤ 255 ∧ −255 ≤ X − N ≤ 0
7 ④ 0 ≤ X ≤ 255 ∧ 0 ≤ N ≤ 255 ∧ X − N = 0

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.3 – Using Machine-Integers in the Abstract 211

Note that, at iteration 3, the first widening application destroys the unstable upper bound
for X — recall that widened iterates must not be closed — but a bound is restored by
closure at iteration 4, just after the loop condition. Likewise, an upper bound on X is
restored at iteration 7 just after the loop exit condition. So, not only are we able to
prove that X = N after the loop has finished, but also that the incrementation at line ②

cannot result in an overflow as we always have X ≤ 254 at this point. The first property
cannot be inferred by the interval abstract domain at all, while the second can, but only
if we take care to use either a narrowing or a widening with 255 as a threshold.
If we now suppose that X has type i′ corresponding to the range [−128, 127] and that
line ② is replaced with X ← X ´i′ 1, then the run-time error checking embedded in the
analyse will warn us that it is not able to prove that no overflow can occur during the
evaluation of the ´i′ operator. Effectively, an overflow will occur and we have discovered
an actual programming error.

„

7.3 Using Machine-Integers in the Abstract

Even though we are now able to abstract machine-integers, all our semantic functions use
mathematical integers in Z which means that a practical analyser implementation must use
some kind of arbitrary precision integer computation package. As these are generally quite
costly, we may want to prefer an implementation based purely on machine-integers.

7.3.1 Using Regular Arithmetics

Sometimes, it can be proved that the abstract computation never overflow the chosen
analyser’s machine-integer range; in this case, it is perfectly safe to use such machine-
integers in place of Z. For instance, in the adapted interval domain of the previous section,
lower and upper bounds never exceed the minimum m

def
= mini∈I mi and maximum M

def
=

maxi∈I Mi of all analysed integer types, so, one can use, if it exists on the analyser’s platform,
any integer type i such that [mi,Mi] ⊇ [m,M] to represent abstract intervals. In order
to implement abstract transfer functions as described in Def. 7.3, however, we need to
represent some extra integers as we can overflow [m,M] locally, between a regular interval
abstract operator ¦

Int and the subsequent checki application that puts the result back
within [m,M]. Because we compute the opposite and the product of numbers in [m,M], we
must be able to represent all numbers in [−max(|m|, |M |)2, max(|m|, |M |)2]. Thus, a n−bit
architecture must be analysed using arithmetics on 2n + 1 bits. Efficient implementation
on most processors is possible provided that we use assembly language. This is because

Antoine Miné Weakly Relational Numerical Abstract Domains

212 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

high-level programming languages tend to hide the access to a n + 1−th bit — so-called
carry bit — as well as the natural ability of processors to “chain” n−bit instructions to
easily perform arithmetic operations on k · n−bit numbers.

7.3.2 Using Saturated Arithmetics

The maximum range of the constants involved in relational numerical domains is much
more difficult to determine a priori and, sometimes, there is no upper bound at all. It
can also happen that this maximum bound is too large to be practicable — such as when
analysing a 64-bit program using the interval domain on a 32-bit computer. In all these
cases, we may wish to trade precision for efficiency.

Contrary to the preceding approach, we start from two bounds, m and M , correspond-
ing to the desired integer range on the analyser’s platform and show how to modify our
numerical abstract domains so that they only require manipulating numbers within [m, M],
even when abstracting much larger concrete integer ranges. We will need to give a special
semantics to m and M : M used as an upper bound will denote the greatest abstract upper-
bound considered — it may be Mi or +∞, depending on the context — while m used as a
lower bound will denote the smallest abstract lower-bound.

Interval Domain. Let us consider an interval with bounds in [m,M] that abstracts a
set of values, in P([mi,Mi]), of an expression of type i ∈ I. Whenever, M < Mi, a right
bound of M actually denotes an upper bound equal to Mi, and likewise for a left bound
equal to m:

γInt
s, i ([a, b])

def
=

[a, b] if m < a, b < M
[mi, b] if m = a, b < M
[a,Mi] if m < a, b = M
[mi,Mi] if m = a, b = M

We do not present the adapted abstract transfer operators on the interval domain as
this would be quite long and boring due to the many cases one needs to consider. We only
give a few — hopefully sufficient — guidelines to designing them:

› Firstly, the result of each bound computation should be clamped to [m,M].

› Special care must be taken for additions +s and subtractions −s whenever some
argument bounds are M , or m. When computing upper bounds, we should have
∀x, M +s x = x+s M = M , including when x equals m. Dually, lower bounds should
stick to m.

› Special care must be taken with equality and disequality tests as intervals such as
[M, M] and [m,m] may actually represent non-singleton sets.

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.3 – Using Machine-Integers in the Abstract 213

The effect is that we can no longer distinguish interval upper bounds within [M,Mi], as
well as lower bounds within [mi,m]. They are conservatively approximated as, respectively,
Mi and mi, which results in some loss of precision.

Zone and Octagon Domains. For the potential set, zone, and octagon domains, we
consider now DBMs where all coefficients are within [m,M]. As matrix coefficients always
represent upper bounds of constraints, M will correspond to a +∞ upper bound, while
m will correspond to an upper bound equal to m. The concretisation of potential sets,
Def. 3.2.1, is modified as follows:

γPot
s (m)

def
= { (v1, . . . , vn) ∈ In | ∀i, j, mij = M or vj − vi ≤ mij } .

The adapted γZone and γOct are derived from our new γPot as in Defs. 3.2.2 and 4.2.2.
As all our algorithms on potential sets, zones, and octagons are defined using solely

the ≤, +, and divide-by-two mathematical operators, it is sufficient to adapt these three
operators to our new semantics of DBMs to construct our adapted domains. The ≤ operator
will be unchanged, while + and /2 are adapted as follows:

a +s b
def
=

M if a = M or b = M or a + b ≥ M
m if a + b ≤ m
a + b otherwise

a/s 2
def
=

M if a = M
m if a/2 ≤ m
a/2 otherwise

The loss of precision with respect to DBMs in Z ∪ {+∞} comes from the fact that all
constraints of the form expr ≤ c, when c ≥ M , are forgotten while all constraints of the
form expr ≤ c, when c < m, are replaced with expr ≤ m.

This technique was implemented in our freely available octagon abstract domain library
[Mina] using native integers, and compared to a perfect implementation in Z based on the
GMP multi-precision integer library [GMP]. Our experience shows that the speed gain is
consequence while, in most cases, the matrix coefficients do not exceed twice the maximal
bounds of all variables, which is often much smaller than M , and so, the precision loss is
negligible.

Linearisation. We can safely implement the linearisation procedure of Chap. 6 using the
same principles. The interval semantics used within the linearisation are similar to the one
used in the interval abstract domain, except that we must be able to represent unbounded
intervals, so, an upper bound M will actually mean that the interval has no upper bound —
instead of an upper bound equal to Mi — while a lower bound m denotes an interval that

Antoine Miné Weakly Relational Numerical Abstract Domains

214 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

has no lower bound. The concretisation of such an interval is similar to γInt
s, i , except that

Mi and mi bounds are respectively replaced with +∞ and −∞. Actually, such a semantics
for intervals allows abstracting arbitrary, bounded or unbounded, intervals of integers, and
so, can be used to perform an interval analysis of our original Simple language with perfect
integers.

In all these three examples, the classical integer arithmetic operators have be altered
so that the bounds m and M are more or less “sticky”, hence the generic name “saturated
arithmetics”. It is important to note that the exact definition of each operator is not
generic but varies from one abstract domain to the other. In particular, such definitions
are quite straightforward for the zone, octagon, and interval domains, even if we perform
linearisation, but would require a lot more work to keep the soundness in the case of the
polyhedron domain. Moreover, as the values used as polyhedron coefficients tend to grow
very quickly even when the variables have small bounds, limiting all the coefficients within
a small range is likely to result in much more precision degradation than for the integer,
zone, and octagon domains.

Saturated Arithmetics Implementation. We are now left with the problem of choos-
ing the bounds m and M such that, not only all numbers in [m,M] are representable
using the analyser’s machine-integers, but also the modified operators +s, −s, /s 2 are
easy to implement. Such an implementation requires two basic kinds of operations: test-
ing whether a value is m or M , and computing the result of a mathematical operator
+, −, / clamped to [m,M]. Testing for m or M is not a problem. Following the dis-
cussion in Sect. 7.3.1, we can tell that clamped operators can be implemented as long
as [−max(|m|, |M |)2, max(|m|, |M |)2] fits within the range of some machine-integer type.
For instance, on a 32−bit architecture, we can easily implement clamped operators on
15−bit integers, while 16−bit or even 32−bit integers may be reachable only using assem-
bly language tricks. Finally, it is worth remarking that modern processors enjoy so-called
multimedia instruction sets — such as MMX and SSE on Intel, and AltiVec on Pow-

erPC processors — that directly implement clamped arithmetics and might be used to
greatly enhance the speed of our saturated arithmetics.

7.4 Modeling IEEE 754 Floating-Point Numbers

We now apply the same methodology as in the first part of the chapter, but focus on
floating-point numbers instead of machine-integers. The floating-point representation is
a convenient way to compactly represent a wide range of numbers. It is widely used
in scientific applications. Moreover, many applications that used to prefer fixed-point
arithmetics — such as embedded or multimedia applications — now turn to floating-point
arithmetics.

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.4 – Modeling IEEE 754 Floating-Point Numbers 215

We focus here on the floating-point number representation and operators described in
the IEEE 754-1985 norm [CS85] which has become, since quite a few years, a standard
implemented in hardware — such as Intel and PowerPC processors — and supported
by most programming languages — such as the C programming language. Nevertheless,
most of the ideas presented here may be adapted to more exotic floating-point formats
used in legacy processors dating from before the IEEE norm — such as Cray — or modern
Digital Signal Processors — that implement only a limited subset of the norm to save
transistors.

7.4.1 IEEE 754 Representation

The binary representation of a IEEE 754 number is composed of three fields:

› a 1-bit sign s;

› an exponent e − bias, represented by a biased e-bit unsigned integer e;

› a fraction f = .b1 . . . bp, represented by a p-bit unsigned integer.

The values e, bias, and p are format-specific. We will denote by F the set of all available
formats. Existing formats f ∈ F include:

› f = 32, the 32-bit single precision format required by the norm: e = 8, bias = 127,
and p = 23;

› f = 64, the 64-bit double precision format required by the norm: e = 11, bias = 1023,
and p = 52;

› f = 80, the 80-bit long double format on Intel processors: e = 15, bias = 16383,
and p = 63;1

› f = 128, the 128-bit quadruple precision format on PowerPC processors: e = 15,
bias = 16383, and p = 112;

› f = 16, the 16-bit half precision format supported by high-end accelerated graphics
cards by nVidia: e = 5, bias = 15, and p = 10.

Each floating-point number belongs to one of the following categories:

› normalised numbers (−1)s × 2e−bias × 1.f , when 1 ≤ e ≤ 2e − 2;

1Note that, unlike the other presented formats, e + p + 1 is not the bit-size of the representation, but
the bit-size minus one. Indeed, Intel’s long double format explicitly represents the high-order bit b0 of
the mantissa b0.b1 . . . bp while other formats exploit the “hidden bit” feature of the norm to represent only
the fraction .b1 . . . bp and recycle the b0 bit.

Antoine Miné Weakly Relational Numerical Abstract Domains

216 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

› denormalised numbers (−1)s × 21−bias × 0.f , when e = 0 and f 6= 0;

› +0 or −0 (depending on s), when e = 0 and f = 0;

› +∞ or −∞ (depending on s), when e = 2e − 1 and f = 0;

› error codes (so-called NaN), when e = 2e − 1 and f 6= 0.

For each format f ∈ F, we define in particular:

› mf f

def

= 21−bias−p, the smallest non-zero positive number;

› Mf f

def
= (2 − 2−p)22e−bias−2, the largest non-infinity number.

Fig. 7.4 presents the positive, non-NAN, floating-point numbers in a graphical way.

The special values +∞ and −∞ may be generated as a result of operations undefined
on R (such as 1/+0) or when a result overflows Mf f in absolute value. Other undefined
operations (such as +0/+0) result in a NaN (that stands for Not A Number). The sign of ±0
serves only to distinguish 1/+0 = +∞ and 1/−0 = −∞; +0 and −0 are indistinguishable
in all other contexts (even comparison).

Due to the limited number of digits, the result of a floating-point operation needs to
be rounded. IEEE 754 provides four rounding modes: towards 0, towards +∞, towards
−∞, and to nearest. Depending on the chosen rounding mode and the unrounded result,
either the floating-point number directly before or directly after the unrounded result is
chosen (possibly +∞ or −∞). Rounding can build infinities from finite operands (this is
called overflow) and may return zero when the absolute value of the result is too small to
be represented (this is called underflow). Because of this rounding phase, most algebraic
properties of the operators on R, such as associativity and distributivity, are lost. However,
the opposite of a number is always exactly represented (unlike what happens in two’s
complement integer arithmetics), and comparison operators are exact.

The IEEE 754-1985 norm is described in full details in [CS85].

7.4.2 IEEE 754 Computation Model

IEEE 754 arithmetics is quite complex as it is designed to be usable in various contexts
and different computation models. Complex features include:

› arithmetics on +∞ and −∞;

› the distinction between +0 and −0 in certain operations;

› the ability to install trap handlers when exceptional behaviors, such as underflows,
overflows, divisions by zero, inexact rounding, or invalid operations — that would
otherwise return a NaN — occur;

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.4 – Modeling IEEE 754 Floating-Point Numbers 217

J expr KInt
mi : (V → B

Int) → (BInt × B)

J V KInt
mi R

♯ def
= (R♯(V), F)

J [a, b]i KInt
mi R

♯ def
= checki ([a, b])

J casti (ei) KIntR♯ def

= (Y ♯, O ∨ O′) where
(X♯, O) = J ei KInt

mi R
♯

(Y ♯, O′) = checki (X
♯)

J¨i ei KInt
mi R

♯ def
= (Y ♯, O ∨ O′) where

(X♯, O) = J ei KInt
mi R

♯

(Y ♯, O′) = checki (¨IntX♯)

J ei ¦i e′i KInt
mi R

♯ def
= (Z♯, O ∨ O′ ∨ O′′) where

(X♯, O) = J ei KInt
mi R

♯

(Y ♯, O′) = J e′i KInt
mi R

♯

(Z♯, O′′) = checki (X
♯

¦
Int Y ♯)

¦ ∈ {´,¨,ˆ, ˜}

checkInt
i (X♯)

def
=

(⊥Int ,F) if X♯ = ⊥Int

(X♯,F) if X♯ = [a, b] and a ≥ mi, b ≤ Mi

([mi, Mi],T) otherwise

where the ¦
Int operators are defined in Sect. 2.4.6.

Figure 7.3: Interval abstract semantics adapted to machine-integers.

+∞+0 Mf

denormalized normalized

mf

Figure 7.4: Positive, non-NAN, floating-point numbers.

Antoine Miné Weakly Relational Numerical Abstract Domains

218 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

expr f ::= X X ∈ Vf

| [a, b]f ,r a, b ∈ R

| ª expr f

| expr f ¯f ,r expr f ¯ ∈ {⊕,ª,⊗,®}
| castf ,r (expr f ′)

test ::= expr f ⊲⊳ expr f ⊲⊳ ∈ {˛,¸,ˇ,¯}
| · · ·

inst ::= X ← expr f X ∈ Vf

| · · ·

f ∈ F is a floating-point format.
r ∈ {n, 0, +∞,−∞} is a rounding mode.
Each Vf , f ∈ F, is a finite set of variables.

Figure 7.5: Simple language syntax adapted to floating-point numbers.

› the distinction between quiet and signaling NaN s;

› the ability to dynamically adjust the rounding mode.

We focus here on the large class of programs that treat floating-point arithmetics as a
practical approximation to the mathematical reals R. Thus, rounding and underflows are
tolerated, but not overflows, divisions by zero, or invalid operations, which are considered
run-time errors and halt the program. In this context, +∞, −∞, and NaN s can never be
created. As a consequence, the difference between +0 and −0 becomes irrelevant. In our
concrete semantics, the set of floating-point numbers of format f ∈ F will be assimilated
to a finite subset of R, denoted by Ff .

Adapted Syntax. Fig. 7.5 presents some modifications to the syntax of our Simple lan-
guage described in Fig. 2.1 so as to replace expressions in I with floating-point expressions.
As for the machine-integer semantics, we type each variable and expression with a format
f ∈ F and enforce simple typing rules. The arithmetic operators have been circled to dis-
tinguish them from the corresponding operators on perfect reals, and we have added a cast

operator to convert from a floating-point format to another — possibly introducing some
rounding. The binary ⊕, ª, ⊗, ®, and unary cast operators are tagged with a floating-
point format f ∈ F but also with a rounding mode r ∈ {n, 0, +∞,−∞} (n representing
rounding to nearest) as both information affect the rounded result. As all the Ff ’s are

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.4 – Modeling IEEE 754 Floating-Point Numbers 219

Rf ,r : R → Ff ∪ {Ω}

Rf ,+∞(x)
def
=

{

Ω if x > Mf f

min {y ∈ Ff | y ≥ x} otherwise

Rf ,−∞(x)
def
=

{

Ω if x < −Mf f

max {y ∈ Ff | y ≤ x} otherwise

Rf ,0(x)
def
=

{

min {y ∈ Ff | y ≥ x} if x ≤ 0
max {y ∈ Ff | y ≤ x} if x ≥ 0

Rf ,n(x)
def
=

Ω if |x| ≥ (2 − 2−p−1)22e−bias−2

Mf f otherwise if x ≥ Mf f

−Mf f otherwise if x ≤ −Mf f

Rf ,−∞(x) otherwise if |Rf ,−∞(x) − x| < |Rf ,+∞(x) − x|
Rf ,+∞(x) otherwise if |Rf ,+∞(x) − x| < |Rf ,−∞(x) − x|
Rf ,−∞(x) otherwise if Rf ,−∞(x)’s least significant bit is 0
Rf ,+∞(x) otherwise if Rf ,+∞(x)’s least significant bit is 0

Figure 7.6: Rounding functions, following [CS85].

perfectly symmetric, the unary minus ª operator is always exact independently from the
chosen format and rounding mode, and so, it is not tagged.

Adapted Concrete Semantics. An environment ρ ∈
∏

f∈F (Vf → Ff) is a function
that associates to each variable a floating-point value in the corresponding format. Fig. 7.7
gives the concrete semantics J expr f Kfl(ρ) ∈ P(Ff) of a numerical expression expr f in an
environment ρ as a set of possible floating-point values. Following the IEEE 754 norm
[CS85], the semantics of each floating-point operator can be decomposed into: firstly, a
computation using the corresponding real operator and, secondly, the application of one
of the four rounding functions Rf ,r : R → Ff ∪ {Ω}, presented in Fig. 7.6, that return
either a floating-point number or the run-time error Ω — corresponding to an overflow or
a division by zero. Note that all rounding functions are fully deterministic, but they can
be quite complex — especially rounding to nearest. Following our convention in Simple, all
the computations that trigger a run-time error are dropped, and so, Ω is not propagated
further in J · Kfl . It is used only locally to simplify the definitions of Figs. 7.6–7.7.

Each comparison operator in Ff is a restriction of the corresponding operator on reals;
no rounding is involved. The semantics of boolean expressions as well as all our concrete

Antoine Miné Weakly Relational Numerical Abstract Domains

220 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

J expr f Kfl : (
∏

g∈F (Vg → Fg)) → P(Ff)

J [a, b]f ,r Kfl(ρ)
def
= { Rf ,r(c) | a ≤ c ≤ b, Rf ,r(c) 6= Ω }

JX Kfl(ρ)
def
= { ρ(X) }

Jªef Kfl(ρ)
def
= { −c | c ∈ J ef Kfl(ρ) }

J castf ,r (ef ′) Kfl(ρ)
def

= { Rf ,r(c) | c ∈ J ef ′ Kfl(ρ), Rf ,r(c) 6= Ω }

J ef ¯f ,r e′f Kfl(ρ)
def

= { Rf ,r(c · c
′) | c ∈ J ef Kfl(ρ), c′ ∈ J e′f Kfl(ρ),

Rf ,r(c · c
′) 6= Ω }

· ∈ {+,−,×}

J ef ®f ,r e′f Kfl(ρ)
def
= { Rf ,r(c/c

′) | c ∈ J ef Kfl(ρ), c′ ∈ J e′f Kfl(ρ),
c′ 6= 0, Rf ,r(c/c

′) 6= Ω }

Figure 7.7: Concrete semantics of numerical expressions adapted to floating-point num-
bers.

transfer functions are almost unchanged and not presented here: they simply use our new
semantics for numerical expressions J · Kfl instead of J · K.

Our concrete semantics faithfully corresponds to the IEEE 754 norm [CS85] where the
overflow, division by zero, and invalid operation exception traps abort the system with a
run-time error.

Floating-Point Pitfalls. Due to rounding, the floating-point arithmetics behaves quite
differently than the perfect real arithmetics. Small rounding errors can sum up rapidly to a
large imprecision which can lead to catastrophic behaviors, such as the Patriot missile story
related in [Ske92].2 Another example, given in [GGP+01], is the following code fragment:

if X ˘ 0 { Y ← 1 ®f ,n (X ⊗f ,n X) }

that can result in a division by zero as X > 0 does not implies X ⊗f ,n X 6= 0 when X
is so small that its square underflows to 0. More generally, provably stable mathematical
computations may become unstable once implemented using floating-point numbers. The
reader may find the description of many more floating-point arithmetics properties and
pitfalls in the classical paper [Gol91] by Goldberg.

2The specific Patriot missile error was due to cumulated rounding in fixed-point computations but similar
problems arise when using floating-point arithmetics.

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.4 – Modeling IEEE 754 Floating-Point Numbers 221

Programming with floating-point arithmetics may seem difficult, but abstracting
floating-point numbers is even more difficult. Due to the rounding phase, all the dis-
tributivity and associativity properties of the arithmetic operators are no longer true. For
instance, X ªf ,r X = 0 holds, while X ⊕f ,r (Y ªf ,r X) = Y may not. As another
example, using 32−bit single precision numbers we get:

(1022 ⊕32,n 1.000000019 · 1038) ⊕32,n (1022 ª32,n 1.000000019 · 1038) = 0 .

Thus, most algebraic expression manipulations and simplifications become illegal. A conse-
quence is that it is almost impossible to express invariants as floating-point expressions and
manipulate them soundly in a relational abstract domain. Consider, for instance, a naive
adaptation of the zone domain of Chap. 3 that would consists in expressing conjunctions
of invariants of the form Vj ªf ,r Vi ≤ mij using a matrix m. Then, as X ªf ,r Y ≤ c and
Y ªf ,r Z ≤ d do not imply X ªf ,r Z ≤ c + d, the core closure algorithm is no longer sound.

Our solution is to keep expressing invariants as real expressions: we will abstract sets
of floating-point numbers using numerical domains in I = R. There is an inherent loss of
precision when abstracting sets of floating-point environments as sets of real environments
because R is much more dense. The situation is similar to the abstraction of integer poly-
hedra using rational polyhedra, discussed in Sect. 2.4.7: operators can construct spurious
floating-point numbers by combining real numbers in-between floating-point numbers. As
a consequence, an operator that is exact or best when I = R will no longer be exact or best
with respect to a concretisation that keeps only representable floating-point numbers.

7.4.3 Linearising Floating-Point Expressions

On the one hand, floating-point expressions cannot be fed directly to numerical abstract
domain whose transfer functions are only sound for expressions in the real field R. On the
other hand, expressing floating-point computations accurately using classical operators on
reals — which is done, for instance, in our concrete semantics of Fig. 7.7 — leads to highly
non-linear expressions, due to the complexity of the rounding operators. Our solution is
to apply a linearisation function, in the spirit of Sect. 6.2.3, to abstract a floating-point
expression into an interval linear form on reals. The abstract operators on interval of real
numbers introduced in Def. 2.4.6, ´Int , ¨Int , ˆInt , and ˜Int , will be quite useful, as well as
the interval linear form operators ι, ` , a , b , and m , proposed in Defs. 6.2.1 and 6.2.2.
Note that, although the floating-point addition is not associative, we do not need to specify
an evaluation order for our interval linear forms as they still use the perfectly associative ´
operator on reals — however, changing the evaluation order of the original floating-point
expression will affect the output of the linearisation.

Rounding. A first step is to bound the amount of rounding introduced by the Rf ,r

function. Two cases arise:

Antoine Miné Weakly Relational Numerical Abstract Domains

222 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

› If x is normalised, then the gap between Rf ,r(x) and x is less than 2−p × |x|, where
p is the fraction bit-size of the floating-point format f . We thus consider a relative
rounding error of amplitude 2−p.

› When x is denormalised, Rf ,r(x) − x is more easily expressed as an absolute round-
ing error of amplitude mf f which is the gap between two successive denormalised
numbers.

We sum these two causes of rounding to get a simple approximation of the actual rounding
induced by an operator as a function of its arguments:

Theorem 7.4.1. Rounding abstraction.

Suppose that |a · b| ≤ Mf f , then:

› |(a ⊕f ,r b) − (a + b)| ≤ 2−p(|a| + |b|) + mf f

› |(a ªf ,r b) − (a − b)| ≤ 2−p(|a| + |b|) + mf f

› |(a ⊗f ,r b) − (a × b)| ≤ 2−p(|a| × |b|) + mf f

› |(a ®f ,r b) − (a/b)| ≤ 2−p(|a|/|b|) + mf f

„

Note that these bounds are valid for all rounding modes: they correspond to an over-
approximation of the gap between the two successive floating-point numbers that bracket
the real result. If we know that rounding is to nearest — as it is often the case — then the
maximum rounding error is only half this gap. For instance, it is safe the consider a more
precise bound of the form:

|(a ⊕f ,r b) − (a + b)| ≤ (2−p(|a| + |b|) + mf f)/2 .

