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Résumé de la Thèse

Introduction.

En 1925, Albert Einstein a prédit que si un gaz idéal d’atomes bosoniques
était refroidi en-dessous d’une certaine température, il subirait une transition
de phase vers un nouvel état où une fraction macroscopique des atomes oc-
cuperait le même état fondamental du système. Cet effet remarquable est
une conséquence de la statistique des particules identiques de spin entier, qui
avait été récemment dérivée par lui et Satyendra Nath Bose. Malgré cette
prédiction précoce, il n’est devenu possible de créer un condensat de Bose-
Einstein (CBE) dans un échantillon atomique dilué que dans les années 90.
Dans ces expériences le gaz est fortement localisé en position et en impul-
sion. Pour éviter la formation des états moléculaires (et réduire les pertes
provoquées par les collisions non élastiques) l’échantillon est très dilué, des
millions de fois moins dense qu’un gaz idéal à la pression atmosphérique et à
la température ambiante. Les températures de transition de phase sont alors
extrêmement petites, de l’ordre du microkelvin, ce qui a constitué pendant
longtemps un défi considérable.

0.1 L’expérience d’hélium métastable.

L’hélium métastable (He∗) a rejoint, en 2001, le groupe des espèces ato-
miques diluées condensées. C’était également la première fois qu’un CBE a
été réalisé dans un gaz atomique en dehors de l’état fondamental électronique.
Pour He∗, il s’agit du premier état électronique excitée de l’hélium, 23S1, un
état métastable avec un temps de vie de 9000 secondes et une énergie in-
terne de 20 eV. La manipulation optique de l’échantillon esot assurée par une
transition fermée vers l’état excitée 23P2 à la longueur d’onde de 1.083 µm.
L’état métastable a également un moment dipolaire magnétique qui permet
le piégeage magnétique et le refroidissement évaporatif par radiofréquence.
La polarisation magnétique de l’échantillon supprime fortement les collisions
non élastiques entre les atomes d’He∗, ce qui augmente la stabilité et la vie de
l’échantillon, et a finalement permis d’atteindre la CBE. Les 20 eV d’énergie
interne de l’He∗ sont suffisants pour extraire un électron d’une surface métal-
lique. Ce fait est employé dans la détection par temps-de-vol atomique (tdv),
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en libérant les atomes du potentiel de piégeage et en les laissant tomber sur
une galette de micro-canaux (GMC). Ce dispositif fonctionne comme un mul-
tiplicateur d’électrons et produit un signal proportionnel au flux atomique.

Le travail expérimental réalisé pendant la thèse.

Cette thèse rend compte du travail expérimental effectué sur deux sujets
dans la manipulation expérimentale d’un nuage quantique d’He∗ : i) nous
avons mesuré les paramètres fondamentaux pour décrire les collisions élas-
tiques entre atomes d’He∗ (longueur de diffusion a) et les collisions non élas-
tiques ionisantes entre deux et trois atomes d’He∗ (constantes d’ionisation à
deux et à trois corps β et L), ii) nous avons fait une mesure des corrélations
entre He∗ sur le flux atomique. Cette dernière expérience est conceptuelle-
ment équivalente à celle de Robert Hanbury Brown et Richard Twiss (HBT )
avec des photons en 1956, et qui a été une expérience pionnière en Optique
Quantique. Notre expérience a réalisé pour la première fois la mesure de la
fonction de corrélation de densité de particules massives pour un échantillon
atomique dégénéré et non dégénéré, confirmant le comportement prévu pour
la cohérence du second ordre.

Le gaz dégénéré et le gaz à la température cri-

tique.

Pour ces expériences, il est très important de caractériser le gaz, c’est-à-
dire faire sa thermométrie. Elles ont été effectuées avec des CBEs pur (presque
à T = 0) ou avec des nuages thermiques à proximité de la température cri-
tique. Caractériser un nuage atomique condensé est plutôt simple, puisque
le temps de vol atomique a une signature claire : c’est une parabole inver-
sée, très bien décrite théoriquement dans l’approximation de Thomas-Fermi.
Du point de vue expérimental, pour créer un CBE pur il suffit de refroidir
le nuage atomique jusqu’à ce qu’aucune composante thermique (c.-à-d. non-
dégénérée) ne reste piégée. Ce n’est évidemment possible que si le nombre ini-
tial d’atomes piégés au début du refroidissement est suffisant pour atteindre
la dégénérescence avec un nombre raisonnable d’atomes. La production d’un
nuage atomique au point critique présente une difficulté supplémentaire. Ici,
le processus de refroidissement évaporatif doit être interrompu au moment
précis où l’échantillon est au seuil de la CBE. C’est une tâche difficile puisqu’il
faut connâıtre la fugacité (reliée au potentiel chimique) du nuage thermique
en temps réel pendant l’évaporation. Dans une expérience standard de CBE
où la détection du nuage est optique, ceci ne peut être fait qu’en mesurant
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la variation de la densité optique d’un signal d’absorption. Une mesure en
temps réel pour voir si le nuage est au point critique ou non est, dans ce cas,
très difficile à réaliser. Avec l’He∗ nous avons une méthode additionnelle et
très fructueuse, que nous décrivons ci-dessous.

Les outils de diagnostics spécifiques à l’He∗ -

I : le flux d’ion.

La condensation d’He∗ est seulement possible dans un échantillon avec
spin polarisé où les collisions non élastiques sont très faibles. Néanmoins, il
y a toujours un petit taux d’ionisation encore discernable et proportionnel à
la densité du nuage. Ce signal permet de suivre l’évolution de la densité du
nuage vers la CBE, passant par la transition de phase, en temps réel et de
manière non invasive. En particulier, le flux d’ions permet de déterminer le
point critique de la transition de phase. Ce flux d’ions est également détecté
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Fig. 1 – Le signal d’ion : a) signal real et b) signal simulé.

par la GMC. Contrairement aux atomes, les ions sont attirés vers la GMC par
un champ électrique. Ceci a deux avantages : i) comme le temps de vol des
ions est très faible, le signal détecté mesure en temps réel le taux d’ionisation
dans le nuage, ii) le signal d’ions est une mesure absolue puisque, en prin-
cipe, tous les ions peuvent être détectés. Ceci ne se produit pas par exemple
avec le signal de tdv, où un calibration du nombre total d’atomes n’est pas
possible. Un signal d’ions typique est présenté Fig.1−a. A un instant donné,
sa pente change brutalement, ce qui est conforme à la présence d’une tran-
sition de phase. Pour mieux comprendre ce phénomène, nous avons fait une
simulation (Fig.1−b), en utilisant un modèle semi-classique pour la densité
du nuage atomique. Ce modèle inclut une composante thermique ainsi qu’un
nuage condensé, traitant le premier comme un gaz idéal soumis à un poten-
tiel de piégeage modifié par le champ moyen du CBE. L’analyse des résultats
obtenus avec ce modèle permet d’interpréter l’évolution temporelle du flux
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d’ions. Elle établit la correspondance entre l’évolution du signal d’ions et celle
de la fugacité du nuage (ligne verticale sur Fig1.b) et indique la position du
point critique. En comparant ces résultats aux données expérimentales, nous
pouvons déterminer dans une expérience où se trouve la transition de phase.
Ceci a été fait dans l’analyse de données ainsi qu’en temps réel pendant
l’acquisition de données.

L’analyse du temps-de-vol atomique.

Même si elle est prometteuse, la thermométrie basée sur le flux d’ions n’est
pas assez précise à cause des fluctuations du potentiel de piégeage. Ainsi, le
diagnostic le plus important pour caractériser les nuages thermiques est le
tdv atomique. Pour obtenir une bonne description de la densité du nuage,
nous avons utilisé un modèle théorique qui inclut l’effet des interactions inter-
atomiques. Nous avons développé une procédure d’ajustement fondé sur ce
modèle pour déterminer la température ainsi que la fugacité du nuage. La
valeur de ce dernier paramètre permet de décider si un nuage est au point
critique.

Fig. 2 – Trois exemples de tdv pour des nuages avec des fugacité assez différentes.

L’ajustement des tdv est très sensible à la bonne détermination du bruit
dans ces signaux. Dans la Fig.2 nous traçons trois tdv de différentes fugacités.
Les lignes pointillées représentent des courbes avec des fugacités beaucoup
plus petites que 1 et les pleines l’ajustement à notre modèle. Nous notons
que la différence entre les deux cas est tout à fait petite et comparable au
bruit de tdv.

Les outils de diagnostics spécifiques à l’He∗ -

II : la détection d’atomes uniques.

La très bonne réponse temporelle et le fort gain de la GMC permet la
détection d’atomes uniques, ce qui est très difficile à réaliser dans des ex-
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périences plus conventionnelles de CBE utilisant l’imagerie optique. L’utili-
sation d’une GMC couplée avec un détecteur sensible de position (basé sur
une ligne à retard) nous a permis de faire une expérience de corrélation HBT
d’intensité. La cohérence de second ordre correspond à la fonction de cor-
rélation du module carré du champ. D’un point de vue des particules, elle
mesure des corrélations de densité et est liée à la probabilité conditionnelle de
trouver une particule à un certain endroit étant donné qu’une autre particule
est présente à un autre endroit. Les bosons ont tendance à être détectés en-
semble, un effet habituellement appelé groupement ou bunching bosonique.
La détection d’atomes uniques rend l’expérience de HBT particulièrement
commode avec He∗. Une part importante de la thèse est dévolue à la déri-
vation d’une expression analytique de la fonction de corrélation d’intensité
du flux atomique. Cette analyse a permis d’obtenir des valeurs typiques pour
les longueurs de corrélation, transverse et longitudinale, et de confirmer la
possibilité de réaliser une expérience de type HBT sur notre montage expéri-
mental. Ses conclusions principales sont : i) les fonctions de corrélation à l’in-
térieur du piège et dans le tdv atomique sont équivalents dans nos conditions
expérimentales : elles peuvent être reliées simplement par une loi d’échelle
sur les coordonnées, ii) le volume de cohérence augmente avec la taille de
nuage, et vaut λT ωt, avec λT la longueur d’onde thermique de de Broglie du
nuage piégé et , la fréquence d’oscillation du potentiel de piégeage.

Les résultats sur la mesure de la longueur de

diffusion.

Fig. 3 – a) Signal d’ion en fonction de la température pour des nuages à T = Tc. b)
les résultats finaux pour l’analyse des la détermination de la longueur de diffusion
de l’He∗.

Choisir des données à T = Tc a joué un rôle très important dans l’analyse
des expériences cherchant à mesurer la longueur de diffusion, a, de l’He∗.
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Cette longueur a été mesurée en comparant le flux d’ions, qui a une dé-
pendance forte avec a, avec la densité atomique de nuages à la température
critique (voir Fig.3-a). Ceci a été fait en utilisant les méthodes décrites ci-
dessus pour l’analyse du tdv ainsi que du signal d’ions. Le résultat obtenu
confirme une analyse précédente et donne a = 11.2 nm. L’analyse statistique
des résultats a donné un écart type d’environ 0.3 nanomètre (voir le Fig.3-b).



Introduction to the thesis.
Outline.

In 1925, Albert Einstein predicted that if an ideal gas of bosonic atoms
were cooled below a certain transition temperature it would undergo a phase
transition to a new state where a macroscopic fraction of the atoms would
occupy the same fundamental state of the system[1] creating a highly coher-
ent atomic ensemble. As Einstein pointed out, this remarkable statement
is a consequence of the statistics of identical particles with integral spin,
which had been recently derived by himself and Satyendra Nath Bose[2]. De-
spite this early prediction, it only became possible in the 1990’s to create a
Bose-Einstein condensate (BEC ) in dilute atomic samples, as Einstein had
originally imagined.

BEC in dilute gases.

In these experiments the gas is strongly localized in both coordinate and
momentum spaces[3]. To avoid the formation of dimmers (and also to reduce
losses due to inelastic collisions) the sample is very dilute, typically millions of
times less dense than an ideal gas at atmospheric pressure and room temper-
ature. This leads to extremely small phase transition critical temperatures,
typically in the range of microkelvin1, and has long constituted a considerable
challenge for experimental physicists.

The first atomic BEC s were obtained in 1995. The impact was so great
that only six years later E. A. Cornell, W. Ketterle and C. E. Wieman re-
ceived the Nobel Prize in 2001 ”for the achievement of Bose-Einstein con-
densation in dilute gases of alkali atoms, and for early fundamental studies
of the properties of the condensates”. One remarkable experiment reported
by Wolfgang Ketterle’s group at MIT demonstrated that when two indepen-
dent BEC s were superimposed they interfere[5] in much the same way as
coherent light. This was the first clear demonstration of first order coher-
ence of the associated atomic quantum field, which could be characterized
through the visibility of interference fringes. Other impressive experimental
achievements were the realization of pulsed and CW atom lasers[6, 7, 8, 9]
and the observation of the interference of two matter-wave beams emitted

1In condensed matter systems critical temperatures are much higher. For example, the
superfluidity of liquid helium takes place at 2.18◦K[4].
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from two spatially separated regions of the same BEC [10]. These pioneering
experiments have verified that in many senses, below the BEC condensation
threshold, bosonic atoms become coherent in phase and degenerate in energy,
much like the stimulated emission of a single mode laser beam. The similar-
ities between coherent atoms and photons[11] allow many of the key ideas of
quantum optics to be directly carried over to describe coherent atom optics.
However there are several key differences between atoms and photons; atoms
have both mass and internal states that have no counterparts in photons. An
especially important difference is that atoms can also interact directly with
each other, without requiring a nonlinear medium that mediates the inter-
action between photons. For example, it is possible to carry out an atomic
four-wave mixing experiment in which three different coherent atomic beams
interact in a vacuum to generate a fourth beam[12].

Bose-Einstein condensation in Metastable Helium.
To get to the point where it was possible to produce a BEC in a di-

lute sample, many important new experimental techniques have contributed.
Among these, the demonstration of optical trapping of macroscopic objects
dates from the beginning of the 70’s[13] and of neutral atoms in the early
80’s[14, 15]. Optical cooling techniques [16, 17, 18] were developed soon after
and also those for magnetically trap the atoms[19]. Evaporative cooling was
developed initially within the efforts to achieve BEC in hydrogen, also in the
early 80’s[20].

The first experiments achieving BECwere done in 1995 and counted
three different alkalis: rubidium (87Rb)[21], sodium (23Na)[22] and lithium
(7Li)[23]. Still within the alkalis, there are today BEC experiments with
potassium (41K)[24], with another isotope of rubidium (85Rb)[25] and also
with cesium(133Cs)[26], this one using an optical dipole trap[27]. Also us-
ing this type of trap, ytterbium (74Yb)[28] and chromium (52Cr) [29] have
recently attained condensation. The pioneering atom, hydrogen, was con-
densed only in 1998[30].

In 2001, it was the time of metastable Helium (He∗) to join the group of
condensed species in a dilute atomic sample[31, 32]. It was also the first time
BEC was done in an atomic gas not in the electronic fundamental state2.
Unlike the alkali, in the He∗ experiment the atom is initially prepared into
its first electronic excited state 23S1, a metastable state with a life time of
9000 seconds and internal energy of 20 eV.

There are two main reasons for preparing the sample in the 23S1 state.
First, unlike the ground state, this metastable state has a closed optical tran-
sition to the excited triplet 23P2 state3, that can be addressed with available

2There is also one experiment aiming to achieve BEC with 20Ne[33] and another where
metastable xenon was optically trapped[34].

3The 23P2 decays to the fundamental state 11S0 in a few seconds[35] whereas it decays
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laser sources (at the wavelength 1083 nm). This is essential to optically trap
and cool the sample[36, 37] and also to use the most standard optical detec-
tion schemes as absorption, fluorescence and refractive measurements[38].

The sample is also prepared in the metastable state to have a perma-
nent magnetic dipole moment, necessary for magnetic trapping. Moreover,
the magnetic polarization of the sample strongly suppresses the inelastic col-
lisions between He∗ atoms, increasing the stability and the lifetime of the
sample[39]. This has motivated the design of our experiment, where He∗ was
condensed for the first[31] and, also, in another experiment at the École Nor-
male Supérieure (ENS )[32], that has achieved BEC almost simultaneously as
in our group. He∗ condensation was also be attained in Amsterdam[40] and,
recently, also in Canberra[41]. The Amsterdam’s group has also achieved
degeneracy in the fermionic isotope 3He using a two-color magneto-optical
trap [42] and sympathetic cooling[43].

The He∗ unique diagnostic tools: I-single atom detection.

The internal energy of the He* is sufficient to extract an electron from
a metallic plate. This is used in our experiment, as well as in the one at
Amsterdam, to detect the atomic cloud with micro-channel plate (MCP)[44].
This device works as an electron multiplier and outputs a signal proportional
to the atomic flux that arrives at its sensitive surface. The extremely good
MCP time response and high gain allows single atom detection, which is
very difficult to achieve in more conventional BEC experiments based upon
optical imaging.

The use of a MCP along with a position sensitive detector based on a
delay line has allowed us to make an intensity correlation experiment with
massive particles, an experiment that is conceptually very similar to the
one carried out in 1956 by Robert Hanbury Brown and Richard Twiss with
thermal light.

This experiment remains nowadays as one of the landmark experiments
in quantum optics. It measured, for the first time, the second order temporal
coherence (i.e., the correlation function) of photons from a thermal field. We
will refer to this experiment, form here on, as the HBT experiment. From
a particle point of view it quantifies density correlations and is related to
the conditional probability of finding one particle at a certain location given
that another particle is present at some other location. Photons originating
from a thermal source have the tendency to be detected close together, an
effect usually referred as bosonic bunching. This behavior is common to any
source of thermal bosons as is the case of a thermal cloud of He∗ atoms. The
single atom detection capability of our experiment is particularly convenient
for carrying out a HBT type of experiment with massive particles.

to 23S1 in only 98 ns.
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The He∗ unique diagnostic tools: II - the ion signal.

BEC in spin polarized He∗ is possible because the inelastic collisions are
highly suppressed. Even so, a small rate of ionizing processes remains giving
rise to a small but still detectable flux of ions, proportional to the cloud’s
density. This is a very remarkable tool that allows following the evolution
of the cloud’s density toward BEC, passing through the phase transition, in
real time and in a non invasive way. In particular, the ion signal can be used
for determining when the critical phase transition happens. At this partic-
ular instant of time, the cloud’s density and the ion flux increase abruptly,
indicating the phase transition.

We have used the ion signal and its exceptional behavior close to the
critical point to help producing clouds at the vicinity of the BEC threshold.
This was used in one of the experiments we carried out, on the determination
of the S-wave scattering length of the He∗, a (which we will refer in the
following). The determination of the critical point through the ion signal
analysis could also be used in several other experimental situations. For
instance, it could be used to sort data in a HBT experiment with clouds
at the critical temperature. This would allow the investigation of quantum
bosonic effects and of critical fluctuations through the analysis of the density
correlation function.

The experimental work realized during the thesis.

In this manuscript we describe and present the results of three different
experiments realized during my thesis.

The one we describe first is the already referred HBT experiment that has
measured the intensity correlation function of a falling He∗ cloud. In this ex-
periment, we realized for the first time a measurement of a massive particles’
correlation function for a BEC and also for non-degenerate atomic samples at
different temperatures close to the critical temperature. We have confirmed
the expected behavior of the second order coherence function of bosons, with
similar results as those already known for photons. This experiment is briefly
described in Chapter 3, where we also show its main results.

The other two experiments realized during my thesis are quite different
from the one just referred. They were carried out before the HBT experi-
ment and had the goal of measuring collisional properties of the He∗: i) the
ionizing rates due to inelastic collisions between two and three atoms of He∗,
β and L respectively[45] and; ii) the He∗ S-wave scattering length a[46], the
fundamental parameter that characterizes elastic collisions between atoms in
a very cold gas. Conceptually, both experiments rely on a comparison be-
tween the ion flux produced within the cloud and its mean density, inferred
from the analysis of the atomic time of flight (TOF ) that is recorded when
the cloud is released from the trap and falls over the MCP. In the first experi-
ment (on the ionization constants), this comparison was done for condensed
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clouds whereas in the second, we used thermal clouds close to the critical
temperature.

We have summarized the description of the experiment on the measure
of β and L to the Appendix B, where we also show its main results. The
theoretical description of the BEC and of its time of flight is also postponed
to the Appendix A.

The results obtained in this experiment for β and L were used subse-
quently in the data analysis of the experiment for measuring a. This latter
one is described in detail in Chapter 5. As we referred above, it relies on the
comparison of the ion flux of clouds at the critical temperature, which varies
considerably with a, with the corresponding atomic densities, only weekly
dependent on a. We use this experiment and its data analysis to describe, in
Chapter 4, a few techniques we developed during the thesis to analyze both
the ion flux and the atomic TOF of thermal clouds at the critical point. In
Chapter 5, we discuss their use for improving the accuracy on the cloud’s
thermometry, mainly in the determination of the cloud’s chemical potential.
We show that the reduction of the uncertainty on the determination of this
quantity leads to a reduction of the statistical uncertainty in the final result
of a.

Thermometry in the critical phase transition I: the ion signal
analysis.

Along with the theoretical description of the intensity correlation func-
tion, the development of techniques of analysis of the ion signal and of the
atomic TOF has constituted the ”tour de force” of the work I did outside the
laboratory during my thesis.

To be able of carrying out any sort of experiments with atomic clouds
at the critical phase transition, one needs first to have a very reproducible
process to produce such clouds. In Chapter 4, we show that this is not
possible due to the bias field fluctuations of the trapping potential: the shot-
to-shot variation of the bias field makes that, even for similar conditions for
the evaporative cooling and similar loads of the magnetic trap, the resulting
clouds vary considerably in number of atoms and temperature.

A way around this is to take data as close as possible to the critical tem-
perature and then use some process to sort from these data set those that
better correspond to clouds at T = Tc. To get as close as possible to Tc

may be achieved just by analyzing the ion signal which has the advantage of
giving a real-time diagnostic of the cloud’s evolution. The phase transition
imposes an abrupt variation of the density, which produces a rather spectac-
ular increase of the ion flux signal. Somewhere within this transient period of
time lays the critical point and, to get clouds at Tc, the evaporative cooling
should stop at that very especial critical time. The remaining question is
how to determine accurately this critical time. If the scattering length and
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the ionizing rate constants are known, the ion flux signal can be computed,
taking some adequate model (with more or fewer approximations) for the
theoretical description of the cloud’s density. In any case, this latter one has
only two parameters: the cloud’s temperature and chemical potential µ (or,
alternatively, the number of atoms). During evaporation, while the cloud
cools down it also looses atoms due to the evaporation itself and also to the
inelastic collisions. This leads to a continuous setting of the cloud’s chemical
potential that ends, hopefully, with µ ≈ 0 and a BEC growing within the
cloud. The analytical description of this process is hard to workout due to
the mutual interdependence of the various processes involved4 making the
theoretical prediction for the time evolution of the cloud’s density and the
ion flux a non trivial task.

In this thesis we have opted to carry out instead a simple numerical time-
stepped simulation that computes the cloud’s density and chemical potential
evolution, admitting a certain variation of the temperature imposed by the
evaporation process. In this routine we use a so called semi-ideal[47] model to
describe the thermal cloud, which accounts to the BEC repulsion, with this
latter described in the Thomas-Fermi approximation. Within the validity of
this model, the routine is used to derive the location, on the ion signal, of
the critical point.

The results of this simulation were used to characterize in a very generic
way where the critical point should be found. This was used to deal with
real data and to compute an empirical curve expressing the expected ion flux
generated by a cloud at the critical point in function of the corresponding
instant of time it happens, for all attainable critical temperatures in our
experimental conditions (see §4.2.4). This critical curve was used to guide
the procedure of taking data (it indicated where the evaporation should stop)
and also in the posterior procedure to sort the data.

Thermometry in the critical phase transition II: The time of
flight signal.

The determination of critical point through the analysis of ion signals
can be made very accurate but only if the bias field fluctuations are small.
Unfortunately, this is not the case in our setup and the precise moment at
which the cloud is at T=Tc changes from one experimental run to the next.
We show in Chapter 4 that this leads to an uncertainty in the determination
of the cloud’s chemical potential of about 10% of kBT , which is not entirely
adequate for sorting data at Tc.

This task should be carried out through the analysis of the cloud’s time
of flight (TOF ) signal that is a direct inspection of the cloud’s density (after

4This is true even for the simplest case where the thermal and the condensed clouds
are treated as separate objects, using semi-classical formulae for describing their density
profiles and mean field models for the interatomic interactions.
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expansion). This is done fitting the TOF s to a theoretical model. Here, as
before, the main problem is to obtain an accurate determination of the cloud’s
chemical potential. There is no simple fitting model that describes the cloud’s
density in both sides of the critical transition: the fitting expressions used for
thermal clouds are not defined for positive chemical potentials. Therefore, for
TOF s where this quantity is identically zero, a standard fitting procedure is
unable to work properly since it cannot compute the chi-square in both sides
of that minimum. In chapter 4 we propose a strategy (further detailed in
Appendix D) to go around this problem. The idea, in brief, is to extrapolate
the behavior of the chi-square for µ < 0 into the critical region, where µ ≈ 0,
and thus avoiding the computation of this quantity for µ > 0. The resulting
uncertainty in the value found for the chemical potential is estimated in
Appendix D to be of about 2.5% of kBT . We will denote this procedure in
the following as the χ2-map strategy.

The characterization of the noise in the experimental TOF and the use
of an appropriate model for fitting these signals are essential ingredients to
reduce the uncertainty on the determination of µ. One has two different
issues: the description of the cloud’s density at thermal equilibrium inside
the trap and the description of its expansion under the influence of gravity.

The standard formulae for the description of density of harmonically
trapped gases are derived in the semi-classical approximation and are ex-
pressed using infinite sum functions known as Bose functions (which are
easily computable). These expressions may include a first order correction,
on the trapping frequency, to account for the finite size of the cloud. This
is however the only corrective term that can be considered, since all other
higher order terms leads to diverging infinite sums. This leads us to further
investigate the validity of the semi-classical approximation when used in the
description of the cloud’s density. We found that, when the contribution of
the fundamental state is taken into account, the peak density critical value
should be around 6.24/λ3

T instead of the usual ζ(3/2)/λ3
T , with λT the ther-

mal de Broglie wavelength. The discrepancy between an exact calculation
and the semi-classical expressions is however only important close to the cen-
ter of the cloud. We show that a single integration of the atomic flux over
a spatial direction is enough to make the semi-classical approximation valid.
We have verified in Chapter 2 that, for our data analysis, the semi-classical
expression gives a good enough description of the atomic TOF signal. In
Chapter 4 we complement this simple model for the ideal gas by including
interatomic interactions. This is done within a mean field model[48] that
relies upon some approximations of which the validity will be discussed.

The formalism for treating the expansion and fall of the cloud is given
in Chapter 2, for the ideal gas case. We use a Green function to propagate
the harmonic oscillator wave functions in the gravitational field and, using a
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quantum mechanic definition of the matter flux, compute the atomic TOF.
As for the cloud’s density, the influence of the interaction between atoms is
left to Chapter 4, where we discuss the hydrodynamical regime.

The second order coherence function in an atomic beam.

The formalism needed to derive the atomic TOF is extended in Chapter
3 to deal with the intensity correlation function of the particles flux when
the cloud is released from the trap. This theoretical analysis has derived
typical values for the transverse and longitudinal atomic coherence length
that have confirmed the possibility of performing an HBT experiment with
our apparatus. It has also helped in the study of the necessary upgrades of
the detection system. We will briefly discuss these upgrades[49] and show
the main results of this experiment[50].

The data treatment on the scattering length experiment. The
systematic error on the determination of a.

Despite all our efforts to have a proper cloud’s thermometry and an ac-
curate determination of a, the value we have measured is affected by a large
systematic error. Chapter 5 starts by describing our first data analysis on
this experiment. It is based on a model that assumes from the beginning
that µ = 0, avoiding the determination of the actual value of the chemical
potential for each cloud[51]. We develop then a second approach, using the
χ2-map strategy to determine the chemical potential of each individual cloud
and use that value in the determination of a. This second analysis conduced
to a smaller statistical uncertainty on the value we find for a, which how-
ever is not very different form the one that had been obtained previously:
a = 11.2± 0.4 nm.

A recent and very precise light-induced collision spectroscopy experiment,
made in the group at the ENS has rather obtained a = 7.512 ± 0.005 nm,
a result that indicates we have committed an error of about 50% in our
experiment. This manuscript ends with an attempt to explain this huge
discrepancy. We will address the description of the process through which
the cloud is released from the trap. We show that if the trapping potential
switch-off is not fast enough, the initial moments of the cloud expansion may
change dramatically the thermometric interpretation of the cloud’s TOF,
both for thermal and condensed clouds.

The plan of the manuscript.

In the following we present the outline of the thesis, highlighting for each
Chapter, the more pertinent aspects regarding the structure of the manu-
script.

• Chapter 1 - In the first Chapter we present a detailed description of
our experiment in what concerns the production and detection of an
ultra-cold could of He∗. Most of the first and second Sections of this
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Chapter describe very standard techniques widely used in the exper-
imental field of cold quantum gases. We also introduce the working
principle of the MCP (§ 1.3.1) and the process through which the cloud
is released from the trapping potential. This Chapter discusses finally
the two major experimental difficulties we have to deal with in our
setup. The first of these, referred above, is bias field fluctuations. Sec-
tion §1.2.2 describes in some detail this problem. The second major
experimental problem we faced in this thesis had to do with the im-
possibility of getting an absolute calibration of the number of atoms in
the atomic time-of-flight signals (see §1.3.6.1).

• Chapter 2 - This Chapter introduces the theoretical models and defini-
tions used throughout the manuscript. It is divided into two Sections: i)
the theoretical description of an ideal gas in thermal equilibrium inside
a harmonic potential (§2.1.1); ii) the description of the atomic time-of-
flight in the ballistic approximation (§2.2). In i) we discuss the criteria
for defining the critical phase transition (§2.1.1.1), in particular for the
cloud’s peak density and the validity of the semi-classical approxima-
tions (§2.1.1.2). In paragraph §2.2.2, we introduce the approximations
we use in the analysis of the atomic time-of-flight signals.

• Chapter 3 - This Chapter is based on Ref.[52] and details the calcu-
lation of the intensity correlation function in the atomic flux generated
by the free fall of a cloud of atoms in the ideal gas approximation.
The results reported here gave the first indication that our setup could
be used in HBT experiment. The Chapter starts by reviewing the
main ideas of first and second order coherence theory in optics and its
generalization for a quantum field of massive particles. This is done
explicitly for an ideal gas trapped in a harmonic trap (§3.3), stressing
particularly the case of a cloud at the critical temperature. The case
of an expanding cloud under the effect of gravity (§3.4) is then dealt
with and expressions for the intensity correlation function are derived.
The last Section of this Chapter reports briefly on the upgrade of the
setup and on the main results of this experiment.

• Chapter 4 - In this Chapter we describe the techniques we have devel-
oped during the thesis for the cloud’s thermometry within the analysis
of both the ion flux (§4.2) and the atomic TOF signals (§4.3). The first
Section of this Chapter deals with the problem of how to interpret the
ion signal. We start by presenting the simple model used in the simu-
lation of the cloud’s density and the ion signal temporal evolution. We
discuss two possible procedures to determine the critical point in an ion
signal and present the critical curve obtain for real data. We also derive
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the relation between the experimentally observed bias field fluctuation
and the uncertainty on the determination of the chemical potential.
The second part of this chapter describes the mean field model used for
fitting the TOF signals and the correction on the obtained temperature
due to the hydrodynamical effect.

• Chapter 5 - This manuscript last Chapter makes use of the cloud’s
thermometry to measure the scattering length. We start by describ-
ing this experiment in some details (§5.2) and the procedure we used,
initially, to analyze the data. Then, and after discussing the data dis-
persion we observe on the result we explain how we can improve the
accuracy, by improving the thermometry of the acquired TOFs. The
proper determination of the temperature and fugacity of a thermal
cloud at the vicinity of the critical point is the goal of the χ2-map tech-
nique, a method we introduce in this Chapter. The last Section of this
manuscript discusses the error committed on the determination of a.
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Bose-Einstein Condensation of
Metastable Helium: the
apparatus.

In this Chapter we will present our He∗ experiment. In the first part we will
describe how we produce a cloud of cold atoms of He∗and how we manage
to achieve BEC with it; in the second part we describe how we detect the
atomic cloud.

All the methods we describe here to trap and cool down the atoms are
standard techniques in most of BEC experiments in dilute atomic samples.
We will start the description of our experiment by presenting the magnetic
trapping and the evaporative cooling techniques, explaining how they work
and also describing their experimental implementation in our setup. The
combination of these two techniques has constituted the final breakthrough
in the achievement of Bose-Einstein condensation in dilute atomic samples.

The evaporative cooling is just the final part of all the processes involved
in the production of a BEC and, in our experiment, it takes about thirty
seconds to be completed. Most of the work presented in this thesis is related
with the physics of non-degenerated clouds near the critical transition point.
Since this transition is attained in the last few seconds of the evaporative
cooling, this process takes an important role in many of the subjects presented
throughout this manuscript.

To get a magnetically trapped atomic cloud, many other steps must be
taken however. In the paragraph §1.2.3, we will come back a few steps
back in the experimental track to explain how we manage to produce the
He∗ atoms (the atomic source) and also to describe all the necessary laser
based techniques we use to achieve loading an already cold atomic cloud into
the magnetic trap.

Diversely to the techniques we use to trap and cool down the atoms, the
detection system in our experiment can not be considered as a standard one
when compared with most of the cold atoms experiments. Rather than using
optical methods (like imaging the cloud’s absorption of a laser beam), in our
experiment the atoms’ detection is made electronically using a micro-channel
plate (MCP). The use of the MCP in this case is possible due to the He∗ internal
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energy, sufficient to extract an electron from the metallic frontend surface of
the MCP. We show how we use this device to detect our cloud. With it, it is
even possible to make single atom detection. This is a very important ability
of our setup and we will show in Chapter 3 how it was used to measure
the density-density correlation function. Before entering into the experiment
description, we will briefly present the road map we need to follow, in the
experimental point of view, to achieve condensation.
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1.1 Road map to achieve BEC in He∗.

The critical phase transition.

Traditionally, the critical transition to BEC is presented for the homogeneous
ideal gas case. In this case, BEC occurs when the spatial atomic density, n,
and the gas temperature, T , is such that the following relation is respected[3],

n× λ3
T = ζ (3/2) , (1.1)

where T enters in the definition of λT =
√

2π~2

MkBT
, the de Broglie thermal

wave length with M the atomic mass. In practice, the atomic cloud has to
be trapped somehow and its density is, in general, inhomogeneous. This is
the case of a harmonically trapped cloud, for which the above relation is still
valid if one replaces the homogeneous density by the cloud’s peak density,
n(0), the density at the center of the trap. The factor n(0)× λ3

T is, in fact,
the phase space density and, its critical value ζ(3/2) ≡ 2.612 is the objective
one pursuit for achieving BEC.

λT λT

n-1/3n-1/3

Figure 1.1: An intuitive interpretation of the critical phase transition relation for
a dilute cloud of cold atoms. Here, λT is the de Broglie thermal wavelength of the
atoms and n, the cloud’s density. When λT ∼ n−1/3 the atoms start overlapping
and the phase transition occurs.

A generally used interpretation of the expression in Eq.1.1 is the one
sketched in Fig.1.1: for low enough temperatures, the atoms wave functions
start to spread out and then to overlap with theirs neighbors, becoming indis-
cernible. In here, the critical transition happens when the spatial separation
between two particles is comparable to the de Broglie thermal wavelength of
their wave packets, a similar relation as that stated in Eq.1.1. We will revisit
this relation in the Chapter 2, in more detail.

In cold atoms experiments, the typical value for the critical temperature
is around 1µK, several orders of magnitude smaller than, for example, the
critical temperature for the lambda transition point where the liquid helium
becomes superfluid, around 2.2K[4]. Note that, for a critical temperature of
1µK, the relation of Eq.1.1 predicts a critical density for the He∗ gas around
1012cm−3, which is seven orders of magnitude smaller than the air density at
normal conditions of pressure and temperature.
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Brief comment in all-optical atom cooling methods.

Up to the moment this manuscript was finished, all BEC experiments have
only attained condensation trough evaporative cooling methods, either in
magnetic or dipole optical traps. As we will further explain in §1.2.1.3, one
of the main disadvantages of the evaporative cooling is to be a depletive
method: to cool down the cloud, some atoms (the hottest) has to be expelled
out of the trap. In fact, due the finite life time of the sample, typically a
few tens of seconds, evaporation must be completed in a time that must be
short when compared to the trap losses rate. Speeding up the evaporation
implies increasing the number of ejected atoms and, in the end of the cooling
process, only a small percentage of the initial population remains trapped
and cooled down to the BEC transition temperature.

There are also atom cooling techniques that work by laser cooling alone.
There are especially two techniques that allow attaining temperatures below
the recoil limit, kBTr = (~k)2/2M 1: the velocity-selective coherent popu-
lation trapping (VSCPT) [53, 54] and the Raman cooling [55, 56]. These
methods relies on the existence of single atom dark states, a Raman induced
coherent superposition of two states with momentum ±k, insensitive to the
cooling laser. These are stationary states, eigenvectors of the total Hamil-
tonian, being populated by atoms coming from the absorbing states through
momentum redistribution due to spontaneous emission. The attained tem-
peratures are in the nanoKelvin regime and, unlike the evaporative cooling,
they preserve the initial number of atoms. Moreover, these all optical meth-
ods may complete an entire cooling cycle in a fraction of a second. This is
an important advantage when compared to the tens of seconds needed by
the evaporative cooling stage 2. Additionally, laser cooling methods may
be used to cool fermionic samples down to the superfluid BCS state[57], a
regime where evaporative cooling techniques are unable to attain[58].

Unfortunately, laser cooling techniques present still serious limitations to
achieve large atomic densities. In here, light reabsorption appears as the main
obstacle for achieving low temperatures at the very dense optical media of the
cold gases close to the critical transition. The above referred velocity depen-
dent dark states are dark only for laser light involved in the cooling scheme.
These atoms can interact with the light emitted spontaneously by other atoms
in the sample, making them abandon the absorption-free state[59]. Several
strategies have been proposed to overcome this difficulty as, for example,
using very anisotropic potentials, where most of the spontaneously emitted

1This temperature corresponds to the kinetic energy that is transferred to the atom
when it spontaneously emits a photon with momentum ~k.

2These times are reduced several times for experiments done in microchips devices,
where the higher confinement of the atomic cloud enhances the elastic collisions rate (see
also §1.2.1.3).
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photons does not interact with the atomic sample, or very confining traps
with linear sizes comparable to the wavelength of the emitted photon. The
most promising however is a scheme known as the festina lente scenario[60].
Here, the time between two spontaneously emitted photons, Γ−1, controlled
by the Raman pumping rate, is made to be much larger than the inverse
trapping frequency time. Theoretical predictions show that, within this con-
dition, reabsorption processes are suppressed, avoiding the heating of the
atomic sample. Even so, up to this date there is no experimental prove of
the usefulness of any of these schemes for cooling atomic samples down to
the degeneracy point.

Road map to the BEC.

Despite its depletive character, with evaporative cooling it is possible to
increase the atom’s phase space density up to the critical BEC transition. As
we will describe in the following Sections, in our experiment, this technique is
used on an atomic cloud trapped in a magnetic trap. The task of capturing
and pre-cooling the atoms before loading them into the magnetic trap is
taken by a magneto-optical trap (MOT). This apparatus uses both laser beams
and magnetic fields to confined and cool down the atoms. The MOT is loaded
by an atomic beam delivered by a hot atomic source. To achieve loading the
MOT, a few other laser based techniques are used to first collimate transversely
and then reduce the longitudinal velocity of the atomic beam (see §1.2.3).

In the Table1.1 we make a summary of the three intermediary stages
needed to attain BEC in our experiment. There we present typical values
for the phase space density, the number of trapped atoms and the cloud’s
temperature and density.

1.2 Producing a metastable helium Bose Ein-

stein condensate.

Metastable helium has two fundamental characteristics that allow achieving
BEC. First, the He∗ atom can be optically manipulated by commercial lasers
in the closed optical transition between the 23S1 and 23P2 states; second, it
has a permanent dipole moment, µ, which allows using a magnetic trap. We
will come to both of these characteristics in the following Sections. We start
now with the latest and explain the magnetic trapping of neutral atoms.

1.2.1 The magnetic trap and evaporative cooling.

The magnetic trap and the evaporative cooling process rely in very simple
but powerful ideas. Here, we revise briefly those ideas and emphasize the
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n0λ
3
T N T [µK] n0 [cm−3]

Atomic beam
10−30 − 10−20 − − −

Laser trapping
and cooling

10−6 108 102 − 103 109

Magnetic trap and
evaporative cooling

≈ 1 103 − 106 0.1− 5 1013

Table 1.1: The cloud’s degeneracy parameter, number of atoms, temperature and
density at the end of each of the three main techniques involved in the BEC pro-
duction: the production of a atomic source, the trapping and pre-cooling with laser
based techniques and, finally, the evaporative cooling of the magnetically trapped
cloud down to the BEC transition point.

most important details with respect to our experiment.

1.2.1.1 Trapping neutral atoms with a magnetic field.

Unlike the alkalis, the helium in its fundamental state is a singlet state with-
out dipole moment. However, exciting one of its electrons to the first elec-
tronic excited state 23S1, it stays in a metastable state (with a life time bigger
than 2 hours [61, 62]) which has a permanent magnetic dipole moment, µ.

Immersed in a magnetic field, the He∗ atom dipole has a position depen-
dent interaction energy given by

U(r) = −µ ·B(r).

In the classical picture, the magnetic dipole experiences a torque due to the
interaction and processes around the magnetic field B at the Larmor pre-
cession frequency, νL = |µB|/~. If this frequency is much larger than the
inverse of the typical variation time scale of the magnetic field, the dipole µ
will adiabatically follow the magnetic field B. This adiabatic condition, if re-
spected, predicts that the atom will preserve all the time its initial magnetic
spin polarization. We will see further on in this Section that the magnetic
field in our trap is never smaller than 0.3G. To this field corresponds a Larmor
frequency of about 106Hz, which is about three orders of magnitude bigger
than the maximum oscillation frequency of the trap. The adiabatic condition
is then fulfilled and we may replace the scalar product of the above equa-
tion by U(r) = gJµBmJ |B(r)| with mJ the projection of the total angular
momentum J, gJ the Landé factor and µB = e~/2me the Bohr magneton.
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Thus, to trap the atoms, the potential U(r) must have a local minimum
at some given location and deep enough when compared with the atom’s
thermal energy kBT .

It is a well known result that the Maxwell equations predict the non
existence of local maxima of dc magnetic fields in free space[63]. Thus, the
only way to get a minimum in the potential energy is to create a minimum in
the magnetic field with also gJmJ > 0. This is the case of the magnetic sub-
level mJ = 1 of the electronic state 23S1. Since for this state L = 0, J ≡ S
and gJ = +2. An atom polarized in this state is then a low field seeker in the
sense that it tends to minimize the interaction energy moving into the field
minimum. The electronic state 23S1 has also other two magnetic sub-levels
with projections mJ = 0 and mJ = −1. An atom polarized in this latter one
simply fly away from the minimum of the magnetic field, escaping the trap.
However, if it is polarized in the mJ = 0 sub-level, the atom is insensitive to
the magnetic filed and will simply fall under the effect of gravity.

B

µ

J
mJ=+1

U(r)

r

mJ=+1

mJ=0

mJ=-1

µB

Figure 1.2: The left hand side image illustrates the precession of the pure spin
state mJ = 1 around the magnetic field. The right hand side sketch represents
the equipotential curves corresponding to the three magnetic sub-levels of the
electronic state 23S1 deformed by the Zeeman effect induced by a parabolically
varying magnetic field. In here, the low field seeker state is the one with mJ = +1,
corresponding to a magnetic moment µ = −gJ

µB
~ J, antiparallel to the direction

of the field. The sub-level mJ = 0 is insensitive to the magnetic field and the one
with mJ = −1 is an anti-trapping state. Atoms polarized in one of these two states
escape from the trap.

In order to verify the previously referred adiabaticity condition and pre-
serve the atom’s spin polarization, the trapping potential needs to have a
finite minimum. If an atom passes, momentarily, through a zero magnetic
field it looses its magnetic quantization axis and may spin flip into any of
the magnetic sub-levels. If it flips to a non-trapping state, it is lost from
the trap. To avoid this effect, known as Majorana losses, it suffices then
that the trapping potential is always non null. However undesirable when
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trapping the atoms, the Majorana process become, in our experiment, very
useful for detection proposes. It spin flips some of the atoms into the mJ = 0
state during the trap switch off allowing the detection of free falling cloud
(cf. §1.3).

1.2.1.2 Trap geometry and configurations.

In our setup, the non-homogeneous magnetic field is produced by a set of
several coils in a clover leaf configuration[64], schematized in Fig.1.3. It is
an alternative configuration of the Ioffe-Pritchard quadrupolar trap [65, 66]:
the axial trap confinement, in the Ox axis, is assured by a pair of coils, the
curvature coils, in an off-Helmoltz configuration separated by a distance that
is roughly twice their diameters; other eight coils, referred in the Figure as the
gradient coils, creates a quadrupolar magnetic field that confines the atoms
in the radial trap direction (the yOz plane). This configuration produces an
on axis quadratic variation of the magnetic field with a non null minimum
that verifies the adiabaticity condition. Up to second order in cartesian

CompensationCurvature
Gradient

x
y

z   g

Figure 1.3: Clover-leaf magnetic trap schematic representation. The four inner
coils, the gradient coils, create a gradient of the magnetic field in the transverse
direction whereas the curvature coils are responsible for the axial confinement
of the atoms. The compensation coils creates a magnetic field in the opposite
direction of dipole field and are used to compress the trap (see also text). It is
usual to refer to the axial direction as the bias field direction. The gravitational
field direction coincides with the Oz direction. In our setup, the gradient coils are
placed 44 mm apart (the shown Figure was taken from the Ketterle’s group web
site).
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coordinates, the total magnetic field produced in such a Clover-leaf magnetic
trap is

B(x, ρ) '
√
B′2ρ2 +

[
B0 +B′′(x2 − 1

2
ρ2)
]2
, (1.2)

where ρ2 = y2 + z2 is the radial variable and B0, B
′ and B′′ expansion

coefficients for the constant, linear and quadratic terms respectively. The
coefficient B0, known as the bias field, is the magnetic field at the bottom
of the trap. This one results from the compensation of the curvature field
by the field produced by another additional pair of coils assembled, ideally,
in the Helmoltz configuration. These compensation coils produce then a
homogeneous field in the opposite direction of the curvature field and are
used to decrease B0 and consequently compressing the trap in the radial
direction.

If the compensation coils are turned off, the bias field becomes much larger
than the cloud thermal energy. With µB0 � kBT , one also gets B0 � B′ρ
and B0 � B′′x2[67], and then the expression in Eq.1.2 may be simplified to

B(x, ρ) ' B0 +B′′x2 +

(
B′2

2B0

− B′′

2

)
ρ2. (1.3)

This expression represents a non-isotropic harmonic potential with radial
and axial curvatures given by 1

2
(B′2/B0 − B′′) and B′′. If the current in the

compensation coils is increased, B0 is reduced and, consequently, the radial
trapping curvature is also reduced. B0 has no influence in the axial curvature.

In the case where the bias field is small compared with kBT , the expression
in Eq.1.2 has not a simple quadratic expansion that decouples the axial and
radial coordinates. The potential dependence in this latter coordinate gets
dominated by a linear term and the trap is called a semi-linear trap. We will
refer to this configuration as the low-bias field (LBF ) trap, while that one
with B0 � kBT as the high-bias field one (HBF ).

In Fig.1.4 we represent the equipotential curves, in temperature units
and for a He∗ atom in the mJ = +1 state, for the LBF and the HBF trap
configurations. These curves are computed with the same parameters as those
used in our experiment. In both graphs the field gradient is B′ = 85 G/cm.
The field curvature is B′′ = 25 G/cm2 for the HBF case and 20 G/cm2 for
the LBF one 3. The HBF case is obtained by turning off the current in
the compensation coils, a situation where B0 = 190 G. In the LBF trap
configuration, the compensation field almost cancels out the curvature field
to obtain B0 = 360 mG.

3The change in the curvature is involuntary and comes from the imperfect Helmoltz
configuration of the compensation coils.



38
Chap 1 - Bose-Einstein Condensation of Metastable Helium: the

apparatus.

-200

-100

0

100

200

ρ[
µ
m
]

-2 -1 0 1 2
x[mm]

 15 

 15  15 

 15 

 10 

 10 

 7 

 5 

 4 

 3 

 2 
 1  0.5 

 1 mK

-2

-1

0

1

2

ρ[
m
m
]

-2 -1 0 1 2
x[mm]

 1
0 

 1
0  7
 

 7
 

 5
 

 5
 

 4
 

 4
 

 3
 

 2
  1

 

 0
.5

 

 10  7  5  4  3  2 

 1 mK

 0.5 

High Bias Field
  (B0 = 190 G)

Low Bias Field
 (B0 = 360 mG)

Figure 1.4: Equipotential lines for the magnetic sub-level mJ = 1, in temperature
units (referenced to the bottom of the trap), of a clover-leaf type Ioffe-Pritchard
trap. The graphs were computed for a magnetic filed gradient of B′ = 85G/cm.
The left hand side graph corresponds to an high-bias field of B0 = 190G and field
curvature of B′′ = 25G/cm2, whereas the low-bias field case was computed for
B0 = 360mG and a curvature of B′′ = 20G/cm2(note the different left axes scales).
The different magnetic field curvatures in these two cases come from an imperfect
compensation of the bias field due to a slight mismatch of the compensation coils
from the Helmoltz configuration. The transverse and axial (bias) axes correspond
to the ρ and x axes respectively. Temperature units are converted into magnetic
field strength through the factor kB/gJmJµB ∼ 7.44µK/G.
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Correspondence between the trap curvatures and the harmonic po-
tential oscillation frequencies.

As described in the following Section, during the evaporative cooling, we need
to compress the trap in order to enhance the efficiency of the thermalization
by increasing the rate of elastic collisions among the He∗ atoms. However,
to get a proper load of the large cloud trapped in the MOT into the magnetic
trap, this one must be initially set in the uncompressed HBF configuration.
After loading the cloud, the compression will transform the initially har-
monic trap into a semi-linear one. Then, through the evaporative cooling the
temperature of the gas decreases three orders of magnitude and once again
µB0 � kBT . As in the HBF and high temperature case, in here, the trap
is again well described by a three-dimensional harmonic potential. This one
can be written as

U(r) = 1
2
Mω2

‖x
2 + 1

2
Mω⊥ρ

2,

where ω‖ and ω⊥ are the axial and transverse oscillation frequencies, parallel
and perpendicular to the direction of the bias field, respectively (also in
the expression, M is the helium mass). The correspondence between these
trapping oscillation frequencies and the magnetic field parameters can be
easily derived relating this last expression with Eq.1.3. One obtains,

ω⊥ =

√
4µB

M
B′′ and ω‖ =

√
2µB

M
(B′2/B0 −B′′) ∼

√
2µB

M

B′2

B0

. (1.4)

where the simplification is justified in our case because B′′ � B′2/B0. Within
the micro-Kelvin regime, the oscillation frequencies in our compressed trap,
with a bias field of B0 = 360 mG, are finally ω⊥/2π ' 1200 Hz and ω‖/2π =
50 Hz.

Experimental determination of the trapping oscillation frequencies.

Knowing the exact geometry of every set of coils and the current passing
through them we can calculate ω⊥ and ω‖. However, a much preferable
method to determine these quantities is to measure them directly in a para-
metric heating experiment. We will briefly describe how it works.

Suppose we modulate the trap radial frequencies at a certain frequency
ν0

4. In this condition, the cloud will exhibit an excitation spectrum with
narrow peaks at the modulation frequency ν = ν0 and also at its second
harmonic ν = 2ν0[68, 69]. If one of these frequencies coincides with ω⊥/2π the

4This can be achieved modulating the current in the compensation coils, for example.
This results in a modulation of the bias field and consequently also of ω⊥.
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cloud heats up quickly and, by observing the resulting clouds’ temperature
in function of the modulation frequency we could determine ω⊥.

Modulating the axial trapping oscillation frequency is more difficult since,
as noted before, a change in the bias field has no effect in this axis. To
overcome this, the experiment must be done with a BEC where the three
spatial axes are coupled together. This coupling is induced by the BEC large
mean field potential that makes the condensed cloud to behave as a classical
fluid in a strong collisional regime. In here, due to the large number of
collisions, a density modulation in one of the axis will produced a similar
modulation in the other two. Thus, a modulation of the radial trapping
frequency ω⊥ produces also a modulation in the the axial direction allowing
the determination of ω‖. For this case the modulation frequency nu0 is related

with ω‖ according to 2πν0 =
√

5
2
ω‖[68, 69] (for a more detailed description

of the experimental procedure see Ref.[70].).

1.2.1.3 Evaporative cooling.

The atomic sample attains the critical phase transition after being evap-
orativly cooled. We have already anticipated the working principle of the
evaporative cooling: remove some of the hottest atoms out of the cloud and
wait for it to re-thermalize at a colder temperature. Repeating this process
over and over again, the cloud’s temperature decreases from a few millikelvin
down to the phase transition critical temperature, around 1µK.

Despite this description of the evaporative cooling as an evolution through
a discrete ensemble of intermediary stages at thermal equilibrium, in practice,
it is an almost continuous process. The energy of the ejected atoms is ramped
down continuously and, if it is done slowly enough, the cloud evolves between
quasi-equilibrium states with an almost complete re-thermalization of the
cloud.

The need of ultrahigh vacuum in the science chamber.

Thus, in respect to the cloud’s thermalization, the evaporative cooling should
be done as slow as possible. However, the unavoidable atom losses impose a
finite life time to the trapped cloud and this is what ultimately establishes a
restriction in the time evaporative cooling may last.

There are then two competitive processes that determine the duration
of the evaporative cooling process in the He∗ experiment: the cloud’s re-
thermalization and its life time. The first of these is related with elastic
collisions that promote the cloud’s thermalization of the gas and should,
because of this and as far as possible, be enhanced. The second one is related
with inelastic collisions of He∗ atoms with other particles that may ionize
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or simply spin-flip the internal magnetic state of the atoms leading, in both
cases, to the losses.

An essential condition to a BEC experiment to work is to have very
good vacuum conditions. Although losses due to inelastic collisions involving
two or even three He∗ atoms become very important for clouds close to the
degeneracy (see §1.3.4), in most of the evaporative cooling process the cloud
is still very dilute (n ∼ 109 cm−3) and the principal collisional processes are
Penning ionizations involving only one He∗ atom and a molecule from the
vacuum background X. This process is described by

X +He∗ → X+ +He+ e− , (1.5)

where X+ is a positive ion resulting from the reaction. These ions can be
detect within our setup (see §1.3.4), what can be used to measure the cloud’s
life time, τ . In order to have a small number of background molecules and
therefore a small rate of inelastic collisions, the vacuum conditions at the
magnetic trap must be very good. To have a life time of about τ ∼ 50
seconds, we need to have a vacuum below the 10−10 mbar.

Enhancing the elastic collisions rate by compressing the trap.

To go faster with the evaporation and still keep the cloud at a quasi-equilibrium
state, we need to increase the elastic collisions rate among He∗ atoms, γ. This
can be done by increasing the cloud’s density, n. As we said earlier, this is
achieved by compressing the trap before starting the evaporation.

The average value of γ can be estimated as

γ ' n0 σ0 vT ,

where n0 is the cloud peak density and vT =
√
kBT/M its thermal velocity.

Also in this expression, σ0 is the elastic collision cross section, which in
the low-temperature limit is velocity independent. For T = 1 mK, a typical
temperature of the cloud transferred into the magnetic trap, this cross section
for the He∗ is σ0 ∼ 1.5 × 10−11 cm2. For this temperature, we may also
estimate n0 ∼ 5×108at/cm3 and vT ∼ 150cm/s and, using the above formula,
we obtain γ ∼ 1s−1, i.e. a collision per atom and per second. The role of
the evaporative process is to truncate the cloud’s thermal distribution at a
certain high energy and wait the cloud to re-thermalize in a temperature
colder than the initial one. Re-thermalization needs, at least, four collisions
per atom [71] and, since the evaporation must be completed in a time smaller
that the trap life time, it is necessary that γ ≥ 10s−1. This increase of γ by
a factor of ten is obtained if the trap is compressed as it was described in
§1.2.1.2.
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Ejecting the atoms by RF− induced spin flip.

The process through which the hottest atoms are ejected out of the trap is

B, U(r)
mJ=+1

mJ=0

mJ=-1

rf

rf

r

kBT

135 MHZ
(~ η x 1mK)

~1 MHZ
(~1µK)

rf

B0

hνrf
(=η kBT )

a) b)

Figure 1.5: The rf−field induced evaporative cooling: a) energy levels of the
23S1 electronic state in the presence of an inhomogeneous magnetic field. The
trapped atoms, polarized in the mJ = +1 magnetic sub-level, are ejected from the
trap whenever their kinetic energy is sufficient to reach regions of the trap where
the mJ = 1 state is coupled through the rf -field to mJ = 0 (in a one-photon
process) or to mJ = −1 (two-photon process); b) evaporative cooling in a binary
elastic collision: two atoms exchange kinetic energy, with one of them ending with
sufficient energy to escape the trap. To conserve energy one of the atoms remains
trapped but with a smaller kinetic energy. Ramping down the rf − knife from
130 MHz to about 1 MHz in half a minute, it is possible to cool the cloud down to
the phase transition point. During all the process, the ratio between the rf−field
energy and the cloud’s thermal energy, η = hνrf/kBT is kept constant around 6
(see text).

sketched in Fig.1.5a). The trapping inhomogeneous magnetic field induces
a position dependent Zeeman shift in the magnetic sub-levels of the state
23S1. The atoms with bigger kinetic energy explore regions where this shift
is also bigger. A certain class of these hotter atoms can be removed from the
trap by applying a radio frequency electromagnetic field (rf -field), resonant
with the corresponding magnetic transition between the levels mJ = +1 and
mJ = 0. All atoms with trajectories that go outside the shell defined by the
rf -field see its magnetic spin flipped into the non-trapping state mJ = 0 or
even, for intense rf-fields, into the anti-trapping state mJ = −1.

An illustration of the evaporative cooling in shown in Fig.1.5b). The
ensemble of the trapping potential and the rf -field produce an open trap.
The rf−field works here as a knife, cutting the trap at a certain height. If two
atoms collide, it can happen that one of them gains an extra kinetic energy
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at the expense of the other. This extra energy can be sufficient to the atom
to escape the trap, decreasing the total thermal energy of the cloud 5. The
rf -field is spatially homogenous, radiated by an antenna made of two loops
in the Helmoltz configuration, mounted close to the atomic cloud and with its
polarization axis perpendicular to the bias field axis, the atoms’ quantization
axis. It is produced by a commercial radio frequency synthesizer (ANRITSU
MG3641A), which was programmed to ramp down linearly the rf -frequency.
The entire evaporation takes half a minute and is done in four different ramps
(see Fig.1.6). The cloud, initially at 1mK and with about 5 × 108 atoms, is
cooled down to the critical phase transition temperature, ∼ 1µK, ending at
the end of the process with only a few million atoms. To achieve the critical
point, the phase space density increases by seven orders of magnitude.

The first linear ramp starts at an rf -frequency of 130MHz. This value
corresponds to a temperature about six times bigger than the initial cloud’s
temperature ∼ 1 mK. The ratio between the thermal energy of the cloud and
the energy of the rf -knife,

η =
hνrf − µB0

kBT
, (1.6)

is kept almost constant around 6 throughout all the rf -ramp and was de-
termined as the optimum in order to maximize the number of atoms in the
condensate. The ramp ends around 1 MHz, a frequency that corresponds to
an energy slightly bigger than the bottom of the trap, µB0

6.

1.2.2 The bias field fluctuation. Effort towards its sta-
bilization.

Among all the technical difficulties we have in our setup, there are two that
we may consider as the main problems : the bias field fluctuation and the
impossibly of calibrating our detection system. We explain now what is the
first, letting the second for next Section.

The thermal energy scale of the cloud during the evaporative cooling has
always as reference the bias field, B0. Thus, a variation of B0 in the end of
the process produces also a variation of the final cloud’s temperature. If B0

had decreased (increased) from its initial value, the temperature attained by
the cloud will be larger (smaller) than the one initially expected.

In practice, the bias field fluctuation over time cannot be avoided and
the best we can do is to reduce them as much as possible. In the low-bias
field configuration, we manage to reduce the bias fluctuation among different

5See Chapter 4 for a more detail description of this process.
6The ramp must stop before µB0 in a quantity that is at least equal to the BEC size

in energy, its chemical potential.
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6

5

Figure 1.6: The solid line (left hand side axis) represents the variation of the radio-
frequency field through four linear ramps starting at the frequency 130 MHz, and
ending close to 1 MHz. The dashed line (right hand side axis) represents the
correspondent variation of the phase space density, which is initially about ∼ 10−7

(the one of the MOT plus optical molasses) and ends at the critical one, ∼ 1. At
the end of each linear ramp are written the typical number of atoms in the cloud
and its temperature.
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experimental realizations to only about 10 mG (or 25 kHz in the rf -ramp
units), less than 3% of its absolute value. This result may look reasonably
good and, in fact, such a bias fluctuation would be completely harmless if
the final cloud’s temperature were much bigger than µB0/kB. However, this
is obviously not the case when we ought to get a BEC or, even, a cloud
at the critical transition phase. In here, all small perturbations of B0 may
affect the purity of the BEC or else stop the evaporation at a temperature
slightly displaced from the critical one. As we will show in Chapter 4, this
constitutes a major limitation in the cloud thermometry we could achieve.

Bias field stabilization scheme.

As we referred earlier the bias field is, mainly, the difference of two magnetic

PS2 Compensation

GradientCurvature
IGBT3 IGBT1

IGBT2

I2

I I1
Current

clamp meter
PS1

feed back
current locking

Figure 1.7: Electric circuit of the gradient, curvature and compensation coils,
during the magnetic trap. Two power supplies, PS1 and PS2, are use to drive a
current I2 into the compensation coils and I = I1 + I2 into the gradient and the
curvature coils, assembled in series. The high-bias field configuration (B0 = 190 G)
is obtained closing the IGBTs 1 and 3, and adjusting PS1 so that I ≡ I1 = 230A.
In the low-bias field case (B0 = 360 mG), all IGBTs are closed and the power
supplies are adjusted as to deliver the currents I1 = 10 A and I2 = 220 A, keeping
I = 230 A. In here, PS1 works in voltage control and a feed back locking circuit
using a current clamp meter is used to stabilize I1 (see also text). The bias field
results from the difference between the fields produced by the compensation and
gradient coils.

fields: the one produced by the curvature coils and that produced by the
compensation coils. After compression, the current in these latter is around
220A, driven by a power supply working in current control. The current
flowing through the curvature coils is the same as for the compensation plus
a small current of 10A, which guarantees the bias field minimum around
360mG.

The circuit that controls the current in the coils is shown in Fig.1.7. It has
two power supplies (PS1 and PS2) and three insulated gate bipolar transistor
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(IGBT), a kind of solid state relay that switches on and off the currents.
Initially, after the MOT being switched off, all the IGBTs are open and no

current flows in the circuit. Then, to switch on the HBF trap, all the IGBTs
are closed with the power supplies PS1 and PS2 adjusted in a way to deliver
respectively 230 A and 0 A. To obtain the LBF configuration, PS2 is then
made to operate in current control and to ramp from 0A till 220A. Keeping
PS1 always at the initial voltage the current in the gradient/curvature coils,
I, is also kept constant at 230A. With I2 ramping up, I1 decreases down to
10A. Since PS1 is always in voltage control, I1 is stabilized using a current
clamp meter that feeds back to a lock circuit that controls the power supply.

Bias fluctuations and the coils’ current stability.

The bias field fluctuation matters only in the LBF case, where BEC is at-
tained. In this trap configuration all the power supplies are made to function
as current sources. Like this, any temperature induced instabilities of the
coils’ ohmic resistance do not affect, in principle, the stability of the mag-
netic field. Thus, the instabilities of the current flowing in the coils must be
connected essentially with the degree of stability of the current sources. In
the LBF configuration, the bias field is

B0 = kg(I1 + I2)− kcI2 = (kg − kc)I2 + kgI1,

with kc and kg proportionality constants relying the current and the magnetic
fields. The bias fluctuation is then

δB2
0 = (kg − kc)

2δI2
2 + k2

gδI
2
1 .

In the specifications given by the constructor for the power supplies, the
output stability is about 0.1%. In the other hand, kc − kg ' 0.045 G/A.
Thus, the first term in the left hand side of the previous expression may,
alone, justify the run-to-run observed fluctuation of 10 mG. The second
contribution in this expression depends only on the degree of stabilization we
get for I1. However, to justify 10 mG and using the fact that kb ∼ 0.95 G/A,
we see that such a fluctuation corresponds to stability in the current look
circuit also of 0.1%. In both cases, the current instabilities are reasonably
small and seem hard to be further improved. Still, they may justify the bias
instability we observe.

Bias fluctuations: other possible causes.

There are also other possible causes for the bias fluctuations, both in the
small time scale between two consecutive experimental runs as well as in
longer time scales.
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Despite the rather small ohmic resistance of the coils (∼ 0.5Ω), the large
electric currents needed to create the trapping magnetic field produce huge
heat dissipation: the average electric power consummation in the whole sys-
tem of coils is about 5 kW. To avoid the coils’ overheating, they are made of
a hollow-core copper wire that allows the circulation of pressurized cooling
water in its interior.

As noted before, as the power supplies function in current control, tem-
perature drifts of the coils should not contribute to the bias instability. How-
ever, it is an empirical fact that the bias field could be influenced by the
cooling water temperature. This could happen in a single day where we
would observe (and correct) very slow drifts of the bias during the day or,
even, between different seasons of the year, where for getting the same bias
field, the current in the coils should be different. Discarding current insta-
bilities, another possibility to explain these long term drifts is a change in
the coils geometry induced by thermal dilation. For example, an increase
of 20 µm in the distance between the two compensation coils makes B0 to
change by 30 mG[70].

These slow drifts in a long time scales (compared with the time of a single
run) can always be corrected without undesired consequences. Harder to deal
with, due to its unpredictability, are the run-to-run variations. Another pos-
sible cause for these, also of geometric nature, is the mechanical displacement
(vibration) of the coils induced by magnetic forces when the magnetic field
is turned on. To help reducing these effects, the coils are firmly fixed inside
re-entrant flanges in the ultra-high vacuum stainless steel science chamber
(see Fig.1.8) 7. It is hard to evaluate how big this effect is and in what
extend it influences the bias field.

7In order to preserve the vacuum conditions the coils are assembled outside the cham-
ber. However, since we need large field gradients, they must place as close together as
possible. This is why we have designed the UHV chamber with re-entrant flanges. They
allow assembling the coils separated by only ∼ 45 mm.
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z

x
y

Figure 1.8: The ultra-high vacuum science chamber (UHV-Ch), where He∗ conden-
sation takes place. To help preserving the vacuum conditions, the magnetic field
coils (dark gray in the Figure) are assembled outside the chamber in re-entrant
flanges, as shown in the Figure. This allows positioning the coils closer together,
increasing the trapping field gradients. As before, gravity acts in the Oz direction.
See further details in §1.2.3.
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1.2.3 From the helium bottle to a cloud of ultra-cold
He∗ atoms in the magnetic trap.

We will describe in the following paragraphs all the experimental setup, de-
tailing the most important characteristics of its components, the vacuum
system and also explaining the laser cooling methods we use to obtain a
cloud that can be properly loaded into the magnetic trap. In our experi-
ment, to attain the millikelvin regime, we make use of four of these optical
based methods: a transverse collimator, a Zeeman slower, a magneto-optical
trap and, finally, a 3-D optical molasses. The last two are already done in the
science chamber UHV-Ch. The Zeeman slower and the transverse collimation
have dedicated vacuum chambers.

The experimental setup: chambers and pumping stages.

The setup of our experiment is sketched in Fig.1.9. It is more than 4 m long,
starting in the He∗ source chamber (S-Ch) and ending at the science chamber.
From one to the other chambers, a differential vacuum is established and
maintained by two diffusion pumps (DP1 and DP2, both with 3000 l/s pumping
speed) and three turbo pumps (TP1,TP2,TP3 with respectively 250 l/s, 50 l/s
and 500 l/s). The vacuum varies from 2 × 10−4 mbar in S-Ch to less than
10−10 mbar in the UHV-Ch. Along the way from the source to the science
chamber, the atoms pass also in the transverse collimation chamber (TC-Ch)
and through the Zeeman slower. In the following we will explain the function
of all these sub-systems and detail their working principles.

• The He∗ source.

The production of the beam of metastable helium atoms is carried out in
the source chamber (S-Ch in the scheme of Fig.1.9), through a high voltage
discharge established in a gas of helium in its fundamental state and at
10−4 mbar. The working scheme of the source is sketched in Fig.1.10 and
further explained in its caption. By cooling the source with liquid nitrogen
(77 K) it is possible to obtain an atomic jet with a longitudinal velocity
around 1200m/s. Its divergence is of about 40 mrad with a flux of 1012

atoms per second[72]. The initial pressure in the chamber, when the source
is still off is 10−7 mbar rising to typically 2× 10−4 mbar when the helium is
admitted in and the discharge is switched on. These pressure conditions are
assured by the 3000 l/s diffusion pump DP1. See further details in Ref.[72].

• Transverse collimation.

From the source chamber, the beam of He∗ atoms enters in a chamber where
it is subjected to a transverse collimation (TC-Ch in Fig.1.9). The working
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Figure 1.9: Sketch of our He∗ experiment. Legend: S-Ch-the He∗ source cham-
ber; TC-Ch-transverse collimation chamber; UHV-Ch-science chamber; DP1 and DP1-
diffusion pumps (3000l/s pumping speed); TP1,TP2 and TP3-turbo pumps (respec-
tively 250l/s, 50l/s and 500l/s); In the bottom of the Figure, we represent the
variation of the vacuum along the setup and characteristic values of the atomic
sample in each of its sub-units.
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Figure 1.10: The He∗ source setup. Helium in its fundamental state and at a
pressure of several bars undergoes a relaxation between a nozzle (N) with a tiny
diameter of 0.25 mm and length of 1 cm and a skimmer (S) located approximately
2.5 cm further and with a diameter of 1 mm. An electric discharge of −3 kV, es-
tablished between the pin P and the grounded skimmer, produces some metastable
helium atoms (the resistance R stabilizes the discharge at an operating current of
about 13 mA). The efficiency of the process in of only 10−4 and, starting from
a total helium flow of 5 × 1015 at/s, the metastable jet flux is around 1012 at/s.
The nozzle is manufactured out of boron nitride (electrical insulator but good
thermal conductor), assembled inside a block of copper though which circulates
liquid nitrogen at 77 K. The jet longitudinal velocity is of about 1200 m/s with
a divergence around 40 mrad. At the level of the skimmer, the collisions between
atoms become negligible and the atomic jet is supersonic[73].
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pressure in this chamber, with the beam on, is maintained at 10−7 mbar by
a similar diffusion pump as the one used in the source chamber with the
differential vacuum between the source and transverse collimation chambers
also assured by the low conductance of the skimmer at the source output.

The atomic beam transverse collimation is made by applying a two-
dimensional molasses made of two pairs of almost contra-propagating laser
beams resonant with the atomic transition 23S1−23P2. Due to the radiation
pressure, the beam of He∗ atoms divergence is reduced from 40 mrad to only
2 mrad (see Fig.1.11). The helium atoms in the fundamental state are not
affected by the molasses and by placing a 4 mm diaphragm further on in
the path of the jet, the number of these atoms in the atomic beam is highly
reduced. Even so, due to the low efficiency of the He∗ production at the
source, the flux of metastable atoms leaving the collimation region, around
2 × 1011 at/s, is still 70 times smaller than the one corresponding to atoms
in the electronic ground state. These atoms, however, are not captured by
the magnetic-optical trap (TOF ) in the end of the path towards the science
chamber (UHV-Ch in Fig.1.9) and are removed by the pumping system. To
help preserving the very high vacuum in the science chamber and, therefore,
the cloud’s life time, after completed the TOF loading and during all the
evaporative cooling, a mechanical shutter placed right before the 4 mm di-
aphragm is closed to block any particle to enter into the science chamber.

• Zeeman slowing.

In its path from the source to the science chamber, the atomic beam is slowed
down by a Zeeman slower (ZS) [37]. Our ZS is made of two different coils,
built over a double-wall metallic tube of internal diameter 43mm. To cool
down the coils we make water circulate between the two walls of the tube.
The radiation pressure of laser beam propagating in the opposite direction
of the atoms makes the atoms decelerate. These are maintained in resonance
with the laser, for any given velocity, by compensating its Doppler shift with
a Zeeman shift induced by a space varying magnetic field, as explained in
Fig.1.12. The ZS is made of two coils to allow reversing the magnetic field
somewhere in its middle and thus, to have a global detuning of the cooling
laser relatively to the atomic transition 23S1 − 23P2, at its end. This off-
resonance makes the trapped atoms in MOT to be insensitive to this laser.