Given an interval linear form l, adding an absolute rounding error of amplitude mf f

simply corresponds to adding the constant interval [−mf f ,mf f]. The relative rounding
error of amplitude 2−p on l is a little more complex to compute but can be expressed as an
interval linear form using the following εf operator:

Definition 7.4.1. Relative rounding εf on an interval linear form.

εf

(

[a, b]´
n

˝
k=1

[ak, bk]ˆ Vk

)

def

=

(max(|a|, |b|)ˆInt [−2−p, 2−p]) ´
n

˝
k=1

(max(|ak|, |bk|)ˆ
Int [−2−p, 2−p])ˆ Vk .

„

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.4 – Modeling IEEE 754 Floating-Point Numbers 223

Linearisation. We are now ready to describe our linearisation procedure L expr MflR♯ for
a floating-point expression expr in the abstract environment R♯ as follows:

Definition 7.4.2. Floating-point linearisation.

1. L Vi MflR♯ def
= [1, 1]ˆ Vi

2. L [a, b]f ,r MflR♯ def
= [Rf ,r(a), Rf ,r(b)]

3. Lª ef MflR♯ def
= a L ef MflR♯

4. L ef ⊕f ,r e′f MflR♯ def
= L ef MflR♯ ` L e′f MflR♯ `

εf (L ef MflR♯) ` εf (L e′f MflR♯) ` mf f [−1, 1]

5. L ef ªf ,r e′f MflR♯ def
= L ef MflR♯ a L e′f MflR♯ `

εf (L ef MflR♯) ` εf (L e′f MflR♯) ` mf f [−1, 1]

6. L [a, b] ⊗f ,r e′f MflR♯ def
= ([a, b] b L e′f MflR♯) ` ([a, b] b εf (L e′f MflR♯)) ` mf f [−1, 1]

7. L ef ®f ,r [a, b] MflR♯ def
= (L e′f MflR♯ m [a, b]) ` (εf (L e′f MflR♯) m [a, b]) ` mf f [−1, 1]

8. L castf ,r (ef ′) MflR♯ def
=

{

L ef ′ MflR♯ if Ff ′ ⊆ Ff

L ef ′ MflR♯ ` εf (L e MflR♯) ` mf f [−1, 1] otherwise

9. L ef ⊗f ,r e′f MflR♯ def

= L ι(L ef MflR♯)R♯ ⊗f ,r e′f MflR♯

or

L ef ⊗f ,r e′f MflR♯ def
= L ι(L e′f MflR♯)R♯ ⊗f ,r ef MflR♯

10. L ef ®f ,r e′f MflR♯ def
= L ef ®f ,r ι(L e′f MflR♯)R♯ MflR♯

„

As in the previous chapter, an abstract element R♯ is required to use the intervalisation
operator ι when encountering non-linear terms, and so, our linearisation dynamically inter-
acts with a numerical abstract domain. The following theorem proves that the linearised
expression, evaluated in the real field, indeed over-approximates the behavior of the original
floating-point expression on the environments γ(R♯):

Theorem 7.4.2. Soundness of the floating-point linearisation.

∀ρ ∈ γ(R♯), J expr Kfl(ρ) ⊆ J L expr Mfl(R♯) K(ρ) .

„

Proof. This is a consequence of Thm. 7.4.1 on rounding, as well as Thm. 6.2.1 on the
properties of interval linear form operators. ”

Antoine Miné Weakly Relational Numerical Abstract Domains

224 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

Applications. The main consequence of Thm. 7.4.2 is that we can soundly abstract any
floating-point transfer function using legacy transfer functions on real environments — such
as the ones presented for intervals in Sect. 2.4.6, zones in Chap. 3, or octagons in Chap. 4
— if we take care to replace floating-point expressions by their linearised versions first. For
instance, the floating-point assignment transfer function on the octagon abstract domain
would be:

{|V ← expr |}Oct

fl (X♯)
def

= {|V ← L expr Mfl(X♯) |}Oct

rel (X♯)

where {| · |}Oct

rel is defined in Def. 4.4.7.

Any of the strategies that were presented in Sect. 6.2.3 to choose which sub-expression to
intervalise when encountering a multiplication can be applied here. Likewise, we can easily
extend the linearisation to expressions with new, non-linear, operators as long we have a
sound interval abstraction that takes rounding into account, following what was proposed in
Sect. 6.2.6. Finally, the floating-point linearisation can benefit from the symbolic constant
propagation technique described in Sect. 6.3.

Application to the Detection of Run-Time Errors. As for machine-integers, in
Sect. 7.2.2, our abstract semantics can be used to detect run-time errors statically. As
errors do not appear explicitly in our semantics, we must use two steps:

› In a first step, we perform our static analysis to infer the maximal range of each vari-
able at each program point, using possibly a relational abstract domain for increased
precision.

› In a second step, for each operator at each program point l, we check the following pre-
conditions that imply the absence of overflow, division by zero, and invalid operation:

‹ for each sub-expression ef ¯f ,r e′f , we check that:

J ef KInt
fl (X♯)(l) ¦

Int J e′f KInt
fl (X♯)(l) ⊆ [−Mf f ,Mf f]

using the regular interval abstract operators ¦
Int on reals.

‹ for each sub-expression castf ,r (ef ′), we check that:

J ef ′ KInt
fl (X♯)(l) ⊆ [−Mf f ,Mf f]

‹ for each sub-expression ef ®f ,r e′f , we check that 0 /∈ J e′f KInt
fl (X♯)(l)

where the floating-point interval expression evaluation J · KInt
fl is defined in Sect. 7.5.1.

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.4 – Modeling IEEE 754 Floating-Point Numbers 225

Precision Loss. The precision loss due to our linearisation is twofold. The first cause
is due, as for the vanilla linearisation of Sect. 6.2.3, to the “intervalisation” that can occur
in multiplications and divisions. The second one, which is new, is due to our treatment of
rounding. Indeed, all the rounding functions Rf ,r are perfectly deterministic but we abstract
them as a non-deterministic choice within an interval. This is generally not a problem as
the correctness of many numerical programs does not depend on exactly which value within
the error interval is picked at each computation step. For numerical algorithms relying on
the rounding being accurate “to the bit” to the definition of Fig. 7.6 — such as the accurate
summation algorithm by Malcom [Mal71] — our non-deterministic abstraction may not be
able to prove the full correctness but might still be sufficiently precise to prove that no
overflow or division by zero can occur.

Note that, due to relative error rounding terms, linearised expressions are seldom quasi-
linear forms: variable coefficients are not singletons, even if the original expression had no
interval coefficient and no intervalisation was used. We recall that, if our abstract domain
only supports quasi-linear forms — such as the polyhedron abstract domain — we can
use the µ operator, presented in Sect. 6.2.5, to abstract interval linear forms into quasi-
linear forms. However, the µ operator induces some precision loss because all the relative
rounding error terms are transformed into an absolute rounding error and incorporated
into the constant coefficient of the quasi-linear form: we forget which part of the rounding
comes from which variable.

Rounding Mode Influence. Our definition is independent from the rounding mode r
chosen for each operator. It is sound by considering always the worst case: upper bounds
are rounded towards +∞ and lower bounds towards −∞. This is quite a nice feature
because it frees the analyser from the task of discovering which rounding mode is currently
in use — which may be a complex task as it can be changed dynamically using system
calls.

Double Rounding Problem. An important advantage of using non-deterministic in-
tervals combined with worst-case rounding is that the linearised result remains sound even
if the concrete semantics actually computes some sub-expressions in a floating-point format
more precise than what is required by the operator types. This can happen, for instance, on
the Intel processor: actual computations on double precision expressions are performed
in 80-bit registers but, when a register is spilled or stored into memory, it is converted into
its correct, 64-bit, format. X ⊕64,n Y can be silently compiled into cast64,n (X ⊕80,n Y)
which gives a different concrete result — this is known as the double rounding problem.
Determining the exact concrete result would require a deep knowledge on how expressions
are compiled while it is safe to consider, for our abstract linearisation, the minimal pre-
cision at which each operator is supposed to be executed — 64−bit here. This minimal

Antoine Miné Weakly Relational Numerical Abstract Domains

226 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

precision is generally available as a type information in high-level languages.

7.4.4 Analysis Example

We restate the rate limiter example of Ex. 4.6.3 in the context of floating-point computa-
tions in the single precision format, as follows:

Example 7.4.1. Floating-point rate limiter analysis.

Y ← 0;
while ❶ rand {

X ← [−128, 128];
D ← [0, 16];
S ← Y ;

② R ← X ª32,n S;
Y ← X;

if R¯ªD { ③ Y ← S ª32,n D ④ } else

if D¯R { ⑤ Y ← S ⊕32,n D ⑥ }

⑦ }

„

Recall that, in the case of real computations, the invariant Y ∈ [−128, 128] holds at
⑦ . The octagon abstract domain was able to prove that any interval [−M,M] is stable
for Y provided that M is a widening threshold greater than 144. This analysis was not
optimal but still much more precise than the interval-based one that cannot prove that Y
is bounded at all.

In the floating-point version, it is difficult to find the smallest stable interval for Y due
to rounding introduced at lines ② , ③ , and ⑤ . All we can say is that all the [−128−ε, 128+ε]
intervals, where ε > ε0, are stable, for some very small positive ε0.

We now show that the octagon abstract domain is able to find a rather good stable
interval automatically. We first suppose that, at a given abstract loop iteration, Y ∈
[−M, M] at ❶ . Then, at ② , the assignment R ← X ª32,n S is linearised into:

R ← [1 − 2−p, 1 + 2−p]ˆX ¨ [1 − 2−p, 1 + 2−p]ˆ S ´ [−mf 32,mf 32]

with p = 23 and mf 32 = 2−149. Hence, the assignment transfer function {|V ← expr |}Oct

rel

of Def. 4.4.7 is able to infer the constraint:

|R + S| ≤ 128(1 + 2−23) + 2−23M + 2−149 .

Then, at ③ , the test implies R + D ≤ 0, which implies −R ≥ 0. By closure, as S =
(S + R) − R ≥ S + R, the octagon domain is able to infer that:

S ∈ [−(128(1 + 2−23) + 2−23M + 2−149), M] ∩ [−M, M] .

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.5 – Using Floating-Point Numbers in the Abstract 227

The subsequent assignment is modeled as:

Y ← [1 − 2−p, 1 + 2−p]ˆ S ¨ [1 − 2−p, 1 + 2−p]ˆD ´ [−mf 32,mf 32]

hence the following constraints at ④ , using S ∈ [−M, M] and D ∈ [0, 16]:

Y − S ∈ [−16(1 + 2−23) − 2−23M − 2−149, 16 × 2−23 + 2−23M + 2−149] .

By closure, as Y = (Y − S) + S, we can infer the constraint:

Y ∈ [−144(1 + 2−23) − 2−22M − 2−148, 16 × 2−23 + (1 + 2−23)M + 2−149] .

Likewise, we can prove that, at ⑥ , we have:

Y ∈ [−16 × 2−23 − (1 + 2−23)M − 2−149, 144(1 + 2−23) + 2−22M + 2−148]

and so, at ⑦ , we have the following bound for Y :

|Y | ≤ 144(1 + 2−23) + 2−22M + 2−148 .

Thus, any bound M larger than M0
def

= (144(1 + 2−23) + 2−148)/(1 − 2−22) ≈ 144.00005
is stable. Using a widening with thresholds, the octagon abstract domain will be able to
prove that Y is bounded by the smallest threshold larger than M0 and, as a consequence,
that the program is safe: it cannot perform any overflow at lines ② , ③ , nor ⑤ .

7.5 Using Floating-Point Numbers in the Abstract

The floating-point abstract semantics presented in the previous section makes use of com-
putations in the real field R, which may be costly to implement. We now propose to modify
our linearisation technique and adapt our abstract domains so that all abstract computa-
tions are done in the floating-point world. This will induce some more loss of precision, but
allow a tremendous performance boost.

7.5.1 Floating-Point Interval Analysis

We recall here the classical adaptation of interval arithmetics [Moo66] to floating-point
expressions. It allows designing an interval abstract domain that is sound with respect to
the floating-point semantics, but also uses only floating-point computations internally.

Antoine Miné Weakly Relational Numerical Abstract Domains

228 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

Rounding Mode Sensitive Abstraction. The key remark that allows easily designing
interval arithmetics on floating-point numbers is the fact that all the rounding functions
Rf ,r, presented in Fig. 7.6, are monotonic. Thus, it is sufficient to compute each abstract
bound using the same floating-point format and rounding mode as in the concrete world:

› castInt
f ,r ([a, b])

def
= [castf ,r (a), castf ,r (b)]

› ªInt [a, b]
def

= [ª b, ª a]

› [a, b] ⊕Int
f ,r [a′, b′]

def

= [a ⊕f ,r a′, b ⊕f ,r b′]

› [a, b] ªInt
f ,r [a′, b′]

def

= [a ªf ,r b′, b ªf ,r a′]

› [a, b] ⊗Int
f ,r [a′, b′]

def
= [min(a ⊗f ,r a′, a ⊗f ,r b′, b ⊗f ,r a′, b ⊗f ,r b′),

max(a ⊗f ,r a′, a ⊗f ,r b′, b ⊗f ,r a′, b ⊗f ,r b′)]

› [a, b] ®Int
f ,r [a′, b′]

def

= [min(a ®f ,r a′, a ®f ,r b′, b ®f ,r a′, b ®f ,r b′),
max(a ®f ,r a′, a ®f ,r b′, b ®f ,r a′, b ®f ,r b′)] when 0 ≤ a′

[a, b] ®Int
f ,r [a′, b′]

def
= ([a, b] ®Int

f ,r ([a′, b′] ∩Int [0, +∞])) ∪Int

([−b,−a] ®Int
f ,r ([−b′,−a′] ∩Int [0, +∞])) otherwise

In case a bound evaluates to +∞, −∞, or NaN, it is safe to return the interval
[−Mf f ,Mf f].

Rounding Mode Insensitive Abstraction. A drawback of the previous abstraction is
that the exact rounding mode and floating-point format must be known by the analyser.
As mentioned before, the rounding mode can be changed dynamically, and so, some kind of
pre-analysis is required to infer the set of possible rounding modes at each program point.
Likewise, the exact floating-point format is not always known from the program source —
it depends upon compiler choices — and, due to the double rounding problem mentioned
in Sect. 7.4.3, it is not safe to compute the interval bounds using a different floating-point
format than the actual concrete one f — even a less precise one.

In order to design an abstract interval semantics that does not require us to know the
rounding mode and is free from the double rounding problem, it is sufficient to always
round upper-bounds towards +∞ and lower-bounds towards −∞, as follows:

› castInt
f ,r ([a, b])

def
= [castf ′,−∞ (a), castf ′,+∞ (b)]

› ªInt [a, b]
def

= [ª b, ª a]

› [a, b] ⊕Int
f ,r [a′, b′]

def

= [a ⊕f ′,−∞ a′, b ⊕f ′,+∞ b′]

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.5 – Using Floating-Point Numbers in the Abstract 229

› [a, b] ªInt
f ,r [a′, b′]

def

= [a ªf ′,−∞ b′, b ªf ′,+∞ a′]

› [a, b] ⊗Int
f ,r [a′, b′]

def
= [min(a ⊗f ′,−∞ a′, a ⊗f ′,−∞ b′, b ⊗f ′,−∞ a′, b ⊗f ′,−∞ b′),

max(a ⊗f ′,+∞ a′, a ⊗f ′,+∞ b′, b ⊗f ′,+∞ a′, b ⊗f ′,+∞ b′)]

› [a, b] ®Int
f ,r [a′, b′]

def
= [min(a ®f ′,−∞ a′, a ®f ′,−∞ b′, b ®f ′,−∞ a′, b ®f ′,−∞ b′),

max(a ®f ′,+∞ a′, a ®f ′,+∞ b′, b ®f ′,+∞ a′, b ®f ′,+∞ b′)]
when 0 ≤ a′

[a, b] ®Int
f ,r [a′, b′]

def

= ([a, b] ®Int
f ,r ([a′, b′] ∩Int [0, +∞])) ∪Int

([−b,−a] ®Int
f ,r ([−b′,−a′] ∩Int [0, +∞]))

otherwise

where f ′ may be as precise or less precise than f . It is generally costly to switch between the
+∞ and −∞ rounding modes; fortunately, we can, in an actual analyser implementation,
switch once and for all to rounding towards +∞ and use the following identities to simulate
rounding towards −∞:

a ⊕f ,−∞ b = ª((ªa) ªf ,+∞ b) a ªf ,−∞ b = ª(b ªf ,+∞ a)
a ⊗f ,−∞ b = ª((ªa) ⊗f ,+∞ b) a ®f ,−∞ b = ª((ªa) ®f ,+∞ b)
castf ,−∞ (a) = (ªcastf ,+∞ (ªa))

Application. From these operators we can design, by structural induction, an interval-
based abstraction J expr f KInt

fl for the semantics of floating-point expressions J expr f Kfl pre-
sented in Fig. 7.7. If we take care to design backwards operators, then the generic non-
relational abstract domain construction of Sect. 2.4.4 can be applied here to design an
interval abstract domain that is sound with respect to the floating-point semantics. Round-
ing effects are taken care of automatically and we do not need to add relative or absolute
rounding error terms, unlike the linearisation L expr Mfl of Sect. 7.4.3. The backwards inter-
val comparison operators ←−

⊲⊳
Int
fl are identical to the regular interval ones ←−

⊲⊳
Int presented in

Sect. 2.4.6. For the sake of conciseness, we do not present the backwards interval arithmetic
operators ←−

¦
Int
fl but simply note that the generic fall-back operators of Sect. 2.4.4 cannot

be used here because they rely on identities that are no longer true in the floating-point
world — such as a = b ⊕f ,r c 6=⇒ b = a ªf ,r c.

7.5.2 Floating-Point Linearisation

Recall that the linearisation technique L · M, introduced in Chap. 6, and its adaptation L · Mfl
to floating-point expressions, presented in Sect. 7.4.3, rely on the operators ` , a , b ,
m , and ι that are themselves implemented using interval arithmetics on reals. We would
like to trade precision for efficiency and perform these computations using floating-point
arithmetics instead.

Antoine Miné Weakly Relational Numerical Abstract Domains

230 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

A classical result of interval arithmetics — see [Moo66] — shows that it is sufficient to
use the rounding-insensitive interval abstraction in any floating-point format; because it
rounds upper bounds towards +∞ and lower bounds towards −∞, it is always sound with
respect to real arithmetics, as long as no bound evaluates to +∞, −∞, or NaN. The more
precise the chosen floating-point is, the more accurate the abstraction will be. We have
replaced associative operators on real intervals by non-associative ones on floating-point
intervals, so, the result of some operators — such as the intervalisation ι of Def. 6.2.2 —
may depend upon the chosen evaluation order. It is important to note that, in that case,
all evaluation orders are sound, although they may give slightly different results.

Whenever a +∞, −∞, or NaN occurs during the linearisation procedure, the result
cannot be used safely. In this case we say that the linearisation fails, and we need to fall
back to another way of abstracting the floating-point expression, such as the non-relational
interval abstraction J expr f KInt

fl , for instance. Note that this does not mean that the ex-
pression must or can trigger a run-time error in the concrete world, or that J expr f KInt

fl will
return the top element [−Mf f ,Mf f], but only that using imprecise floating-point numbers
in the abstract prevented us from computing a meaningful linearised result. In practice,
this seldom occurs, as the experience with the Astrée analyser described of Chap. 8 taught
us.

Applications. As our floating-point linearisation abstracts floating-point expressions as
interval linear forms on the real field, linearised expressions can be soundly fed to any
numerical abstract domain that abstracts real numbers. This includes the original interval
abstract domain of Sect. 2.4.6 and its floating-point implementation J expr f KInt

fl presented
in the previous section. Note that, to be sound, the interval domain without linearisation
requires that each abstract operator is evaluated using a floating-point format equally or
less precise than the concrete one. We do not have this limitation when using the interval
domain with linearisation as the linearisation already includes the rounding phase and we
are left to abstract a semantics on real intervals. Thanks to its simplification features, the
linearisation may improve the precision of the interval domain; however, in some cases,
the non-deterministic treatment of rounding in the linearisation gives less precise results
than a plain interval evaluation J expr f KInt

fl which rounds each interval bound tightly. For
instance, the expression [0, 1] ⊕32,n [0, 1] is linearised as [−2−148, 2 + 2−22 + 2−148] while
J [0, 1] ⊕32,n [0, 1] KInt

fl = [0, 2]. Thus, it is advisable to compute both the linearised and
non-linearised semantics, and take their intersection.

7.5.3 Floating-Point Zones and Octagons

The last pending step in order to obtain an analyser fully implemented using floating-point
numbers and that discovers invariants on the floating-point variables of a program is to

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.5 – Using Floating-Point Numbers in the Abstract 231

adapt the zone and octagon domains so that they use floating-point arithmetics internally
instead of perfect mathematical reals.

Adapting the Representation. Let us choose a floating-point format f on the analyser
platform. Potential sets, zones, and octagons will be represented by DBMs with coefficients
in Ff ∪{+∞}. We benefit here from the fact that the IEEE 754 norm includes a representa-
tion for +∞. All concretisations γPot , γZone , and γOct are left unchanged: we still abstract
sets of real environments — even though they abstract themselves sets of floating-point
environments.

Adapting the Operators. Recall that all our algorithms on potential sets, zones, and
octagons are defined using only the ≤, +, and divide-by-two mathematical operators. ≤
can be implemented exactly in Ff ∪ {+∞}. When designing all our DBM operators in
Chaps. 3 and 4 we took care to use only expressions on I representing upper bounds so
that they could be safely over-approximated. Thus, it is sufficient to perform all + and /2
computations with rounding towards +∞ in the floating-point world to be sound. Unlike
what happened for saturated integer arithmetics — see Sect. 7.3.2 — the special semantics
of +∞ is directly handled by the low-level floating-point operators.3

Precision Loss. Rounding in the abstract incurs some precision loss with respect to
a perfect real implementation. An important consequence is that the closure algorithms
do not compute normal forms any more, and so, our equality and inclusion tests become
incomplete — they can return either a definitive “yes” or “I don’t know” — and many
operators are no longer best or exact abstractions. Nevertheless, this imperfect closure still
propagates invariants in a useful way and is essential for a good analysis precision. The
floating-point format used in the analyser can be chosen independently from that of the
analysed program, but the more precise this format is, the less precision degradation occurs
— unlike what happened for the interval domain adaptation, we can choose a more precise
format than that of the analysed program. Finally, note that, as in the machine-integer case,
using floating-point numbers in the abstract domain is orthogonal to abstracting floating-
point computation: the adapted zone and octagon domains presented here are suitable to
abstract Simple programs with I = R as well as floating-point programs. It is even possible
to use a floating-point implementation to abstract machine-integer programs using the
semantics of Sect. 7.2: the machine-integer semantics is abstracted using perfect integers,
which are abstracted using perfect reals, which are finally abstracted using a floating-point
implementation of an abstract domain for real numbers. One benefit of this is the ability

3Ironically, such an abstract domain implementation cannot be analysed using the restriction of the
IEEE 754 semantics proposed in this chapter as we make an explicit use of +∞ instead of considering each
occurring +∞ as a run-time error.

Antoine Miné Weakly Relational Numerical Abstract Domains

232 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

to design a unified abstraction for expressions that mix integer and floating-point operators
— as many real-life programs do — at the expense of a little extra loss of precision when
rounding over-approximates integers that cannot be exactly represented as floating-point
numbers but can be represented using saturated arithmetics.

Adapting Other Domains. Our DBM-based numerical domains were straightforward
to implement using floating-point numbers because we only manipulate upper bounds. It
is likely that the octahedra abstract domain, proposed in [CC04] by Clarisó and Cortadella
to manipulate conjunctions of constraints of the form

∑

i εiXi ≤ c, εi ∈ {−1, 0, 1}, can also
be adapted by simply choosing the right rounding direction. Other examples of relational
numerical abstract domains abstracting invariants on reals but implemented using floating-
point numbers are proposed by Feret, in [Fer04b], to analyse digital filters. As the octagon
abstract domain, the filter domains were implemented within the Astrée static analyser
on top of the adapted linearisation procedure of Sect. 7.5.2. However, other relational
domains may not be as easy to adapt. If we consider, for instance, the polyhedron abstract
domain, it is quite difficult to determine, for each arithmetic operation used internally,
whether we should round its result towards +∞ or towards −∞ to achieve soundness.

7.5.4 Convergence Acceleration

As all our interval bounds and DBM coefficients live in a floating-point set Ff that is finite,
all our abstract domains have a finite height and no widening nor narrowing is required
to ensure the termination of the analysis, in theory. However, this height is quite huge,
and thus, it is necessary to design widenings and narrowings to make our loop invariants
stabilise within decent time. All the widenings and narrowings on I = R — such as those
presented in Sect. 2.4.6, Defs. 3.7.1, 3.7.2, 3.7.3, and 4.4.8 — can be soundly used within
floating-point implementations of numerical abstract domains, but they can do with a little
tweaking. Indeed, convergence acceleration operators are generally designed with a specific
sub-class of loop invariants to be discovered in mind. If a widening was tailored for a
specific invariant on the perfect real semantics, then the analyser may miss it because:

› due to rounding in the floating-point concrete semantics, the invariant on reals may
not be true on the program, or,

› the invariant may be stable under the concrete floating-point loop transfer function
F , but not under the computed abstraction F ♯ as it incurs some extra rounding with
respect to F .

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.5 – Using Floating-Point Numbers in the Abstract 233

Perturbing Increasing Iterations. Given a widening ▽♯ tailored for I = R, an idea
proposed by Feret4 is to systematically derive a widening ▽♯

ε by enlarging the result a little
bit in the direction of unstable constraints. An example definition for the derived widening
▽Int

ε on the interval domain is:

Definition 7.5.1. Interval widening with perturbation ▽Int
ε .

[a, b] ▽Int
ε [a′, b′]

def
=

[{

a′′ if a′′ = a
a′′ − ε|a′′| otherwise

,

{

b′′ if b′′ = b
b′′ + ε|b′′| otherwise

]

where [a′′, b′′]
def
= [a, b] ▽Int [a′, b′] .

„

where ε is a user-chosen constant corresponding to an amount of relative error perturbation.
Stable constraints are left untouched.

Similarly, we can define an adapted widening ▽DBM

ε on DBMs by point-wise perturba-
tion of unstable constraints. However, because of the closure algorithm, a floating-point
implementation incurs some rounding on each DBM coefficient that depends upon all other
matrix coefficients. Thus, it seems more reasonable to perturb each unstable coefficient by
an amount proportional to the largest finite coefficient in the DBM. Such a derived widening
▽DBM

ε on DBMs can be defined as:

Definition 7.5.2. DBM widening with perturbation ▽DBM

ε .

(m ▽DBM

ε n)ij
def
=

{

oij if oij = mij

oij + a × ε otherwise

where o
def

= m ▽DBM n,

and a
def

= maxi,j { |oij| | oij 6= +∞ } .

„

Chap. 8 will give some experimental evidence that the widening with thresholds ▽Oct
th

of Def. 4.4.8 greatly benefits from the ε−perturbation by reducing the number of iterations
required to stabilise our abstract invariants.

Perturbing Decreasing Iterations. By construction, the limit of increasing iterations
with widening X♯

n+1 = X♯
n▽♯F ♯(X♯

n) is an abstract post-fixpoint. However, when performing

decreasing iterations with narrowing from this limit, Y ♯
n+1 = Y ♯

n △♯ F ♯(Y ♯
n), we get a sound

approximation of the concrete fixpoint which may not be an abstract post-fixpoint. Yet, this
would be quite a desirable property as it allows the invariant discovered by the analyser

4Private communication during the Astrée project. See also [BCC+03, § 7.1.4].

Antoine Miné Weakly Relational Numerical Abstract Domains

234 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

to be checked a posteriori for consistency instead of relying on the correctness of the
fixpoint engine which may be buggy. The invariant abstraction does not need to be an
abstract post-fixpoint to be sound but it is definitely sound if it is an abstract post-fixpoint.
Our experiments showed that, often, the iterations with widening and narrowing converge
towards an abstract post-fixpoint when using perfect reals, while the corresponding floating-
point implementation does not because of rounding. Between its definite pre-fixpoints and
its definitive post-fixpoints, there exists a chaotic region for a floating-point operator where
a slight adjustment to its argument may result in its result being either larger or smaller, in
a way that is hard to predict — especially when the abstract computation involves complex
steps, such as transitive closure applications. We need a way to ensure that the narrowing
will keep our iterates in the stable region and not drive them downwards too much. A
solution is, as for widenings, to derive from △♯ a new narrowing △♯

ε that enlarges refined
constraints in X♯ △♯ Y ♯ by a relative amount ε. The definition of △Int

ε and △DBM

ε are similar
to that of Defs. 7.5.1 and 7.5.1 except that ▽♯ is replaced with △♯. Experimental evidence
of this approach will be presented in Chap. 8.

Choosing ε. In theory, a good ε should be estimated by the relative amount of rounding
performed in the computation of the abstract function we wish to stabilise. Thus, it is a
parameter of both the complexity of the analysed program loop and of the actual abstract
domain implementation, including which floating-point format f is chosen to implement
the analyser. In practice, experiments with the Astrée analyser — reported in the next
chapter — showed that a good ε could be chosen by trial and error for a particular program
to be analysed and, then, seldom had to be adjusted when we modified our analyser, the
analysed program, or even analysed a different program written using the same coding
practices.

7.6 Conclusion

We have extended, in this chapter, our analysis to programs that use machine-integers with
limited bit-size and floating-point numbers following the IEEE 754 norm: each operation
can produce an overflow and each floating-point operation induces some rounding. We
focused on programs that do not perform integer overflows on purpose as we are sound but
quite conservative in this event. We also focused on programs that do not compute using
the special floating-point values +∞, −∞, and NaN but consider their generation as a
run-time error, which is the case for the vast majority of numerical programs. We showed
how we can infer invariants that are sound with respect to these real-life machine-integer
and floating-point semantics, but also use our analysis to possible detect run-time errors.

Our main technique consisted in abstracting these complex and irregular semantics into
perfect integer and real arithmetics so that all the numerical abstract domains as well as

Domaines numériques abstraits faiblement relationnels Antoine Miné

7.6 – Conclusion 235

the linearisation and symbolic constant propagation techniques, presented in the previous
chapters, could be used soundly. In particular, a modified linearisation procedure was used
to abstract the highly non-linear behavior of floating-point rounding using interval linear
computations. Thus, this semantics is particularly well-adapted towards abstraction using
the zone and octagon domains and, to a lesser extent, the polyhedron domain.

We also explained how to adapt the algorithms in our zone and octagon abstract domains
so that they use machine-integers and floating-point numbers internally, for a reasonable
precision loss. These two aspects can be combined together — in the sense of the com-
bination of sound abstractions — to implement an efficient analyser for programs written
in real-life programming languages. These techniques were indeed implemented and tested
within the Astrée analyser presented in the following chapter.

Antoine Miné Weakly Relational Numerical Abstract Domains

236 Chapter 7: Analysis of Machine-Integer and Floating-Point Variables

Domaines numériques abstraits faiblement relationnels Antoine Miné

Chapter 8: Application to the Astrée Static Analyser 237

Chapter 8

Application to the Astrée Static
Analyser

Nous présentons maintenant l’analyseur statique de qualité industrielle As-

trée développé à l’ÉNS et l’École Polytechnique pour la vérification statique
d’erreurs à l’exécution de programmes embarqués réactifs critiques. Cet ana-
lyseur met en pratique le domaine abstrait des octogones, les techniques de
linéarisation et de propagation symbolique des constantes, ainsi que les mé-
thodes d’abstraction d’entiers machines et de flottants. Nous pourrons ainsi
démontrer l’utilité pratique des résultats théoriques de cette thèse.

We present in this chapter the Astrée industrial-quality static analyser de-
veloped at the ÉNS and the École Polytechnique, aimed at statically check-
ing for the absence of run-time errors in critical embedded reactive programs.
This analyser uses the octagon abstract domain, the linearisation and sym-
bolic constant propagation techniques, as well as our framework for abstracting
machine-integers and floating-point numbers. We will thus prove the practical
interest of the theoretical work presented in this thesis.

8.1 Introduction

Along with the theoretical work presented in the previous chapters, we participated in the
design and implementation of the Astrée static analyser. In particular, the octagon ab-
stract domain of Chap. 4, the linearisation and symbolic constant propagation techniques of
Chap. 6, and the framework for the relational analysis of machine-integer and floating-point
semantics of Chap. 7 were incorporated into Astrée. This provided us with the unique

Antoine Miné Weakly Relational Numerical Abstract Domains

238 Chapter 8: Application to the Astrée Static Analyser

opportunity to validate the developed techniques in an analyser for real-life industrial pro-
grams of several hundred thousand lines. We must also say that the work on Astrée

influenced our thesis for it provided new challenges, such as the scalability of the octagon
domain or the relational analysis of floating-point variables, that were not originally our
primary concerns. Several of the program examples presented in the preceding chapters, as
well as the way we analyse them, crystallised from difficult points in our experimentation
with Astrée.

Astrée is a large software: several people and many different techniques were involved
in its design. It is not our goal to present Astrée in details — the reader is refereed to
co-authored papers [BCC+02, BCC+03] — but its overall design principles will be sketched
in the first two sections to provide the reader with some context. Then, we will present,
in more details, the integration in Astrée of the techniques developed in the preceding
chapters and provide experimental results.

8.2 Presentation of Astrée

The Astrée static analyser [Asta] is a join work by the Abstract Interpretation teams at
the École Normale Supérieure (ÉNS), in Paris, and the École Polytechnique, in Palaiseau.
Team members comprise Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret,
Laurent Mauborgne, David Monniaux, Xavier Rival, and myself. It has been supported by
a French exploratory RNTL — Réseau National de recherche d’innovation en Technologies
Logicielles — project, also named Astrée [Astb]. This project involves the two cited
academic partners (ÉNS and École Polytechnique) as well the industrial partner Airbus
[Air].

8.2.1 Scope of the Analyser

Astrée is an efficient static analyser focusing on the detection of run-time errors in pro-
grams written in a subset of the C programming language. Due to abstractions, the issued
warnings may be either real bugs or spurious behaviors called “false alarms”. The goal of
Astrée is to prove the absence of run-time errors meaning that, when analysing a correct
program, the analyser should issue very few or no alarm at all, at least when the program
belongs to a certain program family. Up to a dozen alarms can be inspected by hand while
a so-called selectivity of even 99% may require thousands of manual inspections which is
far too prohibitive. It is aimed towards automated code certification unlike other analysers
that only focus on finding as many bugs as possible but may miss some. It should also be
fast enough to be usable during the program development so that bugs and false alarms
are removed as soon as possible and the learning curve for the programmers and the testers
is not too steep. To achieve these goals, the analysis is specialised for an infinite family

Domaines numériques abstraits faiblement relationnels Antoine Miné

8.2 – Presentation of Astrée 239

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
+
+

t

x(n)

Unit delay

Switch

Switch

Figure 8.1: Synchronous block-diagram example. It corresponds to a simplified second
order digital filtering system.

of programs constructed using roughly the same coding practices. It is expected that the
analyser should adapt to other programs within the considered family — including new or
corrected versions of already analysed programs — without much intervention, and those
can be carried out directly by end-users.

Considered Program Family. The considered subset of the C programming language
for the current version of Astrée excludes recursion, union data-types, dynamic memory
allocations, calls to the C library, and multi-threaded programs; however, it includes arrays,
loops, and floating-point computations. Run-time errors include integer and floating-point
divisions by zero, integer overflows, generations of floating-point +∞, −∞, or NaN, and out
of bound array accesses. The initially targeted program family — for which the analyser
should issue no false alarm — is the set of C programs of a few hundred thousand lines
automatically generated, using several proprietary tools, from high-level specifications in
the form of synchronous data-flow block-diagrams, such as the one presented in Fig. 8.1.
This scenario is quite common in the industrial world of real-time safety-critical control
systems, ranging from letter-sorting machines to nuclear plants and“fly-by-wire”aeronautic
systems. As most run-time errors do not appear at the specification level, which considers
perfect integer and real semantics, it is important that we check the generated C code
according to the precise C language and IEEE 754 floating-point semantics. The considered
program family has some features that make the analysis quite difficult:

› There is a very large loop that runs for a long time (3.6×106 iterations) and executes
most of the program instructions at each iteration (some parts get executed up to

Antoine Miné Weakly Relational Numerical Abstract Domains

240 Chapter 8: Application to the Astrée Static Analyser

Figure 8.2: Graphical user interface for Astrée.

twelve times per iteration). We will call this loop the main loop to distinguish it from
inner loops that only execute few instructions and for a small number of iterations.

› There is a very large number of global variables (2 000 variables for each 10 000 lines
of code) representing a current state. They are read and written a least once per
iteration.

› The control part of the program is encoded in boolean variables.

› A large part of the program is devoted to floating-point computations — half the
global variables are floating-point.

› The computation paths from an input value with known bounds can very long and
may spread across many loop iterations, and so, rounding-errors cumulate easily.

Domaines numériques abstraits faiblement relationnels Antoine Miné

8.2 – Presentation of Astrée 241

8.2.2 History of the Analyser

The Astrée analyser started from scratch in November 2001. In November 2003, it was
able to prove completely automatically the absence of run-time errors in the primary flight
control software for the Airbus A340 fly-by-wire system. Astrée achieved this result in
less than one hour of computation time on a PC-class computer, using only a few hundred
megabytes of memory. Since January 2004, it is used to analyse the successive development
versions of the electric flight control code for the Airbus A380.

We have been involved in the design and programming of the Astrée analyser since
its beginning as it provided a unique opportunity of experimenting the theoretical tools
developed during our thesis. False alarms due to the lack of relationally of the interval
abstract domain motivated the design of our adaptation of relational domains to machine-
integer and floating-point numbers, presented in Chap. 7. It enabled us to incorporate into
Astrée the octagon abstract domain of Chap. 4, using our general-purpose octagon library
implementation [Mina] developed earlier during our thesis. Likewise, several techniques of
general interest presented in this thesis, such as the linearisation and the symbolic constant
propagation of Chap. 6, but also some of the transfer functions and extrapolation operators
on octagons, were designed during the refinement process of Astrée. Additionally to the
specific work on numerical abstract domains, we participated in the general programming of
Astrée to some extent and developed entirely some other features — such as the graphical
interface to display the results of an analysis in a user-friendly way, shown in Fig. 8.2. The
evolution of Astrée, its techniques and results, has been the subject of several papers
[BCC+02, BCC+03, Mau04], some of which we co-authored by the whole Astrée team.

Perspectives. Currently, more and more programs in our original program family are
checked using Astrée. Also, Astrée is being extended along several orthogonal direc-
tions. First, we plan to consider programs in the same family but written in other pro-
gramming languages. Many abstract domains specialised towards control systems can be
reused directly, but some more domains may be needed as abstractions are quite sensitive
to language idioms. Then, we plan to consider more complex, user-defined, properties to
be checked additionally to run-time errors. Finally, several new program families are being
considered: the auto-test program family that checks the hardware for faults when the em-
bedded system is switched on, as well as the initialisation program family which runs just
after. Some program families comprising drivers, such as an USB controller, will require us
to design new memory models and subsequent abstractions.

8.2.3 Design by Refinement

The idea of a static analyser specialised for a family of programs is the natural compromise
between two extremes. On the one hand, given one specific program and one property

Antoine Miné Weakly Relational Numerical Abstract Domains

242 Chapter 8: Application to the Astrée Static Analyser

to check, it is always possible to design a static analyser that discovers the property fully
automatically. On the other hand, it is undecidable to check this property for all programs,
by Rice’s theorem [Ric53]. We now present how the idea a static analyser specialised for
a family of programs has been made practical in the Astrée project using a design by
refinement principle.

Development Cycle. The development cycle for our analyser is as follows. We start
with a simple and imprecise but fast static analyser — based on the plain interval abstract
domain, for instance — and a modest-sized program which has been used for a long time
without any run-time error — a fragment of the A340 flight control system, in our case.
Then, the analyser is refined step by step: each step begins with a static analysis yielding
false alarms; then, we manually trace backwards some alarms towards the origin of the
analysis imprecision; finally, the imprecision is corrected by either incorporating a new
abstract domain or refining a transfer function, a linearisation or constant propagation
strategy, or a reduction between existing abstract domains. When there is no false alarm left
in our simple program, we continue this process using more and more complex programs in
our family. After a while, most semantic features in our program family which are important
to prove the absence of run-time errors have been abstracted sufficiently precisely and new
programs become easier and easier to analyse, that is, require less and less refinement. We
have obtained an analyser targeted towards a whole family of programs instead of a single
one. As we started from a simple and fast analyser and only refined it to remove false
alarms, the refined analyser is neither very large nor very costly. It is important to note
than, when designing Astrée, no development time was wasted on implementing transfer
functions or reductions that would improve globally the precision but are not useful to
remove false alarms.

Parametrisation. A desirable feature for an analyser designed for a whole family of
programs is the ability to tune the analysis specifically for one program or another easily
without requiring a new refinement pass. In Astrée, this is done using parameters that
can be specified in the command-line or as analyser-specific commands that can be either
integrated in the C code or provided as an external file. A first parameter is the set
of abstract domains that will be enabled among the many ones present in the analyser.
Then, several parameters can tune the extrapolation strategy; for instance, it is possible
to change the set of thresholds used in a widening with thresholds — see Def. 3.7.2 — or
the perturbation ε in the perturbed widenings and narrowings — see Defs. 7.5.1 and 7.5.2.
Finally, our last parametrisation is a more local one: experience shows that extra precision
— such as relational invariants — is only required for small localised parts of the program
and it would be a huge waste of resource to use this extra precision for the whole program.
Thus, it is possible to tag program parts or variables that need to be analysed using our more

Domaines numériques abstraits faiblement relationnels Antoine Miné

8.3 – Brief Description 243

costly domains. Following our design by refinement principle, after a few experiments with
manual insertions of such tags, we designed strategies to insert them automatically using
simple syntactic rules. We call this technique automatic parameterisation. An important
parameter tag example is the octagon packing that will be presented in Sect. 8.4.2 and
allows relating only few variables at a time together in an octagon abstract element and
achieve an effective linear cost in the number of variables, instead of a cubic one.

8.3 Brief Description

We give here a short description of the Astrée analyser. Our goal is to give some context
for the following sections that will present in more details the analyser parts that are
most relevant to this thesis. The interested reader is refereed to [BCC+03] for a more
comprehensive discussion about other components of Astrée that can only be briefly
mentioned here. We do not distinguish, only for this section, our work and the work of
other members in the Astrée team; our work will be detailed in the following section.

8.3.1 Implementation

The Astrée analyser comprises approximately 50 000 lines of OCaml code. To this,
we must add approximately 9 000 lines of C code for the octagon abstract domain library
[Mina] used by Astrée. The graphical user interface is written using the Gtk+ 2 toolkit
[Prob] and its OCaml interface LablGTK 2 [Ga]. The code is fully portable and has
been tested on the following 32-bit and 64-bit platforms:

› UltraSparc Sun stations running Solaris (32-bit mode);

› Pentium-class computers running Linux, FreeBSD, and Windows;

› AMD-64 computers running Linux (64-bit mode);

› PowerPC G4 Apple computers running MacOS and Linux.

8.3.2 Analysis Steps

Astrée accepts C programs as input and performs the following successive very fast pre-
processing passes:

› each C source is preprocessed using the cpp standard C preprocessor from the freely
available Gnu gcc compiler suite [Proa];

› each C source is parsed using D. Monniaux’s freely available C99-compatible C parser
for OCaml [Mona];

Antoine Miné Weakly Relational Numerical Abstract Domains

244 Chapter 8: Application to the Astrée Static Analyser

› all the C syntax trees are merged into a single tree by an internal linker;

› the syntax tree is then compiled into an intermediate representation corresponding
to a simplified C language where all type conversions have been made explicit;

› constant expressions are detected using a simple intra-procedural analysis à la Kildall
[Kil73] and evaluated once and for all;

› dead statements and variables — mostly introduced by the previous pass — are
pruned;

› the resulting syntax tree is scanned for parts that may require more precise and
costly abstract domains or reductions, using techniques such as the octagon packing
described in Sect. 8.4.2, and the corresponding parameter tags are inserted.

Then, the proper analysis is performed on the tagged internal representation. Astrée

performs an abstract execution that follows the control flow of an actual execution but
uses abstract transfer functions in the enabled abstract domains as well as widenings and
narrowings for loops. This can be seen as a special instance of the chaotic iterations,
described in Sect. 2.2.5, allowing much memory optimisation. It would be impossible, for
large programs, to maintain in memory a map associating an abstract environment to each
program point but, for the iteration order induced by our abstract execution, it is only
necessary to keep one abstract environment for each level of nested loop and if statement
enclosing the current statement; unlike the code size, the maximum amount of nesting
is generally very small. This also allows programming the iterator as a simple recursive
function on the syntax tree, in a way similar to denotational semantics. Finally, function
calls are in-lined, which is possible because there is no recursive functions. It gives a fully
context-sensitive inter-procedural analysis: we compute, at each program point, a distinct
abstract value for each sequence of call-sites leading to this point.

After loop invariants are stabilised thanks to iterations with widening and narrowing,
the program tree is traversed once more in a checking pass and a warning is output for each
operation that may trigger a run-time error. It is also possible to dump invariants at all
or selected program points — such as loop invariants — for further inspection using our
graphical user interface — see Fig. 8.2. Presently, no backward analysis is performed by
Astrée.

8.3.3 Abstract Domains

Several abstract domains are used during the analysis. They are written as modules using
a common interface and can be easily plugged in and out of the analyser.

Domaines numériques abstraits faiblement relationnels Antoine Miné

8.3 – Brief Description 245

Memory Abstract Domain. The memory abstract domain takes care of pointers and
aggregate data-structures in C expressions. Each abstract element contains a mapping from
arrays and structures to a flat collection of scalar variables, as well as abstract points-to
information. It is thus able to transform a complex C expression into a purely arithmetic ex-
pression manipulating only machine-integer and floating-point scalar variables. The mem-
ory abstract domain does not abstract such purely numerical environments by itself but
relies on a numerical abstract domain or, more probably, the partially reduced product of
several numerical abstract domains.

Interval Abstract Domains. The first and simplest numerical abstract domain used is
the interval domain, introduced in [CC76] and recalled in Sect. 2.4.6. The interval domain
is quite important for two reasons. Firstly, we use only variable bound information in the
checking pass to prove that no run-time error can occur. Secondly, bound information is
used when linearising expressions using the technique of Sect. 7.4.3 to enable the sound
use of relational abstract domains designed for perfect real numbers as well as symbolic
expression simplification. The interval domain is always enabled so that bound information
is always available.

Clock Abstract Domain. A first kind of false alarms to be removed were due to counters
that are incremented or decremented at most once per main loop iteration. Such counters
are bounded because the main loop does not iterate forever. We saw, in Exs. 3.7.4 and
4.6.1, that such a proof is not in the scope of the interval abstract domain because we
need to relate the modified variables to the loop counter in a relational invariant. Thus,
we implemented in Astrée a simple relational domain, called the clocked interval abstract
domain, that infers invariants of the form V +clock ∈ [a, b] and V −clock ∈ [a, b] for each
program variable V , clock being a phantom variable incremented exactly once per main
loop iteration. The clocked interval abstract domain can be seen as the octagon domain
restricted to only two variables.

Linearisation. It soon became obvious that the remaining false alarms could only be
removed by inferring more complex numerical invariants and, in particular, invariants on
floating-point variables. In order to provide a “glue” between numerical C expressions, ma-
nipulating machine-integers and floating-point values, and some of our abstract domains
designed for perfect reals numbers, we implemented the linearisation of Chaps. 6 and 7.
Machine-integer and floating-point expressions are both abstracted in terms of interval lin-
ear forms with a real semantics but, internally, we compute all bounds using floating-point
values rounded in a sound way. Expressions are linearised using the relative size strategy:
when encountering a non-linear multiplication, the argument yielding to the smallest rel-
ative interval amplitude is intervalised, as described in Sect. 6.2.4. When encountering a

Antoine Miné Weakly Relational Numerical Abstract Domains

246 Chapter 8: Application to the Astrée Static Analyser

highly non-linear assignment, such as one using a bit-wise C operator, or in the event of a
machine-integer overflow, we fall back to the interval abstract evaluation J expr KInt .

Octagon Abstract Domain. False alarms due to imprecise interval abstractions in
program parts similar to the absolute value computation of Ex. 4.6.2 or the rate limiter
of Ex. 4.6.3 motivated the inclusion of numerical abstract domains for linear inequalities.
The most widespread domain is the polyhedron domain but we chose the octagon abstract
domain — described in Chap. 4 — instead for two reasons. Firstly, its theoretical memory
and time cost is much lighter than that of the polyhedron domain — respectively quadratic
and cubic in the number of variables instead of exponential. In practice, the performance
gain is even larger because the octagon domain can be implemented using floating-point
numbers, as described in Sect. 7.5, instead of costly arbitrary precision rational packages.
Secondly, it supports easily rather precise transfer functions involving interval linear forms
that appear naturally when linearising floating-point expressions. Our octagon domain
implementation is described in more details in Sect. 8.4.

Symbolic Constant Propagation. In some cases where it is necessary to retain rela-
tional information locally, the symbolic constant propagation of Sect. 6.3 can be combined
with the linearisation and the interval domain to get the desired result. A false alarm
example that could be removed this way was due to an interpolation computation similar
to that of Ex. 6.3.1. Thus, we implemented a symbolic constant domain that can perform
symbolic constant propagation on expressions. This propagation does not occur by default
in all expressions as this may lead to precision degradation in some cases. Instead, it is
provided as a service for those abstract domains that ask for it. In particular, the interval
abstract domain has been modified to use the symbolic constant propagation, as explained
in more details in Sect. 8.5.

Digital Filter Abstract Domains. As many real-time embedded control systems, the
considered program family makes a great use of digital filters, that is, recurrence of the form
Xn = F (Xn−1, Xn−2, . . . , Yn, Yn−1, . . .) where, at each main loop iteration, a new value for
X is computed using its values at preceding iterations, as well as the current and past
values of some input Y . One example is the second order filter: Xn = (α⊗32,n Xn−1)⊕32,n

(β ⊗32,n Xn−2) ⊕32,n Yn, which corresponds to the block diagram of Fig. 8.1. Proving that
X is bounded is out of the scope of the interval and octagon domains as it requires inferring
a so-called ellipsoid invariant which has the following form: aX2

n + bX2
n−1 + cXnXn−1 ≤ d.