The vacuum inside the ZS is maintained by two turbo molecular pumps
(TP1 and TP2 in Fig.1.9) with pumping speeds of respectively 250 l/s and
50 l/s. Due to several diaphragms placed in the path of the beam and also
because its low internal diameter, it is possible to attain a differential vacuum
along the ZS, between the transverse collimation chamber and the final sci-
ence chamber. It is of about 3× 10−8 mbar in the beginning of ZS and drops
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Figure 1.11: The left hand side image sketches the working principle of the
transverse collimation in our experiment. For that, use a molasses made of
two pairs of contra-propagating laser beams resonant with the atomic transition
23S1−23P2 and disposed transversally to the atomic beam. The lasers are slightly
un-collimated to get curved wave fronts, enhancing the momentum transfer to the
atoms along these its focusing path. To maximize the interaction, the laser beams
are also made highly astigmatic, elongated in the direction of the atomic beam.On
the left hand side of the figure the graph shows the influence of the molasses on
the transverse distribution of velocity of the jet: the curve in gray and width ∆vz,
represents the transverse velocity distribution of the atomic beam in the absence
of collimation, whereas the black one, characterized by the width ∆vcoll, the at-
tained distribution if the transverse collimation is turned on. Also in this graph,
∆vcapt is the velocity capture range of the molasses, also represented in the right
hand side drawing as the region inside the shadowed bars. The critical capture
velocity is given by vcap = vyL/R, with L the length of the collimation region, R
the wave front radius and vy the mean longitudinal beam velocity. Typical values
are R = 15 m and vcap = 15 m/s and a gain in intensity in the atomic flux of about
25[72]. The He∗ beam divergence is reduced from the initial40 mrad to only about
2 mrad. The effect of the transverse collimation in the efficiency of the Zeeman
slower leads, in the end, to an increase of a factor of 70 in the atomic flux that is
loaded into the magnetic-optical trap (images were taken from the Ref.[72]).
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Figure 1.12: The top drawing is a schematic representation of our Zeeman slower
(ZS). The atomic beam, coming from the left hand side in the scheme, is slowed
down by a combination of the action of a contra-propagating laser beam with
the spatial variation of a magnetic field. The laser is detuned from the atomic
transition 23S1 − 23P2 of ∆ωl and is right hand polarized, σ+. The magnetic field
along the deceleration axis is made to vary in a way to produce a Zeeman shift
in the atomic transition, ∆νZ , that is, at any time, compensated by the Doppler
shift, ∆ωD, proportional to the atom’s velocity[37]. Always at resonance with the
laser, the atoms are decelerated by the radiation pressure (see also text).
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down to less than 10−10 mbar at the entrance of the UHV science chamber.

The atom’s final velocity after passing the ZS is of about 100 m/s for a
flux of ∼ 5 × 109atoms/s. Due to the spontaneous emission over all optical
cycles, the transverse section of the beam increases from few millimeters to
around 4 cm.

• The magneto-optical trap.

After being decelerated by the ZS, the atoms are captured by a magneto-

ωlaser σ+σ-

mJ=+1

mJ=0

mJ=-1

J = 0

J = 1

Energy

∆ωD

∆ωZ

v

Figure 1.13: Working principle of a one dimensional Magneto-Optical trap (MOT)
in a J = 0 to J = 1 atomic transition. Two contra-propagating laser beams,
red detuned relatively to the atomic transition and polarizations σ+ and σ− are
incident in a atomic cloud where a non-homogeneous magnetic field creates, from
the center of the trap, a linear increase of the Zeeman shift of the atomic optic
lines in that transition. The combination of the Doppler and of the Zeeman shifts
makes fast out-coming atoms at the center of the trap to get in resonance with
the laser and decelerate with the radiation pressure. This way, all the atoms with
an initial velocity smaller than a critical capture velocity vcap are confined at the
center of the trap and cooled down. This critical velocity is proportional to the
transverse size of region where the laser beams saturated the optical transition:
the bigger this is, the bigger the number of optical cycles a given atom can make
before escaping the trap

optical trap. This is made of three pairs of red-detuned, circular polarized
and contra-propagating laser beams and a non-homogeneous anti-Helmoltz
magnetic field that grows linearly from zero, at the center of the trap, in
all outwards directions. This field gradient produces a Zeeman shift in the
magnetic sub-levels of the atomic transition 23S1−23P2, increasing also with
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distance from the trap center. Again, the combination of this shift with
the Doppler shift makes the laser to be tuned with the atomic transition,
confining and cooling them down around the trap’s center (see also the de-
scription of the working principle of a MOT in the simpler configuration of the
J = 0 → J = 1 atomic transition in Fig.1.13).

The laser detuning must be chosen to altogether maximize the number
of trapped atoms and minimize their temperature and, in our case, there are
two competitive processes. From the MOT efficiency point of view only, the
minimal temperature is reached if [36]

∆opt = −1
2
Γ
√

1 + 2I/Isat, (1.7)

with Γ the atomic transition line width, I the laser intensity and Isat the
saturation intensity respectively. In our experimental conditions we have
I/Isat ∼ 25 and therefore, at optimal MOT functioning conditions, the detun-
ing should be ∆opt = −3.6Γ. In the other hand, quasi-resonant light enhances
the two-body Penning collisions between different spin states, leading to atom
losses within the cloud[74]. The reason for this relies on the fact that the
interaction between two He∗ atoms gets stronger if one of them is excited to
the P − state[75]. To decrease the time an atom is in this excited state, we
need to increase the detuning far above the prescription given before. Nor-
mally, what we want from the MOT is to trap as many atoms as possible even
if this is done at the expense of a small augmentation of the temperature.
We found empirically that this is achieved with an optimal laser detuning
around ∆opt = −25Γ.

To compensate this large laser detuning, one needs a strong Zeeman split-
ting and, therefore, also a large magnetic field gradient in the axial direction.
This one is equal to 50 G/cm and it is created by the same coils used for the
compensation of the magnetic trap (but in an anti-Helmoltz configuration).
At the end of the MOT phase, the trapped atomic cloud has typically an rms
waist of 2 mm and a peak density of n ∼ 4×108 ats/cm3, which corresponds
to 5× 108 atoms at a temperature around 1 mK. This is several times bigger
than the Doppler limit temperature ~Γ/2kB ∼ 40µK.

• Optical molasses and the transfer to the magnetic trap.

To further decrease the cloud’s temperature and get a favorable transfer into
the magnetic trap (MT), we use a last laser-based method: a 3-D optical
molasses. It takes only 5 ms and is made with the same laser configuration
as the one used in the MOT except that the laser detuning is only a few Γ and
the beams intensity is reduced by a factor of 10. These three parameters,
laser pulse duration, detuning and power, must be chosen as optimal to
decrease as much as possible the cloud’s temperature without loosing too
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many atoms in Penning collisions. As in the MOT case, described before,
these optimal conditions are found empirically. After the molasses phase the
cloud’s temperature drops to about 300µK.

Another fine adjustment needed to obtain a proper molasses phase is the
compensation of residual stray magnetic fields, using three other external
coils. Without the MOT strong magnetic field, the atom’s magnetic quantiza-
tion axis becomes very sensitive to any of these stray fields. A slight change
in this quantization axis makes the cloud to walk away from the geometric
center of magnetic trap, getting lost.

Adaptation of the cloud with the magnetic trap. Optical pumping
into the mJ = +1 magnetic sub-level.

In order to transfer the atomic cloud into the magnetic trap without heating
it up or loosing atoms, we need to adapt the curvature of the trap to the cloud
size corresponding to this final temperature. If we admit that the cloud is
isotropic, with its density described by a Maxwell-Boltzmann distribution in
a harmonic potential of rms width r0, the condition for optimal transfer is

2µBB
′′r2

0 =
1

2
kBT.

In our case r0 ∼ 2mm and the above formula gives for the MT field curvature,
B′′ ' 30G/cm2. This is, in fact, the typical curvature of our uncompressed
magnetic trap.

Before the MT, in both the MOT and molasses phases, the atoms are
polarized in any of the possible magnetic sub-levels mJ = {+1, 0, 1}. Just
before transferring the cloud into the MT (by just turning it on), it is still
necessary to spin polarize the atomic cloud in the trapping magnetic sub-
level mJ = 1. This is done simply by shining a retro-reflected laser beam,
polarized σ+, on the atoms for a period of 30µs.
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1.3 Experimental readout.

After having described all the procedure used to produce a He∗ condensate, we
will now explain how we detect it. A major peculiarity of the He∗ is its 20 eV
of internal energy and the capability of being easily ionized (and also to ionize
other particles). These are the key points that make our He∗ experiment very
different from almost all other BEC experiments.

We will start by presenting the detector we use in our setup readout
apparatus, a micro-channel plate.

1.3.1 The micro-channel plate.

A microchannel plate (MCP) is a thin sheet, made of an array of millions of
very small electron multipliers, the microchannels, oriented parallel to one
another in a honey comb structure (Fig.1.14-a). These microchannels, of only
a few microns of diameter and a fraction of a millimeter length, are glass made
and their inner wall is treated to optimize the secondary electron emission
characteristics and to have a semiconducting surface layer that allows the
charge replenishment from an external voltage source[44]. Both faces of the
MCP are metal coated. This puts all the microchannels in parallel electric
contact, serving also as input and output electrodes. Each of these channels
can be considered as continuous dynode structure, acting as its own dynode
resistor chain, typically with a total resistance of 100 MΩ. This resistance
limits the strip current that is established between the two faces of the MCP for
a certain applied high voltage.

When an incident particle with sufficient energy to remove an electron
from the inner semiconductor layer hits the MCP, the high voltage applied
between the two faces of the MCP will promote an avalanche of secondary
electrons and an amplified electronic current is outputted in the MCP back
face (Fig.1.14-b). This one is then collected by the anode terminal. To
further enhance the efficiency of the process, the microchannels are typically
tilted at a small angle relatively to the MCP input surface. The electron
multiplication factor can be as large as 105, with very good time resolutions,
typically a few hundreds of picoseconds.

Specific characteristics of the MCP used in the experiment.

The MCP we used in out setup (HAMAMATSU; reference F 4655) is sketched
in the Fig.1.14. It is a two-stage MCP assembled in a chevron configuration
(Fig.1.14-c). Each of the MCPs is made of about 106 micro-channels with a
typical diameter of 12 µm and around 0.5 mm long, covering 60% of the
MCP total surface of 14.5 mm diameter. The gain of each single device, for a
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Figure 1.14: The MCP detector: a) sketch, with typical sizes, of the MCP we have
used in our detection setup (the microchannels cover 60% of the total MCP surface);
b) working principle of each microchannel (for VMCP = 1.75 kV the gain is around
104); c) the two-stage chevron configuration (overall gain of 107 − 108).

typical high voltage of 1.75 kV, is of about 104 with the two-stage ensemble
overall gain equal to 107 − 108 (refer to Ref.[70] for further details).

1.3.2 Saturation effects and the counting and analog
detection modes.

Increasing the MCP high voltage to about 2.0 kV, the gain of the device satu-
rates and the detection of single events become possible. In this regime, the
total charge within an avalanche becomes important leading to the estab-
lishment of a space charge repulsive electric field that tends to decrease the
electrons’ kinetic energy. In some extend, this prevents further multiplication
of the charge and results in a reduction of the fluctuation of the outputted
pulses’ amplitude. The small dispersion on the pulses’ height allows the clear
discrimination of an incoming particle from the signal noise.

We used a fast pulse amplifier followed by a level discriminator and a
digital counter connected to a computer to record all individual events de-
tected by the MCP. This detection method, which we will refer as the counting
mode detection, was used in our experiment to detect the ion flux produced
within the cloud (cf. §1.3.4) and also for the detection of the atomic flux of
small clouds. Concerning this latter case, it was especially important making
possible the realization of the intensity correlation measurement in a falling



60
Chap 1 - Bose-Einstein Condensation of Metastable Helium: the

apparatus.

atomic cloud (cf. Chapter 3).
The MCP saturation leads however to a reduction of the maximal events

acquisition rate since the charge removed from the microchannels is not re-
placed as fast as it should. When the MCP current signal is no longer negligible
when compared to the strip current, the remaining positive charge slow down
the electrons and quenches the electron multiplication process.

In the counting detection mode, this makes that for some of the events
there is no saturated pulse and, consequently, they are not detected. In our
MCP, the maximum detection rate per channel was of about 1 particle/channel/s[70].
This corresponds, admitting a homogeneous flux, to a maximum detectable
rate of 106 particles per second.

To detect particle’s fluxes bigger than 106 s−1 we had to reduce the
MCP high voltage to around 1.7 kV, where its gain did not saturate. At this
operating voltage, the above referred saturation effects are less restrictive and
the MCP saturates only for fluxes around 107s−1. However, the distribution of
the pulses’ amplitude is larger and does not allow for an efficient counting;
we rather measure the charge produced by the particles’ flux integrated over
the entire MCP surface. Amplifying the charge outputted from the MCP with
a slow amplifier resulted in a continuous signal proportional to the flux en-
velope. This is our analog detection mode. Due to their large fluxes, atomic
clouds were almost always detected using this method.

1.3.3 The atoms’ time of flight signal.

After completed the evaporative cooling process, we get a cloud of He∗ atoms
trapped in the magnetic trap. It can be a BEC if the rf -field is ramped
down to almost the level of the bias field or just an atomic cloud at some
temperature above Tc, the critical temperature. This latter is usually known
as a thermal cloud.

Either being a BEC or a thermal cloud close to Tc, the trapped cloud is
too small 8 to be detected by conventional methods. Thus, before proceeding
with the detection, it is necessary to release the cloud and let it expand for
a while.

In conventional BEC experiments the cloud is then imaged in a video
camera and in most experiments, this is done by shining a resonant laser
beam on the cloud, expanded to a size that is large compared with the optical
resolution of the detector. Typical cloud expansion times are of the order
of tens of milliseconds. In our experiment, the detection system is quite
different: we let the cloud fall and expand for a much longer time (∼ 100 ms)
and the measured signal is the atomic flux detected by the MCP, placed 5 cm
below the center of the magnetic trap.

8Typical cloud sizes are 10µm in the radial direction by 200 µm in the axial one.
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Figure 1.15: Example of a TOF signal of a cloud taken using the analog mode.
This cloud has a temperature below the critical one since its TOF presents a
double structure composed by a thermal cloud, the broader Gaussian curve in the
wings of the curve, and a BEC, the inverted parabola structure in its center (cf.
Appendix A).

Within the analog detection mode, as the atomic flux is integrated over
the MCP surface the signal contains less information than a 2 − D image
obtained using a video camera. In the other hand, it can be easily acquired,
after amplification, with a simple oscilloscope without any further signal
processing.

The Fig.1.3.3 shows an example of such an analog signal for a TOF of
a degenerate cloud, with both a BEC and a thermal cloud. This signal
was amplified by a slow amplifier with a characteristic integration time of
RC = 0.45ms, smaller than the time width of the smallest observed clouds,
around 3ms 9.

Counting mode in the TOF acquisition.

The counting mode reproduces better the original signal and is always prefer-
able to the analog mode whenever the events’ rate were . 105 s−1. As
explained above, the use of the analog detection mode for acquiring atomic
TOF signals is used due to the MCP saturation. Along with this, the maximal
counting rate of our electronic chain was also limited to about 106 events per
second (cf. §1.3.5). These two difficulties can be overcome however, using
faster electronics and more performing MCP. This was done, in fact, in the

9This time of integration may seem very large, but for a BEC, which has the very
simple profile of an inverted parabola, a few points are already sufficient to fit the TOF.
For thermal clouds, the TOF is more complex but also larger in time. Typically, the
TOF of a thermal cloud has a time width of 10ms, which is already twenty times larger
than RC.
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newest version of our detection apparatus described in §3.5.2.1. This new
setup has also a position sensitive device, capable of measuring not only the
arrival time of each atom but also its position.

1.3.4 The ion signal.

As we referred previously, in the Introduction of this thesis, the Bose-Einstein
condensation of He∗ is only possible in spin polarized samples where the Pen-
ning ionizing processes, induced by inelastic collisions, are highly suppressed.
Even so, some of these processes persist and a measurable flux of ions is con-
tinuously produced within the cloud. The rate at which the ions are created
within the cloud depends on its density. Therefore, the ion signal can be
regarded as an indirect measure of that quantity. A major advantage of the
ion flux signal is that it is a non destructive technique and may be used to
follow in real time the cloud’s density during the evaporative cooling.

In here, we will discuss some of the most important characteristics of this
signal, describing also the experimental procedure we have used to detect it.

1.3.4.1 The two and three-body Penning ionization processes.

During a Penning ionizing collision, the total spin must be conserved[39].
For a two-body collision, the possible process are described by the reactions

He∗(23S1) +He∗(23S1) →
{
He(11S0) +He+ + e−

He+2 + e−
. (1.8)

If the sample is prepared in the magnetic sub-level mJ = +1, the colliding
atoms, represented in the left hand side of this expression, has each one a
spin equal to S = 1. This amounts to a total spin of the incoming particles
of S = 2. However, the total spin of the collision products, in any of the lines
in the right hand side of the equation is never bigger than 1 and the spin
conservation is not satisfied. The two-body ionization rate constant, about
109 cm3/s for a non polarized sample[76] is reduced by, at least, 3 orders of
magnitude for a cloud spin polarized in the mJ = +1 state.

The above reaction corresponds only to the lowest order electrostatic in-
teraction. Penning collisions may also happen through a process known as
relaxation-induced Penning ionization[39]. In here, the two colliding polar-
ized He∗ atoms may be considered as a quasimolecule where the total angular
momentum has relaxed into a zero spin state due to a virtual dipole-spin in-
teraction. The Hamiltonian governing this process is

Ĥint =
4µ2

B

R5

[
(Ŝ1 · Ŝ2)R

2 − 3(Ŝ1 ·R)(Ŝ2 ·R)
]
,



1.3 Experimental readout. 63

where R is the internuclear distance and, Ŝ1 and Ŝ2 the spin operators of the
colliding atoms. Hint may induce a transition from the initial quasimolecule
state |M1 = 1〉|M2 = 1〉 into the zero spin state

1√
3
(|M1 = +1〉|M2 = −1〉+ |M1 = −1〉|M2 = +1〉 − |M1 = 0〉|M2 = 0〉) ,

with M1 and M2 the spin projections of one and the other atoms. Once in
this state, the quasimolecule ionizes via an ordinary Penning process 10.

Besides this two-body process, in a very dense polarized He∗ cloud it may
also exist collisions involving three atoms. In here, two of the atoms form
a weakly bound molecule and the third one, with sufficient kinetic energy,
carries away the binding energy[77],

He∗ +He∗ +He∗ → He∗2 +He∗(∼ 1mK)

↓
He+ +He(1S) + e−. (1.9)

The ion flux.

The two and the three body processes presented above as well as the reaction
presented earlier in Eq.1.5, an inelastic collision involving a He∗ atom and a
molecule from the background, produces positive ions that may be detected
and used as a monitoring tool. In the latter process, the ion rate produc-
tion depends on the cloud’s number of atoms. For the two and three-body
processes, it depends on the average value of the square and of the cube of
the cloud’s density, respectively. For a thermal cloud, it is 11

Φ =
Nth

τi
+ 1

2
β

∫
R3

dr n2
th(r) + 1

3
L

∫
R3

dr n3
th(r). (1.10)

In the first term on the right hand side of this expression Nth =
∫

R3 drnth(r)
is the cloud’s number of atoms and τi is the rate constant for collisions with
background gas. This latter is smaller than the above defined cloud life time
τ , which also includes all other collisional processes that doesn’t produce
ions 12 but causes the heating and the depolarization of the cloud[78, 79].
In the two other terms, β and L are respectively the two- and three-body

10There are also two other processes that leads to spin relaxation (and to atom losses)
but that preserves the total spin S = 2 and consequently can not relax through Penning
ionizations. [39]

11For the BEC case it is necessary to include quantum reduction factors in the two and
three-body processes (see Chapter 4, for details).

12Such collisions are possible with the very abundant molecules of water and hydrogen
for example since theirs’ energies of ionization are smaller than the internal energy of the
He∗ atom (energies of ionization of 12.5 eV and 15.5 eV respectively).
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ionizing rate constants. These are defined according to their effect in the
density of a thermal gas,

dnth

dt

∣∣∣∣
ionization

= −nth

τi
− βn2

th − Ln3
th. (1.11)

Note that the factors 1
2

and 1
3

included in the two and three body terms of
Eq.1.10 and not present in this latter expression simply reflects the fact that,
to create a single ion in each of these processes, it is necessary to have two
and three He∗ atoms, respectively.

As in the case of the atoms’ TOF, the ions can also detected by the MCP.
Here, the MCP signal is obtained by accelerating the ions towards the MCP,
applying an electric field through the polarization of a grid placed slightly
above the MCP’s input face. Typically, this grid is putted at −30V relatively
to the ground, what is sufficient to capture all the ions produced within the
cloud. The needed energy for triggering the detection in the MCP is obtained
from the ion’s kinetic energy after being accelerated towards the MCP entrance
face at ∼ −2 kV, which proves to be sufficient for efficient ion detection[80].

The measurement of the cloud’s density via the ion signal.

The ion signal is in many aspects different from the atomic TOF. The main
advantages are:

• It is a non destructive measurement. In fact, the ion signal is a measure
of a flux of particles, products of an unavoidable reaction that exists
even if we decide not to detect them. This is not the case of the atoms’
TOF, where to make the detection one needs to release the cloud from
the trap, destroying it.

• It is an in-situ measurement. Unlike the TOF, the ion signal is propor-
tional to the density of the cloud when it is still trapped. We will show
in the next Chapter that, for an ideal gas, the TOF signal is rather a
signature of the momentum distribution of the cloud (in a non-ideal gas
there is also the influence of the inter particle interactions). Here, there
is no need to expand the cloud to allow its detection and, therefore, the
ion signal may be seen as a measure of the cloud’s density in the trap.

• It is an almost real-time measurement. As we explained before, the
ions are attracted to the detector by an electric field, taking only a few
microseconds to arrive at the detector. For practical proposes, in all
that concerns the study of the dynamics of the cloud, the ion detection
may be considered as instantaneous since the smallest time scales found
in the experiment are in the milliseconds regime.
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• Finally, it is possible to have an absolute measurement. Applying a
large enough voltage at the grid below the MCP, it is possible to have a
large capture solid angle, with the ion’s trajectories all focused at the
detector. In our case, we verified that voltages bigger than −30V did
not produce an increase of the ion flux signal, an indication that all
ions were, in fact, detected[70].

It also has some problems:

• Low signal to noise and the need of large integration times. The number
of produced ions is small, typically smaller than 105 events per second
and this limits the smallest time scale we may follow in a dynamic
measurement of the density. For example, to get an S/N = 10 with
105 ev/sec, the shot noise limit for the signal integration time is already
1ms.

• It is a non-local measurement. In our setup, the ion signal is an over-
all cloud integrated signal and therefore contains information on the
cloud’s average density but not on its shape. This could be overcome
if we used an ionic imaging system. However, such a system could be
very difficult to implement due to the non-homogeneous magnetic field
in the science chamber and also, the even lower S/N ratio we would
obtain.

• It is difficult to interpret. The ion signal depends on different collisional
processes and therefore on the contribution of different powers of the
cloud’s density. The knowledge of the two collision rate constants, β
and L, would make possible to determine to one ion flux the equivalent
cloud’s density value. However, β and L are not, for the moment, very
well known. Part of the work presented on this thesis (cf. Appendix
§B) as well as on the thesis of references [70, 51] had the goal of helping
solve this problem.

Despite the difficulties in the interpretation of the ion signal, it is never-
theless a unique diagnostic tool. A very good example of this, described in
detail in Chapter 4, is its use for observe the BEC formation during the last
ramp of the evaporative cooling. In here, the atomic cloud has a relatively
large density and the ion signal gets stronger, allowing the observation in
real time of the atomic cloud evolution through the phase transition. At the
critical point, the ion signal shows a brusque variation of its amplitude what,
in principle, can be used to determine the instant of time when the phase
transition takes place.
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Figure 1.16: Scheme of the detection system. In the left upper corner of the
image is represented the science chamber and the MCP mounted below a grid. The
grid is polarized with −30V for detecting He∗ atoms alone or +15V to detect both
the atoms and ions. To switch between the analog and the counting modes the
MCP high voltage is modified respectively to 1.75 kV or 2.1 V and a low noise relay
(SR) redirects the MCP anode signal to either detection modes. The analog mode
is made of just a slow amplifier with a time integration RC ∼ 0.45 s, connected
to a digital oscilloscope. The counting mode has a charge-to-voltage amplifier that
feeds a chain with a discriminator, a dead-time module (600 ns) and, in the end,
a digital counter (50 ns time resolution). Both amplifiers polarize the anode with
a small positive voltage. All the signal transmission lines are BNC cables, made
as short as possible (especially before amplification) to minimized the noise in the
signal. A computer is used to record the data and also to control the experiment
through a digital to analog converter card (DAC). For a more detailed description
see Ref.[70]
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1.3.5 The complete scheme of the detection system.

In the Fig.1.16 it is shown schematically the circuitry we have designed to
switch between the counting and analog modes. Typically, we used the analog
mode to record the atoms’ TOF signal and the counting mode for the ion
flux signal. In order to detect the atoms only, avoiding the ion flux, the grid
mounted above the MCP input face (see Fig.1.16) could also be polarized with
a positive electric potential (relative to ground), repulsing the ions from the
detector. To discriminate the ion signal from that produced by the atoms
(insensitive to the electric field) we switched the grid’s potential between a
positive and a negative value. This was done typically at a rate of a few
times per second and the difference of the detected fluxes in one and the
other cases gave the ion signal.

The commutation of the grid potential was controlled by a computer
through a digital to analog card (DAC ). This same computer could also
switch the MCP’s high voltage in order to operate in counting or analog de-
tection modes and, also, control a low-noise (high-frequency signal) relay
(Teledyne Relays) to redirect the MCP signal either to a charge-to-voltage
fast amplifier (counting mode) or to an OpAmp based slow integrator (ana-
log mode). Both of these amplifying circuits were designed to polarize the
MCP anode with a positive voltage relatively to the grounded output face, in
order to enhance the electron signal at the anode[70]. The counting mode
system was based in a digital counter card (National Instruments) installed
in a computer. For the analog mode, the measure of the TOF signal was
performed with a digital oscilloscope connected by a GPIB card to the same
computer (see Fig.1.16 and further details in Ref.[70]).

1.3.6 The calibration of the MCP detection system.

In §1.2.2 we made reference to the two main problems we have in our exper-
iment. There we have reported one of them, the bias fluctuations; here we
will present the second one: the impossibility of well calibrating the detection
system for the measurement of the number of atoms in a cloud.

1.3.6.1 The difficult calibration of the number of atoms in a TOF sig-
nal.

In §1.2.1.1 we referred that the atoms TOF is produced by a spin flip of the
trapped atoms from the magnetic sub-level mJ = +1 to the mJ = 0. In this
latter state, the atoms become insensitive to the magnetic field and fall freely
by the action of gravity. However, up to now, the process through which this
happens in our experiment is almost uncontrolled and, in some extend, not
well understood.
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Figure 1.17: The evolution of the bias field after trap switch-off. The origin in
the horizontal scale corresponds to the switch-off of the currents in the trap coils.
The transient behavior lasts for more than 2 ms, before the field goes to zero. In
the first tens of microseconds, the variation of the magnetic field is so fast that
some of the atoms are incapable of following it adiabatically. Some of them spin
flip to the magnetic sub-level mJ = 0 and fall freely.

To release the atoms from the magnetic trap we need to switch it off. At
the moment this happens, in the compressed trap configuration (cf. §1.2.1.1),
the current in the compensation, curvature and gradient coils is of around
200 A, with each of these coils producing a magnetic field of about 190 G.
To get a ballistic expansion of the cloud, the trap has to be switched off
much faster than the inverse oscillation frequency of the radial axis, ∼ 1 ms,
meaning that all the magnetic fields need to be switched off very rapidly.
This induces very strong eddy currents in the stainless steel chamber and the
magnetic field behaves in an uncontrolled way during a transient period of
a few milliseconds before going to zero. In particular, the bias field at the
center of the trap exhibits the behavior shown in Fig.1.17: it decreases very
rapidly from ∼ 360mG to almost −150G, relaxing then to zero. The atoms
at the center of the trap, during the passage at zero magnetic field, losses
momentarily the magnetic quantization axis and, some of them, spin flip to
the state mJ = 0 and fall under gravity. These are the atoms we see in the
TOF signal.

This initially somehow unexpected behavior of the trap switch-off turned
out to be very convenient since the atoms that spin flip to the mJ = 0
state are insensitive to stray magnetic fields, allowing the unperturbed ex-
pansion of the cloud. The only problem, however, is to know ηtof , the ratio
between the total number of trapped atoms and those that contributes for
the TOF signal. This ratio is not well known and the best we can do is to
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estimate it approximatively.

Dependence with the temperature.

Moreover, we have empirical evidence that ηtof also varies with the temper-
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Figure 1.18: The left hand side graph plots the integrated flux of several TOF s,
Ntof , in function of the theoretically expected number of atoms in the correspond-
ing cloud, Ncloud. The computation of Ntof requires the knowledge of the temper-
ature, fugacity and amplitude of each TOF, all these parameters found through a
fitting procedure (cf. Chapter 4 and Appendix D) and also the overall detector
efficiency (see text). Ncloud is computed using the thermodynamical expression
that relates temperature, fugacity and number of atoms (cf. Eq.4.51). The right
hand side graph, shows the corrective factor ηtof = Ncloud/Ntof in function of the
number of atoms in the TOF, Ntof . The data shown in both graphs covers a range
of temperature from the 0.5µK, the darkest gray markers, to 3.2µK, the lightest
ones.

ature of thermal clouds and with the size of condensates (i.e. their chemical
potentials). The values we find for thermal clouds and condensates are very
different, even for thermal clouds close to the degeneracy[51].

The Fig.1.18 shows an example of the variation of efficiency of detection
for many different thermal clouds. Its left hand side graph plots Ntof , the
number of atoms computed as the integral of the TOF signal acquired within
the analog mode 13, in function of Ncloud, a theoretically computed number

13Ntof is derived from the analog TOF signals which is a voltage signal given by Vtof =
ηatoms

dNtof

dt , with %atoms a responsibility constant that converts the atomic flux into Volt.
This quantity is given by[70]

%atoms = e ·R ·QE G · Tgrid · Sactive ∼ 9.2× 10−8V · sec,

where R = 6.8 × 106 is the charging resistor, QE G = 2 × 105 is the product of the
quantum efficiency and the gain of the MCP, Sactive ∼ 0.6 is the ratio of its active surface
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of atoms obtained from a fit analysis of the TOF. This graph shows that
these two quantities are quite different. The right hand side graphs of this
Figure plots the ratio η = Ncloud/Ntof in function of Ntof . In these graphs,
Ncloud is computed for known values of the cloud’s temperature and fugacity
(cf. Eq.4.51), which are obtained from a fit of the TOF to the theoretical
model we will present latter in Chapter 4. Thus, the values we plot here for
ηtof cannot be considered as an absolute calibration of the detection system.

1.3.6.2 The detection sensitivity for the counting mode.

The effective atomic flux acquired with the counting mode is given by

Φatoms = Tgrid · Sactive ·QE · dNtof

dt
. (1.12)

This expression is independent of the MCP gain. Comparing the analog and
the counting mode signals we could determine G ∼ 5.2× 105 and then, that
QE for a He∗ atom is of about ∼ 40%.

Ion signal calibration.

The ion flux expression differs from the expression given in Eq.1.12 for the
atomic flux only in the quantum efficiency, which is different for ions (we
admitting, as before, that all the ions are detected by the MCP). For a MCP high
voltage of about 2 kV, this quantity approaches unity[80] and then, the overall
efficiency for the ion detection is only

ηions = Tgrid · Sactive ∼ 0.42.

and Tgrid = (0.84)2 the grid transmission.



C H A P T E R 2

The ultra-cold non-degenerate
ideal gas.

In this Chapter we present an introduction to simple and standard results
of the physics involved in an ultra-cold, non-interactive atomic gas confined
in a harmonic trap[3]. It also introduces the formalism we use to describe
theoretically the atomic time of flight (TOF ).

The Chapter is divided into two Sections. In Section 2.1, we will describe
the atomic cloud inside the trap, using a formalism based in the density
matrix operator in thermal equilibrium. We will derive standard results for
the cloud’s spatial density as well as for its momentum distribution. Along
with the theoretical formalism, this Section will also introduce some of the
definitions we will use further on in this manuscript.

In Section 2.1, we also introduce the semi-classical approximation (SCA)
and the critical temperature. We show that the SCA formalism is not suf-
ficient to properly define the cloud’s peak density at the critical transition
point and we need to take into account the contribution of the harmonic os-
cillator fundamental state[81]. The validity of the SCA is further investigated
for the spatially integrated density cases, as those found in experimental de-
tection schemes or, more generally, for the number of particles in the cloud.
For these cases, we show that the SCA works well.

In the second part of this Chapter, Section 2.2, we will model the bal-
listic fall of a cloud after being released from the trap. As before, the used
formalism is very standard[82, 83]: we use a Green function for computing
the propagation of the atoms’ wave functions in a gravitational field. This is
done considering the ideal gas case only. Even so, the derived result proves
to be a rather good description even for the case where we consider a weakly
interactive gas. It is used in Chapter 4, along with a correction for hydro-
dynamical effects, in the derivation of the TOF expressions we use to fit our
data.

We have also used this ballistic expansion model to interpret the results of
a recent experiment, where we have measured the density-density correlation
function of a falling cloud[84]. The results obtain in Section 2.2, for the
atomic flux, will then be generalized to deal with this correlation experiment.
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2.1 An ideal gas cloud confined in a harmonic

trap.

In following paragraphs we will derive simple expressions describing a cloud
of an ideal bosonic gas trapped in a harmonic potential at the thermal equi-
librium. We start by introducing the harmonic oscillator Hamiltonian and its
eigenfunctions. These are then used to define a thermal equilibrium density
matrix operator at non null temperature, using the Bose-Einstein distribu-
tion as the statistical weighting function. The Green function for this prob-
lem is well known and, generalized to imaginary time, describes the density
matrix at finite temperature. Within this framework, we derive the cloud’s
atomic density in the coordinate space and also in the momentum space.

In this Section we will also discuss the usually denoted semi-classical ap-
proximation (SCA) which is widely used to simplify the analytical density
expressions, that involves infinite sums, to approximated expressions written
through the use of polylogarithmic (Bose) functions. Expressed in this way,
the density functions has simpler analytical derivations and, since the poly-
logarithmic function are easily computed numerically, simplifies the analysis
of experimental results as, for example, fitting TOF data. However, the type
of approximations used in this SCA can, in some cases, be very inaccurate.
We check their validity for our experimental situation.

A relevant aspect of the validity or not of the SCA, is the problem of the
determination of a harmonically trapped cloud’s peak density at the critical
transition. An exact calculation of this quantity, for the ideal gas case, gives
an unexpected result, quite different from the standard one found in the
literature.

2.1.1 Atomic density in thermal equilibrium.

Our magnetic trap potential can be well approximated by a harmonic oscil-
lator (h.o.) potential 1:

V (r) =
∑

α

1
2
Mω2

αr
2
α (2.1)

where ωα are the frequencies of oscillation in each of the Cartesian directions
and M is the He∗mass. For the ideal gas, the total Hamiltonian is simply

Ĥ =
p̂2

2M
+ V (r̂). (2.2)

1Throughout all this manuscript the Greek letter α will always denote an index running
over all the spatial coordinates.
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This Hamiltonian is known to have a discrete set of eigenfunctions that can
be written in terms of the Hermite polynomials, Hm(x). The eigenfunction
of order m is given by

ψm(r) =
∏
α

Amα e
−r2

α/2σ2
α Hmα(rα/σα). (2.3)

with Amα = (
√
πσα 2mα mα!)

−1/2 being the normalization factor. The spatial
dimensions of the trap are characterized, in each direction of space, by the
characteristic length scale σα = (~/Mωα)1/2.

The trapped cloud density, in thermal equilibrium can be written as

n(r) = 〈r|ρ̂eq|r〉 =
∞∑

m=0

ψm(r)ψ∗m(r) 〈nm〉 (2.4)

where

ρ̂ =
∞∑

m=0

|ψm〉〈ψm| 〈nm〉

is the density matrix operator. 〈nm〉 is the thermal occupation of state m,
which is given by Bose-Einstein statistics

〈nm〉 =
Z

exp (βεm)− Z
(2.5)

with εm = ~
∑

α

[(
mα + 1

2

)
ωα

]
and β = 1/kBT , where T is the temperature

and kB is the Boltzmann constant. In this expression we also have Z which
is the fugacity. Z is an alternative way of representing the chemical potential
µ, Z = exp(µ/kBT ). Using the fugacity rather than the chemical potential
if often preferable since the fugacity is bound on a finite interval while the
chemical potential can range to −∞. The two limiting values for Z are
attained for the classical high temperature limit and for the zero temperature
BEC gas. In the classical limit since many levels of the harmonic oscillator
are occupied the sum in Eq.2.4 is extended to large values of m. However,
the total number of particles N , given by

N =

∫
R3

dr n(r),

is fixed and therefore the fugacity should be small enough to fulfill the last
Equation. For a fixed number of particles, the fugacity decreases when the
temperature grows and, in the limit of very high temperature, tends to zero.
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In the limit where the temperature decreases to zero, only the lowest energy
level is occupied and

N = N0 =
Z

exp (βε0)− Z

where ε0 = 3
2
~ω̃ is the zero point energy, with ω̃ = (ωx +ωy +ωz)/3 the arith-

metic mean of the trap frequencies. As N0 must be positive, this equation
defines the maximum value for the fugacity

Zmax = exp (−βε0)
N0

N0 + 1
≈ exp (−βε0). (2.6)

In the last equation we have assumed a very large number of particles. Con-
sequently, the maximum value the chemical potential can obtain is µ = ε0.

There are several alternative strategies to evaluate the expression in Eq.2.4
[85, 86]. Here we will make use of the single particle h.o. Green function,
Gho(r, r′, t) = 〈r′| exp (−iĤt/~)|r〉. This Green function propagates a wave
function from position r to r′ during the time interval t,

Gho(r, r′; t) = 〈r′| exp (−iĤt/~)|r〉 =

=
∑
m,m′

〈r′|ψm′〉〈ψm′| exp (−iĤt/~)|ψm〉〈ψm|r〉.

=
∑
m

ψ∗m(r′) exp
(
−iεm

~
t
)
ψm(r) (2.7)

Our interest here is not in the particles’ motion but rather in their distribu-
tion of thermal equilibrium. Substituting the (real) time in this propagator
by t = −i~β, a purely imaginary quantity, inversely proportional to the tem-
perature, we obtain

Gho(r, r′; β) =
∑
m

ψ∗m(r′) exp (−βεm)ψm(r). (2.8)

We will refer to this expression as the temperature Green function[86]. This
expression is similar to the one in Eq.2.4 if the occupation factor is taken
as the Boltzmann factor exp (−βεm). Note however that we can express the
Bose-Einstein formula of Eq.2.5 as a sum of Boltzmann factors multiplied by
the fugacity,

Z

exp (βεm)− Z
=

∞∑
l=1

Zl exp (lβεm),

and therefore

n(r, r′) = 〈r|ρ̂|r′〉 =
∞∑
l=1

ZlGho(r, r′; lβ). (2.9)
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which is the first order correlation function evaluated at the spatial locations
r and r′. The actual expression for the h.o. Green function proves to be
equal to[87]

Gho(r, r′; t) =

=
(2π)−3/2

σ 3

∏
α

√
−i

sin (ωαt)
× exp

[
i
(r2

α + r′2α ) cos (ωαt)− 2rαr
′
α

2σ2
α sin (ωαt)

]
,(2.10)

where σ = (
∏

α σα)1/3 is the geometric mean trap size. The temperature
Green function becomes 2

Gho(r, r′; τ) =

=
(2π)−3/2

σ 3

∏
α

√
1

sh(τα)
exp

[
−
(

rα+r′α
2σα

)2

th
(τα

2

)
−
(

rα−r′α
2σα

)2

cth
(τα

2

)]
,(2.11)

where we have introduced the temperature dependence through the parame-
ter

τα = β~ωα . (2.12)

This expression will be used in the following Chapter for computing cor-
relation functions of the atomic cloud. For now we are only interested in its
particles’ density function which, at location r, is obtained from Eq.2.9 with
r′ = r,

n(r) =
∞∑
l=1

ZlGho(r, r; lτ).

In the high temperature limit, β~ωα = τα � 1 and only the first term of
the sum will contribute significatively to the expression. If we take only this
term we get

n∞(r) =
Z

λ3
T

∏
α

√
τα

sh(τα)
exp

[
− r

2
α

σ2
α

th
(τα

2

)]
,

with

λT = ~
√

2π/MkBT , (2.13)

the thermal de Broglie wavelength. Since τα � 1 we can also replace the
hyperbolic functions by corresponding series expansions in τα , truncated at
the lowest order term, to obtain

n∞(r) =
Z

λ3
T

∏
α

exp

[
−τα

2

r2
α

σ2
α

]
=

Z

λ3
T

exp [−βV (r)], (2.14)

2The symbols th(), cth() and sh() will be used for the hyperbolic tangent, cotangent
and sine functions, respectively.
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which can be recognized as the usual Boltzmann distribution function derived
in the framework of classical statistical mechanics. Here, the fugacity plays
the role of phase space degenerecency parameter and is related with the
number of atoms N through Z = Nτ with

τ =

(∏
α

τα

)1/3

(2.15)

the geometric mean value of τ .
The maximum density occurs at the center of the trap for r = 0 and is

equal to Zλ−3
T . The thermal cloud size sα, in each spatial dimension α, is

given by

sα =
vT

ωα

(2.16)

where vT =
√
kBT/M is a convenient measure of the thermal velocity.

It is useful to redefine the fugacity so that its maximum value is always
bounded by one. This can be accomplished by redefining the fugacity to
include the zero point energy for the harmonic motion in the trap,

Z = Z exp
(
−3

2
τ̃
)
, (2.17)

with τ̃ ≡ β~ω̃ = 1
3

∑
α τα the arithmetic mean value of τ . With this fugacity

definition, the density matrix operator is now given by

ρ̂eq =
∑
m

|ψm〉〈ψm|
∞∑
l=1

Zl exp
(

3
2
lτ̃
)
exp (−lβεm).

The temperature Green function with the zero point energy removed becomes

Gho(r, r′; τ) =
∏
α

exp (τα/2)
∑
mα

ψ∗mα
(r′α)ψmα(rα) exp (−βεmα) =

=
1

(
√
πσ)

3

∏
α

√
1

1−e−2τα
exp

[
−
(

rα+r′α
2σα

)2

th
(τα

2

)
−
(

rα−r′α
2σα

)2

cth
(τα

2

)]
,(2.18)

and the particle density becomes

n(r) =
∞∑
l=1

Z lGho(r, r; lτ). (2.19)

Note that in the limit when T → 0, or τ →∞, last expression reduces to

n0(r) =
Z

1− Z
|ψ0(r)|2, (2.20)
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i.e., the ground state density.
Rearranging terms in Eq.2.19 to put in evidence λ−3

T , we get for the
particles density,

n(r) =
1

λ3
T

∞∑
l=1

Zl
∏
α

Fl(τα) exp

[
− r2

α

2s2
α

th(lτα/2)

τα/2

]
, (2.21)

where we have defined

Fl(τα) =

√
2τα

1− e−2lτα
. (2.22)

The expression in Eq.2.21 can be significatively simplified in the limit of high
temperature for which τα � 1. As before, we can expand the expression in
series on τα . If we keep only the first order terms, Fl(τα) simplifies to l−1/2

and, the argument in the exponential, to −1
2
lα2/s2

α = −lβV (rα). Making
these simplification we arrive at the expression

n(r) =
1

λ3
T

g3/2

(
Z
∏
α

exp

[
− r2

α

2s2
α

])
=

1

λ3
T

g3/2

(
Z exp [−βV (r)]

)
(2.23)

where g3/2(x) is the polylogarithmic function 3 of order 3/2, defined for an
arbitrary order u as

gu(x) =
∞∑
l=1

xl

lu
. (2.24)

The approximation that leads to the expression in Eq.2.23 for the density
is known as the semi-classical approximation (SCA) and is widely used for
getting simple analytical expressions for the density. This approximation
is very good in the thermodynamical limit, where the number of particles
N →∞ while Nω3 tends to a given constant. This also fulfills the condition
τ → ∞. We emphasize, however, that the expression on Eq.2.23, contrarily
to the one in Eq.2.19, does not include the ground state contribution, since
now, in the limit when T → 0, the thermal cloud density is n(r) = 0. We
will discuss the validity of the SCA in the following paragraphs.

2.1.1.1 The critical temperature.

We calculate now the total number of atoms, N . It is obtained integrating
Eq.2.21,

N =

∫
R3

d3r n(r) =
∞∑
l=1

Z l 1∏
α (1− e−lτα )

. (2.25)

3These type of functions are also known, among physicists, as the Bose functions.
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Using now the SCA, replacing the exponential and the hyperbolic sine by the
respective arguments, we get

N ' 1

τ 3 g3(Z), (2.26)

with τ defined above in Eq.2.15. We could also get this result, integrating
Eq.2.23.

The usual criteria for defining the critical temperature, Tc, at which the
phase transition takes place and the BEC starts to grow, is when the sat-
urated excited states population is equal to the total number of atoms[3],
i.e. ∑

m6=0

Nm(Z = 1, Tc) = N. (2.27)

Within the SCA, the ground state population is neglected, N0 ≈ 0, and the
critical temperature is

T 0
c =

~ω
kB

(
N

ζ(3)

)1/3

. (2.28)

If the temperature decreases from T 0
c , the total excited state population will

also decrease according to Nth = ζ(3)/τ 3. If the total number of atoms N ,
is fixed, a condensed population of N0 = N −Nth atoms will accumulate in
the ground state. The fraction of these condensed atoms is then given by

N0

N
= 1−

(
T

T 0
c

)3

. (2.29)

Finite Size Effect.

The previous expressions for the critical temperature and the fraction of
condensed atoms were obtained in the semi-classical approximation, which
considers only the lowest order terms τ in the series expansion of the right
hand side of Eq.2.25. A better approximation can be obtained if higher orders
terms are included. Since the lowest order in the denominator is already
proportional to l3 we can simply expand the exponential in the numerator of
that expression up to terms linear in τ̃ , exp

(
3
2
lτ̃
)
' 1+ 3

2
lτ̃ , to get the lowest

order correction to Eq.2.26,

N ' 1

τ 3

[
g3(Z) + 3

2
τ̃ g2(Z)

]
. (2.30)

The correction for the number of atoms in the thermal cloud included in
Eq.2.30 has a counterpart in the critical temperature: it will also change in
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relation to the lowest order approximation of Eq.2.28. Taking δTc = Tc − T 0
c

as the small temperature correction, with T 0
c given by Eq.2.28 and keeping

only the lowest order term in N we get

δTc

T 0
c

= − ω̃ζ(2)

2ωζ(3)2/3
N−1/3. (2.31)

The fraction of condensed atoms will also change. The propagation of a small
variation δT in the temperature of the condensed fraction of Eq.2.29 is given

by δ
{

N0

N

}
= 3

(
T
T 0

c

)2
1

T 0
c
δT . With δT given by Eq.2.31, we get

N0

N
= 1−

(
T

T 0
c

)3

− 3

2

ω̃

ω

ζ(2)

ζ(3)2/3
N−1/3

(
T

T 0
c

)2

. (2.32)

The above expressions for the first order correction to the fraction of con-
densed atoms and to the critical temperature are generally refereed as fi-
nite size effect. It is negligible for large clouds where the factor N−1/3 goes
to zero. It also depends on the anisotropy of the trap through the factor
ω̃/ω = (2 + λ)/3λ1/3, with λ = ωz/ω⊥. For λ > 1 the trap is disk-shaped
while for λ < 1, like the one in our experiment, it is cigar-shaped. In both
cases, ω̃/ω always increases for values of λ 6= 1, since its minimum is at
λ = 1. The limiting cases are for λ � 1, ω̃/ω ' λ2/3/3 and for λ � 1,
ω̃/ω ' 2

3
λ−1/3. This finite size effect correction for our experimental setup

is small: for a cloud with N = 106 atoms, the correction in the critical
temperature will be of the order of 1%.

2.1.1.2 The finite size effect importance in the cloud density close
to the critical transition point.

Despite being a good approximation when dealing with the total number of
atoms, the SCA fails seriously to describe the density at the center of the
trap and when the fugacity is near one. In fact, in the sum of Eq.2.21, if
both the fugacity and the Gaussian terms are near or equal to one, those
terms will decrease slowly with l and the terms contributing to the sum are
not limited to the small values of l. In this case, the first order expansion
of Fl(τα) is very poor since, even for very small values of τα , l can grow
to very large values making large as well the argument of the exponential
in the denominator of Fl(τα). It is convenient to emphasize, however, that
the SCA presents no problem for the case of the hyperbolic tangent in the
argument of the Gaussian. This is so because in this term only small l’s will
contribute significatively to the decaying exponential. Likewise, if we define

[W (r)]l = Zl
∏
α

exp

[
− r2

α

2s2
α

th
(

1
2
lτα
)

1
2
τα

]
, (2.33)
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it is reasonable to approximate this factor to

W (r) ≈ W∞ = Z
∏
α

exp

(
− r2

α

2s2
α

)
. (2.34)

The density becomes

n(r) = λ−3
T

∞∑
l=1

W l
∞

∏
α

Fl(τα). (2.35)

If we expand Fl(τα) in a power series in l but now retaining a few more terms
beyond the first one

Fl(τα) = l−1/2 + 1
2
l1/2τα + 1

24
l3/2τα

2 +O
(
l7/2τα

3
)

(2.36)

we get ∏
α

Fl(τα) = l−3/2 + 3
2
l−1/2τ̃ + Rl (2.37)

where Rl ≡ O(l1/2) stands for the remainder of the series. The sum over
l of this remainder term, as well as the one for the Fl(τα) term itself, con-
verges only if multiplied by W l

∞. For the moment we continue by neglecting
Rl. We will discuss later the question of how appropriate this approxima-
tion is, depending on the physical situation. If we keep only the two first
terms of Eq.(2.37) we account for the finite size effects. The density is then
approximately given by

n(r) ' λ−3
T

∞∑
l=1

W l
∞
(
l−3/2 + 3

2
l−1/2τ̃

)
= λ−3

T

[
g3/2(W∞) + 3

2
τ̃ g1/2(W∞)

]
= λ−3

T

{
g3/2

(
Z exp [−βV (r)]

)
+ 3

2
τ̃ g1/2

(
Z exp [−βV (r)]

)}
. (2.38)

Note that, as expected, if we integrate this expression over real space, we
recover the expression in Eq.2.30 for the total number of atoms. Remember
now, that in Eq.2.30 we had to truncated the expansion to the term g2(Z) to
avoid the divergence at Z = 1. In the above expression we have limited the
series expansion in a similar way. Nonetheless, if we used it for calculating
the density peak, i.e. the density at the center of the cloud, we get again a
divergence. The peak density is

n(0) ' λ−3
T

[
g3/2(Z) + 3

2
τ̃ g1/2(Z)

]
,

and for Z = 1, we find that the phase space density at the center of the trap,
λ3

Tn(0), is infinite, since g1/2(1) = ∞. The SCA model with the finite size
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effects correction, thus leads to an incorrect description of the cloud’s particle
density. The fact it works well when used for computing the cloud’s number
of atoms N , is explained because the spatial integration were done before
performing the approximations and evaluating the sum in l (cf. Eq.2.25).
This procedure avoided the anomalous peak density divergence.

The ground state contribution.

The approximation that leads to Eq.2.34, i.e. making th
(

1
2
lτα
)
≈ 1

2
lτα , ne-

glects the ground state contribution. Note that as l � τα
−1, the hyperbolic

tangent has only a weak dependence in l and saturates at one. In this limit-

ing case, the exponential in Eq.2.33 tends thus to exp (− r2
α

2s2
α
) whereas within

the referred approximation it goes to zero. Replacing also Fl(τα) by its as-
ymptotic limit

√
2τα , the neglected quantity amounts to 4

n0(r) =
Z

1− Z

∏
α e

−r2
α/σ2

α

(
√
πσ)3

, (2.39)

which is the ground state contribution, written before in Eq.2.20.

2.1.2 The critical atomic peak density.

The problem found on the previous paragraph could be avoided if we limit
the fugacity to values strictly smaller than one. This is moreover always the
case. As referred before, the SCA doesn’t take into account the ground state
contribution. We can cure this defect by including explicitly the ground state
density in Eq.2.38,

n(r) ' λ−3
T

{
g3/2[WT (r)] + 3

2
τ̃ g1/2[WT (r)]

}
+ n0(r) (2.40)

and, for the corresponding total number of atoms

N = τ −3
[
g3(Z) + 3

2
τ̃ g2(Z)

]
+

Z

1− Z
. (2.41)

Because N is finite, we must necessarily have Z < 1. Here we should keep
the standard criteria for the critical temperature Tc given in Eq.2.27, i.e.
the temperature at which the saturated excited states population equals the
total number of atoms. However, the inclusion of the ground state population
forces the critical fugacity Zc to be slightly smaller than one. We can estimate
this new critical fugacity.

We will first examine the situation where τα � 1. This corresponds to
a large number of atoms (the high-N limit) and we may disregard the finite

4To be strict, the factor Z/(1 − Z) in this expression should rather be
∑∞

l=L Zl =
ZL/(1− Z) with L ≈ 2τ−1

‖ where τ‖ is the smallest of the τ ’s.
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size term proportional to τ̃ 5. Since Zc is very close to one, if we express it
as Z = e−xc , the Bose function can be expanded around xc = 0 like

g3(Zc) ' ζ(3)− ζ(2)xc. (2.42)

Similarly, the critical ground state population is approximated to[88]

Zc

1− Zc

' 1

xc

= τ −3/2
√
ζ(2), (2.43)

where we used the approximation N ' τ −3ζ(3). The critical fugacity is then
modified to

Zc ' 1− τ 3/2ζ(2)−1/2. (2.44)

This correction, from an experimental point of view is negligible since it is
very small, far below the accuracy of the experimental measurements. In our
experiment τ 3/2ζ(2)−1/2 ∼ 2 × 10−4 and, as we will show in Chapter 4, the
uncertainty in the measure of the fugacity is 5%.

Despite its negligible experimental impact, this correction does change
the degeneracy parameter at the critical transition. In the high-N limit for
a harmonic trap the criteria for the critical transition is

λ3
Tn(0)

∣∣∣
T=Tc

= ζ(3/2) ≈ 2.61 .

If we substitute Eq.2.43 in Eq.2.40 we find that this criteria should be mod-
ified to

λ3
Tn(0)

∣∣∣
T=Tc

= ζ(3/2) + 2
√

2ζ(2) ≈ 6.24 .

This result means that the ground state density at the center of the cloud,
neglected in the standard criteria, is even larger than the density of the
excited states. Again, the experimental verification of this local value for
the density peak in a non degenerate cloud is very hard to achieve. The
TOF signals involves always, at least, one spatial integration over the cloud’s
density profile. As we will see in the following Section, this spatial integration
washes out this contribution of the ground state density. This is further
accentuated in our experiment where, for the moment, the experimentally
accessible TOF results from a two-dimensional spatial integration over the
MCP surface (cf. §1.3).

Finite size effects will change the previous expressions somehow. The
actual derivation of these expression is more cumbersome as it involves the

5Note that in the thermodynamical limit, i.e. when N → ∞ with Nω3 → constant,
the condensate density is infinite, since as σα =

√
~

Mω0α
, n0 ∼ Nω3/2 →∞. Therefore, it

is preferable to take a limit where N is kept finite.
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derivative of the g2(Z) function at Z = exp(−xc) and we have opted for
a numerical study of its influence[81]. Figure2.1 presents two examples for
clouds with 106 and 103 atoms, confined in an isotropic harmonic oscillator.
The graphs in this Figure represents the evolution of the condensate fraction
N0/N and condensate peak density fraction in function of the temperature.
What prevails in those graphs is the sharp increase of the condensate peak
density compared to the condensate population. In this respect, the peak
density is a much better marker of the Bose-Einstein condensation than the
atom number. This feature is in fact used experimentally: the appearance
of a small peak over a broad distribution is the usual criterion to distinguish
clouds above or below the transition temperature. We have compared the
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Figure 2.1: Condensate atom number fraction N0/N (dash line) and peak den-
sity fraction n0(0)/n(0) (solid line) in function of the temperature in harmonic
oscillator unit ~ω/kB for clouds with 106 and 103 atoms confined in an isotropic
potential. The corresponding transition temperatures are Tc = 93.37~ω/kB and
Tc = 8.71~ω/kB respectively and are marked in the graph by a solid vertical
lines. T 0

c , given by the SCA expression of Eq.2.28 gives critical values of respec-
tively T 0

c = 94.04~ω/kB and Tc = 9.40~ω/kB, represented in the graphs by the
vertical dashed lines. Also, the doted vertical line in the right hand side graph
represents the critical temperature if finite size effects are taken into account
(T fs

c = 8.77~ω/kB). For the N = 106 case, this value is almost indistinguish-
able from Tc, but is slightly different for n0(0)/n(0) (dotted lines in both graphs).
The corresponding effect in N0/N is very small for both cases. In both graphs, the
ground-state peak density increases much more sharply than the ground-state pop-
ulation around the transition temperature. The peak density has also a significant
value above Tc.

degenerecency parameter computed with the approximated density expres-
sions in Eq.2.38 and Eq.2.40, and with the exact one in Eq.2.21, for different
number of atoms. These results are compiled in the Ref.[81], which is also
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presented in AppendixE.

2.1.3 The finite size SCA for spatially integrated den-
sity expressions.

The discussion above has shown that the expression for the density in Eq.2.38
should be corrected by including the ground state contribution. As we have
referred, this correction is experimentally important only if one has access to
local density measurements, what is not the case in any of the existing exper-
iments. We hope, however, to achieve performing such a three-dimensional
density measurement in the near future using the position sensitive detector
(see §3.5.2.1 for details) we have recently installed in our setup.

For the calculation of the number of atoms, the integration over the
three dimensions is done without mathematical difficulties for the simple
SCA model. We emphasized that the ground state volume, ∝ σ3, is very
small when compared with the cloud’s volume, ∝ s3 = (vT/ω)3: they scale
as (σ/s)3 = τ 3 � 1. We can expect then that even a single integration will
wash out the effects of neglecting the ground state contribution. Finally,
another reason that makes us not consider this correction is because, for the
moment, we don’t know how to deal simultaneously with both this effect and
the interatomic interactions. In a density integrated detection these latter
leads, in fact, to a measurable correction.

We will proceed now by estimating an upper bound of the error for the
expression obtained for the density in Eq.2.38. To reach the SCA density
expression we have expanded

∏
α Fl(τα) in series [cf. Eq.2.37]) and neglected

the remainder

Rl =
∏
α

(
2τα

1− e−2lτα

)1/2

− 1

l3/2
− 3τ̃

2

1

l1/2
.

This quantity, when l goes to infinity, will asymptotically approach the value

R∞ = lim
l→∞

Rl = (2τ)3/2.

Furthermore it can be shown that for all finite values of l ≥ 1, Rl < R∞.
Now, defining

GR∞(r, r; lβ) = λ3
T R∞

∏
α

exp

[
−1

2

(
α

2sα

)2
th(lτα/2)

τα/2

]
,

which is Gho(r, r; lβ) with the replacement of Fl(τα) by R∞, one can obtain
un upper bound on the possible error of the estimated density,

δn(r) < λ3
T

∞∑
l=1

Z lGho
R∞(r, r; lβ) = (πσ)−3/2

∞∑
l=1

W l
T , (2.45)
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The relative error for the density is

δn(r)

n(r)
< π−3/2

(
λT

πσ0

)3
W∞(1−W∞)−1

g3/2(W∞) + 3
2
τ̃ g1/2(W∞)

. (2.46)

Again we see that the approximation fails if W∞ → 1 (in the peak density at
the critical transition) 6.

The approximation works much better for the volume integrated expres-
sion. Here, one obtains for the relative error on the number of atoms N ,

δN

N
<

(
τ

π

)3/2 g3/2(Z)

g3(Z) + 3
2
τ̃ g2(Z)

,

where, as before, δN is the difference in number of atoms induced by the
improved SCA. The relative error is as small as τ 3/2. In our experiment this
is equal to 0.3%. It is interesting to derive as well the expressions integrated
in one- and two-dimensions, since these are actually the experimentally mea-
sured quantities: the first in typical CCD-based detection systems and, the
second, our case with the MCP. It is simple to show that they are propor-
tional to τ

1/2
x and (τxτy)

1/2, respectively, with the subscripts denoting the
integrated dimensions. Our experiment has (τxτy)

1/2 ' 1%.
An important conclusion of the preceding paragraph is that for experi-

mental proposes, as fitting data, the SCA is sufficient. The density or correla-
tion functions expressions derived within this approximation can be expressed
through the use of polylogarithmic(Bose) functions. The use of these func-
tions simplifies the writing of the expressions and, frequently, their analytical
manipulation.

2.1.4 The momentum distribution.

We can also compute the momentum distribution function of the cloud. This
result will be important for interpreting the expansion of the cloud when it
is released from the trap in §2.2.2. It is given by

ñ(p) = 〈p|ρ̂|p〉.
which can be evaluated at the thermal equilibrium in terms of the temperature
Green function

ñ(p) =

∫
R3

dr

∫
R3

dr′〈p|r〉〈r|ρ̂|r′〉〈r′|p〉

=
∞∑
l=1

Z l

∫
R3

dr

∫
R3

dr′
e−ip(r−r′)/~

(2π~)3
Gho(r, r′; lτ). (2.47)

6Note that when W∞ → 1, (1−W∞)−1 →∞ but also g1/2(W∞) →∞. However, the
divergence of the g1/2(x) at x = 1 behaves like (−

√
− ln (x)) ∼ (1 − x)−1/2, which is a

weaker divergence than (1− x)−1.
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Using Eq.2.18 we arrive at

ñ(p) = (2π)−3/2 1

τ 3

1

p3
T

∞∑
l=1

Z l
∏
α

Fl(τα) exp

[
−1

2

p2
α

p2
T

th
(

1
2
lτα
)

1
2
τα

]
, (2.48)

where pT is the momentum distribution width pT = MvT =
√
MkBT . This is

an isotropic quantity related to the thermal de Broglie wave length through

pTλT =
√

2π~. (2.49)

From Eq.2.48 we see that the momentum distribution is not, in general,
isotropic. In the SCA however, with τα � 1, the expression simplifies to

ñ(p) = (2π)−3/2 1

τ 3

1

p3
T

g3/2

(
Z exp

[
− p2

α

2p2
T

])
, (2.50)

which is, now, an isotropic distribution. The Boltzmann limit is given simply
by

ñ∞(p) = (2π)−3/2 1

τ 3

Z

p3
T

exp

[
− p2

α

2p2
T

]
. (2.51)

It is important to emphasize that ñ(p) is not the Fourier transform of
the particles density n(r), as it should be if we were dealing with a pure state
instead of a thermal ensemble. Actually, Eq.2.49 (a kind of generalized ther-
mal Heisenberg relation), relates the width of the momentum distribution,
not with the cloud size sα, but rather with λT . This latter one is, as we
will see in next Chapter, the appropriate measure of the particles correlation
function within the cloud[84]. This dependence on the correlation of the par-
ticles location is already present on Eq.2.47, where the momentum density
distribution is calculated through a double Fourier transform of the temper-
ature Green function, which characterizes the particle correlation function at
locations r and r′.
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2.2 Time of Flight: theoretical description.

In the previous section we have described the density of a cloud of non-
interacting atoms in thermal equilibrium within a harmonic trap. Here we
derive the expressions describing the atoms’ Time of Flight signal (TOF ),
i.e. the atomic flux that results when the cloud is released from the trap and
falls under the influence of the gravitational field.

As before, we will restrict the model to the case of the ideal non-interacting
gas. This leads to the ballistic expansion of the cloud, a physical situation
where it is possible to deduced exact and very intuitive expressions for the
atomic flux. The formalism presented here will then be extended, in the next
Chapter, for interpreting the results of an experiment where we measure the
intensity-intensity correlation function of the falling cloud[84]. The signal
to noise ratio of this experience makes this simple ballistic description good
enough to deal with its data.

However, when analyzing cloud density through our two-dimensional in-
tegrated TOF signals, especially for thermometric proposes, the ideal gas
approximation can be insufficient. At the early stages of the cloud expan-
sion, it behaves more like a hydrodynamic fluid, what changes slightly the
results predicted by the simple ballistic expansion. For the moment, we will
disregard this effect, leaving for Chapter 4 the derivation of a hydrodynamical
correcting factor.

2.2.1 Ballistic expansion of an ideal gas under the ef-
fect of a gravitational field.

We are interested in deriving analytical expressions for the experimentally
observed signal of the atoms when they fall on the detector. This signal is in
practice the number of atoms that hit the detector per second or, else, the
atomic flux crossing the plane of the detector.

This atomic flux, in the ideal gas case, can be derived by computing
the time evolution of the wave functions of each harmonic oscillator state
separately and then by evaluating, after the fall, the overall contribution in
the thermodynamical equilibrium. The time evolution of each wave function
can be described through the use of the free fall Green function. We start
with the definition of the quantum mechanical atomic flux.
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2.2.1.1 Quantum mechanical flux.

In thermal equilibrium, the atomic cloud can be represented in second quan-
tization through the atomic field operators{

Ψ̂†(r) =
∑

m ψ∗m(r)â†m
Ψ̂(r) =

∑
m ψm(r)âm

(2.52)

where the sum runs over all harmonic oscillator wave functions ψm(r) and
the operators â† and â are the usual bosonic creation and annihilation oper-
ators, obeying the commutation relations [â†m, âm′ ] = δm,m′ and [â†m, â

†
m′ ] =

[âm, âm′ ] = 0. The thermal occupation of the state m is given by (cf. Eq.2.5)

nm = 〈n̂m〉 = 〈â†mâm〉.

These expressions can be generalized for the time varying wave functions,{
Ψ̂†(r, t) =

∑
m ψ∗m(r, t) â†m

Ψ̂(r, t) =
∑

m ψm(r, t) âm

, (2.53)

In these latter expressions, the field operator Ψ̂(r, t) carries the spatiotem-
poral information of the evolution of the cloud after being released from the
trap. The wave functions vary now with time but the statistical occupation
of their corresponding h.o. levels is constant. In here, we assume that there
is no scattering of particles between different quantum states, what is only
true in the case treated here of non-interacting particles. The matter flux
associated with the field operators given in Eqs.2.53, is

Î(r, t) =
~
M

Im
[
Ψ̂†(r, t)∂zΨ̂(r, t)

]
=

i~
2M

{
[∂zΨ̂

†(r, t)]Ψ̂(r, t)− Ψ̂†(r, t)∂zΨ̂(r, t)
}
, (2.54)

where Im[x] gives the imaginary part of x and ∂zΨ̂ the partial derivative of
the field in respect to the spatial falling direction oz. The measured atomic
flux is the thermal average of this operator, given by〈
Î(r, t)

〉
=

i~
2M

∑
m,m′

{[∂zψ
∗
m(r, t)]ψm′(r, t)− ψ∗m(r, t)∂zψm′(r, t)} 〈â†mâm′〉

=
i~

2M

∑
m

{[∂zψm(r, t)]∗ψm(r, t)− c.c.} 〈n̂m〉. (2.55)

To proceed with the calculation of the last expression we need first to derive
explicitly the wave functions ψm(r, t) and theirs partial derivative ∂zψm(r, t).
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2.2.1.2 Time evolution of a h.o. wave function in free fall

The free fall Green function

The free fall of a particle of mass M is described by the time independent
Schrödinger equation,[

− ~2

2M

d2

dz2
−Mgz

]
ϕ(z) = Eϕ(z) (2.56)

where, as before, the fall is the z− axis and the gravitational energy is −Mgz,
with g the gravity’s acceleration. Eq.2.56 is, formally, the Airy’s equation

d2

dζ2
ϕE(ζ) + ζEϕE(ζ) = 0 with ζE =

[
z +

E

Mg

](
2M2g

~2

)1/3

. (2.57)

The physically relevant solution[89] of this equation is the normalized Airy
function of the first kind Ai(−ζ) 7, which has the integral representation

Ai(−ζ) =
1√
π

∫ +∞

−∞
exp

[
i
u3

3
− iζu

]
du. (2.58)

Knowing the solution of Eq.2.56, it is now possible to write down the corre-
sponding Green function

K(z, t; z0) =

∫ +∞

−∞
ϕ∗E(z0)ϕE(z) exp(−iEt/~) dE. (2.59)

which propagates an initially steady state wave function ϕ(z) in time accord-
ing to the time dependent Schrödinger equation for the Hamiltonian in the
left hand side of Eq.2.56. This Green function is

K(r, t; r0) =

(
M

2πi~t

)3/2

exp

{
iM

2~t
[
(r− r0)

2 + 2(z + z0)η(t)− 1
3
η2(t)

]}
,(2.60)

where η(t) = 1
2
gt2 is the distance covered in a fall of an atom, initially at

rest, during the time interval t. The detector is placed at a fixed height, H,
from the center of the trap and η(t0) = H defines the classical time of flight
t0 =

√
2H/g.

The expanding h.o. wave functions.

Here, we are interested in the time evolution of the particles that are initially
confined inside the harmonic trap, described by the steady state h.o. wave

7There is one other solution for this equation, the Airy function Bi(−ζ). This solution,
however, has no physical meaning since it diverges in the non-classical region.
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functions ψho
m(r0). The z dependence for the time evolving wave function

ψ(r, t) is given by

ψm(z, t) =

∫ +∞

−∞
dr0 K(z, t; z0) ψm(r0). (2.61)

The generalization for the three-dimensional wave function is straightfor-
ward since this latter one is space separable, ψm(r, t) =

∏
α ψm(α, t). The

transversal components of the ψm(r, t) are those of a free particle. The Green
function in this case is found through Eq.2.59 with ϕE(x) ∝ exp (ikx), plane
waves with momentum k =

√
2ME/~.

Substituting Eqs.2.3 and 2.60 into Eq.2.61, we find 8

ψm(r, t) =

∫
R3

dr0 K(r, t; r0) ψm(r0)

=
∏
α

imα
exp [i(mαδα + φα)]√

ωαt− i
ψmα(r̃α) (2.62)

with δα = tan−1(1/ωαt), r̃α re-scaled coordinates defined as

x̃ =
x√

1 + ω2
xt

2
, ỹ =

y√
1 + ω2

yt
2

and z̃ =
H − η(t)√
1 + ω2

zt
2

(2.63)

and φα ≡ φα(t) a global phase that depends on α and t but not in the index
mα. In the falling direction (Oz axis), it is given by

φz(t) =
M

2~t
{
[H2 − z̃2] + η(t)

[
2H − 1

3
η(t)

]}
− π/4. (2.64)

In the other directions of space, last expression is still valid with η(t) = 0
and replacing H by either x or y and respectively z̃ by x̃ or ỹ. We will see in
the following of this section and in Chapter 3, that this phase will disappear
if we are interested in the calculation of the atomic flux or in the intensity-
intensity correlation function. However, it gives rise to fringes in the first
order correlation function.

The atomic flux.

Using the identity ∂zHn(z) = 2nHn−1, the partial spatial derivative of the

8In here, a useful integral result can be found in Ref.[90](7.374-8),∫ +∞

−∞
e−(x−y)2Hn(αx)dx =

√
π(1− α2)n/2Hn

[
αy√

1− α2

]
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wave function can now be carried out

∂zψm(r, t) =

=
M

~
{
[−v1 + iv2]ψmz(z, t)− iv3 e

iδz
√
mzψmz−1(z, t)

}
ψmx(x, t)ψmy(y, t),

(2.65)

where the velocities v1, v2 and v3 are given by

v1 = ωz
H − η(t)

1 + ω2
zt

2
, v2 =

1

t

[
H + η(t)− H − η(t)

1 + ω2
zt

2

]

and v3 =

√
2ωzσz√

1 + ω2
zt

2
.

(2.66)

Substituting this expression in Eq.2.55, we see that the term depending on
v1 disappears when subtracted to its complex conjugate. We have then, for
the atom’s flux,

〈Î(r, t)〉 =

=
∑
m

[
v2|ψm|2 −

√
mz

2
(v3ψ

∗
mz
ψmz−1 + v3

∗ψ∗mz−1ψmz)|ψmxψmy |2
]
〈n̂m〉,

(2.67)

where, we have used the short hand ψmα ≡ ψmα(r, t). Also for simplicity,
and latter convenience, we have defined the complex velocity

v3 = v3e
iδz .

Note however that (cf.Eq.2.62),

v3ψ
∗
mz
ψmz−1 = −v3

∗ψ∗mz−1ψmz = i
v3√

1 + ω2
zt

2
ψho

m(z̃)ψho

m(z̃)

where ψho
m, the h.o. wave functions, are real functions. Thus, the second term

in the sum of the right hand side in Eq.2.67 cancels out. This expression is
finally given by

〈Î(r, t)〉 = v2

∑
m

|ψm|2〈n̂m〉

=
v2∏

α(1 + ω2
αt

2)1/2

∑
m

|ψm(r̃)|2〈n̂m〉

or, simply

〈Î(r, t)〉 =
v2∏

α(1 + ω2
αt

2)1/2
n(r̃), (2.68)
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with n(r̃) the cloud’s density in thermal equilibrium, but with the re-scaled
coordinates given by Eqs.2.63.

The above derivation of the atomic flux used no approximations. It has
conduced to the very simple result of Eq.2.68. This expression has a very
simple interpretation: during the expansion and fall, the atomic cloud main-
tains its original density distribution with just a re-scale of its coordinates.
The atomic flux is proportional to a certain velocity v2 and, due to the ex-
pansion, to the pre-factor

∏
α(1 + ω2

αt
2)−1/2 that accounts fir the decrease in

the cloud’s density consistently with the coordinates’ re-scaling. v2 can be
identifies, as we will show in the following, with the classical center of mass
of the falling cloud.

2.2.2 Ballistic expansion in the far field and long fall
approximations.

To simplify the previous expression for the atom flux, we will use two ap-
proximations that are valid under our experimental conditions. These ap-
proximations will also be used on Chapter 3, when we deal with the intensity
correlation function.

2.2.2.1 The far field approximation.

The first of these approximations, which we will refer to as far field, valid
for ωαt� 1, replaces 1 + ω2

α
t2 by simply ω2

α
t2 in all the previous expressions

that includes that factor. The term far field is motivated by an analogy we
can establish of the atomic flux with a hermite-gaussian laser beam. In this,
the far field condition is fulfilled when the beam propagates a distance from
its waist, z, much bigger than a characteristic length zR, the Rayleigh length
[91]. It can be proved that the integral equation for the propagation of the
atomic beam, in Eq.2.61, is formally equal to the Huygens-Fresnel integral
for the propagation of a hermite-gaussian laser beam. Thus, analogously to
the Rayleigh length, we can define a Rayleigh propagation time, which is given
by tR = ω−1. The far field condition accomplished when t� tR which states
that, in every axis, we should have ωαt � 1. Our experimental conditions
are in good agreement with this condition: in the worst case, taking the
frequency of the slowest axis and putting t = t0 we have ωt ∼ 30. For the
other two axis, ωt > 750.

As in the case of the propagation of a hermite-gaussian beam, this approx-
imation amounts to neglect the cloud’s initial extension in the calculation of
its spread for t� tR. The RMS value of the size of the cloud at any time is√
〈x2(t)〉 =

√
〈x2

0〉+ 〈v2
0〉t2. If we neglect 〈x2

0〉, then
√
〈x2(t)〉 = vT t with vT

the RMS value of the initial thermal velocities of the trapped atoms. This
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approximation is equivalent to the above simplification
√

1 + ω2t2 ∼ ωt. To
see this, note first that the density in the trap is described through the ex-
ponential factor e−α2/2s2

α with sα = vT/ωα the characteristic cloud size in the
α direction. After released from the trap, the cloud expands freely and this
expansion is given by the coordinate re-scaling presented before. If we use
the far field approximation, this re-scaling is given simply by α/ωαt. Sub-
stituting this expression in the argument of the exponential, we obtain the
time varying cloud size

sα(t) = sα(t = 0)ωαt = vT t. (2.69)

As before, this expression takes into account only the RMS value of the
trapped atoms’ momentum distribution, pT , an isotropic quantity. Thus,
within this approximation, the cloud expansion is said to be ballistic, i.e.
isotropic and proportional to the atoms’s thermal velocity, a result that was
anticipated earlier in §2.1.4.

2.2.2.2 The long fall approximation.

We will use a second approximation that we will call the long fall approxi-
mation. Here, the necessary condition to fulfill is that the time observation
window, ∆t, must be much smaller than t0 =

√
2H/g, the time of flight of

the cloud’s classical center of mass. In the case of interest here, ∆t is just
the time spread of the cloud, tcl. As the cloud is accelerated by gravity, this
quantity is given by tcl = sz(t0)/gt0. In the far field, sz(t0) = vT t0 and we
get then

tcl =
vT

g
. (2.70)

Note that this quantity doesn’t vary in time since the gravitational compres-
sion 1/gt, compensates the thermal expansion vT t.

The long fall condition ∆t ∼ tcl � t0, can now be re-casted as

vT � gt0 ≡ vG,

with vG the final velocity of the cloud due to the gravitational acceleration.
In our experiment vG ∼ 1m/s, whereas for a cloud with a temperature around
T ∼ 3 µK, the thermal velocity is vT ∼ 0.08 m/s.

2.2.2.3 The TOF signal for the ideal gas.

For T . 3 µK, we can rewrite t = t0 + δt, with δt� t0. It follows that

H − η(t) = 1
2
g(t20 − t2) ≈ gt0δt and H + η(t) ≈ 2H.
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Since ωzt0 � 1, the velocity v2 given in Eq.2.66 can be simplified to

v2 ≈
2H

t0
= vG,

and, the atomic flux of Eq.2.68 can be re-written in a very simple form

I(x, y, t) ∼ vG

(ωt)3
n

(
x

ωxt
,
y

ωyt
,

g

ωz

δt

)
.

with, as before, δt = t− t0 � t0. For the ideal gas case within the SCA, this
expression can be written as

I(x, y, t) ∼ vG

(ωt)3

1

λ3
T

g3/2

[
Z exp

(
−x

2 + y2

2(vT t)2

)
exp

(
− g2

2v2
T

δt2
)]

.

If we assume an infinite detector, the integration of the previous expres-
sion over all the xOy plane, gives the TOF signal,

I(t) ∼ τ−2

ωt0

vG

λT

g5/2

[
Z exp

(
−δt

2

t2cl

)]
. (2.71)

A further integration in δt gives, as expected, τ−3g3(Z) ≡ N .

2.2.2.4 Snap-shot measure of the cloud’s density.

The most usual technic to measure the cloud’s atomic density is to let it
expand for a while and then take a two-dimensional absorbing image. This
results in a single integration of n(r, t0), the density after the cloud had
expanded for a time t0. This latter quantity can be straightforwardly written
down using the Eq.2.62, the expanded harmonic oscillator wave functions
and noting that

n(r, t) =
∞∑

m=0

ψm(r, t)ψ∗m(r, t) 〈nm〉.

All the phases terms in Eq.2.62 appears in here multiplied by the correspond-
ing complex conjugates, canceling out. The latter expression resumes simply
to

n(r, t0) =
n(r̃)∏

α

√
1 + ω2

αt
2
0

, (2.72)

with, as before, r̃ given by Eqs.2.63 but for a constant time t = t0. This
expression is equivalent to the one in Eq.2.68 and except for factor v2, which
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converts density units into flux units, and as expected, they contains the
same physical information.

The integration over one spatial dimension of Eq.2.72 is straightforward.
In the SCA it is simply

n(x, z) =
1√

1 + ω2
xt

2
0

√
1 + ω2

zt
2
0

τ−1
y

λ2
T

g2

[
Z exp

(
− x̃2

2σ2
x

− z̃2

2σ2
z

)]
,

where the integration was done over the 0y direction.

Closing remarks

The expression in Eq.2.71 is valid only for the ideal gas case. To use in real
TOF data analysis and make proper measurements of the cloud’s temper-
ature and fugacity, this simple result is however insufficient since it doesn’t
take into account interatomic interactions. These will slightly change the
atoms density distribution in the trap as well as induce a non-ballistic be-
havior at the initial few milliseconds of the cloud’s expansion. Both these
effects will be addressed in Chapter 4, where we deal with the cloud’s ther-
mometry. There we include interactions in the thermal equilibrium density
matrix and also correct the simple ballistic model for the cloud expansion for
accounting to the initial hydrodynamical regime.

In the next Chapter we will still be considering the cloud as an ideal
atomic gas. We will introduced the theoretical model we used to interpret
the experimental measure of the intensity-intensity correlation function we
have done and present some results.





C H A P T E R 3

Hanbury Brown and Twiss
effect in an expanding cold of
non-interacting atoms.

In this Chapter we will discuss the coherence properties of an atomic sample
as probed by the measurement of the intensity correlation function of the par-
ticle’s flux after releasing the atoms from the magnetic trap. Using bosonic
atoms, we expect to observe a bunching of particles at small separation as
the photonic bunching of a chaotic light source[92].

We will use the formalism we have introduced in the previous Chapter to
describe the cloud’s ballistic expansion. As before, we will consider a cloud
of non-interacting bosonic atoms at thermal equilibrium. The calculation
is generalized to the second order correlation function of the atomic flux, a
quantity that can be measured, on the time domain, with our experimental
apparatus. Particular emphasis is given to the physical situation where the
cloud is in the vicinity of the phase transition’s critical temperature.

A large part of the contents of this Chapter is based upon Ref.[52] where
we present our calculations that predicted that our experiment could be used
to carry out a Hanbury Brown and Twiss [93] type of experiment (HBT )
with He∗ atoms. This work derives the characteristic temporal coherence
and the transverse coherence length for the particles’ flux generated by a
falling atomic cloud, under the influence of the gravity. We show that, for a
pulsed atomic beam, the temporal coherence may be obtained from the same
kind of expressions used to derive the coherence lengths in the propagation
transversal directions. Moreover, due to the gravitational compression and
similarly to what happens with the temporal extension of the cloud, the
temporal coherence is independent of the time of propagations.

Using the specific characteristics of our experiment and those of a new
detector (recently installed to up-grade our apparatus), we have estimated
the attainable signal-to-noise ratio (SNR) of the correlation signal. Here, it
was of particular importance to compare the SNR with the expected bunching
of the signal at short delay times with non-degenerate samples. We predicted
a SNR of about 10, a result that would allow improving on the quality of the
former result obtained in the pioneering work of 1996 by Yasuda et al.[94] on



98
Chap 3 - Hanbury Brown and Twiss effect in an expanding cold of

non-interacting atoms.

a thermal beam of metastable Neon.
Unlike Yasuda’s experiment, using our experience we could also setup the

measurement of the atomic correlation function for a degenerate cloud. In
this case, the bosonic bunching is expected to disappear as for laser light[95].
Our experiment could also be suited to measure, for the first time, the cor-
relation function of atoms at the BEC phase transition (also observed in the
optics field[96]). Possible extensions of this experiment would allow obtaining
information about the process of BEC formation, probing the development
of a long range phase over the atomic cloud and the symmetry breaking when
the BEC starts to growth.

Recently, the theoretical predictions we present here were confirmed in a
successful realization of a HBT experiment carry out on both degenerate and
non-degenerate clouds[84]. We will briefly report the main results we have
obtained in this experiment and, also briefly, on the necessary upgrade we
had to operate on our setup. A more detailed discussion on the experiment’s
upgrade is given in R. Hoppeler’s Ph.D. thesis[49] and on the results, in M.
Schellekens’ Ph.D. manuscript still in preparation.

We will start by a general introduction to the HBT experiment with
photons before considering the experiments with massive particles.
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3.1 The Hanbury Brown and Twiss experi-

ment.

We begin this Chapter by considering, briefly, the original idea of Robert
Hanbury Brown and Richard Twiss to measure the angular diameter of a star.
This will also introduce the notions of transverse coherence and temporal
coherence of a wave source.

3.1.1 The transversal coherence length and time co-
herence of a wave field.

Transversal coherence length.

Consider the scheme of Fig.3.1, where we represent an incoherent wave source
and two detectors D1 and D2. For simplicity, we consider the source as only
one-dimensional and monochromatic, with a characteristic length 2s⊥. The
two independent detectors are separated from each other by a distance l,
both placed very far away from the wave source at a distance R� s⊥, l.

θ

R

D1

D2

l

x+dx
x

r1

r2

s

Figure 3.1: An extense wave source emits radiation detected by two detectors, D1

and D2, located at a long distance R from the source. The correlation between the
photocurrents generated by the two detectors is related with the angular size θ of
the source by the van Cittert-Zernike theorem. This was first used by R. Hanbury
Brown and R. Twiss to measure the angular diameter of a star (see also text).

The amplitude of the field emitted by a small segment dx of the source,
at the location x, is equal to A(x)dx, with A(x) the spatial profile of source’s
wave amplitude. The corresponding scalar wave field produced at the space
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location r � s⊥, 2π/k may be written as

du(r) = A(x)dx
eik(r−x)+iφ(x)

|r− x|

with φ(x) the random phase of the wavefront at x on the plane of the source
and x a vector pointing at that location. The instantaneous intensity detected
by D1 is proportional to

I1 =

∣∣∣∣∫ du(r1)

∣∣∣∣2 ' 1

R2

∣∣∣∣∫ dxA(x)eikr1(x)−iφ(x)

∣∣∣∣2
=

1

R2

∣∣∣∣∫ dxA(x)e
i k
2R

�
x−1

2
l
�2
−iφ(x)

∣∣∣∣2 , (3.1)

where we have used the approximation r1 ' R+(x− 1
2
l)2/2R (see Fig.3.1). A

similar expression holds for the intensity detected byD2 with the substitution
r2 ' R + (x + 1

2
l)2/2R. If we assume that the phases φ(x) are random

and uncorrelated, averaging the above expression over the statistics of the
field effectively converts the above integral into an incoherent sum over the
individual contributions from each separate source element. In this case the
above expression simplifies to

〈I1〉 = S

∫
dx |A(x)|2 = 〈I2〉,

where S is a constant that incorporates the detector sensitivity and geometric
factors such as 1/R2.

Since each source element is assumed to be independent and incoherent
the detected intensity is independent of the detector position provided l� R.
However, if we compute instead the correlation in the intensities registered
by the two detectors 〈I1 I2〉, again assuming that the phases of the waves
emitted at each spatial location on the source are independent so that

〈eiφ(x1)−iφ(x′1)+iφ(x2)−iφ(x′2)〉 = δ(x1 − x′1)δ(x2 − x′2) + δ(x1 − x′2)δ(x1 − x′2)

(3.2)

we obtain

〈I1 I2〉 = 〈I1〉〈I2〉+ S2

∣∣∣∣∫ dx |A(x)|2 ei k
R

xl

∣∣∣∣2 , (3.3)

a result that depends on bothR and l. This result is just the (one-dimensional)
van Cittert-Zernike theorem[97]. It could also be derived, in a more formal
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and general manner, by invoking the fact that u(r) is a Gaussian distributed
zero mean random variable. The mean value of the mth moment of such a
random variable E(r, t) is[98]

G(m)(rt, r′t′) = 〈E∗
1E

∗
2 . . . E

∗
mE1′E2′ . . . Em′〉

=
′∑
〈E∗

j1
Ej′1

〉〈E∗
j2
Ej′2

〉 . . . 〈E∗
jm
Ej′m〉, (3.4)

with the summation running over all the possible combinations of conjugated
pairs E∗

jEj′ .
To work out an explicit result we continue by assuming that A(x) has a

gaussian profile 1, given by

A(x) =
1√

2π s⊥
exp

(
− x2

2s2
⊥

)
.

Replacing this expression in Eq.3.3 and normalizing the result by the square
of the total detected intensity of the source we obtain

g(2)(l) =
〈I1, I2〉
〈I1〉〈I2〉

= 1 + exp

[
−
(
l

l⊥

)2
]
, (3.5)

with

l⊥ =
1

π

λ

θ
, (3.6)

the transversal coherence length of the source, with λ its wavelength and θ =
2s⊥/R its angular length, as seen by the detector. The expression on Eq.3.5
is equal to one for l� l⊥ and is g(2) = 2, for l = 0. This result expresses the
bunching for small ls: the photons have a tendency to be detected in pairs,
after traveling the same length from the source.

Using the result of Eq.3.5 it is possible to measure θ in an experiment
where the correlation of the intensity signals of the two detectors is registered,
varying their relative distance l. This was first used by R. Hanbury Brown
and R. Twiss to measure the angular diameter of a star[99].

We may try to apply this formula to a wave field of massive particles. Con-
sider a thermal cloud with a size s = vT/ω and temperature T = Mv2

T/kB,
trapped within a harmonic trap of oscillation frequency ω (cf. §2.1.1). If it
is released from the trap it spreads ballistically at the characteristic velocity
vT (cf. Eq.2.69), and after a time t� 1/ω the angle θ may be identified with

θ ≡ s

vT t
=

1

ωt
. (3.7)

1This has the advantage of simplifying the calculation and also mimics the result we
will obtain latter for a thermal cloud with a gaussian velocity distribution.
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Identifying the wavelength λ of Eq.3.6 with the thermal de Broglie wavelength
λT (cf. Eq. 2.13) we get

l(t) ∼ λTωt, (3.8)

showing that the coherence length increases linearly with time. This result
will be derive in a proper manner latter in this Chapter.

The coherence time.

In the above calculation we have assumed, implicitly, that the phase informa-
tion φ(x) of the wavefront emitted by the small segment dx is kept unaltered
over time when the wave propagates a distance which is large if compared to
r1(x) − r2(x). For a velocity of propagation c, this is equivalent to say that
the source’s coherence time is tcoh � (r1 − r2)/c. This quantity grows with
the inverse of the source’s frequency bandwidth, tcoh ∼ 1/δω, and thus, to
arrive at a proper expression for the intensity correlation function we need
to also take into account the spectral properties of the source.

For simplicity, we admit now the source is almost a point source and,
thus, that l⊥ is very large when compared with l, the separation between the
detectors in Fig.3.1. Then, the wave field can be expressed as a superposition
of spherical waves with amplitudes given by a spectral weight function S(ω),

u(t) = A0

∫
dωS(ω)

e−iω(t−R/c)

R
,

with A0 a certain normalization constant. The averaged intensity registered
in either of the detectors is independent of time for stationary sources and
equal to the integral of the power spectrum,

〈I(t)〉 =
|A0|2

R2

∣∣∣∣∫ dωS(ω)

∣∣∣∣2 ,
On the other hand, the correlation in the intensity detected at different time
instants t and t+ δt is

〈I(t) I(t+ δt)〉 =

∫∫
dω1dω

′
1

∫∫
dω2dω

′
2S(ω1)S

∗(ω′1)S(ω2)S
∗(ω′2)e

−i(ω2−ω′2)δt ×

×〈e−i(ω1−ω′1+ω2−ω′2)t〉.

As before, this expression is only nonzero for certain choices of the frequen-
cies. In this case, we have

〈e−i(ω1−ω′1+ω2−ω′2)t〉 = δ(ω1 − ω′1)δ(ω2 − ω′2) + δ(ω1 − ω′2)δ(ω2 − ω′1) (3.9)
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and then

〈I(t) I(t+ δt)〉 = 〈I(t)〉〈I(t+ δt)〉+

∣∣∣∣∫ dω |S(ω)|2 e−iωδt

∣∣∣∣2 ,
a result that can also be obtained if we consider each frequency component
of the field as to be an independent random gaussian variable. The integral
in the second term of the right hand side is just the Fourier transform of
the power spectrum and in this case, according to the Wiener-Khintchine
theorem[92], it is just the amplitude correlation function G(1)(t, t + δt) =
〈u(t)u(t+ δt)〉 and then

〈I(t) I(t+ δt)〉 = 〈I(t) I(t+ δt)〉+
∣∣G(1)(t, t+ δt)

∣∣2 .
Note also that, for this case, a single detector would be sufficient to obtain
the temporal correlation. However, this would only work in practice if the
detector’s dead time is much smaller than the coherence time.

We assume again that the spectral weight distribution function S(ω) has
a gaussian shape (i.e. that the source has a inhomogeneous broadening)
around a certain central frequency ω0 and with a waist ∆ω,

S(ω) =
1√

2π∆ω
exp

(
−(ω − ω0)

2

2∆ω2

)
.

This is the distribution of Doppler broadened light emitted from an atomic
gas at a certain temperature T . In this case, ∆ω = k0vT , with k0 = ω0/c
and, as usual, vT =

√
kBT/M .

It is straightforward to compute the normalized correlation function, as
defined previously,

g(2)(δt) =
〈I1(t)I2(t+ δt)〉
〈I1(t)〉〈I2(t+ δt)〉

= 1 + exp

[
−
(
δt

tcoh

)2
]
. (3.10)

This expression is, of course, the expression equivalent to Eq.3.5 for a time
correlation experiment with

tcoh =
1√
2π

λ

vT

,

the source’s coherence time.
Replacing again the wavelength in this expression by the massive par-

ticles’s thermal de Broglie wavelength λT , we obtain the continuous flux
temporal coherence

tcoh ∼ 1√
π

~
kBT

,
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which is inversely proportional to the temperature.
For an expanding cloud under the effect of gravity, we will show that this

quantity is given by

tcoh(t) =
λTω

g
. (3.11)

3.1.2 The HBT experiment.

Such an experiment to measure the time of coherence in an intensity corre-
lation measurement was also done, for the first time, by R. Hanbury Brown
and R. Twiss[93]. A simplified version of this experiment is sketched in the
upper part of Fig.3.2. Light from the 435.8 nm line (Doppler broadened) of
a mercury lamp is focused onto a pinhole to produce a transversely coherent
source. Two photomultipliers are used to measure the coincidences of photon
arrivals for different propagation times of the waves traveling in both arms
after the beam-splitter.

The bottom graph of Fig.3.2 shows the results obtained in this experi-
ment.

These showed that for large values of τ , the time difference in the travel of
the two detected waves, no intensity correlations existed. This were observed
only for small time mismatches, with g(2)(τ) increasing for decreasing values
of τ . This was the first observation of what is known as photon bunching, the
characteristic tendency of the bosons particles to be detected in pairs. This
is also illustrated by the simple models used above (cf. Eqs3.5 and 3.10):
when τ → 0, g(2) → 2 while, if τ →∞, g(2) → 1.

3.1.2.1 Laser light.

For a perfectly coherent field, as is the case of am ideal monochromatic infinite
plane wave with l⊥, t

coh → ∞, both of the correlation functions in Eqs. 3.5
and 3.10 are always equal to one. In fact, the expression in Eqs.3.2 and 3.9
do not decompose into two terms but are simply given by

〈eiφ(x1)−iφ(x′1)+iφ(x2)−iφ(x′2)〉 = 1 and 〈e−i(ω1−ω′1+ω2−ω′2)t〉 = 1,

a result that follows from the fact that the wavefront phase being always
constant and, also, from the monochromaticity of the field. In optics, such
a source is well approximated by a mono-mode laser field. The Hanbury
Brown and Twiss type of experiments using laser light[95] showed a absence
of any correlation on the arrival of the photons with a normalized correlation
function equal to

g(2)(τ) = 1.
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Figure 3.2: The top graph sketches a simplified outline of the optical setup used
by Robert Hanbury Brown and Richard Twiss in their pioneering experiment to
measure the second order correlation function of photons from a thermal source.
The source was a mercury lamp, filtered to the 435.8 nm line of its spectrum. The
source was made spatially coherent by the inclusion of a pinhole. The photon-
photon correlation function was measured by correlating the intensities of two
beams split in a semi-transparent mirror and using two photomultiplier tubes as
detection devices. To vary the difference in propagation time of one and the other
beams, one of the photomultipliers was mounted on a translation stage and dis-
placed transversely to the incoming beam. Supposing a perfect spatially coherent
source (point like) and small enough detectors, this allow them to measure of the
temporal coherence of the light. The bottom graph plots the observed results for
bunching g(2)(d)− 1 in function of the separation of the photomultiplier cathodes.
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3.2 Correlation functions in a non-interacting

atomic gas.

We turn now to a more formal derivation of the correlation functions of a
quantum field defined within the many-body second quantization formal-
ism. Our main objective is the computation of the first and second cor-
relation functions of a cloud of non-interacting bosonic atoms at thermal
equilibrium[100].

3.2.1 Definitions

3.2.1.1 Correlation functions defined in coordinate space.

In the framework of second quantization, particles are described by a field
operator Ψ̂(r) (cf. Eq.2.52) and correlation functions are expressed by an
statistical average of hermite conjugated pairs of these operators, such as
Ψ̂(r)Ψ̂†(r′). A functions of kth order is defined as average of k of these pairs.

Since we are dealing with a bosonic field, this statistical average must
follow the Bose-Einstein distribution (cf. Eq.2.5)

〈â†mân〉 = δmn〈nm〉,

with, as before, 〈nm〉 representing statistical occupation of the level m. The
simplest expression is the first order correlation function, obtained for k = 1,

G(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉. (3.12)

With r = r′, this expression is just the cloud density at the location r,

n(r) = 〈Ψ̂†(r)Ψ̂(r)〉 = G(1)(r, r),

which is the same as Eq.2.4. Evaluated at different points of the space,
this function gives rise to the interference term describing the fringe pattern
observed in Michelson’s or Young’s type of experiments.

In the scope of this manuscript, we are mostly interested in the second
order correlation function,

G(2)(r, r′) = 〈Ψ̂†(r)Ψ̂†(r′)Ψ̂(r)Ψ̂(r′)〉. (3.13)

For a non-degenerate ideal gas atomic cloud, this latter expression can be
factorized in simpler first order correlation functions, in just the same way
as it occurs for a thermal optical field. In fact, the statistical average in the
above expression reduces to the computation of a four point correlation of
the type 〈â†j â

†
kâlân〉, which is, for a thermal field, equal to

〈â†j â
†
kâlâm〉 = 〈â†j âj〉〈â†kâk〉 × (δjlδkm + δjmδkl). (3.14)
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This factorization rule is just the same as the one used above to work
out the averages over the wave’s Gaussian distributed random phases. This
same result may also be derived using the Wick’s theorem [101, 102] which
is, in fact, the most common way of computing mean values of field operator
expressions in atomic and condensed matter physics, as it is easily adapted
to carry out perturbative expansions and Bogoliubov type of transformations
for systems of interacting particles.

• The density-density correlation function.

In the definition of the second order correlation function, given in Eq.3.13,
the field operators are written in the normal order, with all the annihilating
operators at its left hand side. However, the correlation function that is
inspected directly in our experiment is rather the density-density correlation
function, given by

〈n(r)n(r′)〉 = 〈Ψ̂†Ψ̂Ψ̂†Ψ̂〉. (3.15)

The expression in Eq.3.13 expresses the (conditional) probability of detecting
a particle at the location r after having been detected another one at r′. The
one in Eq.3.15 is the statistical average over the ensemble of particles of the
density at locations r and r′. Using the bosonic commutation relations, the
expression in Eq.3.15 can be re-expressed using G(2)(r, r′) as

〈n(r)n(r′)〉 = G(2)(r, r′) + n(r)δ(r− r′).

The last term in the right hand side of this equation is proportional the
cloud’s number of atoms N and usually referred as the shot-noise term, since
G(2)(r, r′) is proportional to N(N − 1). Note that, for an ensemble with only
one particle, G(2)(r, r) is zero but 〈n(r)n(r)〉 = n(r).

For a large N , the shot noise term becomes negligible and the two possible
definitions for the second order correlation function yields the same result,

〈n(r)n(r′)〉 ∼= G(2)(r, r′) = n(r)n(r′) + |G(1)(r, r′)|2. (3.16)

• The normalized correlation function.

Eq.3.16 shows that G(2)(r, r′) depends not only on the modulus square of
the first order correlation term, |G(1)(r, r′)|2, but also on the product of the
densities at r and r′. A more convenient way to define the second order
correlation function, that avoids this dependence on the density, is

g(2)(r, r′) =
G(2)(r, r′)

n(r)n(r′)
,
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which is the same type of normalized correlation function definition as that
which we have used above in Eq.3.5. Neglecting the shot-noise term, this
function reduces to the simple expression

g(2)(r, r′) = 1 + |g(1)(r, r′)|2, (3.17)

where we also used the definition of the first order normalized correlation
function,

g(1)(r, r′) =
G(1)(r, r′)√
n(r) n(r′)

. (3.18)

This function, in optics, gives the visibility of the fringes in a interferometric
pattern made of two beams of equal intensity[103]. A field is said to exhibit
first order coherence or to be fully coherent if |g(1)(r, r′)| = 1 irrespectively
to the locations r and r′.

Actual fields are not fully coherent and the visibility generally decreases as
|r−r′| increases. The coherence length, l, is defined as the distance for which
the interference fringes are still visible or, similarly, as the length scale where
the first-order correlation function is still non vanishing. The expression in
Eq.3.17 then has the same behavior as the one derived earlier in Eqs.3.5 and
3.10 for a classical field,

g(2)(r, r) = 2 and g(2)(r, r′) ∼ 1 for |r− r′| � l.

We may generalize the above definition of full coherence to any correlation
function of arbitrary order k. A sufficient condition for a field to be kth-
order coherent is that the corresponding correlation function can be factorized
as[103],

G(k)(r1, . . . , rk, r
′
1, . . . , r

′
k) = φ∗(r1)φ

∗(r2) . . . φ
∗(rk)φ(r′1) . . . φ(r′2)φ(r′k).

This condition is equivalent to have |g(r)| = 1 and implies that

〈â†m1
â†m2

. . . â†mk
âm′

k
. . . âm′

2
âm′

1
〉 = 1,

which is only true for a pure quantum state of the field[92], as for example a
BEC at zero temperature. For this particular case, we have

〈Ψ†
0(r)Ψ0(r)Ψ

†
0(r

′)Ψ0(r
′)〉 = 〈Ψ†

0(r)Ψ0(r)〉〈Ψ†
0(r

′)Ψ0(r
′)〉 = n0(r)n0(r

′),

and thus
g(2)(r, r′) = 1.

This is the result we obtain in the example given in §3.1.2.1 for a classi-
cal full coherent monochromatic wave, where the phase is constant over the
wavefront and the spectral distribution is proportional to a delta function in
frequency, as occurs for an ideal laser source.
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3.2.1.2 The influence of the ground state population.

For a degenerate atomic cloud, the factorization we used to derive the expres-
sion of Eq.3.16 is no longer valid. The calculation of 〈â†j âkâ

†
l ân〉 was done, in

the spirit of Wick’s theorem, assuming that the system is properly described
within the grand canonical ensemble 2. This ensemble assumes the existence
of a particle reservoir leading to unphysically large fluctuations of the con-
densate at low enough temperature[85]. However, at the thermodynamic
limit this pathology disappears in the more realistic case where interatomic
interactions are present[85] 3 The fluctuation of the BEC number of atoms is
also eliminated for a finite number of non-interacting particles if we describe
the system using the canonical ensemble[105].

To keep using the grand canonical ensemble description, taking into ac-
count this effect, we can correct the grand canonical result of Eq.3.14 by
subtracting the canonical result found for the ground-state 〈â†0â0〉2δk0δl0δm0.
This strategy, which we will make use in the following, is proposed in Ref.[100]
and is validated by the results in Ref.[105] 4. Then denoting as before the
ground-state density by n0(r), it follows that,

G(2)(r, r′) = n(r)n(r′) + |G(1)(r, r′)|2 − n0(r)n0(r
′). (3.19)

For a non-degenerate cloud, the ground state density is still negligible and
the normalized correlation function g(2)(r, r′) still follows Eq.3.17, decreasing
from 2 to 1 as |r − r′| increases to infinity. The opposite situation happens
for a BEC at T = 0 where only the ground-state is occupied. Thus, we have

|G(1)(r, r′)|2
∣∣∣
T=0

= n0(r)n0(r
′) = n0(r)n0(r

′)

and, as before,

g(2)(r, r′) = 1,

for every r and r′, corresponding to an infinite BEC correlation length.
Such a system, with a correlation function given by Eq.3.19, is said to

exhibit bunching at high temperature for separations smaller than the corre-
lation length and no bunching in the condensed phase.

2This is also implicitly assumed in the optical equivalence theorem, where the number
of photons in the field is not conserved.

3The same happens with the amplitude of a laser, due to its gain saturation[104].
4In this reference it is also shown that the largest deviation between a description

employing the grand canonical ensemble and that using the canonical ensemble is expected
to occur near the transition temperature. This is the physical situation where the cure
proposed for the grand canonical ensemble may become less accurate. A yet to be done
detailed experimental investigation of atomic clouds at T = Tc could help characterize the
size of this unveil how large this inaccuracy.
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3.2.1.3 Correlation functions in the momentum space.

In most experiments, and particularly in ours, the correlation signal is not
measured directly in the atomic cloud. As described in the previous Chapter,
the cloud is only detected after being released from a trap and allowed to
expand during a certain time of flight. As already noted in §2.2.2, for a suffi-
ciently long time of flight and neglecting interatomic interactions, the atomic
flux measured at the detector reflects the initial momentum distribution of
the atoms.

The results we derived in Section §3.2.1, concerning the correlation func-
tions in position space, all have analogs in momentum space. In fact the
correlation functions in the two reciprocal spaces are closely related. For
a trapped cloud at thermal equilibrium, the following relationships can be
easily derived:∫

dp G(1)(p,p)e−ip.r/~ =

∫
dR G(1)(R− r/2,R + r/2)∫

dr G(1)(r, r)eiq.r/~ =

∫
dP G(1)(P− q/2,P + q/2)

These two expressions express the fact that i) the spatial correlation length
is related to the width of the momentum distribution and, ii) the momentum
correlation length is related to the width of the spatial distribution, i.e. the
size of the cloud.

No simple and equally general relationship holds for the second order
correlation functions. This is because, close to the BEC transition temper-
ature, and at points where the ground state wave function is not negligible,
the special contribution of the ground state, the last term in Eq.3.19 must be
included, and this contribution depends on the details of the confining poten-
tial. On the other hand, for an ideal gas far from the transition temperature
one can neglect the ground state density, make the approximation that the
correlation length is very short, neglect commutators such as [̂r, p̂], and then

write the thermal density operator as ρ̂ = exp
(
−β P̂2

2M

)
exp [−βV (r̂)], with

V (r) the trapping potential. These approximations lead to:

G(2)(p,p′) = ρeq(p)ρeq(p
′) + |G(1)(p,p′)|2

and,

G(1)(P− q/2,P + q/2) ∼ e−β P2

2m

∫
dr e−βV (r)eiq.r

~

One sees that in this limit, the interesting part of G(2) in momentum space is
proportional to the square of the Fourier transform of the density distribution
and independent of the mean momentum P. This result is entirely equivalent
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to its optical analog, the van Cittert-Zernike theorem[97]. For a harmonically
trapped cloud of size sα in the α direction, V (r) is given by Eq.2.1 and the
above expression leads to a definition of the momentum correlation length as

pcoh
α sα = ~. (3.20)

If the cloud expands freely during a time period t, the coherence length lα at
the α spatial direction may be written as 5

lα(t) =
pcoh

α

M
t =

λT√
2π
ωαt. (3.21)

Comparing this expression with the one in Eq.3.8 we see that, in this case,

l =
λT√
2π
, (3.22)

a result we will derive formally latter in this Chapter.

The above relations between the extension of a trapped cloud and its
coherence length were confirmed experimentally[84] for thermal clouds for
temperatures large compared to Tc. They suffice to interpret the available
experimental data.

It is however interesting to investigate further in more detail how the
the correlation functions behaves for clouds near the transition temperature
where effects due to the Bose nature of the atoms are expected to be impor-
tant. To do this we need to concretize the calculation for the proper second
order correlation function of a harmonically trapped atomic gas and also un-
derstand, with some care, how to describe the time evolution during the free
fall under the effect of the gravitational field.

3.3 Correlation functions in a harmonic trap.

3.3.1 At equilibrium in the trap

The first order correlation function can be obtained from the density matrix
at thermal equilibrium,

G(1)(r, r′) ≡ n(r, r′) = 〈r|ρ̂eq|r′〉.

5This expression may give the wrong idea that lα goes to zero for t = 0. In fact, the
above formula for θ in Eq.3.7 is only valid in the far field approximation. Its exact value
is rather θ =

[
1 + (ωt)2

]−1/2 and, as expected, for t = 0, lα = lα(0).
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Using Eq.2.18, this expression is given by

G(1)(r, r′) =
∞∑
l=1

Z lGho(r, r′; lτ)

=
1

λ3
T

∑
l

Z l
∏
α

Fl(τα) e
−
�

rα+r′α
2σα

�2

th
�

1
2

lτα

�
−
�

rα−r′α
2σα

�2

cth
�

1
2

lτα

�
.

(3.23)

Replacing this expression in Eq.3.19 results in a explicit expression for the
second order correlation function G(2)(r, r′). As for the case of the cloud’s
density, this quantity has different behaviors depending on the cloud’s tem-
perature and whether it is i) far above, ii) at the vicinity but still above
or, else, iii) below the phase transition critical temperature. We start by
considering the simplest case, for which we have T � Tc.

• The high-temperature limit.

In the high temperature limit, Z → 0 and one recovers the Maxwell-Boltzmann
distribution by taking only the l = 1 term in the sum and, also, after ex-
panding all the factors in τα , keeping only the leading terms (cf. Eq.2.22),

Fl(τα) ∼ 1, th
(

1
2
lτα
)
∼ τα

2
and cth

(
1
2
lτα
)
∼ 2

τα
.

In this case, the expression in Eq.3.23 simplifies to

G(1)(r, r′) =
Nτ

λ3
e−

P
α

τα
2

(
rα+r′α
2σα

)2e
−π( r−r′

λT
)2
, (3.24)

with N given by Eq.2.26.
The first exponential factor in the right hand side of Eq.3.24 depends

on 1
2
(r + r′) and clearly accounts for the cloud’s density dependence at the

mid location between r and r′ (compare with Eq.2.23). This factor makes
G(1)(r, r′) tends to vanish as either rα or r′α become much larger than the
cloud’s size, sα = σα/

√
τα . The second exponential is the coherence term as

it depends on |r − r′|. The characteristic length here is the one suggested
before in Eq.3.22, proportional to the thermal de Broglie wavelength, λT .
It is an isotropic quantity because the momentum distribution is, in this
approximation, also isotropic. It is interesting to re-write the expression
given before in Eq.2.49 of Chapter 2, and the one of Eq.3.20,

pT l = pcoh
α sα = ~.

These relations states that for a thermal sample the product of momentum
distribution width of the sample with its correlation length is equal to the
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product of the momentum correlation length times the size of the cloud,
both equal to ~.

With |r − r′| = 0 one recovers the cloud’s density (cf. Eq.2.23), that
enters in the normalized correlation function definition. Unlike the coherence
term in Eq.3.24, the normalized second order correlation function is, strictly
speaking, not isotropic. With δrα = |rα − r′α|, one has

g(2)(δr) = 1 + exp

[
−δr

2
α

l2
− δr2

α

4s2
α

]
,

which defines the anisotropic coherence length as [l]α → l×(1− 1
4
τα

2)−1. How-
ever, since usually τα � 1 6 the anisotropic correction may be disregarded.
Doing so, we obtain the simple formula

g(2)(δr) = 1 + exp

[
−
(
δr

l

)2
]
. (3.25)

This is just the expression we have found before in Eq.3.5, for a inhomoge-
neous broadened thermal source of light. The same interpretation given there
also applies in here: the correlation function presents a bunching at δr = 0
where g(2) = 2 and then falls to g(2) = 1 when δr � l. Within the example
given for the thermal light, the gaussian dependence of this function resulted
from the source’s line shape. Here, it is just a consequence of the momentum
distribution of the atoms.

• Quasi-degenerated case.

For temperature close to but above the Bose-Einstein transition temperature,
one has to keep the summation over the index l, in Eq.3.23. In this case,
the terms with increasing values of l contribute more and more as the tem-
perature decreases. It becomes clear from the expression of G(1) in Eq.3.23
that the correlation length near the center of the trap (rα, r

′
α � sα) will in-

crease and that the normalized correlation function is no longer Gaussian.
Far from the center, only the terms with small values of l are important and
the correlation function remains almost Gaussian. Thus, in general, close
to degeneracy the correlation length is no longer a constant and becomes
position-dependent

In the Fig.3.3 we trace some examples of the function |g(1)(r,0)| for cloud
fugacities from Z = 0.8, which is far from degeneracy, to Z = 0.995, where the
temperature is close to the critical one. The graphs in this Figure also show,
in the shadowed region, the corresponding function for the high temperature

6For our trapping potential, this correction amounts to 5% for the more confined axes
with T = 1µK.
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Figure 3.3: Two-body normalized correlation function g(1)(r,0) for a cloud at T =
1 µK and four different fugacities. The solid line represents the exact calculation
using Eqs.3.23 and 3.18. Shadowed regions correspond to the high temperature
limit curve (cf. Eq.3.25). l = λT /

√
2π = ~/pT corresponds to the high temperature

limit correlation length. The number of atoms in the examples shown ranges from
≈ 125× 103 for Z = 0.8 to ≈ 170× 103 if Z = 0.995.
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limit. The departure of |g(1)(r,0)| from the gaussian shape is already obvious
for Z = 0.9 and, for fugacities closer to one, it presents a long tail denoting
the build up of a long range correlation among the atoms within the cloud.

• Degenerate case.

Increasing further the fugacity to Z = 1 leads to a saturation of the excited
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Figure 3.4: Two-body normalized correlation function at the trap center, g(2)(r, 0)
for 106 atoms confined in a isotropic harmonic trap as function of the position
r and for various temperatures around transition temperature. The horizontal
axis is labelled in units of the size of the harmonic oscillator wave function σ.
The thick solid line corresponds to defined in Ref.[81] and is 93.37 ~ω/kB for 106

atoms. The top dashed and dotted lines correspond to temperatures higher than
Tc. The thermal de Broglie wavelength is ∼ 0.26 σ. The effect of the ground
state population is clearly visible in the reduction of g(2)(0, 0), and in the rapid
flattening out of the correlation function slightly below Tc.

states and a proper calculation of the second order correlation function must
take into account the presence of a macroscopic population in the ground
state. The density correlation function is now given by Eq.3.19 with the
corresponding normalized function equal to

g(2)(r, r′) = 1 +
|G(1)(r, r′)|2 − n0(r)n0(r

′)

G(1)(r, r)G(1(r′, r′)
. (3.26)

where n0(r) is given by Eq.2.39. With Z ∼ 1 and T ∼ 0, τα goes to infinity
and, in the expression of Eq.3.23, the hyperbolic functions tends to one and
Fl(τα)/λT ∼ 1/σα. In this case, G(1)(r,r′) factorizes as

G(1)(r, r′) ∼ n0(r)n0(r
′),
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the expression in Eq.3.26 is always g(2)(r, r′) = 1 for any r and r′ and the
correlation length becomes infinite.

The behavior of g(2)(r, r′) for cloud temperatures around T = Tc is traced
in Fig.3.4, following the criteria we have used in §2.1.2 for defining the critical
temperature[81]. The graph in this Figure shows that, close to the BEC tran-
sition, the bunching is already significantly different from 2 near the center
of the trap.

3.3.2 Integrated signals

From the experimental point of view, since the number of atoms in a cloud
is finite, it is very difficult to measure the function G(2)(r, r′) explicitly for
arbitrary values of r and r′. This measurement could be achieved averaging
over many clouds with similar thermodynamical characteristics. Even so,
as we will see later, to get a good signal-to-noise ratio, we would need an
unpracticable number of clouds. This difficulty is overcome if we average the
correlation function also within each cloud. This results in one-parameter
correlation function whose argument is the relative distance δr = |r−r′|. We
define the averaged value of the second order correlation function as

g(2)
m (δr) =

∫
dR G(2)(R− 1

2
δr,R + 1

2
δr)∫

dR n(R− 1
2
δr)n(R + 1

2
δr)

. (3.27)

Although it is more easily obtained, this function washes out the non-classical
behavior of g(2)(r, r′) for clouds close to the degeneracy (as shown in Fig.3.3)
as well as the effects coming from the ground state contribution, manifested
mainly at the center of the cloud. These effects are also illustrated in Fig.3.5.
In the top graph, a), we represent the bunching amplitude g(2)(r, r)− 1 as a
function of r at different fugacities, around the critical transition point for a
cloud with 106 atoms. The bottom graph, b) represents similar curves as the
ones in Fig.3.4, but always with T = Tc and centered at different locations
r0, g

(2)(r0, r) − 1 rather than at the center of the cloud. This function is
plotted normalized by the corresponding bunching amplitude.

It is clear form the Graph a) of Fig.3.5 that the decrease from one of
the bunching observed for degenerated clouds in Fig3.4 is no longer observed
at locations in the cloud far off the region of influence of the ground state.
Thus, we should expect that an integration over all the cloud, as the one
proposed in Eq.3.27, will make g

(2)
m (r = 0) decrease slowly to one for smaller

and smaller temperatures, if compared to the curves shown in Fig.3.4. This
can be observed in the graph of Fig.3.6 where we plot g

(2)
m (r)−1 for the same

temperatures as those plotted before in Fig.3.4. For the critical temperature,
for example, the non-integrated bunching at the cloud’s center is around 0.7
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Figure 3.5: Two-body normalized correlation function g(2)(r, r) for 106 atoms
confined in a isotropic harmonic trap for several different temperatures. The con-
ditions are the same as for Fig3.4. Even for T < Tc the correlation goes to 2 far
from the center. This is due to the finite spatial extent of the condensate. It can
also be understood in terms of the chemical potential µ(r̃) which, in a local density
approximation, decreases as r̃ increases and thus the correlation is equivalent to
that of a hotter cloud.
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while the integrated bunching given by g
(2)
m (r) is still almost equal to one (see

Fig.3.6).
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Figure 3.6: Two-body normalized correlation function g
(2)
m (r) for 106 atoms con-

fined in a isotropic harmonic trap for several different temperatures. The condi-
tions are the same as for Fig3.4. g

(2)
m (r) is an average of the two-body correlation

function over the cloud. Unlike Fig.3.4, the shape is always almost Gaussian and
converges more slowly to a flat correlation for low temperatures. See also text.

Another striking difference, between the curves in Figs.3.4 and 3.6 is the
shape of their tails: g

(2)
m (r) resembles a gaussian function even at the critical

temperature, whereas g(2)(r,0) has already a larger tail. The Graph b) of
Fig.3.5 shows where this difference comes from. The more we displace the
center of measurement, r0, away from the center of the cloud, the more the
correlation function takes the on shape of a gaussian, even if the cloud is at
the critical transition point. We can simply interpret this effect by observing
that, locally at r0, the effective chemical potential is µ−V (r0). Thus, even if
the cloud has a fugacity close to one, the local density approximation effective
fugacity is smaller and, locally, the cloud behaves as a thermal cloud.

Although containing less information than a simple non-integrated corre-
lation function, the bunching and RMS waist of g

(2)
m (r) shows an interesting

dependence on the temperature, across the critical transition point. This can
be seen in the graphs of Fig.3.7. In particular, the coherence length of the
curve (identified here as the 1/e2 waist of the correlation function) increases
much more rapidly with the decreasing of the temperature, when this latter
is below Tc.
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Figure 3.7: Graph in left hand side: dependence of the bunching of the integrated
two-body correlation function on the temperature for an isotropic harmonically
trapped cloud with 106 atoms; right hand side graph: variation of the RMS waist
of the same function when the temperature crosses the critical point. This graph
shows that there is a clear change in the dependence of this l on temperature in
each side of its critical value.

3.4 Correlations in a harmonically trapped

cloud after expansion

The previous Section has considered correlation functions within the trap.
Here we consider them after the cloud’s expansion. We first distinguish two
different ways to measure the correlation function.

3.4.1 Detection: Snap-shot and flux measurement.

As in §2.2.1.1, where we have computed the atomic flux in a time of flight
measurement, here we will also assume that the trap is switched off at t = 0
with the cloud expanding freely afterward and falling due to gravity. As
before, we can consider two types of detection: a snap shot or flux measure-
ment.

• Snap shot

Here, an image is taken after a expansion time t0. Most commonly the
imaging technique is based on an acquired absorption image and so one has
access to the above correlation functions integrated along the imaging beam
axis. This is the case of, for example, the experiments of Refs.[106, 107]. In
this case, the relevant quantity is

G
(2)
im.(r, t0; r, t0) = 〈Ψ̂†(r, t0)Ψ̂(r, t0)Ψ̂

†(r, t0)Ψ̂(r′, t0)〉.
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• Flux measurement

The atoms are detected when they cross a given plane. As for the TOF, we
will only consider the situation in which this plane is horizontal at z = H.
Here the measurable second order correlation function takes the form of a
intensity-intensity correlation function,

G
(2)
fl. (r = {x, y, z = H}, t; r = {x′, y′, z′ = H}, t′) = 〈Î(r, t)Î(r′, t′)〉

where Î is the flux operator defined in Eq.2.54. This type of measurement
corresponds more closely to the experiment of Ref.[94] and, also, the one
we have realized, both using a MCP. In Yasuda’s experiment only the arrival
times of the atoms were recorded; in ours, we also record their locations
when they arrive at the detector (see §3.5.2.1). Intensity-intensity correlation
measurements were also performed in the experiment of Ref.[108], in which
the transmission of a high finesse optical cavity records atoms as they cross
the beam and it also corresponds closely to imaging a cloud that crosses a
thin sheet of light, an experiment reported in Ref.[109]. The two correlation
functions are different, but if the detection is performed after a long time of
flight, they are in fact nearly equivalent. We will discuss this equivalence in
the following.

3.4.2 Second order correlation function of a expanded
cloud in a snap shot measurement.

The calculation of the second order correlation function of a expanded cloud
in both the snap shot case and the flux measurement are described in detail
in Ref.[52]. In here we will briefly present these calculations.

The snap-shot correlation function is

G
(2)
im.(r, t; r

′, t) =
∑

j,k,l,m

ψ∗jψk × ψ′l
∗
ψ′m 〈â†j âkâ

†
l âm〉,

where, in order to simplify our notation, we used ψm ≡ ψm(r, t) and ψ′m ≡
ψm(r′, t′) and similarly for the complex conjugated expressions. Using Eq.(2.62),
we find, without any approximation (except the neglect of the shot-noise
term) the expression[52]

G
(2)
im(r, t; r′, t) =

1∏
α

(1 + ω2
αt

2)

[
n(r̃)n(r̃) + |G(1)(r̃, r̃′)|2 − n0(r̃)n(r̃′)

]
,

where r̃ are the re-scaled coordinates defined before in Eqs.2.63. As in the
case of the expression for the cloud’s density after ballistic expansion, the
snap-shot second order correlation function is equal to the one found for a
trapped cloud if we re-scale the coordinates and include also the scaling factor[∏

α(1 + ω2
α
t2)
]−1

.
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3.4.3 Intensity-intensity correlation function of a ex-
panded cloud.

The calculation of G
(2)
fl. is just a generalization of the expression in Eq.2.55,

the atomic flux to second order,

〈Î(r, t)Î(r, t′)〉 = −
( ~

2M

)2 ∑
j,k,l,m

[ψ∗j (∂zψk)− (∂zψ
∗
j )ψk]×

[ψ′l
∗
(∂zψ

′
m)− (∂zψ

′
l
∗
)ψ′m] 〈â†j âkâ

†
l âm〉.(3.28)

To obtain a more explicit expression for this quantity, we will start by rewrit-
ing the flux operator (cf. Eq.2.54),

Î(r, t) =
∑
j,k

[
v2ψ

∗
jψk −

1

2

(
v3

√
kψ∗jψk−1z + v∗3

√
jψ∗j−1z

ψk

)]
â†j âk

with the velocities v2 and v3 defined as in Eq.2.66 and where we have also
used the definition j− 1z for the vector (jx, jy, jz − 1). The second order
correlation function of the flux is then,

〈Î(r, t)Î(r′, t′)〉 =∑
j,k,l,m

[
v2ψ

∗
jψk − 1

2

(
v3

√
kzψ∗jψk−1z + v∗3

√
jzψ∗j−1z

ψk

)]
×

[
v′2ψ

′∗
lψ

′
m − 1

2

(
v′3
√

mzψ′
∗
lψ

′
m−1z

+ v′
∗
3

√
lzψ′

∗
l−1z

ψ′m
)]
× 〈â†j âkâ

†
l âm〉.

Neglecting shot-noise and ground-state contribution, this leads to

〈Î(r, t)Î(r′, t′)〉 = 〈Î(r, t)〉〈Î(r′, t′)〉+Re(A) (3.29)

where

A ≡
∑
j,l



v2v
′
2 ψ

∗
jψ

′
jψlψ

′∗
l

+1
2
v3v

′
3

√
jzlz ψ∗jψ

′
j−1z

ψl−1zψ
′∗
l

+1
2
v3v

′∗
3 lz ψ

∗
jψ

′
jψl−1zψ

′∗
l−1z

−v2v
′
3

√
jz ψ∗jψ

′
j−1z

ψlψ
′∗
l

−v′2v3

√
lz ψ∗jψ

′
jψl−1zψ

′∗
l


× 〈â†j âj〉〈â†l âl〉. (3.30)

Two major differences appear compared to the mean flux calculation:
in this latter expression, the terms in v3, which comes from the derivative
of Eq.2.65 and the phase factor 7 δα + 3π/2 in Eq.(2.62) does not cancel.
This makes the exact calculation of the the intensity correlation function
cumbersome.

7Recall that δα = tan−1(1/ωαt) (cf.2.2.1.2).
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On the other hand, if the far field (f.f.) and long fall (l.f.) approximations
hold (cf.2.2.2), we see from the expression on the Eq.2.66 that

v3

v2

=
1√
2

σz

H
� 1, (3.31)

and only the the first term of Eq.3.30 has a non neglectable contribution for
the intensity correlation function. It can be proved[52], that keeping only
this term leads to an expression for 〈Î(r, t)Î(r′, t′)〉 which is sufficiently accu-
rate to interpret all experimental data we may obtain with our experimental
apparatus.

3.4.3.1 Explicit calculation of the flux correlation function within
the far field and long fall approximations.

In the following we will evaluate Eq.3.29 considering only the first term of
Eq.3.30. This latter is given by

T1 = v2v
′
2

∑
j,l

∏
α

ei(jα−lα)(δ′α−δα)

√
(1+ω2

α t2)(1+ω2
α t′2)

ψ̃jψ̃
′
jψ̃lψ̃

′
l 〈â

†
j âj〉〈â†l âl〉

=
v2v

′
2∏

α

√
(1+ω2

α t2)(1+ω2
α t′2)

∣∣∣∣∣∑
j

ψ̃jψ̃
′
j e

ij.∆〈â†j âj〉

∣∣∣∣∣
2

, (3.32)

where ψ̃m ≡ ψm(r̃) is the harmonic oscillator wave function with re-scaled
coordinates and the following definitions have been used in the last line,

∆α = δ′α − δα and
∑

α

jα(δ′α − δα) = j.∆. (3.33)

The modulus squared term in the last line may be seen as the first order
correlation function with an additional phase term. Using the temperature
Green function, in Eq.2.18, this term can be written as∑

j

ψjψ
′
j e

ij.∆〈â†j âj〉 =
∑

l

Z l Gho(r̃, r̃′, {lτα − i∆α}). (3.34)

• Further simplification within the far field and long fall approxi-
mations.

The exact evaluation of this expression may be obtained numerically in a
case to case analysis but with no trivial analytical and general result. How-
ever, again within the validity of the f.f. and the l.f. approximations, this
expression can be further simplified.
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Using the f.f. followed by the l.f. approximations, the first expression in
the Eq.3.33 can be written as

∆α '
1

ωt′
− 1

ωt
' 1

ωαt0

δt

t0
,

where, in the first identity, we used the approximations δα ≈ 1/ωαt and
δ′α ≈ 1/ωαt

′ and in the second δt = t− t′ � t0, with the usual definition for
the time of fall t0 =

√
2H/g.

The evaluation of ∆α involves the estimation of δt, whose maximum value
is of the order of what we may call the time observation window, in analogy
with what was written before in §2.2.2.2 within the derivation of the atomic
flux formulae. There, δt was compared with the time spread of the cloud, tcl.
Here, this time window scales rather with the expanding cloud’s coherence
time, tcoh(t). We will show in the next paragraph that its expression is

tcoh =
λTωz

g
(3.35)

where ωz ≡ ω⊥ is the trap oscillation frequency in the Oz fall direction. We
can now compare the two quantities in the Green’s function argument in
Eq.3.34, which also scales as the ratio in the above Eq.3.31

∆α

τα
.
σα

H
� 1.

For most experiments this ratio is vanishingly small (in our experiment, it is
smaller than 10−5) and the phase term proportional to ∆α in Eq.3.34 may
be neglected.

Within the above approximations, the intensity correlation function takes
the simple form of

〈I(r, t; r′, t′)〉 =

v2v
′
2∏

α

√
(1 + ω2

α
t2)(1 + ω2

α
t′2)

[
n(r̃)n(r̃′) + |G(1)(r̃, r̃′)|2 − n0(r̃)n0(r̃

′)
]

(3.36)

Again, we find the same correlation function as in the trap, here with the
rescaling pre-factor slightly different from the one of G

(2)
im., reflecting also

the expansion of the cloud between the times t and t′. The corresponding
normalized correlation function obtained using Eq.2.68 is

g(2)(r, t; r′, t′) =
〈I(r, t; r′, t′)〉

〈I(r, t)〉〈I(r′, t′)〉

= 1 +
|G(1)(r̃, r̃′)|2 − n0(r̃)n0(r̃

′)

n(r̃)n(r̃′)
. (3.37)
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This expression is the equivalent of Eq.3.26 for an intensity correlation mea-
surement. Except for the coordinate re-scaling of Eq.3.37, this expression is
equal to Eq.3.26 and can be interpreted in the same manner (cf. §3.3).

Coherence lengths at the detector.

The transverse coherence length and the temporal coherence can be easily
derived from Eq.3.37, taken at the high temperature limit. This results in
the flux equivalent of Eq.3.25,

g(2)(δx, δy, δt) = 1 + exp

[
−
(
δr̃

l

)2
]
, (3.38)

with δx = x − x′, δy = y − y′ and δt = t − t′. Using the definitions of the
coordinate rescaling we obtain, straightforwardly the relation

lα(t) = l ×
√

1 + (ωαt)
2 ∼ λT√

2π
ωαt, (3.39)

confirming the scaling laws obtained previously by simple considerations in
Eqs.3.8.

The time dependent argument of Eq.3.38 is

z̃ − z̃′

lz
=

1
2
g(t2 − t′2)√
1 + (ωzt)2l

' gδt

lωz

,

where in the last step we have used the f.f. and l.f. approximations. Note
that in absence of gravity this expression modifies to

gδt

lωz

vT

vG

=
vT δt

lωzt
=

δz

lωzt

which corresponds to have the same coherence length as the one of Eq.3.39.
Thus, the temporal coherence is just the equivalent, in time, of the coher-
ence length in the other two spatial directions modified by the gravitational
compression. It is given by

tcoh(t) = l
ωz

g
. (3.40)

This expression states that the coherence time remains independent of the
propagation time as long as the far field and the long fall approximations
are valid.
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3.4.4 Conclusion.

One of the main results of former analysis is that the volume of coherence
expands linearly in time at the same rate as the cloud itself. So, even at
T = Tc, the time varying correlation lengths are well approximated by:

lα(t) = lα(0)× ωαt.

This may be interpreted in many different and simple ways.
We may consider the analogy with optical speckle. Increasing the time of

flight corresponds to increasing the propagation distance to the observation
plane in the optical analog. The speckle size, i.e. the correlation length,
obviously increases linearly with the propagation distance.

Another way to understand the time dependence is to remark that after
release, the atomic cloud is free and the phase space density should be con-
stant. Since the density decreases with time as

∏
α

(ωαt) and the spread of the

velocity distribution is constant, the correlation volume must increase by the
same factor [110].

Yet another way to look at the correlation length is to observe that, far
from degeneracy, the correlation length inside the trap is the thermal de
Broglie wavelength, that is,

l =
λ√
2π

= ~/∆p

where ∆p = m∆v is the momentum width of the cloud. By analogy, after
expansion, the correlation length is

l(t) = ~/(∆p)loc,

where (∆p)loc is the local width of the momentum distribution. As the pulse
of atoms propagates, fast and slow atoms separate, so that at a given point
in space the width in momentum is reduced by a factor sα

∆vt
.
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3.5 The HBT experiment with He∗.

In this Section we describe briefly our HBT experiment made with a cloud
of cold metastable helium atoms. As already emphasized in Chapter 1, our
setup is very suited for this type of measure since it is possible to detected
single He∗ atoms. However, to make it possible, we had to upgrade our
apparatus with a new MCP based detector, different from the one described in
Chapter 1, capable of resolving the clouds’ atomic flux not only in time but
also capable of imaging it in the fall’s transversal direction. This detector
was used only in this experiment. A detailed description of it and all of its
electronic circuitry can be found in the Ph.D. thesis of M. Schellekens[50].
The Ph.D. thesis of R. Hoppeler[49] also reports on this and, also, on all the
modifications we have done in the experiment to house this detector. In this
Section we will describe some preliminary calculations, based on the results
derived in the previous Section, showing that the correlations measurements
can be carried out in our experiment (also included in Ref.[49]). Most of the
discussion is centered on the estimation of the visibility of the bunching and
on its signal-to-noise ratio (SNR).

Before starting with our experiment, we will briefly refer others realization
of HBT type of experiments done with massive particles. Among these we
will highlight recent achievements done with cold atoms, both bosons and
fermions.

3.5.1 State of the art on HBT measures with massive
particles.

If we compare with the standard optics experiments, HBT measurements
done for massive particles are richer because these can be either Bosons or
Fermions, they often have a more complex internal structure and a large range
of possible interactions with each other. Some correlation measurements
carried out in the field of nuclear physics are reported in Refs.[111, 112]
(see also review texts of Ref.[113, 114, 115]) and for low energy electrons in
Refs.[116, 117].

These type of experiments were first realized with neutral atomic species
by Yasuda et al.[94], soon after the first realization of a BEC in a cold atomic
gas. It was done, however, only with a non-degenerated gas.

More recently a wide variety of different situations have been studied
with degenerated bosonic gases [118, 107, 106, 108, 119] and also ours[84]
which, for he first time, evidenciate in the same experiment the different
behavior of the correlation function on degenerated and non-degenerated
atomic clouds. Two very recent experiments demonstrated anti-bunching
with fermionic atomic species[120, 121].
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3.5.2 The HBT experiment with He∗.

3.5.2.1 The delay line detector.

He*

e-

x     t1-t2

0
t2t1

D2D1

delay line PSD(b)(a)

Interface PC

y

xt

He*
MCP
PSD

Figure 3.8: The detection system used in HBT experiment. It is made of two
main parts: a MCP and a delay line position sensitive detector (PSD). The MCP used
in this setup is larger than the one describe in Chapter 1 and placed further down
from the trap’s center (H ≈ 470 mm). The PSD is placed bellow the MCP and is
used to record the atoms’ location hitting the MCP. It is made of two long wires
displaced as shown in the main image. Its working principle is summarized in
the inset Figure. The amplified charge generated by the MCP when it detects an
atom is collected by two wires (the delay lines) placed below the MCP. This charge
propagates to both ends of these wires and, depending on the location of the
incident atom, the resulting signals arrives at the time-to-digital converters (TDC),
at different times. By computing this time difference it is possible to infer the
location where the charge was generated. The system with two delay lines use
four discriminators(Disc) and TDCs. This is equivalent to have a discrete anode
detector with 105 pixels with a spatial resolution of about 250 µm. Another chain
with a Disc and a TDC is used to get the absolute time arrival of the atoms, with
a resolution of less than 1 ns.

As referred above, our HBT experiment was implemented in our original
setup (described in Chapter 1) with a new detector sensitive to both the time
of arrival but also to their location in the transversal plane. The determina-
tion of the atoms’ locations is of particular importance since the transversal
coherence length (cf. Eq.3.39) is much smaller than the size of the detector.
Thus, the simultaneous detection of several volumes of coherence in just one
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detector washes out the bunching.
To see this, consider the calculation of the bunching contrast (with δt = 0)

of the a density normalized correlation signal on the high-temperature limit
and integrated over a detector’s surface SD. This is given by

g(2)(δt = 0)− 1 =

∫
SD

∣∣G(1)(dr̃, dr̃′)
∣∣2 dr̃ dr̃′∫

SD
n(dr̃)dr̃×

∫
SD
n(dr̃′)dr̃′

where we used r̃ = {x̃, ỹ}, with also Eqs.3.24 and 2.23 for G(1)(x, x′) and
n(x) respectively. Note that, in this expression, we have not considered the
time resolution of the detector because this one is much smaller than the
cloud’s time of coherence. For a very large detector (when compared with
the atomic cloud), this expression simplifies to

g(2)(δt = 0)− 1 =
lx(t)

sxωxt

ly(t)

syωyt
=

l2

sx sy

, (3.41)

which states that the bunching contrast is proportional to the ratio between
an area of coherence l2 and the transversal section of the atomic cloud sx ×
sy

8. This ratio is also given by τxτy which is, in our experiment, about 10−4.
To measure this signal, we would need a comparable signal-to-noise (SNR)
which is, in practice, very difficult to achieve.

The working principle of the detector we used is sketched in Fig.3.8 (more
detailed information may be found in Refs.[122, 123]). A MCP 9 is used to
generate an amplified signal charge that is collected by the delay line, two long
wires wrapped up in orthogonal directions in squared structure assembled
below the MCP. By measuring the time of arrival of the charge at the ends of
these two wires we can compute where the charge was collected. The spatial
resolution of this device is of about 250 µm. The measure of the time of
arrival of the atoms is done directly on the MCP signal with a time resolution
that can be smaller than one nanosecond. As referred earlier, this value is
several orders of magnitude smaller than the cloud’s temporal coherence, a
few hundreds of microseconds.

3.5.2.2 The bunching contrast in function of the pixel size.

A similar result to the one of Eq.3.41 can be also derived for a finite detector[52].
If this one is much smaller than the cloud, as in the case of our experiment, the

8If we had integrated also the the longitudinal direction, we would find a generalization
of this as the ratio of the cloud and the coherence volumes. Note also that this expression
is valid for both the expanding and the trapped cloud, since its size and the volume of
coherence grow in time at the same rate.

9We use a MCP manufactured by Burle, model 33845.
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bunching contrast depends rather on the ratio between the coherence lengths
and the pixel size. In our experiment lx(t) � d ≈ lz(t)/4 and, to simplify
the derivation, we approximate the observed contrast to (cf. Ref.[52])

g(2)(δt = 0)− 1 ' lx(t0)

2d
, (3.42)

which corresponds to the limit of lx(t) � d � lz(t). This expression shows
that we may increase the bunching contrast by using a small enough detector.
However, if we used a detector with a size comparable to lx(t0) < 1 µm, only
a very small portion of the atoms would be detected (the expanded cloud
has a few millimeters) decreasing drastically the SNR, as we show in the
following Section.

The PSD device, described above, allows detecting most of the atoms with-
out compromising the bunching contrast. Each PSD’s pixel may be considered
as a single detector and the entire PSD as an ensemble of about 105 indepen-
dent detectors, juxtaposed side by side. Using the approximate expression
of Eq.3.42 for computing the bunching contrast of a cloud at T = 1 µK we
obtain g(2)(δt = 0) ≈ 5%.

3.5.3 A simple derivation of the signal-to-noise ratio.

The experimental procedure of the experiment we describe in here is, concep-
tually, very simple: after producing an atomic cloud at a given temperature,
we release it over the detector and record all time instants and correspondent
locations at the detector for each detected atom.

The intensity correlation function is obtained then, making the histogram
of all the time delays between two different events. To get a better idea of
this, suppose that the atomic flux may be represented as a sum of N time
dependent delta functions,

I(t) =
N∑

i=1

δ(t− ti),

each one corresponding to the arrival of an atom. The auto-correlation func-
tion of this quantity is, by definition, equal to

h(δt) =

∫ +∞

−∞
I(t)I(t+ δt) dt

=

∫ +∞

−∞

∑
i,j

δ(t− ti)δ(t− δt− tj) dt

= 2
∑
i>j

δ(|ti − tj| − δt),
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where, in the last line, it is written a count of the pairs of atoms arriving
with a time-delay equal to a certain δt. This is just the value of an histogram
of these time-delays, a function of δt.

In practice, we need to consider a finite time binning tbin for the histogram
and the last expression modifies to

h(δt) → hk = 2
∑
i>j

Θ [ktbin < |ti − tj| < (k + 1)tbin] ,

with Θ(x) equal to one x is true and zero otherwise. tbin determines the
number of points of the histogram inside the bunching and, also, the SNR of
the observed signal. To derive this latter quantity we will use some approxi-
mations that rends its computation rather simple. First, we will simplify the
analysis by calculating the noise for fictitious uncorrelated cloud (we neglect
the bunching to calculate the noise) and at temperatures much larger than
the transition temperature. Second, we will assume that the uncertainty in
the counting of the histogram follows a Poissonian law and, then, for Nk

counts an estimated error of
√
Nk. Finally, we will assume that the atomic

cloud has a homogenous density distribution with a time extension tcl = vT

g

(cf. Eq.2.70) and transversal section equal to s(t0) = vT t0 (cf. Eq.2.69).
On average, each one of PSD’s pixels will detected, during the whole TOF,

a number of atoms that is, approximatively, given by Np = ηN (d/s(t0))
2

where ηN is the number of detected atoms and d, the pixel size, which we
will also assume to be equal to the separation between contiguous pixels.
Then the mean number of pairs of events per detector is np = 1

2
Np(Np − 1)

and the number of pairs for the whole detector is then

nall =

[
s(t0)

d

]2

np = η2N2

[
d

s(t0)

]2

.

The histogram contains this amount of pairs.
The calculation of the SNR is now straightforward. In the few first bins

of the histogram, where the bunching manifests, its amplitude is of about

h0 = nall
tbin
tcl

=
η2N2

nb

d2

s(t0)2
τz (3.43)

where, as usually, τα = ~ωα/kBT
10 and nb = tcoh/tbin is the number of

histogram bins inside the bunching region. The signal noise is given by
√
h0.

Our goal is to detect the bunching which is, in number of counts, equal to[
g(2)(0)− 1

]
×h0. If we assume that the uncertainty of this counting is similar

10Note that τα = tcoh/tcl = (2π)−1/2λT /sα.
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to those corresponding to the uncorrelated pairs and using Eq.3.42 for the
bunching contrast, we obtain for the SNR the expression

SNR1 =
[
g(2)(0)− 1

]
× h0√

h0

= 1
2

ηN
√
nb

τx
√
τz (3.44)

This expression shows that the signal-to-noise decreases with the tempera-
ture and the number of bins used to resolve in time the bunching. It increases
with increasing number of detected atoms.

3.5.4 Exact results for the SNR in the high tempera-
ture limit.
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Figure 3.9: These graphs plots SNR/ηN
√

ns/nb, in function of temperature and
pixel size. The SNR decreases for larger temperatures and pixel sizes. However,
if the pixel size becomes too small, the number of pairs of atoms detected by each
pixel becomes very small and, despite the larger bunching contrast, the SNR shoots
down. For T = 0.5 µK, the optimal value is d ∼ 100 µm.

The simple derivation of the SNR presented before gives a result that is
overestimated by a factor of 4π3/4 ≈ 10 because we have not considered the
cloud’s density distribution. Moreover, the use of Eq.3.42 for the bunching
contrast results in an expression for the SNR that is independent of the pixel
size d which is in general not true. The exact expression for SNR in the high
temperature limit case can be found replacing in Eq.3.44, for the bunching
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contrast, the expression

g(2)(δt = 0)− 1 =
∏
α

√
1 + d2

α/sα(t)2

1 + 4d2
α/lα(t)2

,

and then dividing the obtained result by 4π3/4. In the Fig.3.9 we plot the
resulting expressions for different temperatures and pixel sizes. These are
computed for the case where the histogram is built using data form ns differ-
ent experimental realizations. This increases the SNR by a factor of

√
ns and

should be done using data of clouds with similar temperature and fugacity,
therefore with similar correlation functions. The left hand side graph shows
that if the pixel size decreases too much, the SNR also decreases. Despite
the bunching contrast increases for smaller values of d (see Fig.3.10), the
number of delay times between pairs of atoms used in construction of the
histogram decreases to zero and, then, also the SNR. Using our experiment’s
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Figure 3.10: The bunching contrast in function of the pixel size, for three different
temperatures.

parameters and for a typical number of detected atoms equal to ηN . 104,
1000 different runs results in a SNR ≈ 2.5 with the bunching resolved within
10 histogram bins. This SNR should be enough to see the bunching.

3.5.5 The experimental results.

The derivation of the above result for the SNR showed that, if upgraded with
the referred PSD detector, it should be possible to carry out a HBT experi-
ment in our setup. This result was of great importance in the design of the
new apparatus and proved to be correct. This can be seen in the graphs
of Fig.3.11, reprinted from Ref.[84], where we plot the final results we have
obtained in this experiment. The curves corresponds to four different cloud’s
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temperatures: three above the critical temperature (the three top graphs)
and another for a degenerate cloud (bottom graph).

The temperature determination of the non-degenerate clouds was ob-
tained form a fit to the corresponding TOF signals. The correlation signals
were built with typically 1000 different shots with clouds of similar temper-
atures but paying no attention to their fugacities, all below Z = 1. The
observed bunching contrast and SNR are approximatively equal to our esti-
mative.

Finally, in the correlation curve of the degenerate case we observe, as
expected, no bunching.

3.5.6 Conclusion.

In this Chapter initial Sections we try to show why measuring the density
correlation at the vicinity of the critical temperature may become interesting.
The results we have obtained so far doesn’t explore this possibility as no
sorting procedure was used for choosing clouds at the T = Tc. The task
of sorting data regarding its fugacity and temperature is not trivial as we
will try to demonstrate in the two following Chapters. We will present some
data analysis technics that may help, in the future, observe how the particles
correlation behaves at the BEC formation.
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Figure 3.11: a) normalized correlation functions along the vertical (z) axis for
thermal gases at three different temperatures and for a BEC. For the thermal
clouds, each plot corresponds to the average of a large number of clouds at the
same temperature. Error bars correspond to the square root of the number of
pairs; b) Normalized correlation functions in the ∆x − ∆y plane for the three
thermal cloud cases. The arrows at the lower right show the 45o rotation of our
coordinate system with respect to the axes of the detector. The inverted ellipticity
of the correlation function relative to the trapped cloud is clearly visible. Figure
from Ref.[84].
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Thermometry with ions and
atoms: theoretical
preliminaries.

4.1 Introduction

The propose of this Chapter is to go further in the theoretical description
of both the ions flux generated inside the cloud, due to inelastic collisions
involving He∗ atoms, and also of the atomic time of flight signal. This is
done with the goal of improving the thermometry of the cloud using these
two signals.

The ion signal was briefly presented in Chapter 1. There, we were mostly
concerned with the description of its detection. In here we will make a
more detailed description of this signal and present the results of a simple
model simulating the time evolution of the ion signal during the last ramp of
the evaporative cooling. This period of time is of great importance since it
includes the instant where the cloud undergoes the phase transition and also
the growth of the BEC.

The analysis of the numerical results of this simulation allows a better
understanding of the ion signal and helps to better interpret it in a real exper-
imental realization. A major outcome of this model is the determination of
the instant of time where the critical transition takes place. This information
helped us to get a better control of the experimental procedure, in particular
in experimental realizations where we needed to obtain clouds at the critical
temperature. Another important result of this simulation establishes a rela-
tion between the bias fluctuation and the uncertainty in the determination
of the cloud’s fugacity.

Although very interesting and useful to visualize the evolution in real time
of the cloud’s density, the ion signal is not as suitable as the atomic TOF for
determining its temperature and fugacity, due to the unavoidable run to run
bias fluctuations. These have no influence in the TOF ’s analysis which is
for this reason a more reliable diagnostic technique to achieve an accurate
thermometric characterization of the cloud.
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In Chapter 2 we have presented a simple model for describing this signal
for the ideal gas case. To get a more accurate determination of the cloud’s
temperature and fugacity we need to correct this model by including the effect
of the interatomic interactions. In §4.3 of this Chapter, we will workout a
model that describes a cloud of interactive atoms at thermal equilibrium in
the mean field approximation. This will lead to the inclusion of corrective
terms proportional to the He∗ s-wave scattering length a.

The effect of interatomic interactions also affects the cloud’s expansion
after the trap switch-off, making the simple ballistic model derived in Chap-
ter 2 slightly inaccurate. The initial moments of the cloud’s expansion are
very similar to the behavior of a classical fluid in a hydrodynamical regime.
This behavior lasts only for a short period but is sufficient to impose a non
negligible correction on the determination of cloud’s temperature.
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4.2 The ion signal.