An abstract domain for such invariants is described in [BCC+03]. Another example is
the following first order filter: Xn = (α ⊗32,n Xn−1) ⊕32,n (Yn ª32,n Yn−1). In order to
find a precise bound for X, it is important to note that, after development, the Yi terms
are almost cancelled. In [Fer04b], Feret proposes to seek history-sensitive invariants of

Domaines numériques abstraits faiblement relationnels Antoine Miné

8.3 – Brief Description 247

the form |Xn| ≤ a maxi≤n |Yi| + b. Special-purpose numerical abstract domains for such
non-linear and history-sensitive invariants, as well as others spawning from Feret’s generic
framework for analysing digital filters, were implemented within Astrée. As the octagon
abstract domain, these domains naturally abstract real numbers and are adapted to the
floating-point semantics using the floating-point linearisation of Sect. 7.4.3.

Arithmetic-Geometric Progression. One of the last false alarm to be removed in
the analysis of the full A340 fly-by-wire system was due to a variable whose bounds grow
exponentially with respect the main loop iteration, but with such a low exponent that it is
in fact bounded. Removing this false alarm required the design by Feret and Mauborgne
of an arithmetic-geometric progression abstract domain, able to discover invariants of the
form |X| ≤ aclock + b. The interested reader can find the precise description of this domain
in [Fer05]; let us simply say that this domain requires the help of both the linearisation and
the symbolic constant propagation techniques of Chap. 6.

Information Flows. In order to achieve a precise analysis, our numerical abstract do-
mains must exchange information. In Astrée, the situation is a little more complex than
in the partially reduced product of abstract domains presented in Sect. 2.2.6, for efficiency
purposes. There exists two types of information flow: read and reduce. Using the read
channel, an abstract domain can ask some information from the abstract environment,
such as the interval bound or the symbolic constant associated to a variable; the requested
information is gathered from all the abstract domains and combined by intersection. This
is used, for instance, to make available the interval abstract evaluation of arbitrary expres-
sions to the intervalisation procedure of Sect. 6.2.2. Using the reduce channel, an abstract
domain can broadcast an invariant to all the abstract domains. This is used, for instance,
when the octagon or a filter domain is able to infer a variable bound from its abstract state
and wants the interval domain to take it into account. Reduction orders are not issued
every time the abstract value in an abstract domain changes as it would be very costly and
may prevent the iterate with widening to converge. Instead, a global strategy is used to
ensure that the information required to remove our false alarms are propagated while not
jeopardising iterate stabilisation by widening. It is not our purpose here to explain this
strategy, so, we refer the interested reader to [Fer04b] which develops this topic in details
for the case of the interval and filter domains.

8.3.4 Partitioning Techniques

Most of the numerical abstract domains used in Astrée can abstract intersection exactly,
but not union: these are non-distributive abstract domains. Unfortunately, abstract unions
are very frequent as they appear when we merge control-flows after each conditional branch

Antoine Miné Weakly Relational Numerical Abstract Domains

248 Chapter 8: Application to the Astrée Static Analyser

and each loop iteration. Two partitioning techniques were developed in Astrée to reduce
this cause of imprecision without the need to design new abstract domains.

Value Partitioning. In our program family, a great part of the control is encoded in
booleans. For instance, the result of a test on a numerical variable X is put into a boolean
B and, a few lines — or thousand lines — later, some decision on X is taken depending
on the value of B and other criteria. In order to keep the relationship between X and B,
a value partitioning abstract domain functor based on decision trees was incorporated into
Astrée: it allows manipulating an abstract environment for each possible value of any
set of integer variables. In particular, the partitioned domain is no longer convex and the
union of two decision trees with distinct values for the partitioning variables is exact. As
value partitioning incurs a cost that is exponential, at worse, in the number of partitioning
variables, Astrée uses a packing technique to relate the value of a few variables with
respect to a few variables in a collection of small decision trees. Astrée contains an
automatic packing algorithm for decision tree similar to the octagon packing described in
Sect. 8.4.2. Even though any abstract domain can be partitioned with respect to the value
of a few boolean variables using this decision trees, we currently only partition the interval
and symbolic constant abstract values.

Trace Partitioning. Trace partitioning is a technique introduced by Handjieva and
Tzolovski in [HT98] to refine any abstract domain by distinguishing, for a program point,
several abstract elements based on the history of the program points traversed to reach
the current program point. More precisely, the authors remember the sequence of if

branch taken and the truth of each loop condition evaluated; this sequence is called a trace.
Handjieva and Tzolovski propose to use abstractions of sets of traces and present trans-
fer functions and operators — including a widening operator — for the abstract domain
obtained by lifting a base domain to functions associating an abstract element to each
abstract trace, for a finite set of abstract traces. As this technique can be quite costly
if applied as-is to large programs, it was modified as follows in Astrée: firstly, we only
take into account a few selected tests and loops; secondly, traces are merged at the end of
each procedure using an abstract union. Thus, the effect of trace partitioning is to delay
unions; this always results in some precision gain. We also introduced a new partitioning
criterion to distinguish traces based on the value of a variable at a selected program point
— this is much less costly than effective value partitioning that must track the value of
the variable at all subsequent program points. Tests, loops, or variables can be selected
for partitioning by manually inserting tags in the code; a fully automatic tagging strategy
based on syntactic criteria has also been implemented in Astrée.

Domaines numériques abstraits faiblement relationnels Antoine Miné

8.4 – Integrating the Octagon Abstract Domain 249

Comparison with Disjunctive Completion. The partitioning techniques used in As-

trée avoid the need for disjunctive completions, which was discussed in Sect. 3.4.3 for the
case of the zone abstract domain. Partitioning seems a much better approach for two main
reasons. Firstly, it does not require to change any data-structure or algorithm on the base
domain. Secondly, it allows a fine tuning of the cost versus precision trade-off while the
disjunctive completion can only be very precise and very costly. In the design by refinement
of an efficient static analyser specialised for a program family, it is important to control
precisely where we trade efficiency for precision. Our partitioning techniques naturally
attach some extra precision to visible program variables or control-flow constructs.

8.4 Integrating the Octagon Abstract Domain

8.4.1 Implementation Choices

Our octagon domain implementation relies on the freely available octagon library [Mina]
also developed during our thesis.

Underlying Numerical Set. The octagon library [Mina] allows representing invariants
of the forms ±X±Y ≤ c where c lives in a numerical set I. Several sets I are proposed: inte-
gers or fractions, using either machine-integers with saturated arithmetics, as in Sect. 7.3.2,
or arbitrary precision numbers, or floating-point numbers rounded soundly, as in Sect. 7.5.
We chose, in Astrée, an implementation of octagons based on floating-point numbers
which gives an extra performance boost with respect to known polyhedra implementations
as they are all based on costly arbitrary precision rational packages. Internally, the oc-
tagon domain uniformly treats all variables as real-valued and we rely on the techniques
introduced in Chap. 7 to soundly abstract machine-integer and floating-point expressions
into expressions in the real field. In particular, we do not distinguish machine-integer and
floating-point variables, but mix them in the same abstract environment. As said before,
abstracting integers as reals causes some small loss of precision, but this fact is compensated
by two important benefits: our ability to discover relationships between machine-integer
and floating-point variables and the ease of implementation.

Transfer Functions. We use the assignment transfer functions of Def. 4.4.7 to precisely
handle linearised assignments. Because most tests in our program family either involve oc-
tagonal constraints or are highly non-linear, we use the exact test abstractions of Def. 4.4.4
when possible and abstract tests as the identity otherwise.

Strong Closure. We perform the adapted Floyd–Warshall algorithm for the strong clo-
sure of Def. 4.3.2 on the arguments of all abstract unions and transfer functions. Even

Antoine Miné Weakly Relational Numerical Abstract Domains

250 Chapter 8: Application to the Astrée Static Analyser

though this does not result in strongly closed DBMs and optimal abstractions — because
of floating-point rounding in the abstract — it still propagates sufficient relational infor-
mation for our purpose: we are yet to find a false alarm that can be removed using an
octagon implementation based on perfect reals but cannot be removed using our floating-
point implementation. Following Sect. 3.8.1, we always use versions of transfer functions
that preserve the closure, when they exist, and apply the incremental closure of Def. 4.3.4
to restore the strong closure after each transfer function that modifies its argument only
locally; indeed, experiments showed that the result of a transfer function is likely to be
fed to an operator or transfer function that requires strongly closed arguments for best
precision.

8.4.2 Octagon Packing

Even though its cost is light compared to the polyhedron abstract domain, it would still be
too costly to use the octagon domain to relate all our program variables in a large octagon
as there are tens of thousands of them. We decided, instead, to break down our variable
set into packs of a few couple variables, each pack corresponding to variables that should
be related together.

Adapted Operators and Transfer Functions. Given a fixed packing, an abstract
environment then associates an octagon of the correct dimension to each pack. Trans-
fer functions and operators are applied point-wisely as in the plain domain product of
Sect. 2.2.6: even though one program variable may belong to several packs, no reduction is
used to transfer information from one pack to another. Inter-packing reductions could be
used to gain precision by using common variables as pivots. However, we found simpler,
when extra precision was needed to remove false alarms, to refine the automatic packing
strategy instead. We now explain more precisely how assignments are handled:

› Assignments of expressions that cannot be made into interval linear forms (the ones
containing operators that are too non-linear, such as the bit-wise and operator &, or
that may trigger an overflow) use the interval-based abstract transfer functions —
Def. 4.4.5.

› Otherwise, for each pack containing the assigned variable, we first construct an inter-
val linear form containing only variables in this pack. This is done by replacing un-
wanted variables by their corresponding interval as fetched from the interval domain.
Then, the interval linear form assignment of Def. 4.4.7 is used on the correspond-
ing octagon. Finally, the interval for the assigned variable is extracted from each of
the modified octagon. These intervals are intersected and used to refine the interval
domain information for the assigned variable.

Domaines numériques abstraits faiblement relationnels Antoine Miné

8.4 – Integrating the Octagon Abstract Domain 251

It can be possible to gain more precision by embedding all the octagons containing one
variable appearing in the assignment into one large octagon, then applying the transfer
function only once, and finally projecting back the large octagon on the smaller ones defined
by the packing. As for inter-packing reductions, this technique has been rejected because it
can construct intermediate octagons that are much bigger than that of the packing and can
grow costly in an unpredictable way; we rely instead on a proper packing strategy. Tests
are handled in a similar way.

The cost of the octagonal analysis depends on several parameters: the number of octagon
packs, the size of octagon packs, but also the number of times the same variable appears
in different octagons — this determines the number of octagons updated by each transfer
function application.

Automatic Packing Technique. Which variables to pack together can be specified by
hand in the analysed program. After a few manual experiments, we developed a packing
algorithm to automate this task for our considered program family. This algorithm traverses
the code after preprocessing, merging, constant propagation, and dead-code pruning, and
associates a pack to each syntactic C block, that is, code sequence bracketed within { and
} but also unbracketed if-then-else branches and loop bodies. In order to fill the pack for
a given syntactic block with variables, we perform the following filtering steps:

1. We first gather all statements in that block excluding the statements in its sub-blocks.

2. From these statements, we only keep those that are reduced to a single C expression.
This includes assignments but not if or while statements.

3. From each such expression, we extract the variables it uses but ignore a variable if
there is little chance that the expression behaves linearly with respect to this variable.
More precisely, we do not scan the arguments of a bit-wise C operator, a function call,
an array lookup, or an “address-of” operator but we scan recursively both arguments
of the +, -, and * arithmetic operators as well as the && and || logical operators and
all comparison operators; we also scan the left argument of a / operator.

4. For each expression, if the set of extracted variables contains at least two variables,
we add all of them to the pack. If it contains only one variable, we do not add it.
For instance, the assignment X=Y+(Z&2) will result in both X and Y being added to
the current pack, Z being ignored as argument to a bit-wise operator; while X=3 does
not contribute any variable to the pack.

Additionally, steps 3 and 4 are executed on expressions appearing in an if-then-else con-
dition but the extracted variables are added to both the block enclosing the if statement
and the blocks in the then and else branches. Variables are also extracted from each loop

Antoine Miné Weakly Relational Numerical Abstract Domains

252 Chapter 8: Application to the Astrée Static Analyser

condition and added to both the block enclosing the loop and the loop body block. The
effect of this filtering is to keep, for each assignment, only variables that have an opportu-
nity to generate linear relational invariants. If we are to analyse the effect of a sequence
of assignments and tests sharing common variables with the best precision possible, it is
necessary to put all the variables of the involved expression in the same octagon pack as
there is no information transfer between distinct packs. As packing all the extracted vari-
ables from all expressions in the same octagon would result in a huge octagon, we relate
together only variables from expressions in the same syntactic block and from conditional
expressions that relate the block to both its directly enclosing and nested blocks. This
strategy can be extended by considering the expressions in nested sub-blocks up to some
nesting limit; this would result in larger packs — but less of them. Additionally to variables
extracted from expressions using steps 3 and 4, we add to the current octagon pack any
variable that is either incremented or decremented, so that we are able to infer relationships
between loop counters, as in Exs. 3.7.4 and 4.6.1. It is quite important, for our considered
program family, not to rely on variable declaration but on variable usage to define packing;
otherwise, this would result in all global variables being packed together in an octagon
with thousand variables. Finally, a part of the analysed program family is generated from
a different, newer, proprietary tool that declares a lot of local variables at the beginning
of each procedure, even though each variable is used in only a few statements. For these
programs, we use the same packing strategy except that we ignore the top-level syntactic
block of each procedure to avoid all local variables being put in the octagon corresponding
to the top-level pack.

We perform an optimisation step before passing the packing information to the static
analyser: if the set of variables of a pack is included in the set of variables of a larger pack,
then the smaller pack is discarded. We stress on the fact that, even though we rely on a local
analysis of the syntax to determine which variables should be related together, the packing
is considered globally by the subsequent static analysis: octagons are no longer attached to
syntactic blocks and live throughout the abstract execution of the whole program.

A technique similar to this one, but more complex, is used to determine which variables
to partition with respect to which variables in the abstract domain of decision trees. It may
also be useful for other relational numerical domains such as, for instance, the polyhedron
domain, to find a trade-off between cost and relationality.

Automatic Packing Example. Consider the following C implementation of the rate
limiter of Ex. 4.6.3:

{ ①

float Y,S,R;

Y=0;

while rand(0,1) { ②

Domaines numériques abstraits faiblement relationnels Antoine Miné

8.4 – Integrating the Octagon Abstract Domain 253

float X,D;

X=rand(-128,128);

D=rand(0,16);

S=Y;

R=X-S;

Y=X;

if (R<-D) { ③ Y=S-D; }

if (R>D) { ④ Y=S+D; }

}

}

We have four blocks, numbed ① to ④ . Before the packing optimisation, ① is empty, ②

contains the variables S, Y, X, R, and D while ③ and ④ contain the variables S, R, Y, and D.
After optimisation, we have only one pack containing all variables, which permits a precise
analysis. In a real-life example, the loop would contain many such rate limiter instances,
each in a syntactic block such as ② , and so, we would have one octagon pack for each
instance that would contain only the variables useful for the instance.

Useful Octagons. Our packing strategy has been designed so that the octagon analysis
is sufficiently relational to remove selected false alarms; however, it may be too relational
and some packs may be in fact useless. In order to check a posteriori the usefulness of
each octagon pack, we implemented a simple monitoring technique in Astrée to count
the number of times a variable bound was more precise in an octagon than in all other
enabled abstract domains, that is, the octagonal information prevails by reduction. The
set of octagons that were useful at least once is output with the result of the analysis, and
so, it is possible to re-run a much faster analysis using only the octagons that were proved
useful. We can also use this list of useful octagons to analyse a slightly modified program:
it is likely that not many useless octagons become useful and, if some do, this results in a
sound loss of precision. We experimented successfully with the following method: a long
and full analysis is run at night and determines a set of useful octagons that will be used
the following day for quick analyses during program development.

Another application of useful octagons is to enhance our iterations with widening strat-
egy: indeed, when checking for invariant stability, it is only necessary consider the set of
octagons useful up to now. This results in a large performance gain as we do not loose time
stabilising octagonal invariants that are not actually used in the determination of variable
bounds.

Packing Statistics. We now present, for a few programs in the considered family, statis-
tics on the automatically generated packing. Our family has been split into two sub-families:

Antoine Miné Weakly Relational Numerical Abstract Domains

254 Chapter 8: Application to the Astrée Static Analyser

the three lower, more recent, C programs are generated using a different proprietary tool.
The code size is computed as the number of indented lines of C code after merging all the
preprocessed sources together — eliminating all useless or redundant declarations in head-
ers — but before constant expression simplification and dead code elimination. Together
with the number of variables, the number of octagons, and the average number of variables
per octagon, we give the number of octagons that were proved useful at least once a pos-
teriori . As the memory consumption and the time cost depend respectively on n2 and n3,
we show not only the average number of variables, but also the square — resp. cubic —
root of the average of the squared — resp. cubed — sizes.

code size number of number of average
√

∑

size2 3

√

∑

size3 useful
in lines variables packs size percentage

370 100 20 3.6 4.8 6.2 85 %
9 500 1 400 200 3.1 4.6 6.6 41 %

70 000 14 000 2 470 3.5 5.2 7.8 57 %
70 000 16 000 2 546 2.9 3.4 4.4 41 %

226 000 47 500 7 429 3.5 4.5 5.8 52 %
400 000 82 000 12 964 3.3 4.1 5.3 50 %

This table shows that the average size of packs is almost constant while the number of
packs grows roughly linearly with the code size. This means that the octagon domain with
an adequate packing strategy has a time and memory cost that is linear with respect to the
program size. Two other interesting information not presented in this table are that the
largest packs contain only up to a few dozen variables and that a variable that is present
in one octagon is present in fact in two distinct octagons in the average.

8.4.3 Analysis Results

We now compare the results of Astrée on the considered program family with and without
the octagon domain, all other abstract domains being enabled. We give, in both cases, the
analysis time, the maximum memory consumption, and the number of false alarms. All the
analyses have been carried on an 64-bit AMD Opteron 248 (2 GHz) workstation running
Linux, using a single processor. We observed that, on a 32-bit architecture, the memory
consumption is roughly one third smaller, which is explained by the large usage of pointers
in OCaml data-structures.

Domaines numériques abstraits faiblement relationnels Antoine Miné

8.4 – Integrating the Octagon Abstract Domain 255

without octagon with octagons
code size analysis max. false analysis max. false
in lines time memory alarms time memory alarms

370 1.7s 14 MB 0 3.1s 16 MB 0
9 500 75s 75 MB 8 160s 80 MB 8

70 000 3h 17mn 537 MB 58 1h 16mn 582 MB 0
70 000 18mn 289 MB 4 30mn 378 MB 4

226 000 7h 8mn 1.0 GB 165 6h 36mn 1.3 GB 1
400 000 20h 31mn 1.7 GB 804 13h 52mn 2.2 GB 0

This table shows that the octagon domain is useful to reduce the number of false alarms
to only a few, and even to zero in some cases. Moreover, enabling the octagon domain adds
roughly 30% to the total memory consumption in the worst cases, which is very reasonable
considering the precision gain. The analysis time does not seem to follow a logical pattern:
sometimes the analysis is longer with the octagon domain, which seems quite natural, but
sometimes it is faster. In order to explain this fact, we need to take into account the number
of iterations with widening and narrowing of the main loop that are needed to stabilise our
invariants. This is presented in the following table:

without octagon with octagons
code size number of time per number of time per
in lines iterations iteration iterations iteration

370 12 0.1s 17 0.18s
9 500 23 3.2s 39 4.1s

70 000 159 74s 44 104s
70 000 36 30s 38 49s

226 000 144 178s 86 276s
400 000 172 429s 96 520s

We now see clearly that the octagon domain makes each abstract iteration up to 65%
slower, which is due to the extra time spent in octagon transfer functions and operators.
The octagon domain also affects the number of required iterations, but in a non-easily
predictable way: sometimes, more iterations are required because we are trying to stabilise
a greater amount of invariants; sometimes, the octagon information can prove the stability
of some variable bound and save widening steps in the interval domain. Sometimes, the
gain in iteration numbers is sufficient to reduce the total analysis time even though each
iteration takes more time. This shows that using an abstract domain adapted to the
program invariants can increase both the precision and the efficiency of a static analysis at
the same time.

Antoine Miné Weakly Relational Numerical Abstract Domains

256 Chapter 8: Application to the Astrée Static Analyser

Octagon Precision. It is quite interesting to note that, even though we added the
octagon domain to remove false alarms in codes such as the rate limiter of Ex. 4.6.3,
several other false alarms in unrelated code parts were removed altogether. We did not
have time, yet, to examine all these code parts and determine why the octagon domain
successfully analyses them, but we believed this may have saved us from designing several
special-purpose abstract domains. As an example, it came quite as a surprise that the
octagon domain could handle absolute value computations in the spirit of Ex. 4.6.2 and
this saved us from designing an abstract domain targeted towards capturing non-linear
invariants of the form X = |Y |. Unlike the filters [Fer04b] and the arithmetic-geometric
progression [Fer05] domains that are targeted towards very specific kind of invariants in
Astrée, the octagon domain seems to be of general use.

Octagon Cost. In order to determine more precisely which parts of the octagon domain
are responsible for the increased computation time per iteration, we performed a few analy-
ses using profiling. Unsurprisingly, we spend most of the analysis time closing our matrices:
over 6% of the total analysis time is spent in the incremental strong closure. There is only
one function in which the analyser spends more time: the mark phase of OCaml’s garbage
collector — 10% of the total analysis time. Also, the octagon algorithm coming right after
the incremental strong closure is the forget operator, and this accounts for only 0.35% of
the total analysis time. The non-incremental version of the strong closure corresponds to
a negligible fraction of the analysis time because it is seldom called; we prefer to use the
much faster incremental closure whenever possible.

8.5 Integrating the Symbolic Constant Propagation

As explained in Chap. 6, the linearisation and symbolic constant propagation techniques
can sometimes increase the precision of the interval domain.

8.5.1 Implementation Choices

In Astrée, the interval abstract domain is refined by computing, for each transfer function,
the intersection of the following three information:

› the plain non-relational transfer functions, as described in Sect. 2.4.4;

› the non-relational transfer functions after the linearisation of expressions, following
Sects. 6.2.3 and 7.4.3;

› the non-relational transfer functions after the symbolic constant propagation and the
linearisation, following Sect. 6.3.

Domaines numériques abstraits faiblement relationnels Antoine Miné

8.5 – Integrating the Symbolic Constant Propagation 257

As for the octagon domain, we use the relative size strategy of Sect. 6.2.4 when linearising
expressions. For the symbolic constant propagation strategy, we choose to substitute each
variable by its symbolic value, unless it is variable-free, until no substitution can occur; this
follows Sect. 6.3.4. In order to avoid large expressions created by cascaded substitutions,
we limit the depth of the expressions stored in the abstract environments to a user-specified
value, which is set to 20 in our analyses. Also, expressions containing highly non-linear
features, such as bit-wise C operators, are not stored at all. Finally, following Sect. 6.3.5, our
implementation uses hash-consing and tabulation techniques, and maintains a dependency
map between symbolic expressions to improve both the time and the memory costs.

8.5.2 Analysis Results

As in the preceding section, we now compare the results of Astrée on the considered
program family with plain intervals and with intervals enhanced with linearisation and
constant propagation. All other abstract domains are enabled in both cases.

plain intervals enhanced intervals
code size analysis max. false analysis max. false
in lines time memory alarms time memory alarms

370 1.8s 16 MB 0 3.1s 16 MB 0
9 500 90s 81 MB 8 160s 80 MB 8

70 000 2h 40mn 559 MB 391 1h 16mn 582 MB 0
70 000 24mn 382 MB 10 30mn 378 MB 4

226 000 11h 16mn 1.3 GB 141 6h 36mn 1.3 GB 1
400 000 22h 9mn 2.2 GB 282 13h 52mn 2.2 GB 0

And we also provide the corresponding number of iterations of the main loop, as well
as the average time spent in one iteration:

plain intervals enhanced intervals
code size number of time per number of time per
in lines iterations iteration iterations iteration

370 17 0.1s 17 0.18s
9 500 39 2.3s 39 4.1s

70 000 141 68s 44 104s
70 000 38 39s 38 49s

226 000 150 270s 86 276s
400 000 172 462s 96 520s

We see that the linearisation and symbolic constant propagation are quite efficient as
they result, in our largest examples, in less than a 25% increase in time per iteration. As

Antoine Miné Weakly Relational Numerical Abstract Domains

258 Chapter 8: Application to the Astrée Static Analyser

for the octagon domain, a decrease in the required number of iterations may compensate
this cost and give an actual lower total analysis time. The memory consumption is not no-
ticeably increased by the symbolic constant domain. The precision gain is quite impressive
as up to hundreds false alarms are removed.

Possible Precision Degradation. There are several causes of precision loss when lin-
earising. The main cause of precision degradation in the linearisation is, in fact, due
to our abstraction of floating-point rounding as a non-deterministic error, as discussed
in Sect. 7.5.2: this causes an expression such as [0, 1] ⊕32,n [0, 1] to be linearised as
[−2−148, 2+2−22 +2−148] instead of [0, 2]. Due to this precision degradation, it is important
to always intersect the interval evaluation of a linearised expression with the evaluation of
the non-linearised expression. Up to now, all precision degradations due to the intervalisa-
tion occurring in non-linear expressions could be limited by using a proper multiplication
strategy. Likewise, precision degradations due to too deep symbolic constant propagations
could always be eliminated by using a proper propagation strategy. Finally, using a sound
floating-point implementation of interval linear forms instead of a perfect one on reals does
not seem to result in any noticeable precision degradation.