In the first Chapter of this manuscript (cf. §1.3.4) we have shortly described
the ion production mechanisms through Penning collisions. Ions may be
produced in collisions between two or three He∗ atoms or, most simply, in a
collision involving only one He∗ atom and a molecule from the background gas
inside the science chamber. The two- and three-body processes are cloud den-
sity dependent and can therefore constitute a good diagnostic tool for mea-
suring this quantity and its evolution during the evaporative cooling process.
This is, as we pointed out in §1.3.4, a real time, non destructive and absolute
measurement of the cloud’s density: the spontaneously produced ions inside
the cloud are detected at every time with a known efficiency.

The unique characteristics of the ion signal makes possible the observation
of the BEC growth and provided the means for a direct measurement of
collisional properties of the He∗. This was used in an experiment, discussed
in the following Chapter, in which we have attempted to measure a, the
He∗ scattering length[46]. One other experiment was realized with the aim
of determining β and L, the inelastic ionizing constants for the two- and
the three-body processes[45]. The knowledge of these constants, along with
the one for the simple Penning ionizations in collisions with the background
gas, would allow us to fully characterize the ion signal. Unfortunately, the
results we have obtained within these experiment are certainly affected by an
experimental systematic error and are, for this reason, not very conclusive
(this will also be further discussed in the following Chapter).

Along with the problem of a good determination of the ionizing rate
constants, the ion signal analysis presents other difficulties if it is intended
to be used in the cloud’s thermometry. Since it is an overall cloud integrated
signal, it doesn’t contain information on the shape of the cloud but only on
its average density. Thus, it is not possible to observe local variations of the
cloud’s density which are very important, especially at the cloud’s center, for
properly determine the cloud’s temperature and fugacity 1.

As we have already referred, the ion signal is made of contributions of
different collisional processes that depends on different powers of the density
and thus, with different weights for denser or diluter clouds. We may ques-
tion then if the inverse problem of finding the cloud’s density from a given
measured ion signal is feasible. The flux generated by a thermal cloud at its
location r is

Φ(r0) ∝
1

τi
nth(r) +

β

2
nth(r)

2 +
L

3
nth(r)

3.

This expression shows that the local ion flux grows monotonically with the

1 Note however that this could be overcome by using adequate ion optics and a spatially
resolved ion detector as the PSD described in the previous Chapter.
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density. This is a sufficient condition to allow obtaining a unique result for
the cloud’s density at the location r, knowing the ion flux Φ.

If the rate constants β and L does not depend on the density (which is
an a priori assumption), the above conclusion does also apply to the cloud
integrated ion flux

Φ =
Nth

τi
+ 1

2
β

∫
R3

dr n2
th(r) + 1

3
L

∫
R3

dr n3
th(r), (4.1)

if the analytical form of nth(r) is known.

4.2.1 Ion signal during the last evaporative ramp.

As explained earlier in §1.2.1.3, in our experiment’s evaporative cooling, the
frequency of the rf -field is ramped down from 130 MHz to around 1 MHz,
where the condensation takes place. This is done throughout four linear
ramps as represented in the Fig.1.6. The physics involved in the last ramp is
by far the more interesting of all since it involves the crossing over the critical
phase transition and also the BEC growth[124]. These phenomena can be
followed in real time through the observation of the ion signal.

In Fig. 4.1 we show the evolution of the ion rate starting 2 seconds before
the end of the rf-ramp, where the pure BEC is formed 2. We also show the
corresponding TOF signals in five different instants of time before t = 0. In
the first part of the curve (the darker curve), between t = −2s to t = 0, the
ramp frequency was varied linearly from 1.4MHz to 1MHz.

The interpretation of these graphs suggests two remarks:

• The comparison of the TOF and ion signals shows that the appearance
of a narrow structure in the TOF signal corresponds to an abrupt
change in the slope of the ion signal, indicating then the critical instant
of the BEC threshold. This is the typical behavior observed in a phase
transition.

• The pure BEC (last inset graph) occurs only after the ion signal has
passed through its maximum value. Since the ion signal is proportional
to the cloud’s density, it could give the impression that the pure BEC
does not correspond to the densest cloud possible. For a fixed number
of atoms this is indeed the case: the evaporation ejects continuously
atoms out of the trap and, despite the relative increase of cloud’s density
towards the BEC, at the end the number of trapped atoms is largely
reduced leading also to a decrease of the ion flux.

2The term pure BEC here is, some how, not well defined since it is difficult to say
when a TOF corresponds effectively to the situation where T = 0 (see details in §B.1.1 of
Appendix B). In the following we will refer as pure BEC a cloud where the thermal cloud
is not visible in the TOF.



4.2 The ion signal. 139

T < TC T = TC T > TC

 Time [s]

 
I
o
n
 
F
l
u
x
 
[
x
1
0
3
 
s
-
1
]

210-1-2

100

80

60

40

20

0

BEC

Figure 4.1: A single-shot measurement of the ions flux. The black part of the curve
correspond to the last rf-ramp, where the rf -frequency ramps down from 1400kHz
at t = −2s to 1000kHz when, at t = 0, a pure BEC is formed. The five insets on
this figure, represents typical TOF signals for some given time instants. Although
these TOF curves does not correspond to the same experimental realization as the
one shown in the main graph (recall that the TOF acquisition implies releasing the
cloud and, consequently, interrupting the evaporative process) they were chosen
among similar ions signal curves. In the column T � Tc, the presented TOF signal
is well fitted by a Gaussian since its temperature is much higher than Tc. In the mid
column a Gaussian is not sufficient to interpret the experimental curve, which starts
to have a cusp shape at its center. The right hand side column represents different
stages of the cloud in its evolution towards a BEC. The last frame corresponds to
the pure BEC, characterized by an inverted parabolic shape (cf. A). The light
gray curve in the ion signal, for t > 0, corresponds to the evolution of the cloud
after achieving BEC : the cloud start to heat with the decrease of its density and
a consequent reduction of the ion flux signal.
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Experimental location of the critical transition point.

The determination of the critical transition point or, as we usually call it, the
critical time, constitutes an important tool to help producing clouds at the
vicinity of the phase transition. The ion signal is a remarkable tool for this.
As we saw in the last Chapter, this is a quite remarkable physical situation
with interesting properties 3. However, the ion signal is only an indirect
measure of the cloud density and is this latter quantity (or, to be correct, its
peak value) that really determines the critical temperature and, therefore,
the location of the critical time (cf. §2.1.2).

Moreover, since the observed ion signal results from an overall cloud inte-
gration of different collisional processes that depends on different powers of
the density, the critical transition may appear as a smooth variation of the
ion flux at the critical time even if there is a brusque variation of the cloud’s
peak density, as the one plotted in Fig.2.1 of §2.1.2. This smooth variation
of the ion signal helps hiding the exact location of the critical time.

To get a better understanding of how the density evolves and also to get
a proper determination of the critical time location within the ion signal we
will simulate the ion flux produced within the cloud during that period.

4.2.2 Simulation of the ion signal in the last evapora-
tive ramp.

As shown in Fig.4.1, in the last rf-ramp of the evaporative cooling the cloud
evolves from a non-degenerate to a degenerate gas. These two cases corre-
sponds to very different physical situations and must also be modeled quite
differently. The initial non-degenerate cloud is described by a simple ideal gas
model within the semi-classical approximation as derived in the expression
of Eq.2.23. The degenerate gas will be described by a model that uses the
Thomas-Fermi approximation (see Appendix A) to describe the BEC and
the semi-ideal model to describe the thermal cloud. This model includes the
influence of the BEC mean field.

The results of these two models coincides in the critical transition point
what allows the continuous simulation of the time evolution of the cloud’s
density evolution. Finally, we remark that this model doesn’t include neither
finite size effects nor interatomic interactions in the thermal cloud. Despite
that, we will see that the obtained results are similar to the experimental
ones.

3We have also used clouds at T = Tc in the experiment we made for measuring a(see
§5.2)
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4.2.2.1 Ion signal in the non-degenerate cloud.

The ion flux produced in a thermal cloud is given by Eq.4.1. The integrals in
this expression can be evaluated substituting Eq.2.23 for the cloud’s density.
The general form for moment of order p of the average value of the cloud’s
density is

np
th ≡

∫
R3

dr np
th(r) =

τ−3/2

λ
3(p−1)
T

f
33...3︸︷︷︸

p

(Z), (4.2)

where the symbol f33...3(x) stands for a class of function we use throughout
this manuscript and defined as

fjk...p(x) =
∑

lj ,lk,...,lp

xlj+lk+...+lp

lj/2

j lk/2

k . . . lp/2
p (lj + lk + . . .+ lp)3/2

. (4.3)

Note that the simplest form of this function is just f3(Z) = g3(Z). In
Fig.4.2a) we plot three examples of these functions. With the above defi-
nitions, the ions flux signal produced within a thermal cloud is

Φ = τ−3/2 ×
[

1

τi
g3(Z) +

β

2

1

λ3
T

f33(Z) +
L

3

1

λ6
T

f333(Z)

]
. (4.4)

4.2.2.2 Ion flux in degenerate cloud.

Below the critical temperature we need to take into account the influence of
the BEC for the ion flux. This will involve the computation of, for instance,
the qth moment of the mean of the BEC density nq

0 similar to those expressed
in Eq.4.2 for the thermal cloud. Moreover, since now we may have collisions
involving atoms from both the condensate and the thermal cloud, we will
also need to derive mixed mean terms such as np

th n
q
0. In both cases, we

will describe n0, the BEC density, in the Thomas-Fermi approximation (see
Appendix A).

The calculation of the ion flux of a degenerate cloud involves also:

• The inclusion of weighing coefficients accounting for the different pos-
sible combinations on the number of involved thermal and condensed
atoms and, also, of the reduction quantum factor included to account
for the lack of the symmetrization term in collisions involving condensed
atoms;

• Taking into account the influence of the repulsive mean field of the
BEC on the thermal cloud (mainly in its center where the BEC is):
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we will need to consider a degenerate thermal cloud density n′th(r) that
accounts for this effect and recompute all the above moments of the
mean cloud’s density. This will be done within the semi-ideal model
described latter on.

• the quantum reduction factor

The ionizing rate constant for collisions involving atoms from the condensate
are smaller from those defined in Eq.1.11. They are reduced to respectively β′

and L′, respectively for the two- and three-body processes according to[125,
70]

β′ =
1

2!
β and L′ =

1

3!
L.

In these expressions, the factors 1
2

and 1
3

are known as quantum reduction
factors. They are included because in a collision between condensed atoms
the bosonic exchange term needed to symmetrize the collisional process does
not exist. This term, responsible for the Hanbury-Brown bunching effect,
increases the probability for two or more thermal atoms to come close and
to participate in a collision (cf. §3.2.1.2).

For terms involving mixed collisions, these factors are not so trivial since
we need to account for all the allowed permutations of the bosonic operators
involved in the description of the collisional process. If we have p thermal
atoms colliding with q from the BEC we need to consider a multiplicity factor
given by for details and Ref.[70])

Mpq =

(
(p+ q)!

p!q!

)2

.

In the other hand, the symmetrization of the processes involving thermal
atoms adds the factor p! and then, the total probability of a collision of p
thermal with q condensed atoms is equal to

Pp+q = p!×Mpq.

If we want to keep the definition for the ionizing rate constants of Eq.1.11,
which reports to processes involving thermal atoms only, we finally obtain

β′ = κ2 × β and L′ = κ3 × L, (4.5)

with

κ2 =
p!×Mpq

2!
and κ3 =

p!×Mpq

3!
.

All the values of these two factors are compiled in Table 4.2.2.2 for all the
collisional processes involving two and three atoms.
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two-body three-body
n2

th nthn0 n2
0 n3

th n2
thn0 nthn

2
0 n3

0

p! 2 1 1 6 2 1 1
Mpq 1 1 4 1 9 9 1
Pp+q 2 1 4 6 18 9 1
κ2, κ3 2 1/2 2 1 3 3/2 1/6

Table 4.1: The quantum reduction factors for all collisional processes involving
two (κ2) and three atoms (κ3).

• The semi-ideal model.

The density of the thermal cloud of a degenerate gas is modified by the
presence of the BEC that pushes the thermal atoms away from the center
of the trap. This leads to a local decrease of the thermal cloud’s density.
A easy way to describe the density of such a thermal cloud is to take the
semi-classical expression within a effective trapping potential modified by
the BEC mean field repulsive energy. It becomes

n′th(r) =
1

λ3
T

g3/2

(
e−β[V (r)+2gn0(r)−µ]

)
,

with µ the BEC chemical potential. The interactive term is then 2gn0(r),
where the factor two comes also from the the symmetrization of the inter-
action process that occurs between atoms of different wave functions. The
BEC density n0(r) is only slightly influenced by the thermal cloud and here
this small influence will be neglected. In the Thomas-Fermi approximation
the BEC density is given by (see Appendix A)

n0(r) =

∥∥∥∥µ− V (r)

g

∥∥∥∥ ,
with g the coupling constant (cf. Eq.4.24) and ‖x‖ = x for nonnegative x or
zero otherwise. Inserting this last expression in the previous one we get the
surprisingly simple result

n′th(r) =
1

λ3
T

g3/2

(
e−β|µ−V (r)|) , (4.6)

an expression independent, explicitly, of the actual number of condensed
atoms. This dependence, that physically must exist, is passed into the ex-
pression through the chemical potential which is, in the degenerate gas case,
a positive quantity. Note also that in the non-degenerate case, µ < 0 and this
expression reduces to the one in Eq.2.23. The model used in the derivation of
the above expression in Eq.4.6 is referred in Ref.[47] as the semi-ideal model.
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• Average moments of the cloud’s density.

Within the above definitions, the ion flux for a degenerate cloud is given by

Φ =
1

τi
(N0 +Nth) + 1

2
β
(
n′th

2 +2n′thn0 + 1
2
n2

0

)
+

1
3
L
(
n′th

3 +3n′th
2n0 + 3

2
n′thn

2
0 + 1

6
n3

0

)
, (4.7)

with N0 =
∫
drn0(r) and Nth =

∫
drn′th(r) the number of atoms in the

condensate and thermal cloud respectively. This two quantities and all other
mean moments n′th

pnq
0 in this expression need to be computed.

The terms involving only powers of the density of the condensate are easy
to compute. In the Thomas-Fermi approximation they are given by

nq
0 ≡

∫
R3

dr nq
0(r) =

(
µ

g

)q ∫
T.F.

(
1− V (r)

µ

)q

,

=

(
µ

g

)q
4π

3
RBEC

3 Iq, (4.8)

where the integration is restricted to the volume inside the Thomas-Fermi
ellipsoid, with 4

3
πRBEC

3 the BEC volume (cf. §A.2 of Appendix A) and

Iq =
3
√
π

4

Γ(1 + q)

Γ(5/2 + q)
. (4.9)

This latter expression is equal to 2/5, 8/35 and 16/105, for q equal to re-
spectively one, two and three. With q = 1 the expression in Eq.4.8 gives the
BEC number of atoms, N0 (cf. Eq.A.8).

The terms involving powers of n′th lead to less trivial expressions. These
can be written in terms of functions of the type

f ′
33...3︸︷︷︸

p

(x) =
4√
π
x3/2

∫ ∞

0

dρ ρ2
[
g3/2

(
e−x|1−ρ2|

)]p

which is a modified version of the f33...3(x) (cf. Eq.4.3) that takes into account
the hole in the thermal cloud density caused by the presence of the BEC and
also

Flm(x) =
4√
π
x3/2

∫ 1

0

dρ ρ2l
[
g3/2

(
e−x(1−ρ2)

)]m
. (4.10)

Some of these functions, used in the derivation of the ion flux, are plotted in
the Fig.4.2.



4.2 The ion signal. 145

0.0

0.5

ζ(3)

2.0

3.0

    0 0.25 0.5 0.75 1
χ

0 0.25 0.5 0.75 1     
Z

f '333 f '3

f '33

f333

f33

f3

0.25

0.20

0.15

0.10

0.05

0.00
0 0.25 0.5 0.75 1

χ

F21-F22
  

F11-2F12+F13

F11-F12

a) b) c)

Figure 4.2: Graphical representation of the functions used in computation of the
various average moments of the density of the cloud. These curves are plotted in
function of the fugacity Z for non-degenerate clouds and for χ = βµ for clouds
where a condensate of chemical potential µ is already present (see also text).

The pth order moment of the mean value of the density of the thermal
part of the degenerate cloud is, within the semi-ideal model, given by

n′pth ≡
∫

R3

dr n′
p
th(r) =

τ−3/2

λ
3(p−1)
T

f ′
33...3︸︷︷︸

p

(χ), (4.11)

where the chemical potential is written as χ = µ/kBT .
Finally, for collisions involving p thermal and q condensed atoms, the

required density mean moment is

n′pth n
q
0 ≡

∫
R3

dr n′
p
th(r)n

q
0(r) =

∫
T.F.

dr n′
p
th(r)n

q
0(r)

where the integration is limited to the BEC volume. Using the definition of
Eq.4.10, this latter expression is re-casted in the particular cases of interest,

n′thn0 =
1

τ 3

µ

g
[F11(χ)− F12(χ)]

n′2thn0 =
1

τ 3

1

λ3
T

µ

g
[F21(χ)− F22(χ)]

n′thn2
0 =

1

τ 3

(
µ

g

)2

[F11(χ)− 2F12(χ) + F13(χ)]

,

using again the definition χ = µ/kBT .
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4.2.3 The cloud’s populations rate equations.

Up to now we have derived expressions for the ion rate production. To be
applicable however, one needs to know the cloud’s temperature and chemical
potential at a specific instant of time. In the simulation we present here, we
assume explicitly that the temperature varies linearly with time. This is the
same as saying that η of Eq.1.6 is constant what is not far from the truth
(see right hand side graph of Fig.4.4).

The cloud’s chemical potential can be deduced from the temperature and
number of atoms. To carry on with the simulation we need then to compute
for every instant of time the number of atoms in the cloud. Since its initial
value is a given parameter, this amounts to compute the atom losses during
the process. We must consider two major mechanisms: i) the losses due to the
inelastic collisions itself and, ii) the atoms losses imposed by the evaporative
process.

4.2.3.1 The atom losses due to inelastic collisions.

The rate at which the atoms are lost in the inelastic collisions, in the thermal
and condensed clouds are readily derivable from the above analysis. For the
thermal cloud, this rate is given by

Ṅth = −1

τ
Nth

−β
[
n2

th + nthn0

]
−L

[
n3

th + 2n2
thn0 + 1

3
nthn2

0

]
, (4.12)

with τ the inverse of the cloud life time, which is, necessarily, smaller than
τi, the ionization rate constant in collisions with the background gas (cf.
§1.3.4.1).

The rate of atom losses in the condensate due to inelastic collisions is

Ṅ0 = −1

τ
N0

−β
[
n2

0 + nthn0

]
−L

[
1
6
n3

0 + nthn2
0 + n0n2

th

]
. (4.13)

4.2.3.2 Atom losses due to the evaporative cooling.

We present now a simple model[126] that gives an approximate result for the
atom losses dN in the evaporative cooling when the temperature decreases
by dT . This model is derived using only very general arguments based on
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the conservation of the system’s mean thermal energy. Even so, its results
agree qualitatively with a more rigorous treatment developed by Luiten et
al. within the framework of a kinetic theory model[127]. In the end of this
paragraph we correct the results of the simple model presented here with
those obtained in the kinetic model.

3kBT

εt=η kBT

κ kBT

Figure 4.3: Schematic representation of the evaporation process. There are two
energy scales involved: the mean particle energy equal to 3kBT , which obeys the
energy equipartition theorem with 1

2kBT for each quadratic term in the Hamil-
tonian and the energy depth of the trap εt = ηkBT , established by the rf-knife
and defined here through η, the ratio between this energy and the thermal energy
kBT .

• A simple model for describing the evaporative cooling.

At a determined instant of time during the evaporative cooling, the magnetic
trap has the configuration depicted in Fig.4.3, with a finite depth determined
by the rf -field frequency εt/~. The cloud, standing on the bottom of the
trap, has a per particle energy of 3kBT , which accounts for the kinetic and
potential energies. If there are N atoms in the trapped cloud, the total cloud
energy is then 3NkBT .

To escape the trap, the particles must possess an energy bigger than εt:
we assume that the energy of those particles that escapes the trap is given
by (η + κ)kbT , with κ � η. Thus, if dN atoms escapes the trap, the total
cloud energy decreases by

dE = dN (η + κ)kBT.

After re-thermalization the energy is conserved and we must have

3NkBT − dE = 3(N − dN)kB(T − dT ).

Substituting the former expression on this one and neglecting the 2nd order
term dN dT we get

dN

dT
= α−1

η

N

T
, (4.14)
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with αη =
[

η+κ
3
− 1
]
' 1

3
η − 1. If we know, at a certain instant, the number

of atoms on the cloud and its temperature, we can then compute dN knowing
that the cloud cooled down by dT .

• Correcting αη with the result of the kinetic model.

The simple model presented above doesn’t consider the cloud’s thermal sta-
tistical distribution. The cloud is characterized only by its mean thermal
average, 3kBT , without any details about the statistical occupation of the
different harmonic oscillator energy levels or its density of states. This is a
huge simplification since we know that the Maxwell-Boltzmann distribution
predicts smaller occupation probability for atoms with larger energies and
these are, in fact, those that are ejected out of the trap.

A better model for describing the evaporative cooling is proposed in
Ref.[127]. This model is derived in the approximation where the cloud is
described by the Boltzmann distribution and that the phase-space particles
distribution corresponds always to a thermal equilibrium distribution. This
latter condition is referred by the authors as a sufficient ergodicity condition
and justified as being a consequence of the large rate of interatomic elastic
collisions. Here, if η doesn’t change during the evaporation, the Eq.4.14 is
still valid if αη is modified according to

αη =
η + κ

3R(3, η)
− 1, (4.15)

where R(a, η) and κ are given by

R(a, η) =
P (a+ 1, η)

P (a, η)
and κ(η) = 1− P (5, η)

P (3, η)
[η − 5R(3, η)] ,

with P (a, η) the incomplete Gamma functions[128].In the left hand side graph
of Fig.4.4 we plot the expression of Eq.4.15 for αη in function of η (solid line)
and also the result of the above present simpler model (dashed curve). For
large values of η, the expression in Eq.4.15 is very well approximated by its
asymptote (dotted line in the graph) which is given by

α =
η

3
− 2/3. (4.16)

As we referred, Eq.4.14 is only valid if η = εt/kBT is kept constant during
the evaporative cooling process. Experimentally, this is a hard task to ac-
complish since we have no information about the cloud’s temperature on the
course of the evaporation. An estimation of η can however be obtained by in-
terrupting the evaporation at a given time and measuring the correspondent
cloud’s temperature through a fit to its TOF. We observe the dependence
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Figure 4.4: In the left hand side graph it is represented the dependence of αη in
η. The dashed line corresponds to the value of αη obtained with the simple model
presented in the beginning of this Section. The solid and dotted lines corresponds
to the value of αη found with the model of Luiten et al. and an asymptotic
approximation for this model respectively. In the right hand side graph, we plot
experimental results obtained for η for different temperatures (see also the text).
The error bars correspond to the standard deviations for many experimental runs.

of η on the temperature shown in the right hand side of Figure4.4. In this
graph η varies less than 30% for temperatures ranging from 1 µK to 1.75 µK.
Above this temperature, η is almost constant.

• Discussion.

Taking η as constant can eventually conduce to an erroneous estimation of
the losses induced by the evaporation, especially in very small clouds where
the final value of εt corresponds to very small temperatures. This should also
be true for larger clouds whenever they are close to the critical temperatures
or below. The variation of η over time is also misleading since it changes the
velocity at which the cloud attends the critical density and, then, the instant
of time at which we expect to observe the phase transition.

To get an estimate of how this could modify the results of the simulation
we present further in this Section, we accounted for the temperature depen-
dence of η as shown in the graph of Fig.4.4 (this assumes a local constant
value of η in each step of the simulation). However, the results obtained with
this procedure shown to be not significatively different from those obtained
with a constant value of η = 9.

Another approximation used in here is the description of the atomic cloud
with a classical Maxwell-Boltzmann instead of a Bose-Einstein distribution
function. However, since η � 1, the evaporation removes atoms mainly from
the tails of the distribution, where both functions are very similar. Note
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that the number of ejected atoms and the corresponding loss in energy also
depends in the density of states that is only determined by the shape of trap.

4.2.3.3 Numerical simulation: overview.

As we have referred, our major goal in simulating the ion flux signal is to un-
derstand where is located the instant of time for which T = Tc. Reasonably,
we may expect it to be nearby the knee of the curve but, the exact location,
is not known.

In the numerical simulation we present here, the cloud’s temperature is
ramped down linearly in time, in a scenario that resembles closely with what
happens in the evaporative cooling of our experiment. For each instant of
time we compute the value of the cloud’s fugacity and thus determine the
critical time for which Z = 1. The routine is divided in two different parts
for the non-degenerate and the degenerate case.

The non-degenerate cloud.

Initially, in the non-degenerate case, we impose a certain variation of the
temperature in time, starting well above the critical transition. Knowing the
initial number of atoms Nth in the thermal cloud we compute the cloud’s
density and fugacity and, for these values the expected atom losses ∆Nth.
For the new number of atoms in the cloud, Nth−∆Nth, on a further instant of
time and smaller temperature, we recompute the new density and fugacity.
Doing this repeatedly, we get to the critical temperature at the instant of
time where Z = 1.

In any instant of time, this procedure relies on the knowledge of the

∆Nth ' Ṅth∆t

with ∆t the time step and

Ṅ = −Γev(T )N(t)− Ṅ
∣∣
coll
, (4.17)

where Ṅ
∣∣
coll

is the atom losses due to inelastic collisions of Eq.4.12 and

Γev(T ) =
1

T

dT

dt
α̃, (4.18)

with α̃ given by Eq.4.16. Also, the temperature variation is given by ∆T =
Ṫ∆t where Ṫ = ~vrf/kB is the velocity at which the temperature decreases
in time with vrf = 2π × 400 kHz · s−1, our ramp velocity.

At each instant of time the ion flux is given by

Φ =
1

τi
N + 1

2

∆N

∆t

∣∣∣
2Body

+ 1
3

∆N

∆t

∣∣∣
3Body

. (4.19)
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where, for the two- and three-body ionizing rate constants we use the the-
oretically predicted values [129, 130, 131], β = 5 × 10−21 m3/s and L =
4 × 10−39 m6/s. For the rate of ionizations with the background gas we
use τi = 1000 s and a cloud’s life time of τ = 100 s, two values measured
experimentally.

After having attained T = Tc, the simulation runs with a second routine
based on the semi-ideal model and instead of keeping constant steps of time
(and temperature decrease) we have opted to vary the BEC chemical poten-
tial µ of equal amounts in successive steps of the simulation. Knowing µ we
can derive N0, the condensate number of atoms and, using χ = µ/kBT in
the semi-ideal model, we can derive N ′

th, the number of atoms in the thermal
cloud. Taking η constant, with also a constant ramp velocity, we compute
the time and the thermal cloud’s temperature for each step of the simulation.

The BEC chemical potential is always much smaller than ε = ηkBT and
thus we may neglect the atom losses due to the evaporative cooling in the
condensate. These losses are however considered in the thermal cloud. We
also have includes all atom losses due to the inelastic collisions, for both
clouds and also those that depend on cross-collisions.

4.2.3.4 Presentation of some results.

In Fig.4.5 we present the results, for three different clouds, of the ion signal
variation obtained in our numerical simulation. The time axis, in all graphs,
corresponds to the last two seconds of the last evaporative ramp, coinciding
with zero at the time where the number of thermal atoms is zero and only a
pure BEC remains trapped.

Discussion of the results.

The curves presented in Fig.4.5 compares qualitatively well with the one
presented before in Fig.4.1 for real ion signal curves.

We also remarks that:

• At first look, the curves of Fig.4.5 confirm that the critical point, at
Z = 1, is close to the knee of the curve.

• As noted before in §4.2.1, the ion flux maximum value happens before
the T = 0 where BEC is almost pure.

• For cloud with smaller initial densities, the critical point appears latter,
the initial slope of the curve is smaller and curvature of the knee is also
smaller.

Pushing further the comparison between real ion ion signals and those
simulated in here leads to erroneous conclusions since the model we have used
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Figure 4.5: In these Figure are represented three graphs corresponding to simu-
lation of the evolution of clouds with different initial densities in the last rf-ramp.
The full line with circles represent the ion signal evolution (left axis) and the dot-
ted, dashed and dot-dashed lines (right axis) represent the number of atoms in
the condensate, in the thermal cloud and the total number of atoms, respectively.
Fugacities are different values are signalized by vertical lines The time t = 0 cor-
responds to the situation where no more atoms persists in the thermal cloud. The
model used for computing the evolution below Tc is based in the semi-ideal model
and Thomas-Fermi approximation. See text for details.
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in here doesn’t take into account the influence of the interatomic interactions
in the production of ions (nor the finite size effect). We will see further
in §5.2.1 that, at least for the thermal cloud, the interactions does increase
significatively the ion signal.
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4.2.4 Critical curve.

In this Section we describe the construction of an important tool made pos-
sible by the ion signal, the critical curve. We will start by describing it in
the framework of the numerical results obtained in the last paragraph and
then for real ion signal data.

4.2.4.1 The critical curve in the simulated results.

Within this model, we can derive the value of the ion flux at the time where
T = Tc. We name critical curve the plot of the critical ion flux in function
of the critical time. The obtained result is shown in Fig.4.6, which resumes
the most important results we obtain with the simulation. These results will
prove to be very useful in the next Chapter, for helping analyzing real data.

The ion curves in this Figure were simulated for clouds with different
initial number of atoms but all with the same initial temperature. The dashed
lines marks the locations where the curves have a given fugacity in the non
degenerate region, for values between Z = 0.9 and Z = 0.4. The critical
curve, the solid line marked with Z = 1, divides this non-degenerate region
from the degenerate one. On the left hand side of this curve and represented
by dotted lines, we show how the chemical potential (in temperature units)
varies with the rf−ramp. This is done for fixed chemical potential ranging
from 0.04 µK to 0.20 µK.

We have also plotted a shadowed region around the critical curve with
a width, in each side, of 25 kHz in rf−field units. This corresponds to the
uncertainty imposed by the fluctuations of the bias field in the final rf fre-
quency (cf. §1.2.2). This fluctuation of the bias field relatively to the ending
frequency of the ramp induces an undesired shift in the fugacity that can be
greater than 10%. This result is of great importance for understanding the
data dispersion we see in the experiment described in the following Chapter.

4.2.4.2 Empirical determination of the critical transition point.

In the following we present two empirical methods that propose a location of
the critical point in the ion curve: i) looking for a discontinuity on the deriva-
tive of the curve and, ii) fitting a hyperbola to the region where the transition
takes place, identifying the critical point with the center of the hyperbola.
The first of these methods, which we shall call the slope-break method, is just
the usual definition found for a first order phase transitions[132] 4 and was

4The ion curves we present here presents a typical behavior of a phase transition al-
though they are not a spontaneous process but rather forced by the evaporative cooling.
Thus, the time scale as well as the shape of the ion signal is determined by the rf -ramp ve-
locity and not by a stand alone bosonic stimulated process. Such a spontaneous transition



4.2 The ion signal. 155

102

103

104

105

I
o
n
 
F
l
u
x
 
[
s

-
1
]

-2.0 -1.5 -1.0 -0.5
Time [s]

0.9
0.8
0.7

Z=1.0

 [Z=1]-25kHz

 [Z=1]+25kHz

µ=0.05µK
  0.10µK
  0.15µK
  0.20µK

Figure 4.6: Ion signal curves obtained by numerical simulation and presented
in a logarithmic graph. The values used in the simulation for the ionizing rate
constants values were β = 5 × 10−21 m3/s, L = 4 × 10−39 m6/s and τi = 1000 s
(see also text). The solid line marked with Z = 1 is the critical curve, made of the
points where the curves are passing through the BEC threshold. Similarly, the
dashed lines correspond to different values of the fugacity, between Z = 0.9 and
Z = 0.4. The dotted lines correspond to points already in the degenerate part of
the curves with (positive) chemical potentials ranging from 0.04 µK to 0.20 µK in
temperature units. The shadowed region represents the region of bias fluctuation
that corresponds in rf−ramp units to ±25 kHz around the critical curve. This
graph shows that, if one tries to stop the evaporation at T = Tc (i.e. at the critical
curve), the bias fluctuation may impose a shift on the fugacity of more than 10%.
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the method used originally in the data analysis of Ref.[46] (see also Ref.[51]).
The second method is the hyperbola-based method. This was developed

only after the publication of Ref.[46] and constitutes, we believe, a more
convenient method for characterizing the ion signal, being also more easily
implemented.

• The slope-break method.

The idea underneath this method, rather simple, is sketched in Fig.4.7. If at a
certain instant of time the ion curve changes its slope abruptly, its derivative
is discontinuous and thus, its third derivative is zero (see inset on the right
of Fig.4.7). This condition defines the location of the critical time.
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Figure 4.7: In the upper part of the Figure we schematize the idea of the slope-
break method. Starting from a curve in which the slope changes bruskly at a
certain instant, we see that, differentiating it three times and then searching for
its zero, we recover the location of the that brusk change. In the lower part of the
Figure, we present a graph with real data. In it, we also represent the 2nd (dashed
line) and 3rd derivatives (dotted line). The critical point is found when the 3rd

derivative is null.

To implement this method in real data, we need first to produce a smoother
version of the ion signal to avoid all the null third derivatives induced by the

was however observed for uncondensed cloud put out of thermal equilibrium[133].
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noise in the signal. To do this we first fit the ion signal to a polynomial
function and use the fitted curve for the analysis. However, to guaranty that
the fit follows correctly the ion signal, especially at the vicinity of the critical
time, we have used polynomials of high order, typically between 8 and 10.
The third derivative of such function has several different zeros and, therefore,
to determine the critical time it was still necessary to choose the good zero
that would correspond to the phase transition location. This should corre-
spond to the nearest zero to the curve knee with its location being determined
by the one with the largest positive maximum of the second derivative of the
curve. This corresponds taking the brusquest change in slope of the fitted
polynomial.

There are some disadvantages in this method. First of all, the value
found for the critical time may be some times very dependent on the degree
we choose for the polynomial. It cannot be too small, otherwise the zero of
the third derivative is shifted from its actual location in the ion signal. It
cannot be too large to avoid including erroneous answers due to the noise of
the ion signal.

A second disadvantage of this method compared with the hyperbola-based
one is that its only result is the determination of the location of the critical
point without characterizing any further the signal. It is not obvious to
interpret physically (or else, geometrically) the fitted polynomial coefficients.
This can be done if, instead of a polynomial, we use as fitting function another
analytical function with parameters we may interpret.

• The hyperbola-based method.

At the vicinity of the critical transition the shape of the ion signal is very
similar to a hyperbola. The graph in Fig.4.8 shows an example of this.
To define the hyperbola we need to consider three main parameters: an
angle of attack of the curve, represented in the figure by its tangent n, a
radius of curvature, R, and finally, the aperture angle (with tangent m) that
determines if the hyperbola is more or less open. Along with these three
parameters we still need other two to locate the hyperbola’s center at a given
location C (see graph) at coordinates x0 and y0. These two latter parameter
will be related with the critical time and the critical ion flux, respectively.

With the above defined parameters, the hyperbola is a function defined
as

y = y0 + (m+n)(1−mn)
1−2mn−m2 (x− x0) +

+ m(1+n2)
1−2mn−m2

√
(x− x0)2 + m2

1+n2 (1−2mn−m2)R2, (4.20)

We note that the third derivative of this expression has only one zero located
at x = x0, the abscise of the center of the hyperbola. This is the critical time
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Figure 4.8: The fit to hyperbola method. In here, we fit the ion signal by a rotated
hyperbola. The fitted function has five parameters: x0 and y0 for the location of
the center of the hyperbola (C); m, related with the angle of aperture; R and n
for the radius of curvature and the initial attack angle of the curve. This function
third derivative is null also at x0. Therefore, the slope-break method give the same
result for the abscise of the critical-point and Y0 for its ordinate (B).
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location we may also find with the slope-break method. However, the critical
ion flux is different (B in the Figure 4.8), given by

Y0 = y0 +m2R
√

1+n2

1−2mn−m2 . (4.21)

• Comparison of both methods within the analysis of simulated
data.

We may ask now which location, y0 or Y0, should be identified with the
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Figure 4.9: Similar graphical representation as the one presented above in Fig.4.6.
In this graph we also add the critical curves we find using the slope-break (circles)
and hyperbola-based (crosses) methods in the numerical simulated curves (see also
text). In the slope-break (hyperbola-based) method the location of the critical point
corresponds to the point B (C) in Fig.4.8. The hyperbola-based results almost
coincide with the curve Z = 1.

critical ion flux. This question can be answered by comparing the results of
these two methods with the curve Z = 1 obtained with the simulated data.
The result of such a procedure is shown in Fig.4.9, where we also compare the
obtained critical curves with the bias fluctuation. The graph in this figure
clearly shows that the best choice for defining the critical locations is to take
the hyperbola’s centers x0 and y0. Based on this analysis, the slope-break
method gives critical locations slightly displaced into the degenerate region
but still inside the region of bias field fluctuation.
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4.2.4.3 The critical curve for real data.

We come now to the critical curve made of real data. In Fig.4.10 we present
an ensemble of ion curves taken in several experimental realizations. As
before, this data corresponds only to the interval of time at the last rf-ramp.
To get critical points spanning over all possible critical times, we needed to
use several clouds with very different initial densities. This can be done by
inducing controlled losses in the evaporative cooling process such as stoping
the ramp at a given frequency for some time. This leads, in the end of the
evaporative cooling, to less dense clouds.

2

3

4
5
6

104

2

3

4
5
6

105

2

I
o
n
 
F
l
u
x
[
s
-
1
]

2.01.51.00.5
Time [s]

Figure 4.10: Ion curves corresponding to several different experimental runs. The
initial number of atoms was varied to get as many as possible different critical
times. The circles marks the critical points found through the slope-break method.
The region between the two dashed lines corresponds to a ±25 kHz region around
the critical curve. This one (solid line) is an exponential fit to all the critical points.
Note that experimentally observed bias fluctuation of ±25 kHz agrees very well
with the dispersion observed in this graph.

In Fig.4.10, the critical points, represented for each ion curve by circles,
were computed through the slope-break method. Although probably not the
best suited method for build the critical curve, the slope-break was, as already
referred, the method we used originally in Ref.[46]. For practical proposes
and due to the bias fluctuations, we will see that the differences between the
results of both presented methods are almost irrelevant.

The solid line in this graph is the critical curve obtained in a exponential
fit to the critical points. This is the major result of this analysis. Another
remark about this graph is that the dispersion of the critical points confirms
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our experimental estimative for the bias fluctuation since almost all critical
points fall inside the region of the bias fluctuation, delimited by the dashed
lines placed 25 kHz in each side of the critical curve.

The definition of this bias fluctuation region is of great importance in the
data acquisition and its analysis: any ion signal that has stop inside this re-
gion may correspond to a cloud at the BEC threshold. This constitutes then
a criteria for determining if a given experimental realization was successful
in the goal of producing a cloud at T = Tc.

• Slope-break versus hyperbola-based method.

The comparison we presented earlier in Fig.4.9 shows that the slope-break
method we used may include a systematic shift for the obtained critical curve.
This can in fact be observed for real data comparing the critical points we
obtain using both methods. The graph in Fig.4.11 shows some examples of
this. The critical ion flux is always bigger if we use the slope-break method
resulting in a shift of the critical curve for the degenerate region.
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Figure 4.11: Same as in the preceding Figure but for fewer critical points, rep-
resented for both hyperbola-based (crosses) and the slope-break (circles) methods.
The shadowed region corresponds, as before, to the ±25 kHz region around the
critical curve.

However, the difference we get between the results in the two methods is
small if compared with the bias fluctuation and this latter is, in fact, what
ultimately limits the efficiency of any of these methods for thermometric
proposes. Of course, since the bias fluctuations are of random nature and
the shift in the definition of the critical curve induces a systematic error, it
would be preferable to use, from the beginning, the hyperbola-based method
for defining the critical curve.
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4.2.4.4 Further characterization of the ion signal.

As explained above, the cloud’s thermometry using the ion signal analysis is
limited by the bias fluctuations. This limitation is however of technical nature
and, if solved, would make the ion signal analysis well suited for precise and
real-time thermometry of cloud at the vicinity of the critical transition point.
This would require however a good theoretical characterization of the ion
signal around T = Tc and it is likely that this would only be possible through
a numerical simulation similar to the one we have presented, preferably with
a more robust theoretical model (with the inclusion of finite size effects and
interactions in the thermal cloud). Despite the general interest on the output
of such a simulation, for data analysis it would be preferable to rely on a
simple analytical expression that can be easily fitted to the data such as the
presented hyperbolic function. In the following we present how this function
could be used in the comparative analysis of real and simulated data.

• The additional information obtained from the hyperbola-based
method.

The hyperbola has only five parameters: x0 is the location of the critical
time; n, m and R define the shape of the curve and the fifth, y0, accounts
for the critical ion flux. In Fig.4.12 we plot the parameters n, m and R in
function of y0 using simulated curves (lines) and real ion signals (symbols).
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Figure 4.12: Representation of the hyperbola fitted parameters m, n and R in
function of the corresponding critical ion flux for all the simulated curves presented
before in Fig.4.6 (lines) and also for similar fits to real data (symbols). The good
accordance between the data sets seems to validate the simple semi-ideal model
we used in the simulation and also the values used for the ionizing rate constants
(see also text).

In these graphs we made no effort to fit the data to the curves obtained
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in the numerical simulation. Even so, they are in good agreement suggesting
that:

• Despite its simplicity, the semi-ideal model reproduces the general be-
havior of the critical phase transition;

• At the vicinity of the phase transition, the ion flux seems to be well
approximated by a hyperbola.

• Thermometry with the ion signal. Insensibility to the bias fluc-
tuations.

If we admit that the model we used in the simulation (or another more so-
phisticated) produces a good description of the ion curve, comparing the set
of values m, n and R found for a real ion signal to those found on a simulation
can give the information of the cloud’s temperature and fugacity. However,
this is only applicable to degenerate clouds since the fit to the hyperbola
requires the ion signal to pass through the knee characteristic of the critical
transition 5.

An obvious advantage of this thermometric technique, or any other relying
on the analysis of the shape of the ion signal, is that it is insensitive to the
bias fluctuation since the origin of the time referential is unimportant. This
makes this latter type of analysis immune to the bias fluctuations, what may
be seen as a great advantage of this method for the data analysis 6

4.2.5 Conclusion.

Although not completely suitable for accurate thermometry, the ion signal
is an extremely important tool both in the laboratory and when analyzing
the data. It is a unique diagnostic tool for real-time observation and may be
used to determine, during an experimental run, the approximate location of
the phase transition. This allows a much better control of the experiment,
especially when the goal is to create clouds at T = Tc.

5A solution for this case would probably imply the use of another analytical expression
for describing the ion signal behavior long before the critical transition, with probably
fewer parameters. For instance, it could take the ion flux at a given instant of time and
an angle similar to n, related with the rate of increase of the signal at that same location.

6We note that a fluctuation in the bias field will also change the confining potential,
inducing a change in the ions curve. This effect is however very small and has no ma-
jor effect in the behavior of the ion signal. We see from Eq.4.4 that (disregarding the
contribution of the one-body term) δΦ

Φ ∼ − 2
3

δτ
τ , and from Eq.1.4 that δτ

τ = − 1
3

δB0
B0

. In
our experiment we know that, close to the critical transition, δB0

B0
' ±2.5% (cf. §1.2.2)

and then the critical ion flux changes with bias fluctuation of about δΦc

Φc
∼ ±1%, which is

comparable to the ion signal shot noise.
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We have also considered a simple model to simulate the ion signal that
allowed us to obtain an approximated idea of how the temperature and the
fugacity vary over time in the last ramp of the evaporative cooling. The
results obtained in this Section, specially those shown in Fig.4.6, will be very
useful for understanding the experimental data we present in the following
Chapter.

The above method enables to determine the critical ion rate and is largely
insensitive to the bias field fluctuations. The actual value of the critical
temperature through the critical time is sensitive to the bias fluctuation,
however. To get a better thermometry of the cloud we will need to make use
of the analysis of the atomic TOF signals. This will be the subject of the
following Section of this Chapter.
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4.3 TOF based thermometry for non degen-

erate atomic clouds.

In the previous Sections of this Chapter we analyzed up to what point we
could go with the study of the ion flux signal to determine the cloud’s tem-
perature and, most specially, its fugacity. In here, we will discuss the cloud’s
thermometry using instead its TOF. We have already presented in Chapter
2 expressions for describing the atomic flux for a ideal gas expanding ballis-
tically (cf. §2.2.2.3). In this Section we will present similar expressions, also
for a ballistic expansion, but including interatomic interactions.

4.3.1 Inclusion of interatomic interactions.

In the following paragraphs we will include the interatomic interactions, in
the mean field approximation. An interaction between two atoms in the cloud
includes an extra term to the ideal gas harmonic oscillator Hamiltonian(2.2).
The corresponding multi-body Hamiltonian is

Ĥ =
N∑

i=1

[
p̂i

2

2M
+ U(r̂i)

]
+ 1

2

∑
i6=j

Vint(r̂i − r̂j), (4.22)

with Vint(|r̂i − r̂j|) ≡ Vint(r̂ij) the interaction potential, which depends only
on the distance between pairs of particles. At low temperatures, the thermal
de Broglie wavelength λT is much larger than the characteristic range of
Vint(r̂ij) and this latter one can be approximated by a contact potential

V (r1, r2) = gδ(r1 − r2) (4.23)

with g a coupling constant that measures the strength of the interaction.
This coupling constant is related to the s-wave scattering length, a, through
the expression

g =
4π~2a

M
, (4.24)

with, as before, M the Helium mass. Essentially, at these low energies only
s-waves are able to penetrate the centrifugal barrier. In this approximation
the elastic collision cross section does not depends on the velocity of the
particles neither on their relative angular momentum [134] 7.

7The p-wave contribution in only important for temperatures bigger than 1 mK where
the elastic collision cross section becomes proportional to 1/T [72].
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4.3.2 Atomic density matrix in the Hartree-Fock mean
field approximation.

As a result of including interactions, the Hamiltonian in Eq.4.22 is no longer
an one-body Hamiltonian, and a second quantization formalism is preferable.
The correspondent second quantized Hamiltonian in the grand canonical en-
semble is

Ĥ =

∫
d3r Ψ̂†(r)

[
Ĥ0 − µ+

g

2
Ψ̂†(r)Ψ̂(r)

]
Ψ̂(r). (4.25)

with Ĥ0 = p̂2

2M
+U(r̂) the ideal trapped gas Hamiltonian and Ψ̂(r) and Ψ̂†(r)

the atomic field operators defined previously in Eq.2.52. The interactions
term depends on the fourth power in these operators and, because of that,
the derivation of the energy spectrum of this Hamiltonian is non trivial and
must be done perturbatively. Another way around the problem is to simplify
the Hamiltonian to a quadratic form that can be written in a diagonal basis
and, therefore, reduced to a one body problem. We show in the Appendix C
that this can be done self consistently through the following approximation

Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) ' 4n(r)Ψ̂†(r)Ψ̂(r). (4.26)

Here, n(r) is the usual atomic density of the cloud at the location r. The
underlying physical picture expressed in this approximation is the one of a
single atom system subject to an effective potential created by the mean field
of the ensemble of all the other atoms in the cloud. Within this approx-
imation, the density matrix of the atomic system may be written as (see
Appendix C)

ρ̂ =
∞∑
l=1

exp
{
−βl

[
Ĥ0 + 2gn(r̂)− µ

]}
. (4.27)

4.3.2.1 Redefinition of the chemical potential to account for the
interaction energy at the cloud’s center.

This expression shows that, if we include interactions between atoms trapped
in a harmonic potential, the upper bound for the chemical potential will
increase in order to take into account the interaction energy at the center of
the cloud,

µ 6 3
2
~ω̃ + 2gn(0),

where n(0) is the cloud’s peak density. This motivates a further redefinition
of the fugacity [cf. Eq.2.17] to include also this interaction energy

Z = Z exp
(
−3

2
τ̃ − 2gβn(0)

)
. (4.28)
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With this definition for the fugacity, Eq.4.27 is ρ̂ =
∑∞

l=1 Zl ρ̂l, with

ρ̂l = exp

{
−lβ

∑
α

(
p̂2

α

2M
+ 1

2
Mω2

αr̂
2
α + 2g [n(r̂)− n(0)]

)}
. (4.29)

4.3.2.2 Further simplifications towards the derivation of n(r).

Our goal is to evaluate the atom density n(r) by calculating 〈r|ρ̂|r〉. However,
this is not easily done since r̂α and p̂α do not commute and the exponential
of Eq.4.27 cannot be factorized. On the other hand Eq.4.27 reduces to the
solvable problem of the harmonic oscillator if Vint ∼ 0. Thus, if this interac-
tion term is small compared to the ideal gas Hamiltonian Ĥ0 one can develop
a valid perturbation solution.

Is the interaction term a small perturbation?

To use perturbation theory, the interaction energy Vint(r̂) = 2gn(r̂) must be
small when compared with the other energies found in the problem.

We consider first the thermal mean energy of the cloud. This one, for the
ideal gas case, is given by

〈Ĥ0〉 =
Tr(ρ̂ Ĥ0)

Tr(ρ̂)
=

1

Tr(ρ̂)

∑
α

(
1
2
mω2

α
〈r2

α〉+
〈p2

α〉
2M

)
= 3

g4(Z)

g3(Z)
kBT. (4.30)

This expression attains the classical limit for Z → 0, where it just expresses
the energy equipartition theorem average energy of the system [4]. An esti-
mation of the mean interaction energy may be derived as

〈Vint〉 = 2g
Tr(ρ̂ V̂int)

Tr(ρ̂)
= 2g

∫
R3dr n

2(r)∫
R3dr n(r)

=
4a

λT

kBT
f33(Z)

g3(Z)
(4.31)

with f33(Z) as defined in Eq.4.3.
We can also compute the cloud’s maximum interaction energy, at the

center of the cloud, which is

Vint(0) = 2gn(0) =
4a

λT

g3/2(Z)kBT. (4.32)

We can now compare the two interaction energies derived above with
Eq.4.30 for the mean thermal energy. We obtain

〈Vint〉
〈H0〉

=
4a

3λT

f33(Z)

g4(Z)

∣∣∣∣
Z=1

' 0.013 and
Vint(0)

〈H0〉
=

4a

3λT

g3/2(Z)g3(Z)

g4(Z)

∣∣∣∣
Z=1

' 0.063,
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where the numerical quantities are for a thermal cloud at BEC threshold at
the critical temperature of TC ∼ 2 µK (which in our experiment corresponds
to Nth ∼ 106 atoms) and assuming a scattering length of a ∼ 10 nm.

The last expression shows that, compared with the thermal energy, the
interaction energy is indeed small enough to be dealt with as a perturbation.
We note also that the strength of the interactions at the center of the cloud
can be several times larger than its mean value. In fact, the above example
where Z = 1, the ratio Vint(0)/〈Vint〉 ≈ 5.

How the interactions change the harmonic oscillator energy levels.

In the last paragraph, we have compared the interaction energy only with the
mean thermal energy of the particles. But, how does the interactions change
the energy spectrum? Here, Vint can be of the order of the energy of the
lowest level of the harmonic trap, ε0 = 3

2
~ω̃, suggesting that a perturbative

analysis would fail.

Things get worse if the comparison is made for the interaction energy
at the center of the cloud where the importance of the fundamental level is
bigger. In this case, the local interaction energy can be twice as big as ε0

what certainly affects significatively the energy spectrum (and the respective
eigen-functions) in the low lying trapping levels.

Note that this problem is not present if T � Tc, where the cloud’s many-
body wave function is dominated by the fundamental ground state and where
the system is rather perturbed by the population of the excited states. In
this case a Bogoliubov transformation diagonalizes the Hamiltonian and it is
possible to compute properly the spectrum of energy of the system[102].

For T ∼ Tc almost all atoms are in the excited states with kBT several
times larger than ε0 = 1

2
~ω0

8. The interactions will shift the quantum levels’
energy εi = ~ωi by ∼ (4a/λT )kBT which, for the higher occupied levels, is
a small quantity when compared with their energies εi. Moreover, since
the harmonic oscillator density of states grows with ε2i , despite their small
statistical occupation, the population of these higher levels is still dominant
(see Figure 4.13). Thus, since most of the atoms interact only weakly the
perturbative solution should apply, despite failing at the center of the trap.

We may argue however that since the critical temperature is defined
through a critical value of the density at the center of the cloud the per-
turbative result should not give an accurate answer for δTc, the shift in the
critical temperature due to the interactions. However, there is experimental
evidence[135] that the simple mean field result, first order in a/λT [48], is cor-
rect. This result was also confirmed theoretically in a high order perturbative

8In our experiment, taking T = 2 µ K, kBT ∼ 30× ε0.



4.3 TOF based thermometry for non degenerate atomic clouds. 169

1

3002001000

10-1

10-2

10

10-3

1.0

0.8

0.6

0.4

0.2

0.0
3002001000

Figure 4.13: The Bose-Einstein distribution 〈n̂m〉 (left) and density of states times
〈n̂m〉 (right). Both curves are normalized by the respective value for m = 1/τ =
kBT/~ω = 30 and correspond to an isotropic trap.

treatment with the same result in its lower order correction[136].

• Density matrix factorization

To proceed with the calculation one needs to derive the representation of
the density matrix operator in the real space n(r) = 〈r|ρ̂|r〉. This is not a
easy task since the exponential in the density operator cannot be factorized.
Due to the non commutativity of the momentum and position operators, for
any position and momentum functions Â ≡ f(r̂) and B̂ ≡ g(p̂), eλ(Â+B̂) 6=
eλÂ × eλB̂. Note that if the expression could be factorized, it would easily be
evaluated in the coordinate space through

〈r|eλÂ × eλB̂|r〉 =

∫
dp〈r|eλÂ|p〉〈p|eλB̂|r〉.

One way of overcoming this problem is by using the Trotter formula[137]

eλ(Â+B̂) = lim
m→∞

(eλÂ/meλB̂/m)m (4.33)

which allows the exact factorization of the expression. Although very useful
for numerical computation this formula is, for analytical calculation proposes
very cumbersome, involving a product with an infinite number of terms. Ap-
proximate expressions can be derived then by just limitingm to small integers
in the last equation. The simplest one is to take just m = 1. This is in fact
the usual approximation used to include, analytically, the mean field interac-
tions effect in the expression for the atomic density[48] and is often referred
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as the semi-classical approximation as it neglects the commutation relation
[A,B]. A slightly better approximation that does not yet involve excessive
analytical complexity is to take m = 2[138]. In this case the approximate
expression reads 9

eλ(Â+B̂) = eλÂ/2eλB̂eλÂ/2 +O(λ3). (4.34)

Making use of the approximation proposed in Eq.(4.34), one obtains the
factorized expression for the matrix operator,

ρ̂l ' exp
{
−1

2
lβ2g [n(r̂)− n(0)]

}
×

× exp
[
−lβĤ0

]
×

× exp
{
−1

2
lβ2g [n(r̂)− n(0)]

}
. (4.35)

Actually, this expression, when used to evaluate the atoms’ density reduces
to the simplest case with m = 1 in Eq.4.33. This is so because in the density
case, the projection in the coordinate space is made on both sides of the
expression in the same position,

n(r) ≡ 〈r|ρ̂|r〉 =
∑

l

Z le−2lβg[n(0)(r)−n(0)(0)]〈r|e−lβĤ0 |r〉

=
∑

l

Z lGho(r, r; lβ)e−2lβg[n(0)(r)−n(0)(0)] (4.36)

where, in the right hand side, n(r) is replaced by n(0)(r), the non-interacting
density given by Eq.2.19, in order to keep only the perturbation’s smallest
order.

To further simplify Eq.4.36, we can make use of the fact that

βg
[
n(0)(r)− n(0)(0)

]
� 1

and expand the exponential in series. If we keep only the first order term,
linear in n(0)(r), we get

n(r) '
∑

l

Z lGho(r, r; lβ)
{
1− 2lβg

[
n(0)(r)− n(0)(0)

]}
.

Substituting Eq.2.19 we obtain,

n(r) '
∑

l

Z lGho(r, r; lβ)−

−2βg
∑
l,l′

Z l+l′lGho(r, r; lβ)
[
Gho(r, r; l′β)−Gho(0,0; l′β)

]
.(4.37)

9For m = 4, Ref.[139] gives the formula

eλ(Â+B̂) = eλÂ/2eλB̂/2 eλ3[[B̂,Â],Â+2B̂]/24 eλB̂/2eλÂ/2 + O(λ5),

which calculates the contribution up to λ4.
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For the SCA case, we use the simplification

Gho(r, r; lβ) ≈ 1

λ3
T

e−lβU(r)

[
1

l3/2
+ 3

2

τ̃

l1/2

]
(4.38)

where the finite size effects were also included. Keeping only the first order
terms in g and τ̃ , the expression in Eq.4.37 reduces to

n(r) =

=
1

λ3
T

{
g3/2(WT ) + 3

2
τ̃ g1/2(WT )− 4a

λT

[
g3/2(WT )− g3/2(Z)

]
g1/2(WT )

}
,(4.39)

(4.40)

where, as before, WT ≡ WT (r) = Z exp (−βU(r)) with Z given by Eq.4.28.
Finally, we note that, within the choice we made for the re-normalization
of the fugacity, Eq.4.28, the peak density doesn’t depend on the interaction
parameter, being still expressed through Eq. 2.39. The total number of
atoms is

N =
1

τ 3

{
g3(Z)− 3

2
τ̃ g2(Z) +

4a

λT

[
g3/2(Z)g2(Z)− f13(Z)

]}
, (4.41)

with, again, f13(Z) given by Eq.4.3 . Note that the term in square brackets
is always positive. For a fixed number of atoms in the cloud, the inclusion
of the interactions are compensated by a reduction of the fugacity. This has
a simple physical interpretation: interactions pushes atoms apart, reducing
the cloud’s peak density. For recovering the non interactive peak density, we
need to pack more atoms into the cloud.

4.3.2.3 The classical phase space distribution function f(r,p).

If we had replaced Eq.4.38 directly in Eq.4.36, but neglecting the finite size
effect term, we would get the expression

n(r) =

∫
dp

(2π~)3
f(r,p) (4.42)

with f(r,p) given by

f(r,p) =
∞∑
l=1

Z le
−lβ

�
U(r)+ p2

2M
+2g[n(0)(r)−n(0)(0)]

�
. (4.43)

This last expression is just the classical phase space distribution function,

f(r,p) =
Z

exp [βε(r,p)]− Z
,
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where ε(r,p) = U(r) + p2

2M
+2g[n(0)(r)−n(0)(0)] is the classical energy of an

atom located at r with momentum p. In the framework of the semi-classical
approximation the distribution function f(r,p) is more intuitive and can
replace the exact quantum mechanical density matrix operator in calculation
of the density of particles n(r) or related quantities. Note, however, that
this is not the case if one wants to compute quantities that depend on the
two-body density matrix operator (or higher) as is the case of, for instance,
the density-density correlation function derived in the previous Chapter.

The function in Eq.4.43 does not take into account corrections due to
the finite size effects 10. We can go around this problem, adding to f(r,p)

the extra term 3
2
lτ̃
∑
Z le−lβ[U(r)+p2/2M]. Adding this term and expanding,

as before, the exponential in the interaction term, we finally get

f(r,p) ≈
∞∑
l=1

Z le
−lβ

�
U(r)+ p2

2M

�
×
{
1− 2lgβ[n(0)(r)− n(0)(0)] + 3

2
lτ̃
}
. (4.44)

In the following we will use this expression for deriving the TOF signal.
It will also be used in the following Chapter to compute different average
moments of the cloud density that enters in the calculation of the ion signal
produced by a cloud of interactive atoms (see §5.2.1).

4.3.3 The time of flight of a thermal cloud.

The goal here is to derive an expression that depends only on the time, equal
to the atomic flux integrated over a detector surface on an xOy plane perpen-
dicular to the fall direction and at a certain distance below the trap center.
The simplest way of doing this, within the semi-classical approximation, is
starting with cloud’s classical distribution function f(r,p) of Eq.4.44. The
expression in Eq.4.44 can be written as

f(r,p) =
∑

l

Z l exp

[
−lβ

(
U(r) +

p2

2M

)]
{1 + lµ0(Z)}

− 4a

λT

∑
l,l′

Z l+l′ l

l′3/2
exp

[
−(l + l′)βU(r)− lβ

p2

2M

]
(4.45)

with

µ0(Z) = 3
2
τ̃ +

4a

λT

g3/2(Z). (4.46)

10To explicitly include the finite size term in Eq.4.43 we must include a non trivial term
proportional to l3, e−l3βτ̃p2/2M , with which the expression is no longer a Bose-Einstein
distribution function.
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The Eq.4.45 gives the probability for a trapped atom to have a momentum p
and to be at the location r. When released from the trap, this atom undergoes
a parabolic trajectory depending on its initial location and momentum and
also in the effect of the gravity, according to

r = r0 +
p0

M
t+ 1

2
gt2ẑ and p = p0 + gtẑ.

Neglecting the transversal dimension of the cloud in the ẑ direction, we can
identify in the first expression z0 = H, with H the distance of fall. This
change of variables has a Jacobian given by |p0z| and the integral

I(t) =

∫∫
dx0dy0

∫∫
dpx0dpy0

∫
|p0z|f(x0, y0, px0, py0, pz0) (4.47)

gives the atomic flux passing over the infinite plane xOy. Explicitly, this
expression is given by

I [W(δt)] =
1√
2π

1

τ 3

v2

vT

1

t0
×

×
{
g5/2 [Z ·W(δt)] + µ0(Z)g3/2 [Z ·W(δt)]− 4a

λT

fB[Z,W(δt)]

}
,(4.48)

where W(δt) = exp
[
−1

2
(δt/tcl)

2] and the function fB(z, w) is the sum ex-
pression

fB(z, w) =
∑
l,l′

zl+l′wl

l′3/2(l + l′)3/2
. (4.49)

The expression in Eq.4.48 is presented after being simplified with the far
field and the long fall approximations and using the definition δt = t − t0,
with t0 =

√
H/2g. However, these approximations are not essential in the

derivation to achieve to this result. This is not the case if we want to achieve
this same result but in a more rigorous calculation, starting from the quantum
density matrix of Eq.4.35.

Since the MCP has a finite size, the integration in Eq.4.47 should not be
extended over all the xOy plane but only to the detector surface. For this
case, the atomic flux becomes

ID(δt) = I[W(δt)]− I[W(δt) ·WD] (4.50)

with I[W(δt)] the expression in Eq.4.48 for the infinite detector case and

WD = exp
[
−1

2
R2

D/(vT t0)
2
]
,

where we considered a circular shaped MCP of radius RD.
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Integrating Eq.4.50 over time, we obtain the total number of detected
atoms ND. In general, this number can be smaller than the cloud’s total
number of atoms N since the transversal size of this latter one, at the level of
the detector, can be larger than 2RD. The explicit expression for the number
of detected atoms is now

ND =
1

τ 3

{
[g3(Z)− g3(Z ·WD)] + µ0(Z) [g2(Z)− g2(Z ·WD)]−
4a

λT

[f13(Z)− f ′B(Z,WD)]
}
, (4.51)

with yet another two-parameter function f ′B(z, w) defined as

f ′B(z, w) =
∑
l,l′

zl+l′wl

l1/2l′3/2(l + l′)3/2
. (4.52)

The TOF fitting expression.

We have now all the ingredients to write down the expression we used for
fitting our TOF s. It is

ftof (δt;Amp, t0, vt, Z) = Amp

(
1 +

δt2

2t20

)
[h(Z,W)− h(Z,WWD)] , (4.53)

with

h(z, w) = g5/2(z.w) + µ0(z)g3/2(z.w)− 4a
λT
fB(z.w)

and Amp the TOF amplitude (i.e. its maximum value) given by

Amp = η × N

ND

(4.54)

where ND is given by Eq.4.51 and η is an auxiliary factor that accounts for
the detection efficiency and geometry 11.

4.3.4 The cloud’s hydrodynamical expansion: thermo-
metric correction.

In the previous paragraph, we have considered the expansion and fall of a
atomic cloud that, when trapped within thermal equilibrium, is affected by
interatomic interactions. However, during the expansion and fall period, the
atoms are treated as ideal, falling freely without interacting with the others.

11In our experiment, for obtaining Amp in Volt this parameter is equal to η = 2.3 ×
10−8V −1 (see §1.3.6.1).
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We will show that this ideal gas ballistic expansion is, indeed, a good
approximation since the gas fast expansion leads to a decrease of the cloud’s
density and therefore of the rate of collisions among atoms. Nevertheless,
to achieve a proper measure of the cloud’s temperature we need to account
for the breve anisotropic expansion the cloud undergoes in the first initial
moments after being released from the trap. During this period, the cloud’s
expansion is hydrodynamical, a strong collisional regime similar to the one of
a dense classical fluid.

4.3.4.1 The Knudsen criterion

The strong collisional regime is characterized by a mean free path of an atom
between two consecutive collisions much smaller than the cloud’s extension.
In here the gas behaves as a hydrodynamical fluid. The mean free path at
the trap center, where the atomic density is n(0), is given by the uniform gas
expression[140]

λ0 =
1√

2 n(0)σS

,

where σS = 8πa2 is the collision cross-section in the low temperature limit
with a, as before, the s-wave scattering length. For the sample size we can
simply take the thermal size sα = vT/ωα . The above criterion establishing
the hydrodynamical behavior can be written, in each spatial trap axis, as

λ0

sα

� 1.

This is known as the Knudsen criterion. Taking the densest case, at the center
of a cloud in the transition temperature, this criterion can be re-written as(

λT

a

)2

� 8
√
π

τα
ζ(3/2),

with the usual definition τα = ~ωα/kBT . Differently from the mean field
approach, where the relevant parameter to measure the interaction strength
is a/λT (cf. Eq.4.39), here the collisional regime is characterized by (a/λT )2.
For a typical temperature in our samples of 2 µK and taking a ∼ 10 nm,
λT/a ∼ 60. In these conditions, for our trap with axial and radial frequencies
ω‖/2π ∼ 50 Hz and ω⊥/2π ∼ 1250 Hz, we get

λ0/σ⊥ ∼ 5 and λ0/σ‖ ∼ 0.2,

showing that, within the Knudsen criterion, in the two fastest axes the gas
is almost in the ideal collisionless regime. In the slowest one, things are
different: the collisional regime is already of hydrodynamical character. In
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this axis, during a round trip oscillation in the cloud, an atom can experience
a few collisions. After a collision, an atom that travels in the less confined
trapping axis will be scattered into a different momentum state that will
preferably help inflate the cloud in the transverse direction. This process will
ultimately produce a anisotropic expansion very similar to what is observed
in the geometry inversion of the BEC expansion (see Appendix A).

For a trapped gas in thermal equilibrium the hydrodynamical regime may
be seen as a higher order correction to the mean field effect. The classical
distribution function of Eq.4.44 may be corrected if derived within the frame-
work of a Boltzmann-Vlasov kinetic equation that accounts for both mean
field and hydrodynamical effects.

4.3.4.2 Description using the Boltzmann-Vlasov kinetic equation.

The ideal gas ballistic expansion derived with in §2.2.1 was entirely derived
using quantum mechanics, in a rigorous way. Here, to allow the inclusion of
the mean-field and dissipative effects we rather need to use a classical equa-
tion, the Boltzmann-Vlasov equation (BVE), which is capable of describing
the time evolution of f(r,v, t), a generalization of the time independent clas-
sical distribution function of Eq.4.44. The Vlasov part of the BVE just adds
to the common Boltzmann kinetic equation the mean field term 2gn(0)(r),
with the dissipative processes being considered, as usual, in the collision in-
tegral term Icoll[f ],

∂f

∂t
+ v

∂f

∂r
− 1

M

∂

∂r
[U(r) + 2gn(0)(r)]

∂f

∂v
= Icoll[f ]. (4.55)

For solving this equation we follow Ref.[141]. First, the collision integral will
be simplified, within the relaxation time approximation, to

Icoll[f ] ≈ f − fle

τcoll

with fle the local equilibrium distribution function and the relation time τcoll,
the average time between collisions.

In a second approximation, we assume that the solution of Eq.4.55 f(r,v, t)
may be found simply by recasting the equilibrium distribution function f0(r,v),
being the scaling ansatz given by

f(r,v, t) = Γ f0(R(t),V(t)), (4.56)

with 
Rα = rα

bα
, Vα = 1

θ1/2
α

(
vα − ḃα

bα
rα

)
Γ =

[∏
α

bαθ
1/2
α

]−1 (4.57)
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and where bα ≡ bα(t) and θα ≡ θα(t) are dimensionless parameters, that
describes, respectively, the cloud dilatation and the effective temperature in
the α− axis.

The equations of motion for bα(t) and θα(t) can be derived by computing
the average moments of RαVα and V 2

α of the re-scaled Boltzmann-Vlasov
equation 12. Finally, using U(r) = 1

2
Mω0α

2r2, with ω0α the steady state
trapping oscillation frequencies, one gets{

b̈α + ω2
αbα − θαb

−1
α ω0α

2 + ζb−1
α ω0α

2 (θα −
∏

α b
−1
α ) = 0

θ̇α + 2ḃαb
−1
α θα = − 1

τcoll
(θα − θ̄)

(4.58)

with θ̄ = 1
3

∑
α θα, ωα ≡ ωα(t) the transient trap frequencies and

ζ =
2g〈n(r)〉0

2g〈n(r)〉0 + 2
3
M〈v2〉0

a dimensionless parameter that accounts for the mean field interaction where
the mean values 〈χ〉0 are defined as the average in position and velocity space
of the function χ(r,v) weighted by the equilibrium distribution function, i.e.

〈χ〉0 =

∫∫
dr dv f0(r,v)χ(r,v)∫∫

dr dv f0(r,v)
.

During the trap switch off, the trapping frequencies will decrease, in some
way, from ω0α to ωα = 0. The simplest case we may have is when this happens
instantaneously. Admitting that this is the case, the equation in the first line
of Eqs.4.58 simplifies to

b̈α − θαb
−1
α ω0α

2 + ζb−1
α ω0α

2
(
θα −

∏
α b

−1
α

)
= 0.

Recovering the perfect gas behavior.

The last expression in Eq.4.59 may as well describe the ballistic expansion in
the limit where we switch off the interactions. The non interactive version
of the expressions in Eq.4.58 is obtained simply by replacing τcoll = ∞ and
ζ = 0. This reduces the equation in the second line of Eq.4.58 to the simple
relation θα = b−2

α . Furthermore, if we replace this identity in the first equation
and solve the differential equation, we get bα =

√
1 + ω2

αt
2, which is the same

coordinate re-scaling found on §2.2.1 13. Also, the normalization parameter

12The first of these expressions doesn’t depend on the collisional integral since the quan-
tity RαVα is conserved in the collisions. For computing the average moment 〈V 2

α 〉, the
relaxation time approximation is used along with the condition of isotropic temperature
within the local equilibrium.

13We do not consider here the effect of gravity, which is not included in the ansatz of
Eqs.4.57
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Γ in Eqs.4.57 reduces to Γ =
∏

α(1 +ω2
α
t2)−1/2, the same factor that appears

in the flux expression in Eq.2.68.
Note that the above analysis is independent of the equilibrium distribu-

tion function f0(r,v) that can be any generic distribution function within the
semi-classical distribution. It can be chosen as the one describing a thermal
cloud at the critical temperature or above it. Integrating the expression of
Eq.4.56 over momentum space we obtain, as before in Eq.2.72,

M

∫
dv

(2π~)3
f(r,v, t) → n(r, t) =

n(r̃)∏
α

√
1 + ω2

αt
2
,

irrespectively to the initial shape of the cloud.

4.3.4.3 Hydrodynamical expansion and temperature correction.

In Fig.4.14 we present a numerical solution for the rescaling parameters bα
of Eqs.4.58. We assume that the trap is abruptly switched off and the cloud
is at the critical temperature T = 3 µK. We have also used for the scattering
length a = 7.5 nm. In this Figure the solid lines represent the interaction
free ballistic expansion of the cloud, whereas the dotted line the numerical
solution. The left hand side graph shows the evolution of the cloud’s size in its
axial (bias) direction which is slower than the ballistic expansion. Conversely,
in the perpendicular direction the cloud inflates slightly faster than an non-
interacting gas. This leads also to a bigger TOF waist and, thus, to an
apparent bigger cloud’s temperature.

The hydrodynamical and ballistic curves in both graphs of Fig.4.14 seems
to differ only in its slopes. To get a better idea of this we define the relative
hydrodynamical expansion factors as

ε⊥(t) =
b⊥(t)

b0⊥(t)
and ε‖(t) =

b‖(t)

b0‖(t)
, (4.59)

where b0α(t) stands for the ballistic expansion. These two quantities are plot-
ted in the left hand side graph of Fig.4.15. This Figure shows that except
for an initial transient period the two regimes tends to have a similar be-
havior but with different expansion velocities (εα tends asymptotically to a
constant). If we disregard the initial transient behavior, the hydrodynam-
ical regime may be incorporated into the analysis by simply redefining the
effective trapping oscillation frequencies in each axis. This procedure saves
the validity of the ballistic expansion analysis of the TOF. Nevertheless, the
temperature we may find in a fit to a given TOF must be corrected to ac-
count to this effect. As the TOF signal results from a spatial integration over
the bias axis, the temperature correction is determined only by the cloud’s
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Figure 4.14: The time evolution of the dimensionless cloud dilation parameters
bx(t) and b⊥(t), in the bias (slow axis) and perpendicular directions respectively.
The solid line represents the simple law of the ballistic expansion bα =

√
1 + ω2

αt2

and the dotted one the solution of Eqs.4.58 when ωα goes instantaneously to zero
when the trap is switch off. Other parameters used in the computation of these
curves are T = 3 µK, Z = 1 and a = 7.5 nm. The graphs shows that, due to
the hydrodynamical effect, the cloud expands slightly more in the transverse axes
than what happens in the ballistic expansion. This happens at the expense of a
smaller expansion in the bias axis direction.
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expansion correction of the perpendicular axis and

T → T × ε2
⊥(t = t0), (4.60)

with t0 the time of fall. This relative correction is shown, in percentage, in
the right hand side graph of Fig.4.15 for four different cases and reflecting
its dependence in the value of the scattering length and fugacity.
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Figure 4.15: Left hand side graph: relative hydrodynamical expansion in the bias
and perpendicular axis for clouds at three different temperatures; right hand side
graph: the hydrodynamical induced variation of the temperature of a cloud at the
critical temperature for a = 7.5 nm (central solid line) and also for a = 5 nm and
a = 10 nm. This graph also plots a similar curve with a = 7.5 nm and Z = 0.9
(dashed line)

4.3.5 Conclusion.

The expressions derived in this Section, as well as the results of the ion signal
analysis done before will be used in the following Chapter in the analysis of
data obtained in an experiment realized to measure the scattering length a.
As we will see, in the data analysis of this experiment, the cloud’s thermom-
etry plays a major role. This will allow us to test the theoretical formalism
and the expressions developed in this Chapter.
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The cloud thermometry and
the determination of the
He∗scattering length.

In the previous Chapter, we show that the atomic cloud is characterized by
the temperature, fugacity and by the scattering length. For the ion rate
we must add the rate constant β and L. A combination of measurements
at T = 0 and T = Tc should allow us to extract a, whose value was not
well known at the beginning of my Ph.D. thesis. In this Chapter we will
describe, Section 5.2, the experiment and the data analysis to perform this
measurement[51, 46]. In 2005, an independent and very precise measurement
of a was performed and the result is in disagreement with ours by 50%.
We have decided then to reanalyze our data more carefully, what is done
in Section 5.3. In this new analysis we achieved to reduce the statistical
uncertainty on the determination of a, but we have obtained the same result
as in the former analysis. Section 5.4 is devoted to a possible explanation of
the observed discrepancy.

5.1 Introduction.

At the moment we write this manuscript, there is a very reliable measurement
of the s-wave scattering length a obtained through light-induced collision
spectroscopy experiments[142, 143] and conduced in the group of M. Leduc
at the École Normale Supérieure de Paris (ENS ). The measured value has
a high level of accuracy: a = 7.512± 0.005 nm. The result we have obtained
in the experiment of Ref.[46] and also reported in here is rather a = 11.2 ±
0.4 nm, which denotes a serious problem in our experimental procedure or in
the interpretation of the obtained data.

At the time this experiment was done, a was not yet well known and the
existent experimental results relied on studies of the condensate expansion[31,
32] or in studies of the evaporative cooling of a thermal cloud[40]. All these
experiments were however not very conclusive due to their large uncertainties
on the final results.
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The idea of our experiment for measuring a relies on the comparison
of the ion flux generated by a cloud at the critical transition temperature,
which depends on a, and its average atomic density, which also depends on
a but in a smaller extend. To analyze the results of this experiment it was
necessary to know a priori the values of the ionization rate constants β and
L. These constants were measured by us in a previous experiment[45, 70]
whose outcome was the value of β and L parameterized by a.

The idea of this earlier experiment, described in some detail in Appendix
B, was very similar to the one we present here for measuring a: we ought to
derive β and L by comparing the ion flux originated by a pure BEC with
its peak density. This latter quantity, proportional to µ/a (cf. §A), can be
well determined from the BEC ’s TOF, but only if a is accurately known,
which is not the case. To overcome this difficulty we have opted to present
the results for β and L parameterized by a, to allow determining them when
a was known accurately.

The fact that the measurement of a depended on the knowledge of the
ionizing rate constants that, in their turn, were computable only for a given
value of a presented no problem in our analysis on the determination of a:
we simply had to use the information from one and the other experiments
iteratively to find the proper value of a. Note that these two experiments
analyzed data acquired in two different physical realities: one of them used
condensates, the other thermal clouds at the critical phase transition.

In this Chapter we will push forward the data analysis we have done
initially for this experiment to measure a. This will be used as a good excuse
for describing some techniques we have developed for improving the accuracy
in the determination of the temperature and fugacity of thermal clouds.

This somehow more robust data analysis has achieved producing a result
with a smaller statistical uncertainty and also explaining a relatively large
data dispersion we have observed in the first analysis we have done. Nev-
ertheless, the final result we get for a confirms the value obtained initially,
around a ∼ 11 nm.

It seams less probable that the large discrepancy between this result and
the one found by the ENS group results from the fitting analysis of the
TOF s. Another possibility, we consider here, is that the hydrodynamical
correction we use is incorrect. This may happen if the trap switch-off is
not an instantaneous process as it was assumed in §4.3.4 (thermal cloud
case) and also in the Appendix A (BEC case). We will show that if the
atomic cloud is slowly released from the trap (compared with the oscillation
trap frequencies), its expansion is smaller and the hydrodynamical correction
should be larger than the one predicted by the sudden switch-off case. This
correction results in bigger values of the BEC chemical potential and of the
thermal cloud’s temperature. Within the data analysis on the determination
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of the ionization rate constants (Appendix B), this leads to smaller values
of β and L. A value of a = 7.5 nm may be achieved for certain switch-off
velocities which, in general, might be different for BEC s and the thermal
clouds.

Chapter outline.

This Chapter is divided in three Sections. In the first one we present the
experiment we have done. We will describe the experimental procedure,
some technical details and also our initial data analysis, published in Ref.[46]
and further detailed in the Ph.D. thesis of S. Seidelin. The data analysis here
relies on a description of the cloud’s density by a theoretical model at the
critical phase transition. Both the atomic TOF and the ion flux signals are
derived for Z = 1 and the main difficulty we face is how to properly choose
experimental data at the critical point.

The second Section revisits this experiment and its data analysis. Instead
of assuming from the beginning a theoretical description with Z = 1, in here
we will propose that the analysis relies on the determination of the fugacity
of all the available data of non-degenerate clouds. To discard all data with
Z > 1 we will use a strategy developed expressly for this problem, the χ2-
map method. This is briefly presented in this Section and further explained
in Appendix D.

Finally, in the third Section we detail our hypothesis for explaining our
huge systematic error on the determination of a. We will use a model where
the trapping potential relaxes exponentially when is switched-off. We find
what should be the trap relaxation time for obtaining a = 7.5 nm in our
experiment. We end discussing the obtained result of this analysis.
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5.2 Determination of the scattering length.

The easiest way to determine the s-wave scattering length a of an atomic
species, in a cold atoms’ experiment, is by relating the size of a condensed
cloud with its number of atoms (see Eq.A.8 of Appendix A, §A.2). This
is not, unfortunately, an option in our experiment since we are unable to
measure with enough accuracy the number of atoms on the condensate.(cf.
1.3.6.1).

In the other hand, our experiment gives us an extra diagnostic signal on
the atomic cloud: the ion flux signal. This is proportional to the cloud’s den-
sity and, also, to the magnitude of the interatomic interactions. Comparing
the information obtained from the cloud’s TOF and the one from the ion sig-
nal we may determine some of the characteristics of the collisional processes
involved in the production of the ions.

This idea was used twice by us. Initially we have used it with condensates
to determine the ionizing rate constants β and L (see Appendix B). In a
second experiment, we used thermal clouds produced at the critical phase
transition to determine the value of a. In this Section we will present in
some detail this experiment and also its data analysis.

General ideas

To get a good interpretation of the ion signal, we need to know the collisional
rate constants and also make a proper determination of the cloud’s density
from its TOF signal. The collisional rate constants may be derived from the
expressions on Eq.B.3 of Appendix B. These are parameterized by a and, as
we have referred earlier, we will determine this quantity in a self consistent
iterative way.

In general, an proper characterization of the atomic clouds density through
their TOF signal is not trivial. For simplifying the task of determining the
cloud’s temperature, we have decided in this first analysis to use only clouds
at the critical point. To chose the data to be analyzed we started by us-
ing the criteria we have developed in §4.2.4.3, based on the ion flux signal.
This criteria is complemented in here with another one based on the clouds’
TOF analysis.

The TOF of a thermal cloud of interactive atoms can be fully determined
with only three parameters: the cloud’s temperature T , its fugacity Z and a,
the scattering length. This latter appears in the density model in a pertur-
bative correction term and, thus, it influences only weakly the TOF signal.
Fixing the fugacity to be Z = 1, we see that the only parameter we need to
measure for determining the cloud’s density is its temperature.

The ion flux signal has a stronger dependence on the value of a, making
it suitable for its measurement. We will start by stressing this idea, deriving
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the full expression for this signal in the case of an sample with interatomic
interactions.

5.2.1 High order corrections for the ion flux signal in
the non-degenerate case.

In the §4.2.2.1 we have derived a simple expression for the ion flux signal for
a non-degenerate cloud within the ideal gas model. In here we correct this
expression to account to interatomic interactions and the finite size effect.

For the non-degenerated case, the ion flux signal is given by Eq.4.1, rewrit-
ten here as

Φ =
1

τi
n(r) + 1

2
βn2(r) + 1

3
Ln3(r). (5.1)

The average moments of the cloud density, n(r) will be computed within
the semi-classical approximation. Starting from the classical phase space
distribution function f(r,p), presented before in Eq.4.44 (cf. §4.3.2.3), the
cloud’s density n(r) is

f(r) ≡ n(r) =
1

λ3
T

∑
l

Z l

l3/2
e−lβU(r)

{
1− 2lβg[n(0)(r)− n(0)(0)] + 3

2
lτ̃
}
, (5.2)

Using the notation of §4.2.2.1, the first average moment, i.e. the number of
atoms, is

n(r) ≡ N =

∫
dr n(r)

=
1

τ 3

{
g3(Z) + 3

2
τ̃ g2(Z) +

4a

λT

[g3/2(Z)g2(Z)− f31(Z)]

}
,(5.3)

which is the same expression as in Eq.4.41. Keeping only first order terms
in a/λT and τ̃ 1, the second and third order average moments of the density
are given by

n2(r) =
1

τ 3λ3
T

{
f33(Z) + 3τ̃ f31(Z) +

8a

λT

[g3/2(Z)f31(Z)− f331(Z)]

}
(5.4)

and

n3(r) =
1

τ 3λ6
T

{
f333(Z) + 9

2
τ̃ f331(Z)− 12a

λT

[g3/2(Z)f331(Z)− f3331(Z)]

}
.(5.5)

1High order terms are very small and we can neglect them [51].
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In these expressions we have used the usual definition for fjk...p(x) given in
Eq.4.3.

Substituting the above expressions in Eq.5.1, we get the total ion flux
produced within the cloud,

Φ ≡ Φ(Z, T, a; β[a], L[a]). (5.6)

an expression that depends on the temperature, fugacity, scattering length
a and on the ionization rate constants. These latter are obtained from
Ref.[45], parameterized by a (see also Appendix B).

5.2.1.1 Ion flux signal at Z = 1.

In the Section §5.3 we will make use of the expression indicated on Eq.5.6
with free parameters for the temperature and fugacity. For the analysis we
present in here, this expression is simplified to the very special case of a cloud
at the critical phase transition. Putting Z = 1 we obtain

Φc(Tc; a) = τ−3
c ×

[ 1

τi
(1.20 + 2.48τ̃c + 12.35a/λc)

+
β[a]

λ3
c

(0.33 + 1.81τ̃c + 6.75a/λc) (5.7)

+
L[a]

λ6
c

(0.22 + 2.21τ̃c + 6.50a/λc)
]
,

where Tc and λc are critical values of the temperature and of the thermal de
Broglie wavelength. This expression depends only on cloud’s critical temper-
ature and of the scattering length a. As referred before, the ionization rate
constants β and L are evaluated using the empirical relations of Eq.B.3 of
Appendix B.

The expression on Eq.5.7 shows that the ion signal depends significatively
on the value of a. For instance, for a cloud at the critical phase transition
with Tc = 2 µK, the ratio a/λT is only of the order of 0.5% but it is sufficient
to increase the ion flux by 5%, 10% and 15% for the one-, two- and three-body
processes, respectively.

5.2.2 The data analysis procedure.

The data analysis of this experiment may be summarized in the following
iterative procedure:

1. Choose a first trial guess for the value of a and, fitting the TOF signals,
derive the corresponding peak densities, nth(0);
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2. Keep the same value for a and derive the rate constants, β and L, from
Eqs.B.3;

3. With the obtained values for the ionizing rate constants 2 and the
cloud’s peak density, derive algebraically the expected ion signal.

4. Compare the value computed for the ion signal with the real one and,
if different, choose an other trial value for a and repeat the entire pro-
cedure again.

5. Stop when the ion signal is well fitted by the theoretical model.

In practical terms, this iterative procedure may be implemented very eas-
ily through a fit of the ion flux in function of the temperature and expressing
all the involved parameters in the fitting expression in function of a. How-
ever, this procedure is simple only if the cloud’s peak density, found through
a fit to the respective TOF, doesn’t depend much on a. Otherwise, each
time we have a new a we had to refit all the TOF data. We show next that,
fortunately, this is not the case: taking a reasonable value for a, we can skip
the first step in the above list and implement the remanning three with a
simple fitting routine.

5.2.3 Variation of the fitted temperature with a.

The small perturbation parameter a/λT has a much smaller influence on the
mean field expression for the atomic TOF (cf. Eq.4.48) than on the ion flux.
This is shown in Fig.5.1 where we see that the temperature we find fitting
a given TOF curve for different values of a doesn’t change very much. This
allow us to chose a reasonable value for a and fit all the TOF data only once.

The reasonable value we used for a in our data analysis was a = 12 nm.
This was long before the measurement made by the ENS group (equal a ∼
7.5 nm) and, at that time, it was the most reasonable value regarding both
available theoretical predictions and also some preliminary results we had
obtained in our experiment.

The two upper graphs in the Fig.5.1 shows how the fitted temperature
and amplitude is modified by the initial trial value we use for the value of a.
In these graphs, we have fitted curves computed numerically with a = 7.5 nm
to a model where a was kept fixed for several value between 5 nm and 15 nm.
This was done for numerical curves with a fixed amplitude of Amp = 1
and for several different temperatures from 0.5 µK to 3 µK with, also, two
different fugacities (Z = 1.0 and Z = 0.9). The obtained curves shows that

2This also includes τi, measured independently.
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Figure 5.1: This set of graphs shows the dependence the TOF ’s amplitude and
temperature on a(top graphs). The dependence in derived by fitting a theoretical
TOF curve with a = 7.5 nm (the value found by the ENS group) to a model where
a is varied from 5 nm to 15 nm but hold constant during the fit. This is done for
two different fugacities, Z = 0.9 and Z = 1.0 (dashed and solid lines respectively),
also hold constant in the fit and equal to the original values of the theoretical
curves. Since Z is fixed, the variation of a is mainly compensated by a change in
the TOF ’s amplitude. The temperature is only weakly affected. More specifically
we plot in the lower graph the variation of a fitted temperature when a is changed
from 12 nm (the value we have used to fit our curves) to a = 11.3 nm, which is the
final result of our analysis. The bottom graph represents the relative variation of
the temperature (in percentage) in this case for temperatures ranging from 0.5 µK
to 3.0 µK. This variation is smaller than the incertitude on the determination of
T in a TOF fit, typically ∼ 2− 3%.
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the amplitude may be quite modified by an erroneous choice of a, but not
the temperature which is only slightly modified.

The bottom graph in the Fig.5.1 shows the relative variation of the tem-
perature found in a fit to clouds with fugacities of Z = 1.0 and Z = 0.9 when
we use a = 12 nm instead of a = 11.3 nm. This latter value is the value of
a found in the data analysis presented here (see Figure 5.5) and this graph
shows that the error we could have committed in the evaluation of a, due to
the initial choice of a for fitting proposes, is in the worst case equal to 0.6%.
This is a small error, comparable, for instance, to the one involved in the
semi-classical approximation (cf. §2.1.3).

5.2.3.1 Experimental procedure.

From the point of view of the experimental procedure, this experiment is
almost identical to the one described in Appendix B for measuring β and
L. Unlike this latter one where we had to stop the evaporative cooling at
the time the BEC is formed, in here we stop it at the vicinity of the critical
transition point. This was done with the help of a critical curve (cf. §4.2.4.3)
obtained before the data acquisition.

As the experiment relies in comparison of the ion flux produced within a
cloud and its density, we had to span as much as possible the cloud’s critical
densities. As in the construction of the critical curve (cf.4.2.4.3), this could
be done by varying the number of atoms in the clouds at the beginning of the
last evaporative ramp by stopping the ramp for a short period or by changing
its velocity. However, this could only be done before the last ramp in order
to keep the experiment synchronous with the critical curve.

• Bias Field correction.

The critical curve is obtained for a given fixed bias field and it is only valid
if this quantity is kept constant during the data acquisition. However, as
we have remarked in §1.2.2 this is not entirely the case since there is always
a slow drift of this bias field over time. Unlike the fast run-to-run bias
fluctuations of about 25 KHz, this slow drift can be corrected. For that, we
need to let the evaporative cooling continue down to the rf−frequency where
we expect to have a pure BEC. Here, and if the bias field has not changed
much, the observed TOF should follow the typical Thomas-Fermi inverted
parabola profile with non observable thermal cloud (see §B.1.1 of Appendix
B).

When the bias does change, two outcomes are possible in this procedure:
no cloud remained trapped (bias field was too high) or, else, the observed
cloud presents a significant thermal component (too low bias field). In either
cases, we could smoothly change the current in the compensation coils in
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order to correct the bias field and achieve the situation where a pure BEC
is formed. This same procedure was used also in the β − L experiment (see
§B.2.1 of Appendix B), where the bias field could be checked permanently
for all experimental runs as the final objective was to produce pure BEC s.
In the experiment we describe here, this was not the case and, we had to
interrupt the data acquisition, typically once every three runs, to check the
value of the bias field.

• Tuning to the critical curve.

After getting sure that the bias field was correct, we could take data at
the critical phase transition. To achieve doing that we had to guess the
optimal final ramp frequency, in each experimental realization, in a way that
the evaporation would stop at the critical curve. When the experiment was
stable, looking at the ion flux signal in the beginning of the evaporative
cooling (30 seconds before its end) and observing the evolution of the number
of atoms loaded into the magnetic trap give enough information to help
determining approximatively the desired value for the ramp final frequency.

• In the run change of the final ramp frequency.

For stability reasons, the tuning of the final ramp frequency must be done
during the run.

As we have briefly referred in Chapter 1, the timing of the sequences in
our experiment was done with a digital analog card controlled by a com-
puter program. The rf-ramp was delivered by a ramp generator which was
also computer programmed, through a GPIB card, and triggered. To get a
very good synchronization the computer used a simple DOS operative sys-
tem which has non system-forced interruptions as the most recent windows
based multitasking operative systems. The disadvantage of this was that we
could not change any experimental parameter, as the final ramp frequency,
without stopping the program. This disturbed the normal functioning of the
experiment (a run every minute) and, with it, its more or less predictable
behavior.

To avoid stopping the experience, we have modified the control setup to
the one showed in Fig.5.2. Now, the rf-ramp was obtained using two rf-ramp
generators : an Anritsu synthesized signal generator to work over almost all
the ramp from 130 MHz down to 2 MHz and, a Stanford Research Systems
(SRS) function generator to complete the rf-ramp from the 2 MHz to the pure
BEC frequency of ∼ 1 MHz 3. The SRS outputted a TTL signal synchronous

3We were forced to use a second ramp generator because the Anritsu had a scale
frequency commutation in the frequency region from 2 MHz to 1 MHz. This was a technical
unavoidable problem that induced a large burst of noise in our ion signal, right at the region
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Figure 5.2: The Figure shows the adaptation we made on the experiment to
be able to modify, at any time, the final ramp frequency. Here, the rf-field is
delivered by two ramp generators, an Anritsu (ramp gen 1 in the Figure) which
ramps the frequency from 130 MHz down to 2 MHz within different ramp velocity
sequences (defined by GPIB commands) and a Stanford Research Systems (SRS)
function generator (ramp gen 2), that completes the ramp down to 1 MHz. The
beginning of this ramp is triggered by the Anritsu at the end of its sequences,
triggering as well the rf-switch (sw2). This synchronism signal was also used to
reset a digital counter which controls the duration of the last ramp by sw1. This
counter outputs a TTL signal after counting a certain number of pulses from the SRS
ramp generator, synchronous with the rf-ramp: longer ramps would correspond to
bigger pulse counts. The digital counter could be reprogrammed at any time, by
hand set and independently from the computer generated experimental sequence.
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with its rf frequency output. Imputing this synchronism signal into a digital
counter, we could measure the instantaneous ramp frequency from the output
of the counter.

5.2.4 Sorting data at Z = 1.

• The ion signal criteria.

As referred above, the success of this experiment relied on the good choice
of clouds at Z = 1. The graph in the Fig.5.3 shows typical ion signals (it
also shows some technical details about the data analysis we will refer further
on). In this graph, the shadowed region corresponds to the ±25 kHz critical
region and, in principle, all the ion curves that stops inside this region could
correspond to clouds at Tc. This is our first criteria to sort data as good and
to include them in the data analysis. This ion signal sorting criteria is used
already during the data acquisition where, for every given experimental run,
we decided if the ion signal did stopped inside the ±25 kHz region around
the critical curve, discarding from further analysis all data that clearly did
not.

• The TOF signal criteria.

In the proceeding Chapter we have come to the conclusion that the thermo-
metric analysis based on the ion signal would only be capable of sorting data
at the critical transition point within an error of 10% in the fugacity. To do
better we need to use the information given by the analyzes the TOF signals.
The approach we will describe first for this analysis is based on the study
of how well the TOF signals fit to a model describing the atomic flux of a
cloud at the critical transition point, with Z = 1[51]. Later, in §5.3, we will
generalized this analysis to a fitting model where we leave the fugacity as a
free parameter.

To fit the TOF signals we used a commercial version[144] of a Levenberg-
Marquardt (LM ) routine. This routine computes a chi square value, weight-
ing the fit by the TOF characteristic noise. This one is of shot noise nature,
growing with the square-root of the amplitude of the signal[51]. The good
characterization of the noise revealed to be crucial for obtaining proper val-
ues of the fitted parameters and also for computing a meaningful value of
the chi-square. As we will show next, this quantity is the one that will ul-
timately inform about the quality of the fit. The TOF s are fitted to the
expression in Eq.4.50, evaluated for Z = 1. The resulting fitting function is
rather complex to be used within a fitting routine, involving functions with

where the critical transition takes place (see [70]). The solution was thus to make this last
part of the rf-ramp with another ramp generator which had no functioning problems in
that frequency range.
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Figure 5.3: Example of some ion flux signals that stop in the vicinity of the critical
curve. This later one is represented by a gray region corresponding to the critical
region defined as the critical curve plus and minus 25 kHz, the estimated bias field
fluctuation. The adjacent lines to the critical region are distanced from the critical
curve by 40 kHz. Among the shown ion curves, some does fall inside the critical
region as the one labeled as b). Others don’t stop either before, c), and after, a),
the critical region. The end of the ion curves is signaled by the superposition in
the ion signal of a external large frequency signal that producing a kind of wall
in the detected signal (vertical lines). This wall makes the determination of the
trap switch-off instantaneous ion flux very easy to determine. We need only to
find the wall, searching for an abrupt change of the signal (for that we looked for
both the signal’s derivative and amplitude). This instant of time, which we call
the wall time, corresponds to an instantaneous ion flux, the wanted wall ion flux
value. To get a better estimate of this quantity and also of its uncertainty we
proceed as follows: we fit the final half second of the ion signal by the power law
expression y0 + atb (which fits well this signal); the wall ion flux is then defined as
the value of this fitted curve at wall time abscise; finally, the error estimation of this
quantity was identified with the standard deviation of the fit residuals distribution.
The small circles marks the data obtained in one afternoon and considered during
acquisition at the wall. Some of these points were ulteriorly sorted out as described
in §5.2.4.
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infinite sums. To allow the fitting routine to call efficiently this function,
all the infinite sum expressions are rather computed as a weighted sum of
exponentials or through a polynomial expansion.

Variation of the quality of the fit with the width of the fitting
domain.

The original TOF criteria idea is presented in Fig.5.4. To sort a cloud at
T = Tc, we observed how the cloud’s fitted temperature changed with the
width of an excluding window around the TOF center.

For a TOF signal of a cloud at the critical transition point, the fit should
work well for any choice of the fitting region and give, always, the same tem-
perature. In the case of a thermal cloud far above the critical temperature,
the fit to the Z = 1 curve should only work properly in its tails. In this
case, the more one considers the central part of the TOF the worst the fit
becomes.

The graphs in Fig.5.4 shows two limiting situations. In the left hand
side graphs, a), we represent a TOF of a cloud close to the critical transition
point. The graph in the bottom shows that the found temperature doesn’t
change much even when the sharp central part of the curve is included in the
fit.

The TOF represented in the right hand side of the Fig.5.4 has a quite
different behavior. It corresponds to a thermal cloud and when we fit only
its tails, we find a temperature that is smaller than the one found on a fit
to the entire curve. This happens because the fit tries to match the fitting
function, which has a cusp at the center, to a signal that is, essentially, a
gaussian. The fitting routine achieves the best chi-square by increasing the
width of the fit and, then, the found temperature.

The chi-square compact criteria.

The above analysis of the variation of the fitted temperature in function of
the width of the fitting region can be further complemented studying the
obtained value of reduced chi-square. In the case presented in the graph b)
of Fig.5.4, due to the mismatch of the fit at the center of the TOF, the value
of the reduced chi-square 4 is much larger that one. On the contrary, the fit
presented in a) has a χ2/N of almost one.

We have always found that the two methods were consistent sorting data
at T = Tc. Due to its greater simplicity we opted to used as figure of merit
the chi-square value alone, sorting data as being at the critical temperature

4The reduced chi-square is simply χ2/ν, with ν the fitting degrees of freedom. The
number of fitting degrees of freedom is, by definition, the number of data points in the
TOF, N = 1500, minus the number of fitting parameters.
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Figure 5.4: The left hand side graph corresponds to a cloud with a fugacity
very close to Z = 1. The TOF signal fits very well to the theoretical curve (top
graph) with a reduced chi square close to one (N is the number of points in the
graph). The temperature doesn’t change much if we fit all the signal or only its
tails (bottom graph). The parameter σ/σ0 is the size (divided by the FWHM
waist of the curve) of the central region that is excluded from the fit. In this TOF,
the found temperature doesn’t depend much on this parameter. The top graph
on the right hand side plots a TOF of a cloud with a temperature T > Tc. The
overall curve reduced chi square is much bigger than one, denoting a bad fit to the
theoretical curve. This is corroborated by the bottom graph where we see that
the fitted temperature depends much on the size of the excluded region (see also
text).
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if the corresponding chi-square were χ2/N 6 2 5. This established then the
final TOF sorting criteria.

5.2.5 The found value for a.

We present now the sorted experimental results and the result obtained for
a within this data analysis.

The data we have considered into the analysis is plotted in the graph
of Fig.5.5, represented by black circles and was sorted using both the ion
signal and TOF criteria. In the same graph, the open circles correspond to
data that, despite verifying the ion signal criteria, failed with the one for the
TOF. These points are only a few and, in the graph, look to be displaced out
of the ensemble of the plotted data.

This graph plots the measured ion flux divided the ηion, the ion detection
efficiency (cf. §1.3.6.2), in function of the corresponding temperature. This
latter quantity is found fitting each TOF and is corrected for the initial non
ballistic hydrodynamical expansion of the cloud using Eq.4.60 and the results
of §4.3.4.3.

The dispersion of the plotted data is large, large enough that some of the
non sorted data appears among those that were considered as good data. We
will show later that this dispersion of the data is consistent with a run to
run bias fluctuation of ±25 kHz or less.

5.2.5.1 Obtained result.

The final value for a is obtained fitting the data to Eq.5.7. This fit is rep-
resented in the graph of the Fig.5.5 by the solid line and corresponds to a
scattering length of a = 11.3 nm. The other lines, in the same graph, are used
to estimative the error of a, which was done as explained in the following.

5.2.5.2 Error estimation.

The data in Fig.5.5 fits differently for temperatures below and above 2 µK.
This is emphasized in the Figure with the dotted and dashed lines that result
from fits to the set of data with temperatures smaller and bigger than 2µK,
respectively. Admitting that the data is not affected by systematic errors,
the discrepancy of the two values obtained in these fits may be interpreted
as an uncertainty in the determination of a.

5We have also tried other alternative definitions for this figure of merit, as for example,
the magnitude of the slope in the temperature variation with the fit mask width (see
Figure5.4). However, none of them added much significative information to the standard
reduce chi square definition.
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Figure 5.5: This graph resumes our final results in this experiment. In the bottom
axis is represented the temperatures of the chosen data (value found in the fit and
corrected for hydrodynamical effects). In the left axis, the corresponding ion flux
points are corrected for the ion detection efficiency of our system, dividing the
measured ion wall flux values by ηion, . All the data points were sorted by the
ion flux criteria, i.e. by comparing where the ion signal stopped relatively to the
critical curve. The filled circles were further sorted to have a reduced chi square
smaller than 2. The curves in the graph were obtained by fitting the data to Eq.5.7
(along with the expressions for β and L of the proceeding Section). The solid line
was obtained in a fit to all the temperature range, while the dotted and dashed
lines corresponds respectively to fits where only data with temperatures below and
above T = 2µK were used. This is done to estimate the error we are doing in the
determination of a (see also text). The found values for a, in each case, are shown
in the top edge of the graph.
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This error estimation is based uniquely on the dispersion of the data
and doesn’t take into account the uncertainty in the determination of the
ionizing rate constants (see §B.2.2.1 of Appendix B), the error propagated
from the bad choice of the value of a in the fitting procedure, the use of
an incorrect detection efficiency for the ions or, even, a bad estimation of
the hydrodynamical corrective factor. We have estimate all these sources of
systematic errors small enough and unimportant in the final obtained result
6.

We only take into account the errors of β and L. Using the confidence
regions for β and L obtained in Ref.[45] (cf. §B.2.3 of Appendix B) we can
infer a correspondent confidence region for a.

This was done by refitting the data in the graph of Fig.5.5 using algebraic
expression for β and L that describes the extremes of the confidence regions
on these two constants 7. The obtained values for a differ from the central
value of about 0.5 nm[51], which is smaller but still comparable to the above
estimated uncertainty due to the data dispersion. As these two errors are
statistically independent, the overall error of a is obtained summing the two
contributions in quadrature. We get, finally

a = 11.3+2.5
−1.0 nm. (5.8)

When compared with the result of the ENS group, this value is 50%
incorrect! The obvious conclusion is that we have certainly disregarded some
very important systematic effect in our experiment. We will come to this
issue latter in §5.4.

5.2.6 Final remarks on the determination of a.

In the following Section we will revisit the data analysis of this experiment.
This new analysis was also done before the ENS result being known and its
objective was to verify the value found here and to reduce its experimental
uncertainty. We will also have the objective of understanding the data dis-
persion which, as we will see, is due to a bad determination of the cloud’s
fugacity.

We have also decided to revisit this analysis with the objective of devel-
oping better methods on the cloud’s thermometry, based on the analysis of
TOF signals. We will try to answer the question of how precise can we be on

6The ion detection efficiency may actually induce no error at all, since we have used
the same value for this quantity when we have determined β and L. An hypothetical error
in the calibration of the ion detection system would induce an error in the determination
of the ionizing rate constants but not in the determination of a[51].

7Here, we only need to consider two cases, the extremes for large and small β which
are highly correlated with the corresponding extremes of small and large L.
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the measure of the cloud’s chemical potential. The answer to this question
is very important, for example, if we want to carry out an experiment to
measure the density correlation function at T = Tc.
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5.3 Revisiting the problem of the determina-

tion of the s-wave scattering length.

Introduction

In the last Section we describe the experiment we have done to measure
a. The idea there was to compare the ion flux produced by clouds at the
critical phase transition with the corresponding critical density (or rather, the
critical temperature), finding a in a fit of the former to the later quantities.
For convenience, we have used clouds at T = Tc, since for this case the
analytical characterization of both the atomic TOF and the ion flux simplifies
to expressions that are easily computed. Furthermore, we were convinced
that the information obtained with the ion signal would gives us a precise
procedure to sort the data at exactly at Z = 1. However, the bias fluctuations
prevent an accurate determination of T = Tc from the ion signal analysis and
we had to also rely on the TOF signals, used on the determination of the
clouds’ temperature, to sort the data at the critical phase transition.

This sorting criteria based in the TOF analysis was based on the quality
of the fit of a given TOF signal to our theoretical model for Z = 1. This
procedure sorts data with fugacities almost, but not necessarily, equal to
one. In fact, we will see latter in this Section that only a few clouds were in
this condition. To have a reasonable number of clouds in the final analysis
we had to use a less constraining criteria. Only a few clouds were excluded
by the TOF criteria alone, indicating that this one is also consistent with a
mismatch in the fugacity and temperature equivalent to 25 kHz in rf−ramp
units. According to the results plotted in the graph of Fig.4.6, this produces
an error in the fugacity of about 10% which produces, as we will show further,
an error in the cloud’s temperature also around 10%. This error in the
determination of the cloud’s temperature explains the somehow large data
dispersion we see in the graph of Fig.5.5.

5.3.1 The data dispersion and the bias fluctuation.

We could have two different and independent causes for the dispersion of data
plotted on the graph of Fig.5.5: an erroneous determination of the critical
ion flux or, else, of the clouds’ critical temperature. The first of these causes
is very unlikely to be determinant on the observed data dispersion. The
determination of the critical ionizing rate is an almost direct measure and its
incertitude, shot noise limited, is in the worse case of about 5%.

If we admit that fugacity is equal to one, the determination of the tem-
perature can be made very rigorous: within the validity of the theoretical
model we use, we estimate that the error on its determination is smaller than
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0.1µK, for a confidence interval of 68.3% (see also AppendixD). This error
is also not sufficiently large enough to justify, alone, the data dispersion. It
should be justified then by the imperfect choice of data at Z = 1.

Relation between the bias fluctuation and the final fugacity varia-
tion.

The Fig.4.6 of §4.2.4 shows that, for an ideal gas, 25 kHz of fluctuation in
the bias field corresponds to a variation of the cloud’s final fugacity of about
10% (it can be as much as 20% for very small clouds). Thus, the evaporation
ramp may stop either too early or too late for getting a Z = 1 cloud. As we
saw this has consequences in the determination of the temperature and, also,
in the determination of the critical ion flux. This latter will be larger if the
cloud is already degenerate or smaller if it still above the critical temperature.

We will describe the dispersion caused by the inclusion of thermal and
degenerate clouds separately.

5.3.1.1 Dispersion produced by the inclusion of thermal clouds.
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Figure 5.6: Mismatch of the value found for the temperature when clouds with
Z < 1 are fitted with a model that assumes Z = 1. Each curve in the graph is
computed synthesizing TOF signals with different fugacities but equal amplitude,
temperature and scattering length. These synthesized data are then fitted taking
as free parameters the temperature and amplitude, with Z = 1 and a, equal
to a = 7.5 nm (dashed line with marks) and 12.0 nm (solid line). The graphs
shows results for different cloud temperatures ranging from T = 1.0µK to T =
3.0µK. We note that an error of 10% in the determination of the fugacity (that
corresponds approximatively to the observed bias fluctuations) propagates into the
determination of the temperature of a cloud with T = 2µK as 20% or greater.
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The Fig.5.6 shows how the error committed on the temperature determi-
nation if one assume that Z = 1 in function of proper cloud’s fugacity Z. If
a cloud with a typical temperature of T = 2 µK is produced within a ramp
that stops 25 kHz before the critical point, its fugacity will be, according to
the results of Fig.5.6, close to Z ∼ 0.9. In this case, the mismatch in the
found value for the temperature would be as large as 20%. This value is quite
high and does explain the data dispersion we observe in Fig.5.5.
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Figure 5.7: Similar graph as in Fig.5.5 with the ion flux in a log scale. The solid
line is a theoretical curve for Z = 1 and a = 11.3 nm. Boxes indicate typical
error for the temperature (from the fit) and the critical ion flux. Dispersed points
plotted in the right hand side of the Z = 1 line correspond to thermal cloud with
Z < 1. Shadowed regions are computed using the results on Fig.4.6 and indicates
dispersion regions for the entire bias fluctuation (lighter) or only half of it (darker).
This latter seems to be sufficient to explain the data dispersion. The dashed and
dotted lines correspond to theoretical curves for different Z. Those with Z = 0.95
and Z = 0.9 would limit the above dispersion regions if, disregarding the ion flux
error, a proper value of the TOF ’s fugacity is included in the determination of the
temperature (see also text).

In Fig.5.7 we plot the same graph of Fig.5.5 but with the ion flux in a log
scale. This graph also represents, by shadowed regions, the dispersion region
corresponding to a bias fluctuation of 25 kHz (lighter shadowed region) and
to only half of this value (darker region). These regions are computed using
the information of Fig.4.6 that relates a shift of 25 kHz of the bias field to a
shift of the fugacity to Z ∼ 0.9 and, of Fig.5.6 that gives the corresponding
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shift on the temperature.

The solid line in the graph of Fig.5.7 corresponds to a theoretical predic-
tion of the ion flux for Z = 1 and a = 11.3 nm, this latter the value found
in our analysis. All scattered data points plotted below this line should cor-
respond to thermal clouds, since their temperatures are shifted for higher
values and, after the results of Fig.5.6, this should be justified by a decrease
of the fugacity.

The observed data dispersion is justified by just half of the bias fluctu-
ation, what suggests that the process of sorting data at T = Tc is slightly
better than expected: note that even the points sorted out by the TOF cri-
teria falls inside the 12.5 kHz region.

Also in the graph of Fig.5.7 we represent theoretical curves for the ion
flux for several fugacities smaller than Z = 1 (always for a = 11.3 nm). If we
compare the curve corresponding to Z = 0.95 with the 12.5 kHz dispersion
region, which also reports to a fugacity of Z = 0.95, we may conclude that the
data dispersion could be largely reduced if the actual values of the fugacity of
each TOF is derived and included in the data analysis. In other words, the
fact of admitting from the beginning that the fugacity is exactly Z = 1 for
every TOF sorted into the analysis, lead to the large observed data dispersion
and, consequently, to larger uncertainty in the determination of a. To reduce
them, we need to determine each cloud’s fugacity and, thus, to consider a
fitting model where the fugacity is a free parameter (cf. §5.3.2)

5.3.1.2 Dispersion due to the degenerate clouds.

Up to now we have explained the data dispersion observed in Fig.5.7, below
the critical ion curve. The data dispersion we observe above it comes from
the inclusion of slightly degenerate clouds. To estimate how much this data
dispersion is, we need first to estimate how much the temperature of a degen-
erate cloud is modified when it is fitted with a model that takes Z = 1. Again,
since we don’t have a good description of the density of a degenerate cloud,
this estimation is non trivial. It is also hard to quantify the BEC chemical
potential when the evaporation stops 25 kHz after the threshold.

Again, we may do something if we assume that the simplified semi-ideal
model makes a fair enough description of the degenerate cloud density. The
procedure we used is the following. Using the semi-ideal model we have syn-
thesize several TOF curves with given temperatures and (positive) chemical
potentials. Then, we find the mismatch in the temperature as the difference
between the value used initially in the TOF synthesization and the one found
in a fit of the synthesized data to a model also based in the semi-ideal ap-
proximation but with µ = 0 (Z = 1). The results we obtained are displayed
in Fig.5.8.
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Figure 5.8: The graph plotted in this Figure is similar to the one in Figure 5.6
except that, in here, we present what would be the error in the temperature de-
termination if a small condensate with a (positive) chemical potential µ is present.
The curves are computed synthesizing data with the semi-ideal model (cf.4.2.2.2)
and then fitted with a ideal gas model. It is interesting to note that, in contrary
to the thermal case, the error committed in the temperature estimation is negative
(real temperatures are bigger) and its relative absolute value grows for smaller
temperatures.

In Fig.5.9 we present an analysis similar to the one in Fig.5.7 but now for
the degenerate case. Using the results of Fig.5.8 we estimate the dispersion
region represented by the shadowed region This dispersion region corresponds
to a maximum chemical potentials of µ = 0.1µK which, according to the
semi-ideal model corresponds to the habitual 25 kHz shift in frequency (cf.
Fig.4.6). This is enough to justify the data dispersion.

5.3.2 The problem of sorting data at Z = 1. Overview
to the χ2-maps.

As noted before in §5.3.1.1, the data dispersion we observe in the graph of
Fig.5.5 could be greatly reduced if we determine, for each non-degenerate
cloud, its actual fugacity. This would also reduced the statistical uncertainty
on the determination of a. In here we will briefly address the problem of
deriving the cloud’s fugacity from its TOF and the method we have used. A
detailed description of this method is postponed for the Appendix D.

The major problem we find for fitting TOF s of clouds close to critical
transition point is that the fitting function is not defined for Z ≥ 1. This
makes the fitting routine to malfunction whenever it needs to calculate the
variation of the chi-square at Z = 1, since it cannot compute this quantity



5.3 Revisiting the problem of the determination of the s-wave scattering
length. 205

2

4

6
8

104

2

4

6
8

105

2

I
o
n
 
F
l
u
x
 
[
s
-
1
]

3.02.52.01.51.0
Temp [µK]

 Z = 1.0
     a = 11.3 nm

Figure 5.9: Similar as the graph of Fig.5.7 but describing the dispersion above
the curve Z = 1. All the data in left hand side of the Z = 1 curve corresponds to
degenerate clouds that are shifted leftward due to fact that their temperatures are
smaller than the critical one (the Z = 1 model under estimates the temperature
of slightly degenerate clouds, as shown in Fig.5.8). In here, the shadowed region
represents the maximum data dispersion we may expect if a small BEC with a
chemical potential of µ = 0.1µK is present. The curve that delimits this region
was obtained by estimating the shift in the fitted temperature due to the presence
of the BEC and also taking into account the variation of the ion flux signal in the
upper border of the critical region. As for the thermal case, this latter contribution
is much smaller than the one of the error in the temperature determination. See
text for details.
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for larger fugacities. This prevents the determination of the fugacity of a
cloud that is, exactly, at T = Tc, making hard to sort the clouds at Z = 1.

This problem doesn’t exist for fitting TOF of clouds with T > Tc. How-
ever, when the fugacity is close to one, its determination by a simple fit can
lead to an erroneous result, due to a deformation of the chi-square variation
close to Z = 1 (see also Appendix D).

The χ2-map strategy.

To help solving the problem of fitting TOF s at the critical transition point,
we have developed a strategy based on the extrapolation of the behavior of
the chi-square obtained where the fitting function is well defined (i.e. for
Z 6 1) into the degenerate region, where it is not.

The idea is simple: around the location where the chi-square has its
minimum value, it can be approximated by a paraboloid, with a quadratic
dependence on each parameter 8. Now, in the case we deal with here, we
are able to compute this paraboloid only partially, since it is truncated for
Z > 1. If we admit however that the chi-square still varies quadratically with
Z and with the same curvature as for Z 6 1, we can make an estimation on
how bigger than one can the fugacity be.

The fitting function we use (cf. Eq.4.50) has four parameters: the TOF am-
plitude Amp, the time of fall t0 and the cloud’s thermal velocity vT and
fugacity Z. If we project the full four-dimensional chi-square into the two-
dimensional one of the thermal velocity and fugacity we find a structure
similar to that shown in the plot of Fig.5.10. We refer to this structure as a
χ2-map and is just a contour plot of

∆χ2(vT , Z) = χ2(vT , Z)− χ2
0

where χ2
0 is the minimum chi-square found inside the χ2-map at some location

{vT 0, Z0}. Every value of χ2(vT , Z) is found fitting the TOF for fixed vT and
Z, but letting free Amp and t0, using a standard LM routine. This results in
the vT − Z plane in the elliptical curves of constant chi-square shown in the
graph of Fig.5.10, which may be seen as projections on that plane of the four-
dimensional chi-square paraboloid. This graph shows that these lines of equal
chi-square are continuously deformed approaching Z = 1, a consequence of
the fast variation of the fitting function (especially at its center) for fugacities
close to one.

The particular example given in Fig.5.10, the location of χ2
0 tell us that

this cloud is not degenerate and that its fugacity should be around Z = 0.94.
In here and similar cases, vT 0 and Z0 are then the actual values of the cloud’s

8This paraboloid defines the curvature matrix used in a standard Levenberg-Marquardt
routine[145].
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Figure 5.10: A χ2-map computed for a TOF of a cloud with a fugacity of Z ∼ 0.94
and a thermal velocity of vT ∼ 8.05 cm/s, corresponding to the location of χ2

0, the
minimum value of the chi-square. The tags in the contour lines correspond to values
of ∆χ2 = χ2−χ2

0 and the one with 5 incloses the one standard deviation confidence
region on the values found for the parameters. The contour lines are continuously
deformed towards Z = 1 due to the fast variation of the fitting function for those
values of fugacity. The particular case presented in this graph could be analyzed
with a standard LM routine avoiding the task of computing the χ2-map. The
χ2-map method can become very useful however for analyzing TOF s of clouds
very close to the critical phase transition (see text and also Appendix D).
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thermal velocity and fugacity. However, if Z0 > 1, this is not anymore
necessarily true and we need to estimate how far on the right of Z = 1 is the
true location of the chi-square minima.

A detailed description of how we proceed to get an estimative of the
cloud’s chemical potential within the χ2-map’s method and on the criteria
we have used to sort data at T = Tc is postponed for the Appendix D. In
here we will only present the results we obtain using it on the analysis of the
data of the experiment on the determination of a. It could also be used in
any other experiment where it is necessary to sort data at the critical phase
transition. Its most interesting application would be to help in the analysis
of an experiment made to measure the second order coherence function of
clouds at the BEC threshold, such as those numerically computed in the
Chapter 3.

The increase of the complexity of the fitting expressions.

The implementation of the above analysis presents the additional technical
difficulty of having to compute in a very efficient way all the functions in-
volved in the description of the TOF and ion signal. As we have remarked
earlier, the TOF is described by non trivial expressions that requires some in-
tensive computational work. This may become a problem if these functions
are to be used within a fitting routine that works iteratively calling them
many times over a fitting cycle until convergence is attained. This difficulty,
already present in the above analysis for Z = 1, gets more complex in here
since now all the function will include Z as a free parameter.

This is particulary true for the function fB(Z,W ), in the Eq.4.50, that has
now two independent parameters and requires a more elaborated numerical
implementation 9.

5.3.3 The problem of the initial guess for a.

As in §5.2.3, for the former analysis on the derivation of a, in here we also
need to make an initial guess for a in the TOF fitting procedure. As before,
the data analysis is significatively simplified if we could fit all the TOF curves
only once. This is only possible if the results obtained for the temperature
and, now, also for the fugacity depend little on the initial guess of a.

In the graph of Fig.5.11 we present similar results to those of Fig.5.1 but
now for the mismatch of the found fugacity in a fit due to a bad choice of a.

9Note that fB(Z,W ) involves two infinite sums with Z and W depending in different
powers of the summing indices. This prevents to reduce the number of parameters of this
function to only one as in all the other defined Bose functions. The numerical implemen-
tation of this functions requires then a two-dimensional interpolation or other equivalent
procedure.
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As in Fig.5.1 we synthesize data for a = 7.5 nm and study the variation of
the fitted parameters when a is modified.

The error we commit on the fugacity determination when the fit is made
with a = 11 nm instead of a = 7.5 nm is, for Z > 0.9 always smaller that
1.5%. Another interesting result in the bottom graph of Fig.5.11 is that for
clouds almost degenerate, the influence of the initial choice of a in the fitted
fugacity is small. For Z 6 0.99 the change in the fugacity is very small even
if we consider the non-interacting case (at a = 0 nm). The reduction of the
interactions is compensated by an increase of the overall TOF amplitude and
a reduction of the temperature. This means that, for almost degenerated
clouds, the shape of a thermal cloud is mostly affected by the amplitude
(number of atoms) and waist (temperature) but not by interactions.

5.3.4 The results.

5.3.4.1 The found a in function of the fugacities.

In Fig.5.12 we summarize the results we have obtained for all clouds we have
considered. In this graph we plot the value of a for each cloud in function
of the found value for its fugacity. The shown error bars were computed by
propagating the uncertainties in all the quantities involved in the calculation
of a. These include the confidence intervals of the fits for the temperature
and the fugacity and the standard deviation of the fluctuation of the ion
signal at the wall.

The statistical analysis of the data presented in the graph of Fig.5.12
gives a final result for the scattering length in the interval defined by

a = 11.2± 0.4 nm (5.9)

and represented in this graph by a shadowed band. This result must be
compared with the one obtained earlier in Eq.5.8.

5.3.4.2 The found a dependence on temperature for different fu-
gacities.

Rather than presenting the obtained values of a in function of the fugacity, we
can plot the wall ion flux of every sorted cloud in function of its temperature,
as we have done in the previous section in Fig.5.5. Since in here we also know
the fugacity, this representation can be made for each set of fugacities used in
the previous Figure. In the graphs of Fig.5.13 we show the cases where Z =
0.975± 0.0125 and Z = 1± 0.0125. As well in the graph are represented the
theoretical curves for the ion flux at the corresponding fugacity and, also, for
a fugacity 5% smaller. The data dispersion in these graphs is comparatively
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Figure 5.11: Top graph: dependence of the fugacity on the initial guess in the fit
for a. The curves presented in this Figure were built finding the better Z that fits
a theoretical TOF curve synthesized with a = 7.5 nm, T = 2 µK and five different
values of Z ranging from 0.9 to 0.999 to others where a was varied from zero to
15 nm and for a several initial values of Z. If this initial guess is a = 11 nm the
error is smaller than 1.5% for any fugacity grater than 0.9. For all guesses larger
than a = 7.5 nm, the predicted values for Z are always smaller than the initial
one. When Z approaches 1, the predicted fugacity becomes unsensitive to a and
saturates. Bottom graph: this graph shows that the decrease of a is compensated
by a proportional increase of the TOF global amplitude and a decrease of its
temperature.
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Figure 5.12: Values of the scattering length, a, found for each TOF in function of
the corresponding value for the fugacity, Zmap, derived with the χ2-map method
(cf. Appendix D). The procedure that computes the a values invokes the empirical
expressions for the ionizing rate constants β and L found in Ref.[45] (cf. Appendix
B). The uncertainty in the determination of Z is 0.0125 making that the points
with 1 > Zmap > 1.0125 could correspond to data at the critical phase transition.
The shadowed band marks the standard error of the mean of all the ensemble,
equal to a = 11.2.

much smaller than that of Fig.5.7, where the data were sorted with a fugacity
uncertainty of about ∆Z = 0.05. In these two graphs we still have some data
dispersion that, in some cases, is not justified by the error in the ion flux
and temperature. We must remember, however, that these points still suffers
from a incertitude in their fugacity of about ∆Z = 0.0125. For example,
taking a cloud at Z = 1 with T = 2µK, this ∆Z could justify a temperature
variation, according to Fig.5.6, of about 5%. If this indirect error in the
temperature were included in the analysis, the error boxes in Fig.5.13 would
be sufficient to justify the data fluctuation.

In Fig.5.14 we also present the ion flux versus temperature graphs for the
fugacities Z = 0.95 and Z = 0.925. Again, we have joined theoretical ion
flux curves at the corresponding fugacity and for those at ±5% of this one.

5.3.5 Final remarks.

The first remark is that this new analysis gives the same result as the old
analysis presented in the previous section. We are able to reduce the data
dispersion on the relation ion flux/cloud’s temperature and, with this, the
statistical uncertainty of the final result for a. This is accomplished by dis-
carding many data points that are sorted out, in our analysis, as correspond-
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Figure 5.13: The top and bottom semi-logarithmical graphs represents the wall
ion flux in function of the temperature for clouds with fugacities Z = 1.000±0.0125
and Z = 0.9750±0.0125, respectively. These fugacity intervals are the same as the
one used in the bottom graph of Fig5.12 and corresponds to one standard deviation
in the determination of Zmap. The boxes represent the error regions for the ion
flux and temperature, this latter one taken as 2σT of the fit, corresponding to
95% confidence interval. The solid lines, in each graph, represents the theoretical
variation of the ion flux with the temperature, when we take a = 11.3 nm and the
each graph proper fugacity. The dashed lines correspond to the same theoretical
curves but for a fugacity 0.05 smaller. This graph should be compared with the
one in Fig.5.7.
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ing to degenerate data (most of them considered before as corresponding to
small critical temperatures) and, also, by the proper determination of the
temperature of clouds that were not exactly at Z = 1.

We are now quite confident in the analysis of the data. The discrepancy
of its final result with the one obtained by the ENS group should be found
elsewhere.
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5.4 The systematic error on the measurement

of the scattering length.

We will finish this manuscript discussing the error we made on the determi-
nation of a.

In the previous Sections of this Chapter we have explained how we can
derive a from the comparative study of the cloud ion rate production and
its average mean density. The accuracy of the result we may obtain within
this idea depends only on two things: a good knowledge of the ionizing rate
constants, β and L and the good determination of the cloud’s peak density,
which is to say, its temperature. This latter one depends on how good is
our cloud thermometry: the good choice of the data at Z = 1 (or else an
accurate determination of the fugacity) and the proper determination of their
temperatures (corrected for the hydrodynamical effect). It is not conceivable
that the error we made evaluating a, around 50%, can be addressed to an
inaccurate thermometry of the cloud, regarding the TOF fitting procedure.
Within the validity of the semi-classical mean field model we used in the
TOF analysis, we may say that the maximum error we may have done de-
termining a due to a bad determination of the cloud’s temperature is the one
given in Eq.5.9, i.e. on the order of 5%.

Thus, we must find the solution for this problem elsewhere. We turn our
attention to the process of the cloud release from the trap. Throughout all the
manuscript, we have always assumed that the trap switch-off is instantaneous
and that the atomic cloud is released abruptly. We investigate how our results
would change if this is not true and the trapping potential fades out slowly
to zero.

The trap switch off and the atomic time of flight.

In §1.3.6.1 of Chapter 1 we have explained how we believe the atoms are
coupled out from the trap when this one is switched off. They undergo a
process of spin flip driven by very fast variations of the trapping potential
when it switches off, as shown in the Fig.1.17. As shown in this Figure, which
plots the behavior of the magnetic field in the bias field direction at the center
of the trap, in this axis, the field decreases from a steady state trapping bias
level of some hundreds of milligauss, down to −170G, passing very rapidly
through a zero field condition. This fast passage by the zero magnetic field
makes that the atomic spins fail to follow adiabatically the field, with some
of them spin flipping to the field insensitive magnetic state mJ = 0.

These are the atoms we detect in the TOF and correspond to only
about 10% of the total number of atoms in the cloud. We have experi-
mental evidence[70] that most of the other 90% are polarized in the state
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mJ = +1 10. It is not trivial to understand how these atoms respond to
the fast variation of the trapping field. However, regarding the graph of the
Fig.1.17, the most probable is that all of them fly rapidly away from the trap
center due to the large and negative bias field. According to this graph and
admitting that the detected atoms spin-flip to the mJ = 0 state at the first
passage of the field through zero, the effective trap switch-off is in fact almost
instantaneous, certainly much smaller than the time for one oscillation in the
fastest axis of the trap. This has motivated our interpretation for the cloud
released as instantaneous.

Mean field effects on the cloud release.

We don’t know, however, how looks like the transient behavior of the trapping
field over all the volume of the trap. The behavior of the gradient and of
the curvature of the fields may induce an effective trapping potential during
the transient period to the atoms spin polarized in the mJ = +1 state 11.
If these atoms do stay trapped for even a short period, their mean field
potential may influence the expansion of the free falling atoms with mJ = 0.
This corresponds to a picture where a mJ = 0 cloud expands inside a larger
cloud of mJ = +1 atoms, which is also expanding but at a slower rate. This
would modify the switch-off of the effective trapping potential of the cloud
observed in the TOF. Because of the very different atomic densities, this
effect may be different for thermal clouds and for BEC s. In fact, we should
expect a bigger effect for condensed clouds. We will further comment this
latter in this Section.

To understand how a slower switch-off of the trap would influence the
atomic cloud’s expansion, we will admit a phenomenological overall behavior
for the effective trapping potential. The simplest one is the one where the
trapping potential decreases exponentially to zero with some characteristic
time. This is equivalent to admit that the trapping oscillation frequencies
relax toward zero according to

ωα(t) = ω0α × e−t/τT , (5.10)

where τT is the trap relaxation time.

10This atoms can be detected in the MCP applying a inhomogeneous magnetic field with a
negative gradient towards the detector. This further accelerate the atoms low field seekers
of the mJ = +1 state, producing a large TOF signal a few tens of milliseconds before the
standard one for the mJ = 0 atoms. A similar procedure was also done for detecting the
mJ = −1 atoms, but no signal was detected.

11Indeed, for a negative bias field, keeping the same values for the field’s gradient and
curvature, and assuming that the atoms follows adiabatically the field potential, we find
that the trapping potential is almost plane. This would predict a free fall of the mJ = +1
atoms, what is not observed.
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5.4.1 The slow trap switch-off scenario for the thermal
cloud release.

We will consider first the influence of a slow trap relaxation in the released
of a thermal cloud.

As in the BEC expansion (cf. §A.3 of Appendix A), but in a much smaller
extend, at the initial moments of expansion of the thermal cloud happens in
the strong collisional hydrodynamical regime and the total energy in each of
the three cartesian axes is not conserved, since the cloud’s interaction energy
is partially redistributed among them. This effect modify slightly the result of
the simple ideal gas ballistic model for the cloud’s expansion. This was taken
into account in §4.3.4 to correct the value found for the temperature from
the TOF ’s fits. Now, if the effective trap switch-off for the thermal cloud is a
non-instantaneous process, this hydrodynamical behavior will become more
important since the cloud remains for a longer time in the strong collisional
regime.

As before, for the simple hydrodynamical regime, we need to find how
much this effect will change the temperature, with respect to the abrupt
switch-off case. For that, we need to solve again the set of differential equa-
tions of Eqs.4.58, for a trapping potential that will somehow relax to zero after
being switched-off. We will use the phenomenological behavior expressed by
Eq.5.10. It is also convenient to define

γth =
2π

τTω⊥
,

a quantity normalized by the trapping oscillation frequency in the fall direc-
tion axis ω⊥

12, which we will refer to as the effective relaxation constant of
the trapping potential.

The dynamics of the expansion of the cloud can be addressed to the
scaling relations of Eq.4.57. These defines two dimensionless parameters
bα(t) and θα(t) to re-scale, respectively, the cloud expansion and the effective
temperature in each the α−axis. In particular we have

bα(t) =
sα(t)

sα(t = 0)
.

Solving numerically the Eqs.4.58 we find the time evolution of this parameter
in the three directions of space. This results in the curves in the graphs of
Fig.5.15 which are plotted for several different values of γth. The curves
marked with γth = ∞ corresponds to the instantaneous cloud release and
almost coincides to the ballistic behavior (cf. Fig.4.14). In these graphs we

12Remember that the fall direction Oz coincides with one of the trap fast axes, perpen-
dicular to the bias field. Thus, we have ωz ≡ ω⊥; this latter notation is used here.
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Figure 5.15: Numerically computed values for b‖(t) and b⊥(t), for different values
of γth, defined as previously, and for a cloud with T = 2µK and Z = 1. The
model assumes a exponential relaxation of the trapping potential, with each axis
frequency varying according to ωα(t) = ωα(0)e−t/τT with τT = 2π/(γthω⊥). Circles
correspond to the sudden trap switch-off case.

see that, for smaller values of γth (i.e. slower trap relaxation with larger τT )
the expansion velocity of the cloud is reduced in all the axes. This effect is
much stronger in the more confined axes (b⊥(t) in the right hand side graph),
one of which influences directly the detected TOF signal.

The kind of inversion of geometry exhibited in the graphs of Fig.4.14, with
the expansion velocity in the less (more) confined axis being bigger (smaller)
that the ballistic expansion, is, in here, somehow washout by the damping
effect of the slow trap relaxation. In the initial transient period (about the
inverse trap relaxation time), the cloud’s size is continuously adapting to
the trap volume, which increases in time at the same velocity in all axes.
After the cloud attaining the collisionless regime, the expansion proceeds
ballistically but with a velocity that is given by the trap oscillation frequencies
at that time. These are smaller than the initial frequencies ω0α and then the
expansion proceeds also at a smaller velocity.

• The constant expanding velocity approximation.

To better compare the cloud dynamics between the sudden trap switch-off
and the case where it relaxes slowly, we use a similar definition as the one of
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Figure 5.16: Same as in Fig.5.18 but for the relative scaling factors. What is
represented is b‖(t) and b⊥(t) divided by the correspondent expressions for the
abrupt switch off case (see also caption of Fig.5.18).

Eqs.4.59 for the parameters

ε⊥(t) =
b⊥(t)

b∞⊥ (t)
and ε‖(t) =

b‖(t)

b∞‖ (t)
. (5.11)

where b∞⊥ (t) and b∞‖ (t) are the scaling parameters when γ = ∞ (i.e. for
the sudden switch-off). These normalized scaling parameters are plotted in
Fig.5.16, for T = 2µK and Z = 1. If we disregard the initial transient period,
we see that the scaling factors grow linearly in time with a certain velocity,
smaller than those for the sudden switch-off. Thus, the factors εα(t) are
smaller than one and almost constant. This is particularly true for ε⊥(t) and
large values of γth, where the asymptotic behavior is attained very rapidly.
Making the approximation where the velocity is considered constant over
time, the cloud expansion in the fast axes may be expressed through the
simple relation

b⊥(t) = b∞⊥ (t)× εγ
⊥(∞), (5.12)

where εγ
⊥(∞) is the value that ε⊥ attains at t = ∞ for a given value of γth.

In the slow axis, the relative change of the cloud expansion for differ-
ent values of γth is not as large as on the transverse axes. Moreover, the
expansion in this axis is, for γth = ∞, much smaller than in the other two
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(see Fig.5.15). To simplify the analysis, in the following we will neglect com-
pletely the expansion in this axis 13, and use b‖(t) = 1. As in §4.3.4, the
relation in Eq.5.12 leads to a correction on the cloud’s temperature. Calling
T̃ the temperature found in the TOF fit, the cloud’s actual temperature T
is obtained according to

T = T̃ × ε−2
th . (5.13)

where, to simplify the notation, we used εth = εγ
⊥(∞).

5.4.2 The thermal cloud’s trap relaxation time for ob-
taining a = 7.5 nm.

Taking γth 6= ∞ will change the data analysis we presented in the preceding
Section. We may ask what should be the value for εth that makes this analysis
return a = 7.5 nm. This may be answered just by repeating the analysis using
now Eq.5.13 to renormalize the temperature, given a certain value for εth.
The results of such a procedure are shown in the left hand side graph of
Fig.5.17, where we plot εth in function of the correspondent value found for
a. This graph shows that, for obtaining a = 7.5 nm, we would need to have
εth ' 0.905. Using the information obtained from the curves of the graph
of Fig.5.16, we can also compute the corresponding values for γth

14. This
is plotted in the right hand side graph of Fig.5.17 and to get a = 7.5 nm
the good value is γth ' 6.8, which corresponds to about one seventh of the
time of a round trip on the trap fastest axis, ∼ 0.1 ms. This latter value is
comparable with the time scale of the variation of the bias field in Fig.1.17.

5.4.3 The influence on the measure of β and L of a
slow release of the BEC.

In the former analysis, as in the §5.3, we have used values for the ionization
rate constants β and L according to Ref.[45] (i.e. Eqs.B.3 of Appendix B).
These were computed assuming that when the BEC is released the trapping
potential goes instantaneously to zero. However, if we admit that the trap-
ping potential relaxes slowly also at the BEC release, the values of these
constants will also be affected since the measured condensate’s peak density
changes with the expansion velocity of the cloud.

13We could keep an equivalent corrective factor for the slow axis through all the calcu-
lation. However, since in the end, in the detection process, we will integrate the density
profile in this axis, this correction would only affect the TOF amplitude but not its profile.

14The results shown in Fig.5.16 where computed for T = 2 µK and Z = 1. Nevertheless,
they can be used for any thermal cloud since they doesn’t vary much with temperature
and fugacity.
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Figure 5.17: Left hand side graph: in the left axis are represented the values of
εth with which the analysis of the data of the scattering length experiment returns
the values for a represented in the bottom axis; right hand side graph: similar
as previous but for γth. For getting a = 7.5 nm one needs εth ' 0.905, which
corresponds to γth ' 6.8, i.e. about one seventh of the time of a round trip on the
trap fastest axis.

The general formulation for dealing with the BEC expansion[68, 146]
simplifies a time dependent Gross-Pitaevskii equation to a set of equations
similar to those that describe a non-viscous classical fluid in the hydrody-
namical regime. Within this model, the BEC expansion is determined by
a non-isotropic scaling law, maintaining the cloud’s general profile of an el-
lipsoid with an atomic density that decreases parabolically from the center.
The cloud expands faster along directions where the atoms are more con-
fined and slower in the other direction. This is leads to what is known as
the BEC geometry inversion. In Appendix A.3 we present a more detailed
description of this phenomena and we derive the exact equation of motion of
the referred scaling law within the approximation of an abrupt switched-off
of the trapping potential. This approximation leads to a great simplification
of the calculation and allows deriving analytical solutions. It is, also, a very
good approximation for most of the experiments.

In here, we will describe the BEC expansion with the same equations of
Appendix A.3, but admitting that the trap switches-off according Eq.5.10.
As in the case of the thermal cloud, no simple algebraic solution exists and
we will have to deal with the equations numerically.
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5.4.3.1 The hydrodynamical slow expansion of the condensate.

We recall here the Eqs.A.16 of Appendix A for the time evolution of the
scaling parameters bα,

b̈α(t) + ω2
α(t)b(t) =

ω0α
2

bα(t)V(t)
, (5.14)

with V(t) =
∏

α bα(t), ω0α the initial trapping oscillation frequencies and
ωα(t), their evolution over time after the switch-off, given by Eq.5.10. As
before, using γ = 2π/(τTω⊥) and, also, θ = ω⊥t, the Eqs.5.14 become

d2

dθ2
b⊥ + e−2γθb⊥ =

1

b3⊥b‖
and

d2

dθ2
b‖ + e−2γθb‖ =

λ2

b2⊥b
2
‖

. (5.15)

Numerical solutions of this set of equations are represented in Fig.5.18 for
different values of γ. The curves for γ = ∞ (dotted lines) evidenciate the
typical geometry inversion during the condensate’s expansion with the scaling
parameter for the more confined axis, b⊥(t), increasing much faster than the
one for the other axis, bx(t). A slow relaxation of the trapping potential
results in a decrease of this anisotropic effect. During the period of the
trap relaxation, the BEC remains always in the strong collisional regime
with the damped interaction energy of the cloud on the directions of bigger
confinement being transferred to the one where the BEC is less confined.

• The constant expanding velocity approximation.

We may define for the BEC case similar parameters as those of Eq.5.11 for
the thermal cloud:

εBEC

α (t) = bα(t)/b∞α (t)

with b∞α (t) given by Eqs.A.21 of Appendix A. These time evolution of these
parameters is plotted in the graphs of Fig.A.1. As for the case of the thermal
cloud, in the following we will only consider the parameter εBEC

⊥ (t), assuming
as negligible the cloud’s expansion in the less confined axis. We will also
consider that the expansion velocity in the fast axes is constant, which is,
according to the right hand side graphs of Figs.5.18 and A.1, a good approx-
imation. Thus, we use

b⊥(t) = b∞⊥ (t)× εBEC, (5.16)

with now, εBEC = εγ
⊥(∞) the value of εBEC

⊥ (t) for a certain value of γ and
when t→∞.

In the Fig.5.20 we plot εBEC and also εth defined above, in function of
γ. These graphs are computed after the results of the curves of Figs.5.16
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fast trapping axis.

and A.1 and allows reporting the final results obtained for the ε parameters
to the equivalent relaxation constants γ. In the graphs of the Fig.5.20 it is
interesting to note the resonances for certain relaxation times τT equal to
semi-integers of 2π/ω⊥, the period of one oscillation in the fast trapping axis:
the cloud’s interaction energy is better transfer to the trap in these cases and
the cloud expansion is reduced.

5.4.3.2 Consequences on the determination of β and L.

We workout now how the above results would modify the measurement of β
and L. In the Appendix B we describe with some details the experiment we
realized for determining these two constants: it relies on the comparison of
the BEC peak density with the instantaneous ion flux at the time when it
is released from the trap. The condensate TOF signal, integrated over the
MCP plane, is derived in Appendix A (cf. Eq.A.24). Within the long fall and
far field approximations it is given by

IBEC(δt) ∝
∥∥∥∥1− Mω2

⊥

2µ

(gt0δt)
2

b2⊥(t)

∥∥∥∥2

,
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with, as usually, δt = t − t0 and t0 =
√

2H/g. Substituting Eq.5.16 in this
last expression we obtain

IBEC(δt) ∝
∥∥∥∥1− M

2µ

g2δt2

ε2
BEC

∥∥∥∥2

,

This expression defines the Thomas-Fermi time radius as (cf. Eq.A.25)

tTF =

√
2µ

M

ε⊥
g

=

√
2µ̃

M

1

g

where

µ =
µ̃

ε2
BEC

. (5.17)

This expression relates the actual BEC chemical potential, µ, with the one
measured directly from the TOF signal, µ̃, and the parameter εBEC. This
latter is obtained, for any given relaxation trap constant γ, from the graph
of Fig.5.20.

In the experiment we did for deriving β and L, we measured the quantities
Φ and µ̃. For this latter quantity we inferred the BEC atom number and peak
density. This means that the measurement we did, Γ = φ/N0 in function of

n0 (cf. Eq.B.1 and Fig.B.4), would be Γ̃ = Φ/Ñ0 in function of ñ0 where

Ñ0 = N0 × ε5
BEC and ñ0 = n0 × ε2

BEC (5.18)

We obtain then,

Γ̃ =
1

τi

N0

Ñ0

+
2

7
κ2β

N0

Ñ0

n0 +
8

63
κ3L

N0

Ñ0

n2
0

=
1

τiε5
BEC

+
2

7
κ2β

ñ0

ε7
BEC

+
8

63
κ3L

ñ2
0

ε9
BEC

=
1

τ̃i
+

2

7
κ2β̃ ñ0 +

8

63
κ3L̃ ñ

2
0.

Comparing the two last lines in this Equation we finally derive

β = β̃ × ε7
BEC and L = L̃× ε9

BEC, (5.19)

where, as before, β̃ and L̃ are the measured quantities. For a slow exponen-
tial relaxation of the trapping potential and within the constant expansion
velocity approximation used above, the values obtained in Ref.[45] for β and
L (cf. Appendix B) should then be corrected according to the Eqs.5.19.

In the former analysis we have disregarded the corrections concerning
the quantum and thermal depletions on the parameters κ2 and κ3. As we
point out in Appendix B, these parameters depends on

√
n0 (cf. §B.2.2.1)

and should also be corrected according to the second expression in Eq.5.18.
These corrections are however small and, for simplicity, we don’t consider
them in here.
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5.4.3.3 Consequences on the measurement of a.

We investigate now how the value derived in §5.3 for a varies when the ion-
ization rate constants are re-scaled according to Eqs.5.19. These expressions
predict smaller values for β and L if the trap opens slowly. If we take this
effect alone, i.e. admitting that the trap opens abruptly for the thermal
cloud case, Eq.5.7 shows that it would lead to a even bigger value for a. In
this case, to obtain a = 7.5 nm, the cloud should expand even faster than
what happens in the abrupt switch-off case. It is hard to imagine how this
may happen and then, the effect due to a slow released of the BEC is only
meaningful if compensated by the effect of the slow released of the thermal
cloud.

• Slow trapping potential relaxation for both BEC and thermal
cloud.

We may now ask what are the set of values {εBEC, εth} with which our data
analysis returns a = 7.5 nm. As noted before, these two parameters corre-
spond to effective relaxation constants, γBEC and γth, that need not to be
equal. The physics involved in one and in the other cases are very different
and then, these two phenomenological constants may also be very different.

The answer to the above question is compiled in the graphs of Fig.5.21.
In this Figure left hand side graph, we plot all the sets of values {εBEC, εth}
that produce the desired result a = 7.5 nm. In the right hand side graph, we
use the results of Fig.5.20 to plot the corresponding sets of values {γBEC, γth}.

• Interpretation.

If we impose similar trap relaxations for the thermal cloud and the BEC,
we obtain γBEC = γth = 3.15. Bigger values for the relaxation times are
possible if the effective trapping potential opens faster for condensates than
to thermal clouds. As we have referred previously, this is not very likely
to happen since the mean field of the mJ = +1 atoms of the condensate is
bigger than those of a thermal cloud. Taking γBEC < γth, many different
possibilities exists for values below 3.15, which is impossible to determine in
the analysis presented here.

• The ionization rate constants for γBEC = γth ' 3.

A better understanding of the physics involved on the trap switch-off is
needed to draw definitive conclusions about our bad determination of a.
Without having a way of releasing the clouds in a more controllable way,
no proper interpretation can be made of our TOF signals. All the analysis
we have presented in this Chapter for the cloud’s thermometry, based on the
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Figure 5.21: Left hand side graph: plot of the values of εth in function of those
of εBEC that results in a = 7.5 nm in the data analysis of the scattering length
experiment; right hand side graph: similar representation as the previous but for
the trapping relaxation constants γBEC and γth = 3.15. The oblique dashed lines
in both graphs correspond to equal constants for thermal cloud and condensate:
the curves cross these line for εBEC = εth = 0.67 and γBEC = γth = 3.15.
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TOF analysis, may be affected by somehow large errors. Using Eqs.5.17 and
5.13 we see that ∣∣∣∣δµµ

∣∣∣∣ = 1
2

δεBEC

εBEC

and

∣∣∣∣δTT
∣∣∣∣ = 1

2

δεth

εth

.

In particular, if we admit that the relaxation times are equal for thermal
and condensed clouds, i.e. εBEC ' εth = 0.67, the use of εBEC ' εth = 1
in the previous Sections may have induced an error on the determination of
the chemical potential and temperature as large as 15%. In this case, the
ionization rate constants become

β
∣∣∣
ε=0.67

= 1.26× 10−16cm3s−1 and L
∣∣∣
ε=0.67

= 6.98× 10−30cm6s−1,(5.20)

where we used, as usually, the parametric relations of Ref.[45] evaluated for
a = 7.5 nm.

Wondering about a good interpretation for the trap switch-off.