Discussion. Even though it would be possible to use the symbolic constant propagation
in the octagon domain, this was not needed to remove false alarms. Our experiments show
that, even though the linearisation and constant propagation techniques on intervals are
not as robust as fully relational abstract domains, they proved not only very fast, but also
quite versatile thanks to their parametrisation in terms of strategies, and much simpler
to implement than even a simple relational abstract domain. As the cost of the symbolic
constant domain is naturally near linear, there is no need to develop a packing technique
limiting the possible dependencies between symbolic expressions, unlike what happened for
the octagon domain.

8.6 Extrapolation Operators

For the interval and octagon abstract domains, we use the widening with thresholds of
Def. 4.4.8 and the standard narrowing of Def. 3.7.3.

Thresholds Choice. All the computation we encountered that required a widening with
thresholds were in fact stable for bounds provided they are “large enough”: in the abstract,
they stabilise to the smallest threshold larger than the concrete bound, plus an extra
abstract rounding error. Such an example is given by the rate limiter of Ex. 4.6.3. Thus,
the exact value of the widening steps is of no importance to prove that our variables are
bounded and they do not need to be adapted from a program to another. However, as our

Domaines numériques abstraits faiblement relationnels Antoine Miné

8.6 – Extrapolation Operators 259

programs are composed of many such computations in sequence, imprecision — that is,
the difference between the stable abstract bound and the concrete fixpoint — cumulates
easily and operations on stable but too large bounds may result in false alarms. This
means that the set of thresholds should be sufficiently dense. It should not be much denser
than required, however, as the number of thresholds directly affects the number of abstract
iterations, and so, the analysis time. In Astrée, we use, as set of thresholds, a simple piece-
wise linear ramp with a few dozen steps. This is sufficiently precise for all the programs we
analyse, and yet provides reasonable analysis times.

Perturbed Widening and Narrowing Following Sect. 7.5.4, we use perturbed widen-
ings and narrowings in the octagon domain to compensate for the non-deterministic floating-
point errors committed during the analysis. By skipping above the chaotic region between
unstable and stable portions of the abstract transfer function computed along one main loop
iteration, we require less iterations with widening to stabilise to an abstract post-fixpoint,
and so, the overall analysis time is reduced. Also, by using a perturbed narrowing, we have
a better chance to stay within the region of abstract post-fixpoints. Recall that the result of
the iterations with widening and narrowing is not required to be an abstract post-fixpoint
to be sound, but this guarantees that the analyser is able to check that it is indeed an
abstraction of the concrete fix-point using abstract computation only, and thus, it is a very
desirable property. The relative amount by which are enlarged unstable constraint, ε, is
user-defined. It is set to 0.01 in all our examples. In order to demonstrate the importance
of the perturbed widening and narrowing, we now present some analysis examples on the
same program but using different values for ε and, in particular, the value 0 corresponding
to the plain widening with thresholds and standard narrowing. For each value of ε, we give
the number of required iterations with widening and whether the result after narrowing is
an abstract post-fixpoint:

ε is a number of false
post-fixpoint iterations with ▽ alarms

0 no 86 0
0.001 no 49 0
0.01 yes 46 0
0.1 yes 41 0

2 yes 31 0

We see that, if ε is too small, we need more iterations with widening, and so, a greater
analysis time, and the result after narrowing is not an abstract post-fixpoint. If ε is too large,
there might be, in theory, a loss of precision — although not shown by this experimental
results. Between these two extremes, the value of ε can be chosen rather loosely. In
particular, a sufficiently big ε can compensate for a too dense set of thresholds, effectively

Antoine Miné Weakly Relational Numerical Abstract Domains

260 Chapter 8: Application to the Astrée Static Analyser

decreasing the number of iterations with widening required to stabilise the invariant, and
thus, the total analysis time. In Astrée, the initial value 0.01 was found by trial and error
after a few analysis runs. This value was kept and did not need any adjustment even when
we analysed different programs in the considered family or when we changed the analyser.
Perturbed widenings are also used in Feret’s digital filters [Fer04b] integrated in Astrée.

8.7 Conclusion

As a conclusion, we would like to say that our experiments with the octagon abstract
domain in Astrée for the static analysis of run-time errors in real-life embedded critical
programs manipulating machine-integers and floating-point numbers were quite successful.
They show that, if we limit the “relationality” to small sets of variables, we can achieve a
notable precision gain for a time and memory cost that is effectively linear in the size of the
program. In some cases, adding the octagon domain even resulted in a reduced total analysis
time, showing that octagonal invariants adequately match the semantics of the analysed
programs. Similar results also hold for the symbolic constant propagation technique applied
to the interval domain. These two abstract domains contribute to remove hundreds of false
alarms in Astrée while maintaining its reasonable time and memory consumption: a few
hundreds megabytes of memory and a few hours of computation time for C programs of a few
hundred thousand lines. In particular, the octagon abstract domain removed unexpected
kinds of false alarms before we had the opportunity to analyse their cause and develop
specific abstract domains to treat each one of them: the octagon domain proved itself of
generic use.

Further work is pursued on the Astrée project at the ÉNS and the École Polytechnique
to extend it to other program families and other kinds of properties to be proved. We are
confident that the numerical abstract domains introduced in this thesis will be useful in
the future of Astrée.

Domaines numériques abstraits faiblement relationnels Antoine Miné

Chapter 9: Conclusion 261

Chapter 9

Conclusion

In this thesis, we have contributed to the design of several methods for the analysis of the
numerical properties of program variables. These methods can be used independently or
in combination with others techniques, including existing ones — such as the interval or
polyhedron abstract domains.

Our first contribution is the design of several new numerical abstract domains. Start-
ing from the concept of potential constraints, we built the zone abstract domain to infer
conjunction of invariants of the form X − Y ≤ c, where X and Y range within a fixed
set of program variables, and the constant c in Z, Q, or R is automatically inferred. We
then extended the zone domain into the octagon domain (±X ± Y ≤ c), the strict zone
domain (X − Y < c), and the zone congruence domain (X ≡ Y + a [b]), among others.
All these domains share a similar representation in terms of constraint matrices and enjoy
cubic-time transitive closure algorithms that compute a normal form by propagating and
minimising all constraints at once. We defined all the operators required by an abstract
domain: union, intersection, widening, narrowing, equality and inclusion tests. We also
provided several transfer functions for the assignment, test, and backward assignment with
different trade-offs between cost and precision. The closure algorithm is used pervasively
in the design of these operators and transfer functions as its properties guarantee many
exactness and best precision results.

Each one of these domains is in-between, in terms of cost and precision, between a
non-relational domain — such as the interval or the simple congruence domains — and a
relational domain — such as the polyhedron domain. On the one hand, they are relational:
they can discover relationships between variables. We showed that the octagon domain was
precise enough to find tight variable bounds for program fragments manipulating counters
in loops, computing absolute values, and rate limiters, for instance, while this is not possible
using the interval domain. On the other hand, they feature a cubic time cost per abstract
operation, in the worse case, which is much cheaper than the exponential worst-case cost

Antoine Miné Weakly Relational Numerical Abstract Domains

262 Chapter 9: Conclusion

of the polyhedron domain, but also much more predictable. Thus, we called these domains
“weakly rationals domains”.

Natural extensions of this work include the design of even more transfer functions, to
offer more choices to its users between cost and precision, and new widening and narrowing
operators, corresponding to different discovery strategies for inductive invariants, but also
the design of domains with extended expressiveness. It is very tempting to try and extend
closure-based normalisation algorithms to other forms of constraints so that exact or best
operators and transfer functions can be constructed as in our weakly relational domains.
However, the existence of such a closure relies on strong algebraic properties of the ma-
nipulated sets of constraints. Even though closure properties for potential constraints are
well-known and easy to prove, our extensions to octagonal constraints and constraints of
the form X − Y ∈ C were quite difficult. Form a theoretical point of view, determining
how generic closure-based algorithms are would be a hard but exciting problem.

Our second contribution is a set of techniques that can be used to extend the scope and
the precision of any numerical abstract domain. They work by soundly replacing expres-
sions encountered in transfer functions by other ones that can be abstracted more precisely
in the chosen domain. A first technique, called “linearisation”, transforms an arbitrary ex-
pression into a linear form where constant coefficients are intervals. Indeed, such interval
linear forms can be abstracted quite precisely by all our weakly relational domains. More-
over, the linearisation induces some simplifications that result in increased precision when
using non-relational domains, such as the interval one. Finally, it is possible to further
abstract interval linear forms into quasi-linear forms that can be fed directly to the poly-
hedron abstract domain. Our second technique, called “symbolic constant propagation”,
consists in gathering and propagating assigned expressions in a symbolical way. By“gluing”
expression bits together, we are able to enhance the simplification features of the linearisa-
tion and compensate for a weak or inexistent level of relationality in the octagon or interval
domains, for a small increase in cost. We gave several examples where our techniques ap-
plied to the interval domain gives precise results that would otherwise require the use of
a costly relational domain. Our two techniques are parametrised by specific strategies to
determine were the precision loss occurs when linearising non-linear expressions and how
far to propagate symbolic expressions. We saw on selected examples that, depending on
the chosen strategy, we may gain more or less precision.

A natural extension is thus to provide more strategies, adapted to specific programming
idioms. A more challenging task is to provide theoretical results to guarantee the precision
increase in broad contexts. One may wish, for instance, to find a strategy such that abstract
computations become immune to a specific class of program transformations.

Our final contribution is the application of (weakly) relational abstract domains to the
analysis of machine-integers and floating-point numbers. Floating-point numbers, in par-

Domaines numériques abstraits faiblement relationnels Antoine Miné

Chapter 9: Conclusion 263

ticular, are difficult to abstract as they do not satisfy the algebraic properties of arithmetic
operators implicitly required by relational domain algorithms and, up to now, only non-
relational domains — such as the interval one — could be used. Our solution is to abstract
floating-point and machine-integer expressions into interval linear forms manipulating per-
fect reals or integers. We also presented techniques to implement our weakly relational
domains and linearisation technique using floating-point numbers and machine-integers in
the abstract, and thus, trade precision for efficiency. Combining these two aspects, it is
possible to design an efficient weakly relational abstract domain, such as the octagon do-
main, using floating-point numbers — resp. machine-integers — to discover invariants on
floating-point — resp. machine-integers — variables. Our unique approach of introducing
an intermediate semantics on perfect reals and integers allows a modular construction and
easy soundness proofs.

An important part of the thesis work was devoted to implementation and experimenta-
tion. A first step was the implementation of a generic and efficient octagon domain library,
now freely available on the WEB [Mina]. It is hoped that this software can be used by
the static analysis community. It could be, for instance, plugged into existing analysers
as an alternative to widely used polyhedra libraries [Jea, PPL] to change the cost versus
precision trade-off. A second important step was our participation in the Astrée project.
In particular, we incorporated the octagon abstract domain as well as the linearisation
and symbolic constant propagation techniques adapted to floating-point numbers into the
Astrée analyser. We also designed a packing technique allowing to relate together only
small sets of variables and cut the cubic cost into a cost that is linear in practice. All
these techniques were instrumental in the success of Astrée, that is, its ability to prove
the absence of run-time errors in the primary flight control software of the Airbus A340
fly-by-wire system. This 100 000-line long C program performing mainly floating-point
computations is presently analysed in little more than one hour on a desktop computer. As
a last minute note, a 300 000-line long early version of the corresponding software for the
Airbus A380 — still in development at the time of writing — was also proved correct in
November 2004 by Astrée. We hoped to demonstrate by this industrial application the
practical interest of our methods in terms of both precision and scalability. As the Astrée

analyser is applied to different kinds of programs and to prove different kinds of properties,
we are confident that it will drive the search for efficient and precise numerical abstract
domains even further.

›„„„›
‹”‹

Antoine Miné Weakly Relational Numerical Abstract Domains

264 Chapter 9: Conclusion

Domaines numériques abstraits faiblement relationnels Antoine Miné

APPENDIX A: Lengthy Proofs 265

Appendix A

Lengthy Proofs

This appendix presents the complete proofs that were postponed from the main chapters
of this thesis because they are quite long.

A.1 Proof of Thm. 4.3.4: Strong Closure Algorithm

for Octagons

Properties of the Floyd–Warshall algorithm for strong closure.

1. γOct(m) = ∅ ⇐⇒ ∃i, mn
ii < 0, where mn is defined as in Def. 4.3.2.

2. If γOct(m) 6= ∅ then m• computed by Def. 4.3.2 is the strong closure as defined by
Def. 4.3.1 and Thm. 4.3.3.

„

Proof.

1. We can prove by induction on k that, for all k ≤ n, γOct(mk) = γOct(m). In
particular, if ∃i, mn

ii < 0, then γOct(mn) = ∅, and so, γOct(m) is empty.

Suppose conversely that γOct(m) = ∅. By Thm. 4.3.1, we also have γPot(m) = ∅.
We will denote by m′k the DBM computed at the k−th step of the regular Floyd–
Warshall algorithm of Def. 3.3.2. By Thm. 3.3.5, there is some x such that m′2n

xx < 0.
Now, we can prove by induction on k that ∀i, j, mk

ij ≤ m′2k
ij . As a consequence,

mn
xx < 0, which concludes the proof.

2. Suppose that γOct(m) 6= ∅ and let m• be the result computed by the modified Floyd–
Warshall algorithm of Def. 4.3.2. We prove that m• verifies the three criteria of
Def. 4.3.1.

Antoine Miné Weakly Relational Numerical Abstract Domains

266 APPENDIX A: Lengthy Proofs

By definition ∀i, m•
ii = 0.

We now prove that ∀i, j, m•
ij ≤ (m•

i ı + m•
j)/2.

First of all, we prove that for any matrix n, S(n)ij ≤ (S(n)i ı + S(n)j)/2. Indeed,
∀i, S(n)i ı = min(ni ı , (ni ı +ni ı)/2) = ni ı , so ∀i, j, S(n)ij ≤ (ni ı +nj)/2 = (S(n)i ı +

S(n)j)/2. Applying this property for n
def
= C2n−1(mn−1), we get that ∀i, j, mn

ij ≤
(mn

iı + mn
j)/2. This implies that if i 6= j, then m•

ij ≤ (m•
i ı + m•

j)/2. Whenever
i = j, m•

ii = 0 which is smaller than (m•
i ı + m•

j)/2 = (mn
iı + mn

j)/2, or else, there
would be a cycle with strictly negative total weight in G(mn) implying γOct(mn) = ∅,
and so, γOct(m) = ∅, which is not true.

Finally, we prove that ∀i, j, k, m•
ij ≤ m•

ik + m•
kj. This is a hard property to prove

which justifies the complexity of the modified Floyd–Warshall algorithm of Def. 4.3.2.
We will use several lemmas.

› Lemma 1.

Let n be a coherent DBM n such that γOct(n) 6= ∅ and there exists some k
such that ∀i, j, nij ≤ nik + nkj and ∀i, j, nij ≤ nik + nkj. We prove that
∀i, j, S(n)ij ≤ S(n)ik + S(n)kj.

‹ Case 1: S(n)ik = nik and S(n)kj = nkj.
We have obviously:

S(n)ij ≤ nij (by definition of S(n))
≤ nik + nkj (by hypothesis)
= S(n)ik + S(n)kj (case hypothesis).

‹ Case 2: S(n)ik = (ni ı + nkk)/2 and S(n)kj = nkj (or the symmetric case
S(n)ik = nik and S(n)kj = (nkk + nj)/2.
Using the hypothesis two times, we have nj ≤ nk +nkj ≤ nk +(nkk +nkj)
(1), so we get:

S(n)ij ≤ ni ı/2 + nj/2 (by definition of S(n))
≤ ni ı/2 + (nk + nkk + nkj)/2 (by (1))

≤ ni ı/2 + nkk/2 + nkj (by coherence nk = nkj)

= S(n)ik + S(n)kj (case hypothesis).

‹ Case 3: S(n)ik = (ni ı + nkk)/2 and S(n)kj = (nkk + nj)/2.
Now we use the fact that γOct(m) 6= ∅ so that the cycle 〈k, k, k〉 has a
positive weight, so 0 ≤ nkk + nkk (1) and:

S(n)ij ≤ (ni ı + nj)/2 (by definition of S(n))
≤ (ni ı + (nkk + nkk) + nj)/2 (by (1))
= S(n)ik + S(n)kj (case hypothesis).

Domaines numériques abstraits faiblement relationnels Antoine Miné

A.1 – Proof of Thm. 4.3.4: Strong Closure Algorithm for Octagons 267

› Lemma 2.

Let n be a coherent DBM such that γOct(n) 6= ∅ and there exists some k such
that ∀i 6= j, nij ≤ nik + nkj and ∀i 6= j, nij ≤ nik + nkj. We prove that
∀o, i 6= j, Co(n)ij ≤ Co(n)ik + Co(n)kj.

There are five different cases for the value of Co(n)ik and five cases for the value
of Co(n)kj:

1 Co(n)ik = nik 1 Co(n)kj = nkj

2 Co(n)ik = nio + nok 2 Co(n)kj = nko + noj

3 Co(n)ik = nio + nok 3 Co(n)kj = nko + noj

4 Co(n)ik = nio + noo + nok 4 Co(n)kj = nko + noo + noj

5 Co(n)ik = nio + noo + nok 5 Co(n)kj = nko + noo + noj

In the following, we will denote by (a, b) the case where the value of Co(n)ik is
defined by the ath case and the value of Co(n)kj is defined by the bth case. We
then have 25 different cases to inspect.

To reduce the number of cases really studied we use the strong symmetry of
the definition of Co(n) with respect to o and o together with the symmetry of
the hypotheses with respect to k and k and the fact that ∀i, j, nij = n ı by
coherence of n.

We also use the fact that analysis of case (a, b) for a 6= b is very similar to the
analysis of (b, a), so, we will suppose a ≤ b.

We will also often use the fact that ∀i, j, nij +nji ≥ 0, which is the consequence
of the fact that 〈i, j, i〉 is a cycle in n with γOct(n) 6= ∅.

‹ Case 1: (1, 1).
We have, by hypothesis, nij ≤ nik + nkj (1), so obviously:

Co(n)ij ≤ nij (by definition of Co(n))
≤ nik + nkj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis).

‹ Case 2: (1, 2) (and (1, 3) by (o, o) symmetry).
Sub-case 1: i 6= o.
We have, by hypothesis, nio ≤ nik + nko (1), so:

Co(n)ij ≤ nio + noj (by definition of Co(n))
≤ (nik + nko) + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis).

Sub-case 2: i = o.

Antoine Miné Weakly Relational Numerical Abstract Domains

268 APPENDIX A: Lengthy Proofs

We know that nik + nko ≥ 0 (1), so:

Co(n)ij ≤ noj (by definition of Co(n))
≤ (nik + nko) + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis).

‹ Case 3: (1, 4) (and (1, 5) by (o, o) symmetry).
Sub-case 1: i 6= o.
We have, by hypothesis, nio ≤ nik + nko (1), so:

Co(n)ij ≤ nio + noo + noj (by definition of Co(n))
≤ (nik + nko) + noo + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis).

Sub-case 2: i = o.
As in the second case, we have nik + nko ≥ 0 (1), so:

Co(n)ij ≤ nio + noj (by definition of Co(n))
≤ (nik + nko) + noo + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis).

‹ Case 4: (2, 2) (and (3, 3) by (o, o) symmetry).
We know that nok + nko ≥ 0 (1), so:

Co(n)ij ≤ nio + noj (by definition of Co(n))
≤ nio + (nok + nko) + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis).

‹ Case 5: (2, 3).
We have, by hypothesis, noo ≤ nok + nko (1), so:

Co(n)ij ≤ nio + noo + noj (by definition of Co(n))
≤ nio + (nok + nko) + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis).

‹ Case 6: (2, 4) (and (3, 5) by (o, o) symmetry).
We use, as in the fourth case nok + nko ≥ 0 (1), so:

Co(n)ij ≤ nio + noo + noj (by definition of Co(n))
≤ nio + (nok + nko) + noo + noj (by (1))
= Co(n)ik + Co(n)kj (case hypothesis).

Domaines numériques abstraits faiblement relationnels Antoine Miné

A.1 – Proof of Thm. 4.3.4: Strong Closure Algorithm for Octagons 269

‹ Case 7: (2, 5) (and (3, 4) by (o, o) symmetry).
We use the fact that noo + noo ≥ 0 (1), together with the hypothesis noo ≤
nok + nko (2), so:

Co(n)ij ≤ nio + noj (by definition of Co(n))
≤ nio + (noo + noo) + noj (by (1))
≤ nio + ((nok + nko) + noo) + noj (by (2))
= Co(n)ik + Co(n)kj (case hypothesis).

‹ Case 8: (4, 4) (and (5, 5) by (o, o) symmetry).
We use, as in the seventh case noo + noo ≥ 0 (1), together with and the
hypothesis noo ≤ nok + nko (2), so:

Co(n)ij ≤ nio + noo + noj (by def. of Co(n))
≤ nio + noo + (noo + noo) + noj (by (1))
≤ nio + noo + ((nok + nko) + noo) + noj (by (2))
= Co(n)ik + Co(n)kj (case hypothesis).

‹ Case 9: (4, 5).
We use, as in the seventh case noo + noo ≥ 0 (1) and nok + nko ≥ 0 (2), so:

Co(n)ij ≤ nio + noj (by def. of Co(n))
≤ nio + (noo + noo) + (nok + nko) + noj (by (1) and (2))
= nio + noo + nok + nko + noo + noj

= Co(n)ik + Co(n)kj (case hypothesis).

› Lemma 3.

We prove now that, given a coherent DBM n such that γOct(n) 6= ∅ and an index
k, we have — without any other hypothesis — ∀i 6= j, Ck(n)ij ≤ Ck(n)ik +
Ck(n)kj.

We have the same five different cases for the value of Ck(n)ik and the same five
cases for the value of Ck(n)kj as in the preceding lemma, so we have the same
25 different cases to inspect.

In order to reduce the number of cases really studied let us remark that nkk ≥ 0
and nkk + nkk ≥ 0 because n has no strictly negative cycle. This means that,
in fact, Ck(n)ik = min(nik,nik + nkk). Cases 2, 4 and 5 are not relevant for
the value of Ck(n)ik. The same result holds for Ck(n)kj and we get Ck(n)kj =
min(nkj,nkk + nkj).

This means we only have four different cases to study:

Antoine Miné Weakly Relational Numerical Abstract Domains

270 APPENDIX A: Lengthy Proofs

‹ Case 1: (1, 1).
We have:

Ck(n)ij ≤ nik + nkj (by definition of Ck(n))
= Ck(n)ik + Ck(n)kj (by case hypothesis).

‹ Case 2: (1, 3).
We have:

Ck(n)ij ≤ nik + nkk + nkj (by definition of Ck(n))

= Ck(n)ik + Ck(n)kj (by case hypothesis).

‹ Case 3: (3, 1).
We have:

Ck(n)ij ≤ nik + nkk + nkj (by definition of Ck(n))
= Ck(n)ik + Ck(n)kj (by case hypothesis).

‹ Case 4: (3, 3).
We have nkk + nkk ≥ 0 (1), so

Ck(n)ij ≤ nik + nkj (by definition of Ck(n))

≤ nik + (nkk + nkk) + nkj (by (1))

= Ck(n)ik + Ck(n)kj (by case hypothesis).

Now we use all three lemmas to prove by induction on o the following property:
{

∀ 1 ≤ k ≤ o, ∀i, j mo
ij ≤ mo

i (2k−1) + mo
(2k−1) j

∀ 1 ≤ k ≤ o, ∀i, j mo
ij ≤ mo

i (2k) + mo
(2k) j.

› The case o = 0 is obvious.

› Suppose that the property is true for o − 1 ≥ 0.

Using the second lemma with 2k − 1 and 2k , for all k ≤ o − 1, we get ∀i 6= j:
{

(C2o−1(mo−1))ij ≤ (C2o−1(mo−1))i (2k−1) + (C2o−1(mo−1))(2k−1) j

(C2o−1(mo−1))ij ≤ (C2o−1(mo−1))i (2k) + (C2o−1(mo−1))(2k) j.

Using the third lemma with 2o−1 and 2o and the remark that ∀m, o, Co(m) =
Co(m) we get ∀i 6= j:

{

(C2o−1(mo−1))ij ≤ (C2o−1(mo−1))i (2o−1) + (C2o−1(mo−1))(2o−1) j

(C2o−1(mo−1))ij ≤ (C2o−1(mo−1))i (2o) + (C2o−1(mo−1))(2o) j.

Domaines numériques abstraits faiblement relationnels Antoine Miné

A.2 – Proof of Thm. 5.2.1: Closure Algorithm for Constraint Matrices 271

Recall that, by definition, (C2k−1(mo−1))ii = 0.

Obviously, γOct((C2k−1(mo−1))) = γOct(m) 6= ∅, so for all k, the cycle 〈i, k, i〉
has a positive weight which means that:

∀k, (C2k−1(mo−1))ii = 0 ≤ (C2o−1(mo−1))ik + (C2o−1(mo−1))ki

and we have ∀k ≤ o, ∀i, j:

{

(C2o−1(mo−1))ij ≤ (C2o−1(mo−1))i (2k−1) + (C2o−1(mo−1))(2k−1) j

(C2o−1(mo−1))ij ≤ (C2o−1(mo−1))i (2k) + (C2o−1(mo−1))(2k) j.

Now we use the first lemma to get ∀k ≤ o and ∀i, j:

{

(S(C2o−1(mo−1)))ij ≤ (S(C2o−1(mo−1)))i (2k−1) + (S(C2o−1(mo−1)))(2k−1) j

(S(C2o−1(mo−1)))ij ≤ (S(C2o−1(mo−1)))i (2k) + (S(C2o−1(mo−1)))(2k) j.