The values indicated in Eq.5.20 for the ionization rate constants are rather
small if compared with theoretical predictions (see dashed lines in the graphs
of Fig.B.5). To get them bigger, we need to consider parameters ε closer to
one and, then, to admit that the BEC release is faster. In the interpretation
we proposed above for the trap switch-off, we made the assumption that
the mJ = +1 atomic cloud remains trapped for a longer time and that its
mean field would somehow slow down the expansion of the smaller cloud
with atoms polarized in the mJ = 0 state. This assumption is also based
on the hypothesis that, when the magnetic fields are turned off, most of the
atoms at the trap’s center spin flips to the mJ = 0 state, admitting that the
Majorana effect is bigger there. This leads to the picture, after the transient
period, of a mJ = 0 cloud enclosed in a hollow-core cloud of mJ = +1 atoms.

However, if we admit that the atoms spin flip to the mJ = 0 state homo-
geneously over all the cloud, then the mJ = +1 atoms will remain trapped
at the center of the cloud producing a strong repulsive mean field for the free
expanding mJ = 0 cloud. This scenario would be consistent with a faster
expansion of this cloud than if it was released abruptly and with no other ex-
ternal influences. It would also slightly deform the TOF signal because those
atoms close to the center of the cloud would have a bigger initial velocity and
arrive sooner at he MCP.

5.4.4 Conclusion. The Raman transition outcoupling
process.

To achieve a proper conclusion on this problem we still need to obtain more
empirical knowledge about the trap switch-off process. This will be done in
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the near future in an experiment were the BEC is released from the trap by a
Raman outcoupling process. In here, a combination of laser pulses transfers,
almost instantaneously, the atoms form the trapping spin state mJ = +1 to
mJ = 0, insensitive to the field. The comparison of the TOF in this case
with the one we observe in the usual trap switch-off would allow the measure-
ment of ε⊥ and, then, the calibration of the detection system. However, this
procedure would work properly only if all the atoms are released from the
trap to avoid mean field effects. Such procedure would also allow an accurate
calibration of our detection system for the total number of atoms in the BEC,
which is still not possible and constitutes one of the major problems we have
in our experimental setup.

A similar calibration for thermal clouds, based in a Raman process is,
unfortunately, more difficult to achieve. The thermal cloud as a much larger
velocity distribution and it is harder to tune the Raman transition to all the
atoms in the cloud 15. However, for a very short Raman pulse, its frequency
bandwidth may become large enough and address all the atoms in the thermal
cloud. For a cloud at T = 1 µK, the cloud’s spread in frequency units is of
about η × (kBT/2π~) ∼ 120 kHz, where we took η = hνrf/kBT ∼ 6. This
imposes a maximum width of 10 µs. We are currently setting up a device that
would allow producing a Raman π pulse with a sufficient intensity to transfer
a thermal cloud at this temperature. Clouds with bigger temperatures would
require a more accurate calculation of the transfer ratio. This issue will be
addressed by A. Perrin in his Ph.D. thesis[147].

15The results of Fig.5.21 may be used to determine εth, knowing εBEC , which is easier
to measure.
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The condensate in the
Thomas-Fermi approximation.

In this Appendix we derive the expressions that describe the density of the
condensate in the Thomas-Fermi approximation and its time evolution during
the expansion of the cloud after being released from the trap. We start by
presenting the Gross-Pitaevskii equation.

A.1 The condensed state: Gross-Pitaevskii

equation.

In the ideal gas, at T = 0, all the atoms are in the ground state and the
system’s wave function is

Ψ0(r1, r2, . . . , rN) =
N∏

i=1

ψ0(ri),

where ψ0(r) is the single-particle wave function, the fundamental state of the
harmonic oscillator, i.e. a gaussian function. Since all the atoms are in the
same quantum state, the N-particles wave function in the last Equation is a
symmetric state with the respect to the exchange of particles.

If interatomic interactions are present, due to the trapping confinement
and even for a very small number of atoms, the ideal gas model is very
inaccurate for treating the ground state wave function. To give a good de-
scription of the condensate density we use the many-body Hamiltonian of
Eq.4.22 introduced in §4.3.1. Using again a contact potential to describe
the interactions, the second quantized Hamiltonian describing the BEC field
operator is given by

Ĥ =

∫
d3r Ψ̂†

0(r)
[
Ĥ0 − µ+

g

2
Ψ̂†

0(r)Ψ̂0(r)
]
Ψ̂0(r). (A.1)

Here, as usual the field operators Ψ̂†
0(r) and Ψ̂0(r) create and annihilate

a particle in the condensate. The thermal mean value of the interaction
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potential for this case can be calculated in the canonical ensemble, assuming
that the fluctuations of the condensate atom number are very small [105]. It
is given by

〈V̂int(r)〉 =
g

2
〈Ψ̂†

0(r)Ψ̂
†
0(r)Ψ̂0(r)Ψ̂0(r)〉

=
g

2

[
〈Ψ̂†

0(r)Ψ̂0(r)〉
]2

=
g

2
N2

0 |ψ0(r)|2 =
g

2
n2

0(r), (A.2)

where n0(r) = N0ψ0(r) is the BEC density, with N0 the number of con-
densed atoms and Ψ0(r) the BEC single-particle wave function. To reduce the
Hamiltonian of Eq.A.1 to a quadratic form, in the spirit of a self-consistent
mean-field theory (see §C), we approximate the interaction terms to

V̂int(r) ∼
g

2

[
2N0|ψ0(r)|2Ψ̂†

0(r)Ψ̂0(r)−N2
0 |ψ0(r)|4

]
, (A.3)

which neglects density fluctuations and gives the same thermodynamical
equilibrium mean values as the real interaction term. The second term on
the right hand side of Eq.A.3 doesn’t contribute to any thermodynamical
measurable quantity, corresponding to a simple shift in the energy. Equation
A.1, in this mean field approximation is then equal to

Ĥ =

∫
d3r Ψ̂†

0(r)
[
Ĥ0 − µ+ g|Ψ0(r)|2

]
Ψ̂0(r). (A.4)

If we replace the field operators by the corresponding single particle wave
function, this equation takes the form of a non linear Schrodinger equation[

− ~2

2M
∇2 + U(r) + g|Ψ0(r)|2

]
Ψ0(r) = µΨ0(r). (A.5)

known as the Gross-Pitaevskii equation.

A.2 Thomas-Fermi approximation.

In the limit where the number of atoms in the condensate is large, the in-
teratomic interactions will inflate the cloud up to the maximum available
volume in the trap. Thus, the shape of the cloud and its density are deter-
mined mainly by the compensation of the interactions forces by the trapping
potential. In this regime, the kinetic energy term is negligible and the Gross-
Pitaevskii equation reduces to

U(r) + g|Ψ0(r)|2 ' µ,
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and the amplitude of the BEC wave function is

|Ψ0(r)| =
∥∥∥∥µ− U(r)

g

∥∥∥∥1/2

, (A.6)

where ‖ . . . ‖ replaces the argument if positive and is zero otherwise. This
approximation of neglecting the kinetic energy term is referred to as the
Thomas-Fermi approximation, originally used in the theory describing elec-
tronic densities in atoms. The boundary of the BEC, in this approximation,
is the surface where the trapping energy equals the chemical potential, de-
termined by the equation

µ = U(r) = 1
2
M
∑

α

ω2
α
α2.

The condensate number of atoms is given by N0 =
∫

R3dr |ψ0(r)|2 and its
density takes then the form of an ellipsoid where the density decreases par-
abolically from the center

n0(r) =
15

8π

N0

RBEC
3

∥∥∥∥∥1−∑
α

r2
α

R2
α

∥∥∥∥∥
≡ µ

g

∥∥∥∥∥1−∑
α

r2
α

R2
α

∥∥∥∥∥ (A.7)

with Rα =
√

2µ/Mω2
α

the BEC radius in the α spatial direction, RBEC the
corresponding geometric mean value and the chemical potential is

µ = 1
2
~ω
[
15
N0a

σ

]2/5

, (A.8)

with the usual definition σ =
√

~/Mω. The BEC number of atoms and its
peak density follows from the above expressions and are given, respectively,
by

n0 ≡ n0(0) =
µ

g
and N0 =

5

2

µ

g
RBEC

3. (A.9)

We end here the density characterization of the atomic sample in thermal
equilibrium inside the trap. In the next Section we will derive expressions
for the associated atomic flux when we switch off the trap and let the cloud
expand and fall under the influence of gravity.
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A.3 The TOF of the BEC.

A.3.1 The time dependent Gross-Pitaevskii equation.
The hydrodynamical equivalent.

From Eq.A.4 we can write directly the time dependent Schrodinger equation
for the condensate wave function, Ψ0(r, t)

i~∂tΨ0(r, t) =

[
− ~2

2M
∆ + U(r, t) + g|Ψ0(r, t)|2

]
Ψ0(r, t), (A.10)

where, now, the trapping potential is also time dependent.
The last equation can be re-casted in a couple of other differential equa-

tions by writing the wave function in terms of a modulus and a phase[3],
like

Ψ0(r, t) =
√
n0(r, t)e

iΦ(r,t). (A.11)

Furthermore, the phase Φ(r, t) can be reported to a velocity field v(r, t)
through

v(r, t) =
~
M
∇Φ(r, t). (A.12)

In the Thomas-Fermi approximation, neglecting the kinetic energy term com-
pared to the interaction one, Eq.A.10 can then be transformed to the expres-
sions 

∂tn0(r, t) +∇ · [v(r, t)n0(r, t)] = 0

M∂tv(r, t) +∇
[
U(r, t) + gρ(r, t) + 1

2
Mv2(r, t)

]
= 0

. (A.13)

The first of these equations is simply the equation of continuity

∂tn0(r, t) +∇J(r, t) = 0,

with
J(r, t) = (~/2iM){Ψ∗

0∇Ψ0 −Ψ0∇Ψ∗
0}

the current density. The second equation is the Euler equation for the ve-
locity field. The two equations in Eqs.A.13 describes the nonviscous flow of
hydrodynamical fluid [4]. These equations are derivable from the Boltzmann
kinetic equation if we assumes a mean free path much smaller than any other
characteristic lengths. The large collisional rate takes the fluid into a very
fast relaxation to a local equilibrium and, in first order, collision integral in
the Boltzmann equation can be approximately equal to zero. What we have
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just described is the picture of the flow of classical fluid in a very strong
collisional regime. However, the starting point was an equation of motion of
a single coherent quantum state at zero temperature. This similarity found
in these two very different physical situations motivated the designation of
hydrodynamical superfluid to the BEC.

The stationary solution of Euler equation in the second line of Eqs.A.13,
with a overall BEC constant phase, is just the Thomas-Fermi profile found
in §A.2. Here we are interested in deriving the evolution of this profile after
releasing from the trap. This can be done by using the same coordinates
re-scaling used before for the thermal cloud, in Eqs.4.57 1. Eq.A.11 takes
the form [146]

Ψ0(r, t) = V−1/2χ0 [ρ(r, t), τ(t)] exp [iΦ(r, t)], (A.14)

where χ0(ρ, τ) =
√
n0(ρ, τ) and τ(t) =

∫ t
dt′V−1(t′), a re-scaled time coor-

dinate. Eq.A.12 suggests the phase Φ(r, t) is given by

Φ(r, t) = M
∑

α

r2
α

2~
ḃα(t)

bα(t)
. (A.15)

The trapping potential in Eq.A.10 is given by U(r, t) = 1
2
M
∑

α ω
2
α(t)r2

α.
Using the ansatz of Eq.A.14 and replacing ωξ(t) according to the equation

b̈α(t) + ω2
α(t)b(t) =

ω0α
2

bα(t)V(t)
, (A.16)

one arrives to the equation of motion for χ0(ρ, τ)[146]

i
~

V(t)

∂χ0

∂τ
= − ~2

2M

∑
α

1

b2α(t)

∂2χ0

∂ρ2
α

+
M

2V(t)

∑
α

ω0α
2ρ2

αχ0 +
g

V(t)
|χ0|2χ0.(A.17)

Quite remarkably the choice done in Eq.A.15 for the phase cancels out all
terms ∇ρχ0. In the Thomas-Fermi approximation, the first terms in the
right hand side of the last equation is neglected,

i~
∂χ0

∂τ
= +

M

2

∑
α

ω0α
2ρ2

αχ0 + g|χ0|2χ0. (A.18)

The solution of this last equation follows from the usual time-independent
problem,

χ0(ρ, τ) =

(
µ

g

)1/2
∥∥∥∥∥
√

1− M

2µ

∑
α

ω0α
2ρ2

α

∥∥∥∥∥ exp
[
−iµ

~
τ
]
, (A.19)

1In this case the effective temperature θ(t) is constant and equal to one and the thermal
velocity, vα, is null. To keep the same notations as in references [148], [146], in here, instead
of R(r, t) we will use ρ(r, t) with ρα = rα/bα and, replace as well 1/Γ by V(t) =

∏
α bα(t)
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In this expression µ is the initial chemical potential and the coordinates ρ
are re-casted to the laboratory frame coordinates rα through the knowledge
of the time evolution of the parameters bα(t). The Eqs.A.16 determine the
time evolution of the BEC. These equations, of entirely classical character,
depends only in the initial trapping frequencies, ω0α and their subsequent
time evolution.

Abrupt trap switch-off.

We will consider now the most usual case of sudden trap switch-off. Here,
ωα(t) goes instantaneously to zero, and for our cigar shaped trap, we can
re-write Eqs.A.16 as,

d2

dθ2
b⊥ =

1

b3⊥b‖
and

d2

dθ2
b‖ =

λ2

b2⊥b
2
‖

, (A.20)

where θ = ω0⊥t and λ is the aspect ratio λ = ω0‖/ω0⊥. In our case, λ � 1
and the solution for the above equations can be workout in a series expansion
in powers of this parameter[68]. For λ = 0, b‖ = 1, as initially. First and
second orders in λ gives the expressions

b‖ = 1 + λ2
[
θ arctan (θ)− ln

(√
1 + θ2

)]
and b⊥ =

√
1 + θ2. (A.21)

This result expresses what is known as the geometry inversion: in the less
confined axis, the BEC almost keeps its size during the fall while in the other
two, there is an expansion, which for θ � 1, turns out to be approximatively
linear in time. Some time after released from the trap the BEC changes from
a cigar to a disk-shaped cloud.

The density of the expanding BEC is then (cf. Eqs.A.11, A.14 and A.19)

n0(r, t) = |Ψ0(r, t)|2 ≡
χ0 [ρ(r, t), τ(t)]

V

=
1∏

α

bα(t)

µ

g

∥∥∥∥∥1−∑
α

r2
α

R2
α(t)

∥∥∥∥∥ (A.22)

with Rα(t) = bα(t)Rα.

A.3.2 The condensate detected atomic flux.

We want to derive an expression for the atomic flux crossing the plane xOy,
located at −η = −H + 1

2
gt2 below the center of the expanding cloud. We

consider two approximations:



236 Appendix A - The condensate in the Thomas-Fermi approximation.

0 0.05 0.1
1

1.5

2

2.5

3

Time [s]

b
x
(
t
)

0  0.5 1  1.5 2  
1

1.02

1.04

Time [ms]

0 0.05 0.1
1

200

400

600

800

Time [s]

b
⊥
(
t
)

0 0.5 1  1.5 2  

5

10

15

1

Time [ms]

Figure A.1: Top graphs: the exact (symbols) and the approximated analytical
(line) evolution of the scaling factors for our BEC with λ ≈ 1/25 in the bias field
(left) and transverse (right) axes. Bottom graph: zoom on the top graphs for the
initial 2 milliseconds.

• the height of fall 1
2
gt20 is much bigger than the BEC expansion, t0 �

R⊥ω⊥/g =
√

2µ/M/g and, in a good approximation, we can disregard
the cloud’s expansion during its detection.

• the detector radius is larger than the expanded BEC and we can inte-
grate the atomic flux over the entire xOy plane.

The condensate’s TOF signal is then

IBEC =
∆N(t0)

∆z

∆z

∆t

∣∣∣
z=H−1

2
gt2

≈ vG × n(H − 1
2
gt2, t0) (A.23)

where, using Eq.A.22,

n0(z, t) =

∫∫
dx dy n0(r, t) =

16

15

N0

Rz(t)

∥∥∥∥1− z2

Rz(t)2

∥∥∥∥2

.

As θ = ω⊥t � 1 the second expression in Eq.A.21 may be simplified to
b⊥(t) ' ω⊥t and thus Rz(t0) = Rzω⊥t0. With δt = t− t0 � t0, we get

IBEC(δt) ≈ 15

16

N0

tTF

∥∥∥∥∥1−
(
δt

tTF

)2
∥∥∥∥∥

2

(A.24)
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where

tTF =
1

g

√
2µ

M
, (A.25)

the Thomas-Fermi time radius.

A.3.3 The ion flux from a condensate.

The ion flux for a pure condensate is given by

Φ =
1

τi
N0 + 1

2
βκ2〈n2

0(r)〉+ 1
3
Lκ3〈n3

0(r)〉, (A.26)

where β and L are the ionizing rate constants defined for a thermal cloud and
κ2 = 1/2! and κ3 = 1/3! the quantum reduction factors discussed in §4.2.2.2.

Using Eq.A.7, we have

〈nq+1
0 〉 = 〈n0〉 × nq

0

Iq+1

I1
,

with n0 = µ/g the condensate peak density. The factor Iq+1/I1 = 15
√

π
8

Γ(q+
2)/Γ(q + 7/2) is equal to 4/7 and 8/21 for respectively q = 1 and q = 2.
Eq.A.26 may now be written as

Φ =
1

τi
N0 +

2

7
κ2β N0 n0 +

8

63
κ3LN0 n

2
0. (A.27)

Finally, it is useful to derive the quantity ion flux per atom, defined as Γ =
Φ/N0 (this quantity was used in Ref.[45] and is used in Appendix §B) and
then equal to

Γ =
Φ

N0

=
1

τi
+

2

7
κ2βn0 +

8

63
κ3Ln

2
0. (A.28)





A P P E N D I X B

The condensate and the
determination of the ionizing
rate constants.

To describe correctly the ion signal, we need to know the rate constants β
and L. The inverse is also true and, for a certain ion flux signal, if we know
the density of the atomic cloud we can derive these rate constants (see the
argument in the beginning of §4.2.2.1). For making work this idea we need to
use data of many cloud with different densities to well explore the dependence
of the ion signal on the second and third power of the density. To actually
get to see the third order process we need to use clouds as much dense as
possible. Thus, condensates are very good candidates for the task. Moreover,
their mean densities can be, in principle, very well determined.

This Appendix summarizes the experimental description and data analy-
sis of the experiment we did for measuring β and L. This work was reported
in Ref.[45] and a very detailed description of it may be found in the Ph.D.
thesis of Olivier Sirjean[70]. In here it is described all the theoretical de-
tails in the data analysis, stressing in special the calculation of the ionizing
rate constants within the Bogoliubov approximation, taking into account the
quantum and thermal depletions of the atomic cloud.

We include the description of this experiment since it has a special impor-
tance in the interpretation of the data of the experiment on the measure of
the scattering length, a, discussed in Chapter 5. Moreover, as it is explained
in §5.4, we think that the error we have committed in the determination
of a should report to a bad measurement of β and L, making relevant the
description of the measurement of these constants.

B.1 The condensate.

B.1.1 The pure BEC.

In the Thomas-Fermi approximation, the BEC atomic flux integrated over
the detector has the shape of an inverted parabola, described by Eq.A.24 of



240
Appendix B - The condensate and the determination of the ionizing rate

constants.

Appendix A. In the following, we will compare this simple result with what is
observed experimentally. We will also discuss the criteria we used to classify
a given TOF as corresponding to a pure BECat zero temperature.
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Figure B.1: The pure BEC. This Figure shows MCP signals for two condensates
taken in the analog mode. The time scale is shifted 100 ms from the trap switch-
off. In both graphs, the TOF is fitted by an expression composed by an inverted
parabola truncated at zero (the BEC part) plus a gaussian (the thermal cloud).
In the left hand side graph we compare the result of that fit (solid line) with a
fit to just a BEC expression(dashed line). In the bottom of the graph there is
still some visible thermal cloud component, where the two fitted functions differ
slightly. Using this simple model, we estimated a thermal component about 25%.
We know, however, that this value is overestimated since we are not accounting
for the thermal cloud repulsion due to the BEC mean field.
In the right hand side graph, the inverted parabola fits very well the data. There is
no visible thermal wings in this graph and we say that the BEC is pure. Actually,
this is not completely true since the TOF signal corresponds to a two-dimensional
integrated density and if a small thermal cloud persists around the condensate it
may be washed out from the TOF signal. The fit of this graph to a composed
TOF function is still compatible with the existence of a maximum of 15% of
thermal cloud component. For this case, the error committed in the chemical
potential is as big as 5%.

Fig. B.1 shows two typical TOF for cloud near T = 0. This two
TOF curves were taken after a evaporative cooling where the rf -ramp was
ramped down to just above the bias. This is done in order to get, as much
as possible, a pure condensed cloud with no thermal component. Nonethe-
less, it is obvious from simple observation that we were more successful in
the TOF of the right hand side, where the fit to an inverted parabola works
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much better than in the other one. We call pure BEC for referring to clouds
where this thermal component is not visible in the corresponding TOF s.

Even for pure BEC s, we expect always the presence of a small thermal
cloud. This is ultimately due to the thermal depletion of the condensate,
which can be modeled in the Bogoliubov approximation for T 6= 0. Thus,
despite not appearing in the TOF a remaining thermal cloud may always
exist: its presence may be washed out by the two dimensional integration of
the atomic flux. Analyzing the signal to noise of a fit to an expression that
accounts for both the BEC and the thermal cloud, we have estimated [70]
that the thermal component may never be grater than 15% of the atoms in
a pure BEC. This would correspond to an error of 5% in the estimative of
the BEC chemical potential µ 1.

B.1.2 Chemical potential and cloud’s number of atoms.

The number of condensed atoms, N0, and the chemical potential, µ, are
related through Eq.A.8. If we could calibrate our detection system to measure
the absolute number of atoms in a BEC we could use this expression to derive
a. Unfortunately, this is not the case since we detect only a percentage of
the total cloud atoms. Nevertheless, if the ratio of the detected to the total
number of atoms is constant, the validity of the power law expressed in
Eq.A.8 can still be tested. In Fig.B.2, we represent the chemical potential
of several pure condensates in function of the 2/5 power of the detected
number of atoms. This graph shows that for condensates with number of
atoms ranging from 103 to 2×104, the power law of Eq.A.8 is well respected.

The data in the graph of Figure B.2 suggests that the number of detected
atoms is, in fact, proportional to the total number of atoms in the cloud.

B.2 The measure of β and L experiment.

B.2.1 The experimental procedure.

We can easily measure the cloud’s ions rate production observing the corre-
sponding detected ions flux. In the ion detection, we don’t have the same
calibration problem as for the atoms: the ion detection efficiency in our
experiment is known. Moreover, the ion flux is an almost instantaneous
measurement of the rate production since the transit time to the MCP is very
small. Thus, the flux we measure just after triggering the trap switch-off is
directly reportable to the atom’s TOF we detect after the fall. By measuring

1The small thermal cloud that remains even in a pure BEC will produce an extra
amount of ions due to collisions between these atoms and atoms from the BEC. This leads
to a correction of the ion expressions due to the thermal depletion.
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Figure B.2: Chemical potential for the pure condensates (see text) plotted in
function of the number of detected atoms to the power of 2/5. The curve is very
well fitted by a straight line, which passes at zero even if no constraints are imposed
in the fit. In the upper part of graph we also present the residuals of the fit: there
is no tendency for the data to deviate from the linear fit. This result is compatible
with a ballistic free expansion of the condensate. This could not be the case if it
existed a lens effect due to the cloud of polarized atoms in the magnetic sub-level
mJ = 1 (see also the text).

this ion flux and the corresponding TOF for many condensates, with many
different densities, we get the data we need to measure the ionization rate
constants.

The ion flux may be written in terms of the ionizations rate constants and,
the number of atoms in the BEC, N0, and its peak density, n0 (cf. Eq.A.27
of Appendix A),

Φ =
1

τi
N0 +

2

7
κ2β N0 n0 +

8

63
κ3LN0 n

2
0.

In the data treatment of this experiment we have used instead the ion flux
per atom, defined as (cf. Eq.A.28)

Γ =
Φ

N0

=
1

τi
+

2

7
κ2βn0 +

8

63
κ3Ln

2
0. (B.1)

This is the quantity we fit in function of n0 to infer the values of β and L
(see Fig.B.4).

Varying the number of atoms in the BEC.

Varying the BEC density from one experimental run to another can be as
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easy as involuntary. A small fluctuation in the bias field can easily change
significatively the number of atoms at the end of the evaporative cooling.
If the bias field increases to a value bigger than the last frequency of the
rf−ramp, all the atoms are removed from the trap The main reason, however,
that makes the number of atoms in the BEC to fluctuate is related with the
variation in the number of atoms that are loaded into the magnetic trap, at
the beginning of the evaporative cooling. A small fluctuation of this number
makes, in the end, a quite large difference in condensate’s number of atoms.

Along with these uncontrolled variations of condensate number of atoms,
some experimental parameters can be manipulated to get in the end smaller
or bigger BEC s. One way of doing that is to keep the rf -field on in the
end of evaporation, at its last frequency, for some time before opening the
trap. The BEC, if left in the trap without the rf -field would start to heat up
and rapidly would become a thermal cloud. This may have several causes:
elastic collisions of condensed atoms with hot He∗atoms produced in Penning
inelastic collisions, trap anharmonicity or instabilities, etc. However, if we
keep the rf -field on, at its last frequency, it behaves as a rf-knife removing
out any heated atom, keeping this way the purity of the condensate. In this
process the cloud looses continuously some atoms and the longer we keep the
rf-knife on, the smaller gets BEC at the end, with also a smaller density.
This is shown in Fig.B.3 where we also compare the cases where the rf-knife
is on and turned off.

Another way for varying the final number of atoms in the BEC is by
speeding up or slowing down the last rf-ramp. If we want to obtain the largest
possible BEC the efficiency of the evaporative cooling must be optimized for
a certain ramp velocity. Slower ramps takes more time to complete the
evaporation and leaves more time to the atoms to heat up, faster ones will
prevent thermalization to take place extracting atoms that could eventually
thermalized at colder temperatures.

B.2.2 Obtained results and their analysis.

The data analysis we present here will start by assuming a scattering length
of a = 12 nm. This value corresponds to the latest theoretical estimate of
a[131] and, at time we made the data analysis, it was the most probable value
for this constant 2

2As explained in Chapter 5, by the time we write this manuscript it is known that
the scattering length is much smaller, around a = 7.5 nm. In here, we will keep using
a = 12nm since it is what we have done in the original data analysis. To into account a
possible mismatch of the real value of a with the one we used, we decided to present the
final result for β and L parameterized by a. This would cure the values found for β and
L for a known value of a.
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Figure B.3: The graphs in this Figure were obtained in experimental runs that
had similar ion signals before t = 0, the time were a pure BEC was formed (as in
Figure4.1). For times posterior to t = 0, the Figure shows typical behavior of the
ions signal for the case were a rf-knife (see text) were present a); or in the case
were it was not b). For these two curves the Figure shows the TOF signals in three
different times. When the rf-knife is kept on, it is seen that the cloud remains
condensed, with less and less atoms for longer periods before the trap switch-off.
In the absence of the rf-knife, the cloud rapidly becomes a thermal cloud.
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B.2.2.1 Analysis and results with a = 12nm

• Γ versus the peak density.

If we assume a certain value for a, we can derive the BEC chemical potential
µ from the analysis of its TOF signal (cf. Eq2.A.25),

µ = 1
2
M(g tTF )2.

where tTF is the Thomas-Fermi time radius, half of the time extension of the
condensate. Knowing µ, we can also get the condensate number of atoms (cf
Eq. A.8),

N0 =

(
2µ

~ω

)5/2
σ

15a
.

and the corresponding peak density

n0(0) =
µ

g
=

µM

4π~2a
.

Selecting only data from pure BECs and correcting the ion flux signal
by the detection system ion efficiency, we obtain an ensemble of data points
for Γ and the corresponding peak density. This data is plotted in the graph
of Fig.B.4. In this graph, we present data obtained for two different trap
configurations, with different transverse frequencies: ω⊥/2π = 1800± 50 Hz
(filled circles) and ω⊥/2π = 1200±50 Hz (open circles) 3. The two different
sets of data appears to coincide in the graphical representation.

Also in the graph of Fig.B.4 are represented two fitted curves. One is
an almost straight line and the other almost a parabola 4. Both curves
were obtained in fits that were constrained to give Γ = 1/τi ' 10−3 for
n0 = 0: the contribution corresponding to collisions between one He∗atom
and a molecule from the background gas. The almost straight line would be
the good fitting expression in case were only two-body collisional processes
were present. The almost parabola follows the law in Eq.A.28, expressing
both the two-body and three-body processes. It’s clear from the Figure that
the straight line doesn’t fit well the data, especially for large peak densities,
and that three-body process has to be taken into account.

We can also fit the data to an expression where only the background gas
and the three-body contributions are included. Again, for this case, the fit
gets worse than the one with all the collisional process included (for clarity,
the result of this fit is not shown in the graph Fig.B.4).

3The transverse frequency can be easy changed by adjusting the trap bias field B0 (see
§1.2.1.2). This has no influence in the slow axis oscillation frequency, which remains equal
to ω‖/2π = 47± 3 Hz.

4These curves are not exactly a straight line and a parabola because they include the
correction factor for the quantum and thermal depletion of the BEC.
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Figure B.4: The ion flux per atom, Γ, in function of the peak density for several
BEC clouds. The data comes from two different sets obtained with different trap
confinement in the transverse direction. The filed circles correspond to a transverse
trapping frequency equal to ω⊥/2π = 1800±50 Hz and the open ones to ω⊥/2π =
1200 ± 50 Hz. The shown error bars are only indicative, being typical in their
respective regions of the graph. The two curves corresponds to fits to a theoretical
curves, constrained to pass in the ordinate τ−1

i for a null density. The solid line
includes all the collisional processes and correspond to our final fit to the data.
In the fit of the dashed line, L was set to zero to put in evidence the influence of
the three-body processes, unquestionably present. Not all the error bars justifies
the data fluctuations. Note, however, that the data doesn’t show any tendencies
out of the fitted curve. The fluctuations are of random character and by binning
together adjacent data points we would get error bars consistent with the fitted
curve. In this graph we preferred to show all the data we used.
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Data uncertainties and the fit chi square value.

The fit, present in Fig.B.4, is weighted by the uncertainty in the determina-
tion of Γ. Comparing to this one, the error we make deriving tTF from the
TOF signal is negligible. The error of Γ is therefore only related to the error
we make measuring the ion flux, Φ. This latter one is obtained by averaging
the ion signal for a very short period of time before the trap switch-off. Doing
this, we avoid the inclusion of spurious noise fluctuations of the ion signal
into the data analysis and also an estimating of the error in the determina-
tion of Γ, which is related with the standard deviation of the mean of Φ (see
FigureB.4 for typical error bars).

Knowing the noise in Γ we can also compute a χ2 for the several fits we
have referred to. Fitting the data to the full expression for Γ, with all colli-
sional processes included, we get χ2/ν = 0.9 5. For the other two considered
fits, we have obtained χ2/N = 1.2 and χ2/N = 1.4, in the cases where we
have disregarded the two-body and the three-body collisions, respectively.

• Corrections due to the quantum and thermal depletion.

Due to the existence of the interatomic interactions and even for T = 0, some
of the atoms of condensed gas populates the excited states, a phenomena
known as the quantum depletion of the condensate. If T 6= 0, the number of
atoms being excited out of the BEC increases further according to a thermal
depletion factor.

The fits in the graphs of Fig.B.4 were done considering also the corrections
due to these quantum and thermal depletions of the condensate. We consider
very briefly these two effects.

The number of excited atoms, Nex, can be calculated within the Bogoli-
ubov approximation[70, 102, 149]. For T = 0, it is given by

Nex = N −N0 = 8
3
√

π

√
n a3N, (B.2)

with n and N the density of the gas and its total number of atoms and, N0

the number of those in the condensate.
The quantum depletion decreases the density of the gas and, therefore,

also the rate of production of ions within the cloud. These reduction can be
accounted in the definition of the collisional rate constants for the BEC given
in Eq.4.5 of Chapter 4,

β′ = κ2 × β and L′ = κ3 × L,

where β and L are the usual rate constants defined for a thermal cloud and,
non considering quantum depletion, κ2 = 1/2! and κ2 = 1/6! are the usual

5ν is the number of degrees of freedom in the fit which is, approximatively, the number
of data points, around 370.
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quantum reduction factors of Eq.A.26 (cf. §4.2.2.2. With quantum depletion,
these constants becomes

κ2 =
1

2!
(1 + ε2) and κ3 =

1

3!
(1 + ε3) ,

where ε2 = 64
3π

√
n0a3 and ε3 = 64

π

√
n0a3 with n0 ' n the BEC density. These

two expression, as the one in Eq.B.2, were derived and are only valid for a ho-
mogeneous gas. Nevertheless, they can be generalized for the case of interest
in here of a harmonically trapped gas using a local density approximation.
This results in the corrections[70]

ε2 → 0.515ε2 and ε3 → 0.644ε3.

For our largest condensates, ε3 ∼ 0.2 and ε2 is about three times smaller,
corresponding to a 20% correction in L and less than 10% in β.

If T 6= 0, there is an extra corrective factor that depends on the temperature[70,
125]. This thermal depletion correction follows the same power law in the
factor n0a

3 as the quantum depletion but with a different numerical factor
and is only non negligible in the three-body collisional process. It can be
included, as in the above definition of ε3, like

ε3 =→ ε3 × (0.644 + ∆th
3 ),

with ∆th
3 accounting for the thermal depletion. If we admit that not more

than 10% of the atoms are in the excited states, this thermal correcting factor
is ∆th

3 ∼ 0.21, about one third of the three-body quantum depletion correction.

• Final results and incertitude intervals for β and L.

We present now final results for this experiment with incertitude intervals.
The results obtained for β and L were found through the data fit and by
fixing τi = 1000 s and a = 12 nm. Imposing a large confidence interval [145]
of 99.99% (at the expense of also large error bars for the parameters), the
final results are

β = 1.1(±0.5)× 10−14cm3s−1 and L = 2.9(±0.9)× 10−27cm6s−1.

From the fitting covariance matrix we can also estimate the statistical cor-
relation factor among the parameters, which is of about −0.96. This high
negative correlation among β and L was expected since, for the same ion
flux, the augmentation of one of them can be compensated by diminishing
the other.

The error intervals presented above are the fit confidence regions for the
parameters, which were derived through the covariance matrix and, there-
fore, symmetric around the value found by the fit for each parameter. In
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min fit max
β12/10−20m3s−1 0.2 1.1 2.0
L12/10−39m6s−1 1.2 2.9 4.7

Table B.1: Rate constants obtained in the fit shown in Figure B.4, for a = 12 nm.
The central values correspond to the best possible fit, with χ2

min/ν ≈ 0.9. The
values for β and L indicated by min and max correspond to the projections of
the confidence region corresponding to χ2/ν = 1.1, in the respectively smaller and
bigger values of those parameters.

reality, these error interval may not be symmetric and to better estimate
them we have proceeded differently. First, we adopted a maximum chi-square
value to consider the fit acceptable: we have chosen χ2/ν = 1.1. Then, by
fitting one of the rate constants freely, we searched for the two values of the
other one that still respected the χ2 maximum value. With χ2

ν = 1.1, the
fitting confidence interval is almost 100.0% and corresponds to a variation
of χ2, in respect of its minimum, of about ∆χ2 ≈ 60. This large confidence
interval along with the high correlation factor among the parameters results
in a very conservative estimation of the uncertainties intervals of β and L.
Table B.1 summarizes the obtained results.

B.2.3 Dependence of the fitting result in the scattering
length.

We will finally present the early announced outcome of this experiment: the
value of β and L parameterized by the scattering length, a. We obtain it by
fitting the data, as explained above, but for different values of a, from 8 nm
to 16 nm. The obtained values for β and L varies smoothly with a and we
can represent them through the simple algebraic expressions[51]

βa ' β12 ×
( a

12

)2

×
[
1 + 0.13

(
a− 12

12

)]
and

La ' L12 ×
( a

12

)3

×
[
1− 0.28

(
a− 12

12

)]
, (B.3)

where a should be input in nanometers and, β12 and L12 are the values found
for a = 12nm. If we plot now these two expression against a, use also the
above derived error intervals, we obtain the graphs of Fig.B.5. There, the
shadowed regions correspond to the full confidence regions we may obtain
for β and L. Also in the graphs we represent the algebraic expressions of
Eqs.B.3 (solid line) and the theoretical predictions found by Leo et al.[130]
(dashed line).
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Figure B.5: Graphical representation of our final results for the rate constants, β
and L. The gray regions are those where we expect to find good values of the rate
constant for a given scattering length, a. The dots and the solid line correspond
to values we found by the best fit to our data. The dashed line corresponds to
theoretical predictions[130].
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Mean Field Approximation

We use now a variational technic to derive the expression in the right hand
side of Eq.4.26 in §4.3.1. We start with the second quantization many-body
Hamiltonian of Eq.4.25,

Ĥ =

∫
d3r Ψ̂†(r)

[
Ĥho − µ+

g

2
Ψ̂†(r)Ψ̂(r)

]
Ψ̂(r). (C.1)

where Ĥho is the interactions free Hamiltonian, which in our case is just the
harmonic oscillator Hamiltonian. Since the Hamiltonian of Eq.C.1 is not
quadratic in the field operators we can not write the corresponding thermal
equilibrium density matrix. A way to overcome this is to propose an ap-
proximated Hamiltonian H0, quadratic in the field and that describes in the
best way possible the physics of the problem. It should observe two main
conditions: i) minimize the (grand canonical) free energy and, ii) have the
same thermal average as the true Hamiltonian. We will start with the first
of these conditions and come to the second at the end of the derivation.

Minimization of the free energy.

In the thermal equilibrium, the true free energy, F , derived from the true
Hamiltonian Ĥ is, by definition, a minimum. Therefore, for any other given
Hamiltonian, as H0, the respective free energy, F 0 will always exceeds F .
This is formally stated by the the Gibbs-Bogoliubov-Feynman inequality[86]

F 6 F 0 + 〈Ĥ − Ĥ0〉0, (C.2)

where, in the right hand side of this equation, the thermal average is done
in the thermal equilibrium determined by H0. By choosing an appropriate
Hamiltonian H0, which will depend on a certain variational parameter, we
ought to minimize the right hand side of Eq.C.2. This procedure determines
the free energy F 0 + 〈Ĥ − Ĥ0〉0 which is, if not the exact free energy of the
system, at least, the most approximated one for the particular choice of Ĥ0.

Here, since we want to simplify the Hamiltonian to one with only bilinear
combinations of the field operators we choose

Ĥ0 =

∫
d3r Ψ̂†(r)

[
Ĥho − µ+ h(r)

]
Ψ̂(r), (C.3)
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where h(r), the variational field we need to find out, is a c-number that de-
pends only on the spatial coordinates and has a clear physical interpretation:
it is a mean field potential that describes the interatomic interaction and
should, therefore, be somehow proportional to the cloud’s atomic density.
To find it, we need to solve the variational equation

δ

δh(r′)

{
F 0[h(r)] +

〈
Ĥ − Ĥ0[h(r)]

〉
0

}
= 0. (C.4)

In the following we will deal with the derivatives of the functionals F 0[h(r)]

and
〈
Ĥ − Ĥ0[h(r)]

〉
0

separately.

The functional derivative of F 0[h(r)]

F 0[h(r)] is given by

F 0[h(r)] = − 1

β
ln (Q0[h(r)]).

where Q0[h(r)] is the mean field partition function Q0[h(r)] (also a functional
of h(r)) which is, by definition, equal to

Q0[h(r)] = Tr
{

exp
(
−βĤ0[h(r)]

)}
.

Using the two last expressions we obtain

δF 0[h(r)]

δh(r′)
= − 1

β

1

Q0

δQ0[h(r)]

δh(r′)

= − 1

β

1

Q0

δ

δh(r′)
Tr
{
e−βĤ0[h(r)]

}
.

(C.5)

Exchanging now the order of the trace with the derivative we get

δF 0[h(r)]

δh(r′)
=

1

Q0
Tr
{

Ψ̂†(r)Ψ̂(r)e−βĤ0
}

=
〈
Ψ̂†(r)Ψ̂(r)

〉
0

= n0(r), (C.6)

with n0(r) is the thermal equilibrium atomic density derived from the mean
field Hamiltonian Ĥ0.
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The functional derivative of 〈Ĥ − Ĥ0〉0.
Making use of the definitions of Eqs.C.1 and C.3 it can write〈

Ĥ − Ĥ0[h(r)]
〉

0
=〈

g

2

∫
R3

dr Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)−
∫

R3

dr h(r)Ψ̂†(r)Ψ̂(r)

〉
0

.

Interchanging the integrals with the average operation and using Wick’s the-
orem, we get〈

Ĥ − ĤMF [h(r)]
〉

MF

=

{
g

2
× 2

∫
R3

dr n2
MF (r)−

∫
R3

dr h(r)nMF (r)

}
.

We ought to compute the functional derivative of the left hand side of the
last equation with respect to h(r). It is given by

δ

δh(r′)

〈
Ĥ − Ĥ0[h(r)]

〉
0

=

=

∫
R3

dr

{
g × δ [n0(r)]

2

δh(r′)
− δ[h(r)n0(r)]

δh(r′)

}
=

=

∫
R3

dr 2gn0(r)
δn0(r)

δh(r′)
− n0(r)δ(r− r′)− h(r)

δn0(r)

δh(r′)
=

= −n0(r) +

∫
R3

dr
[
2gn0(r)− h(r)

] δn0(r)

δh(r′)
.

This result along with the one of Eq.C.6 may be combined to recast Eq.C.4
to ∫

R3

dr
[
2gn0(r)− h(r)

] δn0(r)

δh(r′)
= 0,

from where we deduce

h(r) = 2gn0(r), (C.7)

which is the wanted result.
Eq.C.3 may now be written as

Ĥ0 =

∫
d3r Ψ̂†(r)

[
Ĥho − µ+ 2gn0(r)

]
Ψ̂(r) + ε.

The constant ε was included by hand in this last expression to ensure that
the thermal averages of the true and the mean field Hamiltonians are equal,
i.e. 〈

Ĥ
〉

0
=
〈
Ĥ0
〉

0
.
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ε is equal to

ε = g

∫
R3

dr
[
n0(r)

]2
, (C.8)

and makes a constat shift on the energy spectrum. It is unimportant within
the calculation of physical quantities in the thermodynamical equilibrium
and can therefore be disregarded.
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Fugacity determination with
the χ2 maps

D.1 Introduction

This Appendix deals with the problem of finding the fugacity of an atomic
cloud by fitting its TOF.

The model we use for this analysis is presented in §4.3 and the explicit ex-
pression for the fitting function is derived in §4.3.3 (cf. Eq.4.50). This model
describes the ballistic expansion and fall under gravity of a non-degenerate
atomic cloud with mean field interactions at the thermal equilibrium 1. As
explained in §5.3.2, this expression is valid only for clouds with a fugacity
strictly equal or smaller than one 2. and is formally divergent for Z > 1.
The analysis of TOF s of clouds at temperatures clearly above the critical
one can be carried out with a standard Levenberg-Marquardt (LM ) routine.
However, the fit of TOF s corresponding to clouds with Z ≥ 1 makes the
LM routine to halt. This happens even for clouds at exactly Z = 1 since
the routine is unable to compute the chi-square variation for values of the
fugacity at the vicinity but bigger than Z = 1.

A way to prevent the routine to abort is to constrain it to search fugacities
only within the domain Z 6 1. However, with such a fitting constraint the
routine will return Z = 1 for clouds that are at the critical points but also
for those with Z > 1, rending impossible the task of sorting data at T = Tc.

Moreover, as we will see further, due to a non quadratic dependence of
the chi-square on the fugacity at values close to Z = 1, the LM routine finds
a value for Z that is slightly deviated from the value that, in fact, minimizes
the chi-square.

Here, we describe a method that circumscribes these difficulties and that
is able to properly sort data at Z = 1. Instead of using a fit to find the

1Interatomic interactions are not included during the fall. These are included in the
TOF analysis in §4.3.4, where the cloud’s expansion is treated in hydrodynamical regime.
This leads to corrections to the temperature found in the TOF fit.

2This fugacity is defined within the re-normalization of the chemical potential according
to Eq.4.28.
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temperature and fugacity, we will study the variation of the chi-square, cal-
culating it for a set of values of (T, Z). This will give us extra information
that enables us to measure fugacities close to Z = 1. We call χ2-map to the
graphical representation of the chi-square in function of T and Z.

D.2 The Z − T χ2 −maps.

The main graph of Fig.D.1 shows an example of a χ2-map. This is a contour
type of graph with each line representing locations with equal ∆χ2, a quantity
defined as the variation of the χ2 relatively to its minimum value χ2

0,

∆χ2 = χ2 − χ2
0.

The χ2 value is computed for all locations in a grid with 20 equally spaced
values for the fugacity between Z = 0.75 and Z = 1.0 and 30 values for
the thermal velocity, also equally spaced, in an interval centered around an
approximate value for

√
kBTc/M and spanning a region equal to ±5% of this

critical value (±10% in temperature variation) 3.

The explicit expression defining chi-square is

χ2 =
N∑

i=1

[
yi − ID(δti; t0, amp, vT , Z)

σi

]2

, (D.1)

where yi is the value of the TOF signal (left hand side graph in Fig.D.1)
at its ith point and ID(δti; t0, amp, vT , Z) is the theoretical predicted value
for the atomic flux at the instant of time t0 + δti (cf. Eq.4.50), with also
t0 =

√
2H/g the classical cloud’s time of fall.

The fitting function in Eq.D.1 also depends on Amp, which accounts for
the TOF amplitude, closely related with the total number of atoms in the
cloud. This function also depends, obviously, on the cloud’s temperature and
fugacity, the former rather expressed through the cloud’s thermal velocity
vT . The χ2-maps consider only the variation of vT and Z, as these are the
pertinent quantities within the cloud’s thermometry. The actual value of
∆χ2 plotted in a χ2-map is computed by fitting the parameters Amp and t0
with a LM routine, but using as fixed parameter the corresponding values of
vT and Z.

3The propose of the the procedure we describe here is to find the proper value of√
kBTc/M , which is obviously not known initially. However, here we just need to estimate

approximatively this quantity in a way that the minimum of the ∆χ2 is still inside the χ2-
map. An estimation based on the result of a standard LM fit, constrained in the fugacity
as Z < 0.999, gives normally a good enough result.
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Figure D.1: The main graph shows an example of a χ2-map. It represents the
∆χ2(vt, Z) = χ2(vT , Z) − χ2

0 (weighed by the characteristic data noise) for the
TOF signal, shown in the left hand side of the Figure), when the fugacity Z
and the thermal velocity vT are varied around their good values where ∆χ2 = 0
(represented by the crossed dashed lines). The χ2-map is a contour graph with
each closed line corresponding to the same ∆χ2. This lines delimits confidence
regions on the parameters and, in particular, the 68% confidence region is given
by the region inside the ∆χ2 ∼ 5 line. Superimposed in the χ2-map, the shadowed
ellipse corresponds to this same confidence region but computed by a conventional
Levenberg-Marquardt routine. This graph shows that a quadratic approximation
for ∆χ2 works only close enough to {vT 0, Z0} (characterized by perfect elliptical
level lines) failing for fugacities closed to one. This leads to a small deformation
of the ∆χ2 structure in the Z direction and also to slight mismatch the LM result
and the location of χ2

0 (see text for further comments). This deformation of the
χ2-map is also seen in the top inset graph, where we plot ∆χ2(vT 0, Z). This graph
does not fit well to a parabola in all the Z domain (dotted line). This fit works
properly only if the fit is restricted to a smaller region in the fugacity (solid line).
In the vT domain, the χ2-map presents no deviations from the quadratic form.
This is observed in the right hand side inset graph where ∆χ2(vT, Z0) fits well to
the parabola. This reflects the fact of existing no upper bound to the temperature
(as is the case of the fugacity at Z = 1) and, also, that the domain of variation of
vT in the χ2-map is small comparatively to its central value.
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The chi-square in the expression of Eq.D.1 is weighted by a standard
deviation σi

4 that estimates the experimental noise. It is of shot noise
nature, given by

σi =
√
σ2

0 + k2yi,

with also a constant residual component σ0
5. This shot-noise character of

the noise in the TOF is connected, ultimately, with the detection system
we used based on a MCP, which is a discrete events detector. The good
characterization of this noise is crucial for the good computation of the chi-
square value, either in a standard LM routine or in the method described
here.

• Location of the ∆χ2 = 0 and the one-sigma confidence region.

In the χ2-map of Fig.D.1, the location of χ2
0 (the actual minimum of χ2) is

found at the location {vT 0, Z0} 6, represented in the graph of fig.D.1 by two
crossed dashed line. This set of values correspond to the fugacity and the
thermal velocity that better fit the TOF signal.

For clouds with a temperature well above Tc, as we said earlier, a LM rou-
tine converges to a value for the thermal velocity vT LM ≈ vT 0. However, as
referred earlier, the value found for the fugacity ZLM can be slightly smaller
than Z0. We will explain this in more detail, latter in this Appendix.

A LM routine also outputs confidences region for the parameters and the
one corresponding to 68.3% confidence (the one-sigma confidence region) is
represented in the χ2-map of Fig.D.1 by a shadowed ellipse. This ellipse
may be derived through the covariance matrix computed by the LM fit after
having converged to its final result.

This same confidence region is also seen in the χ2-map level lines: it
corresponds to the region inclosed by the curve ∆χ2 = 4.72, centered in
{vT 0, Z0} 7.

4Not to be confused with the σ defined in Chapter 2 for the size of the harmonic
oscillator.

5The noise in a particular signal was computed as the difference between the corre-
sponding TOF and this same TOF but after be processed digitally in a low-pass routine
(the cut-off was determined by the bandpass of the slow amplifier used in our analog mode
of our detection circuit (see §1.3.3). By studying the noise in function of the amplitude of
the signal in many different TOF signal, we have obtained the values for the parameters
σ0 and kShN (see Ref.[51]) for further details.

6In the following we will also use the notation χ2
map for referring the minimum obtained

with the χ2-map strategy and χ2
LM for the one found by the LM routine. To these values

of chi-square corresponds the locations {vT map, Zmap} and {vT LM , ZLM}, respectively.
7This value is obtained by considering the four independent fitting parameters of Eq.D.1

[145].



Appendix D - Fugacity determination with the χ2 maps 259

• Parabolic shape of the χ2-maps.

The covariance matrix computed within a LM routine relies in a quadratic
approximation of the χ2. The good values for the parameters corresponds to
the location of the minima of the resulting paraboloid (in the hyperspace of
all parameters) and the confidence region for each parameter may be related
with its curvature in the corresponding axis.

Expanding the ∆χ2 in series up to second order on Z and vT , we get

∆χ2 ≈ 1
2

[
∂2χ2

∂v2
T

(∆vT )2 +
∂2χ2

∂Z2
(∆Z)2+

]
+

∂2χ2

∂vT∂Z
(∆vT )(∆Z), (D.2)

The independent variation of ∆χ2 with the parameters is shown in the top
and right hand side inset graphs of the Fig.D.1, where only one parameter
is varied whereas the other is kept at the value that minimizes the χ2, vT 0

or Z0 depending on the case. The ∆χ2(vT , Z0) curve is quite well fitted by a
parabola, confirming the validity of the second-order approximation used in
the Eq.D.2 for a variation on the temperature.

This parabolic dependence is however not observed for the curve ∆χ2(vT 0, Z),
along the Z axis. There are two reasons to explain this. First, the fugacity
has a maximum allowed value at Z = 1 where all the Bose functions involved
in the definition of the atomic flux grows very rapidly. The second reason,
related to this first one, is that the interval of variation of Z-parameter is,
in physical terms, very large. If we take all the χ2-map domain in Z, the
second order approximation of Eq.D.2 is insufficient.

Note that a small change in the fugacity δZ corresponds to a large change
in the chemical potential, which is the physically meaningful quantity, related
with the system’s energy. If we look how the energy varies with the thermal
velocity and fugacity we obtain

δE

E
= 2

δvT

vT

and
δµ

µ
=
kBT

µ

δZ

Z
.

Since kBT � µ (even for the degenerate case), small changes on the fugac-
ity makes much bigger effects in the scale of energy when compared with
equivalent changes in the thermal velocity.

This may also be checked directly in the expression for the cloud’s density
and its behavior with respect to small variations of Z and vT . In the semi-
classical expressions, the shape of the density depends on the Bose functions

gu(W ), where W = Z exp
(
−1

2
ω2r2

v2
T

)
. Differentiating W , one obtains

δW

W
=
δZ

Z
+

(
ωr

vT

)2
δvT

vT

.

This expression shows that the two parameters has an equivalent relative
importance only nearby the cloud border, where r ∼ vTω. Thus, in the fit
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procedure, the relative importance of vT gets smaller at inner locations in
the cloud. At the cloud’s center it becomes null and the fugacity becomes
the single relevant fitting parameter. As already noted, the gu(W ) functions
vary very rapidly when W approaches one. At the cloud’s center, since
gα(W ) ≡ gα(Z), the density will grow also very rapidly with Z. This fast
variation of the fitting function with Z produces a deviation of the chi-square
from the quadratic behavior of Eq.D.2, slightly deforming the χ2-maps on
this direction.

1.000

0.975

0.950

0.925

0.900

ZLM

1.0501.0251.0000.9750.9500.9250.900

Zmap

Figure D.2: Comparison between the values found by a LM routine and the χ2-
map’s method for the fugacity of several TOF s of clouds close to the critical phase
transition. This graphs shows a tendency to the LM routine to return a value for
Z slightly smaller than the one obtained with the χ2-maps.

Is this deformation of the χ2-map in the Z direction (i.e., the deviation
from a quadratic dependence on Z), that makes the parabolic fit on the top
inset graph of Fig.D.1 to be not centered at Z0 but slightly displaced for a
smaller fugacity. This comes out to be the value found by the LM routine,
which relies on the validity of the second order approximation of the chi-
square and, in special, on the symmetry of the chi-square in both sides of its
minimum. Within the χ2-map strategy we describe here, the determination
of Zmap takes into account only the points of ∆χ2(vT 0, Z) at the left hand
side of Z0 where the chi-square still follows a quadratic dependence with Z.
It finds a value which is approximatively equal to Z0.

The mismatch between the values Zmap and ZLM gets bigger for fugacities
closer to one since the chi-square deformation is also bigger. This can be seen
in Fig.D.2, where we plot the values for the fugacity found on a LM fit in
function of the values obtained with the χ2-map’s strategy.
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D.3 Getting the fugacity from a χ2 −map.

The simple observation of the χ2−map of a given TOF is, in general, enough
to get an idea about the cloud’s fugacity and, more importantly, if it cor-
responds to a degenerate cloud or not. In Fig.D.3 we picture two extreme
cases where it is easy to guess that in either cases the clouds’ fugacity is
not in the interval 0.75 < Z < 1: the graph a) corresponds to a cloud with
a temperature far above the Tc whereas the graph b) shows the typical χ2-
map of a TOF of a degenerate cloud. In this latter, the χ2

0 takes a value
much bigger than one and the map contour lines are continuously deformed
when Z increases till one.

The behavior of the χ2-maps of TOF s with Z � 1 makes their classi-
fication as corresponding to degenerate clouds rather simple. However, for
clouds where the fugacity is very close to one (either larger or smaller), this
task may become considerably more difficult. To illustrate this we plot, in
Fig.D.4, a χ2-map of one of these TOF that seams to correspond to a cloud
that is very close to degeneracy.
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Figure D.3: Two χ2-maps for TOF s of clouds with fugacities, a) much smaller
and, b) much bigger than one. Clearly, in both graph, the real χ2 minima falls out
of the shown maps. For the first case, however, this is just because the map was
computed for values bigger than Z = 0.75. An eye guided extrapolation of the
ellipses for the region Z < 0.75 makes us almost guess what should be the fugacity.
This is not case in the right hand side where the ellipses are too much deformed
close to Z = 1.

In this particular case, the location of the χ2
0 in the χ2-map suggests that

the cloud’s temperature is very close but still smaller than Tc. However, due
to the χ2-map deformation close to Z = 1, it may also correspond to a cloud
exactly at the critical transition point. To avoid relying on a subjective case
to case analysis and for establishing well defined criteria for sorting data at
Z = 1, we devised the χ2-map strategy which we described in the following.
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Figure D.4: A χ2-map for the case of a TOF signal at T ∼ Tc. The slight
deformation of the map close to Z = 1 doesn’t affect the almost perfect parabolic
behavior of ∆χ2 in the vT axis, where the location of the minimum of the fitted
parabola gives the cloud’s thermal velocity vT . The variation of ∆χ2 in the Z−axis
is typical in similar situations where Z is very close but still smaller than one. To
be able to well fit a parabola (solid line in the top graph), we need to constrain
the fit to a smaller number of points and also to exclude the last point at Z = 1
(see also text).

D.3.1 χ2-map strategy for finding Zmap.

We start by finding the location of vT 0 with a standard LM routine 8, which
allows computing a ∆χ2(vT0, Z) data row. To the smallest value in this row
corresponds a value of fugacity we will call Z ′

0
9 We then fit ∆χ2(vT0, Z)

to a parabola restricting the fitting interval to a region where the second
order is still valid, defined as Z ′

0 − 0.15 < Z < Z ′
0 to Z = 0.9875. From this

fit we obtain Zmap and also ∆χ2
min = ∆χ2(vT0, Zmap). Now, there are three

different possibilities.

• For a TOF corresponding to a cloud at the critical point, ∆χ2
min should

be zero and Zmap = 1.

• If ∆χ2
min is still zero and Zmap < 1, then the TOF should correspond

to a thermal cloud with a fugacity given by Zmap.

8As referred previously, the value found for the thermal velocity by a LM routine is
approximatively equal to Z0. Using a LM routine for determining vT 0 avoids computing
all the χ2-map, which is a long process.

9This value is approximatively equal to Z0 when this latter one is smaller than one. In
this case, Z ′

0 approaches Z0, by augmenting the number of points of the ∆χ2(vT0, Z) data
row. Alternatively, Z0 can be found, as it is in the χ2-map method, fitting the left hand
side of this data row (built with a small number of points) to a parabola. If Z0 ≥ 1, Z ′

0

saturates at one.



Appendix D - Fugacity determination with the χ2 maps 263

• Finally, if ∆χ2
min < 0, the actual location of the global minima of the

∆χ2 structure should be somewhere in the region where Z > 1 and the
TOF should correspond to a degenerate cloud (note that in here the
∆χ2 = 0 is only artificially located at Z = 1).

An illustration of the latter case is shown in Fig.D.5. In the bottom graph
of this Figure, we see that the fitted parabola has a minimum which is much
further Z = 1, with an approximate chi-square given by ∆χ2 = −40.
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Figure D.5: This Figure sketches the procedure we used to determine if a cloud is
or not at the critical transition temperature. The top graph shows the χ2-map of
a degenerated cloud. The bottom graph shows, as before, the parabola fitted to
the ∆χ2 row that goes through the point ∆χ2 = 0 in the Z−direction. Here, the
found ∆χ2

min is around −40 indicating that the cloud is indeed far from the critical
transition. The found Zmap, much bigger than one, has no physical significance.

D.3.2 Definition of the χ2-map criteria for sorting data
at T = Tc.

The set of values {Zmap,∆χ
2
min} may define a figure of merit to sort clouds

at T = Tc. Following the above referred considerations, the criteria we used
to classify a given TOF as corresponding to thermal cloud above the critical
temperature was

Zmap < 1 and ∆χ2
min ' 0.

In this case, the cloud’s fugacity and thermal velocity are assumed to be equal
to Zmap and vT map respectively. These values, and most specially the one for
the thermal velocity, are comparable to the results of a standard LM routine.
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A cloud is considered to be at the critical phase transition if

i) 0.9875 < Zmap < 1.0125 and ii) |∆χ2
min| < 15.

In here, as in the previous case, the cloud’s fugacity and thermal velocity are
given respectively by Zmap and vT map. This latter value is approximatively
equal to the one obtained fitting the data to a model where the fugacity is
fixed to Z = 1, using a LM routine. This sorting criteria admits a maximum
deviation of the fugacity of 0.0125 which is, approximatively, the uncertainty
in Z corresponding to one standard deviation in a fit to a TOF.
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Figure D.6: The Zmap values found for our data. Here, the map fugacities are
plotted against ∆χ2

min, the minimum of the parabola fitted to the ∆χ2(vT0, Z)
data row. For Zmap . 1 the points have an unexpected tendency to be always
slightly smaller than zero. For the points with Zmap > 1, ∆χ2

min is negative since
the ∆χ2 = 0 found inside the χ2-map is not the global minimum, this one laying
down outside the map. In theses cases, the parabola fitted to the ∆χ2(vT0, Z) data
row gives always a negative value for ∆χ2

min (and, also, a Zmap > 1). The data
sorted as having Z ≥ 1 correspond to the points in the region above and at the left
hand side of the dashed lines. These are defined for Zmap = 1.0125 (vertical) and
∆χ2

min = 0.01N (horizontal), with N the number of the TOFpoints (∼ 1500). The
first condition agrees with the estimated error for the determination of Zmap, about
0.0125 (see next paragraph), the second taken arbitrarily. This latter condition
works as a supplementary check point since the condition Zmap 6 1.0125 is, almost
always, sufficient for sorting the data. The different symbols represent data taken
in four different days.

The maximum allowed variation of ∆χ2
min, 15, was taken arbitrarily and

corresponds to a variation of the reduced chi-square of about 0.01. In the
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graph of Fig.D.6 we plot the values of ∆χ2
min in function of the corresponding

values for Zmap, obtained in the analysis of our TOF data. The above criteria
sorts all the data in the left hand side and above the dashed lines as non
degenerate. This graph also shows that the constraint established for Zmap is
almost sufficient for sorting out the data. The criteria established on ∆χ2

min

is, nevertheless, a good check point to verify if the procedure is working
properly.

D.4 Using the semi-ideal model for testing

the χ2-map method.

In the previous paragraph we have described a procedure to sort TOF data
at T = Tc. The necessity of such a procedure comes, as we have pointed
out before, from the fact that we don’t know how to describe the TOF of
a slightly degenerate cloud. We could try to extend our model for the non-
degenerate case to Z & 1, finding a reasonable way of extrapolating the
fitting expression over that region. Instead of this, what we proposed to do
was to extrapolate the structure of the χ2-map for Z & 1. Note that this
method should not be used for deriving the chemical potential of degenerated
clouds but only to determine how likely a given TOF corresponds to a cloud
at T = Tc.

We may rise the question now on how valid this method should be, re-
garding the fact that we admit a smooth and continuous variation of the
χ2-map structure at the critical transition where we know that there is a
brusk variation of the cloud’s density.

This question may be addressed analytically if the atomic cloud is de-
scribed by the simple semi-ideal/Thomas-Fermi model (cf. §4.2.2.2 and
Ref.[47]). This model is a very simplified version of what happens in re-
ality but has the advantage of proposing analytical expressions for the ther-
mal cloud’s density in both non-degenerate and degenerate samples. To this
latter we should also add the contribution of the BEC, described by the
Thomas-Fermi approximation (cf. §A.2 of Appendix A).

D.4.1 The analysis of synthesized data at Z = 1.

We start be synthesizing numerically a TOF signal based on the semi-
ideal/Thomas-Fermi model with Z = 1 (which reduces to the simple ideal
gas model of Eq.2.23) with also random gaussian shot-noise with the same
amplitude as the one found in our signals.

For computing the χ2-map of this synthesized TOF, we use as fitting
function the same expression of semi-ideal/Thomas-Fermi. This expression
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Figure D.7: χ2-map of a numerically synthesized TOF signal, computed within
the semi-ideal model (cf. §4.2.2.2) for Z = 1, vT = 0.07 m/s and with added
random shot noise with the same characteristics as the one found in real data.
The fitting function is a piecewise function, defined according to the semi-ideal
model alone for Z 6 1 and accounting also for the BEC contribution for Z > 1
within the Thomas-Fermi approximation (cf. §A.2). As in the χ2-map presented
in Fig.D.1, the data points along the row ∆χ2(vT , 1) are well fitted by a parabola.
The same doesn’t happen with the data row ∆χ2(0.07, Z). The inset graph in the
top shows the parabolic fit to all the points of this data row (dashed line) and, also,
only on those with Z 6 1 (solid line). The minimum of the parabola in this latter
case is located almost at Z = 1 whereas in the former one being shifted towards
a smaller fugacity. As before, this happens due to the χ2-map deformation at
Z = 1 and the different ∆χ2 curvatures in the regions with Z small and bigger
than one. The graphs shows a similar behavior in both sides of Z = 1, but with
different correlation factors between the two parameters: in the Z > 1 region the
correlation gets smaller.At the transition (i.e. at Z = 1) we see no discontinuity
in the contour lines of the χ2 structure.
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is

I(δt;T, µ) =
(2π)−1/2

τ 3

g

vT

×

×


g5/2

[
e+βµ W(δt)

]
− g5/2

[
e+βµ W(δt)WD

]
if µ 6 1

2
M(gδt)2

2ζ(5/2)− g5/2

[
e−βµ W−1(δt)

]
+ g5/2

[
e−βµ W−1(δt)WD

]
+

+ (βµ)2 λT

4a

[
1−

(√
M
2µ

gδt
)2
]2

, otherwise.

where we have used the definitions of §4.3.3,

W(δt) ' 1
2
βMg2δt2

and
WD = exp

[
−1

2
R2

D/(vT t0)
2
]

with RD the detector radius.
A typical result obtained with this procedure, with vT = 0.07 m/s, is

the χ2-map shown in Fig.D.7, that shows different structure in either sides
of Z = 1. As before, the inset graphs fit parabolas to the synthesized data
row crossing at Z = 1 and vT = 0.07 m/s, the location of the χ2

0. Unlike
∆χ2(vT , 1.0), which is still well fitted by a parabola, the data row correspond-
ing to ∆χ2(0.07, Z) (top graph) shows a different curvature on the left and
right hand sides of Z = 1.

However, since the TOF was synthesized for Z = 1, we should expect
that the left hand side part of the ∆χ2 fits well to a parabola centered at
Zmap = 1 and with also ∆χ2

min = 0. This is actually what happens with just
a slight mismatch due to the random noise included in the synthesization of
the TOF.

This noise is responsible for the uncertainty in the determination of the
fugacity. To test the χ2-map strategy and also estimate the influence of the
TOF noise in the dispersion of Zmap we have repeated the above procedure,
in a Monte Carlo scheme, synthesizing many different TOF s always for the
same temperature and constants fugacities of Z = 1 and also Z = 0.9875. To
keep the analogy with what we do in the analysis of real data, we build then
the corresponding χ2-maps using as fitting function only the non-degenerate
part of Eq.D.3, valid for Z 6 1 (or else µ 6 0). In end we have also computed,
for each χ2-map, the values Zmap and ∆χ2

min.
Unlike the function we use for analyzing real data, in here we have a fitting

model, Eq.D.3 that works properly for non-degenerate and also degenerate
clouds. We can therefore compare the results we obtain for each synthesized
curve with the χ2-map strategy with those obtained with a standard LM fit
using Eq.D.3 as fitting function.
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Figure D.8: ∆χ2
min values in function of the Zmap for 500 synthesized TOF using

the semi-ideal/Thomas-Fermi model (cf. Eq.D.3) with vT = 0.07 m/s and fugaci-
ties equal to 1.0, 1.0125 and 1.025, respectively for the left hand side, central and
right hand side graphs. The χ2-map routine uses a ideal-gas model (the first line
of Eq.D.3). In the Z = 1.0 case, only 20% of the points have a Zmap > 1.0125.
The criteria given in §D.3.2 excludes 95% of the points for the Z = 1.025 case from
being considered to be at the critical transition point (see also text).

The result of this procedure for clouds with fugacities 10 equal to 1.0,
1.0125 and 1.025 is shown in the graphs of Fig.D.8. These graphs are similar
to the one of Fig.D.6, with ∆χ2

min in function of Zmap. For the synthesized
data with Z = 1.0, all points verifies ∆χ2

min < 15 and about 70% corresponds
to 0.9875 < Zmap < 1.0125. All of these would be sorted as clouds at the
critical point by the criteria given above in §D.3.2.

In the graph corresponding to Z = 1.025 case, most (∼ 95%) of the shown
synthesized data would be discarded from being at T = Tc. Finally, in the set
of data synthesized with Z = 1.0125, we would sort only half of the points.
This value should be seen as the uncertainty on the fugacity on the sorting
procedure.

D.4.2 Conclusion.

The χ2-map method is capable of finding the fugacity for TOF s at the critical
point, where a standard LM routine fails achieving that. This allows sorting
data at the critical point. Moreover, even for fugacities smaller than one, the
LM routine returns a value for Z that is slightly smaller than the value that

10Here, for simplicity, we use the term ”fugacity” also for degenerate clouds. In this case
Z = exp (µ/kBT ) where µ > 0 is the BEC chemical potential and T the thermal cloud
temperature.
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minimizes the chi-square which is, supposedly, the actual cloud’s fugacity.
However, if Z < 0.95, the values obtained with the χ2-map method and with
a LM routine are very similar, being this latter much easier to implement.
Concerning the values obtained for the cloud’s temperature, we observed no
large differences between the two methods.

Within the validity of the semi-ideal/Thomas-Fermi model and using the
criteria {Zmap < 1.0125,∆χ2

min < 15}, we see that:

• around 70% of data synthesized with Z = 1 is sorted by the procedure
as being at the critical point;

• 95% of the data synthesized with a fugacity equal to 1.025 is discarded.

• The higher bound used as sorting criteria for the fugacity, Z = 1.0125,
corresponds to the uncertainty of the method on the determination of
Z, at the critical point: 50% of the data synthesized with this value of
fugacity was discarded.

The semi-ideal/Thomas-Fermi model can hardly be considered as a good
one for dealing with real data. Even so, we believe that the results we
obtain with it mimics the essential behavior of the χ2-maps computed for
real TOF s and analyzed within the framework of the full model describing
the atomic flux with finite size effects and mean field interatomic interactions.
Actually, the most important ingredients to explain the χ2-maps deformation
at Z = 1 is the presence of a phase transition which is also present in the
semi-ideal/Thomas-Fermi model.
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We have studied ionizing collisions in a BEC of metastable He. Measurements of the ion production
rate combined with measurements of the density and number of atoms for the same sample allow us to
estimate both the two- and three-body contributions to this rate. A comparison with the decay of the
atom number indicates that ionizing collisions are largely or wholly responsible for the loss. Quantum
depletion makes a substantial correction to the three-body rate constant.
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The observation of Bose-Einstein condensation (BEC)
of metastable helium (He in the 23S1 state, denoted He*)
[1,2] constituted a pleasant surprise for experimentalists
although the possibility had been predicted theoretically
[3]. Success hinged, among other things, on a strong
suppression of Penning ionization in the spin-polarized,
magnetically trapped gas. Too high a rate of ionization
would have prevented the accumulation of sufficient den-
sity to achieve evaporative cooling. The ionization rate is
not completely suppressed however, and when the atomic
density gets high enough, a magnetically trapped sample
of He* does produce a detectable flux of ions. As shown
in [1], this signal can even be used as a signature of
BEC. The observation of ions from the condensate opens
the possibility of monitoring in real time the growth
kinetics of a condensate [4]. This is an exciting prospect,
but to quantitatively interpret the ion rate, one needs the
contributions of two- and three-body collisions.

In this paper we use the unique features of metastable
atoms to detect, in a single realization, the ionization
rate, the density, and the atom number. This allows us
to extract two- and three-body rate constants without
relying on fits to nonexponential decay of the atom num-
ber, which require good experimental reproducibility [5–
7] and are difficult to interpret quantitatively [5]. After
estimating the ionization rate constants, a comparison
with the decay of the atom number reveals no evidence
for collisional avalanche processes. Thus, by contrast with
87Rb [8], He* seems to be a good candidate for studying
the ‘‘hydrodynamic’’ regime [9], as well as the effects of
quantum depletion, i.e., a departure from the Gross-
Pitaevskii wave function in the Bogoliubov theory, due
to atomic interactions [10]. Indeed in our analysis of the
three-body ionization process, quantum depletion makes
a substantial correction [11].

Much theoretical [3,12] and experimental [1,2,13,14]
work has already been devoted to estimating inelastic

decay rates in He*. The dominant two-body decay
mechanisms, called Penning ionization,

He� � He� !

�
He� � He�1S� � e�

He�2 � e�
(1)

are known to be suppressed by at least 3 orders of magni-
tude in a spin-polarized sample, but the total rate con-
stant has not yet been measured. The three-body reaction,

He� � He� � He� ! He�2 � He���1 mK�

,! He� � He�1S� � e� (2)

proceeds via three-body recombination followed by auto-
ionization of the excited molecule. Both reactions yield
one positive ion which is easily detected. We define colli-
sion rate constants according to the density loss in a
thermal cloud: dn

dt � � n
� � �n2 � Ln3 with n the local

density, � the (background gas limited) lifetime of the
sample, and � and L the two-body and three-body ioni-
zation rate constants defined for a thermal cloud [15]. The
theoretical estimates of the rate constants at 1 
K are
�� 2	 10�14 cm3 s�1 [3,12] and L� 10�26 cm6 s�1

[16], and the experimental upper limits were [1,2] � 

8:4	 10�14 cm3 s�1 and L 
 1:7	 10�26 cm6 s�1.

For a pure BEC, in the Thomas-Fermi regime with a
number of atoms N0, and a peak density n0, one can
calculate the expected ionization rate per trapped atom:

� �
ion rate

N0
�

1

�0
�

2

7
2�n0 �

8

63
3Ln

2
0: (3)

The numerical factors come from the integration over the
parabolic spatial profile and the fact that although two or
three atoms are lost in each type of collision, only one ion
is produced. The effective lifetime �0 � � is due to ioniz-
ing collisions with the background gas. The factors i
take into account the fact that the two- and three-particle
local correlation functions are smaller than those of a
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thermal cloud. For a dilute BEC 2 � 1=2! and 3 � 1=3!
[7,11]. Because the He* scattering length (a) is so large,
quantum depletion (�

����������
n0a3

p
� leads to significant correc-

tions [11] to the ’s as we discuss below.
Much of our setup has been described previously

[1,17,18]. Briefly, we trap up to 2	 108 atoms at 1 mK
in a Ioffe-Pritchard trap with a lifetime (�) of 90 s.We use
a ‘‘cloverleaf ’’ configuration [19] with a bias field B0 �
150 mG. The axial and radial oscillation frequencies in
the harmonic trapping potential are �k � 47� 3 Hz and
�? � 1800� 50 Hz, respectively [!=2� � ��k�2

?�
1=3 �

534 Hz]. A crucial feature of our setup is the detection
scheme, based on a two stage, single anode microchannel
plate detector (MCP) placed below the trapping region.
Two grids above the MCP allow us either to repel positive
ions and detect only the He* atoms, or to attract and
detect positive ions produced in the trapped cloud.