The property for o = n is settles the proof.

A.2 Proof of Thm. 5.2.1: Closure Algorithm for Con-

straint Matrices

Properties of the Floyd–Warshall algorithm for constraint matrices.

1. γWeak(m⋆) = γWeak(m) .

2. γWeak(m) = ∅ ⇐⇒ ∃i, 0 /∈ γB(mn+1
ii) .

3. If γWeak(m⋆) 6= ∅, then:

› m⋆ is coherent,

› m⋆ is the transitive closure of m, up to γB:

∀i, j, γB(m⋆

ij) = γB

⋂♯

B

〈i=i1,...,im=j〉

mi1i2 ´
♯ · · ·´♯ mim−1im

› all constraints in m⋆ saturate γWeak(m):

∀i, j, ∀c ∈ γB(m⋆

ij),
∃~v ∈ In+1 such that v0 = 0, (v1, . . . , vn) ∈ γWeak(m), and vj − vi = c

Antoine Miné Weakly Relational Numerical Abstract Domains

272 APPENDIX A: Lengthy Proofs

› m⋆ is a normal form, up to γB:

∀i, j, γB(m⋆

ij) = inf⊆ { γB(nij) | γWeak(m) = γWeak(n) }

› the closure has the following local characterisation:

m = m⋆ ⇐⇒

{

∀i, j, k, γB(mij) ⊆ γB(mik ´♯ mkj)
∀i, γB(mii) = {0}

„

Proof.

› Claim: γWeak(mn+1) = γWeak(m).

This is an easy consequence of the fact that ∩♯
B

and ´♯ are sound over-approximations
of ∩ and +.

› Claim: mn+1 and m⋆ are coherent

Proof. This is an easy consequence of the exactness of ¨♯, ´♯, and ∩♯
B
. One would

prove by induction that ∀i, j, k, γB(¨♯(mk
ij ∩♯

B
(mk

ik ´
♯ mk

kj))) = γB((¨♯mk
ij) ∩♯

B

(¨♯(mk
ik) ´

♯ ¨♯(mk
kj))). Finally, changing mn+1

ii into [0, 0]♯ to get m⋆ preserves the
coherence.

› Lemma 1: for any fixed 0 ≤ i, j ≤ n, 0 ≤ k ≤ n + 1 and simple path 〈i =
i1, . . . , im = j〉 in m such that il < k for all 1 < l < m, we have γB(mk

ij) ⊆
γB(mi1i2 ´

♯ · · ·´♯ mim−1im). Even though ´♯ may not be associative, it is exact, and
so, γB(mi1i2 ´

♯ · · ·´♯ mim−1im) is uniquely defined.

Corollary. For every simple path 〈i = i1, . . . , im = j〉, γB(mn+1
ij) ⊆ γB(mi1i2 ´

♯ · · ·´♯

mim−1im).

Proof. By induction.. The property is obvious for k = 0 as it is equivalent to
γB(m0

ij) ⊆ γB(mij) and we have indeed m0 = m. Suppose that the property is true
for k ≤ n and let 〈i = i1, . . . , im = j〉 be a path satisfying the hypotheses of the lemma
at k + 1. If ∀l ∈ {2, . . . , m − 1}, il < k, the property is true by induction hypothesis
and because γB(mk+1

ij) = γB(mk
ij ∩♯

B
(mk

ik +♯ mk
kj)) = γB(mk

ij) ∩ γB(mk
ik +♯ mk

kj) ⊆
γB(mk

ij). On the contrary, if there exists a l in 2 . . . m − 1 such that il ≥ k, we know
that il = k and l is unique because the path is simple. By definition of mk+1, we have
γB(mk+1

ij) ⊆ γB(mk
ik ´

♯ mk
kj). We get the expected result by applying the induction

hypothesis to 〈i = i1, . . . , il = k〉 in mk
ik and to 〈k = il, . . . , im = j〉 in mk

kj as well as
the exactness of ´♯.

Domaines numériques abstraits faiblement relationnels Antoine Miné

A.2 – Proof of Thm. 5.2.1: Closure Algorithm for Constraint Matrices 273

› Lemma 2: if, for some 0 ≤ i, j ≤ n, γB

(

⋂♯
B 〈i=i1,...,im=j〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

= ∅,

then γWeak(m) = ∅.

Proof.

Suppose that γWeak(m) 6= ∅. Take some (x1, . . . , xn) ∈ γWeak(m) extended to a vec-
tor of In+1 by x0 = 0. For any elements i, j, and any path 〈i = i1, . . . , im = j〉
from i to j, we have ∀l ∈ {1, . . . ,m − 1}, xil+1

− xil ∈ γB(milil+1
), so, by sum-

mation and exactness of ´♯, we get xj − xi ∈ γB(mi1i2 ´
♯ · · · ´♯ mim−1im). As

this is valid for all paths from i to j, we have xj − xi ∈
⋂

〈i=i1,...,im=j〉 γB(mi1i2 ´
♯

· · · ´♯ mim−1im). Moreover, by Def. 5.2.5.2, γB is a complete ∩−morphism, so

xj − xi ∈ γB

(

⋂♯
B 〈i=i1,...,im=j〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

, which is thus not empty.

› Lemma 3: if ∀ 0 ≤ i, j ≤ n, γB

(

⋂♯
B 〈i=i1,...,im=j〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

6= ∅, then

∀ 0 ≤ i, j ≤ n, 0 ≤ k ≤ n+1, γB

(

⋂♯
B 〈i=i1,...,im=j〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

⊆ γB(mk
ij).

By induction. If k = 0, then we have γB(mij) ⊆ γB(m0
ij) because m0 = m, so a

fortiori the lemma is true. Suppose that the property is true for k ≤ n, we now prove
the property for k +1. As mk+1

ij
def

= mk
ij ∩

♯
B

(mk
ik´

♯ mk
kj) and ∩♯

B
is exact, we need to

prove that γB

(

⋂♯
B 〈i=i1,...,im=j〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

is smaller than both γB(mk
ij)

and γB(mk
ik ´

♯ mk
kj). The first inequality is a direct consequence of the induction

hypothesis. For the second inequality, we will prove the stronger property that the
intersection of constraints gathered along all paths that pass through k is more precise
than mk

ik ´
♯ mk

kj. As we consider fewer paths than required, this is a stronger result
which implies the desired property:

γB

(

⋂♯
B 〈i=i1,...,im=j〉 (mi1i2 ´

♯ · · ·´♯ mim−1im)
)

⊆ γB(
⋂♯

B 〈i=i1,...,io=k,...,im=j〉 ((mi1i2 ´
♯ · · ·´♯ mio−1io)´

♯

(mioio+1
´♯ · · ·´♯ mim−1im)))

= γB

((

⋂♯
B 〈i=i1,...,im=k〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

´♯

(

⋂♯
B 〈k=i1,...,im=j〉 mi1i2 ´

♯ · · ·´♯ mim−1im

))

⊆ γB(mk
ik) + γB(mk

kj)
= γB(mk

ik ´
♯ mk

kj)

where + has been extended to sets of numbers.

Remark: the restricted distributivity of ∩♯
B

over ´♯, used in the first equality, is crucial
in the proof of this lemma.

Antoine Miné Weakly Relational Numerical Abstract Domains

274 APPENDIX A: Lengthy Proofs

› Lemma 4: if ∃i, 0 /∈ γB(mn+1
ii), then γWeak(m) = ∅.

Proof. Suppose that for some i, 0 /∈ γB(mn+1
ii). If there was an element ~x ∈ In+1 such

that x0 = 0 and (x1, . . . , xn) ∈ γWeak(m), it would be such that 0 = xi−xi ∈ γB(m⋆

ii),
which is absurd, so γWeak(mn+1) = ∅. By the first point, we also get γWeak(m) = ∅.

› Lemma 5: if ∀i, 0 ∈ γB(mn+1
ii), then ∀i, j,

γB

(

⋂♯
B 〈i=i1,...,im=j〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

= γB

⋂♯
B 〈i = i1, . . . , in = j〉

simple path

mi1i2 ´
♯ · · ·´♯ mim−1im

Proof. The ⊆ part of the equality is a direct consequence of the fact that the right
intersection is less restrictive than the left one because fewer paths are considered.

For the ⊇ part, we prove that, for each path with at least one cycle in it, there
exists a path with one simple cycle less which leads to a more precise constraint. Let
〈i = i1, . . . , is, . . . , it = is, . . . , im = j〉 be a path and 〈is, . . . , it = is〉 a simple cycle in
it. By Lemma 1, γB(misis+1

´♯ · · · ´♯ mit−1it) ⊇ γB(mn+1
ii). By hypothesis, we have

0 ∈ γB(mn+1
ii). Thus, 0 ∈ γB(misis+1

´♯ · · ·´♯ mit−1it). We then have:

γB(mi1i2 ´
♯ · · ·´♯ mim−1im)

= γB(mi1i2 ´
♯ · · ·´♯ mis−1is) + γB(misis+1

´♯ · · ·´♯ mit−1it)+
γB(mitit+1

´♯ · · ·´♯ mim−1im)
⊆ γB(mi1i2 ´

♯ · · ·´♯ mis−1is) + {0} + γB(mitit+1
´♯ · · ·´♯ mim−1im)

= γB(mi1i2 ´
♯ · · ·´♯ mis−1is) + γB(mitit+1

´♯ · · ·´♯ mim−1im)
= γB((mi1i2 ´

♯ · · ·´♯ mis−1is)´
♯ (mitit+1

´♯ · · ·´♯ mim−1im))

where + has been extended to sets of numbers.

› Lemma 6: if γWeak(m) 6= ∅, then

∀i, j, γB(mn+1
ij) = γB

⋂♯

B

〈i=i1,...,im=j〉

mi1i2 ´
♯ · · ·´♯ mim−1im

and
∀i, j, k, γB(mn+1

ij) ⊆ γB(mn+1
ik ´♯ mn+1

kj)

Proof. Suppose that γWeak(m) 6= ∅. By Lemma 2, ∀i, j,

γB

(

⋂♯
B 〈i=i1,...,im=j〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

6= ∅.

Domaines numériques abstraits faiblement relationnels Antoine Miné

A.2 – Proof of Thm. 5.2.1: Closure Algorithm for Constraint Matrices 275

Thus, we can apply Lemma 1 and 3 to get ∀i, j;

γB

⋂♯

B

〈i=i1,...,im=j〉

mi1i2 ´
♯ · · ·´♯ mim−1im

⊆ γB(mn+1
ij)

⊆ γB

⋂♯

B

〈i = i1, . . . , im = j〉

simple path

mi1i2 ´
♯ · · ·´♯ mim−1im

By Lemma 4, ∀i, 0 ∈ γB(mn+1
ii). Thus, we can apply Lemma 5 to get ∀i, j:

γB(mn+1
ij) = γB

⋂♯

B

〈i=i1,...,im=j〉

mi1i2 ´
♯ · · ·´♯ mim−1im

= γB

⋂♯

B

〈i = i1, . . . , im = j〉

simple path

mi1i2 ´
♯ · · ·´♯ mim−1im

Applying a method similar to the one used in Lemma 3, we get: ∀i, j, k,

γB(mn+1
ij) = γB

(

⋂♯
B 〈i=i1,...,im=j〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

⊆ γB

(

⋂♯
B 〈i=i1,...,io=k,...,im=j〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

= γB

(

⋂♯
B 〈i=i1,...,im=k〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

+

γB

(

⋂♯
B 〈k=i1,...,im=j〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

= γB(mn+1
ik) + γB(mn+1

kj)

› Claim: if γWeak(m) 6= ∅, then

∀i, j, γB(m⋆

ij) ⊆ γB

(

⋂♯

B 〈i=i1,...,im=j〉
mi1i2 ´

♯ · · ·´♯ mim−1im

)

and
∀i, j, k, γB(m⋆

ij) ⊆ γB(m⋆

ik ´
♯ mn+1

kj)

Antoine Miné Weakly Relational Numerical Abstract Domains

276 APPENDIX A: Lengthy Proofs

Proof. Recall that m⋆ is defined to be mn+1 except that ∀i, m⋆

ii = [0, 0]♯.

Suppose that i 6= j. Then, γB(m⋆

ij)=γB(mn+1
ij)=γB(

⋂♯
B 〈i=i1,...,im=j〉 mi1i2´

♯ · · ·´♯

mim−1im) by Lemma 6. Moreover, if k 6= i, j, then γB(m⋆

ij) = γB(mn+1) ⊆ γB(mn+1
ik ´

♯

mn+1
kj) = γB(m⋆

ik ´
♯ m⋆

kj) also by Lemma 6. If k = i, γB(m⋆

ij) = γB([0, 0]♯ ´♯ m⋆

kj) =

γB(m⋆

ik ´
♯ m⋆

kj), and likewise when k = j.

Suppose that i = j. By Lemma 4, 0 ∈ γB(mn+1
ii), so by Lemma 6, γB(m⋆

ii) ⊆

γB(mn+1
ii) = γB

(

⋂♯
B 〈i=i1,...,im=j〉 mi1i2 ´

♯ · · ·´♯ mim−1im

)

. If i 6= k, by Lemma 6 we

also have γB(m⋆

ii) ⊆ γB(mn+1
ii) ⊆ γB(mn+1

ik ´♯ mn+1
ki) = γB(m⋆

ik ´
♯ m⋆

ki). If i = k,
then γB(m⋆

ii) = γB(m⋆

ii ´
♯ m⋆

ii) = {0}.

› Lemma 7: if γWeak(m) = ∅, then ∃i, 0 /∈ γB(mn+1
ii).

Corollary. Together with Lemma 4, this proves correctness of our emptiness test.

Proof. We prove this property by induction on the size n of the matrix.

If n = 0, we have obviously γWeak(m) = {(0)} ⇐⇒ 0 ∈ γB(m00), and γWeak(m) =
∅ ⇐⇒ 0 /∈ γB(m00). By definition, we have mn+1

00 = m00 ∩
♯
B

(m00 ´♯ m00), so
0 ∈ γB(m00) ⇐⇒ 0 ∈ γB(mn+1

00).

Suppose the property is true for some n. Let m be a matrix of size n + 1 such that
∀i, 0 ∈ γB(mn+2

ii), we prove that γWeak(m) 6= ∅. Let m′ be the matrix of size n
constructed as follows: ∀i, j < n,m′

ij = m(i+1) (j+1) ∩
♯
B

(m(i+1) 0 ´♯ m0 (j+1)). We

have ∀i, j, m′
ij = m1

(i+1) (j+1), so ∀i, j, m′n+1
ij = mn+2

(i+1) (j+1). We deduce that ∀i, 0 ∈

γB(m′n+1
ii) and, by induction hypothesis, γWeak(m′) 6= ∅. Let us take (x1, . . . , xn)

such that ∀ 1 ≤ i, j, xj − xi ∈ γB(m′
i−1 j−1) ⊆ γB(mij).

Let us prove that we can choose x0 such that ∀i, x0 − xi ∈ γB(mi0), and xi − x0 ∈
γB(m0i). This will prove that ∀ 0 ≤ i, j, xj−xi ∈ γB(mij), implying (x1−x0, . . . , xn−
x0)gammaWeak(m) and γWeak(m) 6= ∅.

First remark that xi − x0 ∈ γB(m0i) ⇐⇒ x0 − xi ∈ γB(¨♯m0i) ⇐⇒ x0 −
xi ∈ γB(mi0). Consider the set C = γB(

⋂♯
B 1≤i({xi} ´♯ mi0)). Any x0 ∈ C will

do and we only have to prove that C 6= ∅. Then C 6= ∅, or else, by Def. 5.2.5.6
there exists i, j ≥ 1 such that γB((x♯

i ´
♯ mi0) ∩♯

B
(x♯

j ´
♯ mj0)) = ∅, that is to

say xj − xi /∈ γB(mi0 ´♯ (¨♯mj0)) = γB(mi0 ´♯ m0j), which is absurd because
xj − xi ∈ γB(m′n+1

(i−1) (j−1)) ⊆ γB(m′
(i−1) (j−1)) ⊆ γB(mi0 ´♯ m0j). So C is not empty.

Remark: the ability to represent exactly any singleton [c, c]♯, as well as Def. 5.2.5.6
are crucial in the proof of this lemma.

Domaines numériques abstraits faiblement relationnels Antoine Miné

A.2 – Proof of Thm. 5.2.1: Closure Algorithm for Constraint Matrices 277

› Claim: if γWeak(m) 6= ∅, then ∀i0 6= j0 and c ∈ γB(m⋆

i0j0), there exists ~x ∈ In+1 such
that x0 = 0, (x1, . . . , xn) ∈ γWeak(m) and xj0 − xi0 = c.

Proof. By induction on n. As the case i0 = j0 is obvious, we moreover suppose that
i0 6= j0.

When n = 1 and γWeak(m) 6= ∅, γWeak(m) = γWeak(m⋆) = { x1 | x1 ∈ m⋆

01 }. We
can choose, without loss of generality, i0 = 0, j0 = 1, that is, c ∈ γB(m⋆

01). Then, the
property is obvious.

Suppose the property is true for some n > 1 and let m be a matrix of size n + 1
with non-empty domain. We suppose also, without loss of generality, that i0, j0 > 0
(n + 1 > 2, so one can easily ensure i0, j0 > 0 using a simple variable permutation).
We construct m′ of size n as in Lemma 7: ∀i, j < n,m′

ij = m(i+1) (j+1)∩
♯
B

(m(i+1) 0 ´♯

m0 (j+1)). Recall that ∀i, j, m′⋆
ij = m⋆

(i+1) (j+1), so, in particular, c ∈ γB(m′⋆
i0−1 j0−1).

Applying the induction hypothesis to m′, there exists (x1, . . . , xn) such that ∀ 1 ≤
i, j, xj − xi ∈ γB(m′

i−1 j−1) ⊆ γB(mij) and xj0 − xi0 = c. Then, we can find x0, as
in Lemma 7, such that ∀ 0 ≤ i, j, xj − xi ∈ γB(mij). Thus (x1 − x0, . . . , xn − x0) ∈
γWeak(m) and verifies xj0 − xi0 = c which ends the proof.

› Claim: if γWeak(m) 6= ∅, then ∀i, j, γB(m⋆

ij) = inf⊆ { γB(nij) | γWeak(m) =
γWeak(n) }.

Proof. Let us first prove that γWeak(m⋆) = γWeak(m). We know that γWeak(mn+1) =
γWeak(m). On the one hand, (x1, . . . , xn) ∈ γWeak(mn+1) =⇒ (x1, . . . , xn) ∈
γWeak(m⋆). On the other hand, as γWeak(m) 6= ∅, Lemma 4 gives ∀i, 0 ∈ mn+1

ii ,
which means that γWeak(m⋆) ⊆ γWeak(mn+1).

Let us now consider n such that γWeak(m) = γWeak(n), and take any i, j and c ∈
γB(m⋆

ij). By the saturation property proved by the preceding claim, we have ~x ∈ In+1

such that x0 = 0, (x1, . . . , xn) ∈ γWeak(m) and xj − xi = c. But hypothesis, we thus
have (x1, . . . , xn) ∈ γWeak(n) which implies xj − xi ∈ γB(nij), so c ∈ γB(nij). This

means that γB(m⋆

ij) ⊆ γB(nij), which completes the proof.

Antoine Miné Weakly Relational Numerical Abstract Domains

278 APPENDIX A: Lengthy Proofs

Domaines numériques abstraits faiblement relationnels Antoine Miné

BIBLIOGRAPHY 279

Bibliography

[AAB01] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric
reasoning about counter and clock systems. In CAV’00, volume 1855 of LNCS,
pages 419–449. Springer, 2001. http://www.liafa.jussieu.fr/~abou/Pape
rs/pdbm-cav00.ps.gz.

[AABB+03] Y. Aı̈t-Ameur, G. Bel, F. Boniol, S. Pairault, and V. Wiels. Robustness
analysis of avionics embedded systems. In ACM LCTES’03, pages 123–132.
ACM Press, 2003. http://www.cert.fr/francais/deri/boniol/Papiers_

pdf/LCTES03.pdf.

[AACFG92] Y. Aı̈t Ameur, P. Cros, J.-J. Falcón, and A. Gómez. An application of ab-
stract interpretation to floating-point arithmetic. In WSA’92, pages 205–212.
Atelier Irisa, 1992. http://www.cert.fr/francais/deri/cros/Cros/Pape

rs/WSA92.ps.

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[Air] Airbus. http://www.airbus.com/.

[Asta] Astrée. Analyse Statique de logiciels Temps-RÉel embarqués (static analysis
of critical real-time embedded software) analyzer page. http://www.astree

.ens.fr/.

[Astb] Astrée. Analyse Statique de logiciels Temps-RÉel embarqués (static analysis
of critical real-time embedded software) RNTL project page. http://www.di
.ens.fr/~cousot/projets/ASTREE/.

[Bag97] R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Università di Pisa, Corso Italia 40, I-
56125 Pisa, Italy, 1997. http://www.cs.unipr.it/~bagnara/Papers/Abst

racts/PhDthesis.

Antoine Miné Weakly Relational Numerical Abstract Domains

http://www.liafa.jussieu.fr/~abou/Papers/pdbm-cav00.ps.gz
http://www.liafa.jussieu.fr/~abou/Papers/pdbm-cav00.ps.gz
http://www.cert.fr/francais/deri/boniol/Papiers_pdf/LCTES03.pdf
http://www.cert.fr/francais/deri/boniol/Papiers_pdf/LCTES03.pdf
http://www.cert.fr/francais/deri/cros/Cros/Papers/WSA92.ps
http://www.cert.fr/francais/deri/cros/Cros/Papers/WSA92.ps
http://www.airbus.com/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.di.ens.fr/~cousot/projets/ASTREE/
http://www.di.ens.fr/~cousot/projets/ASTREE/
http://www.cs.unipr.it/~bagnara/Papers/Abstracts/PhDthesis
http://www.cs.unipr.it/~bagnara/Papers/Abstracts/PhDthesis

280 BIBLIOGRAPHY

[BCC+02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival. Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded software, in-
vited chapter. In The Essence of Computation: Complexity, Analysis, Trans-
formation. Essays Dedicated to Neil D. Jones, LNCS, pages 85–108. Springer,
2002. http://www.di.ens.fr/~cousot/publications.www/BlanchetCous

otEtAl-LNCS-v2566-p85-108-2002.pdf.

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival. A static analyzer for large safety-critical software.
In ACM PLDI’03, volume 548030, pages 196–207. ACM Press, 2003. http:

//www.di.ens.fr/~mine/publi/pldi045-blanchet.pdf.

[Bel58] R. Bellman. On a routing problem. In Quarterly of Applied Mathematics,
volume 16, pages 87–90, 1958.

[BHRZ03] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening oper-
ators for convex polyhedra. In SAS’03, volume 2694 of LNCS, pages 337–
354. Springer, 2003. http://www.cs.unipr.it/~bagnara/Papers/Abstract
s/SAS03.

[BHZ03] R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset
domains. In VMCAI’04, volume 2937 of LNCS, pages 135–148. Springer, 2003.
http://www.cs.unipr.it/~bagnara/Papers/Abstracts/Q349.

[BK89] V. Balasundaram and K. Kennedy. A technique for summarizing data ac-
cess and its use in parallelism enhancing transformations. In ACM PLDI’89,
pages 41–53. ACM Press, 1989. http://portal.acm.org/citation.cfm?id

=74822&dl=ACM&coll=portal.

[Bou90] F. Bourdoncle. Interprocedural abstract interpretation of block structured
languages with nested procedures, aliasing and recursivity. In Springer, editor,
PLILP’90, volume 456 of LNCS, pages 307–323, 1990. http://www.exalead.
com/Francois.Bourdoncle/plilp90.html.

[Bou93a] F. Bourdoncle. Abstract debugging of higher-order imperative languages. In
ACM PLDI’93, pages 46–55. ACM Press, 1993. http://www.exalead.com/

Francois.Bourdoncle/pldi93.html.

[Bou93b] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In
FMPA’93, volume 735 of LNCS, pages 128–14. Springer, 1993. http://ww

w.exalead.com/Francois.Bourdoncle/fmpa93.html.

Domaines numériques abstraits faiblement relationnels Antoine Miné

http://www.di.ens.fr/~cousot/publications.www/BlanchetCousotEtAl-LNCS-v2566-p85-108-2002.pdf
http://www.di.ens.fr/~cousot/publications.www/BlanchetCousotEtAl-LNCS-v2566-p85-108-2002.pdf
http://www.di.ens.fr/~mine/publi/pldi045-blanchet.pdf
http://www.di.ens.fr/~mine/publi/pldi045-blanchet.pdf
http://www.cs.unipr.it/~bagnara/Papers/Abstracts/SAS03
http://www.cs.unipr.it/~bagnara/Papers/Abstracts/SAS03
http://www.cs.unipr.it/~bagnara/Papers/Abstracts/Q349
http://portal.acm.org/citation.cfm?id=74822&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?id=74822&dl=ACM&coll=portal
http://www.exalead.com/Francois.Bourdoncle/plilp90.html
http://www.exalead.com/Francois.Bourdoncle/plilp90.html
http://www.exalead.com/Francois.Bourdoncle/pldi93.html
http://www.exalead.com/Francois.Bourdoncle/pldi93.html
http://www.exalead.com/Francois.Bourdoncle/fmpa93.html
http://www.exalead.com/Francois.Bourdoncle/fmpa93.html

BIBLIOGRAPHY 281

[Bry86] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEETC, C-35(8):677–691, 1986.

[BRZH02] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex
polyhedra and the Parma Polyhedra Library. In SAS’02, volume 2477 of
LNCS, pages 213–229. Springer, 2002. http://www.cs.unipr.it/~bagnara

/Papers/Abstracts/SAS02.

[Car97] L. Cardelli. Type systems. In The Computer Science and Engineering Hand-
book. CRC Press, 1997.

[CC76] P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In ISOP’76, pages 106–130. Dunod, Paris, France, 1976. http:

//www.di.ens.fr/~cousot/COUSOTpapers/ISOP76.shtml.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
ACM POPL’77, pages 238–252. ACM Press, 1977. http://www.di.ens.fr/

~cousot/COUSOTpapers/POPL77.shtml.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In ACM POPL’79, pages 269–282. ACM Press, 1979. http://www.di.ens.f
r/~cousot/COUSOTpapers/POPL79.shtml.

[CC92a] P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. Journal of Logic Programming, 13(2–3):103–179, 1992. http://ww
w.di.ens.fr/~cousot/COUSOTpapers/JLP92.shtml.

[CC92b] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2(4):511–547, 1992. http://www.di.ens.fr/~couso
t/COUSOTpapers/JLC92.shtml.

[CC92c] P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation, invited paper. In
PLILP’92, LNCS, pages 269–295. Springer, 1992. http://www.di.ens.fr/

~cousot/COUSOTpapers/PLILP92.shtml.

[CC02] P. Cousot and R. Cousot. Modular static program analysis, invited paper. In
CC’02, volume 2304 of LNCS, pages 159–178. Springer, 2002. http://www.

di.ens.fr/~cousot/COUSOTpapers/CC02.shtml.

[CC04] R. Clarisó and J. Cortadella. The octahedron abstract domain. In SAS’04,
volume 3148 of LNCS, pages 312–327. Springer, 2004. http://www.lsi.upc.
es/~jordicf/publications/pdf/sas2004.pdf.

Antoine Miné Weakly Relational Numerical Abstract Domains

http://www.cs.unipr.it/~bagnara/Papers/Abstracts/SAS02
http://www.cs.unipr.it/~bagnara/Papers/Abstracts/SAS02
http://www.di.ens.fr/~cousot/COUSOTpapers/ISOP76.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/ISOP76.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL79.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL79.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/JLP92.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/JLP92.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/JLC92.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/JLC92.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/PLILP92.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/PLILP92.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/CC02.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/CC02.shtml
http://www.lsi.upc.es/~jordicf/publications/pdf/sas2004.pdf
http://www.lsi.upc.es/~jordicf/publications/pdf/sas2004.pdf

282 BIBLIOGRAPHY

[Ce03] P. Černý. Vérification par interprétation abstraite de prédicats paramétriques.
D.E.A. report, Univ. Paris VII & ENS-DI, Paris, France, 2003. http://www.
cis.upenn.edu/~cernyp/.

[CEA] CEA. Fluctuat: a static analyzer for floating-point operations. http://www-

drt.cea.fr/Pages/List/lse/LSL/Flop/index.html.

[CGP00] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 2000.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In ACM POPL’78, pages 84–97. ACM Press, 1978.
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL78.shtml.

[CLR90] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT
Press, 1990.

[Col96] C. Colby. Semantics-Based Program Analysis via Symbolic Composition of
Transfer Relations. PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA, 1996. http://www-2.cs.cmu.edu/~rwh/t

heses/colby.pdf.

[Cou78] P. Cousot. Méthodes itératives de construction et d’approximation de points
fixes d’opérateurs monotones sur un treillis, analyse sémantique de pro-
grammes. PhD thesis, Thèse d’état ès sciences mathématiques, Université
scientifique et medicale de Grenoble, France, 1978.

[Cou99] P. Cousot. The calculational design of a generic abstract interpreter. In
Calculational System Design. NATO ASI Series F. IOS Press, 1999. http:

//www.di.ens.fr/~cousot/COUSOTpapers/Marktoberdorf98.shtml.

[Cou02] P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Theoretical Computer Science, 277(1–2):47–
103, 2002. http://www.di.ens.fr/~cousot/COUSOTpapers/TCS02-1.shtml.

[Cou03] P. Cousot. Verification by abstract interpretation. In Proc. Int. Symp. on
Verification – Theory & Practice – Honoring Zohar Manna’s 64th Birthday,
volume 2772, pages 243–268. Springer, 2003. http://www.di.ens.fr/~couso
t/COUSOTpapers/Zohar03.shtml.

[CS85] IEEE Computer Society. IEEE standard for binary floating-point arithmetic.
Technical report, ANSI/IEEE Std 745-1985, 1985. http://grouper.ieee.o

rg/groups/754/ and http://cch.loria.fr/documentation/IEEE754/.

Domaines numériques abstraits faiblement relationnels Antoine Miné

http://www.cis.upenn.edu/~cernyp/
http://www.cis.upenn.edu/~cernyp/
http://www-drt.cea.fr/Pages/List/lse/LSL/Flop/index.html
http://www-drt.cea.fr/Pages/List/lse/LSL/Flop/index.html
http://www.di.ens.fr/~cousot/COUSOTpapers/POPL78.shtml
http://www-2.cs.cmu.edu/~rwh/theses/colby.pdf
http://www-2.cs.cmu.edu/~rwh/theses/colby.pdf
http://www.di.ens.fr/~cousot/COUSOTpapers/Marktoberdorf98.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Marktoberdorf98.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/TCS02-1.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Zohar03.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/Zohar03.shtml
http://grouper.ieee.org/groups/754/
http://grouper.ieee.org/groups/754/
http://cch.loria.fr/documentation/IEEE754/

BIBLIOGRAPHY 283

[CS01] M. A. Colón and H. B. Sipma. Synthesis of linear ranking functions. In
TACAS’01, volume 2031 of LNCS, pages 67–81, 2001. http://theory.stanf
ord.edu/~sipma/papers/tacas01.html.

[Deu94] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-
limiting. In ACM PLDI’94, pages 230–241. ACM Press, 1994. http:

//citeseer.ist.psu.edu/deutsch94interprocedural.html.

[DRS01] N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of string manipulations
in C programs via integer analysis. In SAS’01, volume 2126 of LNCS. Springer,
2001. http://www.math.tau.ac.il/~nurr/.

[ea96] J. L. Lions et al. ARIANE 5, flight 501 failure, report by the inquiry board,
1996. http://sunnyday.mit.edu/accidents/Ariane5accidentreport.ht

ml.

[Fer01] J. Feret. Occurrence counting analysis for the π-calculus. GETCO’00, 2(39),
2001. http://www.di.ens.fr/~feret/publication/getco2000.html.

[Fer04a] J. Feret. Abstract interpretation of mobile systems. JLAP, 2004. http:

//www.di.ens.fr/~feret/publication/jlap.html.

[Fer04b] J. Feret. Static analysis of digital filters. In ESOP’04, volume 2986 of LNCS.
Springer, 2004. http://www.di.ens.fr/~feret/publication/esop2004.ht

ml.

[Fer05] J. Feret. The arithmetic-geometric progression abstract domain. In VM-
CAI’05, volume 3385 of LNCS. Springer, 2005. http://www.di.ens.fr/~f

eret/publication/esop2004.html.

[Ga] J. Garrigue and al. LablGTK2: an interface to the GIMP Tool Kit. http:

//wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html.

[GDD+04] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with
summarized dimensions. In TACAS’04, LNCS, pages 512–529. Springer, 2004.
http://www.cs.wisc.edu/wpis/abstracts/tacas04.ndsd.abs.html.

[GGP+01] D. Guilbaud, É. Goubault, A. Pascalet, B. Starynkévitch, and F. Védrine. A
simple abstract interpreter for threat detection and test case generation. In
WAPATV’01 in ICSE’01, 2001. http://www.di.ens.fr/~goubault/papers

/icse01.ps.gz.

[GM84] M. Gondran and M. Minoux. Graphs and Algorithms. Wiley, 1984.

Antoine Miné Weakly Relational Numerical Abstract Domains

http://theory.stanford.edu/~sipma/papers/tacas01.html
http://theory.stanford.edu/~sipma/papers/tacas01.html
http://citeseer.ist.psu.edu/deutsch94interprocedural.html
http://citeseer.ist.psu.edu/deutsch94interprocedural.html
http://www.math.tau.ac.il/~nurr/
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://www.di.ens.fr/~feret/publication/getco2000.html
http://www.di.ens.fr/~feret/publication/jlap.html
http://www.di.ens.fr/~feret/publication/jlap.html
http://www.di.ens.fr/~feret/publication/esop2004.html
http://www.di.ens.fr/~feret/publication/esop2004.html
http://www.di.ens.fr/~feret/publication/esop2004.html
http://www.di.ens.fr/~feret/publication/esop2004.html
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgtk.html
http://www.cs.wisc.edu/wpis/abstracts/tacas04.ndsd.abs.html
http://www.di.ens.fr/~goubault/papers/icse01.ps.gz
http://www.di.ens.fr/~goubault/papers/icse01.ps.gz

284 BIBLIOGRAPHY

[GMP] GMP. Gnu multiple precision library. http://www.swox.com/gmp/.

[Gol91] D. Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys (CSUR), 23(1):5–48, 1991. http:
//www.wldelft.nl/soft/d3d/intro/misc/goldberg.pdf.

[Gou01] É. Goubault. Static analyses of floating-point operations. In SAS’01, volume
2126 of LNCS, pages 234–259. Springer, 2001. http://www.di.ens.fr/~gou

bault/papers/precision2.ps.gz.

[Gra89] P. Granger. Static analysis of arithmetical congruences. In International
Journal of Computer Mathematics, volume 30, pages 165–190, 1989.

[Gra91] P. Granger. Static analysis of linear congruence equalities among variables of
a program. In TAPSOFT’91, volume 493 of LNCS, pages 169–192. Springer,
1991.

[Gra92] P. Granger. Improving the results of static analyses programs by local de-
creasing iteration. In FSTTCS, volume 652 of LNCS, pages 68–79. Springer,
1992.

[Gra97] P. Granger. Static analyses of congruence properties on rational numbers. In
SAS’97, volume 1302 of LNCS, pages 278–292. Springer, 1997.

[Hal79] N. Halbwachs. Détermination automatique de relations linéaires vérifiés par
les variables d’un programme. PhD thesis, Université scientifique et medicale
de Grenoble, France, 1979.

[Han75] E. R. Hansen. A generalized interval arithmetic. In Interval Mathematics,
volume 29 of LNCS, pages 7–18. Springer, 1975.

[HS97] W. Harvey and P. Stuckey. A unit two variable per inequality integer con-
straint solver for constraint logic programming. In ACSC’97, volume 19, pages
102–111, 1997. http://www.icparc.ic.ac.uk/~wh/publications/ACSC97.

ps.gz.

[HT98] M. Handjieva and S. Tzolovski. Refining static analyses by trace-based parti-
tioning using control flow. In SAS’98, volume 1503 of LNCS, pages 200–214,
1998.

[Jea] B. Jeannet. New polka: A library to handle convex polyhedra in any dimen-
sion. http://www-verimag.imag.fr/~bjeannet/newpolka-english.html.

Domaines numériques abstraits faiblement relationnels Antoine Miné

http://www.swox.com/gmp/
http://www.wldelft.nl/soft/d3d/intro/misc/goldberg.pdf
http://www.wldelft.nl/soft/d3d/intro/misc/goldberg.pdf
http://www.di.ens.fr/~goubault/papers/precision2.ps.gz
http://www.di.ens.fr/~goubault/papers/precision2.ps.gz
http://www.icparc.ic.ac.uk/~wh/publications/ACSC97.ps.gz
http://www.icparc.ic.ac.uk/~wh/publications/ACSC97.ps.gz
http://www-verimag.imag.fr/~bjeannet/newpolka-english.html

BIBLIOGRAPHY 285

[Jea00] B. Jeannet. Partitionnement Dynamique dans l’Analyse de Relations Linéaires
et Application à la Vérification de Programmes Synchrones. PhD thesis, In-
stitut National Polytechnique de Grenoble, France, 2000.

[JMSY94] J. Jaffar, M. Maher, P. Stuckey, and H. Yap. Beyond finite domains. In
PPCP’94, volume 874 of LNCS, pages 86–94. Springer, 1994. http://citese
er.nj.nec.com/joxan94beyond.html.

[Kar76] M. Karr. Affine relationships among variables of a program. Acta Informatica,
pages 133–151, 1976.

[Kil73] G. Kildall. A unified approach to global program optimization. In ACM
POPL’73, pages 194–206. ACM Press, 1973.

[LLPY97] K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-
time systems: Compact data structure and state-space reduction. In IEEE
RTSS’97, pages 14–24. IEEE CS Press, 1997. http://www.docs.uu.se/doc

s/rtmv/papers/llpw-rtss97.ps.gz.

[LV92] H. Le Verge. A note on Chernikova’s algorithm. Technical Report 635, IRISA,
France, 1992.

[LWYP99] K. Larsen, C. Weise, W. Yi, and J. Pearson. Clock difference diagrams. Nordic
Journal of Computing, 6(3):271–298, 1999. http://www.brics.dk/RS/98/

46/.

[Mal71] M. A. Malcolm. On accurate floating-point summation. Commun. ACM,
14(11):731–736, 1971. http://portal.acm.org/citation.cfm?id=362889.

[Man92] E. G. Manes. Predicate Transformer Semantics. Cambridge University Press,
1992.

[Mar02a] M. Martel. Propagation of rounding errors in finite precision computations:
A semantics approach. In ESOP’02, volume 2305 of LNCS, pages 194–208.
Springer, 2002. http://www.enseignement.polytechnique.fr/profs/info

rmatique/Matthieu.Martel/ESOP.ps.

[Mar02b] M. Martel. Static analysis of the numerical stability of loops. In SAS’02, vol-
ume 2477 of LNCS, pages 133–150. Springer, 2002. http://www.enseigneme
nt.polytechnique.fr/profs/informatique/Matthieu.Martel/sas02.ps.

[Mas92] F. Masdupuy. Array abstraction using semantic analysis of trapezoid congru-
ences. In ACM ICS’92, pages 226–235. ACM Press, 1992. http://portal.a

cm.org/citation.cfm?id=143414&dl=ACM&coll=portal.

Antoine Miné Weakly Relational Numerical Abstract Domains

http://citeseer.nj.nec.com/joxan94beyond.html
http://citeseer.nj.nec.com/joxan94beyond.html
http://www.docs.uu.se/docs/rtmv/papers/llpw-rtss97.ps.gz
http://www.docs.uu.se/docs/rtmv/papers/llpw-rtss97.ps.gz
http://www.brics.dk/RS/98/46/
http://www.brics.dk/RS/98/46/
http://portal.acm.org/citation.cfm?id=362889
http://www.enseignement.polytechnique.fr/profs/informatique/Matthieu.Martel/ESOP.ps
http://www.enseignement.polytechnique.fr/profs/informatique/Matthieu.Martel/ESOP.ps
http://www.enseignement.polytechnique.fr/profs/informatique/Matthieu.Martel/sas02.ps
http://www.enseignement.polytechnique.fr/profs/informatique/Matthieu.Martel/sas02.ps
http://portal.acm.org/citation.cfm?id=143414&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?id=143414&dl=ACM&coll=portal

286 BIBLIOGRAPHY

[Mas93] F. Masdupuy. Semantic analysis of interval congruences. In FMPTA’93, vol-
ume 735 of LNCS, pages 142–155. Springer, 1993.

[Mas01] I. Mastroeni. Numerical power analysis. In PADO II, volume 2053 of LNCS,
pages 117–137. Springer, 2001. http://profs.sci.univr.it/~mastroen/ab
stracts/pado01.abstract.html.

[Mau99] L. Mauborgne. Representation of Sets of Trees for Abstract Interpretation.
PhD thesis, École Polytechnique, Palaiseau, France, 1999. http://www.di.e

ns.fr/~mauborgn/publi/these.html.

[Mau04] L. Mauborgne. ASTRÉE: verification of absence of run-time error. In Building
the Information Society (18th IFIP World Computer Congress), volume 156,
pages 385–392. Springer, 2004. http://www.di.ens.fr/~mauborgn/publi/

wcc04.html.

[MB83] M. Measche and B. Berthomieu. Time petri-nets for analyzing and verifying
time dependent communication protocols. Protocol Specification, Testing and
Verification III, pages 161–172, 1983.

[Mina] A. Miné. The octagon abstract domain library. http://www.di.ens.fr/~m

ine/oct/.

[Minb] A. Miné. On-line octagon abstract domain sample analyzer. http://cgi.di

.ens.fr/cgi-bin/mine/octanalhtml/octanalweb/.

[Min00] A. Miné. Representation of two-variable difference or sum constraint set and
application to automatic program analysis. D.E.A. report, Univ. Paris VII &
ENS-DI, Paris, France, 2000. http://www.di.ens.fr/~mine/publi/report

-mine-dea.pdf.

[Min01a] A. Miné. A new numerical abstract domain based on difference-bound ma-
trices. In PADO II, volume 2053 of LNCS, pages 155–172. Springer, 2001.
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf.

[Min01b] A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE,
pages 310–319. IEEE CS Press, 2001. http://www.di.ens.fr/~mine/publi/
article-mine-ast01.pdf.

[Min02] A. Miné. A few graph-based relational numerical abstract domains. In SAS’02,
volume 2477 of LNCS, pages 117–132. Springer, 2002. http://www.di.ens.f
r/~mine/publi/article-mine-sas02.pdf.

Domaines numériques abstraits faiblement relationnels Antoine Miné

http://profs.sci.univr.it/~mastroen/abstracts/pado01.abstract.html
http://profs.sci.univr.it/~mastroen/abstracts/pado01.abstract.html
http://www.di.ens.fr/~mauborgn/publi/these.html
http://www.di.ens.fr/~mauborgn/publi/these.html
http://www.di.ens.fr/~mauborgn/publi/wcc04.html
http://www.di.ens.fr/~mauborgn/publi/wcc04.html
http://www.di.ens.fr/~mine/oct/
http://www.di.ens.fr/~mine/oct/
http://cgi.di.ens.fr/cgi-bin/mine/octanalhtml/octanalweb/
http://cgi.di.ens.fr/cgi-bin/mine/octanalhtml/octanalweb/
http://www.di.ens.fr/~mine/publi/report-mine-dea.pdf
http://www.di.ens.fr/~mine/publi/report-mine-dea.pdf
http://www.di.ens.fr/~mine/publi/article-mine-padoII.pdf
http://www.di.ens.fr/~mine/publi/article-mine-ast01.pdf
http://www.di.ens.fr/~mine/publi/article-mine-ast01.pdf
http://www.di.ens.fr/~mine/publi/article-mine-sas02.pdf
http://www.di.ens.fr/~mine/publi/article-mine-sas02.pdf

BIBLIOGRAPHY 287

[Min04] A. Miné. Relational abstract domains for the detection of floating-point run-
time errors. In ESOP’04, volume 2986 of LNCS, pages 3–17. Springer, 2004.
http://www.di.ens.fr/~mine/publi/article-mine-esop04.pdf.

[MJ81] S. S. Muchnick and N. D. Jones. Program Flow Analysis: Theory and Appli-
cations. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[MLAH99] J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference decision
diagrams. In CSL’99, volume 1683 of LNCS, pages 111–125. Springer, 1999.
http://www.it-c.dk/research/ddd/publications/ddd-csl-99.ps.

[Mona] D . Monniaux. C99-compatible c front-end for ocaml. http://www.di.ens.f
r/~monniaux/download/c_parser.tar.gz.

[Monb] D. Monniaux. Caml-gmp, an extended precision computation library. http:

//caml.inria.fr/hump.html.

[Mon01] D. Monniaux. An abstract Monte-Carlo method for the analysis of probabilis-
tic programs. In ACM POPL’01, volume 1824 of ACM Press, pages 93–101,
2001. http://www.di.ens.fr/~monniaux/biblio/Monniaux_POPL01.pdf.

[Moo66] R. E. Moore. Interval Analysis. Prentice Hall, 1966.

[MPF] MPFR. The multiple precision floating-point reliable library. http://www.lo
ria.fr/projets/mpfr/.

[Nel78] C. G. Nelson. An nlogn algorithm for the two-variable-per-constraint linear pro-
gramming satisfiability problem. Technical Report STAN-CS-78-689, Stanford
University, Program Verification Group, 1978. http://www-db.stanford.ed

u/TR/CS-TR-78-689.html.

[OCa] OCaml. The objective caml system. http://paulliac.inria.fr/ocaml.

[Pol] PolySpace Verifier. http://www.polyspace.com/.

[PPL] PPL. The Parma Polyhedra Library. http://www.cs.unipr.it/ppl/.

[Pra77] V. Pratt. Two easy theories whose combination is hard. Technical report,
Massachusetts Institute of Technology. Cambridge., 1977. http://boole.st

anford.edu/pub/sefnp.pdf.

[Proa] GNU Project. Gcc: the GNU compiler collection. http://gcc.gnu.org/.

[Prob] GNU Project. GTK+: the GIMP Tool Kit, version 2. http://www.gtk.org/.

Antoine Miné Weakly Relational Numerical Abstract Domains

http://www.di.ens.fr/~mine/publi/article-mine-esop04.pdf
http://www.it-c.dk/research/ddd/publications/ddd-csl-99.ps
http://www.di.ens.fr/~monniaux/download/c_parser.tar.gz
http://www.di.ens.fr/~monniaux/download/c_parser.tar.gz
http://caml.inria.fr/hump.html
http://caml.inria.fr/hump.html
http://www.di.ens.fr/~monniaux/biblio/Monniaux_POPL01.pdf
http://www.loria.fr/projets/mpfr/
http://www.loria.fr/projets/mpfr/
http://www-db.stanford.edu/TR/CS-TR-78-689.html
http://www-db.stanford.edu/TR/CS-TR-78-689.html
http://paulliac.inria.fr/ocaml
http://www.polyspace.com/
http://www.cs.unipr.it/ppl/
http://boole.stanford.edu/pub/sefnp.pdf
http://boole.stanford.edu/pub/sefnp.pdf
http://gcc.gnu.org/
http://www.gtk.org/

288 BIBLIOGRAPHY

[RCK04a] E. Rodŕıguez-Carbonell and D. Kapur. An abstract interpretation approach
for automatic generation of polynomial invariants. In SAS’04, volume 3148 of
LNCS, pages 280–295. Springer, 2004. http://www.cs.unm.edu/~kapur/mya
bstracts/sas04.html.

[RCK04b] E. Rodŕıguez-Carbonell and D. Kapur. Automatic generation of polynomial
loop invariants: Algebraic foundations. In ACM ISSAC’04, volume 505040,
pages 266–273. ACM Press, 2004. http://www.cs.unm.edu/~kapur/myabstr
acts/issac04enric.html.

[Rey69] J. C. Reynolds. Automatic computation of data set definitions. Information
Processing’68, pages 456–461, 1969.

[Ric53] H. G. Rice. Classes of recursively enumerable sets and their decision problems.
In Trans. Amer. Math. Soc., volume 74, pages 358–366, 1953.

[Rug04] R. Rugina. Quantitative shape analysis. In SAS’04, volume 3148 of LNCS,
pages 228–245. Springer, 2004. http://www.cs.cornell.edu/~rugina/pape
rs/sas04.ps.

[Sho81] R. Shostak. Deciding linear inequalities by computing loop residues. Journal
of the ACM, 28(4):769–779, 1981. http://portal.acm.org/citation.cfm?

id=322288&dl=ACM&coll=portal.

[SK02] A. Simon and A. King. Analyzing string buffers in C. In ICAMST, volume
2422 of LNCS, pages 365–379. Springer, 2002. http://www.cs.kent.ac.uk/

pubs/2002/1367/index.html.

[Ske92] R. Skeel. Roundoff error and the Patriot missile. SIAM News, 25(4):11, 1992.
http://www.siam.org/siamnews/general/patriot.htm.

[SKH02] A. Simon, A. King, and J. Howe. Two variables per linear inequality as an ab-
stract domain. In LOPSTR’02, volume 2664 of LNCS, pages 71–89. Springer,
2002. http://www.cs.kent.ac.uk/pubs/2002/1515.

[SKS00] R. Shaham, E. K. Kolodner, and M. Sagiv. Automatic removal of ar-
ray memory leaks in java. In CC’00, LNCS, pages 50–66. Springer, 2000.
http://www.math.tau.ac.il/~rans/cc00.ps.gz.

[SW04] Z. Su and D. Wagner. A class of polynomially solvable range constraints for
interval analysis without widenings and narrowings. In TACAS’04, LNCS,
pages 280–295. Springer, 2004. http://www.cs.berkeley.edu/~daw/paper

s/range-tacas04.ps.

Domaines numériques abstraits faiblement relationnels Antoine Miné

http://www.cs.unm.edu/~kapur/myabstracts/sas04.html
http://www.cs.unm.edu/~kapur/myabstracts/sas04.html
http://www.cs.unm.edu/~kapur/myabstracts/issac04enric.html
http://www.cs.unm.edu/~kapur/myabstracts/issac04enric.html
http://www.cs.cornell.edu/~rugina/papers/sas04.ps
http://www.cs.cornell.edu/~rugina/papers/sas04.ps
http://portal.acm.org/citation.cfm?id=322288&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?id=322288&dl=ACM&coll=portal
http://www.cs.kent.ac.uk/pubs/2002/1367/index.html
http://www.cs.kent.ac.uk/pubs/2002/1367/index.html
http://www.siam.org/siamnews/general/patriot.htm
http://www.cs.kent.ac.uk/pubs/2002/1515
http://www.math.tau.ac.il/~rans/cc00.ps.gz
http://www.cs.berkeley.edu/~daw/papers/range-tacas04.ps
http://www.cs.berkeley.edu/~daw/papers/range-tacas04.ps

BIBLIOGRAPHY 289

[Tar55] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–310, 1955.