To detect the ion flux, the MCP is used in counting
mode: the anode pulses from each ion are amplified,
discriminated with a 600 ns dead time and processed by
a counter which records the time delay between succes-
sive events. Typical count rates around BEC transition are
between 102 and 105 s�1. We have checked that the cor-
relation function of the count rate is flat, indicating that
there is no double counting nor any significant time
correlation in the ion production. The dark count rate is
of order 1 s�1. By changing the sign of the grid voltage,
we have checked that while counting ions, the neutral
He* detection rate is negligible compared to the ion rate
(less than 5%) even when the radio frequency (rf) shield
is on. The intrinsic ion detection efficiency of the MCP for
2 keV He� ions is close to the open area ratio (60%) [20].
To estimate the total ion detection efficiency, we then
multiply by the geometric transmission of the two grids
�0:84�2. Based on Refs. [20,21], we assume this (0:42) is
an upper limit on our detection efficiency.

To find the values of N0 and n0 corresponding to the
measured ion rate, we use the MCP to observe the time-
of-flight (TOF) signal of the He* atoms released from the
rapidly switched off trap. The instantaneous count rate
can be as high as 106 s�1, and the MCP saturates when
used in counting mode. To avoid this problem, we lower
the MCP gain, and record the TOF signal in analog mode
with a time constant of 400 
s. Several tests were per-
formed to verify the linearity of the detector.

In a typical run, evaporative cooling takes place for
40 s, down to an rf-knife frequency about 50 kHz above
the minimum of the trapping potential. Near the end of
the ramp, the ion rate increases sharply, signaling the
appearance of a BEC (Fig. 4 in [1]). After reaching the
final value, the rf knife is held on at that frequency. This
constitutes an rf shield which eliminates hot atoms and
maintains a quasipure BEC for up to 15 s (see Fig. 3). By
quasipure we mean that we see no thermal wings in
signals such as shown in the inset of Fig. 1. From tests
of our fitting procedure, we estimate that the smallest

thermal fraction we can distinguish is about 20%, with a
temperature on the order of the chemical potential. Runs
with visible thermal wings were discarded.

To acquire the TOF signals corresponding to a given ion
rate, we turn off the rf shield, wait 50 ms, and then turn
off the magnetic trap and switch the MCP to analog
mode. To be sure that the rf has no influence on the ion
rate, we use only the number of ions observed during the
50 ms delay to get the rate. We fit the TOF signals to an
inverted parabola squared as expected for a pure BEC in
the Thomas-Fermi regime and for a TOF width (� 5 ms)
narrow compared to the mean arrival time (100 ms) [1].
Under these assumptions, the chemical potential 
 de-
pends only on the TOF width, the atomic mass, and the
acceleration of gravity [22], and thus can be measured
quite accurately. Figure 1 shows that 
 varies as expected
as N2=5

d with Nd the number of detected atoms in the
quasipure BEC. A fit on a log-log plot gives a slope of
0.39. Residuals from the linear fit do not show any system-
atic variation which is a good indication of the detection
linearity and of the proportionality between Nd and N0.

To determine the collision rate constants � and L, we
need an absolute calibration of the number of atoms and
the density. As discussed in Ref. [1], all the atoms are not
detected, and the direct calibration has a 50% uncertainty
which is responsible for the large uncertainty in the
scattering length a. In fact the measurement of the
chemical potential gives an accurate value for the product
n0a � 
m=4� �h2, and with the value of ! gives the
product N0a � �1=15�� �h=m!�1=2�2
= �h!�5=2 as well.
Therefore, in the hopes that the He* scattering length
will be measured more accurately in the future, we shall
express N0 and n0 in terms of a. In this paper, unless
stated otherwise, we suppose that a � 20 nm, and in our
conclusions we shall discuss how our results depend on a.

Figure 2 shows the ion rate per atom � versus the peak
density. The densest sample corresponds to N0 � 2	 105
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FIG. 1. Chemical potential versus number of detected atoms
to the power 2

5 and its linear fit. Data are for quasipure BEC. The
inset shows a typical TOF signal and its inverted parabola
squared fit.
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atoms and n0 � 2:5	 1013 cm�3. The corresponding
Thomas-Fermi radii are r? ’ 5 
m and rk ’ 200 
m.
The vertical intercept in Fig. 2 corresponds to ionizing
collisions with the background gas (1=�0). We have
independently estimated this rate using trapped thermal
clouds at 1 mK and 5 
K and found 1=�0 & 5	 10�3 s�1.
This value is negligible at the scale of the figure.

The curvature in Fig. 2 shows that three-body ionizing
collisions are significant. Before fitting the data to get �
and L, we must take into account several effects. First, for
three-body collisions, quantum depletion is important.
For T � 0, on the basis of Ref. [11], we obtain a multi-
plicative correction to the factor 3 of �1� �� �
�1� 23:2	

�����������
n0 a3

p
� [23]. At our highest density � ’

0:35. Two-body collisions are subject to an analogous
correction but approximately 3 times smaller. The fits in
Fig. 2 include the density dependence of 2;3, associated
with quantum depletion. The n3=20 dependence introduced
for two-body collisions is far too small to explain the
curvature in the data. The density dependence of 2;3 does
not improve the quality of the fit, but it significantly
reduces the value of the fitted value of L (by 30%).

In addition, the fact that the sample probably contains a
small thermal component means that collisions between
the condensed and the thermal parts must be taken into
account [6,11]. Assuming a 10% thermal population
( 

kBT

’ 1:5), we find 3 �
1
6 �1� �� �0�, with an addi-

tional correction �0 ’ 0:11 for the densest sample [24].
Taking into account all these corrections, and as-

suming an ion detection efficiency of 0.42, the fitted
values of the collision rate constants [15] are �20 �
2:9��2:0� 	 10�14 cm3 sec�1 and L20 � 1:2��0:7� 	
10�26 cm6 sec�1, where the subscripts refer to the as-
sumed value of a. These values are in good agreement
with the theoretical estimates. The error bars are esti-
mated as follows. We fix either � or L and use the other as

a fit parameter. We repeat this procedure for different
values of the fixed parameter and take the range over
which we can get a converging and physically reasonable
fit (i.e., no negative rate constants) as the uncertainty in
the fixed parameter. These error bars are highly corre-
lated since if � is increased, L must be decreased and vice
versa. The error bars do not include the uncertainty in the
absolute ion detection efficiency (see below).

Until now we have assumed a � 20 nm, but current
experiments give a range from 8 to 30 nm [1,2]. Using
Eq. (3) and our parametrization of n0 and N0 in terms
of a, one can see that, in the absence of quantum deple-
tion, the values of � and L extracted from our analysis
would be proportional to a2 and a3, respectively. Taking
quantum depletion into account, no simple analytical
dependence exists, but one can numerically evaluate �
and L vs a and fit the results to expansions with leading
terms in a2 and a3, respectively. The effect of quantum
depletion is negligible for � [�a � �20�

a
20�

2]. For L, we
find La � L20�

a
20�

3�1� 0:21 a�20
20 � with a in nm.

To test the consistency of our measurements, we plot
the decay of the atom number (Fig. 3). To acquire these
data, we held the BEC in the trap in the presence of the rf
shield for varying times. This study involves multiple
BEC realizations, which typically exhibit large fluctua-
tions in the initial atom number. We have been able to
reduce this noise by using the ion signal to select only
data corresponding to the same ion rate 500 ms after the
end of the ramp. This time corresponds to t � 0 in the
figure. We also plot the predicted decay curve (solid line)
corresponding to ionization only. This curve results from
a numerical integration of the atom loss due to ionization
processes, calculated from the fitted values �20 and L20.
The fact that the error bars on � and L are correlated
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FIG. 2. Ion rate per trapped atom versus peak density for 350
different quasipure BEC’s. Atom number and density are de-
duced from 
 , !, and a (here 20 nm). Data were taken for two
different bias fields corresponding to �? � 1800 Hz (crosses)
and �? � 1200 Hz (circles). The dashed line corresponds to the
best fit involving only two-body collisions. The solid line is a fit
to two- and three-body processes.
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FIG. 3. Fraction of remaining atoms measured by TOF as a
function of time. The rf shield is on and the cloud remains a
quasipure condensate during the decay. The lines correspond to
the predicted atom decay according to Eq. (3) with the fitted
value of the two- and three-body rate constants for a � 10 nm
(dashed line), a � 20 nm (solid line), and a � 30 nm (dotted
line). The case of a � 10 nm is not necessarily excluded
because other, nonionizing losses could be present.
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leads to a small uncertainty on the solid curve that hap-
pens to be of the same order of magnitude as the typical
error bars on the data. The observed decay agrees fairly
well with the solid curve, and ionization apparently ac-
counts for most of the loss. If the ion detection efficiency
were actually lower than we assume, the predicted decay
would be faster than the observed decay which is un-
physical (assuming a � 20 nm). We conclude that our
estimate of the ion detection efficiency is reasonable and
does not lead to an additional uncertainty in � and L.

We also plot the curves obtained from the same analy-
sis but with scattering lengths of 10 and 30 nm, assuming
a detection efficiency of 0.42. The curve corresponding to
a � 30 nm lies below the data points. Based on our
analysis, this means that a � 30 nm is excluded. A scat-
tering length of 25 nm is the largest one consistent with
our data. In contrast, the decay predicted for an analysis
with a � 10 nm is slower than the observed decay. This
would mean that there are additional nonionizing losses
(contributing up to half of the total loss), and/or that we
have overestimated the ion detection efficiency by a factor
as large as 2. In the latter case, � and L should be multi-
plied by the same factor. This results for a � 10 nm in a
supplementary systematic uncertainty on � and L of a
factor as large as 2.

In the event that our upper limit on the ion detection
efficiency is too low, the rate constants � and L should be
reduced by a factor as large as 2.4 (� 0:42�1). In that
case, our data would not exclude a � 30 nm and nonion-
izing losses could significantly contribute to the total loss.

Even though the peak densities of our BEC are small
compared to those in alkalis, the elastic collision rate is
high because of the large scattering length, and one must
consider the possibility of collisional avalanches. For a �
20 nm our densest cloud has a mean free path of 7 
m
and using the definition of [8] the collisional opacity is
0:8. With Rb atoms this would result in much increased
loss due to avalanches [8]. Here we have to consider
secondary collisions leading to both ion production and
atom loss. However, for secondary ionization, mean free
paths are at least 2 orders of magnitude larger than rk.
Hence secondary ionization is unimportant. This conclu-
sion is supported by our observation of no correlation in
the time distribution of detected ions.

The good agreement between the data and the curve in
Fig. 3 indicates that losses due to nonionizing collisional
avalanches are not taking place either. This is in agree-
ment with data on elastic collisions with He�, He�2 , and
He�1S�, which have small cross sections [25]. Collisions
with hot He* atoms from the reaction of Eq. (2) are more
likely to play a role, but due to the higher velocity, the
elastic cross section for these atoms is smaller. In Rb the
situation is different because a d-wave resonance in-
creases the total cross section [8].

The theoretical analysis shows that quantum depletion
strongly affects the measured three-body rate constant.

One way to experimentally demonstrate this effect would
be to compare with similar measurements with thermal
clouds. Absolute calibration of ion and atom detection
efficiency should play no role in this comparison, if one
could prove that they are the same for both situations.
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Abstract
We discuss observations of the ion flux from a cloud of trapped 2 3S1
metastable helium atoms. Both Bose–Einstein condensates (BEC) and
thermal clouds were investigated. The ion flux is compared with
time-of-flight observations of the expanded cloud. We show data concerning
BEC formation and decay, as well as measurements of two- and three-body
ionization rate constants. We also discuss possible improvements and
extensions of our results.

Keywords: Cold atoms, Bose–Einstein condensate, metastable helium,
condensate formation, Penning collisions

1. Introduction

Metastable helium (He∗) has recently joined the list of atomic
species for which Bose–Einstein condensates (BEC) have been
realized [1, 2]. Its major feature is the 20 eV internal energy
of the metastable state. Although this metastability leads
to additional possible loss channels, it has been shown that
these are not a serious problem. Indeed, ionizing collisions
are a benefit because their low rate is nevertheless easily
detectable. Ion detection is thus a new, ‘non-destructive’ and
real-time observation tool for studies of the phenomenon of
BEC formation kinetics [3–7]. In this paper we will describe
our progress toward rendering the ion signal quantitative.

Several loss mechanisms are specific to the metastable
state. First, collisions with the background gas lead to Penning
ionization of the background gas:

X + He∗ → X+ + He + e−.

The positive ion X+ thus produced can be easily detected and
if this is the dominant ion production mechanism, as it is for a
dilute sample (for a density n � 1010 cm−3), the corresponding
flux is proportional to the number of trapped He∗ atoms. So for

1 Author to whom any correspondence should be addressed.
2 Permanent address: Departamento de Fisica, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal.

example we can easily measure the lifetime of a dilute, trapped
sample. This linearity no longer holds when the density of the
trapped cloud becomes high. Collisions between atoms in the
cloud must be taken into account. The relevant ionization
mechanisms involve both two-body processes:

He∗ + He∗ →
{

He+ + He(1S) + e−

He+
2 + e− (1)

and a three-body process:

He∗ + He∗ + He∗ → He∗
2 +He∗(∼1 mK)

↪→ He+ + He(1S) + e−.
(2)

When these processes are present, the ion flux is related to the
spatial integral of n2 and n3. At BEC densities, the two- and
three-body processes dominate the background gas ionization,
and so detecting the ion flux in this case amounts to monitoring
the atomic density.

In this paper, after a brief description of our experimental
set-up, we present observations, via the ion flux, of the
formation and the decay of a He* BEC. The observations are
mainly qualitative, but we discuss some of the requirements for
making them quantitative. We then discuss our measurements
of the two- and three-body ionization rate constants both in
a BEC [8] and in a thermal cloud. We discuss some of the
systematic errors in these measurements and conclude with
some ideas for avoiding these errors.
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Figure 1. Experimental set-up. The cold atoms are trapped in a
cloverleaf type magnetic trap. A special feature of our set-up is the
MCP placed below the trapping region. Two grids above the MCP
allow us either to repel positive ions and detect only the He∗ atoms
suddenly released from the trap (TOF measurements), or to attract
and detect the positive ions produced in the trapped cloud (ion rate
measurements).

2. Set-up and experimental procedure

Our set-up has been described previously [1, 8, 9]. Briefly,
we trap up to 2 × 108 atoms at 1 mK in a Ioffe–Pritchard trap
with a lifetime (τ) of 90 s. We use a ‘cloverleaf’ configuration
(figure 1) [10] with a bias field B0 = 300 mG. The axial
and radial oscillation frequencies in the harmonic trapping
potential are typically ν‖ = 47±3 Hz and ν⊥ = 1200±50 Hz
respectively (ω/2π = (ν‖ν2⊥)1/3 = 408 Hz). In a typical
run, forced evaporative cooling takes place for 40 s and is
divided into four linear ramps. The last ramp lasts for 5 s and
the frequency decreases from 2000 kHz to a value between
1500 and 1000 kHz, depending on the condensed fraction
wanted. A frequency of 1000 kHz (which is about 50 kHz
above the minimum of the trapping potential) corresponds to
the formation of a pure condensate.

A special feature of our set-up is the detection scheme,
based on a two-stage, single-anode microchannel plate
detector (MCP) placed 5 cm below the trapping region
(figure 1). Two grids above the MCP allow us either to repel
positive ions and detect only the He* atoms, or to attract and
detect positive ions produced in the trapped cloud. To detect
the ion flux, the MCP is used in counting mode [8]: the anode
pulses from each ion are amplified, and processed by a counter
which records the time delay between successive events. We
can also use the MCP to record a time-of-flight (TOF) signal
of the atoms released from the trap. Because the width of the
TOF distribution is small (about 5 ms for a BEC) compared
with the mean arrival time (100 ms), all of the atoms hit the
detector with nearly the same final velocity of 1 m s−1. The
TOF spectra are then proportional to the spatial distribution
along the vertical direction, integrated over the two horizontal
directions. To record the TOF we use the MCP in analogue
mode to avoid saturation due to the very high instantaneous
flux [8].

3. Monitoring the evolution of a He∗ cloud

To monitor the evolution of an atomic cloud, one usually
releases the cloud and measures the TOF signal. Such a
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Figure 2. Single-shot measurements of the ion rate versus time and
the corresponding TOF signals. Forced evaporative cooling takes
place until t = 0 (only the last 2 s of the rf ramp are shown: from
1400 to 1000 kHz). The upper, lighter, ion curve corresponds to the
case where we keep an rf shield on during the decay, while the
lower, darker, decay curve is recorded without. The arrows indicate
the time the trap was switched off to record the TOF. The dark
curves superimposed on the TOF signals are Gaussian fits to the
wings of the TOF.

technique is destructive, and one must repeat the cooling
sequence for each measurement. The TOF signals are thus
subject to fluctuations in the initial number of atoms. In our
case, we have a supplementary signal: the ion rate. We can thus
minimize these fluctuations, by selecting runs having identical
ion rates from the time between the beginning of the last rf
ramp until release.

Another type of observation is possible, however. We
can use the evolution of the value of the ion rate, which is
obtained in a single run, independent of any initial fluctuations.
When the density is close to the density for BEC formation
(i.e. n � 1012 cm−3), two- and three-body collisions within the
cloud dominate the ion production. Thus the ion rate is related
to the density of the cloud via the two- and three-body rate
constants. Under some conditions (see appendix A) a record
of the ion rate followed by a TOF measurement at the end of the
formation of the BEC allows one to monitor the evolution of all
the parameters of the cloud. In such an observation, knowledge
of the two- and three-body rate constants is essential. This is
the aim of the experiments described in section 4.

3.1. Observation of condensate formation during the
evaporation ramp

Before trying to do a quantitative experiment on BEC
formation from of a non-equilibrium uncondensed cloud [3, 4],
we can explore qualitatively what happens during our standard
evaporation ramp. We show in figure 2 the evolution of the
ion rate from 2 s before the end of the rf ramp to 2.5 s after
it. In addition we show the TOF signals corresponding to
various times before the end of the ramp, selected using their
initial ion rate. Between times t = −2 and 0 s, the rf was
ramped down linearly from 1.4 to 1 MHz. At t = 0 a pure
condensate is formed. The comparison of the TOF and ion
data first shows that the appearance of a narrow structure in
the TOF spectrum corresponds, as closely as we can observe
it, to an abrupt change in the slope of the ion signal. Thus, not
only is the ion signal a reliable indicator of the presence of a
BEC, but also a precise measure of the time of its appearance.
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Figure 3. Same as in figure 2 except that we examine the decay of
the ion signal after t = 0. The upper TOF curves correspond to the
upper (lighter) ion decay curve (rf shield present). The lower TOF
curves correspond to the lower (darker) ion curve (without rf shield).
This shows that the rf shield is maintaining a quasi-pure BEC during
the decay, and that in the absence of an rf shield the condensate
rapidly heats up, causing the ion rate to drop even faster.

One’s first reaction in looking at the ion rate signal is to
assume that the higher the ion signal, the larger the BEC and the
smaller the thermal cloud. Figure 2 shows, however, that this is
not quite the case: the maximum in the ion signal arrives before
the achievement of a pure BEC. In fact, computing the value
of the ion signal is rather complex. First, as was discussed
in [11, 12], as well as below, the indistinguishability of the
atoms in the BEC renders the effective two- and three-body
collision rate constants smaller than in the thermal cloud by
factors of 1/2! and 1/3! respectively. Collisions between
condensed and non-condensed atoms must also be taken into
account [11] and the degree of overlap between the two clouds
must be calculated. Thus it might be conceivable that the ion
rate goes down when a BEC is formed. We show, however, in
appendix A that for a fixed total number of atoms, the ion rate
increases monotonically as a BEC becomes more and more
pure. The observation in figure 2 is explained by the fact that,
up until t = 0 in figure 2, the atoms are being evaporatively
cooled as well as undergoing ionizing collisions and thus
the total number of atoms must be decreasing. An explicit
calculation including the atom loss is given in appendix A and
agrees qualitatively with our observations.

3.2. Observing the decay of the condensate

Figure 3 shows a series of TOF spectra taken after the end of
the rf ramp. Two situations are shown. In one case (upper,
lighter ion curve) the rf knife was held on at the frequency
corresponding to the end of the ramp. In the other case (lower,
darker ion curve) the rf power was turned off completely at the
end of the ramp. The data show that the condensate remains
pure with the rf knife kept on. In the absence of the rf knife,
the ion rate decays much faster and one sees that the sample
rapidly acquires a thermal component. Since the total number
of trapped atoms in the presence of a knife must be smaller than
or equal to that in the absence of rf knife, we conclude that the
rapid decline in ion rate is due to a loss of sample density and
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Figure 4. Heating of the condensate in the absence of an rf shield.
The temperature increases from 1.1 to 2.2 µK in 1.5 s. The time
t = 0 is the same as in figures 2 and 3. For each different time, four
different TOFs have been acquired and fitted.
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Figure 5. The measured number of atoms as a function of time.
Crosses represent the total atom number, circles represent the
number of atoms in the condensed part. The data come from the fits
of the TOFs presented in figures 2 and 3 and correspond to the case
where the rf knife is absent. The time scale indicated is the same as
in figures 2 and 3. The increase in the total number after t = 0 is
spurious (see text).

not of the total number of atoms. This conclusion is confirmed
by a fit to the thermal wings, which reveals a heating as shown
in figure 4.

3.3. Measuring the total number of atoms

An attempt to measure the total number of atoms as a function
of time is shown in figure 5. Both the total number and the
condensed number as derived from fits to the TOF signals of
figures 2 and 3 are plotted. Surprisingly the total number of
atoms appears to increase between t = 0 and 1 s. There must be
a systematic error, which we can account for by recalling that in
our apparatus we only detect atoms which make non-adiabatic
transitions to the (field insensitive) m = 0 state during the
turn-off of the magnetic trap [1]. The fraction we observe is
of the order of 10%. It is quite possible that this non-adiabatic
transition does not occur with equal probability at every point
in the trap. Thus clouds with different spatial distributions may
be converted to the m = 0 state with different efficiencies. This
could explain why atoms in the thermal cloud are observed
with a higher efficiency than condensed atoms, as indicated in
figure 5.

We conclude that our measurements of the absolute
number of atoms contain uncontrolled systematic errors of the
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order of a factor of two. So, even if we know the ionization
rate constants, we cannot use the ion rate to study condensate
growth kinetics because we need the absolute value of the
initial number of atoms. It would also be useful to measure
the variation in the number of atoms during formation. Such a
study will have to wait for a more reliable method of releasing
the atoms from the trap (see conclusion). However, the
measurement of the ionization rate constants is a first step.
For a BEC, we can circumvent the systematic error on the
detection efficiency of the atoms to make a measurement of
the ionization rate constants. This has been described in [8]
and will be summarized in the following section. Afterwards,
we will investigate the effect of this systematic error on the
measurement for a thermal cloud.

4. Rate constants of ionizing collisions

The usual method of measuring the inelastic rate constants
relies on fits to a non-exponential decay of the number of
atoms. This method has some practical problems if the sample
heats during the measurement: the density changes which
complicates the fitting procedure. A way to avoid this heating
is to apply an rf shield, but this causes atom losses, which are
not due to collisions. What is even more inconvenient in our
case is that what is measured in this kind of experiment is a
decreasing atom number due to losses, which can be due to
ionizing as well as non-ionizing collisions. We want to relate
the ion rate to the density of the cloud, so what we need is
the rate constants for ionizing two- and three-body collisions.
We therefore use another method which consists of directly
observing the products of the collisions, namely the number of
ions, as a function of the density of the cloud.

As we have seen in section 3, there is a systematic error
on the measurement of the number of atoms and thus of the
density of the cloud. But we will see that we can circumvent
it in the case of the BEC. Let us then assume first that we are
able to measure the number of atoms accurately.

We use the MCP to detect both the ions and the TOF signal.
In a single run we record the ion rate during the last seconds
of the ramp until we switch off the magnetic trap and record
the TOF signal (to obtain the atom number N and the density).
The very last value of the ion rate recorded corresponds to
ions produced by the cloud observed with the TOF signal. We
repeat this sequence many times with different numbers of
atoms in the cloud. The way to vary this number is to keep
the atoms in the trap with an rf shield kept on. In this way we
reduce the atom number and keep the temperature of the cloud
constant. As explained in appendix A, the relation between ion
rate and density is quite complex in the case of the presence
of collisions between atoms in the condensed part and atoms
in the thermal part. We therefore only examine the case of a
pure BEC or a pure thermal cloud. In that case we can write
the ion rate per atom � as follows:

ion rate

N
= � = 1

τ ′ +
1

2
κ2β〈n〉 +

1

3
κ3L〈n2〉 (3)

where 〈n〉 = 1
N

∫
n2 dr and 〈n2〉 = 1

N

∫
n3 dr, n being the

local density. We have also introduced the two- and three-
body ionizing collision rate constants, β and L respectively,
defined according to their effect on the density loss in a thermal

gas3: ( dn
dt )ionization = − n

τ ′ −βn2 − Ln3. The effective lifetime
τ ′ � τ is due to ionizing collisions with the background gas.
The numerical factors come from the fact that although two
or three atoms are lost in each type of collision, only one ion
is produced. The factors κ2 and κ3 take into account the fact
that the two-and three-particle local correlation functions are
different depending on whether it is a BEC or a thermal cloud.
For the thermal cloud κ2 = κ3 = 1, while for a dilute BEC,
one has κ2 = 1/2! and κ3 = 1/3! [11, 12]. When the sample
is very dense, quantum depletion must be taken into account,
which modifies these factors [11]. A measurement of β and L
would allow us to test experimentally the theoretical values of
κ2 and κ3 [8].

4.1. Rate constants for a BEC

To determine the ionizing collision rate constants β and L ,
we need an absolute calibration of the number of atoms in
the condensate, N0, and the peak density, n0, in order to
calculate 〈n〉 and 〈n2〉. As discussed above, we do not have
a good calibration of these quantities. In the case of a BEC,
however, the measurement of the chemical potentialµobtained
by a fit of the TOF signal gives an accurate value for the
product n0a = µm/4πh̄2, a being the scattering length.
With the value of ω we also obtain the product N0a =
(1/15)(h̄/mω)1/2 (2µ/h̄ω)5/2. Experimentally we confirm
that µ ∝ N 2/5

d where Nd is the number of detected atoms [8].
This is a good indication that our detector is linear and that
the detection efficiency for a BEC is indeed independent of µ.
Assuming a value of the scattering length (a = 20 nm), we
therefore have an accurate measurement of n0 and N0. We have
measured the rate constants β and L for a condensate [8]. We
obtain by a fit to equation (3) (having corrected for the effect
of quantum depletion and the fact that the BEC also contains
a small thermal fraction) β = 2.9(±2.0)× 10−14 cm3 s−1 and
L = 1.2(±0.7) × 10−26 cm6 s−1. These values agree with
the theoretical estimates [13, 14]. The scattering length is not
well known [1, 2], so we have also given β and L for different
values of a [8].

4.2. Rate constants for a thermal cloud

To determine the rate constants for a thermal cloud we need,
as before, to determine the atom number and density. We
cannot use the same trick as in section 4.1 to avoid systematic
errors in the detection efficiency. If we want to use the above
experimental method for a thermal cloud we must rely on a
fit of the TOF to find the atom number and the temperature
T . In appendix B, we propose a method to determine the
rate constants which is independent of an absolute detection
efficiency, but at this stage we will concentrate on the same
technique as used for a BEC.

As we have shown above, the detection efficiency is ex-
pected to be different for a thermal cloud and we can investigate
the effect of this systematic error on these measurements. We
repeat the above described experiment, this time with a pure
thermal cloud. To begin with, we assume that the detection
efficiency is the same for a BEC and a thermal cloud. We

3 Collision rate constants are sometimes defined directly for a BEC (β ′ = β/2
and L ′ = L/6).
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Figure 6. Ion rate per trapped atom (�) in a thermal cloud versus
average density. The full curve corresponds to the value of β and L
deduced from the condensate measurements.
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Figure 7. Same as figure 6 but assuming a detection efficiency of
the thermal cloud a factor of 1.5 higher relative to the BEC. The data
have simply been rescaled along both axes; the full curve is the same
as in figure 6.

plot the ion rate per atom as a function of 〈n〉 in figure 6. We
can extrapolate the data to obtain the vertical intercept, which
corresponds to 1/τ ′. For densities corresponding to the mo-
ment of formation of BEC, the corresponding ion rate N/τ ′
is negligible compared with the total ionization rate, meaning
that we are dominated by two- and three-body processes (see
figures 2 and 5). To compare with the results obtained for the
BEC, we have also plotted the curve we would expect using
the above values of β and L . It is clear that the data do not
agree with this curve. Moreover, no possible pair of β and L
taken within their error bars (see [8]) can transform the curve
so that it agrees with the data. Nor can assuming a different
scattering length. What can make the curve agree with the
data is assuming a different detection efficiency for atoms in
the thermal cloud. If we assume for example that the detection
efficiency is a factor of 1.5 higher for a thermal cloud relative
to a BEC (which is consistent with figure 5), the curve agrees
better with the data as shown in figure 7.

The dispersion of the data points is quite large. This
dispersion can be understood by examining figure 8 in which
we have plotted the same data as in figure 6, but now indicating
the temperature corresponding to each different point on the
graph. There is a clear systematic variation with temperature.
One possible explanation is that the detection efficiency is
temperature dependent. This agrees with the above idea that
the efficiency depends on the spatial extent of the cloud which
is indeed related to the temperature. We do not know the form
of the detection efficiency as a function of temperature, but
comparing these data (indicating that cold atoms are better
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Figure 8. Same data as in figure 6 but with the different
temperatures indicated. The lighter circles correspond to the point
with higher temperatures (the maximum temperature is 5.5 µK), the
darker circles with lower temperatures (minimum temperature
1.8 µK).

detected) with the fact that a thermal cloud is better detected
than a BEC, leads us to conclude that there exists a certain
temperature giving a maximal detection efficiency. Therefore
the correction to the detection efficiency for thermal atoms is
not just a simple factor, but rather a function of temperature.
Without knowing this correction, we cannot use this method
to determine the collision constants for a thermal cloud. Still,
these results are a consistency check on the rate constants
measured using a BEC.

5. Conclusion

We have seen that the benefits of ion detection are twofold.
First, the ion rate can be used to select BECs with very similar
parameters out of a sample with large fluctuations. Second,
the ion rate itself can give information on the condensate on a
single-shot basis. Quantitatively, we still have some difficulties
interpreting the data due to systematic errors in the detection
calibration.

One way to overcome this problem is to release the atoms
from the trap by the mean of Raman transitions. It should
be possible to transfer close to 100% of the atoms into the
m = 0 state. This will eliminate the temperature dependence
of the detection efficiency and allow us to obtain more precise
measurements of β and L , both for the BEC by improving
the value of the scattering length and for the thermal cloud by
making the detection efficiency temperature independent.
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Appendix A. Predictions of the ion rate during the
formation of the BEC

The two- and three-body ion rates (I2b and I3b respectively) in
a sample containing both a BEC and a thermal cloud are given
by [11]:
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I2b = 1

2

β

2!

∫
dr [n2

0(r) + 4n0(r)nth (r) + 2n2
th(r)] (A.1)

I3b = 1

3

L

3!

∫
dr [n3

0(r) + 9n2
0(r)nth (r)

+ 18n0(r)n2
th(r) + 6n3

th(r)] (A.2)

where n0(r) is the local density of the BEC and nth(r) is the
local density of the thermal cloud. Here we have taken into
account the symmetrization factors, but neglected quantum
depletion.

Four parameters are needed to determine the densities of
the two clouds: N0, µ, Nth and Tth . In the Thomas–Fermi
approximation, however, the BEC density depends only on µ:

n0(r) = max

[
0,

µ − U (r)

g

]
(A.3)

with U (r) the harmonic trapping potential and g = 4πh̄2a/m
the interaction strength. The density of the thermal
cloud depends on two parameters. But, if thermodynamic
equilibrium is reached, taking into account the interactions
between the BEC and the thermal cloud (and neglecting the
interaction energy of the thermal cloud), we can write:

nth(r) = 1

λ3
d B

g3/2

(
exp

(
− 1

kB T
(U (r) + 2gn0(r) − µ)

))
(A.4)

where λd B is the thermal de Broglie wavelength and g3/2(x) =∑+∞
n=1

xn

n3/2 . In that case, given µ, nth only depends on one
additional parameter.

A.1. Comparison between the ion rates created by a thermal
cloud at T = TC and a pure BEC

Before trying to calculate the ion rate for any T , which requires
numerical calculation, let us first examine the ion rate created
by a thermal cloud at T = TC with a number of atoms N and
that created by a pure BEC (T = 0) with a number of atoms
ηN (η < 1).

In the case of two-body collisions, the ratio R2b of the ion
rates created by a pure BEC (I B EC ) and by a thermal cloud
(I th ) is related to the ratio of the peak densities. For three-body
collisions the ratio (R3b) is related to the square of that ratio.
Using the above equations we find:

(
n0

nth

)
= C0η

2/5N−1/10

(
σ

a

)3/5

(A.5)

R2b = I B EC
2b

I th
2b

= C2η
7/5N−1/10

(
σ

a

)3/5

(A.6)

R3b = I B EC
3b

I th
3b

= C3η
9/5N−2/10

(
σ

a

)6/5

(A.7)

where σ =
√

h̄
mω

. The numerical factors C0 � 0.78,
C2 � 1.05 and C3 � 0.49 are independent of the atom
considered and only assume that the cloud is trapped in a 3D
harmonic trap. The maximum ratios are reached in the case of
no loss (η = 1). Using the typical values of our experiment
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Figure A.1. Evolution of the ion rate with time. In (a) the total
number of atoms is constant. We show the different contributions to
the total ion rate (continuous curve) of the ion rate created by
two-body collisions (short dashed curve) and three-body collisions
(long dashed curve). In (b) the total number of atoms (dashed curve)
decreases due to ionizing collisions. Here the ion rate exhibits a
maximum before the formation of a pure BEC. For both graphs, the
initial number of atoms is 6 × 105 and a linear evolution of the
temperature between TC and 0 is imposed. The rates have been
calculated with the values of rate constants measured in [8].

(a � 20 nm, N � 4 × 105 and ω � 2π × 408 Hz), we find
( n0

nth
)max � 4, (R2b)max � 5 and (R3b)max � 12.
If the total number of atoms decreases during the

formation of the BEC, these ratios rapidly fall. For instance,
if the number of atoms decreases by a factor of 3.5 during the
last 750 ms of evaporation as shown in figure 5, we would
not have seen an increase of ionization rate but roughly the
same ion rate at t = −750 and 0 ms! This is an additional
evidence of the difference of neutral atom detection efficiency
for a thermal cloud and BEC (i.e. the total number of atoms
decreased by less than 3.5).

A.2. Evolution of the ion rate between T = TC and T = 0

Using equations (A.1) and (A.2), we have numerically
calculated the ion rates for all temperatures. If the cloud is at
thermodynamic equilibrium all the parameters of the cloud are
deduced from two parameters, for example the total number
of atoms and the temperature. To simulate a time evolution
of the ion rate we thus need a model for the variation of
these parameters. In this appendix we will assume a linear
evolution of the temperature between T = TC and 0 in 0.7 s.
This is of course a simplification, but given the linearity of the
evaporative cooling ramp, it is quite a good approximation.

In figure A.1(a) we show the evolution of the ion rates
assuming a constant total number of atoms. The ion rate
increases monotonically. We also see that the number of
ions produced and thus also the number of lost atoms is not
necessarily negligible compared with the total.

We can attempt to take into account these losses in our
model. In the experiments described in the text, the losses
are not only due to the ionizing collisions but also to the rf
knife. In addition, losses not only lead to a decrease in the
total number of atoms but also to a change in the temperature
because these collisions change the condensed fraction. Thus,
modelling the ion rate can be quite complicated. Here we wish
simply to illustrate the effect of loss, so we assume that losses
are only due to ionizing collisions, and we will neglect losses
due to the rf knife. Figure A.1(b) shows the results. The atom
number decreases by only 30% and the ion rate reaches a local
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maximum before the formation of the pure BEC, as in our
experiment. Extensions of our model to include losses due to
the rf knife would allow one to monitor all the parameters of
the cloud using the ion signal.

Appendix B. Proposed measurement of rate
constants independent of absolute neutral atom
detection efficiency

We will assume in this section that the absolute ion detection
efficiency is known, and that two- and three-body losses are
ionizing collisions [13]. The idea behind this method is that
two TOF signals separated by a given time can measure the
relative atom loss during this time, while the ion rate can
measure the absolute atom loss. These data allow one to extract
the rate constants without relying on an absolute calibration of
the neutral atom detection efficiency. The method works if
the neutral detection efficiency is unknown but independent of
temperature. Otherwise, we must also assume that the cloud
does not heat during the measurement or that we know the
variation of detection efficiency with temperature.

To simplify the discussion we will neglect three-body
reactions and assume that the sample does not heat during
the measurement. This will allow us to derive analytical
expressions, but the results are easily generalized to include
heating as well as three-body reactions. We can then write the
ion rate I (t) as:

I (t) = εN(t)

τ ′ +
βε

2Ve f f
N(t)2 (B.1)

with τ ′ the lifetime due to ionizing collisions, N(t) the absolute
atom number, Vef f defined by 〈n〉 = N/Ve f f and ε the ion
detection efficiency. We write Nd (t) = αN(t) where Nd (t)
is the number of atoms detected and α is the neutral atom
detection efficiency. Then

I (t) = εNd (t)

ατ ′ +
εβ

α22Ve f f
Nd (t)2. (B.2)

We can also write an equation for the atom number

dN (t)

dt
= − N(t)

τ
− β

Vef f
N(t)2 (B.3)

with τ the total lifetime of the sample that we can measure
independently at lowest density. The solution is:

N(t)

N(t0)
= 1(

1 + β

Vef f
N(t0)τ

)
e(t−t0)/τ − β

Vef f
N(t0)τ

. (B.4)

Substituting again Nd (t) = αN(t) we have:

Nd (t)

Nd (t0)
= 1(

1 + β

αVef f
Nd (t0)τ

)
e(t−t0)/τ − β

αVef f
Nd (t0)τ

. (B.5)

Thus we can measure an initial ion rate and the corresponding
detected atom number Nd(t0) by a TOF signal, let the system
evolve for a certain time and then again measure the ion rate
and the atom number Nd (t). With the evolution of the ion
rate, we can deduce ε/ατ ′ and εβ/α2Vef f from equation (B.1),
and from the evolution of the atom number we can deduce
β/αVef f using equation (B.5). With the value of Vef f and ε,
we can obtain the value β . We can also obtain the detection
efficiency α.

If we allow for three-body reactions, the method can still
be used but (B.4) is no longer analytical and must be integrated
numerically. If the sample heats during the measurement,
we only have to recalculate the volume Ve f f for each TOF
measurement.

The reason why we have not yet been able to apply this
method is, as indicated above, that the sample is heating so that
the detection efficiency changes during the measurement. As
we have not been able to measure the temperature dependence
of α(T ) the above equations cannot be solved. We hope to
render the detection efficiency temperature independent in the
near future by using Raman transitions as mentioned in the
conclusion.
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We report an experiment measuring simultaneously the temperature and the flux of ions produced by
a cloud of triplet metastable helium atoms at the Bose-Einstein critical temperature. The onset of
condensation is revealed by a sharp increase of the ion flux during evaporative cooling. Combining our
measurements with previous measurements of ionization in a pure Bose-Einstein condensate, we extract
an improved value of the scattering length a � 11:3�2:5

�1:0 nm. The analysis includes corrections that take
into account the effect of atomic interactions on the critical temperature, and thus an independent
measurement of the scattering length would allow a new test of these calculations.

DOI: 10.1103/PhysRevLett.93.090409 PACS numbers: 03.75.Hh, 34.50.–s, 67.65.+z

Understanding and testing the role of interparticle
interactions in dilute Bose-Einstein condensates (BEC)
is an exciting area of current research. Although mea-
surements of the interaction energy and the spectrum of
excitations of a BEC have confirmed the validity of the
Gross-Pitaevskii equation [1], there are still relatively few
quantitative tests of other aspects, such as the effect of
interactions on the value of the critical temperature (Tc)
or the condensed fraction [2,3]. The success in condens-
ing metastable helium atoms (He�) [4,5] was greeted with
interest in the community partly because the metastabil-
ity offers new detection strategies unavailable with other
species. To fully use these strategies, however, we are still
missing an accurate value of the s-wave scattering length
a, the atomic parameter which determines all elastic
scattering behavior at low energies. An accurate value of
a would also be useful to help clarify some puzzling
results concerning measurements of He� in the hydro-
dynamic regime, in which two different ways of measur-
ing the elastic scattering rate appeared to be in
contradiction [6]. Also, because He is a relatively simple
atom, theoretical predictions of a are already in a rather
narrow range [7,8] and these calculations should be tested.

A straightforward method to determine a is to use
ballistic expansion of a BEC to measure the chemical
potential for a known atom number. This was done in
Refs. [4,5], but the measurements were limited by the
calibration of the number of atoms. The reported values
for a are 20� 10 and 16� 8 nm, respectively. A recent
estimate, limited by similar effects, is a � 10� 5 nm
[9]. In this Letter, we report a new measurement of a
which makes extensive use of a unique feature of He�,
spontaneous Penning ionization within the sample.

We exploit two specific situations in which the absolute
atom number N is simply related to a and measured
quantities: (i) for a pure BEC, the number is deduced
directly from the chemical potential � and a, and
(ii) for a cloud at the BEC threshold, it is simply related
to Tc. Both � and Tc are accurately deduced from time of
flight (TOF) measurements. Comparison of ion rates from

a pure BEC of known chemical potential and from a cloud
at Tc allows us to extract a and the ionization rate con-
stants. The deduced value of a is independent of the
absolute ion detection efficiency, assuming that this effi-
ciency is the same in the two measurements. The ion
signal is also used in another novel way: since it provides
a real-time observation of the onset of BEC [10], we use it
to reliably produce a cloud at threshold.

A dense cloud of He� produces a steady flux of ions due
to various ionization processes. Density losses due
uniquely to ionizing collisions depend on the local den-
sity n according to �dn=dt�ionizing � ��n=�i� � n2 �
Ln3, with �i the lifetime due to ionizing collisions with
the background gas and  and L the 2-body and 3-body
ionization rate constants defined for a thermal cloud. The
total ion rate from a thermal cloud is given by

� �
N
�i

�
1

2

Z

n2dr�
1

3
L
Z

n3dr: (1)

The numerical factors reflect the fact that although two
(three) atoms are lost in 2-body (3-body) collisions, only
one ion is produced. Ionization measurements on a pure
BEC were reported in Ref. [11], and, as a was not pre-
cisely known,  and L were given in terms of a.

For a precise measurement of a, corrections due to
interactions must be taken into account. In the mean-field
approach, the density is given by [1]

n�r� �
1

�3�T�
g3=2

�
exp

�
�

1

kBT
�V�r� � 2gn�r� ��	

��
;

(2)

with ��T� the thermal de Broglie wavelength, T the tem-
perature kB the Boltzmann constant, V the trapping po-
tential g � 4� �h2a=m the interaction constant, � the
chemical potential, and g��x� �

P
1
i�1 x

i=i�.
The ion rate at the phase transition �c can be derived

from Eq. (2) by a first order perturbation theory similar to
Ref. [12] but with a fixed temperature rather than a fixed
atom number. We use the chemical potential of a gas in a
harmonic potential at the BEC transition:

VOLUME 93, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S week ending
27 AUGUST 2004

090409-1 0031-9007=04=93(9)=090409(4)$22.50  2004 The American Physical Society 090409-1



�c=kBTc �
3

2

~!
!c

� 4g3=2�1�
a
�c

: (3)

This gives

�c �

�
!c

!

�
3
�
1

�i

�
1:20� 2:48

~!
!c

� 12:35
a
�c

�

�


�3
c

�
0:33� 1:81

~!
!c

� 6:75
a
�c

�

�
L

�6
c

�
0:22� 2:21

~!
!c

� 6:50
a
�c

��
; (4)

with ~! � �2!? �!k�=3, ! � �!k!
2
?�

1=3, !c � kBTc= �h,
and �c � ��Tc�. The numerical values come from the
calculation of arithmetic series and are independent of
any parameters of the cloud. The terms proportional to
a=�c account for the atomic interactions, while the cor-
rections proportional to ~!=!c take into account the effect
of finite sample size. For the typical parameters (Tc 
2 �K and a � 12 nm) we have a=�c ’ ~!=!c ’ 0:02, cor-
responding to an interaction correction of 20%, 40%, and
60% in the three successive terms in Eq. (4). Even though
the first order corrections are large, we find, using an
approach similar to Ref. [13], that the second order cor-
rections are negligible: �4%, 1:8%, and �3%, respec-
tively. Note that finite size corrections are always smaller
than those due to interactions.

Our setup has been described in Ref. [11]. Briefly, we
trap up to 2� 108 atoms at 1 mK in an Ioffe-Pritchard
cloverleaf trap with �i estimated to be >500 s. In a
typical run, forced evaporation for 30 s cools a cloud to
a temperature near the phase transition. At this point, the
rf-knife frequency is decreasing at a rate of 400 kHz=s.
The axial and radial oscillation frequencies in the har-
monic trapping potential are !k=2� � 47� 3 Hz and
!?=2� � 1225� 20 Hz, respectively. A 2-stage, single
anode microchannel plate detector (MCP) is placed 5 cm
below the trapping region. Two grids above the MCP
allow us either to repel positive ions and detect only the
He� atoms or to attract and detect positive ions produced
in the trapped cloud. As explained in Ref. [11], to detect
the ion flux, the MCP is used in counting mode, whereas
we record the TOF signal at low gain (analog mode) to
avoid saturation. As explained in Ref. [4], the TOF signal
is due to atoms in the m � 0 state which are insensitive to
the magnetic field. However, atoms in magnetic field
sensitive states are still present, and their trajectories
are affected by uncontrolled residual fields. Therefore,
during the time of flight, we apply a magnetic gradient in
order to push these atoms away from the detector. The
ratio between the detected atoms in the m � 0 state and
the initial number of atoms in the cloud is not well known
[10], so we use the TOF only to get the temperature.

The crux of the experiment is to obtain a cloud of
atoms at the phase transition. To identify the BEC thresh-
old point, we monitor the ion signal. We have shown in

Ref. [10] that the onset of BEC is heralded by a sudden
increase of the ion rate associated with the increased
density of the condensate. More precisely, the BEC
threshold corresponds to the rapid change in slope of
the ion rate vs time or the maximum of the 2nd derivative
[14]. Figure 1 shows a series of such ionization rates
during evaporation through the BEC transition. From
these curves we can determine an empirical relation
between the time of the onset of condensation and the
ion rate preceding it. This relation stays valid only as long
as we keep the same evaporation ramp and bias field. We
will refer to this as the ‘‘threshold curve.’’ Because of
fluctuations of the bias field, we observe fluctuations of
the time of BEC onset from run to run. These correspond
to approximately �60 ms in time or �25 kHz in fre-
quency, a value which agrees with independent measure-
ments of the fluctuations of the bias field.

Having established this relation, we can interrupt an
evaporation sequence very close to the BEC threshold and
record the instantaneous ion rate as well as the corre-
sponding TOF signal. Only runs closer than �60 ms to
the threshold curve are used in the analysis.

We fit the associated TOF spectrum to determine the
temperature (Fig. 2). We use Eq. (2) together with �c

given in Eq. (3) for the initial atomic density and then
assume purely ballistic expansion of the cloud after the
switching off of the trap.We refer to this fit as the Bose fit.
The fits are weighted by an estimated uncertainty in each
point of the TOF curve. To make this estimate, we chose a
set of TOF spectra which appeared to show no systematic
deviation from their fits and used them to estimate the
amplitude of the noise. This noise varies as the square root
of the amplitude of the signal, indicating that we are
limited by the shot noise of the atom detection. Our
procedure is only an approximate indicator of the error
bars. The chi square per degree of freedom �2 for the fits
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FIG. 1. Variation of the ion rate as the atomic cloud is cooled
through the phase transition for various initial densities (gray
curves). The rf-knife frequency at t � 0 is 2 MHz. The sudden
increase of the ion rate (crosses) occurs at the BEC transition.
The solid line passing through the transition points constitutes
our empirical relation, named threshold curve.
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deduced in this way ranges from 0.8 to 3. We then exclude
a successively larger window (up to the rms of the TOF
signal) from the fit (see Fig. 2). For all runs, we observe a
variation of less than 5% and in most cases less than 3%
of the temperature as the excluded window is increased.

In Fig. 2, we show an example of a typical TOF spec-
trum where the wings are fitted by a Gaussian and the
Bose function described above. The ability of the Bose
function to reproduce the center of the distribution with-
out including it in the fit, unlike the Gaussian, confirms
that the cloud is indeed close to the BEC threshold. In the
following, we use the temperature given by the fit with an
excluded window of half the rms width of the TOF signal
in order to avoid the possibility of a small condensate
component or other high density effects distorting our
analysis.

Before plotting the ion rate as a function of the critical
temperature, we correct the observed temperature to ac-
count for the hydrodynamic expansion of the cloud (see
[2] and references therein). This is done in the spirit of
Ref. [15], which uses the Boltzmann equation approach to
take into account collisions during the expansion. The
collision rate in Ref. [15] is calculated using a Gaussian
density profile. We rather use the value calculated for an
ideal Bose gas [16], which we have adapted to take inter-
actions into account. This correction depends on the scat-
tering length but the effect on the final value of a is only
of order 0.3 nm for a ranging from 10 to 14 nm. We there-
fore simply assume a � 12 nm for this correction in the
following. Due to the additional anisotropy of the expand-
ing cloud in the horizontal (detector) plane, the fitting
function should be modified; but a simulation of this
effect shows that the correction to the temperature is
less than 0.1%.

Finally, we correct the detected ion rate �c;det to ac-
count for the detection efficiency � such that �c �
�c;det=�. It should be noted that the rate constants were

obtained by ion rate measurements [11]. This means that
they were also corrected:  � det=�0 and L � Ldet=�0.
Equation (4) shows that, as long as � � �0, the detection
efficiency cancels out and does not have any impact on the
determination of a. We have checked experimentally that
� � �0. To allow comparison with figures in earlier pub-
lications, all the figures have been corrected using the
same � as earlier, namely, � � 0:42 [10,11].

The results are plotted in Fig. 3. Curves corresponding
to the expected variation for three values of the scattering
length are also shown. We see that a large fraction of the
data falls between a � 10 and 14 nm. The points at the
highest temperatures, however, show a tendency to fall
near the theoretical curve for a � 10 nm, while those at
lower temperatures fall near a � 14 nm. To analyze this
tendency further, we examine the TOF fits more closely
using the �2 value as an indicator of the confidence level
of each measurement. A large �2 could mean that the
Bose function with � imposed to �c is not the right fit
function and, therefore, that the cloud is not sufficiently
close to Tc. As shown in Fig. 3, outliers tend to be
correlated with a large �2. Note, however, that the re-
maining scatter in the data is too large to be accounted for
by our a priori estimates of the uncertainties in our ion
rate or temperature measurements. We presume that it is
due to fluctuations in the determination of the BEC
threshold.

To determine the scattering length, we fit the black
points in Fig. 3 with a as a free parameter and using 
and L parametrized by a as in Ref. [11]. The fit gives (all
points are given equal weight) a � 11:3 nm. Our chief
estimated uncertainty stems from the fact that our data
show a systematic tendency to fall above the best fit at low
temperature and below it at high temperature. To estimate
this uncertainty, we fit the data (including gray points)
separately for Tc below and above 2 �K. We find a �
13:8 nm for the low temperature data and a � 10:4 nm
for the high temperature data. The uncertainties in the
measurements of  and L also contribute to the uncer-
tainty in Eq. (4) used for fitting. In fact, the uncertainties
in  and L are highly correlated [11] and their contribu-
tion to the uncertainty is less than 0.5 nm.

The error bars are obtained by summing quadratically
the sources of uncertainties. Our final result for the scat-
tering length is thus a � 11:3�2:5

�1:0 nm. This result may be
compared with the calculation in Ref. [8]. This work leads
to a � 8 nm using the potential curves of Ref. [17]. From
Ref. [8] one also finds that a 0.5% shift of the repulsive
part of that potential would bring the theoretical value
into agreement with our result. This 0.5% shift corre-
sponds to the estimated uncertainty in the potential of
Ref. [17]. Another theoretical treatment [7] gives a scat-
tering length between 8 and 12 nm, also consistent with
our results.

Our result also allows one to give values for the 2- and
3-body ionization rate constants. The error bars of
Ref. [11] are modified to take into account the uncertainty
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FIG. 2. Time of flight signal corresponding to a cloud re-
leased from the trap (at t � 0) when its ion rate is on the
threshold curve. Here we have fitted the data with an excluded
window indicated by the vertical lines (width equal to the rms
width of the TOF signal). A Gaussian function (dotted line)
does not describe the central part of the data well, while the
Bose function as defined in the text (solid line) does, indicating
that the cloud is close to threshold.
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of a. The uncertainty in the ion detection efficiency also
contributes to the uncertainty in the rate constants. As
discussed in Ref. [11], we will assume � � 0:42 to get the
central values of the rate constants.We will include a one-
sided contribution to the error bars to account for the
possibility, also discussed in [11], that � could be a factor
of 2 smaller. We finally get  � 0:9�1:7

�0:8 � 10�14 cm3=s
and L � 2:5�4:5

�1:7 � 10�27 cm6=s. The rate constants are in
good agreement with theoretical predictions [8,18].

As shown in Fig. 3, curves a and b, our value of a is
significantly shifted by the nonideal gas corrections of
Eq. (4). Thus, when an independent measurement of the
scattering length becomes available, our results can be
used as a test of these corrections [19]. Note, however,
that corrections to the critical temperature beyond mean-
field theory [20] are small when one parametrizes the
critical point in terms of an average density [13]. But an
examination of the critical density measured in a local
way, by imaging the ions from a cloud, for example, is
sensitive to critical fluctuation phenomena which go be-
yond mean-field theory similar to the homogenous case
[20]. Thus, refinements of the ionization measurements
described here promise to continue to provide new tests of
BEC physics.
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FIG. 3. Ion rate versus critical temperature. The points cor-
respond to the results of 280 runs for which the ion rate was
deemed sufficiently close to the condensation threshold. Gray
indicates runs for which �2 in the TOF fits was above 2. The
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dotted line for a � 14 nm [both including interaction correc-
tions of Eq. (4)]. The two solid lines correspond to a � 12 nm,
(a) with interactions and (b) without interactions, and illustrate
the size of their effect.
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overexpressed oncogene by QPCR in prostate

cancer, with 72.0% of cases overexpressing

ERG (21). By using a combination of assays,

we found evidence of fusion with TMPRSS2

in 20 of 22 (990%) cases that overexpressed

ERG or ETV1, suggesting that the fusion is the

most likely cause for the overexpression. FISH

analysis on a set of 29 prostate cancer cases

selected independently of any knowledge of

ERG or ETV1 expression indicates that 23 of

29 (79%) had TMPRSS2:ETV1 fusions or

ERG rearrangement. It is possible that this

cohort is not representative of all prostate

cancer samples and that this may be an

overestimate of the prevalence of TMPRSS2

fusions with ETS family members, because

our split-signal approach can detect addi-

tional rearrangements involving ERG. How-

ever, the reported frequencies of ERG or

ETV1 overexpression in prostate cancer with

our fusion transcript and FISH results sug-

gest that TMPRSS2 fusions with ETV1 or

ERG occur in the majority of prostate cancer

cases. Coupled with the high incidence of pros-

tate cancer [an estimated 232,090 new cases

will be diagnosed in the United States in 2005

(22)], the TMPRSS2 fusion with ETS family

members is likely to be the most common re-

arrangement yet identified in human malig-

nancies and the only rearrangement present

in the majority of one of the most prevalent

carcinomas.

Future efforts will be directed at character-

izing the expressed protein products, including

the effects of N-terminal truncation of ERG and

ETV1, and identifying downstream targets and

the functional role of the fusions in prostate

cancer development. Importantly, the existence

of TMPRSS2 fusions with ETS family mem-

bers in prostate cancer suggests that causal

gene rearrangements may exist in common

epithelial cancers but may be masked by the

multiple nonspecific chromosomal rearrange-

ments that occur during tumor progression.
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Hanbury Brown Twiss Effect for
Ultracold Quantum Gases

M. Schellekens,1 R. Hoppeler,1 A. Perrin,1 J. Viana Gomes,1,2

D. Boiron,1 A. Aspect,1 C. I. Westbrook1*

We have studied two-body correlations of atoms in an expanding cloud above
and below the Bose-Einstein condensation threshold. The observed correlation
function for a thermal cloud shows a bunching behavior, whereas the corre-
lation is flat for a coherent sample. These quantum correlations are the atomic
analog of the Hanbury Brown Twiss effect. We observed the effect in three
dimensions and studied its dependence on cloud size.

Nearly half a century ago, Hanbury Brown

and Twiss (HBT) performed a landmark ex-

periment on light from a gaseous discharge

(1). The experiment demonstrated strong cor-

relations in the intensity fluctuations at two

nearby points in space despite the random or

chaotic nature of the source. Although the

effect was easily understood in the context of

classical statistical wave optics, the result was

surprising when viewed in terms of the quan-

tum theory. It implied that photons coming

from widely separated points in a source such

as a star were Bbunched.[ On the other hand,

photons in a laser were not bunched (2, 3).

The quest to understand the observations stim-

ulated the birth of modern quantum optics

(4). The HBT effect has since found applica-

tions in many other fields from particle physics

(5) to fluid dynamics (6).

Atom or photon bunching can be under-

stood as a two-particle interference effect

(7). Experimentally, one measures the joint

probability for two particles emitted from two

separated source points, A and B, to be de-

tected at two detection points, C and D. One

must consider the quantum mechanical am-

plitude for the process AYC and BYD as

well as that for AYD and BYC. If the two

processes are indistinguishable, the amplitudes

interfere. For bosons, the interference is con-

structive, resulting in a joint detection proba-

bility that is enhanced compared with that of

two statistically independent detection events,

whereas for fermions the joint probability is

lowered. As the detector separation is increased,

the phase difference between the two ampli-

tudes grows large enough that an average

over all possible source points A and B washes

out the interference, and one recovers the sit-

REPORTS
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uation for uncorrelated detection events. This

fact was used by HBT to measure the angular

size of a star (8), but another major conse-

quence of the observation was to draw attention

to the importance of two-photon amplitudes

and how their interference can lead to sur-

prising effects. These quantum amplitudes

must not be confused with classical electro-

magnetic field amplitudes (3). Two-photon

states subsequently led to many other striking

examples of Bquantum weirdness[ (9). In con-

trast to a chaotic source, all photons in a single

mode laser are in the same quantum state.

Hence, there is only one physical process and

no bunching effect. A similar effect is ex-

pected for atoms in a Bose-Einstein conden-

sate (BEC).

Two-particle correlations have been ob-

served both for cold neutral atoms (10–12)

and for electrons (13–15), and three-particle

correlations (16–18) at zero distance have also

been used to study atomic gases. But the full

three-dimensional effect and its dependence

on the size and degeneracy of a sample has

yet to be demonstrated for massive particles.

Here, we demonstrate the effect for a trapped

cloud of atoms close to the BEC transition

temperature released onto a detector capable

of individual particle detection. We extract,

for varying cloud sizes, a three-dimensional

picture of the correlations between identical

particles produced by quantum interference.

We also show that a BEC shows no such cor-

relations. The results are in agreement with

an ideal gas model and show the power of

single particle detection techniques applied

to the study of degenerate quantum gases.

The calculation of the phase difference of

the possible two-particle detection amplitudes

given in (7) can be adapted to the case of par-

ticles of mass m traveling to a detector in a

time t. One can show that the correlation

length observed at the detectors, that is, the

typical detector separation for which inter-

ference survives, is li 0
It
msi

, where s
i

is the

source size along the direction i, I is the

reduced Planck_s constant, and we have as-

sumed that the size of the cloud at the de-

tector is much larger than the initial size. The

optical analog of this expression, for a source

of size s and wavelength l at a distance L

from the observation plane, is l 0 Ll/2ps.

This is the length scale of the associated

speckle pattern. The formula can be recov-

ered for the case of atoms traveling at con-

stant velocity v toward a detector at distance

L if one identifies h/mv with the deBroglie

wavelength corresponding to velocity v. The

formula we give is also valid for atoms ac-

celerated by gravity, and the interpretation of

l as the atomic speckle size remains valid. A

pioneering experiment on atom correlations

used a continuous beam of atoms (10). For a

continuous beam, the correlation time, or equiv-

alently, the longitudinal correlation length, de-

pends on the velocity width of the source and

not on the source size. Thus, the longitudinal

and transverse directions are qualitatively dif-

ferent. By contrast, our measurements are per-

formed on a cloud of atoms released suddenly

from a magnetic trap. In this case, the three

dimensions can all be treated equivalently, and

the relation above applies in all three. Because

the trap is anisotropic, the correlation func-

tion is as well, with an inverted ellipticity.

Our sample is a magnetically trapped cloud

of metastable helium atoms evaporatively

cooled close to the BEC transition tempera-

ture (19) (about 0.5 mK for our conditions).

Our source is thus very small, and together

with a long time of flight (308 ms) and

helium_s small mass, we achieve a large

speckle size or correlation volume (30 mm by

800 mm by 800 mm), which simplifies the

detection problem. For example, the observa-

tions are much less sensitive to the tilt of the

detector than in (10).

To detect the atoms, we use an 8-cm-

diameter microchannel plate detector (MCP).

It is placed 47 cm below the center of the

magnetic trap. A delay line anode permits

position-sensitive detection of individual par-

ticles in the plane of the detector (20) (Fig. 1).

Atoms are released from the trap by suddenly

turning off the magnetic field. About 10% of

these atoms are transferred to the magnetic

field–insensitive m 0 0 state by nonadiabatic

transitions (19) and fall freely to the detector.

The remaining atoms are removed by applying

additional magnetic field gradients during the

time of flight. For each detected atom, we

record the in-plane coordinates x and y and the

time of detection t. The atoms hit the detector

at 3 m/s with a velocity spread below 1%, and

so we convert t into a vertical position z. The

observed root mean square (rms) resolution is

d È 250 mm in x and y and 2 nm in z. These

data allow us to construct a three-dimensional

histogram of pair separations (Dx, Dy, and Dz)

for all particles detected in a single cloud. The

histograms are summed over the entire atom-

ic distribution and over many shots, typically

1000 (21).

Because of our good resolution along z,

we begin by concentrating on the correlation

function along this axis. Normalized corre-

lation functions for various experimental

conditions are shown in Fig. 2A. To compute

the normalized correlation function, we di-

vide the pair separation histogram by the

autoconvolution of the average single parti-

cle distribution along z. We also normalize

the correlation function to unity for large sep-

arations. This amounts to dividing, for each

elementary pixel of our detector, the joint de-

tection probability by the product of the indi-

vidual detection probabilities at the two pixels.

This gives us the usual normalized correlation

function g(2)(Dx 0 0, Dy 0 0, Dz). The HBT

bunching effect corresponds to the bump in

the top three graphs of Fig. 2A. The fourth

graph shows the result for a BEC. No correla-

tion is observed. EA detector saturation effect in

the BEC data required a modified analysis pro-

cedure (21).^ We have also recorded data for a

cloud with a 2-mm radius and 1-mK temper-

ature for which the correlation length is so

small that the bunching effect is washed out by

the in-plane detector resolution. Experimentally,

the normalized correlation function in this case

is indeed flat to within less than 1%.

We plot (Fig. 2B) the normalized corre-

lation functions in the Dx j Dy plane and for

Dz 0 0 for the same three data sets. The data

in Fig. 2B show the asymmetry in the cor-

relation function arising from the difference

in the two transverse dimensions of the trapped

cloud. The long axis of the correlation function

is orthogonal to that of the magnetic trap.

Fig. 1. Schematic of the apparatus. The trapped cloud has a cylindrical symmetry with oscillation
frequencies of wx/2p 0 47 Hz and wy/2p 0 wz/2p 0 1150 Hz. During its free fall toward the
detector, a thermal cloud acquires a spherical shape. A 1-mK temperature yields a cloud with an
rms radius of about 3 cm at the detector. Single particle detection of the neutral atoms is possible
because of each atom’s 20-eV internal energy that is released at contact with the MCP. Position
sensitivity is obtained through a delay-line anode at the rear side of the MCP.
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We expect the experimental normalized

correlation function for a thermal bosonic gas

to be described by

g
ð2Þ
th ðDx;Dy;DzÞ 0

1 þ hexp j
Dx

lx

� �2

þ Dy

ly

� �2

þ Dz

lz

� �2
" # !

ð1Þ

We have assumed here that the gas is non-

interacting and that the velocity and density

distribution remain roughly Gaussian even

close to the BEC transition temperature. Nu-

merical simulations indicate that this is a good

approximation when the correlation function

is averaged over the entire cloud (22). As dis-

cussed above, the correlation lengths should

be inversely proportional to the sizes, s
i
, of

the sample. In a harmonic trap with trapping

frequency w
i

along the i direction, one has

si 0
ffiffiffiffiffiffiffi
kBT

mw 2
i

q
, where kB is Boltzmann_s con-

stant and T is the temperature of the atoms.

Because T is derived directly from the time

of flight spectrum, we shall plot our data as a

function of T rather than of s. The parameter

h would be unity for a detector whose res-

olution width d is small compared with the

correlation length. Our d is smaller than ly
but larger than lx, and in this case the con-

volution by the detector resolution results in

an h given roughly by lx/2d È 5%. We use

Eq. 1 to fit the data by using h and the li as

fit parameters and compare the results to the

ideal gas model (21).

The results for l
x
, l

y
, and l

z
for our three

temperatures are plotted in Fig. 3A. The fitted

values of l
x

are È450 mm and are determined

by the detector resolution rather than the true

coherence length along x. The value of l
y

has

been corrected for the finite spatial resolution

of the detector. The fitted value of l
z

requires

no correction, because in the vertical direction

the resolution of the detector is much better. l
y

and l
z

are consistent and agree with the pre-

diction using the known trap frequencies and

temperatures. Figure 3B shows the fitted value

of h versus temperature, along with the pre-

diction of the same ideal gas model as in Fig.

3A, using the measured detector resolution.

The data are in reasonable agreement with the

model, although we may be seeing too little

contrast at the lowest temperature. The run at

0.55 mK was above, but very close to, the BEC

transition temperature. (We know this because,

when taking data at 0.55 mK, about one-third

of the shots contained small BECs; these

runs were eliminated before plotting Fig. 2.)

Future work will include examining whether

the effect of the repulsive interactions between

atoms or finite atom number must be taken into

account.

The results reported here show the power

of single particle detection in the study of

quantum gases. The correlations we have ob-

served are among the simplest that should be

present. Two recent experiments have shown

correlations in a Mott insulator (11) as well as

in atoms produced from the breakup of mole-

cules near a Feshbach resonance (12). Im-

proved observations of these effects may be

possible with individual particle detection.

Other atom pair production mechanisms, such

as four-wave mixing (23, 24), can be inves-

tigated. A fermionic analog to this experiment

using 3He would also be (25) of great interest.
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Quantum Coherence in an
Optical Modulator

S. G. Carter,1* V. Birkedal,1. C. S. Wang,2 L. A. Coldren,2

A. V. Maslov,3 D. S. Citrin,4,5 M. S. Sherwin1-

Semiconductor quantum well electroabsorption modulators are widely used
to modulate near-infrared (NIR) radiation at frequencies below 0.1 terahertz
(THz). Here, the NIR absorption of undoped quantum wells was modulated by
strong electric fields with frequencies between 1.5 and 3.9 THz. The THz field
coupled two excited states (excitons) of the quantum wells, as manifested by
a new THz frequency- and power-dependent NIR absorption line. Nonpertur-
bative theory and experiment indicate that the THz field generated a coherent
quantum superposition of an absorbing and a nonabsorbing exciton. This quan-
tum coherence may yield new applications for quantum well modulators in
optical communications.

Quantum three-state systems in which two of

the states are strongly coupled by an intense

laser field have been widely studied in atom-

ic and molecular systems (1). The energies

of the quantum states are altered as they are

Bdressed[ by the strong light-matter interac-

tion. Such dressed states were first observed

by Autler and Townes (AT) in a molecular

system driven by a strong radio-frequency field

and probed by weak microwaves (2). When a

radio-frequency resonance occurred, the micro-

wave absorption line split in two. In three-state

systems with weak coupling to the environ-

ment, AT splitting can evolve into electromag-

netically induced transparency (EIT), in which

a strong coupling beam induces transparency

at a resonance at which the undriven system is

opaque (3). This transparency is due to quan-

tum interference between the dressed states.

EIT is the basis for slow (4) and stopped light

(5, 6) in atomic systems.

A variety of quantum systems similar to

atomic three-state systems can be engineered

in semiconductor quantum wells (QWs). A

QW is a layer of one semiconductor grown

between semiconductors with larger band gaps

(7). The layer with the smaller gap is suffi-

ciently thin that well-defined sets of quantized

states, or subbands, are associated with elec-

tron motion parallel to the growth direction.

Within each subband, there is a continuum of

states associated with different momenta par-

allel to the plane of the QW (perpendicular

to the growth direction). AT-like splitting (8),

quantum interference (9, 10), and EIT (11, 12)

have been reported in QWs, but their observa-

tion has been more difficult than in atoms and

molecules. This is in part because of much

larger absorption linewidths, which result from

disorder, from stronger coupling to the envi-

ronment, or from scattering between subbands.

We have fabricated a particularly simple

three-level system in undoped QWs (Fig. 1).

The excitation with the lowest frequency oc-

curs at about 350 THz (wavelength 857 nm or

energy 1.46 eV) when an electron is promoted

from the filled valence subband of highest

energy (labeled h1) to the empty conduction

subband of lowest energy (labeled e1). The

excited electron binds with the hole it left be-

hind to form an exciton with a hydrogen-like

wave function in the QW plane. Transitions

between different in-plane states (e.g., the 1s

and 2p states) are allowed only for in-plane

THz polarizations (13, 14), which are not

present in the experiments discussed here. The

lowest exciton state is labeled h1X. The next

exciton state, h2X, consists of an electron from

e1 and a hole from the second highest valence

subband, h2. NIR transitions between the crys-

tal ground state and h2X are not allowed be-

cause of quantum mechanical selection rules.

However, intersubband transitions from h1X to

h2X are allowed for THz radiation polarized

in the growth direction. The three states anal-

ogous to those in an AT picture are the crystal

ground state, the lowest exciton h1X, and the

second exciton h2X (15).

This report explores the NIR absorption

of undoped QWs at low temperatures (È10 K)

when they are driven by strong electric fields

polarized in the growth direction with frequen-

cies between 1.5 and 3.9 THz. Because the

frequency of the THz laser is about 1% of that

required to create an exciton, the strong laser

field does not alter the populations of the quan-

tum states of the system. Near 3.4 THz, the

drive frequency is resonant with the transition

between the two lowest exciton states. The AT

splitting of excitons driven by strong intersub-

band radiation is experimentally observed, and

theoretical predictions (16, 17) are confirmed.

The sample consists of 10 In
0.06

Ga
0.94

As

QWs (each 143 )) separated by Al
0.3

Ga
0.7

As

barriers (300 )). InGaAs QWs were used

instead of GaAs QWs so that the GaAs sub-

strate was transparent for NIR light near the

exciton energies. A 100-nm layer of aluminum

was deposited on the surface of the sample

on which the QWs were grown. The metallic

boundary condition improved THz coupling

and ensured that the THz field at the QWs

was polarized almost perfectly in the growth

direction (18). The interband absorption was

probed using broadband, incoherent, NIR light

from an 850-nm light-emitting diode focused

onto the sample backside to a spot size È250

mm in diameter. The NIR intensity was less

than 0.3 W/cm2. As illustrated in Fig. 1, the

NIR beam was transmitted through the trans-

parent substrate, interacted with the QWs, was

reflected off of the Al layer, and was then

collected and sent to a monochromator with

an intensified charge-coupled device detec-

tor. The reflected NIR beam was measured

during the 1 to 1.5 ms at the peak of the THz
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Abstract. We have studied the atomic density of a cloud confined in an isotropic harmonic trap at the
vicinity of the Bose-Einstein transition temperature. We show that, for a non-interacting gas and near this
temperature, the ground-state density has the same order of magnitude as the excited states density at the
centre of the trap. This holds in a range of temperatures where the ground-state population is negligible
compared to the total atom number. We compare the exact calculations, available in a harmonic trap, to
semi-classical approximations. We show that these latter should include the ground-state contribution to
be accurate.

PACS. 03.75.Hh Static properties of condensates; thermodynamical, statistical, and structural properties
– 03.65.Sq Semiclassical theories and applications – 05.30.Jp Boson systems

The phenomenon of Bose-Einstein condensation (BEC)
is a phase transition. Below the critical temperature Tc,
the ground-state population, which is the order param-
eter, becomes macroscopic. This phenomenon, that hap-
pens strictly speaking only at the thermodynamic limit, is
usually illustrated in textbooks with a homogeneous gas.
Experimentally, the Bose-Einstein condensation of dilute
gases has been observed since 1995 with atoms confined
in a harmonic trap [1]. These stimulating experimental
data have quickly pointed out that two effects had to be
taken into account: the interatomic interactions and the
finite number of atoms [2]. Several papers, as the present
one, have studied harmonically trapped ideal gases con-
taining a finite number of atoms. Two quantities have
been investigated in detail: the atom number [3,4,6–9]
and the specific heat [5,7,9]. For a finite but large (typi-
cally 106) number of atoms, the properties of the atomic
cloud change abruptly at a characteristic temperature we
will name the transition temperature T ∗. This tempera-
ture is shifted compared to Tc, but by a small amount,
typically of few percent for atom numbers around 106.
There is also a characteristic temperature for the specific
heat; it is different from the previous one but still close to
Tc [5,9].