[TCR94] D. Toman, J. Chomicki, and D. S. Rogers. Datalog with integer periodicity
constraints. In Journal of Logic Programming, pages 189–203. The MIT Press,
1994. http://citeseer.nj.nec.com/toman94datalog.html.

[VACS94] M. Vińıcius, A. Andrade, J. L. D. Comba, and J. Stolfi. Affine arithmetic.
In INTERVAL’94, 1994. http://www.dcc.unicamp.br/~stolfi/EXPORT/pa

pers/by-tag/and-com-sto-94-aax.ps.gz (draft).

[Ven02] A. Venet. Nonuniform alias analysis of recursive data structures and arrays.
In SAS’02, volume 2477 of LNCS, pages 36–51. Springer, 2002. http://ase.
arc.nasa.gov/people/venet/sas02.ps.

[Ven04] A. Venet. A scalable nonuniform pointer analysis for embedded programs. In
SAS’04, volume 3148 of LNCS, pages 149–164. Springer, 2004. http://ase.

arc.nasa.gov/people/venet/sas04.pdf.

[Vig96] J. Vignes. A stochastic approach of the analysis of round-off error propagation:
A survey of the CESTAC method. In Proc. of the Second Real Numbers and
Computer Conf., pages 233–251, 1996.

[Yov98] S. Yovine. Model-checking timed automata. In Embedded Systems, volume
1494 of LNCS. Springer, 1998. http://www-verimag.imag.fr/~yovine/ar

ticles/embedded98.pdf.

Antoine Miné Weakly Relational Numerical Abstract Domains

http://citeseer.nj.nec.com/toman94datalog.html
http://www.dcc.unicamp.br/~stolfi/EXPORT/papers/by-tag/and-com-sto-94-aax.ps.gz
http://www.dcc.unicamp.br/~stolfi/EXPORT/papers/by-tag/and-com-sto-94-aax.ps.gz
http://ase.arc.nasa.gov/people/venet/sas02.ps
http://ase.arc.nasa.gov/people/venet/sas02.ps
http://ase.arc.nasa.gov/people/venet/sas04.pdf
http://ase.arc.nasa.gov/people/venet/sas04.pdf
http://www-verimag.imag.fr/~yovine/articles/embedded98.pdf
http://www-verimag.imag.fr/~yovine/articles/embedded98.pdf

290 BIBLIOGRAPHY

Domaines numériques abstraits faiblement relationnels Antoine Miné

LIST OF FIGURES 291

List of Figures

2.1 Syntax of a Simple program. 22
2.2 Semantics of numerical expressions. 23
2.3 Semantics of boolean expressions. 24
2.4 Transfer functions. 24
2.5 Small-step transition system → of a Simple program. 26
2.6 Equation system equivalent to the semantics of Fig. 2.5. 27
2.7 Non-relational abstract semantics of numerical expressions. 33
2.8 Example of non-relational test abstraction. 34
2.9 The “zoo” of existing numerical abstract domains. 37
2.10 Numerical abstract domains introduced in this thesis. 38
2.11 Other recent numerical abstract domains. 38
2.12 Comparing non-relational, weakly relational, and fully relational domains. . . 39
2.13 A strictly increasing infinite set of polyhedra whose limit is a disk. 42

3.1 Typical loop example. 50
3.2 Example of zone constraint conjunction. 53
3.3 Three different DBMs with the same potential set concretisation. 55
3.4 A matrix n equal to m∗ except for the last n − c lines and columns. 64
3.5 Least upper bounds of zones. 67
3.6 Intersection of zones. 69
3.7 Forget operators on zones. 74
3.8 Abstract assignment on zones. 81
3.9 Abstract test on zones. 84
3.10 Example of infinite increasing chain defined by mi+1

def
= (m∗

i) ▽Zone
std ni. . . . 91

4.1 Example of octagonal constraint conjunction. 99
4.2 Two different closed potential graphs that represent the same octagon. . . . 102
4.3 Empty integer octagon. 109
4.4 Efficient memory representation of a coherent DBM. 126
4.5 On-line octagon sample analyser. 133

Antoine Miné Weakly Relational Numerical Abstract Domains

292 LIST OF FIGURES

7.1 Simple language syntax adapted to machine-integers. 206
7.2 Concrete semantics of numerical expressions adapted to machine-integers. . . 207
7.3 Interval abstract semantics adapted to machine-integers. 217
7.4 Positive, non-NAN, floating-point numbers. 217
7.5 Simple language syntax adapted to floating-point numbers. 218
7.6 Rounding functions, following [CS85]. 219
7.7 Concrete semantics of numerical expressions adapted to floating-point num-

bers. 220

8.1 Synchronous block-diagram for a simplified second order digital filter. 239
8.2 Graphical user interface for Astrée. 240

Domaines numériques abstraits faiblement relationnels Antoine Miné

LIST OF DEFINITIONS 293

List of Definitions

2.1.1 Point-wise lifting. 6
2.2.1 Galois connection. 8
2.2.2 Partial Galois connection. 12
2.2.3 Widening. 15
2.2.4 Narrowing. 16
2.2.5 Chaotic iterations with widening. 18
2.2.6 Chaotic iterations with narrowing. 19
2.4.1 Numerical abstract domain. 28
2.4.2 Non-relational basis. 31
2.4.3 Cartesian galois connection. 36

3.2.1 Potential set concretisation γPot of a DBM. 52
3.2.2 Zone concretisation γZone of a DBM. 53
3.2.3 Zone and potential set abstractions. 54
3.3.1 Shortest-path closure. 57
3.3.2 Floyd–Warshall algorithm. 60
3.3.3 In-place Floyd–Warshall algorithm. 62
3.3.4 Incremental Floyd–Warshall algorithm. 64
3.4.1 Union abstractions. 67
3.4.2 Intersection abstractions. 70
3.5.1 Projection operator πi. 71
3.6.1 Forget operator on zones {|Vf ← ? |}Zone 73

3.6.2 Alternate forget operator on zones {|Vf ← ? |}Zone

alt 76
3.6.3 Abstraction of simple assignments. 77
3.6.4 Abstraction of interval linear form assignments. 79
3.6.5 Abstraction of simple tests. 82
3.6.6 Interval linear form testing. 83
3.6.7 Abstraction of simple backward assignments. 85
3.7.1 Standard widening ▽Zone

std on zones. 87
3.7.2 Widening with thresholds ▽Zone

th on zones. 88

Antoine Miné Weakly Relational Numerical Abstract Domains

294 LIST OF DEFINITIONS

3.7.3 Standard narrowing △Zone
std on zones. 92

4.2.1 Encoding octagonal constraints as potential constraints. 99
4.2.2 Octagon concretisation γOct of a DBM. 100
4.2.3 Coherent DBMs and the · operator. 100
4.3.1 Strong closure. 103
4.3.2 Floyd–Warshall algorithm for strong closure. 106
4.3.3 In-place Floyd–Warshall algorithm for strong closure. 107
4.3.4 Incremental Floyd–Warshall algorithm for strong closure. 108
4.3.5 Tight closure. 110
4.3.6 Incremental tight closure algorithm from [HS97]. 111
4.4.1 Set-theoretic operators on octagons. 115
4.4.2 Forget operator on octagons {|Vf ← ? |}Oct 116
4.4.3 Projection operator πi. 118
4.4.4 Exact octagonal transfer functions. 120
4.4.5 Interval-based octagonal transfer functions. 123
4.4.6 Polyhedron-based octagonal transfer functions. 123
4.4.7 More precise octagon transfer functions. 123
4.4.8 Widening with thresholds ▽Oct

th . 125

5.2.1 Constraint matrix concretisation γWeak of a DBM. 137
5.2.2 ⊑Weak order. 138
5.2.3 Coherence constraint matrix. 138
5.2.4 Closed half-ring. 139
5.2.5 Acceptable basis. 141
5.2.6 Acceptable basis revisited. 142
5.2.7 Floyd–Warshall algorithm for constraint matrices ⋆. 143
5.2.8 Incremental Floyd–Warshall algorithm for constraint matrices. 145
5.3.1 Set-theoretic operators on constraint matrices. 146
5.3.2 Forget operators on constraint matrices. 148
5.3.3 Simple transfer functions for constraint matrices. 151
5.3.4 Non-relational transfer functions. 153
5.3.5 Weakly relational transfer functions. 153
5.4.1 Constant basis B

Cst . 155
5.4.2 Integer congruence basis B

Cong . 162
5.4.3 Rational congruence basis B

RCong . 168

6.2.1 Interval linear form linear operators. 177
6.2.2 Interval linear form intervalisation ι. 180
6.2.3 Linearisation L expr MR♯. 180

Domaines numériques abstraits faiblement relationnels Antoine Miné

LIST OF DEFINITIONS 295

6.2.4 µ operator for removing non-singleton coefficients. 185
6.3.1 Symbolic basis B

Symb . 189
6.3.2 Variable occurrence function occ . 190
6.3.3 Substitution function subst . 190
6.3.4 Symbolic constant abstract domain D

Symb 190
6.3.5 Abstract union and intersection of symbolic environments. 192
6.3.6 Assignment transfer function. 193
6.3.7 Forget transfer function. 193

7.2.1 Generic machine-integer abstract transfer functions. 209
7.4.1 Relative rounding εf on an interval linear form. 222
7.4.2 Floating-point linearisation. 223
7.5.1 Interval widening with perturbation ▽Int

ε 233
7.5.2 DBM widening with perturbation ▽DBM

ε 233

Antoine Miné Weakly Relational Numerical Abstract Domains

296 LIST OF DEFINITIONS

Domaines numériques abstraits faiblement relationnels Antoine Miné

LIST OF THEOREMS 297

List of Theorems

2.1.1 Tarskian fixpoints. 7
2.1.2 Kleenian fixpoints. 7
2.2.1 Canonical α, γ. 9
2.2.2 Relative precision of abstract domains. 10
2.2.3 Canonical partial α. 13
2.2.4 Tarskian fixpoint transfer. 14
2.2.5 Kleenian fixpoint transfer. 14
2.2.6 Kleenian iterations in domains with no infinite increasing chain. . . . 15
2.2.7 Fixpoint approximation with widening. 15
2.2.8 Fixpoint refinement with narrowing. 17
2.2.9 Chaotic iterations with widening. 18
2.2.10 Chaotic iterations with narrowing. 19

3.2.1 Solutions of potential constraints conjunctions. 51
3.2.2 DBM lattice. 54
3.3.1 Satisfiability of a conjunction of constraints. 56
3.3.2 Soundness of the closure ∗. 57
3.3.3 Saturation of closed DBMs. 58
3.3.4 Best abstraction of potential sets and zones. 59
3.3.5 Floyd–Warshall algorithm properties. 60
3.3.6 Local characterisation of closed matrices. 63
3.3.7 Incremental Closure. 64
3.4.1 Equality testing. 65
3.4.2 Inclusion testing. 66
3.4.3 Properties of the union abstractions. 67
3.4.4 Properties of the abstract intersections. 70
3.5.1 Projection operator properties. 71
3.6.1 Soundness and exactness of {|Vf ← ? |}Zone 74

3.6.2 Exactness of {|Vf ← ? |}Zone

alt . 76

3.6.3 {|Vj0 ← Vj0 ´ [a, b] |}Zone

exact preserves the closure. 78

Antoine Miné Weakly Relational Numerical Abstract Domains

298 LIST OF THEOREMS

3.8.1 Properties of the hollow representation. 96

4.3.1 Satisfiability of a conjunction of octagonal constraints. 101
4.3.2 Saturation of strongly closed DBMs. 103
4.3.3 Best abstraction of octagons. 105
4.3.4 Properties of the Floyd–Warshall algorithm for strong closure. 106
4.3.5 Incremental strong closure properties. 108
4.3.6 Incremental tight closure properties. 111
4.3.7 Saturation property. 111
4.4.1 Properties of set-theoretic operators on octagons. 115
4.4.2 Soundness and exactness of {|Vf ← ? |}Oct 116
4.5.1 Properties of the hollow representation. 127

5.2.1 Properties of the Floyd–Warshall algorithm for constraint matrices. . 143
5.3.1 Properties of set-theoretic operators on constraint matrices. 146
5.3.2 Soundness and exactness of {|Vf ← ? |}Weak and {|Vf ← ? |}Weak

alt 148
5.3.3 Projection operator. 150
5.4.1 Acceptability of the constant basis. 157
5.4.2 Acceptability of the interval basis. 158
5.4.3 Acceptability of the extended interval basis. 159
5.4.4 Arithmetic lattice. 160
5.4.5 Acceptability of the simple congruence basis. 164
5.4.6 Rational lattice. 166
5.4.7 Acceptability of the rational congruence basis. 169

6.2.1 Interval linear form linear operators soundness. 178
6.2.2 Intervalisation soundness. 180
6.2.3 Soundness of the linearisation. 181
6.2.4 Soundness of the µ operator. 185
6.3.1 Substitution soundness. 191

7.2.1 Soundness of adapted intervals. 208
7.4.1 Rounding abstraction. 222
7.4.2 Soundness of the floating-point linearisation. 223

Domaines numériques abstraits faiblement relationnels Antoine Miné

LIST OF EXAMPLES 299

List of Examples

2.5.1 Property not representable in a non-relational domain. 44
2.5.2 Computation not possible in a non-relational domain. 44
2.5.3 Loop invariant not representable in a non-relational domain. 45
2.5.4 Symbolic invariant not representable in a non-relational domain. . . . 45

3.7.1 Using the standard zone widening. 87
3.7.2 Using the widening with thresholds. 88
3.7.3 Incorrect widening usage on zones. 90
3.7.4 Using the standard narrowing. 93

4.6.1 Decreasing loop. 128
4.6.2 Absolute value analysis. 129
4.6.3 Rate limiter analysis. 130

5.4.1 Assignment in the zone congruence domain. 165
5.4.2 One-dimensional random walk. 165

6.2.1 Linear interpolation computation. 184
6.2.2 Modulo computation. 188
6.3.1 Linear interpolation computation revisited. 197
6.3.2 Absolute value computation. 198

7.2.1 Machine-integer loop analysis. 210
7.4.1 Floating-point rate limiter analysis. 226

Antoine Miné Weakly Relational Numerical Abstract Domains

300 LIST OF EXAMPLES

Domaines numériques abstraits faiblement relationnels Antoine Miné

INDEX 301

Index

abstract interpretation, 2
abstraction, 8
abstraction (partial), 12
abstraction of operators, 9, 11, 13
acceptable basis, 140
assignment transfer function, 24
atomic tests, 29

backward assignment transfer function, 24
best abstraction of operators, 9, 13

canonical abstraction, 9
canonical abstraction (partial), 13
canonical concretisation, 9
chaotic iterations, 17
closed DBM, 59
closed DBM (strongly), 103, 110
closed half-ring, 139
closure, 56, 62, 64, 139, 143, 144
coherence, 100, 138, 141
complete ⊓−morphism, 7
complete ⊔−morphism, 7
complete lattice, 6
complete partial order, 6
concretisation, 8, 11
concretisation (partial), 12
congruence basis, 162
constant basis, 155
constraint graph, 137
constraint matrix, 137
continuous application, 7
cpo, 6
cycle, 52

DBM, 52
denormalised number, 215
difference bound matrix, 52

emptiness testing, 56, 60, 101, 111, 143
exact abstraction of operators, 9, 11, 13
extensive operator, 7

fixpoint, 7, 14, 25
Floyd–Warshall algorithm, 60, 62, 106,

107, 139, 143
forget, 30

Galois connection, 8
Galois connection (partial), 12
Galois insertion, 9
glb, 6
greatest fixpoint, 7
greatest lower bound, 6

hollow DBM, 95, 126

IEEE, 214
interval basis, 39, 158
interval basis (extended), 159
interval domain, 39, 207, 212, 227
interval linear form, 21, 176
intervalisation, 179
invertible assignment, 25

Kleenian fixpoint, 7

lattice, 6
least fixpoint, 7
least upper bound, 6

Antoine Miné Weakly Relational Numerical Abstract Domains

302 INDEX

linear form, 21
linearisation, 180, 213, 223, 229
lub, 6

monotonic application, 7

NaN, 215
narrowing, 16
non-relational basis, 31
non-relational domain, 31
normalised number, 215
numerical abstract domain, 28

octagonal constraint, 98
optimal abstraction of operators, 11

partial order, 6
path, 52
point-wise lifting, 6
pointed poset, 6
poset, 6
post-fixpoint, 7
potential constraint, 51
potential graph, 51
power-set lattice, 6
pre-fixpoint, 7
preorder, 6
product domain, 19

quasi-linear form, 21, 185

rational congruence basis, 168
reduced product, 19, 195
run-time error, 27, 209, 224

saturation, 57, 103, 111, 143
semantics, 1
sign basis, 170
simple cycle, 52
simple path, 52
static analysis, 2
strict application, 7

strong closure, 106, 107

Tarskian fixpoint, 7
test transfer function, 24

weakly relational domains, 36
widening, 15

zone constraint, 51

Domaines numériques abstraits faiblement relationnels Antoine Miné

INDEX OF SYMBOLS 303

Index of Symbols

Abstract Interpretation

−−→−→←−−−−
α

γ
, 9

−−→←−−
α

γ
, 8, 12

△♯, 16

▽♯, 15

α, γ, 8, 12

ρ, 19

¦
♯, 31

⊥♯, ⊤♯, 28

∪♯, ∩♯, 28
←−
´ ♯,

←−
¨ ♯,

←−
ˆ ♯,

←−
˜ ♯, 33

←−
⊲⊳

♯, 32
←−
¦

♯, 32

J · K♯, 33

{| · |}♯, 28

{| · |}♯
lin , 181

{| · |}♯
mi , 209

Concrete Semantics

adj , 23, 206

checki, 206

Ff , 218

S, 25

castf ,r, 218

floor, 187

mf f , Mf f , 216

⊕f ,r, ªf ,r, ⊗f ,r, ®f ,r, 218

→, 25

mi, Mi, 206

r, 218

J · K, 23, 176

J · Kfl , 219

J · Kmi , 206

{|X ← ? |}, 30

{|X ← expr |}, 24

{|X → expr |}, 24

{| test ? |}, 24

Congruence Domain

B
Cong , 162

B
RCong , 168

△
Cong
B

, 163

▽
RCong
B

, △
RCong
B

, 169

αCong
B

, γCong
B

, 162

αRCong
B

, γRCong
B

, 168

´Cong , ¨Cong , 163

´RCong , ¨RCong , 169

∪Cong
B

, ∩Cong
B

, 163

∪RCong
B

, ∩RCong
B

, 168

≡, 162, 168

⊑Cong
B

, 162

Antoine Miné Weakly Relational Numerical Abstract Domains

304 INDEX OF SYMBOLS

⊑RCong
B

, 168

Constant Domain

B
Cst , 155

D
Cst , 189

αCst
B

, γCst
B

, 155

´Cst , ¨Cst , ˆCst , ˜Cst , 156

∪Cst
B

, ∩Cst
B

, 155
←−
˛Cst ,

←−
¸Cst ,

←−
¯Cst ,

←−
ˇCst , 156

Difference Bound Matrices

DBM, 52

cDBM, 100

∗, 56

•, 105, 108

Inc∗, 65

Inc•, 109

IncT , 110

Hollow , 95

Hollow •, 126

·, 100

G(·), 52

⊥DBM, ⊤DBM, 54

⊔DBM, ⊓DBM, 54

⊑DBM, 54

General
def

= ,
def

⇐⇒ , 6

≃, 141

16, 32, 64, 80, 128, 215

[X 7→ expr], 7

Id , 7

λX.expr , 7

+s, /s, 212, 213

bias, e, p, 215

F, 215

I, 21

I, 52

I, 206

‹, ›, vii, 263

Interval Domain

B
Int , 39, 158

B
XInt , 159

▽Int
ε , 233

▽Int
B

, △Int
B

, 41

γInt
s, i , 212

γInt
B

, 39

´Int , ¨Int , ˆInt , ˜Int , 40

´Int
i , ¨Int

i , ˆInt
i , ˜Int

i , 207

˜Int
alt , 177

castInt
f ,r , 228

checkInt
i , 207

∪Int
B

, ∩Int
B

, 40

floorInt , 187

Int , 71, 118

Zone, 70

⊕Int
f ,r , ªInt

f ,r , ⊗Int
f ,r , ®Int

f ,r , 228
←−
˛ Int ,

←−
¸ Int ,

←−
ˇ Int ,

←−
¯ Int , 41

J · KInt
mi , 207

{|V ← expr |}Int

mi , 208

Octagon Domain

Oct , 98

V +
i , V −

i , 99

Domaines numériques abstraits faiblement relationnels Antoine Miné

INDEX OF SYMBOLS 305

V ′, 99

▽DBM

ε , 233

▽Oct , △Oct , 124

▽Oct
th , 125

Π, 100

αOct , 101

•, 105, 108

γOct , 99

γOct
s , 213

Inc•, 109

IncT , 110

Hollow •, 126

∪Oct , ∩Oct , 115

Int , 118

Oct , 119

Poly , 119

πi, 118, 179

{|V ← ? |}Oct , 115

{|V ← expr |}Oct

fl , 224

{|V ← expr |}Oct

exact , 120

{|V ← expr |}Oct

nonrel , 123

{|V ← expr |}Oct

poly , 123

{|V ← expr |}Oct

rel , 123, 181

{|V → expr |}Oct

exact , 121

{|V → expr |}Oct

nonrel , 123

{|V → expr |}Oct

poly , 123

{| · |}♯
mi , 209

{| expr ¯ 0 ? |}Oct

exact , 121

{| expr ¯ 0 ? |}Oct

nonrel , 123

{| expr ¯ 0 ? |}Oct

poly , 123

{| expr ¯ 0 ? |}Oct

rel , 123, 181

Ordering

⊑, ⊔, ⊓, ⊓, ⊥, ⊤, 6

gfp, 7

lfp, 7

Polyhedron Domain

D
Poly , 42

Oct , 119

Poly , 71, 119

Zone, 72

{|V ← expr |}Poly , 186

Sign Domain

B
Sign , 170

Symbolic

B
Symb , 189

D
Symb , 190

µ, 185

occ , 190

subst , 190

subst ∗, 191

` , a , b , m , 80, 124, 154, 177

∪Symb , ∩Symb , 192

εf , 222

floor, 187

ι, 179

R(·), 191

{|V ← expr |}Poly , 186

{|V ← expr |}Oct

fl , 224

{|Vi ← ? |}Symb , 193

{|Vi ← expr |}Symb , 193

{|Vi → expr |}Symb , 193

Antoine Miné Weakly Relational Numerical Abstract Domains

306 INDEX OF SYMBOLS

{| · |}♯
lin , 181

{| · |}♯×Symb , 195

{| expr ¯ 0 ? |}Symb , 194

L · M, 180

L · Mfl , 223

Syntax

´, ¨, ˆ, ˜, 21

´i, ¨i, ˆi, ˜i, 206

¦, ⊲⊳, 21

˛, ¸, ˇ, ¯, 21

casti, 206

floor, 187

expr , test , 21

rand, 89

if, else, while, and, or, not, 21

L, 21

V , 21

Zone Domain

Pot , 51

Zone, 51

△Zone
std , 92

▽DBM

ε , 233

▽Zone
std , 86

▽Zone
th , 87

▽Zone

[SKS00]
, 90

∗, 56

αPot , 54

αZone , 54

γPot , 52

γPot
s , 213

γZone , 53

γZone
s , 213

Inc∗, 65

Hollow , 95

∩Pot , ∩Zone , 70

∪Pot , ∪Zone , 66

Int , 71

Poly , 71

Zone, 70, 72

πi, 71, 179

{|V ← ? |}Zone , 73

{|V ← ? |}Zone

alt , 76

{|V ← expr |}Zone

exact , 77

{|V ← expr |}Zone

nonrel , 79

{|V ← expr |}Zone

poly , 80

{|V ← expr |}Zone

rel , 79, 181

{|V → expr |}Zone

exact , 85

{|V → expr |}Zone

nonrel , 86

{|V → expr |}Zone

poly , 86

{| · |}♯
mi , 209

{| expr ¯ 0 ? |}Zone

exact , 82

{| expr ¯ 0 ? |}Zone

nonrel , 83

{| expr ¯ 0 ? |}Zone

poly , 84

{| expr ¯ 0 ? |}Zone

rel , 83, 181

Zone-Like Domains

Weak , 137

▽Weak , △Weak , 154

0, 1, 139

αWeak , 145

⋆, 143

γWeak , 137

Domaines numériques abstraits faiblement relationnels Antoine Miné

INDEX OF SYMBOLS 307

⊕, ¯, 139

⋆, 139

⊥Weak , ⊤Weak , 138

∩Weak , ∪Weak , 146

Inc⋆, 145

NonRel , 150

Weak , 150

⊑Weak , 138

{|V ← expr |}Weak

rel , 153, 181

{|Vf ← ? |}Weak , 147

{|Vf ← ? |}Weak

alt , 147

{|Vi ← expr |}Weak

nonrel , 153

{|Vi ← expr |}Weak

simple , 151

{|Vi → expr |}Weak

nonrel , 153

{|Vi → expr |}Weak

simple , 151

{| · |}♯
mi , 209

{| expr ∈ C ? |}Weak

nonrel , 153

{| expr ∈ C ? |}Weak

rel , 153, 181

{| expr ∈ C ? |}Weak

simple , 151

Antoine Miné Weakly Relational Numerical Abstract Domains

308 INDEX OF SYMBOLS

Domaines numériques abstraits faiblement relationnels Antoine Miné