Surprisingly, less attention has been paid on the atomic
density of an ideal gas [10]. In a homogeneous gas it
is obviously equivalent to the atom number but this is
no more the case in a spatially varying potential. It be-

a Permanent address: Departamento de Fisica, Universidade
do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

b e-mail: denis.boiron@iota.u-psud.fr

comes the good parameter of the theory, in particular
to perform local density approximations. This quantity
is then particularly important for the study of the shift of
the critical temperature by the interatomic interactions,
both within the mean-field approximation [6] and beyond
this approximation [11]. We will show, in the case of an
isotropic harmonic trapping and for a finite atom num-
ber, that the ground-state density at the centre of the
trap increases much more sharply than its population as
the temperature decreases. This leads to the fact that near
the Bose-Einstein transition temperature the density is al-
ready dominated by the ground-state contribution. This
holds whatever the atom number is, and is a remanence of
the infinite compressibility of an ideal gas at the thermo-
dynamic limit [12]. Usual semi-classical approximations
do not take into account the ground-state contribution
and then fail in the vicinity of the Bose-Einstein transi-
tion temperature. This is not a finite size effect in the
sense that it is not related to the discretization of the ex-
cited states energy levels. We will compare the exact re-
sults with semi-classical approximations. The addition of
the ground-state contribution on the latter ones improves
their accuracy. We will finally show that the influence of
the ground-state is smaller if the measured quantity is the
density integrated over at least one dimension. It is still
large for typical experimental parameters.

We will perform our calculations in the grand canoni-
cal ensemble (GCE). Then, the Bose-Einstein distribution
gives the population Ni of a given energy level εi: Ni =

(eβ(εi−µ) − 1)−1 with
∞∑

i=0

Ni = N . Here β = 1/kBT with
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kB the Boltzmann’s constant, µ the chemical potential and
N the total atom number. The equivalence between GCE
and the canonical or microcanonical ensemble, these latter
being probably more appropriate descriptions, is generally
not guaranteed, especially for systems that are not at the
thermodynamic limit. For instance, it is well-known that
the GCE predicts unphysical large fluctuations of the con-
densate population at low temperature [13]. However, the
authors of references [10,14,15] have shown that the oc-
cupation numbers Ni in GCE are very close to the ones in
the canonical ensemble. The difference is more pronounced
for small atom number and anisotropic clouds. As a result
and because GCE enables to give analytic expressions on
contrary to the other ensembles, we will use GCE in the
following.

For a fixed atom number, the chemical potential in-
creases as the temperature decreases. As µ has to be
smaller than ε0, the ground-state energy, the excited states
population will saturate when µ approaches ε0 whereas N0

is still increasing: N −N0 =
∞∑

i=1

Ni(µ, T ) ≤
∞∑

i=1

Ni(ε0, T ).

As in references [2,16], we will define the transition tem-
perature T ∗ as the temperature for which the excited
states saturated population is equal to the total atom
number:

∞∑

i=1

Ni(ε0, T ∗) = N. (1)

As pointed out in the introduction, there is not a unique
definition of the transition temperature for a finite atom
number. Other definitions use, for instance, a change in
the slope for the condensate fraction in function of temper-
ature (more explicitly d3(N0/N)/dT 3 = 0) [17], a change
in the power dependence on the condensate fraction in
function of the atom number [9], which are also perti-
nent. We have checked that these various definitions af-
fect marginally the value of T ∗ and do not modify our
conclusions [18]. In the following we will then use equa-
tion (1) to define T ∗. Note that the chemical potential µ∗
at the transition temperature is close but not equal to the
ground-state energy; it is determined by the constraint

∞∑

i=0

Ni(µ∗, T ∗) = N. (2)

There are only a few examples of trapping potentials
where the eigen-energies and the eigen-functions are
known exactly. Semi-classical approximations give usually
accurate enough results and are suited to include inter-
atomic interactions, at least perturbatively. We will de-
rive various type of semi-classical approximations in the
following and test their accuracy because the harmonic
potential is an exactly solvable potential.

We will first examine the situation where �ω � kBT
with ω the oscillation frequency of the isotropic harmonic
trap. This corresponds to the large atom number limit
and semi-classical approximations should work. Replac-
ing the discrete energy spectrum by a continuous one
and neglecting the ground-state energy ε0, the density is

0.4
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0.0

N
0/

N

10.09.59.08.58.0
Temperature (h.o. unit)

Fig. 1. Ground-state population fraction in function of the
temperature in �ω/kB unit for a cloud of 103 atoms. The dot-
ted curve corresponds to the exact result given by model ex.
The solid, dot-dashed and dashed lines correspond respectively
to the semi-classical models sc, sc0 and sc∞. The last two ne-
glect the ground-state contribution above their corresponding
transition temperature and the first two take into account finite
size effects. The model sc is the closest to ex near Bose-Einstein
transition.

ρ(r) = 1
λ3 g 3

2
[z exp(− τ

2 (r/σ)2] with z = eβµ the fugac-
ity, τ = �ω/kBT and g 3

2
( ) a Bose function [19]. With

the above notation, the thermal de Broglie wavelength is
λ = σ

√
2πτ and the size of the cloud is

√
kBT/mω2 =

σ/
√

τ . Similarly, the atom number is N = g3(z)/τ3.
Equation (1) leads then to N = ζ(3)/τ∗3, with τ∗ the
value of τ at T = T ∗. The above expressions for the
density and atom number are in fact approximations for
the excited states and do not contain the ground-state
contribution. Then µ∗ defined by equation (2) is equal
to 0 and z∗ = 1. The transition temperature defined
here corresponds to the critical temperature Tc. The peak
density at the transition temperature is then given by
ρ(0)λ3 = g 3

2
(z∗) = ζ(3/2) ≈ 2.612. For temperatures be-

low Tc, the excited states population is given by ζ(3)/τ3.
Then, the ground-state population fraction is N0/N = 0
for T > Tc and N0/N = 1 − (T/Tc)3 for T < Tc. This
fraction will be plotted in Figure 1, labelled with sc∞.

These approximations are too crude and give inac-
curate results for the atomic density, however. The rea-
son is that the ground-state contribution cannot be ne-
glected. A better expression is ρ(r) = 1

λ3 g 3
2
[ze−

τ
2 (r/σ)2 ] +

ρ0(r) and similarly N = 1
τ3 g3(z) + N0 with ρ0(r) =

[N0/(
√

πσ)3]e−(r/σ)2 and N0 = z/(1− z). The value of
T ∗ is unchanged as it is defined by the excited states sat-
uration, but z∗ is now different from 1. Using g3(z∗) ≈
ζ(3) − ζ(2)x∗ with z∗ = e−x∗ (x = β(ε0 − µ) > 0),
one finds using equation (2) that x∗ ≈ τ∗3/2/

√
ζ(2) [9].

The ground-state population is ∼1/x∗ and, as expected,
is vanishingly small as τ∗ → 0 compared to the excited-
state population ζ(3)/τ∗3. The ground-state peak density
is ∼1/(

√
πσ)3x∗ whereas the excited state peak density

is ζ(3/2)/λ∗3. As λ∗ = σ
√

2πτ∗, the two quantities have
the same order of magnitude! The above high-N analysis
predicts then that the degeneracy parameter at the tran-
sition temperature is ρ(0)λ3 = ζ(3/2) + 2

√
2ζ(2) ≈ 6.24
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and not 2.612. The ground-state population is extremely
small but the size of its wave-function is also extremely
small compared to the atomic cloud size. For a harmonic
trap both depend on the same small parameter, raised to
the same power. So, even for very large atom number, the
traditional criterion for BEC should be modified. This ef-
fect is linked to the pathological behaviour of the ground-
state density at the thermodynamic limit, i.e. the infi-
nite compressibility of an ideal gas [12]. This limit means
N →∞ with Nω3 → constant. The ground-state size be-
ing σ =

√
�/mω, the density of that state behaves as

√
N

below threshold and is then infinite at the thermodynamic
limit whereas the density above Tc is finite.

We will now address the case of atom numbers in the
accessible experimental range, 103–106. It is well-known
that the transition temperature will be shifted compared
to Tc [3,4,7]. A better approximation, which takes into
account the ground-state energy to first order, is ρ(r) =
1
λ3 {g 3

2
[z̃(r)] + 3τ

2 g 1
2
[z̃(r)]} where z̃(r) = ze−

τ
2 (r/σ)2 . Then

N = 1
τ3 [g3(z) + 3τ

2 g2(z)]. The corresponding transition
temperature is T ∗sc such that N = 1

τ∗3sc
[ζ(3) + 3

2ζ(2)τ∗sc].
This is the usual semi-classical approximation found in the
literature. The ground-state population fraction is then
N0/N = 0 for T > T ∗sc and

N0/N = 1−
(

T

T ∗sc

)3 ζ(3) +
3τ

2
ζ(2)

ζ(3) +
3τ∗sc

2
ζ(2)

for T < T ∗sc. This fraction, also plotted in Figure 1, will be
labelled with sc0. Note that g 1

2
(z) diverges at z = 1 [20],

meaning that this approximation is intrinsically inaccu-
rate near the centre of the trap and near the transition
temperature. This divergence is however weak, and any
spatial integration would give a finite result. We can still
cure this pathology by adding, as before, the ground-state
contribution. We obtain then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρsc(r) =
1
λ3
{g 3

2
[z̃(r)] +

3τ

2
g 1

2
[z̃(r)]} +

z

1− z

e−( r
σ )2

(
√

πσ)3

N =
1
τ3

[g3(z) +
3
2
τg2(z)] +

z

1− z

T ∗sc such that N =
1

τ∗3sc

[ζ(3) +
3
2
ζ(2)τ∗sc]

.

(3)
This semi-classical approximation will be labelled with sc
in the following. The comparison of T ∗sc with the value
given by the exact model (see below) can be used to check
the finite size correction. Even so, this comparison is use-
less to check the contribution coming from the ground
state since it does not depend on it (same transition tem-
perature as sc0).

We can now test these semi-classical approximations
for a harmonically trapped gas. As we referred before,
for this case, the eigen-energies and the eigen-functions
are known exactly. The corresponding expressions of the
atomic density and atom number [13], labelled with ex in
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Fig. 2. Relative shift of the semi-classical transition temper-
atures Tc (dashed line) and T ∗sc (dotted line) to T ∗ex (see text)
in function of the atom number. Both temperatures converge
for high atom numbers. The critical temperature at thermody-
namic limit, Tc, deviates by less than 1% for N > 5×105. The
semi-classical transition temperature defined for a finite atom
number, T ∗sc, is much more accurate and deviates by less than
1% for N > 400.

the following, are:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρex(r) =
1

(
√

πσ)3
∞∑

l=1

zl

(1 − e−2τl)3/2
e− tanh( τl

2 )( r
σ )2

N =
∞∑

l=1

zl

(1− e−τl)3

T ∗ex such that N =
∞∑

l=1

(
1

(1− e−τ∗exl)3
− 1

)

where, here z = eβ(µ−ε0). The semi-classical model corre-
sponds to a Taylor expansion in τ of these last expressions.

In Figure 1 we plot the ground-state population frac-
tion in function of the temperature for the various models
described above. When the number of atoms is only 103,
finite size effects are large. The prediction of model sc∞
is clearly wrong compared to the exact model prediction.
On contrary models sc0 and sc give a result close to the
one of ex [21]. Figure 2 shows the relative deviations of
Tc and T ∗sc from T ∗ex in function of the atom number. As
expected the different values are similar but, as above, the
model sc give a closer result to ex than sc∞. The value T ∗sc
deviates less than 1% for N > 400 and the relative shift
is ∼10−4 for typical experimental atom numbers. This is
well below actual experimental uncertainties. The ther-
modynamic value Tc deviates more, typically 1% but is
still close to T ∗ex [3,4,7,9]. The discrepancy with Tc would
have been more pronounced for an anisotropic trap (see
below).

This two figures illustrate what is called finite size ef-
fects, the fact that the energy level spacing is not negligible
compared to the temperature. What we are interested in is
the role of the ground-state. For this, the transition tem-
perature and the condensate population fraction are not
the best observables. It is nevertheless already clear from
Figure 1 that sc is a significant improved model to de-
scribe semi-classically a cloud near degeneracy compared
to sc0. The high-N model predicts that the ground-state
influence should be much more pronounced on the peak
density. We will now focus our attention on that observ-
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Fig. 3. Degeneracy parameter ρ(0)λ3 in function of the atom
number N for clouds at the transition temperature. The dot-
ted line corresponds to the semi-classical model sc at T = T ∗sc

and the solid line to model ex at T = T ∗ex. Even if the degener-
acy parameters are somewhat different, they both differ signifi-
cantly to the usual value of 2.612 (dashed horizontal line). This
deviation is due to an under-estimation of the ground-state
density. The actual values are close to our high-N prediction
of 6.24 (see text).
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Fig. 4. Condensate atom number fraction N0/N (dashed line)
and peak density fraction ρ0(0)/ρ(0) (solid line) in function
of the temperature in harmonic oscillator unit �ω/kB, using
model ex. The cloud contains 106 atoms. The transition tem-
perature is T ∗ex = 93.37�ω/kB and the asymptotic thermo-
dynamic temperature is Tc = 94.05�ω/kB . The positions of
these temperatures are shown as vertical lines in the figure.
The ground-state peak density increases much more sharply
than the ground-state population around the transition tem-
perature. The former has also a significant value above T ∗ex.
The model sc is indistinguishable for N0/N , but is slightly
different for ρ0(0)/ρ(0) (dotted line).

able, only in the more pertinent comparison between the
models sc and ex.

This is first illustrated in Figure 3 where the degener-
acy parameter ρ(0)λ3 is plotted in function of the atom
number for clouds at T = T ∗. We plot this number for the
semi-classical approximation sc and for the exact model,
ex. The two curves are higher than 2.612. This highlights
the inaccuracy of the standard semi-classical models (sc0

or sc∞) that do not take into account the ground-state
contribution. It confirms also the calculation developed
above. The degeneracy parameter is astonishingly con-
stant till 103 atoms and does not differ much even for
smaller atom numbers. Models sc and ex, which have
almost the same transition temperature, have the same

1.0

0.8

0.6

0.4

0.2

0.0

C
on

de
ns

at
e 

fr
ac

tio
n

1211109876
Temperature (h.o. unit)

Fig. 5. Same as in Figure 4 but with 103 atoms. The transition
temperature is T ∗ex = 8.71�ω/kB and the asymptotic thermo-
dynamic temperature is Tc = 9.41�ω/kB . Since the number of
populated states is considerably reduced compared to Figure 4,
the discrepancy between sc (dotted lines) and ex is more pro-
nounced. This also explains why the increase of the condensate
peak density is slower.
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Fig. 6. Atomic density ρex in function of r/σ where σ is the
size of the harmonic oscillator ground-state. The temperature
is T = 93.37�ω/kB and the atom number N spans from 0.990×
106 to 1.004×106 by step of 2000 atoms. The curve at threshold
is in dotted line and corresponds to 106 atoms. The inset shows
the excited states and ground state density profile at threshold.
The dip around r = 0 is mainly due to the first excited state
population.

asymptotic value of the degeneracy parameter. This value,
6.24, is the one predicted by our high-N analysis. The
model sc is significantly higher than this value for exper-
imentally accessible atom numbers. This is because our
first analysis does not take into account the 3

2τ term of
model sc. To first order [19],

x∗sc ≈
(τ∗sc)

3
2

√
ζ(2)

(

1 +
9

8ζ(2)
τ∗sc ln τ∗sc

)

and is then slightly smaller than (τ∗sc)3/2/
√

ζ(2). Conse-
quently the ground-state peak density is bigger at T ∗sc us-
ing model sc than at Tc using the high-N model. The
excited states peak density is also higher in model sc be-
cause of this 3

2τg 1
2

term.
The next three figures deal with the cloud properties

around the Bose-Einstein threshold. Figures 4 and 5 show
the evolution of the condensate fraction N0/N and the
condensate peak density fraction in function of T for two
different atom numbers, 106 and 103. Figure 6 shows the
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density profile of clouds near degeneracy. What prevails
in Figure 4 is the sharp increase of the condensate peak
density compared to the condensate population. Moreover
the models sc and ex give very close results validating our
analysis on the ground-state contribution near degener-
acy. This means that the peak density is a much better
marker of the Bose-Einstein threshold than the atom num-
ber. This feature is in fact used experimentally: the ap-
pearance of a small peak over a broad distribution is the
usual criterion to distinguish clouds above or below the
transition temperature. This sharpness also explains why
the value of the peak density is very sensitive to the value
of the temperature (cf. Fig. 3). Figure 4 shows also that,
above threshold, the ground-state peak density fraction
decays slowly. This is even more pronounced in Figure 5
where N = 103 instead of 106. It comes from the fact that
the number of populated states is not macroscopic any-
more (kBT < 10�ω) and then the transition is smoother
for smaller atom number. Once again, the density is a
better marker of degeneracy than the atom number. This
figure shows also that the 3

2τ term and the ground-state
contribution make the model sc still very close to model
ex, respecting the density and population fractions, even
for 103 atoms.

The above analysis is focused on the peak density i. e.
at the centre of the cloud. Figure 6 shows the total density
profile of clouds, all at the same temperature, but contain-
ing different numbers of atoms around N∗

ex, the number
of atoms for which T = T ∗ex (N = N∗

ex corresponds to the
dotted line). This figure simulates somehow an experimen-
tal observation of BEC threshold. Only the central part
is sensitive to the atom number; this corresponds to the
condensate growing as the number of atoms is increased
and to the fact that the excited states are already satu-
rated for these atom numbers. Moreover, by looking at the
graph, one would rather think that the Bose-Einstein tran-
sition occurs for a smaller atom number. This points out
that the definition on the transition temperature based
on an atom number criterion does not fully correspond
to the one based on the atomic density which would be
more connected to experiments. The inset shows the ex-
cited states and ground state density profiles at threshold.
The excited states density exhibits a dip in the centre of
the cloud, obviously not present in semi-classical models
(monotonic functions). We check that the height of the
dip is proportional to 1/τ and can almost be totally at-
tributed to the first excited state population. The aim of
this paper is to show the importance of the ground-state
in the study of non-interacting clouds close to threshold.
The inset reveals that the first excited state density is also
largely under-estimated; it represents ∼10% of the peak
density whereas it contributes only to ∼0.1% of the pop-
ulation.

We have shown results on the atomic density at the
vicinity of the transition temperature. Detection tech-
niques consist rather on 1D-integrated density, corre-
sponding to 2D absorption images, or 2D-integrated den-
sity [23]. One can show that, at threshold, the 1D and
2D-integrated peak density of the ground-state are van-
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Fig. 7. Contribution of the ground-state on the peak density
for, from bottom to top, 1D, 2D and 3D images in function
of the number of trapped atoms. The clouds are at the tran-
sition temperature T ∗ex and the calculations use model ex. A
3D image would give the density in all three dimensions of
space [25] whereas a 2D (resp. 1D) image corresponds to the
density integrated over one (resp. 2) dimension. For N = 104

atoms the ground-state contributes to ∼26% in 2D images and
∼6% in 1D images. In contrast to 3D image, the ground-state
contribution is very small for large atom number; it is not for
typical atom numbers accessible in experiments.

ishingly small for large atom numbers on contrary to the
non-integrated case. The peak 1D-integrated density frac-
tion behaves at threshold as

√
τ and the 2D-integrated

peak density as τ . For typical atom number this is never-
theless not negligible. This is illustrated in Figure 7 where
is plotted the condensate peak density fraction for 3D,
2D and 1D images of clouds at threshold. The calcula-
tions use the model ex. At the transition temperature
T ∗ex, the ground-state contributes to more than 10% for
N < 2500 atoms in 1D images and for N < 8× 106 atoms
for 2D images. It means that, even with the conventional
technique of absorption images, the effect should be ex-
perimentally observable if interactions could be switched
off using, for instance, the magnetic tunability of the scat-
tering length close to a Feshbach resonance [24].

Apart from the atomic density, two- and three-body
inelastic loss rates will also be affected and could be 20
to 30% higher than predicted by model sc0 around the
transition temperature for typical atom numbers. Finally,
in most experimental set-ups, the trapping potential is
anisotropic and finite size effects are then stronger. Indeed
the term 3

2τ in equation (3) should be replaced by 3
2

ω̃
ω̄ τ ,

with ω̄ = (
∏

i

ωi)1/3 the geometric mean and ω̃ = 1
3

∑

i

ωi

the arithmetic mean [3]. Whatever the anisotropy is, ω̃
is always larger than ω, making the finite size contri-
bution stronger. To first order and if kBT ∗ex � �ωi for
i = x, y and z, the ground-state contribution should be
the same since our high-N analysis does not depend on
any anisotropy.

In conclusion, we have shown that the density of an
ideal atomic gas is dominated by the ground-state contri-
bution near the transition temperature. The inter-atomic
interactions have been neglected in our analysis and will
modify our conclusions. With repulsive interactions, the
clouds tends to decrease its density at the centre of the
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cloud whereas it tends to increase it with attractive in-
teractions. Previous calculations have treated separately
finite size and interactions effects, both corrections be-
ing finally added [6]. Since the ground-state has a non-
perturbative effect on the density, our analysis tends to
prove that both effects have to be investigated together.
The approach of reference [10] could in this respect pro-
vide helpful informations. Feshbach resonances, which en-
able to tune the interactions strength, constitute a power-
ful tool to check the accuracy of the different theoretical
models. Moreover, a full three-dimensional density mea-
surement would also be valuable; this type of measure-
ment is at the edge to be available in our experiment on
metastable helium in Orsay [25].

We thank S. Giorgini for stimulating discussions. The Atom
Optics group of LCFIO is member of the Institut Francilien de
Recherche sur les Atomes Froids (IFRAF).
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We have studied one-body and two-body correlation functions in a ballistically expanding, noninteracting
atomic cloud in the presence of gravity. We find that the correlation functions are equivalent to those at thermal
equilibrium in the trap with an appropriate rescaling of the coordinates. We derive simple expressions for the
correlation lengths and give some physical interpretations. Finally a simple model to take into account finite
detector resolution is discussed.
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I. INTRODUCTION

Whether a source emits photons or massive particles, if it
is to be used in an interferometric experiment, an essential
property is its coherence. The study of coherence in optics
has shown that more than one kind of coherence can be
defined �1�. The most familiar type of coherence is known as
first order coherence and is related to the visibility of inter-
ference fringes in an interferometer. It is proportional to the
value of the correlation function of the associated field. Sec-
ond order coherence is less intuitive and corresponds to the
correlation function of the intensity or squared modulus of
the field. From a particle point of view, second order coher-
ence is a way of quantifying density correlations and is re-
lated to the probability of finding one particle at a certain
location given that another particle is present at some other
location. Particle correlations can arise simply from ex-
change symmetry effects and exist even when there is no
interaction between the particles. This fact was clearly dem-
onstrated in the celebrated Hanbury Brown Twiss experiment
which showed a second order correlation for photons coming
from widely separated points in a thermal source such as a
star �2�.

Analogous correlations in massive particles have also
been studied, particularly in the field of nuclear physics
�3–7�. Spatial correlations using low energy electrons have
also been studied �8,9�. The advent of laser and evaporative
cooling techniques has also made it possible to look for cor-
relations between neutral atoms and recently a wide variety
of different situations have been studied �10–16�. Correlation
phenomena are generally richer when using massive particles
because they can be either bosons or fermions, they often
have a more complex internal structure and a large range of
possible interactions with each other. In the field of ultracold
atoms, the many theoretical papers to date have included
treatments of bosons in a simple three-dimensional �3D� har-
monic trap �17,18�, a one-dimensional �1D� bosonic cloud in
the Thomas-Fermi regime and Tonks-Girardeau limit
�19–21�, the Mott insulator or superfluid phase for atoms

trapped in optical lattices �22� and the two-dimensional �2D�
gas �23�.

Almost all these theoretical treatments have dealt with
atomic clouds at thermal equilibrium. On the other hand, all
the experiments so far except Ref. �16� have measured cor-
relations in clouds released from a trap which expand under
the influence of gravity and possibly interatomic interactions.
It is generally not trivial to know how the correlation prop-
erties evolve during expansion. Moreover, matter waves have
different dispersion characteristics than light. All this raises
interesting questions concerning the value of the correlation
lengths during the atomic cloud expansion. In particular we
would like to know how to use the results of Ref. �17� to
analyze the experimental results of Ref. �15�, a conceptually
simple experiment in which second order correlations were
measured in a freely expanding cloud of metastable helium
atoms. The correlation length was defined as the characteris-
tic length of the normalized second order correlation func-
tion. We will use the same definition in this paper �see Sec.
II A for details�.

To illustrate a more general question that comes up in
thinking about the coherence of de Broglie waves, consider a
beam of particles with mean velocity v hitting a detector.
Two obvious length scales come immediately to mind, the de
Broglie wavelength � / �m�v� associated with the velocity
spread �v and the length associated with the inverse of the
energy spread of the source �v /m��v�2. These two scales are
obviously very different if v is large compared to the velocity
spread. In this paper, we will show that in an experiment
such as Ref. �15�, the correlation length corresponds to nei-
ther of the above length scales, although they can be relevant
in other situations. We find that the correlation length after an
expansion time t of a cloud of initial size s is �t /ms. This
result is the atom optical analog of the van Cittert-Zernike
theorem �24�. It has also been stated in a different form in
Ref. �25�. For the special case of an ideal gas in a harmonic
trap of oscillation frequency �, the correlation length can be
recast as ��t where � is the thermal de Broglie wavelength.
Hence the correlation length after expansion is simply di-
lated compared to that at equilibrium with the same scaling
factor as the spatial extent of the cloud itself.

We will confine ourselves here to the case of a cloud of
noninteracting atoms released suddenly from a harmonic
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trap. The paper is organized as follows. We will begin in Sec.
II with some simple definitions and general results about the
correlation properties of a noninteracting cloud both at ther-
mal equilibrium in a trapping potential and after a ballistic
expansion. Without making any assumptions about the form
of the trapping potential, we can only find simple analytical
results in the limit of a nondegenerate gas. Next we will
make a more exact and careful treatment by specializing to
the very important case of a harmonic potential. We intro-
duce the flux operator �26� involved in the experimental elec-
tronic detection with metastable helium and then calculate
the correlation function of the flux. We will summarize the
results and give a physical interpretation in Sec. IV. This
interpretation will allow us to comment on the rather differ-
ent case of a continuous beam as in the experiments of Refs.
�7,10,14�. In Sec. V we will use our results to analyze the
experimentally important problem of finite detector resolu-
tion. Finally, the Appendix adds some detailed calculations
concerning the expressions found in Sec. III B.

II. GENERAL RESULTS ON CORRELATION FUNCTIONS
OF NONINTERACTING GASES

Here we recall some basic results concerning the density
and first and second order correlation functions for a cloud of
noninteracting bosons at thermal equilibrium. A more de-
tailed analysis can be found in Ref. �17�. Theoretical treat-
ments that take into account interatomic interactions can be
found in Refs. �17,18,27�. We also give some approximate
results for a noninteracting gas after it has expanded from a
trap.

A. Definitions

Consider a cloud of N atoms at thermal equilibrium at a
temperature T, confined in a trapping potential. This poten-
tial is characterized by ��j ,�j

0�r�� the energy and wave func-
tion of level j �here supposed nondegenerate for simplicity�.
In second quantization, one defines the field operators

�̂†�r� = �
j

�j
*�r�âj

†, �̂�r� = �
j

�j�r�âj.

The operator âj
† creates and âj annihilates one particle in

state ��j	 whereas �̂†�r� creates and �̂�r� annihilates a par-
ticle at position r.

Correlation functions and the atomic density are statistical
averages of such field operators. We use the Bose-Einstein
distribution, 
âj

†âk	=�jk�e	��j−��−1�−1 where 	=1/ �kBT�, kB

is the Boltzmann constant and 
 is the chemical potential.
The value of 
 ensures the normalization �j
âj

†âj	=N. We
can then define

�a� the first order correlation function G�1��r ,r��
= 
�̂†�r��̂�r��	,

�b� the second order correlation function G�2��r ,r��
= 
�̂†�r��̂�r��̂†�r���̂�r��	,

�c� and the density �eq�r�= 
�̂†�r��̂�r�	=G�1��r ,r�.
Several other first and second order correlation functions

can be defined �see below� but these are the most common

ones. The first order correlation function appears in interfer-
ence experiments whereas second order correlation functions
are related to intensity interference or density fluctuation.
First and second order correlation functions are connected
for thermal noninteracting atomic clouds. The G�2� function
contains a statistical average of the type 
âj

†âkâl
†ân	 which

can be calculated through the thermal averaging procedure
�Wick theorem �28��. One finds 
âj

†âkâl
†ân	= 
âj

†âj	
âk
†âk	

���jl�kn+�jn�kl�+ 
âj
†âj	�kl�jn, which leads to

G�2��r,r�� = �eq�r��eq�r�� + �G�1��r,r���2 + �eq�r���r − r�� .

The last term is the so-called shot-noise term. It will be ne-
glected in the following because it is proportional to N
whereas the others are proportional to N2.

It is convenient to define a normalized second order cor-
relation function

g�2��r,r�� =
G�2��r,r��

�eq�r��eq�r��
.

If the cloud has a finite correlation length, then for distances
larger than this length the first order correlation function van-
ishes. Then g�2��r ,r�=2 and g�2��r ,r��→1 when �r−r��
→. This means that the probability of finding two particles
close to each other is enhanced by a factor of 2, compared to
the situation where they are far apart. This is the famous
bunching effect first observed by Hanbury Brown and Twiss
with light �2�.

The above expression of the G�2� function cannot be ap-
plied in the vicinity and below the Bose-Einstein transition
temperature. The calculation of 
âj

†âkâl
†ân	 is performed in

the grand canonical ensemble which assumes the existence
of a particle reservoir that does not exist for the condensate.
It is well known �29� that this gives unphysically large fluc-
tuations of the condensate at low enough temperature. This
pathology disappears at the thermodynamic limit if there is
an interatomic interaction �29�. It has also been shown that it
cancels for a finite number of noninteracting particles if one
uses the more realistic canonical ensemble �30�. One way to
keep using the grand canonical ensemble is to add the ca-
nonical result for the ground state �17�. This approach is
validated by the results in Ref. �30� and will be used in the
following. The largest deviation is expected to occur near the
transition temperature �30�. The contribution of the ground
state is −
â0

†â0	2�j0�k0�l0�n0. Then, with �0 the ground-state
density, it follows that,

G�2��r,r�� = �eq�r��eq�r�� + �G�1��r,r���2 − �0�r��0�r�� .

�1�

The normalized second-order then becomes

g�2��r,r�� = 1 +
�G�1��r,r���2

�eq�r��eq�r��
−

�0�r��0�r��
�eq�r��eq�r��

.

Because the ground state density is negligible for a ther-
mal cloud, the normalized correlation function g�2��r ,r�� still
goes from 2 to 1 as the separation of r and r� increases. On
the other hand, for a BEC at T=0, only the ground state is
occupied. Then �G�1��r ,r���2=�eq�r��eq�r��=�0�r��0�r�� and
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g�2��r ,r��=1. The amount of particle bunching present in
the second order correlation function can be quantified as
g�2��r ,r��−1 and this typically decays exponentially as the
modulus squared of the separation between the two points
increases. We define the correlation length to be the charac-
teristic length over which the amount of particle bunching
decays, that is the distance over which g�2��r ,r��−1 decays
to 1/e of its maximum value. The correlation length of a
BEC is infinite. Such a system is said to exhibit bunching at
high temperature over the correlation length and no bunching
in the condensed phase.

B. Correlations in an expanding cloud

In most experiments, particle correlations and other char-
acteristics are not directly measured in the atom cloud, �Ref.
�16� is an exception�. Rather, the cloud is released from a
trap and allowed to expand during a “time of flight” before
detection. For a sufficiently long time of flight, and neglect-
ing interactions between the atoms, the positions one mea-
sures at a detector reflect the initial momenta of the particles.
The results of Sec. II A concerning the correlation functions
in position space all have analogs in momentum space. In
fact the correlation functions in the two reciprocal spaces are
closely related. At equilibrium, i.e., inside the trap, the fol-
lowing relationships can be easily derived:

� dpG�1��p,p�e−ip·r/� =� dRG�1��R − r/2,R + r/2� ,

� drG�1��r,r�eiq·r/� =� dPG�1��P − q/2,P + q/2� .

In other words, the spatial correlation length is related to
the width of the momentum distribution and the momentum
correlation length is related to the width of the spatial distri-
bution, i.e., the size of the cloud. No equally simple and
general relationship holds for the second order correlation
functions. This is because, close to the BEC transition tem-
perature, and at points where the ground state wave function
is not negligible, the special contribution of the ground state,
the last term in Eq. �1� must be included, and this contribu-
tion depends on the details of the confining potential. On the
other hand, for an ideal gas far from the transition tempera-
ture one can neglect the ground state density, make the ap-
proximation that the correlation length is very short, neglect
commutators such as �r̂ , p̂�, and then write the thermal den-

sity operator as �̂=e−	�P̂2/2m�e−	V�r̂�. These approximations
lead to

G�2��p,p�� = �eq�p��eq�p�� + �G�1��p,p���2

and

G�1��P − q/2,P + q/2� � e−	�P2/2m� � dre−	V�r�eiq·r/�.

One sees that in this limit, the interesting part of G�2� in
momentum space is proportional to the square of the Fourier
transform of the density distribution and independent of the

mean momentum P. This result is the analog of the van
Cittert-Zernike theorem �24�. For a trapped cloud of size s�

in the � direction, one has a momentum correlation “length”
given by

p�
�coh� =

�

s�

. �2�

If atoms are suddenly released from a trap and allowed to
freely evolve for a sufficiently long time t, the positions of
the particles reflect their initial momenta and the spatial cor-
relation length at a detector is given by

l�
�d� =

p�
�coh�

m
t =

�t

ms�

. �3�

The normalized second order correlation function is then
a Gaussian of rms width l�d� /2. This result was experimen-
tally confirmed in Ref. �15�. One wonders however, to what
extent the approximations we have made are valid. The
clouds used in Ref. �15� were in fact very close to the tran-
sition temperature so that effects due to the Bose nature of
the density matrix may be important. Although the time of
flight was very long, it is useful to quantify the extent to
which identifying the momentum correlation length in the
trap with the spatial correlation length at the detector is ac-
curate. Finally, the effect of gravity on the falling atoms
never appears in the above approximate treatment, and we
would like to clarify the role it plays. In order to answer
these questions we undertake a more careful calculation. We
will confine ourselves to atoms initially confined in a har-
monic trap, a good approximation to the potential used in
most experiments, and happily, one for which the eigenstates
and energies are known exactly.

III. DENSITY AND CORRELATION FUNCTIONS FOR A
HARMONIC TRAP

A. At equilibrium in the trap

The eigenfunctions for a three-dimensional harmonic po-
tential of oscillation frequency �� in the � direction, are
given by

�j
0�r� = �

�=x,y,z
Aj�

e−r�
2 /2��

2
Hj�

�r�/��� .

Here ��=� /m�� is the harmonic oscillator ground-state
size, Hj�

is the Hermite polynomial of order j� and Aj�
= ����2 j��j��!�−1/2. The eigenenergies are given by �j
=��=x,y,z����j�+1/2�. Then �17,29�, with ��=	��� and 
̃
=
−���� /2, one finds

�eq�r� =
1

�3/2�
l=1



e	l
̃�
�

1

��
1 − e−2��l

e−tanh���l/2��r�
2 /��

2 �

and
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G�1��r,r�� =
1

�3/2�
l=1



e	l
̃�
�

1

��
1 − e−2��l

exp�− tanh� ��l

2
�

�� r� + r��

2��
�2

− coth� ��l

2
�� r� − r��

2��
�2� .

The above expressions can be transformed into more familiar
forms in limiting cases:

�i� For high temperature, 
→− and one recovers the
Maxwell-Boltzmann distribution. The density is �eq�r�
= N

�3 ����e−���/2��r�
2 /��

2 � with �=�2� /mkBT the thermal de
Broglie wavelength. The size of the cloud is s�=�� /��

=kBT /m��
2 . The first order correlation function is

G�1��r,r�� =
N

�3�
�

��e−���/2�„�r� + r���/2��…
2
e−�„�r� − r���/�…2.

�4�

Using our definition, the correlation length is l�t�=� /2�.
�ii� For a temperature close to but above the Bose-

Einstein transition temperature, one must keep the summa-
tion over the index l. The density is �eq�r�
= 1

�3 g3/2�e	
̃��e−���/2��r�
2 /��

2 ��, where ga�x�=�l=1
 xl / la is a Bose

function. The first order correlation function is

G�1��r,r�� =
1

�3�
l=1


el	
̃

l3/2

��
�

e−���l/2�„�r� + r���/2��…
2
e−��/l�„�r� − r���/�…2.

As the temperature decreases, the number of values of l that
contribute significantly to the sum increases. It is then clear
from the above expression for G�1� that the correlation length
near the center of the trap will increase and that the normal-
ized correlation function is no longer Gaussian. Far from the
center, only the l=1 term is important and the correlation
function remains Gaussian. Thus close to degeneracy the
correlation length is position dependent �for an explicit ex-
ample see Sec. III B 5�.

�iii� Near and below the transition temperature, the sec-
ond order correlation function is given by Eq. �1� with

�0�r�= e	
̃

1−e	
̃ ��
e−r�

2 /��
2

�����3 . As the temperature decreases, the cor-

relation at zero distance, g�2��0,0� decreases from 2 to 1 and
the correlation length increases. Around the transition tem-
perature, g�2��0,0� is already significantly different from 2
since the condensate peak density is already very large for a
noninteracting harmonically trapped cloud �31�. At T=0, the
correlation length is infinite and g�2��r ,r��=1.

B. Correlations in a harmonically trapped cloud after
expansion

Here we consider the cloud after expansion. First we dis-
cuss two classes of detection methods which must be distin-
guished before calculating correlation functions.

1. Detection

We assume that the trapping potential is switched off in-
stantaneously at t=0. The cloud expands and falls due to
gravity. Two types of detection can be performed:

�a� Snap shot. An image is taken of the entire cloud at
t= t0. We have then access to

Gim
�2��r,t0;r�,t0� = 
�̂†�r,t0��̂�r,t0��̂†�r�,t0��̂�r�,t0�	 .

The usual imaging technique is absorption, and so one has
access to the above correlation functions integrated along the
imaging beam axis. This was used for the experiments of
Refs. �12,13�.

�b� Flux measurement. The atoms are detected when
they cross a given plane. We will only consider the situation
in which this plane is horizontal at z=H. One has access to

Gfl
�2��r = �x,y,z = H�,t;r� = �x�,y�,z� = H�,t��

= 
Î�r,t�Î�r�,t��	 ,

where Î is the flux operator defined below. The detection
systems required for such experiments correspond most
closely to those of Refs. �10,15�, in which a microchannel
plate, situated below the trapped cloud, recorded the arrival
times and in one case the positions of the atoms. It also
corresponds closely to imaging a cloud that crosses a thin
sheet of light �32�, or to the experiment of Ref. �14�, in
which the transmission of a high finesse optical cavity
records atoms as they cross the beam.

These two correlation functions are different, but if the
detection is performed after a long time of flight, they are in
fact nearly equivalent. This equivalence will be discussed in
the following.

The flux operator is defined quantum mechanically by

Î�r,t� =
�

m
Im��̂†�r,t��z�̂�r,t�� =

�

2mi
��̂†�r,t��z�̂�r,t�

− �z�̂
†�r,t��̂�r,t�� .

The flux has thus the dimensions of a density times a veloc-
ity. We will give the explicit expression of this velocity in the

Sec. III B 4. Here, the atomic field operators �̂�r , t� depend
on space coordinates as well as on time. They represent the
time evolution of the atomic field during the flight of the
atoms, falling from the trap. The field operators for the fall-
ing cloud can be easily derived if we assume that there are no
interactions between the atoms and that the occupation num-
ber in each mode is constant �as in free expansion�. In this
case, these operators can be defined as

�̂†�r,t� = �
j

�j
*�r,t�âj

†, �̂�r,t� = �
j

�j�r,t�âj,

where the spatiotemporal dependence is carried by the wave
function and the statistical occupation by the creation and
annihilation operators.

2. Ballistic expansion of a harmonic oscillator stationary state

After switching off the trap, the harmonic oscillator wave
functions noted �j

0 are no longer stationary states. There are
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two ways to calculate the correlation after expansion: propa-
gation of wave functions or propagation of the density matrix
�the Schrödinger or the Heisenberg picture�. In the following
we will use the first approach which is physically more trans-
parent �see Ref. �33� for the Heisenberg picture�.

The ballistic expansion of a cloud is easy to calculate with
the appropriate Green function. The Green function K is de-
fined as

�j�r,t� = �
−



dr0K�r,t;r0,t0��j
0�r0,t0� .

As the �j
0 functions are stationary states for t�0, we can

take t0=0 in the following. The Green function for particles
in an arbitrarily time-varying quadratic potential is known
�34�. After expansion, the potential is only due to gravity and
the Green function is then

K�r,t;r0� = � m

2i��t
�3/2

eia�r − r0�2
eib�z+z0�e−ic

with a= m
2�t , b= mgt

2� , and c= mg2t3

24� .
One can then derive an analytical expression of �j�r , t�

�35,36�,

�j�r,t� = ei��r,t��
�

eij����+3�/2�

��t − i
�j

0�r̃� , �5�

where ��=tan−1� 1
��t �,

��r,t� =
m

2�t
��x̃�xt�2 + �ỹ�yt�2 + �z̃�zt�2 + 2gt2�z −

1

8
gt2��

− c −
3�

4
�6�

and, with r̃= �x̃ , ỹ , z̃�,

x̃ =
x

1 + �x
2t2

, ỹ =
y

1 + �y
2t2

, z̃ =

H −
1

2
gt2

1 + �z
2t2

. �7�

In the case of flux measurement, the position of the de-
tector is fixed at z=H. The phase ��x̃ , ỹ , t� is global as it does
not depend on the index j; it will cancel in second order
correlation measurements. This is in contrast to interferomet-
ric measurements where it is this phase that gives rise to
fringes. The above results show that after release, the wave
function is identical to that in the trap except for a phase
factor and a scaling factor in the positions �37�. This scaling
is obviously a property of a harmonic potential, and it con-
siderably simplifies the expression of the correlation func-
tions as we will see below.

3. Flux operator

Using �zHn�z�=2nHn−1�z�, the spatial derivative of the
wave function can be written

�z�j�r,t� =
m

�
��iv2 − v1�� jz

�z,t�

− iv3
jz� jz−1�z,t��� jx

�x,t�� jy
�y,t� ,

where the velocities v1, v2, and v3 are time dependent and
are given by

v1�t� = �z

H −
1

2
gt2

1 + �z
2t2 , �8�

v2�t� =
1

t
�H +

1

2
gt2 −

H −
1

2
gt2

1 + �z
2t2 � , �9�

v3�t� =
2�z�z

1 + �z
2t2

ei�z. �10�

The velocity v2 is usually much larger than the other two and
will give the dominant contribution for the mean flux and the
second order correlation function. An atom with zero initial
velocity will acquire after a time t a velocity gt which is
close to v2�t�. The flux operator is

Î�r,t� = �
j,k

�v2�j
*�k −

1

2
�v3

k�j
*�k−1z

+ v3
*j�j−1z

* �k��âj
†âk,

�11�

where j−1z is the vector �jx , jy , jz−1� and where we write
�=��r , t�.

4. Mean density and mean flux

We will first calculate the mean density ��r , t�
= 
�̂†�r , t��̂�r , t�	. Using Eq. �5�, one finds easily that
��r , t�= 1

��
1+��

2 t2 �eq�r̃�. This means that the density has the

same form during expansion up to an anisotropic scale factor
given by Eq. �7� �37,38�. The statistical average of Eq. �11�
leads to


Î�r,t�	 = �
j
�v2��j�2 −

jz

2
�v3� jz

* � jz−1 + v3
*� jz

� jz−1
* ��� jx

� jy
�2�

�
âj
†âj	 .

Because v3� jz
* � jz−1= i

�v3�
1+�z

2t2 � jz
0 �z̃�� jz−1

0 �z̃�=−v3
*� jz

� jz−1
* , the

second term cancels out. Then, without any approximation,


Î�r,t�	 =
v2�t�

�
�

1 + ��
2 t2

�eq�r̃� = v2�t���r,t� .

The flux is proportional to the density of a cloud at thermal
equilibrium with rescaled coordinates. This means that the
mean flux of an expanding noninteracting cloud is propor-
tional to the atomic density without any approximation. This
result holds with and without gravity taken into account.
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5. Second order correlation

Here we calculate the correlation functions. A discussion
is given in the next section. The snap-shot correlation func-
tion is

Gim
�2��r,t;r�,t� = �

j,k,l,n
�j

*�k�l�
*�n�
âj

†âkâl
†ân	 .

Using Eq. �5�, one finds, without any approximation �except
the neglect of the shot-noise term�:

Gim
�2��r,t;r�,t� =

1

�
�

�1 + ��
2 t2�

���eq�r̃��eq�r̃�� + �G�1��r̃, r̃���2 − �0�r̃��0�r̃��� .

As in the case of the mean density, the snap-shot correlation
function has the same form as in the trap except for an an-
isotropic scale factor.

The calculation of Gfl
�2� is similar,


Î�r,t�Î�r�,t��	 = − � �

2m
�2

�
j,k,l,n

��j
*��z�k� − ��z�j

*��k�

���l�
*��z�n�� − ��z�l�

*��n��
âj
†âkâl

†ân	 .

Two major differences appear compared to the mean flux
calculation: the terms in v3 and the phase factor ��+3� /2 in
Eq. �5� do not cancel. This makes the exact calculation very
tedious. It is postponed to the Appendix.

Experiments are usually performed in situations satisfying
two conditions: �1� the width of the cloud after expansion is
much larger than that of the trapped cloud, and �2� the mean
velocity acquired during free fall is much larger than the
velocity spread of the trapped cloud. The first condition
means that ��t�1 and the second one that gt�kBT /m. The
latter condition also means that the mean arrival time, t0
=2H /g, is much larger than the time width kBT /mg2 of
the expanding cloud. With these approximations the scale
factors become quite simple. x̃� x

�xt0
, ỹ� y

�yt0
and z̃

�
H−�1/2�gt2

�zt0
�

g�t0−t�

�z
. In particular, the coordinate z̃ is propor-

tional to the arrival time t. This means that in experiments
that measure arrival times, the results have the same form
when expressed as a function of vertical position.

In the correlation function of the flux, the above approxi-

mations also lead to v2�2gH and �jzv3 /v2�� kBT

��z

�z
2H

=
sz

2H
where sz is the width of the cloud inside the trap and

where the typical value of the occupied trap level, jz, is
�

kBT

��z
. The term containing v3 is then very small compared to

the one proportional v2. In Ref. �15� for instance the above
ratio is �10−5. We will neglect terms containing v3 in the
following. The phase factors �� in Eq. �5� are also very small
since ��t�1 and can be neglected �see the Appendix�.

Under all these approximations, one finds

Gfl
�2��r,t;r�,t�� =

v2v2�

�
�

�1 + ��
2 t2��1 + ��

2 t�2�
��eq�r̃��eq�r̃��

+ �G�1��r̃, r̃���2 − �0�r̃��0�r̃��� .

We again find the same correlation function as in the trap,
rescaled by a slightly different factor compared to Gim

�2�. This
factor simply reflects the expansion of the cloud between the
times t and t�.

The scaling laws for the harmonic potential result in a
very simple expression for the correlation lengths at the de-
tector,

l�
�d� = l�t�1 + ���t�2. �12�

Where l�
�d� is the correlation length along the � direction at

the detector and l�
�t� is the correlation length in the trap. If the

gas is far from degeneracy l�t�= �
2�

, and we recover the result
of Eq. �3�. Close to degeneracy the correlation length is po-
sition dependent. In the case of a pulse of atoms as in Ref.
�15�, this formula applies along all three space axes. In ad-
dition, when making a flux measurement, one often ex-
presses the longitudinal correlation length as a correlation
time. For a pulse of atoms from a harmonic trap, with a mean
velocity v at the detector, the correlation time is

t�coh� =
lz
�d�

v
= l�t��z

g
. �13�

It is independent of the propagation time as long as �zt�1.
These calculations are illustrated in the following figures.

For simplicity we have used an isotropic trapping potential.
As pointed out above, the normalized second-order correla-
tion functions gim

�2� and gfl
�2� are virtually identical with typical

parameters �see the Appendix� and we will use the shorter
notation g�2�. In Fig. 1 we show the normalized correlation
function g�2��r̃ ,0� as a function of r̃�r /�t for various tem-
peratures in the vicinity the Bose-Einstein phase transition
T*. We use the saturation of the excited state population to
define T* �31�. This is the correlation function at the center
of the cloud. One sees that at T=T* �the thick dashed line in
the figure�, the correlation function at zero distance is already
significantly diminished compared to higher temperatures.
The correlation length, on the other hand, is larger than
��t /2�. Also, one sees that the correlation function is al-
most flat for temperatures a few percent below T*.

In many experiments of course, one does not measure the
local correlation function, but the correlation function aver-
aged over all points in the sample �15�. The effect of this
averaging is shown in Fig. 2. We plot gm

�2��r̃�

=
�dRG�2��R+r̃e,R�

�dRG�1��R+r̃e,R+r̃e�G�1��R,R� , where the vector e is a unit vector

in some direction. One sees that the amplitude of the corre-
lation function decreases more slowly, and that after averag-
ing, the correlation length hardly varies as one passes T*.

To illustrate how local the effects which distinguish Figs.
1 and 2 are, we also plot in Fig. 3 the value of g�2��r̃ , r̃�, the
zero distance correlation function as a function of r̃ in the
vicinity of the cloud center. One sees that even below T*, the
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correlator is close to 2 at a rescaled distance of a few times
the harmonic oscillator length scale. We can simply interpret
this effect by observing that at r̃ the effective chemical po-
tential is 
−V�r̃�. Away from the center, the effective chemi-
cal potential is small and this part of the cloud can be de-
scribed as a Boltzmann cloud.

Before interpreting these results further, we recall some of
our assumptions and their possible violation. First, we obtain
Eq. �12� if we make a semiclassical approximation assuming
that kBT greatly exceeds the energy spacing in the trap in
each dimension of space. In an anisotropic trap, this condi-
tion can be violated in one or two dimensions and then cor-
relation length along these directions will be larger and can
become infinite for a small enough temperature. Second, we
have assumed a noninteracting gas throughout.

Repulsive interactions inflate the trapped cloud, and thus
reduce the length l�d� at the detector. We expect this to be the
main effect for atomic clouds above the Bose-Einstein tran-
sition threshold, where the effects of atomic interactions are
typically small. The reduction is typically a few percent.
Even slightly below T*, the condensate density is quite high,
expelling the thermal atoms from the center of the trap. The
effects of interactions inside the trap and during the cloud’s
expansion cannot be neglected. Taking them into account is
then complex and beyond the scope of this paper.

IV. PHYSICAL INTERPRETATIONS

The main result of this paper is that in an experiment
which averages over a detector in the sense of Fig. 2, even at
T=T*, the correlation lengths at the detector are well ap-
proximated by

l�
�d� = l�t���t .

The correlation length increases linearly with the time of
flight. A simple way to understand this result is to consider
the analogy with optical speckle. Increasing the time of flight
corresponds to increasing the propagation distance to the ob-
servation plane in the optical analog. The speckle size, i.e.,
the correlation length, obviously increases linearly with the
propagation distance. Another way to understand the time
dependence is to remark that after release, the atomic cloud
is free and the phase space density should be constant. Since
the density decreases with time as �����t� and the spread of
the velocity distribution is constant, the correlation volume
must increase by the same factor �25�.

Yet another way to look at the correlation length is to
observe that, far from degeneracy, the correlation length in-
side the trap is the thermal de Broglie wavelength, that is,

�
2�

=� /�p where �p=m�v is the momentum width of the
cloud. By analogy, after expansion, the correlation length is
� / ��p�loc, where ��p�loc is the “local” width of the momen-

FIG. 1. �Color online� Two-body normalized correlation func-
tion at the trap center, g�2��r̃ ,0� for 106 atoms as a function of the
position r̃=r /�t for various temperatures around transition tem-
perature. The horizontal axis is labelled in units of the size of the
harmonic oscillator wave function �. The thick dashed line corre-
sponds to the transition temperature T* defined in Ref. �31� and is
93.37�� /kB for 106 atoms. The temperature step is 0.4�� /kB. The
thermal de Broglie wavelength is �0.26�. The effect of the ground
state population is clearly visible in the reduction of g�2��0,0�, and
in the rapid flattening out of the correlation function slightly below
T*.

FIG. 2. �Color online� Two-body normalized correlation func-
tion gm

�2��r̃� for 106 atoms as a function of r̃. This function is an
average of the two-body correlation function over the cloud. The
conditions are the same conditions as for Fig. 1. Unlike Fig. 1, the
shape is always almost Gaussian and converges more slowly to a
flat correlation for low temperatures. This is because only a small
region around r̃=0 is fully sensitive to the quantum atomic
distribution.

FIG. 3. �Color online� Two-body normalized correlation func-
tion g�2��r̃ , r̃� for 106 atoms as a function of r̃. The conditions are
the same as for Fig. 1. Even for T�T* the correlation goes to 2 far
from the center. This is due to the finite spatial extent of the con-
densate. It can also be understood in terms of the chemical potential

�r̃� which, in a local density approximation, decreases as r̃ in-
creases and thus the correlation is equivalent to that of a hotter
cloud.
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tum distribution. As the pulse of atoms propagates, fast and
slow atoms separate, so that at a given point in space the
width in momentum is reduced by a factor

s�

�vt .
For a continuous beam, the formula �12� only applies in

the transverse directions. In the longitudinal direction, an
argument in terms of a local thermal de Broglie wavelength
can be used to find the coherence length or time. If the atoms
travel at velocity v without acceleration, the momentum
spread and correlation length remain constant. Defining the
energy width of the beam as �E=mv�v, one finds a corre-
lation time � /v=� /�E �7�. In the presence of an acceleration
such as gravity, the momentum spread of the beam decreases
�the energy spread at any point �E is constant�, which in-
creases the correlation length. The correlation time, however,
remains � /�E �10�.

The result that the coherence length of a cloud of atoms
can vary with the distance of propagation, is in apparent
contradiction with the results of Refs. �39,40�. Those papers
give convincing reasons, both experimental and theoretical,
for why the dispersion associated with the propagation of
massive particles should not result in an increase of the co-
herence length. The contradiction is resolved by noting that
the Mach-Zender interferometer considered in that work is
sensitive to the function f�r , t�=�dRG�1��R , t ;R+r , t�. If the
Hamiltonian commutes with the momentum operator, i.e., if
plane waves are stationary states, one can easily demonstrate
that the function f and hence its width are independent of the
time t. The experiments we analyze are sensitive to the
modulus of G�1� whose width will always increase with time.
Thus the coherence length can depend on the interferometer
as well as the source.

The role of the acceleration of gravity in these experi-
ments is minor. It governs the propagation time and the
speed of the particles when they reach the detector. In a
pulsed beam, gravity has no effect on the correlation length,
although it does affect the correlation time. It also renders
the rescaling of the z coordinate linear for large times so that
the correlation function in position z and time have the same
form. Without gravity �cancellation with a magnetic field
gradient for example�, a pulse of atoms would take longer to
reach the detector, thereby giving the correlation length more
time to dilate, and in addition they would hit the detector at
a lower velocity. The correlation time would then increase
with time and its order of magnitude would be

��t0

vT
= ��

kBT t0

where vT=kBT /m is the thermal velocity and t0=vT /H is
the time of flight to the detector.

V. EFFECT OF FINITE DETECTOR RESOLUTION

In the preceding sections, the detector was considered
ideal, i.e., with arbitrarily good spatial and temporal resolu-
tion. Here we will consider a model of a more realistic de-
tector, in which we suppose that the spatial resolution in the
x-y plane is Gaussian. This is often the case due to smearing
in pixels �13,16� and is also approximately true in Ref. �15�.
To simplify the discussion we will restrict our analysis to the
case T�T* and use a Maxwell-Boltzmann distribution rather
than Bose-Einstein distribution. In this case, each direction

of space is independent and we will only consider one direc-
tion at a time in the following.

There are three different scales in the problem: the size of

the cloud at the detector s�t��kBT

m t, the correlation length at
the detector l�d� and the rms width of the detector resolution
function d. The definition of the resolution function is that
for a density ��x�=Ae−x2/2s�t�2

, the observed density is given
by a convolution

�obs�x� =� dx0��x0�
e−�1/2���x − x0�/d�2

2�d

=
A

1 + d2/s�t�2
e−�x2/2�s�t�2+d2��.

Similarly if G�1��x ,x��=Aei�e−�x + x��2/2�2s�2
e−�x − x��2/2�l�d��2

is
the first order correlation function and Gobs

�1� �x ,x�� the ob-
served one, we have

�Gobs
�1� �x,x���2 =� dx0dx0��G

�1��x0,x0���
2

�
e−�1/2���x − x0�/d�2

2�d

e−�1/2���x� − x0��/d�2

2�d
�14�

=
�A�2

�1 + d2/s2�t���1 + 4d2/�l�d��2�

�e−��x + x��2/4�s�t�2+d2��e−��x − x��2/�l�d��2+4d2�

�15�

Consequently, with �=x ,y and z:
�i� The amplitude of the normalized correlation function

becomes

gobs
�2� �0,0� = �Gobs

�1� �0,0�
�obs�0�

�2

= 1 + �
�

 1 + d�
2/s�

2�t�
1 + 4d�

2/�l�
�d��2 .

�ii� The observed widths of the cloud are s��t�
→s�

2�t�+d�
2 .

�iii� The observed correlation lengths are l�
�d�

→�l�
�d��2+ �2d��2. The factor 2 can be understood as 2

�2 where the first term comes from the fact that d� is
defined for one particle and not for a pair of particles and the
second one comes from the fact that the correlation length is
not defined as an rms width.

In the experiment of Ref. �15� the trapped cloud had a
cigar shape. At the detector the cloud was spherical but the
correlation volume was anisotropic with lx

�d��d� ly
�d� /4. In

the third �vertical� direction, the resolution width was much
smaller than any other length scale. The observed contrast of

the correlation function was therefore approximately,
lx
�d�

2d .

VI. CONCLUSION

The most important conclusion of this paper is that the
expansion of a noninteracting cloud from a harmonic trap in
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thermal equilibrium, admits a rather simple, analytical treat-
ment of the time variation of the density and the correlation
functions. In such a pulse of atoms, correlation lengths scale
in the same way as the size of the density profile. The agree-
ment with experiment indicates that the neglect of interac-
tions is a good approximation above the BEC transition tem-
perature. An important next step however, is to examine
interaction effects so that the next generation of experiments,
which will be more precise and better resolved, can be fully
interpreted.
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APPENDIX

Explicit expression of the flux correlation function

We found in Sec. III B, the following expression for the
flux operator:

Î�r,t� = �
j,k

�v2�j
*�k −

1

2
�v3

k�j
*�k−1z

+ v3
*j�j−1z

* �k��âj
†âk,

where j−1z is the vector �jx , jy , jz−1� and where we write
�=��r , t�.

The second order correlation function for the flux is then,


Î�r,t�Î�r�,t��	 = �
j,k,l,n

�v2�j
*�k −

1

2
�v3

kz�j
*�k−1z

+ v3
*jz�j−1z

* �k��
� �v2���l

*�n� −
1

2
�v3�nz��l

*�n−1z
�

+ v�3
*lz��l−1z

* �n���
�
âj

†âkâl
†ân	 .

Neglecting the shot-noise and ground-state contributions,
this leads to


Î�r,t�Î�r�,t��	 = 
Î�r,t�	
Î�r�,t��	 + Re�A�

with

A = �
j,l
�v2v2��j

*�j��l��l
* +

1

2
v3v3�jzlz�j

*�j−1z
� �l−1z

��l
*

+
1

2
v3v�3

*lz�j
*�j��l−1z

��l−1z

* − v2v3�jz�j
*�j−1z

� �l��l
*

− v2�v3
lz�j

*�j��l−1z
��l

*�
âj
†âj	
âl

†âl	 .

We write A=�i=1
5 Ti where the Ti terms can be recast, using

tan ��=1/��t, tan ��� =1/��t�, ��=��� −��, ��j����� −���
= j ·�, �l

0=�l
0�r̃�, and �l�

0=�l
0�r̃��,

T1 = v2v2��
j,l

�j
*�j��l��l

*
âj
†âj	
âl

†âl	 =
v2v2�

�
�

�1 + ��
2 t2��1 + ��

2 t�2�
�
j,l

�j
0��j

0�l
0��l

0ei���j�−l������−���
âj
†âj	
âl

†âl	

=
v2v2�

�
�

�1 + ��
2 t2��1 + ��

2 t�2���j
�j

0��j
0eij·�
âj

†âj	�2
,

T2 =
1

2
v3v3��

j,l

jzlz�j
*�j−1z

� �l−1z
��l

*
âj
†âj	
âl

†âl	 =

−
1

2

�v3v3��

�
�

�1 + ��
2 t2��1 + ��

2 t�2���
j

jz�j
0��j−1z

0 eij·�
âj
†âj	���

l

lz�l−1z

0 ��l
0e−il·�
âl

†âl	� ,

T3 =
1

2
v3v�3

*�
j,l

lz�j
*�j��l−1z

��l−1z

* 
âj
†âj	
âl

†âl	 =
1

2

�v3v3��

�
�

�1 + ��
2 t2��1 + ��

2 t�2���j
�j

0��j
0eij·�
âj

†âj	���
l

lz�l−1z

0 ��l−1z

0 e−il·�
âl
†âl	� ,

T4 = − v2v3��
j,l

jz�j
*�j−1z

� �l��l
*
âj

†âj	
âl
†âl	 = − i

v2�v3��

�
�

�1 + ��
2 t2��1 + ��

2 t�2���j

jz�j
0��j−1z

0 eij·�
âj
†âj	���

l
�l

0��l
0e−il·�
âl

†âl	� ,
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T5 = − v2�v3�
j,l

lz�j
*�j��l−1z

��l
*
âj

†âj	
âl
†âl	 = − i

v2��v3�

�
�

�1 + ��
2 t2��1 + ��

2 t�2���j
�j

0��j
0eij·�
âj

†âj	���
l

lz�l−1z

0 ��l
0e−il·�
âl

†âl	� .

The term T1 is a real number which is not the case for T2, T3,
T4, and T5.

Calculation for harmonic oscillator stationary states

All the above terms can be calculated analytically. All the
series are identical in the direction x and y. We are then left
with the calculation of three series in only one direction,

�
n=0



n�n−1
0 �z̃��n

0�z̃��e−nu,

�
n=0



n�n
0�z̃��n−1

0 �z̃��e−nu,

�
n=0



n�n−1
0 �z̃��n−1

0 �z̃��e−nu.

The function gu�z̃ , z̃��=�n=0
 �n

0�z̃��n
0�z̃��e−nu is known �17,29�

and its expression is

gu�z̃, z̃�� =
1

���1 − e−2u�
exp�− tanh�u

2
�� z̃ + z̃�

2�
�2

− coth�u

2
�� z̃ − z̃�

2�
�2� .

Using

z̃�n
0�z̃� = �

2

z̃�â + â†��n

0	 = �
2

�n�n−1
0 �z̃� + n + 1�n+1

0 �z̃�� ,

one finds

z̃gu�z̃, z̃�� =
�

2
�� n�n−1

0 �z̃��n
0�z̃��e−nu

+ eu � n�n
0�z̃��n−1

0 �z̃��e−nu� .

It follows easily that

�
n=0



n�n−1
0 �z̃��n

0�z̃��e−nu =
2

�

z̃ − euz̃�

1 − e2u gu�z̃, z̃�� ,

�
n=0



n�n
0�z̃��n−1

0 �z̃��e−nu =
2

�

z̃� − euz̃

1 − e2u gu�z̃, z̃�� .

Moreover,

�n=0


n�n−1

0 �z̃��n−1
0 �z̃��e−nu = e−u�gu�z̃, z̃�� − �ugu�z̃, z̃��� .

Then,

�
n=0



n�n−1
0 �z̃��n−1

0 �z̃��e−nu = � 1

1 − e−2u +
1

2� z̃ + z̃�

2� cosh
u

2
�

2

−
1

2� z̃ − z̃�

2� sinh
u

2
�

2

�e−ugu�z̃, z̃�� .

Explicit expression of the flux correlation
function—Part II

We define GB
�1��r ,r� ,u�=�n

�n
0�r��n

0�r��e−nu. This
function, the 3D equivalent of the function gu, is connected
to the one-body correlation function by G�1��r ,r��
=�l=1

 e	l
̃GB
�1��r ,r� , l�� with ��=	���.

Then,

T1 =
v2v2�

�
�

�1 + ��
2 t2��1 + ��

2 t�2���l

e	l
̃GB
�1��r̃, r̃�,l� − i���2

,

T2 = −
1

2

�v3v3��

�
�

�1 + ��
2 t2��1 + ��

2 t�2�
��

l

e	l
̃
2

�

z̃ − el�z−i�zz̃�

1 − e2�l�z−i�z�
GB

�1��r̃, r̃�,l� − i���
� ��

k

e	k
̃
2

�

z̃� − ek�z+i�zz̃

1 − e2�k�z+i�z�
GB

�1��r̃, r̃�,k� + i��� ,
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T3 =
1

2

�v3v3��

�
�

�1 + ��
2 t2��1 + ��

2 t�2���l

e	l
̃GB
�1��r̃, r̃�,l� − i��� � ��k

e	k
̃� 1

1 − e−2�k�z+i�z�
+

1

2� z̃ + z̃�

2� cosh
k�z + i�z

2
�

2

−
1

2� z̃ − z̃�

2� sinh
k�z + i�z

2
�

2

�e−�k�z+i�z�GB
�1��r̃, r̃�,k� + i��� ,

T4 = − i
v2�v3��

�
�

�1 + ��
2 t2��1 + ��

2 t�2�
��

l

e	l
̃
2

�

z̃ − el�z−i�zz̃�

1 − e2�l�z−i�z�
GB

�1��r̃, r̃�,l� − i��� � ��
k

e	k
̃GB
�1��r̃, r̃�,k� + i��� ,

T5 = − i
�v3�v2�

�
�

�1 + ��
2 t2��1 + ��

2 t�2���l

e	l
̃GB
�1��r̃, r̃�,l� − i��� � ��

k

e	k
̃
2

�

z̃� − ek�z+i�zz̃

1 − e2�k�z+i�z�
GB

�1��r̃, r̃�,k� + i��� .

The dominant term is T1 and is the one used in Sec. III B 5.

Contribution of neglected terms in the correlation of the
flux

Here we evaluate the neglected terms T2 to T5 and the
shot-noise contribution. They will be evaluated in the case of
clouds far above BEC threshold. Under this assumption, all
the functions are separable in the variables x ,y, and t and the
summation over the index l in the preceding equations re-
duces to the single term l=1.

Shot-noise contribution

Using the above analysis one can show that the main term
is still proportional to v2v2�. The additional term is then,

v2v2�

�
�

�1 + ��
2 t2��1 + ��

2 t�2�
e	
̃GB

�1��r̃, r̃�,� − i��GB
�1��r̃, r̃�,i�� .

For t= t�, �=0 and GB
�1��r̃ , r̃� ,0�=��r̃− r̃��. The shot-noise

term is then

v2
2

�
�

�1 + ��
2 t2�

�eq�r̃���r̃ − r̃�� .

As expected, this term corresponds also to the one at equi-
librium with rescaled coordinates.

T2–T5 contribution

We have Gfl.
�2��r , t ;r� , t��= 
Î�r , t�Î�r� , t��	= 
Î�r , t�	

�
Î�r� , t��	+Re�A� where A=�i=1
5 Ti.

Case t= t�:

�a� �=0, then T1=
v2v2�

�
�

�1+��
2 t2��1+��

2 t�2�
�G�1��r̃ , r̃���2, T2

and T3 are real number and Re�T4�=Re�T5�=0.
�b� One finds, to leading orders, g�2��0,0 , t ;0 ,0 , t�−2

� 1
8
� sz

H
�2�1−2

t−t0

t0
��1−

�z
2

6
� where sz is the initial size of the

cloud in the vertical direction and t0=2H /g.
�c� The deviation from 2 is extremely small in the ex-

perimental conditions of Ref. �15� ��10−11� but shows that
the bunching is strictly speaking not 2 at the center. This
behavior is expected for any flux correlation function of dis-
persive waves �41�.

�d� The correlation lengths at the detector are not
modified by the additional terms.

Case t� t�:
�a� The correlation function can be written as

g�2��0,0,t;0,0,t�� = 1 +
�GB

�1��r̃, r̃�,� + i���2

GB
�1��r̃, r̃,��GB

�1��r̃�, r̃�,��
�1 + �� .

�b� where

�GB
�1��r̃,r̃�,�+i���2

GB
�1��r̃,r̃,��GB

�1��r̃�,r̃�,��
� e−��t − t��/t�coh��2�1−��z

2�/6�1−��t+t�−2t0�/t0�

and
�c�

� �
1

8
�wz

H
�2�1 − � t + t� − 2t0

t0
���1 −

�z
2

6
�

−
3

2��zt0�z�2� t − t�

t0
�2�1 +

�z

3
� .

We have neglected terms in �z , �t− t0�3 , �t�− t0�3 , �t− t0�2�t�
− t0� , �t− t0��t�− t0�2, and higher orders.

�d� The value of � is extremely small ��10−10� using

Ref. �15�. The deviation from e−��t − t�� / t�coh��2
is mainly due to

the mean time �t+ t�� /2 contribution and changes the value
of the correlation time in the wings of the time of flight by
�3%. The effect of the phase factor � is negligible.
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portant pour le refroidissement radiatif., Thèse de doctorat, Université
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[141] P. Pedri, D. Guéry-Odelin, and S. Stringari, “Dynamics of a
classical gas including dissipative and mean-field effects”, Phys. Rev. A
68, 043608 (2003).

[142] J. Kim, S. Moal, M. Portier, J. Dugué, M. Leduc, and C.
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[147] A. Perrin, Thèse de doctorat, Université de Paris XI, still in redac-
tion.

[148] Y. Kagan, E. L. Surkov, and G. V. Shlyapnikov, “Evolution
of a Bose-condensed gas under variations of the confining potential”,
Phys. Rev. A 54, R1753 (1996).

[149] C. Cohen-Tannoudji, (Lecture notes at the Collège de France, 1997-
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Résumé

En 2001, la condensation de Bose-Einstein (CBE) a été obtenue dans l’hélium métastable (He∗).
L’état métastable a une vie de 9000 sec et une énergie interne de 20 eV. Cette énergie peut être
utilisé dans la détection des atomes avec une galette de micro-canaux (MCP). L’extrêmement
bonne réponse temporelle de l’MCP et ce fort gain a permis une expérience de corrélation de
densité avec des particules massives, similaire à celle de R. Twiss et R. Hanbury Brown (HBT).
D’autre part, les collisions non élastiques dans l’échantillon de He∗ produisent un flux d’ions,
petit mais discernable, proportionnel à la densité du nuage. Ceci permet de suivre l’évolution
du nuage vers la CBE, passant par la transition de phase, en temps réel et d’une manière non
invasive.

Dans cette dissertation nous rendons compte de trois expériences : i) la détermination des
constantes d’ionisation à deux- et trois-corps pour l’He∗ ; ii) la détermination de a, la longueur de
diffusion de l’He∗ ; iii) la mesure de la fonction de corrélation d’intensité d’une nuage de He∗ en
chute libre. On a vu récemment que notre mesure de a a été affectée par une grande erreur
systématique : ici nous proposons une explication possible. Nus décrivons des méthodes pour
déterminer la température et le fugacité d’un nuage thermique. Enfin, une partie importante de
la thèse est consacré à la dérivation d’une expression analytique pour la fonction de corrélation
d’intensité du flux atomique. Cette analyse a dérivé des valeurs typiques pour la longueur de
cohérence atomique transversale et longitudinale que a confirmé la possibilité de réaliser HBT
dans notre expérience.

Mots-clés : Condensation de Bose-Einstein – Hélium Métastable – longueur de diffu-

sion – Hanbury Brown & Twiss – Thermometry d’Atoms Froid – Transition de Phase –

Fonction de Corrélation de Densité – Flux Atomique

Abstract

In 2001 metastable Helium (He∗) attained Bose-Einstein condensation (BEC ). The metastable
state has a lifetime of 9000 sec and an internal energy of 20 eV. This energy can be to detect
individual atoms using a micro-channel plate. The extremely good time response and high gain
of this detector makes it possible to carry out a density correlation measurement with massive
particles similar to the pioneering experiment of R. Hanbury Brown and R. Twiss in optics.
In addition, inelastic collisions between He∗ atoms produce a small but detectable flux of ions
proportional to the cloud’s density. This allows one to follow the evolution of the cloud’s density
toward BEC, passing through the phase transition, in real time and in a non invasive way.

In this dissertation we report on three different experiments: i) the determination of the two-
and three-body ionizing rate constants of He∗; ii) the determination of a, the He∗ scattering
length; iii) the measure of the intensity correlation function of a falling He∗ cloud. It has been
shown lately that our measure of a was affected by a large systematic error and we propose
a possible explanation. We describe methods to determine the temperature and fugacity of a
thermal cloud. Finally a major portion of the thesis is devoted to the derivation of an analytical
expression for the intensity correlation function of the atomic flux. This theoretical analysis has
derived typical values for the transverse and longitudinal atomic coherence length that confirmed
the possibility of performing a HBT experiment with HBT greatly facilitating the study of the
necessary upgrades of our apparatus.

Keywords: Bose-Einstein Condensation – Metastable Helium – Scattering length –

Hanbury Brown & Twiss – Cold Atoms’ Thermometry – Phase Transition – Density

Correlation Function – Atomic Flux
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